PS 390 DOCUMENT SET

PS 390 ADVANCED PROGRAMMING 1-9

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written permission
of Evans & Sutherland. Evans & Sutherland assumes no
responsibility for errors or inaccuracies in this document. It
contains the most complete and accurate information
available at the time of publication, and is subject to change
without notice.

PS 300, PS 330, PS 340, PS 350, PS 390 and Shadowfax are
trademarks of the Evans & Sutherland Computer Corporation.

Copyright © 1987
EVANS & SUTHERLAND COMPUTER CORPORATION
P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84108

PS 390 ADVANCED PROGRAMMING

EVANS & SUTHERLAND

The contents of this document are not to be reproduced or
copied in whole or in part without the prior written
permission of Evans & Sutherland. Evans & Sutherland
assumes no responsibility for errors or inaccuracies in this
document. It contains the most complete and accurate
information available at the time of publication, and is
subject to change without notice.

PS 300, PS 330, PS 340, PS 350, and PS 390 are
trademarks of the Evans & Sutherland Computer
Corporation. DEC, VAX, UNIBUS, and ULTRIX are
trademarks of Digital Equipment Corporation. UNIX is a
trademark of Bell Laboratories. IBM VM/SP and IBM
MVS/TSO are trademarks of International Business
Machines.

Copyright © 1987
EVANS & SUTHERLAND COMPUTER CORPORATION
P.O. Box 8700, 580 Arapeen Drive
Salt Lake City, Utah 84108

The User-Written Functions facility is distributed by Evans & Sutherland as a
convenience to customers and as an aid to understanding the capabilities of the
PS 390 graphics systems. Evans & Sutherland Customer Engineering supports the
User-Written Functions facility and files necessary to use this facility to the
following extent: E&S may supply one or two software packages that are necessary
to support user-written functions. The support of these packages is described

LIMITED SUPPORT DISCLAIMER

below.

1.

2.

E&S provides two library files USERSTRUC.PAS and USERLINK.ASM and
command files to compile, assemble, and link user-written functions with
the functions and procedures in the standard PS 390 system. E&S also
provides utilities to build a file containing S-Records in a form suitable for
downloading to the PS 390 and to load the user-written function via the
RS-232 Async interface. These files, any features provided in the PS 390
Graphics Firmware that support user-written functions, and the
documentation are all fully supported.

E&S may also supply the executable code for the cross-software (compiler,
assembler, and linker) that is used to produce the S-records that will be
transported to the PS 390. If licensed and purchased through E&S, the
executable files will be distributed on a separate tape. If the customer buys
a license from E&S, no support will be provided by Motorola. Any problems
with the compiler, linker, or assembler may be reported to E&S, but we
make no guarantee that they will be fixed. We will answer questions about
installing and using these programs, but may refer you to the Motorola
documentation for details about the compiler, assembler, and linker. E&S
will only deal with questions related to using these programs to write
user-written functions. We will not deal with questions relating to how to
use the cross-software compiler, assembler, and linker for any other
purpose.

CONTENTS

1 THE PS 390 GRAPHICS SYSTEMctiitiintrnnennennnnnnn 1-1
1.1 Hardware Componentsc.oeeeeineeennoeesnnnnesnnness 1-1
1.2 PS 390 Graphics Firmwarecvutiiiiiiiiiniinneerenans 1-2
1.2.1 PS 390 Startup Code . .cviviiii ittt i i e 1-3
1.2.2 PS 390 Communications and Graphics Code 1-3
2 MASS MEMORY STRUCTUREScciitiiiiiiiennnnnnnnnns 2-1
21 Alpha BlocK vviii ittt i i i e i et e 2-2
2.2 Named Entity Block ..ottt 2-5
2.21 Function Instance Block e 2-5
2.2.2 Display StruCturesvuiutteurnenneerrnenneneseennsnns 2-16
2.2.2.1 Control BIoCKS v i viii it et i e et 2-16
2.2.2.2 Set NOde v ittt i it ittt iiitttnnensenaenenns 2-26
2.2.2.3 Operation Nodeit ittt 2-29
2224 Data Node ..cvvtiiriiiintiiet it teneinnenneneaeannanns 2-30
2.2.3 Character Font Block ittt 2-34
2.3 Commhead ...ovvitiiiiiiiiiiittiit it i i 2-35
2.4 Number Formatsoiuieiiiiiiiiiiiiiiiiiiiiiienneenns 2-35
2.5 HashTable ...ttt ittt 2-36

3 INTERNAL PROCESSING ...ttt inienineenennn,

3.1 Structure Creationvutiuiin it nnnenneenneennens
3.1.1 Alpha LOOKUD .. vvit it i it i ittt e e
3.1.2 Named Entity Creationueeeitrenneersnassenosannnns
3.1.3 GCP Datum Pointer Setupccoiuiiiiiiiiiiiiinnenenn.
314 Alpha Updatecvviiiiiiiiiiiiiiiiiiiiineiiineeennns
3.2 Update Process vveivvtiiiiiitiintenteienneeenaeeennneonnns
3.2.1 Alpha Updateiiiiiiiiiiiiii it iiiiiiiineennnees
322 Value Update ...cvviiiiiiiiiiiiniiiinintenneeennnesennns
323 ACPProof ..ot e i e e e
324 Use of RAWBLOCK ...t iitiiiiiiiiiiiiiiiiiiiiinnennnnns
3.3 Function Operationooeieiutennnerennessnnnsoennasenns
3.3.1 Scheduler .ttt it i i i i i e i e e
3.3.2 Function ACtIVatiONuiutineinerneenaeensonnoenaannsns
3.3.3 Function StatlS ...t ivinetenneennntroenosennesennsssanns
3.3.4 Function Code Formatceiuiiniineenneenennneennns
4 PHYSICAL IO PROGRAMMINGciiiiiiiiinnernennnns
4.1 The F:USERUPD FUunctioneeeieveueeneeenrnnenneenenas
4.2 The Parallel Interfacecccviiiiiiiiienenernneeneennns
4.3 Physical /O .ot i i e e e e
4.3.1 Physical VO Constraintsc.oeieiineenrennennrennennns
4.3.2 Physical /O Operationscuveeeerineennereennaennneens
4.4 Advanced Physical /O Programmingccciuiivivuennn.

5 USER-WRITTEN

5.1

5.1.1
5.1.2
5.1.3

Introduction to
Requirements
Objectives ..
Prerequisites

FUNCTIONS TUTORIALc0vuv.n.

User-Written Functionsciieiiivn..

ooo
oo

oo

Vi

3-1
3-1
3-1
3-1
3-1

3-2
3-3
3-3

3-4
3.5
3.6
3.7

3-9

4-1
4-1
4-2
4-2

4-3
4-6

5-1
5-1
5-2
5-3
5-3

5.2 Constructing a Simple Functioncciiiiiiiiiiinnn,

521 Example ..ottt it ittt
5.2.2 About Messages and QUEUESciviinirrinrnneennernnnns
5.2.3 About Function Statescciiiiiiiiiiiiniieernnecnnnn
5.3 Writing Your Own Functioncoiiiiiiiiiiiiiiiinn.,
S.3.1 EXEICISE tvitviiiiiiiiiiitiiienneenacensonnesnacnnsennss
5.32 Feedback ...viiuiiiiiiiii i i i e e e
5.4 Compiling, Linking, and Naming the Function
5.4.1 Description of Command Files for DEC VAX/VMS and UNIX ..
5.4.2 DEC VAX/VMS Command Filecoeiiiiiiin...
5.4.3 DEC VAX/UNIX Command Filescciviiiiiinnn..
5.4.4 Instructions for IBM Systemscoiiiiiiiiiiiiiiiiiinn
5.4.5 EXerCiSe vttt i i i e e e
546 Feedback ...vviriiiiiiiiiiiiiiiiiiiiiiie it
5.5. Transferring the Function to the PS 390,
5.5.1 Using Routing Bytes to Transfer the S-Record File
5.5.2 Using Graphics Support Routines to Transfer the S-Record File .
5.5.3 EXeICISE vttiiniitiin i iiiirnrnntenernnesnesnneonnos
554 Feedback ..ot i i e e
5.6 Instancing the FUNCHON .+ vttt vttt e eee e eeeneeneens
5.7 Debugging User-Written Functionscoiiiiiiinnn..
5.7.1 EXOrCiSE vvviiiiiiiii ittt ittt ittt it
572 Feedback ..ottt i i e
5.8 ConclusSion «iuevittiiiiiiiit i i i i it i e e
6 MORE ADVANCED IDEASiitiiiiiiiiiiiiiiinnennnns
6.1 Example I - Handling Different Message Types on the Same Queue
6.2 Example I - SET_CNESS and Private Queues
6.3 Example Il - Variable Number of Input Queues
6.4 Example IV - User-Defined Qdata Typeccvviiiion..
6.5 ConclusSion «.viiuiiiiiii i i i i i i e e

Vil

7 LOADING AND DEBUGGING USER-WRITTEN FUNCTIONS 7-1

7.1 Loading User-Written Functions From Diskette 7-1
7.1.1 Loading the User-Written Function Into Mass Memory 7-2
7.1.2 Loading the User-Written Function and Creating an Instance 7-3
7.1.3 ConCluSION o . i ittt i i e e e e e 7-5
7.2 PSS 390 Debuggercoiuiuiiiiiiiiiiiiiiiiii i 7-6
7.2.1 Using the Debuggeroiiuiiiiiiiiiiiiiiiiininnenenns 7-6
7.2.2 Debugger Commandscoueiriiiiininiiiiiiiiiiiiieaeens 7-9
7.3 Setting Breakpoints in Your Codecociiiiiiiiiiiiiinn. 7-26
8 USER-WRITTEN FUNCTION REFERENCE, 8-1
8.1 IntroduCtiON ..t vttt iit ittt iiiiineennennoeneenasnns 8-1
8.2 MeSSage TyPES vvvvi ittt iittinttnianerneseneenennennns 8-2
8.2.1 QDtype and Qdatavviiinii ittt e i 8-2
8.2.2 Input Message Pointersc.coiiiiiiiiiiiiiiiiiiiinn. 8-4
8.2.3 PS 390 Floating-Point Numbersccoiiuiieennnenn. 8-5
8.3 Topical Listing Of Utility Routinesoviiiiiiiiene.n. 8-6
8.4 Procedures Provided Via USERLINKccoiiuinnn. 8-10
134 £ 3] 0] 1 8-10
(@) = g 15 O 8-10
)4 5 7 1P 8-11
CleanInputs . ..cvvniiiiin ittt iitin it nreeneanenes 8-11
TP 8-11
DropMeSSage « oot ittt it i et et e 8-12
2L T [8-12
FCdivide ...iivitiiiii it i i ittt i 8-12
FCint2double ...ttt it i 8-12
FCinteger ..ot ittt et 8-12
FCmultiply . oiii it i ittt it 8-13
FCnearzero ...ttt ittt it 8-13
FCPZmultiply o ovv ittt i i i ittt 8-13

Viii

FCround P 8-14
FCsqroot P 8-14
FCsubtract ..ot iiiiiiiiiiiiiiiiiiinneenns eeo.. 814
BFpabs i e e e 8-14
Fpecomp et i e cev.. 814
Frames ..ot i i i e e .. 815
HRTime e ettt i e e 8-15
Int text e e ... 815
MsgCopy +.vvvevninn. e e 8-16
My in out ...covitiiiiiinininienennnns e ... 816
My name e et 8-16
New@boolean ...ttt ittt ittt 8-16
Newqinteger e P 8-16
NewgmatriX ..ovvveieeervnreneroennns et 8-17
Newqnil ... i i ittt iiieaennan 8-17
Newqgpacket e et e 8-17
Newqreal et e 8-17
e & T 0) O 8-18
Newtry e N et e... 8-18
QIllMessagevvvn.. e e ettt e e 8-18
Qlllvalue P .o.. 818
Qincompatmsgs ettt et e 8-19
QSendCopyMeSS .« v vvi it iiiiiiieiin et e 8-19
Real textovviviniiinn., e e 8-19
Rndmnumberttt it 8-20
SavePrivate e e e e 8-20
SendMsg . ..oiiiiiiiiiiin, P 8-20
Set_ CNess vvvvvnviiiiiiiininiinennenenenes e 8-21
SINCOS v vvnriiiiniinninnn e e i e 8-21
Systemerror C et e e 8-22
Text_text e et e e 8-22
TICKS v vttt i i i i i i e e oo 822
Time_textcciiviuinn.. e e e 8-22

ix

L0 A4 205 (o 8-22

74 (55 7<) ¢ 8-23
11) < 8-23
8.5 Advanced UWF Procedurescoviiiiiiniiiiinnnnnneennns 8-24
Lk cursuffiX ...ouvnieiiiiiiiiiiiiiiiiiiiiiiiiiiiinienenns 8-24
Lk nosuffix ...vuvuiiiiiiiiiiiiiiiiii it ittt 8-25
Lgaupdate ...vvitiiiiiiiiiiiiii ittt 8-25
Announceupdate il i e e e 8-26
A 4] () (P 8-26
SEtlOCK v it e i i i e e 8-26
CIrlock it i i i it i 8-27
Incausagevviiiiiiiiiiiiii i i i i i e 8-27
Decausage ...ovviiiiiiiii i i i i i i it e 8-27
ACPProof .. . e e e e 8-27
&3] o 1 AP 8-28
OLbaddtoset «vvvviiiii ittt ittt ittt 8-28
Removefromsetovvniiiiiiii ittt ieiienreneann 8-29
FetchBIOCK . iviiiii it i i it ittt et ieennennnnn 8-29
&) o T PP 8-29
ACP V2 i i i i e et e 8-30
&) o T 1 o TP 8-30
ACD V2D i e ettt e e 8-30
NSLOrEVECIOL &ttt vt ittt ittt eonsonseesoonenneennnnns 8-31
NNewWACPdata ...ttt ittt ittt it 8-31
701 S 5. € SO 8-31
703 T 5 P 8-32
Drop name ...ttt i i i e 8-32
L YT 1) P 8-32
Rawbacopy bt e e 8-33
Rawcbcopy ...ovviviiian e e ettt 8-33
Rawchcopy e et e e e 8-33
S1Z€ Of v i i e e s 8-33
FetchAdnumttt 8-34

101 111 L0) o 8-34

WaitFrameot i it it i e 8-34
loc_ cheadiviiiiiiiii i i i i i i e 8-35
.15 o ¢ ¢] o 8-35
LD 0] o) A 8-35
NEWIEIUIMS & i vttt iiiit ittt iiiteeennneeenoecesnneesannans 8-35
Reactivatevuiiiiiiiiiiiii ittt ieniienenanennn 8-36
MyanyoutpULS v oo vve v ienernneeneenncenesonssnacsnasns 8-36
Pushmyinputciiiniiiiiiiiiiiiiiii it 8-36
WaitCser v vviviii ittt i ittt iie ittt 8-36
HA cursor ..ottt i it it i 8-37
HA NO _CUISOr i vttt ittt ittt it eneennans 8-37
8.6 Stack SiZe ..vviiiiiiiiiii it it it i it i e 8-38
8.7 Error MeSSages .« ivvvtiiiiiiinutrenntosinessssnssssanassans 8-38
9 APPENDICES .. ittt ittt iietteniastonnnnnenas 9-1
9.1 Using the Command Files on DEC VAX/VMS 9-1
9.2 Using the Command Files on DEC VAX/UNIX 9-11
9.3 Using the Cross-Software on IBM VM/SPcviiviinn... 9-18
9.4 Using the Command Files on IBM MVS/TSO 9-24
9.5 USERSTRUCT.PAS ... ittt ittt iiieineenennnensn 9-25
9.6 Function Header Line Formatciiiiiiiniinienn.. 9-33
9.7 S-Record Formatcooiiiiiiii ittt iineeeneenncnnn 9-34
9.8 Motorola Pascal Register Usagecovuveiininnnneeeennees, 9-37
9.9 Commhead Formatcciiitiiiiiiiiiiiiiiiniennnnen, 9-41
9.10 Operation and Data Node Formatscoviiviiiiine... 9-44
9.11 Error Types/Error Numberscooitiiiiiiiiiiiiiiiinan.. 9-62
9.12 F:USERUPD ... iiitiiiititiitiinitnrneencneonenncnnencanss 9-69

Xi

Figure 2-1
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6a.
Figure 2-6b.
Figure 2-7a.
Figure 2-7b.
Figure 2-8a.
Figure 2-8b.
Figure 2-9.
Figure 2-10a.
Figure 2-10b.
Figure 2-11a.
Figure 2-11b.
Figure 3-1.
Figure 4-1.
Figure 4-2.
Figure 4-3.

Figure 9.10-1.
Figure 9.10-2.
Figure 9.10-3.

Figure 9.10-4.

FIGURES

Alpha Block and Pascal Data Definition
Function Instance Data Structurescovvenn..
Function Instance Block and Pascal Data Definition .

Function Inputs Block and Pascal Data Definition
Outset Block and Pascal Data Definition
DCR BIOCK ittt ittt iiiieiieennonnnennnnns
Pascal Data Definition of DCR Block
DCB Block
Pascal Data Definition of DCB Block
Set Nodes
Pascal Data Definition of Set Node
Operation Node
Data Node ...oviiiiiiiiiiiiiiriennnneereoennnnnnn
Pascal Data Definition of Data Node
Character Font Blocks

................
.....................................
................
ooooooooooooooooooooooooooooooooooooooo
..................

oooooooooooooooooooooooooooooooooo

Pascal Data Definition of Character Font Blocks
Rawblock . .oviviiiiii i
Format of Physical Read Address List
Format of Data From PS 300 in Physical Read
Format of Data to PS 300 in Physical Write
General Operation Node Format

ooooooo

ooooooooooooooo

..........
....................

Viewport

oo

Character Rotate, Character Scale, Character Size,
Matrix_2x2

Rotate, Scale, Matrix_3x3

oooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooo

xii

Figure 9.10-5.
Figure 9.10-6.
Figure 9.10-7.
Figure 9.10-8.
Figure 9.10-9.

Figure 9.10-10.
Figure 9.10-11.
Figure 9.10-12.
Figure 9.10-13.
Figure 9.10-14.
Figure 9.10-15.
Figure 9.10-16.
Figure 9.10-17.
Figure 9.10-18.
Figure 9.19-19.
Figure 9.10-20.
Figure 9.10-21.
Figure 9.10-22.
Figure 9.10-23.
Figure 9.10-24.
Figure 9.10-25.
Figure 9.10-26.
Figure 9.10-27.
Figure 9.10-28.
Figure 9.10-29.
Figure 9.10-30.

Figure 9.10-31.

Figure 9.10-32.
Figure 9.10-33.

.......

Window, Eye Back, Field_of View, Matrix_4x4
Translate

oo

Increment Level-of-Detailcoviiiin i ieernnnn.

Decrement Level-of-Detail

Set Level-of-Detail, Set Conditional Bit, Set Displays,
Set Character, Orientation, Set Contrast,

Set Depth_Clipping, Set Rate External, Set Blinking,

Set Line_TeXtureovuvnininininininininnnnnenn.

IF Conditional Bit, IF Phase (Bit 15)
IF Level_of Detail
Look At/From, Matrix_4x3
Set Picking Location
Set Picking Identifier
Character Font
Set Color
Set Rate

Set Intensity

Xform Matrix
Xform Vector
Writeback
Solid_Rendering, Surface_Rendering

oooooooooooooooooooooooooo

Sectioning Plane
Light Pen
Text Size
Load VIewport .. vvvviii ittt it iieennenennns
Set Blink Rate
Load Picking Location

oooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooooo

oo

oooooooooooooooooooooooooooooooooooo

General Data Node Format

Vector_List N=n X1,Y1,Z1 X2,Y2,Z2 ... Xn,Yn,Zn
Vector-Normalized (Full Vector) - 3D (Vec3f0)

Vector_List N=n X1,Y1,- X2,Y2,-- ... Xn,Yn,--
Vector-Normalized (Full Vector) - 2D (Vec2f0)

Characters, Labels Character string (DstringD)
Vector_List Block N=n X1,Y1,Z21 X2,Y2,7Z2 ... Xn,Yn,Zn

oooooooooooooooooooooooo

ooooooo

ooooooo

........

Xiii

9-47
9-49
9-49
9-50
9-50
9-50
9-51
9-51
9-51
9-52
9-52
9-52
9-52
9-53
9-53
9-54
9-55
9-55
9-55
9-55
9-56

9-57

9-57
9-58
9-59

Figure 9.10-34. Vector_List Block N=n X1,Y1 X2,Y2 ... Xn,Yn
Figure 9.10-35. Vector_List N=n X1,Y1,Z21 X2,Y2,Z2 ... Xn,Yn,Zn
Figure 9.10-36. Vector_List N=n X1,Y1 X2,Y2 ... Xn,Yn

DIAGRAMS AND TABLES

Function States Diagramcciviiiiiiiiiinirnernarencennsnns
Function Network Diagram 1 ...ttt innnnn.
Function Network Diagram 2ouiitiitiiiinirneenerenronnonns

Table 7.2-1 Commands Accessing “Open” Memory Locations
Table 7.2-2 Commands to List Data in Memorycovvvuvvnn.
Table 7.2-3 Program Execution and Debugging Commands
Table 7.2-4 Breakpoint-Related Commandsc.ovvvuin..
Table 7.2-5 Hunt Commandscccitininiiiiniirneeernennsnas
Table 7.2-6 Boot-related Commandscoviiiiiiiiennnennn
Table 7.2-7 Memory Test Commandscviiiiiiiinnnnenn.

Xxiv

Section AP1
The PS 390 Graphics System

This document is intended to provide information about the data formats and sys-
tem function of the PS 390. It contains the information necessary to effectively
write advanced user-written functions and to perform physical I/O functions across
the high-speed parallel interface. The PS 390 is a data-driven, interactive display
system. It consists of several general- and special-purpose processors and subsys-
tems that are interfaced by means of a general data bus in conjunction with a mass
memory system.

1.1 Hardware Components

The Joint (graphics) Control Processor (JCP) is a general-purpose micropro-
cessor that manages the data structures in mass memory and initiates the
display defined by these data structures. The JCP contains 512K bytes of
local program memory. The Mass Memory is a general-purpose, dual-ported
memory that is byte-addressable by the JCP. Up to 2048K of mass memory
is available on the JCP card. The PS 390 can also be configured with up to
two additional Mass Memory cards, each of which contains 1024K bytes of
memory. Mass memory may be used as program memory for the JCP, but
generally provides the memory in which data structures are stored and ma-
nipulated by the JCP and accessed for display by the Display Processor.
Each refresh cycle, the Display Processor traverses the data structures and
transforms the data to be displayed; performs clipping, perspective projec-
tions and viewport mapping; and finally draws the data on the CRT. The
Display Processor is comprised of an Arithmetic Control Processor(ACP), a
Pipeline Subsystem(PLS), a Raster Backend Bit-slice processor(RBE/BS),
and a Raster Backend Video Controller(RBE/VC).

PS 390 Graphics System

API-1

e The Arithmetic Control Processor is a special-purpose, bit-slice mi-
croprocessor that interfaces with the Mass Memory by means of a
high-bandwidth, 32-bit memory access port. The ACP traverses
linked data structures in Mass Memory, referred to as SOD (Set-Op-
erate-Data) structures. The SOD structures contain commands that
indicate the functions the ACP is to perform for each SOD data
block. These include commands to modify the state of the ACP and
process three-dimensional data.

The state of the ACP is considered to be those values which are
context dependent, such as transformation matrix contents, viewport
boundaries, color, line texture, etc. The SOD structures and the com-
mands which initiate and control the ACP functions are detailed in
later sections. In traversing the SOD structures, the ACP performs all
of the matrix operations required to transform data points before
passing the transformed data coordinates to the Pipeline Subsystem.

e The Pipeline Subsystem accepts transformed data coordinates from
the ACP and performs clipping, perspective division, and viewport
mapping on the data to be displayed. The Pipeline Subsystem proc-
esses data asynchronously in relation to the processing performed by
the ACP. The processed data is then output to the Raster Backend.

e The Raster Backend accepts screen coordinate data and commands
from the Pipeline Subsystem. From this data, it produces pixel infor-
mation for the display of images on the raster monitor.

1.2 PS 390 Graphics Firmware

The primary purpose of the PS 390 graphics firmware is the manipulation
of data structures that are traversed by the Display Processor to display
information. To do this, the graphics firmware must:

Perform startup operations
Communicate with the host computer support software
Receive input from graphics peripherals

Initiate updates of the data structures

Perform data storage allocation/deallocation

A i

Initiate the traversal of the data structures by the Display Processor.

API-2 PS 390 Advanced Programming

The graphics firmware is made up of startup code and communications and
graphics code.

1.2.1 PS 390 Startup Code

This determines hardware availability and status by performing a series of
self-tests on hardware components. Following these self-tests, system con-
figuration parameters and the 68000 Graphics Control Program(GCP) are
loaded from the PS 390 floppy disk drive. (Throughout this document, GCP
is used interchangeably as an acronym for the Graphics Control Program
and for the Graphics Control Processor on the JCP card.)

1.2.2 PS 390 Communications and Graphics Code

Once startup code is completed, the Graphics Control Program then initial-
izes all data structures and communications handlers and awaits input from
host software or keyboard.

Included in this document are several block diagrams of data structures.
The values of fields are indicated graphically, as in the following example:

16-bit Field

— 32-bit Field —

Two 8-bit Fields

PS 390 Graphics System

AP[-3

Section AP2
Mass Memory Structures

PS 390 data structures are built by the GCP and exist in mass memory. Data
structures in the PS 390 which can be named by the user are referred to as Named
Entities. Named Entity blocks represent function instances, variables, character
fonts and display data structures. These types of structures are called Named Enti-
ties, even if there is no associated name. Hence, the term Named Entities refers to
blocks which can be (but not necessarily are) named. The name associated with a
Named Entity is kept in a block referred to as an alpha block. An alpha block is a
data structure that contains the location in mass memory of a Named Entity as well
as the name, if any, associated with that Named Entity. Every Named Entity, re-
gardless of whether the user has chosen to name it or not, has an alpha block
associated with it. Alpha blocks with names are listed in a dictionary that is in-
dexed by means of a fixed-length hash table. The hash table is an array of pointers
to forward and backward linked lists of alpha blocks. Naming a node causes the
name to be entered into a hash table along with a pointer to where the current
node associated with that name resides in PS 390 Mass Memory.

Though the address of the Named Entity referred to may change often, the address
of the alpha block remains constant until an INITIALIZE command is entered,
which will destroy the alpha block.

In general, all references to a Named Entity structure are indirect, through its
alpha block. Whenever some node in the system references another node, a pointer
is placed to the alpha block (known as an “alpha pointer”) so that the current node
associated with that name can be determined.

Mass Memory Structures AP2-1

2.1 Alpha Block

AP2-2

The alpha block structure is shown in Figure 2-1. Some contents of the
alpha block are:

e Datum Pointer

The datum pointer points to the location in Mass Memory of the Named
Entity to which the alpha block refers.

e Dictionary Forward and Backward Pointer

The dictionary forward and backward alpha pointers allow an alpha
block to be linked into the dictionary list.

e Usage Count

Usage count indicates the current number of references made to the
alpha block in the display data structures or function networks. It is
necessary since names may be multiply referenced. The usage count
must be incremented for every new pointer to this alpha block, and
must be decremented each time a pointer to the block is removed.
When the usage count becomes zero, the alpha and its associated
Named Entity block are removed from storage. Two utility routines,
Incausage and Decausage exist to perform these actions.

Note

It Is Very Important To Keep This Count Accurate! If
the count is too small, it will crash the system at some
later time; if it is too large, the memory will never be
recovered.

e Alock

This is a Boolean value that is set true when the alpha is being manipu-
lated, false otherwise. Normally, the utility procedures provided handle
locking and unlocking of this field when it is necessary.

PS 390 Advanced Programming

e Ci_num

This field is a positive integer which indicates which instance of the
Command Interpreter created the alpha block. Each Command Inter-
preter has associated with it a Ci_num which is the parameter that is
given when instancing the command interpreter (for example,
Clinstance := f:ci(4);). This number is kept in the CI’s private data and
is written into the alpha block for each alpha it creates. Note that once
an alpha has been created, it ‘““belongs’’ to this CI until an INIT com-
mand occurs. Even redefinition of the contents of an alpha block by
another instance of the CI does not change ownership of the alpha.
When the CI function instance receives an INITIALIZE command, it
can then identify those alphas in the dictionary which it created and
which need to be destroyed.

e Gcepdatum

The Gepdatum points to the location in Mass Memory of the Named
Entity to which the alpha will refer after all current data structure up-
dates have been done. Whenever the GCP needs to find the Named
Entity which is referred to by an alpha, it must look at this field rather
than the Datum field, since the Gepdatum field has the latest changes.
This field disagrees with the Datum field only when an alpha update is
pending. See the section on Alpha Updates for further information.

e Namelength
The namelength specifies the byte length of the name associated with
the alpha block.

e Name

The name is a string of characters representing the name of the Named
Entity.

Mass Memory Structures AP2-3

AP2-4

—

Datum Pointer —

— Dict Forward Alpha Pointer —]

Dict Back Alpha Pointer —

Usage Alock - Ci_num
— Gcepdatum —
— Reserved]
n = Namelength Char 0
Char 1 Char 2
Char n-1 Char n
TYPE
Ptralphablk = Alphablk;
PtirNamedEntity = * NamedEntity;
Namespell = ARRAY]1..255] OF Char;
Lock = Boolean;
Int16 = -32768..32767;
Alphablk =
RECORD

Datum: Ptrnamedentity;
Dictfwd: Ptralphablk;
Dictback: Ptralphablk;

Usage: Int16;
alLock : Lock ;
Ci_num: Int8 ;

Gepdatum: Ptrnamedentity;

UserDatum: Ptrnamedentity;
Namelength: Int16;
Name: Namespell;

END; { of Alphablk }

{ Alpha’s Named Entity }
{ Dictionary list pointers }

{ Reference count }

{ Lock on this alpha }

{ ID number of creating CI }

{ Alpha’s Named Entity }

{ after all updates }

{ Reserved for future use }

{ Number characters of name }
{ Alpha’s name }

Figure 2-1. Alpha Block and Pascal Data Definition

PS 390 Advanced Programming

2.2 Named Entity Block

A Named Entity is a basic data structure type of the PS 390 system that can
be named and referenced. Some of the Named Entity types are as follows:

e Function Instance

A function instance is a Named Entity that performs a given function,
based upon a given set of inputs, and creates a given set of outputs.

e Display Structures

The ACP traverses these each refresh cycle for display purposes.

e Character Font Block

A character font block is a structure that defines the strokes or vectors
which make up the characters. It consists of an integer that indicates
this display structure is a character font block, a 128-entry (or 256)
character font table (one for each character of the 128 displayable AS-
CII character set), and up to 128 (or 256) associated character stroke
blocks (with strokes in relative mode).

2.2.1 Function Instance Block

Functions perform specific operations by accepting input, processing it, and
sending output to other functions. Generic functions exist as Pascal-callable
procedures which reside in the Graphics Control Program. Since each func-
tion is guaranteed to run to completion once execution has begun, the mod-
ule of code for a generic function can be shared among several instances of
the function without regard to reentrancy requirements (as long as sufficient
mass memory is available). Care must be taken, however, to ensure that all
residual data are kept on a private data queue which is accessible only to
that function instance. Functions may be used individually or be part of a
network of functions to perform a required operation. Three types of func-
tions exist: standard functions, system functions, and I/O functions.

1. Standard functions

Standard functions include all user-created functions and those func-
tions receiving input from devices. Standard functions communicate
through their inputs and outputs. They have specified priorities and
are scheduled for execution accordingly by the Scheduler.

Mass Memory Structures AP2-5

2. System functions

The system functions are special-purpose functions which can be cre-
ated only by the firmware itself and which cannot be part of a user-
created function network. One system function is the DESTROY
function, which returns memory blocks to free storage. Its input
queue is accessible to all functions, not by a function connection, but
by a global variable. Another system function is the UPDATE-FOR-
MATTER function, which takes update blocks from a system-wide
update list and prepares their contents for the ACP to work on. This
function has no inputs or outputs but is activated when an update is
put on the update list. The UPDATE-KILLER function also has no
inputs or outputs as other functions do. It is activated when update
blocks have been processed by the ACP and need to be destroyed.

3. I/O functions

I/O functions perform input/output operations for I/O devices only.
One input function and one output function exist per device. /O
functions are unique in that they communicate with interrupt-level
routines through special buffers rather than through the normal func-
tion communication method of queued messages. Specifically, an in-
put function differs from other functions in that it has no input
queues. Instead, its data come from the specific hard-coded buffer
associated with its input device. When an input interrupt occurs, an
interrupt routine places all input in this buffer and determines if an
input function is waiting on that buffer. If so, the input function is
activated. An output function is special in that it is the only function
which waits on both an input queue and an output ‘“‘queue’. The
output function receives input as queued messages and outputs to an
associated hard-coded buffer through a special interrupt procedure.
It may have to wait either for room in the output buffer or for new
queued messages. Note that because I/O functions can communicate
with other functions, they have names which the host can access (for
creating function networks), as well as standard communication
queues for that purpose.

e Function Instance Data Structures

When the need for a particular function arises, an “instance” of the
generic function is created by the user or by the system. This function
instance has its own unique set of input sources, output destinations,
and private data.

AP2-6 PS 390 Advanced Programming

Before a function instance can be created, enough mass memory must
be reserved to accommodate the necessary data structures. These data
structures are: a Function Instance block, a Function Inputs block, and
Outset blocks.

To understand these data structures, it is important to note that PS 390
Pascal is not standard Pascal. In standard Pascal, the length of all re-
cords is known at compile time. In PS 390 Pascal, the size of one array
in the record can be determined at runtime. Because this array is
placed in the last field of the record, the compiler can correctly com-
pute the starting offset of that last field (as well as all prior fields).
Standard Pascal allows a similar subterfuge in permitting variant re-
cords. With the PS 390 Pascal, note that the variance is extended to
include the size of a final array. For example, a variable number of
inputs and outputs is allowed for a function instance. The last field in
the function instance block is an array (of variable length) of outset
pointers (one for each output). In order to allow a variable number of
inputs, a separate Function Inputs block was defined whose last field is
an array of input queue pointers (one for each input).

The Function Instance structure contains all the references to data
needed to define a function instance. This information includes (a) an
index identifying the Pascal-callable procedure that performs the re-
quired generic function, (b) the input source(s), (c) the output destina-
tion(s), (d) a priority value for scheduling purposes, (e) the current
status of the function, and other information about the function.

The Function Instance block contains the address of a Function Input
block. Each input queue is defined by a Message Queue block. The
Function Inputs block contains the number of inputs for the function, a
message queue for the private message of the function, and one mes-
sage queue for each other input of the function.

The Message Queue block references the input data itself. It also indi-
cates if the function instance is waiting for input on its associated data
in order to be activated, though this technique is used only if the func-
tion requests to wait for a specific input rather than a full set of inputs.

The Function Instance block also points to Function Outset blocks. The
Function Outset block identifies each of the output destinations of this
function instance, including the appropriate queue of the receiving
function or display data structure.

Mass Memory Structures AP2-7

The Function Outset blocks contain two int8’s (aside: an int8 implies
that the maximum degree of fanout from a function is 127). One int8,
Maxn, gives the capacity of the block; the other, N, gives the capacity
actually used, where capacity means the number of output designators
that will fit in the block.

A negative N is initially indicated. If a function attempts to send data
out of an output port with a negative N, a warning “No connection ever
made out of ...” (or somesuch) is issued, and the used field is set to
zero (this prevents repeated warnings of no connection ever made). An
effect of a DISCONN ... :ALL on that output is to set N field to zero;
this provides a means of the user specifically to indicate that no con-
nection was intended to be made out of that input and hence disable the
warning. The N also only goes down to zero (i.e., is not made negative)
if each connection ever made is specifically removed (as opposed to the
:ALL technique).

Figure 2-2 illustrates the general relationship between these function
instance data structures. Then next sections detail each of these struc-
ture blocks.

»] M —
Function nput Message Input Message
Inputs
Function
Instance
4 Input Message|—»
Outset —=Pointer to Alpha Block of destination

Figure 2-2. Function Instance Data Structures

e Function Instance Block

A function instance is represented in storage by a function instance
block of the format shown in Figure 2-3.

AP2-8 PS 390 Advanced Programming

Function Instance

’____

Named Entity Pointer —

Function Status

Priority Value

My Alpha Pointer

Debug Alpha Pointer

Debug Alpha Pointer

Myint8

I Carve Memory

Debug Function Code

Pascal Function Code

— Function Inputs Pointer

Num of Outputs

IamMemOK

NumNonNull

Outset 1 Pointer

.

Outset n Pointer

CONST
Fcninstance =
TYPE
PtrNamedEntity
Ptralphablk =
Ptrfcninputs =
Ptroutset
Int8
Fcninstance =
RECORD
Type: Fcninstance;

4;

* NamedEntity;
® Alphablk;

* Fcninputs;

“ QOutset
-128..127

Schednext: PtrNamedEntity;

Status: Fcn_status;
Priority: Int8;

Myalpha: Ptralphablk;

A_dbgcemdex: Ptralphablk;

A_dbgprint: Ptralphablk;

Myint8: int8; {1-byte private message}
Carvememory: Boolean;

D_fcncode: Fentype;
P_fcncode: Fentype;
Inputs: Ptrfcninputs;
Noutputs: Int8;

IamMemOK : MemOKindex;

NumNonNull : Int16;

Outputs: ARRAY [Dummysize]OF Ptroutset;

END;

Figure 2-3. Function Instance Block and Pascal Data

Mass Memory Structures

Definition

AP2-9

The fields of the function instance block are detailed below.

— Function Instance

This field identifies this block as a function instance block.

- Named Entity Pointer

The second field in the function instance block is for use by the Sched-
uler. The Named Entity pointer identifies the function instance next to
run on the active or priority function list.

- Function Status

This field indicates the current state of the function instance.

- Priority Value

The priority value gives the priority of the function. The Scheduler uses
this value at scheduling time to determine when this function will exe-
cute in relation to other functions ready to run. Lowest priority is 15
and the highest is 0.

- Alpha Pointer

The alpha pointer (Myalpha) points to the block in memory containing
the user- or system-given name of the function instance. Note that be-
cause a function instance is a Named Entity, it may be named by the
user. Through this name, the user may create the function instance,
delete it, or display data structures.

- Debug Alpha Pointers

These alpha pointers are currently not used.

- Myint8

This field is used by individual functions for private data. For example,
some of the data concentrator functions indicate which port this func-
tion serves via this field.

AP2-10 PS 390 Advanced Programming

- Carve Memory
This is a boolean which indicates whether this function might need to
carve memory.

- Debug Function Code
This field identifies the generic function (a Pascal-callable procedure)
to be called when the function instance is executed.

- Pascal Function Code
This code identifies the generic function (a Pascal-callable procedure)
to be called when the function instance is scheduled for execution.
(This field is always the same as the Debug Function code.)

- Function Inputs Pointer
The function inputs pointer points to a function input block that lists the
function instance inputs.

— Number of Outputs
Number of outputs specifies how many different output values are to be
sent from this function to other functions.

-~ TamMemOK

This is index into array of users. Free storage used by this function wili
be charged to the user according to this index. Also, the scheduler uses
this index to determine which user category this function is in.

—~ NumNonNull

This represents the number of inputs queues which still need data in
order for this function to be able to run. When a message is sent to a
previously empty input queue, this number is decremented; when it
becomes 0, the function is ready be executed.

-~ Qutset Pointers

Each function output port has an outset block. The outset block identi-
fies output destination(s).

Mass Memory Structures AP2-11

e Function Inputs Block

A function input arrives in the form of a queued message. A function
inputs block, see figure, contains the input queue headers.

Number Inputs —l Not Used

— Private Queue Head Pointer e

—— Private Queue Tail Pointer
Cqueue —l Ownerwait

— Input 1 Queue Head Pointer —]

— Input 1 Queue Tail Pointer —

Input 1 Cqueue 1 Ownerwait

— Input n Queue Head Pointer —

— Input n Queue Tail Pointer —

Input n Cqueue Ownerwait
Reserved
TYPE
Mqueue =
RECORD
Qhead: Ptrqdata; {head of queue}
Qtail: Ptrqdata; {tail of queue}
CQueue : boolean; {true - Cqueue, false - Tqueue}
Ownerwait : boolean; {true function waiting on this}

{queue for activation}
END; {of Mqueue}

Fcninputs =
RECORD
Nin: Int8; {number of input queues}
Private: Mqueue; {private data}

Inputqueues: ARRAY[Dummysize] OF Mqueue; {actual input queues}
END; {of Fcninputs}

Figure 2-4. Function Inputs Block and Pascal Data Definition

The fields of the function input block are detailed below.

~ Number of Inputs

Number of inputs specifies the number of (public, not private) input
queues of the function instance.

AP2-12 PS 390 Advanced Programming

- Private Message Queue Head and Tail Pointers

A private data queue retains variables needed from one execution of
the function instance to the next. Private message queue head and tail
pointers point to the first and last messages on this queue.

- Inputqueues Head and Tail Pointers

These pointers point to the first and last messages on this queue.

- Cness

This boolean value indicates if this queue is to be treated as a Constant
or Trigger queue. Each function is initialized with specific defaults for
each queue. This value may be changed from its default via the SETUP
CNESS command.

— Ownerwait

This indicates if the function is waiting for input on this queue. It is
only used if the function requests to wait on this specific queue. Most
functions do not make use of this field anymore.

e OQOutset Block

An outset block, shown in Figure 2-5, gives the set of destinations for
an output of a function. Each different output has an outset block. An
outset block may specify any number of function instance or display
data structure recipients; each is identified by its alpha pointer. The
input number designates which input queue of the destination function
or structure will receive this function’s output.

e (QQdata Blocks

A function’s input queues are queues of Qdata blocks, each containing
a message from another function. A message can communicate either
data or an event (or both), and is one of many types. Each Qdata block
has a pointer to the next message on the queue, a field indicating the
message type, followed by the message itself, whose contents and for-
mat depend upon the message type. Note that some Qdata are special
types put on a private queue. A private data queue retains variables
needed from one execution of a function instance to the next.

Mass Memory Structures AP2-13

e Function Instancing

The function instance data structures provide the means for interfunc-
tion communication. Most commonly, function instances receive inputs
from and send outputs to other function instances within a ‘‘function
network.”’ Function instancing is the process of creating a function in-
stance and tying it to the existing function network. Some function in-
stances are instanced automatically in the PS 390 initialization code;
others are done at the user’s command.

Number Recipients] Number this block
— Alpha Pointer 1

Input Number 1 —
Ci_num —| Memok
— Alpha Pointer 2]
— Input Number 2]

Ci_num | Memok

— Alpha Pointer n

Input Number n -]

Ci_num Memok
TYPE
Ptralphablk = “Alphablk;
Int8 = -128..127;
Int16 = -32768..32767
Outdesignator =
RECORD
Who: Ptralphablk; {Alpha of destination}
n: int16; {index into that block}
CI_num : int§; {CI that did the connect}
memok : memokindex {user classification of the connection}
END; {of Outdesignator}
Outset =
RECORD {set of output designators}
n: Int8; {number of recipients}
Maxn: Int8; {# of Outdesignators this block can hold}

0o: ARRAY[Dummysize] OF Outdesignator;
END; {of Outset}

Figure 2-5. Outset Block and Pascal Data Definition

AP2-14 PS 390 Advanced Programming

To create a function instance, the system does the following:

1.

Obtains a function instance block for the function and loads it with
the function code and priority values.

. Assigns to the instance the user- or system-specified name (in an

alpha block), ties the alpha into the name dictionary (if it is not
already there), and enters the alpha address into the function in-
stance block.

. Sets up the input, output, and private data queue structure. This in-

volves creating a function inputs block, and an outset block for each
output, then tying the blocks together in the proper manner.

. Executes initialization code for the function, if any exists.

. Marks the function’s state as ‘‘Act on update’’ and then asks the

ACP to associate the function with its name. (Some functions created
at boot time are just directly associated. This is safe since the ACP
cannot be using that name yet since the ACP is not running).

. When the update killer function in the GCP sees that the name asso-

ciation for a function has been performed, it activates the function.
The next time the scheduler runs, it will place the function on its
appropriate active list.

. Executes the function. During this first execution, the function

causes itself to wait for data in the appropriate manner (i.e., from a
queue, from the clock, or from a device). In addition, it may perform
some initialization specific to that function (such as setting up its
private queue data), although this is usually done in the function
initialization code described above.

Once a function instance has been created, the user or system can connect it
into the existing function network by issuing a command to tie the func-
tion’s outputs to their destinations. This is done, for any given output, by
entering into the outset block a pointer to and an index into the receiving
function instance or data structure node. In the same manner, other func-
tions may be connected to this function through its alpha (or name). Note
that since connections to receiving functions (and display structures) are
made via their alphas, those functions (and structures) need not exist prior
to this connection, and a redefinition of the receiving function does not
destroy connections from other functions into it.

Mass Memory Structures

AP2-15

2.2.2 Display Structures

Display structures in the PS 390 represent the operations and data that form
the two- or three-dimensional objects constructed by the user. The objects
that are formed are represented by a structured display file that is traversed
each refresh cycle by the ACP. The structured display file is created and
modified under control of the Graphics Control Processor (the 68000 in the
system). The elements of the structured display file are quite simplistic in
nature, forming an acyclic graph of nodes that are either:

e Control blocks (DCR, DCB)
e Data (dots, lines, or characters)

e Operations that change the “state of the machine” for descendent data
nodes.

e Set nodes that contain lists of branches of the acyclic graph that are to be
traversed.

With the exception of the control blocks, these nodes are all Named Enti-
ties, thus they each have an associated alpha block which may include a
name.

2.2.2.1 Control Blocks

The Display Control Root (DCR) and Display Control Block (DCB) are con-
trol blocks which serve as the major communication links between the ACP
and the GCP. The DCR contains the items used for communication between
the GCP and ACP. The DCR contains the address in Mass Memory where
the first DCB resides. A DCB is the topmost node of the user’s structure;
one DCB exists for each user.

e Display Control Root (DCR)

The Display Control Root (DCR) is a block of storage that serves as the
root node of the display data structures. The DCR, in conjunction with
the Display Control Blocks, is the only means by which the GCP and
the Display Processor (ACP) communicate directly.

During system initialization, the GCP writes the address of the DCR to
the ACP. The ACP microcode can then read this address and store it

AP2-16 PS 390 Advanced Programming

internally. The ACP controls the refresh synchronization by means of
the DCR. The ACP polls a flag in the DCR, waiting for the flag to be
set by the GCP to initiate a refresh cycle. When the GCP sets the flag,
the ACP begins traversing the display data structures. When the ACP
completes traversing the data structures, it performs the updates speci-
fied by the DCR, resets the flag, and restarts the process by polling the
DCR again and then waiting for the GCP to initiate another refresh

cycle. The DCR is shown in Figure 2-6.

Mass Memory Structures

Display Processor Busy Flag

Do Updates Flag

Plot Done Flag

Plot Select

Upblock List Head —

— 1st DCB Pointer —

Transmit Trigger

Progress Flag

X Start

Y Start

L117777171177717771777777177777/

Transmit Mode

— FIFO Head —

— FIFO Tail I

L111171777777717777771777/777/77

ACP Dispose Flag

L1177177771777171777777777/77777/

— Free Storage Size —

— . Free Storage Pointer —

Timeout Delta

ACP Status
— Upblock List Tail —
— Timeout Function Pointer —
— ACP Free Owner —

ACP Free Lock l////////////////

Last Shade Block —

Figure 2-6a. DCR Block

AP2-17

AP2-18

TYPE

Int16 = -32768..32767
Bitmask = Intl6;
PtrAvupblock = "Avupblock;
PtrDCB = "DCB;
Ptrnamedentity = “Namedentity;
Lock = BOOLEAN;
DCRblk =

RECORD

ACPbusy: Int16;
Doupdates: Int16;
Plotdone: Bitmask;
Plotselect: Bitmask;
Avup: PtrAvupblk;
FirstDCB: PtrDCB;
Xmit_Trigger : Int16;
Progress_flag : Int16;
X_Start : Int16;

Y_Start : Int16;
unusedO : Int16;
Xmit_mode : Intl6;
FIFO_head : Ptrqdata;
FIFO_tail : Ptrqdata;
unused1 : Int16;
ACPDisposeFlag : Int16;
unused?2 : Int16;
ACPFreesize : Integer;
PtrACPFree : PtrintArray;
TimeoutDelta : Int16;
ACP_Status : Int16;
Avupt: Ptravupblk;
Timoutfcn: Ptrnamedentity;

ACPFreeowner : Ptrnamedentity;

ACPFreelock : Lock;
LastshadeBlock : Ptrqdata;

END;

Figure 2-6b. Pascal Data Definition of DCR Block

As the figure shows, the DCR consists of several items, ten of which are

explained below:

- ACP Busy Flag

The Display Processor busy flag (ACPbusy) is the location in Mass
Memory that the ACP polls to determine when to begin traversing the

PS 390 Advanced Programming

display data structures. The GCP sets this location to a non-zero value
to initiate a new refresh cycle, synchronizing the setting of this location
with the line frequency. When the ACP has completed its traversal (and
update) cycle, it zeroes this location, indicating it is idle again.

- Do Updates Flag

The Do Updates flag (Doupdates) is a location that the ACP examines
at the end of each refresh cycle to determine whether updates are to be
performed. If this location is non-zero, then the update list head must
be examined to determine the address of the first update to perform.

-~ Plot Done Flag
This field is not used in the PS 390.

- Plot Select Flag
This field is not used in the PS 390.

- Update List Head and Update List Tail

When a change needs to be made in the display data structures, the
GCP communicates the change to the Display Processor in an update
block (Avupblk). The update block is on an update list, which has a
head and tail pointed at by the DCR update list head and list tail. The
update list head indicates the address of the first update the ACP is to
perform. Once an update cycle is completed, the ACP zeroes the
(Doupdates) flag. The update list tail is used only by the GCP. When an
update cycle is completed, the GCP returns the blocks in the update
list to the free storage pool.

- First Display Control Block Pointer

The first Display Control Block pointer (FirstDCB) is an address in
Mass Memory where the head of a list of Display Control Blocks re-
sides.

- Size of Free Storage Block

This field gives the size in bytes of the contiguous block of free storage
which has been allocated for the ACP’s exclusive use for operations

Mass Memory Structures AP2-19

such as sectioning and hidden line removal. A value of zero implies
that no storage has been set aside for ACP use.

- Pointer to Free Storage Block
This field gives the pointer to the free storage block described above.

— ACP Status

This field is used as part of an intricate communications mechanism
between the ACP and the GCP. When any solid modeling command is
invoked via the solid_rendering function, this field is written to by the
ACP to indicate either that solid modeling is in progress, that solid
modeling has completed or that an error has been detected by the ACP.
On the GCP side, this field is checked by the solid_rendering function
to determine when the ACP has completed its part of a viewing opera-
tion. The ACP timeout function must also check this field (along with
some other fields) to determine if the ACP has had a genuine timeout
or not. If the ACP has detected an error while performing a viewing
operation, an error number is written to this field to indicate the type of
error. The error will be brought to the attention of the GCP, as either
the solid_rendering function will see the error number in this field or
the timeout function will see it (the ACP forces a timeout when an error
has been detected.)

— Timeout Function

This field, used only by the GCP, is a pointer to a function instance
which restarts the ACP and preserves any pending updates. The func-
tion is activated when the ACP requires 120 clock ticks or more to walk
the display structures, which is usually when a recursive data structure
exists.

e Display Control Block (DCB)

The Display Control Block (DCB) is a block of storage that is the high-
est level data structure for each user on the PS 390 system. There is
one DCB for each user. The DCB is linked to the topmost nodes for all
of the data structures associated with the user. The DCB is shown in
Figure 2-7.

AP2-20 PS 390 Advanced Programming

— Next DCB —]
— Pick Select List Head
Allocate Plotter

Plotter Select

[— First Set —
Pick Window :

Pick Active Flag
RB Picked x
RB Picked y

— Pick ID —

Rsvd for Future Enhancements —

Rsvd for Future Enhancements ——

—— Rsvd for Future Enhancements ——
i— Rsvd for Future Enhancements —

Rsvd for Future Enhancements —-

—— Rsvd for Future Enhancements ——

— Rsvd for Future Enhancements —

—— Rsvd for Future Enhancements —
LPT Status
Pad for ACP
Light pen X position

Light pen Y position

Below Unknown to ACP

Figure 2-7a. DCB Block

TYPE

Int8 = -128..127

PurDCB = DCB;

Ptrnamedentity = “Namedentity;

Ptralphablk = "Alphablk;

Dcb =

RECORD

Nxt: Ptrdcb; {Next on list}
Picklh: Integer; {Pick list head (really ptrnamedentity)}
Plotallocate: Bitmask; {Bit 11=1 if plotter allocated}
Plotterselect: Bitmask; {Bits 9..8 select plotter——used only by GCP}
Firstset: Ptralphablk; {Pointer to alpha of set}
Pickwindow: Int16; {Pick window size}
Pickact: Int16; {Pick active flag}
RBPickx: Int16; {Picked x from Refresh Buffer}

Mass Memory Structures AP2-21

AP2-22

RBPicky: Int16;
RBPickID: Integer;

F1: Integer;
F2: Integer;
F3: Integer;
F4: Integer;
F5: Integer;
F6: Integer;
F7: Integer;
F8: Integer;

LPTStat: Bitmask;

{ Bit definitions for lptstat: }
{ Bit 15 - Blast

{ Bit 14 - Tipdown
{ Bit 13 - CrossPick
{ Bit 10 - Newxyon
{ Bit 9 - BlastOn
{ Bit 8 - CrossOn
{ Bit 4 - ExdDelt
{ Bit 3 - EdgeTrue
{ Bit 2

{ Bit 1

{ Bit 0

- EdgeFalse
- LPAction
- ACPAction

jdpad : Int16;
LPXcen: Intl6;
LPYcen: Intl6;

{ Below, not known to the ACP }

Menufcn: Ptrnamedentity;
Pickfcn: Ptrnamedentity;
Timoutfcn: Ptrnamedentity;
LPfcn: Ptrnamedentity;
Usersfx: char;

Menucopy: integer;

F9: Integer;
F10: Integer;
Fi1l: Intl6;

Actual_pblock: Ptrnamedentity;
Pickindex: Int16;

Pickcount: Int16;

Pickblock: Ptralphablk;
Dcbpad3: Int8;

Picktype: Dattype;

{Picked y from Refresh Buffer}
{Pick ID from Refresh Buffer}
{Reserved for future}
{Reserved for future}
{Reserved for future}
{Reserved for future}
{Reserved for future}
{Reserved for future}
{Reserved for future}
{Reserved for future}
{Lightpen tip switch status and LPDelta,}
{ LPAction bits}

— blast found a pick }

— tip switch depressed }

— tracking cross found pick }
— (x,y) position used }

— screen blast enabled }

— cross was enabled }

— X,y change exceeded delta }
— tipsw edge true signal }

— tipsw edge false signal }

— signal to sched LPIN }

— signal to ACP to hold }

{Pad to 0 mod 4 for ACP}
{Light pen X center, exp = 0}
{Light pen Y center, exp = 0}

{fcn waiting for menu pick}

{fcn waiting for pick}

{Fcn to handle ACP timeout}
{fcn to handle light pen}

{user suffix char, this DCB}
{copy of Menunum at Menu time}
{Reserved for future}

{Reserved for future}

{Reserved for future}

{Actual block picked}

{Pick index field of picked node}
{Vector count of pick}

{Picked block}

{Dattype of picked node}

PS 390 Advanced Programming

Pickerror: Intl16;
Pick3derror: Intl6;
Pickexp: Int8;
Vectype: Int8;
Pickx: Integer;
Picky: Integer;
Pickz: Integer;
Gamma: Integer;
Transf_exp: Intl6;
Transl_exp: Int16;
PLS_conf_reg: Int16;
Dcbpad4: Intl6;
Xprev: Integer;
Yprev: Integer;
Zprev: Integer,
Wprev: Integer;
Xcur: Integer;
Ycur: Integer;
Zcur: Integer;
Wecur: Integer;
Prev_Outcode: Intl16;
Cur_Outcode: Int16;
F12: Integer

END; { of DCB}

{Pick error}

{3-D Pick error}
{Exponent of coordinates}
{Vec type of picked vec}

{x,y,z of picked vec}
{Curvet/Tsegments}

{3x4 Transformation exponent}
{1x4 Translation exponent}
{PLS Configuration register}
{Reserved for future}
{Transformed xprev}
{Transformed yprev}
{Transformed zprev}
{Transformed wprev}
{Transformed xcur}
{Transformed ycur}
{Transformed zcur}
{Transformed wcur}
{Previous Outcode}
{Current Outcode}
{Reserved for future}

Figure 2-7b. Pascal Data Definition of DCB Block

A few details of the Data Control Block are explained below:

— Next DCB

The next DCB pointer (Nxt) is an address in Mass Memory of the next
DCB on the DCB list. In multiple user environments, a DCB exists for
each user. The ACP traverses the DCB blocks (and associated display
data structures) until it encounters a next DCB pointer that is zero. For
a single user, the next DCB pointer is always zero.

— Pick Select List Head

The ACP may encounter pick identifier nodes during traversals of the
display data structures. The Pick Select List Head (Picklh) is a pointer
to the Mass Memory location where the ACP last encountered a pick

identifier node.

Mass Memory Structures

AP2-23

- Allocate Plotter
The PS 390 does not support a plotter. However some bits in this field
may be used to communicate to the ACP.

- Plotter Select

The PS 390 does not support a plotter.

— First Set

First set is an indirect address in Mass Memory of the topmost node of
all the data to be displayed for the workstation associated with this
DCB. The node, or one of its descendants, is expected to contain mem-
bers for each of the user display modes (i.e., Graphics, Terminal Emu-
lator).

- Actual_pblock
After a pick has occurred, this field contains a pointer to the block
whose vector or character was picked.

- Pick Index
The pick index is a 16-bit integer associated with a vector or character
list, indicating which list contained the picked vector or character.

- Pick Count
The pick count is an integer indicating which vector or character was
picked, respectively, in a vector or character list. This count is valid
only when the pick select listhead is non-nil.

- Pick Block Pointer
After a pick has occurred, this field contains a pointer to the alpha
block of the node whose vector or character was picked.

— Data Type

After a pick has occurred, this field contains a value indicating the data
type of the vector or character list in which the pick occurred.

AP2-24 PS 390 Advanced Programming

- Exponent, Vector Type, Picked x, Picked y, Picked z

These fields give the x, y, and z values of the point which was picked
and provide information,in the Vector Type(Vectype) field, concerning
the state of the pick. For example, if an error occurs in determining the
X, y, and z values, the ACP sets bit 7 of the Vectype field. Also, if no x,
y, z values are to be returned (for example, for a character pick), bit 3
of the Vectype field is set.

- Curve_t
This field gives a count used to compute the (x,y,z) of the picked point
as a fraction of the vector when the vector is part of a curve definition.

- T_segment number

This number indicates number of segments that the 3-D picking
microcode has divided the original picked vector to find the 3-D coordi-
nates.

LPT status:

The PS 390 does not support a light pen.

- Light pen X position, Light pen Y position
The PS 390 does not support a light pen.

—~ Menu Function

Not currently used.

— Pick Function

The pick function (Pickfcn) is a pointer to the pick function instance
which is activated when a pick occurs (when the pick listhead is non-
nil). This field is known only to the GCP.

— Timeout Function

Timeout function (Timoutfcn) is a pointer to the user timeout function,
which is activated when the ACP requires too much time to traverse the

Mass Memory Structures

AP2-25

display structures (usually indicating a recursive display structure).
The user timeout function removes all user-created display structures
from the display. Note that this field is known only to the GCP.

- Lightpen Function

The PS 390 does not support a light pen.

— User Suffix

The user suffix (Usersfx) is a character which identifies the user asso-
ciated with this DCB. This field is known only to the GCP.

- Menucopy

Not currently used.

2.2.2.2 Set Node

A set node is a data structure that can contain a variable number of mem-
bers, each of which is, in effect, a set node, operate node, or a data node.
Each member of the set is processed independently from every other mem-
ber. That is, the state of the ACP is guaranteed to either be saved before
each member of the set is traversed and restored afterwards or to remain
unchanged by the member of the set. As Figure 2-8. shows, a set node
consists of:

e Set Node Indicator
The set node indicator is a value (=0) that identifies this Named Entity
as a set.

e ACP Save State Pointer

The ACP save state pointer is an address in Mass Memory of the loca-
tion where a block of storage has been allocated for the saving of the
ACP state information. If this address is zero, the ACP state is not to
be saved for this set.

o ACP Control Block Listhead

AP2-26 PS 390 Advanced Programming

The ACP control block listhead is an address in Mass Memory where
the first ACP control block associated with this set resides. An ACP
control block exists for each member of the set.

e ACP Control Block Listtail

The ACP control block listtail is an address in Mass Memory where the
last ACP control block associated with this set resides. This is always a
dummy control block (the alpha pointer is always null). It is there be-
cause the ACP writes into its NEXT pointer to aid in structure traversal.
The GCP is not allowed to remove this control block.

e GCP Control Block Listtail

This control block is the last real control block. The ACP does not know
about this field. It is there so that the GCP can add control blocks to the
end of the list of contro!l blocks without walking through the entire list
of control blocks.

Unused j Set Node Next ACP Control Block
Reserved — Alpha 1 —]
— ACP Save State Pointer — — ACP Save State Pointer —
— ACP Control Block Listhead

——— Control Block Dummy Listtail
- GCP Control Block Listtail]_‘ Next ACP Control Block —
— Alpha 2
— ACP Save State Pointer I

I Y Next ACP Control Block
— Alpha n —
— ACP Save State Pointer —

Next ACP Control Block —
— Null —
— ACP Save State Pointer —

Figure 2-8a. Set Nodes

Mass Memory Structures AP2-27

AP2-28

CONST
Netyp
TYPE
Ptrsavstate
PirACPcblk
Ptralphablk
Int8
Int16

Namedentity

RECORD

= 0

= “Savstate;

= "ACPcblk;

= “Alphablk;

= -128..127;

= -32768..32767;

Notused: Int8;

CASE

Typ: Netype OF Setnode;

Notused2: Intie6;

Ss: Ptrsavstate;

Lh: PtrACPcblk;
Lt: PtrACPcblk;
Actlast: PtrACPcblk;

END;
ACPcblk
RECORD
Nxt:
Alpha

PtrACPcblk;
: Ptralphablk;

Ss: Ptrsavstate;

END;

Figure 2-8b. Pascal Data Definition of Set Node

As figure 2-8 shows, each set consists of a variable number of ACP control
blocks, linked together as a list that will be traversed by the ACP as the set
is processed. An ACP control block exists for each member of a set. Each
ACP control block consists of:

o Next ACP Control Block Pointer

The next ACP control block pointer (Nxt) is an address in Mass Mem-
ory of the next ACP control block to be processed after the display data
structures associated with this ACP control block are traversed. (Refer
to Alpha below.)

e Alpha

Alpha is the indirect address in Mass Memory of the display data struc-

tures to be traversed as this member of the set.

e ACP Save State Pointer

The ACP save state pointer (ACPstate) is an address in Mass Memory
where the current ACP state resides. This state must be reloaded by the

PS 390 Advanced Programming

ACP before traversing the descendent display data structures of this
block. If the ACP save state pointer is zero, then the ACP state has
remained unchanged from the last time it was loaded. For example, the
first ACP control block of a set will always have an ACP state pointer
of zero, since the ACP save state is the current state, by definition.

When the ACP encounters a set, the last ACP control block of that set
(the one pointed to by the ACP control block listtail) is updated to point
to the next ACP control block to be traversed when that set is com-
pleted. The ACP then traverses the set. When the last ACP control
block of the list is traversed, the updated next-ACP-control-blockpointer
then directs the ACP to the next ACP control block.

2.2.2.3 Operation Node

An operation node is a data structure that modifies the state of the ACP. As
shown in Figure 2-9, an operation node consists of an integer that indicates
this display data structure is an operation node (=1), an integer that speci-
fies the particular type of operation node, the descendent alpha, and a vari-
able number of fields required by the particular type of operation node.
Because an operation node modifies the state of the ACP, the ACP state
must be saved before traversing a member of a set whose descendants in-
clude an operation node, and be restored before traversing the next member
of the set. For any operation node, bit 15 of the operate type is a Condi-
tional bit. (A “C” in the left corner indicates this bit.) If this bit is set, and if
bit 15 (the blink bit) in the Condition Mask of the ACP State is zero, then
the associated operation node is not performed. In all other cases, the op-
eration node is performed. In all cases, the son of the operation node is
traversed. Each of the operation nodes is described in Appendix 9.10.

Operation Node 1
CT Operation Type

— Descendent Alpha —
Field 1
Field 2

Field n

Figure 2-9. Operation Node

Mass Memory Structures AP2-29

2.2.2.4 Data Node

A data node is the display structure primitive that causes data to be drawn
by the ACP. A data node consists of an integer that indicates this display
structure is a data node (=2), an 8-bit field that specifies the mode of vec-
tors in the data node, an 8-bit integer that specifies the particular type of
data node, a 32-bit integer which points to the next data node of identical
data type, an integer (n) that specifies the number of vectors, polygons or
characters in the data node, a 16-bit integer that specifies the pick index,
and either vector data (including polygons) or character data. Vector data
consists of the two- or three-dimensional vectors (preceded by polygon at-
tribute information if polygons). Character data consists of an initial trans-
lation, spacing information, and the character string.

The general format of a data node is illustrated in Figure 2-10. Fields
marked by asterisks are not used nor accessed by normal ASCII and GSR
commands. The top bit in the second word of each of these formats (labeled
“A”) is a flag which, if clear, tells the display structure walker to process
these fields. This bit is set by default, and there exists no command to clear
it. Advanced user-written functions and programs using the physical read/
write facility may however, use these fields and clear that flag. The format
for each of the data nodes is shown in Appendix 9.10.

Data Node 2
AI Do_Dots Data Type

Pointer to Next Data Node —

n

Pick Index

* Line Texture Traverse Count

* Color

Figure 2-10a. Data Node

AP2-30 PS 390 Advanced Programming

TYPE
Namedentity = RECORD

Not used: Int8;

CASE Typ: Netype OF
ACPdata: (Do_Dots: Boolean;
Adson: Ptrnamedentity;
Adnum: Int16;

Adindex: Int16

. {Data}

)s
END;

Figure 2-10b. Pascal Data Definition of Data Node

Mode, data type, pick index, and vector/character data are detailed further
below.

e Do_Dots Field

The Do_Dots field of a data node consists of:

15 9 8 7 0
Unused D Data Type

}

Do_Dots Field L .
0 for no endpoint intensification
1 for endpoint intensification

The Do_Dots field of a data node is a single bit that specifies how the
vectors are to be drawn. When dot mode = 0, vectors are drawn nor-
mally. When dot mode = 1, each endpoint of the vector list is drawn as
an intensified dot.

e Data Type

The data type field specifies the particular format of the data node. The
ACP in the PS 390 accepts vectors of two formats: they are the 16-bit
block-normalized format shown on the next page and a 32-bit block-
normalized format that is the same in computation except that fx, fy,
and fz are 32-bits instead of 16-bits.

Mass Memory Structures

AP2-31

— Block-normalized data

Block-normalized data consist of 16-bit signed binary fractions that
share a common 7-bit signed integer exponent and an explicit 8-bit
intrinsic intensity for each block of vectors. For the vector:

1}
~

x;= 2% fxg, yi=2%* [y, zy= 2¢xfz;q, i

1l
~

x3= 2« fxz, y2=2%%[ys, z2= 2%% fz3, i

X,=2%% fxp, yn=2°%fyn, zp= 2% fz,, i=i

where e is the signed 8-bit integer exponent; the 16-bit significant
digit fields fx, fy, and fz satisfy -1 < f < 1; the 7-bit intrinsic intensity
field i satisfies 0 < i < 1.

e Next Data Node Field

The next data node field contains a 32-bit pointer to the next data node
of identical type (0 = nil pointer). This pointer allows vector lists to
exist in non-contiguous blocks of memory and also allows one to group
a set of character strings together (Label Block).

o Pick Index Field

The pick index field of a data node is reported with the vector count
when a pick occurs, thus signifying the vector list in which the pick
occurred. Although the number of vectors that may be contained in a
data node is 65,535 (if n is treated as a 16-bit unsigned number), by
convention, the maximum number of vectors that will be specified in a
given data node is 2048, which is less than the maximum number of
vectors that may be counted during pick processing. The software that
creates data nodes will ensure that the index is correct for a given data
node and that the reported index, together with the vector count, will
allow one to correctly identify the actual vector that was picked.

AP2-32 PS 390 Advanced Programming

e Vector or Character Data

-~ Vector Data

All vector data processed by the ACP are numbers of normalized, float-
ing-point form, as 2¢ « f, where e is a signed-integer exponent and the
significant digit field, f, satisfies -1 < f < 1. Rather than provide an
exponent for each coordinate of a vector, the Display Processor associ-
ates a single exponent with each block of vectors. All vector data are
two- or three-dimensional (i.e., (x,y) or (x,y,z)), with an implicit, ho-
mogenous coordinate equal to 1 (i.e., (x,y,z,1)). The dynamic range
gained by explicit use of the homogenous coordinate has been provided
by representing vector data in the normalized, floating-point form. In
addition, polygon vectors have implicit closure; that is, there is an im-
plied vector from the last point of the polygon to the first point. The
ACP automatically displays this implied vector.

— Character Data

Character data consist of an initial translation to position the character
string, spacing information to control the spacing between characters,
and a string of characters. The initial translation consists of 16-bit,
signed binary fractions for x, y, and z, with an implicit, homogeneous
coordinate equal to 1 (i.e., (x,y,z,1)), and a shared 8-bit, signed integer
exponent. Thus, the translation:

(x,,2,1) x=2%xfx, y=2¢+fy, z=2¢x [z

where e is the signed, 8-bit integer exponent, and where the 16-bit sig-
nificant digit fields fx, fy, and fz satisfy -1 < = f < 1. The spacing
information consists of a delta x and a delta y, each a 16-bit, signed
binary fraction, sharing an implied exponent equal to zero. The delta x
and delta y values determine the separation between characters in the
x and vy directions. They are given in the coordinate space of the
characters themselves, satisfying the range:

-1 < =delta x, delta y < 1.

For each character in a string of characters, the corresponding charac-
ter stroke block is read from Mass Memory to provide the vectors which
make up the individual character. The format of this character stroke
block is described in Section 2.2.3.

Mass Memory Structures AP2-33

2.2.3 Character Font Block

AP2-34

Each entry of the character font table is a 32-bit address in Mass Memory
indicating where the associated character stroke block resides. Each charac-
ter stroke block is an abbreviated Vec2s0 block, consisting of a count of the
number of vectors followed by the Vec2s0 vectors. Note that this type of
data block is used only in association with the character font block.

The character font block and associated character stroke blocks (with
strokes in relative mode) are shown in Figure 11. The x and y components
of each vector are 7-bit binary fractions that have an implied exponent of 0.

Unused | Char Font n
Font Size x1 y1 d
— Address 0 x2 y2 d
— Address 1 .
. .
. Xn yn d
— Address 127 0
° n
— Address 255
x1 yl d
X2 y2 d
L]
.
Xn l yn d
0
n
x1 yl
X2 y2 d
.
L]
Xn | yn d
0

Figure 2-11a. Character Font Blocks

PS 390 Advanced Programming

TYPE

PtrVec2sblock = Integer;
Ptrqdata = “Qdata;
Charfont =

RECORD

Fontsize: Int 16;
CASE Chars: Chsize OF
C128: (Ccd: ARRAY[0..127] OF PtrVec2sblock);
C256: (Cnd: ARRAY|[0..255] OF PtrVec2sblock);
END;
Vec2sblock =
RECORD
V2snum : Int16;
V2s : ARRAY [1..1] of Vec2s0;
END;
Vec2s0 =
RECORD
x : Int8;
y : Int8;
END;

Figure 2-11b. Pascal Data Definition for Character Font Blocks

2.3 Commbhead

The largest portion of global variables used by the PS 390 exists in a record
called Commbhead. Its format can be seen in the Appendix 9.9. This block,
located at the low end of Mass Memory, contains pointers to the active and
priority function lists, the various update lists, the standard character font,
the hashtable, the command and function name dictionaries, and the initial
Save State, as well as to other information.

2.4 Number Formats

The intrinsic data types utilized by the Graphics Control Program are:

e Int§:

an 8-bit, two’s complement number in the range of -128 to +127.

e Intl6:

a 16-bit, two’s complement number in the range of -32768 to +32767.

Mass Memory Structures AP2-35

o Integer:

a 32-bit, two’s complement number in the range of -2147483648 to
+2147483647.

e Double:

a 48-bit precision, floating-point number consisting of a 16-bit exponent
(or characteristic) and a 32-bit fraction (or mantissa).

2.5 Hash Table

The hash table is an array [-1..n] of pointers to forward and backward
linked lists of alpha blocks. The value of n is based on the amount of mass
memory available when the system boots. This value is contained in the
Commbhead.

Naming a node causes the name to be entered into the hash table with a
pointer to the Alpha block associated with that name in PS 390 Mass Mem-
ory. The -1 entry in the table is for forgotten Fcninstances since their con-
nections must be found when doing an INIT CONN command.

Any time a name is used in the system to reference a structure the name is
processed by a hash algorithm to produce a hash index. This number is the
index into the hash table. The Alpha pointer at that index is checked to see
if the name equals the requested name. If not, the dictionary forward point-
er of the Alpha is then checked. This process of checking continues until the
name is found or the linked list ends.

AP2-36 PS 390 Advanced Programming

Section AP3
Internal Processing

3.1 Structure Creation

There are four main steps in the creation of structures in the PS 390.

1. Alpha Lookup
2. Named Entity Creation
3. GCP Datum Pointer Set
4. Alpha Update

3.1.1 Alpha Lookup

A lookup of the name specified is done which returns with a pointer to the
Alpha block of the specified name. If the name is not already in the
dictionary, it is added during the lookup.

3.1.2 Named Entity Creation

After the Alpha is established, the actual Named Entity structure is created.
If the Named Entity is a function instance, there is a check of the function
table to determine if it is a valid function. If it is valid, a check is made of
the number of inputs and outputs to allocate in the function block. At this
point the initialization code is executed and the state of the function is set to
ACT ON UPDATE. If the Named Entity is a display structure, a Named
Entity block of the proper type is created and data is put into the structure.

3.1.3 GCP Datum Pointer Setup
A pointer to the Named Entity is placed in the GCPdatum of the Alpha
block.

3.1.4 Alpha Update

Pointers to the Alpha block and the Named Entity are placed on the ACP
update list that causes the change to take place at the end of the current
structure traversal.

Internal Processing AP3-1

3.2 Update Process

The GCP creates and manipulates the display data structures in mass
memory (and initiates the display defined by these data structures). The
ACP then accesses the data structures in Mass Memory, traverses the
structures, and transforms the data to be displayed. A rigid update process
is followed when modifying display data structure. This process ensures that
the GCP won’t corrupt a data structure being traversed by the ACP and that
changes in the display data structures will be synchronized. The update
process entails:

1. A function produces a private list of changes through calls to
Lgaupdate and OLbaddtoset. This creates a list head and tail pointer
containing the private list of updates. Each call to Lgaupdate or
OLbaddtoset adds to the list until a call to Announceupdate is made.
The list tail is used in calls to FetchBlock, FetchAdnum and
nFetchCopy to allow the searching of the private list for matching
Named Entities.

2. The function hands the private list to the update formatter. This list
is made available by a call to Announceupdate. This call gives the
functions private list to the update formatter to be added to the
current global list of updates to the ACP.

3. The ACP makes the changes specified in the global list at the end of
a refresh cycle. The ACP processes the list of changes and performs
all updates.

4. The GCP post-processes the update blocks. After the ACP finishes
the update list, the blocks of data are returned as available storage.

Because the display data structures are constantly being traversed for
display by the ACP, whenever a change is required to a node the GCP
“usually” makes a copy of the node that is to be changed, changes the
elements to be changed, and then simply causes the pointer to the node in
the alpha block to be changed by the ACP after it has finished refreshing.
This occurs whenever a matrix is changed, a new PS 300 display enabled,
etc. In essence then, most changes to the display data structures cause the
change to be “double buffered” until the change can take place. Such
changes are made by the ACP at the end of each refresh cycle.

The GCP creates an update block whenever display data structures require
updating by the ACP. Basically, an update block indicates what changes

AP3-2 PS 390 Advanced Programming

need to be made and where these changes are located in Mass Memory. The
update block also specifies what TYPE of update is to be processed. The
ACP can process two types of update blocks:

e Alpha update
e Value update

3.2.1 Alpha Update

An alpha update is performed whenever an alpha block is to refer to a new
Named Entity block. Except for minor changes in data nodes, most updates
in the standard runtime system are alpha updates. For example, all
operation nodes are updated by creating a new operation node with the
correct contents, then performing an alpha update.

3.2.2 Value Update

A value update is performed whenever a value is to be updated in an
already existing data structure, i.e., whenever small portions of a data
structure (e.g., character(s) or coordinates of a point) need to be updated in
place without copying the entire data structure.

3.2.3 ACPProof

The updates process is not universally followed. A technique, called
ACPproof, was established for special cases when direct modification by the
GCP of the data structure (without going through the normal update
process) is needed. If the GCP makes a change to a data structure through
the normal update process, a Named Entity can NEVER be expected to be
in the same location in Mass Memory. However, conversely, garbage
collection is never done on existent Named Entities by the PS 390. So once
a node has been created, if the node is NEVER referenced by a standard
PS 390 function network or externally from the host, a Named Entity can
ALWAYS be expected to be in the same location in Mass Memory. This
knowledge can sometimes be used in a user-written function or by physical
I/O programmers.

For example, values in the node can be changed directly. However, if the
node is currently being displayed no guarantee can be given that the ACP
will not traverse the node during the small, but finite, time frame during
which the data may be changed. This may result in an improper picture

Internal Processing AP3-3

being displayed (new x value, old y value; or a matrix with mixed
values—part new, part old) but should never cause the ACP to traverse the
display data structures improperly, As Long As No Pointers Are Changed.
Any pointers which are to be directly changed in the data structure by the
GCP should use ACPproof. ACPproof uses a convention with the ACP that
if the top half of a pointer is zero, the pointer should be treated as nil.
(ACPproof works by zeroing the upper half of a pointer, changing the lower
half, and then changing the upper half. In this way the ACP either gets the
old pointer, gets the ACPproofed pointer with a zero upper word, or gets the
new pointer.) Not all pointers can be modified in this way. The ones which
can be used with ACPproof are:

e Nxt in the DCB

e Firstset in the DCB
e Nxt in Acpcblk

e Alpha in Acpcblk
e Aoson in Acpoper
e Adson in Acpdata

3.2.4 Use of RAWBLOCK

The RAWBLOCK command is used to allocate memory that can be directly
managed by a User-Written Function or by the physical /O capabilities of
the Parallel Interface.

The command:

name := RAWBLOCK i;

carves a contiguous block of memory such that there are “‘i’’ bytes available
for use. Since this has to be a display data structure and one contiguous
memory block, it is structured so that it appears as shown in Figure 3-1.

Rawblock 9
1 = Nop
— Descendent Alpha — Points to next long word
— Datum Pointer — Initially NIL

Figure 3-1. Rawblock

AP3-4 PS 390 Advanced Programming

This block looks like an operation node to the ACP. The descendant alpha
pointer points to the next long word in the block. What the ACP expects in
this word is the datum pointer of the alpha block. This is initially NIL to
make the ACP think that the alpha doesn’t have any data associated with it
yet. To use this block, the parallel interface or a user-written function fills in
the appropriate structure following the datum pointer. When this is
complete, it changes the datum pointer to point to the beginning of the data
using ACPproof.

More than one data structure at a time can exist in a RAWBLOCK. It is up
to the user to manage all data and pointers in a RAWBLOCK. A
RAWBLOCK may be displayed or deleted like any other named data
structure in the PS 390 (e.g., DISPLAY “name”; or DELETE “name”;).

3.3 Function Operation

The PS 390 functions are instances of “generic” functions which exist in the
PS 390 runtime system. Generally, a generic function is a Pascal procedure
which performs one or more operations by (a) accepting input, (b)
processing input, and (c) sending output. (Note that occasionally the
function code is written in assembly language but is called as a Pascal
procedure.) The user, or less commonly the runtime software itself, creates
a PS 300 function by “instancing” a generic function. There may be many
“instances” of the same generic function. Each instance has its own user- or
system-defined name, as well as its own input queues and output
connections. The user connects these function instances into a network.
Thus, each PS 390 function generally has inputs coming from other
functions and outputs going to other functions or data structures. All
information regarding the instancing of a function, as well as all
information regarding connections between instances, is kept in a “function
instance block” and its associated substructures.

When a function instance is created, it is assigned a default priority for
execution (most default to 8). The Scheduler uses priority numbers to
determine which of the PS 390 functions awaiting execution will be
executed next. It executes a function by placing a pointer to the function
instance block and calling the Pascal-callable procedure for the generic type
of the function instance.

Internal Processing AP3-5

A function instance cannot be executed until all of its essential inputs have
arrived. Inputs exist on (and outputs are sent to) input queues. Once the
function has processed the inputs, any output values are sent to destinations
listed as outputs of that instance. Some functions may wait on an I/O device
rather than on an input queue. In this case, the I/O device interrupt routine
activates the function at the proper time. The following sections detail the
creation, manipulation, scheduling, and execution of function networks.

3.3.1 Scheduler

Although it is not the major portion of code, the Scheduler is the driving
force behind the Graphics Control Program. The scheduling loop is the
process by which the Scheduler executes activated functions. Executing a
function means to place the address of the function instance block in a
global variable and call the generic Pascal procedure.

The Scheduler is designed to avoid two major sources of lost time in
software-scheduled systems: task context switching and the scheduling
decision itself. Time can be lost in context switching, i.e., when a program
is interrupted, because the complete processor state (including any memory
mapping state) must be saved and the state of another task must be put in
its place.

The Scheduler avoids this loss in processing time by assuming that all
scheduled functions will run to completion once execution begins. This
assumption is based on the constraint that all functions complete in a
reasonable amount of time, i.e., less than two milliseconds. If an operation
could take much longer, the function must place all data on a private queue
and reschedule itself for execution. Note, however, that because this saving,
restoring, and rescheduling process is so time-consuming, some functions
are allowed to continue running.

Because of the large amount of time to schedule a function instance, most
functions are allowed to process more than one set of inputs per wakeup if a
global Boolean variable KEEPGOING is true. This variable is set to be true
by the scheduler prior to executing a function. However, any time the clock
interrupt routine sees that a function waiting on the clock is ready to run, it
can potentially set KEEPGOING to be false. Once KEEPGOING is false, the
currently running function must give up control prior to processing the next
set of inputs.

AP3-6 ‘ PS 390 Advanced Programming

Time would also be lost in scheduling decisions if the Scheduler scanned all
potentially active tasks to determine which were truly active. Therefore, the
Scheduler loop scans only those functions that are part of an active list.
When a function instance is created, it is assigned to one of 16 possible
priority levels (0-15). The priority level is used by the Scheduler to
determine when the function instance will execute. Unless mass memory is
nearly full, priority is such that the smaller the priority number, the earlier
the function instance is executed. Most functions operate at priority level 8.
If mass memory is nearly full, the Scheduler executes only functions which
do not require additional mass memory.

At each execution, the Scheduler empties the Active List (the list of
functions to be executed) into a set of separate lists (according to priority).
It then executes the first function on the highest priority list. After the
function has been executed, control returns to the Scheduler and the
process is repeated. Note that user commands do exist to change a
function’s priority level. However, if a function is already on an active list
when its priority is changed, the function’s scheduling position does not
change until subsequent activation.

3.3.2 Function Activation

Function instances are “activated” when they are placed on the Active List.
The Scheduler then processes the Active List and executes the functions.
Once a function has been instanced, it must have received all of the inputs
needed for execution in order to be activated. During function instance
creation, the function instances are initialized if necessary. This generally
means that default values are placed on some input queues, and the private
data message is created and initialized. Function instances are first
activated following function instance creation. The first time it is executed a
function will cause itself to do one of the following:

e Be reactivated.
e Wait for an input on one or more input queues.

A function waits for input on its queues by setting the Numnonnull
counter in its record block to indicate the number of necessary input
queues which still remain empty. Whenever another function sends
data to an input queue, if that queue does not already contain data
(hence one more necessary queue now has data), the numnonnull
counter is decremented. When this counter is decremented to zero,

Internal Processing AP3-7

the function is placed on the active list by the procedure doing the
message send.

e Wait for the clock or an I/O event.
If a function instance has an output designation and is ready to send a
message to another function, it does so by:
e Obtaining a Qdata block from free storage and creating the message.
e Sending the message to the destination specified in the function

block’s outdesignator. Utility procedures exist to do this.
3.3.3 Function Status
At any given time during its instancing or activation, a function exists in one
of several possible states. Those states are:
1. Actonupdate

When the function is instanced. Once it has been tied to its name by
the ACP, it takes on Active status.

2. IO _wait

When the function is waiting for input from an I/O device or waiting
to be activated by the clock.

3. Msg_wait

When the function is waiting for input on one or more input queues.
4. Active

When the function is on the Active List (waiting to be executed).
5. Running

When the function is being executed by the Scheduler.
6. Self _destruct

When the function is to be destroyed, rather than executed, the next
time it is scheduled.

Note that before a function is executed, the Scheduler changes its status to
Running. A fatal system error occurs if control returns to the Scheduler
after execution and the status is still Running. Thus, a function must cause
its state to change during execution by either (a) waiting on a device or
queue, or (b) activating itself, or (c) setting its status to Self-destruct and
then activating itself.

AP3-8 PS 390 Advanced Programming

A function cannot wait on more than one item (queue, clock, or I/O device).
Thus, a system error also results if a function waits on a device, clock or
input queue and then attempts to wait again without first changing its own
State.

3.3.4 Function Code Format

The Pascal-callable procedure defining the generic function generally
follows a rigid framework. It usually has a single parameter, which is a
pointer to the function instance block of the particular function instance. A
typical function procedure includes instructions to do the following:

1. Check input queue(s) for new data. If there is a complete set, go to
step 2. If not, set status to wait for data to be sent to empty queues
and return to the Scheduler.

2. Take one set of input data from the input queues (buffer).

3. Use that data to modify the private data, display structures, and/or
generate output messages as needed.

4. Send any output messages to all destinations referred to in the
function instance block.

5. Check the input queues for another sufficient set of data. If it exists,
and the global flag Keepgoing is still set, then proceed to Step 2. If
Keepgoing is False, then queue self on the active function list. If a
sufficient set does not exist, set status to wait for data to be sent to
empty queues and return to scheduler.

Internal Processing

AP3-9

Section AP4
Physical I/O Programming

The PS 390 is designed primarily to meet the needs of those customers who re-
quire that the dynamics of picture display be handled on the local PS 390 level,
rather than be tightly coupled to a host machine. This is possible through the
means of function networks, which offer a selection of local actions, driven by
peripheral devices such as the dials or data tablet, or simply by internally-gener-
ated time pulses. This removes most of the frame-by-frame load from the host,
freeing it for other work. However, there remain many applications where the host
itself may be required to closely direct — perhaps even on a per-frame basis — the
dynamics of the displayed picture. The difficulty in meeting this requirement has
to do not only with the overall software speed, but with an inherent limitation of
the hardware; namely the narrow bandwidth of the communication channel from
the host to the PS 390. Because it was intended that frame-by-frame dynamics be
handled on a local level, the asynchronous interface was not designed for host-
driven dynamic communication. To circumvent this problem, and to provide for
efficient host direction of dynamic operations, the system function F:USERUPD
was provided.

4.1 The F:USERUPD Function

This function permits a variety of dynamic transformations to be sent from
the host each frame, directly effecting changes to the displayed picture on a
per-frame basis. Only the arguments for these transformations are sent,
with the matrices and vectors being generated by the F:USERUPD function,
thus greatly decreasing the bandwidth requirements of the communication
line. For example, the dynamic arguments for a picture with 25 to 30 de-
grees of freedom may be sent at a 10-hertz update rate over a 9600-baud,
asynchronous line. The F:USERUPD function, however, has some limita-
tions both in system response speeds, and in flexibility. The ability, for
instance, to turn a portion of the picture on or off using level-of-detail or
conditional bits is not available with this function. Refer to Appendix 9.12,
for more complete details of the USERUPDATE function.

Physical 1/0 Programming AP4-1

4.2 The Parallel Interface

In order to help meet the need for more closely-coupled host control of the
PS 390, a 16-bit-wide parallel interface, operating through the General Pur-
pose Interface Option (GPIO) was developed. This interface gives VAX us-
ers a much higher data transmission rate, on the order of 0.5 megabytes per
second (in practice the rate is somewhat less, and depends on cable length).
This is still many times faster than the 56 kilobaud runner-up.

The effective speed of this interface is so great, that it outstrips the ability
of both VAX and PS 390 software to keep up with it. The Graphics Support
Routines (GSR’s), for example, must issue a separate System I/O Request
(QIO) for each message to be sent to the PS 390. These requests are
queued up to await the attention of the parallel interface device driver, and
the more queued-up QIOs, the slower the response. In addition, on the
PS 390 side, the incoming messages must each go through the command
interpreter, generating new data nodes and involving other overhead having
to do with the data structure.

4.3 Physical 1/0

To fully take advantage of the speed of the interface, and to eliminate as
much of the node juggling and other overhead as possible, the parallel inter-
face protocol (and especially the GPIO microcode) includes, in addition to
the standard communication commands, another set of commands collec-
tively referred to as physical I/O commands. These commands permit the
host to directly access the internal contents of any node (or other PS 390
structure, for that matter), and modify those contents at machine speeds,
without any node swapping, pointer juggling, memory management, or com-
mand interpretation.

This direct access is possible because one of the physical I/O commands
allows you to give the ASCII name to the PS 390 of any node, and receive
back the physical memory location of that node. Once this address is
known, and you know the internal structure of the node, you may use the
Write Physical command to directly modify those contents to suit your
needs.

In addition, physical I/O includes the capability of scatter-writing from a
single buffer into many non-contiguous blocks of PS 390 memory, thus al-
lowing a single host QIO to effect modification of all the dynamic updates
for an entire frame.

AP4-2 PS 390 Advanced Programming

4.3.1 Physical I/0 Constraints

Because of the ability of physical I/O to circumvent the normal protocol of
node and structure building by addressing any desired PS 390 mass mem-
ory location, you must use considerable caution in selecting the memory
areas you choose to modify. You must consider the following rules to avoid
crashing the PS 390 or worse by causing a bug which may appear later.
These rules are:

1. Only the contents of ACP data structures (i.e. nodes) can be modi-
fied. Modification of any other areas of memory is not allowed.

2. Only the DATA portions of the nodes can be modified. The STRUC-
TURE elements (in particular, the first four 16-bit words of each
node) must never be modified.

3. Because the system modifies a node by making a copy of it in an-
other place, modifying the copy, and then changing pointers, you
must NEVER modify a node which can be modified by another
source (for example, one that is referenced by a function network).

4. Note that the graphics display processor (the ACP) is also traversing
the data structure at the same time your buffer is being written into it
via physical I/O. A “double buffering” scheme must be implemented
to avoid the chance of the ACP trying to access YOUR node while
YOU are writing into it. Refer to 4.4 below.

4.3.2 Physical I/0O Operations

There are four operations supported by the GPIO microcode to perform the
physical I/O functions. These operations provide for (1) doing a name
lookup, (2) doing a physical read of PS 390 mass memory, (3) doing a
physical write to PS 390 mass memory, and (4) doing a synchronous physi-
cal write to PS 390 mass memory. The interface-specific commands and
options for these operations are described in detail in the Customer Installa-
tion and User Manual for the appropriate interface. This section will describe
the general data formats used in the physical I/O operations.

e The first of these is the lookup format. The lookup requires a name,
consisting of a string of characters and a 32-bit integer variable
where the address of the named entity can be returned by the GPIO.
Only one name can be looked up per QIO. If there is no Alpha for
the specified name, a null is returned for the address.

Physical 1/0 Programming AP4-3

e The physical read requires a special list of addresses to read from
PS 390 mass memory. The addresses acquired through multiple
lookupname calls are assembled into the addrlist. The format of this

list is shown in Figure 4-1.

— Reserved —

Number of blocks to read

— Block #1 source —

Block #1 word count

Block #2 source address —

Block #2 word count

.

— Block n source address

Block n word count

(used in Ethernet data
transmissions)

n <=255

LS, MS Address of

data read

Number of 16-bit

words read

Figure 4-1. Format of Physical Read Address List

When the physical read completes, it returns a list of addresses and

data in the format shown in Figure 4-2.

— Reserved

Number of blocks to read

—- Block #1 source address —

Block #1 word count

Block #1 first data word

L]
Block #1 last data word

Block #2 source address h—

Block #2 word count

Block #2 first data word

L]
Block #2 last data word

Block n source address -

Block n word count

Block n [first data word
*

Block n last data word

n <=255
LS, MS Address of
data read

Number of 16-bit
words read

Data returned after
read

Figure 4-2. Format of Data From PS 390 in Physical Read

AP4-4

PS 390 Advanced Programming

e The physical write transfers a list of data to the PS 390 memory. The
format for this list is shown in Figure 4-3. Note that the format is
exactly the same as the data returned on a read. This allows you to
do a physical read on a set of named entities, modify the data in the
read list (do not modify the addresses), and write back the same list
to the PS 390.

e The physical I/O write synchronous operation ensures that each
buffer gets at least one refresh before allowing the next write opera-
tion. It is possible to specify that the physical write operation be
synchronized with the ACP clock. The format for the assembled data
block in synchronous physical write is identical to physical write,
shown below.

— Reserved —
Number of blocks to rcad n<=255
— Block #1 source address — ﬁf{al\r/g(f\ddress of
Block #1 word count »Tjglfg;)errc;)(g 16-bit

Data returned after
read

Block #1 first data word

Block #1]a.st data word
— Block #2 source address —
Block #2 word count
Block #2 first data word
.

Block #2 la.st data word
— Block n source address —

Block n word count

Block n first data word

Block n last data word

Figure 4-3. Format of Data to PS 390 in Physical Write

Physical 1/0 Programming

AP4-5

4.4 Advanced Physical 1/0 Programming

The Physical I/O process can produce distorted pictures when it is updating
display structures at the same time the display processor is traversing them.
To avoid this “single buffer” occurrence, these display structures can be
“double buffered.” This is done by creating two copies of the named enti-
ties to be updated with different names (e.g. Datal and Data2). The data
structures can then be alternately updated and displayed using either the IF
LEVEL OF DETAIL or IF CONDITIONAL BIT commands such as:

TOP: =BEGIN_STRUCTURE
LOD:=SET LEVEL_OF_DETAIL TO 1;
IF LEVEL 1 THEN Datal;
IF LEVEL 2 THEN DataZ2;
END_STRUCTURE;

or

TOP: =BEGIN_STRUCTURE
CB:=SET CONDITIONAL BIT 1 ON;
IF BIT 1 ON THEN Datal;
IF BIT 1 OFF THEN DataZ2;
END_STRUCTURE;

These commands are used in conjunction with a node higher in the struc-
tured display file that either sets the level of detail (SET LEVEL) or sets the
conditional bit (SET BIT).

The node that performs the SET BIT and SET LEVEL operation is the
Change Bits operation node. This operation node is also used to set dis-
plays, set character orientation, set contrast, set CSM, set depth clipping,
set plotter, set rate external, set blinking, and set line texture. The format
and a more detailed description of this node is contained in Section 9.10 of
this document.

The SET LEVEL or SET BIT nodes can be updated using the physical I/O to
“swap buffers.” Placing the update of the SET LEVEL or SET BIT structure
last in the physical write list will ensure that the data are all correct before
the buffers are swapped.

AP4-6 PS 390 Advanced Programming

Section APS
User-Written Functions Tutorial

This section illustrates how to construct and use a simple user-written function
(UWF). A user-written function is a Pascal procedure that will accept input data,
process the data, and output the resulting data. User-written functions can be de-
signed to perform operations not supplied by standard PS 390 functions and also
to collapse large function networks into a single function.

5.1 Introduction to User-Written Functions

The User-Written Function facility is provided to allow you to expand and
enhance the usefulness of your system by writing functions of your own
design. User-written functions can be written to create new functions that
perform operations not provided by intrinsic PS 390 functions.

User-written functions may also be written to perform tasks that would re-
quire a large network of intrinsic functions to accomplish. For example,
numerical calculations are usually easier to perform inside a single user-
written function than within a function network.

Substituting a single user-written function for a large network of intrinsic
functions can be beneficial in two ways. First, programming a few functions
in Pascal may be easier than programming a complicated function network.
Second, due to the overhead incurred by scheduling each function in a large
network, a single user-written function will usually take less execution time.
When collapsing a large function network into a single user-written function,
there are several considerations:

- User-written functions execute somewhat more slowly than intrinsic
functions. Therefore, collapsing a network consisting of just a few
functions into a user-written function may not result in any improve-
ment in performance.

User-Written Functions Tutorial

APS5-1

- It is usually not possible to replace an entire function network with a
single user-written function. User-written functions tend to be more
useful for performing specific tasks within the context of a larger
network. Before writing a user-written function, you should be sure
that the function has a well-defined purpose and a definite set of
inputs and outputs.

5.1.1 Requirements

No separate hardware is needed to write your own functions. You must,
however, be able to communicate with your host system. If your PS 390 is
not equipped with terminal emulator capabilities, you will need a separate
terminal to communicate with your host and access host-resident utilities.

To write your own functions, you will need the Motorola 68000 cross-soft-
ware (compiler, assembler and linker). Before using the tutorial section of
this manual, the Motorola software must be resident in your host system
and available for use.

The Motorola software may be purchased and licensed through E&S or from
Motorola directly. The software available through E&S has been modified to
run in DEC VAX/VMS and VAX/UNIX environments; the software pur-
chased from Motorola supports IBM (specifically MVS/TSO) environments.
Further information on purchasing the software and the license can be ob-
tained from your E&S Account Executive.

You will also need two E&S-provided files, USERLINK.RO and
USERSTRUC.PAS. These files are provided on magnetic tape and must be
loaded on your host system before you can use the tutorial section of this
manual.

Command files that are provided for the tutorial section of this manual were
written for the E&S-modified Motorola cross-software. Modifications to the
files may be necessary if any other cross-software is used.

These files are only provided for DEC VAX/VMS or DEC VAX/UNIX
hosts. Users in an IBM environment should consult sections 9.3 and 9.4 for
instructions and files that illustrate the use of the cross-software.

AP5-2 PS 390 Advanced Programming

5.1.2 Objectives

In this section, you will learn:

e The steps for constructing a sample function whose template should
be used in writing user-written functions.

e How to write your own function.

e How to compile, link, and name the function.
e How to transfer the function to the PS 390.

e The restrictions on instancing the function.

e How to use basic debugging techniques.

5.1.3 Prerequisites

Before beginning this section, you should be familiar with the Pascal pro-
gramming language, the use of PS 390 standard functions, and the down-
loading utilities on your host system. You should also make sure that your
host system has the prerequisite Motorola compiler and linker software and
that you have access to it. (IBM users should be familiar with the instruc-
tions in Section 9.3 of this manual.) You should have a PS 300 console and
keyboard with terminal emulator capabilities, or a separate terminal that
can communicate with your host system. Recommended books to have on
hand that may be referred to are:

- PS 390 Document Set
Motorola Pascal User’s Guide
Host-system utilities manual

5.2 Constructing a Simple Function

The first step in creating your own user-written function is writing the Pas-
cal procedure that will later be compiled and transferred to the PS 390. The
Pascal procedure must contain:

Calls to internal PS 390 functions and routines that allow your func-
tion to be scheduled and run.

All the code necessary for your function to read data, process data,
and write data.

Like all standard PS 390 functions, the function you write must wait until it
has an input value on all queues, perform its computations, and then output

User-Written Functions Tutorial APS5-3

the new values. All PS 390 functions must perform the same general series
of actions when they are activated. These are:

1. Fetch messages from the input queues. The function must have a
message available on every queue before it can run.

2. Make sure the messages received as inputs are of the appropriate
type. If not, signal an error.

3. Perform whatever calculations are necessary.
4. Send output messages.

S. “Clean up” the input queues and see if the function can be run again
immediately. If so, go to Step 1.

The following diagram and text illustrate a simplified version of the PS 390
function F:ADD and the Pascal procedure that supports it.

Function

F:ADD

[—| <2>

Description

F:ADD accepts integers as inputs and produces an output that is the sum of
those integers.

5.2.1 Example

Note that the example contains comments. Some of these comments will be
referred to in following portions of text. Refer to the Section 8 of this man-
ual for descriptions of the utility routines. This function, like all of the other
examples included in this manual, was developed under DEC VAX/VMS. If
you are using UNIX or an IBM system for developing your user-written
functions, you may have to make minor changes in the examples. Refer to
the section 9 for details on modifications and instructions on the use of the
cross-software on your system.

AP5-4 PS 390 Advanced Programming

SUBPROGRAM UWFadd;

{$F=USERSTRUC. PAS}

PROCEDURE GenFunction; {procedure body must always}
{be named GenFunction}

VAR
inputs : PtrUWFInQarray; {pointer to data types in Qarray}
outmsg : PtrUWFInQarray; {pointer to data types in Qarray}
i : Integer;

{
{ Main body of UWF

{ calls utility routine to check inputs for data,
{ checks inputs for valid data type,

{ returns error message if data are not valid.

{
B

EGIN {GenFunction}
inputs := CkInputs (1, 2); {check for data on range of queues}
WHILE inputs <> NIL DO BEGIN
IF inputst[1l]1t.qtyp <> Qinteger THEN {check for valid data type}
QIllMessage (1) {error message if data are invalid}
ELSE IF inputsf[2]f.qtyp <> Qinteger THEN {check for valid data}
{type }
QIllMessage (2) {error message if data are invalid}
ELSE BEGIN
{ }
{Allocate a new Qinteger to hold the output message. }
{Then add the integers and send the sum from output <1>.}
{ }
outmsg := Newqinteger; {allocate memory block for output message}
outmsgt?.i := Inputs?[1]11.i + Inputs?[2]71.i;{put sum in output}
{message }
Sendmsg (outmsg,l); {send message to output <1>}
END:
{ }
{Call utility routine to flush queues and see if there is}
{enough time to process more data; call CkInputs to see }

{if there is data on all queues. }
{ }
IF CleanInputs THEN {flush input queues and see if there is enough}
{time to process new data }
inputs := CkInputs(l,2) {check for data on queue <1> thru <2>}
ELSE
inputs := NIL {get out of WHILE loop}
END;

END.

From the example, you can see that the first requirement of the Pascal
procedure is that it checks for inputs on both queues:

User-Written Functions Tutorial AP5-5

inputs:=CkInputs(1,2); {Check for inputs on queues 1 through 2}

This will hold true for any user-written function; nothing can happen until
the function has data on all input queues. The queues are checked for input
by CkInputs, a utility function that accepts the range of the queues as pa-
rameters; for example, if the function had six queues, that line of code
would read:

inputs:=CkInputs(1,6); {Check for inputs on queues 1 through 6}

CkInputs has a pointer to each of the input queues specified in the inclusive
range and stores them. When CkInputs is called, if there are data on all of
the queues, it will return with a pointer to the array. CkInputs will return a
NIL if there are queues in the range that do not have input. Notice that if
NIL is returned, the F:ADD function will exit. In F:ADD, if there are data
on both queues, the program can proceed. The procedure next checks to see
if the data on input <1> are the specified data type:

IF inputs?[1]1t1.Qtyp <> Qinteger THEN {input on <1> must be integer}

In this simplified version of F:ADD, the only acceptable data type is an
integer. If the data type is not an integer, an error message is triggered, and
the function cannot run. The utility routine, Qillmessage, would print out
the message:

Message which function cannot handle.
signifying that the data on the queue were not of the specified type.

Input <2> is then checked for an acceptable data type and the same process
is repeated. In any function, all input queues must be checked to see if the
data on the queues are the specified data type. Further, the specified data
type must be one of the QData types defined in USERSTRUC.PAS. (This
list is provided in the reference section of this document.)

If both inputs have data, and data are in the specified range, the function
can run. In this case, the function processes the data by adding the two
integers together to produce a sum. Note that before the integers are added,
a memory block is allocated for the output message with the statement:

outmsg := NewQinteger;

Memory must always be allocated for the processed data that will be placed
on the output queue(s) of the function. Again, the outmsg must be one of

AP5-6 PS 390 Advanced Programming

the QData types defined in USERSTRUC.PAS. After the memory is allo-
cated and the integers are added together, the sum is then sent as an out-
msg to output <1> of the function:

outmsgt.i := inputsf[1l]f.1i + inputst([2]1.1i; {put sum in output}
{message }
Sendmsg (outmsg,1); {send message to output <1>}

Finally, the program flushes the input queues by calling the Cleanlnputs
function, which also checks to see if there is more time available to process
more incoming data:

IF CleanInputs THEN {clean up input queues and see if there is}
{enough time to process new data }

The utility function CleanInputs should be called after the input data have
been processed and the outputs have been sent. This function “cleans up”
the input queues and determines whether there is enough time for the
function to run again immediately. Cleanlnputs will return a FALSE if the
function has been running for more than 2 centiseconds. Then, the inputs
are again checked for data by calling CkInputs:

inputs := CkInputs(1,2) {check for data on queue <1> thru <2>}

If inputs = NIL, there is no more data on the input queues and the function
exits. This is a very simple example and demonstrates the basic principle
behind writing the Pascal procedures that will be used as functions in the
PS 390 system.

The utility routines (or functions) that this program calls, CkInputs and
Cleanlnputs, are just two of the utility subprograms that will be used in
writing your own functions. These routines and functions allow for schedul-
ing and communication between functions. A complete list of the utility
subprograms are in Section 8 of this manual. Most of them will be de-
scribed and demonstrated in this section and in the Advanced Ideas section.
The utility routines and functions are declared in USERSTRUC.PAS, along
with the QData types already mentioned. USERSTRUC.PAS must be com-
piled along with your user-written function by using the inclusion:

{$F=USERSTRUC . PAS}

immediately after the name of your program. (See example.) It is important
to remember that the rules that apply to standard PS 390 functions also
apply to any functions that you will write. The first important rule to re-

User-Written Functions Tutorial AP5-7

member is that there must be a message available on all input queues be-
fore the function will be activated.

5.2.2 About Messages and Queues

The input and output messages received by the function must belong to one
of the QData types declared in USERSTRUC.PAS. These message types
include all of the types used by intrinsic PS 390 functions: integer, string,
Boolean, real, vector, and matrix. In addition, it is possible for user-written
functions to define additional message types; this will be discussed in more
detail later on.

By default, all of the input queues for a user-written function are initially
active queues, although you may use the SETUP CNESS command to estab-
lish some of the queues as constant queues. Within the code for the body of
the user-written function, however, both constant and active queues are
treated identically.

For your function to work properly, you must be careful to use messages
correctly. Improper use of messages is by far the most common source of
problems with user-written functions. Failure to observe the rules for proper
use of messages will, at the very least, cause your function to behave unpre-
dictably, and may cause the PS 390 to crash.

Messages used by a user-written function are of two types: those that are
“owned” by the function, and those that are not. The only messages that are
owned by the function are those that were created explicitly by the function,
using the Pascal NEW function or the supplied functions NewQxxx and
MsgCopy. The input messages to a function are NOT owned by that func-
tion. You should treat the input messages as being “read-only.”

The most important rule for handling messages properly is that a function
should never attempt to modify, send, or dispose of messages which it does
not own. You must also make sure that all of the messages that are created
by the function are sent to an output queue (using SendMsg), stored on the
private queue, or otherwise disposed of (as via DropMessage) before the
function exits. (After this is done, the message is no longer owned by your
function.) If the function exits without disposing of all of its owned mes-
sages, it will “eat” storage and may cause the PS 390 to crash as a result of
exhausting available memory.

AP5-8 PS 390 Advanced Programming

Some of the utility functions and procedures provided cause the values of
the messages they take as arguments to become undefined (as
QSendCopyMsg), or they set the pointer to the message to NIL (as
SendMsg). You should be aware of these side-effects; refer to Section 8 for
complete descriptions of the utility functions and procedures.

Messages are actually sent in the order that you make the calls to SendMsg,
but not until the function has finished running. You should be careful to
send messages in the correct order where necessary. For example, the out-
puts of the Bezier curve function in Section 6 are intended to be connected
to a vector list. Output <1>, which clears the vector list, must be sent before
output <2>, which appends to the vector list; otherwise the vector list would
always be empty!

5.2.3 About Function States

Ordinarily, you need not be concerned about function states or the valid
actions that a function can perform in each state, as long as the functions
you write follow the template used in the examples in this manual. This
information is provided for completeness.

A PS 390 function instance may be in one of several states at any given
time. Transitions between the states are caused by the scheduler in the
PS 390 system, or by calls to utility procedures when the function is run-
ning.

A function instance is in state MSG_WAIT while it is waiting for messages
to arrive on all input queues. When all input queues have messages, the
scheduler changes the state to ACTIVE and puts the instance on the list of
functions that are ready to be activated. When the main procedure of the
function is called by the scheduler, the state is changed to RUNNING.

The function instance must be in the state RUNNING when the utility proce-
dure CkInputs is called. If messages are not available on all input queues,
CkInputs returns NIL and the function state is changed back to MSG_WAIT.
If there are messages on all inputs, the function state is set to MID_RUN-
NING.

While the function instance is in state MID_RUNNING, it should process its
inputs and send outputs. When this is complete, the utility procedure
CleanInputs must be called. This procedure can only be called from the
MID_RUNNING state.

User-Written Functions Tutorial AP5-9

After disposing of the previous input messages, Cleanlnputs first checks to
see if there are messages available on all input queues. If there are queues
without messages, the state is changed to MSG_WAIT. Otherwise, a check
is made to see if the function has been running longer than two millisec-
onds; if it has, then the state is changed to ACTIVE. (This gives other
functions a chance to run.)

If the function has not been running longer that two milliseconds, its state is
changed to RUNNING, allowing it to run again with the new set of input
messages. The function may continue to execute as long as it is in the
RUNNING or MID_RUNNING state. It must exit immediately if the state is
changed to MSG_WAIT or ACTIVE. The following diagram illustrates the
change of states in a function instance.

Function States Diagram

> > > > > > MSG_WAIT < € <€ <
A A —--CkInputs
A returned
A —-CleanInputs found v --Messages received NIL
A empty input queue w on all input queues A
A A A
A
A > > > > ACTIVE
A A A
A A -—C.Ieanlnputs v—-Func:tion called A
A A timed out ¥ by scheduler A
v
A A A
> > > >
A4 RUNNING |
A A €« € € €
A A —-CleanInputs
*——Cklnputs found messages A returned
A A on all input queues TRUE
A A 4
A € € € < A
MID_RUNNING > > > >
€ € € € € <€

In the next section, Writing Your Own Function, you will be asked to write the
Pascal procedure for a specific function. Before you begin this section,
make sure you are familiar with the types of messages that can be handled
and with the utility routines. This information in found in Section 8 of this
manual.

AP5-10 PS 390 Advanced Programming

5.3 Writing Your Own Function

The diagram below illustrates the function that you will be writing in this

section.
Function
F:CHASE
S—| <1> <1>|—S
B—»| <2> <2>|—=1
Description

F:CHCASE accepts ASCII character strings (qpacket data type) on input
<1> and a Boolean value on input <2>. When input <2> is set to TRUE, the
characters received on input <1> will be output as upper case. When input
<2> is set to FALSE, the characters will be output as lower case. Output <1>
takes the processed character string from input <1>. Output <2> sends out
an integer that is the length of the string.

To write this function you must:

1. Name the program.

2. Include USERSTRUC.PAS.

3. Define the variables.

4. Check the inputs for data.

5. Check for the legitimate data types.

6. Allocate memory for the output messages.

7. Change case according to the value on input <2>.
8. Send the processed string to output <1>.

9. Send the count of the string to output <2>.
10. Flush the queues.

11. Check all queues for more data.

Because you will be using this program for exercises in compiling, linking,
and downloading, for consistency it is suggested that you name your pro-
gram:

SUBPROGRAM ChCase;

User-Written Functions Tutorial

AP5-11

5.3.1 Exercise

Design and write the Pascal procedure for the function F:CHCASE, as pre-
viously described.

5.3.2 Feedback

The procedure for F:CHCASE is provided as an example. Please check your
exercise against it to make sure you have included all the necessary steps.
You can design your program in any number of ways, so long as it performs
the necessary steps in the correct order.

SUBPROGRAM ChCase;
{$F=USERSTRUC. PAS}
PROCEDURE GenFunction;

VAR
inputs : PtrUWFInQarray;
length : Integer;
outmsg : Ptrqdata;
i,k : Integer;

{ }
{ Utility functions for uppercasing and lowercasing a character }

{ }

FUNCTION uppercase (ch : Char): Char;
BEGIN
IF (ch >= “a”) AND (ch <= “z“) THEN
uppercase := chr (ORD(ch) - 32)
ELSE
uppercase := ch;
END;

FUNCTION lowercase (ch : Char): Char;

BEGIN
IF (ch >= “A”) AND (ch <= “Z”) THEN
lowercase := chr (ORD(ch) + 32)
ELSE lowercase := ch;
END;

AP5-12 PS 390 Advanced Programming

{ }

{ Main body of UWF }
{ }
BEGIN { GenFunction }

inputs := CkInputs (1, 2);

WHILE inputs <> NIL DO BEGIN
IF inputst(1]1.qtyp <> QPacket THEN
Qillmessage (1)
ELSE IF inputst[2]1f.qtyp <> QBoolean THEN
Qillmessage (2)
ELSE BEGIN

{
{ Allocate a new QPacket big enough to hold

{ a the string. Then fill in the value and
{ send the message from output <1>.

{

[NV R S)

WITH inputsf([1]1 DO
length := P_1th — P_beg + 1;
outmsg := NewQPacket (QPacket, length):
J := outmsgt.P_beg;
FOR k := inputst[1]11.P_beg TO inputst[1l]1f1.P_lth DO BEGIN
IF inputst[2]1.b THEN
outmsgt.P_cnt[J]
ELSE
outmsgt.P_cnt[K] := lowercase (inputst[1l]f1.P_cnt([k]);
J =3+ 1
END;
SendMsg (outmsg, 1);

I

uppercase (inputsf[1]1f1.P_cnt(k])

{

{ Send a message indicating the length of
{ the string on output <2>.

{

' e e

outmsg := NewQInteger;
outmsgt.i := length;
SendMsg (outmsg, 2);
END;

IF CleanInputs THEN
inputs := CkInputs (1, 2)

ELSE
inputs := NIL;
END;
END. { GenFunction }

User-Written Functions Tutorial AP5-13

5.4 Compiling, Linking, and Naming the Function

The procedure you have just written must now be successfully compiled and
linked. The processor in the PS 390 that executes functions is the Motorola
M68000 microprocessor and your code must be compiled and linked by
Motorola cross-software.

The next section provides simple instructions on using the files provided on
magnetic tape for DEC VAX/VMS and DEC VAX/UNIX systems.

IBM VM/SP and IBM MVS/TSO users should briefly familiarize themselves
with the information provided here, and then refer to section 9 in this man-
ual for further instructions on using the cross-software. IBM MVS/TSO us-
ers should consult the Motorola manuals supplied with the cross-software.

Sections 9.1 thru 9.4 of this manual provide further instructions for each
environment. If you are not operating in one of these environments, you will
have to tailor the command files to your system or write your own.

Before continuing with this tutorial, make sure the cross-software and the
files have been loaded on your system and that you have access to them.

Use the Motorola Pascal User’s Guide as a reference to interpret any error
messages produced by the compiler when your function is compiled.

5.4.1 Description of the Command Files for DEC VAX/VMS and UNIX

The command files provided for the DEC systems combine four specific
tasks:

1. Compile your Pascal procedure with the Motorola cross-compiler.

2. Link your Pascal procedure with the MAIN program, USERLINK, to
yield an S-record file. The S-record file is the definition of the
userwritten function in a form that the PS 390 expects and will ac-
cept. USERLINK calls a procedure, GenFunction, which is the name
of the body of the function that you have written. (Refer to the exam-

ples.)

3. Append a trailing semicolon, “;”, to the end of the S-record file. The
semicolon must terminate any S-record file that is transferred to the
PS 390.

4. Name your function. Before the S-record file can be downloaded to
the PS 390 and the function instanced, it must be named. A name

AP5-14 PS 390 Advanced Programming

“header” must be created that includes the number of inputs, the
number of outputs, and the stack usage of the function. (The stack
usage is the number of bytes that must be reserved on the stack for
the function and includes the count of all utility routines that the
function uses. Section 8 of this manual contains a listing of the stack
usage for the user-written function utility routines.)

When the command file is called, it accepts as arguments the function
name, number of inputs, number of outputs, and stack size.

There are several restrictions on the files that are provided as an aid in
compiling, cross-linking and finally naming your function:

e The name of the file that will be compiled and linked using the com-
mand files must have the same name as the function.

. The provided command file will only accept one file name. This
means that functions that use several files must be compiled, linked,
and named under a modified version of the command file.

5.4.2 DEC VAX/VMS Command File

Before executing the following command, you should:

1. Set your default directory to the directory containing the source files
for the function you want to compile and link. This directory should
also contain copies of USERSTRUC.PAS and USERLINK.RO.

2. Edit your login.com file to contain an @XNAMES command.

As a convenience, a command file, XL..COM has been provided to compile
and link your function and to produce the S-record file that is ready to be
downloaded to the PS 390. All of the code for the function must be in a
single .PAS file and the name given to the function is assumed to be the
name of the file. To invoke this command, you should enter the command
in the form:

$ XL <filename> <number inputs> <number outputs> <stack size>

In the above example, the brackets are provided to separate the arguments.
When actually using the command, the brackets are not used and the argu-
ments are separated by a single space. Error messages will be returned if
any errors are encountered in the compiling, assembling, and linking proc-
ess.

User-Written Functions Tutorial AP5-15

When this message is displayed:
<filename>.300 created

the cross-software has been successfully called, an S-record file has been
produced, and the name header has been created. This file, <filename>.300,
is ready to download to the PS 390.

If functions that you may write later contain code from more than one file,
or if you want to include routines you have written in assembly language,
refer to Section 9.1 for instructions. Refer to the Motorola Pascal User’s
Guide to interpret error messages that are generated at the time your code is
compiled.

5.4.3 DEC VAX/UNIX Command Files

Before attempting to use the cross-software, you should edit your .cshrc file
to “source” the file xnames, which defines the necessary aliases and shell
variables. This allows the assembler, compiler, and linker to be used as
described in the EXORMACS manuals.

Before executing the command described below, you should set your work-
ing directory to the directory containing the source files for the function you
want to compile and link. This directory should also contain copies of
userstruc.pas and userlink.ro. Since UNIX is case sensitive, remember to
use consistent case for file names.

As a convenience, a shell script x1 has been provided to compile and link
your user-written function and to produce the S-record file ready to be
downloaded to the PS 390. All of the code for the function must be con-
tained in a single .pas file, and the name of the function is assumed to be
the name of the file. To invoke this shell script, you should enter the com-
mand in the form:

% X1 <filename> <number inputs> <number outputs> <stack size>

In the above example, the brackets are provided to separate the arguments.
When actually using the command, the brackets are not used and the argu-
ments are separated by a single space. Error messages will be returned if
any errors are encountered in the compiling, assembling, and linking proc-
ess. Refer to the Motorola Pascal User’s Guide to interpret these error mes-
sages.

AP5-16 PS 390 Advanced Programming

When this message is displayed:

<filename>,300 created

the cross-software has been successfully called, an S-record file has been
produced, and the name header has been created. This file, <filename>.300,
is ready to download to the PS 390. If functions that you may write later
contain code from more than one file, or if you want to include routines you
have written in assembly language, refer to Section 9.2 for instructions.

5.4.4 Instructions for IBM Systems

If you are using an IBM system, refer to the following appendices (or manu-

als) for instructions.

IBM VM/SP

IBM MVS/TSO

5.4.5 Exercise

Section 9.3 for the names of the files appropriate
for your system, information on the use of the
cross-software on your host system, and example
files that execute the cross-software.

Section 9.7 for instructions on how to build the
name header that will be downloaded to the
PS 390 prior to the S-record file.

Section 9.4 for the names of the files appropriate
for your system. Please refer to the Motorola
cross-software manuals for instructions on using
the cross-software on your system.

Section 9.7 for instructions on how to build the
name header that will be downloaded to the
PS 390 prior to the S-record file.

Compile, link, and name the function F:ChCase. If you are using the com-
mand files, remember that the name of the function must be the same as
the name of the file that contains the Pascal procedure; i.e., your file name
should be ChCase.pas. To successfully complete this exercise, complete the
steps listed for your operating environment.

User-Written Functions Tutorial

APS5-17

For DEC VAX/VMS or UNIX:

1. Invoke the command file appropriate for your host system.

2. Enter the parameters for the function, F:CHCASE, including name,
number of inputs, number of outputs, and stack size. (1000 is a rea-
sonable estimate for the stack size of any function similar in size to
F:CHCASE.)

For IBM VM/SP:

1. Compile and link your function using the instructions provided in
Section 9.3.
2. Build the function header line (refer to Section 9.6).

“, 9

3. Append your file with the trailing semicolon “;”.

For IBM MVS/TSO:

1. Compile and link your function using the instructions provided in the
Motorola manuals and Section 9.4.

2. Build the function header line (refer to Section 9.6).
3. Append your file with the trailing semicolon *;”.

5.4.6 Feedback

The following example is provided to illustrate what should have been en-
tered at your host terminal to call the Motorola cross-software successfully
and to create the name header for your function for DEC systems:

VAX/VMS:
$ XL CHCASE 2 2 1000

VAX/UNIX:

% x1 ChCase 2 2 1000
IBM systems users should use the example files provided in section 9 to

check their exercise.
5.5. Transferring the Function to the PS 390

After your Pascal procedure has been compiled and linked with the main
program USERLINK, the S-record file output by the linker must be modi-
fied to include a function header line and to terminate with a semicolon. If

AP5-18 PS 390 Advanced Programming

you have compiled and linked your function using the command files previ-
ously described, this will be done for you. See Section 9.6 for a description
of the header line format.

If you are using VAX/VMS, UNIX, or any other ASCII system over an
RS-232 asynchronous line, the S-record file can be downloaded by including
the routing bytes to access the appropriate channel. Input on this channel is
sent to a PS 390 function that writes the new function into mass memory.

For IBM systems or high-speed lines, these channels are accessed by using
the Utility Routines provided by the PS 390 Graphics Support Routines
(GSRs), rather that using the ASCII routing bytes. Both transfer methods
will be discussed in the following section.

5.5.1 Using Routing Bytes to Transfer the S-Record File

If you are not familiar with the use of routing bytes in the PS 390, please
refer RM7 of the PS 390 Document Set. In general, routing bytes are used to
toggle between different communication channels in the PS 390 system. In
downloading the S-record files for user-written functions, the channel which
loads the functions to mass memory must be accessed. The routing bytes
that open this channel are 1\6, where t\ is the field separator character
(decimal 28) and 6 designates the channel for loading user-written functions
into memory.

Once the user-written functions have been transferred to the PS 390, you
should change the channel back to the terminal emulator so that any error
messages can be intercepted and displayed on the PS 390 screen. The rout-
ing bytes for the terminal emulator are t\>.

The routing bytes and S-record file can be sent to the PS 390 in number of
ways. The suggestions that follow outline some of the normal communica-
tion methods available between the PS 390 and an ASCII host system.

1. A host-system command file can be built that uses standard host
transfer commands to send the mass memory routing bytes (1\6),
then the file containing the name header and S-record file, and fi-
nally the routing bytes that open the communication channel to the
terminal emulator.

2. Individual files containing the routing bytes can be built and then
copied to the PS 390 by a command file. The file transfers the open-
ing sequence of routing bytes, the S-record file, and finally the rout-
ing bytes to change the channel.

User-Written Functions Tutorial AP5-19

3. The file containing the S-record file can be edited using host facilities
and the routing bytes can be included at the top and at the end of the
file. The file can then be sent to the PS 390. The routing bytes are
stripped out once the file is passed to communication functions in the
PS 390, so they would not be the final code that is used by the func-
tion when it is instanced.

5.5.2 Using the Graphics Support Routines to Transfer the S-Record File

For any non-ASCII system, it is recommended that the utility routines in the
Graphics Support Routines (GSRs) be used to access data channels and
transfer the S-record file. The GSRs are provided in FORTRAN, Pascal and
UNIX/C. If you are not familiar with the GSRs, refer to RM4 of the PS 390
Document Set.

The channel parameter 7 should be used with the utility routine, PMUXG,
to access the channel to mass memory. It is recommended that the channel
to the terminal emulator, 15, be reconnected after the transfer is complete
so that error messages will be displayed on the PS 390 screen.

The following Pascal program illustrates how the GSRs can be used to trans-
fer the S-record file from the host system to the PS 390. This example
illustrates the use of the GSRs in an IBM VM/SP environment.

File: SRECSND PASCAL *

Program SRecSnd (input,output,srecfile);

CONST
%INCLUDE PROCONST

TYPE
%INCLUDE PROTYPES

VAR
srecfile : Text;
istr ¢ String (256);
crlfa . Packed array (.1..2.) of char;
crlf . String(2);

AP5-20 PS 390 Advanced Programming

%INCLUDE PROEXTRN

PROCEDURE err (errnum : integer);
BEGIN
writeln(“got error: °, errnum);
END;

BEGIN

pattach(’ junk’ ,err);

reset (srecfile);

crlfa (.1.) : CHAR (13);

crlf := STR(crlfa);

pmuxg (7,err);

WHILE NOT EOF (srecfile) DO
BEGIn
readln (srecfile, istr);
pputgx (istr,err);
pputgx (crlf, err);
END;

writeln;

pmuxg(1l5,err) ;

pdetach(err) ;

END.

5.5.3 Exercise

Using any of the previously described methods, transfer the file ChCase.300
(renamed after it was compiled and linked) from your host system to the
PS 390.

5.5.4 Feedback

The only way to check and see if your file transferred successfully is to try
to instance the function. This is done by entering Command mode on the
PS 390 (refer to IS3 of the PS 390 Document Set for entering the communi-
cation modes) and instancing the function using the standard PS 390 com-
mand:

instance name := F:CHCASE;

If no error message is returned, the function was successfully downloaded
and now resides in mass memory in the PS 390.

If the downloading process fails, the PS 390 may crash and require reboot-
ing. After rebooting, attempt to download the file at least once more.

User-Written Functions Tutorial AP5-21

If the PS 390 still crashes, check the following:

1. The correct file name was used in the transferring process.

2. The correct routing bytes or channel parameters were used.

If you are compiling and linking using the command files provided, the
information and format of the S-record file are valid. If you are not using
the command files, check for the following:

1. Correct syntax in the name header, including adequate stack size.
2. Trailing semicolon at the end of the file.

3. Correct routing bytes or channel parameters.

5.6 Instancing the Function

When the function has been successfully transferred to the PS 390, it is
instanced using the standard PS 390 command:

instance name := F:user-written function name;

Once the function is resident in mass memory, there are several restrictions
that apply to all user-written functions:

1. Initializing the system with the global INIT command, or using the
INIT NAMES command will destroy not only all instances of the
function, but also the body of the function. The function would have
to be again transferred down from the host before it would be avail-
able for use on the PS 390. Functions can be protected from the INIT
commands. The procedure for doing this is described in Section 7.

2. Naming anything with the same name given to a user-written func-
tion will cause the function to be replaced by the new entity of that
name. In particular, note that the command

ChCase := F:CHCASE;
will destroy the code for the function F:CHCASE.

With the exception of those restrictions, the user-written function will re-
spond as any intrinsic function resident in the PS 390.

AP5-22 PS 390 Advanced Programming

5.7 Debugging User-Written Functions

The debugging environment on the PS 390 is less powerful than that used
for debugging programs on the host computer. There is no symbolic debug-
ger, and no way to include “writeln” statements inside the function to exam-
ine intermediate results and trace its execution. The function you are
debugging is very much like a black box: you can see what goes in and what
comes out, but you cannot look inside it.

The standard technique for debugging a user-written function is to instance
it and connect all outputs to F:PRINT functions, and from there to the termi-
nal emulator or LABELS or CHARACTERS structures. Then, you SEND
messages to the input queues of the function and examine the results. If the
user-written function does not behave as expected, it is possible to replace
the code for the function (by recompiling and relinking on the host and
downloading the new S-record file) without losing the function instance or
connections to and from it.

If the function does not produce any outputs at all, make sure that it is
receiving messages on all of its input queues. Remember that all queues
default to being active queues unless you use SETUP CNESS to make them
constant queues.

If the function is only sending some of the output messages you expect, look
for bugs in the body of the function. Make sure that SendMsg is being used
to send the messages to the appropriate output queues.

When the values of the output messages are incorrect, it is sometimes use-
ful to modify the function temporarily to have additional outputs for sending
intermediate results. By examining these values, it is possible to isolate the
source of the problem. Once the problem has been fixed, the extra outputs
can be removed.

There are two common problems that cause running a user-written function
to crash the PS 390. If the PS 390 crashes immediately (as soon as the
function is activated), it is probably because the stack size you specified
when you created the S-record file is not big enough. Try increasing this
value. (Use the Stack Usage list in Section 8 of this manual to help deter-
mine stack size. The stack requirements are given for the utility routines.)

Another cause of an immediate crash is when the number of inputs speci-
fied in the name header line is not correct.

User-Written Functions Tutorial AP5-23

If the crash occurs randomly after the function has been run, it is probably
the result of trying to send or otherwise dispose of a message which is not
owned by the user-written function. The crash occurs when the true owner
of the message tries to access it. In this case, you should examine the code
for the function for proper use of messages. Section 8 of this manual con-
tains a list of common crash messages and their probable cause.

Remember that while your function is running, nothing else will. If the
PS 390 seems to “hang” when the function is activated (i.e., it does not
respond to the keyboard or other devices), look for an infinite loop in the
function. Problems with message ownership can sometimes cause an infinite
loop if you are trying to use a message whose value has become undefined
(as by using SendMsg or QSendCopyMsg) as the upper limit of a FOR loop.

Another common problem is when the function “eats” memory. This is
usually most noticeable after the function has been run many times. In this
situation, examine the function closely to be sure that all of the messages it
creates are being sent as outputs, or otherwise disposed of, before the func-
tion exits.

5.7.1 Exercise

Create an instance of F:CHCASE. Connect it to a network that will allow
you to examine the contents of the messages that are sent out of the func-
tion to determine if it is working correctly. To do this you will have to:

1. Create an instance of F:CHCASE.
2. Create an instance of F:PRINT for each output of F:CHCASE.

3. Create a label node that will accept and display the character string
from F:PRINT.

4. Create a network that will feed the messages from the output of
F:CHCASE through the PRINT function to the label node.

5. SEND messages to the input queues of F:CHCASE and examine the
results.

5.7.2 Feedback

The strings displayed on the PS 390 screen should accurately reflect the
case of the characters in the string, as determined by the Boolean value on
input <2> of F:CHCASE.

AP5-24 PS 390 Advanced Programming

5.8 Conclusion

This completes Section 5, the User-Written Functions Tutorial. By this time,
you should be able to construct, compile and link, download, and instance a
simple function. Section 6, Examples of More Advanced Ideas, moves from
a strictly tutorial format to a format that demonstrates by examples some of
the more advanced programming capabilities that can be used when writing
your own functions.

Section 7 provides instructions for transferring user-written functions to the
PS 390 Firmware diskettes, allowing them to load with the system, and
PS 390 commands that protect user-written functions from global INITIAL-
IZE commands. It also contains information on the use of the PS 390
Debugger.

User-Written Functions Tutorial APS-25

Section AP6
More Advanced Ideas

This section illustrates, through examples and text, how to write more complex
functions. There are four major examples, each illustrating a different type of
function. The functions illustrate the following concepts:

F:MAG

How to handle more than one Qdata type on the same input queue.
F:COUNT

How to use the Set_Cness utility routine and private data queues.
F:BEZIER

How to write a function with a variable number of input queues.
F:SPIRO

How to make use of the user-defined Qdata type.

Before proceeding with this section, you should be familiar with:

e The concepts presented in section APS.

e The information provided in the section AP8 of this manual.

Should you need further exercise in writing functions, it is recommended that you
use this section in the following manner:

1. Examine the initial introduction to each example and the description
of the function.

2. Using the section AP8 of this manual, write a procedure to support
the described function.

3. Check your code against the examples provided.
4. Compile, download, and instance the function.
‘5. Try it out.

More Advanced Ideas AP6-1

6.1 Example I - Handling Different Message Types on the
Same Queue

F-MAG

The magnitude function, F:MAG, is an example of a function that can han-
dle several types of messages on the same input queue. This function will
calculate the absolute value, if the input message is of type integer or real,
or the length, if the input is a 2D or 3D vector.

If a function has two or more inputs that can take different message types, it
is often necessary to make additional checks to make sure that the received
messages are compatible types. If this is not the case, there is a utility
procedure, QIncompatMsgs, provided to signal the error.

F:MAG illustrates how the body of a function that can accept different types
of inputs usually takes the form of a single IF ELSE IF ELSE statement.
Each IF clause tests for a valid combination of inputs, with the final ELSE
clause being used to flag an error.

Function

F:MAG

I, R, 2D, 3D —) <1> <i>|—1, R

Description

This function calculates the absolute value (if integer or real) or magni-
tude (if a vector) of the input received.

Example

SUBPROGRAM uwfmag;
{$F=USERSTRUC.PAS}
PROCEDURE GenFunction;

VAR
inputs : PtrUWFInQarray;

APG-2 PS 390 Advanced Programming

outmsg : Ptrqdata;
temp : double;
BEGIN {GenFunction}
inputs := CkInputs (1, 1);
WHILE inputs <> NIL DO BEGIN
IF inputst{l]f.qtyp = QInteger THEN BEGIN {send absolute value}
outmsg := NewQInteger;
outmsgt.i := abs(inputst([1]1f1.1);
SendMsg (outmsg, 1);

END
ELSE IF inputsf{1l]1f1.qtyp = QReal THEN BEGIN {send absolute value}
outmsg := NewQReal;

outmsgt.r := inputsf[l]f.r;
FpAbs (outmsgt.r);
SendMsg (outmsg, 1);
END
ELSE IF inputsf[1]t1.qtyp = QVec2 THEN BEGIN {send sqrt (x*x + y+y)}
outmsg := NewQReal;
FCMultiply (inputsf[1]11.v4([0], inputsf[1]1.v4[0], outmsgt.r);
FCMultiply (inputsf{[1]1f.v4([1], inputst[1]1.v4[1], temp);
FCAdd (outmsgt.r, temp, temp);
FCSqroot (temp, outmsgf.r);
SendMsg (outmsg, 1);
END
ELSE IF inputst[1]t1.qtyp

QVec3 THEN BEGIN {send sqrt (x*x + y* y}
{z*z) }
outmsg := NewQReal;
FCMultiply (inputst[1]f1.v4[0], inputst{1]1f.v4[0], outmsgt.r);
FCMultiply (inputst[1]1tf.v4[1], inputsf([1]11.v4([1], temp);
FCAdd (outmsgt.r, temp, outmsgt.r);
FCMultiply (inputst{l]t.v4[2], inputst(1]11.v4[2], temp);
FCAdd (outmsgt.r, temp, temp);
FCSqroot (temp, outmsgt.r);
SendMsg (outmsg, 1);
END
ELSE {anything else is illegal}
QIllMessage (1);
IF Cleaninputs THEN
inputs := Ckinputs (1, 1)
ELSE inputs := NIL;
END;
END. {GenFunction}

More Advanced Ideas AP6-3

6.2 Example II - SET_CNESS and Private Queues

F:COUNT The function F:COUNT is a simple counter function. Input <1> is
the trigger queue. A Boolean value of TRUE causes the counter to be reset
to the value received on input <2>. A value of FALSE causes the current
value of the counter to be incremented. Input <2> is a constant queue.

The utility procedure Set Cness is used here to “hard-code” the cness of the
queues. Usually, it is preferable to rely on using the SETUP CNESS com-
mand to establish the cness of the queues for each individual instance of a
function. If you use the Set Cness utility procedure, you cannot also use
SETUP CNESS on the same queue. In F:COUNT, however, it is hard to
imagine a situation where you would not want to have the initial value of the
counter a constant queue, so you would want to use the Set_Cness utility.

If a function uses the Set_Cness procedure, the call should appear at the
very beginning of the function body. Trying to change the Cness of a queue
back and forth in the middle of the function will probably not do anything
useful.

F:COUNT also illustrates the use of the private queue to store the current
value of the counter. Ordinarily, a user-written function has no global vari-
ables or other permanent information that remain from one activation of the
function to the next. Since being able to “save state” is sometimes required
for a function to perform its proper task, each user-written function is pro-
vided with a private queue to contain permanent information.

The name “private queue” is used because the only way messages can be
placed there is from inside the function itself, you cannot SEND to the
private queue of a function.

When a function is instanced, the private queue is initially empty. There-
fore, one of the very first things a function that uses the private queue
should do is check to see whether or not there is already a message on the
queue, using the utility function CkPrivate. This function will return a
pointer to the message if it exists. If the queue is empty, create a new
message of the appropriate type and use the function SavePrivate to store it
in the private queue. Once a message has been saved on the private queue,
it remains there permanently. The message is owned by the function and
may be modified as necessary.

AP6-4 PS 390 Advanced Programming

Note that the private queue really is a queue, and may contain more than
one message. You can chain several messages together into a linked list by
storing a pointer in the NEXT field in the Qdata record. But be careful--
messages on the private queue are the only instance where accessing the
NEXT field directly will not cause huge amounts of trouble!

In the case of F:COUNT, the private queue contains a single message of
type Qlnteger.

Function

F:COUNT

B—=| <1> <l>|—1

I—} <2>C

Description

This function is a simple counter. The private queue is used to maintain
the last value of the counter.

Input <1> is the trigger queue. When a message of TRUE is received, the
counter is reset to the value on input <2>. When a message of FALSE is
received, the counter is incremented. The current value of the counter is
sent on output <1>.

Example
SUBPROGRAM uwfcount;
{$F=USERSTRUC. PAS}
PROCEDURE GenFunction;
VAR

inputs : PtrUWFInQarray;

outmsg : Ptrqdata;
status : Ptrqdata;

More Advanced Ideas AP6-5

BEGIN {GenFunction}

{

{ Set input <2> to be a constant queue. This
{ is done because it does not make sense to
{ have this an active queue.

{

Set_Cness (2, TRUE);

{ }

{ Get the inputs to the function and process. }

{ }

status NIL;
inputs := CkInputs (1, 2);
WHILE inputs <> NIL DO BEGIN

{ }

{ First the usual check for valid inputs. }

{ }

IF inputs?[1]11.qtyp <> QBoolean THEN
Qillmessage (1)

ELSE IF inputst[2]1t.qtyp <> QInteger THEN
Qillmessage (2)

ELSE BEGIN

Now that’s taken care of, you need to get
the message from the private queue before
you can continue. If the private queue
is empty, allocate and initialize a new
message.

Lt Nt Nt Tate Nt St St

IF status = NIL THEN BEGIN

status := CkPrivate;
IF status = NIL THEN BEGIN
status := NewQInteger;

SavePrivate (status);
statust.i :=inputst[2]t.1i;
END;

END;

APG6-6 PS 390 Advanced Programming

{

{ Then you can use the message from the
{ private queue to determine the value to
{ be output.

{

IF inputsf[1]t1.b THEN

statust.i := inputst[2]f.1
ELSE
statust.i := statust.i + 1;
outmsg := NewQInteger;
outmsg?.i := statust.i; SendMsg (outmsg, 1);
END;

IF Cleaninputs THEN

inputs := ckinputs (1, 2)
ELSE
inputs := NIL;
END;
END. { GenFunction }

6.3 Example III - Variable Number of Input Queues
F:BEZIER(N)

The Bezier curve function, F:BEZIER(N), is an example of a user-written
function which has a variable number of inputs. Input <1> is an integer
indicating how many points on the curve are to be calculated. Inputs <2>
through <N> are points (3D vectors) which define the Bezier curve. Output
<1> of the function is intended to be connected to the <clear> input of a
vector list, and output <2> should be connected to the <append> input of the
same vector list.

The body of the Bezier function is very similar to the code for any ordinary
user-written function. The only difference is that, since you do not know
how many inputs the instance of the function has ahead of time, you must
call the utility procedure My In Out to find out. The call to this procedure
should be placed at the very beginning of the function, before any calls to
Set Cness, and before the initial call to Cklnputs.

More Advanced Ideas APG6-7

To indicate that a function has a variable number of inputs and/or outputs,
you should specify the corresponding parameter as 255 in the header line of
the S-record file. For example, since the Bezier function has a variable
number of inputs and only 2 outputs, the header line should indicate 255
inputs and 2 outputs. On VAX/VMS, the command to compile and link the
Bezier function is:

$ XL Bezier 255 2 5000

Then, when you instance the function, you must specify the actual value for
N, as

<instance name> := F:<function_name>(N);

In this example, the following command will create an instance of the
F:BEZIER function with 10 inputs:

drawit := F:Bezier(10);

If the function has a variable number of inputs, N specifies the number of
inputs. If the function has a variable number of outputs, N specifies the
number of outputs. If both the number of inputs and the number of outputs
are variable, the function will have N inputs and N outputs.

Another interesting point about the Bezier function is that it is very impor-
tant to send the output messages in the correct order. Since the messages
are actually delivered in the same order that they were sent within the func-
tion code, you must be careful that the clear message is sent on output <1>
before any vectors are sent on output <2>. Otherwise, the vector list which
receives these messages would always appear empty.

Function
[:BEZIER(N)
| <1> <1>{— to <clear> vector_list
3D —=| <2> <2>|— to <append> vector_list
* L]
L] L]
L] L]
3D —*| <N>

APG6-8 PS 390 Advanced Programming

Description

F:BEZIER evaluates a series of points on a Bezier curve. Input <1> is an
integer indicating how many points on the curve are to be calculated.
Inputs <2> through <N> are points (3D vectors) which define the vertices
of the Bezier curve. Output <1> of the function is intended to be con-
nected to the <clear> input of a vector list, and output <2> should be
connected to the <append> input of the same vector list.

Example

SUBPROGRAM uwfbezier;
{$F=USERSTRUC.PAS}
PROCEDURE Genfunction;

TYPE
varray = ARRAY[1l..MaxInputQueues] OF vector;

VAR
ins, outs : Intl6;
inputs : PtrUWFInQarray;
i, 3 : Integer;
npnts : Integer;
outmsg : Ptrqdata;
error : Boolean;
vertices . Varray;
t, delta : Double;
{

{ A function to evaluate the coordinates of a point on
{ a Bezier curve defined by "vertices" at parameter
{ value "t"

{

FUNCTION eval_Bezier (VAR vertices : Varray;
nvert: Integer;
t: Double): vector;

VAR
j, k, m : Integer;
temp : Double;
BEGIN
FOR j := nvert-1 DOWNTO 1 DO { loop over iterations }
FOR k := 1 TO j DO { loop over each vertex}

More Advanced Ideas

AP6-9

FOR m := 0 TO 2 DO BEGIN { loop over x,y,z }
FCSubtract (vertices[k+1l,m], vertices[k,m], temp);
FCMultiply (temp, t, temp);

FCAdd (vertices[k,m], temp, vertices[k,m]);

END;
eval Bezier := vertices[1l];
END;
{ }
{ Main body of UWF }

{ }

BEGIN { GenFunction }

My_in_out (ins, outs);

inputs := CkInputs (1, ins);
WHILE inputs <> NIL DO BEGIN
error := FALSE;
IF inputst[1]1.qtyp <> QInteger THEN BEGIN
error := TRUE;
Qillmessage (1);
END

ELSE IF inputs"[1]".i < 1 THEN BEGIN
error := TRUE;
Qillvalue (1);
END;
FOR i := 2 TO ins DO
IF inputst[i]lt.qtyp <> QVec3 THEN BEGIN
error := TRUE;
Qillmessage (1i);
END;
IF (inputs <> NIL) AND (NOT error) THEN BEGIN

{ }

{ Send the CLEAR message out first. You need }
{ to save the value of input 1 before doing }
{ QSendCopyMsg, because once this is done the }

{ function no longer owns that message. }
{ }
npnts := inputsf{[1]t.1 - 1;
QSendCopyMsg (1, 1);
{

{ Now calculate points on the curve and send
{ them on output 2.

{

AP6-10 PS 390 Advanced Programming

FCInt2Double (npnts, delta);
FOR J := O TO npnts DO BEGIN
FOR i := 2 TO ins DO
vertices[i-1] := inputsf([i]f.v4;
FCInt2Double (j, t);
FCDivide (t, delta, t);

outmsg := NewQVector (QVec3);
outmsgt.v4 := eval_Bezier (vertices, ins-1, t);
SendMsg (outmsg, 2);
END;
END;
IF Cleaninputs THEN
inputs := ckinputs (1, ins)
ELSE
inputs := NIL;
END;

END. { GenFunction }

6.4 Example IV - User-Defined Qdata Type
F:SPIRO

F:SPIRO is a function which behaves like a spirograph toy. A spirograph
consists of two gears, an inner wheel and an outer ring. A pen fixed to the
inner gear traces a pattern as it is rotated inside the outer ring.

Input <1> of the function will accept any message; it serves to trigger the
function. The remaining inputs are constant queues. Input <2> is an integer
specifying the number of teeth on the inner wheel, and input <3> specifies
the number of teeth on the outer ring. Input <4> is a real number indicating
the offset of the pen from the edge of the inner wheel.

Output <1> is intended to be connected to the <clear> input of a vector list,
and output <2> to the <append> input of the same vector list. A Boolean
TRUE is sent on output <3> to indicate that there are additional points on
the curve to be calculated. Output <4> is a boolean TRUE that is sent only
when all points on the curve have been calculated.

Instead of calculating all of the points which define the curve at once (as the
F:BEZIER function does), F:SPIRO will only output one point each time it is
activated. The state information is saved on the private queue so that the
next time the function is activated, it can pick up where it left off. Output
<3> can be connected back to input <1> to “reschedule” the function.

More Advanced Ideas AP6-11

This approach is useful because it allows the computations to be “interrupt-
ible.” If the spirograph function were allowed to run continuously until the
entire curve was calculated, it could take up to several minutes to complete
(depending on the complexity of the curve). During this time, nothing else
would be able to run on the PS 390. Breaking up the computation allows
other PS 390 functions to run normally--including updating of the vector list
to which the spirograph function is connected.

A special message type was defined to save the state information on the
private queue for the spirograph function. One of the Qdata types, Quser-
Type, is reserved for this purpose. A copy of USERSTRUC.PAS was modi-
fied to include a definition of the record type StateType, which contains
fields to store the information that must be saved from one activation of the
function to the next. The declaration of the Qdata record type was then
modified so that QuserType messages contain a field (StateInfo) of this
type. The spirograph function can then use the Pascal procedure NEW to
create new QuserType messages.

The following is an excerpt from SPSTRUC.PAS (modified
USERSTRUC.PAS) illustrating the definition of QuserType messages.

TYPE

statetype = RECORD

newdata : Boolean;
maxi, maxo . Integer;
currenti, currento : Integer;
offset : Double;
radiusl, radius2 : Double;
dthetai, dthetao : Integer
END;
L]
L)
L
Qdata =
RECORD
Next: Ptrqgdata; { next message in a list of messages }

CASE Qtyp: Qdtype OF { type of message }

[]
[]
[]
QuserType:
(StateInfo : StateType);
END ; { Qdata }

AP6-12 PS 390 Advanced Programming

You can also use QuserType messages for communication between a set of
user-written functions. These messages can be sent as output and received
as input, just like any other message types. QuserType messages will also
be handled correctly by any other function which accepts “any” message on
the appropriate input, such as F:SYNC.

Your function is responsible for correctly initializing QuserType messages.
If the message type is to be shared by several functions, it might be conven-
ient to add a procedure to the modified copy of USERSTRUC.PAS which
creates and initializes new QuserType messages, similar to the predefined
NewQxxx utility procedures.

Qusertype Qtyp fields must be explicitly filled in by your program. Also, if
the QuserType you define has fields in it that are pointers to other blocks,
your function is responsible for disposing of these blocks. They must be
disposed of before disposing of the QuserType message. The DropMessage
utility routine (used to dispose of messages) should be called after you dis-
pose of any such blocks.

If your QuserType message is sent to a PS 390 intrinsic function that ac-
cepts “any” message on an input, any block pointed to in the internal fields
of the QuserType will not be properly disposed of. If you must include
pointers in your QuserType definition, make sure they are properly handled.

Function
F:SPIRO
ANY —=| <I> <1>|—* <clear> vector_list
(trigger)
I —*| <2>C <2> | — <append> Vector_list
(inner circ.)
I —| <3>C <3>|— TRUE (continue)
(outer circ.)
R —*| <4>C <4>|— TRUE (done)
(pen offset)
Description

This UWF is a spirograph function. A spirograph consists of two circular
gears, an inner wheel rotating inside a fixed outer ring. A pen is fixed to

More Advanced Ideas AP6-13

the inner gear at some offset from its circumference, so that it draws a
pretty picture.

Sending a message to input <1> triggers the function. Input <2> is the
number of teeth on the inner gear, and input <3> is the number of teeth
on the outer wheel. Input <4> is the distance the pen is offset from the
circumference of the inner gear.

The function outputs one line segment at a time. A value of TRUE is sent
from output <3> to indicate that the function should be rescheduled. This
output may be connected back to input <1>. TRUE is sent from output
<4> when the curve is complete.

The curve is constructed as follows. Maxi and maxo refer to the number
of teeth on the inner and outer gears, respectively, and currenti and cur-
rento refer to the pair of teeth that are currently meshing. Dthetai and
dthetao are the angles subtended by a single gear tooth on the inner and
outer gears, respectively. Radiusl is the distance from the center of the
fixed ring to the center of the inner wheel, and radius2 is the distance
from the center of the inner wheel to the pen. First, the angles of the two
teeth that are currently meshing are found. The angles thetai and thetao
are both relative to a fixed coordinate system. Then, the (x,y) coordinates
of the pen location are given by:

radiusl*cos(thetao) + radius2*cos(thetai)
radiusl*sin(thetao) + radius2*sin(thetai)

< X
o

Note that the SinCos utility procedure expects the angle to be an integer
from 0 to 65536 (2*pi), so you use this format for all the angles through-
out the function.

Example
SUBPROGRAM uwfspiro;
{$F=SPSTRUC.PAS } {USERSTRUC.PAS with Quserdata type defined}

PROCEDURE GenFunction ;

VAR
inputs : PtrUWFUWFInQarray;
outmsg : PtrQdata;

APG6-14 PS 390 Advanced Programming

state : PtrQdata;

si, ¢ci : Double;
so, co : Double;
thetai : Integer;
thetao : Integer;
{ }
{ A utility procedure to fetch information }
{ stored on the private queue. If nothing is }
{ on the private queue, or if the information }
{ is obsolete, reinitialize the state }
{ information using the input msgs. }
{ }
PROCEDURE fetch_state_information;
CONST
pi2exp = 1027; { Exponent part of 2 * pi }
pi2man = 1686628288; { Mantissa part of 2 * pi }
VAR
pi2, temp : Double;
BEGIN
{
{ If the private queue is empty, create
{ and store a new message.
{ i
state := CkPrivate;

IF state = NIL THEN BEGIN
NEW (state, QuserType);

statef.Qtyp

:= QuserType; 1

statet.stateinfo.newdata := TRUE; ;
SavePrivate (state);

END;

If you are beginning a new curve, store
the new set of constants. Calculate
the radii of the two gears and find the
angle subtended by a single tooth, as

P Nt W e Wt Wt S e N

well as resetting other state variables.

IF statet.stateinfo.newdata THEN

statet.stateinfo.maxi
statet.stateinfo.maxo

More Advanced Ideas

inputst([311.1;

[N W S S)

inputst(2]1t.i; { copy input constants }

AP6-15

AP6-16

statel.stateinfo.offset :=
pi2.m := piZ2man;

pi2.c pi2exp;
FCInt2Double (statef.stateinfo.maxi, temp);
FCDivide (temp, pi2, statef.stateinfo.radius2);
FCInt2Double (statet.stateinfo.maxo, temp);
FCDivide (temp, pi2, statetf.stateinfo.radiusl);

inputst(4]1t.r;

{ find gear radii }

FCSubtract (statef.stateinfo.radiusl,
statet.stateinfo.radiusl);
FCSubtract (statef.stateinfo.radius2,
statef.stateinfo.radius2);
statef.stateinfo.dthetai :=

statef.stateinfo.dthetao

65536 DIV maxi;

statef.stateinfo.radius2,

statet.stateinfo.offset,

{ angles of one}
{ gear tooth }

:= 65536 DIV maxo;

WHILE inputs <> NIL DO BEGIN

IF inputsf([2]f.qtyp <> QInteger THEN
Qillmessage (2)

ELSE IF inputst([3]1.qtyp <> QInteger THEN
Qillmessage (3)

ELSE IF inputst[4]11.atyp
Qillmessage (4)

<> QReal THEN

ELSE IF inputsft[2]f.i <= O THEN
Qillvalue (2)
ELSE IF inputST[S]T.i <= 0 THEN

Qillvalue (3)

statet.stateinfo.currento := 0; { set current tooth counter }
END;
END;
{ }
{ Main body of UWF. }
{ }
BEGIN { GenFunction }
{ }
{ Establish constant queues. }
{ }
Set_Cness (2, TRUE);
Set_Cness (3, TRUE);
Set_Cness (4, TRUE);
{ }
{ Check for valid inputs. }
{ }
inputs := CkInputs (1, 4);

PS 390 Advanced Programming

ELSE IF inputst[2]1.1 >= inputst[3]1.1 THEN

Qillvalue (2)
ELSE BEGIN

{

{Get state info from the private queue.

{

Fetch_State_Information;

{

{ If you are starting a new figure, do
{ something special to initialize it,

{

IF statef.stateinfo.newdata THEN BEGIN

outmsg := NewQInteger;
stateft.stateinfo.maxo;
SendMsg (outmsg, 1);

outmsgt.i :=

outmsg := NewQVector (Qvec2);
FCAdd (statet.stateinfo.radiusl, statef.stateinfo.radius2,

outmsgt.v4([0]);
FCInt2Double (0, outmsgt.v4([1]);

SendMsg (outmsg, 2); statef.stateinfo.newdata ;= FALSE;

END;
{ ==}
{ Calculate the next point on the figuré. }
{ }
statef.stateinfo.currenti := (statet.stateinfo.currenti + 1)
MOD statef.stateinfo.maxi;
statef.stateinfo.currento := (statef.stateinfo.currento + 1)

MOD statet.stateinfo.maxo;
thetao := statetf.stateinfo.currento *
statet.stateinfo.dthetao;

thetai := thetao - (statef.stateinfo.currenti *

statet.stateinfo.dthetai);

Sincos (thetao,
FCMultiply (so,
FCMultiply (co,
Sincos (thetai,
FCMultiply (si,
FCMultiply (ci,

S0, cO);

statef.stateinfo.
statel.stateinfo.

si, ci);

statet.stateinfo.
statet.stateinfo.

outmsg := NewQVector (Qvec2);
FCAdd (ci, co, outmsgt.v4[0]);
FCAdd (si, so, outmsgt.v4{1]);

SendMsg (outmsg,

More Advanced Ideas

2);

radiusl,
radiusl,

radius2,
radius2,

50) ;
co);

si);
ci);

(S N S A)

AP6-17

{ }

{ Test whether the figure is complete. }

{ }

outmsg := NewQBoolean;
outmsgt.b := TRUE;
IF (statet.stateinfo.currenti = 0) AND
(statet.stateinfo.currento = 0) THEN BEGIN
newdata := TRUE;
SendMsg (outmsg, 4);
END
ELSE
endMsg (outmsg, 3);
END;
IF Cleaninputs THEN
inputs := ckinputs (1, 4)
ELSE inputs := NIL;
END;
END. { GenFunction }

6.5 CONCLUSION

AP6-18

This concludes the formal instructions for writing your own user-written
functions. Once you are familiar with the processes and examples described
in section APS thru section AP8 should be most helpful in providing a quick
source of information on the utility routines and other information you will
need to write your own functions.

Section AP7 contains instructions for transferring S-record files from the
host system to the PS 390 firmware diskette, as well as instructions for
protecting user-written functions from PS 390 global INIT commands. Once
user-written functions reside on the firmware diskette, they will load in ap-
proximately the same manner as intrinsic PS 390 functions. Section AP7
also contains instructions on how to use the PS 390 Debugger.

PS 390 Advanced Programming

Section AP7
Loading and Debugging UWFs

Section 7.1 describes how to load a user-written function (UWF) from a runtime
diskette (and optionally create an instance of the function) when the PS 390 is
booted, in such a way that both the function code and the function instance are
protected from INITIALIZE commands. For example, this facility might be used if
you have written a function to control a peripheral device, such as a mouse, and
you want to use the function in the same way as the ordinary PS 390 initial func-
tion instances.

Section 7.2 contains the various commands for the PS 390 Debugger and explana-
tions of how to use them to determine whether a section of code for a user-written
function is actually being executed or not.

7.1 Loading User-Written Functions From Diskette

Before proceeding with this section, you should know how to transfer files
from the host computer to a diskette using the UTILITY program available
on PS 390 Diagnostic Utility Diskette. You should be familiar with name
suffixing conventions and how to use Configure mode on the PS 390. You
may also find it useful to refer to the block diagrams for the CONFIG.DAT
file. All of this information can be found in RM7 of the PS 390 Document
Set.

To load a user-written function from the firmware diskette, the file contain-
ing the user-written function must first be downloaded to the diskette from
the host. This file should contain the function header line followed by the
S-record output from the linker, and should terminate with a semicolon. It
should not contain any multiplexing bytes. To download the file to the disk-
ette, follow the instructions for using the UTILITY program in RM12 of the
PS 390 Document Set. The file should be transferred as an ASCII file and
given an extension of .DAT on the PS 390 diskette.

Unless you are using a PS 390 with two disk drives, the procedures de-
scribed in the following sections require that the file containing the function
code be on the same diskette as the SITE.DAT file.

Loading and Debugging User-written Functions

AP7-1

To load the user-written function file on the diskette, you must modify the
SITE.DAT file to include a function network which will read the file from
the disk and route its contents to the function which will load the user-writ-
ten function into memory.

If you want to instance the user-written function at boot time, you cannot
just include the PS 390 commands to do so in SITE.DAT,; this is because
SITE.DAT is processed before the user-written function has been read in
and loaded into memory. Instead, you must put the commands necessary to
instance and initialize the user-written function in a separate file and modify
SITE.DAT to include a network to read in this file after the user-written
function code has been loaded.

The function and its instances can be protected from INITIALIZE com-
mands by creating them using a different CI (command interpreter) than
that used for commands received from the host or the keyboard. (Remem-
ber that an INITIALIZE command removes only those names which were
created by the CI receiving the command.) You will use the CI numbered
0, which is also used for setting up the ordinary initial function instances
from commands read from CONFIG.DAT.

7.1.1 Loading the User-Written Function Into Mass Memory

The following version of SITE.DAT sets up a function network which loads
a user-written function from the file EXAMPLE.DAT into memory. After
creating the file on the host, the PS 390 UTILITY program should be used
to transfer it to the PS 390 diskette.

configure sezme;

AP7-2

dcwaitl := f:timeout;

StartUWF1 := f:constant;

LoadUWF1 := fireaddisk;

send fix(500) to <2>dcwaitl;

conn dcwait1<2> : <1>StartUWF1;
send 'EXAMPLE’ to <2>StartUWF1,;
conn StartUWF1<1> : <1>LoadUWF1;
conn LoadUWF1<1> : <1>srec_gather0;
send fix(0) to <2>srec_gather0;
disconn srec_gather0<1> : all;

disconn srec_gather0<3> : all;

send true to <1>dcwaitl;

finish configuration;

{ to force delay before reading UWF }
{ holds name of file containing UWF }
{ function to read the file }

{ cause S-second delay }

{ then send filename to read function }
{ route file contents to UWF loader }
{ CI number to associate with UWF }

{ normally connected to a CIROUTE }

{ kick the thing to get it started }

PS 390 Advanced Programming

This is the bare minimum required. Note that since the SITE.DAT file is
read in Configure mode, you have to be sure to include the proper suffixes
on all the names referenced.

The function dcwaitl is used to force a 5-second delay between processing
the SITE.DAT file and reading the file containing the user-written function.
This delay is necessary with the PS 350 data concentrator initialization se-
quence but is not necessary with the PS 390 peripheral multiplexer. This
initialization takes place immediately after SITE.DAT has been read. To
avoid conflicts, it is important to allow sufficient time for the initialization
to complete before trying to read from the diskette.

After dcwait1 has been triggered and the delay time elapsed, it will send a
message to input <1> of StartUWF1. In turn, this will send the name of the
file to LoadUWF1, which reads the file from the diskette. The contents of
the file are routed to srec_gather0, an instance of F:GATHER GENFCN.

Sending a value of fix(0) to input <2> of srec_gather(associates the name
of all the user-written functions created by srec_gather0 with CI number 0.
This means that the names of these functions are protected from an IN-
ITIALIZE command on any other CI. Note that this does not protect in-
stances of these functions from INITIALIZE commands. Also, you must still
be careful not to redefine the name of the function; i.e.,

example := f:example;

will still destroy the function body.

7.1.2 Loading the User-Written Function and Creating an Instance

If you want to create an instance of a user-written function at boot time, you
should put the PS 390 commands necessary to do so in a separate file,
which might be called SETUP.DAT. You can then modify SITE.DAT to
include a network that reads SETUP.DAT from the diskette and sends its
contents to the same CI that processes the CONFIG.DAT and SITE.DAT
files. The important thing to remember is that you cannot instance a user-
written function until it has been loaded, so SETUP.DAT cannot be read in
until the file containing the user-written function has been read in.

There are a few restrictions on what SETUP.DAT can contain. First of all,
the CI used to process this file does not handle implicit name suffixing
properly. You should always use Configure mode in SETUP.DAT, and be

Loading and Debugging User-written Functions AP7-3

careful to include explicitly the proper suffixes on all names. Secondly, you
cannot DISPLAY anything through this CI.

The contents of SETUP.DAT will vary depending on the application. Here is
an example:

configure sezme;

myexamplel := fiexamplel; { whatever needs to be done to a initialize the }
{ function }

setup cness true <2>myexamplel;

send true to <2>myexamplel;

send ’System is ready for use’ & char(13) & char(10) to <1>es_tel;

finish configuration;

Note that, in Configure mode, you have to suffix the name of the user-writ-
ten function, as well as any function instances that you refer to.

Once you have created the SETUP.DAT file on the host, use the PS 390
UTILITY program to transfer the file to the PS 390 diskette in the usual
way. Unless you have a two-drive system, this file must be placed on the
same diskette as the SITE.DAT file.

Here is the SITE.DAT file to read the function code from EXAMPLE.DAT
and the commands from SETUP.DAT. This network is illustrated in Dia-
gram 2.

configure sezme;

dcwaitl := f:itimeout;
delayl := f:itimeout;
StartUWF1 := f:constant;
LoadUWF1 := fireaddisk;
StartSetupl := f:constant;
LoadSetup1 := f:readdisk;

{ to force delay before reading UWF }

{ to delay before reading SETUP.DAT }
{ holds name of file containing UWF }
{ function to read the file }

AP7-4

send fix(500) to <2>dcwaitl;

conn dcwaitl<2> : <1>StartUWF1;
send 'EXAMPLE’ to <2>StartUWF1;
conn StartUWF1<1> : <1>LoadUWF1;
conn LoadUWF1<1> : <1>srec_gather0;
send fix(0) to <2>srec_gather0;
disconn srec_gather0<1> : all;

disconn srec_gather0<3> : all;

conn LoadUWF1<2> : <1>delayl;
send fix(100) to <2>delayl;

conn delay1<2> : <1>StartSetupl;

{ cause 5-second delay }
{ then send filename to read function }

{ route file contents to UWF loader }
{ CI number to associate with UWF }
{ normally connected to a CIROUTE }

{ trigger when UWF file is read }
{ 1-second delay }
{ then fire the function to read SETUP }

PS 390 Advanced Programming

send 'SETUP’ to <2>StartSetupl;
conn StartSetup1<1> : <1>LoadSetupl;
conn LoadSetupl<1> : <1>rfchop$;
send true to <1>dcwaitl;
finish configuration;

{ to send it to the CI }
{ kick the thing to get it started }

The first part of this network is the same as in the previous example. Out-
put <2> of LoadUWF1 is used to signal when the file containing the code
for the user-written function has finished being read in. Use this message to
trigger reading SETUP.DAT, after a one-second delay. (Experience has
shown that this delay is necessary.) The contents of SETUP.DAT are
routed to rfchop$.

7.1.3 CONCLUSION

The diagrams on the next page illustrate the function networks set up by the
sample SITE.DAT files used in this section.

This concludes the instructions for transferring S-records to the firmware
diskette and initializing them at boot time.

dcwaitl

TRUE |<1>

fix(500) | <2>C

<1>

<2>

<3>

F: TIMEOUT

Function Network Diagram 1

‘example’

StartUWF1
<1> <1>
<2>C

F:CONSTANT

Loading and Debugging User-written Functions

LoadUWF1
<1> <1>
<2>

F:READDISK

fix(0)

Srec gather0

<1>

<2>C

AP7-5

Function Network Diagram 2

dcwaitl
TRUE |<I> <1> StartUWF1 LoadUWF1 Srec gather0
<2>| - ——— - <t1> <> | = - -1 <I>| - - <1>
fix(500) | <2>C <3> <2>| =
F:TIMEOUT L
‘example’ |<2>C = fix(0)|<2>C
F:CONSTANT F:READDISK :
I
1
.q— _______ e - e - - - - P S ——— |
i
1 delayl
1
'
= |<1>C <1> StartSetupl LoadSetupl Rfchop$
<>| = ———- <1> <> | - - <> <I>| - <1>
fix (100) [<2>C <3> <2>
F:TIMEOUT
‘example’ [<2>C

F:CONSTANT

F:READDISK

7.2 PS 390 Debugger

The PS 390 Debugger (Debug) can sometimes aid in debugging a user-writ-
ten function. However, Debug is rather primitive and the procedure for lo-
cating the code for a user-written function in mass memory is complicated.
It is suggested that you do not attempt to use Debug except when other
methods for debugging a function have failed. You must be familiar with
assembly language and the Motorola listing file formats to understand what
is required to use Debug. This section describes:

e How to use Debug.
e The Debug commands.
e How to set breakpoints in your user-written function. Setting break-

points is useful for determining whether a section of code in your
function is actually being executed or not.

7.2.1 Using the Debugger

To use the debugger, an ASCII terminal must be attached to PS 390 Port 3.
The serial port used by Debug is initialized to 8 bits, no parity, and one stop
bit; each byte is stripped to 7 bits in case the terminal being used sets a
parity bit, and the baud rate is set to 9600. Should you want to modify these

AP7-6 PS 390 Advanced Programming

characteristics, you can do so by using the SETUP INTERFACE command
for port30.

Debug mode can be entered by pressing the BREAK key on the ASCII ter-
minal. When Debug is entered, an asterisk “*” is displayed on the terminal
and the PS 390 display is blanked.

The asterisk is a prompt character that appears whenever Debug is expect-
ing a command to be entered. All Debug commands are either one or two
characters in length. Debug converts all lowercase characters to uppercase
automatically. Whenever an invalid command is entered, Debug outputs a
BEL and “?” character, moves to the next line, and prompts for a new
command. Refer to the next section for tables containing the Debug com-
mands.

Because of its requirement to run on a minimum amount of hardware, De-
bug has several limitations. First, minimal editing of input is allowed. Sec-
ond, all commands execute immediately upon pressing the appropriate key.
Third, all numbers used by Debug must be hexadecimal (base 16) rather
than decimal (base 10).

Any time a number is required by a Debug command, a 32-bit register is
cleared to zero, and each digit that is entered into the register is shifted in
from the right. If more than eight digits are entered, the upper digit is
shifted out the left end of the register and lost. Numbers are considered
completely entered when the first non-hexadecimal character is entered.
(This implies that if the first character entered is not hexadecimal, the nu-
meric value is zero.)

Any time that a hex number may be entered, one of the following charac-
ters may be entered to provide a different meaning. Note that no additional
delimiter character is required as with the entry of hexadecimal numbers.

¢ Specify an ASCII string. The string is terminated by a second single
quote. All characters are taken exactly as typed (no lower case to upper
case conversion) including control characters such as carriage return
and line feed (CTRL Y will still kill the command, however). Note that
there is no way to insert a single quote character in this mode. This
should be most useful with the hunt commands (HB, HW, HL) or for
inserting single characters into memory. Example: “I ’a’” would insert
-the value X’61’ into the current open location.

Loading and Debugging User-written Functions AP7-7

AP7-8

O Use the current open location as the hex value. Most useful with the list
command (L) or to set breakpoints (BR). Example: “L O .” would list
from the current open location for one line.

P Use the current program counter value as the hex value. Most useful
with the list command (L), to set breakpoints (BR), or with the open
command (O). Example: “BR P” would set a break point at the current
program counter location.

S Use the current stack pointer value as the hex value. Most useful with
the list command (L) or with the open command (O). Example: “O S”
would open the location pointed to by the stack pointer.

+ Use the current open location plus the specified offset. For example:
“O +10.” would open the location 16 (X’10’) bytes beyond the current
open location (note that a delimiter is needed here). Or, “L +10, .”
would list the line 16 bytes beyond the current open location.

- Use the current open location minus the specified offset. For example:
“O -A.” would open the location 10 (X’A’) bytes before the current
open location (note that a delimiter is needed here).

When entering a hex number, you may now use either backspace or delete
to correct the number. Up to the last 8 digits may be deleted from the
number. A digit is deleted each time the delete or backspace key is pressed
until the number being built is found to be all zero. Note that if more than 8
digits are entered, the first digits will have shifted out of the register and
will no longer exist (but they will still appear on the screen). With this new
feature, however, there should be no need to enter numbers longer than 8
digits in the first place. Note that backspace and delete do not work for any
ASCI strings.

Three special characters control output of data to the terminal:

<CTRL>S

Temporarily stops the sending of output to the terminal.

<CTRL>Q

Resumes the sending of output to the terminal after a <CTRL> S. (Note
that program code occasionally may miss a <CTRL> S<CTRL> Q se-
quence when displaying great amounts of data at a baud rate over 2400.)

PS 390 Advanced Programming

<CTRL>Y

Permanently stops the sending of output to the terminal. <CTRL> Y may
also be used to terminate any command before the last character of the
command is entered.

Any unrecognized character is echoed to the terminal but is otherwise ig-
nored. Most valid commands move the cursor on the terminal to the next
line to indicate successful completion of the command.

7.2.2 Debugger Commands

The following table lists the valid Debug commands. Most of the informa-
tion in the tables is provided for completeness; only a few of these com-
mands will be needed while using the debugger to set breakpoints in your
code. The Debug program keeps a pointer to a specific location currently in
use. This location is referred to as the “open Location.” All commands in
the following table are associated with the open location. If a location has
not been opened after a Reset or after stopping program execution using the
O or Q commands, the current open location may be invalid and could
cause a bus error if accessed.

Table 7.2-1 Commands Accessing “Open” Memory Locations

‘o

COMMAND DESCRIPTION

(0] Open a location and display its contents.
For example, to open location X’BA3E’:
OBA3E. (Entered like this. Any delimiter can be
used in place of the period in this and in

the following examples.)

* O BA3E. (Displayed like this.)
0000BA3E 00 *

Q Open a location but do not display its contents. For example, to open
location X’FFF819°:

(continued on next page)

Loading and Debugging User-written Functions AP7-9

Table 7.2-1 Commands Accessing “Open” Memory Locations (continued)

COMMAND DESCRIPTION

QFFF819. (Entered like this.)

*Q FFF819. (Displayed like this. Note that the *

* cursor moves to a new line but nothing
else is displayed.)

SPACE Insert a byte of data into the current open location and then open and
display the contents of the next location. For example, if the current
open location is X’BA3E’ and the programmer desires to insert the bytes
X’60’ and X’FE’ in this and the next location:

_60._FE. (Entered like this. In this example,
“_” means space.)

* 60. (Displayed like this.)
0000BA3F 00 * FE.
0000BA40 00 *

I Insert a byte of data into the current open location but do not move on to the
next location and do not display the contents of any location. For example, if
the current open location is X'FFF819’ and the programmer desires to insert the
value X’00’ into the location:

151. (Entered like this.)
*1 51. (Displayed like this.)
*
w Insert a word of data at the current open location. This command should be

used when writing data to a register that is addressable on a word basis only. If
the current open location is an odd address, the word is inserted into the next
lower even address (to avoid an address error). For example, if the current open
location is X’321FE’ and the operator wants to insert the word X’1234’ into the
location:

W1234. (Entered like this.)

*W 1234 (displayed like this.)

(continued on next page)

AP7-10 PS 390 Advanced Programming

Table 7.2-1 Commands Accessing “Open” Memory Locations (continued)

COMMAND DESCRIPTION

Display the address and contents of the current open location. For example, if
the current open location is X'FFF819’:

. (Entered like this.)
*, (Displayed like this.)
OFFF819 51 *

+ Open the location after the current open location and display its contents. For
example, if the current open location is X’"BA3E’:

+ (Entered like this.)
*y (Displayed like this.)
0000BA3F FE *

/ Open the location after the current open location and display its contents.
Identical to “+” but does not require the use of the shift key.

- Open the location before the current open location and display its contents. For
example, if the current open location is X’'BA3F’, this command would work as
follows:

- (Entered like this.)
*. (Displayed like this.)

0000BA3E 60 *

The pointer following command. This command takes the 32-bit value at the
open location and uses it as the new open location. Note that it does not check
that the current open location is an even location (odd causes an address error),
or that the value at the open location is a valid memory address (invalid causes
a bus error). The following is an example of how to use this and other new
commands to find the front of a diagnostic program and set a breakpoint at a
subroutine listed as being at X’7DC’ in the link map:

R Display registers (assume A5 = 3A23E).
O 3A23E. Open base of global variables.

(continued on next page)

Loading and Debugging User-written Functions AP7-11

Table 7.2-1 Commands Accessing “Open” Memory Locations (continued)

COMMAND DESCRIPTION

O -A. Get to diagnostic base address.

Open the first location of the diagnostic.
BR +7DC. Set a breakpoint at the beginning of the subroutine.

CTRL G Begin execution at the current open location. Do not set up any of the
registers before beginning and do not enable breakpoints. This should
normally be used to begin program execution when local memory may

not be used to hold the exception vectors. Nothing is displayed by this
command.

AP7-12 PS 390 Advanced Programming

Table 7.2-2 Commands to List Data in Memory

COMMAND DESCRIPTION

L List a block of data in both hexadecimal representation and ASCII representation.
All unprintable characters are displayed as a period. For example, to display locations
X’40000’ to X’4002F’:

1.40000,4002F. (Entered like this; period and comma are arbitrary delimiters.)

(Displayed like this.)

L40000, 4002F.
00040000 00 01 00 00 00 04 00 14 00 01 00 00 00 04 02 DAv.... z

00040010 60 OO0 OA EC 10 38 F8 57 11 FC 00 4E F8 55 11 FC ...1.8xW...NxU..

00040020 00 7A F8 55 11 FC 00 37 F8 F7 11 FC 00 41 F8 51 .zxU...7xW...AxQ

At this point, the current open location is set to X’40000’. For convenience, if the
ending address is less than the starting address, the ending address is considered to
be a byte-count. The list command accepts input in the form of:

L<starting-address>,<number-of-bytes>.
as well as:
L<starting-address>,<ending-address>.

For example, the following command could be used to display locations X’40000’ to
X’4002F:

L40000,2F.

These addresses are obtained by a common routine which converts odd numbers to
even numbers (so commands like “HW” do not get an address error). If an odd
number is entered as the starting address, the first byte listed is actually the byte at
the previous even address.

> Display the line just after the last line displayed by the list (L) command. This is
most useful when the block of memory listed was almost big enough but not quite.

< Display the line just before the last line displayed by the list (L) command. This is

most useful when one line of data was displayed (such as the current program counter
location, and it is desired to see what was immediately in front of it.

Loading and Debugging User-written Functions AP7-13

Table 7.2-3 Program Execution and Debugging Commands

COMMAND DESCRIPTION
R Display contents of all processor registers at the time of the last exception.
These contents are the values utilized by the “T” or “G” command. The
values may be modified using the “A”, “D”, “P”, “S”, or “U” command.
Most of these values are initialized to 0 by the “V” command. Registers are
displayed in the following format:
*R

PC = 00000000 SR = 0000 USP = 00000000
DO-D7= 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
AO-AT= 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

D0-D7

AP7-14

Set the program counter to a new value. For example, to set the program
counter to the value X’40014’:

P40014. (Entered like this.)

P 40014. (Displayed like this; note that the
cursor moves to a new line but nothing
else is displayed.)

Insert a new value into the status register. For example, to set
the status register to the value X’2700’:

S$2700. (Entered like this.)

S 2700. (Displayed like this; note that the
cursor. moves to a new line, but
nothing else is displayed.)

Insert a new value into the user stack pointer (USP). For example to set
the user stack pointer to the value X’36972:

U36972. (Entered like this.)
U 36972. (Displayed like this; note that the
cursor moves to a new line, but

nothing else is displayed.)

Change the value of the specified address register. For example, to set
address register D2 to X’12345678":

(continued on next page)

PS 390 Advanced Programming

Table 7.2-3 Program Execution and Debugging Commands (continued)

COMMAND DESCRIPTION
D212345678. (Entered like-this.)
D2 12345678. (Displayed like this.)
A0-A7 Change the value of the specified address register. For example, to set

address register A4 to X’FFFFF850":

A4FFFFF850. (Entered like this.)
A4 FFFFF850. (Displayed like this.)
G Begin program execution with all registers set up as displayed by the “R”

command. Immediately before execution, all breakpoints are initialized in
memory. If the first instruction to be executed is at a breakpoint address,
several microseconds pass between the execution of the first instruction and
any following instructions. If the program counter is odd, execution begins at
the next lower even address. Nothing is output to the screen to indicate that
the “G” command has been executed.

T Trace one instruction. All registers are set up as displayed by the “R”
command. This instruction uses the trace bit in the MC68000 microprocessor.
Since breakpoints actually are only set up in memory when the “G” command
is executed, they have no effect on the trace command. If the program
counter is odd, execution begins at the next lower even address. After tracing
one instruction, the following is displayed (with actual register values filled in):

*T

Trace PC = 00000000 SR = 0000 USP = 00000000

DO-D7= 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
AO-AT= 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

\'% Initialize exception vectors, registers, stack pointer, and breakpoint table.
Care should be taken not to type a “V” while debugging your program, as
the machine state will be lost!

Loading and Debugging User-written Functions AP7-15

Up to seven breakpoints may be set for Debug programs. Debug sets a
breakpoint by storing a TRAP #15 instruction at the breakpoint location
when the “G” command is executed. Every time an exception occurs that
causes DEBUG to be entered (e.g. pressing the BREAK key or encountering
a breakpoint), the current open location is set equal to the program counter
address. This is especially useful when using the trace command or when
using breakpoints.

The programmer must assure that no attempt is made to set a breakpoint at
a nonexistent location. If the breakpoint is set at an odd location, the next
lower even address is used. It is important that the breakpoint be set at the
beginning of an instruction rather than in the instruction parameter part.

If there is not enough room to set another breakpoint, Debug indicates it is
full with the following message:

Break table is full

Table 7.2-4 Breakpoint-Related Commands

COMMAND DESCRIPTION

BR Set one breakpoint. A maximum of 7 breakpoints may be set up at any one
time. If this number is exceeded, the following message is displayed:

Break table is full

For example, to set a breakpoint at location X’C000’:

BRC000. (Entered like this.)
*BR C000. (Displayed like this.)
BD Display all breakpoints. For example, if three breakpoints have been set, the

following might be displayed:
BD (Entered like this)

Breakpoints = 0000C000 0000CAB8 0000C124 (Displayed
like this)

(continued on next page)

AP7-16 PS 390 Advanced Programming

Table 7.2-4 Breakpoint-Related Commands (continued)

COMMAND DESCRIPTION

If no breakpoints are set, the following message is displayed:
Breakpoints =

BC Clear one breakpoint. If the system is unable to clear the breakpoint for any
reason, the cursor remains on the same line. If the breakpoint is successfully
cleared, a carriage return is output to indicate successful completion. If the
breakpoint is not successfully cleared, the audible alarm sounds. For
example, to clear a breakpoint that was set at location X’C000’:

BCCO000. (Entered like this.)
BC C000. (Displayed like this.)
BA Remove all breakpoints.

Loading and Debugging User-written Functions AP7-17

The Hunt commands HW, HB, and HL are used to look for a word (16
bits), for a byte (8 bits), or for a long word (32 bits), respectively, in a
search range designated by the programmer.

Table 7.2-5 Hunt Commands

COMMAND DESCRIPTION

HW Hunt for a word (16 bit) pattern within a specified search range designated by
the programmer:

HW400,10000. (Entered like this.)
HW 400, 10000. (Displayed like this.)

NOTE

If the specified search range is to be X100’ to X’1FF’, enter the
number range 100 to 200. The ending address is the one imme-
diately preceding the address entered by the operator.

A prompt then asks for the pattern to search for, and the programmer responds as in the
following example:

Pattern to search for: 4EDO

Once a matching pattern is found, its address is displayed, along with the 16 bytes
following the address, as in the following example:

0000EB64 4E DO 00 00 00 00 00 00 00-00 00 00 00 00 00 OO

Pressing any key on the terminal continues the search for another matching pattern from
the point after the last pattern found until the end of the range. A <CTRL> Y may be
used to stop the search at any time. When no matching pattern is found, the following
message is displayed:

Not found

If the pattern to search for is an ASCII sequence of characters, the characters must be
surrounded by single quote marks. Note that if an entry is found within 16 bytes of an
end address, the whole line is not printed to avoid a bus error in case the end address is
on a memory boundary.

(continued on next page)

AP7-18 PS 390 Advanced Programming

Table 7.2-5 Hunt Commands (continued

COMMAND DESCRIPTION

HB Hunt for a byte (8 bit) pattern within a specified search range designated by
the programmer.

HL Hunt for a long word (32 bit) pattern within a specified search range
designated by the programmer.

Loading and Debugging User-written Functions AP7-19

Table 7.2-6 Boot-related Commands

COMMAND

DESCRIPTION

AP7-20

BO

NOTE

The error-correction bits of memory must be initialized by either the confi-
dence tests or a memory text (such as M1) prior to execution of the boot-

related commands.

Should an error occur while executing one of the boot-related commands,
additional error information may be obtained by reading the diskette con-
troller status bits at location X‘FFF811°.

Load and execute the boot file from the minifloppy. This command must be
followed immediately by a carriage return.

A “V” command is automatically executed immediately before accessing the
diskette controller to guarantee that memory error correction logic is enabled
and that the exception vectors are initialized.

The floppy disk drive is turned off after the file is loaded into memory. Any

code that uses the disk immediately after being loaded must explicitly turn the
disk motor on again.

NOTE

All breakpoints disappear when the boot command is executed.

If an error is encountered, one on of the following messages is displayed:
Disk initialization error
This error message indicates that either the diskette drive does not respond
properly or that there is no diskette in the drive:
Error in locating boot file

This error message inclicates that either the diskette could not be read or that
the diskette does not contain a valid boot file.

(continued on next page)

PS 390 Advanced Programming

Table 7.2-6 Boot-related Commands (continued)

COMMAND DESCRIPTION

Error in loading boot file
This error message indicates that either a read or a seek error occurred while
reading in the boot file.

BN Load the boot file in from the diskette but do not begin execution. This
command is identical to the BO command except that when the file is loaded,
instead of beginning execution immediately, control is returned to the
programmer and the following message is displayed:

Start address = XXXXXXXX

where XXXXXXXX is the address where the program was loaded. This
command must be followed immediately by a carriage return.

Note that a “V” command is automatically executed immediately before
accessing the diskette controller to guarantee that memory error correction
logic is enabled and that the exception vectors are initialized. This means that
all breakpoints disappear when the boot command is executed.

The floppy disk drive is turned off after the file is loaded into memory. Any
code that uses the disk immediately after being loaded must explicitly turn the
disk motor on again. After the file is loaded, the start address is opened. A
CTRL G command may be entered without explicitly opening the start
address.

BX Load the specified file from the diskette to the specified address. This
command must be followed immediately by a carriage return. The file name is
entered following the prompt message:

Enter name of file:

The name may be from 1 to 8 characters in length. Should an error be made
in entering the file name, type a CTRL Y and begin again.

No local memory accesses of any kind occur (unless the load address is within
local memory). If any breakpoints are set at the time that the “BX” command
is entered, the original instructions at the breakpoint locations may not be

restored.

(continued on next page)

Loading and Debugging User-written Functions AP7-21

Table 7.2-6 Boot-related Commands (continued)

COMMAND DESCRIPTION

NOTE

Debug does not allow the programmer to specify the extension or file
version number. The file must be of the type .EXS (executable stand-
alone) to be loadable by the BX command. The highest version number
of the file is loaded in automatically; there is no way to select an alternate

version number.

The load address is entered following the prompt message:
Enter load address:

If the address is odd, the next lower even address is used. This eliminates the
possibility of an address error while executing the specified file.

The floppy disk drive is turned off after the file is loaded into memory. Any code
that uses the disk immediately after being loaded must explicitly turn the disk
motor on again. After the file is loaded, the start address is opened. A CTRL G
command may be entered without explicitly opening the start address.

AP7-22 PS 390 Advanced Programming

Table 7.2-7 Memory Test Commands

COMMAND DESCRIPTION

NOTE

Memory tests M3 through M6 strobe the DIAGSYNC line on the GCP
card whenever a memory error is detected. This allows a logic analyzer to

capture the state of the hardware at the time of the memory error.

M1 Test the GCP local memory. This test starts at location X‘0008’ and tests
all of local memory. It performs a stripes pattern test of all bits for both
1’s and 0’s, coming from both directions.

After all normal memory bits have been tested, the test above is repeated
using the check bits. This test has no parameters. Errors are displayed in
the following manner:

00000100 Expected-5555 Received-5554 Bits in error-0001

where the first field is the address where the error was detected, the
second is the expected value, the third is the received value, and the
fourth contains the bits in error as determined by the test.

M2 Test the error correction and detection circuitry of the local memory.

M3 Perform a simple and quick complement test. M3 reads a location,
complements it, and then verifies that all bits have changed. For example, to
test memory from X‘0008’ to X‘03FF’:

M38,400. (Entered in this form.)
M3 8, 400. - (Displayed in this form.)

Note that the last location tested is X‘3FE’ (word address), which includes
location X‘3FF’ (byte address). The end address corresponds to the first even
address after the last address to be tested. A carriage return is output when
the test is started, and another carriage return is output when the test has
been completed successfully. Errors are displayed in the same way as in test
M1.

(continued on next page)

Loading and Debugging User-written Functions AP7-23

Table 7.2-7 Memory Test Commands (continued)

COMMAND DESCRIPTION

NOTE

For convenience, if the ending address is less than the starting address,
the ending address is considered to be a byte count. The M3 command

accepts input in the form of:
M3<starting-address>,<number-of-bytes>.
as well as:
M3<starting-address>,<ending-address>.

For example, the following command could be used to test locations
X‘200000’ to X‘2001FE’:

M3200000,200. (Entered in this form)
M3 200000, 200. (Displayed in this form)

These addresses are obtained by a common routine which converts odd
numbers to even numbers. This eliminates the possibility of an address

error.

M4 Perform an address line test. It stores the low order 16 bits of the address at
the test address and then, when all of memory to be tested has been filled, it
verifies that the proper data has been stored. Addresses are specified the
same way as in test M3.

MA Execute the read and verify portion of the memory address lines test (M4).
This command is intended to be preceded by an M4 test over the same range

(and thus verifies that the data written by M4 is still intact). Following is an
example of how it might be used:

(continued on next page)

AP7-24 PS 390 Advanced Programming

Table 7.2-7 Memory Test Commands (continued)

COMMAND DESCRIPTION

M4 200000, 210000. (Write the data pattern)
<wait a while>
MA 200000, 210000. (Verify data integrity)

MS5 Perform a simple stripes test. The test procedures are the same as those
described in memory test command M1 above, except the operator specifies
the test range and the MMMR (Mass Memory Maintenance Register) is not
modified.

Meé Store a random pattern throughout the test memory, using a pseudo-random-
number generator. After all of memory has been filled, the seed of the
random number generator is reset and then all memory locations are verified.
Addresses are specified in the same way as with test M3.

Loading and Debugging User-written Functions AP7-25

7.3 Setting Breakpoints in Your Code

This section describes the steps you must follow to set a breakpoint in your
code. Where appropriate, examples are given. The user-written function
F:MAG will be used for the example. It is assumed that you want to put a
breakpoint right after the function has checked its input queues upon being
executed.

1. Make sure that your compile, assemble and links are done with the
List option set on. (Refer to the Motorola cross-software manual for
more details on the List option.) This causes creation of listing and
link-map files which are necessary to find the location to a set break-
point. For F:MAG, the commands to do this on VAX/VMS are:

$ xpas mag
$ xpas2 mag;L

$ xlink mag/userlink,mag,mag;himx

2. Find the offset within the user-written function code of the break-
point location using the listing file from pass 2 of the compiler and
the link map.

a. Find the address within the link of the beginning of the filecon-
taining your code. The link map will give you this information. In
the following example, for F:MAG, the code for the user-written
function (Module USERFUN) starts at location 2CC.

Load Map:

Segment SEGO: 00000000 OOOOOOFF 0,1,2,3,4,5,6,7
Module S T Start End Externally Defined Symbols

USERLINK 1 00000000 00000019
USERLINK 6 0000001A 00000025

Segment SEG1(R): 00000100 OOOOO5FF 8,9,10,11,12,13,14

Module S T Start End Externally Defined Symbols
USERLINK 8 00000100 00000173 .PALSTS 00000108 .PDIS 00000156
.PLJSR 00000100 .PNEW 0000012E

AP7-26 PS 390 Advanced Programming

USERLINK 9 00000174 000002CB FRAMES
SET_CNES
TEXT_TEX
HRTIME
QILLVALU
FCADD
FCINT2DO
FCMULTIP
FCP2MULT
FCSQROOT
SINCOS
TICKS
CHAR_TEX
RNDMNUMB
CKPRIVAT
QSENDCOP
MY_NAME
NEWQINTE
NEWQNIL
NEWQREAL
NEWTRY
CSECS
FPABS
VSTORE
REAL_TEX

USERFUN 9 000002CC 0000O0OS57F GENFUNCT

0000027C
000002C4
00000294
00000284
0000019E
000001C8
000001FA
000001D4
OO00O01EE
00000212
00000218
0000026C
0000028C
0000021E
00000174
00000192
0000025C
00000230
0000023C
0000022A
000002B4
00000274
000001C2
00000254
000002AC

000002CC

SENDMSG
SYSTEMER
UWFERROR
QILLMESS
QINCOMPA
FCDIVIDE
FCINTEGE
FCNEARZE
FCROUND
FCSUBTRA
VFETCH
TIME_TEX
MSGCOPY
CKINPUTS
CLEANINP
MY_IN_OU
NEWQBOOL
NEWQMATR
NEWQPACK
NEWQVECT
SAVEPRIV
DROPMESS
FPECOMP
INT_TEXT

0000018C
000001B6
000002BC
00000198
000001A4
000001F4
00000206
0000020C
00000200
0O00001CE
0000024E
000002A4
000001AA
00000180
00000186
00000264
00000236
00000248
00000224
00000242
0000017A
000001BO
000001BC
0000029C

b. Find the offset within your file of the particular instruction you
want to set the breakpoint at. The listing file from pass 2 of the
compiler will give you this information.

In this example, the breakpoint will be set just after the initial call to CkIn-
puts. Here is the relevant part of the listing file:

PROCEDURE GenFunction ;

*
* .
¥, VAR

* inputs : PtrUWFInQarray;
*, outmsg : Ptraqdata;

* temp : Double;

L3
*
*

BEGIN { GenFunction }
inputs := CkInputs (1, 1);
00000000 USER50 EQU *
00000000 2F2D 000C

Loading and Debugging User-written Functions

MOVE.L 12 (A5), - (AT)

326
327
328
329
330
331
332
333
334

AP7-27

00000004 4E56 FFFF LINK A6,#-L1

00000008 2B4E 000C MOVE.L A6,12(AS5)
0000000C 598F SUB.L #4,6A7
O0000O0O0E 7001 MOVE.L #1,DO
00000010 3FO0O0 MOVE DO, - (A7)
00000012 7001 MOVE.L #1,DO
00000014 3F00 MOVE DO, - (AT)
00000016 4E93 JSR (A3) CuUP
00000018 DC.L $OOFFFFES8
0000001C 2DSF FFFC MOVE.L (A7)+,-4(A8)
*, WHILE inputs <> NIL DO BEGIN 335
00000020 L2 EQU *
00000020 206E FFFC MOVE.L -4(A6),A0 ---->(see note)
00000024 227C 00000000 MOVE.L #0,Al
0000002A B1C9 CMP.L Al,A0
0000002C 6700 0000 BEQ L3
NOTE

The location where you should set the breakpoint is
offset 0020 from the beginning of the module.

c. Add the two numbers arrived at in (a) and (b). This will give you
the actual offset from the beginning of the user-written function of
the instruction at which to set the breakpoint. In this example, the
actual offset is 2CC + 20 = 2EC. (Remember, all numbers are
Hex.)

3. Find the address in PS 390 mass memory of the start of the function
code. After downloading the user-written function so that it is in
place in the PS 390 mass memory, enter Debug by depressing the
Break key on the ASCII terminal connected to port 3. Look through
mass memory (using the HL. or HW command) for the name of the
function. Use the first 4 characters of the name only. Remember that
all names have a suffix appended to the end of the name. For most
functions downloaded from the host the suffix is a “1” (one). Hunt
through memory starting at location 200000 and ending at 300000
(or 400000, if you have 2 megabytes of mass memory, 500000, if
you have 3 megabytes, etc). The example function is named MAG.
Thus you should hunt for the characters “MAG1”. Enter the follow-
ing commands to the debugger:

* HL 200000 300000
Pattern: '"MAG1’ { use CAPITAL letters only }

AP7-28 PS 390 Advanced Programming

When the debugger finds the first place in memory that this name exists it
will display the line and address containing this name. Hit RETURN to have
it search for the next one. Continue until the debugger returns with the
message:

Not found

The name may actually exist in several places in mass memory, although
only one of these locations will help you find the function code. If the name
exists more than once, you must decide which is the “right one.” The ad-
dress given at the beginning of the line must end with an “E.” This may
help to eliminate some locations.

In the example the terminal looked like this after searching
through memory:

00225332 4D 41 47 31 00 00 00 00 00 OO0 OO0 00 00 OO0 OO OO0 MAGL............
0022928E 4D 41 47 31 00 00 00 00 00 OO0 OO0 00 00 OO OO0 OO0 MAGL............
Not found *

The second entry is the only possible correct choice, since its address ends
with “E.”

When you think you have found the right one (or want to see if it is correct),
subtract Hex 1A from the address and list that address for 2 lines. If this is
the entry you are looking for, you will notice that the first 4 bytes of the
first and second lines contain the same mass memory address which must
end in the number 4. When you have found this block, add Hex 12 to the
address in the first 4 bytes of the first (and second) line. This is the location
in mass memory where your user-written function code starts.

In the example, 1A is subtracted from 22928E to get 229274, then the fol-
lowing is typed in to examine this memory location:

*L 229274 229294
00229274 00 22 97 84 00 22 8B E4 00 00 00 00 00 02 00 04 ."...".d........

00229284 00 22 97 84 00 00 00 00 00 04 4D 41 47 31 00 00O ."........ MAG1. .
*

Hex 12 is then added to the value found in the first 4 bytes:

00229784 + 12 = 00229796

This is the mass memory location of the beginning of the user-written func-
tion code.

Loading and Debugging User-written Functions AP

4. By adding the offset found in step 2 and the start address found in
step 3, calculate the actual address of the code in question.

00229796 + 2EC = 00229A82

This is the address inside the code where you want to set the break-
point. It is usually a good idea to check the contents of memory with
what you expect them to be at this location. You can list the memory
at the address you have calculated and compare the numbers with
the numbers which represent the instructions given in your listing
file. If they do not match, then you do not have the correct address.

*L 00229A82 0229A92
00229A82 20 6E FF FC 22 7C 00 00 00 00 B1 C9 67 00 02 7E n.i"i....1lIg..t

£ 3

Compare the contents of memory location with what you expected to
see (see listing excerpt in step 2 above) and see that you have found
the correct address.

5. Set breakpoint. Up to seven breakpoints can be set at one time.
*BR 229A82 *

6. Type “G” to return to PS 390 run-time code. Just before the code is
executed at the breakpoint location, the PS 390 will enter Debug
mode. The picture on the display will go away, and the debug prompt
as well as register contents will appear on the ASCII terminal screen.
The program counter is listed with the registers. It is at the address
of your breakpoint.

7. Return to PS 390 run time by typing “G” at the terminal, or trace
through subsequent instructions as desired.

NOTES

While the PS 390 is in debug mode, all interrupts are
disabled. Thus, any data entering the PS 390 from the
host or peripheral devices will be lost. Therefore, make
sure no data are coming in from the host at the time
your breakpoint is executed. If your function relies on
data from the host, one way to get around this problem
is to:

1. Place an F:SYNC(2) function in front of your
function.

AP7-30 PS 390 Advanced Programming

2. Connect the input source to input <1> of the sync
function and output <1> of the sync function to your
user-written function.

3. Set input <2> of F:SYNC to be a constant.

4. When all data from the host have arrived on input
<1> of the sync function, send a message to input
<2>. This will cause the data to pass through the
sync function and cause your user-written function
to be executed.

Loading and Debugging User-written Functions AP7-31

Section APS
User-Written Function Reference

8.1 Introduction

This part of the manual is provided as a reference section for information you may
need while writing your own functions. It contains the following sections:

e Message Types Description of the legal message types that can be
passed between functions. Also contains an excerpt
from USERSTRUC.PAS that illustrates how the types
are declared.

e Utility Routines Topical listing and short description followed by the
utility routines in alphabetical order. Advanced User-
Written Function procedures are described separately
after the User-Written Function utilities.

e Stack Usage List of the stack usage, in bytes, of the utility routines.

e Error Messages A list and description of system error messages you
might encounter while writing your own functions.

These routines are all declared in the E&S-provided file, USERSTRUC.PAS. The
procedures themselves are in USERLINK.RO and must be linked to any function
you write.

NOTE

During the initial distribution of USERSTRUC.PAS,
two versions were sent to customer sites. The differ-
ence in the two versions is in the names of the pointers
and the PS 390 floating-point record definition. This
release of USERSTRUC.PAS supports the following
naming conventions, with the strong recommendation
that the conventions in this manual be used:

Preferred Acceptable

Double PS 390 floating point
UWFInQarray InUWFQarray

User-Written Function Reference APS-1

The two names shown below are no longer acceptable
and must be modified:

Not Acceptable Must Be Modified To

PtrInQarray PtrUWFInQarray
InQarray UWFInQarray

8.2 Message Types

The type declarations included in USERSTRUC.PAS define the various
message types that are used in the PS 390, as well as other types that are
used by the utility routines. This section describes these types and how to
use them.

8.2.1 QDtype and Qdata

The QDtype is used to specify the different types of Qdata message blocks
available in the PS 390 runtime system. Qdata blocks are the primary vehi-
cle for communication between functions in the PS 390.

The Qdata record declaration specifies the formats for all messages. The
first field, Next, is a pointer to the next message in a list or queue of
messages. Ordinarily, you should not use the Next field explicitly. Next is
defined as Ptrqdata = tQdata; {pointer to a message}. Nearly all communi-
cation that takes place within the PS 390 runtime system occurs by passing
message blocks (often referred to as Qdata blocks or a “Qdata”). The
Ptrqdata contains the pointer to a Qdata block.

The Qtyp field indicates the QDtype of the message body. The remaining
fields vary, depending on the contents of the Qtyp field. A general listing of
the QDtypes follows:

QDtype = { types of Qdata (message) blocks }

(

{ 0} Qreset, { dataless: reset a function instance }
{1} Qprompt, { dataless: flush the CI pipeline }
{2} Qboolean, { normal carrier of Boolean values }
{3} Qinteger, { normal carrier of integer values }
{ 4} Qreal, { normal carrier of floating point values }
{5} Qstring, { original carrier of byte strings, not used }
{ 6} Qpacket, { carrier of byte strings }
{7} Qmorepacket, { continuation Qpacket carrier of byte string }

APS-2 PS 390 Advanced Programming

{ 8} Qmove2, { 2D vector including P bit }
{9} Qdraw2, { 2D vector including L bit }
{10} Qvec2, { 2D vector with no P/L bit (normal vector) }
{11} Qmove3, { 3D vector including P bit }
{12} Qdraw3, { 3D vector including L bit }
{13} Qvec3, { 3D vector with no P/L bit (normal vector) }
{14} Qmove4, { 4D vector including P bit }
{15} Qdraw4, { 4D vector including L bit }
{16} Qvecd, { 4D vector with no P/L bit (normal vector) }
{17} Qmat?2, { 2x2 matrix }
{18} Qmat3, { 3x3 matrix }
{19} Qmat4, { 4x4 matrix }
{20} Qusertype { type that user may use to define own message}
);

QDtype is padded with 260 miscellaneous elements to ensure that a 16-bit
field is allocated by the Pascal compiler rather than the 8-bit field that
would be allocated otherwise.

Most of the QDtypes are self-explanatory. A few that may need more expla-
nation follow.

Qreset and Qprompt are not ordinarily used by user-written functions. Qstr-
ing is obsolete and remains in the PS 390 system for historical purposes
only. You should use Qpacket for string messages.

Qpacket is the standard byte/character message block. Although the Pascal
declaration for a Qpacket indicates that the P_Cnt field will hold 255 char-
acters, the actual amount of storage allocated varies. You should never at-
tempt to reference characters outside of the P_Cnt[P_Beg..P_Lth]; doing so
could cause a fatal error in the PS 390. If you need to append to the end of
a Qpacket, you must allocate a new message large enough to hold the entire
string.

Qmorepacket is used as a continuation block for a message coming from
the host with more than 255 bytes of information. Again, this message type
is not used by ordinary functions.

QuserType is available to allow users to define their own messages types,
while still handling the messages uniformly within the PS 390 system. If you
want QuserType messages to carry data, you must modify the declaration of
the Qdata record type in USERSTRUC.PAS to include a variant for Quser-
Type that contains the desired fields. QuserType’s Qtyp fields must be ex-
plictly filled in by the program. (Refer to F:SPIRO in section 6 of this man-
ual for an example of how to use QuserType messages.)

User-Written Function Reference APS8-3

The QData record declaration (from USERSTRUC.PAS) follows.

Intl6 = -32768..32767; { 16-bit integer }
Qdata =
RECORD
Next: Ptrqdata ; { next message in a list of messages }
CASE Otyp: Qdtype OF { type of message }
{ Qreset: no datum carried }
{ Qprompt: no datum carried }

Qboolean:
(
b: boolean
)
Qinteger:
(
i: integer
) s
Qreal:
(
r: PS_390_floating_point
)5
Qpacket, Qmorepacket: { byte-string }
(
P_Ith: int 16 ; { max byte number }
P_beg: int 16 ; { min byte number }
P_cnt: Bytespell { byte of message }
) s

QOmove2, Qdraw2, Qvec2
Qmove3, Qdraw3, Qvec3
QOmoved, Qdraw4d, Qvecd:

(

V4: Vector { all vectors use 4D indexing }
) s
Qmat2, Omat3, Qmat4:
(

Mat4: Matrix { all matrices use 4x4 indexing }
)
END ; { Qdata }
8.2.2 Input Message Pointers

PtrUwFInQarray = fUWFInQarray;
UWFInQarray = ARRAY [1..MaxInputQueues] of PtrQdata;

UWFInQarray contains the pointer to the input queues for the userwritten
function. PrUWFInQarray contains the pointer to the UWFInQarray.

AP8-4 PS 390 Advanced Programming

8.2.3 PS 390 Floating-Point Numbers

In the PS 390, floating-point numbers are defined as

Double : RECORD

c : Intl6 ; { Exponent }

m : Integer ; { Fraction }

not_used : Intl6 { not used }
END; :

where:
¢ is the excess-1024 power of two of the number.

m is the mantissa in M68000 internal type “long” interpreted as a two’s-
complement number whose binary point is between bit 31 (the sign bit) and
bit 30.

The fraction is normalized; i.e., except for zero, the sign bit differs from the
most significant bit. This normalization is accomplished by adjustment of the
exponent for any shifts which might occur. Such adjustment can cause the
exponent to exceed its maximum (overflow) or underrun its minimum (un-
derflow).

Because the fraction is stored as a two’s-complement number, overflow can
occur when negating the negative number of largest magnitude.

not_used is a field that is not used but must exist in all the floating-point
records. This field is included in each floating-point record to ensure that
data are aligned on 8-byte boundaries, a factor that can help improve some
execution speeds.

Examples:

R : Double;

R.c := 0 + 1024;
R.m := 16384 * 65536;
{This is number 1/2 * 2**0 = .5}

R.c := -1+1024 ;

R.m :=-2147483648
{This is the number -1 * 2**-1 = -.5}

User-Written Function Reference AP8-5

Vector = ARRAY [0..3] of PS 390_Floating_Point;

All vectors (2D or 3D) are allocated as 4D vectors of floating-point values
to allow X,Y,Z and I to be accommodated, if required. When a vector be-
comes part of a display data structure, it has been optimized appropriately.

Matrix = ARRAY [0..3, 0..3] of PS 390_Floating Point;

All matrices (2x2, 3x3, 3x4, and 4x4) are allocated as a 4x4 matrix of
floating-point values to allow all sizes of matrices to be accommodated, if
required. When a matrix becomes part of a display data structure, it has
been optimized appropriately.

Bytespell = ARRAY [1..255] of CHAR;

The Bytespell array is used to hold bytes/characters for Qpacket and
Qmorepacket messages.

8.3 Topical Listing Of Utility Routines

Input Queue Handling and Function Scheduling Procedures

These procedures are provided to obtain access to input messages and con-
trol function scheduling. Functions are not required to look at all of the
inputs, but there must be one message on each of the inputs for the function
to run. The scheduling procedures are:

CkInputs
Cleanlnputs

Error Reporting Procedures

When a PS 390 function detects an error, a message is displayed. When this
happens, the status of the messages on the input queues is the same as if
the function had run to completion without an error. There is one exception:
If the error was due to a message on a Cqueue, the message is removed.

The supplied utility procedures provide for the basic needs of error report-
ing. They are not intended to cover all cases. If the proper error message
routine does not exist, it is the programmer’s option to write a new error
routine that meets that need.

The writer of the function is responsible for seeing that if one of these error
routines is executed, flow immediately proceeds to the “IF Cleanlnputs

AP8-6 PS 390 Advanced Programming

THEN” statement after all the inputs have been checked for errors. This
follows the error philosophy that requires a function to have one complete
input set to execute, and if anything is in error in that set, the function will
not run.

The following error handling procedures are provided in USERLINK.

QlllMessage
QlllValue
Qincompatmsgs
Systemerror
UWFerror

Set_Cness Procedure

There is one procedure provided to change the Cness or Tness of a function
queue:

Set_Cness

Private Data Queue Procedures

Some functions require that data acquired during the process of the function
be retained from execution to execution. These functions are referred to as
having “private data queues”; that is, queues for data not fed from input to
output during each execution cycle. No outside function can send messages
to these queues. Procedures provided for functions with private data queues
are:

CkPrivate
SavePrivate

Message Management Procedures -

The following procedures are used to send, copy, or dispose of messages:

DropMessage
MsgCopy
QSendCopyMess
SendMsg

User-Written Function Reference APS8-7

PS 390 Floating-Point Ultilities

The procedures to perform floating-point computations are:

FCadd
FCdivide
FCint2double
FCinteger
FCmultiply
FCnearzero
FCp2multiply
FCround
FCsquareroot
FCsubtract
Fpabs
Fpecomp
Sincos

Carving and Initialization Procedures

The following procedures are used to carve and initialize new data types:

Newgboolean
Newqinteger
Newgmatrix
Newqnil
Newqgpacket
Newqreal
Newqvector
Newtry

Timing Procedures

Csecs
Frames
Hrtime
Ticks

String Handling Procedures

Char_text
Int_text

Real_text
Text_text
Time_text

APS-8 PS 390 Advanced Programming

Other Procedures Provided Via USERLINK.PAS
My_in_out
My _name
Rndmnumber
Vfetch
Vstore

Advanced User-written Function Procedures

Lk_cursuffix
Lk_nosuffix
Lgaupdate
Announceupdate
Msgstore
Setlock
Clrlock
Incausage
Decausage
AcpProof
Acpprfl
OLbaddtoset
Removefromset
FetchBlock
Acp_v3f
Acp_v2f
Acp_v3b
Acp_v2b
nStoreVector
nNewAcpdata
Store3x3
Store4x4
Drop_name
GetVector
Rawbacopy
Rawcbcopy
Rawchcopy
Size_of
FetchAdnum
nFetchCopy
WaitFrame

User-Written Function Reference AP8-9

loc_chead
ptr_dcb
DropNE
Newreturns
Reactivate
Myanyoutputs
Pushmyinput
WaitCsec
HA_cursor

HA_no_cursor

8.4 Procedures Provided Via USERLINK

CkInputs
FUNCTION CkInputs (Nmin, Nmax : Int16) : PtrinQarrary;

CkInputs sets a pointer to each of the input queues specified in the inclusive
range Nmin to Nmax and stores them in an array. If there is a message on each
of the input queues, it returns a pointer to the array and the function state is
changed to MIDRUNNING. This signifies that the function may execute. The
function returns NIL if there are queues in the range that do not have a message.
When NIL is returned, the function is put into the MSG_WAIT state and must
exit.

A function does not have control over these input message blocks. For example,
it cannot reuse an input message block. Data being sent out must be contained in
newly created message blocks. If a function is to send a message through without
change (such as F:SYNC), the utility procedure Qsendcopymess should be used
for efficiency.

Char_text

PROCEDURE Char_text (c: char; VAR b,e: Int16; VAR ca: Bytespell) ;
FORWARD ; { TEXTUTIL.PAS }

Char_text adds one character to a text string ca at location b+1 within that string
but not beyond location e. b is updated. If b is negative, system error 81 is
generated.

AP8-10 PS 390 Advanced Programming

CkPrivate
FUNCTION CkPrivate : Ptrqgdata;

Ckprivate returns a pointer to the private message for this function, if it exists,
or returns NIL if the private message does not exist.

CleanInputs
FUNCTION CleanInputs : Boolean,;

Cleanlnputs must be called after the input messages have been processed and
the outputs have been sent. Its purpose is to “clean up” the input queues and
determine whether the function may run again immediately.

This procedure can recognize whether an input queue is a trigger queue
(Tqueue) or a constant queue (Cqueue). It drops the first message from each
Tqueue and leaves Cqueues unchanged.

The function must be in the MID_RUNNING state when this utility procedure is
called. If the function can run again immediately, CleanInputs returns TRUE and
the function state is set to RUNNING. If there are not enough input messages for
the functions to run again, FALSE is returned and the function state is set to
MSG_WAIT. It is also possible for CleanInputs to return FALSE if the function
has been running longer than 2 milliseconds; in this case, the state is set to
ACTIVE and is required to give up control so that other functions can run.

Csecs

FUNCTION Csecs: Integer ;

Csecs returns the number of centiseconds since the system was booted.

User-Written Function Reference AP8-11

DropMessage
PROCEDURE DropMessage (VAR m: Ptrqdata) ;

Dropmessage disposes of the message m. It should be used rather than DISPOSE
for all message dropping--especially for dropping messages of unknown Qtype--
since it knows when additional data items are affected by the message being
dropped. The message m is no longer the property of the calling code. m is set to
NIL.

A function does not need to dispose of input messages explicitly since the proce-
dure CleanInputs disposes of them.

FCadd

PROCEDURE FCadd (VAR augend, addend: Double;
VAR sum: Double);

FCadd does a floating-point add.

FCdivide

PROCEDURE FCdivide (VAR dividend, divisor: Double;
VAR quotient: Double);

FCdivide does a floating-point divide. If the divisor is zero, the function returns
the largest positive number if the dividend is positive, otherwise it returns the
largest negative number.

FCint2double
PROCEDURE FCint2double (num : Integer; VAR floated: Double);

FCint2double makes a floating-point number from an integer.

FCinteger
PROCEDURE FCinteger (VAR innum: Double; VAR outnum: integer);

FCinteger truncates a floating-point number to an integer.

APS8-12 PS 390 Advanced Programming

FCmultiply

PROCEDURE FCmultiply (VAR a, b: Double;
VAR product: Double) ;

FCmultiply does a floating-point multiply.

FCnearzero

FUNCTION FCnearzero (VAR tiny : Double; negpower2 : Intl16 : Int8 ;)
{ negpower2=1 --> within .5; =2 --> within .25}

Returns a byte that indicates if a number is close to zero given an absolute
tolerance.

The tolerance (negpower2) is expressed as the negative power of two; that is, 0
means that anything less than 1 is close enough,

1 means anything less than .5 is close enough,
2 means anything less than .25 is close enough, etc.,
and -1 means anything less than 2 is close enough, etc.

Results mean:
-1 means the number is not close to zero, and it is negative,

0 means the number is close enough,
1 means the number is not close to zero, and it is positive.

FCp2multiply

PROCEDURE FCp2multiply (VAR innum: Double; power: Integer;
VAR outnum: Double) ;

FCmultiply multiplies innum by 2 raised to the power specified by power, (i.e.,
power is added to the exponent of innum, hence power can be either positive or
negative.)

User-Written Function Reference AP8-13

FCround
PROCEDURE FCround (VAR Innum: Double; VAR outnum: Integer) ;

FCround rounds a floating-point number to an integer.

FCsqroot

PROCEDURE FCsqgroot (VAR a: Double; VAR sqgroot: Double) ; j FCsqroot re-
turns the square root of a positive floating-point number. If the number is nega-
tive, 0 is returned.

FCsubtract

PROCEDURE FCsubtract (VAR minuend, subtrahend: Double;
VAR difference: Double) ;

FCsubtract does a floating-point subtract.

Fpabs
PROCEDURE Fpabs (VAR r: Double) ;

Fpabs changes r to the absolute value. This is a destructive operation in that it
changes r itself and does not put the absolute value in another variable.

Fpecomp
FUNCTION Fpecomp (VAR x1,x2: Double): Int8 ;

Fpecomp compares two floating-point numbers and returns:
-1 if x1 < x2

0if x1 = x2
1if x1 > x2

APS8-14 PS 390 Advanced Programming

Frames
FUNCTION Frames: Integer ;

Frames returns the number of frames displayed since the system was booted.

HRTime
PROCEDURE HRTime (VAR c,f,d: Integer) ;

The HRTime procedure returns a high-resolution clock value. It returns the cur-
rent time in centiseconds, and a fraction indicating the amount of time remaining
until the next centisecond.

It is mainly used to calculate the elapsed time between two events, as shown in
the following example:

HrTime (c0, f0, d); { initial high-resolution time }
HrTime (c1, f1, d); - { final high-resolution time }
Elapsedtime := ((c1-c0)*d) + (f0-f1); { actual runtime of code }
c is the current value of the centisecond clock, returned as a 32-bit integer which
wraps around to zero. f/d is the fraction remaining until the next centisecond.

Note that f decreases in value for increasing time, while ¢ increases in value for
increasing time.

Int_text

PROCEDURE Int_text (n: Integer; Ns,Nz: Int16;
VAR b,e: Int16; VAR Ca: Bytespell) ;

Int_text converts an integer to text, as a signed decimal number, and adds it to a
text array, via Char_text. Ns is the minimum number of characters to generate,
and Nz is the minimum number of leading zeros to print. (Note: to print n=0,
Nz must be 1.) The number starts in Ca[b+1] and will not go beyond Cale]. b
will be changed. e specifies last character which can be changed. If b is negative,
system error 81 is generated.

User-Written Function Reference APS-15

MsgCopy
FUNCTION Msgcopy (m: Ptrqdata): Ptrqdata ;
Msgcopy makes a copy of the message m. The message returned by Msgcopy is

the property of the calling code and must be disposed of (Dropmessage) or
handed on (Sendmsg) before the calling code returns.

My_in_out
PROCEDURE My _in_out (VAR N_in,N_out: Int16) ;

My_in_out reports the number of input queues and output ports for the current
function instance.

My_name

FUNCTION My name : Ptrqdata ;

My_name looks up the name of the function instance and returns that name in a
Qpacket.

Newgboolean

FUNCTION Newgboolean: Ptrqdata ;

Newqboolean carves and initializes a Qboolean message. Initialization includes
setting: Qtyp = Qboolean, value to FALSE.

Newqinteger

FUNCTION Newqinteger: Ptrqdata ;

Newqinteger carves and initializes a Qinteger message. Initialization includes
setting: Qtype = Qinteger, value to zero.

AP8-16 PS 390 Advanced Programming

Newgmatrix

PROCEDURE Newgmatrix(Typ: Qdtype): Ptrqdata ; { Qmat2, ... }

Newgmatrix carves and initializes a matrix message of type Typ and contents all
zero (Note: not floating-point number zero).

Newqnil
PROCEDURE Newqnil(Typ: Qdtype): Ptrqdata ; { Qreset; Qprompt }

Newqnil carves and initializes a dataless message of type Typ. Initialization in-
cludes setting: Qtype = Typ

Newqgpacket

PROCEDURE Newqpacket (Typ: Qdtype; { Qpacket or Qmorepacket }
Nbytes: Int16): Ptrqdata ;

Newqpacket carves and initializes a Qpacket or Qmorepacket message large
enough to hold Nbytes of information. Note that, although the Pascal declaration
for a Qpacket indicates that the P_Cnt field will hold 255 characters, only Nbytes
bytes are actually allocated by NewQPacket. You should never attempt to refer-
ence characters beyond the end of the string. Initialization includes setting:
Qtype = Typ, P_lth = Nbytes, P_beg = 1, P_cnt[1..Nbytes] = 0

Newqreal

FUNCTION Newqreal: Ptrqdata ;

Newqreal carves and initializes a Qreal message. Initialization includes setting:
Qtype = Qreal, exponent and mantissa to zero (Note: not floating-point value
ZEero). '

User-Written Function Reference APS8-17

Newqvector

FUNCTION Newqvector (Typ: Qdtype): Ptrqdata ; { Qvec2, ... }

Newqvector carves and initializes a vector message of type Typ and contents all
zero (Note: not floating-point number zero).

Newtry
FUNCTION Newtry (num_bytes : Integer) : Ptrqdata;

Newtry returns a block of the specified length in bytes if one is currently avail-
able in the system. If one is not available, NIL is returned. This differs from all
the other “Newq” functions that will not return until a block of the specified type
is available (or eventually cause the system to crash with a trap 0). Newtry is
used to carve data blocks when the function has a choice of what to do if a data
block of sufficient size is not available.

QIllMessage
PROCEDURE QIllMessage (Inqueue : Int16);

The parameter Inqueue indicates the input queue that contains the bad message.
QILLMessage prints the message:

Message which function cannot handle.

It then drops the message and sets INPUTSt.[inqueue] := NIL;

QIllValue
PROCEDURE QIllValue (Inqueue : Int16);

The parameter Inqueue indicates the input queue that contains the bad message.
QillValue prints the message:

Type okay but value out-of-range

It then drops the message and sets INPUTSt.[inqueue] := NIL;

AP8-18 PS 390 Advanced Programming

Qincompatmsgs

PROCEDURE Qincompatmsgs (one : Int16; theother : Int16);

The parameters indicate the input queues that are incompatible. This procedure
prints the message:

Incompatible message types detected by this function

It then deletes the message on the queue theother and sets INPUTSt. [theother] :=
NIL;

QSendCopyMess
PROCEDURE QSendCopyMess (inqueue, outqueue: Int16);

QSendCopyMess takes the message on the specified Inqueue and sends it un-
changed on the specified Outqueue of the function. If the queue is a Cqueue, a
copy of the message is sent. If it’s a Tqueue, the message is removed and sent.

NOTE

Consuming a message results in INPUTSt.[Inqueue] :=
NIL and any following references to INPUTSt.[In-
queue] will produce unpredictable results. Because of
this, it is recommended that QSendCopyMess only be
used prior to the “IF Cleanlnputs THEN” statement.

Real_text

PROCEDURE Real_text (VAR r: Double;VAR b,e: Int16;
VAR Ca:Bytespell);

Real _text converts r into text, expressing roughly 5 digits. If possible, r is printed
as a fixed point number, but if it is too small or too large, it is printed in expo-
nential form. The real number will be written starting at Ca[b+1]. b will be
changed. e specifies the last character that can be changed. If b is negative,
system error 81 is generated.

User-Written Function Reference AP8-19

Rndmnumber

FUNCTION Rndmnumber (seed : Integer): Int16;

Returns a pseudo-random 16-bit number. If the value of the seed is zero, then
the value returned is computed based on the current seed value. If the passed
seed value is non-zero, then it is made into the current seed and then the number
is computed. The linear feedback shift register technique uses a 31-bit seed (bits
31 to 1) with taps on bits 31 and 6. This algorithm does 7 bits at a time (3 times
for 16 bits). It does not repeat until 2131 - 1 iterations.

SavePrivate

PROCEDURE SavePrivate (msg : Ptrqdata);

This utility procedure is used for filling the Private queue, a queue to which no
outside function can send messages. Once a message has been saved on the
private queue, it will remain there as long as the function exists. The value,
however, can be changed, and the queue will then retain the new value.

SendMsg

PROCEDURE SendMsg (VAR m: Ptrqdata; o: Int16) ; Sendmsg sends the
VAR m to any and all other named entities connected to the function’s output
port <o>. After this is done, the message m is no longer the property of the
calling code and m has value NIL.

APS-20 PS 390 Advanced Programming

Set_Cness

PROCEDURE Set_Cness (input : Int16; cqtype: Boolean); Set_Cness allows the
function itself to do the SETUP CNESS TRUE/FALSE<i>a; command. input is
the input number of the function that the Boolean value will be sent to. ctype is
the Boolean value: TRUE sets the specified input to a Cqueue and FALSE sets
the specified input to a Tqueue. By default, when a function is instanced, all
input queues are Tqueues.

WARNING

Using this procedure inside the function, as well as
sending the SETUP CNESS command to the function,
may produce unpredictable results because it may not
be clear which code is executed last. Either one
method or the other should be used, not both.

Sincos

PROCEDURE Sincos (Angle: integer; VAR sine: Double;
VAR cosine: Double;

Sincos computes the sine and cosine of an angle. angle is an integer between 0
and 65535, corresponding to the range 0 to 2*pi radians. It computes the sine of
angle by using the most significant 8 bits to index into a table of values and
using linear interpolation of the least significant 8 bits. If angle is not in the first
quadrant, it is converted to an angle in the first quadrant using trigonometric
relations.

RESULT := TABLE(A) + B * 256 * (TABLE(A + 1) - TABLE(A))

A = most significant 8 bits of angle
B = least significant 8 bits of angle

The cosine is computed by adding 90 degrees to the angle, then computing the
sine.

User-Written Function Reference AP8-21

Systemerror
PROCEDURE Systemerror (n: Int16) ;

Systemerror crashes the PS 390 with a TRAP 6. The parameter n becomes the
system error number. There is no return from a Systemerror call.

Text_text

PROCEDURE Text text (VAR B1,E1: Int16; VAR Cal: Bytespell;
VAR B2,E2: Int16; VAR Ca2: Bytespell) ;

Text_text will copy characters from Cal to Ca2 starting from B1+1 in Cal into
B2+1 in Ca2 and continuing until either Cal[E1] has been copied or Ca2[E2] has
been changed, at which point copying stops. Both B1 and B2 are changed. If B1
is negative, System error 80 is generated.

Ticks
FUNCTION Ticks: integer ;

Ticks returns the number of ticks (line-clock ticks 120Hz or 100 Hz) since the
system was booted.

Time_text
PROCEDURE Time_text (n: integer; VAR b,e: Int16; VAR Ca: Bytespell) ;

Time_text converts n number of seconds to text as a time. In the form: dd
hh:mm:ss. The time string will be written starting at Ca[b+1]. b will be changed.
e specifies the last character which can be changed. If b is negative, system error
81 is generated.

UWFerror
PROCEDURE UWPFerror (VAR msg : Ptrqdata);

UWFerror allows the user-written function to display any type of error message
desired. msg must be a Qpacket containing the characters of the message to be
printed. msg is set to NIL by the procedure.

APS8-22 PS 390 Advanced Programming

Vfetch
FUNCTION Vfetch (name: Ptrqdata) : Ptrqdata; { a Qpacket }

Vfetch fetches the contents of a named variable. The name of the VAR is sup-
plied in name (Qpacket). If any error is detected, Vfetch returns NIL. Otherwise,
Vfetch returns a copy of the message stored in the specified VAR. The returned
message is owned by the function.

Vstore

PROCEDURE Vstore (name: Ptrqdata; VAR new_val: Ptrqdata) ;

Vstore stores the Qdata new_val into a named variable. The name of the variable
is supplied in name (must be a Qpacket). If the store succeeds, new_val is set to
NIL and is no longer owned by the function. Otherwise it is left alone.

User-Written Function Reference AP8-23

8.5 Advanced UWF Procedures

Lk_cursuffix

FUNCTION Lk_cursuffix(
Nlth: integer; { name length }
VAR Nspell: Namespell { name to be looked up }
): Ptralphablk;

Lk_cursuffix returns a pointer to the block of memory that contains the name of
an object and pointers to its definition. The suffix of the currently running func-
tion is appended to the end of the characters in Nspell. If the name currently
exists a pointer to it is returned. If it does not exist a new name block is created
and the pointer to that is returned. This routine can then introduce new names
into the system. Since names may be multiply referenced, a usage count is main-
tained. Only when that usage count goes to zero is the name block disposed. IT
IS VERY IMPORTANT TO KEEP THIS COUNT ACCURATE! If the count is
too small it will crash the system at some later time, if it too large the memory
will never be recovered. Since this routine returns another reference to the name,
the usage count has been incremented for that value. If the reference is not
stored, when finished the usage count should be decremented. Changing the
usage count is done through the routines Incausage and Decausage. Nlth is the
number of characters in the name and Nspell is the array of character for the
name.

NOTE

All names are uppercase, so any lowercase letters in
Nspell will be changed to uppercase.

AP8-24 PS 390 Advanced Programming

Lk_nosuffix
FUNCTION Lk_nosuffix(

length: Integer; { na-me length NOT counting suffix }
Cinum: Int8; { creating CI }
suffix: Char; { the user suffix }

VAR Nspell:Namespell { name to be looked up }
): Ptralphablk;

Lk_nosuffix performs the same task as Lk cursuffix except it is more general.
Cinum is the number given to the name if it is created. This is used for such
things as the INITIALIZE command. A CI may only initialize those things which
it has created. Suffix is the suffix character added to the name. ‘0’: user 1
hidden names, ‘1’: user 1 accessible names, ‘2’: user 2 hidden names, ‘3’: user 2
accessible names. Nspell contains the character string of the name.

Lgaupdate

PROCEDURE Lgaupdate(
name: Ptralphablk; { alpha of object to change }
data: Ptrnamedentity; { new data to be referenced }
VAR Uph,Upt: Ptravupblk { head and tail of list of updates}

)i

Lgaupdate includes an update request onto a list of updates which are to be
performed. Updates are identification for the display processor that an object is
to change. This procedure creates the proper information so that the name of the
element pointed to by ‘name’ will have its data changed to now point to ‘data’.
The value for ‘name’ is obtained through the use of the Lk_cursuffix routine.

This routine can be called several times followed by a call to Announceupdate.

NOTE

Uph and Upt must be initialized to NIL prior to the
first call of this routine.

User-Written Function Reference AP8-25

Announceupdate

PROCEDURE Announceupdate(
VAR Uph,Upt: Ptravupblk { head and tail of list of updates }

)i

Announceupdate takes the list of updates generated through the use of the
Lgaupdate function and passes them to the display processor such that on the
next frame the new definitions will be displayed and the old ones deleted.

Msgstore
PROCEDURE Msgstore(
Msg: Ptrqdata; { pointer to message block }
a: Ptralphablk; { alpha to receive message }
n: integer { input to receive message }

)

Msgstore is used instead of Sendmsg when the message is to be sent to a known
destination and input and not to the list on one of the functions outputs. Msg is
the message to be sent.

NOTE

Even though it is not a VAR parameter, msg is used
just like in Sendmsg so the caller should treat it just as
though it was set to NIL by Msgstore. a points to the
name block for the recipient and n is the input number.

Setlock

PROCEDURE Setlock(
VAR x: Lock { lock to be changed }

)i

Setlock sets a lock to be True.

AP8-26 PS 390 Advanced Programming

Clrlock

PROCEDURE Clrlock(
VAR x: Lock { lock to be changed }

)i

Clrlock sets a lock to be False.

Incausage

PROCEDURE Incausage(
a: Ptralphablk { alpha to be incremented }

)i

Incausage increases the usage count of a name block by one.

Decausage

PROCEDURE Decausage(:
a: Ptralphablk { alpha to be decremented }

)i

Decausage decreases the usage count of a name block by one. If the usage count
becomes 0 the name block and data pointed to by the name block is disposed.

AcpProof

PROCEDURE AcpProof(
VAR location: ptracpcblk; { pointer to be replaced }
newval: ptracpcblk { new pointer }

)

User-Written Function Reference APS8-27

Acpprfl
PROCEDURE Acpprf1(

VAR location: ptrsavstate; {pointer to be replaced }
value: ptrsavstate { new pointer }
);

AcpProof, Acpprfl allow the changing of pointers directly without going through
the normal update mechanism. Since pointers are 32 bits and the 68000 only
writes 16 bits at a time, this procedure writes the new pointer in such a way that
if the display processor is reading at the same time it is being written, the worst
that could happen is that it would appear as a NIL pointer and the display proc-
essor will terminate traversal at that point and return to another branch it has to
traverse. This means you may loose part of your picture for one frame. If the
UWEF does not use this routine and writes the new value directly, the display
processor may be sent to a random place in memory and almost guarantee that
memory will be corrupted.

OLbaddtoset

PROCEDURE OLbaddtoset(
A_son: Ptralphablk; { alpha of branch to be added }
A_father: Ptralphablk; { alpha of set node }
VAR Uph, Upt: Ptravupblk; a head and tail of list of updates}

VAR Error: boolean; { status on return }
Optimize : boolean { optimize structure in effect }
);

OLbaddtoset adds another branch in the traversal tree. Setnodes are the points in
the traversal where the display processor branches and also the point at which
saving the state and restoring it are performed. The recommended way of in-
itially creating one of these branches is to Lgaupdate A father to point to a
Setnode which has had all of its pointers set to NIL. Olabaddtoset is called to
add the first and all subsequent branches at this point. A_son points to the begin-
ning of the new branch. A father points to the name of the Setnode (branch).
Uph and Upt are the list of updates generated, just as Upt and Uph of Lgaup-
date. Hence for the change to actually appear Announceupdates must be called.
Error is returned TRUE if Father is not a set node. Optimize should be TRUE if
the operation should be treated as though OPTIMIZE STRUCTURE; was in
effect, otherwise it should be FALSE.

AP8-28 PS 390 Advanced Programming

Removefromset

PROCEDURE Removefromset(
A_father: Ptralphablk; { alpha of set node }
A_son: Ptralphablk; { alpha of branch to remove }
VAR Uph, Upt: Ptravupblk; { head and tail of list of updates }
VAR Error: boolean { status on return }

);

Removefromset removes the branch of A_father which points to A_son. Uph and
Upt are the list of updates generated, just as Upt and Uph of Lgaupdate. Hence,
for the change to actually appear Announceupdates must be called. Error is
returned TRUE if Father is not a set node.

FetchBlock

FUNCTION FetchBlock(
block: PtrNamedentity; { pointer to block for which }
{ updated values are desired }
upt: Ptravupblk { tail of list of updates }
): Ptrnamedentity;

Fetchblock searches the set of updates pending and returns a copy of block
which has all updates applied to it. block is the pointer to the block for which
updated values are desired. upt should be NIL unless some updates have been
generated which have not yet been ‘announced’.

Acp_v3f
PROCEDURE Acp_v3f(
VAR v: Vector; { vector to be converted }
VAR acpv: Vec3f; { APC format result }
pl: boolean { position/line }

);
Acp_v3f converts a GCP format vector v to Vec3f0 format which is the format

for 3D vector-normalized vectors. IF pl is TRUE the vector is a line, if FALSE
the vector is a position.

User-Written Function Reference AP8-29

Acp_v2f
PROCEDURE Acp_v2f(

VAR v: Vector; { vector to be converted }
VAR acpv: Vec2f; { APC format result }

pl: boolean { position/line }

)

Acp_v2f converts a GCP format vector v to Vec2f0 format which is the format
for 2D vector-normalized vectors. IF pl is TRUE the vector is a line, if FALSE
the vector is a position.

Acp_v3b
PROCEDURE Acp_v3b(
VAR v: Vector; { vector to be converted }
VAR acpv: Vec3b; { APC format result }
pl: boolean; { position/line }
exp: Intl6 { exponent to use }

)

Acp_v3b converts a GCP format vector v to Vec3b0 format which is the format
for 3D block-normalized vectors. IF pl is TRUE the vector is a line, if FALSE the
vector is a position. exp is the exponent for the entire block. If exp is too small
for a vector a fatal error will occur.

AP8-30

Acp _v2b
PROCEDURE Acp_v2b(
VAR v: Vector; { vector to be converted }
VAR acpv: Vecl2b; { APC format result }
pl: boolean; { position/line }
exp: Int16 { exponent to use }

)i

Acp_v2b converts a GCP format vector v to Vec2b0 format which is the format
for 2D block-normalized vectors. IF pl is TRUE the vector is a line, if FALSE the
vector is a position. exp is the exponent for the entire block. If exp is too small
for a vector a fatal error will occur.

PS 390 Advanced Programming

nStoreVector
PROCEDURE nStoreVector(

VAR block: Ptrnamedentity; { block to store vector in }
VAR v: Vector; { the vector }
pl: boolean; { position or line? }
firstblock: Ptrnamedentity { first block in list for }
); { block-normalized }

nStoreVector is the recommended way to create vector lists. Initially create the
first block with nNewAcpdata and then use nStoreVector to put all vectors into
the data block. Block is the current block to which items are added. Initially
block = firstblock but may change as vectors are added. v is the vector to be
added. pl is TRUE if the vector is a line and FALSE if it is a position. firstblock
is the pointer returned by nNewAcpdata and is the pointer to be used for Lgaup-
date. DO NOT PASS the same variable for both block and firstblock as this
procedure may generate a linked list for this particular vector list.

nNewAcpdata
FUNCTION nNewAcpdata(
n: int16; { number of elements }
t: Dattype { data type of block }

): Ptrnamedentity ;

nNewAcpdata carves the requested data type to the appropriate size. n is the
number of elements, vectors or characters. t is the type of namedentity, vec3f0,
vec2f0, dstring, etc.

Store3x3
PROCEDURE Store3x3(
VAR m: Matrix3; { GCP format matrix }
Ob: Ptrnamedentity; { pointer to matrix operate node }
n: int16 { offset into operate node to begin store }

);

Store3x3 converts the GCP format matrix and stores it into a Matcon3 operate
node which has been previously created starting at the location specified by n.

User-Written Function Reference AP8-31

Storedx4

PROCEDYRE Store4x4(

VAR m: Matrix4; { GCP format matrix }
Ob: Ptrnamedentity; { pointer to matrix operate node }
n: int16 { offset into operate node to begin store }
);

Store4x4 converts the GCP format matrix and stores it into a Matload4 operate
node which has been previously created starting at the location specified by n.

Drop_name

PROCEDURE Drop name(
a: Ptralphablk{ name to remove from dictionary }

)

Drop_name removes the name block a from the dictionary such that Lk_cursuf-
fix and Lk_nosuffix will not be able to located it.

GetVector
PROCEDURE GetVector(
block: Ptrnamedentity; { from which block }
index: Int16; { which vector }
VAR v: Vector; { returns the vector }
VAR pl: Boolean {is it a draw? }

)

GetVector converts a display processor format vector into a GCP format vector.
block is the block which contains the vector, index is the number of the vector
within that block, v is the GCP format returned vector and pl is returned TRUE if
it is a line and FALSE if it is a position.

AP8-32 PS 390 Advanced Programming

Rawbacopy
PROCEDURE Rawbacopy(

Nbytes: int16; { number of bytes to copy }
VAR Inba,Outba: int8 { input and output buffers }
);
Rawcbcopy
PROCEDURE Rawcbcopy(
Nbytes: int16; { number of bytes to copy }
VAR Inba:char; { input buffer }
VAR Outba: int8 { output buffer }
);
Rawchcopy
PROCEDURE Rawchcopy(
Nbytes: int16; { number of bytes to copy }
VAR Inba,Outba: char { input and output buffers }
);

The above procedures allow for the copying of bytes from one block to another.
PASCAL can be tricked by selecting the appropriate data types for Inba and
Outba according to the particular need.

Size_of

FUNCTION Size_of(

b: Ptrnamedentity { pointer to block to check }
): integer;

Size_of returns the number of bytes available in the particular chunk of memory.
b can be any type of element: Ptralphablk, Ptrnamedentity, etc. It must be de-
clared properly for PASCAL to accept it.

User-Written Function Reference

APS-33

FetchAdnum

FUNCTION FetchAdnum(
f: Ptrnamedentity; { pointer to Named Entity for whose }
{ .Adnum field search is being made }
aupt: Ptravupblk { tail of list of updates }
): Int16;

FetchAdnum searches and returns the current .Adnum (count) field of the point-
er namedentity which will be its value once all updates have been performed. f is
the Ptrnamedentity for whose .Adnum field the search is being made. upt should
be NIL unless there are updates which have not been ‘announced’.

nFetchCopy

FUNCTION nFetchCopy(
block: PtrNamedentity; { vec list to copy from }

start: Intl6; { vector to start at }
count: Int16; { how many vectors to copy }
upt: Ptravupblk { update list tail}

) : PtrNamedentity;

nFetchCopy searches the update list to return a current copy of the particular
block of a vector list as it will be when all updates are completed. block is the
block as currently in memory. start is the index of the vector to start at, count is
the number of vector to return. upt should be NIL unless the function has up-
dates which have not been ‘announced’. The function returns a block which con-
tains the vector lists requested.

WaitFrame

PROCEDURE WaitFrame(
framecnt : integer { number of frames to wait }

)i

WaitFrame puts the function in /O wait and waits for the number of
frames specified in framecnt before reactivating the function.

AP8-34 PS 390 Advanced Programming

loc_chead

FUNCTION loc_chead : Ptrcommbhead,

Loc_chead returns a pointer into mass memory of the location of the Com-
mhead.

ptr_dcb
FUNCTION ptr_dcb : Ptrdeb;

Ptr_dcb returns a pointer into mass memory to the current users DCB.

DropNE

PROCEDURE DropNE(
f : Ptrnamedentity { name to be disposed of }

)i

DropNE disposes of the Named Entity f and any associated blocks.

Newreturns

PROCEDURE Newreturns(
givemenil : boolean { return NIL when not enough memory }

);

Newreturns sets a flag that tells the free storage routines how to handle a request
for memory if there isn’t enough to grant the request. If givemenil is TRUE and
there is not sufficient memory a NIL pointer is returned on the request. If
givemenil is FALSE then the free storage routines will wait for a block to be-
come available (eventually crashing the system if not found). Any NEW that
needs to have this flag set TRUE should be followed immediately with a call to
this routine to set it FALSE for other functions.

User-Written Function Reference ‘ AP8-35

Reactivate

PROCEDURE Reactivate ;

Reactivate puts the current function on the active list. The function must exit
immediately after this procedure call.

Myanyoutputs
FUNCTION Myanyoutputs(
n: int8 { output number to check }
): Boolean;

Myanyoutputs checks the output specified in n to see if there are any connections
to that output. If there are no connections a FALSE is returned. This can be used
to determine the usefulness of doing some large calculation for an output that
has nothing connected to it.

Pushmyinput

PROCEDURE Pushmyinput(
m: Ptrqdata; { data to be pushed on input }
n: Int8 { input number to push data on }

)i

Pushmyinput causes the data pointed to by m to become the first message on the
input queue n.

WaitCsec

PROCEDURE WaitCsec(
csecent : integer { number of centiseconds to wait }

)

WaitCsec puts the function in I/O wait and waits for the number of centiseconds
specified in cseccnt before reactivating the function.

APS8-36 PS 390 Advanced Programming

NOTE

The following two routines should only be called if the
system is a PS 390. This can be determined by looking
at the field of the DCR called DCR".system. This is of
type systemtype which has the values sysPS300,
sysPS350, sysPS390 as defined in GLOTYPES.SA. If
either of these routines is called on a 330 or 350 sys-
tem, the system will crash with a bus error.

HA _cursor

PROCEDURE HA_cursor(
VAR x,y: Double; VW390 : Ptralphablk
)

This routine will position the currently selected hardware cursor at the position
specified within the selected viewport.

x and y are the screen space x and y coordinates for the cursor. VW390 is a
pointer to the viewport operation node within which the cursor is to be displayed.
If a NIL pointer is passed, a default viewport of 864 x 864 pixels is used.

HA_no_cursor

PROCEDURE HA_no_cursor;

This routine turns off the hardware cursor.

User-Written Function Reference AP8-37

8.6 Stack Size

This section contains the rough stack usage estimates of some of the utility
routines. These estimates are used to come up with an allocation scheme to
provide enough stack space for the execution of user-written functions.

The UWF stack is allocated when functions are downloaded to the PS 390. As
each function is processed by the SREC_GATHER function, the stack size re-
quested is checked against the size of the currently allocated stack. If the re-
quested stack size is the same or smaller, no action is taken. If the requested
stack size is larger than the currently allocated stack, the current stack is dis-
posed and a new one is allocated. All UWFs therefore use the same stack area.

It is very important that adequate stack size be allocated for any function you
write. Failure to do so will cause the PS 390 to crash when the function is
activated. It is better to overestimate the stack requirements than to underesti-
mate and risk a crash.

It is a good idea to load the UWF with the largest stack first. A good initial
estimate is 500 to 1000 bytes. This allows for the overhead of the utility rou-
tines and for an ordinary number of local variables. If your function has many
local variables, especially matrices or large arrays, you should add the memory
requirements for these variables. If you have included local procedures that
may be called recursively, you should multiply the amount of stack usage for
each procedure by the maximum depth of recursion and add that amount to the
total.

A stack size of 1000 bytes is adequate for all of the function examples included
in this manual with the exception of F:BEZIER, which requires about 5000

bytes.
Procedure Stack Use In Bytes
CSecs 22
Char_text 22
CkInputs 36
CleanInputs 42
DropMessage 22
FCadd 22

AP8-38 PS 390 Advanced Programming

(Rough stack usage estimates continued.)

Procedure Stack Use In Bytes

FCdivide 22

FCinteger 22

FCint2double 22

FCmultiply 22

FCnearzero 22

FCp2multiply 18

FCround 8

FCsqroot 22

FCsubtract 18

Fpabs 22

Frames 22

HRtime 18

Int_text 52 (1 character)
Int text 94 (2 characters)
Int_text 290 (10 characters)
MsgCopy 40

My _in_out 18

My name- 66

Newgboolean 24

Newqinteger 24

Newqgmatrix 26

Newqnil 26

Newqpacket 28

Newqreal 24

Newqvector 32

Newtry

QSendCopyMess 240

QlllMessage 140

QlllValue 140

Qincompatmsgs 154

Real_text 310 (E-format)
Real_text 293 (P-format)
Rndmnumber 22

SendMsg 152

User-Written Function Reference AP8-39

8.7 Error Messages

APS8-40

(Rough stack usage estimates continued.)

Set_Cness
Sincos
Text_text
Ticks
Time_text
UWPFerror
Vstore

180
22
42
22
134
22
124

The following list gives the error message, a brief description, and a short

summary of what might have caused the error. It is provided as a simple
guideline to some of the more common mistakes made in writing functions.

ERROR

TRAP 0

TRAP 10

SYSTEMERROR #D9
SYSTEMERROR #DA

SYSTEMERROR #DB

SYSTEMERROR #DE

DESCRIPTION

Out of memory

A complete list of PS 390 errors is given in Section 9.11.

COMMON CAUSE

Forgetting to call DropMessage on
item generated by function and not
sent as a message.

Possible multiple Using SendMsg on an input message.

Using Dropmessage on an input
message.

Overwriting a Qdata boundary.
Call to CkInputs has Nmin < 0.
Call to CkInputs has Nmin > Nmax.

Call to CkInputs has Nmax > total
number of inputs for function.

Multiple call to QSendCopyMess on
the same input.

PS 390 Advanced Programming

ERROR

SYSTEMERROR #EOQ

SYSTEMERROR #E1

SYSTEMERROR #E9

SYSTEMERROR #EA

User-Written Function Reference

COMMON CAUSE

Function was not in state running
when CkInputs was called.

CleanInputs returned a FALSE and
still called Cklnputs.

CleanInputs was not called before
calling Cklnputs the second time.

Function was not in state mid_running
when Cleanlnputs was called.

CleanInputs was called even though
CkInputs had returned a NIL.

QlIllMessage, or QllIValue was called
for input which does not exist.

QlllMessage, or QIllValue was called

for input which was already dealt with.

Previous call to QIlIMessage,
QIllValue, or QSendCopyMess.

APS8-41

Section AP9
APPENDICES

9.1 Using the Command Files on DEC VAX/VMS

This appendix describes the files supplied on magnetic tape to users in DEC VAX/
VMS environments and provides such a user with information on the use of the
files and special downloading instructions. It contains a list of the various files
created by the Motorola cross-software and a listing of the code for the command
file that is used to call the Motorola cross-software and name the function. The list
below is a complete description of the files distributed on the magnetic tape to
support the User-Written Function facility under DEC VAX/VMS:

Example Files:

BEZIER.PAS

CHCASE.PAS

COUNT.PAS

MAG.PAS

SPIRO.PAS

SPSTRUC.PAS { USERSTRUC.PAS modified to include Userdatatype }

E&S-Provided Files to Support User-Written Functions:

USERLINK.ASM
USERLINK.RO
USERSTRUC.PAS

E&S-Provided Cross-Software Command Files:

XASM.COM
XPASCAL.COM
XPASCAL2.COM
XLINK.COM
XBUILD.COM
XL.COM
XNAMES.COM

Using the Command Files on DEC VAX/VMS AP9-1

Motorola Cross-Software Files: (if purchased through E&S)

XASM.EXE
XPASCAL.EXE
XPASCAL2.EXE
XLINK.EXE
PASCALIB.RO
XASMINIT.DAT

Using the Cross-Software on VAX/VMS

Before attempting to use the cross-software, users should edit their
LOGIN.COM file to invoke XNAMES.COM, which defines the necessary
commands and logical names. This allows the assembler, compiler, and
linker to be used exactly as described in the EXORMACS manuals. Before
executing any of the commands described below, you should set your de-
fault directory to the directory containing the source files for the function
you wish to compile and link. This directory should also contain copies of
USERSTRUC.PAS and USERLINK.RO. As a convenience, a command file
XL.COM has been provided to compile and link a user-written function, and
produce the S-record file ready to download to the PS 390. All of the code
must be contained in a single .PAS file, and the name of the function is
assumed to be the name of the file. To invoke this command file, you
should enter a command of the form:

$ XL <filename> <number inputs> <number outputs> <stack size>

If your function contains code from more than one .PAS file, or if you wish
to include routines you have written in assembly language, you will have to
follow these steps:

(1) Compile Pascal source files:

$ XPAS <«filename>
$ XPAS2 <«filename>

(2) Assemble assembly-language source files:

$ XASM «<«filename>

AP9-2 PS 390 Advanced Programming

(3) Link the object files into an S-record file:

$ XLINK <filenamel>/<filename2>../userlink,<filenamel>,<filenamel>;himx

(4) Add the function header line to the S-record file:

$ XBUILD <filename> <number inputs> <number outputs> <stack size>

Special Software Installation Instructions for DEC VAX/VMS

These two steps should be taken prior to using the command files and the
cross-software:

1. You should edit XNAMES.COM so that the logical names XEXEDIR
and XCOMBDIR reflect the actual directories where the cross-software
executables and command files (respectively) have been installed.

2. You should make sure that all of the files are publicly readable.
Files Created by the Motorola Cross-Software
File Description Contents
<filename>.PAS Pascal source file.

<filename>.PC P-code output from pass 1 of the Pascal compiler
and input to pass 2.

<filename>.P1 Listing produced by pass 1 of the Pascalcompiler.
<filename>.ASM Assembly-language source file.

<filename>.LS Listing file produced by assembler or pass 2 of the
Pascal compiler.

<filename>.RO Object file output by assembler of pass 2 of the
Pascal compiler, input to the linker.

<filename>.SR S-record file created by the linker.
<filename>.LL Link map output by the linker.
<filename>.300 S-record file with header information included.

Using the Command Files on DEC VAX/VMS AP9-3

DEC YAX/VMS Command Files

AP9-4

This section contains the code for the DEC VAX/VMS command files that
are supplied on magnetic tape by E&S to support the User-Written Function
facility.

1. XASM.COM
$!
$! Motorola 68000 Cross-Assembler
$!

$! The cross-assembler may be used exactly the same as on

! the EXORmacs. Note that the source file must reside in the

! directory where the cross-assembler is called from, the file

! extension must be .ASM, and the user must NOT specify any
! other file extensions.

!

& B L O

$ open/write il inputline.dat
$ write il ““‘p1’”

$ close il

$!

$! Now cause cross software execution
$!

$ assign xasminit.dat INITFILE
$ copy xexedir:xasminit.dat xasminit.dat;9999
$ on error then goto finish

$ on control_y then goto finish
$!

$ run xexedir:xasm

$ finish:

$ delete xasminit.dat;9999

$ delete inputline.dat;*

$ deassign initfile

$ exit

2. XBUILD.COM
$! XBUILD.COM -- build S-record .300 file for a UWF

$!
$! This command file builds an S-record file for a UWF which is

PS 390 Advanced Programming

ready to download to the PS 300. The header information is
found and added to the front of the output file from the linker.

!

!

!

! You should execute this command file from the directory containing
! the files for the UWF. The name of the UWF is assumed to be
! the same as the name of the files. The .LL and the .SR files

! produced by the linker must be present. An extension of .300 is
! used for the output file.

! Parameters:

! pl = name of UWF

! p2 = number of function inputs

! p3 = number of function outputs

! p4 = estimated stack size

!
!
!
!

Ask the user for parameters if none were supplied.

Lo R R I s A R 7 AR T IR < B S < A R S i i)

$ if p1 .eqs. “” then inquire p1 “Name of UWF”

$ if p2 .eqs. “” then inquire p2 “Number of function inputs”

$ if p3 .eqs. “” then inquire p3 “Number of function outputs”

$ if p4 .eqs. “” then inquire p4 “Estimated stack size”

$!

$!

$! Determine the length of the code produced. This is found in the link
$! map (the .LL file). Note that the following commands depend on
$! knowing the exact format of the link map.

$!

$ search /output=lsearch.tmp ‘p1’.LL “Total Length”

$ open /read tmp Isearch.tmp

$ read tmp length

$ close tmp

$ delete Isearch.tmp;0

$ length := ‘f$extract(24, 13, length)

$!

$!

$! Write the .300 file. This involves writing out the header, doing some
§ ! extra stuff to make sure VMS gives it the right file attributes, and
$! then appending the S-record file (.SR) and a semicolon.
$!

Using the Command Files on DEC VAX/VMS AP9-5

AP9-6

$ open/write header fun.tmp

$ write header ““‘length’ “‘p1’ “‘p2’ “p3’ *‘p4’”
$ close header

$ assign/user fun.tmp sys$input

$ create ‘p1°.300

$ append ‘p1’.sr ‘p1’.300

$ open/append fun ‘p1’.300

$ write fun “;”

$ close fun

$ delete fun.tmp;0

$ write sysScommand ‘‘p1’.300 created”
$ exit

. XL.COM

$! XL.COM -- command file to compile and link UWFs

$!

$! This command file compiles and links a user-written function,
producing an S-record file ready for downloading to the PS 300.
The function must be contained in a single Pascal source file;
the name of the function is the name of the source file.
An extension of .PAS is assumed for the input file, and an
extension of .300 for the output S-record file.

You should execute this command file out of the directory
containing the Pascal source file for the user-written function.

Parameters:
pl = name of uwf
p2 = number of inputs
p3 = number of outputs
p4 = estimated stack size

!
!
!
!
!
!
!
!
!
!
!
!
!
!

on error then exit

on control_y then exit
!

!

!

!

!

Compile and link the UWF, using Motorola 68000 cross-software.
You can detect compilation errors by checking for a 0-length .PC
file.

PR AR R R AR IR B < A o = A o A AR - AR AR A B S R g

PS 390 Advanced Programming

$ if p1 .eqgs. “” then inquire p1 “Name of UWF”
$ xpas ’p1’ ! pass 1 compiler
$ pcfile := ’p1’.pc ! check for bugs
$ if 'f$file attributes(pcfile,”ALQ”) .eq. 0 -

then goto bugs

$ xpas2 'p1’ ! pass 2 compiler
$ xlink ’p1’/userlink,’p1’,’p1’;himx ! linker

$!

$!

$! Build the S-record file and clean up the extra files, leaving only

$! the .PAS and .300 files.

$!

$ xbuild 'p1’ *p2’ 'p3’ 'p4’

$ delete ’p1’.11;*, 'p1’.pL;*, 'pl’.ro;*, 'pl’.sr;*, ‘p1’.pc;*

$ exit

$ 1

$! Clean up after compilation errors, leaving the .PL file so the user
$! can find his bugs.

$!

$ bugs:

$ write sys$output “Aborted -- compilation errors”
$ delete ‘p1’.pc;*

$ exit

4. XLINK.COM

$!

$! Motorola 68000 Cross-Linker

$!

$! The linker may be used exactly the same as on the EXORmacs.

$! Note that all files must reside in the directory where the linker
$! is called from, all files must be .RO, and the user must NOT

$! specify the file extension. Also, all output files must be explicitly
$! specified.

$!

$ open/write il inputline.dat

$ write il “’p1’”

$ close il

$!

Using the Command Files on DEC VAX/VMS AP9-7

AP9-8

$! Now cause cross software execution.
$!

$ copy xexedir:pascalib.ro pascalib.ro;9999
$ on error then goto finish

$ on control_y then goto finish

$ assign/user mode sys$command sys$input
$ run xexedir:xlink

$!

$ finish:

$ delete inputline.dat;*

$ delete pascalib.ro;9999

$ delete headerf.dat;*

$ exit

. XNAMES.COM

$ | XNAMES.COM -- set up logical names and symbols for using cross
$! software.

$!

$! You should execute this command file (as in your LOGIN.COM)
before attempting to use the Motorola 68000 cross-software to
build user-written functions.

!

!

!

!

! Define logical names for the actual locations of the cross-software
! command files and executables. These should be updated during
! installation as necessary.

!

assign disk$ias soft:[loosemore.uwf.dist.com] xcomdir

assign disk$ias soft:[loosemore.uwf.dist.exe] xexedir
!
!
!
!

The following aliases allow the Motorola cross-software to be used
under VMS exactly as described in the EXORmacs manuals.

$
$
$
$
$
$
$
$
$
$
$!
$!
$

$

$!

§ xasm :== @xcomdir:xasm ! invoke cross-assembler

$ xpas :== @xcomdir:xpascal ! invoke cross-compiler, pass 1
$ xpas2 :== @xcomdir:xpascal2 ! invoke cross-compiler, pass 2
$ xlink :== @xcomdir:xlink ! invoke cross-linker

PS 390 Advanced Programming

7.

!
!
! Finally, two more command files to build S-record files ready to
! download to the PS 300.

!

@ B B B B

$ x == @xcomdir:xl ! compile, link, and build S-record file
$ xbuild :== @xcomdir:xbuild ! build S-record file
$ exit

. XPASCAL.COM
$!
$! Motorola 68000 Pascal Cross-Compiler
$!

$! The compiler may be used exactly the same as on the EXORmacs.
! Note that the source file must reside in the directory where the
! compiler is called from, the file extension must be .PAS, and the
! user must NOT specify any other file extensions.

$
$
$
$
$ open/write il inputline.dat $§ write il “’p1’”
$ close il

$!

$ on error then goto finish

$ on control_y then goto finish

$!

$! Now cause cross software execution.

$!

$ run xexedir:xpascal

$ finish:

$ delete inputline.dat;*

$ exit

XPASCAL2.COM

$!
$! Motorola 68000 Pascal Cross-Compiler (Phase 2)
$!

$! The compiler may be used exactly the same as on the EXORmacs.

Using the Command Files on DEC VAX/VMS

AP9-9

AP9-10

$! Note that the P-code file must reside in the directory where the
$! compiler is called from, the file extension must be .PC, and the
$! user must NOT specify any other file extensions.
$!

$ open/write il inputline.dat

$ write il “’p1’”

$ close il

$!

$ on error then goto finish

$ on control_y then goto finish
$!

$! Now cause cross software execution
$! $ run xexedir:xpascal2

$ finish:

$ delete inputline.dat;*

$ exit

PS 390 Advanced Programming

9.2 Using the Command Files on DEC VAX/UNIX

This section describes the files supplied on magnetic tape to users in DEC VAX/
UNIX environments and provides such a user with information on the use of the
files and special downloading instructions. The list below is a complete description
of the files distributed on the magnetic tape to support the User-Written Function
facility under DEC VAX/UNIX:

Example Files:

bezier.pas

chcase.pas

count.pas

mag.pas

spiro.pas

spstruc.pas { USERSTRUC.PAS modified to include Userdatatype }

E&S-Provided Files to Support User-Written Functions:

userlink.asm
userlink.ro
userstruc.pas

E&S-Provided Cross-Software Command Files

xbuild
xl1
xnames

Motorola Cross-Software Files (if purchased through E&S)

uxasm
uxpascal
uxpascal2
uxlink
pascalib.ro
asminit.dat

Using the Cross-Software on Unix 4.2 BSD

Before attempting to use the cross-software, users should edit their .cshrc
file to “source” the file xnames, which defines the necessary aliases and
shell variables. This allows the assembler, compiler, and linker to be used

Using the Command Files on DEC VAX/UNIX

AP9-11

as described in the EXORMACS manuals. (The only exception is that multi-
ple input files should be separated by “+” instead of “/”, and if options are
specified using “;”, the entire argument list should be quoted.)

Before executing any of the commands described below, you should set
your working directory to the directory containing the source files for the
function you wish to compile and link. This directory should also contain
copies of userstruc.pas and userlink.ro. Since Unix is case sensitive, you
must remember to use consistent case for filenames.

As a convenience, a shell script x1 has been provided to compile and link a
user-written function, and produce the S-record file ready to download to
the PS 390. All of the code must be contained in a single .pas file, and the
name of the function is assumed to be the name of the file. To invoke this
shell script, you should enter a command of the form:

% X1 <filename> <number inputs> <number outputs> <stack size>

If your function contains code from more than one .pas file, or if you wish
to include routines you have written in assembly language, you will have to
follow these steps:

(1) Compile Pascal source files:

% xpas <filename>
% xpas2 <filename>

(2) Assemble assembly-language source files:

% xasm <filename>

(3) Link the object files into an S-record file:

% xlink ’<filenamel>+<filename2>...+userlink,<filenamel>,<filenamel>;himx’

(4) Add the function header line to the S-record file:

% xbuild <filename> <number inputs> <number outputs> <stack size>

Special Software Installation Instructions for DEC VAX/UNIX

These steps should be taken prior to using the commands files and the
cross-software:

AP9-12 PS 390 Advanced Programming

1. You should edit the shell script xnames so that the shell variables
$xexedir and $xcomdir reflect the actual pathnames of the directo-
ries where the cross-software executables and shell scripts (respec-
tively) have been installed.

2. You must also make sure that the files pascalib.ro and asminit.dat
can be found in:

/usr/local/lib/pas68/pascalib.ro and
/usr/local/lib/pas68/asminit.dat

respectively. This may be done either by copying the files, or by
creating a link to the files.

3. Make sure that all of the files are publicly readable.

Files Created by the Motorola Cross-Software

File Description

<filename>.pas

<filename>.pc

<filename>.pl
<filename>.asm

<filename>.ls

<filename>.ro

<filename>.sr
<filename>.ll

<filename>.300

Contents

Pascal source file.

P-code output from pass 1 of the Pascal compiler and input
to pass 2.

Listing produced by pass 1 of the Pascal compiler.
Assembly-language source file.

Listing file produced by assembler or pass 2 of the Pascal
compiler.

Object file output by assembler of pass 2 of the Pascal
compiler, input to the linker.

S-record file created by the linker.
Link map output by the linker.

S-record file with header information included.

Using the Command Files on DEC VAX/UNIX

AP9-13

DEC VAX/UNIX Command Files

This section contains the code for the DEC VAX/UNIX command files that
are supplied on magnetic tape by E&S to support the User-Written Function
facility.

1. xnames

xnames -- set up names for using 68k cross-software

#

You should “source” this file in your .cshrc file before attempting
to use the Motorola 68000 cross-software to build

user-written functions

#

Define names for the actual locations of the cross software shell
scripts and executables. These should be updated during

installation as necessary.

#

set xexedir=-loosemor/dist/exe

set xcomdir=-loosemor/dist/com

#

#

The following aliases allow the Motorola cross-software to be used
under Unix exactly as described in the EXORMACS manuals.
The only exceptions are:

(1) Multiple input files should be separated with a “+” instead of “/”.

(2) If you specify options using “;”, the entire parameter list should
be enclosed in quotes.

#

alias xasm $xexedir/uxasm

alias xlink $xexedir/uxlink

alias xpas $xexedir/uxpascal

alias xpas2 $xexedir/uxpascal2

#

#

Finally, two more command files to build S-record files ready to
download to the PS 300:

#

alias xlI csh $xcomdir/xl

alias xbuild c¢sh $xcomdir/xbuild

AP9-14 PS 390 Advanced Programming

2. x1

xl -- compile and link user-written functions, producing S-record file
#

This shell script compiles and links a user-written function, producing
an S-record file ready for downloading to the PS 300. The function
must be contained in a single Pascal source file; the name of the
function is the name of the source file. An extension of .pas is

assumed for the input file, and an extension of .300 for the output
S-record file.

You should execute this shell script out of the directory containing the
Pascal source file for the user-written function.

#

Parameters:

$1 = name of UWF

$2 = number of inputs

$3 = number of outputs

$4 = estimated stack size

#

#
Get the name of the function (required).
#
if ($#argv > 0) then
set name=$1
else
echo -n 'Name of UWF: ’
set name=($<)
endif
#
i
Compile and link the UWF, using Motorola 68000 cross-software. We
can detect compilation errors by checking for a 0-length .pc file.
#
xpas $name
set pclen=‘Is -1 $name.pc | awk *{ print $4 }**
if ($pclen == 0) goto bugs

Using the Command Files on DEC VAX/UNIX AP9-15

xpas2 $name

xlink “$name+userlink,$name,$name;himx”

#

Build the S-record file and clean up the extra files, leaving only the
.pas and the .300 files.

#

xbuild $name $2 $3 $4

rm $name.ll $name.pl $name.ro $name.sr $name.pc

exit

#

#

Clean up after compilation errors, leaving the .pl file so the user
can find his bugs.

#

bugs: echo ’Aborted -- compilation errors’

rm $name.pc

exit

3. xbuild

xbuild -- build S-record .300 file for a UWF

#

This command file builds an S-record file for a UWF which is ready to
download to the PS 300. The header information is found and added
to the front of the output file from the linker.

You should execute this shell script from the directory containing the
files for the UWF. The name of the UWF is assumed to be the same
as the name of the files. The .1l and the .sr files produced by the
linker must be present. An extension of .300 is used for the output
file.

Parameters:

$1 = name of UWF

$2 = number of function inputs

$3 = number of function outputs

$4 = estimated stack size

H R R R

Ask the user for parameters if none were supplied.
#
if ($#argv > 0) then

AP9-16 PS 390 Advanced Programming

set name=$1
else
echo -n 'Name of UWE:’
set name=($<)
endif
if ($#argv > 1) then
set inputs=$2 else
echo -n 'Number of function inputs:
set inputs=($<)
endif
if (S#argv > 2) then
set outputs=$3
else
echo -n 'Number of function outputs:
set outputs=($<)
endif
if ($#argv > 3) then
set stacksize=$4
else
echo -n ’Estimated stack size:
set stacksize=($<)
endif
#
#
Determine the length of the code produced. This is found in the link
map (the .1l file).
set len=‘awk ’/Total Length/ { print $4 }’ $name.ll‘
#
#
Write the .300 file. This involves putting together the header line and
appending a semicolon to the end of the file.
#
echo $len $name Sinputs $outputs $stacksize >$name.300
cat $name.sr >>$name.300
echo ’;” >>$name.300
echo $name.300 created
exit

b

’

ki

Using the Command Files on DEC VAX/UNIX AP9-17

9.3 Using the Cross-Software on IBM VM/SP

This section describes the files supplied on magnetic tape to users in IBM VM/SP
environments and provides such a user with information on the use of the Motorola
cross-software. The list below is a complete description of the files distributed on
the magnetic tape to support the User-Written Function facility under IBM VM/SP:

Example Files:

BEZIER PASCAL

CHCASE PASCAL

COUNT PASCAL

MAG PASCAL

SPIRO PASCAL

SPSTRUC PASCAL {USERSTRUC.PAS modified to include Userdatatype}

E&S-Provided Files to Support User-Written Functions:

USERLINK ASSEMBLE
USERLINK OBJECT
USERSTRU PASCAL

Motorola Cross-Software Files (if purchased through E&S)

ASMB MODULE
PASCALCO MODULE
DIRECT MODULE
LINK MODULE
PASCALIB DATA
ASMINIT DATA

How To Use the Cross-Software on IBM VM/SP

It is very important that you are familiar with the following information
before you try to use the Motorola cross-software. Because of the nature of
the IBM environment, explicit files that call the cross-software are not pro-
vided by E&S. Use the following information to create the S-record file that
contains the code for your user-written function, correctly format the file for
downloading, and download it to the PS 390.

AP9-18 PS 390 Advanced Programming

Pascal Differences

The IBM version of the Motorola Pascal cross-compiler uses different lexi-
cal conventions than standard Pascal. In particular, you should:

e use @ instead of 1 for pointer references
e use (. and .) instead of [| for array references.

You cannot refer to files by name explicitly in $F=<filename> statements.
To include files during compilation, the $F statement should refer to a
DDNAME. You must include a FILEDEF command to define that
DDNAME prior to invoking the cross-compiler.

Using the Cross-Compiler

Before invoking the cross-compiler, you must execute a number of
FILEDEF commands to define the files used. These files are:

SOURCE The file containing the Pascal source code to be compiled. This
file is read in by pass 1 of the compiler.

LISTING The listing output by pass 1 of the compiler.

PCODE This file contains the intermediate code produced by pass 1 of the
compiler and used as input by pass 2.

OUTPUT Both passes of the compiler write results of the compilation to the
file OUTPUT, which is normally associated with the terminal.

P2LIST The listing file output by pass 2 of the compiler.
FILE1 Pass 2 writes the relocatable object module to this file.

FILE2 This is a temporary file used by pass 2 of the compiler.

In addition, if you have referenced any files to be included via $F state-
ments in your Pascal source file, you must also execute FILEDEF com-
mands for these files.

The following exec file, UWFPASC EXEC, will compile the Pascal source
file input as the first parameter. It is assumed that the source file includes
USERSTRU PASCAL through a statement of the form:

Using the Cross-Software on IBM VM/SP AP9-19

{$F=INCLUDE }
FILE: UWFPASC EXEC

&TRACE ERR

&CONTROL &OFF

FILEDEF * CLEAR

FILEDEF OUTPUT TERMINAL (RECFM F LRECL 80 BLOCK 80

FILEDEF SOURCE DISK &1 PASCAL A

FILEDEF INCLUDE DISK USERSTRUC PASCAL A

FILEDEF LISTING DISK &1 LISTING A (RECFM VBA LRECL 133 BLOCK 3990
FILEDEF PCODE DISK PASCPCOD DATA A (RECFM VB LRECL 256 BLOCK 2600
FILEDEF P2LIST DISK &1 DATA A (RECFM VBA LRECL 133 BLOCK 3990
FILEDEF FILEl DISK &1 OBJECT A (RECFM FB LRECL 256 BLOCK 2560
FILEDEF FILE2 DISK PASCFIL2 DATA (RECFM FB LRECL 256 BLOCK 2560
PASCALCO

DIRECT

EXIT

After invoking the cross-compiler, you should check the LISTING file for
errors.

Using the Cross-Assembler

AP9-20

The cross assembler requires that you execute FILEDEF statements to de-
fine the following DDNAMES:

OUTPUT Normally, this file is allocated to the terminal.

SOURCE This should be allocated to the assembly source input file.

LISTING The cross assembler will write its output listing to this file.

OBIJECT The object code output by the assembler will be written to this
file.

INITFILE The initialization file, which must be read in at the beginning

of each invocation of the cross-assembler.

The following exec file, MYASMY EXEC, will assemble the source file
passed as parameter 1:

FILE: MYASMY EXEC

& TRACE ON
& CONTROL &OFF

PS 390 Advanced Programming

FILEDEF * CLEAR

FILEDEF OUTPUT TERMINAL

FILEDEF SOURCE DISK &1 ASSEMBLE * (RECFM FB LRECL 80 BLOCK 3200
FILEDEF LISTING DISK &1 LISTING * (RECFM VB LRECL 133 BLOCK 3990
FILEDEF OBJECT DISK &1 OBJECT * (RECFM FB LRECL 256 BLOCK 2560
FILEDEF INITFILE DISK ASMINIT DATA Cl1 (RECFM FB LRECL 80 BLOCK 3200
ASMB

& EXIT

Linking
Before invoking the linker, you should execute FILEDEF statements to de-
fine the following files:

INPUT The file containing the linker commands. This may be
assigned to the terminal.

OUTPUT The map file output by the linker.
OUTFIL The load module produced as output by the linker.

HEADERF A temporary file used by the linker for processing the H
option.

PASCALIB The default run-time library for Pascal object modules.

In addition, you must execute a FILEDEF for each object file you wish to
input to the linker. These are referenced by the file INPUT, which should
contain commands of the form:

INPUT <ddnamel>
INPUT <ddname?2>

END
For example, the file LINK TXT contains the following commands:

INPUT OBJ1
INPUT OBJ2
END

This file is referenced by UWFLINK EXEC. This exec file takes the name
of a single object file as a parameter, and links it with USERLINK OBJECT.

Using the Cross-Software on IBM VM/SP AP9-21

FILE: UWFLINK EXEC

&TRACE ON

&CONTROL &OFF

FILEDEF * CLEAR

FILEDEF INPUT DISK LINK TXT A (RECFM F LRECL 80 BLOCK 80
FILEDEF OUTPUT DISK &1 MAP A (RECFM F LRECL 80 BLOCK 80
FILEDEF OUTFIL DISK &1 LOAD A (RECFM VB LRECL 256 BLOCK 2600
FILEDEF HEADERF DISK M68KHDRF DATA C (REDFM F LRECL 80 BLOCK 80
FI OBJ1 DISK &1 OBJECT A (RECRM FM LRECL 256 BLOCK 2560

FI OBJ2 DISK USERLINK OBJECT A (RECFM FB LRECL 256 BLOCK 2560
FILEDEF PASCALIB DISK PASCALIB DATA C1

DESBUF

LINK

Modifying the S-Record File

Before you can download the S-record file for the UWF to the PS 390, you
must modify it to contain a header line of the format described in section
9.7, and terminate the file with a semicolon.

You should examine the map file output by the linker to determine the
length of code for including in the header line.

Downloading the UWF to the PS 390

The following is an example of a command file to run the program SRecsnd
that sends the specified file to the PS 390 (this requires the file name as a
parameter):

&TRACE ON

&CONTROL &OFF

EXEC P6P FILEDEF * CLEAR

FILEDEF INPUT TERMINAL

FILEDEF OUTPUT TERMINAL

FILEDEF SRECFILE DISK &1 LOAD A (RECFM VB LRECL 256 BLOCK 2600
LOAD SRECSND (START

This is an example of the Pascal program, SRecsnd, that sends a file to
PS 390. This program makes calls to the PS 390 GSR routines.

FILE: SRECSND PASCAL *
program srecsnd (input, output, srecfile);

CONST

AP9-22 PS 390 Advanced Programming

%INCLUDE PROCONST

TYPE
%INCLUDE PROTYPES

VAR
Ssrecfile : text;
istr : string (256);
crlfa : packed array (. 1..2 .) of char;
crlf : string(2);

%INCLUDE PROEXTRN

PROCEDURE err (errnum : integer);
BEGIN
writeln(
END:

s’ ’

got error: “, errnum);

BEGIN

pattach(“junk”’, err);

reset (srecfile);

crlfa (. 1 .) := CHAR (13);

crlf := STR(crlfa);

pmuxg (7, err);

WHILE NOT EOF (srecfile) DO
BEGIN readln (srecfile, istr);
Pputgx (istr, err);

Pputgx (crlf, err);
END;

writeln;

PDetach (err);

END.

Using the Cross-Software on IBM VM/SP AP9-23

9.4 Using the Command Files on IBM MVS/TSO

The list below is a complete description of the files distributed on the mag-
netic tape to support the User-Written Function facility under IBM MVS/
TSO:

Example Files:

BEZIER PASCAL

CHCASE PASCAL

COUNT PASCAL

MAG PASCAL

SPIRO PASCAL

SPSTRUC PASCAL {USERSTRUC.PAS modified to include Userdatatype}

E&S-Provided Files to Support User-Written Functions:

USERLINK ASSEMBLE
USERLINK OBJECT
USERSTRU PASCAL

Motorola Cross-Software Files (if purchased through E&S)

ASMB MODULE
PASCALCO MODULE
DIRECT MODULE
LINK MODULE
PASCALIB DATA
ASMINIT DATA

The MVS/TSO user should refer to the Motorola manuals distributed with
the Motorola cross-software for instructions on the use of the cross-
compiler, cross-assembler, and cross-linker.

For information on preparing the file for downloading, and for downloading
it to the PS 390, refer to the sections entitled “Modifying the S-Record File”
and “Downloading the UWF to the PS 390” in section 9.3 of this manual.

AP9-24 PS 390 Advanced Programming

9.5 USERSTRUC.PAS

This section contains the examples and supplied command files from the
USERSTRUC.PAS file, that is distributed on magnetic tape. Reference to
this file is made throughout the document and it is provided here for com-
pleteness.

CONST MaxInputQueues = 127; { Max #of input queues for a function }

TYPE Intl6é = -32768..32767; { 16-bit integer }
Int8 = -128..127; { 8-bit integer }
Ptrqdata = fQdata ; { pointer to a message }

PtrUWFInQarray = fUWFInQarray;
UWFInQarray = Array [1..MaxInputQueues] of PtrQdata;
InUWFQarray = UWFInQarray; {for compatibility with older

versions}
double =
RECORD
c: Intlé6; { 16 bit biased binary exponent}
m: integer; { 32 bit floating point fraction}
notused: intl6; { waste, to make = 8 bytes for}
END; { faster array indexing}

"PS 300_floating point = double; { old name, for compatibility}

ARRAY [0..3] OF double;
ARRAY [0..3 , 0..3] OF double;

Vector
Matrix

Bytespell = ARRAY [1..255] OF char;

Qdtype = { types of Qdata (message) blocks }

(
0} Qreset,

1} Qprompt,

{ dataless: reset a function instance

{ dataless: flush the CI pipeline

2} Qboolean, { normal carrier of boolean values

3} Qinteger, { normal carrier of integer values

4} Qreal, { normal carrier of floating point values

5} Qstring, { original carrier of byte strings

6} Qpacket, { new carrier of byte strings

7} Qmorepacket, { alternate to Qpacket (with the distinction
{ making a difference only on the link
{ between F:DEPACKET and F:DEMUX/F:CIROUTE) .

{ 8} Qmove2, { 2D vector including P bit

{ 9} Qdraw2, { 2D vector including L bit

{10} Qvec2, { 2D vector with no P/L bit (normal vector)

{11} Qmove3, { 3D vector including P bit

Lt W e W e W et W et W o

B S S S I R W S N S W S S S S S G S S)

USERSTRUC.PAS AP9-25

AP9-26

{12} Qdraw3,
{13} Qvec3,
{14} Qmoved,

{15}
{16}
{17}
{18}
{19}
{20}

Qdraw4,
Qvec4d,
Qmat?2,
Qmat3,
Qmat4,
Qusertype,

{
{
{
{
{
{
{
{

3D
3D
4D
4D
4D

vector
vector
vector
vector
vector

including L bit
with no P/L bit (normal vector)
including P bit
including L bit
with no P/L bit (normal vector)

2x2 matrix }
3x3 matrix }
4x4 matrix }
{ type which user may use to define own message }

{ padding, to make the field 16-bit, as

Pad,
Pbd,
Pcd,
Pdd,
Ped,
Pfd,
Pgd,
Phd,
Pid,
Pjd,
Pkd,
Pld,
Pmd,
Pnd,
Pod,
Ppd,
Pqd,
Prd,
Psd,
Ptd,
Pud,
Pvd,
Pwd,
Pxd,
Pyd,
Pzd,
)

{ TYPE declarations

Qdata

Pae, Paf,
Pbe, Pbf,
Pce, Pcf,
Pde, Pdf,
Pee, Pef,
pfe, Pff,
Pge, Pgf,
Phe, Phf,
Pie, Pif,
Pje, Pjf,
Pke, Pkf,
Ple, P1f,
Pme, Pmf,
Pne, Pnf,
Poe, Pof,
Ppe, Ppf,
Pqge, Pqf,
Pre, Prf,
Pse, Psf,
Pte, Ptf,
Pue, Puf,
Pve, Pvf,
Pwe, Pwf,
Pxe, Pxf,
Pye, Pyf,
Pze, Pzf,

RECORD
Next: Ptrqdata ;
CASE Qtyp: Qdtype OF { type of message }

{ Qreset:

Pag,
Pbg,
Pcg,
Pdg,
Peg,
Pfg,
bPgg,
Phg,
Pig,
Pjg,
Pkg,
Plg,
Pmg,
Png,
Pog,
Ppg,
Pag,
Prg,
Psg,
Ptg,
Pug,
Pvg,
Pwg,
Pxg,
Pyg,
Pzg,

Pah,
Pbh,
Pch,
Pdh,
Peh,
Pfh,
Pgh,
Phh,
Pih,
Pjh,
Pkh,
Plh,
Pmh,
Pnh,
Poh,
Pph,
Pgh,
Prh,
Psh,
Pth,
Puh,
Pvh,
Pwh,
Pxh,
Pyh,
Pzh,

no datum carried }

Pai,
Pbi,
Pci,
Pdi,
Pei,
Pfi,
Pgi,
Phi,
Pii,
Pji,
Pki,
Pli,
Pmi,
Pni,
Poi,
Ppi,
Pqi,
Pri,
Psi,
Pti,
Pui,
Pvi,
Pwi,
Pxi,
Pyi,
Pzi,

Paj, Pak,
Pbj, Pbk,
Pcj, Pck,
Pdj, Pdk,
Pej, Pek,
pPfj, Pfk,
rgj, Pgk,
Phj, Phk,
Pij, Pik,
Pjj, Pjk,
Pkj, Pkk,
Plj, Plk,
Pmj, Pmk,
Pnj, Pnk,
Poj, Pok,
Ppj, Ppk,
Pqj, Pak,
Prj, Prk,
Psj, Psk,
Ptj, Ptk,
Puj, Puk,
Pv)j, Pvk,
Pwj, Pwk,
Pxj, Pxk,
Pyj, Pyk,
Pzj, Pzk,

continued }

(SR S M W)

it is in the full system }
Pal, Pam,
Pbl, Pbm,
Pcl, Pcm,
Pdl, Pdm,
Pel, Pem,
Pf1l, Pfm,
Pgl, Pgn,
Phl, Phmn,
Pil, Pim,
Pjl, Pjm,
Pkl, Pkm,
Pll, Plm,
Pml, Pmm,
Pnl, Pnm,
Pol, Pom,
Ppl, Ppm,
Pql, Pam,
Prl, Prm,
Psl, Psm,
Ptl, Ptm,
Pul, Pum,
Pvl, Pvm,
Pwl, Pwn,
Px1l, Pxm,
Pyl, Pym,
Pzl, Pznm

{ next message in a list of messages }

{ Qprompt: no datum carried }

PS 390 Advanced Programming

Qboolean:

(
b: boolean
)
Qinteger:
(

i: integer
)
Qreal:

(

r: double
)
Qstring: { an old form of byte-string message }

(

1: intl6 ; { # bytes of message }
Qs_pad: intl6 ; { padding ... aligns with Qpacket }
n: Bytespell { bytes of message }
)
Qpacket, Qmorepacket: { newer form of byte-string }
(
P_1th: intl6 ; { max byte number }
P_beg: intl6 ; { min byte number }
P_cnt: Bytespell { bytes of message }

)
Qmove2, Qdraw2, Qvec2,
Qmove3, Qdraw3, Qvec3,
Qmove4, Qdraw4, Qvecd:
(
V4: Vector { all vectors use 4D indexing }
)
Qmat2, Qmat3, Qmat4:
(
Mat4: Matrix { all matrices use 4x4 indexing }
)
END ; { Qdata }

{ ***x* Note: there are no global VARs available *#¥*x }

FUNCTION CkPrivate : Ptrqdata;
FORWARD ;
PROCEDURE SavePrivate (msg : Ptrqdata);
FORWARD ;
FUNCTION CkInputs (first, last : Intl6) : PtrUWFInQarray;
FORWARD ;
FUNCTION CleanInputs : BOOLEAN;
FORWARD ;

USERSTRUC.PAS AP9-27

PROCEDURE SendMsg (VAR msg : Ptrqdata; outport : Intl6);

FORWARD ;
PROCEDURE QSendCopyMsg (source, destination : Intl6);
FORWARD ;
PROCEDURE QIllMessage (input : Intl6é);
FORWARD ;
PROCEDURE QIllvalue (input : Intl6);
FORWARD ;
PROCEDURE Qincompatmsgs (one : Intl6; theother : Intl6);
FORWARD ;
FUNCTION Msgcopy(m: Ptrqdata): Ptrqdata ;
FORWARD ;
PROCEDURE Dropmessage (VAR m: Ptrqdata) ;
FORWARD ;
PROCEDURE Systemerror(n: Intl6) ;
FORWARD ;

FUNCTION Fpecomp (VAR X1,X2: double): Int8 ;
FORWARD ;
PROCEDURE Fpabs (VAR r: double) ;
FORWARD ;
PROCEDURE FCadd (VAR Augend, Addend: double;
VAR Sum: double) ;
FORWARD ;
PROCEDURE FCsubtract (VAR Minuend, Subtrahend: double;
VAR Difference: double) ;
FORWARD ;
PROCEDURE FCmultiply(VAR a, b: double;
VAR Product: double) ;
FORWARD
PROCEDURE FCp2multiply (VAR Innum: double; Power: integer;
VAR Outnum: double) ;
FORWARD ;
PROCEDURE FCdivide (VAR Dividend, Divisor: double;
VAR Quotient: double) ;

FORWARD

PROCEDURE FCint2double(num : Integer; VAR Floated: double) ;
FORWARD ;

PROCEDURE FCround (VAR Innum: double; VAR Outnum: integer) ;
FORWARD ;

PROCEDURE FCinteger (VAR Innum: double; VAR Outnum: integer) ;
FORWARD ;

FUNCTION FCnearzero (VAR tiny : double; negpower2 : intl6

) : int8 ;

FORWARD ;{ negpower2=1 ——> within .5; =2 --> within .25 }

AP9-28 PS 390 Advanced Programming

PROCEDURE FCsqroot (VAR a: double; VAR Sqroot: double) ;
FORWARD ;

PROCEDURE Sincos(Angle: integer; VAR Sine: double;
VAR Cosine: double) ;

FORWARD ;

FUNCTION Rndmnumber (seed : Integer): Intl6;
FORWARD ;

FUNCTION Newgpacket(Typ: Qdtype; { Qpacket or Qmorepacket }

Nbytes: Intl6): Ptrgdata ;

FORWARD ;

FUNCTION Newqreal: Ptrqdata ;
FORWARD ;

FUNCTION Newqginteger: Ptrqgdata ;
FORWARD ;

FUNCTION Newgboolean: Ptrqgdata ;
FORWARD ;

FUNCTION Newqnil(Typ: Qdtype): Ptraqdata ; { Qreset; Qprompt }
FORWARD ;

FUNCTION Newqvector (Typ: Qdtype): Ptrqdata ; { Qvec2, ... }
FORWARD ;

FUNCTION Newamatrix(Typ: Qdtype): Ptrqdata ; { Qmat2, ... }
FORWARD ;

FUNCTION Vfetch(Name: Ptrqdata) : Ptrqdata; { a Qpacket }
FORWARD ;
PROCEDURE Vstore(Name: Ptrqdata; VAR New_val: Ptrqdata)
FORWARD ;
FUNCTION My_name : Ptrqgdata ;
FORWARD ;
PROCEDURE My_in_out (VAR N_in,N out: intl6) ;
FORWARD ;
FUNCTION Ticks: integer ;
FORWARD ;
FUNCTION Csecs: integer ;
FORWARD ;
FUNCTION Frames: integer ;
FORWARD ;
PROCEDURE Hrtime (VAR c,f,d: integer) ;
FORWARD ;
PROCEDURE Char_text(c: char; VAR b,e: Intl6; VAR Ca: Bytespell) ;
FORWARD ;
PROCEDURE Text_ text (VAR Bl,El: Intl6; VAR Cal: Bytespell;
VAR B2,E2: Intl6; VAR Ca2: Bytespell) ;

FORWARD ;

USERSTRUC.PAS AP9-29

PROCEDURE Int_text(n: integer; Ns,Nz: Intlé6;
VAR b,e: Intl6; VAR Ca: Bytespell) ;

FORWARD ;

PROCEDURE Time_text(n: integer; VAR b,e: Intl6; VAR Ca: Bytespell) ;
FORWARD ;

PROCEDURE Real text(VAR r: double; VAR b,e: Intl6; VAR Ca: Bytespell)
FORWARD ;

FUNCTION NewTry (num _bytes : INTEGER) : Ptrqdata;

FORWARD;

PROCEDURE UWFerror (VAR msg : Ptrqgdata);
FORWARD;

PROCEDURE Set_Cness(input : Intl16; cqtype: Boolean);
FORWARD;

Advanced UWF Procedures

FUNCTION Lk _cursuffix (Nlth: integer; VAR Nspell: Namespell)
Ptralphablk;
FORWARD;
FUNCTION Lk _nosuffix (length: Integer; Cinum: Int 8; suffix: Char;
VAR Nspell:Namespell) : Ptralphablk;
FORWARD;
PROCEDURE Lgaupdate (Name: Ptralphablk; data: Ptrnamedentity;
VAR Uph,Upt: Ptravuplbk);

FORWARD;
PROCEDURE Announceupdate (VAR Uph,Upt: Ptravupblk);
FORWARD;
PROCEDURE Msgstore (VAR Uph,Upt: Ptravupblk);
FORWARD;
PROCEDURE Msgstore (Msg: Ptrqgdata; a: Ptralphablk; n: integer);
FORWARD;
PROCEDURE Setlock (VAR x: Lock);
FORWARD;
PROCEDURE Clrlock (VAR s: Lock):
FORWARD;
PROCEDURE Incausage (a: Ptralphablk);
FORWARD;
PROCEDURE Decausage (a: Ptralphablk);
FORWARD;;
PROCEDURE AcpProof (VAR location: ptracpcblk; newval: ptracpcblk);
FORWARD;
PROCEDURE Acpprfl (VAR location: ptrsavstate; value: ptrsavstate);
FORWARD;

PROCEDURE OLbaddtoset (A_son: Ptralphablk; A_father: Ptralphablk;
VAR Uph,Upat: Ptravupblk; VAR Error: boolean; Optimize
boolean) ;

FORWARD;

AP9-30 PS 390 Advanced Programming

PROCEDURE Removefromset (A_father: Ptralphablk; A_son: Ptralphablk;
VAR Uph,Upt: Ptravupblk; VAR Error: boolean);

FORWARD;
FUNCTION FetchBlock (block: PtrNamedentity;
Ptrnamedentity;
FORWARD;
PROCEDURE Acp_v3f (VAR v: Vector; VAR acpv:
FORWARD ;
PROCEDURE Acp_v2f (VAR v: Vector; VAR acpv:
FORWARD ;
PROCEDURE Acp_v3b (VAR v: Vector; VAR acpv:
Intl6);

FORWARD;
PROCEDURE Acp_v2b (VAR
Intl6);

FORWARD;

<

Vector; VAR acpv:

Upt: Ptravupblk):

Vec3f;

Vec2f;

Vec3b;

Vec2b;

PROCEDURE NStorevVector (VAR block: Ptrnamedentity;
pl: boolean firstblock: Ptrnamedientity);

pl:

pl:

pl:

pl:

boolean) ;

boolean):

boolean; exp:

boolean; exp:

VAR v: Vector;

FORWARD ;

FUNCTION nNewAcpdata (n: intl6; t: Dattype): Ptrnamedentity;
FORWARD;

PROCEDURE Store3x3 (VAR m: Matrix3; Ob: Ptrnamedentity; n: intl6);
FORWARD ;

PROCEDURE Store4x4 (VAR m: Matrix4; Ob: Ptrnamedentity; n: intl6);
FORWARD;

PROCEDURE Drop_name (a: Ptralphablk);
FORWARD;

PROCEDURE GetvVector (block: Ptrnamedentity; index: Intl6;

VAR v: Vector; VAR pl: Boolean);

FORWARD;

PROCEDURE Rawbacopy (Nbytes: intl6; VAR Inba,Outba: int8);

FORWARD;

PROCEDURE Rawcbcopy (Nbytes: intl6; VAR Inba:char; VAR Outba:

FORWARD;

PROCEDURE Rawchcopy (Nbytes: intl6; VAR Inba,Outba:

FORWARD;

FUNCTION Size_of (b: Ptrnamedentity): integer;

FORWARD ;

char) ;

FUNCTION FetchAdnum (f: Ptrnamedentity; upt: Ptravupblk): Intl6;

FORWARD;
FUNCTION nFetchCopy (block: PtrNamedentity;

start:

Intl16; upt: Ptravupblk) : PtrNamedentity;

FORWARD;
PROCEDURE WaitFrame (framecnt : integer);
FORWARD;
FUNCTION loc_chead : Ptrcommhead;
FORWARD;

USERSTRUC.PAS

Intl6; count:

int8);

AP9-31

FUNCTION ptr_dcb : Ptrdcb;
FORWARD;

PROCEDURE DropNE (f: Ptrnamedentity);
FORWARD;

PROCEDURE Newreturns (givemenil : boolean);
FORWARD;

PROCEDURE Reactivate ;
FORWARD;

FUNCTION Myanyoutputs (n: int8): Boolean;
FORWARD;

PROCEDURE Pushmyinput (m: Ptrqdata; n: Int8);
FORWARD;

PROCEDURE WaitCsec (cseccnt : integer);
FORWARD;

AP9-32 PS 390 Advanced Programming

9.6 Function Header Line Format

This section contains a description of the function header line format used
to name a function, define the number of inputs and outputs, and provide
the stack usage.

The function-naming command must use the following syntax:
<length> <function_name> <number inputs> <number outputs> <stack size>
where:

<length> is the number of byfes in decimal of the file (the number of bytes
can be found in the linker listing labeled 'Total Length’).

<function_name> is the PS 390 name for the user-written function.

<number inputs> is the number of input queues of the user-written func-
tion.

<number outputs> is the number of output ports of the user-written func-
tion.

<stack size> is the estimated total stack usage requirements in decimal.
(Refer to Section AP8.6 for estimates of stack usage of some of the utility
procedures.)

These parameters are delimited by spaces.

Function Header Line Format AP9-33

9.7 S-Record Format

AP9-34

The S-record format for modules was devised for the purpose of encoding
programs or data files for transportation between computer systems. In an
S-record, a two-level encoding method is used to transform each byte of
binary data into two printable characters; therefore, the transportation proc-
ess can be visually monitored and the file data can be more easily edited.

When viewed by the user, S-records are essentially character strings made
up of several fields, in which pairs of characters are interpreted as hexa-
decimal values from 1- to 2-byte length, representing a count, an address, a
data record, or a checksum. Internally, each record is viewed as a sequence
of byte values representing characters. To be compatible with teletype units,
S-records may be no longer than 70 bytes. Since 10 bytes are required in
each record for the type, byte count, address, and checksum fields, the
variable-length data field may be allocated at maximum 60 bytes. This
translates to 60 characters or 30 character pairs or bytes of data per record,
from the user viewpoint.

The internal format of an S-record comprises five fields, as shown below:

l type I byte_count I address | data | checksum

where the fields are composed as follows:

Field Size (bytes) Contents

type 2 Record type--S0, S1, S2, or S9. The two bytes
are hexadecimal, encoded directly from byte
values.

byte count 2 The count of the character pairs in the record,

excluding the type and checksum fields. The
high and low order hexadecimal digits of the
actual byte value are individually represented as
two hexadecimal bytes in the S-record.

PS 390 Advanced Programming

Field Size (bytes) Contents

address 4-6 The address at which the data field is to be
loaded into memory. The high and low order
hexadecimal digits of each actual type value are
individually represented as hexadecimal bytes in
the S-record.

data 0-60 Memory loadable data or descriptive
information. High and low order hexadecimal
digits of successive, actual byte values are
individually represented as hexadecimal bytes in
the S-record.

checksum 2 The least significant byte of the one’s
complement of the sum of the values
represented by the pairs of characters making
up the byte count, the address, and the data
fields. The high and low order hexadecimal
digits of the actual checksum value are
individually represented as two hexadecimal
bytes in the S-record.

Data blocks output by the linker may contain S-records of the following
types:

S0 The header record for each block of data. Subfields in the data field may
be:
module name = 20 bytes
version number = 2 bytes
revision number = 2 bytes

description = 0 to 36 bytes

Each of the subfields is composed of bytes, whose associated character,
when paired, represent 1-byte hexadecimal values in the case of the version
and revision numbers, or represent the encodement of the module name
and description specified by the user with the interactive IDENT command.

S-Record Format AP9-35

S1 A record containing data and the 3-byte address at which the data are to
reside.

S2 A record containing data and the 3-byte address at which the data are to
reside.

S9 A termination record for a block of S-records. The address field may op-
tionally contain the address, specified by the user with the ENTRY com-
mand, to which control is to be passed. If not specified, the first entry point
specification encountered in the object module input will be used. There is
no data field.

AP9-36 PS 390 Advanced Programming

9.8 Motorola Pascal Register Usage

This section contains a description of the Pascal register usage and calling
conventions and includes descriptions of procedures to be followed when
linking more than one procedure or using assembly language files.

An assembly language routine may be called externally by a Pascal program
using normal Pascal argument passing. Such a routine may:

e Perform a function not available in Pascal; i.e., data manipulation or
I/O not provided in the applicable library, or some mathematics not
supported by Pascal.

e Optimize code to be used repetitively in a real-time environment. The
Pascal compiler does optimize, but a user-written assembly language
routine may be shorter and faster.

Program Preparation

There are two requirements that must be satisfied to include an assembly
language subroutine in a Pascal program. First, the external assembly lan-
guage routine must be declared in the Pascal program. This is done by
declaring a level 1 procedure or function (i.e., one contained only by the
main program) using the forward directive. A good place for these declara-
tions is prior to the first nonexternal heading.

For example:

FUNCTION MSGCOPY (m:Ptrqdata):Ptrqdata;
FORWARD;

The external assembly language subroutine may then be called just as any
Pascal procedure or function. The second requirement concerns the file that
contains the assembly language routine. This file must have an entry point,
that has been declared external with an XDEF, with the same name as the
procedure of function in the Pascal program. The assembler must be in-
formed that the subroutine is to be included in section 9. A *SECTION 9~
directive at the beginning of the assembly language subroutine file accom-
plishes this.

Calling a Routine

Calling an assembly language routine is identical in format (and its run-time
requirements are identical in system usage) to a regular function or proce-

Motorola Pascal Register Usage AP9-37

dure call in Pascal. Parameters, for example, are placed on the top of the
stack, beneath the return address, in the order they are declared; the first
parameter is stacked first and the last parameter is nearest the top of the
stack. If the assembly language routine is declared a function, the space for
the return value is below the first parameter on the stack (i.e., the address
contained in A7 plus a positive displacement). For example, given the dec-
laration and call in the following Pascal program fragment:

FUNCTION SUMTHREE(,J,K:INTEGER):INTEGER; FORWARD;

BEGIN
A:= SUMTHREE(3,5,7);

the stack would look as follows upon entry to the assembly language subrou-
tine named Sumthree:

Top of Stack (A7) ————>» low address
RETURN ADDRESS
4 bytes

! FORMAL PARAMETER
1 K; 4 bytes;
: value = 7
1 FORMAL PARAMETER
v J; 4 bytes
value = §
FORMAL PARAMETER
; 4 byles
value = 3
FUNCTION VALUE
SUMTHREE: 4 bytes;
value is undefined high address

POSITIVE
OFFSETS
FROM A7

The size of parameters depends on the type.

A VAR parameter passes a four-byte address of the actual parameter that
can be used to reference the actual parameter via indirection. A value pa-
rameter passes the value of the expression that corresponds to the formal
parameter.

Boolean parameters occupy two bytes on the stack, but only the byte closer
to the top of the stack contains valid data. This byte has the value of one for
true and the value of zero for false.

Character parameters use two bytes on the stack, but only the byte closest

to the top of the stack contains valid data. This byte has the value of the
ASCII code for the character passed in it.

AP9-38 PS 390 Advanced Programming

Integer parameters occupy four bytes on the stack. They are stored as 32-bit
two’s-complement numbers. Integer subrange types that fall into the range
-128 to 127, inclusive, use type bytes on the stack, but only the byte closer
to the top of the stack contains valid data. They are stored as 8-bit two’s-
complement numbers. Integer subrange types that extend outside of the
range -128 to 127, inclusive, but are within the range -32768 to 32767,
inclusive, use two bytes on the stack. They are stored as 16-bit two’s-com-
plement numbers.

Real parameters occupy four bytes on the stack, with the sign bit being
closest to the top of the stack. Real parameters occupy eight bytes on the
stack, with the sign bit being closest to the top of the stack. Xreal parame-
ters occupy ten bytes on the stack, with the sign bit being closest to the top
of the stack.

Set parameters require eight bytes on the stack, with the byte nearest the
top of the stack containing bits 63-56 and the byte farthest from the top of
the stack containing bits 7-0.

Arrays and records occupy a number of bytes equal to their length, plus one
if they are of an odd length. The filler byte is the byte farthest from the top
of the stack.

Strings should always be passed to assembly language routines as VAR
parameters, due to the complexity of determining their actual size on the
stack.

Pointers require four bytes on the stack and they contain the address of the
variable they reference.

Registers

The assembly language subroutine is responsible for preserving the value of
registers A3, AS, and A6 during its execution. It is also responsible for
removing from the stack all parameters passed to it by the Pascal program,
and for storing a value in the return value location on the stack if the sub-
routine was declared as a function.

The values of the A5 and A6 registers may be of use to the assembly lan-
guage routine, since AS points to the base of the global variable area and

Motorola Pascal Register Usage AP9-39

A6 points to the base of the local variable area of the procedure or function
that was being executed when the assembly language routine was called. To
reference a variable in either of these areas, a negative displacement from
the register must be used.

The assembly language subroutine is free to use the space between the top
of the stack (pointed to by A7) and the top of the heap for local data stor-
age. The address of the top of the heap is kept in the long word which is
located in memory at a positive offset of four from the address in register
AS.

If A7 ever contains an address that is less than the address of the top of the
heap, a stack/heap overflow condition has occurred. If a stack/heap over-
flow has occurred, then both the stack and the heap may contain invalid
data.

Control may be returned to the Pascal program by means of either a return
from subroutine instruction or a jump indirect through an address register
which contains the return address. No matter which method is used, it is up
to the assembly language subroutine to adjust the stack so as to remove the
passed parameters. If the assembly language routine returned a function
value, then A7 should point to that location on the stack where the space
was reserved for the return value prior to the call. If the assembly language
routine did not return a function value, A7 should point just below where
the first parameter was pushed on the stack.

The following is a picture of the stack for the SUMTHREE routine, seen
earlier, just before the return to the Pascal program:

TOP OF STACK ON ENTRY low address
TOP OF STACK A7——— = ——— >
AT EXIT FROM FUNCTION FUNCTION VALUE
SUMTHREE: 4 bytes;
value = 15
high address

AP9-40 PS 390 Advanced Programming

9.9 Commhead Format

Commbhead

RECORD

Actlist: Ptrnamedentity ;
Actlock: Lock ;
Mischead: Lock ;

Fenkill: Ptrnamedentity ;
Killer: Ptrnamedentity ;
Auclock: Lock ;
Updlock: Lock ;

Dcr: Ptrder ;
RedAmbient: Int16;
GreenAmbient: Int16;
BlueAmbient: Int16;
Packet_Received: BOOLEAN,;
NotUsed2: Int8;
Rdyuph: Ptravupblk ;
Rdyupt: Ptravupblk ;

FSpointer: Integer;
Dtroy_alpha: Ptralphablk ;
Dtroy_FI: Ptrnamedentity ;
Dtroy_IS: Ptrfcninputs ;

Prilist: Fen_pri_array ;
Pritail: Fen_pri_array ;
Prilock: Fen_lock_array ;
Chfont: Ptrnamedentity ;
G_msglist: Ptrmsglist;
Hashlock: Lock ;
Hashlength: Int16 ;
Hashtable: Ptrhash ;
Parsedict: Ptrdictarr;
ParseXcode: PtrXcodearr;

Commhead Format

{ Active functions }

{ Lock on Actlist }

{ Lock on cheader fields }

{ not otherwise locked }

{ Dying functions }

{ Their killer }

{ Lock on alpha 1/ .Usage }
{ Lock on Pasuph/t }

{ THE DCR }

{ ambient light base color... }
{ ... for shading ... }

{ ... see SHADEINTF.DOC }
{ for transfer indicator }

{ Head: ACP fmt’d updates }

{ Tail: ... }

{ Above here, known to ACP? }

{ makes FS 1t/ .error available V171 }
{ Destroy’s name }

{ its function inst. }

{ its input set fcn instance blocks }
{ in priority order }

{ head }

{ tail }

{ Locks on each }

{ Standard character font }

{ Canned messages }

{ Lock on the hash table & Ith }

{ Length of the hash table }

{ Dictionary of all names }

{ Normal command dictionary }

{ expanded Pcodes for Normal }

{ command syntax }

AP9-41

AP9-42

Head1: INTEGER;
Head2: INTEGER;
Functdict: Ptrfdictarr;
Functable: Ptrfcnarrays,
PCperGCP: PtrPCpGCP ;
FNany: Boolean ;
FNptrlock: Lock ;
Fnperuser: Ptrfnpuser ;
FnperGCP: PtrfnpGCP ;
Fen_nact: Ptrintarray ;
Fen_ttim: Ptrintarray ;
Fen_mtim: Ptrintarray ;
Last_ci_n: Int16 ;
Ini_sav_st: Ptrsavstate ;
Std_chfont: Ptralphablk ;
Password: Ptrqdata;
Updsync: intl6 ;

{ really a PtrZHead: PS340 ScanLine- }
{ ZBuffer head of edgepair linked-lists }
{ Dictionary: function names }

{ Table: function specs }

{ PC report stats for each GCP }

{ Should we bother to time fns }

{ Gain right to change fnper* fields. }

{ Per user fn report }

{ Per GCP fn report }

{ # of function activations }

{ total running time of fcns }

{ maximum running time of fcns }

{ ID number for CI; locked by Hashlock }
{ initial save state }

{ standard char font }

{ password gstring }

{ sync level (lock w/ Updlock) }

Notused4: Integer; Crash_dcr: Ptrder;{ for system wide crashes }

Crash_lod: Ptrnamedentity;
TwoK Location: PtrTwokK;

setup_tables: ptrsetup;
Plotinprog: Boolean;
PlProglock: Lock;
Ibm_table: Ptribmtrn;

Ibm_device: Ptribmdevice;
ASC_IBM_conv_table: Ptrcnvtable;

Mvup0_pad: int8 ;
Mvupl_pad: int8 ;
Noupdates: Boolean ;
Vupl_pad: int8 ;
Vup2_pad: int8 ;
Vup3 pad: int8 ;

WhoAllPlot: ARRAY [1..4] OF CHAR,;

WhoPlLock: Lock;
HCPiniComp: Boolean;
PliniLock: Lock;
MemOKIlock: Lock;

MemOKavailable: Arrmemok ;

{ for system crash messages }

{ Loc to save MM for 2-k acp }
{ Terminal setup information }
{ Plot in progress }

{ Plot in progress lock }

{ so either here }

{ halt updates iff noupdates }
{ is false used in wrtback }

{ pad Noupdates to .1 }

{ to speed value updates }

{ Which user has a plotter }
{ allocated to self }

{ Plotter allocation lock }

{ No error during plot init }

{ Plotter initialize lock }

{ Multiple GCP requires }

{ bytes left }

PS 390 Advanced Programming

MemOKnumallocated: Arrmemok ; { bytes initially allocated }
User_scopes: ARRAY [0..3] OF Scopearray; { Log-phys scope map per user }

Schedstuff: Ptrschedarray ; { for experiments }
Howtorun: pGCPshowtorun ; { CPU allocation }
tap: Ptrtaprecord ; { For shoulder tap response }
Finuph: Ptravupblk; { Finished update head }
Finupt: Ptravupblk; { Finished update tail }
NotusedS: Int16; UpKillFcn: Ptrnamedentity; { Update killer function }
UpKillFlg: Int8; { Update Kkiller flag }
Type340: Char, { Type of 340 system }
Frametime: Int16; { Seconds for frame--ACP timout }
Maxframetime: Int16; { Max Seconds for sectioning }

{ frame--ACP timout }
GoOn: goontype ; { Keepgoing in mass memory }
VopFunction: Ptralphablk; { viewing operation function }
Mcrash: tCrashinfo ; { Info about crash in master }
Scrash: tCrashinfo ; { Info about crash in slave }
WrtBackFcn: Ptralphablk; { Write back data function }

Pasuphs: ARRAY [MemOKindex] OF Ptravupblk; { Pascal update listheads }
Pasupts: ARRAY [MemOKindex| OF Ptravupblk; { Pascal update listtails }
Fmtfcns: ARRAY [MemOKindex] OF Ptrnamedentity; { Update formatters }
mem_thresh: INTEGER; { No big carves if they’ll go below this }
no_mem_on: BOOLEAN; { Nomemsched is running }
IBM3270_saved_variables: Ptribm3270;

Commhead Format AP9-43

9.10 Operation and Data Node Formats
Operation Nodes

An operation node is a data structure that modifies the state of the display
processor. As shown in Figure 9.10-1, an operation node consists of an
integer that indicates this display structure is an operation node (=1), an
integer that specifies the particular type of operation node, the descendent
alpha, and a variable number of fields required by that particular type of
operation node. For any operation node, bit 15 of the operation type is a
conditional bit. If this bit is set, and if bit 15 (the blink bit) in the Condition
Mask of the ACP State is zero, then the associated operation node is not
performed. In all other cases, the operation node is performed. In all cases,
the descendant of the operation node is traversed. Figures 9.10-2 to
9.10-28 detail each of the operation nodes.

A box shown as — —] indicates a long word (32-bits).

NOTE

Motorola uses the following Byte ordering:

AO AO+1

AO+2 AO+3

This is different than the Byte ordering on a VAX:

AO+1 AO

AO+3 AO+2

AP9-44 PS 390 Advanced Programming

Operation Node Formats

Operation Node

C[Operation Type

— Descendent Alpha

Field 1

Field 2

Field n

Figure 9.10-1. General Operation Node Format

NOTE

A “C” in the left corner of the Operation Type block
indicates the conditional bit (bit 15).

Operation Node

Operation Type

Descendent Alpha

r X Center

Y Center

{{Igz;lli#e#dwilh) Z Center
Exponent of @ 1 X Size
Y Size
\ Z Size

Figure 9.10-2. Viewport

Operation Node

Operation Type

Descendent Alpha

Exponent

M (1,1)

M (1,2)

M (2,1)

M (2,2)

Figure 9.10-3. Character Rotate, Character Scale, Character Size, Matrix_2x2

Operation and Data Node Formats

= Viewcon

Viewport
Center

Viewport
Size

= Matcon2

AP9-45

Operation Node 1

C Operation Type

w

= Matcon3

— Descendent Alpha —

Exponent
— M (1,2) —

]

Tran Flag 0| 0 = No Translation
Follows

Figure 9.10-4. Rotate, Scale, Matrix_3x3

Operation Node 1

C Operation Type 4| = Matload4
— Descendent Alpha —

Exponent (Row 4)

Exponent (Row 1-3)
— M (1,1) —
— M (1,2) —

— M (4,4) —

Figure 9.10-5. Window, Eye Back, Field_of_View, Matrix_4x4

Operation Node 1

C Operation Type 5| = Translate
b— Descendent Alpha —

Exponent

— Tx]

I ’[‘y —_—

— Tz —]

Figure 9.10--6. Translate

AP9-46 PS 390 Advanced Programming

Operation Node 1

(=2

Cl Operation Type = IncLLOD

— Descendent Alpha

Figure 9.10-7. Increment Level-of-Detail

Operation Node 1
CI Operation Type 7| = DecLOD

— Descendent Alpha —

Figure 9.10-8. Decrement Level-of-Detail

Operation Node 1

CI Operation Type 8| = Change Bits

— Descendent Alpha —
Wordindex
Offmask

Onmask

Figure 9.10-9. Set Level-of-Detail, Set Conditional Bit
Set Displays, Set Character Orientation,
Set Contrast, Set Depth_Clipping,
Set Rate External, Set Blinking,
Set Line_Texture

NOTES

- LOD value
— Conditional bits

Wordindex =

0
1
2 -
3
4

Line Generator Mask
Enable/PLS Mask
Line Texture value

The changebits operation node is created by several different PS 390 user
commands. Its format is shown above. These PS 390 commands determine
the wordindex and also the offmask and onmask. When encountering this
node in the structure, the ACP processor locates the correct mask according
to the wordindex value. It then modifies the bits in this mask by turning
OFF the bits indicated in the Offmask and then turning ON the bits indi-
cated in the Onmask.

Operation and Data Node Formats AP9-47

Command Wordindex Bits used Offmask Onmask

Set LOD 0 0-15 16#FFFF LOD value
Set conditional_bitn on 1 n XX XX
Set conditional_bit n off 1 n XX 0

where XX is the 16 bit word with bit n set

Set csm on 2 6 16#0040 0

Set csm off 2 6 16$0040 168040

Set displays all on 2 12 16#1000 0

Set displays all off 2 12 16#1000 16#1000
Set plotter on 3 11 16#0800 16#0800
Set plotter off 3 11 16#0800 0

Set picking on 3 15 16#8000 16#8000
Set picking off 3 15 16#8000 0

Set depth_clip on 3 2 16#0004 0

Set depth_clip off 3 2 16#0004 16#0004
Set char world_oriented 3 12,13 16#3900 0

Set char screen_oriented 3 12,13 16#3900 16#2000
Set char screen/or/fixed 3 12,13 16#3900 16#1000
Set Line_texture 4 2-8 16#3FC Texture
Set Line_texture contin 4 2-8,9 16#3FC 16#0020

OR Texture

NOTE

Set CSM and Set Plotter are not supported on the
PS 390.

AP9-48 PS 390 Advanced Programming

Operation Node

Operation Type

=]

Descendent Alpha

C Type

C Bit

= Bit Test Conditional
Mask

Figure 9.10-10. IF Conditional_Bit, IF Phase (Bit 15)

C Type =

NOTES

0 Bit off

1 Bit on

Operation Node

Operation Type

=]

Descendent Alpha

C Type

C Val

= Value Test
Level of Detail

Figure 9.10-11. IF Level of Detail

C Type =

2-Les
3-Eq
4-Leq
5-Gtr
6-Neq
7-Geq

Operation and Data Node Formats

NOTES

AP9-49

AP9-50

Operation Node 1

C Operation Type 10{ = Mat3 Trans

— Descendent Alpha —

Exponent
— M (1,1) —
— M (1,2) —

»

p—— M (3,3) -]

Tran Flag 11 1= granslaﬁon
ollows

Exponent

— Tx —

b Tz J—

Figure 9.10-12. Look At/From, Matrix_4x3

Operation Node 1

Cl Operation Type 11| = Trypick

— Descendent Alpha —

Y Max
Real # with Y Min
Implied
Exponent of @ X Max
X Min

Figure 9.10-13. Set Picking Location

Operation Node 1

C Operation Type 12| = Pickname

— Descendent Alpha —

— Previous Pick Node -

Alpha Pickname -

Figure 9.10-14. Set Picking Identifier

PS 390 Advanced Programming

Operation Node 1

(1 Operation Type 13| = Set Charfont

— Descendent Alpha —

Char Font Alpha —

Figure 9.10-15. Character Font

Operation Node 1

Cr Operation Type 14| = Set Color

— Descendent Alpha —

Hue l

Saturation

Figure 9.10-16. Set Color

NOTES

Saturation = 4 bits (bits 6..3)

Hue = 7 bits (bits 14..8)

All bits set is maximum
saturation

Clear Hue = ¢, all bits set
is max hue

Operation Node 1

Cl Operation Type 15| = Set Blink Mode

— Descendent Alpha

Ct

bP/////////////////////////////

M

N

Figure 9.10-17. Set Rate

NOTES

Ct = Value counting down to zero;

b = Blink bit; set initially to 1
Blink on for M
Blink off for N

Operation and Data Node Formats

AP9-51

Operation Node 1
CI Operation Type 16| = Set Intensity

— Descendent Alpha —

If zero, ignore

Intensity flag this node,
Real # with Z Center
Implied -
Exponent of @ Z Size

Figure 9.10-18. Set Intensity

NOTES

Center is minimum intensity.
Size is the difference between minimum and maximum.

Operation Node 1
C Operation Type 18| = Xformi

- Descendent Alpha —

— Destination Alpha

Figure 9.10-19. Xform Matrix

Operation Node 1
C Operation Type 19| = Xform2

Descendent Alpha —

— Destination Alpha —

Figure 9.10-20. Xform Vector

Operation Node 1
Cl Operation Type 21| = Wrtdata

— Descendent Alpha —

Progress flag

Data node count

Vector count

max. data node count

— Progress flag

- Progress flag

Figure 9.10-21. Writeback

AP9-52 PS 390 Advanced Programming

Operation Node

Operation Type

Descendent Alpha

Alpha to Modeled view

Pointer to Linked List

X*0001’

X‘0001’

X‘40000000°'

X*00000000’

X ‘40000000’

Figure 9.10-22.

— Perform Viewing
Operation

Exponent 141 - 144

Exponent 111 - 134
111

112

Identity matrix

144

Solid_Rendering, Surface_Rendering

Operation Node

Operation Type

24

Descendent Alpha

X‘0001’

X‘0001°

X ‘40000000’

X‘00000000’

X*40000000’

_ Define Sectioning
~ Plane

Exponent 141 - 144

Exponent 111 - 134
111

112

Identity matrix

144

Figure 9.10-23. Sectioning Plane

Operation and Data Node Formats

AP9-53

AP9-54

Operation Node 1

C Operation Type 26| = Lightpen

— Descendent Alpha —

Node on/off

Control word

Delta Position Position delta limit
Sample Counter Sample count to output
Use New X,Y
Not used
New X E:Jesr;:trers.pccified cross X
New Y User specified cross Y

center.

Figure 9.10-24. Light Pen

NOTES

The Light Pen is not supported on the PS 390.

Node on/off:
Bit 6 —-

5——

Control word:
Bit 9 —

8 ——

7 —

Use new XY:
Bit 10 —

Set if you have not triggered this operation
node. (USER.NODE.OFF)

Set if the GCP wants the ACP to display only a
tracking cross. (GCP.NODE.OFF)

Set if screen blast enabled. (BLAST.ON)
Set if a tracking cross enabled. (CROSS.ON)

(Set if the debug mode enabled —— company
confidential) (LP.DEBUG)

Set if you specified (X,Y) coordinate is used to
position a tracking cross. (NEWXY.ON)

New X and New Y:
They must be values in the range from X’4000’ to X’C000°.
Where X’4000° is assumed to be 1 and X’C000’ -1.

PS 390 Advanced Programming

Operation Node

Operation Type

28| = Matload2

Descendent Alpha

Exponent

M (1,1)

M (1,2)

M (2,1)

M (2,2)

Figure 9.10-25. Text Size

Operation Node

Operation Type

30 | = LoadViewport

Descendent Alpha

X Center

Y Center

Viewport

Real # with
Implied <

Z Center

Center

Exponent of @

X Size

Y Size

Viewport

\

Z Size

Size

Figure 9.10-26. Load Viewport

Operation Node

Operation Type

32

= BlinkRate

Descendent Alpha

Rate

Figure 9.10-27. Set Blink Rate

Operation Node

Operation Type

34

Descendent Alpha

Y Max

Real # with
Implied

Y Min

Exponent of @

X Max

X Min

= LoadPickbound

Figure 9.10-28. Load Picking Location

Operation and Data Node Formats

AP9-55

Data Nodes

A data node is the display structure primitive that causes data to be drawn
by the ACP. A data node consists of an integer that indicates this display
structure is a data node (=2), an 8-bit field that specifies the mode of vec-
tors in the data node, an 8-bit integer that specifies the particular type of
data node, a 32-bit integer which points to the next data node of identical
data type, an integer (n) that specifies the number of vectors, polygons or
characters in the data node, a 16-bit integer that specifies the pick index,
and either vector data (including polygons) or character data. Vector data
consists of the two- or three-dimensional vectors (preceded by polygon at-
tribute information if polygons). Character data consists of an initial trans-
lation, spacing information, and the character string. The general format of
a data node is illustrated in Figure 9.10-29. A description of the fields can
be found in section 2.2.2.4.

Data Node 2
A Do_Dots Data Type

— Pointer to Next Data Node —

n

Pick Index

Line Texture Traverse Count

* Color

Figure 9.10-29. General Data Node Format

AP9-56 PS 390 Advanced Programming

NOTE: The data formats in figures 9.10-30 and 9.10-31 are not displayable.

Data Node
Do_Dots | Data Type 0 | = Vec3f0

— Pointer to Next Data Node —

n

Pick Index

X1
Y1
z1

Exponent 1 | Intensity 1 l d

X2
Y2
z2

Exponent 2 | Intensity 2 | d

Xn
Yn
Zn

Exponent n I Intensity n l d

Figure 9.10-30. Vector_List N=n X1,Y1,Z1 X2,Y2,Z2 ... Xn,Yn,Zn
Vector-Normalized (Full Vector) - 3D (Vec310)

Data Node 2
Do_Dots L Data Type 1| = Vec2f0

— Pointer to Next Data Node —

n

Pick Index

X1
Y1

Exponent 1 I Intensity 1 I d

X2
Y2

Exponent 2 L Intensity 2 I d

Xn
Yn

Exponent n L Intensity n l d

Figure 9.10-31. Vector_List N=n X1,Y1,-- X2,Y2,—- ... Xn,Yn,——
Vector-Normalized (Full Vector) — 2D (Vec2f0)

Operation and Data Node Formats AP9-57

PS 390 Block-Normalized Data Node Formats

AP9-58

Note: Fields marked by asterisks are not used nor accessed by normal
ASCII and GSR commands. The top bit in the second word of each of these
formats (labeled “A”) is a flag which, if clear, tells the display structure
walker to process these fields. This bit is set by default, and there exists no
command to clear it. Advanced user-written functions and programs using
the physical read/write facility may however, use these fields and clear that

flag.

Data Node 2

A

Do_Dots

Data Type 6 | = DstringD

Pointer to Next Data —

Number of Characters

Pick Index

Line Texture

Traverse Cnt

Color

Tx

Ty

Tz

» Character Translation

Translation Exponent | /1111111111111

Exponent

M (1,1)

M (1,2)

» 2x2 Character Matrix

M (2,1)

M (2,2)

Delta x

Delta y

Spacing between
Characters

Char 0

Char 1

Char 2

Char 3

L4

Figure 9.10-32. Characters, Labels Character string (DstringD)

NOTES

Pick Index is always ¢ for Characters, ¢ for first label, 1
for next label,etc.
A label block with only one label is indistinguishable
from a character node.

PS 390 Advanced Programming

Data Node

2

A

Do_Dots Data Type

12

Pointer to Next Data Node

n

Pick Index

Line Texture l Traverse Cnt

Color

Exponent I Intensity

X1
Y1
Z1

X2
Y2
z2

o~~~ |~~~

Xn
Yn
Zn

Figure 9.10-33. Vector_List Block N=n X1,Y1,Z1 X2,Y2,Z2 ... Xn,Yn,Zn

Data Node

2

A

Do_Dots Data Type

13

Pointer to Next Data Node

n

Pick Index

Line Texture | Traverse Cnt

Color

Exponent | Intensity

X1
Y1

~

X2
Y2

Xn
Yn

~

= Vec3bs2

= Vec2bs2

Figure 9.10-34. Vector_List Block N=n X1,Y1 X2,Y2 ... Xn,Yn

Operation and Data Node Formats AP9-59

Data Node 2
Al Do_Dots Data Type 14 | = Vec2bd0
— Pointer to Next Data Node —
n
Pick Index
* Line Texture I Traverse Cnt
* Color
Exponent l Intensity
X1 (H)
0 X1 (L)
Y1 (H)
0 Y1 (L)
Z1 (H) /
0 Z1 (L) d
X1 (H)
0 X1 (L)
Y2 (H)
0 Y2 (L)
Z2 (H) /
0 Z2 (L) d
L]
L]
L]
Xn (H)
0 Xn (L)
Yn (H)
0 Yn (L)
Zn (H) /
0 Zn (L)

Figure 9.10-35. Vector_List N=n X1,Y1,7Z1 X2,Y2,7Z2 ... Xn,Yn,Zn

AP9-60 PS 390 Advanced Programming

Data Node

2

A

Do_Dots

Data Type

15

Pointer to Next Data Node

n

Pick Index

Line Texture

Traverse Cnt

Color

Exponent

Intensity

X1 (H)
X1 (L)

Y1 (H)
Y1 (L)

~

X1 (H)
X1 (L)

Y2 (H)
Y2 (L)

o~

Xn (H)
Xn (L)

Yn (H)
Yn (L)

Figure 9.10-36. Vector_List N=n X1,Y1 X2,Y2 ... Xn,Yn

Operation and Data Node Formats

= Vec2bd0

AP9-61

9.11 Error Types/Error Numbers

There are three crash error types in the PS 390. Each type has a set of error
numbers associated with the type. The three types are:

1.
2.
3.

The following is the list of errors for each type.

System Errors
Traps

Exceptions

Type 1 - System Errors

AP9-62

MmO O W o o a9 AW N R

O T U U U U U S Sy
0 < O BN = O

Track number out of range
Disk drive not ready

Disk remains busy after a seek
Block number out of range
Lost data during read

Record not found during read
Data CRC error during read
ID CRC error during read
Lost data during write

Record not found during write
Data CRC error during write
ID CRC error during write
Write fault

Disk is write protected

Lost data during format

Write fault during format

Disk drive number out of range
Seek error

Drive not ready during read

Drive not ready during write

Disk not at track ¢ after restore command

PS 390 Advanced Programming

19
1A
1B
1C
1D
1E
1F
64
65
66
67
68
69

6A
6B
6C
6D
6E
6F

70

71

72
73
74
75
76
77
78
79
TA
7B

Disk busy after restore command

Track number out of range during format

Drive not ready during format

Disk write protected during format

Time out during read

Time out during write

Time out during format

Wait maybe called with nil argument

Wait maybe called with a non-function

Wait maybe, already a function waiting

Wait maybe, parameter function waiting elsewhere
Q ship to an unrecognized Namedentity

Msgcopy, Message type shouldn’t be copied
Msgcopy, Msg type Has structure, unknown to Msgcopy
Send, 'Me’ = nil

Send, 'Me’ not a function instance

Send, No such output port for this function
Rem_conn/Add_conn, Al = nil

Add_conn, A2 = nil

Findqueue, Named item = nil

Findqueue, illegal queue number (queue no. < ¢ or queue no. > no. of

inputs for function)
Allinpwait, Nmin > Nmax
Allinpwait, Nmin < 1
Tmessage, Waiting and n = ¢

Cmessage, Waiting and n = ¢

Lookmessage, Waiting and n = ¢
Allinputs, Nmin > Nmax
Allinputs, Nmin < 1

Fcnnotwait, Me = nil

Findqueue, found a nil queue!
Waitnextinput, n = ¢

Error Types/Error Numbers

AP9-63

AP9-64

7C
7D
7E
7F
80
81
85
8D
8E
8F
90
91
92
93
94
95
96
97
99
9oC
9D
9E
Al
A3
A9

55385 %

BO
B3

Anyoutputs, Me = nil

Anyoutputs, illegal outset number

Anyoutputs, no outset where there should be
Fdispatch, function failed to re-queue after running
Text_text, Bl < ¢

Char_text, b < ¢

Error during disk read

Initial structure not correct

AnnounceUpdate List tail = nil;head < > nil
FormatUpdate Somebody’s sleeping in my bed
FormatUpdate Ready Head not nil but Tail is

Bad code file —- illegal Op

Bytelndex Invalid Acpdata type

FormatUpdate, PASCAL Head not nil but Tail is
Vec_size, Invalid Acpdata type

KillUpdate, Updfetch was < ¢

KillUpdate, Some one was sleeping in my bed
Vec_bias, Invalid Acpdata type

CntCapacity, Invalid Acpdata type

Unknown brand of Namedentity

Hasstructure knows something I don’t

Amuhead not a Qalphapair

AppendVector, Invalid Acpdata type

Nomemsched, Bad .Status for a fcn

Bad update list on ACP time-out

ACP Timeout during initialization

Crashprepare, Name CRASHS has not been defined
DecUpdsync, C_header * .Updsync < ¢
FormatUpdate, Someone waiting in C_header "~ .Updswait already
Someone else waiting in C_header * Killer already
Non-nil Qwait of a dying function

Microcode won'’t fit into ACP

PS 390 Advanced Programming

B4
B8
B9
BA
BD
BF
Co
C1
C2
C3
C9
CA
CB
CC
CD
CF
DO
D1
D2
D3
D4
DS
D6
D7
D8
D9
DA
DB
DC
DE
DF
E0

Implementation limit on delta waits (2**31)

detected internal inconsistency

detected error (passed a bad parameter)

diskette’s parsecode table inconsistent with parser

Bad boundary on binary data xfer

default Devsts contains errors

Inwait, f is already waiting or not a function

Outwait, f is already waiting or not a function

ECO Level of GCP does not support S6K Baud Line

Port 1 Configuration is invalid for 56K Baud Line Support
User generic function stack overflow

Ug_run_cnt has become negative

User generic function has bad alpha (on private queue)

Bad format of MSGLIST .DAT detected

MSGLIST (or code using it) has probably been corrupted
Apparent datastructure incompatibility

Bad MemOKindex detected

routine passed bad parm (e.g., a nil ptr)

Lines to IBM system not active

Floppy disk file INITGPIO.DAT; not found or unable to read
Floppy disk file GPIOCODE.DAT; not found or unable to read
Floppy disk file IBMFONT.DAT; not found or unable to read
Floppy disk file IBMKEYBD.DAT; not found or unable to read
Floppy disk file IBMASCILDAT; not found or unable to read
IBM GPIO timeout

No. of minimum inputs is negative

No. of maximum inputs < No. of minimum inputs

No. of maximum inputs > # inputs for function

Sendlist detected a bad list

Sendmess: message to be sent is NIL

Caller did not have a lock set already

Curfcn in improper state to call Getinputs

Error Types/Error Numbers AP9-65

E1 Cleanin, Curfcn in improper state to call Cleaninp (e.g., have you
first called Getinputs?)

E2 Somebody remembered a forgotten non-fcninstance
E5 Alpha not already locked by caller

E6 Confusion in discarding bad message

E7 Lock not already set by caller

E8 Probable multiple master GCPs

E9 RemOne, Curfcn does not have that many inputs

EA RemOne, Message to be deleted and message pointed to by Curin-
puts is not the same

EB Lock not already set in Gatheraupdate call

ED Get2locks detected lock already set

EE Error in semantic routine for polygon vertex

EF Destination Alpha was not already locked

FO Parent not already locked in add/remove from set
F1 Child not already locked in add to set

F3 Alpha not already locked in Gpseudoaupdate

F6 Confusion about locks or decausages

F7 Unknown tap reason

F8 Unanticipated state at which to see shoulder tap
F9 Illegal number of inputs

FC No existing DCB found for this user

FD Timeout, Message on input 1 disappeared before fcn could get it
FE Error while initializing disk drive

FF Error while reading disk header

100 Error while reading disk directory

101 THULE.DAT not found on disk
102 Error while reading THULE.DAT
103 Curfcn was not active at entry
104 Viewport not in structure
105 Real_simple, number of digits requested out of range (n<1 orn >9)
106 Getnextone, illegal queue specified

107 Getnextone, msg on head of queue and specified by Curinput do not
agree

AP9-66 PS 390 Advanced Programming

108
109
10A
10B
10C
10D
10E
10F
110
111
112

113

Type 2 -

W N = O

O W P> © o 9 6 L oM

O

Getnextone, no message on queue, but Curinput < > NIL
ContBlock, nil block

Timeout when waiting for all on-line GCPs

Rehash only works first time, only time now.

No processor has right to issue this tap

GetVector, Not an Acpdata block

GetVector, Not a vector Acpdata block

Invalid gpacket received

Tolerance on FCnearzero is absurd

set construct of father has no dummy control block

function code has to be of type CI to have elements included and re-
moved

ShadeEnviron node encountered in non PS 340

Traps

No mass memory on line, or too little to come up
More OKINTs than NOINTs or > 128 NOINTSs
Free storage block size bad (on request or in free list)

Attempt to Activate a non-function (or nil) or bad software detected
during startup (most commonly, incompatible datastru.sa detected but
perhaps invalid startup routine sequencing (if someone has been muck-
ing around with it))

NEW call failed to find memory, within NOMEMSCHED
Attempt to queue where a function is already waiting
Systemerror(n)

Badfcode(Fcn)

Mass Memory Error Interrupt

Utility Routine not included in this linked system
Probable multiple DISPOSE of the same block

Block exponent not big enough

Attempt to divide with a divisor which is too small in Fix-
LongDivide(twice the dividend must be less than the divisor)

(Used by Motorola PASCAL)

Error Types/Error Numbers

AP9-67

Type 3 - Exceptions

AP9-68

w N = O

O 00 3 O W A

10
11
24

Reset: Initial SSP
Reset: Initial PC

Bus Error (i.e. attempt to address nonexistent location in memory)

Address Error (i.e. attempt to access memory incorrectly, for example
an instruction not starting on a word boundary).

Illegal instruction
Zero Divide

CHK Instruction
TRAPV Instruction
Privilege violation
Trace

Line 1010 Emulator
Line 1111 Emulator

Spurious interrupt

PS 390 Advanced Programming

9.12. F:USERUPD

Updates Function Introduction

Applications for robotics, animation, and simulation require rapidly updated
viewing transformations. The Updates Function, F:USERUPD, was created
to allow data structures to be updated quickly by transferring data from the
host to the PS 390 very rapidly. F:USERUPD is an enhancement included
with Graphics Firmware Version A1l that can be used with all PS 390 inter-

faces.

Transferring data using the F:USERUPD consists of the following steps:

Instancing the F:USERUPD function. When the function is instanced,
it creates 256 names (Function Instance name 001 through Function
Instance name 256).

Creating a display structure using the names created by
F:USERUPD, to update the transformation nodes in that display
structure.

Setting up F:USERUPD by sending the bytes that describe SET
count, update types, and indices.

Updating the data structure by sending the data SET.

Note

The Updates Function, F:USERUPD, is preliminary
and may contain bugs. The functionality of the
F:USERUPD may change in response to feedback from
the wusers of this function. E&S has provided
F:USERUPD so that those users who need the ability to
perform fast updates via an RS-232 line may use the
function to determine if it meets their needs. E&S
makes no commitment to maintain the functionality of
F:USERUPD in its present form.

Transformation Updates Supported by F:USERUPD

The updates supported by F:USERUPD follow. Each update is identified by
a unique number.

F:USERUPD

AP9-69

AP9-70

Update

10

11
12

13

Update Types

Rot in X
Rot in Y
Rot in Z

Rot in XYZ

Tran in X
Tran in Y
Tran in Z
Tran in XYZ

String

Window

Look From
Field of View

Scale

Number of Bytes

Transmitted

2

1
string length

18

27

Description

Angle
Angle
Angle

Angles for XYZ axis
(rotated in order)

X coordinate
Y coordinate
Z Coordinate
XYZ coordinates

string length
string

Xmin, Xmax, Ymin,
Ymax,Front, Back

From XYZ, At XYZ, Up XYZ
Angle, Front, Back

XYZ Scale factors

The angle for rotations and the coordinates for translations have to be sent
in a particular format to this function. To minimize the number of bytes
transmitted on the communication line between the host and the PS 390,
numeric values are represented in angle values or a floating point format.

Angle Values

The angles for the rotations are represented as 65,536 ths of 360 degrees.
All angles must be positive. The angles are sent as two bytes with the high
order Byte being sent first. Representation for some common values fol-

lows:

PS 390 Advanced Programming

ANGLE BYTES (HEX)

(Degrees) (High) (Low)
0 . 00 00
45 20 00
90 40 00
180 80 00
270 Co 00
360*65*, 535 FF FF
65,536

Floating Point Format

Floating-point numbers are represented by three bytes each. The first byte
represents a sign bit and a base two excess 64 exponent. The mantissa sign
bit is the most significant bit of this first byte. The next 2-byte field is a
normalized 17-bit fraction with the redundant most significant fraction bit
not represented. The high-order byte of the fraction is sent first. A detailed
example is given at the end of this section.

DECIMAL NO. SIGN/EXPONENT MANTISSA (HEX)
0 00 00 00
.5 40 00 00
1 41 00 00
-3 c2 80 00
5 43 40 00

Each update will generate an output directed to predetermined data struc-
tures which are generated when the function is instanced.
Note

The examples in this document assume that you have
some knowledge of how floating point numbers are
represented in computers.

F:USERUPD

AP9-71

Update SET

Updates which are repeatedly carried out are termed as a SET. The number
of updates in a SET is the SET COUNT. After the system is initialized, each
SET of updates is sent from the host or the keyboard to the PS 390 in the
following format.

SET HEADER Char(6)
Data Byte
Data Byte
Data Byte
Data Byte
Data Byte
Data Byte

Each SET contains a SET HEADER (CHAR(6)) byte to indicate the begin-
ning of data for that SET. This is then followed by data bytes, the number
of bytes depending on the types of updates in that SET. For example, if the
set contained two updates, a ROT in XYZ and a TRAN in X then the num-
ber of data bytes for that SET would be 9 (6 bytes for the three angles and 3
bytes for the X coordinate).

The updates will not be performed until all the data bytes are received for
the particular SET of updates. It is your responsibility to ensure that the
data bytes are sent in the correct format. Failing to adhere to this will pro-
duce unpredictable results or a system crash, as there is no system check
for this condition.

The names are generated at the time the function is instanced. For example:

MTUP: =F : USERUPD;

will create 256 names MTUP001, MTUP002,.... MTUP256.

Initialization SET

Once the function is instanced, data for the types of updates and the index
to the associated names have to be sent to the function by the host or from

AP9-72 PS 390 Advanced Programming

the keyboard. This information is sent to the function only once. It deter-
mines the number of updates in the SET (namely SET COUNT), and (for
each update) the number corresponding to the type of update, and the index
corresponding to the name this update is to be directed to.

Note

The only way this information can be changed is by
re-initializing the function which is accomplished by re-
instancing it.

The index is the number corresponding to the name. If the index is 5, then
in the previous example, the update will be directed to MTUPQ0S5. Once this
information is sent to the function by the host or from the keyboard, data
can be sent to this function continuously in the format described earlier.
The format in which initialization data have to be sent is as follows:

SET HEADER Char(6)

SET COUNT Number of Updates in Set
Update Type Char (1) thru Char(13)
Index Index into the Names

l |

| l

Update Type Char (1) thru Char(13)
Index Index into Names

The name of the function can be any vaild PS 390 name. Thus, to update
transformation nodes within a data structure, use the following format.

World.myupdate :
World :

F:USERUPD;

BEGIN_STRUCTURE

Myupdate 001 := WINDOW ;
Myupdate 002 := ROTATE IN X O;
END_STRUCTURE;

Il

F:USERUPD AP9-73

AP9-74

Caution

It is your responsibility to make sure that the numbers
corresponding to the Update type and the indices are
within limits. No checks are made by the function to
ensure that the values are correct.

Failure to do so will result in a system crash without a
warning. There are no default values for the window,
look from, scale, and field of view commands. All pa-
rameters must be sent each time. For example; for the
field of view command, the angle as well as the front
and back boundaries have to be sent to the function
every time when performing a SET of Updates which
includes this command.

The function is very easy to use once you are familiar with the PS 390
Command Language. An example demonstrating the use of this function
from the keyboard follows. The same outcome can be accomplished by
sending the data from the host.

PP:=F:USERUPD;

PPOOl:= ROT O THEN PP002;
PPO02:= TRAN BY 0,0 THEN V;
V:=VEC 0,0 .5,.5 -.5,.5 0,0;
DISP PPOO1;

{Set up F:USERUPPD}

SEND CHAR (6)&CHAR (2)&CHAR (2) &CHAR (1) &CHAR (5) &CHAR(2) TO <1>PP;

Note the format of the data }

Set header, set count, uptype, index, uptype, index }

This indicates a rotate in Y directed to 1 and trans in X }
Directed to 2 }

Update data }

SEND CHAR(6)&CHAR (64)&CHAR (0) &CHAR (64) &CHAR (0) &CHAR (0) TO <1>PP;

{This will rotate the object 90 degrees in Y and translate .5 in X}

PS 390 Advanced Programming

Floating Point Example

EXPONENT BYTE

(Excess - 64)

y Mantissa sign bit

sl 1T 1 1 1 1]|

BT 7 6 5 4 3 2 1 0

Hidden Bit

17 BIT MANTISSA

-HIGH BYTE- --.. |- - LOW BYTE- -« «------- |

1

|| | [1 |

BIT 16 156 1413 12 1110 9 8 7 6 5 4 3 2 1 O

To elaborate on this
floating number 9.0

Real number =

example, observe the following representation of the

(2**Exponent x Mantissa) / (2**17)
[(2%*17) represents the number of bits in the
fractional part.]

Exponent = 68 (68 — 64 = 4)
9.0 = (2**4 x Mantissa) / (2**17)
Mantissa = 9.0 x 2%**13
= (2%*3 + 1) x (2%*13)
= 2%%]16 4+ 2%%13
= Hidden Bit + Bit 13
Hidden Bit
v |---------- HIGH BYTE- - - - - [----- LOW BYTE- - - - - - ----- |
1 HEEENEEN L

BIT 16 15 14 13

F:USERUPD

121110 9 8 7 6 56 4 3 2 1 0

AP9-75

Number EXP HIGH BYTE LOW BYTE

9.0 44 20 00 (HEX)

9.0 68 32 00 (DECIMAL)

The value of the exponent is the unsigned integer represented by the expo-
nent bits minus the excess of 64. Thus, the exponent 1 is represented as the
number 65 (65-64=1) and the exponent -1 is represented by the number 63
(63-64=1).

By convention, the real number 0 is represented by a value of 0 in the
exponent.

The fractional part of the real number is normalized such that 1/2 > [frac-
tional part] <1.

Program Examples

The following programs are contained on the PS 390 magnetic tape labeled
PSDIST distributed with the A1 version of the Graphics Firmware. The file
UPDATE.DAT also contained on the PS 390 magnetic tape should be
loaded on the PS 390 before any of the program examples are run.

PUPDATE.PAS - Pascal Example

PUPDATE.PAS is a program example of how to use the F:USERUPD func-
tion to perform fast updates over an RS-232 communications line. This pro-
gram is contained on the PS 390 magnetic tape labeled PSDIST and uses
the E&S supplied GSR routines to send the data to an instance of
USERUPD.

The program assumes that the file UPDATE.DAT has been loaded into the
PS 390. UPDATE.DAT contains the data structures to be updated, and also
instances F:USERUPD, initializes it, and connects it to output <11> of
CIROUTEQO. The program updates five rotation nodes, one translation node,
and a character string.

The structure being updated is a simple robot arm. Although the program
does not demonstrate all updates that are possible using F:USERUPD, it
does demonstrate a mechanism for building all of the data types that
F:USERUPD acknowledges.

AP9-76 PS§ 390 Advanced Programming

GSRLIB is a VAX logical name for the directory containing the GSR files.
The program assumes that the error handling procedure is named ERRHAN
and that it resides in the same directory as the GSR files.

Program HostUp (input, output);
CONST

{GSR const declarations}

%INCLUDE “GSRLIB:PROCONST.PAS/nolist”
TYPE

{GSR type declarations}

%INCLUDE “GSRLIB:PROTYPES.PAS/nolist”

String = Varying [80] of Char;
Int8 = [byte]O0..255;
Intl6é = —-32768..32767;

{ a variant record makes it easy to get the pieces of a vax real }
Vax_real = PACKED RECORD
CASE BOOLEAN OF
TRUE: (fr2: 0..127;
junk: Boolean { can“t use this bit }
exponent: 0..255; { place wants sign in exponent }
fro,frl: Int8);
FALSE: (r: Real);
END; {record}

VAR
current_angle : VARYING [2] OF CHAR; { USERUPD angles are 2 bytes }
current_real : VARYING [3] OF CHAR; { USERUPD reals are 3 bytes }

current_str : P_VaryingType; { USERUPD strings are }
{ up to 255 bytes }
Cnt : Integer;

Upl,IncUpl : Real;
Up2,IncUp2 : Real;
Up3,IncUp3 : Real;
Up4,IncUp4 : Real;
Up5,IncUp5 : Real;
Up6,IncUp6 : Real;
PrintString : String;
Update_set : P_VaryingType;
Pr_I : Intl6;

{ include the GSR EXTERNAL declarations }
%INCLUDE ‘GSRLIB:PROEXTRN.PAS/nolist”

{ include the GSR error handler }
%INCLUDE “GSRLIB:VAXERRHAN.PAS/nolist”

F:USERUPD AP9-77

AP9-78

{ These are the assembler routines to get exponents and mantissas }
PROCEDURE PUPDEXP (rnum: Real; VAR exp: Int8); EXTERN;

PROCEDURE PUPDFRA (rnum: Real; VAR mhi,mlo: Int8); EXTERN;
PROCEDURE Vax_Fp (rnum: Vax_real; VAR exp,mhi,mlo: Int8);

{ get the pieces of a USERUPD real from a VAX real }

BEGIN
PUPDEXP (rnum.r, exp);
PUPDFRA (rnum.r, mhi, mlo);
END;

PROCEDURE R_angle (angle: Real; VAR ahi,alo: Int8);

{ Get the pieces of a USERUPD angle from degrees }
CONST

Factor = 182.0444444; { magic number = 65536/360 }

{to turn degrees in to 65536°s of a circle }
VAR
itemp: Integer;
my_angle: real;

BEGIN
{ make any angle its equivalent in the range of O

my_angle:= angle;
IF my_angle >= 0 THEN { the angle is positive }
BEGIN
REPEAT { make the angle be 0>= angle
IF my_angle >= 360 THEN
my_angle:= my_angle - 360;
UNTIL (my_angle >= 0) AND (my_angle < 360);
End
Else { the angle is negative }
BEGIN
REPEAT { make the equivalent positive angle }
IF my_angle < O THEN
my_angle:= my_angle + 360;
UNTIL (My_angle >= 0) AND (my_angle < 360);
End;
itemp:= ROUND(My_angle * factor);

ahi := itemp DIV 256;
alo := itemp MOD 256;
END;

PROCEDURE R_real (r: Real; VAR exp,mhi,mlo: Int8

to 360 - 1/2**16 }

< 360 }

PS 390 Advanced Programming

{ copy a VAX real into the variant record and get the components }

VAR

rtt: Vax_real;
BEGIN

rtt.r:=r;

Vax_fp (rtt, exp, mhi, mlo);
END;

PROCEDURE P_rot (angle: Real; VAR Upd angle: VARYING [len] OF CHAR);

{ make a 2-byte string that is a USERUPD angle }
VAR
hiangle, loangle: IntS8;
BEGIN
Upd_angle.length:= 2;
R_angle (angle, hiangle, loangle);
Upd_angle[l]:= CHR(hiangle) ;
Upd_angle[2]:= CHR(loangle) ;
END;

PROCEDURE P_string (s: String; VAR UPD _string: P VaryingType);

{ make a USERUPD string; i.e., a l-byte length and the string }
VAR

is_i: Intl6;
BEGIN

Upd_string.length:= s.length + 1;

UPD_string[1l]:= CHR(s.length) ;

FOR is_i := 1 to s.length DO

UPD_string[is_i +1]:= s[is_il;

END;

PROCEDURE P_tran (vec: Real; VAR UPD_trans: VARYING [len] OF CHAR);

{ make a 3-byte string that is a UPD real used for translates }
VAR

exp,mhi,mlo: Int8;
BEGIN

Upd_trans.length:= 3;

R_real (vec, exp, mhi, mlo);

UPD_trans[1] := CHR(exp);
UPD_trans([2] := CHR(mhi);
UPD_trans[3]:= CHR(mlo);
END;
BEGIN

F:USERUPD AP9-79

{ use the GSRs to attach to the PS 390°s async interface }
PAttach (“"LOGDEVNAM=TT: /PHYDEVTYP=ASYNC”, ERRHAN);

{ Multiplex to CIROUTE<11> the instance of USERUPD is }
{ connected there. }
PMuxG(9, ERRHAN);
Cnt := 3; { go through the sequence 3 times }
REPEAT
Upl := 0;
IncUpl := 1;
Up2 := -90;
IncUp2 := 0.5;
Up3 := 90;
IncUp3 := -0.25;
Up4 := -90;
IncUp4 := 0.5;
Up5 := O;
IncUp5s :=1;
Up6 := 1;
IncUp6 := -0.0022;
FOR Pr_I := O to 720 DO

BEGIN
Update_set.Length := 0; { initialze the update buffer }
{ length }
Update_set:= CHR(6); { every update set must start }
{ with this character }

{ get the angle }
P_ROT (Upl,Current_angle);
{ and concatenate it onto the update set }
Update_set:= Update_set + Current_angle;

P_ROT (Up2,Current_angle);
Update_set:= Update_set + Current_angle;

P_ROT (Up3,Current_angle);
Update_set:= Update_set + Current_angle;

P_ROT (Up4,Current_angle);
Update_set:= Update_set + Current_angle;

P_ROT (Up5,Current_angle);
Update_set:= Update_set + Current_angle;

P_TRAN (Up6,Current_real);
Update_set:= Update_set + Current_real;

AP9-80 PS 390 Advanced Programming

PrintString := ~ ‘5

PrintString([3] :=CHR(trunc(Upl) MOD 10 + 48);
PrintString([2] :=CHR(trunc(Upl/10) MOD 10 + 48);
PrintString{l] :=CHR(trunc(Upl/100) MOD 10 + 48);
P_STRING(PrintString,Current_str);

Update_set:= Update_set + Current_str;

{ send the update set to the PS 390 }
PPutG(Update_set, ERRHAN);

{ make sure it goes now }

PPurge(ERRHAN);

{ fix up the angles so that the arm ends up in its }

{ initial position; e.g., upl goes from O to 359 and }
{ back to 0 }

IF Pr_I = 360 THEN

BEGIN
IncUpl := -1.0;
IncUp2 := -0.5;
IncUp3 := 0.25;
IncUp4 := -0.5;
IncUp5 := -1.0;
IncUp6 := 0.0022;
END;
Upl := Upl + IncUpl;
Up2 := Up2 + IncUp2;
Up3 := Up3 + IncUp3;
Up4 .= Up4 + IncUp4;
Up5 := Up5 + IncUp5;

Up6 := Up6 + IncUp6;
END; { FOR pr_i }
Cnt := Cnt - 1;
UNTIL Cnt = O;
PDetach(ERRHAN);
END.

FUPDATE.FOR - FORTRAN Example

FUPDATE.FOR is a program example of how to use the F:USERUPD func-
tion to perform fast updates over an RS-232 communications line. This pro-
gram is contained on the PS 390 magnetic tape labeled PSDIST and uses
the E&S supplied GSR routines to send the data to an instance of
USERUPD. The program assumes that the file UPDATE.DAT has been

F:USERUPD AP9-81

AP9-82

loaded into the PS 390. UPDATE.DAT contains the data structures to be
updated, and also instances F:USERUPD, initializes it and connects it to
output <11> of CIROUTEOQ. The program updates five rotation nodes, one

translation node, and a character string.

The structure being updated is a simple robot arm. Although the program
does not demonstrate all updates that are possible using F:USERUPD it
does demonstrate a mechanism for building all of the data types that

F:USERUPD acknowledges.

The program assumes that the error handling procedure is named “ER-
RHND” and that it resides in the same directory as the GSR files.

Program Update

REAL Upl,Up2,Up3,Up4,Up5,Upb
REAL IncUpl, IncUp2, IncUp3, IncUp4, IncUpS, IncUpb

CHARACTER Current_angle*2, Current_real*3, Current_str*5

CHARACTER Update_set*20, Printstring*4

C
EXTERNAL ERRHND
C
C

CALL PAttch(’LOGDEVNAM=TT: /PHYDEVTYP=ASYNC”,

C

C Multiplex to CIROUTE<11>

o]

CALL PMuxG(9, ERRHND)

C

C Do the sequence 3 times

C
Cnt = 3

1 CONTINUE
Upl = 0.
IncUpl = 1.
Up2 = -90.
IncUp2 = 0.5
Up3 = 90.
IncUp3 = -0.25
Up4 = -90.
IncUp4
Up5 = 0.
IncUpS
Up6 = 1.
IncUp6
DO Pr_I

I

0.5

Il
Jun

-0.0022
0 ,720

ERRHND)

PS 390 Advanced Programming

Q

Q Q

C
C
C
C
- C

The first character of an update set is always CHAR(6)
Update_set(1:1)= CHAR(6)
Get the angle and put it in the Update set buffer

CALL P_ROT(Upl,Current_angle)
Update_set(2:3) = Current_angle

CALL P_ROT (Up2,Current_angle)
Update_set (4:5)= Current_angle

CALL P_ROT(Up3,Current_angle)
Update_set (6:7)= Current_angle

CALL P_ROT (Up4,Current_angle)
Update_set (8:9)= Current_angle

CALL P_ROT(Up5,Current_angle)
Update_set(10:11)= Current_angle

CALL P_TRAN(Up6,Current_real)
Update_set(12:14)= Current_real

PrintString = - ’

PrintString(3:3) =CHAR(IMOD(IINT(Upl),10) + 48)
PrintString(2:2) =CHAR(IMOD(IINT(Upl/10),10) + 48)
PrintString(1:1) =CHAR(IMOD(IINT(Upl1/100),10) + 48)

CALL P_STRING(PrintString,Current_str)
we know the length of the string so kludge it.

Fortran thinks the strings length is what it is declared
to be, Pascal lets you manipulate the length

Update_set(15:19)= Current_str

C
C
Cc

Q

aQQ

Send the update set to the PS300
CALL PPutG(Update_set,19,ERRHND)
Make sure it goes now
CALL PPurge(ERRHND)

Fix up the angles so that the arm ends up in its initial

F:USERUPD AP9-83

C position; e.g., Upl goes from O to 359 and back to O

C

IF (Pr_I .eq. 360) THEN
IncUpl = -1.0
IncUp2 = -0.5
IncUp3 = 0.25
IncUp4 = -0.5
IncUpSs = -1.0
IncUp6 = 0.0022

END IF

Upl = Upl + IncUpl

Up2 = Up2 + IncUp2

Up3 = Up3 + IncUp3

Up4 = Up4 + IncUp4

UpS = Up5 + IncUpb

Up6 = Up6 + IncUp6
END DO

Cnt =Cnt - 1
IF (Cnt .gt. O) GOTO 1

CALL PDtach(ERRHND)
END

SUBROUTINE Vax_Fp (rnum, exp,mhi,mlo)

C
C Redundant routine left in so the FORTRAN looks like the Pascal
C version
]
C PUPDEXP and PUPDFRA are Macro routines to obtain the USERUPD
C exponent and mantissa from a VAX real
C
REAL rnum

BYTE exp, mhi,mlo
CALL PUPDEXP (rnum, exp)
CALL PUPDFRA (rnum, mhi, mlo)
RETURN
END

SUBROUTINE R_angle (angle, ahi,alo)
C
C Get the pieces of a USERUPD angle from degrees

(o}
REAL Factor, angle, my_angle,temp

AP9-84 PS 390 Advanced Programming

INTEGER itemp

BYTE ahi, alo, buff(2)

EQUIVALENCE (itemp, buff)
C
C factor is a magic number to turn degrees into
C 65536°s of a circle
C

Factor = 182.0444444 ! = 65536/360

my_angle= angle
IF (my_angle .ge. 0.0) THEN ! the angle is positive

1 CONTINUE
IF (my_angle .ge. 360) THEN
my_angle= my_angle - 360.0
END IF
IF (my_angle .gt. 360) GOTO 1
ELSE ! the angle is negative
2 CONTINUE ! make the equivalent positive angle
IF (my_angle .1lt. 0) THEN
my_angle= my_angle + 360.0
END IF
IF (My_angle .lt. 0) GOTO 2
END IF
Temp = My_angle * factor
itemp= NINT(Temp)
ahi = buff(2)
alo buff (1)
RETURN
END

SUBROUTINE R_real (r, exp,mhi,mlo)

(o}
C Get the components of a USERUPD real
C

REAL r

BYTE exp,mhi,mlo

CALL Vax _fp (r, exp, mhi, mlo)

RETURN
END

SUBROUTINE P_rot (angle, Upd_angle)
C

F:USERUPD S AP9-85

C Get the components of a USERUPD angle
C

BYTE hiangle, loangle

CHARACTER Upd_angle* (*)

REAL angle

CALL R_angle (angle, hiangle, loangle)
Upd_angle(1l:1)= CHAR(hiangle)
Upd_angle(2:2)= CHAR(loangle)

RETURN

END

SUBROUTINE P_string (s, UPD_string)

C
C make a USERUPD string; i.e., a 1l-byte length and the string
C
INTEGER*2 is_i
CHARACTER s*(*), Upd_string*(¥*)
UPD_string(1l:1)= CHAR(LEN(s))
UPD_string(2:) = s
RETURN
END

SUBROUTINE P_tran (vec,UPD_trans)

(o}
C Make a 3-byte string that is a USERUPD real used for translates
o]

REAL vec

CHARACTER Upd_trans* (¥*)

BYTE exp,mhi,mlo

CALL R_real (vec, exp, mhi, mlo)
UPD_trans(l:1)= CHAR(exp)
UPD_trans(2:2)= CHAR(mhi)
UPD_trans(3:3)= CHAR(mlo)

RETURN

END

The following data are contained in the UPDATE.DAT file on the PSDIST
magnetic tape and is used with the program examples.

0
CYLINDER:= VEC item N=100
P 1.0000,1., 0.0000 L. 0.9686,1., 0.2487

AP9-86 PS 390 Advanced Programming

ol I ot I o s B L B s I I o I e I A e I B i - i« IO o < B o« N e v N s« Y e v Y e » O e A o« A e+ A o« B o

F:USERUPD

el elelNelNelNelNeNolo ol =)

[eleleole e lNolNe oo Ne e

.9686,0.
.9686,1.
.8763,0.
.8763,1.
.7290,0.
.7290,1.
.5358,0.
.5358,1.
.3090,0.
.3090,1.
.0628,0.
.0628,1.
.1874,0.
.1874,1.
.4258,0.
.4258,1.
.6374,0.
.6374,1.
.8090,0.
.8090,1.
.9298,0.
.9298,1.
.9921,0.
.9921,1.
.9921,0.
.9921,1.
.9298,0.
.9298,1.
.8090,0.
.8090,1.
.6374,0.
.6374,1.
.4258,0.
.4258,1.
.1874,0.
.1874,1.
.0628,0.
.0628,1.
.3090,0.
.3090,1.
.5358,0.
.5358,1.
.7290,0.
.7290,1.
.8763,0.
.8763,1.
.9686,0.

[eleleNeNeNelelNeNelelNe Mool e lNeo oo o e oo e Mo

.2487
.2487
.4818
.4818
. 6845
.6845
. 8443
. 8443
.9511
.9511
.9980
.9980
.9823
.9823
.9048
. 9048
L7705
L7705
.5878
.5878
.3681
.3681
L1253
.1253
.1253
.1253
.3681
.3681
.5878
.5878
L7708
L7705
. 9048
.9048
.9823
.9823
.9980
.9980
. 9511
.9511
. 8443
. 8443
. 6845
.6845
.4818
.4818
.2487

[o o o o o o o o o A e o o A o o o A o v o e o O o o s o S o o o o o o o T S

QO OO OO0 OO0 OO+

O O OO OO0 OoOOOOo

.0000,0.
.8763,1.
.9686,0.
.7290,1.
.8763,0.
.5358,1.
.7290,0.
.3090,1.
.5358,0.
.0628,1.
.3090,0.
.1874,1.
.0628,0.
.4258,1.
.1874,0.
.6374,1.
.4258,0.
.8090,1.
.6374,0.
.92908,1.
.8090,0.
.9921,1.
.9298,0.
.9921,1.
.9921,0.
.9298,1,
.9921,0.
.8090,1.
.9268,0.
.6374,1.
.8090,0.
.4258,1.
.6374,0.
.1874,1.
.4258,0.
.0628,1.
.1874,0.
.3090,1.
.0628,0.
.5358,1.
.3090,0.
.7290,1.
.5358,0.
.8763,1.
.7290,0.
.9686,1.
.8763,0.

OO0 000000000000 OOOOOOOCOo

. 0000
.4818
.2487
.6845
.4818
. 8443
.6845
L9511
. 8443
.9980
L9511
.9823
.9980
.9048
.9823
L7705
.9048
.5878
L7705
. 3681
.5878
L1253
.3681
.1253
.1253
.3681
.1253
.5878
.3681
L7705
.5878
.9048
L7705
.9823
.9048
.9980
.9823
L9511
.9980
. 8443
. 9511
. 6845
. 8443
.4818
.6845
. 2487
.4818

AP9-87

AP9-88

P 0.9686,1.,-0.2487 L
L 1.0000,0.,

]

{ WORLD

XMUL
YMUL
ZMUL
XROT
YROT

ZROT :=

CMUL

CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN
CONN

SEND
SEND
SEND
SEND
SEND
SEND
SEND

I
e B B B Be Be

DIALS
DIALS
DIALS
XMUL
YMUL
ZMUL
XROT
YROT
ZROT
CMUL

:MULC;
MULC;
:MULC;
: XROTATE;
:YROTATE;
: ZROTATE;
:CMUL;

<1>:
<2>:
<3>:
<1>:
<1>:
<1>:
<1>:
<1>:
<1>:
<1>:

<1>
<1>
<1>
<1>
<1>
<1>
<2>
<2>
<2>
<1>

SPACE ROTATIONS

XMUL;
YMUL;
ZMUL;
XROT;
YROT;
ZROT;
CMUL;
CMUL;
CMUL;
CMUL;

150 TO <2> XMUL;
150 TO <2> YMUL;
150 TO <2> ZMUL;

M3D(1,0,0 0,1,0 0,0,1) TO <1»> CMUL;
TO <1> DLABEL1;
TO <1> DLABEL2;
TO <1> DLABEL3;

“ROTATE X’
“ROTATE Y~
“ROTATE Z~

SCALE:=F:DSCALE;

CONN
CONN

SEND
SEND
SEND
SEND
SEND

XVEC:
YVEC:
ZVEC:
TRAN:

DIALS <4>:<1> SCALE;
SCALE <2>:<3> SCALE;

1 TO <2> SCALE;
1 TO <3> SCALE;
100 TO <4> SCALE;
0 TO <5> SCALE;
 SCALE
=F:XVECTOR;
=F:YVECTOR;
=F:ZVECTOR;

=F: ACCUMULATE;

7 TO <1>

1.0000,1.,
0.0000 L. 0.9686,0.,-0.2487

DLABEL4 ;

PS 390 Advanced Programming

CONN DIALS <5>:<1> XVEC;
CONN DIALS <6>:<1> YVEC;
CONN DIALS <7>:<1> ZVEC;
CONN XVEC <1>:<1> TRAN;
CONN YVEC <1>:<1> TRAN;
CONN ZVEC <1>:<1> TRAN;

SEND V3D(0,0,0) TO <2> TRAN;

SEND “TRANS X“ TO <1> DLABELS;
SEND “TRANS Y” TO <1> DLABELG6;
SEND “TRANS Z° TO <1> DLABELT7;

UP := F:userupd;

configure a;

disc cirouteO<l1>:all;

conn cirouteO0<11>:<1>UP1;

finish configuration;

{ initialize the USERUPD function }

send

char (6) { mode character }

&char(7) { do 7 updates }

&char (2)&char (1) { y rot ——> UPOO1 }
&char(1l)&char(2) { x rot ——> UP002 }
&char (1)&char(3) { x rot —--> UP003 }
&char (1) &char(4) { x rot —-> UP004 }
&char (2)&char(5) { y rot —-—> UP00O5 }
&char (5)&char (6) { x trans ——> UP0O06 }
&char (9)&char(7) { string ---> UPOO7 }
to <1>UP;

INIT DISP;

DISPLAY ROBOT_ARM;

ROBOT_ARM: =BEGIN_S
{ WINDOW }
Char scale .1 then UP0O7;
TR :=TRANSLATE 0,0,0;
RT:=ROTATE O;
SC:=SCALE .2;
INST FOOTING_COL,UPOOl;
END_S;
Up007 := Char -1,-.9 “XXXX”;

FOOTING_COL:=SET COLOR 0,1 APPLIED TO FOOTING;
FOOTING :=SCALE 3,-2,3 APPLIED TO CYLINDER;

F:USERUPD AP9-89

AP9-90

UP0OO1:=ROTATE Y O APPLIED TO BASE_COL;

BASE_COL:=SET COLOR 300,1 APPLIED TO BASE;

BASE:=BEGIN_S

TRANSLATE -2,7,0 APPLIED TO BASE_L_HUB,;
TRANSLATE 2,7,0 APPLIED TO BASE_R_HUB;
TRANSLATE -2.5,0,0 APPLIED TO BASE_SUPPORT;
TRANSLATE 2.5,0,0 APPLIED TO BASE_SUPPORT;
SCALE 2 APPLIED TO CYLINDER;
TRANSLATE 0,7,0 APPLIED TO UP002;
END_S;
BASE_L_HUB :=ROTATE Z 90 APPLIED TO CYLINDER;
BASE_R_HUB :=ROTATE Z -90 APPLIED TO CYLINDER;

BASE_SUPPORT:

=SCALE .5,8,.5

APPLIED TO CYLINDER;

UPO02:=ROTATE X —-90 APPLIED TO PRIMARY_ COL;

TRANSLATE
TRANSLATE
TRANSLATE
TRANSLATE
TRANSLATE
TRANSLATE
TRANSLATE

END_8S;

PRIMARY PIVOT
PRIMARY I, HUB
PRIMARY R_HUB
PRIMARY_ SUPPORT:
PRIMARY TIE
PRIMARY PIVOTC
PRIMARY TIEC

UP003:=ROTATE X

PRIMARY: =BEGIN_S

2,0,0 APPLIED
-.5,13,0 APPLIED '
.5,13,0 APPLIED
-1,-4,0 APPLIED
1,-4,0 APPLIED
1.5,-4,0 APPLIED -
0,13,0 APPLIED
:=ROTATE Z 90
:=ROTATE Z 90
:=ROTATE Z -90
=SCALE .5,18,.5
: =ROTATE Z 90
:=SCALE 1,4,1
:=SCALE .5,3,.5

APP
APP

APPLIED TO
APPLIED TO

APP
APP
APP

PRIMARY COL:=SET COLOR 240,1 APPLIED TO PRIMARY;

PRIMARY PIVOT;
PRIMARY L_HUB;
PRIMARY R _HUB;
PRIMARY SUPPORT;
PRIMARY SUPPORT;
PRIMARY TIE;
UP003;

LIED TO
LIED TO CYLINDER;
CYLINDER;
CYLINDER;
LIED TO
LIED TO

LIED TO

CYLINDER;
CYLINDER;

90 APPLIED TO SECONDARY_COL;

SECONDARY COL:=SET COLOR 180,1 APPLIED TO SECONDARY;
SECONDARY : =BEGIN_S

TRANSLATE .5,11,0 APPLIED TO SECONDARY_ HUB,;
TRANSLATE 0,-4,0 APPLIED TO SECONDARY_SUPPORT;
TRANSLATE .5,0,0 APPLIED TO SECONDARY HUB;
TRANSLATE 0,11,0 APPLIED TO UP0O0O4;

PS 390 Advanced Programming

PRIMARY PIVOTC;

PRIMARY_TIEC;

END_S;

SECONDARY_HUB :=ROTATE Z 90 APPLIED TO CYLINDER;
SECONDARY_SUPPORT:=SCALE .5,16,.5 APPLIED TO CYLINDER;

UP004 :=ROTATE X -90 APPLIED TO WRIST_ COL;
WRIST_COL:=SET COLOR 120,1 APPLIED TO WRIST;

WRIST:=BEGIN_S
TRANSLATE -.5,0,0 APPLIED TO WRIST_L_HUB;
TRANSLATE .5,0,0 APPLIED TO WRIST_R_HUB;
TRANSLATE —.85,-1,0 APPLIED TO WRIST SUPPORT;
TRANSLATE .85,-1,0 APPLIED TO WRIST SUPPORT;
TRANSLATE 0,2,0 APPLIED TO WRIST PIVOT;
TRANSLATE 0,2.5,0 APPLIED TO UPOO5;

END_S;

WRIST L_HUB :=ROTATE Z 90 APPLIED TO WRIST_HUB;
WRIST R_HUB :=ROTATE Z -90 APPLIED TO WRIST_HUB;
WRIST_SUPPORT:=SCALE .35,3.0,.35 APPLIED TO CYLINDER;
WRIST PIVOT :=SCALE 1.5,-.5,1.5 APPLIED TO CYLINDER;
WRIST HUB :=SCALE 1,.5,1 APPLIED TO CYLINDER;

UPO05:=ROTATE X O APPLIED TO HAND_COL;
HAND_COL:=SET COLOR 60,1 APPLIED TO HAND;

HAND : =BEGIN_S
SCALE 1.5,-.5,1.5 APPLIED TO CYLINDER;
ROTATE Y O APPLIED TO UPQOS6;
ROTATE Y 90 APPLIED TO UP006;
ROTATE Y 180 APPLIED TO UP0O6;
ROTATE Y 270 APPLIED TO UP0O0S6;
END_S;

UPOO06 : =TRANSLATE 1,0,0 APPLIED TO FINGER;
FINGER:=SCALE .2,2,.2 APPLIED TO CYLINDER;
CONN CMUL <1>:<1> ROBOT_ARM.RT;

CONN SCALE <1>:<1> ROBOT_ARM.SC;

CONN TRAN <1>:<1> ROBOT_ARM.TR;
>

F:USERUPD AP9-91

AP9-92

Host Communication Example

Listed below is a FORTRAN subroutine called SHIP, which can be used in a
VAX/VMS environment to provide easy host communication with a PS 390
data structure via the F:USERUPD function. This is a method to buffer
USERUPD commands if you do not run the GSRs.

Notice particularly the Configuration Mode statements mentioned in the
subroutine’s Comments Section. These statements must be included in your
data structure to provide a link between the PS 390’s host communication
mechanisms and the F:USERUPD function.

This subroutine is not contained on the PS 390 magnetic tape labeled
PSDIST.

ROUTINE TO SHIP A BUFFER IN COUNT MODE TO CIROUTEO<S8>.

This routine sends the indicated string to CIROUTEO<8> of the PS 390.
(The terminal must have been set to modes
TTSYNC,NOWRAP,NOBROAD,EIGHTBIT.)

The PS 390 must have been configured with the following code:

CONFIGURE A;

DISCONNECT CIROUTEO<8>:ALL;
USERNOP1 := F:NOP;

CONNECT CIROUTEO<8>:<1>USERNOP1;
FINISH CONFIGURATION;

FORTRAN calling sequence:
CALL SHIP(JBUF,ICT, IRATE)
Where:

JBUF is the LOGICAL*1 buffer containing the data to be shipped

(if ICT>0).

ICT is the INTEGER*2 byte count for JBUF. If ICT=0, then initial-
ization is assumed, and the first byte of JBUF is taken as the name
of the USERUPDATES function to be initialized.

IRATE is INTEGER*2 maximum update rate, in frames per second. If
this value is zero, update proceeds without any delay. (This
argument is noticed only when ICT=0.)

sleNeoNeoNeoNoNeoNeoNoNeoNeoNeoNeoNoNoNeoNoNoNoNoNoNeoNoNoNo Moo NN

PS 390 Advanced Programming

SUBROUTINE SHIP(JBUF, ICT, IRATE)

C

INCLUDE “ ($IODEF)~
o]

INTEGER*2 ICT, IKT, IRATE

REAL DT,TIMEO,TIME,T

LOGICAL*1 JBUF(1),JKT(2),SIZ(4),INIT(68)
EQUIVALENCE (IKT, JKT)
C

INTEGER*4 SYSQIO, SYSQIOW,CHAN, STATUS, STAT2, SYS$SASSIGN

INTEGER*2 IOSB(4),I0SB2(4)

CHARACTER*3 UNIT

DATA ISW/0/,S1Z/6,0,0,°5°/,T,DT/2%*0./
DATA INIT/6,0,65,707,

1 ‘D’,’1°,”8",°C’,”0",’N’,“N’,“E’,“C’,"T"
2 - 4,°U’,”8",“E",’R’°,°N",70",’P’,":","A"
3 ‘L’,CL7,737,7x7 77, =" ’F’,7 7 ,°U” 8"
4 ‘E°,’R’°,°U’,’P’,’D’,’A”,’T’,’E*,”S8",":"
5 “C’,’0”,’N’,’N’,’E’,”C","T’,” *,°U",’S’
6 “E°,’R’°,’N’,”0","P"," <’ ,”17,°>" 71" ,°<’
T 1,00k,

IF(ISW.EQ.0.OR.ICT.EQ.0) TIMEO=SECNDS(O.)
IF(ISW.NE.O) GO TO 5
ISW=1
UNIT="TT:"
STATUS=SYSSASSIGN (UNIT,CHAN, ,)
IF (STATUS.EQ.1) GO TO 5
TYPE *,”BAD ASSIGN! — “,STATUS
STOP
C
5 IF(ICT.NE.O) GO TO 10
T=0.
DT=0.
IF (IRATE.NE.O) DT=1./FLOAT (IRATE)
INIT(28)=JBUF (1)
INIT(67)=JBUF (1)
C

C This system call sends the array INIT to the PS 390

c

STAT2=SYS$QIOW(,%VAL (CHAN) ,%VAL (I0$_WRITEVBLK+IO$M_NOFORMAT
1 +IO$M_CANCTRLO),IOSB2,,,INIT,%VAL(68),,,,)

STATUS=STAT2
GO TO 50

10 IKT=ICT+1

F:USERUPD

E)

]

’

)

’

’

AP9-93

AP9-94

SIZ(2)=JKT(2)
SIZ(3)=JKT(1)
T=T+DT
C
30 TIME=SECNDS (TIMEO)
IF(TIME.LT.T) GO TO 30
C
C This system call sends the 4-byte count mode prefix to the PS 390.
C
C
STAT2=SYS$QIOW (,%VAL (CHAN) ,%VAL (I0$_WRITEVBLK+IO$M_NOFORMAT
1 +IO$M_CANCTRLO),IOSB2,,,SIZ,%VAL(4),,,,)

This system call sends ICT bytes form buffer JBUF to the PS 390.

oo oINS

STATUS=SYS$QIOW(,%VAL (CHAN) ,%VAL (I0$_WRITEVBLK+IO$M_NOFORMAT
1 +IO$M_CANCTRLO),IOSB,,,JBUF,%VAL(ICT),,,,)
C

50 IF(STATUS.EQ.1.AND.STAT2.EQ.1.AND.IOSB2(1).EQ.1) RETURN
TYPE *,”COMMUNICATION ERROR! — STATUS = 7,

1 STATUS,STAT2,I0SB(1),I0SB2(1)

STOP

END

Floating Point Conversion Routine

Following are two program segments, one written in FORTRAN and the
other written in VAX assembly language. These segments convert standard
VAX 4-byte floating-point into the floating-point format expected by the
F:USERUPD function. Both program segments are contained on the PS 390
magnetic tape labeled PSDIST in the file TUB.MAR.

CONVERSION ROUTINE FOR PS 300 FLOATING POINT NUMBERS
Calling sequence:

CALL FPCVT (A, JNUM)

Where:

A is the REAL*4 number to be converted.
JNUM is the LOGCICAL*1 string of three bytes to receive the converted

oo aoaoaan

PS 390 Advanced Programming

C result.

C

SUBROUTINE FPCVT (A, JNUM)
REAL A
LOGICAL*1 JNUM(3)

C

CALL PUPDEXP (A,JNUM(1))

CALL PUPDFRA(A,JNUM(2),JNUM(3))
RETURN

END

Assembly Language Conversion Routines

.TITLE TLIB
. IDENT /01/

PUPDEXP-Return EXCESS 64 exponent of a real
Pascal calling sequence
PROCEDURE PUPDEXP (r: Real; VAR exp: INT8);

FORTRAN calling sequence

SUBROUTINE PUPDEXP(r, exp)

Where

R is REAL*4 number to be converted

exp is BYTE variable to return the exponent

PUPDEXP: :
.WORD "M<R2, R3>
MOVL @4 (AP), R2
ASHL #-7,R2, R3 ; Move into position
BICL2 #“XFFFFFF00O, R3 ; Keep only exponent data
BEQL 1% ; If zero, leave it alone
SUBL2 #-64, R3 ; Else make it excess 64
1$: BICL2 #°X80, R3 ; Clear sign-bit position
ASHL #-8,R2, R2 ; Go get the sign bit
BICL2 #"XFFFFFF7F, R2 ; Clear all but sign bit
BISB3 R2,R3,@8 (AP) ; Set sign
RET

F:USERUPD

PUPDFRA-Return hi and low bytes of a real

Pascal Calling sequence
PROCEDURE PUPDFRA (r: Real; VAR mhi,mlo: Int8);

FORTRAN calling sequence
SUBROUTINE PUPDFRA(r, mhi, mlo)

AP9-95

i Where
; T 1is REAL*4 number to be converted

; mhi, and mlo are BYTE variables to return the High and low bytes
; of the mantissa

PUPDFRA: :
.WORD “M<R2,R3,R4>
MOVL @4 (AP) ,R4
ROTL #1,R4,R4
BICB3 # XFFFFFFO0O,R4,@8 (AP)
ROTL #8,R4,R4
BICB3 # “XFFFFFF0OO,R4,@12 (AP)
RET
.END

AP9-96 PS 390 Advanced Programming

	000
	001
	002
	003
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	AP1-01
	AP1-02
	AP1-03
	AP1-04
	AP2-01
	AP2-02
	AP2-03
	AP2-04
	AP2-05
	AP2-06
	AP2-07
	AP2-08
	AP2-09
	AP2-10
	AP2-11
	AP2-12
	AP2-13
	AP2-14
	AP2-15
	AP2-16
	AP2-17
	AP2-18
	AP2-19
	AP2-20
	AP2-21
	AP2-22
	AP2-23
	AP2-24
	AP2-25
	AP2-26
	AP2-27
	AP2-28
	AP2-29
	AP2-30
	AP2-31
	AP2-32
	AP2-33
	AP2-34
	AP2-35
	AP2-36
	AP3-01
	AP3-02
	AP3-03
	AP3-04
	AP3-05
	AP3-06
	AP3-07
	AP3-08
	AP3-09
	AP4-01
	AP4-02
	AP4-03
	AP4-04
	AP4-05
	AP4-06
	AP5-01
	AP5-02
	AP5-03
	AP5-04
	AP5-05
	AP5-06
	AP5-07
	AP5-08
	AP5-09
	AP5-10
	AP5-11
	AP5-12
	AP5-13
	AP5-14
	AP5-15
	AP5-16
	AP5-17
	AP5-18
	AP5-19
	AP5-20
	AP5-21
	AP5-22
	AP5-23
	AP5-24
	AP5-25
	AP6-01
	AP6-02
	AP6-03
	AP6-04
	AP6-05
	AP6-06
	AP6-07
	AP6-08
	AP6-09
	AP6-10
	AP6-11
	AP6-12
	AP6-13
	AP6-14
	AP6-15
	AP6-16
	AP6-17
	AP6-18
	AP7-01
	AP7-02
	AP7-03
	AP7-04
	AP7-05
	AP7-06
	AP7-07
	AP7-08
	AP7-09
	AP7-10
	AP7-11
	AP7-12
	AP7-13
	AP7-14
	AP7-15
	AP7-16
	AP7-17
	AP7-18
	AP7-19
	AP7-20
	AP7-21
	AP7-22
	AP7-23
	AP7-24
	AP7-25
	AP7-26
	AP7-27
	AP7-28
	AP7-29
	AP7-30
	AP7-31
	AP8-01
	AP8-02
	AP8-03
	AP8-04
	AP8-05
	AP8-06
	AP8-07
	AP8-08
	AP8-09
	AP8-10
	AP8-11
	AP8-12
	AP8-13
	AP8-14
	AP8-15
	AP8-16
	AP8-17
	AP8-18
	AP8-19
	AP8-20
	AP8-21
	AP8-22
	AP8-23
	AP8-24
	AP8-25
	AP8-26
	AP8-27
	AP8-28
	AP8-29
	AP8-30
	AP8-31
	AP8-32
	AP8-33
	AP8-34
	AP8-35
	AP8-36
	AP8-37
	AP8-38
	AP8-39
	AP8-40
	AP8-41
	AP9-01
	AP9-02
	AP9-03
	AP9-04
	AP9-05
	AP9-06
	AP9-07
	AP9-08
	AP9-09
	AP9-10
	AP9-11
	AP9-12
	AP9-13
	AP9-14
	AP9-15
	AP9-16
	AP9-17
	AP9-18
	AP9-19
	AP9-20
	AP9-21
	AP9-22
	AP9-23
	AP9-24
	AP9-25
	AP9-26
	AP9-27
	AP9-28
	AP9-29
	AP9-30
	AP9-31
	AP9-32
	AP9-33
	AP9-34
	AP9-35
	AP9-36
	AP9-37
	AP9-38
	AP9-39
	AP9-40
	AP9-41
	AP9-42
	AP9-43
	AP9-44
	AP9-45
	AP9-46
	AP9-47
	AP9-48
	AP9-49
	AP9-50
	AP9-51
	AP9-52
	AP9-53
	AP9-54
	AP9-55
	AP9-56
	AP9-57
	AP9-58
	AP9-59
	AP9-60
	AP9-61
	AP9-62
	AP9-63
	AP9-64
	AP9-65
	AP9-66
	AP9-67
	AP9-68
	AP9-69
	AP9-70
	AP9-71
	AP9-72
	AP9-73
	AP9-74
	AP9-75
	AP9-76
	AP9-77
	AP9-78
	AP9-79
	AP9-80
	AP9-81
	AP9-82
	AP9-83
	AP9-84
	AP9-85
	AP9-86
	AP9-87
	AP9-88
	AP9-89
	AP9-90
	AP9-91
	AP9-92
	AP9-93
	AP9-94
	AP9-95
	AP9-96

