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Internal Engineering



Chapter 1

PS 390 Functional Description

1.1 Overview

The PS 390 Graphics System provides dynamic anti-aliased lines on a Raster display using
Shadowfax VLSI technology. The PS 390 Graphics System replaces the Refresh Buffer card,
Color card, and the Line Generator card of a PS 350 system with two cards which comprise
the Raster Backend portion of the PS 390 Graphics System. The Calligraphic Display from
the PS 350 is replaced with a 1024 x 864 RGB raster display. (FIMI 2054C)

The PS 390 Graphics System is built on PS 300 sized cards. The main components of the PS
390 Graphics System are as follows:

e The Joint Control Processor (JCP)

The Arithmetic Control Processor (ACP)
The Pipeline Subsystem (PLS)

Raster Backend Left Card (LC)

The Input FIFO.
The Master Bitslice Processor.

The Endpoint Pipeline.
The Pixel Read Machine.
8 Pixel Processors.

Frame Buffer.
Raster Backend Right Card (RC)

®
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— 8 Pixel Processors.
- Frame Buffer.
5 The Video' Output System

The main components of the PS 390 Graphics System are grouped together as shown in
Figure 1.1.

Joint Mass | ~ Arithmetic Pipeline
Control . Control
Memory : : Subsystem
Processor ‘1 .« . Processor
RBE - LC = RBE - RC
Input FIFO
" Mdster Bitslice
Input FSBCJ‘ Video Qutput System
Endpoint Pipeline (8) Pixel Processors

Pixel Proc. Array Loader
(8) Pixel Processors.
Frame Buffer s

Pixel Read ‘Machme

Frame Buffer

-+

Flguxe ll _PS BQOCard Components

The PS 390 Raster Backend receives ééi‘;eﬁ;sdbéce ei'lldtﬁpoints and commands from the Pipeline
Subsystem.

Endpoints are processed in several subcomponents:of the PS 390 to produce the pixel infor-
rnation that is stored in the PS 390 Graphics System Frame Buffer.

Commands from’ the Pipéline Snbsystem ‘are used f:o conﬁgure hardware components of the
Raster Backend and to msﬁruét ﬁH Bltshce to retrleve plxel mformatxon residing in the Frame
Buffer.cve w0 00 fradt 2% @ R
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1.2 Data Flow Through the PS 390

Figure 1.2 shows a block diagram for the PS 390. The dxagram 1llustrates t};e basm; data flow
through the system.

1AS390002P3
JCP - JOINT (GRAPHICS) CONTROL PROCESSOR FBL . = FRAME BUFFER LEFT -
MM - MASS MEMORY (1- to 4~-MBYTES) BS - BITSUCE PROCESSOR 1
ACP - ARITHMETIC CONTROL PROCESSOR.. . | pBR = FRAME EU&FER ﬁIGHTA 2
PLS - PIPELINE SUBSYSTEM ) VC - VIDEO CONTROLLER

GPIO - GENERAL PURPOSE INTERF/Q\CE OPTIQN

DB iRennE B A

Data flow is bidirectional between the host; and the PS 390 s, Mpss ,Memorym’l‘he, dewriloaded: + .3
data may be affected locally (by the PS 390) or thrqugh mtera.ct;log, w;@h the, host campirter.
This section describes the PS 390 data flow as commands and data are input to the system:
and are processed for display.
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1.2.1 Host Level Data Structure

The host sends the PS 390 ASCII or binary commands from user application programs or files
that reside on the host. These commands are transferred over a communications interface to
the PS 390. The standard communications interface is the RS-232C line. High-speed commu-
nications interfaces include the VAX UNIBUS Parallel Interface, the IBM 3278 Interface, the
IBM 5080 Interface, and ETHERNET/DECNET.

‘Once ASCII commands are transferred to the PS 390, the Joint Control Processor (JCP)
firmware parses and interprets the commands. ASCII commands pass from the interface to
the Parser and the Command Interpreter. Binary commands sent from the host pass directly
to the Command Interpreter for conversion to locally used formats.

1.2.2 Data Flow From Interactive Devices

Data are sent from the interactive devices to the PS 390 in serial RS-232C ASCII format.

The PS 390 offers a “function netweork” programming language. One of the purposes of the
Function Networks is to process data from the interactive devices. Function networks specify
which interactive devices provide rotation, scale and translate data to the display structures.
Function networks also allow the interactive devices to communicate with user-specified pro-
grams in the host.

Usmg {unef;lon ﬁetworks the user can specify smoothing, clamping, and other filtering opera-
tions oft ‘the raw data from the mteractwa devices before sending the data to the host or using
them" t;o’modxfy display structures. There is a separate function type for each of the interactive
devices! Data are routed from the interactive devices through these functions, through other
(if any) user-specified functions and finally to the dispiay structures or to the host. From this
point, interactive device data flow in the same way as host data.



Chapter 2

Raster Backend Hardware
Descriptions

2.1 The Input FIFO

The Input FIFO on the Raster Backend Left Card (LC) receives screen :s‘;ié:cé"éhdfp‘éinﬁé‘,w:

instructions and commands from the PS 390 Pipeline Subsystem via the existing Refresh! Buffer *
interface. The FIFO can store up to 340 endpoints. The interface to the Pipeline Subsystem is
designed so that when the FIFO is full the PLS stops the Ar;thmetlc Concml Processor. until. ;

more data can be loaded into the Raster Backend Input FIFO. The main purpgse,for.the Input;

FIFO is to allow the Arithmetic Control Processor to continue processing even Lf the Raster -

Backend is not ready to receive the next endpoint/command. :

The Input FIFO hardware includes:

o A State Machine
e A 1K deep x 16-bit FIFO
e FIFO Buffer Register.

The Input FIFO State Machine consists of two parts. The FIFO Input State Machine which
transfers data from the PLS into the FIFO, and the FIFO Output State Machine which trans-
fers data from the FIFO into the FIFO buffer register.

The FIFO Input State Machine monitors the PLSREADY signal that is provided from the
PLS. When the PLS signal is asserted, the state machine transfers three 16 bit words of data
from the PLS to the FIFO. The state machine then asserts the RBDONE signal, which signals
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to the PLS that the data transfer is complete. Then, the state machine returns to the idle
state where it remains until the PLSREADY signal is again asserted by the PLS.

The Output FIFO State Machine monitors the FIFO empty bit. When the FIFO empty bit is
negated, signifying that there is data ready in the FIFO, the Output State Machine transfers
one 16 bit word of data to the FIFO buffer register and asserts the FIFOREADY signal for
the Bitslice. After the Bitslice reads the FIFO Buffer register, the state machine transfers the
next 16 bit word to the buffer register, provided that there is more data available in the FIFO.
If no more data is available in the FIFO the Output State Machine returns to its idle state
where it continues to wait for the FifoEmpty signal to be negated.

2.2 The Master Bitslice Processor

The PS 390 Graphics System Master Bitslice Processor obtains endpoints and commands from
the Input FIFO. Endpoints are formatted into a packet of data and then sent to the PS 390
EndPoint Pipeline. The Bitslice Processor is located on the Raster Backend Left Card.

When instructions are passed through to the Master Bitslice processor, it decodes and executes
them.

The Master Bitslice can interrupt the Graphics Control Processor on the JCP via the Common

Bus to report requested information. The Master Bitslice can have mastership of the Common
Bus.

The Master Bitslice has an interface to the Video Output System over the Y-Bus via a 74AS652
transceiver. This interface is mainly used to configure hardware circuitry for operation, to
retrieve latched screen XY on lightpen hits, and for diagnostic purposes.

The Master Bitslice also collaborates with the Pixel Processor Array to operate‘on the PS
390 Graphics System Frame Buffer. During normal endpoint processing, the Master Bitslice
sends data down the EndPoint Pipeline to the Pixel Processor Array. The Master Bitslice
can also instruct the Pixel Processor Array to perform direct read and write operations to
and from the Frame Buffer via the Pixel Read Machine, but must obtain permission from the
PPALOADER.

The Master Bitslice Processor has the following hardware components:

oyt i iye
. s T Gt v
b (3% 40 o SRR

LR S IR PR RE O8 S P

o Bus Interfaces. .« . .,
— Y-Bus
— D-Bus
— Immediate Bus

§
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— Branch Bus
e Bus Decoders ‘
* Bitslice Processor. 16-Bit AMD 29117 Microprocessor
e Sequencer. 12-Bit AMD 2910A or equivalent
e Execution Register '
e Writable Control Store. (4K X 80 bits)
e Scratch Ram. (2K X 16 bits)
e Multiplier, 16 X 16, parallel. WTL 2517B or equivalent.
e Writable Immediate Field Register (Wimmed)
e Vector Ram
e Lookup Tables. (64K x 16)
e Maintenance Register.
e Common Bus Interface. Mastery of Common Bus.

e Interface to Video Controller circuitry.

Figure 2.1 shows a block diagram of the Master Bitslice.

2.2.1 Bus Interfaces

The four Busses which interface with the Master Bitslice are:

e Y-Bus
e D-Bus
o Immediate Bus

e Branch Bus

2.2.1.1 The Y-Bus

The primary function of the Y-Bus is to pass data from the 29117 to various degtiqaqiqqs_ in
the Bitslice. Secondary sources of data to the Y-Bus include the D-Bus, S¢ad Tiné’ Biiffer
Interface and the Video Control Interface. SR
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' BRANCH BUS

SEQUENCER
AM2910A

—

g [ ]

PIXEL PROCESSOR DATA

BUS(32-BIT)

IMMEDIATE BUS OATA HI/LOW,
WRITEABLE MUX
CONTROL STORE ’ PIXEL PROCESSOR
T .| IMMEDIATE FIELD | PAGE VECTOR RAM ATA R
: 6 REGISTER SELECT ADDRESS REGISTER| (16-BIT OUTPUT)
REGISTER - [’ &
SCAN LINE BUFFER
INTERFACE
/ y
Y BUS
. I /’ l,
, - | BT suce I
" I érocessor TABLE LOOKUP {x v VIDEO CONTROL
) 1 amzs17 - ADDRESS REGISTER) [ YBUS TO DBUS INTERFA
; ' ENDPOINT Pi
l SCRATCH RAM I ] N LyaiLIER q@ Larcy] | |To BrisUCE
COMMON BUS
D LooKuP P DBUS TO YBUS INTERFACE

DU IS T L

Figure 2

A SO

5]

Block Dlagram of the PS 390 Master Bitslice
TN I SR e
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2.2.1.2 The D-Bus

The primary function of the D-Bus is to pass data from various sources in the Bitslice to the
29117, the Y input of the multiplier and the Y-Bus via the bus to bus transceivers.

2.2.1.3 The Immediate Bus

The immediate bus is a multi-purpose bus. It can source data values to the Dbus, source an
address to the Branch Bus and source the Scratch RAM address. The Immediate bus receives =
values from the execution registers immediate field and the immediate field register.

2.2.1.4 The Branch Bus

The Branch Bus supplies the microsequencer with an external address. The bus can be sourced
from the vector RAM, the execution registers immediate field or the immediate ﬁeld reglster

2.2.1.5 Bus Decoders

All the components surrounding the Bitslice that send data to or receive data from the Y-Bus
and D-Bus are controlled by the Bus Decoders. The Bus Decoders receive encoded inputs
from one of four bus control fields in the Execution Register. During an instruction cycle, the
READ decoders select which device puts data on the bus, and the WRITE decoders determme
which device receives data from the bus.

The Y-Bus and D-Bus destination decoders have *STROBE and *WRDECEN connected to

their enables. *“WRDECEN from the maintenance register allows the decoders to be disabled |

while testing and loading the WCS to prevent the data’s execution during these periods. Some
decoder outputs are used to clock registers. A glitch on those lines will cause the registers to
load. The *STROBE disables the decoders for the first 25ns of the instruction cycle. This
gives the decoder time to stabilize before its outputs are enabled to prevent the outputs from
glitching.

2.2.1.5.1 Bus-to-Bus Communication Communication between the Y-Bus and D-Bus
is accomplished through a 74AS652 Bus Transceiver. The transceiver’s mode of operation is
selected from the microcode via the D-Bus Y-Bus decoders. The transcelvers are controlled
from the microcode so that the data can be latctied internally and used'in a subsequent state or
they can be put in a transparent mode and the data passed through the transceiver in one state.
For some data paths, timing will not allow the transceivers to operate in transparent mode.
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For details on bus to bus timing constraints, refer to the PS 390 Raster Backend Microcode
Manual.

2.2.2 The Bitslice 16-Bit Processor

The Master Bitslice Arithmetic Logic Unit (ALU) is an AMD 29117 or equivalent microproces-
sor. The AM29117 has dual data ports, ability to do register-to-register arithmetic and logic
functions, and 16-bit barrel shift capability. Refer to the PS 390 Raster Backend Microcode
Manual for details on programming the AM29117. Refer to the AM29117 manual for modes
of operation and timing specifications.

The Bitslice has been connected to maximize control via the microcode. Input data is supplied
from the Raster Backend D-bus. The output data is sent to the Raster Backend Y-bus. The
Data Latch Enable bit controlling the reading of data from the D-bus to the 29117 internal
latch is controller directly by the execution register. The (OEY) output enable (which controls
the sourcing of data to the Y-bus) is controlled through the Y-bus source decoders.

2.2.2.1 29117 Bitslice ALU Pin Description
The following is a description of the pin assignments for the 29117 ALU chip:

e Dy — Dj5 Bidirectional Data (Input)

— Data Input Lines, Dg — Djs, are used as external data inputs which allow data to
550 e directly loa.ded into the 16-bit data latch.

s Yo— Yis uenerai Our.pun {Output)

7 Data Qutput lines. When OEy is HIGH, the 16-bit Y outputs are disabled (high
smpedance), hawgng OFEy ,LOW allows the ALU data to be output on Yo — Yis.

‘e ij’ Daté Lhtcli Eiiable (In?i‘xt)

e When OEy is HIGH the 16—b1t data latch is transparent and is latched when DLE
is LOW.

K OE’y OutputE'nable (Input)

o j ;"— Wheq OEY is. HIGH the 16-rb1t Y outputs are dlsabled (high impedance); when
o OEy is LOW the 16-b1t Y outputs are enabled (HIGH or LOW).

e [g — 115 Instructlon Inputs (Input)
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Figure 2.2: 29117 Bitslice ALU Pin Assignments

— Sixteen Instruction Inputs, used to select the operation to be perfofméd in the
29117. Also used as data inputs while performing immediate instructions.

o ® [EN InstructionEnable (Input)

— When TEN is LOW, data can be written into RAM whén the éléck is LOW The
Accumulator cam accept data during the LOW-to-HIGH' trangition éfthe clock.

Having TEN LOW, the Status Register can be updated, when SRE is LOW With
IEN high, the conditional test output CT 1s dxsabled as a funct;&m; of the instruc-
tion inputs. AT mD R men

5‘ R
e SRE StatusRegtister Enable (Input) : D
: SRR *u& u& R

— When SRFE and IEN are both LOW, the Status Reglster is updated at l;he end of
all instructions with the exception of NO-OP, Save Status' ana Tést Sta.tn& Having
either SRE or TEN HIGH will inhibit the Status Regxster from c‘hanglng

e CP Clock Pulse (Input) SRR e

w
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— The clock input to the 29117. The RAM latch is transparent when the clock is
HIGH. When the clock goes LOW, the RAM output is latched. Data is written
_into the RAM during the LOW period of the clock, provided TEN is LOW, and
if the instruction being executed designates the RAM as the destination of the
operation.. The Accumulator and the Status Register will accept data on the LOW-
to-HIGH transition of the clock if TEN is also LOW. The instruction latch becomes
transparent when it exits an immediate instruction mode during a LOW-to-HIGH
transition of the clock.

e Ty — T4 Test I/O Pins (Input/Output)

— Under the control of OEr, the four lower status bits, Z, C, N and OVR become
outputs on T; — Ty, respectively, when OEr goes HIGH. When OEr is low, T1 —
T4 are used as inputs to generate the CT output.

e OE7 Output Enable (Output)

— When OEr is LOW, 4-bit T outputs are disabled (high impedance); when OEr is
HIGH, the 4-bit T outputs are enabled (HIGH or LOW).

e CT Conditional Test (Output)

— The condition code multiplexer selects one of the twelve condition code signals and
places it on the CT output. A HIGH on the CT output indicates a passed condition
and a LOW indicates a failed condition.

2.2.2.2 Imstructing the 29117 16-Bit Processor

The Enable bit (TEN) is wired to a 50% duty cycle 100ns clock to include dual register
instructions in the microcode insiruction set. The execution register (refer to Section 2.2.4)
has one set of registers specifying the 29117 source register address and a second set of registers
specifying the 29117 destination register address. The register addresses run to the 29117 via
a “registered” multiplexer that selects the source register address for the first half of the
instruction and the destination register address for the second half.

NOTE: Because of timing constraints, the source register address does not have time to go
through the execution register. The source register address runs from the WCS directly to the
multiplexer. The destlnatlon registers are run to the multiplexer via the execution register to
insure: theit, mtegnty; EIgE

The' 'Status Reglster Enable is dlrectly wired to a bit in the execution register to allow the
mlcrocode to selectlvely upda.te the 29117 internal status register. The (OET) Output Enable
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is tied high to enable the status bits as outputs. The 4 status bits and the conditional test bit
(CT) are wired to the external status register. ‘

The external status register contains two banks of registers. The first bank containing the
Endpoint Pipeline and pixel processor status bits is continually updated. The second bank,
which receives the status bits from the 29117, can be selectively updated by the microcode.

Timing allows the 29117 internal status register and the external status reglster to be updated
in the same state.

2.2.3 The Microsequencer

Yoy o N aogo,
S(CC:Z 3 vy
s 3 B30y
D5l 2 Ve
iigs 3 0¢
PLTle %I vy
Map (7 36 [ Og
3]s IV
v'?EQ 20
cC 10 Ari20 3ty ee
hCu 104 36 £ Guo
o (]2 Yk
CCEN 13 280 Yy
e 273 0n
AB )18 2817 ¥yo
FOULL e 28173 04
De 17 267 ve
Ve (18 23[Dg
Dy e 20 vy
YicJ20 2157 0g

Figure 2.3: AM2910A Bitslice Microsequencer -Pﬁi Assig-nmen'ﬁs o wil

S s eyt e ol

The microsequencer is an AM2910A or equivalent. The 12-bit microsequencer-can-select ary~

of the 4K writable control store addresses. The microsequencer receives an instruction at. &he

beginning of each cycle and using that instruction determmes the address of the '_nstructzon to .
be used for the next cycle. The microsequencer instruction Set contains commands such as:
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e Continue to access the next sequential instruction
e Jump to a designated address

e Jump to a designated address on a specified condition being true.

The microsequencer receives its instructions directly from the execution register. Its outputs
run to the writable control store address lines. The microsequencer is the only device capable
of driving the writable control store address.

When executing a branch instruction, the address is provided from a source external to the
microsequencer. The microsequencer receives the address on its input branch bus and routes
the address to the WCS. In the PS 390 Raster Backend, a branch address can be sourced from
the Y-Register’s immediate field, the immediate field register, or the vector RAM. See the PS
390 Raster Backend Microcode Manual for details on selecting the various address sources.

A branch on condition is executed when the microsequencer’s condition code enable bit is
asserted LOW. When executing a branch on condition instructions, the status of the microse-
quencer’s one bit condition code determines if the branch condition has failed or passed. This
is achieved by connecting the Status Register to a mulitiplexer. The Multiplexer’s output is
connected to the microsequencer’s condition code bit. The microsequencer must be capable of
detecting and branching on the state of the various logical segments in the Raster Backend.
The select lines of the multiplexer are controlled from the execution register allowing any of
the status bits to be forwarded to the microsequencer condition code bit.

The microsequencer has the restriction that it can only branch on an OR condition. If the
condition fails, the branch is not executed. To give the programmer the ability to branch on
a failing condition as well as a passing condition, an exclusive OR gate is placed between the
output of the condition select multiplexer and the microsequencer. One input of the exclusive
OR gate is connected to the multiplexer and the other is connected to the invert condition bit
of the execution register. The invert condition bit determines if the condition bit is passed
from the multiplexer to the microsequencer unchanged by the exclusive OR gate or if the
condition is inverted by the gate. Inverting the condition allows a failing condition to be seen
as a passing condition by the microsequencer and thus provides a branch false capability.

. i
it i

2.2.3.1 2910 Bitslice Microsequencer Pin Description
The folowing-is'a-description of the pin assignments for the AM2910A microsequencer chip:

e D; Direct Input Bit i

— Direct input to register/counter and multiplexer. Dy is LSB.
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e I; Instruction Bit 1

— Selects one-of-sixteen instructions for the AM2910A.
e CC Condition Code

— Used as test criterion. Pass test is a LOW on CC.
e CCEN

— Whenever the signal is HIGH, CC is ignored and the part operates as though CC
were true (LOW).

e CI Carry-In
— Low order carry input to incrementer for microprogram counter.
e RLD Register Load
— When LOW forces loading of register/counter regardless of instruction or condition.
e OF Output Enable
— Three-state control of Y; outputs.
e CP Clock Pulse
— Triggers all internal state changes at LOW-to-HIGH edge.
e Voo +5 Volts
e GND Ground
e Y, Microprogram Address Bit i
— Address to microprogram memory. Yq is LSB, Y;; is MSB.
e FULL Full
— Indicates that five item are on the stack.
e PL Pipeline Address Enable »
— Can select #1 source (usually Pipeline Register) as diréct ‘it‘xput‘ source. .
e MAP Map Address Enable .
— Can select #2 source (usually Mapping PROM or PLA) as direct input source.
e VECT Vector Address Enable ' o o

— Can select #3 source (for example, Interrupt Starting Address) as direct-inpiit < =
source.
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2.2.4 The Execution Register

Functionally, the execution register is a bank of registers that receive a microcode instruction
from the Writable Control Store that is to be executed by the Bitslice. The execution register’s
purpose is to keep the microcode instruction stable for one complete clock cycle while the
microsequencer and WCS prepare the next instruction for execution.

The execution register is a mixture of AM29818s and 74F374s. The 29818s are used as the
execution register with the exception of the ALU instruction field. The propagation delay
through the 29818s is too long for the ALU instruction field is too long for the ALU to meet
the 29818’s 100ns cycle time requirement. Therefore, 29818s are used to complement the
74F374s in loading the WCS ALU instruction field.

The output enable pin on the 29818s is grounded with the exception of the 29818s which are
associated with the immediate field. This gives the microcode the capability to select between
the immediate field register and the microcode’s immediate field as sources to the immediate
bus.

2.2.5 The Writable Control Store (4K Words)

The Writable Control Store (WCS) is a bank of 4K x 80, 25ns RAMs. Their address lines
are driven by the microsequencer. The data lines run directiy to the Execution Register. The
write enable is connected to a bit in the Maintenance Register to give the JCP control over
loading the Bitslice microcode. The write enable is only enabled while loading microcode to
the writable control store. For normal run mode operations, the write enable is deselected

(held high).

The chip select is controlled from two scurces via an OR gate. When in maintenance mode, the
RAMs can be de-selected from the *_WCSOE bit of the maintenance register. When loading
or executing microcode, the *WCSOE bit is disabled and the clock *STROBE controls the
chip select. *STROBE is used here, primarily, to simplify the process of loading the RAMs.
Details on the timing of *STROBE are included in the clock section.

2.2.5.1 Loading the WCS

The WCS is loaded via the Execution Register’s 29818 Shadow Register. Before loading the
WCS, the microsequencer must be initialized to select the starting address. This is accom-
plished by loading a Jump Immediate instruction into the 29818 shadow pipe. The immediate
field of the jump instruction should contain the first WCS address to be loaded; normally zero.
Setting the appropriate control bits and executing a single step will load the execution register
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Figure 2.4: ALU Instruction Field Path
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with the jump instruction in the shadow register. The microsequencer then accesses the first
WCS location to be loaded. The first location must be loaded at this point by performing the
following steps:

1. Load the shadow register with the data to be loaded in the WCS.

2. Drive the shadow register onto the WCS data lines by setting the appropriate mode bits
and performing a D Clk.

‘

3. Execute a P Clk to write the WCS.

The execution register should then be loaded with the default microword instruction (NOP).
This will put the Bitslice in an idle state while the microcode is being loaded and allows the
microsequencer to sequentially step through the WCS. This is accomplished by loading the
shadow register with the default microword and executing another singlestep. The microse-
quencer is now accessing WCS location start + 1. The three steps outlined above can now be
repeated tc load WCS address start + 1 with its respective data. With a NOP instruction
in the execution register, each time a P Clk is executed the microsequencer will increment its
address by one. The three steps outiined above can be repeated until WCS is loaded.

The 29818s’ Mode bit, Shift bit in and D Clock inputs are controlled from the maintenance
register. This gives the JCP control over loading the WCS (This technique also prohibits the
Bitslice from doing overlays in its microcede).

2.2.6 Scratch RAM

The Scratch RAM is 2K x 16-bits general purpose RAM (Random Access Memory). RAM
addresses are supplied from the Immediate bus. Data lines are connected to the D-Bus. Timing
constraints prohibit data from the ALU to be written directly to Scratch RAM. Data from the
ALU must be transferred to the bus-to-bus transceivers in one state and from the transceivers
to the Scratch RAM in a subsequent state. All other components can read/write data in the
Scratch Ram in one state.

Data can be read fromthe Scratch RAM to-the ALU D-latch in one state.

2.2.7 * Multiplier
The mliltipliéi; is'a Weitek 2517B or equivalent. The multiplier is wired to allow maximum

contr"o}f through the microcode. The execution register multiplier field has control lines for:

e X and Y Data Modes.
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Figure 2.5: 2517B Bitslice Multiplier Pin Assignments
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Format Adjuster & Round Control.
Feed-Through Mode Control.

Product Enable.

Most/Least Significant Product Select.

The multipliers X-data input is supplied through the Y-Bus. Loading of the X-data is controlled
through the Y-Bus destination decoders. The multipliers Y-data is supplied through the D=+t
Bus. Loading Y-data is controlled through the D-Bus destination decoders. The multipliers
product is supplied to the D-Bus. Supplying the product to the D-Bus is controlled by the, ,
D-Bus source decoder. S
Timing allows data to be written to the X-data input from any component on the Y-Bus.or D- '+
Bus in one state. Data being written to the Y-data input can be written from any component . -,
on the busses in one state with the exception of the ALU. The ALU must write the Y-data
input via the bus transceivers temporary register. The product can be written to the ALU



COMPANY PRIVATE—PS 390 Graphics System May 6, 1987 21

two states after the data inputs are written. All other destinations can be written to from the
ALU state one state after the operands are written.

2.2.7.1 2517B Bitslice Multiplier Signal Description

The following is a signal description for the Weitek 2517B Multiplier:

o X5, X1

— 16 bits of data each, defined as unsigned magnitude or two’s complement under
control of Cx and Cy. Y; can also be used to output the LSP data.

e Cx, Cy

~ X1 and Yy complement control signals; a logic “1” on Cx or Cy signifies a two’s
complement input (X; or Yj, respectively), while a logic “0” signifies an unsigned
magnitude input.

¢ RND

— A logic “1” on the RND line rounds the product to the most significant 16 bits by
adding one to the most significant bit of LSP; RND is loaded by the rising edge of
the logic “or” of CKx and CKy.

e RS

— When RS = 0, the MSP is left shifted one bit and the sign bit is duplicated in the
MSB of the LSP. When RS is equal to one, P3; represents the product sign bit if
the output is interpreted as two’s complement data.

@ FT
— Feedthrough; makes output latch transparent when set high.

e P ’ :
- 16 bits output data; Most Significant Product (P3; - P1g) and Least Significant

Product (P15 — Pp) can be multiplexed onto the P port.
e CKm, CKL

.~ MSP and LSP output register clocks.
® —O_E—p, —O—E'_L

* — MSP and LSP three state output enables
: — Select either MSP (low) or LSP (high) to be available at the product output port.
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® m

— Register enable for X;5 - X9, Cx and RND.
e ENY

— Register enable for Y;5 - Yp, Cy and RND.
® E'-I—V——P-

— Register enable for MSP and LSP.

Note: For more information concerning the signal descriptions for the WTL 2517 consult
the manufacturer’s chip specification document.

2.2.8 Wimmed Register

The Wimmed register is most often loaded with a branch address for the microsequencer.
The Wimmed register is loaded from the Y-Bus and can source the immediate bus in any
subsequent states. The microcode bit enabling the Wimmed register to the irnmediate bus is
delayed by one state. If, for example, the microcode enables Wimmed register in states 2 and
3 of the microcode, its data will be on the immediate bus in states 3 and 4. This functionality
provides the microcoder with a simple means of implementing jump tables.

2.2.9 Vector RAM

The Vector RAM is another source of branch addresses for the microsequencer. It can provide
up to 2K of indirect addressing. The address bits are wired to allow paging through the RAM.
The upper 3 bits are wired to a page select register, loaded from the D-Bus. The lower 8 bits
are sourced from the entry select register, loaded from the Y-Bus.

Currently the PS 390 Raster Backend loads one page of the vector ram with addresses asso-
ciated with the line texturing microcode and another page with the branch addresses of the
command handling routines (which are received from the PLS). B

The Vector RAM is loaded off disk during the boot process. If the microcode is modified
altering the branch addresses. The Vector RAM file must be updated on the disk to correspond
with the latest version of microcode.

As an example to the Vector RAMs operation consider the command handling routines. ,Data
read from the Input FIFO, is loaded into the ALU D-latch and the Vector RAM .address
register. While the ALU performs a bit test to determine if the data is a command, the
Vector RAM is providing a branch address on the assumption the data is a command. The
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microsequencer performs a condition of branch on the result of the Bit Test using the address
provided by the vector RAM as its branch address.

2.2.10 Lookup Tables

The function PROM is composed of 2, 64K x 8 UV EPROMS. Access time is 250ns. Timing
requires three wait states after the Function PROM address register is written before the
EPROM is sourced to the D-Bus.

The Function PROM provides a 64K x 16 bit look up table. Its contents currently consists of a
sin (x) table, 1/X lookup table, Red, Green, and Blue color values and a vector list displayable
during boot up.

2.2.11 Maintenance Register

The Maintenance register is loaded from the Mass Memory via the common bus. The common
bus address lines along with *CBDEV, *CBWRT and *CBADS are run into the Maintenance
Register Read/Write Decode PAL. The Decode PAL uses *CBADS to determine when the
common bus address lines are stable and can be decoded. The address lines and *CBDEV
determine if the maintenance register has been addressed (When *CBDEYV is low, the upper
12 of the 24 bits is high). If the maintenance register is being selected and the *CBWRT line
is low, the maintenance register is loaded from the common bus. If the maintenance register
is selected and the *CBWRT line is high, the contents of the maintenance register are sourced
to the common bus.

There are 2 bits in the maintenance register that, when set, are automatically cleared by the
hardware. These are STEPREQ (bit 12} and PCLKREQ (bit 11). When these bits are set,
the clock performs a single bit or P clock respectively. Within the clock cycle, these clock
request bits are cleared to insure the clocks go through exactly one cycle.

A third bit that has a type of auto clear is CBATTN (bit 15). This bit triggers the common
bus state machine to perform a common bus cycle. At the end of the common bus cycle, this
bit is auto cleared by the state machine.

For further details on maintenance register bit definitions, consult the PS 390 Raster Backend
Microcode Manual.

NOTE: CBATTN should never be set by the JCP. When set, this bit triggers the Bitslice
to perform an interrupt.
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2.2.12 Common Bus Interface

The common bus interface supports interrupt generation to the JCP and Direct Memory Access
(DMA) to Mass Memory.

2.2.12.1 Interrupts

The PS 390 Raster Backend primarily uses interrupts as a mechanism to transfer data, such as
pick information, to the JCP. Before interrupting the JCP, the interrupt vector register must be
loaded from the D-Bus. The interrupt is initiated by clearing the *DDIRV bit in the execution
register. This bit is cleared by writing the jump vector to the upper 8 bits of the interrupt
register on the D-Bus. This sets a T4F74 register. Before the interrupt can be forwarded
to the JCP, the interrupt must be synchronized with the JCP clock. The synchronization is
accomplished by running the output of the 74F74 to a second 74F74 which is clocked with the
JCP clock. The second 74F74 generates a level 3 interrupt request for the JCP.

When the JCP is ready to handle the interrupt, it acknowledges the interrupt by setting the
CBIIN|[3| line and clearing the *CBWRT, *CBLDS and *CBADS lines. When this condition
is detected by the Bitslice’s CB/XREG PAL, the interrupt vector is put on the common bus
data lines and a data acknowledge (DTACK) is issued to the JCP. When the JCP receives the
interrupt vector, it lowers the CBIIN[3] line causing the CB/XREG PAL to raise the DTACK
line, remove the interrupt vector from the common bus data lines and remove the interrupt
request. This completes the interrupt cycle.

Note: The JCP card is equipped with a set of jumpers which are required for the JCP to
service the interrupt. Also pins 21 & 22 on the P2 connector on the backplane of the PS
390 cabinet should be jumpered together in order to service the interrupt. (Refer to the JCP
installation manual under interrupts.)

2.2.12.2 Direct Memory Access

The DMA provides the Bitslice with a means of directly accessing mass memory. The DMA
logic is comprised of a common bus data register, common bus address register, common bus
arbiter, time out logic and the DMA state machine.

A scenario of the sequence of events required to access mass memory is as follows. To write
into mass memory: Load the common bus data register with the value to be written to mass
memory. Load the common bus address register with the mass memory address to be writtén.
Loading the high byte will trigger the DMA state machine. Therefore, the low address word
must be loaded first. The DMA state machine will perform the necessary handshaking with
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the JCP to gain control of the common bus and write the contents of the data register to mass
memory. While the DMA state machine is performing the data transfer the CBBUSY bit in
the status register will be high. Upon completion of the data transfer, the CBBUSY is cleared.
A second common bus cycle may not be requested until the CBBUSY flag is cleared.

When retrieving data from mass memory, the sequence of events is identical to writing to mass
memory with the following exceptions. No data need be written to the common bus data
register before writing the common bus address register. The high byte of the common bus
address register is loaded using the read mode command rather than the write mode cornmand.

The DMA state machine works in conjunction with the arbiter PAL to conduct the handshaking
which is necessary to perform a common bus cycle. The cycle is triggered when the microcode
writes the high byte of the common bus address register. This causes the DMA state machine
to issue a COMMON to the arbiter PAL. The arbiter PAL then lowers *MINENEXT and
issues a common bus request (*CBREQ) to the JCP. When the JCP is ready to surrender
control of the common bus, it issues a common bus grant (CBGIN). The arbiter then lowers
*IGOTIT declaring control of the common bus. The common bus address register is sourced
to the common bus address lines, the data is sourced to the common bus data lines if a
write operation is in progress and the common bus control lines are asserted. These include
address strobe, lower data strobe, upper data strobe, the read/write line and the common bus
acknowledge.

The last signal to be asserted is the DTACK from the JCP. When writing to mass memory,
DTACK indicates the data has been taken and the cycle can end. The common bus address and
data registers are disabled from the common bus lines and the control signals are deasserted,
ending the cycle.

When reading from mass memory, DTACK indicates the data is available. The DMA state
machine latches the data in the common bus data register, disabies the common bus address
and data lines and deasserts the control signals, ending the common bus cycle.

The common bus data register is a pair of 74AS652 transceivers. One I/O port is connected
to the D-Bus and the other to the common bus data lines. The common bus address register
is comprised of three 74F374 registers. Their inputs are connected to the D-Bus and their
outputs are connected to the common bus address lines. Their output enable is tied to the
*IGOTIT line of common bus arbiter PAL. This line indicates the DMA state machine has
control of the common bus and enables the address to the common bus. The DMA state
machine is coded in a 16R8B PAL. The time out circuitry is a pair of 74LS393s which are 4
bit counters clocked from the 100ns Bitslice clock.
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2.2.13 Video Intermediate Register

The video intermediate register is comprised of two 74ALS652 bidirectional transceivers. It
passes data to a specified control register on the video card or reads the contents of a video
control register back to the Bitslice. The execution register contains a field for register ad-
dressing and mode control. There are 4 register select lines, a read/write control line that
determines if the specified control register is to be read or written and a mode control line.
The register address field is shared between the FSBC and the video card. The mode control
line determines if the specified address is intended for FSBC or the Video card.

2.2.14 Clocks

14

The Bitslice clocks are generated with a 16R8B PAL. The PAL is clocked by a 25ns clock and
generates a 100ns clock for the Bitslice. The PAL outputs are gated with AM29823 registers
which lend themselves to accurate generation and duplication of the clock signals. .

There are 4 modes of operation supplied by the clock PAL. Normal mode, in which all the
signals with the exception of *CLRREQ run through a normal cycle. Halt mode, which allows
the 50ns raw clock, 100ns raw clock and IEN75CLK to run through a normal cycle while all
other signals are halted. Shift Mode, which is a modified version of halt mode, allows PCLK
and STROBE to run. In addition to those signals that run during halt mode, Single Step,
allows all the signals to run through one cycle.

The various clock modes are selected via the maintenance register. There is a halt bit, single
step request and PCLOCK request. The halt bit determines if the clocks are in normal mode
or halt mode. Once the clocks are put in halt mode, a step request or PCLK request can be
issued. When either a step request or PCLK request is given, the appropriate clock mode runs
through a single cycle. During those cycles the clear request signal is asserted to clear all mode
requests. This guarantees exactly one clock‘cycle will be executed.

Normal mode allows the Bitslice to cycle through the WCS executing microcode. Halt mode
stops the entire machine. This allows the microcode to be loaded in the WCS, loading of the
vector RAM and debugging of the Bitslice. A PCLK provides a simple means of loading the
WCS. Each time a PCLK request is asserted, PCLK runs through one clock cycle clocking
data into the WCS and incrementing the microsequencer’s internal address counter. Single
Step is useful in debugging allowing the microcode to be walked through while checking the
status of various components of the Bitslice.

NOTE: A clock cycle is composed of 4 phases, phase 0 through phase 3. When the halt
signal is asserted, the clocks complete the current cycle and stop in phase 0. This prevents any
clocked components from hanging in an unknown state.
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2.3 The Endpoint Pipeline

The PS 390 Graphics System Endpoint Pipeline is comprised of several custom VLSI chips,
that are also used on the Shadowfax project. They include the Delta Calculator chip, the Depth
Cue chip, the Divider chip, the FIFO Stack Bus Controller chips and the Pixel Processors. In
addition to the Shadowfax VLSI chips there is a state machine that controls the transfer of
data from the FIFO/Stack Bus controllers to the Pixel Processors.

A brief description of each chip follows. For a detailed discussion of the custom VLSI chips,
refer to the Shadowfax VLSI engineering manual.

2.3.1 The Delta / Depth Cue Calculator (DDCC)

The DDCC is comprised of three Depth Cue VLSI chips, one Delta Calculator VLSI chip and
two Divider VLSI chips.

The Delta Calculator VLSI chip receives X and Y values from the FSBC chip and using these
values the Delta Calculator computes the siope of the line, the adjusted endpoints and the
number of pixels in the line and other values and flags required by the Pixel Processors.

The Depth Cue chips provide the Pixel Processors with the RGB intensity information required
to draw depth cued lines. The Depth Cue chips set Z data for the FSBC. There are three Depth
Cue chips, one for each color Red, Green and Blue.

The Divider chip performs a bit serial binary division of two 34 bit operands. There are two
divider chips in the DDCC, one for the Delta Calculator and the other for the Depth Cue
Chips.
The Pixelpipe hardware is comprised of the following components:

N

The Input FIFO Stack Bus controller manager
The Input FIFO Stack Bus controller

The Delta Depth Cue Calculator

The Output FIFO Stack Bus Controllers

The Pixel Processor Array Loader

A

The Pixel Processors

The Input FIFO Stack Bus controller manager.
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The Input FIFO Stack Bus controller manager loads endpoint information into registers that
reside inside the Input FIFO Stack Bus Controller. The hardware consists of a register and
state machine that resides in a PAL.

When the Bitslice receives an endpoint from the PLS, it first processes this endpoint informa-
tion to output the correct data format used in the Pixel Pipeline. Then the Bitslice has to
write the 32 bit X, Y, Z, W registers inside the Input FSBC.

Because the Bitslice can only write one 16 bit word at a time, there is a 32 bit register, which
the Bitslice can load by first writing a 16 bit LSW and then a 16 bit MSW.

Whenever the Bitslice writes the MSW of the 32 bit FSBC data register, the INFSBC controller
writes a register inside the FSBC. Therefore the Bitslice must wait until the *INFSBCREADY
bit is asserted by the INFSBC controller before writing any registers. When the input FSBC is
ready, the controller may write the register inside the FSBC. The transfer completes when the
Bitslice asserts the acknowledge signal for the input FSBC. The INFSBC controller passes the
acknowledge signal to the input FSBC and then returns to the idle state where the controller
remains until the next transfer of data.

Registers inside the input FSBC are addressed with the signals INFSBCADR[0..2]. When the
Bitslice writes the MSW of the 32 bit data register, it provides the FSBC register address in the
VID/BCREG(0..2] field of the microword. This address is latched by the INFSBC controller,
and passed on to the input FSBC in the next state.

The VIDFSBCR/*W signal from the microword is also used by the INFSBC controller. When
asserted it causes the LSW of the 32 bit data word for the input FSBC to be cleared to zero’s.
This is used as a fast clear for the LSW so that the microcode does not have to clear the
register by writing to it.

2.3.2 The Input FIFO Stack Bus Controller

The FIFO Stack Bus controller chip is used to control static RAM arrays for stacks and FIFO.
In the PS 390 Graphics System, the Input FIFO Stack Bus controller is used as a bus controiler
and to convert the data from 32 bit parallel to 32 bit serial words for the Pixel Pipeline Delta
Calc and Depth Cue chips.

For a detailed description of the FIFO Stack Bus Controller refer to the Shadowfax VLSI
manual.
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2.3.3 The Delta Depth Cue Calculator

The DDCC consists of the Delta Calculator chip, 3 Depth Cue chips and 2 divider chips. One
divider is used by the Delta Calculator and one is used by the Depth Cue chip which computes
intensity information for the color Red.

The Delta Calculator receives the Command/Status, X, Y, Z, W words from the input FSBC.
The Depth Cue chips receive only the Command/Status word and the Z component.

The command word and the vector components are routed from the input FSBC to the Delta
Calculator and Depth Cue chips via the INFSBCO|0..4] signals.

For a detailed description of the Delta Calculator and Depth Cue chips, refer to the Shadowfax
VLSI manual.

2.3.4 The Output FIFO Stack Bus Controllers

The Output FIFO Stack Bus Controllers gather serial information from the Delta Calculator
and Depth Cue Chips, and convert the serial data to a paraliel format. They also alert the Pixel
Processor Array Loader (PPALoader) that data is available in the internal output registers,
so that it can be passed to the Pixel Processors or returned to the Bitslice.

The Endpoint FSBC collects serial data from the Delta Calculator, while the Color FSBC
collects serial data from the Depth Cue Chips. The Command/Status word in the data specifies
if the data should be passed to the Pixel Processors or to the Bitslice. If data is to be returned
to the Bitslice then the signal ENDFSBCA/*B is asserted HIGH, if data needs to go to the
Pixel Processors the ENDFSBCA/*B is asserted LOW. After data is taken from the registers
the FSBC are acknowledged with the *OUTFSBCPACK signal. If an acknowledge signal is not
received, eventually the FSBC will assert the ENDFSBCBUSY signal, indicating to upstream
stages of the pipeline that no more data can be transferred down.

For a detailed description of the FIFO Stack Bus Controller refer to the Shadowfax VLSI
manual:

2.3.5 The Pixel Processor Array Loader

The Pixel Processor Array Loader is a state machine that transfers data from the output
FSBC’s to the Pixel Processor Array or back to the Bitslice.

When the *OUTFSBCPREQ signal is asserted, the PPAloader transfers data to the Bitslice if
the OUTFSBCA/*B is asserted HIGH, and transfers data to the Pixel Processor array if the
OUTFSBCA/*B signal is asserted LOW.
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During transfer of data to the Bitslice a 16 bit word is transferred from the FSBC to a data
register, where the Bitslice can read it. After the Bitslice has read this word the PPAloader
transfers the next word, and this process continues until the Bitslice asserts the PPLPACK
signal, indicating that enough information has been transferred. Then the PPAloader asserts
the acknowledge signal for the output FSBC’s and returns to the idle state, where it remains
until the next request from the Output FSBC.

When the transfer of data is to the Pixel Processors, the PPAloader must first wait until the
Pixel Processors are ready to take data into their input registers. This is indicated when the
*NPR (New Packet Request) signal from the Pixel Processors is asserted. The PPAloader
transfers a word of data every 100 ns, until all the registers in the pixel processor’s input stage
have received new data. Then the PPAloader asserts the *PIXPACK signal indicating that
the transfer of data is complete. The PPAloader then returns to the idle state where again it
waits until a request is made by the output FSBC.

The hardware associated with the PPAloader includes the PPAloader state machine, a FSBC
address generator, a Pixel Processor address generator and some additional conditioning logic
to control the output enable signals for the FSBC’s.

2.3.6 The Pixel Processors

The Pixel Processors draw anti-aliased lines based on endpoint and slope data received from
the Delta/Depth Cue Calculator. The Pixel Processors also provide read and write access to
the PS 390 Graphics System Frame Buffer.

The PS 390 Graphics System has a total of sixteen Pixel Processors, with eight processors
on each Raster Backend Card. All memory access to the random port of the video RAMs is
through the Pixel Processors. Each Pixel Processor has an array of video RAMs which it reads
and writes. The Pixel Processors contain the counters and registers which hold the current
row for both dynamic memory refresh cycles and screen refresh cycles.

The Pixel Processors respond to commands given them by the PPAloader or the Bitslice. The
Pixel Processors are the only interface between the Frame Buffer and the other parts of the
PS 390 system.

The Pixel Processors also transfer data via a two bit interface to the Pixel Read Machine. For
a detailed description on the Pixel Read Machine refer to Section 2.3.7 of this manual.

The Pixel Processors are described in detail in the Shadowfax VLSI Engineering Manual.
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2.3.7 The Pixel Read Machine

The task of the Pixel Read Machine is to retrieve pixel information from the Raster Backend
Frame Buffer.

The Pixel Processors have a two bit data port through which pixel information may be re-
trieved. Since only two bits can be retrieved at any time, some mechanism has to be provided
to select the appropriate bits from the 32 bit data register inside the pixel processor. The
correct bits can be selected by providing an address on the Pixel Processor Address bus. As
shown in Table 2.1, (2 bits) can be selectively retrieved.

The Pixel Read machine is implemented using two AMD 29818 registers, two 8 to 1 multi-
plexers, a state machine and some additional conditioning logic. The AMD29818 register has
a onboard diagnostic shift register that can be loaded serially. The multiplexers serve to select
the morsels from the correct pixel processor.

To obtain pixel information from the Frame Buffer, the Bitslice first writes the register that
specifies from which pixel processor the read will occur. Then the Bitslice commands the Pixel
Processors to perform a Scan Line Buffer Read cycle from the Frame Buffer. When the Pixel
Processors perform this cycle the *SLR (Scan Line Request) signal is asserted. This causes the
Pixel Read State Machine to assert the *PPWAITSLB signal, which halts the Pixel Processors.
The Pixel Processors are halted until the wait signal is negated.

After the Pixel Processors are halted, the state machine shifts 16 bits into the diagnostic regis-
ters of the AMD29818’s, then transfers these 16-bits to the pipeline register of the AMD29818.
Again 16-bits are transferred from the pixel processor to the diagnostic register of the AMD
29818, and then the state machine asserts the *SLBREADY signal, indication to the Bitslice
that the pixel data is ready to be read. When the Bitslice reads the first word from the AMD
29818 pipeline register, the state machine transfers then next word from the AMD 29818 diag-
nostic register to the pipeline register. The Bitslice again reads the pipeline register to retrieve
the second word of pixel information, and then the Pixel Read state machine returns to the

idle state, releasing Pixel Processors from their halt state.

2.4 . The Frame Buffer

The Frame Buffer is located partially on the 204485 board which has the Bitslice processor,
and partially on the 204486 board which has the Video OQutput section.

The PS 390 Graphics System Frame Buffer is very similar to the Shadowfax Frame Buffer.
The Frame Buffer components include:
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Table 2.1: Pixel Read Machine Morsel Select Bit Values

| Color Select | Address PPADR[ 5.0 ] |
Blue bits 0,1 b’000000’
Blue bits 2,3 b’000001’
Blue bits 4,5 b’000010’
Blue bits 6,7 b’000011’
Green bits 0,1 b’000100°
Green bits 2,3 b’000101’
Green bits 4,5 b’000110°
Green bits 6,7 b’000111’
Red bits 0,1 b’001000’
Red bits 2,3 b’001001°
Red bits 4,5 001010’
Red bits 6,7 001011’
Window bits 0,1 - b’001100’
Window bits 2,3 b’001101’
Window bits 4,5 b’001110’
Window bits 6,7 b’001111°

1024 x 1024 x 48 Image bit planes.
1024 x 1024 x 4 Window planes.
1024 x 1024 x 2 Valid planes.

Frame Buffer Memory Controller.

Video Serial Port Interface

2.4.1 Video RAMs

The Frame Buffer uses Video RAMs as the storage element. The Video RAMs have a dual
port architecture. The two ports are the random port and the serial port. The Pixel Processor
Array accesses the Video RAMs through the random port. The Video RAM looks like a 256
X 256 X 4 array from this port.

The serial port of the Video RAMs is used to read out the video data. The serial port looks
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like a 4 bit wide, 256 bit long, 40 MHz shift register. This shift register is written and read
in a parallel fashion using the random port and special control signals. These operations are
known as transfer cycles.

A fast clear of the Video RAM is accomplished by writing one row (1 x 256 x 4) to the desired
value, transfering that row into the shift register, and then transfering the shift register into the
other 255 rows. The entire Video RAM can be cleared to a known value with 512 operations.
There are 256 random writes to clear the row, 1 transfer operation to write the shift register,
and 255 transfer operations to write the other rows. '

2.4.1.1 Valid Planes Storage in Video RAMs

The nature of the fast clear operation of Video RAMs requires the valid plane for the top half
of the picture to be stored “next to” the valid plane for the bottom half of the picture. The
valid plane for the other buffer is stored in the bottom half (rows 128 — 255) of the video
RAM. The fast clear operation is as follows:

Row 0 is written to all 0 using random cycles (1 x 256 x 2).
Row 0 is transfered into the shift register.
The shift register is written into rows 1 — 127 (128 x 256 x 2).

In this way the contents of rows 128 — 256, which contain the valid bits for the other buffer,
are not disturbed, and the clear is accomplished with only 374 operations.

2.4.2 Point Mapping of Pixel Processors & Video RAMs

Each processor has its own set of 14 Video RAMs, and is responsible for one sixteenth of the
1024 x 1024 Frame Buffer. The pixel processor is not responsible for a contiguous region, but
is interleaved with the other fifteen pixel processors. Starting with the upper left hand corner

of the screen, the mapping is as pictured in Figure 2.6. The numbers refer to pixel processor
numbers.

2.4.3 Image Bit Planes

The 1024 x 1024 image bit planes are used to store the image being displayed. The 48 bit
planes are divided up into two groups of 24 bits each. These groups make up the two buffers
of the double-buffered image. One buffer is displayed while the other one is being updated.
After the pixel processor array is done updating one buffer, the buffers are swapped, and the
other buffer is updated while the first one is displayed.
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Figure 2.6: Pixel Mapping on the PS 390

The 24 bit planes in each buffer are divided up into three groups of eight bits each. The groups
of eight bits are used to store the intensity for each of the primary colors red, green, and blue.

2.4.4 Window Planes

The four window bit planes are used for determining what type of image is stored in the image
bit planes. The window numbers determine the attributes of each pixel. Window numbers
zero through three are double buffered, non-blinking images. Window numbers four through
seven are double buffered, blinking windows. The blink rate of these windows is controlled by
the blink rate register. Window numbers eight through fifteen are single buffered, non-blinking

windows. The characteristics of each window number are programmed into the window lockup
PALs.

The window lookup PALs use the valid planes, window number, and the blink signal to tell
the VLA to put out the input pixel data or background color.

2.4.5 Valid Planes

The two valid planes are used for fast screen clear. When the bit-slice swaps buffers, it clears
out the valid plane of the buffer that the pixel processor array is about to start updating. As
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the pixel processor array draws lines, it sets the valid bits where the lines are drawn. In double
buffered windows, the video output section will display only the pixels where the valid planes
are set. The background color will be displayed for pixels where the valid plane is not set. In
single buffered windows the valid planes are ignored. The image should be written into both
buffers for single buffered windows.

2.4.6 Frame Buffer Memory Controller

The Frame Buffer Memory Controller (FBMC) is the same as the Frame Buffer memory
controller used on Shadowfax, with the exception that the PS 390 Frame Buffer memory
controller does not support page mode access to the video RAMs.

The Frame Buffer Memory Controller (FBMC) provides timing to the Frame Buffer memory
array and arbitrates requests for memory cycles. The 'BMC provides RAS/CAS, Write En-
able, and other memory timing signals to the Frame Buffer memory and the Pixel Processors.
The Memory Controller is physically located on the Right Card (RC) of the Raster Backend.

The Memory Controller Arbitration and Next Cycle Control PAL receives requests for
Frame Buffer memory cycles, conducts an arbitration and issues a 4-bit NEXTCYCLE code.
NEXTCYCLE is presented to the Memory Cycle Sequencer PROM which tracks the cycle
and generates a 6-bit CYCSTATE code every 100 ns. The CYCSTATE code is optimized to
a 4-bit FBTST (Frame Buffer timing state) code which is sent to both Frame Buffer cards.
The FBTST code is registered on the Frame Buffer card and is then presented to the TST
Timing Pals which generate memory control signals every 25 ns. The CYCSTATE code is
also interpreted on the Memory Controller by the Memory Cycle Acknowledge PAL which
generates acknowledges and other control signals for use on the Memory Controller.

The FBMC handles ten distinct memory cycles:

e Reset

o Idle

e Dynamic RAM refresh

o Pixel Processor read

e Pixel Processor write

e Pixel Processor long read

o Pixel Processor long write

e Video shift register load cycle

e Fast clear read transfer cycle
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e Fast clear write transfer cycle

The Reset cycle is executed continuously as long as the reset signal from the Bitslice is asserted.
This results in Frame Buffer timing code that brings RAS and CAS up and holds them up.

In the Idle cycle, the Memory Controller is waiting for a memory cycle request.

The Dynamic RAM (DRAM) refresh cycle refreshes every row in Frame Buffer memory once
every four milliseconds.

The Pixel Processor read cycle allows the Pixel Processors to read Frame Buffer memory. A
cycle which is concluded after a single access is essentially a random cycle.

The Pixel Processor read cycle can only follow a PP read or write cycle which was concluded
by bringing RAS up. Therefore, when the read cycle is begun, RAS falls. This cycle is required
because the *ENDPPCYCO signal bypasses the cycle sequencer PROM, leaving the PROM
without knowledge of the condition of RAS.

The Pixel Processor writebreak cycle is similar to the readbreak cycle regarding pagemode,
RAS, etc.

The Video shift register load cycle transfers a complete row from DRAM memory to the
Serial Access Memory (SAM). This cycle occurs during every fourth horizontal retrace in non-
interlaced modes, and every second horizontal retrace in interlaced modes. The Video Control
card shifts the row out via the serial port during active horizontal time.

The fast clear read transfer cycle moves a row containing video from DRAM into SAM. This
cycle is much like a Video Control shift register load cycle but is used to accommodate special
control needed by the video memory and because the address select lines to the Pixel Processors
(FASO and FAS1) are different for the two cycles.

The fast clear write transfer cycle writes the row back into DRAM 128 times, completing the
clear operation.

2.4.6.1 Frame Buffer Memory Controller Signals

The Frame Buffer Memory Controller signals are defined as follows:

e Input Signals

— Frame Buffer
— Video Controller

e Output Signals
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— Slave Memory Controllers

e Internal Signals
2.4.6.1.1 FBMC Input Signals

*RBA (Read Bank A, Input, TTL) *RBA indicates which bank of the Frame Buffer is
read on a Pixel Processor read. This is a GEN signal.

PPFBMRQO/2 (Pixel Processor on FB0/2 Memory Request, Input, TTL) PPF-
BMRQO/2 indicates that a Pixel Processor on Bitslice C is making a request for a memory
cycle. PPFBMRQO/2 is created by ORing all eight memory requests from the Pixel Processors.

PPFBMRQ1/3 (Pixel Processor on FB1/3 Memory Request, Input, TTL) PPF-
BMRQ1/3 indicates that a Pixel Processor on the Video Card is requesting a memory cycle.
PPFBMRQ1/3 is created by ORing all eight memory requests from the Pixel Processors.

READ (Read, Input, TTL) READ informs the Memory Controller that a Pixel Processor
will perform a read cycle in two clock periods (200 ns), provided the Pixel Processors are not
told to wait (FBWAIT or *SLBWAIT). When low, *READ indicates that a Pixel Processor
will perform a write cycle. READ is a GEN pin.

2.4.6.1.2 Video Controller Input Signals

*PPSLBWAIT (*Pixel Processor/Scan Line Buffer Wait, Input, TTL) *PPSLB-
WAIT indicates a wait caused by the Scan Line Buffer.

VCMREQ (Video Controller Memory Request, Input, TTL) VCMREQ informs the
Memory Controller that the Video Controller is requesting a read transfer cycle to load four
new screen refresh scan lines.

LASTTRN (Last Transfer Cycle, Input, TTL) LASTTRN informs the Memory Con-
troller that the requested read transfer cycle is the last transfer of the current screen. This
causes the Memory Controller to instruct the Pixel Processors to reset the screen refresh ad-
dress counters.
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2.4.6.1.3 FBMC Output Signals to Slave Memory Controllers

*FBALLCAS (Frame Buffer All Column Address Strobes, Output, TTL)
*FBALLCAS tells the CAS control logic to allow all memory arrays to execute CAS dur-
ing memory cycle. This is required for BITBLTs and transfer cycles.

*FBRASA (*Frame Buffer Row Address Strobe Bank A, Output, TTL) *FBRASA
tells the RAS control logic to allow Bank A to perform RAS during a memory cycle.

*FBRASB (*Frame Buffer Row Address Strobe Bank A, Output, TTL) *FBRASB
tells the RAS control logic to allow Bank B to perform RAS during a memory cycle.

*FBRASW (*Frame Buffer Row Address Strobe Bank W, Output, TTL)
*FBRASW tells the RAS control logic to allow Bank W to perform RAS during a memory
cycle. The Valid RAMs will always RAS even when this signal is not asserted.

*PPWAITFF (Pixel Processor Wait Flip-Flop, Output, TTL) *PPWAITFF is set
during the first 100 ns of a memory cycle (whether or not the cycle is a Pixel Processor cycle)
if a Pixel Processor was making a request during the previous memory cycle. It is cleared
during the last 100 ns of a Pixel Processor cycle.

FBFALD (Frame Buffer Address Load, Output, TTL) FBFALD tells the Pixel Pro-
cessor to update the addresses in its memory refresh or screen refresh address registers as
indicated by the state of FASO and FASI.

FBFASO & FBFAS1 (Frame Buffer Address Select [0,1], Output, TTL) These two
signals select the address output to the Frame Buffer from the Pixel Processors:

FASO = 0, FAS1 = 0 = line drawing address

FASO = 0, FAS1 1 => memory refresh address

FASO 1, FAS1 = 0 = clear screen refresh address
FASO = 1, FAS1 1 = increment screen refresh address

Il
Il

Il

FBTST[0-3] (Frame Buffer Timing State, Output, TTL) These four signals indicate
the current Frame Buffer timing state.
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*PPWAIT (Pixel Processor Wait, Output, TTL) *PPWAIT indicates that the Pixel
Processors must wait due to some operation on the Frame Buffer card.

ENDPPCYCoO (End Pixel Processor Cycle, Output, TTL) ENDPPCYCO is a signal
from the arbitration and next cycle control PAL that tells the FST timing PALs on the Frame
Buffer card to conclude the cycle.

PPMREQ (Pixel Processor Memory Cycle Request, Output, TTL) PPMREQ in-
dicates that one of the 16 Pixel Processors is making a request for a memory cycle. The
PPMREQ signal is created by ORing *PPFBMRQ0/2 and *PPFBMRQ1/3.

2.4.6.1.4 Internal Signals

RFMREQ (Refresh Memory Request, Internal, TTL) RFMREQ is a request made
“every 15.6 microseconds to refresh a new row of DRAM. This signal is generated by the refresh
timer.

2.4.7 Register Description

The Memory Controller Mode Register determines the mode of the Memory Controller. It
is a six-bit register which is one of the destinations of the Video Intermediate Register. It is
write-only.

The bits are assigned as follows:

I Bit # I Name I
8 XFERCYCLE
9 *LONGCYCLE

10 RASBANKA

11 RASBANKB

12 RASBANKW

13 *PPRESET

XFERCYCLE set indicates that any cycles requested by the pixel processors will cause
transfer cycles between the memory array and the shift register inside of the Video RAMs.
This bit is used for the fast clear of valid planes when swapping buffers. This bit should be
clear for line drawing operations.
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*LONGCYCLE cleared indicates that the memory cycle should be extended to accommo-
date slow Video RAMs. This bit is not used, and should be set for normal Video RAMs.

RASBANKA set indicates that pixel processor operations should affect the contents of
Bank A in the Frame Buffer. If this bit is clear, the contents of Bank A will not be affected
by the pixel processor operations.

RASBANKB set indicates that pixel processor operations should affect the contents of
Bank B in the Frame Buffer. If this bit is clear, the contents of Bank B will not be affected
by the pixel processor operations.

¢

RASBANKW set indicates that pixel processor operations should affect the contents of
Bank W in the Frame Buffer. If this bit is clear, the contents of Bank W will not be affected
by the pixel processor operations.

*PPRESET clear resets the entire pixel processor array. This bit should be set during
normal operation.

2.4.8 Video Serial Port Interface

The Serial Port of the Frame Buffer Memory is under the control of the Video Timing Controller
located on the Right Card of the Raster Backend. It runs asynchronous from the Random Port.
Bank and Row control signals from the Video Control card cause the pixel and window data
in the Video Ram Serial Access Memory (SAM) to be shifted out into the pixel pipe. Data is
clocked out of the Video Ram at one-quarter pixel rate. Before leaving the Frame Buffergcard,
the pixel and window data is multiplexed to one-half the pixel rate.

2.4.9 Input/Output Interface Description

The Frame Buffer can only be written through the Pixel Processor Array.

The Frame Buffer can be read through the Pixel Read Machine or the video output section.
The video output section can provide serial access to pixels, but this can only be used for
diagnostic purposes.
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2.4.10 RAS and CAS Control

Frame Buffer card RAS and CAS control is determined by the type of cycle and the condition of
the signals RPRASBANKA, RPRASBANKB, RPRASBANKW and *RBA. The write mask
is loaded at the fall of RAS. The Bitslice Processor writes RASBANKA, RASBANKB and
RASBANKW into the FBMC modé register. *RBA is a Pixel Processor signal.

Frame Buffer memory is divided into sixteen arrays (one for each Pixel Processor) and four
banks (Bank A, Bank B, Window Bank, and Valid Bank). CAS is controlled per array and
RAS is controlled per bank.

Table A.38 shows the Frame Buffer RAS and CAS control.

2.4.11 Description of Maintenance Features

Problems with the Frame Buffer can be diagnosed by using the (Scan Line Buffer Pixel Read
Machine) and the signature readback path in the video output. The visual characteristics of
the display can be used very effectively to diagnose bad pixel processors and video RAMSs.

2.5 The Video Output System

The PS 390 Graphics System Video Output System is similar to the design used in Shadowfax.
The PS 390 Graphics System uses the Video Logic Array designed for Shadowfax. The major
differences between the two designs are the lack of the writeable window lookup table on the
PS 390, and the use of color lookup tables built into the digital to analog converters (DACs).

The hardware components of the Video Outpu‘t System include:

e Master Bitslice / Video interface.

e Video Timing Controller.

e Automatic Blinking.

e Light Pen Support Hardware.

e Cursor Display Generation Hardware.
e Video Pixel Pipeline.

e Frame Buffer Interface.

o Window Lookup Table.

e Video Logic Array.



COMPANY PRIVATE—PS 390 Graphics System May 6, 1987 42

¢ Digital to Analog Converters (DACs).
e Pixel Signature Readback.

Figure 2.7 shows a block diagram for the PS 390 Video Controller.

CURSOR
VIDEO OUTPUT
VIDEO MEMORY REGISTER
BUFFER A BUFFER B DAC DATA LUT/DAC
READBACK
OVERLAY,
VIDEO LOGIC ARRAY
WHITE/BLA! —» RED
SOUT |
:: > —>» GREEN
PIXEL SPEED. ECL/ L3 BLUE
1/4 PIXEL 1/2 PIXEL
SPEED SPEED
N PIXEL CLOCK
3 K
BANK W
VIDEO TIMING CONTROLLER
MONITOR TIMING BLANK
Y COMPSYNC

RAM CONTROL

Figure 2.7: Block Diagram of the PS 390 Video Controller

2.5.1 Master Bitslice/Video Interface

The Master Bitslice/Video Interface is used to read and write the various control and status
registers on the Bitslice and Video Output boards. The Master Bitslice/ Video interface consists
of the Video Intermediate Register, the video card registers, and the decoding logic to control
which registers are written and read.

The standard mode of operation is that the master Bitslice writes the Video Intermediate
Register during one state, then writes the contents of the Video Intermediate register into one
of the video registers during the next state. The master Bitslice can write new data into the
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Video Intermediate Register at the same time that it writes the old data into one of the video
registers. The converse is true for reading registers. This allows a pipelining operation.

The VID/BCREG|0-3], VIDEO/*FSBC, and VIDFSBCR/*W bits control which register is to
be written or read. These same bits are also used for writing to the FIFO Stack Bus Controller.
VIDEO/*FSBC is in the logic HIGH state when reading or writing to the Video Output Card.

2.5.2 YVideo Timing Controller

The Video Timing Controller provides the correct timing signals for several different display
devices. The controller supports three different display options: a high resolution format, a
TV format, and a camera format. Other formats can be supported, but require replacement
of several parts in the video controller circuitry.

The Video Timing Controller is basically a massive state machine with output signals to control
the digital to analog converters and the Frame Buffer. The state machine runs off of VTCCLK,
which runs at one fourth of the pixel frequency.

The video timing controller divides into three subsections. One controis horizontal timing, one
controls vertical timing, and one controls the Frame Buffer.

2.5.2.1 Horizontal Timing Subsection

The backbone of the horizontal timing subsection is a nine bit counter which increments every
four pixels. The count decode PALs are programmed to watch for the counts where a signal
should change, and then send the proper signal to a bank of J — K flip-flops, which actually
store the signals HBLANK, CMPSYNC, and PIXFLOWING. HBLANK indicates that the
video should be at BLANK level for horizontal retrace. CMPSYNC is composite sync, which
tells the monitor to begin a horizontal or vertical retrace. CMPSYNC is also used to clock the
vertical timing subsection. PIXFLOWING is used to start and stop the pixel pipeline. At the
end of every horizontal line the signal *CLRHORZCNTR from the count decode PALs sets
the horizontal counter back to zero.

2.5.2.2 Vertical Timing Subsection

The vertical timing subsection is identical in concept to the horizontal timing subsection. It
uses a 12 bit counter, and is clocked once every line by the signal CMPSYNC. The signals that
are stored in the bank of J — K flip-flops are VBLANK, HMSVBLANK, VSYNC, VEQZ, and
LINEGTES512. VBLANK, VSYNC, and VEQZ are control signals to the horizontal timing
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subsection to tell it what kind of line to display. VBLANK indicates that the display should
blank its video for vertical retrace. HMSVBLANK indicates to the master Bitslice that vertical
retrace is happening. HMSVBLANK negates one horizontal line before the actual end of ver-
tical blanking so that the master Bitslice will not start some operation and have it interrupted
by the active video. In addition, HMSVBLANK can be cleared by the master Bitslice so that
the master Bitslice can keep track of when end-of-frame processing has been done. VSYNC
indicates to the display that it should begin vertical retrace. VEQZ indicates to the horizontal
timing subsection that equalization is happening. VEQZ is used for interlaced displays and
for strange lines on non-interlaced displays.

2.5.2.3 Frame Buffer Control

The Frame Buffer control subsection is a state machine which also runs off of CMPSYNC.
This subsection produces the signals *EVENFLD, *ROWMSB, *ROWLSB, VCMREQ, and
LASTTRN. *EVENFLD is asserted when using an interlaced video format to indicate that the
present field is the even scan lines. *YROWMSB and *ROWLSB select which of the four rows
of video RAMs should be output-enabled. The two signals are the two least significant bits
of the display row address. VCMREQ is asserted to request a video transfer cycle from the
Frame Buffer Memory Controller. This signal is asserted every four lines with non-interlaced
formats, and every two lines with interlaced formats. LASTTRN is asserted to tell the Frame
Buffer Memory Controller that the next rows transferred will be the last rows on this screen
to be transferred. This signal is asserted one horizontal line before the last time VCMREQ
is asserted to ensure that LASTTRN gets to the Frame Buffer Memory Controller before
VCMREQ does.

2.5.3 Custom Video Formats

The PS 390 Video Timing Controller can be programmed to support different video formats
other than the standard three which are programmed in a standard system. There are limita-
tions on pixel frequency, number of pixels per line, and number of lines per frame.

The Vertical section of the Video Timing Controller can specify eight types of horizontal lines
for the Horizontal section. The signals VBLANK, VSYNC, and VEQZ specify the type of line.
The Vertical section is programmed to give the right number of each type of line in the frame.
The Vertical section also controls how many lines are in the complete frame.

Non-interlaced formats use three types of lines:

1. Active Video: VBLANK, VSYNC, and VEQZ signals are not asserted.
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2.
3.

Vertical Retrace: Only VBLANK is asserted.
VSYNC: VBLANK and VSYNC are asserted.

Interlaced formats use six types of lines:

SR O o A o

Active Video: VSYNC, VEQZ, and VBLANK signals are not asserted.
Vertical Retrace: Only VBLANK is asserted.

Equalization (Long SYNC): Only VEQZ is asserted.

Equalization: VEQZ and VBLANK are asserted.

Retrace (Short SYNC): VSYNC and VBLANK are asserted.

SYNC: VBLANK, VEQZ, and VSYNC are asserted.

The Horizontal part of the video timing controller determines the characteristics of each type
of line:

When does COMPSYNC start?
When does COMPSYNC end?
When does HBLANK start?
When does HBLANK end?
When does the pixel pipe start?
When does the pixel pipe end?

How many pixeis are in the line?

The timing of the signals can be programmed to a resolution of four pixels. Most video
formats can be programmed into the timing controller by programming the right values for
the preceding parameters. The pixel frequency is limited to 70 MHz.

2.5.3.1 Setting Up a Custom Video Format

Two examples are given of how to customize a video format: one non-interlaced format, and
one interlaced format.
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2.5.3.1.1 Example 1:

Step 1:

Step 2:

Step 3:

Format: DEC VR-290. 1024 x 864, 60 Hz, non-interlaced.

Determine pixel frequency. The timing specification gives the active video time on each
horizontal line as 14.81 usec. 14.81 usec/1024 pixels gives 14.452 nsec/pixel, or a pixel
frequency of 69.1968 MHz. This is the maximum pixel frequency allowed.

Build your horizontal line. The timing specification gives the horizontal period as 18.5
psec. 18.5 usec / 14.452 nsec /pixel gives 1280 pixels /line. By similar calculations the
front porch, sync pulse, and back porch are found to have the following number of pixels
in them:

Front Porch: 12 pixels (160 nsec)
Sync Pulse: 128 pixels (1850 nsec)
Back Porch: 116 pixels (1680 nsec)

Total blanking time is the sum of these, or 256 pixels. There are 1024 pixels of video,
for a total of 1280 pixels per line. '

The Video Timing controller can only handle down to 4 pixel resolution, so the numbers
must be rounded to the nearest multiple of four. After the calculations are done, check
to see that the numbers still add up to one complete line.

Program the counts. Take all of the pixel counts and divide by four. These are the
counts that are needed for the Horizontal Decode PAL. The count is zero just after the
beginning of COMPSYNC. The Vertical part of the timing controller changes at the
beginning of COMPSYNC, so the line type changes at the beginning of COMPSYNC.
The pixel pipe needs to be started and stopped 16 pixels (4 counts) before and after the
end and beginning of HBLANK. With this information, the counts are as follows:
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Step 4:

Step 5:

Video Line:

Count Action
31 End COMPSYNC
56 Start Pixel Pipe
60 End HBLANK
312 Stop Pixel Pipe
316 Begin HBLANK
319 Clear Horizontal Counter, Begin COMPSYNC

VBLANK Line:

Count Action
31 End COMPSYNC
60 End HBLANK
316 Begin HBLANK
319 Clear Horizontal Counter, Begin COMPSYNC

VSYNC Line:

Count Action
60 End HBLANK
287 End COMPSYNC
316 Begin HBLANK
319 Clear Horizontal Counter, Begin COMPSYNC

Notice that COMPSYNC always begins at the same count. The horizontal oscillator

in the monitor always triggers on the beginning of COMPSYNC, so the. beginning of
COMPSYNC cannot vary.

Determine the vertical timing. On the VR290 the specification says vertical sync 3H, no
vertical front porch, total blanking interval 37H. The vertical back porch must be 34H.
Total vertical time is 901H. (864H video + 37H blanking) The vertical front and back
porches are probably the best places to fudge the timing to give the desired frame rate.

Program the counts. Several cautions are in order. The next frame officially begins at the
beginning of vertical blank to allow as much time as possible for end-of-frame processing.
HMSVBLANK ends one line earlier than actual VBLANK to allow the Bitslice to finish
its end of frame processing. LINEEQ512 actually happens at line 511 because there is
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another clock delay until LINEGTE512 asserts. LASTTRN needs to assert 1 line before
the last actual transfer of the field to ensure that the LASTTRN signal gets to the Frame
Buffer Memory Controller before the last transfer request.

Count Action

2 End VSYNC
35  EARLYENDVBLANK
36  End VBLANK

548  LINEEQ512

895  LASTTRN

900  Start VBLANK, Start VSYNC, CLRVRTCNTR

2.5.3.1.2 Example 2:
Format: NTSC, 640 x 484 Interlaced, 30 Hz

With interlaced formats there is a requirement for equalization pulses at double the horizontal
frequency for a period of time during the vertical blanking period. During the equalization
period the horizontal frequency is doubled, giving a COMPSYNC start every 1/2 H in order
to put out these equalization pulses. This also allows the Video Timing Controller to start
VSYNC in the middle of a horizontal line between the first and second fields of the frame.

The RS-170 and RS-343 standards call for equalization pulses, 6 in number, both preceding
and following the vertical sync pulse. This means that the blanking interval between the first
and second fields has two kinds of lines in it. The first line after the active video is only 1/2H
long, but has a sync pulse as wide as an active video line. The first full length line after the
vertical sync pulse has sync pulse which is only as wide as the equalization pulse, even though
the line is a full 1H long. These lines are obtained by starting VBLANK 1/2H later than the
first line which is blanked, and by putting in a “false” extra vertical sync pulse 1H long after
the equalization pulses end.

Step 1: Determine pixel frequency. The timing specification gives the active video time on each
horizontal line as 52.456 usec. 52.456 usec/640 pixels gives 81.900 nsec/pixel, or a pixel
frequency of 12.21 MHz. This is well within the maximum allowable pixel frequency.

Step 2: Build your horizontal line. The timing specification gives the horizontal period as 63.556
psec. 63.556 usec / 81.9 nsec / pixel gives 776 pixels /line. By similar calculations the
front porch, sync pulse, and back porch are found to have the following number of pixels
in them:
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Front Porch: 20 pixels (1638 nsec)
Sync Pulse: 60 pixels (4914 nsec)
Back Porch: 56 pixels (4586 nsec)

Total blanking time is the sum of these, or 136 pixels. There are 640 pixels of video, for
a total of 776 pixels per line.

Step 3: Program the counts. Take all of the pixel counts and divide by four. These are the
counts that are needed for the Horizontal Decode PAL. The count is zero just after the
beginning of COMPSYNC.
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Active Video:
Count  Action

14 End COMPSYNC
24 Start Pixel Pipe
28 End HBLANK
184 Stop Pixel Pipe
188 Begin HBLANK
193 Clear Horizontal Counter, Begin COMPSYNC

Vertical Retrace:
Count  Action

14 End COMPSYNC
188 Begin HBLANK
193 Clear Horizontal Counter, Begin COMPSYNC

Equalization (Long SYNC):
Count  Action

14 End COMPSYNC
96 Clear Horizontal Counter, Begin COMPSYNC

Equalization:
Count  Action

6 End COMPSYNC
96 Clear Horizontal Counter, Begin COMPSYNC

Retrace (Short SYNC):
Count  Action

6 End COMPSYNC
188 Begin HBLANK
193 Clear Horizontal Counter, Begin COMPSYNC

VSYNC:
Count  Action

81 End COMPSYNC
96 Clear Horizontal Counter, Begin COMPSYNC

Step 4: Determine the vertical timing. An interlaced frame consists of two fields, one of which
displays the even scan lines, and one of which displays the odd scan lines. In the Video
Timing Controller, the Odd field is the field which is displayed first. It contains the
top scan line on the screen (Numbered O by the pixel processors). The half lines that
are displayed with television pictures are not displayed by the Video Timing Controller.
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The general scheme of the video format is a blanking interval followed by 242 lines of
active video, followed by another blanking interval followed by 242 lines of active video.
Remember that blanking intervals are not identical. The timing specification is as follows:

Step 5:

3H Equalization
3H VSYNC
3H Equalization
11H Vertical Retrace
242H  Active Video (Odd numbered scan lines)
.5H Equalization (Long SYNC)
3H Equalization
3H VSYNC
2.5H Equalization
1H Retrace (Short SYNC)
11H Vertical Retrace
242H Active Video (Even numbered scan lines)

Note that the sum is 525H lines. All interlaced formats have an odd number of scan lines
in each frame, with VSYNC beginning half way through a scan line between the first
and second fields.

Program the counts. Remember that during VEQZ and VSYNC the line counter counts
twice each line. Notice that action LINEEQ512 never occurs. There are only 484 lines
of video in this format. If there were more than 512 lines of active video the action
would occur twice during the frame. LASTTRN needs to assert | line before the last
actual transfer of the field to ensure that the LASTTRN signal gets to the Frame Buffer
Memory Controller before the last transfer request. Because VBLANK does not start
until one line after the last line actually displayed during the first field, LASTTRN needs
to be two lines later than would be expected.

The counts come out as follows:
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Count Action

5 Start VSYNC

11 End VSYNC

17 End VEQZ

27 EARLYENDVBLANK

28 End VBLANK
269 LASTTRN
270 Begin VEQZ
271 Begin VBLANK
277 Begin VSYNC
283 End VSYNC
288 Begin VSYNC, End VEQZ
289 End VSYNC
299 EARLYENDVBLANK
300 End VBLANK
539 LASTTRN
542 Begin VBLANK, Begin VEQZ, CLRVRTCNTR

For more information, see Table 2.2, Table 2.3, and the source files for the Horizontal
Decode PAL, the Vertical Decode PAL, and the Frame Information PAL.

2.5.4 Automatic Blinking

Automatic Blinking Hardware allows the master Bitslice to set a blink rate for certain
windows so that they will blink on and off independent of any action on the part of the
master Bitslice.

The automatic blinking hardware consists of an eight bit counter which clocks every
VSYNC, and is loaded from the master Bitslice. The count which is loaded is the desired
blink rate in fields on /off subtracted from hex 100. Non-blinking requires a special case
condition: setting the *DISPBLINK bit in the video control register. Whenever the
counter reaches the hex value FF, it toggles the bit *“BLINKON, which goes into the
window lookup table to enable and disable the display of blink windows. Whenever the
blink rate register is written, the blink windows will be displayed until the next time the
counter reaches hex FF.
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Table 2.2: Vertical Timing of Video Formats

VR290 VCount
3H Synchronization 3
34H Back Porch 34
864H Active Video 864
901H Frame Time 901
RS-170 (NTSC)
1st Field:
3H Equalization 6
3H Equalization 6
3H Equalization 6
11H Vertical Retrace 11
242H  Active Video 242
2nd Field:
.5H Equalization (Long SYNC) 1
3H Equalization 6
3H VSYNC 6
2.5H Equalization 5
1H Retrace (Short SYNC) 1
11H Vertical Retrace 11
242H  Active Video 242
525H Frame Time 543
RS-343 1024 x 864
1st Field:
3l Equalization 6
3H VSYNC 6
3H Equalization 6
28H  Vertical Retrace 28
432H Active Video 432
2nd Field:
.5H Equalization (Long SYNC) 1
3H Equalization 6
3H VSYNC 6
2.5H Equalization 5
1H Retrace (Short SYNC) 1
28H  Vertical Retrace 28
432H Active Video 432
939H Frame Time 957

Count at Start

VSYNC VEQZ VBLANK

900 1
2 0
36 0
542 0
5 1

11 0
17 0
28 0
270 0
271 0
277 1
283 0
288 1
289 0
300 0
956 0
5 1
11 0
17 0
45 0
477 0
478 0
484 1
490 0
495 1
496 0
524 0

0
0
0

O O ke et O O O b b et b O O et e

QO O QO b b =

1
1
0

O i bt b

O bt et e et e O

QO bt b pet et

[ T B i e B =)
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Table 2.3: Video Format Line Types

VSYNC VEQZ VBLANK Line Type

0 0 0 Active Video

0 0 1 Vertical Retrace

0 1 0 Equalization (Long SYNC)
0 1 1 Equalization

1 0 0 Unused

1 0 1 Retrace (Short SYNC)

1 1 0 Unused

1 1 1 VSYNC

2.5.5 Light Pen Support Hardware

The light pen support hardware provides +5 volt fused power on the I/O panel for a
light pen, and provides for latching of the screen address at the time of the light pen hit.
The position of the tip switch is also readable.

When a light pen hit occurs, the TTL level pick signal comes onto the board, is converted
to ECL, and then passed through a chain of six D flip-flops to synchronize the hit signal
to the pixel clock. The synchronized signal %SYNLPPICK is used to register the ECL
two pixel and four pixel clocks to get the single pixel resolution on the hit. The signal
%4PLPPICK is produced by clocking %SYNLPPICK with the 4 pixel clock. The TTL
version of %4PLPPICK is used to latch in the current horizontal and vertical counts
from the video timing controller. The latched count can be read by the master Bitslice.
There is no hardware in the video output system for automatic light pen tracking.

There are four bits in the video control register which can be used by the master Bitslice
to do a screen blast if the light pen has lost the tracking cross.

2.5.6 Cursor Display Generation Hardware

Cursor display generation hardware allows a overlaying cursor to be displayed on the
screen. The cursor can go off any edge of the screen. The cursor image contains three
colors, one of which is controlled by a mask register.

The cursor display generation hardware can display one of two selectable cursor defi-
nitions. Both cursor definitions are writeable from the master Bitslice. The definition
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allows for three colors for each pixel. The colors are clear, black, and mask. The mask
color is controlled by the contents of the video control register. Clear allows the user to
see through that portion of the cursor to the actual graphics. The colors that are dis-
played are ten percent brighter than the brightest color normally displayed, so a white
cursor will be visible even on a white background.

Two sets of comparators continually monitor the counts in the vertical and horizontal
timing subsections. When the vertical comparator detects that the cursor display should
begin on the present line, it enables the horizontal comparator to detect the start of
the cursor in the horizontal direction. The horizontal comparator detects the start of
the cursor to only an eight pixel resolution. The horizontal start from the comparator
allows an ECL down counter to start counting. When the ECL counter reaches zero, the
cursor actually begins to be displayed. The ECL counter increments the cursor address
counters every eight pixels, which brings another eight pixels into the 8177 Video Shift
Registers.

The cursor can be made to go off of the top of the screen by placing the cursor at the
top of the screen, and then changing the contents of the cursor Y start register so that
display of the cursor begins part way through the definition of the cursor. No special
treatment is required to make the cursor go off any other edges of the screen.

2.5.7 Pixel Pipeline

The pixel pipeline receives data from the Frame Buffer, and sends it to the data inputs
to the DAC. It is converted to ECL and speed up to the pixel rate before it gets to the
DACs.

The pixel pipeline consists of the pixel clock generation, the 'rame Buffer interface, the
pixel data paths, the window lookup tabie, and the video logic array.

The speed of the pixel pipeline is controlled by the pixel clock. The pixel clock is selectable
from the video control register. The four clocks available are % HIRES, %DIAG, %CAM,
and %TV. %HIRES is used for a high resolution display. %DIAG is used for diagnostic
purposes. The actual signal is a bit in the video control register. %CAM is used for a
color camera display format. %TV is used to drive a display with television timing.

The pixel clock is used to clock a counter which gives the 2 pixel, 4 pixel, and eight pixel
clocks. The video RAM shift clocks are generated by combining the 4 pixel clock with
delayed versions of the signal PIXFLOWING.

The pixel data comes out of the video RAMs 4 pixels at time, each at one quarter of the
pixel speed. The data are registered in a bank of 7T4F399 registered multiplexers. The
data coming from these registers is registered in the video output system in the 0/2 and
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1/3 FBC registers. The pixel pipeline at this point is two pixels wide and runs at one
half of pixel speed. The pixel color data from the FBC registers go directly into the video
logic array. The pixel window data go into the color lookup table. The output from the
color lookup table is one pixel wide and runs at pixel frequency. The output from the
color lookup table connects into the video logic array. The output from the video logic
array is one pixel wide and runs at pixel speed. The digital to analog converter inputs
are connected directly to the video logic array.

2.5.8 Frame Buffer Interface

The Frame Buffer Interface requests video transfer cycles from the Frame Buffer Memory
Controller, controls which video RAM outputs are sent to the pixel pipeline, and controls
the rate at which the pixel data is sent.

The interface between the Frame Buffer and the video output system is used to send
pixel data to the video output system from the Frame Buffer. The control signals are as
follows:

e COBABRO: Shift clock for column 0, banks A and B, row 0.

e COBABRI: Shift clock for column 0, banks A and B, row 1.

e COBABRZ2: Shift clock for column 0, banks A and B, row 2.

e COBABRS: Shift clock for column 0, banks A and B, row 3.

e COBWRO: Shift clock for column 0, bank W, row 0.

e COBWRI: Shift clock for column 0, bank W, row 1.

e COBWR2: Shift clock for column 0, bank W, row 2.

e COBWR3: Shift clock for column 0, bank W, row 3.

e *RCLKO: Two pixel clock used to register the shift clocks on the Frame Buffer.
e SELCOLO: Select input to the 74F399 multiplexing registers on the frame buffer.

e *ROWLSB: Least significant bit of row address, used to decode which video RAMs
to output enable.

e *ROWLSB: Second least significant bit of row address, used to decode which video
RAMs to output enable.

e *BANKA: Frame Buffer bank A is being displayed, used to decode which video
RAMs to output enable.

e *BANKB: Frame Buffer bank B is being displayed, used to decode which video
RAMSs to output enable.
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e VCMREQ: Request to the Frame Buffer to transfer the next four rows into the
video shift registers.

e LASTTRN: Indicates that the next transfer request will be the last transfer for this
field.

2.5.9 Window Lookup Table

The window lookup table controls the display mode of the 16 windows which can be
used. The window lookup table is not writeable.

The window lookup table is implemented in two 16R8B PALSs run in parallel at one half
of pixel frequency. The PALs receive data from the FBC registers, and send formatting
information to the video logic array. Additional inputs to the PALs specify which of the
valid bits to use (LINEGTES512) and if blink windows should be displayed (*BLINKON).

The assignment of window numbers is as follows:

e Windows 0 — 3: Double buffered, non-blink. Display pixel data if valid bit is set,
otherwise display background color.

e Windows 4 — T: Double buffered, blink. Display pixel data only if valid bit is set
and *BLINKON is asserted, otherwise display background color.

o Windows 8 — 15: Single buffered. Always display pixel data.

The data from the window lookup PALs are converted to ECL, registered, multiplexed
to pixel speed, registered, and sent to the video logic array. The total delay through the
window lookup table is four pixels.

2.5.10 Video Logic Array

The video logic array on the video output system is used to convert the pixel data to
ECL, speed multiplex it up to full pixel speed, and substitute in background color for
invalid pixels. It is also used to load the color lookup tables in the digital to analog
converters. In order to load the color lookup tables, the video logic array is taken out of
display mode. The video logic array control register is loaded with EO hex, which causes
the video logic array to pass data directly from the color lookup table address register
to the address inputs of the digital to analog converters. The counters inside the video
logic array are not used.
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2.5.11 Digital to Analog Converters (DACs)

The digital to analog converters take digital data at ECL logic levels and convert the data
to analog signals used to drive the display. The digital to analog converters contain 256*8
lookup tables which are used for gamma correction. The lookup tables are accessible
from the master Bitslice. The digital to analog converters produce video output signals
at RS-343 standard levels.

The digital to analog converters are AM8151 Graphics Color Palettes. There are a total
of three used, one each for red, green, and blue video. The green digital to analog
converter is used also for composite sync. Only the horizontal sync input is used on
the green DAC, because composite sync cannot be generated properly by the internal
XORing of horizontal sync and vertical sync in the DAC. The video timing controller
generates the proper composite sync signal.

Each DAC has a reference voltage and a reference current to control the output level.
There is a trimpot which needs to be set to give an adjustment voltage of 1.076 volts.
The adjustment voltages are located at E3, E4, and E5.

The AMB8151s are specified to directly drive 50 ohm and 75 ohm RS-343 monitors. The
monitor should have a 75 ohm termination on the video inputs. If more than one monitor
is to be driven, they should be daisy-chained together, with only the last monitor in the
chain having the 75 ohm termination on the video outputs. If large numbers of monitors
are to be driven from one PS 390, a separate video buffer/amplifier should be used.

2.5.12 Pixel Signature Readback

The pixel signature readback hardware can be used to diagnose problems with the Frame
Buffer and pixel pipeline. The master Bitslice can read the data which go to the digital
to analog converters using the pixel signature readback hardware.

The actual data which are sent to the digital to analog converters can be read by the
Master Bitslice through the pixel signature readback. This feature is not useful during
runtime, but can be a powerful diagnostic tool. In order to use this feature, the display
format should be set to diagnostic. Diagnostic format is high resolution timing at the
speed controlled by the DIAGCLK bit in the video control register. The video system
should be clocked until the end of vertical blank. The pixel data will begin coming to
the DACs a fixed number of clock ticks after that. The data can be compared to the
data in the Frame Buffer to check to see if the pixel pipeline is functioning properly.
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2.5.13 Register Description

The registers include:

e Video Control Register: 16-Bits.

Video Enable: 1 bit.

Buffer Select: 1 bit.

Video Format: 2 bits.

Cursor Enable: 1 bit.

Cursor Select: 1 bit.

Vertical Blank: 1 bit. (Read-Only)

Even Field: 1 bit. (Read-Only)

Screen Blast: 4 bits. Enable and 3 color bits.

Tip Switch Position: 1 bit. (Write O to clear hit registers).
Background Color Register: 24 bits.

Light Pen Hit X: 11 bits. (Read-Only)

Light Pen Hit Y: 12 bits. (Read-Only)

Cursor X Position: 11 bits.

Cursor Y Position: 12 bits. (Double Register)

Cursor RAM Address Register: 9 bits. Six bits are Cursor Row Start. (Write-Only)
Color Lockup Table Address Register: 8 bits.

Color Lookup Table Data: 11 bits. 8 bits data, 3 bits mask.
Cursor RAM Overlay/Red data: 16-Bits.

e Cursor RAM Green/Blue data: 16-Bits.

® & © ¢ o o o

2.5.14 Description of Maintenance Features

Most of the registers that are writeable are also readable. Some notable exceptions are
the background color registers, the color lookup table address register, and the cursor
RAM address register. The background color registers and color lookup table address
register can be read through the signature path, and the cursor RAM address register
can be tested by means of an address lines test similar to that used for the Mass Memory.
In general most of the problems can be seen on the screen, and only minimal experience
is needed to recognize the common problems.

One useful diagnostic feature of the video logic array is the fast write of lookup table
mode. If the video logic array is not in display mode, the color tables have already been
loaded, and screen blast is disabled, writing hex 40 to the video logic array control register
will cause the video logic array to cycle through the color lookup table addresses, which
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will display some rising gray scales on the screen. This test verifies that the video timing
controller, video logic array, and digital to analog converters are functioning properly.

2.6 The Raster Display

The Raster Display or Monitor for the PS 390 is the FIMI 2054. The monitor is part of
the PS 390 hardware and is technically not part of the peripheral set. However a brief
introduction to its features may be useful.

The PS 390 can use either a FIMI 2054 or a DEC VR290 for displaying its raster images.
The FIMI Monitor has a 20 inch viewing area while the DEC monitor offers a 19 inch
veiwing area. Both monitors operate with AC 110/200 VAC, 60/50 Hz and a nominal
power consumption of 150 watts. They have the following features:

Contrast Lets the user adjust the video display to a suitable intensity.
Brightness Lets the user adjust the background intensity to compensate for ambi-
ent room light.
Degauss Permits the user to clear color picture distortion caused by external
magnetic interference.
Power On/Off Turns the monitor on and off. The monitor should be turned off at the
end of the workday to extend its life.
Tilt Lock Locks or unlocks the tilting mechanism to allow or prevent movement;
swivel operation is not affected.

These adjustment devices are located on the lower righthand side of the monitor.



Chapter 3

The PS 390 Peripheral Set

The PS 390 supports a variety of peripheral set configurations. With the initial release
of the system, only the PS 300 peripherals can be supported. This includes the option of
using either the LED or No/LED keyboards. The PS 300 peripherals require their own

Peripheral Multiplexer.

Table 3.1: PS 300/Low Cost Peripheral Configurations

[ PS 800 Peripheral Multiplezer H Low Cost Peripheral Multiplezer |

LED Keyboard VT220 Style Keyboard
No/LED Keyboard Switchable Dual Function (IBM &
DEC) Keyboard
Function Button Array (Optional) Function Button Array (Optional)
Interactive Control Dials (Optional) || Interactive Control Dials (Optional)
PS 300 Version with LEDs Low Cost - No LEDs
Data Tablet (Optional) Data Tablet (Optional)
6 x 6 Tablet 6 x 6 Tablet
12 x 12 Tablet 12 x 12 Tablet
Optical Mouse (Optional) Optical Mouse (Optional)

The Peripheral Multiplexer combines the signals from the peripherals or interactive de-
vices and transmits them to the PS 390.

The Low Cost Peripheral Set (which is the standard peripheral set for the PS 390) has
its own Peripheral Multiplexer, and an option for using either a VT-220 style keyboard
(Standard) or a Switchable Dual Function (IBM & DEC) keyboard (Optional), in addi-

61
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tion to the other low cost peripherals.

The 32-Key Function Button Array is an extension of the programmable function keys
on the keyboard. The keys are user definable.

The Control Dials have eight rotary encoders attached to dials which allow the user to
manipulate screen images interactively.

The Data Tablets allow the user to use a stylus or cursor to encode position data into
the PS 390. '

The Optical Mouse sends x and y position data to the PS 390.
Figure 3.1 shows the PS 390 Graphics System and its associated peripheral devices.

3.1 The Peripheral Multiplexer

There are two Peripheral Multiplexers (or MUX Boxes) available for use with the PS 390.
The first MUX box is for use with the PS 300 peripheral set. The second is designed to
accommodate the new low cost peripheral set.

The Peripheral Multiplexer is a stand-alone metal box which is designed to fit beneath
and form a pedestal for the Raster Display (FIMI 2054, DEC VR290, or equivalent). It
furnishes the power to drive the peripherals and is also their point of connection to the
system. Five connectors are provided on the front of the multiplexer which allows the
various interactive peripherals to be connected to the system. Each connector is uniquely
dedicated to the specific peripheral for which it is intended. Therefore, only one of each
type of peripheral is allowed to be attached. The pinouts for these connectors are listed
in Tables 3.2 and 3.3.

The Peripheral Multiplexer provides programmed logic which allows the data from in-
teractive peripherals to be multiplexed over a single RS-232C line into the controller via
one of the available communication ports.

Figure 3.2 shows the backside connectors and plugs for both Peripheral Multiplexers.
Figure 3.3 shows the peripheral connections for both the PS 300 peripherals and for the
low cost peripheral set. (Note the difference in the keyboard connectors.)



COMPANY PRIVATE—PS 390 Graphics System May 6, 1987

COMMON BUS

HOST

63

Delta - Erll:dPolnt
Input FSBC || _Caiculator SBC Pixel Processor
Depth | Color Array Loader
b Cue FSBC
Y
Master BitSlice 1 1 1 I T 1
Processor Pixel Processor Array
4 I
Input FIFO j
Double Buffer | Frame Buffer
Interface
? 1)
Pipeline 8 - !
Subsystem Video
C o Qutnut
System
0
<«
i
Y S—
Mass Memory
Raster Display
Joint Control
Processor [*™Pisk
A %,«.zomv,.mmow,w.mwm sssecogy
| MUXBOX |
+ T
0000
000000 00 —
299339 (0RO 0000000000000 (/398
d0d000| |OO 0000000000000(| 5383 @‘
0000 OO 0000000000000 |{g00 .
FUNCTION KEYBOARD TABLET\
OPTICA
MOUSE | BUTTONS  DIALS

Figure 3.1: The PS 390 and Peripheral Devices
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Table 3.2: Pin Assignments for the PS 300 Peripherals Multiplexer

| Designation { Connector | Pinout
32-Key Buttons RJ-11 ...+12 VDC
Dials 90 degree ...Ground
Keyboard PC Mount ...RS-422 OUT B
...RS-422 IN B
...RS-422 IN A
...RS-422 OUT A
...Ground
..+12 VDC
Data Tablet 7-Pin Micro DIN ..Signal & Power Ground
Mouse (Hosiden) ...Rec. Data from Device

.Xmit Data to Device

...=12 VDC for RS-232C
...+5VDC
..+12 VDC

.Device Present

hell - Chassis Ground

Graphics Controller

Amphenol 25 Pin D
117-DBMM-25SA
(Military Socket
including locking

screw assembly)

1
2
3
4
5
6
7
8
1
2
3..
4
5
6
7
S
1
2
3
7

.

. Chassis Ground

. Transmitted Data
.Received Data
.Signal Ground

Other Pins not used

G4
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Table 3.3: Pin Assignments for the Low Cost Peripherals Multiplexer

| Designation | Connector | Pinout
32-Key Buttons DuPont 68290-101 1...4+5 VDC
Dials (2 rows of 4 pins) 2...Ground
3...Device Present
4...Unused
5...+12 VDC
6...-12 VDC
7...TX Data
8...RX Data
E.S.D. Shield-Chassis Ground
Keyboard 5 Pin DIN 1...8ignal Ground
(5 contacts at 180 | 2...Data In
Degree Socket) 3...Data Out
4...Signal Ground
5...+5 VDC
Shell - Chassis Ground
Data Tablet 7-Pin Micro DIN 1...Signal & Power Ground
Mouse (Hosiden) 2...Rec. Data from Device
3...Xmit Data to Device
4...-12 VDC for RS-232C
5...+5 VDC
6...+12 VDC
7...Device Present
Shell - Chassis Ground
Graphics Controller | Amphenol 25 Pin D | 1...Chassis Ground
117-DBMM-255A 2...Transmitted Data
(Military Socket 3...Received Data
including locking 7...Signal Ground
screw assembly) Other Pins not used

G5



COMPANY PRIVATE—PS 390 Graphics System May 6, 1987 66

(O IO 90-130/180-250v-

2A MAX 2A MAX 6/3A 47-63Hz

sease ®®
N @ ,
o — = =
‘ |
! | E:] LUJ [UJ ——-II 5
} ‘ ‘ { ] [}
MOUSE BUTTONS DIALS KEYBOARD TABLET LIGHT POWER Ps(ﬁgosb'tl‘i’m
PEN yle
——
e I CO W e
m =SEE: : : .-:-:-.o ------- CRHH |
— e =
|
o o
HOAE &) @G
Y [} [} b
PS390518P1
MOUSE BUTTONS DIALS KEYBOARD TABLET L:DC%P;IT POWER new style
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3.1.1 Functional Characteristics

The Peripheral Multiplexer or MUX consists of a circuit card to which six input ports
and one output port in addition to the input power port are connected. The six input
ports support the following peripheral devices:

The Keyboard

The Control Dials

A 32-Key Function Button Array

A Data Tablet

Spare Port for a Mouse or other device
A Light Pen (Not Supported)

The function of the. MUX is to receive input data from the peripheral devices and to
multiplex the data onto an RS-232C output port to the PS 390, and to accept the data
from the terminal controller and de-multiplex it to the various peripheral devices which
are connected to it.

3.1.1.1 PS 300 Peripheral Set Device Addressing

The MUX has five active input ports on the front of the box, 1 output port on the rear
of the box and 3 power connectors on the rear of the box. Device addressing assigns
numbers to the ports. When one faces the front of the box the leftmost connector is a
7-Pin Micro DIN. It is for connection of a mouse when one is used. This port is addressed
as port x’B4’. The next three connectors toward the right are RJ-11 connectors. The
leftmost of these connectors is for the 32-Key Lighted Function Buttons and is addressed
as port x’B3’. The next connector is for the contre! dials and is addressed as port x’B2’.
The rightmost RJ-11 connector is for the keyboard and is addressed as port x’B1’. The
7-Pin Micro DIN connector at the right of the front panel is for the data tablet and is
addressed as port x’B6’. When control messages are sent to the MUX box itself, they
are addressed to port x’B0’.

3.1.1.2 Low Cost Peripheral Set Device Addressing

The MUX has five active input ports on the front of the box, 1 output port on the rear of
the box and 3 power connectors on the rear of the box. Device addressing assigns numbers
to the ports. When one faces the front of the box the leftmost connector is a 7-Pin Micro
DIN. It is for connection of a mouse when one is used. This port is addressed as port
x'B4’. The next two connectors toward the right are “Latch-N-Lock” connectors. The
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leftmost of these connectors is for the 32-Key Lighted Function Buttons and is addressed
as port x'B3’. The rightmost one of these DuPont connectors is for the control dials
and is addressed as port x’B2’. The five-pin DIN connector is for the keyboard and is
addressed as port x’B1’. The 7-Pin Micro DIN connector at the right of the front panel
is for the data tablet and is addressed as port x’B6’. When control messages are sent
to the MUX box itself, they are addressed to port x’B0’. These addresses are used for
software compatibility with previous systems.

3.1.1.3 Light Pen

The PS 390 does not presently support the use of a Light Pen. A connector has been
provided on the Peripheral Multiplexer to accommodate one in the future. At present,
however, a Light Pen is not planned for the PS 390.

3.1.2 Transmission Characteristics
3.1.2.1 Multiplexing and De-Multiplexing

When peripheral data is received from an input port, the MUX queues the data to the
output port for transmission to the host. If the last byte sent is from the same input
device, then the MUX sends just that queued byte unless it is in the range of x’B0’ to
x'BF’. In that case it prefixes the queued byte with another byte with the value of x’B7’.
If the data is from a different input device, then the MUX prefixes that byte only with
the address of the device port, i.e., a value in the range of x’B0’ to x’B6’. The MUX
does not send another device port address until the source of the n+1st data byte differs
from the source of the nth data byte.

When data is received from the host or terminal controller, the MUX sends the data byte
received to the last addressed peripheral device until it receives a new port address in
the range x’B0’ thru x’B6’. It then sends all subsequently received data to that address
until it receives a new address.

3.1.2.2 Flow Control

The flow of data to the peripheral devices is shut down when the MUX sends the sequence
x’B030’ to the PS 390. This sequence is the equivalent of “XOFF” in asynchronous
protocols and is used to protect against the overrun of MUX buffers. When the MUX
resunes receiving data from the PS 390, it sends the sequence x’B040’. This sequence is
the equivalent to “XON” in asynchronous protocols.
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3.1.2.3 Data Framing and Transmission Rates

The data sent to and from the MUX is asynchronous data with each byte containing
eight data bits without parity plus one start bit and one stop bit. The data transmission
rate of the MUX to and from the PS 390 is 19,200 baud. The transmission rates between
the various peripherals and the MUX are shown in Table 3.4.

Table 3.4: Peripheral Device Transmission Rates

I Device [ Baud Rate ]
Keyboard Port x’B1’ with Standard Keyboard | 1200 Baud
” » with Dual Function Keyboard 9600 Baud
Control Dials Port x’B2’ 9600 Baud
32 Func. Buttons Port x’B3’ 9600 Baud
Mouse Port x’B4’ 9600 Baud
Data Tablet Port x’B6’ 9600 Baud
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3.1.3 Diagnostic Loopba‘ck

The MUX will respond with the sequence x’B060’ whenever it receives the sequence
x’BOB9’ from the PS 390. This response informs the PS 390 that the MUX is powered
on and working, (meaning that it will recognize commands and respond to them).

3.2 The PS 390 Keyboards

The PS 390 can use three different keyboards:

(a) The standard PS 390 Keyboard is a DEC VT-220 style keyboard with a few minor
modifications.

(b) The Dual Function Switchable Keyboard which is a 5085 Model 2 look-alike key-
board.

(c) The PS 300 Keyboards: E&S #204201-100 with LEDs and E&S #204201-101 with-
out LEDs. :

The PS 300 keyboard has its own peripheral multiplexer to accommodate it. PS 300
keyboard operation is described in detail in the PS 300 Document Set Volumes 1 & 5.

The VT-220 look-alike keyboard and the Dual Function Switchable keyboard must plug
into the peripheral multiplexer which supports the low cost peripheral set.

Both keyboards meet safety and EMI/ESD qualifications.
Neither of the keyboards have LEDs for labeling of the function keys.

The PS 390 Keyboards main function is the generation and transmission of ASCII dis-
playable characters, ASCII control characters, and PS 390 system sequences.

The Dual Function Switchable keyboard is also capable of having its output data stream
interpreted as EBCDIC data (which is its principal mode of operation). These data
are transmitted serially to the peripheral multiplexer. The transmitted data specifies
displayed characters, commands, menu/table selections, etc.

The only operator controls located on the keyboard are the 95 keys used for data input.

The assembled keyboard measures 21.1 inches (53.6 cm) long by 8.25 inches (20.9 cm)
deep. The keyboard stands 3.5 inches (8.9 cm) high on four rubber feet.

3.2.1 Interface Cable

The Interface Cable is a 5-conductor, flexible cable with a shielded DIN plug which
connects the PS 390 Keyboard to the front of the Peripheral Multiplexer. The cable may



COMPANY PRIVATE—PS 390 Graphics System May 6, 1987 71
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Figure 3.4: The PS 390 DEC VT-220 Style Keyboard
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be stretched to permit many different work station arrangements.

3.2.2 Keyboard Operation

The PS 390 Keyboard allows the operator to input ASCII characters and other sequences
to the Joint Control Processor by means of a typewriter-like keyboard. Keyboard oper-
ation is discussed in detail in the following paragraphs.

3.2.2.1 Data Entry

The PS 390 Keyboard features a layout that makes data entry fast and easy. All keys
are momentary-closure devices.

The keys fall into eight general categories:

(a) Keyboard Function Control
(b) Alphabetic

(c) Standard Numeric

(d) Special Character

(e) Terminal Function

(f) PS 390 Function

(g) Numeric/Application Mode
(h) PS 390 Device Control

The Keyboard Function Control keys are used to modify the codes produced by other
keys. In this way, characters are defined as uppercase, lowercase, control, etc. No codes
are transmitted when these keys are depressed individually or in combination with each
other.

The Alphabetic, Standard Numeric, Special Character, and Terminal Function keys all
generate standard ASCII characters. Depressing any of these keys alone or in combination
with SHIFT and/or CTRL causes 7-bit character codes or control codes to be transmitted
from the keyboard to the Joint Control Processor.

The PS 390 Function, Numeric Keypad/Application Mode and Device Control keys are
system-oriented. Depressing any of these keys alone or in combination with SHIFT
and/or CTRL causes special two-byte PS 390 system sequences to be generated and
transmitted to the JCP.

The following is a detail description with figures of the eight general key categories.
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3.2.2.2 Keyboard Function Control Keys

Figure 3.5: Keyboard Function Control Keys

The Keyboard Function Control keys (shown in gray in Figure 3.5) are un-encoded,
local controls. No codes are transmitted when these keys are struck individually or in
combination with each other. The Keyboard Function Control keys are used to modify
the codes transmitted by other keys, as follows:

When either SHIFT key is depressed simultaneously with a displayable character key,
the uppercase code for that key is generated. If the key does not have an uppercase
function, the SHIFT key is ignored. For example, striking the A key causes the code
B’01100001’ for the character a to be transmitted; the sequence SHIFT A causes the
code B’01000001 for the character A to be transmitted. Note that bit 6 is forced low to
define an uppercase character.

When CTRL is depressed simultaneously with one of keys A-Z (uppercase only), the space
bar, or the Special Character keys , [, 1,\,, or 7, an ASCII control code is generated. For
example, the CTRL Z keyboard sequence causes the code B’00011010’ to be generated.
Note that the only difference between this code and that for Z (B’01011010’°) is that bit
7 is forced low to define the control code.

When the SHIFT and CTRL keys are depressed simultaneously, the CTRL function
is selected in most cases. The only exceptions occur with the ~and / keys. SHIFT
CTRL ~ causes the control character RS (B’00011110’) to be transmitted. SHIFT
CTRL / causes the control character US (B’00011111’°) to be transmitted. The auto-
repeat feature is enabled on all keys except: F1 — F12, SETUP, GRAPH, HOST,
CMMD, LOCAL, TERM, LOCK, CTRL, SHIFT (both keys), RETURN, and all nu-



COMPANY PRIVATE—PS 390 Graphics System May 6, 1987 74

meric pad keys. When any other key is held down, repeated character transmission
occurs. The rate is 15 +2 Hz.
Depressing the SHIFT LOCK key enables the “shift lock” function. This is a shift

operation that applies to all keys. Depressing either of the two shift keys causes the
“shift lock” mode to be disabled.
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3.2.2.3 Alphabetic Keys

Figure 3.6: Keyboard Alphabetic Keys

The Alphabetic Keys (shown in gray in Figure 3.6) are used to produce uppercase
and lowercase ASCII displayable character codes and ASCII control codes. Tables 3.5
through 3.6 show the code and character produced when each key is struck alone, with
the SHIFT key, or with the CTRL key.
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Table 3.5: Alphabetic Key Codes

Key Key Alone Key+SHIFT | Key+CTRL

Label | Code | Char | Code | Char | Code | Char

A X’61’ a X471’ A X’01° | SOH
97 65 1

B X’62’ b X’42’ B X’02’ | STX
98 66 2

C X’63’ c X'43’ C X03’ | ETX
99 67 3

D X’64’ d X'44’ D X04’ | EOT
100 68 4

E X’65’ e X’45’ E X’45’ | ENQ
101 69 5

F X’66’ f X’46’ F X’06’ | ACK
102 70 6

G X677 g X447 G X07’ | BEL
103 71 7

H X’68’ h X’48’ H X'08’ BS
104 72 8

I X’69’ i X’49’ I X09° | HT
105 73 9

J X'6A’ ] X4A’ J X0A’ | LF
106 74 10

K X’6B’ k X’4B’ K X0oB’ | VT
107 75 11

L X’6C’ 1 X'4C’ L X0C’' | FF
108 76 12

M |X6D’| m |X4D’| M | X0D’| CR
109 77 13

N X'6E’ n X4E’ N X0E’ | SO
110 78 14
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Table 3.6: Alphabetic Key Codes - Continued

Key Key Alone Key+SHIFT | Key+CTRL
Label | Code | Char | Code | Char | Code | Char
(@) X’6F’ o X'4F’ O X’0F’ SI
111 79 15

P X0’ p X’50’° P X’10° | DLE
112 80 16

Q X7 q X’51’ Q X’11’ | DC1
113 81 17

R X72’ r X’52’ R X’12’ | DC2
114 82 18

S |X7¥ | s |X53 | s |X13 | DC3
115 83 19

T X174’ t X’54’ T X’14’ | DC4
116 84 20

U X175’ u X’55’ U X’15’ | NAK
117 85 21

v X'76’ v X’56’ A% X’16’ | SYN
118 86 22

w X7 w X’57 w X177 | ETB
119 87 23

X X178’ X X’58’ X X’18 | CAN
120 88 24

Y | X790 | y | X9 | Y | X190 | EM
121 89 25

Z XA’ z X’5A’ Z X’1A’ | SUB
122 90 "1 26
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3.2.2.4 Standard Numeric Keys

Figure 3.7: Keyboard Standard Numeric Keys

The shiftable Standard Numeric keys (shown in gray in Figure 3.7) are similar to the
shiftable numeric/symbol keys that appear on a typewriter; they generate ASCII dis-
playable numbers and symbols. The CTRL key is ignored when used with these keys.
Table 3.7 shows the code and character produced when each key is struck alone, with
the SHIFT key, or with the CTRL key.
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Table 3.7: Standard Numeric Key Codes

Key Key Alone | Key+SHIFT | Key+CTRL
Label L_(_}'__?i_e | Char | Code | Char | Code | Char
0 X’30’ 0 X’29’ ) X’30’ 0
48 41 48

1 X31’ 1 X’21° ! X’31’ 1
49 33 49

2 X’32’ 2 X’40° Q X’32’ 2
50 64 50

3 X33’ 3 X2% # X33’ 3
51 35 51

4 X34’ 4 X'24’° $ X34’ 4
52 36 52

5 X’35’ 5 X’25’ % X’35’ 5
53 37 53

6 X’36’ 6 X’5E’ A X’36’ 6
54 94 54

7 x37 7 X’26’ & X337 7
55 38 55

8 X’38’ 8 X2A° * X’38’ 8
56 42 56

9 X’39’ 9 X’28’ ( X’39’ 9
57 40 57

79
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3.2.2.5 Special Character Keys

Figure 3.8: Keyboard Special Character Keys

The shiftable Special Character keys (shown in gray in Figure 3.8) are used to produce
both ASCII displayable characters and ASCII control characters. Table 3.8 shows the
codes and characters produced when these keys are activated alone, with the SHIFT key,
and with the CTRL key. Note the varying response given to the CTRL key; in some
instances, the unshifted key character is produced. In other cases, a control character is
generated.
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Table 3.8: Special Character Key Codes

Key Key Alone Key+SHIFT Key+CTRL
Label | Code | Char | Code |  Char Code | Char
- X2D’ - X’5F’ — X2D’ -
- 45 (minus) | 95 (underline) | 45 (minus)
+ X’3D’ X2B’ X’3D’
= 61 = 43 + 61 =
~ X’60’ XTE’ X1E’
* 96 - 126 30 RS
{ X’5B’ X'7B’ X’1B’
[ |o1 [ |123 { 27 ESC
Y| X’5D° XD’ X°1D’
] |93 ] 125 } 29 GS
| X’5C’ xX7C’ X1’
K \ | 124 | 28 FS
: X’3B’ X3A’ X’3B’
; 59 ; 58 59 ;
” X027 X’22’ xX27
’ 39 ’ 34 ” 39 !
< X2C’ b & {0k xX2¢
.| 44 , 60 < 44 ,
> X2’ X’3E’ X2E’
. 46 62 > 46
? X2F’ X’3F’ X1F’
/ 47 / 63 ? 31 UsS
> xX2C’ X2E’ X2C’
< 44 < 46 > 44 <

81
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3.2.2.6 Terminal Function Keys

Return

Linefeed

Figure 3.9: Keyboard Terminal Function Keys

The Terminal Function keys (shown in gray in Figure 3.9) produce codes used by a typical
video display terminal. These keys enable an operator to generate any commonly used
terminal control character with a single keystroke. (The codes produced by these keys
are identical to those generated by the conventional two-key control sequences described
in Table 3.9.)

Note that the SHIFT and CTRL keys have no effect on the codes produced by the
Terminal Function keys, except for the CTRL Space Bar sequence that generates an
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ASCII NUL character.
Table 3.9 lists the codes and characters generated by the Terminal Function keys.

Table 3.9: Terminal Function Key Codes

Key Key Alone Key+SHIFT Key+CTRL
Label Code | Char | Code | Char | Code | Char
X’AQ X’AQ’ X'AQ’
BREAK | 160 160 160
BACK X’08’ X’08’ X’08’
SPACE | 8 BS 8 BS 8 BS
X7F’ X7F X'7F’
DEL 127 DEL | 127 DEL | 127 DEL
X’0D’ X0D’ X0D’
RETURN | 13 CR i3 CR i3 CR
LINE X0A’ X0A’ X0A’
FEED i0 LF 10 LF 10 LF
X’1B’ X’1B’ X’'1B’
ESC 27 ESC 27 ESC 27 ESC
' X09’ X’'09’ X09’
TAB 9 HT 9 HT 9 HT
(none; X’20° X’20’ X’00’
space bar) | 32 (space) | 32 (space) | O NUL
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3.2.2.7 PS 390 Function Keys

Figure 3.10: Keyboard PS 390 Function Keys

The PS 390 Function keys (shown in gray in Figure 3.10) are used to transmit special
2-byte system sequences.

Table 3.10: PS 390 Function Key Codes

Key | Key Alone | Key+SHIFT | Key+CTRL
Label Code Code Code
F1 X’1661 X’1641° X’1601’
F2 X’1662 X’1642’ X’1602’
F3 X’1663’ X’1643’ X’1603’
F4 X’1664’ X’1644’ X’1604’
F5 X’1665’ X’1645’ X’1605’
Fé X’1666’ X'1646’ X’1606’
F7 X’1667’ X’1647’ X’1607’
F8 X’1668’ X’1648’ X’1608’
F9 X’1669’ X’1649’ X’1609’
F10 X’166A’ X'164A° X’160A°
F11 X’166B’ X’164B’ X’'160B’
F12 X’166C’ X’164C’ X’160C°
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3.2.2.8 Numeric/Application Mode Keys

Figure 3.11: Keyboard Numeric/Application Mode Keys

The Numeric/Application Mode keys (shown in gray in Figure 3.11) generate special
2-byte PS 390 system sequences similar to those produced by the PS 390 Function keys.

Note that neither SHIFT nor CTRL affects the ENTER. key, and that no codes are
modified by the CTRL key.

Any code generated by a Numeric/Application Mode key may be duplicated by entering
CTRL SHIFT V, followed by the appropriate displayable character or control character.

Table 3.11 illustrates the codes and characters produced by the Numeric/Application
Mode keys.
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Table 3.11: Numeric/Application Mode Key Codes

Key Key Alone Key+SHIFT Key+CTRL
Label | Code | Char | Code |  Char Code | Char
0 X’1630° X'1629’ X’1630°
1 X’1631’ X'1621° X’1631°
2 X’1632’ X’1640° X’1632’
3 X’1633’ X’'1623’ X’1633’
4 X’1634’ X’'1624° X’1634’
5 X’1635’ X’1625’ X’1635’
6 X’1636’ X’165E’ X’1636’
7 X’1637’ X’1626’ X’1637’
8 X’1638’ X’162A° X’1638’
9 X’1639° X’1628’ X’1639’°
X’162E’ . X’163E’ > X’'162E’ .
, X'162C° , X'163C° < X162C° |,
X’162D’ | (minus) | X’165F’ | (underline) | X’162D’
ENTER | X’160D’ CR X’160D’ CR X’160D° | CR

86
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3.2.2.9 PS 390 Device Control Keys

Figure 3.12: Keyboard PS 390 Device Control Keys

The Device Control keys (shown in gray in Figure 3.12) generate two-byte sequences
similar to those described in Sections 3.2.2.7 and 3.2.2.8. The codes produced by these
keys are modified by SHIFT and CTRL as shown in Table 3.12.

Any code generated by a Device Control key may also be produced by entering CTRL
SHIFT V, followed by the appropriate displayable character or control character.
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Table 3.12: PS 390 Device Control Key Codes

Key Key Alone | Key+SHIFT | Key+CTRL
Label Code Code Code
1 X’1673’ X’1653’ X’1613’
TERM
2 X’1632’ X’'1640° X’1644’
NRMTST
4 X’1634’ X’1624’ X’'1670’
GRAPH
5 X’1635’ X’1625’ X’166F’
SET UP
7 X'1637’ X’1626’ X’1652’
LOCAL
8 X’'1638’ X’162A° X’1612’
CMND
x’1877 X’1657° X’1817
—
X’'1678’ X’1658’ X’'1618’
—
X’1679’ X’1659’ X’1619’
1
X'187A° X’165A° X’161A°
!
PF1 X’A9’ X’AY X’'1672’
HOST
PF2 X’ AA’ X’AA’ X’ AA’
5080
PF3 X’AB’ X’AB’ X’AB’
PF4 X’AC’ X’AC? X’ AC’

The Cursor Up key becomes Scroll Up when shifted.

The Cursor Down key becomes Scroll Down when shifted.

88
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3.2.3 Communications Interface

The keyboard communicates with the JCP through the Peripheral Multiplexer using a
RS-232C line receiver and line driver. The keyboard operates at 1200 baud.

3.2.4 Dual Function Switchable Keyboard

Unique features and IBM key codes for the Dual Function Switchable keyboard will be
described as they become available.

3.3 The 32 Key Lighted Function Buttons

The 32-Key Lighted Function Buttons (hereafter called the Buttons) consists of an array
of 32 lighted function keys arranged in a 6x6 matrix without the key at each of the four
corners being present. The Joint Control Processor sends the message to the Buttons
box that lights the keys which are candidates to be selected to invoke specific program
functions. The same message aiso turns off some of the lights which are already on.
This cues the operator of the station to know that he may select one of the lighted keys
by depressing the key. Upon depression, the Buttons box sends a message to the Joint
Control Processor which indicates that a specific key has been depressed. The software
can then take action(s) based upon the key selection.

3.3.1 Light Control

For the purpose of turning the lights of the Buttons box on or off, the lights are logically
grouped into eight groups of four lights each. The lights of the box are then turned
on and of respectively by sending a message consisting of one to eight bytes%o it. The
four more-significant bits of each byte contains the identification number for a four-light
group; the four less-significant bits contain a mask which turn on (if the corresponding
bit is set) or off (if the bit is clear) the light. This is shown in Figure 3.13 where the
Group Number is binary 0000 thru 0111 and Light Mask 1’s and 0’s turn lights on and
off.

The Function Button Light Groups are defined in Table 3.13.

Any byte or combination of bytes may be sent in a message, depending on which of the
lights must be turned on or turned off. Turning all lights on, turning all lights off or
changing the state of at least one byte of each of the eight groups would require an eight-
byte message to be sent. Changing the state of one to four lights in a single four-light
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Figure 3.13: Function Button Light Control Message Byte

|7 Gl5l4 3!2'1!0'

Table 3.13: Function Button Light Groups

[ Group Number l Description J
b’0000’ Group for lights 1 — 4
b’0001’ Group for lights 5 — 8
b’0010’ Group for lights 9 — 12
b’0011’ Group for lights 13 — 16
b’0100’ Group for lights 17 — 20
b’0101’ Group for lights 21 — 24
b’0110° Group for lights 25 — 28
b’0111’ Group for lights 29 — 32

group would require only a one-byte message to be sent.

3.3.2 Reporting Selections

The Buttons box reports that a key has been depressed simply by sending a single byte
to the Joint Control Processor. The value of the byte is given by adding the hexadecimal
value of the key number to the hexadecimal value x’3F’. Thus the first sixteen keys are
numbered x’40’ to x’4F’ and the second group of sixteen keys are numbered x’50’ to
x’5F’. Only one key depression per message is reported.

3.3.3 Self-Test Command and Report

The Buttons box includes a self-test command and report that is used for diagnostics
and optionally for initialization confidence tests. The command is a single byte: x’80’.
The response is a four-byte sequence as shown in Table 3.14.
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Table 3.14: Function Box Self Test Responses

Byte 1 | 64H, Hardware ID for the Button Box.

Byte 2 | xxH, where xx is the firmware revision level.
This should begin with 01H.

Byte 3 | OOH if ROM and RAM test successful and
3EH if ROM or RAM test failed, (RAM and

ROM refer to processor chip), or 3DH if key
down on Self Test (3E supersedes 3D)

Byte 4 | 00H on successful test, or xxH, where xx is
code of keydown at Self Test.

3.3.4 Tramnsmission Characteristics

The data sent to and from the Buttons box is asynchronous data with each byte con-
taining eight data bits without parity plus one start bit and one stop bit. The data
transmission rate of the Buttons box is 9600 baud.

3.4 The Control Dials

3.4.1 Functional Characteristics

The Control Dials (hereafter called the Dials) consists of an array of 8 shaft encoders
arranged in a 2 column x 4 row design with the number 1 dial being the upper left-hand
dial and the number 5 dial being the upper right-hand dial when the Dials are situated
in the vertical orientation. When the Dials are situated in the horizontal orientation, the
number 1 dial is the lower left-hand dial and the number 5 dial is the upper left-hand dial.
The Dials report to the Joint Control Processor the number of counts rotated between
sampling intervals. The Joint Control Processor may specify the number of counts to be
accumulated between sampling intervals and may set a sampling time for all the dials.

3.4.1.1 Dial Responses to the Host

The Dials output relative delta values only; i.e., each dial’s position is reported in terms
of its last sample location. The data format used to report the count is:
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Byte Number | Description I

1 Control V =’00010110’
2 Byte = ’00000nnn’,

Where nnn is a binary number 000 thru 111 (0 thru
' 7 decimal which specifies the dial.)

3 Most significant byte of a 16-bit signed integer (sign
indicates direction).

4 Least significant byte of the 16-bit signed integer
(two’s complement notation).

3.4.1.2 Commands to the Dials from the Host

There are two commands to which the Dials box must respond. The first is in the same
format as the response message except that the second byte is ’100xxnnn’ and no sign is
legal on the 16-bit integer. It specifies the delta value which must be accumulated before
the delta count is reported to the host, i.e., how many counts between reports.

The second command is formatted as follows and applies a sampling time to all the dials:

Byte Number | Description [

1 Control V = 00010110’
Control Byte = ’1x1xxxxx’, (x=don’t care)

2

3 Reserved unused byte.

4 Time count in binary,

Where x’05’ = 60 samples/second
Where x’0A’ = 30 samples/second
Where x’1E’ = 10 samples/second

This time indicates how often the dials box wakes up to see if sufficient counts have been
accumulated on any dial to respond to the processor.

3.4.2 Transmission Characteristics

The data sent to and from the Dials box is asynchronous data with each byte containing
eight data bits without parity plus one start bit and one stop bit. The data transmission
rate of the Dials box will be 9600 baud.
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3.5 The Data Tablet

There are two data tablets available for use with the Low Cost Peripheral Set. They are
the 6” x 6” and the 12” x 12” tablets with a four-button cursors. Both are alike except
for their active areas and both provide digitizing and picking functions for the PS 390.

The tablets use +12 VDC @ 300 mA max. The power is provided by the multiplexer on
the 7-pin Micro DIN connector provided.

The Data Tablets transform graphic information into digital data suitable for trans-
mission to the Joint Control Processor (JCP). The data tablets use a stylus or a four
button cursor to identify coordinates. Touching the pen-like stylus to any position on
the data tablet transforms the coordinates of that position into their digital equivalents.
The cursor contains a crosshair sight that permits the user to enter data with precise
accuracy.

3.5.1 Data Tablet Microprocessor

The data tablet’s microprocessor is an 8-bit Intel 8035. The microprocessor outputs two
control signals that are used to gate the X pulse and the Y pulse to the data tablet. The
microprocessor also controls communications with the host processor that is located on
the JCP card.

If the microprocessor fails, the data tablet will not respond to the TABD1A diagnostic.
In this case, the microprocessor should be replaced.

3.5.2 Operating Modes

Data tabiet modes and the sampling rates may be controlled externally under program
control or internally by switches on the logic card. The positions of the internal switch
determine the power-up mode and sampling rate. The following operating modes are
available:

e Point Mode
— Pressing the stylus on the tablet or pressing a button on the cursor outputs one
X, Y coordinate pair (sample) in the appropriate format.
e Stream Mode
— X, Y coordinate pairs (samples) are generated continuously at the selected
sampling rate when the stylus or cursor is near the active area of the tablet.
Pressing the stylus to the tablet or depressing a button on the cursor puts the
flag character (F) bit in the output string.
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e Switched Stream Mode

— Pressing the stylus or a button on the cursor continuously outputs X, Y coor-
dinate pairs at the selected sampling rate until the stylus is lifted or the button
is released.

The data tablet has a six-position switch that sets the mode of operation and the rate at
which the coordinate data are output to the processor. The Mode and Rate Controls on
the data tablet are mounted on SW 2. Positions 1 and 2 are mode switches and Positions
3, 4, and 5 are rate switches. Switch 6 is not used. The system reset switch is mounted
externally at the rear of the lower frame.

Both the mode and the sampling rate may be changed under program control from the
PS 390 by sending the data tablet an ASCII character.

3.5.3 Power Requirements

The data tablet is shipped with a connector that mates with the power input connector
located at the rear of the data tablet. The pin assignments that apply to this connector
are shown in Table 3.15.

Table 3.15: Data Tablet Pin Assignrﬁents

" Pin # l Function "

1 Ground
2 Transmit data (From Device)
3 Receive data (To Device)

4 -12 VDC

5 + 5 VDC
6

7

+12 VDC
Device Present (Connected to Pin 1)
Shell | Protective Ground (ESD Shield)

3.5.4 Data Tablet/PS 390 interface

The data tablet communicates with the PS 390 via an RS-232 asynchronous cable. Each
character is transmitted as a complete self-contained message consisting of an ASCII
data character with even or odd parity (POE) preceded by a start bit and followed by
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one or two stop bits, depending on the strap option selected (HCB). The bit polarity of
the transmitted data is low level mark, high level space in the following format:

l Start Bit | Seven Data Bits | Parity | Stop | Stop I

3.5.4.1 Binary Data Format (Switch 1, Position 7 ON)

The binary formatted RS-232 interface is a five byte count output. Binary format is as
follows:

I Binary Format ]

Byte | Bit 7 | Bit 6 | Bit 5 | Bit4 | Bit 3 | Bit 2 | Bit 1 | Bit O
F3 F2 F1 FO 0 0

X5 X4 X3 X2 X1 X0
X11 | X10 | X9 X8 X7 X6
Y5 Y4 Y3 Y2 Y1 YO
Y11 | Y10 | Y9 Y8 Y7 Y6

51 BUN R O
] Ba~lfa=]Rav]av)
OIO|O| O} =

3.5.4.2 Remote Control via RS-232

The data tablet is a stand-alone microprocessor-driven device that can be remotely pro-
grammed. The Joint Control Processor controls remote operation of the data tablet.
The following conditions must exist for remote control of the data tablet:

e Allinternal mode and rate controls (SW 2) must be inactive or in the OFF condition.

e Data going to the data tablet must be at the same baud rate as the data transmitted
from the data tablet.

e Data tablet command data must be input on J1 Pin 3 with a bit polarity of low
level mark, high level space.

e One of the binary data transmission codes shown in Table 3.16 must be selected.
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Table 3.16: Binary Data Transmission Codes

Binary Uppercase
Mode Rate | ASCII Character

Stop -
Point
Switched Stream 2

Stream 141
141
2
4
10
20
35
70
141
141

Z2rRe~TQHEEBOQm> Ovn

Note: Rate is calculated as coordinate pairs per second at 19,200 baud. All other rates are
dependent on baud rates.
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3.5.4.3 RS-232 Unit Switch Settings & Strap Options for 600 Series PROMSs

Data tablets are shipped with a standard setting from the factory. The following sections
describe strap and switch settings for non-standard strap and switch settings. Refer to
the GTCO Users Manual, for all switch and strap locations.

Switch 1 (Format/Calibration) This nine-position switch controls the output data
format as follows:

Table 3.17: RS-232 Switch Settings

Position I Effect
Do not adjust—Factory Set

Do not adjust—Factory Set

Do not adjust—Factory Set

Do not adjust—Factory Set

Do not adjust—Factory Set

Not Used

ON-Serial Binary Output (No CRLF transmitted
when in Serial Binary (Position 8)

*OFF-ASCII BCD Output

8 *ON-Carriage Return Line Feed (CRLF). This adds
line feed to the end of output data format. OFF-
Carriage Return (CR) only.

9 | *ON-English (0.005” Resolution)

OFF-Metric (0.1 mm Resolution)

O] OV ] COf DI

* Factory settings.

Note

Switches 1—5 are factory set calibration switches. They should not be changed
unless the tablet portion of the device is changed. Refer to the GTCO User’s
Manual.
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Switch 2 (Mode/Rate) This six-position switch controls the sampling mode (Point,
Switch Stream, or Continuous Stream) and the sampling rate (X-Y coordinate pairs per
second). The switch is factory set in the Continuous Stream Mode at 200 samples per
second. To operate under program control, set all internal position switches to OFF.

The PS 390 Data Tablet operates at 9600 baud, sending 105 serial binary samples per
second. Due to the limitations of serial baud rate transmit time, the maximum sampling
rate is automatically limited to the sampling rates shown in Table 3.18.

Table 3.18: Data Tablet Sampling Rates

Baud Serial Serial
Rate | ASCII BCD | Binary
Mazimum Sampling Rate
28800 85 166
19200 68 141
9600 46 105
4800 28 65
2400 16 37
1200 9 20
300 2 5

Switch 7 and Pluggable Program Strap BA (Baud Rate) Both Switch 7 and
the Pluggable Strap BA must be set to select the desired baud rate. One of the ten
positions on Switch 7 must be set to ON and the blue pluggable strap must be over the
center pin and the A pin (or over the center pin and the B pin). Only one position on
Switch 7 may be on at a time. The baud rate is factory set with Position 2 ON on Switch

7 and pluggable strap BA over Pin B and the center pin. Table 3.19 shows the baud
rates that may be selected.

POE Strap (Parity) Polarity can be odd or even and is controlled by a wire jumper
soldered into the two points on the circuit card labeled POE. The RS-232 Data Tablet
is shipped with no strap and in the even parity mode.

HCB Strap (Stop Bits) There may be one or two stop bits transmitted. The number
of stop bits transmitted is controlled by a wire jumper soldered into the two points on
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Table 3.19: Baud Rate Selection

Switch 7 Blue Pluggable Strap BA
(Position ON) | Strap A | Strap B
1 19200 19200
2* 28880 9600*
3 14400 4800
4 7200 2400
5 3600 1200
6 1800 600
7 900 300
8 450 150
9 225 75
10 112.5 -

* Factory setting.

the card labeled HCB. The RS-232 unit is shipped with a strap and transmits one bit.
The PS 390 TABDI1B diagnostic tests the data tablet.

3.6 The Optical Mouse

The Optical Mouse transforms position information into a digital form acceptable to
the Joint Controi Processor (JCP). The optical mouse uses a three-button mouse unit
in conjunction with a reflective pad to provide x and y-axis position information. The
cursor (an X) moves around on the screen in response to movement of the mouse across
the pad.

The mouse uses red and infrared LED’s reflecting off the pad to provide directional
information to the control logic in the mouse. This movement is then translated into
absolute x and y position information similar to that provided by a PS 390 Data Tablet.
The data is transmitted serially to the PS 390 through the peripheral multiplexer.
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3.6.1 Operating Modes

The mouse operates in what is called MM Series Delta Data Protocol. This is a 3 byte
format that defines change in mouse position as delta movement in X and Y. The mouse
also operates in Exponential Scaling Mode. This means that the faster the mouse is
moved across the pad, the larger the data increments will be. This allows a single move
across the pad to produce a complete movement of the cursor across the screen.

3.6.2 PS 390 Runtime Operation

The PS 390 contains one system function to interface the mouse to an application. It is
called MOUSEIN, and is an instance of f:mouse. The Mouse is connected to Mouse Port
on the Multiplexer, or to Port D on the Data Concentrator. The MOUSEIN function is
already connected to the pick_location just the same as TABLETIN.

The MOUSEIN function instance has the same outputs as TABLETIN. There are 4
inputs to the Mouse function.

(a) String — Data from the Mouse

(b) Integer — Counts full scale

(c) String — Output queues enable/disable message
(d) Vec2d - New cursor position

Input 1 is a string of data from the Mouse in the format shown in Table 3.20. Input 2 is an
integer specifying the number of counts to map to a cursor movement across the screen.
The default is 2200. Input 3 is a string of up to eight characters (characters in strings
longer than eight are ignored) consisting of either T or F. This is a positional indication
of the enable or disable of a particular output. For example, the string ‘TTTFFT’ would
enable outputs 1, 2, 3, and 6; the string “TTFFFFF’ would enable output from 1 and 2
only.

Note: Only the F is checked for. Therefore ‘XXFFyyy’ would be the same as ‘TTFFTTT’.
The default is “TTTTTTTT’.

Input 4 is a 2-D vector that will position the cursor on the screen at the point specified.
the value should be in the range of -1.0 to 1.0. The default is 0.0.0.0.

The runtime will support the use of both the tablet and the mouse on the same system. A
special “Y” power connector will be required if both are to be used on a data concentrator
since there is only one 9-pin D power connection.
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3.6.3 Mouse/PS 300 Interface

There are two versions of the mouse. One is for use with the Data Concentrator and
the other is for use with the Peripheral Multiplexer. The pin assignments on the data
concentrator version are identical to the data tablet. The pinouts for the MUX version
are as follows:

" Pin # l Function “

1 Ground

Transmit data (From Mouse)
Receive data (To Mouse)

-12 VDC

Not Used

+12 VDC

Device Present (Connected to Pin 1)
Shell | Protective Ground (ESD Shield)

3O Ok W

With the connector of the mouse cable facing you the pins are numbered according to
the following diagram:( * = connector key)

The mouse is configured to run at 9600 Baud over the serial asynchronous interface.

3.6.3.1 Baud Rate

3.6.3.2 Data Format

The data format consists of 3 bytes which are assigned as follows:
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MSB LSB
7 6 5 4 3 2 1 0

Byte 1 1 0 O SignX SignY Left Center Right
Byte 2 0 XG X5 X4 Xg X2 X1 Xo
Byte 3 0 Y Ys Yy Ys Y, Y, Yo

Table 3.20: Mouse Data Format

The bit positions Left, Center, and Right indicate the status of the three buttons on the Mouse.
A one in the positions indicates that the button is down.
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Chapter 4

The PS 390 Diagnostics

The main hardware components of the Raster Backend portion of the PS 390 which must
be tested with the diagnostic software are:

(a) The Input FIFO

(b) The Master Bit Slice Processor
(c¢) The Endpoint Pipeline

(d) The Frame Buffer

(e) The Video Output System

(f) The New Peripherals

The diagnostic routines for the PS 390 Raster Backend and the new peripheral set are:

e RBEDOA

— Bitslice Processor Diagnostic
e RBEDI1A

— Endpoint Pipeline Diagnostic
e RBED2A

— Pixel Processor, Frame Buffer and Video Card Diagnostic
¢ MPLSDOB

— PLS Card and Input FIFO Diagnostic
¢ KBDDOC

— New Keyboard Diagnostic
e BTNDOB

— Function Buttons Diagnostic (Old/New)

104
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e CDLDOB

~ Control Dials Diagnostic (Old/New)
e MSEDOB

— Optical Mouse Diagnostic
e TABD1B

— GTCO Digitizer Tablet Diagnostic

4.1 Bitslice Processor Diagnostics - RBEDGA

4.1.1 Hardware Overview

The PS 390’s Master Bitslice Processor obtains endpoints and commands from the Input
FIFO. Endpoints are formatted into a packet of data and then sent to the Endpoint
Pipeline. Commands received by the Master Bitslice are decoded and then executed by
the Master Bitslice.

There are four busses on the Bitslice card. The 29117 processor can latch data in only
from the D-Bus. It can provide latch data out via the Ybus. Communication between
the Y and D bus is possible. The branch bus communicates between the Vector ram
and the 29110 Microsequencer. The Immediate bus is a multi-purpose bus. The Bitslice
Processor has the following components:

(a) Common Bus Maintenance Register.
(b) Writeable Control Store.
(c) Execution Register.
(d) 29110 Microsequencer.
(e) 29117 Microprocessor.
(f) Immediate Field Register.
(g) Scratch RAM.
(h) Function Lookup Table EPROM.
(i) Vector RAM and Branch Bus.
(i) AMD 29517A Multiplier.
(k) Bus Decoders.
(1) Y and D Bus Transceivers.
(m) Common Bus Interrupt Generator.
(n) Common Bus DMA Interface.



COMPANY PRIVATE—PS 390 Graphics System May 6, 1987 106

4.1.2 Testing Strategy

The strategy for testing the Bitslice processor is to first test the Maintenance Register on
the Common Bus. Then the Writeable Control Store and Execution Register are tested.
The 29110 microsequencer and the Condition Code Multiplexer are then tested, followed
by tests for the 29117 Microprocessor. Finally the Immediate Field Register, Scratch
RAM, Lookup Table, Vector RAM, Multiplier, and Y to D Bus Latches are tested.

Phase 1 - Common Bus Maintenance Register

Phase 2 - Execution Register and Diagnostic Shift Loop
Phase 3 - Y to D Bus, Immediate Field Register

Phase 4 - Writeable Control Store

Phase 5 - 29117 Internal ALU Registers (32)

Phase 6 - Interrupt Testing

Phase 7 - 29110 Microsequencer and Condition Code Multiplexer
Phase 8 - 29117 Microprocessor Instruction Confidence
Phase 9 - Scratch RAM

Phase 10 - Vector RAM

Phase 11 - Function Lookup Table

Phase 12 - AMD 29517A Multiplier

Phase 13 - Common Bus Direct Memory Access (DMA)

4.1.3 Description of Tests
4.1.3.1 Phase 1 - Common Bus Maintenance Register

Phase 1 tests out the Maintenance Register located at X’FFF030’. Phase 1 has 2 sub-
phases.

This phase tries to read and write to the Maintenance Register. If a bus error occurs, a
diagnostic interrupt handling routine detects it and an error message is reported. The
different bits of the Maintenance Register are then tested by toggling each bit high then
low.

Subphase 1 of Phase 1 attempts to read the maintenance register. If a bus error happens
during the reading of the maintenance register the following error occurs.

Common bus read error for Raster Back End MR: (PS 390
Maintenance register’s contents).

Subphase 2 of Phase 1 attempts to write to the maintenance register and to set and reset
various bits of the maintenance register.
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If a bus error occurs during the writing of the maintenance register the following error
occurs.

Common bus write error for Raster Back End MR: ( PS 390
Maintenance register’s contents ).

The following bits in the maintenance register are tested by setting and resetting them
~bits 0, 1, 2, 3, 4, 5, 13, 14.

If an error occurs while setting a bit the following error occurs.

Error in setting a RBE Maintenance Register bit
Expected: X’xxxx’ Received X'yyyy’ Bits in Error: X'zzzz’

If an error occurs while resetting a bit the following error is displayed.

Error in resetting a RBE Maintenance Register bit.
Expected: X’'xxxx' Received X’yyyy’ Bits in Error: X’zzzz’

4.1.3.2 Phase 2 - Execution Register

The Execution Register is checked to see if it can be written and read to correctly.

Phase 2 checks the data paths on the shadow register, the execution register and the
immediate field. This phase shifts patterns into and out of these registers a bit at a time
through the maintenance register. Phase 2 has 3 subphases.

Subphase 1 tests the shadow register. The shadow register is 80 bits long. This register
is tested with the standard set of diagnostic patterns:

If the 80 bit pattern sent is different than the 80 bit pattern received the following error
message is displayed.

Data mismatch in 29818 shadow reg while testing (bits <79 - 0>)
Expected: X'xoox’ Received X'yyyy' Bits in Error: X'zzzz’

Subphase 2 tests the Execution Register. This register is 80 bits long, but the last 16
bits are the Immediate Field, so only 64 bits are tested in this subphase. Data is shifted
into the Shadow Register, clocked to the Pipe Register, then they are clocked back to
the Shadow Register and shifted out.

If the 64 bit pattern sent is different than the 64 bit pattern received the following error
message is displayed.
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Data mismatch in 29818 execution reg while testing (bits <79 - 0>)
Expected: X'xoorx' Received X’yyyy’ Bits in Error: X'zzzz’

Subphase 3 tests the 16 bit immediate field with a 16 bit diagnostic pattern. If the 16
bit pattern sent is different then the 16 bit pattern received the following error message
is displayed.

Error found in the Immediate field.
Expected: X’xoorx’ Received X'yyyy’ Bits in Error: X'zzzz’

If the bit 16 of the microword (*HOLDWIM) cannot be set or if the Flip-flop this signal
drives is not working, errors in the immediate field readback will occur.

4.1.3.3 Phase 3 - Y to D Bus Test, Immediate Field Register

Phase 3 tests the D to Y bus path and in doing so also tests the 16-Bit Immediate
Register.

These Bus Transceivers are accessed via the Bitslice Processor. They are first tested to
see if they can move data from the Y to the D Bus as well as from the D to the Y Bus,
and then a data lines test is performed on each latch. This test is single stepped. A
microcoded full speed test of this transceiver is performed in one of the later phases.
Subphase 1 tests out the D to Y bus path and the Immediate Register with the 16 bit
diagnostic pattern set.

If the 16 bit pattern sent is different then the 16 bit pattern received the following error
message is displayed:

Data mismatch while testing D to Y Bus communication.
Expectdd: X’xoox' Received X'yyyy’ Bits in Error: X’zzzz’

4.1.3.4 Phase 4 - Writeable Control Store

The Writeable Control Store (WCS) for the PS 390 is 80-bits by 4096 words. Access to
the Control Store is via the Common Bus Interface. The Control Store test increments
the program counter from 0 to 2047 and reads, writes, and checks test patterns at each
location.

The control store has 4096 words. Each word is 80 bits wide. Phase 4 has 3 subphases.

Subphase 1 tests out the data lines to the writeable control store. A 16 bit diagnostic
pattern set is clocked into a location in the WCS and read back. This pattern is repeated



COMPANY PRIVATE—PS 390 Graphics System May 6, 1987 109

to fill the entire 80 bit microword. If the 80 bit pattern sent is different then the 80 bit
pattern received the following error message is displayed.

Datalines error writing to Control store (bits <79 - 0>)
Expected: X’xocx’ Received X'yyyy’ Bits in Error: X’zzzz’

Subphase 2 tests out the 12 address lines to the writeable control store. First each address
line is tested to see if is stuck high or low, then each possible pair of address lines are
tested to see if they are stuck together.

If an error occurs while testing out an address line the following error message is displayed:

Control Store Address line stuck at address X’'xxxx’ while
testing bit y

If an error occurs while testing out pairs of address lines the following error message is
displayed:

Control Store address lines stuck together at address X'xxxx’
while testing bit y

Subphase 3 tests out the 4096 locations of the Writeable Control Store. The pattern it
writes to the location is based upon the location number.

If the 80 bit pattern sent is different then the 80 bit pattern received the following error
message is displayed:

Error occurred at the following WCS location X'xxxx’ Bits im

« error are y

4.1.3.5 Phase 5 - 29117 Internal Registers

Phase 5 tests the data and addressing path to all of the Internal Registers for the 29117
Microprocessor. Phase 5 also tests the tests the bits of the 32 (16-bit) Internal Registers,
8 bit Status Register, and 16 bit Accumulator of the 29117 chip. This test single steps
two instructions to write to the register by executing two instructions to write to the
Interrupt Register. The first instruction sources the test pattern from the immediate
field to the D-Bus. The next instruction Latches the D-Bus into the 29117 ALU register
file. The read back path requires the instructions to be loaded into the writable control
store before single stepping. The first instruction tells the ALU to put the contents of
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the specified register onto the YBUS output. The data is put on the immediate field
read back via the execution register. This has 3 subphases.

Subphase 1 tests the data lines to the 29117 register by writing the diagnostic pattern
set to register O:

If an error occurs while writing a pattern to and reading a pattern from register O the
following error is printed:

Datalines error while testing 29117 register R’'x’.
Expected: X’xooxx’ Received X'yyyy' Bits in Error: X’zzzz’

Subphase 2 tests part of the instruction to the 29117 Register. This is done by writing
to each register its number and then reading back the register’s value.

If the pattern written to the first 32 internal register’s is different, then the pattern
received from these register’s the following error is printed out:

Address lines Error on 29117 register Rx.
Expected: X’'xxoxx’ Received X’yyyy’ Bits in Error: X’zzzz’.

If the pattern written to the accumulator is different, then the pattern received from the
accumulator the following error is printed out:

Data mismatch while testing bits in accumulator.
Expected: X’xxxx’ Received X'yyyy’ Bits in Error: X’'zzzz’.

If the pattern read back from the Status register is not the same as the pattern written

to the status register (except for the zero bit being clear) the following error is printed
out:

Data mismatch while testing bits in status register.
Expected: X’xooxx’ Received X’yyyy’ Bits in Error: X'zzzz’.

Subphase 3 tests the bits of the 32 internal registers, the accumulator, and the status
register by writing the following patterns to each of these registers:

X'66b6’, X’FFFF’, X’AAAA’, X’0000’,

If the pattern written to one of the internal registers is different then the pattern received
from this register then one of the following error messages is printed out:
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Data mismatch while testing bits in 29117 register.
Expected: X’xxxx’ Received X’yyyy’ Bits in Error: X’zzzz’.

Data mismatch while testing bits in accumulator.
Expected: X’xooxx’ Received X'yyyy’ Bits in Error: X'zzzz’.

Data mismatch while testing bits in status register.
Expected: X’xooxx’ Received X’'yyyy’ Bits in Error: X'zzzz’.

4.1.3.6 Phase 6 - Interrupt Generation Test

The RBE can interrupt the JCP on LEVEL 3.

This phase tests all the interrupt vectors reserved for the RBE cards. Interrupts are used
extensively by diagnostics that run microcode. The interrupt is used as a handshake from
the bit slice machine to the JCP to say that the code has finished executing. Interrupts
are also used in runtime to support Picking.

An interrupt is generated at each supported vector. Interrupts should occur at addresses
310, 314, 318 and at 31C. One of the following errors may be reported in this phase.

Interrupt occurred, but at the wrong vector.
Expected: X’xocx’ Received X'yyyy’ Bits in Error: X’zzzz’.

TimeOut: Interrupt Did NOT occur.

If the TimeOut error is reported 4 times it is a good indication that the interrupts are
not being generated at all. A spuricus interrupt when Acknowledge is not jumpered
indicates that the interrupts are jumpered on the right pins. For example a LEVEL 4
interrupt is generated instead of a LEVEL 3.

Note: Interrupts must be working before trying to run any microcoded diagnostics. Oth-
erwise the following error may occur every time microcode is executed.

HA processor timed out -- PC = ( current program counter ).

4.1.3.7 Phase 7 29110 Microsequencer and Condition Code Multiplexer

The 29110 Microsequencer provides program flow control for the PS 390. To test the
sequencer sequencer commands are loaded into the Execution Register and executed in
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single step mode. The Control Store is then read back to determine if the sequencer’s
operation resulted in the correct program counter value. The following Sequencer In-
structions are Tested:

JMPI jump immediate
CONT continue

JMPYV jump vector data
Cll.cc

LDCTI

RICT

JSRI.Z

e RFCT

Phase 7 tests the 29110 microsequencer. The 29110 has a program counter (PC) which
is 12 bits wide. This phase has 7 subphases.

Subphase 1 tests to see if we can load the PC with an address, and then increments and
reads back the PC.

If an error occurs the following message is printed out:
Unable to Read (set, or increment) the 2810 program counter

Subphase 2 tests to see if we can increment the PC from x’FFF’ to x’000’ and then tests
to see if we can set each bit of the 12 bit PC.

If the PC did not increment the following error message is printed out:

Microcode program couater not incrementing.
Expected: X’xxoxx’ Received X’yyyy’ Bits in Error: X’zzzz’.

If the PC incremented but not to x’000’ the following error message is printed out. This
could indicate a problem with the CONT instruction.

Microcode program counter cannot hold a zero.
Expected: X’0’ Received X'yyyy’ Bits in Error: X’zzzz’.

When testing each bit of the PC the PC is loaded with a new value and incremented.
If the returned value of the PC is not incremented the following message is printed out.
This could indicate a problem with the CONT instruction or a address lines error.
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Microcode program counter not incrementing.
Expected: X’xxxx’ Received X'yyyy’ Bits in Error: X’zzzz’.

When testing each bit of the PC, if the returned PC value is an unexpected value the
following message is displayed:

Microcode program counter bit test error.
Expected: X’xoox’ Received X’yyyy’ Bits in Error: X’zzzz’.

Subphase 3 tests out the continue instruction. This is done by single stepping a continue
instruction. If the value to the PC is not properly incremented by the continue instruction
the following error message is displayed.

Unable to execute the Continue Instruction

Subphase 4 tests out the Jump on Vector Ram address instruction. This is done by single
stepping a Jump on Vector Ram address instruction. If the new PC value is incorrect
the following error message is displayed:

Unable to execute the Jump to VEC. RAM address instruction.

Note: Currently there is a known bug with this test. This error will be reported but should
be ignored until further notice.

Subphase 5 — tests the conditional jump instructions. The first 4 tests are done by
single step execution and the remaining 6 instructions are executed in microcode. These
inséruction tests will now be described in their proper order.

The following condition codes are tested:

True

False

Zero, NZero
Negative

Carry

Overflow

e CT

o FR Fifo stack bus control ready
o NPPL attention bit
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The FSBC (Fifo Stack Bus Controller) ready bit (*INFSBCREADY) is tested for a true
condition. This means the diagnostic tests for Bit = 1 or Bit = 0. This condition should
exist after resetting the PS 390. The test is done by resetting the PS 390 and then
attempting to jump on the FSBC being true. If the improper condition exists and the
jump is not taken the following error message is displayed:

Unable to branch properly on the FIFO STACK BUS CONTROLLER
condition.

Errors reported in RBED1A the Endpoint Graphics Pipeline diagnostic may be related
to this condition code.

The Pixel Processor Loader is tested for a false condition. This condition should exist
after resetting the PS 390. The test is done by resetting the PS 390 and then attempting
to jump on the PPLATTN bit being false. If the improper condition exists and the jump
is not taken the following error message is displayed:

Unable to branch properly on the NOT PIXEL PROCESSOR condition.
The PS 390 is reset by toggling bit 14 in the Maintenance register. This test sets up a
zero condition and then attempts to jump on this condition. If the jump is not taken
the following error message is displayed:

Unable to branch properly on the Z ( ZERO ) condition.

This test sets up a not zero condition and then attempts to jump on this condition. If
the jump is not taken the following error message is displayed:

Unable to branch properly on the NOT Z (ZERO) condition.
This test checks out to see if the 29117 can properly increment one of its internal registers.
The reason this is done is because the remaining 5 tests will be incrementing this internal
register as part of their tests. If this test fails the following message is displayed:

29117 ALU is not functioning properly.
This test sets up a negative condition by loading a 29117 register with x’FFFF’ and then

latching in the negative condition. A jump is then attempted off of this condition. If the
jump fails the following error message is displayed:
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Unable to branch properly on the N ( NEGATIVE ) condition.

This test sets up a carry condition by loading a 29117 register with x’FFFF’ and then
incrementing the register. A jump is then attempted off of this condition. If the jump
fails the following error message is displayed:

Unable to branch properly on the C (CARRY) condition.

This test sets up an overflow condition by loading a 29117 register with x’7FFF’ and
then incrementing the register. A jump is then attempted off of this condition. If the
jump fails the following error message is displayed:

Unable to branch properly on the O (OVERFLOW) condition.

This test sets up a CT true condition by loading a 29117 register with x’FFFF’, incre-
menting the register, and then doing an ALU test on the carry condition. A jump is then
attempted off of the CT true condition. If the jump fails the following error message is
displayed:

Unable to branch properly on the CT condition.
This test sets up a NOT CT condition by loading a 29117 register with x’00FF’, incre-
menting the register, and then doing an ALU test on the carry condition. A jump is then
attempted off of the NOT CT condition. If the jump fails the following error message is
displayed:

Unable to branch properly on the NOT CT conditiomn.
Subphase 6 tests the 20110 internal register. This is done in microcode. The maximum
value the register can hold is loaded and then it is decremented until it reaches a zero
value. If an error occurs the following message is displayed:

Internal Register is not working properly.
Subphase 7 tests the 29110’s stack. This is done in microcode. This test relies on a
working internal register. An address is pushed onto the stack and then popped off with

a jump to subroutine instruction. If an error occurs the following message is displayed:

Internal Stack Register is not working properly.
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4.1.3.8 Phase 8 -29117 Microprocessor Instruction Confidence

Not Yet Implemented.

Errors in the several other microcoded phases may indicate a malfunctioning 29117 ALU
processor.

The 29117 microprocessor is the 16-bit ALU for the PS 390. Testing of the ALU includes
performing all arithmetic and logical functions, and checking the results.

4.1.3.9 Phase 9 - Scratch RAM

The Scratch RAM for the raster back end is 16-bits by 2048 words. Access to the Scratch
RAM is via the Bitslice processor. Reading the scratch RAM requires the use of the ACC
register in the 29117 processor. Data is written to the ACC via the same path described
in the Arithmetic Logic Unit Register test. It is then put on the Y-BUS and placed in
the YTEMP register of the Y to D bus transceiver. The next instruction places address
of the scratch Ram on the immediate field and the data is written to that location over
the D bus.

This test addresses from 0 to 2047, reading, writing, and checking test patterns at each
location.

Subphase 1 checks all of the Scratch Ram.

If the 16 bit pattern sent is different then the 16 bit pattern received the following error
message is displayed.

Datalines error writing to Scratch Ram bits.
Expected: X’xoooxx’ Received X'’yyyy’ Bits in Error: X'zzzz’.

Subphase 2 tests out the 11 address lines to the Scratch Ram. First each address line is
tested to see if is stuck high or low, then each possible pair of address lines are tested to
see if they are stuck together.

Address line errors are reported in one or both of the following ways.

Scratch Ram Address line stuck at address X’xxxx’ while testing
bit y.

Scratch Ram address lines stuck together at address X’xxxx’
while testing bit y
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Subphase 3 tests out the all 2048 locations of the Scratch Ram. This is a microcode
subphase. The first test write location to location. Errors in this subphase result in the
following error message.

Error occurred at the following Scratch location X’xxxx’ Bits in
error are y

A timeout error may occur if the interrupts are not generated properly.

Subphase 4 is a random number test on scratch Ram. Random numbers are written to
all the locations at full speed using microcode. The data is read back and compared for
errors. Errors in this subphase result in the following error message.

Random pattern error found in Scratch Memory at ( SCRAM address )
Expected: X’xoxxx’' Received X'yyyy’ Bits in Error: X’zzzz’.

4.1.3.10 Phase 10 - Vector Ram

Access to the Vector RAM is via the Bitslice processor. A data and address lines test is
run on the RAM.

Phase 7 tests the Vector Ram. The Vector Ram has 7 pages, each page has 256 words.
Each word is 12 bits wide. This has 4 subphases.

Subphase 1 tests out the data lines to the Vector Ram.

If the 12 bit pattern sent is different then the 12 bit pattern received the following error
message is displayed.

Datalines error writing to Vector Ram bits.
Expected: X’xooxx’ Received X'yyyy’ Bits in Error: X’zzzz’.

Subphase 2 tests out the 8 bits of address lines.

If an error occurs while testing out an address line the following error message is displayed:

Vector Ram Address line stuck at address X’xxxx’ while testing
bit y

If an error occurs while testing out pairs of address lines the following error message is
displayed:
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Vector Ram address lines stuck together at address X'xoox’
while testing bit y

Subphase 3 tests out the 3 bits of page lines.

If an error occurs while testing out an address line the following error message is displayed:

Vector Ram Page line stuck at page address X’xxxx’ while
testing bit y

If an error occurs while testing out pairs of address lines the following error message is
displayed:

Vector Ram Page address lines stuck together at address X’xxxx’
while testing bit y

Subphase 4 tests out the 7 pages of 256 words of the Vector Ram. The pattern it writes
to the location is based upon the location number.

If the 12 bit pattern sent is different then the 12 bit pattern received the following error
message is displayed.

Error occurred at the following SCR location X’xxxx’ Bits in error
are y

4.1.3.11 Phase 11 - Function Lookup Table

The EPROM Lookup table for the Raster Backend portion of the PS 390 is 16-bits by
65536 (or 64K) words. Access to the Lookup table is via the Bitslice processor. This
test addresses from O to 65536, reading the EPROM at each location. A check sum is
performed and compared to the last location in the EPROM where a checksum is burned
into the prom. If the two checksums do not agree the following error message is reported.

Checksum error reading Function Look Up Table Prom.
Computed checksum: xoorx Checksum in FLUT: yyyy.

When the computed checksum is correct the proper value.
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4.1.3.12 Phase 12 - AMD 29517A Multiplier

Not Yet Implemented.

This is a 16 by 16 bit parallel multiplier. Access to the multiplier is via the Bitslice
Processor. This test multiplies different test patterns together and verifies the results.

4.1.3.13 Phase 13 -Common Bus Direct Memory Access (DMA)

A DMA from the RBE bit slice requires data to be loaded into a 16 bit common bus data
register, and 22 bit address to be loaded into two address registers. The DMA hardware
is tested in three subphases. The first two are single stepped and the third is a full speed
microcoded phase.

Subphase 1 tests out the data register.

A 16 bit set of diagnostic patterns are written to a location in mass memory. The
microcode program waits for the *cbbusy signal to go low after requesting a common
bus access. If the microcode does not receive the *CBBUSY low signal, the following
errors are reported.

HA processor timed out -- PC = X'yyy’.
Timeout occurred waiting for cbbusy signal.

The JCP then reads location X’200000’ to verify that the data was written correctly.
DMA write errors are reported as follows.

Datalines Error writing data from RBE to mass memory.
Expected: X’'xxxx’ Received X’yyyy’ Bits in Error: X’zzzz’.

Then the RBE Bitslice reads the pattern back via the DMA hardware and reports any
read back errors as follows.

Datalines Error reading data from mass memory to RBE.
Expected: X’xxxx’' Received X'yyyy’ Bits in Error: X'zzzz’.
NOTE: Assumes data was correctly written to mass memory.

Subphase 2 tests out the addressing path to the Common Bus. Test data is written via
the RBE DMA hardware to each location, setting one address bit at a time. The JCP
then reads the location to verify that the pattern arrived at the proper location. The
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LSB address lines are all tested. However, to test all of the upper address lines mass
memory cards from 200000 to 600000 must be in the system.

Address line errors may be reported in the following way.
RBE to common bus addressing error testing address X’xooooxx’.

Subphase 3 is a full speed read/write test of the DMA hardware using random number
test patterns. A packet of 8 Random numbers are written to Mass memory and read
back and compared. Then another packet of 8 patterns are written and so on until
2000 packets of 8 are transfered. When an error is detected during the test, the test is
interrupted to report that error. The mass memory location is examined to see if the
data was written properly. If the expected pattern does not appear in mass memory the
following error is reported.

Data mismatch at location X’yyyyyyy’' after full speed common bus
write operation.

Expected: X’xxxx’' Received X'yyyy’ Bits in Error: X’'zzzz’.

If the data in Mass memory is correct then it is assumed the error occurred on the
readback and the following error is reported.

RBE read back data mismatch at location X’200000’ testing full speed
random number DMA transfer.

Expected: X’xoxoxx’ Received X’'yyyy’ Bits in Error: X’'zzzz’.

NOTE: Mass Memory contains correct data.

Parity errors that occur in mass memory during this full speed transfer are counted and
any parity errors are reported as follows.

Parity interrupt during common bus full speed read/write test.

Note: The modify command will allow you to select a different Megabyte of mass memory
to perform these tests on. This phase accesses 2 separate memory cards (or banks)
by alternately writing a bit pattern to each megabyte. In order for this phase of the
diagnostic to work properly, the system must have at least 2 Megabytes of memory
on the Mass Memory Board.
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4.2 Endpoint Pipeline Diagnostic - RBED1A

The Endpoint Pipeline is comprised of custom VLSI chips, that are also used on the Shad-
owfax project. The pipe includes the Input FIFO Stack Bus Controller, the Delta/Depth
Cue Calculator, the EndPoint FSBC and the Color FSBC. In addition, the RBE contains
an interface from the pipeline to the Pixel Processor Data Bus which allows the data to
be sent to the pixel processor. A diagnostic path allows the data to be read back to the
Master Bitslice for verification. Otherwise the Pixel Processor Data path leads to the
VLSI Pixel Processor array. The Endpoint Pipeline has the following components:

(a) Input FSBC controller

(b) Input FSBC Data Register

(c) Input FSBC

(d) Delta / Depth Cue Calculator

(e) Depth Cue RGB

(f) Output FSBC Color RGB

(g) Output FSBC Endpoint

(h) FSBC to Pixel Processor Data Bus

(i) Pixel Processor Data Bus readback path via D-Bus

4.2.1 Testing Strategy

The strategy for testing the Pipeline is to first test the Input FSBC and FSBC data
registers by sending a set of patterns through the pipe in the transparent mode. This
tests the Endpoint FSBC but not the Color FSBC. The Pipeline control signals can
be verified at this point. Followed by testing for the Delta/Depth Cue Calculator and
Output FSBC by sending a set of test vectors through the pipe.

Phase 1 - RBE Common Bus Maintenance register test.

Phase 2 - Transparent mode test sending zeros through the pipe.
Phase 3 - Full pattern test in transparent mode to test readback paths.
Phase 4 - Functional test on the Delta/Depth Cue Calculator.

4.2.2 Description of Tests
4.2.2.1 Phase 1 - Common Bus Maintenance Register

Phase 1 tests out the Maintenance Register located at X’FFF030’. Phase 1 has 2 sub-
phases.
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This phase tries to read and write to the Maintenance Register. If a bus error occurs, a
diagnostic interrupt handling routine detects it and an error message is reported.

Subphase 1 of Phase 1 attempts to read the maintenance register. If a bus error happens
during the reading of the maintenance register the following error occurs.

Common bus read error for Raster Back End MR:
(Maintenance register’s contents).

Subphase 2 of Phase 1 attempts to write to the maintenance register and to set and reset
various bits of the maintenance register.

If a bus error occurs during the writing of the maintenance register the following error
occurs.

Common bus write error for Raster Back End MR: ( PS 390
Maintenance register’s contents ).

4.2.2.2 Phase 2 - Transparent mode test sending zeros through the pipe

Phase 2 of RBED1A attempts to send any data down the graphics pipeline. Subphase 1
of Phase 2 sends the transparent command to the pipe and writes zeros in the x,y,z and
w. The data is read back and stored in scratch memory.

There are several handshaking signals that the microcode expects to see while writing
to the pipe. If the microcode times out while waiting for one of these signals one of the
following errors will be reported after the timeout error is reported:

Microcode timed out waiting for FSBC ready bit.

The FIFO Stack Bus Controller Ready bit did not go low after card reset. This bit
should go low before the microcode will write any data to the pipe.

Microcode timed out waiting for PPL attention bit.
In.PACK not acknowledged by *PPLATIN.

After data is written to the FSBC intermediate registers an IN.PACK signal is sent. The
*PPLATTN bit should acknowledge this signal.

FSBC busy after PPL.PACK signal sent.
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The FIFO Stack Bus Controller Ready bit did not go low after data was sent. This might
indicate that the PPL.PACK signal may not have been recognized.

The data stored in scratch memory is checked for errors. First the command word is
check to verify that it came through the pipe intact. Errors in the readback of the
command word are reported as follows:

Unable to write Transparent Command Word to FSBC.
Expected: X’8060C00’ Received X'yyyyyyyy’.

This is considered a Fatal error and will prevent any other tests from executing.

Non zero values read back for the X,Y and Z locations are reported.

Unable to write a Zero through the Graphics Pipe.
Expected: X’0000’ Received X'yyyy’ Bits in Error: X’zzzz’.

Subphase 2 of Phase 2 sends all the possible command words through the pipe. Command
words are sent through all the chips in transparent and should retain the original value
when reading values at the bottom of the pipe. The following command words are tested.

X’80400006 enable delta calculator
X’80400004 disable delta calculator
X’80400018 enable dot mode
X’80400010 disable dot mode
X’80400060 enable depth cueing
X’80400040 disable depth cueing

Errors are reported as follows:

Error sending Command words through graphics pipe.
Expected: X’8040xxxx’ Received X’'yyyyyyyy'. )

4.2.2.3 Phase 3 - Full pattern test in transparent mode

Phase 3 of RBEDI1A runs a full diagnostic pattern test throught the pipeline in trans-
parent mode. This may result in some occasional signal errors detailed in subphase 2.
These should not be ignored. Check the timing pals for these signals. Data errors may
also be reported. Occasional data that is incorrect should not be ignored. This test is a
critical timing test. Several repetitions of this phase is suggested.
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Error sending patterns through the Graphics Pipe.
Expected X: X’xooooxxx’ Received X: X'yyyyyyyy’'.
Expected Y: X’xoooooxx’® Received Y: X'yyyyyyyy’.
Expected Z: X'xoooooox' Received Z: X'yyyyyyyy'.

Note: The bits in error reported are not correct.
Note: There is no path to read the W component of the vector.

4.2.2.4 Phase 4 - Functional test on the Delta/Depth Cue Calculator.

Not yet implemented. A full functional test of the DDCC will take some time to develop.

4.3 Frame Buffer Diagnostic - RBED2A

The Raster Backend Frame buffer is a modified version of the Shadowfax frame buffer.
The Frame buffer components include:

(a) 1024 x 1024 x 48 Image bit planes
(b) 1024 x 1024 x 8 Window/Valid planes
(c) Frame Buffer Memory Controller

4.3.1 Testing Strategy

The strategy for testing the Frame Buffer is to first test the video control register, the
color look up table, the Pixel processor data register and then the pixel processors, the
Scan line buffer and then the DACs. The pixel processor test relies on visual feedback.
The scan line buffer controller and interface are then tested by writing values to the Frame
Buffer and reading them back. Next the frame buffer memory is tested and finally the
DAG:s.

Phase 1 - Video Control Register Test

Phase 2 - Color Look up table Test

Phase 3 - Pixel Processors (16)

Phase 4 - Pixel Processor ONCOUNT, TOTCOUNT and INTENSITY registers
Phase 5 - Frame Buffer and Scanline Buffer Memory

Phase 6 - DAC test.

Phase 7 - Visual Debugger. You can draw boxes.

Phase 8 - YASD Debugger.
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4.3.1.1 Phase 1 - Video Control Register Test

Phase 1 tests out the PS 390’s Video Control Register by doing a write and read of the
register. Each bit is toggled. Flashing of the display is expected in this test. The contents
of the video control register are read back into scratch ram location 1 over the Y-Bus
through the Y to D transceiver. Therefore this path must be verified before testing the
video card.

{ Y to D-Bus Transceiver i

g
VIDEO BUS

l Video Intermediate Register ]

Y-BUS

29117

e

D-BUS

Subphase 1 of Phase 1 verifies the contents of the video control register after it has been
written. Bit 11 of the register cannot be read and will always be high. Other than this
bit, if a bit appears to be stuck the following message is reported.

Read Write Error testing the video control register.
Expected: X’000C’ Received X’yyyy’ Bits in Error: X’zzzz’.

4.3.1.2 Phase 2 - Color Look Up Table

For each R, G, and B value there is a Color Look-up Table. The Color Look-up tables
are located in the DACs. There is a read/write path via the video intermediate register
for the data. The color look up table address register can be read back via the signature
readback path. The addressing and data paths for Red, Green and Blue Look Up tables
are verified and then the CLUT is filled.

Subphase 1 of Phase 2 checks the addressing path to the Color look up tables. An
address is written to the Video Intermediate Register and the Color Look Up Table
Address register is enabled. This puts the address on the %9VLABUSD inputs to the
DACS. The %VLABUSD bus is read back via the signature readback path into scratch
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ram location 1. Bit 0-7 represent the address sent to the RED DAC and bits 8-15
represent the address to the GREEN DAC. If an error occurs the following message is
reported.

Read Write Error testing the Color LUT Address register.
Expected: X’'0000’ Received X’yyyy’ Bits in Error: X’zzzz’.

Subphase 2 of Phase 2 verifies the 8 bit data path to the Red, Green and Blue look
up tables. Data is written to the the Video Intermediate register and the CLUT_Red,
CLUT_Green, and CLUT_Blue lines are enabled. The data is read back for verification.
If an error is detected one of the following messages will be reported.

Read Write Error testing the Color LUT Red register.
Expected: X’00’ Received X’'yy’ Bits in Error: X'zz’.

Read Write Error testing the Color LUT Green register.
Expected: X'00’ Received X'yy’ Bits in Error: X’'zz’.

Read Write Error testing the Color LUT Blue register.
Expected: X’00’ Received X'yy’ Bits in Error: X’zz’.

Subphase 3 of Phase 2 is a microcode test that fills the color look up table with an
incrementing pattern and reads it back full speed to verify the contents. The path that
is used is the same path described in subphase 1 and 2 with the exception that scratch
ram is not used, the data is latched into the ALU for comparison. Errors in this subphase
are reported as follows:

Error in the Color Look Up Table from the Red DAC. N
Expected: X’0000’ Received X’'yyyy’ Bits in Error: X'zzzz’.

Error in the Color Look Up Table from the Green DAC.
Expected: X’0000° Received X’yyyy’ Bits in Error: X’zzzz’.

Error in the Color Look Up Table from the Blue DAC.
Expected: X’0000’ Received X’yyyy’ Bits in Error: X’zzzz’.

4.3.1.3 Phase 3 - Pixel Processors (16)

The Pixel Processor Array consists of 16 identical processors with eight processors located
on each of the two RBE cards. The Pixel Processors update Frame Buffer memory. The
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primary purpose of the PPA is to draw anti-aliased lines, implement polygon fill, and
block transfers. The PPA also provides read and write access to the Frame Buffer from
the RBE Bit Slice Processor. Testing is done by displaying visual patterns which verify
the operation of the Pixel Processors and their packet registers.

Initializing the pixel processor array takes several steps. Each step is recorded in scratch
memory location 50 as it completes. If the microcode times out during initialization of
the PPA the following error message is reported along with the last step completed.

Unable to initialize Pixel Processor Array. Last step = <0-9>.

Subphase 1 of Phase 3 initializes the color look up table and pixel processor array.

The microcode depends on several handshake signals to initialize and write to the pixel
processor registers. If the microcode is stuck in a loop waiting for the appropriate signal
response a time out error will occur and one of the signal error messages may be reported.
HA processor timed out -- PC = ( current program counter ).

After a PP.PACK signal is sent to write to the pixel processors, the ucode waits for
the PPREADY (bit 12 in STATUS reg) to go low. PPACTIVE signal will then go high
and the flush routine waits for PPACTIVE (bit 11 in STATUS reg) to go low before
attempting to write to another pixel processor.

Timeout waiting for NPPREADY signal to go low in PP flush routine.

Timeout waiting for PPACTIVE signal to go low PP flush routine.

The following error is very similar in nature but it occurs while writing to individual
pixels on the screen to complete a scan line. This is a faster routine and does not wait
for the PPREADY signal to go low.

Waiting for PPACTIVE signal to go low in draw loop.

A test is performed to verify the vertical blank signals writing to the frame buffer. If the
vertical refresh does not occur one of the following errors is reported.

waiting for NOT vertical blank in FRAMEWAIT.

Waiting for vertical blank to go high in FRAMEWAIT.
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Subphase 2 of Phase 3 tests tests the operation of the individual pixel processors. A large
4 by 4 grid is displayed, with each element representing by position, the respective pixel
in a 4 by 4 grid of pixels that each pixel processor controls. (See Figure 4.1) A pattern
of red dots is expected in each element, indicating the operation of an individual pixel
processor. The decoding of rows and columns into Pixel Processor number and card is
shown in Table 4.1. The boxes are numbered from O to 15 starting at the top left hand
corner, counting across and down. The box number corresponds to the pixel processor
number.

PPO | PP1 | PP2 | PP3

PP4 | PP5 | PP6 | PP7

PP8 | PP9 | PP10 | PP11

PP12 | PP13 | PP14 | PP15

Figure 4.1: Pixel Processor Assignment

4.3.1.4 Phase 4 - Pixel Processor Register Test

Phase 4 of RBED2A tests out a few of the Pixel Processor registers. There are 64 internal
registers in each Pixel Processor. This phase performs a visual test for a few of these
registers. There are three subphases in phase four. The operator must hit a key on the
debug terminal to proceed from one subphase to the next.

Use the MODIFY command to change the PPMASK. PPMASK is a register that will
turn each Pixel Processor on or off depending on whether the corresponding bit is set
in PPMASK. For example, a PPMASK of X’FFFF’ turns all the Pixel Processors on.
A value of X’0080’ turns on only Pixel Processor number 7. A modified PPMASK will
affect all three subphases of Phase 4.

Subphase 1 of Phase 4 tests the TOTCOUNT register. The value in TOTCOUNT
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Table 4.1: Pixel Processor Row and Column Decoding

Pizel Processor Row and Column Decoding
Row Column

LW WRNN O OWWNDNMIEMKROO
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Number

O 00 1 O O W WK = O

Y el
UL W N O

Card

204485-600
204486-600
204485-600
204486-600
204485-600
204486-600
204485-600
204486-600
204485-600
204486-600
204485-600
204486-600
204485-600
204486-600
204485-600
204486-600

129
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controls the length of the scan line. TOTCOUNT is incremented by one each Scanline
creating a pattern increasing from top left to bottom right should be displayed. Any
lines not following this pattern would be an indication that the TOTALCOUNT register
is not functioning correctly.

Subtest 2 of Phase 4 tests the operation of the ONCOUNT register. The test is performed
by setting TOTALCOUNT to the maximum value, then drawing a series of horizontal
lines while varying the value of ONCOUNT from minimum to maximum. Set up in this
way the value in ONCOUNT controls the length of the Scanline. A pattern increasing
from top left to bottom right should be displayed. Any lines not following this pattern
would be an indication that the ONCOUNT register is not functioning correctly. Spurious
blue dots or lines against the white background can be eliminated by changing PPMASK.

Subtest 3 of Phase 4 tests the operation of the INTENSITY registers. The test is
performed by drawing blue, green, and red blocks while varying the INTENSITY from
minimum to maximum intensity. The color intensity should increase from left to right.
Failure to produce a smooth and consistently increasing pattern would be an indication
that the INTENSITY registers are not functioning correctly.

4.3.1.5 Phase 5 - Frame Buffer and Scanline Buffer Memory

The Frame Buffer memory is organized as a 1024 x 1024 x 52-bit memory that drives the
raster display. The memories are 256K video RAMs that are dual ported. The random
port is controlled by the Pixel Processor Array to allow reading and writing the Frame
Buffer. The serial port allows data to be scanned and sent to the Video Controller which
then drives the raster display. There are two banks in the Frame Buffer. they are called
Bank A and Bank B. This phase tests both banks by default. The MODIFY command
will allow the operator to disable one or both of the banks.

The data path to the Frame Buffer is tested by writing a 16 bit test pattern to one scan
line in the Frame Buffer and then reading it back.

The entire Frame Buffer memory is tested using complementing eight bit patterns, writ-
ten to the blue, green, red, and window locations for each pixel. The data is complimented
every 4th pixel so that vertical stripes should appear on the screen. After completely
filling memory, data is read via the Scanline buffer and checked for errors. If any frame
buffer memory errors are found, the following message is displayed:

Note: The vertical stripe should appear in black and white or as a shade of gray. If the
color is wrong (e.g. blue and white stripes) then this indicates a problem with the
background color registers.
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Frame Buffer memory error.

Expected Green/Blue : X’'ggbb’ Received Green/Blue : X’ggbb’
Expected Window/Red : X’'wwrr’ Received Window/Red : X’wwrr’
Xaddress : X'xoox’ Yaddress : X'yyyy’

Where the data is received in two packets Green/Blue and Window/Red. If there appears
to be a consistent bit stuck in one of these packets the problem is most likely in the read
back path. Occasionally on power up one may see a single error reported in this phase,
repeat the phase and it will go away.

Handshaking signal errors may also be reported as documented in phase 3 of this diag-
nostic.

4.3.1.6 Phase 6 - DAC Test

This phase is not yet implemented. The plan, however, is to load the CLUT with all
white except for the test bit, which will be black. The frame buffer is then filled with
the test pattern which resulis in a black screen. In the case of an error there will appear
white dots indicating that one of the outputs of the DAC is stuck.

4.3.1.7 Phase 8 - Visual Debugger (optional )

Phase 5 Allows you to draw little boxes all over the screen. Command options are as
follows:

(M) Modify Box Parameters.
{R) Reset HA board.

(I) Initialize Pixel Processors.
(C) Load Color Lookup Table.
(D) Draw a Box.

(Q) QUIT.

To use this debugger you must first (I) Initialize the Pixel Processors. Then (C) Load
the Color Lookup Table and (D) Draw a box. This will fill the screen with white. Signal
errors as described in Phase 2 can be reported for each one of these steps. A (R) reset
of the HA board will require re-initialization of these first three steps.

Use the (M) command to modify the box parameters. A number must be entered for
each prompt or a zero will default. The values you can specify are as follows:
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X address < 400 -
Y address < 400 -
X size < 400 -
Y size 400 -

specifies the top left corner of the box.
specifies the top left corner of the box.
specifies the length of the box

< specifies the width of the box
PPMASK < FFFF - 0> specifies the number of Pixel Processors involved
WINDOW < FF - 0 > 08 is the preferred value.

<

<

<

© O O O
vV V V V

RED FF - 0 > Red intensity
GREEN FF - 0 > Green intensity
BLUE FF - 0 > Blue intensity

4.4 MPLSDO0B: PLS Analytic Diagnostic

MPLSDOB uses data analysis and signature analysis to test the circuitry on the PS 350
Pipeline Subsystem (PLS) card (E&S #204143-100) and the interface to the Refresh
Buffer (RFB) card on the PS 350 or the Raster Backend Card Set on the PS 390. Data
analysis uses the results of calculations from each section of the card and compares
these results with expected results to determine if the circuitry is functioning properly.
Signature analysis is used in areas where data paths are not provided. '

MPLSDOB performs signature analysis on five PLS card nodes. These nodes are orga-
nized so that they correspond with subsections of the PLS card. Phases 1 and 9 use
different types of signature stimulus to test the same circuitry. Phase 1 breaks all feed-
back paths to ACP and clock control and sends a simple vector list down the pipe to
test handshaking between the ACP, PLS, and shadow pipeline. Phase 9 sends a complex
vector list containing multiple viewport changes down the pipe.

The remaining phases of the diagnostic perform data analysis on the calculation compo-
nents of the card.

Loop on error is only used in the pipeline configuration register test in Phase 1. The
other phases are unable to loop on error because they send vectors down the pipeline
and it is undesirable to loop on the entire vector list. The optional Phase 11, the PLS
debugger, provides a better way to loop on error. It allows the user to set up the pipeline
and specify and probe the vector or vectors that are continuously sent down the pipe
when the vector loop command is implemented. The pipeline can be set up to simulate
the phase that fails. Set-up information is available in the phase descriptions.

Note that each diagnostic phase gives meaningful results only if all previous phases run
successfully without errors. Each phase depends on the results of the previous phase.
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4.4.1 Functional Description

MPLSDOB consists of eleven phases:

Phase 1 Tests PLS status, the pipeline configuration register, ACP/PLS handshaking,
and the shadow pipeline signatures.

Phase 2 Tests MULBUS paths to the PLS and FIFO.

Phase 3 Tests the Block Normalizer.

Phase 4 Tests the perspective divider circuit.

Phase 5 Tests the IYX data path.

Phase 6 Tests the viewport and intensity registers.

Phase 7 Tests viewport and intensity multipliers.

Phase 8 Tests the PLS clipping circuit.

Phase @ Performs PLS signature tests.

Phase 10 Tests the PLS/Refresh Buffer interface.

Phase 11 Is an optional phase that implements the PLS debugger.

A functioning 4K ACP card (E&S #204133-100) is required for MPLSDOB to execute
properly. ‘

The following default values are used when the Diagnostic Operating System loads this
diagnostic.

e The default file name that contains the known signatures for the diagnostic
MPLSDOB is PLSSIGA.TXT.

e Ten signatures are gathered on each node before determining if a signature is stable.

The PLS Diagnostic routines for the PS 390 are the same as the diagnostics for the
PS 350 with the exception that Phases 1, 8, 9 and 10, which have been modified for the
PS 390.

Phase 1 determines whether or not the system has a refresh buffer or a Raster Backend.
If neither one is present the following error message is displayed:

Unable to read a 350 or 390 Maintenance Reg.

In Phases 8 and 9, microcode is loaded into the PS 390 to consume bytes coming down
the pipeline from these tests. The microcode waits for the FIFOREADY bit to be set
before reading in a byte of data.

In Phase 10, a full set of test patterns are transferred from the PLS card to the Raster
Backend. Subphases 1 and 3 send data to the PS 390. Subphase 1 loads bytes directly
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through the IYX data register to the PS 390. Subphase 3 sends IYX vectors down the
pipeline to the PS 390. Both subphases have microcode running in the PS 390 that reads
data from the PS 390’s input Fifo and writes it into the scratch ram. The microcode
waits for the FIFOREADY bit to be set before reading in a byte of data. Both subphase’s
microcode will try to read in a specific amount of bytes (54 for subphase 1, 30 for subphase
3) before terminating. If a sufficient number of bytes are not received from the PLS by
the PS 390 the JCP will timeout with the following error message:

HA processor timed out -- PC = ( current program counter ).

In both subphases the patterns are then read out of scratch ram by the JCP and are
compared with the expected data.

Subphase 1 of Phase 10 performs an IYX data test on the interface to the PS 390.

If a data mismatch between the expected data and the received data form the PS 390,
the following error message is displayed:

Data error in PLS/PS 390 Interface.
Expected: X’xxxx’ Received X'yyyy’ Bits in Error: X’zzzz’.

Subphase 3 of Phase 10 performs a vector data test on the interface to the PS 390. IYX
data is sent down the pipeline to the PS 390:

If there is a data mismatch between the expected data and the received data from the
PS 390, the following error message is displayed.

Vector data error in PLS/PS 390 Interface.
Vector number: xxx Section: (I or Y or X)
Expected: zzz, Received: rrrr.

MPLSDOB signatures are in standard hexadecimal format. Hewlett-Packard signature
format is not used in this diagnostic.

4.4.2 Initialization

When the Diagnostic Operating System loads MPLSDOB, this phase executes automat-
ically and the following message is displayed:

PS\360 PLS Signature Verification Diagnostic.
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Then the diagnostic reads the root node signature file “PLSSIGA.TXT”. If an error
occurs the following message is displayed:

Error ee occurred in reading signature table file: PLSSIGA.

where ee is one of the possible error messages of the Diagnostic Operating System. If
the file is read successfully, the diagnostic checks that stimulus program names in the file
all have the name PLSSTMOA. If all of them are not named PLSSTMOA, the following

message is displayed:
Invalid stimulus program names stored in file. Do not proceed with this diagnostic.

Do not execute the diagnostic any further (unless you have an alternate file) because this
version of the diagnostic expects all stimulus programs to be PLSSTMOA.

4.4.3 Parameter Modifications

Five of the signature verification parameters may be changed using the “M” odify com-
mand. After the cursor “>" appears, a menu is displayed with the following options:

Available Options
<CR> = Exit modify phase.
= Display this menu.
Modify frame count.
Create a new signature table.
Display the current signature table.
= Specify an alternate file name.
5 = Enable optional phases.
Enter modify option::

W N~ O
I

Entering a RETURN (<CR>) causes the diagnostic to exit Modify. Enter a 0 to redisplay
the menu of available options. Entering any number other than 0 — 5 causes the message:

Invalid Option

and the system prompts for another Modify option. A number from 0 to 5 causes the
associated option, detailed below, to be selected.

4.4.3.1 Option 0

Option 0 displays the options menu.
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4.4.3.2 Option 1

Option 1 sets the signature frame count. It allows the user to change the number of
frames performed before determining if a signature is stable. The system prompts:

Current number of frames performed: ffff
Enter number of frames to be performed (minimum = 3)

where fIff is the number of frames currently performed. To change the signature frame
count, enter the number of frames to be performed (from 3 to 32000).

4.4.3.3 Option 2

Option 2 creates a file on the diskette that contains the gathered signatures.

The diagnostic prompts:
Do you wish to use alternate file name other than standard ?

If the user enters <CR> or “N,” the diagnostic proceeds to Option 3 and the standard
file name PLSSIGA.TXT is used. If “Y” is entered, the diagnostic prompts with:

File name:

Type the new name of the file for the gathered signature table. Unless otherwise specified,
the diagnostic assumes an extension of .TXT and the highest version number.

Next', the diagnostic prompts:
Enter signature file information:

Enter up to 80 characters of configuration information. The system next prompts:
Enter board name (PLS, LGS, etc.) for node n:

where n is the number of the node.

The diagnostic then prompts for the device number to be connected to the specified node:

Enter device number (U125, U88, etc.) for node n.
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where n is the number of the node.

The system then prompts:
Select a drive (<CR> for default)

Enter a number between 0 and 3 to specify a disk drive where a diskette is mounted.

If the diagnostic succeeds in writing the file, it displays the following:
File ffffffff created successfully.

where fIffffff is a file name.

Otherwise, the following message appears:
Error ee occurred in creating file: ffffff.

where ee is a number indicating one of the Diagnostic Operating System errors or one of
the following:

ee = 47 means that bit map does not match directory entries.
ee = 48 means that the directory is full.
ee = 40 means that the new name and version already exists.

The diagnostic is then ready to receive a new Modify option.

4.4.3.4 Option 3

This option allows the contents of the known signature table for any phase to be displayed.
If there is no signature file on the disk, the diagnostic reports:

No signature information has been gathered or read in.
The diagnostic then displays the following:

Signature file information: hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Board_Name Device_Number Known_Value Gathered_Value
Phase number: n

PLS Uddd XXXX VVVV
PLS Uddd XXXX VVVY
PLS Uddd XXXX vVVYVY
PLS Uddd XXXX vVVV

PLS Uddd XXXX VVVV
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where h’s describe configuration information, n is the phase number, Uddd’s are card
and device numbers, xxxx’s are the known values stored in the memory, and vvvv’s are
the gathered signature input values.

4.4.3.5 Option 4

Option 4 allows the user to specify an alternate file as the source of the set of known
signatures. Because the diagnostic does not perform a validity check on the stimulus
program names, the name is assumed to be PLSSTMOA. The system prompts:

Do you wish to specify an alternate file as the source
of the set of known signatures?

Enter a <CR> or “N” to have the diagnostic accept another Modify option. If “Y” is
entered, the diagnostic prompts with the following:

File name:

Type the name of the file that contains sets of signatures to be compared with those
gathered from the PLS. If the file is read successfully, the following is displayed:

File fffffffff read successfully.
where fHffIfif is the name of the file read. Otherwise, the following message reads:
Error ee occurred in reading file: fffffffff.

where ee is a Diagnostic Operating System error number.

4.4.3.6 Option 5

Option 5 enables optional Phase 11, the PLS debugger.

4.4.4 Detailed Phase Description

An “(L)” to the left of an error message indicates that the error has looping capability.
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4.4.4.1 Phase 1

Phase 1 reads the status of the PLS card and reports any problems, tests the pipeline
configuration register, tests the signature of the handshaking lines between the ACP
and the PLS cards, and tests the signature of the shadow pipeline. Phase 1 has four

subphases.

Subphase 1 of Phase 1

Subphase 2 of Phase 1

Reads the status of the PLS card and reports any problems.
This subphase also reports if the RFB card is in the system.
The subphase reads status information from the upper four
bits of the FIFO. Status information includes:

*MULBLO Bit 12 If low, the Lower MULBUS cable is connected

to the ACP card.

MULBHI Bit 13 If low, the Upper MULBUS cable is connected

to the ACP card.

RBEXISTS Bit 14 If low, the Refresh Buffer card is in the sys-

tem.
FIFOEMPTY Bit 15 If low, the FIFO is empty

If the lower MULBUS is not connected correctly, the following
error message is displayed:

*x*x* MPLSDOB ;1 - Phase 1 Error number 4601.

Lower MULBUS cable not connected correctly

If the upper MULBUS is not connected correctly, the follow-
ing error message is displayed:

***%* MPLSDOB ;1 - Phase 1 Error number 4602.

Upper MULBUS cable not connected correctly

If the FIFOEMPTY bit is in error, the following error message
is displayed:

*x*x* MPLSDOB ;1 - Phase 1 Error number 4603.

FIFO should be empty, but it is not

Tests the pipeline configuration register. The ACP writes a
full set of 36 bit patterns (see Table MPLSDOB-1) into the
pipeline configuration register and reads and compares the bit
patterns with what was sent.

1

1

1



COMPANY PRIVATE—PS 390 Graphics System May 6, 1987 140

Subphase 3 of Phase 1

Subphase 4 of Phase 1

If an error is encountered while testing the pipeline configu-
ration register, the following message is displayed:

(L) *%x%% MPLSDOB ;1 - Phase 1 Error number 4604.2

Error in pipeline configuration register.
Expected: eeee, Received: rrrr.

Tests the signature of the handshaking lines between the ACP
and the PLS cards. It takes a signature from Node 0 which
is driven by the ACP/PLS handshaking lines while vectors
are sent down the pipe to stimulate the pipeline. The FISAM
test bit in the pipeline configuration register is asserted to
break feedback paths to the clock stopper. SENDTORB and
clipping are disabled.

If the diagnostic receives an unstable signature, the following
error message is displayed:

*%x%*% MPLSDOB ;1 - Phase 1 Error number 4650.
Unstable signature received on root node

Node O, Board name PLS, device number dddddddd.
Expected: xxxx, Received: unstable.

where 0 is the root node where the error is detected, xxxx
is the known signature for root node 0, yyyy is the gathered
signature, and dddddddd is the device number.

If the diagnostic receives a stable but incorrect signature from
a root node, the following error message is displayed:

*%xkx* MPLSDOB ;1 - Phase 1 Error number 4640.
Signatures do not match the root node

Node O, Board name PLS, device number dddddddd.
Expected: xoocx, Received: yyyy.

Tests the signature of the shadow pipeline. This takes a sig-
nature from Node 1 which is driven by the shadow pipelines
while a simple vector list is sent down the pipe to stimulate
the pipeline. The FISAM test bit in the pipeline configura-
tion register is asserted to break feedback paths to the clock
stopper. SENDTORB and clipping are disabled.

If the diagnostic receives an unstable signature from a root
node, the following error message is displayed:
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Bit_Pattern Hexz_Value
BitPattern[l] = X’FFFF’
BitPattern[2] =  X’0000’
BitPattern[3] =  X’5555’
BitPattern[4] = X'AAAA’
BitPattern[5] = X'FFFE’
BitPattern[6] = X'’FFFD’
BitPattern[7] = X'FFFB’
BitPattern[8] = X'FFF7
BitPattern[9] = X'FFEF’
BitPattern[10] = XFFDF’
BitPattern[ll]] = X'FFBF’
BitPattern[12] = X'FF7F’
BitPattern[i3] = X'FEFF’
BitPattern[14] = X’FDFF’
BitPattern[15] = X'FBFF’
BitPattern[16] = X'F7FF’
BitPattern(17] = XEFFF’
BitPattern[18] = X’DFFF’
BitPattern[19] = X'BFFF’
BitPattern[20] = X'7FFF’
BitPattern[21] =  X’0001’
BitPattern[22] =  X’0002’
BitPattern[23] =  X’0004’
BitPattern[24] =  X’0008’
BitPattern[25] =  X'0010’
BitPattern[26] =  X’0020’
BitPattern[27] =  X’0040’
BitPattern[28] =  X’0080’
BitPattern[29] =  X’0100’
BitPattern[30] =  X’0200’
BitPattern[31] =  X’0400’
BitPattern[32] =  X’0800’
BitPattern[33] =  X’1000°
BitPattern[34] =  X’2000’
BitPattern[35] =  X’4000’
BitPattern[36] =  X’8000’

Table 4.2: MPLSDOB-1 Bit Patterns
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4.4.4.2 Phase 2

***x% MPLSDOB ;1 - Phase 1 Error number 4650.
Unstable signature received on root node

Node 1, Board name PLS, device number dddddddd.
Expected: xxoox, Received: unstable.

where 1 is the root node where the error is detected, xxxx is
the known signature for the root node 1, yyyy is the gathered
signature, and dddddddd is the device number.

If the diagnostic receives a stable but incorrect signature from
a root node, the following error message is displayed:

*%*x** MPLSDOB ;1 - Phase 1 Error number 4640.
Signatures do not match the root node

Node 1, Board name PLS, device number dddddddd.
Expected: xxox, Received: yyyy.

Phase 2 tests MULBUS paths to the PLS and FIFO. Phase 2 has three subphases.

Subphase 1 of Phase 2 Tests the upper 16-bit data path over the MULBUS to FIFO.

Subphase 2 of Phase 2

A full set of test patterns (divided into X, Y, Z, and W vec-
tor groups) is used in this subphase. Each vector pattern is
shifted to the upper 16-bits of the 32-bit MULBUS path and
is then sent down the pipeline. The vector is read out of FIFO
and is compared with the expected vector.

If there is an error in the upper 16-bit data path, the following
error message is displayed:

**x%*x MPLSDOB ;2 - Phase 2 Error number 4605.
Error in upper 16-bits of data to FIFO.

Section (X,Y,Z or W)

Expected: eeee, Received: rrrr.

where Section identifies which element of the vector is in error.
Tests the lower 16-bit data path over the MULBUS to FIFO.
A full set of test patterns (divided into X, Y, Z, and W vec-
tor groups) is used in this subphase. Each vector pattern is
shifted to the lower 16-bits of the 32-bit MULBUS path and is
then sent down the pipeline. The vector is read out of FIFO
and is compared with the expected vector.
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If there is an error in the lower 16-bit data path, the following
error message is displayed:

*%%*%% MPLSDOB ;2 - Phase 2 Error number 4606.2
Error in lower 16-bits of data to FIFO.

Section (X,Y,Z or W)

Expected: eeee, Received: rrrr.

Subphase 3 of Phase 2 Tests the ability of the FIFO to hold multiple vectors. The
test patterns are shifted to the upper 32 bits of the MULBUS
and the entire vector list is loaded into FIFO. The list is
checked to see if FIFO can contain all the vector patterns.

If there is an error in FIFO, the following error message is
displayed:
#%*%% MPLSDOB ;2 - Phase 2 Error number 4607.3
Error in FIFO.

Section (X,Y,Z or W)
Expected: eeee, Received: rrrr.

4.4.4.3 Phase 3

Phase 3 tests the Block Normalizer. A full set of patterns is shifted to bits 0 — 15, then
to bits 1 — 16, then to bits 2 — 17, and so on until the patterns are shifted to bits 16
— 32. Each time the patterns are sent down the pipeline, the appropriate shifting must
take place for the proper patterns to be returned from FIFO.

If an error is encountered in the shift test, the following error message is displayed.
*x%%x*x MPLSDOB ;1 - Phase 3 Error number 4608.1
Error in shifter test.

Section (X,Y,Z or W)
Expected shift code = s

where “Section” identifies which element of the vector in which the error occurred. The
expected shift code is the code that should be generated on NRMCODE|0-3].

If the diagnostic is reporting errors at this point, Xon or Xoff can be used to stop the
execution of the diagnostic. Look at the values of NRMCODE][0-3] to identify the errors.

4.4.4.4 Phase 4

Phase 4 tests the perspective divider circuits. Phase 4 consists of two subphases.
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Subphase 1 of Phase 4 Tests the basic data path through the perspective divider. It
sets W to one (X’7FFF). Since X,Y,Z are divided by one (W),
the results coming out of the divider should match the values
going into the divider. The results are read through the DIV
data register back to the ACP.

If an error is encountered in the perspective divide data path,
the following error message is displayed.

*%%%%* MPLSDOB ;1 - Phase 4 Error number 4609.1
Error in perspective divide data.

Section (X/W,Y/W,Z/W or W/W)

Expected: xxxx, Received: rrrr.

Subphase 2 of Phase 4 Performs a variety of multiplications to test the perspective
divider multiplier. It uses different values for W,X Y,Z to test
the multiplier.

If an error is encountered in the perspective divide multiplier,
the following error message is displayed:

**%x%% MPLSDOB ;1 - Phase 4 Error number 4610.2
Error in perspective divide multiplier.

Section (X/W,Y/W,Z/W or W/W)

Expected: xoox, Received: rrrr.

4.4.4.5 Phase 5

Phase 5 tests the IYX data path through the viewport mapper. X and Y viewports and
the W element of the vector are set to one (X’7FFF) so that data sent down the pipeline
are multiplied by one, returning the same values from the IYX data register to the ACP.

If an error is encountered in the viewport mapper IYX data path, the following error
message is displayed.

*%%%* MPLSDOB ;1 - Phase 5 Error number 4611.1
IYX data error.

Vector count vvvv Section (X or Y)

Expected: xxxx, Received: rrrr.

4.4.4.6 Phase 6

Phase 6 tests the viewport and intensity registers. Phase 6 writes a full set of patterns
into the X and Y viewport and intensity registers. A vector with all elements equal to
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one (TFFF) is sent down the pipeline so that the viewport/intensity value is multiplied is
by one, giving the contents of the viewport/intensity register on the IYX bus as a result.
Phase 6 has three subphases.

Subphase 1 of Phase 6 Tests the data path for the X viewport register. If an error
is encountered in the X viewport register, the following error
message is displayed:

*%*%% MPLSDOB ;1 - Phase 6 Error number 4612.1
Error in viewport X. ’
Expected: xxxx, Received: rrrr.

Subphase 2 of Phase 6 Tests the data path for the Y viewport register. If an error
is encountered in the Y viewport register, the following error
message is displayed:

x%%*%* MPLSDOB ;1 - Phase 6 Error number 4613.2
Error in viewport Y.
Expected: xxxx, Received: rrrr.

Subphase 3 of Phase 6 Tests the intensity register.
If an error is encountered in the intensity register, the follow-
ing error message is displayed:

*xxx* MPLSDOB ;1 - Phase 6 Error number 4614.3
Error in intensity register.
Expected: xxxx, Received: rrrr.

4.4.4.7 Phase 7

Phase 7 tests viewport and intensity multipliers. For the intensity multiplier test, X and
Y viewports are loaded with a value equal to one (7FFF). Phase 7 has two subphases.

Subphase 1 of Phase 7 Tests the intensity multiplier. The intensity register is loaded
with one multiplication component, while the Z component
of the vector contains the second multiplication component.
The result is then read out on the I'YX bus.

If an error is encountered in the intensity multiplier, the fol-
lowing error message is displayed.

*x%x%*x MPLSDOB ;1 - Phase 7 Error number 4615.1
Error in the intensity multiplication.
Expected: xxxx, Received: rrrr.
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Subphase 2 of Phase 7 Tests the viewport multiplier. One multiplication component
is loaded into the X or Y viewport or intensity register. The
second multiplication component is contained in the vector
sent down the pipeline. The result is obtained from the IYX
Bus.

If an error is encountered in the viewport multiplier, the fol-
lowing error message is displayed:

**%%*% MPLSDOB ;1 - Phase 7 Error number 4616.2
Error in viewport multiplication.

Section (I,Y, or X)

Expected: xxxx, Received: rrrr.

4.4.4.8 Phase 8

Phase 8 tests the PLS clipping circuit. Each subphase tests clipping against a different
clipping plane. Phase 8 sends a vector that requires clipping down the pipeline and
detects if the clip occurred properly. It reads the clipped vector out of the FIFO to
determine if the FIFO contains the correct vector. Subphases 1 through 4 cause the
BADZ flag to be raised and determines if the BADZ flag can be detected. Phase 8 has
six subphases.

Subphase 1 of Phase 8 Tests for a clip in positive X.
If a clipping flag for a clip in the positive X direction is not
detected, the following error message is displayed.

#kx%%*% MPLSDOB ;1 - Phase 8 Error number 4622.1
CLIP flag not detected for a clip in positive X.

If a clipping flag for a clip in the positive X direction is de-
tected but the vector read back is incorrect, the following
error message is displayed.

**x*%* MPLSDOB ;1 - Phase 8 Error number 4628.1
Error in vector for clip in positive X.

X data error X Y Z ) Int
Expected Vector: XXXX YYYY YANAA wwww  IIII
Received Vector: XXXX YYYY ZZ7Z wwww ITII
-or-

Error in Bad Z detection.
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Subphase 2 of Phase 8 Tests for a clip in negative X.
If a clipping flag for a clip in the negative X direction is not
detected, the following error message is displayed.

*x*%*%*% MPLSDOB ;1 - Phase 8 Error number 4623.2
CLIP flag not detected for a clip in negative X.

If a clipping flag for a clip in the negative X direction is de-
tected but the vector read back is incorrect, the following
error message is displayed.

*%%** MPLSDOB ;1 - Phase 8 Error number 4628.2
Error in vector for clip in negative X.

X data error X Y Z W Int
Expected Vector: XXXX YYYY YANN WwWww IIII
Received Vector: XXXX YYYY ZZZZ wWwWww ITII
-or-

Error in Bad Z detection.

Subphase 3 of Phase 8 Tests for a clip in positive Y.
If a clipping flag for a clip in the positive Y direction is not
detected, the following error message is displayed.

*xx¥x MPLSDOB ;1 - Phase 8 Error number 4624.3
CLIP flag not detected for a clip in positive Y.

If a clipping flag for a clip in the positive Y direction is de-
tected but the vector read back is incorrect, the following
error message is displayed.

*%%x% MPLSDOB ;1 - Phase 8 Error number 4628.3
Error in vector for clip in positive Y.
X data error X Y Z W Int
Expected Vector: XXXX YYYY YANAA wwww IIII
Received Vector: XXXX YYYY 22722 wwww II1I
-or-
Error in Bad Z detection.

Subphase 4 of Phase 8 Tests for a clip in negative Y.

If a clipping flag for a clip in the negative Y direction is not
detected, the following error message is displayed.

**x**% MPLSDOB ;1 - Phase 8 Error number 4625.4
CLIP flag not detected for a clip in negative Y.
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If a clipping flag for a clip in the negative Y direction is de-
tected but the vector read back is incorrect, the following
error message is displayed.

**x%xx*% MPLSDOB ;1 - Phase 8 Error number 4628.4
Error in vector for clip in negative Y.
X data error X Y Z w Int
Expected Vector: XXXX YYYY ZZZZ wwww IIII
Received Vector: XXXX YYYY YANAA WwWww IITI
-or-
Error in Bad Z detection.
Subphase 5 of Phase 8 Tests for a clip in positive Z.
If a clipping flag for a clip in the positive Z direction is not
detected, the following error message is displayed.

*x*x%xx MPLSDOB ;1 - Phase 8 Error number 4626.5
CLIP flag not detected for a clip in positive Z.

If a clipping flag for a clip in the positive Z direction is de-
tected but the vector read back is incorrect, the following
error message is displayed.

*%k%x%% MPLSDOB ;1 - Phase 8 Error number 4628.5
Error in vector for clip in positive Z.

Z data error X Y Z W Int
Expected Vector: XXXX YYYY 272727 WwWww IIII
Received Vector: XXXX YYYY ZZ7Z Wwww II1I

Subphase 6 of Phase 8 Tests for a clip in negative Z.
If a clipping flag for a clip in the negative Z direction is not
detected, the following error message is displayed.

*x%¥x*% MPLSDOB ;1 - Phase 8 Error number 4627.6
CLIP flag not detected for a clip in negative Z.

If a clipping flag for a clip in the negative Z direction is de-
tected but the vector read back is incorrect, the following
error message is displayed.

**%*x* MPLSDOB ;1 - Phase 8 Error number 4628.6
Error in vector for clip in negative Z.

Z data error X Y yA w Int
Expected Vector: XXXX YYYY YAANA wwww ITII
Received Vector: XXXX YYYY Z171Z wwww IIII
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4.4.4.9 Phase 9

Phase 9 tests the PLS signatures. Phase 9 tests all five PLS card signature nodes, nodes
0 through 4. It sets up the pipeline configuration register to enable clipping and transfer
vectors to the refresh buffer. The viewport and intensity registers are set up and a list
of vectors is sent down the pipeline. The viewport and intensity registers are changed
and the vector list is again sent down the pipeline. This operation is performed on
ten viewport settings. The modifiable frame sync option indicates how many times this
operation is repeated.

If a Refresh Buffer card is present in the system, a signature is not taken on root node 4.

If an unstable signature error is encountered, the following error message is displayed:

*%x%% MPLSDOB ;1 - Phase 9 Error number 4650.1
Unstable signature received on root node

Node rr, Board name PLS, device number dddddddd.
Expected: xoxx, Received: unstable.

If a stable but incorrect signature is efxcountered, the following error message is displayed:

*xx*x% MPLSDOB ;1 - Phase 9 Error number 4640.1
Signatures do not match the root node

Node rr, Board name PLS, device number dddddddd.
Expected: xxxx, Received: yyyy.

4.4.4.10 Phase 10

Phase 10 tests the PLS/Refresh Buffer card interface. A full set of patterns is transferred
from the PLS card to the RFB card, first selecting the downer memory buffer and then
selecting the upper memory buffer. Subphases 1 and 2 load vectors directly through the
IYX data register to the refresh buffer. Subphases 3 and 4 send vectors down the pipeline
to the refresh buffer. The patterns are then read out of RFB memory by the GCP and
are compared with the expected data. If there is no Refresh Buffer card in the system,
the diagnostic reports this condition. Phase 10 has four subphases.

Subphase 1 of Phase 10 Performs an IYX data test on the interface to the downer
memory buffer.
If an error is encountered in the downer memory buffer, the
following error message is displayed.
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***%*% MPLSDOB ;1 - Phase 10 Error number 4629.1
Data error in PLS/Refresh Buffer Interface.
Expected: xxxx, Received: rrrr.

Subphase 2 of Phase 10 Performs an [YX data test on the interface to the upper
memory buffer.
If an error is encountered in the upper memory buffer, the
following error message is displayed.

*%%**% MPLSDOB ;1 - Phase 10 Error number 4629.2
Data error in PLS/Refresh Buffer Interface.
Expected: xxxx, Received: rrrr.

Subphase 3 of Phase 10 Performs a vector data test on the interface to the downer
memory buffer.
If an error is encountered in the downer memory buffer, the
following error message is displayed.

*x*x**x MPLSDOB ;1 - Phase 10 Error number 4630.3
Vector data error in PLS/Refresh Buffer Interface.
Expected: xoxx, Received: rrrr.

Subphase 4 of Phase 10 Performs a vector data test on the interface to the upper
memory buffer.
If an error is encountered in the upper memory buffer, the
following error message is displayed.

*x*x** MPLSDOB ;1 - Phase 10 Error number 4630.4
Vector data error in PLS/Refresh Buffer Interface.
Expected: xxxx, Received: rrrr.

4.4.4.11 Phase 11

Phase 11 is an optional phase that implements the PLS debugger. This phase requires a
functional knowledge of the PS 350 PLS card. Phase 11 is used instead of loop-on-error to
repeatedly send a vector or vectors down the pipeline. The pipeline configuration register
and the viewport registers must be set up correctly, as explained below. To simulate a
loop-on-error for any previously failing phase, use the set-up information provided in the
failing phase.

The PLS debugger displays the following menu of commands:

Available Commands:
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Examine

Load

Run

Clear Matrix Memory
Initialize Refresh Buffer
Show present configuration
Quit debug phase

Enter the commands as listed above. After the first few characters are typed, the de-
bugger recognizes the command and finishes printing out the command. If an invalid
command or a misspelled command is entered, the debugger will return “Invalid Com-
mand.”

The Examine, Load, and Run commands have options. To see a list of options, enter the
command, then enter HELP, and a list of options will be displayed.

4.4.4.11.1 Examine The Examine command allows reading of specified registers
and memory locations. The Examine HELP command prints out the options:

Available Examine Options:
STATUS
MATRIX MEMORY
PIPELINE CONFIGURATION REGISTER
REFRESH BUFFER MEMORY

Status The Examine STATUS option reads and displays PLS status information. Only
the upper four bits are valid:

*MULBLO Bit 12 If low, the Lower MULBUS cable is connected
to the ACP card.

MULBHI Bit 13 If low, the Upper MULBUS cable is connected
to the ACP card.

RBEXISTS Bit 14 If low, the Refresh Buffer card is in the sys-
tem.

FIFOEMPTY Bit 15 If low, the FIFO is empty.

Matrix Memory The Examine MATRIX MEMORY option displays the contents of
matrix memory. It prompts for the matrix memory address to be read. It prompts for
how many consecutive locations are to be read. It prints out results in X,Y,Z,W format.
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Pipeline Configuration Register The Examine PIPELINE CONFIGURATION
REGISTER option displays the label on each bit in the register. The option then prints
out the contents of the pipeline configuration register.

Refresh Buffer Memory The Examine REFRESH BUFFER MEMORY option dis-
plays the contents of upper or lower refresh buffer memory. It prompts to select upper
or lower memory. It then prompts for a start address and how many locations are to be
read. The option finally displays results for I,Y:X, and V.

4.4.4.11.2 Load The Load Command allows loading a register or memory location.
The Load HELP command prints out the options:

Available Load Options
MATRIX MEMORY
PIPELINE CONFIGURATION REGISTER
DEFAULT VECTOR LIST
REFRESH BUFFER COMMAND
REFRESH BUFFER MEMORY
TEST PATTERNS
VECTOR LIST
VIEWPORT REGISTERS

Matrix Memory The Load MATRIX MEMORY option loads a specified value into
matrix memory. It prompts for an address and prints out the current contents of that
address. The option then prompts for the data to be loaded into that address.

Pipeline Configuration Register The Load PIPELINE CONFIGURATION REG-
ISTER option loads a value into the pipeline configuration registers. It prints out the
bit labels for the register and the current contents of the register. It then prompts for a
value to be loaded into the register.

Default Vector List The Load DEFAULT VECTOR LIST option loads a default list
of vectors into matrix memory that is used in the Run commands.

Refresh Buffer Command The Load REFRESH BUFFER COMMAND option
prompts for a command and sends it to the Refresh Buffer card output processor.
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Refresh Buffer Memory The Load REFRESH BUFFER MEMORY option prompts
to select upper or lower memory. It then prompts for a start address and how many
locations are to be loaded. It prompts for I,Y,X and V values to be loaded into memory.

Test Patterns The Load TEST PATTERNS option loads default test patterns into
matrix memory. The patterns are used by the refresh buffer interface test.

Vector List The Load VECTOR LIST option prompts for how many vectors will be
loaded. It prompts for each X,Y,Z,W vector and loads them into matrix memory. The
Run commands use these values.

Viewport Registers The Load VIEWPORT REGISTERS option prompts for X,Y,Z
viewport and intensity register values and loads them into the registers. The Run com-
mand uses these values.

4.4.4.11.3 Run The Run Commands run one of the tests listed below. Each test,
with the exception of the RFB interface test, sends the vector list specified with the Load
command down the pipeline. The viewport and pipeline configuration registers should
also be loaded. Bit O of the intensity register is used as the Draw/*Move bit. The Run
HELP command prints out the options.

Available Run Test Options:
FIFO TEST
IYX TEST
PERSPECTIVE DIVISION TEST
CLIP TEST
VECTOR LOOP
REFRESH BUFFER INTERFACE
SIGNATURE TEST

Fifo Test The Run FIFO TEST option sends the specified vector list down the pipeline.
The vectors and intensity data are read out of the FIFOs and are displayed. For this
test function properly, the KEEPALL bit in the pipeline status register must be set.

TYX Test The Run IYX TEST option sends the specified vector list down the pipeline.
These vectors are read out of the IYX data register and are displayed as 1Y, and X. At
this point, the vectors are divided by W, clipped, and multiplied by the viewport registers.
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Bit 15 of the IYX data register is data valid. Bit 14 is Draw/*Move. Bit 13 is Show
Endpoint.

Perspective Division Test The Run PERSPECTIVE DIVISION TEST option sends
the specified vector list down the pipeline. The vectors are read out of the DIV data
register and are the result of a division by the W component of the vector. Bit 0 of
the DIV data register is the most significant of the two sign bits from the result of the
perspective division and is set if a clip occurs.

Clip Test The Run CLIP TEST option sends the specified vector list down the pipeline
while checking for a clip. If a clip is detected, the vector value is read out of the FIFOs.
Bad Zs are flagged. The clipped vector is the second vector printed out, unless the first
vector sent down the pipeline was clipped. The pipeline configuration register must be
set to enable clipping. If the IGNOREZCLIP bit in the pipeline configuration register is
set, the BADZ flag can also be detected.

Vector Loop The Run VECTOR LOOP option sends the specified vector list down
the pipeline continuously. This option can be used to simulate a loop on error.

Refresh Buffer Interface The Run REFRESH BUFFER INTERFACE option
prompts to select upper or lower RFB memory. It then sends the test pattern loaded
by LOAD TEST PATTERNS to the selected memory buffer starting at location X’0008.
Use EXAMINE REFRESH BUFFER MEMORY to see if the patterns were written into
memory correctly. It does not send vectors down the pipe. It writes the pattern directly
into the RFB interface register.

Signature Test The Run SIGNATURE TEST option displays the contents of the
signature for the specified node. It prompts for the signature node. It sends vectors
down the pipe and then reads and reports the signature gathered.

4.4.4.11.4 Clear Matrix Memory The Clear Matrix Memory command clears all
of matrix memory.

4.4.4.11.5 Initialize Refresh Buffer The Initialize Refresh Buffer command initial-
izes the Refresh Buffer card. This must be done before vectors or data can be accepted
by the Refresh Buffer.



COMPANY PRIVATE—PS 390 Graphics System May 6, 1987 155

4.4.4.11.6 Show Present Configuration The Show Present Configuration com-
mand shows the contents of the pipeline configuration register, the viewport registers,
and the vector list loaded by the Load command.

4.4.4.11.7 Quit Debug Phase The Quit Debug Phase exits Phase 11.

4.4.5 Error Analysis

Tables 4.3 and 4.4 provide the error numbers and corresponding error messages for the
Pipeline Subsystem Analytic Diagnostic.



COMPANY PRIVATE—PS 390 Graphics System May 6, 1987

MPLSDOB Error Messages

4601.1
4602.1
4603.1
4604.2

4605.1

4606.2

4607.3

4608.1

4609.1

4610.2

4611.1

4612.1
4613.2
4614.3
4615.1

4616.2

4622.1
4623.2
4624.3
4625.4
4626.5
4627.6

Lower MULBUS cable not connected correctly
Upper MULBUS cable not connected correctly
FIFO should be empty, but it is not

Error in pipeline configuration register. Expected: eeee, Received:
ITIT.

Error in upper 16-bits of data to FIFO. Section (X, Y, Z or W)
Expected: eeee, Received: rrrr.

Error in lower 16-bits of data to FIFO. Section (X, Y, Z or W)
Expected: eeee, Received: rrrr.

Error in FIFO. Section (X, Y, Z or W) Expected: eeee, Received:
ITIT.

Error in shifter test. Section (X, Y, Z or W) Expected shift code
=3

Error in perspective divide data. Section (X/W, Y/W, Z/W or
W/W) Expected: xxxx, Received: rrrr.

Error in Perspective Divide Multiplier. Section (X/W, Y/W, Z/W
or W/W) Expected: xxxx, Received: rrrr.

IYX data error. Vector count vvvv Section (X or Y) Expected:
xxxx, Received: rrrr.

Error in viewport X. Expected: xxxx, Received: rrrr.

Error in viewport Y. Expected: xxxx, Received: rrrr.

Error in intensity register. Expected: xxxx, Received: rrrr.

Error in the intensity multiplication. Expected: xxxx, Received:
ITIT.

Error in viewport multiplication. Section (I, Y, or X) Expected:
xxxx, Received: rrrr.

CLIP flag not detected for a clip in positive X.
CLIP flag not detected for a clip in negative X.
CLIP flag not detected for a clip in positive Y.
CLIP flag not detected for a clip in negative Y.
CLIP flag not detected for a clip in positive Z.
CLIP flag not detected for a clip in negative Z.

Table 4.3: MPLSDOB Error Messages Part One
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MPLSDOB Error Messages

4628.1
4628.2
4628.3
4628.4
4628.5
4628.6
4629.1

4625.2

4630.1

4630.3

4630.4

4640.1

4640.3

4640.4

4650.3

4650.4

Error in vector for clip in positive X. -or- Error in Bad Z detection.
Error in vector for clip in negative X. -or- Error in Bad 7 detection.
Error in vector for clip in positive Y. -or- Error in Bad Z detection.
Error in vector for clip in negative Y. -or- Error in Bad Z detection.
Error in vector for clip in positive Z.

Error in vector for clip in negative Z.

Data error in PLS/Refresh Buffer Interface. Expected: xxxx, Re-
ceived: rrrr.

Data error in PL3/Refresh Buffer Interface. Expected: xxxx, Re-
ceived: rrrr.

Unstable signature received for roct node rr, device number
dddddddd. Expected: xxxx, Received: unstable.

Vector data error in PLS/Refresh Buffer Interface. Expected:
xxxx, Received: rrrr.

Vector data error in PLS/Refresh Buffer Interface. Expected:
xxxx, Received: rrrr.

Signatures do not match on root node rr, device number dddddddd.
Expected: xxxx, Received: yyyy.

Signatures do not match the root node Node 0, Board name PLS,
device number dddddddd. Expected: xxxx, Received: yyyy.
Signatures do not match the root node Node 1, Board name PLS,
device number dddddddd. Expected: xxxx, Received: yyyy.
Unstable signature received on root node Node 0, Board name PLS,
device number dddddddd. Expected: xxxx, Received: unstable.
Unstable signature received on root node Node 0, Board name PLS,
device number dddddddd. Expected: xxxx, Received: unstable.

Table 4.4: MPLSDOB Error Messages Part Two
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4.5 Low Cost Peripherals Function Buttons Diagnostic

The Function Buttons unit is a programmable interactive device that is controlled by an
internal microprocessor. It connects to the MUX or Multiplexer in the same fashion as
the other interactive devices, communicating bi-directionally and asynchronously at 2400
baud through a serial port. There are 32 un-labeled buttons on the face of the cabinet,
each of which lights to show an “on” condition. The buttons are numbered left to right
and top to bottom in the following pattern:

o 1 2 3
4 5 6 7 8 9
10 11 12 13 14 15
16 17 18 19 20 21
22 23 24 25 26 27
28 29 30 31

The Function Buttons Unit for the New Peripheral Set is connected to the front of the
MUX box underneath the Buttons label(which is the second connector from the left).
The PS 300 Style Function Button Set is usually connected to Port # C on the Data
Concentrator.

When the Function Buttons Unit is connected to a Data Concentrator, the JCP uses the
printable ASCII characters X’40’ through X’5F’ to turn on a light for a specific button.
Similarly, the JCP uses the printable ASCII characters X’60’ through X’7F’ to turn off
a specific light. The ASCII codes are assigned as shown in Table 4.5.

4.5.1 Light Control

When used with the Low Cost Peripheral Set, the Function Button unit controls the
lights differently.

For the purpose of turning the lights of the Buttons box on or off, the lights are logically
grouped into eight groups of four lights each. The lights of the box are then turned
on and of respectively by sending a message consisting of one to eight bytes to it. The
four more-significant bits of each byte contains the identification number for a four-light
group; the four less-significant bits contain a mask which turn on (if the corresponding
bit is set) or off (if the bit is clear) the light. This is shown in Figure 4.2 where the Group
Number is binary 0000 thru 0111 and Light Mask 1’s and 0’s turn lights on and off.

The Function Button Light Groups are defined in Table 4.6.
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| Button # On Off " Button # On Off ” Button # On Off ]

0 @) ) 11 K k 22 A% v
1 A a 12 L 1 23 w w
2 B b 13 M m 24 X X
3 C c 14 N n 25 Y y
4 D d 15 0 o 26 Z z
5 E e 16 P o 27 [ |
6 F f 17 Q q 28 } —
7 G g 18 R r 29 ] }
8 H h 19 S s 30 1 ~
9 I i 20 T t 31 «— DEL
10 J ] 21 U u

Table 4.5: Function Button Toggle Codes

Figure 4.2: Function Button Light Control Message Byte

l7l6'5l4|3|2|1ln|

[ Group | Mask |

Any byte or combination of bytes may be sent in a message, depending on which of the
lights must be turned on or turned off. Turning all lights on, turning all lights off or
changing the state of at least one byte of each of the eight groups would require an eight-
byte message to be sent. Changing the state of one to four lights in a single four-light
group would require only a one-byte message to be sent.

4.5.2 Reporting Selections

The Buttons box reports that a key has been depressed simply by sending a single byte
to the Joint Control Processor. The value of the byte is given by adding the hexadecimal
value of the key number to the hexadecimal value x’3F’. Thus the first sixteen keys are
numbered x’40’ to x’4F’ and the second group of sixteen keys are numbered x’50’ to
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Table 4.6: Function Button Light Groups

l Group Number } Description l

b’0000’ Group for lights 1 — 4
b’0001° Group for lights 5 — 8
b’0010’ Group for lights 9 — 12
b’0011’ Group for lights 13 — 16
b’0100° Group for lights 17 — 20
b’0101° Group for lights 21 — 24
b’0110’° Group for lights 25 — 28
b’0111’ Group for lights 29 — 32

x’5F’. Only one message per keystroke is reported.

4.5.3 Functional Description

The Function Buttons diagnostic consists of six phases (Phase 5 is applicable only when
the Function Buttons Unit is connected to the Data Concentrator):

Phase 1 Determines if the Function Buttons unit is properly connected to the system and if
the Function Buttons unit can respond to the system’s inquire message.
Phase 2 Determines if each button’s light can be separately controlled.

Phase 3 Determines if all buttons work. The user must depress each button separately to
tell if it is operating correctly.

Phase 4 Determines if each button can*control its light.

Phase 5 Determines that the Function Buttons unit can accurately report back its light
status to the JCP. The diagnostic does this by sending a bit pattern to the Function
Buttons unit and then requesting a report of the same bit pattern back. The report
is then compared to the original pattern to ensure that both are identical.

Phase 6 Invokes the Function Buttons confidence test.

4.5.4 Parameter Modifications

Note: This section allows the user to modify parameters for the Function Buttons Diag-
nostic. If the Function Buttons are connected to the MUX Box the diagnostic will
still ask for responses during “M” odify, however it will ignore whatever is typed.
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Two test variables for the function buttons diagnostic may be modified using the
“M”odify command before the diagnostic begins execution. The modifiable variables
are:

(a) The Communications Connector Panel Port Number (2-5)
(b) The Data Concentrator Port Indicator (A-F)

Should one or more of these parameters be modified illegally, an information message is
output to the diagnostic terminal. The possible messages are:

Communications connector panel port is out of range.
Communications connecter panel port is already in use.
Data concentrator port is out of range.

Data concentrator port is already in use.

Data concentrator port timed out.

Data concentrator illegal initialization response.

The Communications Connector Panel port parameter specifies which Communications
Connector Panel port is to be used. The default is Port 5. This variable may be changed
when the following prompt appears:

Enter Communications Connector Panel port number (2-5).

The Data Concentrator parameter specifies whether or not the Communications Con-
nector panel is connected to a Data Concentrator. By default, the connection is assumed
to be made. After the following prompt appears, this variable may be modified:

Is Communications Connector Panel port connected to the Data

Concentrator?

If the user does not answer with an upper or lower case “Y,” the answer is assumed to be
no. A negative response prevents the Data Concentrator prompt (described next) from
appearing.

The Data Concentrator port parameter indicates which Data Concentrator port is to be
used for the Function Buttons. The default is Port D. This variable may be changed
when the following prompt appears:

Enter Function Buttons Data Concentrator port letter (A-F).
To exit the “M” odify, type “y”, “Y”, or “yes” to the following prompt:

Do you want to exit Modify?
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4.5.5 Detailed Phase Description
4.5.5.1 Phase 1

This first phase of the diagnostic determines if the Function Buttons unit is correctly
connected to the system, and determines if the Function Buttons unit can respond to the
PS 300/390 inquire message (ASCII ENQ, CTRL E, or X’05’). If the Function Buttons
Box is connected to a Data Concentrator, the Diagnostic send out a X’80’ and waits
for .5 seconds. If no response is received in that time, the following error message is
displayed. If the Function Buttons unit is connected to a MUX Box, the system sends
out the CTRL E to the Function Buttons unit and then waits .5 seconds. If no response
occurs within that period, the following message is produced:

*x*%* BTNDOB ;1 - Phase 1 Error number 3507.1
Function Box is not responding to inquiry.

An invalid response generates the following error message:

*%xx%x BTNDOB ;1 - Phase 1 Error number 3508.1
Invalid inquiry response message
Expected: BTNxxx Received eeeecee

4.5.5.2 Phase 2

The second phase of the diagnostic is used to ensure that each button light can be
separately controlled. The diagnostic does this by transmitting the ASCII characters
shown in Table 4.5 to the Functions Button unit at 300 ms intervals. This phase of the
diagnostic consists of five parts that illuminates each light or turns off the lights for all
or some buttons. The phase stops after each part is completed so that the user has time
to verify that the correct buttons are lit. No error messages are generated by this phase.

Subphase 1 Turns on all button lights simultaneously.

Subphase 2 Turns off all button lights simultaneously.

Subphase 3 Turns each button light on and back off, one at a time. The buttons are illuminated
and turned off in order, starting with button 0 and ending with button 31.

Subphase 4 Starts with button 0 and turns on each button individually until all of them through
button 31 are illuminated.

Subphase 5 Turns off all the button lights that were lit during Subphase 4. Again, the diagnostic
proceeds from button 0 to button 31, turning off each light.
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4.5.5.3 Phase 3

The third phase of the diagnostic is used to determine if each of the 32 buttons can
report to the system. The user must depress each button separately and ensure that
the button’s number is displayed on the diagnostic terminal. This phase does not end
until the user terminates it by striking any key on the diagnostic terminal. If the system
receives an invalid character from the Function Buttons unit, the following error message
is produced:

**x%* BTNDOB ;1 - Phase 3 Error number 3509.1
Invalid character code : X'hh’

4.5.5.4 Phase 4

The fourth diagnostic phase provides further tests to ensure that each button works
correctly. This time the user consecutively depresses any number of individual buttons.
Each time a button is pressed, its light should toggle on or off. Also, the number of the
button being toggled appears on the diagnostic terminal. This phase of the diagnostic
continues until the user presses any key on the diagnostic terminal. If an invalid character
is received by the system as a button is depressed, the following error message appears:

**x*%% BTNDOB ;1 - Phase 4 Error number 3509.1
Invalid character code : X’hh’

4.5.5.5 Phase 5

Note: Phase 5 only runs on the standard Function Buttons Box. It does not run on the
Low Cost Function Buttons.

The fifth diagnostic phase is a measure of the Function Buttons’ ability to accurately
report to the system if any button light is on or off. The diagnostic tests this by writing
20 different combinations of light and unlight buttons (i.e, 20 different 32-bit strings) to
the Function Buttons unit and asking the Function Buttons unit to report back which
buttons are lit and which buttons are unlight for each of the 20 strings. The twenty
different patterns are as follows:

Pattern
Bit O Bit 31 Index
01010101 01010101 01010101 01010101 0
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00110011 00110011 00110011 00110011 1
00001111 00001111 00001111 00001111 2
00000000 11111111 00000000 11111111 3
00000000 00000000 11111111 11111111 4
00000000 00000000 00000000 00000000 b
10101010 10101010 10101010 10101010 6
11001100 11001100 11001100 11001100 7
11110000 11110000 11110000 11110000 8
11111111 00000000 11111111 00000000 9
11111111 11111111 00000000 00000000 10
11111141 11111111 11111111 11111111 11
10000000 10000000 10000000 10000000 12
01000000 01000000 01000000 01000000 13
00100000 00100000 00100000 00100000 14
00010000 00010000 00010000 00010000 16
00001000 00001000 00001000 00001000 16
00000100 00000100 00000100 00000100 17
00000010 00000010 00000010 00000010 18
00000001 00000001 00000001 00000001 19

If the pattern reported by the Function Buttons unit does not match the one origi-
nally transmitted to it by the diagnostic, the following error message is displayed on the
diagnostic terminal:

#x%¥x% BTNDOB ;1 - Phase 5 Error number 3510.x
Response error. Expected: xoooooxx  Received: yyyyyyyy

The index number shown in the pattern table is the “x” portion of the Error number. The
index number identifies which of the twenty 32-bit combinations was erroneously reported
by the Function Buttons unit. Once the index number is determined, the actual bit in
error may be identified by comparing the eight hex digits in the Expected and Received
values. For example, the actual error message may appear as follows:

*x%*x*x BTNDOB ;1 - Phase 5 Error number 3510.2
Response error. Expected: FOFOFOFO Received: EOFOFOFO

From this information, it may first be determined that the string identified by Index
Number 2 was received from the system by the Function Buttons unit and then erro-
neously reported back to the system. The eight hex values in the Expected and Received
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values must then be compared to determine the bit in error. The first hex character in
both values represents bits (and buttons) 31, 30, 29 and 28; the second hex character
represents the next four button lights (27, 26, 25, and 24), and so on. In the example
given, the first received hex character is erroneous. By comparing the received value (E)
to the expected value (F) it may be readily determined that bit 31 is wrong.

If the Function Buttons unit does not respond at all to the status request, the following
error message is reported:

**x%*% BTNDOB ;1 - Phase 5 Error number 3511.1
Timeout error.

4.5.5.6 Phase 6

This final phase of the diagnostic invokes the Function Button confidence test routines to
test internal RAM and ROM. First, the test command (CTRL T) is sent to the Function
Buttons unit to start testing. The system displays the following ASCII characters on the
diagnostic terminal as the confidence tesis are completed:

"A" indicates that the confidence tests have started.
"B" indicates that the internal RAM test has completed.
"C" indicates that the ROM test has completed.

"D" indicates that the external RAM test has completed.

If an error is detected while receiving the start test character, the following message is
produced:

*x*%% BTNDOB ;1 - Phase 6 Error number 3512.1
Bad initial response from confidence tests.

If the Function Buttons unit does not respond at all to the CTRL T, the following
message appears:

***%%x BINDOB ;1 - Phase 6 Error number 3522.2
No initial response from confidence tests.

If an error is detected during the internal RAM test, the following message appears:

*¥x%x% BTNDOB ;1 - Phase 6 Error number 3513.1
MC6803 internal memory bad.
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If an error is detected during the internal ROM test, the following message appears:

*x%%x* BTNDOB ;1 - Phase 6 Error number 3514.1
EPROM checksum invalid.

If an error is detected during the external RAM test, the following message is produced:

*x%*% BTNDOB ;1 - Phase 6 Error number 3515.1
MC8803 external memory bad.

4.5.6 Error Analysis

The error messages produced during the Function Buttons diagnostic have the following
meanings:
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3501
3502
3503
3504

3505
3506

3507
3508

3509
3510

3511
3512

3513

3514
3515

3516
3553
3554
3557
3558
3559

Communications Connector Panel port is out of range.

Communications Connector Panel port is already in use.

Data Concentrator port is out of range.
Data Concentrator port is already in use.

Data Concentrator timed out.
Data Concentrator illegal initialization response.

Function Buttons unit is not responding to inquiry.
Invalid inquiry response message.
Expected: BTNxxx Received eeeeee

Invalid character code.
Bad response in reporting the buttons’ light status.

Timeout error.
No initial response from confidence tests.

MC6803 Internal Memory Error.

EPROM Checksum invalid.
MC6803 External Memory Bad.

No indication of test completion.
Multiplexer Box Point is out of range.
Multiplexer Box Point is already in use.
Multiplexer Box Timed Out.

Multiplexer Box illegal initiation response.
MUX failed self test.

Table 4.7: Function Button Error Messages
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Notes On Preliminary Diagnostics For The PS 390

Date: 5 May 87
Version: NC.01

Diagnostic Disk G

This disk contains the following diagnostics and their associated microcode files:

RBEDOA Bit Slice Processor diagnostic Including the YASD debugger RBEDOA.DAT (ucode)

RBED1A Graphics Pipeline Diagnostic RBED1A.DAT (ucode)

RBED2A Pixel Processor and Frame Buffer diagnostic including a Visual Debugger called
VISBUG FBTST.DAT (ucode)

MPLSDOA Phase 10 tests the Input FIFO on the RBE card. MPLSIG.TXT( signature file )
PS390.DAT (ucode)

Diagnostic Disk H

This is just a temporary disk name. The new peripheral diagnostics are on this disk. The
peripheral Mux box required some changes in the diagnostic operating system (A9.VO01).
When this new operating system is tested and released for all the diagnostic disks then
these peripheral diagnostics will be released on diagnostic disk B.

BTNDOB Function Button diagnostic for old and new buttons. Works on both old and new
peripheral Mux boxes and it will work on a data concentrator.

CDLDOB Control Dial diagnostic. Works on both old and new style of control dials.

TABD1C GTCO Tablet diagnostic. Works with both the old and new peripheral Mux box
and the data concentrator.

ECPDOA Energy Card diagnostic.

Note: YOU ARE NOW TESTING A NEW VERSION OF DIAGOS (A9.V01) with these
preliminary diagnostics. Report any bugs by mail to BTURNER (CESS) on the
CMT780.

The new diagnostics fix the data concentrator problems in the A8 release. All the periph-
erals and the F15 will work on a GCP system if you boot this operating system before
running them.

It automatically determines the configuration of the system. PS300, PS350 or PS390.
(JCP or GCP)
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It initializes the new peripheral multiplexer boxes. If you have a tablet connected with
the stylus on the tablet you will have trouble booting diagnostics. Remove the stylus
from the tablet.



Appendix A

PAL Definitions for the PS 390

A.1 PLS Transfer State Machine

Table A.1: PLS Transfer State Machine Input/Output Pin Signal Descriptions
l Pin # } Signal Input Pin Descriptions

Pin 2 | *resetb Active low, used to reset state machines.

Pin 3 | plsready | Active high, synchronized version of plsready from
the pls, indicates the the pls has data ready for bit-
slice.

Pin 4 | *fifofull Active low, indicates that the FIFO is full.

Output Pin Descriptions

Pin 19 | *rbdone Active low, indicates to PLS that the transfer of data
has completed.

Pin 18 | *enable_x | Active low, selects the X word from the PLS buffer.
Pin 17 | *enable_y | Active low, selects the Y word from the PLS buffer.
Pin 16 | *enable_i | Active low, selects the X word from the PLS buffer.

Pin 15 | *enable_v | Active low, selects the I word from the PLS buffer,
also resets the plsready flip—flop.

Pin 14 | *writefifo | Active low, write signal for the fifo.

170
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Table A.2: PLS Transfer State Machine State Descriptions

*enable x *enable.y ‘*enable.i *enable_v *writefifo *rbdone
Current State = Nrben_x Nrben._y Nrben_i Nrben.v NWriteFifo Nrbdone
Idle = 1 i i 1 1 1
Transl = i i 0 1 1 1
WrFifol = 1 1 0 1 0 1
TransY = i 0 1 1 1 1
WrFifoY = 1 0 1 1 0 1
TransX = 0] 1 1 1 1 1
WrFifoX = 0 1 1 1 0 1
SendRBdone = 1 1 1 1 1 0
ClearReadyFlag = 1 1 1 0 1 1
TransferMode = PlsReady NResetl  NFifoFull
PLSandFifcReady = 1 i i
PLSnotReady = 0 1 X
FifoFull = 1 1 0
Reset = X 0 X
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State Diagram TransferState

Idle: if (TransferMode == PLSandFifoReady) then TransI else Idle;

TransI:
case (TransferMode == PLSandFifoReady) : WrFifoI;
(TransferMode == FifoFull) : TransI;
(TransferMode == Reset) . Idle;
endcase;
WrFifol: if (TransferMode == FifoFull) then WrFifol else TransY;
TransY:
case (TransferMode == PLSandFifoReady) : WrFifoV;
(TransferMode == FifoFull) : TransY;
(TransferMode == Reset) . Idle;
endcase;
WrFifoY: if (TransferMode == FifoFull) then WrFifoY else TransX;
TransX:
case (TransferMode == PLSandFifoReady) : WrFifoX;
(TransferMode == FifoFull) : TransX;
(TransferMode == Reset) : Idle;
endcase;
WrFifoX: if (TransferMode == FifoFull) then WrFifoX else SendRBdone;
SendRBdone: goto ClearReadyFlag;

ClearReadyFlag: goto Idle;
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Table A.3: Fifo to Fifo Buffer State Machine Input/Output Pin Signal Descriptions

l Pin # l Signal Input Pin Descriptions
Pin 5 | *resetb Active low, see Pin 2 Table A.1.
Pin 6 | *fifoempty | Active low, indicates the the FIFO is empty.
Pin 7 | *sdfifo Active low, indicates that the bitslice read.

Output Pin Descriptions
Pin 13 | *readfifo Active low, read signal for the FIFO.

Pin 12 | fifobufready | Active high, indicates to the bitslice that there is data
ready in the FIFO.

InputFifoCntrl =  NResetl NFifoEmpty NRFifo
Resetl = 0 X X
FifoHasData = 1 1 1
TransferAgain = 1 1 0
HmsReadsBuf = 1 0 0
Noop = 1 0 1
FifoBufState = NReadFifo FifoBufReady
FifoBufldle = 1 0
TransferToBuf = 0 1

Wait = 1 1

UndefState0 = 0 0

State Diagram for FIFO to FifoBuffer Controller
State Diagram FifoBufState

FifoBufIdle:

case (InputFifoCntrl Resetl) : FifoBuflIdle;

(InputFifoCntrl == FifoHasData) : TransferToBuf;
(InputFifoCntrl == HmsReadsBuf) : FifoBufldle;
(InputFifoCntrl == TransferAgain) : TransferToBuf;
(InputFifoCntrl == Noop) : FifoBufldle;
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TransferToBuf:

Wait:

UndefStateO:

endcase;

case (InputFifoCntrl == Resetl) : FifoBufldle;

(InputFifoCntrl == FifoHasData) : Wait;
(InputFifoCntrl == HmsReadsBuf) : Wait;
(InputFifoCntrl == TransferAgain) : Wait;
(InputFifoCntrl == Noop) : Wait;

endcase;

case (InputFifoCntrl Resetl) : FifoBufldle;

(InputFifoCntrl == FifoHasData) : Wait;
(InputFifoCntrl == HmsReadsBuf) : FifoBufldle;
(InputFifoCntrl == TransferAgain) : TransferToBuf;
(InputFifoCntrl == Noop) : Wait;

endcase;

GOTO FifoBufldle;

Explanation of symbols: 1 = logic High
0 = logic Low
X = don’t care
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Table A.4: Input FSBC Controller

Signal | Pin # l Input FSBC Controller Inputs
clk Pin 1

NReset Pin 2 | Reset State Machine
NInFsbcPreq | Pin 3 | Fsbe is ready for input
HmsInPack Pin 4 | Hms is done writing Fsbc
NDyInFsbc Pin 5 | Hms writes Fsbc buffer register
FsbcReg0 Pin 6 | Fsbc Register address bit 0
FsbcRegl Pin 7 | Fsbc Register address bit 1
FsbcReg2 Pin 8 | Fsbc Register address bit 2
NClrLowWord | Pin 9 | Clr Fsbc Low word before input
chip ground Pin 10

chip enable Pin 11

Input FSBC Controller Output Latches

NFsbcReady Pin 12 | Ready signal for Hms
NFsbcWrite Pin 13 | InFsbc write strobe
NFsbcPack Pin 14 | Packet acknowledge for InFsbc
InFsbcAdr0 Pin 15 | Fsbc Reg address

InFsbcAdrl Pin 16 | Fsbc Reg address

InFsbcAdr2 Pin 17 | Fsbe Reg address

NClrLsw Pin 18 | Buffer has data for MBS
State0 Pin 19 | State bit for controller

chip vec

Pin 20
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FsbcControlState = State0 NFsbcReady NFsbcWrite NFsbcPack

Fsbcldle = 0 1 1 1 The IDLE state

FsbcWrState = 0 0 0 1 Write a register in the
FSBC

ReadyState = 0 0 1 1 Let the HMS know
that the FSBC is ready

FsbcPackState = 0 0 1 0 Send PACK to the In-
putFsbc

FsbcWrPackState = 1 0 0 1 Write a register in

the FSBC and this
state always followed
by packstate

FsbcUndefStated = 0 1 0 0
FsbcUndefStates = 0 1 0 1
FsbcUndefState6 = 0 1 1 0
FsbcUndefState8 = 1 0 0 0
FsbcUndefStateA = 1 0 1 0
FsbcUndefStateB = 1 0 1 1
FsbcUndefStateC = 1 1 0 0
FsbcUndefStateD = 1 1 0 1
FsbeUndefStateE = 1 1 1 0
FsbcUndefStateF = 1 1 1 1

Table A.5: Input Fsbc Controller State Descriptions
Explanation of symbols: 1 = logic High
0 = logic Low
X = don’t care
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Fsbc Controller Input Signal Modes

InputMode = NReset NInFsbcPreq HmsInPack NDyInFsbc
Reset = 0 X X X
FsbclsReady = 1 0 0 1
HmsWrBuf = 1 0 0 0
HmsWrPack = 1 0 1 1
HmsWrPackBuf = 1 0 1 0
DontCare = 1 X X X

Input Vector for the Fsbc Register Address

InputReg Vec = NDylInFsbc FsbcReg2 FsbcRegl FsbcReg0
NoWrite = 1 X X X
WrStatus = 0 0 0 0
WrX = 0 0 0 1
WrY = 0 0 1 0
WrZ = 0 0 1 1
Wrw = 0 1 0 0
BadInput = 0 1 0 1
#0 1 1 0
#0 1 1 1
Explanation of symbols: 1 = logic High
0 = logic Low
X = don’t care

Input Fsbc Address State Definitions

FsbcAdrState = InFsbcAdr2 InFsbcAdrl InFsbcAdr0
WrFsbcRegStatus = 0 0 0
WrFsbcRegX = 0 0 1
WrFsbcRegY = 0 1 0
WrFsbcRegZ = 0 1 1
WrFsbcRegW = 1 0 0
WrFsbcRegh = 1 0 1
WrFsbcReg6 = 1 1 0
WrFsbcReg? = 1 1 1
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Equations
NClrLsw := NClrLowWord;

State Diagram FsbcControlState

FsbcIdle:
case ( InputMode == Reset ) : FsbcIdle;
( InputMode == HmsWrBuf ) : Fsbcldle;
( InputMode == HmsWrPack ) : FsbcIdle;

HmsWrPackBuf ) : Fsbcldle;
FsbcIsReady ) : ReadyState;

( InputMode
( InputMode

endcase;
ReadyState:
case ( InputMode == Reset ) : Fsbcldle;
( InputMode == HmsWrBuf ) : FsbcWrState;
( InputMode == HmsWrPack ) : FsbcPackState;
( InputMode == HmsWrPackBuf ) : FsbcWrPackState;
( InputMode == FsbcIsReady ) : ReadyState;
endcase;

FsbcWrState: goto ReadyState;
FsbcWrPackState: goto FsbcPackState;
FsbcPackState: goto Fsbcldle;

FsbcUndefState4: goto FsbcIldle;
FsbcUndefStateb: goto Fsbcldle;
FsbcUndefState6: goto Fsbcldle;
FsbcUndefState8: goto Fsbcldle;
FsbcUndefStateA: goto Fsbcldle;
FsbcUndefStateB: goto Fsbcldle;
FsbcUndefStateC: goto Fsbcldle;
FsbcUndefStateD: goto FsbcIdle;
FsbcUndefStateE: goto FsbcIdle;
FsbcUndefStateF: goto Fsbcldle;
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State Diagram FsbcAdrState

WrFsbcRegStatus :
case ( InputRegVec == NoWrite ) : WrFsbcRegStatus;
( InputRegVec == WrStatus) : WrFsbcRegStatus;
( InputRegVec == BadInput) : WrFsbcRegStatus;
( InputRegVec == WrX ) : WrFsbcRegX;
( InputRegVec == WrY ) : WrFsbcRegY;
( InputRegVec == Wri ) : WrFsbcRegZ;
( InputRegVec == WrW ) : WrFsbcRegW;
endcase;
WrFsbcRegX :
case ( InputRegVec == NoWrite ) : WrFsbcRegX;
( InputRegVec == BadInput) : WrFsbcRegX:
( InputRegVec WrStatus) : WrFsbcRegStatus;
( InputRegVec wrX ) : WrFsbcRegX;
( InputRegVec wrY ) : WrFsbcRegY;
( InputRegVec WrZ ) : WrFsbcRegZ:
( InputRegVec Wrw ) : WrFsbcRegW;
endcase;
WrFsbcRegY :
case ( InputRegVec NoWrite ) : WrFsbcRegY;
( InputRegVec == BadInput) : WrFsbcRegV;
( InputRegVec == WrStatus) : WrFsbcRegStatus;
( InputRegVec == WrX ) : WrFsbcRegX;
( InputRegVec == WrY ) : WrFsbcRegY;
( InputRegVec == WrZ ) : WrFsbcRegZ;
( InputRegVec == WrW ) : WrFsbcRegW;
endcase;
WrFsbcRegZ
case ( InputRegVec == NoWrite ) : WrFsbcRegZ;
( InputRegVec == BadInput) : WrFsbcRegZ;
( InputRegVec == WrStatus) : WrFsbcRegStatus;
( InputRegVec == WrX ) : WrFsbcRegX;
( InputRegVec == WrY ) : WrFsbcRegY;
( InputRegVec == WrZ ) : WrFsbcRegZ;
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( InputRegVec == WrW )
endcase;
WrFsbcRegW :
case InputRegVec == NoWrite )

(
( InputRegVec == BadInput)
( InputRegVec == WrStatus)
( InputRegVec == WrX )
( InputRegVec == WrY )
( InputRegVec == WrZ )
( InputRegVec == WrW )
endcase;

WrFsbcRegb: goto WrFsbcRegStatus;
WrFsbcReg6: goto WrFsbcRegStatus;
WrFsbcReg7: goto WrFsbcRegStatus;

180

: WrFsbcRegW;

: WrFsbcRegW;
: WrFsbcRegW;
: WrFsbcRegStatus;
: WrFsbcRegX;
: WrFsbcRegY;
: WrFsbcRegZ;
: WrFsbcRegW;
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A.3 Pixel Processor Array Loader State Machine

Table A.6: FSBC to Pixel Processor Data Transfer Control

| Signal | Pin # [ Pin Definitions
clk Pin 1
NReset Pin 2 | Reset
FsbcAB Pin 3 | MBS or SM request
NFsbcPreq Pin 4 | FSBC data ready
PixPreq Pin 5 | Pixel Processor Ready
BcDone Pin 6 | Bus Controller done
Hmslack Pin 7 | Bitslice acknowledge
NSDPPL Pin 8 | Hms Reads Mux
NDyPPdat Pin § | Bitslice does a write to PPdat
chip ground Pin 10
chip enable Pin 11
NHmslrq Pin 12 | This request is for the Bitslice
NPixPack Pin 13 | Pixel Processor acknowledge
NincPix Pin 14 | Increment Pix Proc address
NIncFsbe Pin 15 | Increment Fsbc address
NHmsPPwe Pin 16 | Allow the PP to do a write
NPixWrEnable | Pin 17 | Enables Pix Proc for writing
Cycle Pin 18 | State Variable
MuxSel Pin i9 | High select LSW from FSBC
chip VCC Pin 20
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State Definitions for Data Transfer Machine:

Increment States

IncState = NIncPix NIncFsbc
IncBoth = 0 0
IncPix = 0 1
IncFsbe = 1 0
DontIlnc = 1 1
Pack States
PackState = NPixPack
PackPix = 0
NoPack = 1
Cycle States
InCycle = O
NoCycle = 1

PalReset States

DoReset =
DontReset = 1

HmslIrq States

Dolnt =
DontInt

1l
= O

PizWrEnable States

DoWrPix =
Dont WrPix

il
- O
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LoadCntriState = I Cycle [NHmsIrq I NPixWrEnable | IncState | PackState
Idle = | NoCycle | Dontlnt DontWrPix DontIne | NoPack
PixTranDontInc = | InCyecle Dontlnt DoWrPix DontIne | NoPack
PixTranIncBoth = | InCycle | Dontlnt DoWrPix IncBoth | NoPack
PixTranIncPix = | InCycle DontInt DoWrPix IncPix NoPack
PixTranIncFsbe = | InCycle DontInt DoWrPix IncFsbe | NoPack

are not enabled

on the PP address bus.

NOTE: In the states below, the IncPPadr Pin is used as a state bit. This
means that the PPADR counter increments while the HMS has control
of the pizel processors. The ouipuis from the PPADR counter, however,

HmsTranMsw = | InCycle Dolnt DontWrPix IncPix NoPack
HmsTranLsw = | InCycle Dolnt DontWrPix Dontinc | NoPack
HmsTranIncFsbe - = | InCycle Dolnt DontWrPix IncFshe | NoPack
PackPixelProc = | InCycle DontlInt DontWrPix DontInc | PackPix
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Multiplexzer Select States

SelMsw = 0
SelLsw = 1
Request Modes
RequestMode = PixPreq NFsbcPreq FsbcAB
PPReq = 0 0
HmsReq = X 0
ReqDontCare = X X
Hms Input Modes
HmsMode = NSDPPL Hmslack
HmsDone = X 1
HmsRead = 0 0
HmsWait = 1 0
HmsDontCare = X X
Fsbe Mode
BcMode = BcDone
BcLastFetch = 1
BcDontCare = X
BcNotLastFetch = 0
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InputMode

Reset
ReqPPTr
ReqHmsTr

HmsTranDone
HmsTranWait
HmsTranRead

BcTranLastFetch
BcTranNotLastFetch

InputDontCare

Il

]

NReset

RequestMode

ReqDontCare
PPReq
HmsReq

ReqDontCare
ReqDontCare
ReqDontCare

ReqDontCare
RegqDontCare

ReqDontCare

HmsMode

HmsDontCare
HmsDontCare
HmsDontCare

HmsDone
HmsWait
HmsRead

HmsDontCare
HmsDontCare

HmsDontCare

BcMode

BcDontCare
BcDontCare
BcDontCare

BcDontCare
BcDontCare
BcDontCare

BcLastFetch

BceNotLastFetch

BcDontCare

185
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Equations
NHmsPPwe := NDyPPdat;

State Diagram LoadCntrlState

Idle: IMuxSel := ( RequestMode == HmsReq );
case (InputMode == Reset ) : Idle;
(InputMode == ReqPPTr) : PixTranIncFsbc;
(InputMode == ReqHmsTr ) : HmsTranMsw;
endcase;
PixTranIncFsbc:
MuxSel := O;

if ( InputMode == Reset ) then Idle
else PixTranIncPix;

case (InputMode == Reset ) : Idle;
(InputMode == BcTranLastFetch ) : PixTranIncPix;
(InputMode == BcTranNotLastFetch ) : PixTranIncPix;
endcase;
PixTranIncPix:
MuxSel := 1;
case (InputMode == Reset ) : Idle;
(InputMode == BcTranLastFetch ) : PackPixelProc;
(InputMode == BcTranNotLastFetch ) : PixTranIncBoth;
endcase;
PixTranIncBoth:
MuxSel := O;

goto PixTranIncPix;

PackPixelProc : goto Idle;
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HmsTranMsw:

MuxSel := !NSDPPL;

case ( InputMode
( InputMode
( InputMode
( InputMode
‘ endcase;

HmsTranLsw:

MuxSel := NSDPPL;
case ( InputMode
( InputMode
( InputMode
( InputMode
endcase;

HmsTranIncFsbc:

MuxSel := 0;
goto HmsTranMsw;

Reset )

HmsTranDone )
HmsTranRead )
HmsTranWait )

Reset )

HmsTranDone )
HmsTranRead )
HmsTranWait )

Idle;
Idle;

. HmsTranLsw;
: HmsTranMsw;

Idle;

. Idle;
: HmsTranIncFsbc;
: HmsTranLsw;
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A.4 Address Generator for the Endpoint/Color FSBCs

Table A.7: Address Generator for Fifo Stack Bus Controllers

[ Signal I Pin # | Address Generator Inputs l
clk Pin 1 | Clk Pin
NReset Pin 2 | Reset
NIncFsbcAdr Pin 3 | Increment FSBC address
PPLpack Pin 4 | Input only, not used
NPixPack Pin 5 | Input only, not used
NC6 Pin 6 | Input only, not used
NC7 Pin 7 | Input only, not used
NC8 Pin 8 | Input only, not used
NC9 Pin 9 | Input only, not used
chip ground Pin 10
chip enable Pin 11
Address Generator Outputs
ResetOut Pin 12 | Used for test vectors only
NOutFsbcPack | Pin 13 | Packet acknowledge to Fsbc’s
FsbcAdr0 Pin 14 | Fsbc address bit O
FsbcAdrl Pin 15 | Fsbc address bit 1
FsbcAdr2 Pin 16 | Fsbc address bit 2
FsbcSel Pin 17 | Selects Color or Endpoint Fsbc
BcDone Pin 18 | Last address out
NC19 Pin 19 | Input or combinatorial output
chip vce Pin 20
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FsbcAddressState

Il

FsbcSel FsbcAdr2 FsbcAdrl FsbcAdr0

EndRdReg0
EndRdRegl
EndRdReg2
EndRdReg3
EndRdReg4
EndRdRegbh
EndRdReg6
EndRdReg7
ColRdReg0
ColRdRegl
ColRdReg2
ColRdReg3
ColRdReg4
ColRdRegh
ColRdReg6
ColRdReg7

[ T T

o

[l
c—-y—r-tr-d‘r-r—ar—tr-‘DOOOOOOO
e = O OO O =00 O0O
bt et D O e e O O e OO OO
— O b O ket O b O O OO O

Il

Input Mode Definitions

Il

InputMode ResetOut NIncFsbcAdr
Reset
IncFsbcAdr
Wait

X
1 0
1 1

i

f

WhoGivesPack PPLpack NPixPack

HmsGivesPack
PPALoaderGivesPack

1 1
0 0

Table A.8: FSBC Address Generator
Explanation of symbols: 1 = logic High
0 = logic Low
X = don’t care
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Equations
BcDone := ( FsbcAddressState == ColRdReg3 );
|ResetOut = ( PPLpack )
# ('NPixPack )
# (!NReset );

INOutFsbcPack := ( WhoGivesPack == HmsGivesPack )
#( WhoGivesPack == PPALoaderGivesPack );

State Diagram FsbcAddressState

EndRdReg0Q :
case ( InputMode == Reset ) : EndRdRegO;
( InputMode == Wait ) : EndRdRegO;
( InputMode == IncFsbcAdr ) : EndRdRegl;
endcase;
EndRdRegl :
case ( InputMode == Reset ) : EndRdRegO;
( InputMode == Wait ) : EndRdRegil;
( InputMode == IncFsbcAdr ) : EndRdReg2;
endcase;
EndRdReg2 :
case ( InputMode == Reset ) : EndRdRegO;
( InputMode == Wait ) : EndRdReg2;
( InputMode == IncFsbcAdr ) : EndRdReg3;
endcase;
EndRdReg3:
case ( InputMode == Reset ) : EndRdRegO;
( InputMode == Wait ) : EndRdReg3;
( InputMode == IncFsbcAdr ) : ColRdReg4;

endcase;

EndRdReg4: Goto EndRdRegO;
EndRdRegb: Goto EndRdRegO;
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EndRdReg6: Goto EndRdRegO;
EndRdReg7: Goto EndRdRegO;
ColRdRegO: Goto EndRdRegO;

ColRdReg4 :
case ( InputMode == Reset ) : EndRdRegO;
( InputMode == Wait ) : ColRdReg4;
( InputMode == IncFsbcAdr ) : ColRdReg2;
endcase;
ColRdReg2 :
case ( InputMode #= Reset ) : EndRdReg0;
( InputMode == Wait ) : ColRdReg2;
( InputMode == IncFsbcAdr ) : ColRdReg3;
endcase;
ColRdReg3:
case ( InputMode == Reset ) : EndRdRegO;
( InputMode == Wait ) : ColRdReg3;

( InputMode
endcase;

IncFsbcAdr ) : EndRdRegO;

ColRdRegl: Goto EndRdRegO;
ColRdRegb: Goto EndRdRegO;
ColRdReg6: Goto EndRdRegO;
ColRdReg7: Goto EndRdRegO;
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A.5 Address Generator for Pixel Processors

Table A.9: Pixel Processor Address Generator

LSignal l Pin # l Pizel Processor Address Generator Definitions ‘
clk Pin 1 | Clock Pin
NReset Pin 2 | Reset

NIncPixAdr | Pin 3 | Increment Pixel Processor address
NPixPack Pin 4 | Indicates loader done

NC5 Pin 5 | not used

NC6 Pin 6 | not used

NC7 Pin 7 | not used

PPLpack Pin 8 | Reset when a PPLpack is given
NC9 Pin 9 | input only, Not Used

chip ground | Pin 10
chip enable | Pin 11

NCi12 Pin 12 | not used

NCi13 Pin 13 | not used

PPAdr0 Pin 14 | PP address bit O
PPAdr1 Pin 15 | PP address bit 1
PPAdr2 Pin 16 | PP address bit 2
PPAdr3 Pin 17 | PP address bit 3
PPAdr4 Pin 18 | PP address bit 4
PPAdr5 Pin 19 | PP address bit 5

chip vce Pin 20
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Data Transfer Machine State Definitions

PPAddr
PP15
PP14
PP13
PP12
PP11
PP10
PP9
PP8
PP7
PP6
PP5
PP4
PP3
PP2
PP1
PPO

= PPAdr3 PPAdr2 PPAdrl

= 1

1 T T T

[

I
OO OO OO OO I i bt =

1

O O O O ki bk ok bt O D O O bt bt

1

O O k= O O = O QO M= O O

Pizel Processor Addresses

PPAddressState

WrRegl
WrReg2
WrReg3
WrReg4
WrRegbh
WrReg6
WrReg7
WrReg8
WrReg9
WrRegl0
WrRegll
WrRegl12
WrReg13
WrRegl14
WrRegl5
WrRegl16

I

Il

PPAddr

PP1
PP2
PP3
PP4
PP5
PP6
PP7
PP8
PP9
PP10
PP11
PP12
PP13
PP14
PP15
PP16

PPAdr0
1

O ki O bt O = Ot O O b= O = O
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InputMode = NReset NPixPack PPLpack
Reset = 0 X X
#1 0 X
#1 X 1
IncPix = 1 1 0
Wait = 1 1 0
NOTE:

Input Mode Definitions

The counter resets when a *PixPack is given, this happens
during transfers from the FSBC to the Pixel Processors. The
counter also resets when PPLpack is given. This is needed
because during the time that the HMS has control of the Pixel
Processors, the bit that increments the ppaddress sometimes
asserted. Therefore at the end when control is given back to

NIncPixAdr

— O 44

the PPAloader, the PPADR needs to be reset to 0.

194
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Equations

PPAdr4 := 0;
PPAdr5 := 0;

State Diagram PPAddressState

WrRegO :
case ( InputMode == Reset ) : WrReg0O;
( InputMode == Wait ) : WrRegO;
( InputMode == IncPix ) : WrReg3;

endcase;

WrRegl : goto WrRegO;

WrReg2 :
case ( InputMode == Reset ) : WrRegO;
( InputMode == Wait ) : WrReg2;
( InputMode == IncPix ) : WrRegb;
endcase;
WrReg3 :
case ( InputMode == Reset ) : WrRegO;
( InputMode == Wait ) : WrReg3;
( InputMode == IncPix ) : WrReg2;
endcase;
WrReg4 :
case ( InputMode == Reset ) : WrRegO;
( InputMode == Wait ) : WrReg4;
( InputMode == IncPix ) : WrReg7;
endcase;
WrRegb

case ( InputMode
( InputMode
( InputMode

endcase;

Reset ) : WrRegO;
Wait ) : WrReg5;
IncPix ) : WrReg4;
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WrRegé :
case ( InputMode == Reset ) : WrRegO;
( InputMode == Wait ) : WrReg6;
( InputMode == IncPix ) : WrReg9;
endcase;
WrReg?7 :
case ( InputMode == Reset ) : WrRegO;
( InputMode == Wait ) : WrReg7;
( InputMode == IncPix ) : WrReg6;
endcase;
WrReg8 :
case ( InputMode == Reset ) : WrRegO;
( InputMode == Wait ) : WrReg$8;
( InputMode == IncPix ) : WrRegll;
endcase;
WrReg9 :
case ( InputMode == Reset ) : WrRegO;
( InputMode == Wait ) : WrReg9;
( InputMode == IncPix ) : WrReg8;
endcase;
WrReglO :
case ( InputMode == Reset ) : WrRegO;
( InputMode == Wait ) : WrReglO;
( InputMode == IncPix ) : WrRegl3;
endcase;
WrRegll :
case ( InputMode == Reset ) : WrRegO;
( InputMode == Wait ) : WrReglil;
( InputMode == IncPix ) : WrReglO;
endcase;
WrRegl2 :

case ( InputMode
( InputMode

= Reset ) : WrRegO;
Wait ) : WrRegl2;

1]
[}
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( InputMode == IncPix ) : WrRegO;
endcase;

WrRegl3:

case ( InputMode
( InputMode =
( InputMode

endcase;

Reset ) : WrRegO;
Wait ) : WrRegi3;
IncPix ) : WrRegl2;

WrRegl4 : goto WrRegO;

WrReglb : goto WrRegO;
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A.6 Address Generator for Endpoint/Color FSBC

Table A.10: Address Generator for Fifo Stack Bus Controllers

Signal l Pin # l Address Generator Inputs
clk Pin1 | Clk Pin
NReset, Pin 2 | Reset
NIncFsbcAdr Pin 3 | Increment FSBC address
PPLpack Pin 4 | Input only, not used
NPixPack Pin 5 | Input only, not used
NCeé Pin 6 | Input only, not used
NC7 Pin 7 | Input only, not used
NCs8 Pin 8 | Input only, not used
NC9 Pin 9 | Input only, not used
chip ground Pin 10
chip enable Pin 11
Address Generator Outputs
ResetOut Pin 12 | Used for test vectors only
NOutFsbcPack | Pin 13 | Packet acknowledge to Fsbc’s
FsbcAdr0 Pin 14 | Fsbc address bit 0
FsbcAdrl Pin 15 | Fsbc address bit 1
FsbcAdr2 Pin 16 | Fsbc address bit 2
FsbcSel Pin 17 | Selects Color or Endpoint Fsbc
BcDone Pin 18 | Last address out
NC19 Pin 19 | Input or combinatorial output
chip vee Pin 20
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FsbcAddressState =  FsbcSel FsbcAdr2 FsbcAdrl FsbcAdr0

EndRdReg0 = 0 0 0 0

EndRdRegl = 0 0 0 1

EndRdReg2 = 0 0 1 0

EndRdReg3 = 0 0 1 1

EndRdReg4 = 0 1 0 0

EndRdRegbh = 0 1 0 1

EndRdReg6 = 0 1 1 0

EndRdReg7 = 0 1 1 1

ColRdReg0 = 1 0 0 0

ColRdRegl = 1 0 0 1

ColRdReg2 = 1 0 1 0

ColRdReg3 = 1 0 1 1

ColRdReg4 = 1 1 0 0

ColRdRegh = 1 1 0 1

ColRdReg6 = 1 1 1 0

ColRdReg7 = 1 1 1 1
Input Mode Definitions

InputMode = ResetOut NIncFsbcAdr

Reset = 0 X

IncFsbcAdr = 1 0

Wait = 1 1

WhoGivesPack = PPLpack NPixPack

HmsGivesPack = 1 1

PPALoaderGivesPack = 0 0

Table A.11: Data Transfer Machine State Descriptions
Explanation of symbols: 1 = logic High
0 = logic Low
X = don’t care
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Equations
BcDone := ( FsbcAddressState == ColRdReg3 );

'ResetOut = ( PPLpack )

# (INPixPack )

# (!NReset );
INOutFsbcPack := ( WhoGivesPack == HmsGivesPack )
#( WhoGivesPack == PPAl.oaderGivesPack );

State Diagram FsbcAddressState

EndRdRegO :
case ( InputMode == Reset ) : EndRdRegO;
( InputMode == Wait ) : EndRdRegO;
( InputMode == IncFsbcAdr ) : EndRdRegl;
endcase;
EndRdRegl :
case ( InputMode == Reset ) : EndRdRegO;
( InputMode == Wait ) : EndRdRegl;
( InputMode == IncFsbcAdr ) : EndRdReg2;
endcase;
EndRdReg2 :
case ( InputMode == Reset ) : EndRdRegO;
( InputMode == Wait ) : EndRdReg2;
( InputMode == IncFsbcAdr ) : EndRdReg3;
endcase;
EndRdReg3:
case ( InputMode == Reset ) : EndRdRegO;
( InputMode == Wait ) : EndRdReg3;

( InputMode
endcase;

IncFsbcAdr ) : ColRdReg4;

EndRdReg4: Goto EndRdRegO;
EndRdRegh: Goto EndRdRegO;
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EndRdReg6:
EndRdReg?7:
ColRdRegO:

ColRdReg4 :

ColRdReg2 :

ColRdReg3:

ColRdRegl:
ColRdRegh:
ColRdReg6:
ColRdReg?:

Goto
Goto
Goto

Goto
Goto
Goto
Goto

EndRdRegO;
EndRdRegO;
EndRdReg0;

case ( InputMode
( InputMode
( InputMode

endcase;

case ( InputMode
( InputMode
( InputMode

endcase;

case ( InputMode
( InputMode
( InputMode

endcase;

EndRdRegO;
EndRdRegO;
EndRdRegO;
EndRdRegO;

== Reset )
== Wait )
== IncFsbcAdr )

== Reset )
== Wait )
== IncFsbcAdr )

== Reset )
== Wait )
== IncFsbcAdr )

: EndRdRegO;
: ColRdReg4;
: ColRdReg2;

: EndRdReg0;
: ColRdReg2;
: ColRdReg3;

: EndRdRegO;
: ColRdReg3;
: EndRdRegO;

201



COMPANY PRIVATE—PS 390 Graphics System May G, 1987 202

A.7T HA PixelProcessor Hit Box Tester

Table A.12: HA PixelProcessor Hit Box Tester

Signal Pin # HA PizelProcessor Hit Box Tester In-
puts

Clk Pin 1

Nwr Pin 2 lo-true memory write strobe

Nras Pin 3 row address strobe

Ncas Pin 4 column address strobe

XGreaterThan | Pin 5 > output from X - comparator

XLessThan Pin 6 < output from X - comparator

YGreaterThan | Pin 7 > output from Y - comparator

YLessThan Pin 8 < output from Y - comparator

Nreset Pin 9 reset for the sampler

Noe Pin 11 output enable

HA PizelProcessor Hit Box Tester Outputs

holdX Pin 12

NholdX Pin 13 enable for PPA X-address (Cas) latch
0 — hold, 1 — transparent

holdY Pin 18

NholdY Pin 19 enable for PPA Y-address (Ras) latch
0 — hold, 1 — transparent

HBsel0 Pin 14 selects one of two hitbox corners 0 —
Top Right, 1 — Bottom Left

s0,s1 Pin 15, 16 | extra state bit

HitDetect Pin 17 hit detect output to Bitslice status
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Table A.13: HA PixelProcessor Hit Box Tester State Descriptions

HBstate = HBsel0 sl sO
idle = 1 1 1
CmpTopRightl = 0 1 0
CmpTopRight2 = 0 1 1
CmpBottomLeftl = 1 1 0
CmpBottomLeft2 = 1 0 1
donewait = 1 0 0
hitwait = 0 0 0
undefl = 0 0 1
HBmode = Nwr Nras Ncas
quiet = 1 X X
incycle = 0 0 X
done = X 1 1
Explanation of symbols: 1 = logic High

0 = logic Low
X = don’t care
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Equations

Create the flip-flops for RAS & CAS latch control

holdY =
NholdY =

holdX =
NholdX =

( (HBstate == donewait) # NholdY # !Nreset );
( (!Nras & !'Nwr & (HBstate == idle)) # holdY );

( (HBstate == donewait) # NholdX # !Nreset );
( (!Ncas & !Nwr & holdY) # holdX );

Signal a hit detect when inside the ’'hitwait’ state

HitDetect

State Diagram HBstate

:= ( HBstate == hitwait );

Idle: if ( HBmode == incycle ) then CmpTopRightl else idle;

CmpTopRight1:

CmpTopRight2:

CmpBottomLeftl:

CmpBottomLeft2:

donewait:
hitwait:

undefi:

goto

if (
else

goto

if (
else

if (

if (

goto

CmpTopRight2;

XLessThan # YGreaterThan ) then donewait
CmpBottomLeftl;

CmpBottomLeft2;

XGreaterThan # YLessThan ) then donewait

hitwait;
HBmode == done ) then idle else donewait;
INreset ) then idle else hitwait;

idle;

204



COMPANY PRIVATE—PS 390 Graphics System May 6, 1987 205

A.8 Input FSBC Controller

Table A.14: Input FSBC Controller

[ Signal | Pin # I Input FSBC Controller Inputs ]
clk Pin 1
NReset Pin 2 | Reset State Machine
NInFsbcPreq | Pin 3 | Fsbc is ready for input
HmsInPack Pin 4 | Hms is done writing Fsbc
NDyInFsbc Pin 5 | Hms writes Fsbc buffer register
FsbcReg0 Pin 6 | Fsbc Register address bit 0
FsbcRegl Pin 7 | Fsbc Register address bit 1
FsbcReg2 Pin 8 | Fsbc Register address bit 2

NCIrLowWord | Pin 9 | Clr Fsbc Low word before input

chip ground Pin 10
chip enable Pin 11
Input FSBC Controller Qutput Latches
NFsbcReady Pin 12 | Ready signal for Hms

NFsbcWrite Pin 13 | InFsbc write strobe
NFsbcPack Pin 14 | Packet acknowledge for InFsbc

InFsbcAdr0 Pin 15 | Fsbc Reg address
InFsbcAdrl Pin 16 | Fsbc Reg address
InFshcAdr2 Pin 17 | Fsbhc Reg address

NClrLsw Pin 18 | Buffer has data for MBS
State0 Pin 19 | State bit for controller
chip vec Pin 20
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FsbcControlState = Stated0 NFsbcReady NFsbcWrite NFsbcPack

Fsbcldle = 0 1 1 1 The IDLE state

FsbcWrState = 0 0 0 1 Write a register in the
FSBC

ReadyState = 0 0 1 1 Let the HMS know
that the FSBC is ready

FsbcPackState = 0 0 1 0 Send PACK to the In-
putFsbc

FsbcWrPackState = 1 0 0 1 Write a register in

the FSBC and this
state always followed
by packstate

FsbcUndefStated = 0 1 0 0
FsbcUndefStatebs = 0 1 0 1
FsbcUndefState6 = 0 1 1 0
FsbcUndefState8 = 1 0 0 0
FsbcUndefStateA = 1 0 1 0
FsbcUndefStateB = 1 0 1 1
FsbcUndefStateC = 1 1 0 0
FsbcUndefStateD = 1 1 0 1
FsbcUndefStateE = 1 1 1 0
FsbcUndefStateF = 1 1 1 1

Table A.15: Input Fsbc Controller State Descriptions
Explanation of symbols: 1 = logic High
0 = logic Low
X = don’t care
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Fsbe Controller Input Signal Modes

InputMode = NReset NInFsbcPreq HmsInPack NDyInFsbc
Reset = 0 X X X
FsbclsReady = 1 0 0 1
HmsWrBuf = 1 0 0 0
HmsWrPack = 1 0 1 1
HmsWrPackBuf = 1 0 1 0
DontCare = 1 X X X

Input Vector for the Fsbc Register Address

InputRegVec = NDyInFsbc FsbcReg2 FsbcRegl FsbcReg0
NoWrite = 1 X X X
WrStatus = 0 0 0 0
WrX = 0 0 0 1
WrY = 0 0 1 0
WrZ = 0 0 1 1
WrW = 0 i 0 0
BadInput = 0 1 0 1
# = 0 1 1 0
# = 0 1 1 1
Explanation of symbols: 1 = logic High

0 = logic Low

X = don’t care

Input Fsbec Address State Definitions

FsbcAdrState = InFsbcAdr2 InFsbcAdrl InFsbcAdr0
WrFsbcRegStatus = 0 0 0
WrFsbcRegX = 0 0 1
WrFsbcRegY = 0 1 0
WrFsbcRegZ = 0 1 1
WrFsbcRegW = 1 0 0
WrFsbcRegh = 1 0 1
WrFsbcReg6 = 1 1 0
WrFsbcReg7 = 1 1 1
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Equations

NClrLsw :=

390 Graphics System May 6, 1987

NClrLowWord;

State Diagram FsbcControlState

Fsbcldle:
case

( InputMode == Reset )
( InputMode == HmsWrBuf )
( InputMode == HmsWrPack )

( InputMode == HmsWrPackBuf )

( InputMode == FsbcIsReady )

endcase;

ReadyState:
case

( InputMode == Reset )

( InputMode == HmsWrBuf )
( InputMode == HmsWrPack )
(

InputMode == HmsWrPackBuf )

( InputMode == FsbcIsReady )

endcase;

FsbcWrState: goto ReadyState;

FsbcWrPackState

: goto FsbcPackState;

FsbcPackState: goto Fsbcldle;

FsbcUndefState4:
FsbcUndefStateb:
FsbcUndefState6:
FsbcUndefState8:
FsbcUndefStateA:
FsbcUndefStateB:
FsbcUndefStateC:
FsbcUndefStateD:
FsbcUndefStateE:
FsbcUndefStateF:

goto Fsbcldle;
goto Fsbcldle;
goto Fsbcldle;
goto Fsbcldle;
goto Fsbcldle;
goto Fsbcldle;
goto Fsbcldle;
goto Fsbcldle;
goto Fsbcldle;
goto Fsbcldle;

208

: Fsbcldle;
: Fsbcldle;
: Fsbcldle;
: Fsbcldle;
. ReadyState;

: Fsbecldle;

. FsbcWrState;

: FsbcPackState;

: FsbcWrPackState;
: ReadyState;
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State Diagram FsbcAdrState

WrFsbcRegStatus :
case ( InputRegVec == NoWrite ) : WrFsbcRegStatus;
( InputRegVec == WrStatus) : WrFsbcRegStatus;
( InputRegVec == BadInput) : WrFsbcRegStatus;
( InputRegVec == WrX ) : WrFsbcRegX;
( InputRegVec == WrY ) : WrFsbcRegY;
( InputRegVec == WrZ ) : WrFsbcRegZ;
( InputRegVec == WrW ) : WrFsbcRegW;
endcase;
WrFsbcRegX :
case ( InputRegVec == NoWrite ) : WrFsbcRegX;
( InputRegVec == BadInput) : WrFsbcRegX;
( InputRegVec == WrStatus) : WrFsbcRegStatus;
( InputRegVec == WrX ) : WrFsbcRegX;
( InputRegVec == WrY ) : WrFsbcRegV;
( InputRegVec == WrZ ) : WrFsbcRegZ;
( InputRegVec == WrW ) : WrFsbcRegW;
endcase;
WrFsbcRegY :
case ( InputRegVec == NoWrite ) : WrFsbcRegY;
( InputRegVec == BadInput) : WrFsbcRegY;
( InputRegVec == WrStatus) : WrFsbcRegStatus;
{ InputRegVec == WrX ) : WrFsbcRegX;
( InputRegVec == WrY ) : WrFsbcRegV;
( InputRegVec == WrZ ) : WrFsbcRegZ;
( InputRegVec == WrW ) : WrFsbcRegW;
endcase;
WrFsbcRegZ :
case ( InputRegVec == NoWrite ) : WrFsbcRegZ;
( InputRegVec == BadInput) : WrFsbcRegZ;
( InputRegVec == WrStatus) : WrFsbcRegStatus;
( InputRegVec == WrX ) : WrFsbcRegX;
( InputRegVec == WrY ) : WrFsbcRegY;
( InputRegVec == WrZ ) : WrFsbcRegZ;
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( InputRegVec == WrW ) : WrFsbcRegW;

endcase;

WrFsbcRegW :

case ( InputRegVec == NoWrite ) : WrFsbcRegW;
( InputRegVec == BadInput) : WrFsbcRegW;
( InputRegVec == WrStatus) : WrFsbcRegStatus;
( InputRegVec == WrX ) : WrFsbcRegX;
( InputRegVec == WrY ) : WrFsbcRegY;
( InputRegVec == WrZ ) : WrFsbcRegZ;
( InputRegVec == WrW ) : WrFsbcRegW;

endcase;

WrFsbcRegh: goto WrFsbcRegStatus;
WrFsbcRegB: goto WrFsbcRegStatus;
WrFsbcReg7: goto WrFsbcRegStatus;
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A.9 Pixel Processor Address Generator

Table A.16: Pixel Processor Address Generator

I Stgnal l Pin # I Pizel Processor Address Generator Definitions
clk Pin 1 | Clock Pin
NReset Pin 2 | Reset

NIncPixAdr | Pin 3 | Increment Pixel Processor address

NPixPack Pin 4 | Indicates loader done

NC5 Pin 5 | not used

NCeé6 Pin 6 | not used

NC7 Pin 7 | not used

PPLpack Pin 8 | Reset when a PPLpack is given
NC9 Pin 9 | input only, Not Used

chip ground | Pin 10

chip enable | Pin 11

DMA Machine Output Latches

NC12 Pin 12 | not used

NC13 Pin 13 | not used

PPAdr0 Pin 14 | PP address bit 0
PPAdr1 Pin 15 | PP address bit 1
PPAdr2 Pin 16 | PP address bit 2
PPAdr3 Pin 17 | PP address bit 3
PPAdr4 Pin 18 | PP address bit 4
PPAdrs Pin 19 | PP address bit 5

chip vee Pin 20
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Table A.17: Data Transfer Machine State Definitions

Data Transfer Machine State Definitions

PPAddr
PP15
PP14
PP13
PP12
PP11
PP10
PP9
PP8
PP7
PP6
PP5
PP4
PP3
PP2
PP1
PPO-

1 T O | A (1

i

PPAdr3 PPAdr2 PPAdrl

1

OO OO OO O O =t b et et et ek

1

OO O QO kb bt OO O O = b

1

O O btk OO bk ok O bbb OO =

PPAdrO
1

O bt Q bt Ot O Ot O = O e O
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Pizel Processor Addresses

PPAddressState = PPAddr

WrRegl = PP1

WrReg2 = PP2

WrReg3 = PP3

WrReg4 = PP4

WrRegb = PP}

WrReg6 = PP86

WrReg7 = PP7

WrReg8 = PP8

WrReg9 = PP9

WrRegl0 = PP1i0

WrRegll = PP11

WrRegl2 = PPi12

WrRegl3 = PP13

WrRegl4 = PPl4

WrReglh = PP15

WrRegl6 = PP16

Input Mode Definitions

InputMode = NReset NPixPack PPLpack NlIncPixAdr
Reset = 0 X X X
# = 1 0 X X
# = 1 X 1 X
IncPix = 1 1 0 0
Wait = 1 1 0 1
NOTE: The counter resets when a *PixPack is given, this happens

during transfers from the FSBC to the Pixel Processors. The
counter also resets when PPLpack is given. This is needed
because during the time that the HMS has control of the
Pixel Processors, the bit that increments the ppaddress is
asserted. Therefore at the end when control is given back to
the PPAloader, the PPADR needs to be reset to 0.
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Equations

PPAdr4 :
PPAdrb :

= 0;
=o;

State Diagram PPAddressState

WrRegQ :

WrRegl :

WrReg2 :

WrReg3 :

WrReg4 :

WrRegb :

case ( InputMode
( InputMode
( InputMode

endcase;

goto WrRegO;

case ( InputMode
( InputMode
( InputMode

endcase;

case ( InputMode
( InputMode
( InputMode

endcase;

case ( InputMode
( InputMode
( InputMode

endcase;

case ( InputMode
( InputMode
( InputMode

endcase;

1]
]

Reset
Wait
IncPix

Reset
Wait
IncPix

Reset
Wait
IncPix

Reset
Wait
IncPix

Reset
Wait
IncPix

)
)
)

)
)
¥
)
)
)
)
)
)

)
)
)

: WrRegO;
: WrRegO;
: WrReg3;

: WrRegO;
: WrReg2;
: WrRegh;

: WrRegO;
: WrReg3;
: WrReg2;

: WrRegO;
: WrReg4;
: WrReg?7;

: WrRegO;
: WrRegh;
: WrReg4;
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WrReg6 :
case ( InputMode == Reset ) : WrRegO;
( InputMode == Wait ) : WrReg6;
( InputMode == IncPix ) : WrReg9;
endcase;
WrReg7 :
case ( InputMode == Reset ) : WrRegO;
{ InputMode == Wait ) : WrRegT;
( InputMode == IncPix ) : WrReg6;
endcase;
WrReg8
case ( InputMode == Reset ) : WrRegO;
( InputMode == Wait ) : WrReg8;
( InputMode == IncPix ) : WrRegll;
endcase;
WrReg9 :
case ( InputMode == Reset ) : WrRegO;
( InputMode == Wait ) : WrReg9;
( InputMode == IncPix ) : WrReg8;
endcase;
WrRegl0O :
case ( InputMode == Reset ) : WrRegO;
( InputMode == Wait ) : WrReglO;
( InputMode == IncPix ) : WrRegil3;
endcase;
WrRegil :
case ( InputMode == Reset ) : WrRegO;
( InputMode == Wait ) : WrRegll;
( InputMode == IncPix ) : WrReglO;
endcase;
WrRegi2 :

case ( InputMode == Reset ) : WrRegO;
( InputMode == Wait ) : WrRegl2;
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( InputMode IncPix ) : WrRegO;

endcase;

WrRegi3:

case ( InputMode Reset ) : WrRegO;
( InputMode Wait ) : WrRegl3;
( InputMode IncPix ) : WrRegl2;

endcase; y

WrRegl4 : goto WrRegO;

WrReglb : goto WrRegOQ;
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A.10 Pixel Processor Array Loader State Machine

Table A.18: FSBC to Pixel Processor Data Transfer Control

Signal J Pin # [ Pin Definitions

clk Pin 1

NReset Pin 2 | Reset ,

FsbcAB Pin 3 | MBS or SM request
NFsbcPreq Pin 4 | FSBC data ready
PixPreq Pin 5 | Pixel Processor Ready
BcDone Pin 6 | Bus Controller done
Hmslack Pin 7 | Bitslice acknowledge
NSDPPL Pin 8 | Hms Reads Mux
NDyPPdat Pin 9 | Bitslice does a write to PPdat
chip ground Pin 10

chip enable Pin 11

DMA Machine Output Latches

NHmslrq Pin 12 | This request is for bitslice
NPixPack Pin 13 | Pixel Processor acknowledge
NIncPix Pin 14 | Increment Pix Proc address
NIncFsbc Pin 15 | Increment Fsbc address
NHmsPPwe Pin 16 | Allow the PP to do a write
NPixWrEnable | Pin 17 | Enables Pix Proc for writing
Cycle Pin 18 | State Variable

MuxSel Pin 19 | High select LSW from FSBC
chip VCC Pin 20
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State Definitions for Data Transfer Machine:

Increment States

IncState = NIncPix NIncFsbe
IncBoth = 0 0
IncPix = 0 1
IncFsbe = 1 0
Dontlnc = 1 1

Pack States

PackState = NPixPack
PackPix = 0
NoPack = 1

Cycle States

InCycle =
NoCycle = 1

PalReset States

DoReset =
DontReset = 1

HmslIrq States

Dolnt = 0
DontInt = 1

PizWrEnable States

DoWrPix = 0
DontWrPix = 1

Multiplezer Select States

SelMsw = 0
SelLsw = 1
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[ LoadCntriState = | Cycle I NHmslrq | NPixWrEnable | IncState | PackState
Idle = | NoCycle | DontInt DontWrPix DontInc | NoPack
PixTranDontInc = | InCycle | DontInt DoWrPix DontIne | NoPack
PixTranIncBoth = InCycle DontInt DoWrPix IncBoth | NoPack
PixTranIncPix = | InCycle | DontInt DoWrPix IncPix NoPack
PixTranIncFsbc = | InCycle DontlInt DoWrPix IncFsbec | NoPack

NOTE: In the states below, the IncPPadr Pin s used as a state bit. This
means that the PPADR counter increments while the HMS has control
of the pizel processors. The outputs from the PPADR counter, however,
are not enabled on the PP address bus.

HmsTranMsw = | InCycle Dolnt DontWrPix IncPix NoPack
HmsTranLsw = | InCycle | Dolnt DontWrPix Dontlne | NoPack
HmsTranlncFsbe = | InCycle | Dolnt DontWrPix IncFsbe | NoPack
PackPixelProc = | InCycle | Dontlnt DontWrPix DontInc | PackPix
Request Modes
RequestMode = PixPreq NFsbcPreq FsbcAB
PPReq = 0 0 0
HmsReq = X 0 1
ReqDontCare = X X X
Hms Input Modes
HmsMode = NSDPPL Hmslack
HmsDone = X 1
HmsRead = 0 0
HmsWait = 1 0
HmsDontCare = X X
Fsbe Mode
BeMode = BcDone
BcLastFetch = 1
BcDontCare = X
BcNotLastFetch = 0
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220

InputMode = NReset RequestMode HmsMode BcMode

Reset = 0 ReqDontCare HmsDontCare BcDontCare
ReqPPTr = 1 PPReq HmsDontCare BcDontCare
ReqHmsTr = 1 HmsReq HmsDontCare BcDontCare
HmsTranDone = 1 ReqDontCare HmsDone BcDontCare
HmsTran Wait = 1 ReqDontCare  HmsWait BcDontCare
HmsTranRead = 1 ReqDontCare HmsRead BcDontCare
BceTranLastFetch = 1 ReqDontCare HmsDontCare BcLastFetch
BcTranNotLastFetch = 1 ReqDontCare HmsDontCare BcNotLastFetch
InputDontCare = 1 ReqDontCare HmsDontCare BcDontCare
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Equations
NHmsPPwe := NDyPPdat;

State Diagram LoadCntrlState

Idle: IMuxSel := ( RequestMode == HmsReq );
case (InputMode == Reset ) : Idle;
(InputMode == ReqPPTr) : PixTranIncFsbc;
(InputMode == ReqHmsTr ) : HmsTranMsw;
endcase;
PixTranIncFsbc:
MuxSel := O;

if ( InputMode == Reset ) then Idle
else PixTranIncPix;

case (InputMode == Reset ) : Idle;
(InputMode == BcTranLastFetch ) : PixTranIncPix;
(InputMode == BcTranNotLastFetch ) : PixTranIncPix;
endcase;
PixTranIncPix:
MuxSel := 1;
case (InputMode == Reset ) : Idle;
(InputMode == BcTranLastFetch ) : PackPixelProc;
(InputMode == BcTranNotLastFetch ) : PixTranIncBoth;
endcase; :
PixTranIncBoth:
MuxSel := 0;

goto PixTranIncPix;

PackPixelProc : goto Idle;
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HmsTranMsw:

MuxSel := !NSDPPL;

case ( InputMode
( InputMode
( InputMode
( InputMode

endcase;

HmsTranLsw:

MuxSel := NSDPPL;
case ( InputMode
( InputMode
( InputMode
( InputMode
endcase;

HmsTranIncFsbc:

MuxSel := O;
goto HmsTranMsw;

]
n

Reset )

HmsTranDone
HmsTranRead
HmsTranWait

Reset )

HmsTranDone
HmsTranRead
HmsTranWait

)
)
)

)
)
)

Idle;
Idle;

: HmsTranLsw;
: HmsTranMsw;

Idle;
Idle;

: HmsTranIncFsbc;
: HmsTranLsw;
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Table A.19: Fix for the PP Handshake

Signal I Pin # I Pin Definitions

clk Pin 1 | PAL clock input
NReset Pin 2 | Reset

Ti Pin 3 | TakenIn from Pixel Processor
NFwt Pin 4 | Wait signal

NPixPack Pin 5 | Indicates loader done
NHmsPPPack | Pin 6 | Acknowledge from Hms
NSIr Pin 7 | Scanline Read from PP
NClear Wait Pin 8 | input only, not used
NPPWe Pin 9 | Write PP in next state
chip ground Pin 10

chip enable Pin 11

State Machine Output Latches

NHmsPPWe Pin 12 | Pixel Processor Write enabie
NPPWaitSlb | Pin 13 | Wait the pixel processor
SIbRequest Pin 14 | Start up the SLB

SlbState0 Pin 15 | State bit for SLB

State0 Pin 16 | State bit O

Statel Pin 17 | State bit 1

NNPR Pin 18 | *NPR, PP new packet request
NNPA Pin 19 | *NPA, PP new packet acknowledge

chip vee

Pin 20
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Table A.20: Scanline Buffer Input Mode Pins

[ SlbinMode J = | NReset [NFwt | NSIr l NClear Wait ]

SlbReset = 0 X X X
SIbNoReq | = 1 X 1 X
SlbReq = 1 X 0 X
GoSlb = 1 1 X X
WaitSib = 1 0 X X
Release = 1 X X 0
HoldWait | = 1 X X 1
Scanline Monitor States
SlbMonator = NPPWaitSlb SlbState0
Monitorldle = 1 0
GotReq = 1 1
PPWaitForSlb = 0 0
SibUndefStatel = 0 1

PP Handshake State Machine Input Mode Definitions

Pack = NPixPack NHmsPPPack
Ack = 0 X
# = X 0
NoAck = 1 1
AckDontCare = X X

224
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HandShakeInput = NReset Ti NFwt Pack
HandShakeReset = 0 X X X
GotA = 1 0 X Ack Pack only
GotAT = 1 1 1 Ack Pack and Taken In
GotATW = 1 1 0 Ack Pack, Taken In and Wait
WaitForA 1 X X NoAck Wait for PACK
GotT = 1 1 1 AckDontCare Taken In
GotTW = 1 1 0 AckDontCare Taken In and Wait
WaitForT = 1 0 X AckDontCare Wait for Taken In
WaitForW = 1 X (1] AckDontCare Wait for wait
WaitReleased = 1 X 1 AckDontCare Wait negated
Handshake State Machine States
HandShakeState = Statel State0 NNPR NNPA
PPrequest = 1 1 0 1 State # 13
HaveA = 1 1 1 1 State # 15
HaveATW = 1 0 1 1 State # 11
PPacknowledge = 1 0 1 0 State # 10
PP Wait = 0 1 1 1 State # 7
UndefState0 = 0 0 0 0
UndefStatel = G 0 0 1
UndefState2 = 0 0 1 0
UndefState3 = 0 0 1 1
UndefStated = 0 1 0 0
UndefState5 = 0 1 0 1
UndefState6 = 0 1 1 0
UndefState8 = 1 0 0 0
UndefState9 = 1 0 0 1
UndefStatel2 = 1 1 0 0
UndefStatel4 = 1 1 1 0
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Equations

NHmsPPWe

:= NPPWe ;

S1bRequest := ( !NPPWaitSlb & NClearWait );

State Diagram SlbMonitor

Monitorldle :
case ( SlbInMode == SlbReset
( SlbInMode == S1lbNoReq
( SlbInMode == S1lbReq
endcase;
GotReq :
case ( SlbInMode == SlbReset
( SlbInMode == GoSlb
( SibInMode == WaitSlb
endcase;
PPWaitForS1lb :
case ( SlbInMode == SlbReset
( SlbInMode == Release
( SlbInMode == HoldWait
endcase;
SlbUndefStatel : goto MonitorlIdle;

State Diagram HandShakeState

PPrequest :
case

( HandShakeInput
( HandShakeInput
( HandShakeInput
( HandShakeInput
( HandShakeInput

)
)
)

N

wonon
nou

: Monitorldle;
: Monitorldle;
: GotReq;

: Monitorldle;
: PPWaitForSlb;
: GotReq;

: Monitorldle;
: Monitorldle;
: PPWaitForSlb;

HandShakeReset
GotA

GotAT

GotATW
WaitForA

N N N N\ N
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: PPrequest;

. HaveAl;

: PPacknowledge;
: HaveATW;

: PPrequest;
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endcase;
Haved :
case ( HandShakeInput == HandShakeReset ) : PPrequest;
( HandShakeInput == GotT ) : PPacknowledge;
( HandShakeInput == GotTW ) : HaveATW;
( HandShakeInput == WaitForT ) : Havel;
endcase;
HaveATW :
case ( HandShakeInput == HandShakeReset ) : PPrequest;
( HandShakeInput == WaitReleased ) : PPacknowledge;
( HandShakeInput == WaitForW ) : HaveATW;
endcase;
PPacknowledge :
case ( HandShakeInput == HandShakeReset ) : PPrequest;
( HandShakeInput == WaitForW ) : PPWait;
( HandShakelInput == WaitReleased ) : PPrequest;
endcase;
PPWait :

case ( HandShakeInput
( HandShakeInput
( HandShakeInput
endcase;

HandShakeReset ) : PPrequest;
WaitForW ) : PPWait;
WaitReleased ) : PPrequest;

[}
]

UndefStateO0 : goto PPrequest;
UndefStatel : goto PPrequest;
UndefState2 : goto PPrequest;
UndefState3 : goto PPrequest;
UndefState4 : goto PPrequest;
UndefStateb : goto PPrequest;
UndefState6 : goto PPrequest;
UndefState8 : goto PPrequest;
UndefState9 : goto PPrequest;
UndefStatel2 : goto PPrequest;
UndefStatel4 : goto PPrequest;
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A.12 P.P. Address Generator for the Scanline Buffer
State Machine

Table A.21: PP Address Generator for the ScanLine Buffer

I; Signal Pin # l Address Generator Inputs J

"k | Pinl | PAL clock input
NReset Pin 2 | Reset Pin
NIncPPadr Pin 3 | Increments counter
NC4 Pin 4 | input only, not used
NC5 Pin 5 | input only, not used
NC6 Pin 6 | input only, not used
NC7 Pin 7 | input only, not used
NCS8 Pin 8 | input only, not used
NC9 Pin 9 | input only, not used
chip ground Pin 10
chip enable Pin 11

Address Generator Outputs
NLast16Loaded | Pin 12 | Indicate Msw loaded

PPadr0 Pin 13 | PP address bit 0
PPadrl Pin 14 | PP address bit 1
PPadr2 Pin 15 | PP address bit 2
PPadr3 Pin 16 | PP address bit 3
PPadr4 Pin 17 | PP address bit 4
PPadr5 Pin 18 | PP address bit 5

NFirst16Loaded | Pin 19 | Indicate Lsw loaded
chip vce Pin 20
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Input Mode Bits for Address Generator

SlbAdrMode = NReset NIncPPadr
Reset = 0 X
Wait = 1 1
Count = 1 0

Pizel Processor Address Pins

ColorSelect = PPadr3 PPadr2
Blu = 0 0
Grn = 0 1
Red = 1 0
Win = 1 1
BitSelect = PPadrl PPadr0
selbits01 = 0 0
selbits23 = 0 1
selbits45 = 1 0
selbits67 = 1 i

PPAddress = PPadr3 PPadr2 PPadrl PPadrO
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SlbAdrState = ColorSelect BitSelect
SlbAdrBlu01 = Blu selbitsO1
SlbAdrBlu23 = Blu selbits23
SlbAdrBlu45 = Blu selbits45
SlbAdrBlu67 = Blu selbits67
SIbAdrGrn01 = Grn selbitsO1
SIbAdrGrn23 = Grn selbits23
SlbAdrGrnd5 = Grn selbits45
SIbAdrGrn67 = Grn selbits67
SlbAdrRed01 = Red selbitsO1
SlbAdrRed23 = Red selbits23
SIlbAdrRed45 = Red selbits45
SlbAdrRed67 = Red selbits67
SIbAdrWin01l = Win ‘ selbitsO1
SIbAdrWin23 = Win selbits23
SlbAdrWin4s = Win selbits45
SIbAdrWin67 = Win selbits67
Equations
INFirstiBLoaded = ( PPAddress == & 0111);
I{NLastiBLoaded = ( PPAddress == & 1111);

State Diagram SlbAdrState

S1bAdrBlu01:
case ( SlbAdrMode == Reset ) : S1bAdrBluO1;
( SlbAdrMode == Wait ) : S1bAdrBluO1;
( S1bAdrMode == Count ) : S1bAdrBlu23;
endcase;
S1bAdrBlu23:

case ( SlbAdrMode
( SlbAdrMode
( SlbAdrMode

1]
]

Reset ) : S1bAdrBluOti;
Wait ) : S1bAdrBlu23;
Count ) : S1bAdrBlu45;
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endcase;
S1bAdrBlu4b: v
case ( SlbAdrMode == Reset ) : S1bAdrBluO1;
( SlbAdrMode == Wait ) : S1bAdrBlu45;
( SlbAdrMode == Count ) : S1bAdrBlu67;
endcase;
S1bAdrBlué7?:
case ( SlbAdrMode == Reset ) : S1bAdrBluO1;
( SlbAdrMode == Wait ) : S1bAdrBlu67;
( SlbAdrMode == Count ) : S1bAdrGrnOi;
endcase;
S1bAdrGrnO1:
case ( SlbAdrMode == Reset ) : S1bAdrBluO1;
( SlbAdrMode == Wait ) : S1bAdrGrnO1;
( SlbAdrMode == Count ) : S1bAdrGrn23;
endcase;
S1bAdrGrn23:
case ( SlbAdrMode == Reset ) : S1bAdrBluOi;
( SlbAdrMode == Wait ) : S1bAdrGrn23;
( SlbAdrMode == Count ) : S1bAdrGrn45;
endcase;
S1bAdrGrn4b5:
case ( SlbAdrMode == Reset ) : S1bAdrBluOi;
( SlbAdrMode == Wait ) : S1bAdrGrn4b;
( SlbAdrMode == Count ) : S1bAdrGrn6é7;
endcase;
S1bAdrGrn67:

case ( SlbAdrMode == Reset ) : S1bAdrBluOi;
( SlbAdrMode == Wait ) : S1bAdrGrn6é7;
( SlbAdrMode == Count ) : SlbAdrRedO1;
endcase;

S1bAdrRedO1:
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case ( SlbAdrMode
( SlbAdrMode
( Sl1bAdrMode
endcase;

Reset ) : S1bAdrBluOi;
Wait ) : S1bAdrRedO1;
Count ) : SlbAdrRed23;

S1bAdrRed23:
case ( SlbAdrMode
( SlbAdrMode
( S1bAdrMode
endcase;

1]
[}

Reset ) : S1bAdrBluOi;
Wait ) : S1bAdrRed23;
Count ) : SlbAdrRed45;

S1bAdrRed45:
case ( SlbAdrMode == Reset ) : S1bAdrBluOi;
( SlbAdrMode == Wait ) : S1lbAdrRed45;
( S1bAdrMode == Count ) : S1lbAdrRed67;
endcase;

S1bAdrRed67:
case ( SlbAdrMode == Reset ) : S1bAdrBluOi;
( SlbAdrMode == Wait ) : S1bAdrRed67;
( SlbAdrMode == Count ) : S1bAdrWinOi1;
endcase;

S1bAdrWinO1:
case ( SlbAdrMode == Reset ) : S1bAdrBluOi;
( SlbAdrMode == Wait ) : S1bAdrWinO1;
( SlbAdrMode == Count ) : S1bAdrWin23;
endcase;

S1lbAdrWin23:
case ( SlbAdrMode == Reset ) : S1bAdrBluOi;
( SlbAdrMode == Wait ) : S1bAdrWin23;
( SlbAdrMode == Count ) : S1bAdrWin45;
endcase;

S1bAdrWindb:
case ( SlbAdrMode
( S1lbAdrMode
( S1bAdrMode

Reset ) : S1bAdrBluOi;
Wait ) : S1bAdrWin45;
Count ) : S1bAdrWiné7;
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endcase;

S1bAdrWin®é7:
case ( SlbAdrMode
( SlbAdrMode
( SlbAdrMode
endcase;

Reset ) : S1bAdrBluOi;
Wait ) : S1bAdrWin67;
Count ) : S1bAdrBluOi;
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A.13 Scanline Buffer Controller State Machine

Table A.22: Scan Line Buffer Controller Pin Assignments

Signal I Pin # [ Address Generator Inputs
clk Pin 1 | PAL clock input

NReset Pin 2 | Reset Pin

NSIbReq Pin 3 | Scanline buffer request
NHmsRead Pin 4 | Hms reads scanline buffer

NFirst16Loaded | Pin 5 | Indicates to transfer to pipe reg
NLast16Loaded | Pin 6 | Indicates to alert HMS

NC7 Pin 7 | Input only, not used
NPPpack Pin 8 | Hms is sending PPpack
BcDone Pin 9 | Bus controller is done
chip ground Pin 10

chip enable Pin 11

Address Generator Outputs
NHmsPPpack Pin 12 | Buffered NPPpack

NClear Wait Pin 13 | Clears PP wait FF
NIncPPadr Pin 14 | Increment address in Address PAL
NSIbReady Pin 15 | Indicate data is ready in buffer

NPclkEnable Pin 16 | Transfer from Shadow to Pipe Reg clk

NDclkEnable Pin 17 | Shift in clk enable
NMode Pin 18 | AM29818 mode input

BcDoneB Pin 19 | Buffered BcDone
chip vce Pin 20
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Address PAL Count Bit

Dolnc = 0
DoNotlne = 1

Scan Line Buffer Ready Bit

SlbIsReady = 0
SlbNotReady = 1

AM29818 Control

Control818 = NMode NDclkEnable NPclkEnable
Idle818 = 1 i 1
ShiftIn = 0 0 1
ShadowToPipe = 1 1 0
Nop8i8 = 0 i 1

*PPWaitSlb FF Clear Bit

ClearPP Wait 0
DontClearPPWait = 1

Scan Line Buffer Input Mode

SlbMode = NReset NSIbReq NHmsRead NFirstl6Loaded NLastl6Loaded
Reset = 0 X X X X
NoReq = 1 0 X X X
SlbReq = 1 1 1 1 1
HmsReadSlb = 1 1 0 X X
LswLoaded = 1 1 1 0 1
MswLoaded = 1 1 1 i 0
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SlbState = NSIbReady
Slbldle = SlbNotReady
SlbShiftIn = SlbNotReady
SIbTranToPipe0 = SlbNotReady
SlbTranToPipel = SlbIsReady
SlbWaitLsw = SlblsReady
SlbWaitMsw = SlblsReady
Sibldle = 1
SIbShiftIn = 1
SlbTranToPipe0 = 1
SlbTranToPipel = 0
SlbWaitLsw =0
SIbWaitMsw = 0
Equations
NHmsPPpack := NPPpack;
BcDoneB = BcDone;
State Diagram S1bState
SlbIdle : NClearWait := 1;
case ( SlbMode == Reset )
( SlbMode == SlbReq )
( S1bMode == HmsReadS1lb )
( S1bMode == LswLoaded )
( S1bMode == MswLoaded )
endcase;
S1bShiftIn : NClearWait := 1;
case ( SlbMode == Reset )
( SlbMode == S1bReq )
( S1bMode == HmsReadS1lb )
( S1bMode == LswLoaded )
( S1bMode == MswLoaded )

endcase;

Control818

Idle818
ShiftIn
ShadowToPipe
ShadowToPipe
Nop818
Idle818

OO O k= =
i e el e ™ B
=t ot O O e
[ S S S S S N e T

: Slbldle;
: S1bShiftIn;
: Slbldle;
: Slbldle;
: Slbldle;

: Slbldle;
: S1bShiftIn;
: Slbldle;
: S1bTranToPipeO;
: SlbWaitLsw;

NIncPPadr

DoNotInc
Dolnc

DoNotlInc
DoNotlInc
DoNotlnc
DoNotlInc
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S1bTranToPipeO : NClearWait := 1;
if ( S1bMode == Reset ) then SlbIldle else S1bShiftIn;

SlbWaitLsw : NClearWait := 1;

case ( SlbMode == Reset ) : Slbldle;
( SlbMode == SlbReq ) : SlbWaitLsw;
( SlbMode == HmsReadSlb ) : SlbTranToPipel;
( S1lbMode == LswLoaded ) : SlbWaitLsw;
( S1bMode == MswLoaded ) : SlbWaitLsw;
endcase;
S1lbTranToPipel : NClearWait := 1;

if ( S1bMode == Reset ) then SlbIdle else SlbWaitMsw;

case ( SlbMode == Reset ) : Slbldle;
( SlbMode == SlbReq ) : SlbTranToPipetl;
( SlbMode == HmsReadSlb ) : SlbWaitMsw;
( SlbMode == LswLoaded ) : SlbTranToPipel;
( S1bMode == MswLoaded ) : SlbTranToPipel;
endcase;

SlbWaitMsw : NClearWait := NHmsRead;
case ( SlbMode == Reset ) : Slbldle;
( SlbMode == SlbReq ) : SlbWaitMsw;
( SlbMode == HmsReadSlb ) : Slbldle;
( S1bMode == LswLoaded ) : SlbWaitMsw;
( S1bMode == MswLoaded ) : SlbWaitMsw;
endcase;

S1bClearPPWait : goto Slbldle;

237



COMPANY PRIVATE—PS 390 Graphics System May 6, 1987 238

A.14 *Sync Generator for Shadowfax VLSI
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Table A.23: System *SYNC Signal Generation

Signal [ Pin # I Address Generator Inputs
clk Pin 1 | PAL clock input
NReset Pin 2 | PAL reset Pin
NC3 Pin 3 | input only, not used
NC4 Pin 4 | input only, not used
NC5 Pin 5 | input only, not used
NCé6 Pin 6 | input only, not used
NC7 Pin 7 | input only, not used
NCs8 Pin 8 | input only, not used
NC9 Pin @ | input only, not used
NC10 Pin 10 | input only, not used
chip ground | Pin 12
NC13 Pin 13 | input only, not used
Address Generator Outputs
NC14 Pin 14 | output latch, or input, not used
NC15 Pin 15 | output latch, or input, not used
NC16 Pin 16 | output latch, or input, not used
Sync Pin 17 | The Shadowfax Sync signal
cnt0 Pin 18 | counter bit 0
cntl Pin 19 | counter bit 1
cnt2 Pin 20 | counter bit 2
cnt3 Pin 21 | counter bit 3
cntd Pin 22 | counter bit 4
NC23 Pin 23 | output latch, not used
chip vee Pin 24
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Table A.24: PAL Output State Definitions

SyncState = Sync Counter
cnt4 cnt3 cnt2 cntl cntO

one = 0 0 0 0 0 1
two = 0 0 0 0 1 0
three = 0 0 0 0 1 1
four = 0 0 0 1 0 0
five = 0 0 0 1 0 1
six = 0 0 0 1 1 0
seven = 0 0 0 1 1 1
eight = 0 0 1 0 0 0
nine = 0 0 1 0 0 1
ten = 0 0 1 0 1 0
eleven = 0 0 1 0 1 1
twelve = 0 0 1 1 0 0
thirteen = 0 0 1 1 0 1
fourteen = 0 0 1 1 1 0
fifteen = 0 0 1 1 1 1
sixteen = 0 1 0 0 0 0
seventeen = 0 1 0 0 0 1
eighteen = 1 1 0 0 1 0
nineteen = 0 1 0 0 1 1
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Table A.25: PAL Output State Definitions Continued

SyncState = Sync Counter
cntd cnt3 cnt2 cntl  cntO

undefstate0 = 0 0 0 0 0 0
undefstatel = 0 1 0 1 0 0
undefstate2 = 0 1 0 1 0 1
undefstate3 = 0 1 0 1 1 0
undefstated = 0 1 0 1 1 1
undefstateb = 0 1 1 0 0 0
undefstate6 = 0 1 1 0 0 1
undefstate7 = 0 1 1 0 1 0
undefstate8 = 0 1 1 0 1 1
undefstate9 = 0 1 1 1 0 0
undefstatei0 = 0 1 i 1 0 i
undefstatell = 0 1 1 1 1 0
undefstatel2 = 0 1 1 1 1 1
undefstatels = 1 0 0 0 0 0
undefstatels = 1 1 0 1 0 0
undefstate2s = 1 1 0 1 0 1
undefstate3s = 1 1 0 1 1 0
undeistateds = i i 0 i i 1
undefstatebs = 1 1 1 0 0 0
undefstate6s = 1 1 1 0 0 1
undefstate7s = 1 1 1 0 1 0
undefstate8s = 1 1 1 0 1 1
undefstate9s = 1 1 1 1 0 0
undefstatelOs = 1 1 1 1 0 1
undefstatells = 1 1 1 1 1 0
undefstatel2s = 1 1 1 1 1 1
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State Diagram SyncState

one : if ( NReset == O ) then one else two;

two . if ( NReset == O ) then one else three;
three : if ( NReset == 0 ) then one else four;
four : if ( NReset == O ) then one else five;
five : if ( NReset == O ) then one else six;

six : if ( NReset == 0 ) then one else seven;
seven : if ( NReset == O ) then one else eight;
eight : if ( NReset == O ) then one else nine;
nine : if ( NReset == O ) then one else ten;

ten : if ( NReset == 0 ) then one else eleven;
eleven : if ( NReset == 0 ) then one else twelve;
twelve : if ( NReset == 0 ) then one else thirteen;
thirteen : if ( NReset == O ) then one else fourteen;
fourteen : if ( NReset == 0 ) then one else fifteen;
fifteen : if ( NReset == 0 ) then one else sixteen;
sixteen : 1if ( NReset == 0 ) then one else seventeen;
seventeen : if ( NReset == O ) then one else eighteen;
eighteen : if ( NReset == O ) then one else one;
nineteen : goto one;

undefstate0 : goto one;

undefstatel : goto one;

undefstate2 : goto one;

undefstate3 : goto one;

undefstate4 : goto one;

undefstateb : goto one;

undefstate6 : goto one;

undefstate7 : goto one;

undefstate8 : goto one;

undefstate® : goto one;

undefstatel0 : goto one;
undefstatell : goto one;
undefstatel2 : goto one;

undefstateOs: goto one;
undefstatels: goto one;
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undefstatels:
undefstate3s:
undefstateds:
undefstatebs:
undefstate6s:
undefstate7s:
undefstate8s:
undefstate9s:
undefstatells:
undefstatells:
undefstatel2s:

goto
goto
goto
goto
goto
goto
goto
goto

goto one;
goto one;
goto one;

one;
one;
one;
one;
one;
one;
one;
one;
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A.15 HA Pixel Processor Hit Box Tester

Table A.26: HA PixelProcessor Hit Box Tester

Signal Pin # HA PizelProcessor Hit Boz Tester In-
puts

Clk Pin 1

Nwr Pin 2 lo-true memory write strobe

Nras Pin 3 row address strobe

Ncas Pin 4 column address strobe

XGreaterThan | Pin 5 > output from X - comparator

XLessThan | Pin 6 < output from X - comparator

YGreaterThan | Pin 7 > output from Y - comparator

YLessThan Pin 8 < output from Y - comparator

Nreset Pin 9 reset for the sampler

Noe Pin 11 output enable

HA PizelProcessor Hit Boz Tester Oulputs

holdX Pin 12

NholdX Pin 13 enable for PPA X-address (Cas) latch
0 — hold, 1 — transparent

holdY Pin 18

NholdY Pin 19 enable for PPA Y-address (Ras) latch
0 — hold, 1 — transparent

HBsel0 Pin 14 selects one of two hitbox corners 0 —
Top Right, 1 — Bottom Left

s0,s1 Pin 15, 16 | extra state bit

HitDetect Pin 17 hit detect output to Bitslice status
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,ooxr
{

HBstate

idle
CmpTopRightl
CmpTopRight2
CmpBottomLeft1
CmpBottomLeft2
donewait

hitwait

undefl

HBmode
quiet

incycle
done

Il

1

Il

1

HBsel0

OO = OO

Nwr

1
0
X

Explanation of symbols: 1

0
X

A PixelProcessor Hit Box Tester State Descriptions

sl s0

O QO QO Q bt ek et
bt D QO km O ke O =

Nras Ncas

o
54

= logic High
= logic Low
= don’t care
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Equations

Create the flip-flops for RAS & CAS latch control

holdY = ! ( (HBstate == donewait) # NholdY # !Nreset );
NholdY = ! ( (!Nras & !Nwr & (HBstate == idle)) # holdY );
holdX = ! ( (HBstate == donewait) # NholdX # !Nreset );

NholdX = ! ( (!Ncas & !Nwr & holdY) # holdX );
Signal a hit detect when inside the ’hitwait’ state
HitDetect := ( HBstate == hitwait );
State Diagram HBstate
Idle: if ( HBmode == incycle ) then CmpTopRightl else idle;
CmpTopRight1: goto CmpTopRight2;

CmpTopRight2: if ( XLessThan # YGreaterThan ) then donewait
else CmpBottomLeftl;

CmpBottomLeftl: goto CmpBottomLeft2;

CmpBottomLeft2: if ( XGreaterThan # YLessThan ) then donewait
else hitwait;

donewait: if ( HBmode == done ) then idle else donewait;
hitwait: if ( !Nreset ) then idle else hitwait;

undef1: goto idle;
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A.16 HA Processor WIMMED Controller

Table A.28: HA Processor WIMMED Controller Pins

I Signal l Pin # [ Signal Descriptions

Clk Pin 1

NHoldWim Pin 5 | Requests Immediate Field Register to be
sourced in Next State

HAInt Pin 6 | Interrupt from Bitslice

NWRT Pin 7 | Common Bus read/write mode control

CBIIN|3] Pin 8 | Level 3 Interrupt

*CBLDS Pin 9 | Common Bus Lower Data Strobe

*CBADS Pin 12 | Common Bus Address Strobe

Output Pins

RIMMED Pin 16 | Source Immediate Field Register to Immedi-
ate Bus

NRIMMED Pin 17 |”

NVecEn, CBDTA | Pin i9 | Enable Interrupt Vector on Common Bus,
Generate DTACK

Table A.29: HA Processor WIMMED Controller Input Modes

Vecmode

Envec

Novecl
Novec2
Novec3
Novec4
Novech

= HAInt NWRT CBI LDS ADS

Il

Il

KR RO -
MK o XK
el =R R
Hm kKo
e R ol
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Equations
NVecEn = !(HAInt & NWRT & CBI & !LDS & !ADS);
NRIMMED: = NHoldWim;
RIMMED: = !NHoldWim;

Enable NVecEn = 1;
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A.17 HA Processor System Clocks
Table A.30: HA Processor System Clocks Pins
Signal | Pin # l Signal Descriptions
clk Pin 1
HaltReq Pin 2 | Request to stop clocks
SSReg Pin 3 | Request to single step
ClkSync Pin 4 | Clock PAL is syncronized to this input
Pclkreq Pin 5 | Request to increment P.C.
Output Pins
M10_RawClk Pin 19 | Non-stopable 100ns clock
IENCLKT750CYC | Pin 18 | ALU destination register write enable
HMSCLK100NS4 | Pin 17 | Stopable 100ns clock
NClrReg Pin 16 | Auto clear to Input Requests
NStrobe Pin 15 | Disables destination decoders until outputs
stablize
pclk100ns Pin 14 | 100ns clock to Microsequencer
HMSCLK50NS Pin 13 | Non-stopable 50ns clock
Hms50ns Pin 12 | Stopable 50ns clock

249



COMPANY PRIVATE—PS 390 Graphics System May 6, 1987

Table A.31: HA Processor System Clocks State Assignments

clkstate

phase0
phasel
phase2
phase3

hltphasel
hltphase2
hltphase3

shftphase2
shftphase3

= MI10_RawClk M20_Clk M10-SysClk NStrobe

4

Il

il
O O

I
Q

I
)

Table A.32: HA Processor System Clocks Input Modes

clkmode

noop
SStep
Halt
Shift
Illegal

O = O =

- O

[y

SSReq HaltReq ShiftReq

X

O O e

e ™)

O O = =

et

X

— e OO

- O O O

[y

[«

pelk100ns

— OO =

o
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Equations
ND75_IEN := !( ( clkstate == phase2 ) # (clkstate

NClrReq := !( ( clkstate == phaseO ) & ( clkmode
# ( clkstate == phase0 ) & ( clkmode

State_diagram clkstate
phase0: HmsbOnsclk:= ( clkmode == Shift )

# ( clkmode == Halt );
case ( clkmode == noop) : phasel ;

( clkmode == SStep) : phasel ;

( clkmode == Halt ) : hltphasel ;

( clkmode == Shift) : phasel ;

( clkmode == Illegal): hltphasel ;
endcase;

phasel: Hmsb0nsclk:= 1;
, case ( clkmode

noop ) : phase2 ;

( clkmode == SStep) : phase2 ;

( clkmode == Halt ) : phase2 ;

( clkmode == Shift) : shftphase2 ;

( clkmode == Illegal): phase2 ;
endcase;

phase2: HmsbOnsclk:= O;
if ClkSync then phase2 else phase3;

phase3: HmsbOnsclk:= 1;
if !C1lkSync then phase3 else phaseO;

hltphasel: HmsbOnsclk:= 1;
goto hltphase2;

hltphase2: Hms50nsclk:= 1;
if ClkSync then hltphase2 else hltphase3

hltphase3: Hms50nsclk:= 1;

phase3) );

SStep )
Shift ) );
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if !ClkSync then hltphase3 else phaseO;

shftphase2: HmsbOnsclk := 1;
goto shftphase3;

shftphase3: HmsbOnsclk := 1;
goto phaseO ;
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A.18 HA Processor DMA Controller

Table A.33: HA Processor DMA Controller Pin Descriptions
Input Signals l Pin # | Signal Descriptions

clk Pin 1

Nreadreq Pin 2 | Request to read Mass Memory

Nwrtreq Pin 3 | Request to write Mass Memory

Ndtackraw Pin 4 | Unsyncronized version of DTACK

cbtimout Pin 5 | Time out period to gain control of the Com-
mon Bus

Nigotit Pin 6 | When asserted, Bitslice controls the Common
Bus

Nreset Pin 9 | Reset DMA PAL

Output Pin Descriptions

CB_CBA Pin 19 | Latch data from common bus

NSDtack Pin 18 | Synchronized version of CBDTACK

common Pin 17 | Request the common bus

CBbusy - Pin 16 | DMA state machine busy

R_Wmode Pin 15 | Keeps read/write mode

NTimerEn Pin 14 | Start timer bit

NSIgotit Pin 13 | Synchronized version of IGOTITI

CB_-GAB Pin 12 | Enable data to common bus

Table A.34: HA Processor DMA Controller Input Modes

CBstate = CBbusy Common
idle = 0 0
transfer = 1 1
DMAdone = 1 0
undef = 0 1
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Table A.35: HA Processor DMA Controller State Assignments

RQMode =  Nuwrtreq Nreadreq Nreset cbtimout NSlgotit NSDtack
reset = X X 0 X X X
write = 0 1 1 X X X
read = 1 0 1 X X X
Tout = X X 1 1 0 X
NoBus = X X 1 0 1 X
Nodtack = X X 1 0 0 1
Gotdtack = X X 1 0 0 0
noop = 1 1 1 X X X
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Equations
NSIgotit := Nigotit;
NSDtack := Ndtackraw;

State_diagram CBstate

idle: R_Wmode := !Nreadreq;

NTimerEn := 1;
CB_CBA = 0;
CB_GAB = 0;
case ( RQMode == write ) : transfer;
( RQMode == read ) : transfer;
( RQMode == noop ) : idle;
( RQMode == reset ) : idle;
endcase;
transfer: R_Wmode = R_Wmode;
NTimerEn := NSIgotit;
CB_CBA := ( (RQMode == Gotdtack) & R_Wmode
CB_GAB := ( INSIgotit & !R_Wmode );
case ( RQMode == reset ) : idle;
( RQMode == Tout ) : DMAdone;
( RQMode == NoBus ) : transfer;
( RQMode == Nodtack ): transfer;
( RQMode == Gotdtack): DMAdone;
endcase;
DMAdone: R_Wmode := R_Wmode;
NTimerEn:= 1;
CB_CBA = 0;
CB_GAB := O0;
goto idle;

undef: goto idle;
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256

A.19 HA Processor Maintenance Register Address De-

coder

Table A.36: HA Processor Maintenance Register Address Decoder Pins

Signal I Pin # l Signal Descriptions
NCBADS Pin 1 | Indicates Address lines are stable
NCBDEV Pin 2 | Upper Address bits = TFF if asserted
NCBWRT Pin 3 | Read/Write Control
CBADRI12 Pin 4
CBADRI11 Pin 5
CBADRI10 Pin 6
CBADR9 Pin 7 Lower Common Bus
CBADRS Pin 8 Address Lines
CBADRY7 Pin 9
CBADRS6 Pin 11
CBADR5 Pin 12
CBADR4 Pin 13
Output Pins
NRDMAINT | Pin 16 | Enable Maint. Reg to Common Bus
NWRMAINT | Pin 15 | Write Maint. Reg from Common Bus
Equations
NRDMAINT = ! (!NCBADS & !NCBDEV & NCBWRT & (ADRmode ==
NWRMAINT = ! (!NCBADS & !NCBDEV & !NCBWRT & (ADRmode ==

Maintadr) );

Maintadr) );
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Table A.37: HA Processor Maintenance Register Address Decoder State Assignments

ADRmode = CBADRI12 CBADR11 CBADRI10O CBADRO (BADRS CGBADR7T CBADRG BADRS CBADR4
Maintadr = 1 0 0 0 0 0 0 1 1
NoMaintl = 0 X X X X X X X X
NoMaint2 = X 1 X X X X X X X
NoMaint3 = X X 1 X X X X X X
NoMaint4 = X X X 1 X X X X X
NoMaints = X X X X 1 X X X X
NoMainté = X X X X X 1 X X X
NoMaint7 = X X X X X X 1 X X
NoMaint8 = X X X X X X X 0 X
NoMaintd = X X X X X X X X 0
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A.20 Frame Buffer RAS and CAS Control

Table A.38: Frame Buffer RAS and CAS Control

R
A
S
B
A *
N R
K B
CYCLE TYPE ABW A RESULT
IDLE XXX X _ No RAS or CAS
REFRESH XXX X RAS all banks, No CAS
PP READ (or Longread) XXX 0 RAS banks AWV, CAS requesting array(s)
XXX 1  RAS banks BWV, CAS requesting array(s)
PP WRITE (or LONGWRITE) 000 X RASbankV, CAS requesting array(s)
101 X RAS banks AWV, CAS requesting array(s)
011 X RAS banks BWV, CAS requesting array(s)
_ 111 X RAS banks ABWV, CAS requesting array(s)
VIDEO READ XFER XXX X RAS all banks, CAS all arrays
FAST CLEAR READ XFER 000 X RAS bank V, CAS requesting array(s)
101 X RAS banks AWV, CAS requesting array(s)
011 X RAS banks BWYV, CAS requesting array(s)
| _ 111 X RAS banks ABWV, CAS requesting array(s)
FAST CLEAR WRITE XFER 000 X RASbankV, CAS requesting array(s)
101 X RAS banks AWV, CAS requesting array(s)
011 X RAS banks BWV, CAS requesting array(s)
111 X RAS banks ABWV, CAS requesting array(s)
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A.20.1 State Tables For The Cycle Sequencer Prom

The following tdbles define the cycle sequencer PROM in PS 390 systems that use the
MB81461.
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Table A.39: Cycle Sequencer PROM Summary

| Input | Cyc # | Cycle | # | Prom States |

0100 4 PPLONGREAD 4 16 —» 18 - 09 — 24

0000 0 PPLONGWRITE 4 iE — 1A —- 0B — 00

1101 D REFRESH 3 120 —0C—o01

0110 6 PPREAD 3117>19— 23 Note#!
19 — 23 Note#?

0010 2 PPWRITE 3 |1f—-1B— 25 Note!
1b — 25 Note#2

0111 7 PPREADBREAK 3 17 — 19 — 23

0011 3 PPWRITEBREAK 3 1f - 1b — 25

1111 F IDLE 1 10D

1110 E RESET 1 | 02

0101 5 FCRDXFER 6 | 14 —» 10 - 03 —
21 - 11 — 04

1011 B VREADXFER 3|15 212> 05

0001 1 FCWRXFER 3 |22 —13 — 06

Total 31

Note#! If NOT preceded by state 23 or 25
Note#? If preceded by state 23 or 25
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Table A.40: Current Cycle PPLONGREAD

pR—

Current Cycle: PPLONGREAD (All Values in Hexadecimal)

(Next  State)
*Start  *ppfb
Next Cycle Current Cycle Next State cycle cycdn
X 16 18 1 1
X 18 09 1 0
X 09 24 1 1
PPLONGREAD 24 16 0 1
PPLONGWRITE 24 1E 0 1
REFRESH 24 20 0 1
PPREAD 24 17 0 1
PPWRITE 24 1F 0 1
[PPREADBREAK] 24 17 0 1 = These cycles cannot
[PPWRITEBREAK| 24 1F 0 1 = follow PPLONGREAD
IDLE 24 oD 0 1
RESET 24 02 0 1
FCRDXFER 24 14 0 1
VREADXFER 24 15 0 1
FCWRXFER 24 22 0 1
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Table A.41: Current Cycle PPLONGWRITE

Current Cycle: PPLONGWRITE (All Values in Hexadecimal)

(Next  State)
*Start  *ppfb
Next Cycle Current Cycle Next State cycle cycdn
X 1E 1A 1 1
X 1A 0B 1 0
X 0B 00 1 1
PPLONGREAD 00 i6 0 i
PPLONGWRITE 00 1E 0 1
REFRESH 00 20 0 1
PPREAD 00 17 0 1
PPWRITE 00 1F 0 1
[PPREADBREAK]| 00 17 0 1 = These cycles cannot
[PPWRITEBREAK]| 00 1F 0 1 = follow PPLONGWRITE
IDLE 00 0D 0 1
RESET 00 02 0 1
FCRDXFER 00 14 0 1
VREADXFER 00 15 0 1
FCWRXFER 00 22 0 1
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Table A.42: Current Cycle REFRESH

| Current Cycle: REFRESH (All Values in Hexadecimal) |

(Next  State)
*Start  *ppfb

Next Cycle Current Cycle Next State cycle cycdn

X 20 oC 1 1

X 0C 01 1 1

PPLONGREAD 01 16 0 1

PPLONGWRITE 01 1E 0 1

REFRESH 01 20 0 1

PPREAD 01 17 0 1

PPWRITE 01 1F 0 1

[PPREADBREAK] o1 17 0 1 = These cycles cannot

[PPWRITEBREAK]| 01 1F 0 1 = follow REFRESH

IDLE 01 oD 0 1

RESET 01 02 0 1

FCRDXFER 01 14 0 1

VREADXFER 01 15 0 1

FCWRXFER 01 22 0 1
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Tabie A.43: Current Cycie PPREAD

[ Current Cycle: PPREAD” (All Values in Hexadecimal) |
(Next  State)
*Start  *ppfb
Next Cycle Current Cycle Next State cycle cycdn
X 17 19 1 0
X 19 23 1 1
PPLONGREAD 23 16 0 1
PPLONGWRITE 23 1E ] 1
REFRESH 23 20 0 1
PPREAD 23 19 0 0
PPWRITE 23 1B 0 0
PPREADBREAK 23 17 0 1
PPWRITEBREAK 23 1F 0 1
IDLE 23 oD 0 1
RESET 23 02 0 1
FCRDXFER 23 14 0 1
VREADXFER 23 15 0 1
FCWRXFER 23 22 0 1

“If the previous cycle is PPREAD, PPWRITE, PPREADBREAK or PPWRITE-
BREAK (causing the previous state to be 23 or 25), the subsequent PPREAD cycle begins
at state 19. This condition is the consequence of being in Page Mode where RAS remains
down. If the previous cycle is any cycle other than PPREAD, PPWRITE, PPREAD-
BREAK or PPWRITEBREAK, the subsequent PPREAD cycle begins at state 17.
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Table A.44: Current Cycle PPWRITE

Current Cycle: PPWRITE® (All Values in Hexadecimal) |

(Next  State)

*Start  *ppfb
Next Cycle Current Cycle Next State cycle cycdn
X 1F 1B 1 0
X 1B 25 1 1 ‘
PPLONGREAD 25 16 0 1
PPLONGWRITE 25 1E 0 1
REFRESH 25 20 0 1
PPREAD 25 19 0 0
PPWRITE 25 1B 0 0
PPREADBREAK 25 17 0 1
PPWRITEBREAK 25 1F 0 1
IDLE 25 od 0 1
RESET 25 02 0 1
FCRDXFER 25 14 0 1
VREADXFER 25 15 0 1
FCWRXFER 25 22 0 1

*If the previous cycle is PPREAD, PPWRITE, PPREADBREAK or PPWRITE-
BREAK (causing the previous state to be 23 or 25), the subsequent PPWRITE cycle begins
at state 1B. This condition is the consequence of being in Page Mode where RAS remains
down. If the previous cycle is any cycle other than PPREAD, PPWRITE, PPREAD-
BREAK or PPWRITEBREAK, the subsequent PPWRITE cycle begins at state LF.
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Table A.45: Current Cycle PPREADBREAK

Current Cycle: PPREADBREAK “ (All Values in Hexadecimal) |

(Next  State)

*Start  *ppfb
Next Cycle Current Cycle Next State cycle cycdn
X 17 19 1 0
X 19 23 1 1.
PPLONGREAD 23 16 0 1
PPLONGWRITE 23 1E 0 1
REFRESH 23 20 0 1
PPREAD 23 19 0 0
PPWRITE 23 1B 0 0
PPREADBREAK 23 17 0 1
PPWRITEBREAK 23 1F 0 1
IDLE 23 oD 0 1
RESET 23 02 0 1
FCRDXFER 23 14 0 1
VREADXFER 23 15 0 1
FCWRXFER 23 22 0 1

“The PPREADBREAK and PPWRITEBREAK cycles can occur only where the pre-
vious cycle was a PPREAD, PPWRITE, PPREADBREAK or PPWRITEBREAK cycle
during which *ENDPPCYC1A was asserted (indicating the end of Page Mode operation
and resulting in RAS being brought up).
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Table A.46: Current Cycle PPWRITEBREAK

| Current Cycle: PPWRITEBREAK® (All Values in Hexadecimal)

l

(Next  State)

*Start *ppfb
Next Cycle Current Cycle Next State cycle cycdn
X 1F 1B 1 0
X 1B 25 1 1
PPLONGREAD 25 16 0 1
PPLONGWRITE 25 1E 0 1
REFRESH 25 20 0 1
PPREAD 25 19 0 0
PPWRITE 25 1B 0 0
PPREADBREAK 25 17 0 1
PPWRITEBREAK 25 1F 0 1
IDLE 25 0D 0 1
RESET 25 02 0 1
FCRDXFER 25 14 0 1
VREADXFER 25 15 0 1
FCWRXFER 25 22 0 1

“The PPREADBREAK and PPWRITEBREAK cycles can occur only where the pre-
vious cycle was o PPREAD, PPWRITE, PPREADBREAK or PPWRITEBREAK cycle
during which *ENDPPCYC1A was asserted (indicating the end of Page Mode operation

and resulting in RAS being brought up).
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Table A.47: Current Cycle IDLE

Current Cycle: IDLE (All Values in Hexadecimal) |

(Next  State)

*Start *ppfb
Next Cycle Current Cycle Next State cycle cycdn
PPLONGREAD oD 16 0 1
PPLONGWRITE oD 1E 0 1
REFRESH oD 20 0 1
PPREAD oD 17 0 1
PPWRITE 0D 1F 0 1
[PPREADBREAK| 0D 17 0 1 = These cycles cannot
[PPWRITEBREAK] 0D 1F 0 1 = follow IDLE
IDLE 0D oD 0 1
RESET 0D 02 0 1
FCRDXFER 0D 14 0 1
VREADXFER 0D 15 0 1
FCWRXFER 0D 22 0 1

Table A.48: Current Cycle RESET

| Current Cycle: RESET (All Values in Hexadecimal) |

(Next  State)

*Start  *ppfb
Next Cycle Current Cycle Next State cycle cyedn
PPLONGREAD 02 16 0 1
PPLONGWRITE 02 1E 0 1
REFRESH 02 20 0 1
PPREAD 02 17 0 1
PPWRITE 02 1F 0 1
[PPREADBREAK] 02 17 0 1 = These cycles cannot
[PPWRITEBREAK] 02 1F 0 1 = follow RESET
IDLE 02 oD 0 1
RESET 02 02 0 1
FCRDXFER 02 14 0 1
VREADXFER 02 15 0 1
FCWRXFER 02 22 0 1
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Table A.49: Current Cycle FCRDXFER

Current Cycle: FCRDXFER (All Values in Hexadecimal)

(Next  State)
*Start  *ppfb
Next Cycle Current Cycle Next State cycle cycdn
X 14 10 1 1
X 10 03 1 1
X 03 21 1 1
X 21 11 1 0
X 11 04 1 1
PPLONGREAD 04 16 0 1
PPLONGWRITE 04 1E 0 1
REFRESH 04 20 0 1
PPREAD 04 17 0 1
PPWRITE 04 1F 0 1
[PPREADBREAK)] 04 17 0 1 = These cycles cannot
[PPWRITEBREAK] 04 1F 0 1 = follow FCRDXFER
IDLE 04 0D 0 1
RESET 04 02 0 1
FCRDXFER 04 14 0 1
VREADXFER 04 15 0 1
FCWRXFER 04 22 0 1
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Table A.50: Current Cycle VREADXFER

Current Cycle: VREADXFER (All Values in Hexadecimal) |

(Next  State)
*Start  *ppib
Next Cycle Current Cycle Next State cycle cycdn
X 15 12 1 1
X 12 05 1 1
PPLONGREAD 05 16 0 1
PPLONGWRITE 05 1E 0 1
REFRESH 05 20 0 1
PPREAD 05 17 0 1
PPWRITE 05 1F 0 1
[PPREADBREAK| 05 17 0 1 = These cycles cannot
[PPWRITEBREAK] 05 1F 0 1 = follow VREADXFER
IDLE 05 0D 0 1
RESET 05 02 0 1
FCRDXFER 05 14 0 1
VREADXFER 05 15 0 1
FCWRXFER 05 22 0 1
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Table A.51: Current Cycle FCWRXFER

Current Cycle: FCWRXFER (All Values in Hexadecimal)

(Next  State)
*Start  *ppfb
Next Cycle Current Cycle Next State cycle cycdn
X 22 13 1 0
X 13 06 1 1
PPLONGREAD 06 16 0 1
PPLONGWRITE 06 1E 0 1
REFRESH 06 20 0 1
PPREAD 06 17 0 1
PPWRITE 06 1F 0 1
[PPREADBREAK| 06 17 0 1 = These cycles cannot
[PPWRITEBREAK]| 06 1F 0 1 = follow FCWRXFER
IDLE 06 oD 0 1
RESET 06 02 0 1
FCRDXFER 06 14 0 1
VREADXFER 06 15 0 1
FCWRXFER 06 22 0 1
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