
THE PS 390 GRAPHICS SYSTEM
Pr~1imi~ari:··ver~i.-9n ·.t2:_., ·· ·

Evans & Sutlie:rland
boMPXrrt P'iftVATE,

May 6, 1~87

* * * NOTICE * * *

~ : ,.: " ..

PS 390
HARD"'.\Y~'il.E, RE':t'.E;R;~~CfE M.ANU~lt .

COPYRitittt'.@'·;1,987 .EV".A'.N'S''~':setllERL~1'D'\coMrtrrEit'CbRPORATION
ALL RIGHTS RESERVED

EVANS & SUTHERLAND '
INTERACTIVE SYSTEtYfS)t:WIJSlUN!
580 ARAPEEN DRIVE
SALT LAKE CITY, UTAH 84108
PHONE # (801) 582•5847

*:~COMPANY CONFIDENTIA:1: * '** l 1

This document··.containsih.ormatio.n· t. ~t 'is'corifid~ntla• ·····tb'·'
Evans & Suthe#~~<t;Ct?mi1¥~~'~1··~~.rn«~~~tic>H:!~Y.<>,~ ~i'e 'te~pB~:·
sible for maintairi!~'rftha!t conll'dentlality.' ! •.:ld(. ;,;', l''t.;·1 •, .,

UPDATE AND REVISION NOTIFICATION

This manual is technically accurate and current to .~~e p~~l pf Gt1r1 ~~?f'l'Wc;l~f 'H ~fWVF,~~.
typographical errors and engineering change orders may necessitate revisions and updates
from time to time. this purpose,. ayREYISION. ·~99.~¥~.E?-' }s _pr9,vi.d~d, wW~ this J¥tP:~~+ .,
Please log the said changes in this manual as they become available.

EVANS & SUTHERLAND appreciates your comments a.nd/or any noted corrections, maccu­
racies or important omissions in this book. Please address your comments or inq!lfl'iie'i(jf<lf ffi/1(

EVANS & SUTHERLAND
INTERACTIVE SYSTEMS DIVISION, PU:BLJC;A.WJQNS.:.il'

580 ARAPEEN DRIVE
SALT LAKE CITY, UTAH 84108

PHONE# (801) 582-5847

UPDATE
NUMBER

(,

'. ... !'.

•"\·

J ' .·.1.

SECTION
NUMBER

REVISION LOGSHEET
DATE PAGES

EFFECTED
UPDATE PLACED

IN MANUAL

:;;,,•

• ,' '~; : 1 ~,I.\::-~ .. < ',, >, , '. \ I::. t ; 'e

'·! .,, J.11:

J •• ' , -: '" ' • ' (! ~ .

··~ ..

INITIALS

Contents

I Internal Engineering

1 PS 390 Functional Descriptfon. · · ··
1.1 Overview :·-: ·-; ·-:
1.2 Data Flow Through the PS 3.90 .. :_

1.2.1 Host Level Data Structur~
1.2.2 Data Flow From Int.eractive:DevTces ..

' 2 Raster Backend Hardware Desc~i~I.!~ ___ _
2.1 The Input FIFO
2.2 The Master Bitslice Processor ~-

2.2.1 Bus Interfaces -·-·
2.2.1.1 The Y-Bus ..
2.2.1.2 The D-Bus ..
2.2.1.3 The Immedta:t1(Bas-
2.2.1.4 The Branch .. B~-·,,.
2.2.1.5 Bus Decoders. , ...

2.2.1.5.1 Bu;tO:s~; Communication.
2.2.2 The Bitslice· 16-Bit"Proc~or : . ; ·: · : -."'-. ··:· :-:-

2.2.2.1 --.29117.-Bitslice..Afw-.P.in Descr.~tion-......
2.2.2.2 .. I~.sti:,~~~~~!_ ~~e 29117 16-Bit Pi<>cessor

2.2.3 The Microsequencer .
2.2.3.1 ·· n-to·Bitslree· Miaos~qlfen:t~r-·.Pt11 D~ettpttmr·.r

2.2.4 The Exec.ution..Register_ •... -··-····
2.2.5 The Writable Control Store (4K Words)·.

2.2.s."1 ··r.c;a:<l1iig .. tlie wcs·.--:·-:--·: ··~-~- ·:·-:·
2.2.6 Scratch ·RAM ; ...

2.2. 7 Multiplier .. 4 ...

2.2.7.1 2517B Bitslice fylultiplier Signal Descriotion

···+-

2
...... z--
---~L ...

5

5

_!L
6

-7-
·-8-

8
10
·fer··
..J..O,.. .•

10
10
n-·
M--
13
14
-rs--·
..17- ..
17
17
·-nr­
.J..9.--
21

2.3

2.2.8 Wimmed Register
· 2.2.9 Vector RAM . . .
2.2.10 Lookup Tables . . . ,,.

'," f~Y-"". r1',_;

2.2.11 Maintenance Register'": ·.
2.2.12 Common Bus Interface ~ .

· 2.2.12.1 Interrupts: ...
2.2.12.2 Direct Memory Access.

2·.2.13 Video Intermediate Register .
2.2.14 Clocks ; · .
The Endpoint Pipeline
2.3.1 The Delta/ Depth Cue Calculator (DDCtJ) .
2~3.2· The Input FIFO Stack Bus Controller . .
2.3.3 The Delta Depth Cue Calcula,tor ,.

~. :,.- _ i r \. 3 ,_ ;.~·- "'" ; ., .~ ,;
2.3.4 The Output FIFO Sta.ck Bus Controller.:s
2.3.5 The Pixel Processor Array Loader

" ./ ~

2.3.6 The Pixel Processors ...

22
22
23
23
24
24
24
26
26

27
27
28
29
29

29
30

2.3.7 The Pixel Read Machine . 31
2.4 The Frame Buffer 31

2.4.1 Video RAMs 32
2.4.1.1 Valid Planes Storage in Video RAMs 33

2.4.2 Point Mapping of Pixel Processors & Yi<i.{lo RAMs 33

2.4.3 Image Bit Plal,l;e~· ,.,,,,, J·· 'ci··,: ,, ..•• , .• •''"···,• 33
2.4.4 Window PlaH~i~'.,.l' · ,: .. ~ .,,.)· ,~··<' ., ·J<., •. , ... ,,,., ;. 34
2.4.5 Valid Plane~ '·'~' . '.' ·. · .' . . '. 34
2.4.6 Frame Buffer Memory Controller .. r. . 35

2.4JL1 Frame Buffet,~µicrr.Qtm~rojJ,er SignaJs 36
2.4.6.Ll FBMC.Input Signals .. ,. . . . 37

· 2.4.6. I.2 . "'X}Sf~,g9Btf,?H~~ ,1'.\PN~ ~:~g,i;i.ia..Is .,,,,,J 37
' 2.4.6.1.3 ·FBMC Output Signals to ~l~ve.,~~m9ry Controllers 38
· 2.4.6.1.4 Internal Signals . i'f·'~ • • 39

2.4.7 · Register Deseriptiori "'~ ,;. ·. . 39
2.4.8 · Video SerialPort Interface:~, ·' . ·. 40
2.4.9 Input/Output Interface Description . ., . ' 40
2.4.10' RAS and OAS Control ... ,'//!·'<·;: , 1 . 1•1 ,1• ,. , • ,. • .••• ,. • 41
2.4.1 l Description of Maintenance Features . r •• ' • !,{I. ' • 41

1~ The Video Output System ,, " .. ~ "'cw· . 1 ,; ·' ••• 41
2.5.1 ·Master Bitslice/Video Interface ~· ·<H. ·t·:•·:•';. .,.. 42
2.5.2 Video Timing Controller , ,,, >I ., ... , , •. 43

2.5.2.1 Horizontal Timing Subsection 43

u

2.5.2.2
2.5.2.3

Vertical Timing Subsection
Frame Buffer Control . . .

·, ... ·.'.;!~~~ :.:.~'·;·,~ .. \!H~f\,···/'l" t';.~ ~. •
.. / /" ;! 'j\ .. ~'.'')'_ } • f' ~ ' .. : .

43
44

2.5.3 Custom Video Formats ,«.Jr' ·;11 . ii"t·· ·Ld :';. !,'.. 44
2.5.3.1 Setting Up a Custom Video Forin~f ::'.· ,~1 r~"~1 w:i.ril. ·ii f; £'. 45 1,),, _.

2.5.3.1.1 Example 1: . c'::. ·L,'1~~· 'J(,1'";'.H)';; <'.·i ::.c. 46
2.5.3.1.2 Example 2: .. : 7 ':r"T"-.:r·l ·• ·S:i ~.!..;. . • . . 48

2.5.4 Automatic Blinking _, ,,·. , (·:i ~; • 52
2.5.5 Light Pen Support Hardware , 1 • • ~'.".! :1:: ·~. 54
2.5.6 Cursor Display Generation Hardware. . ?)h,:ii:'.l. t·i:~::'.. 54
2.5.7 Pixel Pipeline : . . ~ d;)l;·~i··: ~.ri:.:rqt-.i1IJ· ':trF! · ·• ~-5
2.5.8 Frame Buffer Interfac~ ~if(\".,.: ;i; ... :i·:··· '.-,"; ·.::"'" :, . :.,.1·i<;G· .;r,f· ·r.·~>:..:· 56
2.5.9 Window Lookup Table .. :· ... <··,'<:~ ·.;,, 1,· ~ 1 ··! ·siirn·i.!· ·f''f· -:.:-r.::::· 57
2.5.10 Video Logic Array °"'" : :. ; ,; ... , . ; .. ,., ':l . , ,1 i(r 3 , :r .. ;i-:.; • > 57
2.5.11 Digital to Analog Conv~r~er~~(QAO~),;.:. ·~.· . c1; ;1 .,,;-;·:ii . ·t ·':·.. 58
2.5.12 Pixel Signature Readback .. '. . ··:-. : ' 1 . 1,, ,.·):,'• ··h·;x;cr ~1 ,5. <·~'.:'::· 58
2.5.13 Register Description ' .. . ·c: .,<-.,;'.··\,-·1· n ,J;1'f· ·!H::~· 59
2.5.14 Description of Maintenance Features "I:: · '"1' "ii·),.,; :er ~ :T· .~.:G<> 59

2.6 The Raster Display,,/t1'.8 .•. ':r. 4.69

3 The PS 390 Peripheral Set
3.1 The Peripheral Multiplexer)· '.' .'')'. . '.'': .. . r~ :

3.1.1 Functional Characteristics'. 1 •••• >:·'! '.'': '.: .1 •• ':;·~:' 1~t~
3.1.1.1 PS 300 Peripheral Set Device Addressihg'x·'.· '._:. c:. ·•x~';'.·!i.

,._,,r.,_,.!t.,l , ·-. 1

3.1.1.2 Low Cost Peripheral Set Device Addressing' .. ,.., .• :: :· ,.
- l ' ~ ' ' ' l ' ' ~ J.). "'

3.1.1.3 Light Pen , : : . '. "
'., '! ,\'

3.1.2 Transmission Characteristics : .. , .
3.1.2.1 Multiplexing'ati~:FDe-Mu1tiple~1~g~'.. : /'::·.: ,: ;· .· r .:
3.1.2.2 Flow Control .. · '. '; L.' . '.'· . : . '. ·'.·~ ·~ ,· .· ..
3.1.2.3 Data Framirfg iil1lPI'blhsrili~~iJ1fRa(es ·: ;, ~- ': ;,

: (•;· .. ;pi'.)1t r.'i(·~!··

3.1.3 Diagnosti:e 0thopba.tk H t: • c,.' 1 ·· .1· ' · ·-· • '-- --
. ,, . Li ::i i. ~: ·

3.2 The PS 390 Keyboards . . .
3.2.1 Interface Cable ...
3.2.2 Keyboard Operation

3.2.2.1 Data Entry
3.2.2.2
3.2.2.3
3.2.2.4
3.2.2.5
3.2.2.6

Ill

· 1 r :::

61
62
67
67
67
68
68
68
68
69
70
70
70
72
72
73

1&:-
... y w.

78
80
82

3.2.2.1 1·Psc390 'Flitict16n·K~ys:~: .'
3.2.2.8 Numeric/ Applicati6(Mod~ Keys .
3t~Hb:$):' f :Ps<3901eie\rl!Cl:J Corttrbl.'K~y~ . . .

3.2.3 Communications Int'effaEe < :: '. i'?·:' : 'l': . .
3.2.4 Dual Function Switcliab1~K~fb61iri:f . :

· 3:3 The 32 Key Lighte&Fundid~ Bu'ttblia''': '. : '.'."·: ..
· , · ,3.,s rid 'Llglit:Cofltiotiiu<< "

.· ·, .. 3~3~2 . Rflpdttinf'Seiedtioii~,,: ~ ·:· >'.0 ·; ~· .••
'f ,j

3.3.3 Self-Test Command and Report". ·.,'..
3.3.4 Transmission Characteristics ... '·1 " .

:3.4 The Control Dials ; . ; . '.111.'•:! '.
' 1 j; 3 .. 4 .. 1 Functional Charact~~il'~·S' ;.". t: ~: Q

'3.4d.'.:t ,.p'Dia:l Respo'hses t:& :thttH~~t .· ·. 1 •••••

3.4.1.2 Commands to the Di~tA 'r~·oin the Host .

84
85
87
89
89
89
89
90
90
91
91
91
91
92

3.4.2 Transmission Characteristics 92
3,;5 The Data Tablet ; . : 93
1. 3.5.1 Data Tabl-et'Micropf0te~sor·· 1.'. ·· 1 93

· ·3c5,2 Q:~re.t1ng1MOae~··: ... : ·:L;:r:i .''. . 93
3.5.3 Power Requi'r~fuenti··:.r,·: 1 •• '.~'':' • • •• ': '. 94
3:5.i4;.:: !Wit'as'fabl~fPs soo·itit~ttace : 1., • • .. 94

; - · 3.5.4,1 Binary Data Format· (Switbli' t; Position 7 ON) . 95
.... , 3.5.4,2 Remote Control via RS-232 95
·.I 3.5.4.3 RS-232 u~it ~S~1t't"K' s~tt:H1g; & Strap Options for 600 Series

.:::,:'f l ;,"'l .. 1 { 97 PRO Ms
3::6. The Optical Mouse \

• .·i··· " "'t('
3.6.l Operatmg Modes< " ·. . . . , ;
3.6.2 PS soorRh'nttirhe'bper~tion 1 ::::; • •. I

3.6.3 Mouse/PS 300 Interface · ...
3.6.3.1 Baud Rate"':·):"/:.'.
3.6.3.2 Data Format .

II .~~~ust9mer Engineering
0~: t r ! ' O ••

4 ~~f J:>S ~90 Diagnostics
4.J Bitslice Processor Diagnostics • RBEDOA
(!~I ' ' < • ' •

.,.,, , 4.1.1 Hardware Overview
~ ., f J . ' ,

gn 4:1.2 .. ~esting Strategy , ,
bL 4.1.3 . Description. of Tests

lV

...) '

99
100
100
101
101
101

103

104
105
105
106
106

4.2

4.3

4.4

4.1.3.1 Phase 1 - Common Bu.s.Maip.MpfW.~ .R~_g@t:er ·;. ,4 • ,, 106
4.1.3.2 Phase 2 - Exec11tiqn Jlepf~tE(f, i '::)'"' ~·T· c·l' .. r . . '~ '.'.;. : 107
4.1.3.3 Phase 3 - Y to Q ~1;1s (;J;'7~AtiI~.4i.~t~dt.i~Jq R~~ttr-:. 108
4.1.3.4 Phase 4 - Writeable Con~rol,7~f~~,irr~ ?:r11 i·.:.11'.:l!r:urr ,'1r.,J . :~.~: :~ . 108
4.1.3.5 Phase 5 - 29117 In~~;~paliJ}~gj~t~f:S.r 1 v».:i. 11_,;,;:1:H'::. i~;1•.J . i-:: ~ .. 109
4.1.3.6 Phase 6 - Interrupt Ge~er.a~<;>.9 1);~t:,::; . .c ·i>«.iii·;·d •,i_·•t'. ~· .. ,niT . ;a;n
4.1.3.7 Phase 7 29110 Microsequencer and Co~dW.c;mJ:!o~le>·Multi~lexer 111
4.1.3.8 Phase 8 -29117 Microprocessor In~~f:U:G~ll;,P~mfiil~ . ~. ~·. :::: . 116

' ' ' ' , .
4.1.3.9 Phase 9 - Scratch R.AM<,c:i~l~ <Y'lt•' ;_,:,;;:n:r·• ..1 :}~,/r..:;;~·~' . ~; 1: }: . 116
4.1.3.10 Phase 10 - Vector Ram . .,.., .,.: 1~.,,f:-mh":"'til'!B'.!<cn;r1"l . ~ .~:.L·. 117
4.1.3.11 Phase 11 - Function Lookup Table , .. :£1..J k~: .:0:·,. '"''T. i,U.8
4.1.3.12 Phase 12 - AMD 29517A Mq}.~~p,J;i~I;::-.~ 1:rd') l·M~· .. ·i1nn1~·11 .. ! J.•}'.. 119
4.1.3.13 Phase 13 -Commo~_a?s.J?fryc~~M~~~i;y, ;.\cc~ss 6DMA) 119

Endpoint Pipeline Diagnostic-, RJ~~;D~b;;._:.,,1\; (~: '<l'.J'.\'f'ii'ltt ,.;;1 . t .! .~ •. : • 121
4.2.1 Testing Strategy ,::- ,.1":1 '<'!J'Jf: 1 ,. rD· .".:. ·~·1. . 121
4.2.2 Description of Tests ~ , .. ~1 ,:,;,;£.,~·.. ,..~ :;: :'.:!'. 121

4.2.2.1 Phase 1 - Common Bus Mam~f1.f;ffi,P,~.iswr1, -~· <d ~; .. • J.:·. 121
4.2.2.2 Phase 2 - Transparent mode test sendin,gc~er~~ti~hfp~h tJ:te;:pipe 122
4.2.2.3 Phase 3 - Full pattern test in tranSJ¥ff,JHlt·:R'),9i;l~; -r.;iw· .'1 .. r:. -. . 123
4.2.2.4 Phase 4 - Functional test <?-':1,).P.e,,pe~~~/:D~pth 0~1,C~kula.tor; 124

Frame Buffer Diagnostic - RB.EJ?~A . i .. ;· 1 ., :~c:;·;t ·r t~ 't:~i n-c «; :~\. •• ; ·t .. (.. f., 124
4.3.1 Testing Strategy ,,.., Ht,~:· i·. ,.~./l··-·~i·n ~:.·'-'·*·'·._I;. 124

4.3.1.1 Phase 1 - Video qf;J}fi:°Q~R,~~~~,t~ :~irst 2 . .::.4 .. '. 125
4.3.1.2 Phase 2 - Color Look Up Table ·si/~ v:u'. 125
4.3.1.3 Phase 3 - Pixel Processors (16) '·' nr:.';, 126
4.3.1.4 Phase 4 ... Pixel Processor Register Tesi.:il·~.-,l/:. ··~·~.,,tJ~1,.··qt . J. J'. '·~ 128
4.3.1.5 Phase 5 - Frame Buffer an.d ~~a.Jll~Q!",B~ffe,r l\femQl'Y ~:~: . ;. '· . 130
4.3.1.6 Phase 6 - DAC Test •i:•t:·'1""•t' 'L.:·> ; .. ""'· .;,: :.D S. 131
4.3.1.7 Phase 8 - Visual Debugger (optionaU.:;}} . U:)} ~: 131

MPLSDOB: PLS Analytic Diagnostic'. . . . Ji·r:rrii ·;;t(:-'."1· . ;.;.?~.<:..:;: 132
4.4.1 Functional Description 133
4.4.2 Initialization 134
4.4.3 Parameter Modifications . . ;i.tir!:E)'?Jr!;~.. 1'".n~q;;~ 135 n

4.4.3.1 Option 0 135
OP'' y'CJ · dT J

4.4.3.2 Option 1 . : :•" I'.' · l'36'
Optl'on 2 131 ~t 4.4.3.3 .1:":~:J~:!~ 7 0

4.4.3.4 Option 3 LU· 137
~< .r ;, 4.4.3.5 Option 4 . . . 138

4.4.3.6 Option 5 .:: .1 }' 138

v

4.5

4.4.4 Detailed Phase Descriptip?t~ . <,i:, .
4.:i.4.1 Phase 1 .. · ~ . ··. :
4.4.4.2 · ·Phase 2 . ·. ·. ·.
4.4.4.3 · 'Phase a ·. ·. ·. ·.
4.4.4.4 · 'Phase 4 . '. '. ·. · · ·,;

\·1 r\i .a~1c Y..:.:. ~·~·J": •. i ~·~ -~

: 4.'i.4.5: 'Phase 5 . .' .' :- .' .' ~iai;f ;~i ~ '..: .
4.4.4.6 Phase. f} . . ~

~- i(ff~,-. h' ('l ti"'· Jf"'. 1'' 1· .,, •• ~;f :··~ ·•,!''' . · 4 4 4 7 · "Pn"''' , .. 7 ·J"····· ·'·"' ·• . . :.
•. •. • . . ~ • .• .• .· _· · ·n1\1n.~.:·1 ... :\1~·~·i::·,

· 4.4 . .tt.8 Phase 8
• ... ~ "' • ¥

· 4.4.4.9 · Phase 9 ... '. ·:·' .. ·" ..
·p:~ ~,,..., l f

. 4.4.4.10 'Phase 10 .. '. . · .. · ·
· 4.4.4.11 'Phase H '. '. . '. ·. . . '. .1 ~. 1 '.->'!.

' · 4.4.4.ll.1 'Examine
· · 4 4 4 11 2·· .L. ad , ',-:;,,

4·4·4·1 :3 "I~e)~ '.'o ·-~,yrf bA ":; .>:
... 1. J:tUn .•.••..•.•..

j,;i·!.',:'i>t

4.4.4.llA' 91~~:~ .. ~a~t~x ~~:n1?fY , ..
' 4.4.4.11.5 Init1iJ1ze nefresh Buffer .

4.4.4.11.6 Show Present Configuration
4.4.4.11.7 Quit Debug Phase

4.4.5 Error Analysis
Low Cost Peripherals Function Buttons Diagnostic
4.5.1 Light Control
4.5.2 Reporting Selections .. .
4.5.3 Functional Description ..
4.5.4 Parameter Modifications .
4.5.5 Detailed Phase Description

4.5.5.1 Phase 1
4.5.5.2 Phase 2 .
4.5.5.3 Phase 3
4.5.5.4 Phase 4 .
4.5.5.5 Phase 5 .
4.5.5.6 Phase 6 .

4.5.6 Error Analysis . .

A PAL Definitions for the PS 390
A.1 PLS Transfer State Machine
A.2 {nput Fifostack Bus Controller State Machine .
A.3 Pixel Processor Array Loader State Ma.(:hine .
A.4 Address Generator for the Endpoint/Color FSBCs

. ~ ~ ..
vi·

, .

. '.

138
139
142
143
143
144
144
145
146
149
149
150
151
152
153
154
154
155
155
155
158
158
159
160
160
162
162
162
163

163
163
165
166

170
170
175
181
188

A.5
A.6
A.7
A.8
A.9

Address Generator for Pixel Processors "' . . .
Address Generator for Endpoint/Color FSB({.z<.::'''." ' · . '·1

"· '.' •• ·".

HA PixelProcessor Hit Box Tester
Input FSBC Controller
Pixel Processor Address Generator

• ff ·i .. £~·· ·-·~ . (-" '. ,.• ~·
t' 1·

A.10 Pixel Processor Array Loader State Machine ·.
A.11 Pixel Processor Handshake State Machine '. ~- ,;',,,,:r ,. : ;~· ::. :: '.:
A.12 P.P. Address Generator for the Scanline Buffer State Madijµe
A.13 Scanline Buffer Controller State Machine '·"' 1"'. • 7 r i.· ,.

q • B .. -i:.{.:. r
A.14 *Sync Generator for Shadowfax VLSI .. i

A.15 HA Pixel Processor Hit Box Tester .
A.16 HA Processor WIMMED Controller
A.17 HA Processor System Clocks
A.18 HA Processor DMA Controller .. .
A.19 HA Processor Maintenance Register Address Dec~d~r , . :
A.20 Frame Buffer RAS and CAS Co.ntrol , ',:; . .. ·,,;· r' .,· . '. . J

A.20.1 State Tables For The Cyde' Seqti.encer P'r.om.
, ,. · .. ' ""· ~ t ,_., v. ·\ .. ···r:

vii

I i. t·· ':li

192
198
202
205
211
217
223
228
234
238
244
247
249
253
256
258
258

List of Figures

1.1 PS 390 Card Components
1.2 Data Flow through the PS 390

2.1 Block Diagram of the PS 390 Master Bitslice
2.2 29117 Bitslice ALU Pin Assignments
2.3 AM2910A Bitslice Microsequencer Pin Assignments
2.4 ALU Instruction Field Path
2.5 2517B Bitslice Multiplier Pin Assignments . . .
2.6 Pixel Mapping on the PS 390
2. 7 Block Diagram of the PS 390 Video Controller

3.1 The PS 390 and Peripheral Devices
3.2 Backside Connectors for the Peripheral Multiplexers
3.3 Multiplexer Connectors for the PS 300 and Low Cost Peripherals .
3.4 The PS 390 DEC VT-220 Style Keyboard
3.5 Keyboard Function Control Keys .
3.6 Keyboard Alphabetic Keys
3.7 Keyboard Standard Numeric Keys
3.8 Keyboard Special Character Keys.
3.9 Keyboard Terminal Function Keys
3.10 Keyboard PS 390 Function Keys .
3.11 Keyboard Numeric/ Application Mode Keys
3.12 Keyboard PS 390 Device ControlKeys ... ·.
3.13 Function Button Light Control Message.Byte

4.1 Pixel Processor Assignment
4.2 Function Button Light Control Message Byte

viii

3
4

9
12
14
18
20
34
42

.63
66
66
71
78
75
78
80
8.2
84
85
87
90

128.

159

List of;/I'ables,,, ,
.... ,

t2.1 Pixel Read Machine Morsel ·Sefect Bi't Vafoes
\~.2 Vertical Timing of Video Formats ;
:2~3 . Video Format Line Types ... : ... :. ... ". ':

S'1~-{& i

1a,1 PS 300/Low Cost Peripheral Configurations ..
~.2 Pin Assignments for the PS 300 Peripherals hfoltiplexer
~.3 Pin Assignments for the L~,qc,st Peripherals Multiplexer .
.~·;! Peripheral Device Transmis~ion Rates
,3 .~ Alphabetic Key Codes
~'~ Alphabetic Key Codes - Continued
¥i7: Standard Numeric Key Codes ..
~r~: Special Character Key .Codes .'
3,9, Terminal Function Key Codes .
3 .. to PS 390 Function Key Co~es . .

I •

3;~1 Numeric/ AppHcation Mode Key 0bdes ; «
3.l;2 PS 390 Device Control Key Codes1 .. ,. ·' ·
3,.13 Function Button Light Groups . .
3.J4 Function Box Self Test Rei:iponses .
~ti:~ bat.a .T~blet Pin Assignmeptsn\Ju;;.iu;;

~.11}) Binary Data Transmission Codes .
3,.,F RS-232 Switch Settings . . '.)i';~iu. ·1it.;1,fr :i

~.;1~ Data Table.t Sampling J;lates"~·,
3.,1,9 Baud Rate Selection . ;.;,.: '; ;U~ .:. ';i:: ~ ."

; t'..,;

3.20 Mouse Data Format ,, . . .
\~ i'o,,.,

'l'·'f"l ·n :;.

Pixel Processor Row and Column D~~QWng, u• .. ·.l'.

i ·, .

MPLSDOB-1 Bit Patterns ,,; .,.1 ":;\j '". ,, .. j,., ·'" .

MPLSDOB Error Messages Part On~,.,t·.r:V· ''": . ·i 1

MPLSDOB Error Messages Pa,fPJ·~'Y9: ~,.;,/: ... · "'

lX

/ t

32
53
54

61
64
65
69
76
77
79
81
83
84
86
88
90
91
94
96
97
98
99

102

129
141
156
157

4.5 Function Button Toggle Codes .
4.6 Function Button Light Groups .
4. 7 Function Button Error Messages

A.1 PLS Transfer State Machine Input/Output Pin Signal Descriptions .
A.2 PLS Transfer State Machine State Descriptions ,. . ,.. . rr~· ~"'· ..
A.3 Fifa to Fifa Buffer State Machine Input/Output Pir($@iktj>~~r.it2tio~i::J.
A.4 Input FSBC Controller
A.5 Input Fsbc Controller State Descriptions
A.6 FSBC to Pixel Processor Data Transfer Control .
A.7 Address Generator for Fifa Stack StJ~.9ori.t;rqlJe~e:;;.
A.8 FSBC Address Generator
A.9 Pixel Processor Address Generator ~· ,, ·'." ·" u • .I
A.IO Address Generator for Fifa Stack Bus Controllers .
A.11 Data Transfer Machine State Descriptions· , . •.<>1, :

A.12 HA PixelProcessor Hit Box Tester •.• . 1 • .I •

A.13 HA PixelProcessor Hit Box Tester·State lJ~striptions .
A.14 Input FSBC Controller ; •· · 'J,",-'.

A.15 Input Fsbc Controller State Descriptions.
A.16 Pixel Processor Address Generator
A.17 Data Transfer Machine State Definitions .
A.18 FSBC to Pixel Processor Data Transfer Control.
A.19 Fix for the PP Handshake
A.20 Scanline Buffer Input Mode Pins
A.21 PP Address Generator for the ScanLine Buffer ·
A.22 Scan Line Buffer Controller Pin Assignments
A.23 System *SYNC Signal Generation
A.24 PAL Output State Definitions
A.25 PAL Output State Definitions Continued
A.26 HA PixelProcessor Hit Box Tester
A.27 HA PixelProcessor Hit Box Tester State Descriptions .
A.28 HA Processor WIMMED Controller Pins.
A.29 HA Processor WIMMED Controller Input Modes
A.30 HA Processor System Clocks Pins
A.31 HA Processor System Clocks State Assignments
A.32 HA Processor System Clocks Input Mdi:fe's':'-1 .. ;•iio. ''

A.33 HA Processor DMA Controller Pin Descriptiops
,-j}1 ~: ':'~ + ,;·

A.34 HA Processor DMA Controller Input Modes·: . '.
, . r i t •· -~-j (. E~f-;Ci t«:~

A.35 HA Processor DMA Controller State Assignfnents' · ·.

x

159
160
167

170
, I' 171-,,••
'"t" p ;;. !; . '-'· .. u ",._

175
176
181
il.88
!ltm
1192
198
~ /(·

199
(_ ;::<

202
I" /l

203
" ('

2'05
~
21'1
21'2
1117
223
·22~
228

"232{

2a9
!240
(24l:
f~l4,f
2i45·
f~itf
i2~f
¥49:
25Q
25tf
2~~
2~~
254

A.36 HA Processor Maintenance Register Address Decoder Pins 256
A.37 HA Processor Maintenance Register Address Decoder State Assignments. 257
A.38 Frame Buffer RAS and CAS Control 258
A.39 Cycle Sequencer PROM Summary
A.40 Current Cycle PPLONGREAD .
A.41 Current Cycle PPLONGWRITE
A.42 Current Cycle REFRESH
A.43 Current Cycle PPREAD
A.44 Current Cycle PPWRITE
A.45 Current Cycle PPREADBREAK
A.46 Current Cycle PPWRITEBREAK
A.47 Current Cycle IDLE
A.48 Current Cycle RESET
A.49 Current Cycle FCRDXFER . ~'­

A.50 Current Cycle VREADXFER
A.51 Current Cycle FCWRXFER .

XI

259
260
261
262
263
264
265
266
267
267
268
269
270

Part I

Internal Engineering

1 ;,

Chapter 1

PS 390 Functional Description

1.1 Overview

The PS 390 Graphics System provides dynamic anti-aliased lines on a Raster display using
Shadowfax VLSI technology. The PS 390 Graphics System replaces the Refresh Buffer ca.rd,
Color card, a.nd the Line Generator card of a PS 350 system with two cards which comprise
the Raster Backend portion of the PS 390 Graphics System. The Calligraphic Display from
the PS 350 is replaced with a 1024 x 864 RGB raster display. (FIMI 2054C)

The PS 390 Graphics System is built on PS 300 sized cards. The main components of the PS
390 Graphics System are as follows:

• The Joint Control Processor (JCP}

• The Arithmetic Control Processor (ACP)

• The Pipeline Subsystem (PLS)

• Raster Backend Left Card (LC)

- The Input FIFO.

- The Master Bitslice Processor.
- The Endpoint Pipeline.

- The Pixel Read Machine.
- 8 Pixel Processors.

- Frame Buffer.

• Raster Backend Right Card (RC)

2

COMPANY PRlVATE-PS 390 Graphics System May 6, 1987

8 Pixel Processors.

Frame Buffer.
1'lfkViCI~o'6ut:ptit Sy~tem ..

3

The main components of the PS 390 Graphics System are grouped together as shown m

Figure 1.1.

Joint Mass
Control Memory

Processor

RBE ~LC

Input FIFO
• "~wMa~~r'Bitslice

Input FSBC
Endpoint, Pipeline

Arithmetic
Control

Processor

REE - RC

Pixel Proc, Array Loader
(8) Pixel Pmcessors

'

Video Output System
(8) Pixel Processors
Frame Buffer

Frame Buffer
Pixel Read Ma'Chirie

Figu1;.~j]:,P.S-:3'9.0AJard.Components

Pipeline
Subsystem

The PS 390 Raster Batk~hd r~~eives s~r~en'space e~«lpoints and commands from the Pipeline
Subsystem.

Endpoints ate processed in seycera.l1 suhccm;ipori~nts 10£ the PS 390 to produce the pixel infor­
mation that is stored in the PS 390 Gtaphics System Frame Buffe~.

Commands 'from· tlre ·'Pi~lihk Subsyst~fu -,~re ~.~ed1to, config~re hardware components of the
RasteriBfi:t:kenH:·acfid to fosfru~t tlie' :13itsifol t'C>'ret.riev~ pixel iii.formation residing in the Frame
BufferJ<Y,' · ' .i: · :

COMPANY PRIVATE-PS 390 Graphics System May 6, 1987

1.2 Data Flow Through the PS 390

Figure 1.2 shows a block diagram for the PS 390. The dial?ram illustra:.tes t9Ei ~~~q d~ta flow
through the system. · · · · .

ACP PLS FBL
BS

tAS'390002P3'

JCP - JOINT (GRAPHICS) CONTROL PROCESSOR FEIL. - FRAME. BUFFER LEFT • · ·-··
MM - MASS MEMORY (1- to 4-ME!YTES) BS - BITS~CE ?R09Ef?SO,R ,.,,. I
ACP - ARITHMETIC CONTROL PROCESSOR FBR "" FRAME SU~FEA· flllGHT <o' '
PLS - PIPELINE SUBSYSTEM VC - VIDEO CONTROLLER

GPIO - GENERAL PURPOSE INTERF,,..CE OPTION
,;•, ,', t!.·~·~ :-..:,,·· ~:, :-::···; '·'._,'.''~"' t.'1f;,','(~l:l.fi.f'> j'j

Figure 1.2: Data Flow 'iihrn11gh the PS"390

Data flow is bidirectional between the h<?st a,ndJhe. P$ 13.9,0~s·Mfi13~1M(:lmpey.,,J'h~;~'ii~11load:~t;l ' J

data may be affected locally (by the PS 39n.?r t:t>.r.ou,gh)q~er~~tion..·;\Vit;h t~e..~tttu~J»pjlt;e;p;
This section describes the PS 390 data flow as commands and data are input to the sys~emt:r<U
and are processed for display.

COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 5

1.2.1 Host Level Data Structure

The host sends the PS 390 ASCII or binary commands from user application programs or files
that reside on the host. These commands are transferred over a communications interface to
the PS 390. The standard communications interface is the RS-232C line. High-speed commu­
nications interfaces include the VAX UNIBUS Parallel Interface, the IBM 3278 Interface, the
IBM 5080 Interface, and ETHERNET/DECNET.

'
'Once ASCII commands are transferred to the PS 390, the Joint Control Processor (JCP)
firmware parses and interprets the commands. ASCII commands pass from the interface to
the Parser and the Command Interpretf'lr. Binury commands sent from the host pass directly
to the Command Interpreter for conversion. to lo1:ally used formats.

1.2.2 Data Flow From Interactive Devices

Data are sent from the interactive devices to the PS 390 in serial RS-232C ASCII format.

The PS 390 offers a "function network" programming language. One of the purposes of the
Function Networks is to process data from the interactive devices. Function networks specify
which interactive devices provide rotation, scale and translate data to the display structures.
Func~ion, net"',()rks ,also allow the interactive devices to communicate with user-specified pro­
grafrts in. ,the hos.t.

l $,;·,,_ '• .. -

Usinrffunetioh ri'et\vorks, the user can specify smoot.hing, clamping, and other filtering opera­
tions'on 'the raw data frorri: the ~nt-eractive devices before sending the data to the host or using
tnem'to'moi:Hff display structures. There is a separate function type for each of the interactive
devic~i Dat~ are routed'ftorn the interactive devices through these functions, through other
(if any) ussr~specified functions and finally to the display structures or to the host. From this
point, interactive device data flow in the same way as host data.

Chapter 2

Raster Backend Hardwai-t:i{~­
Descri ptions

2.1 The Input FIFO

The Input FIFO on the Raster Backend Left Card (LC) receives screen 's~&:c~'-end'pbints',·i
instructions and commands from the PS 390 Pipeline Subsystem via the existiri!fRefr~sH1Btilfer:
interface. The FIFO can store up to 340 endpoints. The interf~e to thel?ip~lin.eiSu~y~t~,is ·•
designed so that when the FIFO is full the PLS _stops the -_A.rjt~metic. q()q,ti;q~ I>,ro<;~;'!~<>!,AA~il,1
more data can be loaded into the Raster Backend Input FIFO._J'l,:te maip.J?~r.p~~,J~rr~he{np~•: t
FIFO is to allow the Arithmetic Control Processor to continue processiil,g .ev~·i11~e ~ter. ,
Backend is not ready to receive the next endpoint/command..

The Input FIFO hardware includes: ·· . v:

• A State Ma.chine

• A lK deep x 16-bit FIFO

• FIFO Buffer Register.

The Input FIFO State Machine consists of two parts. The FIFO Input State Machine which
transfers data from the PLS into the FIFO, and the FIFO Output State Machine w~ich tram~­
fers data from the FIFO into the FIFO buffer register.

The FIFO Input State Machine monitors the PLSREADY signal that is provided ,from ,\he
PLS. When the PLS signal is asserted, the state machine transfers three 16 bit words of data
from the PLS to the FIFO. The state machine then asserts the RBDONE signal, which signals

6

COMPANY PRlVATE-PS 390 Graphics System May 6, 1987 7

to the PLS that the data transfer is complete. Then, the state machine returns to the idle
state where it remains until the PLSREADY signal is again asserted by the PLS.

The Output FIFO State Machine monitors the FIFO empty bit. When the FIFO empty bit is
negated, signifying that there is data ready in the FIFO, the Output State Machine transfers
one 16 bit word of data to the FIFO buffer register and asserts the FIFOREADY signal for
the Bitslice. After the Bitslice reads the FIFO Buffer register, the state machine transfers the
next 16 bit word to the buffer register, provided that there is more data available in the FIFO.
If no more data is available in the FIFO the Output State Machine returns to its idle state
where it continues to wait for the FifoEmpty signal to be negated.

2.2 The Master Bitslice Processor

The PS 390 Graphics System Master Bitslice Processor obtains endpoints and commands from
the Input FIFO. Endpoints are formatted into a packet of data and then sent to the PS 390
EndPoint Pipeline. The Bitslice Processor is located on the Raster Backend Left Card.

When instructions are passed through to the Master Bitslice processor, it decodes and executes
them.

The Master Bitslice can interrupt the Graphics Control Processor on the JCP via the Common
Bus to report requested information. The Master Bitslice can have mastership of the Common
Bus.

The Master Bitslice has an interface to the Video Output System over the Y-Bus via a 74AS652
transceiver. This interface is mainly used to configure hardware circuitry for operation, to
retrieve latched screen XY on lightpen hits, and for diagnostic purposes.

The Master Bitslice also collaborates with the Pixel Processor Array to operate· on the PS
390 Graphics System Frame Buffer. During normal endpoint processing, the Master Bitslice
sends data down the EndPoint Pipeline to the Pixel Processor Array. The Master Bitslice
can also instruct the Pixel Processor Array to perform direct read and write operations to
and from the Frame Buffer via the Pixel Read Machine, but must obtain permission from the
PPALOADER.

The Master Bitslice Processor has the following hardware components:

··:' ~-:Tf1.J ~ ,J ! '! :· -

• -Bus. Ip~t;llfa.c~::},.
' '; .~ , 'I, ··- •. J '' ;

Y-Bus

D-Bus

Immediate Bus

COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 - .8 .

- Branch Bus
·,

• Bus Decoders

• Bitslice Processor. 16-Bit AMO 29117 Microprocessor

• Sequencer. 12-Bit AMO 2910A or equivalent

• Execution Register

• Writable Control Store. (4K x 80 bits)

• Scratch Ram. (2K x 16 bits}

• Multiplier, 16 x 16, parallel. WTL 2517B or equivalent.

• Writable Immediate Field Register (Wimmed)

• Vector Ram

• Lookup Tables. (64K x 16}

• Maintenance Register.

• Common Bus Interface. Mastery of Common Bus. . . ~ ~-:

• Interface to Video Controller circuitry.

Figure 2.1 shows a block diagram of the Master Bitslice.

2.2.1 Bus Interfaces

The four Busses which interface with the Master Bitslice are:

• Y-Bus

• D-Bus

• Immediate Bus

• Branch Bus

2.2.1.1 The Y-Bus

The primary function of the Y-Bus is to pass data from the 29117 to various de~tination~. in
the Bitslice. Secondary sources of data to the Y-Bus include the D-Bus, Statft.L1A1e1 .B\iife;
Interface and the Video Control Interface. ,.,,,_r ._, -

COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 9

SCBATCH RAM

BRANCH BUS

IMM:F:DIA!F. Fll!i.D
REOlliTl!it .

IVECTCl~ltAll!'

[ADD~S REGISTER

1 =~·-
_..__ _____ -...._l,_, __ ...;..Y=BU,;;...S -.--------.,.-..,...._!NT'.ll!_•A_C!! _

" ,... BITSUCX!
PROCl!SSOR

AM2tll7

I /

ENDPOINT P1
TO BITSUCE
DATA BUFFER

;;o··i lfJ'J~·:,~.c·.~ '; , c: : '". ~<'· 1 ~ ·-.'·, '.

~~~~le ~}?,,,J3,loc~ D.i""9~~m. of; the PS 390 Master Bitslice 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

2.2.1.2 The D-Bus 

The primary function of the D-Bus is to pass data from various sources in the Bitslice to the 
29117, the Y input of the multiplier and the Y-Bus via the bus to bus transceivers. 

2.2.1.3 The Inunediate Bus 

The immediate bus is a multi-purpose bus. It can source data values to the Dbus, source an 
address to the Branch Bus and source the Scratch RAM address. The Immediate.bus· receives · 
values from the execution registers immediate field and the immediate field register. 

2.2.1.4 The Branch Bus 

"' 

The Branch Bus supplies the microsequencer with an external address. The bus can be sou~cE?a: 
from the vector RAM, the execution registers immediate field or the immediate fiel<'l register. 

2.2.1.5 Bus Decoders 

AU the components surrounding the Bitslice that send data to or receive data from the Y~Bus 
and D-Bus are controlled by the Bus Decoders. The Bus Decoders receive encoded inputs 
from one of four bus control fields in the Execution Register. During a.n instruction cycle, the 
READ decoders select which device puts data on the bus, and the WRITE decoders determine 
which device receives data from the bus. 

The Y-Bus and D-Bus destination decoders have *STROBE and *WRDECEN connected to 
their enables. *WRDECEN from the maintenance register allows the decoders to bedisableg 
while testing and loading the WCS to prevent the data's execution dud'ng these periods. Son:l~ 
decoder outputs are used to clock registers. A glitch on those lines will cause the registers to 
load. The *STROBE disables the decoders for the first 25ns of the instruction cycle. This 
gives the decoder time to stabilize before its outputs are enabled to prevent the outputs from 
glitching. 

2.2.1.5.1 Bus-to-Bus Communication Communication between the Y-Bus and D-Bus 
is accomplished through a 74AS652 Bus Transceiver. The transceiver's mode of opeHition is 
selected from the microcode via the D-Bus Y-Bus decoders. The transceivers are coritr0lled 
from the microcode so that the data can be latched internally and \i~edj iii ~ ~ti"gs~quent state or 
they can be put in a transparent mode and the data passed through the transceiver in one state. 
For some data paths, timing will not allow the transceivers to operate in transparent mode. 

f_ ., 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 11 

For details on bus to bus timing constraints, refer to the PS 390 Raster Backend Microcode 
Manual. 

2.2.2 The Bitslice 16~Bit Processor 

The Master Bitslice Arithmetic Logic Unit (ALU) is an AMO 29117 or equivalent microproces­
sor. The AM29117 has dual data ports, ability to do register-to-register arithmetic and logic 
functions, and 16-bit barrel shift capability. Refer to the PS 390 Raster Backend Microcode 
Manual for details on programming the AM29117. Refer to the AM29117 manual for modes 
of operation and timing specifications. 

The Bitslice has been connected to maximize control via the microcode. Input data is supplied 
from the Raster Backend D-bus. The output data is sent to the Raster Backend Y-bus. The 
Data Latch Enable bit controlling the reading of data from the D-bus to the 29117 internal 
latch is controller directly by the execution register. The (OEY) output enable (which controls 
the sourcing of data to the Y-bus) is controlled through the Y-bus source decoders. 

2.2.2.1 29117 Bitslice ALU Pin Description 

The following is a description of the pin assignments for the 29117 ALU chip: 

• Do -+. 015 Bidirectional Data (Input) 

- Data Input Lines, Do -+. D1s, are used as external data inputs which allow data to 
be directly loaded into the 16-bit data latch. 

• Yo_, Y15 General Output (Output) 

T cDi:i.tp, p1¥.~pq.,t lines;, W,hr::n OEy is HIGH, the 16-bit Y outputs are disabled (high 
· t¥lf?e9-~~S~);;h~V}iilg QEy ,L;OW allows the ALU data to be output on Yo-+. Y 15 . 

r~· DLE1~~ta· ~ .. ~,~~i:~n~61~1·{,~fi,~~t)····. : . 
- When OEy is HIGH, the 16-bit data latch is transparent and is latched when DLE 

is LOW. 

• OEy OutputEnable (Input) . , , 
,:,~~ .. i .''f_ ry~1 ~ .... ''.'·~·., , .. ·· _. ; ·, , 

, "i1 Wh~ii q ltr j~. ,HJP.¥1 th~ 16-cbit Y outputs are disabled (high impedance); when 
· · . · ~§r:}~ 1~q.vy,.t~r.,8:-J:>it .. Y.outpl,lts are enabled (HIGH or LOW). 

• Io -+. l1s Instruction Inputs (Input) 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

A I C 0 E Q H 

090@0@000 
·©0©@@@00000 
1 ©© 00 
·©© 09 
I ®9 00 
·©© 00 
1 0© 00 
·0© ee 
·ee es 

10 @@@@@@©@@06> 
11 @@8@€>09@© 

Figure 2.2: 29117 Bitslice ALU Pin Assignments 

12. 

- Sixteen Instruction Inputs, used to select the operation to be performed m the 
29117. Also used a.s data inputs while performing immediate instructions. 

~ • I EN JnstructionEnable (Input) 

When JEN is LOW, data can be written into RA~:twhe·n'the'dfb'~k is' 1L'(:>W. The 
Accumulator cam accept data during the L6W-t6..HIGH1' 1tr1arls'Rrow't5!"1.he clock. 
!!avi~g JEN LOW, the Status Register can be up~~t~c!'.'~A~~ §:fl~i.~J~~~JWi'1t 

:i!:::~~~~.the conditional test out:ut, ?.T~ i.~}}sa~~et~I~:f~n~~~ ~~!~~1: i~struc-
":...rjr·: 1 ?; 

• S RE StatusRegisterEnable (Input) . .. --· ,.,_,-~-· ._,, , ;-;;7;_ 
-- -- ; ·• ··:n:. ,.(.\.'.)':'\;. :\u1~:'1.1.i . 'f.l\..• • 

- When SRE and JEN are both LOW, the Status Regi~te(is 9pQ.~~ed at.~J1e end of 
all instructions with the exception.of NO-OP,. Save Stattl~'~ritl T~~tJStii'.~5 .• Having 
either s RE or JEN HIGH will inhibit the Stat-~s Regist~i··rrX~'dh~ngihg:\ 

• CP Clock Pulse (Input) · 1 .,;; ':11:1 '"'r' '· 



COMPANY PRIVATE-PS 390 Graphics System Ma.y 6, 1987 13 

"' - 'Fhe clock input to the 29117. The RAM latch is transparent when the clock is 
HIGH. When the clock goes LOW, the RAM output is latched. Data is written 

. ,into the RAM during the LOW period of the clock, provided JEN is LOW, and 
if .the instruction being executed designates the RAM as the destination of the 
operation .. The Accumulator and the Status Register will accept data on the LOW­
to-HIGH transition of the clock if YEN is also LOW. The instruction latch becomes 
transparent when it exits an immediate instruction mode during a LOW-to-HIGH 
transition of the clock. 

• T1 - T4 Test I/O Pins (Input/Output) 

- Under the control of OET, the four lower status bits, Z, C, N and OVR become 
outputs on T1 - T4, respectively, when OET goes HIGH. When OET is low, Ti -
T4 are used as inputs to generate the CT output. 

• OET Output Enable (Output) 

- When OET is LOW, 4-bit T outputs are disabled (high impedance); when OET is 
HIGH, the 4-bit T outputs are enabled (HIGH or LOW). 

• CT Conditional Test (Output) 

- The condition code multiplexer selects one of the twelve condition code signals and 
places it on the CT output. A HIGH on the CT output indicates a passed condition 
and a LOW indicates a failed condition. 

2.2.2.2 Instructing the 29117 16-Bit Processor 

The Enable bit (JEN) is wired to a 50% duty cycle lOOns clock to include dual regist.er 
instructions in the microcode instruction set. The execution register (refer to Section 2.2.4) 
has one set of registers specifying the 29117 source register address and a second set of registers 
specifying the 29117 destination register address. The register addresses run to the 29117 via 
a "registered" multiplexer that selects the source register address for the first half of the 
instruction and the destination register address for the second half. 

NOTE: Because of timing constraints, the source register address does not have time to go 
through the executipJl<rregistet. !t'lie·sourc~.register address runs from the WCS directly to the 
multiplexer. The destination registers are run to the multiplexer via the execution register to 
ins~,theif.integrityi.,~)q·<'··:·' .,,,, 

The"St~tu~ 'tieg{iit~i.i:Ehabl~ i§ dir~~tly wir~d to a bit in the execution register to allow the 
microc6db1tci ~l~tti~J1ltipd~t~ the 29117 internal status register. The (OET) Output Enable 

·~i·: !~.d.~1--' c:•.Jl~3i':1.u1.;' .:· --~ ... : "" . . . . . 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 14 

is tied high to enable the status bits as outputs. The 4 status bits a.nd the conditional test bit 
(CT) are wired to the external status register. 

The external status register contains two banks of registers. The first bank containing the 
Endpoint Pipeline and pixel processor status bits is continually updated. The second bank, 
which receives the status bits from the 29117, can be selectively updated by the microcode. 

Timing allows the 29117 internal status register and the external status register ~o be updated 
in the same state. 

2.2.3 The Microsequencer 

Y4 
04 
Ys 
Os 

vm 
Pi 

MAJ 
13 
•1 

Vee ,, 
'o 

ccrn 
cc 

ACi5 
rorr 

Og 

Yf 
07 
V7 

Figure 2.3: AM2910A Bitslire Microsequencer Pin As~ignments 

The microsequencer is an AM2910A or equivalent. The 12-bit microsequencercan,~seiediarry , ... 
of the 4K writable control store addresses. The microsequeocer receives ~l'l ip,s.ti:1,u.;tioq., a~ ,tJw. 
beginning of each cycle and using that instruction determines the addre~~ of the.Jn!'tr~ctf ~n ti;> 
be used for the next cycle. The microsequencer instructio~ set contain~ co~~·~~ds such ~: 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 15 

• Continue to access the next sequential instruction 

• Jump to a designated address 

• Jump to a designated address on a specified condition being true. 

The microsequencer receives its instructions directly from the execution register. Its outputs 
run to the writable control store address lines. The microsequencer is the only device capable 
of driving the writable control store address. 

When executing a branch instruction, the address is provided from a source external to the 
microsequencer. The microsequencer receives the address on its input branch bus and routes 
the address to the WCS. In the PS 390 Raster Backend, a branch address can be sourced from 
the Y-Register's immediate field, the immediate field register, or the vector RAM. See the PS 
390 Raster Backend Microcode Manual for details on selecting the various address sources. 

A branch on condition is executed when the microsequencer's condition code enable bit is 
asserted LOW. When executing a branch on condition instructions, the status of the microse­
quencer's one bit condition code determines if the branch condition has failed or passed. This 
is achieved by connecting the Status Register to a multiplexer. The Multiplexer's output is 
connected to the microsequencer's condition code bit. The microsequencer must be capable of 
detecting and branching on the state of the various logical segments in the Raster Backend. 
The select lines of the multiplexer are controlled from the execution register allowing any of 
the status bits to be forwarded to the microsequencer condition code bit. 

The microsequencer has the restriction that it can only branch on an OR condition. If the 
condition fails, the branch is not executed. To give the programmer the ability to branch on 
a failing condition as well as a passing condition, an exclusive OR gate is placed between the 
output of the condition select multiplexer and the microsequencer. One input of the exclusive 
OR gate is connected to the multiplexer and the other is connected to the invert condition bit 
of the execution register. The invert condition bit determines if the condition bit is passed 
from the multiplexer to the microsequencer unchanged by the exclusive OR gate or if the 
<;ondition is inverted by the gate. Inverting the condition allows a failing condition to be seen 
as a passing condition by the microsequencer and thus provides a branch false capability. 

2.2.3.1 2910 Bltslice Microsequencer Pin Description 

The following'is a. description of the pin assignments for the AM2910A microsequencer chip: 

• Di Direct Input Bit i 

- Direct input to register/counter and multiplexer. Do is LSB. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

• Ii Instruction Bit i 

- Selects one-of-sixteen instructions for the AM2910A. 

• CC Condition Code 

- Used as test criterion. Pass test is a LOW on CC. 

•COEN 

16 

- Whenever the signal is HIGH, CC is ignored and the part opera~,es as though CC 
were true (LOW). 

• CI Carry-In 

- Low order carry input to incrementer for microprogram counter. 

• RLD Register Load 

- When LOW forces loading ofregister /counter regardless of instruction or condition. 

• 0 E Output Enable 

- Three-state control of Yi outputs. 

• CP Clock Pulse 

- Triggers all internal state changes at LOW-to-HIGH edge. 

• V co +5 Volts 

• GND Ground 

• Yi Microprogram Address Bit i 

- Address to microprogram memory. Yo is LSB, Yu is MSB. 

• FULL Full 

- Indicates that five item are on the stack. 

• PL Pipeline Address Enable 

- Can select #1 source (usually Pipeline Register) as direct input source. 

• MAP Map Address Enable 

- Can select #2 source (usually Mapping PROM or PLA)as direct input source. 

• V ECT Vector Address Enable 

- Can select #3 source (for example, Interrupt Starting Address) .as direct .cinpti.t 
source. 

,, >,' '. 



COMPANY PRlVATE-PS 390 Grnphics System May 6, 1987 17 

2.2.4 The Execution Register 

Functionally, the execution register is a bank of registers that receive a microcode instruction 
from the Writable Control Store that is to be executed by the Bitslice. The execution register's 
purpose is to keep the microcode instruction stable for one complete clock cycle while the 
microsequencer and WCS prepare the next instruction for execution. 

The execution register is a mixture of AM29818s and 74F374s. The 29818s are used as the 
execution register with the exception of the ALU instruction field. The propagation delay 
through the 29818s is too long for the ALU instruction field is too long for the ALU to meet 
the 29818's lOOns cycle time requirement. Therefore, 29818s are used to complement the 
74F374s in loading the WCS ALU instruction field. 

The output enable pin on the 29818s is grounded with the exception of the 29818s which are 
associated with the immediate field. This gives the microcode the capability to select between 
the immediate field register and the microcode's immediate field as sources to the immediate 
bus. 

2.2.5 The Writable Control Store ( 4K Words) 

The Writable Control Store (WCS) is a bank of 4K x 80, 25ns RAMs. Their address lines 
are driven by the microsequencer. The data lines run directly to the Execution Register. The 
write enable is connected to a bit in the Maintenance Register to give the JCP control over 
loading the Bitslice microcode, The write enable is only enabled while loading microcode to 
the writable control store. For normal run mode operations, the write enable is deselected 
(held high). 

The chip select is controlled from two sources via au OR gate. vVhen in maintenance mode, the 
RAMs can be de-selected from the *.-WCSOE bit of the maintenance register. When loading 
or executing microcode, the *WCSOE bit is disabled and the clock *STROBE controls the 
chip select. *STROBE is used here, primarily, to simplify the process of loading the RAMs. 
Details on the timing of *STROBE are included in the clock section. 

2.2.5.1 Loading the WCS 

The WCS is loaded via the Execution Register's 29818 Shadow Register. Before loading the 
WCS, the microsequencer must be initialized to select the starting address. This is accom­
plished by loading a Jump Immediate instruction into the 29818 shadow pipe. The immediate 
field of the jump instruction should contain the first WCS address to be loaded; normally zero. 
Setting the appropriate control bits and executing a single step will load the execution register 



COMPANY PRIVATE-PS 390 Graphics System May G, 1987 18 

WRITEABLE CONTROL STORE 

(ds6 •• dsz) ••••••• ~ ......... 111 • dO 

11 ALU INSTRUCTION l LINES 

5 ALU SOURCE REG. ADDRESS LINES 

d79 •• (d67 • • ds1> (ds6 •• dsz) •• •• • • • • • • • • ... • • •• do 

EXECUTION REGISTER 

................. (d51 •• d47) •••• llt •••••• •1111 •• 

1 S ALU DESTINATION REG. ADDRESS LINES 

(d67 •• d 57) 
ALU REGISTER 

74FCT374 

(d:H •• d47) (d56,. d52l 

l 11 ALU INSTRUCTION LINES 

1 
ALU 

AM 29117 

r 

ALU REGISTER 
74F399 

5 REGISTER ADDRESS LINES J 

Figure 2.4: ALU Instruction Field Path 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 19 

with the jump instruction in the shadow register. The microsequencer then accesses the first 
WCS location to be loaded. The first location must be loaded at this point by performing the 
following steps: 

1. Load the shadow register with the data to be loaded in the W CS. 

2. Drive the shadow register onto the WCS data lines by setting the appropriate mode bits 
and performing a D Clk. 

3. Execute a P Clk to write the WCS. 

The execution register should then be loaded with the default microword instruction (NOP). 
This will put the Bitslice in an idle state while the microcode is being loaded and allows the 
microsequencer to sequentially step through the WCS. This is accomplished by loading the 
shadow register with the default microword and executing another singlestep. The microse­
quencer is now accessing WCS location start + 1. The three steps outlined above can now be 
repeated to load WCS address start + I with its respective data. With a NOP instruction 
in the execution register, each time a P Clk is executed the microsequencer will increment its 
address by one. The three steps outlined above can be repeated until WCS is loaded. 

The 29818s' Mode bit, Shift bit in and D Clock inputs are controlled from the maintenance 
register. This gives the JCP control over loading the WCS (This technique also prohibits the 
Bitslice from doing overlays in its microcode). 

2.2.6 Scratch RAM 

The Scratch RAM is 2K x 16-bits general purpose RAM (Random Access Memory). RAM 
addresses are supplied from the Immediate bus. Data. !ines are connected to the D-Bus. Timing 
constraints prohibit data from the ALU to be written directly to Scratch RAM. Data from the 
ALU must be transferred to the bus-to-bus transceivers in one state and from the transceivers 
to the Scratch RAM in a subsequent state. All other components can read/write data in the 
Scratcii Rii-m in one state. 

Data, c.an be .·read frorn:the Scratch RAM to· the ALU D-latch in one state. 

2.2~'7 · Multiplier 

The multiplier is:a Weitek 2517B or equivalent. The multiplier is wired to allow maximum 
contfol tfirough•·the tnicrocode. The execution register multiplier field has control lines for: 

• X and Y Data Modes. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 20 

Gsl~!}ss @:@ 
30 31 

Gsl.0sa TOP VIEW ~8~9 
Gs18so 68 Pin 

Pin Grid Array @@ Cavity Down 26 27 

863Gka @24@25 

§65864 ~®2z 

Figure 2.5: 2517B Bitslice Multiplier Pin Assignments 

• Format Adjuster & Round Control. 

• Feed-Through Mode Control. 

• Product Enable. 

• Most/Least Significant Product Select. 

The multipliers X-data input is supplied through the Y-Bus. Loading of the X-data is.coritrol1~d: ':, 
through the Y-Bus destination decoders. The multipliers Y-data is supplied through the' 0; •. ;r; 
Bus. Loading Y-data is controlled through the D-Bus destination decoders. The multipliers 
product is supplied to the D-Bus. Supplying the product to the D-Bus is controlled by the, , 
D-Bus source decoder. ' ' ·• · ., c\ 

Timing allows data to be written to the X-data input from any component on the Y-B~s,9r D- ''T 

Bus in one state. Data being written to the Y-data input can be writ.ten from any cornponep.t 
on the busses in one state with the exception of the ALU. The ALU must write the Y-data 
input via the bus transceivers temporary register. The product can be. written to the KLU 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 21 

two states after the data inputs are written. All other destinations can be written to from the 
ALU state one state after the operands are written. 

2.2.7.1 2517B Bitslice Multiplier Signal Description 

The following is a signal description for the Weitek 2517B Multiplier: 

• X1, X1 

·- 16 bits of data each, defined as unsigned magnitude or two's complement under 
control of Cx and Cy. Y1 can also be used to output the LSP data. 

• Cx, Cy 

- X1 and YI complement control signals; a logic "l" on C x or Cy signifies a two's 
complement input (X1 or Y 1, respectively), while a logic "O" signifies an unsigned 
magnitude input. 

• RND 

- A logic "1" on the RND line rounds the product to the most significant 16 bits by 
adding one to the most significant bit of LSP; RND is loaded by the rising edge of 
the logic "or" of CKx and CKy. 

•RS 

•FT 

• P1 

When RS = 0, the MSP is left shifted one bit and the sign bit is duplicated in the 
MSB of the LSP. When RS is equal to one, Ps1 represents the product sign bit if 
the output is interpreted as two's complement data. 

Feedthrough; makes output latch transparent when set high. 

16 bits ;output data.; Most Significant Product (Psi - P16) and Least Significant 
Product (Pis - Po) can be multiplexed onto the P port . 

•. cKM, OKL 

...,. MSP and LSP output register clocks. 

• OEp, OEL 

- MSP and LSP three state output enables 

• MSPSE.L 

- Select either MSP (low) or LSP (high) to be available at the product output port. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

• ENX 

- Register enable for Xis - Xo, Cx and RND. 

• ENY 

- Register enable for Y 15 - Y 0, Cy and RND. 

• ENP 

- Register enable for MSP and LSP. 

22 

Note: For more information concerning the signal descriptions for the WTL 2517 consult 
the manufacturer's chip specification document. 

2.2.8 Wimmed Register 

The Wimmed register is most often loaded with a branch address for the microsequencer. 
The Wimmed register is loaded from the Y-Bus and can source the immediate bus in any 
subsequent states. The microcode bit enabling the Wimmed register to the immediate bus is 
delayed by one state. If, for example, the microcode enables Wimmed register in states 2 and 
3 of the microcode, its data will be on the immediate bus in states 3 and 4. This functionality 
provides the microcoder with a simple means of implementing jump tables. 

2.2.9 Vector RAM 

The Vector RAM is another source of branch addresses for t.he microsequencer. It can provide 
up to 2K of indirect addressing. The address bits are wired to allow paging through the RAM. 
The upper 3 bits are wired to a page select register, loaded from the D-Bus. The lower 8 bits 
are sourced from the entry select register, loaded from the Y-Bus. 

Currently the PS 390 Raster Backend loads one page of the vector ram with addresses asso­
ciated with the line texturing microcode and another pll',ge w~th the branch addresses of the 
command handling routines (which are received from the PLS). 

The Vector RAM is loaded off disk during the boot process. If the microcode is modified 
altering the branch addresses. The Vector RAM file must be updated on the disk to c-0rrespond 
with the latest version of microcode. 

As an example to the Vector RAMs operation consider the command handling routines. Data 
read from the Input FIFO, is loaded into the ALU D-latch and the Vector RAM address 
register. While the ALU performs a bit test to determine if the data is a command, the 
Vector RAM is providing a branch address on the assumption the data is a .command. The 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 23 

microsequencer performs a condition of branch on the result of the Bit Test using the address 
provided by the vector RAM as its branch address. 

2.2.10 Lookup Tables 

The function PROM is composed of 2, 64K x 8 UV EPROMS. Access time is 250ns. Timing 
requires three wait states after the Function PROM address register is written before the 
EPROM is sourced to the D-Bus. 

The Function PROM provides a 64K x 16 bit look up table. Its contents currently consists of a 
sin (x) table, 1/X lookup table, Red, Green, and Blue color values and a vector list displayable 
during boot up. 

2.2.11 Maintenance Register 

The Maintenance register is loaded from the Mass Memory via the common bus. The common 
bus address lines along with *CBDEV, *CBWRT and *CBADS are run into the Maintenance 
Register Read/Write Decode PAL. The Decode PAL uses *CBADS to determine whe.n the 
common bus address lines are stable and can be decoded. The address lines and *CBDEV 
determine if the maintenance register has been addressed (When *CBDEV is low, the upper 
12 of the 24 bits is high). If the maintenance register is being selected and the *CBWRT line 
is low, the maintenance register is loaded from the common bus. If the maintenance register 
is selected and the *CBWRT line is high, the contents of the maintenance register are sourced 
to the common bus. 

There are 2 bits in the maintenance register that, when set, are automatically cleared by the 
hardware. These are STEPREQ (bit 12) and PCLKREQ (bit 11). When these bits are set, 
the clock performs a single bit or P clock respectively. Within the clock cycle, these clock 
request bits are cleared to insure the clocks go through exactly one cycle. 

A third bit that has a type of auto clear is CBATTN (bit 15). This bit triggers the common 
bus state machine to perform a common bus cycle. At the end of the common bus cycle, this 
bit is auto cleared by the state machine. 

For further details on maintenance register bit definitions, consult the PS 390 Raster Backend 
Microcode Manual. 

NOTE: . CBATTN should never be set by the JCP. When set, this bit triggers the Bitslice 
to perform an interrupt. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 24 

2.2.12 Common Bus Interface 

The common bus interface supports interrupt generation to the JCP and Direct Memory Access 
(DMA) to Mass Memory. 

2.2.12.1 Interrupts 

The PS 390 Raster Backend primarily uses interrupts as a mechanism to transfer data, such a.s 
pick information, to the JCP. Before interrupting the JCP, the interrupt vector register must be 
loaded from the D-Bus. The interrupt is initiated by clearing the *DDIRV bit in the execution 
register. This bit is cleared by writing the jump vector to the upper 8 bits of the interrupt 
register on the D-Bus. This sets a 74F74 register. Before the interrupt can be forwarded 
to the JCP, the interrupt must be synchronized with the JCP clock. The synchronization is 
accomplished by running the output of the 74F74 to a second 74F74 which is clocked with the 
JCP clock. The second 74F74 generates a level 3 interrupt request for the JCP. 

When the JCP is ready to handle the interrupt, it acknowledges the interrupt by setting the 
CBIIN[3j line and clearing the *CBWRT, *CBLDS and *CBADS lines. When this condition 
is detected by the Bitslice's CB/XREG PAL, the interrupt vector is put on the common bus 
data lines and a data acknowledge (DTACK) is issued to the JCP. When the JCP receives the 
interrupt vector, it lowers the CBIIN[3] line causing the CB/XREG PAL to raise the DTACK 
line, remove the interrupt vector from the common bus data lines and remove the interrupt 
request. This completes the interrupt cycle. 

Note: The JCP card is equipped with a set of jumpers which are required for the JCP to 
service the interrupt. Also pins 21 & 22 on the P2 connector on the backplane of the PS 
390 cabinet should be jumpered together in order to service the interrupt. (Refer to the JCP 
installation manual under interrupts.) 

2.2.12.2 Direct Memory Access 

The OMA provides the Bitslice with a means of directly accessing mass memory. The OMA , . 
logic is comprised of a common bus data register, common bus address register, common bus 
arbiter, time out logic and the OMA state machine. 

A scenario of the sequence of events required to access mass memory is as follows. To write 
into mass memory: Load the common bus data register with the value to be written to mass 
memory. Load the common bus address register with the mass memory address to be written. 
Loading the high byte will trigger the OMA state machine. Therefore, the low address word 
must be loaded first. The OMA state machine will perform the necessary handshaking with 

,·,:·-



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 25 

the JCP to gain control of the common bus and write the contents of the data register to mass 
memory. While the OMA state machine is performing the data transfer the CBBUSY bit in 
the status register will be high. Upon completion of the data transfer, the CBBUSY is cleared. 
A second common bus cycle may not be requested until the CBBUSY flag is cleared. 

When retrieving data from mass memory, the sequence of events is identical to writing to mass 
memory with the following exceptions. No data need be written to the common bus data 
register before writing the common bus address register. The high byte of the common bus 
address register is loaded using the read mode command rather than the write mode command. 

The OMA state machine works in conjunction with the arbiter PAL to conduct the handshaking 
which is necessary to perform a common bus cycle. The cycle is triggered when the microcode 
writes the high byte of the common bus address register. This causes the OMA state machine 
to issue a COMMON to the arbiter PAL. The arbiter PAL then lowers *MINENEXT and 
issues a common bus request (*CBREQ) to the JCP. When the JCP is ready to surrender 
control of the common bus, it issues a common bus grant (CBGIN). The arbiter then lowers 
*IGOTIT declaring control of the common bus. The common bus address register is sourced 
to the common bus address lines, the data is sourced to the common bus data lines if a 
write operation is in progress and the common bus control lines are asserted. These include 
address strobe, lower data strobe, upper data strobe, the read/write line and the common bus 
acknowledge. 

The last signal to be asserted is the OTACK from the JCP. When writing to mass memory, 
OTACK indicates the data has been taken and the cycle can end. The common bus address and 
data registers are disabled from the common bus lines and the control signals are deasserted, 
ending the cycle. 

When reading from mass memory, OTACK indicates the data is available. The OMA state 
machine latches the da.ta in the common bus data register, disables the common bus address 
and data lines and deasserts the control signals, ending the common bus cycle. 

The common bus data register is a. pair of 74AS652 transceivers. One 1/0 port is connected 
to the 0-Bus and the other to the common bus data lines. The common bus address register 
is comprised of three 74F374 registers. Their inputs are connected to the 0-Bus and their 
outputs are connected to the common bus address lines. Their output enable is tied to the 
*IGQTIT line of common bus arbiter PAL. This line indicates the OMA state machine has 
control of the common. bus and enables the address to the common bus. The OMA state 
machine is coded in a 16R8B PAL. The time out circuitry is a pair of 74LS393s which are 4 
bit counters clocked from the lOOns Bitslice clock. 



COMPANY PRIVATE-PS 390 Graphics System Ma.y 6, 1987 26 

2.2.13 Video Intermediate Register 

The video intermediate register is comprised of two 74ALS652 bidirectional transceivers. It 
passes data to a specified control register on the video card or reads the contents of a video 
control register back to the Bitslice. The execution register contains a field for register ad­
dressing and mode control. There are 4 register select lines, a read/write control line that 
determines if the specified control register is to be read or written and a mode control line. 
The register address field is shared between the FSBC and the video card. The mode control 
line determines if the specified address is intended for FSBC or the Video card. 

2.2.14 Clocks 

The Bitslice clocks are generated with a 16R8B PAL. The PAL is clocked by a 25ns clock and 
generates a lOOns clock for the Bitslice. The PAL outputs are gated with AM29823 registers 
which lend themselves to accurate generation and duplication of the clock signals. 

There are 4 modes of operation supplied by the clock PAL. Normal mode, in which all the 
signals with the exception of *CLRREQ run through a normal cycle. Halt mode, which allows 
the 50ns raw clock, lOOns raw clock and IEN75CLK to run through a normal cycle while all 
other signals are halted. Shift Mode, which is a modified version of halt mode, allows PCLK 
and STROBE to run. In addition to those signals that run during halt mode, Single Step, 
allows all the signals to run through one cycle. 

The various clock modes are selected via the maintenance register. There is a halt bit, single 
step request and PCLOCK request. The halt bit determines if the clocks are in normal mode 
or halt mode. Once the clocks are put in halt mode, a step request or PCLK request can be 
issued. When either a step request or PCLK request is given, the appropriate clock mode runs 
through a single cycle. During those cycles the clear request signal is asserted to clear all mode 
requests. This guarantees exactly one clock'cycle will be executed. 

Normal mode allows the Bitslice to cycle through the WCS executing microcode. Halt mode 
stops the entire machine. This allows the microcode to be loaded in the WCS, loading of the 
vector RAM and debugging of the Bitslice. A PCLK provides a simple means of loading the 
WCS. Each time a PCLK request is asserted, PCLK runs through one clock cycle clocking 
data into the WCS and incrementing the microsequencer's internal address counter. Single 
Step is useful in debugging allowing the microcode to be walked through while checking the 
status of various components of the Bitslice. 

NOTE: A clock cycle is composed of 4 phases, phase 0 through phase 3. When the halt 
signal is asserted, the clocks complete the current cycle and stop in phase 0. This prevents any 
clocked components from hanging in an unknown state. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 27 

2.3 The Endpoint Pipeline 

The PS 390 Graphics System Endpoint Pipeline is comprised of several custom VLSI chips, 
that are also used on the Shadowfax project. They include the Delta Calculator chip, the Depth 
Cue chip, the Divider chip, the FIFO Stack Bus Controller chips and the Pixel Processors. In 
addition to the Shadowfax VLSI chips there is a state machine that controls the transfer of 
data from the FIFO /Stack Bus controllers to the Pixel Processors. 

A brief description of each chip follows. For a detailed discussion of the custom VLSI chips, 
refer to the Shadowfax VLSI engineering manual. 

2.3.1 The Delta / Dep);h Cue Calculator (DDCC) 

The DDCC is comprised of three Depth Cue VLSI chips, one Delta Calculator VLSI chip and 
two Divider VLSI chips. 

The Delta Calculator VLSI chip receives X and Y values from the FSBC chip and using these 
values the Delta Calculator computes the slope of the line, the adjusted endpoints and the 
number of pixels in the line and other values and flags required by the Pixel Processors. 

The Depth Cue chips provide the Pixel Processors with the RGB intensity information required 
to draw depth cued lines, The Depth Cue chips set Z datafor the FSBC. There are three Depth 
Cue chips, one for each color Red, Green and Blue. 

The Divider chip performs a bit serial binary division of two 34 bit operands. There are two 
divider chips in the DDCC, one for the Delta Calculator and the other for the Depth Cue 
Chips. 

The Pixelpipe hardware is comprised of the foilowing components: 

' 1. The Input FIFO Stack Bus controller manager 

2. The Input FIFO Sta.ck Bus controller 

3. The Delta Depth Cue Calculator 

4. The Output FIFO Stack Bus Controllers 

5. The Pixel Processor Array Loader 

6. The Pixel Processors 

The Input FIFO Stack Bus controller manager. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 28 

The Input FIFO Stack Bus controller manager loads endpoint information into registers that 
reside inside the Input FIFO Stack Bus Controller. The hardware consists of a register and 
state machine that resides in a PAL. 

When the Bitslice receives an endpoint from the PLS, it first processes this endpoint informa­
tion to output the correct data format used in the Pixel Pipeline. Then the Bitslice has to 
write the 32 bit X, Y, Z, W registers inside the Input FSBC. 

Because the Bitslice can only write one 16 bit word at a time, there is a 32 bit register, which 
the Bitslice can load by first writing a 16 bit LSW and then a 16 bit MSW. 

Whenever the Bitslice writes the MSW of the 32 bit FSBC data register, the INFSBC controller 
writes a register inside the FSBC. Therefore the Bitslice must wait until the *INFSBCREADY 
bit is asserted by the INFSBC controller before writing any registers. When the input FSBC is 
ready, the controller may write the register inside the FSBC. The transfer completes when the 
Bitslice asserts the acknowledge signal for the input FSBC. The INFSBC controller passes the 
acknowledge signal to the input FSBC and then returns to the idle state where the controller 
remains until the next transfer of data. 

Registers inside the input FSBC are addressed with the signals INFSBCADR[0 .. 2]. When the 
Bit slice writes the MSW of the 32 bit data register, it provides the FSBC register address in the 
VID/BCREG[0 .. 2] field of the microword. This address is latched by the INFSBC controller, 
and passed on to the input FSBC in the next state. 

The VIDFSBCR/*W signal from the microword is also used by the INFSBC controller. When 
asserted it causes the LSW of the 32 bit data word for the input FSBC to be cleared to zero's. 
This is used as a fast clear for the LSW so that the microcode does not have to clear the 
register by writing to it. 

2.3.2 The Input FIFO Stack Bus Controller 

The FIFO Stack Bus controller chip is used to control static RAM arrays for stacks and FIFO. 
In the PS 390 Graphics System, the Input FIFO Stack Bus controller is used as a bus controller 
and to convert the data from 32 bit parallel to 32 bit serial words for the Pixel Pipeline Delta 
Cale and Depth Cue chips. 

For a detailed description of the FIFO Stack Bus Controller refer to the Shadowfax VLSI 
manual. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 29 

2.3.3 The Delta Depth Cue Calculator 

The DDCC consists of the Delta Calculator chip, 3 Depth Cue chips and 2 divider chips. One 
divider is used by the Delta Calculator and one is used by the Depth Cue chip which computes 
intensity information for the color Red. 

The Delta Calculator receives the Command/Status, X, Y, Z, W words from the input FSBC. 
The Depth Cue chips receive only the Command/Status word and the Z component. 

The command word and the vector components are routed from the input FSBC to the Delta 
Calculator and Depth Cue chips via the INFSBC0[0 . .4] signals. 

For a detailed description of the Delta Calculator and Depth Cue chips, refer to the Shadowfax 
VLSI manual. 

2.3.4 The Output FIFO Stack Bus Controllers 

The Output FIFO Stack Bus Controllers gather serial information from the Delta Calculator 
and Depth Cue Chips, and convert the serial data to a parallel format. They also alert the Pixel 
Processor Array Loader (PPALoader) that data is available in the internal output registers, 
so that it can be passed to the Pixel Processors or returned to the Bitslice. 

The Endpoint FSBC collects serial data from the Delta Calculator, while the Color FSBC 
collects serial data from the Depth Cue Chips. The Command/Status word in the data specifies 
if the data should be passed to the Pixel Processors or to the Bitslice. If data is to be returned 
to the Bitslice then the signal ENDFSBCA/*B is asserted HIGH, if data needs to go to the 
Pixel Processors the ENDFSBCA/*B is asserted LOW. After data is taken from the registers 
the FSBC are acknowledged with the *OUTFSBCPACK signal. If an acknowledge signal is not 
received, eventually the FSBC will assert the ENDFSBCBUSY signal, indicating to upstream 
stages of the pipeline that no more data can be transferred down. 

For a detailed description of the FIFO Stack Bus Controller refer to the Shadowfax VLSI 
manuaL 

2.3.5 The Pixel Processor Array Loader 

The Pixel Processor Array Loader is a state machine that transfers data from the output 
FSBC's to the Pixel Processor Array or back to the Bitslice. 

When the *OUTFSBCPREQ signal is asserted, the PPAloader transfers data to the Bitslice if 
the OUTFSBCA/*B is asserted HIGH, and transfers data to the Pixel Processor array if the 
OUTFSBCA/*B signal is asserted LOW. 



COMPANY PRIVATE-PS 390 Graphics System May G, 1987 30 

During transfer of data to the Bitslice a 16 bit word is transferred from the FSBC to a data 
register, where the Bitslice can read it. After the Bit.slice has read this word the PPAloader 
transfers the next word, and this process continues until the Bitslice asserts the PPLPACK 
signal, indicating that enough information has been transferred. Then the PPAloader asserts 
the acknowledge signal for the output FSBC's and returns to the idle state, where it remains 
until the next request from the Output FSBC. 

When the transfer of data is to the Pixel Processors, the PPAloader must first wait until the 
Pixel Processors are ready to take data into their input registers. This is indicated when the 
*NPR (New Packet Request) signal from the Pixel Processors is asserted. The PPAloader 
transfers a word of data every 100 ns, until all the registers in the pixel processor's input stage 
have received new data. Then the PPAloader asserts the *PIXPACK signal indicating that 
the transfer of data is complete. The PPAloader then returns to the idle state where again it 
waits until a request is made by the output FSBC. 

The hardware associated with the PPAloader includes the PPAloader state machine, a FSBC 
address generator, a Pixel Processor address generator and some additional conditioning logic 
to control the output enable signals for the FSBC's. 

2.3.6 The Pixel Processors 

The Pixel Processors draw anti-aliased lines based on endpoint and slope data received from 
the Delta/Depth Cue Calculator. The Pixel Processors also provide read and write access to 
the PS 390 Graphics System Frame Buffer. 

The PS 390 Graphics System has a total of sixteen Pixel Processors, with eight processors 
on each Raster Backend Card. AH memory access to the random port of the video RAMs is 
through the Pixel Processors. Ea.ch Pixel Processor has an array of video RAMs which it reads 
and writes. The Pixel Processors contain the counters and registers which hold the current 
row for both dynamic memory refresh cycles and screen refresh cycles. 

The Pixel Processors respond to commands given them by the PPAloa.der or the Bitslice. The 
Pixel Processors are the only interface between the Frame Buffer and the other parts of the 
PS 390 system. 

The Pixel Processors also transfer data via a two bit interface to the Pixel Read Machine. For 
a detailed description on the Pixel Read Machine refer to Section 2. 3. 7 of this ma.nu al. 

The Pixel Processors are described in detail in the Shadowfax VLSI Engineering Manual. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 31 

2.3.7 The Pixel Read Machine 

The task of the Pixel Read Machine is to retrieve pixel information from the Raster Backend 
Frame Buffer. 

The Pixel Processors have a two bit data port through which pixel information may be re­
trieved. Since only two bits can be retrieved at any time, some mechanism has to be provided 
to select the appropriate bits from the 32 bit data register inside the pixel processor. The 
correct bits can be selected by providing an address on the Pixel Processor Address bus. As 
shown in Table 2.1, (2 bits) can be selectively retrieved. 

The Pixel Read machine is implemented using two AMD 29818 registers, two 8 to 1 mult.i­
plexers, a state machine and some additional conditioning logic. The AMD29818 register has 
a onboard diagnostic shift register that can be loaded serially. The multiplexers serve to select 
the morsels from the correct pixel processor. 

To obtain pixel information from the Frame Buffer, the Bitslice first writes the register that 
specifies from which pixel processor the read will occur. Then the Bitslice commands the Pixel 
Processors to perform a Scan Line Buffer Read cycle from the Frame Buffer. When the Pixel 
Processors perform this cycle the *SLR (Scan Line Request) signal is asserted. This causes the 
Pixel Read State Machine to assert the *PPWAITSLB signal, which halts the Pixel Processors. 
The Pixel Processors are halted until the wait signal is negated. 

After the Pixel Processors are halted, the state machine shifts 16 bits into the diagnostic regis­
ters of the AMD29818's, then transfers these 16-bits to the pipeline register of the AMD29818. 
Again 16-bits are transferred from the pixel processor to the diagnostic register of the AMD 
29818, and then the state machine asserts the *SLBREADY signal, indication to the Bitslice 
that the pixel data is ready to be read. When the Bitslice reads the first word from the AMD 
29818 pipeline register, the state machine transfers then next word from the AMD 29818 diag­
nostic register to the pipeline register. The Bitslice again reads the pipeline register to retrieve 
the second word of pixel information, and then the Pixel Read state machine returns to the 
idle state, releasing Pixel Processors from their halt state. 

2.4 . The Frame Buffer 

The Frame Buffer is located partially on the 204485 board which has the Bitslice processor, 
and partially on the 204486 board which has the Video Output section. 

The PS 390 Graphics System Frame Buffer is very similar to the Shadowfax Frame Buffer. 
The Frame Buffer components include: 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 32 

Table 2.1: Pixel Read Machine Morsel Select Bit Values 

I Color Select I Address PPADR[ 5 .. 0 J I 
Blue bits 0,1 b'OOOOOO' 
Blue bits 2,3 b'OOOOOl' 
Blue bits 4,5 b'OOOOlO' 
Blue bits 6,7 b'OOOOll' 

Green bits 0,1 b'OOOlOO' 
Green bits 2,3 b'OOOlOl' 
Green bits 4,5 b'OOOllO' 
Green bits 6,7 b'OOOlll' 

Red bits 0,1 b'OOlOOO' 
Red bits 2,3 b'OOlOOl' 
Red bits 4,5 b'001010' 
Red bits 6,7 b'OOlOll' 

Window bits 0,1 b'OOllOO' 
Window bits 2,3 b'OOllOI' 
Window bits 4,5 b'OOUIO' 
Window bits 6,7 b'OOllll' 

• 1024 x 1024 x 48 Image bit planes. 

• 1024 x 1024 x 4 Window planes. 

• 1024 x 1024 x 2 Valid planes. 

• Frame Buffer Memory Controller. 

• Video Serial Port Interface 

2.4.1 Video RAMs 

The Frame Buffer uses Video RAMs as the storage element. The Video RAMs have a dual 
port architecture. The two ports are the random port and the serial port. The Pixel Processor 
Array accesses the Video RAMs through the random port. The Video RAM looks like a 256 
x 256 x 4 array from this port. 

The serial port of the Video RAMs is used to read out the video data. The serial port looks 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 33 

like a 4 bit wide, 256 bit long, 40 MHz shift register. This shift register is written and read 
in a parallel fashion using the random port and special control signals. These operations are 
known as transfer cycles. 

A fast clear of the Video RAM is accomplished by writing one row (1 x 256 x 4) to the desired 
value, transfering that row into the shift register, and then transfering the shift register into the 
other 255 rows. The entire Video RAM can be cleared to a known value with 512 operations. 
There a.re 256 random writes to clear the row, 1 transfer operation to write the shift register, 
and 255 transfer operations to write the other rows. ' 

2.4.1.1 Valid Planes Storage in Video RAMs 

The nature of the fast clear operation of Video RAMs requires the valid plane for the top half 
of the picture to be stored "next to" the valid plane for the bottom half of the picture. The 
valid plane for the other buffer is stored in the bottom half (rows 128 - 255) of the video 
RAM. The fast clear operation is as follows: 

Row 0 is written to all 0 using random cycles (1 x 256 x 2). 
Row 0 is transfered into the shift register. 
The shift register is written into row~ 1 - 127 (128 x 256 x 2). 

In this way the contents of rows 128 - 256, which contain the valid bits for the other buffer, 
are not disturbed, and the clear is accomplished with only 37 4 operations. 

2.4.2 Point Mapping of Pixel Processors & Video RAMs 

Each processor has its own set of 14 Video RAMs, and is responsible for one sixteenth of the 
1024 x 1024 Frame Buffer. The pixel processor is not responsible for a contiguous region, but 
is interleaved with the other fifteen pixel processors. Starting with the upper left hand corner 
of the screen, the mapping is as pictured in Figure 2.6. The numbers refer to pixel processor 
numbers. 

2.4.3 Image Bit Planes 

The 1024 x 1024 image bit planes are used t,o store the image being displayed. The 48 hit 
planes are divided up into two groups of 24 bits each. These groups make up the two buffers 
of the double-buffered image. One buffer is displayed while the other one is being updated. 
After the pixel processor array is done updating one buffer, the buffers are swapped, and the 
other buffer is updated while the first one is displayed. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 0 * 1 • 2 • 3 • 0 • 1 • 2 • 3 * 0 * 1 • 2 • 3 * ... (266 times) * 
• • • • • • • • • • • • * * ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 4 • 6 • 8 • 7 • 4 • 6 • 8 • 7 • 4 • 6 • 8 * 7 * ... (268 times) • 
*. * * •• * ••• * *. • 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 8 • 9 • 10 • 11 • 8 • 9 • 10 * 11 • 8 * 9 • 10 * 11 * . . . (268 timee) • 
* *. * •• * •• *... • 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 12 • 13 • 14 • 16 • 12 • 13 • 14 • 16 • 12 • 13 • 14 • 16 • ... (266 times) • 
• • • • • • • * • * * • * • 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• O • 1 • 2 • 3 • O • 1 • 2 • 3 • O • 1 • 2 • 3 • ... (268 timee) • 
• • • • • • • • • • • • • * ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
•etc. 266 ·timee * 
• • 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Figure 2.6: Pixel Mapping on the PS 390 

34 

The 24 bit planes in each buffer are divided up into three groups of eight bits each. The groups 
of eight bits are used to store the intensity for each of the primary colors red, green, and blue. 

2.4.4 Window Planes 

The four window bit planes are used for determining what type of image is stored in the image 
bit planes. The window numbers determine the attributes of each pixel. Window numbers 
zero through three are double buffered, non-blinking images. Window numbers four through 
seven are double buffered, blinking windows. The blink rate of these windows is controlled by 
the blink rate register. Window numbers eight through fifteen are single buffered, non-blinking 
windows. The characteristics of each window number are programmed into the window lookup 
PALs. 

The window lookup PALs use the valid planes, window number, and the blink signal to tell 
the VLA to put out the input pixel data or background color. 

2.4.5 Valid Planes 

The two valid planes are used for fast screen clear. When the bit-slice swaps buffers, it clears 
out the valid plane of the buffer that the pixel processor array is about to start updating. As 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 35 

the pixel processor array draws lines, it sets the valid bits where the lines are drawn. In double 
buffered windows, the video output section will display only the pixels where the valid planes 
are set. The background color will be displayed for pixels where the valid plane is not set. In 
single buffered windows the valid planes are ignored. The image should be written into both 
buffers for single buffered windows. 

2.4.6 Frame Buffer Memory Controller 

The Frame Buffer Memory Controller (FBMC) is the same as the Frame Buffer memory 
controller used on Shadowfax, with the exception that the PS 390 Frame Buffer memory 
controller does not support page mode access to the video RAMs. 

The Frame Buffer Memory Controller (FBMC) provides timing to the Frame Buffer memory 
array and arbitrates requests for memory cycles. The FBMC provides RAS/CAS, Write En­
able, and other memory timing signals to the Frame Buffer memory and the Pixel Processors. 
The Memory Cont.roller is physically located on the Right Card (RC) of the Raster Backend. 

The Memory Controller Arbitration and Next Cycle Control PAL receives requests for 
Frame Buffer memory cycles, conducts an arbitration and issues a 4-bit NEXTCYCLE code. 
NEXTCYCLE is presented to the Memory Cycle Sequencer PROM which tracks the cycle 
and generates a 6-bit CYCSTATE code every 100 ns. The CYCSTATE code is optimized to 
a 4-bit FBTST (Frame Buffer timing state) code which is sent to both Frame Buffer cards. 
The FBTST code is registered on the Frame Buffer card and is then presented to the TST 
Timing Pals which generate memory control signals every 25 ns. The CYCSTATE code is 
also interpreted on the Memory Controller by the Memory Cycle Acknowledge PAL which 
generates acknowledges and other control signals for use on the Memory Controller. 

The FBMC handles ten distinct memory cycles: 

• Reset 

• Idle 

• Dynamic RAM refresh 

• Pixel Processor read 

• Pixel Processor write 

• Pixel Processor long read 

• Pixel Processor long write 

• Video shift register load cycle 

• Fast clear read transfer cycle 



COMPANY PRIVATE-PS 390 Graphics System May G, 1987 36 

• Fast clear write transfer cycle 

The Reset cycle is executed continuously as long as the reset signal from the Bitslice is asserted. 
This results in Frame Buffer timing code that brings RAS and CAS up and holds them up. 

In the Idle cycle, the Memory Controller is waiting for a memory cycle request. 

The Dynamic RAM (DRAM) refresh cycle refreshes every row in Frame Buffer memory once 
every four milliseconds. 

The Pixel Processor read cycle allows the Pixel Processors to read Frame Buffer memory. A 
cycle which is concluded after a single access is essentially a random cycle. 

The Pixel Processor read cycle can only follow a PP read or write cycle which was concluded 
by bringing RAS up. Therefore, when the read cycle is begun, RAS falls. This cycle is required 
because the *ENDPPCYCO signal bypasses the cycle sequencer PROM, leaving the PROM 
without knowledge of the condition of RAS. 

The Pixel Processor writebreak cycle is similar to the readbreak cycle regarding pagemode, 
RAS, etc. 

The Video shift register load cycle transfers a complete row from DRAM memory to the 
Serial Access Memory (SAM). This cycle occurs during every fourth horizontal retrace in non­
interlaced modes, and every second horizontal retrace in interlaced modes. The Video Control 
card shifts the row out via the serial port during active horizontal time. 

The fast clear read transfer cycle moves a row containing video from DRAM into SAM. This 
cycle is much like a Video Control shift register load cycle but is used to accommodat,e special 
control needed by the video memory and because the address select lines to the Pixel Processors 
(FASO and FASl) are different for the two cycles. 

The fast clear write transfer cycle writes the row back into DRAM 128 times, completing the 
clear operation. 

2.4.6.1 Frame Buffer Memory Controller Signals 

The Frame Buffer Memory Controller signals are defined as follows: 

• Input Signals 

Frame Buffer 

Video Controller 

• Output Signals 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

- Slave Memory Controllers 

• Internal Signals 

2.4.6.1.1 FBMC Input Signals 

37 

*RBA (Read Bank A, Input, TTL) *RBA indicates which bank of the Frame Buffer is 
read on a Pixel Processor read. This is a GEN signal. 

PPFBMRQ0/2 (Pixel Processor on FB0/2 Memory Request, Input, TTL) PPF­
BMRQ0/2 indicates that a Pixel Processor on Bitslice C is making a request for a memory 
cycle. PPFBMRQ0/2 is created by ORing all eight memory requests from the Pixel Processors. 

PPFBMRQl/3 (Pixel Processor on FBl/3 Memory Request, Input, TTL) PPF­
BMRQI/3 indicates that a Pixel Processor on the Video Card is requesting a memory cycle. 
PPFBMRQl/3 is created by ORing all eight memory requests from the Pixel Processors. 

READ (Read, Input, TTL) READ informs the Memory Controller that a Pixel Processor 
will perform a read cycle in two clock periods (200 ns), provided the Pixel Processors are not 
told to wait (FBWAIT or *SLBWAIT). When low, *READ indicates that a Pixel Processor 
will perform a write cycle. READ is a GEN pin. 

2.4.6.1.2 Video Controller Input Signals 

*PPSLBWAIT (*Pixel Processor/Scan Line Buffer Wait, Input, TTL) *PPSLB­
WAIT indicates a wait caused by the Scan Line Buffer. 

VCMREQ (Video Controller Memory Request, Input, TTL) VCMREQ informs the 
Memory Controller that the Video Controller is requesting a read transfer cycle to load four 
new screen refresh scan lines. 

LASTTRN (Last Transfer Cycle, Input, TTL) LASTTRN informs the Memory Con­
troller that the requested read transfer cycle is, the last transfer of the current screen. This 
causes the Memory Controller to instruct the Pixel Processors to reset the screen refresh ad­
dress counters. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 38 

2.4.6.1.3 FBMC Output Signals to Slave Memory Controllers 

*FBALLCAS (Frame Buffer All Column Address Strobes, Output, TTL) 
*FBALLCAS tells the CAS control logic to allow all memory arrays to execute CAS dur­
ing memory cycle. This is required for BITBLTs and transfer cycles. 

*FBRASA (*Frame Buffer Row Address Strobe Bank A, Output, TTL) *FBRASA 
tells the RAS control logic to allow Bank A to perform RAS during a memory cycle. 

*FBRASB (*Frame Buffer Row Address Strobe Bank A, Output, TTL) *FBRASB 
tells the RAS control logic to allow Bank B to perform RAS during a memory cycle. 

*FBRASW (*Frame Buffer Row Address Strobe Bank W, Output, TTL) 
*FBRASW tells the RAS control logic to allow Bank W to perform RAS during a memory 
cycle. The Valid RAMs will always RAS even when this signal is not asserted. 

*PPWAITFF (Pixel Processor Wait Flip-Flop, Output, TTL) *PPWAITFF is set 
during the first 100 ns of a memory cycle (whether or not the cycle is a Pixel Processor cycle) 
if a Pixel Processor was making a request during the previous memory cycle. It is cleared 
during the last 100 ns of a Pixel Processor cycle. 

FBFALD (Frame Buffer Address Load, Output, TTL) FBFALD tells the Pixel Pro­
cessor to update the addresses in its memory refresh or screen refresh address registers as 
indicated by the state of FASO and FAS 1. 

FBFASO & FBFASl (Frame Buffer Address Select [0,1], Output, TTL) These two 
signals select the address output to the Frame Buffer from the Pixel Processors: 

FASO = 0, FASl = 0 ~ line drawing address 
FASO = 0, FASl = 1 ~ memory refresh address 
FASO = 1, FASl = 0 ~ clear screen refresh address 
FASO = 1, FASl = 1 ~ increment screen refresh address 

FBTST[0-3] (Frame Buffer Timing State, Output, TTL) These four signals indicate 
the current Frame Buffer timing state. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 39 

*PPWAIT (Pixel Processor Wait, Output, TTL) *PPWAIT indicates that the Pixel 
Processors must wait due to some operation on the Frame Buffer card. 

ENDPPCYCO (End Pixel Processor Cycle, Output, TTL) ENDPPCYCO is a signal 
from the arbitration and next cycle control PAL that tells the FST timing PALs on the Frame 
Buffer card to conclude the cycle. 

PPMREQ (Pixel Processor Memory Cycle Request, Output, TTL) PPMREQ in­
dicates that one of the 16 Pixel Processors is making a request for a memory cycle. The 
PPMREQ signal is created by ORing *PPFBMRQ0/2 and *PPFBMRQl/3. 

2.4.6.1.4 Internal Signals 

RFMREQ (Refresh Memory Request, Internal, TTL) RFMREQ is a request made 
every 15.6 microseconds to refresh a new row of DRAM. This signal is generated by the refresh 
timer. 

2.4. 'T Register Description 

The Memory Controller Mode Register determines the mode of the Memory Controller. It 
is a six-bit register which is one of the destinations of the Video Intermediate Register. It is 
write-only. 

The bits are assigned as follows: 

I Bit# I Name 

8 XFERCYCLE 
9 *LONGCYCLE 

10 RASBANKA 
11 RASBANKB 
12 RASBANKW 
13 *PPRESET 

XFERCYCLE set indicates that any cycles requested by the pixel processors will cause 
transfer cycles between the memory array and the shift register inside of the Video RAMs. 
This bit is used for the fast clear of valid planes when swapping buffers. This bit should be 
clear for line drawing operations. 



COMPANY PRIVATE-PS 390 Graphics System May G, 1987 40 

*LONGCYCLE cleared indicates that the memory cycle should be extended to accommo­
date slow Video RAMs. This bit is not used, and should be set for normal Video RAMs. 

RASBANKA set indicates that pixel processor operations should affect the contents of 
Bank A in the Frame Buffer. If this bit is clear, the contents of Bank A will not be affected 
by the pixel processor operations. 

RASBANKB set indicates that pixel processor operations should affect the contents of 
Bank B in the Fr a.me Buffer. If this bit is clear, the contents of Bank B will not be affected 
by the pixel processor operations. 

RASBANKW set indicates that pixel processor operations should affect the contents of 
Bank W in the Frame Buffer. If this bit is clear, the contents of Bank W will not be affected 
by the pixel processor operations. 

*PPRESET clear resets the entire pixel processor array. This bit should be set during 
normal operation. 

2.4.8 Video Serial Port Interface 

The Serial Port of the Frame Buffer Memory is under the control of the Video Timing Controller 
located on the Right Card of the Raster Backend. It runs asynchronous from the Random Port. 
Bank and Row control signals from the Video Control card. cause the pixel and window data 
in the Video Ram Serial Access Memory {SAM) to be shifted out into the pixel pipe. Data is 
clocked out of the Video Ram at one-quarter pixel rate. Before leaving the Frame Buff e~card, 
the pixel and window data is multiplexed to one-half the pixel rate. 

2.4.9 Input/Output Interface Description 

The Frame Buffer can only be written through the Pixel Processor Array. 

The Frame Buffer can be read through the Pixel Read Machine or the video output section. 
The video output section can provide serial access to pixels, but this can only be used for 
diagnostic purposes. 



COMPANY PRJVATE-PS 390 Graphics System May 6, 1987 41 

2.4.10 RAS and CAS Control 

Frame Buffer card RAS and CAS control is determined by the type of cycle and the condition of 
the signals RPRASBANKA, RPRASBANKB, RPRASBANKW and *RBA. The write mask 
is loaded at the fall of RAS. The Bitslice Processor writes RASBANKA, RASBANKB and 
RASBANK W into the FBMC mode register. *RBA is a Pixel Processor signal. 

Frame Buffer memory is divided into sixteen arrays (one for each Pixel Processor) and four 
banks (Bank A, Bank B, Window Bank, and Valid Bank). CAS is controlled per array and 
RAS is controlled per bank. 

Table A.38 shows the Frame Buffer RAS and CAS control. 

2.4.11 Description of Maintenance Features 

Problems with the Frame Buffer can be diagnosed by using the (Scan Line Buffer Pixel Read 
Machine) and the signature readback path in the video output. The visual characteristics of 
the display can be used very effectively to diagnose bad pixel processors and video RAMs. 

2.5 The Video Output System 

The PS 390 Graphics System Video Output System is similar to the design used in Shadowfax. 
The PS 390 Graphics System uses the Video Logic Array designed for Shadowfax. The major 
differences between the two designs are the lack of the writeable window lookup table on the 
PS 390, and the use of color lookup tables built into the digital to analog converters (DACs). 

The hardware components of the Video Output System include; 

• Master Bitslice / Video interface. 

• Video Timing Controller. 

• Automatic Blinking. 

• Light Pen Support Hardware. 

• Cursor Display Generation Hardware. 

• Video Pixel Pipeline. 

• Frame Buffer Interface. 

• Window Lookup Table. 

• Video Logic Array. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

• Digital to Analog Converters (DACs). 

• Pixel Signature Readback. 

Figure 2.7 shows a block diagram for the PS 390 Video Controller. 

VIDEO MEMORY 

BUFFER A BUFFER B 

BANKW 

VIDEO OUTPUT 
REGISTER 

SOUT~ 

1/4P~ 
SPEED 

____......) 
1/2 PIXEL 

SPEED 

DACDATA 
READ BACK 

VIDEO LOGIC ARRAY 

-t' PIXEL CLOCK 

CURSOR 

J 

OVERLA'b,. 
~, 

WlllTE/BLACK,. 

~ ~ 
PIXEL SPEED. ECL-v1 

LUT/DAC 

VIDEO TIMING CONTROLLER 

MONITOR TIMING BLANK 

COMPSYNC 

RAM CONTROL 

Figure 2.7: Block Diagram of the PS 390 Video Controller 

2.5.1 Master Bitslice/Video Interface 

42 

The Master Bitslice/Video Interface is used to read and write the various control and status 
registers on the Bitslice and Video Output boards. The Master Bitslice/Video interface consists 
of the Video Intermediate Register, the video card registers, and the decoding logic to control 
which registers are written and read. 

The standard mode of operation is that the master Bitslice writes the Video Intermediate 
Register during one state, then writes the contents of the Video Intermediate register into one 
of the video registers during the next state. The master Bitslice can write new data into the 

I--+ RED 

f--+GREEN 

f--+ BLUE 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 43 

Video Intermediate Register at the same time that it writes the old data into one of the video 
registers. The converse is true for reading registers. This allows a pipelining operation. 

The VID/BCREG[0-3], VIDEO/*FSBC, and VIDFSBCR/*W bits control which register is to 
be written or read. These same bits are also used for writing to the FIFO Stack Bus Controller. 
VIDEO/*FSBC is in the logic HIGH state when reading or writing to the Video Output Card. 

2.5.2 Video Timing Controller 

The Video Timing Controller provides the correct timing signals for several different display 
devices. The controller supports three different display options: a high resolution format, a 
TV format, and a camera format. Other formats can be supported, but require replacement 
of several parts in the video controller circuitry. 

The Video Timing Controller is basically a massive state machine with output signals to control 
the digital to analog converters and the Frame Buffer. The state machine runs off of VTCCLK, 
which runs at one fourth of the pixel frequency. 

The video timing controller divides into three subsections. One controls horizontal timing, one 
controls ve.rtical timing, and one controls the Frame Buffer. 

2.5.2.1 Horizontal Timing Subsection 

The backbone of the horizontal timing subsection is a nine bit counter which increments every 
four pixels. The count decode PALs are programmed to watch for the counts where a signal 
should change, and then send the proper signal to a bank of J - K flip-flops, which actually 
store the signals HBLANK, CMPSYNC, and PIXFLOWING. HBLANK indicates that the 
video should be at BLANK level for horizontal retrace. CMPSYNC is composite sync, which 
tells the monitor to begin a horizontal or vertical retrace. CMPSYNC is also used to clock the 
vertical timing subsection. PIXFLOWING is used to start and stop the pixel pipeline. At the 
end of every horizontal line the signal *CLRHORZCNTR from the count decode PALs sets 
the horizontal counter back to zero. 

2.5.2.2 Vertical Timing Subsection 

The vertical timing subsection is identical in concept to the horizontal timing subsection. It 
uses a 12 bit counter, and is clocked once every line by the signal CMPSYNC. The signals that 
are stored in the bank of J - K flip-flops are VBLANK, HMSVBLANK, VSYNC, VEQZ, and 
LINEGTE512. VBLANK, VSYNC, and VEQZ are control signals to the horizontal timing 



COMPANY PRIVATE-PS 390 Gra.phics System Ma.y 6, 1987 44 

subsection to tell it what kind of line to display. VBLANK indicates that the display should 
blank its video for vertical retrace. HMSVBLANK indicates to the master Bitslice that vertical 
retrace is happening. HMSVBLANK negates one horizontal line before the actual end of ver­
tical blanking so that the master Bitslice will not start some operation and have it interrupted 
by the active video. In addition, HMSVBLANK can be cleared by the master Bitslice so that 
the master Bitslice can keep track of when end-of-frame processing has been done. VSYNC 
indicates to the display that it should begin vertical retrace. VEQZ indicates to the horizontal 
timing subsection that equalization is happening. VEQZ is used for interlaced displays and 
for strange lines on non-interlaced displays. 

2.5.2.3 Frame Buffer Control 

The Frame Buffer control subsection is a state machine which also runs off of CMPSYNC. 
This subsection produces the signals *EVENFLD, *ROWMSB, *ROWLSB, VCMREQ, and 
LASTTRN. *EVENFLD is asserted when using an interlaced video format to indicate that the 
present field is the even scan lines. *ROWMSB and *ROWLSB select which of the four rows 
of video RAMs should be output-enabled. The two signals are the two least significant bits 
of the display row address. VCMREQ is asserted to request a video transfer cycle from the 
Frame Buffer Memory Controller. This signal is asserted every four lines with non-interlaced 
formats, and every two lines with interlaced formats. LASTTRN is asserted to tell the Frame 
Buffer Memory Controller that the next rows transferred will be the last rows on this screen 
to be transferred. This signal is asserted one horizontal line before the last time VCMREQ 
is asserted to ensure that LASTTRN gets to the Frame Buffer Memory Controller before 
VCMREQ does. 

2.5.3 Custom Video Formats 

The PS 390 Video Timing Controller can be programmed to support different video formats 
other than the standard three which are programmed in a standard system. There are limita­
tions on pixel frequency, number of pixels per line, and number of lines per frame. 

The Vertical section of the Video Timing Controller can specify eight types of horizontal lines 
for the Horizontal section. The signals VBLANK, VSYNC, and VEQZ specify the type of line. 
The Vertical section is programmed to give the right number of each type of line in the frame. 
'l'he Vertical section also controls how many lines are in the complete frame. 

Non-interlaced formats use three types of lines: 

1. Active Video: VBLANK, VSYNC, and VEQZ signals are not asserted. 



COMPANY PRIVATE-PS 390 Gra.phics System May 6, 1987 45 

2. Vertical Retrace: Only VBLANK is asserted. 

3. VSYNC: VBLANK and VSYNC are asserted. 

Interlaced formats use six types of lines: 

1. Active Video: VSYNC, VEQZ, and VBLANK signals are not asserted. 

2. Vertical Retrace: Only VBLANK is asserted. 

3. Equalization (Long SYNC}: Only VEQZ is asserted. 

4. Equalization: VEQZ and VBLANK are asserted. 

5. Retrace {Short SYNC}: VSYNC and VBLANK are asserted. 

6. SYNC: VBLANK, VEQZ, and VSYNC are asserted. 

The Horizontal part of the video timing controller determines the characteristics of each type 
of line: 

• When does COMPSYNC start? 

• When does COMPSYNC end? 

• When does HBLANK start? 

• When does HBLANK end? 

• When does the pixel pipe start? 

• When does the pixel pipe end? 

• How many pixels are in the line? 

The timing of the signals can be programmed to a resolution of four pixels. Most video 
formats can be programmed into the timing controller by programming the right values for 
the preceding parameters. The pixel frequency is limited to 70 MHz. 

2.5.3.1 Setting Up a Custom Vid~o Format 

Two examples are given of how to customize a video format: one non-interlaced format, and 
one interlaced format. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 46 

2.5.3.1.1 Example 1: 

Format: DEC VR-290. 1024 x 864, 60 Hz, non-interlaced. 

Step 1: Determine pixel frequency. The timing specification gives the active video time on each 
horizontal line as 14.81 µsec. 14.81 µsec/1024 pixels gives 14.452 nsec/pixel, or a pixel 
frequency of 69.1968 MHz. This is the maximum pixel frequency allowed. 

Step 2: Build your horizontal line. The timing specification gives the horizontal period as 18.5 
µsec. 18.5 µsec / 14.452 nsec /pixel gives 1280 pixels /line. By similar calculations the 
front porch, sync pulse, and back porch are found to have the following number of pixels 
in them: 

Front Porch: 
Sync Pulse: 
Back Porch: 

12 pixels 
128 pixels 
116 pixels 

(160 nsec) 
(1850 nsec) 
(1680 nsec) 

Total blanking time is the sum of these, or 256 pixels. There are 1024 pixels of video, 
for a total of 1280 pixels per line. 

The Video Timing controller can only handle down to 4 pixel resolution, so the numbers 
must be rounded to the nearest multiple of four. After the calculations are done, check 
to see that the numbers still add up to one complete line. 

Step 3: Program the counts. Take all of the pixel counts and divide by four. These are the 
counts that are needed for the Horizontal Decode PAL. The count is zero just after the 
beginning of COMPSYNC. The Vertical part of the timing controller changes at the 
beginning of COMPSYNC, so the line type changes at the beginning of COMPSYNC. 
The pixel pipe needs to be started and stopped 16 pixels ( 4 counts) before and after the 
end and beginning of HBLANK. With this information, the counts are as follows: 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Video Line: 

Count 

31 
56 
60 

312 
316 
319 

VBLANK Line: 

Count 
31 
60 

316 
319 

VSYNC Line: 

Count 
60 

287 
316 
319 

Action 

End COMPSYNC 
Start Pixel Pipe 
End HBLANK 
Stop Pixel Pipe 
Begin HBLANK 
Clear Horizontal Counter, Begin COMPSYNC 

Action 
End COMPSYNC 
End HBLANK 
Begin HBLANK 
Clear Horizontal Counter, Begin COMPSYNC 

Action 
End HBLANK 
End COMPSYNC 
Begin HBLANK 
Clear Horizontal Counter, Begin COMPSYNC 

47 

Notice that COMPSYNC always begins at the same count. The horizontal oscillator 
in the monitor always triggers on the beginning of COMPSYNC, so the. beginning of 
COMPSYNC cannot vary. 

Step 4: Determine the vertical timing. On the VR290 the specification says vertical sync 3H, no 
vertical front porch, total blanking interval 37H. The vertical back porch must be 34H. 
Total vertical time is 901H. (864H video + 37H blanking) The vertical front and back 
porches are probably the best places to fudge the timing to give the desired frame rate. 

Step 5: Program the counts. Several cautions are in order. The next frame officially begins at the 
beginning of vertical blank to allow as much time as possible for end-of-frame processing. 
HMSVBLANK ends one line earlier than actual VBLANK to allow the Bitslice to finish 
its end of frame processing. LINEEQ512 actually happens at line 511 because there is 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 48 

another clock delay until LINEGTE512 asserts. LASTTRN needs to assert 1 line before 
the last actual transfer of the field to ensure that the LASTTRN signal gets to the Frame 
Buffer Memory Controller before the last transfer request. 

Count Action 

2 End VSYNC 
35 EARLYENDVBLANK 
36 End VBLANK 

548 LINEEQ512 
895 LAS TT RN 
900 Start VBLANK, Start VSYNC, CLRVRTCNTR 

2.5.3.1.2 Example 2: 

Format: NTSC, 640 x 484 Interlaced, 30 Hz 

With interlaced formats there is a requirement for equalization pulses at double the horizontal 
frequency for a period of time during the vertical blanking period. During the equalization 
period the horizontal frequency is doubled, giving a COMPSYNC start every 1/2 H in order 
to put out these equalization pulses. This also allows the Video Timing Controller to start 
VSYNC in the middle of a horizontal line between the first and second fields of the frame. 

The RS-170 and RS-343 standards call for equalization pulses, 6 in number, both preceding 
and following the vertical sync pulse. This means that the blanking interval between the first 
and second fields has two kinds of lines in it. The first line after the active video is only 1/2H 
long, but has a sync pulse as wide as an active video line. The first full length line after the 
vertical sync pulse has sync pulse which is only as wide as the equalization pulse, even though 
the line is a full IH long. These lines are obtained by starting VBLANK 1/2H later than the 
first line which is blanked, and by putting in a "false" extra vertical sync pulse lH long after 
the equalization pulses end. 

Step 1: Determine pixel frequency. The timing specification gives the active video time on each 
horizontal line as 52.456 µsec. 52.456 µsec/640 pixels gives 81.900 nsec/pixel, or a pixel 
frequency of 12.21 MHz. This is well within the maximum allowable pixel frequency. 

Step 2: Build your horizontal line. The timing specification gives the horizontal period as 63.556 
µsec. 63.556 µsec / 81.9 nsec / pixel gives 776 pixels /line. By similar calculations the 
front porch, sync pulse, and back porch are found to have the following number of pixels 
in them: 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Front Porch: 
Sync Pulse: 
Back Porch: 

20 pixels 
60 pixels 
56 pixels 

(1638 nsec) 
(4914 nsec) 
(4586 nsec) 

49 

Total blanking time is the sum of these, or 136 pixels. There are 640 pixels of video, for 
a total of 776 pixels per line. 

Step 3: Program the counts. Take ail of the pixel counts and divide by four. These are the 
counts that are needed for the Horizontal Decode PAL. The count is zero just after the 
beginning of COMPSYNC. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 50 

Active Video: 
Count Action 

14 End COMPSYNC 
24 Start Pixel Pipe 
28 End HBLANK 

184 Stop Pixel Pipe 
188 Begin HBLANK 
193 Clear Horizontal Counter, Begin COMPSYNC 

Vertical Retrace: 
Count Action 

14 End COMPSYNC 
188 Begin HBLANK 
193 Clear Horizontal Counter, Begin COMPSYNC 

Equalization (Long SYNC): 
Count Action 

14 End COMPSYNC 
96 Clear Horizontal Counter, Begin COMPSYNC 

Equalization: 
Count Action 

6 End COMPSYNC 
96 Clear Horizontal Counter, Begin COMPSYNC 

Retrace (Short SYNC): 
Count Action 

6 End COMPSYNC 
188 Begin HBLANK 
193 Clear Horizontal Counter, Begin COMPSYNC 

VSYNC: 
Count Action 

81 End COMPSYNC 
96 Clear Horizontal Counter, Begin COMPSYNC 

Step 4: Determine the vertical timing. An interlaced frame consists of two fields, one of which 
displays the even scan lines, and one of which displays the odd scan lines. In the Video 
Timing Controller, the Odd field is the field which is displayed first. It contains the 
top scan line on the screen (Numbered 0 by the pixel processors). The half lines that 
are displayed with television pictures are not displayed by the Video Timing Controller. 



COMPANY PRIVATE-PS 390 Grnphics System May 6, 1987 51 

The general scheme of the video format is a blanking interval followed by 242 lines of 
active video, followed by another blanking interval followed by 242 lines of active video. 
Remember that blanking intervals are not identical. The timing specification is as follows: 

3H 
3H 
3H 

UH 
242H 

.5H 
3H 
3H 

2.5H 
lH 

llH 
242H 

Equalization 
VSYNC 
Equalization 
Vertical Retrace 
Active Video (Odd numbered scan lines) 

Equalization (Long SYNC) 
Equalization 
VSYNC 
Equalization 
Retrace (Short SYNC) 
Vertical Retrace 
Active Video (Even numbered scan lines) 

Note that the sum is 525H lines. All interlaced formats have an odd number of scan lines 
in each frame, with VSYNC beginning half way through a scan line between the first 
and second fields. 

Step 5: Program the counts. Remember that during VEQZ and VSYNC the line counter counts 
twice each line. Notice that action LINEEQ512 never occurs. There are only 484 lines 
of video in this format. If there were more than 512 lines of active video the action 
would occur twice during the frame. LASTTRN needs to assert 1 line before the last 
actual transfer of the field to ensure that the LASTTRN signal gets to the Frame Buffer 
Memory Controller before the last transfer request. Because VBLANK does not start 
until one line after the last line actually displayed during the first field, LASTTRN needs 
to be two lines later than would be expected. 

The counts come out as follows: 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 52 

Count Action 

5 Start VSYNC 
11 EndVSYNC 
17 End VEQZ 
27 EARLYENDVBLANK 
28 End VBLANK 

269 LAS TT RN 
I 

270 Begin VEQZ 
271 Begin VBLANK 
277 Begin VSYNC 
283 End VSYNC 
288 Begin VSYNC, End VEQZ 
289 End VSYNC 
299 EARLYENDVBLANK 
300 End VBLANK 
539 LAS TT RN 
542 Begin VBLANK, Begin VEQZ, CLRVRTCNTR 

For more information, see Table 2.2, Table 2.3, and the source files for the Horizontal 
Decode PAL, the Vertical Decode PAL, and the Frame Information PAL. 

2.5.4 Automatic Blinking 

Automatic Blinking Hardware allows the master Bitslice to set a blink rate for certain 
windows so that they will blink on and off independent of any action on the part of the 
master Bitslice. 

The automatic blinking hardware consists of an eight bit counter which clocks every 
VSYNC, and is loaded from the master Bitslice. The count which is loaded is the desired 
blink rate in fields on /off subtracted from hex 100. Non-blinking requires a special case 
condition: setting the *DISPBLINK bit in the video control register. Whenever the 
counter reaches the hex value FF, it toggles the bit *BLINKON, which goes into the 
window lookup table to enable and disable the display of blink windows. Whenever the 
blink rate register is written, the blink windows will be displayed until the next time the 
counter reaches hex FF. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 53 

Table 2.2: Vertical Timing of Video Formats 

VR290 VCount Count at Start 
VSYNC VEQZ VB LANK 

3H Synchronization 3 900 1 0 1 
34H Back Porch 34 2 0 0 1 

864H Active Video 864 36 0 0 0 
901H Frame Time 901 

RS-1 '10 (NTSC) 

1st Field: 
3H Equalization 6 542 0 I 1 

3H Equalization 6 5 1 
3H Equalization 6 11 0 1 1 

UH Vertical Retrace 11 17 0 0 
242H Active Video 242 28 0 0 0 

2nd Field: 
.5H Equalization (Long SYNC) 1 270 0 1 0 

3H Equalization 6 271 0 1 1 
3H VSYNC 6 277 1 1 1 

2.5H Equalization 5 283 0 1 1 
1H Retrace (Short SYNC) 1 288 1 0 1 

llH Vertical Retrace 11 289 0 0 1 
242H Active Video 242 300 0 0 0 
s2sH Frame Time 543 

RS-343 1024 x 864 

1st Field: 
3H T:\ 1• A• .c;quauzanon 6 956 0 1 
3H VSYNC 6 5 1 1 1 
3H Equalization 6 11 0 1 l 

28H Vertical Retrace 28 17 0 0 1 
432H Active Video 432 45 0 0 0 

2nd Field: 
.5H Equalization (Long SYNC) 1 477 0 I 0 
3H Equalization 6 478 0 1 1 
3H VSYNC 6 484 1 

2.5H Equalization 5 490 0 
IH Retrace (Short SYNC) 1 495 1 0 1 

28H Vertical Retrace 28 496 0 0 I 

432H Active Video 432 524 0 0 0 

939H Frame Time 957 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 54 

Table 2.3: Video Format Line Types 

VSYNC VEQZ VBLANK Line Type 

0 0 0 Active Video 
0 0 1 Vertical Retrace 
0 1 0 Equalization (Long SYNC) 
0 1 1 Equalization 
1 0 0 Unused 
1 0 1 Retrace (Short SYNC) 
1 1 0 Unused 
1 1 1 VSYNC 

2.5.5 Light Pen Support Hardware 

The light pen support hardware provides +5 volt fused power on the 1/0 panel for a 
light pen, and provides for latching of the screen address at the time of the light pen hit. 
The position of the tip switch is also readable. 

When a light pen hit occurs, the TTL level pick signal comes onto the board, is converted 
to ECL, and then passed through a chain of six D flip-flops to synchronize the hit signal 
to the pixel clock. The synchronized signal %SYNLPPICK is used to register the ECL 
two pixel and four pixel clocks to get the single pixel resolution on the hit. The signal 
%4PLPPICK is produced by clocking %SYNLPPICK with the 4 pixel clock. The TTL 
version of %4PLPPICK is used to latch in the current horizontal and vertical counts 
from the video timing controller. The latched count can be read by the master Bitslice. 
There is no hardware in the video output system for automatic light pen tracking. 

There are four bits in the video control register which can be used by the master Bitslice 
to do a screen blast if the light pen has lost the tracking cross. 

2.5 .. 6 Cursor Display Generation Hardware 

Cursor display generation hardware allows a overlaying cursor to be displayed on the 
screen. The cursor can go off any edge of the screen. The cursor image contains three 
colors, one of which is controlled by a mask register. 

The cursor display generation hardware can display one of two selectable cursor defi­
nitions. Both cursor definitions are writeable from the master Bitslice. The definition 



COMPANY PRIVATE-PS 390 Graphics System Ma.y 6, 1987 55 

allows for three colors for each pixel. The colors are clear, black, and mask. The mask 
color is controlled by the contents of the video control register. Clear allows the user to 
see through that portion of the cursor to the actual graphics. The colors that are dis­
played are ten percent brighter than the brightest color normally displayed, so a white 
cursor will be visible even on a white background. 

Two sets of comparators continually monitor the counts in the vertical and horizontal 
timing subsections. When the vertical comparator detects that the cursor display should 
begin on the present line, it enables the horizontal comparator to detect the start of 
the cursor in the horizontal direction. The horizontal comparator detects the start of 
the cursor to only an eight pixel resolution. The horizontal start from the comparator 
allows an ECL down counter to start counting. When the ECL counter reaches zero, the 
cursor actually begins to be displayed. The ECL counter increments the cursor address 
counters every eight pixels, which brings another eight pixels into the 8177 Video Shift 
Registers. 

The cursor can be made to go off of the top of the screen by placing the cursor at the 
top of the screen, and then changing the contents of the cursor Y start register so that 
display of the cursor begins part way through the definition of the cursor. No special 
treatment is required to make the cursor go off any other edges of the screen. 

2.5. 7 Pixel Pipeline 

The pixel pipeline receives data from the Frame Buffer, and sends it to the data inputs 
to the DAO. It is converted to ECL and speed up to the pixel rate before it gets to the 
DA Cs. 

The pixel pipeline consists of the pixel clock generation, the Frame Buffer interface,· the 
pixel data paths, the window lookup table, and the video logic array. 

The speed of the pixel pipeline is controlled by the pixel clock. The pixel clock is selectable 
from the video control register. The four clocks available are %HIRES, %DIAG, %CAM, 
and %TV. %HIRES is used for a high resolution display. %DIAG is used for diagnostic 
purposes. The actual signal is a bit in the video control register. %CAM is used for a 
color camera display format. %TV is used to drive a display with television timing. 

The pixel clock is used to clock a counter which gives the 2 pixel, 4 pixel, and eight pixel 
clocks. The video RAM shift clocks are generated by combining the 4 pixel clock with 
delayed versions of the signal PIXFLOWING. 

The pixel data comes out of the video RAMs 4 pixels at time, each at one quarter of the 
pixel speed. The data are registered in a bank of 7 4F399 registered multiplexers. The 
data coming from these registers is registered in the video output system in the 0/2 and 



COMPANY PRIVATE-PS 390 Graphics System May G, 1987 56 

1/3 FBC registers. The pixel pipeline at this point is two pixels wide and runs at one 
half of pixel speed. The pixel color data from the FBC registers go directly into the video 
logic array. The pixel window data go into the color lookup table. The output from the 
color lookup table is one pixel wide and runs at pixel frequency. The output from the 
color lookup table connects into the video logic array. The output from the video logic 
array is one pixel wide and runs at pixel speed. The digital to analog converter inputs 
are connected directly to the video logic array. 

2.5.8 Frame Buffer Interface 

The Frame Buffer Interface requests video transfer cycles from the Frame Buff er Memory 
Controller, controls which video RAM outputs are sent to the pixel pipeline, and controls 
the rate at which the pixel data is sent. 

The interface between the Frame Buffer and the video output system is used to send 
pixel data to the video output system from the Frame Buffer. The control signals are as 
follows: 

• COBABRO: Shift clock for column 0, banks A and B, row 0. 

• COBABRl: Shift clock for column 0, banks A and B, r~w 1. 

• COBABR2: Shift clock for column 0, banks A and B, row 2. 

• COBABR3: Shift dock for column 0, banks A and B, row 3. 

• COBWRO: Shift clock for column 0, bank W, row 0. 

e COBWRl: Shift clock for column O, bank W, row 1. 

• COBWR2: Shift clock for column 0, bank W, row 2. 

• COBWR3: Shift clock for column 0, bank W, row 3. 

• *RCLKO: Two pixel clock used to register the shift docks on the Frame Buffer. 

• SELCOLO: Select input to the 74F399 multiplexing registers on the frame buffer. 

• *ROWLSB: Least significant bit of row address, used to decode which video RAMs 
to output enable. 

e *ROWLSB: Second least significant bit of row address, used to decode which video 
RAMs to output enable. 

• *BANKA: Frame Buffer bank A is being displayed, used to decode which video 
RAMs to output enable. 

• *BANKB: Frame Buffer bank B is being displayed, used to decode which video 
RAMs to output enable. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 57 

• VCMREQ: Request to the Frame Buffer to transfer the next four rows into the 
video shift registers. 

• LASTTRN: Indicates that the next transfer request will be the last transfer for this 
field. 

2.5.9 Window Lookup Table 

The window lookup table controls the display mode of the 16 windows which can be 
used. The window lookup table is not writeable. 

The window lookup table is implemented in two 16R8B PALs run in parallel at one half 
of pixel frequency. The PALs receive data from the FBC registers, and send formatting 
information to the video logic array. Additional inputs to the PALs specify which of the 
valid bits to use (LINEGTE512) and if blink windows should be displayed (*BLINKON). 

The assignment of window numbers is as follows: 

• Windows 0 -+ 3: Double buffered, non-blink. Display pixel data if valid bit is set, 
otherwise display background color. 

• Windows 4 -+ 7: Double buffered, blink. I;>isplay pixel data only if valid bit is set 
and *BLINKON is asserted, otherwise display background color. 

• Windows 8 -+ 15: Single buffered. Always display pixel data. 

The data from the window lookup PALs are converted to ECL, registered, multiplexed 
to pixel speed, registered, and sent to the video logic array. The total delay through the 
window lookup table is four pixels. 

2.5.10 Video Logic Array 

The video logic array on the video output system is used to convert the pixel data to 
ECL, speed multiplex it up to full pixel speed, and substitute in background color for 
invalid pixels. It is also used to load the color lookup tables in the digital to analog 
converters. In order to load the color lookup tables, the video logic array is taken out of 
display mode. The video logic array control register is loaded with EO hex, which causes 
the video logic array to pass data directly from the color lookup table address register 
to the address inputs of the digital to analog converters. The counters inside the video 
logic array are not used. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 58 

2.5.11 Digital to Analog Converters (DACs) 

The digital to analog converters take digital data at ECL logic levels and convert the data 
to analog signals used to drive the display. The digital to analog converters contain 256*8 
lookup tables which are used for gamma correction. The lookup tables are accessible 
from the master Bitslice. The digital to analog converters produce video output signals 
at RS-343 standard levels. 

The digital to analog converters are AM8151 Graphics Color Palettes. There are a total 
of three used, one each for red, green, and blue video. The green digital to analog 
converter is used also for composite sync. Only the horizontal sync input is used on 
the green DAC, because composite sync cannot be generated properly by the internal 
XORing of horizontal sync and vertical sync in the DAC. The video timing controller 
generates the proper composite sync signal. 

Each DAC has a reference voltage and a reference current to control the output level. 
There is a trimpot which needs to be set to give an adjustment voltage of 1.076 volts. 
The adjustment voltages are located at E3, E4, and E5. 

The AM8151s are specified to directly drive 50 ohm and 75 ohm RS-343 monitors. The 
monitor should have a 75 ohm termination on the video inputs. If more than one monitor 
is to be driven, they should be daisy-chained together, with only the last monitor in the 
chain having the 75 ohm termination on the video outputs. If large numbers of monitors 
are to be driven from one PS 390, a separate video buffer/amplifier should be used. 

2.5.12 Pixel Signature Readback 

The pixel signature readback hardware can be used to diagnose problems with the Frame 
Buffer and pixel pipeline. The master Bitslice can read the data which go to the digital 
to analog converters using the pixel signature readback hardware. 

The actual data which are sent to the digital to analog converters can be read by the 
Master Bitslice through the pixel signature readback. This feature is not useful during 
runtime, but can be a powerful diagnostic tool. In order to use this feature, the display 
format should be set to diagnostic. Diagnostic format is high resolution timing at the 
speed controlled by the DIAGCLK bit in the video control register. The video system 
should be clocked until the end of vertical blank. The pixel data will begin coming to 
the DACs a fixed number of clock ticks after that. The data can be compared to the 
data in the Frame Buffer to check to see if the pixel pipeline is functioning properly. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

2.5.13 Register Description 

The registers include: 

• Video Control Register: 16-Bits. 
Video Enable: 1 bit. 
Buffer Select: 1 bit. 
Video Format: 2 bits. 
Cursor Enable: 1 bit. 
Cursor Select: 1 bit. 
Vertical Blank: 1 bit. (Read-Only) 
Even Field: 1 bit. (Read-Only) 
Screen Blast: 4 bits. Enable and 3 color bits. 
Tip Switch Position: 1 bit. (Write 0 to clear hit registers). 

• Background Color Register: 24 bits. 

• Light Pen Hit X: 11 bits. (Read-Only) 

• Light Pen Hit Y: 12 bits. (Read-Only) 

• Cursor X Position: 11 bits. 
• Cursor Y Position: 12 bits. (Double Register) 

59 

• Cursor RAM Address Register: 9 bits. Six bits are Cursor Row Start. (Write-Only) 
• Color Lookup Table Address Register: 8 bits. 
• Color Lookup Table Data: 11 bits. 8 bits data, 3 bits mask. 

• Cursor RAM Overlay /Red data: 16-Bits. 
• Cursor RAM Green/Blue data: 16-Bits. 

2.5.14 Description of Maintenance Features 

Most of the registers that are writeable are also readable. Some notable exceptions are 
the background color registers, the color lookup table address register, and the cursor 
RAM address register. The background color registers and color lookup table address 
register can be read through the signature path, and the cursor RAM address register 
can be tested by means of an address lines test similar to that used for the Mass Memory. 
In general most of the problems can be seen on the screen, and only minimal experience 
is needed to recognize the common problems. 

One useful diagnostic feature of the video logic array is the fast write of lookup table 
mode. If the video logic array is not in display mode, the color tables have already been 
loaded, and screen blast is disabled, writing hex 40 to the video logic array control register 
will cause the video logic array to cycle through the color lookup table addresses, which 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 60 

will display some rising gray scales on the screen. This test verifies that the video timing 
controller, video logic array, and digital to analog converters are functioning properly. 

2.6 The Raster Display 

The Raster Display or Monitor for the PS 390 is the FIMI 2054. The monitor is part of 
the PS 390 hardware and is technically not part of the peripheral set. However a brief 
introduction to its features may be useful. 

The PS 390 can use either a FIMI 2054 or a DEC VR290 for displaying its raster images. 
The FIMI Monitor has a 20 inch viewing area while the DEC monitor offers a 19 inch 
veiwing area. Both monitors operate with AC 110/200 VAC, 60/50 Hz and a nominal 
power consumption of 150 watts. They have the following features: 

Contrast Lets the user adjust the video display to a suitable intensity. 
Brightness Lets the user adjust the background intensity to compensate for ambi­

ent room light. 

Degauss Permits the user to clear color picture distortion caused by external 
magnetic interference. 

Power On/Off Turns the monitor on and off. The monitor should be turned off at the 
end of the workday to extend its life. 

Tilt Lock Locks or unlocks the tilting mechanism to allow or prevent movement; 
swivel operation is not affected. 

These adjustment devices are located on the lower righthand side of the monitor. 



Chapter 3 

The PS 390 Peripheral Set 

The PS 390 supports a variety of peripheral set configurations. With the initial release 
of the system, only the PS 300 peripherals can be supported. This includes the option of 
using either the LED or No/LED keyboards. The PS 300 peripherals require their own 
Peripheral Multiplexer. 

Table 3.1: PS 300/Low Cost Peripheral Configurations 

PS SOO Peripheral Multiplexer II Low Cost Peripheral Multiplexer 

LED Keyboard VT220 Style Keyboard 
No/LED Keyboard Switchable Dual Function (IBM & 

DEC) Keyboard 

Function Button Array (Optional) Function Buttmi Arra.y (Optional} 
Interactive Control Dials (Optional} Interactive Control Dials (Optional) 

PS 300 Version with LEDs Low Cost - No LEDs 
Data Tablet (Optional) Data Tablet (Optional) 

6 x 6 Tablet 6 x 6 Tablet 
12 x 12 Tablet 12 x 12 Tablet 

Optical Mouse (Optional) Optical Mouse (Optional) 

The Peripheral Multiplexer combines the signals from the peripherals or interactive de­
vices and transmits them to the PS 390. 

The Low Cost Peripheral Set (which is the standard peripheral set for the PS 390) has 
its own Peripheral Multiplexer, and an option for using either a VT-220 style keyboard 
{Standard) or a Switchable Dual Function {IBM & DEC) keyboard {Optional), in addi-

61 



COMPANY PRIVATE-PS 390 Graphics System May G, 1987 62 

tion to the other low cost peripherals. 

The 32-Key Function Button Array is an extension of the programmable function keys 
on the keyboard. The keys are user definable. 

The Control Dials have eight rotary encoders attached to dials which allow the user to 
manipulate screen images interactively. 

The Data Tablets allow the user to use a stylus or cursor to encode position data into 
the PS 390. 

The Optical Mouse sends x and y position data to the PS 390. 

Figure 3.1 shows the PS 390 Graphics System and its associated peripheral devices. 

3.1 The Peripheral Multiplexer 

There are two Peripheral Multiplexers (or MUX Boxes) available for use with the PS 390. 
The first MUX box is for use with the PS 300 peripheral set. The second is designed to 
accommodate the new low cost peripheral set. 

The Peripheral Multiplexer is a stand-alone metal box which is designed to fit beneath 
and form a pedestal for the Raster Display (FIMI 2054, DEC VR290, or equivalent). It 
furnishes the power to drive the peripherals and is also their point of connection to the 
system. Five connectors are provided on the front of the multiplexer which allows the 
various interactive peripherals to be connected to the system. Each connector is uniquely 
dedicated to the specific peripheral for which it is intended. Therefore, only one of each 
type of peripheral is allowed to be attached. The pinouts for these connectors are listed 
in Tables 3.2 and 3.3. 

The Peripheral Multiplexer provides programmed logic which allows the data from in­
teractive peripherals to be multiplexed over a single RS-232C line into the controller via 
one of the available communication ports. 

Figure 3.2 shows the backside connectors and plugs for both Peripheral Multiplexers. 
Figure 3.3 shows the peripheral connections for both the PS 300 peripherals and for the 
low cost peripheral set. (Note the difference in the keyboard connectors.) 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

HOST 

Input FSBC 

Master BitSlice 
Processor 

Input FIFO 

Double Buffer 
interface 

Pipeline 
Subsystem 

ACP Card 

Mass Memory 

Joint Control 
Processor 

~ 
OPTICA 
MOUSE 

Delta 
Calculator 

Depth 
Cue 

0000 
000000 
000000 
000000 
000000 

0000 

FUNCTION 
BUTTONS 

End Point 
FSBC 

Color 
FSBC 

00 

Pixel Processor 
Array Loader 

Frame Buffer 

Video 
Output 
System 

Raster Display 

Cl 

MUX BOX 

00 0000000000000 
00 0000000000000 

0000000000000 
00 
DIALS KEYBOARD 

Figure 3.1: The PS 390 and Peripheral Devices 

63 

TABLET 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 64 

Table 3.2: Pin Assignments for the PS 300 Peripherals Multiplexer 

Designation Connector Pinout 

32-Key Buttons RJ-11 1. .. +12 VDO 
Dials 90 degree 2 ... Ground 

Keyboard PO Mount 3 ... RS-422 OUT B 
4 ... RS-422 IN B 
5 ... RS-422 IN A 
6 ... RS-422 OUT A 
7 ... Ground 
8 ... +12 VDC 

Data Tablet 7-Pin Micro DIN 1. .. Signal & Power Ground 
Mouse (Hosiden) 2 ... Rec. Data from Device 

3 ... Xmit Data to Device 
4 ... -12 VDC for RS-2320 
5 ... +5 VDC 
6 ... +12 VDC 
7 ... Device Present 
Shell - Chassis Ground 

Graphics Controller Amphenol 25 Pin D 1. .. Chassis Ground 
117-DBMM-25SA 2 ... Transmitted Data 
(Military Socket 3 ... Received Data 
including locking 7 ... Signal Ground 

screw- assen1bly) Other Pins not used 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 65 

Table 3.3: Pin Assignments for the Low Cost Peripherals Multiplexer 

Designation Connector Pinout 

32-Key Buttons DuPont 68290-101 1. .. +5 VDC 
Dials (2 rows of 4 pins) 2 ... Ground 

3 ... Device Present 
4 ... Unused 
5 ... +12 VDC 
6 ... -12 VDC 
7 ... TX Data 
8 ... RX Dat.a 
E.S.D. Shield-Chassis Ground 

Keyboard 5 Pin DIN 1. .. Signal Ground 

(5 contacts at 180 2 ... Data In 
Degree Socket) 3 ... Data Out 

4 ... Signal Ground 

5 ... +5 VDC 
Shell - Chassis Ground 

Data Tablet 7-Pin Micro DIN 1. .. Signal & Power Ground 
Mouse (Hosiden) 2 ... Rec. Data from Device 

3 ... Xmit Data to Device 
4 ... -12 VDC for RS-2320 
5 ... +5 VDC 
6 ... +12 VDC 
7 ... Device Present 
Shell - Chassis Ground 

Graphics Controller Amphenol 25 Pin D 1. .. Chassis Ground 
117-DBMM-25SA 2 ... Transmitted Data 
(Military Socket 3 ... Received Data 
including locking 7 ... Signal Ground 

screw assembly) Other Pins not used 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

0 0 90-130/180-250v-I I 2A MAX 2A MAX 6/3A 47-63Hz 

o;:~ ..... :; ~ ~ E~J o 
\ CONTROLLER 00000000000000000000000000.,. ) 

"'-...... 00000000000000000000000000~ 

Figure 3.2: Backside Connectors for the Peripheral Multiplexers 

... ..... ..... ...... ... r::l ············- .... ltiJ ~.._.._.._.._-._-:..-:..-._-._;_ m: 

() [CJ [CJ [CJ 

MOUSE BUTTONS DIALS KEYBOARD TABLET LIGHT POWER 

... ..... ..... ..... ... 

MOUSE BUTTONS DIALS KEYBOARD 

PEN 

0 

TABLET LIGHT POWER 
PEN 

66 

PS390519Pl 
old style 

PS390518Pl 
new style 

Figure 3.3: Multiplexer Connectors for the PS 300 and Low Cost Peripherals 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 67 

3.1.1 Functional Characteristics 

The Peripheral Multiplexer or MUX consists of a circuit card to which six input ports 
and one output port in addition to the input power port are connected. The six input 
ports support the following peripheral devices: 

• The Keyboard 
• The Control Dials 

• A 32-Key Function Button Array 

• A Data Tablet 
• Spare Port for a Mouse or other device 
• A Light Pen (Not Supported) 

The function of the. MUX is to receive input data from the peripheral devices and to 
multiplex the data onto an RS-2320 output port to the PS 390, and to accept the data 
from the terminal controller and de-multiplex it to the various peripheral devices which 
are connected to it. 

3.1.1.1 PS 300 Peripheral Set Device Addressing 

The MUX has five active input ports on the front of the box, 1 output port on the rear 
of the box and 3 power connectors on the rear of the box. Device addressing assigns 
numbers to the ports. When one faces the front of the box the leftmost connector is a 
7-Pin Micro DIN. It is for connection of a mouse when one is used. This port is addressed 
as port x'B4'. The next three connectors toward the right are R.J-11 connectors. The 
leftmost of these connectors is for the 32-Key Lighted Function Buttons and is addressed 
as port x'B3'. The next connector is for the centre! dials and is addressed as port x'B2'. 
The rightmost RJ-11 connector is for the keyboard and is addressed as port x'Bl'. The 
7-Pin Micro DIN connector at the right of the front panel is for the data tablet and is 
addressed as port x'B6'. When control messages are sent to the MUX box itself, they 
are addressed to port x'BO'. 

3.1.1.2 Low Cost Peripheral Set Device Addressing 

The MUX has five active input ports on the front of the box, 1 output port on the rear of 
the box and 3 power connectors on the rear of the box. Device addressing assigns numbers 
to the ports. When one faces the front of the box the leftmost connector is a 7-Pin Micro 
DIN. It is for connection of a mouse when one is used. This port is addressed as port 
x'B4'. The next two connectors toward the right are "Latch-N-Lock" connectors. The 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 68 

leftmost of these connectors is for the 32-Key Lighted Function Buttons and is addressed 
as port x'B3'. The rightmost one of these DuPont connectors is for the control dials 
and is addressed as port x'B2'. The five-pin DIN connector is for the keyboard and is 
addressed as port x'Bl'. The 7-Pin Micro DIN connector at the right of the front panel 
is for the data tablet and is addressed as port x'B6'. When control messages are sent 
to the MUX box itself, they are addressed to port x'BO'. These addresses are used for 
software compatibility with previous systems. 

3.1.1.3 Light Pen 

The PS 390 does not presently support the use of a Light Pen. A connector has been 
provided on the Peripheral Multiplexer to accommodate one in the future. At µresent, 
however, a Light Pen is not planned for the PS 390. 

3.1.2 Transmission Characteristics 

3.1.2.1 Multiplexing and De-Multiplexing 

When peripheral data is received from an input port, the MUX queues the data to the 
output port for transmission to the host. If the last byte sent is from the same input 
device, then the MUX sends just that queued byte unless it is in the range of x'BO' to 
x'BF'. In that case it prefixes the queued byte with another byte with the value of x'B7'. 
If the data is from a different input device, then the MUX prefixes that byte only with 
the address of the device port, i.e., a value in the range of x'BO' to x'B6'. The MUX 
does not send another device port address until the source of the n+ 1st data byte differs 
from the source of the nth data byte. 

When data is received from the host or terminal controller, the MUX sends the data byte 
received to the last addressed peripheral device until it receives a new port address in 
the range x'BO' thru x'B6'. It then sends all subsequently received data to that address 
until it receives a new address. 

3.1.2.2 Flow Control 

The flow of data to the peripheral devices is shut down when the MUX sends t.he sequence 
x'B030' to the PS 390. This sequence is the equivalent of "XOFF" in asynchronous 
protocols and is used to protect against the overrun of MUX buffers. When the MUX 
resumes receiving data from the PS 390, it sends the sequence x'B040'. This sequence is 
the equivalent to "XON" in asynchronous protocols. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 69 

3.1.2.3 Data Framing and Transmission Rates 

The data sent to and from the MUX is asynchronous data with each byte containing 
eight data bits without parity plus one start bit and one stop bit. The data transmission 
rate of the MUX to and from the PS 390 is 19,200 baud. The transmission rates between 
the various peripherals and the MUX are shown in Table 3.4. 

Table 3.4: Peripheral Device Transmission Rates 

Device I Baud Rate I 
Keyboard Port x'Bl' with Standard Keyboard 1200 Baud 
" " with Dual Function Keyboard 9600 Baud 
Control Dials Port x'B2' 9600 Baud 
32 Fune. Buttons Port x'B3' 9600 Baud 
Mouse Port x'B4' 9600 Baud 

Data Tablet Port x'B6' 9600 Baud 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 70 

3.1.3 Diagnostic Loopback 

The MUX will respond with the sequence x'B060' whenever it receives the sequence 
x'BOB9' from the PS 390. This response informs the PS 390 that the MUX is powered 
on and working, (meaning that it will recognize commands and respond to them). 

3.2 The PS 390 Keyboards 

The PS 390 can use three different keyboards: 

(a) The standard PS 390 Keyboard is a DEC VT-220 style keyboard with a few minor 
modifications. 

(b) The Dual Function Switchable Keyboard which is a 5085 Model 2 look-alike key­
board. 

(c) The PS 300 Keyboards: E&S #204201-lOOwith LEDs and E&S #204201-101 with­
out LEDs. 

The PS 300 keyboard has its own peripheral multiplexer to accommodate it. PS 300 
keyboard operation is described in detail in the PS 300 Document Set Volumes 1 & 5. 

The VT-220 look-alike keyboard and the Dual Function Switchable keyboard must plug 
into the peripheral multiplexer which supports the low cost peripheral set. 

Both keyboards meet safety and EMI/ESD qualifications. 

Neither of the keyboards have LEDs for labeling of the function keys. 

The PS 390 Key boards main function is the generation and transmission of ASCII dis­
playable characters, ASCII control characters, and PS 390 system sequences. 

The Dual Function Switchable keyboard is also capable of having its output data stream 
interpreted as EBCDIC data (which is its principal mode of operation). These data 
are transmitted serially to the peripheral multiplexer. The transmitted data specifies 
displayed characters, commands, menu/table selections, etc. 

The only operator controls located on the keyboard are the 95 keys used for data input. 

The assembled keyboard measures 21.1 inches (53.6 cm) long by 8.25 inches (20.9 cm) 
deep. The keyboard stands 3.5 inches (8.9 cm) high on four rubber feet. 

3.2.1 Interface Cable 

The Interface Cable is a 5-conductor, flexible cable with a shielded DIN plug which 
connects the PS 390 Keyboard to the front of the Peripheral Multiplexer. The cable may 



COMPANY PRIVATE-PS 390 Graphics System May G, 1987 71 

I· I 
nter 

I Linefeed I 

Figure 3.4: The PS 390 DEC VT-220 Style Keyboard 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 72 

be stretched to permit many different work station arrangements. 

3.2.2 Keyboard Operation 

The PS 390 Keyboard allows the operator to input ASCII characters and other sequences 
to the Joint Control Processor by means of a typewriter-like keyboard. Keyboard oper­
ation is discussed in detail in the following paragraphs. 

3.2.2.1 Data Entry 

The PS 390 Keyboard features a layout that makes data entry fast and easy. All keys 
are momentary-closure devices. 

The keys fall into eight general categories: 

(a) Keyboard Function Control 
(b) Alphabetic 

(c) Standard Numeric 
(d) Special Character 

( e) Terminal Function 

(f) PS 390 Function 

(g) Numeric/ Application Mode 
(h) PS 390 Device Control 

The Keyboard Function Control keys are used to modify the codes produced by other 
keys. In this way, characters are defined as uppercase, lowercase, control, etc. No codes 
are transmitted when these keys are depressed individually or in combination with each 
other. 

The Alphabetic, Standard Numeric, Special Character, and Terminal Function keys all 
generate standard ASCII characters. Depressing any of these keys alone or in combination 
with SHIFT and/or CTRL causes 7-bit character codes or control codes to be transmitted 
from the keyboard to the Joint Control Processor. 

The PS 390 Function, Numeric Keypad/ Application Mode and Device Control keys are 
system-oriented. Depressing any of these keys alone or in combination with SHIFT 
and/or CTRL causes special two-byte PS 390 system sequences to be generated and 
transmitted to the JCP . 

. The following is a detail description with figures of the eight general key categories. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 73 

3.2.2.2 Keyboard Function Control Keys 

Figure 3.5: Keyboard Function Control Keys 

The Keyboard Function Control keys (shown in gray in Figure 3.5) are un-encoded, 
local controls. No codes are transmitted when these keys are struck individually or in 
combination with each other. The Keyboard Function Control keys are used to modify 
the codes transmitted by other keys, as follows: 

When either SHIFT key is depressed simultaneously with a displayable character key, 
the uppercase code for that key is generated. If the key does not have an uppercase 
function, the SHIFT key is ignored. For example, striking the A key causes the code 
B'OllOOOOl' for the character a to be transmitted; the sequence SHIFT A causes the 
code 8'01000001 for the character A to be transmitted. Note that bit 6 is forced low to 
define an uppercase character. 

When CTRL is depressed simultaneously with one of keys A-Z (uppercase only), the space 
bar, or the Special Character keys, [,],\,,or?, an ASCII control code is generated. For 
example, the CTRL Z keyboard sequence causes the code 8'00011010' to be generated. 
Note that the only difference between this code and that for Z (8'01011010') is that bit 
7 is forced low to define the control code. 

When the SHIFT and CTRL keys are depressed simultaneously, the CTRL function 
is selected in most cases. The only exceptions occur with the - and / keys. SHIFT 
CTRL - causes the control character RS (8'00011110') to be transmitted. SHIFT 
CTRL / causes the control character US (8'00011111') to be transmitted. The auto­
repeat feature is enabled on all keys except: Fl ._ F12, SETUP, GRAPH, HOST, 
CMMD, LOCAL, TERM, LOCK, CTRL, SHIFT (both keys), RETURN, and all nu-



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 74 

meric pad keys. When any other key is held down, repeated character transmission 
occurs. The rate is 15 ±2 Hz. 

Depressing the SHIFT LOCK key enables the "shift lock" function. This is a shift 
operation that applies to all keys. Depressing either of the two shift keys causes the 
"shift lock" mode to be disabled. 



COMPANY PRIVATE-PS 390 Graphics System Ma.y 6, 1987 75 

3.2.2.3 Alphabetic Keys 

Figure 3.6: Keyboard Alphabetic Keys 

The Alphabetic Keys (shown in gray in Figure 3.6) are used to produce uppercase 
and lowercase ASCII displayable character codes and ASCII control codes. Tables 3.5 
through 3.6 show the code and character produced when each key is struck alone, with 
the SHIFT key, or with the CTRL key. 



COMPANY PRJVATE-PS 390 Graphics System May 6, 1987 76 

Table 3.5: Alphabetic Key Codes 

Key Key Alone Key+SHIFT Key+CTRL 
Label Code Char Code Char Code Char 

A X'61' a X'41' A X'Ol' SOH 
97 65 1 

B X'62' b X'42' B X'02' STX 
98 66 2 

c X'63' c X'43' c X'03' ETX 
99 67 3 

D X'64' d X'44' D X'04' EOT 
100 68 4 

E X'65' e X'45' E X'45' ENQ 
101 69 5 

F X'66' f X'46' F X'06' ACK 
102 70 6 

G X'67' g X'47' G X'07' BEL 
103 71 7 

H X'68' h X'48' H X'08' BS 
104 72 8 

I X'69' l X'49' I X'09' HT 
105 73 9 

J X'6A' J X'4A' J X'OA' LF 
106 74 10 

K X'6B' k X'4B' K X'OB' VT 
107 75 11 

L X'6C' l X'4C' L X'OC' FF 
108 76 12 

M X'6D' m X'4D' M X'OD' CR 
109 77 13 

N X'6E' n X'4E' N X'OE' so 
110 78 14 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 77 

Table 3.6: Alphabetic Key Codes - Continued 

Key Key Alone Key+SHIFT Key+CTRL 
Label Code Char Code Char Code Char 

0 X'6F' 0 X'4F' 0 X'OF' SI 
111 79 15 

p X'70' p X'50' p X'lO' DLE 
112 80 16 

Q X'71' q X'51' Q X'll' DCl 
113 81 17 

R X'72' r X'52' R X'12' DC2 
114 82 18 

s X'73' s X'53' s X'13' DC3 
115 83 19 

T X'74' t X'54' T X'14' DC4 
116 84 20 

u X'75' u X'55' u X'15' NAK 
117 85 21 

v X'76' v X'56' v X'16' SYN 
118 86 22 

w X'77' w X'57' w X'17' ETB 
119 87 23 

x X'78' x X'58' x X'18' CAN 
120 88 24 

y X'79' y X'59' y X'19' EM 
121 89 25 

z X'7A' z X'5A' z X'lA' SUB 
122 90 26 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 78 

3.2.2.4 Standard Numeric Keys 

Figure 3.7: Keyboard Standard Numeric Keys 

The shiftable Standard Numeric keys (shown in gray in Figure 3.7) are similar to the 
shiftable numeric/symbol keys that appear on a typewriter; they generate ASCII dis­
playable numbers and symbols. The CTRL key is ignored when used with these keys. 
Table 3.7 shows the code and character produced when each key is struck alone, with 
the SHIFT key, or with the CTRL key. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 79 

Table 3.7: Standard Numeric Key Codes 

Key Key Alone Key+SHIFT Key+GTRL 
Label Gode Char Gode Char Gode Char 

0 X'30' 0 X'29' ) X'30' 0 
48 41 48 

1 X'31' 1 X'21' ! X'31' 1 
49 33 49 

2 X'32' 2 X'40' @ X'32' 2 
50 64 50 

3 X'33' 3 X'23' # X'33' 3 
51 35 51 

4 X'34' 4 X'24' $ X'34' 4 
52 36 52 

5 X'35' 5 X'25' % X'35' 5 
53 37 53 

6 X'36' 6 X'5E' ;\ X'36' 6 
54 94 54 

7 X'37' 7 X'26' & X'?''" "" tJ I I 

55 38 55 
8 X'38' 8 X'2A' * X'38' 8 

56 42 56 
9 X'39' 9 X'28' ( X'39' 9 

57 40 57 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 80 

3.2.2.5 Special Character Keys 

Figure 3.8: Keyboard Special Character Keys 

The shiftable Special Character keys (shown in gray in Figure 3.8) are used to produce 
both ASCH displayable characters and ASCII control characters. Table 3.8 shows the 
codes and characters produced when these keys are activated alone, with the SHIFT key, 
and with the CTRL key. Note the varying response given to the CTRL key; in some 
instances, the unshifted key character is produced. In other cases, a control character is 
generated. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 81 

Table 3.8: Special Character Key Codes 

Key Key Alone Key+SHJFT Key+CTRL 
Label Code Char Code Char Code Char 

- X'2D' - X'5F' - X'2D' -
- 45 (minus) 95 (underline) 45 (minus) 

+ X'3D' X'2B' X'3D' 
= 61 - 43 + 61 = -
- X'60' X'7E' X'lE' 
' 96 - 126 ' 30 RS 
{ X'5B' X'7B' X'lB' 
[ 91 [ 123 { 27 ESC 
} X'5D' X'7D' X'lD' 

I 93 I 125 } 29 GS 

I X'5C' X'7C' X'lC' 

\ 92 \ 124 I 28 FS I 
: X'3B' X'3A' X'3B' 
; 59 ; 58 : 59 ; 
" X'27' X'22' X'27' 
' 39 ' 34 " 39 ' 
< X'2C' X'3C' X'2C' 

' 44 
' 

60 < 44 ' 
> X'2E' X'3E' X'2E' 

46 62 > 46 
? X'2F' X'3F' X'lF' 

I 47 I 63 ? 31 us 
> X'2C' X'2E' X'2C' 
< 44 < 46 > 44 < 



COMPANY PRIVATE-PS 390 Graphics System Ma.y 6, 1987 82 

3.2.2.6 Terminal Function Keys 

Figure 3.9: Keyboard Terminal Function Keys 

The Terminal Function keys (shown in gray in Figure 3.9) produce codes used by a typical 
video display terminal. These keys enable an operator to generate any commonly used 
terminal control character with a single keystroke. (The codes produced by these keys 
are identical to those generated by the conventional two-key control sequences described 
in Table 3.9.) 

Note that the SHIFT and CTRL keys have no effect on the codes produced by the 
Terminal Function keys, except for the CTRL Space Bar sequence that generates an 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 83 

ASCII NUL character. 

Table 3.9 lists the codes and characters generated by the Terminal Function keys. 

Table 3.9: Terminal Function Key Codes 

Key Key Alone Key+SHIFT Key+CTRL 
Label Code Char Code Char Code Char 

X'AO' X'AO' X'AO' 
BREAK 160 160 160 
BACK X'08' X'08' X'08' 
SPACE 8 BS 8 BS 8 BS 

X'7F' X'7F' X'7F' 
DEL 127 DEL 127 DEL 127 DEL 

X'OD' X'OD' X'OD' 
RETURN 13 CR 13 CR 13 CR 

LINE X'OA' X'OA' X'OA' 
FEED 10 LF 10 LF 10 LF 

X'lB' X'lB' X'lB' 
ESC 27 ESC 27 ESC 27 ESC 

X'09' X'09' X'09' 
TAB 9 HT 9 HT 9 HT 

{none; X'20' X'20' X'OO' 
space bar) 32 {space) 32 (space) 0 NUL 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 84 

3.2.2. 7 PS 390 Function Keys 

Figure 3.10: Keyboard PS 390 Function Keys 

The PS 390 Function keys (shown in gray in Figure 3.10) are used to transmit special 
2-byte system sequences. 

Table 3.10: PS 390 Function Key Codes 

Key Key Alone Key+SHIFT Key+CTRL 
Label Code Code Code 

Fl X'1661 X'1641' X'1601' 
F2 X'1662 X'1642' X'l602' 
F3 X'1663' X'l643' X'1603' 
F4 X'l664' X'1644' X'1604' 
F5 X'1665' X'1645' X'1605' 
F6 X'1666' X'1646' X'1606' 
F7 X'1667' X'1647' X'1607' 
F8 X'1668' X'1648' X'1608' 
F9 X'1669' X'1649' X'1609' 

FlO X'166A' X'164A' X'160A' 
Fll X'l66B' X'164B' X'160B' 
F12 X'166C' X'164C' X'160C' 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 85 

3.2.2.8 Numeric/ Application Mode Keys 

Figure 3.11: Keyboard Numeric/ Application Mode Keys 

The Numeric/Application Mode keys (shown in gray in Figure 3.11) generate special 
2-byte PS 390 system sequences similar to those produced by the PS 390 Function keys. 

Note that neither SHIFT nor CTRL affects the ENTER. key, a.nd that no codes 1ue 
modified by the CTRL key. 

Any code generated by a Numeric/ Application Mode key may be duplicated by entering 
CTRL SHIFT V, followed by the appropriate displayable character or control character. 

Table 3.11 illustrates the codes and characters produced by the Numeric/ Application 
Mode keys. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 86 

Table 3.11: Numeric/ Application Mode Key Codes 

Key Key Alone Key+SHIFT Key+CTRL 
Label Code Char Code Char Code Char 

0 X'1630' X'1629' X'1630' 
1 X'1631' X'1621' X'l631' 
2 X'1632' X'1640' X'1632' 
3 X'1633' X'1623' X'1633' 
4 X'1634' X'1624' X'1634' 
5 X'1635' X'1625' X'1635' 
6 X'1636' X'165E' X'1636' 
7 X'1637' X'1626' · X'l637' 
8 X'1638' X'162A' X'l638' 
9 X'1639' X'1628' X'1639' 

X'162E' X'163E' > X'l62E' 

' X'162C' 
' 

X'163C' < X'l62C' 
' 

X'162D' (minus) X'165F' (underline) X'162D' 
- - --

ENTER X'160D' CR X'160D' CR X'160D' CR 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

3.2.2.9 PS 390 Device Control Keys 

CJCI~~ 
cc~~ 

~~._____. 
Figure 3.12: Keyboard PS 390 Device Control Keys 

87 

The Device Control keys (shown in gray in Figure 3.12) generate two-byte sequences 
similar to those described in Sections 3.2.2.7 and 3.2.2.8. The codes produced by these 
keys are modified by SHIFT and CTRL as shown in Table 3.12. 

Any code generated by a Device Control key may also be produced by entering CTRL 
SHIFT V, followed by the appropriate displayable character or control character. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 88 

Table 3.12: PS 390 Device Control Key Codes 

Key Key Alone Key+SHIFT Key+CTRL 
Label Code Code Code 

1 X'1673' X'1653' X'1613' 
TERM 

2 X'1632' X'1640' X'1644' 
NRMTST 

4 X'1634' X'1624' X'1670' 
GRAPH 

5 X'1635' X'1625' X'166F' 
SETUP 

7 X'1637' X'1626' X'1652' 
LOCAL 

8 X'1638' X'162A' X'1612' 
CMND 

X'1677' X'1657' X'1617' 
+-

X'1678' X'1658' X'1618' -
X'1679' X'1659' X'1619' 

i 
X'167A' X'165A' X'161A' 

t 
PFl X'A9' X'A9' X'1672' 

HOST 
PF2 X'AA' X'AA' X'AA' 
5080 
PF3 X'AB' X'AB' X'AB' 
PF4 X'AC' X'AC' X'AC' 

The Cursor Up key becomes Scroll Up when shifted. 
The Cursor Down key becomes Scroll Down when shifted. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 89 

3.2.3 Communications Interface 

The keyboard communicates with the JCP through the Peripheral Multiplexer using a 
RS-232C line receiver and line driver. The keyboard operates at 1200 baud. 

3.2.4 Dual Function Switchable Keyboard 

Unique features and IBM key codes for the Dual Function Switchable keyboard will be 
described as they become available. 

3.3 The 32 Key Lighted Function Buttons 

The 32-Key Lighted Function Buttons (hereafter called the Buttons) consists of an array 
of 32 lighted function keys arranged in a 6x6 matrix without the key at each of the four 
corners being present. The Joint Control Processor sends the message to the Buttons 
box that lights the keys which are candidates to be selected to invoke specific program 
functions. The same message also turns off some of the lights which are already on. 
This cues the operator of the station to know that he may select one of the lighted keys 
by depressing the key. Upon depression, the Buttons box sends a message to the Joint 
Control Processor which indicates that a specific key has been depressed. The software 
can then take action(s) based upon the key selection. 

3.3.1 Light Control 

For the purpose of turning the lights of the Buttons box on or off, the lights are logically 
grouped into eight groups of four lights each. The lights of the box are then turned 
on and of respectively by sending a message consisting of one to eight bytes 4to it. The 
four more-significant bits of each byte contains the identification number for a four-light 
group; the four less-significant bits contain a mask which turn on (if the corresponding 
bit is set) or off (if the bit is clear) the light. This is shown in Figure 3.13 where the 
Group Number is binary 0000 thru 0111 and Light Mask l's and O's turn lights on and 
off. 

The Function Button Light. Groups are defined in Table 3.13. 

Any byte or combination of bytes may be sent in a message, depending on which of the 
lights must be turned on or turned off. Turning all lights on, turning all lights off or 
changing the state of at least one byte of each of the eight groups would require an eight­
byte message to be sent. Changing the state of one to four lights in a single four-light 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 90 

Figure 3.13: Function Button Light Control Message Byte 

l1IGl&l4lal2l1lol 
I Group I Mask I 

Table 3.13: Function Button Light Groups 

I Group Number I Description 

b'OOOO' Group for lights 1 -+ 4 
b'OOOl' Group for lights 5 -+ 8 
b'OOlO' Group for lights 9 -+ 12 
b'OOll' Group for lights 13 -+ 16 
b'OlOO' Group for lights 17 -+ 20 
b'OlOl' Group for lights 21 -+ 24 
b'OllO' Group for lights 25 -+ 28 
b'Olll' Group for lights 29 -+ 32 

group would require only a one-byte message to be sent. 

3.3.2 Reporting Selections 

The Buttons box reports that a key has been depressed simply by sending a single byte 
to the Joint Control Processor. The value of the byte is given by adding the hexadecimal 
value of the key number to the hexadecimal value x'3F'. Thus the first sixteen keys are 
numbered x'40' to x'4F' and the second group of sixteen keys are numbered x'50' to 
x'5F'. Only one key depression per message is reported. 

3.3.3 Self-Test Command and Report 

The Buttons box includes a self-test command and report that is used for diagnostics 
and optionally for initialization confidence tests. The command is a single byte: x'80'. 
The response is a four-byte sequence as shown in Table 3.14. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 91 

Table 3.14: Function Box Self Test Responses 

Byte 1 64H, Hardware ID for the Button Box. 

Byte 2 xxH, where xx is the firmware revision level. 
This should begin with OlH. 

Byte 3 OOH if ROM and RAM test successful and 
3EH if ROM or RAM test failed, (RAM and 
ROM refer to processor chip), or 3DH if key 
down on Self Test (3E supersedes 3D) 

Byte 4 OOH on successful test, or xxH, where xx is 
code of key down at Self Test. 

3.3.4 Transmission Characteristics 

The data. sent to and from the Buttons box is asynchronous data with each byte con­
taining eight data bits without parity plus one start bit and one stop bit. The data 
transmission' rate of the Buttons box is 9600 baud. 

3.4 The Control Dials 

3.4.1 Functional Characteristics 

The Control Dials (hereafter called the Dials) consists of an array of 8 shaft encoders 
arranged in a 2 column x 4 row design with the number 1 dial being the upper left-hand 
dial and the number 5 dial being the upper right-hand dial when the Dials are situated 
in the vertical orientation. When the Dials are situated in the horizontal orientation, the 
number 1 dial is the lower left-hand dial and the number 5 dial is the upper left-hand dial. 
The Dials report to the Joint Control Processor the number of counts rotated between 
sampling intervals. The Joint Control Processor may specify the number of counts to be 
accumulated between sampling intervals and may set a sampling time for all the dials. 

3.4.1.1 Dial Responses to the Host 

The Dials output relative delta values only; i.e., each dial's position is reported in terms 
of its last sample location. The data format used to report the count is: 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 92 

Byte Number Description 

1 Control V = '00010110' 
2 Byte= 'OOOOOnnn', 

Where nnn is a binary number 000 thru 111 (0 thru 
7 decimal which specifies the dial.) 

3 Most significant byte of a 16-bit signed integer (sign 
indicates direction). 

4 Least significant byte of the 16-bit signed integer 
(two's complement notation). 

3.4.1.2 Commands to the Dials from the Host 

There are two commands to which the Dials box must respond. The first is in the same 
format as the response message except that the second byte is 'lOOxxnnn' and no sign is 
legal on the 16-bit integer. It specifies the delta value which must be accumulated before 
the delta count is reported to the host, i.e., how many counts between reports. 

The second command is formatted as follows and applies a sampling time to all the dials: 

I Byte Number I Description 

1 Control V = '00010110' 
2 Control Byte= 'lxlxxxxx', (x=don't care) 

3 Reserved unused byte. 

4 Time count in binary, 

Where x'OS' = 60 samples/second 

Where x'OA' = 30 samples/second 

Where x'lE' = 10 samples/second 

This time indicates how often the dials box wakes up to see if sufficient counts have been 
accumulated on any dial to respond to the processor. 

3.4.2 Transmission Characteristics 

The data sent to and from the Dials box is asynchronous data with each byte containing 
eight data bits without parity plus one start bit and one stop bit. The data transmission 
rate of the Dials box will be 9600 baud. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 93 

3.5 The Data Tablet 

There are two data tablets available for use with the Low Cost Peripheral Set. They are 
the 6" x 6" and the 12" x 12" tablets with a four-button cursors. Both are alike except 
for their active areas and both provide digitizing and picking functions for the PS 390. 

The tablets use +12 VDC@ 300 mA max. The power is provided by the multiplexer on 
the 7-pin Micro DIN connector provided. 

The Data Tablets transform graphic information into digital data suitable for trans­
mission to the Joint Control Processor (JCP). The data tablets use a stylus or a four 
button cursor to identify coordinates. Touching the pen-like stylus to any position on 
the data tablet transforms the coordinates of that position into their digital equivalents. 
The cursor contains a crosshair sight that permits the user to enter data with precise 
accuracy. 

3.5.1 Data Tablet Microprocessor 

The data tablet's microprocessor is an 8-bit Intel 8035. The microprocessor outputs two 
control signals that are used to gate the X pulse and the Y pulse to the data tablet. The 
microprocessor also controls communications with the host processor that is located on 
the JCP card. 

If the microprocessor fails, the data tablet will not respond to the TABDlA diagnostic. 
In this case, the microprocessor should be replaced. 

3.5.2 Operating Modes 

Data tablet modes and the sampling rates may be controlled externally under program 
control or internally by switches on the logic card. The positions of the internal switch 
determine the power-up mode and sampling rate. The following operating modes are 
available: 

• Point Mode 
- Pressing the stylus on the tablet or pressing a button on the cursor outputs one 

X, Y coordinate pair (sample) in the appropriate format. 
• Stream Mode 

X, Y coordinate pairs (samples) are generated continuously at the selected 
sampling rate when the stylus or cursor is near the active area of the tablet. 
Pressing the stylus to the tablet or depressing a button on the cursor puts the 
flag character (F) bit in the output string. 



COMPANY PRJVATE-PS 390 Graphics System May 6, 1987 94 

• Switched Stream Mode 
- Pressing the stylus or a button on the cursor continuously outputs X, Y coor­

dinate pairs at the selected sampling rate until the stylus is lifted or the button 
is released. 

The data tablet has a six-position switch that sets the mode of operation and the rate at 
which the coordinate data are output to the processor. The Mode and Rate Controls on 
the data tablet are mounted on SW 2. Positions 1 and 2 are mode switches and Positions 
3, 4, and 5 are rate switches. Switch 6 is not used. The system reset switch is mounted 
externally at the rear of the lower frame. 

Both the mode and the sampling rate may be changed under program control from the 
PS 390 by sending the data tablet an ASCII character. 

3.5.3 Power Requirements 

The data tablet is shipped with a connector that mates with the power input connector 
located at the rear of the data tablet. The pin assignments that apply to this connector 
are shown in Table 3.15. 

Table 3.15: Data Tablet Pin Assignments 

II Pin # I Function II 
1 Ground 
2 Transmit data (From Device) 
3 Receive data (To Device) 
4 -12 voe 
5 + 5 voe 
6 +12 voe 
7 Device Present (Connected to Pin 1) 

Shell Protectiv~ Ground (ESD Shield) 

3.5.4 Data Tablet/PS 390 interface 

The data tablet communicates with the PS 390 via an RS-232 asynchronous cable. Each 
character is transmitted as a complete self-contained message consisting of an ASCII 
data character with even or odd parity (POE) preceded by a start bit and followed by 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 95 

one or two stop bits, depending on the strap option selected (HOB). The bit polarity of 
the transmitted data is low level mark, high level space in the following format: 

I Start Bit I Seven Data Bits I Parity I Stop I Stop I 

3.5.4.l Binary Data Format (Switch 1, Position 7 ON) 

The binary formatted RS-232 interface is a five byte count output. Binary format is as 
follows: 

Binary Format 

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O 
1 p 1 F3 F2 Fl FO 0 0 
2 p 0 X5 X4 X3 X2 Xl XO 
3 p 0 Xll XlO X9 X8 X7 X6 
4 p 0 Y5 Y4 Y3 Y2 Yl YO 
5 p 0 YU YlO yg YB Y7 Y6 

3.5.4.2 Remote Control via RS-232 

The data tablet is a stand-alone microprocessor-driven device that can be remotely pro­
grammed. The Joint Control Processor controls remote operation of the data tablet. 
The following conditions must exist for remote control of the data tablet: 

• All internal mode and rate controls (SW 2) must be inactive or in the OFF condition. 

• Data going to the data tablet must be at the same baud rate a.a the data transmitted 
from the data tablet. 

• Data tablet command data must be input on Jl Pin 3 with a bit polarity of low 
level mark, high level space. 

• One of the binary data transmission codes shown in Table 3.16 must be selected. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 96 

Table 3.16: Binary Data Transmission Codes 

Binary Uppercase 
Mode Rate ASCII Character 

Stop - s 
Point - p 

Switched Stream 2 @ 

4 A 
10 B 
20 c 
35 D 
70 E 

Stream 141 F 
141 G 
2 H 
4 I 
10 J 
20 K 
35 L 
70 M 
141 N 
141 

Note: Rate is calculated as coordinate pairs per second at 19,200 baud. All other rates are 
dependent on baud rates. 



COMPANY PRJVATE-PS 390 Graphics System May 6, 1987 97 

3.5.4.3 RS-232 Unit Switch Settings & Strap Options for 600 Series PROMs 

Data tablets are shipped with a standard setting from the factory. The following sections 
describe strap and switch settings for non-standard strap and switch settings. Refer to 
the GTCO Users Manual, for all switch and strap locations. 

Switch 1 (Format/Calibration) This nine-position switch controls the output data 
format as follows: 

Table 3.17: RS-232 Switch Settings 

I Position Effect 

1 Do not adjust-Factory Set 

2 Do not adjust-Factory Set 

3 Do not adjust-Factory Set 

4 Do not adjust-Factory Set 

5 Do not adjust-Factory Set 

6 Not Used 
7 ON-Serial Binary Output (No CRLF transmitted 

when in Serial Binary (Position 8) 

*OFF-ASCII BCD Output 

8 *ON-Carriage Return Line Feed {CRLF). This adds 
line feed to the end of output data format. OFF-
Carriage Return (CR) only. 

9 *ON-,English (0.005" Resolution) 

OFF-Metric (0.1 mm Resolution) 

* Factory settings. 

Note 

Switches 1-+5 are factory set calibration switches. They should not be changed 
unless the tablet portion of the device is changed. Refer to the GTCO User's 
Manual. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 98 

Switch 2 (Mode/Rate) This six-position switch controls the sampling mode (Point, 
Switch Stream, or Continuous Stream) and the sampling rate (X-Y coordinate pairs per 
second). The switch is factory set in the Continuous Stream Mode at 200 samples per 
second. To operate under program control, set all internal position switches to OFF. 

The PS 390 Data Tablet operates at 9600 baud, sending 105 serial binary samples per 
second. Due to the limitations of serial baud rate transmit time, the maximum sampling 
rate is automatically limited to the sampling rates shown in Table 3.18. 

Table 3.18: Data Tablet Sampling Rates 

Baud Serial Serial 
Rate ASCII BCD Binary 

Maximum Sampling Rate 
28800 85 166 
19200 68 141 
9600 46 105 
4800 28 65 
2400 16 37 
1200 9 20 
300 2 5 

Switch 7 and Pluggable Program Strap BA (Baud Rate) Both Switch 7 and 
the Pluggable Strap BA must be set to select the desired baud rate. One of the ten 
positions on Switch 7 must be set to ON and the blue pluggable strap must be over the 
center pin and the A pin (or over the center pin and the B pin). Only one position on 
Switch 7 may be on at a time. The baud rate is factory set with Position 2 ON on Switch 
7 and pluggable strap BA over Pin B and the center pin. Table 3.19 shows the baud 
rates that may be selected. 

POE Strap (Parity) Polarity can be odd or even and is controlled by a wire jumper 
soldered into the two points on the circuit card labeled POE. The RS-232 Data Tablet 
is shipped with no strap and in the even parity mode. 

HCB Strap (Stop Bits) There may be one or two stop bits transmitted. The number 
of stop bits transmitted is controlled· by a wire jumper soldered into the two points on 



COMPANY PRIVATE-PS 390 Graphics System Ma.y 6, 1987 99 

Table 3.19: Baud Rate Selection 

Switch 7 Blue Pluggable Strap BA 
(Position ON} Strap A Strap B 

1 19200 19200 
2* 28880 9600* 
3 14400 4800 
4 7200 2400 
5 3600 1200 
6 1800 600 
7 900 300 
8 450 150 
9 225 75 
10 112.5 -

* Factory setting. 

the card labeled HCB. The RS-232 unit is shipped with a strap and transmits one bit. 

The PS 390 TABDlB diagnostic tests the data tablet. 

3.6 The Optical Mouse 

The Optical Mouse transforms position information into a digital form acceptable to 
the Joint Control Processor (JCP). The optical mouse uses a three-button mouse unit 
in conjunction with a reflective pad to provide x and y-axis position information. The 
cursor (an X) moves around on the screen in response to movement of the mouse across 
the pad. 

The mouse uses red and infrared LED's reflecting off the pad to provide directional 
information to the control logic in the mouse. This movement is then translated into 
absolute x and y position information similar to that provided by a PS 390 Data Tablet. 
The data is transmitted serially to the PS 390 through the peripheral multiplexer. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 100 

3.6.l Operating Modes 

The mouse operates in what is called MM Series Delta Data Protocol. This is a 3 byte 
format that defines change in mouse position as delta movement in X and Y. The mouse 
also operates in Exponential Scaling Mode. This means that the faster the mouse is 
moved across the pad, the larger the data increments will be. This allows a single move 
across the pad to produce a complete movement of the cursor across the screen. 

I 

3.6.2 PS 390 Runtime Operation 

The PS 390 contains one system function to interface the mouse to an application. It is 
called MOUSEIN, and is an instance of f:mouse. The Mouse is connected to Mouse Port 
on the Multiplexer, or to Port Don the Data Concentrator. The MOUSEIN function is 
already connected to the pick-location just the same as TABLETIN. 

The MOUSEIN function instance has the same outputs as TABLETIN. There are 4 
inputs to the Mouse function. 

(a) String - Data from the Mouse 

(b) Integer - Counts full scale 

(c) String - Output queues enable/disable message 

(d) Vec2d - New cursor position 

Input 1 is a string of data from the Mouse in the format shown in Table 3.20. Input 2 is an 
integer specifying the number of counts to map to a cursor movement across the screen. 
The default is 2200. Input 3 is a string of up to eight characters (characters in strings 
longer than eight are ignored) consisting of either T or F. This is a positional indication 
of the enable or disable of a particular output. For example, the string 'TTTFFT' would 
enable outputs 1, 2, 3, and 6; the string 'TTFFFFF' would enable output from 1 and 2 
only. 

Note: Only the Fis checked for. Therefore 'XXFFyyy' would be the same as 'TTFFTTT'. 
The default is 'TTTTTTTT'. 

Input 4 is a 2-D vector that will position the cursor on the screen at the point specified. 
the value should be in the range of -1.0 to 1.0. The default is 0.0.0.0. 

The runtime will support the use of both the tablet and the mouse on the same system. A 
special "Y" power connector will be required if both are to be used on a data concentrator 
since there is only one 9-pin D power connection. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 101 

3.6.3 Mouse/PS 300 Interface 

There are two versions of the mouse. One is for use with the Data Concentrator and 
the other is for use with the Peripheral Multiplexer. The pin assignments on the data 
concentrator version are identical to the data tablet. The pinouts for the MUX version 
are as follows: 

II Pin# I Function II 
1 Ground 
2 Transmit data (From Mouse) 
3 Receive data (To Mouse) 
4 -12 voe 
5 Not Used 
6 +12 voe 
7 Device Present (Connected to Pin 1) 

Shell Protective Ground (ESD Shield) 

With the connector of the mouse cable facing you the pins are numbered according to 
the following diagram: ( * = connector key) 

3.6.3.1 Baud Rate 

~ w 

The mouse is configured to run at 9600 Baud over the serial asynchronous interface. 

3.6.3.2 Data Format 

The data format consists of 3 bytes which are assigned as follows: 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 102 

MSB LSB 
7 6 5 4 3 2 1 0 

Byte 1 1 0 0 Sign X Sign Y Left Center Right 
Byte 2 0 x6 Xs X4 X3 X2 X1 Xo 
Byte 3 0 Ya Ys Y4 Y3 Y2 Y1 Yo 

Table 3.20: Mouse Data Format 

The bit positions Left, Center, and Right indicate the status of the three buttons on the Mouse. 
A one in the positions indicates that the button is down. 



Part II 

Customer Engineering 

103 



Chapter 4 

The PS 390 Diagnostics 

The main hardware components of the Raster Backend portion of the PS 390 which must 
be tested with the diagnostic software are: 

(a) The Input FIFO 
(b) The Master Bit Slice Processor 

( c) The Endpoint Pipeline 
( d) The Frame Buff er 

( e) The Video Output System 
(f) The New Peripherals 

The diagnostic routines for the PS 390 Raster Backend and the new peripheral set are: 

• RBEDOA 
- Bitslice Processor Diagnostic 

• RBEDlA 
- Endpoint Pipeline Diagnostic 

• RBED2A 
- Pixel Processor, Frame Buffer and Video Card Diagnostic 

• MPLSDOB 
- PLS Card and Input FIFO Diagnostic 

• KBDDOC 
- New Keyboard Diagnostic 

• BTNDOB 
- Function Buttons Diagnostic (Old/New) 

104 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

• CDLDOB 

- Control Dials Diagnostic (Old/New) 

• MSEDOB 
- Optical Mouse Diagnostic 

• TABDlB 

- GTCO Digitizer Tablet Diagnostic 

4.1 Bitslice Processor Diagnostics - RBEDOA 

4.1.1 Hardware Overview 

105 

The PS 390's Master Bitslice Processor obtains endpoints and commands from the Input 
FIFO. Endpoints are formatted into a packet of data and then sent to the Endpoint 
Pipeline. Commands received by the Master Bitslice are decoded and then executed by 
the Master Bitslice. 

There are four busses on the Bitslice card. The 29117 processor can latch data in only 
from the D-Bus. It can provide latch data out via the Ybus. Communication between 
the Y and D bus is possible. The branch bus communicates between the Vector ram 
and the 29110 Microsequencer. The Immediate bus is a multi-purpose bus. The Bitslice 
Processor has the following components: 

(a) Common Bus Maintenance Register. 

(b) Writeable Control Store. 

(c) Execution Register. 

(d) 29110 Microsequencer, 

(e) 29117 Microprocessor. 

(f) Immediate Field Register. 

(g) Scratch RAM. 

(h) Function Lookup Table EPROM. 

(i) Vector RAM and Branch Bus. 

(j) AMO 29517A Multiplier. 

(k) Bus Decoders. 

(l) Y and D Bus Transceivers. 

(m) Common Bus Interrupt Generator. 

(n) Common Bus DMA Interface. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 106 

4.1.2 Testing Strategy 

The strategy for testing the Bitslice processor is to first test the Maintenance Register on 
the Common Bus. Then the Writeable Control Store and Execution Register are tested. 
The 29110 microsequencer and the Condition Code Multiplexer are then tested, followed 
by tests for the 29117 Microprocessor. Fin ally the Immediate Field Register, Scratch 
RAM, Lookup Table, Vector RAM, Multiplier, and Y to D Bus Latches are tested. 

Phase 1 - Common Bus Maintenance Register 
Phase 2 - Execution Register and Diagnostic Shift Loop 
Phase 3 - Y to D Bus, Immediate Field Register 
Phase 4 - Writeable Control Store 
Phase 5 - 29117 Internal ALU Registers (32) 
Phase 6 - Interrupt Testing 
Phase 7 - 29110 Microsequencer and Condition Code Multiplexer 
Phase 8 - 29117 Microprocessor Instruction Confidence 
Phase 9 - Scratch RAM 
Phase 10 - Vector RAM 
Phase 11 - Function Lookup Table 
Phase 12 - AMD 29517A Multiplier 
Phase 13 - Common Bus Direct Memory Access (DMA) 

4.1.3 Description of Tests 

4.1.3.1 Phase 1 - Common Bus Maintenance Register 

Phase 1 tests out the Maintenance Register located at X'FFF030'. Phase 1 has 2 sub­
phases. 

This phase tries to read and write to the Maintenance Register. If a bus error occurs, a 
diagnostic interrupt handling routine detects it and an error message is reported. The 
different bits of the Maintenance Register are then tested by toggling each bit high then 
low. 

Subphase 1 of Phase 1 attempts to read the maintenance register. If a bus error happens 
during the reading of the maintenance register the following error occurs. 

Common bus read error for Raster Back End MR: (PS 390 
Maintenance register's contents). 

Subphase 2 of Phase 1 attempts to write to the maintenance register and to set and reset 
various bits of the maintenance register. 



COMPANY PRIVATE-PS 390 Graphics System Ma.y 6, 1987 107 

If a bus error occurs during the writing of the maintenance register the following error 
occurs. 

Common bus write error for Raster Back End MR: ( PS 390 
Maintenance register's contents). 

The following bits in the maintenance register are tested by setting and resetting them 
- bits O, 1, 2, 3, 4, 5, 13, 14. 

If an error occurs while setting a bit the following error occurs. 

Error in setting a RBE Maintenance Register bit 
Expected: X':xxxx' Received X'yyyy' Bits in Error: X'zzzz' 

If an error occurs while resetting a bit the following error is displayed. 

Error in resetting a RBE Maintenance Register bit. 
Expected: X':xxxx' Received X'yyyy' Bits in Error: X'zzzz' 

4.1.3.2 Phase 2 - Execution Register 

The Execution Register is checked to see if it can be written and read to correctly. 

Phase 2 checks the data paths on the shadow register, the execution register and the 
immediate field. This phase shifts patterns into and out of these registers a bit at a time 
through the maintenance register. Phase 2 has 3 subphases. 

Subphase 1 tests the shadow register. The shadow register is 80 bits long. This register 
is tested with the standard set of diagnostic patterns: 

If the 80 bit pattern sent is different than the 80 bit pattern received the following error 
message is displayed. 

Data mismatch in 29818 shadow reg while testing (bits <79 - O>) 
Expected: X':xxxx' Received X'yyyy' Bits in Error: X'zzzz' 

Subphase 2 tests the Execution Register. This register is 80 bits long, but the last 16 
bits are the Immediate Field, so only 64 bits are tested in this subphase. Data is shifted 
into the Shadow Register, clocked to the Pipe Register, then they are clocked back to 
the Shadow Register and shifted out. 

If the 64 bit pattern sent is different than the 64 bit pattern received the following error 
message is displayed. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Data mismatch in 29818 execution reg while testing (bits <79 - O>) 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz' 

108 

Subphase 3 tests the 16 bit immediate field with a 16 bit diagnostic pattern. If the 16 
bit pattern sent is different then the 16 bit pattern received the following error message 
is displayed. 

Error found in the Immediate field. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz' 

If the bit 16 of the microword (*HOLDWIM) cannot be set or if the Flip-flop this signal 
drives is not working, errors in the immediate field readback will occur. 

4.1.3.3 Phase 3 - Y to D Bus Test, Immediate Field Register 

Phase 3 tests the D to Y bus path and in doing so also tests the 16-Bit Immediate 
Register. 

These Bus Transceivers are accessed via the Bitslice Processor. They are first tested to 
see if they can move data from the Y to the D Bus as well as from the D to the Y Bus, 
and then a data lines test is performed on each latch. This test is single stepped. A 
microcoded full speed test of this transceiver is performed in one of the later phases. 

Subphase 1 tests out the D to Y bus path and the Immediate Register with the 16 bit 
diagnostic pattern set. 

If the 16 bit pattern sent is different then the 16 bit pattern received the following error 
message is displayed: 

Data mismatch while testing D to Y Bus communication. 
Expectd'ti: X'xxx:x:' Received X'yyyy' Bits in Error: X'zzzz' 

4.1.3.4 Phase 4 - Writeable Control Store 

The Writeable Control Store (WCS) for the PS 390 is 80-bits by 4096 words. Access to 
the Control Store is via the Common Bus Interface. The Control Store test increments 
the program counter from 0 to 2047 and reads, writes, and checks test patterns at each 
location. 

The control store has 4096 words. Each word is 80 bits wide. Phase 4 has 3 subphases. 

Subphase 1 tests out the data lines to the writeable control store. A 16 bit diagnostic 
pattern set is clocked into a location in the WCS and read back. This pattern is repeated 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 109 

to fill the entire 80 bit microword. If the 80 bit pattern sent is different then the 80 bit 
pattern received the following error message is displayed. 

Datalines error writing to Control store (bits <79 - 0>) 
Expected: X':x:xxx' Received X'yyyy' Bits in Error: X'zzzz' 

Subphase 2 tests out the 12 address lines to the writeable control store. First each address 
line is tested to see if is stuck high or low, then each possible pair of address lines are 
tested to see if they are stuck together. 

If an error occurs while testing out an address line the following error message is displayed: 

Control Store Address line stuck at address X'x:xxx' while 
testing bit y 

If an error occurs while testing out pairs of address lines the following error message is 
displayed: 

Control Store address lines stuck together at address X'xxxx' 
while testing bit y 

Subphase 3 tests out the 4096 locations of the Writeable Control Store. The pattern it 
writes to the location is based upon the location number. 

If the 80 bit pattern sent is different then the 80 bit pattern received the following error 
message is displayed: 

Error occurred at tha following WCS location X'rA:iCX' Bits in 
, error are y 

4.1.3.5 Phase 5 - 29117 Internal Registers 

Phase 5 tests the data and addressing path to all of the Internal Registers for the 29117 
Microprocessor. Phase 5 also tests the tests the bits of the 32 (16-bit) Internal Registers, 
8 bit Status Register, and 16 bit Accumulator of the 29117 chip. This test single steps 
two instructions to write to the register by executing two instructions to write to the 
Interrupt Register. The first instruction sources the test pattern from the immediate 
field to the D-Bus. The next instruction Latches the D-Bus into the 29117 ALU register 
file. The read back path requires the instructions to be loaded into the writable control 
store before single stepping. The first instruction tells the ALU to put the contents of 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 110 

the specified register onto the YBUS output. The data is put on the immediate field 
read back via the execution register. This has 3 subphases. 

Subphase 1 tests the data lines to the 29117 register by writing the diagnostic pattern 
set to register 0: 

If an error occurs while writing a pattern to and reading a pattern from register 0 the 
following error is printed: 

Datalines error while testing 29117 register R'x'. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz' 

Subphase 2 tests part of the instruction to the 29117 Register. This is done by writing 
to each register its number and then reading back the register's value. 

If the pattern written to the first 32 internal register's is different, then the pattern 
received from these register's the following error is printed out: 

Address lines Error on 29117 register Rx. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz'. 

If the pattern written to the accumulator is different, then the pattern received from the 
accumulator the following error is printed out: 

Data mismatch while testing bits in accumulator. 
Expected: X'x:x:xx:' Received X'yyyy' Bits in Error: X'zzzz'. 

If the pattern read back from the Status register is not the same as the pattern written 
to the status register (except for the zero bit being clear) the following error is printed 
out: 

Data mismatch while testing bits in status register. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz'. 

Subphase 3 tests the bits of the 32 internal registers, the accumulator, and the status 
register by writing the following patterns to each of these registers: 

x I 5656 I I x I FFFF I I x , AAAA I I x I 0000 I I 

If the pattern written to one of the internal registers is different then the pattern received 
from this register then one of the following error messages is printed out: 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Data mismatch while testing bits in 29117 register. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz'. 

Data mismatch while testing bits in accumulator. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz'. 

Data mismatch while testing bits in status register. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz'. 

4.1.3.6 Phase 6 - Interrupt Generation Test 

The RBE can interrupt the JCP on LEVEL 3. 

111 

This phase tests all the interrupt vectors reserved for the RBE cards. Interrupts are used 
extensively by diagnostics that run microcode. The interrupt is used as a handshake from 
the bit slice machine to the JCP to say that the code has finished executing. Interrupts 
are also used in runtime to support Picking. 

An interrupt is generated at each supported vector. Interrupts should occur at addresses 
310, 314, 318 and at 31C. One of the following errors may be reported in this phase. 

Interrupt occurred, but at the wrong vector. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz'. 

Timeout: Interrupt Did NOT occur. 

If the TimeOut error is reported 4 times it is a good indication that the interrupts are 
not being generated at all. A spurious interrupt when Acknowledge is nut jurnpered 
indicates that the interrupts are jumpered on the right pins. For example a LEVEL 4 
interrupt is generated instead of a LEVEL 3. 

Note: Interrupts must be working before trying to run any microcoded diagnostics. Oth­
erwise the following error may occur every time microcode is executed. 

HA processor timed out -- PC= (current program counter). 

4.1.3. 7 Phase 7 29110 Microsequencer and Condition Code Multiplexer 

The 29110 Microsequencer provides program flow control for the PS 390. To test the 
sequencer sequencer commands are loaded into the Execution Register and executed in 



COMPANY PRIVATE-PS 390 Graphics System Ma.y 6, 1987 112 

single step mode. The Control Store is then read back to determine if the sequencer's 
operation resulted in the correct program counter value. The following Sequencer In­
structions are Tested: 

• JMPI jump immediate 

• CONT continue 

• JMPV jump vector data 

• OJI.cc 

• LDCTI 
• RICT 
• JSRl.Z 
• RFCT 

Phase 7 tests the 29110 microsequencer. The 29110 has a program counter (PC) which 
is 12 bits wide. This phase has 7 subphases. 

Subphase 1 tests to see if we can load the PC with an address, and then increments and 
reads back the PC. 

If an error occurs the following message is printed out: 

Unable to Read (set, or increment) the 2910 program counter 

Subphase 2 tests to see if we can increment the PC from x'FFF' to x'OOO' and then tests 
to see if we can set each bit of the 12 bit PC. 

If the PC did not increment the following error message is printed out: 

Microcode program couater not incrementing. 
Expected: X'xxx:x' Received X'yyyy' Bits in Error: X'zzzz'. 

If the PC incremented but not to x'OOO' the following error message is printed out. This 
could indicate a problem with the CONT instruction. 

Microcode program counter cannot hold a zero. 
Expected: X'O' Received X'yyyy' Bits in Error: X'zzzz'. 

When testing each bit of the PC the PC is loaded with a new value and incremented. 
If the returned value of the PC is not incremented the following message is printed out. 
This could indicate a problem with the CONT instruction or a address lines error. 



COMPANY PRIVATE-PS 390 Graphics System May G, 1987 113 

Microcode program counter not incrementing. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz'. 

When testing each bit of the PC, if the returned PC value is an unexpected value the 
following message is displayed: 

Microcode program counter bit test error. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz'. 

Subphase 3 tests out the continue instruction. This is done by single stepping a continue 
instruction. If the value to the PC is not properly incremented by the continue instruction 
the following error message is displayed. 

Unable to execute the Continue Instruction 

Subphase 4 tests out the Jump on Vector Ram address instruction. This is done by single 
stepping a Jump on Vector Ram address instruction. If the new PC value is incorrect 
the following error message is displayed: 

Unable to execute the Jump to VEC. RAM address instruction. 

Note: Currently there is a known bug with this test. This error will be reported but should 
be ignored until further notice. 

Subphase 5 - tests the conditional jump instructions. The first 4 tests are done by 
single step execution and the remaining 6 instructions are executed in microcode. These 
instruction tests will now be described in their proper order. 

The following ~ondition codes are tested: 

• True 

• False 

• Zero, NZero 

• Negative 

• Carry 

• Overflow 

•CT 

• FR Fifo stack bus control ready 

• NPPL attention bit 



COMPANY PRIVATE-PS 390 Gra.phics System Ma.y 6, 1987 114 

The FSBC (Fifo Stack Bus Controller) ready bit (*INFSBCREADY) is tested for a true 
condition. This means the diagnostic tests for Bit= 1 or Bit = 0. This condition should 
exist after resetting the PS 390. The test is done by resetting the PS 390 and then 
attempting to jump on the FSBC being true. If the improper condition exists and the 
jump is not taken the following error message is displayed: 

Unable to branch properly on the FIFO STACK BUS CONTROLLER 
condition. 

Errors reported in RBED lA the Endpoint Graphics Pipeline diagnostic may be related 
to this condition code. 

The Pixel Processor Loader is tested for a false condition. This condition should exist 
after resetting the PS 390. The test is done by resetting the PS 390 and then attempting 
to jump on the PPLATTN bit being false. If the improper condition exists and the jump 
is not taken the following error message is displayed: 

Unable to branch properly on the NOT PIXEL PROCESSOR condition. 

The PS 390 is reset by toggling bit 14 in the Maintenance register. This test sets up a 
zero condition and then attempts to jump on this condition. If the jump is not taken 
the following error message is displayed: 

Unable to branch properly on the Z ( ZERO ) condition. 

This test sets up a not zero condition and then attempts to jump on this condition. If 
the jump is not taken the following error message is displayed: 

Unable to branch properly on the NOT Z (ZERO) condition. 

This test checks out to see if the 29117 can properly increment one of its internal registers. 
The reason this is done is because the remaining 5 tests will be incrementing this internal 
register as part of their tests. If this test fails the following message is displayed: 

29117 ALU is not functioning properly. 

This test sets up a negative condition by loading a 29117 register with x'FFFF' and then 
latching in the negative condition. A jump is then attempted off of this condition. If the 
jump fails the following error message is displayed: 



COMPANY PRlVATE-PS 390 Graphics System May 6, 1987 115 

Unable to branch properly on the N ( NEGATIVE ) condition. 

This test sets up a carry condition by loading a 29117 register with x'FFFF' and then 
incrementing the register. A jump is then attempted off of this condition. If the jump 
fails the following error message is displayed: 

Unable to branch properly on the C (CARRY) condition. 

This test sets up an overflow condition by loading a 29117 register with x'7FFF' and 
then incrementing the register. A jump is then attempted off of this condition. If the 
jump fails the following error message is displayed: 

Unable to branch properly on the 0 (OVERFLOW) condition. 

This test sets up a CT true condition by loading a 29117 register with x'FFFF', incre­
menting the register, and then doing an ALU test on the carry condition. A jump is then 
attempted off of the CT true condition. If the jump fails the following error message is 
displayed: 

Unable to branch properly on the CT condition. 

This test sets up a NOT CT condition by loading a 29117 register with x'OOFF', incre­
menting the register, and then doing an ALU test on the carry condition. A jump is then 
attempted off of the NOT CT condition. If the jump fails the following error message is 
displayed: 

Unable to branch properly on the NOT CT condition. 

Subphase 6 tests the 29110 internal register. This is done in microcode. The maximum 
value the register can hold is loaded and then it is decremented until it reaches a zero 
value. If an error occurs the following message is displayed: 

Internal Register is not working properly. 

Subphase 7 tests the 29110's stack. This is done in microcode. This test relies on a 
working internal register. An address is pushed onto the stack and then popped off with 
a jump to subroutine instruction. If an error occurs the following message is displayed: 

Internal Stack Register is not working properly. 



COMPANY PRJVATE-PS 390 Graphics System May 6, 1987 116 

4.1.3.8 Phase 8 -29117 Microprocessor Instruction Confidence 

Not Yet Implemented. 

Errors in the several other microcoded phases may indicate a malfunctioning 29117 ALU 
processor. 

The 29117 microprocessor is the 16-bit ALU for the PS 390. Testing of the ALU includes 
performing all arithmetic and logical functions, and checking the results. 

4.1.3.9 Phase 9 - Scratch RAM 

The Scratch RAM for the raster back end is 16-bits by 2048 words. Access to the Scratch 
RAM is via the Bitslice processor. Reading the scratch RAM requires the use of the ACC 
register in the 29117 processor. Data is written to the ACC via the same path described 
in the Arithmetic Logic Unit Register test. It is then put on the Y-BUS and placed in 
the YTEMP register of the Y to D bus transceiver. The next instruction places address 
of the scratch Ram on the immediate field and the data is written to that location over 
the D bus. 

This test addresses from 0 to 2047, reading, writing, and checking test patterns at each 
location. 

Subphase 1 checks all of the Scratch Ram. 

If the 16 bit pattern sent is different then the 16 bit pattern received the following error 
message is displayed. 

Datalines error writing to Scratch Ram bits. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz'. 

Subphase 2 tests out the 11 address lines to the Scratch Ram. First each address line is 
tested to see if is stuck high or low, then each possible pair of address lines are tested to 
see if they are stuck together. 

Address line errors are reported in one or both of the following ways. 

Scratch Ram Address line stuck at address X'xxxx' while testing 
bit y. 

Scratch Ram address lines stuck together at address X'xxxx' 
while testing bit y 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 117 

Subphase 3 tests out the all 2048 locations of the Scratch Ram. This is a microcode 
subphase. The first test write location to location. Errors in this subphase result in the 
following error message. 

Error occurred at the following Scratch location X'xxxx' Bits in 
error are y 

A timeout error may occur if the interrupts are not generated properly. 

Subphase 4 is a random number test on scratch Ram. Random numbers are written to 
all the locations at full speed using microcode. The data is read back and compared for 
errors. Errors in this subphase result in the following error message. 

Random pattern error found in Scratch Memory at ( SCRAM address ) 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz'. 

4.1.3.10 Phase 10 - Vector Ram 

Access to the Vector RAM is via the Bitslice processor. A data and address lines test is 
run on the RAM. 

Phase 7 tests the Vector Ram. The Vector Ram has 7 pages, each page has 256 words. 
Each word is 12 bits wide. This has 4 subphases. 

Subphase 1 tests out the data lines to the Vector Ram. 

If the 12 bit pattern sent is different then the 12 bit pattern received the following error 
message is displayed. 

Datalines error writing to Vector Ram bits. 
Expected: X':x:x:x::x:' Received X'yyyy' Bits in Error: X'zzzz'. 

Subphase 2 tests out the 8 bits of address lines. 

If an error occurs while testing out an address line the following error message is displayed: 

Vector Ram Address line stuck at address X'xxxx' while testing 
bit y 

If an error occurs while testing out pairs of address lines the following error message is 
displayed: 



COMPANY PRIVATE-PS 390 Grap.hies System May 6, 1987 

Vector Ram address lines stuck together at address X'xxxx' 
while testing bit y 

Subphase 3 tests out the 3 bits of page lines. 

118 

If an error occurs while testing out an address line the following error message is displayed: 

Vector Ram Page line stuck at page address X'xxxx' while 
testing bit y 

If an error occurs while testing out pairs of address lines the following error message is 
displayed: 

Vector Ram Page address lines stuck together at address X'xxxx' 
while testing bit y 

Subphase 4 tests out the 7 pages of 256 words of the Vector Ram. The pattern it writes 
to the location is based upon the location number. 

If the 12 bit pattern sent is different then the 12 bit pattern received the following error 
message is displayed. 

Error occurred at the following SCR location X'xxxx' Bits in error 
are y 

4.1.3.11 Phase 11 - Function Lookup Table 

The EPROM Lookup table for the Raster Backend portion of the PS 390 is 16-bits by 
65536 (or 64K) words. Access to the Lookup table is via the Bitslice processor. This 
test addresses from 0 to 65536, reading the EPROM at each location. A check sum is 
performed and compared to the last location in the EPROM where a checksum is burned 
into the prom. If the two checksums do not agree the following error message is reported. 

Checksum error reading Function Look Up Table Prom. 
Computed checksum: xxxx Checksum in FLUT: yyyy. 

When the computed checksum is correct the proper value. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 119 

4.1.3.12 Phase 12 - AMD 29517 A Multiplier 

Not Yet Implemented. 

This is a 16 by 16 bit parallel multiplier. Access to the multiplier is via the Bitslice 
Processor. This test multiplies different test patterns together and verifies the results. 

4.1.3.13 Phase 13 -Common Bus Direct Memory Access (~MA) 

A DMA from the RBE bit slice requires data to be loaded into a 16 bit common bus data 
register, and 22 bit address to be loaded into two address registers. The DMA hardware 
is tested in three subphases. The first two are single stepped and the third is a full speed 
microcoded phase. 

Subphase 1 tests out the data register. 

A 16 bit set of diagnostic patterns are written to a location in mass memory. The 
microcode program waits for the *cbbusy signal to go low after requesting a common 
bus access. If the microcode does not receive the *CBBUSY low signal, the following 
err~rs are reported. 

HA processor timed out -- PC= X'yyy'. 
Timeout occurred waiting for cbbusy signal. 

The JCP then reads location X'200000' to verify that the data was written correctly. 
DMA write errors a.re reported as follows. 

Datalines Error writing data from RBE to mass memory. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz'. 

Then the RBE Bitslice reads the pattern back via the DMA hardware and reports any 
read back errors as follows. 

Datalines Error reading data from mass memory to RBE. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz'. 
NOTE: Assumes data was correctly written to mass memory. 

Subphase 2 tests out the addressing path to the Common Bus. Test data is written via 
the RBE DMA hardware to each location, setting one address bit at a time. The JCP 
then reads the location to verify that the pattern arrived at the proper location. The 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 120 

LSB address lines are all tested. However, to test all of the upper address lines mass 
memory cards from 200000 to 600000 must be in the system. 

Address line errors may be reported in the following way. 

RBE to common bus addressing error testing address X'xxxxxx'. 

Subphase 3 is a full speed read/write test of the DMA hardware using random number 
test patterns. A packet of 8 Random numbers are written to Mass memory and read 
back and compared. Then another packet of 8 patterns are written and so on until 
2000 packets of 8 are transfered. When an error is detected during the test, the test is 
interrupted to report that error. The mass memory location is examined to see if the 
data was written properly. If the expected pattern does not appear in mass memory the 
following error is reported. 

Data mismatch at location X'yyyyyyy' after full speed common bus 
write operation. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz'. 

If the data in Mass memory is correct then it is assumed the error occurred on the 
readback and the following error is reported. 

RBE read back data mismatch at location X'200000' testing full speed 
random number DMA transfer. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz'. 

NOTE: Mass Memory contains correct data. 

Parity errors that occur in mass memory during this full speed transfer are counted and 
any parity errors are reported as follows. 

Parity interrupt during common bus full speed read/write test. 

Note: The modify command will allow you to select a different Megabyte of mass memory 
to perform these tests on. This phase accesses 2 separate memory cards (or banks) 
by alternately writing a bit pattern to each megabyte. In order for this phase of the 
diagnostic to work properly, the system must have at least 2 Megabytes of memory 
on the Mass Memory Board. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 121 

4.2 Endpoint Pipeline Diagnostic - RBED lA 

The Endpoint Pipeline is comprised of custom VLSI chips, that are also used on the Shad­
owfax project. The pipe includes the Input FIFO Stack Bus Controller, the Delta/Depth 
Cue Calculator, the EndPoint FSBC and the Color FSBC. In addition, the RBE contains 
an interface from the pipeline to the Pixel Processor Data Bus which allows the data to 
be sent to the pixel processor. A diagnostic path allows the data to be read back to the 
Master Bitslice for verification. Otherwise the Pixel Processor Data pa.th leads to the 
VLSI Pixel Processor array. The Endpoint Pipeline has the following components: 

(a) Input FSBC controller 
(b) Input FSBC Data Register 
( c) Input FSBC 
(d) Delta/ Depth Cue Calculator 
(e) Depth Cue RGB 
(f) Output FSBC Color RGB 
(g) Output FSBC Endpoint 
(h) FSBC to Pixel Processor Data Bus 
(i) Pixel Processor Data Bus rea.dback path via D-Bus 

4.2.1 Testing Strategy 

The strategy for testing the Pipeline is t.o first test the Input FSBC and FSBC data 
registers by sending a set of patterns through the pipe in the transparent mode. This 
tests the Endpoint FSBC but not the Color FSBC. The Pipeline control signals can 
be verified at this point. Followed by testing for the Delta/Depth Cue Calculator and 
Output FSBC by sending a set of test vectors through the pipe. 

Phase 1 - RBE Common Bus Maintenance register test. 
Phase 2 - Transparent mode test sending zeros through the pipe. 
Phase 3 • Full pattern test in transparent mode to test readback paths. 
Phase 4 - Functional test on the Delta/Depth Cue Calculator. 

4.2.2 Description of Tests 

4.2.2.1 Phase 1 - Common Bus Maintenance Register 

Phase 1 tests out the Maintenance Register located at X'FFF030'. Phase 1 has 2 sub­
phases. 



COMPANY PRIVATE-PS 390 Graphics System Ma.y 6, 1987 122 

This phase tries to read and write to the Maintenance Register. If a bus error occurs, a 
diagnostic interrupt handling routine detects it and an error message is reported. 

Subphase 1 of Phase 1 attempts to read the maintenance register. If a bus error happens 
during the reading of the maintenance register the following error occurs. 

Common bus read error for Raster Back End MR: 
(Maintenance register's contents). 

Subphase 2 of Phase 1 attempts to write to the maintenance register and to set and reset 
various bits of the maintenance register. 

If a bus error occurs during the writing of the maintenance register the following error 
occurs. 

Common bus write error for Raster Back End MR: ( PS 390 
Maintenance register's contents). 

4.2.2.2 Phase 2 - Transparent mode test sending zeros through the pipe 

Phase 2 of RBEDlA attempts to send any data down the graphics pipeline. Subphase 1 
of Phase 2 sends the transparent command to the pipe and writes zeros in the x,y,z and 
w. The data is read back and stored in scratch memory. 

There are several handshaking signals that the microcode expects to see while writing 
to the pipe. If the microcode times out while waiting for one of these signals one of the 
following errors will be reported after the timeout error is reported: 

Microcode timed out waiting for FSBC ready bit. 

The FIFO Stack Bus Controller Ready bit did not go low after card reset. This bit 
should go low before the microcode will write any data to the pipe. 

Microcode timed out waiting for PPL attention bit. 
In.PACK not acknowledged by *PPLATTN. 

After data is written to the FSBC intermediate registers an IN.PACK signal is sent. The 
*PPLATTN bit should acknowledge this signal. 

FSBC busy after PPL.PACK signal sent. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 123 

The FIFO Stack Bus Controller Ready bit did not go low after data was sent. This might 
indicate that the PPL.PACK signal may not have been recognized. 

The data stored in scratch memory is checked for errors. First the command word is 
check to verify that it came through the pipe intact. Errors in the readback of the 
command word are reported as follows: 

Unable to write Transparent Command Word to FSBC. 
Expected: X'8060COO' Received X'yyyyyyyy'. 

This is considered a Fatal error and will prevent any other tests from executing. 

Non zero values read back for the X,Y and Z locations are reported. 

Unable to write a Zero through the Graphics Pipe. 
Expected: X'OOOO' Received X'yyyy' Bits in Error: X'zzzz'. 

Subphase 2 of Phase 2 sends all the possible command words through the pipe. Command 
words are sent through all the chips in transparent and should retain the original value 
when reading values at the bottom of the pipe. The following command words are tested. 

• X'80400006 enable delta calculator 

• X'80400004 disable delta calculator 

• X'80400018 enable dot mode 

• X'80400010 disable dot mode 

• X'80400060 enable depth cueing 

• X'80400040 disable depth cueing 

Errors are reported as follows: 

Error sending Command words through graphics pipe. 
Expected: X'8040xxxx' Received X'yyyyyyyy'. 

4.2.2.3 Phase 3 - Full pattern test in transparent mode 

Phase 3 of RBEDlA runs a full diagnostic pattern test throughL the pipeline in trans­
parent mode. This may result in some occasional signal errors detailed in subphase 2. 
These should not be ignored. Check the timing pals for these signals. Data errors may 
also be reported. Occasional data that is incorrect should not be ignored. This test is a 
critical timing test. Several repetitions of this phase is suggested. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Error sending patterns through the Graphics Pipe. 
Expected X: X'xxxxxxx' Received X: X'yyyyyyyy'. 
Expected Y: X'x:x::x::x:xx:x' Received Y: X'yyyyyyyy'. 
Expected Z: Received Z: X'yyyyyyyy'. 

Note: The bits in error reported a.re not correct. 
Note: There is no pa.th to read the W component of the vector. 

4.2.2.4 Phase 4 - Functional test on the Delta/Depth Cue Calculator. 

124 

Not yet implemented. A full functional test of the DDCC will take some time to develop. 

4.3 Frame Buffer Diagnostic - RBED2A 

The Raster Backend Frame buffer is a modified version of the Shadowfax frame buffer. 
The Frame buffer components include: 

(a) 1024 x 1024 x 48 Image bit planes 
(b) 1024 x 1024 x 8 Window/Valid planes 
( c) Frame Buff er Memory Controller 

4.3.1 Testing Strategy 

The strategy for testing the Frame Buffer is to first test the video control register, the 
color look up table, the Pixel processor data register and then the pixel processors, the 
Scan line buffer and then the DACs. The pixel processor test relies on visual feedback. 
The scan line buffer controller and interface a.re then tested by writing values to the Frame 
Buffer and reading them back. Next the frame buffer memory is tested and finally the 
DA Cs. 

Phase 1 - Video Control Register Test 
Phase 2 - Color Look up table Test 
Phase 3 - Pixel Processors (16} 
Phase 4 - Pixel Processor ONCOUNT, TOTCOUNT and INTENSITY registers 
Phase 5 - Frame Buffer and Scanline Buffer Memory 
Phase 6 - DAC test. 
Phase 7 - Visual Debugger. You can draw boxes. 
Phase 8 - YASD Debugger. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 125 

4.3.1.1 Phase 1 - Video Control Register Test 

Phase 1 tests out the PS 390's Video Control Register by doing a write and read of the 
register. Each bit is toggled. Flashing of the display is expected in this test. The contents 
of the video control register are read back into scratch ram location 1 over the Y-Bus 
through the Y to D transceiver. Therefore this path must be verified before testing the 
video card. 

I Y to D-Bus Transceiver 

~ 
I VIDEO BUS I 

Video Intermediate Register 

~ 

Subphase 1 of Phase 1 verifies the contents of the video control register after it has been 
written. Bit 11 of the register cannot be read and will always be high. Other than this 
bit, if a bit appears to be stuck the following message is reported. 

Read Write Error testing the video control register. 
Expected: X'OOOO' Received X'yyyy' Bits in Error: X'zzzz'. 

4.3.1.2 Phase 2 - Color Look Up Table 

For each R, G, and B value there is a Color Look-up Table. The Color Look-up tables 
are located in the DACs. There is a read/write path via the video intermediate register 
for the data. The color look up table address register can be read back via the signature 
readback path. The addressing and data paths for Red, Green and Blue Look Up tables 
are verified and then the CLUT is filled. 

Subphase 1 of Phase 2 checks the addressing path to the Color look up tables. An 
address is written to the Video Intermediate Register and the Color Look Up Table 
Address register is enabled. This puts the address on the %VLABUSD inputs to the 
DACS. The %VLABUSD bus is read back via the signature readback path into scratch 



COMPANY PRIVATE-PS 390 Graphics System Ma.y 6, 1987 126 

ram location 1. Bit 0-7 represent the address sent to the RED DAO and bits 8-15 
represent the address to the GREEN DAO. If an error occurs the following message is 
reported. 

Read Write Error testing the Color LUT Address register. 
Expected: X'OOOO' Received X'yyyy' Bits in Error: X'zzzz'. 

Subphase 2 of Phase 2 verifies the 8 bit data path to the Red, Green and Blue look 
up tables. Data is written to the the Video Intermediate register and the OLUT_Red, 
OLUT_Green, and OLUT-Blue lines are enabled. The data is read back for verification. 
If an error is detected one of the following messages will be reported. 

Read Write Error testing the Color LUT Red register. 
Expected: X'OO' Received X'yy' Bits in Error: X'zz'. 

Read Write Error testing the Color LUT Green register. 
Expected: X'OO' Received X'yy' Bits in Error: X'zz'. 

Read Write Error testing the Color LUT Blue register. 
Expected: X'OO' Received X'yy' Bits in Error: X'zz'. 

Subphase 3 of Phase 2 is a microcode test that fills the color look up table with an 
incrementing pattern and reads it back full speed to verify the contents. The path that 
is used is the same path described in subphase 1 and 2 with the exception that scratch 
ram is not used, the data is latched into the ALU for comparison. Errors in this subphase 
are reported as follows: 

Error in the Color Look Up Table from the Red DAC. ~ 

Expected: X'OOOO' Received X'yyyy' Bits in Error: X'zzzz'. 

Error in the Color Look Up Table from the Green DAC. 
Expected: X'OOOO' Received X'yyyy' Bits in Error: X'zzzz'. 

Error in the Color Look Up Table from the Blue DAC. 
Expected: X'OOOO' Received X'yyyy' Bits in Error: X'zzzz'. 

4.3.1.3 Phase 3 - Pixel Processors (16) 

The Pixel Processor Array consists of 16 identical processors with eight processors located 
on each of the two RBE cards. The Pixel Processors update Frame Buffer memory. The 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 127 

primary purpose of the PPA is to draw anti-aliased lines, implement polygon fill, and 
block transfers. The PPA also provides read and write access to the Frame Buffer from 
the RBE Bit Slice Processor. Testing is done by displaying visual patterns which verify 
the operation of the Pixel Processors and their packet registers. 

Initializing the pixel processor array takes several steps. Ea.ch step is recorded in scratch 
memory location 50 as it completes. If the microcode times out during initialization of 
the PPA the following error message is reported along with the last step completed. 

Unable to initialize Pixel Processor Array. Last step • <0-9>. 

Subpha.se 1 of Phase 3 initializes the color look up table and pixel processor array. 

The microcode depends on several handshake signals to initialize and write to the pixel 
processor registers. If the microcode is stuck in a loop waiting for the appropriate signal 
response a time out error will occur and one of the signal error messages may be reported. 

HA processor timed out -- PC= (current program counter). 

After a PP.PACK signal is sent to write to the pixel processors, the µcode waits for 
the PPREADY (bit 12 in STATUS reg) to go low. PPACTIVE signal will then go high 
and the flush routine waits for PPACTIVE (bit 11 in STATUS reg) to go low before 
attempting to write to another pixel processor. 

Timeout waiting for NPPREADY signal to go low in PP flush routine. 

Timeout waiting for PPACTIVE signal to go low PP flush routine. 

The following error is very similar in nature but it occu-rs while writing to individual 
pixels on the screen to complete a scan line. This is a faster routine and does not wait 
for the PPREADY signal to go low. 

Waiting for PPACTIVE signal to go low in draw loop. 

A test is performed to verify the vertical blank signals writing t.o the frame buffer. If the 
vertical refresh does not occur one of the following errors is reported. 

waiting for NOT vertical blank in FRAMEWAIT. 

Waiting for vertical blank to go high in FRAMEWAIT. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 128 

Subphase 2 of Phase 3 tests tests the operation of the individual pixel processors. A large 
4 by 4 grid is displayed, with each element representing by position, the respective pixel 
in a 4 by 4 grid of pixels that each pixel processor controls. {See Figure 4.1) A pattern 
of red dots is expected in each element, indicating the operation of an individual pixel 
processor. The decoding of rows and columns into Pixel Processor number and card is 
shown in Table 4.1. The boxes are numbered from 0 to 15 starting at the top left hand 
corner, counting across and down. The box number corresponds to the pixel processor 
number. 

PPO PPI PP2 PP3 

PP4 PP5 PP6 PP7 

PP8 ppg PPlO PPll 

PP12 PP13 PP14 PP15 

Figure 4.1: Pixel Processor Assignment 

4.3.1.4 Phase 4 - Pixel Processor Register Test 

Phase 4 of RBED2A tests out a few of the Pixel Processor registers. There are 64 internal 
registers in each Pixel Processor. This phase performs a visual test for a few of these 
registers. There are three subphases in phase four. The operator must hit a key on the 
debug terminal to proceed from one subphase to the next. 

Use the MODIFY command to change the PPMASK. PPMASK is a register that will 
turn each Pixel Processor on or off depending on whether the corresponding bit is set 
in PPMASK. For example, a PPMASK of X'FFFF' turns all the Pixel Processors on. 
A value of X'0080' turns on only Pixel Processor number 7. A modified PPMASK will 
affect all three subphases of Phase 4. 

Subphase 1 of Phase 4 tests the TOTCOUNT register. The value in TOTCOUNT 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 129 

Table 4.1: Pixel Processor Row and Column Decoding 

Pixel Processor Row and Column Decoding 
Row Column Number Card 

0 0 0 204485-600 
0 2 1 204486-600 
1 0 2 204485-600 
1 2 3 204486-600 
2 0 4 204485-600 
2 2 5 204486-600 
3 0 6 204485-600 
3 2 7 204486-600 
0 1 8 204485-600 
0 3 9 204486-600 
1 1 10 204485-600 
1 3 11 204486-600 
2 1 12 204485-600 
2 3 13 204486-600 
3 1 14 204485-600 
3 3 15 204486-600 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 130 

controls the length of the scan line. TOTCOUNT is incremented by one each Scanline 
creating a pattern increasing from top left to bottom right should be displayed. Any 
lines not following this pattern would be an indication that the TOTALCOUNT register 
is not functioning correctly. 

Subtest 2 of Phase 4 tests the operation of the ONCOUNT register. The test is performed 
by setting TOTALCOUNT to the maximum value, then drawing a series of horizontal 
lines while varying the value of ONCOUNT from minimum to maximum. Set up in this 
way the value in ONCOUNT controls the length of the Scanline. A pattern increasing 
from top left to bottom right should be displayed. Any lines not following this pattern 
would be an indication that the ONCOUNT register is not functioning correctly. Spurious 
blue dots or lines against the white background can be eliminated by changing PPMASK. 

Subtest 3 of Phase 4 tests the operation of the INTENSITY registers. The test is 
performed by drawing blue, green, and red blocks while varying the INTENSITY from 
minimum to maximum intensity. The color intensity should increase from left to right. 
Failure to produce a smooth and consistently increasing pattern would be an indication 
that the INTENSITY registers are not functioning correctly. 

4.3.1.5 Phase 5 - Frame Buffer and Scanline Buffer Memory 

The Frame Buffer memory is organized as a 1024 x 1024 x 52-bit memory that drives the 
raster display. The memories are 256K video RAMs that are dual ported. The random 
port is controlled by the Pixel Processor Array to allow reading and writing the Frame 
Buffer. The serial port allows data to be scanned and sent to the Video Controller which 
then drives the raster display. There are two banks in the Frame Buffer. they are called 
Bank A and Bank B. This phase tests both banks by default. The MODIFY command 
will allow the operator to disable one or both of the banks. 

The data path to the Frame Buffer is tested by writing a 16 bit test pattern to one scan 
line in the Frame Buffer and then reading it back. 

The entire Frame Buffer memory is tested using complementing eight bit patterns, writ­
ten to the blue, green, red, and window locations for each pixel. The data is complimented 
every 4th pixel so that vertical stripes shoµld appear on the screen. After completely 
filling memory, data is read via the Scanline buffer and checked for errors. If any frame 
buffer memory errors are found, the following message is displayed: 

Note: The vertical stripe should appear in black and white or as a shade of gray. If the 
color is wrong (e.g. blue and white stripes) then this indicates a problem with the 
background color registers. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Frame Buffer memory error. 
Expected Green/Blue X'ggbb' Received Green/Blue : X'ggbb' 
Expected Window/Red X'wwrr' Received Window/Red : X'wwrr' 
Xaddress : X'xxxx' Yaddress : X'yyyy' 

131 

Where the data is received in two packets Green/Blue and Window /Red. If there appears 
to be a consistent bit stuck in one of these packets the problem is most likely in the read 
back path. Occasionally on power up one may see a single error reported in this phase, 
repeat the phase and it will go away. 

Handshaking signal errors may also be reported as documented in phase 3 of this diag­
nostic. 

4.3.1.6 Phase 6 - DAC Test 

This phase is not yet implemented. The plan, however, is to load the CLUT with all 
white except for the test bit, which will be black. The frame buffer is then filled with 
the test pattern which results in a black screen. In the case of an error there will appear 
white dots indicating that one of the outputs of the DAC is stuck. 

4.3.1. 7 Phase 8 - Visual Debugger (optional ) 

Phase 5 Allows you to draw little boxes all over the screen. Command options are as 
follows: 

(M) Modify Box Parameters. 

(R) Reset HA board. 
(I) Initialize Pixel Processors. 

( C) Load Color Lookup Table. 
(D) Draw a Box. 

(Q) QUIT. 

To use this debugger you must first (I) Initialize the Pixel Processors. Then (C) Load 
the Color Lookup Table and (D) Draw a box. This will fill the screen with white. Signal 
errors as described in Phase 2 can be reported for each one of these steps. A (R) reset 
of the HA board will require re-initialization of these first three steps. 

Use the (M) command to modify the box parameters. A number must be entered for 
each prompt or a zero will default. The values you can specify are as follows: 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 132 

x address < 400 - 0 > specifies the top left corner of the box. 
y address < 400 - 0 > specifies the top left corner of the box. 
x size < 400 - 0 > specifies the length of the box 
y size < 400 - 0 > specifies the width of the box 
PP MASK < FFFF - 0> specifies the number of Pixel Processors involved 
WINDOW < FF - 0 > 08 is the preferred value. 
RED < FF - 0 > Red intensity 
GREEN < FF - 0 > Green intensity 
BLUE < FF - 0 > Blue intensity 

4.4 MPLSDOB: PLS Analytic Diagnostic 

MPLSDOB uses data analysis and signature analysis to test the circuitry on the PS 350 
Pipeline Subsystem {PLS) card (E&S #204143-100) and the interface to the Refresh 
Buffer (RFB) card on the PS 350 or the Raster Backend Card Set on the PS 390. Data 
analysis uses the results of calculations from each section of the card and compares 
these results with expected results to determine if the circuitry is functioning properly. 
Signature analysis is used in areas where data paths are not provided. 

MPLSDOB performs signature analysis on five PLS card nodes. These nodes are orga­
nized so that they correspond with subsections of the PLS card. Phases 1 and 9 use 
different types of signature stimulus to test the same circuitry. Phase 1 breaks all feed­
back paths to ACP and clock control and sends a simple vector list down the pipe to 
test handshaking between the ACP, PLS, and shadow pipeline. Phase 9 sends a complex 
vector list containing multiple viewport changes down the pipe. 

The remaining phases of the diagnostic perform data analysis on the calculation compo­
nents of the card. 

Loop on error is only used in the pipeline configuration register test in Phase 1. The 
other phases are unable to loop on error because they send vectors down the pipeline 
and it is undesirable to loop on the entire vector list. The optional Phase 11, the PLS 
debugger, provides a better way to loop on error. It allows the user to set up the pipeline 
and specify and probe the vector or vectors that are continuously sent down the pipe 
when the vector loop command is implemented. The pipeline can be set up to simulate 
the phase that fails. Set-up information is available in the phase descriptions. 

Note that each diagnostic phase gives meaningful results only if all previous phases run 
successfully without errors. Each phase depends on the results of the previous phase. 



COMPANY PRJVATE-PS 390 Graphics System May 6, 1987 133 

4.4.1 Functional Description 

MPLSDOB consists of eleven phases: 

Phase 1 Tests PLS status, the pipeline configuration register, ACP /PLS handshaking, 
and the shadow pipeline signatures. 

Phase 2 Tests MULBUS paths to the PLS and FIFO. 
Phase 3 Tests the Block Normalizer. 

Phase 4 Tests the perspective divider circuit. 
Phase 5 Tests the IYX data path. 
Phase 6 Tests the viewport and intensity registers. 
Phase 7 Tests viewport and intensity multipliers. 
Phase 8 Tests the PLS clipping circuit. 
Phase 9 Performs PLS signature tests. 
Phase 10 Tests the PLS/Refresh Buffer interface. 
Phase 11 Is an optional phase that implements the PLS debugger. 

A functioning 4K ACP card (E&:S #204133-100) is required f~r MPLSDOB to execute 
properly. · 

The following default values are used when the Diagnostic Operating System loads this 
diagnostic. 

• The default file name that contains the known signatures for the diagnostic 
MPLSDOB is PLSSIGA.TXT. 

• Ten signatures are gathered on each node before determining if a signature is stable. 

The PLS Diagnostic routines for the PS 390 are the same as the diagnostics for the 
PS 350 with the exception that Phases 1, 8, 9 and 10, which have been modified for the 
PS 390. 

Phase 1 determines whether or not the system has a refresh buffer or a Raster Backend. 
If neither one is present the following error message is displayed: 

Unable to read a 360 or 390 Maintenance Reg. 

In Phases 8 and 9, microcode is loaded into the PS 390 to consume bytes coming down 
the pipeline from these tests. The microcode waits for the FIFOREADY bit to be set 
before reading in a byte of data. 

In Phase 10, a full set of test patterns are transferred from the PLS card to the Raster 
Backend. Subphases 1 and 3 send data to the PS 390. Subphase 1 loads bytes directly 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 134 

through the IYX data register to the PS 390. Subphase 3 sends IYX vectors down the 
pipeline to the PS 390. Both subphases have microcode running in the PS 390 that reads 
data from the PS 390's input Fifo and writes it into the scratch ram. The microcode 
waits for the FIFO READY bit to be set before reading in a byte of data. Both subphase's 
microcode will try to read in a specific amount of bytes (54 for subphase 1, 30 for subphase 
3) before terminating. If a sufficient number of bytes are not received from the PLS by 
the PS 390 the JCP will timeout with the following error message: 

HA processor timed out -- PC= (current program counter). 

In both subphases the patterns are then read out of scratch ram by the JCP and are 
compared with the expected data. 

Subphase 1 of Phase 10 performs an IYX data test on the interface to the PS 390. 

If a data mismatch between the expected data and the received data form the PS 390, 
the following error message is displayed: 

Data error in PLS/PS 390 Interface. 
Expected: X'xxxx' Received X'yyyy' Bits in Error: X'zzzz'. 

Subphase 3 of Phase 10 performs a vector data test on the interface to the PS 390. IYX 
data is sent down the pipeline to the PS 390: 

If there is a data mismatch between the expected data and the received data from the 
PS 390, the following error message is displayed. 

Vector data error in PLS/PS 390 Interface. 
Vector number: :x:xx Section: (I or Y or X) 
Expected: zzz, Received: rrrr. 

MPLSDOB signatures are in standard hexadecimal format. Hewlett-Packard signature 
format is not used in this diagnostic. 

4.4.2 Initialization 

When the Diagnostic Operating System loads MPLSDOB, this phase executes automat­
ically and the following message is displayed: 

PS\360 PLS Signature Verification Diagnostic. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 135 

Then the diagnostic reads the root node signature file "PLSSIGA.TXT". If an error 
occurs the following message is displayed: 

Error ee occurred in reading signature table file: PLSSIGA. · 

where ee is one of the possible error messages of the Diagnostic Operating System. If 
the file is read successfully, the diagnostic checks that stimulus program names in the file 
all have the name PLSSTMOA. If all of them are not named PLSSTMOA, the following 
message is displayed: 

Invalid stimulus program names stored in file. Do not proceed with this diagnostic. 

Do not execute the diagnostic any further (unless you have an alternate file) because this 
version of the diagnostic expects all stimulus programs to be PLSSTMOA. 

4.4.3 Parameter Modifications 

Five of the signature verification parameters may be changed using the "M" odify com­
mand. After the cursor ">" appears, a menu is displayed with the following options: 

Available Options 
<CR> = Exit modify phase. 

0 = Display this menu. 
1 = Modify frame count. 
2 Create a new signature table. 
3 Display the current signature table. 
4 Specify an alternate file name. 
5 Enable optional phases. 

Enter modify option:: 

Entering a RETURN (<CR>) causes the diagnostic to exit Modify. Enter a 0 to redisplay 
the menu of available options. Entering any number other than 0 -+ 5 causes the message: 

Invalid Option 

and the system prompts for another Modify option. A number from 0 to 5 cam~es t;he 
associated option, detailed below, to be selected. 

4.4.3.l Option 0 

Option 0 displays the options menu. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 136 

4.4.3.2 Option 1 

Option 1 sets the signature frame count. It allows the user to change the number of 
frames performed before determining if a signature is stable. The system prompts: 

Current number of frames performed: ffff 
Enter number of frames to be performed (minimum = 3) 

where ffff is the number of frames currently performed. To change the signature frame 
count, enter the number of frames to be performed (from 3 to 32000). 

4.4.3.3 Option 2 

Option 2 creates a file on the diskette that contains the gathered signatures. 

The diagnostic prompts: 

Do you wish to use alternate file name other than standard 1 

If the user enters <CR> or "N," the diagnostic proceeds to Option 3 and the standard 
file name PLSSIGA.TXT is used. If "Y" is entered, the diagnostic prompts with: 

File name: 

Type the new name of the file for the gathered signature table. Unless otherwise specified, 
the diagnostic assumes an extension of . TXT and the highest version number. 

Next, the diagnostic prompts: 

Enter signature file information: 

Enter up to 80 characters of configuration information. The system next prompts: 

Enter board name (PLS, LGS, etc.) for node n: 

where n is the number of the node. 

The diagnostic then prompts for the device number to be connected to the specified node: 

Enter device number (U125, U88, etc.) for node n. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

where n is the number of the node. 

The system then prompts: 

Select a drive (<CR> for default) 

Enter a number between 0 and 3 to specify a disk drive where a diskette is mounted. 

If the diagnostic succeeds in writing the file, it displays the following: 

File ffffffff created successfully. 

where ffffffff is a file name. 

Otherwise, the following message appears: 

Error ee occurred in creating file: ffffff. 

137 

where ee is a number indicating one of the Diagnostic Operating Syst.em errors or one of 
the following: 

ee = 47 means that bit map does not match directory entries. 
ee = 48 means that the directory is full. 
ee • 49 means that the new name and version already exists. 

The diagnostic is then ready to receive a new Modify option. 

4.4.3.4 Option 3 

This option allows the contents of the known signature table for any phase to be displayed. 
If there is no signature file on the disk, the diagnostic reports: 

No signature information has been gathered or read in. 

The diagnostic then displays the following: 

Signature file information: hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 
Boar<LName Device_Number Known_ Value Gathered_ Value 
Phase number: n 

PLS 
PLS 
PLS 
PLS 
PLS 

Uddd 
Uddd 
Uddd 
Uddd 
Uddd 

xx xx 
xx xx 

xx xx 
xx xx 
xx xx 

vvvv 
vvvv 
vvvv 
vvvv 
vvvv 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 138 

where h's describe configuration information, n is the phase number, Uddd's are card 
and device numbers, xxxx's are the known values stored in the memory, and vvvv's are 
the gathered signature input values. 

4.4.3.5 Option 4 

Option 4 allows the user to specify an alternate file as the source of the set of known 
signatures. Because the diagnostic does not perform a validity check on the stimulus 
program names, the name is assumed to be P LSS'l'MOA. '!'he system prompts: 

Do you wish to specify an alternate file as the source 
of the set of known signatures? 

Enter a <CR> or "N" to have the diagnostic accept another Modify option. If "Y" is 
entered, the diagnostic prompts with the following: 

File name: 

Type the name of the file that contains sets of signatures to be compared with those 
gathered from the PLS. If the file is read successfully, the following is displayed: 

File fffffffff read successfully. 

where fffffffff is the name of the file read. Otherwise, the following message reads: 

Error ee occurred in reading file: fffffffff. 

where ee is a Diagnostic Operating System error number. 

4.4.3.6 Option 5 

Option 5 enables optional Phase 11, the PLS debugger. 

4.4.4 Detailed Phase Description 

An "{L)" to the left of an error message indicates that the error has looping capability. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 139 

4.4.4.1 Phase 1 

Phase 1 reads the status of the PLS card and reports any problems, tests the pipeline 
configuration register, tests the signature of the handshaking lines between the ACP 
and the PLS cards, and tests the signature of the shadow pipeline. Phase 1 has four 
subphases. 

Subphase 1 of Phase 1 Reads the status of the PLS card and reports any problems. 
This subphase also reports if the RFB card is in the system. 
The subphase reads status information from the upper four 
bits of the FIFO. Status information includes: 

*MULBLO Bit 12 If low, the Lower MULBUS cable is connected 
to the ACP card. 

MU LB HI Bit 13 If low, the Upper MULBUS cable is connected 
to the ACP card. 

RB EXISTS Bit 14 If low, the Refresh Buff er card is in the sys-
tern. 

FIFO EMPTY Bit 15 If low, the FIFO is empty 

If the lower MULBUS is not connected correctly, the following 
error message is displayed: 

***** MPLSDOB ;1 - Phase 1 Error number 4601.1 
Lower MULBUS cable not connected correctly 

If the upper MULBUS is not connected correctly, the follow­
ing error message is displayed: 

***** MPLSDOB ;1 - Phase 1 Error number 4602.1 
Upper MULBUS cable not connected correctly 

If the FIFO EMPTY bit is in error, the following error message 
is displayed: 

***** MPLSDOB ;1 - Phase 1 Error number 4603.1 
FIFO should be empty, but it is not 

Subphase 2 of Phase 1 Tests the pipeline configuration register. The ACP writes a 
full set of 36 bit patterns (see Table MPLSDOB-1) into the 
pipeline configuration register and reads and compares the bit 
patterns with what was sent. 



COMPANY PRIVATE-PS 390 Graphics System Ma.y G, 1987 140 

If an error is encountered while testing the pipeline configu­
ration register, the following message is displayed: 

(L) ***** MPLSDOB ;1 - Phase 1 Error number 4604.2 
Error in pipeline contiguration register. 
Expected: eeee, Received: rrrr. 

Subphase 3 of Phase 1 Tests the signature of the handshaking lines between the ACP 
and the PLS cards. It takes a signature from Node 0 which 
is driven by the ACP /PLS handshaking lines while vectors 
are sent down the pipe to stimulate the pipeline. The FISAM 
test bit in the pipeline configuration register is asserted to 
break feedback paths to the clock stopper. SENDTORB and 
clipping are disabled. 
If the diagnostic receives an unstable signature, the following 
error message is displayed: 

***** MPLSDOB ;1 - Phase 1 Error number 4650.3 
Unstable signature received on root node 
Node 0, Board name PLS, device number dddddddd. 
Expected: xx:xx, Received: unstable. 

where 0 is the root node where the error is detected, xxxx 
is the known signature for root node O, yyyy is the gathered 
signature, and dddddddd is the device number. 
If the diagnostic receives a stable but incorrect signature from 
a root node, the following error message is displayed: 

***** MPLSDOB ;1 - Phase 1 Error number 4640.3 
Signatures do not match the root node 
Node 0, Board name PLS, device number dddddddd. 
Expected: x:xxx, Received: yyyy. 

Subphase 4 of Phase 1 Tests the signature of the shadow pipeline. This takes a sig­
nature from Node 1 which is driven by the shadow pipelines 
while a simple vector list is sent down the pipe to stimulate 
the pipeline. The FISAM test bit in the pipeline configura­
tion register is asserted to break feedback paths to the clock 
stopper. SENDTORB and clipping are disabled. 

If the diagnostic receives an unstable signature from a root 
node, the following error message is displayed: 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 141 

BiLPattern Hex_ Value 
BitPattern(l] = X'FFFF' 
BitPattern(2] = X'OOOO' 
BitPattern[3] = X'5555' 
BitPattern[4] = X'AAAA' 
BitPattern[5] - X'FFFE' 
BitPattern[6] - X'FFFD' 
BitPattern[7] - X'FFFB' 
BitPattern[8] X'FFF7' 
BitPattern[9j - X'FFEF' 

BitPattern[lO] X'FFDF' 
BitPattern[ll] - X'FFBF' 
BitPattern[12] - X'FF7F' 
BitPattern[13] - X'FEFF' 
BitPattern[14] X'FDFF' 
BitPattern(15] - X'FBFF' 
BitPattern[16j X'F7FF' 
BitPattern[ 17] - X'EFFF' 
BitPattern[l8] X'DFFF' 
BitPattern[l9] X'BFFF' 
BitPa.ttern[20] X'7FFF' 
BitPattern[21] = X'OOOl' 
BitPattern[22] = X'0002' 
BitPattern[23] = X'0004' 
BitPa.ttern[24] = X'0008' 
BitPattem[25J = X'OOlO' 
BitPa.ttern[26] - X'0020' 
BitPatternf 27] = X'0040' 
BitPattern{28] = X'0080' 
BitPa.tternf 29] = X'OlOO' 
BitPattern{30] = X'0200' 
BitPa.ttern[31J = X'0400' 
BitPattern[32] X'0800' 
BitPa.ttern[33] X'JOOO' 
BitPattern(34J - X'2000' 
BitPa.ttern[35] X'4000' 
BitPa.ttern[36J = X'BOOO' 

Table 4.2: MPLSDOB-1 Bit Pa.ttei:ns 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 142 

4.4.4.2 Phase 2 

***** MPLSDOB ;1 - Phase 1 Error number 4660.4 
Unstable signature received on root node 
Node 1, Board name PLS, device number dddddddd. 
Expected: x:x:xx:, Received: unstable. 

where 1 is the root node where the error is detected, xxxx is 
the known signature for the root node 1, yyyy is the gathered 
signature, and dddddddd is the device number. 
If the diagnostic receives a stable but incorrect signature from 
a root node, the following error message is displayed: 

***** MPLSDOB ;1 - Phase 1 Error number 4640.4 
Signatures do not match the root node 
Node 1, Board name PLS, device number dddddddd. 
Expected: xxxx, Received: yyyy. 

Phase 2 tests MULBUS paths to the PLS and FIFO. Phase 2 has three subphases. 

Subphase 1 of Phase 2 Tests the upper 16-bit data path over the MULBUS to FIFO. 
A full set of test patterns {divided into X, Y, Z, and W vec­
tor groups) is used in this subphase. Each vector pattern is 
shifted to the upper 16-bits of the 32-bit MULBUS path and 
is then sent down the pipeline. The vector is read out of FIFO 
and is compared with the expected vector. 
If there is an error in the upper 16-bit data path, the following 
error message is displayed: 

***** MPLSDOB ;2 - Phase 2 Error number 4606.1 
Error in upper 16-bits of data to FIFO. 
Section (X,Y,Z or W) 
Expected: eeee, Received: rrrr. 

where Section identifies which element of the vector is in error. 
Subphase 2 of Phase 2 Tests the lower 16-bit data path over the MULBUS to FIFO. 

A full set of test patterns (divided into X, Y, Z, and W vec­
tor groups) is used in this subphase. Each vector pattern is 
shifted to the lower 16-bits of the 32-bit MULBUS path and is 
then sent down the pipeline. The vector is read out of FIFO 
and is compared with the expected vector. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 143 

If there is an error in the lower 16-bit data path, the following 
error message is displayed: 

***** MPLSDOB ;2 - Phase 2 Error number 4606.2 
Error in lower 16-bits of data to FIFO. 
Section (X,Y,Z or W) 
Expected: eeee, Received: rrrr. 

Subphase 3 of Phase 2 Tests the ability of the FIFO to hold multiple vectors. The 
test patterns are shifted to the upper 32 bits of the MULBUS 
and the entire vector list is loaded into FIFO. The list is 
checked to see if FIFO can contain all the vector patterns. 

4.4.4.3 Phase 3 

If there is an error in FIFO, the following error message is 
displayed: 

***** MPLSDOB ;2 - Phase 2 Error number 4607.3 
Error in FIFO. 
Section (X,Y,Z or W) 
Expected: eeee, Received: rrrr. 

Phase 3 tests the Block Normalizer. A full set of patterns is shifted to bits 0 - 15, then 
to bits 1 - 16, then to bits 2 - 17, and so on until the patterns are shifted to bits 16 
- 32. Each time the patterns are sent down the pipeline, the appropriate shifting must 
take place for the proper patterns to be returned from FIFO. 

If an error is encountered in the shift test, the following error message is displayed. 

***** MPLSDOB ;1 - Phase 3 Error number 4608.1 
Error in shifter test. 
Section (X,Y,Z or W) 
Expected shift code = s 

where "Section" identifies which element of the vector in which the error occurred. The 
expected shift code is the code that should be generated on NRMCODE[0-3]. 

If the diagnostic is reporting errors at this point, Xon or Xoff can be used to stop the 
execution of the diagnostic. Look at .the values of NRMCODE[0-3] to identify the errors. 

4.4.4.4 Phase 4 

Phase 4 tests the perspective divider circuits. Phase 4 consists of two subphases. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 144 

Subphase 1 of Phase 4 Tests the basic data path through the perspective divider. It 
sets W to one (X'7FFF). Since X,Y,Z are divided by one (W), 
the results coming out of the divider should match the values 
going into the divider. The results are read through the DIV 
data register back to the ACP. 
If an error is encountered in the perspective divide data path, 
the following error message is displayed. 

***** MPLSDOB ;1 - Phase 4 Error number 4609.1 
Error in perspective divide data. 
Section (X/W,Y/W,Z/W or W/W) 
Expected: xxxx, Received: rrrr. 

Subphase 2 of Phase 4 Performs a variety of multiplications to test the perspective 
divider multiplier. It uses different values for W ,X, Y ,z to test 
the multiplier. 

4.4.4.5 Phase 5 

If an error is encountered in the perspective divide multiplier, 
the following error message is displayed: 

***** MPLSDOB ;1 - Phase 4 Error number 4610.2 
Error in perspective divide multiplier. 
Section (X/W,Y/W,Z/W or W/W) 
Expected: xxxx, Received: rrrr. 

Phase 5 tests the IYX data path through the viewport mapper. X and Y viewports and 
the W element of the vector are set to one {X'7FFF) so that data sent down the pipeline 
are multiplied by one, returning the same values from the IYX data register to the ACP. 

If an error is encountered in the viewport mapper IYX data path, the following error 
message is displayed. 

***** MPLSDOB ;1 - Phase 5 Error number 4611.1 
IYX data error. 
Vector count vvvv Section (X or Y) 
Expected: xxxx, Received: rrrr. 

4.4.4.6 Phase 6 

Phase 6 tests the viewport and intensity registers. Phase 6 writes a full set of patterns 
into the X and Y viewport and intensity registers. A vector with all elements equal to 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 145 

one (7FFF) is sent down the pipeline so that the viewport/intensity value is multiplied is 
by one, giving the contents of the viewport/intensity register on the IYX bus as a result. 
Phase 6 has three subphases. 

Subphase 1 of Phase 6 Tests the data path for the X viewport register. If an error 
is encountered in the X viewport register, the following error 
message is displayed: 

***** MPLSDOB ;1 - Phase 6 Error number 4612.1 
Error in viewport X. 
Expected: xxxx, Received: rrrr. 

Subphase 2 of Phase 6 Tests the data path for the Y viewport register. If an error 
is encountered in the Y viewport register, the following error 
message is displayed: 

***** MPLSDOB ;1 - Phase 6 Error number 4613.2 
Error in viewport Y. 
Expected: xxxx, Received: rrrr. 

Subphase 3 of Phase 6 Tests the intensity register. 

4.4.4. 7 Phase 7 

If an error is encountered in the intensity register, the follow­
ing error message is displayed: 

***** MPLSDOB ;1 - Phase 6 Error number 4614.3 
Error in intensity register. 
Expected: xxxx, Received: rrrr. 

Phase 7 tests viewport and intensity multipliers. For the intensity multiplier test, X and 
Y viewports are loaded with a value equal to one (7FFF). Phase 7 has two subphases. 

Subphase 1 of Phase 7 Tests the intensity multiplier. The intensity register is loaded 
with one multiplication component, while the Z component 
of the vector contains the second multiplication component. 
The result is then read out on the IYX bus. 
If an error is encountered in the intensity multiplier, the fol­
lowing error message is displayed. 

***** MPLSDOB ;1 - Phase 7 Error number 4615.1 
Error in the intensity multiplication. 
Expected: xxxx. Received: rrrr. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 146 

Subphase 2 of Phase 7 Tests the viewport multiplier. One multiplication component 
is loaded into the X or Y viewport or intensity register. The 
second multiplication component is contained in the vector 
sent down the pipeline. The result is obtained from the IYX 
Bus. 

4.4.4.8 Phase 8 

If an error is encountered in the viewport multiplier, the fol­
lowing error message is displayed: 

***** MPLSDOB ;1 - Phase 7 Error number 4616.2 
Error in viewport multiplication. 
Section (I,Y, or X) 
Expected: xxxx, Received: rrrr. 

Phase 8 tests the PLS clipping circuit. Each subphase tests clipping against a different 
clipping plane. Phase 8 sends a vector that requires clipping down the pipeline and 
detects if the clip occurred properly. It reads the clipped vector out of the FIFO to 
determine if the FIFO contains the correct vector. Subphases 1 through 4 cause the 
BADZ flag to be raised and determines if the BADZ flag can be detected. Phase 8 has 
six subphases. 

Subphase 1 of Phase 8 Tests for a clip in positive X. 
If a dipping flag for a clip in the positive X direction is not 
detected, the following error message is displayed. 

***** MPLSDOB ;1 - Phase 8 Error number 4622.1 
CLIP flag not detected for a clip in positive X. 

If a clipping flag for a clip in the positive X direction is de­
tected but the vector read back is incorrect, the following 
error message is displayed. 

***** MPLSDOB ; 1 - Phase 8 Error number 4628.1 
Error in vector for clip in positive X. 
X data error x y z w 
Expected Vector: xxxx YYYY zzzz wwww 
Received Vector: xxxx yyyy zzzz wwww 
-or-
Error in Bad Z detection. 

Int 
!III 
!III 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 147 

Subphase 2 of Phase 8 Tests for a clip in negative X. 
If a clipping flag for a clip in the negative X direction is not 
detected, the following error message is displayed. 

***** MPLSDOB ;1 - Phase 8 Error number 4623.2 
CLIP flag not detected for a clip in negative X. 

If a clipping flag for a clip in the negative X direction is de­
tected but the vector read back is incorrect, the following 
error message is displayed. 

***** MPLSDOB ;1 - Phase 8 Error number 4628.2 
Error in vector for clip in negative X. 
X data error x y z w 
Expected Vector: xxxx YYYY zzzz wwww 
Received Vector: xx xx YYYY zzzz wwww 
-or-
Error in Bad Z detection. 

Subphase 3 of Phase 8 Tests for a clip in positive Y. 
If a clipping flag for a clip in the positive Y direction is not 
detected, the following error message is displayed. 

***** MPLSDOB ;1 - Phase 8 Error number 4624.3 
CLIP flag not detected for a clip in positive Y. 

If a clipping flag for a clip in the positive Y direction is de­
tected but the vector read back is incorrect, the following 
error message is displayed. 

***** MPLSDOB ;1 - Phase 8 Error number 
Error in vector for clip in positive Y. 
X data error X Y Z 
Expected Vector: XXXX YYYY ZZZZ 
Received Vector: XXXX yyyy zzzz 
-or-
Error in Bad Z detection. 

Subphase 4 of Phase 8 Tests for a dip in negative Y. 

4628.3 

w 
wwww 
wwww 

If a clipping flag for a clip in the negative Y. direction is not 
detected, the following error message is displayed. 

***** MPLSDOB ;1 - Phase 8 Error number 4626.4 
CLIP flag not detected for a clip in negative Y. 

Int 
III! 
IIII 

Int 
IIII 
!III 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 148 

If a clipping flag for a clip in the negative Y direction is de­
tected but the vector read back is incorrect, the following 
error message is displayed. 

***** MPLSDOB ; 1 - Phase 8 Error number 4628.4 
Error in vector for clip in negative Y,. 
X data error x y z w 
Expected Vector: xx xx yyyy zzzz wwww 
Received Vector: xx xx yyyy zzzz wwww 
-or-
Error in Bad Z detection. 

Subphase 5 of Phase 8 Tests for a clip in positive Z. 
If a clipping flag for a clip in the positive Z direction is not 
detected, the following error message is displayed. 

***** MPLSDOB ;1 - Phase 8 Error number 4626.5 
CLIP flag not detected for a clip in positive Z. 

If a clipping flag for a clip in the positive Z direction is de­
tected but the vector read back is incorrect, the following 
error message is displayed. 

***** MPLSDOB ; 1 - Phase 8 Error number 4628.5 
Error in vector for clip in positive Z. 
Z data error x y z w 
Expected Vector: XXXX YYYY zzzz wwww 
Received Vector: XXXX YYYY zzzz wwww 

Subphase 6 of Phase 8 Tests for a clip in negative Z. 
If a clipping flag for a clip in the negative Z direction is not 
detected, the following error message is displayed. 

***** MPLSDOB ;1 - Phase 8 Error number 4627.6 
CLIP flag not detected for a clip in negative Z. 

If a clipping flag for a clip in the negative Z direction is de­
tected but the vector read back is incorrect, the following 
error message is displayed. 

***** MPLSDOB ; 1 - Phase 8 Error number 4628.6 
Error in vector for clip in negative Z. 
Z data error x y z w 
Expected Vector: xx xx yyyy zzzz wwww 
Received Vector: xx xx yyyy zzzz wwww 

Int 
IIII 

IIII 

Int 
IIII 
IIII 

Int 
IIII 
IIII 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 149 

4.4.4.9 Phase 9 

Phase 9 tests the PLS signatures. Phase 9 tests all five PLS card signature nodes, nodes 
0 through 4. It sets up the pipeline configuration register to enable clipping and transfer 
vectors to the refresh buffer. The viewport and intensity registers are set up and a list 
of vectors is sent down the pipeline. The viewport and intensity registers are changed 
and the vector list is again sent down the pipeline. This operation is performed on 
ten viewport settings. The modifiable frame sync option indicates how many times this 
operation is repeated. 

If a Refresh Buffer card is present in the system, a signature is not taken on root node 4. 

If an unstable signature error is encountered, the following error message is displayed: 

***** MPLSDOB ;1 - Phase 9 Error number 4650.1 
Unstable signature received on root node 
Node rr, Board name PLS, device number dddddddd. 
Expected: xxxx, Received: unstable. 

If a stable but incorrect signature is encountered, the following error message is displayed: 

***** MPLSDOB ;1 - Phase 9 Error number 4640.1 
Signatures do not match the root node 
Node rr, Board name PLS, device number dddddddd. 
Expected: xxxx, Received: yyyy. 

4.4.4.10 Phase 10 

Phase 10 tests the PLS/Refresh Buffer card interface. A full set of patterns is transferred 
from the PLS card to the RFB card, first selecting the downer memory buffer and then 
selecting the upper memory buffer. Subphases l and 2 load vectors directly through the 
IYX data register to the refresh buffer. Subphases 3 and 4 send vectors down the pipeline 
to the refresh buffer. The patterns are then read out of RFB memory by the GCP and 
are compared with the expected data. If there is no Refresh Buffer card in the system, 
the diagnostic reports this condition. Phase 10 has four subphases. 

Subphase 1 of Phase 10 Performs an IYX data test on the interface to the downer 
memory buff er. 
If an error is encountered in the downer memory buff er, the 
following error message is displayed. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 150 

***** MPLSDOB ;1 - Phase 10 Error number 4629.1 
Data error in PLS/Refresh Buffer Interface. 
Expected: xxxx, Received: rrrr. 

Subphase 2 of Phase 10 Performs an IYX data test on the interface to the upper 
memory buffer. 
If an error is encountered in the upper memory buffer, the 
following error message is displayed. 

***** MPLSDOB ;1 - Phase 10 Error number 4629.2 
Data error in PLS/Refresh Buffer Interface. 
Expected: xxxx, Received: rrrr. 

Subphase 3 of Phase 10 Performs a vector data test on the interface to the downer 
memory buff er. 
If an error is encountered in the downer memory buffer, the 
following error message is displayed. 

***** MPLSDOB ;1 - Phase 10 Error number 4630.3 
Vector data error in PLS/Refresh Buffer Interface. 
Expected: xxxx, Received: rrrr. 

Subphase 4 of Phase 10 Performs a vector data test on the interface to the upper 
memory buff er. 

4.4.4.11 Phase 11 

If an error is encountered in the upper memory buffer, the 
following error message is displayed. 

***** MPLSDOB ;1 - Phase 10 Error number 4630.4 
Vector data error in PLS/Refresh Buffer Interface. 
Expected: xxxx, Received: rrrr. 

Phase 11 is an optional phase that implements the PLS debugger. This phase requires a 
functional knowledge of the PS 350 PLS card. Phase 11 is used instead of loop-on-error to 
repeatedly send a vector or vectors down the pipeline. The pipeline configuration register 
and the viewport registers must be set up correctly, as explained below. To simulate a 
loop-on-error for any previously failing phase, use the set-up information provided in the 
failing phase. 

The PLS debugger displays the following menu of commands: 

Available Commands: 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Examine 
Load 
Run 
Clear Matrix Memory 
Initialize Refresh Buffer 
Show present configuration 
Quit debug phase 

151 

Enter the commands as listed above. After the first few characters are typed, the de­
bugger recognizes the command and finishes printing out the command. If an invalid 
command or a misspelled command is entered, the debugger will return "Invalid Com­
mand." 

The Examine, Load, and Run commands have options. To see a list of options, enter the 
command, then enter HELP, and a list of options will be displayed. 

4.4.4.11.1 Examine The Examine command allows reading of specified registers 
and memory locations. The Examine HELP command prints out the options: 

Available Examine Options: 
STATUS 
MATRIX MEMORY 
PIPELINE CONFIGURATION REGISTER 
REFRESH BUFFER MEMORY 

Status The Examine STATUS option reads and displays PLS status information. Only 
the upper four bits are valid: 

*MULBLO Bit 12 If low, the Lower MULBUS cable is connected 
to the ACP card. 

MULBHI Bit 13 If low, the Upper MULBUS cable is connected 
to the ACP card. 

RB EXISTS Bit 14 If low, the' Refresh Buffer card is in the sys-
tern. 

FIFO EMPTY Bit 15 If low, the FIFO is empty. 

Matrix Memory The Examine MATRIX MEMORY option displays the contents of 
matrix memory. It prompts for the matrix memory address to be read. It prompts for 
how many consecutive locations are to be read. H prints out results in X,Y,Z,W format. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 152 

Pipeline Configuration Register The Examine PIPELINE CONFIGURATION 
REGISTER option displays the label on each bit in the register. The option then prints 
out the contents of the pipeline configuration register. 

Refresh Buffer Memory The Examine REFRESH BUFFER MEMORY option dis­
plays the contents of upper or lower refresh buffer memory. It prompts to select upper 
or lower memory. It then prompts for a start address and how many locations are to be 
read. The option finally displays results for I, Y;x, and V. 

4.4.4.11.2 Load The Load Command allows loading a register or memory location. 
The Load HELP command prints out the options: 

Available Load Options 
MATRIX MEMORY 
PIPELINE CONFIGURATION REGISTER 
DEFAULT VECTOR LIST 
REFRESH BUFFER COMMAND 
REFRESH BUFFER MEMORY 
TEST PATTERNS 
VECTOR LIST 
VIEWPORT REGISTERS 

Matrix Memory The Load MATRIX MEMORY option loads a specified value into 
matrix memory. It prompts for an address and prints out the current contents of that 
address. The option then prompts for the data to be loaded into that address. 

Pipeline Configuration Register The Load PIPELINE CONFIGURATION REG­
ISTER option loads a value into the pipeline configuration registers. It prints out the 
bit labels for the register and the current contents of the register. It then prompts for a 
value to be loaded into the register. 

Default Vector List The Load DEFAULT VECTOR LIST option loads a default list 
of vectors into matrix memory that is used in the Run commands. 

Refresh Buffer Command The Load REFRESH BUFFER COMMAND option 
prompts for a command and sends it to the Refresh Buffer card output processor. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 153 

Refresh Buffer Memory The Load REFRESH BUFFER MEMORY option prompts 
to select upper or lower memory. It then prompts for a start address and how many 
locations are to be loaded. It prompts for I,Y,X and V values to be loaded into memory. 

Test Patterns The Load TEST PATTERNS option loads default test patterns into 
matrix memory. The patterns are used by the refresh buffer interface test. 

Vector List The Load VECTOR UST option prompts for how many vectors will be 
loaded. It prompts for each X,Y,Z,W vector and loads them into matrix memory. The 
Run commands use these values. 

Viewport Registers The Load VIEWPORT REGISTERS option prompts for X,Y,Z 
viewport and intensity register values and loads them into the registers. The Run com­
mand uses these values. 

4.4.4.11.3 Run The Run Commands run one of the tests listed below. Each test, 
with the exception of the RFB interface test, sends the vector list specified with the Load 
command down the pipeline. The viewport and pipeline configuration registers should 
also be loaded. Bit 0 of the intensity register is used as the Draw /*Move bit. The Run 
HELP command prints out the options. 

Available Run Test Options: 
FIFO TEST 
IYX TEST 
PERSPECTIVE DIVISION TEST 
CLIP TEST 
VECTOR LOOP 
REFRESH BUFFER INTERFACE 
SIGNATURE TEST 

Flfo Test The Run FIFO TEST option sends the specified vector list down the pipeline. 
The vectors and intensity data are read out of the FIFOs and are displayed. For this 
test function properly, the KEEPALL bit in the pipeline status register must be set. 

IYX Test The Run IYX TEST option sends the specified vector list down the pipeline. 
These vectors are read out of the IYX data register and are displayed as I, Y, and X. At 
this point, the vectors are divided by W, clipped, and multiplied by the viewport registers. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 154 

Bit 15 of the IYX data register is data valid. Bit 14 is Draw /*Move. Bit 13 is Show 
Endpoint. 

Perspective Division Test The Run PERSPECTIVE DIVISION TEST option sends 
the specified vector list down the pipeline. The vectors are read out of the DIV data 
register and are the result of a division by the W component of the vector. Bit 0 of 
the DIV data register is the most significant of the two sign bits from the result of the 
perspective division and is set if a clip occurs. 

Clip Test The Run CLIP TEST option sends the specified vector list down the pipeline 
while checking for a clip. If a clip is detected, the vector value is read out of the FIFOs. 
Bad Zs are flagged. The clipped vector is the second vector printed out, unless the first 
vector sent down the pipeline was clipped. The pipeline configuration register must be 
set to enable clipping. If the IGNOREZCLIP bit in the pipeline configuration register is 
set, the BADZ flag can also be detected. 

Vector Loop The Run VECTOR LOOP option sends the specified vector list down 
the pipeline continuously. This option can be used to simulate a loop on error. 

Refresh Buffer Interface The Run REFRESH BUFFER INTERFACE option 
prompts to select upper or lower RFB memory. It then sends the test pattern loaded 
by LOAD TEST PATTERNS to the selected memory buffer starting at location X'0008. 
Use EXAMINE REFRESH BUFFER MEMORY to see if the patterns were written into 
memory correctly. It does not send vectors down the pipe. It writes the pattern directly 
into the RFB interface register. 

Signature Test The Run SIGNATURE TEST option displays the contents of the 
signature for the specified node. It prompts for the signature node. It sends vectors 
down the pipe and then reads and reports the signature gathered. 

4.4.4.11.4 Clear Matrix Memory The Clear Matrix Memory command clears all 
of matrix memory. 

4.4.4.11.5 Initialize Refresh Buffer The Initialize Refresh Buffer command initial­
izes the Refresh Buffer card. This must be done before vectors or data can be accepted 
by the Refresh Buffer. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 155 

4.4.4.11.6 Show Present Configuration The Show Present Configuration com­
mand shows the contents of the pipeline configuration register, the viewport registers, 
and the vector list loaded by the Load command. 

4.4.4.11.7 Quit Debug Phase The Quit Debug Phase exits Phase 11. 

4.4.5 Error Analysis 

Tables 4.3 and 4.4 provide the error numbers and corresponding error messages for the 
Pipeline Subsystem Analytic Diagnostic. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

4601.1 
4602.1 

4603.1 
4604.2 

4605.1 

4606.2 

4607.3 

4608.1 

4609.1 

4610.2 

4611.1 

4612.1 
4613.2 
4614.3 
4615.1 

MPLSDOB Error Messages 

Lower MULBUS cable not connected correctly 
Upper MULBUS cable not connected correctly 
FIFO should be empty, but it is not 
Error in pipeline configuration register. Expected: eeee, Received: 
rrrr. 
Error in upper 16-bits of data to FIFO. Section (X, Y, Z or W) 
Expected: eeee, Received: rrrr. 
Error in lower 16-bits of data to FIFO. Section (X, Y, Z or W) 
Expected: eeee, Received: rrrr. 
Error in FIFO. Section (X, Y, Z or W) Expected: eeee, Received: 
rrrr. 
Error in shifter test. Section (X, Y, Z or W) Expected shift code 
=s 
Error in perspective divide data. Section (X/W, Y /W, Z/W or 
W /W) Expected: xxxx, Received: rrrr. 

Error in Perspective Divide Multiplier. Section (X/W, Y /W, Z/W 
or W /W) Expected: xxxx, Received: rrrr. 
IYX data error. Vector count vvvv Section (X or Y) Expected: 
xxxx, Received: rrrr. 
Error in viewport X. Expected: xxxx, Received: rrrr. 
Error in viewport Y. Expected: xxxx, Received: rr1T. 
Error in intensity register. Expect.ed: xxxx, Received: rrrr. 
Error in the intensity multiplication. Expected: xxxx, Received: 
rrrr. 

4616.2 Error in viewport multiplication. Section (I, Y, or X) Expected: 
xxxx, Received: rrrr. 

4622.1 CLIP flag not detected for a clip in positive X. 
4623.2 CLIP flag not detected for a dip in negative X. 
4624.3 CLIP flag not detected for a clip in positive Y. 
4625.4 CLIP flag not detected for a clip in negative Y. 
4626.5 CLIP flag not detected for a clip in positive Z. 
4627.6 CLIP flag not detected for a clip in negat.ive Z. 

Table 4.3: MPLSDOB Error Messages Part One 

156 



COMPANY PRlVATE-PS 390 Graphics System May 6, 1987 

MPLSDOB Error Messages 

4628.1 Error in vector for clip in positive X. -or- Error in Bad Z detection. 

4628.2 Error in vector for clip in negative X. -or- Error in Bad Z detection. 

4628.3 EITor in vector for clip in positive Y. -or- Error in Bad Z detection. 

4628.4 Error in vector for clip in negative Y. -or- Error in Bad Z detection. 

4628.5 Error in vector for clip in positive Z. 

4628.6 Error in vector for clip in negative Z. 

4629.1 Data error in PLS/Refresh Buffer Interface. Expected: xxxx, Re­
ceived: rrrr. 

4629.2 Data error in PLS/Refresh Buffer Interface. Expected: xxxx, Re­
ceived: rrrr. 

4630.l Unstable signature received for root node rr, device number 
dddddddd. Expected: xxxx, Received: unstable. 

4630.3 Vector data error in PLS/Refresh Buffer Interface. Expected: 
xxxx, Received: rrrr. 

4630.4 Vector data enor in PLS /Refresh Buffer Interface. Expected: 
xxxx, Received: rrrr. 

4640.1 Signatures do not match on root node IT, device number dddddddd. 
Expected: xxxx, Received: yyyy. 

4640.3 Signatures do not match the root node Node O, Board name PLS, 
device number dddddddd. Expected: xxxx, Received: yyyy. 

4640.4 Signatures do not match the root node Node 1, Board name PLS, 
device number dddddddd. Expected: xxxx, Received: yyyy. 

4650.3 Unstable signature received on root node Node O, Board name PLS, 
device number dddddddd. Expected: xxxx, Received: unstable. 

4650.4 Unstable signature received on root node Node O, Board name PLS, 
device number dddddddd. Expected: xxxx, Received: unstable. 

Table 4.4: MPLSDOB Error Messages Part Two 

157 



COMPANY PRlVATE-PS 390 Graphics System May 6, 1987 158 

4.5 Low Cost Peripherals Function Buttons Diagnostic 

The Function Buttons unit is a programmable interactive device that is controlled by an 
internal microprocessor. It connects to the MUX or Multiplexer in the same fashion as 
the other interactive devices, communicating bi-directionally and asynchronously at 2400 
baud through a serial port. There are 32 un-labeled buttons on the face of the cabinet, 
each of which lights to show an "on" condition. The buttons are numbered left to right 
and top to bottom in the following pattern: 

0 1 2 3 
4 5 6 7 8 9 

10 11 12 13 14 15 
16 17 18 19 20 21 
22 23 24 25 26 27 

28 29 30 31 

The Function Buttons Unit for the New Peripheral Set is connected to the front of the 
MUX box underneath the Buttons label(which is the second connector from the left). 
The PS 300 Style Function Button Set is usually connected to Port # C on the Data 
Concentrator. 

When the Function Buttons Unit is connected to a Data Concentrator, the JCP uses the 
printable ASCII characters X'40' through X'5F' to turn on a light for a specific button. 
Similarly, the JCP uses the printable ASCII characters X'60' through X'7F' to turn off 
a specific light. The ASCII codes are assigned as shown in Table 4.5. 

4.5.1 Light Control 

When used with the Low Cost Peripheral Set, the Function Button unit controls the 
lights differently. 

For the purpose of turning the lights of the Buttons box on or off, the lights are logically 
grouped into eight groups of four lights each. The lights of the box are then turned 
on and of respectively by sending a message consisting of one to eight bytes to it. The 
four more-significant bits of each byte contains the identification number for a four-light 
group; the four less-significant bits contain a mask which turn on (if the corresponding 
bit is set) or off (if the bit is clear) the light. This is shown in Figure 4.2 where the Group 
Number is binary 0000 thru 0111 and Light Mask l's and O's turn lights on and off. 

The Function Button Light Groups are defined in Table 4.6. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Button # On Off II Button # On Off II Button # On Off 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

@ ' 11 K k 22 v 
A a 12 L l 23 w 
B b 13 M m 24 x 
c c 14 N n 25 y 

D d 15 0 0 26 z 
E e 16 p p 27 [ 
F f 17 Q q 28 } 
G g 18 R r 29 l 
H h 19 s s 30 i 
I l 20 T t 31 -
J J 21 u u 

Table 4.5: Function Button Toggle Codes 

Figure 4.2: Function Button Light Control Message Byte 

11 IG ls l4 l:i l2 l1 l11 I 
I Group I Mask I 

v 

w 

x 

y 

z 
{ 

-
} 

,...., 

DEL 

159 

Any byte or combination of bytes may be sent in a message, depending on which of the 
lights must be turned on or turned off. Turning all lights on, turning all lights off or 
changing the state of at least one byte of each of the eight groups would require an eight­
byte message to be sent. Changing the state of one to four lights in a single four-light 
group would require only a one-byte message to be sent. 

4.5.2 Reporting Selections 

The Buttons box reports that a key has been depressed simply by sending a single byte 
to the Joint Control Processor. The value of the byte is given by adding the hexadecimal 
value of the key number to the hexadecimal value x'3F'. Thus the first sixteen keys are 
numbered x'40' to x'4F' and the second group of sixteen keys are numbered x'50' to 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 160 

Table 4.6: Function Button Light Groups 

Group Number I Description 

b'OOOO' Group for lights 1 -+ 4 
b'OOOl' Group for lights 5 -+ 8 
b'OOlO' Group for lights 9 -+ 12 
b'OOll' Group for lights 13 -+ 16 
b'OlOO' Group for lights 17 -+ 20 
b'OlOl' Group for lights 21 -+ 24 
b'OllO' Group for lights 25 -+ 28 
b'Olll' Group for lights 29 -+ 32 

x'SF'. Only one message per keystroke is reported. 

4.5.3 Functional Description 

The Function Buttons diagnostic consists of six phases (Phase 5 is applicable only when 
the Function Buttons Unit is connected to the Data Concentrator): 

Phase 1 Determines if the Function Buttons unit is properly connected to the system and if 
the Function Buttons unit can respond to the system's inquire message. 

Phase 2 Determines if each button's light can be separately controlled. 

Phase 3 Determines if all buttons work. The user must depress each button separately to 
tell if it is operating correctly. 

Phase 4 Determines if each button can"control its light. 

Phase 5 Determines that the Function Buttons unit can accurately report back its light 
status to the JCP. The diagnostic does this by sending a bit pattern to the Function 
Buttons unit and then requesting a report of the same bit pattern back. The report 
is then compared to the original pattern to ensure that both are identical. 

Phase 6 Invokes the Function Buttons confidence test. 

4.5.4 Parameter Modifications 

Note: This section allows the user to modify parameters for the Function Buttons Diag­
nostic. If the Function Buttons are connected to the MUX Box the diagnostic will 
still ask for responses during "M" odify, however it will ignore whatever is typed. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 161 

Two test variables for the function buttons diagnostic may be modified using the 
"M" odify command before the diagnostic begins execution. The modifiable variables 
are: 

(a) The Communications Connector Panel Port Number (2-5) 
(b) The Data Concentrator Port Indicator (A-F) 

Should one or more of these parameters be modified illegally, an information message is 
output to the diagnostic terminal. The possible messages are: 

Communications connector panel port is out of range. 
Communications connector panel port is already in use. 
Data concentrator port is out of range. 
Data concentrator port is already in use. 
Data concentrator port timed out. 
Data concentrator illegal initialization response. 

The Communications Connector Panel port parameter specifies which Communications 
Connector Panel port is to be used. The default is Port 5. This variable may be changed 
when the following prompt appears: 

Enter Communications Connector Panel port number (2-5). 

The Data Concentrator parameter specifies whether or not the Communications Con­
nector panel is connected to a Data Concentrator. By default, the connection is assumed 
to be made. After the following prompt appears, this variable may be modified: 

Is Communications Connector Panel port connected to the Data 
Concentrator? .. 

If the user does not answer with an upper or lower case "Y," the answer is assumed to be 
no. A negative response prevents the Data Concentrator prompt (described next) from 
appearing. 

The Data Concentrator port parameter indicates which Data Concentrator port is to be 
used for the Function Buttons. The default is Port D. This variable may be changed 
when the following prompt appears: 

Enter Function Buttons Data Concentrator port letter (A-F). 

To exit the "M"odify, type "y", "Y", or "yes" to the following prompt: 

Do you want to exit Modify? 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

4.5.5 Detailed Phase Description 

4.5.5.1 Phase 1 

162 

This first phase of the diagnostic determines if the Function Buttons unit is correctly 
connected to the system, and determines if the Function Buttons unit can respond to the 
PS 300/390 inquire message (ASCII ENQ, CTRL E, or X'05'). If the Function Buttons 
Box is connected to a Data Concentrator, the Diagnostic send out a X'80' and waits 
for .5 seconds. If no response is received in that time, the following error message is 
displayed. If the Function Buttons unit is connected to a MUX Box, the system sends 
out the CTRL E to the Function Buttons unit and then waits .5 seconds. If no response 
occurs within that period, the following message is produced: 

***** BTNDOB ;1 - Phase 1 Error number 3607.1 
Function Box is not responding to inquiry. 

An invalid response generates the following error message: 

***** BTNDOB ;1 - Phase 1 Error number 3508.1 
Invalid inquiry response message 
Expected: BTNxxx Received eeeeee 

4.5.5.2 Phase 2 

The second phase of the diagnostic is used to ensure that. each button light can be 
separately controlled. The diagnostic does this by transmitting the ASCII characters 
show.n in Table 4.5 to the Functions Button unit at 300 ms intervals. This phase of the 
diagnostic consists of five parts that illuminates each light or turns off the lights for all 
or some buttons. The phase stops after each part is completed so that the user has time 
to verify that the correct buttons are lit. No error messages are generated by this phase. 

Subphase 1 Turns on all button lights simultaneously. 
Subphase 2 Turns off all button lights simultaneously. 

Subphase 3 Turns each button light on and back off, one at a time. The buttons are illuminated 
and turned off in order, starting with button 0 and ending with button 31. 

Subphase 4 Starts with button 0 and turns on each button individually until all of them through 
button 31 are illuminated. 

Subphase 5 Turns off all the button lights that were lit during Subphase 4. Again, the diagnostic 
proceeds from button 0 to button 31, turning off each light. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 163 

4.5.5.3 Phase 3 

The third phase of the diagnostic is used to determine if each of the 32 buttons can 
report to the system. The user must depress each button separately and ensure that 
the button's number is displayed on the diagnostic terminal. This phase does not end 
until the user terminates it by striking any key on the diagnostic terminal. If the system 
receives an invalid character from the Function Buttons unit, the following error message 
is produced: 

***** BTNDOB ;1 - Phase 3 Error number 3509.1 
Invalid character code X'hh' 

4.5.5.4 Phase 4 

The fourth diagnostic phase provides further tests to ensure that each button works 
correctly. This time the user consecutively depresses any number of individual buttons. 
Each time a button is pressed, its light should toggle on or off. Also, the number of the 
button being toggled appears on the diagnostic terminal. This phase of the diagnostic 
continues until the user presses any key on the diagnostic terminal. If an invalid character 
is received by the system as a button is depressed, the following error message appears: 

***** BTNDOB ;1 - Phase 4 Error number 3509.1 
Invalid character code X'hh' 

4.5.5.5 Phase 5 

Note: Phase 5 only runs on the standard Function Buttons Box. It does not run on the 
Low Cost Function Buttons. 

The fifth diagnostic phase is a measure of the Function Buttons' ability to accurately 
report to the system if any button light is on or off. The diagnostic tests this by writing 
20 different combinations of light and unlight buttons (i.e, 20 different 32-bit strings) to 
the Function Buttons unit and asking the Function Buttons unit to report back which 
buttons are lit and which buttons are unlight for each of the 20 strings. The twenty 
different patterns are as follows: 

Pattern 
Bit 0 Bit 31 
01010101 01010101 01010101 01010101 

Index 
0 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 164 

00110011 00110011 00110011 00110011 1 
00001111 00001111 00001111 00001111 2 
00000000 11111111 00000000 11111111 3 
00000000 00000000 11111111 11111111 4 
00000000 00000000 00000000 00000000 6 
10101010 10101010 10101010 10101010 6 
11001100 11001100 11001100 11001100 7 
11110000 11110000 11110000 11110000 8 
11111111 00000000 11111111 00000000 g 

11111111 11111111 00000000 00000000 10 
11111111 11111111 11111111 11111111 11 
10000000 10000000 10000000 10000000 12 
01000000 01000000 01000000 01000000 13 
00100000 00100000 00100000 00100000 14 
00010000 00010000 00010000 00010000 16 
00001000 00001000 00001000 00001000 16 
00000100 00000100 00000100 00000100 17 
00000010 00000010 00000010 00000010 18 
00000001 00000001 00000001 00000001 19 

If the pattern reported by the Function Buttons unit does not match the one origi­
nally transmitted to it by the diagnostic, the following error message is displayed on the 
diagnostic terminal: 

***** BTNDOB ;1 - Phase 6 Error number 3510.x 
Response error. Expected: x:x:x:x:xx:x:x Received: yyyyyyyy 

The index number shown in the pattern table is the "x" portion of the Error number. The 
index number identifies which of the twenty 32-bit combinations was erroneously reported 
by the Function Buttons unit. Once the index number is determined, the actual bit in 
error may be identified by comparing the eight hex digits in the Expected and Received 
values. For example, the actual error message may appear as follows: 

***** BTNDOB ;1 - Phase 5 Error number 3510.2 
Response error. Expected: FOFOFOFO Received: EOFOFOFO 

From this information, it may first be determined that the string identified by Index 
Number 2 was received from the system by the Function Buttons unit and then erro­
neously reported back to the system. The eight hex values in the Expected and Received 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 165 

values must then be compared to determine the bit in error. The first hex character in 
both values represents bits (and buttons) 31, 30, 29 and 28; the second hex character 
represents the next four button lights (27, 26, 25, and 24), and so on. In the example 
given, the first received hex character is erroneous. By comparing the received value (E) 
to the expected value (F) it may be readily determined that bit 31 is wrong. 

If the Function Buttons unit does not respond at all to the status request, the following 
error message is reported: 

***** BTNDOB ;1 - Phase 5 Error number 3511.1 
Timeout error. 

4.5.5.6 Phase 6 

This final phase of the diagnostic invokes the Function Button confidence test routines to 
test internal RAM and ROM. First, the test command (CTHL T) is sent to the Function 
Buttons unit to start testing. The system displays the following ASCII characters on the 
diagnostic terminal as the confidence tests are completed: 

"A" indicates that the confidence tests have started. 
"B" indicates that the internal RAM test has completed. 
"C" indicates that the ROM test has completed. 
"D" indicates that the external RAM test has completed. 

If an error is detected while receiving the start test character, the following message is 
produced: 

***** BTNDOB ;1 - Phase 6 Error number 3512.1 
Bad initial response from confidence tests. 

If the Function Buttons unit does not respond at all to the CTRL T, the following 
message appears: 

***** BTNDOB ;1 - Phase 6 Error number 3522.2 
No initial response from confidence tests. 

If an error is detected during the internai RAM test, the following message appears: 

***** BTNDOB ;1 - Phase 6 Error number 3513.1 
MC6803 internal memory bad. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

If an error is detected during the internal ROM test, the following message appears: 

***** BTNDOB ;1 - Phase 6 Error number 3514.1 
EPROM checksum invalid. 

166 

If an error is detected during the external RAM test, the following message is produced: 

***** BTNDOB ;1 - Phase 6 Error number 3515.1 
MC6803 external memory bad. 

4.5.6 Error Analysis 

The error messages produced during the Function Buttons diagnostic have the following 
meanings: 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

3501 Communications Connector Panel port is out of range. 

3502 Communications Connector Panel port is already in use. 
3503 Data Concentrator port is out of range. 
3504 Data Concentrator port is already in use. 

3505 Data Concentrator timed out. 
3506 Data Concentrator illegal initialization response. 
3507 Function Buttons unit is not responding to inquiry. 

3508 Invalid inquiry response message. 
Expected: BTNxxx Received eeeeee 

3509 Invalid character code. 
3510 Bad response in reporting the buttons' light status. 
3511 Timeout error. 
3512 No initial response from confidence tests. 

3513 MC6803 Internal Memory Error. 

3514 EPROM Checksum invalid. 
3515 MC6803 External Memory Bad. 

3516 No indication of test completion. 
3553 Multiplexer Box Point is out of range. 

3554 Multiplexer Box Point is already in use. 

3557 Multiplexer Box Timed Out. 

3558 Multiplexer Box illegal initiation response. 
3559 MUX failed self test. 

Table 4.7: Function Button Error Messages 

167 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Notes On Preliminary Diagnostics For The PS 390 

Date: 5 May 87 
Version: NC.01 

Diagnostic Disk G 

This disk contains the following diagnostics and their associated microcode files: 

168 

RBEDOA Bit Slice Processor diagnostic Including the YASD debugger RBEDOA.DAT (µcode) 

RBEDlA Graphics Pipeline Diagnostic RBEDlA.DAT (µcode) 
RBED2A Pixel Processor and Frame Buffer diagnostic including a Visual Debugger called 

VISBUG FBTST.DAT (µcode) 
MPLSDOA Phase 10 tests the Input FIFO on the RBE card. MPLSIG.TXT( signature file ) 

PS390.DAT (µcode) 

Diagnostic Disk H 

This is just a temporary disk name. The new peripheral diagnostics are on t.his disk. The 
peripheral Mux box required some changes in the diagnostic operating system ( A9. VOl). 
When this new operating system is tested and released for all the diagnostic disks then 
these peripheral diagnostics will be released on diagnostic disk B. 

BTNDOB Function Button diagnostic for old and new buttons. Works on both old and new 
peripheral Mux boxes and it will work on a data concentrator. 

CDLDOB Control Dial diagnostic. Works on both old and new style of control dials. 

TABDlC GTCO Tablet diagnostic. Works with both the old and new peripheral Mux box 
and the data concentrator. 

ECPDOA Energy Card diagnostic. 

Note: YOU ARE NOW TESTING A NEW VERSION OF DIAGOS (A9.V01) with these 
preliminary diagnostics. Report any bugs by mail to BTURNER (CESS) on the 
CM780. 

The new diagnostics fix the data concentrator problems in t.he A8 release. All I.he periph­
erals and the F15 will work on a GCP system if you boot this operating system before 
running them. 

It automatically determines the configuration of the system. PS300, PS350 or PS390. 
(JCP or GCP) 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 169 

It initializes the new peripheral multiplexer boxes. If you have a tablet connected with 
the stylus on the tablet you will have trouble booting diagnostics. Remove the stylus 
from the tablet. 



Appendix A 

PAL Definitions for the PS 390 

A.1 PLS Transfer State Machine 

Table A.1: PLS Transfer State Machine Input/Output Pin Signal Descriptions 

I Pin # I Signal j Input Pin Descriptions 

Pin 2 *resetb Active low, used to reset state machines. 

Pin 3 plsready Active high, synchronized version of plsready from 
the pls, indicates the the pls has data ready for bit-
slice. 

Pin 4 *fifofull Active low, indicates that the FIFO is full. 

Output Pin Descriptions 
Pin 19 *rbdone Active low, indicates to PLS that the transfer of data 

has completed. 

Pin 18 *enable-x Active low, selects the X word from the PLS buffer. 

Pin 17 *enable-y Active low, selects the Y word from the PLS buffer. 

Pin 16 *enable_i Active low, selects the X word from the PLS buffer. 

Pin 15 *enable-v Active low, selects the I word from the PLS buffer, 
also resets the plsready flip-flop. 

Pin 14 *writefifo Active low, write signal for the fifo. 

170 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 171 

Table A.2: PLS Transfer State Machine State Descriptions 

*enable....x *enable..y *enable-i *enable..v *writeflfo *rbdone 

Current State = Nrben...x Nrben_y Nrben_i Nrben_v NWriteFifo Nrbdone 

Idle :;:: 1 1 1 1 1 1 
Transl = 1 1 0 1 1 1 
WrFifol = 1 1 0 1 0 1 
TransY = 1 0 1 1 1 1 
WrFifoY = 1 0 1 1 0 1 
TransX 0 1 1 1 1 1 
WrFifoX 0 1 1 1 0 1 
SendRBdone = 1 1 1 1 1 0 
Clear Ready Flag = 1 1 1 0 1 1 

Transfer Mode PlsReady NResetl NFifoFull 

PLSandFifoReady 1 . 1 1 

PLSnotReady 0 1 x 
FifoFull 1 1 0 
Reset = x 0 x 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

State Diagram Transf erState 

Idle: if (TransferMode =• PLSandFifoReady) then Trans! ,else Idle; 

Trans!: 
case (TransferMode === PLSandFif oReady) WrFifoI; 

(Transf erMode == Fif oFull) Trans!; 
(Transf erMode == Reset) Idle; 

endcase; 

WrFifoI: if (TransferMode == FifoFull) then WrFifoI else TransY; 

TransY: 
case (Transf erMode =• PLSandFif oReady) 

(Transf erMode == Fif oFull) 
(Transf erMode == Reset) 

endcase; 

WrFifoY; 
TransY; 
Idle; 

WrFifoY: if (TransferMode == FifoFull) then WrFifoY else TransX; 

TransX: 
case (TransferMode =• PLSandFifoReady) 

(Transf erMode •• Fif oFull) 
(Transf erMode =• Reset) 

endcase; 

WrFifoX; 
TransX; 
Idle; 

WrFifoX: if (TransferMode == FifoFull) then WrFifoX else SendRBdone; 

SendRBdone: goto ClearReadyFlag; 

ClearReadyFlag: goto Idle; 

172 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 173 

Table A.3: Fifa to Fifa Buffer State Machine Input/Output Pin Signal Descriptions 

j Pin # I Signal I Input Pin Descriptions 

Pin 5 *resetb Active low, see Pin 2 Table A.l. 

Pin 6 *fifoempty Active low, indicates the the FIFO is empty. 

Pin 7 *sdfifo Active low, indicates that the bitslice read. 

Output Pin Descriptions 
Pin 13 *readfifo Active low, read signal for the FIFO. 

Pin 12 fifobufready Active high, indicates to the bitslice that there is data 
ready in the FIFO. 

lnputFif o Cntrl NResetl NFifoEmpty NRFifo 

Reset! 0 x x 
FifoHasData 1 1 1 
Transfer Again 1 1 0 
HmsReadsBuf 1 0 0 
Noop = 1 0 1 

FifoBufState NReadFifo FifoBuffieady 

FifoBufldle 1 0 
TransferToBuf 0 1 
Wait = 1 1 
UndefStateO 0 0 

State Diagram for FIFO to FifoBuffer Controller 

State Diagram FifoBufState 

FifoBufidle: 
case (InputFifoCntrl == Reset!) FifoBufidle; 

(InputFifoCntrl == FifoHasData) TransferToBuf; 
(InputFifoCntrl == HmsReadsBuf) FifoBufidle; 
(InputFifoCntrl == Transfer Again) : TransferToBuf; 
(InputFifoCntrl == Noop) FifoBufidle; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

TransferToBuf: 

Wait: 

endcase; 

case (InputFifoCntrl 
(InputFifoCntrl 
(InputFifoCntrl 
(InputFifoCntrl 
(InputFifoCntrl 

endcase; 

== 
== 
== 

--
== 

case (InputFifoCntrl == 
(InputFifoCntrl == 
(InputFifoCntrl == 
(InputFifoCntrl == 
(InputFifoCntrl 

endcase; 

Reset!) FifoBufidle; 
FifoHasData) Wait; 
HmsReadsBuf) Wait; 
Transfer Again) Wait; 
Noop) : Wait; 

Reset!) : FifoBufidle; 
FifoHasData) : Wait; 
HmsReadsBuf) : FifoBufidle; 
TransferAgain) : TransferToBuf; 
Noop) : Wait; 

UndefStateO: GOTO FifoBufidle; 

Explanation of symbols: 1 = logic High 
0 =logic Low 
X = don't care 

• 

174 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 175 

A.2 Input Fifostack Bus Controller State Machine 

Table A.4: Input FSBC Controller 

I Signal I Pin # I Input FSBC Controller Inputs 

elk Pin 1 
NReset Pin 2 Reset State Machine 
NinFsbcPreq Pin 3 Fsbc is ready for input 

HmsinPack Pin 4 Hms is done writing Fsbc 

NDylnFsbc Pin 5 Hms writes Fsbc buffer register 

FsbcRegO Pin 6 Fsbc Register address bit 0 

FsbcRegl Pin 7 Fsbc Register address bit 1 

FsbcReg2 Pin 8 Fsbc Register address bit 2 

NClrLowWord Pin 9 Cir Fsbc Low word before input 

chip ground Pin 10 
chip enable Pin 11 

Input FSBC Controller Output Latches 
NFsbcReady Pin 12 Ready signal for Hms 

NFsbcWrite Pin 13 InFsbc write strobe 
NFsbcPack Pin 14 Packet acknowledge for InFsbc 

InFsbcAdrO Pin 15 Fsbc Reg address 

InFsbcAdrl Pin 16 Fsbc Reg address 

InFsbcAdr2 Pin 17 Fsbc Reg address 

NClrLsw Pin 18 Buff er has data for MBS 
StateO Pin 19 State bit for controller 
chip vcc Pin 20 



COMPANY PRIVATE-PS 390 Graphics System M::i.y G, 1987 176 

FsbcControlState StateO NFsbcReady NFsbcWrite NFsbcPack 

Fsbcldle 0 1 1 1 The IDLE state 
FsbcWrState = 0 0 0 1 Write a register in the 

FSBC 
Ready State = 0 0 1 1 Let the HMS know 

that the FSBC is ready 

FsbcPackState 0 0 1 0 Send PACK to the In-
putFsbc 

Fsbc Wr PackState = 1 0 0 1 Write a register m 

the FSBC and this 
state always followed 
by packstate 

Fsbc U ndefState4 0 1 0 0 
Fsbc U ndefState5 0 1 0 1 
FsbcUndefState6 0 1 1 0 
FsbcUndefState8 1 0 0 0 
FsbcUndefStateA = 1 0 1 0 
FsbcUndefStateB 1 0 1 1 
FsbcUndefStateC 1 1 0 0 
Fsbc U ndefStateD 1 1 0 1 
FsbcUndefStateE 1 1 1 0 
Fsbc U ndefStateF 1 1 1 1 

Table A.5: Input Fsbc Controller State Descriptions 

Explanation of symbols: 1 = logic High 
0 =logic Low 
x =don't care 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Fsbc Controller Input Signal Modes 
InputMode - NReset NlnFsbcPreq HmsinPack 

Reset = 0 x x 
FsbcisReady = 1 0 0 
HmsWrBuf - 1 0 0 
HmsWrPack 1 0 1 
Hms WrPackBuf 1 0 1 
DontCare = 1 x x 

Input Vector for the Fsbc Register Address 
InputReg Vee = NDylnFsbc 

No Write = 1 
WrStatus = 0 
WrX = 0 
WrY - 0 
.WrZ 0 
WrW - 0 
Badinput = 0 

#0 
#0 

Explanation of symbols: 1 = logic High 
0 =logic Low 
X =don't care 

FsbcReg2 

x 
0 
0 
0 
0 
1 
1 
1 
1 

Input Fsbc Address State Definitions 

FsbcRegl 

x 
0 
0 
1 
1 
0 
0 
1 
1 

FsbcAdrState = InFsbcAdr2 InFsbcAdrl lnFsbcAdrO 

WrFsbcRegStatus = 0 0 0 
WrFsbcRegX = 0 0 1 
WrFsbcRegY - 0 1 0 
WrFsbcRegZ = 0 1 1 
WrFsbcRegW - 1 0 0 
WrFsbcReg5 1 0 1 
WrFsbcReg6 = 1 1 0 
WrFsbcReg7 1 1 1 

177 

NDyinFsbc 

x 
1 
0 
1 
0 
x 

FsbcRegO 

x 
0 
1 
0 
1 
0 
1 
0 
1 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Equations 

NClrLsw := NClrLowWord; 

State Diagram FsbcControlState 

Fsbc!dle: 
case ( InputMode == Reset ) 

( InputMode == HmsWrBuf } 

( InputMode == HmsWrPack } 
( InputMode == HmsWrPackBuf 
( InputMode == FsbcisReady ) 

endcase; 

ReadyState: 
case ( InputMode == Reset ) 

( InputMode == HmsWrBuf ) 

( InputMode == HmsWrPack ) 
( InputMode == HmsWrPackBuf 
( InputMode == FsbcisReady ) 

endcase; 

FsbcWrState: goto ReadyState; 

FsbcWrPackState: goto FsbcPackState; 

FsbcPackState: goto Fsbcidle; 

FsbcUndefState4: goto Fsbcidle; 
FsbcUnde:fState5: goto Fsbcidle; 
FsbcUndefState6: goto Fsbcidle; 
FsbcUnde:fState8: goto Fsbc!dle; 
FsbcUnde:fStateA: goto Fsbc!dle; 
FsbcUndefStateB: goto Fsbc!dle; 
FsbcUndefStateC: goto Fsbc!dle; 
FsbcUnde:fStateD: goto Fsbc!dle; 
FsbcUndefStateE: goto Fsbcidle; 
FsbcUndefStateF: goto Fsbc!dle; 

) 

Fsbcidle; 
Fsbcidle; 
Fsbcidle; 
Fsbcidle; 
ReadyState; 

Fsbcidle; 
FsbcWrState; 
FsbcPackState; 
FsbcWrPackState; 
ReadyState; 

178 



COMPANY PRlVATE-PS 390 Graphics System May 6, 1987 179 

State Diagram FsbcAdrState 

WrFsbcRegStatus : 
case ( InputRegVec == NoWrite ) WrFsbcRegStatus; 

( InputRegVec == WrStatus) WrFsbcRegStat.us; 
( InputRegVec == Badinput) WrFsbcRegStatus; 
( InputRegVec == WrX ) WrFsbcRegX; 
( InputRegVec == WrY ) WrFsbcRegY; 
( InputRegVec == WrZ ) WrFsbcRegZ; 
( InputRegVec == WrW ) WrFsbcRegW; 

endcase; 

WrFsbcRegX : 
case ( InputRegVec == NoWrite ) WrFsbcRegX; 

( InputRegVec .... Badinput) WrFsbcRegX; 
( InputRegVec == WrStatus) WrFsbcRegStatus; 
( InputRegVec == WrX ) WrFsbcRegX; 
( InputRegVec == WrY ) WrFsbcRegY; 
( InputRegVec == WrZ ) WrFsbcRegZ; 
( InputRegVec == WrW ) WrFsbcRegW; 

endcase; 

WrFsbcRegY 
case ( InputRegVec == NoWrite ) WrFsbcRegY; 

( InputRegVec == Badinput) WrFsbcRegY; 
( InputRegVec == WrStatus) WrFsbcRegStatus; 
( InputRegVec == WrX ) WrFsbcRegX; 
( InputRegVec == WrY ) WrFsbcRegY; 
( InputRegVec == WrZ ) WrFsbcRegZ; 
( InputRegVec == WrW ) WrFsbcRegW; 

endcase; 

WrFsbcRegZ : 
case ( InputRegVec == NoWrite ) WrFsbcRegZ; 

( InputRegVec == Badinpu.t) WrFsbcRegZ; 
( InputRegVec == WrStatus) WrFsbcRegStatus; 
( InputRegVec == WrX ) WrFsbcRegX; 
( InputRegVec == WrY ) WrFsbcRegY; 
( InputRegVec -- WrZ ) WrFsbcRegZ; 



COMPANY PRIVATE-PS 390 Graphics System May G, 1987 

( InputRegVec == WrW 
endcase; 

WrFsbcRegW : 

) 

case ( InputRegVec == NoWrite ) 
( InputRegVec ... Bad!nput) 
( InputRegVec == WrStatus) 
( InputRegVec ·= WrX ) 

( InputRegVec == WrY ) 

( InputRegVec == WrZ ) 

( InputRegVec •= WrW ) 

endcase; 

WrFsbcReg5: goto WrFsbcRegStatus; 
WrFsbcReg6: goto WrFsbcRegStatus; 
WrFsbcReg7: goto WrFsbcRegStatus; 

180 

WrFsbcRegW; 

WrFsbcRegW; 
WrFsbcRegW; 
WrFsbcRegStatus; 
WrFsbcRegX; 
WrFsbcRegY; 
WrFsbcRegZ; 
WrFsbcRegW; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 181 

A.3 Pixel Processor Array Loader State Machine 

Table A.6: FSBC to Pixel Processor Data Transfer Control 

I Signal I Pin # I Pin Definitions 

elk Pin 1 
NReset Pin 2 Reset 
FsbcAB Pin 3 MBS or SM request 

NFsbcPreq Pin 4 FSBC data ready 

PixPreq Pin 5 Pixel Processor Ready 

BcDone Pin 6 Bus Controller done 
Hrnslack Pin 7 Bitslice acknowledge 

NSDPPL Pin 8 Hms Reads Mux 
NDyPPdat Pin 9 Bitslice does a write to PPdat 
chip ground Pin 10 
chip enable Pin 11 
NHrnsirq Pin 12 This request is for the Bitslice 

NPixPack Pin 13 Pixel Processor acknowledge 

NincPix Pin 14 Increment Pix Proc address 
NlncFsbc Pin 15 Increment Fsbc address 
NHmsPPwe Pin 16 Allow the PP to do a write 
NP ix Wr Enable Pin 17 Enables Pix Proc for writing 

Cycle Pin 18 State Variable 
MuxSel Pin 19 High seiect LS'vV from FSBC 

chip voe Pin 20 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

State Definitions for Data Transfer Machine: 

Increment States 
IncState = NlncPix NincFsbc 
Inc Both 0 0 
Inc Pix = 0 1 
IncFsbc 1 0 
Dontlnc 1 1 

Pack States 
PackState NPixPack 

Pack Pix 
No Pack 

Cycle States 

0 
1 

In Cycle O 
NoCycle 1 

PalReset States 

Do Reset 0 
DontReset 1 

Hmslrq States 

Do Int 0 
Don tint 1 

Pix Wr Enable States 

DoWrPix 0 
DontWrPix 1 

182 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 183 

LoadOntrlState = Cycle NHmsirq NPixWrEnable IncState PackState 

Idle = NoCycle Dontlnt DontWrPix Dentine No Pack 

PixTrnnDontlnc - In Cycle Dontlnt DoWrPix Dontinc No Pack -
PixTranlncBoth = In Cycle Dent Int DoWrPix Inc Both No Pack 

PixTra.nlncPix - In Cycle Dontlnt DoWrPix Inc Pix No Pa.ck -
PixTra.nlncFsbc = In Cycle Dent Int DoWrPix IncFsbc No Pack 

NOTE: In the states below, the lncPPadr Pin is used as a state bit. This 
means that the PPADR counter increments while the HMS has control 
of the pixel processors. The outpuis from the PPADR counter, however, 
are not enabled on the PP address bus. 
HmsTranMsw - In Cycle Dolnt DontWrPix IncPix NoPack -
HmsTranLsw - In Cycle Do Int DontWrPix Dontlnc No Pack -
HmsTranlncFsbc = In Cycle Doint DontWrPix lncFsbc NoPnck 

PackPixe!Proc - In Cycle Dont[nt DontWrPix Dontlnc Pack Pix -



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Multiplexer Select States 

SelMsw 
SelLsw 

Request Modes 

0 
1 

RequestM ode PixPreq NFsbcPreq FsbcAB 

PPReq 
HmsReq 
ReqDontCare 

0 
x 
x 

Hms Input Modes 

0 
0 
x 

HmsMode NSDPPL Hmslack 

HrnsDone x 1 
HmsRead = 0 0 
HmsWait 1 0 
HmsDontCare x x 

Fsbc Mode 
BcMode BcDone 

BcLastFetch = 1 
BcDontCare x 
BcNotLastFetch = 0 

0 
1 
x 

184 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 185 

lnputMocle - NReset RequestMode HmsMode BcMode 

Reset - 0 ReqDontCa.re HmsDontCare BcDontCa.re 

ReqPPTr = 1 PPReq HmsDontCare BcDontCa.re 

ReqHmsTr = 1 HmsReq HmsDontCare BcDontCa.re 

HmsTranDone = 1 ReqDontCare HmsDone BcDontCa.re 

HmsTra.n Wait 1 ReqDontCare HmsWa.it BcDontCare 

HmsTranRea.d 1 ReqDontCare HmsRead BcDontCa.re 

BcTranLastFetch 1 ReqDontCare HmsDontCare BcLa.stFetch 

BcTranNotLastFetch 1 ReqDontCare HmsDontCare BcNotLastFetch 

lnputDontCare ReqDontCa.re HmsDontCare BcDontCa.re 



COMPANY PRIVATE-PS 390 Graphics System May G, 1987 

Equations 

NHmsPPwe := NDyPPdat; 

State Diagram LoadCntrlState 

Idle: !MuxSel := ( RequestMode == HmsReq ); 

case (InputMode == Reset ) 
(InputMode == ReqPPTr) 
(InputMode == ReqHmsTr ) 

endcase; 

Idle; 
PixTranincFsbc; 
HmsTranMsw; 

PixTranincFsbc: 

MuxSel := O; 
if ( InputMode == Reset ) then Idle 
else PixTranincPix; 

case (InputMode == Reset ) 
(InputMode == BcTranLastFetch ) 
(InputMode == BcTranNotLastFetch ) 

endcase; 

PixTranincPix: 

MuxSel := 1; 
case (InputMode == Reset ) 

(InputMode == BcTranLastFetch ) 

(InputMode == BcTranNotLastFetch ) 

endcase; 

PixTranincBoth: 

MuxSel := O; 
goto PixTranincPix; 

PackPixelProc : goto Idle; 

Idle; 
PixTranincPix; 
PixTranincPix; 

Idle; 
PackPixelProc; 
PixTranincBoth; 

186 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

HmsTranMsw: 

MuxSel : . !NSDPPL; 
case ( InputMode 

( InputMode 
( InputMode 
( InputMode 

endcase; 

HmsTranLsw: 

MuxSel := NSDPPL; 
case ( InputMode 

( InputMode 
( InputMode 
( InputMode 

endcase; 

HmsTranincFsbc: 

MuxSel := O; 
goto HmsTranMsw; 

== 
·= 
•• 
•• 

== 
•• 
== 
·= 

Reset ) 

HmsTranDone 
HmsTranRead 
HmsTranWait 

Reset ) 

HmsTranDone 
HmsTranRead 
HmsTranWait 

187 

Idle; 
) Idle; 
) HmsTranLsw; 
) HmsTranMsw; 

Idle; 
) Idle; 
) HmsTranincFsbc; 
) HmsTranLsw; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 188 

A.4 Address Generator for the Endpoint/Color FSBCs 

Table A.7: Address Generator for Fifo Stack Bus Controllers 

I Signal I Pin # I Address Generator Inputs 

elk Pin 1 Clk Pin 
NReset Pin 2 Reset 
NlncFsbcAdr Pin 3 Increment FSBC address 
PPL pack Pin 4 Input only, not used 

NPixPack Pin 5 Input only, not used 

NC6 Pin 6 Input only, not used 

NC7 Pin 7 Input only, not used 

NC8 Pin 8 Input only, not used 

NC9 Pin 9 Input only, not used 

chip ground Pin 10 
chip enable Pin 11 

Address Generator Outputs 
Reset Out Pin 12 Used for test vectors only 

NOutFsbcPack Pin 13 Packet acknowledge to Fsbc's 

FsbcAdrO Pin 14 Fsbc address bit 0 
FsbcAdrl Pin 15 Fsbc address bit 1 
FsbcAdr2 Pin 16 Fsbc address bit 2 
FsbcSel Pin 17 Selects Color or Endpoint Fsbc 

Be Done Pin 18 Last address out 
NC19 Pin 19 Input or combinatorial output 

chip vcc Pin 20 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 189 

FsbcAddressState = FsbcSel FsbcAdr2 FsbcAdrl FsbcAdrO 

EndRdRegO - 0 0 0 0 
EndRdRegl = 0 0 0 1 
EndRdReg2 = 0 0 1 0 
EndRdReg3 = 0 0 1 1 
EndRdReg4 = 0 1 0 0 
EndRdReg5 = 0 1 0 1 
EndRdReg6 = 0 1 1 0 
EndRdReg7 = 0 1 1 1 
ColRdRegO 1 0 0 0 
ColRdRegl = 1 0 0 1 
ColRdReg2 = 1 0 1 0 
ColRdReg3 1 0 1 1 
ColRdReg4 = 1 1 0 0 
ColRdReg5 = 1 1 0 1 
ColRdReg6 = 1 1 1 0 
ColRdReg7 = 1 1 1 1 

Input Mode Definitions 

lnputMode = Reset Out NincFsbcAdr 

Reset = 0 x 
IncFsbcAdr - 1 0 
Wait = 1 1 

WhoGivesPack = PPL pack NPixPack 

HmsGivesPack = 1 1 
PPALoaderGivesPack - 0 0 

Table A.8: FSBC Address Generator 
Explanation of symbols: 1 =logic High 

0 =logic Low 
x =don't care 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Equations 

BcDone := ( FsbcAddressState == ColRdReg3 ); 

!ResetOut = ( PPLpack ) 
# ( ! NPixPack ) 
# ( !NReset ) ; 

!NOutFsbcPack := ( WhoGivesPack == HmsGivesPack ) 
#( WhoGivesPack =• PPALoaderGivesPack ); 

State Diagram FsbcAddressState 

EndRdRegO : 
case ( InputMode 

( InputMode 
( InputMode 

endcase; 

EndRdReg1 
case ( InputMode 

( InputMode 
( InputMode 

endcase; 

EndRdReg2 
case ( InputMode 

( InputMode 
( InputMode 

endcase; 

EndRdReg3: 
case ( InputMode 

( InputMode 
( Input Mode 

endcase; 

EndRdReg4: Goto EndRdRegO; 
EndRdReg6: Goto EndRdRegO; 

== Reset ) 
== Wait ) 
== IncFsbcAdr 

== Reset ) 
·= Wait ) 
== IncFsbcAdr 

·= Reset ) 

·= Wait ) 
=· IncFsbcAdr 

== Reset ) 
== Wait ) 
•= IncFsbcAdr 

) 

) 

) 

) 

EndRdRegO; 
EndRdRegO; 
EndRdReg1; 

EndRdRegO; 
EndRdReg1; 
EndRdReg2; 

EndRdRegO; 
EndRdReg2; 
EndRdReg3; 

EndRdRegO; 
EndRdReg3; 
ColRdReg4; 

190 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 191 

End.Rd.Reg6: Goto End.Rd.Rego; 
End.Rd.Reg7: Goto End.Rd.Rego; 
ColRd.RegO: Goto End.Rd.Rego; 

Co1Rd.Reg4 
case ( InputMode == Reset ) End.Rd.Rego; 

( InputMode == Wait ) ColRdReg4; 
( InputMode == IncFsbcAdr ) ColRdReg2; 

endca!'le; 

Co1Rd.Reg2 
case ( InputMode =:: Reset ) EndRdRegO; 

( InputMode == Wait ) ColRdReg2; 
( InputMode == IncFsbcAdr ) Co1Rd.Reg3; 

endcase; 

Co1Rd.Reg3: 
case ( InputMode == Reset ) End.Rd.Rego; 

( InputMode == Wait ) ColRdReg3; 
( Input Mode == IncFsbcAdr ) End.Rd.Rego; 

endcase; 

Co1Rd.Reg1: Goto End.Rd.Rego; 
Co1Rd.Reg5: Goto End.Rd.Rego; 
Co1Rd.Reg6: Goto End.Rd.Rego; 
Co1Rd.Reg7: Goto End.Rd.Rego; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 192 

A.5 Address Generator for Pixel Processors 

Table A.9: Pixel Processor Address Generator 
Signal Pin# Pixel Processor Address Generator Definitions 

elk Pin 1 Clock Pin 
NReset Pin 2 Reset 
NlncPixAdr Pin 3 Increment Pixel Processor address 
NPixPack Pin 4 Indicates loader done 
NC5 Pin 5 not used 
NC6 Pin 6 not used 
NC7 Pin 7 not used 
PPLpack Pin 8 Reset when a PPLpack is given 

NC9 Pin 9 input only, Not Used 

chip ground Pin 10 
chip enable Pin 11 
NC12 Pin 12 not used 
NC13 Pin 13 not used 
PPAdrO Pin 14 PP address bit 0 . 
PPAdrl Pin 15 PP address bit 1 
PPAdr2 Pin 16 PP address bit 2 
PPAdr3 Pin 17 PP address bit 3 
PPAdr4 Pin 18 PP address bit 4 
PPAdr5 Pin 19 PP address bit 5 
chip vcc Pin 20 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 193 

Data Transfer Machine State Definitions 
PPAddr = PPAdr3 PPAdr2 PPAdrl PPAdrO 
PP15 = 1 1 1 1 
PP14 = 1 1 1 0 
PP13 = 1 1 0 1 
PP12 1 1 0 0 
PPll 1 0 1 1 
PP10 1 0 1 0 
PP9 = 1 0 0 1 
PPS - 1 0 0 0 
PP7 - 0 1 1 1 
PP6 - 0 1 1 0 
PP5 - 0 1 0 1 
PP4 = 0 1 0 0 
PP3 = 0 0 1 1 
PP2 = 0 0 1 0 
PPl = 0 0 ·o 1 
PPO = 0 0 0 0 

Pixel Processor Addresses 
P PA ddressState = PPAddr 

WrRegl = PPl 
WrReg2 = PP2 
WrReg3 = PP3 
WrReg4 = PP4 
WrReg5 = PP5 
WrReg6 PP6 
WrReg7 = PP7 
WrRegS = PPS 
WrReg9 = PP9 
WrReglO = PPlO 
WrRegll = PPll 
WrReg12 PP12 
WrReg13 = PP13 
WrReg14 = PP14 
WrReg15 PP15 
WrReg16 = PP16 



COMPANY PRJVATE-PS 390 Graphics System May 6, 1987 

Input Mode Definitions 
InputMode = NReset NPixPack PPLpack 

Reset 

Inc Pix 
Wait 

= 

= 

0 
#1 
#1 

1 
1 

x 
0 
x 
1 
1 

x 
x 
1 
0 
0 

NlncPixAdr 

x 
x 
x 
0 
1 

NOTE: The counter resets when a *PixPack is given, this happens 
during transfers from the FSBC to the Pixel Processors. The 
counter also resets when PPLpack is given. This is needed 
because during the time that the HMS has control of the Pixel 
Processors, the bit that increments the ppaddress sometimes 
asserted. Therefore at the end when control is given back to 
the PPAloader, the PPADR needs to be reset to 0. 

194 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 195 

Equations 

PPAdr4 := O; 
PPAdr5 := O· 

' 

State Diagram PPAddressState 

WrRegO : 

case ( InputMode == Reset ) WrRegO; 
( Input Mode == Wait ) WrRegO; 
( InputMode == Inc Pix ) WrReg3; 

endcase; 

WrReg1 goto WrRegO; 

WrReg2 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg2; 
( InputMode -- Inc Pix ) WrReg5; 

endcase; 

WrReg3 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg3; 
( InputMode == Inc Pix ) WrReg2; 

endcase; 

WrReg4 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg4; 
( InputMode == Inc Pix ) WrReg7; 

endcase; 

WrReg5 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg5; 
( InputMode -- Inc Pix ) WrReg4; 

endcase; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 196 

WrReg6 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg6; 
( InputMode == Inc Pix ) WrReg9; 

endcase; 

WrReg7 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg7; 
( InputMode -- Inc Pix ) WrReg6; 

endcase; 

WrReg8 
case ( InputMode == Reset ) WrRegO; 

( InputMode -- Wait ) WrReg8; 
( InputMode == Inc Pix ) WrReg11; 

endcase; 

WrReg9 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg9; 
( InputMode == Inc Pix ) WrReg8; 

endcase; 

WrReg10 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg10; 
( InputMode == Inc Pix ) WrReg13; 

endcase; 

WrReg11 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg11; 
( InputMode == Inc Pix ) WrReglO; 

endcase; 

WrReg12 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg12; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

( InputMode == IncPix ) 
endcase; 

WrReg13: 
case ( InputMode == Reset ) 

( InputMode .... Wait ) 
( InputMode == Inc Pix ) 

endcase; 

WrReg14 goto WrRegO; 

WrReg16 goto WrRegO; 

WrRegO; 

WrRegO; 
WrReg13; 
WrReg12; 

197 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 198 

A.6 Address Generator for Endpoint/ Color FSBC 

Table A.10: Address Generator for Fifo Stack Bus Controllers 

I Signal I Pin # I Address Generator Inputs 

elk Pin 1 Clk Pin 
NReset Pin 2 Reset 
NlncFsbcAdr Pin 3 Increment FSBC address 
PPL pack Pin 4 Input only, not used 

NPixPack Pin 5 Input only, not used 

NC6 Pin 6 Input only, not used 

NC7 Pin 7 Input only, not used 

NC8 Pin 8 Input only, not used 

NC9 Pin 9 Input only, not used 

chip ground Pin 10 
chip enable Pin 11 

Address Generator Outputs 
• ResetOut Pin 12 Used for test vectors only 

NOutFsbcPack Pin 13 Packet acknowledge to Fsbc's 

FsbcAdrO Pin 14 Fsbc address bit 0 
FsbcAdrl Pin 15 Fsbc address bit 1 
FsbcAdr2 Pin 16 Fsbc address bit 2 
FsbcSel Pin 17 Selects Color or Endpoint Fsbc 

BcDone Pin 18 Last address out 
NC19 Pin 19 Input or combinatorial output 

chip VCC Pin 20 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 199 

FsbcAddressState FsbcSel FsbcAdr2 FsbcAdrl FsbcAdrO 

EndRdRegO = 0 0 0 0 
EndRdRegl - 0 0 0 1 
EndRdReg2 = 0 0 1 0 
EndRdReg3 = 0 0 1 1 
EndRdReg4 = 0 1 0 0 
EndRdReg5 - 0 1 0 1 
EndRdReg6 = 0 1 1 0 
EndRdReg7 - 0 1 1 1 
ColRdRegO 1 0 0 0 
ColRdRegl = 1 0 0 1 
ColRdReg2 = 1 0 1 0 
ColRdReg3 1 0 1 1 
ColRdReg4 = 1 1 0 0 
ColRdReg5 - 1 1 0 1 
ColRdReg6 = 1 1 1 0 
ColRdReg7 = 1 1 1 1 

Input Mode Definitions 

lnputMode - Reset Out NincFsbcAdr 

Reset - 0 x 
IncFsbcAdr = 1 0 
Wait - 1 1 

WhoGivesPack = PPL pack NPixPack 

HmsGivesPack = 1 1 
PPALoaderGivesPack = 0 0 

Table A.11: Data Transfer Machine State Descriptions 

Explanation of symbols: 1 =logic High 
0 =logic Low 
x = don't care 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Equations 

BcDone :• ( FsbcAddressState == Co1Rd.Reg3 ); 

!ResetOut = ( PPLpack ) 
# ( ! NPixPack ) 
# ( !NReset ) ; 

!NOutFsbcPack :• ( WhoGivesPack == HmsGivesPack ) 
#( WhoGivesPack •= PPALoaderGivesPack ); 

State Diagram FsbcAddressState 

End.Rd.Rego : 

End.Rd.Reg! 

End.Rd.Reg2 

End.Rd.Reg3: 

End.Rd.Reg4: Goto 
End.Rd.Reg6: Goto 

case ( InputMode == Reset ) 
( InputMode Wait ) 
( InputMode •• IncFsbcAdr ) 

endcase; 

case ( InputMode == Reset ) 
( InputMode == Wait ) 
( InputMode == IncFsbcAdr ) 

endcase; 

case ( InputMode == Reset ) 
( InputMode ·= Wait ) 
( InputMode == IncFsbcAdr ) 

endcase; 

case ( InputMode == Reset ) 
( InputMode == Wait ) 
( InputMode == IncFsbcAdr ) 

endcase; 

End.Rd.Rego; 
End.Rd.Rego; 

End.Rd.Rego; 
End.Rd.Rego; 
End.Rd.Reg!; 

End.Rd.Rego: 
End.Rd.Reg!; 
End.Rd.Reg2; 

End.Rd.Rego; 
End.Rd.Reg2; 
End.Rd.Reg3; 

End.Rd.Rego; 
End.RdReg3; 
Co1Rd.Reg4; 

200 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 201 

EndRdReg6: Goto EndRdRegO; 
EndRdReg7: Goto EndRdRegO; 
ColRdRegO: Goto EndRdRegO; 

ColRdReg4 : 
case ( InputMode == Reset ) EndRdRegO; 

( InputMode == Wait ) ColRdReg4; 
( InputMode ==1 IncFsbcAdr ) ColRdReg2; 

endcase; 

ColRdReg2 
case ( InputMode == Reset ) EndRdRegO; 

( InputMode == Wait ) ColRdReg2; 
( InputMode == IncFsbcAdr ) ColRdReg3; 

endcase; 

ColRdReg3: 
case ( InputMode == Reset ) EndRdRegO; 

( InputMode == Wait ) ColRdReg3; 
( InputMode == IncFsbcAdr ) EndRdRegO; 

endcase; 

ColRdReg1: Goto EndRdRegO; 
ColRdReg5: Goto EndRdRegO; 
ColRdReg6: Goto EndRdRegO; 
ColRdReg7: Goto EndRdRegO; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 202 

A. 7 HA PixelProcessor Hit Box Tester 

Table A.12: HA PixelProcessor Hit Box Tester 
Signal Pin# HA PixelProcessor Hit Box Tester In-

puts 

Clk Pin 1 
Nwr Pin 2 lo-true memory write strobe 

Nras Pin 3 row address strobe 
Neas Pin 4 column address strobe 
XGreaterThan Pin 5 > output from X - comparator 

XLessThan Pin 6 < output from X - comparator 

Y G reaterThan Pin 7 > output from Y - comparator 

YLessThan Pin 8 < output from Y - comparator 

Nreset Pin 9 reset for the sampler 

Noe Pin 11 output enable 

HA PixelProcessor Hit Box Tester Outputs 
holdX Pin 12 
NholdX Pin 13 enable for PPA X-address (Cas) latch 

0-+ hold, l -+ transparent 

holdY Pin 18 
NholdY Pin 19 enable for PPA Y-address (Ras) latch 

0 -+ hold, 1 -+ transparent 

HBselO Pin 14 selects one of two hitbox corners 0 -+ 
Top Right, 1 -+ Bottom Left 

sO,sl Pin 15, 16 extra state bit 
Hit Detect Pin 17 hit detect output to Bitslice status 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 203 

Table A.13: HA PixelProcessor Hit Box Tester State Descriptions 

HBstate = HBselO sl so 

idle = 1 1 1 
CmpTopRightl = 0 1 0 
CmpTopRight2 0 1 1 
CmpBottomLeft 1 1 1 0 
CmpBottomLeft2 = 1 0 1 
donewait = 1 0 0 
hitwait = 0 0 0 
undefl 0 0 1 

HBmode = Nwr Nras Neas 

quiet - 1 x x 
incycle = 0 0 x 
done x 1 1 

Explanation of symbols: 1 =logic High 
0 =logic Low 
x =don't care 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Equations 

Create the flip-flops for RAS k CAS latch control 

holdY • 
NholdY • 

holdX = 
NholdX • 

( (HBstate =• donewait) # NholdY # !Nreset ); 
( (!Nras k !Nwr k (HBstate ==idle))# holdY ); 

( (HBstate .. donewait) # NholdX # !Nreset ); 
( (!Neas k !Nwr k holdY) # holdX ); 

Signal a hit detect when inside the 'hitwait' state 

HitDetect := ( HBstate =• hitwait ); 

State Diagram HBstate 

Idle: if ( HBmode =- incycle ) then CmpTopRight1 else idle; 

CmpTopRight 1 : goto CmpTopRight2; 

CmpTopRight2: if ( XLessThan # YGreaterThan ) then donewait 
else CmpBottomLeft1; 

CmpBottomLeft1: goto CmpBottomLeft2; 

CmpBottomLeft2: if ( XGreaterThan # YLessThan ) then donewait 
else hitwait; 

donewait: if ( HBmode == done ) then idle else donewait; 

hitwait: if ( !Nreset ) then idle else hitwait; 

undef1: goto idle; 

204 



COMPANY PRIVATE-PS 390 Graphics System Ma.y 6, 1987 205 

A.8 Input FSBC Controller 

Table A.14: Input FSBC Controller 

I Signal I Pin # I Input FSBC Controller Inputs 

elk Pin 1 
NReset Pin 2 Reset State Machine 
NinFsbcPreq Pin 3 Fsbc is ready for input 

HmslnPack Pin 4 Hms is done writing Fsbc 

NDylnFsbc Pin 5 Hms writes Fsbc buffer register 

FsbcRegO Pin 6 Fsbc Register address bit 0 

FsbcRegl Pin 7 Fsbc Register address bit 1 

FsbcReg2 Pin 8 Fsbc Register address bit 2 

NClrLowWord Pin 9 Clr Fsbc Low word before input 

chip ground Pin 10 
chip enable Pin 11 

Input FSBC Controller Output Latches 
NFsbcReady Pin 12 Ready signal for Hms 

NFsbcWrite Pin 13 InFsbc write strobe 
NFsbcPack Pin 14 Packet acknowledge for InFsbc 

lnFsbcAdrO Pin 15 Fsbc Reg address 

InFsbcAdrl Pin 16 Fsbc Reg address 

InFsbcAdr2 Pin 17 Fsbc Reg address 

NClrLsw Pin 18 Buffer has data for MBS 
StateO Pin 19 State bit for controller 
chip vcc Pin 20 



COMPANY PRIVATE-PS 390 Graphics System May G, 1987 206 

FsbcControlState = StateO NFsbcReady NFsbcWrite NFsbcPack 

Fsbcldle = 0 1 1 1 The IDLE state 
Fsbc WrState = 0 0 0 1 Write a register in the 

FSBC 
Ready State = 0 0 1 1 Let the HMS know 

that the FSBC is ready 

FsbcPackState = 0 0 1 0 Send PACK to the In-
putFsbc 

Fsbc Wr PackState 1 0 0 1 Write a register lil 

the FSBC and this 
state always followed 
by packstate 

FsbcUndefState4 = 0 1 0 0 
FsbcUndefState5 = 0 1 0 1 
Fsbc U ndefState6 = 0 1 1 0 
Fsbc UndefState8 = 1 0 0 0 
Fsbc U ndefStateA = 1 0 1 0 
FsbcUndefStateB = 1 0 1 1 
FsbcUndefStateC = 1 1 0 0 
Fsbc UndefStateD = 1 1 0 1 
Fsbc U ndefStateE - 1 1 1 0 
FsbcUndefStateF = 1 1 1 1 

Table A.15: Input Fsbc Controller State Descriptions 

Explanation of symbols: 1 =logic High 
0 =logic Low 
x =don't care 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Fsbc Controller Input Signal Modes 
InputMode - NReset NlnFsbcPreq HmslnPack 

Reset = 0 x x 
FsbclsReady = 1 0 0 
HmsWrBuf = 1 0 0 
HmsWrPack = 1 0 1 
HmsWrPackBuf = 1 0 1 
DontCare - 1 x x 

Input Vector for the Fsbc Register Address 
InputReg Vee = NDylnFsbc 

No Write - 1 
WrSta.tus = 0 
WrX - 0 
WrY = 0 
WrZ - 0 
WrW 0 
Badin put = 0 

# = 0 

# 0 

Explanation of symbols: 1 = logic High 
0 =logic Low 
X =don't care 

FsbcReg2 

x 
0 
0 
0 
0 
1 
1 
1 
1 

Input Fsbc Address State Definitions 

FsbcRegl 

x 
0 
0 
1 
1 
0 
0 
1 
1 

FsbcAdrState = InFsbcAdr2 InFsbcAdrl InFsbcAdrO 

WrFsbcRegStatus = 0 0 0 
WrFsbcRegX = 0 0 1 
WrFsbcRegY = 0 1 0 
WrFsbcRegZ = 0 1 1 
WrFsbcRegW = 1 0 0 
WrFsbcReg5 = 1 0 1 
WrFsbcReg6 1 1 0 
WrFsbcReg7 = 1 1 1 

207 

NDylnFsbc 

x 
1 
0 
1 
0 
x 

FsbcRegO 

x 
0 
1 
0 
1 
0 
1 
0 
1 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Equations 

NClrLsw := NClrLowWord; 

State Diagram FsbcControlState 

Fsbcidle: 
case ( InputMode == Reset ) 

( InputMode .... HmsWrBuf ) 

( InputMode ... HmsWrPack ) 
( InputMode .... HmsWrPackBuf 
( InputMode == FsbcisReady ) 

endcase; 

ReadyState: 
case { InputMode ... Reset ) 

( Input Mode ... HmsWrBuf ) 

( Input Mode == HmsWrPack ) 
{ Input Mode == HmsWrPackBuf 
( Input Mode .... FsbcisReady ) 

endcase; 

FsbcWrState: goto ReadyState; 

FsbcWrPackState: goto FsbcPackState; 

FsbcPackState: goto Fsbcidle; 

FsbcUndefState4: goto Fsbcidle; 
FsbcUndefState6: goto Fsbcidle; 
FsbcUndefState6: goto Fsbcidle; 
FsbcUndefState8: goto Fsbcidle; 
FsbcUndefStateA: goto Fsbcidle; 
FsbcUndefStateB: goto Fsbcidle; 
FsbcUndefStateC: goto Fsbcidle; 
FsbcUndefStateD: goto Fsbcidle; 
FsbcUndefStateE: goto Fsbcidle; 
FsbcUndefStateF: goto Fsbcidle; 

) 

) 

Fsbcidle; 
Fsbcidle; 
Fsbcidle; 
Fsbcidle; 
ReadyState; 

Fsbcldle; 
FsbcWrState; 
FsbcPackState; 
FsbcWrPackState; 
ReadyState; 

208 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 209 

State Diagram FsbcAd.rState 

WrFsbcRegStatus : 
case ( InputRegVec == NoWrite ) WrFsbcRegStatus; 

( InputRegVec == WrStatus) WrFsbcRegStatus; 
( InputRegVec == Badlnput) WrFsbcRegStatus; 
( InputRegVec == WrX ) WrFsbcRegX; 
( InputRegVec == WrY ) WrFsbcRegY; 
( InputRegVec == WrZ ) WrFsbcRegZ; 
( InputRegVec == WrW ) WrFsbcRegW; 

endcase; 

WrFsbcRegX : 
case ( InputRegVec == NoWrite ) WrFsbcRegX; 

( InputRegVec == Badlnput) WrFsbcRegX; 
( InputRegVec ·= WrStatus) WrFsbcRegStatus; 
( InputRegVec == WrX ) WrFsbcRegX; 
( InputRegVec == WrY ) WrFsbcRegY; 
( InputRegVec == WrZ ) WrFsbcRegZ; 
( InputRegVec == WrW ) WrFsbcRegW; 

endcase; 

WrFsbcRegY : 
case ( InputRegVec === NoWrite ) WrFsbcRegY; 

( InputRegVec •• Badlnput) WrFsbcRegY; 
( InputRegVec =• WrStatus) WrFsbcRegStatus; 
( InputRegVec ..... WrX ) WrFsbcRegX; 
( InputReg~c == WrY ) WrFsbcRegY; 
( InputRegVec == WrZ ) WrFsbcRegZ; 
( InputRegVec •= WrW ) WrFsbcRegW; 

endcase; 

WrFsbcRegZ : 
case ( InputRegVec == MoWrite ) WrFsbcRegZ; 

( InputRegVec == Badlnput) WrFsbcRegZ; 
( InputRegVec == WrStatus) WrFsbcRegStatus; 
( InputRegVec == WrX ) WrFsbcRegX; 
( InputRegVec == WrY ) WrFsbcRegY; 
( InputRegVec == WrZ ) WrFsbcRegZ; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

( InputRegVec == WrW 
endcase; 

WrFsbcRegW : 

) 

case ( InputRegVec == NoWrite ) 
( InputRegVec == Badinput) 
( InputRegVec == WrStatus) 
( InputRegVec =· WrX ) 
( InputRegVec == WrY ) 
( InputRegVec ·= WrZ ) 

( InputRegVec == WrW ) 

endcase; 

WrFsbcReg6: goto WrFsbcRegStatus; 
WrFsbcReg6: goto WrFsbcRegStatus; 
WrFsbcReg7: goto WrFsbcRegStatus; 

210 

WrFsbcRegW; 

WrFsbcRegW; 
WrFsbcRegW; 
WrFsbcRegStatus; 
WrFsbcRegX; 
WrFsbcRegY; 
WrFsbcRegZ; 
WrFsbcRegW; 



COMPANY PRlVATE-PS 390 Graphics System May 6, 1987 211 

A.9 Pixel Processor Address Generator 

Table A.16: Pixel Processor Address Generator 
Signal Pin# Pixel Processor Address Generator Definitions 

elk Pin 1 Clock Pin 
NReset Pin 2 Reset 
NlncPixAdr Pin 3 Increment Pixel Processor address 
NPixPack Pin 4 Indicates loader done 
NC5 Pin 5 not used 
NC6 Pin 6 not used 
NC7 Pin 7 not used 
PPL pack Pin 8 Reset when a PPLpack is given 

NC9 Pin 9 input only, Not Used 

chip ground Pin lO 
chip enable Pin 11 

DMA Machine Output Latches 
NC12 Pin 12 not used 
NC13 Pin 13 not used 
PPAdrO Pin 14 PP address bit 0 
PPAdrl Pin 15 PP address bit 1 
PPAdr2 Pin 16 PP address bit 2 
PPAdr3 Pin 17 PP address bit 3 
PPAdr4 Pin 18 PP address bit 4 
PPAdr5 Pin 19 PP address bit 5 
chip vcc Pin 20 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 212 

Table A.17: Data Transfer Machine State Definitions 

Data Transfer Machine State Definitions 
PPAddr = PPAdr3 PPAdr2 PPAdrl PPAdrO 
PP15 1 1 1 1 
PP14 = 1 1 1 0 
PP13 = 1 1 0 1 
PP12 1 1 0 0 
PPll = 1 0 1 1 
PPlO = 1 0 1 0 
PP9 = 1 0 0 1 
PPB 1 0 0 0 
PP7 = 0 1 1 1 
PP6 0 1 1 0 
PPS 0 1 0 1 
PP4 = 0 1 0 0 
PP3 = 0 0 1 1 
PP2 = 0 0 1 0 
PPl = 0 0 0 1 
PPO~ 0 0 0 0 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Pixel Processor Addresses 
P PAddressState = PPAddr 

WrRegl = PPl 
WrReg2 PP2 
WrReg3 PP3 
WrReg4 = PP4 
WrReg5 = PP5 
WrReg6 = PP6 
WrReg7 = PP7 
WrReg8 = PPB 
WrReg9 = ppg 

WrReglO PPlO 
WrRegll = PPll 
WrReg12 PP12 
WrReg13 = PP13 
WrReg14 = PP14 
WrReg15 = PP15 
WrReg16 = PP16 

Input Mode Definitions 
lnputMode = NReset NPixPack PPL pack NincPixAdr 

Reset X = 0 x x 
# x = 1 0 x 
# x = 1 x 1 
Inc Pix 0 = 1 1 0 
w~ 1 - 1 1 0 

NOTE: The counter resets when a *PixPack is given, this happens 
during transfers from the FSBC to the Pixel Processors. The 
counter also resets when PPLpack is given. This is needed 
because during the time that the HMS has control of the 
Pixel Processors, the bit that increments the ppaddress is 
asserted. Therefore at the end when control is given back to 
the PPAloader, the PPADR needs to be reset to 0. 

213 



COMPANY PRIVATE-PS 390 Graphics System May G, 1987 214 

Equations 

PPAdr4 := O; 
PPAdr5 := O; 

State Diagram PPAddressState 

WrRegO : 

case ( InputMode == Reset ) WrRegO; 
( InputMode -- Wait ) WrRegO; 
( InputMode == Inc Pix ) WrReg3; 

endcase; 

WrReg1 goto WrRegO; 

WrReg2 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg2; 
( InputMode == Inc Pix ) WrReg5; 

endcase; 

WrReg3 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg3; 
( InputMode == Inc Pix ) WrReg2; 

endcase; 

WrReg4 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg4; 
( InputMode == Inc Pix ) WrReg7; 

endcase; 

WrReg5 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg5; 
( InputMode == Inc Pix ) WrReg4; 

endcase; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 215 

WrReg6 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg6; 
( InputMode == Inc Pix ) WrReg9; 

endcase; 

WrReg7 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg7; 
( InputMode == Inc Pix ) WrReg6; 

endcase; 

WrReg8 
case ( InputMode .... Reset ) WrRegO; 

( InputMode .... Wait ) WrReg8; 
( InputMode == Inc Pix ) WrReg11; 

endcase; 

WrReg9 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg9; 
( InputMode == Inc Pix ) WrReg8; 

endcase; 

WrReglO 
case ( InputMode == Reset ) WrRegO; 

( InputMode •• Wait ) WrReglO; 
( InputMode ·= Inc Pix ) WrReg13; 

endcase; 

WrRegll 
case ( InputMode .... Reset ) WrRegO; 

( InputMode ... Wait ) WrRegll; 
( InputMode == Inc Pix ) WrReglO; 

endcase; 

WrReg12 
case ( InputMode == Reset ) WrRegO; 

( InputMode == Wait ) WrReg12; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

WrReg13: 

WrReg14 goto 

WrReg15 goto 

( InputMode -- IncPix ) 
endcase; 

case ( InputMode == Reset ) 

( InputMode == Wait ) 

( InputMode == Inc Pix ) 

endcase; 

WrRegO; 

WrRegO; 

WrRegO; 

WrRegO; 
WrReg13; 
WrReg12; 

216 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 217 

A.10 Pixel Processor Array Loader State Machine 

Table A.18: FSBC to Pixel Processor Data Transfer Control 
I Signal I Pin # I Pin Definitions 

elk Pin 1 
NReset Pin 2 Reset I 

FsbcAB Pin 3 MBS or SM request 

NFsbcPreq Pin 4 FSBC data ready 

PixPreq Pin 5 Pixel Processor Ready 

BcDone Pin 6 Bus Controller done 
Hmslack Pin 7 Bitslice acknowledge 

NSDPPL Pin 8 Hms Reads Mux 
NDyPPdat Pin 9 Bitslice does a write to PPdat 
chip ground Pin 10 
chip enable Pin 11 

DMA Machine Output Latches 
NHmslrq Pin 12 This request is for bitslice 

NPixPack Pin 13 Pixel Processor acknowledge 

NlncPix Pin 14 Increment Pix Proc address 
NlncFsbc Pin 15 Increment Fsbc address 
NHmsPPwe Pin 16 Allow the PP to do a write 
NPixWrEnable Pin 17 Enables Pix Proc for writing 

Cycle Pin 18 State Variable 
MuxSel Pin 19 High select LSW from FSBC 

chip voe Pin 20 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

State Definitions for Data Transfer Machine: 

Increment States 
IncState NlncPix NlncFsbc 
Inc Both 0 0 
Inc Pix 0 1 
IncFsbc 1 0 
Dontlnc l 1 

Pack States 
PackState = NPixPack 

Pack Pix 
No Pack 

0 
1 

Cycle States 

In Cycle 0 
NoCyde 1 

PalReset States 

Do Reset 0 
DontReset 1 

Hmslrq States 

Do Int 0 
Don tint 1 

Pix WrEnable States 

DoWrPix 0 
DontWrPix 1 

Multiplexer Select States 

SelMsw 
SelLsw 

0 
1 

218 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

LoadOntrlState - Cycle NHmslrq NPixWrEnnble IncState PnckStnte -
Idle = NoCycle Don tint DontWrPix Dontlnc NoPack 

PixTranDontlnc = In Cycle Dontint DoWrPix Dontlnc No Pack 

PixTranincBoth - In Cycle Dontlnt DoWrPix IncBoth No Pack -
PixTranincPix = In Cycle Dontlnt DoWrPix IncPix NoPack 

PixTranincFsbc = In Cycle Dontlnt DoWrPix IncFsbc No Pack 

NOTE: In the states below, the IncPPadr Pin is used as a state bit. This 
means that the PPADR counter increments while the HMS has control 
of the pixel processors. The outputs from the PPADR counter, however, 
are not enabled on the PP address bus. 
HmsTranMsw = In Cycle Doint DontWrPix lncPix No Pack 

HmsTranLsw - In Cycle Doint DontWrPix Dontlnc No Pack -

HmsTranlncFsbc - In Cycle Doint DontWrPix lncFsbc NoPack -
PackPixelProc - In Cycle Dontlnt DontWrPix Dontinc Po.ck Pix -

Request Modes 
RequestM ode PixPreq NFsbcPreq FsbcAB 

PPReq 
HmsReq 
ReqDontCare 

0 
x 
x 

Hms Input Modes 

0 
0 
x 

HmsMode = NSDPPL Hmslack 

HmsDone 
HmsRead 
HmsWait 
HmsDontCare 

x 
0 
1 
x 

Fsbc Mode 
BcMode 

BcLastFetch 
BcDontCare 
BcN otLastFetch 

Be Done 

1 
x 
0 

1 
0 
0 
x 

0 
1 
x 

219 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 220 

/nputMode NReset RequestMode HmsMode BcMode 

Reset 0 ReqDontOare HmsDontOa.re BcDontOare 

ReqPPTr = 1 PPReq HmsDontOare BcDontOare 
ReqHmsTr = 1 HmsReq HmsDontOare BcDontOare 

HmsTranDone 1 ReqDontCare HmsDone BcDontCare 
HmsTran Wait = 1 ReqDontCare HmsWait BcDontCare 
HmsTra.nRead = 1 ReqDontCare HmsRead BcDontCare 

BcTra.nLa.stFetch - 1 ReqDontCare HmsDontCa.re BcLa.stFetch 

BcTranNotLastFetch - 1 ReqDontCare HmsDontCare BcNotLa.stFetch 

InputDontCare - 1 ReqDontCare HmsDontCare BcDontCa.re 



COMPANY PRIVATE-PS 390 Graphics System May G, 1987 

Equations 

NH.msPPwe := NDyPPdat; 

State Diagram LoadCntrlState 

Idle: !MuxSel := ( RequestMode == HmsReq ); 

case (InputMode == 
(InputMode == 
(InputMode == 

Reset ) 

ReqPPTr) 
ReqH.msTr ) 

Idle; 
PixTranincFsbc; 
H.msTranMsw; 

endcase; 

PixTranincFsbc: 

MuxSel := O; 
if ( InputMode == Reset ) then Idle 
else PixTranincPix; 

case (InputMode == Reset ) 

(InputMode == BcTranLastFetch ) 

(InputMode == BcTranNotLastFetch 
endcase; 

PixTranincPix: 

MuxSel := 1; 
case (!nputMode == Reset ) 

) 

{InputMode == BcTranLastFetch ) 
(InputMode == BcTranNotLastFetch ) 

endcase; 

PixTranincBoth: 

MuxSel := O; 
goto PixTranincPix; 

PackPixelProc : goto Idle; 

Idle; 
PixTranincPix; 
PixTranincPix; 

Idle; 
PackPixelProc; 
PixTranincBoth; 

221 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

HmsTranMsw: 

MuxSel :• !NSDPPL; 
case ( InputMode 

( InputMode 
( InputMode 
( InputMode 

endcase; 

HmsTranLsw: 

MuxSel :• NSDPPL; 
case ( InputMode 

( InputMode 
( InputMode 
( InputMode 

endcase; 

HmsTranincFsbc: 

MuxSel := O; 
goto HmsTranMsw; 

·= ... 
•• 
•• 

== 
·= 
== 

== 

Reset ) 

HmsTranDone 
HmsTranRead 
HmsTranWait 

Reset ) 

HmsTranDone 
HmsTranRead 
HmsTranWait 

) 

) 

) 

) 

) 
) 

Idle; 
Idle; 
HmsTranLsw; 
HmsTranMsw; 

Idle; 
Idle; 
HmsTranincFsbc; 
HmsTranLsw; 

222 



COMPANY PRIVATE-PS 390 Graphics System May 61 1987 223 

A.11 Pixel Processor Handshake State Machine 

Table A.19: Fix for the PP Handshake 

I Signal I Pin # I Pin Definitions 

elk Pin 1 PAL clock input 

NReset Pin 2 Reset 
Ti Pin 3 Takenln from Pixel Processor 
NF wt Pin 4 Wait signal 

NPixPack Pin 5 Indicates loader done 
NHmsPPPack Pin 6 Acknowledge from Hms 

NS Ir Pin 7 Scanline Read from PP 
NClearWa.it Pin 8 input only, not used 

NPPWe Pin 9 Write PP in next state 
chip ground Pin 10 
chip enable Pin 11 

State Machine Output Latches 
NHmsPPWe Pin 12 Pixel Processor Write enable 
NPPWaitSlb Pin 13 Wait the pixel processor 

Sib Request Pin 14 Start up the SLB 

SlbStateO Pin 15 State bit for SLB 
StateO Pin 16 State bit 0 
Statel Pin .17 State bit 1 
NNPR Pin 18 *NPR, PP new packet request 

NNPA Pin 19 *NPA, PP new packet acknowledge 

chip VCC Pin 20 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Table A.20: Scanline Buffer Input Mode Pins 

I Slb!nMode I = I NReset I NFwt I NSlr I NClearWait I 
SlbReset = 0 x x x 
SlbNoReq = 1 x 1 x 
SlbReq - 1 x 0 x -

GoSlb - 1 1 x x -
WaitSlb = 1 0 x x 
Release - 1 x x 0 -
Hold Wait = 1 x x 1 

Scanline Monitor States 
SlbMonitor NPPWaitSlb SlbStateO 

Monitoridle = 
GotReq 
PPWaitForSlb 
Slb UndefStatel 

1 
1 
0 
0 

0 
1 
0 
1 

PP Handshake State Machine Input Mode Definitions 
Pack = NPixPack NHmsPPPack 

Ack 

# 
No Ack = 
AckDontCare = 

0 
x 
1 
x 

x 
0 
1 
x 

224 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 225 

H andShakelnput = NReset Ti NF wt Pack 

HandShakeReset 0 x x x 

GotA = 1 0 x Ack Pack only 

GotAT 1 1 1 Ack Pack and Taken In 
GotATW = 1 1 0 Ack Pack, Taken In and Wait 

WaitForA - 1 x x NoAck Wait for PACK 

GotT = 1 1 1 AckDontCare Taken In 
GotTW = 1 1 0 AckDontCare Taken In and Wait 
WaitForT = 1 0 x AckDontCare Wait for Taken In 

WaitForW = 1 x 0 AckDontCare Wait for wait 
WaitReleased - 1 x 1 AckDontCare Wait negated 

Handshake State Machine States 
H andShakeState - Statel StateO NNPR NNPA 

PPrequest = 1 1 0 1 State# 13 
HaveA = 1 1 1 1 State# 15 
HaveATW = 1 0 1 1 State# 11 
PPacknowledge = 1 0 1 0 State# 10 
PP Wait 0 1 1 1 State# 7 

UndefStateO 0 0 0 0 
UndefStatel = G 0 0 1 
UndefState2 0 0 1 0 
UndefState3 0 0 1 1 
UndefState4 = 0 1 0 0 
UndefState5 - 0 1 0 1 
UndefState6 0 1 1 0 
UndefState8 1 0 0 0 
UndefState9 = 1 0 0 1 
UndefState12 = 1 1 0 0 
UndefState14 = 1 1 1 0 



COMPANY PRIVATE-PS 390 Graphics System Mo.y 6, 1987 226 

Equations 

NHmsPPWe := NPPWe ; 

SlbRequest := ( !NPPWaitSlb k NClearWait ); 

State Diagram SlbMonitor 

Monitoridle 

case ( Slbin.Mode .... SlbReset ) Monitoridle; 
( SlbinMode .. = SlbNoReq ) Monitoridle; 
( SlbinMode =· SlbReq ) GotReq; 

endcase; 

GotReq : 

case ( SlbinMode == SlbReset ) Monitoridle; 
( SlbinMode '"= GoSlb ) PPWaitForSlb; 
( SlbinMode == WaitSlb ) GotReq; 

endcase; 

PPWaitForSlb : 

case ( SlbinMode == SlbReset ) Monitoridle; 
( SlbinMode == Release ) Monitoridle; 
( SlbinMode == HoldWait ) PPWaitForSlb; 

endcase; 

SlbUnde:fState1 : goto Monitoridle; 

State Diagram HandShakeState 

PPrequest 
case ( HandShakeinput == HandShakeReset ) PPrequest; 

( HandShakeinput == Got A ) HaveA; 
( HandShakeinput == GotAT ) PPacknowledge; 
( HandShakeinput == GotATW ) HaveATW; 
( HandShakeinput == WaitForA ) PPrequest; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

endcase; 

Have A 
case ( HandShakeinput == HandShakeReset 

( HandShakeinput == GotT 
( HandShakeinput == GotTW 
( HandShakelnput == WaitForT 

endcase; 

HaveATW 
case ( HandShakeinput == HandShakeReset 

( HandShakeinput == WaitReleased 
( HandShakeinput == WaitForW 

endcase; 

PPacknowledge : 

case ( HandShakelnput == HandShakeReset 
( HandShakeinput == WaitForW 
( HandShakeinput == WaitReleased 

endcase; 

PPWait 
case ( HandShakeinput == HandShakeReset 

( HandShakeinput == WaitForW 
( HandShakeinput == WaitReleased 

endcase; 

Unde'fStateO goto PPrequest; 
UndefStatel goto PPrequest; 
UndetState2 goto PPrequest; 
Unde'fState3 goto PPrequest; 
UndetState4 goto PPrequest; 
Unde'fState6 goto PPrequest; 
UndefState6 goto PPrequest; 
UndefState8 goto PPrequest; 
UndefState9 goto PPrequest; 
UndefState12 goto PPrequest; 
UndefState14 goto PPrequest; 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 

) 
) 

) 

PPrequest; 
PPacknowledge; 
HaveATW; 
HaveA; 

PPrequest; 
PPacknowledge; 
HaveATW; 

PPrequest; 
PPWait; 
PPrequest; 

PPrequest; 
PPWait; 
PPrequest; 

227 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 228 

A.12 P.P. Address Generator for the Scanline Buffer 
State Machine 

Table A.21: PP Address Generator for the ScanLine Buffer 
' Signal Pin # Address Generator Inputs 

elk Pin 1 PAL clock input 

NReset Pin 2 Reset Pin 
NlncPPadr Pin 3 Increments counter 
NC4 Pin 4 input only, not used 

NC5 Pin 5 input only, not used 

NC6 Pin 6 input only, not used 

NC7 Pin 7 input only, not used 

NC8 Pin 8 input only, not used 

NC9 Pin 9 input only, not used 

chip ground Pin 10 
chip enable Pin 11 

Address Generator Outputs 
NLast16Loaded Pin 12 Indicate Msw loaded 
PPadrO Pin 13 PP address bit 0 
PPadrl Pin 14 PP address bit 1 
PPadr2 Pin 15 PP address bit 2 
PPadr3 Pin 16 PP address bit 3 
PPadr4 Pin 17 PP address bit 4 
PPadr5 Pin 18 PP address bit 5 
NFirst16Loaded Pin 19 Indicate Lsw loaded 
chip vcc Pin 20 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 229 

Input Mode Bi.ts for Address Generator 

SlbAdrMode NReset NincPPadr 
Reset 0 x 
Wait = 1 1 
Count 1 0 

Pixel Processor Address Pins 

ColorSelect PPadr3 PPadr2 
Blu 0 0 

Grn = 0 1 
Red = 1 0 
Win 1 1 

BitSelect PPadrl PPadrO 

selbitsOl 0 0 
selbits23 0 1 
selbits45 1 0 
selbits67 = 1 1 

PP Address PPadr3 PPadr2 PPadrl PPadrO 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Equations 

SlbAdrState 
SlbAdrBluOl 
SlbAdrBlu23 
SlbAdrBlu45 
SlbAdrBlu67 

SlbAdrGrnOl 
SlbAdrGrn23 
SlbAdrGrn45 
SlbAdrGrn67 

SlbAdrRedOl 
SlbAdrRed23 
SlbAdrRed45 
SlbAdrRed67 

ColorSelect 
= Blu 
= Blu 
= Blu 
- Blu 

= Grn 
= Grn 
= Grn 
= Grn 

- Red 
= Red 
= Red 
= Red 

SlbAdrWinOl = Win 
SlbAdrWin23 = Win 
SlbAdr Win45 = Win 
SlbAdrWin67 - Win 

BitSelect 
selbits01 
selbits23 
selbits45 
selbits67 

selbitsOl 
selbits23 
selbits45 
selbits67 

selbitsOl 
selbits23 
selbits45 
selbits67 

selbitsOl 
selbits23 
selbits45 
selbits67 

!NFirst16Loaded = ( PPAddress == k 0111); 
INLast16Loaded = ( PPAddress •• k 1111); 

State Diagram SlbAdrState 

SlbAdrBlu01: 

SlbAdrBlu23: 

case ( SlbAdrMode == Reset ) 
( SlbAdrMode == Wait ) 
( SlbAdrMode == Count ) 

endcase; 

SlbAdrBlu01; 
SlbAdrBlu01; 
SlbAdrBlu23; 

case ( SlbAdrMode ==Reset ) SlbAdrBlu01; 
( SlbAdrMode == Wait ) SlbAdrBlu23; 
( SlbAdrMode == Count ) SlbAdrBlu46; 

230 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 231 

endcase; 

SlbAdrBlu46: 
case ( SlbAdrMode == Reset ) SlbAdrBlu01; 

( SlbAdrMode == Wait ) SlbAdrBlu46; 
( SlbAdrMode == Count ) SlbAdrBlu67; 

endcase; 

SlbAdrBlu67: 
case ( SlbAdrMode == Reset ) SlbAdrBlu01; 

( SlbAdrMode •= Wait ) SlbAdrBlu67; 
( SlbAdrMode == Count ) SlbAdrGrn01; 

endcase; 

SlbAdrGrn01: 
case ( SlbAdrMode == Reset ) SlbAdrBlu01; 

( SlbAdrMode == Wait ) SlbAdrGrn01; 
( SlbAdrMode == Count ) SlbAdrGrn23; 

endcase; 

SlbAdrGrn23: 
case ( SlbAdrMode •= Reset ) SlbAdrBlu01; 

( SlbAdrMode == Wait ) SlbAdrGrn23; 
( SlbAdrMode •• Count ) SlbAdrGrn46; 

endcase; 

SlbAdrGrn46: 
case ( SlbAdrMode == Reset ) SlbAdrBlu01; 

( SlbAdrMode == Wait ) SlbAdrGrn45; 
( SlbAdrMode == Count ) SlbAdrGrn67; 

endcase; 

SlbAdrGrn67: 
case ( SlbAdrMode == Reset ) SlbAdrBlu01; 

( SlbAdrMode == Wait ) SlbAdrGrn67; 
( SlbAdrMode == Count ) SlbAdrRed01; 

endcase; 

SlbAdrRed01: 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 232 

case ( SlbAdrMode == Reset ) SlbAdrBlu01; 
( SlbAdrMode == Wait ) SlbAdrRed01; 
( SlbAdrMode == Count ) SlbAdrRed23; 

endcase; 

SlbAdrRed23: 
case ( SlbAdrMode •= Reset ) SlbAdrBlu01; 

( SlbAdrMode == Wait ) SlbAdrRed23; 
( SlbAdrMode == Count ) SlbAdrRed45; 

endcase; 

SlbAdrRed45: 
case ( SlbAdrMode == Reset ) SlbAdrBlu01; 

( SlbAdrMode == Wait ) SlbAdrRed45; 
( SlbAdrMode == Count ) SlbAdrRed67; 

endcase; 

SlbAdrRed67: 
case ( SlbAdrMode == Reset ) SlbAdrBlu01; 

( SlbAdrMode == Wait ) SlbAdrRed67; 
( SlbAdrMode === Count ) SlbAdrWin01; 

endcase; 

SlbAdrWin01: 
case ( SlbAdrMode == Reset ) SlbAdrBlu01; 

( SlbAdrMode == Wait ) SlbAdrWin01; 
( SlbAdrMode == Count ) SlbAdrWin23; 

endcase; 

SlbAdrWin23: 
case ( SlbAdrMode == Reset ) SlbAdrBlu01; 

( SlbAdrMode =• Wait ) SlbAdrWin23; 
( SlbAdrMode == Count ) SlbAdrWin45; 

endcase; 

SlbAdrWin45: 
case ( SlbAdrMode == Reset ) SlbAdrBlu01; 

( SlbAdrMode == Wait ) SlbAdrWin45; 
( SlbAdrMode == Count ) SlbAdrWin67; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

SlbAdrWin67: 

endcase; 

case ( SlbAdrMode == Reset ) 
( SlbAdrMode == Wait ) 
( SlbAdrMode == Count ) 

endcase; 

SlbAdrBlu01; 
SlbAdrWin67; 
SlbAdrBlu01; 

233 



COMPANY PRIVATE-PS 390 Graphics System Ma.y 6, 1987 234 

A.13 Scanline Buffer Controller State Machine 

Table A.22: Scan Line Buffer Controller Pin Assignments 

I Signal I Pin # I Address Generator Inputs 

elk Pin 1 PAL clock input 

NReset Pin 2 Reset Pin 
NSlbReq Pin 3 Scanline buff er request 

NHmsRead Pin 4 Hms reads scanline buffer 
NFirst16Loaded Pin 5 Indicates to transfer to pipe reg 

NLast16Loaded Pin 6 Indicates to alert HMS 
NC7 Pin 7 Input only, not used 

NPPpack Pin 8 Hms is sending PPpack 

BcDone Pin 9 Bus controller is done 
chip ground Pin 10 
chip enable Pin 11 

Address Generator Outputs 
NHmsPPpack Pin 12 Buffered NPPpack 

NClearWait Pin 13 Clears PP wait FF 
NlncPPadr Pin 14 Increment address in Address PAL 
NSlbReady Pin 15 Indicate data is ready in buffer 

NPclkEnable Pin 16 Transfer from Shadow to Pipe Reg elk 

NDclkEnable Pin 17 Shift in elk enable 
NMode Pin 18 AM29818 mode input 

BcDoneB Pin 19 Buffered BcDone 
chip vcc Pin 20 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Address PAL Count Bit 

Do Inc = 0 
DoNotinc = 1 

Scan Line Buffer Ready Bit 

SlblsReady 0 
SlbNotReady = 1 

AM29818 Control 
Control818 = NMode NDclkEnable NPclkEnable 

Idle818 
Shift In 
ShadowToPipe 
Nop818 

1 
0 
1 
0 

1 
0 
1 
1 

*PPWaitSlb FF Clear Bit 

ClearPPWait = 0 
DontClearPPWait 1 

1 
1 
0 
1 

Scan Line Buffer Input Mode 
SlbMode = NReset NSlbReq NHmsRead NFirst16Loaded 

Reset = 0 x x x 
NoReq = 1 0 x x 
SlbReq = 1 1 1 1 
HmsReadSlb - 1 1 0 x 
LswLoaded 1 1 1 0 
MswLoaded = 1 1 1 1 

NLastl 6Loaded 

x 
x 
1 
x 
1 
0 

235 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 236 

SlbState NSlbReady Control818 NincPPadr 

Sib Idle = SlbNotReady Idle818 DoNotlnc 
SlbShiftln SlbNotReady Shift In Do Inc 
SlbTranToPipeO SlbNotReady ShadowToPipe DoNotlnc 
SlbTranToPipel SlblsReady ShadowToPipe DoNotlnc 
SlbWaitLsw SlblsReady Nop818 DoNotlnc 
SlbWaitMsw SlblsReady ldle818 DoNotlnc 

Slbldle = 1 1 1 1 1 
SlbShiftln 1 1 0 1 0 
SlbTranToPipeO 1 0 1 0 1 
SlbTranToPipel 0 0 1 0 1 
SlbWaitLsw 0 0 1 1 1 
SlbWaitMsw 0 1 1 1 1 

Equations 

NHmsPPpack := NPPpack; 

BcDoneB := BcDone; 

State Diagram SlbState 

Slbidle NClearWait := 1; 

case ( SlbMode == Reset ) Slbidle; 
( SlbMode == SlbReq ) SlbShiftin; 
( SlbMode =·= HmsReadSlb ) Slbldle; 
( SlbMode == LswLoaded ) Slbidle; 
( SlbMode == MswLoaded ) Slbidle; 

endcase; 

SlbShiftin NClearWait := 1; 
case ( SlbMode == Reset ) Slbldle; 

( SlbMode == SlbReq ) SlbShiftin; 
( SlbMode == HmsReadSlb ) Slbldle; 
( SlbMode == LswLoaded ) SlbTranToPipeO; 
( SlbMode == MswLoaded ) SlbWaitLsw; 

endcase; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 237 

SlbTranToPipeO : NClearWait := 1; 

if ( SlbMode == Reset ) then Slbidle else SlbShiftin; 

SlbWaitLsw : NClearWait := 1; 
case ( SlbMode ... Reset ) Slbidle; 

( SlbMode == SlbReq ) SlbWaitLsw; 
( SlbMode =• HmsReadSlb ) SlbTranToPipel; 
( SlbMode ... LswLoaded ) SlbWaitLsw; 
( SlbMode == MswLoaded ) SlbWaitLsw; 

endcase; 

SlbTranToPipel NClearWait := 1; 

if ( SlbMode == Reset ) then Slbldle else SlbWaitMsw; 

case ( SlbMode .... Reset ) Slbidle; 
( SlbMode == SlbReq ) SlbTranToPipe1; 
( SlbMode =· HmsReadSlb ) SlbWaitMsw; 
( SlbMode == LswLoaded ) SlbTranToPipel; 
( SlbMode == MswLoaded ) SlbTranToPipel; 

endcase; 

SlbWaitMsw : NClearWait := NHmsRead; 
case ( SlbMode == Reset ) Slbldle; 

( SlbMode == SlbReq ) SlbWaitMsw; 
( SlbMode == HmsReadSlb ) Slbidle; 
( SlbMode == LswLoaded ) SlbWaitMsw; 
( SlbMode •• MswLoaded ) SlbWaitMsw; 

endcase; 

SlbClearPPWait : goto Slbidle; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 238 

A.14 *Sync Generator for Shadowfax VLSI 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 239 

Ta.hie A.23: System *SYNC Signal Generation 

I Signal I Pin # I Address Generator Inputs 

elk Pin 1 PAL clock input 

NReset Pin 2 PAL reset Pin 
NC3 Pin 3 input only, not used 

NC4 Pin 4 input only, not used 

NC5 Pin 5 input only, not used 

NC6 Pin 6 input only, not used 

NC7 Pin 7 input only, not used 

NOS Pin 8 input only, not used 

NC9 Pin 9 input only, not used 

NClO Pin 10 input only, not used 

chip ground Pin 12 
NC13 Pin 13 input only, not used 

Address Generator Outputs 
NC14 Pin 14 output latch, or input, not used 

NC15 Pin 15 output latch, or input, not used 

NC16 Pin 16 output latch, or input, not used 

Sync Pin 17 The Shadowfax Sync signal 

cntO Pin 18 counter bit 0 
cntl Pin 19 counter bit 1 
cnt2 Pin 20 counter bit 2 
cnt3 Pin 21 counter bit 3 
cnt4 Pin 22 counter bit 4 
NC23 Pin 23 output latch, not used 

chip vcc Pin 24 



COMPANY PRlVATE-PS 390 Graphics System May 6, 1987 240 

Table A.24: PAL Output State Definitions 

SyncState = Sync Counter 
cnt4 cnt3 cnt2 cntl cntO 

one = 0 0 0 0 0 1 
two 0 0 0 0 1 0 
three 0 0 0 0 1 1 
four = 0 0 0 1 0 0 
five = 0 0 0 1 0 1 
SIX = 0 0 0 1 1 0 
seven - 0 0 0 1 1 1 
eight = 0 0 1 0 0 0 
nine = 0 0 1 0 0 1 
ten = 0 0 1 0 1 0 
eleven = 0 0 1 0 1 1 
twelve = 0 0 1 1 0 0 
thirteen = 0 0 1 1 0 1 
fourteen = 0 0 1 1 1 0 
fifteen = 0 0 1 1 1 1 
sixteen = 0 1 0 0 0 0 
seventeen - 0 1 0 0 0 1 
eighteen = 1 1 0 0 1 0 
nineteen - 0 1 0 0 1 1 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 241 

Table A.25: PAL Output State Definitions Continued 

SyncState = Sync Counter 
cnt4 cnt3 cnt2 cntl cntO 

undefstateO - 0 0 0 0 0 0 
undefstatel - 0 1 0 1 0 0 
undefstate2 = 0 1 0 1 0 1 
undefstate3 = 0 1 0 1 1 0 
undefstate4 = 0 1 0 1 1 1 
undefstate5 = 0 1 1 0 0 0 
undefstate6 0 1 1 0 0 1 
undefstate7 = 0 1 1 0 1 0 
undefstate8 = 0 1 1 0 1 1 
undefstate9 = 0 1 1 1 0 0 
undefstatelO = 0 1 1 1 0 1 
undefstatell = 0 1 1 1 1 0 
undefstate12 = 0 1 1 1 1 1 
undefstateOs - 1 0 0 0 0 0 
undefstatels 1 1 0 1 0 0 
undefstate2s = 1 1 0 1 0 1 
undefstate3s = 1 1 0 1 1 0 
undefstate4s 1 1 0 1 1 1 
undefstate5s = 1 1 1 0 0 0 
undefstate6s = 1 1 1 0 0 1 
undefstate7s = 1 1 1 0 1 0 
undefstate8s = 1 1 1 0 1 1 
undefstate9s = 1 1 1 1 0 0 
undefstatelOs = 1 1 1 1 0 1 
undefstate Us = 1 1 1 1 1 0 
undefstate12s 1 1 1 1 1 1 



COMPANY PRIVATE-PS 390 Graphics System Mo.y 6, 1987 242 

State Diagram SyncState 

one if ( NReset == 0 ) then one else two; 
two if ( NReset == 0 ) then one else three; 
three if ( NReset •• 0 ) then one else four; 
four if ( NReset == 0 ) then one else five; 
five if ( NReset ·= 0 ) then one else six; 
six if ( NReset =· 0 ) then one else seven; 
seven if ( NReset == 0 ) then one else eight; 
eight if ( NReset ... 0 ) then one else nine; 
nine if ( NReset == 0 ) then one else ten; 
ten if ( NReset == 0 ) then one else eleven; 
eleven if ( NReset == 0 ) then one else twelve; 
twelve if ( NReset == 0 ) then one else thirteen; 
thirteen if ( NReset == 0 ) then one else fourteen; 
fourteen if ( NReset == 0 ) then one else fifteen; 
fifteen if ( NReset .... 0 ) then one else sixteen; 
sixteen if ( NReset .... 0 ) then one else seventeen; 
seventeen if ( NReset ·= 0 ) then one else eighteen; 
eighteen if ( NReset .... 0 ) then one else one; 

nineteen goto one; 

undefstateO goto one; 
undefstatel goto one; 
undefstate2 goto one; 
undefstate3 goto one; 
undefstate4 goto one; 
undefstate6 goto one; 
undefstate6 goto one; 
undefstate7 goto one; 
undefstate8 goto one; 
undefstate9 goto one; 
undefstate10 goto one; 
undefstate11 goto one; 
undefstate12 goto one; 

undefstateOs: goto one; 
undefstatels: goto one; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 243 

undefstate2s: goto one; 
undefstate3s: goto one; 
undefstate4s: goto one; 
undefstate6s: goto one; 
undefstate6s: goto one; 
undefstate7s: goto one; 
undefstate8s: goto one; 
undefstate9s: goto one; 
U..i!.defsta.te10s: goto one: 
undefstate11s: goto one; 
undefstate12s: goto one; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 244 

A.15 HA Pixel Processor Hit Box Tester 

Table A.26: HA PixelProcessor Hit Box Tester 
Signal Pin# HA PizelProcessor Hit Boz Tester In-

puts 

Clk Pin 1 
Nwr Pin 2 lo-true memory write strobe 

Nras Pin 3 row address strobe 
Neas Pin 4 column address strobe 
XGreaterThan Pin 5 > output from X - comparator 

XLessThan Pin 6 < output from X - comparator 

YGreaterThan Pin 7 > output from Y - comparator 

YLessThan Pin 8 < output from Y - comparator 

Nreset Pin 9 reset for the sampler 

Noe Pin 11 output enable 

HA PizelProcessor Hit Box Tester Outputs 
holdX Pin 12 
NholdX Pin 13 enable for PPA X-address (Cas) latch 

0-+ hold, 1 -+ transparent 

holdY Pin 18 
NholdY Pin 19 enable for PPA Y-address (Ras) latch 

0 -+ hold, 1 -+ transparent 

HBselO Pin 14 selects one of two hitbox corners 0 -+ 
Top Right, 1 -+Bottom Left 

sO,sl Pin 15, 16 extra state bit 
Hit Detect Pin 17 hit detect output to Bitslice status 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 245 

Table A.27: HA PixelProcessor Hit Box Tester State Descriptions 

HBstate = HBselO sl sO 

idle 1 1 1 
CmpTopRightl 0 1 0 
CmpTopRight2 0 1 1 
CmpBottomLeft 1 1 1 0 
CmpBottomLeft2 = 1 0 1 

J.. .L 

donewait = 1 0 0 
hitwait 0 0 0 
undefl = 0 0 1 

HBmode = Nwr Nras Neas 

quiet = 1 x x 
incycle 0 0 x 
done = x 1 1 

Explanation of symbols: 1 =logic High 
0 =logic Low 
x = don't care 



COMPANY PRIVATE-PS 390 Grnphics System May 6, 1987 

Equations 

Create the flip-flops for RAS & CAS latch control 

holdY • 
NholdY = 

holdX = 
NholdX = 

( (HBstate == donewait) # NholdY # !Nreset ); 
( (!Nras & !Nwr & (HBstate ==idle)) # holdY); 

( (HBstate == donewait) # NholdX # !Nreset ); 
( (!Neas & !Nwr & holdY) # holdX ); 

Signal a hit detect when inside the 'hitwait' state 

HitDetect := ( HBstate == hitwait ); 

State Diagram HBstate 

Idle: if ( HBmode == incycle ) then CmpTopRightl else idle; 

CmpTopRightl: goto CmpTopRight2; 

CmpTopRight2: if ( XLessThan # YGreaterThan ) then donewait 
else CmpBottomLeft1; 

CmpBottomLeftl: goto CmpBottomLeft2; 

CmpBottomLeft2: if ( XGreaterThan # YLessThan ) then donewait 
else hitwait; 

donewait: if ( HBmode == done ) then idle else donewait; 

hitwait: if ( !Nreset ) then idle else hitwait; 

undefl: goto idle; 

246 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 247 

A.16 HA Processor WIMMED Controller 

Table A.28: HA Processor WIMMED Controller Pins 

l Signal I Pin # I Signal Descriptions 

Clk Pin 1 
NHoldWim Pin 5 Requests Immediate Field Register to be 

sourced in Next State ' 
HAint Pin 6 Interrupt from Bitslice 

NWRT Pin 7 Common Bus read/write mode control 

CBIIN[3] Pin 8 Level 3 Interrupt 

*CBLDS Pin 9 Common Bus Lower Data Strobe 
*CBADS Pin 12 Common Bus Address Strobe 

Output Pins 
RIMMED Pin 16 Source Immediate Field Register to Immedi-

ate Bus 
NRIMMED Pin 17 " 
NVecEn, CBDTA Pin 19 Enable Interrupt Vector on Common Bus, 

Generate DTACK 

Table A.29: HA Processor WIMMED Controller Input Modes 

Vecmode = HA Int NWRT CBI LDS ADS 

Envec 1 1 1 0 0 
Novecl 0 x x x x 
Novec2 = x 0 x x x 
Novec3 = x x 0 x x 
Novec4 = x x x 1 x 
Novec5 = x x x x 1 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Equations 
NVecEn = l(HAint .t NWRT .t CBI .t !LDS .t !ADS); 
NRIMMED: = NHoldWim; 
RIMMED: = !NHoldWim; 

Enable NVecEn • 1; 

248 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 249 

A.17 HA Processor System Clocks 

Table A.30: HA Processor System Clocks Pins 

I Signal I Pin # I Signal Descriptions 

elk Pin 1 
HaltReq Pin 2 Request to stop clocks 

SSReq Pin 3 Request to single step 

ClkSync Pin 4 Clock PAL is syncronized to this input 

Pclkreq Pin 5 Request to increment P.O. 

Output Pins 
MlCLRawClk Pin 19 Non-stopable lOOns clock 

IENCLK750CYC Pin 18 ALU destination register write enable 

HMSCLK100NS4 Pin 17 Stopable lOOns clock 

NClrReq Pin 16 Auto clear to Input Requests 

NStrobe Pin 15 Disables destination decoders until outputs 
stablize 

pclklOOns Pin 14 lOOns clock to Microsequencer 

HMSCLK50NS Pin 13 Non-stopable 50ns clock 

Hms50ns Pin 12 Stopable 50ns clock 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 250 

Table A.31: HA Processor System Clocks State Assignments 

cl/estate = M10-RawClk Mf!O_Clk MJO_SysClk NStrobe pclk100ns 

phaseO = 1 1 1 1 1 
phasel - 1 0 1 0 1 
phase2 0 1 0 0 0 
phase3 = 0 0 0 0 0 

hltphasel = 1 0 1 1 1 
hltphase2 = 0 1 1 1 1 
hltphase3 = 0 0 1 1 1 

shftphase2 = 0 1 1 0 0 
shftphase3 0 0 1 0 0 

Table A.32: HA Processor System Clocks Input Modes 

clkmode SSReq HaltReq ShiftReq 

no op x 0 x 
SStep = 1 1 0 
Halt = 0 1 0 
Shift = 0 1 1 
Illegal 1 1 1 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Equations 

ND76_IEN := I ( ( clkstate == phase2 ) # (clkstate 

NClrReq := ! ( ( clkstate == phaseO ) .t ( clkmode 
# ( clkstate =· phaseO ) .t ( clkmode 

State_diagram clkstate 

phaseO: Hms60nsclk:= ( clkmode == Shift ) 
# ( clkmode == Halt ) ; 

case ( clkmode ... noop) phasel 
( clkmode == SStep) phasel 
( clkmode == Halt ) hltphasel 
( clkmode == Shift) phase1 ; 
( clkmode ... Illegal): hltphasel 

endcase; 

phase1: Hms50nsclk:= 1; 
case ( clkmode == noop ) phase2 

( clkmode == SStep) phase2 
( clkmode == Halt ) phase2 
( clkmode == Shift) shftphase2 
( clkmode =· Illegal): phase2 ; 

endcase; 

phase2: Hms60nsclk:= O; 
if ClkSync then phase2 else phase3; 

phase3: Hms50nsclk:= 1; 
if !ClkSync then phase3 else phaseO; 

hltphase1: Hms50nsclk:= 1; 
goto hltphase2; 

hltphase2: Hms50nsclk:= 1; 

.. 

... 
== .... 

if ClkSync then hltphase2 else hltphase3; 

hltphase3: Hms50nsclk:= 1; 

251 

phase3) ) ; 

SStep ) 

Shift ) ) ; 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

if !ClkSync then hltphase3 else phaseO; 

shftphase2: Hms60nsclk := 1; 
goto shftphase3; 

shftphase3: Hms60nsclk :• 1; 
goto phaseO ; 

252 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 253 

A.18 HA Processor DMA Controller 

Table A.33: HA Processor OMA Controller Pin Descriptions 

Input Signals Pin# Signal Descriptions 

elk Pin 1 
Nreadreq Pin 2 Request to read Mass Memory 

Nwrtreq Pin 3 Request to write Mass Memory 

Ndtackraw Pin 4 Unsyncronized version of DTACK 

cbtimout Pin 5 Time out period to gain control of the Com-
mon Bus 

Nigotit Pin 6 When asserted, Bitslice controls the Common 
Bus 

Nreset Pin 9 Reset OMA PAL 
Output Pin Descriptions 

CB_CBA Pin 19 Latch data from common bus 
NSDtack Pin 18 Synchronized version of CBDTACK 

common Pin 17 Request the common bus 

CB busy Pin 16 OMA state machine busy 

ILWmode Pin 15 Keeps read/write mode 

NTimerEn Pin 14 Start timer bit 
NSlgotit Pin 13 Synchronized version of IGOTITI 

CB-GAB Pin 12 Enable data to common bus 

Table A.34: HA Processor OMA Controller Input Modes 

CBstate = CB busy Common 

idle 0 0 
transfer = 1 1 
DMAdone = 1 0 
undef 0 1 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 254 

Table A.35: HA Processor OMA Controller State Assignments 

RQMode = Nwrtreq Nreadreq Nreset cbtimout NS/gotit NSDtac/c 

reset = x x 0 x x x 
·• 

write = 0 1 1 x x x 
read = 1 0 1 x x x 
Tout = x x 1 1 0 x 
NoBus = x x 1 0 1 x 
Nod tack = x x 1 0 0 1 
Gotdtack = x x 1 0 0 0 
no op 1 1 1 x x x 



COMPANY PRlVATE-PS 390 Graphics System May 6, 1987 

Equations 

NSigotit :• Nigotit; 
NSDtack :• Ndtackraw; 

State_diagram CBstate 

idle: R_Wmode :• !Nreadreq; 
NTimerEn := t · - ' 
CB_CBA :• O; 
CB_GAB := O; 

case ( RQMode == write ) 

( RQMode == read ) 

( RQMode •• no op ) 
( RQMode •• reset ) 

endcase; 

transfer: R_Wmode := R_Wmode; 
NTimerEn := NSigotit; 
CB_CBA :• ( (RQMode 

transfer; 
transfer; 
idle; 
idle; 

=• Gotdtack) &r R_Wmode 
CB_GAB :• ( !NSigotit &r IR_Wmode ) ; 

case ( RQMode ..... reset ) 

( RQMode == Tout ) 

( RQMode "'"' NoBus ) 

( RQMode == Nod tack ) : 
( RQMode == Gotdtack): 

endcase; 

DMAdone: R_Wmode := R_Wmode; 
NTimerEn:• 1; 
CB_CBA := O; 
CB_GAB := O; 

goto idle; 

undef: goto idle; 

idle; 
DMAdone; 
transfer; 
transfer; 
DMAdone; 

255 

) ; 



COMPANY PRIVATE-PS 390 Graphics System May G, 1987 256 

A.19 HA Processor Maintenance Register Address De­
coder 

Table A.36: HA Processor Maintenance Register Address Decoder Pins 

I Signal I Pin # j Signal Descriptions 

NC BADS Pin 1 Indicates Address lines are stable 
NCBDEV Pin 2 Upper Address bits = 7FF if asserted 

NCBWRT Pin 3 Read/Write Control 

CBADR12 Pin 4 
CBADRll Pin 5 
CBADR10 Pin 6 
CBADR9 Pin 7 Lower Common Bus 
CBADR8 Pin 8 Address Lines 
CBADR7 Pin 9 
CBADR6 Pin 11 
CBADR5 Pin 12 
CBADR4 Pin 13 

Output Pins 
NRDMAINT Pin 16 Enable Maint. Reg to Common Bus 

NWRMAINT Pin 15 Write Maint. Reg from Common Bus 

Equations 

NRDMAINT = !(!NCBADS & !NCBDEV k NCBWRT k (ADRmode == Maintadr) ); 

NWRMAINT = !(!NCBADS & !NCBDEV & !NCBWRT & (ADRmode == Maintadr) ); 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 257 

Table A.37: HA Processor Maintenance Register Address Decoder State Assignments 

ADRm1.1(_le = CBADR!2 UBADR!l CDADR!O C::OADRU GOAD RB <.l0ADR7 <::OADRG GOA On:; <lDADR.4 

Maintadr = 1 0 0 0 0 0 0 1 1 
NoMaintl 0 x x x x x x x x 
NoMaint2 = x 1 x x x x x x x 
NoMaint3 x x 1 x x x x x x 
NoMaint4 x x x 1 x x x x x 
NoMaint5 x x x x 1 x x x x 
NoMaint6 = x x x x x 1 x x x 
NoMaint7 x x x x x x 1 x x 
NoMaint8 = x x x x x x x 0 x 
NoMaint9 = x x x x x x x x 0 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 258 

A.20 Frame Buffer RAS and CAS Control 

Table A.38: Frame Buffer RAS and CAS Control 
R 
A 
s 
B 
A * 
N R 
K B 

CYCLE TYPE ABW A RESULT 

IDLE xxx x No RAS or OAS 
REFRESH xxx x RAS all banks, No CAS 
PP READ (or Longread) xxx 0 RAS banks AWV, OAS requesting array(s) 

xxx 1 RAS banks B WV, OAS requesting arratltl 
PP WRITE Tor LONG WRITEf 000 x RAS bank V, OAS requesting nrray(s) 

101 x RAS banks AWV, OAS requesting array(s) 
011 x RAS banks BWV, OAS requesting array(s) 
111 x RAS banks ABWV, OAS requesting arrati_sl 

VIDEO READ XFER xxx x RAS all banks, CAS all arrnys 
FAST CLEAR READ XFER 000 x RAS bank V, CAS requesting nrray~s) 

101 x RAS banks AWV, OAS requesting array(s) 
011 x RAS banks BWV, CAS requesting a1ny(s) 
111 x RAS banks ABWV, OAS requesting array(si 

FAST CLEAR WRITE XFER 000 x RAS bank V, CAS requesting array(s) 
101 x RAS banks AWV, CAS requesting array(s) 
011 x RAS banks BWV, OAS requesting array(s) 
111 x RAS banks ABWV, OAS requesting arratlsi 

A.20.1 State Tables For The Cycle Sequencer Prom 

The following tables define the cycle sequencer PROM in PS 390 systems that use the 
MB81461. 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Table A.39: Cycle Sequencer PROM Summary 

I Input I Cyc # I Cycle 

0100 4 PPLONGREAD 
0000 0 PPLONG WRITE 
1101 D REFRESH 
0110 6 PP READ 

0010 2 PP WRITE 

0111 7 PPREADBREAK 
OOll 3 PPWRITEBREAK 
llll F IDLE 
1110 E RESET 
0101 5 FCRDXFER 

1011 B VREADXFER 
0001 1 FCWRXFER 

Total 

Note#1 if NOT preceded by state 23 or 25 
Note#2 If preceded by s-tate 23 or 25 

I # I Prom States 

4 lG ..... 18 ..... 09 _, 24 
4 IE --> iA --> OB --> 00 
3 20 _, oc ..... 01 
3 17 ..... 19 ..... 23 

19 ..... 23 
3 1f _, lB _, 25 

lb _, 25 
3 17 ..... 19 _, 23 
3 If_, lb_, 25 
1 OD ;. 

1 02 
G 14 --+ 10 _, 03 _, 

21 _, 11 _, 04 
3 15 _, 12 _, 05 
3 22 _, 13 ...... 06 

31 

259 

Note# 1 

Note# 2 

I Note# 1 

Note# 2 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 260 

Table A.40: Current Cycle PPLONGREAD 

I Current Cycle: PPLONGREAD (All Values in Hexadecimal) 

(Next State) 
*Start *ppfb 

Next Cycle Current Cycle Next State cycle cycdn 
x 16 18 1 1 
x 18 09 1 0 
x 09 24 1 1 
PPLONGREAD 24 16 0 1 
PPLONGWRITE 24 IE 0 1 
REFRESH 24 20 0 1 
PP READ 24 17 0 1 
PP WRITE 24 IF 0 1 
[PPREADBR.EAKJ 24 17 0 1 = These cycles cannot 
!PPWRITEBREAKJ 24 IF 0 1 = follow PPLONGREAD 
IDLE 24 OD 0 1 
RESET 24 02 0 l 
FCRDXFER 24 14 0 1 
VREADXFER 24 15 0 1 
FCWRXFER 24 22 0 1 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 261 

Table A.41: Current Cycle PPLONGWRITE 

I Current Cycle: PPLONGWRITE (All Values in Hexadecimal) 

(Next State) 
*Start *ppfb 

Next Cycle Current Cycle Next State cycle cycdn 
x lE lA 1 1 
x lA OB 1 0 
x OB 00 1 1 
PPLONGREAD 00 16 0 1 
PPLONGWRITE 00 lE 0 1 
REFRESH 00 20 0 1 
PP READ 00 17 0 1 
PP WRITE 00 lF 0 1 
[PPREADBREAKJ 00 17 0 1 = These cycles cannot 
[PPWRITEBREAK] 00 lF 0 1 = follow PPLONG WRITE 
IDLE 00 OD 0 1 
RESET 00 02 0 1 
FCRDXFER 00 14 0 1 
VREADXFER 00 15 0 1 
FCWRXFER 00 22 0 1 



COMPANY PRIVATE-PS 390 Graphics System May G, 1987 262 

Table A.42: Current Cycle REFRESH 

I Current Cycle: REFRESH (All Values in Hexadecimal) 

(Next State) 
*Start *ppfb 

Next Cycle Current Cycle Next State cycle cycdn 
x 20 oc 1 l 
x oc 01 1 1 
PPLONGREAD 01 16 0 l 
PPLONGWRITE 01 lE 0 l 
REFRESH 01 20 0 1 
PP READ 01 17 0 l 
PP WRITE 01 IF 0 1 
[PPREADBREAK] 01 17 0 1 = These cycles cannot 
[PPWRITEBREAK] 01 lF 0 l = follow REFRESH 
IDLE 01 OD 0 1 
RESET 01 02 0 1 
FCRDXFER 01 14 0 1 
VREADXFER 01 15 0 1 
FCWRXFER 01 22 0 1 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Table A.43: Current Cycle PPREAD 

Current Cycle: PPREAD" {All Values in Hexndecimal) 

(Next Stnte) 
*Stnrt *ppfb 

Next Cycle Current Cycle Next State cycle cycdn 
x 17 19 1 0 
x 19 23 1 1 
PPLONGREAD 23 16 0 1 
PPLONGWRITE 23 1E 0 1 
REFRESH 23 20 0 1 
PP READ 23 19 0 0 
PP WRITE 23 1B 0 0 
PPREADBREAK 23 17 0 1 
PPWRITEBREAK 23 lF 0 1 
IDLE 23 OD 0 1 
RESET 23 02 0 1 
FCRDXFER 23 14 0 1 
VREADXFER 23 15 0 1 
FCWRXFER 23 22 0 1 

"If the previous cycle is PPREAD, PPWRITE, PPREADBREAK or PPWRITE­
BREAK (ca.using the previous state to be 23 or 25), the subsequent PPREAD cycle begins 
at state 19. This condition is the consequence of being in Pnge Mode where RAS remains 
down. If the previous cycle is any cycle other than PPREAD, PPWRITE, PPREAD­
BREAK or PPWRITEBREAK, the subsequent PPREAD cycle begins at state 17. 

263 



COMPANY PRlVATE-PS 390 Graphics System May 6, 1987 

Table A.44: Current Cycle PPWRITE 

Current Cycle: PPWRlTE" (All Values in Hexadecimal) 

(Next State) 
*Start *ppfb 

Next Cycle Current Cycle Next State cycle cycdn 
x lF 1B 1 0 
x 1B 25 1 1 
PPLONGREAD 25 16 0 1 
PPLONGWRlTE 25 lE 0 1 
REFRESH 25 20 0 1 
PP READ 25 19 0 0 
PP WRITE 25 IB 0 0 
PPREADBREAK 25 17 0 1 
PPWRlTEBREAK 25 lF 0 1 
IDLE 25 Od 0 1 
RESET 25 02 0 1 
FCRDXFER 25 14 0 1 
VREADXFER 25 15 0 1 
FCWRXFER 25 22 0 1 

au the previous cycle is PPREAD, PPWRITE, PPREADBR.EAK or PPWRITE­
BREAK (causing the previous state to be 23 or 25), the subsequent PPWRlTE cycle begins 
at state lB. This condition is the consequence of being in Page Mode where RAS remains 
down. If the previous cycle is any cycle other than PPREAD, PPWRlTE, PPREAD­
BREAK or PPWRlTEBREAK, the subsequent PPWRlTE cycle begins at state lF. 

264 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Table A.45: Current Cycle PPREADBREAK 

Current Cycle: PPREADBREAK " (All Values in Hexadecimal) 

(Next State) 
*Start *ppfb 

Next Cycle Current Cycle Next State cycle cycdn 
x 17 19 1 0 
x 19 23 1 1 I 

PPLONGREAD 23 16 0 1 
PPLONG WRITE 23 1E 0 1 
REFRESH 23 20 0 1 
PP READ 23 19 0 0 
PP WRITE 23 lB 0 0 
PP READ BREAK 23 17 0 l 
PPWRITEBREAK 23 IF 0 1 
IDLE 23 OD 0 l 
RESET 23 02 0 1 
FCRDXFER 23 14 0 1 
VREADXFER 23 15 0 1 
FCWRXFER 23 22 0 1 

aThe PPREADBREAK and PPWRITEBREAK cycles can occur only where the pre­
vious cycle was a PPREAD, PPWRITE, PPREADBREAK or PPWRITEBREAK cycle 
during which *ENDPPCYCIA was asserted (indicating the end of Page Mode operation 
and resulting in RAS being brought up). 

265 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 

Table A.46: Current Cycle PPWRITEBREAK 

Current Cycle: PPWRITEBREAK" (All Values in Hexadecimal) 

(Next State) 
*Sta.rt *ppfb 

Next Cycle Current Cycle Next State cycle cycdn 
x lF 1B 1 0 
x 1B 25 1 1 
PPLONGREAD 25 16 0 1 
PPLONGWRITE 25 1E 0 1 
REFRESH 25 20 0 1 
PP READ 25 19 0 0 
PP WRITE 25 1B 0 0 
PPREADBREAK 25 17 0 1 
PPWRITEBREAK 25 IF 0 1 
IDLE 25 OD 0 1 
RESET 25 02 0 1 
FCRDXFER 25 14 0 1 
VREADXFER 25 15 0 1 
FCWRXFER 25 22 0 1 

"The PPREADBREAK and PPWRITEBREAK cycles can occur only where the pre­
vious cycle was a PPREAD, PPWRITE, PPREADBREAK or PPWRITEBREAK cycle 
during which *ENDPPCYClA was asserted (indicating the end of Page Mode operation 
and resulting in RAS being brought up). 

266 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 267 

Table A.47: Current Cycle IDLE 

I Current Cycle: IDLE (All Values in Hexadecimal) 

(Next State) 
*Start *ppfb 

0Next Cycle Current Cycle Next State cycle cycdn 
PPLONGREAD OD 16 0 1 
PPLONGWRITE OD IE 0 1 
REFRESH OD 20 0 1 

'PPREAD OD 17 0 1 
PP WRITE OD IF 0 1 
[PPREADBREAK] OD 17 0 1 = These cycles cannot 
[PPWRITEBREAK] OD lF 0 1 = follow IDLE 
IDLE OD OD 0 l 
RESET OD 02 0 1 
FCRDXFER OD 14 0 1 
VREADXFER OD 15 0 1 
FCWRXFER OD 22 0 1 

Table A.48: Current Cycle RESET 

I Current Cycle: RESET (All Values in Hexadecimal) 

(Next State) 
*Start *ppfb 

Next Cycle Current Cycle Next State cycle cycdn 
PPLONGREAD 02 16 0 l 
PPLONGWRITE 02 IE 0 1 
REFRESH 02 20 0 1 
PP READ 02 17 0 1 
PP WRITE 02 lF 0 1 
[PPREADBREAKJ 02 17 0 1 = These cycles cannot 
[PPWRITEBREAKJ 02 IF 0 1 = follow RESET 
IDLE 02 OD 0 1 
RESET 02 02 0 1 
FCRDXFER 02 14 0 1 
VREADXFER 02 15 0 1 
FCWRXFER 02 22 0 1 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 268 

Table A.49: Current Cycle FCRDXFER 

I Current Cycle: FCRDXFER (All Vn.lues in Hexn.decimal) 

(Next Stn.te) 
*Start *ppfb 

Next Cycle Current Cycle Next Stn.te cycle cycdn 
x 14 10 1 1 
x 10 03 1 1 
x 03 21 1 1 
x 21 11 1 0 
x 11 04 1 1 
PPLONGREAD 04 16 0 1 
PPLONG WRITE 04 IE 0 l 
REFRESH 04 20 0 l 
PP READ 04 17 0 l 
PPWR.ITE 04 IF 0 1 
[PP READ BREAK] 04 17 0 1 = These cycles cannot 
[PPWR.ITEBREAK] 04 IF 0 1 = follow FCRDXFER 
IDLE 04 OD 0 1 
RESET 04 02 0 l 
FCR.DXFER 04 14 0 l 
VREADXFER 04 15 0 I 
FCWRXFER 04 22 0 1 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 269 

Table A.50: Current Cycle VREADXFER 

I Current Cycle: VREADXFER (All Values in Hexadecimal) 

(Next State) 
*Start *ppfb 

Next Cycle Current Cycle Next State cycle cycdn 
x 15 12 1 1 
x 12 05 1 1 
PPLONGREAD 05 16 0 1 
PPLONG WRITE 05 IE 0 1 
REFRESH 05 20 0 1 
PP READ 05 17 0 1 
PP WRITE 05 lF 0 1 
[PPREADBREAKj 05 17 0 1 = These cycles cannot 
[PPWRITEBREAK] 05 lF 0 1 =follow VREADXFER 
IDLE 05 OD 0 1 
RESET 05 02 0 1 
FCRDXFER 05 14 0 1 
VREADXFER 05 15 0 1 
FCWRXFER 05 22 0 1 



COMPANY PRIVATE-PS 390 Graphics System May 6, 1987 270 

Table A.51: Current Cycle FCWRXFER 

I Current Cycle: FCWRXFER (All Values in Hexadecimal) 

(Next State) 
*Start *ppfb 

Next Cycle Current Cycle Next State cycle cycdn 
x 22 I3 1 0 
x I3 06 I I 
PPLONGREAD 06 16 0 I 
PPLONGWRlTE 06 IE 0 I 
REFRESH 06 20 0 I 
PP READ 06 17 0 I 
PP WRITE 06 IF 0 1 
[PPREADBREAK] 06 I7 0 I = These cycles cannot 
[PPWRlTEBREAKJ 06 IF 0 I= follow FCWRXFER 
IDLE 06 OD 0 I 
RESET 06 02 0 I 
FCRDXFER 06 14 0 1 
VREADXFER 06 I5 0 I 
FCWRXFER 06 22 0 I 


	000001
	000002
	000003
	000004
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270

