

CONT

Continues program execution after a .. a has been typed or a
STOP statement has been executed. Execution resumes at the state­
ment after the break occured unless input from the terminal was inter­
rupted. In that case, execution resumes with the reprinting of the
prompt (? or prompt string). CONT is useful in debugging, especially
where an infinite loop is suspected. An infinite loop is a series of
statements from which there is no escape. Typing ami a causes
a break in execution and puts Sorcerer in command level. Direct mode
statements can then be used to print intermediate values, change the
values of variables, etc. Execution can be restarted by typing the
CONT command, or by executing a direct mode GOTO statement,
which causes execution to resume at the specified line number. Execu-

�~�'�\�

tion cannot be continued if a direct mode error has occured during the
�b�r�'�e�a�K�~�i�f�:�f�t�i�~� .. �p�f�o�g�r�a�m�-�w�a�s�~�f�f�i�6�m�f�i�e�c�r�t�l�i�l�l�1�n�£�n�h�e�·�·�l�5�f�e�a�K�:�~�·�·�·�·�·�·�·�~�-�"�

CSAVE < string expression> [< unit number>]

Causes the program currently in memory to be saved on the designated
cassette tape under the name specified by the first five characters of
< string expression> . If no tape unit is specified, the program is saved
on unit # 1.

CSA VE * < unit number> < array name>

Causes the array named to be saved on the designated cassette tape.
You must include the < unit number> (lor 2); leave a space between
the �~�<�u�n�i�t� number> and the <array name>. May be used as a pro­
gram statement.

LIST

Lists the program currently in memory starting with the lowest
numbered line. Listing is terminated either by the end of the program or
by typing ami a .

LIST[< line number>]

Prints the current program beginning at the specified line.

B-2

NEW

Deletes the current program and clears all variables. Used before enter­
ing a new program.

NULL < integer expression>

Sets the number of nulls to be printed at the end of each line. For 10
character per second tape punches, < integer expression> should be
> = 3. For 30 cps punches, it should be 2 or 3. When tapes are not be­
ing punched, < integer expression> should be > = 3 for Teletypes·
and Teletype compatible CRTs. It should be 2 or 3 for 30 cps hard
copy printers. The default value is O. If Sorcerer is not connected to a
paper tape punch or a line printer, you won't have to worry about this
command.

RUN[< line number>]

Starts execution of the program currently in memory at the line
specified. If the line number is omitted, execution begins at the lowest
line number.

·Teletype Is a registered trademark of the Teletype Cororatlon.

STATEMENTS

In the follOwing table, X and Y stand for any expressions, L stands for
any logical expression, I and J stand for expressions whose values are
truncated to integers, and V and W are any variable names. The format
for a Standard BASIC line is as follows:

< nnnnn > < statement> [: < statement> . . .]

where nnnnn is the line number.

Name Format

DATA DATA < list>

SpeCifies data to be read by a READ statement. List elements can be
numbers.or strings. List elements are separated by commas.

B-3

DEF DEF FNV«W»= <x>

Defines a user-defined numerical function. Function name is FN follow­
ed by a legal variable name. Definitions are restricted to one line (64
characters). -

DIM DIM < V > (< I > [,J ...])[, ...]

Allocates space for array variables. More than one variable may be
dimensioned by one DIM statement up to the limit of the line. The value
of each expression gives the maximum subscript possible. The
smallest subscript is 0. Without a DIM statement, an array is assumed
to have maximum subSCript of 10 for each dimension referenced. For
example, A(I,J) is assumed to have 121 elements, from A(O,O) to
A(10,10) unless otherwise dimensioned in a DIM statement.

END END

Terminates execution of a program.

FOR FOR<V> = <X>TO<Y>[STEP<Z>]

Allows repeated execution of the same statements. First execution sets
V = X. Execution proceeds normally until NEXT is encountered. Z is
added to V, then IF Z<O and V> = Y, or if Z>O and V < = Y,
Sorcerer branches back to the statement after FOR. Otherwise, execu­
tion continues with the statement after NEXT.

11.- GOTO GOTO < nnnnn >

Unconditional branch to line number nnnnn.

GOSUB GOSUB < nnnnn >

Unconditional branch to subroutine beginning at line nnnnn.

IF ... GOTO IF < X > GOTO < nnnnn >

Same as IF .. THEN except GOTO can only be followed by a line
number and not another statement.

B-4

'!>O /
IF ... THEN fS)~ ,;'

c),

IF<X>THEN < line number>

or IF<X>THEN < statement> [: < statement> . . .]

or IF<L>THEN < line number>

or IF<L> THEN < statement> [: < statement> . . .]

If value of X is not 0, or if L is true, Sorcerer branches to line number or
~Jft statement(S) after 'mEN. If x is 0 or L is false, ,g?es, to the ~) after

IF ... THEN. . <, '. "',' :', 'J: ""'''; ::'.,,'j" v: .~

l-1 ... /INPUT t, I' INPUT<V>[,<W> ...]
G'?> (~;t;;Ir) Dift'\ {J·G·-R TCJ$ ~ ~\ Uer----·Jrfl '

Causes Sorcerer to request input from terminal. Values typed on the
terminal are assigned to the variables in the list.

LET LET<V>=<X>

NEXT NEXT[<V>,<W> ...]

Last statement of a FOR loop. V is the variable of the most recent loop,
W of the next most recent and so on. NEXT without a variable ter­
minates the most recent FOR loop.

It> ON ... GOTO ON < I> GOTO < list of line numbers>

Branches to line whose number is Ith in the list. List elements are
separated by commas. If 1=0 or > number of elements in the list, ex­
ecution continues at next statement. If 1<0 or > 255, an error results.

/Ii ON . . . GOSUB ON < I > GOSUB < list>

Same as ON .. GOTO except list elements are initial line numbers
of subroutines.

"j,''''' PRINT PRINT<X> [,<Y> ...]

Causes values of expressions in the list to be printed on the terminal.
Spacing is determined by punctuation.

B-5

Punctuation

,
other or none

Spacing - next printing begins:
at beginning of next 14 column zone
immediately
at beginning of next line.

String literals may be printed if enclosed by quote marks.
String expressions may also be printed.

READ READ<V>[,<W> ...]

Assigns values in DATA statements to variables. Values are assigned
in sequence starting with the first value in the first DATA statement.

REM REM[< remark>]

Allows insertion of remarks. Not executed, but may be branched into.

RESTORE RESTORE ['-< t?l/Yl/Jtrlt ~7
Allows data from DATA statements to be reread. Next READ state­
ment, after ~STORE begins with ,first data of fir~JPATA statement. ..
(T\- ci,;~ k(\6 .. V ~,.., I...l-d:t..- ,~""- ~""'/)'\""MV\ [SA- 1(6}'i(/ ,k",,:?!
RETURN RETURN

Terminates a subroutine. Branches to the statement after the most re­
cent GOSUB.

STOP STOP

Stops program execution. Sorcerer enters command level and prints
BREAK IN LINE nnnnn.

SPECIAL DIAGNOSTIC INSTRUCTIONS
AND FUNCTIONS

You won't find these very useful in writing simple programs in Standard
BASIC, but if you become familiar with Sorcerer's machine language,
you will find them helpful in debugging programs.

WAIT

The status of input ports can be monitored by the WAIT command
which has the follOWing format:

B-6

WAIT <I,J>[,<K>]

where I is the number of the port being monitored and J and K are in­
teger expressions. The port status is exclusive ORd with K and the
result is ANDed with J. Execution is suspended until a non-zero value
results. J picks the bits of port I to be tested and execution is sus­
pended until those bits differ from the corresponding bits of K. Execu­
tion resumes at the next statement after the WAIT. If K is omitted, it is
assumed to be zero. I, J and K must be in the range 0 to 255.
Examples:

WAIT 20,6

WAIT 10,255,7

POKE, PEEK

Execution stops until either bit 1 or bit 2
of port 20 are equal to 1. (Bit 0 is least
significant bit, 7 is the most significant.)
Execution resumes at the next statement.

Execution stops until any of the most
significant 5 bits of port 10 are one, or any
of the least significant 3 bits are zero. Ex­
ecution resumes at the next statement.

Data may be entered into memory in binary form with the POKE state­
ment whose format is as follows:

POKE<I,J>

where I and J are integer expressions. POKE stores the b~te J into the
location specified by the value of I. I must be less than 32768. J must
be in the range 0 to 255. Data may be POKEd into memory above loca­
tion 32768 by making I a negative number. In that case, I is computed
by subtracting 65536 from the desired address. To POKE data into
location 45000, for example, I is 45000 - 65536 = - 20536. Care
must be taken not to POKE data into the storage area occupied by
Standard BASIC (addresses 0100 to BFFF), or the system may be
POKEd to death, and you will have to hit ImD and start again.

The complementary function to POKE is PEEK. The format for a
PEEK call is as follows:

PEEK«I>)

B-7

where 1 is an integer expression specifying the address from which a
byte is read. 1 is chosen in the same way as in the POKE statement.
The value returned is an integer between 0 and 255. A major use of
PEEK and POKE is to pass arguments and results to and from
machine language subroutines.

OUT,INP

The format of the OUT statement is as follows:

OUT<I,J>

where 1 and J are integer expressions. OUT sends the byte signified by
J to output port I. 1 and J must be in the range 0 to 255.

The INP function is called as follows:

INP(<I»

INP reads a byte from port 1 where 1 is an integer expression in the
range 0 to 255. Example:

20 IF INP(J)=16 THEN PRINl "ON"

8-8

APPENDIX C:
INTRINSIC FUNCTIONS

Standard BASIC provides several commonly used algebraic and string
functions which may be called from any program without further defini­
tion. In the following list, X and Y stand for any numerical expressions,
I and J stand for integers (or expressions whose values are always in­
tegers), and X$ and Y$ stand for string expressions.

Function Call Format

ABS ABS(X)

Returns absolute value of expression X. ABS(X) = X if X> = 0, - X if
X<O.

ASC ASC(X$)

Returns the ASCII code of the first character of the string X$. ASCII
codes are in Appendix G.

ATN ATN(X)

Returns arctangent (X). Result is in radians in range -7r/2 to 7r/2.

CHR$ CHR$(I)

Returns a string whose one element has ASCII code I. ASCII codes are
in Appendix G.

COS COS (X)

The cosine function: returns cos(X). X is in radians.

EXP EXP(X)

Returns e to the power X. X must be < = 87.3365.

FRE FRE(O)

Returns number of bytes in memory not being used by Standard
BASIC. If argument is a string, returns number of free bytes in string
space.

C-l

INP INP(I)

Reads a byte from port I.

INT INT(X)

Returns the largest integer < = x.
LEFT$ LEFT$(X$,I)

Returns leftmost 1 characters of string X$.

LEN LEN(X$)

Returns length of string X$. Non-printing characters and blanks are
counted.

LOG LOG(X)

Returns natural log of X; X> O.

MID$ MID$(X$,I [,J])

Without J, returns rightmost characters from X$ beginning with the Ith
character. If I>LEN(X$), MID$ returns the null string. 0<1<255.
With 3 arguments, returns a string of length J of characters from X$
beginning with the Ith character. If J is greater than the number of
characters in X$ to the right of I, MID$ returns the rest of the string.
0< =J< =255.

[c·r'
RND RND(X) f7 to

0{ SUIt 1~9 7-23 .- ,',

Returns a random number between a and 1. X < O/starts-'a- new s~~
quence of random numbers. X> a gives the next randdm number in se­
quence. X = a gives the last number returned. Sequences started with
the same negative number will be the same.

POS POS(I)

Returns present column position of terminal's print head. Leftmost
position =0.

RIGHT$ RIGHT$(X$,I)

Returns rightmost 1 characters of string X$. If 1 = LEN(X$), returns X$.

C-2

SGN SGN(X)

If X> 0, returns 1, if X = 0 returns 0, if X < 0, returns - 1. For example,
ON SGN(X) + 2 GOTO 100,200,300 branches to 100 if X is negative,
200 if X is 0 and 300 if X is positive.

SIN SIN(X)

Returns the sine of the value of X in radians.
COS(X) = SIN(X + 3.14159/2).

SPC SPC(I)

Prints 1 blanks on terminal. 0 < = 1 < = 255.

SQR SQR(X)

, Returns square root of X. X must be > = 0

(g/ STR$ STR$(X)

Returns string representation of value of X.

TAB TAB (I)

Spaces to position 1 on the terminal. Space 0 is the leftmost space, 64
the rightmost. If the carriage is already beyond space I, TAB has no ef­
fect. 0< =1< =255. May only be used in PRINT statements.

/.'/ TAN TAN(X)

Returns tangent (X); X is in radians.
~ (!

S-e--E.. I £Y(/,:, "
USR USR(X) ~/.-£ {) "

D 6-'6 0
Calls the user's machine l~guage subroutine with argument X.

VAL VAL{X$)

Returns numerical value of string X$. If first character of X$ is not
+, -, or a digit, VAL(X$) = O.

C-3

APPENDIX D:
ERROR MESSAGES
After an error occurs, Sorcerer prints an error message, returns to
direct mode, and then gives the READY prompt. The program instruc­
tions and all variables and arrays remain in memory, but the program
cannot be continued by the CONT command. All GOSUB and FOR
context is lost, but you can continue the program with a direct mode
GO TO command. When an error occurs in a direct mode command,
no line number is printed in the error message. The format for error
messages is:

Direct mode error ?XX ERROR

Indirect mode error ?XX ERROR IN YYYYY

Here, XX is the error code, and YYYYY is the line number where the
error occurred. -

These are the error codes and their meanings:
('

BS SUBSCRIPT OUT OF RANGE

An attempt was made to reference an array element which is outside
the dimensions of the array. This error can occur if the wrong number
of dimensions are used in an array reference. For example:

LET A(l,l,l) = z
when A has already been dimensioned by DIM A(10,l0).

CN CAN'T CONTINUE

Attempt to continue a program when none exists, an error occurred, or
after a modification was made to the program.

DD REDIMENSIONED ARRAY

After an array was dimensioned, another dimension statement for the
same array was encountered. This error often occurs if an array has
been given the default dimension of 10 and later in the program a DIM
statement is found for the same array.

FC ILLEGAL FUNCTION CALL

0-1

The parameter passed to a math or string function was out of range.
FC errors can occur due to:

1. a negative array subscript (LET A(- 1) = 0)

2. an unreasonably large array subscript (> 32767)

3. LOG with negative or zero argument

4. SQR with negative argument

5. A"B with A negative and B not an integer

6. a call to USR before the address of a machine language subroutine
has been entered.

7. calls to MID$, LEFT$, RIGHT$, INP, OUT, WAIT, PEEK, POKE,
TAB, SPC, STR$, or ON ... GOTO with an improper argument.

ID ILLEGAL DIRECT

INPUT and DEF are illegal in the direct mode.
,~

! 1

I I
Cj

i

L.
,I I

:'---

NF NEXT WITHOUT FOR

The variable in a NEXT statement corresponds to no previously ex­
ecuted FOR statement.

LS STRING TOO LONG

An attempt was made to create a string more than 255 characters long.
It\(i ,(
OD OUT OF DATA

A READ statement was executed but all of the DATA. statements in
the program have already been read. The program tried to read too
much data or insufficient data was included in the program.

OM OUT OF MEMORY

Program is too large, has too many Variables, too many FOR loops, too
many GOSUBs or too complicated expressions.

OS OUT OF STRING SPACE

D-2

String variables exceed amount of string space allocated for them. Use
the CLEAR command to allocate more string space or use smaller
strings or fewer string variables.

OV OVERFLOW

The result of a calculation was too large to be represented in Standard
BASIC's number format. If an underflow occurs, zero is given as the
result and execution continues without any error message being
printed.

RG RETURN WITHOUT GOSUB

A RETURN statement was encountered before a previous GOSUB
statement was executed.

SN SYNTAX ERROR

Missing parenthesis in an expression, illegal character in a line, incor­
rect punctuation, etc.

ST STRING FORUMULA TOO COMPLEX

A string expression was too long or too complex. Break it into two or
more shorter ones.

TM TYPE MISMATCH

The left hand side of an assignment statement was a numeric variable
and the right hand side was a string, or vice-versa; or a function which
expected a string argument was given a numeric one or vice-versa.

UF UNDEFINED USER FUNCTION

Reference was made to a user defined function which had never been
defined.

UL UNDEFINED UNE

The line reference in a GOTO, GOSUB, or IF ... THEN was to a line
which does not exist.

/0 DIVISION BY ZERO

o to a negative power also causes DMSION BY ZERO error.
0-3

APPENDIX E:
USER-DEFINED GRAPHICS

You can program Sorcerer to use special graphic characters that you
design yourself. If you want to store or print information in Russian,
Arabic, Hebrew, or Greek, you can train Sorcerer to use those alpha­
bets; if you just want to use a graphic symbol that is not in the standard
keyboard graphic set, you can do that, too.

Each character is stored in eight successive memory addresses in the
memory block FEOO to FFFF (hexadecimal). For example, the first key
(the a key on the main keyboard) uses FEOO to FE07. So first you
have to figure out which eight addresses go with the key in which you
want to store your new character.

Your character will be represented as an 8 x 8 array of dots and blanks,
so get out a pencil and paper, and work out the representation.
Quarter-inch grid graph paper is useful here. Each eight-place row of
this array will fit in one of the eight addresses of your character's key;
the top line goes into the first address, the next line goes into the sec­
ond, and so on.

Example:

One way to represent the Greek letter omega is:

•••••••• •• 000 •••
• 0 ••• 0 ••
0 ••••• 0.
0 ••••• 0 •
• 0 ••• 0 ••
•• 0.0 •••
000.000.

Now take each line of your array, and change it into a two-character
code in this way: First split the eight-place line in two. Then convert
each of these two four-place lines into code with the following table:

E-l

Four-Place Line Code

•••• = 0 D ••• = 8

••• 0 = 1 0 •• 0 = 9

•• 0. = 2 D.O • = A

•• 00 = 3 0.00 = B

• 0 •• = 4 DO •• = C

.0.0 = 5 00.0 = 0

• 00. = 6 000 • = E

.000 = 7 0000 = F

Examples: The eight-place line:

00 •• 0.0. is coded as CA

The eight lines of our letter omega are:

•••••••• 00
•• 000 ••• 38
.0 ••• 0 •• 44
0 ••••• 0.82
0 ••••• 0.82
.0 ••• 0 •• 44
•• 0.0 ••• 28
000.000. EE

What you have just done is to consider each eight-place line of your
character as an eight-digit binary number (white dots are Is and blanks
are Os), and to re-write that number in hexadecimal notation. So you
now have a two digit hexadecimal number for each of the eight lines of
your new character; you must now get these numbers into the eight
memory locations that belong to your character's key.

Get into the Power-On Monitor by giving the command BYE (leave the
ROM PAC in place). Then give the Monitor command EN XXXX
where XXXX is the first memory address of the desired key. For exam­
ple, the first address of the D key on the main keyboard is FE08, so

E-2

the proper command for that key is EN FE08. Sorcerer will respond
with the address you gave it, followed by a colon.

Example:

You type:

Sorcerer
replies:

EN FE08

FE08: __ cursor

Type in the two-digit hexadecimal code of your character's first line,
and hit i;i=,Iiwl . Sorcerer will reply with the next address in memory,
and wait for more data. Type in the hex-code for your character's sec­
ond line, and repeat this process until you have entered all eight lines of
your character into memory. Sorcerer will then give you the address of
the first memory location for the next key on the keyboard. Type in a
slash (I) and hit iji:,iii;iii .

Your new character is now stored in the Sorcerer. Just press 'diWm,
and ED, and your character's key, and your new graphic will appear
on the screen.

Note: Your special graphic characters normally live in memory ad­
dresses FEOO to FFFF. Addresses FCOO to FDFF contain the standard
graphic characters; these are the characters you get using the '#9*'
key, but not the ED. You can put your own characters into these ad­
dresses if you wish; the procedure is the same as above. Sorcerer will
still respond to the one-key BASIC command for your character's key
(see Appendix F).

You can get back into Standard BASIC with the Monitor command
PP. When you tum off Sorcerer's power, or hit 1mD, all your user­
defined characters will be lost. To save them for future use, pass to the
Power-On Monitor and save the contents of the character's memory
addresses on cassette, using the Monitor command SA. You can load
the characters back into memory from the tape, using the Monitor com­
mandLO.

E-3

APPENDIX F:
ONE-STROKE INSTRUCTIONS

Most of Sorcerer's keys have a Standard BASIC instruction or intrinsic
function as an additional meaning. For example, you can use the a
key on the main keyboard to enter an INPUT statement, or the B key
to enter the statement RETURN.

To use this feature, press the key for your function or instruction,
simultaneously with the i3;!@ii' key. A graphic symbol will appear on
the screen. But that symbol is not necessarily what goes into Sorcerer's
memory. If Sorcerer expects an instruction or function when you hit the
keys, it will interpret what you gave it as an instruction or function. The
figure on page F-2 shows the additional meanings of the keys.

Examples:

You type: 10

Then hit: '3;t.jQ: iti and a
Then hit: i;i;iii;i~i

The screen shows: 10-

Now type: i3;!@iij and II

Then hit:

Sorcerer replies:

Now try again:

You type:

Then hit:

10 PRINT

10

idMam. and a
F-1

Note: If you have
stored your own
graphic symbol under
key a, it will appear
here instead of-.

This gives the LIST
command.

sill Fr I (3{t.IlP# Ie.
$'''In_$ '" ot

," iffH-. -: <::/ ...
'3 /}sC ~ (,7.-
:,- C /llL;'j :: <:3 ,- /..f3FT$::: ci.f J;

" il.,/f:.H" .: Cd"
7 JYlID#' :: c.b

ABS USR FRE INP - -/ c· 9

pos SQR 5 RND
-.'!'-- .' ,-, " :~ -'

LOG EXP COS SIN
7- I 7_- :;::

T~ ATN PEEK LEN
,(') ~ ==

One-Stroke BASIC Instractions
~r'l{J!qf

Then type:

Then hit:

And type:

And hit:

The screen shows:

Now press:

And hit:

Sorcerer replies:

Next hit:

And hit:

"

'al'4ii[ti D

"

10-"-"

10 PRINT "-"

This gives the RUN
command.

Sorcerer replies by printing --, or whatever graphic you have stored
under the D key.

Note: The i;i:,Ii@' key does not give the instruction RETURN. It ter­
minates a line of typed instructions or data, and feeds the line into
Sorcerer's memory. '9b4m. 1:1 gives the instruction RETURN (part
of a subroutine) but does not give a carriage return.

The keys for intrinsic functions work the same way as the keys for in­
structions. Some of these keys supply a left parenthesis for the function
argument, and some do not. You still have to type in the argument and
any needed parentheses.

The. key's additional meaning is INT, the greatest integer function.
This key also has a second additional meaning: ED • gives a
PRINT instruction in the same way that 'MP!!!' D does.

F-3

APPENDIX G:
ASCII CHARACTER CODE

ASCII stands for American Standard Code for Information Exchange.

Table 1. Decimal Designations of the
Standard Characters

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.

000 NUL 031 US 062 >
001 SOH 032 SPACE 063 ?
002 STX 033 064 @

003 ETX 034 " 065 A
004 EOT 035 # 066 B
005 ENQ 036 $ 067 C
006 ACK 037 % 068 0
007 BEL 038 & 069 E
008 BS 039 070 F
009 HT 040 071 G
010 LF 041 072 H
011 VT 042 * 073 I
012 FF 043 + 074 J
013 CR 044 075 K
014 SO 045 076 L
015 S1 046 077 M
016 OLE 047 I 078 N
017 DC1 048 0 079 0
018 DC2 049 1 080 P

1,Svo("r:019 DC3 050 2 081 Q
020 DC4 051 3 082 R
021 NAK 052 4 083 S
022 SYN 053 5 084 T
023 ETB 054 6 085 U
024 CAN 055 7 086 V
025 EM 056 8 087 W
026 SUB 057 9 088 X
027 ESC 058 089 y

028 FS 059 090 Z
029 GS 060 < 091 [
030 RS 061 = 092 \

G-l

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.

093 105 117 u
094 A 106 j 118 v
095 < .107 k 119 w

096 108 120 x

097 a 109 m 121 y

098 b 110 n 122 z
099 c 111 0 123 {
100 d 112 p 124 1

J

101 e 113 q 125 }
102 114 r 126
103 9 115 s 127 DELETE
104 h 116 (Rubout)

Table 2. Standard Abbreviations for ASCII characters
o through 31

ACK = Acknowledge

BELL = Bell

BS = Backspace

CAN = Cancel

CR = Carriage Return

DCl = Direct Control 1

DC2 = Direct Control 2

DC3 = Direct Control 3
DC4 = Direct Control 4

OLE = Data Link Escape

EM = End of Medium

ENQ = Enquiry
EOT = End Of Transmission

ESC = Escape

FF = Form Feed

FS = Form Separator

GS = Group Separator

HT = Horizontal Tab

LF = Line Feed
NAK = Negative Acknowledge

NUL = Null
RS = Record Separator

SI = Shift In

SO = Shift Out

SOH = Start of Heading
STX = Start Text

SUB = Substitute

SYN = Synchronous Idle

ETB = End Transmission Block US = Unit Separator
ETX = End Text VT = Vertical Tab

G-2

Exidy Accessory Order Form

DetJClrDptRGB Catalog No. Pi'ace Ea. Qiiaiitaty

MANUALS

Sorcerer Operation Manual DP 5001 9.95
Standard BASIC Manual DP 5002 11.95
Sorcerer Technical Manual DP 5003 11.95
Expansion Unit Manual DP 5004 9.95
Video Display Manual DP 5005 9.95
Development Tour Manual DP 5006 11.95

ROM PACTM CARTRIDGES AND DATA CASSETTE

Blank PAC DP 2001 49.00
Standard BASIC PAC DP 2002 99.00
Development PAC DP 2003 99.00
Data Cassettes DP 3001 4.95

CABLES

Cassette Recorder Cable (6') DP 4001 2.95
Video Display Cable (6') DP 4002 4.95
Data Cable (25 conductor 6') DP 4003 24.95
Bus Expansion Kit DP4Q04 149.00

FOR ADDED DIMENSION

Exidy Expansion Unit DP 1004 299.00
Exidy Video Display DP 1005 299.00

Total Merchandise

Enclose $3.00 Handling + Postage for Total Merchandise under $200.00.

Sales Tax (if applicable)

Amount Enclosed in Check or Money Order

Tota;

$--

$-­

$--

Name __ _

Admess __ __

City State Zip

NOTE: Please allow 30 days for delivery. Prices subject to change without notice .. New Ac­
cessory Order Form will be returned with every order.

FIRST CLASS
Permit #1096

Sunnyvale, CA

BUSINESS REPLY MAIL
No Postage Stamp Necessary if Mailed in the U.S.

Postage will be Paid by

EXIDY INCORPORATED
Data Products Division
969 W. Maude Avenue
Sunnyvale, California 94086

~.~~ .. ~_QtQtQ~iQ~tQ&&&lQ&&Q&&Q£M&(MI~&&ilik(:&&~Q&~W~&Q~'i~
~ LIMITED WARRANTY
a
~ EXIDY warrants to the registered owner for a period of 90 days from the date .
~ of purchase that the computer components described herein shall be free from ~
--:::;:; defects in material and workmanship under normal use and service. This war- ~
~ ranty shall be void if the computer enclosure is opened or if the unit is altered or ~

--:::;:; returned as outlined in Customer Service Information. (Refer to A GUIDED ~
----: >-=

:::: TOUR OF PERSONAL COMPUTING, p. 5.) Customer's sole and exclusive R::o
:=2i remedy in the event of defect is expressly limited to the correction of the defect ~
:::3 by adjustment, repair or replacement at EXIDY's election and there shall be no ~
~ obligation to replace or repair items which by their nature are expendable. No ~_
'--;::;:: representation or other affirmation of fact, including but not limited to
::::::: statements regarding capacity, suitability for use, or performance of the equip-
~: ment, shall be deemed to be a warranty or representation by EXIDY, for any
::::s:: purpose, nor give rise to any liability or obligation of EXIDY what-50-ever.
~: EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREE- ~
~:: MENT, THERE ARE NO OTHER WARRANTIES, EXPRESS ~
-:=:: OR IMPLIED, INCLUDING, BUT NOT LIMITED TO ANY IM- ~

::: PLIED WARRANTIES OR MERCHANTABILITY OR ~
-:::: FITNESS FOR A PARTICULAR PURPOS~ AND liN NO g

:: EVENT SHALL EXIDY BE LIABLE FOR LOSS OF PROFITS ~
:::::: OR BENEFITS, INDIRECT, SPECIAL, CONSEQUENTIAL ~
~i OR OTHER SIMILAR DAMAGES ARISING OUT OF ANY g
~: BREACH OF THIS WARANTY OR OTHERWISE. :<=--
~: ~

-;)))O~~l\J)\)~J~~~W0~0W01~J~1))J1J)0~0~~~)i1I)O~0)0W-)W~WliJ)0JJ~! (' i ~

NOTICE

ALL EXIDY SOFTWARE IS DISTRIBUTED ON AN "AS IS"
BASIS WITHOUT WARRANTY

EXIDY shall have no liability or responsibility to customers or any
other person or entity with respect to any liability, loss or damage
caused or alleged to be caused directly or indirectly by computer
equipment or software sold or distributed by EXIDY, including but not
limited to any interruption of services, loss of business or anticipatory
profits or consequential damages resulting from the use or operation
of such computer or software.

$9.95

REORDER DP 5002

