

10.

CONTENTS

INTRODUCTION TO LOGIC SIMULATIONcvvevvenens ceceneene. 1
THE LS747 LOGIC SIMULATOR coeeas cescecseroanne ceesees 2
HOW LOGIC SIMULATION WORKS0civeietenrceecarencanncnnes 4

GATESoooot'ocoo ooooo e 0 0000 000 ® e 00 00 Q.'.Q.oaoo-ooo.oo.oo.o-oooooll

5.2 The Injected Signal Data Block ...cecvevseesacacnns cecesessens 14
5.3 The Output Report Data Block . .cceeeeeevovecocersonsassncnnnses 15
RUNNING THE LOGIC SIMULATOR ...cc0ccevecescsaccce cessssess 16
ADVANCED EDITING COMMANDSc0000000000s0 ceecsances |
OUTPUT TODISK FILES cc0cteeeeencseccssccccccssscnssenss 23
MACROS0ivvevenenss cedscsscccsenseenresvens cecercreense. 24
9.1 Defining a Macro A cesececnsess 2D
9.2 Macro Useage ...coeecsecasesssesssocsssosssssssscssscnsons 27
9.3 Printout with Macrosc...... teeesssssscessssscessssssss 29
9.4 Building Macro Lil.)raries..............'.‘................... 29
OPTIONS AND FEATURES carccsecesescenersroerasansne 29
10.1 Delay CodeS voveeeeeetesesosnccosacsssocscsscsssscssssnssces 29
10.2 Injected Signals essesecesescassseenn Ceecetcncannas 30

1003 OutputReporto.o oooooo e 0000000000000 0000000000000 31

“10.4 Remarks

10.5 Continuation Lines

. SOME USEFUL MACROS ...

11.
11.

11.

1

2

3

11.4

11,

11.

11.

11.

5

6

7

8

Inverter
Clock......‘...OOOQO
Exclusive Or Gate

Set - Reset Flip Flop ..

oooooooooooo

Clocked D Type Flip Flop........

JK Flip-Flopooo.-oo-ooto

Master Slave Flip Flop......

Four Bit Shift Register

s ec0 00

@0 s 00 ceceo 00000 oo o0 . . e 0 e 0000000 3
. e e e 0000 LI Y e® 00000000 . LI)
o LI) . ® e o0 e ® e o000 oo e ®0e 0000000
© 0000 000000000000 09000 LU R S . .
e . ° e LI) . oo o0 . 3

®0 060000 c0 0000000000000 LI oo oo

32

32

33

33

34

35

36

36

38

39

41

1. INTRODUCTION TO LOGIC SIMULATION

Digital circuits consist of logical elements such as AND and OR gates.
These gates are connected together to form modules su40h> as shift registers
which are usually made on a single semi conductor chip. These rﬁodules in
their turn are connected together to form a system which is usually built

on a printed circuit card,
D‘ 3

O o—

T

Logic simulation is the process of analyzing the performance of either
modules or systems to ensure that they will work correctly once fabricated.
These analyses not only evaluate the logical correctness of the design but

also the effect of delays in each of the gates or modules.

Logic simulation is primarily used to check designs before they are
fabricated. In the case of désigns for MSI or LSI modules, this is very

important because the masks used to fabricate the modules cost many

thousands or dollars, and thesemasks cannot be reworked to correct a

faulty logic design.

Simulation can also significantly reduce costs and time in the design of
systems made up of modules. Using simulation, an engineer can check
out his design in a few hours, bypass the breadboard stage, and proceed

directly to the prototype printed circuit board.

The use of simulation also results in better designs with higher production
yields and lower field maintenance costs, because engineers can rapidly
evaluate different design approaches to determine the optimum one. Further,
the y can easily compare different manufacturers components in a circuit

and test out the what-if questions that arise with any new design.

2. THE LS747 LOGIC SIMULATOR

LS747 is an advanced logic simulator written by logic design engineers.
This program can simulate circuits with up to 2000 gates, including the
effect of delays. LS747 has a powerful MACRO capability whereby users
can define a complete MSI or LSI chip and then use this in their logic

description.

LS747 can analyze both synchronous and asynchronous logic or a mixture of
these with the individual logic elements having different rise and fall times.
Further simultaneous level changes and parallel/serial operations are

accurately simulated without user intervention.

LS747 uses lqok ahead simulation techniques, taking advantage of the fact
that only a small percentage of the elements in a digital system change -
state at any time. It provides simulation of an element if and only if one
of the inputs to the elements change state. By this means, extremely

efficient simulations can be performed.

In addition to providing a wide range of simulation outputs, LS747 can provide
such useful information as a cross reference listing for all the logic elements,
giving the fan-outs for each of the elements and their connections as well as

detecting undefined logic states.

All this capability has been obtained without sacrificing ease of use. Data
input and commands, for example, are in free format engineering language,

making LS747 a truly useful tool for the logic design engineer.

3. HOW LOGIC SIMULATION WORKS

To perform a logic simulation the user enters a network description into
the computer. This network description consists of logic gates such as
AND and OR as well as collections of them, forming component descriptions,

called MACROS.

The gates used in LS747 are shown in the diagram on the following page.
These gates can be regarded as physical gates or as basic logical functions

which can be used in forming complex logical functions.

LS747 GATES

vRshvlls

OR

NAND

NOR

TRAM (MOS transmission gate)

Each gate has one output signal, up to seven input signals and has

associated with it a rise and fall delay.

Throughout this manual the interconnections between the gates are called

signals and each is assigned a unique name by the user.

G
O-

Here XYZ identifies the interconnection between the NOR gate and the AND

and OR gates.

Signals are not characterized by their voltage levels, but by their states
of either true (1) or false (0). Output from the simulation is in terms of the
timing diagram showing the times of which the signal goes from one state

to another,

state

0 > time

Gates and components physically delay both the rising and falling edge of

an input pulse.

IN ouT

A
VOLTAGE
IN
' !
1 |
1 t >
I - : time
VOLTAGE | T
ouUT - ——= -———=d — _ thre
l I
- ! L '
1 X '
: ' , ' time
[} | 1 [}
N\ !)
STATE : I ! I
! 1
IN : "
!]
I :
: : : ! time
’\ 3 s ise] 1 fall l
STATE ~pldelayle— ¢~ delay ._)3
' |
OUT I . : '
| :
| ' >
time

Because the simulator has only two states, the times are taken as those

of which the circuit voltages cross the threshold from one state to the
other. Tais threshold is the voltage a‘ which the gates or modules switch
states, and the rise and fall delays are specified as shown on the precCeding

diagram.

Times are specified. in whole numbers such as 3, 97, 398 or 0, Fractional
numbers such as 39.7 cannot be used. The user is free to use any time
units he thinks are appropriate. However, it must be noted that one time
unit is the smallest that can be differentiated by the system. Hence, if we
have gates with rise/fall delays of tens of nanoseconds, a time unit of one
nanosecond would be appropriate, Within LS747, the maximum delay that
can be assiéned to any gate is 511 time units, so that the user should not

make the time unit too small either.

Injected signals are specified separately from the network by their initial

states and the times at which they change states.

IN1
)
IN2
A
IN1
) 1 \ —>
A | : | time
S '
V2 ! :
| 1 >

10 28 30 35 42 50 58 " time

-8-

When analyzing a digital network, such as the above example, the
first step taken By the program is to check the logical consistancy

of the inputs. Here such errors as gates having input signals

which are not connected anywhere are caught.

Then, prior to running the simulation, the network is initialized. In this

the initial states of all signalls are computed by the foraword propagating

the signals through the network. Hence in the above example A is the NAND
of IN1 and IN2, which are both initially 1, and hence is zero. B is the AND
of A and C. Now at this po;int in the propagation process C is undefined, and
the result of an AND of a zero (A) and an undefined (C) is zero. Hence B is
zero and C is a 1. The process of propagation is extended throughout the
network until all possible states have changed from undefined to either a

zero or a one state,

Each gate output is only allowed to change fromv an undefined output to a one
(:)r zero state and not from zero to one or vice versa. The initialization is
complete when all gates that could change from undefined to defined states
have done so. Those gates that have wundefined outputs are then flagged as

such in the listing of initial states.

It is noteworthy that in our example if the input NAND gate had been an AND
gate the states of B and C would have been undefined as the AND of 1 (A) and
undefined (C) is undefined. This implies that these states depended on the

state changes of signals IN1 and IN2 prior to time zero and hence we have

not got a valid test. These undefined signals are set to zero state prior

to running the simulation.

Those signals that are not connected to the input of any gates, and are not
requested for output are printed as undefihed. L3747 does not save the
states of the outputs the user is not interested in, to speed the running of

the simulation. Hence these are printed as undefined after initialization.

The simulation is then performed to determine the times at which all the
signals change state in the network resulting from changes in the inputs,

The result is a timing diagram for the signals.

IN1

=
C
N
o
W
o
o>
o

IN2

=Y

This is achieved by using a time wheel simulation technique. In this,

events are placed on a time wheel every time a signal changes state.

-10-

A changes from

INPUT change
to NAND GATE

\
O00000|

NAND GATE INPUTS

OUTPUT
STATE
TABLE

v

- —-—0000—-00

This process is illustrated in the diagram shown above. The event, when
signal IN2 changes fram 1 to 0, is placed on the time wheel. When the time -
pointer reaches this event, the event triggers changes in all gates to which
that signal is connected. The new output state is found for' each gate using

a truth-table look up, and if the output changes state, th‘is new event is
placed on the time wheel at a time delayed by the rise or fall delay spécified
for that gate. This event will in turn trigger other events. In this way the
propagation of signal changes through the network are simulated for all the

changes in the injected .signals.

During the simulation a check is made for spike conditions. If an input
pulse turns off again within the propagation time (rise or fall) of a gate

then no output change is generated.

INPUT .

[T =P

OUTPUT with
RISE DELAY
LESS

than T

SE DELAY

- P

OUTPUT with
. RISE DELAY

GREATER

than T

6— RISE DELAY

R | B
““~“I- e

poe - -

4, GATES
The LS747 gates are AND, OR, NAND, NOR and the MOS-transmission gate
(TRAM). Negation in the case of NAND and _NOR gates is on the output.
These gates operate as conventionally defined but.are subject to the
following implementation restrictions:
1) Each gate is limited to a maximum of 7 inputs.

2) The maximum RISE or FALL delay is 511 time units.

These restrictions are, however, easily overcoms by directly replacing
a gate which has many inputs and large delays with an arrangement of
substitute gates, or indirectly and more elegantly via the LS747 MACRO

facility (see section on Macros).

1o —
J— § =
L] 600/700 - — AND AND .
8— anp ¢ —
¥ r
6_
€ = ‘
4— § —
= AND
2— P
3 e 1 ow—

The MOS-transmission gate (TRAM) is a two-input element which has

a control input and a data input. Vhen the control input is ONE, the element
acts as a memory device which retains its ovutput state regardless of any
changes in the data input. When the control input is changed to ZERO, the
elemcnt loses it's mamory charact_eristics and transmits, i.e, the output
assumes the same state, and goes through the same state changes as the

data input.

-13-

5. SETTING UP A SIMULATION

To set up a simulation the user has to provide three blocks of data:

NETWORK
INJECTED SIGNALS

OUTPUT REPORT

The blocks of data are specified in the order shown with each data block

starting with one of the above, and ending with the word END as shown

below:

NETWORK

network description
END

INJECTED SIGNALS

injected signal description

END

OUTPUT REPORT

output signal specification

END

5.1 The MNetwork Data Block

Network data block

Injected signal data block

Output report data block

The format used for describing a network is best illustrated by example

IN1 100/100

IN2

X3

A99

A99

100/50

30/129 \ 100/100

399

-14-

NETWORK
NOR X3 100/100 IN1 IN2
AND A99 100/50 X3 399

NAND A99/ 30/129 A99

or|[399|| 100/100]|a09/

END \ \\

Gate Output R:se/Fall Input
Type Signal Delays Signals
Name

One gate description is entered on each line. Each entry is separated by

one or more bl ks.There must be no blanks within the rise/fall entry.

Signal names can be up to 10 characters in length and can be either

alphabetic or numeric or a mixture, and can include the special character / .

5.2 The Injected Signal Data Block

The example given below shows how initialization and simulation activity
is induced into the small network previously defined.
INJECTED SIGNALS

IN1 0 1000 1200

IN2 || 1}j100

s

Signal Name Initial State Times at which signals change state.

~15-

This data block gives the following information to control an LS747 run:
. The network has two external inputs, i.e. IN1 and IN2.
.For tﬁe purpose of initialization, IN1 is forced to ZERO and IN2 is forced
to ONE.
. During simulation, IN2 is forced to ZERO at time 100 and back to ONE at
time 650. Also, IN1 is forced to ONE at time 1000 and ZERO at time 1200.

The injected signals are entered one to a line.

5.3 The Output Report Data Block

Returning to the small network previously defined, this example shows how
a request for prin;ing signals of interest is formulated.

OUTPUT REPORT

IN1, IN2, X3,399,A99,A99/

END
The output report spgcifies those signals to be printed on the timing

diagram output. (Initial states of all signals are printed in the f£anout listing.

The maximum number of output report signals that can be printed on the

teletype is 50 or on the line printer (via the disk) is 100.

The output signals are printed every time one of the signals specified changes
state, unless the user chooses to strobe the output using the MODE option

as described in Section 9. 3.

6. RUNNING THE LOGIC SIMULATOR

In the following, everything typed by the user is underlined, everything
else by the computer. The symbol § indicates pressing the carriage

return key.

After logging into the computer the program can be run by typing

.R LS747Q

The following dialog is then typical of that used to enter the simulation
data into the program.

LS747 REL 3.1 11/17/71

NEW or OLD ? NEW N to create a new description
NAME ? EXAM ¢ with a file name EXAM.DAT

> 10 NETWORK

$20 NOR X3 100/100 IN1 IN2 3

>30 AND A99 100/50 X3 399 ¥

>40 NAND A99/ 30/129 A99)

>50 OR 399 100/100 A99/3

>60 ENDQ enter simulation description

>70 INJECTED SIGNALS

>80 IN1 0 1000 ¢

90 IN2 1 100 650 &
TR
>100 OUTPUT REPORT ¢

>110 IN1,IN2, X3, 399, A99, A99/)

-17-

> 120 END

>130 XXX

>

The name file can be up to five characters in length and is used to form
the file name with a .DAT extension into which the circuit description

is saved whenever a simulation is run or an exit is made from the program.

The circuit description is entered and edited in a manner similar to that
used for the BASIC language, That is, the user starts each line with a

number between 1 and 99999 and the program uses these line numbers to

place the lines typed by the user in ascending numeric order, irrespective
of the order in which the lines are typed. Hence to insert a line between
90 and 100, the user would simply type

> 92 END Q
A line can be changed simply by retyping it. For example to alter line 80,
the user would type

> 80 IN1 0 1000 12000 @

The program knows whether to alter or add lines by comparing the new line

number with the old ones.

A line can be deleted by simply typing the statement number, for example:

>130 O

would delete the line with statement number 130.

The current simulation description can be listed with the e_diting command
> LIST & |

10 NETWORK

20 NOR X3 100/100 IN1 IN2

30 AND A99 100/50 X3 399

40 NAND A99/ 30/129 A99

etc.

Alternately, a single line can be listed, as for example, by
> LIST 80 ¥

80 IN1 0 1000 1200

Or a range of lines can be listed
>LIST 10,20)
10 NETWORK
20 NOR X3 100/100 INI IN2
>
Other editing commands are described in the next section. All these and
the following commands can be interspersed with changes to the simulation

description specified by the lihe numbers.

To run a simulation the user simply gives the command

RUN @

-19-

and the simulation proceeds as shown below:

COMPILING

INITIALIZATION

GATE GATE GATE
NO NAME TYPE
30 A99 AND
40 A99/ NAND
80 'IN1 GEN
90 IN2 GEN
20 X3 NOR
50 399 OR

line number GEN is

on which gate injected

is described signal .

Signal name
of gate output

SIMULATION

EVENT

COUNTER TIME

ONNKHREMHRPRRFO

0]
100
200
429
529
579
609
650
709
750

program is converting users description

to tables of data

program starts initialization process

STATUS AND FANOUT

STATUS FANOUT
0 40 A99/
1 50 399
0 20 X3
1 20 X3
0 30 A99
1 30 A99
State 0, 1, line numbers and output
orU signal names of gates to

which gate is connected

output signal names printed verticall:

letter identifying signal

letter printed when signal =1
blank when signal = 0

signals printed whenever
any output signal changes state.

SYSTEM DIES NATURALLY BEFORE TIME = 1024

The event counter gives the number of gates changing state at the printout

time,

The simulation will stop whenever there .are no more events to take place,
or when the stop time specified by

> HALT 7009

for example, is reached. If no stop time is specified, then the simulation

will run until no more events occur,

When the simulation is finishgd, a return will be made to the editing
mode, and after the program has typed

>

the user can proceed to alter his circuit description before giving
another RUN request.

After the user has finished his session he types

>EXIT

and the current simulation description will be saved on the disk, and

then a return will be made to the monitor whereupon the user can log out,

The simulation description will be saved on the disk file unless the user
deliberately chooses to delete it. This file can then be retrieved for use

in subsequent sessions by proceeding as follows

RLST4TQ
NEW OR OLD ? OLD]}) To use old file with name EXAM. DAT

NAME ? EXAMJ

The description in the file will be retrieved and, as soon as the symbol)
has been typed, the user can proceed to alter the description and run other

simulations.

If the user wishes to run only the initialization but not the simulation, he
should give the command
>INITIALIZE &

instead of RUN,

7. ADVANCED EDITING COMMANDS

A range of statements can be deleted by the command

>DELETE 40,256

For example, to delete lines 40 to 256 inclusive.

In all commands where a range of statement numbers is given, all liffes
falling within this range are affected. If there are no statements in the
range, the message

SNE |

for Statement Number Error is given. This message is also given if a

single specified line does not exist. With the exception of the DELETE and

_22-

RESEQUENCE commands the absence of any line numbers is taken to imply
the whole description. To DELETE the complete description type
> SCRATCH)

All the commands can be abreviated to their first three letters.

The RESEQUENCE command is used when the user has used up all the
intermediate numbers and wishes to insert more lines between some
existing ones. An example of useage is

> RESEQUENCE 100,10 ¥

to resequence the statement numbers so they start at 100 and are

incremented by 10.

The current description can be saved under a different name by the
command

>SAVE)
NAME? TEMP 4
Alternately, only part of the description such as a MACRO description

can be saved by giving the range of line numbers

> SAVE 106,128 &

NAME ? MAC1 Q

Similarly data from another file can be added to the current description

by the command

-23-

> GET @&

NAME ? MAC1 Q.

Here it must be remembered that if some of the statement numbers in this
file are the same as in those in the current description, then those in the

incoming file will overwrite the lines in the current description.

When a range is specified for the GET request this range applies to the
data in the incoming file, so that particular lines can be selected from this

file.

If you mess up your current de‘scription you can leave the program without
overwriting the last saved version (at INIT, RUN or EXIT) by giving the

request QUIT.

Or alternately, you can SCRATCH your current description and GET your

last saved version.,

Al any time you can get a different file as your current description by the
command OLD or start creating a new description with a new name by

using the comm:ind NEW,

8. OUTPUT TO DISK FILES

The simulatioa outputs are all directed to the teletype as standard.

-24~

However, this can be changed b); the command
>SETUP)

WHICH OUTPUT ? FANOUT &

DSK OR TTY ? DSK ¢

NAME ? FAN1

The output which can be set up are FANOUT and SIMULATION, The first
character is sufficient to specify the output to be directed. The devices

to which output can be directed are disk (DSK) or the users teletype (TTY).

To use the line printer the output is directed to disk (DSK) and then

spooled using the system PRINT command.

The name is the file name (up to 5 characters), with an implied .DAT
extension to which the output is to be directed. This is only requested for

DSK output.

Once set up, the output will remain directed as specified until a change is
made. In the case of disk files, the old files will be overwritten with each

successive simulation run unless the name is changed.

9. MACROS

A MACRO is a collection of gates which is described once and then used
many places in the network description, in the same manner as an
individual gate. These MACROS are used to describe such items as

FLIP-FLOPS, SHIFT REGISTERS and complete MSI or even LSI chips.

-25=

They can also be used for logical functions and to give meaningful namz=s

to single gates, such as INV for a single input NAND gate.

When a MACRO description is changed, such as when another manufacturer's
part is being tried, all associated MACRO-usages are automatically changed.
Hence, this significantly reduces the time to change a network description

repeatedly using the same component,

9.1 Defining a Macro

Each macro definition begins with a line having the word MACRO followed
by at least one space and a macro name of 1 to 5 characters, and "erminates

with an END card.

The gates that make up the macro are described in the same form as gates
in the network description. Signal names must begin with an alphabetic
character, except for input and output signals, The names of the macro
output signals are preceded by the numeral 0, and the input signals by

the numbers 1 through 99, indicating the order of input signal specification

in the use of the macro.

-26-

The example shown below is an RS flip-flop:

"—'—H Q

0/0

/

BETA

1/1

I

—Q/

Coding:

MACRO RSFLP

NOR [0Q 1/1
NOR [0 QN]| 1/1
AND ALPHA 0/0
AND BETA 0/0

NAND GAMMA 0/0

END

9.2 Macro Usage :

Output Signals

0QN ALPHA

0Q BETA

GAMMA [2R]

camma [i5]

1S 2R

Input Signals

When a macro element is used in a network, the output names must be

coded in the same order as they appear in the macro definition. Input

names must appear in the order specified by the integer prefix used for

the macro definition input names.

Using a macro is the same as using a basic element with two exceptions.

First, the macro name is used in place of the element type; second, a

separate line is used for each output name. The macro name and input

signals are dropped on the second and succeeding output lines but a delay

code must accompany each output name. This delay code will override the

delay code appearing on the corresponding output in the macro definition.

The example below shows an RSFLP used in a circuit.

c1
c2 NAl
c3
RSFLP .
F1/
ca
IN1

The corresponding NETWORK data block is shown below

10
20

30

40

50

60

70

80

90
100
110
120
__1_.,30
140
|_150
160
170

NETWORK

MACRO RSFLP

NOR 0Q 1/1 OQN ALPHA
NOR 0QX 1/1 0Q BETA
AND ALPHA 0/0 GAMMA 2R
AND BETA 0/0 GAMMA 1R
NAND GAMMA 0/0 1S 2R
END N

Qs

MACRO INV RE—
NAND 00UT 0/0 1IN ___ |
END

NAND NA1 5/15 C2 C3°]
INV IN1 8/16 C4 N
RSFLP F1 30/47 NA1 NA

F1/ 30/47 |
NOR NO1 7/18 F1 C1

<—————— RSFLP MACRO

INV (inverter)
MACRO

NETWORK
€———— DESCRIPTION
- USING INV AND

END =

RSFLP MACROS

N Use of RSFLP MACRO, one line for each output, all inputs on first line.

=29~

Note that the MACRO definitions must be the first entries in the NETWORK

data block, followed by the network description itself.

One MACRO can call another MACRO, provided that the called MACRO has

beean defined before the call.

9.3 Printout With Macros

All signals that are internal to macros are not printed out either in the
fanout listing or output report. Only thqse names that are given in the
actual network can be accessed. On the fanout listing the gate type for

a macro is its name,.

9.4 Building Macro Libraries

Users can save macro descriptions using the SAVE command and
retrieve them for use by using the GET command. In this way users
can rapidly build up a library of commonly used MACROS for use in

their networks,

10. OPTIONS AND FEATURES

10.1 Delay Codes

Delays are usually entered in in-line format as shown below
NOR XON 32/129 A BX

However, they can also be entered in delay code format

DELAY CODES

32/129 : ‘ Delay Code Data Block - precedes
X network data block.

»N

1057/3263
F
END
NETWORK
NOR XON [T]A BX
NAND A [2]JCc D

OR C|1)BX D

END

{Delay Codes

This can save typing if the same rise/fall delay is used many places in the
network. Also when the user wishes to change that delay, only the delay

code line need be changed.

10.1 Injected Signals

All the injected signal time spec ifications can be multiplied by a constant
by giving a RATE parameter.

INJECTED SIGNALS RATE = 500

CLK1 0 1,2,3,4,5,6,7,8,9

CLK2 1 3,9,11,15

END

-31-

In this case all the 'Signal times would be multiplied by the specified rate.

Multiple rate entries can be used.
INJECTED SIGNALS

RATE = 500
h

CLK10 1,2,3,4,5,6,7,8,9 times multiplied by 500

/

CLK21 3,9,11,15

Em———
RATE = 1000

'

CLK3 0 1,2,3,4 times multiplied by 1000
F

END

10.3 Output Report

Instead of printing a letter code when the output signal is in the one state,
the user can have the states printed in terms of 1's and 0's by specifying
OUTPUT REPORT PROPT = 1

The PROPT = 1 entry telling the program to switch to 1's and 0's.

Spaces can be left between vertical lines of printout by inserting additional
commas in the output report data block:

OUTPUT REPORT

XA, XB, XC,,,,XE, XF

will cause one space between signals XB and XC and three spaces between

XC and XE

The 6ption

OUTPUT REPORT MODE =1

will cause the output signals to be printed only when the first one in the
list changes state. In this case the time is printed in terms of the pulse

count of this signal,

The entries PROPT = 1 and MODE = 1 can bath be entered on the

OUTPUT REPORT line if so desired.

10.4 Remarks

Remarks can be inserted into the input data by following the line number
by the symbol* and then a space
100* TEST OF SHIFT REGISTER MEMORY

These lines will be ignored by the simulation itself.

10.5 Continuation Lines

Lines can be continued by starting continuation lines by the line number
followed by a + then a space: |

10 INJECTED SIGNALS

20 CLK 0 100,200,300, 800, 900,

30 +1000, 1010 \
~——— continuation line

40 END

-33-

11. SOME USEFUL MACROS

11.1 Inverter

Szmbol

Desc rigtion
MACRO INV

NAND OB 1/1 1A

END

Use
INV B 5/19 A

Actual Delay

Gating Structure

-34-

11.2 Clock
Symbol .Gating Structure
-1TRIG
TRIG =1 CLK CLOCK
CLOCK

TRIG

Description.

MACRO CLK
NAND octBck 1/1 66Eoer 1TRIE

END

Use

CLK CLOCK |15/37] TRIG

Space = T2 = 15 f

Mark = T1 = 37

11.3 Exclusive Or Gate

Symbol
A
B
GatingStructure
1A
7 B /
=2 s
2B
- - R-x
Aa 24 J

Al

Bl

Description

MACRO XOR

NAND O0O0OUT 1/1 Al.,.BlA
NAND A1l 0/0 1A B/
NAND B1 0/0 2B A/
NAND A/ 0/0 1A
NAND B/ 0/0 2B

END

Use

XOR C [32/171 A B

w
Actual Delays

11.4 Set-Reset Type Flip Flop

See pages 2 5and 27 of this manual.

11.5 Clocked D Type Flip Flop

Symbol Used in buffer registers, shift
registers and binary counter
applications. Has no ambiguous
states. .

CLOCK | F/

Gating Structure

1D

-37-

2CLOCK

Descrigtion

MACRO CDFLP

NAND OF 1/1 A o¥F/

NAND OF/ 1/1 B OF

NAND A 0/0 1D 2CLOCK

NAND B 0/0 C 2CLOCK

NAND C 0/0 1D

END

Use

CDFLP F

15/18

F/

D CLOCK

15/18

¥=——"Actual Delay Times for Flip Flop

11.6 JK Flip Flop (JKFLP)

Symbol
J E————— e ————— F
CLOCK
,
Gating Structure
b
S50 = |
13 \‘
0 L A / q\ OF
| ,
b 74
3CLOCK 2)
551
ox == S0
/

DescriEtion
MACRO JKFLP

NAND OF 1/1 A OF/

NAND OF/ 1/1 B QF

NAND A 1/1 1J 3CLOCK OF/
NAND B 1/1 2K 3CLOCK OF
END

OF/

3C

-39-

Use

JKFLP F 15/18 J K CLOCK

F/ 15/18

11.7 Master Slave Flip Flop

Sxmbol

F/

Gating Structure

OF/

Description

MACRO MSFLP
NAND OF 1/1 OF/ G
NAND QF/ 1/1 OF F
NAND G 0/0 E D

NAND F 0/0 E C

NAND D 1/31 C B
NAND C 1/1 D A
NAND B 0/0 1S 3C
NAND A 0/0 2R 3C
NAND E 0/0 3C
END

Use

MSFLP F 15/37 S R C

F/ 15/37

-41-

11.8 Four Bit Shift Regjster

Symbol
Bll B.'ai B|3 BI4
ENABLE
DATA P
B4/ = B4
CLOCK
B4/
Serial load, parallel or serial out,
Gating Structure

0Bl 0B2 0B3 OB4

MSLFP

C__|msrLp __IMstFpP | MSLFP

pra—

DA . 0B4/

1en 1V 1
2DATA ' , :
CLK /
3CLOCK ‘

Desc rigtion
MACRO FBSR

NAND DAT 0/0 1EN 2DATA

NAND DAT/ 0/0 DAT

NAND CLK/ 0/0 3CLOCK

MSFLP 0Bl 1/1 DAT DAT/ CLK/
B1/ 1/1

MSFLP 0B2 1/1 OBl Bl1l/ CLK/
B2/ 1/1

MSFLP 0B3 1/1 0B2 B2/ CLK/
B3/ 1/1

MSFLP OB4 1/1 O0B3 B3/ CLK/
0B4/ 1/1

END

Use

FBSR Bl |5/8| ENABLE DATA CLOCK
B: /8
B3 |5/8
B4 |5/8

B4/|5/8

Na

ctual delay times.

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42

