
Array processor 
responds in real time 

Peripheral machine has its own multitasking supervisor 
and performs up to 8 million floating-point operations per second 

by James Strelchun, Floating Point Systems Inc .. Beaverton, Ore. 

D Specialized number-crunching machines able to 
perform rapid high-precision arithmetic over a large 
dynamic range are becoming very popular for beefing up 
the throughput of computer systems used in scientific 
applications. Often called array processors because of 
their optimization for performing repetitive calculations 
on an array of data, these peripheral arithmetic proces­
sors are not to be confused with machines having an 
internal array architecture, such as vector processors 
(see "Array processors, vector processors"). 

Floating Point Systems Inc. has added a new member 
to its line of array processors that incorporates up­
to-date semiconductor technology and a priority inter-

HOST CENTRAL PROCESSING UNIT 

rupt scheme supported by the machine's own multitask­
ing operating 'system, thus adding new real-time operat­
ing capabilities. These design changes make the FPS-
100, which is intended for original-equipment manufac­
turers and systems integrators [Electronics, April 12, 
1979, p. 209], easier to attach to the host computer 
system. The use of today's low-power Schottky TTL in 
medium- and large-scale integrated circuits reduces the 
new peripheral processor's chip count, physical size, and 
power consumption. 

Applications such as flight simulation, radar signal 
analysis, X-ray tomography, image analysis, speech 
synthesis, and nuclear reactor monitoring require large 
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1. Parallel procedure•. A separate floating-point multiplier and adder allow the FPS-100 to perform arithmetic operations in parallel. Seven 

38-bit data paths distribute data among these arithmetic units and the parallel memories; a 16-bit integer processor handles control functions. 
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Array processors, vector processors 
Array processors are computers dedicated by their design 
to performing repetitive arithmetical calculations on large 
arrays of data with high precision, wide dynamic range, 
and high throughput. Usually most input/ output opera­
tions and file management chores are left to the host 
computer, in order to free the peripheral array processor 
to concentrate on its calculations. 

As they become more popular, however, a semantic 
distinction must be made between array processors and 
other specialized processors with similar sounding names. 
An array processor consists of a single computer that 
operates on one piece of data at a time. 

Vector processors are also specially designed for 

amounts of scientific computations such as fast Fourier 
transforms, convolutions, and vector and matrix arith­
metic. Many of these applications require the calcula­
tions to be performed rapidly enough to provide almost 
instantaneous response, for so-called real-time operation. 
Programmable array processors attached to standard 
commercial minicomputers can provide designers or 
OEM suppliers of such systems with an inexpensive alter­
native to a large, specialized scientific processor. 

After considerations of throughput, precision, and 
dynamic range, the interfacing flexibility of the array 
processor is of concern to the system designer. He may 
have chosen one of a variety of host computers based on 
other application requirements; of course the array 
processor must be compatible with that host. If system 
design is to be completed quickly, an array processor 
that is relatively easy to program is very desirable. This 
requires an easily understood high-level programming 
language, or at the very least assembly language; the 
availability of a library of standard mathematical soft­
ware routines is also a big help. And the systems integra­
tor must of course concern himself with questions of 
physical size, power consumption, reliability, serviceabil­
ity, and cost. Tradeoffs between cost and the desired 
features must be carefully weighed in the design of a 
marketable peripheral processor. 

The FPS-100 is easier to program and interface than 
the current models-the AP-l 20B, ·which is also 
intended to be attached to minicomputers by end users, 
and the AP- l 90L, designed for use with larger main­
frame computers. The new arithmetic unit is also rough­
ly half the size and uses half the power of the other 
models. It is as much as one third slower than the other 
models, however, even though it can perform some 8 
million floating-point operations per second-some 50 to 
200 times more than standard minicomputers. 

System hardware overview 

Based on the same synchronous, multiple-bus hard­
ware architecture as the older models, the FPS-100 is 
divided into two sections: the arithmetic hardware and 
the interprocessor interface. Its 38-bit floating point 
numeric format, compatible with the other models, is 
maintained throughout the hardware with the exception 
of the 16-bit integer control processor. This floating-
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performing arithmetic on arrays of data, but they operate 
on an entire row or column of the array-the so-called 
vector-at once. Among new computer architectures, 
there is something called a distributed array processor. It 
consists of multiple arithmetic and logic units, each of 
which is associated with its own block of memory and 
operates on a separate piece of data simultaneously with 
all the others [Electronics, April 27, 1978, p. 69) . 

The well-known vector processors-the llliac IV, Control 
Data's Star, or the Cray Research I-sell for several million 
dollars, much more than the minicomputer array proces­
sors available from several companies, including Floating 
Point Systems, Data General, and CSP. -A. Durniak 

point format provides extended precision by devoting 28 
bits to the mantissa and 10 bits to the exponent. (Binary 
coding rather than hexadecimal is used.) The result is 
precision of 8 decimal digits and a dynamic range of 
10:1:m. In contrast, 6 decimal digits and a range of 10:1:3s 
are provided by a typical 32-bit minicomputer format. 

Because overall system control is handled by the host 
computer, the FPS-lOO's front panel consists of func­
tional status indicators rather than operator controls. 
These indicators include power on, real-time mode, host 
interrupt enabled, direct memory transfer, array pro- . 
cessor interrupt enabled, and array processor run. 

The arithmetic processor section has a separate float­
ing-point multiplier and floating-point adder that permit 
addition and multiplication to proceed in parallel 
(Fig. 1). Pipelining operations within these two units 
allow each to produce a new result every machine cycle 
(see "Pumping a full pipeline," p. 123). Given the 
processor's 4-MHz clock rate, this means computational 
results are produced as often as twice every 250 ns for a 
throughput of 8 million floating-point operations per 
second. 

To keep up with these fast arithmetic units, parallel 
memories are used. One or 4 kilowords of memory are 
available for storing the 64-bit control program instruc­
tions; Qetween 8 and 64 kilowords of memory are avail­
able for data storage. Numerica,l constants are stored in 
a separate table memory that consists of 2.5 or 4.5 
kilowords of read-only memory or, optionally, 4 or 8 
kilowords of random-access memory. Two banks of 32 
38-bit floating-point registers are used as scratchpad 
memory for intermediate results. The FPS-lOO's syn­
chronous design allows all of its memory elements to be 
accessed in a single 250-nanosecond clock cycle. 

Seven data paths, each 38 bits wide, connect the 
various memories to the arithmetic units to avoid the 
delays which would result from all the data flow sharing 
a single bus. To simplify Fig. 1, the connections among 
these paths are labeled intra-element data distribution. 

Overhead functions, including instruction decoding, 
address calculations, and program indexing for overall 
system synchronization, are performed by the arithmetic 
and logic unit of the separate 16-bit integer controller. 
This control unit has its own set of 16 16-bit general­
purpose registers as well as a subroutine-return stack of 
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2. Host control. Two sets of registers provide the interface between the host computer and the arithmetic processor. One set performs 
functions analogous to the switches and lights on an operator's front panel and the second controls direct-memory-access data transfer. 

I6 I2-bit registers. This frees the 38-bit floating-point 
hardware to concentrate on the programmed scientific 
computation, increasing throughput substantially. 

To control the operation of so many parallel hardware 
elements, the 64-bit program instruction is divided into 
six groups of command fields . Just as a wide microcode 
instruction in a general-purpose computer will control 
many functions at once, so the program instruction of 
the FPS-I 00 simultaneously governs the operation of 
different parts of the hardware. 

The first group within the program instruction is I 4 
bits long and directs the operation of the I 6-bit integer 
controller. A 9-bit adder group controls the floating­
point adder while a 9-bit branch group directs condition­
al branching. The next I 9 bits in the program instruc­
tion, called the accumulator group, direct the flow of 
intermediate results between the floating-point arithme­
tic units and the registers . The floating-point multiplier 
is controlled by the next 5-bit group, and the final 8-bit 
group controls memory addressing. 

This 64-bit instruction word thereby allows up to 10 
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operations to proceed simultaneously - or some 40 
million operations per second. This assures that in actual 
operation the arithmetic processor achieves most of its 
potential throughput of 8 million floating-point opera­
tions per second. 

Communicating 

The interprocessor interface provides communica­
tions between this parallel floating-point arithmetic 
hardware, the host computer, and additional input/out­
put devices. Interfaces are available for operation of the 
arithmetic processor with a variety of hosts . Currently 
complete hardware and software support exists for oper­
ation with the Digital Equipment Corp. RSX-I IM or 
RT-I I operating systems or the Data General RDOS 
operating system. Additional interfaces are planned. 

The host computer and the arithmetic processor 
communicate through two sets of registers: one for the 
programmed 110 commands used for control and the 
other for data transfer (Fig. 2) . 

Although, as has been mentioned, the FPS- I 00 does 
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3. Dividing multiplication. Because the 

MPY-16 multiplier chip handles only 16-bit 
operands, four are needed to process the 

28-bit mantissa used in the arithmetic 
processor. Each mantissa is divided in two 

and ttie subproducts added, with the result 

not have an operator's front panel, the control registers 
can be thought of as a simulated front panel controlled 
by the host. The first register is analogous to the front 
panel switches in that it is used to enter control or 
parameter data into the arithmetic processor. The 
second register is like panel lights; it is used by the host 
to examine the contents of the arithmetic processor's 
internal registers . The host writes front panel commands 
such as start, stop, reset, and continue into the third or 
"function" register. 

Data transfer is accomplished using the direct-memo­
ry-access (OMA) technique on a cycle-stealing basis. A 
set of OMA registers accommodate data transfers in 
either direction between host and array processor, with 
either machine controlling the transfer. 

Separate registers are provided for host memory 
addresses and arithmetic-processor memory addresses. 
The word count register keeps track of the number of 
data words transferred, while the direction of data trans­
fer is governed by the control register. The actual data 
transfer is accomplished through the format register, a 
OMA register that converts data from the floating-point 
format of the host into the 38-bit floating-point format 
of the arithmetic processor on the fly. Control of this 
double-buffered 38-bit register is handled by 4 bits in the 
control register . Since there are many floating-point 
formats in use, the exact details of the format register 
are determined by the host chosen. 

Although most input/output operations are handled 
by the host, a direct interface between the FPS-100 and 
the outside world is sometimes required. This is handled 
by disk-drive subsystems available separately or the 110 

processors, which will be discussed later. 

Implementation tradeoffs 

The choice of a semiconductor family for implement­
ing the arithmetic processor is based on a four-way 
tradeoff between speed, power consumption, reliability, 
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going into a single 64-bit register. 

and package size requirements . To reduce the amount of 
power needed, low-power .Schottky TTL is used predomi­
nately in the design except for the MOS memory and 
logic areas where speed is an overriding concern . 
Although this allows a 250-ns machine cycle time, it is 
still as much as one third slower than the previous 
models, which use standard Schottky logic. 

For some functions, such as the 38-bit floating-point 
multiplier, use · of standard medium-scale integrated 
circuits results in a large chip count. This chip count 
combined with the substantial number of interconnec­
tions involved would increase packaging space. Instead, 
the MPY-16, a large-scale integrated circuit recently 
introduced by TRW, is used for the mantissa hardware of 
the ml}ltiplier, reducing package count from 1I2 to 24. 

The MPY-16 multiplier chip is capable of taking a 
16-bit multiplicand and a 16-bit multiplier and produc­
ing a 32-bit product. Since the mantissa of the FPS-100 
contains 28' bits, a single MPY-16 is not sufficient. Each 
mantissa must, therefore, be divided into a high-order 
and a low-order set of bits. Since the multiplication of 
these divided mantissas results in four subproducts 
(Fig. 3), four MPY-16s are required for the operations 
to proceed ih parallel. The four 32-bit subproducts are in 
turn each divided into the 16 high-order and I 6 low­
order bits and added as shown in the figure. The result is 
deposited in a 64-bit register; convergent rounding 
returns the product to a 28-bit format. 

The four MPY- l 6s are actually capable of handling a 
32-bit-by-32-bit multiplication. Since only 28-bit-by-28-
bit multiplication is required, the 4 high-order bits on the 
inputs to two of the anits are simply held at zero. 

The total hardware required to arrive at the 64-bit 
product is now the 2-by-2 array of MPY!J6s plus twenty 
adders for a total of 24 chips. Before the MPY-16, two 
7-by-7 arrays of 4-bit-by-2-bit multipliers plus fourteen 
4-bit adders were required, a total of 112 chips. 

Another example of use of state-of-the-art LSI occurs 
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4. Intelligent 1/0. Interfacing with fixed-protocol devices such as cathod!l-ray-tube terminals is done by the input/output processor (IOP) . 
One set of registers provides for address conversion and control of the peripheral device, while the second handles data transfer. 

in main data memory. As mentioned, the 38-bit main 
data memory may consist of 8, 16, 32, or 64 kilowords. It 
is desirable to fit the entire memory on one printed­
circuit card to minimize packaging space. Using 16-K 
memory chips it is possible to put the 32-kiloword main 
memory-some 152 kilobytes - onto a single 10-by-15-
inch board. · 

For the complete 64 kilowords, however, 128 
packages would be required-more than a little un­
wieldy for a single card of reasonable size. To supply 64 
kilowords without resorting to two boards, a dual-16-K 
memory package is used, supplying 32-K bits per pack­
age without increasing package size or pin count. 

Packaging 

The FPS-100 comes in a 19-inch-wide rack mountable 
chassis 10.5 inches higlJ and 24.4 inches deep. Fifteen 
circuit-board slots accommodate the entire machine, 
including the floating-point arithmetic unit, the integer 
controller, all memories, the real-time hardware, the 
host-computer interface, and one 110 processor. Addi­
tional 110 processors and programmable l/O processors, 
if needed, are housed in an 110 expansion chassis. The 
power supply housed in the main chassis supplies 5 and 
12 volts to power both chassis. 

Cooling is provided by a push-pull system using sepa­
rate input and output fans. In the event of a fan failure, 
either fan alone can provide adequate cooling air. As a 
further precaution, a thermal . sensor triggers power 
disconnection should there be an excessive heat rise. 

Serviceability is enhanced by a hinged power supply 
that swings out to reveal the printed backplane intercon­
necting the circuit boards. Printed boards can be pulled 
out of their zero-insertion-force connectors without 
removing the arithmetic processor from the rack. 

To facilitate the system designer's task, ways must be 
found to minimize programming time and complexity 
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while retaining the high throughput potential of the 
arithmetic processor. At the same time, software flexibil­
ity is desirable to allow the system designer to balance 
programming complexity against coding . efficiency and 
throughput for a given application. 

Programming methods 

The easiest programming method on the FPS-100 is 
the Fortran call approach. A program is written for the 
host consisting of a series of Fortran call statements 
from the host to the arithmetic processor. Each call then 
initiates a standard manufacturer-written subroutine 
already stored in the arithmetic processor. 

A Fortran cross compiler for the FPS-100 allows the 
system designer the convenience of generating his 
custom programs in that higher-level language. The 
compiler, which resides in the host, automatically 
converts the program into parallel instructions in the 
arithmetic processor's own language. This eliminates the 
need for parallel assembly-language programming of the 
subdivided 64-bit instruction word and provides a satis­
factory level of coding efficiency for most applications. 

Where the ultimate in throughput is required, careful 
parallel coding in assembly language allows maximum 
use of the machine's capabilities. Software pipelini~g 
can often be implemented more efficiently by a human 
programmer than by the automatic Fortran compiler. 

When preparing programs for an arithmetic processor, 
the differences between synchronous and asynchronous 
hardware architectures become apparent. As has been 
seen, array processors derive much of their high through­
put from parallel hardware elements. Asynchronous 
designs offer a potential speed advantage since each of 
the parallel elements can operate at its own maximum 
speed, unconstrained by a common system clock cycle. 
Offsetting this advantage, however, is the necessity to 
write coordinated parallel programs for each of the 
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Pumping a full pipeline 

In the operation of an oil pipeline, a second shipment is 
started down the line just after the last drops of the 
preceding shipment have entered the line; it would make 
no sense to wait until all of the first shipment had arrived 
at its destination, leaving the pipe empty. Similarly, hard­
ware pipelining is a widely used technique for speeding up 
a computer by performing operations concurrently. 

For example, a floating-point multiplication has three 
stages, each of which takes a machine cycle to complete. 
The product of the mantissas of the two operands starts in 

the first stage and is completed in the second stage, while 
the exponents of the two operands are added and any 
normalization and rounding of the product is performed 
during the third stage. 

By pipelining, or staggering and overlapping, the 
sequential operations of many multiplications, the speed 
of the multiplier hardware is improved. As seen in the 
figure, although there is a delay of three machine cycles 
before the completion of the first multiplication, once the 
pipelining begins, a new result emerges each cycle. 
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asynchronous sections. In addition, th~ number of states 
in an asynchronous machine is indeterminate, making it 
impossible to write an exact simulator for debugging 
programs outside the machine. 

Choosing appropriate parallel hardware elements and 
a clock cycle close to that of the fastest element, 
synchronous designs can provide throughputs equivalent 
to those of asynchronous designs in most applications. 
But the synchronous array processor is more easily 
programmed since there are no independent functions to 
coordinate. An exact simulator can also be written for a 
synchronous machine, since it has a fixed number of 
states. This makes it possible to develop software concur­
rently with machine hardware development and there­
fore to offer applications software such as math libraries 
at the same time as the hardware announcement. 

Software support offered with the FPS-100 for speed­
ing system design and reducing design costs includes 
special libraries of mathematical routines for signal and 
image processing, an interactive debugger, diagnostic 
routines, a linking loader, and programming aids for the 
110 processors. · 

Real-time capability 

While not all applications of arithmetic processors 
require real-time capability, the number of those that do 
make availability of such capability important. The real­
time operating system software and hardware optionally 
available for the FPS-100 set it apart from the other 
models in the line. 

Central to the machine's real-time capabilities is the 
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Super 100 real-time supervisor. In addition to supporting 
real-time applications, this resident operating system 
enables the FPS-100 to operate independently of the host 
computer for extended periods. Programs covering 
several computational tasks can be transferred from the 
host to the arithmetic processor at one time. When the 
programs are finished running, the results are stored in 
the arithmetic processor. Only when all tasks are 
completed does the arithmetic processor need to report 
back to the host. 

To support real-time operation, the Super 100 supervi­
sor works in concert with the real-time clock and the 
machine's interrupt structure. These features not only 
allow synchronizing the arithmetic processor with an 
external process, they also allow the machine· to act as a 
system control clock. 

The real-time clock is an up/down counter with a 
floating-point format. A 4-bit exponent allows selection 
of 1 of 16 counting rates ranging from 1 MHz to 60 Hz 
(I-microsecond to 16-millisecond resolution) . Counting 
takes place in a 16-bit mantissa. The 4-bit rate selection 
register may also be disabled and the clock synchronized 
to an external source. 

As a simple illustration of operation, a signal from an 
outside process could initiate an interval count in the 
clock. At the end of the interval the clock would inter­
rupt the arithmetic processor so that computation on 
data from the outside process could be performed. Or the 
real-time clock might be used· in asking for samples of 
data from the external process at regular intervals. 

The priority interrupt structure is divided into three 
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5. General-purpose. Because of its programmab1l1ty, the general-purpose input /output proces or (GPIOP) can control a variety of more 

complex external devices. Choice of source and destination within the array p1 ocessor and data fo1matting are under program controL 

internal priority levels and one external level. The first 
three interrupt levels are involved with internal control 
of the arithmetic processor. The fourth level of the 
interrupt is of more interest to the system designer 
because it allows the outside world to interrupt the 
processor. This level is subdivided into 15 priority 
sublevels. The highest priority in this sublevel interrupt 
structure is assigned to the real-time clock so that 
computations associated with a real-time process will 
always be performed first . 

Priority sublevels 2 and 3 are typically assigned to 
requests from the host computer to perform additional 
calculations that are not in real time. In this way the 
arithmetic processor can be operated in the multitasking 
mode. Sublevels 4 through 15 are ssigned to service 
requests from 110 devices atta hed directly to the ari th ­
metic processor. 

Interface between the FPS- I 00 and an external real­
time process is accomplished through one of two 110 
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processor types . These 110 processors are not restricted 
to real -time applications, and can also be used whenever 
there is a need for a direct interface between the arith­
metic processor and an external device. Functions of the 
110 processors include control of the external device and 
data transfe r. 

The first type of 110 processor, called the IOP (Fig. 4), 
is designed to interface fixed-protocol devices such as 
cathode-ray-tube terminals . The interfai.:ing procedure 
docs not vary for such devices and address control is 
limited to a fixed set of algorithms; the data-transfer 
format is a lso fixed_ For interfacing variable-protocol 
peripheral devices , the programmable general-purpose 
110 processor (GPIOP, Fig. 5) is used. A microprocessor 
included in the GPIOP permits programmable adqressing 
of the data source and data destination i11 the arithmetic 
processor and the external device. It a, lso provides 
programmable data formatting and control of more 
complex external devices . ' D 
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