Array processor
responds in real time

Peripheral machine has its

own multitasking supervisor

and performs up to 8 million floating-point operations per second

by James Strelchun, Fioating Point Systems inc., Beaverton, Ore.

[0 Specialized number-crunching machines able to
perform rapid high-precision arithmetic over a large
dynamic range are becoming very popular for beefing up
the throughput of computer systems used in scientific
applications. Often called array processors because of
their optimization for performing repetitive calculations
on an array of data, these peripheral arithmetic proces-
sors are not to be confused with machines having an
internal array architecture, such as vector processors
(see “Array processors, vector processors”).

Floating Point Systems Inc. has added a new member
to its line of array processors that incorporates up-
to-date semiconductor technology and a priority inter-

rupt scheme supported by the machine’s own multitask-
ing operating system, thus adding new real-time operat-
ing capabilities. These design changes make the FPS-
100, which is intended for original-equipment manufac-
turers and systems integrators [Electronics, April 12,
1979, p. 209], easier to attach to the host computer
system. The use of today’s low-power Schottky TTL in
medium- and large-scale integrated circuits reduces the
new peripheral processor’s chip count, physical size, and
power consumption.

Applications such as flight simulation, radar signal
analysis, X-ray tomography, image analysis, speech
synthesis, and nuclear reactor monitoring require large
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1. Parallel procedures. A separate floating-point multiplier and adder allow the FPS-100 to perform arithmetic operations in parallel. Seven
38-bit data paths distribute data among these arithmetic units and the parallel memories; a 16-bit integer processor handles control functions.
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Array processors are computers dedicated by their design
to performing repetitive arithmetical calculations on large
arrays of data with high precision, wide dynamic range,
and high throughput. Usually most input/output opera-
tions and file management chores are left to the host
computer, in order to free the peripheral array processor
to concentrate on its calculations.

As they become more popular, however, a semantic
distinction must be made between array processors and
other specialized processors with similar sounding names.
An array processor consists of a single computer that
operates on one piece of data at a time.

Vector processors are also specially designed for

Array processors, vector processors

performing arithmetic on arrays of data, but they operate
on an entire row or column of the array—the so-called
vector—at once. Among new computer architectures,
there is something called a distributed array processor. It
consists of multiple arithmetic and logic units, each of
which is associated with its own block of memory and
operates on a separate piece of data simultaneously with
all the others [ Electronics, April 27, 1978, p. 69].

The well-known vector processors—the llliac IV, Control
Data’s Star, or the Cray Research |—sell for several million
dollars, much more than the minicomputer array proces-
sors available from several companies, including Floating
Point Systems, Data General, and CSP. -A. Durniak

amounts of scientific computations such as fast Fourier
transforms, convolutions, and vector and matrix arith-
metic. Many of these applications require the calcula-
tions to be performed rapidly enough to provide almost
instantaneous response, for so-called real-time operation.
Programmable array processors attached to standard
commercial minicomputers can provide designers or
OEM suppliers of such systems with an inexpensive alter-
native to a large, specialized scientific processor.

After considerations of throughput, precision, and
dynamic range, the interfacing flexibility of the array
processor is of concern to the system designer. He may
have chosen one of a variety of host computers based on
other application requirements; of course the array
processor must be compatible with that host. If system
design is to be completed quickly, an array processor
that is relatively easy to program is very desirable. This
requires an easily understood high-level programming
language, or at the very least assembly language; the
availability of a library of standard mathematical soft-
ware routines is also a big help. And the systems integra-
tor must of course concern himself with questions of
physical size, power consumption, reliability, serviceabil-
ity, and cost. Tradeoffs between cost and the desired
features must be carefully weighed in the design of a
marketable peripheral processor.

The FPS-100 is easier to program and interface than
the current models—the AP-120B, which is also
intended to be attached to minicomputers by end users,
and the AP-190L, designed for use with larger main-
frame computers. The new arithmetic unit is also rough-
ly half the size and uses half the power of the other
models. It is as much as one third slower than the other
models, however, even though it can perform some 8
million floating-point operations per second —some 50 to
200 times more than standard minicomputers.

System hardware overview

Based on the same synchronous, multiple-bus hard-
ware architecture as the older models, the FPS-100 is
divided into two sections: the arithmetic hardware and
the interprocessor interface. Its 38-bit floating point
numeric format, compatible with the other models, is
maintained throughout the hardware with the exception
of the 16-bit integer control processor. This floating-
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point format provides extended precision by devoting 28
bits to the mantissa and 10 bits to the exponent. (Binary
coding rather than hexadecimal is used.) The result is
precision of 8 decimal digits and a dynamic range of
10%!33, In contrast, 6 decimal digits and a range of 10+
are provided by a typical 32-bit minicomputer format.

Because overall system control is handled by the host
computer, the FPS-100’s front panel consists of func-
tional status indicators rather than operator controls.
These indicators include power on, real-time mode, host
interrupt enabled, direct memory transfer, array pro- .
cessor interrupt enabled, and array processor run.

The arithmetic processor section has a separate float-
ing-point multiplier and floating-point adder that permit
addition and multiplication to proceed in parallel
(Fig. 1). Pipelining operations within these two units
allow each to produce a new result every machine cycle
(see “Pumping a full pipeline,” p.123). Given the
processor’s 4-MHz clock rate, this means computational
results are produced as often as twice every 250 ns for a
throughput of 8 million floating-point operations per
second.

To keep up with these fast arithmetic units, parallel
memories are used. One or 4 kilowords of memory are
available for storing the 64-bit control program instruc-
tions; between 8 and 64 kilowords of memory are avail-
able for data storage. Numerical constants are stored in
a separate table memory that consists of 2.5 or 4.5
kilowords of read-only memory or, optionally, 4 or 8
kilowords of random-access memory. Two banks of 32
38-bit floating-point registers are used as scratchpad
memory for intermediate results. The FPS-100’s syn-
chronous design allows all of its memory elements to be
accessed in a single 250-nanosecond clock cycle.

Seven data paths, each 38 bits wide, connect the
various memories to the arithmetic units to avoid the
delays which would result from all the data flow sharing
a single bus. To simplify Fig. 1, the connections among
these paths are labeled intra-element data distribution.

Overhead functions, including instruction decoding,
address calculations, and program indexing for overall
system synchronization, are performed by the arithmetic
and logic unit of the separate 16-bit integer controller.
This control unit has its own set of 16 16-bit general-
purpose registers as well as a subroutine-return stack of
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2. Host control. Two sets of registers provide the interface between the host computer and the arithmetic processor. One set performs
functions analogous to the switches and lights on an operator’s front panel and the second controls direct-memory-access data transfer.

16 12-bit registers. This frees the 38-bit floating-point
hardware to concentrate on the programmed scientific
computation, increasing throughput substantially.

To control the operation of so many parallel hardware
elements, the 64-bit program instruction is divided into
six groups of command fields. Just as a wide microcode
instruction in a general-purpose computer will control
many functions at once, so the program instruction of
the FPS-100 simultaneously governs the operation of
different parts of the hardware.

The first group within the program instruction is 14
bits long and directs the operation of the 16-bit integer
controller. A 9-bit adder group controls the floating-
point adder while a 9-bit branch group directs condition-
al branching. The next 19 bits in the program instruc-
tion, called the accumulator group, direct the flow of
intermediate results between the floating-point arithme-
tic units and the registers. The floating-point multiplier
is controlled by the next 5-bit group, and the final 8-bit
group controls memory addressing.

This 64-bit instruction word thereby allows up to 10
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operations to proceed simultaneously—or some 40
million operations per second. This assures that in actual
operation the arithmetic processor achieves most of its
potential throughput of 8 million floating-point opera-
tions per second.

Communicating

The interprocessor interface provides communica-
tions between this parallel floating-point arithmetic
hardware, the host computer, and additional input/out-
put devices. Interfaces are available for operation of the
arithmetic processor with a variety of hosts. Currently
complete hardware and software support exists for oper-
ation with the Digital Equipment Corp. RSX-11M or
RT-11 operating systems or the Data General RDOS
operating system. Additional interfaces are planned.

The host computer and the arithmetic processor
communicate through two sets of registers: one for the
programmed 170 commands used for control and the
other for data transfer (Fig. 2).

Although, as has been mentioned, the FPS-100 does
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3. Dividing multiplication. Because the
MPY-16 multiplier chip handles only 16-bit

operands, four are needed to process the
28-bit mantissa used in the arithmetic
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processor. Each mantissa is divided in two
and the subproducts added, with the result

not have an operator’s front panel, the control registers
can be thought of as a simulated front panel controlled
by the host. The first register is analogous to the front
panel switches in that it is used to enter control or
parameter data into the arithmetic processor. The
second register is like panel lights; it is used by the host
to examine the contents of the arithmetic processor’s
internal registers. The host writes front panel commands
such as start, stop, reset, and continue into the third or
“function” register.

Data transfer is accomplished using the direct-memo-
ry-access (DMA) technique on a cycle-stealing basis. A
set of DMA registers accommodate data transfers in
either direction between host and array processor, with
either machine controlling the transfer.

Separate registers are provided for host memory
addresses and arithmetic-processor memory addresses.
The word count register keeps track of the number of
data words transferred, while the direction of data trans-
fer is governed by the control register. The actual data
transfer is accomplished through the format register, a
DMA register that converts data from the floating-point
format of the host into the 38-bit floating-point format
of the arithmetic processor on the fly. Control of this
double-buffered 38-bit register is handled by 4 bits in the
control register. Since there are many floating-point
formats in use, the exact details of the format register
are determined by the host chosen.

Although most input/output operations are handled
by the host, a direct interface between the FPS-100 and
the outside world is sometimes required. This is handled
by disk-drive subsystems available separately or the 170
processors, which will be discussed later.

Implementation tradeoffs

The choice of a semiconductor family for implement-
ing the arithmetic processor is based on a four-way
tradeoff between speed, power consumption, reliability,
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going into a single 64-bit register.

and package size requirements. To reduce the amount of
power needed, low-power Schottky TTL is used predomi-
nately in the design except for the MOS memory and
logic areas where speed is an overriding concern.
Although this allows a 250-ns machine cycle time, it is
still as much as one third slower than the previous
models, which use standard Schottky logic.

For some functions, such as the 38-bit floating-point
multiplier, use of standard medium-scale integrated
circuits results in a large chip count. This chip count
combined with the substantial number of interconnec-
tions involved would increase packaging space. Instead,
the MPY-16, a large-scale integrated circuit recently
introduced by TRW, is used for the mantissa hardware of
the muyltiplier, reducing package count from 112 to 24.

The MPY-16 multiplier chip is capable of taking a
16-bit multiplicand and a 16-bit multiplier and produc-
ing a 32-bit product. Since the mantissa of the FPS-100
contains 28 bits, a single MPY-16 is not sufficient. Each
mantissa must, therefore, be divided into a high-order
and a low-order set of bits. Since the multiplication of
these divided mantissas results in four subproducts
(Fig. 3), four MPY-16s are required for the operations
to proceed in parallel. The four 32-bit subproducts are in
turn each divided into the 16 high-order and 16 low-
order bits and added as shown in the figure. The result is
deposited in a 64-bit register; convergent rounding
returns the product to a 28-bit format.

The four MPY-16s are actually capable of handling a
32-bit-by-32-bit multiplication. Since only 28-bit-by-28-
bit multiplication is required, the 4 high-order bits on the
inputs to two of the units are simply held at zero.

The total hardware required to arrive at the 64-bit
product is now the 2-by-2 array of MPY+16s plus twenty
adders for a total of 24 chips. Before the MPY-16, two
7-by-7 arrays of 4-bit-by-2-bit multipliers plus fourteen
4-bit adders were required, a total of 112 chips.

Another example of use of state-of-the-art LSI occurs
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4. Intelligent 1/0. Interfacing with fixed-protocol devices such as cathode-ray-tube terminals is done by the input/output processor (IOP).
One set of registers provides for address conversion and control of the peripheral device, while the second handles data transfer.

in main data memory. As mentioned, the 38-bit main
data memory may consist of 8, 16, 32, or 64 kilowords. It
is desirable to fit the entire memory on one printed-
circuit card to minimize packaging space. Using 16-K
memory chips it is possible to put the 32-kiloword main
memory—some 152 kilobytes—onto a single 10-by-15-
inch board. :

For the complete 64 kilowords, however, 128
packages would be required—more than a little un-
wieldy for a single card of reasonable size. To supply 64
kilowords without resorting to two boards, a dual-16-K
memory package is used, supplying 32-K bits per pack-
age without increasing package size or pin count.

Packaging

The FPS-100 comes in a 19-inch-wide rack mountable
chassis 10.5 inches high and 24.4 inches deep. Fifteen
circuit-board slots accommodate the entire machine,
including the floating-point arithmetic unit, the integer
controller, all memories, the real-time hardware, the
host-computer interface, and one 170 processor. Addi-
tional 1/0 processors and programmable 1/0 processors,
if needed, are housed in an 1/0 expansion chassis. The
power supply housed in the main chassis supplies 5 and
12 volts to power both chassis.

Cooling is provided by a push-pull system using sepa-
rate input and output fans. In the event of a fan failure,
either fan alone can provide adequate cooling air. As a
further precaution, a thermal sensor triggers power
disconnection should there be an excessive heat rise.

Serviceability is enhanced by a hinged power supply
that swings out to reveal the printed backplane intercon-
necting the circuit boards. Printed boards can be pulled
out of their zero-insertion-force connectors without
removing the arithmetic processor from the rack.

To facilitate the system designer’s task, ways must be
found to minimize programming time and complexity
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while retaining the high throughput potential of the
arithmetic processor. At the same time, software flexibil-
ity is desirable to allow the system designer to balance
programming complexity against coding efficiency and
throughput for a given application.

Programming methods

The easiest programming method on the FPS-100 is
the Fortran call approach. A program is written for the
host consisting of a series of Fortran call statements
from the host to the arithmetic processor. Each call then
initiates a standard manufacturer-written subroutine
already stored in the arithmetic processor.

A Fortran cross compiler for the FPS-100 allows the
system designer the convenience of generating his
custom programs in that higher-level language. The
compiler, which resides in the host, automatically
converts the program into parallel instructions in the
arithmetic processor’s own language. This eliminates the
need for parallel assembly-language programming of the
subdivided 64-bit instruction word and provides a satis-
factory level of coding efficiency for most applications.

Where the ultimate in throughput is required, careful
parallel coding in assembly language allows maximum
use of the machine’s capabilities. Software pipelining
can often be implemented more efficiently by a human
programmer than by the automatic Fortran compiler.

When preparing programs for an arithmetic processor,
the differences between synchronous and asynchronous
hardware architectures become apparent. As has been
seen, array processors derive much of their high through-
put from parallel hardware elements. Asynchronous
designs offer a potential speed advantage since each of
the parallel elements can operate at its own maximum
speed, unconstrained by a common system clock cycle.
Offsetting this advantage, however, is the necessity to
write coordinated parallel programs for each of the
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In the operation of an oil pipeline, a second shipment is
started down the line just after the last drops of the
preceding shipment have entered the line; it would make
no sense to wait until all of the first shipment had arrived
at its destination, leaving the pipe empty. Similarly, hard-
ware pipelining is a widely used technique for speeding up
a computer by performing operations concurrently.

For example, a floating-point multiplication has three
stages, each of which takes a machine cycle to complete.
The product of the mantissas of the two operands starts in

Pumping a full pipeline

the first stage and is completed in the second stage, while
the exponents of the two operands are added and any
normalization and rounding of the product is performed
during the third stage.

By pipelining, or staggering and overlapping, the
sequential operations of many multiplications, the speed
of the multiplier hardware is improved. As seen in the
figure, although there is a delay of three machine cycles
before the completion of the first multiplication, once the
pipelining begins, a new result emerges each cycle.
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asynchronous sections. In addition, the number of states
in an asynchronous machine is indeterminate, making it
impossible to write an exact simulator for debugging
programs outside the machine.

Choosing appropriate parallel hardware elements and
a clock cycle close to that of the fastest element,
synchronous designs can provide throughputs equivalent
to those of asynchronous designs in most applications.
But the synchronous array processor is more easily
programmed since there are no independent functions to
coordinate. An exact simulator can also be written for a
synchronous machine, since it has a fixed number of
states. This makes it possible to develop software concur-
rently with machine hardware development and there-
fore to offer applications software such as math libraries
at the same time as the hardware announcement.

Software support offered with the FPS-100 for speed-
ing system design and reducing design costs includes
special libraries of mathematical routines for signal and
image processing, an interactive debugger, diagnostic
routines, a linking loader, and programming aids for the
1/0 processors. ’

Real-time capability

While not all applications of arithmetic processors
require real-time capability, the number of those that do
make availability of such capability important. The real-
time operating system software and hardware optionally
available for the FPS-100 set it apart from the other
models in the line.

Central to the machine’s real-time capabilities is the
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Super 100 real-time supervisor. In addition to supporting
real-time applications, this resident operating system
enables the FPS-100 to operate independently of the host
computer for extended periods. Programs covering
several computational tasks can be transferred from the
host to the arithmetic processor at one time. When the
programs are finished running, the results are stored in
the arithmetic processor. Only when all tasks are
completed does the arithmetic processor need to report
back to the host.

To support real-time operation, the Super 100 supervi-
sor works in concert with the real-time clock and the
machine’s interrupt structure. These features not only
allow synchronizing the arithmetic processor with an
external process, they also allow the machine to act as a
system control clock.

The real-time clock is an up/down counter with a
floating-point format. A 4-bit exponent allows selection
of 1 of 16 counting rates ranging from 1 MHz to 60 Hz
(1-microsecond to 16-millisecond resolution). Counting
takes place in a 16-bit mantissa. The 4-bit rate selection
register may also be disabled and the clock synchronized
to an external source.

As a simple illustration of operation, a signal from an
outside process could initiate an interval count in the
clock. At the end of the interval the clock would inter-
rupt the arithmetic processor so that computation on
data from the outside process could be performed. Or the
real-time clock might be used in asking for samples of
data from the external process at regular intervals.

The priority interrupt structure is divided into three
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5. General-purpose. Because of its programmability, the general-purpose input/output processor (GPIOP) can control a variety of more
complex external devices. Choice of source and destination within the array processor and data formatting are under program control.

internal priority levels and one external level. The first
three interrupt levels are involved with internal control
of the arithmetic processor. The fourth level of the
interrupt is of more interest to the system designer
because it allows the outside world to interrupt the
processor. This level is subdivided into 15 priority
sublevels. The highest priority in this sublevel interrupt
structure is assigned to the real-time clock so that
computations associated with a real-time process will
always be performed first.

Priority sublevels 2 and 3 are typically assigned to
requests from the host computer to perform additional
calculations that are not in real time. In this way the
arithmetic processor can be operated in the multitasking
mode. Sublevels 4 through 15 are assigned to service
requests from 170 devices attached directly to the arith-
metic processor.

Interface between the FPS-100 and an external real-
time process is accomplished through one of two 1/0
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processor types. These 170 processors are not restricted
to real-time applications, and can also be used whenever
there is a need for a direct interface between the arith-
metic processor and an external device. Functions of the
170 processors include control of the external device and
data transfer.

The first type of 170 processor, called the 10P (Fig. 4),
is designed to interface fixed-protocol devices such as
cathode-ray-tube terminals. The interfacing procedure
does not vary for such devices and address control is
limited to a fixed set of algorithms; the data-transfer
format is also fixed. For interfacing variable-protocol
peripheral devices, the programmable general-purpose
170 processor (GPIOP, Fig. 5) is used. A microprocessor
included in the GPIOP permits programmable addressing
of the data source and data destination in the arithmetjc
processor and the external device. It also provides
programmable data formatting and control of more
complex external devices. v
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