Friden 130 Electronic Calculator

Friden, Inc. Educational Center 31 Prince Street Rochester, New York 14607

operating instructions For

Friden ${ }^{*} 30$ Electronic Calculator

FOREWORD

Operating the Friden Electronic Calculator 130 is like stepping into a new world of computing power for the desk calculator user. Through the magic of electronics, the features of storage capacity, flexibility, speed, silence, and decimal control are advanced to a level never before attained.

Designed to meet the styling requirements of modern business, the Friden 130 is a pleasant complement to any office decor. The complete operating silence of this machine eliminates disturbance of office personnel and promotes efficiency.

This machine is a solid-state device. These non-moving components are the secret to high-speed calculation. Input amounts and results of operation are visible instantly on the face of a cathode ray tube after the entry or function key is operated. Intermediate results are automatically retained in the upper registers. Also, an amount or result may be stored for further use in a memory unit.

A feather-touch eleven-key keyboard provides the means for numerical input. Function keys placed adjacent to this section are arranged for operator convenience and ease of operation.

Accuracy in decimal point control is insured by a fixed point system, around which all input amounts and results are automatically aligned. No other programming is necessary. The decimal point location can be manually selected for five different operating situations according to the requirements of the work at hand.

The 130 Electronic Calculator is able to handle a wide range of business and scientific applications in a logical and direct manner. The high degree of flexibility permitted in approaching problems makes this machine highly adaptable to arithmetic calculations of great variety.

TABLE OF CONTENTS

BASIC OPERATIONS
Register Display 1
Keyboard 2
Operating Controls 3
Addition/Subtraction 5
Multiplication
Without Decimals 6
With Decimals 6
Accumulation of ProductsPositive6
Negative 6
Chain Multiplication 6
Division
Without Decimals 7
With Decimals 7
Addition of Quotients 7
Addition/Subtraction of Quotients 7
Squaring a Number
Without Decimals 8
Accumulative Squaring 8
Negative Squaring 8
Calculating Algebraically 9
Sequential Operations 10
The Memory Unit 11
Raising to a Power 12
Accumulation of Products/Multipliers 13
Problems Involving Two Constants 14
BUSINESS APPLICATIONS
Invoicing 15
Individual/Accumulated Percentages 16
Percentage Problems 17
Simple and Compound Interest 18
Interest Rate on Installment Loans 19
Equal Monthly Payments 20
Installment Payments on Mortgages 21
MISCELLANEOUS APPLICATIONS
Probability 22
Actuarial Problem 23
Probability-Life Insurance 24
Geometric Series 25
Standard Deviation 26
ENGINEERING APPLICATIONS
Volume of a Sphere 27
Conversion of Denominate Numbers 28
Area of a Sector 29
Interpolation 30
Evaluating an Integral 31
Evaluating a Polynomial
Method \# 1 32
Method \# 2 33
Determinants 34
Cosine Law 36
Square Root 38
Cube Root 40
Overcapacity Problems 42
Double Precision Multiplication 43
Index 45
CHARTS AND TABLES
1941 Commissioners Standard
Ordinary Mortality Table 24
Tangents and Cotangents 30
Cube Root Table 40

Friden 130 Electronic Calculator

REGISTER DISPLAY

The Friden 130 Electronic Calculator employs a new concept in computation. Commonly referred to as the "stacking" principle, it permits automatic storage of intermediate answers for later usage, according to the requirements of the formula being solved. Four 13 -digit registers are arranged in a stack as follows:

1. WORKING REGISTER (\#1). The bottom register is known as the Working Register. All entries and answers appear in it. All numbers enter the Display through this register and are displaced upwards as subsequent entries are made.
2. REGISTER \# 2. One number of an arithmetic
operation appears in this register, the other appears in the Working Register. When, however, the two terms appearing in these registers are combined arithmetically (added, subtracted, multiplied, or divided) the answer appears in the Working Register. Any values which were in the 3 rd and 4th registers automatically shift down one position.
3. REGISTERS \#3 and \#4. These registers are used for storage of intermediate answers. This "stack" of four registers, then, fills and empties from the bottom on a "first in, last out" basis. If a fifth entry is made with all registers full, the contents of Register \#4 "overflow" off the top and are lost.

KEYBOARD AND OPERATING CONTROLS

1. Over-Flow Lock
2. Clear Entry Key
3. Change Sign Key
4. Enter Key
5. Repeat Key
6. Division Key
7. Multiplication Key
8. Keyboard
9. Decimal Point Key
10. Plus Key
11. Recall Key
12. Minus Key
13. Store Key
14. Decimal Point Selector
15. Clear All

OPERATING CONTROLS

1. OVER-FLOW LOCK KEY-If a number, entered in Working Register \# 1, is beyond the left of decimal capacity of the selected decimal point program, the OVER-FLOW LOCK signal lights up. For example, if the Decimal Point Selector is set on " 7 " it would mean that six digits only, can be indexed in the keyboard to the left of the decimal point. (13 digits capacity minus 7 decimal places equals 6 digits to the left of decimal.) If then $1,234,567.89$ is indexed on the keyboard, the OVER-FLOW LOCK signal lights up upon depression of the ENTER key.
There is one other situation in which the OVERFLOW LOCK signal lights up. That is, where an answer exceeds the number of digits to the left of the selected decimal point program. Once the over-flow signal light is on, all keys are locked to prevent further usage. Touching either the CLEAR ENTRY or CLEAR ALL keys will turn off the signal, unlock the keyboard, and simultaneously clear the affected registers. The keyboard may also be unlocked merely by touching the OVER-FLOW Lock key itself.
A Decimal Interlock is provided to prevent overloading digits to the right of the decimal point. Assuming a decimal selection of 2, then only two digits can be indexed after the decimal point key is depressed. The third and subsequent digits are automatically disregarded.
2. CLEAR ENTRY-A touch of the CLEAR ENTRY key will clear Working Register \# 1. If a mistake is made in indexing a number, touch the CLEAR ENTRY key and proceed with the problem.
3. CHANGE SIGN Key—This key will permit calculations with algebraic sign changes. As an example take the problem $23.45-(-.895)$. Use of the CHANGE SIGN key permits entry of .895
into the Working Register with the negative sign attached. The resultant answer will appear with the correct sign. See page 9 for other examples of this feature.
4. ENTER KEY-When a number is indexed in the keyboard that number appears immediately in Working Register \#1-but without the decimal point. A touch of the ENTER key, then, decimally aligns it. All function keys cause decimal alignment also. Therefore, when using such keys as CHANGE SIGN, REPEAT, and RECALL, it is not necessary to touch the ENTER key first.
5. REPEAT Key - The REPEAT key duplicates the contents of Register \# 1 in Register \# 2. The most common applications utilizing this feature are those involving squaring. But the REPEAT key may be used equally well for problems involving discounts, commissions, chain discounts and compound interest, to name a few. Squaring is a three step operation: (1) Index the number (2) Touch the REPEAT key, (3) Touch the Multiplication (\times) key.
6. DIVISION Key-A touch of the Divide key will cause the contents of Register \#2 to be divided by the contents of Register \#1. The answer will appear, decimally aligned in Register \#1. To divide, the procedure is as follows: (1) Index the dividend (2) Touch ENTER key (3) Index the divisor (4) Touch the Divide (\div) key.
If the Divide key is depressed with nothing in the Working Register, the Display goes blank and the machine will run indefinitely in the process of division. Touch the CLEAR ALL key to restore the Display.
7. MULTIPLICATION Key-A touch of the MULTIPLICATION key will cause the contents of Register \# 1 to be multiplied by the contents of

Register \#2. The product will appear, decimally aligned, in Register \#1. To multiply, the procedure is as follows: (1) Index the multiplicand (2) Touch ENTER key (3) Index the multiplier (4) Touch the Multiplication $(\times$) key.
8. KEYBOARD-Ali numbers are indexed on the " 11 -key" keyboard. The " 11 th" key is a decimal point key. As a number is indexed on the keyboard it appears in Register \#1, digit by digit from the right.
9. DECIMAL POINT Key—The Decimal Point key must be depressed whenever a number with a decimal point in it is indexed in the keyboard. If the Decimal Point key is not used, the machine accepts the entry as a whole number. So 456.78 is indexed as 4-5-6-decimal point-7-8. And 678 is indexed as 6-7-8; the Decimal Point key need not be depressed in this case.
10. PLUS Key-A touch of the PLUS key will cause the contents of Register \#1 to be added to the contents of Register \#2. The answer will appear, decimally correct, in Register \#1. To add, the procedure is as follows: (1) Index first number (2) Touch ENTER key (3) Index next number (4) Touch PLUS (+) key. Repeat steps \# 3 and 4 for subsequent numbers.
11. RECALL Key-The RECALL Key recalls any number stored in the Memory Unit. The
number stored may be repeatedly recalled to Register \# 1 for subsequent operations.
12. MINUS Key - A touch of the MINUS key will cause the contents in Register \#1 to be subtracted from the contents of Register \#2. The answer will appear, decimally correct in Register \#1. To subtract, the procedure is as follows: (1) Index the first number (2) Touch ENTER key (3) Index the second number (4) Touch the MINUS (-) key.
13. STORE Key-A fifth register, not displayed, is provided for storage of a constant. A touch of the STORE key will transfer a number from Register \#1 to the Memory Unit. If a number is already in storage, it replaces the old number with the new one. The stored number may be recalled as often as desired.
14. DECIMAL POINT SELECTOR-Automatic decimal control is maintained in all registers in keeping with the number of decimal places indicated on the decimal programs control wheel. There are five different decimal programs available. These are $0,2,5,7$, and 13 . To eliminate needless shifting of the Decimal Point Selector, most problems in this manual are worked over a 5 place decimal program.
15. CLEAR ALL Key-A touch of the CLEAR ALL key clears all registers-including the Memory Unit.

ADDITION/SUBTRACTION

GENERAL INSTRUCTIONS

1. An ON/OFF switch is located under the lower right corner of the calculator. Push the lever back, in order to turn the machine on. The Display will appear in a few seconds.
2. Numbers are indexed in the 11 -key keyboard just as they are written.
3. If an error is made in indexing a number, touch CLEAR ENTRY and begin over again.
4. The DECIMAL POINT key is used in all cases-except for whole numbers. For example, 28.13 is entered as 2-8-decimal-1-3; the number 68 is entered as $6-8$; the decimal point is not required.
5. Since all entries are positive, a CHANGE SIGN key is provided to make these entries negative, when necessary. See example \#5 below.
6. Clearing is unnecessary between problems.

PROBLEMS:

1. Addition without Decimals
$68+93=161$
2. Addition with Decimals .
$28.13+17.24=45.37$
3. Subtraction with True Credit Balance
$97.24-118.43=-21.19$
4. Addition and Subtraction.
$15.243+17.819-23.147=9.915$
5. Subtracting Algebraically
$22.43-(-32.46)=54.89$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
1. $68+93=161.00000$	$\begin{aligned} & 68 \\ & 93 \end{aligned}$	Note: Move Decimal Point Selector to position ENTER
$2.28 .13+17.24=45.37000$	$\begin{aligned} & 28.13 \\ & 17.24 \end{aligned}$	$\frac{\text { ENTER }}{\square}$
3. $97.24-118.43=21.19000-$	$\begin{array}{r} 97.24 \\ 118.43 \end{array}$	$\begin{aligned} & \text { ENTER } \\ & - \end{aligned}$
$\begin{gathered} 4.15 .243+17.819=33.06200 \\ 33.062-23.147=9.91500 \end{gathered}$	$\begin{aligned} & 15 \cdot 243 \\ & 17 \cdot 819 \\ & 23.147 \end{aligned}$	ENTER \square \square \square
5. $22.43-(-32.46)=54.89000$	$\begin{aligned} & 22 \bullet 43 \\ & 32 \bullet 46 \end{aligned}$	$\begin{aligned} & \text { ENTER } \\ & \hline \text { CHANGE SIGN } \end{aligned}$

MULTIPLICATION

PROBLEMS:

1. Multiplication without Decimals
$12 \times 24=288$
2. Multiplication with Decimals
$24.02 \times .9401=22.5812$
3. Accumulation of Products

Positive. $(39.445 \times 15.2)+(41 \times .6)=624.164$
Negative
$(3 \times .14)-(.007 \times 21)=.273$
4. Chain Multiplication
$23.8 \times 16.92 \times .708=285.10876$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
1. $12 \times 24=288.00000$	$\begin{aligned} & 12 \\ & 24 \end{aligned}$	Note: Move Decimal Point Selector to position
$2.24 .02 \times .9401=22.58120$	$\begin{array}{r} 24.02 \\ \quad .9401 \end{array}$	$\begin{aligned} & \text { ENTER } \\ & \hline X \end{aligned}$
3. $39.445 \times 15.2=599.56400$ $599.564+(41 \times .6)=624.16400$	$\begin{aligned} & 39 \bullet 445 \\ & 15 \bullet 2 \\ & 41 \\ & \bullet .6 \end{aligned}$	ENTER X ENTER $X \square$
$\begin{aligned} & 3 \times .14=.42000 \\ & .42-(.007 \times 21)=.27300 \end{aligned}$	$\begin{aligned} & 3 \\ & \bullet .14 \\ & .007 \\ & 21 \end{aligned}$	
$\begin{aligned} & 4.23 .8 \times 16.92=402.69600 \\ & \qquad 402.696 \times .708=285.10876 \end{aligned}$	$\begin{aligned} & 23.8 \\ & 16.92 \\ & .708 \end{aligned}$	$\begin{aligned} & \hline \text { ENTER } \\ & \hline x \\ & \hline x \end{aligned}$

DIVISION

PROBLEMS:

1. Division without Decimals
$145 \div 12=12.08333$
2. Division with Decimals
$4,962.184 \div 13.2=375.92303$
3. Addition of Quotients
$\frac{624}{13}+\frac{78.2}{4.7}=64.63829$
4. Addition/Subtraction of Quotients .

$$
\frac{45}{3}+\frac{34.26}{12.1}-\frac{17.76}{3.125}=12.14820
$$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
1. $145 \div 12=12.08333$	$\begin{array}{r} 145 \\ 12 \end{array}$	Note: Move Decimal Point Selector to position ENTER \square
2. $4,962.184 \div 13.2=375.92303$	$\begin{gathered} 4962 \bullet 184 \\ 13 \bullet 2 \end{gathered}$	$\begin{aligned} & \text { ENTER } \\ & \vdots \div \end{aligned}$
$\text { 3. } \begin{aligned} & \frac{624}{13}=48.00000 \\ & +\frac{78.2}{4.7}=64.63829 \end{aligned}$	$\begin{aligned} & 624 \\ & 13 \\ & 78 \bullet 2 \\ & 4 \bullet 7 \end{aligned}$	
	$\begin{aligned} & 45 \\ & 3 \\ & 34 \bullet 26 \\ & 12 \cdot 1 \\ & 17 \cdot 76 \\ & 3 \cdot 125 \end{aligned}$	ENTER \vdots \vdots ENTER $\vdots \div \square$ ENTER $\square \square \square$

SQUARING A NUMBER

PROBLEMS:

1. Accumulative Squaring without
Decimals
$25^{2}+12^{2}=769$
2. Accumulative Squaring with Decimals.. $78.23^{2}+26.35^{2}=6,814.25540$
3. Negative Squaring
$34.126^{2}-18.29^{2}=830.05977$
4. Accumulative/Negative Squaring .
$18.124^{2}+9.18^{2}-15.23^{2}-3.1416^{2}=170.92922$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS in SEQuence
1. $\begin{aligned} 25^{2} & =625 \\ +12^{2} & =769 \end{aligned}$	$\begin{aligned} & 25 \\ & 12 \end{aligned}$	
$\text { 2. } \begin{aligned} 78.23^{2} & =6119.9329 \\ +26.35^{2} & =6,814.25540 \end{aligned}$	$\begin{aligned} & 78.23 \\ & 26.35 \end{aligned}$	REPEAT R REPEAT $\boxed{x}$$+$
3. $\begin{aligned} 34.126^{2} & =1,164.58387 \\ -18.29^{2} & =830.05977 \end{aligned}$	$\begin{aligned} & 34.126 \\ & 18.29 \end{aligned}$	REPEAT X REPEAT $X \square$
4. $\begin{aligned} 18.124^{2} & =328.47937 \\ +9.18^{2} & =412.75177 \\ -15.23^{2} & =180.79887 \\ -3.1416^{2} & =170.92922 \end{aligned}$	$\begin{gathered} 18.124 \\ 9.18 \\ 15.23 \\ 3.1416 \end{gathered}$	REPEAT \boxed{x} REPEAT \boxed{x} REPEAT $\boxed{ }$ REPEAT \square REPEAT x

CALCULATING ALGEBRAICALLY

PROBLEMS:

1. Minus \div Minus
$(-147.12) \div(-13.67)=10.76225$
2. Plus \times Minus \times Minus
$14.25 \times(-8.69) \times(-2.63)=325.67947$
3. (Minus \div Plus) - (Plus \div Minus) $[(-278.35) \div 9.035]-[843.7 \div(-28.001)]=-.6769$
4. Plus \times Minus \div Minus
$[97.14 \times(-8.754)] \div(-2.345)=362.62838$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
1. $\frac{-147.12}{-13.67}=10.76225$	$\begin{array}{r} 147.12 \\ 13.67 \end{array}$	Note: Move Decimal Point Selector to position CHANGE SIGN
2. $14.25 \times(-8.69)=-123.83250$ $\times(-2.63)=325.67947$	$\begin{array}{r} 14.25 \\ 8.69 \\ 2.63 \end{array}$	ENTER $\left.$CHANGE SIGN CHANGE SIGN$>x \right\rvert\,$
$\begin{aligned} & \text { 3. } \begin{array}{l} \frac{-278.35}{9.035}=-30.80796 \\ -30.80796-\left(\frac{843.7}{-28.001}\right)=-.67690 \end{array},=\text {-. } \end{aligned}$	$\begin{gathered} 278.35 \\ 9.035 \\ 843.7 \\ 28.001 \end{gathered}$	CHANGE SIGN \square ENTER CHANGE SIGN
4. $97.14 \times(-8.754)=-850.36356$ $\frac{-850.36356}{-2.345}=362.62838$	$\begin{array}{r} 97.14 \\ 8.754 \\ 2.345 \end{array}$	ENTER CHANGE SIGN CHANGE SIGN

SEQUENTIAL OPERATIONS

PROBLEMS:

1. $(27.634 \times 8.13) \div 23.45=9.58057$
2. $\frac{(12.3+6.78) \times 9.84 \times 7.64^{2}}{14.2-6.07}=1347.93714$
3. $\frac{164}{13.1} \times(1.4)^{3}$
$\frac{8.9}{2} \times 4.7 \times .89$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS in SEQUENCE
1. $27.634 \times 8.13=224.66442$ $224.66442 \div 23.45=9.58057$	$\begin{gathered} 27.634 \\ 8.13 \\ 23.45 \end{gathered}$	
$\begin{aligned} & 2.12 .3+6.78=19.08 \\ & \quad 19.08 \times 9.84=187.74720 \\ & 187.74720 \times(7.64)^{2}=10,958.72896 \\ & \\ & \text { Divide by }(14.2-6.07)=1347.93714 \end{aligned}$	$\begin{gathered} 12.3 \\ 6.78 \\ 9.84 \\ 7.64 \\ 14.2 \\ 6.07 \end{gathered}$	
$3.164 \div 13.1=12.51908$ $\begin{aligned} & \text { Multiply by }(1.4)^{3}=34.35235 \\ & 8.9 \div 2=4.45 \\ & \\ & 4.45 \times 4.7=20.915 \\ & 20.915 \times .89=18.61435 \\ & \frac{34.35235}{18.61435}=1.84547 \end{aligned}$	164 13.1 1.4 8.9 2 4.7 -89	

THE MEMORY UNIT

GENERAL

To enter a number into the Memory Unit, index that number into the keyboard and touch the STORE key. To recall the number from storage, touch the RECALL key. The number entered into storage remains there for subsequent usage. It will continue to remain there until the CLEAR ALL key is touched, or another number is entered into storage.
2. CONSTANT DIVISOR
$145 \div 12.13=11.95383$
$214 \div 12.13=17.64220$
$846 \div 12.13=69.74443$
3. CONSTANT DIVIDEND
$164 \div 18.92=8.66807$
$164 \div 24.16=6.78807$
$164 \div 2.013=81.47044$

PROBLEMS:

1. CONSTANT MULTIPLIER
$\$ 1.25 \times 21=26.25$
$1.25 \times 64=80.00$
$1.25 \times 182=227.50$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
$\begin{aligned} 1.1 .25 \times 21 & =26.25 \\ 1.25 \times 64 & =80.00 \\ 1.25 \times 182 & =227.50 \end{aligned}$	$\begin{gathered} 1.25 \\ 21 \\ 64 \\ 182 \end{gathered}$	
$2.145 \div 12.13=11.95383$ $\begin{aligned} & 214 \div 12.13=17.64220 \\ & 846 \div 12.13=69.74443 \end{aligned}$	145 $12 \cdot 13$ 214 846	ENTER STORE RECALL \div RECALL \ddots RECALL \ddots
$\begin{aligned} 3.164 \div 18.92 & =8.66807 \\ 164 \div 24.16 & =6.78807 \\ 164 \div 2.013 & =81.47044 \end{aligned}$	$\begin{aligned} & 164 \\ & 18.92 \\ & 24.16 \\ & 2.013 \end{aligned}$	STORE RECALL $\dot{\square}$ (Observe Answer) RECALL \div (Observe Answer) RECALL \div (Observe Answer)
*Depression of the RECALL key will cause decimal alignment of the indexed number and recall of the constant from memory in one operation.		

RAISING TO A POWER

PROBLEMS:

1. $8^{5}=32,768$
2. Same problem; alternate method
3. $(1.02)^{30}=1.8113602$

Law of Exponents

A number may be easily raised to any power by employing the "Laws of Exponents."* The following laws are valid where m and n are any integers (positive, negative, or zero).

1. To multiply, add exponents.

$$
a^{m} \times a^{n}=a^{(m+n)}
$$

2. To divide, subtract exponents.

$$
\mathbf{a}^{\mathbf{m}} \div \mathbf{a}^{\mathbf{n}}=\mathbf{a}^{(\mathbf{m}-\mathbf{n})}
$$

3. To raise a power to a power, multiply exponents.

$$
\left(a^{m}\right) \mathbf{n} \quad=\mathbf{a}^{m n}
$$

4. The power of a product is the product of the powers.

$$
(a b)^{n} \quad=a^{n} b^{n}
$$

5. A power of a quotient is the quotient of the powers.

$$
\left(\frac{a}{b}\right)^{n} \quad=\frac{a^{n}}{b^{n}}
$$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
$\text { 1. } \begin{aligned} 8^{5} \quad & 8^{2}=64 \\ & 8^{3}=512 \\ & 8^{4}=4,096 \\ 8^{5} & =32,768 \end{aligned}$	8	
2. $\begin{aligned} & 8^{2}=64 \\ & 8^{4}=4,096 \\ & 8^{5}=32,768 \end{aligned}$	8	REPEAT REPEAT REPEAT x X
3. $\begin{aligned} &(1.02)^{2}=1.0404 \\ &(1.02)^{4}=1.0824321 \\ &(1.02)^{8}=1.1716592 \\ &(1.02)^{16}=1.3727852 \\ &(1.02)^{32}=1.8845392 \\ &(1.02)^{32} \div(1.02)^{2}=(1.02)^{30}=1.8113602 \end{aligned}$	1.02	
*From G. James and R. C. James, Ed., MATHEMATICS DICTIONARY. Copyright 1949, 1959, D. Van Nostrand Co., Inc., Princeton, New Jersey.		

ACCUMULATION OF PRODUCTS/MULTIPLIERS

PROBLEMS:

1. $64 \times 44=2816$
$27 \times 56=1512$
$\frac{38}{129} \times 65=\frac{2470}{6798}$

2.	$\frac{\mathrm{X}}{14}$	
		X^{2}
15	225	
16		256
17	289	
$\frac{18}{80}$		$\underline{324}$

FIND: $\Sigma \mathrm{X}=80$
$\Sigma \mathrm{X}^{2}=1290$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
1. $64 \times 44=2816$ $\begin{aligned} & 27 \times 56=1512 \\ & 38 \times 65=6798 \end{aligned}$ The sum of the products (6798) appears in Register \#1. The sum of the multipliers (129) appears in Register \#2.	$\begin{aligned} & 64 \\ & 44 \\ & 27 \\ & 56 \\ & 38 \\ & 65 \end{aligned}$	
2. $\begin{aligned} 14^{2} & =196 \\ +15^{2} & =421 \\ +16^{2} & =677 \\ +17^{2} & =966 \\ +18^{2} & =1290 \end{aligned}$ Read Σ X (80) in Register \#2 Read Σ X 2 (1290) in Register \# 1	$\begin{aligned} & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \end{aligned}$	REPEAT REPEAT \boxed{x} STORE REPEAT REPEAT X RECALL \square STORE Same as step \#2 Same as step \#2 Same as step \#2 RECALL

PROBLEMS INVOLVING TWO CONSTANTS

PROBLEMS:

1. $\left(\mathrm{K}_{1} \times 0.95\right)+\left(\mathrm{K}_{2} \times 0.65\right)=25.345$	$\mathrm{~K}_{1}=14.5$
2. $\left(\mathrm{K}_{1} \times 0.85\right)+\left(\mathrm{K}_{2} \times 0.55\right)=22.115$	$\mathrm{~K}_{2}=17.8$
3. $\left(\mathrm{K}_{1} \times .78\right)+\left(\mathrm{K}_{2} \times 0.56\right)=21.278$	

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
1. Store K_{1} Store K_{2} $\begin{aligned} & (14.5 \times 0.95)=13.775 \\ & +(17.8 \times 0.65)=25.345 \end{aligned}$	$\begin{array}{r} 14.5 \\ 17.8 \\ .95 \\ .65 \end{array}$	
2. Clear previous answer $\begin{aligned} & (14.5 \times 0.85)=12.325 \\ & +(17.8 \times 0.55)=22.115 \end{aligned}$	$\begin{aligned} & \bullet 85 \\ & \bullet .55 \end{aligned}$	CLEAR ENTRY REPEAT \square
3. Clear previous answer $\begin{aligned} & (14.5 \times 0.78)=11.31 \\ & +(17.8 \times 0.56)=21.278 \end{aligned}$	$\begin{aligned} & \bullet 78 \\ & \bullet 56 \end{aligned}$	CLEAR ENTRY \square REPEAT

*The REPEAT key causes duplication of the contents of Working
Register \#1 in Register \#2. The lower value may be used for a first operation. The upper value will be carried for subsequent usage.

INVOICING

PROBLEM:

$$
\begin{aligned}
& 14 \mathrm{lbs} \text { @ } \$.56 \mathrm{lb} .=\$ 7.84 \\
& 23 \mathrm{lbs} . @ .57 \mathrm{lb} .=13.11 \\
& 40 \mathrm{ft.} @ .62 \mathrm{ft} .=\frac{24.80}{45.75} \\
& \text { Sub Total } \\
& \text { Add: 3\% Sales Tax } \frac{1.37}{\$ 47.12} \\
& \text { Total }
\end{aligned}
$$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
$\begin{aligned} & \quad(14 \times .56)=7.84 \\ & +(23 \times .57)=20.95 \\ & +(40 \times .62)=45.75 \\ & \\ & \quad(45.75 \times .03)+45.75=47.12 \end{aligned}$		Note: Move Decimal Point Selector to position 5 ENTER x ENTER \square $+$ ENTER

NOTE: If the problem had called for a 3% discount instead of a 3% sales tax, the final step would be to touch the Minus key instead of the Plus key.

INDIVIDUAL/ACCUMULATED PERCENTAGES

PROBLEM:

DEPT.	SALES	$\%$
A	$\$ 6845$	19.27
B	15322	43.13
C	(5537)	(15.59)
D	6431	18.10
E	16275	45.82
F	(1548)	$(4.35)^{*}$
G	$\underline{(2265)}$	$\frac{(6.38)}{100.00}$

*Adjusted for .01

**NOTE: To convert from a decimal to a percent, it is necessary to multiply mentally by 100 .

PERCENTAGE PROBLEMS

PROBLEMS:

1. What $\%$ of $\$ 345.65$ is $\$ 78.25$? Answer: 22.638%
2. Increase or Decrease and Percent.

$\underline{\text { Last year }}$	This year	Change	\% Change
6375.85	7894.65	+1518.80	+23.82\%
8765.45	3975.42	-4790.03	-54.65\%

3. Percent Mark-up on Selling Price

Sell	Cost	Gross Profit	Mark-up \%
\$942.38	\$656.75	\$285.63	30.31\%
325.60	234.65	90.95	27.93\%

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS in SEQUENCE
NOTE: The number after the "of" in the problem is always the denominator. 1. $78.25 \div 345.65=.22638=22.638 \%$	$\begin{array}{r} 78.25 \\ 345.65 \end{array}$	ENTER \div
$\begin{aligned} \text { 2. } 7894.65-6375.85 & =1518.80 \\ 1580.80 \div 6375.85 & =.23821=23.821 \% \end{aligned}$	$\begin{aligned} & 7894.65 \\ & 6375.85 \end{aligned}$	$\begin{aligned} & \hline \text { ENTER } \\ & \hline \text { STORE RECALL } \\ & \hline \text { RECALL } \div \end{aligned}$
$\begin{aligned} & 3975.42-8765.45=-4790.03 \\ & -4790.03 \div 8765.45=-.54646=-54.646 \% \end{aligned}$	$\begin{aligned} & 3975 \bullet 42 \\ & 8765.45 \end{aligned}$	$\begin{aligned} & \hline \text { ENTER } \\ & \hline \text { STORE RECALL } \\ & \hline \text { RECALL } \div \end{aligned}$
$\begin{aligned} 3.942 .38-656.75 & =285.63 \\ 285.63 \div 942.38 & =.30309=30.309 \% \end{aligned}$	$\begin{aligned} & 942.38 \\ & 656.75 \end{aligned}$	STORE RECALL \square RECALL \because
$\begin{aligned} & 325.60-234.65=90.95 \\ & 90.95 \div 325.60=.27933=27.933 \% \end{aligned}$	$\begin{aligned} & 325.60 \\ & 234.65 \end{aligned}$	STORE RECALL $-\square$ RECALL $\div \cdot$

SIMPLE AND COMPOUND INTEREST

PROBLEMS:

1. Compute the ordinary simple interest on a loan of $\$ 1700.00$ at $53 / 4 \%$ for 92 days.

Interest $=($ Principal \times Rate \times Days $) / 360$

$$
=(\$ 1700.00 \times .0575 \times 92) \div 360=\$ 24.98
$$

2. Find the compound amount of $\$ 6,150.00$ at 5% interest compounded quarterly for four years.

$$
\begin{aligned}
& \mathbf{S}=\mathbf{P}(1+\mathbf{i})^{\mathrm{n}}=6150.00\left(1+\frac{.05}{4}\right)^{16}=6150 \times(1.0125)^{16} \\
& \mathbf{S}=\$ 7502.32
\end{aligned}
$$

3. $\$ 1000.00 @ 6 \%$ compounded yearly for 12 years.

$$
1000.00 \times .06 \times(1.06)^{12}=\$ 2012.20
$$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
$\begin{aligned} & \text { 1. } \$ 1700.00 \times .0575=\$ 97.75 \\ & \quad \begin{array}{l} 97.75 \times 92=8,993.00 \\ 8993.00 \div 360=24.98055 \end{array} \end{aligned}$	$\begin{aligned} & 1700 \\ & \quad .0575 \\ & 92 \\ & 360 \end{aligned}$	Note: Move Decimal Point Selector to position ENTER
2. Enter $\$ 6150.00$ for later use $\begin{aligned} & (1.0125)^{2}=1.0251562 \\ & (1.0125)^{4}=1.0509452 \\ & (1.0125)^{8}=1.1044858 \\ & (1.0125)^{16}=1.2198888 \\ & 1.2198888 \times 6150.00= \\ & 7502.3161200=\$ 7502.32 \end{aligned}$	$\begin{aligned} & 6150 \\ & 1.0125 \end{aligned}$	
3. Enter $\$ 1000.00$ for later use $\begin{array}{ll} (1.06)^{2} & =1.1236 \\ (1.06)^{4} & =1.2624769 \\ (1.06)^{8} & =1.5938479 \\ (1.06)^{4} & \times(1.06)^{8}=(1.06)^{12}=2.0121961 \\ (1.06)^{12} & \times 1000.00=2012.1961000 \end{array}$	$\begin{aligned} & 1000 \\ & 1.06 \end{aligned}$	

INTEREST RATE ON INSTALLMENT LOANS

PROBLEM: A colored television set sells for $\$ 720.00$ cash. If a buyer agrees to pay $\$ 240.00$ cash and the balance in 10 equal monthly payments of $\$ 53.50$ each, what rate of interest is he being charged?

$$
\text { FORMULA: } \begin{aligned}
\mathrm{R} & =\frac{72 \mathrm{~T}}{3 \mathrm{~A}(\mathrm{n}+1)+\mathrm{T}(\mathrm{n}-1)} \\
& =\frac{72 \times 55.00}{(3 \times 480.00 \times 11)+(55.00 \times 9)}
\end{aligned}
$$

R = Interest Rate per annum
A = Amount of Loan ($\$ 720.00-240.00=\$ 480.00$)
$\mathrm{T}=$ Total charge $(10 \times 53.50-480.00=$ $\$ 55.00$)
$\mathrm{n}=$ number of periods (10)

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS in SEQUENCE
$72 \mathrm{~T}=72 \times 55.00=3960$	$\begin{gathered} 72 \\ 55 \end{gathered}$	ENTER X
$3 \mathrm{~A}=3 \times 480.00=1440$	$\begin{array}{r} 3 \\ 480 \end{array}$	ENTER 区
$3 \mathrm{~A}(\mathrm{n}+1)=1440 \times 11=15840$	11	-
$+\mathbf{T}(\mathrm{n}-1)=+(55.00 \times 9)=16,335$	55	ENTER
$\frac{72 \mathrm{~T}}{3 \mathrm{~A}(\mathrm{n}+1)+\mathrm{T}(\mathrm{n}-1)}=.2424=24.24 \%$	9	- \square \div

CREDIT LOANS
 DETERMINATION OF EQUAL MONTHLY PAYMENTS

PROBLEM: A loan of $\$ 220.00$ is to be repaid with interest at $21 / 2 \%$ per month for 12 months. Find the equal monthly payment.

$$
\text { FORMULA: } \begin{aligned}
\mathrm{R} & =\mathrm{P} \frac{\mathrm{i}}{1-(1+\mathrm{i})^{-\mathrm{n}}}=\mathrm{P} \frac{\mathrm{i}}{1-\frac{1}{(1+\mathrm{i})^{\mathrm{n}}}} \\
& =(220.00) \frac{.025}{1-\frac{1}{(1.025)^{12}}}=\$ 21.45
\end{aligned}
$$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
$\begin{aligned} & 220.00 \times .025=5.50 \\ & (1.025)^{2}=1.05062 \\ & (1.025)^{4}=1.1038 \\ & (1.025)^{8}=1.21837 \\ & (1.025)^{4} \times(1.025)^{8}=(1.025)^{12}=1.34483 \\ & 1-\frac{1}{(1.025)^{12}}=.25642 \end{aligned}$ Monthly Payment $=21.44918=\$ 21.45$	$\begin{array}{r} 220 \\ \quad .025 \\ 1.025 \end{array}$	Note: Move Decimal Point Selector to position ENTER REPEAT REPEAT REPEAT REPEAT STORE REPEAT RECALL \square

INSTALLMENT PAYMENTS ON MORTGAGES

PROBLEMS:

	LOAN	
1.	$\$ 3500.00$	
2. $\$ 2275.25$	5%	

MONTHLY	
PAYMENT	INTEREST
$\$ 45.00$	$\$ 16.04$
27.50	9.48

PAYMENT ON LOAN	BALANCE
$\$ 28.96$ 18.02	$\$ 3471.04$
2257.23	

ANALYSIS:

Loan \times Interest Rate per Annum $=$ Interest
Monthly Payment - Interest $=$ Payment on Loan
Loan - Payment on Loan $=$ Balance of Loan

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
1. $3500.00 \times .055=192.50$ $\begin{aligned} & \text { Interest }=192.50 \div 12=16.04166 \\ & \text { Payment }=16.04166-45.00=28.95834- \\ & \text { Balance }=3500.00-28.96=3471.04 \end{aligned}$	3500 . 055 12 45	Note: Move Decimal Point Selector to position 5 REPEAT X \div $-$ $+$
2. $2275.25 \times .05=113.7625$ $\begin{aligned} & 113.7625 \div 12=9.48020 \\ & 9.48020-27.50=18.01980- \\ & 2275.25-18.02=2257.23 \end{aligned}$	$\begin{array}{r} 2275.25 \\ .05 \\ 12 \\ 27.5 \end{array}$	REPEAT x \square \square $+$

PROBABILITY

PROBLEM: What is the probability of drawing the Ace, King, Queen, Jack, and Ten of Hearts in any order in five successive draws from a bridge deck.

ANALYSIS: $P=\frac{5}{52} \times \frac{4}{51} \times \frac{3}{50} \times \frac{2}{49} \times \frac{1}{48}$

$$
=\frac{120}{311,875,200}=\frac{1}{2,598,960}
$$

Conclusion: The probability of drawing the Ace, King, Queen, Jack, and Ten of Hearts in any order in five successive draws from a bridge deck is one chance in $2,598,960$.

ACTUARIAL PROBLEM

PROBLEM: Find the value at age 18 of a temporary life annuity of $\$ 1500.00$ per year for three years. Assume an interest rate of 2%.

FORMULA: $\mathrm{a} \overline{18: 3}={ }_{1} \mathrm{E}_{18}+{ }_{2} \mathrm{E}_{18}+{ }_{3} \mathrm{E}_{18}$
$\mathrm{a} \overline{18: 31}=(1500) \frac{953743^{*}(.98039)+951483(.96117)+949171(.94232)}{955942}$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS in Sequence
Store 1500 for use in step 6 below	1500	Note: Move Decimal Point Selector to position ENTER
$953743 \times .98039=935,040.09977$	953743	ENTER
	. 98039	区
$+(951483 \times .96117)=1,849,577.01488$	951483	ENTER
	. 96117	区 +
$+(949171 \times .94232)=2,743,999.83160$	949171	ENTER
	. 94232	$\pm \pm$
Divide by Denominator $=2.87046$	955942	\div
Multiply by $\$ 1500.00=\$ 4305.69$		\pm
For an annuity of $\$ 1500$ per period, the net single premium is $\$ 4305.69$.		

*From "Commissioners 1941 Standard Ordinary Mortality Table."

LIFE INSURANCE PROBABILITY

PROBLEM: What is the probability that a person aged 35 will die in 10 years?

FORMULA: The probability that a person aged x will die in n years is given by the formula:
${ }_{n} q_{\mathrm{x}}=1-\frac{\mathrm{l}_{\mathrm{x}}+{ }_{\mathrm{n}}}{l_{\mathrm{x}}}$
SOLUTION ${ }^{*}:{ }_{10} \mathrm{q}_{35}=1-\frac{l_{45}}{l_{35}}=1-\frac{852554}{906554}=\frac{54000}{906554}$
$=.05957$ (or roughly, the odds are 6 in 100)

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
$1-\frac{852554}{906554}=.05957$		
	1	Note: Move Decimal Point Selector to position

*NOTE: The table below is taken from the 1941 Commissioners Standard Ordinary Mortality Table and is the record of the number of deaths at different ages of a large number of persons.

Age x	Number Living l_{x}	Number of Deaths d_{x}	Yearly Probability of Dying q_{x}
35	906,554	4,161	0.00459
\vdots	\vdots	\vdots	\vdots
\vdots	\vdots	\vdots	\vdots
45	852,554	7,340	0.00861

GEOMETRIC SERIES

PROBLEM: Find the sum of 10 terms, beginning with the first, of the following geometric series:

$$
\frac{15}{32}, \frac{15}{16}, \text { etc. }
$$

FORMULA: $s=\frac{a-a^{n}}{1-r}$

$$
\mathrm{s}=\frac{\frac{15}{32}-\left(\frac{15}{32} \times 2^{10}\right)}{1-2}=479.53
$$

$\mathrm{a}=1$ st term $=\frac{15}{32}$
$\mathrm{r}=$ common ratio $=2$
$\mathrm{n}=$ number of terms $=10$
$\mathrm{s}=\mathrm{sum}$ of the terms $=$?

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
$\frac{15}{32}=.46875$	15 32	Note: Move Decimal Point Selector to position ENTER \div REPEAT
$2^{2}=4$	2	REPEAT x REPEAT STORE
$2^{4}=16$		REPEAT x
$2^{8}=256$		REPEAT x
$2^{10}=1024$		RECALL x
$\frac{15}{32} \times 2^{10}=.46875 \times 1024=480$		x
$\frac{15}{32}-\left(\frac{15}{32} \times 2^{10}\right)=479.53125-$		\square
Divide by Minus $1=479.53125$	1	CHANGE SIGN \div

STANDARD DEVIATION (Ungrouped Data)

PROBLEM:

X Values:	$\Sigma \mathrm{X}^{2}=2499$
23	$\Sigma \mathrm{X}=155$
21	$\mathrm{n}=11$
18	
17	$\sigma=\sqrt{\frac{\mathrm{n}\left(\Sigma \mathrm{X}^{2}\right)-(\Sigma \mathrm{X})^{2}}{\mathrm{n}^{2}}}$
15	
14	$\sigma=\sqrt{\frac{(11 \times 2499)-(155)^{2}}{11^{2}}}=5.35$
12	

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
1. Enter 1st X value; square it. 2. Enter 2nd X value; square it. 3. Enter 3rd and subsequent X values. Repeat Step \# 2 (above) Read $\Sigma \mathrm{X}$ (155) in Register \#1. Touch RECALL. Now read ΣX^{2} (24	23 21 in Register	
1. $n \Sigma X^{2}=27,489$ 2. $-(\Sigma \mathrm{X})^{2}=3,464$ 3. Divide by $\mathrm{n}^{2}=28.62809$ 4. Use the Square Root Application on page 38 to extract the square root of 28.62809 . $\sigma=5.35$	$\begin{array}{r} 11 \\ 155 \\ 11 \end{array}$	REPEAT

*This operation causes $\Sigma \times^{2}$ to be accumulated in the Memory Unit and $\Sigma \times$ to be accumulated in the Display.

VOLUME OF A SPHERE

PROBLEM: Assume a sphere with a 7.26 inch radius. Find the volume.

FORMULA: $\mathrm{V}=4 / 3 \pi \mathrm{r}^{3}$

$$
\mathrm{V}=\frac{4 \times 3.1416 \times(7.26)^{3}}{3}=1602.87 \mathrm{cu} . \text { inches }
$$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
$\begin{aligned} & 4 \times \pi=12.56640 \\ & (7.26)^{3}=382.65717 \\ & 4 \pi r^{3}=4808.62306 \end{aligned}$ Divide by $3=1602.87435$	$\begin{aligned} & 4 \\ & 3.1416 \\ & 7.26 \end{aligned}$	Note: Move Decimal Point Selector to position ENTER REPEAT REPEAT

CONVERSION OF DENOMINATE NUMBERS

PROBLEM: Divide the angle $14^{\circ} 22^{\prime} 6^{\prime \prime}$ into four equal angles.

NOTE: The same procedure used for degrees, minutes and seconds could be applied equally well to hours, minutes and seconds; yards, feet, inches; drams, ounces, pounds, etc.

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
1. Convert $14^{\circ} 22^{\prime} 6^{\prime \prime}$ to Seconds $\begin{aligned} & \left(14^{\circ} \times 3600\right)=50,400 \\ & +\left(22^{\prime} \times 60\right)=51,720 \end{aligned}$ Plus 6 seconds $=51,726$	$\begin{array}{r} 14 \\ 3600 \\ 22 \\ 60 \\ 6 \end{array}$	Note: Move Decimal Point Selector to position ENTER x ENTER $+$ $+$
2. Divide by $4=12,931.5$	4	\div
3. Convert to Degrees, Minutes, Seconds (A) $12,931.5 \div 3600=3.59208$ 3 Degrees (B) $(3.59208-3) \times 60=35.52480$ 35 Minutes (C) $(35.52480-35) \times 60=31.488$ 31 Seconds Therefore, the angle $14^{\circ} 35^{\prime} 31^{\prime \prime}$ is divided into four equal angles of $3^{\circ} 35^{\prime} 31^{\prime \prime}$ each.	$\begin{array}{r} 3600 \\ \\ 3 \\ 60 \\ 35 \\ 60 \end{array}$	

AREA OF A SECTOR

PROBLEM: Given the sector AXBS, find the area.
Radius $=\mathrm{AX}=94$ feet
Angle $X=50^{\circ} 29^{\prime} 35^{\prime \prime}$

FORMULA: $\left(\frac{\angle \mathrm{X}^{\circ}}{360}\right) \pi \mathrm{r}^{2}=\frac{50^{\circ} 29^{\prime} 35^{\prime \prime}}{360} \times 3.14159 \times(94)^{2}=3893.44$ Sq. Ft.

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
1. Convert $50^{\circ} 29^{\prime} 35^{\prime \prime}$ to a decimal equivalent		Note: Move Decimal Point Selector to position
$\frac{29}{60}=.4833333$	60	STORE
	29	RECALL \div
$\frac{29}{60}+\frac{35}{3600}=.4930555$	35	RECALL REPEAT $\times \rightarrow \square$
Plus $50^{\circ}=50.4930555$	50	\pm
2. $50.4930555 \div 360=.1402584$	360	\square
3. Multiply by $\pi \mathrm{r}^{2}$		
$3.14159 \times 94 \times 94$	3.14159	x
	94	REPEAT x x
Answer: $3893.4446748=3893.44$ Sq. Ft.		

INTERPOLATION

PROBLEM: Find the Tangent of $27^{\circ} 16^{\prime} 38^{\prime \prime}$

ANALYSIS:
$\begin{array}{ll}\text { (1) Tangent } 27^{\circ} 16^{\prime} & =.51540 \\ \text { (2) Tangent } 27^{\circ} 17^{\prime} & =.51577 \\ \text { (3) The difference } & =.00037 \\ \text { (4) } .00037 \times \frac{38}{60} & =.00023 \\ \text { (5) Tangent } 27^{\circ} 16^{\prime} 38^{\prime \prime} & =.51540 \\ & +\underline{.00023} \\ \end{array}$

EVALUATING AN INTEGRAL

$$
\begin{aligned}
\text { PROBLEM: } & \int_{2}^{5} 9 \mathrm{x}^{3}-4 \mathrm{x}^{2}+5 \mathrm{xdx}=1266.75 \\
\text { ANALYSIS: } & \int_{2}^{5} 9 \mathrm{x}^{3} \mathrm{dx}-\int_{2}^{5} 4 \mathrm{x}^{2} \mathrm{dx}+\int_{2}^{5} 5 \mathrm{xdx} \\
& \left.\left.\left.\frac{9}{4} \mathrm{x}^{4}\right]_{2}^{5}-\frac{4}{3} \mathrm{x}^{3}\right]_{2}^{5}+\frac{5}{2} \mathrm{x}^{2}\right]_{2}^{5} \\
& \frac{9}{4}\left(5^{4}-2^{4}\right)-\frac{4}{3}\left(5^{3}-2^{3}\right)+\frac{5}{2}\left(5^{2}-2^{2}\right) \\
& 1370.25-156+52.5=1266.75
\end{aligned}
$$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
$\begin{aligned} 5^{2} & =25 \\ 5^{4} & =625 \\ 2^{2} & =4 \\ 5^{4}-2^{4} & =609 \\ 609 \times \frac{9}{4} & =1370.25 \end{aligned}$	5 2 9 4	
$\begin{gathered} 5^{3}=125 \\ 2^{2}=4 \\ 5^{3}-2^{3}=117 \\ -(117 \times 4 / 3)=1214.25 \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \\ & 4 \\ & 3 \end{aligned}$	
$\begin{aligned} & 5^{2}=25 \\ & 5^{2}-2^{2}=21 \\ & +\left(21 \times \frac{5}{2}\right)=1266.75 \end{aligned}$	2 2	

EVALUATING A POLYNOMIAL

PROBLEM: $Y=4 X^{4}+5 X^{3}-3 X^{2}+X-1$
When $\mathrm{X}=9$
FIND: Y

METHOD NO. 1

EVALUATING A POLYNOMIAL

PROBLEM: $Y=4 X^{4}+5 X^{3}-3 X^{2}+X-1$
When $\mathrm{X}=-9$
Find: Y

METHOD: $\mathrm{Y}=\{[(4 \mathrm{X}+5) \mathrm{X}-3] \mathrm{X}+1\} \mathrm{X}-1$

METHOD NO. 2
$\left.\begin{array}{|l|l|}\hline \text { SOLUTION } & \begin{array}{c}\text { INDEX IN } \\ \text { KEYBOARD }\end{array} \\ \hline \text { TOUCH CONTROL KEYS } \\ \text { IN SEQUENCE }\end{array}\right]$

DETERMINANTS

Solution of Simultaneous First Degree Equations

PROBLEM: $2 \mathrm{X}+2 \mathrm{Y}+3 \mathrm{Z}=22$
$2 \mathrm{X}-4 \mathrm{Y}+3 \mathrm{Z}=4$
$3 X+6 Y-2 Z=16$

FORMULA:

SOLUTION:
Denominator

$$
\mathrm{Y}=\left\lvert\, \begin{array}{rrr|rr}
2 & 22 & 3 & 2 & 22 \\
2 & 4 & 3 & 2 & 4 \\
3 & 16 & -2 & 3 & 16 \\
\hline 2 & 2 & 3 & 2 & 2 \\
2 & -4 & 3 & 2 & -4 \\
3 & 6 & -2 & 3 & 6
\end{array}=\frac{-16+198+96-36-96+88}{78}=\frac{234}{78}=3\right.
$$

$$
\mathrm{Z}=\left\lvert\, \begin{array}{rrr|rr}
2 & 2 & 22 & 2 & 2 \\
2 & -4 & 4 & 2 & -4 \\
3 & 6 & 16 & 3 & 6 \\
\hline 2 & 2 & 3 & 2 & 2 \\
2 & -4 & 3 & 2 & -4 \\
3 & 6 & -2 & 3 & 6
\end{array}=\frac{-128+24+264+264-48-64}{78}=\frac{312}{78}=4\right.
$$

DETERMINANTS

Note: Move Decimal Point Selector to position

PROCEDURE:

I. TO FIND NUMERATOR

1. Index 22 ENTER
2. Index 4 CHANGE SIGN
3. Index 2 CHANGE SIGN
x
4. Index 2 ENTER
5. Index $3 x$
6. Index 16
7. Index 3 ENTER
8. Index 4
9. Index 6
x
. \triangle
10. Index 16 ENTER
11. Index $4 \times$ CHANGE SIGN x
12. Index 3

13. Index 6 ENTER
14. Index $3 x$
15. Index $22 x$
16. Index 2 CHANGE SIGN
17. Index 4
18. Index 2
x
X
II. TO FIND DENOMINATOR-FOLLOW SAME PROCEDURE AS IN I ABOVE

III. TO FIND VALUE OF X

1. Touch REPEAT STORE. The denominator is now stored in the Memory Unit for subsequent use when solving for Y. The numerator now appears in Register \#2; the denominator appears in Register \#1.
2. Touch \div. Value of X (2) appears in Register \#1.

IV. TO FIND VALUE OF Y

1. Calculate the top half of the second determinant. This produces the numerator (234).
2. Touch RECALL and \div. This operation brings the denominator from the Memory Unit and divides it into the numerator. Then: $234 \div 78=3$. The value of Y (3) appears in Register \#1.

V. TO DETERMINE VALUE OF Z

1. The value of Z can be determined by calculating the third determinant as in IV above.
2. However, since value of X and Y are now known the value of Z can be easily determined by substituting values of X and Y in any of the three equations. For example:

$$
\begin{aligned}
& 2 \mathrm{X}+2 \mathrm{Y}+3 \mathrm{Z}=22 \\
& 3 \mathrm{Z}=-2 \mathrm{X}-2 \mathrm{Y}+22
\end{aligned}
$$

$$
\mathrm{Z}=\frac{-2 \mathrm{X}-2 \mathrm{Y}+22}{3}
$$

$$
=\frac{(-2 \times 2)-(2 \times 3)+22}{3}
$$

$$
=\frac{-4-6+22}{3}=\frac{12}{3}=4
$$

COSINE LAW

PROBLEM: Given 3 sides find an angle.

$\mathrm{a}=425.63$
$\mathrm{b}=339.29$
$\mathrm{c}=210.68$

REQUIRED: $\operatorname{Cos} \mathrm{C}=.87213 \quad$ Angle $\mathrm{C}=29^{\circ} 17^{\prime} 34^{\prime \prime}$
ANALYSIS: $\operatorname{Cos} \mathrm{C}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}}{2 \mathrm{ab}}=\frac{(425.63)^{2}+(339.29)^{2}-(210.68)^{2}}{2 \times 425.63 \times 339.29}=.87213$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
$\begin{aligned} & \text { TO FIND COSINE C } \\ & (425.63)^{2}=181,160.8969 \\ & +(339.29)^{2}=296,278.601 \\ & -(210.68)^{2}=251,892.5386 \\ & 2 \times 425.63=851.26 \\ & \operatorname{Cos} \mathrm{C}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}-\mathrm{c}^{2}}{2 \mathrm{ab}}=.87213 \end{aligned}$	$\begin{gathered} 425 \bullet 63 \\ 339 \bullet 29 \\ 210 \bullet 68 \\ 2 \\ 425 \bullet 63 \\ 339 \bullet 29 \end{gathered}$	
TO FIND ANGLE C (interpolate $87221-87207=14$ $\begin{aligned} & 87221-87213=8 \\ & 8 / 14 \times 60^{\prime \prime}=34.28571 \end{aligned}$ Therefore: $\angle \mathrm{C}=29^{\circ} 17^{\prime} 34^{\prime \prime}$	les: $\operatorname{Cos} 29^{\circ}$ 87221 87207 87213 60 14	.87221; $\left.\operatorname{Cos} 29^{\circ} 18^{\prime}=.87207\right)$ STORE RECALL RECALL

COSINE LAW

PROBLEM: Given two sides and the included angle, find the third side.
FORMULA: $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab} \operatorname{Cos} \mathrm{C}$

EXAMPLE:

$$
\begin{aligned}
\mathrm{a} & =6.2 \\
\mathrm{~b} & =8.3 \\
\angle \mathrm{C} & =56^{\circ} 45^{\prime} 24^{\prime \prime} \\
\operatorname{Cos} \mathrm{C} & =.54819
\end{aligned}
$$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
ANALYSIS: $\mathbf{c}^{2}=(6.2)^{2}+(8.3)^{2}-(2 \times 6.2 \times 8.3 \times .54819)$		Note: Move Decimal Point Selector to position 5
$\begin{gathered} \mathrm{a}^{2}=(6.2)^{2}=38.44 \\ +\mathrm{b}^{2}=+(8.3)^{2}=107.33 \\ =12.4 \\ 2 \mathrm{a} \\ \\ 2 \mathrm{ab}=12.4 \times 8.3=102.92 \\ -2 \mathrm{ab} \operatorname{Cos} \mathrm{C}=102.92 \times .54819 \\ \mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab} \operatorname{Cos} \mathrm{C}=50.91029 \end{gathered}$ Using the square root application on page 38, $\mathbf{c}=\sqrt{50.91029}=7.13514=7.135$	6.2 8.3 2 6.2 $8 \cdot 3$. 54819	REPEAT REPEAT ENTER

SQUARE ROOT

PROBLEM: Find the square root of 1738 to six significant digits.

FORMULA:

$$
\sqrt{N}=\frac{\frac{N}{a}+a}{2}
$$

Where: $\mathrm{N}=$ the radicand (1738)

$$
\begin{aligned}
\mathrm{a}= & \text { an approximation of the square } \\
& \operatorname{root} \text { of } \mathrm{N}
\end{aligned}
$$

ANALYSIS: Mark off 1738 into couplets. Start at the decimal point and mark off to the left; e.g.

17 38. Determine the largest square in the left most couplet. The largest square in 17 is 16 . The The square root of 16 is 4 . For each remaining couplet use a zero. The first approximation for $\sqrt{1738}$ is 40 .

EXAMPLES: 1) 98.22 The largest square is 81. The square root of 81 is 9 with no additional couplets to the left of the decimal. The approximation is 9 .
2) $6 \underline{62} \underline{41.33}$ The largest square in 6 is 4 . The square root of 4 is 2 with two additional couplets to the left of the decimal point. The approximation is 200 .

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
		Note: Move Decimal Point Selector to position ${ }^{\text {目 }}$
a	40	(1) STORE 自
N	1738	(3) REPEAT (3) RECALL
$\frac{\mathrm{N}}{\mathrm{a}}=43.45000$		(1) \div
$\frac{\mathrm{N}}{\mathrm{a}}+\mathrm{a}=83.45000$		($)^{\text {RECALL }}$ (\square
$\frac{\mathrm{N}}{\mathrm{a}}+\mathrm{a}$		
$\frac{\mathrm{a}}{2}=41.72500$	(7) 2	(8) \div

41.725 is the second approximation of the square root of 1738 .

For closer values of $\sqrt{\mathrm{N}}$, repeat the following sequence: STORE, REPEAT, RECALL, DIVIDE, RECALL, PLUS, 2, DIVIDE.
Third approximation $=41.68934$
Fourth approximation $=41.68932$
PROOF: Touch REPEAT X. Answer: 1737.99940 or 1738 rounded off.

SQUARE ROOT

PROBLEM: Find the square root of .0008317 to six significant digits.

METHOD:

$$
\sqrt{\mathrm{N}}=\frac{\frac{\mathrm{N}}{\mathrm{a}}+\mathrm{a}}{2} \text { Where: }
$$

$\mathrm{N}=$ the radicand .0008317 and
$\mathrm{a}=$ an approximation of the square root of N

ANALYSIS: Mark off .0008317 into couplets starting from the decimal point . 000831 7. Again starting from the decimal point, for each couplet with only zeros set one zero in the approximation. For.$\underline{00} 08317$ there is only one zero couplet so the approximation would be .0 -. For the first
couplet with numbers other than zeros, determine the square root of the largest square in that number. The largest square in 08 or 8 is 4 and the square root of 4 is 2 . The first approximation of .0008317 is .02 .

EXAMPLES: 1) . $08 \quad 31$ 7. There are no zero couplets and the square root of the largest square in 8 is 2 . The approximation is .2.
2) . $00 \quad 83$ 17. There is one zero couplet and the square root of the largest square in 83 is 9 . The approximation is .09 .
3)..$\underline{00} \underline{00} \underline{00} \underline{45}$. There are three zero couplets and the square root of the largest square in 45 is 6 . The approximation is .0006 .

CUBE ROOT

GENERAL

A convenient method of extracting cube root on the 130 Electronic Calculator lies in the application of the general formula:

$$
\sqrt[r]{\mathbf{N}}=\frac{1}{\mathbf{r}}\left(\frac{\mathrm{~N}}{\mathfrak{a}^{\mathrm{r}-1}}+(\mathrm{r}-1) \mathrm{a}\right)
$$

In this formula, r represents the desired root of any number. a is the approximate root (r) of N. This formula can be used to extract any root of any positive number by using this one basic method.
For cube roots the formula becomes:

$$
\sqrt[3]{\mathbf{N}}=\frac{1}{3}\left(\frac{\mathbf{N}}{\mathbf{a}^{2}}+2 \mathrm{a}\right)
$$

" a," in this formula, is the approximation of the root as determined from an abbreviated cube root table. (See the condensed cube root table printed below.)

PROCEDURE

The procedure consists of solving the formula once with the value of a taken from the table. Then the process is repeated using that answer as a closer approximation. For additional accuracy, use this cube root as a, and solve the formula again. A distinct advantage of this method lies in the fact that, even if an error is made during the
process, continued substitutions of the values found for a will correct the error and yield the desired root.

DECIMALS

When N has more than 4 digits to the left of the decimal, divide by 1,000 or $1,000,000$ so that there will always be 2 to 4 digits to the left of the decimal. For example:

$$
\frac{752,392}{1,000}=752.392
$$

Then after obtaining the cube root, multiply by the cube root of $1,000(10)$ or $1,000,000(100)$ to to point off the cube root correctly.

$$
\sqrt[3]{752,392}=9.09525 \times 10=90.9525
$$

When N has less than 2 digits to the left of the decimal, multiply by 1,000 or $1,000,000$ so that there will always be 2 to 4 digits to the left of the decimal. For example:

$$
.00752392 \times 1,000,000=7523.92
$$

Then, after obtaining the cube root divide by 10 or 100 to point off the cube root correctly.

$$
\sqrt[3]{.00752392}=\frac{19.59512}{100}=.1959512
$$

CUBE ROOT TABLE

N	$\sqrt[3]{\mathrm{N}}$	N	$\sqrt[3]{\mathrm{N}}$	N	$\sqrt[3]{\mathrm{N}}$	N	$\sqrt[3]{\mathrm{N}}$
1	1	216	6	1331	11	4096	16
8	2	343	7	1728	12	4913	17
27	3	512	8	2197	13	5832	18
64	4	729	9	2744	14	6859	19
125	5	1000	10	3375	15	8000	20

CUBE ROOT

PROBLEM: $\sqrt[3]{23,147.523}$

ANALYSIS: To adjust this problem to the machine, divide the radicand by 1,000 . The extracted cube root will then be multiplied by 10 . From the table, find the cube nearest 23 (27). Its root, 3 , is used for the first value of a.

FORMULA: $\quad \sqrt[3]{23,147.523}=1 / 3\left[\frac{23.147523}{3^{2}}+(2 \times 3)\right]$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
2ND APPROXIMATION $\begin{array}{ll} 23.147523 \div(3)^{2} & =2.5719470 \\ \text { plus }(2 \times 3) & =8.5719470 \\ \text { Divide by } 3 & =2.8573156 \end{array}$	$\begin{aligned} & 3 \\ & 23 \cdot 147523 \end{aligned}$ 2 3	
$\begin{aligned} & \text { 3RD APPROXIMATION } \\ & \hline \text { Store } 2.8573156 \\ & 23.147523 \div(2.8573156)^{2} \\ & \quad=2.8352287 \\ & \text { Plus }(2 \times 2.8573156) \\ & \text { Divide by } 3=2.8499533 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	

4th approximation $=2.8499342$
5th approximation $=2.8499342$
THEN $10 \times 2.8499342=28.499342=\sqrt[3]{23,147.523}$

PROOF: REPEAT REPEAT $x \sqrt{x}=23,147.5215$

OVERCAPACITY PROBLEMS

PROBLEM: $\$ 98,765,432.10 \times .61857432091=\$ 61,093,760.09$

Read answer (\$61,093,760.09) at decimal position 2 in Register \#1

NOTE: The decimal position selected at the time the multiply key is depressed determines the decimal orientation of the product. Switching from 2 to 13 before entering the second term had the effect of dividing the first term by 10^{11}. Restoring the decimal program to position 2 has the effect of multiplying the product by 10^{11} to give the true answer.

DOUBLE PRECISION MULTIPLICATION

PROBLEMS:

1. 13 Digits by 13 Digits
$5,847,637,290,816 \times 7,855,023,964,807=45,933,331,056,858,760,408,312,512$
2. 10 Digits by 10 Digits
$1,857,263,807 \times 1,187,524,396=2,205,546,080,620,335,572$

SOLUTION	INDEX IN KEYBOARD	TOUCH CONTROL KEYS IN SEQUENCE
1. Index 1st Factor Index 2nd Factor 1st 13 Digits $=4593333105685$	$\begin{aligned} & 5847637290816 \\ & 7855023964807 \end{aligned}$	Note: Move Decimal Point Selector to position REPEAT \square Change Decimal to 13
2nd 13 Digits $=8760408312512$		CLEAR ENTRY Change Decimal to 0 RECALL (Depress OVERFLOW LOCK to release keyboard)
2. Index 1st Factor Index 2nd Factor 1st 13 Digits $=0000000220554$	$\begin{aligned} & 1857263807 \\ & 1187524396 \end{aligned}$	Restore Decimal to 0 REPEAT STORE Change Decimal to 13 RECALL (Write down answer)
2nd 13 Digits = 6080620335572		CLEAR ENTRY Change Decimal to 0 RECALL (Depress OVERFLOW LOCK to release keyboard)

FOR BUSINESS AND INDUSTRY

Complex problems are accomplished in seconds with the Friden Model 130 solid-state electronic desk calculator. It is noiseless, instantaneous, easy to use, and a pure delight to work with.

New vistas are open to the users of this amazing Friden calculator. Some of its outstanding features are: Shortcut Multiplication; Automatic Decimals for both multiplication and division; Instantaneous Back Transfer; Direct Tabulation; and Touch-one-key Automatic Squaring.

This is the only mechanical calculator in the world with automatic squaring plus automatic extraction of square root. In addition, it retains many of the other features of Friden fully automatic calculators.

Truly an adding/multiplying machine! Automatic step-over of multiplicand, plus repeat subtraction and back space feature, and the exclusive Visible Keyboard Check Dial make this an outstanding investment.

- The Product Applications Department at the Friden Educational Center, 31 Prince St., Rochester, N. Y., provides customers with new approaches to mathematical problems through the use of Friden fully automatic rotary and electronic calculating machines. These publications include: charts, booklets, manuals, and special applications.
- Charts have been compiled that provide short-cuts in figure handling for specific cases as well as general forms that occur in such industries as banking, insurance, and lumbering.

Booklets have been published that provide machine methods for handling the major portion of mathematical computations that arise in various industries and fields of endeavor. Extensive material has been compiled in engineering and statistics.

A complete listing of calculator applications and all other Friden literature may be obtained from Friden branch offices, located in all major cities, or by writing the Friden Educational Center, 31 Prince Street, Rochester 7, New York.

I N D E X

Page Page
Installment Loans 19, 20, 21
Installment Mortgage Payments 21
Integrals, Evaluating 31
Interest 18, 19
Accumulative Multiplication 6
Accumulative Squaring 8
Actuarial Problems 7, 23, 24
Addition 5
Addition of Quotients 7
Algebraic Calculations 5, 9
Area of a Sector 29
Calculating Algebraically 9
Chain Multiplication 6
Change Sign Key 3
Clear All Key
4, 11
Clear Entry Key 3Compound Interest18
Constant Dividend11
Constant Divisor11
Constant Multiplier11
Constants, Problems in 11, 14
Conversion of Denominate Numbers 28
Cosine Law36, 37
Credit Balances5
Cube Root 40, 41
Decimal Interlock 3
Decimal Point Key 4
Decimal Point Selector 4
Denominate Numbers 28
Determinants 34, 35
Display1
Division 7
Division Key 3
Double Precision Multiplication 43
Enter Key3
Equal Monthly Payments 20
Evaluating an Integral 31
Evaluation of a Polynomial 32, 33
Evaluation by Determinants 34, 35
Exponents 12
Geometric Series 25
Individual/Accumulated Percentages 16

Friden. Fine
 SANLEANDRO. CALIFORNIA

SALES AND SERVICE THROUGHOUT THE WORLD
A SUESIDIARY OF THE SINGER COMPANY

