
GE-625/635
8 GECOS-111

Time-Sharing System

PROGRAMMING REFERENCE MANUAL

~ Information
... \W Sys~~m? ..

Information Systems
Equipment

:- ·: : : : : : :_: :: : : : : : ' - - . ~ -
I I 1

GENERAL. ELECTRIC

I CP 8·1514

CPB-15'4

GE-625/635
GECOS-111

Time-Sharing System
PROGRAMMING REFERENCE MANUAL

PROGRAM NUMBER

CD600Tl .001

March 1968

INFORMATION SYSTEMS

GENERAL. ELECTRIC

PREFACE

The Programming Reference Manual provides methods for the
experienced programmer to further develop and extend the
time-sharing capabilities of the system via subsystems.

The text material includes subsystem organization,
information required to program for. the 600TSS, and how to
place a program in the System.

Individual chapters are devoted to command languages and
primitives, file formats, . .and the subsystems supplied by the
General Electric Company.

This manual is one in a series of time-sharing manuals. The
others are:

GE-625/635 GECOS III Time-Sharing System BASIC Language,
CPB-1510

GE-625/635 GECOS III Time-Sharing System Text Editor,.
CPB-1515

This manual was produced using. the General :Electric Remote
Access Editing System (RAES). RAES is a time-shared·.
disc-resident storage and retrieval system.with text-editing
and manuscript formatting capabilities·. The contents of the
manual were entered into RAES from a remote terminal
keyboard, edited using the system editing language, and
formatted by RAES on reproduction masters.

The index was produced using a computer-assisted
access indexing system. This system produces an index
source strings delimited at manuscript input time.

remote
using

Suggestions and criticisms relative to form, content,
purpose, or use of this manual are invited. Comments .may be
sent on the Document Review Sheet.in the back of this manual
or may be addressed directly to Documentation, B-90,
Processor Equipment Department, General Electric Company,
13430 North Black Canyon Highway, Phoenix, Arizona 85029.

@ 1968 by General Electric Company

(SM 6-68)

CPB-1514

1.

2.

3.

CONTENTS

INTRODUCTION•• 1

SI~LTANEOUS BATCH AND TIME-SHARING••••••••••••••••• 1
EASE OF EXTENSION BY USER•••••••••••••••••••••••••e• 1

SUBSYSTEM ORGANIZATION•••••••••••••••••••••••••••••• 3

PROGRAMMING FOR 600TSS •••••••••••••••••••••••••••••• 7

BASE REGISTER PROTECTION•••••••••••••••••••••••••••• 7
SUBSYSTEM DATA AREA AND FAULT VECTOR................ 7
SUBSYSTEM SWITCH WORD••••••••••••••••••••••••••••••• 9
SYSTEM MACROS • 9
SERVICE FUNCTIONS ••••••••••••••••••••••••••••••••••• 10

Keyboard Output •••••••••••••••••••••••••••••••• 11
Keyboard Output Then Input ••••••••••••••••••••• 12
Keyboard Input Last Line ••••••••••••••••••••••• 13
Return to Primitive.List ••••••••••••••••••••••• 13
Set Switch Word •••••••••••••••••••••••••••••••• 14
Reset Switch Word •••••••••••••••••••••••••••••• 14
Release Memory ••••••••••••••••••••••••••••••••• 14
Add Memory ••••••••••••••••••••••••••••••••••••• 15
Data from/to Core File ••••••••••••••••••••••••• 15
Obtain SNUMB••••••••••••••••••••••••••••••••••• 16
Obtain Processor Time and Time of Day •••••••••• 16
Pass List of Files to User ••••••••••••••••••••• 17
Terminal Type and Line Number •••••••••••••••••• 18
Pass Job to Batch Processor •••••••••••••••••••• 18
Internal Call to Another Subsystem ••••••••••••• 19
Pass UST to Subsystem •••••••••••••••••••••••••• 19
Return to System ••••••••••••••••••••••••••••••• 19

FILE I/O DERAILS•••••••••••••••••••••••••••••••••••• 20
Define and Access a Temporary File ••••••••••••• 20
Return a File •••••••••••••••••••••••••••••••••• 22
Space a Linked File •••••••••••••••••••••••••••• 22
Rewind-a Linked File ••••••••••••••••••••••••••• 23
Do I/O on User's File •••••••••••••••••••••••••• 23
Add Links To Temporary File.................... 24
Permanent-File Activity •••••••••••••••••••••••• 25
Create-Catalog Function •••••••••••••••••••••••• 28
Create-File Function ••••••••••••••••••••••••••• 29
Access-File Function ••••••••••••••••••••••••••• 30
Purge Catalog/File- Function.................... 32
Modify Catalog/File Function ••••••••••••••••••• 34

6 0 OTSS FILE USAGE •••• ·• 3 5
Temporary User Files Assigned by 600TSS •••••••• 35

-Input-Collector File (SY**) •••••••••••••••••••• 36

iii CPB~l514

4.

Source File (*SRC) • 3 6
Permanent Files Assigned by User ••••••••••••••• 37
Structure of the File System •••••••••••••••••••• 37
Catalogs and Files ••••••••••••••••••••••••••••• 39
Passwords...................................... 39
Permissions •••••••••••••••••••••••••••••••••••• 39
Concurrent Use of a File ••••••••••••••••••••••• 40
User's Contact with the File System •••••••••••• 40
File Usage by Subsystem Programs ••••••••••••••• 40
Getting File Entries Into and Out of the AFT... 40
Temporary Files •••••••••••••••••••••••••••••••• 41
Permanent Files •••••••••••••••••••••••••••••••• 41
Point I/O on the File •••••••••••••••••••••••••• 42

COMMAND LANGUAGE AND PRIMITIVES••••••••••••••••••••• 43

KEYBOARD INPUT MODES•••••••••••••••••••••••••••••••• 48
DESCRIPTION OF PRIMITIVES•••••••••••••••••••••••••••• 48

Format................ • 4 8
Primitives •••••••••••••••••• ~.................. 49

STARTUP PROCEDURE••••••••••••••••••••••••••••••••••• 51
EXAMPLES . OF· PROGRAM DESCRIPTORS. • 51

5. PROCEDURE FOR PLACING PROGRAMS IN THE SYSTEM •••••••• 55

6.

7.

PERMANENT PLACEMENT................................. 55.
Writing the Subsystem Program •••••••••••••••••• 55
Editing Program to GECOS III ••••••••••••••••••• 56
Assembling the Program Descriptor •••••••••••••• 57
Modifying the TSTRT Module..................... 58
Coordination of the Procedure.................. 58

TEMPORARY PLACEMENT.. • 59
Placement·.. • 59
Loading the Subsystem •••••••••••••••••••••••••• 59
Octal Patching •• ~~ •••••••••••• ~ •••••••••••••••• 60

DEBUGGING FACILITY••••••••••••••••••••~••••••••••••• 60

6 0 OTSS FILE ·FORMATS ••••••••••••••••••••••••••••••••• 65

SOURCE FILE••• 65
SY** FILE••• 66
TAP* FORMAT • 6 8

GE-SUPPLIED SUBSYSTEMS•••••••••••••••••••••••••••••• 69

INTRODUCTION•• 69
SUBSYSTEM DESCRIPTIONS•••••••••••••••••••••••••••••• 69

iv CPB-1514

BSED••• 69
HELP••••••••••••••••··~··••••••··~··••••••••••• 70
LIST•••••••••••••••••••••••••••••••.•••••••••••• 71
LODX •••••••••••••••• • ••••••• ·•••• • • • • • • • .• • • • • • • • 7 2
LOGOFF••• 74
NEW ••••••••••••• o •••• •. • 7 5
~EWUSER. • • • • • • • • • • • • • • • • .• • • • • • • • • • • .• • • • • • • • • • • • 7 6
OLDN.. • .• • • • • • • • 77
SA\7Eo •••••••••••.•• o............................ 80
STATUS •••••••••••••••••••••••••••• •·•............ 83

APPENDIX A SUBSYSTEM MACROS•••••••••••••••••••••••••••• 85

APPENDIX B OCTAL/ASCII CONVERSION EQUIVALENTS •••••••• •• 87

APPENDIX C COMMUNICATIONS CONTROL••••••••••••••• • • • • • • • 89

APPENDIX D GE-625/635 STANDARD CHARACTER SET •••• • • • • • • • 91

INDEX ••••••••••.••••••••••••••••••••••••••••• ·•••••••••••• 93

v CPB-1514

1. INTRODUCTION

The GE-600 Time-Sharing System (600~SS) is a feature of an
integrated batch/reIOC>te batch/time-sharing system . (GECOS
III). The time sharing portion of GECOS III is organized as
a privileged slave program and has a dynamically variable
but contiguous block of memory allocated to it. Thus, the
time-sharing function can be carried on in conjunction with
the normal batch load. The Time-Sharing System does not
occupy core if it is not in use; it does take a variable
amount of core if the system is being used. The primary
design objectives and features of the systems follow.

SIMULTANEOUS BATCH AND TIME-SHARING

This feature allows the user to develop time-sharing
applications without dedicating a complete GE-600 (or other
system). computer to this function. In many cases the initial
time-sharing load is small and would not justify committing
a large system solely to this function.

EASE OF EXTENSION BY USER

As in the batch ~ystem, it is necessary that the .user be
allowed to write programs for his unique applications. The
600 TSS is designed as an executive, or monitor, servicing
generic subsystems. The subsystems are analogous to slave
programs in the batch environment. BASIC and EDITOR are two
of the most notable subsystems within 600TSS. It is expected
that users will add capabilities via new subsystems to suit
their local installation requirements. The 600TSS has been
designed to minimize the effort required to generate and
install subsystems.

1
CPB-1514

2. SUBSYSTEM ORGANIZATION

. . .

A subsystem program consists .of. _two logica~ly. and~ physically
separate parts:

1. Program
2. Program descriptor

The program is the block of code to be executed. Its
organization is similar to that of a batch-environment slave
program. It can be written in any language whose object code
is loadable by GELOAD at system editor time. As many
subroutines as desired may be used, as well as
SYMREF,SYMDEF, BLOCK statements, and library subroutines.
The subsystem executes within the 600TSS core area with the
base register set around the code as loaded so the
subsystem is unaware of its relative position in core at
anytime. The following restrictions apply:

1. A data area of 10010 words must ·precede ·the ·subs;~{s~eni
coding. TSS uses this for bookkeeping during program
swap, register storage, and other items.

2. The derail (DRL) instruction is used to request 600TSS
service functions, which are analogous to the MME
functions provided for the batch environment. The DRL
instruction may only be used to communicate with the
600TSS Executive. No MME instructions are permitted.

The program descriptor consists of several blocks of data
that must be incorporated into the executive portion of
600TSS. This data serves two purposes:

1. Defines the name of the subsystem, its size, etc.

2. Defines command language and primitives.

This descriptor is generated by adding GMAP statements to a
block (.TPRGD) within the communication region of 600TSS.
The general layout of the program descriptor is shown in
Figure 2 (Chapter 4).

The program descriptor is itself physically separated into
two portions: (1) the program-descriptor proper, or primary
portion, and (2) the command-language/primitive list. Both
portions are assembled into the .TPRGD block.

3 CPB-1514

The primary portion of the program descriptor is a block of
data needed by 600TSS to identify the subsystem, determine
its size and file location, and to locate its
command-language/primitive list. The only part of this
required from the subsystem designer is the subsystem name
(in ASCII. lower-case alphanumerics), a pointer to the
command-language/primitive list for the subsystem, and the
number of command language words (which may be zero).

This primary portion of the program descriptor is fixed in
length, and must be placed in sequence with the descriptors
for other subsystems (at the beginning of block .TPRGD).

One or more command-language words for a given subsystem may
be recognized by the system. The command-language list for
the subsystem is pointed to by the program descriptor
proper. This list consists of the text of each
command-language word, an associated mask word, and a
pointer to the corresponding primitive(s) for each. The
command-language li$t always ends with a pointer to the
''start-up'' primitive (s). The list may be null, i.e., for a
subsystem with no build-mode command language. Such a
"degenerate" command-language/primitive list would consist,
therefore, of only the start-up pointer and the
corresponding primitive(s) for the start-up procedure.

The start-up procedure allows the subsystem designer either
to specify a.direct execution of the subsystem selected by a
user, or, optionally, to select other subsystems or perform
other preliminary operations before loading and executing
.the selected subsystem. For example, the BASIC subsystem's
start-up procedure initially calls another subsystem (OLDN)
to assign a source file and provide the OLD-NEW file-request
sequence. The second start-up primitive then places the
system in build-mode, to accumulate terminal input until a
command-language word is recognized.

The actual flow of control to or from a subsystem is
directed by the primit~ves that are specified for each
command-language word in a subsystem, and for start-up.
There are nine individual one-word primitives defined by the
system1 they are described in detail in Chapter 4·, ncommand
Language and Primitives". Primitives may be considered as a
high-level instruction sequence.that direct 600TSS in the
execution of sequences of subsystems, either when command
language is encountered or when a subsystem is initially
selected. The primary use of the primitives is to logically
combine several related subsystems into a larger system,
thus simplifying the system for the ultimate user at the
terminal. As in BASIC or EDITOR, this logical combining of
subsystems is apparent to the user.

4 CPB-1514

For the simple case of a subsystem with no command language
and a direct execute at start-up, the program descriptor
layout would be as follows:

subsystem name, in ASCII
BS--S 3

(used by 600TSS)
loc J_A) I Oino. of C-L wds.J

BSS

A
Al

4
(used by 600TSS)

ZERO AlLO
EXEC (execute subsystem)
POPUP (retu7n to previous level)

Program-descriptor
proper in sequence
with those for
other subsystems

)start-up pointer

]
Start-up and

end primitives

with the
start-up
pointed
in the·

Note that the primitives need not be contiguous
command-language list, as ·they are shown (the
pointer constituting the null list), since they are
to by the latter. However, both must ·be contained
.TPRGD block of the TSS Conununication Region.

The program-descriptor layout for the more complex situation
of a subsystem with command language is described in Chapter
4.

5 CPB-1514

3. PROGRAMMING FOR 600TSS

Writing a subsystem program for 600TSS is not significantly
different than programming in slave mode for the batch
system. The primary difference is that ·all MME functions
provided by GECOS are eliminated, and a similar set of
functions provided for time-sharing needs are supplied by
TSS Executive, via the derail (DRL) instruction.

BASE REGISTER PROTECTION

The subsystem program, while in execution, has the base
register set by 600TSS such that the subsystem cannot
reference any memory area not assigned to ito The base
register is always set to the user's current origin in
memory, .so that he is not aware of any changes in absolute
memory area due to program swapping.

SUBSYSTEM DATA AREA AND FAULT VECTOR

The Time-Sharing system requires a data area of 10010 words
in each subsystem for bookkeeping. This area must be at the
beginning of the program when execution begins, although it
may be moved during execution as explained in the service
functions "Release Memory" and "Add. Memory", in this
chapter. The loader normally reserves 64 10 words at the
beginning of a program and this area is usable for a portion
of the first 100 10 words required. Thus, a subsystem program
would normally start with a BSS 36 in order to reserve the
additional space required.

The first 14 words of this data area represent the fault
vector and are defined as for a GECOS slave, but the last
four words may not be used. ·A subsystem fault vector,
therefore, comprises words. 0 to 11 of the data area. These
words are used in pairs, one pair for each type of fault
which can be returned to the subsystem program:

7 CPB-1514

Words 0,1
Illegal OP-code fault
Zero-op-code fault
Command fault
Connect fault

2,3 Memory fault
4 1 5 Fault tag
6 1 7 Divide check

10,11 (octal) Overflow fault

Format of each word-pair:

First word . t-c ... (_IC_....)..__ ___ __.l _____ c---=-(I_R....:.)___.
Second word _ TRA Instruction

If a subsystem program causes one of the defined
optional-recovery faults, 600TSS checks the second word of
the corresponding fault-vector pair. If the second word is
not.zero, 600TSS stores the IC and indicators in·· the first
word of the pair.· If the second word is zero, 600TSS aborts
the subsystem program giving a message to the terminal. For
example, if a subsystem program wishes to recover fr.om
divide check and overflow faults the vec.tor would be set up
as follows:

0
1
2
3
4
5
6
7
8
9

TRA DVCK

TRA OVFLO

No recovery

No recovery

No recovery
Transfer to recovery
routine
Transfer to recovery
routine

The transfers, if any, must be stored in the fault-vector by
coding within the subsystem. They cannot be loaded. The rest
of the 10010 words in the subsystem data area are reserved
exclusively for 600TSS usage.

8 CPB-1514

SUBSYSTEM SWITCH WORD

A switch word is provided for each user to maintain status
or pass information from one subsyetem to another during
execution. The 36 bit settings may be modified and/or tested
by subsystem programs using the derails SETSWH (8) and
RSTSWH (9). The switch settings may also be set, reset, and
tested by the primitives defining the flow of .control of the
user-selected system. This joint a_cce~~ib~li~y of the
switch word provides the time-sharing subsystem designer
with the capability of having conditional execution of
primitives based on conditions set by a subsystem program.
To avoid interference with user-generated systems, those
systems issued by GE are restricted to bits 0-17, and users
are expected to restrict the additional usage to bits 18-35.

Present usage is~

0-14 not defined
15 OLD - NEW sequence
16 EDITOR
17 . Time-Sharing System

SYSTEM MACROS

(BASIC)

0 = no data on user's SY**
file

1 = valid data on user's
SY** file

A set of TSS macros are available to facilitate the writing
of 600TSS modules and subsystems. Two of these that would be
of use to the implementor of a normal subsystem are .ssDRL
and PRNTTY. The .SSDRL macro provides the symbolic
address-value equivalences for the service-function DRL
instructions (see the next· subsection)1 PRNTTY provides a
convenient facility for issuing short · messages to the
termina1.

The TSS macro library is loaded, at assembly time,
call LODM. A description of the function of and
sequence for each macro is described in Appendix A,
Macros".

9

by the
calling
·"system

CPB-1514

SERVICE FUNCTIONS

A subsystem program may request any one of many available
services from 600TSS Executive. Since it is prevented from
referencing any memory area outside that allocated and
protected by the base register, this request must be made by
an intentional faul~o The DRL functions and their associated
addresses followl:

Name

DIO
KOUT
KOU TN
KIN
RETURN
DEF IL
ABORT
SETSWH
RSTSWH
REW·
FILSP
RETFIL
RELMEM
ADDMEM
CORF IL
SNUMB
TIME
PASAFT
TERMTP
PDIO
SPAWN
CALL SS
USERID

TERMPG
PAS UST
MORLNK
NEWUSR
FILACT
SYSRET
STPSYS

Function

Do I/O on User's File
Keyboard Output
Keyboard Output Then Input
Keyboard Input Last Line
Return to Primitive List
Define and Access Temporary File
Abort
Set Switch Word
Reset Switch Word
R~wind a Linked File
Space a Linked File
Return a File
Release Memory
Add Memory
Data From/To Core File
Obtain SNUMB
Obtain Processor Time and Time of Day
Pass List of Files to Subsystem
Terminal Type
*Do I/O On a System File
Pass Job to Batch Processor
Internal Call to Another Subsystem
*Pass User-ID and Priority to

Executive
*Clean Up UST After User Termination
Pass UST to Subsystem
Add Links to Temporary File
*Log-on New User Without Disconnect
Permanent File Requests
Return to System
*Stop Execution of Master Subsystem

Address
octal decimal

1
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22
23
24
26
30

31
32
33
34
35
36
40
41

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20'
22
24

25
26
27
28
29
30
32
33

*This DRL function is privileged, or otherwise restricted,
and is protected against execution by a normal subsystem.

Table 1. DRL Service Functions

10 CPB-1514

Upon return to the subsystem all registers not specifically
modified by the DRL function are restored to their original
value and execution resumes at the first location after the
DRL or the calling sequence parameters.

A detailed description of the non-f ile-I/O service function
follows. However, those marked as restricted, in Table 1,
are not described here. The file-I/O service functions are
described in detail in Chapter 3 "File-I/O Derails". (A
600TSS system macro, .SSDRL, is available to provide the
equivalence between the service-function name and the
corresponding DRL address value. See Appendix A, "System
Macrosn .)

Keyboard Output

DRL KOUT . [2]
ZERO L(tally), L(char)

The field (L(tally)) points to a driver tally word pointing
in turn to a list of line TALLYB words which define each
line of output of ASCII characters to be sent to the
keyboard. The driver tally has the count of the line
tallies in the list. This procedure allows the user to
define scattered lines, not necessarily starting at word
boundaries.

It should be noted-that the Derail Processor utilizes the
tally words and that they are modified on return to the
subsystem.

The optional field L(char) points to a word containing up
to four characters that will be appended to the end of the
output defined by each line tally. These characters could be
line feed, carriage return, etc. If this field is not
present in the calling sequence, characters are not added.
If the field is present, the first character of zero
terminates _the appending of characters. In any case, no more
than four characters will be appended

The method used is to accumulate the user's output in a
buffer for eventual output to the keyboard. When the buffer
is full, output to the keyboard will be initiated. At this
point, execution of the subsystem will be inhibited and the
subsystem made eligible for swap. When the output is
complete, the program is eligible for execution again.

11 CPB-1514

Example:

DRL
ZERO
. .
•
•
•

DTAL TALLY
•
•

KOUT
DTAL,ENDC

LTAL,2

LTAL TALLYB LINEl,15
TALLYB LINE2,20

•
•
•

LINEl ASCII 4, THIS IS LINE 1
LINE2 ASCII 5,THIS IS SECOND LINE

•
•

ENDC OCT 012015177000
STAT BSS 1

This sequence will print two lines with three characters -­
line feed, carriage return, and rubout -- .-,appended to the · _,.
end of each line.

Keyboard Output Then Input

DRL KOUTN [3]
ZERO L(tally),L(char)

This sequence sends output to the keyboard device with an
anticipated reply. The L(tall~) and L(char) fields are
identical to those for the KOU sequence. In this case,
however, the Executive adds this output message to any data
that has accumulated in the keyboard output buffer and sends
the data directly to the keyboard device. The transfer of
data differs from the case of output only in that the line
is left open for a response. The response can be retrieved
by means of DRL KIN, described next.

CPB-1514

Keyboard Input Last Line

DRL KIN [4] .
ZERO L (dat) ,L (count)
ZERO L(status)

This· sequence retrieves the last line of input. Normally
this sequence would follow immediately the KOUTN sequence1
however, this is not necessary, and the DRL KIN may be
repeated to retrieve the same line of input as many times as
desired. The last line will remain in the buffer until some
output or additional input destroys it. Dat is the location
at which the string of input characters -rB to be storedo
Count is a word in which the count of characters moved will
be stored, in the lower part of the word. A zero character
count will be returned if there is no data in the input
buffer. The parameter L(status) is provided for future
capabilities. The purpose of the status word is to receive
the status of the line when it is passed back to the
subsystem for certain conditions, such as BREAK, DISCONNECT,
etc. In the present implementation the handling of these
conditions is done by the executive and the status word in
the subsystem is not altered.

Return to Primitive List

DRL RETURN [s]
This sequence indicates to the Executive that this subsystem
process has reached a normal termination. The Control module
selects the next primitive in the sequence defined within
the program descriptor and, based on this primitive,
initiates the next process. (Refer to the description of
primitives in Chapter 4.)

Abort

DRL ABORT

This sequence indicates to Executive that an abnormal event
has occurred in a process. If the user has previously
defined a file with the name ABRT, a core dump of the
subsystem will be written to t~at file. In any case, a
message is sent to the terminal stating that an abort has
occurred and the user is free to select a new system.

13 CPB-1514

)

Set Switch Word

DRL SETSWH [0]
A 36-bit switch word is provided for each user. This derail
provides a method of setting individual bits of this word.
The value of the Q register is ORed into the switch word.
Thus, any bit that is on or true is set true in the switch
word. Other bits are not disturbed. The value returned in
the Q register is the resultant setting of the switch word.
This provides a method of reading the switch word and_
determining a course of logic based on events in preceding
subsystem processes. Thus, if one subsystem process
encounters an abnormal situation, a prearranged bit may be
set and subsequent subsystems may interrogate the switch
word and take appropriate action. To obtain some measure of
discipline in the use of this feature, the first 18 bits
(0-17) are reserved for use of subsystems issued with the
Time-Sharing System. The lower 18 bits {18-35) are kept free
for user generated subsystems.

Reset Switch Word

DRL RSTSWH

This function is· similar to the SET SWITCH WORD except that.
each bit in the Q register that is on will be turned off in
the switch word. The resultant value will be returned in the
Q register.

Release Memory

DRL RELMEM

C(A) return location data area location
C\QJ no. words low no. words high

14 CPB-1514

This derail reduces the anount of memory assigned to a
subsystem program during execution. The number of words to
be released from the lower portion of the subsystem is in
the left-half of the Q register and the number of words to
be released from the upper portion of the subsystem is in
the right-half of the Q register. Memory is released only in
blocks of 1024 words. If the number of words specified
(either high or low) is not a multiple of 1024, the number
will be rounded. The address at which execution is to be
resumed is in the left-half of the A register and the new
location of the subsystem data area is in the right-half of
the A register. This last entry must be modulo 8 and both
addresses will be taken relative to the new base. The data
area location must be given, even if it is not to change.
(This derail may be used to change the data-area location
only, without releasing any meioory. This is the block of 100
words initially starting at subsystem zero.)

Add Meioory

DRL

C (A)
C(Q)

ADDMEM

return location

data area location
no. words h~gh

This derail is the same as RELMEM except that the value in Q
is interpreted as a request for additional memory at the
upper boundary. A subsystem may not obtain memory at the low
boundary. The number of words specified must be modulo 1024.

Data fromLto Core File

DRL CORF IL ~aj

C(A) ldat! loc. n I c (Q) k

A short block of core storage, called the core file, is
maintained for each user. It allows one subsy_s_t_e_m----to-- pass
data to another witho~t accessing a mass storage device.
This block of core is 10 words in length and may be
"written" or "read" by a subsystem using the CORFIL derail.

15 CPB-1514

The left-half of A contains the location within the
subsystem that the data is to be read into or written from.
The right-half of A contains the number of words (n) to be
transmitted. The value of n must be < 10. The left=half of Q
contains the number of the- core-file cell (i) at which
transmission begins. The core-file cells are numbered 1
through 10. The right-half of Q(k) indicates the type of
operation desired, i.e., "read" or "write":

k = 0 - transfer data from subsystem to core file
k = 1 - transfer data from core file to subsystem

Obtain SNUMB

DRL SNUMB

Where a ·subsystem wishes to spawn a batch job,· a unique
SNUMB is required. The Time-Sharing Executive issues one of
a sequence of numbers from 1 to 77779 and returns it in the
following format:·

C(A)I __ n~--n~_n ____ n ____ T ____ ~_J (in BCI)

The trailing character T in the BCI form serves to
distinguish this job and -its output as a Time-Sharing
initiated job. The subsystem program uses this number to
generate the input file for the batch job, using this same
number when the request.is made to pass the file to the
batch processor, i.e., DRL SPAWN (possibly. notifying the
user of the assigned SNUMB) •

Obtain Processor Time and Time of Dax

DRL
ZERO

TIME ~7]
L(date)

Returning from this derail, the.processor time used by the
current user, the time of day, and (optionally) the date are
returned, in the following form:

C(A) _p_rocessor time
C(Q) time of day

The unit of time is 1/64 of a millisecond.

16 CPB-1514

At location date, the date is placed, in ASCII, with slants
inserted between the values in the following fonn:

DATE IM M I D
+l . D I y y

where MM is the month
DD is the day
YY is the year

If the value of L(date) is zero, the date is not stored.

tass List of Files to User

DRL PASAFT ~8]
ZERO L (table) ,L (max)

where

0 17 18 35

n = maximum number of file names to be passed
(if o, all file names pass to the
requester)

This sequence places either the first n, or all, of the
user's file names in the area specified7 The fonnat of the
table passed back, at location table is:

Word 1
2
3

N*2
N*2+1

No. of active
file 1 - char
file 1 - char

•
•

file n - char
file n - char

files
1-4
5-8

1-4
5-8

Note: If the address value L(max) is equal to zero, all
file names will be passed (as well as if~ equals zero).

17 CPB-1514

Termin·a1 Type and Line Number

DRL TERMI'P

For some situations, it is necessary that the subsystem be
aware of the type of terminal that is connected. It would be
desirable to. assume that all terminals could.be made to look
the same by use of the ASCII character set. While this is
generally true, there are some essential features available
on terminals that would be utilized by different procedures.
This derail will return the line number (xx), in BCI, in the
right-most 12 bits of the A register and the terminal type
code (t) in bit positions 18-23. The codes for terminal type
will be the same as defined by the GERTS system.~

Code

1
2
3
4

0 18 35
x x

Terminal Type

(not presently defined for TSS)
(not presently defined for TSS)
(not presently defined for TSS)
Teletype

Pass Job to Batch Processor

DRL
ZERO

C(A)

SPAWN ~~
L(SNUMB),L(buffer)

0 O or 1

0 = immediate return
1 = return after batch job completes

C(Q) file-name ptr.I 0 I
The subsystem writes the file as an input job deck on a
linked file and QU points to the name. The file must have an
empty 320-word first block. The input deck (beginning with
the second block) must have SNUMB and ENDJOB as in a normal
card-image input deck, and must end with a GEFRC end-of-file
(control record of zero). The file is in BCI format.

*See GERTS Manuals CPB-1416, 1417, 1418

CPB-1514

18'

The SNUMB-pointer specifies the location of the SNUMB
obtained via DRL SNUMB. The buffer-pointer points to a
325-word work area provided by the subsystem. SPAWN
generates the information required by GEIN in this area and
writes it into the 320-word first block of the file.

Upon return to the subsystem, any error
indicated in the Q-register. The one-digit
right-justified in QU, is as follows~

0 - no error
1 - undefined file
2 - system loaded
3 - duplicate SNUMB
4 - SNUMB not given

Internal Call to Another Subsystem

DRL
ASCII

CALSS
1,NAME

condition is
error code,

The current (calling) subsystem is swapped out to the swap
file, td be resumed later when a POPUP primitive of the
called subsystem is executed. Internal calls may not be more
than three deep, i.e., nesting to more than two levels is
not allowed.

Pass UST to Subsystem

DRL PASUST ~~
ZERO L(buffer)

This derail copies the user's status table (UST), maintained
within the TSS Executive, to the buffer provided by the
subsystem. The TSS Communication-Region equivalence .LLNUE
defines the size of the UST. The user must be aware of the
format and content of the UST as currently defined by
600TSS. This DRL should be used carefully since this UST
definition may change occasionally.

Return to System

DRL SYSRET

This derail causes the subsystem to be killed; control
ret~rns to the system-selection point, thereby bypassing the
normal return via the primitives.

19 CPB-1514

FILE I/O DERAILS

Time-Sharing subsystem programs perform disc-or-drum file
activities using the following derail service functions:

1. Define and access a temporary file
2. Return a file
3. Space a linked file
4• Rewind a linked file
s. Do I/O on a user's file
6. Add more links to a temporary file
7. Permanent file activities

These functions are similar to and replace the MME functions
in the GECOS III batch system.

Define and Access a Temporary File

DRL DEFI~ [61
ZERO L(arg),L(stat)

arg

arg+l

filename, chars. 1-4}.

filename, chars. 5-8
in ASCII

0 5 6 16 17 18 19 35
arg+2 _I _a ___ I __ l_b&.l_c I __ d __ I

where

~ = device type as follows --
00 - DSU 270 (Disc)
01 - DSU 200 (Disc)
03 - MDU 200 (UNIVAC Drum)
04 - MDU 300 (Fairchild Drum)

b = 0 - use the standard TSS temporary-file device
I> = 1 - use the type of device defined in a

c = 0 for linked file -c = 1 for random file

d = number of links desired, in binary

20 CPB-1514

stat (2 words} -- status return in binary, right-justified
in word 1:

0 = successful
3 = no room in AFT
4 = temporary file not available
5 = duplicate file name
6 = no room in PAT

A temporary file can be requested either on a specific type
of device or on the standard TSS system device for
temporary files (bit 17, arg + 2).

If a specific device type is requested but there is not
enough space on that device, the request will be satisfied
from the standard device.

After the file space is obtained, the DEFIL function builds
the PAT entry and enters the file in the user's AFT.

Upon a successful return from this,function, the A-register
contains the following information:

Bits Meanin~

0-5 Device type

6-17 Number of words per physical block

- if bit 18 = o, then

24-35 Number of links in the file

- if bit 18 = 1, then

24-35 Number of blocks in the file

- if bit 19 = o, linked file

- if bit 19 = 1, random file

20-23 Unused

This information will also be
already-defined file (status= 5).

returned

21

for an

CPB-1514

Return a File

DRL
ZERO

where

RETFIL ~21
L(fileid) ,L(bu?f)

fileid (2 words) contains the file name
in ASCII, or a right-justified 777
in word 1 if all files (except
SY**) are to be returned

buff (BSS 380) is a work area used by the
system

When a temporary file · is returned, the file
PAT-entry space are released and the file deleted
AFT. When a permanent file is returned, the file
notified to deaccess the file, the PAT~entry
released and the,file deleted from the AFT.

space
from

system
space

and
the
is
is

NOTE: A file that cannot be found in the AFT is considered
by this function to be already released.

Space a Linked File

DRL
ZERO
ZERO

where

FILSP ~21
L(fileid) ,L(n)
L (stat) ,o

fileid (2 words) contains the filename in ASCII

n

stat

contains the number of 320-word blocks,
to be spaced (a negative value of n denotes
backspacing)

(2-words) is the status-return location

This function spaces a linked file forward or backward n
320-word blocks, depending upon whether n is positive or
negative, respectively. Loadpoint and end-of-file status
indications are returned. An undefined-file condition is
returned as device-busy status (major status 01).

If a request is made to space a random file, the requesting
system is aborted and an error message is sent to the
terminal.

22 CPB-1514

)
./

Rewind a Linked File

DRL REW ~o]
ZERO L(fileid),L(stat)

where

fileid (2 words) contains the filename in ASCII

stat (2 words) is the status-return location

This function rewinds the linked file
loadpoint status indication is returned. An
condition is returned as device-busy status
01).

specified. The
undefined-file
(major status

If a request is mad~ to rewind a random file, the requesting
subsystem is abo~ted and an error message is sent to the
terminal.

Do I/O on User's File

DRL DIO @~
Seek command
ZERO L(fileid),L(dcwl)
Read/Write command
ZERO L(fileid),L(dcw2)
ZERO L(stat),O

where

fileid (2 words) contains the filename in ASCII -
1 to 8 characters

dcwl -

dcw2

stat

IOTD L(rbn) 1 1

where rbn contains, for random files, the
relative block number (set by user) (This
word is always altered by I/O routines.)

IOTD L(data),n

where data contains the starting address at
which aa£a is to be read/written, and n is
the number of words.to be transferred -

(2 words) is the status-return location (See the
GECOS manual for the status codes.)~

*See GECOS III Manual, CPB-1518 •

23 CPB-1514

I/O commands the user need not be concerned about
giving commands for a specific device
type because the seek (34) command,
write (31) command, and read (25)
command will be accepted for all
devices, and the actual commands used
will be acquired for the particular
device

This function is for files that appear in a user's list of
files (AFT). It performs the equivalent of the MME GEINOS
and performs the indicated seek, read, or write, using the
master-mode routines. The subsystem is not eligible for
execution until the I/O is complete.

Normal status is returned except device-busy, as such. This
status· is used to notify the user that his file name is not
yet defined. Logical end-of-file is returned as major status
17. (True device-bu~y status is never returned by the GECOS
file system.)

If the terminal user does not have the necessary
permissions, or if an invalid relative block number is given·
for a random file, the requesting subsystem is aborted and
an error message is sent to the terminal.

Add Links to Temporary File

DRL MORLNK ~ ~
ZERO L(links),L(fileid)

where

links (0-17) contains the number of additional
links desired

links (18-35) contain, on return, the number of
links obtained (number requested or zero)

f ileid (2 words) contains the filename in ASCII

This function will acquire the additional number
requested if possible, and update the users entry
file.

of links
for the

24 CPB-1514

(

Permanent-File Activity

Grouped under DRL FILACT 30 are the following permanent
file functions:

Create Catalog (CC)
Create File (CF)
Access File (AF)

Purge Catalog (PC)
Purge File (PF)
Modify Catalog (MC)
Modify File (MF)

They are differentiated by a function number which is passed
in the upper-half of word 3 of the calling sequenceo The DRL
FILACT handles all permanent file requests with the
exception of file deaccesses. Permanent-file deaccesses are
handled by DRL RETFIL.

The following parameter descriptions are conunon to most of
the DRL FILACT cailing sequences. Following a calling
sequence in which one or' more of these parameters differ
from the conunon layout, the description of such parameter(s)
is given.

(l) buffer

buff er BSS 380

This buffer is required in all cases as file
system working storage.

(2) status return

0 11 12 35

._.___-'--_ ____. 2 wds.

I
Status code I I}

Upon return, a status code of other than 40008
indicates that the request was denied.

25 CPB-1514

Status codes:

No Errors
Name Not In System Master Catalog
I/O Error - Cannot Proceed
Permission Denied
File Busy
Incorrect Catalog/File Description
LLINK Space Exhausted
Device Type Undefined
LINK Space Exhausted
Non-Unique Name

4000
4001
4002
4003
4004
4005
4006
4007
4010
4011
4012
4013
4014
4036
4037
4040

Size Requested Less Than Current Size
Requested Space Exceeds That Allowed
Illegal Password
AFT Is Full
Duplicate Name In AFT
No PAT Space Available

(3) permissions (assigned or requested)

0 1 2 3 4 35
- - - - I

If corresponding bit is set:

r
w
a
e

=
=
=
=

General Read permission
General Write permission
General Append permission
General Execute permission

26 CPB-1514

(

· (4) options

0 1 17 18 30 35

Optional

Specific

Permissions

c1---- - - - - - device name:or class
l

Initial File Size Max. File Size
(For CF and MF only; otherwise unused)

user-ID (Chars. 1-6 in BCI)

user-ID (Chars. 7-12 in BCI)

+IaJeMml
0 1 2 3 4 5 6

•
•
0

user-ID (Chars. 1-6 in BCI)

user-ID (Chars. 7-12 in BCI)

r w a e p m

-1 (end of list)

If corresponding bit is set:

c = Contiguous allocation desired
(CREATE FILE only)

r.= Specific Read permission
w = Specific Write permission
a = Specific Append permission
e = Specific Execute permission
p = Specific Purge permission
m = Specific Modify permission

and device name or class is defined as:

Specific (named) device, in BCI -

35

e.g., DSl, where "DSl" would have been
assigned as a· specific device name in the
installation's GECOS-startup deck.

27 CPB-1514

Class of device (in bits 30-35) -

00 = DSU270 (larg~ disc)
01 = DSU200 (standard disc)
03 = MDU200 (UNIVAC drum)
04 = MDU300 (Fairchild drum)

or where

-1 (bits 18-35) denotes the file with the
most available space.

Create-Catalog Fwiction

DRL FILACT r3o]
ZERO O,L(arglist)
ZERO 2, L (buffer)

where

arglist ZERO L(status-return),O
ZERO L(cat/file desc),L(permissions)

ZERO L(options)

cat/file desc

USER'S
MASTER
CATALOG:

Name and
Password

Intermediate{.
Catalogs

(as below)

Catalog
Level
To Be
Created

user-ID (Chars. 1-6 in BCI)

user-ID (Chars. 7-12 in. BCI)

Password - always BCI blanks,
at this levelL for 600TSS

Password - always BCI blanks,
at this level, for 600TSS

•
•
•

Catalog Name (Chars• 1-6 in BCI)

Catalog Name (Chars.· 7-12 in BCI)

Password (Chars. 1-6 in BCI).

Password (Chars. 7-12 in BCI)

-1 (end-of-list)

28_

} 2 wds.

} 2 wds.

} 2 wds.

} 2 wds.

} 1 wd.

CPB-1514

(1) All names and passwords are left-justified with
trailing blanks.

(2) -1 in place of the user's-master-catalog name
indicates that the user-ID of the current terminal
~ is to be filled in by the derail processor.

This FILACT function, identified by the function-number "2",
creates the specified new catalog at the level indicated.
All existing intermediate catalogs must be specified in the
cat/file desc table (i.e., the complete catalog string).

Create-File Function

where

DRL FILACT
ZERO O,L(arglist)
ZERO 3,Ltbuffer)

arglist L(status return),O ZERO
ZERO
ZERO

L(cat/file desc) ,L(permissions)
L (options)

.USER'·s.
MASTER
CATALOG:

Name and
Password

Interme­
diate

Catalogs
(see cc
Funct.)

FILE.TO
BE

CREATED

cat/file desc

user-ID (Chars. 1-6 in BCI)

user-ID (Chars. 7-12 in BCI)

Password - always BCI blanks,
at this levelL for 600TSS

·Password - always BCI blanks,
at this ·1evel, for 600TSS

{ •
•
•

File name in ASCII (Chars. 1-4)

File name in ASCII (Chars. 5-8)

Password (Chars. 1-6 in BCI)

Password (Chars. 7-12 in BCI)

-1 (end of list)

29

}
}

}
}
)

2 wds.

2 wds.

2 wds.

2 wds.

1 wd.·

CPB-1514

(1) All names and passwords are left-justified
with trailing blanks.

(2) All entries are in BCI, except for the file
name.

(3) -1 in place of the user's master-catalog
name indicates that the user-ID of the
current terminal user is to be filled in by
the derail processor.

The Create-File function creates a permanent-file
description from the information specified in both the
cat file desc and options parameters and will acquire the
necessary i e space. The file name is not entered in the
user's AFT (see "Access-File Function").

Access-File Function

where

DRL
ZERO
ZERO

FILA.Cl'
L(alternate name),L(arglist)
4 ,L (buffer)

arglist ZERO L(status-return) ,1 for random/.2_ for linked file

ZERO L(cat/file desc),L(permissions)

altemate name

Altemate name in ASCII, or all }
2 wds.

zeros if no alternate naming desired

This two-word entry is used when a file is
to be accessed by a name other than that by
which it was created. That is, a file
created in the batch environment with a name
of more than 8 characters, or a file whose
name is the same as one already in the
user's AFT.

NOTE: When an alternate name is used, the
defined file name in the cat/file
description must be in BCI and the alternate
name in ASCII.

30 CPB-1514

USER'S
MASTER
CATALOG:

Name and
Password

user-ID (Chars. 1-6 in BCI)
2 wds

user-ID (Chars. 7-12 in BCI)
Password - always BCI blanks,

at this levelL for 600TSS 2 wds.
Password - always BCI blanks,

at this level, for 600TSS

Intermediate
Catalogs

(See CC
Funct.)

•
•
•

}
}

FILE TO
BE

ACCESSED

File name in ASCII (except when
2 wds.

an alternate name is given; then BCI
See alternate nameL above.l
Password (Chars. 1-6 in BCl)

I

2 wds.
Password (Chars. 7-12 in BCI)

-1 (end of list) } 1 wd

(1) All names and passwords are left-justified
with trailing blanks.

(2) All entries are in BCI, except for the file
name or alternate name.

(3) -1 in place of the user's-master-catalog
name indicates that the user-ID of the
current terminal user is to be filled in by
the derail processor.

The Access-File function places the specified file in the
user's AFT and sets the file busy consistent with the
permission(s) requested.

The file is placed in the AFT under its actual.file name or
under an alternate name, as indicated. (The effect of
alternate naming is restricted to the AFT associated with
the current user, and does not in ,;iny way change the · file's
definition in the file system.) An alternately-named file,
if returned (released from the AFT -- see DRL RETFIL), must
be returned under its alternate name.

31 CPB-1514

Note that files created through the DRL FILACT Create-File
function may be treated as either linked or random files.
Their intended use must, however, be specified in each
file-access request, as previously indicated in word 1 of
arglist.

Upon a successful return from this function, the A-register
contains the following information:

Bits Meaning

0-5 Device type

6-17 Number of words per physical block

- if bit 18 = o, then

24-35 Number of links in the file

- if bit 18 = 1, then
I

24-35 Number of blocks in the file

- if bit 19 = O, linked file

- if bit 19 = 1, random file

20-23 Unused

Purge Catalog/File Function

DRL
ZERO
ZERO

where

FILACT 30
0 ,L (arglist)
n, L (buffer)

arglist

n (function
number)

ZERO L (status return) ,o
ZERO L(cat/file desc),O

n = 8 - Purge Catalog
= 9 - Purge File

32 CPB.-1.514

USER'S
MASTER
CATALOG:

Name and
Password

cat/flle desc

user-ID (Chars. 1-6 in BCI)

user-ID (Chars. 7-12 in BCI)
Password - always BCI blanks,

at this levelL for 600TSS
Password - always BCI blanks,

at this level, for 600TSS

} 2 wds,

} 2 wds.

Intermediate{
Catalogs

(as below)

•
•
•

Catalog
or File

To Be
Pur-ged

--~~~~~~~~~~~~~~~~~~---

Ca~alog /Fi le Name (Chars. 1-6 in BCI)
2 wds.

Catalog/File Name BCI
Passwor

2 wds.
Password (Chars. 7-12 in BCI)

-1 (end-of-list) 1 wd.

(1) All names and passwords are left-justified
with trailing blanks.

(2) -1 in place of the user's-master-catalog
name indicates that the user-ID of the
current terminal user is to be filled in by
the derail processor.

At the file level, this function deletes the
description from the file system, and releases
corresponding file space. At the catalog level,
function deletes the named catalog and all catalogs
files subordinate to it. Any corresponding file space
released.

file
the

this
and
is

NOTE: Use.r's master catalogs cannot be purged under 600TSS.

33 CPB-1514

Modify Catalog/File Function

DRL FILA CT
ZERO O,L(arglist)
ZERO n,L(buffer)

where

arglist

n (function
number)

permissions

options

L(status return),O ZERO
ZERO
ZERO

L(cat/file desc) ,L(perrnissions)
L(options) ,L(newname)

n = 10 - Modify Catalog
n = 11 - Modify File

follows the coinllDn layout, except as
indicated wider (3) below, and is used
as follows:

(1) change the assigned general
permissions - the permission bits
(0-3) must specify the new set of
permissions (i.e., not just
additions)

(2) delete all general permissions -
the permissions word must contain
all zeros

(3) indicate no change of general
permissions - the permissions word
must contain a -1 (i.e., all 1 bits)

follows the common layout, and is used as
follows:

(1) chan~e . the assigned specific
permissions - the permission bits must
specify the new set of permissions
(i.e., not just additions)

(2) delete all specific permission (for
one user) - all permission bits must
be zero

34 CPB-1514

new name

(3) indicate no change - omit entry for
the user whose specific permissions
are to remain unchanged

(4) change size in Modify File - the new
ma:lcimum size (only) is indicated in
lower-half of options +l

New catalog/file name in BCI, or a
2 wdso

-1 if name chan_g_e not desiredo
New password in BCI, or a

2 wdso
-1 if password is not to be changedo

This function will modify the description of a catalog or
file, depending upon the function number specifiedo Unlike
alternate naming in Access File, the changes made by this
function are permanent.

600TSS FILE USAGE

Temporary User Files Assigned by 600TSS

The usage of standard temporary-user-files is described here
on the basis of what is done by the GE-supplied 600TSS
systems, primarily BASIC and EDITOR. The designer of a new
subsystem which requires a source file for each user may
select this usage, both for overall system consistency and
to take advantage of facilities already provided in 600TSS.

There are two standard temporary
user: (1) the input-collector
source file, *SRC.

35

files
file,

for
SY*°*,

each
and

terminal
(2) the

CPB-1514

Input-Collector File (SY**)

This file is automatically assigned to each terminal user by
the TSS Executive. All terminal input except command
language is collected on this file while the system is in
build-mode (see Build-Input primitive in Chapter 4). This is
the 'raw' data just as it is received from the terminal. The
collection of input is performed by the Line-Service portion
of the TSS Executive, that is, no subsystem is in execution.
Thus, the assignment of SY**, the collection of input data
on it, and the scanning of the input for command language
are automatic functions of 600TSS, provided that the
selected subsystem uses build-mode for the collection of new
or additional input destined for a source file. Examples of
the input are language statements in the case of BASIC, or
text in the case of EDITOR. The format of this file is
described in Chapter 6.

Source File (*SRC)

A source file (*SRC) is assigned to a user by the
(Old-New) subsystem. The OLDN subsystem is called by
first primitive in the startup procedure of both BASIC
EDITOR. OLDN produces the old-new file request sequence
OLD or NEW-, and.conditionally, OLD NAME-.

OLDN
the
and

The source file receives the 'edited' and/or merged version
of the file with which the user is currently working. For
example, if the user is writing a 'NEW' BASIC program, the
input collector (SY**) file contains·all of the raw input,
including any mistakes and corrections, other than keying
errors corrected by •@• or •cTRL/X".

When the user gives one of the BASIC commands, this causes
BSED to edit the data on SY** -- all corrections applied,
duplications removed, etc. SY** is then written to the
source file, *SRC, which is the copy that is listed, run,
and/or saved.

In the case of an 'OLD' BASIC program, the OLD file is
copied directly to the user's *SRC file. Any changes that
are typed are collected on SY** until a BASIC command is
given. This causes the SY** file to be edited and then
merged with the data on *SRC, and the new, merged copy
written to *SRC. Again, it is this new copy of the program
that is run, listed, and/or saved.

In the case of an OLD file, the user is always working · with
a copy of that file on *SRC -- either as-is, or modified by
SY** data and not the original. This provides an
automatic backup copy, i.e., the OLD (permanent) file.

36 CPB-1514

Permanent Fi'le·s· Assigned by User

The 600TSS never assigns permanent file space to a user
unless specifically told to do so by that user. Permanent
files are handled by the GECOS file system which is common
to all programs operating under the GE-600 Comprehensive
Operating Supervisor (GECOS).

Structure of· 'the· Fi.le system

The GECOS file system is described in detail
File-System reference manual, CPB-1513. The main
interest to the 600TSS user are repeated here.

in GECOS
points of

The GECOS file system is, in formal terms, a tree structure
of indefinite length whose origin is the
system master cata·1051. The primary nodes of the tree are
user 1·s· ma·ste·r ·c·ataloSs; the lower-level nodes are
subcatalogs createdy the user. The terminal points of the
structure are the files themselves. A schematic
representation of the file system's hierarchical structure
is shown in Figure 1.

37 CPB-1514

Legend

~ Denotes a file

YSTEM MASTE
CATALOG

@ Denotes a quick-access file

SUBCATALOG SUB CATALOG

All user-ID's must be unique within the system1 all
subcatalog and file names are automatically qualified by the
user's master catalog name and the names of any intermediate
subcatalogs. The system master catalog cannot be accessed by
the normal user.

*Identified by the user-ID.

Figure 1. Logical Structure of the GECOS File System.

38 CPB-1514

"
A catalog consists of a description containing catalog name,
pasAword, and permissions. A catalog cannot be read or
written since it contains no user data.

To the GECOS file system, a file consists of a description
containing file name, file size, password, permissions, and
the specification of the physical file space. The file
description is distinct from the physical file space which
may contain user data and can be read or written.

Passwords

Passwords can be attached to any catalog or file. A password
simply allows a user to traverse a catalog/file string. The
user can get to a given catalog or file only if he can give
the passwords for all higher-level catalogs in the string.
And, the originator of a given string must also give the
required passwords when traversing that string. However,
when traversing a string, a password must not be given if
none has be.en attached.

Permissions

Permissions, both general and specific for users, can be
attached to any catalog or file. When permissions are
attached at the catalog level, they apply to all subordinate
catalogs and files. The originator of a catalog/file string
has all permissions for that string, but must give all
applicable passwords.

The allowable permissions are:

READ
WRITE
APPEND
EXECUTE
PURGE

MODIFY

allows a file to be read (referenced)
allows a file to be written
(presently treated as WRITE)
(presently treated as READ)
allows catalogs and/or files to be
purged (specific permission only)
allows catalog and/or file definitions to
be changed (specific permission only)

39 CPB-1514

Concurrent Use of a File

Multiple concurrent readers (or executors) of a file are
allowed by the file system, but any other combination of
access-modes are mutually exclusive. The following table
shows how the file system accepts or rejects subsequent
access-request for the same file, based on the permission(s)
requested by the initial accessor of the file.

Initial
Accessor

READ
EXECUTE
WRITE
APPEND

Subsequent Access Requests
READ EXECUTE WRITE APPEND

OK
OK
x
x

OK
OK
x
x

x
x
x
x

x
x
x
x

User's Contact with the File System

The terminal user's contact with the GECOS File. System .is
through the Old-New (OLDN) and Save-Purge (SAVE} subsystems,
and possibly the ACCESS subsystem. ·

OLDN, when OLD is selected, writes the contents of the
permanent (OLD) file onto the user's source file, *SRCo SAVE
writes the contents of *SRC onto the named permanent file.
(See the descriptions of OLDN and SAVE .in Chapter 7.) . . In
the case of either subsystem, to "access" a permanent file
means to enter it into the· user's available-file table (AFT)
as explained in the following description of the AFT.

File Usage by Subsystem Programs

The 600TSS maintains a table of active files for each user.
Before any I/O can be done on a file, an entry for that file
must be placed in this table -- Available-File Table (AFT).

The AFT allows a complete file description to be kept in
core, thus minimizing the access time for these files. The
AFT also allows files to be identified by their file name
alone1 for permanent files the full file description may
consist of many catalogs and passwords. ·

Getting File Entries Into and Out of the AFT

Since subsystem programs perform I/O and related
via the file I/O derails, only the general use of
I/O derails is described here.

40

functions
the file

CPB-1514


~~~~yFiles 

DRL DEFIL (define and access a temporary file) creates a 
temporary file and places the file entry in the AFT. All 
temporary files defined by subsystems should contain at 
least one special character (i.e., not alphabetic, numeric, 
period or dash) in the file name. Since special characters 
are not allowed in permanent file names defined from a 
terminal, this avoids any conflict. 

DRL RETFIL (return a file) removes the file entry from the 
AFT and releases the file space. When a subsystem is 
finished with a file it should return it. All user's AFT 
files are released upon termination. 

Permanent Files 

DRL FILACT, function number 4 (access a permanent file) 
places the file entry in the AFT, and sets the file busy for 
the permission(s) requested. 

NOTE: This function does not create a file. Before a 
permanent file can be accessed it must have been created by 
DRL FILACT, function number 3 (create a p~rmanent file)o 

DRL RETFIL (return a file) removes the file entry from the 
AFT and sets it nunbusy" with respect to the current user. 

Doing I/O on the File 

After the file is placed in the AFT, the following can be 
executed: 

DRL DIO (Do I/O on ·a file) 

Reads or writes a file 

·DRL FILSP (Space a file) 

Positions a file forward or backward 

DRL REW (Rewind a file) 

Positions a file to its beginning 

DRL MORLNK (Add more links) 

Increases the size of a temporary file 

41 CPB-1514 



These are the only file I/O derails that affect or relate to 
the AFT and are the ones which will be most used by 
subsystem programs. The others, all of the FILACT functions 
except number 4, affect only the GECOS file system. 

42 CPB-1514 



4. COMMAND LANGUAGE AND PRIMITIVES 

In the design of many time-sharing programs, it is desirable 
that unique command language be recognized and that 
sequences of processes be initiated based on these commands. 
In 600TSS it is possible to define command language 
independently for each subsystem. Each command word has 
associated with it a list of primitives that are specified 
by the system designer. These primitives are interpreted by 
600TSS to control the processes implied when the command is 
recognized. Command language is recognized by 600TSS only. 
when the system is in the build-mode of keyboard input. The 
two keyboard input modes are described in "Keyboard Input 
Modes". 

The command-language list and primitives are incorporated in 
the 600TSS Communication Region (block .TPRGD), along with 
the primary portion of the program descriptor (refer to 
Chapter 2). · 

The primary portion of the program descriptor is arranged 
with those for other subsystems in a contiguous block · for 
rapid scanning. Table 2 shows the detailed format of an 
individual entry in the .TPRGD block for a single subsystem. 
Table 2 describes ~ach entry or entry-type shown in F~gure 
2. 

43 CPB-1514 



Program Descriptor Proper 

subsystem name in ASCII 

(the shaded portions are supplied by the system) 

Command-Language List 

t--~~~~----.~~~~~~~~~~)wor~-pair 
1--~~~~~~~~~~~~~~~}word-pair 

command word 1 

scan mask 1 

command word 2 

scan mask 2 

• 
• 

command word 

scan mask 

primitive pointer 

primitive pointer 

• 
• 

primitive pointer 

startup-primitive 

n 

n 

1 ** 
2 ** 

n ** 
pointer ** 

in same sequence as the 
word-pairs above 

always last, i.e. 
(n*3) +l from 
top of CL list 

** primitive pointers are half-word only 

Figure 2. Program Descriptor Format 

44 CPB-1514 



,, .. ----... -

Primitives 

primitives 

~1 

- one word each arranged in normal 
instruction-execution 
sequen.ce 

Figure 2. Program Descriptor Format 

45 CPB-1514 



Entry 

Name in ASCII 

Program size 

Entry point 

Load Size 

Initial Load 
Address 

Parameters 

Seek Address 

Comman·d Lan­
guage Pointer 

Description 

Name of subsystem to be used to identify 
the program in response to the user's reply 
to SYSTEM? 

Actual program size to be used in 
execution. The base register will be set to 
include this region. (Supplied by the 
system.) 

Address relative to zero that contains 
first executable instruction. (Supplied 
the sys tern. ) 

the 
by 

The size remaining when all leading and 
trailing zeros have been eliminated. This 
is used to reduce the size of the original 
copy of the program. (Supplied by the 
system.) 

The address of the first non-zero word in 
the program. (Supplied by the system.). 

Flags defining the · type of program: 
privileged, master subsystem, or normal 
subsystem. (See end of table.) 

Location on mass storage where the original 
copy is stored. (Supplied by the sys tern. ) 

Address of the first word of the command­
word/mask pairs. 

Number of Words The number of command-word/mask pairs. 
in Command 
Language 

Program 
Statistics 

Statistics kept by 600TSS Executive re­
garding usage of this program. 

46 CPB-1514 



Command Word 
and Mask 

Word pairs defining the command-language 
word and number of characters in the word: 

Primitive 
Pointers: 

command word 

xx xx 
xx 
xxx 

mask -
0 

777777 
777 

The mask is used in the CMK instruction to 
remove irrelevant trailing characters from 
the comparison scan of input data. The 
command words, of up to four characters, 
must be in ASCII. 

Address of groups of primitives to be 
,executed when a command language word is 
encountered. These pointers are in the same 
order as the command language words. 

Primitives See 0 Description of Primitives" for defini­
tion of the primitive format. 

Startup 
Primitive 
Pointer 

Bit 
Bit 
Bit 
Bit 

The last primitive pointer. This points to 
the block of primitives to be executed when 
the program is initiated from some source 
by a CALLP primitive. 

PROGRAM-DESCRIPTOR PARAMETER DEFINITIONS 

18-32 
33 
34 --
35 

Not defined 
Patches are in patch table 
Do not set base register on dispatch 
Permitted privileged derails 

Table 2. Program-De~criptor Entries 

47 CPB-1514 



KEYBOARD INPUT MODES 

Two modes of keyboard input are available to a 600TSS 
subsystem. They are the direct-mode and build-mode. 

In the direct-mode, the subsystem program in execution 
requests input. The requested input passes directly to the 
subsystem and no scan or interpretation is made by the 
600TSS Executive. Thus, while in this mode there is no 
recognition of commands by 600TSS. The subsystem program 
can, of course, interpret the input, and take appropriate 
action. .... 

In the build-mode no subsystem program is actually in 
execution and input is under control of 600TSS. All input is 
collected and written to an internal file (SY**) maintained 
for each user. Each line of input is · scanned for command 
language while in this mode. When command language is found 
the execution of the associated primitives is initiated. The 
build-mode.of input is initiated. by the primitive .Build 
Input. 

DESCRIPTION OF PRIMITIVES 

Format 

Each primitive occupies one 36-bit word. The primitives, 
once initiated, are normally executed . in sequence. Some 
primitives allow conditional transfer of control. These 
cause the execution to continue with another primitive at 
the specified location. The format of a single primitive is 
P, N, A, where 

P is the primitive operation 
N. is an optional integer argument 
A is an optional address 

Macros exist for expansion of the primitives· into the proper 
machine-word format. 

48 CPB-1514 



Primitives 

G CALLP a 

This primitive transfers control to the named 
subsystem program. The 600TSS finds the startup 
sequence in the program descriptor of the called 
program and takes its next primitive from this 
list. This CALLP primitive may occur in any list of 
primitives of a program descriptor and will 
interrupt the execution of primitives from the 
present list. However, it is normally necessary 
that control be returned to that level after the 
series of functions performed by the called program 
are completed. The location of the primitive when 
the CALLP was encountered is saved in a pushdown 
list in the user-status table~ Thus it is possible 
to have' several levels of calls and to be able to 
resume. operation at a previous level. The primitive 
POPUP will resume operations at the previous level. 

o EXEC 

This primitive initiates the loading and execution 
of the current subsystem program. This is 
accomplished by placing this job in the new 
interaction queue for the allocator. When the 
subsystem program has completed its functions, the 
subsystem returns control to the Executive via a 
DRL RETURN operation. This causes the next 

_primitive in sequence to be executed. 

o BIN 

This primitive initiates the building of input. 
While in this mode, 600TSS reads and accumulates 
data on a collection file (SY**) for a given user-. 
While in this mode, each line of input is scanned 
for the command language associated with the 
subsystem. If no command language is found, 600TSS 
accumulates the input in a buffer and dumps it when 
required to the user's input collector file• If a 
command word is recognized, 600TSS Executive does 
the necessary housekeeping before the command is 
executed. Note that once the Build Input pri~itive 
is encountered, there is no "next" primitive 
implied. The next primitive will be defined when a 
command word is encoun.tered. 

49 CPB-1514 



e POP UP 

This primitive indicates that processi~g at this 
level is completed and that processing at the 
previous level is to be resumed. The 600TSS obtains 
the previous set of pointers from the user-status 
table, obtains the next primitive and continues the 
flow of control from that point. If the previous 
level does not exist, that is, this was the first 
level of control, POPUP calls the system routine 
which asks the user which subsystem he wishes to 
select next. All files defined during previous 
calls remain defined. 

e IFALSE n,a 

This primitive provides for conditional execution 
of another block of primitives. The conditional 
test· is based on the subsystem switch word (see 
Chapter ,3). The interpretation is, "If bit n is 
false (off), transfer control to the bloclt of 
primitives at location a". If the test is true 
(on), control passes to the next primitive in 
sequence. This function allows . considerable 
interaction· between the execution . of subsystem 
programs and the interpretation of primitives. A 
subsystem can, via the appropriate derail, set or 
reset these switches. Bit positions are 0-35 
counted from left to right. 

• IFTRUE n,a 

The interpretation of this primitive is the same as 
!FALSE, except that transfer of control passes to· !. 
if the test is true (on). 

• STFALS n,a 

This primitive provides the capability of setting 
the switches in the individual user-status-table. 
This allows considerable interaction with the 
subsystem programs since they can also test these 
switches. The subsystem program can then execute 
different blocks of code based on the setting of 
switches made by the primitives, which, of course, 
could be different for different sequences of 
primitives. The interpretation of the above 
primitive is, "set bit n false (off) in the present 
user-status-table and transfer control to the.block 
of primitives starting at location a". 

50 CPB-1514 



e STRUE n,a 

The interpretation of this primitive is the same as 
STFALS, except that the switch bit is set true 
(on). 

STARTUP PROCEDURE 

One set of primitives is always part of the program 
description for each subsystem program. This is the startup 
procedure that is used to initiate the pxocess when a 
subsystem is selected. This provides potential flexibility 
in allowing initialization procedures before the subsystem 
program is executed~ 

EXAMPLES OF PROGRAM DESCRIPTORS 

Two examples of subsystem program descriptors follow, 

Example 1: 

This subsystem, AB, has no command language and is to 
be executed directly when selected. When· the subsystem 
completes its fwiction control is to be returned to the 

·previous level. The system designer must supply only 
the program name , a pointer to the null 
command-language list, a pointer to the startup 
procedure, a primitive to cause execution of the 
subsystem, and a second primitive to cause control to 
return to the previous level. This sequence is adequate 
for many subsystems placed into 600TSS. The program 
descriptor is shown in source-language form (utilizing 
the PRGDES macro) : 

51 CPB-1514 



• 
(program descriptors) 

• 
• 
• 

PRGDES AB,ABCL,O 

• 
• 
• 
• 

Program descriptor 

(name, command­
language ptr., no • 
of command-language 
words) 

(end of program descriptors) 
• 

ABCL ZERO ABPRIM 
• 
• 

ABPRIM EXEC. 
PO PUP 

Example 2: 

Pointer to startup 
primitive 

Load and execute 
Return to previous 
level 

The subsystem COMP has four command-language words:· 
LIST, GO, MERGE, and BYE. It calls ona subsystem FILE 
in the startup procedure, and calls . the subsystem's 
LIST and MGR during execution of command language. The 
COMP program is executed only upon receipt. of the 
command· GO. (During execution of COMP, it is, of 
course, possible for that program to. recognize certain 
direct-mode input as its own "commands".) 

Note that in primitives P2 and P3, bit 17 and bit 18 of 
the user's switch word are referred to, respectively. 
The significance of bit 17 is assigned by 600TSS: if 
on (true) valid data exists on SY**; if off (false) no 
valid data exists on SY**• This bit is set on or off 
automatically when the system is in build-mode. The 
significance of .bit 18, however, is assigned by the 
subsystem in question, also bits 19 through 35. 

52 CPB-1514 



COMP CL 

PROGRAM DESCRIPTOR 

c 0 M 

COMP CL 1 
• 
• 

COMMAND LANGUAGE 

L I 

000 000 

G 0 

000 000 

M ·E 

000 000 

B y 

000 000 

Pl 

P2 

P3 

P4 

P5 

s T 

000 000 

777 777 

R G 

000 000 

E 

. 000 777 

(list) 

(go) 

(merge) 

(bye) 

(startup) 

53 

Pl 

P2 

P2.l 

P4 

P3 

P3.l 

P5 

p 

4 

PRIMITIVES 

CAL LP LIST 

·BIN 

IFALSE 17,P2.l 

CALLP MRG 

EXEC 

POP UP 

IF TRUE 18,P3.l 

CAL LP MRG 

BIN 

CAL LP FILE 

BIN 

CPB-1514 





5. PROCEDURE FOR PLACING PROGRAMS 
IN THE SYSTEM 

Subsystem programs may be placed in the Time-Sharing System 
either permanently or on a temporary basis. The temporary 
placement of a subsystem does not require an edit of 600TSS 
or construction of a program descriptor. This provides a 
more convenient means of loading and checking out a version 
of a subsystem still under development. Since some of the 
procedures required for permanent placement of a subsystem 
are also required fo.r temporary placement, the former is 
described first. , 

PERMANENT PLACEMENT 

There are four steps necessary to placing a subsystem 
permanently. in the Time-Sharing System: 

1. Write and assemble the program. 

2. Edit into the GECOS III System. 

3. Prepare and assemble the program descriptor and 
command-language/primitive list into the 600TSS 
Communication Region. 

4. Modify and reassemble the TSTRT module of 600TSS to 
cause the subsystem to be included in 600TSS 
ini ti aliz a ti on. 

Step (1) summary follows and steps (2) through (4) are 
discussed in detail • 

. writing the Subsystem Program 

The several restrictions and available facilities for 
writing 600TSS subsystem programs, discussed in previous 
sections, are summarized here: 

o An unused data area of 10010 words must precede the 
subsystem coding, for use by 600TSS. Therefore, the 
first storage definition statement must be at least 
a BSS 36. The 64 words normally reserved by the 
loader can be used as part of the required area. 

55 CPB-1514 



e If it is desired that the subsystem process any or 
all of the faults from which recovery is possible 
under 600TSS, coding to store the .fault-vector 
transfers must be included in the subsystem. 

They· ·cannot be loaded. 

• No MME instructions are permitted. The analogous 
DRL functions defined by 600TSS must be used. 

• For coding convenience, two macros are available 
for.general use. These TSS macros are called by 
LOOM .G3TSS. Then the macro call. .SSDRL provides 
the derail address-value/mnemonic equivalences. The 
macro P:RNTTY causes a message to be printed at the 
terminal; the format of this macro is: 

PFNTTY n,(message),k 

where n is the number of characters in the message, 
and k Tcptional) is a pointer to a word containing 
control characters to be affixed to the end of the 
line (CR, LF, NULL, etc.)~ The length of the 
message is limited to the space available on the 
punch card between the !!. and k fields. 

The appendix "System Macros" describes these and 
other available 600TSS macros. 

e All character input/output, file names, etc. must 
be in ASCII. 

Editing Program to GECOS III 

Editing to the GECOS III System is performed by the standard 
System Editor procedure. Briefly, the deck setup is as 
follows: 

$SYSLD 
$LOWT.aOAD 
$OPTION 
$NOLIB 
$OBJECT 

• 

CATALOG=.TSxxx 

NOSETU 

program-binary decK(s) 

• $DKEND 
$ENTRY ee ••• e 
$EXECUTE 
$ENDLD 

56 CPB-1514 



The 600TSS catalog names are prefixed by .TS so the user 
need select for his subsystem a three-character identifier 
(xxx) that is unique only among the 600TSS suhsystems. When 
placed with the rest of the subsystems, the deck(s) are 
edited into the GECOS III System. 

Assembling the Program Descriptor 

The program descriptor and command-language/primitive lists 
must be constructed next. Chapter 4 gives the format. These 
must he assembled into the 600TSS Communication Region deck, 
CD600Tl.001, TSS-TSSA, and specifically within block 
.TPRGD. The definition of .LNPD, number of entries in the 
program descriptor list, may also need to be modified if the 
number of entries has been exhausted. 

An inspection of'the listing indicates the required position 
of the program-descriptor proper, and the conventional 
placement of the ~ommand-language and primitive lists. The 
program descriptor must be contiguous with the other program 
descriptors; the command-language/primitives may be placed 
anywhere following the last descriptor. 

The PRGDES macro is provided for constructing the program 
descriptor: 

where 

PRGDES x, y, z, n 

x = subsystem name 
y = command-language pointer 
z = number of command-language words 

n=O - EXEC primitive exists in list 
~a - no EXEC primitive exists in list 

(e.g., only CALI~P' s used) 

Also, each of the primitives is generated by a.macro called 
as follows: 

CALT ... P 
EXEC 
BIN 
PO PUP 
I FALSE 
IF TRUE 
STFALS 
STRUE 

a 

n, a. 
n, a 
n, a 
n, a 

Call subsystem a 
Execute program-
Build Input (go into build-mode) 
Return to previous control level 
If bit n false, go to a 
'If bit n true, go to a-

. Set bit-n false, go to a 
Set bit n true, go to ~-

57 CPB-1514 



Modifying the TSTRT Module 

Lastly, the 600TSS deck CD600Tl.015 1 TSS-TSTRT must be 
modified and reassembled so that the new subsystem is 
initialized and made known to tb.e TSS Executive. A 
three-word entry to the table IN900 is made as follows: 

word 1 - ASCII 
2 - BCI 

1, name Subsystem name 
Catalog name 

3 - ZERO 
1, .Tsxxx 
parameters Bit 35 = privileged 

program 

Bit 34 = master 
subsystem 

If at any time it is not desired that a subsystem be 
initialized at load time, a zero patch at word 1 of the 
IN900 entry for that subsystem will suppress its inclusion 
in the TSS program·file and initialization of its program 
descriptor. 

Coordination of the Procedure 

It is important that the steps for placing a program in the 
system are well coordinated. The subsystem may be edited to 
GECOS III (step 2) and the program descriptor assembled 
(step 3) at any time, but·these must have been performed 
before -TSS-TSTRT is modified and the system reloaded, or 
the 600TSS initialization will abort. 

TEMPORARY PLACEMENT 

The procedure for temporarily loading and 
developme11.tal subsystem, without doing 
system, utilizes the LODX subsystem. Octal 
made after loading and prior to execution. 

checking 
an edit 
patches 

out a 
of the 
may be 

In addition to its use in checkout, LODX might also be used 
to load programs not integrated into 600TSS, or to load 
little-used 600TSS subsystems. 

58 
CPB-1514 



Placement 

The subsystem program portion is written and assembled as 
for permanent placement. (The program descriptor need not be 
assembled; it will not be referenced. Do not modify TSTRI'.) 
The following steps are then performed: 

Create a random permanent file using ACCESS. 
subsystem is stored and referenced from this file. 

The 

e Submit the program deck(s) as a GELOAD activity to GECOS 
III with the following deck set-up: 

$OPTION SAVE/prog-name,NOGO 
0 

• 
' . other control cards 

subsystem deck(s) 
• $EXECUTE 

$LIMITS 
$PRMFL H*,,R,cat-name/filename 
$ENDJOB . 

Loading the Subsystem 

After submitting the decks as a GELOAD activity, the user 
may have the subsystem loaded and start check-out from a 
terminal. 

In response to SYSTEM?, specify LODX. For FILENAME?, give 
the filename specified on the $PRMFL card. If patching is 
desired type an asterisk as the second field preceded by a 
comma. 

Examples: 

FILENAME? Al23 
FILENAME? Al23,* 

59 CPB-1514 



Octal Patching 

If the asterisk was typed as part of the response to 
FILENAME?, the program is loaded and a carriage return, line 
feed, and question mark are given. The user then may type in 
patches in one of the following forms: 

1. ?address patch 
2. ?address patchl,patch2, ••• 

In both forms, the address and patch must be separated by a 
single blank. All addresses and patches must be in octal, 
and the addresses are relative to the load map produced when 
the file was written. In the second type, sequential patches 
may be given beginning at the specified address. In this 
form, the patches are comma-separated and as many may be 
given as will fit on the line. Leading zeros need not be 
typed. 

A type-in of DONE indicates that patching is completed: 

? DONE' 

The subsystem·program is then executed. 

DEBUGGING FACILITY 

A standard debugging subroutine is provided for inclusion in 
a subsystem during checkout. It may be used with a 
subsystem that is placed in the system either temporarily or 
permanently. 

Title: Terminal Debug Subroutine (TDS) 

Purpose: 

The subroutine aids in checking out a 600TSS subsystem· by 
allowing the user to gain control at selected locations 
within the subsystem. When TDS is in control at these 
locations, the user may display and/or patch selected areas 
of the subsystem and then either return to the subsystem 
normally, or to a specified location within the subsystem. 

60 CPB-1514 



Usage During Subsystem Preparation: 

The subsystem to be checked out must contain a SYMREF to 
TDS. At each location where cont:rol is to be gained by the 
user, the instruction: 

XED TOO 

must be inserted and assembled with the subsystem. Then when 
the subsystem is either edited to GECOS-III or submitted . as 
a GELOAD activity, a binary object deck of the TDS 
subroutine must be included. 

Usage During Subsystem Checkout: 

The user calls the subsystem to be 
procedure as would ordinarily be 
locations at which he indicated 
control (XED TDS instruction) are 
message will appear at the user's 

xxxxxx FUNCTION? 

checked out by 
used. When any 

that he wished 
executed, the 

terminal: 

the same 
of the 

to gain 
following 

where.xxxxxx is the octal address, relative to subsystem 
zero, at which the XED instruction is located. 

The possible responses to this message are listed below 
along with their respective results. To initiate 
transmission, all responses must be followed by a carriage 
return. 

61 CPB-1514 



Response: S 

This response indicates the user wishes a:snap, or display 
of certain memory locations. The TDS subroutine responds 
with a line feed and a question mark indicating it is ready 
to accept parameters. The parameters may be in any of the 
following forms: 

aaa,nn 

aaa-bbb 

where aaa and nn are octal numerics implying that 
nn locations -should be displayed beginning at 
IOcation aaa -
where aaa and bbb are octal numerics implying that 
all lo'Citions from .!!! to ~' inclusive, are to be 
displayed 

aaa where aaa is an octal location which is to be 
displayed 

DONE indicates the user is finished with the Snap 
function and wishes to select a new function 

Only one set of parameters may be specified at a time, and 
when the request is satisfied the TDS subroutine responds 
with another question mark indicating that a new set of 
parameters may be typed. 

Response: P 

This response indicates the user wishes to patch, or replace 
the contents of, selected locations within the subsystem. 
The TDS subroutine responds with a line feed and a question 
mark indicating it is ready to accept parameterso The 
parameters may be in any of the following forms: 

aaajzfbbbb 

DONE 

where aaa is the octal location at which the 
octal patch bbbb is to be made. Fields aaa and 
bbbb must be--Beparated by one blank:---where 
consecutive locations beginning at aaa are to be 
patched, successive patches may be given in the 
form of comma-separated fields. The patch fields 
(bbbb,cccc, ••• ) may contain up ·to 12 octal 
characterS which will be right justified and 
stored in the respective locations in memory. 

indicates that the user is· finished with the 
patch function and wishes to select a new 
function 

62 CPB-1514 



Responses X 

This response indicates that the user wishes to display the. 
contents of all workinq registers. These include the AQ, the 
E, and·all index-registers. 

The format of this printout is to be supplied. 

Responses D 

This response indicates that the user wishes to delete this 
particular call to TDS by storing a NOP instruction· over the 
XED TDS instruction. 

Responses R 

This response causes control to return to the subsystem at 
the location following the XED TDS instruction. 

Response: Rxxxx 

This causes a special return to the subsystem at location 
~'where~ is an octal address·within the subsystem. 

Error Indications and Messages : 

1. When illegal input is typed in response to FUNCTION?, 
the same request reappears. 

2. ILLEGAL INPUT - RETYPE 
illegal input typed as 
Patch functions. 

is typed in response to 
parameters to the !nap and 

63 CPB-1514 





6. 600TSS FILE FORMAT,S 

SOURCE FILE 

The standardization of source-text files allows more than 
one system to process these files. For example, using a 
standard file format allows EDITOR to operate on BASIC text. 
All text files are maintained as character strings in ASCII 
format. They are linked files that contain block and logical 
record control words that allow the files to be accessed by 
GEFRC. The standard source file used by GE-released 
subsystems is named *SRC. 

Format: 

1 

20 

297 

0 

Initial 320-word block 

n 

0 

} 
------

) 

n = 318 if more blocks 
follow 

n = 319 if this is final 
block 

20 words of file-header 
information (content not 
defined) 

ASCII text and control 
characters 

Second and succeeding 320-word blocks 

block-no. n 

317 0 

0 

} 

65 

n = 318 if more blocks 
follow 

n = 319 if this is· final 
block 

ASCII text and control 
characters 

CPB-1514 



The ASCII consists of packed strings of 9-bit characters. 
The first character of each string is interpreted as a 
character count, in binary, of the number of characters 
follow~ng in the string. The next character following the 
string is another character count of the succeeding string. 
A character count of zero followed by a character of 036a 
indicates the end of data in a block. The ·Value of n (318 or 
319) in the block control word (word 1 of the block) 
indicates whether or not succeeding blocks follow. A 
character string does not extend from one block to another. 

SY** FILE 

SY** is a random file used by the system to accumulate input 
from a terminal while in the build mode (see Chapter 3). The 
file content is written by the Line Service module of 
600TSS. 

Format: 

All non-empty _r~cords except the lC1.st 

Record 0 1718 35 
Control Number of Words Relative Block Count 
Word 

Number 
of 

Words 

Character Count O~--------------~Ob 

9-bit ASCII characters 

Character Count 0------------------0b 

9-bit ASCII characters 

Character Count O~--------------~Ob 

9-bit ASCII characters 

Count 
begins 

with zero 

40 
Words/Disc 

or 
64 

Words/Drum 

b (bit·35) = 1 if the string contains 80 characters with no 
carriage return; = 0 otherwise 

66 CPB-1514 



No. of 
Words 

Final (non-empty) record 

0 1718 35 
Number of Words Relative Block Count 

Character Count O~~~~~~~~-Ob 

9-bit ASCII characters 

Character Count O~~~~~~~~-Ob 

9-bit ASCII characters 

Character Count 777777 End of File 
Indication 

~ (bit 35) = 1 if the string contains 80 characters with no 
carriage return; = 0 otherwise 

(a command word was the 

0 1718 35 
Number of Words Relative Block Count 

Character Count 777777 (eof) 

words 

NOTE: An empty record may or may not be the first record in 
file. 

67 CPB-1514 



TAP* FORMAT 

TAP* is the punched paper tape input-collector file which 
contains the unedited PPT input. It is a random file, with a 
maximum of 2 links. 

1) Format from Disc - 40 words/block: 

0 1718 35 
Number of Words Relative Block Count bit 33 

~~~--bit 34 

31 wd.
max.

m

9-bit ASCII Characters

m = character count of input data block (<120) - may be zero
x = 1 if timing error occurred
y = 1 if last block

2) Format from Drum - 64 words/block:

0 1718
Number of Words Relative Block

m

31 wd.
max. 9-bit ASCII Characters

31 wd.
max. 9-bit ASCII Characters

35
33
34

m
x

=
=

character count of input data block (<120) - may be zero
1 if timing error occurred

y 1 if last block

CPB-1514
68

7. GE-SUPPLIED SUBSYSTEMS

INTRODUCTION

A significant part of the GE-600 Time-Sharing System is
implemented in subsystem form, rather than as part of the
600TSS Executive. These subsystems are, in general,
available for use as part of a user-designed system within
600TSS. A brief functional description of each subsystem
follows.

SUBSYSTEM DESCRIPTIONS

BSED

Title: Basic-Edit

Purpose:

Sort into ascending numerical sequence any lines
BASIC-statement format) on input-collector (SY**) file
if a source (*SRC) file exists, merges these new lines
that file without disturbing its numerical sequence.
line numbers which correspond to existing lines on
source file replace or delete the existing lines.

Usage

(in
and,
into

New
the

BSED is not selected directly by a user's response to the
"SYSTEM?" request, but it is called as a result of commands
issued while in the BASIC system. When one of the commands
RUN, LIST, DONE, or SAVE is entered. at a terminal after the
user has entered new source language statements, the BSED
subsystem is called. If no new source language lines· have
been entered since the last command was given to the system,
BSED will not be called as the source file is assumed to be
in proper order.

69 CPB-1514

Error Comments:

IMPROPER FILE FORMAT - Source file is not in 600TSS ASCII
format. The format of the file should
be individual lines of source
language appearing as an ASCII string
with the character count of the
string appearing in its first
character position.

System Errors

101

102

103

HELP

Title: HELP!

Purpose:

(Code numbers are used by the HELP
subsystem.)

Read error on input-collector file.
Last set of updates has been lost due
to system problems and must be
re-entered.

Read error on source file. Call in a
new copy of the source file using the
OLD conunand and retry.

Write error on updated source file.
Call in a new copy of the source file
using the OLD command and retry. All
updates have been lost.

Give further explanations and user procedures to be followed
in the event of error codes returned by other 600TSS
subsystems. The ·error codes are the three-digit numbers that
precede brief system-error messages.

Usage:

Selected by the terminal user in response to the question
"SYSTEM?", when he types "HELP". The HELP subsystem'.s next
request is "PLEASE ENTER ERROR CODE--". Here the user types
the three-digit error code for which more information is
being requested. An explanation of the error and possible
recovery procedures are then typed at the terminal.

70 CPB-1514

Error Comments:

ERROR CODE MUST BE NUMERIC - Self
requested
number.

explanatoryo
to retype

User is
the code

ERROR CODE EXCEEDS 3 CHARACTERS - Self explanatory. User is
requested to retype the code
number.

ERROR CODE NOT ASSIGNED - Check code in .message against
that which was typed to HELP.

LIST

Titles List BASIC source File

Purpose:

List at the terminal all or any part of a source file, by.
line number.

Usage:

Called by the BASIC subsystem when the user enters one of
the forms of the LIST command while in build-mode.

Forms of the LIST command:

LIST

LIST n

LIST n,m

LI.ST ,m

· types entire
terminal

file, line-by-line at the

where n is a line number, begins typing with
line n-and continues line-by-line to the end
of f iI'e

where n and m are line nwnbers, begins typing
with 11ne n and types all lines up to and
including Tine mo When n is greater than m no
lines are typed7·and after typing· "READ~"-the
system is ready for a new command

where m is a line nwnber, begins typing with
the fTrst line in the file and continues up
to and including line m

. -

71 CPB-1514

Error Comments:

Except for read/write system errors which require calling up
a new copy of the file, there are no error conditions.

LODX

Title: Load Subsystem-Program

Purpose:

Load a subsystem program from a system-loadable-format
permanent file into .the 600TSS system for checkout purposes.
Also, -when requested, apply octal patches to the subsystem·
after it is loaded into memory.

Usage:

After the user selects LODX in response to
message, he is asked for· "FILENAME?". Two
fields of information may be given:

the nsYSTEM? 0

comma-separated

Field l - only required fieldo The 1 to 8 character name of
the file on which the program has been written.

Field 2 - optional patch indicator(~). Typing an asterisk
after the comma separating the fields indicates to
LODX that octal patches follow.

The catalog block(s) of. the file is read to verify program
name, if any, and to calculate the program· size from the
DCW(s). The required memory area is obtained by ·a DRL
ADDMEM. The program is then loaded into this area, and the
memory required by LODX is released when loading has
completed.

Octal Corrections:

I.f the asterisk character was typed as part of the
to °FILENAME?", the program is loaded and then a
return, line feed, and question mark are typed
terminal. The user then types the corrections in one
following forms: ·

1. address correction
2. address correction 1, correction 2, ••••

7~

response
carriage
at the
of the

CPB-1514

All· addresses. and corrections must be octal and the
addresses are relative to the load map produced ·When the
file was writteno The second form describes how sequential
corrections may be typed beginning at the address indicatedo
In this· case, the corrections are conuna separated and as
many may be typed as will fit on the line. Leading zero 0 s
need not be typed.

Diagnostic Messages of LODX System:

TYPE n FAULT AT xxxxxx

SYSTEM ERROR - RETYPE

n is a type number and
xxxxxx is the address
where it occurred in
relation to LODX BAR

n=l Illegal Op Code
n=2 Memory Fault
n=3 Fault Tag
n=4 Divide Check

system error occurred
while reading Filename
information1 retype
entire line and if same
error recurs, the user
is returned to system
level

FILE UNAVAILABLE - CALL BACK LATER specified file · is
currently busy and the
user may try again
later

RETYPE - NAME NOT KNOWN file name does ·not
appear in User Master
Catalog or in Available.
File Table

ERROR IN ACCESSING FILE - STATUS x · x is the status code
returned by the File
System when accessing
the requested file was
attempted

CANNOT ACCESS FILE - STATUS UNKNOWN illegal status returned
by file system when
file was accessed

73 CPB-1514

PROGRAM NOT ABSOLUTE

EXCESSIVE ERRORS IN READING FILE

CATALOG NOT IN PROPER FORMAT

ENTRY LOC 100

ILLEGAL FORMAT - 1 RETYPE

ADDRESS OUT OF BOUNDS

LOGO FF

Title: Legoff

Purpose:

program saved on file
was not in correct
format and relocation
bits are not acceptable

.after four attempts are
made to read a file
where errors are
encountered, suggest
user.rewrite the file

file must be random and
in system loadable
format

.program entry address
must be ·greater than
100 to· allow for TSS
pref ix

occurs while user is
typing patches7 there­
fore, check description
of patch 'format

patch location exceeds
size of program loaded

Terminate a user's session with TSS. The cost of the session
is calculated and a ·message issued for the user's
information concerning the cost of this · session and 'his
accumulated charges to date.

74 CPB-1514

Usage:

Called either by the conunand BYE, if in the build-mode of
the BASIC subsystem, or as a system selection at system
level:

* BYE
SYSTEM?
SYSTEM?

(or)
LOGOFF (or)
BYE

The charges for the user's session are calculated and the
following message issued before the terminal is
disconnected.

**RESOURCES USED $xx.xx, USED TO DATE $xx.xx=yy%
**TIME SHARING OFF AT zz.zzz ON nun/dd/yy.

NEW

Title: NEW

Purpose:

Determines if this is a legitimate user after requesting ID
and PASSWORD, and, if so, enters him into the system. If
not, a conunent and a disconnect are issued.

Usage

Enabled automatically when the user dials into 600TSS.

NOTE: NEW cannot be requested as a system selection.

A message is issued identifying the system:

THIS IS THE GE-600 T/S SYSTEM ON date AT time CHANNEL xxxx

If an all-points message exists in the ·system, it appears
next; it is information sent to each current user and each·
new user entering the system.

75 CPB-1514

Next the request nusER ID -" is issued and NEW waits for the
response. The user responds with his ID of no more than 12
characters by which he is known to the system. Then the
request ~PASSWORD--• and a mask on which to type the
password (no more than 12 characters) appears. If NEW
determines that the user is permitted in the 600TSS. system,
acknowledged by the given ID, password, and sufficient
resources to pay for the session, the user is entered into
the system and NEW has completed its function •.

Error Comments:

. . The. user is allowed two chances to type his · ID _ and · .. his
PASSWORD correctly. After. the first incorrect entry a
message nILLEGAL ID-RETYPE· or nILLEGAL PASSWORD--RETYPE 9 is
issued. If typed :incorrectly a .second time; a comment
.~ILLEGAL IDn or ~ILLEGAL PASSWORD8 is .issued followed . by . a
disconnect.

If the user's resources are overdrawn by more than ten
percent, a message and a disconnect will be issued.

aRESOURCES EXHAUSTED. CANNOT ACCEPT YOU."

If the user's resources are overdrawn but by less than ten
percent, a warning message is issued.

"RESOURCES OVERDRAWN n%"

·NEWUSER

Title: New User

Purpose:

Allows a user to terminate a session with 600TSS and a new
user to enter the system at the same terminal, without
disconnection of that terminal. The advantage for the new
user is that he is assured of a line into 600TSS.

76 CPB-1514

Usage:

Called as a system selection:

SYSTEM? NEWUSER

The charges for the user's session are calculated and his
accounting- file updated. The following terminal message is
issued for his information.

RESOURCES USED $xx.xx, USED TO DATE $xx.xx=yy%

The paper is spaced forward and the new user is now ready to
be logged into .r..he system. NEWUSER is terminated and the NEW
subsystem is initiated.

OLDN

Title: Old-New Sequence

Purpose

Allow the user to specify what file (if any) he wants to
work with as his source file.

Usage:

Called whenever a user selects a system that requires a
source file, such as BASIC or EDITOR. The first response
from 600TSS after calling one of these systems comes from
the Old-New program:

OLD or NEW-

The legitimate responses to this question are:

NEW--the OLDN program will see if a source file has been
defined (opened) and if it has, it will initialize it. If a
source file has not yet been defined, it will be defined and
initialized.·The next response will be: READY FOR INPUT.

SAME-~this response allows a user to keep his source file
when changing from one system to another. The OLDN program
will verify that the user already has a source file. The
next response will be:· READY FOR INPUT.

77 CPB-1514

. ;

OLD XXXX (where XXXX is the file name)

If XXXX is not given the user will be asked "OLD NAME".
The file name must consist of from one to eight
alphabetics, numerics, dashes and/or periods. Blanks
are edited out,i.e., F~I~L~E is equivalent to FILE.
OLDN will see if the named file has been previously
accessed (opened), and if not, it will attempt to
access it. If this is not successful, an appropriate
error message will be printed. After accessing the
named file, OLDN will make sure that the user has a
source file and will write the named OLD file· to it.
The next response from 600TSS will be: READY FOR INPUT.

LIB XXXX (where XXXX is the file name)

If XxXX is not given the user will'. be asked "OLD .. NAME" •
The· OLDN routine wi11 · ·access the specified file from .,,
the Library catalog and write it to t~e user's source
file. LIB is a special function to allow users to gain
access·to "read only" files which are maintained by the
computer site. These would include information files,
demonstration programs, etc. The file -description is
LIBRARY/file name. After this file is accessed the next
response from TSS will be:· READY FOR INPUT.

Note 1: In the BASIC system the·OLDN subsystem will also be
called when the user gives the command words OLD, LIB, or
NEW. When "OLD XXXX" or "LIB XXXX" is given, the execution
will be as described above. When "NEW" is given OLDN will
initialize the source file and the next response will be:
READY FOR INPUT.

Note 2: OLD files that are accessed through the OLDN
subsystem alone (i.e., without previous use of the ACCESS
subsystem) must be of the quick-access type. OLDN requests
!!.!, permissions for the user on .quick-access files.

Other responses from the Old-New program are:

PLEASE RESPOND WITH "OLD", "NEW", "SAME" or "LIB".

The user has responded to the OLD OR NEW question with
something other than OLD, NEW, SAME, or LIB.

NO FILE NAME GIVEN

78 CPB-1514

The user has not typed any non-blank characters in
response to OLD NAME.

FILE NAME MUST BE 8 CHARACTERS OR LESS

A file name of greater than 8 non-blank characters was
given in response to OLD NAME.

Error Comments:

130 - YOU 00 NOT HAVE A "SAME" FILE.

At this session at the terminal, the user has not built a
source file.

107 - UNABLE TQ ACCESS SOURCE FILE - STATUS-YY

When a user first selects a system, a source file is defined
and accessed (opened) for him. In this case, OLDN has been
Wlable to define this file. The status will explain why:

yy=03 user's available-file-table is full.

yy=04,06 file space for the use~ 0 s source file is not
available at this time.

108 - UNABLE TO INITIALIZE SOURCE FILE

An I/O error has been encountered while attempti~g to
initialize the user's source file.

114 - UNABLE TO READ noLD" FILE

I/O errors have been encountered while attempting to read
user's OLD file.

109 - NO DATA ON OLD FILE

OLDN has attempted to read an OLD file , which contains no
data. The file specified in response . to OLD NAME must
contain readable data.

110 - UNABLE TO WRITE SOURCE FILE

I/O errors have been encountered· while attempting to writ;:e
the user's OLD file to the user's source file.

131 - UNABLE TO ACCESS FILE - xxxx-STATUS-yy

79 CPB-1514

OLDN has been unable to access the
will explain why:

file xxxx. - The status

yy=02 non-recoverable I/O error has been encountered
while trying to access file xxxx

yy=03

yy=04

yy=OS

user.does not possess the proper permis~ions on
the file. Presumably, the file was opened
previously through·the ACCESS subsystem but READ
permission was not requeeted.

file xxxx is busy ·-
file ·xxxx does not exist in _!the .user's master
cata1og-

yy=36 user's available File Table, is full· .

.. yy=40 system is temporarily loaded ·

SAVE
~

Title: Save or Purge Files

Purpose:

Allow ·the user to. save data, programs, etc. on a permanent
file for later retrieval, and to delete permanent files.

Usage:

Called whenever a user uses the SAVE or PURGE command. word·
followed by a file name of from one to eight non-blank
characters. The non-blank characters can consist of
alphabetics, numerics, minus sign and period. All blanks are
edited out, i.e., F~I~L~E is equivalent to FILE.

80 CPB-1514

SAVE XXXX (where XXXX is a file name)

The SAVE program will first see if the named file has
already been accessed. If it has, the user's source file is
written to it. If it has not been previously accessed, SAVE
attempts to access it. If successful, the source file is
then written to it. If not successful because the named file
does not exist, the SAVE routine has the named file created
and accessed, and then writes the source file to it.

If the file has been successfully saved, the user will get
the message:

DATA SAVED - xxxx (where ~ is the file name)

If for some reason the SAVE cannot be accomplished, an
appropriate erro~ message is printed.

NOTE: Files accessed by the SAVE subsystem are accessed
with all permissions requested for the user. Files created
by the SAVE program are created with a general READ
permission only. The created file emanates directly from the
user's master catalog.

PURGE xxxx (where ~ is a file name)

File xxxx will be deleted and the file space made available
again to the user.

If the file was successfully purged, the user will get the
message:

FILE PURGED - xxxx

If for some reason the. purge could not be done, an
appropriate error message will be printed.

Other responses from the SAVE program:

DATA NOT SAVED or NO PURGE DONE

Three successive procedural mistakes have been made ·by the
user.

81 CPB-1514

The user has specified an invalid file name. This message
will be preceded by one of the following:

FILE NAME CONTAINS INVALID CHARACTER -x

or

FILE NAME MUST BE 8 CHARACTERS OR LESS

(or if blanks only were typed, just the File-Name
message is given)

Error Comments:

131 - UNABLE TO ACCESS FILE - xxxx - STATUS-yy ..

The SAVE program has been unable to access (open) . the file
xxxx. The status will explain why:

yy=02 unrecoverable I/O errors were encountered

.yy=03 user does not possess the·proper permissions on
file xxxx. Presumably the ACCESS subsystem was
used to open the file, but WRITE permission was
not requested.

yy=04 file ~ is busy

yy=40 system is temporarily loaded

yy=36 user's available-file-table is full

128 - UNABLE TO CREATE FILE -- STATUS-yy

The file named in the SAVE command did not exist and the
SAVE program was unable to create it. The status will
explain why:

yy=02 unrecoverable I/O errors were encountered

yy=06,10 system is temporarily loaded

yy=l3 user has no file space left

128 - UNABLE TO READ SOURCE FILE. CAN'T DO SAVE.

Unrecoverable I/O errors have been encountered attempting to
read user's source file.

. 82 CPB-1514

129 - UNABLE TO WRITE "SAVE" FILE.

Unrecoverable I/O errors have been encountered attempting to
write the file named in the SAVE·conunand.

140 - UNABLE TO PURGE FILE -- xxxx - STATUS yy

The SAVPRG program has been unable to purge file xxxx. The
status will explain why:

yy=02 unrecoverable I/O errors were encountered

yy~03 user does not possess PURGE permission or file
xx xx

yy=OS

STATUS

file xxxx does not exist in the user's master
cata~og.-

Title: Status Report

Purpose:

Produce a report on the user's usage of 600TSS facilities
during his current session at the terminal.

Usage:

Print the follo~ing report in response to SYSTEM ? type
STATUS:

USER STATUS ON date AT time.

LOGON time, PROC USED x.xxx SEC., n DISC I/O, n CHAR KEY I/O

OPEN FILES:

83 CPB-1514

APPENDIX A

SY:STEM MACROS

The Time-Sharing System modules and subsystems require many
definitions of the communication region, UST contents,
DRL's, etco These have been formulated into a set of macros.
They are loaded by

LOOM .G3TSn *
The macros and their use are as follows:

:rscoM

.SSUST

.SSDRL

PRNTTY

This macro contains all the common communication
definitions .and the macro call .SSUST for the UST
equivalences. It would not normally be used in a
subsystem.

Subsystems would use this macro to provide the UST
and DRL equivalences.

Normal subsystem should use this macro to obtain
the DRL definitions.

!!.,(comment~ chars. long),K.

This macro is used to print the error comment from
a subsystem. K (optional) is a pointer to a word
containing control characters to be affixed to the
end of the line (CR,LF,NULL, etc.).

* The n depends upon the catalog name that is assigned
in the latest System Development Letter.

85 CPB-1514

APPENDIX B

OCTAL/ASCII CONVERSION EQUIVALENTS

OCTAL ASCII OCTAL ASCII OCTAL ASCII OCTAL ASCII
NUMB. CHAR. NUMB. CHAR. NUMB. CHAR. NUMB. CHAR.

000 NULL 040 SP 100 @ 140 GRA
001 SOH 041 EXP 101 A 141 a
002 STX 042 n 102 B 142 b
003 ETX 043 # 103 c 143 c
004 ECT 044 $ 104 D 144 d
005 ENQ 045 % 105 E 145 e
006 AXK 046 & 106 F 146 f
007 BELL 047 I 107 G 147 g

010 BSP 050 (110 H 150 h
011 HT 051) 111 I 151 i
012 LF 052 * 112 J 152 j
013 VT 053 + 113 K 153 k
014 FFD 054 I 114 L 154 1
015 CR 055 115 M 155 m
016 so 056 . 116 N 156 n
017 SI 057 I 117 0 157 0

020 DLE 060 0 120 p 160 p
021 DCl 061 1 121 Q 161 q
022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 s 163 s
024 DC4 064 4 124 T 164 t
025 NAK 065 5 125 u 165 u
026 SYN 066 6 126 v 166 v
027 ETB 067 7 127 w 167 w

030 CAN 070 8 130 x 170 x
031 EM 071 9 131 y 171 y
032 SUB 072 . 132 z 172 z .
033 ESC 073 ; 133 LBK 173 LBR
034 FS 074 LTN 134 RSL 174 VTL
035 GS 075 - 135 RBK 175 RBR
036 RS 076 GTN 136 CFX 176 NOT
037 us 077 ? 137 177 DEL

87 CPB-1514

APPENDIX C

COMMUNICATIONS CONTROL

ACK Acknowledgement
CAN Cancel
DCl Device Control 1
DC2 Device Control 2
DC3 Device Control 3
DC4 Device Control 4
DLE Data Link Escape
EM End of Medium
ENQ Enquiry
EOT End of Transmission
ESC Escape (Alternate Mode)
ETB End of Transmission Bloc
ETX End of Text
NAK Negative Acknowledgement
SOH Start of Heading
STX Start of Text
SUB Substitute Character
SYN Synchronous Idle

FORM EFFECTORS

BSP Backspace
CR Carriage Return
FFD Form Feed
HT Horizontal Tabulation
LF Line Feed ·
VT Vertical Tabulation

ITEM SEPARATORS

FS File Separator
GS Group Separator
RS Record Separator
us Unit Separator

89 CPB-1514

TEXT MATERIAL

BELL
CFX
DEL
EXP
GRA
GTN
LBK
LBR
LTN
NOT
NULL
RBK
RBR
RSL
SI
so
SP·
VTL

Bell, or other attention signal
Circumflex
Delete (Rubout)
Exclamation Point
Grave (reversed) Accent
Greater Than: Mathematical symbol
Left Bracket
Left Brace.

_ Less Than: Mathematical symbol
Not: Mathematical symbol
Null

.Right Bracket
Right Brace
Reverse Slash
Shift In
Shift Out
Space
Vertical Line

90 CPB-1514

APPENDIX D

GE-625/635 STANDARD CHARACTER SET

!;tandard GE-Internal Hollerith Standard GE-Internal Hollerith
Character Machine Octal Card Character Machine Octal Card

Set Code Code Code Set Code Code Code

0 00 0000 OU 0 • 10 0000 40 11-0
1 00 0001 01 1 J 10 0001 41 11-1
2 00 0010 02 2 K 10 0010 42 11-2
) 00 0011 03 3 L 10 0011 43 11-3
!+ 00 0100 04 4 M 10 0100 44 11-4
5 00 0101 05 5 N 10 0101 45 11-5
6 00 0110 06 6 0 10 0110 46 11-6
7 00 0111 07 7 p 10 0111 47 11-7
8 00 1000 10 8 Q 10 1000 50 ll-8
<) 00 1001 11 9 R 10 1001 51 11-9
r 00 1010 12 2-8 - ' 10 1010 52 11
It 00 1011 L3 3-8 $ 10 1011 53 11-3-8
@ 00 1100 14 4-8 •k 10 1100 54 11-4-8
: 00 1101 15 5-8) 10 1101 55 11-5-8
> 00 lllO 16 6-8 ; 10 1110 56 11-6-8
? 00 1111 17 7-8 I 10 1111 57 11-7-8

f> 01 0000 20 (blank) + 11 0000 60 12-0
A 01 0001 21 12-1 I 11 0001 61 0-1
B 01 0010 22 12-2 s 11 0010 62 0-2
c 01 0011 23 12-3 T 11 0011 63 0-3
D 01 0100 24 12-l~ u 11 0100 64 0-4
E 01 0101 25 12-5 v 11 0101 65 0-5
F 01 0110 26 12-6 w 11 0110 66 0-6
G 01 0111 27 12-7 x 11 0111 67 0-7
H 01 1000 30 12-8 y 11 1000 70 0-8
I 01 1001 31 12-9 z 11 1001 71 0-9
& 01 1010 32 12 ~ 11 1010 72 0-2-8

01 1011 33 12-3-8
'

11 1011 73 0-3-8
J 01 1100 34 12-4-8 fo 11 1100 74 0-4-8
(01 1101 35 12-5-8 = 11 1101 75 0-5-8
< 01 1110 36 12-6-8 II 11 1110 76 0-6-8

\ 01 1111 37 12-7-8 ! 11 1111 77 0-7-8

91 CPB-1514

600TSS
PROGRAMMING FOR 600TSS
600TSS FILE USAGE

INDEX

Temporary User Files Assigned by 600TSS
checking out a GOOTSS subsystem

ABNORMAL
abnormal event

ABORT
Abort
DRL ABORT

ABRT
name ABRT

ACCESS
Define and Access a Temporary File
Access File
ACCESS subsystem
define and access a temporary file
access a permanent file
random permanent file using ACCES8

ACCESS-FILE
Access-File Function

ACTIVE
table of active files

ACTIVITIES
disc-or-drum file activities

ACTIVITY
Permanent-File Activity
GELOAD activity

ACTUAL
actual flow of control

93

7
35
35
60

13

13
13

13

20
25
40
41
41
59

30

40

20

25
59.

4

CPB-1514

ADD
Add Memory
Add Links to Temporary File

ADDITIONAL
request for additional memory

ADDMEM
DRL ADDMEM

AFT
user's list of files {AFT)
user's AFT
Available File Table {AFT)
Getting File Entries Into and Out of the AFT

ALLOWABLE
allowable permissions

AREA
SUBSYSTEM DATA AREA AND FAULT VECTOR
unused data area

ASCII
output of ASCII characters
character strings in ASCII

ASSEMBLING
Assembling the Program Descriptor

AUTOMATIC
automatic functions

AVAILABLE
Available File Table (AFT)

BASE
base register
BASE REGISTER PROTECTION

BASIC
BASIC subsystem's start-up procedure
List BASIC Source File

BAS IC-J;DIT
Basic-Edit

94

15
24

15

15

24
30
40
40

39

7
55

'11
65

57

36

40

3
7

4
71

69

CPB-1514

DATCII
Simultaneous Batch and Time-Sharing
spawn a batch job
Pass Job to Batch Processor

BATCII/TIME-·SHARING
batch/time-sharing system

BIN
BIN

BLOCK
SYMREF, SYMDEF, BLOCK statements

.TPRGD block

.TPRED block
invalid relative block number
Communication Region (block .TPRGD)

BSED
BSED to edit the data on SY**
BSED

BUFFER
keyboard output buffer

BUILD
primitive Build Input

BUILDING
building of input

BUILD-MODE
build-mode
build-mode of keyboard input
direct-mode and build-mode

BYPASSING
bypassing the normal return

CALL
call LODM
Internal Call to Another Subsystem
macro call ~SSDRL
delete this particular call

CALLP
CALLP a

CALSS
DRL CALSS

95

1
16
18

l

49

3
3
5

24
43

35
69

12

48

49

36
43

·48

19

9
19
56
63

49

19

CPB-1514

CARD
$PRMFL card

CATALOG
Create Catalog
Purge Catalog
Modify Catalog
system master catalog
description containing catalog name
catalog names are prefixed by .TS

CATALOGS
user's master catalogs.
Catalogs and Files

CATAIJOG/FILE
Purge Catalog/File Function
Modify Catalog/File Function

CELL
core-file ee11

CHAR.ACi:;:'ER
character strings in ASCII·

CHARACTERS
output of ASCII cha~acters
control characters

CHECKING
checking out a 600TSS subsystem

CHECKOUT
Subsystem Checkout

CODE
object code is loadable by GELOAD

COLLECTION
collection of input data
collection file (SY**)

COLLECTOR
user's input collector file

COMMAND
command language and primitives
conunand language
COMMAND LANGUAGE AI-JD PRII·1ITIVES
COMMAND LANGUAGE

96

59

25
25
25

.37
39
57

37
39

.32
34

16

65 --~

11
56

60

61

3

36
49

49

3
36
43
53

CPB-1514

COMMAND-LANGUAGE
command-language words
command-language list
Command-Language List
null command-language list

COMMAND-LANGUAGE/PR!
command-language/primitive
command-language/primitive

COMMON
common communication definitions

COMMUNICATION
communication region
TSS Communication Region
CommWlication Region (block .TPRGD)
Communication Region
Communication Region deck
common communication definitions

CO¥J.PLETED
processing at this level is completed

CONCURRENT
Concurrent Use of a File
Multiple concurrent readers

CONDITIONAL
conditional execution

CONTACT

4
4

44
51

55
57

85

3
5

43
55
57
85

50

40
40

so

User's Contact with the File System 40
contact with the GECOS File System 40

CONTAINING
description containing catalog name 39
description containing file name 39

CONTENTS
patch, or replace the contents 62
display the contents of all working registers 63

CONTROL
actual flow of control 4
flow of control 9
transfers control to the named subsystem program 49
control characters 56

COORDINATION
Coordination of the Procedure 58

97 CPB-1514

CORE
core dump
Data from/to Core File
core storage

CORE-FILE
core-file cell

CORF IL
DRL CORFIL

CREATE
Create Catalog
Create File

CREATE-CATALOG
-.. Create-Catalog Function

CREATE-FILE
Create-File Function

D
Response: D

DATA
. SUBSYSTEM DATA AREA AND FAULT VECTOR
Data from/to Core File
collection of input data
BSED to edit the data on SY**
unused data area

DATA-AREA
data-area location

DAY
Obtain Processor Time and Time of Day

DEACCESSES
Permanent-file deaccesses

DEBUG
Terminal Debug Subroutine {TDS)

DEBUGGING
DEBUGGING FACILITY

DECK
Communication Region deck

98

13
15
15

16

15

25
25

.. ; ·2a

29

.. 63

7
15
36
36
55

15

16

25

60

60

57

CPB-1514

DEFIL
DRL DEFIL
DRL DEFIL

DEFINE
Define and Access a Temporary File
define and access a temporary file

DEFINITIONS
common communication definitions
DRL definitions

DELETE
delete this particular call

DERAIL
derail (DRL) instruction
derail (DRL) instruction

DERAILS
FILE I/O DERAILS
file I/O derails

DESCRIPTION
permanent-file description
description containing catalog name
description containing file name
DESCRIPTION OF PRIMITIVES

DESCRIPTIONS
SUBSYSTEM DESCRIPTIONS

DESCRIPTOR
Program descriptor
Program Descriptor Proper
Program Descriptor Format
PROGRAM DESCRIPTOR
program descriptor
Assembling the Program Descriptor
program descriptor

DESCRIPTORS
EXAMPLES OF PROGRAM DESCRIPTORS

DEViCE
specific device type
standard device

99

20
41

20
41

85
85

63

3
7

20
42

30
39
39
48

69

3
44
44
53
55
57
57

51

21
21

23
41

CPB-1514

DIRECT-MODE
direct-mode and build-mode

DISC-OR-DRUM
disc-or-drum file activities

DISPLAY
display of certain memory locations
display the contents of all working registers

DO
Do I/O on User's File

DOING

DRL

Doing I/O on the File

derail (DRL) instruction
derail (DRL) instruction
DRL functions
DRL KOUT
DRL KOUTN
DRL KIN

·DRL RETURN
DRL ABORT
DRL SETSWH
DRL RSTSWH
DRL RELJ.IBM
Dru.. ADDMEM
DRL CORFIL
DRL SNm-m
DRL TIME
DRL PASAFT
DRL TERMTP
DRL SPAWN
DlU.. CALSS
DRL PASUST
DRL SYSRET
DRL DEFIL
DRL RETFIL
DRL FILSP
DRL REW
DRL DIO
DRL MORLNK
DRL FILACT
DRL RETFIL
DRL FILACT
DRL FILACT
DRL FILA.CT
DRL FILACT

100

48

20

62
63

23

41

3
7

10
11
12
13
13
13
14
14
14
15
15
16
16
17
18
18
19
19
19
20
22
22
23
23
24
25
25
28
29
30
32

CPB-1514

DRL (continued)
DRL FILACT
DRL DEFIL
DRL RETFIL (return a file
DRL FILACT
DRL DIO
DRL FILSP
DRL REW
DRL MORLNK
DRL RETURN
UST and DRL equivalences
DRL definitions

DUMP
core dump

EDIT
BSED to edit the data on SY**

. EDITING
Editing Program to GECOS III

EDITOR
standard System Editor procedure

ENDJOB
SNUMB and ENDJOB

END-OF-FILE
GEFRC end-of-file

ENTRIES
Getting File Entries Into and Out of the AFT
Prognm·-l:escrip tor En tries

EQUIVALENCES
UST and DRL equivalences

EVENT
abnormal event

EXAMPLES
~XAMPLES Ol!.,. PROGFAM DESCRIPTORS

EXEC
EXEC

EXECUTION
loading and execution
conditional execution

101

34
41
41
41
41
41
41
41
49
85
85

13

36

56

56

18

18

40
47

85

13

51

49

49
50

CPB-1514

EXECUTIVE
TSS Executive

EXTENSION
Ease of Extension by User

:C.,AULT
SUBSYSTEM D~.TA AREA AHD FAULT VECTOI.
type of fault
intentional fault

FAULTS
optional-recovery faults

FAULT-VECTOR
fault-vector transfers

FILACT
DRL FILA.CT
DRL FILACT
DRL FILACT
DRL FILACT
DRI, FILACT
DRL FILACT
DRL FILACT
FILACT functions

FILE
Data from/to Core File·
user's file names
FILE I/O DERAILS
disc-or-drum file activities
Define and Access a Tenporary File
temporary file
Return a File
temporary file
Space a Linked File
Rewind a Linked File
Do I/O on User's File
random file
Add Links to Temporary File
permanent file functions
Create File
Purge File
Access File
Modify File
permanent file requests
600TSS FILE USAGE
input-collector file, SY**

102

7

1

7
7

10

56

25
28
29
30
32
34
41
42

15
17
20
20
20
21
22
22
22
23
23
24
24
25
25
25
25
25
25
35
35

CPB-1514

FILE (continued)
source file, *SRC .
Input-Collector File (SY**)
Source File (*SRC)
permanent file space
GECOS file system
Structure of the File System
description containing file name
Concurrent Use of a File
User's Contact with the File System
contact with the GECOS File System
File Usage by Subsystem Programs
Available File Table (AFT)
Getting File Entries Into and Out of the AFT
define and access a temporary file
DRL RETFIL (return a file
access a permanent file
Doing I/O on the File
file I/O derails
GECOS file system
internal file (SY**)
collection file (SY**)
user's input collector file
TSS program file and initialization
random permanent file using ACCESS
FILE FORMATS
standard file formats
SY** is a random file
punched paper tape input-collector file
List BASIC Source File

FILES
Pass List of Files to Us~r
user's list of files (llFT)
Temporary User Files Assigned by 600TSS
Permanent Files Assigned by User
Catalogs and Files
table of active files
source-text files
Save or Purge Files

FILSP
DRL FILSP
DRL FILSP

FLOW
actual flow of control
flow of control

103

35
36
36
37
37
37
39
40
40
40
40
40
40
41
41
41
41
42
42
48
49
49
58
59
65
65
66
68
71

17
24
35
37
39
40
65
80

22
41

4
9

CPB-1514

FORMAT
Program Descriptor Format
format of a single primitive
TAP* FORMAT

FORMATS
FILE FORMATS
standard file formats

FROM/TO
Data from/to Core File

FUNCTION
Create-Catalog Function
Create-File Function
Access-File Function
Purge Catalog/File Function
Modify Catalog/File Function

FUNCTIONS
service functions
MME functions
MME functions
DRL functions
MME functions
permanent file functions
automatic functions
FILACT functions

GE COS
GECOS file system
contact with the GECOS File System
GECOS file system
Editing Program to GECOP III

GEFRC
GEFRC end-of-file

GEINOS
MME GEINOS

GELO AD
object code is loadable by GELOAD
GELOAD activity

GENERATED
primitives is generated by a macro

GER TS
GERTS system

104

44
48
68

65
65

15

28
29
30
32
34

3
3
7

10
20
25
36
42

37
40
42
56

18

24

3
59

57

18

CPB-1514

GETTING
Getting File Entries Into and Out of the AFT

GE-SUPPLIED
GE-SUPPLIED SUBSYSTE~IB

HELP
HELP

I FALSE
!FALSE n,a

IF TRUE
IFTRUE n,a

III
Editing Program to GECOS III

IN900
table IN900

INDICATION
loadpoint status indication

INITIALIZATION
TSS program file and initialization

INPUT
Keyboard Output Then Input
Keyboard Input Last Line
collection of input data
raw input
build-mode of keyboard input
KEY130ARD INPUr.L l·lODES
primitive Build Input
building of input
user's input collector file
unedited PPT input

INPUT-COLLECTOR
input-collector file, SY**
Input-Collector File (SY**)
punched paper tape input-collector file

INSTRUCTION
derail (DRL) instruction
derail (DRL) instruction

105

40

69

70

50

50

56

58

23

58

. 12
13

.36
36
43
48
48
49
49
68

35
36
68

3
7

CPB-1514

INTENTIONAL
intentional fault

IHTERNAL
Internal Call to Another Subsystem
internal file (SY**)

INTO
· Getting File Entries Into and Out of the AFT

INVALID

I/O

JOB

invalid relative block number

FILE I/O DERAILS
Do I/O on User's File
Doing I/O on the File
file I/O derails

spawn a batch job
Pass Job to Batch Processor

KEYBOARD

KIN

Keyboard Output
Keyboard Output Then Input
keyboard output buffer
Keyboard Input Last Line
build-mode of keyboard input
KEYBOAPJ) INPUT MODES

DRJ~ KIN

KOUT
DRL KOUT

KOUTN
DRL KOUTN

LANGUAGE
command language and primitives
command language
COMMAND LANGUAGE AND PRIMITIVES
COMMAND LANGUAGE

LAST
Keyboard Input Last Line

106

10

19
48

40

24

20
23
41
42

16
18

11
12
12
13
43
48

13

11

12

3
36
43
53

13

CPB-1514

LEVEL
processing at this level is completed

LIBRARY
library subroutines
TSS macro library

LINE
Keyboard Input Last Line
Terminal Type and Line Number

LINKED
Space a Linked File
Rewind a Linked File

LINKS
Add Links to Temporary File

LIST
command-language list
Return to Primitive List
Pass List of Files to User
user's list of files (AFT)
Command-Language List
null command-language list
LIST
List BASIC Source File

LOAD
Load Subsystem-Program

LOADABLE
object code is loadable by GELOAD

LOADING
loading and execution
Loading the Subsystem

LOADPOINT
loadpoint status indication

LOCATION
data-area location

LOCATIONS
display of certain memory locations

LOOM
call LOOM
LOOM .G3TSS
LOOM .G3TSS

107

50

3
9

13
18

22
23

24

4
13
17
24
44
51
71
71

72

3

49
59

23

15

62

9
56
85

CPB-1514

LODX
LODX
LODX
LODX

MACRO
TSS macro library
system macro, .SSDRL
PRGDES macro
macro call .SSDRL
macro P:RNTTY
PRGDES macro
primitives is generated by a macro

MACROS
SYSTEM MACROS
TSS macros
System Macros
SYSTEM MACROS

MASTER
system master catalog
user's master catalogs

MEMORY
Release Memory
Add Memory
request for additional memory
display of certain memory locations

MME
MME functions
MME functions
MME functions
MME GEINOS

MODES
KEYBOARD INPUT MODES

MODIFY
Modify Catalog
Modify File
Modify Catalog/File Function
modify TSTRT

MODIFYING
Modifying the TSTRT Module

MODULE
TSTRT module
Modifying the TSTRT Module

108

58
59
72

9
11
51
56
56
57
57

9
9

56
85

37
37

14
15
15
62

3
7

20
24

48

25
25
34
59

58

55
58

CPB-1514

MORLNK
DRL MORLNK
DRL MORLNK

24
41

MULTIPLE .

NA

Multiple concurrent readers

IFALSE n,a
IFTRUE n,a
STFALS n,a
STRUE n,a

40

50
50
50
51

NAME
name ABRT
description containing catalog name
description containing file name

NAMED

13
39
39

transfers control to the named subsystem program 49

NA.MES
user's file names 17
catalog names are prefixed by .TS 57

NEW
NEW 75
New User 76

NEWUSER
NEWUSER 76

NORMAL
normal termination 13
bypassing the normal return 19

NULL
null command-language list 51

NUMBER
Terminal Type and Line Number 18
invalid relative block number 24

OBJECT
object code is loadable by GELOAD 3

OBTAIN
Obtain SNUMB 16
Obtain Processor Time and Time of Day 16

109 CPB-1514

OCTAL
Octal Patching

OLDN
OLDN subsystem
Old-New (OLDN)
OLDN

OLD-NEW
Old-New (OLDN)
Old-New Sequence

OPTIONAL-RECOVERY
optional-recovery faults

OREO
Q register is ORed

ORGANIZATION
SUBSYSTEM ORGANIZATION

OUTPUT
Keyboard Output
output of ASCII characters
Keyboard Output Then Input
keyboard output buffer

p
Response: P

PAPER
punched paper tape input-collector file

PASAFT
DRL PASAFT

PASS
Pass List of Files to User
Pass Job to Batch Processor
Pass UST to Subsystem

PASSWORDS
Passwords

PAS UST
DRL PASUST

PATCH
patch, or replace the contents

110

60

36
40
77

40
77

8

14

3

11
11
12
12

62

68

17

17
18
19

39

19

62

CPB-1514

PATCHING
Octal Patching

PAT-ENTRY
PAT-entry space

PERMANENT
permanent file functions
permanent file requests
Permanent Files Assigned by User
permanent file space
access a permanent file
permanent placement of a subsystem
permanent placement
random permanent file using ACCESS

PERMANENT-FILE
Permanent-File Activity
Permanent-file deaccesses
permanent-file description

PERMISSIONS
allowable permissions

PLACEMENT
temporary placement of a subsystem
permanent placement of a subsystem
TEMPORARY PLACEMENT
permanent placement

PLACING
PLACING PROGRAMS IN THE SYSTEM

POINTER
start-up pointer
Pointer to startup primitive

POP UP
POPUP primitive
primitive POPUP
PO PUP

PPT
unedited PPT input

PREFIXED
. catalog names are prefixed by • TS

PRGDES
PRGDES macro
PRGDES macro

111

60

22

25
25
37
37
41
55
59
59

25
25
30

39

55
55
58
59

55

5
52

19
49
50

68

~7

51
57

CPB-1514

PRIMITIVE
Return to Primitive List
POPUP primitive
primitive Build Input
format of a single primitive
primitive POPUP
Pointer to startup primitive

PRIMITIVES
command language and primitives
use of the primitives
COMMAND LANGUAGE AND PRIMITIVES
Primitives
DESCRIPTION OF PRIMITIVES
Primitives
PRIMITIVES
primitives is generated by a macro

PRIVILEGED
privileged slave program

PRNTTY
• SSDRL and PRNTTY

macro PRNTTY
PRNTTY

PROCEDURE
start-up procedure
BASIC subsystem's start-up procedure
STARTUP PROCEDURE
startup procedure
standard System Editor procedure
Coordination of the Procedure

PROCESSING

13
19
48
48
49
52

3
4

43
45
48
49
53
57

1

9
56
85

4
4

51
51
56
58

processing at this level is completed 50

PROCESSOR
Obtain Processor Time and Time of Day 16
Pass Job to Batch Processor 18

PROGRAM
privileged slave program 1
Program descrip~or 3
program swap, register storage 3
Writing a subsystem program 7
Program Descriptor Proper 44
Program Descriptor Format 44
transfers control to the named subsystem program 49
EXAMPLES OF PROGRAM DESCRIPTORS . 51

· PROGRAM DESCRIPTOR 53

112 CPB-1514

PROGRAM (continued)
program descriptor
Writing the Subsystem Program
Editing Program to GECOS III
Assembling the Program Descriptor
program descriptor
TSS program file and initialization

PROGRAMMING
PROGRAMMING FOR 600TSS

PROGRAMS
File Usage by Subsystem Programs
PLACING PROGRAMS IN THE SYSTEM

PROGRAM-DESCRIPTOR .
Program-Descriptor Entries

PROPER
· Program Descriptor Proper

PROTECTION
BASE REGISTER PROTECTION

PUNCHED
punched paper tape input-collector file

PURGE

Q

R

Purge Catalog
Purge File
Purge Catalog/File Function
Save or Purge Files

Q register is ORed
value in Q

Response: R

RANDOM

RAW

random file
random permanent file using ACCESS
SY** is a random file

raw input

READERS
Multiple concurrent readers

113

55
55
56
57
57
58

7

40
55

47

44

7

68

25
25
32
80

14
15

63

24
59
66

36

40

CPB,;.1514

REGION
communication region
TSS Communication Region
Communication Region (block .TPRGD)
Communication Region
Communication Region deck

REGISTER
base register
program swap·, register storage
BASE REGISTER PROTECTION
Q register is ORed

REGISTERS
display the contents of all working registers

RELATIVE
invalid relative block number

RELEASE
Release Memory

RELMEM
DRL RELMEM

REPLACE
patch, or replace the contents

REPORT
Status Report

REQUEST
request for additional memory

REQUESTS
permanent file requests

RESET
Reset Switch Word

RESPONSE:
Response: S
Response: P
Response: X
Response: D
Response: R
Response: Rxxxx

RETFIL
DRL RETFIL

· DRL RETFIL
DRL RETFIL (return a file

114

3
3
7

i4

63

24

14

14

I 62

I 83

'15

25

14

62
I 62
I 63
I 63

63
I 63

·22
25

I 41

CPB-1514

RETURN
Return to Primitlve List
DRL RETU~
Return to System
bypassing the normal return
Return a File
DRL RETFIL (return a file
DRL RETURN
return to the subsystem
special return to the subsystem

REW
DRL REW
DRL REW

REWIND
Rewind a Linked File

RSTSWH
DRL RSTSWH

RXXXX
Response: Rxxxx

s
Response: S

SAVE
Save-Purge (SAVE)
SAVE
Save or Purge Files

SAVE-PURGE
Save-Purge (SAVE)

SEQUENCE
Old-New Sequence

SERVICE
service functions

SET
Set Switch Word

SETSWH
DRL SETSWH

SIMULTANEOUS
Simultaneous Batch and Time-Sharing

115

13
13
19
19
22
41
49
63
63

23
41

23

14

63

62

40
80
80

40

77

3

14

1

CPB-1514

SINGLE
format of a single primitive

SLAVE
privileged slave program

SNAP
snap

SNUMB
Obtain SNUMB
DRL SNUMB
SNU.MB and ENDJOB

SOURCE
source file, *SRC
Source File (*SRC)
List BASIC Source File

SOURCE-TEXT
source-text files

SPACE
PAT-entry space
Space a Linked File
permanent file space

SPAWN
spawn a batch job
DRL SPAWN

SPECIAL
special return to the subsystem

SPECIFIC
specific device type

STANDARD
standard device
standard temporary-user-files
standard System Editor procedure
standard file formats

STAR!' UP .
STARTUP PROCEDURE
startup procedure
Pointer to startup primitive

START-UP
start-up procedure

·BASIC subsystem's start-up procedure
start-up pointer

116

48

1

62

16
16
18

35
36
71

65

22
22
37

16
18

63

21

21
35
56
65

51
51
52

4
4
5

CPB-1514

STATEMENTS
SYMREF, SYMDEF, BLOCK statements

STATUS
user's status table (UST)
loadpoint status indication
STATUS
Status Report

STEP
step 2
step 3

STFALS
STFALS n,a

STORAGE
program swap, register storage
core storage

STRINGS
character strings in ASCII

STRUCTURE
Structure of the File System

STRUE
STRUE n,a

SUBROUTINE
Terminal Debug Subroutine {TDS)

SUBROUTINES
library subroutines

SUBSYSTEM
SUBSYSTEM ORGANIZATION
Writing a subsystem program
SUBSYSTEM DATA AREA AND FAULT VECTOR
SUBSYSTEM SWITCH WORD
Internal Call to Another Subsystem
Pass UST to Subsystem
OLDN subsystem
ACCESS subsystem
File Usage by Subsystem Programs
transfers control to the named subsystem
subsystem switch word

· temporary placement of a subsystem
permanent placement of a subsystem
Writing the Subsystem Program
Loading the Subsystem
checking out a 600TSS subsystem

117

3

19
23
83
83

58
58

50

3
15

65

37

51

60

3

3
7
7
9

19
19
36
40
40

pr~gram 49
so
55
55
55
59
60

CPB-1514

SUBSYSTEM (continued)
Subsystem Checkout
return to the subsystem
special return to the subsystem
SUBSYSTEM DESCRIPTIONS

SUBSYSTEMS
GE-SUPPLIED SUBSYSTEMS

SUBSYSTEM'S
BASIC subsystem's start-up procedure

SUBSYSTEM-PROGRAM
Load Subsystem-Program

SWAP
program swap, register storage

SWITCH
SUBSYSTEM SWITCH WORD
Set Switch Word
switch word
Reset Switch Word
subsystem switch word

SYMDEF
SYMREF, SYMDEF, BLOCK statements

SYMREF
SYMREF' SYMDEF' BLOCK statements

SYSRET
DRL SYSRET

SYSTEM
batch/time-sharing system
user-selected system
SYSTEM MACROS
system macro, .SSDRL
GERTS system
Return to System
GECOS file system
Structure of the File System
system master c~talog
User's Contact with the File System
contact with the GECOS File System
GECOS file system
PLACING PROGRAMS IN THE SYSTEM
System Macros
standard System Editor procedure
SYSTEM MACROS

118

61
63
63
69

69

4

72

3

9
14
14
14
50

3

3

19

2
9
9

11
18
19
37
37
37
40
40
42
55
56
56
85

CPB-1514

SY**
input-collector file, SY**
Input-Collector File (SY**)
BSED to edit the data on SY**
internal file (SY**)
collection file (SY**)
SY** is a random file

TABLE
user's status table (UST)
table of active files
Available File Table (AFT)
table IN900

TAPE
punched paper tape input-collector file

TAP*
TAP* FORMAT

TDS
Terminal Debug Subroutine (TDS)

TEMPORARY
Define and Access a Temporary File
temporary file
temporary file
Add Links to Temporary File
Temporary User Files Assigned by 600TSS
define and access a temporary file
temporary placement of a subsystem
TEMPORARY PLACEMENT .

TEMPORARY-USER-FILES
standard temporary-user-files

TERMINAL
Terminal Type and Line Number
terminal type .
Terminal Debug Subroutine (TDS)

TERMINATION
normal termination

TERMTP
DRL TERMTP

TIME
Obtain Processor Time and Time of Day
Obtain Processor Time and Time of Day
DRL TIME

119

35
36
36
48
49
66

19
40
40
58

68

68

60

20
21
22
24
35
41
55
58

35

18
18
60

13

18

16
16
16

CPB-1514

TRANSFERS
transfers control to the named subsystem program 51
fault-vector transfers 56

TSS
TSS Communication Region
TSS Executive
TSS macros
TSS macro library
TSS program file and initialization

TSS-TSSA
TSS-TSSA

TSTRT
TSTRT module
Modifying the TSTRT Module
modify TSTRT

TYPE
type of fault
Terminal Type and Line Number
terminal type
specific device type

UNEDITED
unedited PPT input

UNUSED
unused data area

USAGE
600TSS FILE USAGE
File Usage by Subsystem Programs

USE
use of the primitives
Concurrent Use of a File

USER
Ease of Extension by User~
Pass List of Files to User .
Temporary User ~iles Assigned by 600TSS
Permanent Files Assigned by User
New User

USER'S
user's file names
user's status table (UST)

. Do I/O on User's File

120

5
7
9
9

58

57

55
58
59

7
18
18
21

68

55

35
40

4
40

1
17
35
37
76

17
19
23

CPB-1514

USER'S (continued)
user's list of files (AFT)
user's AFT
user's master catalogs
User's Contact with the File System
user's input collector file

USER-SELECTED
user-selected system

UST
Pass UST to Subsystem
user's status table (UST)
UST and DRL equivalences

VALUE
value in Q

VECTOR
SUBSYSTEM DATA AREA AND FAULT VECTOR

WORD
SUBSYSTEM SWITCH WORD
Set Switch Word
switch word
Reset Switch Word
subsystem switch word

WORDS
command-language words

WORKING
display the contents of all working registers

WRITING
Writing a subsystem program
Writing the Subsystem Program

x
Response: X

$PRMFL
$PRMFL card

*SRC
source file, *SRC
Source File (*SRC)

121

24
30
37
40
49

9

19
19
85

15

7

9
14
14
14
50

4

63

7
55

63

59

35
36

CPB-1514

.G3TSS
LODM .G3TSS
LODM .G3TSS

.SSDRL
.SSDRL and PRNTTY

system macro, .SSDRL
macro call .SSDRL

.SSDRL

.SSUST
.SSUST

.TPRED
.TPRED block

.TPRGD
.TPRGD block

Communication Region (block .TPRGD)

.TS
catalog names are prefixed by .TS

.TSCOM
.TSCOM

122

56
85

9
11
56
85

85

5

3
43

57

85

. CPB-1514

DOCUMENT REVIEW SHEET

TITLE: GE-625/635 GECOS-III Time-Sharing System Prog Reference Manual

CPB #: _15_1_4 __ _

From:
Name=~~~~~~~~~~~~~~~~~~~

Position: ----------------­
Address: ---------------~

Comments concerning this publication are solicited for use in improving future
editions. Please provide any recommended additions, deletions, corrections, or
other information you deem necessary for improving this manual. The following
space is provided for your comments.

C) COMMENTS:
c

I

. NO POSTAGE NECESSARY IF MAILED IN U.S.A.
Fold on two lines shown on reverse

side, staple, and mail.

STAPLE

FOLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY II' MAILED IN THE UNITED 8TATE8

POSTAGE WILL BE PAID BY

GENERAL ELECTRIC COMPANY
PROCESSOR EQUIPMENT DEPARTMENT

13430 NORTH BLACK CANYON HIGHWAY

PHOENIX, ARIZONA 85029

ATTENTION: DOCUMENTATION B-90

FOLD

STAPLE

FIRST CLASS

PERMIT, No. 4332

PHOENIX, ARIZONA

-## 3

' I

•+ ti 'i'fr4!!Ytu· *' PP@Ai

l¢ oC· r rl icil · -.h)I

c I * ' I I ::::zt::lZl:LU

ffe• ! I

11. s;a•ms q;.,a111. •&./B·z?i

:i:: 133 (8/66)

GENERAL. ELECTRIC
DATE

GlE-600 SIERllES Jul_y_ 1968
INFORMATION SYSTEMS DIVISION NO.

COMPUTER EQUIPMENT DEPARTMENT TECHNICAL INFORMATION BULLETIN
600-213

SUBJECT: REF.

Expanded De~~gg~ng Facility (Time-Shari.ng System) CPB-1514

Tilis TIB describes the capabilities of the Debugging Facility for 600TSS
subsystem development,, as presently improved a1id expanded. Also
included is a minor technical modification to the subsystem temporary­
placement deck setup.

Please change the pages in your GE-625/635 GECOS In Time-Sha~dng System
Programming Refererice Manual,, CPB-1514,, as follows:

Remove
. 27-30

59-64

Replace

27-30
59-64

Insert

64.1

This Technical Information is the first TIB to be issued for this edition
of the manual.

It is suggested that you add this page to the front of your manual to shoH
that th1s TIB has been entered. ·

(4) options

0 1 17 18 30 35

Optional

Specific

Permissions

c b - - - - - - - - - device nameTor class
j_

Initial File Size Max. File
(For CF and MF only; otherwise

user-ID (Chars. 1-6 in BC!)

user-ID (Chars. 7-12 in BCI)

rj wj aJeJ pJmJ

0 1 2 3 4 5 6

•
•

user-ID (Chars. 1-6 in BCI)

user-ID (Chars. 7-12 in BCI)

+H+lml
-1 (end of list)

If corresponding bit is set:

c = Contiguous allocation desired

r
w
a
e
p
m
b

=
=
=
=
=
=
=

(CREATE FILE only)
Specific Read permission
Specific Write permission
Specific Append permission
Specific Execute permission
Specific Purge permission
Specific Modify permission
Random File type

(CREATE FILE only) .

Size
unused)

and device name or class is defined as:

Specific (named) device, in BCI -

35

e.g., DSl, where "DSl" would have been
assigned as a specific device name in the
installation's GECOS-startup deck.

27 CPB-1514
Rev. July 1968

I .

Class of device (in bits 30-35) -

00 = DSU270 (large disc)
01 = DSU200 (standard disc)
03 = MDU200 (UNIVAC drum)
04 = MDU300 (Fairchild drum)

or where

-1 (bits 18-35) denotes the file with the
most available space.

Create-Catalog Function

DRL FILACT r3o]
ZERO O,L(arglist)
ZERO 2,L{buffer)

where

arglist ZERO L{status-return),O
ZERO L{cat/file desc),L{permissions)

ZERO L (options)

cat/file desc

USER'S
MASTER
CATALOG:

Name ·and
Password

Intermediate{
Catalogs

(as below)

Catalog
Level
To Be
Created

user-ID (Chars. 1-6 in BCI)

user-ID (Chars. 7-12 in BCI)

Password - always BCI blanks,
at this levelL for 600TSS

Password - always BCI blanks,
at this level, for 600TSS

•
•
•

Catalog Name (Chars. 1-6 in BCI)

Catalog Name (Chars. 7-12 in BCI)

Password (Chars. 1-6 in BCI)

Password (Chars. 7-12 in BCI)

-1 (end-of-list)

28

} 2 wds.

} 2 wds.

} 2 wds.

} 2 wds.

} 1 wd.

CPB-1514

(1) All names and passwords are left-justified with
trailing blanks.

(2) -1 in place of the user's-master-catalog name
indicates that the user-ID of the current terminal
~ is to be filled in by the derail processor.

This FILACT function, identified by the function-number "2",
creates the specified new catalog at the level indicated.
All existing intermediate catalogs must be specified in the.
cat/file desc table (i.e., the complete catalog string).

Create-File Function

where

DRL
ZERO
ZERO

.USER'S
MASTER
CATALOG:

Name and
Password

Interme­
diate

Catalogs
(see CC
Funct.)

FILE TO
BE

CREATED

FILACT
0 ,L (arglist)
3,L{buffer)

arglist ZERO
ZERO
ZERO

L(status return),O
L(cat/file desc) ,L(permissions)
L (options)

cat/file desc

user-ID (Chars. 1-6 in BCI)

user-ID (Chars. 7-12 in BCI)

Password - always BCI blanks,
at this levelL for 600TSS

Password - always BCI blanks,
at this level, for 600TSS

{ •
•
•

File name in ASCII (Chars. 1-4)

File name in ASCII (Chars. 5-8)

Password (Chars. 1-6 in BCI)

Password (Chars. 7-12 in BCI)

-1 (end of list)

29

}
}

2 wds.

2 wds.

} 2 wds.

} 2 wds.

} l wd.

CPB-1514

(1) All names and passwords are left-justified
with trailing blanks.

(2) All entries are in BCI, except for the file
name.

(3) -1 in place of the user's master-catalog
name indicates that the user-ID of the
current terminal user is to be filled in by
the derail processor.

The Create-File function creates a permanent-file
description from the information specified in both the
cat/file desc and options parameters and will acquire the
necessary file space. The file name is not entered in the
user's AFT (see "Access-File Function").

Access-File Function

. where

DRL
ZERO
ZERO

FILACT
L(alternate name),L(arglist)
4,L(buffer)

arglist ZERO L(status-return) ,.!_ for random/~ for linked file*

ZERO L(cat/file desc),L(permissions)

* note-if this field is nonzero the file will be
accessed as a random file regardless of how
it is defined. If the field is zero the file

·will be accessed according to how it is defined.

alternate name

Alternate name in ASCII, or all }
2 wds.

Zeros if no alternate naming desired

This two-word entry is used when a file is
to be accessed by a name other than that by
which it waR created. That is, a file
created in the batch environment with a name
of more than 8 characters, or a file whose
name is the same as one already in the
user's AFT.

NOTE: When an alternate name is used, the
defined file name in the cat/file
description must be in BCI and the alternate
name in ASCII.

30 CPB-1514
Rev. July 1968

Placement

The subsystem program is written and assembled the same as
for. permanent placement. (The program descriptor need not be
assembled; it will not be referenced. Do not modify TSTRT.)
The following steps are then performed:

0 Create a random permanent file using ACCESS.
subsystem is stored and referenced from this file.

The

o Submit the program deck(s) as a GELOAD activity to GECOS
III with the following deck setup:

$OPTION SAVE/prog-name, NOGO

•
• •

other control cards

subsystem deck(s)

•
$EXECUTE
$LIMITS
$PRMFL H*,WRITE,R, cat-name/filename
$ENDJOB

Loading the Subsystem

After submitting the decks as a GELOAD activity, the user
may have the subsystem loaded and start. check-out from a
terminal.

In response to SYSTEM?, specify LODX. For FILENAME?, give
the filename specified on the $PRMFL card. If patching is
desired, type an asterisk as the second field preceded by a
comma.

Examples:

FILENAME? Al23

FILENAME? Al23,*

To load and execute

To load, patch, and execute

59 CPB-1514
Rev. July 1968

I

Octal Patching

If the asterisk was typed as part of the response to
FILENAME?, the program is loaded and a carriage return, line
feed, and question mark are given. The user then may type
patches in one of the following forms:

1.
2.

?address
?address

patch
patchl,patch2, •••

In both forms, the address and patch must be separated by a
single blank. All addresses and patches must be in octal,
and the addresses are relative to the load map produced when
the file was written. In the second type, sequential patches
may be given beginning at the specified address. In this
form, the patches are comma-separated and as many may be
given as will fit on the line. Leading zeros need not be
typed.

Typing DONE indicates that patching is completed:

? DONE

The subsystem program is then executed.

DEBUGGING FACILITY

During Checkout, a standard debugging subroutine is provided
for inclusion in a subsystem that is placed in the system.

Title: Terminal Debug Subroutine

Symbolic Name: TDS

Purpose:

In checking out a 600TSS subsystem, TDS allows the user to
gain control at selected locations within the subsystem.
When TDS is in control, the user may display and/or patch
selected areas of the subsystem, display and/or modify
registers, and either return to the subsystem normally or to
a specified location within the subsystem. The user may add
or delete breakpoint locations during operation of the
subsystem.

Usage During Subsystem Preparation:

TDS may be entered from the subsystem in either one of two
ways:

60 CPB-1514
Rev. July 1968

. 1) At each location where the user is to gain control,
the instruction:

XED TDS

is inserted into and assembled with the subsystem.

2) Once the user has control he can add breakpoint
locations at the terminal during the debugging
process. (At least one breakpoint -- item 1 -- must
have been provided.)

In either case, the subsystem to be checked out must contain
a SYMREF to TDS. Then when the subsystem is submitted as a
GELOAD activity (to be loaded later by LODX) , a binary
object deck of the TDS subroutine must be included. The
installation may place this object deck on the Subroutine
Library.

Usage During Subsystem Checkout:

The user calls the subsystem to be checked out by the LODX
procedure. When any of the locations at which the user has
placed a breakpoint (XED TDS instruction) are encountered,
the following message will appear at the user's terminal:

xxxxxx FUNCTION?

where xxxxxx is the octal address of the breakpoint.

In the following messages, the requests and their respective
results are listed. Note that "absolute" value refers to an
address relative to subsystem zero; and, to initiate
transmission, all requests must be followed by a carriage
return.

Response: ~parameters

or
SA parameters

(~nap)

(Snap Absolute)

This request indicates that the user wishes a snap or
display of certain memory locations.

The S form specifies that an offset (or relocation) value is
automatically added to the address parameter(s). Using the
~ffset function, the user will have set the offset value.

The SA form specifies an Absolute value for the following
address parameters: -

aaa,n displays (snaps) n locations starting at aaa

61 CPB-1514
Rev. July 1968

aaa-bbb displays (snaps) locations aaa through bbb

aaa displays (snaps) location aaa

The parameters follow the function identifier. (~ or SA)
without .intervening blanks.

When the Snap request is satisfied, the TDS subroutine
responds with a question mark which indicates that another
function, or a return to processing, may be requested.

Response: P parameter
or

(Patch)

f!! parameter (Patch Absolute)

This request indicates that the user
replace the contents of selected
subsystem.

wishes to
locations

patch
within

or
the

The P form specifies that an offset (or relocation) value is
automatically added to the patch-location parameter. Using
the Offset function, the user will have set the offset
value.

The PA form specifies an absolute value for the following
patch-location parameters:

aaa¥bbb where aaa (1-6 octal digits) is the location at
which the octal patch bbb is to be made. Fields aaa
and bbb must be separated by one blank, and bbb can'
be any of the following:

xxxxxxyyyyyy
Rxxxxxxyyyyyy

xxxxxxyyyyyyR
RxxxxxxyyyyyyR

where x is an octal digit of the upper-half word, y
is an octal digit of the lower-half word, and R is
a Relocation indicator specifying that the upper
half, lower half, or both halves of the word are to
be incremented by the offset value. Where
consecutive patching begins at aaa, successive
patches may be given in the form of comma-separated
fields. The patch fields (bbb,ccc, ••••) may contain
up to 12 octal characters which are right-justified
and stored in the respective memory locations.

When this request is satisfied, the TDS subroutine
with a question mark which indicates that another
or a return to· processing, may be requested.

responds
function,

62 CPB-1514
Rev. July 1968

Resp.onse: X (Display Registers)

This request indicates that ~he user wishes to display the
contents of all working registers--A, Q, E, I, and all index
registers.

Alternatively, this function allows selective designation of
individual registers using the following forms of the X
request:

form meaning

Xn Display the nth index register only

XA Display the A-register only

XQ Display the Q-register only

XE Display the E~register only

XI Display the indicator register only

When this request is satisfied, the TDS subroutine responds
with a question mark which allows another request to be
given.

Response: ~arameters (Modify Registers)

This request indicates that the user wishes to modify the
contents of a working register.

The permissible forms of this request are:

form meanins:

MXn)z$xxxxxx Modify nth index register

MA}z$ xxx ••• xx Modify A-register

MQ}zf xxx ••• xx Modify Q-register

.ME}zf xxx Modify E-register

MI~xxxxxx Modify indicator register

where x is an octal numeric, and the right-hand,
blank-separated field is always the modification data.

After this request is satisfied, the TDS subroutine responds
with a question mark which .allows another request to be
given.

63 CPB-1514
Rev. July 1968

Response: ~parameters

or
~ parameters

(Breakpoint)

(Breakpoint Absolute)

This request indicates that the user wishes to establish a
new breakpoint, or debugging location, within the system.
Establishing a breakpoint is analogous to assembling an XED
TDS instruction into the subsystem at a location logically
preceding the instruction residing at the address specified
in the breakpoint request. The instruction that has been
replaced at the specified address is executed following the
requested breakpoint function. Each time the specified
address is encountered in the execution of the subsystem,
TDS will print BREAKPOINT aaa, stop execution, and ask for a
function request (FUNCTION?1'7 Location aaa will be relative
to the offset value, if any. ----

The permissible forms of the Breakpoint request are:

form meaning

B Break at effective address offset· + 0

BA Break at location O, Absolute

Baaa Break at effective address offset + aaa

BAaaa Break at loation ~' Absolute -
After the request is satisfied, the TDS subroutine responds
with a question mark which allows another request to be
given.

Response: Oxxxxxx (Offset)

This request indicates that the user wishes to set (or
reset) the offset value to xxxxxx, where x is an octal
numeric. The offset value is 1n1t1ally set to zero by TDS.
When this request is satisfied, the TDS subroutine responds
with a question mark which allows another response to be
given.

Response: D (Delete breakpoint)

This request indicates that the user wishes
current breakpoint by replacing it with
instruction or the original instruction if
was placed there by the TDS Break option.

64

to delete the
either a NOP

the breakpoint

CPB-1514
Rev. July 1968

When this request has been satisfied, the
responds with a question mark which allows
to be given.

Response: R (Return)

TDS subroutine
another request

This request causes control to return to
the location following the XED TDS
instruction.

the subsystem at
or breakpoint XED

Response: Rxxxxxx (Return to location)
or

RAxxxxxx (Return to Absolute location)

This request causes a special return to the subsystem at
location xxxxxx, where xxxxxx is an octal address. In the RA
form of this request, the offset is added.

Error Indications and Messages:

1.

2.

ILLEGAL INPUT - RETYPE -- typed message
input is typed in response to -FUNCTION?"

ILLEGAL COMMAND, MUST PRECEDE DATA WITH
or M -- typed message in response to
preceded by a function-type indicator.

when illegal
or "?".

S,P,R,D,X,B,O,
parameters not

3. ROOM FOR BREAKPOINT ENTRIES EXHAUSTED -- typed message
when no more breakpoints can be accepted.

64.1 CPB-1514
Rev. July 1968

INFORMATION SYSTEMS

GENERAL. ELECTRIC

UTHO U.S.A.

