
GE-PAC® 3010/2
COMPUTER SYSTEM

CENTRAL

PROCESSOR

REFERENCE MANUAL

GENERAL. ELECTRIC

GET-6174

REVISION RECORD
PUBLICATION: GET-6174, GE-PAC 3010/2 Central Processor Reference Manual

REVISION OR
PAGE NO.·

ii

iv

2-8

2-12

2-13/2-14

4-22

5-12

5-13

5-16

5-17

5-23

5-49 Added

5-50 Added

5-51 Added

5-52 Added

5._53 Added

5-54 Added

5-55 Added

A5-l

A5-2

2-2

2-12

4-24

5-5

5-34

DATE

4/72

10/72

REVISION OR
PAGE NO. DATE

GE-PAC® 3010/2
COMPUTER SYSTEM

CENTRAL
PROCESSOR

REFERENCE MANUAL

General Electric reserves the right
to make changes in the equipment or
software, and its characteristics or ·
functions, at any time without notice.

Copyright © 1972 by General Electric Co.

GET-6174
10/72

$14.50

TABLE OF CONTENTS

Chapter

rnTRODl' C TION

1. 1 l\Jajor Features

1. 2 Core l\Iemory Parity Option

1. 3 Memory Protect Option

1. 4 Input/Output Methods ..
1. 4. 1 Multiplexor Channel .
1. 4. 2 Multiplexor Channel I/O Techniques
1. 4. 3 Interleaved Data Channel (IDC)
1. 4. 4 Direct Memory Access Port

1. 5 Software.

1. 6 Process I/O

1. 7 Peripheral Devices

2 SYSTEM DESCRIPTION

?. 1 Introduction .

2.2 Elements of the System.
2. 2. 1 Processor ..
2. 2. 2 Core Memory

2. 2. 2. 1 Memory Bus
2. 2. 2. 2 Selector Channel
2. 2. 2. 3 Customer Designed Direct Memory Access Channel

2. 2. 3 Multiplexor Channel
2. 2. 3. 1 Multiplexor Channel I/O Techniques .
2. 2. 3. 2 Interleaved Data Channel .

2. 3 Processor Operation
2. 3. 1 Program Status Words
2. 3. 2 Instruction Execution .
2. 3. 3 Core Memory Allocation

2.4 Interrupt System . . •
2. 4. 1 Interrupt Procedure .
2. 4. 2 Internal Interrupts ..

2. 4. 2. 1 Fixed-Point Divide Fault Interrupt.
2. 4. 2. 2 Floating-Point Arithmetic Fault Interrupt .
2. 4. 2. 3 Machine Malfunction Interrupt ..
2. 4. 2. 4 Illegal Instruction Interrupt ...
2. 4. 2. 5 Protect Mode Violation Interrupt
2. 4. 2. 6 Supervisor Call (SVC) Interrupt .

Page

1-1

1-1

1-2

1-2

1-2
1-2
1-2
1-2
1-2

1-3

1-3

1-3

2-1

2-1

2-1
2-1
2-3
2-4
2-4
2-4
2-4
2-5
2-5

2-5
2-5
2-6
2-9

2-9
2-9
2-10
2-10
2-10
2-10
2-11
2-11
2-11

Chapter

I

3

4

TABLE OF CONTENTS

2.4.3 Input/Output Control Interrupts . .
2. 4. 3. 1 External Interrupt ..
2. 4. 3. 2 Automatic I/O Service ••.
2. 4. 3. 3 Automatic I/0 Termination Interrupt. ••..
2. 4. 3. 4 Automatic I/0 Termination Queue Overflow Interrupt .•

2.4.4 Special Interrupts . • • • • .
2. 4. 4. 1 Console Interrupt•.•••....
2. 4. 4. 2 Memory Protect Interrupt •..••••.....
2. 4. 4. 3 Eight Line Priority Interrupt Module Interrupts.

DATA AND INSTRUCTION FORMATS AND STORAGE ADDRESSING

3. 1

3.2

3.3

3.4

3. 5

Introduction . .

Data Formats •
3. 2. 1 Hexadecimal Notation
3. 2. 2 Fixed-Point Data ..

3.2.3
3.2.4

3. 2. 2. 1 21s Complement Notation .
Floating-Point Data
Logical Data . •

Instruction Formats . .

.General Register Usage

Storage Addressing .

INSTRUCTION REPERTOIRE

4.1 .Introduction • . • .

4.2 Fix.ed- Point Load/Store Instructions •
4; 2. 1 Load Halfword .
4. 2. 2 Load Multiple .
4. 2. 3 Store Halfword
4. 2. 4 Store Multiple .

4.3 .Fixed-Point Arithmetic Instructions .
4. 3. 1 Add Halfword • • . . • .
4. 3. 2 Add with Carry Halfword •
4. 3. 3 Subtract Halfword ..•.•
4. 3. 4 Subtract with Carry Halfword •
4. 3. 5 Compare Logical Halfword
4. 3. 6 Compare Halfword ...•.
4. 3. 7 Multiply Halfword ..•.•.
4. 3. 8 Multiply Halfword Unsigned .
4. 3. 9 Divide Halfword

4.4 Logical Instructions • • •
4. 4. 1 AND Halfword
4. 4. 2 OR Halfword •
4. 4. 3 Exclusive OR Halfword
4. 4. 4 Test Halfword Immediate

ii

..

'•

·.

'•

Page

2-12
2-12
2-12
2-12
2-13
2-13
2-13
2-13
2 .,.i 3

3-1

3-1

3-1
3-1
3-1
3-1
3-3
3-4

3-5

,3-6

3-7

4-1

4-1

4-3
4-4
4-5
4-5
4-6

4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-14
4-15

4-16
4-17
4-18
4-19
4-20

4/72

Chapter

5

4.5

4.6

4.7

4.8

TABLE OF CONTENTS

Byte Handling Instructions .•.•.•••...•.••....•..•••.•.••....•..
4. 5. 1 Load Byte•......•.•..•.••.••.•.•.....•.•.....
4. 5. 2 Store Byte .•..............•..•.•.••.•.•..•..•.•....•
4. 5. 3 Exchange Byte ..•..•.•.•..•.•••••••••.•..•••.•.••.••.
4. 5. 4 Compare Logical Byte •••.•.•.•••••••••..•..•.•.••......

Floating-Point Instructions .•.•...•••........••.•...•••••.•.....
4. 6. 1 Floating- Point Load ••..•.•.••..•••••.•.•...•.••...•....
4. 6. 2 Floating-Point Store•..•..••.•.•....•.••••.•....•
4. 6. 3 Floating- Point Add •••...•.••••••••..••.•.....•........
4. 6. 4 Floating-Point Subtract ••..•.•.•.••.••••...•..•....•.••.
4. 6. 5 Floating-Point Compare ••....••.•.••.•..•.•...••......•.
4. 6. 6 Floating-Point Multiply .•.....•••.•..•....•.•.•••..•..•.
4. 6. 7 Floating- Point Divide ••••..••.•..•.••....•...•••...•.•..

Shift/Rotate Instructions .•.••.•.• ~ ..••.•..••...••••......•....•
4. 7. 1 Shift Left Logical . . . • • • . • . • • . • • ••
4. 7. 2 Shift Right Logical • . . . • . . • • • • . • •
4. 7. 3 Rotate Left Logical •.•.••••••••••••••••.•••••••.•..•••.
4. 7. 4 Rotate Right Logical ••..••••.•••••••.•.•..•...••••..•..
4. 7. 5 Shift Left Arithmetic .••••••••••.••••.•••••••••••••.••••

Page

4-21
4-22
4-22
4-23
4-23

4-24
4-25
4-25
4-26
4-27
4-28
4-29
4-:rn

4-31
4-32
4-33
4-34
4-35
4-36

4. 7. 6 Shift Right Arithmetic • • • • • • • • • . • . • • • • • • • . • • • • • . • • • . • • • • 4-37

Branch Instructions ..•.•..•.••.•••••.••••..•.•...•••••.•.•.••
4. 8. 1 Branch on True Condition .••••.••••••.•...••.••.•••..••••
4.8.2
4.8.3
4.8.4

Branch on False Condition •.••.••••••••••.••.•.••....•..•
Branch on Index . . • ...•.•.•..•..••.•...••••.•••....•..
Branch and Link ..•••••.••••••.••..•••.••.••.•••••••..

4-38
4-39
4-40
4-41
4-42

4. 9 List Instructions . • • • • . • . • . • . • • • • • • • . • • • . • . • • • • . • • • • • . . • . 4-43
4. 9. 1 Add to Top/Bottom of List • • 4-44
4. 9. 2 Remove From Top/Bottom of List • . . • . . • . • • • • • • . • • • • • . • • . • . 4-45

4. 10 Input/ Output Instructions • • • . • • . . . • . • . . • . • . • . . • • . • . • • • . 4-46
4. 10.1 Acknowledge Interrupt .•...••.•.•. ~ • • • • • • . . • • • . . • . • . • • . • 4-47
4. 1 o. 2 Sense Status ..••..••....•..•.•••.••.. , . • . . • • . • • . • • . • . 4-48
4. 10. 3 Output Command. . • • . • • . • . . • . • . • • . • • • • . • . . • • • . . 4-49
4. 1 O. 4 Read Data • . . . • . • . • • • . • • . • . . . • . . • • • • • • • • • . • . • • . • 4-49
4. 1 o. 5 Write Data. . . • • • • • • • • . • . • • . • • • • . • . • . . • . . • . • . 4-50
4. 10. 6 Read Block . • . • . . . • . • • • • • . • . • • . • . . . • • . • . • • . • • • • • • . • . 4-51
4. 10. 7 Write Block••••••. ·• . • • . . • . • • • • • • • • • . . . • • • . . • • . . 4-52
4. 1 o. 8 Read Halfword . . . • . • • . . • . • • . . . • • • • • • • . • • . • . • . . • . • • • • . 4-53
4.10. 9 Write Halfword. . . • . • . • • • • • • . • • • • • • • • • . • • . • • . • . • . . • • • . 4-54
4.10. 10 Autoload . • • • . • • • . . . • • • • . . • • . . . 4-55

4.11 System Control Instructions • . . • . • • • . . • • . • . • . . • • . . . • . • . . • . . • . • . . 4-56
4.11.1 Load Program Status Word • • • . • • • • • . • . . • • . . • • • . • • • • • • • • • • 4-56
4. 11. 2 Exchange Program Status .•••.... , . . • . • • • • • • • • • • • . • . . • . • . 4-57
4. 11. 3 Simulate Interrupt •.. , •.••.•.•..•..•••••••••.•.•.••.• , • 4-57
4. 11. 4 Supervisor Call•.....•.•..••••••..•••.••••...••.. , 4-58

INPUT /OUTPUT SYSTEM •••.•••...••.•.• , , •••• , •.••• , ••• , •• , • , , ••• 5-1

5-1

5-1
5-1

5.1

5. 2

Introduction .••..•.• , ...••.•.•..•••.•..•..•.•.•..••.•••.••••

Systems Interface .•.••.•..•...••••.••••..•.••.•.•.••••••..••
5. 2. 1 Multiplexor Channel •.•..•..•••.••.•.•.••••••••••••..••.

iii

Chapter

6

5.3

5.4

5. 5

TABLE. OF CONTENTS

Page

5. 2. 2 Interleaved Data Channel •.•••••••.••••••••••....•• , • • • . • • 5-4
5. 2. 3 Selector Channel •••••. • . • . • . . . • • • • • . • • . • • • • • • • • . . . • 5-5

Input/Output Instructions .••••.•••••••.•.•.••.••••.•..•.••••••••
5. 3.1 Read Data (RD) Instruction .•..••...••••.••.•...•.•.•.•.••.
5. 3. 2 Read Halfword (RH) Instruction •••••••••.•...•••••••.••••.•
5·, 3. 3 Write Data (WD) Instruction •••..••••....••••........••••••
5. 3. 4 Write Halfword (WH) Instruction .•.••.••••••. , . , •..•••.•••..
5. 3. 5 Sense Status (SS) Instruction •••••.••••••.•••..•.••.•..•.••.
5. 3. 6 Output Command (QC) Instruction ..••.••••.•.......•.•.•.•••
5. 3. 7 Acknowledge Interrupt (Al) Instruction •..•....••...•.••••••.•.
5. 3. 8 Read Block (RB) Instruction •.••••.••••••.•••••..••••••....
5. 3. 9 Write Block (WB) Instruction •.••••.••••.••.•.••..•••.•....
5. 3.10 Autoload (AL) Instruction •.•••••.•.•.•..•..•..••.....•.••.

Device Controller Logic Design .•.•• ; •..•.•.•••••••.•..•.........
5. 4. 1 Multiplexor Bus .•••••••••.•••••••.••.•.•...•..•••••.••.
5. 4. 2 Device Controller Addressing •.••••.•••.••.••••••.••.•.....
5. 4. 3 Data and Status Input/Output •••••••.•...•........•..•..•••

5.4.4

5.4.5
5.4.6
5.4. 7
5.4.8
5.4. 9

5. 4. 3. 1 Data •.•••••••••••••••••••.•••••••••..••••.•
5. 4. 3. 2 Status ..••.••.••••••.••.•.•.••••.••••.•..•.
Data and Command Output •.•••••••••••••••.••.••••••••••
5.4.4.l Data •.•••••••••.•••.•••••.••••...•..•..•.•.
5.4.4. 2 Command •••.••••••••••••••.••••.•••••••.•..
Interrupt Control •..•••••••••••••.••.•••••.••..••••.••.
Multiplexor Bus Wiring ••••.•••.••••••..•.•.•...••••...•.
Multiplexor Channel Timing. . • • • • • • . • • . • . • • . . • . . . • • • . • . • ••
Typical Device Controller Interface •..•••.•.•••••.••..•.•
Data Channel Interface Design •...•••••••••.••••..•••.•.•••

Automatic I/O•••.......•.....•.............................•
5. 5. 1 Automatic I/0 Service Pointer Table •........•....•.........
5. 5. 2 Interrupt Service Block •........•.. ~ ..•....................
5. 5. 3 Automatic I/O Termination Queue •...............•..........
5. 5. 4 General Operation•..........................
5. 5. 5 Function Words •.................•......•.................
5. 5. 6 Initialization ••.••....•....•............•..•..............
5. 5. 7 I/0 Operation•...•.................•........•....•..
5. 5. 8 Termination•... ·
5. 5. 9 Example of Channel I/O Programming , .. .

5-9
5-9

5-11
5-14
5-16
5-19
5-21
5-22
5-24
5-26
5-28

5-30
5-30
5-34
5-34
5-34
5-36
5-38
5-38
5-38
5-38
5-41
5-41
5-44
5-44

5-49
5-49
5-49
5-49
5-49
5-51
5-51
5-52
5-53
5-54

CORE MEMORY .. 6-1

6-1

6-2

6-2

6-3
6-4
6-4
6-7

6.1

6.2

6. 3

6.4

Introduction . . . • • . • • • • • . . . • • • • • . • • ••.•..•..•.•••

Core Memory Modules • • . ..••.••...••••....•........•••••••.•.

Parity Option ••••••••••.••••.•..•••.••......•.••.••.•.•••.••

Memory Bus •••••....•..•••...•...•.••..••••..•......•..•.•
6. 4. 1 Memory Bus Priority .•.••.••••.•..•.••••.•..•••.•••...•
6. 4. 2 Memory Bus Interfacing .•..•••.•.•...•..••....••••.•••••
6. 4. 3 Memory Bus Timing . . . • . . • • • • • . . . • . • • . . • • . • • • •

iv 4/72

TABLE OF CONTENTS

Chapter Page

7 CONTROL CONSOLE ••••..............•.............•............ 7-1

7.1

7. 2

Introduction . . . • • • • . . • . • • . . • . . . ••.....•.•..

Control Console Description•••....••.•...••••....•..•...

7. 2. 1
7.2.2
7.2.3

Key Operated Security Lock •.•••••.......•.•.......•••......
Control Switches •••.•••••••.•.••....•.•..........•••..•..•.
Function Switches •..••..•••..••••••.•••....••....••..••••.•

7-1

7-1

7-1
7-1
7-2

7. 3 Control Console Operating Procedures • . • • • . . . • • • . . • . . . • . . • . • . • • . . • . 7-3
7.3. l Power Up... 7-3
7.3.2 Power Down... 7-5
7. 3. 3 Program Loading •.••••.•..••••••. , . • • . • • • • . . • • • • • . • . 7- 5
7. 3. 4 Program Execution.. 7-6
7. 3. 5 Program Termination • • . • • . • • • • . • . . • . • . • . . . • . . • . • . . • . • • 7- 7
7. 3. 6 Manually Initiated Memory Operations . • • . . . • . • . . • • . . . • • 7- 7

7. 3. 6. 1 Memory Read .•.••••••• , • • • • • • • • • . • • . • • • 7-7
7.3.6.2 Memory Write ••.•••.•••••.•••.•.•••••........ 7-7

7. 4 Programming Considerations. . . • . • . • . . . • • • • • . • . • • . . • . • • • . • . . . • • . 7-8
7. 4.1 Control Console I /O. • . . . • . . . • • • • . . • . • • • • • • . . . • . . . 7-b
7. 4. 2 Console Interrupt. • .. • . • • . • . • • • • • • • • • • • • . . . • • • • . . • • . . 7-9
7. 4. 3 Wait State. . • . • . • • . . • . • . • • • • • • • • • • • • . • • • • • • • • 7-9
·7. 4. 4 Power Fail . . • • • . • • . • • • • . • • . • . • • . • . . . • • . . • • • . • • . . . • . • 7-9

Appendix

INSTRUCTION SUMMARY - ALPHABETICAL • Al-1

2 INSTRUCTION SUMMARY - NUMERICAL.. A2-l

3 EXTENDED BRANCH MNEMONICS. • . . • • . . . • • . • A3-l

4 OP CODE MAP. • • • . . . • . . A4-l

5 INSTRUCTION EXECUTION TIMES.. • . . • . . . • • • • • A5-l

6 ARITHMETIC REFERENCES_... A6-l

7 1/0 AUTOMATIC SERVICE OPERATION AND TIMING DATA....................... A7-l

8 1/0 REFERENCES... AS-1

v

CHAPTER 1

INTRODUCTION

The GE-PAC~' 3010/2 process computer system is a flexible, modular process control system based upon
a powerful and reliable Central Processor. A GE-PAC 3010/2 system may implement a full line of process
input and output interfaces and peripheral devices. The Central Processor includes a Processor, a Core
Memory, and an input/output Multiplexor Channel and Bus. The Central Processor is normally installed in
a Central Systems Cabinet (CSC).

The advanced circuitry and packaging utilized in the system and the Central Processor provide an opti­
mized price/performance ratio. The GE-PAC 3010/2 system is upwardly compatible with other GE-PAC
computer systems, including the GE-PAC 30-1, 30-2, 30-2E and 3010. The user instruction sets. inter­
rupt handling scheme, input and output formats, and control sequences are similar in all of these machines.
Programs which run on these earlier systems will run on 3010/2 systems with no changes or with only
minor changes. Absolute upward program compatibility from the 3010 to the 3010/2 is maintained.

The basic Central Processor consists of only five printed wire boards which provide the control logic, a
read-only memory (ROM) and 8, 192 bytes of Core Memory. This simple Central Processor has a func­
tional capability similar to much larger and more complex computers because the non-volatile ROM al­
lows great simplification of the Processor logic, by executing micro- instruction subroutines, which in
turn, emulate the user instructions, and execute other valuable functions simplifying I/O and housekeeping
operations.

Core Memory is addressable at the 8-bit byte or 16-bit halfword level. This memory is expandable from
the basic 8, 192 bytes to 65, 536 bytes. All of core is directly addressable with the user instructions, and
no paging or indirect addressing is required.

The Processor hardware includes sixteen 16-bit General Registers which may be used as accumulators.
Fifteen of the General Registers may also be used as index registers. Several register to register user
instructions permit direct register-to-register operations, eliminating redundant loading and storing in
Core Memory.

Up to four Direct Memory Access Channels may be implemented in the Central Processor. These channels
operate over a common Core Memory bus on a cycle stealing basis, through a Direct Memory Access Port,
which is built into the Processor. Two types of Direct Memory Access Channels may be implemented:
The first is the Selector Channel, which permits direct data transfers between any standard device control­
ler and core. The second direct channel may be custom designed for special applications.

1.1 MAJOR FEATURES
The user instruction set consists of 113 instructions including:

Floating- Point Instructions
Arithmetic and Logical Instructions
Byte Processing Instructions
Both Single-Word and Double- Word Shift Instructions
List Processing Instructions
Short Branch Instructions for local branches
Single- Byte, Double-Byte, and Block I/O Instructions
Simulate Interrupt Instruction, for sophisticated I/0 control
Supervisor Call Instruction, for communication with the operating system (RTMOS-30)

The instruction words are 16 bits and 32 bits in length. Data transfers are in the form of 8-bit bytes,
16-bit halfwords and 32-bit fullwords.

The Core Memory features a 1. 0 microsecond cycle time and the access time is 300 nanoseconds. Be­
cause the Read-Only Memory is faster than in earlier GE-PAC mini-based computer systems, instruction
execution times in this machine are considerably reduced.

*Registered Trademark of General Electric Company

1-1

The Processor may respond to up to 256 interrupt levels. The interrupt scheme and the micro-program
are combined effectively to permit an Automatic I/O Service mode, wherein much of the overhead required
for I/O service is handled by the Processor, simplifying programming and saving memory space.

The Central Processor includes a compact but complete Control Console which permits manual operation
of the system by programming and maintenance personnel. The console permits reading from and writing
in core, displays any of the General Purpose Registers, allows an operator to manually step through pro­
grams, and features a keyswitch to prohibit unauthorized tampering with the controls.

1.2 CORE MEMORY PARITY OPTION
Preservation of memory integrity is provided by a memory Parity option. During Write operations, an
odd parity bit is generated, and is appended to each 16-bit halfword. When data is fetched from memory,
parity is again calculated and compared with the parity bit originally stored during the Write operation.
In the event the parity bit originally stored and the recalculated parity bit are different, the Processor is
interrupted via the Machine Malfunction Interrupt.

1.3 MEMORY PROTECT OPTION
The preservation of specific programs and data stored in Core Memory is provided by the Memory Protect
option. The Memory Protect option permits available memory to be divided into blocks of 512, 1, 024, or
2, 048 bytes. Any combination of from 1 up to 64 blocks may be selected for protection under program
control. The Memory Protect option permits the Processor to read data from any core location, but to
write data only into unprotected locations. Any attempt to write into a protected block of memory is
aborted and the Memory Protect hardware generates an I/0 interrupt as an indication to the Processor
that an illegal write was attempted.

1.4 INPUT /OUTPUT METHODS

1.4.1 Multiplexor Channel

The Multiplexor Channel provides an extremely reliable Input/Output System capable of communicating
directly with up to 255 peripheral devices. Data transfers over the Multiplexor Channel can be either
8-bit or 16-bit to accommodate both byte and halfword oriented devices.

1.4.2 Multiplexor Channel 1/0 Techniques

The flexible structure of the Multiplexor Channel provides a repertoire of built-in I/O techniques. These
techniques provide an important benefit in the ease of use, since an appropriate I/O technique can be
chosen and matched to the speed and transfer requirements for a variety of peripheral devices. The
various Multiplexor Channel I/O techniques include: Program-Controlled I/O, Interrupt Driven I/0,
Automatic I/O Service, and Burst Mode I/O.

1.4.3 Interleaved Data Channel {IDC)

The Interleaved Data Channel is a high speed autonomous memory port. It provides a convenient method
for customer-designed device controllers, requiring direct access to memory, to transfer data at 440K
bytes in the Burst Mode or 280K bytes in the Single Cycle Mode.

1.4.4 Direct Memory Access Port
The built-in Direct Memory Access Port accepts up to four DMA Channels. This port operates on a
cycle-steal basis with core memory, allowing simultaneous processing and I/O data transfers. The
maximum transfer rate over a DMA Channel is 2, 000, 000 bytes per second. The Direct Memory Access
Port may be used through the Selector Channel, which permits block transfers between memory and up
to 16 devices, or by interfacing special devices directly to the port.

1-2

1.5 SOFTWARE

The GE-PAC 3010/2 system features a full line of standard software packages to support the available
functional subsystems. The Real-Time Operating System, RTMOS-30, supports all process I/O and
peripheral device operations on a real-time multiprogrammed basis. RTMOS-30 operates in a protected
mode, wherein the operating system is protected from user level programs by the Processor hardware,
which implements a "privileged instruction" concept. The privileged instructions are the system control
and I/O instruction subsets, which are reserved for use by the operating system. User level programs
interface with the operating system via a subset of Supervisor Call instructions (SVC).

In addition, core areas occupied by RTMOS-30 and other critical programs and data may be protected if
the Memory Protect Option is implemented (1. 3).

The standard software includes both on-line and off-line loaders, assemblers, editors, and debugging
programs. The standard software packages are described in the GE-PAC 30/3010 Programming Refer­
ence Manual, GET-6171.

A complete line of hardware test programs is also provided with 3010/2 systems. These programs are
.Part of the maintenance documentation provided with each system.

1.6 PROCESS 1/0
An Analog Input/Output Subsystem, which includes an Analog Input Scanner, Absolute Analog Output
Voltages, and Variable Analog Output Current Pulses, is available. The Digital 1/0 Subsystem provides
digital inputs, digital outputs, and pulse train outputs. All process 1/0 subsystems are described in detail
in the 3010/2 General Description.

1.7 PERIPHERAL DEVICES
The peripheral device complement may include TermiNet* 300 Printers, teletypewriters, a paper tape
reader, a card reader, a paper tape punch, video display terminals. and bulk memory units. Serial-bit
communications interfaces, suitable for remote communications via digital data sets are available as is
a High Speed Data Link, which provides a parallel 8-bit byte interface with another GE-PAC 3010 or
4000 series computer. Refer to the GE-PAC 3010/2 General Description for detailed descriptions of
these devices.

* Trademorlc of General Electric Company

1-3

2.1 INTRODUCTION

CHAPTER 2

SYSTEM DESCRIPTION

The GE-PAC 3010;2 is a 16-bit halfword-oriented digital computer useful in a wide variety of applica­
tions such as scientific, industrial process control, business, data collection, communications, and
general purpose processing. The Processor. is modularly constructed using the latest Large Scale
Integrated (LSI) Circuits and state of the art computer technology.

The GE-PAC 3010/2 provides the user with more computing power per dollar than any machine available
today. The Processor uses 16- and 32-bit instructions for efficient coding and optimum core utilization.

The Processor ls designed around highly reliable 4, 096 by 16-blt core memory modules. An optional 4, 096
by 1 7-blt parity core memory is available. Both types of memory modules may be intermixed for a total of
65, 536 bytes of storage (eight modules).

A Direct Memory Access Port is built into the Memory System. Up to four Direct Memory Access (DMA)
Channels may be plugged into the port. The DMA Channels cycle-steal memory from the Processor at a
maximum rate of 2, 000, 000 bytes per second. Two kinds of DMA Channels can be used with the Memory
Syi;;tem; a Selector Channel available from General Electric for use with standard peripheral device con­
trollers, and a direct Memory Connection custom designed by the user for special applications.

Input/Output operations between the GE-PAC 3010/2 and the peripheral device controllers ordi­
narily occur over the Multiplexor Bus. Up to 255 device controllers may be connected to this bus.
The Processor implements eight Input/Output instructions plus Read Block and Write Block Instruc­
tions for high speed data transfer over the Multiplexor Bus. The Multiplexor Bus is fully hardware
plug compatible with all peripheral device controllers developed and field proven on the existing
line of GE-PAC 3010 Processors.

A parallel, character buffered, Teletypewriter adapter is standard on the GE-PAC 3010/2 Processor. This
provides a very economical method for interfacing to a Teletypewriter.

The Processor is presented in this chapter in block diagram form. A System block diagram is shown in
Figure 2-1 and a general block diagram of the Processor is shown in Figure 2-2. The major elements of
the system are described in the following paragraphs.

2.2 ELEMENTS OF THE SYSTEM

2.2.1 Processor

The various elements of the system are organized around the Processor, as shown in Figure 2. 1. The
Processor contains facilities for:

1. Sequencing of instructions in the ·required order.

2. Arithmetic and logical data processing. '

3. Initiating or controlling communications with external devices.

4. Servicing interrupts.

The basic elements of the Processor are: a set of 16 General Registers, an Arithmetic and Logic unit, a
Control unit, .and connections to the Memory and I/O Buses. See Figure 2-2.

The Processor operates under the direction of the Control unit which has a micro-program contained in a
Read-Only Memory (ROM). The micro-program is a sequence of micro-operations which fetches the
Processor instructions, decodes them, and processes the operands located in the General Registers and
core memory locations. Such micro-programs are often referred to as "firmware" because they operate
in a plane between "hardware" and "software".

2-1

SELECTOR
CHANNEL

UP TO 9 HIGH
SPEED DEVICES

CORE MEMORY

MEMORY BUS

DIRECT MEMORY ACCESS PORTS

3 4

CUSTOM
DESIGN
LOGIC

CUSTOMER
DESIGNED

MEMORY BUS
INTERFACE

PARALLEL TELETYPEWRITER
ADAPTER

PROCESSOR

INTERLEAVED
DATA CHANNEL

MULTIPLEXOR
CHANNEL

,J-~~~~~~~--~~~-'-~~~~~~

_--=i-----'
MULTIPLEXOR BUS

[
CARD

READER

Figure 2-1. System Block Diagram

UP TO 255
PERIPHERAL

DEVICES
ITOTALI

The instruction set of the GE-PAC 3010/2 is described in Chapter 4. All memory is directly addressable
with the primary instruction word; no paging or indirect addressing is required. The 16-bit General
Registers can be used as fixed-point accumulators, link registers for subroutine returns, or pointers
for program branching. Of the 16 General Registers, 15 can be used as index registers for address
modification.

The Protect Mode is enabled in the Processor under program control. In this mode, the Memory Protect
is activated, and the Privileged instructions are detected and their execution is prevented. Privileged in­
structions are I/O instructions and any Control instruction whose execution could change the status of the
system. In the Protect Mode, the execution of any Privileged instruction causes an Illegal Instruction
Interrupt. Privileged instructions are discussed in detail in Chapter 4.

In general, fixed-point operations are performed upon one operand in a General Register, with the other
operand in either a General Register or a core memory location.

l\1ultiple-precision arithmetic operations are possible using two's complement representation, and by recog­
nition of the carry/borrow from one operation to another.

The Standard Floating-Point instructions manipulate floating-point data using eight unique Floating-Point
Registers which are resident in core memory.

The standard format for 32-bit single-precision floating-point data is identical to that used in the IBM
System/360. This format represents numbers in the range of 5. 4 X 10-79 to 7. 2 X 107 5, with six digits
of precision.

2-2 10/72

LOCATION
STATUS CC COUNTER

PROGRAM
STATUS WORD

CORE MEMORY

ADDRESS DATA

MEMORY PROTECT

MEMORY BUS

SUM BUS

OP Rl/Ml R2/X2 ADDRESS
/DATA

INSTRUCTION
REGISTER

PRIVILEGED
INSTRUCTION
HARDWARE

'-------i~ CONTROL HARDWARE

1/0 CHANNEL

S EXP. FRACTION

FLOATING POINT
REGISTERS

(B)

S MAGNITUDE

FIXED POINT
REGISTERS

(16)

ARITHMETIC
LOGIC
UNIT

OPERAND BUS 1

OPERAND BUS 2

MULTIPLEXED 1/0 BUS UP TO 255 DEVICES

CARD READER

DISPLAY PANEL

Figure 2-2. Processor Block Diagram

2.2.2 Core Memory

The a·E-PAC 3010;2 can have from 8K to 65K bytes of Core Memory, where a byte refers to eight binary
bits. The byte designation is used to describe memory size, since the memory reference instructions
address memory at the byte level. The hardware memory modules are actually 16-bit ·oriented, and
each Read or Write operation on the memory transfers 16-bits in one memory cycle. The maximum
memory size, therefore, is 65, 536/8-bit bytes or 32, 768/16-bit halfwords.

When executing instructions, all 16-bit instructions and 16-bit data are handled in a single memory cycle.
Multiple halfword data requires an additional memory cycle for each 16-bit halfword. Byte operations are
performed by selectively manipulating the light or left 8-bits of the 16-bit halfword.

The Memory Write Control can be divided into two types. These two types have meaningful differences
when used in conjunction with the Memory Protect. The first type is standard Memory Write, the perform­
ance of which is subject to Memory Protect. That is, if the Processor is in the Protect Mode, any memory
write into a protected area is inhibited, and a Memory Protect Controller Interrupt is generated. Memory,
in this case is not altered. This type of memory write is used by all instructions which store data of any kind
into memory. Jn Chapter 4, all instructions of this type are noted as being "subject to Memory Protect".
Note that the Memory Protect does not affect reading from memory.

The other type of Memory Write Control, referred to as Privileged Write, overrides the Memory Protect
circuit. This type of control is used by various internal Processor functions which must be allowed to write

2-3

into core memory, even in the Protect Mode. Examples of this operation are Processor access of
dedicated registers in low core, and the register save sequence which is used on power failure.
Other Privileged Write operations are noted where applicable in this manual.

In systems equipped with less than 65K bytes of memory, it is possible to address memory at an
address greater than that of the last actual memory location. In this case, memory Read operations
cause all zero data to be read, and Write operations prqceed normally, but the data is lost.

2. 2. 2. 1 Memory Bus

The Memory Bus provides the path for communication between the memory modules, the Processor,
and up to four parallel Direct Memory Access Ports. The ports operate on a cycle stealing basis where
the maximum latency time is one memory cycle or 1. 0 microsecond. Memory service is granted on a
priority basis where the Processor is always lowest in priority. The assigning of priority for a port
is on a serial daisy-chain basis with the port closest to the Processor having the highest priority. The
Selector Channel is used with standard device controllers for high speed devices.

2. 2. 2. 2 Selector Channel

The Selector Channel is a Direct Memory Access device which provides high speed block-oriented data
transfer at a rate of up to 2000K bytes. Up to 16 devices can be accommodated by the Selector Channel.
once initiated, the block transfer proceeds on a cycle stealing basis independent of the Processor. To
initiate a data transfer, the Processor specifies the device address, the starting address in memory, the
type of operation (Read or Write), and the ending address in memory. The data transfer is then completed
without furthe.r direction or intervention by the Processor. Upon completion of the data transfer or termina­
tion due to a fault, the Processor is notified via a Selector Channel generated external interrupt.

2. 2. 2. 3 Customer Designed Direct Memory Access Channel

Customers wishing to design their own Direct Memory Access Channel (DMAC) interfaces directly to the
Memory Bus can do so with data transfer rates of up to 2, 000, 000 bytes per second in the Burst Mode through
a custom-built DMAC. This is accomplished by using a general purpose wire wrapped circuit board available
from General Electric. In addition to the circuits required for the Memory Bus and the user's device, his
DMAC must include a 16-bit Memory Address Register and a 16-bit Memory Data Register, which are switched
onto the Memory Bus when the DMAC captures the daisy-chain response for a request for service.

2.2.3 Multiplexor Channel

The Multiplexor Channel provides an Input/Output system for communicating directly with up to 255 peripheral
device controllers. Operation over the Multiplexor Channel can be to either 8-bit byte devices or 16-:-bit half­
word devices. The Multiplexor Channel consists of 30 lines:

• Sixteen bi-directional data lines for transferring either bjtes or halfwords of data between the
device and Processor.

• Eight control lines are used to identify the type of data transferred over the bi-directional data
lines, such as status,. command, address, or data.

• Five test lines are used to interrupt the Processor, and to synchronize the Input/Output system
with the Processor.

• One initialize line is used to initalize the.Input/Output system when power is turned On to the system.

The Multiplexor Channel operates on a request/response basis to allow simple reliable device controller
design. Priority on the Multiplexor Channel is assigned on a party line basis where the device controller
with the closest electrical proximity to the Processor has the highest priority. The Proce~sor responds to
an interrupt by swapping Program Status Words. The interrupt response time is 8. 0 microseconds. The
latency time for most instructions except Store Multiple and Load Multiple (which have a latency time of 20
microseconds) is 4 microseconds to 8 microseconds.

2-4

2. 2. 3. 1 l\Iultiplexor Channel I/O Techniques

The task-oriented structure of the Multiplexor Channel provides a repertoire of built-in I/O techniques. These
techniques provide an important benefit in the ease of use of the GE-PAC 3010/2 since the appropriate I/O tech­
nique can be chosen and matched to the speed and transfer requirements of various devices. The Multiplexor
Channel 1/0 techniques include:

Program-Controlled I/O Using normal programmed I/O, a program can interrogate the status of any device,
and control the transfer of data (either 8-bit or 16-bit) to or from a device when the device indicates it is
ready.

Interrupt Driven I/O Provides an interrupt facility with which any device can indicate a device "ready" con­
dition to the Processor by interrupting the running program. Interrupt acknowledgements are achieved
using "daisy chain" hardware logic, which avoids any programmed device polling to determine which device
interrupted. Interrupt programming, therefore, can efficiently transfer data to or from multiple devices
simultaneously.

Automatic I/O Interrupt programming is simplified by an Automatic I/O Service Mode, in which the
Processor performs much of the overhead associated with each interrupt. This Automatic 1/0 Service
Mode can be disabled under program control, which makes the I/O compatible with the other GE- PAC
30•s and 3010•s. With the Automatic I/O Service in use, the I/O Channel capability can also be used.
The I/O Channels, which are commanded via specified Channel Control Blocks (CCB) in memory, per­
form signal counting or data transfers without interrupting the running program. When the 1/0 channel
completes a specified sequence, a variety of automatic command chaining and interrupt queuing operations
can take place.

Burst Mode I/O This incorporates Read Block/Write Block instructions. These instructions permit the
Processor to achieve transfer rates in excess of 330K bytes by momentary dedication to a particular device.

2. 2. 3. 2 Interleaved Data Channel

The Interleaved Data Channel (IDC) is an inexpensive direct to memory I/O system, which operates on an
instruction steal basis, as compared with a memory cycle steal technique for the Direct Memory Access
Channels. Data is transferred over the Multiplexor Channel autonomously with respect to the current pro­
gram. Internal registers in the Processor are used as buffer registers between memory and the data chan­
nel device controller.

The Interleaved Data Channel controller is set up by the program over the Multiplexor Channel. Once
initiated, the data transfer proceeds without further direction from the Program. For each Interleaved
Data Channel cycle, the Processor inputs a 16-bit memory address from the Interleaved Data Channel
controller along with a command to Read or Write. If the command is Write, the Processor reads the
the memory location and outputs the 16-bit halfword of data to the Interleaved Data Channel controller. If
the command is Read, the Processor inputs the 16-bit halfword of data and writes that data to memory.

The Interleaved Data Channel operates in the Burst Mode at 440K bytes, or at speeds up to 280K bytes in
the Single Cycle Mode.

2.3 PROCESSOR OPERATION

2.3.1 Program Status Words

The focal point of control for the Processo-r is the Current Program Status Word (PSW). This 32-bit register
contains the information required to direct program execution; a 12-bit Status field, a 4-bit Condition Code
field, and a 16-bit Location Counter. See Figure 2-3.

The left half of the PSW defines Program Status, the right half is the Location Counter. The Current PSW
controls instruction sequencing, and maintains the status of the system in relation to the program currently
being executed. A program can change the Processor status by loading a New PSW. This is accomplished

2-5

PSW

STATUS cc LOCATION CD UN TE R

Figure 2-3. Program status Word Format

by executing a Load Program status Word (LPSW) or Exchange Program status (EPSR). instruction. These
instructions are described in Chapter 4.

The interrupt mechanism also involves the PSW. When an interrupt takes place, the Current PSW is stored at a
unique four-byte location called the Old PSW. After the Current PSW is stored,. the Current PSW register is
loaded from another four-byte location called the New PSW. Each and ev:eli'y inte·rrupt class has a unique set of
Old and New PSWs. The PSW swap takes place automatically, and after the. l?SW swap, program execution will
begin at the location specified by the Location Counter of the New PSW. The reserved core locations for Old and
New PSWs for all interrupts are defined in Section 2. 3. 3.

The meaning of each bit in the left half of the PSW, Status and Condition Code, is explained in T.able 2-1,
and shown in Figure 2-4. The particular meaning or function of each bit appliei;i when the bit is 1.

Figure 2-4. Program Status Bits

2.3.2 Instruction Execution

The 16-bit Location Counter field of the Program status Word specifies the location of the next instruction
to be fetched and processed. The 16-bit address field has the capability of directly addressing the maxi­
mum core memory of 65K bytes, or 32K halfwords.

Note that since instructions are aligned on halfword boundaries the value of the Location Counter must be
even. That is,. Bit 15 of the Location Counter must be zero.

During the normal processing of a program, an instruction is fetched from the location specified by the
Location Counter, the instruction is executed, the Location Counter is incremented, and another fetch and
execute cycle begins. After instruction execution, (except for Branch or Control instructions) the Location
Counter is incremented by two if the executed instruction is of the halfword (RR or SF) 16-bit format, or
by four if the executed instruction is of the fullword (RX or RS) 32-bit format.

Following Branch instructions or System Control instructions, the Location Counter is adjusted as a function
of the particular instruction. See Section 4. 8 for a summary of Branch instructions, and Section 4.11 for
a summary of System Control instructions.

The sequencing of instructions during program execution is also changed if an interrupt occurs. In this
case, the PSW swap procedure saves the Current PSW in core memory so that, after an interrupt is proc­
essed, execution can resume at the correct location.

2-6

Bit

0

1

2

3

4

5

6

7

8-11

12
13
14
15

WT

EI

MM

DF

AS

FP

CT

PM

c
v
G
L

TABLE 2-1. PROGRAl\1 STATUS BIT DEFINITIONS

Name

Wait State

External
Interrupt Enable

Machine Malfunction
Interrupt Enable

Fixed Point Divide
Fault Interrupt
Enable

Automatic Input/
Output Service
Enable

Floating-Point
Arithmetic Fault
Interrupt Enable

Channel Termination
Interrupt Enable

Protect Mode

Unused

Carry /Borrow
Overflow
Greater than Zero
Less than Zero

Comments

The Wait bit is set to halt program execution. When this
bit is set in the Current PSW, no program execution
takes place, but the Processor will respond to all I/O
and Machine Malfunction Interrupts, if they are enabled.

The External Interrupt Enable bit is set to make the
Processor responsive to interrupt signals from the
Multiplexor Bus. External interrupts are discussed
in detail in Section 2. 4. 3.1.

The Machine Malfuncticin Enable bit allows an inter­
rupt to occur if a power fail is detected, if the machine
is equippped with the Memory Parity Option and a
memory parity error occurs, or during the restart
process following a power down. See Section 2. 4. 2. a.

The Divide Fault Interrupt Enable bit allows the
Processor to interrupt when a Fixed- Point Divide
instruction is attempted and the result cannot be
expressed in 16-bits. See Section 2. 4. 2.1.

The Automatic I/O Service Enable bit allows the
Processor to ·acknowledge I/O Interrupts and
service them automatically as described in
Section 2. 4. 3. 2.

The Flqating-Point Arithmetic Fault Interrupt
Enable bit allows the Processor to interrupt if expo­
nent overflow or underflow occurs during any
floating-point operation. See Section 2. 4. 2. 2.

Channel Termination Interrupt Enable bit pertains to
the Automatic I/O Channel, which can be used in con­
junction with the Automatic I/o Service as described
in Section 2, 4. 3. 3.

The Protect Mode bit enables Memory Protect and
detection of Privileged instructions. When the Protect
Mode is not enabled the Processor is said to be ·
in the Supervisor Mode. See Section 2. 4. 4. 2.

Must be zero.

The Condition Code bits are set or adjusted after the
execution of instructions by the Processor.
See Chapter 4 for details.

2-7

2-8

Function

Floating-Point Registers

Power- Fail Locations

Interrupt PS\\'s

Hcscrved

Automatic I/0 Termination
Parameters

Supervisor Call
Parameters

Automatic
I/O Service
Table

TABLE 2-2
CORE MEMORY ALLOCATION

Hexadecimal
Memory Address

00-03
04-07
08-0B
OC-OF
10-13
14-17
18-lB
lC-lF

20-21
22-23
24-27

28-2B
2C-2F
30-33
34-37
38-3B
3C-3F
40-43
44-47
48-4B
4C-4F

50-7F

fl0-81
82-85
86-89
8A-8B
8C-8F
90-93

94-95
96-99
9A-9B
9C-9D
9E-9F
AO-Al
A2-A3
A4-A5
A6-A7
A8-A9
AA-AB
AC-AD
AE-AF
BO-Bl
B2-B3
B4-B5
B6-:-B7
B8-B9
BA-BB
BC-CF

DO-Dl
D2-D3
D4-D5

•
•
•
•
2CC-2CD
2CE-2CF

Assignment

Floating-Point Register, RO
Floating-Point Register, R2
Floating-Point Register, R4
Floating-Point Register, R6
Floating-Point Register, R8
Floating-Point Register, RlO
Floating-Point Register, Rl 2
Floating-Point Register, Rl4

l'nassigned
Register Save Pointer
Current PSW Save Area

Old PS\\' FLPT Arithmetic Fault Interrupt
New PS\V FLPT Arithmetic Fault Interrupt
Old PS\\' Illegal Instruction Interrupt
New PS\\' Illegal Instruction Interrupt
Old PSW ;\lachine :\lalfunction Interrupt
New PS\\' ;\Jachine :\Jalfunction Interrupt
Old PS\\' External Interrupt
New PS\V External Interrupt
Old PSW Fixed-Point Divide Fault Interrupt
New PS\V Fixed-Point Divide Fault Interrupt

Bootstrap Loader and Device Definition Table

Termination Queue Pointer
Old PSW Automatic I/O Termination Interrupt
New PSW Automatic I/O Termination Interrupt

overflow Termination Pointer
Old PSW Termination Queue Overflow Interrupt
New PSW Termination Queue Overflow Interrupt

Supervisor Call Argument Pointer
Old PSW Supervisor Call
New PS\\' (Status and Condition Code) Supervisor Call
New PS\V (Location Counter) Supervisor Call 0

New PSW (Location Counter) Supervisor Call 1
New PS\V (Location Counter) Supervisor Call 2

New PS\\' (Location Counter) Supervisor Call 3
New PS\V (Location Counter) Supervisor Call 4
New PS\\' (Location Counter) Supervisor Call 5
New PS\\' (Location Counter) Supervisor Call 6

New PS\\' (Location Counter) Supervisor Call 7 ·
New PSW (Location Counter) Supervisor Call 8
New PS\\' (Location Counter) Supervisor Call 9
New PS\V (Location Counter) Supervisor Call 10
New PSW (Location Counter) Supervisor Call 11
New PSW (Location Counter) Supervisor Call 12
New PSW (Location Counter) Supervisor Call 13
New PSW (Location Counter) Supervisor Call 14
New PSW (Location Counter) Supervisor Call 15
He served

Service Pointer, Device 0
Service Pointer, Device 1
Service Pointer, Device 2

Service Pointer, Device 254
Service Pointer, Device 255

4/72

2.3.3 Core Memory Allocation

The GE-PAC 3010/2 Processor requires certain locations in core memory for Floating-Point Registers,
register save areas, and interrupt processing. These locations are defined in Table 2-2 and described
in the following paragraphs.

Floating-Point Registers

Power Fail Locations

Interrupt PSWs

Bootstrap Loader

Channel I/O Termination
Parameters

Supervisor Call Parameters

Automatic I/O Service Table

2.4 INTERRUPT SYSTEM

2.4.1 Interrupt Procedure

These eight 32-bit registers are used by the Floating-Point instructions.
See Section 4. 6 for details of the Floating-Point instructions.

The Register Save Pointer at location X'22', points to the first of 16
consecutive halfword locations in memory where the G€neral Registers
are saved in the event of power failure. When power is restored, the
General Registers are restored automatically from these locations. The
Current PSW is saved and restored in similar fashion from location
X'24'-X'27'.

These locations are reserved for the Old and New PSWs for the various
internal and external interrupts. These are discussed further in Sections
2. 4. 2 and 2. 4. 3.1 respectively.

The Bootstrap Loader is called the 50 sequence and is used to load the
more sophisticated loaders.

These locations are used in conjunction with Termination interrupts
from channel I/O operation. Refer to Sections 2. 4. 3. 3 and 2. 4. 3. 4
for details.

These locations are used for the PSW exchange associated with the
Supervisor Call (SVC) instruction. This instruction is described in
Section 4. 11. 4.

This table of 256 halfwords is used in the Automatic I/ O Service Mode of
operation. The Processor uses this table to uniquely service each inter­
rupting device. See Section 2. 4. 3. 2.

The Interrupt structure of the GE-PAC 3010/2 provides rapid response to internal and external events that
require service by special software routines. In the interrupt response procedure, the Processor pre­
serves the current state of the machine, and branches to the required service routine. The service routine
may optionally restore the previous machine state upon completion of its service. The types of interrupts
with their associated enable/disable PSW bits are listed in Table 2-3. Interrupts without a controlling PSW
bit are always enabled.

Interrupts can occur at various times during processing. The Arithmetic Fault Interrupts occur during
execution of user instructions. The Illegal instruction and Protect Mode Interrupt occur as soon as the
offending instruction is recognized. The Supervisor Call Interrupt occurs as part of the execution of the
Supervisor Call instruction. The Machine Malfunction and I/ 0 Service Interrupts occur following instruction
execution. The Channel Termination Interrupt can also occur during a Load Program Status Word or
Exchange Program status instruction.

The Interrupt Procedure is based on the concepts of Old, Current, and New Program Status Words. The
Current PSW, contained in a hardware register, defines the operating status of the machine. When this
status must be interrupted, the Current PSW becomes an Old PSW and is stored in a core location dedicated

2-9

TABLE 2-3. INTERRUPTS

Interrupt PSW Control Bit

External 1

Machine Malfunction 2

Fixed Point Divide Fault 3

Automatic I/O Service 4

Floating-Point Arithmetic Fault 5

Channel Termination 6

Protect Mode 7

Illegal Instruction Cannot be disabled

Channel Termination Queue overflow Cannot be disabled

Supervisor Call Cannot be disabled

to the type of interrupt that has occurred. The New PSW becomes the Current PSW by being loaded from a
dedicated core location into the hardware PSW Register. The status portion of the Current PSW now contains
the operating status for the interrupt service routine, and the Location Counter points to the first instruction
in the service routine. New Program Status Words for interrupts controlled by PSW bits should disable inter­
rupts of their own class. Interrupts controlled by Bits 1 and 6 must disable interrupts of their own class to
prevent the Processor from going into an endless loop. The dedicated core locations for Old and New Program
Status Words are shown in Table 2-2 of Section 2.3.2. The Program Status Word exchange procedure does not
change the contents of the New PSW location, and subsequent interrupts of the same type are treated in the same
way.

2.4.2 Internal Interrupts

The GE-PAC 3010/2 can generate six Internal Interrupts. Of these, the Illegal instruction and the Supervisor
Call cannot be inhibited. Inhibited Internal Interrupts are not queued.

2. 4. 2.1 Fixed-Point Divide Fault Interrupt

The Fixed-Point Divide Fault Interrupt, enabled by Bit 3 of the Program Status Word, is indicative of division
by zero 'lr quotient overflow. Quotient overflow is defined as quotient magnitude greater than 215-1. The
interrupt takes place before modification of the operand registers. After a Fixed-Point Divide Fault Interrupt,
the Old PSW Location Counter points to the next instruction following the Divide instruction.

2. 4. 2. 2 Floating-Point Arithmetic Fault Interrupt

The Floating-Poil'lt Arithmetic Fault Interrupt enabled by Bit 5 of the Current PSW, occurs on exponent over­
flow or underflow as well as on division by zero. In the case of division by zero, the interrupt takes place
prior to alteration of the operand register. An exponent overflow sets the result to ±X'7FFF FFFF'. An
exponent underflow sets the result to X'OOOO 0000'. The Location Counter of the Old PSW points to the next
instruction. Refer to Section 4. 6 for an explanation of Floating-P9int instructions.

2. 4. 2. 3 Machine Malfunction Interrupt

Bit 2 of the Current Program Status Word controls the Machine Malfunction Interrupt. This error canoccur
on either a primary power failure, a memory parity error, or during the restart process following a power shut­
down. If the memory is equipped with the Parity Option, the parity bit of each memory word is set to main­
tain odd parity. This bit is recomputed during each memory read; if the computed bit is not equal to the bit
read out of memory and if Bit 2 of the current PSW is set, the Current Program Status Word is stored at the
Machine Malfunction Old PSW location, and the Current PSW is loaded from the Machine Malfunction New PSW

2-10

location. The Condition Code field of the Current PSW is then adjusted by setting the G flag (PSW 14) if the
parity error occurred on instruction read, or setting the V flag (PSW 13) if the error occurred on an operand
read. It is not possible to guarantee programmed recovery from a parity error.

NOTE

The Condition Code field of the Machine Malfunction New PSW location in memory
must be zero.

If enabled by Bit 2 of the PSW, a Machine Malfunction Interrupt will occur on power fail. Power fail occurs
when the optional Primary Power fail detector senses a low voltage, when the Initialize switch is depressed,
or when the key-operated power switch is turned off. After the PSW swap, the L flag of the Current PSW is
set. The software service subroutine for Machine Malfunction can distinguish power fail from parity errors
by conditional branch instructions. The user is allowed approximately 1 millisecond before the system is
shut down. On shutdown, the Processor stores the Current Program Status Word in locations X'0024' through
X10027', and the General Registers in the consecutive locations starting at the address contained in location
X'0022 '. When power is restored, the registers are reloaded and the Current PSW is restored from locations
X'0024' through X'0027 1• If Bit 2 (Machine Malfunction) of this PSW is set, the Processor makes a PSW ex­
change from the Machine Malfunction location. The software service routine for the Machine Malfunction
Interrupt can differentiate between the memory parity error, power failure, and power up conditions by testing
the condition code. Note that the V flag is set for parity error on operand fetch, the G flag is set for parity
error on instruction fetch, the L flag is set on power fail, and no flags are set on power restore. Additionally,
the Location Counter of the Machine Malfunction Old PSW, may be compared with the contents of locations
X'0026 1 and X'0027' (Power Fail PSW save area). If they are equal, a power failure and restore sequence has
occurred.

2. 4. 2. 4 Illegal Instruction Interrupt

The Illegal Instruction Interrupt is not represented by an enabling bit in the PSW, and is therefore always
operative. An illegal instruction is defined as an operation code that is not in the GE-PAC 3010;2 repertoire.
No attempt is made to execute the illegal instruction, nor is the Location Counter of the Current PSW incre­
mented. The Old PSW, stored as a result of an Illegal Instruction Interrupt, points to the address of the
illegal instruction.

2. 4. 2. 5 Protect Mode Violation Interrupt

The Protect Mode Violation Interrupt is enabled when Bit 7 of the Current PSW is set, which puts the Proces­
sor in the Protect Mode. The interrupt occurs, in this mode, when an attempt is made to execute a Privileged
instruction. Privileged instructions are all I/O instructions, and System Control instructions: Load Program
Status Word, Exchange Program status, and Simulate Interrupt, which are described in Chapter 4. When such
an instruction is attempted in this mode, the instruction is not executed, and the Illegal instruction Interrupt
procedure takes place, as described above. The Location Counter is not incremented, so that the Old PSW points
to the Privileged instruction that caused the interrupt. PSW Bit 7, when set, also enables Memory Protect.

2. 4. 2. 6 Supervisor Call (SVC) Interrupt

This interrupt occurs as the result of an SVC instruction, which is used to communicate between running
programs and operating syl3tems. The Supervisor Call Interrupt is not inhibitable. When an SVC instruc­
tion is executed, the following action takes place:

1. Current PSW is stored at the Supervisor Call Old PSW location, location X'0096'.

2. The effective address from the SVC instruction is stored at the Supervisor Call argument pointer,
location X'0094'.

3. The status portion of the Current PSW is loaded from the Supervisor Call New PSW Status location,
location X'009A '.

4. The Current Location Counter is loaded from one of the Supervisor Call New PSW Location
Counter locations. Refer to Section 4. 11. 4 for details on the Supervisor Call instruction.

2-11

I

2.4.3 1nput/Output Control Jateirupts

If individually enabled by tile program, a peripheral deviice is allowed to request Processor servi<:e
when the device itself is ready to transfer data via an interrupt. The Processor may resp0t1d to this
signal in several ways depending .1>n the setting of uertain bits in the Program Status Word. The
GE-PAC 3010;2 has two claSBes of interrupts directly .related to peripheral device handling. These are
External Interrupt and Immediate Interrupt. Two .other classes, the Channel Termination Interrupt and
the Channel Queue Overflow Interrupt can occur upon termination of a channel 1/0 sequence. PSW Bits
1 and 4, in combination, control the External and Immediate Interrupts.

If Bit 1 is reset, I/O Device Interrupt signals are ignored. The signal remains pending, however, until
PSW Bit 1 is set and the signal is acknowledged. Bit 6 of PSW controls the Channel Termination Interrupt.
The Channel Termination Queue Overflow Interrupt is always enabled.

2. 4. 3.1 External Interrupt

If Bit 1 of the Current PSW is set, and Bit 4 is reset, an I/O Device Interrupt signal results in the following
action: The Current PSW is stored at the Input/Output Interrupt Old PSW location. The Current PSW is
loaded from the Input/Output New PSW location. From this point, software must acknowledge the interrupt,
identify the device, and take appropriate action. Note that the New PSW for External Interrupts must have
Bit 1 reset.

2. 4. 3. 2 Automatic I/O Service

If both Bit 1 and Bit 4 of the Current PSW are set, an interrupt signal fI"om a peripheral device results
in the following Automatic I/O Service. The signal is automatically acknowledged and the device number
returned is used to index into the Automatic Service Pointer Table in locations X•OODO• to X•02CF•. See
Table 2-2. The Service Painter obtained is the address of either an Old PSW save area or a Channel
Comm.and Word for an Automatic I/O operation. If Bit 15 of the Service Pointer is reset, the Current
PSW is stored in the fullword location whose address is contained in the Service Pointer Table.. The
halfword whose address is the contents of the Service Pointer Table plus four co.ntains the New PSW
Status and Condition Code fields. The Location Counter is set to a value equal to the contents of the
Service Pointer Table plus six and instruction execution resumes.

Current PSW (0:31)-((SERVICE POINTER)]
Current PSW (0:15)-((SERVICE POINTER)+ 4]
Current PSW (16:31)- (SERVICE POINTER) + 6

Through this Immediate Interrupt mechanism, a unique service· routine for any device number can be
automatically entered. Exit from the routine is made by executing a Load Program Status Word instruction
specifying the Old PSW location (Service Pointer) at the origin of the subroutine.

If Bit 15 of the Service Pointer is :set, the addres.s contained is that of an Interrupt Service Block and
indicates that Automatic 1/0 service is required. This Processor activity is described in Chapter 5.

2. 4. 3. 3 Automatic I/O Termination Interrupt

The termination of an Automatic I/O operation may result in the storing of a termination pointer in the
circular list located at the address specified by the Queue Pointer location. If at this time, Bit 6 of the
Current PSW is set, the Current PS:Wis stored at the Automatic I/0 Termination Old PSW location, and
the Current PSW is loaded from the Automatic I/O '.J'ermination New PSW location. In this way, the con­
trol software is notified ·Of the completion of a channel I/O operation. Whenever the Processor executes
a Load Program Status Word instructi-on ,or an Exchange Program Status instruction, it checks Bit 6 of
the newly loaded PSW. If Bit 6 of tbe loaded .PSW is set, and there is an entry in the queue, this interrupt
is taken. This is described in detail in Chapter 5.

2-12 10/7:2

J

2. 4. 3. 4 Automatic 1/0 Termination Queue Overflow Interrupt

If the Processor attempts to enter an Automatic 1/0 Termination Pointer in the Termination Queue and
the queue is already full, it stores the termination pointer at location X•OOSA•, the Overflow Termination
Pointer location; stores the Current PSW in location X 1008C 1 , the Queue Overflow Old PSW location; and
loads the Current PSW from location X•90•, the Queue Overflow New PSW location. This action allows
the software to clear out the queue before any automatic 1/0 terminations are lost. This interrupt cannot
be disabled.

2.4.4 Special Interrupts

The GE-PAC 3010/2 Processor provides two classes of special interrupts. These are the Console Inter­
rupt and the Memory Protect Interrupt.

2. 4. 4. 1 Console Interrupt

The GE-PAC 3010/2 provides for operator intervention in the following manner. If Bit 4 of the Current PSW
is set, the rotary Function switch is in the OFF position, and the RUN Function switch is depressed, de­
pressing the EXECUTE switch causes an interrupt signal from Device 01. Servicing this signal can be
accomplished through the Immediate Interrupt or the Channel I/O service.

2. 4. 4. 2 Memory Protect Interrupt

If Bit 7 (Protect Mode) of the Current PSW is set, the Pro~essor is said to be in the Protect Mode. Should
the program attempt to store into a protected core area (as defined by the mask in the Memory Protect
Controller) while the Processor is in the Protect Mode, an Interrupt signal is generated by the Memory
Protect Controller. Furthermore, if Bit 1 (External Interrupt Enable) of the Current PSW is set, this
interrupt is recognized and appropriate action can be taken. Refer to Appendix 8 for details on the Memory
Protect Controller. Note that if the External Interrupt is disabled, the Memory Protect Interrupt cannot
occur, however, the store operation is ignored and execution resumes at the next instruction.

2. 4. 4. 3 Eight Line Priority Interrupt Module Interrupts

An 8-Line Interrupt Module is available as a hardware option with the GE-PAC 3010/2. There are 8 levels
of priority provided on each module with enable/disable control over each level or the entire module. Each
of the 8 levels respond to the Multiplexor Channel with a unique device address for that level. The inter­
rupt module hardware assures that higher priority levels respond before lower priority levels. The lowest
priority bit in the enable/disable register can be optionally used to mask off all other lower-priority inter­
rupt signals from other devices on the Multiplexor Channel. Refer to Appendix 8 for details on the 8-Line
Interrupt Module.

4/72 2-13/2-14

CHAPTER 3

DATA AND INSTRUCTION FORMATS
.AND STORAGE ADDRESSING

3.1 INTRODUCTION

A program is a set of instructions which directs the Processor to perform a specific task. Ordinarily,
program instructions are stored in sequential memory locations. During the normal processing of a
Program, an instruction is fetched from the location specified by the Location Counter, the instruction
is executed, the Location Counter is incremented, and another fetch and execute cycle begins.

3.2 DATA FORMATS

The Instruction Set manipulates data of three different word lengths: 8-bit bytes, 16-bit halfwords, and
3'2-bit fullwords. This data may represent a fixed-point number, a floating-point number, or logical
data. The data is used as operands for the instructions, and is manipulated as indicated by the particular
instruction being executed.

3.2.1 Hexadecimal Notation

Binary information is expressed in hexadecimal notation (base 16) for purposes of simplicity. All references
to binary instructions, data, or addresses in 3 0 1 0 / 2 software are made in hexadecimal notation. Four
binary bits of information are conveniently expressed by a single hexadecimal digit. Thus, byte information
is expressed by two hexadecimal digits, halfword information by four hexadecimal digits, and fullword informa­
tion by eight hexadecimal digits. Table 3-1 lists hexadecimal, binary and decimal equivalents.

3.2.2 Fixed-Point Data

The basic Fixed-Point Arithmetic operand is the 16-bit halfword. In multiply and divide operations,
32-bit fullwords are manipulated. See Figure 3-1.

Fixed-point data is treated as signed 15-bit integers in the halfword format, and as signed 31-bit integers
in the fullword format. Positive numbers are expressed in true binary form with a sign bit of zero. Nega­
tive numbers are represented in two's complement form with a sign bit of one. Refer to Section 3. 2. 2.1
for further details.

The numerical value of zero is always represented with all bits zero. Table 3-2 shows several examples of
the fixed-point number representation used in 3 0 1 0 / 2 Systems.

Since halfword arithmetic operands are 16-bit values, Fixed-Point Arithmetic instructions can be used
for address arithmetic. Logical, and Shift instructions can also be used for address manipulation or
computation.

For details on manipulating fixed-point quantities, refer to Section 4. 3.

3. 2. 2.1 2's Complement Notation

Negative numbers are represented in 2's complement notation. A fixed-point number is negative only if
Bit 0 is set. To change the sign of a number, the 2's complement of the number is produced in a two-step
procedure:

1. Change all zeros to ones, and change all ones to zeros (complement every bit).

2. Add 1 to the number.

3-1

Example; The number five ts represented in binary form as
0000 0000 0006 0101

Step l. 1111 1111 1111 1010 (complement) "' 1 's complement of 5

Step 2. 1111 1111 1111 1011 (add one) -= 2·1s complement of 5

The result is the 2's .complement of 5, representing -5.

TABLE 3-1
HEXADECIMAL, BINARY, AND DECIMAL CROSS-REFERENCE

Hexadecimal) Binary Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

c 1100 12

D 1101 13

E 1110 14

F 1111 15

Example: The binary 2-byte number (0001111110100101) can be expressed in hex
notation as X'lFA5'

HALFWORD

INTEGER

INDEX QUANTITY

FULLWORD

INTEGER PRODUCT

tNTEGER DIVIDEND

Figure 3-1. Fixed-Point Word Formats·

3-2

311

TABLE 3-2
EXAMPLES OF FIXED-POINT REPRESENTATION

Number Decimal Binary Hexadecimal

215_1 32767 0111 1111 1111 1111 7FFF

20 1 0000 0000 0000 0001 0001

0 0 0000 0000 0000 0000 0000

-20 -1 1111 1111 1111 1111 FFFF

-215 -32768 1000 0000 0000 0000 8000

3.2.3 Floating-Point Data

A floating-point number consists of a signed exponent and a signed fraction. The quantity expressed by
this number is the product of the fraction and the number 16 raised to the power of the exponent. Each
floating-point value requires two halfwords. The floating-point format is shown in Figure 3-2.

7 8 11 12 15 16 19 20 23 24 27 28 31

x F1 F2 F3 F4 F5 F6

Figure 3-4. Floating-Point Word Format

Sign and magnitude representation is used, in which the sign bit S is zero for positive values, and one for
negative values. The exponent X is expressed in excess 64 binary notation; that is, field X contains the
true value of the exponent +64.

The fraction contains six hexadecimal digits Fl-F6. The value of a floating-point fraction can be expressed
as follows: F 1 . l6-1+F 2.16-2+F 3.16-3+ ••.• +F 6.16-6.

A normalized floating-point number has a non-zero high-order hexadecimal "fraction digit (F1)· If the
high-order hexadecimal fraction digit (F 1) is zero, the number is said to be unnormalized. The range of
the magnitude (M) of a normalized floating-point number is:

or approximately

-79 75
5.4 • 10 M7.2 • 10

Table 3-3 shows several examples of the floating-point number representation used in
GE-PAC 3010/2 Systems.

All floating-point numbers are assumed to be normalized prior to their use as operands. No pre-normaliza­
tion is performed, all results are post-normalized. The Floating- Point Load instruction will normalize
unnormalized floating-point numbers.

Exponent overflow is defined as a resultant ElXponent greater than 63. Exponent underflow is defined as a
resultant exponent less than -64. The Overflow flag is set whenever exponent overflow or underflow is
de.tected. The Greater Than flag is set on positive overflow, the Less Than flag is set on negative over­
flow, and both flags are reset on underflow. On overflow, the exponent and fraction of the result are
set to all ones. The sign of the result is not affected by the overflow. On underflow, the sign, exponent
and fraction of the sum are set to zero.

3-3

TABLE 3-3
EXAMPLES OF FLOATING-POINT REPRESENTATION

Decimal Value Binary Hexadecimal Value

1. 0 0100 0001 0001 0000 4110
0000 0000 0000 0000 0000

-1. 0 1100 0001 0001 0000 CllO
0000 0000 0000 0000 0000

9.5 0100 0001 1001 1000 4198
0000 0000 0000 0000 0000

-0.5 1100 0000 1000 0000 C080
0000 0000 0000 0000 0000

-(1-16- 6).1663 1111 1111 1111 1111 FFFF
1111 1111 1111 1111 FFFF

-16-65 1000 0000 0001 0000 8010
0000 0000 0000 0000 0000

0.1+16-6 0100 0000 0001 1001 4019
1001 1001 1001 1010 999A

The floating-point value in which all data bits are zero is called true zero. A true zero may arise as the
result of an arithmetic operation because of exponent underflow, or when a resultant fraction is zero
because of loss of significance. In general, zero values participate as normal numbers in all arithmetic
operations.

There are eight 32-bit Floating-Point Registers, which are addressed with the even numbers O, 2, 4,
.... , 14. The Floating-Point Registers are reserved core memory locations and are addressable only
by the Floating-Point instructions, which are described in Section 4. 6

3.2.4 logical Data

Logical operations manipulate 8-bit bytes, 16-bit halfwords, and 32-bit fullwords. All bits participate in
logical operations. The data words have the format shown in Figure 3-3.

lo LOGICAL DATA 71

lo LOGICAL DATA
151

lo
LOGICAL DATA

31\

Figure 3-3. Logical Data Word Formats

3-4

For upward compatibility with future machines, boundary conventions for halfwords and fullwords
should be observed.

3.3 INSTRUCTION FORMATS

GE-PAC 3010/2 Instructions represent one of four formats designated Register to Register (RR).
Short Format (SF). Register to Indexed Memory (RX) and Register to Storage (RS) instructions.

In general, each format specifies three things: The operation to be performed, the address of the first
operand, and the address of the second operand. The first operand is normally the contents of a General
Register. The second operand is normally the contents of another General Register, the contents of a
core memory location, or a data constant from the instruction word itself.

A 16-bit halfword format is used for Register-to-Register and Short Format instructions. The Short
Format instructions may be used to manipulate small quantities or execute short branches relative to the
present Location Counter. A 32-bit fullword format is used for the Register to Indexed Memory, and the
Register to Storage formats. The specific formats are shown in Figure 3-4.

[RRil°
718 1T2

_ _!_~I
OP Rl R2

REGISTER TO REGISTER

[SF) 10 OP
718

Rl
1T2

DATA
151

SHORT FORMAT

[Rx1I? OP
718

Rl
11,12

X2
15,16

A

REGISTER TO INDEXED MEMORY

[RSI lo OP
718

Rl
1T2

X2
15116

A

REGISTER TO STORAGE

Figure 3-4. Instruction Word Formats

The eight-bit OP field in all formats specifies the machine operation to be performed. Operation codes
are represented as two hexadecimal characters.

The four-bit Rl field in the instruction formats specifies the address of the first operand. The Rl
field is normally the address of a General Register.

The four-bit R2 field in the RR instruction format specifies the address of the second operand, which is
normally a register address.

The four-bit data field of the SF instructions supplies data ~n the case of Fixed-Point Arithmetic instruc­
tions, or a displacement from the current Location Counter in the case of Branch instructions.

A non-zero X2 field in the RX and RS formats specifies a General Register whose contents is used as an
index value. The index value (X2) may be positive or negative. If X2 is zero, no address modification
takes place. General Registers 1 through 15 can optionally be used for indexing, but General Register O
can never be used for indexing.

The 16-bit Address field specifies a memory address in the RX format, or contains a value .. (Data) to be
used as an immediate operand in the RS format.

3-5

The RR instructions are used for operations between registers. The first operand is the contents of the
register specified by the Rl field of the instruction word. The second operand is the contents of the
register specified by the R2 field.

The SF instructions are used for; short immediates, in which the data field specifies a four-bit data value;
short shifts, in which the data field specifies the shift count; and short branches, in which the data field
specifies a displacement (in halfwords) from the current instruction address.

The RX instructions are used for operations between register and memory with the option of indexing.
The first operand is the register specified by the Rl field of the instruction word. The second operand
is the contents of the memory location specified by the A field of the instruction word or the sum of the A
field and the contents of the General Register specified by the X2 field if indexing is specified.

In the RS instructions, the first operand is the contents of the General Register specified by the Rl field
of the instruction word. The second operand is the number contained in the A field of the instruction,
or the sum of the A field and the contents of the General Register specified by the X2 field if indexing is
specified. The second operand of an RS instruction specifies the number of bit positions in Shift
instructions, or forms the second operand in Immediate instructions.

There are some exceptions to the first operand-second operand nomenclature used above. For example,
with Branch on Condition instructions, the Rl field of the instruction is a four-bit mask (Ml) which is
ANDed with the Condition Code in the Current PSW. These instructions are discussed in Section 4. 8.
For all Input/Output instructions, the contents of the register specified by Rl specifies the device ~umber
for the I/O operation. For the Supervisor Call instruction, the Rl field specifies 1 out of 16 possible types
of supervisor call. With the Load Program Status Word (LPSW), Simulate Interrupt (SINT) and Auto Load
(AL) instructions, the Rl field must be zero. These instructions are described iri Chapter 4.

Table 3-4 summarizes the first and second operand designations for each instruction format.

TABLE 3-4
DESIGNATIONS FOR FIRST AND SECOND OPERANDS

First The contents of the register specified RR, RX, RS and SF
Operand: by the Rl Field (Rl).

The Ml Field RR, RX, and SF
Branch on Condition

The actual value of the Rl Field. SVC

Second The contents of the register specified RR
Operand: by the R2 Field (R2).

The contents of the address derived RX
by adding the A field and the contents
of the General Register specified by
the X2 Field. (A+ (X2))

The A field plus the contents of the RS
General Register specified by the X2
Field A+ (X2)

The actual value of the R2 Field SF

3.4 GENERAL REGISTER USAGE

The 16 General Registers function as accumulators or Index Registers in all arithmetic and logical opera­
tions. Each General Register is a 16-bit halfword consisting of two 8-bit bytes. For arithmetic operations,
bit zero (leftmost position) is considered the sign bit using two's complement representation.

3-6

The General Registers are numbered from zero to fifteen (decimal), and written in hexadecimal notation
as; O, 1, 2, 3, 4, 5, G, 7, 8, 9, A, B, C, D, E, and F. The General Registers have not been given
specific functional assignments. However, the following operational restrictions should be noted:

1. It is not possible to use General Register 0 as an Index Register. In the RX and RS instruction
formats, a zero entry in the X2 field indicates that no indexing is to take place.

2. For Fixed-Point Multiply, Divide, and fullword Shift and Rotate instructions, the Rl field must
specify an even numbered General Register. See Sections 4. 3 and 4. 7.

3. For Branch on Index instructions, the Rl field specifies the first of 3 consecutive General
Registers, and the value of the Rl therefore, should be equal or less than 13. See Section 4. 8. 3.

4. For Floating- Point instructions the Rl field must be an even value, and specify one of the
Floating-Point Registers rather than one of the General Registers.

5. With any RR type instruction, the Rl field and the R2 field can specify the same register, but
special attention should be given to note what the instruction will do. For example, with the
EPSR instruction, if the Rl field equals the R2 field, the program status is stored in a General
Register, but the program status is unchanged.

3.5 STORAGE ADDRESSING

The GE-PAC 3010/2 Instruction Set manipulates data of three different word lengths: 8-bit bytes, 16-bit
halfwords, or 32-bit fullwords. In each case, the bits are numbered from left to right, starting with the
number zero. The format for each word length is shown in Figure 3-5.

BYTE

lo 71

HALFWORD

lo 718 151

FULLWORD

lo 718 15116 23, 24 311

Figure 3-5. Data Word Formats

Core memory locations are numbered consecutively, beginning at 0000, for each 8-bit byte. Operands
in memory are addressed by the RX type instructions. Since the address portion (A) of an RX instruction
is 16-bits wide, it is possible to directly address 65, 536 bytes.

The GE-PAC 3010/2 transfers binary information between memory and the Processor as 16-bit halfwords.
The instruction being performed determines if the address specified is that of a byte, a halfword, or a
fullword. If a byte of information is desired, either the left or right byte of the halfword read from mem­
ory is manipulated as determined by the specific address. If a halfword of information is desired, the
entire 16-bits read from memory are used. If a fullword is desired, a second 16-bits are read from
memory and combined with the original halfword.

NOTE

Bytes of information are addressed by their specific hexadecimal address.
A group of bytes combined to form a halfword or a fullword are addressed
by the leftmost byte in the group. Halfword or fullword operands must be
positioned at an address which is a multiple of 2. Table 3-5 illustrates the
addressing scheme used to maintain compatibility with other GE-PAC 30
and 3010 Systems. Fullword operands must be positioned at an address
which is a multiple of 4.

3-7

TABLE 3-5
MEMORY ADDRESSING EXAMPLE

Address 0050 0051 0052 0053 0054 0055 0056 0057

Contents 01 23 45 67 89 AB CD EF

Operand Byte Byte Byte Byte Byte Byte Byte Byte
Length
and f---Halfword Halfword Halfword Halfword-
Position Fullword Fullword

For example, if the address referenced in Table 3-5 is 005016, then:

3-8

A Byte-Oriented instruction would extract the value 0116, as an operand.

A Halfword-Oriented instruction would extract the value 012316 as an operand.

A Fullword instruction would extract the value 0123456716 as an operand.

CHAPTER 4

INSTRUCTION REPERTOIRE

4.1 INTRODUCTION

The instruction repertoire has been grouped by function in this chapter. The use and operation of each
instruction is presented in the following format:

SIS

lo

1. An instruction word chart for each instruction including: Mnemonic operation code, and first
and second operand designations in the correct assembler format. The format type designated
by [SF], [RR] , [RS] , and [RX]. An instruction diagram with hexadecimal operation code and
the locations of all fields is also provided, for example:

Rl,N [SF]

27
718

Rl
1T2

N
151

SHA R1,R2 [RR]

lo

SH

lo

SHI

lo

OB
718

Rl
1T2

R2
151

R1,A(X2) [RX]

4B
718

R1

11, 12

X2
15116

A

R1,A(X2) IRS]

CB
718

R1
1T2

X2

15116
A

2. A description of instruction operation.

3. An example of a diagrammatic representation of instruction operation is shown below.

SIS: (Rl)---(Rl) - N
SHR: (Rl) (Rl) - (R2)
SH: (Rl) (Rl) - (A+ (X2))
SHI: (Rl) (Rl) - A - (X2)

4. A chart illustrating the possible variations of the Condition Code in the Current Program Status
Word as a result of performing the instruction: a one indicates set, a zero indicates reset. It is
important to note that any instruction which changes the Condition Code can change all four bits.
The conditions listed on the chart are only those conditions which are meaningful after a particular
instruction. Other bits may be changed, but their condition is not meaningful, for example:

Resulting Condition Code:

12 13 14 15

c v G L

0 0 DIFFERENCE IS ZERO.

0 1 DIFFERENCE IS LESS THAN ZERO.

1 0 DIFFERENCE IS GREATER THAN ZERO.

1 ARITHMETIC OVERFLOW.

1 BORROW.

4-1

5; A progra:mmingmotei•·to. provide additional pertinent or clarifying. information. All privileged
instru.ctions. and. those.instructions which may caus.e .. a· memory protect· violation .are so. noted, for
example:

Programming. Note:

The Subtract Immediate Short (SIS} instruction, causes the four~bit second operand N to be subtracted
from the contents ofthe General Register· specified by Rl. This instruction is useful for decrementing
a register by a small value•(e,;g'" X'2').

The Subtract Halfword Immediate (SHI) instruction, produces a value which iS the difference between the
first operand General Register ·(Rl), less, the sum of the address. field itself, and the content of a
General Register index (X2.).

The symbols and abbreviatiom.s .. used in the instruction diagrams are defined as follows:

()

[]

4-2.

-
A

Rl

Ml

R2

X2

N

D

(0:7)
(8:15)
(16:31)

PSW

cc

c

v

G

L

+

*
I

Parentheses· or: Brackets:. .. Read as."the content of ..•. ".

Arrow •. Read as "is replaced.by ••.. " or "replaces

The 16-bit halfword address.which is a part of the. RX and RS instructions.

The address. of a General Register the content of which is the first operand.

Mask of.four~its,.speeifying Branch.on Condition testing.

The address ofa General Register the content of which is the. second operand of an RR
instruction.

The. address of a General Register the content of which is used as an index value.

The four-bit second.operand used with Short Format Immediate instructions.

. The four.,..bit displacement value used with Short Format Branch instructions.

Abit·groupiilg .. within a.byte, .. a.halfword, or a.fullword. Read as. "O thru 7 inclusive"
"Bits 8. through 1-Sfaclusive", etc.

Program·Status Word of'32. bits. containing the Status, Condition Code, and current
instru.ction:addl'ess;

Condition Code of:four,-bits contained in the PSW.

Carry Bit contained in the Condition Code (Bit12 of PSW).

Overflow Bit.contained.in the Condition Code (Bit 13 of PSW).

Greater. Than mt.· contained: in the Condition Code (Bit 14 of PSW).

Less Than Bit containedcin the. Condition Code (Bit 15 of PSW).

Arithmetic .. operations :-·Add,
Subtract;
Multiply,.
and Divide respectively; ,
LogicaLcomparison,, when used, e.g., Rl:R2.

4.2 FIXED-POINT LOAD/STORE INSTRUCTIONS

The Fixed-Point Load/Store instructions are used to transfer fixed-point (see 3. 2. 2) data between the
General Registers and core memory. The instructions described in this section are:

4.2.1 LIS Load Immediate Short

LCS Load Complement Short

LHR Load Halfword RR

LH Load Halfword

LHI Load Halfword Immediate

4.2.2 LM Load Multiple

4.2.3 STH Store Halfword

4. 2. 4 STM Store Multiple

4-3

4.2.1 load Halfword

LIS R1,N [SF]

to
24

7r R1
1T2

N
151

LCS Rl,N [SF]

I° 25
718

R1

11, 12

N
151

LHR R1,R2 [RR]

lo
08

718
R1

11112
R2

151

LH R1,A(X2) [RX]

lo 48
718

R1
11112

X2

15116

A
311

LHI R1,A(X2) [RS]

lo cs
718

R1
11, 12

X2
15, 16

A
311

The second operand is loaded into the General Register specified by Rl.

4-4

LIS: (Rl) N
. LCS: (Rl) -N

LHR: (Rl) (R2)
LH: (Rl) (A+ (X2)]
LHI: (Rl) A+ (X2)

Resulting Condition Code:

12 13 14 15

c v G L

0 0 OPERAND IS ZERO.

0 1 OPERAND IS LESS THAN ZERO.

1 0 OPERAND IS GREATER THAN ZERO.

Programming Note:

The Load Immediate Short (LIS) instruction, causes the four-bit second operand to be expanded to a
16-bit halfword with high order bits set to zero. This halfword is loaded into the General Register
specified by Rl.

The Load Complement Short (LCS) instruction, causes the four-bit second operand to be expanded
to a 16-bit halfword with high order bits set to zero. The two's complement of this halfword is
loaded into the General Register specified by Rl.

These instructions may be used to preset a register with an index value, load a register with the
first operand for a subsequent arithmetic operation (e.g. add, multiply), or set the Condition Code
for supplemental testing by a Branch on Condition instruction.

4.2.2 Load Multiple

LM R1,A(X2) [RX]

lo 01 lf X2 A
311

Sequential halfwords from memory are loaded into successive General Registers, beginning with the
General Register specified by the Rl field. The first halfword is defined by A + (X2), The operation is
terminated when R15 is loaded from memory. Note that any number of sequential General Registers can be
loaded in this manner.

1. (Rl)---[A + (X2)]

2. Rl: X'F'
if Rl = X' F', the instruction is finished
if Rl f. X' F', then:

3. Rl----Rl + 1

4. A A + 2, return to Step 1

Resulting Condition Code:

Unchanged.

4.2.3 Store Halfword

STH R1,A(X2)

40 Rl X2

[RX]

A

The 16-bit first operand is stored in the core memory location specified by the second operand. The first
operand is unchanged.

STH: (Rl) --... [A+ (X2)]

Resulting Condition Code:

Unchanged.

Programming Note:

This instruction is subject to Memory Protect.

4-5

4.2.4 Store Multiple

STM R1,A(X2) [RX]

I° DO

718_
R1 X2 A

311

Successive General Registers are stored sequentially into memory, beginning with the General Register
specified by the Rl field. The first storage address is determined by A+ (X2). The operation is terminated
when R15 is stored in memory. Note that any number of sequential General Registers can be transferred in
this manner.

4-6

1. (Rl)---(A + (X2)]

2. Rl: X'F'
if Rl = X' F', then instruction is finished
if Rl f X' F', then:

3. Rl----- Rl + 1

4. A -----A + 2, return to step 1

Resulting Condition Code:

Unchanged.

Programming Note:

This instruction is subject to Memory Protect.

The Store Multiple (STM) instruction in conjunction with the Load Multiple (LM) instruction is an aid
to subroutine execution. They permit the easy saving and restoring of the registers required by the
subroutine. The Store Multiple instruction can be used upon entering the subroutine, and the Load
Multiple would be the last instruction executed before returning from the subroutine.

4.3 FIXED-POINT ARITHMETIC INSTRUCTIONS

The Fixed-Point Arithmetic instructions provide for addition, subtraction, multiplication and division of
fixed-point data (see 3. 2. 2) contained in the General Registers and/or core memory. Also included are
logical and arithmetic compare operations. The instructions described in this section are:

4.3.1 AIS Add Immediate Short

AHR Add Halfword RR

AH Add Halfword

AHi Add Halfword Immediate

AHM Add Halfword to Memory

4.3.2 ACHR Add with Carry Halfword RR

ACH Add with Carry Halfword

4.3.3 SIS Subtract Immediate Short

SHR Subtract Halfword RR

SH Subtract Halfword

SHI Subtract Halfword Immediate

4.3.4 SCHR Subtract with Carry Halfword RR

SCH Subtract with Carry Halfword

4.3.5 CLHR Compare Logical Halfword RR

CLH Compare Logical Halfword

CLHI Compare Logical Halfword Immediate

4.3.6 CHR Compare Halfword RR

CH Compare Halfword

CHI Compare Halfword Immediate

4.3.7 MHR Multiply Halfword RR

MH Multiply Halfword

4. 3.8 MHUR Multiply Halfword Unsigned RR

MHU Multiply Halfword Unsigned

4.3.9 DHR Divide Halfword RR

DH Divide Halfword

4-7

4.3.1 Add Halfword

AIS R1,N [SF]

lo
26

718·
Rl

1T2
N

151

AHR R1,R2 [RR]

lo
OA

718
Rl

11, 12

R2
151

AH R1,A(X2) [RX]

lo
4A

718
Rl

11112
X2

15116

A
311

AHi R1,A(X2) (RSI

lo
CA

718
Rl

,T2
X2

15116

A
311

AHM R1,A(X2) [RX]

lo 61
718

Rl

11112

X2

15, 16

A
311

The second operand is added algebraically to the contents of the General Register specified by Rl.

4-8

AIS: (Rl)-(Rl) + N
AHR: (Rl)-(Rl) + (R2)
AH: (Rl)-(Rl) +[A+ (X2)]
AID: (Rl)-(Rl) +A+ (X2)
AHM: [A+ (X2)]-(Rl) +[A+ (X2)]

Resulting Condition Code:

12 13 14 15

c v G L

0 0 SUM IS ZERO.

0 1 SUM IS LESS THAN ZERO.

1 0 SUM IS GREATER THAN ZERO.

1 ARITHMETIC OVERFLOW.

1 CARRY.

Programming Note:

The Add Immediate Short (AIS) instruction, causes the four-bit second operand N to be added to the
contents of the General Register specified by Rl. The result replaces the contents of Rl.

The Add Halfword Immediate (AID) instruction, produces a value which is the algebraic sum of the
address field itself, the content of a General Register index (X2), and the first operand General
Register (Rl).

The Add Halfword to Memory (AHM) instruction, causes the second operand [A+ (X2)] to be added to
the contents of the General Register specified by Rl. The result of the addition does not replace the
contents of Rl, but instead is stored in core memory at the address specified by A + (X2). The first
operand (Rl) remains unchanged. This instruction effectively permits every location in core memory
to be used as a counter.

This instruction is subject to Memory Protect.

4.3.2 Add with Carry Halfword

ACHR R1,R2 [RRJ

lo
OE

718
Rl -1~4

ACH R1,A(X2) [RX)

lo
4E

718
Rl

11112

X2

15116

A
311

The 16-bit second operand and the Carry Bit of the Condition Code (PSW 12) are added algebraically to the
General Register specified by Rl. The resulting sum is contained in Rl. The second operand is unchanged.

ACHR: (Rl)-(Rl) + (R2) + C
ACH: (Rl) (Rl) +-(A+ (X2)] + C

Resulting Condition Code:

12 13 14 15

c v G L

0 0 SUM IS ZERO.

0 1 SUM IS LESS THAN ZERO.

1 0 SUM IS GREATER THAN ZERO.

1 ARITHMETIC OVERFLOW.

1 CARRY.

Programming Note:

Multiple precision addition operations require a Carry forward from the least significant operands to
the most significant. To accomplish this, the locations containing the least significant portions of the
two operands are summed, using the Add Halfword (AH) instruction. A Carry forward, if it occurs, is
retained in the Carry Bit position of the Condition Code (PSW 12).

The locations containing the next least significant portions of the two operands are then summed, using
the Add with Carry Halfword (ACH) instruction. The Carry Bit contained in the Condition Code (set
from the previous addition) participates in this sum; the Carry Bit position is then set to reflect the
new result.

The Add with Carry Halfword (ACH) instruction, is used on succeeding pairs of operands until the
most significant operands of the multiple precision words have been summed. The resulting Condition
Code is valid for testing the multiple precision word.

4-9

4.3.3 Subtract Halfword

SIS R1,N [SF]

r 27 7r R1
11r2

N
151

SHR R1,R2 [RR)

lo OB
718

R1
11112

R2
151

SH R1,A(X2) [RX)

lo 4B
718

R1
11112

X2

15, 16

A
311

SHI R1,A(X2) [RS)

lo CB
718

R1
11112

X2
15116

A
311

The second operand is subtracted from the General Register specified by Rl. The difference is contained
in Rl. The second operand is unchanged.

SIS: (Rl)-(Rl) - N
SHR: (Rl)-fRl) - (R2)
SH: (Rl)-(Rl) - (A+ (X2)]
SHI: (Ri)-(Rl) - A - (X2)

Resulting Condition Code:

12 13 14 15

c v G L

0 0 DIFFERENCE IS ZERO.

0 1 DIFFERENCE IS LESS THAN ZERO.

1 0 DIFFERENCE IS GREATER THAN ZERO.

1 ARITHMETIC OVERFLOW.

1 BORROW.

Programming Note:

The Subtract Immediate Short (SIS) instruction, causes the four-bit second operand N to be subtracted
from the contents of the General Register specified by Rl. This instruction is useful for decrementing
a register by a small value (e.g. X'2').

The Subtract Halfword Immediate (SHI) instruction, produces a value which is the difference between the
first operand General Register (Rl), less the sum of the address field itself, and the content of a
General Register index (X2).

4-10

4.3.4 Subtract with Carry Halfword

SCHR R1,R2 [RR)

lo OF
71 8

R1

11,12

R2
151

SCH R1,A(X2) [RX)

lo 4F
718

R1
1T2

X2
15116

A
311

The 16-bit second operand with the Carry (borrow) Bit is subtracted from the General Register specified
by Rl. The difference is contained in Rl. The second operand is unchanged.

SCHR: (Rl)-(Rl) - (R2) - C
SCH: (Rl) (Rl) - [A+ (X2)] - C

Resulting Condition Code:

12 13 14 15

c v G L

0 0 DIFFERENCE IS ZERO.

0 1 DIFFERENCE IS LESS THAN ZERO.

1 0 DIFFERENCE IS GREATER THAN ZERO.

1 ARITHMETIC OVERFLOW.

1 BORROW.

Programming Note:

See Add with Carry Halfword 4. 3. 2.

4-11

4.3.5 Compare logical Halfword

CLHR R1,R2 (RR]

lo
05

7r Rl
11112

R2
151

CLH R1,A(X2) (RX]

lo 45
718

Rl
1T2

X2

15, 16

A

CLHI R1,A(X2) IRS]

lo
C5

718
Rl

1T2
X2

15116

A
311

The first operand specified by Rl is compared logically to the 16-bit second operand. The result is
indicated by the setting of the Condition Code (PSW (12:15)] • Both operands remain unchanged.

CLHR:
CLH:
CLHI:

(Rl)
(Rl)
(Rl)

(R2)
[A+ (X2)]
A+ (X2)

Resulting Condition Code:·

12 13 14 15

c v G L

0 0

0 1

1 0

1

0

FIRST OPERAND EQUAL TO SECOND OPERAND.

} FIRST OPERAND NOT EQUAL TO SECOND OPERAND.

FIRST OPERAND LESS THAN SECOND OPERAND.

FIRST OPERAND EQUAL TO OR GREATER THAN
SECOND OPERAND.

Programming Note:

The logical comparison is performed by subtracting the second operand from the first operand. The
result is in the Condition Code setting, the operands are not modified.

The Compare Logical Halfword Immediate (CLHI) instruction, produces a value which is the logical
comparison of the address field itself plus the content of a General Register index (X2) with the first
operand General Register (Rl).

4-12

4.3.6 Compare Halfword

CHR R1,R2 [RR)

lo 09
71 8

Rl
11112

R2
151

CH R1,A(X2) [RX)

lo 49
718

Rl

11112

X2

15116

A
311

CHI R1,A(X2) [RSI

lo
C9

718
R1

11, 12

X2

15116

A

The first operand specified by Rl is compared to the 16-bit second operand. The comparison is algebraic,
taking into account the sign and magnitude of each number. The result is indicated by the setting of the
Condition Code [PSW (12:15)]. Both operands remain unchanged.

CHR:
CH:
CHI:

(Rl)
(Rl)
(Rl)

(R2)
(A+ (X2)]
A+ (X2)

Resulting Condition Code:

12 13 14 15

c v G L

0 0

0 1

1 0

1

0

FIRST OPERAND EQUAL TO SECOND OPERAND.

FIRST OPERAND LESS THAN SECOND OPERAND.

FIRST OPERAND GREATER THAN SECOND OPERAND.

FIRST OPERAND LESS THAN SECOND OPERAND.

FIRST OPERAND EQUAL TO OR GREATER THAN
SECOND OPERAND.

Programming Note:

The Compare Halfword (CH) instructions, permit arithmetic comparison of signed two's complement
16-bit int.egers. They facilitate fast comparisons for DO loop, and IF stat.ement processing in
FORTRAN.

4-13

4.3.7 Multiply Halfword

MHR R1,R2 [RR)

l° oc 7r Rl
Hf2

R2
·15;1

MH R1,A(X2)

lo 4C
718

Rl
11r2

X2
15116

A

The 16-bit second operand is multiplied by the contents of the General Register specified by Rl + 1. The Rl
field of the instruction must specify an even numbered register. The resulting 32-bit product is contained
in Rl and Rl + 1, an even-odd pair; the second operand is unchanged. The sign of the product is determined
by the rules of al~ebra.

MHR: (Rl, Rl + 1)---(Rl + H*(R2)
MH: · (Rl, Rl + 1) (Rl + 1)*[A+ (X2))

Resulting Condition Code:

unchanged.

Programming Note:

After multiplication, the most significant 15 bits with sign are contained in Rl. The least significant
16 bits are contained in Rl + 1.

4.3.8 Multiply Halfword Unsigned

MHUR R1,R2 [RR)

lo
9C

718
Rl

11,12

R2
151

MHU R1,A(X2) [RX]

lo DC
718

Rl
1T2

X2

15116 .

A
311

The 16-bit second operand is multiplied by the contents of the General Register specified by Rl + 1. All
16-bits of both operands are considered to be magnitude. The resulting 32-bit product is contained in Rl
and Rl + 1, the second operand is unchanged. The Rl field of the instruction must specify an even
numbered register.

4-14

MHUR: (Rl, Rl + 1)---(Rl + l)*(R2)
MHU: (Rl, Rl + 1) (Rl + 1)* (A+ (X2))

Resulting Condition Code:

Unchanged.

Programming Note:

This instruction is most useful in applications requiring multiple precision multiply capability.
Typically, a Multiply Halfword (MH) instruction would be used with the most significant halfwords of
the two operands, after the least significant parts of the two operands were multiplied using the Multiply
Halfword Unsigned (MHU) instruction. The partial products could then be summed.

4.3.9 Divide Halfword

OHR R1,R2 [RR)

lo
OD

718
R1

1T2
R2

151

DH R1,A(X2) [RX)

lo 40
718

R1

11

11
2

X2
15116

A

The 16-bit second operand is divided into the 32-bit dividend contained in the General Register specified by
Rl and Rl + 1. The first operand, Rl, must specify an even numbered register. The resulting 15-bit
quotient with sign is contained in Rl + 1; a 15-bit remainder with sign is contained in Rl, the second operand
is unchanged. The sign of the result is determined by the rules of algebra; the sign of the remainder is the
same as the sign of the dividend.

DHR:

DH:

(Rl + 1)-(Rl, Rl + 1)/(R2)
(Rl)-Remainder
(Rl + 1)-(Rl, Rl + 1)/ (A+ (X2)]
(Rl)-Remainder

Resulting Condition Code:

Unchanged.

Programming Note:

Attempted division by zero or a quotient which would be greater than X'SOOO' causes a Fixed-Point
Divide Fault Interrupt, if enabled by Bit 3 of the Program Status Word. The operands remain unchanged.

4-15

4.4 LOGICAL INSTRUCTIONS

The Logical instructions manipulate logical data (see 3. 2. 4) such that each hit of the first operand is logically
combined with the corresponding bit in the seuond operand. The instructions described in this section are:

4.4.1 NHR AND Halfword RR

NH AND Halfword

NHI AND Halfword Immediate

4.4.2 OHR OR Halfword RR

OH OR Halfword

OHI OR Halfword .Immediate

4.4.3 XHR Exclusive OR Halfword RR

XH Exclusive OR Halfword

XHI Exclusive OR Halfword Immediate

4.4.4 THI Test Halfword .Immediate

4-16

4.4.1 AND Halfword

NHR R1,R2 [RR)

lo 04
71 8

R1
11112

R2
151

NH R1,A(X2) [RX)

lo 44
718

R1
1T2

X2

15116

A
311

NHI R1,A(X2) [RSI

I° C4
718

R1

11, 12

X2

15116

A
311

The logical product of the 16-bit second operand and the content of the General Register specified by Rl,
replaces the content of Rl. The 16-bit product is formed on a bit-by-bit basis.

NHR: (Rl)-(Rl) AND (R2)
NH: (Rl)-(Rl) AND (A+ (X2)]
NHI: (Rl)-(Rl) AND A+ (X2)

Resulting Condition Code:

12 13 14 15

c v G L

0 0 LOGICAL PRODUCT IS ZERO.

0 1

1 0
} LOGICAL PRODUCT IS NOT ZERO.

Programming Note:

The AND Halfword Immediate (NHI) instruction, produce.a a value which is the logical product of the
address field itself plus the content of a General Register index (X2) with the first operand General
Register (Rl).

The truth table for the AND function is:

0 AND 0 = 0
0 AND 1 = 0
1AND0=0
1AND1=1

4-17

4.4.2 OR, HaJfwerd

OHR R1:,R2 [RR)

lo 06
11-8 Rt

lT::i!
R~

t51

OH R1,A(X2) [_RXJ

lo
46

718
Rf

1fr2
X2

151 flii. 311

OHi R1,A(X2) [RS)

lo C6
718

R1
11r2

X2
151: 16

A

The logical sum of the 16-bit secorid operand and the content of the- General Register specified by RI~ re­
places the content of R1. The 16-bit sum is furmed on a bit-by-bit basis.

4-18

OHR: (Rl)-(Rl) OR (R2)
OH: (Rl)-(Rl) OR [A+ (X2))
OHi: (Rl)-(Rl) 00 A+ (X2)

Resulting Condition Code:

12 13 14 15

c v G L

0 0 LOG.ICAL SUM IS ZERO.

0 1

1 0
} LOGICAL Sl:JM IS NOT ZERO,

Programming Note:

The OR Halfword Immediate (OHi) instruction, produces a. value which is the logical sum of the
address field itself plus the content of the General Register index. (X2) with the first operand General
RegiSter (Rl).

The truth table for the OR function is:

0 OR 0 = 0
0 OR I= I
1 ORO= 1
1OR1=1

4.4.3 Exclusive OR Halfword

XHR R1,R2

lo 07
718

Al
1T2

R2
151

XH R1,A(X2)

lo 47
718

Rl
1T2

X2
15116

A

XHI R1,A(X2)

lo C7
718

Rl
11, 12

X2
15116

A

The logical difference of the 16-bit second operand and the General Register specified by Rl, replaces
the content of Rl. The 16-bit difference is formed on a bit-by-bit basis.

XHR: (Rl)-(Rl) XOR (R2)
XH: (Rl)-(Rl) XOR (A+ (X2)]
XHI: (Rl)-(Rl) XOR A+ (X2)

Resulting Condition Code:

12 13 14 15

c v G L

0 0 LOGICAL DIFFERENCE IS ZERO.

0 1

1 0
} LOGICAL DIFFERENCE IS NOT ZERO.

Programming Note:

The Exclusive OR Halfword Immediate (XHI) instruction, produces a value which is the logical
difference of the address field itself plus the content ofthe General Register index (X2) with the
first operand General Register (Rl).

The truth table for the Exclusive OR function is:

0 XOR 0 = 0
0XOR1=1
1XOR0=1
1XOR1 = 0

[RR)

[RX]

311

[RSI

311

4-19

4.4.4 Test Halfword Immediate

THI R1 ,A(X2) [RS]

lo C3
7r R1

11112
X2

15116

A
311

Each bit in the 16-bit second operand is logically ANDed with the corresponding bit in the General Register
specified by Rl. The contents of Rl and the second operand remain unchanged.

4-20

THI: (Rl) AND A+ (X2)

Resulting Condition Code:

12 13 14 15

c v G L

0 0 NONE OF THE BITS OF THE RESULT SET.

0 1 BIT 0 OF THE RESULT SET.

1 0 ONE OR MORE OF BITS 1-15 OF THE RESULT SET.

Programming Note:

The Test Halfword Immediate (THI) instruction can be used to test the state of individual bits or
combinations of bits in a General Register. For example, to test the state of Bit 6 in Register 3,
use THI 3, X'0200'.

4.5 BYTE HANDLING INSTRUCTIONS

The Byte Handling instructions provide for transferring bytes between core memory and the General
Registers. Compare Logical Byte is useful for testing a particular byte within memory. The instructions
described in this section are:

4.5.1 LBR Load Byte RR

LB Load Byte

4.5.2 STBR Store Byte RR

STB Store Byte

4.5.3 EXBR Exchange Byte RR

4.5.4 CLB Compare Logical Byte

4-21

I

4.5.1 Load Byte

LBR R1,R2 [RR]

lo 93
718

Rl
1r2

R2
151

LB R1,A(X21 [RX]

lo 03
718

Rl
11, 12

X2

15, 16

A
311

The eight-bit second operand is loaded into the right-most (least significant) eight-bits of the General
Register specified by Rl. The left-most (most significant) eight-bits of Rl are set to zero. The second
operand is unchanged.

LBR: R1 (8:15) [R2 (8:15))
R1 (0:7) Zero

LB: R1 (8:15) [A+ (X2))
Rl (0:7) Zero

Resulting Condition Code:

Unchanged.

4.5.2 Store Byte

STBR R1,R2 [RR]

lo 92
718

Rl
1T2

R2
151

STB R1,A(X2) [RX]

I° 02
718

Rl
1r2

X2
15, 16

A
311

The right-most (least significant) eight-bit byte of the first operand is stored in the General Register or core
memory location specified by the second operand. The first operand is unchanged.

4-22

STBR:
STB:

[Rl (8:15))-R2 (8:15)
[m (8:15)] ·~ + <X2D

Resulting Condition Code:

Unchanged.

Programming Note:

In the Register-to-Register (RR) form of this instruction, the left-most byte of R2, (0:7), is
unchanged.

The RX Store Byte (STB) instruction is subject to Memory Protect.

4/72

4.5.3 Exchange Byte

EXBR
·o r----

R1,R2

l 94

--

[RR]

The two eight-bit bytes of the second operand are exchanged and loaded into the General Register specified
by Rl.

EXBR: Rl (0:7) ---R2 (8:15)
Rl (8:15) R2 (0:7)

Resulting Condition Code:

Unchanged.

Programming Note:

Rl and R2 may specify the same General .Register.

4.5.4 Compare Logical Byte

CLB R1,A(X2) [RX]

I° D4 Rl X2 A

The least significant eight-bit byte of the first operand is logically compared to the eight-bit second
operand. The result is indicated by the setting of the Condition Code [PSW (12:15)] . Neither operand is
changed.

CLB: R1(8:15) : [A+ (X2)]

Resulting Condition Code:

12 13 14 15

c v G L

0 0 FIRST OPERAND EQUALS SECOND OPERAND.

0 1

1 0
} FIRST OPERAND DOES NOT EQUAL SECOND OPERAND.

1 FIRST OPERAND IS LESS THAN SECOND OPERAND.

0 FIRST OPERAND IS EQUAL TO OR GREATER THAN SECOND OPERAND.

4-23

4.6 FLOATING-POINT INSTRUCTIONS

The Floating-Point instructions provide for loading, storing, adding, subtracting, multiplying,
dividing, and comparing of floating-point operands. The Arithmetic instructions assume nor­
malized floating-point operands and produce a normalized result. The Floating-Point Load
instruction normalizes an un-normalized floating-point number. The data format for the
Floating-Point instructions is identical to that of the IBM 360 single-precision floating-point
number (see 3. 2. 3). The Rl and R2 fields of the Floating-Point instructions must specify
even Floating-Point Registers (0, 2, 4, 6, etc.). Note that the Floating-Point Registers are
reserved core memory locations. Quantities in Floating-Point Registers should be manipu- I
lated only with Floating-Point instructions. The instructions described in this section are:

4.6.1 LER Floating-Point Load RR

LE Floating-Point Load

4.6.2 STE Floating-Point Store

4.6.3 AER Floating-Point Add RR

AE Floating-Point Add

4.6.4 SER Floating-Point Subtract RR

SE Floating-Point Subtract

4.6.5 CER Floating-Point Compare RR

CE Floating-Point Compare

4.6.6 MER Floating-Point Multiply RR

ME Floating-Point Multiply

4. 6. 7 DER Floating-Point Divide RR

DE Floating-Point Divide

4-24 10/72

4.6.1 Floating-Point Load

LEA R1,R2 [RR)

lo
28

718
Rl

1T2
R2

151

LE R1,A(X2) [RX)

lo 68
718

Rl
1T2

X2

151 16

A
311

The floating-point second operand is normalized and placed in the Floating-Point Register specified as the
first operand. During normalization, the fraction is shifted left hexadecimally (four-bits at a time) until the
most significant hexadecimal digit is not zero. The exponent is decremented by one for each hexadecimal
shift required. Zeros are shifted into the least significant hexadecimal digit of the fraction. The second
operand is unchanged.

If the normalization causes exponent underflow, the entire floating-point result is set to zero, and the Over­
flow (V) flag is set.

LER: (Rl)-(R2)
LE: (Rl)-(A + (X2))

Resulting Condition Code:

12 13 14 15

c v G L

0 0 ZERO.

0 1 LESS THAN ZERO.

1 0 GREATER THAN ZERO.

1 0 0 EXPONENT UNDERFLOW.

Programming Note:

In. the event of underflow, the Floating-Point Arithmetic Fault Interrupt is caused, if enabled by Bit
5 of the PSW.

4.6.2 Floating-Point Store

STE R1,A(X2) [RX)

60 Rl X2 A

The floating-point first operand is placed in the core memory location specified by A + (X2). The first
operand is unchanged.

STE: (Rl)-(A + (X2)) .

Resulting Condition Code:

Unchanged.

Programming Note:

This instruction is subject to Memory Protect.

311

4-25

4.6.3 Floating-Point Add

AER R1,R2 [RR)

to 2A
718

Rl
1T2

R2
151

AE R1,A(X2) [RX]

I° 6A
718

Rl
11, 12

X2
15, 16

A

The exponents of the two operands are compared. If the exponents differ, the fraction with the smaller
exponent is shifted ri.ght hexadecimally (four-bits at a time), and its exponent is incremented by one for
each hexadecimal shift until the two exponents agree. The fractions are then added algebraically. If a
Carry results, the exponent of the sum in incremented by one and the fraction (result) is shifted right one
hexadecimal position (four-bits). The Carry is shifted back into the most significant hexadecimal digit of
the fraction. If an exponent overflow results, the exponent and fraction of the result are set to all ones, and
the Overflow flag is set. The sign of the result is not affected by the· overflow.

If no Carry results from the addition of fractions, the sum is normalized. During normalization, the
fraction is shifted left hexadecimally (four-bits at a time) until the most significant hexadecimal digit is not
zero. The exponent is decremented by one for each hexadecimal shift required. Zeros are shifted into the
least significant hexadecimal digit of the fraction.

If the normalization causes exponent underflow; the sign, exponent, and fraction of the sum are set to zero,
and the Overflow flag is set. If a zero sum is generated from adding two equal magnitudes with unlike signs,
the entire floating-point result is zeroed.

4-26

AER:
AE:

(Rl)-(Rl) + (R2)
(Rl)-(Rl) + (A+ (X2)]

Resulting Condition Code:

12 13 14 15

c v G L

0 0 SUM IS ZERO.

0 1 SUM IS LESS THAN ZERO.

1 0 SUM IS GREATER THAN ZERO.

1 x x EXPONENT OVERFLOW.

1 0 0 EXPONENT UNDERFLOW.

Programming Note:

In the event of overflow or underflow, the Floating-Point Arithmetic Fault Interrupt is caused, if
enabled by Bit 5 of the PSW.

4.6.4 floating-Point Subtract

SER R1,R2 [RR)

lo 28
718

R1

11, 12

R2
151

SE R1,A(X2) [RX)

lo
68

- 718
Rl

1T2
X2

15116

A
311

The exponents of the two operands are compared. If the exponents differ, the fraction with the smaller
exponent is shifted right hexadecimally (four-bits at a time), and its exponent is incremented by one for
each hexadecimal shift until the two exponents agree. The fractions are then subtracted algebraically. If
a Carry results, the exponent of the difference is incremented by one and the fraction (result) is shifted
right one hexadecimal position (four-bits). The Carry is shifted into the most significant hexadecimal digit
of the fraction. If an exponent overflow occurs, the exponent and fraction of the result are set to all ones,
and the Overflow flag is set. The sign of the result is not affected by the overflow.

If no Carry results from the subtraction of fractions, the difference is normalized by shifting the fraction
left hexadecimally (four-bits at a time) until the most significant hexadecimal digit is not zero. The expo­
nent is decremented by one for each hexadecimal shift required. Zeros are shifted into the least significant
hexadecimal digit of the fraction.

If the normalization causes exponent underflow, the entire floating-point result is set to zero, and the
overflow flag is set.

SER: (Rl)---(Rl) - (R2)
SE: (Rl) (Rl) -[A+ (X2)]

Resulting Condition Code:

12 13 14 15

c v G L

0 0 DIFFERENCE IS ZERO.

0 1 DIFFERENCE IS LESS THAN ZERO.

1 0 DIFFERENCE IS GREATER THAN ZERO.

1 x x EXPONENT OVERFLOW.

1 0 0 EXPONENT UNDERFLOW.

4-27

4.6.5 Floating-Point Compare

CER R1,R2 [RR)

lo 29
718

R1
11r2

R2
151

CE R1,A(X2) [RX)

lo 69
718

Rl
11112

X2

15116

A

The (irst operand is compared to the second operand. Comparison is algebraic, taking into account the
sign, fraction, and exponent of each number. The result is indicated by the setting of the Condition Code
[PSW (12:15)]. Both operands remain unchanged.

CER: (Rl) : (R2)
CE: (Rl) : (A+ (X2)]

Resulting Condition Code:
12 13 14 15

c v G L

0 0 FIRST OPERAND EQUALS SECOND OPERAND.

0 1 FIRST OPERAND IS LESS THAN THE SECOND OPERAND.

1 0 FIRST OPERAND IS GREATER THAN THE SECOND OPERAND.

0 FIRST OPERAND IS LESS THAN OR EQUAL TO THE SECOND OPERAND.

0 FIRST OPERAND IS GREATER THAN OR EQUAL TO THE SECOND OPERAND.

1 FIRST OPERAND IS LESS THAN THE SECOND OPERAND.

4-28

4.6.6 Floating-Point Multiply

MER R1,R2 [RR)

lo 2C
718

Rl

11, 12

R2
151

ME R1,A(X2l [RX)

lo
6C

718
Rl

11112

X2

15116

A
311

The exponents of the two operands are added. to produce the exponent of the result. The resultant exponent
is readjusted to excess 64 notation. If an exponent overflow occurs, the exponent and fraction of the prod­
uct are set to ones, and the Overflow flag is set. The sign of the product is determined by the rules of
algebra. If an exponent underflow occurs, the entire floating-point result is set to zero, and the Overflow
flag is set. In either event, the Floating-Point Arithmetic Fault Interrupt is caused, if enabled by Bit 5
in the PSW.

If an exponent overflow or underflow does not occur, the multiplication takes place. If the product is zero,
the entire floating-point result is zero. If the }.'esult is not zero, normalization may occur. During
normalization, the fraction is shifted left hexadecimally (four-bits at a time) until the most significant
hexadecimal digit is not zero. The exponent of the result is decremented by one for each hexadecimal shift
required. After normalization, the product is rounded to 24 bits.

If normalization causes the exponent to underflow, the entire floating-point result is set to zero, and the
Overflow flag is set.

MER:
ME:

(Rl)-(Rl)*(R2)
(Rl)-(Rl)* [A + (X2)]

Resulting Condition Code:

12 13 14 15

c v G L

0 0 PRODUCT IS ZERO.

0 1 PRODUCT IS LESS THAN ZERO.

1 0 PRODUCT IS GREATER THAN ZERO.

1 x x EXPONENT OVERFLOW.

1 0 0 EXPONENT UNDERFLOW.

Programming Note:

The sum of the exponents of the two operands must be less than 64, or overflow occurs, producing the maxi­
mum possible value as a product. For example, the multiplication 1/2 x 1663 * 1 = 1/2 x 1663 * 1/16x16' =
1/32 x 1664 causes an overflow, rather than the result 1/2 x 1663,

4-29

4.6.7 Floating-Point Divide

DER R1,R2 [RR)

I° 2D
718

Rl
1T2

R2
151

DE R1,A(X2) [RX]

lo
6D

718
Rl

11112

X2

15116

A
311

The exponents of the two operands are subtracted to produce the exponent of the result. The resultant
exponent is readjusted to excess 64 notation. If an exponent overflow occurs, the exponent and fraction
of the quotient are set to all ones, and the Overflow flag is set. The sign of the quotient is determined by
the rules of algebra. If an exponent underflow occurs, the entire floating-point result is set to zero, and
the Overflow flag is set. If the divisor (the second operand) is zero, the operands are unchanged. In the
event of exponent overflow, underflow, or division by zero; the Floating-Point Arithmetic Fault Interrupt
is caused, if enabled by Bit 5 of the PSW.

If the exponent overflow or underflow does not occur, and if the divisor is not zero, the second operand is
divided into the first operand. Division continues until the quotient is normalized, adjusting the exponent
for each additional division required. If an exponent underflow occurs, the entire floating-point result is
set to zero, and the Overflow flag is set.

No remainder is returned to the user. The quotient is rounded to compensate for the loss of the remainder.

4-30

DER:
DE:

(Rl) -(Rl)/ (R2)
(Rl)-(Rl)/[A + (X2)]

Resulting Condition Code:

12 13 14 15

c v G L

0 0 QUOTIENT IS ZERO.

0 1 QUOTIENT IS LESS THAN ZERO.

1 0 QUOTIENT IS GREATER THAN ZERO.

1 x x EXPONENT OVERFLOW.

1 0 0 EXPONENT UNDERFLOW.

1 1 0 0 DIVISOR EQUAL TO ZERO.

Programming Note:

Division by zero, overflow, or underflow cause a Floating-Point Arithmetic Fault Interrupt,
if enabled by Bit 5 of the PSW. Inspection of the Condition Code of the Old PSW indicates
the actual cause of the interrupt. If the Carry flag is set, then the divisor was zero. If the
Carry flag is not set, then either overflow or underflow caused the interrupt. In this case,
if the Greater than (G) or Less than (L) flag is set, the interrupt was caused by an overflow.
If the G or L flag is reset, the interrupt was caused by an underflow.

The difference of the exponents of the two operands must be less than 64, or overflow occurs,
producing the maximum possible value as a quotient, even when normalization of the computed
mantissa would bring the resultant exponent within range.

4.7 SHIFT/ROTATE INSTRUCTIONS

The Shift/Rotate instructions provide for arithmetic and logical manipulation of information contained in the
General Registers. Bits shifted out of the high or low order and of a General Register are passed through
the Carry Bit position of the Condition Code (PSW 12). After execution of a Shift instruction, the last bit
which was shifted out is contained in the Carry position.

A shift of zero positions causes the Condition Code to be set properly with no alteration to the information
contained in the General Register. The instructions described in this section are:

4.7.1 SLLS Shift Left Logical Short

SLHL Shift Left Halfword Logical

SLL Shift Left Logical

4.7.2 SRLS Shift Right Logical Short

SRHL Shift Right Halfword Logical

SRL Shift Right Logical

4.7.3 RLL Rotate Left Logical

4.7.4 RRL Rotate Right Logical

4. 7. 5 SLHA Shift Left Halfword Arithmetic

SLA Shift Left Arithmetic

4.7.6 SRHA Shift Right Halfword Arithmetic

SRA Shift Right Arithmetic

4-31

4.7.1 Shift Left Logical

SLLS Rl,lli [SF)

lo
91

718
Rl

11112
N

151

SLHL Rl;A(X2) [RSI

lo
CD

718
Rl

1T2
X2

15116

A
311

SLL R1,A(X2l [RSI

lo
ED

71 8
Rl

1r2
X2

15116 311

The content of the first operand is shifted left the number of positions specified by the second operand. High
order bits shifted out of Position 0 are shifted through the Carry Bit of the PSW and then lost. Zeros are
shifted into the low order bit position.

I°

' (Cl

lo

(Cl

.4-32

(R1l

151

SLLS AND SLHL I
(R1l lRl + 11

15116 311

SLL

Resulting Condition Code:

12 13 14 15

c v G L

0 0 RESULT IS ZERO.

0 1 RESULT IS LESS THAN ZERO.

1 0 RESULT IS GREATER THAN ZERO.

0 LAST BIT THAT WAS SHIFTED OUT WAS A ZERO.

1 LAST BIT THAT WAS SHIFTED OUT WAS A ONE.

Programming Note:

For the Shift Left Logical Short (SLLS) instruction, the N field (Bits 12 through 15) of the instruc­
tion specify the number of positions the content of Rl is to be shifted.

For the Shift Left Halfword Logical (SLHL) instruction, only the low order four-bits (12 through 15)
of A + (X2) are used for the shift count.

The Shift Left Logical (SLL) instruction, shifts Registers Rl and R1 + 1, an even-odd pair. The R1
field of the instruction must specify an even register. The shift count is specified by the low order
five-bits (11 through 15) of the value A+ (X2). The Carry is formed by the output of Rl.

4.7.2 Shift Right Logical

SRLS Rl,N [SF)

lo 90
718

Rl
1T2

N
151

SRHL R1,A(X2). [RSI

lo cc
718

R1
1T2

X2

151 16

SRL R1,A(X2) [RS)

lo EC
718

R1
11112

X2
15116

A

The content of the first operand is shifted right the number of bit positions specified by the second operand.
Low order bits shifted out of Position 15 are shifted thru the Carry Bit of the PSW and then lost. Zeros
are shifted into Position O.

(R1) ·

SRLS AND SRHL (Cl

(R1) (R1 + 1)

lo 15116

SRL ONLY (C)

Resulting Condition Code:

12 13 14 15

c v G L

0 0 RESULT IS ZERO.

0 1 RESULT IS LESS THAN ZERO.

1 0 RESULT IS GREATER THAN ZERO.

0 LAST BIT THAT WAS SHIFTED OUT WAS A ZERO.

1 LAST BIT THAT WAS SHIFTED OUT WAS A ONE.

Programming Note:

See Shift Left Logical 4. 7. 1.

4-33

4.7.3 Rotate Left Logical

RLL R1,A(X21 [RS]

lo EB
718

Rt
11112

X2
15116

A
311

The 32-bit first operand specified by Rl is shifted left, end around,. the number of positions specified by the
low order five bits of the value A+ (X2}. All 32 bits of the fullword are shifted. Bits shifted out of Position
O are shifted into Position 31. A shift specification of 16-bits interchanges the two halves (Rl, Rl + 1) of the
first operand.

4-34

(Rt) (Rt + l)

RU -----i
Resulting Condition Code:

12 13 14 15

c v G L

0 0 RESULT IS ZERO.

1 0 RESULT IS GREATER THAN ZERO,

0 1 RESULT IS LESS THAN ZERO.

Programming Note:

The Rotate Left Logical (RLL) instruction, rotates Registers Rl and Rl + 1, an even-odd pair •.
The Rl field of the instruction must specify an even register.

4.7.4 Rotate Right Logical

RRL R1,A(X21 [RS)

lo
EA

718
Rl

1T2
X2

15,16

A -·----1

The 32-bit first operand specified by R1 is shifted right, end around, the number of positions specified by
the low order five bits of the value A+ (X2). All 32 bits of the fullword are shifted. Bits shifted out of
position 31 are shifted into Position o. A shift specification of 16-bits interchanges the two halves (Rl,
Rl + 1) of the first operand.

. RRL

Resulting Condition Code: •
12 13 14 15

c v G L

0 0 RESULT IS ZERO.

1 0 RESULT IS GREATER THAN ZERO.

0 1 RESULT IS LESS THAN ZERO.

Programming Note:

The Rotate Right Logical (RRL) instruction, rotates Registers Rl and Rl + 1, an even-odd pair.
The Rl field of the instruction must specify an even register.

4-35

4.7.5 Shift Left Arithmetic

SLHA R1,A(X2l [RS)

lo CF
718

Rl
1T2

X2
1T6

A
311

SLA R1,A(X2) [RSI

lo .
EF 718 Rl

1r2
X2

15, 16
A

311

The content of the first operand is shifted left the number of bit positions specified by the second operand.
The Sign Bi.tis unchanged: High order bits shifted out of Position 1 are shifted through the Carry Bit of the
PSW and then lost. Zeros are shifted into the low order bit position.

(Cl

(Cl

4-36

(Rll

SLHA

(Rll (Rl + 11

SLA

Resulting Condition Code:

12 13 14 15

c v G L

0 0 RESULT IS ZERO.

0 1 RESULT IS LESS THAN ZERO.

1 0 RESULT IS GREATER THAN ZERO.

0 LAST BIT THAT WAS SHIFTED OUT WAS A ZERO.

1 LAST BIT THAT WAS SHIFTED OUT WAS A ONE.

Programming Note:

For the Shift Left Halfword Arithmetic (SLHA) instruction, the shift count is specified by the low
order four-bits (12 through 15) of the value of A+ {X2).

The Shift Left Arithmetic .(SLA) instruction, shifts Registers Rl and Rl + 1, an even-odd pair. Rl
must specify an even register. The shift count is specified by the low order five-bits (11 through 15)
of the value of A + (X2).

4.7.6 Shift Right Arithmetic

SRHA R1,A(X2) [RS)

lo CE
718

Rl
1T2

X2
15116

A

SRA R1,AIX2) [RSI

lo EE
718

Rl

11112

X2

15116

A

The content of the first operand is shifted right the number of bit positions specified by the second operand.
The Sign Bit, Bit 0, of R1 is unchanged and is shifted right into Bit 1; therefore, Bit 0, is propagated right as
many positions as specified by the second operand. Low order bits of the first operand are shifted through
the Carry Bit of the PSW and then lost.

1~1
I

1:1

(Rl)

151

t SRHA IC)

(R1) (R1 + 1)

15116 311

SRA
(Cl

Resulting Condition Code:

12 13 14 15

c v G L

0 0 RESULT IS ZERO.

0 1 RESULT IS LESS THAN ZERO.

1 0 RESULT IS GREATER THAN ZERO.

0 LAST BIT THAT WAS SHIFTED OUT WAS A ZERO.

1 LAST BIT THAT WAS SHIFTED OUT WAS A ONE.

Programming Note:

For the Shift Right Halfword Arithmetic (SRHA) instruction, the shift count is specified by the low
order four-bits (12 through 15) of the-value of A+ (X2).

The Shift Right Arithmetic (SRA) instruction, shifts Registers Rl and Rl + 1, an even odd pair.
Rl must specify an even register. The shift count is specified by the low order five-bits (11
through 15) of the value of A + (X2). The Carry is formed by the output of Rl + 1 instead of R1.

4-37

4.8 BRANCH INSTRUCTIONS

Branch instructions are programmed decisions providing entry to subprograms, as well as testing the result
of arithmetic, logical, or indexing operations.

Many Processor operations result in setting of the Condition Code in the Program. Status Word [PSW (12:15)].
The Branch on Condition instructions implement the testing of the Condition Code through use of a mask field
contained in the instruction itself (Ml field).

The four-bit Ml field is not a register address, but rather an image of the Condition Code to be tested. The
instructions described in this section are:

4. 8 •. 1 BTBS Branch on True Backward Short

BTFS Branch on True Forward Short

BTCR Branch on True Condition RR

BTC Branch on True Condition

4.8.2 BFBS Branch on False Backward Short

BFFS Branch on False Forward Short

BFCR Branch on False Condition RR

BFC Branch on False Condition

4.8.3 BXH Branch on Index High

BXLE Branch on Index Low or Equal

4.8.4 BALR Branch and Link RR

BAL Branch and Link

4-38

4.8.1 Branch on True Condition

BTBS Ml,D [SF)

lo
20

718
Ml

1r2
D

151

BTFS Ml,D [SF)

lo
21

718
Ml

1T2
D

151

BTCR M1,R2 [RR)

I° 02
71 8

Ml

11112

R2
151

BTC M1,A(X2) [RX)

lo
42

718
Ml

1T2
X2

15116

A
311

The Condition Code field of the Program Sta1us Word PSW (12:15) is tested for the condition specified by
the Mask Field (Ml). If any of the conditions tested are found to be true, a Branch is executed to the 16-bit
address specified by the second operand. If none of the conditions tested are found to be true the next
sequential instruction is executed.

Tested Condition True:

BTBS:
BTFS:
BTCR:
BTC:

(PSW•(l6:31)) (PSW (16:31))-2D
(PSW (16:31))--[PSW (16:31))+2D
(PSW (16:31)) (R2)
(PSW (16:31)) A+ (X2)

Tested Condition False:

BTBS: }
BTFS: (PSW (16:31))--(PSW (16:31))+2
BTCR:
BTC: [PSW (16:31))---PSW (16:31)+4

Programming Note:

A logical AND is performed between each bit in the Condition Code and its corresponding bit in the Ml
field. If any resultant bit is a one, the Branch will occur. The Com;l.ition Code [PSW (12:15)] is not
changed. For example, if the Condition Code is 1010 and the Ml field is 1000, the Branch occurs with
Branch on True instructions.

The Branch on True Backward Short (BTBS) instruction, causes a Branch to an address relative to the
present Location Counter when the tested condition is true. The displacement is specified by the D
field (Bits 12 through 15) of the instruction. The D field (times two) is subtracted from the present
Location Counter to generate the address of the next instruction.

The Branch on True Forward Short (BTFS) instruction, causes a Branch to an address relative to the
present Location Counter when the tested condition is true. The displacement is specified by the D
field (Bits 12 through 15) of the instruction. The D field (times two) is added to the present Location
Counter to generate the address of the next instruction.

The Short Branch instructions (e.g. BTBS), are appropriate for Branches which specify small
displacements from the present Location Counter, for example, in sense status loops used for
program controlled 1/0.

4-39

4.8.2 Branch on False Condition

BFBS M1,D {SF)

lo
22

718
M1

1T2
D

151

BFFS M1,D [SF)

lo
23

718
M1

1T2
D

151

BFCR M1,R2 [RR)

lo
03

718
M1

1r2
R2

151

BFC M1,A(X2) [RX)

lo
43

718
M1

1T2
X2

15.116
A

311

The Condition Code field of the Program Status Word [PSW (12:15)] is tested for the condition specified by
the mask field (Ml). If all conditions tested are found to be false, a Branch is executed to the 16-bit
address specified by the second operand. If any of the conditions tested are found to be true the next
sequential instruction is executed.

4-40

Tested Condition False

BFBS:
BFFS:

PSW (16:31)---[PSW (16:31)) -2D
PSW (16:31) [PSW (16:31)) +2D

BFCR: PSW (16:31) (R2)
BFC: PSW (16:31) A+ (X2)

Tested Condition True

BFBS:. }
BFFS:
BFCR:
BFC:

PSW (16:31) ---[PSW (16:31)) +2

PSW (16:31) --- [PSW (16:31)) +4

Programming Note:

A logical AND is performed between each bit in the Condition Code and its corresponding bit in the
Ml field. If any resultant bit is a one, the Branch will not occur. The Condition Code [PSW ·(12:15)]
is not changed. For example, if the Condition Code is 1010 and the Ml field .is 1100, the Branch
does not occur with the Branch on False instruction.

· The Branch on False Backward Short (BFBS) instruction, causes a Branch to an address relative to
the present Location Counter when the tested condition is false. The displacement is specified by
the D field (Bits 12. through 15) of the instruction. The D field (times two) is subtracted from the
present Location Counter to. generate the address of the next instruction.

The Branch on False Forward Short (BFFS) instruction, causes a Branch to an address relative to
the present Location Counter when the tested condition is false. The displacement is specified by
the D field (Bits 12 through 15) of the instruction. The D field (times two) is added to the present
Location Counter to generate the address of the next instruction.

Branch on False Condition with a mask of 0 is an Unconditional Branch.

4.8.3 Branch on Index

BXH R1,A(X2) [RSI

lo co
718

Rl
1T2

X2

15116

A

BXLE R1,A(X2) [RSI

lo
Ct

718
R1

1T2
X2

151 16

A
311

Prior to execution of this instruction, the General Register specified by the first operand (Rl) must contain
a 16-bit starting index value, Rl + 1 must contain a 16-bit increment value, and Rl + 2· must contain a 16-bit
comparand (limit or final value). All values may be signed.

Execution of this instruction causes the index (Rl) to be incremented by (Rl + 1) and logically compared to
the index limit, (Rl + 2).

BXH:

BXLE:

(Rl)-(Rl) + (Rl + 1)
(Rl) : (Rl + 2)

if (Rl) > (Rl + 2), then
if (Rl)~ (Rl + 2), then

(Rl)-(Rl) + (Rl + 1)
(Rl) : (Rl + 2)

if (Rl)~ (Rl + 2), then
if (Rl) > (Rl + 2), then

Resulting Condition Code:

Unchanged.

Programming Note:

(PSW (16:31)] A+ (X2)
[PSW (16:31))-[PSW (16:31Il+4

[PSW (16:31)] - A + (X2)
[PSW (16:31)] -(PSW (16:31))+4

For the Branch on Index High (BXH) instruction, the contents of Rl + 1 should be negative. As long
as the index (Rl) is greater than the limit (Rl + 2), the 16-bit address specified by the second
operand is transferred to the instruction address field of the Program Status Word [PSW (16:31)]
The neXt instruction executed will be accessed from the location specified by the new instruction
address. When the count is not greater than the index limit, the instruction following Branch on
Index High will be executed.

For the Branch on Index Low or Equal (BXLE) instruction, the contents of Rl + 1 should be positive.
As long as the index (Rl) is equal to or less than the limit (Rl + 2), the 16-bit address specified by
the second operand is transferred to the instruction address field of the Program Status Word
[PSW (16:31)] • The next instruction executed will be accessed from the location specified by the

new instruction address. When the count is greater than the limit, the instruction following Branch
on Index Low will be executed.

The Branch on Index High and Branch on Index Low instructions are appropriate for rapid loop con­
trol, particularly when one or more of the instructions in the loop is indexed.

4-41

4.8.4 Branch and t.ink

BALR R1,R2 (ftRI

lo
01

71 8
R1

11r2 ..
R2

151

BAL R1,A(X2) (RX)

I~
41

718
R1

1T2
.X2

151 f6

A

The address of the next sequential instruction is saved in the General Re.gister .specified by the
first operand (Rl), and an unconditional branch is executed to the 16-bit address specified by the
second operand. In all 3000 series Processors except the QE,.-PAC 30-1, the effective second
operand is derived before the contents of register Rl are changed. See note below.

4-42

BALR: (Rl) {PSW (16:31)] +2
PSW .(16:31)- (R2)
(Rl) (PSW (16:31)] +4
PSW (16:31)- A+ (X2)

BAL:

Condition Code:

Unchanged.

Programming Note:

The Branch and Link instruction may be used for entry to sub-programs. It differs from
the Branch Unconditional instruction in that the inc.remented Location Counter value is pre·­
served in a specified General Register to be used as the sub-program exit address. Exit
from the sub-program is effected by a Branch Unconditional instruction through the General
Register in which the exit address has been maintained. Note that in the 30-1, if the same
register is specified in both the first and seco~d operands of the BALR instruction (Rl = R2),
Rl will. be' loaded with the saved address of the next instruction before It is used to derive
the second operand. In all other GE-PAC 30 and 3010 Processors, including the 3010/2, the
effective second operand is derived before the contents of Rl are changed.

4.9 LIST INSTRUCTIONS

The List instructions manipulate a circular list defined as follows:

0 78 15

NUMBER OF SLOTS NUMBER OF SLOTS
IN THE LIST USED

CURRENT TOP NEXT BOTTOM

SLOT 0

SLOT 1

~ ~

1 SLOT" J
The first two halfwords contain the list parameters. Immediately following the parameter block is the list
itself. The first halfword in the list is designated Slot O. The remaining slots are designated 1, 2, 3, etc.
up to a maximum slot number which is equal to the number in the list minus one. An absolute maximum of
255 halfword slots is specifiable. (Maximum slot designation is equal to X'FE'.)

The first parameter byte indicates the number of slots (halfwords) in the entire list. The second parameter
byte indicates the current number of slots being used. When this byte equals zero, the list is empty; when
this byte equals the number of slots in the list, the list is full. Once initialized, this byte is maintained
automatically. It is incremented when elements are added to the list and decremented when elements are
removed.

The third and fourth bytes of the list parameters specify the current top of the list and the next bottom of the
list respectively. These pointers are also updated automatically. See Figure 4-1.

OCCUPIED
SECTION

CURRENT TOP

SLOT 2

SLOT 3

SLOT 4

Figure 4-1. Circular List

The instructions described in this section are:

4. 9.1 ATL Add to Top of List

ABL Add to Bottom of List

4.9.2 RTL Remove from Top of List

RBL Remove from Bottom of List

4-43

4.9.1 Add to Top!Bottom ·Of List

ATL R1,AIX21

lo
64

718 . 1'11
11r2

X2

15116

.A

ABL R1,A(X2) [RX]

lo
65

718
R1

11112

X2
15r6 311

The General Register specified by R1 contains the element to be added to the list. The second operand,
A + (X2), specifies the address of the list. The number of slots used tally ls compared to the number of
slots in the list as specified by the first byte of the list. If the number of slots used tally is equal to the
number of slots in the list an overflow condition exists. The element is not added to the list and the instruc­
tion terminates with the V flag set in the PSW. If the number of slots used tally is less than the number of
slots in the list; it is incremented by one, the appropriate pointer is changed, the element is added to the
list, and the instruction terminates with a Condition Code of zero.

4-44

Resulting Condition Code:

12 13 14 15

c v G L

0 1 0 0 LIST OVERFLOW.

0 0 0 0. ELEMENT ADDED SUCCESSfULL Y.

Programming Note:

The Add to Top of List (ATL) instruction, manipulates the Current Top Pointer in the. list. If no
ovenlow occurred, the Current Top Pointer, which points to the last element added to the top of the
list, is decremented by one and the element is inserted in the slot pointed to by the new Current Top
Pointer. Jf the Current Top Pointer was zero on entering this instruction the Current Top Pointer
is set to the maximum slot number in the list. This condition is referred to as list wrap.

The Add to Bottom of List (ABL) instruction, manipulates the Next Bottom Pointer. If no overflow
occurred, the element is inserted in the slot pointed to by the Next Bottom Pointer, and the Next
Bottom Pointer is incremented by one. If the incremented Next Bottom Pointer is greater than the
maximum slot number in the list, the Next Bottom Pointer is set to zero. This condition is referred
to as list wrap.

This instruction is subject to Memory Protect.

4.9.2 Remove From Top/Bottom of List

RTL R 1,A(X2) [RX]

lo
66

718
Rl

1T2
X2

15, 16

A

RBL R1,A(X2) [RX]

lo 67
718

R1
1T2

X2

15116

A

The element removed from the list is placed in the General Register specified by Rl. The second operand,
A + (X2), specifies the address of the list. If, on entering the instruction the number of slots used tally is
zero, the list is already empty and the instruction terminates with V flag set in the PSW. This condition
is referred to as list underflow. If underflow does not occur the number of slots used tally is decremented
by one, the appropriate pointer is changed, and the element is extracted and placed in Rl. The instruction
terminates with the Condition Code equal to zero if the list is now empty, or with the G flag set if the list is
not yet empty.

Resulting Condition Code:

12 13 14 15

c v G L

0 1 0 0 LIST WAS ALREADY EMPTY.

0 0 0 0 LIST IS NOW EMPTY.

0 0 1 0 LIST IS NOT YET EMPTY.

Programming Note:

The Remove from Top of List (RTL) instruction, manipulates the Current Top Pointer. If no under­
flow occurred, the Current Top Pointer points to the element to be extracted. The element is ex­
tracted and placed in Rl. The Current Top Pointer is incremented and compared to the maximum slot
number. If the Current Top Pointer is greater than the maximum slot number, the Current Top
Pointer is set to zero. This condition is referred to as list wrap.

The Remove from Bottom of List (RBL) instruction, manipulates the Next Bottom Pointer. If no
underflow occurred, and the Next Bottom Pointer is zero it is set to the maximum slot number
(list wrap); otherwise it is decremented by one and the element now pointed to is extracted and placed
in Rl.

This instruction is subject to Memory Protect.

4-45

4.10 INPUT/OUTPUT INSTRUCTIONS

The 1/0 instructions provide fur the transfer of data between, the Processor and the. periphe·l'31 devices on the
.. Multiplexor Bus. All of the instructions described in this section a:i:-e privileged and. if exeiiirtechvith the

ProcE;'ssor in Protect Mode (PSW Bit 7 set), result in an niegal Instruction Ihterrupt. ·

Following most I/O instructions,· the V flag in the Condition Code indi~ates an instruction time-out. That
is, due to an improper device response - either the addressed device does not exist, or it did not respond
correctly - the specified I/O operation was not performed. Following Sense Status or Acknowledge Inter­
rupt instructions, the Conditio~ Code (CVGL) also reflects Bits 4 through 7 of the device status. With
standard 3 0 1 0 / 2 device controllers, Bit 5 of the status byte, which is reflected in the V flag in the
Condition Code, is defined as Examine Status. This means that status byte should be examined. Following
Sense Status and Acknowledge Interrupt instructions, therefore, the occurrence of the V flag with status
Bits O through 3 equal zero indicates instruction time-out. For a complete definitfun of the bits in either
command bytes, or status bytes, refer to documentation on the device in question. The instructions des­
cribed in this section are:

4.10.1 Am Acknowledge Interrupt RR 4.10~ 6 RBR Read Block RR

AI Acknowledge Interrupt RB Read Block

4.10. 2 SSR Sense Status RR 4.10 •. 7 WBR Write Block RR

SS Sense Status WB Write Block

4.10.3 OCR Output Command RR 4.10.8 RHR Read Halfword RR

oc Outp~t Command RH Read Halfword

4.10. 4 RDR Read Data RR 4.10.9 WHR Write· Halfword RR

RD Read Data WH Write Halfword

4.10. 5 WDR Write Data RR 4.10.10 AL. Autoload

WD Write Data

4-46

4.10.1 Acknowledge Interrupt

AIR R1,R2 [RR)

lo
9F

718
Rl

1r2
R2

151

Al R1,A(X21 [RX]

lo
OF

718
Rl

11112

X2

15116

A
311

The address of the interruptiag device replaces the content of the 16-bit General Register specified by the
first operand (Rl). The eight-bit device sta1ns byte replaces the content of the location specified by the
second operand. The Condition Code is set equal to the right-most four bits in the device sta1ns byte. The
device interrupt condition is then cleared.

AIR: [Rl (8:15)] Device address

[Rl (0:7)] Zero

[R2 (8:15)] Sta1ns byte

[R2 (0:7) J Zero

[Psw (12:15)]-staws byte (4:7)

AI: [Rl (8:15)] Device number

[Rl (0:7)] Zero

[A+ (X2)] Sta1ns byte

[PSW (12:15)]-status byte (4:7)

Resulting Condition Code:

12 13 14 15

c v G L

1

1

1

1

DEVICE BUSY (BSY)

EXAMINE STATUS (EX) OR TIME OUT

END OF MEDIUM (EOMI

DEVICE UNAVAILABLE (DU)

Programming Note:

These instructions are privileged.

The RX form (AI) is subject to Memory Protect.

4-47

4.10.2 Sense Status

SSR R1,R2 [RR)

lo
90

718
Rl

_1T2

R2
151

SS R1,A(X2) [RX)

lo
DD

718
Rl

1T2
X2

15116

A

The 16-bit General Register specified by the first operand (Rl) contains the device address. The device is
addressed and the eight-bit device status byte replaces the content of the location specified by the second
operand. The Condition Code is set equal to the right-most four bits of the device status byte. The first
operand is unchanged.

4-48

SSR:

SS:

[R2 (8:15)]---- Status byte

[R~ (0:7)] -----Zero

[PSW (12:15)]--- Status byte (4:7)

[A+ (X2)]-----status bYte

[PSW (12:15)] status byte (4:7)

Resulting Condition Code:

12 13 14 15

c v G L

1

1
1

1

DEVICE BUSY (BSY)

EXAMINE STATUS (EX) OR TIME OUT

END OF MEDIUM (EOM)
DEVICE UNAVAILABLE (DU)

Programming Note:

These instructions are privileged.

The RX form (SS) is subject to Memory Protect.

4.10.3 Output Command

OCR R1,R2 [RR)

lo
9E

71 8
Rl

11, 12

R2
151

oc R1,A(X21 [RX]

lo DE
718

R1
11112

X2

15116

A
311

The 16-bit General Register specified by the first operand (Rl) contains the device address. The device is
addressed and the eight-bit device command byte specified by the second operand is transmitted to the
addressed device. Both operands remain unchanged.

4.10.4

OCR: Device---(R2 (8:15)]
OC: Device (A+ (X2)]

Resulting Condition Code:

~
~ INSTRUCTION TIME OUT

Programming Note:

The Examine Status bit is set if the device cannot complete the command action. These instructions
are privileged.

Read Data

RDR R1,R2 [RR]

lo
98

718
R1

1T2
R2

151

RD R1,A(X2) [RX]

lo DB
718

R1
1T2

X2

151 16

A
311

The 16-bit General Register specified by the first operand (Rl) contains the device address. The device is
addressed and a single eight-bit data byte is transmitted from the device replacing the content of the location
specified by the second operand.

RDR: (R2 (8:15))-Data byte
[R2 (0:7)] -zero

RD: (A+ (X2ij -Data byte

(Continued on next page)

4-49

Resulting Condition Code:

~ t=i2:t.=U INSTRUCTION .TIME OUT

Programming Note:

These instructions are privileged.
The RX form (RD) is subject t.o Memory Protect.

These instructions shotild not be used with 1 &-bit oriented device controllers. Nate that standard
3 o 1 o / 2 peripheral devices use 8-bit oriented device controllers. Ft>r 16-'hit ·Oriented devices~
use Read Halfword/Write Halfword instructions.

4.10~5 Write Data

WDR R1,R2 [AflJ

lo 9A
718

R1
Hr2

R,2
151

WO Rl,A(X2) [RX]

r DA
718

R1
nl12

X2
15116

A
311

The 16-bit General Register specified by the first operand (Rl) contains'tbe device address. The device is
addressed and a single eight-bit data byte is transmitted t.o the device. Both .operands remain unchanged.

4-50

WDR: (R2 (8:15))~(Device)

WD: (A + (X2)] -(Device)

Resulting Condition Code:

.fctm .. ·

.rnn INSTRUCTION .TIME OUT

Programming Note:

These instructions are privileged.

These instructions should not :be used with 16..;bit oriented device -controllers. Note ilra:t
standard 3 0 1 0 /2 peripheral devices use 8-bit oriented derice controllers. :For 16-bit
oriented devices, use Read Halfword/Write Halfword instructions.

4.10.6 Rlad Block

RBR R1,R2 [RR)

lo 97
71 8

R1
11112

R2
151

RB R1,A+(X2) [RX)

lo
D7

718
R1

11, 12

X2

15, 16

A
311

The 16-bit General Register specified by the first operand (Rl) contains the device address. The 16-bit
second operand location, (R2) or [A+ (X2)] contains the starting address of the data buffer to be trans­
ferred. The next sequential halfword, (R2 + 1) or [A+ (X2) + 2] contains the ending address of the data
buffer. The starting address must be equal to, or less than, the ending address. Data transfer is inclusive
of the buffer limits.

The Read Bl~ck instruction causes transfer of eight-bit data bytes from a device to consecutive memory
locations. No other instructions are executed during transfer of the data block.

The Condition Code portion of the Program Status Word [PSW (12:15)] will be set to zero after a normal
transfer. In the event of an abnormal block data transfer, the Condition Code will not be zero.

Resulting Condition Code:

12 13 14 15

c v G L

0 0 0 0 BLOCK DATA TRANSFER COMPLETE CORRECTLY.

1 DEVICE BUSY (BSY)

1 EXAMINE STATUS (EX) OR TIME OUT

1 END OF MEDIUM (EOM)

1 DEVICE UNAVAILABLE (DU)

Programming Note:

These instructions are privileged.
These instructions are subject to Memory Protect.

These instructions should not be used with 16-bit oriented device controllers. Note that
standard 3 0 1 0 /2 peripheral devices use 8-bit oriented device controllers. For 16-bit
oriented devices, use Read Halfword/Write Halfword instructions.

4-51

4.10.7 Write Block

WBR R1,R2 [RR)

lo 96
71 8

Rl

11112
R2

151

WB R1,A(X2) [RX)

lo 06
718

R1
11112

X2
15116

A
311

The 16-bit General l;legister specified by the first oper;md (Rl) contains the device address. The 16-bit
second operand location, (R2) or [A + (X2)] contains the starting address of the data buffer to be transferred.
The next sequential halfword, (R2 + 1) or [A + (X2) + 2] contains the ending address of the data buffer. The
starting address must be equal to, or less than, the ending address. Data transfer is inclusive of the buffer
limits.

The Write Block instruction causes transfer of etght-bit data bytes from consecutive memory locations to a
device. No other instructions are executed during transfer of the data block. The Condition Code portion
of the Program Status Word [PSW (12:15)] will be set to zero after a normal transfer. In the event of an
abnormal block data transfer, the Condition Code will not be zero.

4-52

Resulting Condition Code:

12 13 14 15

c v G L

0 0 0 0 BLOCK DATA TRANSFER COMPLETED CORRECTLY.

1 DEVICE BUSY (BSY)

1 EXAMINE STATUS (EX) OR TIME OUT.

1 END OF MEDIUM (EOM).

1 DEVICE UNAVAILABLE (DU).

Programming Note:

These instructions are privileged.

This instruction should not be used with 16-bit oriented device controllers. Note that
standard 3 0 1 0 /2 peripheral devices use 8-bit oriented device controllers. For 16-bit
oriented devices, use Read Halfword/Write Halfword instructions.

4.10.8 Read Halfword

RHR R1,R2 [RR)

lo 99
718

Rl

11, 12

R2
151

RH R1,A(X2) [RX)

lo 09
718

Rl
11112

X2
15116 311

The 16-bit General Register specified by Rl contains the device address. The device is addressed and a
16-bit halfword is received from the device replacing the contents of the second operand. The Read Half­
word instruction is implemented such that it can work with both 8-bit byte oriented device controllers and
with 16-bit halfword oriented device controllers. If the controller is byte oriented the Processor inputs two
8-bit bytes, if the controller is halfword oriented the Processor inputs one 16-bit halfword.

RHR: [R2 (0:7)] First Data Byte } 8-bit oriented device controller
[R2 (8:15U1'"'"""' ---Second Data Byte

RH:

[R2 (0:15il, Halfword of Data 16-bit oriented device controller

[A + (X2)] First Data Byte }
8-bit oriented device controller

[A+ (X2) + 1]-second Data Byte

[A+ (X28 Halfword of Data 16-bit oriented device controller

~
[GI]] INSTRUCTION TIME OUT

Programming Note:

These instructions are privileged.
The RX form (RH) is subject to Memory Protect.

With the RX form (RH), the effective address A+(X2) should be an even value.

4-53

4.10.9 Write Halfword

WHR R1,R2 [RR)

r 98
718

R1
11112

R2
151

WH R1,A(X2) [RX)

lo 08
718

Rl
11112

X2
15116

A
311

The 16-bit General Register specified by Rl contains the device address. The device is addressed and a
16-bit halfword is transmitted to the device from the location specified by the second operand. The Write
Halfword instruction is implemented such that it can work with both 8-bit byte oriented device controllers
and with 16-bit halfword oriented device controllers. If the controller is byte oriented the Processor out­
puts two 8-bit bytes, if the controller is halfword oriented the Processor outputs one 16-bit halfword.

4-54

WHR:

WH:

[R2 (0:7)]---Device

[R2 (8 :15) J-Device

[R2 (0:15)]-Device

[A + (X2) J Device

[A+ (X2) + 1]-Device

[A+ (X2)] Device

Resulting Condition Code:

fcfvf.A rnTI INSTRUCTION TIME OUT

Programming Not.e:

8-bit oriented device controller

16-bit oriented device controller

8-bit oriented device controller

16-bit oriented device controller

The Read Halfword and Writ.e Halfword instructions are useful with devices requiring two bytes
per transfer. Since the transfer ~s accomplished with one instruction inst.ead of two, both time
and core are saved. Some examples of devices with which these instructions can be used are
Halfword I/O Module, 16-line Int.errupt Module, conversion equipment (i.e. D/ A and A/D Con­
verters), card reader, and Control Panel.

With the RX form (WH), the effective address A+(X2) should be an even value.

These instructions are privileged.

4.10.10 Autoload

AL A(X2) [RX)

D5 X2 A
311

The Autoload instruction loads memory with a block of data from a byte oriented input device
(e.g., teletypewriter, photo-electric Paper Tape Reader, Magnetic Tape, etc.). The data is
read a byte at a time and stored in successive memory locations starting with location X 180 1•

The last byte is loaded into the memory location specified by the address of the second operand,
A+ (X2). Any blank or zero bytes that are input prior to the first non zero byte are considered
to be leader and are therefore ignored; all other zero bytes are stored as data. The input de­
vice is specified by memory location X178 1• The device command code is specified by memory
location X 179 1•

1. n-o

2. (X'SO' + n)-byte

3. n-n+ 1

4. If A + (X2) < X'80' + n, instruction is finished, otherwise return to equation 2.

Resulting Condition Code:

12 13 14 15

c v G L

0 0 0 0 DATA TRANSFER COMPLETED CORRECTLY.

1 DEVICE BUSY (BSY)

1 EXAMINE STATUS (EX) OR TIME OUT.

1 END OF MEDIUM (EOM)

1 DEVICE UNAVAILABLE (DU).

Programming Note:

This instruction is privileged.

This instruction is subject to Memory Protect.

The Rl field of an Autoload machine instruction must contain O.

This instruction should not be used with 16-bit oriented device controllers. Note that
standard 3 O 1 0 /2 peripheral devices use 8-bit oriented device controllers. For 16-bit
oriented devices, use Read Halfword/Write Halfword instructions.

4-55

4.11 SYSTEM CONTROL INSTRUCTIONS

The System Control instructions provide a means for the program to set the Program Status Word, swap
PSW1s, trigger special interrupt handling, and communicate with a supervisor program. Some of the.se
instructions are privileged and may be executed only with the Processor in the Supervisor Mode (i.e.,
Bit 7 of the PSW reset). Any attempt to execute these instructions in the Protect Mode results in an
illegal Instruction Interrupt. The instructions described in this section are:

4.11.1 LPSW Load Program Status Word

4.11.2 EPSR Exchange Program Status

4.11.3 SINT Simulate Interrupt

4.11. 4 SVC Supervisor Call

4.11.1 Load Program Status Word

LPSW A(X2) [RX)

lo
C2

718 11112
X2

15116

A

A 32-bit operand is loaded into the Current Program Status Word. The second operand is unchanged.

(PSW (0:31)]--(A + (X2)]

Resulting Condition Code:

Determined by PSW loaded by the instruction.

Programming Note:

This instruction is privileged.
The Rl field of a Load PSW instruction must contain O.

4-56

4.11.2 Exchange Program Status

EPSR R1,R2 [RR]

95 Rl R2

The Current Program Status, PSW (0:15), is stored into the register specifie4 by Rl. The content of R2
then becomes the Current Program Status, [PSW (0:15)] • Note that if Rl = R2, this results in the Program
Status being copied into Rl, but otherwise remaining unchanged. This instruction is useful for capturing the
running Program Status, enabling or disabling interrupts, or loading the Condition Code with a specified
value.

EPSR: [PSW (0:15fr--- R1
[PSW (0:15!}--R2

Resulting Condition Code:

Determined by New PSW.

Programming Note:

This instruction is privileged;

4.11.3 Simulate Interrupt

SINT A(X2}

E2

[RS]

X2 A
311

The least significant eight-bits of the second operand, A+ (X2), is presented to the Interrupt Handler as a
device number. The device number indexes into the Service Pointer Table at X'OODO' and results in either
an Immediate Interrupt or an 1/0 Channel operation.

Programming Note:

This instruction is privileged.

The Rl field of a Simulate Interrupt instruction must contain O.

4-57

4.11.4 Supervisor Call

SVC R1,A(X2) [RX)

lo El
718

Rl
1T2

X2
15116

A
311

The Supervisor Call instruction is used to initiate certain functions in the Supel'Visor program. The second
operand address, A+ (X2), may be a pointer to the core location of the parameters the Supervisor program
will need to complete the function specified.

The value, A+ (X2), is stored in core location X'0094'. The Current Program Status Word is stored in the
fullword core location at X'0096'. Core location X'009A' contains the New Program Status value. Core
locations X'009C' through X'OOBB' contain sixteen new Location Counter values, one for each type of Super­
visor call.

The type of Supervisor call is specified in the R1 field of the instruction. Sixteen different calls are provided
for. Re1urn from the Supervisor is made by executing a. Load Program Sta1us Word instruction specifying
the stored "Old" PSW in location X'0096'.

4-58

(X'0094') LA + (X2)
(X'0096') [PSW (0:31))
(X'009A') (PSW (0:15)]_
(X'009C I + 2 *Rl) - [PSW (16:3f)]

Resulting Condition Code:

Defined by New PSW.

Programming Not.e:

This instruction provides a convenient means of switching from the Protect Mode to the Supervisor
Mode; Return to the Prot.ect Mode is accomplished by a Load Program Sta1us Word or Exchange
Program Status instruction.

CHAPTER 5

INPUT /OUTPUT SYSTEM

5.1 INTRODUCTION

This ch~pter discusses the GE-PAC 3010/2 Input/Output (I/O) System. There are several methods of
communication between the Processor and peripheral devices and/or other system elements. The
methods vary in speed, sophistication, and the amount of attention required by the Processor. Thus,
the systems interface may be tailored to the individual user's needs and it may be gracefully expanded
as the user's requirements grow.

There are two primary purposes for this chapter; (1) to familiarize the user with the GE- PAC
3010/2 systems interface, and (2) to provide the data required to permit the user to effectively
interface peripheral equipment to the GE-PAC 3010/2 System. A functional description of each
I/O subsystem is given later in this chapter, followed by a detailed description of each 1/0 in­
struction, and rules and specifications for designing interfaces to the System.

5.2 SYSTEMS INTERFACE

Figure 5-1 is a block diagram of a 3 0 1 0 /2 System emphasizing the systems interface capability.
Note that there are four separate methods of interfacing to peripheral devices or system elements:

1. Multiplexor Channel

2. Interleaved Data Channel

3. · Selector Channel

4. Direct Memory Access Channel (See Chapter 6)

The following paragraphs describe each of the interface methods.

5.2.1 Multiplexor Channel

The Multiplexor Channel is a byte or halfword oriented I/O system which communicates with up to.255
peripheral devices. The Multiplexor Bus consists of 30 lines; 16 bi-directional Data Lines, 8 Control
Lines, 5 Test Lines, and an Initialize Line.

The lines in the Multiplexor Bus are:

Data Lines D00:15 (Processor-- Device) 16 Lines
SR () 1 Line
DR () 1 Line

CMD () 1 Line
Control Lines DA () 1 Line

ADRS () 1 Line
ACK () 1 Line

DACK () 1 Line
CL07 () 1 Line

1

ATN 1 Line
SYN 1 Line

HW 1 Line
DC 1 Line

DCR 1 Line

Test Lines

Initialize Line SCLRO 1 Line

5-1

DEVICE
CONTROLLER

(BYTE)

MEMORY

MEMORY BUS (16 BITS)

PROCESSOR

MULTIPLEXOR BUS (B OR 16 BITS)

DEVICE
CONTROLLER
(HALFWORD)

DATA
CHANNEL

(HALFWORD)

SELECTOR
CHANNEL

DIRECT MEMORY
ACCESS CHANNEL

•••• • •••
255 DEVICES

SELECTOR CHANNEL BUS (8 OR 16 BITS)

• • •
16 DEVICES

Figure 5-1. System Interface, Block Diagram

Figure 5-2 is a block diagram of the Multiplexor Channel. The following general definitions apply to the
lines in th~ Multiplexor Bus.

Data Lines D00:15

The data lines are used to transfer one 8-bit byte or one 16-bit halfword of data between the Processor and
the device. One byte of address or command is transferred from the Processor to the device over Data
Lines 8:15 (008:15) when accompanied by either an Address (ADRS) or a Command (CMD) control line.
One byte of data or one halfword of data is transferred from the Processor to the device when accompanied
by the Data Available (DA) control line. The device, in response to an Acknowledge (ACK) control line or
a Sense status (SR) control line, s~nds one byte of address or status information to the Processor over
D08:15. In response to a Data Request (DR) control line, the device sends either an 8-bit byte or a 16-bit
halfword of data to the Processor. The device always sends a Synchronize (SYN) signal to the Processor
to indicate that it has either received the data from the Processor or that it has sent the data to the
Processor. The SYN signal is removed immediately after the Processor removes the control line.

5-2

16 10

TYPICAL BYTE
ORIENTED.

CONTROLLER

PROCESSOR

MULTIPLEXOR BUS

24 19

TYPICAL HALFWORD
ORIENTED

CONTROLLER

21

TYPICAL DATA
CHANNEL

CONTROLLER

Figure 5-2. Multiplexor Channel, Block Diagram

Control Lines

SR

DR

ACK

DA

CMD

ADRS

DACK

CL070

Test Lines

status Request. The device controiler must present device status to Data Lines D08:15,
followed by a SYN.

Data Request. The device controller presents data to Data Lines 8:15 or 0:15 (D08:15 or
D00:15), followed by a SYN. If a Halfword (HW) of data is presented, the HW test line is
also active.

Acknowledge. The interrupting device controller presents its address on D08:15, followed by
a SYN.

Data Available. The Processor presents data on 000:15 for transfer to the device. The device
controller accepts the low byte or the entire halfword and responds with a SYN.

Command. The Processor presents a Command Byte on D08:15. The device controller accepts
the Command Byte and responds with a SYN.

Address. The Processor presents an· Address Byte on D08:15. 'The device controller accepts
the Address Byte and responds with a SYN.

Data Channel Acknowlerlge. The Processor presents an address of zero on D08:15. The
ADRS control line and the DACK control line are simultaneously active. The interrupting Data
Channel device controller becomes selected and responds with a SYN. As a result of addressing
device zero (a null address), only the selected data channel device controller remains addressed.

This control line is activated by the Processor when a Power Fail condition is detected by the
Processor, if the Power Fail option is equipped. This line is held active until the SCLRO
signal occurs.

ATN Attention. Any device desiring to interrupt the Processor will activate the ATN line and hold
this line until an ACK is received from the Processor.

HW Halfword. The HW line is actjvated by a halfword oriented device controller whenever it is
communicating normally with the Processor. The HW line is not· activated when a device
controller is operating in the Interleaved Data Channel mode.

5-3

DC Data Channel Request. Any Data Channel device desiring to interrupt the Processor will acti­
vate the DC line and hold this line until a DACK is received from the Processor.

DCR Data Channel Read. The selected Data Channel device controls the state of the DCR line,
high for read, low for write, from the device.

SYN Synchronize. This signal is generated by the device to inform the Processor that it has
properly responded to a control line.

Initialize Line

SCLR System Clear. This is a metallic contact to ground which closes on a power-down,
power-up, or hardware initialize sequence. ·

NOTE

All control lines, except ACK and DACK, are connected in parallel to all
devices. These lines are activated by the Processor in response to an
external interrupt. The ACK line is connected in series with all devices. If
no interrupt is pending in the first controller when the ACK or DACK signal
arrives, the signal is passed on daisy chain fashion to the next controller, and
so on until it is captured by the interrupting controller. See definition of ACK
and DACK.

Communication over the Multiplexor Bus is performed on a request/response basis where each sequence
of events is controlled by the micro-program contained in the Processor's Read-Only-Memory. A typical
sequence to perform an l/O instruction with a device controller is:

1. The Processor addresses the device controller by placing an eight-bit address on the data lines
and activating the ADRS control line. The device controller whose address corresponds to the
Address Byte on the data lines responds by setting its Address flip-flop and returning SYN to the
Processor. (All other device controllers reset their Address flip-flops.) Once a device controller
is addressed it remains so until another device is addressed or until the system is initialized.
The addressed device controller responds to all subsequent activity on the Multiplexor Bus.

2. If the 1/0 instruction involves transferring data from the Processor to the device controller, the
Processor places the data on the data lines and activates the appropriate control line. The
addressed device controller responds with a SYN after it has received the data, the Processor
then removes the control line.

3. If the 1/0 instruction involves transferring data to the Processor from'the device controller, the
Processor activates the appropriate control line, and waits for the device controller to respond
by placing the data on the data ,lines and activating SYN. When the Processor receives SYN, it
accepts the data and removes the control line.

4. In all c.ases the device controller removes the SYN whenever the Processor removes the control
line.

The sequence described here is· somewhat simplified for the sake of clarity. The exact sequence for each
1/0 instruction is listed later i~ this chapter.

Whenever a device controller desires, it may interrupt the Processor by activating the ATN test line. This
may be done by any device controller at any time, regardless of whether it is addressed or not. If
interrupts are enabled by the Current Program status Word, the Processor responds to ATN by interrupting
the currently running program and directing the Processor to a new program (or a new micro-program)
which identifies and services the interrupt as required.

5.2.2 Interleaved Data Channel

The Interleaved Data Channel provides high speed low cost autonomous memory access on an instruction
steal basis. Data transfer between the device controller and memory is accomplished over the Multiplexor

5-4

Bus at data rates of 440, 000 bytes per second in the Burst Mode. Internal Processor registers provide
the necessary buffering between the memory and the device controller. A typical sequence to perform an
Interleaved Data Channel cycle is:

1. When the device controller is ready it requests a Data Channel cycle by activating the DC test line.
This line is separate from, and of higher priority than, the ATN line. The Processor responds
to this line by addressing device zero, and at the same time activating the DACK control line. The
DACK line is "daisy chained" through all Data Channel devices until it is captured by the highest
priority controller requiring Data Channel service. That device controller becomes the "on line"
device.

2. The on line device controller controls the DCR test line which specifies either a Read or a Write
operation to memory. If the Data Channel operation is Read from memory, the Processor inputs
a 16-bit memory address from the device controller, reads the contents of that address from
memory, and outputs the 16-bits read out to the device controller.

3. If the Data Channel operation is Write to memory, the Processor inputs a 16-bit memory address
and a 16-bit data halfword, and then it writes that data into the memory at the specified address.

The sequence described here is somewhat simplified for the sake of clarity. The exact sequence for each
kind of Data Channel operation is discussed later in this chapter.

5.2.3 Selector Channel

The optional Selector Channel provides block data transfer between one of up to 9 I/O devices, and I
memory. Once initiated, the transfer is independent of the Processor. The program specifies the
device address, the type of operation (Read or Write), the starting address in memory, and the final
memory address of the transfer. The Selector Channel then completes the transfer, cycle stealing from
the Processor, without further direction by the Processor. Upon completion of the transfer, or termina­
tion of the transfer due to a fault, the Selector Channel Busy condition is dropped and the Processor is
notified via an interrupt.

Figure 5-3 is a block diagram of the Selector Channel. Address lines to, and data lines to and from the
Memory Bus are shown on the right side. The Memory Bus Control Logic (one of several arbitrary
functional groupings used only for purposes of this block diagram) gates an address to the Memory Bus
and data to or from the bus depending upon the direction of transfer. The Selector Channel Data Register
(DR) stores the 16-bit data halfword to/from memory. The Transfer Control Logic gates the data between
the Selector Bus (shown on the bottom) and the Data Register in either 8-bit bytes or 16-bit halfwords,
depending on the device. The address circuits are shown in the upper righb area. The Final Address
Register (FR) is loaded in two bytes from the Multiplexor Bus. The Address Register (AR) is loaded with
the starting address in two bytes. After each byte of data transfers to/from the device, the Address
Register is incremented and its coritents is compared to the contents of the Final Address Register. When
AR=FR, a terminate signal is sent to the Transfer Control Logic. If AR;t FR, the next data transfer is
initiated to/from the device.

The Multiplexor Bus is shown on the left side of Figure 5-3. Note that the Multiplexor Bus may be gated to
any one of six places. The gates are functionally represented by a six position rotary switch. With the
gating as shown, and assuming the Transfer Control Logic is also as shown, the Multiplexor Bus including
all 16 Data Lines is gated directly to the Selector Bus. This is the condition which exists when the Selector
Channel has not been addressed. Thus, all devices on the Selector Channel may be used via the Multiplexor
Channel if the Selector Channel is not in use. Four of the remaining five points onto which the Multiplexor
Bus may be gated, are the Upper and Lower halfs of FR and AR. The sixth point is designated Command
and Sense Logic. Commands from the Processor are decoded in this block to produce control signals for
the Transfer Control Logic and the Multiplexor Input Control Logic.

The following is a typical sequence of ope~ation for a Selector Channel I/O operation. Figure 5-4 is a flow
chart of Selector Channel operation. Circled numbers on Figure 5-4 refer to steps in the following sequence:

1. The device controller is addressed and the appropriate command sent to it (for example, Read
Tape Forward).

10/72 5-5

5-6

MULTIPLEXOR
INPUT CONTROL

LOGIC

~~1---,
L I"' I
T I
I I
P I
L I
E I o- - 8
x I 8
~ I "- I • o- -- - 7: 8

C:::}---<f, o- -,
B ~i 0 - La
~ - .• - 'a r- ? o-~ -1+-f-

~ ~

~ 16
8

;Ir

COMMAND
1- AND SENSE 1-

LOGIC

16 ,
'----,

I.+ TRANSFER L--o._
CONTROL ~...,:.

LOGIC r-j' o---

/L SELECTOR BUS
~~-----------~~~

8 OR 16 BIT CONTROLLERS

,

8..L --,

8

8

FINAL ADDRESS
REGISTER

FR
16 BIT

ADDRESS
REGISTER

AR
16BIT

•
INCREMENT

·DATA
REGISTER

MATCH
DETECT

J

M
E

'\...7 M
0
R

MEMORY I A ... y
BUS v-"

CONTROL f'.,-.1 B

LOGIC ~

T';..·

DR V/l"''------'
16BIT ~~~----'

Figure 5-3. Selector Channel, Block Diagram

EVEN

0 INPUT ST/\TUS l
BYTE

YES

© TRANSFER 1 BYTE
ORTO DEVICE

INCR
AA

YES

G) ACCESS HS MEMORY
BUS

GD LOAD HALf-WOHD IN DH

____.r-·-

START

ADDRESS DEVICE
CONTROLLER

LOAD AR AND FR

@ OPER.CMD.

© GOCMD.

@ RESETBUSY

@ SETATN

END

@INPUT STATUS BYTE

YES

NO

@ TRANSFER 1 BYTE
DEVICE TO DR

YES

INCREMENT AR

EVEN

@ACCESS HS
MEMORY BUS

@ LOAD HALFWORD
FROM DR

Figure 5-4. Selector Channel, Flow Chart

5-7

2. The Selector Channel AR and FR are loaded vi~ four byte transfers from the Multiplexor Channel.
The FR may be odd or even.

NOTE:

steps 1 and 2 may be reversed.

3. A command which specifies if this is an input operation (information received from the device)
is sent to the Selector Channel from the Multiplexer Channel. (The Selector Channel is initialized
and returns to the output state - information to the device - whenever a Read Data or Write Data
instruction is issued to the Selector Channel.)

4. A GO Command which starts the transfer operation is sent from the Multiplexor Channel to the
Selector Channel. ·

NOTE

The Processor is now free to continue its program while the block I/O transfer
is performed by the Selector Channel on a cycle-stealing basis. Steps 5 through
8 apply solely to Read operations (memory to device). Steps 9 through 12 apply
to Write operations (device to memory).

5. If this is a Read operation, the Selector Channel requests memory service via the built-in
memory port .in the Processor. When service is granted, the Selector Channel fetches a

· halfword from memory.

6. When memory data becomes available, it is gated to the DR.

7. The Status Byte from the device is examined. If the device Busy Bit (Bit 4) is true, the Selector
Channel wa~s for it to become false. If any of the status Bits 5, 6, or 7 are true, the transfer
is terminated.

8. Data (either an 8-bit byte or a 16-bit halfword depending on the controller) is transferred from the
DR tothe device when the device is not busy. If AR=FR, the transfer is terminated. If not, the
AR is incremented, and if there is a carry (AR=O) the transfer is terminated. If the contents of the
AR is even another byte is transferred to the device.

9. If this is a Write operation, the Status Byte is input from the device. If the Busy is true, the
Selector Channei waits for it to become false. If any of the other three bits in the status code are
true, the transfer sequence is terminated. If all bits are false, the sequence continues.

10. Data is transferred from the device to the DR when the device is not busy. If AR=FR, the transfer
is terminated. If not; the AR is incremented, and if-there is a carry (AR=O) the transfer is
terminated.

11. If the contents of the AR is even, another byte is transferred to the device. (The sequence returns
to Step.9 .•)

·' 12. The Selector Channel requests memory service.

13. The halfword in DR is written into the addressed memory location when granted memory.

steps 14 through 16 describe the termination sequence. Any of the following conditions will cause
termination:

a. AR=FR

b. AR increments to Zero (carry out of AR).

c. A status failure from the. device (EX, EOM, or DU).

d. A stop Command from the Processor.

5-8

NOTE

If the Selector Channel is in a memory cycle when the stop Command is
received from the Processor, execution of the Stop Command will be delayed
until the completion of the memory cycle.

14. Reset the Selector Channel Busy indication.

15. Set the Selector Channel Attention flip-flop to generate an interrupt to the Processor.

16. After the Processor acknowledges the interrupt and addresses the Selector Channel, it will send
a Status Request to the Selector Channel. The status received will be the status of the active
device on the SELCH Bus with the Busy Bit forced to zero. To determine whether the transfer
terminated normally, the contents of AR may be Read by issuing two Data Requests to compare
its contents with the final memory address.

The Selector Channel is complete on one mother-board which is mounted in any even numbered
Universal Expansion Slot. ·

5.3 INPUT/OUTPUT INSTRUCTIONS

The following paragraphs describe each of the Input/Output (1/0) instructions. Each instruction is imple­
mented by a sequence of operations controlled by the Processor's micro-program. A discussion of the
micro-programmed sequence and the related device controller logic for each I/ 0 instruction is provided.

5.3.1 Read Data (RD) Instruction

RD [RX]

lo DB (Note 1)
718

R1
1T2

X2

15116

A
311

RDR [RR]

lo 98
718

R1

11, 12

R2
151

Note 1: The operation codes in this figure and all
similar figures which follow in this chapter
are given in hexadecimal notation.

Execution of the RD instruction transfers an eight-bit byte of data from the device specified by the contents
of General Register Rl to the memory byte address specified by A, indexed by the contents of General
Register X2. If X2 equals zero, the byte is transferred directly to the memory address specified by A.
The transfer takes place via the Multiplexor Channel. Refer to Figures 5-5 and 5-6 during the following
description of the RD instruction sequence of operation. The gate and flip-flop designations listed in this
chapter reference the figures only. They have no hardware significance.

1. The first thing the micro-program does after decoding an RD instruction, is to place the contents
of Rl (the device number) on the Data Lines (D080 through D150).

5-9

5-10

008: 15 (PROCESSOR__.,. DEV)

ADAS

SYN

DR

008:15

Figure 5-5. Read Data Instruction Timing

008
09
10
11

t2 G1
s

13'

l4 Ft

Dt5 R 0

ADAS

SYN

DR

008

Dt.5 _._ __________ _._ ______ -\

MULTIPLEXOR
BUS

DEVICE CONTROLLER

0

7

Figure 5-6. Device Controller Logic for Read Data Instruction

NOTE.

DATA
IN.

A non or nl" is appended to GE-PAC 3010/2 signal designations to
indicate the state. of the signal.. Thus, the designation 0080 through
D150 indicates that the eight Data Lines (008 through 015) are low
when active; in other words, this is a. false bus.

2.. The Address (ADRS} control line is raised.

3. The device controller which decodes its address via Gate Gl (arbitrary hexadecimal address 22 on
Figure 5-6) sets the Address flip-flop (Fl) through Gate G2.

4. The output from Gate G2, via OR Gate G4, also raises the Synchronization (SYN) response from
the device controller to the Processor. The SYN signal at this time indicates that the device
controller has decoded its address and has received an ADRS control line.

5. When the SYN signal is received, the Processor removes the ADRS control line and the device
number. The device controller, in turn, lowers the SYN signal.

6. The Processor next raises the Data Request (DR) control line. This line is ANDed with the
Address flip-flop (Fl) in Gate G5. The output from Gate G5 enables the byte of data from the
device to the Processor (Gate GlO through Gl 7). Data to the Processor is sent on the Data
Lines (D080 through Dl50).

7. The output from Gate G5 also raises the SYN line to the Processor to indicate that the data is
ready.

8. The Processor gates the data to the designated byte address (location A indexed by the contents
of X2, if specified).

9. When the byte has been received, the Processor lowers the DR control line. The device controller
then lowers SYN and removes the data from the Data Lines (D080 through Dl50). The sequence
for one byte is now completed. The Address flip-flop (Fl) remains set until another device is
addressed, or until a System Clear (SCLRO) signal is generated. When another device controller
is addressed, Fl is reset through Gate G3. Resetting Fl effectively disconnects the device con­
troller from the Multiplexor Bus.

A Time Out feature is provided in the Processor to prevent locking up the computer on a malfunctioning
device or a non-existent device, The Time Out signal is generated if the device controller fails to return
the SYN response within 25 to 50 microseconds of a request. The Time Out feature also sets the V flag
in the Program Status Word (PSW) Condition Code. The programmer may therefore branch on the Time
Out condition, typically to an error message print-out routine.

The Read Data to Register (RDR) instruction is executed in the same manner as the RD instruction. The
only difference is that the data is stored in General Register R2 instead of A.

5.3.2 Read Halfword (RH) Instruction

RH [RX]

L __ 09
718

R1
1T2

X2
15116

A
311

RHR [RR]

lo
99

718
R1

11, 12

R2
151

Execution of the RH instruction transfers a 16-bit halfword of data from the device specified by the contents
of General Register Rl to the memory halfword specified by A, indexed by the contents of General Register
X2. If X2 is zero, the halfword is transferred directly to the memory address specified by A. The RH
instruction is implemented such that it can work with both 8-bit byte oriented device controllers and with
16-bit halfword oriented device controllers. If the controller is byte oriented the Processor inputs two
eight-bit bytes, if the controller is halfword oriented the Processor inputs one 16-bit halfword. Refer to
Figures 5-7 and 5-8 during the description of the sequence of operations for byte oriented controllers.

1. The device controller is addressed and connected exactly as described in steps 1 through 5 of the
RD sequence, Section 5.3.1.

5-11

I

OOB:15

ADRS

SYN

DR

DOB:15

Figure 5-7. Read Halfword Instruction Timing for Byte Oriented Controllers

MULTIPLEXOR
BUS

DOB
09 10----
11
12~,---

13

14

D15

ADAS-+--------'

SYN

DR

DOB

D15

+

1---------i s 1 F2

Fl K o~-+---~

1---+----i R 0

B
DATA

IN

15

Figure 5-8. Byte Oriented Device Controller Logic for Read Halfword Instruction

DATA
IN

2. The Processor next raises the Data Request (DR) control line. This line is ANDed with the
Address flip-flop (Fl) in Gate G5.' The output of Gate G5 is input to Gates G26 and G27 and to
the Byte Counter flip-flop (F2}. When flip-flop F2 is set, Gate G26 enables the data bits 0
through 7 onto the Data Lines {D080 through 0150) through Gates GlO to Gl7.

5-12 4/72

I 3. The output of Gate 26 also raises the SYN line to the Processor to indicate that the first byte of
data is ready.

4. The Processor accepts the first byte of data when it receives SYN.

5. When the byte has been received, the Processor lowers the DR control line which causes the
device controller to remove the data from the Data Lines (DOBO through Dl 50), to remove SYN,
and to toggle flip-flop F2 reset.

6. When the device controller removes SYN, the Processor raises the DR control line a second
time. With flip-flop F2 reset, Gate 27 enables the data Bits 8 through 15 onto the Data Lines
(DOBO through D150).

7. The output from Gate 27 also raises the SYN line to the Processor to indicate that the second
byte of data is ready.

s. The Processor accepts the second byte of data when it receives SYN. The Processor now gates
the full 16-bit halfword (the first and second bytes) to the designated memory address (location
A indexed by the contents of X2, if specified).

Refer to Figures 5-9 and 5-10 during the following description of the sequence of operations for halfword
oriented device controllers.

1. The device controller is addressed and connected exactly as described in steps 1 through 5 of the
RD sequence, Section 5. 3.1.

2. If the device is a halfword oriented device it raises the Halfword (HW) test line upon being
addressed through Gate G6. This stays active until some other device becomes addressed.

3. The Processor next raises the Data Request (DR) control line. This line is ANDed with the
Address flip-flop (Fl) in Gate G5. The output from Gate G5 enables the halfword of data from
the device to the Processor (Gates GlO through G25). Data to the Processor is sent on the Data
Lines (DOOO through D150).

4. The output from Gate G5 also raises the SYN line to the Processor to indicate that the data is ready.

5. The Processor gates the data to the designated address (location A indexed by the contents of X2,
if specified).

008:15 (PROCESSOR ~DEV)

ADRS

SYN

HW

DR

000:15

Figure 5-9. Read Halfword Instruction Timing for Halfword Oriented Controller

The device controller Address flip-flop and the Time Out feature are as described in Section 5. 3. 1 for the
RD instruction. The Read Halfword to Register (RHR) instruction is executed in the same manner as the RH
instruction. The only difference is that the halfword of data is stored in General Register R2 instead of A.

4/72 5-13

MUL TIPLEXQR
BUS

008
09,

10

1t

t2 s
13. Ft
t4

D.t5 R 0

ADRS

HW

SYN

D00-+-------------------1

015_... _________________ -t

O } DATA

IN

t5
1----

Figure 5-10. Halfword Oriented Controller Logic for Read Halfword Instruction

5.3.3 Write Data (WD) Instruction

WD [RX]

lo
DA

718
Rt

1T2
X2

t5116

A
311

WDR [RR)

lo
9A

718
Rt

11112
R2

151

Execution of the WD instruction transfers a byte of data from memory address A, indexed by the contents
of General Register X2, to the device number specified by the contents of General Register Rl. Refer
to Figures 5-11 and 5-12 do.ring the following sequence of operations.

1. The device controller is addressed and connected exactly as described in steps 1 through 5 of the
RD sequence, section 5. 3. 1.

2. The contents of the byte addres& (A indexed by X2) is placed on the Data Lines (DOSO through D150).

3. The Data Available (DA) control line is then raised.

4. The DA signal is ANDed with the output from Address flip-flop (Fl) by Gate G6. The output from
Gate G6 strobes the data into the device controller register (F2 through F9).

5. The. output from Gate G6 also generates a SYN response the Processor to indicate that the data
has. been accepted.

008:15 (PROCESSOR--+DEV)

ADRS --+

SYN

DA

Figure 5-11. Write Data Instruction Timing

008

09
10
11 G1

12 s
13
14 F1

D15
R 0

ADRS

DA

SYN

s 0

T F2

R 0

DATA
OUT

s 7

T F9

R

MULTIPLEXOR
DEVICE CONTROLLER BUS

Figure 5-12. Device Controller Logic for Write Data Instruction

6. When it receives the SYN signal, the Processor lowers the DA line and removes the data from the
Data Lines (DOSO through D150).

7. The device controller then lowers the SYN line.

5-15

I

As described in Section 5. 3. 1, the device controller remains selected until another device controller is
selected, or a System Clear is generated. The Time Out feature is also exactly as described in Section
5. 3.1 for the RD instruction.

The WDR instruction is similar to the WD instruction, except that the byte which is transferred originates
in General.Register R2 rather than a memory address.

5.3.4 Write ·Halfword (WH) Instruction

WH [RX]

lo 08
718

R1
1T2

X2
15, 16

A
311

WHR [RR]

98
718

Rl
11112

R2
151

Execution of the WH instruction transfers a 16-bit halfword of data to the device specified by the contents
of General Register Rl from the memory halfword specified by A, indexed by the contents of General
Register X2. If X2 is zero, the halfword is transferred directly from the address specified by A. The
WH instruction is implemented such that it can work with both_ 8-bit byte oriented .qevice controllers and
with 16-bit halfword oriented device controllers. If the controller is byte oriented the Processor outputs
two eight-bit bytes, if the controller is halfword oriented the Processor outputs a 16-bit halfword in
parallel. Refer to Figures 5-13 and 5'."14 during the description of the sequence for byte oriented
controllers.

1. The device controller is addressed and connected exactly as described in steps 1 through 5 of the
RD sequence, Section 5. 3. 1.

2. The Processor places the first .byte of the memory address specifieq (A indexed by X2) on the Data
Lines (DOSO through D150).

3. The Data Available (DA) control line is then raised.

4. The output from Gate G6 is ANDed with the output from fiip-flop FlB by Gates GB and G7. If
flip-fiop FlB is set, Gate GS strobes the first byte of the halfword of data into the device con­
troller register (F2_ through F9).

5; The output from Gate GB also generates SYN to the Processor to indicate that the first byte has
been received.

6. When the.Processor receives SYN, it lowers the DA control line which causes flip-flop F18 to
toggle set, and removes the first byte of data from the Data Lines (DOBO through Dl50).

008:f5 (PROCESSOR .~DEV)

ADRS ~

SYN

DA

Figure 5-13. Write Halfword Instruction Timing for Byte Oriented Controllers

5-16 4/72

I

I

008
09
10
11 J 1

12 s T F18
13 F1

K 0 14
D15 R 0

ADRS

DA

SYN

s 0

T F2

R 0

s 8
DATA F10
OUT T

R 0

DATA

7 OUT
s

F9
T

I
MULTIPLEXOR R 0

BUS

s 15

T F17

R 0

Figure 5-14. Byte Oriented Device Controller Logic for Write Halfword Instruction

7. The device controller than removes SYN.

8. Steps 2 through 7 are then repeated, except that the Processor now sends the second byte of data
and Gate 07 strobes the second byte of data into the device controller register (FlO through Fl 7).

Refer to Figures 5-15 and 5-16 during the following description of the sequence of operation for halfword
oriented device controllers.

1. The device controller is .addressed and connected as described in Steps 1 through 5 of the RD
sequence, Section 5.3.1.

2. H the device is a halfword oriented device, it raises the Halfword (HW) test line upon being
addressed through Gate G6. HW stays active until some other device becomes addressed.

3. The Processor places the halfword of data on the Data Lines (DOOO through D150.)

4/72 5-17

008:15 (PROCESSOR -->DEV) --+

ADRS --+

SYN 4--

HW ...---

000:15 --+

DA __.

Figure 5-15. Write Halfword Instruction Timing for Halfword Oriented Devices

DOB

09

10
11

12
s

13 Fl
14

D15
R 0

ADRS

SYN

HW

DA
0

000 s

T F2

R 0 DATA
OUT

D15 s 15

MULTIPLEXOR T F17

BUS
R 0

Figure 5-16. Half~ord Oriented Device Controller Logic for Write Halfword

4. The Data Available (DA) control line is then raised.

5. The DA control line is ANDed with flip-flop Fl by Gate G5. Gate G5 strobes the halfword of data
into the device controller register (F2 through Fl 7).

5-18

6, The output from Gate G5 also generates SYN to the Processor indicating that the halfword of data
has been received.

7. When the Processor receives SYN it lowers the DA control line; which removes the halfword of
data from the Data Lines (0000 through D150).

8. The device controller removes SYN.

The device controller Address f,lip-flop and the Time Out feature are as described in Section 5. 3. 1 for the
RD instruction. The Write Halfword from Register (WHR) instruction is executed in the same manner as the
WH instruction, except that the byte which is transferred originates in General Register R2 rather than
the memory halfword specified by A.

5.3.5 Sense Status (SS) Instruction

SS [RX]

lo DD
718

R1
11112

X2
15116

A
311

SSR [RR]

lo 90
718

R1
11, 12.

R2
151

Execution of the SS instruction transfers an 8-bit status Code from the device specified by General Register
Rl to memory location A, indexed by the contents of General Register X2. In addition, the four least
significant bits are placed in the fou.r bit Condition Code of the Program status Word (PSW).

C = Device Busy - Indicates that the device is not ready to transfer data.

V = Examine status (EX) - Indicates that the device has detected a condition which is indicated by the most
significant four bits of the status Condition Code.

G = End of Medium (EOM) - Indicates that the device has reached the end of its data. For example, the
Card Reader has reached the end of a card.

L = Device Unavailable (DU) - Indicates that the device is either not connected or not ready.

Thus, the program, after executing an SS instruction, may branch directly on any of the above conditions.
Normally if the V flag is set, the program examines the other four bits of the status Condition Code.
The status Byte is stored at memory location A, and the four bits may be assigned any significance
which is appropriate for the particular device.

Refer to' Figures 5-17 and 5-18 during the following sequence of operations for the SS instruction.

1. The device controller is addressed and connected as described in steps 1 through 5 of the RD
sequence, Section 5. 3. l,

2. The Processor next raises the Status Request (SR) control line.

3. The output from Gate G7 enables the status Byte from the device to the Processor via the Data
Lines (D080 through D150), and sends a SYN response to the Processor to indicate that the data
is on the bus.

4. When it receives the SYN signal, the Processor transfers the status Byte Bits 0 through 7 to
Address A, and Bits 4 through 7 only to the Condition Code of the PSW.

5. The Processor then lowers SR,, which causes the device controller to lower SYN and remove the
status Byte from the bus.

5-19

5-20

008:15 (PROCESSOR-+ DEVI

ADAS

SYN

SR

D08:15

Figure 5-1 7. Sense Status Instruction Timing

008
09
10
11 Gl

12
s

13

14 Fl

D15
R 0

ADAS

DEVICE CONTROLLER

STATUS
BYTE

0

2

3

4
1----1-- BSY

6
t---+- EOM

Figure 5-18. Device Controller Logic for Sense status Instruction

The device controller Address flip-flop and the Time Out feature are as described in Section 5. 3. 1 for the
RD instruction. The SSR instruction is similar to the SS instruction except that the status Byte is stored
in General Register R2 instead of memory address A.

5.3.6 Output Command (OC) Instruction

oc [RX)

lo
DE

718
R1

1T2
X2

15116

A
311

OCR [RR)

lo
9E

71 8
R1

1T2
R2

151

Execution of the OC instruction transfers an 8-bit Output Command from address A, indexed by the contents
of General Register X2, to the device specified by the contents of General Register Rl. Command line
coding is normally assigned to either device control function or device controller modes of operation.
None of the command bits are preassigned a specific function. The OC instruction is therefore a powerful
instruction which may be tailored to the specific requirements of a particular system.

Refer to Figures 5-19 and 5-20 during the following sequence of operation description.

1. The device controller is addressed and connected as described in steps 1 through 5 of the RD
sequence, Section 5. 3.1.

2. The Processor next places the contents of the byte address A (the command word) on the Data
Lines (DOBO through Dl50).

3. The Processor than raises the Command (CMD) control line. The CMD signal is ANDed with the
Address flip-flop (Fl) by Gate GB.

4. The output from Gate GS strobes the Command word on the Data Lines (DOBO through Dl50) into the
Command Control Register in the device controller (FlO through Fl 7). The output from Gate GB
also sends a SYN response to the Processor to indicate that the device has stored the Command
word.

5. The Processor then lowers CMD and removes the Command word from the Data Lines (DOBO
through Dl50).

6. Finally, the device controller lowers its SYN line.

The device controller Address flip-flop and the Time Out feature are as described for the RD instruction
in Section 5. 3.1. The OCR instruction is similar to the OC instruction except that the Command Byte is
from General Register R2 instead of Address A.

008:15 (PROCESSOR ---...DEvt

ADRS

SYN

CMD

Figure 5-19. Output Command Instruction Timing

5-21

DOS

09
10
11 I

. I Gl
12 s

I
13

14 Fl

015
R 0

ADAS

CMD

SYN

s 0

T FlO

COM-
R 0 MAND

LINES

s 7

I

I T Fl7

I R 0
I

MULTIPLEXOR DEVICE CONTROLLER
BUS

Figure 5-20. Device Controller Logic for Output Command Instruction

5.3.7 Acknowledge Interrupt (Al) Instruction

Al [RX]

lo
OF

718
Rl

lT2
X2

15116
A

311

AIR [RR]

lo
9F

718
Rl

lr2
R2

151

To understand the AI instruction, the reader should have a working knowledge of the 3 0 1 0 /2 futerrupt
System. A brief description of the futerrupt System is provided here; for more detail refer to Chapter 2.
futerrupts are provided to detect events both within, and external to, the Processor. The occurrence of the
interrupt may cause the program to Branch from its normal sequence to an interrupt subroutine which
performs some operation appropriate to the interrupt. For example, an external device may interrupt to
indicate that it is ready to transfer another byte of data. The interrupt subroutine would then initiate
another transfer. After the interrupt is serviced (the interrupt subroutine is completed), the main program
is resumed at the point at which it was interrupted.

5-22

The AI instruction is normally the first instruction in the interrupt subroutine which services interrupts
from external devices. When executed, the device number of the interrupting device is placed in General
Register Rl, and the status Byte of the interrupting device is placed in Address A, indexed by the contents
of General Register X2. The least significant four bits of the Status Byte are placed in the Condition Code
of the Program status Word (PSW) exactly as described in Section 5. 3. 5 for the SS instruction. Thus, for
example, with a single AI instruction a magnetic tape reader may be identified, and the fact that it has
reached an EOR gap determined (via the EOM Status flag).

Refer to Figures 5-21 and 5-22 during the following sequence of operation:

1. The device interrupts and sets flip-flop FlS in the device controller. The output from FlS
generates an Attention (ATN) signal to the Processor, if interrupts have been enabled by a prior
Output Command causing ENABLE to be active.

2. The Processor responds by raising the Acknowledge (ACK) control line.

NOTE

The ACK line is received by the first device controller in the line as Receive
Acknowledge (RACK). See Figure 5-22. If the Interrupt flip-flop (FlS) in the
first controller is not set, the RACK signal is gated out of this controller as
Transmit Acknowledge (TACK). The next controller receives it as RACK.
Thus the ACK signal "daisy chains" through the device controllers until it
finds one with.its Interrupt flip-flop (FIS) set. The 'O' output from FlS inhibits
the propagation of TACK to the next device controller.

3. The FIS high output and the RACK signal are ANDed to enable the device number from the device
to the Data Lines (DOSO,through D150), and to send SYN to the Processor to indicate that the
device number is on the lines. The A TN flip-flop is also reset.

4. The Processor gates the device number into General Register Rl.

5. The Processor then lowers the ACK line which, in turn, causes the device controller to lower
the SYN line.

6. The Processor then addresses the same device and gates its status Byte to Address A and the
Condition Code of the PSW exactly as described in Steps 1 through 5 of the Sense Status Instruction,
Section 5. 3. 5.

The device controller Address flip-flop and the Time Out feature are as described previously in Section
5. 3.1 for the RD instruction. The AIR instruction transfers the Status Byte to General Register R2,
rather than to memory location A, as in the AI instruction.

ATN

RACK (PROCESSOR-

008:15

SYN

008:15

ADAS -
SR -Figure 5-21. Acknowledge Interrupt Instruction Timing

4/72 5-23

5.3.8

RB

lo

RBR

lo

5-24

ATN i-----1

TACK

RACK

I
I

Dos I
I
I
I

D15 I

SYN I

MULTIPLEXOR
BUS

I

0

.--..--·s

Fl

1----IR 0

DEVICE CONTROLLER

R-

0
I
I
I
I
7

ENABLE
INTERRUPT

DEVICE
NUMBER

1--1--,._I --'-]_}~:~~us
L_l

I
I
I
I
I
I
I
I
I

I

Figure 5-22. Device Controller Logic for Acknowledge Interrupt Instruction

Read Block (RB) Instruction

D7
718

Rl

111·12

X2

15116

A

97
718

Rl

11112

R2
151

[RX]

311

[RR]

General Register Rl specifies the device number, the indexed address A contains the starting address for
the block transfer, The next sequential halfword contains the ending address, When an RB instruction is
executed, a block of data is transferred from an external device to sequential byte locations in memory.

Between each byte transfer the device status is checked. The four least significant bits of the Status Byte
are scanned. If the BSY Bit (C flag) is set, the Processor assumes that the transfer is still in progress.
The Processor initiates another Status Byte input sequence each time the BSY Bit is set. When the BSY
Bit is low (indicating that the byte transfer is complete), the Processor scans the remaining three least
significant bits. If any of these bits are set, the transfer sequence is terminated. If all bits are reset,
the next byte transfer is initiated. At the end of the transfer sequence (when the present address equals
the ending address), the Status Condition Code should contain all zeros. The program may therefore
Branch conditionally on the status Condition Code following the RB (or RBR) instruction. Condition Code
assignments are as described in Section 5. 3. 5. Refer to Figures 5-23 and 5-24 during the following
sequence of operation description. The sequence is essentially a combination of RD and SS instructions.
However, the device is only addressed once, the DR and SR control lines are then raised alternately until
the transfer is terminated.

-PROCESSOR DEVICE -
008:15 - _J DEV#

ADRS-

SYN,.___

BSY +--

D08:15 +---

DR-

Figure 5-23. Read Block Instruction Timing

1. The device controller is addressed and connected as described in steps 1 through 5 of the RD
sequence, Section 5. 3. 1.

2. A byte is transferred from the device to the Processor as described in steps 6 through 9 of the RD
sequence, Section 5. 3.1.

3. The Status Byte from the device is then transferred to the Processor as described in steps 2 through
5 of the SS instruction sequence, Section 5, 3. 5,

4. If the address does not match the final address, and the Condition Code of the PSW is all zeros, the
Processor increments the address and repeats steps 2 through 4 of this sequence.

5. The instruction terminates normally when the address equals the final address. If Bit 5, 6, or 7 of
the Condition Code in the PSW is set after a transfer, the instruction is terminated. As described
previously, the program may then Branch conditionally on the Condition Code. If Bit 4 (BSY) is
set, step 3 is repeated. ·

The device controller Address flip-flop and the Time Out feature are as described previously in Section
5. 3.1 for the RD instruction. The RBR instruction differs from the RB instruction only in that the starting
address is specified by the contents of General Register R2.

5-25

5.3.9

WB

lo

WBR

lo

5-26

0081
09

101
11
121
13 j
14

D15 I

I

ADRSl'--------~----_,------11-------J
SYN'

I
I

SRj1--------+---1

I
I

DRJ

I
I

DOS

0151
I
I

MULTIPLEXOR
BUS

0

STATUS

7

0

DATA

7

Figure 5-24. Device Controller Logic Read Block Instruction

Write Block (WB) Instruction

06 7r
R1

11112
X2

15116
A

96 718
Rl

11 I 12

R2
151

[RX]

311

!RR]

The General Register specified by Rl contains the device number. The indexed address A contains the
starting address for the block transfer. The next sequential halfword contains the ending address. Exe­
cution of this instruction transfers bytes from sequential locations in memory to the specified external
device. The status Byte is checked between each byte transfer. The four least significant bits of the Status
Byte are scanned. If the BSY Bit (C flag) is set, the Processor assumes that the transfer is still in pro­
gress. The Processor initiates another Status Byte input sequence each time the BSY Bit is set. When the
BSY Bit is low (indicating that the byte transfer is complete), the Processor scans the remaining three
least significant bits. If any of these bits are set, the transfer sequence is terminated. If all bits are
reset, the next byte transfer is initiated. At the end of the transfer sequence (when the present address
equals the ending address), the Status Condition Code should contain all zeros. The program may there­
fore Branch conditionally on the Status Condition Code following the WB (or WBR) instruction. Condition
Code assignments are as described for the Sense status instruction in Section 5. 3. 5. Refer to Figures
5-25 and 5-26 during the following sequence of operation description.

DATA
008:15 (PROCESSOR-DEV)

ADRS -
SYN -
SR -
BSY -
008:15 -
DA -

Figure 5-25. Write Block Instruction Timing

1. The device controller is addressed and connected as described in Steps 1 through 5 of the RD
sequence, Section 5. 3.1.

2. A byte is transferred from the Processor to the device as described in steps 2 through 7 of the
WD sequence, Section 5. 3. 3.

3. The Processor reads in the Status Byte as described in steps 2 through 5 of the SS sequence,
Section 5. 3. 5. ·

4. If the BSY indication is set, Step 3 is repeated to input the status Byte again.

5. If the BSY indication is low, and any of the three least significant bits are set, the transfer is
terminated.

6. If all four least significant status Byte bits are reset, the Processor compares the memory address
with the ending address. If they are equal, the transfer is terminated. If the addresses are not
equal, the address if incremented and steps 2 through 6 of this sequence are repeated.

Again, the device controller Address flip-flop and the Time Out feature are as described previously for the
RD instruction, Section 5. 3.1. The WBR instruction is the same as the WB instruction except that the
starting address is specified by the contents of General Register R2 rather than by the effective address.

5-27

008 1------+-------1--11------t

D15

DA

I
I

I
I
I
I

oos 1~--.

I
I

D151~-.....

I

ADAS 1----------
MULTIPLEXOR

BUS

0} ~AT~
4 DATA

· 7 . ACCEPTED

DATA
AVAILABLE

s 0

T
DATA

R 0 OUT

s 7

T

R 0

.------iR 0

Figure 5-26. Device Controller Logic for Write Block Instruction

5.3.10 Autoload (AL) Instruction

AL A(X21 [RX]

lo
D5 R1 X2 A

311

The Autoload instruction loads memory with a block of data from a byte oriented input device
(e.g •• teletypewriter, photo-electric Paper Tape Reader. etc.). The data is read a byte at a
time and stored in successive memory locations startingwith location X'80'. The last byte is
loaded into the memory location specified by the address of the second operand, A + (X2). Any
blank or zero l:iytes that are input prior to the first non-zero byte are considered to be leader
and are therefore ignored; all other zero bytes are stored as data. The input device number
is specified by memory location X 178'. The device command code is specified by memory
location X'79 '. The Rl field hli!-S no significance in this instruction.

The AL instruction is a combination of an Output Command (OC) instruction and a Read Block (RB)
instruction. Refer to Figure 5-27 during the following sequence of operation description.

1. The Processor places the content's of memory location X'78' onto the Data Lines (0080 through
Dl50).

5-28

CTI
I

N)
co

!PROCESSOR ~ OEVICEI

008:15 -
ADRS -
SYN -
CMD -
SR -
008:15 -
BSY -
DR -

Figure 5-27. Autoload Instruction Timing

2. The device controller is addressed and connected as described in Steps 2 through 5 of the RD
Sequence, 8ection 5. 3. I.

3. The Processor next places the contents of memory location x•79·i onto the Data Lines ID080
through D150).

4. The device controller is now issued a Command as described in Steps 3 through 6 of the OC
sequence, Section 5. 3. 6.

5. The instruction continues exactly as the Read Block instruction except that the data bytes are
loaded to memory beginning at memory address X'80' and that the final byte address is defined
by A indexed by X2.

5.4 DEVICE CONTROLLER LOGIC DESIGN

The design of the Multiplexor Channel and Bus and the Multiplexor Bus interface in all con­
trollers on the bus, is described in this subsection. so that the operation of the hardware and
the user I/O instructions may be understood. While the actual circuitry. used in the various
device controller bus interfaces may differ, the operation is the same for all controllers.

5.4.1 Multiplexor Bus

The Multiplexor Channel is a byte or halfword oriented I/O system which communicates with up to 255
peripheral devices. The Multiplexor Bus consists of 30 lines; 16 bi-directional Data Lines, 8 Control
Lines, 5 Test Lines, and an Initialize Line.

The lines in the Multiplexor Bus are listed below:

Data Lines D00:15 (Processor ~Device) 16 Lines
SR () 1 Line
DR () 1 Line

CMD () 1 Line
Control Lines DA () 1 Line

ADRS () 1 Line
ACK () 1 Line

DACK () 1 Line
CL07 () 1 Line

I
ATN 1 Line
SYN 1 Line

HW 1 Line
DC 1 Line

OCR 1 Line

Test Lines

Initialize Line SCLRO 1 Line

The following general definitions apply to the lines in the Multiplexor Bus:

Data Lines D00:15

The data lines are used to transfer one 8-bit byte or one 16-bit halfword of data between the Processor
and the device. One byte of address or command is transferred from the Processor to the device over
Data Lines 8:15 (D08:15) when accompanied by either an Address (ADRS) or a Command (Cl\lD) control
line. One byte of data or one halfword of data is transferred from the Processor to the device when
accompanied by the Data Available (DA) control line. The device, in response to an Acknowledge (ACK)
control line or a Sense status (SR) control line, sends one byte of address or status information to the
Processor over 008:15. In response to a Data Request (DR) control line, the device sends either an 8-bit
byte or a 16-bit halfword of data to the Processor. The device always sends a Synchronize (SYN) signal to
the Processor to indicate that it has either received the data from the Processor or that it has sent the data
to the Processor. The SYN signal is removed immediately after the Processor removes the control line.

5-30

Control Lines

SR

DR

ACK

DA

CMD

ADRS

DACK

CI..070

Test Lines

status Request. The device controller must present device status to Data Lines (D08:15),
followed by a SYN.

Data Request. The device controller presents data to Data Lines 8:15 or 0:15 (D08:15 or
DOO:l5), followed by a SYN. If a Halfword (HW) of data is presented, the HW test line is also
active.

Acknowledge. The interrupting device controller presents its address on D08:15, followed
by a SYN.

Data Available. The Processor presents data on DOO:l5 for transfer to the device. The
device controller accepts the low byte or the entire halfword and responds with a SYN.

Command. The Processor presents a Command Byte on D08:15. The device controller
accepts the Command Byte and responds with a SYN.

Address. The Processor presents an Address Byte on D08:15. The device controller
accepts the Address byte and responds with a SYN.

Data Channel Acknowledge. The Processor presents an address of zero on 008:15. The ADRS
control line and the DACK control line are simultaneously active. The interrupting Data Channel
device coo.troller becomes selected and responds with a SYN. As a result of addressing device
zero (a null address), only the selected data channel device controller remains addressed.

This control line is activated by the Processor when a Power Fail condition is detected by the
Processor if the Power Fail option is equipped •. This line is held active until the SCLRO signal
occurs.

ATN Attention. Any device desiring to interrupt the Processor will activate the ATN line and hold
this line until an ACK is received from the Processor.

HW Halfword. The HW line is activated by a halfword oriented device controller whenever it is
communicating normally with the Processor. The HW line ls not activated when a device
controller is operating in the Interleaved Data Channel mode.

DC Data Channel Request. Any Data Channel device desiring to interrupt the Processor will acti­
vate the DC line and hold this line until a DACK is received from the Processor.

DCR Data Channel Read. The selected Data Channel device controls the state of the DCR line,
high for read, low for write, from the device.

SYN Synchronize. This signal is generated by the device to inform the Processor that it has properly
responded to a control line.

Initialize Line

SCLR System Clear. This is a metallic contact to ground which is closed during Power Fail.
Power Up or Initialize.

NOTE

All control lines, except ACK and DACK, are connected in parallel to all
devices. These lines are activated by the Processor in response to an external
interrupt. The ACK line is connected in series with all devices. If no interrupt
is pending in the first controller when the ACK or DACK signal arrives, the
signal is passed on daisy chain fashion to the next controller, and so on until
it is captured by the interrupting controller. See definition of ACK and DACK.

5-31

CONTROL LOGIC
RECEIVE

PRIORITY LOGIC r-
TACKO RACKO

ONE BYTE LOGIC

Figure 5-28. Processor/Device Controller Logic Interface (Sheet 1 of 2)

SENO

ADDRESS
STATUS

DATA

ADDRESS
COMMAND

DATA

DEVICE
CONTROLLER

Cl1
I w w

DEVICE
CONTROLLER

PRIORITY LOGIC

TACKO

Ot:VICE
CONTROLLER

SEND

--) ADDRESS

~---+------ STATUS
RECEIVE-....-+----- DATA

HALFWORD LOGIC

)
ADDRESS
STATUS

~------------ DATA

DEVICE
CONTROLLER

DEVICE
CONTROLLER

~-+--1r---e-- SEND

)
ADDRESS
STATUS

'------+----- DATA

)
ADDRESS

COMMAND
~----------- DATA

HALFWORD WITH DATA CHANNEL CONTROLLER LOGIC

Figure 5-28. Processor/Device Controller Logic Interface (Sheet 2 of 2)

All buses are false type, i.e. low level is active, high level is inactive. The device controller circuits
used to communicate with the Multiplexor Bus are shown in Figure 5-28.

In a typical case, a device controller will receive an 8-bit Address Byte, an 8-bit Command Byie, and
either an 8-bit data byie or a 16-bit data halfword from the Processor over the 16 bi-directional Data
Lines (DOO:l5). Likewise, a device controller will send an 8-bit Address Byte, an 8-bit Status Byie,
and either an 8-bit data byte or a 16-bit data halfword to the Processor over the 16 bi-directional Data
Lines (DOO:l5). When only a byie of data is transferred, that byte is passed over the lower eight Data
Lines (D08:15). The load resistors for all lines in the Multiplexor Bus are located in the Processor.

Each device controller is permitted one TTL load on any of the 16 bi-directional Data Lines, the
8 Control Lines, or the single Initialize Line. Each device controller is permitted one high power ope
collector TTL OR tie onto each of the 16 bi-directional Data Lines and each of the 5 Test Lines. The
Multiplexer Bus section originating in the Processor has a drive capacity of 7 Multiplexer Bus loads i
addition to it two built in loads. Several bus extension modules are available, including the Multi­
plexer Bus Buffer shown on Fig. 5-29. See the 3010/2 Price List and Configurator, PCP-230 and the
General Description, GET-6227.

5.4.2 Device Controller Addressing

Refer to Figure 5-30 during the following description. The dotted lines around the groups of
logic functions represent standard logic. Further details on the logic packs may be found later
in this chapter. A designer of custom equipment could use his own logic modules, provided they
are level compatible with standard logic. When a device controller is addressed, the eight-bit
address code is placed on the Data Lines (D080 through Dl50). The two buffers provide the true
and false data lines. The Address Decoder circuit is hard-wired on each controller with its as­
signed address code, and the eight coded outputs are applied to an eight input gate. Thus. the
Decoded Device output (DDl) goes true. The Address control line (ADRSl) then strobes the DDl
line into the ADRS flip- flop.

The Synchronize (SYN) signal is returned to the Processor, during the presence of ADRSl, via the Address
Sync line, (ADSYO). Notice that an OR gate is used here for returning the other device Command Sync
lines. The set output from the Address flip-flop, called Device Enable (DENBl), is used to gate all other
I/O control lines to the device controller. \\Then another device is addressed, the Decoded Device line
(DDl) is low, causing the ADRSl strobe line to reset the Address flip-flop and disabling the controller.
Thus, only one device controller may be addressed at any time. During the address cycle, only the
device that was addressed returns a SYN.

NOTE

The device controller address logic is designed so that when some
other device is addressed, the previously addressed controller will
clear its Address flip-flop within 350 nanoseconds. Otherwise the
system could have two devices addressed simultaneously.

The device controller logic must delay SYN until it has reacted to the Multiplexor Bus control line, how­
ever, unnecessarily long delays serve only to reduce the system input/output operation.

NOTE

If the device controller is a 16-bit halfword oriented controller it activates the
Halfword Enable Line (HWO) immediately when its Address flip-flop is set. The
HWO is used by the Processor to determine if the device is capable of sending or
receiving 16-bit halfword data in parallel.

5.4.3 Data and Status Input/Output

5. 4. 3.1 Data

Figure 5-31 shows how a byte or halfword of data may be read into the Processor. When an 8-bit byte
oriented device controller is addressed, DENBl is high, enabling the Data Request (DR) control li.ne from

5-34 10/72

MULTIPLEXOR
BUS

0000

0010

0150

SRO

ORO

RACKO

• •

0000

0010

0150

ATNO

1-------------(] t SYNO

f------(] t HWO

,,, i.__ ~ . ± . SCLRO

Figure 5-29. Multiplexor Bus Buffer

BUFFERED
MULTIPLEXOR

BUS

5-35

MULTIPLEXOR
BUS

0080

0090

0100

0110

0120

0130

0140

0150

AORSO

rBUFF;;; - - - - -,

I I
roEViCel
I NUMBER I

SELECTION I
.-----+---i~-0.. I

I
I
I
I L __

r----- ADSYO

I I
I L _____ _J

r ;;RS~E~O;; ...,
I . I

I
I
I
I

I I
L __

001

MULTIPLEXOR
BUS

16 BIT CONTROLLERS
ONLY .

14--AORS FLIP-FLOP

_J

Figure 5-30. Device Addressing, Logic Diagram

the Processor. The DR enables the Data Byte onto the eight bottom Data Lines (D080 through D150). If
a 16-bit halfword oriented device controller is addressed, one Data Byte is enabled as described above,
and a second Data Byte is enabled onto the eight top Data Lines (0000 through D070) by an active Halfword
(HW) signal •. A system requirement is that the addressed controller must respond to all control lines
(i.e., Data Request) wt.th a SYN.

5~4.3 •. 2 status

Figure 5-31 shows how a byte of. status may be read into the Processor. When the byte or halfword
oriented devic.e controller is addressed, DENBl is high, enabling the Status Request (SR) control line
from the Processor., Open collector gates are used for OR tying multiple data and status sources onto
the eight Data Lines (D080 through D150). A system requirement is that the addressed controller must
respond to all control lines (i.e., Data Request} with a SYN.

5-36

,------1
IVND7'------+-I --0~ ~&>--!------.

I I I L ______ _J

I
I

SllSVO

-
T I 1----------..l>---lf-+..-d'---_j--+--+--l----1

~-----+--+--+--<_ ... ~-+-+--

~--1-4-+----l-~-~-~-+-~I--~
I
I
I

; I
: I

DllO

I
I
I
I

• ~!
i

1111

Sii

...
'---J----t--t---=S3' ~

'-------;---q i

5-37

The device controller logic should place a high on BSYl until the data is ready. The Processor may now
be synchronized to the device data rate by testing the device status until the Busy Bit is low. Then, when
the Busy Bit is low, the program may transfer data. Device synchronization can also be achieved by
generating an interrupt when the data is ready.

The End of Medium (EOM) Bit is normally placed high at the termination of the device medium, such as
End of Card. The Device Unavailable (DU) Bit typically signifies that device power is not turned on.

The Examine status (EX) Bit is used to signify other appropriate device conditions. In this case, the user
assigns SOl through 831 to appropriate conditions, such as Parity Error, etc.

It is appropriate to note here that the Busy Status is unconditionally defined such that data cannot be trans­
ferred unless Busy is false. The remaining status bits are defined as required by the device controller.
Not all device controllers require all eight status bits.

Device controllers must be designed such that the Processor or the Selector Channel maintains the Status
Request line once the current status of the device is presented. Specifically, if the status changes while
the Status Request line is true, the Status Byte returned to the Processor or Selector Channel should also
change.

5.4.4 Data and Command Output

5. 4. 4.1 Data

Figure 5-32 shows how a byte of data may be output from the Processor. The buffered true and false Data
Lines (D081 through Dl51 .and D080 through D150) from Figure 5-30 connect to tlie set and reset inputs of
the Data Register.

NOTE

If the device controller is a 16-bit halfword oriented controller it must
typically invert Data Lines DOOO through D007 also.

When the device is addressed, DENBl is high, enabling the control line DAG 1 to strobe the data condition
into the J-K flip-flop Data Register. The DASYO line also returns the SYN signal to the Processor.

5.4.4.2 Command

The command lines are shown on Figure 5-32 as being used in the toggle mode. For example, a high on
Bit 8 (D081) sets a control relay when CMGl goes high. A high on Bit 9 (D091) resets the relay. Bits
14 and 15 are shown operating an indicator. other pairs of bits may be used to enable/disable interrupts,
etc.

Again, note that definition of the Command Bits is a function of the device controller only. Not all device
controllers require eight separate commands. However, up to 256 commands are possible.

5.4.5 Interrupt Control

Figure 5-33 shows a complete general purpose interrupt and interrupt acknowledge logic system. When
an interrupt is generated; the Queue flip-flop is DC set via a differentiated negative going pulse. The
output from the Queue flip-flop generates an Attention signal (ATNO) to the Processor. ATNO is connected
to the interrupt line in the Processor. The program responds with an Acknowledge Interrupt signal, which
is received by the controller as Receive Acknowledge (RACK). Since the Queue flip-flop was set prior to
receiving RACK, the output of Gate Gl disables Gate G9., holding the Gate G9 output high. The high output
from Gate G9 stops TACKO from sending the Acknowledge to the next device. Thus, RACK! and the Gate
G2 output generate ATSYO via Gate G3. ATSYO sends a SYN back to the Processor, and also forces the
outputs from Gl8 through G25 high.

5-38

S, NO

DAO

CMDO

DAG1 CMGl

008
r

009

L
014

015

D010

DOOO

0071

D070
------<JT

-----------+----""'"K 0

D081

0080

D151

0150 ---------------1K 0
MULTIPLEXOR

BUS

----,
I

DATA OUT

DATA OUT

Figure 5-32. Data and Command Output, Logic Diagram

+

5-39

t11
I

~

ATNO
,----~---u

SYNO

D 080 -----.----
1
I

D 150 • I I 01

+5

1K

fENAeLE - - """l
I LATCH I
I
I

,.---,________,INTERRUPT

QUEUE
FLIP-FLOP

1
I

r---i1-+..++.ENABL
r-1~-..._.-d DISABL

I I

SCLRO: :

I . DISARM
L ____ _J

0--..----...-~~~~~~~~~~ACKNOWLEDGE

1K

+5

DEVICE
NUMBER

I I
·~ -----? I

L_ ___ _J

ADRS DECODER

Figure 5-33. Interrupt Control, Logic Diagram

This causes the device number wired in by the address strap board to appear on the inputs of Gates GlO
through G 17. Thus, the ATSY 1 output from Gate G4 enables the device number onto the Data Lines
(DOBO through Dl50).

The output from Gate G4 also raises the Acknowledge signal to the device. On receiving the SYNO, the
Processor lowers RACK!, causing the output of Gate G4 to drop. This in turn causes the Queue flip-flop
to reset.

NOTE

If the interrupt has not set the Queue flip-flop, the RACK! signal passes
through Gate G2 to TACKO, and on to the next device.

If RACK! is high in response to another device, the output from Gate G2 is low, thus disabling the
interrupt from affecting Gate Gl. However, the interrupt remains in the Queue flip-flop, and is serviced
after completion of the previous interrupt service.

The ENABFFO and ARMFFO lines provide control over the Interrupt Queue flip-flop and the ATNO line to
the Processor. Normally, two bits of a Command Byte (Bits 0 and 1) are decoded such that, with Bit O
true and Bit 1 false, the Queue flip-flop is disabled. That is, the flip-flop may be set, however, its
output is held low. Gate G6, whose input is ENABFFO from the false side of the ENABLE latch, provides
this function. The Command Byte, with Bit O false and Bit 1 true, is decoded (ENABL goes false) and
sets the ENABLE latch which allows new interrupts or a queued interrupt to be recognized. Bits 0 and
1, both true, are decoded to drive DISARM false which sets the DISARM latch. The false side of the latch
is used to clear the Queue flip-flop and to prevent the interrupt line from setting it. The DISARM latch
is cleared whenever the ENABLE or DISABLE commands are recognized. Encoded commands ENABLE/
DISABLE/DISARM thus provide interrupt masking or inhibiting within the device controller.

As described previously, the Control Line, CL050, from the Processor carries the Interrupt Acknowledge
(ACK) signal. This line breaks up into a series of short lines to form the "daisy-chain" priority system.
The ACK signal must pass through every controller that is equipped with Interrupt Control circuits. This
includes all device controllers except a few special cases.

Back panel wiring for interrupt control is shown in Figure 5-34. At a given position, the Received ACK
(RACKO) appears at Pin 122-1 and the Transmitted ACK (TACKO) at Pin 222-1. The daisy-chain bus is
formed by a series of isolated lines which connect Terminal 222-1 of a given position to Terminal 122-1
of the next position (lower priority). On unequipped positions, a jumper shorts 122-1 and 222-1 of the
same connector to complete the bus. Back panels are wired with jumpers on all positions. Whenever
a card chassis position is equipped with a controller, the jumper from 122-1 to 222-1 must be removed
from the back panel at that position.

For controllers that occupy several positions, the jumper is removed only at the position where the
controller board has ATN/ ACK circuits.

5.4.6 Multiplexor Bus Wiring

Wiring for the Multiplexor Bus and for the Selector Channel Bus is identical forl5-inch 301 0 /2
chassis. Each card position contains two connectors with the Mux Bus wired to each at pin position
indicated in the Figure 5-34.

5.4.7 Multiplexor Channel Timing

Both the Input and Output operation~ on the Multiplexor Channel make use of request/response signaling.
This allows the system to run at its maximum speed whenever possible, but permits a graceful slowdown
if the characteristics of a particular device controller requires signals of longer duration. Device
controller designs should keep Multiplexor Channel usage as fast as possible, consistent with practical
circuit margins. Doing this assures the fastest computer input/output operation when a system is con­
figured with a number of peripheral devices.

5-41

a..
0
I-
I

Ill z
0
i=
()
w z
z
0
()

g

5-42

41
40

35

30

25

20

15

10.

05

00

1

P5 GND
GND GND
P15 P15
N15 N15
MD150 MD160

130 140
110 120
090 100
070 080
050 060
030 040

MD010 MD020
EXVT MDOOO
TEMPA VT
WRTO TEMPB
SCLRO HWO

SYNO ATNO
RACKO TACKO
CL070 DAO
ORO CMDO
SRO A ORSO
0140 0150

120 130
100 110
080 090
060 070
040 050
020 030

0000 0010
WR TOA MSOOO
MS010 020

030 040
050 060
070 080
090 100
110 120
130 140

MS150 MS160
GND GND
P5 GND

ROW 1 ROW 2

CONN 1

30 - 07 01

~LcoNNNO
' __BOARD NO

PIN NO

ROW OF CONN

P5 GND 41
GND GND 40
P15 REOO
N15 ENO
ACTO TACO

35
XRACKO
MA130 MA140

110 120
090 100
070 080 30

MA050 MA060
RDACKO TDACKO
oco DCRO
SCLRO HWO

25

SYNO ATNO
RACKO TACKO
CL070 DAO
ORO CMDO 20
SRO ADRSO
0140 0150

120 130
100 110
080 090 15
060 070
040 050
020 030

0000 0010
MA030 MA040 10

020 021
01 02
010 011

MAOOO MA001
PARO MAOO 05
INHO ERO
WO LRO
P15 N15
GND GND
P5 GND 00

ROW ROW 2

CONN 0

Figure 5-34. Typical Universal Expansion Slot Wiring

> ...J
z
0
::i!:
I-
~
Ill
w z
::i
...J
w
z z
< ::c
(.)

<
I-
<
0

::i!:
I-co
I

Ill z
0

6
w
z z
0
(.)

g

Timing for typical Input/Output operations are shown on Figure 5-35. On the Output operation, the
Processor places a signal on the data lines followed by an appropriate control line signal. This stagger
(Tl) will vary, but it is guaranteed to be at least 100 nanoseconds. When the device controller has re­
ceived the Output Byte, the SYN signal is returned to the Processor, which terminates the control line
signal. Realizing that T5 is 100 nanoseconds minimum, the SYN delay T2 should be only long enough to
guarantee proper reception of the Output Byte. The control line/data line removal time (T3) is important
where single-rail to double-rail operation is used - e.g. the ADRS flip-flop on Figure 5-30. A minimum
of 100 nanoseconds is guaranteed for T3. For SYN generation as per Figure 5-30 and 5-33, the control
line signal is DC coupled through the gates to form the SYN signal. The SYN removal time (T4) should be
minimized. This delay should not be unnecessarily extended since the Processor will not begin another
Input/Output operation until SYN is removed.

008:15
PROCESSOR •DEVICE

T6

ADRS, DA OR CMD --
CONTROL LINES

T T
SYNC DEVICE •PROCESSOR L _I_ 1--
T1 TS
T3 100 ns MINIMUM T1

~ -- T3
T5 ~ ~ T2

I+-+ T4
T2
T4

T6

SEE TEXT

350 MINIMUM FOR ADAS. ALL
OTHERS HAVE NO MINIMUM
BUT DROP AFTER SYNC IS
RETURNED.

DR, DR OR ACK
CONTROL LINES

100 ns MINIMUM

a. OUTPUT

I
I-- --1-----­

------+----<
1---<------

T4

b. INPUT

Figure 5-35 .. Multiplexor Channel Timing

Device controllers must be designed to accept a minimum control pulse width (particularly ADRS) of 350
nanoseconds.

It should be emphasized that the times shown on Figure 5-35 are defined for signals on the Multiplexor
Channel. Within a given controller, one signal may flow through more gates than another signal and these
delays must be considered,

For the Input operation, the Processor places a signal on a control line. The currently addressed device
controller should gate signals to the data lines as soon as possible to keep Tl at a minimum. The SYN
delay (T2) must guarantee that the Input Byte is on the data lines considering the slowest data gates and
the fastest SYN gates. The Processor will remove the control line signal when SYN is received with a

5-43

minimum delay (T4) of 100 nanose.conds. With SYN and the byte gate DC coupled to the control line, the
removal delay (T3) will be the sum of the corresponding gate delays. The Processor considers the opera­
tion complete when SYN falls.

When the control signal is ACK, the delay Tl will include the cumulative Gate G8/G9/G26/G27 delays
(See Figure 5-33) for all the controllers between the responding controller .and the Processor. This
will be less than the Processor time-out even with the maximum limit of 2'55 controllers.

NOTE

It is essential to realize that after the Processor initiates a control line
signal, the Processor does nothing until the SYN signal is returned by the
device controller; one or more cycles are skipped if necessary and the data
transfer rates decreased proportionally. While this may not affect a parti­
cular controller, the overall system performance is degraded. Furthermore,
if a device controller fails to respond with a SYN in the time out period of
about 35 microseconds, the Processor will abort the instruction.

5.4.8 Typical Device Controller Interface
Figure 5-36 illustrates a typical interface to the Multiplexor Bus which might be used in the
design of custom device controllers, either 8-bit byte or 16-bit halfword oriented. (If an
8-bit byte oriented interface is being designed, Gates Gl through GB, Gl 7 through G24, G78
through G85, and Gate G45 are not used.) The address straps to Gate G57 can be hardwired
by the user for any device number from 03 to 255. Address 01 and 02 are hardwired for the
Control Console and Teletypewriter, respectively. The user can use the Gated Status Request
(SRGO) or the Gated Data Request (DRGO) control lines to gate status or data from appropriate
points in his logic, to the Processor, by OR typing onto the Send Data points SD 000:150. Data
from the Processor is available to the user's circuits, double rail, at the points labeled D001:151
and D000:150. The user can use the Gated Data Available (DAGO) and the Gated Command (CMGO)
control lines to gate the data from the Processor to appropriate points in his logic. The delay
of the SYNO signal should be arranged such that is is the minimum delay necessary for the custom
controllers to function properly, per Section 5, 4. 7.

5.4.9 Data Channel Interface Design

The Data Channel feature of the GE-PAC 3010/2 Processor provides high speed, autonomous memory
access to customer designed device controllers. Halfword data transfer to memory is accomplished
over the Multiplexor Bus at a maximum data rate of 440K bytes per second in the Burst Mode.

Interfaces to the Data Channel must follow the same general design rules which apply to regular interfaces
to the Multiplexor Bus.

The program initiates a Data Channel operation, usually by issuing an Output Command instruction. Then
the Data Channel device completes the transfer without further direction by the Processor.

When a memory access is desired, the controller activates the Data Channel Request Line (DC). This line
is separate from and of higher priority than the normal I/O attention line (ATN).

The Data. Channel Request is honored on an instruction stealing basis. Ifthe Processor is halted (pro­
grammed Wait State), the latency time is 1. 5 to 1. 75 microseconds. If the Processor is executing in­
structions, latency time depends upon the instruction being performed, and when during instruction ..
execution, the DC line became active. (This latency time is typically less tban 4. 0 microseconds and it
may be as high as 22 microseconds for worst case Load Multiple and store Multiple. Read Block, Write
Block, and Auto Load can result in a latency time proportional to the amount of .data transferred.)

The Processor acknowledges the DC line by addressing device number zero and also activating the DACK
control line. (Addressing device number zero resets the Apdress flip-flop in all devices.)

5-44

Ill
....

211) 0010

112
DO»

212 D030

113 -
213

....

"' -
114) 0070

II& -
"' -
Ill

0100

211
0110

111
0120

217
0130

111
01<0

211
0100

1:11) ICUK) E>10--sc='""1_.,o

SEND DATA 50000:150
FROM USER REGISTERS

~

Figure 5-36. General Multiplexor Bus Interface

SCLRI

ADSVNO -0

(;MCiO ------
DAGO

------~

SClR1

SVNO p-----<123

HWO P-----<2'•

r- DISABLEIENABU
INTERRUPTS

ATNO 2n

5-45

The Data Channel Acknowledge line (DACK) is "daisy chained" through all device controllers on the Data
Channel. The device controller clos.est to the Processor that originated the Data Channel Interrupt cap­
tures the DACK signal. That device becomes the 'on line' device and controls the DCR line. The OCR
line tells the micro-program whether a memory Read (DCR=O) or a memory Write (DCR=1) operation is
to be performed.

If a memory Read is requested, the micro-program reads the 16-bit memory address from the controller.
The selected location is read and the 16-bit data is output to the controller.

If a memory Write is· requested, the micro-program reads the 16-bit memory address from the controller,
then reads the 16-bit data word. The data word is stored in the selected core location.

If another memory cycle is desired, the device controller re-activates the DC line.

Figure 5-37 shows a block diagram of a typical Data Channel device controller. Figure 5-38 illustrates
the timing for a typical Data Channel Read and Write operation.

COMMAND
AND

STATUS.
LOGIC

TRANSFER
CONTROL

LOGIC

MULTIPLEXOR BUS

16

DATA

DEVICE

MULTIPLEXOR BUS
CONTROL LOGIC

16

ADDRESS

Figure 5-37. Interleaved Data Channel, Block Diagram

Figure 5-39 illustrates a typical interface to the Multiplexor Bus which may be used when
designing custom interfaces to the Interleaved Data Channel. Note that the logic circuits
in Figure 5-39 are nearly identical to those in Figure 5- 37 (Standard Multiplexor Bus
Interface). A second daisy chain circuit has been added (Gates G94 through Gl01) to the
data channel interface. This daisy chain captures the RDACKO/TDACKO pulse, and forces
the interface Address flip-flop (Fl) set.

The user's circuit must provide a Set Data Channel (SDCO) request pulse to initiate a Data Channel (DC)
operation. At the same time the user provides a RDl level (high for read, low for write) to indicate the
type of operation. The Select flip-flop (F5) is set when this interface captures the data channel cycle, and
remains set until the cycle is complete.

Note from Figure 5-34 that the Interleaved Data Channel control line DCO, DCRO, and the
daisy chain priority line RDACKO/TDACKO appear only on the 0 level connector on the back
panel. Therefore Data Channel devices must conne.ct into the 0 level connectors. Note also
that these lines are not reconstituted by the Bus Buffer (Figures 5-29).

Note on Figure 5-39 that when a Data Channel device is selected (i.e., SEL flip-flop set) it must not hold
the HW line active even though all data transmitted over the Multiplexor Bus is 16-bit parallel.

5-46

Cl
I

11>­
..;i

DC

ADRS

DACK.

OCR

SYNC

DR

000:15

000:15

DC

ADRS

DACK

OCR

SYNC

DR

DAL

000:15

000:15

MUX BUS
LINES

(CPU-DEVICE)

(-
(-I -
(-(-
(-NOTE10)

(-NOTE10)

(CPU-DEVICE)

(-
(-
I -
(-
I -
I -

10 I 1.0 I 12.0 I 13.o I 14.o I 15.o I

~

I• MEMORY WRITE .. I
CYCLE

DATA CHANNEL READ (WRITE TO MEMORY FROM DEVICE)

14 MEMORY READ I
CYCLE ..

DATA CHANNEL WRITE (READ FROM MEMORY TO DEVICE I

L.. BEST CASE 5µSEC • 400 KB!SEC BURST MODE r-

NOTES:
1. DC CAN BE ACTIVATED AT ANY TIME. TYPICAL LATENCY

TIME IS 4µS EXCEPT FOR BLOCK 110. LOAD'STORE MULTIPLE
OR AUTOMATIC l!O CHANNEL.

2. SYNC SHOULD BE DELAYED LONG ENOUGH TO ASSURE THAT
THE ADDRESS FLOPS OF ALL CONTROLLERS ARE RESET.
600 ns TYPICAL SEE NOTE 3.

3. D00-15 ZEROS THIS INTERVAL IA NULL ADORESSI
4. THE DEVICE SENDS A 16-BIT MEMORY ADDRESS
5. THE DEVICE SENDS A 16BIT DATA WORD WHICH IS

WRITTEN TO MEMORY.

6. THE Pl'IOCESSOR OUTPUTS A 16-BIT READOUT FROM MEMORY.
7. THE NE/T DATA CHANNEL CYCLE BEGINS IN BURST MODE.
8. DC MAY BE RELEASED ANY TIME IN THIS INTERVAL.
9. OCR LOW •WRITE TO MEMORY. HIGH •READ FROM MEMORY.

10. 000: 15 IS A COMMON Bl· DIRECTIONAL BUS SHOWN TWICE
FOR CLARITY.

Figure 5-38. Data Channel Timing Chart

I µS

111
0000

211~

113~

213~

~ 116 ,-- ------

216~

117~

111-~

118~

DATA lN 0001:151
TO USER REGISTERS

)SClRO~
126 ~ -

SEND DATA 50000:150
FROM USER REGISTERS

219 ADRSO

220 CMOO

221 DAO

119 SRO

120 ORO

ADORE SS
STRAPS

0110A

0120A

DIJOA

D!<OA

0150A

043

SClRI

Figure 5-39. Data Channel/Multiplexor Bus Interface

5-48

ADSVNO

CMGO

DAGO

s•oo

ORGO

123

226

SCLRI

lltltlt" T'Y .. ICALI
Hl AD WfllT-f tiil f OR ROI

5.5 AUTOMATIC 1/0

The GE-PAC 3010/2 Automatic I/O feature allows external I/0 interrupts to be serviced and data
exchanged between the Central Processor and I/0 controllers and devices. Automatic I/O allows inter­
rupt driven data exchanges to take place with a minimal effect on the running program. Once the appro­
priate Automatic I/0 pointers and table are in core, the hardware and the micro-program take care of
the Automatic I/O operations, and each I/O interrupt merely delays program execution, rather than
interrupting the .program.

Bits 1 and 4 of the current PSW control Automatic I/0 operations. Both of these bits must be set to
enable the external I/0 interrupts and permit Automatic I/O. Automatic 1/0 depends upon a properly
configured Automatic 1/0 Service Pointer Table, and an Interrupt Service Block with an appropriate
Function Word. The Automatic I/O firmware may generate an interrupt itself, because of abnormal
conditions, or because of the occurrence of an event for which the program had requested an interrupt.

S.S.1 Automatic 1/0 Service Pointer Table

The Automatic 1/0 Service Table starts at location X•OODO• (Figure 5-40). It contains a halfword entry
for each of the 256 possible peripheral device addresses. If Bit 15 of the entry in this table is reset,
then the entry is the address of an Immediate Interrupt PSW exchange location. If Bit 15 of the entry is
set, then the entry minus one is the address of a Channel Command Word.

S.S.2 Interrupt Service Block

The Interrupt Service Block contains,the Function Word plu$ the storage locations and data
required by the operation. The Function Word is a bit encoded command that completely describes the
Automatic I/O Operation. Note that it is the address of the Function Word plus one. that is entered in
the Automatic I/O Service Table. A complete Interrupt Service Block is shown in Figure 5-41.

S.S.3 Automatic 1/0 Termination Queue

The Automatic I/O Termination Queue is a circular list identical to those described under "list proces­
sing instructions". The queue may be set up at any convenient core location. The maximum size of the
queue allows for 255 entries, but any convenient length may be used. The address of the queue must be
stored at location X•0080 1 prior to starting any channel program. Automatic I/O uses the queue to
indicate termination of an automatic operation.

S.5.4 General Operation

When the Processor detects the presence of an interrupt signal from a periph_eral device, it automati­
cally acknowledges the signal and obtains the address of the device. It uses the device address times
two to index into the Automatic I/O Service Table to the entry reserved for the device. If Bit 15 of the
entry is reset, the Processor takes an Immediate Interrupt. If Bit 15 is set, the Processor activates
the Automatic I/O. Automatic 1/0 uses the entry minus one to locate the Function Word. It decodes the
Function Word and performs the required servlce, using the data entries in the Interrupt Service Block
as necessary. If the operation for this device is not yet complete, the channel returns control to the
Processor. The Processor now checks for pending interrupt signals. If none are present, it continues
program execution. If any are present, it services them before returning to program execution.

If the channel determines that the operation for this device is complete, it terminates the Automatic I/O
by storing the device address and final status in the CCB, and, for data transfers, changes the Function
Word to a "no operation". This causes subsequent interrupt signals from the device coming to this
Function Word to be ignored. At this point, the channel can take any or all of the following actions:

1. Make an entry in the Termination Queue.

2. Chain to another Function Word.

3. Generate an Immediate Interrupt.

4/72 5-49

BIT 1 OF CURRENT
PSW SET

BIT 4 OF CURRENT

PSW RESET

15

IMMEDIATE INTERRUPT LOCATION

INTERRUPT SERVICE BLOCK LOCATION

X•02CE•r=:;;;;:J
AUTOMATIC I/O SERVICE POINTER TABLE

X• 0080 ""---.....;;.;A;.:.(Q;;i:.U;;.E;;;..;:;;U.;;;E;.:.) __ ___.

EXTERNAL
INTERRUPT· PSW

EXCHANGE

IMMEDIATE
INTERRUPT PSW

EXCHANGE

STATUS

FUNCTION WO D

INTERRUPT SERVICE
BLOCK

A(FUNCTION WORD)

AUTOMATIC 1/0 TERMINATION
QUEUE

15

15

Figure 5-40. Automatic I/O Sequence

.0

CHAIN VALUE
FILLED IN BY CHANNEL; . DEVICE NUMBER FINAL STATUS

BUFFER START FOR
DATA TRANSFERS

BUFFER END FOR
DAT A TRANSFERS

FUNCTION WORD

START ADDRESS OR COUNT

END ADDRESS

OUTPUT COMMAND ~~-C_O_M_;;;;M A.;..;;N D;;....;;;B;..;Y;;.;T;;.;E;;;.__....._T;;.;E,...· R,...MI N...._A_L_C_· ·.;;.;H A_R A_C;;.;T_E_R,....
BYTE FOR INITIALIZATION

Figure 5-41. Interrupt Service Block

5-50

REQUIRED IF CHAINING
SPECIFIED
FILLED IN BY CHANNEL

COUNT REQUIRED FOR
DECREMENT MEMORY
AND TEST
REQUIRED IF TERMINAL
CHARACTER CHECKING
SPECIFIED FOR DATA
TRANSFERS

4/72

)

The action taken by the channel depends on the bit configuration of the Function Word.

In the queuing operation, the channel generates a Queue Overflow Interrupt if the queue is full when it
attempts to make an entry.

5.5.5 Function Words

There are three phases in":"olved in Automatic I/O operations. These are:

1. Initialization

2. I/O Operation

3. Termination

All three phases are controlled by the bit configuration of the Function Word. A single Function Word
can be encoded to perform all three types of operation. The bit assignments for Function Words are
shown in Figure 5-42.

0 1 2 3 4 5 6 7 8 9 ·10 11 12 13 14 15
\ I

LBYTES PER INTERRUPT SIGNAL

INIT 1 0 CONTINUE
CHAIN

NOP 1
UNASSIGNED MUST BE ZERO

READ 0 0 0 OUTPUT COMMAND

WRITE 0 0 1 HI/LO

DMT 0 1 0 QUEUE
TERMINAL CHARACTER

NULL 0 1 1 UN-ASSIGNED MUST BE ZERO

Figure 5 -42. Bit Configuration For Function Word

5.5.6 Initialization

Bits 0 (INIT) and 8 (Output Command) of the Function Word control the initialize phase of Automatic I/O
operations. If Bit 0 (INIT) is set when the channel decoded the command word, it resets Bit 0 (INIT)
and checks Bit 8 (Output Command). If Bit 8 is set, the channel issues the output command located at
the start of the Interrupt Service Block plus ten and returns control to the Processor. Automatic I/O
operations with the device resume when an interrupt signal occurs from the device. Since the channel
resets bit zero, it can pass through the initialize phase only once. This phase is optional. The soft­
ware may initialize the device by Output Command instructions prior to starting the Automatic I/0
operation. The bit configurations of the Function Word for the Initialization phase are illustrated in
Figure 5-43.

,~ 111213141516171 ~19 f0111112113i141151
FUNCTION WORD FOR INITIALIZE WITHOUT

OUTPUT COMMAND

I~ 111213141516171~ 19110111112l1alul15I
FUNCTION WORD FOR INITIALIZE AND

OUTPUT COMMAND

Figure 5-43. Function for Initialize and Output Command

4/72 5-51

5.5.7 1/0 Operation

There are five distinct types of I/O operations the Automatic I/O Channel can perform. These are:

1. Read

2. Write

3. Decrement Memory and T~st

4. No Operation

5. Null

The Function Word configurations for these operations are illustrated in Figure 5-44.

I o I~ I~ I~ 141~16171819110111112: ~: 14~ 151
READ N BYTES PER INTERRUPT SIGNAL

I o I ~ I ~ I ~ I 4 I ~ I 6 17 18 19 11 ol 11 i12: ~: 14 ~ 15 I
READ N BYTES PER INTERRUPT SIGNAL - TERMINATE ON TERMINAL CHARACTER

I o I ~ I~ I ~ 141 ~ 16171819 !10111112: ~: 14: 151
WRITE N BYTES PER INTERRUPT SIGNAL

Io I~ I~ I~ 141~ 1617 IR l9 l1ol11l12:N:14~15I
WRITE N BYTES PER INTERRUPT SIGNAL - TERMINATE ON TERMINAL CHARACTER

I a I~ I~ I~ I 4 I 5 I 6 I 7 I 8 I 9i1ol11112l 13l 14ll5I
DECREMENT MEMORY AND TEST

Io Ii l2 I 3 l4 l5 l6 l7 l8 l9 l1Qlllll2ll3ll4ll5I
NO OPERATION

lo I~ I~ I~ 141516171819110111112113114i151
NULL

Figure 5-44. Function Words for I/O Operation

For all Read/Write operations, Bits 12 through 15 must contain the number of bytes to be transferred
on each interrupt signal. All zeroes in these bit positions indicates that sixteen bytes are to be trans -
ferred on each interrupt signal. The two halfwords following the Function Word in the Interrupt Service
Block must contain the starting address of the I/O Buffer and the ending address of the I/O Buffer.
After the number of bytes spedfied for each interrupt signal has been transferred, the starting address
is incremented by the appropriate amount and compared to the ending address. If it is greater, the
channel enters the termination phase. If it is not greater, the channel returns control to the Processor
for program execution. Bit 5 of the Function. Word controls the optional terminal character data trans­
fer. When this bit is set, the transfer proceeds as described above with the exception that the last byte

5-52 4/72

transferred on each interrupt signal is compared with the terminal character byte located at Interrupt
Service Block plus eleven. If these two bytes match, the channel enters the termination phase. In this
way, an Automatic I/O can terminate because the buffer is exhausted or a terminal character has been
found in the data stream.

Before starting a data transfer, the Automatic 1/0 Channel checks the device status. Any non-zero status
condition will stop the transfer and cause the channel to enter the termination phase. Before entering the
termination phase, the Initial (INIT) Bit and No Operation Bit are set in the Function Word, the Queue bit
is set to force an entry in the Termination Queue, and the Chain bit and Continue bit are reset to prevent
chaining.

The Decrement Memory and Test Operation causes the value contained in the halfward immediately
following the Function Word to be decremented by one for each interrupt signal. The new value is com­
pared to zero. If greater than zero, the channel returns control to the Processor for program execution.
If equal to zero, the channel enters the termination phase without changing the Function Word to a "no
operation". Subsequent interrupt signals from the device will cause the count field to increase nega­
tively. The No Operation code in the Function Word indicates that the channel is to ignore any interrupt
signal from the associated device. The channel itself sets this code in the Function Word on completion
of data transfers. The software can use this code to ignore unsolicited interrupt signals. The Auto­
matic I/O Service Pointer Table should contain pointers to "no operation" control words for all non­
existent devices.

The Null Operation differs from the No Operation differs from the No Operation in that while no 1/0 func­
tion is performed, the channel enters the termination phase without setting the No Operation code.

5.5.8 Termination

The Automatic I/O Channel enters the termination phase upon completion of a data transfer, when the
count field of a Decrement Memory and Test operation has reached zero, or when the Null Operation is
decoded. All of the operations in the termination phase are optional. If none are specified, the channel
returns control to the Processor. The two termination functions are Queue and Chain. The Function
Word bit configuration for Queuing and chaining is shown in Figure 5-45. Bit 6 of the Function Word
controls queuing. If this bit is set, the channel, on entering the termination phase, stores the address
of the Function Word in the Termination Queue. The condition of Bit 7 of the Function Word controls
positioning with the queue. If Bit 7 is set, the entry is made at the bottom of the queue. If Bit 7 is
reset, the entry is made at the top of the queue.

I Q 1 1 I 2 I a I 4 I 5 I ~ I i I a I g 11 !l l l I 12l l 3l l 4l l 5I
QUEUE AT BOTTOM

IQ 11121314151~ I~ la 191101111121131141151
QUEUE AT TOP

IQ 1112131415161718 ID i1~11~112113i14115j
CHAIN

1o 11 12 13 1415 16 17 18 19 ((l111r211a 114l1J
CHAIN AND CONTINUE

Figure 5-45. Function Words for Termination

4/72 5-53

Bit 10 of the Function Word controls chaining. In this operation, the channel stores the first halfword
of the Interrupt Service Block in the appropriate location in the Automatic I/O Service Table for this
device. This chain value may be either the address of another Function Word or the a,ddress of a PSW
exchange location for the Immediate Interrupt. Subsequent interrupt signals will be handled as indicated
by this value. If the chain bit and the Continue bit (Bit 11) are both set, the channel checks the new value
placed in the Service Pointer Table and takes appropriate action befbt>e returning control to the Proces -
sor. In this way, depending on the new value stored in the Service Pointer Table, the channel can either
generate an Immediate Interrupt or start another Automatic I/O Operation.

5.5.9 Example of Automatic 1/0 Programming

This example of Automatic I/O Programming assumes a teletypewriter located at physical address X'02'.
The program is set up to:

1. Issue an Output Command to start the device.

2. Write 72 bytes from core memory to the device, one byte per interrupt signal.

3. On completion of the transfer, make an entry at the bottom of the Termination Queue and
chain to a second Interrupt Service Block without specifying Continue.

4. The second Interrupt Service Block .writes an additional 72 bytes to the device and terminates
by chaining to an .Immediate Interrupt and causing the interrupt to occur,

The first Interrupt Service Block is shown in Figure 5-46A. The Chain value is set to point to the second
Interrupt Service Block. The Status Byte and Device Number are set to zero. '.fhe Function Word is
set for Initialize, Write, Queue, Queue Low, Output Command, Chain, and transfer one byte per
interrupt signal. The next two halfwords point to the beginning and end of the 72 byte buffer. The Out­
put Command byte is set to enable and write. The user program stores the address of this Interrupt
Service Block in l()Cation XrOQD4 I' the Service Pointer Table entry for device x 102 1• It issues a
Simulate Interrupt instruction specifying device X'02 1 to get the operation started. On execution of the
Simulate Interrupt instruction, the channel issues the Output Command and resets the Initialize bit.
It gives control to the Processor for the execution of normal instructions. As each subsequent inter­
rupt signal is received from the device, the channel outputs one byte until it has output the entire buffer
of 72 characters. In between each interrupt signal it returns control to the Processor, After the last
byte has been transferred, it sets the No Operation Bit in the Function Word, and puts the address of
the Function Word at the bottom of the Channel Termination Queue located at the address specified by
the contents of X'0080' (Termination Queue Pointer). It stores the chain value (the address of the
second Function Word) in location X 100D4 •, Service Pointer Table entry for device X•02 '.

On the next and on each subsequent interrupt signal, the channel is directed to the second Interrupt
Service Block. This block is illustrated in Figure 5-46B. The Chain value points to an Immediate Inter­
rupt location. The status and Device Number are set to zero. The Function Word specifies Write,
Chain, and Continue. The <;:hannel outputs the data as described above until the last byte is written. It
then sets the No Operation bit, stores the Immediate Interrupt address in the Service Pointer Table
location for device x102', and generates an interrupt allowing software to take over servicing this device.
If, during the data transfers, the channel had received an unsatisfactory status from the device, it would
have terminated the operation by setting the Initialize and No Operation bits (bad status indicators) in
th~C::F\lnction Word, suppressed Chaining, and forced an entry at the top of the I/o' Termination Queue.
Setting the Continue bit in the second Function Word causes the Channel to generate the Immediate
Interrupt on the same interrupt s.ignal that causes output of the last data byte. If this bit were reset,
the next interrupt signal from the device would generate the Immediate Interrupt.

5--54 4/72

DEVICE NUMBER

OUTPUT COMMAND

INITIALIZE

DEVICE NUMBER ____,

0

ill_

ADDRESS OF SECOND ISB+l

x•oo• x• 00 1

X• 93Al•

ADDRESS OF BUFFER START

ADDRESS OF BUFFER START +71

x• 58•

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

001001110100001

CHAIN VALUE

STATUS
CHANNEL COMMAND
WORD

TERMINAL CHARACTER
(NOT USED)

FUNCTION WORD

L ONE BYTE PER INTERRUPT
WRITE

CHAIN SIGNAL

OUTPUT COMMAND
QUEUE LOW

QUEUE

(A) First Interrupt Service Block

11i
ADDRESS OF IMMEDIATE INTERRUPT ROUT. 14--- CHAIN VALUE

STATUS x• 00 1 l X• 001

x• 1031•

ADDRESS OF BUFFER START

ADDRESS OF BUFFER START +71
I

14-
I+- CHANl'TEL COMMAND

WORD

OUTPUT COMMAND--t_ _______ _L _______ ...__ TERMINAL CHARACTER
(NOT USED,NOT REQ• D) (NOT USED, NOT REQ• D)

4/72

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 FUNCTION WORD

'--~--'
LONE BYTE PER INTERRUPT

SIGNAL
CONTINUE

-~.HAIN

(B) Second Interrupt Service Block

-Figure 5-46. First/Second Interrupt Service Blocks

5-55

6.1 INTRODUCTION

CHAPTER 6

CORE MEMORY

The Core Memory. Figure 6-1. features highly reliable 4, 096 by 16-bit halfword (8, 192 byte),
1. 0 microsecond memory modules. The system is modularly expandable to 65, 536 bytes of
storage (eight modUles).

CUSTOM
DEVICE

8,192 BYTE
CORE

MODULE

I
I

8,192 BYTE
CORE

MODULE

r 8.192 BYTE..,
I PARITY CORE II
I MODULE
L--.-_J

-OR- I

r--L-1
I 8,192 BYTE I
I PARITY CORE I
L MODULE _J
--r-

!

"MEMORY BUS

CUSTOM
MEMORY BUS
INTERFACE

MULTIPLEXOR BUS

PROCESSOR

Figure 6-1. Memory System

UP TO EIGHT MODULES
(65,536 BYTES)

SELECTOR
CHANNEL

SELECTOR BUS

DEVICE
NO. 1 •••• DEVICE

NO. 16

Memory modules use field proven, 3D, three-wire technology. The memory core plane uses 23 mil
ferrite cores, and is mounted complete with access and readout circuits, on a single GE-PAC 3010/2

inch circuit card. The memory modules are arranged as 4, 096 by 16-bit (or 17-bit for parity memory)
modules. Data is transferred to/from memory on a 16•bit halfword basis. The Processor can address
memory to the byte level.

Up to four Direct Memory Access Channels (DMACs) can be added to the Core Memory. The
DMACs operate over the common Memory Bus, on a cycle stealing basis. through a Direct
Memory Access Port which is built into the Memory System. Data rates through a DMAC of
up to 2, 000, 000 bytes per second can be achieved.

Two types of Direct Memory Access Channels can be used with the GE-PAC 3010/2. The Selector Channel
(SELCH) permits direct data transfer between any standard 3 0 1 0 / 2 device controller and memory.
Up to 16 controllers can be connected to a single SELCH. The program sets up the SELCH by sending it
a starting. address, an ending address, and a GO command. The SELCH then proceeds with the data

6-1

transfer direct to memory, on a cycle stealing basis, without further direction by the program. The
SELCH interrupts the Processor when the transfer terminates. A more detailed description of the SELCH
is provided in Chapter 5.

The second type of Direct Memory Access Channel is custom designed by the user for special applications.
Those customers wishing to design their own Direct Memory Access Channel (DMAC)-interfaces,directly
to the Memory Bus can do so with data transfer rates of up to 2, 000, 00-0 bytes per second in the Burst Mode
through a custom-built DMAC. This is accomplished by using a general purpose wire wrapped circuit
board available from General Electric. In addition to the circuits required for the user's device, his DMAC
must include a 16-bit Memory Address Register and a 16-bit Memory Data Register, which ,a're switched
onto the Memory Bus when the DMAC captures the daisy-chain response for a request for service.

6.2 CORE MEMORY MODULES

GE-PAC 3010/2 core memory modules are three-wire, 3D, ferrite core memories which use 23 mil
cores. Each core memory module contains 8, 192 bytes of storage. Parity core memory modules
contain a seventeenth bit plane in the core stack corresponding to the Parity Bit. There are 64
X-axis wires and 64 Y-axis wires common to all bit planes. Each bit plane has its own sense/
inhibit wire. In a Write operation, inhibit current is passed over this wire to write a ZERO (inhibit
current is not passed over this wire to write a ONE). In a Read operation, the bit readout is sensed
over the sense/inhibit wire. The block diagram in Figure 6.:.2 illustrates a core memory module.

TIMING/4 ~[
8

MA00:02

--

en en
en W-
::> a:-
CO· c
::!E c

<(MA03:08
::!E > 0 a: a: 0 u. '::!E w

::!E

MA09:14

M000:15 > [
a: <(

-~---~-
::!E c

6.3 PARITY OPTION

CONTROL
& t---i

TIMING

MODULE
SELECT

X AXIS 1---1 X AXIS

SELECT
4,096 x 16

(4,096 x 17
WITH PARITY)

~ ~ Y AXIS
CORE STACK

Y AXIS
SELECT

INHIBIT 14-- INHIBIT

SWITCHES
joe--WRITE READ~-

Figure 6-2. Core Memory Module

~ARO

READ MS00:15 -
OUT
AMpS

I­
:>
0
0
<(
w
a:
0
w
co
0
a:
t;
> a:
0
::!E
w
::!E

The parity control logic is built into the Processor, and is enabled/disabled by the currently
addressed memory module, via a Parity Enable (PARO) line in the Memory Bus. The Processor
parity circuit generates parity whether the current memory operation is from a Direct Memory Access
Channel or the Processor. The Processor does not check parity on a Read operation unless the ad­
dressed memory module has the Parity option feature. This allows both Parity and non-parity memory

6-2

modules to be mixed in a given GE-PAC 3010/2 Memory System. The output from the parity check cir­
cuit is connected to the Machine Malfunction Interrupt when a Parity memory module is installed in
the system. If a parity error is detected on a Processor Read operation, and if the Machine Mal­
function Interrupt is enabled (PSW 02), the Processor is interrupted and performs a PSW swap with
address X'3C'.

6.4 MEMORY BUS

The Memory Bus provides the communication path between the memory modules, the Processor, and the
Direct Memory Access Channels. The Memory Bus totals 59 lines. See Figure 6-3.

MA00:15 --i,- --···~-·-"

M000:15
. ·---------·- ·- .•. . ·,, --··----- ..

MS00:15
·-,.-~ ••·r'""""

~

PROCESSO
CONTROL (2)

R -"~·---"
,.,, .. _ --·---·

~
TIMING (4) -·-- ---·--·-

PARO
~ - ~·-··· r--+·

DMAC CONTROL (4) --

~~ Lr_ DMAC #1

DMAC #2
t---i

DMAC #3

l DMAC #4

Figure 6-3. Memory System Diagram

~------·--·-------------··------·--

NOTE

MD16 and MS16 correspond to the Parity Bit. The Processor always controls
these lines. The DMAC should not OR tie onto MD16 or MS16.

M
s

EMORY
YSTEM

The four DMAC Control lines are used to establish whether the Processor or one of the DMA Channels will
be selected for the next memory cycle. The memory service is granted on a priority basis, with the
Processor always lowest in priority. The four DMA Channels are assigned priority on a parallel daisy-chain
basis where the device "closest" to the Processor is highest in priority.

The Parity Enable (PARO) line enables the parity control logic whenever a Parity memory module is
addressed. The parity logic is disabled when a memory module without the Parity option is addressed.

The four Timing lines required by the memory modules are generated by the Processor whether it is
selected for the current memory cycle or not.

The total memory cycle time is 1. O microsecond. The memory access time is 300 nanoseconds. See
Figure 6~4.

The Memory Strobed Readout lines (MSOO:l6), carry the strobed readout from the addressed memory
location approximately 300 nanoseconds after the beginning of thtl memory cycle. (MS16 corresponds to
the Parity Bit.)

The Memory Data lines (MD00:16) carry the data to be written into the addressed memory location, or the
data to be restored to the addressed memory location following a Read operation. The MD lines must
remain settled for the entire write portion of the memory cycle. (MD16 corresponds to the Parity Bit.)

6-3

1.00 USEC

ERO~

LRO ---+-----.

INHO ---+-----------,

READOUT

READ PORTION

RESTORE
WRITE

L (EARL y READ)

(LATE READ)

~---+-- (INHIBIT)

(WRITE)

RECOVERY

Figure 6-4. Typical Memory Cycle

The Memory Address lines (MAOO:l5) define a unique memory location for the current memory cycle.
SincL .he memory is organized in 16-bit halfwords, MA15 must always be zero.

The two Control lines are used to provide externally generated memory busy and memory access timing
for future product expansion.

Only one device may communicate with the Memory Bus at a time. When a DMA Channel requests
memory, the Processor disconnects itself from the Memory Bus. At the same time, the Processor
sends an enable signal which allows the highest priority DMA Channel to connect itself to the Memory
Bus. The Processor generates all Memory Timing signals., and generates Memory Parity if a Parity
memory module is addressed. The DMA Channel must provide Memory Address (MA00:15) and l\Iemory
Data (MD00:15).

6.4.1 Memory Bus Priority

The Processor is assigned the lowest priority on the Memory Bus. It will always stop and give the next
available memory cycle to the DMA Channels whenever any one of them requests service. Priority be­
tween the four DMA Channels is established on a parallel daisy-chain basis. See Figure 6-5.

Any DMA Channel may request memory service at any time. The Processor scans the REQO line during
every memory cycle. If the REQO line is active, the Processor responds by generating the Enable (ENO)
line. The ENO line is applied to the highest priority DMA Channel. The rising edge of ENO marks the
time the selected DMA Channel may switch itself onto the Memory Bus. See Figure 6-5.

If the ENO signal is not "captured" by the highest priority DMA channel, the ENO signal is passed daisy­
chain fashion (ACTO/TACO) from the top priority device, to the next highest priority device, and so on,
until it is captured by the DMA Channel that requested service. The "captured" daisy-chain pulse ANDed
with the rising edge of ENO, selects the DMA Channel. At this time, the selected DMA Channel must be
prepared to execute the memory operation.

6.4.2 Memory Bus Interfacing

Interfaces to the Memory Bus are made directly according to the rules in thi.s subsection.

All signals on the Memory Bus are DTL/TTL level compatible. A logical ONE or a true con­
dition corresponds to a low level, V = O. 4VDC. A logical ZERO or a false condition corre­
sponds to a high level, V = 2. 5VDC. A user interface is permitted one DTL/TTL standard

6-4

REOO

PROCESSOR ENO
~----4---

ACTO TACO ACTO

DMAC #1 DMAC #2

REOO '~·-------J(
ENO -----....._ ____ __,F MARKS TIME DMAC MAY

SWITCH ONTO BUS

Figure 6-5. Example of Memory Bus Priorities

DMAC #3

load and two TTL open collector power gate OR ties (48ma sink) onto lines on the Memory
Bus. A user may not OR tie onto any of the four Timing lines, the Parity Enable (PARO)
line, the Memory Strobed Readout lines (MS00:16), or the two Control lines.

NOTE

The Memory Bus may not be physically extended beyond the Processor chassis
and one expansion chassis.

Refer to Figure 6-6, Memory Bus Timing, and to Figure 6-3, Memory System Diagram. Figure 6-6
illustrates the activity On the Memory Bus for both the Read and write operations. Back panel pin
assignments for an expansion slot in a memory expansion chassis are shown in Figure 6-6. An ex­
pansion slot will accommodate either 1/0 or memory.

The following brief descriptions of each interface signal are provided to aid the custom interface designer.

REQUEST (REQO)

ENABLE (ENO)

Up to four DMACs OR tie onto the REQO line. Any DMAC may activate
REQO at any time. The system will not tolerate temporary false out­
puts on REQO. The REQO line must be released 150 nanoseconds
after the rising edge of ENO, unless the DMAC wants two consecutive
memory cycles.

The Processor responds to a REQO by activating ENO. The delay be­
tween REQO and ENO will be 10 to 250 nanoseconds depending on when,
during the current memory cycle, REQO is activated. The width of
ENO will vary from 250 nanoseconds minimum to 750 nanoseconds
maximum depending on whether the memory is currently busy.

ENO is used to generate the daisy-chain priority loop through all
DMACs in the system. The daisy-chain loop begins at the highest
priority DMAC and propogates to the lower priority DMACs until
it is "captured" by the OMA which requested service.

The "captured" daisy-chain pulse is ANDed with the rising edge of
ENO to set the Select flip-flop in the DMAC. Figure 6-7 illustrates a
suitable circuit for the daisy-chain select request circuits.

H-5

~
I

"'

NOTE 5

REOO-ICPU-PMACJ t"/ ~INOTU I
ENO (CPU-OMAC) I .:, ___ • :L "-•nTc A _.,1t~--~-----~-----~--1r-------1.--------'-.,.,:._::_::_ __ _

MEMORY
TIMING

L __ _

CPU.,. MEMORY l :::
DMAC INHO

WO -rl----71 ====_J I

NOTE Sc

MEM. STROBED RIO
IM5Q()c151

(C. PU. - MEMORY)
OMAC

ll REQO MAY FALL AT ANY TIME. THE DELAY
FROM REOO TO ENO IS IN THE RANGE
10 .TO 250 l\IS

21 THE DM~C WHICH CAPTUR~S ENO MUST
REMOVE R~QO WITHIN 150 NS. UNLESS
TH:E Nf:XT ~EMORY CYCLE IS WANTED

31 MEMORY TIMllllG WILL BEGllll 140 NS
FOLLOWING ENO. THE GMAC MUST APPLY
MAOOc 15 WITHIN 80 NS OF ENO.

41 ENO WIDTH WILL BE _IN THE RANGE OF
25') TO 750 NS, DEPENQINµ ON WHETHER
OR NOT THE MEMORY IS CURRENTt... Y BUSY

5) THE DMAC MUST ACTIVATE REOOWITHIN 650
NS OF ENO TO INSURE GETTING THE NEXT
MEMORY CYCLE FOR BURST MOOE OPERATION

6) THE MS BUS SHOULD BE IGNORED IF THE
OPERATION IS WRITE TO MEMORY

270
...___.

330

oo+
300

~

-

I

--- I I NOTE 6

i=- - - LATEST

T 60 T 300 '60

420 160

1000 CYCLE TIME

~I MEMORY D. A. T.A IMDOO. c151 MUST B.E
_ / SETTLED 80 NS BEFORE INHO &

MUST REMAIN UNTIL 20 NS AFTER
INHO FOR READ OPERATIONS

' M~MORY ADDRESS (MA00:151 MUST
BE SETTLED20NSBEFORE ERO&
MUST REMAIN UNTIL 20 NS AFTER
INHQ_ BOTH MO & MA MUST BE
REMOVED FROM THE BUS WITHIN
150 NS AFTER INHO

Figure 6-6. Memory Bus Timing

CONNO

ROWl

PS
GND
P15
NlS

ACTO

XRACKO

MA130
110
090
070

MAOSO
RDACKO

DCO
SCLRO

SYNO
RACKO
CL070

ORO
SRO

0140
120
100
080
O®
040
020

0000
MAO:)O

020
01

010

ROW2

GNP
GND

REOO
ENO

TACO

MA140
120
100
080

MAO®
TD AC KO

DCRO
HWO

ATNO
TACKO

DAO
CMDO

ADRSO
DlSO

130
no
090
070
050
030

0010
MA040

021
02

011

~
5

41 ~
40 "' ' ~ E w
) §

~
w

35 ~

30

" J:
'-'

" >--

" Cl

2S~
:;;
>--
"'

20 ~
z
0
;:
~
z

15 5
'-'
g

)
10

MAOOO I' MA001
PARO MAOO 05
INHO ERO

WO LRO
P15 NlS

GNP GND
PS GNP 00

~lS~O ?.\.~CONN. \110

'~ BOARONO
PIN NO

ROW OF CONN

CONN 1

ROW 1 ROW2

PS GND
GNP GND
PlS P:l5
NlS NlS

M0150 MD160
130 140
110 120
090 100.
070 080
050 060
030 040

MD010 MD020.
EXVT MDOOO

TEMPA VT
WRTO TEMPS

SCLRO HWO

SYNO ATNO
RACKO TACKO
CL070_ DAO

DAO CMDO
SRO ADRSO

OHO 0150
120 130

·100 110
OBO 090
060 0'7-0
040 050
020 030

0000 001
.. Millll

~1\l '!Ill
~ ~

Oli!l -···~
070 060
090 lOP
110 120
130 140

MS150 MSl.60
GND GND

PS GNP

41
40

35.

30

25') ..
0
>--

20 ~
0
;:
'-'
~ z

15 8
g

)
w,

05

00

MEMORY TIMING LINES

EARLY READ (ERO)
LATE READ (LRO)

INHIBIT (INHO)
WRITE (WO)

MEMORY ADDRESS LINES
(MAOO:l5)

MEMORY STROBED READ­
OUT LINES (MSOO:l6)

MEMORY DATA LINES
(MD00:16)

6.4.3 Memory Bus Timing

These two lines control the Read Current Switching in the addressed
memory module.

These two lines control the Restor/il/Write Current Switching in the
addressed memory module.

The Memory Timing lines are available to the custom built DMAC.
The rising edge of INHO marks the end of the effective memory cycle.
The DMAC should disconnect itself from the Memory Bus within 150
nanoseconds after the rising edge of INHO.

The selected DMAC may activate the MA lines any time following the
rising edge of ENO. However, it must guarantee the MA lines be
settled, over the interval, beginning 80 nanoseconds after ENO until
20 nanoseconds following INHO. Further, the DMAC must release the
MA lines within 150 nanoseconds after the rising edge of INHO.
(MA15 must be zero.)

The MS lines carry the pulsed single-rail Memory Readout on all
memory operations. The MS lines are inact{ve on Write operations.
The pulsed readout varies in width from 60 to 100 nanoseconds, and
in position from 410 to 470 nanoseconds following the rising edge of
ENO. The selected DMAC is required to register the IVfemory Readout
and return the data on the MD lines for the restore portion of the
operation. The DMAC should ignore the MS lines on all Write
operations.

The MD lines carry data to be written to the addressed memory
module. They also carry data to be restored to the addressed memory
module. If the operation is Write, the MD lines must be settled, for
the interval, beginning 80 nanoseconds before INHO to 20 nanoseconds
after INHO. If the operation is Read, the Strobed Readout from the
MS lines must be returned to the MO line by the falling edge of INHO
and must remain there until INHO ris1:lS. Regardless of the operation
(Read or Write), the DMAC must release the MD lines within 180
nanoseconds after the rising edge of lNHO.

Note that MD16 and MS16 correspond to the Parity "Bit. The Processor
always controls these lines. The DMAC should not OR tie onto MD16
or MS16.

The Request flip-flop is set by STARTO when the user's circuits require memory service. (STARTO should
be between 30 nanoseconds and 100 nanoseconds wide.) The REQO line is driven active through Gate Gl
when the Request flip-flop is set.

Gates G2 through G7 form the daisy-chain capture circuit which establishes DMAC priority. Gates G6 and
G7 are a contention circuit which will capture the ACTO pulse if the Request flip-flop is set, or it passes
ACTO onto the next DMAC (as TACO) through G8 if the Request flip-flop is not set. The contention circuit
will ignore a change in the Request flip-flop if it chanrres during the ACTO period.

The daisy-chain delay through one DMAC is 48 nanoseconds maximum, assuming TTL logic, 12 nano­
seconds maximum delay per stage.

If the circuit captures the daisy chain pulse, the Request flip-flop is toggled reset on the rising edge of
ENO and the Select flip-flop is toggled set at the same time. The Select flip-flop is used to switch the

6-7

TACO FROM HIGHER PRIORITY
I DMAC TACO

~ ACTO

I
I
I
I
I

ACTO CONNECTED
TO .ENO ON HIGH­
EST PRIORITY
DMAC ONLY

I """LS" REQUEST REOO -Y ENO

~INHO

CLRO USED TO INITIALIZE
CIRCUITS ON POWER UP.
DERIVE FROM SCLRO LINE
RELAY CONTACT")

C..cLRO
~~~~~~~~~~---~--' 

SELECT 

MS 

MD 

MEMORY DATA 

MEMORY 

ADDRESS 

STARTO (30 TO 100 NS) FROM USER CKT SETS REQUEST FLOP WHEN 
USER'S MEM. ADRS & DATA REGISTERS ARE READY. CPU RESJ'-Ol\IDSTf) ' 
REOO WITH ENO. IF THIS DMAC DID NOT REQUEST SERVICE IT PASSES 
THE DAISY CHAIN PULSE (ACTO) ON TO THE NEXT DMAC AS TACO. IF 
THIS .DMAC DID REQUEST SERVICE IT CAPTURES THE ACTO PULSE (A 
30 NS GLITCH ON TACO IS PERMISSIBLE). ON THE RISING EDGE OF ENO 
THE REQUEST FLOP IS RESET & THE SELECT FLOP IS SET. THE SELECT 
FLOP ENABLES THE DMAC TO THE MEMORY BUS (MS, MD, & MAI. THE 
SELECT FLOP IS RESET AT THE END OF THE MEMORY CYCLE BY THE 
RISING EDGE OF INHO. 

Figure 6-7. Typical Control Logic For Interfacing To The Memory Bus 

r, 

DMAC onto the Memory Bus. The Select flip-flop is cleared on the rising edge of INHO by Gate G2 
which marks the end of the memory cycle. 

The ACTO line is grounded on the top priority DMAC. On all oth'er DMACs, the ACTO i~put ii; driven 
by TACO from the next higher priority DMAC. 

The two flip-flops, Request and Select, should be initialized by CLR to a reset condition on Power Up 
by the user's circuits. (The SCLRO line is useful for this function.) 

6-8 

MA 



CHAPTER 7 

CONTROL CONSOLE 

7.1 INTRODUCTION 

This chapter describes the Control Console which is supplied as part of the GE-PAC 3010/2 Processor. 
·The Control Console provides the system operator with visual indications of the state of the Processor, 
as well as manual control over the GE-PAC 3010/2 

7.2 CONTROL CONSOLE DESCRIPTION 

The Control Console, shown in Figure 7-1, is a RETMA standard 5 1/4" X 19" panel which is plug 
removable from the Processor. · It .displays the current state of the Processor and provides all 
necessary manual controls for the GE-PAC 3010/2. The Control Console includes the following control 
and display elements: 

Indicators - Power ON Lamp 
- Wait Lamp 
- Display Register D1 - 16 Bits (top) 

Display Register D2 - 16 Bits (bottom) 
Data Switches - Sixteen Data/ Address Switches 
Control Switches - Key operated OFF-ON.,. LOCK, Security Lock Switch 

- Initi8.lize Switch (INT) 
·· Execute Switch (EXE) 

Function Switches ·- Single Switch (SGL) 
- Run Switch (RUN) 
- Twelve Position Rotary Function Switch 

A functional description of each of these control and display elements is given in this section. 

7.2.1 Key Operated Security Lock 

This is a three-position, OFF-ON-LOCK, key-operated locking switch, which controls the primary 
power to the GE-PAC 3010/2. This switch can also disable the Control Console, thereby preventing 
any accidental manual input to the system. The POWER indicator lamp associated with the key lock 
is located in the upper left corner of the Control Console. The POWER lamp is lit when the key lock 
is in the ON or LOCK position. The relationship between the key lock switch positions, primary powex-, 
and the Control switches is: 

OFF The primary power is Off. 

ON The primary power is On and the Control switches are enabled. 

LOCK The primary power is On and the Control switches are disabled. 

7.2.2 Control Switches 

The Control switches on the Control Console arc active only when the key-operated locking switch is in the 
ON position. The function of each of these ·switches is as follows: 

INITIALIZE (INT) The momentary Initialize (INT) switch causes the system hard­
ware to be initialized. After this initialize operation, all device 
controllers on the system Multiplexor Bus are cleared and 
certain other functions in the Processor are reset. 

7-1 



OFF 
POWER RE-F MWR ~~~ 

RC-Do INS 
RA-B PSW 

WAIT RB-9 RD-l 
R6-7 R2-3 

R4-5 

INT EXE SGL RUN 0 2 3 4 5 6 7 8 9 10 11 12 13 

C!:!_NERAL ELECTRIC 

Figure 7 -1. Control Console 

EXECUTE (EXE) The momentary Execute (EXE) switch causes the Processor to perform the 
Control Console operation selected by the Function switches, as discussed 
in Section 7. 2. 3. Note that only the Initialize (INT) Control switch acts 
independently of the Execute switch. 

7.2.3 Function Switches 

The three Function switches, SINGLE (SGL), RUN (RUN), and the 12 position rotary Function switch are 
used to place the Processor in various operating modes. The Processor is controlled by setting the 
functidl:l switches in the proper positions and then depressing the Execute (EXE) switch to activate the 
function. The various Processor modes, and the method of entering each mode, are as follows: 

ADDRESS - To enter the ADDRESS Mode 
a) the 12 position Function switch must be in the ADR/MRD position 
b) the SGL switch must be UP 
c) the RUN switch must be UP 
The desired address is specified on the 16 Data/ Address switches; When the Execute 
(EXE) switch is depressed, the specified address is placed into the address portion 
of the Current Program Status Word PSW (16:31). (When the address is transferred 
from the Data/ Address switches, the least significant bit (PSW31) is cleared so that the 
resulting address is always even.) The complete PSW is displayed on Display Regi-ster 
Dl (top) and Display Register D2 (bottom). This address can be used to read data from 
memory, to write data to memory, or to start the execution of a program. 

MEMORY READ - To enter the MEMORY READ Mode 
a) the 12 position Function switch must be in the ADR/MRD position 
b) the SGL switch must be DOWN 
c) the RUN switch must be UP 
When EXE is depressed, the data read from memory is displayed on the Display 
Register D2 (bottom) indicator lamps and the address incremented by 2 of that data 
is displayed on the Register Display Dl (top) lamps. The address portion of the PSW 
is also incremented by 2. Depressing EXE repeatedly displays consecutive locations 
from memory. 

MEMORY WRITE - To enter the MEMORY WRITE Mode 

7-2 

a) the 12 position Function switch must be in the OFF /MWR position 
b) the SGL switch must be DOWN 
c) the RUN switch must be UP 
The desired word to be written is specified on the 16 Data/ Address switches. When EXE 
is depressed, the data written to memory is displayed on the Display Register D2 
(bottom) lamps and the address incremented by 2 of that data is displayed on the 
Register Display Dl (top) lamps. The address portion of the PSW is also incremented 
by 2. Depressing EXE repeatedly writes data from the Data/ Address switches into con­
secutive memory locations. 



RUN 

SINGLE 

HALT 

- To enter the RUN Mode 
a) the 12 position Function switch may be in any position except OFF/MWR or 

ADR/MRD 
b) the SGL switch must be UP 
c) the RUN switch must be DOWN 
When EXE is depressed, the Processor begins program execution. In the RUN Mode, 
the Display Registers are not activated or controlled by the Processor. Rather, the 
program can use the Control Console as an I/O device. If the program does not output 
to the Display Registers, these registers retain the last value displayed prior to 
entering the Rlffl Mode. 

- To enter the SINGLE Mode 
a) the 12 position Function switch may be in any position except OFF/MWR or 

ADR/MRD 
b) the SGL switch must be DOWN 
c) the RUN switch must be DOWN 
This mode allows programs to be executed, one instruction at a time, each time EXE 
is depressed. The Display Registers 1 and 2 contain various information spec;:ified 
by the 12 position Function switch after each EXE as follows: 

INS - the next instruction to be executed is displayed. The first halfword from 
memory is shown in Display Register Dl (top) and the second halfword 
from memory is shown in Display Register D2 (bottom). 

PSW- the Current Program Status Word is displayed. The program status and 
the condition code is shown in Display Register Dl and the location counter 
is shown in Display Register D2. 

RO:l 
R2:3 
R4:5 
R6:7 
R8:9 
RA:B 
RC:D 
RE:F 

the pair of general registers specified by the switch is displayed. For 
example: if the switch is in the R8:9 position, General Register 8 is 
displayed on Display Register Dl and General Register 9 is displayed 
on Display Register D2. 

- To enter the HALT Mode 
a) the 12 position Function switch may be in any position except OFF/MWR or 

ADR/MRD. 
b) the SGL switch may be UP or DOWN (don't care) 
c) the RUN switch must be UP 
When EXE is depressed, the Processor enters a HALT Mode which is non-interrupt­
able. Any of the information listed above under the SINGLE Mode can be displayed 
on Display Registers Dl and D2 by placing the 12 position Function switch in the 
proper position and depressing EXE. 

When the Processor is in the HALT Mode, the WAIT indicator on the Control Console is illuminated. The 
WAIT indieator is also on between instructions when the Processor is in the SINGLE Mode. Finally, the 
WAIT indicator is lighted when an executing program enters the WAIT state by setting Bit 0 of the PSW. 
Note that the program initiated Wait state is interruptable, while the console initiated HALT Mode is not 
interruptable. 

7.3 CONTROL CONSOLE OPERATING PROCEDURES 

7.3.1 Power Up 

To power up and initialize (clear) the system: 

1. Turn the key-operated security lock clockwise from the OFF position to the ON position. 

2. Depress the momentary Initialize (INT) Control switch, to initialize the system. 

7-3 



This action provides electrical power to the system, and leaves the Proeessor in the HALT Mode. It 
is recommended that before the system is used, a few important pointer& and New PSWs in core memory 
be initialized. The locations. in memory to be adjusted are shown in Ta&JJ& 7-1. · 

TABLE 7-1 
CORE MEMORY INITIALIZATION 

Location Function 
Suggested 

Comment 
(hex) Setting 

0022 Pointer to register 0058 This pointer should contain: the address 
save area of a block of 32 bytes which are 

available for register save and 
rest<>re operations. 

0034 New PSW for Illegal 8000 If an Illegal instruction occurs, this 
0036 Instruction Interrupts 0050 New PSW clears all interrupts and 

puts the Processor into Wait state 
with Location Counter = 0050. 

003C New PSW for Machine 8000 This New PSW treats Machine 
003E Malfunction Interrupts 0050 Malfunction Interrupts the same as 

Illegal instructions for purposes of 
initialization. 

0050 Auto-Load sequence for D500 This sequence uses the Auto-Load 
0052 loading programs OOCF instruction at 50 followed by an Uncon-
0054 4300 ditional Branch to 80 to perform initial 
0056 0080 program loads. With this sequence loca-

tion. 78 should be loaded with Device 
0078 I XXYY Number XX and Command Byte YY. 

Refer to Appendix 8 for information 
on I/O devices. 

The memory locations mentioned previously can be set using Memory Write operations as follows: 

1. Enter 0022 (0000 0000 0010 0010) into the Data/Addr~ss switches, release the SGL switch, set the 
rotary Function switch to ADR, and depress EXE. 

2. Enter 0058 (0000 0000 01011000) into the Data/ Address switches, depress the SGL switch, set the 
rotary Function switch fo MWR, and depress EXE. This enters value 0058 into location 0022. 

3. Enter 0034 into the Data/ Address switches, release the SGL switch, set the rotary Function 
switch to ADR, and depress EXE. 

4. Enter 8000 into the Data/Address switches, depress the SGL switch, set the rotary Function 
switch to MWR, and depress EXE. 

5. Enter 0050 into the Data/ Address switches, and depress EXE. These steps enter values 8000 
and 0050 into memory starting at 0034. 

6. Follow similar steps until all specified locations in memory have been set properly~ 

Once these locations are set, their contents can be verified using Memory Read operatio°:s ,as follows: 

7-4 

1. Enter 0022 into the Data/ Address switches, release the SGL switch, set the rotary Function 
to switch ADR, and depress EXE. . 

2. Depress the SGL switch, set the rotary Function switch to MRD, and depress EXE. At this 
point, the address (0024) should be displayed in Register Display Dl, and the contents of 0022 
(0050) should be displayed in Register Display D2. 



3. Enter 0034 into the Data/ Address switch,es, release the SGL switch, set the rotary Function 
switch to ADR, and depress EXE. 

4. Depress the SGL switch, set the rotary Function switch to MRD, and depress EXE. At this 
point, Register Display Dl should show the address (0036) and Register Display D2 should show 
the contents of 0034 (8000). 

5. To examine the next location, depress EXE. At that tim~, Register Display Dl should show the 
address (0038), and Register Display D2 should show the data (0050). 

6. Follow similar steps until all appropriate locations have been verified. 

Once memory locations are set and verified, it is still necessary to initialize the Current PSW. Note that 
while the Location Counter [Psw (16:31)] can be set using the ADR/MRD position of the rotary Function 
switch, there is no way to directly adjust the program status [PSW (0:15)] from the Control Panel. 
When power is turned on, the program status is loaded from memory location 0024, the PSW save area. 
Following a cold start, this initial setting is arbitrary. The program status can be set in two ways: 
either by executing an LPSW or EPSR instruction, or by servicing an interrupt with a PSW swap. For 
system initialization, the recommended procedure is to execute an Illegal instruction, which forces the 
Illegal instruction PSW swap. Using core memory settings suggested above, this PSW initialization can 
be performed by starting program execution at location 0034, which is an Illegal instruction. The specific 
steps are: 

1. Enter 0034 into the Data/ Address switches, release the SG L switch, set the rotary Function 
switch to ADR, and depress EXE. 

2. Depress the RUN switch,· set the rotary Function switch to a position other than OFF/MWR 
or ADR/MRD, and depress EXE. 

The ·result of performing these two steps is. that the Processor attempts to execute the contents of location 
0034 (8000) which is an Illegal instruction. An Illegal instruction PSW swap occurs, which loads the pro­
gram status with 8000, loads the Location Counter with 50, and leaves the Processor in the Wait State. At 
this point, if EXE is depressed, the Processor executes the Auto-Load sequence at 0050. 

7.3.2 Power Down 

To shut down power to the system, 

1. Place the Processor in the HALT Mode as described in Section 7. 2. 3. 

2. Turn the key-operated security lock to the OFF position. 

This removes AC power from the system and forces a Primary Power Fail Interrupt to the Processor. 
Refer to 7. 4. 4 for further details. 

7 .3.3 Program Loading 

There are many ways to load the memory with programs and/or data. Most programs are loaded using 
one of the program loaders associated with the 3010 /2 software. Refer to GET-6171 for details on 
loaders and other software programs. 

7-5 



The Auto-Load sequence, referred to in the previous section, is useful for loading programs when the 
system is being initially loaded, or when no other pro.gram loaders are in memory. The sequence 
recommended in the previous section is described below: 

TABLE 7-2 
AUTO LOAD SEQUENCE 

Location Contents Instruction 

50 D500 AL X'CF' AUTO LOAD 
OOCF 

54 4300 B X'80' BRANCH TO 80 
0080 

78 XXYY DC X'XXYY' DEV NO AND CMND 

This sequence is based on the Auto-Load instruction, which is described in Section 5. 3.10. :This in­
struction reads eight-bit data bytes from Device XX into memory, starting at location 008(}; The.load 
operation proceeds until the device indicates a termination status, or until a specified upper limit is 
reached. In the sequence above, the limit is defined as location OOCF, which allows 80 bytes to be read. 
With the Auto-Load instruction, the device address to be used is specified in byte location 78, and the 
command byte which starts the device is specified in byte location 79. Leading zero data bytes are skipped 
and not loaded. This sequence is appropriate with Teletypewriter or a paper tape reader which transfers 
eight-bit data bytes. When the Auto-Load instruction terminates, the Branch instruction transfers control 
to location 0080. This Auto-Load sequence can be easily changed to meet other requirements. The upper 
limit (OOCF), at 0052, can be changed to load programs of different length. The transfer address (0080), 
at 0056, can be changed to branch to a different location. Following the Auto-Load instruction, it is 
{>OSsible to test the Condition Code to determine exactly how the Auto-Load operation terminated. An all 
zero Condition Code implies that the specified program length was loaded. A non~zero Condition Code 
implies that the device terminated the load sequence before the program length was satisfied. 

7 .3.4 Program Execution 

To begin the execution of a program, the system must be in the Halt Mode. 

1. Set the rotary Function switch to ADR/MRD. 

2. Release the SGL switch. 

3. Enter the program starting address in the 16 Data/ Address switches. 

4. Depress the momentary EXE switch. 

5. Set the rotary Function switch to a position other than OFF /MWR or ADR/MRD. 

6. Depress the RUN switch. 

7. Depress the momentary EXE switch. The Processor is now in the RUN Mode. 

To execute a program in the Single Step Mode-one instruction at a time-the system must be in the HALT Mode. 

7-6 

1. Set the rotary Function switch to ADR/MRD. 

2. Release the SGL switch. 

3. Enter the program starting address in the 16 Data/ Address switches. 

4. Depress the EXE switch. 

5. Depress the SGL switch and the RUN switch. 

6. Set the rotary Function switch to select the register(.s) desired for display. (Must be a posi­
tion other than OFF/MWR or ADR/MRD). 



7. Depress the EXE switch to execute one instruction. 

8. Repeat Step 7. to execute successive instructions. 

At any time during the single-step sequence, the rotary Function switch can be adjusted to change the 
selection of registers tb be displayed. To examine more than one register pair without executing more 
instructions, release (raise) the RUN switch. This leaves the Processor in the HALT Mode. Then select 
the registers to be displayed, with the rotary Function Switch, and depress EXE to observe those registers. 
Depress the RUN switch to resume single-step execution. 

7.3.5 Program Termination 

To manually halt the execution of a program, 

1. Set the rotary Function switch to a position other than OFF /MWR or ADR/MRD. 

2. Release the RUN Switch. 

3. Depress the momentary EXE switch. 

When the Processor enters the HALT Mode, the Register Displays are updated as specified by the rotary 
Function switch. For example; if EXE is depressed with the rotary Function switch set at the PSW 
position, the execution is halted and the Current PSW is displayed on the Register Displays. Each time 
EXE is depressed, while in the HALT Mode, the Register Displays are updated as specified by the rotary 
switch. Therefore, to display different register pairs once the Processor is in the HALT Mode, change the 
rotary Function switch setting and depress EXE. 

7 .3.6 Manually Initiated Memory Operations 

7. 3. 6. 1 Memory Read 

To display the contents of memory locations on the Register Displays the Processor must be in the HALT 
Mode. 

1. Set the rotary Function switch to the ADR/MRD position. 

2. Release the SGL switch. 

3. Enter the memory read starting address in the 16 Data/ Address switches. 

4. Depress the EXE switch. 

5. Depress the SGL switch. 

6. Depress the EXE switch. 

7. The address read from, plus two, appears in Register Display Dl. The data read from memory 
appears in Register Display D2. 

8. Repeat from Step 6. to read successive memory locations. The Location Counter is automatically 
incremented each time EXE is depressed. 

7. 3. 6. 2 Memory Write 

To write data from the Data/ Address switches into memory the Processor must be in the HALT Mode. 

1. Set the rotary Function switch to the ADR/MRD position. 

2. Release the SGL switch. 

3. Enter the memory write starting address in the 16 Data/ Address switches. 

4. Depress the EXE switch. 

5. Set the rotary Function Switch to the OFF /MWR position. 

6. Depress the SGL switch. 

7-7 



7. Enter the data to be written in the 16 Data/ Address switches. 

8, Depress the EXE switch. 

9. The address written into plus two appears in Register Display Dl. The data written into memory 
appears in Register Display D2. 

10. Repeat from Step 7. to write into successive memory locations. The Location Counter is auto­
matically incremented each time EXE is depressed. 

7.4 PROGRAMMING CONSIDERATIONS 

7 .4.1 Control Console I /0 

The Control Console is available to any running program as an 1/0 device with Device Address 01. The 
status and command bytes for the Control Console are summarized in Appendix 8. The status byte indi­
cates the setting of the Function switches. The command byte specifies either Normal or Incremental 
Mode, which pertains to data transfers. In the Normal Mode, the selection logie which determines which 
half of the Data/ Address switches and which byte of the Register Displays is transferred is reset every 
time the Control Console is addressed on the Multiplexor Bus. The Control Console is addressed by 
every 1/0 instruction using Device Address 01. Subsequent Read or Write instructions transfer sub­
sequent bytes as shown in Figure 7-2. Normal I/O instructions, therefore, can be used to input data from 
the Data/ Address switches, and output data to the Register Displays. 

REGISTER DISPLAY 00 0 0 0 0 0 0 0 0 0 0 0 0 0 o~] 

04 03 

REGISTER DISPLAY 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

D2 Dl 

DATA/ADDRESS SWITCHES [ I I I I I I I I I I I I I I I I I I I 
S2 Sl 

Data Transferred 

Instructions 
Executed Normal Mode Incremental Mode 

(RR or RX) 

RD Sl Sl 
RD S1 S2 
RD S1 S1 
RD S1 S2 

RH Sl, S2 S1, S2_ 
RH Sl, S2 Sl, S2 

RB* S1, 52, S1, S2 Sl, S2, S1, S2 

WO 01 01 
WO D1 02 
WO 01 03 
WO 01 D4 

WH 01, 02 01, 02 
WH 01, 02 03, 04 

WB* Dl' D2, D3, 04 01' 02, 03, 04 

*Block Length = 4 bytes 
Figure 7-2. Control Console Data Transfers 

7-8 



7.4.2 Console Interrupt 

In the GE-PAC 3010/2, an interrupt can be generated from the Control Console as follows: 

1. The program must have Bit 4 of the Current PSW set, which specifies Automatic I/O Service Mode. 

2. The operator must have the rotary Function switch in the OFF /MWR position, the SOL switch 
released, the RUN switch depressed, and then depress EXE. 

This feature enables an operator to inform the running program that some operator service or function is 
needed. No acknowledgement of the interrupt is needed by the running program. If the Automatic I/O 
Service Mode is not enabled, console interrupts are not generated and are not queued. 

7 .4.3 Wait State 

The running program can put the Processor into the Wait State by setting Bit O of the Current PSW. The 
operator is informed of this action by the WAIT indicator lamp being illuminated. The Processor can 
leave the Wait State and resume execution in two ways: 

1. An interrupt can occur, causing a PSW swap and the execution of a routine to service the interrupt. 
When the routing restores the original PSW, the Wait State will be re-established. 

2. The operator places the Processor into the RUN Mode as described in Section 7. 2. 3, which causes 
the execution to resume at the address specified by the Location Counter [PSW (16:31)] . 

Note that the use of the programmed Wait State must be considered carefully when using Single-Step Mode. 
That is, with single-step execution it is possible to inadvertently "step through" the Wait State, through 
rapid or continuous use of the EXE switch. 

7 .4.4 Power Fail 

Depressing the INT switch of the Control Console deactivates the system clear relay (SCLRO) in the 
system for a brief interval (approximately one-second). When this happens, the Processor saves the 
Current PSW in memory ·locations 0024 and 0026, and the 16 General Registers in the block indicated by 
the contents of 0022, and then follows an orderly shut-down sequence, which preserves the data within 
memory. When the relay is reactivated, the PSW and General Registers are reloaded from memory, and 
the device controllers are all initialized. At this point, the Processor inieaogates the Control Consoie. 
If the Function switches are not set up to enter the RUN Mode, the Processor enters the HALT Mode and 
the WAIT lamp is illuminated. If the Function switches are set up to enter the RUN Mode, the Processor 
examines Bit 2 of the restored PSW. If PSW Bit 2 (the Machine Malfunction Interrupt Enable) is set, the 
Processor then performs the appropriate PSW swap for Machine Malfunction Interrupts. The purpose of 
this interrupt is to inform the running program that a power failure/restore has occurred. If Bit 2 of the 
PSW is not set, program execution resumes where it left off, with no Machine Malfunction Interrupt. 

The use of the INT switch should be considered carefully when Bit 2 of the Current PSW is enabled. 

7-9/7-10 





APPENDIX 1 

INSTRUCTION SUMMARY - ALPHABETICAL 

INSTRUCTION OP CODE MNEMONIC PAGE NO. 

Acknowledge Interrupt DF AI 4-47 
Acknowledge Interrupt RR 9F AIR 4-47 

Add Halfword 4A AH 4-8 
Add Halfword Immediate CA AHI 4-8 
Add Halfword RR OA AHR 4-8 
Add Halfword Memory 61 AHM 4-8 
Add Immediate Short 26 AIS 4-8 

Add to Bottom of List 65 ABL 4-44 
Add to Top of List 64 ATL 4-44 

Add with Carry Halfword 4E ACH 4-9 
Add with Cany Halfword RR OE ACHR 4-9 

AND Halfword 44 NH 4-17 
AND Halfword Immediate C4 NHI 4-17 
AND Halfword RR 04 NHR 4-17 

Auto load D5 AL 4-55 

Branch and Link 41 BAL 4-42 
Branch and Link RR 01 BALR 4-42 

·Branch on False Condition 43 BFC 4-40 
•Branch on False Condition RR 03 BFCR 4-40 

*Branch on True Condition 42 BTC 4-39 
*Branch on True Condition RR 02 BTCR 4-39 

*Branch on True Backward Short 20 BTBS 4-39 
*Branch on True Forward Short 21 BTFS 4-39 
*Branch on False Backward Short 22 BFBS 4-40 
*Branch on False Forward Short 23 BFFS 4-40 

Branch on Index High co BXH 4-41 
Branch on Index Low or Equal Cl BXLE 4-41 

Compare Halfword 49 CH 4-13 
Compare Halfword Immediate C9 CHI 4-13 
Compare Halfword RR 09 CHR 4-13 

Compare Logical Byte D4 CLB 4-23 

Compare Logical Halfword 45 CLH 4-12 
Compare Logical Halfword Immediate C5 CLHI 4-12 
Compare Logical Halfword RR 05 CLHR 4-12 

Divide Halfword 4D DH 4-15 
Divide Halfword RR OD DHR 4-15 

*See Extended Branch Mnemonics in Appendix 3 for forty-four (44) additional symbolic instructions. 

Al-1 



INSTRUCTION OP CODE MNEMONIC PAGE NO. 

Exchange Byte RR 94 EXBR 4-23 

Exchange Program Status RR 95 EPSR 4-57 

Exclusive OR Halfword 47 XH 4-19 
Exclusive OR Halfword Im.mediate C7 xm 4-19 
Exclusive OR Halfword RR 07 XHR 4-19 

F1oating - Point Add 6A AE 4-26 
F1oating - Point Add RR 2A AER 4-26 

F1oating - Point Compare 69 CE 4-28 
F1oating - Point Compare RR 29 CER 4-28 

F1oating - Point Divide 6D DE 4-30 
F1oating - Point Divide RR 2D DER 4-30 

F1oating - Point Load 68 LE 4-25 
F1oating - Point Load RR 28 LER 4-25 

F1oating - Point Multiply 6C ME 4-29 
F1oating - Point Multiply RR 2C MER 4-29 

F1oating - Point Store 60 STE 4-25 

F1oating - Point Subtract 6B SE 4-27 
F1~ating - Point Subtract RR 2B SER 4-27 

Load Byte D3 LB 4-22 
Load Byte RR 93 LBR 4-22 

Load Complement Short 25 LCS 4-4 

Load Halfword 48 LH 4-4 
Load Halfword Immediate cs Lill 4-4 
Load Halfword RR 08 LHR 4-4 
Load Immediate Short . 24 LIS 4-4 

Load Multiple D1 LM 4-5 

Load Program Status Word C2 LPSW 4-56 

Multiply Halfword 4C MH 4-14 
Multiply Halfword RR oc MHR 4-14 
Multiply Halfword Unsigned DC MHU 4-14 
Multiply Halfword Unsigned RR 9C MHUR 4-14 

OR Halfword 46 OH 4-18 
OR Halfword Immediate C6 OHi 4-18 
OR Halfword RR 06 OHR 4-18 

output Command DE oc 4-49 
OUtput Command RR 9E OCR 4-49 

Al-:2 



INSTRUCTION OP CODE MNEMONIC PAGE NO. 

Read Block D7 RB 4-51 

Read Block RR 97 RBR 4-51 

Read Data DB RD 4-49 

Read Data RR 9B RDR 4-49 

Read Halfword D9 RH 4-53 

Read Halfword RR 99 RHR 4-53 

Rotate Left Logical EB RLL 4-34 

Rotate Right Logical EA RRL 4-35 

Remove from Bottom of List 67 RBL 4-45 

Remove from Top of List 66 RTL. 4-45 

Sense Status DD SS 4-48 

Sense Status RR 9D SSR 4-48 

Shift Left (Fullword) Arithmetic EF SLA 4-36 

Shift Left (Fullword) Logical ED SLL 4-32 

Shift Left (Halfword) Arithmetic . CF SLHA 4-36 

Shift Left (Halfword) Logical CD SLHL 4-32 

Shift Left Logical Short 91 SLLS 4-32 

Shift Right (Fullword) Arithmetic EE SRA 4-37 
Shift Right (Fullword) Logical EC SRL 4-33 
Shift Right (Halfword) Arithmetic CE SRHA 4-37 

Shift Right (Halfword) Logical cc SRHL 4-33 

Shift Right Logical Short 90 SRLS 4-33 

Simulate Interrupt E2 SINT 4-57 

Store Byte D2 STB 4-22 

Store Byte RR 92 STBR 4-22 

Store Halfword 40 STH 4-5 

Store Multiple DO STM 4-6 

Subtract Halfword 4B SH 4-10 

Subtract Halfword Immediate CB SHI 4-10 

Subtract Halfword RR OB SHR 4-10 

Subtract Immediate Short 27 SIS 4-10 

Subtract with Carry Halfword 4F SCH 4-11 

Subtract with Carry Halfword RR OF SCHR 4-11 

Supervisor Call El SVC 4-58 

Test Halfword Immediate C3 THI 4-20 

Write Block D6 WB 4-52 

Write Block RR 96 WBR 4-52 

Write Data DA WD 4-50 

Write Data RR 9A WDR 4-50 

Write Halfword DS WH 4-54 

Write Halfword RR 98 WHR 4-54 

J 

Al-3/ Al-4 





APPENDIX 2 

INSTRUCTION SUMMARY - NUMERICAL 

OP CODE MNEMONIC INSTRUCTION PAGE NO. 

01 BALR Branch and Link RR 4-42 
02 BTCR Branch on True Condition RR 4-39 
03 BFCR Branch on False Condition RR 4-40 
04 NHR AND Halfword RR 4-17 
05 cum Compare Logical Halfword RR 4-12 
06 OHR OR Halfword RR 4-18 
07 XHR Exclusive OR Halfword RR 4-19 
08 LHR Load Halfword RR 4-4 
09 CHR Compare Halfword RR 4-13 

OA AHR Add Halfword RR 4-8 

OB SHR Subtract Halfword RR 4-10 

oc MHR Multiply Halfword RR 4-14 

OD DHR Divide Halfword RR 4-15 

OE ACHR Add with Carry Halfword RR 4-9 

OF SCHR Subtract with Carry Halfword RR 4-11 

20 BTBS Branch on True Backward Short 4-39 

21 BTFS Branch on True Forward Short 4-39 

22 BFBS Branch on False Backward Short 4-40 

23 BFFS Branch on False Forward Short 4-40 

24 LIS Load Immediate Short 4-4 

25 LCS Load Complement Short 4-4 

26 AIS Add Immediate Short 4-8 

27 SIS Subtract Immediate Short 4-10 

28 LER Floating-Point Load RR 4-25 

29 CER Floating-Point Compare RR 4-28 

2A AER Floating-Point Add RR 4-26 

2B SER Floating-Point Subtract RR 4-27 

2C MER Floating-Point Multiply RR 4-29 

2D DER Floating-Point Divide RR 4-30 

' 
40 STH Store Halfword 4-5 

41 BAL Branch and Link 4-42 

42 BTC Branch on True Condition 4-39 

43 BFC Branch on False Condition 4-40 

44 NH AND Halfword 4-17 

45 CLH Compare Logical Halfword 4-12 

46 OH OR Halfword 4-18 

47 XH Exclusive OR Halfword 4-19 

48 LH Load Halfword 4-4 

49 CH Compare Halfword 4-13 

4A AH Add Halfword 4-8 

4B SH Subtract Halfword 4-10 

4C MH Multiply Halfword 4-14 

4D DH Divide Halfword 4-15 

4E ACH Add with Carry Halfword 4-9 

4F SCH Subtract with Carry Halfword 4-11 

60 STE Floating-Point Store 4-25 

61 AHM Add Halfword Memory 4-8 

64 ATL Add to Top of List 4-44 

65 ABL Add to Bottom of List 4-44 

A2-1 



OP CODE MNEMONIC INSTRUCTION PAGE NO. 

66 RTL Remove from Top -0f List 4-45 
67 RBL Remove from Bottom .of List 4-45 
68 LE Floating-Point Load 4-25 
69 CE Floating-Point Compare 4-28 
6A AE Floating-Point Add 4-26 
6B SE Fl-0ating-P.oint Subtract 4-27 
6C ME Floating-Point Multiply 4-29 
6D DE Floating-Point Divide 4-30 

90 SRLS Shift Right Logical Short 4-33 
91 SLLS Shift Left Lo.gical Short 4-32 
92 STBR St.ore Byte RR 4-'22 
93 LBR Load Byte RR 4-22 
94 EXBR Exchange Byte RR 4-23 
95 EPSR Exchange Program Status RR 4-57 
96 WBR Write Block RR 4-52 
97 RBR Read Block RR 4-51 
98 WHR Write Halfword RR 4-54 
99 RHR Read Halfword RR 4-53 
9A WDR Write Data RR 4-50 
9B RDR Read Data RR 4-49 
9C MHUR Multiply Halfword Unsigned RR 4-14 
9D SSR Sense Status RR 4-48 
9E OCR Output Command RR 4-49 
9F AIR Acknowledge Interrupt RR 4-47 

co BXH Branch on Index High 4-41 
Cl BXLE Branch on Index Low or Equal 4-41 
C2 LPSW Load Program Status Word 4-56 
C3 THI Test Halfword Immediate 4-20 
C4 NHI AND Halfword Immediate 4-17 
C5 CLHI Compare Logical Halfword Immediate 4-12 
C6 OH! OR Halfword Immediate 4-18 
C7 XHI Exclusive OR Halfword Immediate 4-19 
cs LHI Load Halfword Immediate 4-4 
C9 CHI Compare Halfword Immediate 4-13 
CA AHi Add Halfword Immediate 4-8 
CB SHI Subtract Halfword Immediate 4-10 
cc SRHL Shift Right (Halfword) Logical 4-33 
CD SLHL Shift Left (Halfword) Logical 4-32 
CE SRHA Shift Right (Halfword) Arithmetic 4-37 
CF SLHA Shift Left (Halfword) Arithmetic 4-36 

DO STM St.ore Multiple 4-6 
D1 LM Load Multiple 4-5 
D2 STB Store Byte 4-22 

D3 LB Load Byte 4-22 

D4 CLB Compare Logical Byte 4-23 
D5 AL Auto Load 4-55 
D6 WB Write Block 4-52 
D7 RB Read Block 4-51 
D8 WH Write Halfword 4-54 
D9 RH Read Halfword 4-53 

DA WD Write Data 4-50 

DB RD Read Data 4~49 

DC MHU Multiply Halfword Unsigned 4-14 

DD SS Sense Status 4-48 

A2-2 



OP CODE MNEMONIC INSTRUCTION PAGE NO. 

DE oc Output Command 4-49 
OF Al Acknowledge Interrupt 4-47 

El SVC Supervisor Call 4-58 
E2 SINT Simulate Interrupt 4-57 
EA RRL Rotate Right Logical 4-35 
EB RLL Rotate Left Logical 4-34 
EC SRL Shift Right (Fullword) Logical 4-33 
ED SLL Shift Left (Fullword) Logical 4-32 
EE SRA Shift Right (Fullword) Arithmetic 4-37 
EF SLA Shift Left (Fullword) Arithmetic 4-36 

A2-3/A2-4 





APPENDIX 3 
EXTENDED BRANCH MNEMONICS 

INSTRUCTION OP CODE (Ml) MNEMONIC OPERANDS 

Branch on Carry 428 BC A(X2) 
Branch on Carry RR 028 BCR R2 
Branch on No Carry 438 BNC A(X2) 
Branch on No Carry RR 038 BNCR R2 

Branch on Equal 433 BE A(X2) 
Branch on Equal RR 033 BER R2 
Branch on Not Equal 423 BNE A(X2) 
Branch on Not Equal RR 023 BNER R2 

Branch on Low 428 BL A(X2) 
Branch on Low RR 028 BLR R2 
Branch on Not Low 438 BNL A(X2) 
Branch on Not Low RR 038 BNLR R2 

Branch on Minus 421 BM A(X2) 
Branch on Minus RR 021 BMR R2 
Branch on Not Minus 431 BNM A(X2) 
Branch on Not Minus 031 BNMR R2 

Branch on Plus 422 BP A(X2) 
Branch on Plus RR 022 BPR R2 
Branch on Not Plus 432 BNP A(X2) 
Branch on Not Plus RR 032 BNPR R2 

Branch on Overflow 424 BO A(X2) 
Branch on Overflow RR 024 BOR R2 

Branch Unconditional 430 B A(X2) 
Branch Unconditional RR 030 BR R2 

Branch on Zero 433 BZ A(X2) 
Branch on Zero RR 033 BZR R2 
Branch on Not Zero 423 BNZ A(X2) 
Branch on Not Zero RR 023 BNZR R2 

No Operation 420 NOP 
No Operation RR 020 NOPR 

Branch on Carry Short 208 BCS A (Backward Reference) 
218 BCS A (Forward Reference) 

Branch on No Carry Short 228 BNCS A (Backward Reference) 
238 BNCS A (Forward Reference) 

Branch on Equal Short 223 BES A (Backward Reference) 
233 BES A (Forward Reference) 

Branch on Not Equal Short 203 BNES A (Backward Reference) 
213 BNES A (Forward Reference) 

A3-l 



INSTRUCTION OPCODE {Ml> MNEMONIC OPERANDS 

Branch on Low Short .208 BLS A (Backward Reference) 
218 B.LS A (Forward Reference) 

Branch on Not Low Short 228 BNLS A (Backward Reference) 
238 BNLS A (Forward Reference) 

Branch on Minus Short 201 BMS A (Backward Reference) 
211 BMS A (Forward Reference) 

Branch on Not Minus Short 221 BNMS A (Backward Reference) 
231 BNMS A (Forward Reference) 

Branch on Plus Short 202 BPS A (Backward Reference) 
212 BPS A (Forward Reference) 

Branch on Not Plus Short 222 BNPS A (Backward Reference) 
232 BNPS A (Forward Reference) 

Branch on Overflow Short 204 BOS A (Backward Reference) 
214 BOS A (Forward Reference) 

Branch Unconditional Short 220 BS A (Backward Reference) 
.230 BS A (Forward Reference) 

Branch on Zero Short 223 BZS A (Backward Reference) 
233 BZS A (Forward Reference) 

Branch on Not Zero Short 203 BNZS A (Backward Reference) 
21:3 BNZS A (Forward Reference) 

A3-2 



MSD- o 
Lso+ 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 

D 

E 

F 

~ 
BALR 

BTCR 

BFCR 

NHR 

CLHR 

OHR 

XHR 

LHR 

CHR 

AHR 

SHR 

MHR 

DHR 

ACHR 

SCHR 

RR 

2 4 

BTBS STH 

BTFS BAL 

BFBS BTC 

BFFS BFC 

LIS NH 

LCS CLH 

AIS OH 

SIS XH 

LER LH 

CER CH 

AER AH 

SER SH 

MER MH 

DER DH 

~ ACH 

~ SCH 

RR RX 

P = Privileged Instructions 

APPENDIX 4 
OP CODE MAP 

6 9 

STE SRLS 

AHM SLLS 

~ STER 

~ LBR 

ATL EXBR 

ABL EPSR p 

RTL WBR p 

REL RBR p 

LE WHR p 

CE RHR 
p 

AE WDR p 

SE RDR p 

ME MHUR 

DE SSR p 

~ OCR p 

~ AIB p 

RX RR 

c D E 

BXH STM ~ 
BXLE LM SVC 

LPswP STE SJNTP 

THI LB ~ 
NHI CLE ~ 
CLHI AL p ~ 
OHi WB 

p ~ 
XHI RB p 

~ 
LHI WH p ~ 
CHI RH p ~ 
AHi WD p RRL 

SHI RD p RLL 

SRHL MHU SRL 

SLHL SS p SLL 

SRHA oc p SRA 

SLHA AI p SLA 

RS RX RS 

A4-1/A4-2 





APPENDIX 5 

INSTRUCTION EXECUTION TIMES 

Instr. RR or SF RS RS Indexed RX Comments 

ABL 5/13/13 OVF /NORM/WRAP 
ACH 1. 25 3. 25 

I AE 21.25/25.25/34 22/26/34.75 MIN/ A VE/MAX 
AH 1.0 2.25 3.25 3. 25 
AHM 4. 0 
AI 2.75 5. 0 
AIS 1. 5 
AL 6. 5 + 4. 5n n=no. of bytes 
ATL 5/11. 5/11. 75 OVF/NORM/WRAP 

BAL 1. 5 2. 5 
I BFBS 1.5/3.0 No BR/BR 

BFC 1. 5 2.75/3.0 No BR/BR I BFFS 1.5/3.25 No BR/BR 
BTBS 1.25/3.25 No BR/BR 
BTC 1. 5 2.75/3.0 No BR/BR 

I BTFS 1.25/3.5 No BR/BR 
BXH 5.0/4.5 6. 0/5. 5 No BR/BR 
BXLE 5.0/5.0 6.0/6.0 No BR/BR 

I CE 10.75/12.75/9.75 11.5/13.5/10.5 +,+/-,-/+,-
CH 2. 0/2. 25 3. 0/3. 25 4.0/4.25 4.0/4.25 Signs alike/Signs differ 

CLB 3.75 
CLH 1.0 2.25 3.25 3.25 

I DE 105.5/108.25/116.25 · 106.25/109/117 MIN/ A VE/MAX 
DH 10.25/12/10.25/10.5 12.25/14/12.25/12.5 ++/+-/-+/--
EPSR 3.25 
EXBR 1. 0 

LB 1. 0 3.25 
LCS 1.5 

I LE 12.5/13.25/lQ.25/27.5 13.25/14/20/28.25 O/BEST/ AVE/WORST 
LH 1.0 2. 0 3. 0 3.0 
LIS 1.25 
LM 4. 5 + 1. 5n n=no. of regs. 
LPSW 5.25 6.25 

I ME 60.5/74.25/91.25 61/75/92 MIN/ A VE/MAX 
MH 8/9/8.75/8.25 10/11/10.75/10.25 ++/+-/-+/--
MHU 6. 0 8.0 
NH 1. 0 2.25 3.25 3.25 

oc 2. 25 4.0 
OH 1.0 2.25 3.25 3. 25 

RB 5. 5+3n 6. 5 + 3n n=no. of bytes 
RBL 4.25/11.75/12 EMPTY/NORM/WRAP 
RD 2. 0 4.5 
RH 2.75/2 5.5/4.75 BYTE/HALFWORD 
RLL 3.5+1.0(n-1) 4. 5+1. O(n-1) n=no. of shifts 
RRL 3. 5+1. O(n-1) 4. 5+ 1. O(n-1) n=no. of shifts 
RTL 4. 25/13/13 EMPTY/NORM/WRAP 

4/72 A5-1 



Instr. 'RR or SF ;'Q.S ·!RS lnde:ired RX Comments ---
OCH 1.25 3.25 

t SE 22/30~5/'29.25 22.sr.n .5/39. 1s MIN/AVE/MAX 
SH 1. 0 2.25 3.25 3. 25 
SINT See I/O Channel Timing 

SIS 1. 5 

I SLA 3. 5+. 25(n-l) 4. 5+. 25(n-l) n=no, of shifts 
SLHA 3. 5+. 25(n-l) 4. 5+. 25(n-l) n=no. of shifts 
SLHL 2. 75+. 25(n-l) 3. 75+.25(n-1) n=no. of shifts 
SLL 3. O+. 25(n-l) 4. O+. 25(n-l) n=no. of shifts 
SLLS 2. O+. 25(n-1) n=no. of shifts 

SRA 3. 25+. 25(n-1) 4 .• 25+. 25(n-l) n=no. of shifts 
SRHA 3. 25+. 25(n-l) 4. 25+. 25(n-l) n=no. of shifts 
SRHL 2. 75+. 25(n..:l) 3. 75+. 25(n-l) n=no. of shifts 
SRL 3. O+. 25(n-l) 4. O+. 25(n-l) n=no. of shifts 
SRLS 2. O+ .• 25(n-1) n=no. of shifts 
SS 2.25 4.5 
STB 2.0 4.0 
STE 7. 0 
STH 3. 25 
STM 4. 5+1. 25n n=no. of regs. 
SVC 7.0 s.o 

THI 2. 25 3.25 

WB 5. 0+3n 5.5+3n n=no. of bytes 
WD 2 •. 25 4.25 
WH 3. 5/2. 75 4.75/4.0 BYTE/HALFWORD 

XH 1.0 2.25 3.25 3. 25 

A5-2 4/72 



APPENDIX 6 

ARITHMETIC REFERENCES 

1 0 1. 0 
2 1 o. 5 
4 2 o. 25 
8 3 0.125 

TABLE OF POWERS OF TWO 

16 4 0.062 5 
32 5 0.031 25 
64 6 0.015 625 

128 7 o. 007 812 5 

256 8 0.003 906 25 
512 9 o. 001 953 125 

1 024 10 o.ooo 976 562 5 
2 048 11 o. 000 488 281 25 

4 096 12 o.ooo 244 140 625 
8 192 13 o.ooo 122 070 312 5 

16 384 14 0.000 061 035 156 25 
32 768 15 o. 000 030 517 578 125 

65 536 16 o.ooo 015 258 789 062 5 
131 072 17 o.ooo 007 629 394 531 25 
262 144 18 o.ooo 003 814 697 265 625 
524 288 19 o.ooo 001 907 348 632 812 5 

1 048 576 20 o.ooo 000 953 674 316 406 25 
2 097 152 21 o.ooo 000 476 837 158 203 125 
4 194 304 22 0.000 000 238 418 579 101 562 5 
8 388 608 23 o.ooo 000 119 209 289 550 781 25 

16 777 216 24 o.ooo 000 059 604 644. 775 390 625 
33 554 432 25 o.ooo 000 029 802 322 387 695 312 5 
67 108 864 26 o. 000 000 014 901 161 193 847 656 25 

134 217 728 27 o.ooo 000 007 450 580 596 923 828 125 

268 435 456 28 o.ooo 000 003 725 290 298 461 914 062 5 
536 870 912 29 o.ooo 000 001 862 645 149 230 957 031 25 

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5 

4 294 967 296 32 o.ooo 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 o.ooo 000 000 116 415 321 826 934 814 453 125 

17 179 869 184 34 o.ooo 000 000 058 207 660 913 467 407 226 562 5 
34 359 738 368 35 o.ooo 000 000 029 103 830 456 733 703 613 281 25 

68 719 476 736 36 o.ooo 000 000 014 551 915 228 366 851 806 640 625 
137 438 953 472 37 o.ooo 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 o.ooo 000 000 003 637 978 807 091 712 951 660 156 25 
549 755 813 888 39 o.ooo 000 000 001 818 989 403 545 856 475 830 078 125 

1 099 511 627 776 40 o.ooo 000 000 000 909 494 701 772 928 237 915 039 062 5 

A6-l 



TABLE OF POWERS OF SIXTEEN 

16n n 

1 0 

16 1 

256 2 

4 096 3 

65 536 4 

1 048 576 5 

16 777 216 6 

268 435 456 7 

4 294 967 296 8 

68 719 476 736 9 

1 099 511 627 776 10 

17 592 186 044 416 11 

281 474 976 710 656 12 

4 503 599 627 370 496 13 

72 057 594 037 927 936 14 

1 152 921 504 606 846 976 15 

Decimal Values 

HEXADECIMAL TO DECIMAL CONVERSION TABLE 

BYTE BYTE 

HEX DEC HEX DEC HEX DEC HEX DEC 

0 0 0 0 0 0 0 0 
1 4,096 1 256 1 16 1 1 
2 8,192 2 512 2 32 2 2 
3 12, 288 3 768 3 48 3 3 
4 16, 384 4 1,024 4 64 4 4 
5 20,480 5 1, 280 5 80 5 5 
6 24,576 6 1,536 6 96 6 6 
7 28, 672 7 1,792 7 112 7 7 
8 32,768 8 2,048 8 128 8 8 
9 36,864 9 2,304 9 144 9 9 
A 40,960 A 2,560 A 160 A 10 
B 45,056 B 2,816 B 176 B 11 
c 49,152 c 3,072 c 192 c 12 
D 53,248 D 3,328 D 208 D 13 
E 57,344 E 3,584 E 224 E 14 
F 61,440 F 3,840 F 240 F 15 

A6-2 



HEXADECIMAL ADDITION TABLE 

1 2 3 4 5 6 7 8 9 A B c D E F 

l 2 3 4 5 6 7 8 9 A B c D E F 10 1 

2 3 4 5 6 7 8 9 A B c D E F 10 11 2 ! 

3 4 5 6 7 s 9 A B c D E F 10 11 12 3 

4 5 6 7 s 9 A B c D E F 10 11 12 1:3 4 

5 6 7 s 9 A B c D E F 10 11 12 13 14 5 

6 7 s 9 A B c D E F 10 11 12 13 14 15 6 

7 s 9 A B c D E F 10 11 12 13 14 15 16 7 
---I-

s 9 A B c D E F 10 11 12 13 14 15 16 17 s 

9 A B c D E F 10 11 12 13 14 15 16 17 18 9 

A B c D E F 10 11 12 13 14 15 16 17 18 19 A 

B c D E F 10 11 12 13 14 15 16 17 lS 19 lA B 

c D E F 10 11 12 13 14 15 16 17 lS 19 lA lB c 
D E F 10 11 12 13 14 15 16 17 lS 19 lA lB lC D 

E F 10 11 12 13 14 15 16 17 18 19 lA lB lC lD E 

F 10 11 12 13 14 15 16 17 lS 19 lA lB lC 1D lE F 

1 2 3 4 5 6 7 s 9 A B c D E F 

HEXADECIMAL MULTIPLICATION TABLE 

1 2 3 4 5 6 7 s 9 A B c D E F 

1 1 2 3 4 5 6 7 s 9 A B c D E F 1 

2 2 4 6 s A c E 10 12 14 16 lS lA lC lE 2 

3 3 6 9 c F 12 15 lS 1B lE 21 24 27 2A 2D 3 

4 4 s c 10 14 lS lC 20 24 2S 2C 30 34 38 3C 4 

5 5 A F 14 19 lE 23 2S 2D 32 37 3C 41 46 4B 5 

6 6 c 12 18 lE 24 2A 30 36 3C 42 48 4E 54 5A 6 

7 7 E 15 lC 23 2A 31 3S 3F 46 4D 54 5B 62 69 7 

8 s 10 lS 20 28 30 38 40 4S 50 5S 60 6S 70 78 s 

9 9 12 1B 24 2D 36 3F 4S 51 5A 63 6C 75 7E S7 9 

A A 14 lE 2S 32 3C 46 50 5A 64 6E 7S S2 SC 96 A 

B B 16 21 2C 37 42 4D 5S 63 6E 79 S4 SF 9A A5 B 

c c lS 24 30. 3C 4S 54 60 6C 7S S4 90 9C AS B4 c 

D D lA 27 34 41 4E 5B 68 75 S2 SF 9C A9 B6 C3 D 

E E lC 2A 38 46 54 62 70 7E SC 9A AS B6 C4 D2 E 

F F lE 2D 3C 4B 5A 69 7S 87 96 A5 B4 C3 D2 El F 

1 2 3 4 5 6 7 8 9 A B c D E F 

A6-3 



TABLE OF MATHEMATICAL .CONSTANTS 

Constant Decimal Value 
Hexadec.imal 

Value 

1r 3.141.59 26535 89793 3.243F 6A89 

'lr-1 0.31830 98861 83790 0.517C C1B7 

v;- 1. 77245 38509 05516. 1. C5BF 891C 

Ln7r 1.14472 98858 49400 1.250D 048F 

e 2. 71828 18284 59045 2.B7El 5163 

e-1 0.36787 94411 71442 0.5E2D 5809 

~ 1.64872 12707 00128 1.A612 98E2 

log10e 0.43429 44819 03252 0.6F2D EC55 

log2e 1.44269 50408 88963 1. 7154 7653 

'Y o. 57721 56649 01533 0.93C4 67E4 

Ln 'Y -0.54953 93129 81645 -0.8CAE 9BC1 

v'2 1.41421 35623 73095 1. 6A09 E668 

Ln2 0.69314 71805 59945 O. Bl 72 l 7F8 

log102 0.30102 99956 63981 0.4Dl0 4042 

w'IO 3.16227 76601 68379 3.298B 075C 

Ln1-0 2.30258 50929 94046 2.4D76 3777 

A6-4 



APPENDIX 7 

1/0 AUTOMATIC SERVICE OPERATION AND TIMING DATA 

A+- X '0040' 

(SHEET 41 

(SHEET41 

NOP, INIT, DMT 
AND NULL 
(SHEET31 

RESET 

NO 

ACKNOWLEDGE 

FETCH AUTO 1/0 
SERVICE POINTER 

QFLAG +- 0 

FETCH CCW 

DATA TRANSFER 
(SHEET 21 

Sheet 1 of 4 

RESET 

SINT 

DEVNO = A+(X21 

STORE STATUS 
AT PTA ADDA 
STORE LOC AT 
PTA ADDA +2 
GET STATUS 
FROM PTA ADDA 
+4SET LOCTO 
PTA ADDR +6 

A7-1 



A7-2 

READ 

R AD DATA STORE 

DONE 
(SHEET4) 

NO 

(SHEET 11 
DATA TRANSFER 

LOAD CURRENT 
ADDA AND FINAL 
ADDA FROM CC8 

SET BYTE COUNT 
FROMCCW 

ADDRESS DEVICE 
GET STATUS 

STORE CUR. A_D_DR. 
INTOCCB 

DONE 
(SHEET4) 

NO 

WRITE 

YES 

YES 

YES 

WRITE DATA FROM 
CUR ADDR. INCR 
CUR ADDR. DEC 
BYTE COUNT 

Sheet 2 of 4 

SET INIT, NOP, 
0 BITS; RESET 
CHAIN, CONTINUE 
IN W 

SET NOP 
INCCW 

STORE CCW 
INCCB 

TERMINATION 
(SHEET4) 



TERMINATION 
ISHEET41 

(SHEET 11 
NOP, INIT, DMT AND NULL 

NO 

NO 

B 

FETCH COUNT 
FROM CCB 

DECREMENT 
AND RESTORE 

DONE 
(SHEET4) 

YES 

YES 

NO 

YES 

Sheet 3 of 4 

DONE 
(SHEET 4) 

DATA TRANSFER 
(SHEET 21 

E 

TERMINATION 
(SHEET 4) 

ADDRESS DEVICE 

DONE 
(SHEET4) 

A7-3 



A7-4 

(SHEETS 2 AND 31 
DONE 

D 

A<-- X '0082' 

PSW EXCHANGE 
FROM A 

(SHEET 11 
PSW 

EXCHANGE 

A 

RESET 

NO 

NO 

NO 

(SHEET 31 
TERMINATION 

STORE DEVNO/ 
STATUS IN CCB 

SETO FLAG 

PUT A (CCWI IN 
QUEUE HI OR LO 

PUT CHAIN VAL 
IN AUTOMATIC . 

1/0 SERVICE TABLE 

YES 

C:>i RE-ENTER (SHEET 11 
~-MEANS EXECUTE NEXT INSTRUCTION AS SPECIFIED BY PSW. 

PUT A (CCWI 
INTO X '008A' 

A <-- X '008C' 

PSW EXCHANGE 

(THIS SHEETI 

* - IF INTERRUPT SIGNAL IS PRESENT, FIRMWARE Will SERVICE IT 
BEFORE EXECUTION OF THE NEXT INSTRUCTION. 

Sheet 4 of 4 



BASE 

INIT 

TCHAR no 
match 

{

TCHAR match 

l COUNT=O 
or CUR=final 

QUEUE high 

QUEUE low 

2 CHAIN 

CONTINUE 

QSVC INT. 

NOP 

12.00 

-

-

-

-

-
-
-

-

3.5 

1. Reason for termination 
2. Termination Procedure 

AUTOMATIC INPUT/OUTPUT 
INTERRUPT SERVICE TThlES 

NULL DMT OCI READ 

15.25 17.00 17.25 18.00+2.5n 

3.50 3.50 - 4.75 

- - - 2. 75 

- - - 6.5 

- 1. 75 - 3.75 

11. 00 11. 00 - 11. 00 

12.75 12.75 - 12.75 

3.0 3. 0 - 3.0 

1.25+ 1. 25+ - 1. 25+ 

3.5 3.5 3.5 3.5 

WRITE 

18.75+2.25n 

4.75 

2. 75 

6. 5 

3.75 

11. 00 

12.75 

3.0 

1. 25+ 

3. 5 

BAD 
STATUS 

20.00 

4.75 

-

-

-

-

-
-

-
3.5 

All times are given in microseconds. To determine the execution time of a particular interrupt, add to the 
base time, the time for each pertinent option. For example: a Write of one character using a Termination 
Character (TCHAR) with no match takes 21. 00 (BASE) 

plus ~ (TCHAR no match) 

23. 75 microseconds 

SINT Executicn time is the same. Add 1. 6 microseconds if indexed. 
On Read and Write times, n is the number of bytes transferred per interrupt. 

Normal Interrupt Latency Time: 4 microseconds 

Non-Interruptable Instructions: Load/ store Multiple, Read/Write Block, Autoload, Automatic I/O Service, 
Supervisor Call, Remove from Top/Bottom of List, Add to Top/Bottom of 
List 

Machine Malfunction Interrupt: 7. 75us 

Normal I/ 0 Interrupt: 7. 25us 

Immediate I/O Interrupt: 7. 75us 

Data Channel Read 
Data Channel Write 

n = halfwords 

OneHW 
7.5us 
7.75us 

Burst 
4.5n 
4.75n 

These times assume the standard 1. 00 microsecond core 
memory with no interference from a Selector Channel or 
any other device on the memory bus. 

A7-5/A7-6 





APPENDIX 8 

1/0 REFERENCES 

CONTROL CONSOLE STATUS AND COMMAND BYTE DATA 
(HEX ADDRESS 01) 

MODE 

BIT 
NUMBER 

STATUS 
BYTE 

COMMAND 
BYTE 

STATUS: 

SINGLE STEP 

RUN 
HALT 

MEM WRITE 
MEM READ 
ADRS 
OFF 

REGISTER 
DISPLAY 

INST 
PSW 
RO, Rl 
R2, R3 
R4, R5 
R6, R7 
RB, R9 
RA, RB 
RC,RD 
RE,RF 

COMMAND: 

NORM 

INC 

0 1 2 3 4 5 6 7 

MODE REGISTER DISPLAY 

NORM INC 

0 1 0 0 x x x x 

1 0 0 0 x x x x 

1 1 0 0 x x x x 

0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 1 1 0 0 0 0 

0 0 0 0 

0 0 1 0 
0 1 0 0 
1 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1 
1 1 0 0 
1 1 0 l 
1 1 1 0 
1 1 1 1 

In the Normal Mode, Byte 0 of the Register Display or Data/ Address switches 
is accessed each time an I/O operation is directed to the Control Console. 

In the Incremental Mode, subsequent I/O operations access subsequent 
bytes of the Register Display or Data/ Address switches. 

AB-1 



TELETYPEWRITER/ASCll/HEX CONVERSION TABLE 

REX(MSD) • 0 1 2 3 4 5 6 7 

(LSD) Teletypewriter 8 DEPENDS UPON PARITY* 

l 
Tape 7 0 0 0 0 1 1 1 1 
,Channels ----. 

j_ 
6 0 0 1 1 0 0 1 1 

5 0 1 0 1 0 1 0 1 

4 
-,l 

3 2 1 

0 0 0 0 0 NULL DCo SPACE 0 @ p 

1 0 0 0 1 SOM X-ON ! 1 A Q 

0 1 0 EOA 
TAPE 

II 2 B R 2 0 
ON 

3 0 0 1 1 EOM X-OFF # 3 c s 

4 0 1 0 0 EOT 
TAPE 

$ 4 D T 
OFF 

5 0 1 0 1 WRU ERR % 5 E u 

6 0 1 1 0 RU SYNC & 6 F v 

7 0 1 . 1 1 BELL LEM ' 7 G w 

8 1 0 0 0 FE 0 So ( 8 H x 
9 1 0 0 1 HT/SK S1 ) 9 I y 

A 1 {) 1 0 LF S2 * : J z 
B 1 0 1 1 VT S3 + ; K [ 
c 1 1 1 0 0 FF S4 ' < L ' ACK 

D 1 1 0 1 CR S5 M ] ALT. - = 
MODE 

E 1 1 1 0 so s6 > N t ESC 

F 1 1 1 1 SI. S7 I ? 0 - DEL 

*Parity bit adjusted for .even parity (even number of l's) on input from keyboard. Parity 
bit is ignored on output to printer. 

AS-2 



ASCII CARD CODE CONVERSION TABLE 

7-BIT 7-BIT 
ASCII CARD ASCII CARD 

GRAPHIC CODE CODE GRAPHIC CODE CODE 

SPACE 20 BLANK (gi 40 8-4 
21 12-8-7 A 41 12-1 

" 22 8-7 B 42 12-2 
It 23 8-3 c 43 12-3 
$ 24 11-8-3 D 44 12-4 
% 25 0-8-4 E 45 12-5 
& 26 12 F 46 12-6 

27 8-5 G 47 12-7 
28 12-8-5 H 48 12-8 
29 11-8-5 I 49 12-9 

* 2A 11-8-4 J 4A 11-1 
+ 2B 12-8-6 K 4B 11-2 

2C 0-8-3 L 4C 11-3 
2D 11 M 4D 11-4 
2E 12-8-3 N 4E 11-5 

I 2F 0-1 0 4F 11-6 
0 30 0 p 50 11-7 
1 31 1 Q 51 11-8 
2 32 2 R 52 11-9 
3 33 3 s 53 0-2 
4 34 4 T 54 0-3 
5 35 5 u 55 0-4 
6 36 6 v 56 0-5 
7 37 7 w 57 0-6 
8 38 8 x 58 0-7 
9 39 9 y 59 0-8 

3A 8-2 z 5A 0-9 
3B 11-8-6 [ 5B 12-8-2 

< 3C 12-8-4 ' 5C 11-8-1 
3D 8-6 ] 5D 11-8-2 

> 3E 0-8-6 t 5E 11-8-7 
? 3F 0-8-7 - 5F 0-8-5 

A8-3 



I 'BTT NUMBER I 0 

E.IGHT-lifN:-E il'NTEHRUPT MOD UDE STATUS 
AND COMMAND BYTE DATA 

(HEX ADDRESS 20-"~~·) 

1 2 3 :j :4 5 

{ STATUS :BYTE 0 0 0 0 0 0 

COMMAND DISABLE ENABLE RESET SET CLEAR GCMDO 
BYTE 

*Bit not used. 

The status hyt:£ is always zero. 

DIS - Disable DEVICE INTERRUPT (but allow queueing) 

ENAB - Enable DEVICE INTERRUPT 

RESET - Establish Reset Mode, one Write Data selectively reset interrupt lines. 

SET - Establish Set Mode, one Write Data selectively set interrupt lines. 

CLEAR - Clear all pending interrupts 

6 

0 

GCMDl 

GCMOO, GCMD1 - These Command bits may be optionally gated-out to a user's own equipment. 
Their function, .if used, is dependent upon this external equipment. 

7 

0 

* 

Any command :in which Bit 2 and 3 = 0 places the module in the Load Mask Mode. In the Load Mask Mode, 
ooe Write Data is required to S'et the mask. 

INITIALIZA'.l'ION - Disables, interrupts, cl!ear:s all commands, clears all pending interrupts, and places 
the module in the Loatl Mask Mode. 

A8-4 



BIT 
NUMBER 

STATUS 
BYTE 

COMMAND 
BYTE 

* Bit not used. 

STATUS 

PON-

PWF-

EX-

COMMAND 

DISARM -

ARM-

PON-

POFF -

PROTECT 
PATTERN -

INITIALI­
ZATION -

0 

* 

DISARM 

AUTOMATIC MEMORY PROTECT 
STATUS AND COMMAND BYTE DATA 

(HEX ADDRESS AE) 

1 2 3 

* PON PWF 

ARM PON POFF 

4 

* 

* 

This Status bit is set when memory protection is enabled. 

5 6 7 

EX * * 

* * * 

The Protected Write Flag is set when an attempt has been made to write into a 
protected area of memory. PWF is reset only by an Output Command (QC or OCR), 
an Acknowledge Interrupt (Al or Am), or the INITIALIZE pushbutton. 

The Examine bit is set whenever the PWF bit is set. 

This Command bit disables the device interrupt feature and prevents interrupts from 
being queued. 

This Command bit enables a device interrupt to occur when an attempt is made to 
write into a protected area of memory. 

This Command bit enables memory to be protected as per the protection pattern. 

This Command bit overrides all memory.protection. 

After an output command (any output command), the protect pattern may be set up 
with consecutive Write Data instructions. If more than eight Write Data instructions 
are issued, then the protect pattern will wrap around. The ninth WD instruction will 
change Blocks 0-7 etc. 

Dis-arm interrupts, clears PON and PWF flip-flops, and leaves the protect 
pattern un-changed. 

A8•5 



COMMAND .BYTE 

SELECTOR CRANNJilL STATUS AND' 
OOMMAB:J&Y,T:E.Jib\U 

(HEX. ADDRESS FO) 

1 2 

READ GO 

5 

BSY This bit. ts set when .the Seleeto:r Channel is, tn the process of. transferring data. 

6 7 

READ This command changes the mode of the. Selector Channel from Write to Read. In the Read Mode, 
data ls transmitted from the actlv.~Nlevice on the Seleetoir Channel and written into core memory. 
Whenever a Read Da:ta or a Write Data Instruction is issued 1n the Selector Channel, the Selector 
Channel is placed In the Write Mode. Ea.eh time a READ operation is required, a Read Command 
:must be isslled:.. 

GO This command initiates a data: transmission. This command can be issued at the same time the 
Read/Write Mvde is established. 

STOP This command halts any data transmission in process. and initializes the Selector Channel 
for starting. a new operation. It: shoold be· giYe&· when the. Sel~ctor Channel Terminates. 

DEVICE. NiUMBJ!lR:, 
Tille. Sele't*>r Channel is, normally assigned device number X'FO', but may easily be changed by 
a minos-·wt.rtng modification on. the. selecto.F Cbtumel device controller board. Refer to the 
mai~e manual for specific· details •. 

INITIAUZA:T:Rlillf: 

A8•6. 

WheneYer. the; J:niti:aUz.e: switch on:·the Processor is depressed, or a Stop Command is issued, 
the follnwmg actions occur: 

1~ An:y data transmission in process is halted and the stop Mode is effected. 

2. The Selector Channel is placed in the Write Mode. 

3... The Selector Channel is. made idle. 

4. The !ie'lec:tor: Chalmel interrupt is reset• 



READER COMMENTS 

The General Electric Company solicits your comments on publications covering Process Computer 

equipment. Please explain any "no" responses in the COMMENTS section. Your comments and 

suggestions become the property of the General Electric Company. 

• Name of Manual: 

• What is your computer application: 

• How is this publication used: 

Familiarization 

Training 

D 
D 

Reference 

Maintenance 

Other (Explain) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~-
YES NO 

• Does this publication meet your requirements c:J CJ 
• Is the material: 

1) Presented in cl~ar text CJ 
2) Conveniently organized CJ 
3) Adequately detailed CJ 
4) Adequately illustrated CJ 
5) Presented at appropriate technical level CJ 

• Please provide specific text references (page number, line, etc.) with your comments. 

NAME DATE 

TITLE_·~~~~~~~~~~~~~~~ 

COMPANY NAME~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

AND ADDRESS 

COMMENTS: 

PC 228 (5/72) No postage necessary if mailed in the U. S. A. 



Cummunicati0ns concerning Wec:imical '.Ptlblie'atio:ns .should be directed to: 

·Manager, Technical Publications 
Utility and Process .Automation Systems Operation 
2.255 West Desert Cove Road 
Phoenix, Arizona 85029 

::nap1e 

Fold Fold I 

··BUSINESS 'REP.LY -MAIL 
.NO'ff>STAGE NECESSARY 1FMAIL£D '1N THE' UNITED STATES 

Attention: Technical ~s 

Fold 

·POSTAGE WILL BE PAJD BY ••• 

·GENERAL iLECTeRIC COMPANY 
:UTILITY and PR~OCESS ·AUTOMATION 
·:svmMS·'OPERATION 
.2255 West ;Desert Cove Road 
Phoenix, ;Arizona 85029 

FIRST CLASS 
Permit No. 4091 

Phoenix, Arizona 

Fold 

:siuawuw;::> pmornPP'if 

I 

Cll 
c 

j~ 
c 

I ;i 
18 
I 

I 
I 
I 

~ 



Progress is our most important product 

GENERAL fj ELECTRIC 


