GIT-1CS-85/08

SOFTWARE TO™LS - ™ “~Em
USER’S GuIDE

4th Ed.cion
Revised

May, 1985

T. Allen Akin
Terrell L. Countryman
Perry B. Flinn
Daniel H. Forsyth, Jr.
Jefferey S. Lee
Jeanette T. Myers
Arnold D. Robbins
Peter N. Wan

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

INTRODUCTION TO THE
GEORGIA TECH SOFTWARE TOOLS SUBSYSTEM USER’S GUIDE

The documents following this Introduction comprise the most recent version of the User’s
Guide for the Georgia Tech Software Tools Subsystem for Prime 350 and larger computers. This
Guide brings together in one place all the tutorial and reference information useful to novice
and intermediate users of the Subsystem. It deals with several important aspects of Subsystem
use: the user interface in general, unavoidable aspects of the underlying operating system,
and the most-frequently used major commands. Each topic is covered in a separate document
(available individually) and all documents are collected together with this Introduction to
form the Guide itself. Experienced users, as well as beginning users who wish to expand their
knowledge of the Subsystem, will find the Software Tools Subsystem Reference Manual valuable.

The development of the Georgia Tech Software Tools Subsystem was originally motivated by
the text Software Tools > F .~ . ' <ernighan and P. J. Plauger, Addison-Wesley, 1976. That
text is still the basic reference for the tools that it covers, particularly Ratfor, the text

editor, the macro preprocessor, and the text formatter. <

SOFTWARE TOOLS SUBSYSTEM TUTORIAL

USER’S GUIDE TO THE PRIMOS FILE SYSTEM

INTRODUCTION TO THE SOFTWARE TOOLS SUBSYSTEM TEXT EDITOR

USER’S GUIDE FOR THE SOFTWARE TOOLS SUBSYSTEM COMMAND INTERPRETER

USER’S GUIDE TO THE RATFOR PREPROCESSOR

SOFTWARE TOOLS TEXT FORMATTER USER’S GUIDE

Copyright (c) 1985 Georgia Institute of Technology

We are deeply indebted to Ann Richliew for editing this final edition of the Guide. Due to
her efforts, many typographical errors have been fixed, and many inconsistencies removed.

€

This guide was printed on the Xerox 9700 laser printer operated by the Georgia Tech Office of
Computing Services. The fonts supplied by Xerox for this printer do not incliude a boldface
grave accent (‘). 1In boldface, this character prints as a cents sign (¢). So, wherever the ¢
occurs, note that this should really be a grave accent (‘).

Sof tware Tools Subsystem Tutorial

T. Allen Akin
Terrell L. Countryman
Perry B. Flinn
Daniel H. Forsyth, Jr.
Jeanette T. Myers
Arnold D. Robbins
Peter N. wan

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

April, 1985

JABLE OF CONTENTS

b 48 - T8 T
Getting Started it i ittt it st e e e
Correcting Typographical Errors¢cciiiiiinennnnncennnns S heesecncnsesaseeen
Adjusting to Terminal CharacterisSticsttt orneeierneneesssencncenannss
L TR -1 T 1T =T
Automatically RUNNINg the SUDSYStemt iiiiiittieeeneeneessnnneeacoasnseenns

Online Documentation
The ‘Help’ Command
The ‘Usage’ Command

..
...

..

The File System and Related Utilitiest iitetiinennnnnns
Creating Filesttt it ittt ittt eeeeeaneenanneaaessnnesssnsnnnns feooonnnns
Looking at the Contents of Files
Deleting Filesttt it ittt e aeeaeesaaaceansseceessnenennaneneaanasss
The ‘Lf’ ComMmMaNdtiiittennoeesennoneeneesesensssenneansasnssnsssanssanansnnaenas
The Primos File System
Directories

...

..

Subsystem Communication ServiCes i e it
The Subsystem Postal SerVviCettt tinteeaaaneseenssoennsenaneenannnn
The SubsysStem NewsS SerViICEttt it tnnneetinetoaeaeeensenssesenonnsnassonannns
Subsystem Real-Time Communications e ettt et ettt e e

INPUL /DU PUL L .. ettt et
Standard Input and Standard DUTPULt ittt ittt ittt eeeneeeenennoennneeneeessneees
I/0 REAIPBCTION & ittt it ittt ittt innoenonsaneeeeeaeeneeooenaseeesaeseneneeeanoneannenn
Examples of Redirected I/0 USiNg ‘Cat’ ittt eeneeeneneneneeaeeneneenennennss

Using Primos from the Subsystem i it iennaaaann
Executing Primos Commands from the SubsysStem0t ittt nnnnnonnnns

Program Developmentttt i ettt r e it
Developing Programsttt ittt ittt it assaantaetsetonscnenccennncannas
The Subsystem Text Editorttt it ittt ittt teeeaeeaeaseeeeeeeeesseennennnnn
Creating @ PrOgram ittt ittt eesoeeeesssesesesensnnsannesesessssssseseeanneennnns
Caveats for SUDSyStem Programmer sttt ittt ioesenneenennoneaseesneanssonsnss

3 o o - T o

Advanced TeChNIQUEBSt titiietntenaentssssosssossocssennasneenanennnnenss
Command Fil@s ittt it iiietessonennseeaesessonssensssoeennessnnneasesssnssnnnss
g 1 ==
Additional I/0 REOIPECEOINS ... it ittt it te e it e ittt teaeeseeseeeeeeeeeeenaeeenenennnns

LB T - T T T T A

ANCient HiStOry ittt it ittt ittt esnnneroneeseasnsnnnanasnnncans
AULhOrS 8NA Origins ... i ittt ittt ettt ettt oeesnnnnsnesanseeeseeeeeeeseesanennnss

- 1ii -

OONNIIY OO BWON ==

Foreword

The Software Tools Subsystem is a powerful collection of program cevelopment and text

processing tools developed at the Georgia Tech School of Information and Computer Science,

for
use on Prime 350 and larger computer systems. The tutorial that you are now reading is inten-
ded to serve as your first introduction to the Subsystem and its many capabilities. The
information contained herein applies to Version 9.1 of the Subsystem as released in April
1985.

- jiv -

Software Tools Subsystem Tutorial
Introduction

The Software Tools Subsystem is a programming system based on the book Software
Tools, by Brian W. Kernighan and P. J. Plauger, (Addison-Wesley Publishing Company,
1976), that runs under the Primos operating system on Prime 350 and larger com-
puters. It allows much greater flexibility in command structure and input/output
capabilities than Primos, at some small added expense in processing time.

This tutorial is intended to provide sufficient information for a beginning
user to get started with the Subsystem, and to acquaint him with its basic features;
it is by no means a comprehensive reference. Readers desiring a more detailed
exposition of the Subsystem’s capabilities are referred to the Software Tools
Subsystem Reference Manual and to the remainder of the Software 7Tools Subsystem
User‘’s Guide, of which this Tutorial is a part.

Getting Started

Since the Subsystem is composed entirely of ordinary user-state programs, as opposed to
being a part of the operating system, it must be called when needed. In other words, as far
as Primos 1is concerned, the Subsystem is a single program invoked by the user. If the user
wishes to use the Subsystem, he or she must call it explicitly (it is possible to call the
Subsystem automatically on login; we will discuss how to do so a little further on).

The following example shows how a typical terminal session might begin. Items typed by
the user are boldfaced.

0K, legin login_name (1)
Password? (2)
LOGIN_NAME (User 15) logged in Friday, 06 Jul 84 14:22:07. (3)
welcome to PRIMOS version 19.2.

Last login Friday, 06 Jul 84 14:06:32

OK, swt (4)
Password:] (5)
Enter terminal type: ti (6)
] (7)

(1) A terminal session is initiated when you type the Primos LOGIN command.
"Login_name" here represents the login name that you were assigned when your account
was established.

(2) Primos asks you to enter your login password (if you have one) and turns off the
terminal’‘s printer. You then type your password (which is not echoed) followed by a
newline (the key labelled "newline", "“return", or "cr" on your terminal). Note:
password checking on login, as of Rev. 19, is now a standard part of Primos.

(3) Primos acknowledges a successful login by typing your login name, your process num-
ber (in parentheses), and the current time and date. (Note: At Georgia Tech, the
login acknowledgement will look somewhat different from what is shown here.)

(4) Primos 1indicates it is ready to accept commands by typing "OK,". (Whenever you see
this prompt, Primos is waiting for you to type a command.) Type ’‘swt’ (for
"Software JTools") to start up the Subsystem.

(5) ‘Swt’ prompts you for your Subsystem password. This password will have been
assigned to you by your Subsystem Manager at the time he created your Subsystem
account. (Note: Under Georgia Tech Primos, Subsystem passwords are not issued and

not prompted for by ’‘swt’.) After you receive the prompt, enter your Subsystem pas-
sword. It will not be printed on the terminal.

(6) ’Swt’ asks you to enter the type of terminal that you are using. Depending on your
local configuration, you may or may not see this message. If you do see it, enter
the type of terminal you are using. You may obtain the name of your terminal type
by asking your system administrator, or you can enter a question mark ("?") and try
to find your terminal type in the 1ist that ‘swt’ will lisplay for you.

(7) The Subsystem’s command interpreter prompts with "]", indicating that it is ready to
accept commands.

When the Subsystem command interpreter has told you it is waiting for something to do (by
typing the "]1"), you may proceed to enter commands. Each command consists of a ‘command-
name’, followed by zero or more ‘arguments’, all separated from each other by blanks:

command-name argument argument ...

The command name is necessary so that the command interpreter knows what it is you want it to

Software Tools Subsystem Tutorial

do. On the other hand, the arguments, with a few exceptions, are complietely ignored by the
command interpreter. They consist of arbitrary sequences of characters which are made
available to the command when it is invoked. For this reason, the things that you can type as
arguments depend on what command you are invoking.

when you have finished typing a command, you inform the command interpreter of this by
hitting the "newline" key. (On some terminals, this key is labeled "return", or “"cr". If
both the "newline" and "return" keys are present, you should use "return".)

Incidentally, if you get some strange results from including any of the characters
g b, s CY Yy Loy o
within a command name or argument, don’‘t fret. These are called "meta-characters" and each

has a special meaning to the command interpreter. We will explain some of them later on. For
& more complete description of their meaning, see the User’s Guide for the Software Tools

Subsystem Command Interpreter.

Correcting Typographical Errors

If you are a perfect typist, you can probably skip this part. But, if you are like most
of us, you will make at least a few typos in the course of a session and will need to know how
to correct them.

There are three special characters used in making corrections. The "erase" character
causes the last character typed on the line to be deleted. If you want to delete the last
three characters you have typed so far, you should type the erase character three times. If
you have messed up a line so badly that it is beyond repair, you can throw away everything you
have typed on that tine in one fell swoop by typing the "kill" character. The result will be
that two backslashes (\\) are . printed, and the cursor or carriage is repositioned to the
beginning of the line. Finally, the "retype" character retypes the present line, so you can
see exactly what erasures and changes have been made. You may then continue to edit the line,
or enter it by striking the return key.

Wwhen you 1log into the Subsystem for the very first time, your erase, kill and retype
characters are control-h (backspace), DEL (RUBOUT on some terminals), and control-r, respec-
tively. You can, however, change their values to anything you wish, and the new settings will
be remembered from session to session. The ‘ek’ command is used to set erase and kill charac-
ters:

ek erase kill

"Erase" should be replaced by any single character or by an ASCII mnemonic (like "BS" or
"SUB"). The indicated character will be used as the new erase character. Similarly, "kill"
should be replaced by a character or mnemonic to be used as the new kill character. For
instance, if you want to change your erase and kill characters back to the default values of
"BS" and "DEL", you can use the following command:

ek BS DEL

(By the way, we recommend that you do not use "e" or "k" for your erase or kill character. 1If
you do, you will be hard pressed to change them ever again!)

Adjusting to Terminal Characteristics

Unfortunately, not all terminals have full upper/lower case capability. 1In particular,
most of the older Teletype models can handle only the upper case letters. In the belief that
the use of "“good" terminals should not be restricted by the limitations of the "bad" ones, the
Subsystem preserves the distinction between upper and l1ower case letters.

To allow.users of upper-case-only terminals to cope with programs that expect lower case
input (and for other mysterious reasons), the Subsystem always knows what kind of terminal you
are using. You may have told it your terminal type when you entered the Subsystem, or your
system administrator may have pre-assigned your terminal type. In any event, the Subsystem
initially decides whether or not you are using an upper-case-only terminal from this terminal

type.

You can find out what the Subsystem thinks about your terminal by entering the ‘term’
command:

] term

type tty buffer 2

-erase BS -escape ESC -kill DEL

-retype DC2 -eof ETX -newline LF

-echo -1f -xoff -noinh -nose -novth -nolcase
-break

Sortware 100IS dUpsystiem 1utoriai

If the Subsystem thinks you are using an upper-case-only terminal, you will see the entry
"-nolcase" in the 1last 1ine; otherwise, vyou will see "-lcase". If you see that you have
mistakenly entered the wrong terminal type, you can use ‘term’ to change it. To l1ist the pos-
sible terminal types for your installation, enter

] term ?
Then change your terminal type by entering

] term <new terminal type>

If you are using an upper-case-only terminal, the Subsystem converts all subsequent upper
case letters you type to lower case, and converts all lower case letters sent to your terminal
by the computer to upper case. Since your terminal is also missing a few other necessary
characters, the Subsystem also activates a set of "escape" conventions to allow trer tn 2r+~-
other special characters not on their keyboard, and to provide for their printing. wren the
"escape" character (@) precedes another, the two characters together are (recognized by the
Subsystem as a single character according to the following 1ist:

A -> A (note that A -> a in "nolcase" mode)
[Y4 -> Z
o I {
e) -> }
[-> -
”I— _> A}
e! -> H

A11 other characters are mapped to themselves when escaped; thus, "eé-" is recognized as “-".
If you must enter a literal escape character, you must enter two: ‘"ee".

If the Subsystem thinks you have an upper-case-only terminal (i. e., you see "-nolcase"
in the output from ‘term’), you must use escapes to enter upper case letters, since everything
would otherwise be forced to lower case. For example,
A

is used to transmit an upper case ‘A’, while
A

is used to transmit a lower case 'A’.

A1l output generated when "-nolcase" is in effect is forced to upper case for com-
patibility with upper-case-only terminals. However, the distinction between upper and lower
case is preserved by prefixing each letter that was originally upper case with an escape
character. The same is true for the special characters in the above list. Thus,

Software Tools Subsystem
would be printed as

@SOFTWARE eTOOLS eSUBSYSTEM

under "-nolcase".

Finishing Up

when you’‘re finished using the Subsystem, you have several options for getting out. The
first two simply terminate the Subsystem, leaving you face to face with bare Primos. We cover
them here only for the sake of completeness, and on the off chance that you will actually want
to use Primos by itself.

First, you may type

] stop
oK,

which effects an orderly exit from the Subsystem’s command interpreter and gives control to
Primos’ command interpreter. You will be immediately greeted with "OK,", indicating that
Primos is ready to heed your call.

Second, you may enter a control-c (hold the "control" key down, then type the letter "c")
immediately after the "]" prompt from the command interpreter. TAKE HEED that this is the
standard method of generating an end-of-file signal to a program that is trying to read from
the terminal and is widely used throughout the Subsystem. Upon seeing this end-of-file
signal, the command interpreter assumes you are finished and automatically invokes the ’‘stop’

Software Tools Subsystem Tutorial

command.

Finally, we come to the method you will probably want to use most often. The ‘bye’ com-
mand simply ends your terminal session and disconnects you from the computer. The following
example illustrates its use. (Once again, user input is boldfaced.)

1 bye (1)
LOGIN_NAME (User 15) logged out Friday, 06 Jul 84 15:30:00. (2)
Time Used: O1h O8m connect, O1m 06s CPU, Oim 10s 1/0. (3)
oK, (4)
(1) You type the ’‘bye’ command to end your terminal session.
(2) Primos acknowledges, printing the time of logout.
£

(3) Primos prints a summary of. _ines usad.

. The first time is the number of hours and minutes of connect time.
The second time is the number of minutes and seconds of CPU time.
The third time is the number of minutes and seconds spent doing disk i/o.

(4) Primos signals it is ready for a new login.

Note the the ’‘bye’ command is equivalent to exiting the Subsystem and executing the Primos
LOGOUT command.
Automatically Running the Subsystem

With Primos Rev. 18, you can arrange to automatically run the Subsystem when you log in.
Simply put the command ‘swt’ into a file named ’‘login.comi’ in the directory to which you will
be attached when you log in.

Primos will execute the command(s) in this file automatically. Furthermore, if your
profile directory is an ACL directory instead of a password directory, the Subsystem will not
even ask you for a password, since the file system provides the protection automatically. (If

this paragraph makes no sense to you at all, don’‘t worry about it. It isn‘t all that
important.)

Software Tools Subsystem Tutorial

Online Documentation

Users, old and new alike, often find that their memories need jogging on the
use of a particular command. It is convenient, rather than having to 100k something
up in a book or a manual, to have the computer tell you what you want to know. Two
Subsystem commands, ‘help’ and ‘usage,’ attempt to address this need.

The ‘Help’ Command

The ‘help’ command is designed to give a comprehensive description of the command in
question. The information provided includes the following: a brief, one-line description of
what the command does; the date of the last modification to the documentation; the usage
syntax for th» command (what you must type to make it do what you vart '* t do;; a detailed
description of the command’s features; a few examples; a l1ist of filus referenced by the com-
mand; a 1ist of the possible messages issued by the command; a 1ist of the (.command’s known
bugs or shortcomings; and a cross reference of related commands or documentation.

‘'Help’ is called in the following manner:
help command-1 command-2 ...

If help 1is available for the specified commands, it is printed; otherwise, ‘help’ tells you
that no information is available.

‘Help’ will only print out about as many lines as will fit on most CRT screens, and then
prompt you with a message ending "more?". This allows you to read the information before it
rolls off the screen, and also lets you stop getting the information for a command if you find
you‘re not really interested. To stop the output, just type an “n" or a "q" followed by a
NEWLINE. To continue, you may type anything else, including just a NEWLINE.

Several special cases are of interest. One, the command "help" with no arguments is the

same as "help general", which gives general information on the Subsystem and explains how to
use the help command. Two, the command "help -i" produces an index of all commands supported
under the Subsystem, along with a short description of each. Finally, "help bnf" gives an

explanation of the conventions used in the documentation to describe command syntax.

Examples of the use of ‘help’:

] help (1)
] help -i (2)
1 help rp ed term (3)
] help bnf (4)
1 help guide (5)

(1) General information pertaining to the Subsystem, along with an explanation of the
‘help’ command, is listed on the terminal.

(2) A list of currently supported commands and subprograms, each with a short descrip-
tion, is listed on the terminal.

(3) Information on the Ratfor preprocessor, the Software Tools text editor, and the
terminal configuration program is printed on the terminal.

(4) A description of the notational conventions used to describe command syntax is
printed.

(5) Information on how to obtain the Subsystem User’s Guides is l1isted on the terminal.

Since beginning users frequently find printed documentation helpful, you may find the
following procedure useful. Unfortunately, it involves many concepts not yet discussed, so it
will be rather cryptic; nevertheless, it will allow you to produce a neatly-formatted copy of
output from ‘help’.

»
] help -p | os >/dev/1ps/f
] help -p rp se term | os >/dev/ips/f
] help -p -i | os >/dev/1ps/f

o~~~

1
2
3

(1) The general information entry is printed on the line printer.

(2) 1Information on the Ratfor preprocessor, the screen editor, and the terminal con-
figuration program is printed on the line printer.

Software Tools Subsystem Tutorial

(3) The index of available commands and subprograms is printed on the lime printer.

The ‘Usage’ Command

whereas ’'help’ produces a fairly comprehensive description of the command 1in question,
the ‘usage’ command gives only a brief summary of the syntax of the command. The syntax is
expressed in a notation known as Backus-Naur Form (BNF for short) which is itself explained by
typing "help bnf".

The ‘usage’ command is used in the same way as the ‘help’ command, as the following exam-
ples iliustrate.

] usage usage
] usage fat ha'>

—~—~
N -
- -

(1) The syntax of the ‘usage’ command is printed.

(2) Usage information on the Software Tools text formatter and the ‘help’ command is
printed.

Software Tools Subsystem Tutorial
The File System and Related Utilities

Users spend much of their time creating, deleting, modifying and manipulating files.
The utilities discussed in this section perform these tasks.

Creating Files

The most common way to create a file is to write the contents of a text editor to a new
filename. Another common way (especially for creating small files) is to use the ‘cat’ com-
mand. Both of these methods are covered later in this guide. Right now, we prefer that you
not be concerned with creating large, elaborate files or with knowing about more advanced
features of the Subsystem. Instead, we will show you a simple method for creating one-1ine
files. (Although you may not understand the commanc forac. at this point in time, don’t worry
because you will by the time you get through the tutorial).

(

You can use the command ‘echo’ to create files as in the examplies below:

] echo xxxx >file_of_x (1)
] echo contents of myfile >myfile (2)

(1) Creates a file named "file_of_x" containing "xxxx".
(2) Creates 2 file named "myfile" containing the line "contents of myfile".

In case you were wondering, you can only use letters, digits, underscores, and periods in
file names. (You can actually use a few other characters in names, but that can get you into
trouble.) The names must not start with a digit, and can be no longer than 32 characters.

Looking at the Contents of Files

There are several ways of looking at the contents of a file. One command that you can
use is the ‘cat’ command. ‘Cat’ is an alias for Kernighan and Plauger‘s program ‘concat’,
which appears on page 78 of Software Tools. It has a simple function: to concatenate the
files named in its argument 1ist, and print them on standard output. If no files are named,
it takes input from standard input. (More on standard input and output in a subsequent sec-
tion, which has examples using ‘cat.’ For now, just assume that standard input comes from the
terminal and standard output goes to the terminal.)

Here are some sampies of how to use ‘cat’. For more important and useful ones, see the
following section.

] cat myfile (1)
] cat partti part2 part3 (2)
] cat (3)

(1) Prints the file named "myfile" on the user’s terminal; i.e., "myfile" is
concatenated with nothing and printed on standard output.

(2) Prints the concatenation of the files named “"parti", "part2", and "part3" on the
terminal.

(3) Copies standard input to standard output. On a terminal, this would cause anything
you typed to ‘cat’ to be echoed back to you. (If you try this, the way to stop is
to type a control-c as the first character on the 1ine. As we said before, lots of
programs use this end-of-file convention.)

Deleting Files

Sooner or later, you will find it necessary to get rid of some files. The ‘del’ command
serves this need very nicely. It is used l1ike this: 4

del filet file2 file3 ...
to remove as many files as you wish. Remember that each file can be specified by a pathname,
so you are not limited to deleting files in your current directory; but of course, you can
delete only files that belong to you.
The ‘Lf‘’ Command

The ‘1f’ (for "list files") command is the preferred method for obtaining information
about files. Used by itself without any arguments, ’‘1f’ prints the names of all the files in

Software Tools Subsystem Tutorial

your current directory in a multi-column format. This, however, is by no means all that ’‘1f’
can do. In fact, used in its general form, an ‘1f’ command looks something like this:

1f options files

The "files" part is simply a list of files and/or directories that you want information
about. If the "files" part is omitted, ‘1f’ assumes you mean the current directory. For each
file in the list, information about that file is printed; for each directory listed, informa-
tion about each file within that directory is printed.

The "options" part of the command controls what information is to be printed. It is com-
posed of a dash ("-") followed by a string of single character option specifiers. Some of the
more useful options are th? following:

~C iprint information in a single column format.
d for each directory in the list, print information about the directory itself instead
of about its contents.
1 print all known information about the named files.
w print the size (in 16-bit words) of each named file.

(As always, if you would like complete information on ‘1f’, just use ‘help’.) As we said
above, if no options are given, then only the names of the files are printed.

Here are some examples of ‘1f’ commands:

1 //1kJ§

]
1 1§ -1
]
] 1§ -cw //1kj =extra=/news

A~~~ —~
HWN =
Nt - N

(1) List the names of all files in the current directory, in a multi-column format.

(2) List the names of all files in the current directory, including all information that
is known about each file.

(3) List the names of all files in the directory named "l1kj".

(4) List the names and sizes of lkj’‘’s files in a single-column format, followed by the
names and sizes of all files in directory “"=extra=/news".

The Primos File System

Primos files are stored on several disk packs, each with a unique name. Each pack
contains a master file directory (mfd), which contains a pointer to each primary directory on
that disk. Each of these primary directories (ome for each user, and several special ones for
the system) may contain sub-directories, which may themselves contain further sub-directories,
ad infinitum. Any directory may aiso contain ordinary files of text, data, or program code.
This diagram shows a simple structure that we will use as an example:

sys users
/ | \ /N
bin extra edward kate
/ 1\ i / A
1f cat ... users p1 p2 p2 kd:r

)
kf1

In this examé\e. the mfds are named "sys" and “users", while there are primary directories
named "bin", "extra", "edward", and "kate".
K

The Subsystem ailoﬁé you to specify the location of any file with a construct known as a
"pathname." Pathnames have several elements.

. The first characters of a pathname may be a slash, followed by a disk packname or
octal logical disk number, followed by another slash (e.g. *sys" in the diagram
above could be referred to as "/0/" or "/sys/"). The named disk is the starting
point for the search of the rest of the pathname. The disk name may be omitted,
implying that all disks are to be searched. For example, "//edward" would cause a
search for a primary directory named "edward" starting its search at "sys" and then
"users" where "//edward" is found.

sSoftware 100i1S dUpsystem iutoriail

. When a pathname does not begin with a slash, the file search operation begins with
your current directory. You can think of your current directory as your “location"
in the file system at the time you use the pathname. For instance, if your current
directory was "/users/edward" and you used the name "p2", you would get the file
"p2" under "/users/edward"; however, if your current directory was */users/kate" you
would get the file "p2" under "/users/kate". Later, you will see how to find out
the name of your current directory and how to "move around”" the file system by
changing your current directory.

. The remainder of the pathname consists of "“nodes", separated by slashes. Each node
contains the name of a sub-directory or a file. (For revisions of Primos below Rev
19, which have passworded directories, you may have to specify nodes as a name pos-
sibly followed by a colon (":") and a password.) For exampie

kdir
extra
sys : xxxxxx (pre-Rev 19 Primos)

are nodes.

when nodes are strung together, they describe a path to a file, from anywhere in the file
system. Hence the term "pathname." For example,

/sys/bin
names the primary directory named "bin", located on the disk whose packname is "sys".
//extra/users

names the file named "users" in the primary directory named "extra" on some unknown disk (a1l
disks will be searched);

p2

names the file "p2" 1in "/users/edward" if your current directory is "/users/edward" or the
file "p2" in "/users/kate" if your current directory is "/user/kate".

kdir:pwd/kf1

names the file "kf1" in the directory "kdir" (with password "pwd"), in a pre-Rev 18 Primos
file system, only if your current directory is "/user/kate".

Certain important Subsystem directories have been given alternative names, called "tem-
plates," in order to allow the Subsystem manager to change their Jlocation on disk without
disturbing existing programs (or users). A template consists of a name surrounded by equals
signs ("="). For example, the Subsystem command directory is named "bin". which could be
referred to on a standard system as "//bin." If the Subsystem Manager at your installation
had changed the location of the command directory, the command above would not work. To avoid
this problem, you could use the template for "bin", "=bin=". which would correctly reference
"bin' regardiess of its location. There exist templates for all of the most important Sub-
system directories; for more information on them, and on pathnames in general, see the User’s
Guide to the Primos File System.

A word on upper and Jlower case: The Primos file system does not distinguish between
upper and lower case, thus "//BIN", "//Bin", and "//bin" are all the same. However, the Sub-
system template mechanism does distinguish between upper and lower case, s0 "=BIN=", "=Bin=",
and “"=bin=" are three different templates. This can be a subtle trap for the unwary.
Directories

Directories can be created with the ‘mkdir’ ("make directory) command; e.g.

] mkdir /users/edward
will create the directory "edward" under the master file directory "users". The command
»
] mkdir edward

will create the directory "“"edward" in the current directory.

As mentioned above, the ’‘1f’ command can be used to 1ist information about directories
and the files and subdirectories contained therein; e.g.,

1 1¥ /users/edward
] ¥ edward

Software Tools Subsystem Tutorial

Finally, directories, 1like files, can be deleted with ‘del’. However, unlike files,
directories cannot be deleted until all the files and subdirectories contained 1in them have
been deleted. If "edward" is an empty directory it can be deleted with the command

] del edward
If "edward" is not an empty directory then it can be deleted with the command
] del -ds edward
where the the "-ds" specifies to delete the contents of the directory, then the directory
itself.
Moving Around in the File System

You can change your current directory with the ‘cd’ (change directory) command. Simply

type ‘cd’ followed by the pathname of the directory to which you wish to move and, as long as

its a valid directory name, you will be promptly deposited there; e.g.

] ed /users/edward
] ed kdir

Note that in the second example, since the pathname ‘kdir’ is not preceded by slashes, your
current directory must be "/users/kate" for it to work.

You can move "up" in the file system with
led)\

For instance, if you were in "/users/kate/kdir" and you typed "cd \", your current directory
would then be "/user/kate".

Finally, if you get lost, you can find out where you are with the command
] ed -p

It will print the full name of your current directory.

- 10 -

Software Tools Subsystem Tutorial

Subsystem Communication Services

Communication utilities are becoming increasingly important 1in today’s computer

systems. The Subsystem, in keeping up with the times, offers as its most important
communication facilities a postal and news service and a real-time communication
system.

The Subsystem Postal Service

In order to facilitate communication among users, the Subsystem supports a postal service
in the form of the ‘mail’ command. ‘Mail’ can be used in either of two ways:

] m i3

which looks to see if you have been sent any mail, prints it on your terminaX, and asks if you
would l1ike you. mail to be saved, or

1 mail login_name
which accepts input from standard input and sends it to the mailbox of the user whose login
name is "login_name". Used in this fashion, ‘mail’ reads until it sees an end-of-file. From
the terminal, this means until you type a control-c in column 1. Your letter is postmarked
with the day, date and time of mailing and with your login name.

Whenever you enter the Subsystem (by typing ’‘swt’) a check is made to see if you have

received any mail. If you have, you are told so. When you receive your mail (by typing
‘mail’), you are asked if you want it to be saved. If you reply "n", the mail you have just
received will be discarded. Otherwise, it is appended to the file "=mailfile=", which is

located in your profile directory. (You can look at it with ‘cat’, print it with ‘pr’, or do
anything else you wish to it, simply by giving its name to the proper command. For example,

] cat =mailfile=
would print all your saved mail on your terminal.)

If you have declared the shell variable "_mail_check", (but not set it), the shell will
check your mail file every 60 seconds, to see if it has increased in size. If it has, the
shell will tell you, "You have new mail." You may then read your mail with the ‘mail’
program. If you want it to check you mail more frequently, or less frequently, you may set it
to the number of seconds between checks. For instance:

declare _mail_check = 300 # check mail every five minutes

By default, "_mail_check" will not be set for new users, so the shell will only check your
mail once, when the Subsystem is first cranked up. (See the User’s Guide for the Software
Jools Subsystem Command Interpreter for a more detailed discussion of the use of shell
variables.

Due to the nature of the file system, setting "_mail_check" to less than four will be no
different than setting it to four. At Georgia Tech, the mail directory is shared among
several machines, so, since the shell has to go across Primenet, you should set "_mail_check"
to a fairly large value, say 300, for once every five minutes.

The Subsystem News Service
Whereas ‘mail’ is designed for person to person communication, the Subsystem news service
is intended for the publication of articles that appeal to a more general interest. The news
service is implemented by three commands: ‘subscribe’, ‘publish’ and ‘news’. The use of the
first two should be obvious.
If you wish to subscribe to the new service, simply type
] subscribe ’
and then, whenever anyone publishes an article, a copy of it will be delivered to your news
box. (You need subscribe to the news service only once; all subscriptions are perpetual.)
whenever you enter the Subsystem, as with mail, a check is made to see if there is anything in
your news box; if there is, you are given a message to that effect.
Having gotten such a message, you may then read the news at your convenience by typing
] news
The news will be printed out on your terminal and then you will be asked whether or not you
want to save it. If you say "yes", it will be left in your box and you may read it again at a

- 11 -

Software Tools Subsystem Tutorial

later date; otherwise, it is discarded. There are other ways to use the ‘news’ command that
are fully explained by ‘help’.

Now suppose you have a hot story that you want to publish. All you have to do is create
a file (let’s call it "article") whose first line is the headline, followed by the text of the
story. Then you type

] publish article

and your story will be delivered to all subscribers of the news service. If you are a sub-
scriber yourself, you can check this with the ‘news’ command. In addition, a copy is made in
the news archives.

If you find that you have published the wrong article or if you want to remove an out-
dated one, you can do a

] retract <article number>

to remove the article, where <article number> is the sequence number obtained from the news
index ("news -i" will give you such an index). A retraction notice will be delivered to all
subscribers who have seen the article, and the article will simply be removed from the news
boxes of subscribers who have not yet seen it. If you are only removing an outdated article,
then using

] retract -q <article number>

will quietly remove all traces of the article, leaving no retraction notices behind to disturb
those who have seen it.

Subsystem Real-Time Communications

As if ‘mail’ and ‘news’ were not enough, the Subsystem offers still another way to com-
municate with your fellow user, by means of the ‘to’ command. ‘To’ allows you to communicate
with other logged-in users on a real-time basis; messages that are sent to another user by the
command

] to login_name <message> .
will be retrieved by the user whose login name is "login_name" the next time his shell is
ready for a command. Contrast this behavior to that of ’‘mail’, where the message must be
retrieved by an action on the part of the addressee. If <message> contains any of the shell’s
metacharacters, it must be enclosed in quotes, as in:

] to allen "Where are you, and what are you doing?"

If you want to send a multi-1ine message, ‘to’ will read your message from standard input
(just 1ike most other Subsystem programs), so that the only argument you would specify in this
case would be the login_name. As always, a control-c in column 1 will generate an end-of-file
to terminate your input.

Messages are only retrieved when the shell is ready for the next command, so a user who
is running a long program may not see your messages until long after you have sent them. If
he logs out before he sees your messages. they will sit there, waiting to be retrieved until
the next time he logs in.

To alleviate this somewhat, the Subsystem screen editor, ‘se’, will notify you if there
is a message waiting for you. See the "om" command in the help on ’‘se’ for details.

Software Tools Subsystem Tutorial
Input/Output

One of the most powerful features of the Software Tools Subsystem is its handil-
ing of input and output. As much as possible, the Subsystem has been designed to
shield the user from having to be aware of any specific input or output medium; it
presents to him, instead, a standardized interface with his environment, This
facilitates use of programs that work together, without the need for any esoteric or
complicated programming technigues. The ability to combine programs as cooperating
tools makes them more versatile; and the Software Tools Subsystem makes combining
them easy.

Standard lnput and Standard Output

Programs in the Subsystem do not have to be written to read and write to specific
devices. In fact, most commands are written to read from "anything" and write to "anything."
Only when the command 1is executed do you specify what “anything" is, which could be your
terminal, a disk file, device etc. "Anythings" are more formally known as ‘standard ports‘;
those available for input are called ‘standard inputs’, and those available for output are
called ‘standard outputs’.

Standard inputs and standard outputs are initially assigned to your terminal, and revert
back to those assignments after each program terminates. However, you can change this through
a facility known as "input/output redirection" (or "i/o redirection" for short).

I1/0 Redirection

As we mentioned, standard input and output are by default assigned to the terminal.
Since this is not always desirable, the command interpreter allows them to be redirected
(reassigned) to other media. Typically, they are redirected to or from disk files, allowing
one program’‘s output to be saved for later use perhaps as the input to another program. This
opens the possibility for programs to co-operate with each other. What is more, when programs
can communicate through a common medium such as a disk file, they can be combined in ways
innumerable, and can take on functions easily and naturalily that they were never individualily
designed for. A few examples with ‘cat’ below, will help to make this clear.

However, let us first examine the techniques for directing standard inputs and standard
outputs to things other than the terminal. The command interpreter supports a special syntax
(called a funnel) for this purpose:

pathname> (read "from" pathname)
redirects standard input to come from the file named by "pathname";

>pathname (read "toward" pathname)

redirects standard output to go to the file named by "pathname". For example, suppose you
wanted a copy of your mail, perhaps to look at slowly with the editor. 1Instead of typing
mail

which would print your mail on the terminal, you would type
mail >mymail

which causes your mail to be written to the file named "mymail" in the current directory. It
is important to realize that ‘mail’ does nothing special to arrange for this; it still thinks
it is printing mail on the terminal. It is more important to realize that any program you
write need not be aware of what file or device it is writing on or reading from.

A bit of terminology from Software Tools: programs which read only from standard input,
process the data so gathered, and write only on standard output, are known as "filters." They
are useful in many ways.

td

Examples of Redirected I/0 Using ‘Cat’

Now, ‘cat’ does not seem like a particularly powerful command; all it can do is
concatenate files and do some peculiar things when it isn’t given any arguments. But this
behavior is designed with redirected i/o in mind. Look through the following examples and see
if they make sense.

cat filet >file2
What this does is to copy "filet" into "file2". Note that since ‘cat’ sends its output to
standard output, we have gained a copy program for free.

- 13 -

Software Tools Subsystem Tutorial

cat filet file2 file3 >total

This example concatenates "filei", "file2", and "file3" and places the result in the file
named "total". This is probably the most common use of ‘cat’ besides the simple "cat
filename".

You need to be careful with the files to which you redirect i/o. In the above example,
if a file by the name of "total" already exists, its contents will be replaced by the
concatenation of "filet", "file2" and "file3". Similarly if you try the command

cat filel file2 file3 >filel

disaster results as it first clobbers "filei", destroying its contents for good.)

£

cat >test

This is an easy way to create small files of data. ‘Cat’ does not see any filenames for it to
take 1input from, so it reads from standard input. Now, notice that where before, this simply
caused lines to be echoed on the terminal as they were typed, each line is now placed in the
file named "test". As always, end-of-file from the terminal 1is generated by typing a
control-c in column 1.

One thing that is extremely important is the placement of blanks around i/o redirectors.
A funnel (">") must not be separated from its associated file name, and the entire redirector
must be surrounded by at least one blank at each end. For example, "file> cat" and ‘"cat
>file" are correct, but "file > cat", "cat > file", "file>cat" and "cat>file" are all
incorrect, and may cause catastrophic results if used!

You can see that more complicated programs can profit greatly from this system of i/o.
After all, from a simple file concatenator we have gained functions that would have to be per-
formed by separate programs on other systems.

There are other, more complicated i/o redirectors available to you. See the User’s Guide
for the Software Tools Subsystem Command Interpreter for a full, in-depth discussion of the

acilities the shell provides.

Software Tools Subsystem Tutoriatl

Using Primos from the Subsystem

Unfortunately, a few functions of Primos and its support programs have not been
neatly bundled into the Subsystem. The Subsystem commands that address this problem
are the topic of this section.

Executing Primos Commands from the Subsystem

The commands ‘x’ and ‘primos’ can be used to access Primos programs and commands without
having to go through the work of leaving and re-entering the Subsystem.

‘X’ may be used in either of two ways; the first is

s

x Primos-command
This is the method of choice for executing a single Primos command. You will probably want to
put double quotes around the Primos command to keep the Subsystem from becoming annoyed at
metacharacters such as ">" and "<" being used in the Primos command.

The second way to use ‘x’ is to use it without arguments. Here is an example:

] x

ok, status net

ok, message -9 now
Hi there.

ok, <control-c>

This method allows many Primos commands to be executed. In this case, ‘x’ reads a line at a
time and passes it to the Primos command interpreter for execution. If the Primos return code
is positive, ‘x’ continues to the next line; if not, ‘x’ exits to the Subsystem. ‘X’ will
also return to the Subsystem when it encounters a control-c or a Primos REN. The prompt,
"ok,", is 1in small letters to remind you that it is the command ‘x’ producing the prompt and
not Primos.

The second command, ’‘primos’, invokes a new level of the Primos command interpreter from
the Subsystem. (With this command, the Primos command interpreter prints the prompt "OK," and
your commands are received directly by it.) You can return to the Subsystem by typing the
Primos REN command.

Software Tools Subsystem Tutorial

Program Development

One of the most important uses of the Software Tools Subsystem is program
development. The Ratfor language presented in Software Tools is an elegant language
for software developers, and is the foundation of the Subsystem; virtually all of
the Subsystem is written in Ratfor.

Developing Programs

To acquaint you with the several steps of program development, we present an example in
which we develop a simple Ratfor program. We use a Ratfor example here because Ratfor is the
most widely used language fn the Subsystem --- but for a few lines here and there, the entire
Subsystem is written in Ratfor. 1If you want to learn more about Ratfor programming, you can
read the User‘’s Guide for the Ratfor Preprocessor. Meanwhile, on with the example . . .

The Subsystem Text Editor

The first program most users will see when they wish to create another program is ‘ed’,
the Subsystem text editor, or if you have a crt, ‘se’, the screen editor. A complete descrip-
tion of either is beyond the scope of this tutorial, but a short list of commands (accepted by
both the 1line editor and full screen editor) and their formats, as well as an example using
‘ed, ’ should help you get started. For more information refer to Introduction to the Software
Jools Text Editor and of course to Software Tools.

'Ed’ is an interactive program used for the creation and modification of "text". "Text"
may be any collection of characters, such as a report, a program, or data to be used by a
program. All editing takes place in a "buffer", which is nothing more than ‘ed’s own private
storage area where it can manipulate your text. '‘Ed’s commands have the general format
<line number>,<1ine number><command>

where, typically, both 1l1ine numbers are optional. Commands are one letter, sometimes with
optional parameters.

The symbol <1ine number> above can have several formats. Among them are:

. an 1nteger} meaning the line with that number. For example, if the integer 1is 7,
then the 7th 1ine in the buffer;

. a period ("."), meaning the current line;

. a dollar sign (“$"), meaning the last l1ine of the buffer;

. /string/, meaning the next line containing "string";

. string , meaning the previous line containing "string";

. any of the above expression elements followed by "+" or "-" and another expression

element.

A1l commands assume certain default values for their line numbers. In the 1list below,
the defaults are in parentheses.

Command Action
(.)a Appends text from standard input to the buffer after the line

specified. The append operation is terminated by a 1ine containing
only a period in column 1. Until that time, though, everything you
type goes into the buffer.

(.,.)d Deletes lines from the first 1ine specified to the last 1line
specified.
e filename Fills the buffer from the named file. Anything previously in the

buffer is lost.

(...)p Prints lines from the first line specified to the last. 1,$p prints
the entire buffer.

q Causes ‘ed’ to return to the command interpreter. Note that unless
you have given a "w" command (see below), everything you have done to
the buffer is lost.

Software Tools Subsystem Tutorial

(.)r filename Reads the contents of the named file into the buffer after the
specified line.

(.,.)s/old/new/p Substitutes the string "new" for the string "old". If the trailing p
is included, the result is printed, otherwise ‘ed’ stays quiet.

(1,8$)w filename Writes the buffer to the named file. This command must be used if
you want to save what you have done to the buffer.

? Prints a longer description of the last error that occurred.

If ‘ed’ is called with a filename as an argument, it automatically performs an "e" com-
mand for the user.

‘Ed’ is extremely quiet. The only diagnostic message issued (except in a time of dire
distress) is a question mark. AImast always it is obvious to the user what is wrong wien ‘2¢’
complains. However, a longer description of the problem can be had by typing "?" as the wxt
command after the error occurs. The only commands for which ‘ed’ provides unsolicited
information are the "e", "r", and "w" commands. For each of these, the number of lines i -ans-
ferred between the file and ‘ed’s buffer is printed.

You should note that specifying a 1ine number without a command is identical to specify-
ing the 1ine number followed by a "p" command; i.e., print that line.

Creating a Program

Now that we have a basic knowledge of the editor, we should be able to use it to write a
short program. As usual, user input is boldfaced.

] ed (1)
a (2)
now --- print the current time (3)
def ine(TIME_OF_DAY,2) (4)
character now (10) (5)
call date (TIME_OF_DAY, now) (6)
call print (STDOUT, "Now: *sxn"s, now (7)
stop (8)
end (9)
. (10)
W now.r (11)
11 (12)
q (13)

] (14)

(1) You invoke the editor by typing "ed" after the command interpreter’s prompt. ‘Ed,’
in its usual soft-spoken manner, says nothing.

(2) ‘Ed’s "a" command allows text to be added to the buffer.

(3) Now you type in the text of the program. The sharp sign "#" introduces comments in
Ratfor.

(4) Ratfor’s built-in macro processor is used to define a macro with the name
"TIME_OF_DAY". Whenever this name appears in the program, it will be replaced by
the text appearing after the comma in its definition. This technique is used to
improve readability and allow quick conversions in the future.

(5) An array "now", of type character, length 10, is declared.

(6) The library routine ‘date’ is called to determine the current time.

(7) The library routine ‘print’ is called to perform formatted output to the program’s
standard output port.

(8) The *“stop" statement causes a return to the Subsystem command interpreter when
executed.

(8) The "end" statement marks the end of the program.

(10) The period alone on a line terminates the "a" command. Remember that this must be
done before ‘ed’ will recognize any further commands.

Software Tools Subsystem Tutorial

(11)
(12)
(13)

(14)

Now

with the "w" command, ‘ed’ copies its buffer into the file named "now.r".
‘Ed’ responds by typing the number of l1ines written out.

The "q" command tells ‘ed’ to quit and return to the Subsystem’s command
interpreter.

The Subsystem command interpreter prompts with a right bracket, awaiting a new com-
mand.

we are talking to the command interpreter again. We may now use the ‘rp’ command to

change our program from Ratfor into Fortran, and hopefully compile and execute it. :

1)

(2)

(3)

1 rp now.r ‘ (1)
8 (.main.): ‘<NEWLINE>’ misting right parenthesis. (2)
] (3)

‘Rp’ is called. The argument "now.r" directs Ratfor to take its input from the file
"now.r" and produce output on the file "now.f".

‘Rp’ has detected an error in the Ratfor program. ‘Rp’s error messages are of the
form

line (program-element): ‘context’ explanation
In this case, a missing parenthesis was detected on 1ine 8 in the main program.

‘Rp’ has returned to the Subsystem’s command interpreter, which prompts with "]".

Looking back over the program, we quickly spot the difficulty and proceed to fix it with

‘ed’:

(1)

(2)
(3)
(4)

(s)
(e)
(7)

(8)
(9)
(10)

(11)

] ed now.r (1)
11 (2)
8 (3)
call print (STDOUT, "Now: *sx*n"s, now (4)
s/, now/, now)/p (5)
call print (STDOUT, "Now: *s*n's, now) (e)

" (7)
11 (8)
(9)

1 rp now.r (10
(11

)
])
The editor is called as before. However, since we have given the name of a file,
"now.r", to ‘ed’ as an argument, it automatically does an "e" command on that file,
bringing it into the buffer.
‘Ed’ types the number of lines in the file.
we type the line number 8, since that is the l1ine that ‘rp’ told us had the error.

‘Ed’ responds by typing the 1ine. (Remember that a line number by itself is the
same as a "p" command of that 1ine number.)

we use ‘ed’s "s" command to add the missing parenthesis. Note the use of the "p" at
the end of the command.

‘Ed’ makes the substitution, and since we have specified the “p", the result is
printed.

we now write the changed buffer back out to our file (‘ed’ remembers the file name
Ynow.r" for us).

‘Ed’ prints the number of l1ines written.
we exit from the editor with the quit command “q".

we invoke Ratfor to process the program. Ratfor detects no errors. The output of
the preprocessing is on file "now.f".

The command interpreter prompts us for another command.

Now that the Ratfor program has been successfully preprocessed, it is time to compile the
Fortran output, which was placed in the file "now.f". ‘Fc,’ should be used to compile Sub-
system programs, since it selects several useful compiler options and standardizes the com-

- 18 -

Software Tools Subsystem Tutorial

pilation process:

] fc now.f
0000 ERRORS [<.MAIN.>FTN-REV19.2]
]

A1l of the garbage between the "fc" and the "]" prompt is stuff produced by the Fortran
compiler and is mostly irrelevant at this point. The essential thing to recognize about it is
that the number before "ERRORS" is zero.

Now that our program has compiled successfully, we bravely proceed to invoke the Linking
Loader using ‘1d.’ '’‘Fc’ has left the output of Fortran in the file "now.b". We will use
‘1d’s "-o" option to select the name of the executable file:

1 1d row.b -0 now

[SEG rev 19.2.GT]

vl # {
$ co ab 4001

$ sy swt$cm 4040 40000

$ sy swt$tp 2030 120000

$ mi

$ s/10 now.b O 4000 4000

$ s/1o ‘1ib>vswtib’ O 4000 4000
$ s/1i O 4000 4000

LOAD COMPLETE

$ ma 6

$ re

sh

TWO CHARACTER FILE 1ID:

delete

q

]

Again, all the noise between "1d" and "]" comes from the Loader. The important thing to
notice here is the "LOAD COMPLETE" message, which indicates that linking is complete. If we
did not get the "LOAD COMPLETE" message, we would re-link using the command "1d -u now.b -0
now" and the loader would then l1ist the undefined subprograms.

we now have an executable program in our directory. We can check this using ‘1f‘:

1
now now.b now. f now.r

]

Deciding we do not need the Fortran source file and the intermediate binary file hanging
around, we remove them with ‘del’:

] del now.f now.b
1 1f
now now.r

]
And getting really brave, we try to run our newly created program:

] now
Now: 16:34:41
]

Hopefully the preceding example will be of some help in the development of your own (more
important) programs. Even though it is simple, it shows almost all the common steps involved
in creating and running a typical program.

Caveats for Subsystem Programmers
Since the Subsystem is exactly that, not an operating system but a sub-system, programs

written for it must follow a few simple conventions, summarized below.

To exit, a program running under the Subsystem should either use a "stop" statement
(Ratfor programs only), "return" from the main program (Pascal and PL/I G), or call
the subroutine "swt". Specifically, the Primos routine "exit" must not be called to
terminate a program.

- 19 -

Software Tools Subsystem Tutorial

Whenever possible, Subsystem i/0 and utility routines should be used instead of
Primos routines, since the latter cannot handle all aspects of the Subsystem files.
If, however, programs must use native i/o routines, remember that they must inform
their native i/o routines of the Subsystem by calling the proper initialization
routines (see Subsystem Interface Subroutines in the table below), or they will not
be able to take advantage of standard input, standard output or any of the other i/o
related features provided by the Subsystem.

The Subsystem interfaces available for Primos languages and utilities are summarized
below:

Language Primos Primos Subsystem
or Subsystem Commands Interface
Utility Interface Interfaced Subroutines
o xce cc -
xcel CC, SEG
Cobo1l cobc COBOL -
cobcel coBOL, SEG
Database fsubc FSUBS -
fdmic FDML
fdmicl FDML, FTN,
SEG
csubc CSuBS -
cdmic CDML
cdmicl CDML,
coBoOL,
SEG
ddlic SCHEMA -
Debugger dbg DBG -
vpsd SEG
Fortran 66 fc FTN init$f,
fel FTN, SEG getas$f
Fortran 77 f77c F77 init$f,
£77¢1 F77, SEG - getas$f
Loader id SEG -
Pascal pc PASCAL init$p,
pcl PASCAL, SEG file$p,
getasp
PL/P plpc PLP -
plpel PLP, SEG
PL/1 G plgc PL1G init$plg,
plgcl PL1G, SEG getasplg
Prime pmac PMA -
Assembler pmacl PMA, SEG
SPL splc SPL -
spicl SPL, SEG

Use 'he16’ or refer to the Subsystem Reference Manual for a complete description of
Primos/Subsystem interface commands and Subsystem interface subroutines. '
i)

-20-

Software Tools Subsystem Tutorial
Errors

Although the Software Tools Subsystem provides a very nice program development
and applications environment, Murphy’s Law indicates that things will still go

wrong. "To err is human...", so it is best to anticipate errors, and know what to
do when you encounter them. This section indicates some of the more common causes
of errors, and what to do when you encounter them. The non-technical user can

probably skip this section.

Recovering from Errors

Everyone encounters errors sometimes. Eventually vyou will divide by zero, or try to
execute source code, or do something even worse. Howeve: the only error which will kick you
out of the Subystem and into Primos is one which aestroys your user stack. 1In this case,
Primos will reinitialize the user environment (FATAL$). If you have a *"login.comi" file,

Primos will execute it. If it contains the command *“swt", the Subsytem will be cranked up
again.

For errors other than one which destroys your stack, Software Tools will catch it, and
ask if you wish to abort, continue, or call Primos. The default is to abort, and return to
the Subsystem.

when an error occurs, and after you have satisfied yourself reasonably well as to why,
the "“cure-all" for Subsystem problems is simply to type:

swt

Sometimes, this will not work. The stack may be screwed up, or something else may have
gone terribly wrong. To clear everything compietely, and restart the Subsystem, type the fol-
lowing:

0K, rl1s -alil
OK, dels all
0K, swt

Again, a "login.comi" file containing the "swt" command will generally restart the Subsystem
for you.

A1l error messages that cause an exit to Primos (signalled by the "OK," or "ER!"
prompts) are briefly explained in appendix A-4 of the Prime Fortran Programmer‘’s Guide
(FDR3057). Some very common programming errors can cause cryptic error messages with
explanations that may be uninteliligible to the novice. The rest of this section contains a
brief description of some of those messages. You need not read what follows if you don‘t make
programming errors.

Many Primos error messages are dead giveaways of program errors. Messages that begin
with four asterisks are from the Fortran runtime packages -- they usually indicate such things
as division by zero or extraction of the square root of a negative number. For example,

**xxx SQRT -- ARGUMENT < O
0K,

results from extracting the square root of a number less than zero.
Other more mysterious error messages can also be caused by simple program errors.
POINTER FAULT

usually indicates that a subprogram was called that was not included in the object file. An
obvious indication of a missing subprogram is the failure to get the

LOAD COMPLETE
»
message from ‘1d’. (Note that the Fortran compiler treats references to undimensioned arrays
as function calls!) A more insidious cause of the “POINTER FAULT" message is referencing in a
subprogram an argument that was not supplied in the subprogram call; e.g., the calling routine
specifies three arguments and the called routine expects four. The error occurs when the
unspecified argument is referenced in the subprogram, not during the subprogram call.

ACCESS VIOLATION
ILLEGAL INSTRUCTION AT <address>

ILLEGAL SEGNO
PROGRAM HALT AT <address>

all can result from a subscript exceeding its bounds. Because the program may have destroyed

- 21 -

Software Tools Subsystem Tutorial

part of itself, the memory addresses sometimes given may well be meaningless.

To find errors such as these, time can often be saved by using a program trace. In addi-
tion to the manual insertion of ‘print’ statements in the source program, both ‘rp’ and ‘fc’
have options to produce a program trace. The "-t" option will cause ‘rp’ to insert code to
trace the entry and exit of subprograms. (One should note that only subprograms preprocessed
with the "-t" option will be traced.) ‘Fc’ will emit code to produce a Fortran statement-
label and assignment trace when called with the "-t" option. Although this trace will contain
the statement labels generated by ’‘rp’, the intermediate Fortran code may be 1listed and the
execution path followed.

See the subsection on debugging in the Application Notes section of the User’s Guide for
the Ratfor Preprocessor for more suggestions on finding and eliminating errors in your ratfor
programs.

- 22 -

Software Tools Subsystem Tutorial
Advanced Techniques

This section deals with several of the more advanced features of the Subsystem.

Command Files

As an illustration, 1let us take an operation that finds use quite frequently: making
printed 1istings of all the Ratfor source code in a directory. Command language programs, or
"shell programs," greatly simplify the automation of this process. Shell programs are files
containing commands to be executed when human intervention is not required.

Suppose that we put the following commands in a file named "mklist" (note the use of i/o
redirection here):

1f -c >tempt (
tempi> find .r >temp2

temp2> change % "sp " >temp3

temp3> sh

del tempi temp2 temp3

Then, whenever we want a listing of all the Ratfor source code in the current directory, we
just type:

mklist

The only price we must pay for this convenience is to ensure that the names of all files
containing Ratfor programs end in ".r". (If the ‘find’, ‘change’, and ‘sp’ commands mystify
you, ‘help’ can offer explanations.)

Pipes

Pipes are another handy feature of the Subsystem. A "pipe" between two programs simply
connects the standard output of the first to the standard input of the second; and two or more
programs connected in this manner form a "pipeline." With pipes, programs are easily combined
as cooperating tools to perform any number of complex tasks that would otherwise require
special-purpose programs.

The command interpreter provides a simple and intuitive way to specify these com-
binations:

progi | prog2
Essentially, two or more complete commands are typed on the same l1ine, separated by vertical
bars (“:"). (One or more spaces must appear on both sides of this symbol.) The command
interpreter then does. all the work in connecting them together so that whatever the program on
the left of the bar writes on its standard output, the one on the right reads from its stan-
dard input.

Take our shell program to create listings as an example; that series of commands involved
the creation of three temporary files. Not only is this distracting, in that it takes our
attention away from the real work at hand, but it also leads to wasted storage space, since
one all too frequently forgets to delete temporary files after they have served their func-
tion. Using pipes, we could just as easily have done the same thing like this:

1f -¢ | find .r | change % %“sp " | sh
and the command interpreter would have taken care of all the details that before we had to

attend to ourselves. In addition to being much cleaner 1ooking, the pipeline’s function is
also more obvious.

Additional 1/0 Redirectors

»

The 1last advanced features of the Subsystem that we will examine are the two remaining
i/o redirection operators, represented by two variations of the double funnel (">>").

In the first variation,
>>Xyz (read "append to xyz")
causes standard output to be appended to the file named "xyz". Whereas
cat filet >file2

would copy the contents of filei into file2, destroying whatever was previously in file2,

- 23 -

Software Tools Subsystem Tutorial

cat file1 >>file2

would copy the contents of filel to the end of file2, without destroying anything that was
there to start with.

In the second variation, the double funnel is used without a file name
>> (read "from command input")

to connect standard input to the current shell program. For example, suppose we wanted to
make ‘a shell program that extracted the first ten lines of a file, and deleted all the rest.
The shell program might l1ook something like this:

> ed file
11,%d

w

q

.

">>" is frequently used in this way for the editor to read commands from the shell program,
without having to have a separate script file.

This is only a very small sample of the power made available by the features of the Sub-
system. As is the case with any craft, given the proper tools and an hospitable environment
in which to work, the only limit to the variety of things that can be done is the imagination
and ingenuity of the craftsman himself.

- 24 -

Background

Ancient History

The Software Tools Subsystem, as it now exists, is in its ninth major revision. To give
you an idea of its development, here is a short history of successive versions.

Version 1:

Features: Basic utility commands, no redirection of 1input or output, 1low-level
routines for performing file operations, but no consistent input/output.

. Language: Fortran

Version 2: (.
. Features: AImost complete set of utility commands, redirection of input and output,
all Software Tools 1i/o0 routines, Software Tools editor and Ratfor, improved
reliability during information passing from one program to another.

. Language: Low level routines in Fortran, high level routines and programs in Rat-

for.
Version 3:
. Features: Same as version 2, but with Primos compatible i/o for speed; new shell

added later greatly expanded program interaction.

. Language: Almost entirely Ratfor.

Version 4:

. Features: Same as version 3, plus: (1) ability to handle file names of up to 32
characters on new Primos file partitions; (2) much faster disk i/o0 (on an unloaded
system, benchmarks show an improvement on the order of a factor of 20); (3) internal
reorganization to speed up command searches; (4) support for virtual mode programs
and a shared command interpreter.

. lLanguage: A1l higher-level routines in Ratfor. A few special routines in assembly
language to provide capabilities not inherent in Fortran.

version 5:

. Features: A new command interpreter supporting arbitrary networks of pipes,
generalized command file handling, and dynamic command 1line structures was added.
General reorganization of Subsystem directories on disk.

. Language: Ratfor and Assembler (PMA).

Version 6:

. Features: Shared libraries, maximal security under unmodified Primos, increased
robustness.

. Language: Ratfor and Assembler (PMA).

Version 7:
. Features: Much faster disk I/0, extensions to pathnames to allow specification of
non-file-system devices, new Ratfor preprocessor with significant extensions, some
general cleanup of code and redundant tools, many additional tools.

. Language: Ratfor, Assembier (PMA), and some PL/I.

Version 8:
. Features: Additional 1/0 speed, reduced working set, support for PL/I G, Pascal,
Fortran 77, DBG, improved error handling, terminal type handling, virtual terminal
handler.

- 25 -

Software Tools Subsystem Tutorial
. lLanguage: Ratfor, Assembler (PMA), and some PL/I.

Version 9:
Features: Increased security for shared segments, improved shell, extended text
editors and formatter, access to new Primos file system features, some support for
Prime’s C compiler, a high precision mathematics 1library, and an improved stacc.

. Language: Ratfor, Assembler (PMA), and some PL/I.

Version 9.1:
. Features: Several important bug fixes, and totally terminal independant screen
editor. Text formatter extended further for use with laser printers. Final release
for perpetual 1icensees.

. lLanguage: Ratfor, Assembler (PMA), and some PL/I.

Authors and Origins

The principal authors of the Software Tools Subsystem are Allen Akin, Perry Flinn, Dan
Forsyth, and Jack Waugh, of the Georgia Institute of Technology, aided by a cast of thousands.

The ultimate antecedent for the design of the Subsystem is the UNIX operating system,
written by Dennis Ritchie and Ken Thompson of Bell Labs for the DEC PDP-11 computers.

The tremendous debt owed to Brian W. Kernighan and P. J. Plauger, the authors of Software
Tools, cannot be overstated.

User’s Guide to the Primos File System

Perry B. Flinn
Jefferey S. Lee

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

September, 1984

TABLE_OF CONTENTS

what is a File? C b et et e e e C ettt eses e C et
Entrynamesc0c0ccninnn ettt e e et e e e e
Directoriescc... e A, cee e et e e e e
Logical Disks et e et e e et e C et e ese e
The "Current" and "Home" Directories Ch e e et s .
Protection and Access Controlc.cciiiinnnnnnns e e ese s e et e e
Pathnames e ettt e s e e e e ettt a e ceeeens PR
Passwords in Pathnames ettt C ettt eeeeeeeet e et
L= 11> I T o = [P
Device Namescteiierinnnnnn ettt e e Ceeee e .
Georgia Tech Extensionsc.ccueeeuauon. et e e ese e ceeeen e
Appendix A - Standard Templatesc.ceeneeemcennn C e st s eat st
Appendix B - Pathname Syntax it e e te et e e e ce et (oeercnnnen
Appendix C - Spool Optionscciiurinnn. e eeeaa . c et et e
»

-
- s O NOUDWNNND -

-

Foreword

We offer this guide as an attempt to acquaint you with everything you need to know to
make effective use of the file system from within the Subsystem. Although we have tried to be
thorough in our coverage of concepts and features, we have specifically avoided the details of
the programmer‘’s interface to the file system, and everything having to do with
impiementation. Should you find yourself in need of further information in either of these
areas, let us direct your attention to section two of The Software Tools Subsystem Reference
Manual, the Reference Guide, File Management System (Prime publication number FDR3110), and
the Prime User’s Guide (Prime publication number DOC4130).

File System User’s Guide
Introduction

One thing that you will almost certainly encounter frequently during your exploits
in the Software Tools Subsystem is the Primos file system. Indeed, there is hardly
anything you can do that does not in some way invoive this ubiquitous beast.

What is a File?

A file is a named collection of information retained on some storage medium such as a
disk pack. Just what kind of information a file contains isn’t of much concern to us here; it
may be ASCII character codes that form the text of a book or a program’s source code, it may
be arbitrary binary machine words to be used as input data for a program, or it may be the
actual machine instructions of the prcgram itself, to mention just a few. No matter what f rr-
the information in a file takes, as far as Primos is concerned it is just an ordered sequence
of sixteen bit binary numbers. The interpretation of those numbers is left tb other programs.

Entrynames
Since we mentioned that a file has a name, you might ask what names are acceptable. A
file 1is known by something called its "entryname." An entryname is a sequence of 32 or fewer

characters chosen from the letters of the alphabet, the decimal digits, and the following
special characters:

$ & - x ./ _
The first character in the entryname must not be a digit. Also, no distinction is made
between upper- and lower-case letters. Thus "file_name" and "FILE_NAME" are the same.

Even though Primos allows you to use slashes (/) in entrynames, for reasons that will
become apparent in the section on pathnames they must be treated specially when you are using
the Subsystem. Because the slash is used to separate entrynames from one another in path-
names, if you want to use it in an entryname you have to "escape" it. By this we mean that
you have to precede it with the "escape" character "e". The "e" simply tells the Subsystem to
“treat the next character literally, no matter what special meaning it may have;" it is not
taken as part of the entryname. It is important that you realize this caveat applies only
when you are dealing with the Subsystem; if you try to put an “e" in an entryname when talking
directly to Primos, you will get a rather impudent message.

Directories

The way that Primos makes the association between a file‘’s entryname and its contents is
through the use of "directories." Like a file, a directory has an entryname and contains some
information; but it 1is different from ordinary files in that the information it contains is
treated specially by Primos. The information in a directory is a series of ‘"entries," each
consisting of the entryname of some other file, that file’s location on the disk pack, and
some other stuff that we will cover in a later section. When a file’s entryname and location
appear in a directory, we say that the directory "contains" that file, or that the file
"resides within" that directory. Either way you say it, every file in the system appears in
exactly one directory.

Since a directory is so much like a file, there is really nothing to prevent us from hav-
ing directories that contain other directories. This phenomenon is known as “nesting" and may
be carried out to any depth, giving rise to a hierarchical structure:

mfd
! 1 ! :
disk_rat djr1 mfd boot badspt d:r2
T : i
d:r3 file1 d:rd filed diri ,
fi{ez f1{e1

At the topmost 1level of the hierarchy is a directory named "mfd", short for master file
directory. You will find this directory at the top level of every Primos file system. The
MFD is special because it always begins at a fixed location on the disk pack, and because it
always contains the following entries:

disk_rat
“The disk_rat (disk record availability table) is a file that catalogs all of the
storage space on the disk pack that isn‘t already in use. It is always the first
entry in the MFD and, 1ike the MFD, always begins at a fixed 1location. This file
may have any valid entryname; it doesn’t have to be called "disk_rat". But whatever

File System User’s Guide

entryname is chosen, it is known as the "packname" for that disk pack.

mfd
The MFD always has an entry describing itself.

boot
The "boot" file, which also begins at a fixed location, contains the memory-image of
a program that is loaded and executed whenever the computer is cold-started. This
program is usually a single-user version of Primos.

badspt

Although this file is not necessarily present on every disk pack, if it is it
contains a list of faulty records that should not be used.

You may have noticéd in the diagram that there are three occurrences of the entryname
“filet", and two of "dir1". Each of these entrynzmes rerers to a different file or directory.
Even though each entryname must be unique among all those in a given directory, it is perfec-
tly legal to use the same name repeatedly in different directories.

Logical Disks

Since Primos doesn’t allow file systems that span multiple disk packs, it does the next
best thing and allows you to have multiple file systems in the same installation. Each file
system is called a "logical disk" and has exactly the structure described in the last section.
Although each installation is virtually guaranteed to have at least one logical disk, the
actual number may vary dynamically from O to 62. Each disk is uniquely identified by its
"logical disk number," and though it is not required, it is extremely desirable for each disk
to have a unique packname.

The "Current" and "Home" Directories

Now that we have described this wonderful hierarchy of directories and files just waiting
to be used, you might wonder how it is that you go about getting to them. One concept that is
central to the solution of this problem is that of the "current directory." From the time you
log in to the time you log out, your terminal is having an ongoing relationship with some
directory in the file system. When you first log in, this directory is set to whatever the
system administrator decided when he created your account. But monogamy is not required; you
are free to jump around from directory to directory upon the slightest whim. We say the
"current directory" is the directory to which you are attached.

The current directory is important because all the files contained in it are directly
accessible to you at the drop of an entryname. 1In fact, if you are using some of Prime’s
software, these are the only files accessible to you without changing your current directory.
But there 1is a handy device called the "home directory" that takes some of the edge off of
this restriction. Your home directory is the one to which you intend to return after an
expedition into the wilds of the file system. 1In effect, it allows you to remember the loca-
tion of some particular directory, and to later return there in one giant step, regardiess of
your (then) current location. Whenever you change your current directory, you get to choose
whether to change your home directory as well or to leave it where it is.

Protection and Access Control

In versions of Primos before Revision 19, to guard your files from unwanted perusal or
alteration, the file system included a basic access control mechanism that provided two levels
of protection to each file. As part of this mechanism, each directory had associated with it
a pair of six-character passwords, one called the "owner password," and the other called the
"non-owner password.* Normally, when a directory was created its owner password was blank and
its non-owner password was zero; these were the default values. But if the passwords had
other than default values, then before you could successfully attach to the directory, you had
to prove your worthiness to do so by citing one of them. If you cited the owner password,
then you were attached to the directory with "owner status;" if it‘’s the non-owner password
that you cited, then you: were attached with *non-owner status." If you failed to cite either
password, then unless: one of them had a default value your attempt would be in vain. Just
what status you attained when attaching to a directory bears upon the kinds of things you
could do to the files it contains.

For the purposes of password protection, there are three things you can do to a file:
you can read from it, you can write into it, and you can truncate (shorten) or delete it. Now
if you will recall that "other stuff" we mentioned a while back as being in a file’s directory
entry, part of it is two sets of "protection keys:" one for people attached to the containing
directory with owner status, and the other for those with non-owner status. Each set of keys
has a bit for each type of access: read, write and delete. If a bit is turned on, the
associated type of access is permitted; otherwise, it is denied.

Revision 19 of Primos introduced Access Control Lists (ACL’s). Unlike the password
protection previously described, ACL’s allow specific permissions on files to be granted on a

File System User’s Guide

per-user basis, instead of a broad class of permissions being granted to anyone who happens to
know, or guess, the password. They also allow better control over permissions given to users.
Previously, in order to allow a user to create files in a directory, he was implicitly given
the right to delete any other files in that directory, also. With ACL’s, this is no longer
the case.

An ACL consists of a 1ist of up to 32 identifiers and privileges associated with each of
the identifiers. An identifier can be a user’s login name or it can be a group identifier
associated with several users. If a user’s name and associated group are both in an ACL, the
user’s login name takes precedence. The seven different privileges associated with ACL’s are:

add This privilege 1is associated with a directory and allows the user to create a
new file within that directory. Once the file is created, the user has full
read/write access to the file until the file is closed, at which point other
privileges determine the accessibility of the file.

delete This privilege is associated with a directory and allows tre us=" to delete
an existing file within that directory. ¢

list This privilege is associated with a directory and allows the user to list the
contents of the directory (l1ike with “1f/).

protect This privilege is associated with a directory and allows the user to set ACL
protection for objects in the directory.

read This privilege is associated with a file and allows the user to open a file for
reading or to execute a file. The user must first be able to attach to the
directory before he can read the file, which implies use privilege (see below).

use This privilege is associated with a directory and allows the user to attach to
the directory (l1ike with ‘cd’). 1In order to access a file or a directory, the
user must have use privilege on all intervening directories between the MFD and
the desired file or directory.

write This privilege is associated with a file and allows the user to open a file in
write mode or to truncate a file.

Associated with the ACL is its type. There are five different types of ACL’s. The first
type is the specific ACL. This gives protection on one specific file object and is associated
with only that object. 1If the object is deleted then the specific ACL goes away, also.

The second type of ACL is the default specific ACL where a specific ACL is set on an
ancestor directory of the current object. 1If the object is not protected by a specific ACL or
an access category (the next type), then it is given the same protection as the ancestor
directory.

The third type of ACL is the access category ("acat"). An access category, unlike the
two previous types, may protect many objects at one time with the same protections. An acat
appears in the file system as a file that cannot be read or written, and its name must end in
v“.acat". It is a separate type of file system object (just as in ‘1f -1’ listings, DAM files
are different from SAM files -- acats are of type ACT). An access category need not protect
any object since it exists independant of any other object in the file system. If an access
category is deleted, any object that it was protecting becomes default protected, or becomes
protected by the directory that contains it.

The fourth type of ACL is the default access category. This is an access category that
protects a directory that contains other objects that are then protected by default.

The 1last type of ACL is the priority ACL. This is an ACL that is set on an entire disk
partition by the system administrator, normally at boot time. Any rights given by a priority
ACL override any rights given by any other ACL’s.

In order to allow for a gradual change from the older versions of Primos to Revision 19,
it is possible for password directories and ACL’S to exist in the same system, although pass-
word directories will eventually be unsupported. There is a restriction in that ACL direc-
tories may contain both password and ACL directories but password directories may not contain
ACL directories. 1In order for any directory to be an ACL directory on a logical disk, the MFD
of that partition has to be ACL protected. Password directories also overcome some of the
limitations of ACL’s. If an ACL gives someone the privilege of writing a file, then under all
circumstances they are allowed to write the file. 1If the file is 1in a password directory,
though, they may only write the file if they know the password. This means that a password
can be nested deep in a program that is used to control their access to a file, even if the
person running the program does not know the password.

Pathnames

Unlike the Prime software we mentioned that only lets you manipulate files in your
current directory, the Subsystem places no restrictions on the whereabouts of the files you

File System User’s Guide

can reference. Generally speaking, anywhere the name of a file is required you may use
something called a "pathname." A pathname is a construct that allows you to unigquely specify
any file in the system by describing a path to it from some known point. As we have seen, the
current directory 1is one such point, and because of its fixed location, the MFD on each
"logical disk is another.

The syntax of a pathname is divided into two basic parts which we will call the "starting
node, " designating the particular known point at which the path starts, and the "directory
path," designating the actual series of nested directories that leads to the desired file.
Both parts, by the way, are optional: either one may stand alone, they may stand together, or
they may both be omitted. But if both are present, they must be separated by a single slash
/).

The starting node of a pathname comes in two varieties. The first designates the MFD of
a particular logical disk &nd consists of an initial slash followed by a packname, a logical
disk number in octal, or a single ~sterisk (*):

/vo100
/7
/*

If the asterisk 1is used, the MFD of the logical disk containing the current directory is
implied; the other two forms should be self-explanatory. The second variety of starting node
refers to one of the current directory’s ancestors in the hierarchy and consists of one or
more backslashes (\). The number of backslashes indicates the number of nesting levels above
the current directory at which the path begins. If the starting node is omitted altogether,
then the path starts in the current directory.

Now the other half of a pathname, the directory path, is simply a series of one or more
entrynames, each separated from the next by a single slash. The first entryname must be
contained in the starting directory, and each subsegquent entryname must reside in the direc-
tory designated by the preceding entryname. The very last entryname in the path is that of
the target file. To illustrate,

src/11ib/swt
extra

are proper directory paths. As you might expect, if the directory path is omitted, the target
of the pathname is the starting directory. Thus, the pathname from which both the starting
node and the directory path have been omitted (the empty pathname) refers to the current
directory.

A couple of special cases are worth mentioning here: First, a pathname that begins with
a slash and whose directory path is not omitted need not contain a packname or logical disk
number. In this case an implicit search of the MFD on each logical disk is made for the first
entryname in the directory path. The MFD on the lowest numbered logical disk in which that
entryname is found is taken as the starting directory. Notice that such a pathname is easily
recognizable because it begins with two slashes; the first one belongs to the starting node
and the second separates it from the directory path:

//system

The second special case has to do with pathnames beginning with a backslash. Although we
said that a slash must be used to separate a starting node from a directory path, when using
backslashes the intervening slash is not required; indeed it is omitted more often than not.

Passwords in Pathnames

The following discussion is applicable only for password protected directories, since ACL
protected items do not need passwords. Thus far in discussing pathnames we have assumed that
we may freely specify any valid sequence of directories in a directory path without regard to
the passwords that may be associated with those directories. 1In fact, this is true only if
the directories have at least one password with a default value, or if the directories are ACL
directories. You see, the interpretation of a pathname involves temporarily attaching to each
directory 1in the path; if this can’t be done without a password then the pathname can’t be
interpreted. Furthermore, the set of access privileges (owner or non-owner) available to you
with respect to the target file is determined by whether you are attached to its parent direc-
tory as an owner or a non-owner by the pathname interpreter. So, to let you deal effectively
with passworded directories, the pathname syntax allows you to append a password to each
directory entryname in the path, separated from the entryname by a colon:

entryname:passwd

If a password is so specified, the pathname interpreter will use it when attaching to the
associated directory.

- 4 -

File System User’s Guide

A password may contain arbitrary characters which are not necessarily legal in

entrynames. So to avoid the ambiguity in interpreting a password containing a slash, as with
entrynames, the slash must be "escaped" by preceding it with an "e". This aiso means that the
"e" itself must be escaped if it is to appear l1iterally in the password. Remember that the

"e" used as an escape character is not included in the password; it merely turns off the
special meaning of the character that follows.

The following set of examples contains an instance of just about every possible variation
in the syntax of pathnames, along with an explanation of each. A formal summary of pathname
syntax in BNF notation is included in Appendix B.

a_file
A file in the current directory whose entryname is "a_file".

a_ufd/a_file
A file whose entryname is also “"a_file" and !t con*airsc in the subdirectory “a_ufd*
of the current directory. !

The parent of the current directory.

\brother (or \/brother)

The file or directory named “brother" that resides in the same directory that
contains the current one.

/0/cmdncO: secret
The directory named "cmdncO" (one of whose passwords is "secret") which resides in
the MFD on logical disk O.

/md
The MFD on the logical disk whose packname is "md".

/*/boot
The "boot" file on the current logical disk.

//spoolg/q.ctri

The file named "g.ctrl1" in the "spoolq" directory on the lowest numbered logical
disk that has one.

kie/da:ade/ik
The directory residing in the current directory whose entryname is "ki/da" and one

of whose passwords is "ad/ik". (Note the use of the "e" to turn off the special
meaning of "/".)

<empty>
The current directory.

Templates

In order to provide flexibility in the organization and placement of the directories and
files used by the Subsystem, the pathname interpreter contains a primitive macro substitution
facility, a feature that is loosely referred to as "templates." Templates provide a means for
designating particular files or directories without having to know their exact location in the
file system, and for constructing file names whose exact interpretation may vary with the
context 1{in which, or the user by whom they are used. A template is constructed from letters,
digits and underscores and is always enclosed in equals bars (=). (Templates do not have to
begin with a letter). Unlike entrynames, upper- and lower-case letters are different in tem-
plate names; "name" and "NAME" are not the same. Each defined template has an associated
value which 1is an arbitrary character string. The effect of including a template in a path-
name is the same as if its value had appeared instead.

There are two types of templates: static and dynamic. The value of a dynamic template
varies depending upon who you are, how you are connected to the computer, or what time it is.
The following list describes all of the available dynamic templates:

=date= ’
The current date in the format mmddyy.

=day=
The current day of the week; "monday", for example.

=home=
The current user’s initial login directory (set by the system administrator when he
created the account). This may vary on a per-user per-project basis. I.e., the

system administrator may set it up so that the initial login directory for a given
user is different for different projects.

File System User’s Guide

=passwds=s
The owner password of the current user’s profile directory. (This is the same pass-
word the Subsystem asked you for when you typed "swt".)

=pid=
The current user’s process-id. This is a three-digit number in the range 001-128
that is unigue to each logged-in user.

=time=
The current time in the format hhmmss.

=users=
The current user’s login name.

These templates are particUlarly useful for constructing unique file names.

Static templates are those whose definitions are independent of the context in which they
are used. These templates and their values come from two sources. The file whose name is the
value of the template

=templates=

contains system template definitions that apply globally to all Subsystem users. In fact the
definition of "=template=" itself is contained in this file, as are definitions for other
important Subsystem files and directories. In addition to this file, you may have in your
profile directory (named by the template "=varsdir=") a file named ".template" that contains
your own personal template definitions. Any templates that you define yourself preempt
similarly named system templates, SO you should exercise caution in choosing names. Also note
that any new templates you place in your personal template file do not take effect until the
next time you enter the Subsystem via ’‘swt’; this is the only time that the file is examined.
If you wish to create templates that will take effect immediately, use the ’‘template’ command
(do a ‘help template’ for details).

The format of both files is the same: a series of lines containing a name, followed by
one or more blanks, and then a value. Blank 1ines are ignored, as are leading and trailing
blanks on each line. Comments may be introduced with the sharp character (#); all characters
from the sharp to the end of the line are ignored:

example of a template definition

macros //smith/misc/macros #Smith’s macros
The above example defines a template "macros" referring to the file "//smith/misc/macros." A
gquick perusal of the contents of "=template=" should clear up any lingering questions you may
have. Just for convenience, all dynamic and system templates, along with an explanation of

each, are listed in Appendix A.

If you look at the template definition file, you will notice that some of the definitions
appear to contain templates themselves. This is perfectly legal, for after each template is
expanded, the result is inspected for further templates until no others are found. This makes
possible the definition of such templates as "=varsdir=", and generally enhances the utility
of the mechanism.

Just one further remark about templates: Remember the trouble we had with "/" 1in pass-
words and entrynames? well, we have a similar situation with "="; when should it be taken
lTiterally, and when should it indicate the beginning of a template? To solve this dilemma,
any time the template expander sees a template with an empty name (that is, two consecutive
equals bars), it supplies a single "=" as the replacement value and does not consider it to be
the start of another templiate. So if you ever want a l1iteral "=", in a password for example,
just type "==" and you‘ve got it.

Device Names

Up to tﬁis point, we have been talking only about disk files, and the pathnames we have
described have corresponded exactly to some actual sequence of directories leading to a file.
Although this is certainly the most common use of pathnames, there is one additional feature
that significantly enhances their usefulness. If the "starting node" of a pathname is "/dev",
the pathname doesn’t necessarily refer to a disk file, but may instead refer to an arbitrary
peripheral device, or to some special file that requires unusual processing. As with ordinary
pathnames, the "directory path" provides more information about the target file or device.

Perhaps the most useful of these extended pathnames (or "device names," as they are
usually called) is

/dev/1ps
which refers to the 1ine printer spooler. When this pathname is opened for writing, a special

disk file is created and other processing is done so that when the file 1is closed, its
contents will be written to the on-site 1ine printer by the spooler and then deleted.

File System User’s Guide
Additional entrynames may be included after the "lips" to select various processing options
specific to the spooling process. A complete list of these in included as Appendix C.
Another useful device name is
/dev/tty

which refers to your terminal device. There are also others which, when opened, yield file
descriptors for the various standard input and output ports:

/dev/stdout /dev/stdin
/dev/stdout1 /dev/stdini
/dev/stdout2 /dev/stdin2
/dev/stdout3 /dev/stdin3
/dev/errout /dev/errin
Finally, the device name (-
/dev/nuli

when opened yields a file descriptor which discards all data written to it and returns an end-

of-file signal every time it is read. It is really just a fancy name for the proverbial bit
bucket.

Georgia Tech Extensions

As many of you reading this guide will eventually come to know, using the standard Primos
file system can be quite awkward, principally because of the constant necessity of typing pas-
swords in pathnames. Relief from this burden comes only at the expense of security, which in
many cases is a more important consideration than ease of use. So that we can have our cake
and eat it too, we at Georgia Tech have made a few modifications to the standard protection
mechanism that virtually eliminate the necessity for typing passwords in all but the rarest of
circumstances. The Subsystem requires none of these modifications to operate properly, and in
those cases where it behaves differently depending on the extant version of Primos, it does so
completely transparently to the user.

In Georgia Tech Primos, if a directory’s owner password is a valid entryname, it is
assumed to be the login name of the user that "owns" that directory. 1In this case, the "owner
password" is instead called the "owner name." When you attach to a directory whose owner name
"matches" your login name, you automatically get owner status without having to cite a pass-
word. This is the only difference between the protection mechanism in Georgia Tech Primos and
the standard mechanism. In all other situations, you can expect the standard behavior.

-7 -

File

System User’s Guide

Appendix A - Standard Templates

dard

The following list describes all of the templates that are provided either in the stan-
Subsystem template file or by the template interpreter.

=aux=
This Subsystem directory contains large files that are not absolutely necessary for
the operation of the Subsystem.

=bin=
The standard Subsystem command directory.
sbug:
The directory in which the Subsystem bug reporting mechanism collects bug reports.
[
=cldata=
Defines the location of the Primos CLDATA structure, used internally by the Sub-
system command interpreter (shell).
=cmdncO=
The directory to which the system console is normally attached.
=crondir=
The directory where the ‘cron’ program creates temporary files for phantoms.
=cronfiles
The file that contains the directive lines for the ‘cron’ program.
=date=
The current date in the format mmddyy.
=day=

The current day of the week (e.g., "monday", "tuesday", etc.).

=dictionary=
A file containing English words, used by the spelling checker.

=doc=
The Subsystem documentation directory.

=ebin=
A directory of programs called by shell programs in "=bin=",

zextras=
A standard Subsystem directory containing miscellaneous files required for proper
operation of the Subsystem.

=fmac=
The Subsystem directory containing all the text formatter macro definition files.

=GaTech=
This is a template having nothing to do with pathnames. Its value is ‘"yes" at
installations that run the Georgia Tech version of Primos, and "no" elsewhere.
Programs that are sensitive to the operating system version use this template to
determine their environment.

=gossip=
The directory containing user-to-user message files generated by the ‘to‘ command.

zhistfile=
The current user’s saved command history file.

=homes=
The current user’s login directory. Take note that this is not the same as his
"home directory" as described in the section on "current" and "home" directories.
zincl=
The standard Subsystem directory containing files that are included by Ratfor and C
programs.

=installation=
A file containing the name of the installation.

=lbin=
The standard Subsystem locally-supported command directory.

=11ibs=
The Primos directory containing all library files that should be accessible to the
loader.

File System User’s Guide

=mail=
The Subsystem directory that contains per-user mail delivery files.

=mailfile=
The current user’s mail storage file. This is where the ‘mail’ command deposits a
letter after you have asked that it be saved.

=new_words=
If this template exists and describes a legal file name, the ‘spell’ program will
write a copy of unrecognized words to this file.

=newbin=
The Subsystem directory into which newly-compiled commands are placed during a
recompilation of the entire Subsystem.

=newcmdncO= k%
The Suossysiem directory into which newly-compiled Subsystem files that belong in
"emdncO" are placed during a recompilation of the entire Subsystem.

=newebin=
The Subsystem directory into which newly-compiled commands destined for "“=ebin=" are
placed during a recompilation of the entire Subsystem.

znewlbin=
The Subsystem directory into which newly-compiled 1locally-supported-commands are
placed during a recompilation of the entire Subsystem.

=newlib= :
The Subsystem directory into which newly-compiled object code 1ibraries are placed
during a recompilation of the entire Subsystem.

=news=
The directory used by the Subsystem news service.

=newsfile=
The current user’s news delivery file.

=newsystem=
The Subsystem directory into which newly-compiled Subsystem files that belong in
"system" are placed during a recompilation of the entire Subsystem.

=passwd=
The password of the current user’s profile directory. (This is the same password
the Subsystem asked you for when you typed "swt".)

:p1d=
The current user’s process-id. This is a three-digit number in the range 001-128
that is unique to each logged-in user.

=srcs
The Subsystem source code directory.

=srcloc= .
A file associating each Subsystem 1library subroutine and command with the path-
name(s) of its source code file(s).

=statistics=

The system template which controls whether or not command statistics are to be kept.
(See the "Application Notes" section of the Command Interpreter User’s Guide.)

=statsdir=
The directory where command statistics are recorded. (See the "Application Notes"
section of the Command Interpreter User’s Guide.)

=syscom=
The directory where the Primos subprogram keys (predefined constants) are stored.

=sysname=
This is the system’s Primenet node name, if it is a network system.

=system=
The Primos directory that contains the core-images of the various shared memory seg-
ments.

=temp=
The Subsystem directory in which all temporary files are created.

- 9 -

File

System User'’s Guide

=template=
The system template definition file.

=termlist=
A file describing the location and type of each terminal connected to the computer.

=time=
The current time in the format hhmmss.

=ttypes=
A file containing a list of terminals supported by your Subsystem and their charac-
teristics.

=ubins=
By convention, tﬁe user’s private command directory.

=users=
The current user’s login name.

=userlist=
A file containing a 1ist of all users authorized to use the computer.

sutemplate=
The current user’‘s private template definition file.

=vars=
The Subsystem directory in which all per-user profile directories are contained.

=varsdir=
The current user’s profile directory.

=varsfiles=
The current user’‘s shell variable storage file.

=vths=
The directory used by the Subsystem virtual terminal handler.

File System User‘s Guide

Appendix B - Pathname Syntax

For the grammar aficionados among you, here is a formal description of the syntax of
pathnames. The notation used is an extended Backus-Naur Form (BNF) which is described in the
introduction to the Software Tools Subsystem Reference Manual.

<pathname> 1= <starting node>
<directory path>
<starting node>/<directory path>
<empty>
<starting node> ::= \{\}
/<volume id>
= <packname>
<octal integer>
*

<volume id>

“packname> = <entryname>

<directory path> ::= <node>{/<node>}

<node> 1= <entryname>|[:<password>] <
<entryname> 1= <non-digit>{<valid char>}

<non-digit> 1= <letter> | <special char>

<valid char> 1= <non-digit> | <digit>

<letter> 1= a i b! c i...i x i y i z

<digit> = 0 i 1 | 2 [7 | 8 I -]

<special char> = 1 0$ & | -« .0/

Appendix C - Spool Options

The entrynames that may be appended to the “/dev/1ps" device name to control spooling
options are summarized in the following list. These entrynames correspond exactly to the
options that are accepted by the ’‘sp’ command (see section one of the Subsystem reference
manual). These entrynames and associated values must be separated by siashes or blanks, e.g.
"/dev/1ps/b/TECH/" or "/dev/1ps/b TECH."

a This option selects a specific location at which the file is to be printed. The
immediately following entryname in the path is taken as the name of the destination
printer.

b The file name that is printed on the banner page of the printout may be set

arbitrarily with this option. The next entryname in the path is taken as the name
to be printed. If this option is not used, the name "/dev/1ps" is printed.

c This option specifies the number of copies of the file that are to be printed. The
next entryname must be a decimal integer indicating the number of copies.

d Printing of the file may be deferred until a specific time of day using this option.
The next entryname in the path must be a time of day in any reasonable format.

f If specified, this option indicates that the print file contains standard Fortran
carriage control characters.

h This option causes the spooler to suppress the printing of the banner page that
normally precedes each printout.

3 Specifying this option causes the spooler to suppress the trailing page eject that
it normally supplies at the end of each printout.

n This option causes the spooler to print a consecutive line number in front of each
1ine of the print file.

[This option instructs the spooler that the print file is to be printed on a special
type of paper. The name of the desired form should follow as the next entryname in
the path.

r "Raw" forms control mode is selected by this option. No carriage control characters

are recognized, nor is any pagination done when this mode is in effect.

S This option selects the standard Primos forms control mode. Under this mode, the
printout is automatically paginated, and a header line is printed on each page.

Introduction to the Software Tools Text Editor

T. Allen Akin
Terrell L. Countryman
Perry B. Flinn
Daniel H. Forsyth, Jr.
Jeanette T. Myers
Arnold D. Robbins
Peter N. Wan

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

April, 1985

TABLE OF CONTENTS

Tutorial ...;

1

Starting an Editing SeSSionttt ittt it tenetessscaanetossineenanaan 1
Entering Text - the Append Commandctitititneeeenennosassnoatsonsossnannnas 1
Writing text on a file - the Write commandttt enenanennn 1
Finishing up - the QUit COmMMAaNGttt iininmeetnosnennanoeseeacenenn 2
Reading files - the Enter command i ettt e e e e 2
Errors - the Query COmmMaNdttt inemeeaeeennsnennenaneeeesaeeeneannensaeas 3
Printing text - the Print command ittt iieiiiieenneenenannnennanan 3
More Complicated Line NUMDErSttt titnetenneennoasesoaeesssnecsnanaenens 4
Deleting Linesc.iiiiiiriiiinieinaanans ettt et eaeene ettt 5
LI I - B - o o T 5
Making Substitutions - the Substitute Command et termnennnncnnnnaanenan 8
Line Changes, Insertions, and Concatenationscteeinnecscennnenn e 10

L Lo LT T T i I - B 11
Global CoOMMANASttt it ittt ttenonnaceassasensneeeneseneeenseancsnacnannns 11
Marking Limesttt ittt ittt tateesesennanecseassonsssssssscennsnennnsan 11
Undoing Things -- the Undo Commandiititenirenneensrenennnnenetnasonnnss 13
More Line Number SyntaXiuie e iiiieeeineeaaaeestosnnncsssasonasososssannsnsses 13
Escaping to the Shell ittt ettt ittt nnennesasesasseaeaeaneeaensnsnns 14
Forcad LOgoULS ittt ittt iittnnsnseaaeeoesossnsnasensnensnssensannassens 14
SUMMAY . ottt e e s ot oo s e oraseenssnsososesacasessssssanesenssonssenneassnasassennsanaans 15
The Subsystem Screen Editor it ittt et itnaneannnannan 16
Invoking the Screen Editorttt intitetneonsnerontiesnssiosesaneacseanans 16

[I o o L] - 16
Extended Line Numbers et ettt e et e e 17
(07 3 T I o o T - Y o 1 T o 17

LI 1= 17
FUll=Screen Editingttt ittt ittt teinseeesasassanenerieenonssseonseneaneas 18
HOrizZzoNntal CUPrSOr MOt iON ... ittt ittt it ittt sttt st e e s ot ns e s sseanenseoennenns 18
Vertical CurSOr MOtiOn ittt ittt ittt tn it et eenneenenneeseneennensennns 18
Character INSErtION . .. ittt it ittt it ittt aatenseneenasnssonssnenaeenenneesnns 18
Character Deletion it i ittt ittt tsseenanessessonesononenennnneas 19
Terminating 8 Limettt ittt iiiittaeetnssosearaenanosesoonasansenssensoness 18
NON-pPrinting CharaCter S ittt ittt ittt it se st oeaneeesesenesesnaneeenassas 19
The .SerC File ittt it ittt ittt it s emneneasasessnsesoenceansennesnns 19
Scraen Editor OptioNns it ittt ittt eraetnstenseneasnnsanasnn 21
Screen Editor Control Characters it iiiittninenneesennnnns 24
Editor Command SUMmMarYttt tennaecsaesoeesnnneannanecaeaneoanenns 26
Elements of Line NUmMber ExXpPresSSions it tiitotennrnenrinrnneeanaeaenennnns 29
Summary of Pattern Elements ittt ittt 29

- 1ii -

Foreword

‘Ed’ is an interactive program that can be used for the creation and modification of
"text." "Text" may be any collection of character data, such as a report, a program, or data
to be used by a program.

This document is intended to provide the beginning user of ‘ed’ with a tutorial, an aid
to becoming familiar with editing. It does not attempt to cover the editor in full; only the
most frequently used aspects are mentioned. Ffor details on advanced uses, a careful reading
of Software Tools and the Software Tools Subsystem Reference Manual is recommended.

How To Use This Guide

This tutorial includes a step-by-step journey through an editing session. You should be
sitting at a terminal and running the Software Tools Subsystem, so that you can perform the
suggested exercises as you go.

Throughout the text of this guide are samplie editing commands, which you can execute on
your terminal to get a feel for their actual effect. If at any time your terminal session
produces results different from those shown in the text, carefully re-check what you have
typed, or consult someone in charge of your installation.

Introduction to ‘Ed’
Tutorial

Starting an Editing Session

We assume that you have successfully logged in to your computer and are running the
Software Tools Subsystem. If you need assistance, see the Software Jools Subsystem Tutorial.
We further assume that you know how to use the character erase and line delete characters, so
that you will have no trouble correcting typographical errors, and that you have some idea of
what a "file" is.

Since you are in the Subsystem, the command interpreter should have just printed the
prompt "]". To enter the text editor, type

] ed (followed by a newline)

(Throughout this guide, boldface is used to indicate information that ycu s.ould type in.
Things typed by ‘ed’ are shown in the regular font.) You are now in the editor, ready to go.
Note that ‘ed’ does not print any prompting information; this gquiet behavior is preferred by
experienced users. (If you would 1like a prompt, it can be provided; try the command
‘op/prompt/".)

At this point, ‘ed’ is waiting for instructions from you. You can instruct ‘ed’ by using
*commands, " which are single letters (occasionally accompanied by other information, which you
will see shortly).

Entering Text - the Append Command

The first thing that you need is text to edit. Working with ‘ed’ is l1ike working with a
blank sheet of paper; you write on the paper, alter or add to what you have written, and
either file the paper away for further use or throw it away. In ‘ed’s terminology, the blank
sheet of paper you start with 1is called a "buffer." The buffer is empty when you start
editing. A1l editing operations take place in the buffer; nothing you do can affect any file
unliess you make an explicit request to transfer the contents of the buffer to a file.

So the first problem reduces to finding a way to put text into the buffer. The "append"
command is used to do this:

a
This command appends (adds) text lines to the buffer, as they are typed in.
To put text into the buffer, simply type it in, terminating each l1ine with a newline:

The quick brown fox

jumps over
the lazy dog.

.

To stop entering text, you must enter a line containing only a period, immediately followed by
a newline, as in the last 1ine above. This tells ‘ed’ that you are finished writing on the
buffer, and are ready to do some editing.

The buffer now contains:
The quick brown fox
jumps over
the lazy dog.

Neither the append command nor the final period are included in the buffer -- just the text
you typed in between them.

Writing text on a file - the Write command

Now that you have some text in the buffer, you need to know how to save it. The write
command “"w" is used for this purpose. It is used l1ike this:

w file

where "file" is the name of the file used to store what you just typed in. The write command
copies the contents of the buffer to the named file, destroying whatever was previously in the
file. The buffer, however, remains intact; whatever you typed in is still there. To indicate
that the transfer of data was successful, ‘ed’ types out the number of lines written. In this
example, ‘ed’ would type:

3

Introduction to ‘Ed’

It is advisable to write the contents of the buffer out to a file periodically, to insure that
you have an up-to-date version in case of some terrible catastrophe (like a system crash).

Finishing up - the Quit command

Now that you have saved your text in a file, you may wish to Jleave the editor. The
'quit" command "q" is provided for this:

q

The next thing you see should be the "]" prompt from the Subsystem command interpreter. If
you did not write out the contents of the buffer, the editor would respond:

.
?

inot saved)

This is to remind you to write out the buffer, so that the results of your editing session are
not lost. If you intended that the buffer be discarded, just enter "q" again and ‘ed’ will
throw away the buffer and terminate.

When you receive the "]" prompt from the Subsystem command interpreter, the buffer has
been thrown away; there is absolutely no way to recover it. If you wrote the contents of the
buffer to a file, then this is of no concern; if you did not, it may mean disaster.

To check if the text you typed in is really in the file you wrote it to, try the follow-
ing command:

] cat file

where "file" is the name of the file given with the "w" command. ("Cat" is a Subsystem com-
mand that can be used to print files on the terminal. If, for example, you wished to print
your file on the line printer, you could say:

] pr file

and the contents of "file" would be queued for printing.)

Reading files - the Enter command

Of course, most of the time you will not be entering text into the buffer for the first
time. You need a way to fill the buffer with the contents of some file that already exists,
so that you can modify it. This is the purpose of the "enter" command "e"; it enters the
contents of a file into the buffer. To try out "enter," you must first get back into the
editor:

] ed
"Enter" is used 1ike this:
e file
"File" is the name of a file to be read into the buffer.

Note that you are not restricted to editing files in the current directory; you may also
edit files belonging to other users (provided they have given you permission). Files belong-
ing to other users must be identified by their full ‘“pathname” (discussed fully 1in User’s
Guide to the Primos File System). For example, to edit a file named "document" belonging to
user "tom," you would enter the following command:

e //tom/document

After the file’s contents are copied into the buffer, ‘ed’ prints the number of lines it
read. In our example, the buffer would now contain:

The quick brown fox
Jumps over
the lazy dog.

If anything at all is present in the buffer, the "e" command destroys it before reading the
named file.

As a matter of convenience, ‘ed’ remembers the file name specified on the last “e" com-
mand, SO you do not have to specify a file name on the "w" command. With these provisions, a
common editing session looks like

Introduction to ‘Ed’

] ed

e file
{editing}
w

q

The "file" command ("f") is available for finding out the remembered file name. To print out
the name, just type:

f
file

You might also want to check that
] ed file
is exactly the same as [

] ed
e file

That is, ‘ed’ performs an "e" command for you if you give it a file name on the command 1line.

Errors - the Query command

Occasionally, an error of some kind is encountered. Usually, these are caused by mis-
spelled file names, although there are other possibilities. Whenever an error occurs, ‘ed’
types

?

Although this 1is rather cryptic, it is usually clear what caused the problem. If you need
further explanation, just enter "?" and ‘ed’ responds with a one-1ine explanation of the
error. For example, if the last command you typed was an "e" command, ‘ed’ is probably saying
that it could not find the file you asked for. You can find out for sure by entering "7":

e myfile
?
?
I can’t open the file to read

Except for the messages in response to "?", ‘ed’ rarely gives other, more verbose error mes-
sages; if you should see one of these, the best course of action is to report it to the person
who maintains the editor at your installation.

Printing text - the Print command

You are likely to need to print the text you have typed to check it for accuracy. The
‘print" command "p" 1is available to do this. "P" is different from the commands seen thus
far; "e", "w", and "a" have been seen to work on the whole buffer at once. For a small file,
it might be easiest to print the entire buffer just to check on some few lines, but for very
large files this is clearly impractical. The "p" command therefore accepts "line numbers"
that indicate which lines to print. Try the following experiment:

] ed file

3

ip

The quick brown fox

the lazy dog.
1,2p
The quick brown fox

jumps over
1,3p ’
The quick brown fox

jumps over

the lazy dog.

"4p" tells ‘ed’ to print line 1 ("The quick brown fox"). "3p" says to print the third line
("the lazy dog."). "1,2p" tells ‘ed’ to print the first through the second lines, and "1,3p"
says to print the first through the third lines.

Suppose we want to print the last 1ine in the buffer, but we don’t know what its number
is. 'Ed’ provides an abbreviation to specify the last line in the buffer:

Introduction to ‘Ed’

$p
the lazy dog.

The dollar sign can be used just like a number. To print everything in the buffer, we could
type:

1,8p

The quick brown fox
jumps over
the lazy dog.

If for some reason you want to stop the printing before it is done, press the BREAK kéy
on your terminal. If you receive no response from BREAK, ‘ed’ is waiting for you to enter a
command. Otherwise, ‘ed’ rfesponds with

?

and waits for your next command.

More Complicated Line Numbers

‘Ed’ has several ways to specify lines other than just numbers and "$". Try the follow-
ing command:

the lazy dog.

‘Ed’ prints the last 1ine. Does ‘ed’ always print the last line when it is given an unadorned
"p" command? No. The "p" command by itself prints the "current" line. The "current" line is
the last line you have edited in any way. (As a matter of fact, the last thing we did was to
print all the lines in the buffer, so the last 1ine was edited by being printed.) ‘Ed’ allows
you to use the symbol "." (read “dot") to represent the current line. Thus

the lazy dog.

is the same as

- -
the lazy dog.

which is the same as just
the lazy dog.

"." can be used in many ways. For example,

1.2p
The quick brown fox
jumps over
1,.p
The quick brown fox
jumps over
<SP
jumps over
the lazy dog.

This example shows how to print all the l1ines up to the current line (1,.p) or all the lines
from the current line to the end of the buffer (.,$p). If for some reason you would 1like to
know the number of the current 1ine, you can type

3

and ‘ed’ displays the number. (Note that the last thing we did was to print the last line, so
the current line became 1ine 3.)

wo is not particularly useful when used alone. It becomes much more important when
used in "line-number expressions." Try this experiment:

.~1p
jumps over

".-1" means "the 1ine that is one 1ine before the current line."

Introduction to ‘Ed’
.+1p
the tazy dog.
".+1" means “"the l1ine that is one l1ine after the current line."
.=2,.-1p
The quick brown fox
jumps over

".-2,.-1p" means "print the lines from two lines before to one line before the current line."

You can also use "$" in 1ine-number expressions:

$-1p
jumps over N
[N
“$-1p" means “print the line that is o1ve 1ine before the last line in the buffer, i.e., the
next to the last line." (.

Some abbreviations are available to help reduce the amount of typing you have to do.
Typing a newline by itself is equivalent to typing ".+1p"; typing a caret, *~*, or a single
minus sign, "-", followed by a newline is equivalent to typing ".-1p"; and typing a line-
number expression followed by a newline is equivalent to typing that 1ine-number expression
followed by "p". Examples:

{type a newline by itself}
the lazy dog.

~

jumps over
;he quick brown fox
The quick brown fox
It might be worthwhile to note here that ailmost all commands expect 1ine numbers of one

form or another. If none are supplied, ‘ed’ uses default values. Thus,

w file
is equivalent to

1,8w file
and

a
is equivalent to

(which means, append text after the current line.)

Deleting Lines

As yet, you have seen no way of removing lines that are no longer wanted or needed. To
do this, use the “"delete" command "d":

1,2d

deletes the first through the second l1ines. The "d" command expects 1ine numbers that work in
the same way as those specified for “p", deleting one 1ine or any range of 1lines.

d

deletes only the current line. It is the same as ".d" or ".,.d".

After a deletion, the current line pointer is left pointing to the first l1ine after the
group of deleted 1ines, unless the last 1ine in the buffer was deleted. In this case, the
current l1ine is the last 1ine before the group of deleted lines.

Text Patterns
Fregquently it is desirable to be able to find a particular "pattern" in a piece of text.

For example, suppose that after proofreading a report you have typed in using ‘ed’ you find a
spelling error. There must be an easy way to find the misspelled word in the file so it can

Introduction to ‘Ed’

be corrected. One way to do this is to count all the lines up to the 1ine containing the
error, so that you can give the 1ine number of the offending l1ine to ‘ed’. Obviously, this
way is not very fast or efficient. ‘Ed’ allows you to “search" for patterns of text (l1ike
words) by enclosing the pattern in slashes:

/ jumps/
jumps over

‘Ed’ looks for the pattern you specified, and moves to the first 1ine which contains the pat-
tern. Note that if we had typed

/ jumped/
?

‘ed’ would inform us that ft could not find the pattern we wanted.

‘Ed’ searches forward from the current line when it attempts to find the pattern you
specified. If ‘ed’ reaches the last line without seeing the pattern, it "wraps around" to the
first 1line in the file and continues searching until it either finds the pattern or gets back
to the line where it started (line “."). This procedure ensures that you get the ‘“next"
occurrence of the pattern you were looking for, and that you don‘’t miss any occurrences
because of your current position in the file.

Suppose, however, that you do not wish to find the "next" occurrence of a word, but the
previous one instead. Very few text editors provide this capability; however, ‘ed’ makes it
simple. Just surround the pattern with backslashes:

\quick\
The gquick brown fox

Remember: backslashes search backward. The backward search (or backscan, as it is sometimes
called) wraps around the file in a manner similar to the forward search (or scan). The search
begins at the 1ine before the current line, proceeds until the first 1ine of the file is seen,
then begins at the 1last 1l1ine of the file and searches upwards until the current line is
encountered. Once again, this is to ensure that you do not miss any occurrences of a pattern
due to your current position in the file.

In pattern searches, and in other commands which we will get to later, ‘ed’ allows you to
leave off the trailing delimiter. 1I.e., instead of typing

/ jumps/
you can type
/ jumps
to search forward for the first occurrence of the pattern "jumps". Similarly, to search back-
ward, you may type
\quick
instead of
\quick\

This feature can save considerable time and frustration when you are doing some involved
editing, and accidentally leave off the trailing delimiter ("/" or "\"). The rest of this
guide will continue to use examples with the trailing delimiter, but you do not have to in
your actual editing.

‘Ed’ also provides more powerful pattern matching services than simply 1looking for a
given string of characters. (A note to beginning users: this section may seem fairly com-
plicated at first, and indeed you do not really need to understand it completely for effective
use of the editor. However, the results you might get from some patterns would be mystifying
if you were not provided with some explanation, so 1ook this over once and move on.)

The pattern that may appear within slashes (or backslashes) is called a "regular expres-

sion." 1t contains characters to look for and special characters used to perform other
operations. The following characters

%» 2 8 [= e
have special meaning to ‘ed’:
% Beginning of 1line. The "%" character appearing as the first element in a pattern

matches the beginning of a 1ine. It is most frequently used to 1locate 1lines with
some string at the very beginning; for example,

[]

Introduction to ‘Ed’

/%The/
finds the next 1l1ine that begins with the word "The". The percent sign has its
special meaning only if it is the first element of the pattern; otherwise, it is
treated as a literal percent sign.

Any character. The question mark "?" in a regular expression matches any character
(except a beginning-of-line or a newline). It can be used 1ike this:

/a?b/
to find strings 1ike

a+b

a-b

a

arbiirary

(-

However, "?" 1is most often used with the "closure" operator "*" (see below).

End of 1ine. The dollar sign appearing as the last element of a pattern matches the
newline character at the end of a 1line. Thus,

/today$/
can be used to find a2 line with the word "today" at the very end. Like the percent
sign, the dollar sign has no special meaning in positions other than the end of a
pattern.

Character classes. The square brackets are used to match "classes" of characters.
For example,

/la-21/

finds the next l1ine containing a capital letter,
/%[abecxyz]/

finds the next 1ine beginning with an a, b, ¢, %X, y, or z, and
/[~0-9]/

finds the next 1line which contains a non-digit. Character classes are also
frequently used with the "closure" operator "x",

Closure. The asterisk is used to mean "any number of repetitions (including zero)
of the previous pattern element (one character or a character class. in brackets)."
Thus,

/a?*b/

finds 1lines containing an "a" folliowed by any number of characters and a "b". For
example, the following lines are matched:

ab
abnormal
Recording Media, by Dr. Joseph P. Gunchy

As another example,

[%=*$/
matches only those lines containing all equal-signs (or nothing at all). If vyou
wish to ensure that only non-empty lines are matched, use

/%==x$/

»

Always remember that "*" (closure) matches zero or more repetitions of an element.

Escape. The "at" sign has special meaning to ‘ed’. It is the "escape" character,
which is used to prevent interpretation of a special character which follows. Sup-
pose you wish to locate a 1ine containing the string "a * b", You may use the fol-
lowing command:
/a ex b/

The "at" sign "turns off" the special meaning of the asterisk, so it can be used as
an ordinary text character. You may have occasion to escape any of the regular
expression metacharacters (%, ?, $, [, *, e, or {) or the slash itself. For exam-

Introduction to ‘Ed’

{

ple, suppose you wished to find the next occurrence of the string “"{1/2". The com-
mand you need is:
/1e/2/

Pattern tags. As seen in the next section, it is sometimes useful to remember what
part of a line was actually matched by a pattern. By default, the string matched by
the entire pattern is remembered. It is also possible to remember a string that was
matched by only a part of a pattern by enclosing that part of the pattern in braces.
Hence to find the next 1line that contains a quoted string and remember the text
between the quotes, we might use

/v {2x)/
If the 1ine thus located looked 1ike this
This is a line containing a “quoted string".
then the text remembered as matching the tagged part of the pattern would be

quoted string

The last important thing you need to know about patterns is the use of the "default" pat-
tern. ‘Ed’ remembers the last pattern used in any command, to save you the trouble of retyp-

ing it.
following

To access the remembered pattern, simply use an "empty" string. For example, the
sequence of commands could be used to step through a file, 1looking for each

occurrence of the string "ICS":

/1cs/
//
//

(and so on)

One last comment before leaving pattern searching. The constructs

/pattern/
\pattern\

are not separate commands; they are components of 1ine number expressions. Thus, to print the
line after the next line containing "tape", you could say

/tape/+1p

Oor, to print a range of lines from one before to one after a line with a given pattern, you

could use

/pattern/-1,/pattern/+1p

Making Substitutions - the Substitute command

This

is one of the most used editor commands. The "substitute" command “s*" is used to

make small changes within lines, without retyping them completely. It is used like this:

starting-line,ending-1ine s [/pattern/new-stuff[/]]

For instance, suppose our buffer looks 1ike this:

To change

1'sp1

The quick brown fox
jumps over
the lazy dog.

"jumps" to "jumped, "

2s/ jumps/ jumped/p
jumped over

Note the use of the trailing "p" to print the result. If the "p" had been omitted, the change
would have been performed (in the buffer) but the changed l1ine would not have been printed

out.

If the last string specified in the substitute command is empty, then the text matching
the pattern is deleted:

Introduction to ‘Ed’

s/ jumped//p

over
s/% */ jumps /p

jumps over

Recalling that a missing pattern means "use the last pattern specified," try to explain what
the following commands do:

s///p
jumps over
s// /p

jumps over

(Note that, 1ike many other commands, the substitute command assumes you want to work on the
current line if vou do not specify any line numbers.)

what if you want to change "over" into "over and over"? You might use

s/over/over and over/p
jumps over and over

to accomplish this. There is a shorthand notation for this kind of substitution that was
alluded to briefly in the last section. (Recall the discussion of "tagged" patterns.) By
default, the part of a line that was matched by the whole pattern is remembered. This string
can then be included in the replacement string by typing an ampersand ("&") in the desired
position. So, instead of the command in the last example,

s/over/& and &/

could have been used to get the same result. If a portion of the pattern had been tagged, the
text matched by the tagged part in the replacement could be reused by typing "e1":

s/jump{?=*}/vaulte1/p
vaults over and over

It is possible to tag up to nine parts of a pattern using braces. The text matched by each
tagged part may then be used in a replacement string by typing

en
where n corresponds to the nth "{" in the pattern. What does the following command do?

s/{[~ 1*} {2*}/e2 e1/

Some more words on substitute: the slashes are known as “delimiters" and may be replaced
by any other character except a newline, as long as the same character 1is used consistently
throughout the command. Thus,

s#vaults#vaul ted#p
vaulted over and over

is legal. Also, note that substitute changes only the first occurrence of the pattern that it
finds; if you wish to change all occurrences on a line, you may append a "g" (for "global") to
the command, like this:

s/ /x/gp
xxxxvaulted*over*and*over

In the replacement part of a substitute command, the character "&", as the only character in
the pattern, means "the replacement part of the previous substitute command". (This allows an
empty replacement pattern as well.) Thus, to step through the buffer, and change selected
occurrences of one pattern into another, you might do the following:

/pat1/

Line containing patt.

s/pati1/stuffi/p ’
Line containing stuff1.

//

Another 1ine with pati.

Yet another line with pati.
s//&/p .
Yet another l1ine with stuffi.

You may leave off the trailing delimiter in the substitute command. This will cause ‘ed’ to
print out the changed line. 1I.e., "s/stuff/junk" is the same as "s/stuff/junk/p".

Introduction to ‘Ed’

/quick/

The quick brown fox
s/quick/really fast

The really fast brown fox

If you wish to delete an occurrence of a pattern, you may leave it off. ‘Ed’ will delete the
pattern, and then print the line. In other words, "s/stuff" is the same as "s/stuff//p".

P
The quick brown fox

s/quick
The brown fox

Finally, you may leave ‘off the search pattern and replacement string entirely. If you do,
‘ed’ will behave as though’'you had typed "s//&/p". in other words, substitute the previous
replacement pattern for the previous search pattern, and print.

1,%d
a

line 1
line 2

1s/1ine/this is &/p
this is 1ine 1

2s

this is line 2

This can save considerable typing.

Line Changes, Insertions, and Concatenations

Two ‘“"abbreviation" commands are available to shorten common operations appliying to
changes of entire 1ines. These are the "change" command "c" and the "insert" command "i".

The change command is a combination of delete and append. 1Its format is
starting-line,ending-1ine ¢

This command deletes the given range of 1ines, and then goes into append mode to obtain text
to replace them. Append mode works exactly the same way as it does for the "a" command; input
is terminated by a period standing alone on a 1ine. Examine the following editing session to
see how change might be used:

1,8¢c
Ed is an interactive program used for
the creation and modification of "text.

c
the creation and modification of "text."
"Text" may be any collection of character
data. :
As you can see, the current l1ine is set to the last 1ine entered in append mode.

The other abbreviation command is "i*. "I" is very closely related to "a"; in fact, the
following relation holds:

starting-line i
is the same as
starting-1ine - 1 a

In short, *i® 1nsert§ text before the specified 1ine, whereas "a" inserts text after the
specified line. ’

The join command "j" can be used to put two or more lines together into a single 1line.
It works like this:

starting-1ine,ending-1ine j[/stringl/]]

The defaults for starting-line and ending-line are "~" and "." respectively, that is, "join
the line before the current line to the current l1ine". You may specify in "string" what is to
replace the newline(s) which currently separate the lines which are to be joined. If you do
not specify any string, ‘ed’ will replace the newline with a single blank. If you do specify
a string, you may leave off the trailing delimiter (which can be any character), and ‘ed’ will
print out the resuiting joined line. An extended example should make this clear:

- 10 -

Introduction to ‘Ed’

1,%p
The quick brown fox
jumps over
the lazy dog.
2,88/% *//
1,8p
The quick brown fox
jumps over
the lazy dog.
1,2)
The aquick brown fox jumps over
1,2j§/ the back of /p
The quick brown fox jumps over the back of the lazy dog.

Moving Text

(
Throughout this guide, we have concentrated on what may be called "in-place" editing.
The other type of editing commonly used is often called “"cut-and-paste" editing. The move
command "m" is provided to facilitate this kind of editing, and works 1ike this:

starting-line,ending-1ine m after-this-11ine

If you wanted to move the last fifty lines of a file to a point after the third 1ine, the com-
mand would be

$-49,$m3

Any of the 1ine numbers may, of course, be full expressions with search strings, arithmetic,
etc.

You may, if you like, append a "p" to the move command to cause it to print the last line
moved. The current 1ine is set to the last 1ine moved.

Global Commands

The “gliobal" command "g" is used to perform an editing command on aill lines in the buffer
that match a certain pattern. For example, to print all the lines containing the word
‘editor", you could type

g/editor/p
If you wanted to correct some common spelling error, you would use
g/old-stuff/s//new-stuff/gp

which makes the change in all appropriate 1ines and prints the resulting lines. Another exam-
ple: deleting all lines that begin with an asterisk could be done this way:

g/%ex/d

"G" has a companion command "x" (for “"exclude") that performs an operation on all 1lines
in the buffer that do not match a given pattern. For example, to delete all l1ines that do not
begin with an asterisk, use

x/%ex/d

*G" and "x" are very powerful commands that are essential for advanced usage, but are
usually not necessary for beginners. Concentrate on other aspects of ‘ed’ before you move on
to tackle global commands.

Marking Lines ’

During some types of editing, especially when moving blocks of text, it is often neces-
sary to refer to a line in the buffer that is far away from the current line. For instance,
say you want to move a subroutine near the beginning of a file to somewhere near the end, but
you aren’t sure that you can specify patterns to properly locate the subroutine. One way to
solve this problem is to find the first l1ine of the subroutine, then use the command ".=":

/subroutine/
subroutine think
.=

47

Introduction to ‘Ed’

and write down (or remember) line 47. Then find the end of the subroutine and do the same
thing:

/end/
end
71
Now you move to where you want to place the subroutine and enter the command
47,71m.
which does exactly what you want.

.

The problem here is that absolute 1ine numbers are easily forgotten, easily mistyped, and
difficult to find in the first place. It is much easier to have ‘ed’ remnzcmse” a short "name"
along with each 1line, and allow you to reference a line by its name. In practice, it seems
convenient to restrict names to a single character, such as "b" or "e" (for ‘'beginning" or
"end"). It is not necessary for a given name to be uniquely associated with one 1ine; many
lines may bear the same name. 1In fact, at the beginning of the editing session, all lines are
marked with the same name: a single space.

To return to our example, using the ‘k’ command, we can mark the beginning and ending
lines of the subroutine quite easily:

/subroutine/
subroutine think.
kb
/end/
end
ke

we have now marked the first 1ine in the subroutine with "b" and the second line with "e".

To refer to names, we need more 1line number expression elements: ">" and "<". Both work
in line number expressions just like "$" or "/pattern/". The symbol ">" followed by a singie
character mark name means "the line number of the first 1ine with this name when you search
forward". The symbol "<" followed by a single character mark name means "the 1ine number of
the first line with this name when you search backward". (Just remember that ‘<’ points back-
ward and ‘>’ points forward.)

Now in our example, once we locate the new destination of the subroutine, we can use "<b"
and "<e" to refer to lines 47 and 71, respectively (remember, we marked them). The "move"
command would then be

<b,<em.
Several other features pertaining to mark names are important. First, the ‘k’ command
does not change the current line ‘'.’. You can say
$kx

(which marks the last line with "x") and "." will not be changed. If you want to mark a
range of lines, the ‘k’ command accepts two line numbers. For instance,

5, 10ka
marks lines 5 through 10 with "a" (i.e., gives each of 1ines 5 through 10 the markname “a").

The ‘n’, ‘!’ and apostrophe commands also deal with marks. The ‘n’ command performs two
functions. If it is invoked without a mark name following it, like

$n

it prints the mark name of the line. In this case, it would print the mark name of the last
1ine in the file. If the 'n’ command is followed by a mark name, 1ike

anq

it marks the line with that mark name, and erases the marks on any other lines with that name.
In this case, 1ine 4 is marked with "q" and it is guaranteed that no other l1ine in the file is
marked with "q".

The ‘!’ and apostrophe commands are both global commands that deal with mark names. The
apostrophe command works very much like the ‘g’ command: the apostrophe is followed by a mark
name and another command; the command is performed on every line marked with that name. For
instance, :

- 12 -

Introduction to ‘Ea’

‘as/fox/rabbit/

changes the first "fox" to "rabbit" on every line that is named "a". The ‘!’ command works
in the same manner, except that it performs the command on those 1ines that are not marked
with the specified name. For example, to delete all lines not named "k", you could type

tkd

Undoing Things -- the Undo Command

Unfortunately, Murphy’s Law guarantees that if you make a mistake, it will happen at the
worst possible time and cause the greatest possible amount of damage. ‘Ed’ attempts to
prevent mistakes by doing such things as working with a copy of your file (rather than the
file itself) and checking commands for their plausibility. However, if you type

d (.

when you really meant to type
a

‘ed’ must take its input at face value and do what you say. It is at this point that the
"undo" command ‘u’ becomes useful. “Undo" allows you to *undelete" the last group of 1ines
that was deleted from the buffer. In the last example, some inconvenience couild be avoided by
typing

“ud

which restores the deleted l1ine. (By default “undo" replaces the specified 1ine by the last
group of 1ines deleted. Specifying the "“d", as in "ud", causes the group to be inserted after
the specified line instead.)

The problem that arises with "undo" is the answer to the guestion: “What was the last
group of lines deleted?" This answer is very dependent on the implementation of ‘ed’ and in
some cases 1is subject to change. After many commands, the last group of 1ines deleted is
well-defined, but unspecified. It is not a good idea to use the "undo" command after anything
other than ‘c’, ‘d’, or ‘s’. After a ‘c’ or ‘d’ command,

ud

places the last group of deleted lines after the current line. After an ‘s’ command (which by
the way, deletes the old line, replacing it with the changed line),

u

deletes the current line and replaces it with the last 1ine deleted -- it exactly undoes the
effects of the ‘s’ command. But beware! If the ‘s’ command covered a range of lines, ‘u’ can
only restore the last of the 1ines in which a substitution was made; the others are gone
forever.

You should be warned that while "undo" works nicely for repairing a single ‘c’, ‘d’, or
‘s’ command, it cannot repair the damage done by one of these commands under the control of a
global prefix (’g’, ‘x’, ‘!’ and apostrophe). Since the giobal prefixes cause their command
to be performed many times, only the very last command performed by a global prefix can be
repaired.

More Line Number Syntax

So far, the commands that you have seen can be given either no 1ine numbers elements (the
command tries to make an intelligent assumption about the 1ine(s) on which to perform an
operation), one line number element (the command acts only on that line), or two 1ine numbers
separated by a comma (the command acts on the given range of lines). There is one more way to
specify line number elements, and that is to separate them by a semicolon. When 1line number
elements are separated by semicolons, each 1ine number element encountered sets the
“current 1ine" marker before the next 1ine number element is evaluated. This 1is especially
useful when using patterns as 1line number elements; some examples will illustrate what we
mean.

Suppose that you wanted to print all the lines which l1ie between two 1ines, each contain-
ing the string "fred". An initial effort might yield the following command line:

/fred/,/fred/p
This, however, will only print out the first 1ine which contains ‘"fred" after the current

line. This is because both patterns will start their search after the current 1ine where the
command was executed, instead of the second one starting where the first pattern was found.

- 43 -

Introduction to ‘Ed’

To correct this, we would issue the following:
/fred/;/fred/p

when the first occurrence of "fred" is found, the "current line" is set to that line, and the
second occurrence of "fred" will be found starting at this new 1line. This will print the
1ines between two succeeding occurrences of "fred" from the current line.

As a final example, suppose that we wanted to print the lines between the second and
third occurrence of "fred" after the current line; to do this, we would do:

/fred/;//://p

The first pattern search wquld find "fred", the next two null strings will cause the previous
pattern ("fred") to be searched for again, each time resetting the “current line" marker. Of
course, the command "p" may be replaced by any command you wish.

For both comma-separated and semicolon-separated 1ine number elements, you may specify
more than two such elements, as the above example shows; only the last two such elements will
be used as the range for the given command. In general, using more than two 1line number
elements separated by commas is not too useful, because the "current l1ine" is not modified for
any of the 1line number expression evaluations. Also, using integer 1ine numbers means that
multiple expressions (more than two) are not useful, since the equivalent behavior can be
obtained by specifying only the last two 1ine numbers.

Escaping to the Shell

wWith Version 8 of Software Tools and Revision 19.2 or later of PRIMOS, it is now possible
to call the Software Tools Subsystem command interpreter (the shell) from within a program.

‘Ed’ provides access to this facility with the shell escape "~" command. It works like
this: .

~[<Software Tools Command>]

If present, the <Software Tools Command> is passed to the shell to be executed. Otherwise, an
interactive shell is created. After either the command or the shell exits, ‘ed’ prints a “~"
to indicate that the shell escape has completed. If the first character of the <Software
Tools Command> is a "!", then the "!" is replaced with the text of the previous shell com-
mand. An unescaped "%" in the <Software Tools Command> will be replaced with the current
saved file name. If the shell command is expanded, ‘ed’ will echo it first, and then execute
it.

This feature is useful when you want to temporarily stop editing and do something else,
or find something out, without having to write your file and leave the editor.

{editing session}

~1f -1 %

1f -1 file

sam a/r 06/17/84 16:25:08 19463 sys file

-~

For a deeper discussion of using the shell from within a program, see the help on the
‘shell’ subroutine. In particular, due to operating system constraints, you must not run
another instance of the editor from the new shell, or you will end up clobbering your current
edit buffer.

WARNING: Until Prime supports EPFs, and the editor is reloaded in EPF format, you must
not run any external commands (1ike ‘1f’) from a shell started from ‘ed’. If you do, the new
program will load over ‘ed’, and wipe out your current editing session. You can use commands
which are internal to the shell (1ike ‘cd’), without any i11 effect. This restriction, for
various arcane reasons, does not apply to the Subsystem screen editor, ’‘se’.

In essence, this feature is provided in the editor with an eye to the future.

Forced Logouts

With Revision 19 of Primos, it became possible for programs to catch a forced logout (the
LOGOUT$ condition), and take some kind of appropriate action. Both ‘ed’ and ‘se’ have
provision for catching a forced logout, and will save their current edit buffers. when a
LOGOUTS signal is received, ‘ed’ writes its edit buffer to the file "=temp=/=user=.ed", while
‘se’ writes its edit buffer to the file "=temp=/=user=.se". Both editors use the =temp=
directory, since it is possible that if they tried to save their buffers in the user’s direc-
tory (e.g. =home=), they could overflow a disk quota, and the editing session would be lost.

Introduction to ‘Ed’

Summary

This concludes our tour through the world of text editing. In the section that follows,
you will find a brief introduction to the Software Tools Subsystem screen editor ‘se’, which
supports all of the 1line-oriented commands of ‘ed’ as well as full screen editing
capabilities, while giving you a "window" into your edit buffer. Following that, we have
included for your convenience a short summary of all available 1ine editing commands supported
by

‘ed’ and ‘se’, many of which were not discussed in this introduction, but which you will
undoubtedly find useful.

Introduction to ‘Ed’
The Subsystem Screen Editor

The screen editor, ‘se’, is an extended version of the Subsystem 1ine editor, ‘ed’.
Although ‘se’ contains a number of additional features, it accepts all ‘ed’ commands (alimost
without exception), and is therefore easily used by anyone familiar with ‘ed’. This section
outlines the differences between ‘ed’ and ‘se’.

The screen editor has a built-in "help" facility, which documents all the commands and
options. when in doubt, type "help", and the help screens should guide you to further
information on what you need to know.

Invoking the Screen Editor,
You can invoke the screen editor .itr either of the following commands:
] se
or
] se myfile
‘Se’ will automatically fetch your terminal type from the Subsystem. If you never told the
Subsystem your terminal type or set an unknown terminal type with the ‘term’ command, ’‘se’
will prompt you for another terminal type; if you type a ‘?’, ‘se’ will give you a 1list of

possible terminal types and prompt you again for yours.

‘Se’ can also be invoked by the command ‘e’. ‘E’ remembers the name of the last file you
edited, so if you don’t specify a file, ‘e’ will enter the last file you edited.

Using ‘Se’

‘Se’ first clears the screen, draws in its margins, and executes the commands in the file
"=home=/.serc", if it exists. It then processes the command line, obeying the options given
there, and begins reading your file (if you specified one). The screen it draws looks someth-
ing 1ike this. (The parenthesized numerals are not part of the screen layout, but are there
to aid in the following discussion.)

(1) (2) (3)

A [}

B *} integer a

(o}

.= } for (a = 1; a <= 12; a = a + 1)

E | call putch (NEWLINE, STDOUT)

F | stop

$ | end

cmd> _ (4)

11:39 myfile(5).....cvvvennn. it ..
The display is divided into five parts: (1) the l1ine number area, (2) the mark name_ area, (3)
the text area, (4) the command line, and (5) the status line. The current line (remember ".*")
is indicated by the symbol "." in the line number area of the screen. In addition, a rocket

("->") is displayed to make the current line more obvious. The current mark name of each line
is shown in the markname area just to the left of the vertical bar. Other information, such
as the number of lines read in, the name of the file, and the time of day, are displayed in
the status line.

The cursor is positioned at the beginning of the command 1line, showing you that ‘se’
awaits your command. You may now enter any of the ‘ed’ commands and ‘se’ will perform them,
while making sure that the current line is always displayed on the screen. There are only a
few other things that you need know to successfully use ‘se’.

. ‘Se’ always recognizes BS (control-h) and DEL as the erase and kill characters,
regardless of your Subsystem erase and kill character settings.

. If you make an error, ‘se’ automatically displays an error message in the status
line. It also leaves your command line intact so that you may change it using in-
1ine editing commands (we‘ll get to this a littlie later). If you don‘’t want to
bother with changing the command, just hit DEL and ‘se’ will erase it.

. The '"p" command has a different meaning than in ‘ed’. When used with 1ine numbers,
it displays as many of the lines in the specified range as possible (always includ-
ing the last 1ine). When used without 1ine numbers, “p" displays the previous page.

Introduction to ‘EQ’

. The ":" command positions a specified 1ine at the top of the screen (e.g., "12:"
positions the screen so that line 12 1is at the top). If no 1ine number is
specified, ":" displays the next page.

. The "v" command can be used to modify an entire 1ine rather than just add to the end
of the 1tline. Also, if you use "“v" over a range of lines and find that you want to
terminate the command before all l1ines have been considered, the control-f key is
used instead of a period.

. If a file name is specified in the "w" command and the file already exists, ’‘se’
will display "file already exists"; entering the command again (by typing a NEWLINE)
will cause the file to be overwritten. Given the command "w! <file>", ‘se’ will
never warn about the destruction of an existing file.

Keeping these few differences in mind, you will see that ’‘se’ can perform all of the functions
of ‘ed’. while giving the advantage of a "window" into the ed’'t -u™%=2

Extended Line Numbers

‘Se’ has a number of features that take advantage of the window display to minimize
keystrokes and speed editing. In the line number area of the screen, ‘se’ always displays for
each 1ine a string that may be used in a command to refer to that 1ine. Normally, it displays
a capital letter for each line, but in "absolute 1ine number" mode (controlled by the "oa"
command; see the section on options for more details), it displays the ordinal number of the
line in the buffer.

The line number letters displayed by ‘se’ may be used in any context reqguiring a 1line
number. For instance, in the above example, a change to the first 1ine on the screen could be
specified as

As/%/# my new program/
You could delete the 1ine before the first 1ine on the screen by typing

A-1d

Finally, ‘se’ accepts "#" as a 1ine number element; it always refers to the first line on
the screen; like the 1ine number letters, it may be used in any context which requires a line
number element or expression.

Case Conversion

When ‘se’ is displaying upper-case letters for 1ine numbers, it accepts command letters
only 1in lower case. For those who edit predominantly upper-case text this is somewhat incon-
venient; for those with upper-case only terminals this is a disaster. For this reason, ‘se’
offers several options to alleviate this situation.

First of all, typing a control-z causes ‘se’ to invert the case of all letters (just like
the alpha-lock key on some terminals). Upper-case letters are converted to lower-case, lower-
case letters are converted to upper-case, and all other characters are unchanged. You can
type control-z at any time to toggle the case conversion mode. when case inversion 1is in
effect, ’‘se’ displays the word "CASE" in the status line.

One drawback to this feature is that ’‘se’ still expects line numbers in upper case and
commands in lower case, so you must shift to type the command letter -- just the reverse of
what you’‘re used to. A more satisfactory solution is to specify the “c" option. Just type

ocC

on the command 1ine and ‘se’ toggles the case conversion mode, and completely reverses its
interpretation of upper and lower case letters. In this mode, ‘se’ displays the 1ine number
letters in lower case and expects its command letters in upper case. Unshifted letters from
the terminal are converted to upper case and shifted letters to lower case.

»

Tabs

In the absence of tabs, program indentation is very costly in keystrokes. So ‘se’ gives
you the ability to set arbitrary tab stops using the "ot" command. By default, ’‘se’ places a
stop at column 1 and every third column thereafter. Tabs corresponding to the default can be
set by enumerating the column positions for the stops:

ot 1 47 10 13 16 19 22 25 28 31 34

This 1is almost as bad as typing the blanks on each line. For this reason, there is also a
shorthand for such repetitive specifications.

Introduction to ‘Ed’

ot +3

sets a tab stop at column 1 and at every third column thereafter. Fortran programmers may
prefer the specification

ot 7 +3
to set a stop at column 7 and at every third thereafter.
Once the tab stops are set, the control-i and control-e keys can be used to move the cur-

sor from its current position forward or backward to the nearest stop, respectively.

Full-Screen Editing

L

Full screen <. .iny with ‘se’ is accomplished through the use of control characters for
editing functions. A few, such as control-h, control-i, and control-e have already been
mentioned. Since ‘se’ supports such a large number of control functions, the mnemonic value

of control character assignments has dwindled to almost zero. About the only thing mnemonic
is that most symmetric functions have been assigned to opposing keys on the keyboard (e.g.,
forward and backward tab to control-i and control-e, forward and backward space to control-g
and control-h, skip right and left to control-o and control-w, and so on). We feel pangs of
conscience about this, but can find no more satisfactory alternative. If you feel the control
character assignments are terrible and you can find a better way, you may change them by
modifying the definitions in ‘se’ and recompiling.

Except for a few special purpose ones, control characters can be used anywhere, even on
the command line. (This is why erroneous commands are not erased -- you may want to edit
them.) Most of the functions work on a single 1ine, but in overlay mode (controllied by the
"v" command), the cursor may be positioned anywhere in the buffer.

Horizontal Cursor Motion

There are quite a few functions for moving the cursor. You‘ve probably used at least one
(control-h) to backspace over errors. None of the cursor motion functions erase characters,
so you may move forward and backward over a line without destroying it. Here are several of
the more frequently used cursor motion characters:

controi-g Move forward one column.

control-h Move backward one column.

control-i Move forward to the next tab stop.

control-e Move backward to the previous tab stop.

control-o Move to the first column beyond the end of the line.

control-w Move to column 1.

Vertical Cursor Motion

‘Se’ provides two control keys, control-d and control-k, to move the cursor up and down,
respectively, from 1line to l1ine through the edit buffer. The exact function of each depends
on ‘se’‘s current mode: in command mode they simply move the current 1l1ine pointer without
affecting the cursor position or the contents of the command line; in overlay mode (viz. the
"v" command) they actually move the cursor up or down one 1line within the same column;
finally, in append move, these keys are ignored. Regardliess of the mode, the screen is
adjusted when necessary to insure that the current line is displayed.

control-d Move the cursor up one line.

control-k Move the cursor down one 1line.

Character Insertion

Of course the next question is: "Now that I‘ve moved the cursor, how do I change
things?" If you want to retype a character, just position the cursor over it, and type the
desired character; the old one is replaced. You may also insert characters at the current
cursor position instead of merely overwriting what’s already there. Typing a control-c
inserts a single blank before the character under the cursor and moves the remainder of the
1ine one column to the right; the cursor remains in the same column over the newly-inserted
blank. Typing a control-x inserts enough blanks at the current cursor position to move the
character that was there to the next tab stop. This can be handy for aligning items in a
table, for example. As with control-c, the cursor remains in the same column.

Introduction to ‘Ed’

A more general way of handling insertions is to type control-a. This toggles “insert
mode" -- the word "INSERT" appears on the status line, and all characters typed from this
point are inserted in the line (and characters to the right are moved over). Typing control-a
again turns insert mode off. Here is a summary of these control characters:
control-a Toggle insert mode.
control-c Insert a blank to the left of the cursor.
control-x Insert blanks to the next tab stop.

control-_ Insert a newline.

Character Deletion

There are many ways to do away with characters. The most drastic is to type DEL;: ‘se’
erases the current 1line and leaves the cursor in column 1. Typing controli-t causes ‘se’ to
delete the character under the cursor and ali those to its right. The cursor is left in the
same column which is now just beyond the new end of the line. Similarly, control-y deletes
all the characters to the left of the cursor (not including the one under it). The remainder
of the 1ine is moved to the left, leaving the cursor over the same character, but now in
column 1. Control-r deletes the character under the cursor and closes the gap from the right,
while control-u does the same thing after first moving the cursor one column to the left.
These last two are most commonly used to eat characters out of the middle of a 1ine.
DEL Erase the entire line.
control-t Erase the characters under and to the right of the cursor.
control-y Erase the characters to the left of the cursor.
control-r Erase the character under the cursor.

control-u Erase the character immediately to l1eft of the cursor.

Terminating a Line

After you have edited a 1ine, there are two ways of terminating it. The most commonly
used is the control-v. A newline (or carriage-return) can be used but beware that it deletes
all characters over and to the right of the cursor.
control-v Terminate.

NEWLINE Erase characters under and to the right of the cursor and terminate.

Non-printing Characters

‘Se’ displays a non-printing character as a blank (or other user-selectable character;

see the description of "ou" in the section on options). Non-printing characters (such as
‘se’s control characters), or any others for that matter., may be entered by hitting the ESC
key followed immediately by the key to generate the desired character. Note, however, that

the character you type is taken literally, exactly as it is generated by your terminal, so
case conversion does not apply.

ESC Accept the literal value of the next character, regardless of its function.

The .serc File

When ‘se’ starts up, it tries to open the file “=home=/.serc". If that file exists, ‘se’
reads it, one line at a time, and executes each line as a command. If a line has "#" as the
first character on the l1ine, or if the 1ine is empty, the entire line is treated as a comment,
otherwise it is executed. Here is a sample ".serc" file: ’

turn on unix mode, tabs every 8 columns, auto indent
opu
ot+8
oia

The ".serc" file is useful for setting up personalized options, without having to type them on
the command 1ine every time, and without using a special shell file in your bin. 1In
particular, it is useful for automatically turning on UNIX mode for Software Tools users who
are familiar with the UNIX system.

Command 1ine options are processed after commands in the ".serc" file, so, in effect, command

- 419 -

Introduction to ‘Ed’

line options can be used to over-ride the defaults in your ".serc" file.

NOTE: Commands in the ".serc" file do not go through that part of ‘se’ which processes the
special control characters (see above), so do not use them in your ".serc" file.

0

-20-

Introduction to ‘Ed’
Screen Editor Options

Options for ‘se’ can be specified in two ways: with the "o" command or on the Subsystem
command 1ine that invokes ’‘se’. To specify an option with the "o" command, just enter %“o"
followed immediately by the option letter and its parameters. To specify an option on the
command line, just use "-" followed by the option letter and its parameters. With this second
method, if there are imbedded spaces in the parameter 1ist, the entire option should be
enclosed in quotes. For example, to specify the "a" (absolute 1ine number) option and tab
stops at column 8 and every fourth thereafter with the "o" command, just enter

oa
ot 8 +4

when ‘se’ is waiting for a command. To enter the same options on the invoking command 1line,
you might use

se -t regent myfile -a "-t 8 +4"

The following table summarizes the available ‘se’ options:

Option Action

a causes absoclute 1ine numbers to be displayed in the 1ine number area of the screen.
The default behavior is to display upper-case letters with the letter "A" correspon-
ding to the first 1ine in the window.

c inverts the case of all letters you type (i.e., converts upper-case to lower-case
and vice versa). This option causes commands to be recognized only in upper-case
and alphabetic 1ine numbers to be displayed and recognized only in lower-case.

di<dir>] selects the placement of the current line pointer following a "d" (delete) command.
<dir> must be either ">" or "<"', 1If ">" is specified, the default behavior is
selected: the l1ine following the deleted 1ines becomes the new current 1line. If
"<" is specified, the 1ine immediately preceding the deleted 1ines becomes the new
current line. If neither is specified, the current value of <dir> is displayed in
the status line.

f selects Fortran oriented options. This is equivalent to specifying both the "c" and
"t7 +3" (see beliow) options.

-] controls the behavior of the "s" (substitute) command when it is under the control
of a "g" (gliobal) command. By default, if a substitute 1inside a global command
fails, ‘se’ will not continue with the rest of the lines which might succeed. If
"og" is given, then the global substitute will continue, and lines which failed will
not be affected. Successive "og" commands will toggle this behavior. An
explanatory message is placed in the status 1line.

hl<baud>] lets the editor know at what baud rate you are receiving characters. Baud rates can
range from 50 to 19200; the default is 9600. This option allows the editor to
determine how many, if any, delay characters (nulls) will be output when the hard-
ware line insert/delete functions of the terminal are being used (if available).
Use of the built-in terminal capabilities to insert/delete l1ines speeds up editing
over slow-szpeed lines (i.e., dialups). Entering ‘oh’ without an argument will cause
your current baud rate to appear on the status 1line.

i[a } <indent>] selects indent value for 1lines inserted with *“a", "c" and "1" commands
(initially 1). "a" selects auto-indent which sets the indent to the value which
equals the indent of the previous line. If <indent> is an integer, then the indent
value will be set to that number. If neither "a" nor <indent> are specified, the
current value of indent is displayed.

k Indicates whether the current contents of your edit buffer has been saved or not by
printing either a "saved" or "not saved" message on your status: line.
1]
1[<1op>)] sets the 1ine number display option. Under control of this option, ‘se’
continuously displays the value of one of three symbolic 1ine numbers in the status
line. <lop> may be any of the following:
display the current 1ine number
display the number of the top line on the screen
$ display the number of the last 1ine in the buffer

If <lop> is omitted, the 1ine number display is disabled.

- 21 -

Introduction to ‘Ed’

iml<col1>]

sets the left margin to <col> which must be a positive integer. This option will
shift your entire screen to the left, enabling you to see characters at the end of
the line that were previously off the screen; the characters in columns 1 through
<col> - 1 will not be visible. You may continue editing in the normal fashion. To
reset your screen enter the command ‘oim 1’/. 1If <col> is omitted, the current left
margin column is displayed in the status line.

m{d] [<user>) displays messages sent t0 you by other users (via the ‘to’ command) while you

pls | ul

are editing. When a message arrives while you are editing, the word "message"
appears on your status line. To send other users messages while inside of the
editor, you can insert the text of your message into the edit buffer, and then issue
the command "linei,line2om <user>", where "lineti" and "line2" are the first and last
lines, respectively, of where you appended your message in the edit buffer and
"<user>" is the 1login name or process id of the person to whom you want to send a
message. The gi¥en 1ines are sent and deleted from the edit buffer. To prevent the
lines from being deleted after they are sent, use the . command 1ine
"l1ine1,1ine2omd <user>" i

converts to or from UNIX (tm) compatibility mode. The "op" command, by itself, will
toggle between normal (Software Tools mode) and UNIX mode. The command "opu" will
force ’‘se’ to use UNIX mode, while the command "ops" will force ‘se’ to use Software
Tools mode.
when in UNIX mode, ‘se’ uses the following for its patterns and commands:
?pattern[?] searches backwards for a pattern.
~ matches the beginning of a line.

matches any character.

~ is used to negate character classes.

% used by itself in the replacement part of a substitute command represents the
replacement part of the previous substitute command.

\(<regular expression>\) tags pieces of a pattern.

\<digit> represents the text matched by the tagged sub-pattern specified by <digit>.
\ is the escape character, instead of e.

t copies l1ines.

Yy transliterates lines.

~ does the global exclude on markname (see the "!" command, in the help on
‘ed’).

![<Software Tools Command>] will create a new instance of the Software Tools shell,
or execute <Software Tools Command> if it is present (see the "~" command, in
the help on ‘ed’).

A1l other characters and commands are the same for both UNIX and normal (Software
Tools) mode. The help command will always call up documentation appropriate to the
current mode. UNIX mode is indicated by the message "UNIX" in the status line.

UNIX mode is available only in ’‘se’. This extension is not available in ‘ed’.

s[pma | ftn | £77 | s | f] sets other options for case, tabs, etc., for one of the three

t[<tabs>]

ul<chr>]

programming languages 1listed. The option "oss" 1is the same as “‘ospma"“ and the
option “osf" is the same thing as "osftn" (the corresponding command line options
are "-ss* and "-sf"). If no argument is specified, the options affected by this
command revert to their default value.

sets tab stops& according to <tabs>. <Tabs> consists of a series of numbers indicat-
ing columns in which tab stops are to be set. If a number is preceded by a pilus
sign ("+"), it indicates that the number is an increment; stops are set at regular
intervals separated by that many columns, beginning with the most recently specified
absolute column number. If no such number precedes the first increment
specification, the stops are set relative to column 1. By default, tab stops are
set in every third column starting with column 1, corresponding to a <tabs>
specification of "+3". If <tabs> is omitted, the current tab spacing is displayed
in the status line.

selects the character that ‘se’ displays in place of unprintable characters. <chr>

may be any printable character; it is initially set to blank. If <chr> is omitted,
‘se’ displays the current replacement character on the status 1line.

- 22 -

vi<co1>]

wl<co1>]

-[<inr>]

inNTtroguctTion To "EKQ-

sets the default "overlay column". This is the column at which the cursor is
initially positioned by the "v" command. <Col> must be a positive integer, or a
dollar sign ($) to indicate the end of the 1ine. If <col> is omitted, the current
overlay column is displayed in the status)ine.

sets the "warning threshold" to <col> which must be a positive integer. Whenever
the cursor is positioned at or beyond this column, the column number is displayed in
the status line and the terminal’s bell 1is sounded. If <col> is omitted, the
current warning threshold is displayed in the status line. The default warning
threshold is 74, corresponding to the first column beyond the right edge of the
screen on an 80 column crt.

splits the screen at the line specified by <Inr> which must be a simple 1ine number
within the current window. All lines above <Inr> remain frozen on the screen, the
line specified by <Inr> is replaced by a row of dashes, and the space below this row

DT L ithe new window on the file. Further editing commands do no* affect the
lines displayed in the top part of the screen. If <Inr> is omitted, the screen is
restored to its full size. (.

- 23 -

Introduction to ‘Ed’

Screen Editor Control Characters

(Files can be edited with control characters only when you are in overlay mode, which you

can enter

mand mode.

Character

control-a

control-b

control-c

control-d

control-e

control-f

control-g

control-h

control-i

control -k

control-1

control-m

control-n

with the ‘v’ command. A control-v will exit overlay mode and put you back into com-
while in command mode you can use these characters to edit your command line.)

Action

Toggle insert mode. The status of the insertion indicator is inverted. Insert
mode, when enabled, causes characters typed to be inserted at the current cursor
position in the 1line instead of overwriting the characters that were there
previously. When insert mode is in effect, "INSERT" appears in the status line.

Scan right and erase. The current line is scanned from the current cursor position
to the right margin until an occurrence of the next character typed is found. When
the character is found, all characters from the current cursor position up to (but
not including) the scanned character are deleted and the remainder of the line is
moved to the left to close the gap. The cursor is left in the same column which is
now occupied by the scanned character. If the l1ine to the right of the cursor does
not contain the character being sought, the terminal’s bell is sounded. ‘Se’ remem-
bers the last character that was scanned using this or any of the other scanning
keys; 1if control-b is hit twice in a row, this remembered character is used instead
of a literal control-b.

Insert blank. The characters at and to the right of the current cursor position are
moved to the right one column and a blank is inserted to fill the gap.

Cursor up. The effect of this key depends on ’‘se’s current mode. When in command
mode, the current line pointer is moved to the previous line without affecting the
contents of the command line. If the current l1ine pointer is at line 1, the last
line 1in the file becomes the new current 1ine. In overlay mode (viz. the "v" com-
mand), the cursor is moved up one line while remaining in the same column. In
append mode, this key is ignored.

Tab left. The cursor is moved to the nearest tab stop to the left of its current
position.
"Funny" return. The effect of this key depends on the editor’s current mode. In

command mode, the current command line is entered as is, but is not erased upon com-
pletion of the command; in append mode, the current line is duplicated; in overlay
mode (viz. the "v" command), the current line is restored to its original state and
command mode is reentered (except if under control of a global prefix).

Cursor right. The cursor is moved one column to the right. Note that this does not
erase any characters; it simply moves the cursor.

Cursor left. The cursor is moved one column to the left. Note that this does not
erase any characters; it simply moves the cursor.

Tab right. The cursor is moved to the next tab stop to the right of its current
position.

Cursor down. As with the control-d key, this key’s effect depends on the current
editing mode. In command mode, the current line pointer is moved to the next line
without changing the contents of the command line. If the current line pointer is
at the last 1ine in the file, 1ine 1 becomes the new current line. In overlay mode
(viz. the "v" command), the cursor is moved down one line while remaining 1in the
same column. In append mode, control-k has no effect.

Scan left. The cursor is positioned according to the character typed immediately
after the controli-1. 1In effect, the current l1ine 1is scanned, starting from the
current cursor position and moving left, for the first occurrence of this character.
If none is found before the beginning of the line is reached, the scan resumes with
the last character in the line. If the 1ine does not contain the character being
looked for, the message "NOT FOUND" is printed in the status line. ‘Se’ remembers
the last character that was scanned for using this key; if the control-1 1is hit
twice 1in a row, this remembered character is searched for instead of a literal
control-1. Apart from this, however, the character typed after control-1 is taken
literally, so ’‘se’s case conversion feature does not apply.

Newline. This key is identical to the NEWLINE key described below.

Scan left and erase. The current .1ine is scanned from the current cursor position
to the left margin until an occurrence of the next character typed is found. Then
that character and all characters to its right, up to (but not including) the
character under the cursor, are erased. The remainder of the line, as well as the
cursor, are moved to the left to close the gap. If the line to the left of the cur-

- 24 -

control-o

control-p

control-q

control-r

control-s

control-t

control-u

control-v

control-w

control-x

control-y

control-z

control-_

control-\

control-"

NEWLINE

DEL

ESC

ATILITVUUWL L TV VW 1= =1

sor does not contain the character being sought, the terminal’s bell is sounded. As
with the control-b key, if control-n is hit twice in a row, the last character scan-
ned for is used instead of a 1iteral control-n.

Skip right. The cursor is moved to the first position beyond the current end of
line.
Interrupt. If executing any command except "a", *“c", "i" or 'v%, ‘se’ aborts the

command and reenters command mode. The command 1ine is not erased.

Fix screen. The screen is reconstructed from ‘se’s internal representation of the
screen.

Erase right. The character at the current cursor position is erased and all charac-
ters to its right are moved left one position.

Scan right. This key is identical to the control-1 key described above, except that
the scan proceeds to the right from the current cursor position. ¢

Kill right. The character at the current cursor position and all those to its right
are erased.

Erase left. The character to the left of the current cursor position is deleted and
all characters to its right are moved to the left to fill the gap. The cursor is
also moved left one column, leaving it over the same character.

Skip right and terminate. The cursor is moved to the current end of line and the
line is terminated.

Skip left. The cursor is positioned at column f{.

Insert tab. The character under the cursor is moved rﬁght to the next tab stop; the
gap is filled with blanks. The cursor is not moved.

Kill left. Al1 characters to the left of the cursor are erased; those at and to the
right of the cursor are moved to the left to fill the void. The cursor is left in
column 1.

Toggle case conversion mode. The status of the case conversion indicator is
inverted; {if case inversion was on, it is turned off, and vice versa. Case inver-
sion, when in effect, causes all upper case letters to be converted to lower case,
and all lower case letters to be converted to upper case. Note, however, that . ‘se’
continues to recognize alphabetic line numbers in upper case only, in contrast to
the "case inversion" option (see the description of options above). When .case
inversion is on, "CASE" appears in the status line.

Insert newline. A newline character is inserted before the current cursor position,
and the cursor is moved one position to the right. The newline is displayed accord-
ing to the current non-printing replacement character (see the "u" option).

Tab 1left and erase. Characters are erased starting with the character at the
nearest tab stop to the left of the cursor up to but not including the character
under the cursor. The rest of the line, including the cursor, is moved to the left
to close the gap.

Tab right and erase. Characters are erased starting with the character under the
cursor up to but not including the character at the nearest tab stop to the right of
the cursor. The rest of the l1ine is then shifted to the left to close the gap.

Kill right and terminate. The characters at and to the right of the current cursor
position are deleted, and the line is terminated.

Kill all. The entire line is erased, along with any error message that appears in
the status line.

Escape. The ESC key provides a means for entering ‘se’s control characters
literally as text into the file. 1In fact, any character that can be generated from
the keyboard 1is taken 1literally when it immediately follows the ESC key. If the
character is non-printing (as are all of ‘se’s control characters), it appears on
the screen as the current non-printing replacement character (normally a blank).

- 25 -

Introduction to ‘Ed’

Range

none

none

none

none

Syntax
al :text]

cl:text]

dlp]

e[!] [filename]

f [filename]

g/pat/command

h[stuff]

i[:text]

jl/stufel/111p]

km

Editor Command Summary

Function

Append

Inserts text after the specified 1ine. Text is inserted until a line
containing only a period and a newline is encountered. In ‘se’, if
the command is followed 1immediately by a colon, then whatever text
follows the colon is inserted without entering "append" mode. The

current line pointer is left at the last line inserted.

Change

Dejetes the lines specified and inserts text to replace them. Text is
inserted until a line containing only a period and a newline is
encountered. In ‘se’, if the command is followed immediately by a
colon, then whatever text follows the colon is inserted without enter-
ing ‘"append" mode. The current line pointer is left at the last line
inserted.

Delete
Deletes all lines between the specified lines, inclusive. The current
line pointer is left at the line after the last one deleted. If the

“p* is included, the new current line is printed.

Enter

Loads the specified file into the buffer and prepares for editing.
Automatically invoked if a filename is specified as an argument on the
command line used to invoke the editor. The current line pointer is
positioned at the first 1line 1in the buffer. An error message is
generated if the editing buffer contains text that has not been saved.
The enter command may be resubmitted after the error message, in which
case it will be obeyed. The "enter now" command “"e!" may be used to
avoid the error message.

File

Print or change the remembered file name. If a name is given, the
remembered file name is set to that value; otherwise, the remembered
file name is printed.

Global on pattern
Performs the given command on all lines in the specified range that
match a certain pattern.

Help
In ‘se’, provides access to online documentation on the screen editor.
“Stuff* may be used to select which information is displayed.

Insert .
Inserts text before the specified l1ine. Text is inserted until a line
containing only a period and a newline is encountered. In ‘’‘se’, if

the command 1is immediately followed by a colon, then whatever text
follows is inserted without entering "append" mode. The current 1line
pointer is left at the last line inserted.

Join

The specified 1ines are joined into a single line. You may specify in
"stuff*" what is to replace the newlines that previously separated the
lines. The default is a single blank. If you use the default, ‘ed’
automatically prints out the result. If the "p" option is used, the
resulting line (which becomes the new current line) is printed. Thus
j and "jp" are equivalent to "j/ /p*. 1In general, ‘ed’ and ‘se’
will supply trailing delimiters for you. so "j/" is the same as
*j//", i.e. replace the newline(s) with nothing (delete them).

mark

The specified lines are marked with ‘m’ which may be any single
character other than a newline. If ‘m’ is not present, the lines are
marked with the default name of blank. The current line pointer is
never changed.

Locate

1" will print the first 1ine of the file =installation=. This is so
that one can tell what machine he is using from within the editor.
This is particularly useful for installations with many machines that
can run the editor, where the user can switch back and forth between
them, and become confused as to where he is at a given moment.

- 26 -

none

none

m<iine>[p]

nim]

o[stuff]

ql!]

r [filename]

ATILTINUUMCG L 1UTE W (=)

Move

Moves the specified block of l1ines after <line>. <Line> may not be
omitted. The current line pointer is left at the last 1ine moved. If
the "p" is specified, the new current line is also printed.

Name

If ‘m’ is present, the last 1ine in the specified range is marked with
it and all other 1lines having that mark name are given the default
mark name of blank. In ‘ed’, if ‘m’ is not present, the mark name of
each 1line 1in the range is printed; in ‘se’ the names of all lines in
the range are cleared.

Option

Editing options may be queried or set. "Stuff" determines which
options are affected. In ‘ed’, options "“d", 'g", "k", and “p" are
available. Options “d", "g", and “k" are the same as in ‘se’. In

‘ed’, option "p" sets the prompt to be used (useful for the user who
is disturbed by ‘ed’s quiet behavior). The prompt cqp be set by the

command "op/string[/]", which sets the prompt to "string". The trail-
ing delimiter 1is optional. If no string is given, the prompt is set
to "x ", An empty string (“op//") restores ‘ed’s no prompting
behavior. Successive "op" commands will toggle prompting mode. 1In

‘se’, the "op" command controls what metacharacters are used for pat-
tern matching.

Print

Prints all the l1ines in the given range. In ‘se’, as much as possible
of the range is displayed, always including the last line; if no range
is given, the previous page is displayed. The current line pointer is
left at the last 1ine printed.

Quit

Exit from the editor. An error message is generated if the editing
buffer contains text that has not been saved. The quit command may be
resubmitted after the error message, in which case it will be obeyed.
The "quit now" command “q!" may be used to avoid the error message.

Read
Insert the contents of the given file after the specified l1ine. The
current line pointer is left at the last 1ine read.

s[/pat/subl/1lgllp]] Substitute

Substitutes "sub" for each occurrence of the pattern “pat". If the
optional "g" is specified, all occurrences in each 1ine are changed;
otherwise, only the first occurrence is changed. The current 1line

pointer is left at the last line in the range in which a substitution

was made. This line is also printed if the “p" is used. In ‘ed’, if

you leave off the trailing slash, the result of the substitute will be

printed automatically. Thus "s/junk/stuff" is entirely equivalent to .
"s/junk/stuff/p". If you type an "s" by itself, without a pattern and

replacement string, ‘ed’ will behave as though you had typed "s//&/p",

i.e. substitute the previous replacement pattern for the previous

search pattern, and print.

t[/from/to[/])[p]l] Transliterate

uld]lp]

The range of characters specified by ‘from’ is transliterated into the
range of characters specified by ‘to’. The last line on which someth-
ing was transliterated is printed if the “p" option is used. The last
line 1in the range becomes the new current 1ine. Again, if you leave
off the trailing delimiter, ‘ed’ will print the result of the
transliteration. In addition, l1ike the "s" command, both the ‘from’
and ‘to’ parts are saved; “t//&/" will perform the same translitera-
tion as the last one, and "t" is the same as “t//&/". The "&" is
special if it is the only character in the ‘to’ part, otherwise it is
treated as a literal "&". In Unix mode (for ’‘se’ only), use "%"
instead of "&". See Software Tools and the help on ‘tlit’ for some
examples of character transliterations. ,

Undo

The specified range of lines is replaced by the last range of lines
deleted. If the "“d" is used, the restored text is inserted after the
last 1ine in the specified range. The current line pointer is set at
the last line that was restored; this line is also printed if the “p*
is specified.

oVerlay

In ‘ed’, each 1ine in the given range is printed without its terminat-
ing newline and a line of input is read and added to the end of the
line. 1If the first and only character on the input line is a period,

- 27 -

Introduction to ‘Ed’

1.9

1,8

none

1,$

1,9

none

case.

no further lines are printed. In ’‘se’, "overlay mode" is entered and
the control characters may be used to modify text anywhere in the
buffer. A control-v may be used to quit overlay mode. A control-f
may be used to restore the current 1ine to its original state and
terminate the command.

wl’+71717] [filename] Write

x/pat/command

y<line>[p]

Writes the portion of the buffer specified to the named file. The
current line pointer is not changed. If "+" is given, the portion of
the buffer is appended to the file; otherwise the portion of the
buffer replaces the file. 1In ’‘se’ only, if "!" is present, an exist-
ing file specified in the command is overwritten without comment. If
"filename" is not present, the specified lines will be written to the
cugrent file name specified on the status line.

exclude on pattern y
Performs the command on all lines in the given range that do not match
the specified pattern.

copY

Makes a copy of all the lines in the given range, and inserts the
copies after <line>. As with the "m" command, <line> may not be omit-
ted. The current line pointer is set to the new copy of the last line
in the range; this line is printed if the "p" is present.

zb<left>[,<right>][<char>] draw Box

=[p]

! mcommand

‘mcommand

In ’‘se’ only, a box is drawn using the given <char> (blank by default,
allowing erasure of a previously-drawn box). Line numbers are used to
specify top and bottom row positions of the box. <Left> and <right>
specify left and right column positions of the box. If second 1line
number 1is omitted, the box degenerates to a horizontal line. If
right-hand column is omitted, the box degenerates to a vertical line.

Equals

The number of the specified l1ine is printed. The l1ine itself is also
printed if the "p" option is used. The current line pointer is not
changed.

Query
In ‘ed’ only, a verbose description of the last error encountered is
printed.

Exclude on markname
Similar to the ’‘x’ prefix except that ‘command’ is performed for all
lines in the range that do not have the mark name ’‘m’.

Global on markname
Similar to the ‘g’ prefix except that ‘command’ is performed for all
lines in the range that have the mark name ‘m’‘.

Print next page

In ‘ed’, 23 1lines beginning with the current 1line are printed
(equivalent to ".,.+23p"). In ‘se’, the next page of the buffer Iis
displayed and the current 1line pointer is placed at the top of the
window.

~[<Software Tools Command>] Escape to the shell

If present, the <Software Tools Command> is passed to the shell to be
executed. Otherwise, an interactive shell is created. After either
the command or the shell exits, ‘ed’ prints "~* to indicate that the
shell escape has completed. For a command, ‘se’ asks you to type a
newline before redrawing the screen, but for an interactive shell,
‘se’ will redraw the screen immediately. If the first character of
the <Software Tools Command> is a "!", then the "!" is replaced with
the text of the previous shell command. An unescaped "% in the
<Software Tools Command> will be replaced with the current saved file
name. If the shell command is expanded, both ‘ed’ and ‘se’ will echo
it first, and then execute it.

Until EPFs are supported, when using ‘ed’, do not use the shell to
execute external commands. Internal commands (like ‘cd’) are OK.
This does not apply to ‘se’.

For a deeper discussion of using the shell from within a program, see
the help on the ’‘shell’ subroutine.

Note that the ‘ed’ editor allows you to enter alphabetic commands in both upper and lower

Lower case

is

preferred because it is easier to read. The ’‘se’ editor is not as

flexible, since upper case letters are usually used to represent l1ines on the screen.

- 28 -

#

/pattern[/]

\pattern[\]

>name

<name

expression

Element

[<ce1>]

[~<cc1>]

{<pattern>}

e<digit>

ALI0 WA L T W W -

Elements of Line Number Expressions
Value

value of the integer (e.g., 44).
number of the current l1ine in the buffer.
number of the last line in the buffer.
number of the previous line in the buffer (same as .-1).
number of the previous line in the buffer (same as ~).

i
number of the first line on the screen (only in ‘se’Y)
number of the next line in the buffer that matches the given(patt.rn (e.g.,
/February/); the search proceeds to the end of the buffer, then wraps around to
the beginning and back to the current l1ine. The trailing "/" is optional.
number of the previous line in the buffer that matches the given pattern (e.g.,
\January\); search proceeds in reverse, from the current line to line 1, then

from the last line back to the current line. The trailing "\" is optional.

number of the next line having the given markname (search wraps

/7).

number of the previous
reverse, like \\).

around, 1ike
line having the given markname (search proceeds in

any of the above operands may be combined with plus or minus signs to produce a
1ine number expression. Plus signs may be omitted if desired (e.g., /parse/-5,
/lexical/+2, /lexical/2, $-5, .+6, .6).

Summary of Pattern Elements

Meaning

Matches the null string at the beginning of a 1ine. However, if not the first
element of a pattern, is treated as a literal percent sign.

Matches any single character other than newline.

Matches the newline character at the end of a 1ine. However, if not the last
element of a pattern, is treated as a literal dollar sign.

Matches any single character that is a member of the set
<Ccl1> may be composed of single characters or of character ranges of the form
<ci>-<c2>. If character ranges are used, <c1> and <c2> must both belong to the
digits, the upper case alphabet or the lower case alphabet.

specified by <ccl>.

Matches any single character that is not a member of

<ccl>.

the set specified by

In combination with the immediately preceding pattern element, matches zero or
more characters that are matched by that element.

Turns off the special meaning of the immediately following character. If that
character has no special meaning, this is treated as a literal “e".

Tags the text actually matched by the sub-pattern specified by <pattern> for
use in the replacement part of a substitute command.

Appearing in the replacement part of a substitute command, represents the text
actually matched by the pattern part of the command. If "&" is the only
character in the replacement part, however, then it represents the replacement
part used in a previous substitute command.

Appearing in the replacement part of a substitute command, represents the text
actually matched by the tagged sub-pattern specified by <digit>.

- 29 -

User’s Guide for the
Sof tware Tools Subsystem Command Interpreter
(The Shell)

T. Allen Akin
Terrell L. Countryman
Perry B. Flinn
Daniel H. Forsyth, Jr.
Jefferey S. Lee
Jeanette T. Myers
Arnold D. Robbins
Peter N. Wan

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

April, 1985

TABLE OF CONTENTS

TUROP I AT ... i ittt ittt i teneeeneneeneaeenesnssssnaseasennaanasessasessesanennsans 1
COMMABNAS ... ittt vt tsneeeenseeeeesesssossesssasacaanananasaaseeaaeasssaasesnssaneananas 1
How the Command Interpreter Locates @ COmMMaNdciiieeiennrocasosenoncensanas 1
Special Characters and QUOLING it iiiiieiiieineeeeenrneseasanennoaasaansannsas 2
ComMMAaNG Fil Sttt it ittt ietontesanseeeasosssssonsesosssesanseneneanosesennnas 2
Doing Repetitive TaSKSs === Iterationciiiiiiirniirteieneeoscossonncansancsannnns 2
I/0 REAIPECEION ittt ittt it ittt ieeesneesoeeeseesnsoeeneesesesasnasesnnaeensaaneenens . 3
I/0 Redirection to DiSk Fil@S OF DeVIiCeSiviieiettnerneenesonnnsasaneansaneens 4
I/0 Redirection tO Other COMMAaNMScuueteunecnoenennnerneanerenaeceasanannenas 4
1/0 Redirection for @ Group Of COMMABNGScuotiuiunenenonenenenoenenesnansnnenan)
I/0 Redirection to a Command APQUMENTceuieuenuneneesnanennsosaannnnn 5
R T - 1 = 0 I - [
Interrupts, Quits and Error Handling Mechanismsccc0eeeevenaans feet e 7
[= o T B T = T o (; 7

Summary of Syntax and SemantiCst i ittt 8
COMMABNAS ... it ittt et eneneaneencssensonsssasassssnasssasosasssasssscenssansassasnssas 8
NEEWOPKS ..ttt i it ittt iencenenneesassososonosssenaasosnnsasnsensoasssassssssssncnnssas 8
NOGES ittt ittt ittt itennesanesssssnsoncasesoanssososssssssanssseancanssasnnasssas 10
COMMEN LSt ittt ittt ieeeseosensonseossansssnsneassasssosesesassasssssssssssss 13
L2 Tl 1 = 0 - 13
R =1 o S = o T 14
FUNCLION Cal 1S ...ttt ittt ii it iieeeneeeeenesesosncssaseanssssansssnssesasosessannss 15
History Mechanismcciittenncan. Mt it e siteseeesac et ettt aneanan 15

Command Selectioncciiivnirerrsoanesnsnncns f ettt seaesstsaeacceceresannnn 15
Argument SeTeCtiONttt ieetesantossacsssesssscssssossanansenocassnnsan 15
T o G I I o = T o 16
[T o T R E = o T o 16

Application Notes e teetaeeiee ettt it e e e 17
BasSiC FUNCEIONS ..t ittt it ittt ittt st esceaoseneeeananssnaaeeassosoesnneasssassnnannss 17
HiStOry EXBMPI@S ittt iiiitinentceenononosenonsssosansseasotoesnanansssescannanss 19
Shell Control Vari@blesciiiiiniiiiineetntenceseansosessstonesnasssasssenoenas 22
Shell Command StatiStiCsut ittt tiorioetstorsoncenassasnssesnensancansensansseasnas 23
SymbiotiC COMMANAS iittiiiniieinetenrneseenonsroscnsssstosaansanessanasnssoes 23

Argument FetChingttt it ittt neneeennsasnnssasoenaneessenanannacs 23

1] 0 L= I R I o - o T 24

Shell Variable Utildtiesi ittt iiieneeesoeaneescenasaseonnsasenennaannnes 24
Program Interfacet titiiiiieetieeneatossescsssseassssssssosssassssanensnans 24

Lo o T I o 25
Messages from the Shell i i ittt trseseeesaasesanecesanasnaannas 26

- {ii -

Foreword

The Software Tools Subsystem is a set of program development tools based on the book
Software Tools by Brian W. Kernighan and P. J. Plauger. It was originally developed for use
on the Prime 400 computer in 1977 and 1978 in the form of several cooperating user programs.
The present Subsystem, the ninth version, is a powerful tool that aids in the effective use of
computing resources.

The command interpreter, also referred to as the "shell," is a vital part of the Sub-
system. It is a program which accepts commands typed by the user on his terminal and converts
them into more primitive directions to the computer itself. The user’s instructions are
expressed in a special medium called the '"command language." The greatest part of this
document is involved with describing the command language and giving examples of how it is
used.

Three areas will be covered in the following pages. First, there is a tutorial on the
use of the command language. New Subsystem users should read this chapter first. Some
minimal knowledge of terminal usage is assumed; if you are unsure of yourself in this area,
see Prime’s published documentation and the Software Tools Subsystem Tutorial for help.
Second, there is a summary of the syntax and semantics of the command language. Experienced
users should find this chapter valuable as a reference. Finally, there is a selection of
application notes. This chapter is a good source of useful techniques and samples of advanced
usage. Experienced users and curious beginners should find it well worthwhile.

- jv -

Command Interpreter User’s Guide
Tutorial

Commands

Input to the command interpreter consists of “"commands". Commands, in turn, consist of a
“*command name", which is the name of an executable file. A command is executed simply by
entering its name. For example,

1 help
is a command that will describe how you can obtain online documentation.

Some commands may have arguments. Arguments are values supplied by you to the command.
Arguments can be required or they may be optional in which case the system uses a default. In
the above example when ‘help i3 inve' -d with no arguments the Subsystem assumes the command
‘help help’ (i.e. get me on-line documentation for the ‘help’ command). However, if you
wanted on-1ine documentation for a specific command you would supply the command name as an
argument, e.g.

] help 1f

will describe the command that cah be used to 1ist information about files in a directory.
Some commands may have options. Options are used to make the same command execute in slightly
different ways. Options usually consist of one letter and are preceded by a dash. The com-
mand,

] help -f file
will 1list the names of commands and subroutines that may be associated with the keyword
"file". The "-f" is an option and "file" is an argument. Commands, arguments and options are
separated from each other by blanks.

Here is a final example:

1 1f

adventure ee guide mE&800
shell shell.doc subsys time_sheet
words zunde

‘Lf’ is used to 1ist the names of your files. Executed without any arguments, ‘1f‘ prints the
files in your current directory, but (like ‘help’) ’‘1f’ may be used with or without arguments
and options.

How the Command Interpreter Locates a Command

Recall that you can access files by their entrynames only if they are located in your
current directory. Without help from the shell this would also be true for commands. That
is, 1in order to execute ‘help’ you would need to have a copy of the ‘help’ command in your
current directory or you would have to enter its full pathname so that the shell could 1locate
it in another directory. Obviousliy, neither alternative is desirable. 1In reality, the shell
uses a "variable" called "_search_rule" to find commands like “help" in other directories.
Each user has his own search rule. (Refer to the section in this guide entitled "Shell
Control Variables" for more information.) The search rule tells the shell in what locations
to look for commands, and if there is more than one location possible, it specifies the order
in which the locations will be searched.

Most new users are given the search rule that causes the command interpreter to look for
commands in the following five locations in the order shown:

1. The shell’s internal library for an internal command (e.g, ‘stop’, ’‘set’)

2. The user‘s variables currently stored in memory

3. The user’s current directory :

4. The Subsystem 1ibrary containing locally supported external commands, "=lbin=" (e.g.
memo, moot) ’

5. The Subsystem library containing standard external commands, "=bin=" (e.g. NF,
‘help’)

This variable is explained in more detail in the "Application Notes" section of this guide.

~ Beware that this flexibility can get beginners (and some experienced users) into trouble.
With the search rule above, the command interpreter will always look in your current directory
for a command before it looks in one of the Subsystem command directories. Therefore, if you
create 2 file having the same name as a command, the shell will try its best to execute the
contents of that file.

command Interoreter User’s Guide

Special Characters and Quoting

Some characters have special meaning to the command interpreter. For example, try typing
this command:

] echo Alas, poor Yorick
Alas
poor: not found

]

‘Echo’ is simply a command that types back its arguments. Obviously this example is not work-
ing as it should. The strange behavior is caused by the fact that the comma is used for dark
mysterious purposes elsewhere in the command language. (The comma actually represents a null
1/0 connection between nodes of a network. See the section on pipes and networks for more
information.) 1In fact, all of the following characters are potential troublemakers:

., ;s # e > | {)} [1 () _ blank . .

The way to handlie this problem is to use quotes. You may use either single or double quotes,
but be sure to match each with another of the same kind. Try this command now:

] echo "Alas, poor Yorick; I knew him well."
Alas, poor Yorick; I knew him well.

You can use gquotes to enclose other quotes:

] echo ‘Quoth the raven: "Nevermore!" '/
Quoth the raven: "Nevermore!"

1

A final word on quoting: Note that anything enclosed 1in quotes becomes a single
argument. For example, the command

] echo "Can I use that in my book?"
has only one argument, but
] echo Can I use that in my book?

has seven.

Command Files

Suppose you have a task which must be done often enough that it is inconvenient to remem-
ber the necessary commands and type them in every time. For an example, let’s say that you
have to print the year-end financial reports for the last five years. If the "print" command
is usad to print files, your command might look 1like:

] print year74 year75 year76 year77 year78 year7$

If you use a text editor to make a %119 named "reports" that contains this command, you can
then print your reports by typing

] reports

No special command is required to perform the operations in this "command file;" simply typing
its name is sufficient.

Any number of commands may be placed in a command file. It is possible to set up groups
of commands to. be repeated or executed only if certain conditions occur. See the Applications
Notes for exampTes.

It is one of the important features of the command interpreter that command files can be
treated exactly 1ike ordinary commands. As shown in 1later sections, they are actually
programs written in the command language; in fact, they are often called “shell programs.*"
Many Subsystem commands (‘e’, ‘fos’, and ‘rfl’, for example) are implemented in this manner.

Doing Repetitive Tasks --- Iteration

Some commands can accept only a single argument. One example of this is the ’‘fos’ com-
mand. “Fos" stands for "format, overstrike, and spool." It is a shorthand command for print-
ing "formatted" documents on the 1ine printer. (A "formatted" document is one prepared with
the help of a program called a "text formatter," which justifies right margins, indents
paragraphs, etc. This document was prepared by the Software Tools text formatter ‘fmt.’) 1If
you have several documents to be prepared, it is inconvenient to have to type the ’‘fos’ com-

vommarnid irnterprele! wos! D VY iue

mand for each one. A special technique called "iteration" allows you to “factor out' the
repeated text. For example, .

] fos (filet1 file2 file3)
is equivalent to

] fos filet
] fos file2
] fos file3

The arguments inside the parentheses form an "iteration group." There may be more than one
iteration group in a command, but they must all contain the same number of arguments. This is
because each new command 1ine produced by iteration must have one argument from each group.
As an illustration of this,

1 (echo print fos) file(1 2 3)
is equivalel.c to

] echo filet
] print file2
] fos file3

Iteration is performed by simple text substitution; if there is no space between an argument
and an iteration group in the original command, then there is none between the argument and
group elements in the new commands. Thus,

file(1 2 3)
is equivalent to

filed
fite2
file3

Iteration is most useful when combined with function calls, which will be discussed later.

I/0 Redirection

Control of the sources and destinations of data is a very basic function of the command
interpreter, yet one that deserves special attention. The concepts involved are not new, vet
they are rarely employed to the extent that they have been used in the Subsystem. The best
approach to learning these ideas is to experiment. Get on a terminal, enter the Subsystem,
and try the examples given here until they seem to make sense. Above all, experiment freely:
try anything that comes to mind. The Subsystem has been designed with the idea that users are
intelligent human beings, and their freedom of expression is the most valuable of tools. Use
your imagination; if it needs tweaking, take a 100k at the Application Notes in the last chap-
ter.

Programs and commands in the Subsystem do not have to be written to read and write to
specific files and devices. 1In fact most of them are written to read from ‘“anything" and
write to ‘“anything." Only when the program is executed do you specify what "anything® is,
which could be your terminal, a disk file, the 1ine printer, or even another program.
"Anvthing"s are more formally known as “"standard input ports" and “standard output ports."
Programs are said to "read from standard input" and "write tc standard cutput." The key point
here is that programs need not take into account how input data is made available or what hap-
pens to output data when they are finished with it; the command interpreter 1is in complete
control of the standard ports.

A command we will use frequently in this section is ‘copy’. ‘Copy’ does exactly what its
name implies; it copies data from one place to another. 1In fact, it copies data from its
first standard input port to its first standard output port.

The first point to remember is that by default, standard ports reference the terminal.
Try ‘copy’ Nnow: .

1 copy

After you have entered this command, type some random text followed by a newline. ‘Copy’ will
type the same text back to you. (When you tire of this game, type a control-c; this causes an
end-of-file signal to be sent to ‘copy’, which then returns to the command interpreter. Typ-
ing control-c to cause end-of-file is a convention observed by all Subsystem programs.) Since
you did not say otherwise, standard input and standard output referred to the terminal; input
data was taken from the terminal (as you typed it) and output data was placed on the terminal
(printed by ‘copy’).

Command Interpreter User’s Guide

Obviously, ‘copy’ would not be of much use if this was all it could do. Fortunately, the
command interpreter can change the sources and destinations of data, thus making ‘copy’ less
trivial.

I/0 Redirection to Disk Files or Devices

Standard ports may be altered so as to refer to disk files by use of a "funnel." The
greater-than sign (>) is used to represent a funnel. Conventionally, the ">" points in the
direction of data flow. For example, if you wished to copy the contents of file "ee" to file
"old_ee", you could type

] ee> copy >old_ee

The greater-than sign musts<always be immediately next to its associated filename; no interven-
ing blanks are allowed. At least one blank must separate the ‘>’ from any command name or
arguments. This restriction 1is necessary to insure that the command language can be
interpreted unambiguously.

The construct "ee>" is read "from ee"; “>old_ee" is read "toward old_ee." Thus, the com-
mand above can be read "from ee copy toward old_ee," or, "copy from ee toward old_ee." The
process of changing the file assignment of a standard port by use of a funnel is called "1/0
redirection," or simply "redirection." .

It is not necessary to redirect both standard input and standard output; either may be
redirected independently of the other. For example,

] ee> copy

can be used to print the contents of file "ee" on the terminal. (Remember that standard out-
put, since it was not specifically redirected, refers to the terminal.) Not surprisingly, the
last variation of ‘copy’,

] copy >old_ee
is also useful. This command causes input to be taken from the terminal (until an end-of-file
is generated by typing a control-c) and placed on the file "old_ee". This is a quick way of
creating a small file of text without using a text editor.

It is important to realize that all Subsystem programs behave uniformly with regard to
redirection. It is as correct to redirect the output of, say, ‘1f’

1 1¢ >file_list
as it is to redirect the output of ‘copy’.

Recall that special pathnames which begin with "/dev" may refer to peripheral devices.
For example, by redirecting output to "/dev/1ps" you can print a file on the line printer.

] cat myfile >/dev/1ps

Although the discussion has been 1l1imited to one input port and one output port up to this
point, more of each type are available. In the current implementation, there are a total of
six; three for input and three for output. The highest-numbered output port is generally used
for error messages, and is often called "ERROUT"; you can "capture" error messages by redirec-
ting this output port. For example, if any errors are detected by ‘1f’ in this command

] 1 3>errors
then the resulting error messages will be placed on the file "errors".

Final words on redirection: there are two special-purpose redirection operators left.
They are both represented by the double funnel ">>". The first operator is called "append:*

1 1¢ >>list

M
causes a 1ist of files to be placed at the end of (appended to) the file named "list*. The
second operator is called "from command input.* It is represented as just ">>" with no file
name, and causes standard input to refer to the current source of commands. It is useful for
running programs 1ike the text editor from "scripts" of instructions placed in a command file.
See the Application Notes for examples.

I/0 Redirection to other Commands

The last section discussed I/0 redirection --- the process of making standard ports refer
to disk files or devices, rather than just to the terminal. This section will take that idea
one step further. Frequently, the output of one program is placed on a file, only to be
picked up again later and used by another program. The command interpreter simplifies this
process by eliminating the intermediate file. The connection between programs that is so

- 4 =~

VOGN W LIILST WIS LSl wvos!: S NS

formed is called a "pipe," and a linear array of programs communicating through pipes is cal-
led a "pipeline."

Suppose that you maintain a large directory, containing drafts of various manuals. Each
draft is in a file with a name of the form "MANxxxx.rr", where *“xxxx" is the number of the
manual and "rr" is the revision number. You are asked to produce a 1ist of the numbers of all
manuals at the first revision stage. The following command will do the job:

11f -¢ | find .01

"1¥ -c" lists the names of all files in the current directory, in a single column. The ‘"pipe
connection" (vertical bar) causes this 1listing to be passed to the ‘find’ command, which
selects those lines containing the string ".01" and prints them. Thus, the pipeline above
will print all filenames matching the conventional form of a first-revision manual name.

The ability to build special purpose commands cheaply and quickly from available tools
using pipes is one of the most valuable features of the command interpreter. with practice,
surprisingly difficulit problems can be solved with ease. For further examples of pipelines,
see the Applications Notes.

Combinations of programs connected with pipes need not be linear. Since multiple stan-
dard ports are available, programs can be and often are connected in non-1linear networks.
(Some networks cannot be executed if the programs in the network are not executed
concurrently. The command interpreter detects such networks, and prints a warning message if
they cannot be performed.) Further information on networks can be found in both the reference
and applications chapters of this guide.

1/0 Redirection for a Group of Commands

It is sometimes necessary to change the standard port environment of many commands at one
time, for reasons of convenience or efficiency. The ‘"compound node" (a set of networks
surrounded by curly braces) can be used in these situations.

As an example of the first case, suppose that you wish to generate a l1ist of manual names
(see the 1last example) 1in either the first or the second stage of revision. One way to do
this is to generate the list for the first revision stage, place it on a file using a funnel,
then generate a 1ist for the second revision stage and place it on the end of the same file
using an "append" redirector. A compound node might simplify the procedure thusly:

1 {1f ¢ | find .01; 1f -c | find .02 } >list

The first network finds all manuals at the first revision stage, and the second finds alil
those at the second stage. The networks will execute left-to-right, with the output of each
being placed on the file "list," thus generating the desired 1isting. with iteration, the
command can be collapsed even farther:

1 {1f -c | find .0(1 2) } >list
This combination of iteration and compound nodes is often useful.

Efficiency becomes a consideration in cases where successive long streams of data are to
be copied onto a file; if the "append" redirector is used each time, the file must be reopened
and repositioned several times. Using a compound node, the output file need be opened onily
once:

1 { (file1 file2 file3)> copy } >all_files

This complex example copies the contents of files "filet1," "file2," and "file3" into the file
named "all_files."

1/0 Redirection to a Command Argument

As mentioned before, some commands may have arguments. The standard output of a command
(or a series of commands) can be used as an argument(s) by using the "function calil"
mechanism. For example, recall the situation illustrated 1in, the section on pipes and
networks; suppose it is necessary to actually print the manuals whose names were found. This
is how the task could be done:

] print [1f -c | find .01]

The function call is composed of the pipeline "1f -c } find .01" and the square brackets
enclosing it. The output of the pipeline within the brackets is passed to ‘print’ as a set of
arguments, which it accesses in the usual manner. Specifically, all the lines of output from
the pipeline are combined into one set of arguments, with spaces provided where multiple lines
have been collapsed into one line.

Command Interpreter User’‘s Guide

‘Print’ accepts multiple arguments; however, suppose it was necessary to use a program
like ‘fos’, that accepts only one argument. Iteration can be combined with a function call to
do the job:

] fos ([1f -c | find .01])

This command formats and prints all manuals in the current directory with revision numbers
ll°1 " .

Function calls are frequently used in command files, particularly for accessing arguments
passed to them. Since the sequence "1f -c : find pattern" occurs very freguently, it is a
good candidate for replacement with a command file; it is only necessary to pass the pattern
to be matched from the argument l1ist of the command file to the ‘find’ command with a function
call. The following command file, called ‘files’, will illustrate the process:

1f -¢ | find [arg 1]

"arg 1" retrieves the first command file argument. The function call then passes that
argument to ‘find’ through its argument list. ‘Files’ may then be used anywhere the original
network was appropriate:

] files .01
] print [files .01]
] fos ([files .01])

Variables

It has been claimed that the command language is a programming language in its own right.
One facet of this language that has not been discussed thus far is the use of its variables.
The command interpreter allows the user to create variables, with scope, and assign values to
them or reference the values stored in them.

Certain special variables are used by the command interpreter in its everyday operation.
These variables have names that begin with the underline (_). One of these is ‘_prompt’,
which is the prompt string the command interpreter prints when requesting a command. If you
object to "]" as a prompt, you can change it with the "set" command:

] set _prompt = "OK, "
OK, set _prompt = “%
% set _prompt = “]

]

You may create and use variables of your own. To create a variable in the current scope
(1evel of command file execution), use the "declare" command:

] declare i j k sum

Values are assigned to variables with the ’‘set’ command. The command interpreter checks the
current scope and all surrounding scopes for the variable to be set; if found, it is changed,
otherwise it is declared in the current scope and assigned the specified value.

Variables behave 1ike small programs that print their current values. Thus the value of
a variable can be obtained by simply typing its name, or it can be used in a command 1ine by
enclosing it in brackets to form a function call. The following command file (which also
illustrates the use of ‘if’, ‘eval’, and ‘goto’) will count from 1 to the number given as its
first argument:

declare i
set 1 = 1
:loop
if [eval i "> [arg 1]]
goto exit
fi
i
set i = [eval i + 1]
goto loop
texit

Note the use of the "eval" function, which treats its arguments as an arithmetic expression
and returns the expression’s value. This is required to insure that the string *i1 + 1" is
interpreted as an expression rather than as a character string. Also note that ‘fi’
terminates the ‘if’ command.

when setting a variable to a string containing unprintable characters, you may use a
special mnemonic form to prevent having to type the l1iteral characters. For example

commana i1nterpreter user s uauuJuige

set crif = "<cr><1f>"

sets the variable ‘crl1f’ to a literal carriage return followed by a linefeed. There are times
when this is not desirable, so to prevent the interpretation of the string, simply escape the
start on the mnemonic with the Subsystem escape character (an ‘6’). To set set the variable
‘cr1f’ to the 1iteral string "<cr><1f>" you would type

set crlif = "e<cr>e<if>"

The quotes in these two cases are necessary, otherwise the shell would try to interpret the
‘>’ as an 1/0 redirector. If the string between the "<>" characters is not a legal ASCII
mnemonic, no substitution will be made and the string will be passed unchanged.

Interrupts, Quits and Error Handling Mechanisms

Normally, if you interrupt a program, it will terminate and the next thing you will see
is the Subsystem’s prompt for your next command. However, by defining the shell control
variab’e "_quit_action" in your “=varsdir=/.vars" file, the fault handler wi1H, upon detection
of the interrupt, prompt you as to whether to abort the current program, continue, or call
Primos. For program errors, the fault handler will always ask whether you want to abort the
program, continue, or call Primos (regardless of whether "_quit_action" is defined or not).
The Application Notes discuss how to go about creating shell variables (which are kept in
“=varsdir=/.vars" for storage between login sessions).

Conclusion

This concludes the tutorial chapter of this document. Despite the fact that a good deal
of material has been presented, much detail has been omitted. The next chapter is a complete
summary of the capabilities of the command interpreter. It is written in a rather technical
style, and is recommended for reference rather than self-teaching. The last chapter is a set
of examples that may prove helpful. As always, the best approach is simply to sit down at a
terminal and try out whatever you wish to do. Should you have difficulty, further tutorials
are available, and the ‘help’ command can be consulted for quick reference.

Command Interpreter User’s Guide
Summary of Syntax and Semantics

This section is the definitive document for the syntax and corresponding semantics of the
Software Tools Subsystem Command Interpreter. It is composed of several sub-sections, each
covering some major area of command syntax, with discussions of the semantic consequences of
employing particular constructs. It is not intended as a tutorial, nor is it intended to sup-
ply multitudinous examples; the other sections of this document are provided to fill those
needs.

Commands
<command> ::= [<net> { ; «net> } '] <newline>

The “command" is the basic unit of communication Letween tne command interpreter and the
user. It consists of any number of networks (described below) separated by semicolons and
terminated by a newline. The networks are executed one at a time, left-to-right; should an
error occur at any point in the parse or execution of a network, the remainder of the
<command> is ignored. The null command is legal, and causes no action.

The command interpreter reads commands for interpretation from the "command source."
This is initially the user‘’s terminal, although execution of a command file may change the
assignment. Whenever the command source is the terminal, and the command interpreter is ready
for input, it prompts the user with the string contained in the shell variable ‘_prompt’.
Since this variable may be altered by the user, the prompt string is selectable on a per-user
basis.

Networks

<net> ::= <node>
{ <node separator> { <node separator> } <node> }

<node separator> ::= , | <pipe connection>

<pipe connection> ::= [<port>] ‘|’ [<node number>] [.<port>]

<port> ::= <integer>

<node number> ::= <integer> | $ | <label>

A <net> generates a block of (possibly concurrent) processes that are bound to one
another by channeis for the flow of data. Typically, each <node> corresponds to a single
process. (<Node>s are described 1in more detail below.) There is no predefined "execution
order" of the processes composing a <net>; the command interpreter will select any order it
sees fit in order to satisfy the required input/output relations. In particular, the user is
specifically enjoined not to assume a left-to-right serial execution, since some <net>s cannot
be executed in this manner.

Input/output relations between <node>s are specified with the <node separator> construct.
The following discussion may be useful in visualizing the data flows in a <net>, and clarifing
the function of the components of the <node separator>.

The entire <net> may be represented as a directed graph with one vertex for each <node>
(typically, equivalent to each process) in the net. Each vertex may have up to n arcs
terminating at it (representing "input data streams"), and m arcs originating from it
(representing ‘“"output data streams"). An arc between two vertices indicates a flow of data
from one <node> to another, and is physically implemented by a pipe.

Each of the n possible input points on a <node> is assigned an identifier consisting of a
unique integer in the range 1 to n. These identifiers are referred to as the “port numbers"®
for the "standard input ports" of the given <node>. Similarly, each of the m possible output
points on a <node> is assigned a unique integer in the range 1 to m, referred to as the port
numbers for the "standard output ports" of the given <node>.

Lastly, the <node>s themselves are numbered, starting at {1 and increasing by 1 from the
left end of the <net> to the right.

Clearly, in order to specify any possible input/output connection between any two
<node>s, it is sufficient to specify:

. The number of the "“source" <node>.

. The number of the "destination" <node>.

Command Interpreter User‘’s Guide
. The port number of the standard output port on the source <node> that is to be the
source of the data. :

. The port number of the standard input port on the destination <node> that is to
receive the data.

The syntax for <node separator> includes the specifications for the last three of these
items. The source <node> 1is understood to be the node that immediately precedes the

<node separator> under consideration. The special <node separator> "," is used to separate
<node>s that do not participate in data sharing; it specifies a null connection. Thus, the

<node separator> provides a means of establishing any possible connection between two <node>s
of a given <net>.

The full flexibility of the <node separator> is rarely needed or desirable. In order to
make effective use of the capabilities provided, suitable defaults have been designed into the
syntax. The semantics associated with the defaults are as follows:

. 1f the output port number (the one to the left of the vertical bar) is ?m1tted. the
next unassigned output port (in increasing numerical order) is implied. T .18
default action takes place only after the entire <net> has been examined, and all
non-defaulted output ports for the given node have been assigned. Thus, 1if the
first <node separator> after a <node> has a defaulted output port number, port 1
will be assigned if and only if no other <node separator> attached to that <node>
references output port 1. It is an error for two <node separators> to reference the
same output port.

. If the destination <node> number is omitted, then the next node in the <net> (scan-
ning from left to right) is implied. Occasionally a null <node> is generated at the
end of a <net> because of the necessity for resolving such references.

. 1f the destination <node>‘s input port number is omitted, then the next unassigned
input port (in increasing numerical order) is implied. As with the defaulted output
port, this action takes place only after the entire <net> has been examined. The
comments under (1) above also apply to defaulted input ports.

In addition to the defaults, specifying input/output connections between widely separated
<node>s is aided by alternative means of giving <node> numbers. The last <node> in a <net>
may be referred to by the <node number> $, and any <node> may be referred to by an
alphanumeric <label>. (<Node> labelling is discussed in the section on <node> syntax, below.)
If the first <node> of a <net> is labelled, the <net> may serve as a target for the ‘goto’
command; see the Applications Notes for examples.

As will be seen in the next section, further syntax is necessary to completely specify
the input/output environment of a <node>: the reader should remember that <node separator>s
control only those flows of data between processes.

A few examples of the syntax presented above may help to clarify some of the semantﬁcs.
Since the syntax of <node> has not yet been discussed, <node>s will be represented by " the
string "node" followed by a digit, for uniqueness and as a key to <node number>s.

A simple 1inear <net> of three <node>s without defaults:

nodei 1!2.1 node2 1]3.1 node3

(Data flows from output port 1 of nodei to input port 1 of node2 and output port 1 of node2 to
input port 1 of node3.)

The same <net>, with defaults:
nodeti | node2 | node3

(Note that the spaces around the vertical bars are mandatory, so that the lexical analysis
routines of the command interpreter can parse the elements of the command unambiguously.)

A simple cycle:
nodet }1.2 ’

(Data flows from output port 1 of nodet to input port 2 of nodei. Other data flows are
unspecified at this level.)

A branching <net> with overridden defaults:
nodel |$ node2 |.1 node3

(Data flows from output port 1 of nodei to input port 2(!) of node3 and output port i of
node2 to input port 1 of node3.)

Command Interpreter User’s Guide

Nodes
<node> ::= {:<label>} [<simple node> | <compound node>]
<simple node> ::= { <i/o redirector> }
<command name>
{ <i/o redirector> | <argument> }
<compound node> ::= { <i/o redirector> }
*{’ <net> { <net separator> <net> } ‘}’
{ <i/o redirector> }

[<pot>] ’>’ <file name>
[<port>] ’>>’ <file name>

~

<i/o redirector> ::= <file name> ‘>’ [<port>] i
|
!

> [<port
<net separator> ::=
<command name> ::= <file name>
<label> ::= <identifier>

The <node> is the basic executable element of the command language. It consists of zero
or more labels (strings of letters, digits, and underscores, beginning with a letter),
optionally followed by one of two additional structures. Although, strictly speaking, the
syntax allows an empty node, in practice there must be either a label or one of the two
additional structures present.

The first option is the <simple node>. It specifies the name of a command to be per-
formed, any arguments that command may require, and any <i/o redirector>s that will affect the
data environment of the command. (<I/o redirectors will be discussed below.) The execution
of a simple node normally involves the creation of a single process, which performs some func-
tion, then returns to the operating system.

The second option is the <compound node>. It specifies a <net> which is to be executed
according to the usual rules of <net> evaluation (see the previous subsection), and any
<i/o redirector>s that should affect the environment of the <net>. The <compound node> is
provided for two reasons. One, it is occasionally useful to alter default port assignments
for an entire <net> with <i/o redirector>s, rather than supplying <i/o redirector>s for each
<node>. Two, use of compound nodes containing more than one <net> gives the user some control
over the order of execution of his processes. These abilities are discussed in more detail
below.

Since it is the more basic construct, consider the <simple node>. It consists of a
<command name> with <argument>s, intermixed with <i/o redirector>s. The <command name> must
be a filename, usually specifying the name of an object code file to be loaded. The command

interpreter locates the command to be performed by use of a user-specified "search rule." The
search rule resides in the shell variable "_search_rule", and consists of a series of comma-
separated elements. Each element is either a template in which ampersands (&) are replaced by
the <command name> or a flag instructing the command interpreter to search one of its internal
tables. The flag "~int" indicates that the command interpreter‘’s repertoire of "internal*
commands is to be checked. (An internal command is implemented as a subroutine of the command
interpreter, typically for speed or because of a need to access some private data base.) The
flag “~var"' causes a search of the user’s "“shell variables" (see below for further discussion
of variables and functions). The following search rule will cause the command interpreter to
search for a command among the internal commands, shell variables, and the directory ‘“sbin=",
in that order: .

*~int, var,=bin=/&"

The purpose of the search rule is to allow optimization of command location for speed, and to
admit the possibility of restricting some users from accessing "privileged" commands. (For
example, the search rule

*~var,//project/1ibrary/&"

would restrict a user to accessing his variables and those commands in the directory
*//project/l1ibrary”. He could not alter this restriction, since he does not have access to
the (internal) ‘set’ command; the "~int" flag is missing from his search rule.) 1In addition
to restricting a user to commands in specific directories, the system administrator can also
restrict a user from using certain internal commands (and allow use of all other internal com-
mands) . This 1is accomplished by adding "qualifiers" after the internal command flag in the
search rule. The qualifiers are characters representing the class of commands to be excluded
in the search for internal commands to be executed. Qualifiers follow the "~int" flag,
separated from it by a slash. The following table summarizes the qualifiers and which inter-
nal commands they exclude

Lommana inlterpreler user-s auJuiae

Qualifier meaning

a access to arguments in shel) files (‘arg’, ‘args’, ‘argsto’, ‘nargs’‘,
and ‘quote’)

b access to debugging commands (‘dump’ and ‘shtrace’)

c access to flow of control commands (‘case’, ‘elif’, ‘else’, ‘esac’,
‘exit’, ‘fi’, ‘goto’, ‘if‘’, ‘label’, ‘out’, ‘repeat’, ‘then’,
‘until’, and ‘when’)

d ability to change directories (via ‘cd’)

h access to environment information (‘date’, ‘day’, ‘echo’, ‘eval’,
‘installation’, ‘1ine’, ’‘login_name’, ani Q;imz'F

m access to string manipulation functions (‘drop’, 'ipdex’. ‘substr’,
and ‘take’)

q ability to exit the shell (via ‘stop’)

s access to variable setting commands (‘forget’, ‘set’, and ‘sh’)

v access to variable manipulating commands (‘declare’, ‘declared’, and
‘vars’)

x access to commands which allow execution of Primos commands (‘dbg’,

‘primos‘’, ‘vpsd’, and ‘x’)

For instance, Tif the system administrator wanted to keep someone from executing the Primos
Fortran compiler directly, then the following search rule would accomplish this :

"~int/gxv, “var,=bin=/&"

The “"g" qualifier prevents exit from the shell (so that you can’t run the Primos Fortran com-
piler directly), the "x" qualifier prevents you from accessing external commands from within
the shell (i.e., via "x ftn prog"), and the "v" qualifier prevents you from using ‘declare’ to
modify or create a search rule (the shell file ‘fc’, which is the Subsystem interface to" the
Primos Fortran compiler, declares its own search rule) which contains an ungqualified "~int"
flag. It should be noted, however, that this is not a fool-proof method of 1imiting a user’s
access to commands; a better solution is to write a program which is run at login and which
‘supervises" the user’s session. One way of overcoming such a restriction placed by the
system administrator would be to execute a command within a function call, such as the fol-
lowing:

[declare _search_rule = “<normal search rule>";
<unrestricted command>]

By redefining the search rule, the user is then alliowed to execute any desired command,
including a new invocation of the command interpreter.

<Argument>s to be passed to the program being readied for execution are gathered by the

command interpreter and placed in an area of memory accessible to the 1library routine
‘getarg’. They may be arbitrary strings, separated from the command name and from each other
by blanks. Quoting may be necessary if an <argument> could be interpreted as some other
element of the command syntax. Either single or double quotes may be used. The appearance of
two strings adjacent to one another without blanks implies concatenation. Thus,

*quoted "string
is equivalent to

*quoted string"
or to »

quoted’ string’

Single quotes may appear within strings delimited by double quotes, and vice versa; this is
the only way to include quotes within a string. Example:

"quoted string’"
‘"Alas, poor Yorick!"’

Arguments are generally unprocessed by the command interpreter, and so may contain any
information useful to the program being invoked.

Command Interpreter User’s Guide

In the previous section, it was shown that streams of data from "standard ports" could be
piped from program to program through the use of the <pipe connection> syntax. It is also
possible to redirect these data streams to files, or to use files as sources of data. The
construct that makes this possible is the <i/o redirector>. The <i/o redirector> is composed.
of filenames, port numbers (as described in the last section), and one or two occurrences of
the "funnel" (>).

The two simpiest forms take input from a file to a standard port or output from a stan-
dard port to a file. In the case of delivering output to a file, the file 1is automatically
created if it did not exist, and overwritten if it did. In the case of taking input from a
file, the file is unmodified. Example:

documentation>1
-
causes the data on the file "documentation" to be passed to standard input port 1 of the node;

ety

t>results
causes data written to standard output port 1 of the node to be placed on the file "results".

If no <i/o redirector> is present for a given port, then that port automatically refers
to the user’s terminal.

If port numbers are omitted, an assignment of defaults is made. The assignment rule is
identical to that given above for <pipe connections>: the first available port after the
entire <net> has been scanned is used. <I1/0 redirector>s are evaluated left-to-right, so
leftmost defaulted redirectors are assigned to lower-numbered ports than those to their right.
For example,

data> requests> trans 2>summary 3>errors } sp

is the same as
data>1 requests>2 trans 2>summary 3>errors 1{2.1 sp

where all defaults have been elaborated. ‘Trans’ might be some sort of transaction processor,
accepting data input and update requests, and producing a report (here printed off-line by
being piped to a spooler program), a summary of transactions, and an error listing.

In addition to the <i/o redirector>s mentioned above, there are two lesser-used redirec-
tors that are useful. The first appends output to a file, rather than overwriting the file.
The syntax 1is identical to the other output redirector, with the exception that two funnels
‘>>’ are used, rather than one. For example,

2>>stuff

causes the data written to output port 2 to be appended to the file "stuff". (Note the lack
of spaces around the redirector; a redirector and its parameters are never separated from one
another, but are always separated from surrounding arguments or other text. This restriction
is necessary to insure unambiguous interpretation of the redirector.) The second redirector
causes input to be taken from the current command source file. It is most useful in conjunc-
tion with command files. The syntax is similar to the input redirector mentioned above, but
two funnels are used and no filename may be specified. As an example, the following segment
of a command file uses the text editor to change all occurrences of "March' to "April* in a
given file:

>> ed file

g/March/s//April/
w

q

when the editor is invoked, it will take input directly from the command file, and thus it
will read the three commands placed there for it.

The ‘"command source" and ‘“"append" redirectors are subject to the same resolution of
defaults as the other redirectors and <pipe connection>s. Thus, in the example immediately
above,

>> ed file
is equivalent to
>>1 ed file
Now that the syntax of <node> has been covered, just two further considerations remain.

First, the nature of an executable program must be defined. Second, the problem of execution
order must be clarified.

Command Interpreter User’s Guide

In the vast majority of cases, a2 <node> is executed by bringing an object program into
memory and starting it. However, the <command name> may also specify an internal command, a
shell variable, or a command file. Internal commands are executed within the command
interpreter by the invocation of a subroutine. When a shell variable is used as a command,
the net effect is to print the value of the variable on the first output port, followed by a
newline. If the filename specified is a text file rather than an object file, the command
interpreter ‘"guesses" that the named file is a file of commands to be interpreted one at a
time. In any case, command invocation is uniform, and any <i/o redirector> or
<pipe connection> given will be honored. Thus, it is allowable to redirect the output of a
command file just as if it were an object program, or copy a shell variable to the 1line
printer by connecting it to the spooler through a pipe.

As mentioned in the section on <net>s, the execution order of nodes in a <net> is
undefined. That is, they may be executed serially in any order, concurrently, or even simul-
taneously. The exact method is left to the implementor of the command interpreter. In any
case, the flows of data described by <pipe conne:z-ica>+ ' <i/o redirector>s are guaranteed
to be present. There are times when it would be prererable to know the order in which a <net>
will be evaluated; to help with this situation, <compound node>s may be used to effect
serialization of control flow within a network. <Mhet>s separated by semicolons or newlines
are guaranteed to be executed serially, left-to-right, otherwise the command interpreter would
exhibit unpredictable behavior as the user typed in his commands. Suppose it is necessary to
operate four programs; three may proceed concurrently to make full use of the multiprogramming
capability of the computer system, but the fourth must not be executed until the second of the
three has terminated. For simpliicity, we will assume there are no input/output connections
between the programs. The following command 1ine meets the reguirements stated above:

programi, {program2:; program4}, program3
(Recall that the comma represents a null i/o connection.) Suppose that we have a slightly
different problem: the fourth program must run after all of the other three had run to com-
pletion. This, too, can be expressed concisely:

programi, program2, program3; programé4
Thus, the wuser has fairly complete control over the execution order of his <net>s. (The use
of commas and semicolons in the command language is analogous to their use for collateral and
serial elaboration in Algol 68.)

This completes the discussion of the core of the command language. The remainder of the
features present in the command interpreter are provided by &a built-in preprocessor, which
handles function calls, iteration, and comments. The next few sections deal with the
preprocessor’s capabilities.

Comments

Any good command language should provide some means for the user to comment his code,
particularly in command files that may be used by others. The command interpreter has a sim-
ple comment convention: Any text between an unquoted sharp sign (#) and the next newliine is
ignored. A comment may appear at the beginning of a line, like this:

command file to preprocess, compile, and 1ink edit
Or after a command, 1ike this:

file.r> rp # Ratfor’s output goes to the terminal
Or even after a label, for identification of a loop:

:loop # beginning of daily cycle

As far as implications in other areas of command syntax, the comment is functionally
equivalent to a newline.

Variables »
<variable> ::= <identifier>

<value> ::= { <printable char> } <unprintable char> }
<unprintable char> ::= ‘<’ <ascii mnemonic> ‘>’

<set command> ::= set [<variable>] = [<value>]

<declare command> ::= declare { <variable [= <value>] }

<forget command> ::= forget <variable> { <variable> }

- 13 -

Command Interpreter User’s Guide

The command interpreter supports named string storage areas for miscellaneous user

applications. These are called variables. Variables are identified by a name, consisting of
letters of either case, digits, and underscores, not beginning with a digit. vVariables have

two attributes: value and scope. The value of a variable may be altered with the ‘set’ com-
mand, discussed below. The scope of a variable is fixed at the time of its creation; simply,
variables declared during the time when the command interpreter is taking input from a command
file are active as 1long as that file is being used as the command source. Variables with
global scope (those created when the command interpreter is reading commands from the
terminal) are saved as part of the user’s profile, and so are available from terminal session
to terminal session. Other variablies disappear when the execution of the command file in
which they were declared terminates. ’

Variables may be created with the ‘declare’ command. ‘Declare’ creates variables with
the given names at the curpent lexical level (within the scope of the current command file).
The newly-created variables are assigned a null value, unless an initialization string is
provided. R :

Variables may be destroyed prematurely with the ‘forget’ command. The named variables
are removed from the command interpreter’s symbol table and storage assigned to them is
released to the system. Note that variables created by operations within a command file are
automatically released when that command file ceases to execute. Al1sO note that the only way
to destroy variables at the global lexical level is to use the ‘forget’ command.

The value of a variable may be changed with the ’‘set’ command. The first argument to
‘set’ is the name of the variable to be changed. If absent, the value that would have been
assigned is printed on ‘set’s first standard output. The last argument to ‘set’ is the value
to be assigned to the variable. It is uninterpreted, that is, treated as an arbitrary string
of text. If missing, ’‘set’ reads one line from its first standard 1input, and assigns the
resulting string. If the variable named in the first argument has not been declared at any
lexical level, ‘set’ declares it at the current lexical level.

A variable may contain any legal ASCII character. To allow the user to enter unprintable
characters that might be a problem to Primos or the shell, the commands that manipulate
variables allow the use of ASCII mnemonics in the value of a shell variable. The following
would set the "_kill_resp" variables to two ASCII escape characters, a backspace, and the
string “=delx":

set _kill_resp = "<esc><esc><bs>*del=*"

To prevent the interpretation of the mnemonics (i.e. to enter a Titeral
"<esc><esc><bs>*del*", in this case) the user simply uses the Subsystem escape character in
front of the mnemonics:

set _kill_resp = "e<esc>0<esc>0<bs>xdelx*"

variables are accessed by name, as with any command. (Note that the user’s search rule
must contain the flag "~var® before variables will be evaluated.) The command interpreter
prints the value of the variable on the first standard output. This behavior makes variables
useful in function calls (discussed below). 1In addition, the user may obtain the value of a
variable for checking simply by typing its name as a command.

Iteration
<iteration> ::= ‘(’ <element> { <element> } ‘)’

Iteration 1is used to generate multiple command 1ines each differing by one or more sub-
strings. Several iteration elements (collectively, an *"iteration group") are placed in
parentheses; the command interpreter will then generate one command 1ine for each element,
with successive elements replacing the instance of iteration. Iteration takes place over the
scope of one <net>; 1t will not extend over a <net separator>. (If iteration is applied to a
<compound node>», it will, of course, apply to the entire <node>; not just to the first <net>
within that <node>.)

Mulitiple i{terations may be present on one command; each iteration group must have the
same number of elements, since the command interpreter will pick one element from each group
for each generated command 1ine. (Cross-products over iteration groups are not implemented.)

An example of iteration:

] fos part(1 2 3)
is equivalent to
] fos part1; fos part2; fos part3

and

LONNIGNIW LTIASI W S LGl waw!t LR AR

1 ep (intro body summary) part(1 2 3)
is equivalent to

1 cp intro parti; cp body part2; cp summary part3

Function Calls
<function call> ::= ‘[’ <net> { <net separator> <net> } ‘]‘

Occasionally it is useful to be able to pass the output of a program along as arguments
to another program, rather than to an input port. The "function call" makes this possible.
The output appearing on each of the first standard output ports of the <net>s within the func-
tion call 1is copied into te « "ni~Y 1ine i«in place of the function call itself. Line
separators (newlines) present in tne <net>’s output are replaced by blanks. No quoting of
<net> output is performed, thus blank-separated tokens will be passed as sqparate arguments.
(If guoting is desired, the filter ‘quote’ can be used or the shell variable "_quote_opt" may
be set to the string "YES" to cause automatic quotation.)

A <net> may of course be any network; all the syntax described in this document is
applicable. 1In particular, the name of a variable may appear with the brackets; thus, the
value of a variable may be substituted into the command 1line.

History Mechanism
<history_command> ::= <cmd_select> <arg_select> <substitution>

The shell provides a sort of dynamic macro replacement facility for commands that are entered
from the terminal. This is called a command history mechanism. It allows the user to recall
commands he has previously entered, extract portions of the command, edit the portions he has
selected, and either execute what remains or incorporate it 1into another command, with a
minimum of typing.

A history substitution contains three parts; command selection, argument selection, and
editing. Command selection chooses what command will be used. Argument selection decides
which arguments are to be extracted from the chosen command line, and the editing phase allows
the result to be edited to change spelling or substitute a different word for portions of the
line. To prevent any history substitution from taking place, the ‘hist’ command can turn off
the history mechanism. It also controls the saving and restoration of the current history
environment. For the rest of this discussion, the assumption will be that history is
currently enabled.

History substitution is triggered by the ‘!’ character. A history substitution is
normally stopped by a blank or tab character, but a trailing ‘!’ will stop the interpretation
of any further characters. This is used when concatenating supplementary text to the result
of a history substitution. To prevent this and any other interpretation of the special
history characters, they may be escaped with the Subsystem escape character, ‘@’. when a
history substitution is discovered, the mechanism modifies the command 1ine, prints the resul-
ting command 1ine on the user'’s terminal, and then passes the command to the rest of the shell
for execution. History processing occurs before any other evaluation in the shell, such as
function calls and iteration. However, the use of ‘_’ to continue an input line is done even
before the history mechanism sees what you have typed; if the ’‘_’ is the last character in
your history command, and the last character on the l1ine, follow it with a terminating “!’.

Command Selection.

<cmd_select> ::= ‘1’ [<str> | ‘2’ <str> ‘2’ | <num>]

The first thing in a history substitution is command selection. This is used to retrieve
a given command 1ine for use, or further processing. In a history command selection ‘l!<str>’
will find the most recent command 1ine that started with the characters in <str>. “‘!1?2<str>?’

will find the most recent command line that contained <str> anywhere on the 1ine. It also
allows <str> to contain blanks or tabs whereas the first form does not. ‘!<num>’ allows the
user to specify the number of a command according to the output Qf the ‘hist’ command. As a

convenience, ‘!’ by itself will repeat the last command entered.
Argument Selection.
<arg_select> ::= ‘*/ [<num> 1 [‘-’ <num>]

The next portion of a history substitution is an optional argument selection. This
chooses which portions of the command are to be kept. History arguments are not exactly the
same as the arguments the rest of the shell uses, since history expansion occurs before
argument collection. Arguments in this context are blank or tab seperated words on the com-
mand line. Function calls, iterations, and gquotations will be extracted as a single argument,
even if they contain blanks or tabs. Arguments are numbered from zero, starting at the left-

-15_

Command Interpreter User’s Guide

most portion of the line. In an argument selection, ‘‘<num>’ specifies that only argument
<num> is to be extracted and kept for further processing or use, and the rest of the command
line is to be dropped. ‘‘<num>-<num>‘’ specifies that arguments from the first <num> to the
last <num> are to be kept. 1In place of any <num>, ‘$’ may be specified to obtain the last
argument on the line. The form ‘‘-<num>‘ is a shorthand for ‘‘*1-<num>‘’ and ‘‘<num>-’ is a
short form for ‘‘<num>-$’.

Substitution.

<substitution> ::= { ’*~’ <str> ‘'~ <str> ‘'~ [‘g’ 1}

The 1last portion of a history substitution is also optional and is the editing phase.
This allows the portions of the command l1ine that remain to actually be modified 1ike the sub-
stitution command in ‘ed’,.,although much more limited. In the history mechanism, <str> is not
a regular expression, as in ‘ed’, but is taken as a simple string. The regular expression
special characters are not recognized in the history mechanism. Each-substitution happens
only once on the line unless a ‘g’ is appended on the substitution, in which case the change
occurs globally on the line. Substitutions may be strung together, so that more than one may
be performed at a time.

Finally, after all history substitutions have been made, the Shell will echo the new com-
mand line to the terminal, and then execute it. See the Application Notes for a discussion of
the ‘hist’ command.

Conclusion

This concludes the description of command syntax and semantics. The next, and final,
chapter contains actual working examples of the full command syntax, along with suggested
applications; it is highly recommended for those who wish to gain proficiency in the use of
the command language.

Lommana dniterpre(er usel s uuiue

Application Notes

This section consists mostly of examples of current usage of the command interpreter.
Extensive knowledge of some Subsystem programs may be necessary for complete understanding of
these examples, but basic principles should be clear without this knowledge.

Basic Functions

In this section, some basic applications of the command language will be discussed.
These applications are intended to give the user a "feel" for the flow of the language,
without being explicitly pedagogical.

One commonly occurring task is the location of lines in a file that match a certain pat-
tern. The 'f rnu .tri. wd performs this function:

] file> find pattern >1ines_found ¢

Since the 1ines to be checked against the pattern are frequently a l1ist of file names, the
following seguence occurs often:

1 1 -c directory | find pattern
Consequently, a command file named ‘files’ is available to abbreviate the sequence:

] cat =bin=/files
1f -c [args 2] | find [arg 1]

(‘Cat’ 1is wused here only to print the contents of the command file.) The internal command
,‘arg’ is used to fetch the first argument on the command 1line that 1invoked ‘files’.
Similarly, the internal command ‘args’ fetches the second through the last arguments on the
command 1ine. The command file gives the external appearance of a program ‘files’ such that

] files pattern
is equivalent to

] 1§ -c | find pattern
and

] files pattern directory
is equivalent to

] 1f -c directory | find pattern

Once a 1ist of file names is obtained, it is frequently processed further, as in this command
to print Ratfor source files on the line printer:

1 pr [files .rs | sort]

‘Files’ produces a 1list of file names with the ".r" suffix, which is then sorted by ‘sort’.
‘Pr’ then prints all the named files on the l1ine printer.

One problem arises when the pattern to be matched contains command language metacharac-

ters. wWhen the pattern is substituted into the network within ‘files’, and the command
interpreter parses the command, trouble of some kind {s sure to arise. There are two
solutions: One, the filter ‘quote’ can be used to supply a layer of quotes around the pat-
tern:

1f -c [args 2] | find [arg 1 | quote]

Two, the shell variable "_quote_opt", which controls automatic function quotation by the com-
mand interpreter, can be set to the string "YES":

declare _quote_opt = YES

1¥f -c [args 2] | find [arg 1]

This latter solution works only because ‘args’ prints each argument on a separate line; the
command interpreter always generates separate arguments from separate lines of function out-
put. In practice, the first solution is favored, since the non-intuitive quoting is made more
evident.

One common non-1linear command structure is the so-called "Y" structure, where two streams
of data join together to form a third (after some processing). This situation occurs because
of the presence of dyadic operations (especially comparisons) in the tools available under the
Subsystem. As an example, the following command compares the file names 1in two directories

- 17 -

Command Interpreter User’s Guide

and lists those names that are present in both:
1 1§ -c dir1 | sort |$ 1f -c dir2 | sort | common -3
Visualize the command in this way:
1f -c dir1 | sort 1f -c dir2 | sort
\\ /
\ /

common -3

The two “1f’ and ‘sort’ pairs produce lists of file names that are compared by ’‘common’, which
produces a 1ist of those nagmes common to both input 1ists.

Command files tend to be used not only for oft-performed tasks but also to make life
easier when typing long, complex commands. Quite often these long command 1ines make use of
line continuation -- a newline preceded immediately by an underscore is ignored. The follow-
ing command file is used to create a keyword-in-context index from the heading 1lines of the
Subsystem Reference Manual. Although it is not used frequently, it does a great deal of work
and is illustrative of many of the features of the command interpreter.

make_cmd.k --- build permuted index of commands
files .d$ -f s1 _
i change % "find %.hd -0 1" _
sh
= change ‘%.hd *{[~ J*} ["1*x{[~"]1*}?2=’ ‘e1: @2’ _
| kwic -d =aux=/spelling/discard _
{ sort -d | unrot -w [width] >cmd.k

First a few words on how Subsystem documentation is stored: The documentation for Subsystem
commands resides in a subdirectory named "s1". The documentation for each command is in a
separate file with the name "<command>.d". The heading line in each file can be identified by
the characters ".hd" at the beginning of the line.

The entire command file consists of a single network. The ‘files’ command produces a
l1ist of the full path names (the -f option is passed on to ‘1f’) of the files in the subdirec-
tory "s1" that have path names ending with the characters ".d". The next ‘change’ command
generates a ‘find’ command for each documentation file to find the heading line. These com-
mand lines are passed back to the shell (‘sh’) for execution. The outputs of all of these
‘find’ commands, namely the heading lines from all the documentation files, are passed back on
the first standard output of ‘sh’. The second ‘change’ command uses tagged patterns to
isolate the command name and its short description from the header 1ine and to construct a
suitable entry for the kwic index generator. Finally, ‘kwic’, ‘sort’, and ‘unrot’ produce the
index on the file "cmd.k".

To this point, only serially-executed commands have been discussed, however sophisticated
or parameterized. Control structures are necessary for more generally useful applications.
The following command file, ‘ssr’, shows a useful technique for parameter-setting.commands.
Like many APL system commands, ’‘SSsr‘ without arguments prints the value it controls (in this
case, the user’s command search rule), while ‘ssr’ with an argument sets the search rule to
the argument given, then prints the value for verification. ‘Ssr’ looks l1ike this:

ssr --- set user’s search rule and print it
if [nargs]
set _search_rule = [arg 1 | quote]
fi

_search_rule

The ‘if’ command conditionally executes other commands. It requires one argument, which is
interpreted as “true" if it is present, not null, and non-zero. If the argument is true, all
the commands from the ’‘if’ to the next unmatched ‘elif’, ‘else’ or ‘fi’ command are executed.
If the argument is false, all the commands from the next unmatched ‘else’ command (if one is
present) to the next unmatched ‘fi’ command are executed. In ’‘ssr’ above, the argument to
‘if’ s a function call invoking ‘nargs’, a command that returns the number of arguments pas-
sed to the command file that is currently active. If ‘nargs’ is zero, then no arguments were
specified, and ’‘ssr’ does not set the user’s search rule. If ‘nargs’ is nonzero, then ’‘ssr’
fetches the first argument, quotes it to prevent the command interpreter from evaluating
special characters, and assigns it to the user’s search rule variable ‘_search_rule’.

‘If’ 1{is useful for simple conditional execution, but it is often necessary to select one
among several alternative actions instead of just one from two. The ‘case’ command is
available to perform this function. One example of ‘case’ is the command file ‘e’, which is
used to invoke either the screen editor or the 1ine editor depending on which terminal is
being used (as well as remembering the name of the file last edited):

vomiariyu drnilerpreter user » awiue

e --- invoke the editor best suited to a terminal

(this is not the current version of ‘e’ in =bin=)
if [nargs]
set f = [arg 1 | quote]
fi
case [line]
when 10
se -t consul [se_params] [f]
when 11
se -t b200 [se_params] [f]
when 15
se -t b150 [se_params] [f]
when 17
se -t gtao [se_params] [f]
when 18
se -t b200 [se_params] [f] .
when 25
se -t b150 [se_params] [f]
out
ed [f]
esac

The first ‘if’ command sets the remembered file name (stored in the shell variable ‘f‘) in the
same fashion that ‘ssr’ was used to set the search rule (above). The ‘case’ command then
selects from the terminals it recognizes and invokes the proper text editor. The argument of
‘case’ is compared with the arguments of successive ‘when’ commands until a match occurs, in
which case the group of commands after the ‘when’ is executed; if no match occurs, then the
commands after the ‘out’ command will be executed. (If no ‘out’ command is present, and no
match occurs, then no action is taken as a result of the ‘case’.) The ‘esac’ command marks
the end of the control structure. 1In ‘e’, the ‘case’ command selects either ‘se’ (the screen
editor) or ‘ed’ (the 1ine editor), and invokes each with the proper arguments (in the case of
‘se’, identifying the terminal type and specifying any user-dependent personal parameters).

The ‘goto’ command may be used to set up a l1oop within a command file. For example, the
following command file will count from 1 to 10:

bogus command file to show computers can count
declare i = 1

:loop
i
set i = [eval i + 1]
if [eval i <= 10]
goto loop
fi

The ‘repeat’ command is used to set up loops but, unlike the ‘goto’ command, will also
work from the terminal. The following loop will do exactly what the previous command file
did, but will also work when entered from a terminal:

not quite as bogus a 1oop to show computer counting
declare i = 1

repeat

i

set i = [eval i + 1]
until [eval i ‘>’ 10]

History Examples

»
Command history provides a quick way of re-executing a command without retyping the
entire command 1line. The following example shows how a user can run the previous command
again by only typing a ‘!’:

] time
11:59:04
1!

time
11:59:08

- 19 -

Command Interpreter User’s Guide

Another advantage is the ability to fix a mistyped command. For example, to 1list the
contents of the directory "stuff.u" where the ".u" was omitted in the ‘1f’ command and then
corrected.

] 1% stuff
stuff: not found
] ttu
1f stuff.u
bogus gorf snert
Two ‘!’s are used because text must be entered right next to the history substitution. Any

other time, the trailing ‘!’ is not needed.

The ‘hist’ command,,without any arguments, will print a list of the current history and

their command numbers.
1 hist

pmac gorf.s; 1d gorf.b -0 snert
se gorf.s
pmac gorf.s; 1d gorf.b -o gorf
gorf
se gorf.s

GbhbWN

At this point it is time to execute the ‘pmac’ and ‘1d’ statements, again. There are several
ways to do this. One is to give the specific command number (as printed by ‘hist’):

113
pmac gorf.s; 1d gorf.b -o gorf

or let the history do more of the work for us by telling it to look for the command starting
with ‘pmac’:

1 !pmac
pmac gorf.s; 1d gorf.b -o gorf

or if that is not the correct command, entering a unique string that appears anywhere on the
command line:

] 1?-0 sn
pmac gorf.s; 1d gorf.b -o snert

Notice that the trailing ‘?’ wasn’t needed. This is because it would have occured at the end
of the 1line. None of the delimiting characters need to be entered at the end of the line
because the command substitution will place them there for you. Also notice that the shell
will always echo the command produced by the history mechanism to the terminal, so that you
can know for sure exactly what the shell is doing.

Argument selection allows the user to retrieve certain arguments from the selected com-
mand line. After a command line is selected (as in the previous examples) then argument
selection takes place. For example, given the command 1ine

lJ]echo 1234586738
12345678

to retrieve only arguments 3 to 7 one can type:

J]echo 123 458678
123456178

] echo !¢3-7
echo 34 56 7
34567

or to grab the.first item on the l1ine,

J]echo 12 3 458678
123456178

1 echo !¢0

echo echo

echo

because aﬁgument zero (the command name) is the first item on the line.

The history mechanism does not know about command <nodes>. E.g., a '{'. and the command
name after it, are treated as just plain arguments. Numbering starts at zero, and each suc-
cessive blank separated "item" is considered another argument. In the case of a function
call, iteration, or quoted string, blanks and tabs are insignificant until all the brackets,
parentheses, and quotes match up. In this manner, an entire function call, iteration group,
or string counts as a single argument, whether or not it contains spaces.

Command Interpreter User‘s Guide

] echo (gorf.s snert.r)
gorf.s snert.r
] cat -h let
cat -h (gorf.s snert.r)
EEESCSCSSESESEESSSS=S===E go"f.s EEEESEZEESSESTESEERESEED
SEG
DYNT BURF$
END
ETESESST=SSgSsEsSS==SsSEs sner‘t.r‘ It 2 2 2 2 2 2 3 2 5 3 £ £ 5 5 & 5]
call print(STDOUT, "burf=xn"s)
stop
end

or for a more complicated exampie

] echo [echo berf] (blert blort) “final word"

berf blert final word

berf blort final word (
] echo !¢3 l¢1 le¢2

echo "final word" [echo berf] (blert blort)

final word berf blert

final word berf blort

The last portion of a history replacement is substitution. This allows previously selec-
ted portions of the command 1ine to be placed through a set of substitutions similar to the
‘change’ command or the substitute command in the editor. To change the "blert" in the
previous example to "bonzo", you would type

] echo [echo berf] (blert blort) "final word"
berf blert final word

berf blort final word

] "blert”"bonzo”

echo [echo berf] (bonzo blort) "final word"
berf bonzo final word

berf blort final word

The operations can be combined. For instance to move arguments around, and make substitutions

] echo one two three

one two three

] echo !¢3 !¢1”"one™1” 1¢2
echo three 1 two

three 1 two

There can be more than one substitution per command line, and the given changes can be made
globally. .

] echo aa bb cc dd ee
aa bb cc dd ee

] ""a”z

echo za bb cc dd ee
za bb cc dd ee

1 17aa?"b"y"g

echo aa yy cc dd ee
aa yy cc dd ee

1 1?2 bb?"a"z2"g"b"y"g“ee”ve"d"w
echo zz yy cc wd ve
ZZ yy cC wd ve

The first substitution simply changes the first "a" to & "z". The second one recalls the most
recent command with an “aa" in it and changes the first "b" to a "y". The last one looks for
the most recent command that contains an "a bb" string (the first 1ine) and then substitutes a
"z* for all occurences of an "a", a "y" for all occurences of a "b", a "ve" for the first
*ee", and a "w" for the first "d". Notice that for the last substitution, the trailing '~

was not necessary.

»
History processing takes place across the entire input line, even inside quoted strings.
To get one of the literal history characters (!~'), you must escape it with the Subsystem
escape character, ‘€’.

Finally, the ‘hist’ command is available to control the use of the history mechanism.
‘Hist on’ turns on history processing. By default, it is off. 'Hist off’ <turns history
processing off. ‘Hist save <file>’ will save the current l1ist of remembered commands into
<file>, or into =histfile= if <file> is not specified. ‘Hist restore <file>’ will retrieve a
saved history session from <file>, or from =shistfile= if <file> is not specified. It is
recommended that you put a ‘hist restore’ into your ‘_hello’ variable or the file it executes
(if you want to save your shell sessions across logins). If history processing is not turned
on when you do a ‘hist restore’, the shell will automatically turn it on for you, and then

- 21 -

Command Interpreter User’s Guide

restore your saved command history. If history is turned on, whenever you issue a ‘stop’ com-
mand (like =bin=/bye does), the shell will automatically do a ‘hist save’ for you. This will
also happen if you type an EOF at the shell (usually control-c), unless you also have
"_nottyeof" set (see below).

Shell Control Variables

Many special shell variables are used to control the operation of the command
interpreter. You can define or change any shell variable with ‘set’ and can delete it with
‘forget’. The current value of a shell variable can be examined by entering its name. The
values of all your shell variables can be examined with the ’‘vars’ command. Certain shell
variables are read into the SWT common block at Subsystem initialization to control the
terminal input routines. Jf these variables are changed, the shell will modify the Subsystem
common to reflect the change immediately. The variables that could accept control characters
as values may be entered using the ASCII mnemonics supported .by the shell variable commands
(see the heading "variables" in the reference section of this manual). The following table
identifies these variables and gives a short explanation of the function of each.

Variable Function
_ci_name This variable is used to select a command interpreter to be executed when the

user enters the Subsystem. It should be set to the full pathname of the com-
mand interpreter desired. This variable is only checked on entrance to the
Subsystem, so if this is changed, the user should exit the Subsystem (say with

‘stop’) and then reenter (using the ‘swt’ command). The default value is
"zhin=/sh".
_eof This variable may be set to a single characterAwhich will be used to signal the

end of file from a terminal. The Subsystem input routines will recognize an
instance of this character anywhere on the input 1ine and send the appropriate
signal to the input routine. The default value is the ASCII character ETX
(control-c).

_erase This variable may be set to a singlie character to be used as the ‘“erase," or
character delete, control character for Subsystem terminal input processing.

_escape This variable may be set to a single character to be used as the "escape"
control character for Subsystem terminal input processing. Note that this will
not not change the standard Subsystem escape character, it remains an ‘e’.
(See the help on ‘tcook$’ for the gory details.)

_hello This variable, if present, is used as the source of a command to be executed
whenever the user enters the Subsystem. It is freguently used to implement
memo systems, supply system status information, and print pleasing messages-of-
the-day.

_kill This variable may be set to a single character to be used as the "kill," or
line delete, control character for Subsystem terminal input processing.

_kill_resp This variable may be set to any string which will appear on the user’s terminal
when the kill character is entered. If this variable is not present "\\" is
the kill response.

_mail_check This variable determines how often mail is checked during the login session.
If not declared, the user is not notified of incoming mail while he 1is logged
in. If the variable is set to an integer value, the shell will check for

changes in his mailbox status after that many seconds has elapsed, just before
his prompt string is printed. The user is notified by the message, "You have
new mail®. If the variable is declared but not set, or set to an illegal
value, the default is to check every 60 seconds.

_newline This variable may be set to a single character which will be interpreted as the
end-of-1line. whenever this character is encountered, a carriage return and
linefeed will be echoed to the terminal. If it is not set, then the ASCII
character LF is the default.

_nottyeof An EOF character typed at command level {1 will normally terminate the Subsystem
and place the user face to face with the Primos operating system. Most com-
mands accept input from the terminal if an alternate file is not specified and
if the user’s keyboard happens to bounce, the user is bounced into Primos. 1If
this variable is declared, an EOF typed at command level {1 will not terminate
the shell but will type the message "use ‘stop’ to exit the subsystem* and
return to command level.

- 22 -

Command ilnterpreter user- s uulae

_pause_gossip This variable controls the paging of gossip messages. If this variable is set,
the gossip will pause at the last page, otherwise it simply returns to command
level without allowing any paging commands.

_prompt This variable contains the prompt string printed by the command interpreter
before any command read from the user’s terminal. The default value is a right
bracket (]).

_prt_dest This variable contains the location where all files spooled by this user are to
be printed. If this variable is not present, files will be printed at the
system-def ined default printer.

_prt_form This variable contains the form to be used for files spooled by this user (e.g.
"narrow"). If this variable 1is not present, files will be printed on the
system-defined default form. -

5

_quit_action If this variable is present, whenever the fault handler detects a break, it
will prompt you as to whether you want to continue, terminate the program or
call Primos. Otherwise, a break will return you to the Subsystem.

_quote_opt This variable, if set to the value "YES", causes automatic quotation of each
l1ine of program output used in a function call. It is mainly provided for com-
patibility with an older version of the command interpreter, which performed
the quoting automatically. The program ‘quote’ may be used to explicitly force
quotation.

_retype This variable may be set to a single character to be used as the "retype"
control character for Subsystem terminal input processing.

_search_rule This variable contains a sequence of comma-separated elements that control the
procedure used by the command interpreter to locate the object code for a com-
mand. Each element is either (1) the flag "~int", meaning the command
interpreter’s table of internal commands, (2) the flag "~var", meaning the
user’s shell variables, or (3) a template containing the character ampersand
(&), meaning a particular directory or file in a directory. 1In the last case,
the command name specified by the user is substituted into the template at the
point of the ampersand, hopefully providing a full pathname that 1locates the
object code needed.

_vth_gossip This causes any gossip that is received to be paged using the screen oriented
paging mechanism.

Shell Command Statistics

If the public or private template "=statistics=" is defined with the value ‘"yes", the
shell will record every command issued by the user in the directory defined by the system tem-
plate ‘"=statsdir=". If you set your private template "=statistics=" to "yes" then your com-
mands will be recorded in the directory defined by your "=statsdir=" template. The files in
the directory "=statsdir=" are named "sh<pid>"; command statistics for a given process are
stored in the file with the corresponding process id. Here is an example of the file:

122680 171812 16 system 1 F //bin/x
122680 171816 16 system 1 F //bin/1f
122680 171822 16 system 1 F //bin/template
(date) (time) (user) | | (command)
(pid) (level) (F - command found)

The date begins in the first column. The (level) is the depth of nesting of shell files at
which the command is requested; 1 is the terminal level.
Symbiotic Commands

There are several commands that, in effect, l1ive symbiotically with the Shell. In the

following sections, some of the more useful of these will be reviewed. For further
information, consult the Software Tools Subsystem Reference Manuai.

Argument Fetching. Four internal commands are frequently used in shell programs to fetch
arguments given on the command l1ine. ‘Arg’ fetches a single argument, ‘args’ fetches several,
‘argsto’ fetchs a specified group, and ‘nargs’ returns the number of available arguments.

arg <position> [<ievel>]

‘Arg’ prints on its first standard output the argument which appeared in the
<position>th position in the command line invoking the shell program containing
‘arg’. Position zero refers to the command name, position one to the first
argument, etc. If an illegal position is specified, ‘arg’ prints nothing. The
optional second argument, <level>, specifies the number of lexic levels to

- 23 -

Command Interpreter User’s Guide

ascend in order to reach the desired argument list. The entry of any command
file or function call constitutes a new lexic level; thus, an ‘arg’ command
used in a function call to fetch an argument to the command file containing the
function call needs a <level> of 1 (to escape the 1lexic 1level in which the
function is evaluated). In fact, this is the most common use of ’‘arg’, so the
default value for <level> is 1. The following three commands, when placed in a
command file, would cause that command file‘’s first argument to be printed
three times on standard output one:

echo [arg 1]
echo [arg 1 1]
arg 1 O

£
args <first> [<last> [<level>]]

‘Args’ prints on its first standard output the arguments specified on the com-
mand file <level> lexic levels above the current level. <First> is the posi-
tion on the command 1ine of the first argument to be printed; <last> is the
position of the last argument to be printed. If <last> is omitted, the final
argument on the command l1ine is assumed. <Level> has the same meaning as for
‘arg’ above.

argsto <delim> [<number> [<start> [<level>]]]

‘Argsto’ prints a group of arguments delimited by arguments consisting of
<delim>. <Number> 1is an integer that controls which group of arguments is
printed. If <number> is O or omitted, arguments up to the first occurrence of
<delim> are printed; if <number> is 1, arguments between the first occurrence
of <delim> and the second occurrence of <delim> are printed, and so on.
<Start> is an integer indicating the argument at which the scan is to begin; if
<start> 1is omitted (or is 1), the scan begins at the first argument. <Level>
has the same meaning as for ‘arg’ above.

nargs [<level>]
‘Nargs’ prints on its first standard output the number of arguments passed to

the command file <level> lexic levels above the current level. <lLevel> has the
same meaning as for ‘arg’ above.

Shell JTracing. The ’‘shtrace’ command is useful for tracing the operation of the shell.
Al though primarily intended for debugging the command interpreter itself, it also finds use in
monitoring and debugging shell files. To turn the trace on, enter
shtrace on
To turn the trace off, enter
shtrace

Many other options are available. Consult the Software Tools Subsystem Reference Manual for
details.

Shell Variable Utilities. The following commands (in addition to ‘declare’, ‘set’, and
‘forget’ discussed earlier) have been found useful in dealing with shell variables. Further
information can, as usual, be found in the Software Tools Subsystem Reference Manual.

vars
‘Vars’ 1lists the names (and optionally the values) of the user’s shell
variables. ‘vars’ can also save and restore the user’s variables from
arbitrary files. various options control the listing format, the number of
lexi¢c levels scanned, and whether or not shell control variables are listed.
The most common form is probably

vars -alv

which 1ists all variables at all lexic levels along with their values.

Program Interface

. The shell provides a set of routines which allows the user of the standard shared
libraries to create shell variables, retrieve their values, and change them as well. You may
also execute shell commands from within a program. This facility is not available when using
the non-shared libraries, and even using the shared libraries it is somewhat restrictive untiil
Prime supports EPF runfiles. Further information on these routines can be found in the
- Software Tools Subsystem Reference Manual.

- 24 -

commana initerpreter user- s uJuiae

shell
‘Shell’ 1is the subroutine which starts another level of the SWT shell. It is
used to execute commands read from an open input file. It is analagous to the
‘sh’ command.

subsys
‘Subsys’ is used to execute a single command from within a program. It com-
bines all the operations needed to execute a string with ‘shell’ without the
user having to perform the operations. It is a convenience for the user.

svdel
‘Svdel’ accepts the name of a shell variable and deletes it at the current
shell level. It takes care of updating the SWT common block in the case of a
special shell variable (see "Shell Control Variables", above). It is analagous
to the command ‘forget’.

svdump
‘Svdump’ prints a representation of the internal shell variable common block.
It scans all levels of the variables, dumping the chains and '@ hash tables.
It is analagous to the ‘dump sv’ command.

svget
‘Svget’ simply retrieves the value of a given shell variable. Since
"executing" a variable from the command level prints the value of the variable,
the action of ’‘svget’ is closest to the execution of a variable.

svievl
‘Svievl’ returns the current lexic level of the shell. This is wuseful in
cooporation with ‘svscan’ (described below) to retrieve the value of all
currently declared variables. This routine has no command equivaient.

svmake
‘Svmake’ creates a given shell variable at the current 1lexic level of the
shell. It returns the 1lexic 1level of the shell. 1If the variable already
exists at the current level, then ’‘svmake’ will have no effect. Any special
variables (see "Shell Control Variables", above) that are changed will cause a
change in the SWT common block to reflect the value of the variable. ‘Svmake’

is analagous to the ‘declare’ command.

svput
‘Svput’ sets the value of a given shell variable in the most recent lexic level
where it appears. If the variable does not exist in any scope of the shell, it
is created 1in the current level. ‘Svput’ also makes modifications to the SWT
common block if any special variables are changed. ‘Svput’ is analagous to the
‘set’ command.

svrest
‘Svrest’ reads a file written by ‘svsave’ (see below) and attempts to merge
those variables with those at the current lexic level. ‘Svrest’ is analagous

to the ‘vars -r’ command.

svsave
‘Svsave’ attempts to save the shell variables at lexic level number 1 (the top
level) in the given file. ‘Svsave’ is analagous to the ‘vars -s’ command.

svscan
‘Svscan’ provides a way for the user to obtain the value of all shell variables
at any or all lexic levels. It operates in a method similar to ‘tscan$’.

There is no command associated with ‘svscan’.

Conclusion

This concludes the Application Notes section of the guide. Hopefully it has presented
some ideas that will make the use of the command interpreter more productive and enjoyable.

»

Command Interpreter User’s Guide

Messages from the Shell

Listed here are messages with obscure meanings that are produced by the Shell; several
indicate dire internal problems that should not occur during normal operation. In the
interest of saving paper, self-explanatory messages are not included.

<command>: not found
The 1ist of elements in the search rule was exhausted, but the command had not been
located.

<command>: too many ci files
The nesting depth of command files has been exceeded. This is usually caused by an
infinitely recursive« call on a command file. The maximum nesting depth (currently
10) is a compile time option of the shell and may be increased at the expense of
additional table space.

continue?
This message occurs after each network when the "single_step" shell trace option is
set. A line beginning with anything other than an upper or lower case letter "n"
will cause the shell to execute the next network. A response beginning with "n"
will cause the shell to return to command level.

illegal destination node spec
The destination node specifier must be a defined label or a number between 1 and the
number of nodes in the network.

illegal port number
A port number must be a number between 1 and the maximum number of standard ports
defined (currently 3).

missing command name
Although an empty net is allowable, redirectors must not be specified without a com-
mand name.

missing pathname in redirector
A greater-than sign was encountered without a pathname on either side.

net is not serially executable
Because multiple processes per user are not supported, each node of a net must be
executed serially. Therefore, nets which have pipe connections that form a compliete
cycle cannot be executed.

overflow (save_state): <level>
The nesting depth of command files has been exceeded. This is usually caused by an
infinitely recursive call on a command file. The maximum nesting depth (currently
10) is a compile time option of the shell and may be increased at the expense of
additional table space.

pipe destination not found
The destination node of a pipe is not in the range of the current net.

state save stack overflow
The nesting depth of command files has been exceeded. This is usually caused by an
infinitely recursive call on a command file. The maximum nesting depth (currently
10) is a compile time option of the shell and may be increased at the expense of
additional table space.

unbalanced 1iteration groups
Because of the semantics of iteration, each iteration group in the same net must
contain the same number of arguments.

unexpected EOF ‘'on variable save file
End of file has been encountered on the shell variable save file when a value has
been expected. The shell variables have been corrupted. To recover what might be
left, exit the Subsystem with a <break> or control-P and consult your system
administrator.

whitespace required around pipe connector
A pipe connmector and its associated port numbers and destination label must be
surrounded by spaces.

whitespace required around i/o redirector
An i/o0 redirector and its associated i/o redirector must be surrounded by spaces.

- 26 -

User’‘s Guide for the Ratfor Pr'eﬁhooessor
Second Edition

T. Allen Akin
Terrell L. Countryman
Perry B. Flinn
Daniel H. Forsyth, Jr.
Jeanette T. Myers
Arnold D. Robbins
Peter N. Wan

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

April, 1985

JABLE OF ENT

Ratfor Language Guide

What 18 RAtFOP? i it it i ittt teeononeensasanossosnssssesessensnsnsanas 1
Differences Between Ratfor and Fortran ittt ttnnnnrnannns 1
SoUrCe Program FOoPmatcceeiiiiiitneenoeesenannsocansssascesasesaneneenaanenns 1
Case SeNSItiIVItY ...ttt ittt ittt et enenaacoesosstssnacsas oot nseanns 1

Blank SenSitiVity ...ttt it niieeneetesseeeseeersesacasssssscssssssesssssnssss 1

Card Columns e ettt e e eeeetteeee et e 1
MUTtiple Statements Per Linettt teeeeeeneneneaseossenssonssssssssesnns 2
Statement Labels and Continuationc.cciiiiiiinennnnnennanannn et 2
COMMENE S ..ttt ittt ittt et iiaeeononocnssosnncssasosossseansassssnnnsssns e s 3

b0 1= o B o B = o 3
INnteger ConStaNtSttt ittt ittt oeseaanacssosencssanesansssansonsssonansnnns 4
StrinNg CONStANESttt eneeceeneeeansessesasocssssasaasesanossosesnnessennas 4
Logical and Relational Operatorsttt ennoensseeeeneanonsenenennnnnsns 5
ASSignment OpPerator Sttt ittt ittt ittt et e 6
Fortran Statements in Ratfor Programsc.itiiiiiiennrnneenacenennnnnennnns 6
IncomPatibilitiesottt it teeeneennasassssseasasnsoocennnssansnasnens 7
Ratfor Text Substitution Statements ittt ittt inaennn 8
|97 0 1 o = 8

L g T 1= T T 10

D 8 T T T = 10
RatfOr DeCIaratioNS ittt ittt teeaeenneanesansanessnsenssaenesannnes 11
£ 2 o 1 = 11

Eo o kI T = < I 11

LI I 1 ¥ T 12
T - 12
Ratfor Control Statements i ittt et ttntteronanennannoncnnnns 14
Compound StatemMeNtSttt iitinetentenssseeanscesassoseseseaaatoassassosonnns 14

0 S S I 14
WT T ...ttt it iitietieaoeeneseeaaasasonssosesesasososensosasesscssnsssssanonasonas 14
2= <= - 15

5 15
2= 16

=5 = - 1 16
L= 17
== T o o 17
£33 1= 7= 17
PrOCRAUNE .. ittt i ineeetsooneeeeaasssssnannsesoasssssansossnsassnssasessessnsnnsacenss 19

Ratfor Language Reference

Differences Between Ratfor and Fortran ittt irennreraeensonennnnn 21
SOUrCe Program FOrmMatc.c.ieuiieeeaeaanonesesenensesenssessnesacnsassannaannss 21

D= 1= o T R - 21
INteger CONStANESttt irsenaneaeesaasososoeseasasssssnsnaasassesnsnssnnes 21
StrinNg CONSTANES iiiiiireteeeeneeneseeaeneenenssnssosesstssnsssessssasassnnnnn 21
Logical and Relational Operatorsiiitiiiinennnnenenencannacssssscnananas 22
Assignment OpPeratorSttt eianeactonasesasseonsosasansensnneennsoannans 22
ESCape StAteMENTSttt iiteeeeneaeeonoennssoosassssesenscesssenasesneannass 22
Incompatibilitiesiiiiieinnenenenennanacassnssnnsa preetasencnsaanacseenn 23
Ratfor Text Substitution Statements i ittt iiietnnnnannnnnn 23
[5= 20 1 2 7= 23

(8 a T L= T T 23

B O T 1T T = 23

= 111 -

RatfOr DeClarations it ittt ittt sttt e e et eeeaeeeeeaaaaaaaaanasns 24

[1Y T 24
= Y - T I 24
138 o 1 o« T 24
1Rl I T - 1o T = 24
Ratfor Control Statements i i ittt ittt e tnaneaaanaaacsan 24
= o = Y 24
5 = 24
2= o 24
0 24
2= 25
L =T ==Y T o 25
Repeat 6 ettt e e e e mmae ettt ettt 25
REIUPI it ittt teeeenoneeeeaeeeeeasassenanesesseeesoscessnnesosessnssnsennsas 25
£ =T 25
L T - 25

Ratfor Programming Under the Subsystem

Requirements for Ratfor Programs it iiiiiiiiinneennennnnennn 26
Running Ratfor Programs Under the Subsystem ittt 26
Lo = = =TT = Y= = o c I 26
{072 1 1T = T I o T 27
L 1 I o T 28
123 o1 ¥ S T T 29
1] T T o o = I 29
SNET T PrOgramS ... iiitit i tniaonneeanenseeeessstnsnennsonscecesenasssennasesannenns 29
The ‘Rf1/ COMMANGAttt iittneennneneeeannenosensenasoesnsenesaneenasacenss 30
Storing Source Programs Separately ittt itcttetttitti ittt 30
Compiling Programs Separatelyc.uiciuciuineennenessnsaesneceaceanascansnsa 30
1071 < T T I oV« 30
Performance MONITTOP INgttt teeeeeeeeeeeeeoestoessseeeasceasssssssssssssnsssss 33
Conditional Compilationttt iiiiiniitineseinnneeeennaceocsoessseannsecsnsnnsnsnss 33
Lo T o -1 < T T T < 34
Source Program Format Conventionsttt ittt 34
Statement Placementt iiiineenernoanetoeeenssnsenasacaanneesenssnnsnnnas 34
BT L= o 8 - N b I o o 35
Subsystem DefinitionNs ittt it ittt enaetenaaanesnessnenannns 36
Using the Subsystem Support Routines ittt nnnnannnn 36
LI Lol 10T G I < o 36
Character StriNMgSttt ittt ittnennraetoseeseeseseeneenaanasecaessseaseaneannnns 36
0 T - . 37

B 5 T (- 37
=Y T s oo 37
MaPAN ANA MBPUP .. ittt i s mesveeereeeeaacaeeaeseoasassnaennanseaneenacaeeanseensosssnnsenenns 37
=T = 2 37

T o o < 37

1577 =L 38
File Access e, 38
Open 8Nd ClOSEicuuitieeineenooasssseneessesssnesssnsscanacesenanaasaanananns 38

o] o = T - 39
Mktemp 8Nd RMIEMDttt eeeeeoaeeasssnesosnssanseanssssnacaasssaeneanscenanasas 39
Wind and Rewindttt ittt iieeeeoeanenossosetocsesasssasoesesannonosnasenennas 39
a7 L T 39
REBMOVE iiietieioenenoeeneenssoeasoaseeeeasssesssaessesaosssssncsseasansesannsns 39
07 1 5 40
(T S T T T 40

[= R = o 40

B = LU L 40
ROAASF ittt ittt teteenonaeanseeeeneessatosssosssssasosancnassssnsnnsennnns 42
L2203 T T T 42
L2 = o T 42

L2 o 0 42

L T <= 42
FOOPY i ittt ittt ittt teeeeeceaseseasseneeseesossesssaeecaanascssnesssecnscnsennens 42
Markf and Seekfttt ittt ittt ettt ettt et 43
[T G = 43

- iv -

TYPE CONVEIN S ION ..ttt ittt ittt et ies et assosooeanessasssassanosnsasnnsenas 43

137 T o o PR 45
g T = o T 45
Argument ACCESSccovvieesronacacnnessnns W et serebtenemeveesesasonnson Ce et e 45
€= - Y o « 45
- ¥ o o 46
Dynamic Storage Managementt iiitininneeneraneeneansensencassasesasanesas 47

|2 235 1 1 48

10T T 48

13 T o o T - 48

13 T T 7= 48
Symbol Table Manipulationttt itittineneeroeeeneeenneaeeeenseneasanans 49
L - = 49

3 =T o 50

[=T | < 50

13 1 - 50
53111 - = 50

1] = 4 -1 forrennnnnn 50

Other ROUTINES i i i ittt ittt e teiataneeesssnseanassonasssossnneasnss 51

Appendixes

Appendix A -- Implementation of Control Statementst 52
= =T Y 53

9. = I 54
2= 55

8 56

B 3 I] 57

L 1= 58

225 == 59
2= T o o 60
FT2 3 == < 61
SeleCt (<iNteger EXPreSSTON>) ...t ittt ineintensaneeeeoneesanensooreeenneanenennns 63

L 0 T - 65
Appendix B -- Linking Programs With Initialized Common 66
Appendix C -- Requirements for Subsystem Programscciittunrnnenernnannn 67
Appendix D -- The Subsystem Definitions ittt innnnnnnnnens 68
[0 g T ¥ - Ve = o - N 68

18 T T = T IRV = T 68
MaCrO SUDPOUL I MEEttt tmeitonnennasoesssnsnsesaosscasssensoasonnssnnnnnenanas 68
Language EXtenSioNSttt iteteenneriosnnecasosensasssescssonnasneannnesnnes 68

L T T e 69

R - g T F T T B o o T 69
Argument and ReTUPrN ValUBSttt ittt etsoeeresosnscsonsoncaeessssnneansannanss 69
Appendix E ~- ‘Rp’ Reserved WOordsttt iinneennntoeennaaneeannannnns 70
Appendix F - - Command Line SyntaxXi. ittt ieiiioneerncontasanranannananan 71

-V -

Foreword

Ratfor ("Rational Fortran") is an extension of Fortran-66 that serves as the basis for
the Software Tools Subsystem. It provides a number of enhancements to Fortran that facilitate
structured design and programming, as well as enhance program readability and ease the burden
of program coding.

This guide is intended to explain and demonstrate the use of Ratfor as a programming

language within the Software Tools Subsystem. In addition, applications notes are provided to
help users build on the experience of others.

- vi -

RALTVI™ waeH 0 W e

Ratfor Language Guide

What is Ratfor?

The Ratfor ("Rational Fortran") language was introduced in the book Software Tools by
Brian W. Kernighan and P. J. Plauger (Addison-wWesley, 1876). There, the authors use it as the
medium for the development of programs that may be used as cooperating tools. Ratfor offers
many extensions to Fortran that encourage and facilitate structured design and programming,
enhance program readability and ease the burden of coding. Through some very simple
mechanisms, Ratfor helps the programmer to isolate machine and impiementation dependent sec-
tions of his code.

Among the many programs developed in Software Tools is a Ratfor preprocessor -- a program
for converting Ratfor into equivalent ANSI-66 Fortran. ‘Rp’, the preproce§sor described in
this guide, is an original version based on the program presented in Software Tools.

Differences Between Ratfor and Fortran

As we mentioned, Ratfor and Fortran are very similar. Perhaps the best introduction to
their differences is given by Kernighan and Plauger in Software Tools:

"But bare Fortran is a poor language indeed for programming or describing programs.
. . Ratfor provides modern control flow statements like those in PL/I, Cobol,
Algol, or Pascal, so we can do structured programming properly. It is easy to read,
write and understand, and readily translates into Fortran. . . . Except for a hand-
ful of new statements like if - else, while, and repeat - until, Ratfor is Fortran.®

Source Program Format

Case Sensitivity. In most cases, the format of Ratfor programs is much less restricted
than that of Fortran programs. Since the Software Tools Subsystem encourages use of terminals
with multi-case capabilities, ‘rp’ accepts input in both upper and lower case. '‘Rp’ 1i{s case

sensitive. Keywords, such as if and select, must appear in lower case. Case is significant
in identifiers; they may appear in either case, but upper case letters are not equivalent to
lower case letters. For example, the words "blank" and "Blank" do not represent the same

identifier. For circumstances in which case sensitivity is a bother, ‘rp’ accepts a command
line option ("-m") that instructs it to ignore the case of all identifiers and keywords. See
the apptications notes or the ‘help’ command for more details.

Blank Sensitivity. Unlike most Fortran compilers, ‘rp’ is very sensitive to blanks.
‘Rp’ requires that all words be separated by at least one blank or special character. Words
containing imbedded blanks are not allowed. The best rule of thumb is to remember that if it
is incomprehensible to you, it is probably incomprehensible to ‘rp.’ (Remember, we humans
normally leave blank spaces between words and tend not to place blanks inside words. Such
things make text difficult to understand.)

As a bad example, the following Ratfor code is incorrect and will not be interpreted
properly:

subroutineexample(a,b,c)
integera,b,c

repeatx=x+1
until(x>1)

A few well placed blanks will have to be added before ‘rp’ can understand it:

subroutine example(a,b,c)
integer a,b,c

repeat x=x+1
until(x>1)

You should note that extra spaces are allowed (and encouraged) everywhere except inside words
and literals. Extra spaces make a program much more readable by humans:

subroutine example (a, b, c¢)
integer a, b, ¢

repeat x = x + 1
until (x > 1)

Ratfor User‘’s Guide

Card Columns. As should be expected of any interactive software system, ’‘rp’ is com-
pletely insensitive to "card" columns; statements may begin and end at any position in a line.
Lines may be of any length, but identifiers and quoted strings may not be 1longer than 100
characters. ‘Rp’ will output all statements beginning in column 7, and automatically generate
continuation 1lines for statements extending past column 72. All of the following are valid
Ratfor statements, although such erratic indentation is definitely frowned upon.

integer i, j
i=1
j =2
stop
end

&
Multiple Statements per Line. ‘Rp’ also allows multiple statements per 1line, although
indiscriminate use of this feature 1is not encouraged. Just place a semnico’ = Lo.ween
statements and ‘rp‘’ will generate two Fortran statements from them. You will find

integer i
real a
logical 1

to be completely equivalent to

integer i; real a; logical 1

Statement Labels and Continuation. You may wonder what happens to statement labels and
continuation lines, since ‘rp’ pays no attention to card columns. It turns out that statement
labels and continuation 1lines are not often necessary. While ‘rp’ minimizes the need for
statement labels (except on format statements) and is quite intelligent about continuation
lines, there are conventions to take care of those situations where a label is required or the
need for a continuation line is not obvious to ‘rp.‘

A statement may be labeled simply by placing the statement number, starting in any
column, before the statement. Any executable statement, including the Ratfor control
statements, may be labeled, and ‘rp’ will place the label correctly in the Fortran output. It
is wise to refrain from using five-digit statement numbers; ‘rp‘’ uses these statement labels
to implement the Ratfor control statements, and consequently will compliain if it encounters
them in a source program. As examples of statement labels,

2 read (1, 10) a, b, ¢
10 format (3e10.0)
write (1, 20) a, b, c; 20 format (3f20.5)
go to 2

all show statement numbers in use. You should note that with proper use of Ratfor and the
Software Tools Subsystem support subroutines, statement labels are almost never required.

As for continuation lines, ’‘rp’ is usually able to recognize when the current line needs
to be continued. A line ending with a comma, unbalanced parentheses in a condition, or a mis-
sing statement (such as at the end of an if) are all situations in which ‘rp’ correctly
anticipates a continuation line:

integer a, b, ¢, d,

e, f, g
if (a==b&c=2=d&es==+f2&
g==h&i==3j & k == 1) call eql
if (a == b)
c = -2

If an explicit continuation is required, such as in a long assignment statement, ‘rp’ can
be made to continue a 1ine by placing a trailing underscore (*_") at the end of the 1line.
This underscore must be preceded by a space. You should note that the underscore is placed on
the end of the line to be continued, rather than on the continuation line as in Fortran. If
you are unsure whether Ratfor will correctly anticipate a continuation 1line, go ahead and
place an underscore on the line to be continued -- ‘rp’ will ignore redundant continuation
indicators.

Identifiers may not be split between 1ines; continuation is allowed only between tokens.
If you have an extremely 1ong string constant that requires continuation, you can take
advantage of the fact that ‘rp’ always concatenates two adjacent string constants. Just close
the first part of the literal with a gquote, space, and underscore, and begin the second part
on the next 1ine with a quote. ‘Rp’ will ignore the 1ine break (because of the trailing
underscore) and concatenate the two literals.

Ratfor user’'s Guiae

The following are some examples of explicit 1ine continuations:

i=i+ j+k+1+m+n+o+p+q+r+ _
s + t +u+ v

i format ("for inputs of ", i5, " and “, 15/ _
"the expected output should be ", i5)

Comments. Comments, an important part of any program, can be entered on any line; a com-
ment begins with a sharp sign ("#") and continues until the end of -the 1line. In addition,
blank 1lines and 1lines containing only comments may te freely placed in the source program.
Here are some appropriate and (correct but) inappropriate uses of Ratfor comments:

\

if (i > 48)
do this only if i is greater than 48
i=3+1
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>