
GO Technical Library

PenPofnt

PenPomt"

PenPoint™
Development Tools

• GO CORPORATION

GO TECHNICAL LIBRARY

PenPoint Application Writing Guide provides a tutorial on writing PenPoint
applications, including many coding samples. This is the first book you should
read as a beginning PenPoint applications developer.

PenPoint Architectural Reference Volume I presents the concepts of the fun
damental PenPoint classes. Read this book when you need to understand the
fundamental PenPoint subsystems, such as the class manager, application
framework, windows and graphics, and so on.

PenPoint Architectural Reference Volume II presents the concepts of the
supplemental PenPoint classes. You should read this book when you need
to understand the supplemental PenPoint subsystems, such as the text sub
system, the file system, connectivity, and so on.

PenPoint API Reference Volume I provides a complete reference to the
fundamental PenPoint classes, messages, and data structures.

PenPoint API Reference Volume II provides a complete reference to the
supplemental PenPoint classes, messages, and data structures.

PenPoint User Interface Design Reference describes the elements of the
PenPoint Notebook User Interface, sets standards for using those elements,
and describes how PenPoint uses the elements. Read this book before
designing your application's user interface.

PenPoint Development Tools describes the environment for developing, de
bugging, and testing PenPoint applications. You need this book when you
start to implement and test your first PenPoint application.

•

PenPomtM

PenPoinl'M
Development Tools

GO CORPORATION

GO TECHNICAL LIBRARY

Addison-Wesley Publishing Company

Reading, Massachusetts. Menlo Park, California. New York
Don Mills, Ontario • W okingham, England • Amsterdam
Bonn. Sydney. Singapore. Tokyo. Madrid • SanJuan
Paris • Seoul • Milan • Mexico City • Taipei

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial capital letters.

The authors and publishers have taken care in preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

Copyright © 1991-92 GO Corporation. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo
copying, recording, or otherwise, without prior written permission of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

The following are trademarks of GO Corporation: GO, PenPoint, the PenPoint logo, the GO logo,
ImagePoint, GOWrite, NoteTaker, TableServer, EDA, MiniNote, and MiniText.

Words are checked against the 77,000 word Proximity/Merriam-Webster Linguibase, ©1983 Merriam
Webster. © 1983. All rights reserved, Proximity Technology, Inc. The spelling portion of this product is
based on spelling and thesaurus technology from Franklin Electronic publishers. All other products or
services mentioned in this document are identified by the trademarks or service marks of their respective
companies or organizations.

PenTOPS Copyright © 1990-1992, Sitka Corporation. All Rights Reserved.

WClrrI:lnTy Disclaimer GO CORPORATION MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
o:md l..imitl:~ti'::>l1 or LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

liability PURPOSE AND NONINFRINGEMENT, REGARDING PENPOINT SOFIWARE OR ANYfHlNG ELSE.

U.S. Government
Restricted Rights

GO Corporation .does not warrant, guarantee, or make any representations regarding the use or the
results of the use of the PenPoint software, other products, or documentation in terms of its correctness,
accuracy, reliability, currentness, or otherwise. The entire risk as to the results and performance of the
PenPoint software and documentation is assumed by you. The exclusion of implied warranties is not
permitted by some states. The above exclusion may not apply to you.

In no event will GO Corporation, its directors, officers, employees, or agents be liable to you for any
consequential, incidental, or indirect damages (including damages for loss of business profits, business
interruption, loss of business information, cost of procurement of substitute goods or technology, and the
like) arising out of the use or inability to use the documentation or defects therein even if GO Corporation
has been advised of the possibility of such damages, whether under theory of contract, tort (including
negligence), products liability, or otherwise. Because some states do not allow the exclusion or limitation
of liability for consequential or incidental damages, the above limitations may not apply to you. GO
Corporation's total liability to you from any cause whatsoever, and regardless of the form of the action
(whether in contract, tort [including negligence], product liability or otherwise), will be limited to $50.

The PenPoint documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure
by the U.S. Government is subject to restrictions as set forth in FAR 52.227-19 (Commercial Computer
Software-Restricted Rights) and DFAR 252.227-7013 (c) (1) (ii) (Rights in Technical Data and Computer
Software), as applicable. Manufacturer is GO Corporation, 919 East Hillsdale Boulevard, Suite 400, Foster
City, CA 94404.

ISBN 0-201-60861-8

123456789-AL-9695949392

First printing, June 1992

Preface

PenPoint Development Tools provides detailed information on the tools and
facilities available to developers who are writing programs for the PenPoint™
operating system. This volume includes descriptions of the other volumes in the
PenPoint SDK (software development kit), how to run the PenPoint operating
system on a desktop PC, how to use the PenPoint source code debugger, and how
to use other miscellaneous tools.

This volume also contains a Master Index to the entire SDK documentation set.

Intended Audience
PenPoint Development Tools is written for people who are designing and developing
applications and other programs for the PenPoint operating system. This book
addresses both those who are using high-level development tools (application
generators and the like) and those who are writing programs that directly access
the PenPoint APIs (application programmatic interfaces). However, parts 2 and 3
of this book will be more useful to those writing programs that access the
PenPoint APIs.

What's Here
PenPoint Development Tools is divided into several parts:

• Part 1: Getting Started, describes what is involved in developing PenPoint
programs. It the describes the PenPoint documentation and how to run the
PenPoint operating system on a desktop Pc.

• Part 2: Debugging PenPoint Programs, describes the PenPoint source-level
debugger, the PenPoint mini-debugger, and other debugging tools and
techniques available to developers.

• Part 3: Tools, describes other tools that can assist you in developing or
embellishing your application. These tools include DOS tools, a bit-map
icon editor, a screen shot utility, and a font editor.

Other Sources of Information
The PenPoint Application Writing Guide provides a tutorial on writing PenPoint
applications. The tutorial is illustrated with several sample applications.

The PenPoint Architectural Reference groups the PenPoint classes into several
functional areas and describes how to use these classes. The PenPoint Architectural
Reference is divided into two volumes. The first volume describes the fundamental
classes that all application developers will use; the second volume describes
supplemental classes that application developers may, or may not, use.

vi PENPOINT DEVELOPMENT TOOLS

The PenPoint API Reference is a set of "datasheets" that were generated from the
PenPoint SDK header files. These datasheets contain information about all the
messages defined by the public PenPoint classes. If you own the PenPoint SDK,
you can also find the header files in the directory \PENPOINT\SDK\INC.

To learn how to use PenPoint, you should refer to the PenPoint user documentation.
The user documentation is included with the PenPoint SDK, and is usually packaged
with a PenPoint computer. The user documentation consists of these books:

• Getting Started, a primer on how to use PenPoint.

• Using PenPoint, a detailed book on how to use PenPoint to perform tasks and
procedures.

• Using GO Write, which helps users to develop more effective handwriting
when using the GOWrite handwriting translation engine.

Type Styles in This Book
To emphasize or distinguish particular words or text, we use different fonts.

Computerese

We use fonts to distinguish two different forms of "computerese":

• C Language keywords and preprocessor directives, such as switch, case,
#define, #ifdef, and so on.

• Functions, macros, class names, message names, constants, variables, and
structures defined by PenPoint, such as DPrintfO, msgListAddltem, elsList,
stsBadParam, P _LIST_NEW, and so on.

Although all these PenPoint terms use the same font, you should note that
PenPoint has some fixed rules on the capitalization and spelling of messages,
functions, constants, and types. By the spelling and capitalization, you can quickly
identify the use of a PenPoint term.

• Classes begin with the letters "els," for example clsList.

• Messages begin with the letters "msg," for example msgNew.

• Status values begin with the letters "sts," for example stsOK.

• Functions are mixed case with an initial upper case letter and are terminated
with open and close parenthesis, for example OSMemAvailableO.

• Constants are mixed case with an initial lower case letter, for example
wsClipChildren.

• Structures and types are all upper case (with underscores, when needed, to

increase comprehension), for example, U32 or LIST_NEW_ONLY.

Code Listings

Code listings and user-PC dialogs appear in a fixed-width font.

i,4

i,4,1

i.4.2

PREFACE
Type Styles in This Book

II Allocate, initialize, and record instance data.
II
StsJmp(OSHeapBlockAlloc(osProcessHeapld, SizeOf(*plnst), &plnst), \

s, Error);
plnst-»placeHolder = -1L;
ObjectWrite(self, ctx, &plnst);

Less significant parts of code listings are grayed out to de-emphasize them. You
needn't pay so much attention to these lines, although they are part of the listing .

new.object.uid
nevI .

. cIs. pfilsg
new.cls.ancestor
nevi. cIs. size
nevi. cIs.

• 'new, s, Error);
clsTttApp;
0;

clsApp;
SizeOf (P APP INS'!');
SizeOf (APP _ NEI'lj ;
true;
faIse; nelV.appMgT,

strcpy (nev;.
.appMgr. AlI Reserved,";

ObjCaIIJmp(msgNew, clsAppMgr, &new, s, Error);

~ Placeholders

Anything you do not have to type in exactly as printed is generally formatted in
italics. This includes C variables, suggested filenames in dialogs, and pseudocode
in file listings.

¥ Other Text

The documentation uses italics for emphasis. When a part uses a significant term,
it is usually emphasized the first time. If you aren't familiar with the term, you can
look it up in the Glossary in the PenPoint Application Writing Guide or the index
of the book.

DOS filenames such as \\BOOT\PENPOINT\APP are in small capitals. PenPoint file
names, which can be upper and lower case, are shown in smaller type, such as \\My

Disk\ \Package Design Letter.

Book names such as PenPoint Application Writing Guide are in italics.

1.4.3

vii

,.. Part 1 / GeHing Started 1

1 I Welcome 5

2 I The PenPoint Documentation 9

3 I Running PenPoint on a PC 25

Part 2 / Debugging PenPoint
Applications 63

4 I Introduction 67

5 I Preparing to Run the Debugger 69

61 Using DB 71

7 I DB Command Reference 85

8 I Profiling with DB 113

91 Advanced DB Techniques 123

10 I General PenPoint DebuggingTechniques 133

11 I The System Log Application 141

12 I PenPoint Mini-Debugger 145

Part 3 / Tools 155

13 I Introduction 159

141 DOS File System Utilities 161

151 Other DOS Utilities 165

161 PenPoint Bitmap Editor 167

17 I S-Shot Screen Capture Utility 175

18 I Font Editor 179

Index 211

Master Index 221

Part1/
Getling Started

,.. Chapter 1 / Weicollle 5 DebugSet 3.5.7 38

Development Options 1.1 5
PenPointPath 3.5.8 38

Using High-Level Development Tools 1.1.1 5
PenProx Timeout 3.5.9 38

Using the PenPoint APIs 1.1.2 6
ScreenHeight 3.5.10 39

Additional Reading
Screen Width 3.5.11 39

1.2 7 StartApp 3.5.12 39

Chapter 2 / The PenPoint StealMem 3.5.13 39

Doculllentation 9
SwapBoot 3.5.14 39

A Suggested Approach to Documentation
SwapFileSize 3.5.15 39

2.1 9 TZ 3.5.16 39
Feedback on Documentation 2.1.1 10 Version 3.5.17 39

Application Writing Guide 2.2 11 VolSel 3.5.18 40

PenPoint Development Tools 2.3 13 WinMode 3.5.19 40

PenPoint UI Design Reference 2.4 13 ZoomMargin 3.5.20 40

PenPoint Architectural Reference 2.5 13
ZoomResize 3.5.21 40

Class Manager 2.5.1 13 Running in Tablet-Like Mode 3.6 40

Application Framework 2.5.2 15 BOOT.DLC 3.7 42

Windows and Graphics 2.5.3 15 CONSOLE.DLC 3.8 43
UI Toolkit 2.5.4 16 SYSCOPY.INI 3.9 43
Input and Handwriting 2.5.5 17 SYSAW.INI
Text Component 2.5.6 17

3.10 44

File System 2.5.7 18
APP.INI 3.11 44

System Services 2.5.8 18 Setting Up Specific Configurations 3.12 44

Utility Classes 2.5.9 19 One or Two Monitors 3.12.1 44

Connectivity 2.5.10 20 Configuring a Mouse 3.12.2 45

Resources 2.5.11 20 Configuring a Digitizing Tablet 3.12.3 45

Installation API 2.5.12 20 Booting PenPoint on a PC 3.13 45

Writing PenPoint Services 2.5.13 21 Loading Debug PENPOINT.OS 3.13.1 46

API Reference 2.6 21 What Happens During Booting 3.13.2 46

Contents of the SDK 2.7 22
Boot Error Messages 3.13.3 47

Broken Pen During Booting 3.13.4 47

,.. Chapter 3 / Running PenPoint Using PenPoint on a PC 3.14 50

on a PC 25 Using a Mouse 3.14.1 50

Hardware 3.1 25
Parallel Port Interrupts 3.14.2 50

Mouse 3.1.1 26 Installing an Application 3.15 50

Memory, Caches, and RAM Disks 3.1.2 27 Installing an Application While PenPoint is

Networks 3.1.3 27 Running 3.15.1 51

Labeling Volumes 3.1.4 27 Boot-Time Install 3.15.2 52

Setting Up Initialization Files 3.2 28
Application .DLL and .DLC Files 3.15.3 53

PenPoint Boot Sequence 3.3 29
Executing the Application 3.16 54

Volume Selection 3.16.1 54
MIL.INI 3.4 29 Interrupting PenPoint 3.16.2 54
ENVIRON.INI File 3.5 34 Exiting PenPoint 3.16.3 55

AutoZoom 3.5.1 36 More on the Bookshelf 3.17 55
BkShelfPath 3.5.2 37 Using the Notebook
BootProgressMax 3.5.3

3.17.1 55
37

The Universal Serial Pen Driver
Config 3.5.4 37

3.18 56

DebugLog 3.5.5 37
UniPen Command Syntax 3.18.1 57

DebugLogFlushCount 3.5.6 37
Notes on Using the UniPen Driver 3.18.2 60

,... List of Figures
2-1 Documents in the Software

Development Kit 10

3-1 Installing an Application 52

,... List of lables
2-1 Sample Code in \PENPOINT\

SDK\SAMPLE 12

2-2 SDK Contents 22

3-1 Tested Machine Configurations 26

3-2 Machine Configurations with
No Committed Support 26

3-3 PenPoint Initialization Files in
\PENPOINT\BOOT 28

3-4 MIL.INI Keywords 33

3-5 ENVIRON.INI Keywords 36

3-6 SYSCOPY.INI Files 43

3-7 UniPen Commands 57

Chapter 1 / Welcome

Welcome to developing applications for the PenPoint™ operating system.

This manual has several aims:

• It tells you what you need to know before starting to develop applications for
PenPoint.

• It tells you how the PenPoint SDK documentation is organized.

• It tells you the PC equipment you need to compile and run PenPoint
programs.

• It tells you how to run PenPoint on a Pc.

Development Options
There are two ways to develop applications on PenPoint:

• Using high-level development tools, such as form builders, 4GL languages,
and scripting languages. These tools allow you to write applications without
having to access the PenPoint APIs. Using high-level development tools, you
can develop applications quickly without needing to learn many of the
details of PenPoint. This is at the cost of some speed and flexibility.

• Using a compiled language (such as C) and the PenPoint APIs. This method
allows you to write applications that access the PenPoint APIs directly. While
the development time is longer, the resulting applications can be faster and
more flexible.

Both options have their advantages and disadvantages; your choice of one over the
other depends on several factors, including the type of problem you are solving,
the existence of a development tool that can provide a solution to this problem,
the time available to develop a solution, and your performance requirements.

".. Using High-Level Development Tools

Almost all high-level development tools run on PenPoint running on either tablet
hardware or desktop PCs. If you use a desktop PC, you need:

• A desktop PC that runs PenPoint (see list of supported machines in
Chapter 3).

• A digitizer tablet.

• A PenPoint SDK.

• The development tool you will be using to develop your applications.

1.1

1.1.1

6 PENPOINT DEVELOPMENT TOOLS
Part 1 I Getting Started

If you use high-level development tools, you do not need all the extended SDK
documentation. Most of the documentation is aimed at developers who are
writing PenPoint applications using the PenPoint API.

".. Using the Pen Point APls

So that you can start to get an idea of how you develop applications for PenPoint,
here is what you do to create a PenPoint application:

1 Design Your Application. Consider the user interface that you need, how you
intend to interact with other PenPoint applications, what devices you need to
access, and how you intend to store your data.

2 Decide what existing classes you can use. PenPoint provides a rich set of
classes that can do much of the work for your application. Your task is to
decide which of these classes will serve you best. The task of the PenPoint
Architectural Reference is to help you find the classes you need.

3 Decide what new classes you need to create (and their messages). Perhaps the
PenPoint classes don't do exactly what you need. Look for the class that
comes closest to your needs, then create your own class that inherits behavior
from that class.

4 Write the application. PenPoint applications are written in the C language;
the object oriented extensions are provided through function calls. Your
application uses the PenPoint Application Framework, which performs much
of the standard application tasks for you.

5 Compile, install, test, and debug. This is the classical cycle. A good strategy is
to create an empty application that does no work, but still will appear as an
empty page in the Notebook. Then you add the code that creates a new
object or defines a new class, compile, install, test, and so on until you have a
completed application.

6 Pretty up the application. When your application is nearly done, you should
create icons, help notebook pages, quick help, stationery, and many other
things that mak~ your application "real."

7 Contact GO Developer Technical Support. Before you can release a PenPoint
application, you need to register your classes with GO. This ensures that no
other PenPoint developer will use your class's unique identifiers (UIDs).

8 Ship product, schedule celebration. Of course, don't forget the
documentation.

This information is extracted from the PenPoint Application Writing Guide, which
describes in detail how to create an application. However, before you get there,
there are a number of concepts that we need to cover.

Clearly you need to have some familiarity with programming in the C language to

write PenPoint applications. In addition to the C language proper, you should also
be familiar with DOS C development environments and tools, such as MAKE.

1.1.2

CHAPTER 1 I WELCOME
Additional Reading

Writing PenPoint application also requires some familiarity with object-oriented
programming and techniques, although the PenPointApplication Writing Guide
spends some time explaining concepts such as classes, objects, messages,
inheritance, ancestors and so on.

On occasion, debugging PenPoint programs may require some familiarity with
Intel assembly language.

Additional Reading
To develop applications that access the PenPoint APls, you need to know how to
program in the C language and you should be familiar with DOS C development
environments. If you need further help, there are many good books available on
these subjects.

For a description of the 80386 architecture and instruction set (which you need
for debugging), see:

• Intel 386DX Programmer's Reference Manua4 Intel.

Writing PenPoint applications definitely requires familiarity with object-oriented
programming. Although the SDK documentation covers this topic to some
extent, these books provide much more information on object-oriented
programmmg:

• Principles of Object Oriented Design, Grady Booch, Redwood City, CA,
The Benjamin/Cummins Publishing Co., 1991.

• Object-Oriented Programming: An Evolutionary Approach, 2nd edition,
Brad J. Cox, Reading, MA, Addison-Wesley Publishing Company, 1991.

• Object-Oriented Modeling and Design, Rumbaugh, James, Michael Blaha,
William Premerlani, Fredrick Eddy, and William Lorensen, Englewood
Cliffs, NJ , Prentice-Hall, 1991.

• Designing Object-Oriented Software, Wirfs-Brock, Rebecca, Brian Wilkerson,
and Lauren Wiener, Englewood Cliffs, NJ, Prentice-Hall, 1990.

1.2

7

Chapter 2 / The PenPoint
Documentation

The PenPoint™ operating system is a rich operating system that makes most of its
system-defined classes available to application developers. In fact, you must use
some of the classes to create a PenPoint application.

However, with this embarassment of riches comes some difficulty in knowing
exactly what you want or need from the operating system.

This chapter has two purposes. The first is to give you a guide to the PenPoint
SDK documentation, its organization, and how we intend you to read it. In
describing the documentation, we accomplish the second purpose, which is to
give you an overview of the components and features of PenPoint.

If you plan to develop PenPoint applications using a high-level development tool, you
may find this tour of the documentation useful. It can help you to decide whether you
want to develop using a high-level development tool or the PenPoint APIs.

A Suggested Approach to Documentation 2,1

The point of the PenPoint developer documentation is to teach you:

• How to write applications.

• How to find your way around these many classes.

The manuals that make up the SDK documentation library are:

• PenPoint Development Tools (this manual)

• PenPoint Application Writing Guide

• PenPoint UI Design Reference

• PenPointArchitectural Reference (two volumes)

• PenPoint API Reference (two volumes)

The books Getting Started with PenPoint, Using PenPoint, and Using GO Write teach
you how to use the PenPoint operating system. These books are part of the user
documentation set that accompanies a pen computer with the PenPoint operating
system. They are not considered part of the developer documentation set.

10 PENPOINT DEVELOPMENT TOOLS

Pa rt 1 / Getti ng Sta rted

This figure shows the PenPoint SDK documentation library and how we suggest
you should use it.

Feedback on Documentation

The technical documentation team is eager to get your comments and feedback
on the documentation. There is a Reader's Comments Form in the back of each
volume of the PenPoint SDK documentation. If you have suggestions, criticisms,
or even compliments on the documentation, please let us know. It certainly helps
us to know what we're doing right, in addition to what we're doing wrong.

You can fax us your Reader's Comment Form, and any marked-up pages, at
(415) 345-9833.

CHAPTER 2 I THE PENPOINT DOCUMENTATION
Application Writing Guide

£pp;ieaiion W~iiing Gui';e
The Application Writing Guide provides a tutorial on how to write PenPoint
applications.

System Overview provides an architectural view of the PenPoint operating
system. The part describes the kernel, system, component, and
application layers of Pen Point, and also touches on the Application
Framework and the development environment.

Application Concepts presents applications from a conceptual point of view.
This chapter describes most of the parts of an application that you must
write, and also describes parts of applications that are provided for you by
the PenPoint Application Framework.

A Developer's Checklist presents a checklist that you can use to ensure that
your application is complete. The subsequent sections of the PenPoint
Application Writing Guide describe in detail how to implement the parts
of the checklist.

Designing Your Application discusses the points that you must consider when
creating an application.

Compiling PenPoint Programs describes how to compile and link a PenPoint
application.

Running PenPoint describes how to run PenPoint on a PC, and how to install
programs in PenPoint.

A Simple Application introduces a minimal application. Through this
application, you can see just how much the PenPoint Application
Framework does for you.

Debugging describes the tools available to you to test and debug PenPoint
Programs.

Creating Objects describes how you create instances of predefined PenPoint
classes and use these objects in your application.

Using Windows describes how to use some of the most useful classes in
PenPoint, the windows classes. The chapter describes how to create
custom windows and presents additional information about using
instance data.

Saving and Restoring Data describes how to save and restore data from your
application.

Adding Classes describes how you create new classes and add them to
PenPoint.

Refining the Application describes how to add polish to your application.

Releasing the Application describes the steps necessary to make your
application available to other PenPoint users.

2.2

11

12 PENPOINT DEVELOPMENT TOOLS
Part 1 / Getting Started

The Appendix describes the programs referred to in the previous chapters and
other sample applications in \PENPOINT\SDK\SAMPLE and provides
source code listings for some of these applications.

Glossary provides a list of terms used in the PenPoint SDK documentation.

There are more sample applications in the SDK than are described in Application
Writing Guide: Sample Code. These sample applications are listed in Table 2-1.

Sam
Oiredc.ry Whc.t it [s

ADDER handwriting calculator

BASICSVC Basic service

CALC Calculator accessory

CLOCK Clock accessory

CNTRAPP App developed in ADC labs

EMPTYAPP Minimal application

HELLO Graphical "Hello World"

HELLOTK UI Toolkit "Hello World"

INPUTAPP Pen input demo

MILSVC Pen Point device driver

NPAPP Note paper application

PAINT Painting application

TEMPLTAP Template application

TESTSVC A test service

TKDEMO UI Toolkit demo

TTT Tic-tac-toe application

WRITERAP Handwriting recognizer

Table 2·1
\PENPOINT\SDK\SAMPLE

Wnl:!f it Oemc.lutrl:!tes

How to write insertion pads and translators for handwritten
input.

The fundamental parts to a PenPoint service.

Separate "engine" and application objects, table layout,
custom layout, labels, filing.

Embedding, option sheets, modified application defaults,
system timers.

Saving and restoring application state, memory-mapping
state data.

How the PenPoint application framework performs application
boilerplate work.

Graphics, text, font scaling, sub classing clsWin.

Custom layout, labels.

Pen input, responding to input events.

How to write a PenPoint MIL service (or device driver).

Using the NotePaper class that supports ink as a data type.

Using pixel maps, drawing contexts, pen input, and non-
standard menu bars.

A template for starting new applications.

Compiling, installing, and running services.

Using most of the classes in the UI toolkit (borders, labels
buttons, fields, menus, custom layouts, table layouts, toolkit
tables, notes, option sheets, etc.).

Gestures, keyboard input, simple graphics, import/export,
move/copy, undo, application menus, view-data model.

menus, sub classing clsSPaper, using translator objects,
constraining recognition.

CHAPTER 2 / THE PENPOINT DOCUMENTATION
Pen Point Architectural Reference

". ~eii~@;iil' ~e'1r'e;@iimeiil' V@@;S

This volume, PenPoint Development Tools, provides a description of the PenPoint
development environment and documents the tools you use when developing
applications.

Getting Started describes the overall organization of the SDK documentation
and how to run PenPoint on a Pc. If you are developing an application
using high-level development tools, this is probably all that you need
to read.

Debugging PenPoint Programs describes the PenPoint debugging tools,
including the source-level debugger (DB), the mini-debugger, and the
System Log application.

Development Tools, describes DOS and PenPoint utilities that can aid you in
program development and refinement. Included in this part are DOS
tools (such as STAMP, MAKLABEL, and GDIR), the font editor, the on-line
tags facility, the PenPoint Bitmap editor (which you use to create icons),
and the PenPoint screen shot utility.

Master Index contains all the index listings for PenPoint Application Writing
Guide, PenPoint Development Tools, UI Design Reference, and the PenPoint
Architectural Reference volumes. It does not include index entries for the
PenPoint API Reference.

PenPoint UI Design Reference
The PenPoint UI Design Reference has two parts:

PenPoint UI Specification describes the PenPoint Notebook User Interface
(NUl) as it is implemented in PenPoint.

PenPoint UI Design Guidelines suggests how you should use the PenPoint
NUl when designing your applications.

". PenPoint Architectural Reference
This is the bible of all the published software interfaces to PenPoint. It is divided
into several parts. Each Part talks about some subsystem in PenPoint, listing its
features, explaining its concepts, describing its class hierarchy, and discussing how
to use it.

The following sections describe the parts in the PenPoint Architectural Reference
and attempts to summarize the features of the classes that each part documents.

"., Class Manager

Part 1: Class Manager describes the PenPoint class manager.

The Class Manager is a subsystem that supports object-oriented programming in
PenPoint. The Class Manager provides the message-passing capability in PenPoint,
and it provides the mechanisms for object creation and class inheritance. The
PenPoint Class Manager and the built-in classes, together with the SDK

2.3

2.4

2.5

2.5.1

13

14 PENPOINT DEVELOPMENT TOOLS
Part 1 I Getting Started

Development Tools, comprise a complete object-oriented software development
environment for the rapid prototyping and delivery of finished applications in
PenPoint.

The PenPoint Class Manager supports these features:

Message handling. The Class Manager provides a set of C functions and
macros for message handling. These are standard C constructs; there is
no special language support for message passing as in C++ or Smalltalk.

Object Creation. 1.'0 create an object, you send the message msgNew to a
class. The Class Manager does the rest. To create a new class you send the
message msgNew to a special class, clsClass. To copy an object, you send
the message msgCopy to the object to copy.

Class Inheritance. New classes can inherit functionality from ancestor classes.

Root Classes. The Class Manager defines two root classes, clsObject and
clsClass, from which all other classes are derived.

Message types. Macros are provided for building message tokens. Tokens are
differentiated according to the classes that defined them to provide a
separate name space for each class.

Synchronous and asynchronous message passing. Because PenPoint is a
multi-tasking operating system, you send messages to other tasks. If you
want to wait for a response from a message that you send to another task,
you can use synchronous message passing. If you don't want to wait for a
response, you can use asynchronous message passing.

Single occurrence of executable code. Executable code that supplies an
object's behavior is not duplicated in the class hierarchy. If the behavior is
inherited from an ancestor class, the code for that behavior remains in
the ancestor class.

Observing objects. You can set up an object so that it has observers.
Observers are other objects that are interested in being notified of
particular state changes in the observed object. Objects that want to
become observers of a target object need only send the target a message
requesting observer status.

Unique Identifiers. Each object in PenPoint is identified with a unique
identifier (UID). These identifiers can be constant (well-known) or
dynamic. You use well-known UIDs to identify classes and other objects
that must be known to any client that wants to use them. In order to
make well-known UIDs unique, a portion of the identifier value is
administered by GO Corporation. Contact GO Developer Support to
obtain unique UID numbers.

CHAPTER 2 I THE PEN POINT DOCUMENTATION
Pen Point Architectural Reference

Appiication framework

Part 2: Application Framework describes the PenPoint Application Framework,
which provides you the tools you use to allow your application to run under the
notebook metaphor. It provides mechanisms for:

• Installing applications on PenPoint (used by the Installer).

• Creating documents.

• Activating documents (turning to a page in the notebook).

• Saving and restoring document data.

• Deactivating and deleting documents (turning away from the page).

• De-installing applications.

• Embedding documents in other documents, which is the foundation for the
PenPoint Embedded Document Architecture (EDA).

Windows and Graphics

Part 3: Windows and Graphics describes ImagePoint, the imaging system for the
PenPoint operating system, and how applications can control the screen (or other
output devices).

The window system supports:

• Multiple overlapping windows in a window tree.

• Windows on any windowing device; windowing devices include the screen,
printers, and memory.

• Many windows. Hundreds can be on-screen at once.

• Control over window clipping, visibility, and transparency.

• Notification when windows are dirty and need to repaint.

• A window layout protocol which lets windows dynamically size themselves
and their children.

The ImagePoint imaging model supports:

• Device-independence.

• Arbitrary coordinate system with client-specified:

• units

• scaling

• rotation

• translation

• RGB color specifications.

• Fill and stroke painting model.

• Polylines, rectangles, ellipses, Bezier curves, arcs, chords.

• Control over line thickness, ends, and corners.

2.5.2

2.5.3

15

16 PENPOINT DEVELOPMENT TOOLS
Part 1 / Getting Started

• Gray-scale sampled images ("bitmaps"), including dithering and scaling.

• Outline fonts with these additional features:

• Hints for rendering fonts in small sizes.

• Missing fonts are synthesized from closest matching font.

• Multiple font encodings supported.

• Substitution for missing characters in the current font.

• Font editor (supplied as part of the SDK).

UI Toolkit
Part 4: UI Toolkit describes the PenPoint classes that implement many of the
common features required by the PenPoint user interface. These features include:

• Borders, which support some common features of toolkit window repainting,
such as margins, and background and foreground colors.

• General layout classes, which implement approaches for positioning and
sizing child windows.

• Controls, which implement the translation of window input messages into
messages sent to self and other objects.

• Labels, which are a simple way of displaying small amounts of text.

• Buttons, which are labels that the user activates.

• Tookit tables, which support the initialization, layout and notification
management for groups of toolkit components (such as buttons). The
capability to organize components in a group is used by several subclasses.

• Menus and menu buttons. Menus are special toolkit tables that often group
several buttons and menu buttons; menu buttons are special buttons that
display a menu.

• Scroll bars, a special descendant of borders that handles a lot of the work of
scrolling for you.

• List boxes, which are scrolling windows that support very large numbers of
entries. Unlike a table, only those entries currently visible in the list box need
have a window. Descendants of list boxes provide scrolling lists specifically
for strings and for font names.

• Text fields, which are labels that the user can write upon. Subclasses of text
fields have additional semantics to support integer fields, date fields,
fixed-point fields, and so on.

• Notes, which present transient information to the user. PenPoint also
provides standard message functions that display information using notes.

• Frames, which manage a collection of other ur components and a client
window. Most applications use frames for their main windows, dialog boxes,
and pop-up windows. Frames can have decorations, such as close boxes, title
bars, tab bars, and command bars.

2,5.4

CHAPTER 2 I THE PENPOINT DOCUMENTATION
PenPoint Architectural Reference

• Option sheets, which present the user with choices for attributes or settings.
Because the user can leave an option sheet on-screen, the interaction between
option sheets, option cards, and the selection is necessarily quite complex.

• Icons, which show an iconic menu button made up of a bitmap image and
a string.

• Trackers, which grab input and draw transient "rubber-banding" figures in
response to pen movements. The toolkit.uses this to provide feedback when
the user drags or resizes items.

• Progress bars, which graphically display the relationship between. two values
(usually one value represents a total while the second value represents
percentage of the total).

". Input and Handwriting

Part 5: Input and Handwriting describes the PenPoint input system and
programmatic access to the handwriting translation subsystems. The input system
provides:

• Programmatic control of input filtering, including priority of filters.

• Capability to receive all input events not intercepted by the filters (grabbing).

• Routing of input events to the appropriate object (listeners).

The handwriting translation subsystem provides:

• Handling of accumulated pen input (strokes).

• Shape recognition.

• Gesture interpretation.

• Handwriting translation.

". Text Component

Part 6: Te:>ft Component describes the PenPoint facilities that allow any application
to provide text editing and formatting capabilities to its users. The text component
allows:

• Your code to display both plain and fancy text to the user in one or more text
data objects.

• The user to interact with the text to modify both the characters and their
appearance.

• The user to transfer all or part of the text from one text data object to
another (possibly non-text) object, and vice versa.

• Your code tofile text data objects.

• Your code to observe and direct the user's interactions with the text.

2.5.5

2.5.6

17

18 PEN POINT DEVELOPMENT TOOLS

Part 1 I Getting Started

• Embedded objects, which are used to implement insertion pads and
signature pads, and can include graphics, spread sheets and other appli
cations in documents.

There is a difference between displaying text through the graphics subsystem and
using the Text component. You can use the graphics subsystem to display
characters on the screen, but users can't dynamically manipulate the text.
Furthermore, the text component includes paragraph and document attributes
that define things such as margins and tabs.

File System

Part 7: File System describes the PenPoint File System. The File System allows
you to:

• Create, open, close, and delete files.

• Read and write file data.

• Copy, rename, and move files and directories.

• Seek to a new position within a file or find out the current byte position
within a file.

• Modify file and directory attributes.

• Create user-defined attributes for files and directories.

System Services

Part 8: System Services describes the function calls that applications can use to
access kernel functions, such as memory allocation, timer services, process control,
and so on.

PenPoint provides basic OS-level services in areas such as task and memory
management, as well as run-time language extensions. This part of the PenPoint
Architectural Reference explains the use of these services. The PenPoint kernel and
run-time libraries provide a level of functionality to the applications programmer
collectively called System Services.

The kernel interface includes task management functions, memory management
functions, and inter-task communication functions; these are the low-level
PenPoint controls for the Intel multi-tasking environment.

The run-time libraries include functions for string manipulation, character
handling, port I/O, buffer manipulation, memory allocation, and time stamp
operations. There is a separate library for fixed-point arithmetic functions, which
includes both error-checking and fast non-error-checking routines.

Note that there are no file-handling functions in System Seryices. The PenPoint
File System has its own object-oriented API, described in Part 7: File System of
the PenPoint Architectural Reference. The C run-time library implements most
of the C standard I/O functions such as fopen and fread on top of this object-

. oriented API.

2.5.1

2.5.8

CHAPTER 2 / THE PENPOINT DOCUMENTATION
Pen Point Architectural Reference

". Utiiity Classes

Part 9: Utility Classes describes a wide variety of classes that save application writers
from implementing fundamental things such as list manipulation, busy clock
handling, and so on.

• clsList provides a fundamental set of tools for creating and managing a list of
32-bit values. It is no coincidence that UIDs and pointers are also 32-bits
long. You can use these objects to store lists ofUIDs or pointe~s to larger
structures and you can pass these list objects to other objects.

• clsStream provides the basic messages used to communicate with a stream
device. Many other classes descend from clsStream, such as clsFileSystem
(the File System) and clsSio (the Serial Port class).

• The browser allows you to create a browser window or a table of contents on
screen so that the user can manipulate the files and directories or documents
and sections.

• File import and export uses messages from the browser to import files as
PenPoint documents and to export PenPoint documents as files.

• The Selection Manager provides an central manager that keeps track of the
selection owner. The selection manager notifies observers when the selection
changes.

• The Transfer Class provides the messages and functions that implement the
PenPoint operating system transfer protocol, which objects can use to
exchange data.

• The Quick Help API provides a simple way to provide help to users. When
the user "makes a question mark gesture on a window, the quick help manager
locates the quick help resources associated with that window and displays the
resources on screen.

• The Busy Manager allows applications to inform the user when a
time-consuming operation is taking place, thereby reassuring the user that
the machine is still running.

• The search and replace API provides the protocol and traversal driver to
search and replace text strings in embedded objects.

• The Undo Manager enables applications to respond to the Undo command
to undo user interface actions.

• clsByteBuf and clsString implement simple data objects which file byte
arrays and null-terminated strings.

• clsTable provides a general-purpose table component using a row and
column metaphor to implement random and sequential access to data
in a file.

• clsNotePaper provides a user interface to the PenPoint operating system's
note-taking building block. Using this building block, your application can
provide users with a way of managing ink on screen.

2.5.9

19

20 PENPOINT DEVELOPMENT TOOLS
Part 1 I Getting Started

".. Connectivity
Part 1 0: Connectivity describes the classes that applications can use to access
remote devices. The PenPoint remote interface includes:

• A consistent, object-based interface to ports and devices.

• A service architecture that enables users to install drivers and other
non-application programs without rebooting or otherwise interrupting work.

• Support for serial and parallel ports.

• Support for fax and data modems .

•. Deferred data transfer through an In box and an Out box.

• Access to networks.

• An address book protocol.

Resources

Part 11: Resources describes how to read, write, and create PenPoint resource files.
Resources include the following features:

• Ability to store data and object resources in files which can be replaced by
the user.

• Agents that can read and write resources that use unique data formats.

• GO provides agents to handle standard data formats.

• Applications can access a set of resources through predefined resource
file lists.

• You can define data resources in a C file and compile the file to a resource file.

Installation API
Part 12: Installation API describes PenPoint support for installing applications,
services, fonts, dictionaries, handwriting prototypes and so on.

PenPoint provides an installer through which users install and configure
applications, fonts, services, dictionaries, and so on. This frees developers from
having to write their own installer. The system-provided installer also frees users
from having to learn a different installer for each product that they purchase; they
just use the PenPoint installer.

The PenPoint Installer uses several system concepts and components:

• All distribution volumes for PenPoint software have the same file
organization.

• Dynamic Link Libraries and control files allow products to specifY the
components that they require. The PenPoint Installer can then load the
components only if they are not present in the system already. The Installer
can also unload components when they are no longer needed.

2.5.10

2.5.11

2.5.12

CHAPTER 2 / THE PENPOINT DOCUMENTATION
API Reference

• The installation manager class handles installation. If a product requires
special treatment not provided by existing installation managers, you can
subclass the installation manager class.

• Application monitors exist for each installed application. The application
monitors assist in application installation and deinstallation.

Writing PenPoint Services

Part 13: Writing PenPoint Services describes how to write a PenPoint service.

The PenPoint Services Architecture provides a framework for separately installable,
non-application DLLs that provide non-application system extensions to
applications, components, and other services. The most common use for services
is as MIL services (device drivers), but services can also be used for database
engines, E-mail backends, and so on.

Services provide these features:

• Targeting other services to form chains of services.

• Delayed binding to targets (the target doesn't have to exist when the service is
created.

• Ownership of services and restricted access to services, based on ownership.

• Notification of connection and disconnection of devices and services.

• A service manager that manages installed services and controls client access to
servICes.

API Reference
The API Reference provides datasheets for each function and message in each
subsystem described in the Architectural Reference. These are generated from the
header files in \PENPOINT\SDK\INC.

The parts in the PenPoint API Reference are organized identically to the parts in
the PenPoint Architectural Reference. However, within each part, the classes are
described in no particular order, other than the relative importance to the central
topic of the part. If you are looking for a particular class or message, it is a good
idea to use the index.

This volume (PenPoint Development Tools) contains a Master Index to all manuals
in the PenPoint SDK documentation set.

2.5.13

2.6

21

22 PENPOINT DEVELOPMENT TOOLS
Part 1 I Getting Started

Contents of the SDK 2.7

Table 2-2 lists the directories and key files in the PenPoint SDK and describes
their contents.

Directory or File

\PENPOINT\APP

\PENPOINT\BOOT

\PENPOINT\BOOT\APP

\PENPOINT\BOOT_APP

\PENPOINT\BOOT\DLL

\PENPOINT\BOOT_DLL

\PENPOINT\BOOT\ * .INI

\PENPOINT\BOOT*.DLC

\PENPOINT\BOOT_ *. *

\PENPOINT\BOOT\MIL.OS

Table 2-2
SDK Contents

Comments

PenPoint applications.

Control files, start-up code.

PenPoint system applications (Notebook, Bookshelf, etc.).

Optional DEBUG versions,of system apps.

System DLLs.

Optional DEBUG versions of system DLLs.

Control files.

Control files of DLLs loaded at start-up.

Backup copies of control files.

Machine Interface Layer code.

PenPoint

\PENPOINT\BOOT\PENPOINT.OS PenPoint kernel.

\PENPOINT\BOOT_W.OS

\PENPOINT\BOOT\PPBOOT.EXE

\PENPOINT\FONT

\PENPOINT\HWX

\PENPOINT\PDICT

\PENPOINT\PREFS

\PENPOINT\SERVICE

\PENPOINT_SERVICE

\PENPOINT\SDK

\PENPOINT\SDK\APP

\PENPOINT\SDK_APP

\PENPOINT\SDK\DLL

\PENPOINT\SDK\lNC

\PENPOINT\SDK\lNC\SYS

\PENPOINT\SDK\UB

\PENPOINT\SDK\SAMPLE

\PENPOINT\SDK\UTIL\CLSMGR

\PENPOINT\SDK\UTIL\DOS

DEBUG version of Pen Point kernel.

DOS program that loads PenPoint.

PenPoint fonts.

Handwriting prototypes.

Home of personal dictionary.

home for preference settings.

System services used by PenPoint.

Optional DEBUG versions of system services.

PenPoint applications that are not loaded in the default PenPoint configuration;
some of these are SDK tools such as the bitmap editor and S-Shot tool, others are
applications that you must distribute with your own application if it requires them.

Optional DEBUG versions of non-system apps.

PenPoint DLLs that are not loaded in the default PenPoint configuration that you
must distribute with your own application if it requires them.

PenPoint header files.

Some header files are in this subdirectory for ANSI C compatibility.

library information to enable you to link your code with routines and externals in
PenPoint DLLs and PENPOINT.OS.

Sample application code and sample Watcom WMAKE Makefiles.

PenPoint Method Table compiler.

DOS utilities for PenPoint.

continued

CHAPTER 2 I THE PENPOINT DOCUMENTATION 23

Directory

\WATCOM\BIN

\WATCOM\BINB

Comments

DOS-only Watcom compiler tools.

Dual mode (DOS and OS/2) Watcom compiler tools.

\GOODIES\SDK\APP Unsupported applications.

\GOODIES\SDK\BOOT\DLL Unsupported developer DLLs.

\GOODIES\SDK\UTIL Various unsupported developer utilities.

The files on the Goodies disk are unsupported, however you might find them
useful. Most software on the Goodies disk has a README. TXT file in its
subdirectory that explains its use. To reiterate: software on the Goodies disk is
unsupported. PenPoint Developer Support will not answer questions related to

anything on the Goodies disk.

Contents of the SDK

Tobie 2-2 lenrmm.",m

Tools

Goodies

Chapter 3 / Running Pen Point
on a PC

Although the PenPoint™ operating system is targeted for mobile pen-based
computers, it is possible to run PenPoint on some PC configurations. The
simulation is imperfect (no static RAM, no pen-on-screen interaction, and so on)
but it is useful for development and debugging. The mouse simulation of a pen
does not have the same user interface as a PenPoint computer at all. Using a pen
tablet attached to a PC lets you hand write more naturally, but you still aren't able
to directly touch objects on-screen or write on what you see.

PenPoint will not work on all PCs, even those advertised as "100% IBM PC
compatible," even those claiming compatibility with the requirements below.

".. Hardware
To run PenPoint on a PC, you need a 386-class machine with a hard disk that has
at least 25 Megabytes free

If you want to run PenPoint on your PC, in addition it must have the following:

• 8 MB of RAM configurable as extended memory. You may be able to
develop with less memory, however the PenPoint Source-level Debugger with
full symbol tables and all applications loaded takes around 6 MB.

• IBM VGA or Compaq VGA video adapter (because PenPoint has its own
video drivers, adapters advertised as being 100% compatible with these
under DOS may not work).

• Either a mouse or a digitizing tablet.

To repeat, your PC may meet these requirements yet not be able to run PenPoint.
It may even be able to run one release, yet not another. Table 3-1 lists the
computers that GO has tested and supports for PenPoint development.

3.1

26 PENPOINT DEVELOPMENT TOOLS
Part 1 I Getting Started

Machine

Compaq 386/20E

Dell 325P

IBM PS2/70

IBM PS2/70

IBM PS2/80

IBM PS2/90

IBM PS2/95

NCR 386sx/MC20

Table 3-1
Tested Machine Configurations

Configuration

20MHz 386, no coprocessor, Compaq BIOS dated 31-May-89, DOS 5.0, 640KB
+ 8192 Extended = 8,832KB total memory.

25MHz 386, no coprocessor, Phoenix BIOS dated 27-Sep-91 version 1.10A16,
DOS 5.0, 640KB + 7,160 extended = 7,800KB total memory.

25MHz 386, no coprocessor, IBM BIOS dated 2-Feb-89, DOS 5.0, 640KB + 7,424
= 8,064KB total memory.

IBM BIOS dated l1-Apr-88, 640KB + 5,376 = 5,980KB total memory.

33MHz 486, built-in coprocessor, IBM BIOS dated 30-Jan-91, DOS 5.0, 640KB
. + 11,520 extended = 12,160KB total memory.

25MHz 486, built-in coprocessor, IBM BIOS dated 8-Jan-90, DOS 5.0, 640KB
+ 7,424 extended = 8,064KB total memory.

20MHz 386, no coprocessor, NCR BIOS version 1.01.00 and Phoenix BIOS dated
15-0ct-90 version 1.02.07, DOS 3.30, 640KB + 7,424 extended = 8,064KB total
memory.

GO has also tested PenPoint on the machines listed in Table 3-2, but makes no
commitment for continued support.

Machine

Northgate 386 33E

Samsung S800

Toshiba 5200/100

Uniq 486133

,." Mouse

Table 3·2
Machine Configurations with No CommiHed Support
Configuration

Model FCH, 33MHz 386, no coprocessor, Northgate (AMI) BIOS dated 15-Sep-89
version 3.2B, DOS 4.01, Video 7 VGA version 1.09, 40MB type 22 drive,
640 + 7,552 extended = 8,192KB total memory.

20 MHz 386, no coprocessor, AMI BIOS version 3.04 03B dated 30-Nov-87,
DOS 5.0, ATI Basic 16 VGA, type 34 Western Digital IDE controller, Conner 201
MB drive.

20 MHz 386, no coprocessor, Phoenix BIOS dated 15-Jan-88, DOS 4.01, built-in
VGA, 640 + 7,168 extended = 7,808KB total memory, 102MB drive.

33 MHZ 486, built-in coprocessor, American Megatrends, Inc. (AMI) 486 BIOS
for Vantage 486 version 2.0 dated 7-Jul-91, DOS 5.0, ATI VGA Wonder XL VGA
wi 1MB, 640 + 7,424 extended = 8,064KB total memory, type 47 controller.

3.1.1

If you do not have a digitizing tablet, you can use a Logitech C7 or C9 serial
mouse, a Microsoft compatible mouse, a PS/2 mouse, or a bus mouse. GO does
not currently support the Logitech Mouseman or newer Logitech mice.

You may need to load the DOS driver for your mouse before starting PenPoint;
either specify the device driver MOUSE.SYS in your CONFIG.SYS file or make sure
to run MOUSE.COM before you start PenPoint.

CHAPTER 3 I RUNNING PEN POINT ON A PC
Hardware

27

".. Memory, Caches, and RAM Disks
You need 8MB of RAM to run PenPoint. It must be extended memory, not
expanded memory. Memory-resident software may use up much of your memory.
Pen Point might run in less memory, but our QA process has only evaluated 8 MB
machines.

The Watcom compiler and linker (WCC386P and WLINKP) are protected-mode
programs that use extended memory. If you use large disk caches or RAM drives,
they may not have enough memory to run. Also, the DOS 5 EMM386.EXE driver
conflicts with their use of memory. For more information, see the section on
compiling.

PenPoint will not work if you run a disk cache such as SmartDrive. It also interfers
with some RAM disks. We believe that VDISK can coexist with PenPoint, but
others may not.

You can check whether your RAM disk is compatible through these steps:

• Run PenPoint (PPBOOT.EXE).

• Exit back to DOS.

• If the size or contents of your RAM disk has been altered, assume that it and
PenPoint conflict.

".. Networks
To stop running PenPoint on a PC, you either tap the shutdown button in the
Preferences Power option sheet or press I Pause I and enter q at the prompt. Usually
your computer returns to DOS. However, if your computer has loaded network
software, you may have to reboot your computer after running PenPoint (because
the machine will hang). If you want to avoid this reboot, do not load your
network software before you run PenPoint or remove it from memory. In either
case, GO recommends that you run CHKDSK to verify the state of the DOS file
system.

Labeling Volumes

Unlike the DOS convention oflisting disks by their drive letter (C: for example),
PenPoint refers to disks by their volume names (not by their devices). You can
name volumes when you format them, or with the DOS LABEL command. It's a
good idea to give volume names to all the floppies and hard drives you will be
using with PenPoint.

PenPoint volumes are indicated by a \ \ before the volume name. Thus
\\MYDISK\DIR\FILEI is a path on a volume la~elled MYDISK.

There are a few reserved volume names in PenPoint. \\RAM is reserved for the
PenPoint memory file system, which is usually in static RAM, but can be on-disk.
\ \BOOT is the volume from which PenPoint booted (programmatically known as
theBootVolume). When running PenPoint on a PC, it's safe to refer to files

3.1.2

3.1.3

3.1.4

Warning You can use PenPoint to
create a disk label in lower case
letters. Such a label cannot be
changed by LABEL in DOS 5.0.

28 PENPOINT DEVELOPMENT TOOLS
Part 1 I Getting Started

relative to \\BOOT; however, when booting a PenPoint computer from floppies,
your configuration information must refer to the actual floppy disk volume labels.

IfPenPoint encounters a volume name in a path that it does not recognize, it will
prompt the user to insert the volume with that name.

". SeHing Up Initialization Files
When PenPoint starts, it reads several initialization files in \PENPOINT\BOOT.

These set certain environment variables and tell it what dynamic link libraries
(DLLs) to load, and what applications to install. Before running Pen Point for the
first time, you will probably need to modify at least one of these files.

All files you need to run PenPoint on a PC are in the \PENPOINT directory that
you installed with your SDK. The document on installing PenPoint shipped with
your software contains the latest information on installing PenPoint and machine
requirements to run it.

Default versions of the initialization files necessary to run PenPoint on a PC are in
\PENPOINT\BOOT. The SDK contains two versions of each initialization file. ,One
is preceded by an underscore C), the other isn't. You should modify the file that
does not contain the underscore, and leave the one with the underscore so that
you can refer to it later.

If, after changing the originals, you have difficulty running PenPoint, compare the
modified file with its underscored equivalent.

Two notes on initialization files:

• The last character in your initialization files must be a newline (carriage
return, line feed). If the newline is not present, PenPoint will ignore the last
line in your file.

• If the line is of the form tag=value and you have two lines that define the
same tag, PenPoint uses the first occurence and ignores all subsequent
occurrences of the tag.

3.2

Table 3-3
PenPoint Initialization Files in \PENPOINT\BOOT

Name

MIL.INI

ENVIRON.INI

BOOT.DLC

CONSOLE.DLC '

SYSCOPY.INI

SYSAIP.lNI

AIP.lNI

Description

Hardware interface settings for PC MIL.

PenPoint configuration settings.

List of system DLLs required to run PenPoint.

A subset of BOOT.DLC for single-screen debugging.

List of files and directories to copy to memory.

System applications to install.

Other applications to install.

CHAPTER 3 I RUNNING PENPOINT ON A PC
MIL.INI

29

~en~oini iiooi Sequence
When you run PPBOOT.EXE on a PC, it locates the MILINI file and uses the
information in MILINI to configure the hardware, initialize the MIL (machine
interface layer), and start the PenPoint operating system.

PPBOOT determines the volume from which PenPoint is being booted, and assigns
the boot volume to the symbol theBootVolume. You can use theBootVolume in
your code to refer to this volume.

The operating system locates the ENVIRON.INI file and uses that information to
configure things such as the size of the display, the selected volume, the time zone,
and the name of the first application to run. If a \PENPOINT directory does not
exist on the volume, PenPoint creates one.

The PenPoint operating system then looks for \PENPOINT\BOOT\BOOT.OLC and
it initializes each DLL listed. PenPoint then copies all the files and directories
listed in \PENPOINT\BOOT\SYSCOPY.INI to the selected volume.

PenPoint installs the system applications listed in \PENPOINT\BOOT\SYSAPP.INI.

The last DLL in BOOT.OLC, AUXNBMGROLL, installs the applications listed in
\PENPOINT\BOOT\APP.INI.

MIL.INI
The file \PENPOINT\BOOT\MILINI describes configuration of the PC on which
the PenPoint operating system will run. Although most devices are installable,
there are a handful of devices that PenPoint must know about ahead of time, such
as the screen type, the stylus device, and the system clock.

MIL.INI is specific to the implementation of the PenPoint MIL (machine interface
layer) for a Pc. Because PC configurations can vary so much, the PC MIL imple
mentation reads the configuration information from MILINI. The MILs that run
on most tablet hardware will be preconfigured for a specific machine and thus will
not need to read configuration information from a file.

You must modify \PENPOINT\BOOT\MILINI before you can boot. At a minimum,
you need to specify your pointing device and monitor in MILINI. Another
common change is to specify the port (if any) on which debug output should
appear. MILINI contains instructions forhow to modify itself together with
commented-out versions of common settings.

Changing MILINI does not change an active system. Changes take effect the next
time you boot PenPoint.

The format is of a setting in MILINI is:

keyword = value

Following is a list of the _MILINI file shipped with the SDK:

3.3

3.4

Important MIL.lNI is specific to
the implementation of the PC
MIL. Other MILs probably won't
have a MIL.INI file.

30 PENPOINT DEVELOPMENT TOOLS
Part 1 I Getting Started

I The following applies to all serial pointing devices:
I
I
I
I
I

Use the UNIPENPORT tag to set the serial port. For example:
UNIPENPORT = 1 - This will set unipen to COM1:
UNIPENPORT = 760,5 - This will set unipen to comport at 2F8 irq 5

I Use the UNIPENTYPE tag to
I UNIPENTYPE = WACOM510C

select a predefined protocol:
- This sets unipen to the Wacom 510C digitizer

* * MICROSOFT: Microsoft serial, two-button mouse

* I LOGITECH:
I
I
f WACOM510C:
f
I
I
I
I WACOM510:
I
I
I

Logitech C7 or C9 serial, three button mice. For a Logitech
MouseMan use the MICROSOFT tag

The switches must be set as follows (X = ON, 0 = OFF) -

DS1 DS2 DS3
Front OXOXXOOX XXOXOXXO XXOOXXOO Back

The older Wacom units, red power LED, attached power cord.
The switches must be set thusly (X = ON, 0 = OFF) -

Front OOOXOOXO XXOXOXXO XOOOXOOO 00000000 Back
I
t
I
I

SuperScriptII: The SuperScript II LCD/digitizer combo. For the ink to
be aligned you must specify "ScreenType=SuperScript" or
"ScreenPixelsPerMeter=3690" in MIL.INI.

I
I CaICompDBII:
I
I
t
I
I

CalComp's DrawingBoard II, should also work with their
"Wiz" product. Use the default "Hi Resolution Binary"
format (123) in "run" mode, 9600 baud no parity, eight
data bits, one stop bit, 1000 lpi resolution, 125 pps.
Enable "Send when out of proximity", button 10=1 in bank B.

I The following are generic descriptions. You will probable have to "tune"
t these by placing the parameters into MIL.INI and adjusting for
t the specific charatersitics of your digitizer.
I
I GAZELLE:
I MM:
t BITPAD2:
I BITPAD2ASC:
I

For products from Gazelle System (now owned by Logitech)
The common "MM" digitizer protocol.
BitPad 2 binary protocol
BitPad 2 ACSII protocol

I See the universal pen driver manual for details on how to define a
t custom serial protocol.
I
I Remove the "I" on the line below for the port of your pointing device:
IUNIPENPORT = 1
IUNIPENPORT = 2
f
t Remove the "I" on the line below which matches your serial pointing device:
t
fUNIPENTYPE = MICROSOFT
tUNIPENTYPE = LOGITECH
tUNIPENTYPE = CalCompDBII
tUNIPENTYPE = GAZELLE
tUNIPENTYPE =" SuperScriptII
tUNIPENTYPE = WACOM510C
tUNIPENTYPE = WACOM510
tUNIPENTYPE = MM
tUNIPENTYPE = BITPAD2
tUNIPENTYPE = BITPAD2ASC

CHAPTER 3 I RUNNING PEN POINT ON A PC
MIL.INI

This supports a Microsoft "bus" or "InPort" mouse.
Remove the "#" on the next line if your bus mouse is the primary one
#BusMousePort=Primary
Remove the "#" on the next line if your bus mouse is the secondary one
#BusMousePort=Secondary
Remove the "#" on the next line to enable the PS/2 mouse port.
Note: do not confuse a PS/2 mouse port with a Microsoft bus mouse port.
#PS2Mouse=on

Remove the "#" from "LeftyMouse" if you are left-handed and have a
two button mouse. This will swap the meaning of the buttons so that
the right button will mean "tip-down" and the left button "out of prox".
#LeftyMouse=true
The following lines are concern.ed with the Wacom "310" coprocessor. They
can be used to describe the alignment and rotation of the pen sensor
relative to the LCD panel. The X axis is the long axis, the Y the short.
All numbers are in decimal (base 10). The defaults for the GO "Hyde"
prototype are listed:
Remove the "#" to enable the Wacom 310 MIL device:
#Wacom310=on
This tag is used to set the address of the command I/O port
#Wacom310Cmd=1222
This tag is used to set the address of the data I/O port
#Wacom310Data=1220
This tag is used to set the Wacom 310 interrupt level
#Wacom310Int=10
These two tags can be used to align the pen in the case of a constant error.
Signed values are supported. The units are 0.1 millimeters
#Wacom310XOffset=0
#Wacom310YOffset=0
These two tags describe the maximum values for the X and Y axis
#Wacom310MaxXPos=2240
#Wacom310MaxYPos=1400
These two tags may be use to independently flip either axis. When used
together the pen coordinates can be rotated 180 degrees.
#Wacom310InvertX=yes
#Wacom31 0 InvertY=yes
Remove the "#" on the next line to route debugging information to COM1
#SerialDebugPort=l
Remove the "#" on the next line to route debugging information to COM2
#SerialDebugPort=2
Remove the "#" from "MonoDebug" ONLY if you don't want debugging info
to be sent to an existing monochrome video card (the "second head")
#MonoDebug=off
Remove the "#" on the line below which matches where your wish to route
the lowlevel debugging information. If no "LowLevelDebug" is specified then
these low-level messages will be supressed
#LowLevelDebug=mono
#LowLevelDebug=com1
#LowLevelDebug=com2
Remove the "#" from "Floppy=hardware" if you wish to enable the PC floppy
driver
#Floppy=hardware

Change "off" to "on" in this line to enable auto-polling of floppy drives
when "floppy=hardware"
FloppyAttachment=off
Remove the "#" from "Harddisk=hardware" if you wish to enable the PC hard
disk driver which talks directly to the hardware
#HardDisk=hardware

31

32 PENPOINT DEVELOPMENT TOOLS
Part 1 I Getting Started

t Set Com1 to true to enable Com1 Asynchronous SlO, false otherwise
Com1=false
t Set Com2 to true to enable Com2 Asynchronous SIO, false otherwise
Com2=false
t Set Lptl to false to disable Lptl high speed packet parallel port I/O
Lptl=true
t Set Lpt2 to false to disable Lpt2 high speed packet parallel port I/O
Lpt2=true
t Remove the "t" on the line below which matches your screen and video board
t If no "ScreenType" is specified then the MIL defaults to STD480 (a standard
t VGA screen in landscape). An automatic "intlO 18" is done by the MIL for
t STD480 to set the VGA card into mode 18 (12 hex): 640 by 480 graphics.
ScreenType=STD480
tScreenType=EGANul
tScreenType=NCR
tScreenType=IBM
tScreenType=Samsung
tScreenType=Ymh400
tScreenType=Hyde
tScreenType=SuperScriptII
tScreenType=ATI768
t Each of the above screen types defines a prefered initial Qrientation. If
t you wish to override this then read on:
t
t Initial screen orientation: for a conventional VGA screen these are:
t
t
t
t
t
t
t
t
t
t
t West
t
t (top
t in

char.
mode)

t
t
t
t
t
t
t
t
t
t
t
t

North

" South
"
"
"

"
"

East

(bottom
in
character
mode)

last VGA scan line

first VGA scan line

t Remove the "t" on the line below which matches your desired orientation:
t
tlnitialScreenTop=North
tlnitialScreenTop=South
tlnitialScreenTop=East
tlnitialScreenTop=West
t If you have a VGA display on your computer but the machine is not listed
t above then you may explicitly set the pixel spacing by completing the
t line below and removing the "t". Typical values range from 2500 to 3700:
tScreenPixelsP~rMeter=????

CHAPTER 3 I RUNNING PENPOINT ON A PC
MIL.INI

i Remove the "i" on the line below which matches the your flash card type.
iFLASHCARD=TOSHIBA
iFLASHCARD=PC

i Remove the "i" on the line below if you are having trouble exiting
i from PenPoint back to DOS
iExitToDOS=reset

Capitalization in the settings isn't significant. This table lists the MILINI keywords
used by PenPoint.

Keyword

UniPenPort

UniPenType

BusMousePort

PS2Mouse

LeftyMouse

Wacom310

Wacom310Cmd

Wacom310Data

Wacom310Int

Wacom310XOffset

Wacom310YOffset

Wacom310MaxXPos

Wacom310MaxYPos

Wacom3101nvertX

Wacom3101nvertY

SerialDebugPort

MonoDebug

LowLevelDebug

Floppy

FloppyAttachment

HardDisk

Com1

Com2

Table 3-4
MIL.INI

Meaning

Serial Pointing Devices

Sets the serial port for universal pen device.

Sets a predefined universal pen protocol. See the complete discussion of the universal
pen driver later in this chapter for details on how to define a custom serial protocol.

Specifies whether a bus mouse is secondary to another mouse device.

Enables the PS/2 mouse port.

Switches buttons on two or three button mouse for left-handed users.

Wacom 310

Enables a Wacom 310 coprocessor.

Sets the address of the command I/O port.

Sets the address of the data 110 port.

Sets the Wacom 310 interrupt level.

Sets a constant X offset.

Sets a constant Y offset.

Specifies the maximum X position.

Specifies the maximum Y position.

Inverts the X axis.

Inverts the Y axis.

Specifies a serial port on which to write debugging information.

Information

Turns off debugging information for a second (monochrome) monitor (when off).

Specifies destination for MIL debugging information.

Enables floppy disks through hardware or BIOS.

Enables autopolling of the floppy drive to detect attachment.

Enables hard disks accessed through hardware or BIOS.

Disks

Asynchronous Serial I/O

Enables COM1 asynchronous serial 110.

Enables COM2 asynchronous serial 110.

33

continued

34 PEN POINT DEVELOPMENT TOOLS
Part 1 / Getting Started

Keyword Meaning

Table 3-4 (continued)

Hicll1·:)De~ed Packet Parallel Port

Lptl

Lpt2

ScreenType

InitialScreen Top

ScreenPixelsPerMeter

FlashCard

Enables LPTI high-speed packet parallel port I/O.

Enables LPT2 high-speed packet parallel port 110.

Specifies the screen type.

Specifies the screen top edge at startup.

Specifies the pixel spacing of a non-standard VGA screen.

Specifies TOPS FlashCard type (if necessary).

Video Controller

TOPS FlashCard

Exit to DOS

ExitToDOS Some PCs have trouble exiting PenPoint and returning to DOS. If you notice
this problem, specifY "reset."

In general you enable a device that uses a serial port by assigning it a port. If no
assignment is made then the device will disable itself. Because of this scheme,
there are no default serial ports.

You need not and should not enable Corn! or Corn2 to use a serial port for mouse
input or debug output. Cornl and Corn2 tell PenPoint what serial ports are available
for use by PenPoint services, not MIL devices.

".. ENVIRON.INI File
The file \PENPOINT\BOOT\ENVIRON.INI contains a set of environment settings for
PenPoint. PenPoint system software and other programs defines names and values in
ENVIRON.lNI. Some of the DL~s use this to get initialization information such as the
type of display, the monitor orientation, the default volume, and so on.

You should modify \PENPOINT\BOOT\ENVIRON.lNI to enable logging by
uncommenting the line

fDebugSet=/D*l /DD8000

This sets up logging to the file \PENPOINT.LOG on the boot volume.

This is probably the only change you need to make to the default ENVIRON.INI in
order to run PenPoint; the default settings for the variables described below are
correct.

3.5

CHAPTER 3 I RUNNING PEN POINT ON A PC
ENVIRON.INI File

Like MIL.INI, changing ENVIRON.INI does not change an active system. Changes
take effect the next time you boot PenPoint.

The format is of a setting in ENVIRON.INI is:

keyword = value

This is a list of the _ENVIRON.INI file shipped with the SDK.

PenPointPath=

Initial Penpoint application to run
StartApp = \\boot\penpoint\boot\app\bookshelf

Alternate screen metrics, in device units
#ScreenWidth=200
#ScreenHeight=320

Size of the swap file.
This is number of bytes in swap file, in hexadecimal; e.g. 5MB = SOOOOO.
SwapFileSize=SOOOOO

Boot configuration. Choices are: DebugRAM, DebugTablet and Tablet.
Config=DebugRAM

Timezone setting used by ANSI time routines (see WATCOM library ref)
TZ=PST8PDT

Initial setting of the debug flags
/D*l: Validates all heap allocates and frees under the debug penpoint.os.
DebugSet=/D*l
#DebugSet=/DD8000 /D*l

Forces a flush after N or more characters are written, 1 flush per
call to DebugBuf (called by Debugf, DPrintf).
#DebugLogFlushCount=O

Version string used by Preferences
Version=PenPointl386 (386.4SH) I Copyright c 1992, GO CorporationlAll Rights Reserved.

Path to a default bookshelf, copied at boot time
#BkshelfPath=\\boot\penpoint\boot\doc

Progress Bar Maximum
bootProgressMax=2S0

Open the notebook at boot time
Autozoom=Notebook

Root of PenPoint

Capitalization in the settings isn't significant. The following table lists the
ENVIRON.INI keywords used by PenPoint.

35

36 PENPOINT DEVELOPMENT TOOLS
Part 1 / Getting Started

3m S
ENVIRON*INI

Me.:min!j

BkShelfPath

Specifies the name of a document to open in the window after booting.

Specifies the path to the bookshelf directory.

BootProgressMax

Config

DebugLog

DebugLogFlushCount

DebugSet

PenPointPath

PenProx Timeout

ScreenHeight

Screen Width

StartApp

StealMem

Used in the booting progress indicator. Do not modifY.

Specifies the disk and debugging environment.

Specifies the name of a file for debugger output.

Specifies the when to flush the debug log to a file.

Specifies one or more debug flags.

Specifies the location of the PENPOINT directory.

Specifies a delay before sending an out of proximity event.

Specifies the height of the screen in device units.

Specifies the width of the screen in device units.

Specifies the first PenPoint application to run on startup.

Specifies that PenPoint should use less memory.

SwapBoot

SwapFileSize

Specifies that PenPoint should load memory from a saved swap file.

Specifies the size of the swap file in bytes.

TZ

UndoLimit

Version

Specifies the time zone.

Specifies the maximum number of undos.

Specifies the PenPoint version label.

VolSel

WinMode

ZoomMargin

Specifies the label of the volume used to create the PenPoint system.

Specifies the initial orientation of the screen device.

Specifies the distance from the bottom of the autozoom document to the
bottom of the screen.

ZoomResize Specifies whether the autozoom document has a resize tab.

An application can add its own keywords to ENVIRON.INI for testing. To get a
value from ENVIRON.INI, use the kernel function OSEnvSearchO.

These sections describe the keywords in more detail:

AutoZoom

AutoZoom specifies the name of a document that PenPoint is to open on the
desktop after booting. Usually this document is Notebook (meaning the main
note book). However, you can specifY any other document, provided its
application is installed.

If you set ZoomMargin to 0 and specifY ZoomResize as FALSE, the document that
is opened with AutoZoom is locked into the page. If the document is a notebook,
the user will not be able to close or resize the notebook. If the document is a
page-based application, the user will not be able to turn away from the application.

3,5,1

CHAPTER 3 / RUNNING PENPOINT ON A PC
ENVIRON.INI File

"" BkShelfPath
BkShelfPath specifies the path to the bookshelf directory. Usually this contains
\PENPOINT\BOOT\DOC.

"" BootProgressMax
BootProgressMax is used by the progress indicator that appears when you boot
PenPoint. Do not modifY this field.

"" Config
Config is used to specify in one place the selected volume, the location of installed
code, and, in the future, debugging options. There are three environments that
you can specify with Config:

DebugRAM Sets theSelectedVolume to RAM and stores installed code in
RAM also. In this configuration, any changes you make when running
PenPoint are not saved, but it is easier to clean up after and it makes it
easy to install new versions of applications after each reboot.

Tablet Sets theSelectedVolume to be the drive on your PC from which
you booted PenPoint and stores installed code on the disk. In this
configuration, changes that you make are saved from one cold boot to
the next. For other considerations on Config=Tablet, see the section
Running in Tablet-Like Mode .

.. DebugTablet Currently is similar to Tablet. In the future, DebugTablet
may be expanded to enhance debugging information in a tablet-like
environment.

"" DebugLog
DebugLog specifies the name of a file to which debug stream data is directed.
When you are developing applications, the DebugLog file is a useful place to

begin tracing the activity that lead to a crash. By default this is \PENPOINT.LOG

on the boot device.

"" DebugLogFlushCount
DebugLogFlushCount allows you to specify the number of characters that can be
written to the debugger stream buffer before it is flushed. Normally this line is
commented out. The default value is arbitrarily large, depending on current usage
of the file system. However, if you are debugging a program that crashes after a
write to the debugger stream, yet before the stream gets written to the log file, you
can set this to a small value. When the value is set to 0, text is flushed as soon as it
is written to the debugger stream.

3.5.2

3.5.3

3.5.4

3.5.5

3.5.6

37

38 PEN POINT DEVELOPMENT TOOLS

Part 1 / Getting Started

DebugSet

DebugSet allows you to set one or more debugger flags to affect the behavior of
applications. To specifY a flag, follow the string "/D" with the flag identifier. For
example, you specifY the debug flag B800 with the line:

debugset=/DB800

To specifY more than one flag, separate the flags with one or more spaces. You
must specifY all flags within one DebugSet line; if your ENVIRON.INI file contains
more than one DebugSet line, PenPoint uses the first one in the file.

See \PENPOINT\SDK\INC\DEBUG.H for a list of what subsystem uses what flag.
The header files for many subsystems list the effects of setting the various bits in
the flags.

Other interesting flags are:

*1 When used with the]P.OS (debug version of the PenPoint kernel),
directs the heap manager to validate the heap after allocate and free calls
(at a performance cost of about 15 percent). This flag is on by default in
ENVIRON.INI.

D 1 0000 Disables the mini-debugger (production and debug versions of
PenPoint).

D40000 Disables the use of @ill@] and I Pause I keys to exit to the debugger.

G2 Allows page faults during scavenging to enter the debugger.

PenPointPath

Specifies the path to the PENPOINT directory within the boot volume
(theBootVolume). This is useful for maintaining two separate PenPoint systems
on the same hard disk. For example, you might maintain one version of Pen Point
in \SYSl\PENPOINT. .. and another version of Pen Point in \SYS2\PENPOINT To
use the first system, you would specifY PenPointPath=\sys1; to use the second
system, you would specifY PenPointPath=\sys2.

PenProxTimeout

PenProxTimeout specifies the number of milliseconds between the pen going out
of proximity and when the out of proximity event is actually sent to the input
system. This delay helps to distinguish between actual out of proximity events and
the user's hand wobbling. The default value is 350 milliseconds.

You can shorten (or lengthen) PenProx Timeout by changing "Gesture Timeout"
from the Settings Notebook. (PenProxTimeolit = max (100, GestureTimeout/2).
The default setting of gesture timeout, 600 milliseconds, results in PenProxTimeolit
being 300 milliseconds (same as it used to be). Many people can comfortably use the
system with gesture timeout set to .4 seconds, this results in gestures being handled
1/-1 Oth of a second faster.

3.5.1

You can examine and set the
debug flag settings from the
Debug Window accessory. You
can also press I Pause I to go to
the mini-debugger, and type f1
to list the current flag values
and fs to set a flag. For
example, fs F 30 sets the F
flag to 30.

3.5,9

CHAPTER 3 I RUNNING PEN POINT ON A PC
ENVIRON.INI File

",. Screen Height
Specifies the height of the screen in device units.

". ScreenWidth
Specifies the width of the screen in device units.

". StartApp
StartApp specifies the first PenPoint application that PenPoint runs when it starts
up. Usually this application is the Bookshelf. If you are writing a turnkey
application, you might want to name your own application in StartApp, which
would make it the only application running on the machine.

",. StealMem
StealMem tells PenPoint to use less memory, so that you can test how your
application or service behaves in low-memory conditions. The value specified with
StealMem is in hexadecimal. The line StealMem=100000 causes PenPoint to
"lose" 1MB of memory.

".SwapBoot
SwapBoot allows you to tell PenPoint to boot by reloading its memory from
information in the swap file, rather than reloading code. This is called a "swap
boot."

To enable swap booting, add SwapBoot=2 to ENVIRON.lNI.

". SwapFileSize
SwapFileSize specifies the size of the swap file in hexadecimal bytes. The suggested
size is 5 MB (or 500000 hex). Be careful when reading this number; 500000 hex
equals 5,000,000 decimal. The swap file is created in \\BOOT\PENPOINT.SWP. If
SwapFileSize is set to 0, or is not specified, PenPoint does not create a swap file.

PenPoint swaps pages of data to the swap file. Code is not swapped, it is loaded
from the loader data base or boot volume as needed.

'YTZ
TZ specifies the time zone with a string formatted according to the TZ
environment variable used in the ANSI time routines. For complete information

. about the syntax of the TZ line, see Section 1.4, The "TZ Environment Variable,"
in the "Watcom C Library Reference for PenPoint.

". Version
Specifies the PenPoint version label. This label is created by GO and contains
copyright and version information. Do not change this line.

3 • .5. 'jO

3.5.11

3.5.12

3.5.13

3.5.14

3.5.15

3.5.16

3.5.11

39

40 PEN POINT DEVELOPMENT TOOLS
Part 1 / Getting Started

VolSel

VolSel specifies the label of the volume that will contain the PenPoint directory
hierarchy. You can see the label of a DOS volume when you use the DIR or
CHKDSK commands.

From applications you can find the volume specified in VolSel with the well
known UID theSelectedVolume.

If your ENVIRON.INI file does not specify a VolSel environment variable,
PenPoint uses theBootVolume.

If you specified a configuration with the Config option, do not modify VolSel.

WinMode

WinMode specifies the initial orientation of the screen device. There are four
possible orientations, which correspond to the four possible rotations of a
rectangular screen. The possible values are PORTRAIT, LANDSCAPE,
PORTRAIT_REVERSE, and LANDSCAPE_REVERSE. In PORTRAIT orientation, the
long axis of the screen is vertical; in LANDSCAPE orientation, the long axis of the
screen is horizontal. In the _REVERSE orientations, the screen image is rotated 180
degrees from the normal orientation.

You usually use LANDSCAPE when running PenPoint on a Pc.

ZoomMargin

ZoomMargin specifies the distance from the bottom of the screen to the bottom
of the document opened with AutoZoom.

If you set ZoomMargin to 0 and specify ZoomResize as FALSE, the document that
is opened with AutoZoom is locked into the page. If the document is a notebook,
the user will not be able to close or resize the notebook. If the document is a
page-based application, the user will not be able to turn away from the application.

Zoom Resize

ZoomResize specifies whether the document opened with AutoZoom has a resize
tab. Possible values are TRUE and FALSE. TRUE means that the document has a
resize tab; FALSE means that the document does not have a resize tab.

If you set ZoornMargin to 0 and specify ZoornResize as FALSE, the document
that is opened with AutoZoom is locked into the page.

~ Running in Tablel-Like Mode
When you set Config=Tablet, PenPoint runs in a configuration similar to that
of the initial NCR and IBM pen computers. However, there are some
considerations to using this configuration:

3.5,18

3,5,19

CHAPTER 3 / RUNNING PEN POINT ON A PC
Running in Tablet-Like Mode

• theSelectedVolume is the drive on your PC from which you booted
PenPoint. The bookshelfs contents live in \PENPOINT\SYS (its DOS name is
\PENPOINT\SS) on the hard disk. Installed services, fonts, configured service
instances, and so on are also stored on hard the disk.

• PenPoint won't let you browse theSelectedVolume in the directory view of
the Connections notebook. In production PenPoint this prevents users from
inadvertently moving, renaming, or deleting files that should be known only
to PenPoint. If you want to see the hard disk in the directory view, set debug
flag B to 800.

• Similarly, the Installer in the Settings notebook cannot see the hard disk;
however, you can still install applications using the Connections notebook.

Before you run in Config=DebugTablet or Tablet mode, you need to:

• Remove the \PENPOINT\SS directory hierarchy from your hard disk. This gets
rid ofPenPoint state saved previously.

• Delete \PENPOINT\PENPOINT.IDX.

• Delete \PENPOINT\PENPOINT.DIR.

The first time you run in this configuration, you won't have any of these files.

Now boot PenPoint. The first time you boot, PenPoint will cold boot as usual.
However, the loader will build its loader directory under \PENPOINT\SS\LR, which
slows booting considerably. PenPoint marks the file system so that the next time
you run PenPoint, a warm boot will occur. All subsequent times, booting will be
faster.

Note that under this configuration, aU installed EXEs and DLLs come from
\PENPOINT\SS\LR. If you modify a DLL or EXE and want to replace it, you will
either have to start with a clean disk, use the Upgrade utility, or copy your file into
the \PENPOINT\SS\LR directory.

If you run in a tablet-like configuration and then decide to perform a cold boot or
go back to the RAM configuration, you must clean up your disk. To do this:

• Delete \PENPOINT\PENPOINT.DIR.

• Delete \PENPOINT\PENPOINT.IDX.

• Remove the directory tree under \PENPOINT\SS.

• Remove the directory tree under \PENPOINT\SI.

• Remove the directory tree under \PENPOINT\OI.

On an actual tablet, when PenPoint loads code (services and applications) into
the loader database, it deletes the \PENPOINT\APP directory and all application
directories underneath it.

Even if you set Config=Tablet, the PenPoint running the SDK does not do this.
If it did delete \PENPOINT\APP, it would mean you would have to reinstall the
SDK to get \PENPOINT\APP back!

41

42 PENPOINT DEVELOPMENT TOOLS
Part 1 I Getting Started

On a real tablet computer, the B2 debug flag controls this. Do not set B2, unless
you want to reload the SDK. You can set it in ENVIRON.INI if you really, really
want to get a configuration that closely matches a pen computer.

,..BOOT.DLC
The file \PENPOINT\BOOT\BOOT.OLC lists all the system dynamic link libraries
that PenPoint needs to operate. A Dynamic Link Library is a body of code that
programs can access at run time without needing to be statically linked into each
program. It promotes code sharing and reduced executable size. PenPoint uses the
same DLL file format and similar technology as OS/2 and Microsoft Windows.

PenPoint takes each name in BOOT.OLC, looks for a .OLL file of the same name in
\\BOOT\PENPOINT\BOOT\DLL, loads that .OLL and tries to call an initialization
routine in the DLL called DllMain. These initialization routines create classes,
create objects and perform other initializations. For example, the window system
initializes the screen and the input system starts up several subtasks and interrupt
subtasks.

There are a standard set ofDLLs which implement subsystems of Pen Point. The
window system, UI Toolkit, handwriting translation, Application Framework,
search and replace, and so on, are all implemented as DLLs.

PenPoint loads and initializes each DLL in order, so the ordering of BOOT.OLC is
significant.

The main reason for modifYing BOOT.OLC is to enable DB, the PenPoint
source-level debugger. The first two lines in BOOT.OLC load the DLLs for DB:

#goO-cdbO-v2(O)
#go-cdb3-v2(O)

\\boot\penpoint\boot\dll\cdbO.dll
\\boot\penpoint\boot\dll\cdb3.dll

If you want to use DB, uncomment both these lines. COBO.OLL is the Ring 0
portion of the debugger; COB3.0LL is non-privileged code.

If you are only testing a restricted configuration, you can remove some DLLs;
however, this can lead to unpredictable results.

If you have a DLL that you want loaded independent of your application, you can
mention it in \PENPOINT\BOOT\BOOT.OLC. This should be rare: only
system-wide DLLs such as input, windows, and so on, need to be listed in here.
The order of DLL loading can be significant, so it's best to put your DLL at the
end of the list.

You should not need to put your application's OLL file in BOOT.OLC, because your
DLL is only needed if the user installs one or more applications which require it.
Instead, you put a .OLC file in your application's directory which tells PenPoint
which DLLs the application needs.

3.7

CHAPTER 3 I RUNNING PENPOINT ON A PC
SYSCOPY.INI

If you have a DLL that you want loaded independent of your application, you can
mention it in \PENPOINT\BOOT\BOOT.DLC. This should be rare: only system
wide DLLs such as input, windows, and so on, need to be listed in here. The order
ofDLL loading can be significant, so it's best to put your DLL at the end of
the list.

,,- CONSOLE.DLC
The file \PENPOINT\BOOT\CONSOLE.DLC allows you to see debugging
information while booting PenPoint on a single-screen system. Once PenPoint is
booted, you can use the System Log application to view debugging information.
You will want to use CONSOLE.DLC when debugging the behavior of your
application during a boot-before you can run the System Log application.

To use CONSOLE.DLC, modify your MIL.INI file so that it specifies
MonoDebug=off.

If the line js commented out, doesn't exist, or specifies anything other than "off,"
debugging information is not sent to your single screen.

,,-SYSCOPY.INI
Once PenPoint knows the location of theBootVolume and theSelectedVolume, it
can copy files from other disks to the directory that contains files for the running
system. The file SYSCOPY.INI tells PenPoint which files to copy and where to place
them.

The files listed in SYSCOPY.INI are those whose locations should not be hard-coded
into PenPoint. Because the locations of these files are specified in SYSCOPY.INI, all
you have to do is modify SYSCOPY.INI to use a different file. SYSCOPY.INI specifies
the locations of the files listed in Table 3-6.

3.8

3.9

Table 3-6
SYSCOPY,JNI Files

File

SYSAW.lNI

AW.INI

SERVICE.lNI

PENPOINT.RES

DIeT

FONT

PREFS

HWXPROT

PDICT

Used For

List of system applications to load at boot time (non-deinstallable).

List of general applications to load at boot time (deinstallable).

List of services to load at boot time.

The PenPoint resources file.

The dictionary files to load at boot time.

The font files to load at boot time.

The preferences to load at boot time.

The handwriting prototypes to load at boot time.

The personal dictionary files to load at b90t time.

43

44 PENPOINT DEVELOPMENT TOOLS
Part 1 I Getting Started

,.. STSAPP.INI
The file \PENPOINT\BOOT\SYSAPP.INI lists the system applications that must be
present for PenPoint to run correctly. This list includes:

\penpoint\boot\app\Section
\penpoint\boot\app\Table of Contents
\penpoint\boot\app\Notebook
\penpoint\boot\app\MiniText
\penpoint\boot\app\Settings
\penpoint\boot\app\Helpnb
\penpoint\boot\app\inboxnb
\penpoint\boot\app\oboxnb
\penpoint\boot\app\statnb
\penpoint\boot\app\Connections
\penpoint\boot\app\Keyboard
\penpoint\boot\app\Placeholder
\penpoint\boot\app\Accessry

Applications loaded with SYSAPP.INI cannot be deinstalled. If you are providing a
turnkey system, you can load your specific applications from SYSAPP.INI.

,.. APP.INI
The file \PENPOINT\BOOT\APP.INI specifies the installable applications to load at
boot time. These applications can be deinstalled at a later time.

When testing an application, it is usually easiest to add the application to AIP.lNI.

That way the application is installed each time the system is booted.

Setting Up Specific Configurations
The preceeding sections described the initialization files individually. However,
when you change your configuration, you will need to make changes to several
files.

This section describes the modifications that you make to support various devices.

One or Two Monitors

When you run PenPoint on a PC, you must have a VGA display on your
machine. PenPoint can display the entire Notebook user interface on the VGA
monitor.

If you have two monitors (one VGA and one monochrome), PenPoint detects that
there are two monitors (at boot time) and will simultaneously display the PenPoint
Notebook User interface on the VGA screen while displaying debugging output on
the monochrome display.

If you have a single monitor and need to view debugging output while booting
PenPoint, add a line to your MIL.INI that specifies MonoDebug=off. Such a line
exists in the _MIL.INI shipped with the PenPoint SDK, but it is commented out.

3.10

3.11

3.12

3.12.1

CHAPTER 3 I RUNNING PENPOINT ON A PC
Booting PenPoint on a PC

Configuring a Mouse

The SDK version of Pen Point is is set up for a Wacom pen tablet. If you have a
mouse, you must modify your MIL.INI file to specify a mouse. PenPoint supports
four types of mice: Microsoft compatible mouse, Logitech C7/C9 mouse, bus
mouse, PS/2 mouse.

To attach a Microsoft mouse, add a UNIPENTYPE=Microsoft line to your
MIL.INI, specifying the serial port to which the mouse is connected. To attach
a Logitech mouse, add a UNIPENTYPE=Logitech line to your MIL.INI, again
specifying the serial port to which the mouse is connected.

To use a PS/2 mouse, add the line PS2Mouse=on to your MIL.INI.

Finally, if you are left handed, you might want to add the line LeftyMouse=true
to your MIL.INI.

Configuring a Digitizing Tablet

To use a digitizing tablet with PenPoint, you must:

• Add a line to your MIL.INI that specifies the tablet and the serial port
to which the tablet is attached.

• Configure the serial port with a DOS MODE command before running
PenPoint. If the digitizing tablet is attached to COMl, the mode command is:

MODE COMI 96,0,7,2

Booting PenPoint on a PC
To start PenPoint, run GO.BAT by typing \penpoint\sdk\util \dos\go.
GO.BAT is a batch file which sets up your machine and then runs PPBOOT.EXE.

You may need to modify GO.BAT to:

• Configure a serial port for the digitizing tablet.

• Load a Logitech or Microsoft mouse driver.

• Configure a serial port for low-level MIL debug output.

• Unload memory managers and TSRs.

• Run some disk mirroring or FAT preserver utility.

GO.BAT contains a number oflines that are commented out to remind you of
these possible additions.

If you are testing a new application and the application goes badly wrong,
PenPoint may damage the root directory of your boot volume. This is more likely
to be a problem if you run with Config=DebugTablet or Tablet (so that the
selected volume set to your hard disk). You may want to use the Norton Utilities'
format recover (fr) with the save (/save) option or some other format save utility
to save your hard disk's format information before starting PenPoint. If you
have this utility, add fr Isave before ppboot in GO.BAT and chkdsk after.
If CHKDSK reports an error, run fr to fix it.

3.12.3

3,13

45

46 PENPOINT DEVELOPMENT TOOLS
Part 1 / Getting Started

PC Tools has a similar MIRROR capability.

The hierarchy of applications on the bookshelf files its state in \PENPOINT\SYS\BS

on the selected volume. If you are running PenPoint on a PenPoint computer, or if
you set VolSel to a disk on a PC, the previous state is still around. The previous
configuration of the Notebook should reappear. This is what happens when you
power off and power on a PenPoint computer.

If you are running PenPoint on a PC from memory, there's nothing in memory
when you boot PenPoint. Therefore \PENPOINT\SYS will be blank. However,
during boot, the default \PENPOINT\BOOT\SYSCOPY.lNI instructs PenPoint to
copy \PENPOINT\SYS from the boot volume to the selected volume. Thus you can
set things up so that a previous saved configuration of the Notebook reappears
when you boot from disk. This is how the default Notebook appears when you
boot a PenPoint computer-Notebook state was filed and then copied to the boot
diskettes.

Loading Debug PENPOINT.OS
GO.BAT runs \PENPOINT\BOOT\PPBOOT, which in turn loads MIL.OS, MIL.INI,

and PENPOINT.OS. If you want to load core PenPoint with DEBUG information in
it (to get, for example, symbolic names for Class Manager objects), you need to
comment out the line

\penpoint\boot\ppboot \penpoint\boot

and uncomment the line

3.13.1

\penpoint\boot\ppboot \penpoint\boot\-pp.os \penpoint\boot\mil.os \penpoint\boot\mil.ini

What Happens During Booting
PPBOOT prints the names of the files that it loads.

If you've enabled LowLevelDebug in MIL.INI, you'll see debugging information
on your second monitor or serial port.

The MIL prints out some memory statistics and then attempts to load PenPoint.

The boot program displays a PenPoint logo and pen. It displays numbers in the
lower corners of the screen:

• In the lower left is the version of the PPBOOT boot program.

• In the lower right is a number indicating whether PenPoint found a swap file:

o No swap file found.

1 Swap file found but the boot program couldn't use it (delete
\PENPOINT.SWP and try again).

2 Old-format swap file found (historical, you should never see this).

3 Found a swap file, using it.

3. "13.2

CHAPTER 3 / RUNNING PENPOINT ON A PC
Booting Pen Point on a PC

As PenPoint boots, the pen fills with black. After a while, PPBOOT transfers
control to PenPoint, which proceeds to read ENVIRON.INI, BOOT.OLC, SYSAW.INI,

and so on.

Mter a while (two to four minutes on a 386 PC) you should see the small clock
appear, followed by the standard bookshelf and Notebook configuration.

IfPenPoint doesn't work, press I Pause I then enter q. Look in \PENPOINT.LOG on
your boot volume for errors.

B!3ot Error Messages

Here are some of the errors that you will probably see during booting, together
with explanations:

The first time PenPoint runs, it will complain about a missing PENPOINT.SWP file.
This is normal-the swap file does not exist until the second time you run
PenPoint.

If you load _PP.OS, you get some additional warning messages about No ini t
routine provided forjik.dll.

You might see several Int w /0 RB: 7 messages during booting. These are related
to parallel port interrupts, are relatively benign, and are explained later in this
chapter.

To save memory, PenPoint compacts processes (such as the processCount a
appMonitor processes). Messages about this are not in error.

Broken Pen During Booting

If there's a problem during booting, a broken pen icon appears on the PenPoint
boot screen. The most common value is 1000, which means "you haven't enabled
any pointing device in your MIL.INI."

The error codes are in the file \PENPOINT\SOK\INC\BOOTERRS.H as shown here:

Error codes used with the AbortBoot routine.

3,13,3

3,13.4

These codes are displayed when a fatal error occures during booting.

Code zero is never used.
Codes 1 through 999 are reserved for the boot program. Of these 1 through
99 are defined by GO and consistent across all machines. Codes 100 to
999 can be used by OEMs for machine specific errors.
The portable codes used by PenPoint start at 1000.
Naming convention: to make it easier to track-down the location of
the error code a name is constructed thusly:
"bootErr" + <file name> + <terse description>
See below for examples.

47

48 PENPOINT DEVELOPMENT TOOLS
Part 1 I Getting Started

Errors in the boot program
#define bootErrDriveNotFound 1
#define bootErrOpenDrive 2
#define bootErrLabe1NotFound 3
#define bootErrCorruptFileSystem 4
#define bootErrMILNotFound 5
#define bootErrMILReadErr 6
#define bootErrMILWrongFormat 7
#define bootErrMILWrongSignature 8
#define bootErrMILWrongTailLen 9
#define bootErrMILZeroLength 10
#define bootErrMILTooBigForMem 11
#define bootErrMILIniNotFound 12
#define bootErrReadErrMILIni 13
#define bootErrPPNotFound 14
#define bootErrPPMILVersionMismatch 15
#define bootErrPPReadErr 16
#definebootErrPPWrongFormat 17
#define bootErrPPWrongSignature 18
#define bootErrPPWrongTailLen 19
#define bootErrPPZeroLength 20
#define bootErrPPTooBigForMem 21
#define bootErrSwapFileReadErr 22
#define bootErrMemSizing 23
#define bootErrNoLinearPgDirEntry 24
#define bootErrInitFileSys 25
#define bootErrUnknownDrive 26
#define bootErrExitProgram 27

Errors in PenPoint

II Used in DrvMILSetWellKnownIds()
#define bootErrDrvrnilNoStylus 1000
#define bootErrDrvrnilNoPowerDev 1001
#define bootErrDrvrnilNoTimer 1002
#define bootErrDrvrnilNoClock 1003
#define bootErrDrvrnilNoIntrCtlr 1004
#define bootErrDrvrnilNoScreen 1005
#define bootErrDrvrnilNoBlock 1006

II File system related
#define bootErrStartupNoBootDiskLabel 1007

II Non-maskable interrupt
#define bootErrDrvrnilNMI 1008

II StdError: Note also displays
II TagAdmin(status) and TagNum(status) ,
#define bootErrStdErrorOccurred 1009

II Environ.ini file not found
#define bootErrStartupNoEnvironIni 1010

II Boot volume not found (or error accessing)
#define bootErrFsvolNoBootVolume 1011

II Invalid PenPointPath specified in environ.1n1
#define bootErrFscInvalidPenPointPath 1012

CHAPTER 3 I RUNNING PEN POINT ON A PC
Booting PenPoint on a PC

II Boot.dlc file not found
#define bootErrConfNoBootDlc
II Error creating swap file
#define bootErrVMSwapFile

II Error starting page daemon
#define bootErrVMPageDaemon

II Not enough memory to boot
#define bootErrVMMemory

1013

1014

1015

1016

II Boot program did not pass in valid boot time
#define bootErrDrvmilNoBootTime 1017

II Boot program did not pass in complete V8086 information
#define bootErrDrvmilNoV8086Info 1018

II A core MIL device (timer, interrupt, debug) failed to initialized
#define bootErrDrvmilCoreInitFail 1019

If code calls StdError, StdSystemError, StdUnknownError or StdMsg before
booting is complete, the broken pen displays with the error number of the
standard error. The root window isn't displayed until booting is complete, so the
notes that these normally put up are not visible.

~ Broken Pen Error 1008

Error 1008 indicates that a non-maskable interrupt (NMI) occured and was not
handled by a MIL NMI device. On a PC NMI is used for two purposes: memory
parity error and (in some cases) emulation on video cards.

A parity error indicates the failure of a memory chip (soft or hard). You should
run a memory diagnostic when the machine is good and hot-partially (30%)
blocking the fan is a way to do this. The other possibility is that 'you are using an
older ATI video card. They emulate other types of video cards by generating an
NMI when the (nonexistent) registers of the emulated card were accessed. The
NMI service routine then emulates the hardware in the video BIOS. The ATI card
has a switch which "disabled advanced video modes" and prevented these NMIs.
Check to see if your video card uses NMI or supports some form of "emulation."

When the NMI occurs isa big clue as to what was tickled to cause it (for instance,
what DLL was loadin:g, and so on).

~ Broken Pen Errors between 100 and 999

You may see other boot error numbers. such as 115 or 126, that are not defined in
BOOTERRS.H. The boot program overloads the error number by tacking on the
number of the drive it is booting from. 0 for floppy and 100 for hard disk. Thus
115 means error 15 when booting from the hard drive.

3.13.4.1

3.13.4.2

49

50 PEN POINT DEVELOPMENT TOOLS

Part 1 / Getting Started

Using PenPoint on a PC
For more information on working in PenPoint, read the end-user documentation.

~ Using a Mouse

The Pen can detect not only stylus tip up and down, but also moving the pen in
and out of proximity. Handwriting and gesture translation software uses this to
figure out when to convert ink dribbles. The mouse does not have any notion of
in and out of proximity, so to simulate going out of proximity, you click the
middle button. In general, after handwriting or making any gesture with the
mouse, "lift the pen away" by clicking middle.

Parallel Port Interrupts

Because of a problem in the 8259 programmable interrupt controller (PIC) used
by most PCs, some machines can generate sporadic interrupt 7s under certain,
unpredictable conditions. The symptom is that you see several lnt w / 0 RB: 7

messages at boot time. We have not seen this behavior on tablet hardware.

PenPoint attempts to avoid hanging conditions by disabling interrupt 7 whenever
too many bad interrupts occur, and the re-enabling interrupt 7 at a later time.
This does not limit PenPoint's functionality.

Theoretically, parallel port I/O could become impossible, ifPenPoint were to
constantly disable and enable interrupt 7. However, we have not seen this
situation.

Installing an Application
While most operating systems require the application developer to provide
installation software (or, at a minimum, copy the application and its files to disk),
PenPoint provides an Installer, which makes installation of all installable software
consistent.

The installer expects application files to be in specific directories on the distribution
diskette. The installer copies files from those directories to directories in the RAM file
system.

There are two ways you can· install an application:

• Use the Installer to install your application while PenPoint is running .

• Add the file name to the API~INI file so that PenPoint installs your application
at boot time.

You can also mark a volume so that the Installer is invoked automatically when the
disk is mounted. You do this by turning to the disk options card in the connections
notebook. When you set Quick Installer to Yes, the Initial View field becomes active.
From in this field, you can select whether the installer should be activated for
applications, services, and so on when the disk is mounted.

3.14

3.14.1

3.14.2

CHAPTER 3 / RUNNING PEN POINT ON A PC
Installing an Application

The Installer can do lots of other things for your application, such as copy
stationery, help files, bitmaps for icons, and such to the PenPoint computer. The
Tic-Tac-Toe application, described in this manual, uses some of these features.
These features are also documented fully in Part 12: Installation of the PenPoint
Architectural Reference.

Installing an Application While Pen Point is Running

PenPoint is designed to not need rebooting. Users can go forever without having
to reload PenP6int and applications from disk. Thus, there needs to be some way
for the user to install new applications while PenPoint is running. There is: it
involves using the Installer application.

The Installer figures out what applications can be installed by searching for
subdirectories of \PENPOINT\APP on all known volumes. So, if you copy your
application's executable and its supporting files to a subdirectory of
\PENPOINT\APP on some volume, you will be able to install it while PenPoint is
running, just as a user who has purchased your application will install it. In the
case ofEMPTYAPP, create a directory on your hard disk or on a floppy (with a
volume label) called \PENPOINT\APP\EMPTYAPP, and copy EMPTYAW.EXE to it.
(The make file for empty app does this for you.)

Open the Connections notebook, turn to the disks page, and tap on your disk.
Choose Applications from the View menu. Empty Application should appear in
the list of applications on the disk. Tap on the installed box next to Empty
Application.

3.15.1

51

52 PENPOINT DEVELOPMENT TOOLS
Part 1 / Getting Started

In this figure, the application installer has found an application directory called
Empty Application in \PENPOINT\APP on the disk labelled PRO].

The application name is the name of its directory in \PENPOINT\APP. PenPoint
supports longer file names than DOS. A rule in the Makefile gave the EMPTYAPP

directory and .EXE longer PenPoint names using the STAMP utility.

Boot-Time Install

You can get your application installed as part of the boot process by adding it to
\PENPOINT\BOOT\APP.INI.

APP.INI controls which applications are installed during boot. Each line in AW.INI

specifies the PenPoint filename of an application directory. You must specifY the
volume and the entire path to the application directory. However, lines in AIP.INI

do not specifY the executable file itself. PenPoint copies several different files and

Figure 3-1
an AII:)DiUclatl

3.15.2

To speed up the boot process
while testing. you can remove
applications you don't wish
to use from APP.INI (if there
are any).

CHAPTER 3 / RUNNING PEN POINT ON A PC
Installing an Application

directories from the application directory to the running application directory
(such as help, stationery, and so on).

Thus, for your own project Project Scheduler you would add the following to
\PENPOINT\BOOT\APP.INI:

\\boot\penpoint\app\Project Scheduler

"System" applications are mentioned in a separate file called \PENPOINT\BOOT\

SYSAPP.INI. You should be careful when modifying this file-some of these
applications are required for the Notebook environment to work.

Whether an application appears in the Accessories notebook or in the Stationery
notebook is determined by a flag in the arguments you send to the Application
Manager when you initialize your application class (when the user installs your
application). For more information, see the description of clsAppMgr in Part 2:
Application Framework of PenPoint Architectural Reference, Volume 1.

Application .DLL and .DLC Files

If you create multiple applications that use the same classes, you can save memory
by placing the shared classes in a common DLL (dynamic link library).

When PenPoint is instructed to load an application (either in response to the
Installer or when reading APP.INI), it first finds the directory whose name matches
that of the application.

PenPoint then looks in the directory for a file with the same name as the directory,
but with a .OLe extension. A .OLe file contains a list of executable and DLL files
that the application requires. If your application requires a class that is in a
common DLL file, it should list the DLL file in its .OLe file.

IfPenPoint finds the .OLe file, reads the names of the DLLs in the file and
searches for them in the loader database. If a DLL is not found in the loader
database, PenPoint loads it. PenPoint also calls DllMain in the new DLL (if it
exists), thus providing each DLL with a standard initialization technique.
DllMain can create classes, create objects, and perform other initializations. The
last line in the .OLe file must list an executable with the same name as the
application directory (with the extension .EXE).

If there is no .OLe file, PenPoint then searches the application directory for
an executable with the same name as the application directory (with the
extension .EXE).

The name of the .OLe must match the PenPoint name of the directory. If you give
the application directory a long PenPoint name, but forget to change the .OLe or
.EXE name (with the STAMP utility), installation will fail.

3.15.3

53

54 PENPOINT DEVELOPMENT TOOLS
Part 1 / Getting Started

Executing the Application
The easiest way to start an application is to create a document for that application
from the Notebook and then turn to or float that document. You can create new
documents in several different ways:

• Open Accessories, and tap on the icon of an accessory application.

• Choose an application from the Create menu in the Notebook's table of
contents. This creates a new document on the Notebook.

• Make a caret J\ gesture over the Notebook and choose the application from
the stationery menu. This creates a new document at the location where you
made the gesture.

• Make a caret J\ gesture over the bookshelf and choose the application from
the stationery menu. This creates a new document in the bookshelf.

• Open the Stationery notebook and use the copy gesture ·1 to copy a piece of
stationery to the main Notebook or elsewhere. Some applications provide
several different kinds of stationery, so the user can pick a particular kind of
document to start from.

Different applications allow different kinds of document creation. (Appearance in
the Stationery notebook is controlled by the appMgr.flags.stationery flag, and
appearance in the Accessory notebook is controlled by the appMgr.flags.accessory
flag; you set these in your application's init routine). It's convenient during testing
to allow both kinds of creation.

Volume Selection

On a PC you have a choice. If you select your hard disk, the state of your
simulated PenPoint notebook (documents, table of contents, and so on) will
be retained after you quit PenPoint or power off, just as on a PenPoint computer.
On the other hand, there is a slight risk that during development your appli
cations won't file correctly and hence will cause trouble when you restart PenPoint.
Running PenPoint from RAM avoids these problems, but presents you with an
empty Notebook every time you restart it.

Interrupting PenPoint

On a PC, the I Pause I key interrupts the current task. It puts you either in a
mini-debugger built into PenPoint, or into DB if you are running the PenPoint
Source Debugger. In either case, type g to continue or q to quit and return to

DOS. (Of course, you can only return to DOS on a PC).

3,16

3.16.1

3.16.2

CHAPTER 3 I RUNNING PEN POINT ON A PC
More on the Bookshelf

55

". Exiting Pen Point
There are two ways to exit from PenPoint:

• Tap on Settings, navigate to Preferences-Power, and tap the Shutdown
button. Confirm that you want to power-offPenPoint.

• Press I Pause I and enter q.

Note that either way, PenPoint takes time to shut down because it has to flush all
cached information to disk before halting.

Depending on your machine configuration, your PC may return to DOS or may
hang. GO has found that network software, spoolers, TSR's, disk caches, and
RAM drives can all affect this. If your machine does not return to the DOS
prompt, reboot.

When you get a DOS prompt, you should run CHKDSK to check for file system
errors.

,., More on the Bookshelf
If you're running PenPoint on a PC and your root volume is your hard disk, there
will be lots of files in \PENPOINT\SYS\BS. This directory contains all notebooks
and all their files. You should be able to find your documents' directories in BS.

Within each document directory, you'll find a DOC.RES file, which contains the
document's objects and data.

After exiting PenPoint, you'll find that PenPoint has left PENPOINT.DIR files in
\PENPOINT and in its subdirectories. The PENPOINT.DIR files map PenPoint file
system names to the DOS files and contains attribute informa#on about the files.

". Using the Notebook
The Notebook initially displays its table of contents view. This is always at the
front of the Notebook.

You can page through applications by tapping the arrows to the left or right of the
page number. You can also flick backwards and forwards through the pages by
drawing a short line to the left or right in the title bar.

You can also jump to a page by tapping the button in its page number in the table
of contents. If you double-tap on the document's button, it is "torn out" from the
Notebook and fl~ats on top of the Notebook (if you enable this in the Float &
Zoom portion of Settings).

For more information on using PenPoint, read the end-user manual, Getting
Started with PenPoint.

3.16.3

3.17

You can inspect this directory in
PenPoint by setting the B debug
flag to hexadecimal value 800 in
ENVIRON.INI.

3.17.1

56 PEN POINT DEVELOPMENT TOOLS
Part 1 I Getting Started

The Universal Serial Pen Driver
Mter writing a number ofPenPoint digitizer drivers for devices that connect
through a serial port, it became apparent that they were all pretty much alike.
These pointing devices want to pass three or four pieces of information into the
computer: x position, y position, tip-down and (optionally) pen-in-proximity
to-screen.

Because this amount of information is difficult to pack into a single byte most
serial pointing devices opt for a multi-byte format. Some bit or pattern is reserved
to signal the start or end of the multi-byte frame, the tip and proximity states each
get a bit somewhere in the frame, and the bits which make up the X and Y posi
tion are given as many bits (in as many bytes) as they need. Some devices·(like
mice) are relative and pass small (less than 8-bit) deltas. In contrast, digitizers
return absolute coordinates, which require 10-13 hits of space in binary formats or
4-5 bytes or characters in ASCII formats.

Unfortunately, each manufacturer that needed such a protocol invented their own.
Later products (such as the Wacom) can be programmed to emulate many of the
pre-existing products and protocols.

The universal pen driver is an attempt to eliminate the need for a custom driver
for every digitizer and mouse in the world. This driver parses a simple language
that describes the protocol of a serial pointing device. The driver also contains a
number of "canned" or predefined descriptions of some popular products.

The key expressions in this language usually contain:

• The relative position of a byte in the frame.

• A mask to AND the byte with.

• A value to compare the result with.

Thus if bit 3 in the second byte is zero when the tip is touching we describe this as
T, 1, 4, 0; 1 for the byte (bytes are numbered from 0), 4 for masking bit 3, and 0
as the expected result when the tip is down. The expression P, 0, 9, 8 says that the
pen is in proximity to the screen when byte 0 contains: 0 in bit 0 and 1 in bit 3
(lOOlB mask compared with 1000B).

Numeric values are described in a similar way:

• A byte number

• A mask

• An offset

• A scaling factor

To support values whose bits are split across multiple bytes, UniPen sums the
frame expressions that have the same tag. For example, in the Bit Pad 2 binary
format, the 12 bits of the X position are contained in the low-order 6 bits (0
through 5) of the second and third bytes (bits 0 through 5 come from bits 0

3.18

CHAPTER 3 / RUNNING PEN POINT ON A PC
The Universal Serial Pen Driver

57

through 5 of the second byte; bits 6 through 11 come from bits 0 through 5 of the
third byte). We describe this with the string:

X,1,63,O,1 X,2,63,O,64

The value 63 (OIIIIIIB) masks the low-order 6 bits; the scaling factor of 1 is a
no-op, the scaling factor of 64 shifts the value 7 bits to the left before summing.

To describe the Bit Pad 2 ASCII format we use the offset to subtract the value of
an ASCII "0" to convert a 4-digit ASCII string starting in the first byte:

X,O,127,-48,lOOO X,1,127,-48,lOO X,2,127,-48,lO X,3,127,-48,1

Other digitizers are left as an exercise to the student.

UniPen Command Syntax

Table 3-7 lists the UniPen commands.

v VERBOSE

C,baud,parity,bits,stop COMPORT

I,bytel,byte2, ... INIT

G,baud,par,bit,stop,b 1 ,... ALTERNATEINIT

N,name NAME

L,xLimit,yLimit LIMIT

3.18.1

Definition

Toggles the verbose mode used for debugging. The compile
time switch VERBOSE must be enabled in the source code
for this to work.

Sets the com port settings for the operating mode: baud = the
baud rate parity ('0'= Odd, 'E'= even, 'N' = none); bits = the
of data bits (6,7,8); stop = the number of stop bits (1,2).

Specifies a sequence of bytes to be sent to the device for
initialization. The sequence can be up to 16 bytes long.

Specifies an alternate sequence of bytes to be sent to the device
with a different com port setting. This is used when the
device's initial com port settings are different than the
operating settings (cmd-C). baud = the baud rate parity
('0'= Odd, 'E'= even, 'N' = none); bit = the # of data bits
(6,7,8); stop = the number of stop bits (1,2); bl, ... = the byte
sequence to send. If the baud rate is zero, the sequence will
be sent to the device at 1200,2400,4800, 9600 baud (four
times). The alternate init ('G') happens before the IN IT
command ('1').

Specifies a name for the protocol. The name can be any
sequence of characters except space or comma. If used, this
must be the first command if used.

Sets the maximum value for x and y. These limits must be set
properly for the proper operation of the pen. In a machine
where the digitizer is not combined with the screen, these
limits are used to scale the pen's position to fit the screen.
This allows the use of digitizers and screens of different
dimensions. For combined screen and digitizers (such as the
SuperScript), these limits are used for coordinate tranformation
when different screen orientations are chosen. If you
loose pen and ink alignment when you change the orientation
preference, these values are probably incorrect.

58 PEN POINT DEVELOPMENT TOOLS
Part 1 I Getting Started

Command

T,byte,mask,compare

P,byte,mask,compare

X,byte,mask,add,mult

Y,byte,mask,add,mult

S,byte,mask,compare

B,byteCount

E

J ,byte,mask,compare

K,byte,mask,compare

F,[xy]

/\/leaning

TIP

PROXIMITY

X

Y

SYNC

BYTECOUNT

EXTEND

NEGATE X

NEGATEY

FLIPXorY

Table 3-7

Definifion

Defines an equation for the computing the tip state where:
TIP = ({protocol[byte] & mask) == compare) ;
byte = the byte index into the protocol stream from 0 to
the max byte -1; mask = the value the byte is masked with
compare = value the masked byte is compared with.

Defines equation for the computing the proximity state where:
TIP = «protocol[byte] & mask) == compare); byte = the byte
index into the protocol stream from 0 to the max byte -1;
mask = the value the byte is masked with; compare = value
the masked byte is compared with.

Defines an equation for computing X where: X = X+
«packet [byte] & mask) + add) * mult; byte = the byte index
into the protocol stream from 0 to the max byte -1; mask =

the value the byte is masked with; add = the value added to

the masked value; mult = the value multiplier. There can be
more than one X command.

Defines an equation for computing Y where: Y = Y +
«packet[byte] & mask) + add) * mult; byte = the byte index
into the protocol stream from 0 to the max byte -1; mask =

the value the byte is masked with; add = the value added to
the masked value; mult = the value multiplier. There can be
more than one Y command.

Defines a equation for checking the validity of the packet. If
(packet[byte] & mask) != compare the packet is considered
out of sync. byte = the byte index into the protocol stream
from 0 to the max· byte -1; mask = the value the byte is
masked with; compare = value the masked byte is compared
with.

Defines the number of bytes in a packet.

Tells UniPen to sign extend the X and Y values from 8 bits
to 16 bits.

Used to process sign bits in the protocol for X. X will be
negated if (packet[byte] & mask) == compare. byte = the
byte index into the protocol stream from 0 to the max byte -
1; mask = the value the byte is masked with; compare = value
the masked byte is compared with.

Used to process ~ign bits in the protocol for Y. Y will be negated
if (packet [byte] & mask) == compare. byte = the byte index in
to the protocol stream from 0 to the max byte -1; mask = the
value the byte is masked with; compare = value the masked
byte is compared with.

Inverts the coordinates of either X or Y. For example, F,X
would result in X = xLimit - X being executed. F,Y would
do the same for Y.

continued

Command Meaning

R,num,res,byte1,byte2,... RESOLUTION

Q,num,res,byte1 ,byte2,... SAMPLE RATE

D,scale DELTA

A ABSOLUTE

O,x,y OFFSET

H, threshold THRESHOLD

U UNIFIED

M MUNGE PROXIMITY

CHAPTER 3 I RUNNING' PENPOINT ON A PC 59
The Universal Serial Pen Driver

Tobie 3-7 ocorm""

Definition

Tells UniPen the resolution of the device and defines a
sequence of bytes to initialize the mode. There must be at
least one resolution command and there can be as many as
three. If there is more than one resolution command, the byte
sequence will be sent to the device whenever that resolution
mode is to be used. If there is only one resolution command,
the byte sequence is optional. num = the resolution number
(0,1,2); res = the resolution in counts/meter; byte1, .. = the
byte sequence used to initialize the mode.

Tells UniPen the sample rate of the device and defines a
sequence of bytes to initialize the mode. There must be at
least one sample rate command and there can be as many as
two. If there is more than one sample rate command, the byte
sequence will be sent to the device whenever that sample rate
mode is to be used. If there is only one sample rate command,
the byte sequence is optional. num = the sample rate number
(0,1,2); res = the number of samples per second; byte1, .. = the
byte sequence used to initialize the mode.

Tells UniPen that the counts from the device are relative
positions and not absolute positions. scale = the scale factor
for the delta counts. (1 = no scale, 2 = 2x scale, and so on.)

Tells UniPen that the counts from the device are the absolute
position of the pen.

Offsets the x and y positions or defines the difference between
logical zero and physical zero. A positive number will bring
the "ink" closer to the lower left corner; a negative one
farther away.

Defines the reporting threshold. The pen must move at least
threshold counts before a new position will be reported.
For most devices this can be one.

The display and digitizer are a combined unit. When they are
not, PenPoint scales the digitizer position to fit the screen
based on the values provided by the Limit command (see
above). Note that for accutate matching of the pen and "ink"
you must specifY ScreenPixelsPerMeter in MIL.INI to match
YOut screen. This may be easily calculated by measuring the
width of the actual pixels along the long (landscape) axis in
centimeters. ScreenPixelsPerMeter = 640 / length * 100

Supresses proximity sensing for any pre-defined type. Note
that there is no reason to use this command when defining
your own protocol, just don't specifY a "P" tag.

60 PEN POINT DEVELOPMENT TOOLS
Part 1 I Getting Started

".. Notes on Using the UniPen Driver

Use the UNIPENPORT tag in MIL.INI to set the communications port. For example,
the first line sets UniPen to COMl:, the second line sets UniPen to the
communication port at 2FS, IRQ 5:

UNIPENPORT = 1
UNIPENPORT = 760,5

Use the UNIPENPORT tag in MIL.INI to select a predefined protocol. This line sets
UniPen to the Wacom 510C digitizer:

UNIPENTYPE = WACOM510C

The current predefined types are:

MICROSOFT Microsoft serial, two-button mouse.

LOGITECH Logitech C7 or C9 serial, three button mice. For a Logitech
MouseMan use the MICROSOFT tag.

WACOM510C The switches under the control unit must be set as shown
here (X = on, 0 = off):

DSl DS2 DS3
Front OXOXXOOX XXOXOXXO XXOOXXOO Back

WACOM510 The older Wacom units, red power LED, attached power
cord. The switches must be set as shown here (X = on, 0 = off):

Front OOOXOOXO XXOXOXXO XOOOXOOO 00000000 Back

SuperScriptII The SuperScript II LCD/digitizer combo. For the ink to be
aligned you must specify ScreenType=SuperScript or
ScreenPixelsPerMeter=3690 in MIL.INI.

CalCompDBII CalComp's DrawingBoard II, should also work with their
"Wiz" product. Use the default "Hi Resolution Binary" format (#23) in
"run" mode, 9600 baud no parity, eight data bits, one stop bit, 1000 lpi
resolution, 125 pps. Enable "Send when out of proximity," button 10=1
in bank B.

AceCat5by5 A very low cost (under $150) 5" by 5" digitizer from
AceCAD. Supports proximity, has corded pen. Draws its power from the
PC keyboard connector or an optional external AC adapter.

3.18.2

CHAPTER 3 I RUNNING PENPOINT ON A PC
The Universal Serial Pen Driver

These are generic descriptions. You will probable have to "tune" these by placing

the parameters into MIL.INI and adjusting for the specific charatersitics of your
digitizer.

GAZELLE For products from Gazelle System (now owned by Logitech).

MM The common "MM" digitizer protocol.

BITPAD2 BitPad 2 binary protocol.

BITPAD2ASC BitPad 2 ACSII protocol.

To define a new protocol in MIL.INI use the UNIPENPROTOCOL tag. Also, since

protocol definitions can get long, we created several tags for defining protocols. It
does not matter which commands go with which tags, because all of the tags are
sent to one central parser. The tags are UNIPENCOMPORT, UNIPENINITIALIZE,

UNIPENRESOLUTION,UNIPENSAMPLERATE,UNIPENTIP, UNIPENPROXIMITY,
UNIPENXPROTOCOL,UNIPENPROTOCOL,UNIPENPROTOCOL.Forexample,the
Microsoft serial mouse protocol is:

UN1PENT1P
UN1PENPROX1M1TY
UN1PENXPROTOCOL
UN1PENYPROTOCOL
UN1PENPROTOCOL
UN1PENRE80LUT10N
UN1PEN8AMPLERATE

= T,0,32,32
= P,0,16,0
= X,0,3,0,64 X,1,63,0,1
= Y,0,12,0,16 Y,2,63,0,1 F,Y
= B,3 8,0,64,64, L,3600,2400 E 0,5 H,l
= R,0,7800
= Q,0,30

The C,L,T,B,R,~H, at least one X and Y, and an A or a D command are

required.

~ Other Sample Definitions .

SuperScriptIl

1,82,48,61,48,13,10 C,9600,N,8,1 T,O,l,l P,0,64,0
X,1,3,0,16384 X,2,127,0,128 X,3,127,0,1
Y,4,3,0,16384 Y,5,127,0,128 Y,6,127,0,1
8,0,128,128 B,7 L,6911,5183 A R,0,39370 Q,0,100 H,l U 0,0,157;

AceCat5by5

C,9600,0,8,1 R,0,19500 Q,0,100 L,2437,2437
1,0,64,98 P,0,64,0 T,O,l,l X,1,127,0,1 X,2,127,0,128
Y,3,127,0,1 Y,4,127,0,128 8,0,128,128 A H,l B,5

Gazelle:

N,GAZELLE C,9600,0,8,1 R,0,16185 Q,0,50 T,O,l,l P,0,64,64
X,1,127,0,1 X,2,31,0,128 Y,3,127,0,1 Y,4,31,0,128
8,0,128,128 L,3200,2530 0,210,300 B,5 A H,10;

MM:

N,MM C,9600,0,8,1 R,0,19500 Q,0,100 L,5000,5000
1,0,64,98 P,0,64,0 T,O,l,l X,1,127,0,1 X,2,127,0,128
Y,3,127,0,1 Y,4,127,0,128 8,0,128,128 A H,l B,5;

3.18.2.1

61

62 PENPOINT DEVELOPMENT TOOLS

Part 1 I Getting Started

BitPad2ASCII:

N,BITPAD2ASCII C,9600,E,8,1 R,0,7800 Q,0,100
T,10,01,01 P,10,01,01 L,5000,5000
X,0,127,-48,1000 X,1,127,-48,100 X,2,127,-48,10 X,3,127,-48,1
Y,5,127,-48,1000 Y,6,127,-48,100 Y,7,127,-48,10 Y,8,127,-48,1
S,11,127,13 B,13 A H,li

BitPad2:

C,9600,E,8,1 R,0,7800 Q,0,100 T,0,4,4 P,O,l,O
L,5000,5000 X,1,63,0,1 X,2,63,0,64 Y,3,63,0,1 Y,4,63,0,64
S,0,64,64 B,5 H,l Ai

LOGITECH:

C,9600,O,8,1 R,0,7800 Q,0,50 L,3600,2400
P,O,l,O T,0,4,4 X,1,127,0,1 J,0,16,16 F,X Y,2,127,0,1 K,0,8,8 F,Y
S,0,128,128 0,5 H,l B,3i

WACOM510C:

C,9600,O,7,2 R,0,9906 Q,0,100 T,0,4,4 P,O,l,O
L,2320,1510 X,1,63,0,1 X,2,63,0,64 Y,3,63,0,1 Y,4,63,0,64
S,0,64,64 B,5 H,l Ai

WACOM510:

C,9600,O,8,1 R,0,9906 Q,0,100 T,0,4,4 P,O,l,O
L,2320,1510 X,1,63,0,1 X,2,63,0,64 Y,3,63,0,1 Y,4,63,0,64
S,0,64,64 B,5 H,l Ai

CaICompDBII:

C,9600,N,8,1 R,0,39370 Q,0,125 T,0,4,4 P,3,32,0
L,7000,5250
X,0,3,0,16384 X,1,127,0,128 X,2,127,0,1
Y,3,3,0,16384 Y,4,127,0,128 Y,5,127,0,1
S,0,128,128 B,6 H,l Ai

2/
Debugging PenPoint

Applications

,.. Chapter 4 / Introduction 67 DB and Memory Use 6.16 81

DB Overview 4.1 67
Checking Available Memory: the MI
Command 6.16.1 81

Organization of This Part 4.2 67 Eliminating Applications 6.16.2 81
Sample Files 4.3 68 Loading Partial Symbolic Debugging

Information 6.16.3 82
,.. Chapter 5 / Preparing to Run

Using DB to Send Messages 6.17 82 the Debugger 69
String Names for Messages, Objects,

Files Used in a DB Session 5.1 69 and Statuses 6.18 82
Compiling and Linking 5.2 69 Watching Memory: the ON ACCESS
Installing DB 5.3 70 and ON STORE Commands 6.19 82

Installing Applications to Debug 5.4 70 Events that Activate DB 6.20 84

Start PenPoint 5.5 70 Exiting DB and PenPoint 6.21 84

,.. Chapter 6 / Using DB 71 Chapter 7 / DB COlllllland
Reference 85

Invoking DB: the PAUSE Key 6.1 71

Continuing Execution: the G Command 6.2 71
Command Summary 7.1 85.

Module Names, Process Names, and Task IDs 6.3 71
Notation Conventions 7.2 86

Hexadecimal Numbers
Scope Specification (scopeSpec) 7.2.1 86

6.4 72
Line Count (lineCount) 7.2.2 88

Source Code Debugging 6.5 72 Code Addresses 7.2.3 88
Finding and Loading Symbols: the SYM Data Addresses 7.2.4 88
Command 6.5.1 72 Line Numbers 7.2.5 88
Using Source Code: the SRCDIR Command 6.5.2 72 "Scope.Identifier" R~ferencing 7.2.6 88

Setting DB's Context: the CTX Command 6.6 73 Task Set (taskSet) 7.2.7 89
Breakpoints: the IF, BL, and BC Commands 6.7 73 Command Datasheets 7.3 89
Viewing the Call Stack: the ST Command 6.8 74

Frame Numbers and the CTX Command 6.8.1 75 ,.. Chapter 8 / Profiling with DB 113

Examining and Setting Values 6.9 75 Profile Breakpoints 8.1 113
The? (Evaluate) Command 6.9.1 75 Two Types of Profiles 8.2 113
Known Identifiers: the IDS command 6.9.2 76

Code Profiling 8.3 113
Identifier Types: the TYPE Command 6.9.3 76

Code Profiling Options 8.3.1 114
Lexical Scope 6.9.4 77 A Caveat Concerning Sampling Profiles 8.3.2 115

Single-Stepping: the p, P, t, and T Commands 6.10 77 Getting More Frequent Samples 8.3.3 115
Viewing Source Code: the V Command 6.11 77 Code Profiling Examples 8.3.4 115

Viewing Assembly Code: the U Command 6.12 78 Object Profiling 8.4 117

Executing C Code 6.13 79 Basic Object Profiling 8.4.1 117

Executing Code at the DB Prompt 6.13.1 79 Object Profiling Options 8.4.2 117
Executing Code at a Breakpoint 6.13.2 79 Object Profiling Message Pattern 8.4.3 117

Task List: the TL Command 6.14 80 Object Profiling Examples 8.4.4 118

Saving Typing 6.15 80 Displaying Profile Information: the DP

DB.lNI File 6.15.1 80 Command 8.5 119

Using DB Scripts 6.15.2 81 DP Command Examples 8.5.1 119

Command Line Editing 6.15.3 81 Clearing Profile Information: the ZP
Command 8.6 121

Profiling Specific Tasks 8.7 121

Chapter 9 / Advanced DB Chapter 12 / Pen Point
Techniques 123 Mini-Debugger 145

Skipping Execution 9.1 123 Invoking the Mini-Debugger 12.1 145

Controlling Threads of Execution 9.2 124 Mini-Debugger and DB 12.1.1 145

The FZ ("freeze") Command 9.2.1 124 On a Pen Point Computer 12.1.2 146

The TH ("thaw") Command 9.2.2 124 Mini-Debugger Commands 12.2 146
The TT ("terminate task") Command 9.2.3 124 Setting Debug Flags 12.2.1 147

Commands Executed at Compile Time 9.3 124 Using the Mini-Debugger 12.3 148

DB Built-Ins 9.4 125 Map Files 12.4 148
DB's Predefined Types 9.4.1 125 Exception Handling 12.5 148
Useful Values in DB 9.4.2 126 Understanding Interrupts 12.6 148
DB's Useful Variables 9.4.3 127
DB Runtime Routines 9.4.4

The Task List 12.7 151
128

The ON Command 9.5 129 ,. List of Figures
Program Events 9.5.1 129 11-1 System Log Application on a PC 142
Access Events 9.5.2 129
Task Events 9.5.3 129 ,. List of Tables
Fault Events 9.5.4 130

5-1 Files Used in a DB Session
Other Events

69
9.5.5 130

The INSTALL and START Commands 9.6 131
7-1 DB Command Summary 85

Context Inside of Breakpoints
7-2 Scope Specification 87

9.7 131

Cast Operator
7-3 Specifying a Task Set 89

9.8 131
8-1 Routine Set Specification 114

Tilde Operator 9.9 131
8-2 Message Pattern Specification 117

,. Chapter 'II 0 / General PenPoint 8-3 msgList Specification 118
Debugging Techniques 133 8-4 objectList Specification 118

DEBUG Compiler Option 10.1 133 8-5 DP Flags 119
PenPoint Uses DEBUG 10.1.1 133 9-1 DB's Predefined Types 125
Using DEBUG in Your Programs 10.1.2 134 9-2 Useful Values in DB 126
Debug Versions of Pen Point DLLs 10.1.3 134

9-3 DB's Useful Variables 127
Debugging Flag Sets 10.2 134

10-1 Explicit Writes to the Debugger Stream 137
The Debugger Stream 10.3 135

Configuring the Debugger Stream
10-2 Warning Message Passing Macros 138

Destinations 10.3.1 135 10-3 Message Passing Functions 138

Writing to the Debugger Stream 10.3.2 137 10-4 Expression Handling Macros 139

12-1 Mini-Debugger Commands 146
,. Chapter 11 / The System Log

Application 141

Loading the System Log Application 11.1 141

Running the System Log Application 11.2 141

System Log Application Menus 11.3 142
Show Menu 11.3.1 142
Trace Menu 11.3.2 142
Log Size Menu 11.3.3 143
Font Menu 11.3.4 143

Chapter 4 / Introduction

The PenPoint™ operating system provides several tools that you can use to debug
PenPoint programs. These include:

+ A source level debugger.

• A debugging stream that can be written to a log file, viewed on a second
monitor (when running PenPoint on a PC), and viewed in the PenPoint
System Log application.

• Functions that write text to the debugging stream, such as DPrintfO and
DebugfO.

• Macros that can write text to the debugging stream when messages return
warning or error status values.

• A low-level mini-debugger.

Most of this part is dedicated to the PenPoint source level debugger, DB. The
other debugging facilities are described in Chapters 10, 11, and 12 of this part.

DII Overview
DB, helps you to trace program execution and measure performance. DB has
several features that allow you to interact with PenPoint at the source code and
assembly language levels:

• Full support of Pen Point's multi-tasking environment. You can switch easily
among different tasks to examine their states and control their execution.

• Command line evaluation of declarations and expressions. You can enter C
declarations and expressions directly from the command line, allowing you to
alter code for "what-if' trials.

• Batch command file and execute-on-break stored command sequences. You
can build powerful debugging scripts and macros to speed up complex
debugging operations.

,.-Organization of This Part
Chapter 4, this chapter, introduces the various debugging tools and describes the
rest of the part.

Chapter 5, Preparing to Run DB, describes how to compile and link your
programs so that you can view symbolic names and locations in your source code
while running DB.

Chapter 6, Using DB, provides a tutorial on how to use DB to perform most
common debugging procedures.

4.1

4.2

68 PEN POINT DEVELOPMENT TOOLS
Part 2 / Debugging Penpoint Applications

Chapter 7, DB Command Reference, provides a reference to all of the DB
commands.

Chapter 8, Profiling With DB, describes how to use DB's powerful profiling
capabilities.

Chapter 9, Advanced DB Techniques, provides a tutorial on using some of DB's
advanced features, which include: controlling threads of execution; using DB's
built-in types, variables, and routines; and setting breakpoints on events.

Chapter 10, General PenPoint Debugging Techniques, describes other debugging
tools and techniques.

Chapter 11, The System Log Application, describes a PenPoint application that
you can use to view the debugger stream, set DEBUG flags, and view other
system data.

Chapter 12, PenPoint Mini-debugger, describes the mini-debugger and the
differences between it and DB.

". Sample Files
This manual uses the CALC sample application in most of its examples.
The source code for CALC and several other sample applications is in
\PENPOINT\SDK\SAMPLE.

4.3

Chapter 5 / Preparing to Run
the Debugger

".. Files Used in a DB Session
In addition to the program you are debugging, DB uses several other files to
configure itself. Table 5-1 lists files that are involved in a debugging run~ This list
includes both the files that you~dit and compile, and files that the PenPoint™
operating system and DB access during execution.

5.1

Table 5-1
Files Used in a DB Session

File Usage

DB.lNI

CDB3.DLL

CDBO.DLL

ENVIRON.lNI

Optional file. If it exists, DB will interpret the contents of the file when it starts up.

The user-mode portion of the PenPoint load module for DB.

The supervisor-mode portion of the PenPoint load module for DB.

PenPoint reads this file at cold boot to configure the general execution environment.
You can also set debugging flags in it, and specify the location of DB .IN I.

*.C, *.H The source files for your program. The Appendices contain source code for sample
applications. .

YOURPROG.EXE When your compiled program has successfully linked with the PenPoint libraries
the result is this PenPoint loadable module.

YOURPROG.DLL Dynamic Link Libraries (.DLLs) are used to store shareable portions of your
executable code.

Compiling and Linking
To run under DB, you follow the same compiling and linking steps covered in
Chapter 6 of the Application Writing Guide. There are a few additional steps that
you have to take to cause the compiler and linker to generate symbolic debugging
information.

The WATCOM C/386 compiler and linker can generate two levels of symbolic
debugging information .

• The first level of information includes line numbers and symbols for public
routines. To get this level of information:

• When compiling, set the compiler's /Of+ and /D 1 switches.

• When linking, include the line DEBUG LINES or DEBUG ALL before
the FILE line{s) in your link command file.

5.2

70 PEN POINT DEVELOPMENT TOOLS
Part 2 / Debugging Penpoint Applicotions

• The second level of symbolic debugging information includes full symbol
name and type information. To get this level of information:

• When compiling, set the compiler's 10f+ and ID2 switches.

• When compiling, be sure not to set any of the 10alstx switches.

• When linking, include the line DEBUG ALL before the FILE line(s) in
your link command file .

• In all cases, you should set the compiler's len switch if you want DB's st
command to display routine names for modules with no symbols loaded.

You can create different levels of symbolic debugging information for different
source files.

Installing DB
DB is a PenPoint DLL. To install DB, remove the "#" from the following line in
\PENPOINT\BOOT\BOOT.DLC:

#goO-cdbO-v2(O) \\boot\386\penpoint\boot\dll\cdbO.dll
#go-cdb3-v2(O) \\boot\386\penpoint\boot\dll\cdb3.dll

Installing Applications to Debug
You install the program that you wish to debug in the normal fashion. The
changes to it to support debugging are in compiling and linking, not in installing.

~ Start PenPoint
Start PenPoint in the normal fashion.

5.3

Chapter 6 / Using DB

This chapter introduces you to DB's most important concepts and operations.

Invoking DB: the PAUSE Key
To switch from the PenPoint™ operating system UI interaction to DB interaction,
press the I Pause I key on the keyboard. The current application process is frozen and
the DB prompt appears.

The prompt is a greater-than character (» followed by a tiny dot. When you type
a command into DB, the com~and is displayed immediately to the right of the
prompt:

>tl

The command is sent to DB when you press the I Enter! key.

".. Continuing Execution: the G Command
To continue PenPoint execution, type the q command.

".. Module Names, Process Names, and
'ask IDs
PenPoint executable modules (.DLLs and .EXEs) are given names when they are
linked. The convention for these module names is:

companyName-moduleName-majorVersion(minorVersion)

DB gives PenPoint application processes names which are a variation on these
module names. The name of a process is simply the quoted name of the module
that contains the entry point for the process and followed by a number in square
brackets. For instance:

"go-calculator-vl(O)"[l]

The number in square brackets indicates the process count of the application.
Process count 0 is the application manager process, which owns the installed
application class itself. The kernel increments an application's process count each
time that application is run; process count values greater than zero indicate how
many times the application has been executed (since the last cold boot).

PenPoint tasks have 16 bit task IDs. (See Chapter 75 in Architectural Reference
Manual Part 8: System Services.)

6.1

6.2

6.3

72 PENPOINT DEVELOPMENT TOOLS

Part 2 I Debugging Penpoint Applications

II"" Hexaelecimal Numbers
A hexadecimal number starts with a zero (0) and uses the hexadecimal numerals
0-9 and a-f

DB prints the leading zero in its output (except in obviously hexadecimal cases,
such as dumps). DB requires that you preface all input hexadecimal numbers with
a O. 01db8 is a typical hexadecimal number.

II"" Source Coele Debugging
To debug source code, DB needs two pieces of information:

• DB needs to read symbolic debugging information. Compilers and linkers
put symbolic debugging information in the .EXE or .DLL file on disk. So you
may need to tell DB:

• Where to find the .EXE or .DLL file.

• Which.EXE or .DLL symbolic information to read .

• DB needs to know where to find the source code files.

Without this information DB can still be used, but only at the assembly code level.

The next two sections tell you how to provide this information to DB.

Finding and Loading Symbols: the SYM Command

Use the sym command to tell DB to read symbolic debugging informa~ion into
memory:

>sym "calculator"
>sym "calc_eng"

If the module doesn't contain symbolic debugging information (probably because
it was compiled or linked without the appropriate flags), DB displays a warning.

See Section 6.16.3 for information on sym command options that can reduce the
amount of memory required.

".. Using Source Code: the SRCDIR Command

To display source code and to allow DB to display source code (e.g. mer taking a
breakpoint) DB must be told where source files are located.

DB's srcdir command tells DB where to find the source files that correspond to a
given module. The volume name (mer the \ \) must be the DOS volume name.
You can see the DOS volume name with the DOS DIR or CHKDSK command;
you can modify it with the DOS LABEL command.

>srcdir "calculator" \\c\penpoint\sdk\sample\calc
>srcdir ncalc~eng" \\c\penpoint\sdk\sample\calc

Alternatively, you can set the DBSrc environment variable in \PENPOINT\BOOT\

ENVIRON.INI. This is particularly useful if you commonly work with source files

6.4

6.5

6.5.1

6.5.2

CHAPTER 6 I USING DB 73
Breakpaints: the BP, BL, and BC Commands

in many directories. DB will search these directories after searching any directories
specified in srcdir commands.

DBSrc=\\c\dir1;\\c\dir2;\\c\dir3

SeHing DB's Context: the CIX Command 6.6

DB is always focused on some area of the program that you are debugging. This
focus is called the context. The context includes:

• A task ID (the current task) and its current code addresss.

• A stack frame of a currently active function call (the current call).

• A name scope in which to look up identifiers (the current scope).

The ctx command sets DB's context. DB suspends the task and sets the current
call and current scope, based on the task's current code address.

To set the context to a particular task, type the following. (DB's tl command lists all
tasks.) When you set DB's context to a given task, DB's prompt changes to include the
process name and ID of that task. In this example, 'go-calculator-vi (0) "[iJis DB's
name for the process, and 0508 is PenPoint's task ID.

>0508 etx
"go-calculator-v1(0) "[1] 0508>

To set the context to the executable module for the Calculator, enter the
following. DB will be set to the context of the CALC.EXE module. This makes the
set of identifiers in the module the currently available ids.

>etx Deale.exeD

To see the current lexical scope, enter the ctx command with no parameters.

,.. Breakpoints: the BP, BL, and BC Commands 6.'1

Setting a breakpoint at an instruction halts execution when that instruction is hit.
Then you can examine the variables and CPU registers to see what your program

has been doing up to that point.

With PenPoint's multitasking environment, multiple tasks may simultaneously
execute the same code. By default, DB sets breakpoints so that they affect all tasks,
but you can restrict a breakpoint so that it only affects a specified set of tasks.

The hp command sets a breakpoint. This example sets a breakpoint at the entry
point of CalcEngineEnterOperator:

>bp CalcEngineEriterOperator

The hI command lists all breakpoints. The listing shows which tasks will be
trapped at the breakpoint (in the square brackets), and then shows the location of
the breakpoint.

>bl
1: [*] BP CalcEngineEnterOperator.@381

74 PENPOINT DEVELOPMENT TOOLS
Part 2 I Debugging Pen point Applications

Mter setting a breakpoint, enter the g command to resume execution.

>g

When a breakpoint is hit, DB suspends the task and displays the following
information. The first line shows which task hit the breakpoint. The second line
displays the source code line on which the breakpoint was set. This is the
instruction that is about to be executed.

00508 P "go-calculator-v1 (0)" [1] 1.272 1: BP
381» P_CALC_ENGINE_DATA plnst = *pData; II Reduce dereferences.

You can also set a breakpoint at a specific line of source code, as follows. If you do
not qualify the line number with a file name or a routine name, DB will try to use
the file containing the current source line.

"go-calculator-v1(0)"[1] 0508>bp @381
"go-calculator-v1(0)"[1] 0508>bp ncalceng.cn.@381

A breakpoint can be cleared with the be command.

Viewing the Call Stack: the SI Co and 6.8

You can examine a task's call stack with the st command. The call stack maintains
local variables and parameters as your program moves from one scope to another.

"go-calculator-v1(0) "[1] 0508>st
%1 >
CalcEngineEnterOperator(

msg: 25170108, self: 01ad103fb, pArgs: 043444c, ctx: 0432be8,
pData: 043fe93cc)

%2 ObjectCall [msgCalcEngineEnterOperator [dyn 1ad103fb] 043444c 0
%3
CalcEngineProcessKey(

mS9: 8392892, self: 01ad103fb, pArgs: 043444c, ctx: 0432c48,
pData: 043fe93cc)

%4 ObjectCall [msgCalcEngineProcessKey [dyn 1ad103fb] 043444c 043a478d5
%5
CalcAppButtonNotify(

msg: 117440616, self: 01ac403e5, pArgs: 05, ctx: 0432caO, pData: 043fe8cb2)
%6 ObjectCall [msgButtonNotify [dyn 1ac403e5] 05 01ad90402]
%7 ButtonNotifyClient [01ad90402 043fe99bO 0432d98 0409bc610
%8 CallMethod [07000068 01ad90402 0432d98 0432d60]

The sequence begins with the top of the stack and then lists the stack back to its
base. Repeated st commands show more of the stack.

The names of functions are displayed along with the values of the parameters that
were passed to them at the time of the call (shown in parentheses). Local variables
are listed in the line above the function description, indented and surrounded
with curly braces.

The hexadecimal numbers displayed between square brackets (in frames %4, %6,
%7, and %8) are the values of variables of functions in modules for which there is
no symbolic debugging information.

CHAPTER 6 I USING DB 75
Examining and Setting Values

'r Frame Numbers and the CTX Command

You can use the frame numbers displayed by the st command as parameters to the
etx command.

"go-calculator-v1(0)"[1] OS48>ctx %3
"go-calculator-v1(0)"[1] OS48>ctx
%3 "calc.dll"."calceng.obj".CalcEngineProcessKey."calceng.c".@482

You can use the ctx top command to get back to the top of the call stack.

~ Examining and SeHing Values
DB has several commands to examine and set variables, and to evaluate
expressions.

The? (Evaluate) Command

DB's? ("evaluate") command evaluates a C expression and prints the resulting
value.

"go-calculator-v1(0)"[1] OS08>?pArgs->buf
043444e

The? command can display values in several different formats.

"go-calculator-v1(0)"[1] OS08>?pArgs->buf
043444e
"go-calculator-v1(0)"[1] OS08>?pArgs->buf,s
"6"
"go-calculator-v1(0)"[1] OS08>?pArgs->buf,x
043444e
"go-calculator-v1(0)"[1] OS08>?pArgs->buf,d
4408398
"go-calculator-v1(0)"[1] OS 0 8>?pArgs->buf [0]
S4
"go-calculator-v1(0)"[1] OS08>?pArgs->buf[0],c
, 6'

The? command can be used to structures as well as variables and constants.

"go-calculator-v1 (0) "[1] OS.08>?pData
043fe93cc
"go-:-calculator-v1(O)"[1] OS08>?*pData
043474c
"go-calculator-v1(0)"[1] OS08>?**pData

{

xValue: 1.12S000; yValue: 77.000000; pendingOp: S;
keysSeen: {O, SS, 0, 0, 0, ... 0, 0, 0, 0, a}; numberEntered: 1i
calcError: Oi}

In this example, DB displays the address for the entry point of a function.

>? CalcEngineEnterOperator
043a1c7b8

The? command can also set values. Simply put the variable on the left-hand side
of a replacement operator (=) and supply a valid expression on the right-hand
side.his example changes the first element in the buffer from the value of "6" to
the value of"7."

6.8.1

6.9

6.9.1

76 PENPOINT DEVELOPMENT TOOLS
Part 2 I Debugging Penpoint Applications

"go-calculator-v1(0)" [1] 0508>?pArqs->buf[O],c
, 6'

"go-calculator-v1(0) "[1] 0508>?pArqs->buf[O] = '7'
55
"go-calculator-v1(0)"[1] 0508>?pArqs->buf[O],c
, 7'

"" Known Identifiers: the IDS command
The ids command lists the identifiers that are "knovvn" or visible in the current
context. These identifiers can be used to set breakpoints, change the value of
variables under DB control, and pinpoint locations in the source code that you
would like to view.

"go-calculator-v1(0)"[1] 0508>ctx U
"go-calculator-v1(0)"[1] 0508>ids
{ (vars) plnst result s}
{ (params) msg self pArgs ctx pData}
{ }

{ (tags) CALC_ENGINE_DATA CALC_ENGINE_NEW CALC_ENGINE_TOKEN OBJ RESTORE
OBJ_SAVE OBJECT_NEW (vars) clsCalcEngineTable (functions) _8087
CalcEngineAppendCharToToken CalcEngineDump CalcEngineEnterNumber
CalcEngineEnterOperator CalcEngineEvalBinary CalcEngineEvalUnary
CalcEngineFree CalcEnginelnit CalcEngineProcessKey CalcEngineRestore
CalcEngineSave CalcEngineSaveValue CalcEngineUpdateToken DllMain}
"go-calculator-v1(0)"[1] 0548>ids %3
{ (vars) s}
{ (params) msg self pArgs ctx pData}

Identifier Types: the TYPE Command
DB's type command displays the type of its parameter. If the parameter is a
structure, type also displays the type of each field.

"go-calculator-v1(0)"[1] 0508>type self
ptr to void
"go-calculator-v1(0)"[1] 0508>type pArgs
ptr to struct CALC_ENGINE_TOKEN
"go-calculator-v1(0) "[1] 0508>type pData
ptr to ptr to struct CALC_ENGINE_DATA
"go-calculator-v1(0) "[1] 0508>type *pData
ptr to struct CALC_ENGINE_DATA .
"go-calculator-v1(0) "[1] 0508>type **pData
struct CALC_ENGINE_DATA {

xValue: double; yValue: double; pendingOp: short; keysSeen:

6.9.2

6.9.3

array [30] of unsigned char; numberEntered: short; calcError: short;}

In this example, type displays the type of a function:

>type CalcEngineEnterOperator
function (

msg: long, self: ptr to void, pArgs: ptr to struct CALC_ENGINE_TOKEN, ctx:
ptr to void, pData: ptr to ptr to struct CALC_ENGINE_DATA, ...)

returning long

CHAPTER 6 / USING DB 77
Viewing ,Source Code: the V Command

Lexical Scope

The "scope" of identifiers follow the conventions of the C programming language.
While in the context of a function, you cannot directly examine the state of
variables in another function. Similarly, variables defined within a program block
(surrounded by curly braces) are not visible outside of that block.

You can use full Scope.Identifier specification to examine the state of variables
that are outside the current DB context. This is discussed in Section 7.2.6.

Single-Stepping: the p, P, t, and ,
Commands
DB provides four commands that allow you to single-step the execution of a
program on a statement-by-statement basis:

p Single-steps through source statements, passing over called routines.

P Single-steps through assembly instructions, passing over called routines.

t Single-steps through source statements, stepping into called routines.

T Single-steps through assembly instructions, stepping into called routines.

Viewing Source Code: the V Command
The v command displays the source code of a program. You can display the source
line that is just about to be executed. You can move around in the source files
using function declarators, memory addresses, and line numbers to specify which
section of the source code to display.

Before viewing source code, you must tell DB which directory contains the source
code files. Use either the srcdir command or the DBSrc environment variable.
(See the description of the srcdir command in Chapter 7.)

With the source directory specified, you are ready to display the source code for
your program.

This example displays the source code of the beginning of the routine
CalcEngineEnterOperator.

>v CalcEngineEnterOperator
378 MsgHandlerWithTypes(CalcEngineEnterOperator, P_CALC_ENGINE_TOKEN, \
379 PP_CALC_ENGINE_DATA)
380
381
382
383
384
385

P_CALC_ENGINE_DATA plnst = *pData; II Reduce dereferences
double result;
STATUS s;

if (pArgs->key == nop)

You can also directly specify an instruction memory address to the v command.
(See Chapter 7 for a description of the? command used in this example.)

78 PENPOINT DEVELOPMENT TOOLS
Part 2 / Debugging Pen point Applications

>? CalcEngineEnterOperator
043a1c7b8
>v 043alc7b8

376 *1
377
378 MsgHandlerWithTypes(CalcEngineEnterOperator, P_CALC_ENGINE_TOKEN, \
379 PP_CALC_ENGINE_DATA)
380
381 P_CALC_ENGINE DATA pInst *pDatai II Reduce dereferences
382 double resulti
383 STATUS Si

You can also specify a line number to be viewed. (By default the v command
displays lines on either side of the line number requested. See the Datasheet for
complete information.)

"go-calculator-v1(0)"[1] 0508>v @204F255D
201 {
202 U16 leni
203
204 len = strlen(pInst->keysSeen)i
205
206 if (len >= maxDigits-1)
207 returni
208

Whenever DB returns from executing statements, you can display the code that is
pending execution with the v and no parameters:

"go-calculator-v1(0) "[1] 0508>v
378 MsgHandlerWithTypes(CalcEngineEnterOperator, P_CALC_ENGINE_TOKEN, \
379 PP_CALC_ENGINE_DATA)
380
377»
381
382
383
384

P CALC ENGINE DATA pInst *pDatai II Reduce dereferences
double resulti
STATUS Si

if (pArgs->key == nop)

Repeating the v command displays the next several lines of source code. In this
way you can page down through a source file.

,rViewing Assembly Code: the U Command 6.12

The u command displays the assembly code of a program. Variables are displayed
as addresses and constants are displayed as the values themselves. The following
command displays assembly code starting at the address indicated by the identifier
CalcEngineEnterOperator.

>u CalcEngineEnterOperator
43A1C7B8 55 PUSH EBP
43A1C7B9 89 E5 MOV EBP, ESP
43A1C7BB 83 EC 10 SUB ESP, 16
43A1C7BE 8B 45 18 MOV EAX, DWORD PTR [EBP+24{pData}]
43A1C7C1 8B 00 MOV EAX, DWORD PTR [EAX]
43A1C7C3 89 45 FC MOV DWORD PTR [EBP-4{pInst}], EAX
43A1C7C6 8B 45 10 MOV EAX, DWORD PTR [EBP+16{pArgs}]
43A1C7C9 66 83 38 00 CMF WORD PTR [EAX], 0
43A1C7CD 75 05 JNZ 043A1C7D4{CalcEngineEnterOperator.@385}
43A1C7CF E9 AD 01 00 00 JMP 043A1C981{CalcEngineEnterOperator.@426}

CHAPTER 6 I USING DB 79

If you do not specify an address, DB starts from where it left off in the previous u
command.

You can also specify an address directly:

>? CalcEngineEnterOperator
043a1c7b8
>u 043alc7b8
43A1C7B8 55
43A1C7B9 89 E5
43A1C7BB 83 EC 10
43A1C7BE 8B 45 18
43A1C7C1 8B 00
43A1C7C3 89 45 FC
43A1C7C6 8B 45 10

PUSH
MOV
SUB
MOV
MOV
MOV
MOV

EBP
EBP, ESP
ESP, 16
EAX, DWORD PTR [EBP+24{pData}]
EAX, DWORD PTR [EAX]
DWORD PTR [EBP-4{plnst}], EAX
EAX, DWORD PTR [EBP+16{pArgs}]

Executing C Code

43A1C7C9 66 83 38
43A1C7CD 75 05
43A1C7CF E9 AD 01

00

00 00

CMF
JNZ
JMP

WORD PTR [EAX], 0
043A1C7D4{CalcEngineEnterOperator.@385}
043A1C981{CalcEngineEnterOperator.@426}

,.. Executing C Code
DB includes a C language interpreter which can interactively execute code during
a debugging session.

With the interpreter, DB can also use C expressions to represent addresses and
variables.

When interpreting DB commands, the! command causes DB to switch to
interpreting C code. Conversely, when interpreting C code, the ! command causes
the C interpreter to interpret the next statement as a DB command.

,.,.. Executing Code at the DB Prompt

This example executes C code which changes an array of values. The! command is
used to enter C declarations and statements. .

"go-calculator-v1(0) "[1] 0508>!int i;

6.13

6.13.1

"go-calculator-v1(0) "[1] 0508>!for (i=O; i<4; i++) (*pData)->keysSeen[i] = '7';
"go-calculator-v1(0) "[1] 0508>? (*pData)->keysSeen,s
"7777"

,.,.. Executing Code at a Breakpoint

You can specify code to be executed when a breakpoint is hit.

>bp CalcEngineEvalBinary {
} printf (nop=%d opnd2=%f\n", op, opnd2) ;
} if «op==5) && (opnd2==O.O» {
} printf(ngot divide by zero!\nn);
} !break;
} }
}}
>g

Notice that the break command in the if-statement is prefixed with the!
command; this tells the C interpreter that the following command is a DB
command rather than C code.

6.13.2

80 PENPOINT DEVELOPMENT TOOLS

Part 2 / Debugging Penpoint Applications

Also notice that while we're entering C code into a block delimited by braces ({
and}), DB's prompt changes from a greater-than sign (» to a brace en.
Now when the Calculator's buttons are tapped, the breakpoint is hit and DB
executes the code inside the curly braces of the bp command. The printf statement
prints out the current value for some variables. The break command returns
control to the DB prompt.

op=5 opnd2=9.000000
op=2 opnd2=6.000000
op=4 opnd2=3.000000
op=3 opnd2=9.000000
op=5 opnd2=.000000
got divide by zero!

00508 P "go-calculator-v1(0)"[1]
80» STATUS s = stsOK;

>

",. Task List: the IL Command
To see the list of all tasks, issue this command:

>tl
00508 P "go-calculator-v1(0)"[1]
004e8 P "go-nbtoc-v1"[1]
004d8 P "go-nbapp-v1"[1]
004c8 P "go-dtapp-v1"[1]
004b8 P "go-calculator-v1(0)"[0]
004a8 P "go-calc_eng-v1(0)"[0]

002e8 P "go-settings_init-v1"[0]
002a8 P "go-settings-v1"[0]
00288 P "go-rninitext-v1"[0]
00268 P "go-notepaperapp-v1"[0]
00258 P "go-notepaper-v1(0)"[0]
00238 P "go-nbapp-v1" [0]
00218 P "go-nbtoc-v1"[0]
00lt8 P "go-sectapp-v1"[0]

3.199 1: BP

.744 Msg

.909 Msg

.942 Msg
1.129 Msg

.155 Msg
.007 Msg

.116 Msg

.295 Msg

.373 Msg

.200 Msg

.041 Msg

.125 Msg

.127 Msg

.169 Msg

The process names that are followed by a zero in square brackets ([0]) are the
application monitor processes for the installed application. The process names that
are followed by numbers greater than zero in square brackets (such as [1] and [2])
are the processes associated with active documents.

Saving Typing
DB provides several ways to save typing common commands.

DB.INI File
At system start-up time, DB looks for a startup file; if it finds one, it reads
commands from the file. You can use the startup file to store a startup sequence
for your debugging session, accelerating the debugging part of a edit-compile
debug cycle.

6.14

CHAPTER 6 I USING DB 81
DB and Memory Use

DB first looks for the DBINI environment variable in \PENPOINT\BOOT\

ENVIRON.lNI:

DBINI=\\c\mydir\mydb.ini

IfDBINI is not defined, DB looks for \PENPOINT\BOOT\DB.lNI and runs it ifit
exists. If DB doesn't find a DB.INI, it returns control to PenPoint (it acts as if a
user typed a "g" command).

". Using DB Scripts
You can use the < command to read a file that contains DB commands. For
example, you could create a DOS file \GO\CALC\SCRIPT.DB that contains the
following lines:

sym "calculator"
sym "calc eng"
srcdir "calc eng" \\c\penpoint\sdk\sample\calc
srcdir "calculator" \\c\penpoint\sdk\sample\calc

Then all you have to do is enter the following command when you want to link
the symbolic debugging information into your DB session:

>< \\c\go\calc\script.db

". Command Line Editing
You can edit DB command lines with these keys: 8, 8, I Home I, I End I, @ill, and
~. You can use the I Esc 1 key to cancel the entire command. The "cursor" is
shown as a tiny dot.

The up and down arrow keys recall previous commands, which can be edited, if
necessary.

,.. DB anel Memory Use
The symbolic debugging information used by DB consume~ memory. Combined
with the overhead for DB itself, your program may run into memory constraints.

". Checking Available Memory: the MI Command
You can check on available memory with DB's mi command.

Eliminating Applications
To conserve memory, you can boot a reduced PenPoint configuration by removing
unneeded applications from \PENPOINT\BOOT\AIP.lNI. Once PenPoint is run
ning, you can delete documents and de-install or deactivate applications in the
usual manner.

6.15.2

6.15.3

6.16

6.16.1

6.16.2

82 PENPOINT DEVELOPMENT TOOLS

Part 2 I Debugging Penpoint Applications

". Loading Partial Symbolic Debugging Information
Using the compiler's /D2 switch and the linker's DEBUG ALL switch produces a
lot of debugging information; DB may not have enough memory to read it all. To
get around this, the sym command has an optional form.

The following command will load full symbolic debugging information for
objl.obj and obj2.obj, but only line numbers and global identifiers for the rest of
the module's object files.

>sym "myappn (Objl,obj2)

The following command, with no files listed between the parentheses, loads only
line numbers and global identifiers for all object files in the module:

>sym "myappn ()

See the Datasheet for the sym command for details.

". Using DB to Senel Messages
You can ask DB to have current task execute ObjectCall, ObjectCallAncestor,
ObjectSend, ObjectSendUpdate, ObjectPost or ObjectPostAsync by using those
functions in a DB ? command. For instance:

> ?ObjectCall(msg, object, 0)

6.16.3

6.11

". String Names for Messages, Obiects, anel 6.18

Statuses
You can "encode" a PenPoint message, object/class, or status name within any DB
expression with the construct

[msglobjlsts <name>]

For instance, the following will send msgDump to theProcess.

> ?ObjectCall([msg msgDump], [obj theProcess], 0)

If you have loaded the class manager symbols, DB can interpret PenPoint message,
object, class, and status identifiers. Thus you could enter the previous command as:

> ?ObjectCall(msgDump, theProcess, 0)

".Watching Memory: the ON ACCESS anel ON
SIORE Commanels
You can use DB's on command to interrupt execution when memory locations are
read or written. There are two variations that are useful for watching memory:

on store lvalue This variation breaks to DB when the memory
specified by lvalue is written.

on access lvalue This variation breaks to DB when the memory
specified by lvalue is read or written.

6.19

There are several other
variations of the on command.
See Section 9.5 for more
information.

CHAPTER 6 I USING DB 83

Watching Memory: the ON ACCESS and ON STORE Commands

An lvalue is typically a variable name, although it can also be any expression
referencing a region of storage. For a complete definition oflvalues, see any good
reference book on the C programming language, such as The C Programming
Language by Kernighan and Ritchie.

In the following example, assume that you have taken a breakpoint at the routine
CalcEngineEnterOperator and that you decide that you need to break whenever
the value of (*pData)->numberEntered changed.

"go-calculator-v1(0) "[1] 0508>?**pData
{

xValue: 3.092736e-14; yValue: 3.092736e-14; pendingOp: 5;
keysSeen: {O, 55, 0, 55, 56, ... 0, 0, 0, 0, OJ; numberEntered: 0;
calcError: O;}

"go-calculator-v1(0)"[1] 0508>on store (*pData)->numberEntered
"go-calculator-v1(0) " [1] 0508>bl

1: [*] on Store [target task 0508 logAddr 43477C] 1 2 { }

Execution will halt immediately after (*pData)->numberEntered has been written;
you may have to give the v b command to display the previous source code.

00508 P "go-calculator-v1(0)"[1]
430» return stsOK;

"go-calculator-v1(0) "[1] 0508>v
427
428
429
430»
431
432
433
434

return stsOK;
MsgHandlerParametersNoWarning;

/* CalcEngineEnterOperator */

"go-calculator-v1(0) "[1] 0508>v b

1. 948 1: Store

419 Dbg(if (s != stsCalcEngineComputeError) StsWarn(s);)
420 return s;
421
422
423
424

plnst->pendingOp = nop;
CalcEngineSaveValue(result, pArgs, plnst);

425 plnst->pendingOp = pArgs->key;
426 plnst->numberEntered = false;

"go-calculator-v1(0) "[1] 0508>g
00508 P "go-calculator-v1(0)"[1]
366» return stsOK;

"go-calculator-v1(0) "[1] 0508>v
363 CalcEngineSaveValue(pArgs->value,
364 (*pData)->numberEntered = true;
365
366»
367
368
369
370

return stsOK;
MsgHandlerParametersNoWarning;

/* CalcEngineEnterNumber */

2.106 1: Store

pArgs, *pData);

84 PEN POINT DEVELOPMENT TOOLS
Part 2 / Debugging Penpoint Applications

If you want to break whenever memory is either read or written, use on access.

"go-calculator-v1(0)"[1] 0508>on access (*pData)->numberEntered
"go-calculator-v1(0)"[1] 0508>bl

1: [*] on Access [target task 0508 logAddr 43477C] 1 2 { }

Now execution will halt whenever the location is read or written. For example,
notice that the calculator application now stops at line 416:

"go-calculator-v1(0)"[1] 0508>g
00508 P "go-calculator-v1(0)"[1] 2.302 1: Access

416» if ((plnst->pendingOp != nop) AND (plnst->numberEntered))

These two commands can operate on raw memory addresses as well as on
variables. As examples, you may want to use a raw address if you need to watch
allocated memory or if you're debugging a module without symbolic debugging
information. In the following example, we'll compute the address to watch.

"go-calculator-v1(0)"[1] 0508>? &((*pData)->numberEntered)
043477c
"go-calculator-v1(0)"[1] 0508>type (*pData)->numberEntered
short
"go-calculator-v1(0)"[1] 0508>on access *(short *)043477c

Events that Activate DB
There are three circumstances which lead to the DB prompt appearing:

• If the user types DB's Pause key.

• If any task experiences a fault, such as a page fault or divide by zero.

• If any code calls the Debugger PenPoint function.

Jr Exiting DB and PenPoint
To exit DB and PenPoint, enter the q command at the DB prompt:

>q

6,20

6.21

Chapter 7 / DB Command Reference

This chapter describes the commands that you can enter at the DB prompt.

Most of the command descriptions are accompanied by examples of command
usage. Be aware that the line numbers that appear in these examples might not
match line numbers that you see while examining the same sample application.

Command Summary
Table 7-1 lists many of DB's commands in functional categories.

ctx

tl

ti

g

P

P
T

t

q

bp

bl

bc

on

bd

be

d (db, dw, dd)

u

uv

Selects the current task and sets DB's lexical scope.

Display PenPoint's task list.

Display information about a task.

Resumes PenPoint execution.

IExecution Control Commcmd5

Single-steps assembly instructions, passing over called routines.

Single-steps source statements, passing over called routines.

Single-steps assembly instructions, stepping into called routines.

Single-steps source statements, stepping into called routines.

Quits DB.

Sets a breakpoint.

Lists breakpoints.

Clears the specified breakpoint.

Creates a "handler" for specified events.

Disables the specified breakpoint.

Enables the specified breakpoint.

Switches the interpreter from DB commands to C code, or vice-versa.

Evaluates and/or assigns a C expression.

Displays memory contents.

Displays assembly code.

Displays assembly code with interspersed source code.

86 PEN POINT DEVELOPMENT TOOLS
Part 2 I Debugging Penpoint Applications

Table 7-1 (continued)

Command i)e$cription

v Displays source code.

vu

st

Displays source code with interspersed assembly language statements.

Display the call stack.

r

al

ids

fns

vars

id

type

cm, co, cs

srcdir

sym

<

files

Displays the registers.

Displays address information.

Displays the identifiers known in a scope.

Displays the functions known in a scope.

Displays variables known in a scope.

Displays the type and declaration information for an identifier.

Displays type that a C expression evaluates to.

Converts messages, objects, and statuses into their string formats.

Tells DB where to find source files for a module.

Loads symbolic debugging information into memory.

Reads a file as input for DB.

Displays the HIes associated with a scope.

file Commands

1Il' .. ,,,,tilinn Commands

profile

dp

zp

fl

fs

ver

h

log

ml

mml

od

break

Creates a profile breakpoint.

Displays profile data.

Clears profile data.

Lists values of debugging flags.

Sets values of debugging flags.

Displays DB's version.

Displays help on DB commands and topics.

Starts and stops logging.

Displays memory information.

Enters PenPoint's mini-debugger.

Sends msgDump to an object.

Returns control to the DB prompt.

Notation Conventions
This chapter uses the notation conventions described in the next few sections.

Scope Specification (scopeSpec)
A scope specification (or scopeSpec) specifies a position in a task's stack. Changing
the scope shi&s the lexical scope for DB within the task. When examining
variables, you will see values for the current scope.

7.2.1

CHAPTER 7 I DB COMMAND REFERENCE 87
Notation Conventions

A scopeSpec takes the following forms:

[{into I outto} .] { functionName
filename
programName
scopeName
@ lineNumber
, stackFrameNumber}

or a string of the following elements separated by periods (to cause multiple moves
into or out of a scope level):

top I in lout I inb I outb

Table 7·2
Sc ecification

Usage

outto

functionName

fIlename

Causes DB to move in to the scope of the function or line number after the dot.

Causes DB to move out to the scope of the function or line number after the dot.

A function available in the current scope.

A me name established with the srcdir and v commands, or the name of a loaded
module (with fIle extension).

programName

scopeName

The name of a load module. (These names are listed by the sym command.)

The name of a scope.

%stack frame number

@lineNumber

The number for a scope shown by the st command.

A line number in the source me associated with the current scope. The "@" is required.

top

in

out

inb

outb

(The v command shows the assignment of line numbers to source mes.)

Positions DB at the top of a task's call stack (the innermost scope).

Move "in" one CALL on the stack.

Move "out" one CALL on the stack.

Move in one lexical block.

Move out one lexical block.

For example, a scopeSpec is supplied to the ctx command (described elsewhere).
The following commands change the scope of the current task:

"go-calculator-v1(O)"[l) 0508>ctx outto.CalcEngineProcessKey
"go-calculator-v1(O)"[l) 0508>ctx
%4 "calc.dll"."calceng.obj".CalcEngineProcessKey."calceng.c".@478
"go-calculator-v1(O)"[l) 0508>ctx in
"go-calculator-v1(O)"[l) 0508>ctx
%3 go-kerne13-VO(1) .Ol:06bea
"go-calculator-v1(O)"[l) 0508>ctx out
"go-calculator-v1(O)"[l) 0508>ctx
%4 "calc.dll"."calceng.obj".CalcEngineProcessKey."calceng.c".@478
"go-calculator-v1(O)"[l) 0508>ctx top
"go-calculator-v1(O)"[l) 0508>ctx
%1 "calc.dll"."calceng.obj".CalcEngineEvalBinary."calceng.c".@76

88 PENPOINT DEVELOPMENT TOOLS
Part 2 I Debugging Pen point Applications

Line Count (/ineCount)

Several DB commands (for instance, v and u) take an optional parameter known
as a lineCount. The line count controls how many lines are displayed, and where
the display of lines starts.

[a I b I 1] [count]

count The number of lines to be displayed.

a ''Around.'' The command displays 1/2 of count lines before the target
and 112 after.

b "Before." The command displays count lines up to and including the
target.

I "List." The command displays count lines starting at the target.

Code Addresses

A codeAddress is:

• A C function identifier.

• A line number.

• A literal address specification.

• Any C expression that yields a function pointer ...

For example, the g command can optionally set a temporary breakpoint at the
code address of a routine and then let execution proceed up to that point:

>g CalcEngineEvalBinary

Data Addresses

A dataAddress is:

• A C pointer variable identifier.

• A literal address specification.

• A C expression that yields a pointer.

Line Numbers

A line number is expressed by the @ sign followed by a decimal literal. If the line
number is not qualified, DB takes the line to be in the same file as the current
source position.

You can qualify the line number with a scopeSpec, for example "calc. c".@104
orSomeRoutine.@104.

IIScope.ldentifier" Referencing

An identifier outside of the current scope can be referenced with a Scope.Identifier

reference. The reference consists of a scopeSpec followed by a period followed by
an identifier. For example:

7.2.2

7.2.3

7.2.4

7.2.5

7.2.6

CHAPTER 7 I DB COMMAND REFERENCE 89
Command Datasheets

"calceng"."calceng.obj".CalcEngineEvalBinary

references the function CalcEngineEvalBinary as it occurs in the scope of its
load module " calc_eng. " This reference can occur anywhere that a standard C

identifier can.

".. Task Set (taskSet) 1.2.1

Many DB commands operate on a set of tasks, or taskSet. A task set is one or

more task IDs. If necessary, a task set can be syntactically distinguished from a

command by enclosing the task set in square brackets.

There are several ways to specify a task set; most DB users will only need the first

two or three forms.

Entry

taskId

*

taskId *
taskSet +/- taskSet

Explanation

a single task

all tasks

the current task

all the tasks in the specified task's parent process

union or difference of two taskSets

Table 1-3
a Task Set

"progName"

"progName" [instanceN umber]

"#taskName"

the program name bound to a .EXE or .DLL module, as listed by the tl command

an instance of an .EXE as listed by tl

a task name, as set by the OSTaskNameSetO function

COlllllland Datasheets
This section contains a complete reference data sheet for each of the DB

commands. Each datasheet explains all the arguments in a command, and
examples of usage are given. The commands are listed alphabetically.

Syntax

Examples

Remarks

Switches the interpreter from DB commands to C code, or vice-versa.

Ceode

C code Any legal C declaration or statement.

> !typedef int LENGTH;
> !LENGTH maxlen;
> !maxlen = 2;

The! operator can be used to declare new data.

1.3

The! operator can also be used to escape to a DB command where DB is expecting a C statement.

--Refer to Section 6.13.

.90 PEN POINT DEVELOPMENT TOOLS

Syntax

Examples

Remarks

Syntax

Examples

Part 2 I Debugging Pen point Applications

<
Reads a file as input for DB. The file should contain DB commands or C code.

< filename

filename A PenPoint file name.

> < script.db

If the filename ends in ee.c" the file is treated as C code; otherwise it is treated as a collection of DB

commands.

Evaluates a C expression and prints the resulting value. It can also assign a value to a variable.

? C-expression [,Jmt]
? C-expression = C-expression

C-expression Any expression that can be evaluated within the current context. Identifiers that are

outside the current scope can be used, but ~ust be qualified as described in Section 7.2.6.
Identifiers from another task cannot be referenced. Identifiers from an inner scope cannot be

referenced.

fmt Optionally tells DB how to format the value. Whenfmtis used, the comma is required. If the
value of the expression is a struct, a string of format characters may be specified, one for each

element. These formats are allowed:

d displays a decimal value

x displays a hex value

p displays a pointer

s displays a string

c displays a character

"go-calculator-v1(0) "[1] 0508>?pArgs->buf
043444e
"go-calculator-v1(0) "[1] 0508>?pArgs->buf,s
"6"
"go-calculator-v1(0) "[1] 0508>?pArgs->buf,x
043444e
"go-calculator-v1(0)"[l] 0508>?pArgs->buf,d
4408398
"go-calculator-v1(0) "[1] 0508>?pArqs->buf,s
"6"

"go-calculator-v1(0) "[1] 0508>?pArgs->buf[O]
54
"go-calculator-v1(0) "[1] 0508>?pArqs->buf[O],c
, 6'

Remarks

CHAPTER 7 / DB COMMAND REFERENCE 91

"go-calculator-v1(0)"[1] OSOS>?pData
043fe93cc
"go-calculator-v1(0)"[1] OSOS>?*pData
043474c
"go-calculator-v1(0) "[1] OSOS>?**pData

{

xValue: 1.125000; yValue: 77.000000; pendingOp: 5;

Command Datasheets

keysSeen: {O, 55, 0, 0, 0, ... 0, 0, 0, 0, OJ; numberEntered: 1;
calcError: O;l

"go-calculator-v1(0) "[1] 05 OS>? CalcEngineEnterOperator
043a1c7bS

"go-calculator-v1(0)"[1] OSOS>?pArgs->buf[O],c
, 6'
"go-calculator-v1(0)"[1] OSOS>?pArgs->buf[O] = '7'
55
"go-calculator-v1(0) "[1] OSOS>?pArgs->buf[O],c
, 7'

If the value being printed by ? is a structure, fmt can be a string to specify formats for the structure

members.

ai
Displays address information.

ai dataAddress

dataAddress A data address as described in Section 7.2.4.

"go-calculator-v1(0) "[1] OSOS>ai pArgs
task OSOS 000434000 .. 000437fff user private rw offset 044c

bgNc
Clears the specified breakpoint.

be { breakpoint I * }
breakpoint DB's breakpoint number as displayed by the hi command.

* all breakpoints.

Clears breakpoint 2.

>bc 2

Clears all breakpoints.

>bc *

The bc command permanently clears a breakpoint; see the hd command for a discussion of how to

temporarily disable breakpoints.

92 PENPOINT DEVELOPMENT TOOLS

Syntax

Examples

Remarks

Syntax

Remarks

Syntax

Examples

Remarks

Part 2 I Debugging Penpoint Applications

hd
Temporarily disables the specified breakpoint.

bd { breakpoint I * }
breakpoint DB's breakpoint number as displayed by the bi command.

* all breakpoints.

In the following example, notice how the disabled breakpoint is displayed by the bi command.

>bp CalcEnginelvalBinary
>bp CalcEnginelnterNumber
>bd 1
>bl

1: [*] BP (disabled) CalcEnqineEvalBinary.@76
2: [*] BP CalcEnqineEnterNumber.@359

The bd command temporarily disables one or all breakpoints. This is particularly useful if you've set up
complex breakpoints that you'd like to temporarily disable without having to re-enter them again later.

If breakpoint is a profile breakpoint, bd stops accumulating execution data, but retains its current data.

See the zp command for information about clearing data.

See the bc command for a discussion of how to permanently remove breakpoints.

See the be command for a discussion of how to re-enable breakpoints.

he
Enables the specified breakpoint.

be { breakpoint I * }
breakpoint . DB's breakpoint number as displayed by the bi command.

* all breakpoints.

See the bd command for a discussion of how to disable breakpoints.

hI
Lists breakpoints.

bl

>bp CalclnginelvalBinary
>. bp CalcEnqinelnterNumber
>profile +0 CalcEnginelvalUnary
>bl

1: [*] BP CalcEnqineEvalBinary.@80
2: [0508] BP CalcEnqineEnterNumber.@363
3: [*] Profile +c qo-calc_enq-V1(0) 1.2aa:call

The bi command lists breakpoints set with the bp or profile commands.

Technically, bilists all event handlers. Breakpoints and profiles are by far the most common event
handlers. -See the discussions of the on, on access and on store commands for descriptions of other
event handlers.

Syntax

Examples

Syntax

Examples

CHAPTER 7 I DB COMMAND REFERENCE 93

Command Datasheets

bp
Sets a breakpoint.

[taskSet] bp codeAddress [eventAction]

taskSet A task set as described in Section 7.2.7. Defaults to all tasks.

codeAddress The address for the breakpoint as described in Section 7.2.3.

even tAction C code to be executed when the breakpoint is hit.

This command sets a breakpoint at the entry point of a function for all tasks.

>bp CalcEngineEvalBinary

Sets a breakpoint at the entry point of a function in a single task.

>0508 bp CalcEngineEvalBinary

Sets a breakpoint at the instruction at specific code address for all tasks.

>bp 043a1c195

Sets a breakpoint at line 377 of the current source context.

>bp @377

Sets a breakpoint at the entry to CalcEngineEvalBinary. Whenever this breakpoint is hit, the contents of
the variables op and opnd2 are printed. Under the right conditions, control is returned to DB; otherwise
the program simply continues execution.

>bp CalcEngineEvalBinary{
} printf ("op=%d opnd2=%f\n", op, opnd2) ;
} if «op==5) && (opnd2==0. 0» {
} printf ("got divide by· zero! \n") ;
} !break;
}
} }

break
From C code, returns control to the DB prompt.

break

Normally, breakpoints with attached code do not pause; they simply continue program execution.
If you want to attach code but have the breakpoint stop program execution, use the break command
in the attached code.

>bp SomeRoutine {printf(n%s\nn, string); !break;}

94 PENPOINT DEVELOPMENT TOOLS
Part 2 / Debugging Penpoint Applications

em, eo, es
Converts messages, objects, and statuses into their string formats.

em expression

co expression

cs expression

expression An expression (of the appropriate type) to be converted.

>cs 0
stsOK
>cs 081000002
stsBadObject

ctx
Sets DB's context. Sets the current task and sets the lexical scope. When no parameters are specified, ctx

displays the current context.

[task/D] ctx [scopeSpec]

taskID A task ID as described in Section 7.2.7. If no taskSetis specified, the current task is
operated upon. The set of current task IDs is available via the d command.

scopeSpec A scopeSpec as defined in Section 7.2.1. Defaults to the top of the task's call stack.

All of the following examples assume that task 0508 has the following stack trace:

"go-calculator-vl(O)"[I] 0508>st
%1 >
CalcEngineEvalBinary(

opndl: 99.000000, op: 5, opnd2: 99.000000, pResult: 0432bbc)
%2
CalcEngineEnterOperator(

msg: 25170108, self: 01ad203fb, pArgs: 043444c, xxx: 0432be8,
pData: 043ff0608)

%3 ObjectCall [msgCalcEngineEnterOperator [dyn lad203fb] 043444c 0]
%4
CalcEngineProcessKey(

msg: 8392892, self: 01ad203fb, pArgs: 043444c, xxx: 0432c48,
pData: 043ff0608)

%5 ObjectCall [msgCalcEngineProcessKey [dyn lad203fb] 043444c 043a4c8d5)
%6
CalcAppButtonNotify(

msg: 117440616, self: 01ac503e5, pArgs: 05, xxx: 0432caO, pData: 043fefeee)
%7 ObjectCall [msgButtonNotify [dyn lac503e5] 05 01ada0402]
%8 ButtonNotifyClient [01ada0402 043ffObec 0432d98 0409bc610

Sets DB's context to a specific task. Note that DB's prompt changes.

>0508 ctx
"go-calculator-vl(O)"[I) 0508>

Remarks

Displays DB's current context.

"go-calculator-v1(0)" [1] 0508>ctx

CHAPTER 7 I DB COMMAND REFERENCE 95
Command Datasheets

%1 "calc.dll". "calceng.obj".CalcEngineEvalBinary. "calceng .c".@80

Causes DB to move out to the scope of CalcEngineEnterOperator.

"go-calculator-v1(0)"[1] 0508>ctx outto.CalcEngineEnterOperator
"go-calculator-v1(0) "[1] 0508>ctx
%2 "calc.dll". "calceng.obj".CalcEngineEnterOperator. "calcen g.c".@417

The following example move's DB context to the top of the stack and then out two stack frames. The
context is then moved in one stack frame.

"go-calculator-v1(0) "[1] 0508>ctx top
"go-calculator-v1(0) "[1] 0508>ctx out.out
"go-calculator-v1(0) "[1] 0508>ctx
%3 go-kerne13-VO(1) .01: 06bea
"go-calculator-v1(0)"[1] 0508>ctx in
"go-calculator-v1(0)"[1] 0508>ctx
%2 "calc.dll". "calceng.obj".CalcEngineEnterOperator. "calc eng.c".@417

The following move the context out the stack to the frame corresponding to CalcAppButtonNotify,

"go-calculator-v1(0) "[1] 0508>ctx outto.calcAppButtonNotify
"go-calculator-v1(0) "[1] 0508>ctx
%6 "calc.exe"."calcapp.obj".CalcAppButtonNotify."calcapp.c".@324

Causes DB to switch to the fourth stack frame.

"go-calculator-v1(0) "[1] 0548>ctx t4
"go-calculator-v1(0)"[1] 0548>ctx
%4 "calc.dll"."calceng.obj".CalcEngineProcessKey."calceng.c".@482

Causes DB to switch to the task 0508, and position to the top of that task's call stack.

> OS08ctx top

This variation of the context command makes the set of ids defined in the "calculator" module be the
set of ids currently visible. Notice that the prompt does not change. (See the Datasheet for the ids
command for more information.)

>ctx "calculator"
>ids
{ (tags) APP_NEW APP_NEW_ONLY APP_OPEN CALC_APP_DATA CALC_ENGINE_TOKEN
CLS SYM MSG CLS SYM OBJ CLS SYM STS FS LOCATOR OBJ RESTORE OBJ SAVE
OBJECT_NEW (vars) calcMsgSymbols calcObjSymbols calcStsSymbols
clsCalcAppTable (functions) CalcAppApplnit CalcAppButtonNotify CalcAppClose
CalcAppCreateButtons CalcAppCreateCalcWindow CalcAppCreateDisplayWindow
CalcAppDisplayString CalcAppFree CalcApplnit CalcAppLayoutButtons CalcAppOpen
CalcAppRestore CalcAppSave CalcSymbolslnit ClsCalcApplnit main}

When changing tasks, the ctx command changes DB's prompt so that it reflects the new task.

96 PENPOINT DEVELOPMENT TOOLS

Syntax

Examples

Remarks

Part 2 I Debugging Penpoint Applications

d, db, dw, dd
Display memory contents

d [b I wid] [dataAddress] [length]

d Display memory contents. Without one of the following options, defaults to the display format
of the previous d, db, dw, or dd command.

db Display memory contents as bytes.

dw Display memory contents as 2 byte words, which are displayed as four hexadecimal digits. DB
assumes the Intel reversed-word ordering-the most significant byte of the word comes second in
address space.

dd Display memory contents as 4 byte double-words, which are displayed as eight hexidecimal
digits. DB assumes the Intel reversed-word ordering for double-words and within 16-bit
words-the most significant word in the double-word comes second in address space.

dataAddress Start address for the display, as described in Section 7.2.4. If omitted, DB starts from
where it left off in the previous d, db, dw, or dd command.

length Number of bytes to display.

"go-calculator-v1(0) "[1] 0508>cIb pArgs
434440 05 00 31 00

30-30 AC 07 00 D8 05 04 A8
5F-07 00 C3 05 00 00 00 00
1A-FC 03 D4 1A FD 03 D5 1A
05-72 FA 02 EO

434450
434460
434470
434480

30 30 30 30 30 30 30
AC 07 00 CD 05 04 48
00 CO 58 40 FB 03 D2
FE 03 D6 1A AE AE 08

"go-calculator-v1(0) "[1] 0508>dw pArgs
434440 0005 0031
434450 3030 3030 3030 3030 AC30 0007 05D8 A804
434460 07AC CDOO 0405 5F48 0007 05C3 0000 0000
434470 COOO 4058 03FB 1AD2 03FC 1AD4 03FD 1AD5
434480 03FE 1AD6 AEAE 0508 FA72 E002
"go-calculator-v1(0) "[1] 0508>cid pArgs
434440 00310005
434450 30303030 30303030 0007AC30 A80405D8
434460 CD0007AC 5F480405 05C30007 00000000
434470 4058COOO 1AD203FB 1AD403FC 1AD503FD
434480 1AD603FE 0508AEAE E002FA72
"go-calculator-v1(0)"[1] 0508>d pArgs
434440 00310005
434450 30303030 30303030 0007AC30 A80405D8
434460 CD0007AC 5F480405 05C30007 00000000
434470 4058COOO 1AD203FB 1AD403FC 1AD503FD
434480 1AD603FE 0508AEAE E002FA72

dp
Displays profile data.

.. 1.
000000000, .. X .. (
, •• M •• H_ •• C •..•.
.@X@{.R.I.T.} .U.
~.v rz. \

See Chapter 8, which discusses profiling and the dp command in detail.

Syntax

Examples

Remarks

Syntax

CHAPTER 7 I DB COMMAND REFERENCE 97
Command Datasheets

files
Display the files associated with a scope.

files [seopeSpeel

scopeSpec A scopeSpec as defined in Section 7.2.1. If not specified, files displays all of the known
files.

>srcdir ncalc.dlln \\c\penpoint\sdk\sample\calc
>srcdir ncalc.exen \\c\penpoint\sdk\sample\calc
>files
"calc.dll"
"calc.dll". "cengmeth.obj" (obj)
"calc.dll". "calceng .obj" (obj)
"calc.dll"."calceng.obj"."calceng.c" (src) in \\c\penpoint\sdk\sample\calc
"calc.dll". "apprefs .obj" (obj)
"calc.exe"
"calc.exe". "cappmeth.obj" (obj)
"calc.exe". "calcapp.obj" (obj)
"calc.exe"."calcapp.obj"."calcapp.c" (src) in \\c\penpoint\sdk\sample\calc
"calc.exe". "s calc.obj" (obj)
"calc.exe"."s::::calc.obj"."s_calc.c" (src) in \\c\penpoint\sdk\sample\calc
"calc.exe"."appstart.obj" (obj)

This command displays a subset of the information displayed by the ids command.

fl
Lists values of debugging flags.

fl [jIagSetl

flagSet Either a single printing character or two hex digits. If missing, fl displays the value of all
debugging flags. .

Examples >fl

Remarks

42 B 00000769 44 D 00008000 47 G 00000040 Sa Z 08000000

Only those flags which contain at least one non-zero value are displayed.

See the Datasheet for fs for a discussion of setting debugging flags.

98 PENPOINT DEVELOPMENT TOOLS

Syntax

Examples

Remarks

Syntax

Examples

Remarks

Part 2 / Debugging Pen point Applications

fns
Display the functions known in a scope.

fns [scopeSpec]

scopeSpec A scopeSpec as defined in Section 7.2.1. Defaults to showing the functions in the
current scope and each of its parent scopes.

"go-calculator-vl(O)"[l] 0508>fns
{}
{}
{ }

{ (functions) CalcEngineAppendCharToToken CalcEngineDump
CalcEngineEnterNumber CalcEngineEnterOperator CalcEngineEvalBinary
CalcEngineEvalUnary CalcEngineFree CalcEnginelnit CalcEngineProcessKey
CalcEngineRestore CalcEngineSave CalcEngineSaveValue CalcEngineUpdateToken
DllMain}

"go-calculator-vl(O)"[l] 0508>fns ncalc_engn
{ (functions) CalcEngineAppendCharToToken CalcEngineDump
CalcEngineEnterNumber CalcEngineEnterOperator CalcEngineEvalBinary
CalcEngineEvalUnary CalcEngineFree CalcEnginelnit CalcEngineProcessKey
CalcEngineRestore CalcEngineSave CalcEngineSaveValue CalcEngineUpdateToken
DllMain}

This command displays a subset of the information displayed by the ids command.

fs
Sets values of debugging flags.

fs)ZagSet [[+ I])Zag Value]

flagSet Either a single printing character or two hex digits.

flagValue A hex value. If not present, fs displays the current value of flagSet.

+ If present, turn the bits in flagValue on.

>fl G
040

If present, turn the bits in flagValue off.

>fs G 44
>fl G
044
>fl G + 800
>fl G
0844
>fs G 40
>fl G
040

See the Datasheet for fl for a discussion of listing the values of debugging flags.

CHAPTER 7 / DB COMMAND REFERENCE 99
Command Datasheets

g
Resume PenPoint execution.

[taskSet] 9 [codeAddress]

taskSet A task set as defined in Section 7.2.7. Defaults to the current task.

code Address If specified, a temporary breakpoint is set at the code address. Execution continues
until this or any other breakpoint is encountered. The address is specified as described in Section

7.2.3.

Starts execution of the current task after setting a breakpoint at the entry point for CalcEvalBinary.

>g CalcEngineEvalBinary

Execution continues until PenPoint detects a fault condition, or DB detects a breakpoint, or a task in
taskSet terminates.

Only tasks with non-zero freeze counts will run.

h
Display help on DB commands and topics.

h topic

Type the following to get a list of available topics:

>h

Type the following to get a list of DB commands:

>h commands

id
Display type and declaration information for an identifier.

id { identifier I address }

identifier A function or variable identifier from your program.

address DB will try to find an identifier near this address.

"go-calculator-v1(O)"[1] 0508>id plnst
program local pInst: ptr to struct CALC_ENGINE_DATA @ [bp-16]

"go-calculator-v1(O)"[1] 0508>id msg
program stack parameter msg: long @ [bp+8]

"go-calculator-v1(O)"[1] 0508>id pData
program stack parameter pData: ptr to ptr to struct CALC ENGINE DATA @ [bp+24]

"go-calculator-v1(O)"[1] 0508>id CalcEngineEnterOperator
program global CalcEngineEnterOperator:
function (

msg: long, self: ptr to void, pArgs: ptr to struct CALC_ENGINE_TOKEN, ctx:
ptr to void, pData: ptr to ptr to struct CALC_ENGINE_DATA, ...)

returning long @ go-calc_eng-v1(O) 1.926

100 PENPOINT DEVELOPMENT TOOLS

Syntax

Examples

Remarks

Syntax

Syntax

Examples

Part 2 I Debugging Pen point Applications

ids
. Display the identifiers known in a scope.

ids [scopeSpec]

scopeSpec A scopeSpec as defined in Section 7.2.1. Defaults to the current scope and all of its
parent scopes.

"go-calculator-v1(0) "[1] 0508>ids
{ (vars) plnst result s}
{ (params) msg self pArgs ctx pData}
{ }

{ (tags) CALC_ENGINE_DATA CALC_ENGINE_NEW CALC_ENGINE_TOKEN OBJ_RESTORE
OBJ SAVE OBJECT NEW (vars) clsCalcEngineTable (functions) 8087
CalcEngineAppendCharToToken CalcEngineDump CalcEngineEnterNumber
CalcEngineEnterOperator CalcEngineEvalBinary CalcEngineEvalUnary
CalcEngineFree CalcEnginelnit CalcEngineProcessKey CalcEngineRestore
CalcEngineSave CalcEngineSaveValue Calc~ngineUpdateToken DIIMain}

"go-calculator-v1(0) "[1] 0548>ids '3
{ (vars) s}
{ (params) msg self pArgs ctx pData}

The volume of information displayed by the ids command can be overwhelming. You might want to use

the fns or vars commands to get a subset of the information displayed by ids.

k
Display the call stack.

The k command is a synonym for the st command; see the st command's Datasheet.

log
Starts and stops logging PenPoint debugging input and output.

loq [[+] filename]

mi

filename The full pathname for the log file.

+ Optionally specifies that the log be appended to an existing file.

With no parameters, log'turns off logging.

Display memory information.

ml

"go-calculator-v1(0) "[1] 0508>mi
allocated: 217088 task local 233472 task total 6328320 sys total
regions: 4 task local 5 task total 939 sys total (0 shr)
28672 task resident 184320 swapped
8257536 memory 7925760 allocatable 1372160 nonswappable 1597440 free
5242880 swap 2834432 free (page size = 4096)

Syntax

Remarks

CHAPTER 7 I DB COMMAND REFERENCE 101

mini
Enters PenPoint's mini-debugger.

mini

To return to DB, type g to the mini-debugger.

od
Send msgDump to an object.

od object [pArgs]

object Expression that evaluates to an object.

pArgs pArgs sent with the message. Defaults to -1.

>od theRootwindow

Command Datasheets

msgDump(clsObject): object=theRootWindow {cls=[dyn 01c80094]}, caps=Ox8618
parent=window has no parent, first child=[dyn 16f6034a] (34)
bounds (x,y,w,h)=O,0,640,480
updateNesting=O, synchVer=6, tag=O
flags.style:

wsClipChildren wsClipSiblings
wsVisible wSPaintable
Dirty region is:
411a12d8: yRange = 1

>od theProcess

1, 1 x-range slots max, 0 slots allocated

msgDump(clsObject): object=theProcess {cls=clsProcess}, caps=Ox8018
msgDump(clsProcess): local well-known theProcess, process=Ox0128

on
Creates a "handler" for specified events.

Most variations of the on command are needed only by advanced or specialized DB users. See the
Advanced DB Techniques chapter for more information on the on command.

on access, on store
Causes execution to halt when memory is read and/or written.

[taskSet] on store lvalue [eventAction]

taskSet A task set as defined in Section 7.2.7. Defaults to all tasks.

lvalue Typically a variable name, although it can also be any expression referencing a region of

storage. (Consult any high quality C language reference manual for a more complete description.)

event Action C code to be executed when the breakpoint is hit.

"go-calculator-v1(0) "[1] 0508>on store (*pData)->numberEntered

"go-calculator-v1(0) "[1] 0508>on access (*pData)->numberEntered

"go-calculator-v1(0)" [1] 0508>on access *(short *)043477c

Only a limited amount of memory may be watched at any given time.

102 PENPOINT DEVELOPMENT TOOLS

Syntax

Examples

Remarks

Part 2 I Debugging Pen point Applications

Execution halts after the instruction that reads andlor writes memory is executed. This is in contrast to

breakpoints (created with the bp command), which halt execution before the breakpointed instruction.

There are other variations of the on command. See the Datasheet and the appropriate sections in the
Advanced DB Techniques chapter.

p,P
Single-steps execution, passing over called routines.

p single-steps through source statements. P single-steps through assembly instructions.

[taskSet] p [count]

[taskSet] P [count]

taskSet A task set as defined in Section 7.2.7. Defaults to the current task.

count Number of trace steps.

Executes one source statement.

"go-calculator-v1(0) "[1] 0508>p
78» switch (op) {

Executes 10 source statements.

"go-calculator-v1(0)" [1] 0508>p 10
80» if (opnd2 == 0.0)
83» *pResult = opnd1 / opnd2;
84»

104»
106»
418»
419»
421»
422»
426»

return s;
/* CalcEngineEvalBinary */

pInst->pendingOp = nop;
CalcEngineSaveValue(result, pArgs, pInst);

pInst->pendingOp = pArgs->key;
pInst->numberEntered = false;

return stsOK;

Executes one assembly instruction.

"go-calculator-v1(0)" [1] 0508>P
43A1C983 89 EC MOV ESP, EBP

Executes 10 assembly instructions.

"go-calculator-v1(0) "[1] 0508>P 10
43A1C985 50 POP EBP
43A1C986 C3 RET
E00207FF 83 C4 14 ADD ESP, 20
E0020802 80 65 F4 LEA ESP, [EBP-12]
E0020805 SF POP EOI
E0020806 5E POP ESI
E0020807 5B POP EBX
E0020808 50 POP EBP
E0020809 C2 OC 00 RET 12
43A1CABB 89 45 F4 MOV OWORD PTR [EBP-12{s}], EAX

p and P differ from t and T in that piP do not step into called routines while tiT step into routines.

Other un-frozen tasks may execute before the next source statement is reached.

If the p command is given when DB does not have source code information, it behaves just like the P
command.

Remarks

Syntox

Syntax

Examples

Syntox

Examples

Remarks

CHAPTER 7 I DB COMMAND REFERENCE 103

Command Datasheets

profile
Create a profile breakpoint

See Chapter 8, which discusses profiling and the profile command in detail.

q
Quit DB.

q

r

Display the registers.

[task/D] r

taskID A task ID as defined in Section 7.2.7. Defaults to the current task.

"go-calculator-v1(0) " [1] 0508>r
eax 00000000 ebx 008010BC ecx 41000031 edx 00430005 esi 43FE9538 edi 418F34F8
esp 00432C20 ebp 00432C2C eip 43A1CABB (user) ---O--IT---P-

srcdir
Tells DB where to find source files for a module.

srcdir [scopeSpec [dirName]]

scopeSpec The identifier by which the module is known to PenPoint at load time; described in
Section 7.2.1. Generally, you specify a .EXE, .DLL, .C, or .OB] file.

dirName The path to the directory containing the source for the module.

Specifies the source directory for the "calc_eng" module.

>srcdir "calc_eng" \\c\penpoint\sdk\sample\calc

Without a dirName, srcdir gives the current source directory, if any, for a module.

>srcdir "calc eng"
"calc.dU" \\c\penpoint\sdk\sample\calc

If you do not specify any arguments, srcdir shows all source directory settings.

Specifying "*" for the scopeSpec sets the default source directory for all modules not otherwise set with
a srcdir command.

If DB finds no other srcdir set for a particular.c file, it checks the parent .OB] file. If DB finds no srcdir
set for a particular .OB] file, it checks its parent .EXE file. If DB finds no srcdir set for a particular .EXE
file, it use the default srcdir.

Alternatively, you can set the DBSrc environment variable in \PENPOINT\BOOT\ENVIRON.INI. DB will
search these directories after searching any directories specified in srcdir commands.

OBSrc=\\c\dir1;\\c\dir2;\\c\dir3

104 PENPOINT DEVELOPMENT TOOLS

Syntax

Examples

Part 2 I Debugging Pen point Applications

st

Display the call stack.

[task/D] st { [+
[scopeSpec] [count]

] [c I 1 I p] }

taskID A task set as defined in Section 7.2.7. Defaults to the current task.

+/- c Corttrols display of context lines. These are the identifiers that are listed with varying indent

to show their nesting levels.

+/- l Controls display of block-local variables.

+/-p Controls display of function parameters.

scopeSpec A scopeSpec as defined in Section 7.2.1.

count Number of stack frames to display.

The default flags are +p -l-c.

"go-calculator-v1(O)"[1] 0508>st
%1 >
CalcEngineEvalBinary(opnd1: 1.200000, op: 5, opnd2: 9.000000, pResult: 0432bbc)
%2
CalcEngineEnterOperator(

msg: 25170108, self: 01ad103fb, pArgs: 043444c, ctx: 0432be8,
pData: 043fe9538)

%3 ObjectCall [msgCalcEngineEnterOperator [dyn 1ad103fb] 043444c 0
%4
CalcEngineProcessKey(

msg: 8392892, self: 01ad103fb, pArgs: 043444c, ctx: 0432c48,
pData: 043fe9538}

%5 ObjectCall [msgCalcEngineProcessKey [dyn 1ad103fb] 043444c 043a478d5
%6
CalcAppButtonNotify(

msg: 117440616, self: 01ac403e5, pArgs: OS, ctx: 0432caO, pData: 043fe8e96)
%7 ObjectCall [msgButtonNotify [dyn 1ac403e5] 05 01ad90402]
%8 ButtonNotifyClient [01ad90402 043fe9b1c 0432d98 0409bc610]

"go-calculator-v1(O) "[1] 0508>st +c p 1
%1 > ncalc.dlln.ncalceng.Objn.CalcEngineEvalBinary.ncalceng.cn.@76
%2 "calc.dll"."calceng.obj".CalcEngineEnterOperator."calceng.c".@413
%3 Oe002d7ff
%4 "calc.dll". "calceng.obj".CalcEngineProcessKey. "calceng .c".@478
%5 Oe002d7ff
%6 "calc.exe"."calcapp.obj".CalcAppButtonNotify."calcapp.c".@320
%7 Oe002d7ff
%8 go-tk-v1(O) .01:01371b

"go-calculator-v1(O)" [1] 0508>st +1
%1 > (block) {s: 4409164i}
CalcEngineEvalBinary(opnd1: 1.200000, op: 5, opnd2: 9.000000, pResult: 0432bbc)
%2 (block) {pInst: 043474c; result: 2.132846e-307; s: 1140757816;}
CalcEngineEnterOperator(

msg: 25170108, self: 01ad103fb, pArgs: 043444c, ctx: 0432be8,
pData: 043fe9538)

%3 ObjectCall [msgCalcEngineEnterOperator [dyn 1ad103fb] 043444c 0
%4 (block) {s: a;}
CalcEngineProcessKey(

CHAPTER 7 / DB COMMAND REFERENCE 105
Command Datasheets

msg: 8392892, self: 01ad103fb, pArgs: 043444c, ctx: 0432c48,
pData: 043fe9538)

%5 ObjectCall [msgCalcEngineProcessKey [dyn 1ad103fb] 043444c 043a478d5]
%6 (block) Is: 1134852309;}
CalcAppButtonNotify(

msg: 117440616, self: 01ac403e5, pArgs: 05, ctx: 0432caO, pData: 043fe8e96)
%7 ObjectCall [msgButtonNotify [dyn 1ac403e5] 05 01ad90402]
%8 ButtonNotifyClient [01ad90402 043fe9b1c 0432d98 0409bc610]

"go-calculator-v1(0) "[1] 0508>st p
%1 > ncalc.dlln.ncalceng.objn.CalcEngineEvalBinary
%2 "calc.dll"."calceng.obj".CalcEngineEnterOperator
%3 Oe002d7ff
%4 "calc.dll"."calceng.obj".CalcEngineProcessKey
%5 Oe002d7ff
%6 "calc.exe"."calcapp.obj".CalcAppButtonNotify
%7 Oe002d7ff
%8 go-tk-v1(0) .01:01371b

With no parameters, st continues from where the previous st command left off.

The st command lists the execution contexts pushed onto the call stack for the current task up to the
last instruction execured.

DB records function calls and moves into nested blocks on the call stack. Within each context, the

variables local to it and any parameters defined at its entry are listed with their current values.

sym
Loads symbolic debugging information into memory.

sym [scopeSpec [(objFileList)]]

scopeSpec A scope spec that identifies a load module. Described in section 7.2.1

objFileList This is an optional list of comma-separated object file names (without the trailing
".obf'). If present, DB reads the detailed symbol information for only those object files, thereby
saving substantial amounts of memory. The objFileList must be separated ftom the scope Spec by a

space. If objFileList consists of just" 0" (the parentheses with no files between them), the command
loads only the public identifiers and line numbers of the module.

The following three commands load all of the symbols in the module:

>sym nfoo"
>sym "go-foo-vl"

The following command will load full symbolic debugging information for obj1.obj and obj2.obj, but
only line numbers and global identifiers for the rest of the module's object files. (The space before the
"(" is mandatory.)

>sym "go-foo-vl" (objl,obj2)

With no arguments, syrn displays all programs and their associated symbol file, if any.

106 PEN POINT DEVELOPMENT TOOLS
Part 2 / Debugging Penpoint Applications

t, T
Single-steps execution, stepping into called routines.

t single-steps through source statements. T single-steps through assembly instructions.

[taskSet] t [count]
[taskSet] T [count]

taskSet A task set as defined in Section 7.2.7. Defaults to the current task.

count Number of trace steps.

Executes one source statement.

"go-calculator-v1(O)"[1] 0508>t
78» switch (op) {

Executes 10 source statements.

"go-calculator-v1(O)"[1] 0508>t 10
80» if (opnd2 == 0.0)
83» *pResult = opnd1 / opnd2;
84»

104» return s;
106» /* CalcEngineEvalBinary */
418» plnst->pendingOp = nop;
419» CalcEngineSaveValue(result, pArgs, plnst);
161» CalcEngineSaveValue (
166» if (plnst->pendingOp == nop)
167» plnst->xValue = value;

Executes one assembly instruction.

"go-calculator-v1(0)"[1] 0508>T
43A1C3A7 8B 55 14 MOV

Executes 10 assembly instructions.

"go-calculator-v1(0)"[1] 05D8>T 10
43A1C3AA 89 02 MOV
43A1C3AC 8B 45 DC MOV
43A1C3AF 8B 55 14 MOV
43A1C3B2 89 42 04 MOV
43A1C3B5 8B 45 08 MOV
43A1C3B8 8B 55 14 MOV
43A1C3BB 89 42 08 MOV
43A1C3BE 8B 45 DC MOV
43A1C3C1 8B 55 14 MOV
43A1C3C4 89 42 DC MOV

EDX, DWORD PTR [EBP+20{plnst}]

DWORD PTR [EDX]i EAX
EAX, DWORD PTR [EBP+12{value+4}]
EDX, DWORD PTR [EBP+20{plnst}]
DWORD PTR [EDX+4], EAX
EAX, DWORD PTR [EBP+8{value}]
EDX, DWORD PTR [EBP+2D{plnst}]
DWORD PTR [EDX+8], EAX
EAX, DWORD PTR [EBP+12{value+4}]
EDX, DWORD PTR [EBP+2D{plnst}]
DWORD PTR [EDX+12], EAX

t and T differ from p and P in that tiT step into routines while piP do not step into called routines.

Other un-frozen tasks may execute before the next source statement is reached.

If the t command is given when DB does not have source code information, it behaves just like the T

command.

Syntax

Examples

Remarks

Syntax

Examples

Remarks

CHAPTER 7 I DB COMMAND REFERENCE 107

Command Datasheets

ti
Display task information.

[taskSet] ti

taskSet Set of tasks to show information for as described in Section 7.2.7. Defaults to the current
task.

"go-calculator-v1(O) 11 [1] 0508>ti
00508 P Igo-calculator-v1(O)"[1] 1.439 Step

The ti command is just like the tl command, except that the default is different. See the Datasheet of
the tl command for more information about ti's output.

d
Display PenPoint's task list.

[taskSet] tl

taskSet An optional task set as described in Section 7.2.7. DB displays the status of each task in the
set. Defaults to all tasks.

>tl
00508 P "go-calculator-v1(O) "[1] 1.439 Step
004e8 P Igo-nbtoc-v1"[1] .907 Msg
004d8 p Igo- nbapp-v1"[1] .886 Msg
004c8 P Igo-dtapp-v1"[1] 1.134 Msg
004b8 p "go-calculator-v1(O) 11 [0] .154 Msg
004a8 P Igo-calc_eng-v1(O)"[0] .007 Susp Msg

00288 P Igo-minitext-v1"[0] .372 Msg
00268 P Igo-notepaperapp-v1"[0] .199 Susp Msg
00258 P "go- notepaper-v1(O) "[0] .041 Susp Msg
00238 P Igo-nbapp-v1"[0] .126 Susp Msg
00218 P Igo-nbtoc-v1"[0] .127 Susp Msg
001f8 P Igo-sectapp-v1"[0] .170 SuspMsg

The first column of output displays PenPoint's task ID. The second column contains either a P for
Process or S for Subtask. The third column displays DB's name for the task. The fourth column contains
the accumulated runtime of the task. The fifth column contains a mnemonic indicating the state of the
task. Common mnemonics and their meanings are:

Msg Task is waiting for a message.
Sem Task is waiting for a message.
SSm Task is waiting for a system semaphore.
FSm Task is waiting for a fast semaphore.
Tmr Task is waiting for a timer.
BP Task is waiting for a breakpoint.
Step Task is executing a single step.
Rdy Task is ready to run.

The fifth column may also include the Susp keyword; if so, the task is suspended.

108 PEN POINT DEVELOPMENT TOOLS

Part 2 / Debugging Penpoint Applications

type
Display type that a C expression evaluates to.

type C-expression

C-expression Any C expression using variables that are defined in the current context, or any
identifier known to the current context or fully referenced.

>type 12
long

>type "hello"
array [6] of char

"go-calculator-vl(O) "[1] 0508>type self
ptr to void

"go-calculator-v1(0) "[1] 0508>type pData
ptr to ptr to struct CALC_ENGINE_DATA

"go-calculator-v1(0) "[1] 0508>type *pData
ptr to struct CALC_ENGINE_DATA

"go-calculator-v1(0) "[1] 0508>type **pData
struct CALC_ENGINE_DATA {

xValue: double; yValue: double; pendingOp: short; keysSeen:
array [30] of unsigned char; numberEntered: short; calcError: short;}

>type CalcEngineEvalBinary
function(opnd1: double, op: short, opnd2: double, pResult: ptr to double, ...)
returning long

u
View assembly code.

u [codeAddress I scopeSpec] [lineCount]

codeAddress A code address as defined in Section 7.2.3. Defaults to where the previous u

command left off.

scopeSpec A scopeSpec as defined in Section 7.2.1.

lineCount A lineCount as defined in Section 7.2.2.

The following shows the assembly code that makes up the first part of the routine CalcEngineEvalBinary.

"go-calculator-v1(0)"[1] 0508>ctx top
"go-calculator-v1(0)"[1] 0508>u
43A1C19A C7 45 F8 00 00 00 00

MOV DWORD PTR [EBP-8{s}], 0
43A1C1A1 66 8B 45 10 MOV AX, WORD PTR [EBP+16{op}]
43A1C1A5 66 83 E8 02 SUB AX, 2
43A1C1A9 66 3D 03 00 CMF AX, 3
43A1C1AD OF 87 97 00 00 00 JA 043A1C24A{CalcEngineEvalBinary.@100}
43A1C1B3 OF B7 CO MOVZX EAX, AX
43A1C1B6 C1 EO 02 SHL EAX, 2
43A1C1B9 2E FF AD 70 C1 A1 43

JMP DWORD PTR CS: [EAX-16016]
43A1C1CO 83 7D 18 00 CMF DWORD PTR [EBP+24{opnd2+4}], 0
43A1C1C4 75 DC JNZ 043A1C1D2{CalcEngineEvalBinary.@83}

You can also specifY a codeAddress for the u command.

CHAPTER 7 / DB COMMAND REFERENCE 109

"go-calculator-v1 (0) II [1] 0508>u CalcEngineEvalBinary 1 10
43A1C195 55 PUSH EBP
43A1C196 89 E5 MOV EBP, ESP
43A1C198 53 PUSH EBX
43A1C199 50 PUSH EAX
43A1C19A C7 45 F8 00 00 00 00

66 8B 45 10
66 83 E8 02
66 3D 03 00

MOV DWORD PTR [EBP-8{s}], 0
MOV AX, WORD PTR [EBP+16{op}]
SUB AX, 2
CMFAX, 3

Command Datasheets

43A1C1A1
43A1C1A5
43A1C1A9
43A1C1AD
43A1C1B3

OF 87 97 00 00 00
OF B7 CO

JA 043A1C24A{CalcEngineEvalBinary.@100}
MOVZX EAX, AX

You should not specify a data address; you will get spurious results

Where possible, the u command inserts an identifier after addresses that it can interpret symbolically.

Repeating the u command displays the next several lines of source code. In this way you can page down
through a source file.

uv
View assembly code with interspersed source code.

The syntax of the uv command is identical to that of the u command.

The following shows the assembly code that makes up the first part of the routine

CalcEngineEvalBinary, with source code statements interspersed.

"go-calculator-v1(0) II [1] 0508>ctx top
"go-calculator-v1(0} "[1] 0508>uv

76 STATUS s = stsOKi
77

43A1C19A C7 45 F8 00 00 00 00

78
79

43A1C1A1
43A1C1A5
43A1C1A9
43A1C1AD
43A1C1B3
43A1C1B6
43A1C1B9

80
43A1C1CO
43A1C1C4

switch (op) {
case divide:

66 8B 45 10
66 83 E8 02
66 3D 03 00

MOV DWORD PTR [EBP-8{s}], 0

MOV AX, WORD PTR [EBP+16{op}]
SUB AX, 2
CMFAX, 3

OF 87 97 00 00 00 JA 043A1C24A{CalcEngineEvalBinary.@100}
OF B7 CO
C1 EO 02

MOVZX EAX, AX
SHL EAX, 2

2E FF AO 70 C1 A1 43
JMP

if (opnd2 ==
83 7D 18 00 CMF
75 OC JNZ

DWORD PTR CS: [EAX-16016]
0.0) {

DWORD PTR [EBP+24{opnd2+4}], 0
043A1C1D2{CalcEngineEvalBinary.@83}

You can also specify a codeAddress for the uv command.

"go-calculator-v1 (0) II [1] 0508>uv CalcEngineEvalBinary 1 10
70 CalcEngineEvalBinary (
71 double
72 CALC ENGINE KEY
73 double
74 double *
75 (

43A1C195 55
43A1C196 89 E5
43A1C198 53
43A1C199 50

76 STATUS

opnd1,
op,
opnd2,
pResult)

PUSH EBP
MOV EBP, ESP
PUSH EBX
PUSH EAX

s = stsOKi

110 PENPOINT DEVELOPMENT TOOLS

Remarks

Syntax

Examples

Remarks

'Part 2 I Debugging Penpoint Applications

77
43A1C19A C7 45 F8 00 00 00 00

MOV DWORD PTR [EBP-8{s}], 0
78 switch (op) {
79

43A1C1A1
43A1C1A5
43A1c1A9
43A1C1AD

case divide:
66 8B 45 10
66 83 E8 02
66 3D 03 00

MOV AX, WORD PTR [EBP+16{op}]
SUB AX, 2
CMP AX, 3

OF 87 97 00 00 00 JA 043A1C24A{Ca1cEngineEvalBinary.@100}
43A1C1B3 OF B7 CO MOVZX EAX, AX

The mapping between assembly code and source code is, by its nature, imprecise. It is particularly
imprecise when the compiler's optimization is turned on.

The uv command differs from the vu command in that the uv command always list the assembly code

properly and intersperses the source code as best it can given the imprecise nature of the task.

See Remarks in the u Datasheet.

v
View source code.

v [codeAddress I scopeSpec] [lineCount]

codeAddress A code address as defined in Section 7.2.3. Defaults to where the previous v command

left off.

scopeSpec A scopeSpec as defined in Section 7.2.1.

lineCount A lineCount as defined in Section7.2.2.

"go-calculator-v1(0) "[1]
"go-calculator-v1(0) "[1]

0508>ctx top
0508>v

73 double opnd2,
pResult) 74 double *

75
76»
77
78
79
80

STATUS

switch (op) {
case divide:

s = stsOK;

if (opnd2 == 0.0) {

"go-calculator-v1(0) "[1]
"go-calculator-v1(0) "[1]

0508>ctx top
0508>v 1 10

76» STATUS s = stsOK;
77
78
79
80
81
82
83
84
85

switch (op) {
case divide:

if (opnd2 == 0.0) {
s = stsCalcEngineComputeError;

else {
*pResult = opnd1 / opnd2;

break;

Repeating the v command displays the next several lines of source code. In this way you can page down

through a source file.

Syntax

Examples

Remarks

Syntax

Syntax

Examples

CHAPTER 7 I DB COMMAND REFERENCE 111
Command Datasheets

vars
Display variables known in a scope.

vars [scopeSpec]

scopeSpec A scopeSpecas defined in Section 7.2.1. Defaults to showing the variables in the current
scope and each of its parent scopes. If you specify "top", vars displays the varia~les declared
interactively with the debugger.

"go-calculator-v1(0)"[1] 050B>vars
((vars) s)
{ (params) opndl op opnd2 pResult}
{}

{ (vars) clsCalcEngineTable}

"go-calculator-v1(0)"[1] 050B>vars %6
((vars) s)
{ (params) msg self pArgs ctx pData}

This command displays a subset of the information displayed by the ids command.

ver
Display DB's version.

ver

vu
View source code with interspersed assembly language statements.

The syntax of the vu command is identical to that of the v command.

"go-calculator-v1(0) "[1] 050B>ctx top
"go-calculator-v1(0) "[1] 0508>vu 1 4

76» STATUS s = stsOK;
43AIC19A C7 45 FB 00 00 00 00

MOV DWORD PTR [EBP-B{s}], 0
77

43A1C19A C7 45 FB 00 00 00 00

78
43A1C1A1
43A1C1A5
43A1CIA9
43A1CIAD
43AICIB3
43A1CIB6
43A1C1B9

79
43A1CIAl
43A1C1A5
43A1CIA9
43A1C1AD
43A1CIB3
43AIC1B6
43A1C1B9

switch (op)
66 BB 45 10
66 83 E8 02
66 3D 03 00
OF 87 97 00 00 00
OF B7 CO
C1 EO 02

MOV DWORD PTR [EBP-B{s}], 0

MOV AX, WORD PTR [EBP+16{op}]
SUB AX, 2
CMFAX, 3
JA 043AIC24A{CalcEngineEvalBinary.@100)
MOVZX EAX, AX
SHL EAX, 2

2E FF AO 70 C1 A1 43

case divide:
66 BB 45 10
66 B3 EB 02
66 3D 03 00
OF B7 97 00 00 00
OF B7 CO
Cl EO 02
2E FF AO 70 C1 A1

JMP DWORD PTR CS: [EAX-16016]

MOV AX, WORD PTR [EBP+16{op}.]
SUB AX, 2
CMFAX, 3
JA 043A1C24A{CalcEngineEvalBinary.@100}
MOVZX EAX, AX
SHL EAX, 2

43
JMP DWORD PTR CS: [EAX-16016]

112 PENPOINT DEVELOPMENT TOOLS
Part 2 I Debugging Pen point Applications

The mapping between assembly code and source code is, by its nature, imprecise. It is particularly
imprecise when the compiler's optimization is turned on.

The vu command differs from the uv command in that the vu command always list the source code
properly and intersperses the assembly code as best it can given the imprecise nature of the task.

See Remarks in the v Datasheet.

zp
Clears profile data.

See Chapter 8, which discusses profiling and the zp command in detail.

Chapter 8 / Profiling with DB

This chapter contains information about using DB to profile program execution.
This can help you find performance bottlenecks in your program.

Profile Breakpoints
Profile information is maintained in profile breakpoints. Many breakpoint
commands operate on profile breakpoints as well as normal breakpoints; consult
the appropriate Datasheet for complete information.

• bi

• bc

• bd

• be

Jr Two Types of Profiles
DB can collect two types of profiles:

Code Profiles This type of profile collects execution information based on
routines or line numbers.

Object Profile This type of profile collects execution information based on
objects and messages.

With both types, DB collects information into profiling buckets. You can control
the number (or granularity) of the buckets and what gets recorded in each bucket.

Coele Profiling
Code profiling collects information about routines or lines of code.

There are two code profiling techniques; each has advantages and disadvantages:

• Timing/Counting. This technique measures the time spent in a routine or
counts the number of times a routine is executed.

• Advantage: Gives very accurate informa~ion.

• Disadvantage: Can significantly slow program execution.

• Sampling. This technique samples the CPUs instruction pointer periodically
and records which routine the pointer is in.

• Advantage: Far less intrusive; the performance overhead is imperceptible.

• Disadvantage: Sampled data, by its nature, is less accurate.

• Disadvantage: The technique can tell you where time is being spent,
but not why. For instance, if your program spends most of its time in

8.1

8.2

8.3

114 PENPOINT DEVELOPMENT TOOLS
Part 2 / Debugging Pen point Applications

the file system, the samples themselves will all be in the file system.
You won't know which of your routines is responsible for the file
system calls.

As illustrated by the examples later in this chapter, you'll probably want to use
each of these techniques under different circumstances.

Code Profiling Options
The syntax for specifYing a code profile is:

[taskSet] profile [flags] routineSet

The taskSet defaults to all tasks.

The flags determine what gets recorded in each bucket and what profiling
technique is used. The flags are one of the following:

+/- t Timing. The breakpoint measures how much time is spent in the
routine.

+/- c Counting. The breakpoint counts the number of times the routine is
entered. This is the default.

+/- h Sampling. The breakpoint records how often the CPU's instruction
pointer is in the routine.

Both +t and +c can be on in a single profile.

The default flags are +c -t -h.

8.3.1

The routineSetdetermines the buckets that are created for a code profile; DB collects Technically, a routineSet is a set

information for each bucket. A routine set is a set of routines or line numbers to be of code addresses, as described
.. . in Section 7.2.3.

profiled. There are several ways to specifY a routine set, as des en bed m the followmg
table.

Entry

scopeSpec

publics
statics
all
lines

exes

routineldentifier

lines

EX!lla nati<:H'!

A scope specification for an installed .EXE, .DLL or .OB] file. The scope specification
may be followed by one of the following:

One bucket for each public routine.
One bucket for each static routine.
One bucket for each routine. (This is the default.)
One bucket for each executable line.

One bucket for each installed .EXE and .DLL'.

One bucket created for the routine identified with a Scope.ldentifier reference, as
discussed in Section 7.2.6.

If followed by the optional :lines, then one bucket is created for each line in the routine.

routineSet +/- routineSet Union or difference of two routine sets.
* For sampling profiles only, one bucket is created for each code address encountered.

1. Technically, one bucket is created for each code segment of each installed .EXE and .DLL. But it is very rare for an .EXE
or .DLL to have more than one code segment.

CHAPTER 8 I PROFILING WITH DB 115
Code Profiling

A Caveat Concerning Sampling Profiles 8.3.2

If DB does not have full symbols for a module being code-profiled, it only knows Important

the start of each public function. Thus if you use

profile +h "foo.exe"

and your source looks like this:

STATUS A(void) { ... }
static STATUS B(void) { ... }
STATUS C(void) { ... }
static STATUS D(void) { ... }
STATUS E(void) { ... }

The samples found in Band D will be charged to A and C. If you use

profile +c "foo.exe"

Band D will be ignored altogether.

You can use these techniques to reduce the impact of this problem:

• When using sample-based code profiles be sure that the modules you pro
file were compiled with the ID2 flag and were linked with the DEBUG ALL

line. Code compiled and linked in this fashion provides DB with the start
addresses of all the routines, public or private, so DB is much more likely to
attribute a sample to the proper routine .

• Use the STATIC and LOCAL keywords (defined in GO.H) rather than
the C language construct static, and compile your code with the DEBUG

pre-processor variable defined. Under these conditions, the STATIC and
LOCAL routines will actually be public routines rather than private routines.
You can then compile with IDI and link with DEBUG ALL. Now DB will
have the start location of every public and pseudo-static routine.

,.,. GeHing More Frequent Samples

You can control the sampling rate. Decreasing the times between samples will in
crease accuracy but will increase the profiling overhead. The default rate is one
sample per 55 milliseconds. You can set that to, say, one sample per 11 milliseconds
(probably the smallest reasonable value) by typing:

> ?_SetSystick(ll)

,.,. Code Profiling Examples

".,. Sampling Profiles: A First Step

To get a rough idea of what some operation is spending its time in, create a
profiling breakpoint as follows:

>profile +h exes
>g

Now perform the operation one or more times. Remember that the sampling rate
is a bit coarse (approximately 55 milliseconds), so you want a reasonable number

8.3.3

8.3.4

8.3.4.1

116 PENPOINT DEVELOPMENT TOOLS

Part 2 I Debugging Pen point Applications

of samples. Finally, get back to DB by typing PAUSE and type the following,
which lists the time spent in each module, as estimated from the samples taken:

>dp 1

"." Refining the Profile with Smaller Buckets

Suppose you've found that all your time is spent in the "foo" module. You can set
up a sampling profile with one bucket per function by saying:

>sym "foo"
>profile +h "foo"

Or, for just the functions in FILEl.OBJ:

>profile +h "foo"."filel.Obj"

Or, for every source line in FILEl.OBJ:

>profile +h "foo"."filel.obj":lines

Or, for every source line in the function SomeFunction:

>profile +h "foo".SomeFunction:lines

Refining the Profile with Infinite Buckets

If you use the following profile, DB will record every sample, and the dp com
mand will then group the samples by function (where it knows symbols) and
by.EXE and .DLL (where it doesn't).

>p~ofi1e +h *

Timing/Counting Profiles

With the following profile, DB will count the number of times each public
routine in modU:le "foo" is executed. (Notice the +c rather than the +h used in
the previous examples.)

>profile +c "foo"

With the following profile, DB will accumulate the time spent in each public
routine in module "foo". (Notice the +trather than the +hand +cused in the
previous examples.)

>profile +t "foo"

DB can accumulate both time and count information: The dp command will then
show you how much time was spent per call.

>profile +t +c "foo"

With the following, DB will accumulate the time spent in each line in module
"foo."

>profile +t "foo":lines

8.3.4.2

8.3.4.3

8.3.4.4

CHAPTER 8 I PROFILING WITH DB 117

If specific routines seem to be using the most time, you can add line-by-line hit
counts for them by specifying:

>profile "foo":all + "foo".RoutineA:lines + IIfoo".RoutineB:lines

Obiect Profiling
Object profiling collects information about messages sent via ObjectCall.

Basic Obiect Profiling
The default object profile records and counts all messages sent to all objects:

>profile 00 *

Obiect Profiling Options
The general syntax for creating an object profile is:

[taskSet] profile [flags]
oc messagePattern

Notice the -oC; this flag tells DB to create an Object profile rather than a Code
profile.

The following flags control the number of buckets:

+/- msg One bucket per message encountered. (This is the default.)

+/- msgCls One bucket per class of message encountered.

+/- obj One bucket per receiver object encountered.

+/- objCls One bucket per class of message receiver encountered.

The following flags control what gets recorded in each bucket:

+/- c Counts the number of messages sent. (This is the default.)

+/- t Records execution time.

The default flags are +msg +c.

Obiect Profiling Message PaHern
The message pattern defines what messages are of interest; only messages which
match the pattern are recorded. There are several ways to specify a message
pattern, as described in the following tables.

msgList Any message in the list matches the pattern.

Object Profiling

8.4

8.4.1

8.4.2

to objectList Any message sent to any object in the list matches the pattern.

msgList to objectList Any message in the list sent to any object in the list matches the pattern.

messagePattern +/- messagePattern Union or difference of two message patterns.

118 PENPOINT DEVELOPMENT TOOLS

Part 2 / Debugging Pen point Applications

A msgList is specified as follows:

*
msgFoo

clsFoo

C expression

i:xp(cII'lCItion

Any message.

The message with the string name msgFoo.

All messages defined by the class clsFoo.I.*.

The message that has the value of C expression.

m

C expression:msgs

msgList +/- msgList

[msgList]

All messages defined by the class that has the value of C expression.2

Union or difference of two message lists.

A message list in required square brackets.

1. Technically, all messages msgX for which ClsNum(msgX) == ClsNum(clsFoo).
2. Technically, all messages msgX for which ClsNum(msgX) == ClsNum(C expression).

An objectList is specified as follows:

* Any object.

objectName

clsFoo:objs

C expression

The object with the string name objectName. (Normally these will be well-known objects.)

All objects of class clsFoo or a subclass of clsFoo.

The object whose uid has the value of C expression.

C expression:objs

objectList +/ objectList

[objectList]

All objects whose class (or some superclass) is the class that has the value of C expression. l

Union or difference of two object lists.

An object list in required square brackets.

1. Technically, call objects objX for which ObjectCall(msgIsA, objX, expression) == stsOK.

Obiect Profiling Examples
The following command records all ObjectCalls to any object that IsA clsWin:

>profile oc clsWin:objs

The following records all ObjectCalls to clsWin itself:

>profile oc clsWin

The following records all messages in which the class of the message is clsWin:

>profile oc clsWin:msqs

The following records all messages in task 0508 in which the class of the message
is clsWin or clsButton:

>0508 profile oc clsWin:msqs + clsButton:msqs

8.4.4

CHAPTER 8 I PROFILING WITH DB 119
Displaying Profile Information: the DP Command

Displaying Profile Information: the DP 8.S

Command
The dp command displays the current profile information for a profile breakpoint.

dp [flags] breakpoint

flags Described below.

breakpoint DB's breakpoint number as displayed by the bi command.

The flags specify what columns get printed, and their order determines how the
rows are sorted. flags are a sequence of the following:

Explanation

code address (code profiles only)

count

displays the percent of the total accumulated hits

Table 8-5
DP f 5

Entry

+/- a

+/- c

+/- cpct

+/- fns group all addresses by functions (useful with routine sets that include :lines or *,
if symbolic debugging information is loaded)

+/-h

+/- msg

+/- msgCls

+/- obj

+/- objCls

+/- t

systick time (code profiles only)

message

message class

object

receiver object class

time

time per count +/- tpc

+/- tpct like +t but displays the percent of the total recorded times (time in function divided by
time in all profiled functions).

+/- tpctt like +tpct but displays the percent of the total runtime of the task(s) being profiled
(time in function divided by time executing anywhere).

+/-z include entries with a 0 value.

The default flags display everything that was recorded and sort by time (or by
time/count if that can be computed).

DP Command Examples

To display the information stored in profile breakpoint 1, type the following.
(This profile was collected by tapping three number buttons on the Calculator.)

>0508 profile oc clsWin:msgs + clsButton:msgs
>g
>dp 1

#hits msg
18 msgWinGetMetrics
12 msgWinBeginPaint
12 msgWinEndPaint
12 msgWinSend

9 msgWinGetFlags
9 msgWinUpdate

8.S.1

120 PENPOINT DEVELOPMENT TOOLS

Part 2 I Debugging Pen point Applications

6 msgWinBeginRepaint
6 msgWinEndRepaint
6 msgButtonNotify
3 msgWinDirtyRect
3 msgButtonNotifyManager
3 msgWinRepaint
3 msgWinSetLayoutDirty

102

Here are several more examples of displaying the same profile information with
several different flags.

>profile +c +t "calceng"
>g
>dp 1
tsecs/hit

.007115

.006520

.005877

.005833

.002379

.002083

.001733

.001546

fseconds
.099610
.045646
.041145
.011666
.014274
.006250
.015601
.001546

fhits addr

.235741
>dp +t 1

fseconds addr

14 CalcEngineProcessKey.@443
7 CalcEngineEnterOperator.@377
7 CalcEngineAppendCharToToken.@200
2 CalcEngineEnterNumber.@359
6 CalcEngineSaveValue.@166
3 CalcEngineEvalUnary.@119
9 CalcEngineUpdateToken.@183
1 CalcEngineEvalBinary.@76

49

.099610 CalcEngineProcessKey.@443

.045646 CalcEngineEnterOperator.@377

.041145 CalcEngineAppendCharToToken.@200

.015601 CalcEngineUpdateToken.@183

.014274 CalcEngineSaveValue.@166
.. 011666 CalcEngineEnterNumber.@359
.006250 CalcEngineEvalUnary.@119
.001546 CalcEngineEvalBinary.@76

.235741
>dp +tpct 1

%hits addr
42.253 CalcEngineProcessKey.@443
19.363 CalcEngineEnterOperator.@377
17.453 CalcEngineAppendCharToToken.@200

6.618 CalcEngineUpdateToken.@183
6.055 CalcEngineSaveValue.@166
4.948 CalcEngineEnterNumber.@359
2.651 CalcEngineEvalUnary.@119

.655 CalcEngineEvalBinary.@76

To display the time sorted by address:

>dp +a +t 1

To include zero times:

>dp +a +t +z 1

CHAPTER 8 I PROFILING WITH DB 121
Profiling Specific Tasks

Clearing Profile Information: the ZP
Command
The zp command clears profile data for a profile breakpoint. This allows you to
zero out any accumulated profiling information and then start another run,
collecting another profile.

zp breakpoint

breakpoint DB's breakpoint number as displayed by the bi command.

Profiling Specific 'asks
By default, a profile records the execution of all tasks. You can limit profiling to a
task by specifying the task ID:

>01228 profile ...

You can also limit profiling to all tasks executing a specific application:

>"someapp" profile ...

8.6

8.7

Chapter 9 / Advanced DB
Techniques

This chapter discusses some advanced or specialized debugging techniques and the
DB features that support them. Most of the material in this chapter should be
needed rarely, if ever, by a typical PenPoint developer.

Skipping Execution
DB can skip over pieces of code. This is useful if you know that some piece of
code is buggy, and you'd like to skip over it rather than execute it.

In this example, assume that the utility routine called in line 437 will cause a fatal

problem:

415 MsgHandler (TEAppCaseCmd)
416 (
417 STATUS
418 U32
419

s = stsOK;
gType;

9.1

420 Dbg(Debugf("Case commandself=Ox%lx pArgs=Ox%lx",self,pArgs);)
421
422
423 switch ((TE_CASE_STYLE) (U32) pArgs)
424 case teCaseStyleToUpper:
425 gType = xgsRightUpFlick;
426 break;
427 case teCaseStyleToLower:
428 gType = xgsRightDown;
429 break;
430 case teCaseStyleTolnitialCaps:
431 gType = xgsRightUp;
432 break; .
433 default:
434 s = stsBadParam;
435
436 if (s == stsOK) (
437 s = SomeUtilityRoutine(gType, self);
438
439 DbgTEAppCaseCmd(("returns Ox%lx", (S32) s))
440 MsgHandlerParametersNoWarning;
441 return s;
442

We can skip the execution of that routine with the following breakpoint:

> bp "minitext;exe"."teusr.obj".@420
} !?EIP="teusr.c".@439i
} }

Note that this breakpoint is set on line 420, not on the entry to the routine, so
that the initialization of the status variable will occur.

124 PENPOINT DEVELOPMENT TOOLS
Part 2 I Debugging Penpoint Applications

The breakpoint code says, in effect, that when the breakpoint is hit, that the
instruction point (EIP) should be set to line 439, and that execution should
continue.

Controlling Threads of Execution
You can control multiple execution threads so that background tasks will not be able
to change variables while you trace execution in aselected task. This is useful when
debugging programs that have a significant amount of multi-processing in them.

There are three commands that control threads of execution:

The FZ (llfreeze") Command

The fz command increments the freeze count on the specified task{s). A task will
not execute while its freeze count is greater than o.

[taskSet] fz

taskSet A task set as defined in Section 7.2.7. Defaults to the current task.

The TH (llthaw") Command

The th command thaws (decrements) the freeze count of the specified task{s). If
the freeze count of the task becomes 0, the task is able to run.

[taskSet] th

taskSet A task set as defined in Section 7.2.7. Defaults to the current task.

The TT (llterminate task") Command
The tt command terminates a task or tasks.

[taskSet] tt

taskSet Set of tasks to be terminated. Defaults to the current task.

Commands Executed at Compile Time
When a piece of code is attached to a breakpoint (or any DB event handler), the
code is compiled into an internal form for later execution.

Some DB commands execute as they are being entered into a piece of code.
Therefore these commands are not available for execution inside of a breakpoint's
attached code.

The DB commands that execute at compile time are:

< log

h mml

id qsrcdir

ids type

files vars

fns ver

9.2

9.2.1

9.2.2

9.2.3

9.3

CHAPTER 9 I ADVANCED DB TECHNIQUES 125
DB Built-ins

DB Built-ins 9.4

For advanced use, DB has many useful built-in types, variables, and routines.

DB's Predefined Types 9.4.1

Table 9-1
OW s Predefined

Type

BOOLEAN, P _BOOLEAN

S8,P_S8

U8, P_U8

CHAR, P _CHAR

S16,P_S16

U16, P_U16

S32,P_S32

U32,P_U32

SIZEOF

CONTEXT

P_ARGS

_HEX_LONG

_HEX_SHORT

_HEX_BYTE

_BITS

MESSAGE, MSG

OBJECT, OBJ

STATUS, STS

_MSG_PAT

_ROUTINE_SET

_TASK_SET

Description

as in go.h

as in go.h

as in go.h

as in go.h

as in go.h

as in go.h

as in go.h

as in go.h

as in go.h

as in go.h

as in go.h

a U32 that the? command displays in hex

a U16 that the? command displays in hex

a U8 that the? command displays in hex

an enum with values bO=l, bl=2, b2=4, etc

a U32 that the ? command displays as a message name

a U32 that the ? command displays as an object name

a U32 that the? command displays as a status name

a message pattern; see below.

a routine set; see below.

a task set; see below.

The last three types can be used to declare variables that can be set and then used
as parameters to certain DB commands. This is particularly useful because values
of these types can potentially be very complex.

Here's an example of a _MSG_PAT variable being used as a parameter to the profile
command:

_MSG_PAT mpl = [mp clsWin:msgs]i
profile +c oc (mpl);

Here's an example of a _ROUTINE_SET variable being used as a parameter to the
profde command:

_ROUTINE_SET rsl = [rs "winc"+"winO":lines];
profile +c (rsl); .

126 PENPOINT DEVELOPMENT TOOLS
Part 2 I Debugging Penpoint Applicotions

Here's an example of a _TASK_SET variable being used as a parameter to the d
command:

TASK SET tsl
[(tsl)] tl;

[ts "minitext"+"browser"];

Useful Values in DB 9.4.2

The values in the following table are occasionally useful. In general, you should
not set the values.

Type

U32

_RUNTIME

_T_REGS

_HEX_LONG

_FLAGS

_HEX_LONG

_HEX_SHORT

OS_TASK_ID

U16

OS_TASK_ID

_TASK_FRAME

_HANDLER-NUMBER

_p_UNKNOWN

_PARSED_PROG_NAME

MESSAGE

OBJECT

P_ARGS

Name

_alITS

_allProgTS

_runtime

regs

eip, eax, ebx, ...

efg

espO

cs

processId

instanceN urn

_handlerN

_pData

_ppn

msg

self

pArgs

Description

Table 9-2

Values in

Values " "'"'" .. Available

The task set containing all tasks.

The task set containing all applications (that is, all
processes running .exes).

The total elapsed systicks.

The total run time over all tasks.

Values Available for the Current Task

The current task's registers, as a structure.

The current task's registers, individually.

The current task's flags.

The current task's ring-O stack pointer.

The current task's code-segment register.

The current task's process id.

The current task's instance number.

Values Available Within an Event Handler

The victim task; irrelevant in an "on intRa!" handler.

The resume address and top frame pointer of
<_taskId>.

The handler number of the current handler.

The handler data of the current handler.

If "on instalIBegun", "on installDone," "on start,"
the name of the program, parsed into its compo
nents: vendor-program-major(minor).

Values Available Within an OC Event Handler

If"on oc," the message.

If"on oc," the message recipient.

If"on oc," a pointer to the message arguments.

CHAPTER 9 / ADVANCED DB TECHNIQUES 127

DB's Useful Variables

The variables in the next table can be examined and set.

Here's an example of setting the _keepTypedefs variable:

>!_keepTypedefs = true;

Type

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

S8

UI6

S8

UI6

S8

UI6

S8

Nome

_showRuntime

_showRealtime

_suspCur

_redirectlnput

_redirectPrinting

_keep UnusedTypes

_keep Typedefs

_starTS

_suspTS

defCodeMode -

_defCodeLength

deNiewMode -

_deNiewLength

defDataMode -

_defDataLength

defShowStackMode -

_showStackFlags

Defau!t

false

false

true

true

false

false

false

_pAlIProg TS

empty set

1 ('1')

8

o ('i)

8

1 ('1')

64

o ('i)

ssParams

DB Built-ins

9.4.3

Table 9-3

Description

If true, g, t, p, etc., show the task
runtime.

If tr~e, g, t, p, etc., show the elapsed
time.

DB suspends the current task while in
DB command mode; if false, DB lets
it run.

When not in command mode, DB
redirects input to the PenPoint input
system; if false, such input is just DB
typeahead.

If true, remote DB redirects target
DebugfO output to the host.

DB discards any types from an .exe/dll
that are not actually "reachable" from
some function or variable definition.

Iffalse, DB discards any typedef
definitions from an .exe/.dll.

The task set you get when you say" [*]",
and the default task set for commands
like bp, tl, etc.

DB suspends all these tasks (in addition
to the current task) whenever it enters
command mode.

Mode of u command. Currently the
only legal value is 1.

Num.ber of lines output by u command.

Mode of v command. May also be -1
('b') or 1 ('1').

Number oflines ouput byv command.

Mode of d, db, dw, and dd commands.
May also be -1 ('b') or 0 ('i).

Length (in bytes) for d, db, dw, and dd
commands.

Mode for st command. May also be 1
('1') or-I ('b').

Any OR'd combination of: _ssParams
(show call parms), _ssLocals (show
block locals), _ssCtx (show current
execution address of stack frame).

(olltilll..led

128 PENPOINT DEVELOPMENT TOOLS
Part 2 I Debugging Pen point Applications

U32 _maxCachedBytes

U16 _defShow5tackLength

i)eF@ult

128K

8

532 _defDumpObjectParam -1

DB Runtime Routines

The following routines are available in the DB runtime.

As in the C runtime:

memcpy

printf

put char

sprintf

strlen

As in CLSMGR.H:

ObjectCall

ObjectCallAncestor

ObjectSend

ObjectSendUpdate

ObjectPost

ObjectPostAsync

Returns the debug flags of set <set>.

_HEX_LONG _GetFlags(U16 set)

Sets the debug flags <set> to <flags>.

void _SetFlags(U16 set, HEX LONG flags)

Delays DB execution for <ms> milliseconds.

void _Delay (U32 ms)

Sets the systick rate, in milliseconds.

void _ SetSyst,ick (U32 ms)

DB swaps some data between memory
and the file DB SWAP (e.g. declaration
lists, line numbers). _maxCachedBytes
is the memory cache limit.

Number of frames shown by st
command.

P _ARG5 sent by od command.

Does a printf and then raises a DB error, typically forcing DB to command
mode.

void _Err (CHAR * pFmt, ...)

CHAPTER 9 I ADVANCED DB TECHNIQUES 129

Allocate globally accessible memory.

void * _Alc(SIZEOF size)

Free globally accessible memory.

void _Free (void * pMem)

". The ON COlllllland
The on command creates a handler for specified events.

In general, the syntax for the on command is:

[taskSet] on event [eventAction]

taskSet A task set as described in Section 7.2.7. Defaults to all tasks.

event Action C code to be executed when the breakpoint is hit. The default
action is to break to the debugger.

There are several categories of events.

". Program Events

An installBegun event happens when instance 0 of a program begins execution.

[taskSet] on installBegun defNameString [eventAction]

An installDone event happens when instance 0 of a DLL finishes executing
DLLInitO.

[taskSet] on installDone defNameString [eventAction]

A start event occurs when any instance of a program besides instance 0 begins
execution.

[taskSet] on start defNameString [eventAction]

Access Events

An access event occurs when the variable specified by the lvalue is read or written.

[taskSet] on access Ivalue [eventAction]

A store event occurs when the variable specified by the lvalue is written.

[taskSet] on store Ivalue [eventAction]

Task Events

A tick event happens every systick interval.

[taskSet] on tick [eventAction]

A step event is an instruction step

[taskSet] on step [eventAction]

A pstep event is the same as a step event but skips over CALLs.

[taskSet] on pstep [eventAction]

The ON Command

9.5

9.5.1

9.5.2

9.5.3

130 PEN POINT DEVELOPMENT TOOLS

Part 2 I Debugging Pen point Applications

A newST event is the creation of a new subtask;

[taskSet] on newST [eventAction]

A newIST event is the creation of a new interrupt subtask

[taskSet] on newIST [eventAction]

A terminate event is the termination of a task.

[taskSet] on terminate [eventAction]

A debReq event happens when a task calls DebuggerO.

[taskSet] on debReq [eventAction]

Fault Events

A fault event occurs whenever a hardware fault occurs. The special event fault
is shorthand for ORing all of the fault events
xxxxxx

[taskSet] on div [eventAction]
[taskSet] on nmi [eventAction]
[taskSet] on into [eventAction]
[taskSet] on bound [eventAction]
[taskSet] on invOp [eventAction]
[taskSet] on extNA [eventAction]
[taskSet] on invTSS [eventAction]
[taskSet] on segNP [eventAction]
[taskSet] on stkOv [eventAction]
[taskSet] on gp [eventAction]
[taskSet] on unk [eventAction]
[taskSet] on fault [eventAction]

Other Events

An exit event happens when a block of interpreted C code is exited. Exit events
are used to establish cleanup code.

<initialization code>
!on exit { <cleanup code>
<code that may exit>

An error event happens when an error occurs during execution of interpreted
C code.

!on error (printf("BAD ADDRESS\n"); return; }
*pData = 0;

An intReq event happens whenever DB's break key is pressed.

on intReq [eventAction]

A bp event occurs whenever the codeAddress is executed.

9.5.4

9.5.5

CHAPTER 9 I ADVANCED DB TECHNIQUES 131
Tilde Operator

[taskSetj on bp codeAddress [eventActionj

An oc event occurs whenever a message matching the message pattern is delivered.

[taskSetj on oc messagePattern [eventActionj

The INSTALL ancl START Commancls 9.6

DB's install command does an OSProgramlnstallO of an .EXE or .DLL.

DB's start command does an OSProgramlnstantiateO of an.EXE or .OLL.

These commands cannot be used to test PenPoint applications because they do
not do all of things that the Application Framework does when installing and
instantiating a PenPoint application.

,.. Context Insicle of Breakpoints
When DB executes code inside of a breakpoint, it does not set the global "currerit
source position" information. (This is done so that it is possible to write
breakpoint code that doesn't disturb that part of the global context.) This means
that the source viewing commands (v, u, vu, and uv) may not display what you
expect.

To set the current source position when executing code inside a breakpoint, do the
following in the breakpoint code:

! . ctx

Here's a more complete example:

> bp SomeFunction
-} !. ctx;
} ! v a 5;
}

}

,.. Cast Operator
A cast may be used as a postfIx operator. For example, x (int) is equivalent to
(int) x.

Tilcle Operator
The tilde can be used as a postftx dereference operator. For example, x- is
equivalent to *x.

9.7

9.8

9.9

Chapter 10 / General PenPoint
Debugging Techniques

This chapter describes the other tools and techniques that you can use to debug
PenPoint programs. Many of these tools or techniques use three facilities provided
in the PenPoint™ operating system:

• The DEBUG compiler option, which causes specific message passing macros
to send text to the debugger stream.

• Debugger flags, which you can use to turn on and turn off certain behaviors
m a program.

• The debugger stream, a pseudo device to which programs can write text. You
can view the debugger stream either on a second monitor or in the System
Log application, which is described in Chapter 11. Mter shutting PenPoint
down, you can view the debugger stream in a log file, named PENPOINT.LOG.

Unfortunately these topics are tightly interrelated, it is hard to describe one
without requiring some knowlege of the other. If you have questions while reading
this chapter, keep reading; your question will probably be answered later on.

DEBUG Compiler Option
When you compile an application, you can use the ID compiler switch to create
the preprocessor #define name DEBUG.

set WCC386=/3s /Oif+ /s /W3 /We /Ze /Zq /fpe /D2 /En /DDEBUG
wee386p /Foemptyapp.obj emptyapp.e > emptyapp.err

PenPoint Uses DEBUG

When you specify the DEBUG #define name in compilation, several PenPoint
macros in DEBUG.H, GO.H, and CLSMGR.H are defined so that they send
information to the debugger stream (StsWarn, StsFailed, StsRet, StsJmp, and
StsOK in GO.H, ASSERT in DEBUG.H, and a number in CLSMGR.H). See the tables
at the end of this chapter for a complete listing.

StsWarn evaluates any expression that returns STATUS. If STATUS is an error,
StsWarn writes the status value, the file name, and line number to the debugger
stream. The message passing macros, StsFailed, StsRet, StsJmp, and StsOK all use
the StsWarn macro.

You can use the macro Dbg to comment out single line debug statements when
DEBUG is not defined. For example:

Dbg(Debugf("Only shows up in DEBUG version");)

10.1

10. L 1

134 PENPOINT DEVELOPMENT TOOLS

Part 2 / Debugging Penpoint Applications

Often when working on functions called by other functions, you assume that the
softwareis in a certain state. The ASSERT macro lets you state these assumptions,
and if DEBUG is set, it checks to see that they are in fact the case. If the
assumptions are not satisfied, ASSERT will send text to the debugger stream. For
example, a square root function might rely on never being called with a negative
number:

void MySqRoot(int num)
{

ASSERT(num >= 0, "MySqRoot: input parameter is negative!");

II Calculate square root ...

If DEBUG is defined and the assertion is not true, ASSERT will send "MySqRoot:
input parameter is negative!" to the debugger stream.

Using DEBUG in Your Programs

You can also test for the DEBUG #define name in your programs. If you include
hfdef and #endif statements to test for DEBUG, you can make your application
behave differently when it is compiled with DEBUG. For example:

Hfdef DEBUG
DPrintf("Pen Moved to location (%ld,%ld)\n", pArgs->xy);

itendif

The function DPrintfO is described later in this chapter.

Debug Versions of Pen Point DLLs

The PenPoint SDK includes debugging versions of the PenPoint DLLs. These
print out informative errors and use the DEBUG versions of STATUS checking
macros.

To use the debugging versions of system DLLs, modify\PENPOINT\BOOT\BOOT.DLC
to load the debugging versions. For instance, change this line:

go-input-vl(O)

. to this:

go-input-vl(O)

\\boot\penpoint\boot\dll\input.dll

\\boot\penpoint\boot_dll\input.dll

Debugging Flag Sets
PenPoint sets aside 256 variables, called debugging flag sets, that you can use
when debugging. Each variable is a 32-bit value, which means that you can assign
at least 32-different meanings to each debugging flag set.

Because there are 256 debug flags sets, they can be indexed by an 8-bit character.
Commonly, we refer to a specific debugging flag set by the character that indexes
that flag. GO has reserved all the uppercase character debug flags sets (A through
Z), and has reserved some of the lowercase characters also. To find which debug
flags set are available, see the file \PENPOINT\SDK\INC\DEBUG.H.

10,1.2

10.2

CHAPTER 10 I GENERAL PENPOINT DEBUGGING TECHNIQUES 135
.The Debugger Stream

You can set the value of a debugging flag set and retrieve it. There are several ways
to set values in debugging flag sets:

• Using the function DbgFlagSetO in a program.

• Using the debug set environment variable in \PENPOINT\BOOT\ENVIRON.lNI.

• Using the fs command in either DB or the mini-debugger.

Your application can determine the value of a debugging flag set with the function
DbgFlagGetO.

Typically, you set a flag value before running a program and your program uses
DbgFlagGetO to check the value of the flag.

Do not use these in production code; it is fine to use them in DEBUG versions,
but they are not administered and could cause hard-to-find errors.

Some PenPoint modules include additional code that can be activated via these
debugging flag sets. Header files describe the effects of setting different bits in each
debugging flag set. For example, setting the 4000 bit in C causes the debugging
version of the Class Manager to print miscellaneous warning messages.

". The Debugger Stream
As described in the introduction to this chapter, the debugger stream is a pseudo
device to which programs can write text.

There are four different ways to view the information sent to the debugger stream:

• If logging is turned on, all information written to the debugger stream is
written to the log file.

• You can direct the debugger stream to send its information to a serial port.

• If you have two monitors (VGA and monochrome), the debugger stream is
displayed on the second (monochrome) monitor.

• If you have the System Log application running, the debugger stream is
captured by the System Log.

These destinations are not mutually exclusive. If all three are active, all three will
receive the debugger stream data. The System Log application is described in
detail in Chapter 11.

".. Configuring the Debugger Stream Destinations
You can control where the debugger stream is routed by modifying lines in your
MIL.INI and ENVIRON.lNI files. This section describes the various debugger stream
destinations and how you configure them. See the next chapter (Chapter 11) for
information on using System Log Application.

10.3

10.3.1

136 PENPOINT DEVELOPMENT TOOLS

Part 2 I Debugging Pen point Applications

~ Writing to a Log File

To direct the debugger stream to a log file, set the debugger flag D to the value
8000. There are several ways to do this:

• In DB or the mini-debugger, use the fs command: fs D 8000 .

• In ENVIRON.lNI, add the DebugSet line: DebugSet=/DD8000.

The _ENVIRON.lNI file that is shipped with the SDK contains the DebugSet line,
but it is commented out. The simplest way to .enable logging is to remove the
pound sign (#) comment marker at the beginning of the line

IDebugSet=/DD8000

By default, the debug output is written to the file \\PENPOINT.LOG. To change the
destination of the log file, add a DebugLog line to your ENVIRON.lNI file. For
example, these lines cause the debugger stream to be logged in the file MY.LOG in
the root of the system volume:

DebugSet=/DD8000
DebugLog=\\MY.LOG

Normally output to the debug log is buffered, to improve performance. However,
this can cause problems if the machine crashes before it can write the last buffered
data to the log file. To avoid this, you can add a DebugLogFlushCount line to
your ENVIRON.lNI file. This line specifies the number of characters that can be
written to the buffer before the buffer is flushed to the log file.

~ Writing to a Serial Port

You can direct the debugger stream to write to a serial port. You can then attach a
dumb terminal (or a PC running a terminal emulation package) to the serial port
and view the debugger stream, much like using a second monitor.

This is most useful when you are debugging a PenPoint program on a PenPoint
computer and have no other way to view the debugger stream, other than the
PENPOINT.LOG file.

To write debugging information to a serial port, edit your MILINI file and add a
SerialDebugPort line to it. The _MILINI file that is shipped with the SDK
contains two SerialDebugPort lines already configured, but commented out.

10.3.1.1

10.3.1.2

I Remove the "I" on the next line to route debugging information to COMl
ISerialDebugPort=l
I Remove the "I" on the next line to route debugging information to COM2
ISerialDebugPort=2

~ Writing to a Second Monitor

Developing PenPoint applications is much more pleasant if you have a two
monitor configuration (one VGA, one monochrome). With two screens you
can interact with your program while watching the debugger stream on the
monochrome screen. With only one monitor, you can only view the debugger
stream when you halt PenPoint (with the I Pause I key).

10.3.1.3

CHAPTER 10 / GENERAL PENPOINT DEBUGGING TECHNIQUES 137

The Debugger Stream

IfPenPoint is running on a PC and it detects a second (monochrome) monitor,
it will display the debugger stream on that monitor. All you have to do is add
a monochrome card to your machine and attach a monochrome monitor to
the card.

If, for some reason, you want to turn off the debugger stream from the second
monitor, add the line MonoDebug=off to your MIL.INI file. The _MIL.INI file
shipped with the SDK contains a MonoDebug line, but it is commented out.

Viewing on a Single Monitor

If you have a single monitor on your PC, you can use the System Log application
to view the debugger stream. However, you cannot run the System Log
application while PenPoint is booting. To view the debugger stream during the
boot sequence, you must:

• Modify the MonoDebug line in your MIL.INI file so that it specifies "off."

• Ensure that your boot volume contains the file
\PENPOINT\BOOT\CONSOLE.DLC.

The CONSOLE.DLC file lists screen drivers that display debugging information on
the VGA screen during booting.

Writing to the Debugger Stream

In describing other aspects of debugging, we have already described several ways
that you can write to the debugger stream. These tables summarize the functions
and macros that send text to the debugger stream.

The functions in the Table 10-1 always write text to the debugger stream (that is,
they don't have to be compiled with the DEBUG preprocessor #define name).

Debugf

DPrintf

Writes a formatted string (like printf), with a trailing newline.

Writes a formatted string, like printf, with no trailing newline.

Table 10-2 lists the "warn" form of the PenPoint message passing macros. If you
compile these macros with the DEBUG preprocessor #define name and the
message that they pass returns a status value less than stsOK, the macros write a
string to the debugger stream. The string contains the name of the file and the line
number where the unsuccessful message occurred.

If you compile these macros without DEBUG, they simply call the standard form
of the function. For example, without DEBUG ObjCallWarn will call
ObjectCallO.

138 PENPOINT DEVELOPMENT TOOLS
Part 2 I Debugging Penpoint Applications

ObjCallWarn

ObjCallAncestorWarn

ObjCallAncestorCtxWarn

ObjSendWarn

ObjSendUpdateWarn

ObjSendTaskWarn

ObjSendUpdateTaskWarn

ObjSendU32Warn

ObjPostWarn

ObjPostAsyncWarn

ObjPostTaskWarn

ObjPostAsyncT ask Warn

ObjPostU32Warn

Calls ObjectCallWarningO.

Calls 0 b jectCallAncestorW arningO.

Calls ObjectCallAncestorCtx WarningO.

Calls ObjectSendWarningO.

Calls ObjectSendUpdateWarningO.

Calls ObjectSendTaskWarningO.

Calls ObjectSendUpdateTaskWarningO.

Calls ObjectSendU32WarningO.

Calls ObjectPostWarningO.

Calls ObjectPostAsyncWarningO.

Calls ObjectPostTaskWarningO.

Calls ObjectPostAsyncTaskWarningO.

Calls ObjectPostU32WarningO

Table 10-2 lists the warning forms of the PenPoint message passing functions.
When the message passed by these functions returns a status value less than
stsOK, these functions write text to the debugger stream.

Usually you don't use these functions but you use the related macros, listed in
Table 10-3.

!'undion f'U?f'ose

ObjectCallWarning Calls ObjectCallO, writes if status is less than stsOK.

Table 10-2

Table 10-3

ObjectCallAncestorCtxWarning Calls ObjectCallAncestorCtxO, writes if status less than stsOK.

ObjectCallAncestorWarning Calls ObjectCallAncestorO, writes if status less than stsOK.

ObjectSendWarning Calls ObjectSendO, writes if status less than stsOK.

ObjectSendUpdateWarning Calls ObjectSendUpdateO, writes if status less than stsOK.

ObjectSendTaskWarning Calls ObjectSendTaskO, writes if status less than stsOK.

ObjectSendUpdateTaskWarning Calls ObjectSendUpdateTaskO, writes if status less than stsOK.

ObjectPostWarning Calls ObjectPostO, writes if status less than stsOK.

ObjectPostAsyncWarning Calls ObjectPostAsyncO, writes if status less than stsOK.

ObjectPostTaskWarning Calls ObjectPostTaskO, writes if status less than stsOK.

ObjectPostAsyncTaskWarning Calls ObjectPostAsyncTaskO, writes if status less than stsOK.

You can use these macros when invoking a macro or function that evaluates to a
status value. If you compile these macros with the DEBUG preprocessor #=define

name and their expression evaluates to less that stsOK, the macros write a string to

the debugger stream (and some perform further actions). The string contains the

CHAPTER 10 I GENERAL PEN POINT DEBUGGING TECHNIQUES 139
The Debugger Stream

status value and the name of the file and the line number where the unsuccessful
expression occurred.

StsWarn

StsFailed

StsRet

StsJmp

ASSERT

Purpose

If not OK, writes to debugger stream.

If not OK, calls StsWarn.

If not OK, calls StsWarn and returns with status.

If not OK, calls StsWarn and jumps to specified location.

If assertion fails, writes to debugger stream.

Table 10-4

Chapter II/The System Log
Application

The System Log application allows you to view text written to the debugger
stream. The System Log application reads (but does not intercept) text written to
the debugger stream, and saves the text in its internal buffer.

You can scroll the System Log application's contents so that you can review your
debugging session. The System Log application preserves an adjustable number of
lines of debugging output. The application also has several menu commands that
give you quick access to memory information, enable debug logging, and get and
set debug flags.

Loading the System Log Application
The System Log application is a normal PenPoint application. You can configure
the PenPoint™ operating system so that the application is loaded at boot time or
you can load the application using the application installer.

The line needed to load the System Log application at boot time is already in the
SYSAPP.INI file. However, the line is commented out .. To load the System Log
application at boot time, just remove the pound sign (#) comment at the
beginning of the line.

Running the System Log Application
The System Log application is a accessory. You can run the application by opening
Accessories and then tapping on the System Log icon.

'11.1

142 PENPOINT DEVELOPMENT TOOLS

Part 2 / Debugging Pen point Applications

You can scroll, resize, move, open, and close the System Log application as you
would any other floating accessory. For more information on using tools, see the
end-user documentation.

To close the System Log application, tap its close corner. The lines in the System
Log application are preserved (and are also in the debug log file if you enable
logging).

~ System Log Application Menus
The System Log application has four menus that you can use to control the
application or display system information. They are: Show, Trace, Size, and
Font Size.

Show Menu

The items in the Show menu direct the System Log application to display
information about the current system.

Memory Usage Displays the current memory used by PenPoint and
application.

Task List Lists all of the tasks currently running.

Device List Lists all devices currently installed.

Trace Menu

The Trace menu allows you to specify the types of messages displayed on the
System Log's window.

Application Errors Display all application and non-system errors from the
. StdErrorO function.

11.3

11.3.2

CHAPTER 11 / THE SYSTEM LOG APPLICATION 143
System Log Application Menus

Non-error Messages Display all application and system dialog messages
from the StdMsgO function.

Off Turns off all debugging messages, including those from Debugf,
DPrintf, and StsWarn.

The Off choice only appears in the version of the System Log application mat was
compiled with the DEBUG preprocessor #define name (in _PP\BOOT\APP). If
you can't see the Off choice, you are using the production version of the System
Log application from \PENPOINT\BOOT\APP.

". Log Size Menu
The log size menu allows you to choose how large a buffer to reserve for the
System Log. When the System Log is full, the oldest lines are removed before new
lines are added. If you are working with limited amounts of memory, you may
want to choose a smaller size for the System Log.

The choices are small, medium, and large. Small is 8K bytes (approximately 6
computer screens of information); medium is 16K bytes; large 32K bytes. The
default size is medium.

". Font Menu
The font menu allows you to choose me size font to display the system log.
Possible sizes are: 8, 10, 12, 14, 18, and 24 point type.

11.3.3

11.3.4

Chapter 12 / Pen Point
Mini-Debugger

In addition to DB, PenPoint has a much simpler kernel debugger. The mini-debugger
is not as full featured as DB. It can't display source code lines or symbols, but it has
minimal memory requirements, doesn't require any configuration, and can debug any
code (including kernel code).

If the mini-debugger is loaded and any process crashes, you can determine what line
your program crashed at, what routines called which routines, and what PenPoint
modules were involved. All you have to do is log the results of your mini-debugger
session, use the mini-debugger to get some system and process information, and
compare the results with the .MAP files produced by the compiler and linker.

The mini-debugger lets you:

• Get information about tasks, heaps; segments, memory usage, the memory
file system.

• Perform stack traces.

• Disassemble code and display and modify registers.

• Set breakpoints and step through code at the assembler language level.

The mini-debugger is a part of the PenPoint system, so it is always loaded.

Inv~king the Mini-Debugger
When running the PenPoint™ operating system on a PC, pressing I Pause I enters the
mini-debugger. Its prompt is a greater-than sign, >. If you're running on a single
monitor configuration, the PenPoint graphical screen is replaced by a text screen,
otherwise output appears on the second monitor. You can then type commands to
the mini-debugger.

PenPoint also enters the mini-debugger whenever a process has a general
protection fault or page fault.

Also a program can explicitly enter the mini-debugger by calling the DebuggerO
system routine.

Mini-Debugger and DB
If you have installed DB, then all of the above actions invoke DB instead of
the mini-debugger. You can tell the difference between them because the DB>
prompt has a "cursor," a dot which indicates the current insertion point. You can
enter the mini-debugger from DB by typing mini, and return to DB from the
mini-debugger by typing q.

12.1

12. L 1

146 PEN POINT DEVELOPMENT TOOLS
Part 2 I Debugging Pen point Applications

".. On a Pen Point Computer

When PenPoint enters the mini-debugger, it expects commands from a keyboard.
Of course, most PenPoint computers do not normally have a keyboard, so it is
difficult to enter a g 'command to continue.

Therefore, the production version of Pen Point (intended to run on a PenPoint
computer) has the D 10000 debugger flag is set. This flag disables the mini
debugger. When PenPoint fails, it dumps the registers to the debugger stream
and attempts to continue.

~ Mini-Debugger Commands
Typing? displays the available mini-debugger commands.

ai addr

ap cmd [;cmd]

at cmd[;cmd]

bcnumber

bd { number I *}

be { number I *}

bl number

bp number addr

cd u32

cm u32

co u32

cs u32

ct u32

ctx [task-id]

d [rangeList]

da [rangeList]

db [rangeList]

dd [rangeList]

dw [rangeList]

fd fileName

fl [flag]

fs flag [value]

g [addr]

hd addr

help [cmdName]

hiaddr

hI

Des(riptiofl

Evaluate and print expressions.

Display address information.

Execute the commands in all ctx of all processes.

Execute the command in all ctx of all tasks.

Clear Breakpoint.

Disable breakpoints.

Enable breakpoints.

List breakpoints.

Set breakpoint number at addr.

Call objects with msgDump, pArgs=O.

Convert msg.

Convert object.

Convert status.

Toggle trace setting for objects.

Set the current task.

Display memory at address.

Display ASCII at address.

Display bytes at address.

Display double words at address.

Display words at address.

Display file.

Display debug flags.

Set/Clear debug flags.

Continue program execution (until address).

Display heap summary and allocated blocks information.

Display help.

Heap status.

Display heaps in process.

12.2

CHAPTER 12 I PENPOINT MINI-DEBUGGER 147
Mini-Debugger Commands

Command and Parameters

inb port

inwport

ldev

mdb controls

ml

outb port value

outw port value

p [physaddr]

q [exitCode]

qq

r

ra

rf

rx

s [repeatCount]

si [semaphore]

st [addr [n]]

t [repeatCount]

ti

tl [taskList]

tt task

tst taskId [addr]

u [rangeList]

w

". SeHing Debug Flags

Description

Input byte from I/O port.

Input word from I/O port.

Display MIL devices.

Special Debugger control settings.

Display task memory information.

Output byte to I/O port.

Output word to I/O port.

Display physical memory.

Exit PenPoint.

Exit PenPoint, skip standard shutdown.

Display standard registers.

Display all registers.

Display floating point registers.

Display special registers.

Step - Single step.

Display semaphore information.

Stack trace at address for n frames.

Trace-single step.

Task information.

Display task list.

Terminate this task.

Stack Trace of another task.

Disassemble code.

Warm boot (PC only).

You use the fs command to set debug flags. There are two forms of the command:

fs c hhhhhhhh

where c is anyone byte ASCII character that identifies the debug flag set, and
hhhhhhhh is a hexadecimal value of 1 to 8 digits. There is no space between the
character and hexadecimal value.

fs hh hhhhhhhh

where hh is a one or two digit hexadecimal value that specifies the debug flag set,
and hhhhhhhh is a hexadecimal value of 1 to 8 digits. In this form of the fs

command, spaces are significant. This form allows you to set or clear debug flags
that are identified by non-printing ASCII characters (such as those in the ranges 0
through 32 and 128 through 255).

Table 12-1 (continuedl

12.2.1

148 PEN POINT DEVELOPMENT TOOLS

Part 2 / Debugging Pen point Applications

To clear a debugging flag set, set the flag ~et to O.

C©mmClm:l

fs c hhhhhhhh

fs cO

fs hh hhhhhhhh

fs hhO

fl hh

Set flag identified by character c to hex value hhhhhhhhh.

Clear flag identified by character c.

Set flag identified by hex value hh to hex value hhhhhhhh.

Clear flag identified by hex value hh.

Display flag identified by hex value hh.

For example, either of these two commands sets the F debug flag to 10:

fs F 0010
fs 46 0010

". Using the Mini-Debugger
If you enter the mini-debugger, you usually:

• Type fs D 8000 to enable logging (iflogging is not already enabled).

• Type st to get a stack trace. This should indicate which code the error
occurred, and where it was called from.

• If you're familiar with assembly code, type r to display registers and u to
unassemble the code which failed.

• Type ti to see the state of tasks.

• Then type g to try to continue.

". Map Files
A map file records line numbers and symbol addresses created by the compiler and
linker. A map file is useful when decoding faults and interpreting stack traces
produced by PenPoint's mini-debugger. The WATCOM Make files in the
\PENPOINT\SDK\SAMPLE directories assign the extension .MPE to map files for
executable modules, and .MPD to map files for DLL modules.

To display symbolic names for routines from the mini-debugger, compile your
application with the lEn switch.

". Exception Handling
IfPenPoint entered the mini-debugger due to a general protection fault and you
enter 9 to continue execution, the kernel general protection fault handler
terminates the task that encountered the fault.

Understanding Interrupts
The best place to start interpreting interrupts is with Intel's 386SXlDXlSL

Microprocessor Programmer's Reference Manual In Chapter 9, Exceptions and
Interrupts, there's an explanation of the interrupts (Section 9.9) and the errorCode
registers (Section 9.8).

12,3

12.4

12.6

CHAPTER 12 / PENPOINT MINI-DEBUGGER 149
Understanding Interrupts

Some of the interrupts are faults that cause PenPoint to crash. For example, fault
12 is a stack fault. Some faults can be handled by interrupt handlers.

Sometimes an interrupt handler will drop to DB. If this happens, the registers
printed by the mini-debugger are the registers for the interrupt handler. However,
because this isn't very useful, DB tries to be helpful by printing the registers for the
task that was active when the interrupt handler kicked in. You need to look at
those registers. For example:

FAULT 12 in nonpreemptable task 558

fault 12, errorCode 0000, task 0558
ax 0000FF08 bx 00436C8C ex OOOOOOOF dx 000003CE si 40774988 di 4031F17E
sp 0044DF20 bp 00436C8C ip 40774CFD O---O--I--Z-P-
ax 0000FF08 bx 00436C8C ex OOOOOOOF dx 000003CE si 40774988 di 4031F17E
sp 0044DF20 bp 00436C8C ip 40774CFD O---O--I--Z-P-
EAX=40670000 EBX=OOOOOOOO ECX=OOOOOOOO EDX=OOOOOOOO ESI=00420000 EDI=00004246
EIP=40663C85EBP=00426EEO ESP=00426EDC FLG=00004246 CR2=40CB1078 CR3=0018FOOO
CS=0010 DS=0020 SS=0090 ES=0020 FS=OOOO GS=OOOO TSS=0088 TNAME=Stak

The key set of registers is the first set (lowercase two-letter registers). The capitalized
registers are the interrupt subtask calling the debugger. The giveaway is that the task
where the fault happened is 558 (a fairly large task ID, so it is probably an application
task), but the TSS of the second set is low (probably a system task). The task name
(TNAME) is Stak, which makes sense because fault 12 is (from the Intel book) "Stack
Exception."

If you immediately do a stack trace or unassemble the code around the instruction
pointer, you get the second set:

>u eip-20
40663C65 85DB TEST EBX,EBX
40663C67 740E JE 40663C77
40663C69 68D82B6640 PUSH 40662BD8
40663C6E FF15COD16640 CALL [4066D1CO]
40663C74 83C404 ADD ESP,04
40663C77 66C705306467400100 MOV [40676430],0001
40663C80 E871F89C9F CALL OSDebugger (E00334F6) ««
40663C85 66C705306467400000 MOV [40676430],0000
40663C8E 6685DB TEST BX,BX
40663C91 740E JE 40663CA1
40663C93 6814286640 PUSH 40662814
40663C98 FF15COD16640 CALL [4066D1CO]
40663C9E 83C404 ADD ESP,04
40663CA1 E843FFFFFF CALL DoReinstallDB (40663BE9)
40663CA6 6685DB TEST BX,BX
40663CA9 740E JE 40663CB9

All this tells you is that the interrupt subtask dropped into the debugger. What we
really want is what was happening that caused the interrupt subtask to mess up, so
let's take a look at the whole task list:

150 PEN POINT DEVELOPMENT TOOLS
Part 2 I Debugging Pen point Applications

>tl
Task Id type parent state class pri memused name time(s)
------- ------- -------

48 process ready low 50 172032 Idle 20.053

68 Interrupt 48 ObI 0.000
78 Interrupt 48 TSS 0.000
88* Interrupt 48 Stak 0.000
98 process msg wait system 9 8192 Scav 0.548
A8 process msg wait high 44 4096 V86x 40.474
B8 Interrupt 48 V86a 0.000
C8 Subtask 48 ready med high 7 Page 0.847
08 Subtask 48 msg wait high 3 Powr 0.145
E8 Subtask 48 ready high 45 OmIM 0.070
F8 Subtask 48 sema wait med low 7 0.000

108 process msg wait med low 7 835584 Syst 8.711
118 Subtask 108 ready med low 7 Timr 0.023
128 Subtask 108 sema wait high 46 OBm 21.608
138 Subtask 108 ready high 45 OBk 0.008
148 Subtask 108 msg wait med low 7 0.359
158 Subtask 108 msg wait med low 7 IMgr 0.017
168 Subtask 108 sema wait med low 7 IDSP 0.771
178 Subtask 108 ready high 49 Pen 1.723
188 Subtask 108 ready high 50 Key 0.001
198 Subtask 108 sema wait high 45 OmKK 0.059
1A8 Subtask 108 ready low 30 FSUI 0.165
1C8 process msg wait med low 7 4096* SECO 0.121
1E8 process msg ~ait med low 7 4096* nbtO 0.088
208 process msg wait med low 7 4096# NBAO 0.089
228 process msg wait med low 7 0# note 0.031
238 process msg wait med low 7 4096# MinO 0.414
258 process msg wait med low 7 28672 MINO 0.264
278 process msg wait med low 7 4096# SETO 0.592
2B8 process msg wait med low 7 4096# HELO 0.082
208 process msg wait med low 7 4096# INBO 0.086
2F8 process msgwait med low 7 4096# OBOO 0.087
318 process msg wait med low 7 4096# staO 0.086
338 process msg wait med low 7 4096# CNCO 0.125
358 process msg wait med low 7 4096* VKEO 0.114
378 process msg wait med low 7 4096# MAS 0 0.100
398 process msg wait med low 7 4096* ACCO 0.098
3B8 process msg wait med low 7 4096# CLOO 0.119
308 process msg wait med low 7 4096* BOOO 0.103
3F8 process msg wait med low 7 0* anim 0.007
408 process msg wait med low 7 0# hwle 0.012
418 process msg wait med low 7 0* hwge 0.010
428 process msg wait med low 7 290816 ctsh 0.252
448 process msg wait med low 7 4096* flap 0.028
468 process msg wait med low 7 4096* SIO. 0.029
488 process msg wait med low 7 4096* HSLI 0.021
4A8 process msg wait med low 7 20480 atp. 0.064
4B8 Subtask 4A8 ready med low 7 ATP 0.024
408 process msg wait med low 7 28672 MARO 0.496
4E8 process msg wait med low 7 53248 B001 1.456
4F8 process msg wait med low 7 32768 NBA1 1.204
508 process msg wait med low 7 57344 nbtl 2.224
548 process msg wait med low 7 135168 MAR2 2.357
558 Subtask 548 ready med low 7 0.931

Memory allocated by the system: 3977216
Memory allocated by the loader: 2654208

CHAPTER 12 I PEN POINT MINI-DEBUGGER 151

There's task 558, a subtask our application created. You can then switch context to
the task and get a stack trace and look at the instruction pointer.

>ctx 558
>u eip-20

40774CDD 4D DEC EBP
40774CDE 7740 JA 40774D20
40774CEO 55 PUSH EBP
40774CE1 8BEC MOV EBP,ESP
40774CE3 57 PUSH EDI
40774CE4 56 PUSH ESI
40774CE5 53 PUSH EBX
40774CE6 8B6D08 MOV EBP, [EBP+8]
40774CE9 3E8B7D04 MOV EDI, DS: [EBP+4]
40774CED 66BACE03 MOV DX,03CE
40774CF1 66B80503 MOV AX, 0305
40774CF5 66EF OUT DX,AX
40774CF7 66B808FF MOV AX,FF08
40774CFB 66EF OUT DX,AX
40774CFD 668B451A MOV AX, [EBP+1A]
40774D01 6683F801 CMF AX,Ol

>

The Task List

The Task List 12.7

It is fairly useful to understand what tasks appear in the task list. This section
provides a road map to the significant portions of the task list.

The two most interesting columns are type and name. Following the header are a
number of system tasks:

Task Id type parent state class pri memused name time (s)
------- ------- -------

48 process ready low 50 172032 Idle 20.053
68 Interrupt 48 Dbl 0.000
78 Interrupt 48 TSS 0.000
88* Interrupt 48 Stak 0.000
98 process msg wait system 9 8192 Scav 0.548
A8 process msg wait high 44 4096 V86x 40.474
B8 Interrupt 48 V86a 0.000
C8 Subtask 48 ready med high 7 Page 0.847
D8 Subtask 48 msg wait high 3 Powr 0.145
E8 Subtask 48 ready high 45 DmIM 0.070
F8 Subtask 48 serna wait med low 7 0.000

108 process msg wait med low 7 835584 Syst 8.711
118 Subtask 108 ready med low 7 Timr 0.023
128 Subtask 108 serna wait high 46 DBm 21. 608
138 Subtask 108 ready high 45 DBk 0.008
148 Subtask 108 msg wait med low 7 0.359
158 Subtask 108 msg wait med low 7 IMgr 0.017
168 Subtask 108 serna wait med low 7 IDSP 0.771
178 Subtask 108 ready high 49 Pen 1.723
188 Subtask 108 ready high 50 Key 0.001
198 Subtask 108 serna wait high 45 DmKK 0.059
1A8 Subtask 108 ready low 30 FSUI 0.165

Idle Does nothing.

Dbl Interrupt task that handles double faults (that is, two simultaneous
faults such as a page fault and a stack fault). This is Interrupt 8-Double
Fault from the Intel book. It should never happen.

152 PENPOINT DEVELOPMENT TOOLS
Part 2 / Debugging Pen point Applications

TSS Interrupt task that handles invalid task segment structures. This is
Interrupt lO-lnvalid TSS from the Intel book. It should never happen.

Stak Interrupt task that handles stack faults in ring o. This is Interrupt 12-
Stack Exception from the Intel book. Note that most code is in ring 3,
and exceeding stack in ring 3 is handled in-line by growing the stack
without the kernel doing anything special.

Scav Process that scavenges, activated by Class Manag~r.

V86x Virtual 8086 task. Calls DOS Int 13 functions in real mode, to avoid
problems with trying to call these functions in protected mode. Note
that tablet hardware doesn't have this task; it can use the MIL to talk to
devices in protected mode.

V86a Handles interrupts in virtual 8086 mode.

Page Page daemon that writes out dirty pages. If you change data, or
memory-map a file and change something in memory, the contents of
memory are dirty and have to be written out (a basic virtual memory
idea). This process does it periodically.

Powr Power management, turns off power, handles the physical power
button.

DmIM "Dm" indicates a continuous Driver interface to the MIL. The last
two letters represent the logical device (A is 0, so I is logical device 8) and
the function (A is 0, so M is function 12). You can enter Idev in the
mini-debugger to get a list of logical devices, then look in the DV*.H
header to figure out its function.

Syst Loads DLL code that doesn't have a process. It is the owner for the
resources allocated by these DLLs. Observe how much ~emory it uses
(835584 bytes!). The DLLs mentioned in BOOT.DLC are all owned by
this task.

Timr Keeps track of timer events. You can't send a message during a timer
interrupt. Timer interrupts use a semaphore, which is checked by this
subtask. When the semaphore is clear, the subtask starts timer processing
and message sending.

D Bm The main DB task.

DBk The DB keyboard reader.

IMgr The Input manager that grabs pen and keyboard events.

IDSP The Input dispatcher that dispatches input to windows.

Pen The pen subtask.

Key The keyboard sub task.

DmKK Another continuous Driver interface to the MIL.

CHAPTER 12 I PENPOINT MINI-DEBUGGER

FSUI Handles the file system user interface.
1C8 process msg wait med low 7 4096* SECO 0.121
1E8 process msg wait med low 7 4096* nbtO 0.088
208 process msg wait med low 7 4096* NBAO 0.089
228 process msg wait med low 7 0* note 0.031
238 process msg wait med low 7 4096* MinO 0.414
258 process msg wait med low 7 28672 MINO 0.264
278 process msg wait med low 7 4096* SETO 0.592
2B8 process msg wait med low 7 4096* HELO 0.082
208 process msg wait med low 7 4096* INBO 0.086
2F8 process msg wait med low 7 4096* OBOO 0.087
318 process msg wait med low 7 4096* staO 0.086
338 process msg wait med low 7 4096* CNCO 0.125
358 process msg wait med low 7 4096* VKEO 0.114
378 process msg wait med low 7 4096* MAS 0 0.100
398 process msg wait med low 7 4096* ACCO 0.098
3B8 process msg wait med low 7 4096* CLOO 0.119
308 process msg wait med low 7 4096* BOOO 0.103
3F8 process msg wait med low 7 0* anim 0.007
408 process msg wait med low 7 0* hwle 0.012
418 process msg wait med low 7 0* hwge 0.010
428 process msg wait med low 7 290816 ctsh 0.252
448 process msg wait med low 7 4096* flap 0.028
468 process msg wait med low 7 4096* SIO. 0.029
488 process msg wait med low 7 4096* HSLI 0.021
4A8 process msg wait med low 7 20480 atp. 0.064
4B8 Subtask 4A8 ready med low 7 ATP 0.024
408 process msg wait med low 7 28672 MARO 0.496

Now we're getting into processes. The number on the end of the process name
represents the processCount (the same thing that an application receives in main).
Therefore, task names that end in 0 are the the application monitor objects
created in AppMonitorMain when the applications were installed. This is also
usually where the application creates its application class. There are a lot of these
process 0 tasks; to save memory PenPoint compacts them. This is what the "#"

means in the memory column.

SEeo This is process 0 of the section application.

nbtO Process 0 of the Notebook TOC app class.

anim This is a DLL that has a DLLMain. It's getting loaded after other
DLLs because it isn't a system DLL in BOOT.DLC, it's an optional DLL.
Anyapp that wants to use clsAnimator has to mention its DLL in the
application's .DLC file, hence the other term for these DLLs, "distributed
DLLs." PenPoint is smart enough to only load a DLL if it is not already
loaded (assuming the loaded version matches).

hwle Another non-system, "distributed" DLL, the letter practice DLL.

hwge Ditto, the handwriting gesture practice DLL.

flap The low-level LocaIT alk protocol.

SIO The serial I/O DLL.

atp AppleTalk Transport Protocol DLL.

The Task List

153

~ z

~

154 PENPOINT DEVELOPMENT TOOLS
Part 2 I Debugging Pen point Applications

ATP A subtask created by the ATP stack code.
4E8 process msg wait med low 7 53248 BOO1 1.456
4F8 process msg wait med low 7 32768 NBA1 1.204
508 process msg wait med low 7 57344 nbtl 2.224
548 process msg wait med low 7 135168 MAR2 2.357
558 Subtask 548 ready med low 7 0.931

Now we're getting into non-zero application processes, which is where actual
application objects are created (in AppMainO). In other words, these are processes
associated with active documents.

BOO 1 This is the bookshelf application, which is the first time a bookshelf
document is activated. It's not surprising that this is the first document
actually created; PenPoint creates the bookshelf from the line in
ENVIRON.INI:

StartApp = \\boot\penpoint\boot\app\bookshelf

MAR2 An application processCount 2. In other words, this is the second
time a document of this app has been activated. Note that it could be the
same document both times-when you turn away from a document the
app object may be terminated, which leads to the process being
terminated.

(blank) A subtask created by the application task (548).

3/
Tools

Chapter 13 / Introduction 159

Organization of Part 3 13.1 159 ,.. Chapter 18 / Font Editor 179

Chapter 14 / DOS File Systelll Introduction and Concepts 18.1 179

Utilities 161 Getting Started 18.1.1 179

STAMP 14.1 161
File Formats 18.1.2 180

Example 14.1.1 162
Technical Notes on Character Composition 18.1.3 180

Adding and Deleting a Character 18.1.4 182
GDIR 14.2 162

Editing Character Shapes 18.2 182
MAKLABEL 14:3 162 The Outline Editing Window 18.2.1 183

Example 14.3.1 163 View Preference 18.2.2 184
PAPPEND 14.4 163 Operator Icons 18.2:3 185

Example 14.4.1 164 Moving Control Points 18.2.4 185

PDEL 14.5 164 Deleting a Segment 18.2.5 186

PSYNC 14.6 164 Shape Mutation 18.2.6 186

Mitosis 18.2.7 186

,.. Chapter 15 / Other DOS Adding a Rectangular Shape 18.2.8 187

Utilities 165 Adding an Oval Shape 18.2.9 187

GO Batch File 15.1 165 Shape Transformation 18.2.10 187

PenPoint Method Table Compiler 165
Deleting a Shape 18.2.11 188

152
Changing the Setwidth 18.2.12 188

Resource Utilities 15.3 165 Viewing and Altering the Winding

,.. Chapter 16 / PenPoint Bitlllap
Direction 18.2.13 188

Editor 167
Merging Shapes 18.2.14 189

Editing Hints 18.3 190
Elements of a Bitmap 16.1 168 The Hint Editing Window 18:3.1 190
Importing a Bitmap 16.2 168 Altering a Hint 18.3.2 191

Exporting a Bitmap 16.3 169 Creating a Hint 18.3.3 192

Exporting to Home 16.4 170 Deleting a Hint 18.3.4 192

Bitmap Editor User Interface 16.5 170 Editing Bitmaps 18.4 192

The Document Menu 16.5.1 171 Creating a Bitmap 18.4.1 192

The Edit Menu 16.5.2 171 Deleting a Bitmap 18.4.2 193

The Options Menu 16.5.3 172 Pixel Editing 18.4.3 194

The Ink Menu 16.5.4 173 Altering Cell Dimensions 18.4.4 195

The Back Menu 16.5.5 173 Miscellaneous Functions 18.5 195

The Size Menu 16.5.6 173 Copying to the Clipboard 18.5.1 195

Pasting from the Clipboard 18.5.2 195
Chapter 17 / S-Shot Screen Subset Saving 18.5:3 196
Capture Utility 175 Examining and Editing the Font Header 18.5.4 196

Using S-Shot 17.1 175 Examining Text Samples 18.5.5 198

Installing S-Shot 17.1.1 175 Using Fonts in Documentation 18.5.6 198

Using S-Shot 17.1.2 175 Adobe Type I Fonts 18.6 199

Dolt 17.1.3 177 Saving an Adobe Font 18.6.1 199

Hints on Using S-Shot 17.2 177 Adobe Standard Encoding to AFII

Taking Snapshots of Gestures 17.2.1 177 Mappings 18.6.2 200

Full-Screen Snapshots 17.2.2 177 Font File Formats 18.7 204

Using S-Shot Files 17.2.3 177 The Nimbus-Q Format 18.7.1 204

Bugs 17.2.4 178 The PenPoint Packed Format 18.7.2 206

List of Figures
16-1 PenPoint Bitmap Editor 167

16-2 Exporting a Bitmap 170

18-1 The Character Selection Window 182

18-2 The Outline Editing Window 183

18-3 View Preference Dialog Box 185

18-4 Smoothing Lines 186

18-5 Merging Shapes 189

18-6 Winding Direction and Merging 190

18-7 Hint Editing Window 191

18-8 Bitmap Edit Window 194

18-9 Font Header Window 196

18-10 Font Attribute Window 197

18-11 Test Sample Dialog Box 198

18-12 Save Font Dialog Box 199

List of Tables

14-1 DOS File System Utilities 161

18-1 Font Header Window Fields 197

18-2 Font Attribute Window Fields 198

18-3 Adobe Font Fields 200

18-4 Mapping of Adobe Standard Encoding
to AFII Codes 200

Chapter 13 / Introduction

Part 3: Tools describes the development tools provided with the PenPoint™
operating system SDK.

Some of the tools you use in DOS while developing your application; others are
PenPoint tools that you use to refine or document your application.

". Organization of Part 3
Chapter 14, DOS File System Utilities, describes DOS programs that you use to
view or modify PenPoint-specific file system information.

Chapter 15, Other DOS Utilities, describes DOS programs that you use to
compile method tables, compile and manipulate resource files, and eliminate
unneeded clutter from Rich Text Format (RTF) Help notebook files.

Chapter 16, PenPoint Bitmap Editor, describes the PenPoint application that you
can use to edit bitmaps, such as PenPoint application icons.

Chapter 17, S-Shot Screen Capture Utility, describes the PenPoint application that
you can use to gather TIFF images of the screen. You can use these TIFF images in
the documentation for your application (the PenPoint user's guides are full of
S-Shot images).

Chapter 18, Font Editor, describes a font editor that you can use to create new
fonts or edit existing fonts for the PenPoint operating system.

13.1

Chapter 14 / DOS File System Utilities

The PenPoint™ operating system's file system is designed to be layered on top of
any existing file system. Currently, the only file system used by PenPoint is the
DOS file system.

To support the PenPoint extensions to the DOS file system, PenPoint creates a
PENPOINT.DIR file in each directory that contains PenPoint files. The PENPOINT.DIR

file contains information for each of the PenPoint files in that directory.

In the course of application development, you need to create or modify PENPOINT.DIR

entries for some of your DOS files. At other times, you may need to examine the con
tents of the PENPOINT.DIR file.

The PenPoint SDK includes a set of DOS programs that let you create and
modify PENPOINT.DIR files from a Pc. These programs are in \PENPOINT\SDK.\

UTIL\DOS, summarized in Table 14-1 and described in detail later in this chapter.

PrQgraM Name

STAMP.EXE

GDIR.EXE

MAKLABEL.EXE

PAPPEND.EXE

PDEL.EXE

PSYNC.EXE

,,-STAMP

Table 14-1
DOS File System Utilities

Purpose

Adds special PenPoint information to a DOS file or directory.

Lists the PenPoint names and file system attributes for all the files and directories in a
DOS directory.

Computes the correct hexadecimal values for file system attribute labels.

Appends directory entries from one PENPOINT.DIR file to another, without
appending duplicate names.

Deletes specific directory entries from PENPOINT.DIR files.

Scans' the current directory and removes any entries from PENPOINT.DIR for
which there are no corresponding files.

14.1

The STAMP utility associates a long PenPoint operating system file name or
attributes with a DOS file or directory by modifying or creating a PENPOINT.DIR

file. The syntax for STAMP is:

STAMP [path] IG "PenPoint Name" [/D dos-name] [/A attrlabel value ...]

path An optional DOS path to the PenPoint directory where the file or
directory exists. If not specified, STAMP tries to stamp the file in the
current directory.

PenPoint Name The PenPoint node name. It must be in quotes.

162 PENPOINT DEVELOPMENT TOOLS

Part 3 I Tools

dos-name The DOS file name of the file or directory.

attrlabel The 4-byte hexadecimal value of the file attribute label. The file
attribute label type (FS_ATTR_LABEL) is defined in
\PENPOINT\SDK\lNC\FS.H.

value The attribute value. Its format depends on the label type. If the label
type is fsFixAttr or fsFix64Attr, then the attribute requires a single
4-byte or 8-byte hexadecimal number. If the label type is fsStrAttr, the
attribute requires a quoted string. If the label type is fsVarAttr, the
attribute requires a set of two-digit hexadecimal numbers (for example,
3A CE 45); STAMP calculates the length of the variable attribute.

You can use the MAKLABEL utility to calculate a file system attribute label. Part 6:
File System, in the PenPoint Architectural Reference, explains file system attributes in
more detail.

The DOS name is optional once a PenPoint name has been associated. If the
DOS name is not specified, STAMP assumes you want to add more attributes. It is
OK to specify the DOS name as well as the PenPoint name; however, it is not
correct to specify a DOS name that doesn't match the DOS name that the
PenPoint name is associated with.

Example

This example associates the PenPoint name "Tic-Tac-Toe" with the directory
\PENPOINT\APP\TTT\STATNRy\TTTSTATl, and assigns the attribute 00800274

(with the value 1) to the file.

14.1.1

The attribute 00800274
causes the document to appear
in the pop-up stationery menu.

c:> stamp \penpoint\app\ttt\statnry /G "Tic-Tac-Toe" /D tttstatl /A 00800274 1

You can specify more than one attribute in a single command by adding as m.any
/A parameters as you need. For example: ~

c:> stamp "Foo" /A 0000004F "StuffD /A 0000005F DMore Stuff"

GDIR
The GDIR utility lists PenPoint names and attributes in a specific directory.

GDIR [path]

path An optional DOS path to the directory to list. If not specified, GDIR .

lists names in the current directory.

If the specified directory contains a PENPOINT.DIR file, this utility lists the
PenPoint name, number of attributes, and the attributes for each file and directory
listed in PENPOINT.DIR.

MAKLABEL·
The MAKLABEL utility constructs a hexadecimal attribute label from a class value
and an index value.

MAKLABEL {FIX I F64 I STR I VAa} c~sindex

14.2

14.3

CHAPTER 14 I DOS FILE SYSTEM UTILITIES ·163

FIX I F64 I STR I VAR The first argument specifies the type of file
system attribute, corresponding to fsFixAttr, fsFix64Attr, fsStrAttr,
and fSVarAttr in \PENPOINT\SDK\INC\FS.H.

class The administrated number of the attribute's class, in decimal.

index The attribute's index, in decimal.

MAKLABEL generates the hexadecimal file system attribute labels required by
STAMP. It has similar parameters as the FSMakeAttr macro in
\PENPOINT\SDK\INC\FS.H which are used to define file system attributes in
header files.

Example
\PENPOINT\SDK\INC\AUXNBMGR.H defines the file system attribute, which
indicates that stationery should be on the pop-up stationery menu:

II Should a piece of stationery be on the stationery menu?
#define anmAttrStationeryMenu FSMakeFix32Attr(clsAuxNotebookMgr, 1)
typedef enum ANM_ATTR_STATIONERY_MENU {

anmNotOnMenu = 0, II Same as no attribute
anmOnMenu = 1

} ANM_ATTR_STATIONERY_MENU;

\PENPOINT\SDK\INC\uID.H gives the administered number for
clsAuxNotebookMgr:

#define clsAuxNotebookMgr MakeWKN(314,1,wknGlobal)

So, the command to print out the hexadecimal value of anmAttrStationeryMenu is:

c:> \penpoint\sdk\util\dos\maklabel fix 314 1
The attribute label = 00800274

This gives the correct value for the attrlabel parameter to STAMP.

PAPPEND
The PAPPEND utility appends directory entries from one PENPOINT.DIR file to

another. Before appending an entry, PAPPEND makes sure that the entry doesn't
already exist in the target file. If the entry exists already, PAPPEND does not append
that entry. PAPPEND also eliminates any empty directory entries from the source
while appending.

The syntax for PAPPEND is similar to the standard C function strcat:

PAPPEND target-jile source-jile [/G "PenPoint-name"] [Iv]

target-file The file to which you are appending a directory entry.

source-file The file from which the entries are being copied.

IG "PenPoint-name" Specifies that PAPPEND is to append only the entry
with this name to the target file.

IV Directs PAPPEND to tell you what it has done (verbose mode).

14.4

PAPPEND

164 PENPOINT DEVELOPMENT TOOLS
Part 3 I Tools

Example

When you copy an application directory to \PENPOINT\APP, you need to add the
entry for that application directory to PENPOINT.DIR. The easiest way to do this is
to append the entry from the application directory's source disk.

14.4.1

B:\PENPOINT\APP> pappend penpoint.dir e:penpoint.dir Ig "DrawingPapern Iv Appended
nDrawingPaper"

PDEL
PDEL deletes a specific entry from the PENPOINT.DIR file in your current directory.

The syntax for PDEL is:

POEL II PenPoint-name" [/B] [10 II directory"] [IV]

PenPoint-name Specifies the PenPoint operating system name of the file to
delete from PENPOINT.DIR.

IB Directs PDEL to create a backup file named PENPOINT.BAK.

ID "directory' Directs PDEL to find PENPOINT.DIR in the
specified directory.

N Directs PDEL to work in verbose mode.

PSYNC
PSYNC examines the PENPOINT.DIR file in your current directory and compares
the directory entries to the actual files in that directory. When it finds an entry for
a file that doesn't exist, PSYNC removes the entry from PENPOINT.DIR.

The syntax for PSYNC is:

PSYNC [/B] [/0 II directory"] [/p] [/V]

IB Directs PSYNC to create a backup file named PENPOINf.BAK.

ID Directs PSYNC to find PENPOINf.DIR in the specified directory.

IP Directs PSYNC to prompt you before removing a directory entry.

N Directs PSYNC to work in verbose mode.

14.5

Chapter 15 / Other DOS Utilities

In addition to the file system utilities, the PenPoint™ operating system provides
a number of other DOS utilities that are used in developing applications and
running PenPoint.

GO Batch File
\PENPOINT\SDK\UTIL\DOS\GO.BAT is a batch file that starts up PenPoint on a Pc.
You can modify this batch file to ensure that PenPoint removes TSRs (terminate
and stay resident) before running PenPoint, or to have PenPoint check hard disk
consistency after running PenPoint.

GO.BAT is explained in more detail in Chapter 3, Running PenPoint on a Pc.

".. PenPoint Method Table COlllpiler
\PENPOINT\SDK\UTIL\CLSMGR\MT.EXE is the PenPoint method table compiler.
It compiles a method table source file into an object file that you link with your
class's code. Its use is explained in the PenPoint Application Writing Guide and in
Part 1,' Class Manager of the PenPoint Architectural Reference.

".. Resource Utilities
You can create PenPoint text resource files two ways: programmatically (from within

15.1

15.2

15.3

a PenPoint application) or by hand. Usually when you create something like a quick
help resource, you build it by hand, then compile using the PenPoint resource compiler
(RC). RC enables you to create or append to PenPoint resource files.

The executable for RC is in \P.ENPOINT\SDK\UTIL\RC.EXE.

To append resources from one resource file to another, use RESAPPND. RESAPPND

also compacts resource files by removing deleted or duplicate resources.

For example, MAKEFILE for the Tic-Tac-Toe sample application uses RESAPPND to
append all of its separate resource files to its AIP.RES resource file, thereby creating
its application resource file.

RESAPPND is in \PENPOINT\SDK\uTIL\RESAPPND.EXE

To view the contents of a resource file, you can use RESDUMP. If you want
to decode the state of a PenPoint document, you can use PenPoint to copy the
document from the TOC to a disk browser, then under DOS use RES DUMP to

dump the contents of the document's DOC.RES file.

RESDUMP is in \PENPOINT\SDK\UTIL\RESDUMP.EXE.

For more information on resource files and resource compiling, see Part 11,'
Resources in the PenPoint Architectural Reference.

Chapter 16 / PenPoint Bitmap
Editor

The user interface to the PenPoint™ operating system uses icons to identify items
in the Bookshelf, Notebook, cork margin, accessories and other notebooks.

You can use the bitmap editor to create icons and small sampled images (images
made of pixels). The bitmap editor has a fairly comprehensive set of tools for basic
editing of small pixelmaps: foreground and background colors, image shifting,
capture from the screen, and so on.

figure 16-1

PenPoint Editor

168 PENPOINT DEVELOPMENT TOOLS
Part 3 / Tools

Most applications use two icons: a large one (32 by 32) and a small one (16 by 16).
By default, the small icon is used for items on the Bookshelf and in Accessories (draw a
check over any icon on the Bookshelf to change style). The small icon is also displayed
next to documents in a table of contents or other browser display.

When an application has bitmaps for these two icons in its resource file, the
PenPoint operating system displays them in the appropriate situations. Otherwise,
it uses default icons from the system resource file.

,.- Elements of a Bitmap
You can use the bitmap editor to access and change three basic bitmap elements:

• The array of pixels that make up the bitmap's image.

• The array of bits that indicates which pixels will be visible when the bitmap
is displayed. This array is called the mask. Only if a bit in the mask is on will
its corresponding pixel be visible when the bitmap is displayed.

• The hot spot, which locates the "origin" of the bitmap. This, for example, is
the pixel in the bitmap that will be drawn underneath the pen when the
bitmap is being used as a cursor.

The bitmap editor has three modes, one for editing each of the three elements
described above: Pixel Paint, Mask Paint, and Hotspot Paint.

In Pixel Paint mode, you can edit the bitmap's pixels. When you drag the pen, the
pixels that the pen touches change, depending on the color of the pixel on which
you started.

• If you started on a pixel that is not in the current ink color (any of the other
three colors), the pen will draw that color.

• If you started on a pixel that is the current ink color, the pen will draw the
current background color.

In Mask Paint and Hotspot Paint mode, only the mask or the hot spot are affected
by dragging the pen in the bitmap editor.

,.-Importing a Bitmap
To import a bitmap from an existing document, use the Connections notebook to
find the application's resource file (such as \PENPOINT\APP\Some App\APP.RES) ,

tap-press to copy it, then drag the copy into the table of contents of the
Notebook. A menu of possible import types will appear: choose Bitmap Editor;
for possible bitmap types, choose either App or Small App.

A new bitmap editor document will appear containing the bitmap. The document
remembers where the bitmap resource came from, and will replace it in the
resource file.

For more information on importing documents, see PenPoint's end-user manual,
Using PenPoint.

16.1

16.2

To find a file in the \PENPOINnAPp

directory, you must have the
B 800 debug flag set.

CHAPTER 16 / PENPOINT BITMAP EDITOR 169
Exporting a Bitmap

Exporting a Bitmap
As mentioned above, the PenPoint operating system looks in an application's
resource file for the application's bitmaps. The application's resource file is the file
APP.RES in the application's directory. For example, the Tic-Tac-Toe program's
application resources, including bitmaps, are in \PENPOINT\APP\TIT\APP.RES.

Some programs create a resource file in advance; others only have a resource file
after installation under PenPoint.

Once you have created a bitmap for an application, you must export that bitmap
to the application's resource file so that PenPoint can access it.

To export a bitmap, tap on the Exporting menu button under Options. The
Resource ID field on the Exporting card is a pop-up choice, which allows you to
specify which of the two application icon resources use this bitmap (large or small).

The only two icon resources used for application's bitmaps are the first two: App
for the 32 by 32 icon and Small App for the 16 by 16 icon. Depending on the
user's preference, PenPoint will use one or the other of these icon resources when
displaying the application's icon. The other (Custom) resource ID is used by other
parts of Pen Point and is usually not relevant for applications.

Once you have chosen which resource to use, apply the change and close the
option sheet. You then export the bitmap by turning to the table of contents and
moving or copying the bitmap document that you just modified to a disk file.
PenPoint tells you that it can export the file and prompts you for the file format.
Tap on Resource File.

You can export a bitmap to an existing resource file, or create a new one; if the
existing resource file already contains a bitmap, PenPoint asks you if you want to
replace the existing bitmap. You can also use the RESAPPND utility to append
bitmap resources.

For more information on exporting documents, see Using PenPoint, PenPoint's
user manual.

16.3

170 PENPOINT DEVELOPMENT TOOLS
Pa rt 3 / Tools

~. Exporting to Home
When you import a bitmap from an existing resource file, the bitmap editor
remembers the path to the resource file from which it came (including the volume
name). When you are ready to write the bitmap to its resource file, you can tap on
Export to Home in the Document menu.

You can see the path to the bitmap's home in the Exporting option card; however,
you cannot modify the path.

~ Bitmap Editor User Interface
The application menu for the bitmap editor contains menus for Document, Edit,
Options, Ink, Back, and Size. This section describes the Edit, Options, Ink, Back,
and Size menus.

There is no undo capability in the bitmap editor. However, if you want to save
your work, you can always tap Checkpoint in the Edit menu to save the document

16,4

16.5

CHAPTER 16 I PEN POINT BITMAP EDITOR 171
Bitmap Editor User Interface

in its current state. If you make an unintended modification, you can then use
Revert to return the bitmap to its state when you last used Checkpoint.

The Document Menu

The Document menu contains standard document menu buttons.

16.5.1

If you imported the current bitmap from a resource file, Export to Home also I ~:
appears in the document menu. This non-standard item allows you to export the ~

bitmap back to the resource file from which it came.

The Edit Menu 16.5.2

You choose an editing mode from the first three entries in the Edit menu:

Pixel Paint Displays only the bitmap's pixels so you can edit them.

Mask Paint Displays the bitmap's pixels and its mask. You can only edit the
mask (indicated by an "X" over masked pixels). The masked pixels are the
only ones that will be painted when the bitmap is displayed.

Hotspot Paint Displays the bitmap, but only lets you set the hot spot for
the bitmap. The hot spot is indicated by an "X" in this mode. Hotspot
mode is only of interest for bitmaps that will be used as cursors. (There is
currently no way for an application to install a custom cursor.)

The other entries in the Edit menu are:

Fill Fills the entire bitmap area with black in Pixel Paint and Hotspot Paint.
In Mask Paint, fill turns the entire mask on.

Erase Fills the entire bitmap area with the current background color in Pixel
Paint and Hotspot Paint. In Mask Paint, erase turns the entire mask off.

Invert Inverts the colors in the bitmap in all modes. The bitmap has four
possible colors: black, dark gray, light gray, and white. In inversion, black
and white are switched and dark gray and light gray are switched.

Rotate Rotates the bitmap by 90 degrees clockwise.

Horizontal Flip Flips the bitmap around the y-axis.

Vertical Flip Flips the bitmap around the x-axis.

Generate Mask Turr~s the mask on for each pixel that is not the
background color. The mask includes any closed areas in the bitmap
(those that are surrounded by pixels that are not the background color).

Capture Displays a square on the screen that tracks the pen. When the pen
is lifted, the area under the square is copied into the bitmap editor.

Shift Left, Shift Right, Shift Up, and Shift Down Shift the bitmap by one
pixel (bit) in the indicated direction. Pixels that are shifted out of the
bitmap on one side reappear on the other side (rotational shift).

172 PENPOINT DEVELOPMENT TOOLS
Part 3 / Tools

The Options Menu

The Options menu provides standard access to the Controls, Access, and
Comments option cards. The two interesting option cards added by the bitmap
editor are:

Exporting Allows you to specifY the Resource ID for an application icon.

Custom Resource ID Allows you to specifY the Resource ID for a custom
Icon.

The Exporting Option Card

You use the About Exporting option card to specifY how the bitmap editor is to
export a bitmap.

Resource ID Allows you to specifY the Resource ID for the bitmap. This is
a pop-up choice that provides you with two predefined PenPoint
Resource IDs (App and Small App) and a Custom Resource ID. Most
applications will only use App and Small App. You should set the
Resource ID to App when editing a 32 by 32 bitmap, and to Small App
when editing a 16 by 16 bitmap.

Encoding Allows you to specifY how many bits per pixel to use when
exporting the bitmap. To save space, this should be as small as possible.
For bitmaps that use 4 gray values, the encoding should be 2 bits per
pixel.

The Custom Resource ID Card

If you are creating a bitmap that needs a Resource ID other than the two offered
in the Resource ID pop-up choice, you can:

• Choose Custom on the Exporting option card.

• Tap on Apply.

• Turn to the Custom Resource ID option card.

The Custom Resource ID card allows you to specifY a Resource ID for the bitmap.

Applications can display bitmaps with Custom Resource IDs by using dsBitmap
or dsIcon to read in the Resource ID. For more details, see parts 3 and 4 in the
PenPoint Architectural Reference and the header files for dsBitmap and dsIcon.

The three fields on the card specifY the Resource ID (as defined in
\PENPOINT\SDK\INC\RESFILE.H):

• The Resource Class field contains the administered number for the class that
defines this Resource ID.

• The Resource Scope field specifies whether the Resource ID is global, process
global, or private.

• The ID field contains an ID for this particular bitmap resource.

'16.5.3

16,5.3. 'I

16.5.3.2

CHAPTER 16 I PENPOINT BITMAP EDITOR 173
Bitmap Editor User Interface

In your code, you'll probably define the same Resource ID using MakeWknResld(tag,
id). tag identifies the class field and the scope, which is usually a class UID; Mis a
number between 0 and 255 that identifies the resource for this class.

For example, the Resource ID for the "SmallApp" resource used by PenPoint
consists of:

• The resource class for clsApp, which is 13.

• The Resource ID, which is global.

• The ID value, which is 1.

To read this resource from a resource file:

fdefine clsApp MakeGlobalWKN(13, wknGlobal)

RES FILE file;

RES_READ _OBJECT read;
OBJECT bitmap;
ObjectCall(msgNewDefaults, clsObject, &read.new);
read. mode = resReadObjectMany;
read.resId = MakeWknResId(clsApp, 1);
ObjectCall(msgResReadObject, file, &read);
bitmap = read.object.uid;

Once you have read in the resource, you can use clslcon or clsBitmap to display
the bitmap.

The Ink Menu

The Ink menu allows you to set the ink color for painting operations when in
Pixel Paint or Hotspot Paint mode.

This setting is ignored in Mask Paint mode.

"., The Back Menu
The Back menu allows you to set the background color for painting operations
when in Pixel Paint or Hotspot Paint mode.

This setting is ignored in Mask Paint mode.

"., The Size Menu

. You use the Size menu to change the bitmap's size. The possible sizes are: 8 by 8,
16 by 16, 24 by 16, 32 by 32,40 by 32, and 48 by 32.

• Use 32 by 32 size for large icons such as the App resource.

• Use 16 bX 16 size for small icons such as the Small App resource.

• The 8 by 8 size is used within PenPoint for some cursors.

16.5.4

16.5.5

16.5.6

Caution When you change size,
the bitmap clears.

Chapter 17 / S-Shot Screen
Capture Utility

S-Shot is a PenPoint™ operating system application that allows you to capture
an image of the PenPoint screen. It saves the image to disk as an uncompressed
gray-scale TIFF file, which you can then import into a variety of paint or drawing
programs on a Pc.

". Using S-Shot
S-Shot essentially provides a use~ interface to ImagePoint's msgDcScreenShot
message. This captures part of the screen in a TIFF file. To capture any portion of
the screen, S-Shot disables window clipping.

One full-screen snapshot takes about 130 kilobytes.

If you are taking screen shots on a PC, you can store screen shots on your PC's
hard disk. On a PenPoint computer, you'll need to make sure there is room on
your hard disk, or some removable media, to store the screen shots.

".. Installing S-Shot

S-Shot is part of the PenPoint SDK; its files are in \PENPOINT\SDK.\APP\SSHOT.

You can include S-Shot in PenPoint running on a PC by adding a line to
\PENPOINT\BOOT\APP.INI.

".. Using S-Shot

S-Shot is an accessory. To use it, open the Accessories notebook and tap on S-Shot.

The S-Shot window allows you to specify:

• The area that will be included in the screen shot.

• The delay before the screen shot is taken.

• The path to the file where S-Shot will store its TIFF image.

~ Specifying an Area

S-Shot can create an image from the entire screen (tap on the Full Screen button)
or a specific area of the screen. To specify an area of the screen, you can do one of
two things:

• Specify the size x-y and origin x-y location by entering specific values.

• Tap on the Set Area ... button, which allows you to select the area visually.

17.1

17.1.1

17.1.2

17.1.2.1

176 PENPOINT DEVELOPMENT TOOLS
Part 3 I Tools

If you tap the Set Area ... button, S-Shot clears its window and displays a
rectangular box in the center of the screen. This box delineates the area that
S-Shot will capture.

You can expand or contract the box by placing the tip of the pen on one of the
lines and dragging the line up, down, left, or right.

You can move the box by placing the tip of the pen in the center of the box and
dragging the box wherever you want it to go.

Specifying a Delay

Obviously, you want the screen to look a certain way when you take the snapshot.
Before capturing a screen, you should get its state close to the state you want, but
there are two obstacles:

• The S-Shot window is in the way. When you take the snapshot, S-Shot takes
down its window, but it takes time for the applications underneath the
S-Shot window to repaint. This may take several seconds .

• You want to take a snapshot of a transient visual, such as ink on the screen,
or quick help, or a highlighted menu button.

To take a broader range of snapshots, you can set a delay before S-Shot takes its
snapshot. The default is five seconds, which should be enough time for the screen
to repaint and for you to get the screen set up as you desire.

If you need more time, change the value.

~ Specifying a File Name

The default file name is \\BOOT\FILEA.TIF. This is appropriate for taking a screen
shot ona PC running PenPoint, because \\BOOT will be the hard disk containing
the \PENPOINT hierarchy. However, on a PenPoint computer, you must change the
file name to another name.

1 Tap on the File Name field to bring up a editing pad. The name you use must
consist of two back-slashes, a volume name, a back-slash, and a file name.

The volume name should be the DOS volume label of the disk on which you
want to create the TIFF file. Use the DOS LABEL command to label a floppy
disk or check its label.

The file name could be any valid PenPoint file name. However, since the
main use of S-Shot is to create TIFF files for editing on other computers,
it's a good idea to adhere to the DOS file-naming conventions (no file name
may have more that 8 characters). Leave the extension as .TIF. The writing
pad restricts characters to uppercase.

2 Tap OK to apply your changes and dismiss the editing pad.

17.1.2.2

17.1.2.3

CHAPTER 17 I S-SHOT SCREEN CAPTURE UTILITY 177
Hints on Using S-Shot

When you are ready to take the snapshot, tap Take Snapshot.

If the volume in S-Shot's file name is not connected, PenPoint displays a note
prompting you to insert that volume.

The S-Shot window disappears from the screen, causing windows underneath
it to repaint.

PenPoint will beep every second as it counts down the delay, then will beep a
different tone. At this point it captures the screen to a TIFF file on disk. A full
screen snapshot takes about a minute to write to disk. During this time PenPoint
will be frozen.

When the snapshot is complete, the S-Shot window reappears.

You will notice that S-Shot increments the snap file name in its window, so that if
the file name was \\BOOT\FILEA.TIF before, it becomes \\BOOT\FILEB.TIF. If this is
a reasonable name, you can keep it and take the next snapshot.

~ Hinls on Using S·Shol

Taking Snapshots of Gestures

Set the delay high enough to give you time to do what you want. When you draw
the gesture, don't lift the pen.

Impossible Snapshots

You can't take a picture of the screen during a page turn, or with the busy clock
on the screen.

It's difficult to take a snapshot of disk operations such as the Disk Manager,
import/export, or installation, because S-Shot prompts you to install its own
volume, which changes the status of connected volumes.

". Full-Screen Snapshots

The GO Computer screen is 640 pixels high by 400 wide.

Using S-Shot Files

",-YOn an Apple Macintosh Computer

You can use Apple File Exchange on a Superdrive-equipped Apple Macintosh
computer to read from DOS-formatted 3-1/2 inch floppies, or use some cross
platform netword, such as SITKA's TOPS or Novell's Netware to transfer files.

17.1.3

17.2

17.2.1

11.2.1.1

11.2.2

11.2.3

11.2.3.1

178 PENPOINT DEVELOPMENT TOOLS

Part 3 / Tools

To read a TIFF file into Macintosh programs such as Aldus FreeHand and
Studio/8, you need to change the type of the file to TIFF using a Macintosh·
utility such as ResEdit, DiskTop, or DiskTools (in advanced mode).

~ IBM-Compatible PC

The files that S-Shot creates can be imported directly into a number of programs
that run under MS-DOS, such as Microsoft Word, WordPerfect, MicrografX
Designer, and so on.

Just insert the disk into your PC and choose your program's Import TIFF option.

~ TIFF Problems

There are many TIFF file variants, and most programs don't read in all flavors. In
S-Shot, ImagePoint™ (the PenPoint operating system's imaging software) creates a
"standard" uncompressed 4-bit gray-scale TIFF image. If your chosen PC
application cannot read it, contact your vendor for assistance.

".. Bugs

S-Shot doesn't validate the numbers you enter for coordinates, or the name you
give for the file.

S-Shot doesn't tell you when your disk is full, it just creates a small file.

17.2.3.2

17.2.3.3

17.2.4

Chapter 18 / Font Editor

The PenPoint font editor, FED IT, enables you to create and modify outline 8-bit
font files for the PenPoint™ operating system.

FEDIT runs under Microsoft Windows, version 3.0 or higher.

With FEDIT you can:

• Create and manipulate outline shapes.

• Create and manipulate hints.

• Integrate bitmaps as a part of a font.

• Read and write fonts in PenPoint font format and in other font formats.

"..Introcluction ancl Concepts
The 8-bit characters that you create with FEDIT are identified using the AFII
(American Society for Font Information Interchange) numbering scheme. While
PenPoint 1.0 uses 8-bit characters, future releases of PenPoint will use 16-bit
characters. The scheme for identifying 16-bit characters is not available at this
time. Be aware that 8-bit characters created in FEDIT will be incompatible with
the future 16-bit characters. In all likelihood, GO will not extend FEDIT to
support 16-bit characters.

If you use a font that you created with FEDIT for special decorations in your user
interface, we recommend that you use icons (which you create in the bitmap
editor).

".. Getting Started
Run the program \PENPOINT\SDK\UTIL\DOS\FEDIT.EXE from within Windows.
A blank window will appear. To edit an existing PenPoint font file:

1 Choose Open under the File menu. A standard Windows file-open dialog
will appear.

2 Choose a file to open. A PenPoint font file should have the extension .PCK.

Depending on the complexity of the font, it will take a moment for FEDIT
to initialize the opened font database.

3 Choose the Choose command under the Character menu. A character
selection dialog appears. It lists all the characters in the font. You can scroll
the character list with the scroll bar below it.

4 Click on the character you wish to edit and click on the OK button. The
main window will now repaint and you're ready to edit the shape of this
character.

18.1

18.1.1

180 PEN POINT DEVELOPMENT TOOLS

Part 3 I Tools

To create a new font file:

1 Choose New under the File menu.

2 Choose New under the Character menu. A dialog box appears. Enter the
AFII number and the setwidth of the new character. The AFII number
identifies a specific character; the setwidth specifies the amount of space that
follows a character.

3 The main window repaints with an empty edit window. You're ready to add
shapes to the new character.

".. File Formats
FED IT supports several kinds of font files: the Nimbus-Q format, GO's proprietary
packed format, and a limited support of Adobe's Type I font file. You may specify the
input or output format to one of these three with the Options menu.

The extension of a Nimbus-Q file is .FNT; GO's file extension is .PCK; Adobe's file
extension for Type I font is PFB.

You can easily convert the formats. For example, to convert a Nimbus-Q file to a
GO packed file, use the following steps:

1 Choose Nimbus-Q IInput under the Options menu.

2 Open the Nimbus-Q file with the Open command under the File menu.

3 Choose GO packed Output under the Options menu.

4 Choose Save As under the File menu. You'll be prompted for an output file
name. The saved file now has the GO packed format.

You can convert a GO packed format to the Nimbus-Q format by slightly reversing
the procedure. Note, however, that the Nimbus-Q format does not have provisions
for saving any bitmap rendering of the font. Thus, if a GO font contains bitmaps
and you save it as a Nimbus-Q font, the bitmaps will be discarded. The same is true
of converting a GO packed format to the Adobe Type I font format.

,..,.. Technical Notes on Character Composition

A character is composed of the following elements:

• Its AFII number, which is its identity in the font. FEDIT takes a 16-bit
signed representation for this field for ease of use but the sign has no
significance.

• A setwidth, which specifies the amount of space to be added after the
character has been rendered.

• One or more closed shapes, which define the appearance and the placement
of the character. For simplicity, a closed shape will simply be referred to as a
shape. Each shape is composed of connected straight lines or Bezier curves.
Each line or curve in a shape is called a segment. The lines and curves that

U1.1.2

18.1.3

CHAPTER 18 I FONT EDITOR 181
Introduction and Concepts

define a shape have direction: clockwise or counter-clockwise. Directiun is
important when filling and merging.

~ Font Units

The setwidth and the control points that define the segments are in the unit of the
integer Cartesian grid of [-2048, 2047] x [-2048, 2047]. They are called font
units. To render a font with a particular point size, rotation, or italicization, the
setwidth and the control points are transformed by a transformation matrix that
contains the scaling, rotation, and so on, with 1000 as the standard scaling factor.

For example, to render a 12-point font on a 300 dpi device, the scaling factor
will be (12 x 300) / (72 x 1000). Although you'd never need to compute these
numbers for FED IT, you need a rough grasp of sizes and proportions to design a
good font. For example, a font whose shapes are all inside the square grid of [300,
300] x [300, 300] is undesirable because even a large point size will produce only
a very small font. Most popular fonts, such as Times Roman and Helvetica, have
characters sized around 1000 x 1000.

,..,.,.. Character Placement

The set of shapes that make up a character implicitly defines a rectangle that
minimally bounds all the shapes in that character. This is called, not surprisingly,
the bounding rectangle of the character.

How does the bounding rectangle affect the placement of characters next to each
other in a string? For simplicity, let us assume that we are rendering a string on a
device where one font unit is one device pixel; that is, the transformation matrix is
the identity, along the x-axis.

First note the position of the bounding rectangle relative to the x-axis, or the base
line. The base line is the common reference line that allows the characters in a
string to line up. Thus the base of most upper case letters should be directly above
or very slightly below the base line while the tails of characters such as g, p, or q
will extend far below the base line.

Recall that the setwidth of character Xis the value added to the x-coordinate of the
cursor each time the character X is drawn. (The setwidth is quite independent on
the character's bounding rectangle.) The new x-position of the cursor is where
we'd place the origin (0, 0) of the next character.

The bounding rectangle of the next character is thus important in determining
where it is placed after the setwidth of the previous character has been added to
the cursor. If, for example, the origin of the character lies inside its bounding box,
its left-most edge will be placed to the left of the new cursor position. It is also
possible for the setwidth to be inside the character's bounding rectangle so that
the bounding rectangle of the next character to be drawn in the string can overlap
the current character. This is useful for a "pseudo-kerning" effect as illustrated on
the right.

18.1.3.1

18.1.3.:2

182 PENPOINT DEVELOPMENT TOOLS
Part 3 I Taals

You may examine these character metrics in a dialog box with the Info command
under the Character menu. In addition, the Info command lists the number of
lines and curves in the character. You can also alter the APII number of the
character in this dialog box.

~ Control Point Placement

A Bezier curve is composed of four control points, two of which are the end points of
the curve, while the other two lie outside of the curve (called the control points). The
bounding rectangle of a character is computed based on the coordinates of the control
points. The bounding rectangle is not based on the pixels that would be drawn if we
render the character.

It is possible (but highly discouraged) for a character to have a bounding rectangle
that minimally bounds the control points, but not be minimal with respect to the
actual pixels that would be drawn if we render the character. The font subsystem in
PenPoint computes character metrics based on the assumption that the bounding
rectangle of a character bounds not only control points, but rendered pixels as well.

It is always possible to break up a Bezier curve to satisfy this requirement using the
mitosis operator described below.

".. Adding and Deleting a Character

To add a character, choose the New command under the Character menu and
specify the new character's AFII number and setwidth in the dialog. Each
character in a font must have a unique AFII number. FEDIT will not allow you to

assign an APII that is already used to a new character in the font. Each font file
can hold up to a maximum of 512 characters.

To delete a character, choose the Choose command under the Character menu to
invoke the character list dialog. Click on the character you wish to delete, then
click on the Delete button.

".. Ecliting Character Shapes
To edit character shapes, you first choose a character from the character selection
window. To bring up the character selection window, click on the Choose
command from the Character menu. The window shown in Figure 18-1 appears.

18.1.3.3

18.1.4

Caution Character deletion
cannot be undone.

18.2

Figure 18-1
The Character Selection Window

CHAPTER 18 / FONT EDITOR 183
Editing Character Shapes

• To choose a character for shape or hint editing, click on the character, then
click on the OK button (or just double-click on the character).

• To delete a character, click on the character and click on the Delete button.

• To change the AFII number of a character, click on the character. The
current AFII number appears on the leftmost box. Type in the new AFII
number and click on the Set Glyph button.

"" The Outline Editing Window
To edit the shapes in a character, click on a character in the character selection
window, then click on the Shape command from the Outline menu. The outline
editing window will appear. Figure 18-2 shows the outline editing window and
identifies some of the terms in the window.

• The edit window is where you manipulate the shapes that make up the
character.

• The sample windows show two samples of the rendering of the current
shape: one portrait, one landscape (rotated 90 degrees). When you drag the
borders of these windows, the point size of the samples change; this allows
you to examine the character at different point sizes.

• When you click in either of the sample windows, the sample windows update
themselves to reflect the shape of the character in the edit window. The
sample windows do not redraw themselves each time you alter the shapes in
the edit window.

Caution None of the operations
executed from this window are
undoable. Think twice before you
delete a character.

18.2.1

Figure 18-2
The Outline Editin Window

'84 PENPOINT DEVELOPMENT TOOLS
Part 3 / Tools

• To zoom into a portion of a character for fine editing, click and drag in the
portrait sample window; as you drag, a zoom rectangle will appear. Where
you first click is the center of the rectangle. When you release the mouse
button, the edit window will show that portion of the character you have just
selected. The scale status field shows you the scale factor relative to font units
at which the character (or part of it) is rendered in the edit window. Thus,
100% means that one font unit equals one device unit on the screen.

• When you drag out a zoom rectangle, holding down the left mouse button
adjusts the size of the zoom rectangle. To move the zoom rectangle, hold
down both the left and right buttons.

The coordinate values at the top of the edit window show the position of the cursor in
font units. Note that the cursor moves in the screen device's resolution, which is usually
at a lower resolution than the font units. FEDIT can only scale the font coordinates
from device coordinates. These numbers are therefore not exact.

• You can pan around the character with the horizontal and vertical scroll bars.

• The setwidth line (with a small control box at the base line) shows the
current setwidth of the character.

• The numerous small, filled boxes in the edit window are the control points
for the shapes.

• The column of icons at the left side of the window are the operator icons.
You select one of these icons to invoke an editing function. (The rest of this
chapter explains the action of these icons.)

• All of the shape operator icons will cause part or all of the character window
to redraw. Bezier curves are rendered in the edit window using line segment
approximation. The BezierResolution command in the Options menu
controls how fine the line segments should be. Low resolution is quick and
adequate for highly interactive editing. If you want to view the curves in high
resolution, which will be slow in rendering, choose the high option.

". View Preference

To toggle the information displayed in the edit window, you can click on View
Preferences in the Option menu. In the View Preferences dialog:

Top/Bottom Draws the horizontal lines representing the maximum
ascender and minimum descender for the entire font.

Ascender/Descender Draws the horizontal lines representing the nominal
ascender and descender of the font. These two numbers are specified in
the font header.

x-Height Draws the horizontal line representing the x-Height of the font.
The x-Height is specified in the font header.

, H-height Draws the horizontal line representing the H-height of the font.
The H-height is specified in the font header.

18.2.2

CHAPTER 18 / FONT EDITOR 185
Editing Character Shapes

Bezier polygon Draws the line segments connecting the control points of
the Bezier curves of the character.

Operator Icons

The next few sections describe the operator icons that appear to the left of the edit
window. Several of these operator icons perform several actions. You can specify
additional actions by holding down keys on the keyboard while clicking or releasing.

Some operations display the bounding box of the shape being manipulated and
wait for you to confirm the operation. You confirm the operation by clicking on
the left mouse button; you can cancel the operation by clicking on the right
mouse button.

Moving Control Points

To move a control point, click on the Move Control Points operator, then point
the cursor to the inside of the rectangular handle that encloses the control point.
Press the left mouse button and drag the control point to where you want to put
it. Where you release the button will be the new position of the control point.

When working with a low- or medium-resolution screen, it is not always possible
to move a control point to an exact coordinate point, such as (100, 100). You can
examine or alter the coordinate of a control point to the exact values you desire
by holding down the lliO key and clicking on the control point handle whose
coordinates you wish to change or examine. A dialog box will pop up for data
entry.

18.2.3

You can undo most of the
operations performed by the
operators by choosing Undo in
the Outline menu.

18.2.4

186 PENPOINT DEVELOPMENT TOOLS
Part 3 I Tools

If you want a curve to flow smoothly at a segment juncture (between two Bezier curves,
or between a curve and a line), hold the I Shift I key and click on the handle of the control
point that joins the two segments. FED IT will adjust the coordinates of that point to
ensure a first-order continuity between the two segments. You should apply this oper
ator only when the adjoining segments are sufficiently close to continuity. If the curve
turns sharply at the control point in question, using this operator will most likely yield
undesirable results.

.",. Deleting a Segment

To delete a segment in a shape, click on the Delete Segment operator, then click
on the control point that ends the segment you want to delete. You cannot delete
a Bezier control point that is not the end point of a curve.

To merge two Bezier curves into one, hold down the I Shift I key, then click on the
handle of the control point connecting the two curves. Not all pairs of curves can
be merged successfully while retaining the original shapes of the two curves. If the
resulting curve has a significantly different shape then the original ones, undo the
change (Undo is in the OutLine menu).

",. Shape Mutation

To change a line to a curve or to change a curve to a line, click on the Shape
Mutation operator.

Click near the segment you wish to mutate. FEDIT shows you the bounding
rectangle of that segment. Click the left button again to confirm the change or
click the right button to cancel the operation.

If the segment is a line, FEDIT replaces it with a Bezier curve that has two control
points along\the line. If the segment is a curve, FEDIT deletes its control points;
the curve's end points become the end point for the line.

",. Mitosis

Figure 18-4
Smoothing Lines

18.2.5

18.2.6

18.2.7

The mitosis operator breaks a segment into two segments of the same kind. Click near
the segment you wish to duplicate, then click the left button anywhere in the segment
where you want it broken, or click the right button to cancel the operation.

CHAPTER 18 I FONT EDITOR 187
Editing Character Shapes

".. Adding a Rectangular Shape

The Rectangle operator allows you to create a rectangle in the edit window. If you
hold the left button while dragging, you change the size of the rectangle; if you hold
down both the left and right buttons, you can move the entire rectangle around.

The rectangle consists of four line segments running in clockwise' direction.

".. Adding an Oval Shape

The Oval operator allows you to create an oval in the edit window. While you
click and drag the mouse, FEDIT draws a rectangle. When you release, FEDIT
creates an oval that consists of four Bezier curve segments running in the
clockwise direction.

The oval is bounded by the rectangle you saw while dragging.

".. Shape Transformation

The Shape Transformation operator is the most complex and versatile of the
group. You use this operator to duplicate, move, scale, rotate, or shear a group of
shapes.

To use the Shape Transformation operator:

1 Drag out a rectangle that encloses all the shapes you want to alter. The
bounding rectangle that encloses all the selected shape will be highlighted. As
usual, you can cancel the operation at this point by clicking the right button.
Note that in order for a shape to be selected, all the control points in that
shape must fall into the rectangle.

2 At this point, you choose whether you want to perform operations on the
selected shapes or on a duplicate of the selected shapes. If you hold down the
I Shift I key, FEDIT makes a copy of the selected shapes before performing
subsequent transformations. If you do not hold down the I Shift I key; all
transformations will be applied to the selected shapes.

3 To move the selected shapes, click the left mouse button and move the
mouse; the shapes will move with the mouse. Release the button when you
have positioned the shapes where you want them. As described above, you
can copy the shapes by holding the I Shift I key while clicking and dragging.

4 To scale the selected shapes, hold the @!O key down while dragging out a
scaling rectangle. The selected shapes will be scaled to fit into the rectangle
you dragged out.

S To rotate the selected shapes, hold the 00 key and the left mouse button
while dragging with the mouse. You move the mouse in a motion
reminiscent of traversing a circle around the center of the rectangle bounding
the selected shapes.

18.2.8

18.2.9

18.2.10

188 PENPOINT DEVELOPMENT TOOLS
Part 3 I Tools

6 To shear the selected shapes in the x-direction, hold the left arrow El or right
arrow El key while you hold the left button and drag.

7 To shear the selected shapes in the y-direction, hold the up arrow [[) or
down arrow ITJ key while you hold the left button and drag.

While dragging out a rectangle or controlling the angle of rotation or shear, the
intermediate transformed bounding rectangle (in the case of rotation or shearing,
a bounding polygon) can be moved around by holding both the left and right
mouse buttons down.

"" Deleting a Shape

To delete a shape, click on the Delete operator, then drag out a rectangle that
encloses the shapes you want to delete. The shapes about to be deleted will be
highlighted. Click the left button to confirm deletion or the right button to cancel
the operation. Again, all control points of a shape must fall into the enclosing
rectangle to be selected for deletion.

"" Changing the Setwidth

To change the setwidth for a character, click on the SetWidth operator. When you
click on the SetWidth operator, FED IT rescales the edit window so that the entire
character and the setwidth line are visible.

To move the setwidth line, click inside the setwidth line's control handle (at the
base line) and drag it along the x-axis. .

You can also change the setwidth directly by entering the number in the Info
dialog in the Character menu.

"" Viewing and Altering the Winding Direction

To view or alter the winding direction, click on the Winding Direction operator.

When you select this icon, FEDIT redraws the edit window to show the winding
directions of the shapes (with arrows running along the shapes instead of the usual
control point handles).

To reverse the winding direction in a shape, click near the shape. FEDIT high
lights the selected shape. Click the left button again to confirm the change or the
right button to cancel the selection.

In general, if one shape is totally enclosed within another, you should make sure
that the outer shape winds in the counter-clockwise direction while the inner one
winds in the clockwise direction, as shown in the figure on the right. The winding
direction is very important in the shape merging operator (described next).

18.2.11

18.2.12

18.2.13

CHAPTER 18 / FONT EDITOR 189
Editing Character Shapes

Merging Shapes

You use the Merge operator to merge two or more intersecting shapes. To merge
shapes, drag out a rectangle that encloses all the shapes you want to merge.

FEDIT highlights the bounding rectangle of the selected shapes. Click the left

button to confirm or the right button ~o cancel the operation.

If you create two or more intersecting shapes, you will notice that the odd-even
rule of filling causes the areas where the shapes intersect to be filled with white,

rather than black. This is usually not desireable.

The Merge operator allows you to merge intersecting shapes so the resulting
shapes have the same outline, but no longer intersect.

In Figure 18-4, the original shapes (A) consist of two pairs of intersecting concentric

circles (four shapes). When these shapes are merged, FEDIT creates six shapes (B): the
shape labeled 1 traces the arcs of the two outer-most circles; the other five shapes trace

parts of the inner circles.

A

Shape merging is useful in eliminating intersecting regions where pixels are not

rendered by the even-odd rule of filling. In Figure 18-5 above, the interlocked
concentric circles will yield (C). By merging the shapes and then deleting the
shapes labelled 3 and 5 in (B), we obtain (D).

To illustrate the importance of winding directions in shape merging, suppose we
alter the winding directions of the original concentric circles such that all four

circles wind in the clockwise direction, shown in Figure 18-6. When we merge
these shapes, FEDIT produces only four merged shapes. The outer one is the same

as that of the previous merging, but the inner ones are quite different.

18,2.14

190 PENPOINT DEVELOPMENT TOOLS

Part 3 I Tools

Figure 18-6
Winding Direction and Merging

Editing Hints
When characters are rendered at low resolution, they often suffer from pixel
dropout or disproportionate weights on strokes. A 10-point, 72 dpi screen font is
considered a low resolution font. A hint is data structure that helps low resolution
rendering to minimize these problems.

Each character can have numerous hints associated with it. The proprietary
hinting technology used in FED IT is licensed from Digital Typeface Corporation.
While we cannot document the hinting technology in full detail, we can explain
enough to allow you to use the hint editing features of FED IT .

• A hint controls the line widths of horizontal and vertical lines, or optionally,
the line widths of curves where the tangent is horizontal or vertical. An
x-hint controls x-coordinates (that is, the width of vertical lines). A y-hint
controls y-coordinates (horizontal line width). Thus a character can have as
many hints as there are horizontal and vertical line segments pairs (remember
that a rendered "line" is actually bounded by two segments) .

• A hint data structure has position, range, and length components. A hint
affects all shapes that fall within the band defined by its range. The length
component specifies the width of the shape when the font is rendered.

".. The Hint Editing Window
You bring up the hint editing window by choosing the Hint command under the
Outline menu. Figure 18-7 shows the hint editing window.

In the hint editing window, the shape operator icons are replaced by the hint
operator icons. The control points or arrows on the character are not displayed iri
the hint editing window.

18.3

18.3.1

CHAPTER 18 I FONT EDITOR 191
Editing Hints

Figure 18-7
Hint Editing Window

,

The x-hints with decreasing coordinates appear along the top edge of the edit
window; x-hints with increasing coordinates appear along the bottom edge. The
y-hints with decreasing coordinates appear along the left edge; y-hints with
increasing co~rdinates appear on the right edge. See the explanation of hint
coordinates below.

".. Altering a Hint

Each hint has three control handles that represent the starting and ending coor
dinate values of the hint (solid rectangles) and the width control (hollow rectangle).

To alter a hint, click on the Alter Hint operator, then point the cursor at one of
the control handles and drag.

Hints are effective only when rendering at low resolution. To view the effects of
the hints, you should scale the sample windows to about 10 or 12 points. In
addition, turn on the AutoRedraw option under the Option menu. The sample
windows will continuously redraw as you modify the hints. Turn on the discarded
option only when the sample windows are small; larger-sized characters take
longer to render and affect the response of the mouse in altering hints.

18.3.2

192 PENPOINT DEVELOPMENT TOOLS
Part 3 I Taals

". Creating a Hint

To create a hint, click on either the x- or y-hint operator. Then click in the edit
window to create the hint. If you're creating an x-hint, the x-coordinate of the
mouse at the time you click on the left button will be starting position of the hint.
If you are creating a y-hint, the y-coordinate of the mouse will be the starting
position.

". Deleting a Hint

To delete a hint, click on the Delete hint operator, then click on the hint you want
to delete. FEDIT highlights the selected hint. Click the left button again to

confirm the deletion or the right button to cancel the operation.

Editing Bitmaps
To obtain ultimate fidelity of a font at low resolution, a hand-tuned bitmap is
unavoidable. In the PenPoint operating system, a bitmap (or bitmaps) is
considered an integral part of a font, tied closely to the rest of the font's data
structures. It is not an entity that can exist independently (that is, there is no
provision for a bitmap font without outline data). Additionally, PenPoint has no
mechanism by which you can attach an externally created bitmap to an outline
font. You must use FEDIT to create and render a bitmap initially, then edit it to
your heart's content.

Because there is a close binding between the outline metries (in font units) and
bitmap pixel metries (in pixel units), creating and editing bitmaps should be
considered finishing touches in the font creation process.

The worst thing you can do is to alter or create a character so that its vertical
metrics exceed the current maximum ascender or minimum descender of a font
for which you have already built bitmaps. FEDIT is currently not very flexible in
regard to support this kind of activity. However, FEDIT does provide character
cell alteration tools (described below) to handle this scenario. You won't have to
start building the bitmaps from scratch, but it is still a tedious process which
should be avoided.

". Creating a Bitmap

To create a bitmap, choose the Create command under the Bitmap menu. A
dialog box pops up for entering the specification of the bitmap:

Aspect ratio Enter the aspect ratio of the device for which the bitmap font
is being created. Use small integers. For example, most nine-pin dot
matrix printers have an aspect ratio of 2: 1; enter x=2 and y= 1.

18.3.3

18.3.4

18.4

18.4.1

CHAPTER 18 I FONT EDITOR 193

Pixel Height Enter the number of scanlines per 1000 font units. For
example, for a 12-point font on a 300 dpi printer, this number will be
(12/72) * 300 = 50 pixels.

Rotation Specify anyone of the four rotations. If you are creating bitmaps
with 1: 1 aspect ratio, you need only to create the bitmap with zero
rotation, even if you are planning to use your font in more than one
rotation. The PenPoint font subsystem will perform rotation for you
automatically. Angles are measured counter-clockwise from the x-axis.

To maintain consistency between bitmaps and outline data, you should note the
following:

• Altering the shapes of a character does not affect any existing bitmaps. To
update the existing bitmaps to the character's new appearance, select that
character in pixel editing mode (described below) and execute the Re-render
Char command under the Bitmap menu. Repeat this procedure for each
bitmap you have created.

• If you altered the height of a character to the extent that the character no
longer fits the height of the bitmap (the height of a bitmap is the
y-dimension for 0 or 180 rotation, x-dimension for 90 or 270), you would
have to manually add rows (or columns) using the Edit Char command
(described below).

• If you delete a character from the font, FED IT automatically deletes the
bitmap cell for that character from each existing bitmap.

• If you add a character to the font, FEDIT appends a bitmap cell for that
character to the end of each bitmap. The width of each cell is computed
based on the initial setwidth you assigned to the character. After you have
added shapes to the new character, edit that character for each bitmap in
pixel editing mode and execute the Re-render Char command. Because a
new character did not have any shape at the time it was created, no pixel was
drawn to the new character cells and it will be invisible. Click on the blank
space just past the end of the character list to select the new character. The
bitmaps will be sorted in ascending order of AFII numbers when they are
saved. Thus, after you save and re-open the font file, the new character will
appear in a new place.

",. Deleting a Bitmap

To delete a bitmap, choose Edit from the Bitmap menu. Select a bitmap from the
list box. Click on the Delete button. Once you delete a bitmap, it cannot be
undone; think twice before you do it.

Editing Bitmaps

18.4.2

./'

194 PENPOINT DEVELOPMENT TOOLS
Part 3 / Tools

Figure 1 8-8
Bitmap Edit Window

".. Pixel Editing
To edit a bitmap, choose Edit from the Bitmap menu. Select the bitmap you want
to edit and click on the Edit button. The bitmap edit window will appear. The list
of characters in the bitmap is shown on the bottom of the main window. You can
scroll the character list with the horizontal scroll bar. If the bitmap you are editing
is rotated 90 or 270, the character list appears on the right edge of the main
window and you scroll it with the vertical scroll bar instead.

Select the character you want to edit by clicking on that character in the list. Click
on a pixel cell in the pixel grid of the character to invert its state. FEDIT updates
the character image in the character list instantly so you can monitor its
appearance as you modify the pixels.

The initial state of the bitmap is obtained by rendering each character in the font
from the outline data.

18.4.3

CHAPTER 18 / FONT EDITOR 195
Miscellaneous Functions

Altering Cell Dimensions

To alter the dimension of a character cell, choose Edit Cell from the Bitmap
menu. You may delete or insert a border row or column.

A bitmap with a 0° or 180° rotation is said to be row major (that is, every char
acter in the bitmap has the same number of rows). If you add or delete a row, the
entire bitmap will be affected. A warning message will appear to ask for confir
mation. Changing the number of columns will affect only the character you are
editing.

A bitmap with a 90° or 270° rotation is said to be column major. Changing the
number of columns will affect the entire bitmap while changing the number of
rows will affect only the character you are editing.

In general, you should not alter the dimensions of a character by more than one
pixel (if any at all). Under some circumstances, the font subsystem in PenPoint
computes a character's pixel metrics by scaling its metrics in font units. Fidelity
problems can occur if the scaled metrics differ too greatly from the actual metrics
in the bitmap.

Miscellaneous Functions

Copying to the Clipboard
You can transfer shape and hint data (but not bitmap data) using the Windows
clipboard. You must be in the shape editing mode to enable copying.

Choose Copy All from the OutLine menu. All the shape and hint data will be
copied to the clipboard.

You may also copy a portion of the character by using one of three methods:

• Choose Selective Copy from the OutLine menu.

• Drag out a rectangle in the shape editing window. All the shapes and hint
data enclosed in this region are now selected for copying. The bounding
rectangle for the selected shapes and hints will be highlighted.

• Click the left button to confirm the operation; click the right button to
cancel it.

Pasting from the Clipboard
Pasting is enabled if there are shape or hint data in the clipboard; you must be in
the shape editing or hint editing mode.

Choose Paste Absolute if you want to copy the clipboard data to the current
character in the same position from which the data were copied.

Choose Paste Relative if you want to copy the clipboard data to a new position in
the current character. In this mode, after you have selected the operation from the
menu, press the left mouse button in the editing window. The bounding rectangle

18.4.4

18.5

18.5.1

18.5.2

196 PENPOINT DEVELOPMENT TOOLS
Part 3 / Tools

for the clipboard data will appear. Move this rectangle to the location where you
want to place the shapes or hints. Release the button.

You can undo a paste operation.

". Subset Saving
You can save a subset of the characters and bitmaps in a font to a different file.
Choose Save Subset from the File menu. FED IT prompts for the output file name
as well as a file containing the list of characters and bitmaps you wish to save. The
format of this file is a list of AFII numbers and bitmap specifications. AFII
numbers are simply signed integers. Bitmap specification starts with a colon (:)
followed by the width, height, and rotation of the bitmap. For example, the
following list saves the characters A to E and the bitmap with 12 x 12, 0 rotation:

501 '502503504505 :12 120

The order of the entries in the list is unimportant and new lines are permitted in
the file. The saved bitmaps will contain only characters you have chosen in the list.

". Examining and Editing the Font Header

To examine and edit the global information about the font, choose the Font
Header or the Font Attribute command under the File menu. You can modify any
fields that have a border; fields without a border are maintained by FEDIT.

Table 18-1 describes the fields in the Font Header window; Table 18-2 describes
the fields in the Font Attribute window. All metrics are in font unit-s.

18.5.3

18.5.4

figure 18-9
Font Header Window

Field

Notice

Font name

Character count

Version

Fixed pitch

Space width

Under position

Under thickness·

Ascender

Descender

x-height

h-height

Max ascender, Min descender,

Max right, Min left

Bitmaps

Description

Copyright notice.

Name of the font.

Number of characters in this font.

Version number of the font.

CHAPTER 18 / FONT EDITOR 197
Miscellaneous Functions

Table 18-1
Font Header Window Fields

o if the font is proportionally spaced; character width if the font is monospaced.

Width of the space character.

Offset from the base line where an underline will be placed. This is a negative number.

Width of an underline.

A positive number giving the y-offset of the ascender line. Typically, the top of a
capital letter. This value is the opinion of the font designer, and does not necessarily
correspond to the tallest character in the font.

A negative number giving the y-offset of the descender line. Typically, the bottom of
a j. This value is the opinion of the font designer, and does not necessarily correspond
to the deepest descender in the font.

A positive number giving the y-offset of the x-height line. Typically, the top ofax.
This value is the opinion of the font designer, and does not necessarily correspond to
the actual x.

A positive number giving the y-offset of the h-height line. Typically, the top of an h.
This value is the opinion of the font designer, and does not necessarily correspond to
the actual h.

The smallest and largest x and y values found in the font. These can be used to construct
a rectangle that would enclose any character from the font. These values are not the
opinion of the font designer; they are computed automatically from the character
definitions and cannot otherwise be edited.

The number of bitmaps in the font.

Figure 18·10
Font AHribute Window

198 PENPOINT DEVELOPMENT TOOLS
Part 3 I Tools

Table 18·2
Font AHribute Window Fields

Description

A 118-bit number assigned by GO. Font 10

Group The group characterizes the font design; this is used by software to find a "best matdl"
when requested font is unavailable.

Specifies the stroke weight of the font. Weight

Aspect

Monospaced

Italic

Specifies the designed aspect ratio {not the device aspect ratio} of the font.

Check this box if the font is designed to be a monospaced font.

Check this box if the font is an italic font.

Examining Text Samples

To view a sample of ASCII text rendered from the font, choose Show Sample from
the Character menu. FEDIT displays a text sample window. Choose the same
command again to take down the window.

To render a sample, choose the Metrics menu; a dialog similar to the bitmap
creation dialog pops up. Enter the text size you want to view. The title bar of the
sample window shows whether the text sample came from a bitmap or was
rendered from outline.

If you subsequently alter the source (bitmap or outline) of the sample, choose
Render to update the sample.

You can specify the text sample by selecting the File command from the Text
menu and entering a file name containing the text you want to view. The Default
command shows the text sample illustrated above.

,..,.. Using Fonts in Documentation

If you need use your FEDIT font in printed documentation, you should use
FEDIT to save your font as an Adobe Type I font (described below).

If you are printing to a PostScript printer, you can download the font to the
printer or, depending on your word processor, you can configure the font in the
word processor and enable it to download the font.

18.5.5

18.5.6

CHAPTER 18 / FONT EDITOR 199
Adobe Type I Fonts

If you are printing to a PCL printer, you need to use a word processor or
page-layout program that uses Adobe Type Manager under either Microsoft
Windows or Macintosh. When you use Adobe Type Manager, your font will be
rendered on screen. When you print to a PCL printer, Adobe Type Manager
creates PCL bitmaps for your font and downloads them to the printer.

Adobe Type I Fonts 18.6

An Adobe Type I font is a Postscript program; as such, a robust reading of such a
font requires an implementation of a Postscript interpreter. FEDIT does not
implement such an interpreter. Rather, it employs heuristics based on common
conventions described in the book Adobe Type 1 Font Format published by Adobe
Systems, Inc. One can construct a perfectly legitimate Adobe Type I font file
without regard to these conventions. GO does not guarantee that FEDIT will
load all Adobe Type I font files successfully. In addition, FED IT currently imposes
a size limit of 64K on such a font file.

Certain incompatibilities exist between the hinting technologies of Adobe Systems
Inc. and Digital Typeface Corporation. Where an Adobe hint feature does not
apply to PenPoint, it is discarded. Thus, there maya loss of information in loading
an Adobe Type I font.

Additionally, each character in an Adobe font has a name either defined implicitly
by standard encoding, or explicitly by a custom encoding. FEDIT, on the other
hand, identifies a character by its AFII number. When FEDIT loads an Adobe
font, it maps an Adobe character by its character code (0-255) to an AFII number
according to Table 18-3, below. The character names are discarded.

Saving an Adobe Font
Additional information is necessary to create an Adobe Type I font. The dialog
box show here pops up when you attempt to save the currently opened font as an
Adobe font. Table 18-3 describes the fields in the dialog box. The description
assumes a certain familiarity with the PostScript language.

18.6.1

200 PEN POINT DEVELOPMENT TOOLS
Pa rt 3 / Tools

Field

Notice

Full name

Font name

Family

Unique 10

MakeAFM

Encoding

Copyright notice of the font. The INotice entry in the created IFontInfo dictionary is
set to this string.

Full name of the font. The IFuliName entry in the created IFontInfo dictionary is set
to this string.

Name of the font. The IFontName entry in the created font dictionary is set to this
string. This is the name you would use with the findfont operator in your PostScript
program.

The IFamilyName entry in the created IFontInfo dictionary is set to this string.

The IUniqueIO entry in the created font dictionary is set to this string.

Instructs FEOIT to output an Adobe font metrics file also. The extension of the metric
file is always set to .AFM and .PFB for the font body.

Choose the encoding of the font. If you choose the Adobe standard encoding, FEOIT
checks that the AFII number of each character in the font has a mapping in the Adobe
encoding. If any character fails the test, an error message will appear and the file will
not be saved. In addition, the Adobe standard encoding can hav a maximum of 256
characters only. The custom sequential encoding is primarily for a font with graphics
symbols that don't have standard AFII to Adobe mappings. In this mode, each
character in the font, in ascending AFII numbers, is assigned to the standard
96-character ASCII encoding, starting with the space character. Thus, you cannot
encode a font with more than 96 characters in this mode.

Adobe Standard Encoding to AFII Mappings 18.6.2

Table 18-4 shows the mapping between an Adobe character and its assumed AFI!
code in the Adobe standard encoding mode. The column labeled "encoded?"
simply indicates whether a character is designated to be encoded or not according
to the Postscript specification. FEDIT does not pay attention to this property.

Adobe Charade!" (ode Adobe Chl:m:lder Name ArB Code

32 space 32

33 exclam 33

34 quotedbl 34

35 numbersign 35

36 dollar 164

37 percent 37

38 ampersand 38

39 quoteright 39

40 parenleft 40

41 parenright 41

42 asterisk 42

43 plus 43

(ontinued

CHAPTER 18 I FONT EDITOR 201
Adobe Type I Fonts

Table 18-4 (continued)

Adobe Character Code Adobe Character Name AFII Code

44 comma 44

45 hyphen 45

46 period 46

47 slash 47

~ 48 zero 48

49 one 49

50 two 50

51 three 51

52 four 52

53 five 53

54 SIX 54

55 seven 55
56 eight 56

57 mne 57
58 colon 58

59 semicolon 59
60 less 60

61 equal 61

62 greater 62

63 question 63
64 at 64

65 A 65
66 B 66

67 C 67
68 D 68

69 E 69

70 F 70

71 G 71

72 H 72

73 I 73
74 J 74

75 K 75
76 L 76

77 M 77
78 N 78

79 0 79
80 P 80

81 Q 81
continued

202 PEN POINT DEVELOPMENT TOOLS
Part 3 / Tools

Table 18·4 (continued)

Adobe Character Code Adobe Character Name AFII Code

82 R 82

83 S 83

84 T 84

85 U 85

86 V 86

87 W 87

88 X 88

89 Y 89

90 Z 90

91 bracketleft 91

92 backslash 92

93 bracketright 93

94 ascllclrcum 94

95 underscore 95

96 quoteleft 96

97 a 97

98 b 98

99 c 99

100 d 100

101 e 101

102 f 102

103 g 103

104 h 104

105 105

106 j 106

107 k 107

108 108

109 m 109

110 n 110

111 0 111

112 P 112

113 q 113

114 r 114

115 s 115

116 t 116

117 u 117

118 v 118

119 w 119
continued

CHAPTER 18 I FONT EDITOR 203
Adobe Type I Fonts

Table 18-4

Aciobe thcm:lder Code Adobe Clmrader Name AFI! C"cie

120 x 120

121 Y 121

122 z 122

123 braceleft 123

~ 124 bar 124

125 braceright 125

126 asciitilde 126

161 exclamdown 161

162 cent 162

163 sterling 163

164 fraction 164

165 yen 165

166 florin 166

167 section 167

168 currency 168

169 q uotesingle 169

170 quotedblleft 170

171 guillemotleft 171

172 guilsinglleft 172

173 guilsinglright 173

174 fi 174

175 fl 175

177 endash 177

178 dagger 178

179 daggerdbl 179

180 periodcentered 180

182 paragraph 182

183 bullet 183

184 quotesinglbase 184

185 quotedblbase 185

186 q uotedblright 186

187 guillemotright 187

188 ellipsis 188

189 perthousand 189

191 questiondown 191

193 grave 193

194 acute 194

195 circumflex 195
(o!:ltiruJ~d

204 PENPOINT DEVELOPMENT TOOLS
Part 3 / Tools

Adobe Character Code Adobe Character Name

196 tilde

197 macron

198 breve

199 dotaccent

200 dieresis

202 ring

203 cedilla

205 hungarumlaut

206 ogonek

207 caron

208 emdash

225 AE

227 ordfeminine

232 Lslash

233 Oslash

234 OE

235 ordmasculine

241 ae

245 dotlessi

248 lslash

249 oslash

250 oe

251 germandbls

Font File Formats

Mil Code

196

197

198

199

200

202

203

205

206

207

208

225

227

232

233

234

235

241

245

248

249

250

251

This section describes the two of the three font file formats supported by FEDIT.
For information on the Adobe Type I format, see Adobe Type I Font Format
published in 1990 by Adobe Systems, Inc.

The font file formats described here are:

• Nimbus-Q format

• PenPoint Packed Format

The Nimbus-Q Format

The Nimbus-Q font file has four main sections illustrated below:

18·4 (continued)

18.7

18.7.1

CHAPTER 18 I FONT EDITOR 205

~ Font Header

The Nimbus-Q font header has the following structure:

typedef struct NIMBUSQ_HDR {
long signature;
char notice [80] ;
char fullName[80] ;
char fontName[80];
char family [80] ;
char weight[80];
char version[80];
char charSet[80];
double italicAngle;
short fixPitch;
short spaceWidth;
short underPosition;
short underThickness;
short hHeight;
short xHeight;
short ascender;
short descender;
short nChars;

NIMBUSQ_HDR;

The font file signature is not under the control of GO. The currently known value

is 131431010'

11",., AFII Number Array

The AFII number array holds the character IDs in the font. Each number is a
16-bit integer. The size of the table is specified by the nChars field in the font
header.

~II" Character Data File Positions

The character data file positions area is table of 32-bit file positions pointing to
the character data. There are as many entries in the table as xhere are characters in
the font.

~ Character Data

The start of each character data block is located by the file position table above.
Each character data block consists of the following fields:

• Setwidth of the character (16-bit word).

• The x- and y-coordinates of the lower-left-hand corner of the character's
bounding rectangle (two 16-bit words).

• The x- and y-coordinates of the upper-right-hand corner of the character's
bounding rectangle (two 16-bit words).

• Number of x-hints in the character (16-bit word).

• As many x-hint structures as the number in the preceding field. Each hint
contains a starting coordinate, an ending coordinate, and a length (3 16-bit
words).

Font File Formats

18.7.1.1

18.7.1.2

18.7.1.3

18.7.1.4

~ e
......
C?

206 PENPOINT DEVELOPMENT TOOLS
Part 3 I Tools

• Number of y-hints in the character (16-bit word).

• As many y-hint structures as the number in the preceding field.

• Next comes the segment data. Each segment starts with a 16-bit code,
followed by 0, 1, or 3 pairs of coordinate values, depending on the shape
code:

o Move to the coordinate point that follows.

1 Draw a line to the coordinate point that follows.

2 Draw a curve to the 3 coordinate points that follow.

3 End of shape-no data follows this code.

,.,. The PenPoint Packed Format

The GO packed format is used by the PenPoint font subsystem. It is a highly
compressed format suitable for the PenPoint environment but not for
programmers' mental health. The following list shows the file's main layout.

font Header

. URWNumber Array

Bitmap Directory

Character Directory

Short Bezier Dictionary Pointer

Long Bezier Dictionary Pointer

Shape Data Pointer

Hint Datra

Short Bezier Dictionary

Long Bezier Dictionary

Shape Data

Bitmap Data

.,.,. Font Header

The GO font header has the following structure.

typedef struct FONT_HDR {
long signature;
char notice[80];
char fullName[80];
short fontld;
short attr;
short version;
short fixPitch;
short spaceWidth;
short underPosition;
short underThickness;
. short xHeight;
short hHeight;
short ascender;
short descender;
short nChars;
short maxTriples;

18.7.2

Note This format will change in
future releases of PenPoint .

18.7.2.1

CHAPTER 18 I FONT EDITOR 207

short nShapeRuns;
short bigModel;
short maxAscender-;
short minDescender;
short maxRight;
short minLeft;
short reserved[14j;
short nBitmapsi

FONT_HDRi

Most of the fields in the font header have been described in a previous section.
Here are descriptions of fields not documented before:

• The GO font file signature is 131431110.

• The font attribute word attrib has the following structure:

group (4 bits) weight (2 bits)
Unassigned 0 Light
Venetian 1 Normal
OWs~ 2 B~
Transitional 3 Extra bold
Modern roman 4 italic (1 bit)
Egyptian 5 Normal
San serif 6 Italic
Display roman 7 aspect (2 bits)
Script 8 Condensed
Graphic 9 Normal
Software defined 10 Extended

monospaced (1 bit) reserved (6 bits)
Proportional 0
Mono 1

maxTriples contains the number of hints (x and y) of the character which has
the maximum number of hints in the font.

• The fields bigModel and nShapeRuns are explained in the shape data section.

AFII Number Array

The AFII number array holds the character IDs in the font. Each number is a
signed 16-bit integer. The size of the table is specified by the nChars field in the
font header. The array is sorted in ascending order of the AFII numbers.

Bitmap Directory

The bitmap directory contains as many entries as there are bitmaps in the font.
This section can be absent if there are no bitmaps in the font. Each entry describes
a bitmap and contains the following fields:

Font File Formats

o
1

2
3

o
1

o
1
2

18.7,2.3

208 PENPOINT DEVELOPMENT TOOLS
Part 3 / Tools

Canonical width and height The pair of values obtained by transforming
(1000, 1000) by the matrix used for scaling the font when the bitmap
was created (two 16-bit words).

Rotation The angle of rotation of the bitmap (16-bit word). It can be any
one of the values 0, 90, 180, or 360.

SizeX, SizeY The actual width and height of the bitmap in pixel units (two
16-bit words).

Reserved Reserved by GO for future use (16-bit word).

Ascender The ascender of the bitmap in pixel units (16-bit word).

Row byte size The number of bytes in a row of the bitmap, must be an
even number (16-bit word).

Bitmap file position The location in the file where the pixel map is stored
(32-bit word).

Character Directory

The character directory contains as many character definition entry as there ate
characters in the file, plus one. The extra entry serves as a sentinel for the hint and
shape indices calculations. Each entry has the following structure:

Setwidth In font units (16-bit word).

Bounding rectangle Two 24-bit packed number pairs for the lower-left
and upper-right corners of the character's bounding rectangle (6 bytes).

X-hint index The index number of the starting x-hint data in th~ hint
data section of the file (16-bit word). The number of x-hints for this
character is obtained by subtracting this number from the next field
(which can be 0).

V-hint index The index number of the starting y-hint data in the hint data
section of the file (16-bit word). The number of y-hints for this character
is obtained by subtracting this number from the x-hint index of the next
character (which can be 0).

Shape index The index number of the starting shape data in the shape data
section (16-bit word). The number of shapes for this character is
obtained by subtracting this number from the shape index of the next
character.

18.7.2.4

There will be many occurrences of a 24-bit packed number pair in a font file. It consists
of two signed 12-bit numbers, packed into 3 bytes and has the following structures:

byte 1 Low-order byte of n 1.

byte 2 Low-order of n2.

byte 3 Hi-order nibble of n1, hi-order nibble of n2.

File Pointers

The next 3 fields are 32-bit file positions pointing to the short Bezier dictionary,
the long Bezier dictionary, and the shape data section.

18.7.2.5

CHAPTER 18 I FONT EDITOR 209

rp/Y Hint Data

The hint data section contains all the hint data of the font. The hints are accessed
by the hint data indices of the character definition. For example,.if a character's
starting index for x-hints is n and it has 3 x-hints, then hint[n], hint[n+l}, and
hint[n+2] are the x-hints of the character.

Each hint data structure consists of a 24-bit packed number pair, encoding the
starting and ending coordinates of the hint, and a 16-bit word for the length of
the hint.

~Shape Data

We will skip forward to describe the shape data section before the Bezier
dictionaries. The shape data section contains two main subsections:

• The offset table.

• A series of variable-length shape blocks.

The offset table contains byte offsets to shape blocks. The offset is relative to the
first byte past the end of the offset table. There are nShapeRuns (see font header)
entries in the table. Each entry is a 16-bit word if the bigModel flag (see font
header) is false, 32-bit word otherwise.

Each shape block contains:

• The starting point of a shape in 24-bit packed coordinate format.

• The shape data. All shape data are relative coordinate values, that is, begin
with the starting point of the shape, the next point is computed by adding
the values from the shape data to the current point as you decode the shape
data. All shape data are signed values regardless of their bit length.

• An array of shape codes, each 4-bit long. The shape code dictates how the
shape data are accessed and the array is arranged in a reverse order, that is, the
first shape code is the last entry in the array. The shape codes are:

o Draw relative line with the 24-bit packed coordinate pair.

1 Draw relative line with the 8 + 8 bit coordinate pair.

2 Draw relative horizontal line with the 16-bit coordinate.

3 Draw relative horizontal line with the 8-bit coordinate.

4 Draw relative vertical line with the 16-bit coordinate.

5 Draw relative vertical line with the 8-bit coordinate.

6 Draw relative curve with the 3 24-bit packed coordinate pairs.

7 Draw relative curve with the 3 8 + 8 bit coordinate pairs.

8 Draw relative curve with the 16-bit index into the long Bezier dictionary.

9 Draw relative curve with the 16-bit index into the short Bezier dictionary.

10 Branch off to a shape block with the 16-bit index and draw n segments using
data from that shape block.n is a 16-bit value that follows the shape index.
Maintain the current point when branching off, do not switch to the starting
point of the referenced shape block.

11 End of shape block. No data is associated with this code.

Font File Formats

18.1.2.6

18.1.2.1

210 PENPOINT DEVELOPMENT TOOLS
Part 3 I Tools

To decode a shape data block, use this algorithm:

• Keep two pointers pO and pl. pO points to the beginning of the shape block
data (the byte past the starting point). pI points to the end of the shape code
array. Compute pI by adding the difference of the byte offset of the next
shape block and that of the current shape block, minus 1, to pO.

• Fetch a shape code with pI, and fetch the shape data with pO. The size of the
shape data to fetch depends on the shape code, as listed in the table above.
Recall a shape code is a 4-bit quantity. So the first shape code is the
low-order 4 bits of the byte pointed to by p 1 ~

• Process the data. Advance pO with the size of the data just read. Decrement
pI by 4 bits. Repeat the process until the end-of-shape code is read.

A character can contain many shapes. You need to decode as many consecutive
shape blocks as needed by the character, starting with the shape index in the
character definition entry.

~ Short Bezier Dictionary

The short Bezier dictionary is an array of Bezier control points. Each is a triple of
8 + 8 bit coordinates. Each point in the triple is relative to the previous one and
the first point of the triple is relative to the current point which you maintain as
you decode the shapes.

An entry in this dictionary is accessed through an index referenced by the short
Bezier dictionary shape code.

Long Bezier Dictionary

The long Bezier dictionary is an array of Bezier control points. Each is a triple of
24-bit packed coordinates. Each point in the triple is relative to the previous one
and the first point 0\ the triple is relative to the current point which you maintain
as you decode the shapes.

An entry in this dictionary is accessed through an index referenced by the long
Bezier dictionary shape code.

~ Bitmap Data

The last section of the font file contains bitmap data referenced in the bitmap
directory, if there is any. The first nChars bytes make up the width table of the
bitmap, then followed by the pixel map.

18.7.2.8

18.1.2.9

18.1.2.10

? command, 75-76, 82
datasheet, 90-91
for displaying mini-debugger

commands, 146

! command, 79
datasheet, 89

command, 81
datasheet, 90

Access events, 129

Accessories notebook, S-Shot, 175

AceCat5by5, sample definition, 61

Adding
characters, 182
oval shape, 187
rectangle shape, 187

Addresses
code, 88
data, 88

Adobe Type I font, 199-204
FEDIT support of, 180
fields, 200
saving, 199-200
standard encoding to AFII mappings,

200-204

Adobe Type Manager, 199

AFII number, 180
altering, 182
GO font array, 207
Nimbus-Q array, 205

ai command, 91

Altering
hints, 191
winding direction, 188

API
installation, 20-21
Quick Help, 19
search and replace, 19

API Reference, 21
APP.INI,44

in boot sequence, 29
in boot-time install, 52-53
description, 28

Application
before releasing, 6
development options, 5-7
.DLL and .DLC files, 53
eliminating, 81
executing, 54-55
icons, 168
installing, 50-53
monitors, 21
resource file, 169
sample, 12

stationary, 54
steps for creating, 6-7
system, 44

file, 53
System Log, 141-143

Application Framework, 15
functions, 15

Application Writing Guide, 11-12
Assembly code, viewing, 78-79

ASSERT macro, 134

Asynchronous message passing, 14

ATI video card, 49

ATP subtask, 154

AutoZoom keyword, 36
ZoomMargin and, 40
ZoomResize and, 40

Back menu, 173

bc command, 74

bd command, 92

be command, 92

Bezier curve, 182
edit window and, 184
merging, 186

Bezier dictionaries, 210

bgNc command, 91

Bitmap
changing size of, 173
column major, 195
consistency with outline data, 193
creating, 192-193
Custom Resource 10 card, 172-173
data, GO font, 210
deleting, 193
directory, GO font, 207-208

fields, 208
editing, 192-195
edit window, 194
elements, 168
exporting, 169-170

Exporting option card, 172
to home, 170
illustrated, 170

importing, 168

Bitmap editor, 167-173
bitmap elements, 168
exporting bitmap, 169-170
exporting to home, 170
illustrated, 167
importing bitmap, 168
modes, 168
undo capability, 170-171
user interface, 170-173

Back menu, 173

Document menu, 171
Edit menu, 171
Ink menu, 173
Options menu, 172-173
Size menu, 173

uses, 167-168

Bitmap menu (FEDIT), 192, 193
Edit Cell command, 195
Edit command, 194

BitPad2, sample definition, 62

BitPad2ASCII, sample definition, 62

BkShelfPath keyword, 37

bl command, 73
datasheet, 92

BOO 1 application process, 154

Boot
error messages, 47
sequence, 29
subdirectory, 28
swap, 39
in tablet-like mode, 41
volume, 29

BOOT.DLC, 42-43
in boot sequence, 29
description, 28
modifying, 42

Booting, 45-49
before, 29
boot error messages, 47
broken pen during, 47-49
loading debug PENPOINT.OS, 46
speeding up, 52
what happens during, 46-47

BootProgressMax keyword, 37

Boot-time install, 52-53

Borders, 16

Bounding rectangle, 181
computation of, 182
control points and, 182

bp command, 73
datasheet, 93
event, 130-131

break command, 79-80
datasheet, 93

Breakpoint, 73-74
commands, 85
context inside, 131
executing code at, 79-80
profiles, 113, 115

dp command and, 119
zp command and, 121

setting with identifiers, 76
for skipping execution, 123-124

Broken pen icon, 47

212 INDEX

Browser, 19

Built-ins, DB, 125-129
predefined types, 125-126
runtime routines, 128-129
useful values, 126
useful variables, 127-128

Busy Manager, 19

Buttons, 16

Caches, in running PenPoint, 27

CALC application, 68

CalcEngineEnterOperator
assembly code, 78-79
source code, 77-78

CalCompDBII, sample definition, 62

Call stack, viewing, 74-75
frame numbers and, 75

Capture command (Edit menu), 171

Cartesian grid, 181

Cast operator, 131

C code, executing, 79
at breakpoint, 79-80
at DB prompt, 79
see also C language

Cell dimensions, altering, 195

Character
adding, 182
composition, 180-181

character placement, 181-182
control point placement, 182
font units, 181

data, Nimbus-C1 205-206
file positions, 205

deleting, 182
dimension alteration, 195
directory, GO font, 208

entry structure, 208
hints, 190
placement, 181-182
selection window, 182
see also Character shapes

Character menu (FEDIT), 179, 182
adding and deleting characters and,

182
in changing setwidth, 188
for character selection window, 182
Show Sample command, 198

Character shapes, 180-181
data blocks, 209

decoding, 210
data, GO font, 209-210
definition of, 180-181
editing, 182-190

adding oval shape, 187
adding rectangular shape, 187
changing setwidth, 188
deleting segment, 186

deleting shape, 188
merging shapes, 189-190
mitosis, 186
moving control points, 185-186
operator icons, 185
outline editing window, 183-184
shape mutation, 186
shape transformation, 187-188
viewing/altering winding direction,

188
View Preference, 184-185

see also Character

CHKDSK,27

C language, 6, 7
development options, 5
reference books, 83
run-time library, 18
see also C code, executing

Classes
layout, 16
root, 14
utiliry, 19

Class inheritance, 14

Class Manager, 13-14
defined, 13
features supported by, 14

Clipboard. see Windows clipboard

clsByteBuf, 19

clsFileSystem, 19

clsList, 19

CLSMGR.H, 128

clsNotePaper, 19

clsSio, 19

clsStream, 19

clsString, 19

clsTable, 19
cm, co, cs, commands, 94

Code
addresses, 88, 114
executable, 14
profiles, 113

sample-based, 115
syntax for, 114

see also C code, executing; Code
profiling

codeAddress, 88

Code profiling, 113-117
examples, 115-117

redefining with infinite buckets,
116

redefining with smaller buckets,
116

sampling profiles, 115-116
timing/counting profiles, 116-117

options, 114
sampling profiles, 115
sampling technique, 113-114

timing/counting technique, 113
see also Code

Colors
background, 167

setting, 173
foreground, 167
Invert command and, 171
setting ink, 173

Command datasheets, 89-112
<,90
?,90-91
!,89
ai,91
bd,92
be, 92
bgNc,91
bl,92
bp,93
break,93
cm, co, cs, 94
ctx,94-95
d, db, dw, dd, 96
dp,96
files, 97
fl,97
fns, 98
fs,98
g,99
h,99
id,99
ids,100
k, 100
log, 100
mi,100
mini,101
od, 101
on, 101
on access, on store, 101-102
p, P, 102
profile, 103
q, 103
r,103
srcdir,103
st,104-105
sym,105
ti,107
tl,107
t, T, 106
type, 108
u,108-109
uv,109-110
v,110
vars, 111
ver, 111
vu,111-112
zp,112
see also Commands

Command line editing, 81

Commands
<,81
?, 75-76, 82, 146

!,79
bc, 74
bl,73
bp,73
break, 79-80
breakpoint, 85
ctx, 73, 75
display, 85-86
DOS LABEL, 72
Edit menu, 171
executed at compile time, 124
execution control, 85
file, 86
fs,147
fz, 124
g,71
ids, 76
install, 131
mi,81
mini-debugger, 146-147
miscellaneous, 86
on, 82-84
p (P), 77
process and task, 85
profiling, 86
q,84
srcdir, 72-73, 77
st,74-75

in mini-debugger, 148
start, 131
summary of, 85-86
sym, 72, 82
th,124
ti, 148
tI,80
t (T), 77
tt, 124
type, 76
u,78-79
UniPen, 57-59
v,77-78
wait, 131
see also Command datasheets

Compiling and linking, 69-70

Config keyword, 37
DebugTablet, 37,40-41

Configurations, 37
machine, 26
monitors and, 44
setting up specific, 44-45
tablet-like, 40-42

Configuring
digitizing tablet, 45
mouse, 45

Connections notebook
disks page, 51
for importing bitmap, 168

Connectivity, 20

CONSOLE.DLC file, 43,137
description, 28

Context, 73
inside breakpoints, 131

Control points
moving, 185-186
placement, 182

Controls, 16

Copying, to Windows clipboard, 195

Creating
bitmaps, 192-193
hints, 192

C runtime, 128

ctx command, 73
datasheet, 94-95
frame numbers and, 75
scopeSpec and, 87

Custom Resource 10 option card,
172-173

fields, 172

dataAddress,88

Datasheets, command, 89-112

DbgFlagGetO function, 135

DbgFlagSetO function, 135

Dbg macro, 133

DB.INI file, 80-81

DBk task, 152

ObI task, 151

DBm task, 152

DB. see Source level debugger (DB)
d, db, dw, dd, commands, 96

Debug
flag, 38

set, 128, 147
output port, 29
stream data, 37
tools, 67
Window accessory, 38

DEBUG compiler option, 133-134
defined, 133
PenPoint uses, 133-134
using, 134
versions ofDLLs, 134

DebugfO function, 67
Debugger .

flags
function of, 133
setting, 38

preparing to run, 69-70
compiling and linking, 69-70
files used in DB session, 69
installing applications to debug, 70
installing DB, 70
starting PenPoint, 70

stream, 37, 135-139
buffer, 37

INDEX 213

configuring destinations, 135-137
defined, 133
different ways to view info sent to,

135
system log application and,

141-143
writing to, 137-139

see also Mini-debugger; source level
debugger (DB)

DebuggerO system routine, 145

Debugging
application behavior, 43
flag sets, 134-135

clearing, 148
setting values in, 135

general, techniques, 133-139
DEBUG compiler option, 133
debugger stream, 135-139
debugging flag sets, 134-135

Intel assembly language and, 7
macros, 67
source code, 72-73

finding and loading symbols, 72
using source code, 72-73

symbolic information, 72
loading partial, 82

DebugLogFlushCount keyword, 37

DebugLog keyword, 37

DebugSet keyword, 38

Deleting
bitmaps, 193
characters, 182
hints, 192
segments, 186
shapes, 188

Development
application, 6-7
options, 5-7
tools

DOSC, 6, 7
high-level, 5-5

Device List (Show menu), 142
Dictionaries, Bezier, 210

Digitizers, 56

Digitizing tablet, configuring, 45

Directories
bitmap, 207-208
character, 208
document, 55
Empty Application, 52
source, 77

Disks
referencing, 27-28
saving format information, 45

Display
commands, 85-86
profile information, 119-120

214 INDEX

.OLC file, 53

DLLMAJN routine, 42, 53

DmIM task, 152

DmKK task, 152

Document, 54
creating new, 54
directories, 55

Documentation, 9-23
feedback on, 10
SDK library, 9
suggested approach to, 9-10
using fonts in, 198-199
see also SDK, documentation

Document menu, 171
Export to Home command, 170, 171

DOS
C development tools, 6, 7
file system utilities, 161-164

GDIR,162
~EL, 162-163
PAPPEND, 163-164
PDEL, 164
PSYNC, 164
STAMP, 161-162

LABEL command, 72
name, 162
tools, 13
volume name, 72

dp command, 119-120
datasheet, 96
examples, 119-120
flags, 119
in redefining profiles, 116
timing! counting profiles, 116

DPrintfO function, 67

Drivers
universal pen, 56-62
using UniPen, 60-62

Dynamic Link Libraries (DLL), 20
BOOT.DLC and, 42-43
in boot sequence, 29
Debug versions of, 134
defined,42
ENVIRON.lNI and, 34
files, 53
initialization files and, 28
loaded independent of application,

42,43

Editing
bitmaps, 192-195
character shapes, 182-190
font header, 196-:-198
hints, 190
outline, window, 183-184
pixels, 194

Edit menu, 171
Checkpoint command, 170
choosing editing mode from, 171
entries, 171

Embedded objects, 18

Empty Application directory, 52

#endif statement, 134

ENVIRON.lNI, 34-40
in boot sequence, 29
DBIni environment, 81
debugger stream and, 135
DebugLogFlushCount line, 136
DebugLog line, 136
DebugSet line, 136
default settings, 34
description, 28
file list of, 35
getting value from, 36
keywords, 36-40

listing of, 36
modifying, 34
setting format, 35

Erase command (Edit menu), 171

Error
codes, 47-49

broken pen error, 1008, 49
broken pen errors between 100

and,999,49
events, 130
messages, boot, 47

Evaluate command. see? command

Event handler, values available within,
126

Events
access, 129
bp,130-131
error, 130
exit, 130
fault,130
intReq,130
oc,131
program, 129
task, 129-130

Examining
font header, 196-:-198
text samples, 198

Exception handling, 148

Executing
application, 54-55
C code, 79-80

Execution
control commands, 85
controlling threads of, 124
skipping, 123-124

Exit events, 130

Exiting, PenPoint, 55

Exporting
bitmap, 169-170
option card, 172

Export to Home (Document menu), 170

Expression handling macros, 139

Fault events, 130

FEDIT. see Font editor (FEDIT)

Fields
Adobe Type I font, 200
font attribute window, 198
font header window, 197

File commands, 86

File menu (FEDIT), 179, 180
Font Attribute command, 196
Font Header command, 196
Save Subset command, 196

Files
Adobe Type I font, 199
debug stream data, 37
.OLC, 53
DLL,53
font, editing, 179-180
initialization, 28
map, 148
names of, 52
PENPOINT.DIR,55
S-Shot, 177-178
swap, 39

error messages and, 47
SYSCOPY.lNI, 43
TIFF, 175
used in DB session, 69
WATCOM Make, 148

files command, 97

File system, 18

Fill command (Edit menu), 171

fins command, 98

flags
in code profile syntax, 114
dp,119
in object profile syntax, 117

Flag sets, debugging, 134-135

fl command, 97
file formats, 180

Font
adding character to, 193
attribute window, 197

fields, 198
bitmaps, 192
file

creating, 180
editing, 179

file formats, 204-210
Nimbus-Q, 204-206
PenPoint Packed format, 206-:-210

header
editing and examining, 196-198
Nimbus-Q, 205
PenPoint Packed, 206-207
window, 196
window fields, 197

outline, 16
units, 181
using, in documentation, 198-199

Font editor (FEDIT), 179-210
Adobe Type I fonts, 199-204
concepts, 179-182
editing bitmaps, 192-195
editing character shapes, 182-190
editing hints, 190-192
font file formats, 204-210
function, 179
getting started with, 179-180
miscellaneous functions, 195-199

Font menu (System Log), 143

Frame numbers, 75

Frames, 16

Freeze count, 124
thawing, 124

fs command, 98
for enabling logging, 148
for setting debug flags, 147

FSMakeAttr macro, 163

FSUI task, 153

Functions, message passing, 138

fZ command, 124

Gazelle, sample definition, 61

g command, 71
code addresses and, 88
datasheet, 99

GDIR utility, 162

Generate Mask command (Edit menu),
171

Gestures, snapshots of, 177

GO.BAT,45
defined,165
modifying for, 45

GO's proprietary packed format. see
PenPoint, Packed format

Graphics subsystem, 18

Handwriting translation subsystem, 17

Hardware, PC, 25-28
labelling volumes, 27-28
machine configurations, 26
memory, caches, RAM disks, 27
mouse, 26
networks, 27
specifications, 25

h command, 99

Header files, debugging flag sets and, 135

Hexadecimal numbers, 72
viewing call stacks and, 74

High-level development tools, 6
development option, 5

Hints, 190
altering, 191
control handles, 191
creating, 192
data, GO font, 209
deleting, 192
editing, 190-192

window, 190-191
effectiveness of, 191
functions, 190
x and yoperators, 191, 192

Horizontal Flip command (Edit menu),
171

Hot spot, bitmap, 168

Hotspot Paint mode, 168
Back menu and, 173
defined,171
Ink menu and, 173

Icons, 17
bitmap editor and, 167-168
broken pen, 47
default, 168
large and small, 168
operator, 185
outline editing window and, 184

id command, 99

Identifiers
known, 76
scope of, 77
types of, 76

Idle task, 15 1

ids command, 76, 100

IDSP task, 152

#ifdef statement, 134

ImagePoint, 15
imaging model, 15-16

Image shifting, 167

IMgr task, 152

Importing, bitmap, 168

Index, master, 13,21

Initialization files, 28
default versions, 28

Initialization routines, 42

Ink menu, 173

Input system, 17

Installation
API,20-21
manager class, 21

install command, 131

Installer, PenPoint, 20

INDEX 215

in application installation, 50-51
concepts and components, 20-21
functions, 51
for installing while PenPoint is .

running, 51
Quick,50

Installing
application, 50-53

boot-time install, 52-53
to debug, 70
.OLL and .DLe files, 53
illustrated, 52
while running PenPoint, 51-52

OB,70
S-Shot, 175

Intel 386DX Programmer's Reference
Manua~ 7

Interrupts, 148-151

"Int wlo RB: 7" messages, 47, 50

Invert command (Edit menu), 171

k command, 100

Kernel
general protection fault handler, 148
interface, 18

Key task, 152

Keywords
asynchronous serial 110, 33
ENVIRON.INI, 36

AutoZoom, 36
BkShelfPath,37
BootProgressMax,37
Config,37
OebugLog, 37
OebugLogFlushCount,37
OebugSet, 38
PenPointPath, 38
PenProxTimeout, 38
ScreenHeight, 39
Screen Width, 39
StartApp, 39
StealMem, 39
SwapBoat, 39
SwapFileSize, 39
TZ,39
Version, 39
Vo1Sel,40
WinMode,40
ZoomMargin, 40
ZoomResize, 40

MIL.INI, 33-34
debugging information, 33
disks,33
exit to ~OS, 34
high-speed packet parallel port

110,34

216 INDEX

serial painting devices, 33
TOPS FlashCard type, 34
video controller, 34
Wacom 310 digitizer, 33

Labelling, volumes, 27-28

Labels, 16
version, 39
volume, 40

LANDSCAPE orientation, 40

Layout classes, 16

lineCount,88

Line number, 88

Lines, smoothing, 186

List boxes, 16

Loading, system log application, 141

LOCAL keyword, 115

log command, 100

Log file, 135-136

LOGITECH, sample definition, 62

Log Size menu (System Log), 143

Macintosh computer, using S-Shot
files on, 177

Macros
debugging, 67
expression handling, 139
message passing, 138
status checking, 134
see also specific macros

MakeWknResld, 173

MAKLABEL utility, 162-163
example, 163

Map files, 148

Mapping, of Adobe standard encoding to
AFII codes, 200-204

MAR2 application process, 154

Mask, 168

Mask Paint mode, 168
defined, 171

Memory
available, checking, 81
DB and, 81-82
globally accessible, 129
for running Pen Point, 27
saving, 47

multiple applications and, 53
Usage (Show menu), 142
using less, 39
watching, 82-84

Menu buttons, 16

Menus, 16
Back menu, 173
Document menu, 171

Edit menu, 171
FEDIT

Bitmap menu, 192-195
Character menu, 179, 182, 188
File menu, 179-180, 196
Options menu, 184-185, 191
Outline menu, 183, 195
Text menu, 198

Ink menu, 173
Options menu, 172-173
Size menu, 173
System log application, 142-143

Font menu, 143
Log Size menu, 143
Show menu, 142
Trace menu, 142-143

Merging
shapes, 189
winding direction and, 189-190

Message handling, 14

Message passing
functions, 138
macros, 138
synchronous and asynchronous, 14

Messages
boot error, 47
"Int wlo RB: 7," 47, 50
pattern specifications, 117
sending with DB, 82
string names for, 82
types of, 14

Method table compiler (MT), 165

mi command, 81, 100

MIL.INI, 29-34
in boot sequence, 29
debugger stream and, 135
description, 28
file list of, 30~33
keywords, 33-34
modifYing, 29

for digitizing tablet, 45
for mouse, 45

MonoDebug line, 137
setting format, 29
single monitor and, 44
UNIPENPORT tag, 60
UNIPENPROTOCOL tag, 61
UNIPENTYPE tag, 60
for writing to serial port, 136

MIL (machine interface layer), 29
during booting, 46
for Pc, 29
tablet hardware, 29

mini command, 101

Mini-debugger, 145-154
commands, 146-148

setting debug flags and, 147-148
exception handling, 148
functions, 145

invoking, 145-146
mini-debugger and DB, 145
on Pen Point computer, 146

map files and, 148
source level debugger (DB) and, 145
task list, 151-154
understanding interrupts and,

148-151
using, 148
see also Source level debugger (DB)

Mitosis operator, 186

MM, sample definition, 61

ModifYing
BOOT.DLC, 42
ENVIRON.lNI, 34
GO.BAT,45
MIL.INI,29

Module names, 71

Monitors
application, 21
configurations and, 44
rwo, 136-137
viewing debugger stream on, 137
writing debugger stream to, 136-137

Mouse
configuring, 45
for running PenPoint, 26
using, 50

Moving, control points, 185-186

msgDcScreenShot, 175

msgList, specification, 118

_MSG]AT variable, 125

Names
005,162
module, 71
process, 71
string, 82
task, 149
volume, 27, 72

Nimbus-Q format, 204-206
AFII number array, 205
character data, 205-206

file positions, 205
converting, 180
FEDIT support of, 180
font header, 205
see also PenPoint, Packed format

Non-maskable interrupt (NMI), 49

Notation conventions, 86-89
code address, 88
data address, 88
line count, 88
line numbers, 88
Scope.Identifier reference, 88-89
scope specification, 86-87
task set, 89

Notebook
default, 46
using, 55
see also specific Notebooks

Notebook User Interface (NUl), two
monitors and, 44

Notes, 16

Numbers
frame, 75
hexadecimal, 72
line, 88

ObjectCall, 117
object profiling examples and, 118

objectList specification, 118

Object-oriented programming, 7

Object profiling, 117-118
basic, 117
examples, 118
message pattern, 117-118
options, 117
syntax, 117

Objects
creation of, 14
embedded, 18
observing, 14
profiles, 113
string names for, 82

Observers, 14

od command, 101

on access, on store commands, 101-102

on command, 82-84,129-131
access events, 129
datasheet, 101
fault events, 130
other events, 130-131
program events, 129
syntax for, 129
task events, 129-130
variations, 82

Operator
cast, 131
Delete, 188
Delete hint, 192
Delete Segment, 186
icons, 185
Merge, 189
mitosis, 186
Move Control Points, 185
Oval,187
Rectangle, 187
SetWidth, 188
Shape Mutation, 186
Shape Transformation, 187-188
tilde, 131
Winding Direction, 188
x- and y-hint, 191, 192

Option cards, 172
Custom Resource ID, 172-173
Exporting, 172

Option sheets, 17

Options menu, 172-173
FEDIT

AutoRedrawoption, 191
BezierResolution command, 184
View Preferences, 184-185

Orientation, screen, 40

OSEnvSearchO function, 36

OSProgramInstallO function, 131

OSProgramInstantiateO function, 131

Outline editing window, 183-184
illustrated, 183

Outline menu (FEDIT), 183, 195

Packed format. see PenPoint, Packed
format

Pages, moving through Notebook, 55

Page task, 152

PAPPEND utility, 163-164
example, 164
syntax, 163

Parallel port interrupts, 50

Parity error, 49

Pasting, from Windows clipboard,
195-196

PAUSE key, 71

PCL printer, 199

Pc, PenPoint on, 25-62
APP.INI,44
BOOT.DLC, 42-43
booting,45-49
boot sequence, 29
CONSOLE.DLC, 43
desktop and, 55
ENVIRON.INI file, 34-40
executing application, 54-55
hardware specifications for, 25-28
initialization files, setup, 28
installing application, 50-53
MIL.INI, 29-34
PPBOOT.EXE, 29
running, 25-62

stop, 27
setting up specific configurations,

44-45
S-Shot, 178
SYSAPP.INI,44
SYSCOPY.INI, 43
in tablet-like mode, 40-42
universal serial pen driver, 56-62
using, 50

PenPoint
exiting, 55

INDEX 217

interrupting, 54
invoking mini-debugger on, 146
not working, 47
Packed format, 206-210

AFII number array, 207
bitmap data, 210
bitmap directory, 207-208
character directory, 208
converting, 180
file pointers, 208
font header, 206-207
hint data, 209

shape data, 209-210
short Bezier dictionary, 210
see also Nimbus-Q format

long Bozi" diction,,),. 210 ~~~

running on PC, 25-62

PenPoint Architectural Reference, 13-21
Application Framework section, 15
Class Manager secti.on, 13-14
Connectivity section, 20 .
File System section, 18
Input and Handwriting section, 17
Installation API section, 20-21
Resources section, 20
System Services section, 18
Text component section, 17-18
UI Toolkit section, 16-17
Utility Classes section, 19
Windows and Graphics section, 15-16
Writing PenPoint Services section, 21

PENPOINT.DIR files, 55
DOS files and, 161
GDIR utility and, 162
PAP PEND utility and, 163-164
PDEL utility and, 164
PSYNC utility and, 164
STAMP utility and, 161-162

PenPointPath keyword, 38

PenPoint UI Design Reference, 13

PenProxTimeout keyword, 38

Pen task, 152

Pixelmaps, 167

Pixel Paint mode, 168
Back menu and, 173
defined, 171
Ink menu and, 173

Pixels, 168
editing, 194
metrics, 192

PORTRAIT, screen device orientation,
40

Ports
parallel, interrupts, 50
serial,34

writing to, 136

PostScript
interpreter, 199
printer, 198

218 INDEX

Powr task, 152

PPBOOT boot program, 29
during booting, 46-47

p (P) commands, 77
datasheet, 102

Preferences Power option sheet, 27

Process
commands, 85
names, 71

processCount, 153

profile command, 103

Profiles
breakpoint, 113
clearing, information, 121
code, 113
displaying, information, 119-120
object, 113
redefining with infinite buckets, 116
redefining with smaller buckets, 116
samples of, 115
timing/counting, 116-117
types of, 113

Profiling
code, 113-117
commands~ 86
object, 117-118
specific tasks, 121

Program
events, 129
usingDEBVG in, 134

Programmable interrupt controller
(PIC),50

Progress bars, 17

Project Scheduler, 53

Proximity, out of, 38
mouse and, 50

q command, 84
datasheet, 103

Quick Help, 19

Quick Installer, 50

RAM
disks,27
for running PenPoint, 25, 27, 54

r command, 103

RC utility, 165

Rectangle
adding, shape, 187
bounding, 181-182

Reference, Scope.identifier, 88-89

Remote interface, 20

RESAPPND utility, 165
bitmap resources and, 169

RESDUMP utility, 165

Resource, 20
files, 165

application, 169
10, 169

Custom Resource ID card,
In-173

utilities, 165

Root classes, 14

Rotate command (Edit menu), 171

Routines
DB runtime, 128-129
skipping execution of, 123-124

routineSet specification, 114

_ROUTINE_SET variable, 125

Running
PenPoint on PC, 25-62
system log application, 141-142

Run-time libraries, 18

Sample
applications, 12
profiles, 115

Sampled images, 167

Saving
Adobe font, 199-200
characters and bitmaps subset, 196
typing, 80-81

Scav task, 152

Scope
referencing, 88-89
specification, 86-87

Scope.Identifier specification, 77

scopeSpec, 86-87

Screen
capturing, 175-178

before, 176

ScreenHeight keyword, 39

Screen Width keyword, 39

Scroll bars, 16

SDK
contents, 22-23

compiler tools, 23
optional goodies, 23
PenPoint, 22

documentation
API Reference, 21
Application Writing Guide, 11-12
Architectural Reference, 13-21
Development Tools, 13
documents in, 10
feedback on, 10
library, 9
organization of, 13
sample applications in, 12
suggested approach to, 9-10

VI Design Reference, 13
see also Documentation

Search and Replace API, 19

Segments, 186
deleting, 186
shape mutation and, 186

Selection Manager, 19

Serial ports, 34
writing to, 136

Services Architecture, 21

Settings notebook
Gesture Timeout, 38
Installer, 41

Setwidth, 180
changing, 188
character placement and, 181

Shapes. see Character shapes

Shift command (Edit menu), 171

Show menu (System Log), 142

Single-stepping, 77

Size menu, 173

SmartDrive, 27

Snapshots, 175
file name, 176
full-screen, 177
of gestures, 177
impossible, 177
taking, 177

before, 176
writing to disk, 177

Source code
debugging, n-73
setting breakpoint and, 74
viewing, 77-78

Source level debugger (DB), 67
activation of, 84
advanced techniques, 123-131

cast operator, 131
compile time commands, 124
context inside breakpoints, 131
controlling execution threads, 124
install and start commands, 131
on command, 129-131
skipping execution, 123-124
tilde operator, 131
wait command, 131

built-ins, 125-129
predefined types, 125-126
runtime routines, 128-129
useful values, 126

. useful variables, 127-128
command line editing, 81
command reference, 85-112

command datasheets, 89-112
command summary, 85-86
notation conventions, 86-89

compiling and linking and, 69-70
context, 73

executing code at prompt, 79
exiting, 84
features, 67
files used in session, 69
installing, 70
invoking, 71
memory use and, 81-82
mini-debugger and, 145
profiling, 113-121

clearing profile information, 121
code profiling, 113-117
displaying profile information,

119-120
object profiling, 117-118
profile breakpoints, 113
specific tasks, 121
type of profiles, 113

for saving typing, 80-81
scripts, 81
to send messages, 82
using, 71-84

breakpoints, 73-74
ctx command, 73
examining and setting values,

75-77
executing C code, 79-80
g command, 71
hexadecimal numbers, 72
memory use and, 81-82
for message sending, 82
module names, process names, task

IDs, 71
PAUSE key, 71
prompting circumstances, 84
saving typing, 80-81
single-stepping, 77
source 'code debugging, 72-73
st command, 74-75
string names for messages, objects,

statuses, 82
tl command, 80
u command, 78-79
v command, 77-78
watching memory, 82-84

see also Mini-debugger

srcdir command, 72-73, 77
datasheet, 103

S-Shot utility, 175-178
bugs, 178
installing, 175
on Macintosh, 177
on PC, 178
specifYing a file name, 176
taking snapshot, 177
using, 175-177

hints on, 177-178
specifYing a delay, 176
specifYing an area, 175-176

window, 175

Stack trace, 149

Stak task, 152

STAMP utility, 161-162
example, 162
syntax for, 161-162

StartApp keyword, 39

start command, 131

STATIC keyword, 115

Stationary, 54

st command, 74-75
datasheet, 104-105
in mini-debugger, 148

StealMem keyword, 39

String names, 82

StsWarn macro, 133

SuperScriptII, sample definition, 61

Swap
boot, 39
file, 39

error messages and, 47

Swap Boat keyword, 39

SwapFileSize keyword, 39

sym command, 72, 82
datasheet, 105

Synchronous message passing, 14

SYSAPP.lNI, 44
in boot sequence, 29
description, 28

SYSCOPY.lNI, 43
in boot sequence, 29
description, 28
files, 43

System
applications, 44

file, 53
tasks,151-152

System Log application, 141-143
loading, 141
menus, 142-143

Font, 143
Log Size, 143
Show, 142
Trace, 142-143

on PC, 142
running, 141-143

System Services, 18

Systick rate, setting, 128

Syst task, 152

Table-like mode, 40-42

Task
commands,85
events, 129-130
IDs, 71,121
name,149
process, 0, 153-154
profiling, 121

set, 89
stack position, 86
terminating, 124

INDEX 219

values available for, 126
see also specific tasks

Task list, 80
mini-debugger, 151-154

example, 149-150
system tasks in, 151-152

Task List (Show menu), 142

taskSet,89
in code profile syntax, 114
in object profile syntax, 117
in on command syntax, 129
in task termination, 124

_TASK_SET variable, 126

Testing application, 44

Text
component, 17-18

comparison with graphic
subsystem, 18

fields, 16

Text menu (FEDIT), 198

th command, 124

theBootVolume, 29, 38, 40

theSelectedVolume, 37, 40
in table-like mode, 41

Threads, of execution, 124

ti command, 107
in mini-debugger, 148

Tic-Tac-Toe application, resources, 169

TIFF file, 175
Import option, 178
problems, 178

Tilde operator, 131

Timr task, 152

tl command, 80
datasheet, 107

Toolkit tables, 16

Tools
debug, 67
development, 5-7

Trace menu (System Log), 142-143

Trackers, 17

Transfer Class, 19

TSR (terminate and stay resident), 165

TSS task, 152

tt command, 124

t (T) commands, 77
datasheet, 106

type command, 76
datasheet, 108

Types, predefined, 125-126

Typing, saving, 80-81
command line editing, 81

220 INDEX

DB.INI file, 80-81
using DB scripts, 81

TZ keyword, 39

u command, 78-79
datasheet, 108-109

UI Toolkit, 16-17

Undo Manager, 19

UniPen,56
command syntax, 57-59
notes on using, 60-62
sample definitions, 61-62

UNIPENPORT tag (MILINI), 60

UNIPENPROTOCOL tag (MILINI), 61

UNIPENTYPE tag (MILINI), 60
predefined types, 60

Unique identifier (UID), 14
dynamic, 14
numbers, 14
well known, 14

Universal serial pen driver, 56-62
UniPen command, 57-59
using, 60-62

User interface, bitmap editor, 170-173

Utilities
GDIR,162
GO, 165
NUUCLABEL, 162-163
MT,165
PAPPEND,163-164
PDEL,164
PSYNC, 164
RC, 165
RESAPPND, 165
RESDUMP, 165
S-Shot, 175-178
STAMP, 161-162

Utili ty classes, 19

uv command, 109-110

V86a task, 152

V86x task, 152

Values
examining and setting, 75-77

? command, 75-76
identifier types, 76
known identifiers, 76
lexical scope, 77

useful, in DB, 126

Variables
DB useful, 127-128
debugging flag sets, 134-135
setting, 127

vars command, III

v command, 77-78
datasheet, 110

ver command, III

Version keyword, 39

Vertical Flip command (Edit menu), 171

VGA video adapter, 25

View Preference dialog (FEDIT Options
menu), 184-185

illustrated, 185

VolSel keyword, 40

Volume
boot, 29
labelling, 27-28
names, 27

DOS, 72
selected, 37
selection, 54

vu command, 111-112

WACOM510, sample definition, 62

WACOM51OC, sample definition, 62

Wacom pen tablet, 45

wait command, 131

WATCOM
C/386 compiler and linker, 69-70
Make files, 148

Winding direction, 188
merging and, 189-190
viewing and altering, 188

Window
bitmap edit, 194
character selection, 182
font attribute, 197
font header, 196
hint editing, 190-191

illustrated, 191
outline editing, 183-184
system, 15

Windows clipboard
copying to, 195
pasting from, 195-196

WinMode keyword, 40

Writing
to debugger stream, 137-139
to log file, 135-136
to second monitor, 136-137
to serial port, 136

ZoomMargin keyword, 40
AutoZoom and, 36

ZoomResize keyword, 40
AutoZoom and, 36

zp command, 121
datasheet, 112

This master index indexes all five volumes in the PenPoint Software
Development Kit documentation. Each page number in the master index
contains a code that indicates the volume in which the page is found. The
codes are:

AWG PenPoint Application Writing Guide

ARl PenPoint Architectural Reference Volume I

AR2 PenPoint Architectural Reference Volume 2

VI PenPoint User Interface Design Reference

PDT PenPoint Development Tools

3-D icons, UI:217

16-bit character
string functions, AR2: 111-114

composition, AR2: 114
support, AR2: 11 0-114

features, AR2: 11 0
types, AR2: 111

(8259 programmable interrupt controller
(PIC), AR2:275

80386
protected mode, AR2: 102
ring structure, AR2: 103

? command, PDT:75-76, 82
datasheet, PDT:90-91
for displaying mini-debugger

commands, PDT: 146

! command, PDT:79
datasheet, PDT:89

< command, PDT:81
datasheet, PDT:90

AB_MGR_ID structure, AR2:329

AB_MGR_NOTIFY structure, AR2:330

About Application sheet, UI:61
customizing, UI: 194

About command (Document menu),
UI:57,61

About Contents command (table of
contents Document menu),
UI:85

About Document sheet, UI:61

Abs macro, AWG:78

Abstract messages, A WG:57

Access
events, PDT:129
intentions, AR2:62
protocols, AR2:257
sheet, UI:67, 201

Access Speed control, UI:67
active documents and, UI:I02
customizing, UI:201

Speed, AWG:39

Accessing services, AR2:258-259
binding to a service, AR2:259
opening service, AR2:259
service managers, AR2:261

predefined, AR2:258-259
see also Services

Accessories, UI:163; AR2:393
documents, AR2:377
icon, UI:13, 74

application, UI:217
palette, AWG:104, 134

icons in, UI:73, 163, 217
window, AWG:23
see also Floating, accessories

Accessories notebook, S-Shot, PDT: 175

Accessory
icons, UI:77
instances, UI: 163
keyboard, UI:202, 273

ACCESSRY directory, AR2:393

AceCat5by5, sample definition, PDT:61

Acetate layer, AR1:296

Acetate plane, AWG:9

Activating
documents, AWG:23, 36-37;

ARl:102-107
embedded documents, ARl:161
fields, ARl:481-482

Active In box service, AR2:312

ADC labs, A WG: 195

Adder application, AWG:260-261;
ARl:556

Adding
address book entry, AR2:328
characters, PDT: 182
document to stationary menu,

AR2:426
items to transaction, AR2:203
list items, AR2:129
network protocols, AR2:251
oval shape, PDT: 187
rectangle shape, PDT: 187
rows to tables, AR2:222-223

transfer types, AR2: 173
see also Installing

ADDR_BOOK_ATTR structure,
AR2:320-321

ADDR_BOOK_ENTRY structure, AR2:322,
327

allocation of, AR2:328

ADDR_BOOK_QUERY_ATTR structure,
AR2:326-327

AddrBookStreetId, address book
identifier, AR2:321

Address book, AWG:40; AR2:241 ,
317-330

changing information in, AR2:328
closing, AR2:326
concepts, AR2:317
defined, AR2:317-318
entry .

adding, AR2:328
attribute identifiers, AR2:321
attributes, AR2:320-322
deleting, AR2:328
groups, AR2:322
organization, AR2:320
service addresses, AR2:322

GO, application, AR2:323-324
messages, AR2:324-325
msgSendServGetAddrDesc and,

AR2:332
opening, AR2:326
operation participants, AR2:318
organization, AR2:320-322
protocols, AR2:318-320
registering, AR2:329
searching, AR2:326-328
sendable services protocol uses,

AR2:331
system, AR2:329-330

deactivating, AR2:330
defined, AR2:318

theAddressBookMgr and, AR2:318
unregistering, AR2:329
using, AR2:325-328
writing, AR2:328-330

Address Book icon, UI:77

Address book manager protocol, AR2:320
fUnction, AR2:318-319

Address book protocol, AR2:319
fUnction, AR2:318

Address descriptors, AR2:331-332
getting, AR2:333

Addresses
code, PDT:88
data, PDT:88

Address List, AWG:13

Address window, AR2:332
creating, AR2:333
filling, AR2:333-334

Add structure; AWG:46--47

Adobe Type I font, PDT: 199-204
FEDIT support of, PDT: 180
fields, PDT:200
saving, PDT: 199-200
standard encoding to AFII mappings,

PDT:200-204

Adobe Type Manager, PDT:199

Advisory messages, AWG:57

AFII number, PDT:180
altering, PDT: 182
GO font array, PDT:207
Nimbus-Q array, PDT:205

Agents, resource, AR2:345

ai command, PDT:91

Alarm services, AR2: 103

Align commands (MiniNote Arrange
menu), UI:137

Aligning
constraints for, AR1:393
width and height dimensions,

AR1:393-394

Altering
hints, PDT: 191
winding direction, PDT: 188

Ancestor class, AWG:43~4
CLASS_NEW message argument and,

AWG:54
initializations and, AWG: 118-119
message handling and, AWG:44
messages, AWG:60
_NEW_ONLY structure and,

AWG:50-51
selfUIDs and, AWG:56
see also Classes

Ancestors, AR1:5-6
calls, AR1:36-37
CLASS_NEW_ONLY structure, AR1:47
confirming object, AR1:55
gestures and, UI:233
inheritance and, AR1:82
mark component, AR1:201
toolkit, AR1:367-370

ANM_CREATE_DOC structure, AR2:425

ANM_CREATE_SECT structure, AR2:424

ANM_DELETE_ALL structure, AR2:426

ANM_DELETE structure, AR2:426

ANM_GET _NOTEBOOK structure,
AR2:423~24

ANM_MOVE_COPY_DOC structure,
AR2:425~26

API
installation, PDT:20-21
Quick Help, PDT: 19
search and replace, PDT: 19

API Reference, PDT:21

APP_ACTNATE_CHILD structure, AR1:161

appAttrClass, AR2: 148

APP directory, AR2:384, 386
contents, AR2:386
-directory contents, AR2:386-387

APP _DIR_GET _BOOKMARK structure,
AR1:182

APP_DIR_GET_SET_ATTRS structure,
AR1:180

APP _DIR_ GET _SET _FlAGS structure,
AR1:180

APP_DIR_NEXT structure, AR1:182

APP _DIR_SEQ_TO_NAME structure,
AR1:183

APP _DIR_SET _BOOKMARK structure,
AR1:182, 183-184

APP_DIR_UPDATE_CLASS structure,
AR1:181

APP _DIR_UPDATE_NVM_CHILDREN
structure, AR1:181-182

APP _DIR_UPDATE_SEQUENCE, AR1: 181

APP_DIR_UPDATE_UID structure, AR1:181

APP _DIR_UPDATE_UUID structure,
AR1:181

APP_DIR_UUID_TO_NAME structure,
AR1:183

APP_EXECUTE structure, AR1:165-166

APP _GET_GLOBAL_SEQUENCE structure,
AR1:179

APP.lNI, AR2:387; PDT:44
in boot sequence, PDT:29
in boot-time install, PDT:52-53
description, PDT:28
service directory and, AR2:444

AppleTalk, AWG:8
protocol, AR2:301-302

changing size of ATP packets and,
AR2:302

name, AR2:302-304
options, AR2:301-302
zone, AR2:304

services, AR2:250

AppleTalk transport protocol (ATP),
AR2:253, 297

changing packet size, AR2:302

Application classes, AWG:22, 26; AR1:69,
82, 157-171

advanced messages, AR1:171
clsApp messages, ARl:157-161
clsHelloWorld, AWG:125
creating, AWG:103
defined, AR1 :67
document hierarchy messages,

AR1:161-163
document window messages, AR1: 163
efficiency, AR1:85
embedded documents, AR1:77
Empty Application, AWG:88
getting and setting, AR1:181
initialization routine, AR1:96, 97-99
instance of, AR1:67, 92
instances and, AWG:24
life cycle, AR1:95--':99

deinstalling application, AR1:99
installing application, AR1 :96-99

messages, AR1:157-161
received by, AR1:99

method tables and, AWG:99
observing system preferences, AR1: 170
PenPoint process and, AWG:104
processes, AR1:90-91
relationships of, AWG:29
sections and, AWG:34
standard application menus,

AR1:163-170
state diagram, AR1 :95
states, AR1 :96
well known, AWG: 1 04
see also Classes; clsApp

Application design. see Design, guidelines

Application development. see
Development

Application directories, AR1: 177;
AR2:391-395

accessories, AR2:393
attributes, AR1: 180-182

many, AR1:182-183
creating, AR2:391
files in, AR2:391-392
flags, AR1: 180
global data, AR2:394-395
global sequence number, AR1:179
handle, AR 1: 177

creating, AR1:179
destroying, AR1 : 179

help, AR2:393-394
stationary, AR2:392-393
see also Applications

Application directory handle class,
AR1:70, 177-184

counting embedded documents,
AR1:183

creating directory handle, AR1: 179
destroying directory handle, AR1: 179
directory attributes, AR1: 180-182

directory global sequence number,
AR1:179

documents name, AR1:183
setting a tab, AR1:183-184
using clsAppDir, AR1:177-178
see also clsAppDirHandle

Application distribution cassette, AR2:375

Application Framework, AWG:1; POT:15
application directories and, AWG:28
application instance and, AR1 :82
bitmaps and, AWG:171-172
classes, AR1:68-70

hierarchy, AR1:71
creating instances, AWG:103
defined, AWG:21; AR1:67
direction of, AWG:24
document activation and, AWG:24
document options, UI:44
document process and, AR1 :89-90
embedding and, UI: 152
Empty Application and, AWG:91
frames and, AR1:504-505
functions, PDT: 15
hierarchy, AWG:40
hot mode and, AWG:39
for housekeeping functions, AWG:21
interactions, A WG:26
layer, AWG:12-13

defined, AWG:6
messages, AWG:108; AR1:71-73
Notebook, AR1 :68

hierarchy and, AWG:30
User Interface, AR1:75

overview, AR1:68
pre-existing classes, AWG:20
printing and, AR1: 136
resource file, AWG:141
restoring documents and, AWG:36
in running application, AWG:20-21
SAMs and, AWG:33-34
saved documents and, AWG:36
standard menus, UI:192
turning a page and, AWG:36, 135

Application global data, AR2:394-395

Application icons, UI:73, 78, 216-222
for accessories, UI:217
bitmaps and, UI:217-218
design guidelines for, UI:219-222

bitmap relationships, UI:220
icon mask design, UI:221-221
no "3-D" style, UI:221
simplicity, UI:219
size, UI:219

dimensions and hot point for,
UI:217-219

for documents, UI:216-217
GO's conventions for, UI:216-217
using, to show state, UI:222

Application installation manager,
AR2:415-416

Application manager class, AR1:69,
145-150

activating application instance,
AR1:148

creating new document, AR 1: 148
deleting application instances, AR1: 149
installing new class, AR1:146-147
metrics, AR1:145-146

getting for class, AR1: 149
moving/ copying application instance,

AR1:148-149
observer messages, AR1:150
see also clsAppMgr

Application-modal note, AR1:487
system-modal note vs., AR1:490

Application monitor, AR1:151;
AR2:378, 380

checking dll-ids, AR2:40 1-402
DLL files and, AR2:400
getting metrics, AR1: 153
in installation, AR1:151-152
multiple volumes and, AR2:398
other functions for, AR1:152
for stationary, accessories, help,

AR1:152

Application monitor class, AR1:69,
151-155

concepts, AR1:151-152
messages, AR1:152-153

using, AR1:153-154
subclassing, AR 1: 155
see also clsAppMonitor

Application programming interfaces
(APIs)

above kernel layer, AWG:5
addresses, AWG:6
characteristics, AWG:5

Applications, AR1:28, 76; AR2:438
activating, AWG:107
architecture, UI:295
background, UI:159
before releasing, POT:6
bundled, UI:127-142
busy clock display and, UI:81
classes, AWG:30; AR1:86-87

container, AR1:185-188
code, AR1:92

activating document and, AR1:102
compiling and linking, AWG:66-67

Empty Application, AWG:92-94
components, AWG:23, 40, 149-150;

AR1:76-77,349
concepts, AR1:81-93
configurability of, UI:224
data, AWG:35; AR1:77-78

displaying, AR1:78
observing objects and, AR1:78
saving and restoring, AR1:77

data types for, UI:289
debugging, AWG:68
defined, AR1:67, 81

deinstallation, AR1:96-99
msgFree in, AR1:99

designing, AWG:59-61
for pen, UI:152

developing, AWG:59
strategy, AWG:64-66

development options, POT:5-7
dialog, AR1:493
directories, AWG:28, 29

embedded applications and,
AWG:35

.OLL and .0Le files, POT:53
document, AWG:37; UI:157-158
documenting, AWG:175
drivers/devices and, AR2:246
dynamic behavior of option sheets

and, UI:203
eliminating, POT:81
embedded, AR1:77, 195

creating, AR1:196
objects, UI:166

embedding, AWG:34-35
support and, UI:166

enhancements, AWG:163
environment, AWG:20-21

concepts, AR1:75-79
errors, AR1:494
executing, POT:54-55
frame, AR1:212
functionality, UI:223

basic guidelines, UI:224
dividing, UI:225-236

hierarchy, AWG:28-35
application data, AWG:35
defined, AWG:28
Desktop, AWG:33
embedded applications,

AWG:34-35
file system perspective, AR1:89
floating accessories, AWG:34
Notebook, AWG:33
page-level applications, AWG:33-34
screen perspective, AR1:88
sections, AWG:34

icons, POT:168
initializing, AWG:22-23
installable, AR2:386-387
installation, AR1 :96-99

AppMonitorMainO in, ARl:99
initialization routine, AR1 :97-99
main in, AR1:96-97

installer, AR1:96
installing, AWG:67, 105; UI:162-165;

AR2:377-378,415;
POT:50-53

explained, AWG:107
starting and, AWG:21 ><

i==,ARl,82 ! ~:=UI~ activating, AR1:148 _
copying, AR1:148-149
deleting, AR1: 149
moving, AR1:148-149

layer, AWG:13
defined, AWG:6

main routines, AWG:98
main window, ARl:504

inserting custom window as,
ARl:561-562

manager class, AWG:103-104
marking, ARl:118
menu bar, ARl:363
minimum actions of, AWG:25
modal, UI:253
monitors, PDT:21
moving and copying between, UI:289
msgAppClose and, AWG:36
msgAppTerminate and, AWG:36
multiple volumes and, AR2:398
name, AWG:93; ARl:163
non-document, UI: 159
objects, AWG:25-28; ARl:92

instance of, ARl:67
ports and, AR2:245
printing, ARI :302
process, AWG:24

active documents and, AWG:23
destroying, AWG:105
Notebook hierarchy and, AWG:32
processCount equals, 0; AWG:I07
starting, AWG:I05

publishing, A WG: 175
Quick Help for, UI:215
recovery, AWG:16
releasing, AWG:175
remote services and, AWG:8
resource file, PDT:169
root container, ARl:187
running, AWG:23-24
sample, PDT:12
shutting down, AWG:38-40
stamping, AWG:93-94
standard behavior, AWG:12
standard, menus, ARI :363
starting, AWG:21, 37-38
start-up, AWG:106
state, AWG:135; UI:222
stationary, UI:120; PDT:54
steps for creating, PDT:6-7
system, PDT:44

file, PDT:53
System Log, PDT:141-143
tab, ARl:182
terminating, AWG:38-40
title, ARl: 163
TkDemo, ARI :432-433
types of, UI: 159
upgrading, AR2:398
windows, AWG:29, 34
writers overview, ARl:71-73, 212-213
see also Application directory;

Application Framework;·
Application monitor

Applications page (Installed Software
section), UI:98

views, UI: 109
option menu, UI: 111

Application window
changing style of, ARl:196
closing, ARl:l96
metcies of, ARl:I96-197
opening, ARl: 196

Application window class, ARl: 195-197
see also clsApp Win

Application Writing Guide, PDT: 11-12

Apply button
clean and dirry controls and, UI:46-47
option sheets and, UI:44

AppMainO function, AWG:25, 106;
ARl:72

activating application and, A WG: 1 07
document activation and, ARl:102,

105

AppMain routine, ARI :97

APP_METRICS structure, ARl:161-162

APP_MGR_ACTIVATE structure, ARl:148

APP_MGR_CREATE structure, ARl:148

APP_MGR_DELETE structure, ARl:149

APP _MGR_METRICS structure,
ARl:146-147, 149

APP _MGR_MOVE_COPY structure,
ARl:148-149

APP_MGR_NEW structure, ARl:97

AppMonitorMainO function, AWG: 105,
107; ARl:72, 97, 151;
AR2:377-378

in installation, ARl:99

appProcess parameter, ARl:96

APP.RES, AWG:168
application message resource,

AWG:169
creating icons, AWG:172

APP _SET _PRIORITY structure, ARl: 171

APP _WIN_METRICS structure,
ARl:196-197

APP_WIN_NEW_ONLY structure, ARl:l96

Arc, ARl:271

Architecture
functionality, AWG:6
object-oriented, AWG:5

argc parameter, ARl:96

Argument data, ARl:14
modifying, ARl:17

Arguments, AWG:99

Argument structure, elements, AWG:50

argv parameter, ARl:96

Arrange menu (MiniNote), UI:137

Arrows & Drag Box scroll margins,
UI:263-264

Arrows, for scroll margin, UI:36

Arrows gesture family, UI:24

Arrow (Up and Down) gesture, UI:25
Double, UI:266
guidelines for, UI:240
MiniText, UI:133
for zooming, UI:266

ASCII, UI:289
metrics transfer, AR2: 175
text file creation, AR2: 180

Assembly code, viewing, PDT:78-79

Assertions, AWG:85

ASSERT macro, AWG:85; PDT: 134

Asynchronous message passing, PDT: 14

AT command, modem, AR2:286-287
set, AR2:290-293

ATI video card, PDT:49

At-Ieast-once-delivery, datagram, AR2:296

Atom identifier, AR2: 15

Atoms, AR2:37-38
defined, AR2:37
for nil string, AR2:37
predefined, AR2:38

ATP _OPTIONS structure, AR2:30 1-302

ATP subtask, PDT: 154

Attributes, AR2:7-9
address book entry, AR2:320-322

identifiers, AR2:321
arguments, AR2:16-18
changing, AR2:8, 19-20
character, AR2:8-9, 16-17
clearing, AR2:20
default, AR2:7
file system, AR2:55, 77

client defined, AR2:77-78
getting and setting, AR2:76-80
getting values, AR2:78
length of values, AR2:79
lists of, AR2:76-77
setting values, AR2:79
zero value, AR2:77

getting and setting, AR2:16-20
initializing, AR2: 19
iristallable item, AR2:412
label macros, AR2:77-78
local, AR2:7
modifying, AR2:19-20
node, AR2:54-55

client-defined, AR2:54
file-system, AR2:55
flags, AR2:79-80

paragraph, AR2:9, 17-18
value types, AR2:76

Audible feedback, UI:217 -218
default, UI:213
for minor errors, UI:213-214

Auto-answer mode, modem, AR2:284

Automatic layout (User Interface
Toolkit), AWG:10

Auto Power-Off Devices (Power
preferences), UI:96

Auto-selection, VI:283

Auto Shutdown (Power preferences),
UI:96,97

Auto shutdown preference, AR2:365

Auto Suspend (Power preferences),
UI:96,97

Auto suspend preference, AR2:364

. AutoZoom keyword, PDT:36
ZoomMargin and, PDT:40
ZoomResize and, PDT:40

Auxiliary notebook manager,
AR2:421-427

messages, AR2:423
generalized, AR2:423-424
specialized, AR2:424-426

Auxiliary notebooks, AR2:380, 421-422
back up considerations, AR2:422
concepts, AR2:421-422
creating, documents, AR2:425
creating, sections, AR2:424
deleting section/document, AR2:426
file system and, AR2:422
getting paths to, AR2:423-424
list of, AR2:422
moving/copying documents to,

AR2:425-426
opening, AR2:423
tags, AR2:421-422
see also Notebook

Background applications, UI:159

Background colors, AR1:274
graphic state element, AR1 :278
painting, AR1:376
palette colors, AR1:295
RGB color values, AR1:295

backgroundInk, AR1:376

Back menu, PDT: 173

Backslashes, in path names, AR2:66

Baseline alignment, AR1:387-388

Baselines, for icon bitmaps, UI:218

Basic Service, AWG:272

BASICSVC service, AR2:485-487
BASICSVC.H, AR2:485-487
defined,AR2:475
METHOD.TBL, AR2:485

Baud rate, setting, AR2:269

bc command, PDT:74

bd command, PDT:92

be command, PDT:92

Bell preference, AR2:365

Bezier curve, AR1:271; PDT:182
edit window and, PDT: 184
merging, PDT:186

Bezier dictionaries, PDT:210

B gesture, UI:27
in gesture mode, UI:259
in MiniNote, UI:142
in MiniText, UI: 134

bgNccommand, PDT:91

Binding, AR1:21O; AR2:247
to local transport address, AR2:301
to service, AR2:259

Bit manipulation, AWG:79

Bitmap, AWG:171-172; AR1:329-331
changing size of, PDT: 173
column major, PDT:195
consistency with outline data, PDT: 193
creating, AR1:330; PDT: 192-193
Custom Resource ID card,

PDT: 172-173
data, GO font, PDT:210
deleting, PDT:193
directory, GO font, PDT:207-208

fields, PDT:208
editing, PDT:192-195
editor application, AWG: 172
edit window, PDT:194
elements, PDT:168
exporting, PDT: 169-170

Exporting option card, PDT: 172
to home, PDT: 170
illustrated, PDT: 170

for icons, UI:217-218
small and large, UI:220

images, AR1:263
allocating, AR1:258
fonts and, ARl:314

importing, PDT: 168
messages, AR1 :329-330
modifying, AR1:330
notifications, AR1 :331
pictures, AR1:524-525
tags, AR1:330
using,AR1 :330

Bitmap editor, PDT: 167-173
bitmap elements, PDT:168
exporting bitmap, PDT:169-170
exporting to home, PDT: 170
illustrated, PDT: 167
importing bitmap, PDT: 168

·modes, PDT: 168
undo capabiliry, PDT:170-171
user interface, PDT: 170-173

Back menu, PDT: 173
Document menu, PDT:171
Edit menu, PDT:171
Ink menu, PDT: 173
Options menu, PDT: 172-173
Size menu, PDT: 173

uses, PDT: 167-168

Bitmap editor icon, VI:77, 216

Bitmap menu (FEDIT), PDT:192, 193
Edit Cell command, PDT:195
Edit command, PDT: 194

BITMAP_NEW structure, AR1:330

BitPad2, sample definition, PDT:62

BitPad2ASCII, sample definition, PDT:62

BkShelfPath keyword, PDT:37

bl command, PDT:73
datasheet, PDT:92

Block, AR2:7

Blocking protocol, AR2:168-169
deadlocks, AR2: 169
defined, AR2: 168

Bold buttons, UI:28, 177

Bold sryle, UI: 16

B001 application process, PDT:154

Bookshelf, AWG:5; VI:13-14
Accessories icon, AWG:95
disk-based, UI:13-14
icon option sheet and, UI:75
icons, UI:13, 74

dosed and open states of,
UI:221-222

list of, UI:76
illustrated, UI: 12
main, UI:13
reference buttons on, UI:20, 171
targeting policy, UI:233
view, UI:109

Layout sheet, UI:112

Boolean operators, table, AR2:225

BOOLEAN type,AWG:77

Boot
disks, services on, AR2:444
error messages, PDT:47
progress messages, AR2:431-432
sequence, AR2:429; PDT:29

symbols, AR2:429
subdirectory, PDT:28
swap, PDT:39
in tablet-like mode, PDT:41
volume, AR2:43; PDT:29

BOOT directory, AR2:384
structure, AR2:385

BOOT.DLC, PDT:42-43
in boot sequence, PDT:29
description, PDT:28
modifying, PDT:42

Booting, PDT:45-49
before, PDT:29
boot error messages, PDT:47
broken pen during, PDT:47-49
loading debug PENPOINT.OS, PDT:46
speeding up, PDT:52
what happens during, PDT:46-47

BootProgressMax keyword, PDT:37

Boot time, AWG:94
install, PDT:52-53

BORDE~BACKGROUND structure,
AR1:377

BORDER_NEW structure, AR1:373
styles, AR1:373-375

Border rectangle region, AR1:379

Borders, AR1:361; PDT:16
adjusting, AR1:505
button, UI: 177
for embedded documents, UI:19-20
geometry, AR1:379-380

outer offsets, AR1:380
subclassing clsBorder and, AR1 :380

toolkit ancestors and, AR1:370
see also Border windows

BORDER_STYLE structure, AR1:373

Border windows, AR1:371-380
bsUnitsLayout measurement, AR1:375
creating, AR1 :373-375
geometry, AR1:379-380
layout, AR1:378
messages for, AR1:371-373
painting, AR1:375-377
propagating/notifYing visuals and,

AR1:378
regions of, AR1 :379
resizing, dragging, topping, AR1:377
sample, AR1:371
visuals of, AR1:376
see also clsBorder

Bounding box, AR1:397
for drag feedback, UI:280

Bounding rectangle, PDT: 181
computation of, PDT:182
control points and, PDT: 182

Bounds, AR1 :232
accumulation, AR1 :270-271

defined, AR1 :269
client interface to layout, AR1:249
DC, AR1 :256-257
scribble, AR1 :607
setting, AR1:234

Boxed lists, UI:32
checklist vs., UI:182-183
illustrated, UI:32
multiple, UI: 184

choice, UI:32
modes, UI:248

palette line with, UI:39

Boxed pads, UI:50
buttons, UI:50
writing, UI:48

embedded, UI:49
pop-up, UI:48
using, UI:51

bp command, PDT:73
datasheet, PDT:93

event, PDT:130-131

Brackets gesture, UI:25
adjusting list selection with, UI:281
adjusting text selection with, UI:281
extending selection with, UI:280-281
family, UI:24 .
in gesture mode, UI:259
guidelines for, UI:238
hot point for, UI:231
MiniNote, UI:141
see also Gestures

break command, PDT:79-80
datasheet, PDT:93

Breakpoint, PDT:73-74
commands, PDT:85
context inside, PDT: 131
executing code at, PDT:79-80
profiles, PDT: 113, 115

dp command and, PDT:119
zp command and, PDT:121

setting with identifiers, PDT:76
for skipping execution, PDT:123-124

BREAK signal, AR2:272

Bring To command (table of contents
View menu), UI:86

Broken pen icon, PDT:47

Browser, AR2:124; PDT:19
changing, client, AR2: 144
class, AR2:137-145
concepts, AR2: 137-138
creating, AR2: 138

object, AR2: 140
defined, AR2:137
examples, AR2: 137
expanding and collapsing sections

with, AR2: 143
file export mechanism, AR2:147
file import mechanism, AR2:147
getting and setting, metrics,

AR2:143-144
integrating, into application, AR2: 138
menu bar, AR2: 138
menu messages, AR2: 145
navigating with, AR2: 144
notification messages, AR2: 145
reading and writing, state, AR2: 143
refreshing, data, AR2: 142
selection, AR2:140-141
table of contents and, AR2: 137-138
TOe, AR2: 148
user columns, AR2:145-146

BROWSE~CREATE_DOC structure,
AR2:141-142

BROWSER_METRICS structure, AR2: 144

BROWSER_NEW structure, AR2: 140

bsUnitsLayout units, AR1:375

Buffered data, AR2:265

Buffers
flushing, AR2:85

input and output, AR2:271
input, AR2:265

status, AR2:271
output, AR2:265

status, AR2:271

Buf field, AR1: 14

Built-in classes, AWG: 116

Built-in rules, AR1 :600-60 1
defined, AR1:600

Built-ins, DB, PDT:125-129
predefined types, PDT:125-126
runtime routines, PDT:128-129
useful values, PDT: 126
useful variables, PDT:127-128

Bundled applications, UI: 127-142

Busy clock, AR2: 193
delay and reference count, AR2: 194
display, UI:81

Busy manager, AR2:193-194; PDT:19
function, AR2: 124

Button definition, ARl:495

BUTTON_METRICS structure, ARl:423

BUTTON_NEW_ONLY structure, AR1:419

Buttons, UI:28-29; ARl:417-424; PDT:16
choice component, ARI :362
command, UI:178; ARl:495

defined, UI: 179
non-standard, UI: 179
standard modal, UI: 178-179
standard modeless, UI: 178

creating, ARl:354, 419-420, 421
many, ARl:422

customizing, UI:177-178
defaults, ARl:419
kinds of, AR1:418
labels for, UI:175

deactivating, UI: 175
wording, UI:210-211

manager, ARl:423
messages,ARl :417-418
non-command, UI: 179
notification, AR1 :420-421

advanced techniques, ARl:423-424
unwelcome, ARl:421

on boxed pads, UI:50
painting, ARI :422
preview messages, ARI :362
sample, AR1 :417
showDirty control, ARI :422
styles for, UI: 175-178

bold, UI: 177
half-outlined, UI: 177
outlined, UI: 176
raised, UI: 176
square, UI:176

styles of, ARl:418, 419-420
types of, UI:28-29
in user interface, UI: 151
value, AR1 :422

see also clsButton; Icons; Menu
buttons; Pop-up choices;
Reference buttons

BUTION_STYLE, AR1:419
styles, AR1:419-420

Button table, AR1:236

BYfEBUF_DATA structure, AR2:208

Byte buffer
data, AR2:207, 208
objects, AR2:207-209

concepts, AR2:207
creating, AR2:208
notification of observers, AR2:209
resetting, AR2:208-209

BYfEBUF_NEW_ONLY structure, AR2:208

Byte position
file handle, AR2:61
setting current, AR2: 135-136

Cached image, AR1:273-274, 299-301
creating, AR1:300
defined, AR1:299
drawing, AR1:300-301
hot spot, AR1:273, 300
image devices vs., AR1:301
invalidating, AR1:301
mask, AR1:300, 301
related classes, AR1:301

Caches, in running PenPoint, PDT:27

CALC application, PDT:68

CalcEngineEnterOperator
assembly code, PDT:78-79
source code, PDT:77-78

CaICompDBII, sample definition,
PDT:62

Calculator, AWG:261-262; UI:13

Callback function, AR1:273
sampled images and, AR1 :299

Call stack, viewing, PDT:74-75
frame numbers and, PDT:75

Cancel button
command, UI: 178-179
for progress notes, UI:211

Canvas, AR1:215

Capabilities, object, AR1:25-29
changing capability, AR1 :29
checking capability, AR1:29
creation capabilities, AR1 :28
creation notification, AR1 :28
flags, AR1:25
freeing capability, AR1:26
inheritance capability, AR1:27
mutation capability, AR1:28
ObjectCallO capability, AR1:26
ObjectSendO capability, AR1:26
observable capability, AR1:27

owner capability, AR1 :26
scavenging capability, AR1:27

Cap argument, AR1 :24
changing capabilities and, AR1:29
OBJECT_NEW _ structure, AR1 :47

Capitalization convention
in button labels, UI: 175
for messages, UI:210

Capital letter gestures, UI:27
collisions and, UI:233-234
hot point for, UI:231
see also Gesture accelerators

Capture command (Edit menu), PDT:171

Caret gesture, UI: 16~ 24·
for Create menu, UI:87
family, UI:23-24

summary, UI:235
in gesture mode, UI:258
guidelines for, UI:237
MiniNote, UI: 141
tab stops and, UI:132
see also Gestures

Caret-Tap gesture, UI:25
guidelines for, UI:239
MiniNote, UI:140
MiniText, UI:133
see also Gestures

Carrier state, modem, AR2:284

Cartesian grid, PDT: 181

Cast operator, PDT: 131

C code, executing, PDT:79
at breakpoint, PDT:79-80
at DB prompt, PDT:79
see also C language

Cells
altering dimensions of, PDT: 195
reference button labels for, UI: 172

Center command (MiniNote Arrange
menu), UI:137

C gesture, UI:27, 56
Changing capability, AR1:29

CHAR8, AR2: 111

CHAR16, AR2:111

CHAR, AR2: 111

Character
adding, PDT: 182
box height preference, AR2:366
box width preference, AR2:366
composition, PDT: 180-181

character placement, PDT: 181-182
control point placement, PDT:182
font units, PDT:181

data, Nimbus-Q, PDT:205-206
file positions, PDT:205

deleting, PDT: 182
dimension alteration, PDT: 195
directory, GO font, PDT:208

entry structure, PDT:208

hints, PDT: 190
lists template, UI:242
metrics, AR1:31O
page, UI:46
placement, PDT: 181-182
positions, AR1:416
recognition engine, UI:234
selection window, PDT:182
types, AWG:62

string constants and, AWG:62-63
widths, AR1:309-310
see also Characters, 16-bit; Character

shapes

Character menu (FEDIT), PDT:179, 182
adding and deleting characters and,

PDT:182
in changing setwidth, PDT:188
for character selection window,

PDT: 182
Show Sample command, PDT: 198

Character option sheet (MiniText),
UI:131

Characters
16-bit, AR2: 110-114
attributes of, AR2:8-9, 16-17
deleting, AR2: 11
font masks, AR2: 17
getting range of, AR2: 14
getting single, AR2:14
inserting, AR2: 12
reading, in text data objects, AR2: 14
scanning ranges of, AR2:15-16
types of, AR2: 111

Character shapes, PDT: 180-181
data blocks, PDT:209

decoding, PDT:210
data, GO font, PDT:209-21O
definition of, PDT: 180-181
editing, PDT:182-190

adding oval shape, PDT: 187
adding rectangular shape, PDT: 187
changing setwidth, PDT:188
deleting segment, PDT: 186
deleting shape, PDT: 188
merging shapes, PDT: 189-190
mitosis, PDT: 186
moving control points,

PDT: 185-186
operator icons, PDT:185
outline editing window,

PDT: 183-184
shape mutation, PDT: 186
shape transformation,

PDT: 187-188
viewing/altering winding direction,

PDT:188
View Preference, PDT: 184-185

see also Character

CHAR types, AWG:62-63, 77
versioning data and, A WG:63

Checkboxes, UI:32
multiple, UI: 184-185
for scrolling multiple checklists,

UI:187
Check gesture, UI:16, 24

~onnected Disks page, UI: 115
In gesture mode, UI:258
guidelines for, UI:237
handling, AR1: 169-170
hot point for, UI:231
MiniNote, UI:135, 141
on document title, UI:89
option sheets response to, UI:203
over icons, UI:75
processing, AR1:517-521

card client activity, AR1:519-520
dimmed controls, AR1:521
mixed attributes, AR1 :520
multiple card types, AR1:520
multiple option sheets, AR1:521
nested components, AR1:521
run-through, AR1 :517-519
selection"interaction, AR1:521

response to, UI:46
see also Gestures

Checking capability, AR1:29

Checklists, AWG:68; UI:29
alternative

boxed lists, UI:32
toggle switch, UI:30

boxed lists vs., UI:182-183
design, UI:295-296
with fields, UI:186
menus with, UI:41-42
multiple, UI:31, 184

comparison with single, UI:31
scrolling, UI: 187

of non-essential items, AWG:69
pop-up, UI:30

scrolling, UI:196
of required interactions, AWG:68-69
scrolling, UI:l96

Checkmark, UI:182
gesture mode picture, UI:248
in zero or one style, UI:185

Checkpoint command (Document
menu), UI:57, 193

Checks gesture family, UI:24
summary, UI:235
see also Check gesture; Check-Tap

gesture

Check-Tap gesture, UI:25
guidelines for, UI:239

Child windows, AR1:216
altering, AR1 :246
labels and, AR1:415-416
layout, AR1:415-416
painting, AR1:416
toolkit tables, creating, AR1:434

CHKDSK, PDT:27

ChkO macros, ARl :24

Choice, AR1:427, 442-444
component buttons, AR1 :362
creating, AR1:352-353, 443
management, AR1:439-440

selection, AR1:440
manager, AR1:443
messages, ARI :443
notification, ARl:443
value, ARI :443-444

CHOICE_NEW structure, AR1 :443, 444

Chord figure, AR1:272

Circle-Flick-Down gesture, UI:25

Circle-Flick gesture (Up and Down),
UI:133

Circle-Flick-Up gesture, UI:25

Circle gesture, UI:16, 24
editing pads and, UI:189
family, UI:24, 235
gesture mode and, UI:257, 258, 259
guidelines for, UI:237
hot point for, UI:231-232
MiniNote gesture mode, UI: 135,

141-142
MiniNote ink mode, UI:135
MiniText, UI:133
see also Gestures

Circle-Line gesture, UI:25
gesture mode and, UI:257, 259
guidelines for, UI:239

Circle-Tap gesture, UI:25
gesture mode and, UI:257, 259
guidelines for, UI:239

CWignO macro, ARl:393

C language, PDT:6, 7
code file, AR1:31
compiler

portability, AWG:76
unused parameters and, AWG: 11 0

"for defining resources, AR2:355-357
development options, PDT:5
function calls, AWG:67
programming, AWG:19
reference books, PDT:83
runtime, AWG:7
run-time library, PDT:18
source, AWG:67

code, AWG:98
see also C code; C code, executing

Class
browser, AWG:118
counter, AWG:138
creation, AWG:I03-104
hierarchy, AWG:44

looking up, AWG:119
info table, AWG:55
names, AWG:71 , 79

UID, AWG: 1 02-103
value, AR1:55

Classes, AWG:20, 41; AR1:5
Adder, AWG:261
application, AR1:82, 86-87

clsAppMgr and, AR1:85
container, AR1:185-188
inheritance of, AR1 :86
initialization routine, ARl:96,

97-99
life cycle of, AR1:95-99
processes of, AR1:90-91
state diagram, AR1 :95
states of, ARl:96
summary, AR1:87

Application Framework, AR1:68-70
hierarchy, AR1:71

applications and, AWG:24
mix of, AWG:30

Basic Service, A WG:272
built-in, AWG:116
Calculator, AWG:262
class info table and, AWG:55
class's, getting, AR1:55 "
Clock, AWG:263-264
code sharing, instead of, AWG:43-45
compiling, AR1 :47
components, AWG:66; AR1:76
Counter Application, AWG:I96
creating, AWG:53-58; ARl:6, 31-48

ancestor calls and; AR1:36-37
design considerations, AR1:33
header file and, AR1 :36
installing and, ARl:47-48
instance data and, AR1:34-35
methods for, AR1:37-41
method table and, AR1 :41-46
objects and, AR1:34
overview, AR1:31-33
reasons for, AR1:31
timing of, AWG:54

data structures and, AWG:43
defined, AR1:5
defining, AWG:125
design guidelines and, AWG:16
designing, AWG:60
drawing contexts, AWG:128
Empty Application, AWG: 177
extending existing, AWG:44
file system, AR2:62

subclassing, AR2:67
getting information about, AR1:54-56
handwriting

capture, AR1:551
translation, AR1:552-553

Hello World (custom window),
AWG:187

Hello World (Toolkit), AWG:181
implementation of, ARl:32
Inputapp, AWG:270
inst;tllation, AR2:379-380

Installer and, AWG:22
installing, AR 1 :47-48

new, AR1:146-147
summary of, AR1:33

instance data of, AWG:65
instances and, AWG:48
keys and, AR1:24
layout, AR1:381-398; PDT:16
learning about, AWG: 118
linking, AR1:47
manager, AR1:423, 439-440
mask, AR2:415-416
message arguments for, AWG:54-55
messages, AWG:44

Class Manager and, A WG:99
defining set of, AWG:55
overriding, AWG:44

metaclasses, AR1 :84-85
method tables, AWG:55; AR1:119

identifying, AWG:56
MIL Service, AWG:273
_NEW structure, AWG:49-51
Notepaper App, AWG:265
object

confirming, AR1:54
getting, AR1:55

open service object, AR2:441
organizing into program units,

AWG:61
Paint, A WG:266
parts of, AR1:31-32
predefined, AR1:83

with clsAppMgr, AR1:85
public, AWG:175
registering, AWG:175
return values and, AR1:14
root, PDT: 14
service, AR2:255-264, 439-441

installation, AR2:441
service manager, AR2:440
sharing, AWG: 174
simple, AR1:82-84
sources for, AWG:61
subclassing, AWG:5
Template Application, AWG:251
Test Service, AWG:272-273
Text subsystem, AR2:7
that respond to search messages,

AR2:198
Tic-Tac-Toe, AWG:149-150, 205
Toolkit Demo, A WG:268
VI Toolkit, AWG:18, 116-117;

AR1:357-360
inheriting from clsControl,

AR1:359
kinds of, AR1:361
not inheriting from clsControl,

AR1:358
outline of, AR1:360

utility, PDT: 19
Write rap, AWG:271
writing, that can be searched, AR2: 196

see also specific classes and types of classes

Class implementation C files, AWG:109

CLASS_INFO array, AR1:44-45
defined, AR1 :42
entry fields, AR1:45

Class inheritance, PDT: 14

Class initialization routine, AR1:47-48

Class Manager, AWG:7, 41-58;
PDT:13-14

capabilities and, AR1 :25-29
class and object use, AWG:20
classes, AWG:43-45

creating, AWG:53-58
ClsSymbolslnit, A WG: 162
code, A WG:42
concepts, AR1 :9-29
constants, AWG:71-72
conversion functions, A WG: 163
creating new objects and, AR1: 15-18
data structures, AWG:48-49
defined, PDT: 13
document process and, AR1 :90
features supported by, PDT: 14
handling message status and,

AR1:18-19
identifiers, AR1 :9-13
instance data, AWG:132, 140; AR1:34
macros and, AWG:82
memory protection and, AR1:34
message handlers and, AWG:99, 109
messages, AWG:42-43

sending, A WG:45-48
message-sending macros, AR1:23-24
method entry points and, AR1:37
method invocation, AR1:35
method table, AWG:47, 49; AR1:41-42

file, AWG:56
msgDestroy, AWG:109
msgDump, AWG:161
msgRestore, AWG:142
objects, AWG:41-42

creating, AWG:48-53
pointer, AWG:47

observable objects and, AR1:78
overview, AR1:6
parameters for function, AWG:56
passing messages with, AR1:33
repaint process and, AR1:242-243
returned values and, AWG:11O
scavenging and, AR1:60
sending messages, AR1: 13-15

other ways for, AR1:19-22
symbolic names and, A WG: 159
UID conversion, AWG: 111
use of, AWG:76
using keys and, AR1:24-25

CLASS_NEW_ONLY structure, AR1:47-48,
146

contents, AR1:47-48

CLASS_NEW structure, AR1:47

Clear command (MiniNote Edit menu),
UI:136

ClExtendO macro, AR1:393

Client, AWG:42
clsCntr and, AWG:138-139
in creating object, A WG:49
defined, AWG:42
in initializing_NEW structure, AWG:52
object communication, AWG: 111
window, AWG:120

one, per frame, AWG:122
see also Code

Client-defined
attributes, AR2:54, 77-78
transfer protocols, AR2: 170

Client window, AR1:92
closing document and, AR1:109
creating, for application frame,

AR1:212-213
document termination and, AR1:112
frame layout and, AR1:501
positioning scroll window, AR1:461

Clipboard. see Windows clipboard

Clipping, AR1:219-221, 235
children, AR1 :221

unclipped, AR1:236
disadvantage of, AR1:220
local, AR1:269, 270
messages, AR1:283
on image, AR1:219
overriding, AR1:220
rectangles, AR1 :338
region, AR1:219-220

defined, AR1:235
sharing parent's, AR1:221
window, AR1 :220

siblings, AR1:221
window, AR1:236

Clock, AWG:263-264; UI:13
busy, UI:81
icon, UI:77

Close box, AR1:507

Closed figures, AR1:271-272
drawing, AR1:294
messages, AR1:283-284

Closed icon, UI:74, 221-222

Closing
address book, AR2:326
application window, AR1:196
documents, AR1:109-110
files, AWG:145; AR2:46, 74-75

sample code, AR2:46
parallel port, AR2:277
serial port, AR2:268
service, AR2:262-263
socket handle, AR2:299
see also Opening

clsABMgr, messages, AR2:325

clsAddrBookApplication, AR2:320

clsAddressBook, AR2:319

clsAddressBookApplication, AR2:317
messages, AR2:324-325

clsApp, AWG:16, 26; AR1:6, 31, 69;
AR2:148,438

Application Framework messages,
AR1:71

application instances and, AWG:120
default behavior, ARl:166
descendant class of, A WG:26
document activation and, ARl:105,

106
document object and, ARI :92
Empty Application, AWG:88
header file, AR 1: 160-161
initialization of, AWG:97
menu button, ARl:163-164

tags and, AR1:144
message handling and, A WG: 1 08
messages, ARl:157-161

advanced, ARl:171
Application Framework, AR1:161
class, AR1:157
document attributes, AR1:158
document hierarchy, AR1: 158,

161-163
document life cycle, AR1:157-158
document window, AR1:159, 163
observer, AR1:160
printing, AR1:160
standard application menu,

AR1:159-160, 163-170
msgAppAbout, AR1:168
msgAppActivate, AR1: 113
msgAppChild, AWG:107
msgAppClose, AR1:73
msgAppCopySel, AR1: 168
msgAppInit, AR1:72
msgAppMoveSel, ARl:168
msgAppPrint, AR1: 167
msgAppPrintSetup, AR1: 167
msgAppRevert, AR1: 168
msgAppSave, AR1: 111
msgAppSearch, AR1:168
msgAppSend, AR1:167
msgAppSpell, AR1:167-168
msgFree and, AR1:110-111
msgInit and, AR1:72, 104
msgResReadObject and, AR1: 113-114
msgRestore and, ARl:73, 113
msgSave and, AR1:73, 112
option sheets for printing and,

AR1:138
overview, AR1:86
in removing frame decorations,

AR1:140-141
in requesting move or copy, AR1:120
saving info and, AWG:35
search and replace and, AR2:195, 196
standard application menus and,

AR1:504-505

turning a page and, AWG:135
window appearance and, AWG:121
see also Application class

clsAppdir, ARl:I77; AR2:67
messages, AR1:178
using, AR1:177-178
see also Application directory handle

class

clsAppDirHandle, AR1:70
see also Application directory handle

class

clsAppInstallMgr, AR2:405, 415
instance of, AR2:406
messages, AR2:415

clsAppMask, AR2:416

clsAppMgr, AWG:I03-104; AR1:69
application classes and, AR1:87
application placement and, AWG:104
function of, AR1:86
initialization routine and, AR1:97-99
instance of, ARl:82
messages, AR1:145, 146
metrics and, AR1:145
msgFree routine, AR1:99
predefined classes with, AR1:85
see also Application manager class

clsAppMonitor, AWG:107; AR1:69, 151;
AR2:379

for loading and unloading help,
AR1:154

for loading and unloading stationary,
AR1:153-154

messages, AR1:152-153
descendent modified, AR1:153
handling, AR1:155
instance, AR1:152-153
using, AR1:153-154

misc directory and, ARl:154
monitor installation and,

AR1:151-152
overriding default behavior, AR1: 152
subclass, A WG: 1 07
subclassing, ARl:155
see also Application monitor class

clsAppWin, AR1:118
messages, AR1:195

using, AR1:195-197
see also Application window class

clsAuxNotebookMgr, AR2:379, 380
messages, AR2:423

stationary menu, AR2:426-427

clsBasicService, AWG:272

clsBitmap, ARl:301, 329, 525
messages, AR1:329-330

notification, AR1 :331

clsBorder, AWG:116; AR1:361, 370
custom backgrounds and, AR1:377
descendants and colors and, AR1:376
flags, AR1:373-375

frames and, AR1:501-502
label classes and, AR1:413
messages, AR1:371-373

attribute, ARl:371-372
border geometry, AR1:372
class, AR1:371
rendering, AR1:372
subclass responsibility, AR1:373

painting
background, ARl:376
border, AR1:375
foreground, AR1:376

subclassing, AR1:380
see also Borders; Border windows

clsBrowser, AR2:137
creating instance of, AR2:137
function, AR2:137
messages, AR2: 138-140

for changing displayed
information, AR2: 142

for changing sort order, AR2: 142
class, AR2: 138
instance, AR2: 13 8-140
menu, AR2:145
notification, AR2: 145

user columns and, AR2:145-146
using, AR2:138-144

clsButton, ARl:352, 354
controls support, ARI :419
messages, AR1:417-418
msgBorderGetForegroundRGB and,

AR1:422
msgControlAcceptPreview and,

ARl:400
previewing messages, AR1:423

response to, ARl:424
see also Buttons

clsByteBuf, AR2:124, 207; PDT:19
messages, AR2:208
notification of observers and, AR2:209
resetting byte buffer object and,

AR2:209

clsCalcApp, AR1:86

clsChoice, ARl:352-353, 442
choice management and, ARl:439,

443
messages, ARl:443
notification, ARI :443
value, ARl:444

clsChoiceMgr, AR1:439
choice value and, ARI :444
messages, ARl:440

clsClass, AWG:48, 49,53-54; ARl:5, 6
application classes and, ARl:87

initialization routine, ARl :98-99
classes relationship to, AR1:82-84
class installation and, AR1:33, 47-48
metaclass and, ARl:85
purpose of, ARl:82
in system process, ARl:82-84

clsClockApp, AWG:264

clsCloseBox, AR1:507

clsCntr, AWG:135
getting and setting values,

AWG:139-140
instance data, AWG:138-139
method table for, AWG:138
object, AWG:136

clsCntrApp, AWG:136
instance data, AWG:142-143
label and, AWG:136
memory-mapped files and, A WG: 143
menu creation, AWG:146
method table for, AWG:137-138
msgSave, AWG:141

clsCodelnstallMgr, AR2:379, 414
in installing applications or services,

AR2:415
messages, AR2:415

clsCommandBar, AR1 :508; AR2: 138

clsContainerApp, AR1:185, 186

clsControl, AR1 :399
button notification and, AR1:420
control enable and, AR1 :404
dirty controls and, AR1 :403
in filing controls, AR1:399
gesture handling and, AR1 :369
label notification and, AR1 :414
message dispatching and,

AR1 :399-400
messages, AR1 :40 1-402
msgGWinGesture and, AR1:408
previewing and, AR1:406-407
subclasses values of, AR1:403
VI Toolkit classes inheriting from,

AR1:359
VI Toolkit classes not inheriting

from, AR1:358
xgs1Tap gesture and, AR1:408
see also Controls

clsCounter, AWG:136; AR1:509
instance data and, AWG:139

clsCustomLayout, AWG:122; AR1:196,
353-354

aligning edges and, AR1:393
clsFrame and, AR1:389
function, AR1:361, 381
layout constraints, AR1 :392

specifYing, AR1:390-391
layout loop and, AR1 :397
layout of adjacent windows by,

AR1:394
messages, AR1 :390
shrink-wrap and, AR1:395
window layout and, AR1:382
see also Custom layout

clsDateField, AR1:486

clsDirHandle, AR2:58
messages, AR2:64

clsDrwCtx, AR1:211
storing graphic states and, AR1 :277

clsEmbeddedWin, AWG:155; AR1:69,
117; AR2:157

clsApp Win comparison, AR1: 118
in creating embedded window,

AR1:190
default behavior, AR1: 118
descendants of, AR1:118
getting exact pen location and,

AR1:123
handles selection messages, AR2:161
identifYing selection and, AR 1: 120
inheriting from, AR1: 118
message intercepts, AR1: 127
messages, AR1:118-119, 189
in move and copy operations,

AR1:191-192
protocol, AR1:121

move and copy, AR1:119
Tic-Tac-Toe application and, AR1:123
translations, AR1: 119
VI Toolkit and, AR1:370
using, AR1:189-193
see also Embedded window class

clsEmptyApp,'AWG:99, 177
message handling and, AWG: 107

ClsEmptyAppInit, AWG:103
code sample, A WG: 108

clsExport, AR2: 150
messages, AR2:152

clsField, AWG:123; AR1:356, 475
messages, AR1:476-477

clsFileHandle, AR2:58
clsStream and, AR2: 134
in creating resource file handle,

AR2:348
messages, AR2:64

clsFileSystem, AR1:1O; AR2:58, 124;
PDT:19

messages, AR2:62-63

clsFixedField, AR1 :486

clsFontlnstallMgr, AR1:441; AR2:378,
380,405

functions, AR2:417
instance of, AR2:406
messages, AR2:417

clsFontListBox, AR1:463, 473

clsFoo, AWG:251

clsFrame, AWG: 121; AR1: 112
creating close box and, AR1:507
filing state and, AR1:503
frame layout and, AR1:501
messages, AR1:499
modifYing frame and, AR1:500
page number creation and, AR1:509
shrink-wrap and, AR1 :395

tab bars and, AR1:508
see also Frames

clsGotoButton, AR1:118

clsGrabBox, AR1:528
messages, AR1:529

clsGWin, AWG:156, 269-270;
AR1:368-370, 552, 617

clsScribble object, AR1 :617
help gesture and, AWG:166; AR1:370
help ID field, AR1:617
message previewing and, AR1 :407
messages, AR 1 :617-618
Quick Help, AR2: 181-182

messages and, AR2: 187
xgsQuestion gesture and, AR1:408
see also Gesture windows

clsHelloWin, AWG:125; AR1:238
classes used, AWG:187
DC creation, AWG:130, 131
DC state, AWG:131
drawing and, AWG:133
enhancements, AWG:133
highlights, AWG:127-128
instance data, AWG:131-132

accessing, AWG:132
method table for, AWG:125, 127
painting and, AWG:129
structure definition, AWG:130

ClsHello WinInit, AWG: 130

clsHello World, AWG: 120, 125
classes used, AWG:181, 187
highlights, AWG:127
method table for, AWG:125, 127, 181

clsHWXInstallMgr, AR2:378

clsIcon
bitmap picture and, AR1:524-525
messages, AR1:523
painting and, AR1 :525
pixelmap picture and, AR1:525
see also Icons

clsImgDev, AR1:21O, 255
creating imaging device and, AR1:256
landscape and portrait mode and,

AR1:262
memory allocation and, AR1:258

clsImport, AR2: 150
messages, AR2: 150

clsINBXService, AR2:305
default behaviors, AR2:312
110 protocol, AR2:313
messages, AR2:315

clsIniFileHandler, AR2:379

clsInput, AR1:567

clsInputApp, AWG:270; AR1:561

clsInstallMgr, AR2:258, 375, 379
advanced topics, AR2:414
controlling items and, AR2:406-407
installed item database and, AR2:406

instance of, AR2:376, 406
messages, AR2:405

class, AR2:409
instance, AR2:409-41 0
notification, AR2:408
subclass, AR2:410
using, AR2:409-413

observing installation mangers and,
AR2:407

semaphore use, AR2:414
subclasses of, AR2:405

clsIntegerField, AWG:136; AR1:486

. clsInWin, AWG:269, 270; AR1:560

clsIOBXService, AR2:305
handling input/output and, AR2:312
messages, AR2:316

clsIP, AWG:269-270; AR1:552
clsSPaper general facility, AR1:590
messages, AR1:585-586
using, AR1:585-588

creating insertion pad,
AR1:586-587

deleting insertion pad, AR1 :587
displaying insertion pad, AR1:587
translator object, AR1:587-588
XList data, AR1:588

clsLabel, AWG:89; AR1:400
child windows and, AR1:415
Clock and, AWG:264
decoration drawing and, AR1:413
dirty controls and, AR1 :403
field support and, AR1 :416
function, AR1:409
Hello World {toolkit} and, AWG:117,

181
hierarchy, AWG:119
icon layout and, AR1:525
inherited classes from, AWG:122
messages, AR1:410
msgNewarguments for,

AWG:118-119
notification, AR1 :414
painting and, AR1:415
style settings, AWG:119
see also Labels

clsList, AWG:45; AR1 :83-84; AR2: 127;
PDT: 19

function, AR2: 124
header file, AWG:45
messages, AR2: 128

functions, AR2: 127
method table, AWG:57-58
in UID.H, AWG:53

clsListBox, AR1 :463
entries and, AR1:465-466
gestures and, AR1:468
messages, AR1:449, 463-464
painting and, AR1:468-469
scrolling and, AR1:466
see also List bpxes

clsManager, AR1 :439

clsMark, AR1:69, 129; AR2:196
embedded window marks and,

AR1:118
instance {mark}, AR1:129
link messages, AR1:134
messages

class, AR1:199
holders send to marks, AR1:199
marks sent to components,

AR1:199-200
messages sent to components,

AR1:200
sent internally, AR1 :200

protocol, AR1:133
see also Marks class

clsMenu, AR1:5, 445
creating menus and, AR1:447-448
displaying menu and, AR1 :448
messages, AR1:447
see also Menus

clsMenuButton, AR1 :363, 445
messages, AR1 :445

CLSMGR.H, AWG:109; PDT:128

clsMILAsyncSIODevice, AR2:265
concurrency and, AR2:266
messages, AR2:267
structures, AR2:265

clsMilSvc, AR2:449

clsModalFilter, AR1:488

clsModem, AR2:279
API, AR2:281
bypassing, AR2:290
commands for establishing

connection, AR2:287
creating, object, AR2:282-283
messages, AR2:281-282
waiting for connection and, AR2:289

cl&MoveCopyIcon, AR1:125

clsMyView, AR1:517-519

clsNBApp, AR1:186-187

clsNote, AWG:168; AR1:488
argument structure, AR1:15-16
creating new instance of, AR1: 18
fiiter, AR1:490-491
label creation, AR1:489
message handling status and, AR1:18
messages, AR1:488
painting and, AR1 :492
StdMsg customization, AWG:171
see also Notes

clsNotelconWin, AWG:264

clsNotePaper, AR2:124, 229; PDT:19
coordinate system, AR2:229
messages, AR2:231
metrics, AR2:230
view, AR2:229

clsNotePaperApp, AWG:265

clsNPData,AR2: 124, 229
messages, AR2:233-234
note paper data and, AR2:232

clsNPltem, AR2:124, 229
instances, AR2:234
messages, AR2:234-235
note paper data and, AR2:232

clsNPScribbleltem, AR2:234

clsNPTextltem, AR2:234

ClsNum, AWG:156

clsObject, AWG:51; AR1:5-6
application classes and, AR1:87
clsClass and, AR1:82
clsView and, AR1:174
data structure and, AWG:49
instance of, AWG:28
method tables and, AR1 :42
msgCopy and, AR1:49-50
msgFree and, AR1:59
msgFreeOK and, AR1:58
object/ class information messages and,

AR1:54
saving/restoring data and, AR1:77
savinglrestoring instance data and,

AR1:35
in system process, AR1 :82-84
UID and, AWG:52
see also Objects

ClsObjectToString, AWG: 163

dsOBXService, AR2:305
default behaviors, AR2:31 0
existing Out box services and, AR2:311
messages, AR2:31O, 314

Out box document response to,
AR2:31O

writing own Out box service and,
AR2:310

clsOpenServiceObject, AR2:441 , 450, 452
clsService and, AR2:471
function, AR2:471
subclassing, AR2:471-472

clsOption, AR1 :508, 511
card destruction and, AR1:516
command sheets and, AR1 :522
indicating mixed attributes and,

AR1:520 '
messages, AR1:512-513

clsOptionTable, AR1:521

clsPageNum, AWG:136; ARl:509

clsParallelPort, AR2:275
messages, AR2:276

. structures, AR2:275

clsPicSeg, ARl:270, 279, 317
grafics and, AR1:319-320
graphics applications and,

ARl:323-326
hit testing and, ARl:325
messages, AR1:317-318

drawing, AR1:319

text attributes, ARl:321
see also Picture segment class

clsPixDev, ARI :210, 266

clsPopupChoice, ARl:450
messages, ARl:450, 451

clsPreferences, AR2:361

clsPrint, ARl: 140

clsPrLayour, ARl:139

clsProgressBar, ARI :531
messages, ARl:535

inherited, ARl:540
metrics, ARl:532
see also Progress bar

clsQuickHelp, AR2: 182
messages, AR2: 187

using, AR2:187-188

clsResFile, AWG:145; ARl:70; AR2:67
messages, AR2:347-348
msgNew and, ARl:111, 113
saving and restoring data, ARl:77
using, AR2:347-354

clsResList, AR2:345
in creating resource list, AR2:346

clsRootContainerApp, ARl:185, 186
concepts, ARl:187
messages, ARl: 187

clsScribble, ARl:552, 607
messages, ARl:608

clsScrollbar, ARI :453

clsScrollWin, ARl:457
creating scrollwin and, ARl:458
messages, ARl:458
option card layout and, ARl:515
scrollwin layout and, ARl:460-461

clsSectApp, AWG:34

clsSelChoiceMgr, ARl:439
messages, ARl:440

clsSelection, ARl:128; AR2:155
instance, AR2: 155
message categories, AR2: 156
messages, AR2:157-158

from clients to
theSelectionManager,
AR2:158-159

clsSendableService, AR2:319, 331

clsService, AR2:255
handling msgNewDefaults, AR2:457
handling of msgNew, AR2:457
messages

change ownership protocol,
AR2:467-469

information, AR2:459
notification, AR2:461-462
responsibility, AR2:469-470

msgSvcClassLoadlnstance and,
AR2:459

msgSvcOpenRequested and, AR2:463

object-oriented architecture and,
AR2:449

service instances and, AR2:439-440
service manager messages and,

AR2:459

clsServiceInstallMgr, AR2:40 5, 416, 441
instance of, AR2:406
messages, AR2:416

clsServiceMgr, AR2:258, 260
concepts, AR2:440
messages, AR2:260
opening and closing service and,

AR2:262

clsShadow, ARl:509

clsSio, AR2:124, 280; PDT:19

clsSPaper, ARl:552, 589-596
creating subclass, ARl:593

instance of, ARl:593-594
facilities, ARl:590-592

examples, ARl:591-592
functions, ARl:589
input flags, ARl:594
messages, ARl:589-590
parsing XList data, ARl:592
rendering translated text, ARl:592
subclassing, ARl:592-593
subclass instance, ARl:593-594
translator, ARl:595-596

clsSrollWin, ARl:243

clsStream, AR2:133; PDT:19
function, AR2:124
messages, AR2:133

services and, AR2:470
writing agents and, AR2:354

stream transfers and, AR2: 168
sub classing, AR2: 133

clsString, AR2:124, 211; PDT:19
messages, AR2:212
object, AR2:211

clsStringListBox, ARI :463, 470
destroying button window and,

ARl:472
messages, ARl:470
painting and, ARl:473
providing entries and, ARl:471

clsSvcManager, AR2:459

ClsSymbolsInit, AWG:159, 162

clsSysDc, ARl:285

clsSysDrwCtx, ARl:21O-211, 235, 267
colors and, ARl:295
in coordinate system transformations,

ARl:270
drawing context features and, ARI :269
fill areas and, ARl:292
hit detection and, ARl:270
messages, ARl:281-284

drawing, ARl:319
picture segments and, ARl:319
raster operation and, ARl:292-293

sampled images and, ARI :272
in sending window messages, ARl:289
see also Drawing context (DC)

clsSystem, AR2:429
messages, AR2:431
paths for file system constants,

AR2:430

clsTabBar, ARl:223, 508
subclasses of clsTkTable and, ARl:442

clsTabButton, ARl:220, 221

clsTable, AR2:213; PDT:19
creating table object and, AR2:216
data files and, AR2:214
function, AR2: 124
library support routines, AR2:213
messages, AR2:217-218

information, AR2:226
requesting new position from,

AR2:215
semaphore and, AR2:217

clsTableLayout, AWG:122; ARl:353, 381
Calc's positioning of child window

using, ARI :388
control enable and, ARI :450
function, ARl:361, 383
layout loop and, ARl:397
messages, ARl:384
table window constraints,

ARl:386-387
toolkit table buttons and, ARl:425
window layout and, ARl:382
see also Table layout

clsTemplan':App, AWG:251

clsTestOpenObject, AR2:450

ClsTestOpenObjectlnit routine,
AR2:451,452

ClsTestServiceInit routine, AR2:451

clsTestService method table, AR2:457

clsTestSvc, AR2:449

clsText, ARl:105; AR2:198
embedded objects and, AR2:20
messages, AR2:12-13

for changing attributes, AR2:7
observer, AR2:21

Text subsystem and, AR2:3

cls T exteditApp, AR2: 180

clsTextField, ARl:486

clsTextlP, AR2:33
messages, AR2:33

clsTextView, ARl:517-519; AR2:3
creating object of, AR2:35
defined, AR2:9
in insertion pad creation, AR2:26
messages, AR2:23-24
msgNewDefaults for, AR2:24-25

clsTiff, ARl:331-333
messages, ARI :331
TIFF object creation and, ARl:332

><

[

clsTimer, AR2: 104

clsTkDemo, AWG:268

clsTkTable, AWG:146; AR1:352, 425
changing defaults and, AR1:434
creating buttons with, AR1:422
creating child windows and, AR1:434
creating toolkit tables and, AR1:428,

430
descendants, AR1 :362
flags, AR1:435
function, AR1:425
manager field, AR1 :438
messages, AR1 :427
notification, AR1 :438
painting and, AR1:436-437
response to button previewing

messages, AR1 :424
specifYing item class and, AR1:435
subclasses of, AR1 :442
table layout and, AR1:437
see also Toolkit tables

clsToggleTable, AR1:442

clsTrack, AR1:527
clsGrabBox and, AR1:528
messages, AR1:527

cls Transfer, AR1: 119

clsTransport, AR2:295
messages, AR2:297

NBP and ZIP, AR2:301
transport protocols and, AR2:297
using, AR2:297-301

for AppleTalk, AR2:301-305

clsTttApp, AWG:149, 205
instance data for, AWG:153

clsTttData, AWG:149, 205
client tasks, AWG:152
instance data for, AWG:153
metrics, AWG:153
stationary handling and, AWG:165

clsTttView, AWG:149, 154,205; AR1:125
input event handling and, AWG:156
instance data for, AWG:153
keyboard input, AWG:158
quick help, AWG:166-167
selections and, AWG:155

clsUndo messages, AR2:202
using, AR2:202-206

clsView, AWG:27-28; AR1:69, 118,552
concepts, AR1: 173
creating new view and, ARl: 174
messages, AR 1: 173
subclassing, AR 1: 175
view filing and, AR1:174
see also View class

clsWin, AWG:16; AR1:5
behavior, AR1:211
default repainting behavior, AR1:222
input and, AR1:228
inserting window and, ARl:233

instance of, AWG:27-28
layout policies and, AR1:361
low-level pen input and, AR1:558
messages, AR1:230-231

drawing contexts and, AR1 :284
movinglresizing windows and,

AR1:247
msgSave and, AR1:112
procedures for instances of,

AR1:217-218
self-sending messages, AR1:216, 226
structures, AR1:227-229
subclasses, AR1:209

custom, AR1:215
sub classing, AR1:326
see also Window class

clsWinDev, ARl:209, 210, 217
messages, AR1:255
printers, AR1 :30 1
root window, AR1:255
see also Window device classes

clsXfer, AR2:165, 166
in establishing transfer type, AR2: 171
functions, AR2: 170
protocol, AR1:121, 122

Tic-Tac-Toe application and,
AR1:126

stream transfer protocols and,
AR2:168-169

transfer types, AR2: 166

clsXferList, AR2: 171

clsXferStream, AR2: 168-169
messages, AR2:171

c!sXGesture, AWG:156; ARl:553

clsXlate messages, ARl:604-605

clsXTest, ARl:553

clsXtract, ARl:551, 553
function, AR1:552
translation classes and, AR1:598

c1sXWord, AR1:553

cm, co, cs, commands, PDT:94

CMPSTEXT.H, AWG:64; AR2: 114

CNTRAPP.C, AWG:199-203

CntrAppChangeFormat, AWG: 147

CNTRAPP.H, AWG:199

CntrAppMenuBar, AWG:147

CntrAppRestore, AWG:144

CNTR.C, AWG:197-199

CNTR.H, AWG:197

Code
addresses, PDT:88, 114
Application Framework and, A WG: 12
to create object, AWG:51-52
entry point, AWG:24
executable, PDT: 14
executing, AWG:105
installation manger, AR2:414-416

length, AWG:76
loader and, AWG:6-7
profiles, PDT: 113

sample-based, PDT: 115
syntax for, PDT: 114

reusing, AWG:5
run-through, AWG:97-104
sharing, AWG:16

application, AWG:67
application layer, AWG:13
classes instead of, AWG:43-45

see also C code, executing; Client;
Code profiling; Sample code

codeAddress, PDT:88

Code profiling, PDT: 113-117
examples, PDT: 115-117

redefining with infinite buckets,
PDT:116

redefining with smaller buckets,
PDT: 116

sampling profiles, PDT: 115-116
timing/counting profiles,

PDT:116-117
options, PDT: 114
sampling profiles, PDT: 115
sampling technique, PDT:113-114
timing/counting technique, PDT: 113
see also Code

Coding conventions, AWG:14, 70-72
Class Manager constants, AWG:71-72
defines, AWG:71
exported names, AWG:72
functions, AWG:71
suggestions, AWG:76
typedefs, AWG:70
variables, AWG:70

Collapse command (table of contents
View menu), UI:86

Collisions, gesture, UI:233-234

Color model, AWG:128

Colors, AR1:269, 274, 295-296
background, PDT: 167

setting, PDT: 173
border window, AR1:376
compatibility of, AR1:295-296
foreground, PDT: 167
Invert command and, PDT: 171
inverting, AR1:295
palette, AR1:295

hardware-dependent, ARl:274, 295
planes and, ARl:296
RBG values, AR1:274, 295
rendering, AR1:299
setting ink, PDT: 173

Columns, table, AR2:213
data types, AR2:219
descriptors, AR2:213

contents, AR2:214
finding number, AR2:226
getting description of, AR2:227

getting number of, AR2:227
see also Tables

Command bars, ARl:428
notes with, ARl:491

Command buttons, UI: 178-180
defined, UI: 179
modeless edit pads and, UI:190-191
non-standard, UI: 179
standard modal, UI: 178-179
standard modeless, UI: 178
see also Command line

Command datasheets, PDT:89-112
, PDT:90
?, PDT:90-91
!, PDT:89
ai, PDT:91
bd, PDT:92
be, PDT:92
bgNc, PDT:91
bl, PDT:92
bp, PDT:93
break, PDT:93
cm, co, cs, PDT:94
ctx, PDT:94-95
d, db, dw, dd, PDT:96
dp, PDT:96
files, PDT:97
fl, PDT:97
fns, PDT:98
fs, PDT:98
g, PDT:99
h, PDT:99
id, PDT:99
ids, PDT: 1 00
k, PDT:100
log, PDT: 1 00
mi, PDT:100
mini, PDT:I0l
od, PDT: 10 1
on, PDT:I0l
on access, on store, PDT:I0I-I02
p, P, PDT: 102
profile, PDT: 103
q, PDT:103
r, PDT:I03
srcdir, PDT: 103
st, PDT: 104-1 05
sym, PDT:I05
ri, PDT:107
d, PDT: 107
t, T, PDT:I06
type, PDT: 1 08
u, PDT: 108-109
uv, PDT: 109-11 0
v, PDT: 110
vars, PDT: 111
ver, PDT: 111
vu, PDT:I11-112
zp, PDT:112
see also Commands

Command file, for Hello World (custom
window), AWG:126

Command invocation, AWG:4

Command line, UI:178, 179
buttons for, UI: 179
proper use of, UI: 179
see also Command buttons

Command line editing, PDT:81

Command mode, modem, AR2:285

Commands
, PDT:81
?, PDT:75-76, 82, 146
!, PDT:79
bc, PDT:74
bl, PDT:73
bold buttons and, UI: 177
bp, PDT:73
break, PDT:79-80
breakpoint, PDT:85
button labels and, UI: 175
ctx, PDT:73, 75
display, PDT:85-86
Document menu, UI:57

default, UI:193-194
DOS LABEL, PDT:72
Edit menu, UI:62-65; PDT:171

customized, UI:195
default, UI:194-195

executed at compile time, PDT: 124
execution control, PDT:85
file, PDT:86
fs, PDT:147
fundamental, UI:226
fL, PDT: 124
g, PDT:71
ids, PDT:76
install, PDT: 131
layering, UI:224
menus with, UI:41
mi, PDT:81
mini-debugger, PDT: 146-147
miscellaneous, PDT:86
names of, UI:226
on, PDT:82-84
p (P), PDT:77
process and task, PDT:85
profiling, PDT:86
q, PDT:84
srcdir, PDT:72-73, 77
st, PDT:74-75

in mini-debugger, PDT: 148
start, PDT: 131
summary of, PDT:85-86
sym, PDT:72, 82
table of contents

Create menu, UI:86-87
Document menu, UI:85
Edit menu, UI:86
View menu, UI:86

th, PDT:124
ti, PDT:148

d, PDT:80
t (T), PDT:77
tt, PDT: 124
two-state switches and, UI: 198
type, PDT:76
u, PDT:78-79
UniPen, PDT:57-59
v, PDT:77-78
wait, PDT: 131
see also Command datasheets

Command sheets, ARl:521-522
creating,ARl:522

Comment headers, AWG:74

Comments, AWG:75

Comments sheet, UI:67, 202
customizing, UI:202

Communication
asynchronous, AR2:297
connectionless, AR2:296
connection-oriented, AR2:296
conventions, AR2:297
targeting, devices, AR2:307

Compiler, AWG:77-78
flags, AWG:92-93
independence, AWG:77

enumerated values, AWG: 78
function qualifiers, AWG:78

switches, AWG:78

Compiling
Adder, AWG:261
Basic Service, AWG:272
Calculator, AWG:262
Clock, AWG:264
CounterApp, AWG:137, 196
EmptyApp, AWG:177
Hello World (custom window),

AWG:187
Hello World (toolkit), AWG:181
Inputapp, AWG:270
method tables, ARl:45-46
MIL Service, AWG:273
Notepaper App, AWG:265
Paint, AWG:266-267
resources, AR2:359-360
Template Application, AWG:251
Test Service, AWG:273
Tic-Tac-Toe, AWG:205
Toolkit Demo, AWG:268
Writerap, AWG:271

Compiling and linking, AWG:66-67;
PDT:69-70

C source and header files, AWG:67
Empty Application, AWG:92-94

compiling application, AWG:92-93
compiling method tables, A WG:92 ><

~~ailii:e:!
linking application, AWG:93
stamping application, AWG:93-94

HELLOTK, AWG: 114
HelloWorld (custom window)

executable, AWG:125-127

linker command files, AWG:67
method table files, AWG:66
SDK files, AWG:67
WATCOM, AWG:66

Completion note, UI:211
timing-triggered, UI:212-213

Component, AWG:20, 40
application, AWG:149-150
classes, AWG:66; ARl:76

savinglrestoring data and, ARl:77
layer, AWG:12

defined, AWG:6
Notebook, AWG:29
objects, ARl:92

Component (mark), ARl:130
ancestor, ARl:201
parent, ARl:201
UUID and UID, ARl:203
validating, ARl:201

Components, AR2:438
application, ARl:76-77, 349
decoration window, Akl :497
field, creation, ARl:480-481
frame, ARl:497
laying out, ARI :349
for modular design, A WG: 15
nested, ARl:362-363

how menus work and, ARI :363
option sheets, ARl:521

VI,ARl:349
VI Toolkit, ARl:350

creating, AWG:II6-119
filed representation and,

ARl:364-365
filing, ARl:365
illustrated, AWG: 117
nested, ARl:362-363

ComposeText functions, AWG:64;
AR2:114

Compound documents, UI:18
illustrated, UI: 18

Concurrency considerations, AR2:66-67
file location, AR2:67
protecting file data, AR2:66-67
serial I/O, AR2:266
volume protection, AR2:67

Config keyword, PDT:37
DebugTablet, PDT:37, 40-41

Configurations, PDT:37
data modem, AR2:283-287
machine, PDT:26 .
modification, UI:164
monitors and, PDT:44
options, UI:165
parallel port, AR2:277
serial port, AR2:268-271

data modem, AR2:280
setting up specific, PDT:44-45
tablet-like, PDT:40-42
user, of application, UI:224

Configuring
digitizing tablet, PDT:45
mouse, PDT:45

Confirmation notes, UI:212

Connected Disks page (Connections
notebook), UI: 106-113

clash notes and, UI:71
Create Directory command, UI: 195
disk representation in, UI:73
edit pads and, UI:47
icons and, UI: 106
menus, UI: 1 07
option sheets, UI: 111-112

icon, UI:75
options menu, UI: 111
Quick Installer, UI: 113

controls, UI:112
views, UI:I08-110, 113

Applications view, UI: i 10
Bookshelf view, UI: 1 09
Directory view, UI: 108
Fonts view, UI:ll0
installable sofrware view,

UI: 109-11 0

Connected Printers page (Connections
notebook), UI:I16-118

illustrated, UI: 116
menus, UI:116-117
options sheets, UI:1l7-118

Connecting, volumes, AR2:50

Connection
service, AR2:258, 446-447
socket, AR2:296

Connectionless communication, AR2:296
see also Datagram, delivery

Connection-oriented communication,
AR2:296

Connections icon, UI:13, 76

<;:onnections notebook, AWG:8;
UI:I05-119; ARl:96; AR2:250

Attached Printers page, UI: 163
Connected Disks page, UI:I06-113

clash notes and, UI:71
Create Directory command, UI: 195
disk representation in, UI:73
edit pads and, UI:47
icon option sheet and, UI:75
views, UI: 108-110

Connected Printers page, UI:57,
116-118

disks page, PDT:51
for displaying application, A WG:67
for importing bitmap, PDT: 168
installing services through, AR2:256
Network View page (Disks section),

UI:I14-115
Network View page (Printers section),

UI:118-119
overview, UI: 105
quick installation and, AR2:397

socket instance and, AR2:298
table of contents, UI: 105
see also Auxiliary notebooks; Help

notebook; Notebook;
Settings notebook;
Stationary notebook

Connectivity, AR2:245-250; PDT:20
adding network protocols and,

AR2:251
additional information on, AR2:242
computer, AR2:244-245
facilities, AR2:250
introduction to, AR2:241
MIL services, AR2:245-246

other services and, AR2:246-249
principles of, AR2:243
remote interfaces and, AR2:251-253
service manager and, AR2:250
services and interfaces, AR2:249-250
strategies, AR2:244

Consistency, UI: 154
departure from standards and, UI:227
toggle gesture, UI:247
in VI design, UI:149

CONSOLE.OLC file, PDT:43, 137
description, PDT:28

Constants, AWG:71-72
basic, AWG:77

Constraining translation, UI:241-243
ambiguity and, UI:241-242
with dictionary and templates,

UI:242-243
to letters, numbers, punctuation,

symbols, UI:242

Constraints, UI:241
context-specific, UI:242
custom layout, ARI :392

alignment, ARI :393
flags, ARl:395
four child window, ARl:391
specifying, ARl:390-391
types of, ARl:392

guidelines for using, UI:243
shrink-wrap and, ARl:395-396

relative window, ARl:396
value, ARl:396

table layout, ARl:386-387

Container application classes,
ARl:185-188

contents page and, ARl:188
hierarchy, ARl:186
reference document and, ARl:188
root, ARl:186-188
see also Embedded document

Containers, UI:40

Context, PDT:73
inside breakpoints, PDT: 131

Control buttons, UI:28, 175-180

CONTROL_ENABLE structure,
AR1:404-405

Control margins, UI:184

CONTROL_METRICS structure, AR1:402

Control points
moving, PDT:185-186
placement, PDT: 182

CONTROL_PROVIDE_ENABLE structure,
AR1:405,449-450

Controls, UI:28-39, 175-191;
AR1:399-408; PDT:16

clean and dirty, UI:46-47
creating, AR1:402-403
customized, UI:28
deactivating vs. hiding, UI:209
default, AR1:403
dialog sheet, UI:205
dirty, AR1 :403
edit pads, UI:189-191
for embedded documents, UI:20
enable, AR1:404-405

dynamic, AR1:405
evaluating, AR1:404-405
protocol, AR1:449

filing, AR1:399
gauges, UI:38
general model, AWG:123
gesture notification and, AR1:408
grouping, UI:208
how to use, AR1:399
inactive, AR1 :404
internal notification and,

AR1:405-408
layout, UI: 196

option and dialog sheets,
UI:206-209

lists, UI:29-32, 181-188
in menus, UI:41-42
message dispatching and,

AR1:399-400
message line, UI:214
messages, AR1:401-402

previewing stage and, AR1 :400
sent in response to events, AR1:407

mode switch and, UI:251
nesting of, AR1:363
option sheet, UI:56
palette lines, UI:39
presentation and interaction behavior

of, AR1:400
scroll margins, UI:35-37
sent in response to events, AR1:407
separate groups of, UI: 197
for showing and hiding, UI:224
style of, AR1 :402

fields, AR1:402
subpage, UI:38
text fields, UI:32-34, 188
toggle switches, UI: 180-181
values of, AR1:403
for zooming, UI:266-267

see also clsControl

Controls sheet, UI:60, 66, 201
borders control, UI:60
customizing, UI:20 1
gesture margin and, UI:257
message line and, UI:214
mode switch option, UI:251
Show switch, UI:66

CONTROL_STILE structure, AR1:402

Coordinates
drawing, AR1:286--289

defaults, AR1:287
resetting LUC, AR1:288
rotation, AR1:288
scale, AR1:288
transformation matrices, AR1 :289
translation, AR1 :288
units, AR1 :287
world coordinates, AR1:288-289

in drawing context, AWG: 129
grafics, AR1:320
integral, AR1:270
rounding error, AR1:269
system, AWG:152
unit size of, AR1:270

Coordinate system, AR1:265-266, 478
conversion messages, AR1 :283
layout classes, AR1 :382
logical unit coordinates (LUC),

AR1:267"":268
logical window coordinates (LWC),

AR1:267-268
transformations, AR1:268

Copy command (Edit menu), UI:62

Copy function, UI:16

Copy gesture, AR2:165-166

Copy icon, AR1:120, 125
presenting, AR1:124-125

Copying
between applications, UI:289
beginning, operation, AR2: 160-161
data, steps for, AR1:119-120
documents to Auxiliary notebook,

AR2:425-426
document with same section, UI:71
drag & drop gesture for, UI:68
between embedded windows,

AR1:118-119
embedded windows, AR1:191-193
figure, UI:293
importing/exporting and, UI:70
mark, AR1:203
in mouse-based interfaces, UI:285,
nodes, AR2:80-81
objects, AR1:49-50
in PenPoint, UI:286
picture segments, AR1:326-327
pixels, AR1:259-260
variations, UI:289-290
to Windows clipboard, PDT:195

see also Moving

Copy marquee, UI:68

Copy protocol, AR1:119-123
copying data, AR1: 122-123
data type determination, AR1: 121
destination by user, AR1: 120
destination in file system, AR1: 122
destination to copy, AR1:121
getting exact pen location, AR1: 123
identifYing selection, AR1: 120
OK copy, AR1:121-122
reasons for using, AR1: 119
requesting copy, AR1:120

Core gestures, UI:16-17, 24-25
application functionality and, UI:224
collisions and, UI:234
consistency and, UI: 154
defined, UI:236
for gesture mode, UI:257, 258
guidelines for, UI:236-237
MiniText, UI:133
mode, UI:247

design checklist and, UI:295
variations, UI:236

guidelines for, UI:239
see also Gestures

Cork margin, UI:20, 56
of Help notebook index, UI:125
hiding, UI:56
icons, UI:74

option sheet and, UI:75
illustrated, UI:55
reference buttons and, UI: 172

Corner radius scaling, ·AR1 :339-340

Corners gesture family, UI:24
hot point for, UI:231
summary, UI:236
see also Gestures

Counter, AWG:135
class, AWG:138
instance data, AWG:138
value

display of, AWG:136
getting and setting, AWG:139-140

CounterApp, A WG: 136
clsCntr and, AWG:136
compiling, AWG:137
document page, AWG:143
Hello World programs and, AWG:136
installing, AWG:137
instance data, AWG:142-146

filing counter object,
AWG:145-146

memory-mapped file, AWG:143
opening and closing file,

AWG:143-145
menu bar, AWG:147
objects, AWG:137
receiving msgRestore, AWG: 146
receiving msgSave, AWG: 145-146

Counter Application, AWG:135-140
classes, AWG:196
compiling, AWG:137, 196
counter class and, AWG:138
files, AWG:l96
getting and setting values,

AWG:139-140
highlights, AWG:137-138
installing, AWG:137
instance data, AWG:138-139
objectives, AWG:195
running, AWG:l96
sample code, AWG:195-204
tutorial, AWG:89

Counter object, AWG:89
creating, AWG:143-144
filing, AWG:145-146
restoring, AWG:146
saving, AWG:145-146

Counting
changes, AR2:37
list items, AR2: 130

CPU, power conservation and, AWG:7

Create command (Edit menu), UI:195

createDataObject argument, AR1:174

createInitial style bit, AR2:406

CreateInsertWindowO function, AR1:556

Create menu, UI:20
caret gesture family and, UI:233
Connected Printers page, UI: 117
system-wide, UI: 120
table of contents, UI:86-87, 195

Creating
address descriptors, AR2:331-332
address windows, AR2:333-334
application directory handle, ARl: 170
application distribution volume,

AR2:391
application main window, AR1 :504
Auxiliary notebook

documents, AR2:425
sections, AR2:424

bitmaps, AR1:330; PDT:192-193
border windows, ARl:373-375
browser, AR2:138

object, AR2:140
buttons, AR1:354, 419-420, 421

many, ARI :422
byte buffer object, AR2:208
cached images, AR1:300
choice, ARl:352-353, 443
classes, AR1:6, 31-48
client window, AR1:212-213
close box, AR1:507
clsModem object, AR2:282-283
clsSPaper subclass, AR1:593

instance of, AR1:593-594
command sheets, AR1:522
control, AR1 :402-403
custom layout, AR1:353-354

window, AR1:390-395
DC, AR1:285
directories, AR2:69-74

browser and, AR2: 141
indexes, AR2:80

directory handles, AR2:58, 60, 71
DLLMain, AR2:450
documents, ARl:102, 148
document with browser, AR2: 141
embedded application, AR1:196
embedded documents, UI:20
embedded window, AR1: 190
field, ARl:477-479
file handles, AR2:71-73
files, AR2:69-74
font list boxes, ARl:473
frames, ARl:500
handles, AR2:69-70

. header file, AR1:36
help text, AR2: 180
hints, PDT: 192
icons, AR1:524-525
imaging device, ARl:256
insertion pads, AR1:586-587
installable-item managers, AR2:41 0
IP window, AR1:556-557
lists, AR2: 129
marks, ARl:133; AR2:196
menu bar, AR1:353
menu buttons, AR1:446-447
menus, ARl:447-448
methods, AR1:37-41
method tables, AR1:41-46
nodes, AR2:43
notes, AR1 :488-490
objects, ARl:15-18, 34

with default values, AR1:18
option sheets, AR1:514
picture segment, AR1:318-319, 322
pop-up choices, AR1 :451
progress bar, ARl:535
Quick Install disk, AR2:397
receiver's stream, AR2: 176-177
resource file handle, AR2:348-349
resource lists, AR2:346
scribbles object, AR1:609
scrollwin, ARI :458-459
sender's stream, AR2:177
service instances, AR2:442, 454-455
shadows, ARl:509
stream objects, AR2: 134
string list boxes, AR1:470-471
string object, AR2:212
submenus, AR1:448
tab bars, AR1:508
table object, AR2:220
tables, AR2:221
tabular window layout, ARI :353
temporary files and, AR2:65
text data object, AR2:7, 13
text insertion pads, AR2:33
text views, AR2:9, 24-26

TIFF object, ARl:332
title bar, ARl:507
tokens, AR1 :200
toolkit table, AR1:428-435

child windows, ARI :434
translator, AR1:605
window, ARl:212

size and position, AR1:232
style flags, AR1:232

XList, AR1:614
see also Deleting; Removing

Creation capability, AR1:28

Creation notification, ARl:28

Cross Out gesture, UI: 16, 24
default targets, UI:232
in gesture mode, UI:258
guidelines for, UI:237
hot point for, UI:231
MiniNote gesture mode, UI:135, 141
MiniNote ink mode, UI:135
tab stops and, UI:132
see also Gestures

C run-time library, AR2: 1 09-114
16-bit character support,

AR2:11O-114
ANSI standard C routines, AR2: 109
files, AR2: 109
time and date preferences, AR2: 110

C run-time routines, PDT:128

CSTM_LAYOUT_CHILD_SPEC structure,
ARl:391

CSTM_LAYOUT _DIMENSION structure,
ARl:391-392

alignment constraints and, AR1 :393
value and, AR1 :396

CstmLayoutSpecInit, AR1:396

ctx command, PDT:73
datasheet, PDT:94-95
frame numbers and, PDT:75
scopeSpec and, PDT:87

ctx parameter, AWG:99, 109; ARl:35
defined, ARl:38-39
ObjectCallAncestorO and, AR1:36

CTYPE.H, AR2: 112

Current selection, AR2:155
getting, text view, AR2:30-31

Writing Paper application, AR2:31

Cursor, AWG:4
I-beam, UI:283

Customize button (Installed
Handwriting page), UI:100

Customizing
buttons, UI:177-178
edit pads, UI:189
option sheets, UI:201-202

Custom layout, ARl:389-390
creating, AR1:353-354, 390-395

aligning width/height dimensions,
ARl:393-394

alignment constraints, ARI :393
constraint flags, ARl:395
constraints, ARl:392
dimensions, ARl:391-392
four child window constraints,

ARl:391
specifying constraints,

ARl:390-391
dimensions, ARl:391-392
initialization, ARl:396
sample, ARl:389
see also clsCustomLayout

Custom Resource 10 option card,
PDT: 172-173

fields, PDT: 172

Custom window, AWG:125

Data
application global, AR2:394-395
buffered, AR2:265
conversion/checking, AWG:78
duplication, AWG:15-16
encapsulation, AWG:42
formats, AWG: 17
input, AWG:4
interaction and view, AWG:152-153
reading, AR2:45
resource, AR2:337, 342, 353

C language definition, AR2:355
reading, AR2:349
writing and updating,

AR2:349-350
saving and restoring, AWG:135-148
sending and receiving via modem,

AR2:289
service, storage, AR2:455
structures, designing, UI: 166
table

files, AR2:214
getting, AR2:223-224
setting, AR2:223

transaction, AR2:20 1
transfer, AWG:12

design checklist and, UI:296
refusing, UI:289

transfer type, AR2: 166
tags, AR2: 166-167

types, AWG:76-77
writing, AR2:44-45
see also Data modem, interface; Text

data object

dataAddress, PDT:88

Database
installed item, AR2:406
using tables in, AR2:217

Datagram
delivery, AR2:296

transaction services, AR2:296
types of, AR2:296

receiving, AR2:300
sending, AR2:299

Data modem
AT command set, AR2:290-293
characteristics, AR2:284
configuring, AR2:283-287

auto-answer mode, AR2:284
carrier state, AR2:284
command and data modes,

AR2:285
dial type, AR2:284
duplex mode, AR2:286
MNP mode, AR2:286
sending own AT commands,

AR2:286-287
speaker, AR2:284-285

connection types, AR2:285
direct communication with,

AR2:290-293
establishing connection with, AR2:287
interface, AR2:279-293

clsModemAPI, AR2:281
clsModem messages, AR2:281-290
concepts, AR2:279-280
configuration, AR2:280
direct communication with,

AR2:290-293
MNP data communication and,

AR2:289-290
reset settings, AR2:283
sending and receiving data with,

AR2:289
waiting for connection with, AR2:289

Data mode, modem, AR2:285

Data object
clsView and, AWG:27-28
design, AWG:152-153
dumping, AWG:161
saving, AWG:153
separate stateful, AWG:150
view and, AWG:155

Datasheets, AR2:95

Datasheets, command, PDT:89-112

Date format preference, AR2:367

Date preferences (Settings notebook),
UI:94

Dateltime services
alarm services, AR2:103
current time, AR2: 104
object-oriented timer interface,

AR2:104-105
timer routines, AR2:103
see also Time

DbgFlagGetO, AWG:86, 160; PDT: 135

DbgFlagSetO, AWG:86; PDT: 135

Dbg macro, PDT: 133

DB.INI file, PDT:80-81

DBk task, PDT:152

ObI task, PDT: 151

DBm task, PDT:152

DB. see Source level debugger (DB)

DC. see Drawing context (DC)

d, db, dw, dd, commands, PDT:96

DDE (Dynamic Data Exchange) linking,
AWG:12

Deactivating
fields, ARl:481-482
hiding controls vs., UI:209

Debug
flag, PDT:38

set, PDT:128, 147
output port, PDT:29
stream data, PDT:37
tools, PDT:67
Window accessory, PDT:38

DEBUG compiler option, AWG:81, 87;
PDT: 133-134

assertions and, AWG:85
debug flags and, AWG:85
defined, PDT: 133
dumping and, AWG: 161
PenPoint uses, PDT: 133-134
preprocessor variable, AWG:82
tracing and, AWG:159-160
using, PDT: 134
versions ofDLLs, PDT:134

DebugfO function, AWG:68, 84, 111;
PDT:67

debug flags and, AWG:160-161
Tic-Tac-Toe and, AWG:159

Debug flags, AWG:32, 85-86
B,AWG:96
D,AWG:I12
Debugf statements and, AWG: 160-161
Fl,AWG:97
F,AWG:97
G,AWG:97
sets, AWG:160

Debugger
flags

function of, PDT:133
setting, PDT:38

preparing to run, PDT:69-70
compiling and linking, PDT:69-70
files used in DB session, PDT:69
installing applications to debug,

PDT:70
installing DB, PDT:70
starting PenPoint, PDT:70

stream, PDT:37, 135-139
buffer, PDT:37
configuring destinations,

PDT: 135-137
defined, PDT: 133
different ways to view info sent to,

PDT: 135

><

[

system log application and,
PDT: 141-143

writing to, PDT:137-139
see also Mini-debugger; Source level

debugger (DB)

Debugger stream, AWG:85, 111-112
using output, AWG:111
viewing output, AWG:111-112

DebuggerO system routine, PDT: 145

Debugging, AWG:68, 159-163
application behavior, PDT:43
assistance, AWG:84-87

assertions, AWG:85
debug flags, AWG:85~86
printing debugging strings,

AWG:84-85
suggestions, AWG:87

flagsets, AWG:86; PDT:134-135
clearing, PDT: 148
setting, AWG:86
setting values in, PDT: 135

general, techniques, PDT: 133-139
DEBUG compiler option, PDT:133
debugger stream, PDT:135-139
debugging flag sets, PDT:134-135

Hello World (custom window),
AWG:133-134

Intel assembly language and, PDT:7
macros, PDT:67
messages, AWG:87
Penpoint 2.0. and, AWG:63
source code, PDT:72-73

finding and loading symbols,
PDT:72

using source code, PDT:72-73
strings, printing, AWG:84-85
symbolic information, PDT:72

loading partial, PDT:82
testing return values and,

AWG:115-116
Tic-Tac-Toe, AWG:159
windows, ARl:252

DebugLogFlushCount keyword, PDT:37

DebugLog keyword, PDT:37

DebugSet keyword, PDT:38

DEBUG warning macro, AR1:22

Decoration window components,
AR1:497

Default attributes
changing, AR2:8
text data objects, AR2:7

Default document
icon, UI:77
option sheets, UI:44

Default menus, UI:56
Document menu, UI:57-61
Edit menu, UI:62-65
Options menu, UI:44, 66-67

Default objects, UI:46
determining, UI:203

Default PenPoint application, UI: 17

Default values, AR1: 17
changing, ARI : 18

#define, AWG:74
for constants, AWG:76
name, AWG:50
NewFields, ARl:16

Defines, AWG:71
file section, AWG:74

Definition file, method table, ARl:41
creating, AR1:42-45

Deinstalling
applications, AWG:38; ARl:99
services, AR2:256, 456

Delete command (Edit menu), UI:62

Delete command (MiniN ote Edit
menu), UI:136

Delete function, VI: 16

Deleting
address book entry, AR2:328
Auxiliary notebook secti~n/document,

AR2:426
bitmaps, PDT:193
characters, PDT:182
directories, AR2:75

with browser, AR2: 141
forcing, AR2:75-76

documents, ARl: 115
files, AR2:75

with browser, AR2:141
forcing, AR2:75-76

hints, PDT: 192
insertion pads, AR1 :587
many characters, AR2: 11
resources, AR2:352-353
segments, PDT: 186
shapes, PDT: 188
table rows, AR2:224
tokens, AR1 :20 1
XList element, AR1:614
see also Removing

Descendant classes, AWG:25
of clsApp, AWG:26
inheritance and, AWG:43·
for storing structured data, AWG:28

Deselecting, UI:279
an existing selection, UI:280

Design
checklist, VI:295-296
graphic, UI:149
guidelines, AWG:15-18
modular, UI:152-153
user-centered, UI: 149
wording in, UI:150

Designing
application icons, UI:216-222

guidelines for, UI:219-221
masks for, UI:221-222

applications, AWG:59-61
classes, ·AWG:60
consistency and, UI: 154
data structures, UI: 166
editing pads, UI: 189
for Embedded Document

Architecture, UI:152-153
handwriting translators, UI:241-243
for internationalization and

localization, AWG:61-64
menu line, UI:226
message handlers, AWG:60
messages, AWG:60
for notebook metaphor, UI: 151
for the pen, UI:152
for pen-based mobile computing,

UI:151-154
program units, AWG:61
for scalability, UI:153-154
user interface, AWG:60
user models and, VI:245-246

Desktop, AWG:33
floating accessories and, AWG:34
parent window, AWG:33

Destination application, A WG:l1

Destroying
application directory handle, ARl: 179
embedded window, ARl:190
image device, ARl:262
lists, AR2:131
notes, ARl:492
option card, ARl:516
string list boxes, AR1 :472
text insertion pads, AR2:33
TIFF file, AR1:333
trackers, ARl:528
window, AR1:218

devCode, ARl:563
defined, ARl:569
in INPUT_EVENT structure, ARl:567

Development
application, AWG:59-90; PDT:6-7
checklist for, AWG:68-69
cycles, AWG:66-68

application installation, AWG:67
debugging and linking, AWG:66-67
general, AWG:88

debugging, AWG:68
iterative, UI:150
key concepts for, AWG:115
milestones, UI:5
options, PDT:5-7
strategy, AWG:64-66

component classes and, AWG:66
displaying on screen and, A WG:66
entry-point, AWG:65
instance data, AWG:65
stateful objects and, AWG:65

tools
DOS C, PDT:6, 7
high-level, PDT:5-5

Device
applications, drivers and, AR2:246
codes, AWG:156

multi-key input and, AWG:158
comparison, UI: 1 0
connectiviry strategy, AR2:244
drivers, AR1:567

INPUT_EVENT structure and,
AR1:567-568

pen event codes, AR1:568
interface and, AR2:249
object UID, AR2:261
option sheet, AR2:247
SCSI, AR2:247
services and, AR2:306-307

installing, AR2:307
targeting communications, AR2:307
see also Image device; Windowing,

device

Device-independent RGB method,
AR1:274

Device List (Show menu), PDT:142

Dialog sheets, UI:40, 162,205-206
checklists in, UI: 184
command buttons, UI: 178
for installable accessory instances,

UI:163
for installable stationary, UI:162
layout guidelines, UI:206-209

deactivating vs. hiding controls,
UI:209

non-standard layout, UI:206
pop-up vs. in-line, UI:207-208
standard layout, UI:206

modal, UI:165, 205-206
modeless, UI:205

advantages of, UI:205
multi-page, UI:43
multiple, UI:205
pop-up lists, UI: 183
Quick Help and, UI:215
single, UI:205
titles, UI:205
uses, UI:205
vertical checklists, UI: 182

Dialogs, system and'application, AR1:493

Dial string modifiers, AR2:287-288
defined, AR2:287
function, AR2:287-288

Dial rype, modem, AR2:284

Dictionary
Bezier, PDT:21O
icon, UI:78
installable software views and, UI:109
installed, UI: 105
template, UI:242

Digitizers, PDT:56

Digitizing tablet, configuring, PDT:45
, Direct manipulation, UI: 150

Directories, AWG:28; AR1:89; AR2:43
application, AR2:391-395
bitmap, PDT:207-208
character, PDT:208
concepts, AR2:382
creating, AR2:69-74

browser and, AR2: 141
defined, AR2:52, 54
deleting, AR2:75

with browser, AR2:141
Desktop, AWG:33
directory entries and, AR2:54
document, PDT:55

component, AR1 :93
Empry Application, PDT:52

. forcing deletion of, AR2:75-76
Help NoteBook, AR2:179-180
item, AR2:376
locating, AR2:56
merge, UI:72
mode flags, AR2:71
name clash and, UI:72
names, AWG:29
names of, AR2:70-71
Notebook, AWG:33
renaming, AR2: 141
root, AR2:52

handle, AR2:60-61
section, AWG:34
service, AR2:395-396
source, PDT:77
target, AR2:59

changing, AR2:86
see also specific directories

Directory entries, AR2:54
reading, AR2:87-89

all, AR2:88
sorting, AR2:88-89

Directory handles, AR2:43, 59-61
creating, AR2:58, 60, 71
directory nodes and, AR2:59
instance messages, AR2:64
locators and, AR2:59
observing, AR2:60
RAM,AR2:61
target directory and, AR2:59
using, AR2:60
volume root, AR2:60-61
well-known, AR2:60
working, AR2:61
see also Directories

Directory icon, UI:108

Directory index, AR2:56, 67
creating and using, AR2:80-81

Directory view (Connections Disk page),
UI:108

Layout sheet, UI: III
Options menu, UI: III

DIRENT.H, AR2: 114

Disconnecting, volumes, AR2:50

Discontiguous selection, UI:282-283

Disk
Bookshelf, UI: 109
Browser, AWG:96
browsing, UI:105
Connected, UI: 1 06-113

icons for, UI:106
connection, UI: 115
directory icons, UI:73
formats, AR2:51
icons, UI:73, 77

contents, UI:78
management, UI:105
menu line for, UI: 1 07
network, UI: 114-115
option sheet, UI:112
quick install, UI: 113
referencing, PDT:27-28
saving format information, PDT:45
Viewer, AWG:32

Disk-based bookshelf, UI:13-14
exposing, UI: 14

Disk-based operating system, UI: 1 0-11

Diskless robot, AWG:7

Display
commands, PDT:85-86
embedded objects and, UI:166-167
parameters, UI:274
profile information, PDT:119-120
size, UI: 153

Displaying
captured scribbles, AR1:557-558
insertion pads, AR1:587

Display option sheet (MiniText), UI:132

Display seconds preference, AR2:367

Distributing, service, AR2:473-474

Distribution disks, services on, AR2:444

Distribution volumes, organization,
AR2:390-398

application directories, AR2:391-395
multiple applications and volumes,

AR2:398
PENPOINT.DIR files, AR2:390
quick installation, AR2:397
service directories, AR2:396-396
STAMP utiliry, AR2:390-391
upgrading, AR2:398
see also Volumes

DLC files, AWG:127; AR2:401; PDT:53
services and, AR2:444
see also D LL files

DLL directory, AR2:385

DLL files, AR1:33, 47; AR2:399
creation options, AR2:402-403
DLC files and, AR2:401

><

II

DLLMain(} routine and,
AR2:402-403

issues, AR2:400
MAKE files and, AR2:403-404
operating system, AR2:403
references to, AR2:399
service, AR2:444
sharing, AR2:401-402
unloading, AR2:400
versions and, AR2:402
see also DLC files

dll-id name, AR2:400
application monitor and,

AR2:40 1-402
operating system DLL files, AR2:403
sharing DLL files and, AR2:401-402

DLLINIT.C, AWG:194

DLL.LBC file, AWG:126, 194

DLLMain(}, AWG:66, 126; AR1:33, 47;
AR2:379

for clsHelloWin, AWG:127
creating, AR2:450
DLL processes and, AR2:402-403
owning task and, AR2:455
service instance creation and, AR2:442
UI Toolkit programming and,

AR1:366

DLLMAIN routine, PDT:42, 53

DLLs, AWG:15; AR2:399-404; PDT:20
BOOT.DLC and, PDT:42-43
in boot sequence, PDT:29
components and, AWG:40, 66
Debug versions of, PDT: 134
defined, PDT:42
ENVIRON.INI and, PDT:34
files, PDT:53
Hello World (custom window),

AWG:125
identifying, AR2:400-40 1
initialization files and, PDT:28
linking, AWG:126
loaded independent of application,

PDT:42,43
NotePaper, AWG:265
processes, AR2:402-403
program units and, AWG:61
table class component, AR2:213
see also D LL files

DLL_TYPE_DISTRIBUTED, AR2:403

DmIM task, PDT:152

DmKK task, PDT:152

DOC directory, AR2:388
contents, AR2:388

Document, PDT:54
accessory, AR2:377
In box, AR2:313
Out box, AR2:309-31O
outline, UI:218-219
stationary, UI:162; AR2:377

title line, UI:47
window messages, AR1:163
wrapper, AR2:31 0
see also Documents

Documentation, PDT:9-23
feedback on, PDT: 10
SDK library, PDT:9
suggested approach to, PDT:9-1O
using fonts in, PDT:198-199
see also SDK, documentation

Document hierarchy messages,
AR1:161-163

application's name, AR1:163
application's title, AR1:163
document information, AR1:161-162
document links, AR1:161
embedded documents, AR1:161
hot mode, AR1: 162
renaming document, AR1:162

Documenting applications, AWG: 175

Document menu, UI:57-61; AR1:165;
PDT:171

About command, UI:61
default, UI:193
default commands, UI:56-57

About, UI:194
Checkpoint, UI: 193
Print Preview, UI:193-194
Print Setup, UI:193-194
Revert, UI:193

Embedded Printing sheet, UI:60-61
Export to Home command, PDT: 170,

171
guidelines for using, UI:192
Headers & Footers sheet, UI:59
MiniText, AR1:363
Print command, AR1:139
Print Layout sheet, UI:58
Print Setup button, AR1:138
Print sheet, UI:57
standard application, AR2:331
table of contents, UI:85
uses, UI: 192

Document orientated design, AWG: 17

Documents, AWG:23; UI:14; AR1:82,
87-92

activating, AWG:23, 36-37, 105;
AR1:102-107

main in, ARl:102-103
msgAppActivate in, AR1:105-107
msgAppInit in, AR1:105-107
msgAppMgrActivate in, AR1:103
msgInit in, AR1:104

active, AR1:87
application hierarchy and, AWG:28
applications as, UI: 157-158
basic layout for, UI:55
closing, AR1:109-11O
components for, UI:56

illustrated, UI:55

compound, UI:18
cork margin, UI:20
creating, AWG:105; AR1:102, 148

with browser, AR2: 141
new, UI:86-87; PDT:54

default menus for, UI:56
default names of, AWG:103
defined, AR1:67
deleting, AWG:38; AR1:115
directories, AR1:89; PDT:55
disk Bookshelf, UI:109
email, UI:121
embedded, UI:17; AR1:67, 117-128

Apply To control, UI:60
borders and controls for, UI:19-20
counting, AR1:183
creating, UI:20
directory,ARl :89
getting and setting number of,

ARl:181-182
icons and, UI:73
in-line, UI: 169-170
pop-up, UI:169-171
printing, UI:60-61; AR1:136-137
special handling of, UI:168-169
traversal and, AR1:129
up-down gesture and, UI:66

embedding, AWG:34-35; AR1:77
Empry Application, AWG:95

copying to hard disk of, A WG:97
corkboard margin for, AWG:97
embedding, AWG:97
floating, AWG:95
messages, AWG:97
tabs for, AWG:96

fax, UI:l21, 165
files/applications and, AWG:37-38
file system and, AR1:88-89
as floating accessories, AWG:104
global sequence number, ARl: 178
help, UI: 124
icons for, UI:73

application, UI:216-217
list of, UI:77

In box, UI:13
options for, UI:164

incoming, UI:121
life cycles, AWG:23; AR1: 100-115
marking locations within, UI: 171-172
Menu box (Stationary notebook),

UI:120
multi-page, UI:157-158
multiple, table of contents and, UI:86
name clash notes and, UI:71
names of, AWG:33
notebook page and, UI:157
as Notebook pages, AWG:104
as objects, AR1:92
with objects and frames, AR1: 107
off-screen, A WG:24
open, AR1:67

process, AR1:109

opening, AR1: 107-109
option sheets for, UI:89
organizing, UI:14
Out box, UI: 13
outgoing, UI: 122
page-oriented, UI: 157-158
paginating, AR1:137
parts of, AR1:92-93
printing, AR1:135-136

layout for, UI:58
repainting and, AR1:222-223
settings for, UI:57

as processes, AR1:89-91
reactivating, AR 1: 113-115
receiving, UI: 159
reference buttons and, UI:20, 171
renaming, AR1:162
resize handles for, UI:272
restoring inactive, AWG:36-37
running, AWG:24, 94
saved, AR1:78-79
screen information and, AR1:87-88
sending, UI:159
sequence number, AR1: 178
special handling of, UI: 168-169
for starting applications, AWG:37-38
state diagram, AR1:100
states of, AR1:100

transitions, AR1:101
stationary, UI: 120
terminating, AWG:36-37;

AR1:11O-113

Document state, duplication, AWG:39

Document-wide options, UI:44
adding default; UI:200-202
adding new, UI:202

DOS. see MS-DOS

DotMa~rix service, AR2:439
Double-Arrow (Up and Down), UI:266

Double-Caret gesture, UI:23, 238

Double-Circle gesture, UI:25
in gesture mode, UI:259
guidelines for, UI:238

Double-Down Arrow gesture, UI:25

Double-Flick, UI:25
guidelines for, UI:239
ink editing gesture, UI:259
MiniNote, UI:141
MiniText, UI:133

Double-Left Arrow gesture, UI:25

Double-line convention, UI:31
checklists and, UI: 184
for scrolling multiple lists, UI: 187

Double-Right Arrow gesture, UI:25

Double-Tap, UI:25
in gesture mode, UI:259
guidelines for using, UI:239
MiniNote, UI:140
MiniText, UI:133

zooming and, UI:266

Double-Up Arrow gesture, UI:25
Down-Left-Flick gesture, UI:26, 240

MiniText, UI:133

Down-Left gesture, UI:26, 240
MiniNote, UI:141
MiniText, UI:133

Down-Right-Flick gesture, UI:26, 240
MiniText, UI:133

Down-Right gesture, UI:17, 24
in gesture mode, UI:258
guidelines, UI:237
MiniNote, UI:141

dp command, PDT:119-120
datasheet, PDT:96
examples, PDT:119-120
flags, PDT: 119
in redefining profiles, PDT: 116
timing/counting profiles, PDT: 116

DPrintfO function, AWG:68, 84, 111;
PDT:67

debug flags and, AWG:161
Drag & drop interface, UI:68-72

consistency and, UI: 154
example, UI:69
import/export and, UI:69-70
limitations, UI:285
mouse-based, UI:285
name clash notes and, UI:71-72
operation, UI:68-69

cancelling, UI:69
PenPoint, UI:286
user model, UI:285-286
uses, UI:68

Drag
box, UI:263-264
completing, UI:288
feedback, UI:280
handle, UI:36; AR1 :453
icon, UI:286-287

refusing, UI:289
standard, UI:287

initiating, UI:286-287
outline, UI:288
rectangle, UI:288

snapping, UI:288

Dragging, AR1:377
large objects, UI:287
off screen objects, UI:287

Drawing, AWG: 128
box, AR1 :287
cached images, AR1:300-301
coordinates, AR1:286-289
with a drawing context, AR1 :286
dynamic, AR1 :293
line, AR1:337-338
on image device, AR1 :259
operations, AR1:293-294

closed figures, AR1:294

filling window, AR1 :294
open figures, AR1:293

in picture segments, AR1 :322
other objects, AR1:323

sampled image, AR1:298
text, AR1:302, 311-312
trackers, AR1:528
in window, AWG:133; AR1:236
see also System drawing context

Drawing context (DC), AWG:128;
AR1:209, 211, 266

binding, AR1:266
bound to window, AR1:210
class, AR1:281-290
clsHelloWin, AR1:238
color, AR1:295-296
creating, AWG:129-130, 131; AR1:285
default state, AR1:285
defined, AR1:266
destination rectangle, AR1:273
drawing coordinates, AR1:286-289
drawing operations, AR1 :266,

293-294
drawing with, AR1 :286
encoding attribute, AR1:277
features, AR1:269-270

bounds accumulation, AR1:269,
270-271

color, AR1:269, 274
figure drawing operations,

AR1:269,271-272
graphic state, AR1:270, 277-278
hit detection, AR1:269, 270
local clipping, AR1:269, 270
picture segments, AR1:279
sampled images, AR1:269, 272-274
text operations, AR1:269, 275-276

graphic state, AR1:266, 290-293
graphic state of, AWG:128
in handling low-level pen input,

AR1:558
image mask, AR1:273
ImagePoint font support,

AR1:302-315
messages, AR1:281-284

associating Des with windows,
AR1:281

class, AR1:281
clipping and hit detection, AR1 :283
clsWin messages and, AR1:284
coordinate conversion, AR1 :283
drawing operation, AR1:283-284
graphic state, AR1 :281
hardware-dependent color, AR1:282
matrix manipulation, AR1:282
RGB color, AR1 :282
text interface, AR1 :284

msgWinDevBindPixelmap, AR1 :257
printing, AR1:301-302
for rendering visual feedback,

AR1:591-592

sampled images, ARl:297-301
scaling fonts and, ARl:31O
state, ARl:320-321

not stored, ARl:321
paint, ARl:320-321
picture segment storage, ARl:321

system, ARI :210, 267
text and, ARl:302
UID, AWG:130
unit size, ARI :270
when to create, ARl:286
window messages to, ARI :289-290
window repaint and, ARl:237-238
see also clsDrwCtx; clsSysDrwCtx

DrawingPaper application, ARI :317

Drivers
universal pen, pOT:56-62
using UniPen, POT:60-62

DTR (data-terminal-ready) lines,
AR2:270

Dual command path, VI: 15-16
for application functionality, UI:224
borders and, VI:20
design checklist and, VI:295
edit pad design and, UI:189
for switching modes, VI:246
toggle gesture and, VI:247
for zooming, VI:265

Dumping, objects, AWG:161

Duplex mode, modem, AR2:286

DVHSPKT, AR2:274

Dynamic drawing, AR1:293

Dynamic Link Libraries. see DLLs

Dynamic ports, AR2:296

Dynamic resource IDs, AR2:343-344
defined, AR2:343

Dynamic UIDs, ARl:9, 10

DynResIdO macro, AR2:345

EDA (embedded docume~t
architecture), AWG:12, 13

Edit function, VI:16

Editing, VI:16
bitmaps, PDT: 192-195
character shapes, PDT: 182-190
fill-in fields, VI:34
font header, POT:196-198
grafics, AR1 :324
Help notebook index entries, UI:125
hints, POT:190
ink, VI:255

guidelines for, UI:255-259
outline, window, PDT: 183-184
overwrite fields and, UI:33, 34
picture segment, ARl:324
pixels, PDT: 194
scrolling lists, VI: 187

see also Edit pads

Editing model, AWG:l1

Edit menu, VI:62-65, 194-195;
AR1:165; POT:171

application-specific, VI: 195
Checkpoint command, PDT: 170
choosing editing mode from, POT:171
Copy command, ARl:120
creating object guidelines, VI:195
customized, VI:195
default, VI: 194
default commands, UI:56, 62-65,

194-194
Undo, VI:194

drag & drop operation and, VI:68
editing operations and, UI:16
entries, PDT: 171
Find command, VI:62, 63
Find sheet, UI:62
guidelines for using, VI: 192
for initiating drag, VI:286
MiniNote, UI:136-137
Move command, AR1: 120
Proof sheet, VI:65
Spell sheet, VI:64
table of contents, VI:86
uses, VI: 192

Edit pads, VI:189-191
customizing, VI:189
designing, VI:189
input behavior, VI:190-191
invoking, VI:189
keyboard focus of, VI: 189
modeless, VI:190-191
pop-up, UI:47, 189-190
see also Editing

Ellipse convention, button labels, VI: 175

Ellipse figure, AR1:272
drawing, ARl:341

Email
documents, UI:121
service, VI: 164 .

Embedded application, AWG:34-35;
AR1:77,195

creating, ARl:196

Embedded chart, UI: 167

Embedded Document Architecture
(EDA), VI: 17-20

designing for, VI: 152-:-153
marking document locations and,

VI:171-172

Embedded documents, AWG:28; VI:17;
AR1:67,117-128

activating, AR1:161
Apply To control (Embedded

Printing sheet), VI:60
borders and controls for, VI:19-20
compound documents and, VI: 18
counting, AR1:183

creating, VI:20
design checklist and, VI:295
directory, AR1 :89
embedded window concepts,

AR1:117-118
moving and copying between,

AR1:118-119
Empty Applications and, AWG:97
gestures and, AR1:128
getting and setting number of,

AR1:181-182
icons and, VI:73
illustrated, VI: 18
in-line, VI: 169-170
intercepted messages and, AR1:127
managing, ARl:161
move/copy protocol and,

AR1:119-123
moving in Tic-Tac-Toe and,

ARl:123-127
pop-up, VI:169-171
printing, VI:60-61; AR1:136-137

Location control, UI:60
situations for, ARl:136

selection and, AR1: 128
special handling of, VI: 168-169
traversal and, ARl:129
up-down gesture and, UI:66
see also Container application classes;

Documents

Embedded icons, UI:168
in-line, VI:168
pop-up, VI: 170-171
see also Icons

Embedded objects, UI:152; POT:18
displaying, VI: 166-167
layout of, VI:168-171

in-line opening, UI:169-171
open document handling,

VI: 168-169
managing, VI: 166-172

basic support for, VI:166-167
intelligent layout, VI: 168-171
marking document locations and,

VI:171-172
storing, VI: 166
tracking, VI:166
in views, AR2:26-27
window, AR2:161
see also Objects

Embedded Printing card, AR1:136

Embedded Printing sheet, VI:60-61
Apply To control, VI:60
Location control, VI:60
Print control, VI:60

Embedded window, ARl:117
child, ARl:193
concepts, ARl:117-118

clsEmbeddedWin descendants,
ARl:118

marking support, ARl: 118

copying, AR1:191-193
between, AR1:118-119

creating, AR1: 190
destroying, AR1: 190
examples, AR1: 117
gestures, AR1: 127
metrics, AR1: 190
moving, AR1:191-193

between, AR1:118-119
protocol, AR1:122
style of, AR1:190-191
toolkit ancestors and, AR1:370
UUID, AR1:193

Embedded window class, AR1:69,
189-193

see also clsEmbeddedWin

EMBEDDED_WIN_EXTRACT_CHILD
structure, AR1:193

EMBEDDED_WIN_GET_DEST structure,
AR1:193

EMBEDDED_ WIN_INSERT_CHILD
structure, AR1: 193

EMBEDDED_ WIN_METRICS structure,
AR1:190

EMBEDDED_ WIN_MOVE_COPY_OK
structure, AR1:192

EMBEDDED_ WIN_MOVE_COPY structure,
ARl:191-192

EMBEDDED_ WIN_NEW _ONLY structure,
AR1:190

EMBEDDED_ WIN_STYLE structure,
AR1:190-191

Embedded writing pads, UI:49
pop-up pad comparison witb, UI:49
resize handles for, UI:272

Embedding
documents, AR1:77
objects, AR2:20
protocol, UI: 166

spreadsheet example, UI:166-167

EMPTYAPP, AWG:92
compiling, AWG:177
documents, AWG:26
objectives, AWG:177
running, AWG:l77
see also Empty Application

EMPTYAPP.C, AWG:91
debugger stream and, A WG: 111
main routine for, AWG:100
msgDestroy, AWG:108
parts of, AWG:100
sample code, AWG:178-179

EmptyAppDestroy, AWG:99
parameters in, AWG:11O

Empty Application, AWG:91-112,
107-108, 107-109

application class and, A WG: 104-1 07
Application Framework and, AWG:91

classes, AWG:l77
code run-through, AWG:97-104
compiling and linking code for,

AWG:92-94
creating, AWG:105
debugger stream and, AWG:111-112
directory, PDT:52
document

copying to hard disk of, AWG:97
corkboard margin for, AWG:97
creation, AWG:95
embedding, AWG:97
floating, AWG:95
messages, AWG:97
tab for, AWG:96

EmptyAppDestroy, AWG:99, 110
enhancements, AWG:163
files, A WG:91

used, AWG:177-178
floating, AWG:95
icon, AWG:95
installing and running, AWG:94
instance, AWG:106
message handler, A WG: 109-111

for msgDestroy, AWG:109
method table, AWG:91

file, AWG:108
option sheet, AWG:96
properties display, AWG:95
sample code, AWG: 177-180
tutorial, AWG:88
zooming, AWG:95
see also EmptyApp

Ems, ARI :308, 309

Encoding
character, AR1 :277
font, AR1 :307

field, AR1:312
run-length, ARI :298
universal standard, AR1:312

#endif statement, PDT:134

Entries
list box, AR1:465

defined, ARI :464
inserting and removing, AR1 :467
supplying, AR1:465-467

Entry points
application, AWG:65

. for application process, AR1 :96-97
for document activation, AR1: 1 02
for metbods, ARl:37

Enumerated values, AWG:78

Enumerating
list items, AR2: 130-131
resources, AR2:351-352

ENVIRON.lNI, PDT:34-40
in boot sequence, PDT:29
DBIni environment, PDT:81
debugger stream and, PDT:135
DebugLogFlushCount line, PDT: 136

DebugLog line, PDT: 136
DebugSet line, PDT: 136
default settings, PDT:34
description, PDT:28
file list of, PDT:35
getting value from, PDT:36
keywords, PDT:36-40

listing of, PDT:36
modifYing, PDT:34
setting format, PDT:35

Episodic layout, window, ARI :225

Erase command (Edit menu), PDT: 171

Error
application, AR1:494
codes, PDT:47-49

broken pen error, 1008; PDT:49
broken pen errors between 100

and, 999; PDT:49
events, PDT: 130
messages

boot, PDT:47
StdMsg and, AWG:169

notes, UI:216
Quick Help and, UI:215
timing-triggered, UI:212-213

system, AR1:494
unknown, AR1 :495

Error-checking macros, AR1 :23-24

Error-handling macros, AWG:80, 81-84
StsChk, AWG:82
StsFailed, AWG:82, 83
StsJmp, AWG:82, 83
StsOK, AWG:81,82, 84
StsRet, AWG:82, 84

Evaluate command. see? command

Even macro, AWG:78

Event data, AR1:575-580
msgKeyChar, ARI :583
msgKeyDown, AR1:582
msgKeyMulti, AR1:584
msgKeyUp, AR1:582
msgPenDown, AR1:576
msgPenEntei-Down, ARl:577
msgPenEnterUp, AR1:577
msgPenExitDown, AR1:578
msgPenExitUp, AR1:578
msgPenInProxDown, AR1 :578
msgPenInProxUp, AR1:578
msgPenMoveDown, ARl:577
msgPenMoveUp, AR1:577
msgPenOutProxUp, AR1:579
msgPenStroke, AR1:579
msgPenTap, AR1:580
msgPenUp, AR1:576

Event handler, values available witbin,
PDT: 126

Events
access, PDT: 129
bp, PDT:130-131

error, PDT: 130
exit, PDT: 130
fault, PDT: 130
generation, AR1:563
handling, AR1:563-564
inserting, AR1:550
intReq, PDT:130
keyboard, AR1:581-584

data, AR1:581-584
low-level pen, AR1:559-560
messages, AR1:546-547
oc, PDT: 131
pen, AR1:575-580
processing, AR1:563-566

pen input sampling and,
AR1:565-566

x-y distribution and, AR1:565
program, PDT:129
queue, inserting messages in, AR1:571
routing, AR1 :547
serial, AR2:266

break status, AR2:273
detecting, AR2:272-273
mask indicators, AR2:272
polling for, AR2:273

status codes, AR1:564
task, PDT:129-130

Exactly-once, datagram delivery, AR2:296

Examining
font header, PDT:196-198
text samples, PDT:198

Exception handling, PDT: 148

Exclusive access services, AR2:445-446
defined, AR2:445

Executing
application, PDT:54-55
C code, PDT:79-80

Execution
control commands, PDT:85
controlling threads of, PDT: 124
skipping, PDT:123-124

Exit events, PDT: 130

Exiting, PenPoint, PDT:55

Expand command (table of contents
View menu), UI:86

Explicit locators, AR2:56

Explicit modes, UI:244-245

Export
note, UI:70
option card, AWG: 172

EXPORT_DOC structure, AR2:154

Exported names, AWG:72

EXPORT_FORMAT structure, AR2:153, 154

Exporting, UI:69
bitmap, PDT: 169-170
Connections notebook and, uI:1 05
documents, UI: 1 08
option card, PDT: 172

in PenPoint, UI:69

Exporting files, AR2: 147
application responsibilities, AR2: 150
clsExport messages, AR2:152-154

msgExport, AR2: 154
msgExportGetFormats,

AR2:152-153
msgExportName, AR2:153

export dialog, AR2:149
export overview, AR2:148-149
file export mechanism, AR2:147
how export happens, AR2:152
see also Importing files

EXPORT_LIST structure, AR2:153

Export to Home (Document menu),
PDT: 170

Expression handling macros, PDT:139

Extensibility, AWG: 14-15

Extensions, AWG:70

Extracting
window, AR1:218, 234

from window tree, AR1 :550

Facilities
clsSPaper, AR1:590-592

examples, AR1:591-592
for networking and connectivity,

AR2:250

FailedO macros, AR1:24

Failures, during msglnitimsgRestore,
AWG:153

Fault events, PDT: 130

Fax
documents, UI:121, 165
service, UI:164-165
Viewer application, ARl:317

FCNTL.H, AR2: 114

FEDIT. see Font editor (FEDIT)

Feedback
audible, UI:213-214
message line and,.UI:214
selection, UI:187, 278-279
visual, UI:247

F gesture, UI:27, 63
MiniNote, UI:142
MiniT ext, UI: 134

Field, AWG:123; AR1:475-486
activation and deactivation,

AR1:481-482
messages, AR1:481

Adobe Type I font, PDT:200
component creation, AR1:480-481
creating, AR1:477-479

custom handwriting translation,
ARl:479

style flags, AR1:477-479
data-specific, AR1:486

delayed input, AR1 :483
font attribute window, PDT:198
font header window, PDT:197
input processing, AR1:482-483
input validation, AR1:484-485
layout, AR1:485
menu, UI:199
messages, AR1:476-477
properties access, AR1:480
sample, ARl:475
style flags, ARI :475-476

editType settings,AR1:478
focusStyle setting, AR1 :478

support, .AR1:416
translator, AR1:479
user interface and, AR1:485
see also clsField; Fill-in fields;

Overwrite fields

FIELD_NEW_ONLY structure, AR1:477

FIELD_STYLE, ARl:477
flags, AR1 :479
values, AR1:478-479

Figure drawing operations, AR1:271-272
closed figures, ARl:271-272, 294
defined, AR1 :269
open figures, AR1:271, 293

File attribute arguments, AR2:76

File browser, AWG:13

File commands, PDT:86

Filed state, AWG:35

File folder, directory icon, UI: 1 08

File handles, AR2:43, 61-62
access intentions, AR2:62
byte position and, AR2:61
creating, AR2:71-73
file access control and, AR2:62
instance messages, AR2:64
locators and, AR2:59
translating file pointer into, AR2:66

File icon, UI:78, 108

File import and export, AR2:147-154
clsExport messages and, AR2:152-154
clslmport messages and, AR2:150-152
concepts, AR2:147-150
functions, AR2:124
interface, AR2:252-253
mechanisms, AR2: 147
see also File System

File menu (FEDIT), PDT:179, 180
Font Attribute command, PDT: 196
Font Header command, PDT:l96
Save Subset command, PDT:l96

File pointer, AR2:66

Files, AR2:43
access control, AR2:62
Adder, AWG:261
Adobe Type I font, PDT:199
Basic Service, AWG:272

Calculator, AWG:262
Clock, AWG:264
closing, AWG:143; AR2:46, 74-75

with stdio, AR2:66
Counter Application, AWG:I96
creating, AR2:69-74
debug stream data, PDT:37
defined, AR2:55
deleting, AR2:75

with browser, AR2: 141
DLC, AR2:401; PDT:53
DLL, AR2:399; PDT:53

creation options, AR2:402-403
DLC files and, AR2:401
DLLMainO routine and,

AR2:402-403
issues, AR2:400
MAKE files and, AR2:403-404
operating system, AR2:403
references to, AR2:403
sharing, AR2:40 1-402
unloading, AR2:400
versions and, AR2:402

Empty Application, AWG:91, 177-178
font, editing, PDT: 179-180
forcing deletion of, AR2:75-76
format compatibility of, AWG:17
header comments for, AWG:73
Hello World (custom window),

AWG:188
Hello World (toolkit), AWG:181
initialization, PDT:28
Inputapp, AWG:270
locations of, AR2:67
MAKE, AR2:403-404
map, PDT: 148
memory-mapped, AWG:143; AR2:55
MIL Service, AWG:274
mode flags, AR2:72
names of, PDT:52

checking, AR2:70-71
file system and, AWG:7
STAMP and, AWG:94

Notepaper App, AWG:265
opening, AWG:37-38, 143; AR2:46

for the first time, A WG: 143-144
to restore, AWG:144-145
with stdio, AR2:66

organization of, AR2:381-398
Paint, AWG:267
PENPOINT.DIR, PDT:55
position and size of, AR2:84-85
protecting data, AR2:66-67
reading, AR2:83

from, AWG:142
registering types of, AR2: 151
renaming, AR2: 141
resource, AR2:337, 342

compacting and flushing, AR2:353
definition, AR2:355
organization, AR2:355-356
viewing contents of, AR2:359, 360

SDK,AWG:67
S-Shot, PDT: 177-178
swap, PDT:39

error messages and, PDT:47
SYSCOPY.lNI, PDT:43
table data, AR2:214
temporary, using handles with, AR2:65
Test Service, AWG:273
Tic-Tac-Toe, AWG:205-206
TIFF, PDT: 175
Toolkit Demo, AWG:269
used in DB session, PDT:69
WATCOM Make, PDT: 148
Writerap, AWG:272
writing to, AWG:141; AR2:83
see also File Handles; Header files

files command, PDT:97

File structure, AWG:72-76
coding suggestions, AWG:76
comments, AWG:75
defines, types, globals, AWG:74
file header comment, AWG:73
function prototypes, AWG:74
include directives, AWG:73-74
indentation, AWG:75
message headers, AWG:75

File system, AWG:7-8; PDT: 18
accessing, AR2:57-68

with stdio, AR2:65-66
attributes, AR2:54-55, 77
auxiliary notebooks and, AR2:422
browser, AR2:124
class and object use in, AWG:20
classes, AR2:58

subclassing, AR2:67
common, operations, AR2:47
concurrency considerations and,

AR2:66-67
connectivity and,AR2:244
developer's quick start, AR2:44-46
directories, AWG:28; AR2:54
documents and, ARl:88-89
document state and, AWG:39
embedded windows and, ARl:122
files, AR2:55
functions, AR2:43-44
handles, AR2:43, 57-62

directory, AR2:59-61
file, AR2:61-62
functions, AR2:57
locators and, AR2:58-59
using with temporary files, AR2:65

hierarchy, embedded applications
and,AWG:35

interface, AR2:252
locators, AR2:55-56
making, changes, AR2:141-142
messages, AR2:62-64
nodes, AR2:52-54

accessing, AR2:57
names, AR2:53-54

service instance, AR2:443
Notebook hierarchy, AWG:31
Notebook use of, AR2:68
organization, AWG:28-29; ARl:88-89
overview, AR2:43-44
paths, AR2:430-431

constants, AR2:430
Penpoint comparison with other

systems, AR2:46-47
PENPOINT.DIR file and, AR2:68
performing, operations, AR2:43
principles and organization,

AR2:49-56
programmic interface provisions,

AR2:57
services and, AR2:443-445
structure, AR2:43
using, AR2:69-91

changing target directory, AR2:86
closing files, AR2:74-75
comparing handles, AR2:86-87
copying and moving nodes,

AR2:80-81
creating directories and files,

AR2:69-74
deleting files and directories,

AR2:75
ejecting floppies, AR2:91
file position and size, AR2:84-85
flushing buffers, AR2:85
forcing deletion of files/directories,

AR2:75-76
getting and setting attributes,

AR2:76-80
getting path handle, AR2:85-86
getting volume information,

AR2:90-91
handle mode flags, AR2:87
making native node, AR2:89-90
node existence determination,

AR2:83
observing changes, AR2:89
reading and writing files, AR2:83
reading directory entries,

AR2:87-89
renaming nodes, AR2:83
setting/changing volume name,

AR2:91
traversing nodes, AR2:81-82
volume specific messages, AR2:91

volumes, AR2:49-52
see also File import and export

Filing, AWG:28
controls, ARI :399
counter object, AWG:145-146
DC, AWG:132-133
disadvantage of, AWG:143
frames, AR1:503
list boxes, ARl:469
methods, AWG:143
object, AWG:129-132, 140-142

state, AWG:135
UI Toolkit components, AR1:365
windows, AR1:253

Fill command (Edit menu), PDT:171

Filled region (progress bar), AR1:531
defaults, AR1:537
manipulating, AR1:537-539

FILLED.TXT, AWG:205, 250

Fill-in fields, UI:33
checklists with, UI: 186
editing gestures for, UI:34
fonts, UI: 188
guidelines for using, UI: 188
menus with, UI:41

edit pad, UI:199
scaling, UI:268
size of, UI: 188
toggle switches and, UI: 180-181
visual segmentation cues and, UI:241
see also Overwrite fields

Fill patterns, AR1:291
alignment, AR1:292
determining, AR1:292
graphic state element, AR1 :278
styles, AR1 :292
windows and, AR1:294

Filter, AR1:548-549
adding, AR1:571
objects, AR1:547
removing, AR1:571

FIM_ GET_INSTALLED _ID _LIST structure,
AR2:418-419

FIM_GET_NAME_FROM_ID structure,
AR2:418

FIM_GET_SET_ID structure, AR2:418

FIM_PRUNE_CONTROL structure, AR1:441

FIM_SHORT_IDs, AR1:441

Find & Replace sheet, UI:63
Find button, UI:63
Replace button, UI:64
Search button, UI:63

Find command (Edit menu), UI:62
mark protocol and, UI: 172

Find sheet, UI:62
modifYing and replacing, UI: 194

fins command, PDT:98

FIXED numbers, AR2: 115

Fixed-point
calculations, AR2: 115
functions, AR2: 116-117
numbers, AR1 :288; AR2: 115

Flags, AWG:79
built-in rule, AR1:600-601
checking, AWG:112
clsBorder style, AR1:373-375
in code profile syntax, PDT: 114
constraint, AR1:395
debugging, AWG:32, 85-86

described by APP _MGR-FLAGS,
AR1:147

directory mode, AR2:71
dp, PDT:119
existence, AR2:70
field style, AR1:475-476
file mode, AR1:180; AR2:72
filter, AR1:298
FS_SEEK, AR2:84
getting and setting, AR1: 180
handle mode, AR2:87
handwriting translation, AR1 :600-602
input, AR1:558, 565-566

clsSPaper, AR1:594-595
window, AR1:569-570

knowledge source, AR1:601-602
node attributes, AR2:79-80
note, AR1 :489
object capability, AR1:25
in object profile syntax, PDT: 117
scrollwin, AR1:459
setting values to, AWG:86
table layout, AR1:384-385
toolkit table, AR1:430-432

modifYing items with, AR1:435
values, AR1:431

transaction item, AR2:203-204
TV_STYLE, AR2:25-26
window, AR1:228-229

input, AR1 :228
setting, AR1 :234-235
style, AR1:228, 229, 232

XList, AR1:611
element, AR1:612

Flag sets, debugging, PDT: 134-135

fl command, PDT:97
file formats, PDT: 180

Flick gestute, UI: 16, 24
Double, Triple, Quadruple, UI:25

guidelines for, UI:239
family, UI:24

summary, Ul:235
in gesture mode, UI:258
guidelines for, UI:237
hot point for, UI:231-232
MiniNote gesture mode, UI:135, 141
MiniNote ink mode, UI:135
MiniText, UI:133-134
pop-up checklists and, UI:30
scrolling with, UI:264-265
to switch modes, UI:249
Tap & Flick and, UI:37
see also Gestures

Flick Left-Right gesture, Ul:26
guidelines for, UI:238
ink editing, UI:258
MiniNote, UI:140
to toggle modes, Ul:256

Flick Up-Down gesture, Ul:26, 66
in gesture mode, UI:259
guidelines for, UI:238

Float & Zoom preferences (Settings
notebook), ul:94

Floating, AWG:95
accessories, AWG:34, 104
navigation control area, UI:267
page, ul:15

Floating allowed preference, AR2:365

Floppy disk
ejecting, AR2:91
icon, UI:77

Flow control, AR2:265-266
characters, AR2:270
protocols, AR2:265
specifYing, AR2:269
using, AR2:272

Flow pagination, AR1:137

Flushing
buffered output, AR2:353
buffers, AR2:85

input and output, AR2:271
resource files, AR2:353
streams, AR2:136

Folder icon (open/closed), ul:78

FONT directory, AR2:384, 386

Font editor (FEDIT), PDT: 179-210
Adobe Type I fonts, PDT: 199-204
concepts, PDT: 179-182
editing bitmaps, PDT:192-195
editing character shapes, PDT: 182-190
editing hints, PDT: 190-192
font file formats, PDT:204-21O
function, PDT: 179
getting started with, PDT: 179-180
miscellaneous functions, PDT:195-199

Font Field preference, UI: 188

Font icon, UI:78

Font installation manager, AR2:416-419

FONTLB_NEW_ONLY structure, AR1:473

Font list boxes, AR1:473
creating, AR1:473
notification, AR1:473

Font menu (System Log), PDT: 143

Fonts & Layout preferences (Settings
notebook), UI:93

Fonts, UI:101; AR1:275-276
adding character to, PDT: 193
aspect ratio of, AR1:306
attributes, AR1:275, 303, 305
attribute window, PDT: 197

fields, PDT: 198
bitmaps, AR1:275, 314; PDT: 192
cache loading, AR1:314
changing, AR1 :302
common, AR1:306-307
control of (MiniNote), Ul: 138
default, AR1 :305-306
defined, AR1:303

encoding, AR1 :307
fields, AR1:312

enumeration of, AR1:304
file

creating, PDT: 180
editing, PDT: 179

file formats, PDT:204-21O
Nimbus-Q, PDT:204-206
PenPoint Packed format,

PDT:206-210
geometry, AR1 :308-309
gesture, AWG:174
Gesture, file, AR2: 188-190
graphic state element, AR1:278
groups of, AR1:305-307
handle, AR2:416

finding, AR2:418
header

editing and examining,
PDT: 196-198

Nimbus-Q, PDT:205
PenPoint Packed, PDT:206-207
window, PDT:l96
window fields, PDT: 197

10, AR1:275, 276, 303
opening fonts and, AR1:303-304

identification, AR2:416-417
IDs, getting and setting, AR2:418
installable software views and, UI:109
installed, UI:101

displaying, AR1:441
list of, AR2:418-419

installing, AR2:378
metrics, AR1:275, 307-310
names, AR1:303, 308; AR2:418
opening, AR1:275-276, 303-305

. outline, AR1:275; PDT: 16
scales, AWG:127
scaling, AR1:276, 310-311
search path, AR1 :313-314
state, AR1 :315
storing, AR1:304
strings, AR1 :304-305
switching berween, ARr:315
system, AR1 :306; AR2:363

scaling with, UI:269-270
size of, UI:274

transforming, AR1 :307
units, PDT: 181
user,AR2:363

choice of, AR1:304
user-visible, AR1:306
using, in documentation,

PDT: 198-199
weight of, AR1:306

Font size
preference, UI: 188
system, UI:269-270
user defined, UI:271

FOO.C, AWG:252, 257-259

FOO.H, AWG:252, 256-257

Foreground colors, AR1:274
graphic state element, AR1:278
painting, AR1:376
palette colors, AR1:295
RGB color values, AR1:295

Format codes, AR1 :495-496

FORMATFILE, AWG:144

Frame application, AR1:212

Frame decorations, AR1:141, 507-509
close box, AR1:507
command bar, AR1:508
page number, AR1 :509
removing, AR1: 140-141
shadow, AR1:509
tab bars, AR1:508
title bars, AR1:507
user interface, AR1:507

frameNewFields, AR1:16

FRAME_NEW structure, AR1:500

Frame numbers, PDT:75

Frame object, AWG:66

Frames, AWG:27, 113; AR1:497-505;
PDT:16

Application Framework and,
AR1:504-505

client windows and, AWG: 122
components of, AR1:497
creating, AWG:121; AR1:500
custom layout example, AR1:389
filing, AR1:503
items included in, AWG:120
layout, AR1:500-501
messages, AR1:499
modifying, AR1:500
multiple, AR1:500
notification, AR1:501-503

close, float, bring-to-front, delete,
AR1:503

selection, AR1 :502
zoom, AR1:502-503

resizing and dragging, AR1:501
scrollbars and, AR1:498
styles of, AR1 :498
subclasses of, AR1:505
toolkit window inside, A WG: 121
see also clsFrame

FRAME_STYLE structure, AR1:500

FRAME_ZOOM structure, AR1:503

Freeing capability, AR1:26

Freeze count, PDT:124
thawing, PDT:124

FS_CHANGE_INFO structure, AR2:89

fs command, PDT:98
for enabling logging, PDT: 148
for setting debug flags, PDT: 147

fsDirNewDefaultMode, AR2:71

FS_DIR_NEW_MODE, AR2:71

FS_EXIST constants, AR2:70

fsExistGenUnique flag, AR2:70

fsFileNewDefaultMode, AR2:73

FS_FILE_NEW_MODE constants, AR2:72

FS_FLAT_LOCATOR structure, AR2:140,
141

FS_FORCE_DELETE structure, AR2:75

FS_GET_PATH structure, AR2:85-86

FS_GET_SET_ATTR structure, AR2:76-77
getting values and, AR2:78
setting values and, AR2:79

FS_GET_ VOL_METRICS structure, AR2:90

FS.H, AR2:69
attribute label macros, AR2:77-78

FS_LOCATOR structure, AR2:86

FSMakeAttr macro, PDT: 163

FS_MAKE_NATIVE structure, AR2:90

FS_MOVE_COPY structure, AR2:80

FSNameValidO function, AR2:53, 70

FS_NEW_ONLY structure, AR1:179

FS_NEW structure, AR1:179; AR2:69-70,
71

FS_NODE_EXISTS structure, AR2:83

FS_NODE_FLAGS structure, AR2:79

fsNoExistCreateUnique flag, AR2:70

FS_READ_DIR structure, AR2:88

FS_SEEK structure, AR2:84
flags, AR2:84

FS_SET_HANDLE_MODE structure, AR2:87

fsSharedMemoryMap, AR2:73

fsTempFile, AR2:65

FS_TRAVERSE structure, AR2:81

FSUI task, PDT:153

FS_ VOL_METRICS structure, AR2:61

fullEnvironment flag, AR1 :98

Functions, AWG:71
message passing, PDT: 138
prototypes of, AWG:74
qualifiers, AWG:78

FxMakeFixedO routine, AR2: 115

fz command, PDT: 124

Gauges, UI:38

Gazelle, sample definition, PDT:61

g command, PDT:71
code addresses and, PDT:88
datasheet, PDT:99

GDIR command, AR2:390

GDIR utility, PDT: 162

Generate Mask command (Edit menu),
PDT:171

Geometric shapes, rendering with thick
borders, AR1:340-342

Gesture accelerators, UI:27
application functionality and, UI:224
for scrolling lists, UI:188

Gesture collisions, UI:233-234

Gesture, font, AR2:188-190

Gesture icon, UI:78

Gesture margin, UI:135-136, 257

Gesture mode, UI:245-246
core, UI:247
guidelines for editing in, UI:257
MiniNote, UI:135

. toggle switch, UI:30
default, UI:248

see also Gestures

Gesture recognition engine, UI:233

Gestures, AWG:4; UI:15-17, 23-27
adding, to help text, AR2:190
adding, to Quick Help strings,

AR2:191
bounding box, UI:231
categories of, UI:23

capital letter accelerators, UI:27
core, UI:16-17, 24-25
non-core, UI:23, 25-27

collisions of, UI:233-234
for drag & drop operation, UI:68
dual command path and, UI:15-16
embedded window, ARl:127
families of, UI:23-24, 235-236

defined, UI:235
in fields, UI:34
fonts for, AWG:174
functions of, UI:16-17
GO Address book, AR2:323
handling, AWG:156-157
handwriting and, AWG:156-158
hot points of, UI:231-232
hot spots, ARl:617
icons response to, UI:74
ink editing, UI:258-259
installable software views and, UI: 109
list box, ARI :468
MiniNote, UI:140-142

gesture margins and, UI:135-136
MiniText, UI:133-134
notification, ARI :408
passing on unused, UI:233
processing, UI:231-240
propagation of, ARl:368-369
for reference buttons, UI:79
responding to, ARl:369
selection, UI:187, 279; ARl:128
snapshots of, PDT: 177
targeting, UI:231-233

auto-selection and, UI:283
guidelines, UI:232-233
hot points, UI:231-232

UI Toolkit components and, ARl:368
usage guidelines for, UI:236-240
use of, UI:224

for zooming, UI:266
see also specific gestures and types of

gestures
Gesture timeout preference, AR2:364

Gesture windows, ARl:368-370
gesture propagation, ARI :368-369
messages, ARl:617-618
Quick Help IDs, ARl:370
responding to gestures, ARl:369
using, ARl:617-618
see also clsGWin

Getting and setting
application directory attributes,

ARl:180-182
all, ARl:180
individual, ARl:180-182

embedded window style, ARl: 190-191
pixel values, ARl:259
XList elements, ARl:615

Globals, AWG:74
file section, AWG:74

Global sequence numbers, ARl: 178
getting, ARl:179

Global well-known UID, AWG:53

Glyphs
finding, ARl:313-314

metrics and encoding, ARl:314
search path, ARl:313-314

missing, ARl:277

GO Address book, AR2:323-324
gestures, AR2:323
illustrated, AR2:324
loading, AR2:323
using, AR2:323
see also Address book

GO.BAT, PDT:45
defined, PDT: 165
modifying for, PDT:45

GO Fax icons, UI:77, 216

GO.H, AWG:77
bit definition, AWG:79
compiler independence and, AWG:77
uppercase keywords and, AWG:78

GO's proprietary packed format. see
PenPoint, Packed format

. Goto buttons. see Reference buttons

Grabber, ARl:549
input, ARl:572
object, ARI :547'

Grab boxes, ARl:528-529

Grafics, ARl:319-320
coordinates, ARl:320
current, ARl:324
defined, ARl:319
drawing by adding, ARl:325 ~
drawing messages and, ARl:319
editing, ARl:324
index, ARl:324

invisible, ARl :326
opcode, ARl:319
scaling, ARI :327

Graphical gestures. see Gestures

Graphic design
fundamentals, UI: 149
of icons, UI:219-222

Graphics, AWG:9
classes, ARl:210-211

hierarchy, ARI :211
coordinate systems, ARl:267-269
drawing context features, ARl:270
models and implementation,

ARI :265-267
overview, AWG:128-129
subsystem, AR2:5; PDT: 18
using picture segments in,

ARl:323-326
see also ImagePoint; System drawing

context

Graphic state, ARl:270, 277-278
determining filled areas, ARl:292
elements, ARl:277-278
filling and stoking, ARl:290
fill pattern alignment, ARI :292
line and fill patterns, ARl:291-292
line styles, ARl:290-291
messages, ARl:281
raster operations, ARl :292-293
setting attributes of, ARl:271
storage, ARI :277

Grid
for aligning controls, UI:206
building translators with, UI:241
use in graphic design, UI: 149

Group command (MiniNote Arrange
menu), UI:137

Group, font, ARl:305-307
common, ARl:306-307
default, ARI :305-306
encoding, ARl:307
names, ARl:305
transforming, ARl:307

growChildHeight flag, ARl:385, 387

growChildWidth flag, ARl:385, 387

GUI (Graphical User Interface), UI:149
button label conventions, UI: 175
drag & drop model, UI:285
explicit modality and, UI:244-245
spacial modality and, UI:244

GWin, AWG:167

GWIN_GESTURE structure, ARl:369, 617

Half-outlined buttons, UI: 177

Handle mode flags, AR2:87

Handles
comparing, AR2:86-87

creating, AR2:69-70
file system, AR2:57-62

directory handles, AR2:69-61
file handles, AR2:61-62
locators and, AR2:58-59
using with temporary files, AR2:65

finding, AR2:263-264
freeing, AR2:74-75
getting path of, AR2:85
objects, AR2:57

creating, AR2:58
on parallel port, AR2:251
on serial port, AR2:251
parallel port, AR2:276-277
resize, UI:272
serial, AR2:268

data modem, AR2:279-280

Hand preference, UI:35; AR2:363

Handwriting
engine, UI: 100
gestures and, AWG:156-158
icon, UI:78
installable software views and, UI: 109
installed, UI:99-100
processing, UI:241-243

constraining translation and,
UI:241-243

using translators and, UI:241
profile, UI: 1 00
translators, UI:241

building, UI:242
letters, numbers, punctuation,

symbols, UI:242

Handwriting capture
classes, AR1:551
object, AR1:555
subsystem, AR1:555

Handwriting Preference sheet, UI: 188

Handwriting timeout preference, AR2:364

Handwriting translation, AR1:479
engine, AWG: 11
flags, AR1:600-602

built-in rules, AR1:600-601
knowledge source rules,

AR1:601-602
post-processing rules, AR1:602

subsystem, AWG:4, 10; AR1:546,
551-553; PDT:17

translation classes, AR1:552-553
window subclasses, AR1:551-552

Hard disk icon, UI:77

Hardware, PC, PDT:25-28
labelling volumes, PDT:27-28
machine configurations, PDT:26
memory, caches, RAM disks, PDT:27
mouse, PDT:26
networks, PDT:27
specifications, PDT:25

Hardware requirements, UI:5

Hardware RTS/CTS flow control,
AR2:265, 266

see also Flow control

h command, PDT:99

Header files, AWG:53; AR1:31; AR2:95
for class info, A WG: 118
for clsApp, AR1:160-161
common, AWG:74, 102
creating, AR1:36
C source and, AWG:67
debugging flag sets and, PDT: 135
enum value and, AWG:78
function prototypes, AWG:74
goto buttons, AR1: 117
indentation, AWG:75
INTL.H, A WG:62
labels, ARl: 14
libraries and, AWG:102
message header, AWG:75
MT output file, AR1:46
multiple inclusion, AWG:73-74
structure, AWG:72
VI Toolkit classes, AR1:364
see also Files

Headers and Footers sheet, UI:59

Heaps, AR2:101-102
defined, AR2: 1 0 1
management, AR2: 101
size and characteristics of, AR2: 102

HELLO.C, AWG:188-190

HELLO.DLC, AWG:195

HELLOTKl.C, AWG:113, 181
code run-through for, AWG:114-122
highlights of, AWG: 114-115
sample code, AWG:182-184
testing well-known VID, AWG: 114

HELLOTK2.C, AWG:113, 181
custom layout window, AWG:123
enhancements, AWG:123
HELLOTKl.C comparison, AWG:122
highlights, AWG:122-123
layout, AWG:122-123
one client window per frame,

AWG:122
sample code, A WG: 184-186

HELLOTK, AWG: 113
compiling and linking, AWG: 114
things to do with, AWG:114

HELLOWIN.C, AWG:190-194

HELLOWIN.H, AWG:190

HelloWinInit, AWG:131
code, A WG: 131

Hello World (custom window),
AWG:125-128

classes, AWG:187
clsHelloWin highlights, AWG:127-128
clsHelloWorid highlights, AWG:127
compiling, A WG: 187

linking and, AWG:125-127

debugging, AWG:133-134
DLC files and, AWG:127
DLL files and, AWG:126
drawing in window, A WG: 133
files, A WG: 188
font scales and, AWG:127
modifying, AWG:133
objectives, AWG:187
page turn, AWG:132
running, AWG:187
sample code, AWG:187-195
tutorial, AWG:89
window creation, AWG: 130

Hello World (toolkit), AWG:113-123
classes, AWG:117, 181
client window and, A WG: 120
code run-through for HELLOTKl.c,

AWG:114-122
compiling, AWG:181
creating application instances for,

AWG:114
files, AWG:181
HELLOTK, AWG:113-114
installing, AWG: 114
label creation, AWG:121
message sending, AWG: 115-116
method table, AWG:114
msgAppInit, AWG: 114-115
running, AWG:181
sample code, AWG:180-186
second HELLOTK highlights,

AWG:122-123
testing, AWG:181
tutorial, AWG:89
VI Toolkit and, AWG:113
see also VI Toolkit

Help, UI:215; AR2: 179-191
advanced topics, AR2:187-191
concepts, AR2: 179-182
directory, AR2:393-394
documents, creating, AWG:165-166
gesture, AWG:166
Gesture font and, AR2:188-190
Help Notebook, AR2:179-180
icon, UI:13, 76,123,124; AR2:179
loading and unloading, AR1: 154
message, UI:123
Notebook, AWG:13, 33; UI:13, 215;

AR1:154
Tic-Tac-Toe, AWG:165-166

Quick Help, AWG:166-168; UI:215;
AR2:181-182

resources, AR2: 183-187
systems, AWG:13
templates, AR2:387
text, AR2: 180

adding gestures to, AR2: 190
creating, AR2: 180
source files, AWG:250

HELP directory, AR2:387, 393-394

Help facilities, UI:123-125
Help notebook, UI:124-125
Quick Help, UI:123

Help notebook, UI:124-125, 215;
AR2:179-180,393

contents, AR2:394
creating help text and, AR2: 180
defined, AR2: 179
design checklist and, UI:295
directories, AR2: 179-180
index, UI: 125
table of contents, VI: 124
see also Auxiliary notebooks;

Connections notebook;
Notebook; Settings
notebook; Stationary
notebook

HELP subdirectory, AWG:165

HELTBL.TBL, AWG:188

HELWTBL.TBL, AWG:188

Hexadecimal numbers, PDT:72
viewing call stacks and, PDT:74

H gesture, UI:27

. Hierarchical menus, UI:199

Hierarchy, AWG:29-32
application, AWG:28-35

embedding and, AWG:35
sections and, AWG:28

Application Framework, AWG:30, 40
classes, AR 1: 71

class, AWG:44, 119
clsApp messages, AR1:158, 161-163
container application classes, AR1: 186
graphics classes, AR1:211
Notebook, AWG:29-32
software, AR1:76
subsystem, AR1:545
translation class, AR1:598
UI Toolkit classes, AR1:357
window, AR1:251-252

High-level development tools, PDT:6
development option, PDT:5

High-speed packet I/O interface,
AR2:252,273-274

notes, AR2:274
on serial lines, AR2:273
parallel cable connection detection,

AR2:274
protocol variations, AR2:274

Hints, PDT: 190
altering, PDT: 191
control handles, PDT: 191
creating, PDT: 192
data, GO font, PDT:209
deleting, PDT: 192
editing, PDT:190-192

window, PDT:190-191
effectiveness of, PDT: 191
functions, PDT: 190

x and y operators, PDT:191, 192

Hit detection, AR1:270
defined, AR1 :269
messages, AR1 :283

Holder, AR1:202
messages sent by, AR1:202-203

Horizontal Flip command (Edit menu),
PDT:171

Horiwntal scrolling, UI:274-275

Hot links, AWG:12

Hot mode, AWG:39
documents in, AR1:79, 107
setting, AR1:162

Hot points
gesture, UI:231-232
icon, UI:74, 217-219

correct placement of, UI:217-219

Hotspot
bitmap, PDT: 168
cached image, AR1:273, 300
gesture, AR1:617

Hotspot Paint mode, PDT: 168
Back menu and, PDT: 173
defined, PDT:171
Ink menu and, PDT: 173

Housekeeping functions, A WG: 1

HWXPROT directory, AR2:384, 386

I-beam cursor, UI:283

Icon bitmap, UI:217-218
specifications, UI:221

ICON_COPY_PIXELS structure, AR1:525

Icon mask, UI:221-222

ICON_NEW_ONLY structure, AR1:524

Icons, AWG:42, 171-172; UI:73-78;
AR1:418, 523-526; PDT:17

. 3-D, UI:221
Accessory, AWG:95; UI:77
application, UI:216-222

for accessories, UI:217
for documents, UI:216-217

application and document, AWG:171
bitmap editor and, PDT:167-168
Bookshelf, UI:76
broken pen, PDT:47
check gesture over, UI:75
closed, UI:74, 221-222
creating, AWG:l72; AR1:524-525
default, PDT: 168
design checklist and, UI:295
design guidelines for, UI:219-222

icon mask design, UI:221-222
no "3-D" style, UI:221
relationship of bitmaps, UI:220
simplicity, UI:219
size, VI:219

dimensions for, VI:217-219

directory, VI: 1 08
disk, UI:77

contents, UI:78
document, UI:77
drag, VI:286-287

for move and copy, UI:287
refusing, UI:289

embedded, UI: 168
in-line, UI:168
pop-up, UI: 170-171

embedded documents and, UI:73
embedding and, UI:167
Empty Application, AWG:95
file, UI:78, 108
gesture response of, UI:74
GO's conventions for, UI:216-217
hot points for, UI:74, 217-219
installable software, UI:78
large, UI:220
large and small, PDT: 168
layout, AR1:525
messages, AR1:523
Notebook, UI:76
notification, AR1:525
open, UI:74, 221-222
operator, PDT:185
option sheets for, UI:75

in-line option, VI: 171
size specification, UI:217

outline editing window and, PDT: 184
painting, AR1 :525
PenPoint standard list of, UI:76-78
picture styles for, AR1 :524
selection feedback for, UI:279
showing application state with, VI:222
sizes of, UI:74, 217
small, UI:220
usage, UI:73
see also clslcon; Pictures

ICON_STYLE structure, AR1:524

IDataDeref, AWG: 140

idcommand, PDT:99

Identifiers
known, PDT:76
scope of, PDT:77
types of, PDT:76
see also UID; UUIDs

Identifying, DLLs, AR2:400-401

Idle task, PDT: 151

ids command, PDT:76, 100

IDSP task, PDT:152

#ifdef statement, PDT:134

I gesture, UI:27
MiniText, UI:134

Image device, AR1:256-263
accessing, AR1:256-257

pixels in image window and,
AR1:259-262

binding, AR1:257-258

cached images vs., AR1:301
comparison with windowing devices,

ARl:256
complex use of, AR1:261-262
creating, AR1:256-257
defined, AR1:255
destroying, AR1 :262
dirty windows and, AR1:259
drawing, AR1:259
landscape and portrait mode, AR1:262
multiple pixelmaps and, ARl:262
performance tips, AR1:263
target device, AR1:257, 258
UID and, AR1:256

Image mask, AR1 :273
cached, AR1:273

ImagePoint, AR1 :209; PDT: 15
font support, AR1:302-315

amount of fitting text, AR1:313
API use, AR1:302
character metrics, AR1:310
drawing text, AR1:311-312
finding glyph, AR1 :313-314
font attributes, AR1:305
font cache, AR1:314
font defined, AR1:303
font metrics, AR1:307-310
group, AR1:305-307
improving performance, AR1 :315
measuring text, AR1:312
opening font, AR1 :303-305
scaling font, AR1 :310-311
spacing text, AR1:312
text and drawing context, ARI :302

graphics, elements of, AWG:9
imaging model, AWG:9; PDT:15-16

class and object use in, AWG:20
for printing, AWG:9-10
system drawing context, AWG: 128

interface, AWG:9
messages, AWG:9
overview, AR1:209-21O
rendering details, AR1:335-342

earlier release differences, ARl:342
geometric shapes with thick

borders, AR1:340-342
LDC, AR1:336
line drawing, AR1:337-338
line width and corner radius

scaling, ARI :339-340
LUC, AR1:335
polygons, AR1:339

tiling and, AR1:292
windows and, AR1:21O
see also Graphics

Image shifting, PDT: 167

Image window, AR1:259-262
copying pixels in, AR1:259-260
getting and setting pixel values in,

AR1:259

overlapping windows in, AR1 :260
stenciling in, ARl:260-262

Imaging models, AR1:265-266
abstract coordinates of, AR1 :267
sampled images and, AR1:299
simple, AR1:266

IM_CURRENT_NOTIFY structure, AR2:408

IM_DEINSTALL structure, AR2:412

IM_DUP structure, AR2:412

IM_GET_STATE structure, AR2:413

IMgr task, PDT: 152

1M_INSTALL structure, AR2:411

IM_INUSE_NOTIFY structure, AR2:408

1M_MODIFIED_NOTIFY structure, AR2:408

1M_NEW structure, AR2:41 0

1M_NOTIFY structure, AR2:408

Implicit locators, AR2:56

IMPORLDOC structure, AR2: 151-152

Importing, UI:69
bitmap, PDT: 168
Connections notebook and, UI: 1 05
files, UI: 13

Directoty view for, UI: 1 08

Importing files, AR2: 147
application responsibilities, AR2: 150
clsImport messages, AR2:150-152

msgImport, AR2:151-152
msgImportQuery, AR2: 150-151

file import mechanism, AR2:147
overview, AR2:148
TOC browser and, AR2: 148
see also Exporting files

Import note, UI:70

IMPORT_QUERY structure, AR2:150-151

IM_SET_NAME structure, AR2:412

In:Out, AWG:50
arguments, AR1:14
message header and, AWG:75

In, AWG:50
arguments, AR1: 14
message header and, AWG:75

In box, AWG:5; UI:121; AR2:305
concepts, AR2:312-313
connectivity and, AR2:244
documents, AR2:313
general device concepts, AR2:306-308
icon, UI:13, 76

state of application and, UI:222
introduction, AR2:305-306
networking and, AWG:8
as notebook, AWG:33
service, UI:164; AR2:312

active, AR2:312-313
communication target, AR2:307
enabling and disabling,

AR2:307-308
installing, AR2:307

messages, AR2:313-316
passive, AR2:312-313
sections, AR2:306-307

table of contents, UI: 121
transfer service and, UI: 159-161
see also Out box

Inbox Notebook. see Auxiliary notebooks

Include directives, AWG:73

Indentation, AWG:75

Index
directory, AR2:56, 67

creating and using, AR2:80
Help notebook, UI:125
list object, AR2:127
master, PDT:13, 21
reference buttons for, UI: 171
resource 10, AR2:344
table, AR1:388
text, AR2:27-29

Information storage and retrieval. see
Notebook, metaphor

Inheritance, AWG:25; AR1:82
of application class, AR1:86
capability, AR1 :27
class, AWG:43, 44-45

Initialization
files, PDT:28

default versions, PDT:28
information, AWG: 118-119
routines, AWG:98-99, 100-101;

AR2:451; PDT:42
class, AR2:452
service, AR2:451-452

window, AWG:131-132

Initial View control (Disk option sheet),
UI:112,113

InitService, AR2:379, 452-453
call for template service, AR2:453

INIT subdirectory, AR2:387

Ink
component, UI: 135

gestures accepted by, UI: 140-142
Notepaper, UI:255
option sheets, UI:138-139
scaling, UI:269-270

data object, UI:254
editing, UI:255

guidelines for, UI:255-259
functionality, UI:254
gestures, UI:258-259
menu, PDT: 173
mode, UI:245-246, 255-256

Flick Left-Right gesture, UI:256
gestures, UI:256, 258

over the selection, UI:256
MiniNote, UI:135
pen styles, UI:256
selecting in, UI:255-256
toggle switch, UI:248

using, UI:254-259
ways of, UI:254-255

In-line fields, ARl:475

In-line style (embedded document),
UI:168-170

dialog/option sheets and, UI:207~208
mixing with pop-up style, UI:207 -208

Inner rectangle region, ARl:379

Input
delayed, ARI :483

messages, ARI :483
device drivers, ARl:567

INPUT_EVENT structure and,
ARl:567-568

distribution model, AWG:ll
event

handling, AWG:156
status codes, ARl:564, 569
see also Event

flags, ARl:558, 565-566
clsSPaper, ARl:594-595
window, ARl:569-570
see also specific input flags

focus, ARl:548
functions

. InputEventlnsertO, ARl:565, 571
InputFilterAddO, ARl:547, 571
InputFilterRemoveO, ARl:571
InputGetGrabO, ARl:572
InputGetTargetO, ARl:573
InputSetGrabO, ARl:572
InputSetTargetO, ARl:572
InputTargetO, ARl:550

grabber, ARl:572
handling, AWG:149-158
leaf-to-root model and, ARl:565
line status, AR2:270
low-level pen, ARl:558-562
multi-key, AWG:158
pen, sampling, ARl:565-566
processing, ARl:482-483

messages, ARl:482
registry, ARl:547-548, 567

defined, ARl:546
system, PDT: 17

messages, ARl:570
translation, A WG: 1 0
windows and, AWG:8

target, ARl:572-573
object, ARl:581

validation, ARl:484-485
messages, ARl:484

see also Input buffer; Input modes;
Input subsystem

Inputapp, AWG:269-270

INPUTAPP.C, ARl:559-560

Input buffer, AR2:265
flushing, AR2:271
status, AR2:271
see also Buffers

INPUT_EVENT_DATA structure,
ARl:575-576

for keyboard events, ARl:581

InputEventGenO interface, ARl:549, 563

INPUT_EVENT structure, ARl:567

inputlnk flag, ARI :566

inputlnkThrough flag, ARl:566

Input modes, UI:244-253
guidelines for using, UI:246-248

core gesture mode, UI:247
mode switch, UI:247
mode toggle switch, UI:247-248

modal applications, UI:253
role of, UI:244-246
switch location, UI:251-252
switch presentation, UI:248-250
user models for, UI:245-246
see also Modes

inputMoveDelta flag, ARl:565

inputNoBuy flag, ARl:566

Input pad style preference, AR2:366

inputResolution flag, ARl:566

Input subsystem, ARl:545, 546-550;
AR2:27-29

API, ARl:567-573
event data structure, ARl:567-568

constants, ARl:568-570
event routing, ARl:547
filters, ARI :548-549
grabber, ARl:549
input registry, ARl:547-548
inserting events, ARl:550
listener objects, ARl:549
messages, ARl:570
procedures, ARl:571-573

adding filter, ARl:571
getting grab information, ARl:572
getting target, ARl:573
inserting message into event queue,

ARl:571
removing filter, ARl:571
setting input grabber, ARl:572
setting input target, AR1:572

routing, ARl:548
target object, ARl:550
VIDs, ARl:568
window tree, ARl:550

inputTransparent flag, ARl:566

InRange macro, AWG:78

Insert function, UI: 16

Inserting
character, AR2:12
custom window as main application

window, ARl:561-562
events in input stream, ARl:550
IP window, ARl:556-557
list box entries, ARI :467
messages in event queue, ARl:571

text view in scroll window, AR2:30
window in window tree, ARl:550
windows, ARl:217, 233-234
XList element, ARl:614

Insertion pads, ARl:585
creating, ARl:586-587
deleting, AR1:587
displaying, ARl:587
text, AR2:9

creating, AR2:33
destroying, AR2:33
embedding objects and, AR2:26
messages, AR2:33
using, AR2:33

VI styles, ARl:587

Insertion point, ARI :416

Insert Line command (MiniNote Edit
menu), UI:136

Insert space function, UI: 17

Imide AppleTalk, AR2:301

Installable applidtions, AR2:386-387

Installable entities, AR2:386

Installable items, AR2:411-412
altering, attributes, AR2:412
changing, name, AR2:412
deleting, AR2:412
duplicating, AR2:412
finding, AR2:413
getting and setting current, AR2:412
getting attributes of, AR2:413
getting information about, AR2:413
getting list of, AR2:413
installing, AR2:411
manager, AR2:410-411
size of, AR2:413

Installable services, AR2:387

Installable software
icons, UI:78
sheet, AWG:22

Installation, AWG:I05
API's, PDT:20-21

concepts, AR2:375-380
overview, AR2:373

classes, AR2:379-380
dialog, UI: 113

configuration, UI:164
options, UI:165

document options and, UI:164
features, AWG:163
flexibilityvs. simplicity, UI:165
initiation, AR2:376
manager class, PDT:21
MS-DOS, AWG:21-22
PenPoint, AWG:22
process, AR2:376-377
service, AR2:378-379, 450-456

Installation managers, AR2:375-376,
379-380,405-419

advanced clsInstallMgr topics and,
AR2:414

application, AR2:415-416
code, AR2:414-416
font, AR2:416-419
installer concepts and, AR2:405-407
observing, AR2:407-409
service, AR2:416
using clsInstallMgr messages and,

AR2:409-413

Install button (Settings notebook), UI:99

install command, PDT:131

Installed Software section (Settings
notebook), UI:13, 90, 97-101

Applications page, VI:98
Installed Dictionaries page, UI:I00
Installed Fonts page, UI: 101
Installed Handwriting page,

VI:99-100
Installed User Profiles page, UI:I0l
install sheet, UI:99
menus, UI:98
options, VI:98
overview, UI:97-98
uses, UI:97-98

Installer, AWG:22; AR2:405
application, AWG:67
concepts, AR2:405-407
defined, AR2:406
deinstallation with, AWG:38
help documents and, AWG:165
PenPoint, PDT:20

in application installation,
PDT:50-51

concepts and components,
PDT:20-21

functions, PDT:51
for installing while PenPoint is

running, PDT:51
Quick, PDT:50

Quick Help and, AWG:168
responsibilities, AWG:22-23

Installing
application, PDT:50-53

boot-time install, PDT:52-53
to debug, PDT:70
,DLL and ,OLe files, PDT:53
illustrated, PDT:52
while running PenPoint,

PDT:51-52
application monitor and,

ARl:151-152
applications, AWG:21, 67; UI:13,

162-165; AR1:96-99;
AR2:377-378,415

accessories, UI: 163
document stationary, UI:162
flexibility vs. simplicity, UI: 165
services, UI:163-165

classes, AR1:33, 47-48
new, AR1:146-147

CounterApp, AWG:137
DB, PDT:70
devices, AR2:307
from disk, UI: 105
Empty Application, AWG:94
fonts and handwriting prototypes,

AR2:378
service class, AR2:441-442
services, AR2:307, 415
S-Shot, PDT:175
see also Adding

Install sheet, UI:99

Instance data, AWG:55, 130; AR1:33,
34-35

accessing, AWG:132; AR1:35
allocating, AR1 :34
application, AWG:65
clsCntr, AWG:138-139
contents, AR1:99
CounterApp, AWG:142-146
defining additional, AR1:85
document activation and, AR1: 104
Hello World (custom window),

AWG:130
instance info vs., AWG:153
maintaining dynamic, AR1:35
memory protection and, AR1 :34
message handler and, AWG:60
modifYing read-only, AWG:140
saving and restoring, AR1:35
saving in, AWG:65
size, AWG:54-55; AR1:47-48
updating, AWG:140, 142
using, AWG:132-133

Instances, AWG:103; ARl:5
accessory, UI: 163
application, AR1:82
application classes and, AWG:24
classes and, AWG:43, 48
Class Manager messages and, AWG:106
clsApp and, AWG:120
initializing new, AWG:49
objects and, AWG:43
processing of, AWG:47-48
of simple class, AR1 :84
Tic-Tac-Toe, AWG:150

INST directory, AR2:396
service directory and, AR2:444, 445

Integral coordinates, ARI :268

Intel 386DX Programmer's Reference
Manua~ PDT:7

Interaction checklists, AWG:68-69

Interfaces
connectivity and, AR2:244
data modem, AR2:279-293
devices and, AR2:249
file import/export, AR2:252-253
file system, AR2:252
high-speed packet I/O, AR2:252

modem, AR2:253
networking, AR2:253
parallel I/O, AR2:251-252, 275-278
serial I/O, AR2:251, 265-274
services and, AR2:249-250
SoftTalk, AR2:250
stream, AR2:246

Internal disk size, UI: 1 03

Internationalization
data types and, AWG:77
defined, AWG:61
designing for, AWG:61-64
preparing for, AWG:63-64

Interrupts, PDT: 148-151

Intertask communication, AR2: 100-10 1
messages, AR2: 100-10 1
semaphores, AR2:101

Intertask messages, AR2: 1 00-1 0 1
Class Manager messages

and, AR2:100
modes, AR2: 100
processing order, AR2:100

INTL.H file, AWG:62; AR2:111

"Int w/o RB: 7" messages, PDT:47, 50

Invert command (Edit menu), PDT:171

IP_NEW typed structure, AR1:586

IP_XLATE_DATA structure, AR1:588

IsScaleFitWindowProper, AWG:119

Italic style, VI: 16

Item directory, AR2:376

Items
controlling, AR2:406-407
installable, AR2:411-412

altering, attributes, AR2:412
changing, name, AR2:412
deleting, AR2:412
duplicating, AR2:412
finding, AR2:413
getting and setting current,

AR2:412
getting attributes of, AR2:413
getting information

about, AR2:413
getting list of, AR2:413
installing, AR2:411
managers, AR2:41 0-411
size of, AR2:413

installed, database, AR2:406
installing, AR2:376-377
list

adding, AR2:129
counting, AR2:130
enumerating, AR2: 130-131
getting, AR2: 129
removing, AR2:130
removing all, AR2: 130
replacing, AR2:130

NotePaper data, AR2:234-235
transaction data, AR2:20 1

contents, AR2:20 1
flags, AR2:203-204

Iterative development, UI: 151

JmpO macros, ARl:24 ... ~---
k command, PDT: 100

Kernel, AWG:105; AR2:97
functions, AR2: 1 05-1 07

date and timer routines, AR2: 106
debugger entry routines, AR2: 106
display/screen device routines ,

AR2:107
heap routines, AR2: 1 07
intertask communications

routines, AR2: 106
keyboard routines, AR2: 1 07
memory information routines,

AR2:106
miscellaneous routines, AR2:107
task manager routines,

AR2: 105-106
tone routines, AR2: 1 07

general protection fault handler,
PDT:148

interface, PDT: 18
layer, AR2:98
overview, AR2:97-107
semaphores and, AR2: 1 0 1
services of, AR2:97
summary, AR2:105-107
task scheduler and, AR2:99

Kernel layer, AWG:6-7
defined, A WG:6
services, AWG:6
support features, AWG:6-7

Kerning, ARl:31O

Keyboard
accessory

option sheet, 01:202
scales on resize, UI:273

event data, ARl:581-584
focus of edit pad, 01:189
handling, AWG:158
icon, UI:13, 76
input and selection, AWG:153-155
PenPoint and, A WG: 11
text selection and, UI:283
typing simulation, UI: 13

KEYBOARD.H, ARl:581

keyCode, AWG:158

KEY_DATA structure, ARl:581-582

KEY.H, ARl:581

Keys, ARl:24
changing capabilities and, ARI :28

OBJECT_NEW_ structure, ARl:47
using, ARl:24-25

Key task, PDT: 152

Keywords, AWG:78
asynchronous serial 110, PDT:33
ENVIRON.INI, PDT:36

AutoZoom, PDT:36
BkShelfPath, PDT:37
BootProgressMax, PDT:37
Config, PDT:37
DebugLog, PDT:37
DebugLogFlushCount, PDT:37
DebugSet, PDT:38
PenPointPath, PDT:38
PenProx Timeout, PDT:38
ScreenHeight, PDT:39
Screen Width, PDT:39
StartApp, PDT:39
StealMem, PDT:39
Swap Boat, PDT:39
SwapFileSize, PDT:39
TZ, PDT:39
Version, PDT:39
VoiSel, PDT:40
WinMode, PDT:40
ZoomMargin, PDT:40
ZoomResize, PDT:40

MIL.INI, PDT:33-34
debugging information, PDT:33
disks, PDT:33
exit to DOS, PDT:34
high-speed packet parallel port

110, PDT:34
serial painting devices, PDT:33
TOPS FlashCard type, PDT:34
video controller, PDT:34
Wacom 310 digitizer, PDT:33

Knowledge source, ARl:601
rules, ARl:601-602

w

defined, ARl:600
spelling dictionary, ARl:601
translation template, ARI :60 1 - % diEt

LABEL.H, AWG:119

Labelling, volumes, PDT:27-28

LABEL_NEW_ONLY structure, ARl:411
label strings and, ARl:413

LABEL_RECTs structure, ARl:416

Labels, AWG:113, 114; ARl:409-416;
PDT:16

bold, 01: 177
button, 01:175

wording for, 01:210-211
child windows and, ARl:415-416
clsCntrApp, AWG:138
creating, AWG:119; ARl:411-413

annotation, ARl:413
when to, AWG:121

for dialog and option sheets, UI:206

III

displays of, ARI :409
edit pads and, UI:47
field support and, ARl:416
for gauges, 01:38
HELLOTKl.C and, AWG:114
icon, UI:74
layout, ARl:414
menu, 01:42, 177

for current mode, 01:249
messages, ARI :410
notification, AR 1 :414
painting, ARl:414-415
pop-up lists, 01: 183
progress bar, ARI :531

custom, ARl:531, 539-540
reference button, UI: 172
sample, ARl:409
strings and special characters, ARl:413
styles of, AR 1 :411-413

fields, ARl:411-412
suppressing, UI: 183
for Tic-Tac-Toe, AWG:151
for Undo Edit command, UI:194
version, PDT:39
volume, PDT:40
see also clsLabel

LABEL_STYLE structure, ARl:411,
411-412

Landscape orientation, 01:276-277;
PDT:40

. Language-dependent routines, AWG:64

Large icons, 01:74

LaserJet, AR2:247

Layer, AWG:6
application, AWG:6, 13
Application Framework, AWG:6,

12-13
component, AWG:6, 12

. kernel, AWG:6-7
MIL (machine interface layer),

AWG:6,273-274
system, AWG:7-12

Layout, AWG:122-123; ARl:361
automatic, UI:153-154
baseline, ARl:387
border window, ARl:378
calculator example, ARI :388
capturing vs., ARI :398
child windows, ARl:415-416
controls, 01: 196

option and dialog sheets,
01:206-209

custom, ARl:389-390
creating, window, ARl:390-395
dimensions, ARl:391-392
initialization, ARI :396
sample, ARl:389

embedded object, 01:168-171
open document forms and;

01:169-171

open document handling and,
UI:168-169

field, AR1:485
frames, AR1:500-501
icons, AR1:525
labels, AR1:414
landscape orientation, UI:276-277
lazy, AR1:397
loops, AR1:397-398
menu, UI:196-197

multi-column, UI:l96
multiple, UI:163
non-vertical, UI: 182-183
notes, AR1:492
optimizing, for small screens,

UI:274-277
option card, AR1 :515
orientation-specific, UI:276-277
portrait orientation, UI:276-277
scaling and resizing, UI:268-273
scrollbar, AR1:453
scrollwin, AR1:460-461
speedup, AR1:365
tab bars, AR1:508
table, AR1 :383

constraints, AR1:386-387
flags, AR1:384-385
specifying, AR1:385-386
structure, AR1:384-385
using tWignBaseline for, AR1:388

toolkit table, AR1:437
units, UI:279; AR1:375
vertical, UI: 182
window, AR1:216, 224-225, 247-248

adding child windows to, AR1:381
classes, AR1:381-382
dirty, AR1:249, 365
episodic, AR1:225
parent-veto, AR1:225
processing, AR1:249
shrink-wrap and, AR1:397
unconstrained, AR1 :224

windows, AWG:122

Layout classes, AR1:381-398; PDT:16
capturing vs. layout, AR1:398
coordinate system, AR1 :382
custom layout, AR1:389-390

creating, AR1:390-395
layout loops, AR1:397-398
lazy layout, AR1:397
shrink-wrap, AR1:397

constraints and, AR1:395-396
table layout, AR1:383

window layout, AR1:381-382

Layout option sheet, UI:88
Connected Disks page, UI: 111

Bookshelf view, UI: 112
Directory view, UI: 111

Connected Printers page, UI: 117
Network View page (Disks section),

UI:115

Show list, UI:88

lbFreeDataByMessage flag, AR1:466

Leaf-to-root model, AR1:565

Left Arrow gesture, UI:25

Left-Down gesture, UI:26
in gesture mode, UI:259
guidelines, UI:240

Left-Up gesture, UI:26
in gesture mode, UI:259
guidelines, UI:240

Legibility, AWG:77

Libraries, AWG:102

Life cycles, AR1:95-115
application class, AR1:95-99

deinstalling, AR1:99
installing, AR 1 :96-99

document, AR1:100-115
activating, AR1:102-107
closing, AR1:109-110
creating, AR1:102
deleting, AR1: 115
opening, AR1:107-109
reactivating, AR 1: 113-115
terminating, AR1: 11 0-113

Line
cap and join, AR1:278
control, AR2:269
drawing, AR1:337-338
end points in one-pixel, AR1:337
modes, AR1:291
number, PDT:88
patterns, AR1:271, 291-292

graphic state element, AR1:278
segments, AR1:265
smoothing, PDT: 186
stoking and, AR1:290
styles, AR1:290-291
thickness, AR1:291

graphic state element, AR1 :278
in rectangle, AR1:341

width, AR1:339-340
physical, AR1 :340

lineCount, PDT:88

Line Height menu (MiniNote Paper
sheet), UI:138

Line height preference, AR2:366

Link
files, AR1: 134
protocols, AR2:253

Linker, AWG:93
"flags, AWG:92-93
linking DLLs and, AWG:126
options, AWG:93 .
Watcom, AWG:126

Linking application, AWG:93
see also Compiling and linking

LISLBOX_ENTRY structure, AR1 :465
free mode, AR1:466

inserting and removing entries and,
AR1:467

setting state with, AR1:467

List boxes, AR1:463-473; PDT:16
contents of, AR1:464-465
creating, AR1:464
entries, AR1:465

inserting and removing, AR1:467
supplying, AR1:465-467

filing, AR1 :469
font, AR1 :473
gestures, AR1 :468
messages, AR1:463-464, 469
modifying, AR1:467
notification, AR1 :467-468
painting, AR1:468-469
pre-loading, AR1:467
scrolling, AR 1 :466
state, AR1 :467
string, AR1:470-473
toolkit table vs., AR1:470
see also clsListBox; Lists

LIST_BOX_NEW structure, AR1:464

LIST_BOX_STYLE structure, AR1:464

Listener
field, AR1:549
objects, AR1:548, 549

LIST_ENTRY structure, AR2: 129

LIST_ENUM structure, AR2:130

LIST_FREE structure, AR2: 131

LISLNEW structure, AWG:49; AR2: 129

List object, AWG:45
attributes, AWG:47
code to create, AWG:51-52
messages and, AWG:46
see also Object

Lists, UI:29-32, 181-188
accessing end of, AR2:130
boxed, UI:32
checkboxes, UI:32
checklists, UI:29

with fields, UI: 186
multiple, UI:31
pop-up, UI:30
vs. boxed, UI: 186

class, AR2:127-131
concepts, AR2:127
creating, AR2: 129
defined, AR2:127
destroying, AR2: 131
discontiguous selection in, UI:282-283
editable, UI:187
items

adding, AR2:129-130
counting, AR2: 130
enumerating, AR2: 130-131
getting, AR2:129-130
removing, AR2:129-130

removing all, AR2: 130
replacing, AR2: 129-130

moving items in, UI:292
multiple, UI:184-185
multiple choice, UI: 184
object index, AR2:127
pop-up variations of, UI: 183
positioning within, AR2: 129
resource, AR2:337, 345-346
scrolling, UI: 186-188

checklists, UI: 196
gesture accelerators for, UI:188
multiple, UI: 187
pop-up checklists, UI: 196
of selectable items, UI: 187

selection feedback and, UI:279
textvs. pictures, UI:181-182
toggle switch and, UI:30-31
using, messages, AR2: 128
zero or one, UI: 185
see also List boxes; List object

"Live compound documents," AWG:13

lname, AWG:126

Loader, AWG:6-7
database, AWG:22; AR1:96

Loading
GO Address book, AR2:323
system log application, PDT: 141

Load-time initializations, AWG:76

Local area network (LAN), AR2:295

Local attributes
changing, AR2:8
text data objects, AR2:7

Local clipping, AR1 :270
defined, AR1:269
rectangle, AR1:270

graphic state element, AR1 :277

Local disk volumes, AR2:51

Localization
code modularization and, AWG:64
defined, A WG:61
designing for, AWG:61-64

LOCAL keyword, PDT: 115

LocalTalk, AR2:253

Locators, AR2:55-56
explicit, AR2:56
handles and, AR2:58-59
implicit, AR2:56

log command, PDT: 1 00

Log file, PDT:135-136

Logical device coordinates (LDC),
AR1:336

rendering details, AR1:336
rounding to positive side of LUC,

AR1:337

Logical transformation matrix (LTM),
AR1:336

Logical unit coordinates (LUC),
AR1:267-268,335

coordinate systems transformations,
AR1:268

drawing coordinates and,
AR1:286-287

graphic state element, AR1:277
messages to set, AR1 :287
obtaining, AR1:336
origin, AR1:292
scaling fonts and, AR1 :276, 310
system, figure, AR1:335
transforming, AR1:268
units, AR1 :287
unit size, AR1:268-269

Logical window coordinates (L WC),
AR1:232,267-268

LOGITECH, sample definition, PDT:62

Log Size menu (System Log), PDT: 143

Low-level pen events, A WG: 10

Macintosh
file system, AR2:439
networking with, AWG:8
using S-Shot files on, PDT: 177

Macros
debugging, PDT:67
DEBUG warning, AR1:23
declaration, AR1 :39-40
error-checking, AR1:23-24
error handling, AWG:80, 81-84
expression handling, PDT: 139
extensions of, AWG:76-84
for extracting information from

UIDs, AR1:12
message passing, PDT:138
message sending, AR1:23-24
stack trace and, A WG:82
status checking, PDT:134
for testing UIDs, AR1:13
see also specific macros

MagnifY Text on Screen control
(MiniT ext), UI: 132

Main entry point, AWG:22, 24

main function, AWG:71, 98; AR1:72
activating application and, AWG:107
in application installation, AR1:96-97
complex explanation of, AWG:106
in document activation, AR1:102-103
initialization routine and, AWG: 1 00;

AR1:97
simple discussion of, AWG:105-106

Main notebook, AWG:33

Main rourine, AWG:25, 98; AR1:33
calling, AWG:98
declaration, AWG:98
running process and, AWG: 1 04

Main table of contents
Access Speed and, UI:87
Comments option sheet and, UI:87
option sheets and, UI:87
see also Table of contents

Main window, AWG:26; AR1:92
application, AR1 :504

creating, AR1:504
inserting custom window as,

AR1:561-562
in document activation, AR1:105
embedded applications and, AWG:35
initializing clsSPaper-based,

AR1:593-594
setting, AR1: 163

MakeDynUUID, AR2:80

MAKEFILE, AWG:91
for Counter Application,

AWG:203-204
for EmptyApp, AWG:179-180
for Hello World (custom window),

AWG:194-195
for Hello World (toolkit), AWG:186
for Template Application,

AWG:259-260
forTTT (Tic-Tac-Toe),

AWG:249-250

Makefiles, AWG:92; AR2:403-404
Hello World (custom window),

AWG:127
Tic-Tac-Toe, AWG:164, 165

MakeMsgO macro, AR1:11
class UIDs and, AR1:568

MakeStatusO macro, AWG:80; AR1: 11

MakeTagO macro, AR1:12, 235; AR2:167
defining window tags and, AR1 :436

MakeWarningO macro, AWG:80; AR1:12

MakeWKNO macro, AWG:53; AR1:1O

MakeWknResldO macro, AR2:343;
PDT:173

MAKLABEL utility, PDT: 162-163
example, PDT:163

Manager, AR1:438
button, AR1:438-439
choice, AR1:443
classes, AR1:423, 439-440
for menu buttons, AR1: 166
objects, AR1:423
for toolkit tables, AR1:438

button manager notification
details, AR1 :438-439

menu management, AR1:439

Manuals, AWG:175

Map files, PDT: 148

Mapping, UI:290; AR1:130-131
of Adobe standard encoding to AFII

codes, PDT:200-204
file to memory, AR2:73-74

stamp, AR1:131-132
table, AR1:131

MAR2 application process, PDT: 154

Margin rectangle region, AR1:379

Margins
gesture, UI:135-136
pop-up menu for, UI:58

Mark, AR1:129
copying, AR1:203
creating, AR2: 196
creating and holding, AR1: 133
delivery messages, AR1:201-202

positioning, AR1:202
sent to components that have

children, AR1 :202
holder of, AR1:129
messages, AR1:132
parts, AR1:130
protocol, UI:171-172

Spell, Proof, Find commands and,
UI:l72

sending message to, AR1:202-203
setting, to component, AR1:203
supporting, AR1:132

MarkHandlerForClassO function,
AR2:197

Marks class, AR1:69, 129-130, 199-203
embedded windows and, AR1: 118
messages, AR1:199-200
see also clsMark

Markup layer, UI:253
using ink and, UI:255

Markup mode, UI:30-31

Marquee, in copy move operations,
UI:68-69

Mask, PDT: 168
application, AWG:38
class, AR2:415-416
in node attribute flags, AR2:79
Paint mode, PDT: 168

defined, PDT: 171
text attribute messages, AR2: 16
see also Icon mask

Math run-time library, AR2: 115-117
programmatic .interface, AR2: 115-117

Matrix
manipulation messages, AR1:282
transformation, AR1:289

Max macro, AWG:78

Measurement, units of, AR2:10

Memory
Access Speed control and, UI:67
for application code, AR1:92
checking, AWG:112

available, PDT:81
conservation, AWG:15

in application termination,
AWG:38-39

DB and, PDT:81-82
document state and, AWG:39
freeing, AR2:88, 95
globally accessible, PDT: 129
instance data and, AR1 :34
management, AR2: 1 0 1-1 03

80386 protected mode, AR2: 1 02
heaps, AR2:101-102
privilege levels, AR2: 103
rings, AR2: 103

mapping file to, AWG:144
map size, AR2:73
PenPoint programs in, AWG:23
protection, AR1:34
RAM,AR2:52
for running PenPoint, PDT:27
saving, PDT:47

multiple applications and, PDT:53
usage, UI:10
Usage (Show menu), PDT: 142
using less, PDT:39
watching, PDT:82-84

Memory-mapped files, AWG:15, 89;
AR2:55

to avoid duplication, AWG:143
file system and, AWG:7
function, AR2:73
life cycle, AR2:73-74
sharing, AR2:73

Memory-resident file system, AWG:16

Memory-resident volumes, AR2:52

Menu bar, AWG:l13; AR1:363
browser, AR2:138
in CounterApp, AWG:147
creating, ARl:353

MENU_BUTTON_NEW_ONLY structure,
AR1:446

Menu buttons, AWG:113, 147-148;
UI:29; AR1:163-164, 418;
PDT:16

adding, AR 1: 166
creating, AR1:446-447
defining, AWG:170
displaying submenus with,

AR1:448-450
document and edit menus,

AR1:165-166
managers for, AR1:166
messages, AR1 :445
painting, AR1:447
pop-up menu, AR1 :445
specifications for, AWG:147
style of, ARl:446
tags, ARl:164
see also clsMenuButton

MENU_BUTTON_STYLE structure,
AR1:446

Menu labels, UI:42
for current 1)lode, VI:249

Menu line, UI:56
bold buttons on, UI: 177
Connected Disks page, UI: 107
designing, UI:226
hiding, UI:56
illustrated, UI:55
MiniNote, UI:136
MiniText, UI:129
for mode switch, UI:251
Network View page (Disks section),

UI:114
table of contents, UI:85
zoom control in, UI:266-267

MENU_NEW_ONLY structure, AR1:447

Menus, UI:41-42, 192-199; AR1:428,
447-448; PDT:16

Back menu, PDT: 173
behavior of, UI:42
checklists in, UI: 184
closing, UI:42
Connected Disk page, UI: 107
Connected Printers page, UI: 116-117
controls in, UI:41-42
creating, AR1:447-448

submenus, AR1:448
deciding when to use, UI:226
default, UI:56
displaying, AR1:448
dividing lines in, VI: 197
Document menu, PDT: 171
Edit menu, PDT:171
FEDIT

Bitmap menu, PDT: 192-195
Character menu, PDT: 179, 182, .

188
File menu, PDT:179-180, 196
Options menu, PDT:184-185, 191
Outline menu, PDT:183, 195
Text menu, PDT:198

fields in, UI:199
font face, VI:271
font size, UI:271
frame, AR1 :503
hierarchical, UI:42, 199
Ink menu, PDT: 173
Installed Software section, VI:98
layout of, UI:196-197

groups of controls separation and,
UI:197

multi-column menus, UI: 196
management, AR1:439
for margins, UI:58
MiniNote, UI:136-137

Arrange menu, UI:137
Edit menu, UI:136-137
Pen menu, UI:137

MiniText, UI:129-130
default, UI:129
View menu, UI: 130

mode switch following, UI:251
mode switch in, UI:251

nesting of controls in, AR1 :363
for network disks, UI: 114
network printers and, UI: 119
Options menu, PDT:172-173
Out box, UI:122
Size menu, PDT: 173
standard, UI: 192-196

Document menu, UI:192-194
Edit menu, UI: 192, 194-195
Options menu, UI: 192
View menu, UI:195-196

standard application, AR1:363
strengths and weaknesses of, UI:225
submenus and, UI:42
summary, UI:40
System log application, PDT: 142-143

Font menu, PDT:143
Log Size menu, PDT: 143
Show menu, PDT: 142
Trace menu, PDT:142-143

table of contents, UI:85-87
Create menu, UI:86-87
Document menu, UI:85
Edit menu, UI:86
Sort By menu, UI:88
View menu, UI:86

two-state switches in, UI:198
View menu (Connected Disk),

UI:108-110
working of, AR1:363
with zoom control, UI:266-267
see also clsMenu; specific types of menus

Menu support, AWG:146-148

Merging
shapes, PDT:189
winding direction and, PDT: 189-190

Message arguments, AWG:45-46; AR1:14
different expected, AWG:122
instance data and, AWG:138
msgNew, AWG:118-119
msgRestore, AWG:142
msgSave, AWG:141
new class, AWG:54-55
ObjectCall and, AWG:47
as ObjectCall parameter, AWG:46
passing wrong, AWG: 121
specific structure of, AWG:46
structure, AWG:47, 51; AR1:14-15

new object, AR1:15-17
Message handler, AWG:55, 109-111;

AR1:18,31
code, AR1:19
defined, AR1:5
designing, AWG:60
method table and, AWG:99
for msgDestroy, AWG:100
parameters, AWG:99, 109-110

in EmptyAppDestroy, AWG:110
privacy, AWG:111
responses, AWG:57
status return values and, AWG:110

status values and, AR1:12
see also Methods

Message handling, AWG:107-109;
PDT: 14

method table and, AWG:108
msgDestroy, AWG:109

Message line, UI:214

Message parameters, AR1 :38-39

Message passing
functions, PDT: 138
macros, PDT: 138
synchronous and asynchronous,

PDT:14
Messages, AWG:41, 79; AR1:5

abstract, AWG:57
activation and deactivation, AR1:481
advisory, AWG:57
ancestor, AWG:60
auxiliary notebook manager, AR2:423

generalized, AR2:423-424
specialized, AR2:424-426

benefits of, AWG:43
boot error, PDT:47
boot progress, AR2:431-432
clsABMgr, AR2:325
clsAddressBookApplication,

AR2:324-325
clsApp, AR1:157-161

advanced, AR1:171
Application Framework and,

AR1:161
class, AR1: 157
document attributes, AR1: 158
document hierarchy, AR1: 158,

161-163
document life cycle, AR1:157-158
document window, AR1:159, 163
observer, AR1:160
printing, AR1:160
standard application menu,

AR1: 159-160, 163-170
clsAppDir, AR1:178
clsApplnstallMgr, AR2:415
clsAppMgr, AR1:145, 146
clsAppMonitor, AR1:152-153

handling, AR1:155
using, AR1:153-154

clsAppWin, AR1:195
clsBitmap, AR1 :329-330
clsBorder, AR1:371-373
clsBrowser, AR2:138-140

for displayed information, AR2: 142
menu, AR2: 145
notification, AR2: 145
for sort order, AR2:142

clsButton, AR1:417-418
clsByteBuf, AR2:208
clsChoice, AR1:443
clsChoiceMgr, AR1:440
clsCodelnstallMgr, AR2:415
clsControl, AR1 :40 1-402

clsCustomLayout, AR1 :390
clsDirHandle, AR2:64
clsEmbeddedWin, AR1:118-119, 189
clsExport, AR2:152
clsField, AR1:476-477
clsFileHandle, AR2:64
clsFileSystem, AR2:62-63
clsFontlnstallMgr, AR2:417
clsFrame, AR1:499
clsGrabBox, AR1:529
clsGWin, AR1:617-618
clslcon, AR1:523
clslmport, AR2:150
clsINBXService, AR2:315
clslnstallMgr, AR2:405

class, AR2:409
instance, AR2:409-410
notification, AR2:408
subclass, AR2:41O
using, AR2:409-413

clsIOBXService, AR2:316
clsIP, AR1:585-586
clsLabel, AR1:410
clsList, AR2:128

functions, AR2: 127
clsListBox, AR1:449, 463-464
clsMark, AR1:129, 199-200
clsMenu, AR1:447
clsMenuButton, AR1 :445
clsMlLAsyncSIODevice, AR2:267
clsModem, AR2:281-282
clsNote, AR1:488
clsNotePaper, AR2:231
clsNPData, AR2:233-234
clsNPltem, AR2:234-235 .
clsOBXService, AR2:31O, 314
clsOption, AR1:512-513
clsParallelPort, AR2:276
clsPicSeg, AR1 :317-318

attribute, AR1 :317-318
class, AR1:317
drawing, AR1:318

clsPopupChoice, AR1 :450, 451
clsProgressBar, AR1:535
clsQuickHelp, AR2: 187

using, AR2:187-188
clsResFile, AR2:347-348
clsRootContainerApp, AR1: 187
clsScribble, AR1 :608
clsScrollWin, AR1:458
clsSelChoiceMgr, AR1:440
in clsSelection, AR1:128
clsSelection, AR2: 157-158
clsService

change ownership protocol,
AR2:467-469

information messages, AR2:459
notification messages,

AR2:461-462
responsibility, AR2:469-470

clsServicelnstallMgr, AR2:416
clsServiceMgr, AR2:260

clsSPaper, AR1:589-590
clsStream, AR2:133
clsString, AR2:212
clsStringListBox, AR1 :470
clsSystem, AR2:431
clsTable, AR2:217-218

information, AR2:226
clsTableLayout, AR1:384
clsTextlP, AR2:33
clsTiff, AR1 :331
clsTkTable, AR1:427
clsTrack, AR1:527
clsTransport, AR2:297

NBP and ZIP, AR2:301
clsUndo, AR2:202
clsWin, AR1:230-231
clsXferStream, AR2: 171
coding conventions for, AWG:71
completion, UI:211
connection status, AR2:247
defined, AR1:5
delayed input, AR1:483
delivery, ARl:201-202
designing, AWG:60
drawing context, ARI :281-284·
Empty Application, AWG:97
event, ARI :546-547
field component creation, ARl:480
file system, AR2:62-64
frame action, AR1:502
handling, AWG:44-45
header, AWG:75
help, UI:215
identifiers, AR1: 11
input

processing, AR1:482
subsystem, AR1:570
system, AR1:570
validation, AR1:484

instead of function calls, A WG:42-43
intercepted, AR1: 127
intertask, AR2:100-101
"Intw/o RB: 7," POT:47, 50
method table specifications for, AR1:41
move and copy protocol and, AR1:119
notification, AR1:399
object, AR1 :49

and class information, AR1:54
ObjectCallO and, AR1: 19
ObjectPostO and, ARl:21-22
objects and, AWG:43
ObjectSendO and, ARl:20
observer, AR1 :50, 150
Out box

protocol, AR2:308-309
response to, AR2:310

overriding, AR1:42
pattern specifications, POT: 117
possible responses to, AWG:57-58
preview, AR1:399, 405-406

message argument for, AR1:407

preview button, ARl:362
printing, AR1:135, 136

protocol, AR1:140
progress, UI:211
progress bar, AR1:535-537

inherited, ARl:540
propagating, AR1:225
sampled images, ARl:297
search and replace, AR2:198

classes that respond to, AR2:198
to selection owners, AR2:159-161
selfUIDs and, AWG:56-57
sendable services, AR2:333-334
sending, AWG:45-48; ARl:13-15

Hello Wodd (toolkit) and,
AWG:115-116

macros for, ARI :23-24
message argument structure and,

ARl:14-15
methods of, AWG:115
to object, AR1:15
return values and, AR1:14

sending with DB, POT:82
sent by holders, AR1 :202-203
sent by service managers,

AR2:459-470
sent to components, AR1:201-202
sent to open services, AR2:470
sent to service class, AR2:456-459
status values and, AWG:47, 52
string names for, POT:82
superclass, ARl:155
system directory, AR2:432
Template Application and, AWG:90
text data, AR2:12-13

observer, AR2:21
text insertion pad, AR2:33
text view, AR2:23-24
theBusyManager, AR2: 193
to theSelectionManager, AR2:161-162
theTimer, AR2:104
tracing, AWG:120, 159-160
translation, AR1 :604-606

control, ARl:606
initialization, AR1 :605
notification, ARI :606

types of, POT: 14
volume specific, AR2:91
window

creation, AR1 :230
display, ARl:230-231, 235-244
filing, AR1:231
layout, AR1:231, 244-251
management, AR1:231, 251-253
metrics, AR1:230, 233-234
sending to hierarchy, AR1:251-252

wording of, UI:210
see also specific messages

Message status, AR1:18-19

Message table, AWG:56

Message text, AR1:495-496
message string format codes,

AR1:495-496
specifYing command buttons, AR1:495

Metaclasses, ARl:84-85
clsAppMgr and, ARl:85

Methods, AR1 :31
ancestor calls and, AR1:36-37
code for, AR1:34
creating, ARl:37-41

declaration macros, AR1:39-40
declaring entry points, AR1:37
message parameters, ARI :38-39
operations and, AR1:41

handling search and replace functions,
AR2:197

for msgAppClose, AR1: 109
for msgAppInit, ARl:105
for msgAppOpen, AR1:108
for msgFree, ARl:110
for msgRestore, AR1:105, 114
for msgSave, ARl:105, 112
see also Message handler

METHOOS.TBL, AWG:91, 99
Counter Application, AWG:I96-197
Empty Application sample code,

. AWG:178
Hello World (toolkit), AWG:182
Template Application, AWG:252
TttApp, AWG:206-207

Method tables, AWG:47, 49, 55-58;
AR1:31

class implementation and, AR1:32
CLASS_NEW message argument,

AWG:54
for clsCntr, AWG:138
for clsCntrApp, AWG:137-138
for clsHelloWin, AWG:125, 127
for clsHelloWorld, AWG:125, 127
for clsList, AWG:57-58
compiler, AWG:55, 56, 92

header file and, AWG:I09
see also MT (method table

compiler)
compiling, AWG:93; AR1:45-46

two steps, AR1 :46
with wildcards, ARI :46

creating, AR1:41-46
build sequence, ARI :43
five steps for, ARl:42

definition file, ARI :41
creating, AR1:42-45

in document activation, ARl:105
Empty Application and, AWG:91
entry for msgAppOpen, AR1: 1 07
files, AWG:55, 98

creating, AWG:66
suffix, AWG:98

for Hello World (toolkit), AWG:114
message handlers and, AWG:99
names, AWG:98

overview, AR1:41-42
wild cards, AWG:98
wildcards, AR1:45

Metrics, AWG:120; AR1:145
ASCII, transfer, AR2:175
bitmap, AR1:330
browser, AR2: 143-144
character, AR1:310
for controls, AWG: 123
embedded window object, AR2:161
font, AR1:275, 307-310
getting, application monitor, AR1:153
getting, application window,

AR1:196-197
getting, embedded window, AR1:190
getting, for class, AR1: 149
NotePaper, AR2:230
progress bar, AR1:534, 536-537
serial port settings and, AR2:270-271
text, AR2:14
TIFF image, AR1:332
transaction, AR2:205
volume, AR2:49-50
window messages, AR1:233-235

M gesture, UI:27, 56

mi command, PDT:81, 100

Microcom Network Protocol (MNP),
AR2:286

MILINI, PDT:29-34
in boot sequence, PDT:29
debugger stream and, PDT: 135
description, PDT:28
file list of, PDT:30-33
keywords, PDT:33-34
modifYing, PDT:29

for digitizing tablet, PDT:45
for mouse, PDT:45

MonoDebug line, PDT: 137
setting format, PDT:29
single monitor and, PDT:44
UNIPENPORT tag, PDT:60
UNIPENPROTOCOL tag, PDT:61
UNIPENTYPE tag, PDT:60
for writing to serial port, PDT: 136

MIL (Machine Interface Layer), UI:5;
AWG:6; AR2:98; PDT:29

during booting, PDT:46
for Pc, PDT:29
Service, AWG:273-274
tablet hardware, PDT:29
see also MIL services

MIL services, AR2:98, 439
binding, AR2:247
connection management,

AR2:247-248
connection status messages, AR2:247
connectivity, AR2:245-246

other services and, AR2:246-249
functions, AR2:245

ports and, AR2:246
programmatic interface, AR2:246
stream interface and, AR2:246
see also Parallel port; Serial port

MILSVC service, AR2:487-506
defined, AR2:475
METHOD.TBL, AR2:487-489
MILSVC.C, AR2:489-499
MILSVCO.C, AR2:500-506
MILSVCO.H, AR2:499-500

mini command, PDT:101

Mini-debugger, AWG:84, 85;
PDT:145-154

for code crashes, AWG:87
commands, PDT: 146-148

setting debug flags and,
PDT:147-148

exception handling, PDT: 148
functions, PDT: 145
invoking, PDT:145-146

mini-debugger and DB, PDT:145
on PenPoint computer, PDT:146

map files and, PDT: 148
source level debugger (DB) and,

PDT:145
task list, PDT: 151-154
understanding interrupts and,

PDT:148-151
uses of, AWG: III
using, PDT: 148
see also Debugging

MiniN ote, UI: 13 5-142
document pagination, AR1: 13 7
edit pads and, UI:47
gesture margin, UI:135-136
gesture mode, UI: 135
gestures, UI:140-142, 257

capital letter accelerators, UI: 142
gesture mode, UI: 141-142
ink and gesture modes, UI: 140

icon, UI:77, 216
ink mode, UI:135
menu line, UI:136
menus, UI:136-137

Arrange menu, UI:137
Edit menu, UI:136-137
Pen menu, UI:137

mode toggle, UI: 135
option sheets, UI: 138-139

Paper, UI:138-139
Pen, UI:139

reference buttons and, UI: 171

MiniText, AWG:166; UI:129-134;
AR2:394

check and, UI:46
Document menu buttons, AR1:363
document pagination, AR1: 137
edit pads and, UI:47
embedded writing pads, UI:49
file import/export, AR2:253
gestures, UI:133-134

icon, UI:77, 216
Insert menu, UI:195
menus, UI:129-130
option sheets, UI:44, 130-132,204

Character, UI:131
correlation to objects, UI:204
Display, UI:132
Paragraph, UI: 131
Tab Stops, UI:132

Options menu, UI:45
reference buttons, UI: 171

labels, UI: 172
text component and, UI:130
token implementation, AR1:131
writing pad, UI:48

Min macro, AWG:78

MISC directory, AR2:387, 394-395
data examples, AR2:395
service directory and, AR2:387, 444,

445

Miscellaneous application files, AR2:387

Mitosis operator, PDT:186

MKS toolkit, AWG:162

MM, sample definition, PDT:61

MNP mode, modem, AR2:286
data communication, AR2:289-290

Modal applications, UI:253
deferred and immediate translation,

UI:253
markup layer, UI:253

Modal dialog sheets, UI:165, 205-206
uses of, UI:206

Modal notes, UI:52

Modal objects, UI:43
distinction of, UI:43

Modeless dialog sheets, UI:205
advantages of, UI:205

Models, user, UI:245-246
for input modes, UI:246
selection and, UI:278

Modem
interface, AR2:253
service, AR2:439
see also Data modem

MODEM_AUTO_ANSWER_SET structure,
AR2:284

MODEM_DIAL structure, AR2:287

MODEM_MNP _BREAK_ TYPE_SET
structure, AR2:290

MODEM_MNP _FLOW _CONTROL_SET
structure, AR2:290

MODEM_MNP _MODE_SET structure,
AR2:286

MODEM_NEW_ONLY structure, AR2:283

MODEM_SEND_COMMAND structure,
AR2:287

MODEM_SPEAKER_STATE_SET structure,
AR2:285

Modes, UI:244
design checklist and, U1:295
dual, UI:248
explicit, U1:244-245
gesture, U1:245-246

core, UI:247
ink, U1:245-246
multiple exclusive, UI:248-249

boxed list, UI:249
pop-up list, U1:249

non-exclusive, UI:250
"safe," UI:247
spacial, U1:244
switching, U1:247

dual command path and, U1:246
toggle gesture for, UI:247-248
see also Input modes

Mode switch, UI:247
location, U1:251-252

menu line, UI:251
palette line, UI:252
pop-up palette, UI:252

for markup layer, UI:253
not hiding, UI:250
presentation, UI:248-250

dual modes and, UI:248
multiple exclusive modes and,

UI:248-249
non-exclusive modes and, UI:250
pictures vs. text, UI:248

Modifying
attributes, AR2:19-20
BOOT.DLe, PDT:42
ENVIRON.IN1, PDT:34
GO.BAT, PDT:45
M1L.IN1, PDT:29

MODNAME, AWG:93

Modular design, AWG:15; UI:152-153

Module names, PDT:71

Monitors
application, PDT:21
configurations and, PDT:44
two, PDT:136-137
viewing debugger stream on, PDT:137
writing debugger stream to,

PDT: 136-137

Mouse
configuring, PDT:45
for running PenPoint, PDT:26
using, PDT:50

Move command (Edit menu), UI:62

Move function, UI:16

Move gesture, AR2:165-166

Move icon, ARl:120, 125
presenting, ARl:124-125

Move marquee, UI:68, 287

Move protocol, ARl:119-123
data type determination, ARl:121
destination by user, ARl:120
destination in file system, ARl:122
destination to move, ARl:121
getting exact pen lo~ation, AR 1: 123
identifying selection, AR1:120
moving data, ARl:122-123
OK move, ARl:121-122
reasons for using, ARl:119
requesting move, ARl:120

Moving
as adjusting, UI:289
between applications, UI:289
beginning, operation, AR2: 160-161
control points, PDT:185-186
and copying guidelines, U1:285-294
data, embedded window,

ARl:126-127
data, steps for, ARl:119-120
documents, ARl:122

to Auxiliary notebooks,
AR2:425-426

drag & drop gesture for, UI:68
embedded windows, ARl:191-193

between, ARl:118-119
figure to far destination, UI:294
import/export and, UI:70
item in list, UI:292
in mouse-based interfaces, UI:285
nodes, AR2:80-81
in PenPoint, UI:286
picture segments, ARl:326-327
in Tic-Tac-Toe, ARl:123-127
variations, UI:289-290
windows, ARl:246-247
word in text, UI:69, 291
see also Copying

MS-DOS
C development tools, PDT:6, 7
disk drive class, AR2:247
FAT disk format, AR2:51

creating PENP01NT.DIR and,
AR2:68

file system, AR2:439
compatibility, AWG:7-8

file system utilities, PDT:161-164
GDIR, PDT: 162
MAKLABEL, PDT: 162-163
PAPPEND, PDT:163-164
PDEL, PDT: 164
PSYNC, PDT:164
STAMP, PDT:161-162

installation, AWG:21-22
LABEL command, PDT:72
main routine, AWG:25
name, PDT: 162
networking with, AWG:8
termination, AWG:23
tools, PDT: 13
volume name, AR2:51; PDT:72

msgABMgrActivate, AR2:329
status values, AR2:329-330

msgABMgrChanged, AR2:330

msgABMgrClose, AR2:326

msgABMgrDeactivate, AR2:330

msgABMgrOpen, AR2:326

msgABMgrRegister, AR2:329

msgABMgrUnregister, AR2:329

msgActivateChild, AWG: 107

msgAdded, ARI :51
translation and, ARl:605

msgAddObserver, ARl:27, 50-51; AR2:49
observing installation managers and,

AR2:407
observing tables and, AR2:220
system preferences and, AR2:368

msgAddObserverAt, ARl:50-51

msgAddrBookAdd, AR2:328

msgAddrBookDelete, AR2:328

msgAddrBookGet, AR2:327-328

msgAddrBookSearch, AR2:326, 327

msgAddrBookSet, AR2:328

msgAMGetMetrics, ARl: 153

msgAMLoadHelp, ARl: 154

msgAMLoadMisc, ARl: 154

msgAMLoadStationary, ARl:153

msgAMRemoveHelp, ARl: 154

msgAMRemoveStationary, ARl: 154

msgAMTerminateOK, ARl: 155

msgAncestor, ARl:55

msgAncestorIsA, ARl:55

msgANMAddToStationaryMenu,
AR2:426

msgANMCopyInDoc, AR2:425

msgANMCreateDoc, AR2:425

msgANMCreateSect, AR2:424

msgANMDelete, AR2:426

msgANMDeleteAll, AR2:426

msgANMGetNotebookPath, AR2:423

msgANMMoveInDoc, AR2:425

msgANMOpenNotebook, AR2:423

msgANMRemoveFromStationaryMenu,
AR2:427

msgANMSystemInited, AR2:423

msgAppAbout, ARl:168

msgAppActivate, ARl: 105-107
in document reactivation, ARl: 113

msgAppAddCards, ARl:138, 168-169
handling, ARl:138-139
responding to, ARl: 169

msgAppAddFloatingWin, ARl:163
managing multiple windows and,

ARl:500

. msgAppClose, AWG:36, 132; AR1:73
closing document and, AR1:109-11O
clsCntrApp, AWG:138
clsHelloWorld and, AWG:127
on screen display and, AWG:66
for Tic-Tac-Toe application, AR1: 110
turning a page and, AWG:36

msgAppCopySel, AR1:120, 168

msgAppCreatedLink, AR1:134

msgAppCreateMenuBar, AWG:146;
AR1:163

msgAppDeInstalled, AR1:150

msgAppDelete, AR1: 149

msgAppDeletedLink, AR1: 134

msgAppDirGetAttrs, AR1: 180

msgAppDirGetBookmark, AR1: 182

msgAppDirGetClass, AR1: 181

msgAppDirGetFlags, AR1:180

msgAppDirGetGlobalSequence, AR1: 179

msgAppDirGetNext, AR1:182-183

msgAppDirGetNextInit, AR1: 182

msgAppDirGetNumChildren, AR1:181
for counting embedded documents,

AR1:183

msgAppDirGetSequence, AR1: 181

msgAppDirGetUID, AR1:181

msgAppDirGetUUID, AR1:181

msgAppDirSeq ToN arne, AR1: 183

msgAppDirSetAttrs, AR1: 180

msgAppDirSetBookmark, AR1:182, 183

msgAppDirSetClass, AR1:181

msgAppDirSetFlags, AR1: 180

msgAppDirSetNumChildren, AR1:181

msgAppDirSetSequence, AR1: 181

msgAppDirSetUID, ARl:181

msgAppDirSetUUID, AR1:181

msgAppDirUUIDToNarne, ARl:183

msgAppDispatch, ARl: 1 09

msgAppExecutc, ARl:165
adding menu buttons and, AR1: 166
arguments to, ARl:166

msgAppGetLink, AR1: 134

msgAppGetMetrics, AWG:120; AR1:161

msgAppGetName, ARl:163

msgAppGetOptionSheet, ARl: 137

msgAppGetRoot, AR1:161, 162, 187

msgAppInit, AWG:65; AR1:72; AR2:261,
378

in application monitor installation,
ARl:151

creating frames and, ARl:504
handler, AWG:121
Hello World (toolkit) and,

AWG:114-115

msgAppActivate and, AR1: 1 05-1 07
subclassing clsAppMonitor, AR 1: 155

msgAppInstalled, AR1: 150

msgAppInvokeManager, ARl:165
adding menu buttons and, ARl:166

msgAppMgrActivate, ARl: 102; AR2: 148,
152

in activating application instance,
ARl:148

in activation, AR1: 103
in document creation, ARl:148
in document reactivation, AR1: 113

msgAppMgrCopy, ARl:102
in copying application instance,

AR1:148

msgAppMgrCreate, ARl:102
creating new document and, AR1: 148

msgAppMgrDelete, ARl: 115
in deleting application instances,

AR1:149

msgAppMgrGetMetrics, ARl: 149;
AR2:394

msgAppMgrMove, ARl:148

msgAppMgrShutdown, ARl:155

msgAppMoveSel, AR1:120, 168

msgAppOpen, AWG:132; AR1:72,
107-109

clsCntrApp, AWG:138
clsHelloWorld and, AWG:127
displaying on screen and, AWG:66
printing embedded documents and,

AR1:137
in removing frame decorations,

AR1:140-141
for Tic-T ac-T oe application, AR1: 108

msgAppPrint, ARl:139, 167

msgAppPrintSetup, ARl:138, 167

msgAppRemoveFloatingWin, AR1:163

msgAppRename; AR1:162

msgAppRestore, AR2:261

msgAppRevert, AR1: 168

msgAppSave, AR 1: 111

msgAppSaveChildren, AR 1: 111

msgAppSearch, ARl:168; AR2:195, 196

msgAppSelectAlI, AR 1: 168

msgAppSend, ARl:167

msgAppSetHotMode, ARl: 162

msgAppSetMain Win, AR1: 163

msgAppSetName, AR1:163

msgAppSetParent, AR 1: 171

msgAppSetPrintControls, AR1: 140-141

msgAppSetPriority, ARl:171

msgAppShowOptionSheet, ARl:138, 169

msgAppSpell, AR1:167-168

msgAppTerminate, AWG:36; AR1:155

msgApp T erminateProcess, AR 1: 111

msgAppUndo, AR2:206

msgAppWinClose, ARl:l96

msgApp WinGetMetrics, AR1: 196

msgApp WinOpen, AR1: 196

msgApp WinSetStyle, AR1: 196

msgA TPRespPktSize, AR2:302

msgBitmapSetMetrics, AR1 :330

msgBitmapSetSize, AR1:330

msgBootStateChanged, AR2:431

msgBorderGetBackgroundRGB, AR1 :376

msgBorderGetBorderRect, AR1 :379

msgBorderGetForegroundRGB, ARl:376
clsButton and, AR1:422

msgBorderGetInnerRect, AR1:375, 379
subclassing clsBorder and, AR1:380

msgBorderGetOuterOffsets, AR1 :380
custom layout constraints and,

ARl:392

msgBorderGetOuterSize, AR1:379

msgBorderlnkToRBG, AR1:376

msgBorder Propagate Visuals, AR 1 :378

msgBorderProvideBackground, ARl:377

msgBorderProvideDelta Win, AR1 :377

msgBorderRGBTolnk, AR1:376

msgBorderSetLook, AR1:404

. msgBorderSetStyle, AR1:378

msgBorderSetVisuals, ARI :378

msgBrowserBookmark, AR2: 145

msgBrowserBy messages, AR2: 142

msgBrowserCollapse, AR2: 143

msgBrowserCreateDir, AR2: 141

msgBrowserCreateDoc, AR2: 141

msgBrowserDelete, AR2: 141

msgBrowserExpand, AR2: 143

msgBrowserGetBrowWin, AR2: 137
getting internal display window and,

AR2:144-145

msgBrowserGetMetrics, AR2: 144

msgBrowserGetSelection, AR2: 143

msgBrowserGoto, AR2: 144

msgBrowserReadState, AR2: 143

msgBrowserRefresh, AR2: 142

msgBrowserRename, AR2: 141

msgBrowserSelection, AR2: 140

msgBrowserSelectionDir, AR2: 140

msgBrowserSelectionN arne, AR2: 141

msgBrowserSelectionOff, AR2: 145

msgBrowserSelectionOn, AR2: 145

msgBrowserSelectionPath, AR2: 145

msgBrowserSelectionUUID,AR2: 141

msgBrowserSetClient, AR2: 144

msgBrowserSetMetrics, AR2: 143-144

msgBrowserSetSaveFile, AR2: 143

msgBrowserSetSelection, AR2: 141

msgBrowserShow messages, AR2: 142
setting metrics and, AR2: 144

msgBrowserUserColumnQueryState,
AR2:146

msgBrowserWriteState, AR2:143

msgBusyDisplay, AR2: 193
in busy clock delay and reference

count, AR2: 194

msgBusySetXY, AR2:193

msgButtonAcceptPreview, ARI :438

msgButtonDone, ARI :438-439

msgButtonGet/SetMetrics, ARI :419

msgButtonNotify, ARl:400,420

msgButtonNotifyManager, ARI :424

msgButtonSetNoNotify, ARl:421

msgByteBufChanged, AR2:209

msgByteBufGetBuf, AR2:208

msgByteBufSetBuf, AR2:208

msgCan, ARl:29

msgChanged, ARI :53

msgChoiceMgrSetOnButton, ARI :444

msgChoiceSetNoNotify, ARI :444

msgCIMLoad, AR2:415

msgClass, ARl:55, 367

msgCntrGetValue, AWG:139
handler for, AWG:139
pointer and, A WG: 140

msgCntrInc, AWG:139
for incrementing value, AWG: 140

msgControlAcceptPreview,
ARl:399-400, 406

menu button notification and,
ARl:446

stopping preview and, ARl:407

msgControlBeginPreview, ARI :405-406,
407

menu button notification and,
ARl:446

preview repeat and, ARI :408

msgControlCancelPreview, ARI :406
stopping preview and, ARl:407

msgControlEnable, ARI :404-405
submenus and, ARl:449-450
toolkit table notification and, ARl:438

msgControlGetDirty, ARI :403
toggle tables and, ARl:442

msgControlGetMetrics, ARI :402

msgControlGetStyle, ARl:404

msgControlGetValue, ARl:400, 403
button value and, ARl:422

toggle tables and, ARl:442

msgControlProvideEnable, ARl: 164,405

msgControlRepeatPreview, ARl:406, 408

msgControlSetClient, ARI :399

msgControlSetDirty, ARl:403
button value and, ARl:422
toggle tables and, ARl:442

msgControlSetEnable, ARI :404
toggle tables and, ARI :442

msgControlSetMetrics, ARI :402

msgControlSetStyle, ARI :404

msgControlSetValue, AR1:400, 403
button notification and, ARl:421
button value and, ARl:422
choice value and, ARI :444
toggle tables and, ARl:442

msgControlUpdatePreview, ARI :406

msgCopy, ARl:49
using, ARl:49-50

msgCopyRestore, ARl:49-50

msgCreated, ARl:28, 56

msgCstmLayoutGetChildS pec,
ARl:390-391,396

msgCstmLayoutSetChildSpec, ARI :390

msgDcAlignPattern, ARl:292

msgDcCachelmage, ARl:297, 299
creating cached images and, ARI :300
drawing cached images and, ARl:300
invalidating cached images and,

AR1:301

msgDcCharMetrics, ARI :312

msgDcCopyImage, ARl:297
cached images and, ARl:299
copying cached images and,

ARI :300-30 1

msgDcCopyPixels, ARl:259-260, 263

msgDcDraw, AWG:133, 187

msgDcDrawArcRays, ARI :293, 294, 340

msgDcDrawBezier, ARl:293, 340
msgPicSegDrawSpline and, ARl:323

msgDcDrawChordRays, ARl:294, 340

msgDcDrawEllipse, ARl:294, 340

msgDcDrawImage, ARl:263, 297
cached images and, ARl:299-300
call backs, ARI :299
filtering and, ARI :298
painting TIFF image with, AR1:333
picture segments and, ARl:320
run-length encoding and, ARl:298

msgDcDrawImageMask, ARI :297
rendering colors and, ARl:299

msgDcDrawPixels, ARl:260-261

msgDcDrawPolygon, ARl:294, 340

msgDcDrawPolyline, ARl:293, 340

msgDcDrawRect, ARI :375-376

msgDcDrawRectangle, ARl:292, 340

msgDcDrawSectorRays, ARl:294, 340

msgDcDrawText, ARl:302, 311
measuring text and, ARl:312-313

msgDcDrawTextRun, ARl:313

msgDcFillWindow, ARl:290, 294

msgDcFontOpen, ARl:305-306

msgDcGetCharMetrics, ARI :31 0

msgDcGetFontMetrics, ARI :307

msgDcGetFontWidths, AR1:31O, 312

msgDcGetLine, ARl:291

msgDcGetMatrix, ARl:289

msgDcGetMatrixLUC, ARI :289

msgDcGetPixel, ARI :259

msgDcHoldLine, ARl:291

msgDcIdentity, ARI :288, 310

msgDcIdentiryFont, ARI :31 0
clsPicSeg and, ARI :321

msgDcInitialize, ARl:285

msgDcInvertColors, ARl:295

msgDcLineThickness, ARl:291

msgDcMatchRGB, ARl:296

msgDcMeasureText, ARl:310, 312-313

msgDcMeasureTextRun, ARl:313

msgDcOpenFont, ARl:302, 304-305

msgDcPlaneNormal, ARl:296

msgDcPlanePen, ARl:296

msgDcPop,. ARI :302

msgDcPopFont, ARl:315

msgDcPreloadText, ARl:314

msgDcPush, ARl:302

msgDcPushFont, ARl:315

msgDcRotate, ARl:288

msgDcScale, ARl:288

msgDcScaleFont, ARl:302, 310-311
clsPicSeg and, ARl:321

msgDcScaleWorld, ARl:288

msgDcScreenShot, PDT: 175

msgDcSetBackgroundColor, ARl:260,
295

msgDcSetBackgroundRGB, ARI :295

msgDcSetForegroundColor, ARl:260,
295

msgDcSetForegroundRGB, ARI :295

msgDcSetLine, ARl:291

msgDcSetLineThickness, ARl:212

msgDcSetMode, ARl:291, 292

msgDcSetPixel, ARI :259

msgDcSetPlaneMask, ARI :296

msgDcSetRop, AR1:293

msgDcSetWindow, ARl:212, 286

msgDcTranslate, AR1:288

msgDcUnitsTwips, AR1:308

msgDcUnitsWorld, AR1:288

msgDestroy, AWG:99, 101; AR1:26
for closing file, AWG: 145
for closing memory-mapped file, .

AR2:74
for closing multi-user service, AR2:446
clsHello Win and, A WG: 128
clsMark and, AR1:133
in destroying image device, AR1 :262
in destroying insertion pad object,

AR2:33
in destroying lists, AR2: 131
in destroying object, AR1:57-58
in freeing handle, AR2:74-75
in freeing table, AR2:228
key use and, AR1:24
message handling and, A WG: 1 09

msgDisable, AR1:29

msgDrwCtxSetWindow, AR1 :286

msgDump, AWG:68; AR1:252
implementation, AWG: 161
Tic-Tac-Toe and, AWG:159

msgEmbeddedWinBeginCopy, AR1: 120,
191-192

msgEmbeddedWinBeginMove, AR1:120,
124-125, 191-192

msgEmbeddedWinCopy, AR1:121, 192

msgEmbeddedWinDestroy, AR1: 190

msgEmbeddedWinExtractChild, AR1: 193

msgEmbeddedWinGetDest, AR1: 122,
192

msgEmbeddedWinGetMetrics, AR1: 190

msgEmbeddedWinGetPenOffset,
AR1:123,193

msgEmbeddedWinGotoChild, AR1: 127

msgEmbeddedWinlnsertChild,
AR1:122-123,193

msgEmbeddedWinMove, AR1:121, 192

msgEmbeddedWinMoveChild, AR1: 122

msgEmbeddedWinMoveCopyOK,
AR1:121-122,192

msgEmbeddedWinRestoreChild,
AR1:123

msgEmbeddedWinSetUUID, AR1:193

msgEmbeddedWinStyle, AR 1: 190

msgEnable, AR1:29

msgEnumObservers, AR1 :51

msgExport, AR2:149
responding to, AR2: 154

msgExportGetFormats, AR2: 148
responding to, AR2:152-153

msgExportName, AR2:153-154

msgFieldActivate, AR1 :481-482

msgFieldActivatePopU p, AR1 :482

msgFieldClear, AR1:483

msgFieldCreatePop U p, AR1 :480-481

msgFieldCreateTranslator, AR1:481

msgFieldDeactivate, AR1 :481-482

msgFieldDelayScribble, AR1 :483

msgFieldGetCursorPosition, AR1 :480

msgFieldGetMaxLen, AR1:480

msgFieldGetStyle, AR1:480

msgFieldGetXlate, AR1:480

msgFieldKeyboardActivate, AR1 :482

msgFieldModified, AR1 :482

msgFieldPreValidate, AR1:484

msgFieldReadOnly, AR1:483

msgFieldSetCursorPosition, AR1 :480

~sgFieldSetMaxLen, AR1:480

msgFieldSetStyle, AR1:480

msgFieldSetXlate, AR1:480

msgFieldTranslateDelayed, AR1:483

msgFieldValidate, AR1:484

msgFieldValidateEdit, AR1:484-485

msgFIMFindld, AR2:418

msgFIMGetId, AR2:418

msgFIMGetInstalledIDList, AR2:417,
418

msgFIMGetNameFromld, AR1:441;
AR2:417,418

msgFIMSetId, AR2:418

msgFrameClose, AR1:501, 503
close boxes and, AR1:507

msgFrameGetClientWin, AR1:500

msgFrameGetMetrics, AR1:500

msgF rameGetS tyle, AR 1: 5 00

msgFrameSelect, AR1:502

msgFrameSetClientWin, AWG: 120;
AR1:500

msgFrameSetMenuBar, AR1 :503

msgFrameSetMetrics, AR1 :500, 595

msgFrameSetStyle, AR1:500

msgFrameShowSelected, AR1:502

msgFrameZoom, AR1:503

msgFree, AWG:109; AR1:57, 73; AR2:67
in closing files, AWG:143, 145; AR2:46
in deinstallation, AR1:99
in destroying application directory

handle, AR1:179
in document deletion, AR1: 115
in document termination,

AR1:110-112
in forced deletion, AR2:75-76
in freeing stream, AR2: 177
in freeing table, AR2:228
handling, AR1:59; AR2:458

service instance and, AR2:466
in unbinding application from service,

AR2:261

msgFreeing, AR1 :58
handling, AR1 :58

msgFreeOK, AR1:57-58
handling, AR1:58

msgFreePending, AR1:58
handling, AR1 :58-59

msgFSChanged, AR2:89

msgFSCopy, AR2:80

msgFSDelete, AR2:65, 75

msgFSEjectMedia, AR2:91

msgFSFlush, AR2:74, 353
in flushing buffers, AR2:85

msgFSForceDelete, AR2:66, 67, 75

msgFSGetAttr, AR2:59
for attribute manipulation, AR2:76
for getting attribute value length,

AR2:79
getting values and, AR2:78

msgFSGetHandleMode, AR2:71, 73
handle mode flags and, AR2:87

msgFSGetInstalledVolumes, AR2:60
for list of volume objects, AR2:90

msgFsGetPath, AR2:59

msgFSGetSize, AR2:85

msgFSGetVolMetrics, AR2:49, 60
call example, AR2:91
duplicate volume names and, AR2:50
for getting volume information,

AR2:90

msgFSMakeNative, AR2:89-90
call example, AR2:90

msgFSMemoryMap, AR2:73

msgFSMemoryMapF ree, AR2: 74

msgFSMemoryMapGetSize, AR2:74

msgFSMemoryMapSetSize, AR2:73, 74

msgFSMove, AR2:80

msgFSNodeExists, AR2:83

msgFSReadDir, AR2:87-88

msgFSReadDirFull, AR2:88

msgFSSame, AR2:86
example, AR2:87

msgFSSeek, AR2:59
in getting file position, AR2:84-85

msgFSSetAttr, AR2:78
for attribute manipulation, AR2:76
for creating directory index, AR2:80
for renaming nodes, AR2:83
setting values and, AR2:79

msgFSSetHandleMode, AR2:65 , 71, 73
handle mode flags and, AR2:87

msgFSSetSize, AR2:85

msgFSSetTarget, AR2:59, 67, 76
call example, AR2:86
in changing target directory, AR2:86
directory position and, AR2:88

msgFSSetVolName, AR2:91

msgFSTraverse, AR2:67, 81-82
in call back routine, AR2:82
function of, AR2:81

msgFSVolSpecific, AR2:91

msgGetlnstalledVolumes, AR2:49

msgGetObserver, AR1:52

msgGetPath, AR2:85
example of, AR2:86

msgGWinForwardedGesture, AR1 :369,
408

msgGWinGesture, AWG:156; AR1:127
application response to, AR1: 170
gesture propagation and, AR1:369
gesture windows and, AR1:368
responding to gestures and, AR1:369

msgGWinTransformGesture, AR1:369

MsgHandlerArgTypeO macro, AR1:39
using, AR1:40

MsgHandler macro, AWG:99, 110

MsgHandlerO macro, AR1:39

MsgHandler macro, naming pointer,
AWG:132

MsgHandlerO macro, using, AR1:39

MsgHandlerParameterN 0 WarningO
macro, AR1:39

using, AR1 :40

MsgHandlerParametersN 0 Warning,
AWG:110

MSG_HANDLER structure, AR1:37

MsgHandlerWith TypesO macro,
AWG:99, 132; AR1:39

using, AR1:40

msgIconCopyPixels, AR1:525

msgIconFreeCache, AR1:525

msgIconProvideBitmap, AR1:524
cached picture and, AR1:525

msgIMCurrentChanged, AR2:408

msgIMDeinstalled, AR2:256, 409
in deinstalling service, AR2:465
in deleting installable item, AR2:412

msgIMDelete, AR2:412

msgIMDup, AR2:412

msgIMFind, AR2:261, 262, 413
in locating parallel port, AR2:276
in locating serial port, AR2:268
in locating service, AR2:442
in locating socket service handle,

AR2:298

msgIMGetCurrent, AR2:412

msgIMGetDir, AR2:411

msgIMGetList, AR2:261 , 413, 417

msgIMGetName, AR2:258, 262, 417

msgIMGetNotify, AR2:407

msgIMGetSema, AR2:407, 414

msgIMGetSize, AR2:413

msgIMGetState, AR2:412, 413

msgIMGetStyle, AR2:411

msgIMlnstall, AR2:254, 411

msgIMlnstalled, AR2:409

msgIMln UseChanged, AR2:408

msgIMModifiedChanged, AR2:408

msgIMNameChanged, AR2:408

msglmport, AR2:151-152

msglmportQuery, AR2: 148
responding to, AR2: 150-151

msgIMSetCurrent, AR2:412

msgIMSetModified, AR2:407

msgIMSetName, AR2:412

msgIMSetNotify, AR2:407

msgIMSetStyle, AR2:411

msgINBXSvcPollDocuments, AR2:313

MSG_INFO array, AR1 :43-44
for clsTttData, AR1:44
defined, AR1 :42
entry fields, AR1:44
option flags, AR1:44
wildcards and, AR1:45

msglnit, AWG:65; AR1:72
clsHelloWin, AWG:128, 130
creating objects and, AR1:34, 98
in document activation, AR1:104
failures during, AWG:153; AR1:59
method for, AR1:104

msglnputEvent, AWG:156; AR1:546
input event status codes and, AR1:569

msglnputGrabPushed, AR1:572

msglnputGrabTerminated, AR1:549

msglnsertSibling, AR1 :233

msgIPDataAvaiiable, AR1:588

msgIPGetXlateData, AR1:588

msgIPSetTranslator, AR1:598

msgIsA, AR1:54, 367

msgKeyChar, AR1:583
event data, AR1:583
msgKeyMulti and, AR1:583

msgKeyDown, AR1:582
event data, AR1:582

msgKeyMulti, AR1:583-584
event data, AR1:584

msgKeyUp, AR1:582
event data, AR1:582

msgLabelGetRects, AR1:416

msgLabelGetString, AR1 :486

msgLabelProvideInsPt, AR1:416

msgLabelSetString, AWG:42-43; AR1:41 0
data specific fields and, AR1:486
label layout and, AR1:414

msgList, PDT: 118

msgListAddltem, AR2: 173

msgListAddltemAt, A WG:45; AR2: 129

msgListBoxAppendEntty, AR1 :467

msgListBoxDestroyEntry, AR1 :466

msgListBoxEntryGesture, AR1 :468

msgListBoxEntryIsVisible, AR1:468

msgListBoxEnum, AR1:469
user selected entries and, AR1:473

msgListBoxGetEntty, AR 1 :465

msgListBoxlnsertEntry, AR1:467

msgListBoxMakeEntryVisible, AR1 :469

msgListBoxProvideEntty, AR1 :465-466
list box layout and, AR1 :469
list box painting and, AR1:468

msgListBoxRemoveEntry, AR1 :467

msgListBoxSetEntry, AR1 :465
for changing entry state, AR1:467

msgListBoxXYT oPosition, AR1 :469

msgListEnumltems, AR2: 130

msgListFindltem, AR2:129

msgListFree, AR2: 131

msgListGetItem, AR2:129

msgListN umltems, AR2: 127
in counting items, AR2:130

msgListRemoveItemAt, AR2: 129-130

msgListRemoveI terns, AR2: 130

msgListReplaceItem, AR2:129-130

msgMarkCompare Token, AR1 :20 1

msgMarkCompareTokens, AR1:132

msgMarkCopyMark, AR1:203

msgMarkCreateToken, AR1: 132,200;
AR2:196

msgMarkDeleteToken, AR1:132, 201

msgMarkDeliver, AR1:201-202

msgMarkDeliverNext, AR1:202

msgMarkGetCb-ild, AR1: 132

msgMarkGetComponent, AR1:203

msgMarkGetDataAncestor, AR1: 132, 201

msgMarkGetParent, AR1:132, 201

msgMarkGetUUID, AR1:132, 201

msgMarkNextChild, AR1:132

msgMarkPositionAtChild, AR1: 132

msgMarkPositionAtEdge, AR1:132

msgMarkPositionAtGesture, AR1: 132

msgMarkPositionAtSelection, AR1: 132;
AR2:196

msgMarkPositionAtToken, AR1:132

msgMarkSelectTarget, AR1:132; AR2:198

msgMarkSend, AR1:203

msgMarkSetComponent, AR1 :203

msgMarkShowTarget, AR1:132; AR2:198

msgMarkValidateComponent, AR1:201

msgMemoryMap, A WG: 144

msgMemoryMapFree, AWG: 145

msgMenuButtonGetSryle, AR1 :446

msgMenuButtonProvideMenu, AR1 :449

msgMenuButtonSetSryle, AR1 :446

msgMenuDone, AR1:439

msgMinLayout, AR1:378

msgModemAutoAnswerSet, AR2:284,
289

msgModemCarrierStateSet, AR2:284

msgModemCommandModeSet,
AR2:285, 287

msgModemConnected, AR2:289

msgModemDial, AR2:287

msgModemDialTypeSet, AR2:284

msgModemDisconnected, AR2:289

msgModemDuplexSet, AR2:286

msgModemHangup, AR2:287

msgModemMNPBreakTypeSet, AR2:289

msgModemMNPCompressionSet,
AR2:289

msgModemMNPFlowControlSet,
AR2:290

msgModemMNPModeSet, AR2:286, 289

msgModemOffHook, AR2:289

msgModemOnline, AR2:285, 287, 289

msgModemReset, AR2:283

msgModemRingDetected, AR2:289

msgModemSendCommand,
AR2:286-287

msgModemSpeakerControlSet, AR2:285

msgM\ltate, AR1:28, 60

msgMyAppQuit, AR1:400

msgNBPCancel, AR2:303

msgNBPConfirm, AR2:304

msgNBPLookup, AR2:303

msgNBPRegister, AR2:303

msgNBPRemove, AR2:303

msgNew, AWG:48, 49; AR1:15
application class initialization routine

and, AR1:97
arguments for clsLabel, AWG:118-119
argumen t structure and, AR 1: 15-17
capturing handwriting and, AR1:555
class installation and, AR1:33, 47-48
clsApp and, AR1:160
clsClass and, AR1:82
clsCntr, AWG:139

clsMark and, AR1:133
clsResFile and, AR1: 111, 113
clsService handling of, AR2:457
clsTkTable, AWG:146
creating application class and,

AWG:103; AR1:96
creating application directory handle

and, AR1:179
creating application instance and,

AR1:148
creating bitmap and, AR1 :330
creating browser and, AR2: 140
creating buttons and, AR1 :419
creating byte buffer object and,

AR2:208
creating choice and, AR1:443
creating class and, AWG:53, 54
creating clsModem object and,

AR2:282-283
creating controls and, AR1:402
creating custom layout window and,

AR1:390
creating directory handle and, AR2:58,

71
creating directory index and, AR2:80
creating embedded application and,

AR1:196
creating embedded window and,

AR1:190
creating fields and, ARl:477
creating file handle and, AR2:72
creating font list box and, ARl:473
creating handles and, AR2:69
creating imaging device and, AR1:256
creating insertion pad and, ARl:586
creating installable-item manager and,

AR2:410
creating instance of class and, AWG:51
creating labels and, ARI :411
creating list box and, ARI :464
creating lists and, AR2: 129
creating menu button and, ARl:446
creating menus and, ARl:447-448
creating new view and, ARl: 174
creating new window and, ARI :232
creating notes and, AR1:488
creating objects and, ARI :34
creating option sheets and, ARI :514
creating picture segments and,

ARl:322
creating progress bar and, AR1:535
creating resource file handle and,

AR2:348
creating resource list and, AR2:346
creating scribble object and, ARI :609
creating service instances and,

AR2:442, 454
creating stream object and, AR2: 134
creating string list boxes and, ARl:470
creating string object and, AR2:212
creating table object and, AR2:220
creating temporary file and, AR2:65

creating text data objects and, AR2:7,
13

creating text insertion pad and, AR2:33
creating text view object and, AR2:5,

24
creating TIFF object and, ARI :332
creating toolkit table and, AR1:428

changing defaults, ARl:434
child windows, AR1:434

creating translator and, AR1 :605
creation notification and, AR1:28
document activation and, AR1:103
document creation and, AR1:82
key value, A WG: 104
limiting file access with, AR2:67
message argument value, AWG:49
message handler, ARl:18
modifYing toolkit table and, ARl:436
in opening file, AR2:46
in opening multi-user service, AR2:446
in specifYing serial port handle,

AR2:281
in system process, ARl:83-84
table data files and, 00:214
temporary file flag with, AR2:75
UI Toolkit classes and, ARI :364
using, AR1:18

msgNewArgsSize, ARl:435

msgNewDefaults, AWG:51, 52; ARl:15
application class initialization routine

and, ARl:97
argument structure and, AR1: 17
before msgNew, AWG:118
clsCntr, AWG:139
clsMark and, AR1:133
clsService handling of, AR2:457
for clsTextView, AR2:24-25
clsTttView, AWG:166-167
creating application directory handle

and, ARl:179
creating bitmap and, ARl:330
creating browser and, AR2: 140
creating buttons and, AR1:419
creating byte buffer object and,

AR2:208
creating clsModem object and,

AR2:282-283
creating custom layout window and,

ARl:390
creating directory handles and, AR2:71
creating embedded application and,

ARl:l96
creating handles and, AR2:69-70
creating installable-item manager and,

AR2:410
creating menus and, ARl:447
creating new insertion pad and,

ARl:586
creating new view and, AR 1: 174
creating new window and, ARl:232
creating notification and, AR1 :28

creating objects and, ARI :34
creating progress bar and, ARl:535
creating resource file handle and,

AR2:348
creating resource list and, AR2:346
creating scribble object and, ARI :609
creating serVice instances and, AR2:454
creating stream object and, AR2:134
creating string object and, AR2:212
creating table object and, AR2:220
creating text data objects and, AR2:7,

13
creating text insertion pad and, AR2:33
creating text view object and, AR2:5,

24
creating toolkit tables and, ARl:435
creating translator and, ARl:605
handwriting input and, ARl:555
for initialization, AWG:119
in opening file, AR2:46
UI Toolkit classes and, ARl:364
using, ARl:17
window style flags and, ARl:232

msgNewWithDefaults, ARl:18

msgNoteCancel, ARl:492

msgNoteDone, ARl:491

msgNoteShow, ARl:490

msgNotifyObservers, ARl:27, 52-53

msgNotUnderstood, AR2:159

MsgNum, AWG:156

msgNumObservers, ARl:52

msgObjectClass, ARl:55

msgObjectlsA, ARI :54

msgObjectNew, ARl:28; AR2:456

msgObjectOwner, ARl:55

msgObjectValid, ARl:55

msgObjectVersion, ARl:56

msgOBXDocOutputDone, AR2:309

msgOBXSvcCopyInDoc, AR2:309

msgOBXSvcLockDocurnent, AR2:309,
310

msgOBXSvcMovelnDoc, AR2:309

msgOBXSvcNextDocument, AR2:309

msgOBXSvcOutputStart, AR2:311

msgOBXSvcPollDocurnents, AR2:309

msgOBXSvcUnlockDocurnent, AR2:309,
310

msgOpen, AWG:36
clsHelloWorld and, AWG:127

msgOptionAddCard, ARl:138, 515;
AR2:318

msgOptionAddLastCard, ARl:139, 169

msgOptionApplicableCard, ARl:516,
518-520

msgOptionApply, ARl:516

msgOptionApplyCard, ARl:516, 520

msgOptionClose, ARl:516

msgOptionCreateSheet, ARI :519

msgOptionDirtyCard, ARl:520

msgOptionExtractCard, ARl:516

msgOptionProvideCard, AR 1 :516

msgOptionRefreshCard, ARl:516

msgOptionRemoveCard, ARI :515

msgOptionSetCard, ARl:515

msgOptionSheetAddCards, AR2:330

msgOptionShowCard, ARl:515

msgOSOGetServiceInstance, AR2:471

msgOutProxUp, ARl:575

msgOwner, ARl:55

msg parameter, AWG:99, 109; ARl:38
EmptyAppDestroy and, AWG: 11 0
in OBT_NOTIFY_OBSERVERS structure,

ARl:52

_MSG_PAT variable, PDT:125

msgPenDown, ARl:407, 563, 575
event data, ARl:576

msgPenEnterDown, ARl:575, 577
event data, ARl:577

msgPenEnterUp, ARl:575, 577
event data, ARI :577

msgPenExitDown, ARl:575, 578
event data, ARl:578

msgPenExitUp, ARl:575, 578
event data, ARl:578

msgPenHoldTimeout, ARl: 120

msgPenIriProxUp, ARl:575, 578
event data, ARI :578

msgPenMoveDown, ARl:575, 577
event data, ARI :577

msgPenMoveUp, ARl:575, 577
event data, ARl:577

msgPenOutProxUp, ARI :578-579
event data, ARl:579

msgPenStroke, ARl:579
event data, ARl:579

msgPenTap, ARl:579-580
event data, ARl:580

msgPenUp, ARl:407, 575, 576
event data, ARl:576

msgPicSegAddGrafic, ARI :325

msgPicSegChangeOrder, ARl:325

msgPicSegDelete, ARl:324

msgPicSegDelta, ARl:324

msgPicSegDrawGrafic, ARI :324

msgPicSegDrawGraficlndex, ARI :324

msgPicSegDrawObject, ARl:320, 323

msgPicSegDrawSpline, ARI :320, 323

msgPicSegErase, ARl:322

rnsgPicSegGetCount, ARI :324

msgPicSegGetGrafic, ARI :324

msgPicSegHitTest, ARl:325

msgPicSegMakeInvisible, ARI :326

msgPicSegPaint, ARI :319

msgPicSegPaintObject, ARl:323

msgPicSegRedraw, ARI :333

msgPicSegScaleUnits, ARI :327

msgPicSegSetCurrent, ARl:324

msgPicSegSetFlags, ARI :323

msgPopupChoiceGetChoice, ARI :451

msgPostObservers, ARl:53

msgPPortAutoLineFeedOn/Off, AR2:277

msgPPortCancelPrint, AR2:278

msgPPortGetTimeDelays, AR2:277

msgPPortlnitialize, AR2:277 -278

msgPPortSetTimeDelays, AR2:277, 278

msgPPortStatus, AR2:278

msgPrefsPreferenceChanged, ARl: 170;
AR2:368

msgPrintEmbeddeeAction, ARl: 143

msgPrintGetProtocols, ARl:137, 140
not understood, ARl:143

msgPrintLayoutPage, ARl:141, 142
not understood, ARl:143

msgPrintStartPage, ARl:140
not understood, ARl:143

msgProgressGetFilled, ARI :538

msgProgressGetMetrics, ARl:536, 537

msgProgressGetStyle, ARl:536

msgProgressGetUnfilled, ARl:538

msgProgressGetVisInfo, ARl:538-539

msgProgressProvideLabel, ARI :539-540

msgProgressSetFilled, ARl:538

msgProgressSetMetrics, ARl:537

msgProp, ARl:28, 57

msgQuickHelpOpen, AR2: 188

msgQuickHelpShow, ARl:370; AR2:181
in displaying Quick Help text,

AR2:187

msgRCAppGotoDoc, ARl:184, 187

msgRCAppNextDoc, ARl:187

msgRCAppPrevDoc, ARl:187

msgRCAppReferenceContents, ARl: 188

msgRDAppCancelGotoDoc, ARl: 188

msgRemoveObserver, ARl:27, 51;
AR2:220

msgResAgent, AR2:353-354

msgResCompact, AR2:352, 353

msgResDeleteResource, AR2:352

msgResEnumResources, AR2:351-352

msgResFindResource, ARl:517

msgResFlush, AR2:353

msgResGetlnfo, AR2:349

msgResGetObject, AWG:145; AR1:113;
AR2:45

msgResNextDynResID, AR2:344

msgResPutObject, AWG:145, 146;
AR1:112; AR2:44, 207, 341

creating resources, AWG:167
dynamic resource IDs and,

AR2:343-344

msgResReadData, AR2:338, 349, 353
preferences resources and, AR2:361
writing agents and, AR2:354

msgResReadID, AR1:306

msgResReadObject, AR1: 113-114;
AR2:338, 350

msgResReadObjectWithFlags,
AR2:350-351

msgRestore, AWG:36, 140; AR1:35, 73;
AR2:45

failures during, AWG:153; AR1:59
ftlingwindows and, AR1:253
handling, AWG:142
message arguments to, AWG:141
message handler response to, AR2:45
method for, AR1:105, 114
object resources and; AR2:341, 342
in reactivating document,

AR1:113-114
stateful objects and, AWG:65
in Tic-T ac-Toe application,

AR1:114-115
versioning data and, AWG:63

msgResUpdateData, AR2:349-350, 353
preferences resources and, AR2:361

msgResWriteData, AR2:349-350, 353
changing hand preference with,

AR2:363
changing screen orientation preference

with, AR2:363
changing scroll margin style

preference with, AR2:365
changing system and user fonts

preference with, AR2:363
preferences resources and, AR2:361
writing agents and, AR2:354

msgResWriteObject, AR1:111, 112;
AR2:351

msgResWriteObjectWithFlags, AR2:351

msgSave, AWG:35, 140; AR1:35, 73;
AR2:44-45

closing files and, A WG: 143
clsCntrApp, AWG:141
ftling windows and, AR1:253
handling, AWG: 141-142
message arguments to, AWG:141
method for, AR1:105
object resources and, AR2:341

stateful objects and, AWG:65
terminating document and, AR1: 111,

112-113
in Tic-Tac-Toe application, AR1:113
writing objects/data and, AR2:44

msgScavenge, AR1 :27

msgScrAddedStroke, AR1 :606

msgScrCat, AR1 :609

msgScrClear, AR1:609

msgScrComplete, AR1:61O

msgScrCompleted, AR1 :606

msgScrCount, AR1 :609

msgScrDeleteStroke, AR1 :609

msgScrGetBounds, AR1 :609

msgScrHit, AR1:61O

msgScrollbarHorizScroll, AR1 :454
normalizing scroll and, AR1 :456
scroll windows and, AR1:457

msgScrollbarProvideHorizInfo, AR1 :454
scroll windows and, AR1:457

msgScrollbarProvideVertlnfo, AR1 :454
normalizing scroll and, AR1:457
scroll windows and, AR1:457

msgScrollbarUpdate, AR1:456

msgScrollbarVertScroll, AR1:454
normalizing scroll and, AR1:456-457
scroll windows and, AR1:457

msgScrollWinAddClientWin, AR1 :462

msgScrollWinCheckScrollbars, AR1 :460

msgScrollWinGetlnnerWin, AR1:457,
460

msgScrollWinGetStyle, AR1 :460

msgScrollWinProvideDelta, AR1 :461,
462

msgScrollWinShowClientWin, AR1:462
msgScrRemovedStroke, AR1 :606

msgScrRender, AR1:61O

msgScrStrokePtr, AR1:61O

msgScrXtractComplete, AR1:606

msgSelBeginCopy, AR1:120; AR2:159,
160

msgSelBeginMove, AR1:120, 123-124;
AR2:159,160

msgSelChangedOwners, AR2:162, 163
restoring selection owners and,

AR2:162

msgSelCopySelection, AR1:121
handling, AR1:128
picture segments and, AR1 :327

msgSelDelete, AR2: 159
handling, AR2: 160

msgSelDemote, AR2:159
handling, AR2: 160
preserving owner selection and,

AR2:162

msgSelIsSelected, AR2: 159

msgSelMarkSelection, AR 1: 128

msgSelMoveSelection, AR1:121, 125
handling, AR1:128
picrure segments and, AR1 :327

msgSelOptions, AR1:520, 521; AR2:159
handling, AR2: 160

msgSelOptionTagOK, AR2:160

msgSelOwner, AR2:31
finding selection owners and,

AR2:161-162
selection transitions and, AR2:157

msgSelPromote, AR1:521; AR2:159
handling, AR2: 160
restoring selection owner and, AR2: 162

msgSelPromotedOwner, AR2:163

msgSelSelect, AR2:161

msgSelSetOwner, AR2:157, 159, 162
clsEmbeddedWin and, AR2: 161
promoting/demoting and, AR2: 160

msgSelSetOwner Preserve, AR1: 521;
AR2:159, 162

clsEmbeddedWin and, AR2:161
restoring selection owner and, AR2: 162

msgSelYield, AR2:157, 159
handling, AR2: 160
restoring selection owner and, AR2: 162

msgSendServCreateAddrWin, AR2:332,
333

msgSendServFillAddrWin, AR2:332,
333-334

msgSendServGetAddrDesc, AR2:332, 333

msgSendServGetAddrSummary,
AR2:332, 334

msgSetAttr, AR2:66

msgSetOwner, AR1:26

msgSetProp, AR1:28, 56-57

msgSetTranslator, AR1:588

msgShowMenu, AR1:448

msgSIMGetMetrics, AR2:456

msgSioBaudSet, AR2:269
data modem and, AR2:280

msgSioBreakSend, AR2:272

msgSioBreakStatus, AR2:273

msgSioControlInStatus, AR2:270

msgSioControlOutSet, AR2:270

msgSioEventGet, AR2:273

msgSioEventHappened, AR2:266, 272
msgSioEventSet, AR2:266, 272

msgSioEventStatus, AR2:273

msgSioFlowControlCharSet, AR2:270

msgSioFlowControlSet, AR2:269
msgSioGetMetrics, AR2:270-271

msgSioInputBufferFlush, AR2:271

msgSiolnputBufferStatus, AR2:271

msgSioLineControlSet, AR2:269
data modem and, AR2:280

msgSioOutputBufferFlush, AR2:271

msgSioOutputBufferStatus, AR2:271

msgSMAccess, AR2:261

msgSMBind, AR2:259, 261, 262
in binding parallel port, AR2:276
in binding serial port, AR2:268
in binding socket service handle,

AR2:298
data modem serial port, AR2:280
service manager and, AR2:462

msgSMChangeOwner, AR2:467

msgSMClose, AR2:263
in dosing serial port, AR2:268
in dosing service instance, AR2:443
in dosing socket handle, AR2:299

msgSMClosed, AR2:464

msgSMConnectedChanged, AR2:264

msgSMFindHandle, AR2:263

msgSMOpen, AR2:261 , 262, 263
data modem serial port, AR2:280
in opening parallel port,AR2:276
in opening serial port, AR2:268
in opening service instance, AR2:442
in opening socket service handle,

AR2:298
open service objects and, AR2:471
service manager and, AR2:463

msgSMOpenDefaults, AR2:262, 263, 463
socket service handle and, AR2:298

msgSMOpenList, AR2:463

msgSMOwnerChanged, AR2:467

msgSMQueryLock, AR2:465

msgSMQueryUnlock, AR2:465

msgSMSave, AR2:466

msgSMSetOwner, AR2:264, 442, 467
service instance owner and, AR2:445

msgSMSetOwnerNoVeto, AR2:264, 467

msgSMUnbind, AR2:263
in unbinding from service instance,

AR2:443

msgSPaperGetXLate, ARl:592

msgSRGetChars, AR2: 197

msgSRNextChars, AR2:197

msgSrollWinGetClientWin, ARI :459

msgSrollWinSetClientWin, ARl:459

msgSRPositionChars, AR2: 197

msgSRReplace, AR2: 198

msgStreamFlush, AR2: 136

msgStreamRead, AWG:142; ARl:114;
AR2:44,45

blocking protocol and, AR2: 168-169

example of using, AR2:83
producer protocol and, AR2: 169
in reading files, AR2:83
in reading streams, AR2: 134
in reading with serial port, AR2:271
service instance and, AR2:443
to store state, AR2: 136
stream transfers and, AR2:168

msgStreamReadTimeOut, AR2: 134-135
data modem and, AR2:289
reading with serial port and, AR2:271

msgStreamSeek, AR2:135
passing back current position, AR2:136
setting current position, AR2: 136

msgStream Write, AWG: 141-142;
ARl:1l2; AR2:44, 59

blocking protocol and, AR2: 168-169
example of using, AR2:83
producer protocol and, AR2: 169
to save state, AR2: 136
service instance and, AR2:443
stream transfers and, AR2:168
in writing files, AR2:83
in writing streams, AR2: 134
in writing to parallel port, AR2:278
in writing with serial port, AR2:271

msgStream Write TimeOut, AR2: 134-135
data modem and, AR2:289
writing with serial port and, AR2:271

msgStrListBoxGetDirty, ARI :473

msgStrListBoxGetStyle, ARl:473

msgStrListBoxGetValue, ARl:472

msgStrListBoxProvideString, ARl:471

msgStrObjChanged, AR2:212

msgStrObjGetStr, AR2:212

msgStrObjSetStr, AR2:212

msgSvcBindRequested, AR2:443
handling, AR2:463

msgSvcChangeOwnerRequested, AR2:467
handling, AR2:468

msgSvcClasslnitService, AR2:452

msgSvcClassLoadlnstance, AR2:458-459

msgSvcClassTerminate, AR2:456
handling, AR2:458

msgSvcClassTerminateOK, AR2:456
handling, AR2:457-458

msgSvcClass Terminate Vetoed, AR2:456
handling, AR2:458

msgSvcClientDestroyedEarly, AR2:466

msgSvcCloseRequested, AR2:464-465

msgSvcDeinstallRequested, AR2:456, 457
msgSvcDeinstallVetoed and, AR2:466

msgSvcDeinstallVetoed, AR2:456, 458
handling, AR2:466
msgSvcDeinstallRequested and,

AR2:466

msgSvcGetMetrics, AR2:459-460
owned state information and, AR2:469
service response to, AR2:460

msgSvcOpenDefaultsRequested,
AR2:463-464

msgSvcOpenRequested, AR2:443

msgSvcOwnerAcquired, AR2:467
handling, AR2:469

msgSvcOwnerAcquiredRequested,
AR2:468

msgSvcOwner messages, AR2:264

msgSvcOwnerReleased, AR2:467
handling, AR2:469

msgSvcOwnerReleaseRequested, AR2:467
handling, AR2:467 -468

msgSvcOwnerRequested, AR2:467

msgSvcQueryLockRequested, AR2:465

msgSvcQueryUnlockRequested,
AR2:465-466

msgSvcSaveRequested, AR2:466

msgSvcSetMetrics, AR2:460-461
saved state information and, AR2:469
service response to, AR2:461

msgSvcUnbindRequested, AR2:462

msgSysGetBootState, AR2:431

msgSysGetLiveRoot, AR2:432

msgSysGetRuntimeRoot, AR2:432

msgTabBarGetStyle, ARl:508

msgTabBarSetStyle, ARl:508

msg TableChildDefaults, ARI :436

msgTBLAddRow, AR2:222

msgTBLBeginAccess, AR2:214, 221
observing tables and,AR2:220

msgTBLColGetData, AR2:223, 227

msgTBLColSetData, AR2:223

msg TBLCompact, AR2:224

msg TBLDeleteRow, AR2:224

msgTBLEndAccess, AR2:214, 228
observing tables and, AR2:220

msg TBLFindColN urn, AR2:226

msgTBLFindFirst, AR2:224, 226

m~gTBLFindNext, AR2:224, 226

msg TBLGetColCount, AR2:227

msgTBLGetColDesc, AR2:223-224, 227

msgTBLGetlnfo, AR2:227

msg TBLGetRowCount, AR2:227

msgTBLGetRowLength, AR2:227

msgTBLGetState, AR2:215, 227

msg TblLayoutAdjustSections, ARI :447

msg TblLayoutXYf oIndex, ARI :388

msg TBLRowGetData, AR2:223-224

msgTBLRowNumToRowPos, AR2:226

msg TBLRowSetData, AR2:223

msg TBLSemaClear, AR2:222

msg TBLSemaRequest, AR2:217, 222

msg TextAffected, AR2:21

msgTextChangeAttrs, AR2:19, 35

msgTextChangeCount, AR2:37

msgTextClearAttrs, AR2:19, 20

msg TextEmbedObject, AR2:20

msg TextEnumEmbeddedObjects, AR2:20

msg T extExtractObject, AR2:20

msgTextGet, AR2:14

msgTextGetAttrs, AR2:18, 35

msgTextGetBuffer, AR2:14

msg TextlnitAttrs, AR2: 19

msg TextLength, AR2: 14

msgTextModifY, AR2:15
counting changes and, AR2:37

msg TextReplaced, AR2:21

msgTextSpan, AR2:15

msgTextViewAddIP, AR2:26-27, 33
circle-line gesture and, AR2:26
overriding behavior of, AR2:27

msgTextViewCheck, AR2:32

msgTextViewEmbed, AR2:26

msg TextViewGetStyle, AR2:32

msgTextViewResolveXY, AR2:27-28

msgTextViewScroll, AR2:29

msg TextViewSetStyle, AR2:32

msg TiffGetMerrics, ARI :332

msgTimerAlarmNotifY, AR2:104

msgTimeRegister, ARl:408

msgTimerNotifY, AR2:104

msg Tk TableAddAsFirst, ARI :436

msgTkTableAddAsLast, ARl:436

msg Tk TableAddAsSibling, ARI :436

msg Tk TableAddAt, ARl:436

msgTkTableGetManager, ARl:443

msg Tk TableRemove, ARI :441

msgTPBind, AR2:301

msgTPRecvFrom, AR2:300

msgTPSendRecvTo, AR2:300

msgTPSendTo, AR2:299, 300

msgTrace, AWG:159, 160

msgTrackDone, ARl:528

msgTrackHide, ARl:528

msgTrackShow, ARl:528

msgTrackUpdate, ARl:528

msg TttDataChanged, AWG: 155

msgUndoAbort, AR2:204-205

msgUndoAddltem, AR2:203-204
to aborting transaction, AR2:204-205

msgUndoBegin, AR2:202-203

msgUndoCurrent, AR2:206

msgUndoEnd,AR2:203, 204

msgUndoFreeltem, AR2:206

msgUndoFreeltemData, AR2:203

msgUndoGetMerrics, AR2:205

msgUndoltem, AR2:206

msgUndoLimit, AR2:205

msgVersion, ARl:56

msgViewGetDataObject, ARl: 174;
AR2:26

msgViewSetDataObject, ARl: 174;
AR2:26

msgWin*OK messages, ARl:247

msgWinBeginPaint, ARI :240
picture segments and, ARl:319

msgWinBeginRepaint, AWG: 152;
ARl:238

painting with, ARI :239
picture segments and, ARl:319
scrollwin and, ARl:460
update region and, ARI :240

msgWinCleanRect, ARl:260

msgWinCopyRect, ARl:243
for scrollbar display and, ARl:457

msgWinDelta, ARl :234
laying out self and, ARl:250
resizing/moving and, ARl:246
scrollwin notification and, ARl:461
window layout and, ARl :382

msgWinDevBindPixelmap, ARl:257
accessing memory and, ARl:258
allocating pixehnap and, ARl:258
for multiple pixelmaps, ARl:262 .

msgWinDevGetRootWindow, ARI :255,
256

msgWinDirtyRect, ARl:239, 294
writing code and, ARI :241

msgWinDump Tree, ARI :252

msgWinEndPaint, ARl:240

msgWinEndRepaint, ARl:240

msgWinEnum, ARl :367

msgWinExtract, ARI :234
deleting insertion pad and, ARl:587

msgWinFindTag, ARl:235, 368
clsTkTable and, ARl:435
modifYing items in toolkit table and,

ARl:436

msgWinGetBaseline, ARl:251, 387

msgWinGetDesiredSize, ARl:249, 250
custom layout constraints and,

ARl:392
UI Toolkit and, ARl:368

msgWinGetFlags, ARl:235
.window input flags and, ARl:569

msgWinGetMerrics, ARl:233

msgWinGetTag, ARl:235

msgWinInsert, ARl:107, 212, 233-234
altering child windows and, ARl:246
insertion pad

creating, ARl:586
displaying, ARl:587

msgWinInsertSibling, ARl:228, 233

msgWinLayout, ARl:141, 247, 248
baseline alignment, ARl :251
caching desired sizes, ARI :250
client interface to layout and, ARl:249
function, ARl :381
laying out self, ARl:250
layout and geometry capture, AR1:251
layout episode, ARl:249
layout loop and, ARl :397
layout processing, ARl:249
in layout speedup, ARl:365
lazy layout and, ARl:397
progress bar and, ARl:536, 537
scrollwin layout and, ARl:460
selfs desired size, ARl:250
shrink-to-fit, ARI :250
UI Toolkit programming and,

ARl:366
when sent, ARl :248
window border layout and, ARl:378

msgWinLayoutSelf, ARl:249, 250, 381
clsCustomLayout and, ARI :382
clsTableLayout and, ARI :382
function, ARl:381
label child windows and, ARI :415
label layout and, ARI :414
scrollwin layout and, ARl :460
table layout consrraints and, ARl:386
UI Toolkit and, ARl:368

msgWinMoved, ARl:246-247

msgWinRepaint, AWG:128, 129, 187;
ARl:226,237

application printing and, ARI :302
child windows and, ARl:415, 416
explicitly painting and, ARl:240
image devices dirty windows and,

ARl:259
painting window with, ARI :239
repainting process and, ARl:242-243
repainting srrategy and, AWG: 152
window objects and, AWG:133
in writing paintlrepaint code, ARl:241
wsSynchRepaint flag and, ARl:242

msgWinSend, ARl:127, 368
in gesture propagation, ARl:369
toolkit table manager notification

and, ARl:438-439
toolkit table notification messages

and, ARI :438
window hierarchy and, ARI :251-252

msgWinSetFlags, ARl:234-235
window input flags and, ARI :569

msgWinSetLayoutDirty, ARI :249

msgWinSetPaintable, AR1:235, 237

msgWinSetTag, AR1:235

msgWinSetVisible, AR1:235
msgWinSized, AR1:246-247

msgWinSort, AR1:252

msgWinStartPage, AR1:302

msgWinUpdate, AR1:237
image devices dirty windows and,

AR1:259-260
to tell window to repaint, AR1:239

msgWriterAppTranslator, AR1:595

msgXferGet, AR1:121, 126; AR2:31
in ASCII metries transfers, AR2: 175
in one-shot transfers, AR2: 167-168,

173
picture segments and, AR1 :326-327
in replying to one-shot transfers,

AR2:176

msgXferList, AR1:121, 125; AR2:171
to list transfer types, AR2: 172-173
picture segments and, AR1 :326-327

msgXferStreamConnect, AR2: 178
msgXferStreamFreed, AR2:170, 177

msgXferStreamlnit, AR2: 178

msgXferStreamSetAuxData, AR2: 170,
177

msgXferStream Write, AR2: 169

msgXIateCompleted, AR1 :606

msgXIateData, AR1 :606

msgXIateMetriesSet, AR1 :605

msgXIateSetFlags, AR1:605

msgXIateStringSet, AR1 :605

msgZIPGetMyZone, AR2:304

msgZIPGetZoneList, AR2:304
MT (method table compiler), AWG:66;

PDT:165
object and header files and, AWG:92
see also Method table, compiler

Multi-font component, AWG:12

Multiple access services, AR2:446
defined, AR2:445

Multiple checklists, UI:31
illustrated, UI:31
scrolling, UI: 187

Multiple dialog sheets, UI:205

Multiple lists, UI:184

Multiple undo model, UI:194

Multitasking service, AWG:7
Mutation capability, AR1:28

Name binding protocol (NBP),
AR2:302-303

Name clash notes, UI:71-72

directories and, UI:72

Names
AppleTaik protocol, AR2:302-304

looking, AR2:303-304
registering, AR2:303
removing, AR2:303
zone, AR2:304

DOS, PDT:162
duplicate volume, AR2:50
length of, AWG:77
local disk volume, AR2:51
memory-resident volume, AR2:52
module, PDT:71
node, AR2:53-54
process, PDT:71
remote volume, AR2:51
string, PDT:82
symbol, AWG:162-163
task, PDT: 149
volume, PDT:27, 72

Naming conventions. see Coding
conventions

NBP _CONFIRM structure, AR2:304

NBP _LOOKUP structure, AR2:303

NBP_REGISTER structure, AR2:303

Nesting, AR1:241
of controls, AR1:363

Network disks, UI:114-115
icon, UI:77
Layout option sheet for, UI: 115
Options menu for, UI: 114
View menu for, UI:114

Networking, AWG:8
facilities, AR2:250
interfaces, AR2:253

Network printers, UI:118-119
menus, UI:119
option sheets, UI: 119

Network protocols, adding, AR2:251

Networks, browsing, UI:105

Network View page
Disks section, UI: 114-115
Printers section, UI:118-119

newArgsSize, AR1 :48

_NEW_ONLY structure, AWG:50
for each class, AWG:51
names for, AWG:51

_NEW structure, AWG:49; AR1:17, 18
for clsCntr, AWG: 138
contents of, AWG:118-119
identifying, elements, AWG:51
initializing, AWG:52
_NEW_ONLY for each class, AWG:51
reading, definition, AWG:50
typedef, AWG:50

New technology, UI:9-11
new devices and, UI: 10
new operating system and, UI: 10-11

new user, UI:9
interface and, UI: 11

N gesture, UI:27
in gesture mode, UI:259
MiniNote, UI: 142
MiniText, UI:134

Nimbus-Q format, PDT:204-206
AFII number array, PDT:205
character data, PDT:205-206

file positions, PDT:205
converting, PDT: 180
FEDIT support of, PDT: 180
font header, PDT:205
see also PenPoint, Packed format

Nodes, AR2:43, 52-54
accessing, AR2:57
attributes, AR2:54-55
behavior of, AR2:67
copying, AR2:80-81
creating, AR2:43
determining existence of, AR2:83
flags, AR2:68
locators and, AR2:55-56
making, native, AR2:89-90
moving, AR2:80-81
names of, AR2:53
paths, AR2:55-56
renaming, AR2:83
service state, AR2:396, 444, 445
traversing, AR2:81-82

call back routine, AR2:82
order of traversal and, AR2:82
quicksort routine, AR2:82

types of, AR2:52

Non-core gestures, UI:23
application functionality and, UI:224
for gesture mode, UI:257, 259
listed, UI:25-27
MiniText, UI:133-134

Nonflow pagination, AR1:137

Non-maskable interrupt (NMI), PDT:49

Non-Modal objects, UI:43
distinction of, UI:43

Non-standard modeless command
buttons, UI: 179

Non-stateful objects, AWG:66

Notation conventions, PDT:86-89
code address, PDT:88
data address, PDT:88
line count, PDT:88
line numbers, PDT:88
Scope.Identifier reference, PDT:88-89
scope specification, PDT:86-87
task set, PDT:89

Notebook, AWG:29; UI:14-15
for accessing information, UI: 15
applications, UI: 159
Auxiliary, AR2:421-426
components, AWG:29

Connections, AWG:22
Contents page, A WG:34

for creating Empty Application,
AWG:95

Contents tab, A WG:29
for control transfer, AWG:67
default, PDT:46
directory, A WG:33
document, AWG:33
documents as one page of, UI:157
file system usage, AR2:68
Help, AWG:2.124-125
hierarchy, AWG:29-32

Application Framework and,
AWG:30

application processes and, AWG:32
file system and, AWG:31

icons, UI:76
illustrated, UI:12
In box, UI:121
inserting documents in, AWG:104
items, AWG:33
metaphor, AWG:5; UI:14, 151

application layer and, AWG:13
concurrent documents, AWG:21

multiple, UI:14
instances of, AWG:13

organization, AR2:44
Out box, UI:122
Settings, AWG:22
Stationary, UI: 120
for structuring information, UI: 14
subdirectories, AWG:33
table of contents, AWG:28; UI: 12, 15,

85-89
checkboxes in, UI:32, 185
Create menu, UI:86-87, 195
Document menu, UI:85
Edit menu, UI:86
embedded applications and,

AWG:35
menu line, UI:85
name clash notes, UI:71
option sheets, UI:87-89
View menu, UI:86
zero or one list style, UI: 185

tabs, AWG:5
using, PDT:55
window, AWG:33, 34
see also specific Notebooks

Notebook and pen, UI:11

Notebook application, AR1:68
activating document and, AR1:102
Application Framework and, AR1:68
creating document and, AR1: 102
defined, AR1 :67
document page number in, AR1:178
file system and, AR1:89
layout messages and, AR1:244-245
sections, AR1:89
table of contents, AR1:78, 89

terminating document and, AR1: 110

NOTEBOOK APPS, AWG:34

Notebook User Interface (NUl),
AWG:17; AR1:75, 349

embedding documents with, AR1:77
on-screen objects, AWG:1
two monitors and, PDT:44

NOTE_METRIC structure, AR1 :489

NOTE_NEW_ONLY structure, AR1:16, 17

NOTE_NEW structure, AR1:16, 17,488

Notepaper App, AWG:265

NotePaper component, AR2:229-235
clsNotePaper view, AR2:229
data, AR2:232-234
data items, AR2:234-235
defined, AR2:229
messages, AR2:231-232
metrics, AR2:230

Notepaper ink component, UI:255
see also MiniNote

NOTEPAPER_METRICS data structure,
AR2:230

Notes, AWG:169; UI:52; AR1:487-496;
PDT:16

application error, AR1 :494
application-modal, AR1:487

sample, AR1 :487
completion, UI:211
confirmation, UI:212
contents from resource files,

AR1:489-90
creating, AR1:488-490
destroying, AR1 :492
dismissal of, AR1:491
error, UI:212
flags, AR1:489
input behavior for, uI:43
kinds of, AR1:487-488
layout, AR1 :492
messages, AR1:488
name clash, UI:71-72
notification, AR1 :491
option sheets instead of, AR1:490
painting, AR1:492
progress, UI:211; AR1:493-494
standardized messages, AR1:487
summary, UI:40
system error, AR1:494
system-modal, AR1:487-488

vs. application-modal, AR1 :490
timing-triggered, UI:212-213
unknown error, AR1:495
using, AR1:490
see also clsN ote; specific types of notes

Notification, AWG:28
button, AR1 :420-421

simple activation and,
AR1:420-421

unwelcome, AR1:421

choice, AR1:443
client, scrollbar, AR1 :454-456
close box, AR1:507
font list boxes, AR1:473
frames, AR1:501-503
gesture, AR1:408
icons, AR1:525
internal, AR1:405-408
list boxes, AR1:467-468
menu button, AR1:446
messages, AR1:399

clsInstallMgr, AR2:408
notes, AR1:491
observer, AR2:163

byte buffer object, AR2:209
string object, AR2:212

option card, AR1:516
preference change,AR2:368
receiving connection state, AR2:264
scribbles translator, AR1 :608
scrollbar, AR1 :453-454
scrollwin, AR1:461-462
string list boxes, AR1:472
submenu, AR1:450
toolkit table, AR1:438
trackers, AR1:528

NotifYing, observers, AR1 :52-53

NULL-terminated strings, AR2:355
resource agents and, AR2:353

Numbers
frame, PDT:75
hexadecimal, PDT: 72
line, PDT:88

OBLANCESTOR_IS_A structure, AR1 :55

ObjCallChk, AWG:115-116

ObjCallJ mpO macro, AWG: 115-116;
AR1:23-24

ObjCallOK, AWG:115-116

ObjCallRet, AWG:52, 115-116

ObjCallWarnO macro, AWG:115-116;
AR1:23-24

objCapCall, AR1:25, 26

objCapCreate, AR1:28

objCapCreateNotifY, AR1:28, 56

objCapFree, AR1:26

objCapInherit, AR1:27

objCapMutate, AR1:28

objCapObservable, AR1:27, 29, 51

objCapOwner, AR1:26

objCapProp, AR1:28

objCapScavenge, AR1:27

ObjCapSend, AR1:26, 29

ObjectCallO, AWG:45; AR1:13, 19;
PDT: 117

address book and, AR2:320

argument data pointer and, ARl: 14
capability, ARI :25, 26
installable manager access and,

AR2:407
macros, AWG:115-116; ARl:24
for notifYing observers, ARl:52
in object destruction, ARl:57
object profiling examples and,

PDT: 118
parameters, AWG:46-47
return values and, ARl: 14
self parameter and, ARl:38
theSelectionManager and, AR2: 156
use of, AWG:115

ObjectCallAncestorO, ARI :24, 36
ctx parameter and, ARl:39
msgSave and, AR 1: 112
self parameter and, AR 1 : 3 8

ObjectCallAncestorCtxO, AR1:36
using, ARl:37

ObjectCallWarningO function, ARl:23

Object classes, AWG:25-26
see also Classes

objectList specification, PDT: 118

OBJECT_NEW arguments, AWG:54

objectNewFields, AWG:51

OBJECT_NEW_ONLY structure, ARl:24
contents, AR1:47

Object-oriented APIs, AWG:7

Object-oriented architecture, AWG:5;
AR2:449

Object-oriented message passing, AWG: 12

Object-oriented operating systems,
AWG:41

clients and, AWG:42

Object-Oriented Programming: An
Evolutionary Approach, AWG: 19

Object-oriented programming, AWG:16;
AR1:5-6; POT:7

encapsulation and abstraction
problems, AWG:152

literature on, AR1:7
publications for, AWG:19

Object-Oriented Programmingfor the
Macintosh, AWG:19

ObjectPeek, AWG:152

ObjectPostO function, AR1:19, 21-22;
AR2:187

compared to ObjectCallO, ARl:19
in object destruction, AR1:57
prototype, AR1 :22
reasons for using, AR1:21

ObjectPostU320 function, AR1 :22

Object profiling, PDT: 117-118
basic, PDT: 117
examples, PDT: 118
message pattern, PDT: 117-118

options, PDT: 117
syntax, PDT: 117

ObjectRead, ctx parameter and, AR1 :39

Object resources, AR2:337, 341-342
once and many modes for, AR2:342
reading, AR2:350-351
replaceable, AR2:341
writing, AR2:351

Objects, AWG:41
argument structures, AR 1: 15-17
byte buffer, AR2:207-209
capabilities, ARI :25-29
clients and, AWG:42
coding conventions for, AWG:71
component, ARl:92
copying, ARl:49-50
CounterApp, AWG:137
counter for, AWG:89
creating, AWG:48-53, 113-123;

UI:195; ARl:15-18, 34
classes and instances, AWG:48
code for, AWG:51-52
with default values, AR1:18
explanation of, AWG:48-49
_NEW_ONLY, AWG:51
_NEW structure, AWG:49
_NEW structure definition, A WG:50
_NEW structure elements, A WG:51
timing for, AWG:129-132
UIDs and, AWG:52-53

creation of, PDT: 14
data and state information, AWG:135
default, UI:203
defined, AR1:5
destruction of, AR1:57-59
documents as, ARl:92
dragging, UI:287
dumping, AWG:161
embedded, PDT: 18

in views, AR2:26-27
embedding text data object, AR2:20
filing, AWG:129-132, 140-142

msgRestore, A WG: 142
msgSave, A WG: 141-142

filter, AR1:547
gestures and, AWG:4
grabber, ARl:547, 549
handwriting capture, ARl:555
identifiers for, AR1:9-13
information about, ARl:54-56

checking object's version number,
ARl:56

checking object validity, ARI :55-56
confirming object's ancestor,

AR1:55
confirming object's class, AR1:54
getting class's class, AR1:55
getting object's class, AR1:55

. getting owner of object, ARl:55
Instances, AWG:43

instead of functions and data,
AWG:41-42

lightweight, ARl:218-219
listener, ARl:548, 549
manager, ARl:423
menu commands and, UI:195
messages and, AWG:43, 108
mutating, AR1:60
notifYing observers and, AR1:52
as ObjectCall parameter, AWG:46
observing, AR1:50-52, 78; POT:14
open service, AR2:441 , 470-472
option sheet, UI:204

pages and, UI:46, 204
preserve state, AWG:140
profiles, PDT: 113
properties of, AR1:56-57
reading, AR2:45
realistically rendered, UI:227
returned values and, AWG:47
saving and restoring data, AR1:77
scavenging, AR1:60
selection feedback for, UI:278-279
selection ownership, AR2: 155
stream, AR2:134
string, AR2:211-212
string names for, POT:82
target, AR1 :548, 550
targeting, UI:232

window, UI:233
text data, AR2:7-21
text view, AR2:5
Tic-Tac-Toe, AWG:149-150
toolkit components, ARI :367
translator, AR1:555
types of, ARl:5
UID referencing of, AWG:52
window tree, AR1:548
writing, AR2:44-45

ObjectSendO function, AWG:45; AR1:19,
20-21; AR2:266

address book and, AR2:320
capability, ARl:26
compared to ObjectCallO, ARl:19
for event processing, AR1:563, 565
functions related to, ARl:21
in installing applications and services,

AR2:415
intertask messages and, AR2: 100
for msgObjectNew, AR2:456
open service objects and, AR2:472
prototype, ARl:20
reasons for using, AR1 :20
self parameter and, ARl:38

ObjectSendU320 function, AR1:21

ObjectSendUpdateO function, AR1:21,
251

ObjectWriteO function, AWG: 132;
AR1:35

ctx parameter and, ARl:39
in document activation, ARl: 104

in document reactivation, ARl: 114
pData parameter and, ARI :39
updating instance data with,

A~G:140, 142, 153

OBLENUM_ENUM_OBSERVERS structure,
ARl:51-52

OBLIS_A structure, ARI :54

OBLMUTATE structure, ARl:60

OBLNOTIFY_OBSERVERS structure,
ARl:52-53

OBLPROP structure, ARl:56-57

OBLSAVE structure, A~G:141; ARl:112

ObjWildCard, ARl:45

objWKNKey, ARI :24

Observable capability, ARl:27

Observation,. A ~G:27

Observed object class, ARl:70

Observer, ARl:50; PDT: 14
adding an, ARI :50-51

with position, ARl:51
getting from list, ARl:51-52
messages, ARl:50, 150

text data, AR2:21
notification, ARl:50; AR2:163

byte buffer object, AR2:209
example of, ARl:53
string object, AR2:212

notifying, ARl:52-53
posting to, ARl:53
removing, ARl:51

Observing
changes, AR2:89
installation managers, AR2:407-409
tables, AR2:215, 220-221

od command, PDT:I0l

Odd macro, A~G:78

OKO macros, ARl:24

on access, on store commands,
PDT:I0I-I02

on command, PDT:82-84, 129-131
access events, PDT: 129
datasheet, PDT: 101
fault events, PDT: 130
other events, PDT:130-131
program events, PDT:129
syntax for, PDT:129
task events, PDT: 129-130
variations, PDT:82

On-disk structure, A ~G: 174

One-shot transfer. see Transfer, one-shot

On-line documentation, A~G:13

On-screen objects, A~G:18

Opcode, grafic, ARl:319
correct, ARI :325
opCodeMaskInvisible flag, ARI :326

Open document, UI:168-169; ARl:67
process, ARl:109 .

Open figures, ARl:271
drawing, ARI :293
messages, ARl:283

Open gestures, UI:236
guidelines for, UI:240

Open icon, UI:74, 221-222

Opening
address book, AR2:326
application window, ARl:l96
Auxiliary notebooks, AR2:423
documents, ARl:107-109
files, A~G:143; AR2:46

for the first time, A~G:143-144
to restore, A~G:144-145
sample code, AR2:46

fonts, ARl:275-276, 303-305
parallel port, AR2:276
serial port, AR2:268
service, AR2:262-263

example, AR2:263
socket handle, AR2:298
see also Closing

Open service
messages sent to, AR2:470
objects, AR2:441 , 470-472

clsOpenServiceObject and,
AR2:471

clsService and, AR2:471
sub classing clsOpenServiceObject

and, AR2:471-472
see also Services

Operand specification, A ~G:4

Operating system, A~G:3-18
application environment for,

A~G:20-21

Application Framework layer,
A~G:12-13

application layer, A~G:13
architecture, A ~G:8-9
comparisons, UI: 10-11
component layer, A~G:12
DLL files and versions, AR2:403
extensibility, A~G:14~15
kernel layer, A~G:6-7
requirements, A~G:3
Settings notebook and, UI:90
software environment elements,

A~G:41
system layer, A~G:7-12
user interface, A ~G:3-5

Operator
cast, PDT:131
Delete, PDT:188
Delete hint, PDT: 192
Delete Segment, PDT: 186
icons, PDT:185
Merge, PDT: 189
mitosis, PDT: 186

Move Control Points, PDT:185
Oval, PDT:187
overloading, A~G:43
Rectangle, PDT: 187
SetWidth, PDT:188
Shape Mutation, PDT:186
Shape Transformation, PDT:187-188
tilde, PDT: 131
Winding Direction, PDT:188
x- and y-hint, PDT:191, 192

Option cards, ARl: 511; PDT: 172
current, ARl:515
Custom Resource ID, PDT: 172-173
destroying, ARl:516
Exporting, PDT: 172
illustrated, ARl:511
layout, ARl:515
manipulating, ARl:514-515
notification, ARI :516
painting, ARl:515-516
performance, ARl:516-517
tagging, ARl:515
TK_TABLE_ENTRY arr~y for,

ARl:432-433

OPTION_CARD structure, ARl:169, 514

OPTION_NE~_ONLY structure, ARl:514

Options
function, UI: 16
global, UI:204
In box document, UI:164
startup, UI:204

Option sheets, A~G: 113; UI:44-47,
200-204; ARl:505, 511-522;
PDT:17

adding new document-wide, UI:202
adding to default document-wide,

UI:200-202
bringing up, UI:44
check gesture processing,

ARl:517-521
run-through, ARl:517-519

checklists in, UI: 184
clean and dirty controls, UI:46-47
command sheets and, ARl:521-522
Controls, UI:56
creating, ARl:514
deciding when to use, UI:226
default, UI:200-202

Access sheet, UI:20 1
Comments sheet, UI:202
Controls sheet, UI:201
customizing, UI:201-202

design checklist and, UI:295
Disk, UI:112
displaying, ARl:517
Document, UI:89
document-wide, UI:202
dynamic behavior, UI:203-204

changing top sheet, UI:204
relationship to selection, UI:203
response to check gesture, UI:203

Empty Application, A WG:96
global application options and, UI:204
icon, UI:75

in-line, UI: 171
illustrated, AR1:511
increasing performance of,

AR1:516-517
instead of notes, AR1:490
for keyboard accessory, UI:202
Layout, Ul:88

Connected Disks page, UI:111-112
Connected Printers page, UI: 117
Network Printers page, UI: 119
Network View page (Disks

section), UI: 115
layout guidelines, UI:206-209

deactivating vs. hiding controls,
UI:209

non-standard layout, Ul:206
pop-up vs. in-line, UI:207-208
standard layout, UI:206

manipulating cards and, AR1:514-517
messages, AR1:512-513
MiniNote, UI:138-139

Paper sheet, UI:138-139
Pen sheet, UI:139

MiniText, Ul:43, 130-132
multi-page, UI:43
option tables and, AR1:521
pages and object types, UI:46
pop-up lists, UI: 183
printer, Ul: 118
for printing, AR1:138-139
protocol, AR1:517
Quick Help and, UI:215
reference button, Ul:80
resize handles for, Ul:272
response to check gesture, UI:46
section, UI:89
selection in, UI:283-284
selection relationship, UI:44-45
strengths and weaknesses of, Ul:225
styles of, AR1:514
summary, Ul:40
table of contents, Ul:87-89
usage guidelines, Ul:200
user model, UI:44
uses, Ul:44
vertical checklists, UI: 182
see also clsOption

Options menu, UI:44, 66-67, 192;
PDT: 172-173

Access sheet, UI:67
Comments sheet, UI:67
for connected disk, UI: 111
for connected printers, UI: 116
Controls sheet, UI:60, 66
default commands, UI:56
document-wide option sheets and,

Ul:202

FEDIT
Auto Redraw option, PDT: 191
BezierResolution command,

PDT:184
View Preferences, PDT: 184-185

global and startup options and, UI:204
main table of contents, UI:87

three states of, UI:87
for MiniText application, UI:45
for network disks, UI: 114
for network printers, UI: 119
protocol, AR1:168-169

OPTION_STYLE structure, AR1:514

Option tables, AR1 :428, 521

OPTION_TAG structure, AR1:138, 167,
169

Organization
distribution volumes, ARl:390-398
file, ARl:381-398
Pen Point, AR2:382-389
required, ARl:381

.Orientation, screen, PDT:40

OS_DATE_ TIME structure, AR2: 11 0

OSEnvSearchO, PDT:36

OSErrorBeepO, AR2:105

OSFastSemaRequest, AR2:414

OSFasrvSemaClear, AR2:414

OSGetTime routine, AR2: 110

OS.H, ARl: 105
functions, ARl: 105-107

OSHeapBlockAllocO, AR1 :35; AR2:95,
175

OSHeapBlockFree, AR2:88, 95

OSHEAP.H, ARl:105
functions, ARl: 1 07

OSITMsg prefix, AR2: 100

OSProcessCreate, AR1: 151

OSProcessHeap, ARl:472

osProcessHeapld handle, AR2: 102

OSProgramInstallO, AWG:106; ARl:377,
378-379; PDT: 131

OSProgramInstantiateO, A WG: 107;
AR1:96; PDT:131

in activating documents, AR1:102

OSSharedMemAllocO, AR2: 175

OSSubtaskCreateO, ARl:297

OSSupervisorCallO function, AR2: 1 03

OSThisApp, AR1:399

OSToneO, AR2:105

Out, AWG:50
arguments, AR1:14
message header and, AWG:75

Out box, AWG:5; UI:122; AR2:305
connectivity and, AR2:244
documents in, ARl:309-31 0

general device concepts, ARl:306-308
icon, UI:13, 76

state of application and, Ul:222
introduction, AR2:305-306
menus, UI:122
networking and, A WG:8
notebook, AWG:33; ARl:308
operation, AR2:308
printing and, AR1:135, 302
protocol messages, ARl:308-309
servICe

communication target, ARl:307
enabling and disabling,

ARl:307-308
handling input and, ARl:312
installing, AR2:307
messages, AR2:313-316
sections, AR2:306
working with existing, ARl:311
writing own, AR2:310

table of contents, UI: 122, 160
for customized service, Ul: 161
Enabled column, UI: 160
for printer service, UI:161
Status column, UI: 160

transfer service and, UI:159-161
see also In box

Outer rectangle region, AR1:379

Outlined buttons, Ul: 176

Outline editing window, PDT: 183-184
illustrated, PDT: 183

Outline fonts, AWG:9-10
editor, AWG:14

Outline menu (FEDIT), PDT:183, 195

Output buffer, AR2:265
flushing, ARl:271
status, ARl:271
see also Buffers

Output manager. see thePrintManager;
theSendManager

Output, operation phases, ARl:311

OutRange macro, AWG:78

Overwrite boxes, Ul:33

Overwrite fields, UI:33; AR1:475
checklists with, Ul:186
editing gestures for, UI:34
edit pads and, UI:47
guidelines for using, Ul: 188
menus with, UI:41, 199
Proof sheet and, UI:65
scaling, Ul:269-270
size of, UI:188
visual segmentation cues and, UI:241
see also Fill-in fields

Owner capability, AR1:26

Ownership
service, AR2:257

setting, ARl:264

Packed format. see Pen Point, Packed
format

Pads, UI:47-51
boxed/ruled, UI:50

using, UI:51
edit, pop-up, uI:47
input behavior for, UI:43
using, UI:50
writing

Page

embedded, UI:49
pop-up, UI:48
summary, UI:40

accessing, UI: 15
control, UI:157
floating, UI: 15
menu, UI: 158
numbers, AWG:5; UI:15; ARl:509
option sheet, UI:46
task, PDT:152
turning, AWG:5, 36; UI:15-16

instead of close, AWG:37
msgAppClose and, AWG:36
saving state and, AWG:135

Page-level applications, AWG:33-34
embedded applications and, AWG:35

Page-oriented documents, UI: 157-158

Pages, moving through Notebook,
PDT:55

Paginating
decisions, ARl: 137
flow documents, ARl:137
nonflow documents, ARl:137

paginationMethod, ARl: 141

Paging control, UI:157-158
local page numbers and, UI: 158
pop-up list on title line and, UI: 158

Paint application, AWG:266-267

Painting, AWG:129; ARl:222
border window, ARl:375-377

background, ARI :376
border, ARl:375
foreground, ARI :376
shadow, ARl:377

buttons, ARl:422
child windows, ARl:416
icons, ARl:525
labels, ARI :414-415
list boxes, ARl:468-469
menu buttons, ARl:447
nesting and, ARl:241
notes, ARI :492
option card, ARl:515-516
repainting as, ARI :239
repainting as important as, ARl:236
scrollbar, ARl:453
stages in optimizing, ARl:241-242
string list boxes, ARl:473

toolkit tables, AR 1 :436-437
writing, code, ARl:241-242

Palette
colors, ARl:274, 295

compatibility, ARl:296
construction, UI: 184
lines, UI:39

deciding when to use, UI:226
hiding, UI:224
for mode switch, UI:252
strengths and weaknesses of, UI:225

see also Accessories, palette; Pop-up
palette

Paper-like visuals, UI:295

Paper option sheet (MiniNote),
UI:138-139

Line Height menu, UI:138
Paper Width menu, UI: 139

Paper Width menu (MiniNote Paper
sheet), UI:139

PAPPEND utility, PDT:163-164
example, PDT: 164
syntax, PDT: 163

Paragraph attributes, AR2:9, 17-18
changing, AR2:20
tab, AR2:18

changing, AR2:20

Paragraph option sheet (MiniText),
UI: 131

Paragraph page, UI:46

Parallel connection protocol, AR2:274

Parallel I/O interface, AR2:251-252,
275-278

Parallel port, AR2:275
accessing, AR2:275
cancelling printing and, AR2:278
concepts, AR2:275
configuration, AR2:277

auto line feed, AR2:277
time delays, AR2:277

getting status and, AR2:278
handle, AR2:276-277
initializing printer and, AR2:277-278
interrupts, AR2:275; PDT:50
messages, AR2:276
object, AR2:277
using, AR2:276-278
writing to, AR2:278
see also Ports; Serial port

Parent-relative sizing, ARl:398

Parent-veto layout, window, ARl:225

pArgs parameter, AWG:99, 109;
ARl:20-21,22

defined, ARl:38
in document reactivation, ARl: 114
in document termination, ARl:112
msgAppMgrActivate and, ARl:103

MsgHandlerArgTypeO macro and,
ARl:40

MsgHandlerO macro and, ARI :39
MsgHandlerWithTypesO macro and,

ARl:40
object and class information messages

and, ARl:54
in OBl-NOTIFY_OBSERVERS structure,

ARl:52

Parity error, PDT:49

Parsing, XList data, ARl:592

Passive In box service, AR2:312

Paste command, ARl:l21

Pasting, from Windows clipboard,
PDT:195-196

Paths
to Auxiliary notebooks, AR2:423-424
in determining node existence, AR2:83
file system, AR2:430-431

constants, AR2:430
function, AR2:67
handle, AR2:85-86
locator, AR2:55-56
stdio and, AR2:66

Pattern descriptions, UI:243

PAUSE key, PDT:71

PCL printer, PDT: 199

PC, PenP~int on, PDT:25-62
APP.INI, PDT:44
BOOT.DLC, PDT:42-43
booting, PDT:45-49
boot sequence, PDT:29
CONSOLE.DLC, PDT:43
desktop and, PDT:55
ENVIRON.INI file, PDT:34-40
executing application, PDT:54-55
hardware specifications for,

PDT:25-28
initialization files, setup, PDT:28
installing application, PDT:50-53
MIL.INI, PDT:29-34
PPBOOT.EXE, PDT:29
running, PDT:25-62

stop,PDT:27
setting up specific configurations,

PDT:44-45
S-Shot, PDT: 178
SYSAPP.INI, PDT:44
SYSCOPY.INI, PDT:43
in tablet-like mode, PDT:40-42
universal serial pen driver, PDT:56-62
using, PDT:50

PCs
for application edit-compile-debug

cycle, AWG:14
comparison with pen-based

computers, UI: 1 0
kernel layer and, A WG:6

pData parameter, AWG:99, lO9; ARl:35

defined, AR1:39
EmptyAppDestroy and, AWG:110
instance data and, AWG:132
MsgHandlerO macro and, AR1 :39
MsgHandlerWithTypesO macro and,

AR1:40
updating, AWG:140

Pen, AWG:4; UI:152 .
compatison with mouse & keyboatd,

UI:152
designing for, UI:152
down point, UI:231
event, AR1:575-580

codes, AR1:568
data, AR1:575-580
low-level, AR1:559-560

gestures. see Gestures
ink mode picture, UI:248
input, U1:135

low-level, AR1:558-562
sampling, AR1:565-566

matks, AWG:9
menu (MiniNote), UI:137
modes and, UI:244-245
offsets, AR1: 193
option sheet (MiniNote), U1:139
plane, AR1 :296
preferences, U1:92
programming for, AWG: 17
selection, UI:137
styles, U1:256
task, PDT:152
toggle switch and, U1:30-31
tracking, AWG:4

Pen-based computers, compatison with
PC's, U1:10

Pen cursor preference, AR2:366

Pen-down gestures, UI:231

Pen-driven digitizer tablet, AWG: 14

Pen-hold timeout, AWG:154
TttViewPenInput and, AWG:156

PenPoint 1.0, AWG:61
on PC, AWG:2

Penpoint 2.0
chatacter and string constants,

AWG:62-63
chatacter types, A WG:62
debugging, AWG:63 '
internationalization and localization,

AWG:61
preparing for, AWG:61-63
services, AWG:64
string routines, AWG:62
Unicode and, AWG:61
versioning data, AWG:63

PenPoint
Application Monitor, AR2:400
compatison with disk-based systems,

U1:1O-11
direct manipulation, U1: 151

exiting, PDT:55
facilities, AR2:250
file organization, AR2:381-398

distribution volumes and,
AR2:390-398

general structure, AR2:384
installable applications,

AR2:386-387
installable entities, AR2:386
installable services, AR2:387
internal development,

AR2:389-390
PenPoint directory, AR2:384-385
run-time services, AR2:387-388
SDK distribution, AR2:389
system distribution, AR2:385-386

Gesture font, AR2:188-190
hardwate requirements, U1:5
In box and, U1: 121
installed version, U1: 1 04
interrupting, PDT:54
invoking mini-debugger on, PDT: 146
not working, PDT:47
Packed format, PDT:206-21O

AFII number atray, PDT:207
bitmap data, PDT:21 0
bitmap directory, PDT:207-208
chatacter directory, PDT:208
converting, PDT: 180
file pointers, PDT:208
font header, PDT:206-207
hint data, PDT:209
long Bezier dictionary, PDT:21O
shape data, PDT:209-210
short Bezier dietionary, PDT:210
see also Nimbus-Q format

running on PC, PDT:25-62
services, AR2:438-439
standard editing commands, U1:86
status sheet, U1: 104
system atchitecture, AR2:97
volume structure, AR2:383
zooming and, U1:265

PenPoint Architectural Reference,
PDT: 13-21

Application Framework section,
PDT:15

Class Manager section, PDT: 13-14
Connectivity section, PDT:20
File System section, PDT:18
Input and Handwriting section,

PDT:17
Installation API section, PDT:20-21
Resources section, PDT:20
System Services section, PDT:18
Text component section, PDT: 17-18
UI Toolkit section, PDT:16-17
Utility Classes section, PDT:19
Windows and Graphics section,

PDT:15-16

Writing PenPoint Services section,
PDT:21

PenPoint Class Diagram, AR1:6

PENPOINT.DIR, AR2:51
contents, AR2:54
creating, AR2:68
files, AWG:93-94; AR2:390; PDT:55

DOS files and, PDT:161
GDIR utility and, PDT: 162
PAPPEND utility and, PDT:163-164
PDEL utility and, PDT:164
PSYNC utility and, PDT:164
STAMP utility and, PDT:161-162

saving memory in, AR2:77
STAMP utility and, AR2:390-391
structure, AR2:68

\PENPOINT directory, AR2:384-385

PenPoint directory, AR2:384-385
concepts, AR2:382
organization, AR2:382-383

PenPoint Installer, AR2:390

PenPointPath keyword, PDT:38

PenPoint Preferences, Zoom and Float
section, AWG:95

PENPOINT.RES, AR2:388

PenPoint UI Design Reference, PDT: 13

PenProxTimeout keyword, PDT:38

Pen-tracking softwate, AWG:9

Pen-up event, AWG:154

[percent]P formatting code, AWG: 111

P _FS_ TRA VERSE_CALL_BACK, AR2:82

P gesture, U1:27, 65
MiniNote, U1:142
MiniText, U1:134

Physical line width, AR1:340

PICSEG data format, U1:289

PIC_SEG_GRAFIC structure, AR1:319

PIC_SEG_HIT_LIST structure, AR1:325

PIC_SEG_METRICS structure, AR1:322

PIC_SEG_OBJECT structure, AR1 :323

PIC_SEG_PAINT structure, AR1:320

picSeg TopGrafic, AR1 :324

Pictures
appropriate use of, U1: 182
list of, U1:181-182
for mode switch presentation, U1:248
with text, U1:183
see also Icons

Picture segment, AR1 :279
building up, AR1:323
changing contents of, AR1:322
colors and, AR1:321
converting, format, AR1:326
copying,ARl :326-327
creating, AR1:318-319, 322
drawing in, AR1:322

drawing messages, ARl:322-323
drawing other objects in, ARl:323
editing, ARI :324
hit testing, ARl:325
moving, ARl:326-327
painting/repainting, ARl:322
storage, ARl:321
TIFF images in, ARl:333

Picture segment class, ARl:317-327
DC state, ARl:320-321
developer's quick-start, ARI :318-319
grafics, ARl:319-320
messages, ARl:317-318
moving and copying, AR1:326-327
using, ARl:322-323

in graphics applications,
ARl:323-326

see also clsPicSeg

Pigtail gesture, UI: 17, 24
in gesture mode, 01:258
guidelines for, 01:237
hot point for, UI:231
MiniNote, UI:140

Pixelmap, ARI :256; PDT: 167
allocating own, AR1 :258
binding image device to, ARl:257-258
cached, ARl:273
information, ARl:257-258
memory, ARl:258
multiple, ARl:262
pictures, ARl:525

Pixel Paint mode, PDT: 168
Back menu and, PDT: 173
defined, PDT: 171
Ink menu and, PDT: 173

Pixels, AWG:128; 01:153; PDT:168
accessing, in image window,

ARl:259-262
alignment, ARl:269
child windows and, ARI :244
clsIcon and, ARl:525
coordinate rounding errors and,

ARl:269
copying, ARl:259-260

in windows, ARl:243-244
damaged, ARI :222
dirty, ARl:222
editing, PDT:194
getting and setting values, AR1:259
icon dimensions and, UI:217
icon mask and, UI:221
information, ARl:257-258
LDC, ARl:337
memory management, AR1 :258
metrics, ARl:338; PDT:192
minimum number of, 01:274
nesting and, ARl:241
patterns and, ARl:291
raster operations and, ARl:292-293
repainting and, ARl:236, 238
size of, UI:274

update region and, AWG:152
updating and, ARI :241
window damage and, ARI :243
window measurement, ARl:223

Placeholder icon, 01:77

Plane mask, ARI :296

Planes, ARI :296

Plus gesture, UI:26
for discontiguous selection, 01:282
in gesture mode, 01:259
guidelines for, 01:238
hot point for, 01:231
MiniNote, 01:140,141

Pointers
data types and, AWG:76
types of, AWG:70

Pointing, A WG:4

PoitH path figures, ARl:342

Polygon figure, ARl:272, 339
left-hand and right-hand edges,

ARl:339

Polyline, ARl:271

Pop-up accessory applications, 01: 159

Pop-up choices, ARl:418, 450-451
creating, ARl:451
messages, ARI :450, 451

Pop-up edit pads, 01:47, 189
resize handles for, UI:272

Pop-up fields, ARl:475-476

Pop-up lists, 01: 183
multiple modes and, 01:249
scrolling, UI: 196

Pop-up menu, ARl:445

Pop-up palette
benefits, UI:252
for mode switch, 01:252

Pop-up style (embedded document),
. UI:170-171

closed/open illustrations, 01: 170
dialog/option sheets and, 01:207-208
mixing with in-line style, 01:207-208

Pop-up writing pads, UI:48
embedded pad comparison with, 01:49
resize handles for, UI:272

Portrait orientation, UI:276-277

PORTRAIT, screen device orientation,
PDT:40

Ports
applications and, AR2:245
computer, AR2:245
MIL services and, AR2:246
parallel, AR2:275-278

configuration, AR2:277
interrupts, PDT:50

protocol, AR2:296
SCSI, AR2:246, 247
serial, AR2:246, 268-271; PDT:34

configuration, AR2:268-271
data modem and, AR2:279-280
writing to, PDT:I36

Post-processing rules, ARI :602
defined, ARI :600

PostScript
interpreter, PDT:199
printer, PDT: 198

Power conservation, AWG:7

Power management preference, AR2:364

Power preferences (Settings notebook),
01:96-97

Powr task, PDT:152

PPBOOT boot program, PDT:29
during booting, PDT:46-47

p (P) commands, PDT:77
datasheet, PDT: 102

P_ pointer, AWG:47

PPORLSTATOS structure, AR2:278

PPORT_TIME_DELAY structure, AR2:277

P]ROC, AWG:77

Practice button (Installed Handwriting
page), UI: 100

prBell, AR2:365

prCharBoxHeight, AR2:366

prCharBoxWidth, AR2:366

prDateFormat, AR2:367

. prDocFloating, AR2:365

prDocZooming, AR2:365

PREF _CHANGED structure, ARl: 170;
AR2:368

Preferences
change notification, AR2:368
time and date, AR2: 11 0
see also System preferences

Preference settings, UI:I01

Preferences Power option sheet, PDT:27

Preferences section (Settings notebook),
UI:90, 91-98

Date page, UI:94
Float & Zoom page, UI:94
Fonts & Layout page, 01:93
Pen page, 01:92
Power page, 01:96-97
Sound page, 01:95
Time page, UI:95
Writing page, 01:92

pad style and, 01:48
user preference control, 01:48, 49

PrefsDa~eToStringO, AR2:367

PREFS directory, AR2:386

PrefsSysFontInfoO, AR2:363

PrefsTimeToStringO, AR2:367

PREF _SYSTEM_FONT _INFO structure,
AR2:363

PREF_TIME_INFO structure, AR2:366

prEmbeddeeSearchByApp, AR1:143

prEmbeddeeSearchByPrintJob, AR1: 142
Press gesture, UI:16, 24

family, UI:235
in gesture mode, UI:258
guidelines for, UI:236
hot point for, VI:231
for initiating drag, UI:286
for ink mode selection, UI:255-256
mapping, UI:290
MiniNote ink mode, UI: 135
for zooming, VI:266
see also Gestures

Press-hold timeout preference, AR2:364

Press Timeout, UI:93

Preview, AR1 :405-406
grab, AR1:408
messages, AR1:399, 405-406

clsButton, AR1:423
message argument for, AR1:407
timing of generation, AR1:406-407

repeat, AR1 :408
stopping, AR1:407

previewGrab, AR1 :408

Previewing
button, AR1:423

examples of, AR1:424
controls, ARl:407-408
scrollbar, ARl:454

previewRepeat, ARl:408

prGestureTimeout, AR2:364

prHandPreference, AR2:363

prHWXTimeout, AR2:364

Primary input device preference, AR2:367

Principles of Object Oriented Design,
AWG:19

prInputPadStyle, AR2:366

Print command, UI:13; AR2:308
Document menu, UI:57

Printer Creation dialog, UI: 117

Printers
configuration, AWG:9
connected, UI: 116-118
icon, UI:77
In and Out boxes and, AR2:305
initialization, AR2:277-278
list of, UI:57

adding to, UI:163
network, UI:13, 118-119
option sheet, UI: 116, 118
services, AR2:250
services and, UI:163-164
set up, UI: 105
status, AR2:278
support, AWG:I0

printf (C function), A WG: 111

Print Format (MiniText View menu),
UI:130

Printing, AWG:9-10; ARl:135-143
application, ARl:302
cancelling, AR2:278
DC, AR1:301-302
default behavior, ARl: 143
documents, ARl:135-136
embedded documents, ARl: 136-137
messages, AR1:135, 136
option sheets for, ARl:138...,..139
PenPoint differences, AR1:135
print protocol description and,

AR1: 139-143
protocols, AR1: 137
wrapper, AR1:135, 139

in removing frame decorations,
AR1:140-141

Print layout driver (PLD), AR1:139-140
forms of pagination, ARl: 141

Print Layout sheet, UI:58
Print Preview command (Document

menu), UI:193-194
Print protocol, ARl:139-143

handling embeddees, ARl:142-143
messages, AR1:140
pagination, AR1:141-142
print layout driver (PLD),

AR1:139-140
removing frame decorations,

AR1:140-141

Print Setup
command (Document menu), UI:57,

193
dialog sheets, ARl:136
option sheet, AR1: 136

for changing margins, headers,
footers, AR1:138

sheets, UI:58
adding, UI:193
Embedded Printing sheet,

UI:60-61
Headers and Footers sheet, VI:59
Print Layout sheet, UI:58

PritH sheet, UI:57
modifying or replacing, VI: 194
paper width and, UI: 139

Priority levels, AR2:99

Privilege levels, AR2: 103

prLineHeight, AR2:366

Process, AR2:98
commands, PDT:85
document, AR1:92
name, AWG:93
names, PDT:71
subtask ownership and, AR2:99
task scheduler and, AR2:99

processCount parameter, AWG:98;
AR1:72; PDT:f53

for more than one process, A WG: 1 06
for one process, AWG:I05 .

Processor power, VI:96-97

Producer protocol, AR2: 169-170
defined, AR2:168

profile command, PDT:I03

Profiles
breakpoint, PDT:113
clearing, information, PDT:121
code, PDT: 113
displaying, information, PDT: 119-120
object, PDT: 113
redefining with infinite buckets,

PDT: 116
redefining with smaller buckets,

PDT:116
samples of, PDT: 115
timing/counting, PDT: 116-117
types of, PDT:113

Profiling
code, PDT: 113-117
commands, PDT:86
object, PDT: 117-118
specific tasks, PDT:121

Program
events, PDT: 129
using DEBUG in, PDT: 134

Programmable interrupt controller
(PIC), PDT:50

Programming
environment, AWG:20
object-oriented, AWG:16, 19, 152
services, AR2:449-472

deinstalling, AR2:456
design decisions, AR2:449
installation, AR2:450-456
messages sent by service managers,

AR2:459-470
messages sent to open services,

AR2:470
messages sent to service class,

AR2:456-459
object-oriented architecture,

AR2:449
open service objects, AR2:470-472
using template services and,

AR2:449-450

Program units, designing, AWG:61

Progress bar, ARl:531-540; PDT:17
client responsibilities, AR1:539-540
concepts, AR1:531-532
creating, AR1:535
custom labels, ARl:532

providing, ARl:539-540
defined, ARl:531
illustrated, ARl:532
messages, ARl:535-537

inherited, AR1 :540
metrics, ARl:534, 536-537

determining, ARl:536
modifying, ARl:537

region appearance, ARl:537-539
shrink-to-fit, ARI :540
style, ARl:532-533

determining, ARl:536
modifying, ARl:536

tick marks, ARl:531
value determination, ARl:538
see also clsProgressBar

PROGRESS_METRICS structure, ARI :532
534 '

Progress note, UI:211; ARl:492-493

PROGRESS_PROVIDE_LABEL structure,
ARl:539-540

PROGRESS_REGION structure, ARl:537

PROGRESS_STYLE structure, ARl:532
styles, ARl:533

PROGRESS_ VIS_INFO structure, ARI :538

Project Scheduler, PDT:53

Proof command (Edit menu), UI:65
mark protocol and, UI: 172

Proof sheet, UI:65

Properties, ARl:56-57
capability, ARI :28
creating, ARl:56-57
retrieving, ARl:57

prOrientation, AR2:363

Protected mode, AWG:93

Protection service, AWG:7

Protocol port, AR2:296

Protocols
address book, AR2:318-320
AppleTalk, AR2:301-304
blocking, AR2:168-169
embedding, UI: 166-167
flow control, AR2:265
link, AR2:253
mark, UI:171-172
network,AR2:150-151
producer, AR2:168, 169
remote file access, AR2:52
RTS/CTS, AR2:252
search and replace, AR2: 196
stream, AR2: 168
transfer, AR2:167-170

client-defined, AR2: 170
transport, AR2:253, 295

Prototype
declarations, AWG:76
function, AWG:74

Proximity, out of, PDT:38
mouse and, PDT:50

prPaginationFlow, ARl:141

prPaginationTile, ARl:141

prPenCursor, AR2:366

prPenHoldTimeout, AR2:364

prPowerManagement, AR2:364

prPrimaryInput, AR2:367

prScrollMargins, AR2:365

prSystemFont, AR2:363

prTime, AR2:366

prTimeFormat, AR2:367

prTimeSeconds, AR2:367

Pruning, ARl:441

prUnrecCharacter, AR2:368

prWritingStyle, AR2:364

Pseudoclasses, AWG:80

P_TK_TABLE_ENTRY structure, ARl:434

P_UNKNOWN, AWG:55, 77

P _WIN_METRICS pointer, ARI :227
window metric messages and,

ARl:233-235

q command, PDT:84
datasheet, PDT: 103

QINSTALL file, AR2:386

Quadruple-Flick, UI:25

Quadruple-Tap, UI:25
in gesture mode, UI:259
MiniText, UI:133

Questionmark gesture, UI:238

Queues, intertask message, AR2: 1 00

QUICK_DATA structure, AR2: 187

Quick Help, AWG:166-168; UI:123,
215; ARl:370; AR2:181-182;
PDT: 19

adding gestures to, strings, AR2: 191
adding, to object, AR2:181
API function, AR2:124
applications and, UI:215
clsGWin and, ARl:617; AR2:182
concepts, AR2:181-182
defined, AR2: 179
defining, resources, AR2:356-357
design checklist and, UI:295
displaying, text, AR2:187
Gesture font and, AR2:188-190
gestures, AR2: 182
10, ARl:370; AR2:181
input filters and, ARl:548-549
messages, AR2: 187

using, AR2:187-188
resources, AWG:167-168;

AR2:181-182
defining, AR2:183-187
defining example, AR2:184-185
definition format, AR2: 183
storing ID in gesture window,

AR2:186
strings, AR2:181-182

sheet, UI: 13, 123
string array, AR2:183-186

window, AWG:166; AR2:181
example, AR2: 186
opening, AR2:188

without clsGWin, AR2: 182
see also Help

Quick Installer, UI:113; AR2:397; PDT:50
controls, UI:112, 113

Quick Install sheet, UI: 113

Quicksort routine
for sorting directory entries,

AR2:88-89.
traverse, AR2:82

Quick start, developer's
capturing and translating

handwriting, ARl:555-558
creating a choice, ARl:352-353
creating buttons, ARl:354
creating custom layout window,

ARl:353-354
creating menu bar, ARl:353
creating tabular layout window,

ARl:353
file system, AR2:44-46

opening and closing files, AR2:46
reading objects and data, AR2:45
writing objects and data,

AR2:44-45
handling low-level pen input,

ARl:558-562
resources, AR2:337-338
simple menu with nested buttons

illustrated, ARl:355
text subsystem, AR2:5
UI Toolkit, ARl:352-355

Raised buttons, UI:28, 176

RAM
capacity, UI:I03
disks, PDT:27
efficiency, UI: 1 03
file system

memory conservation and,
AWG:38-39

viewing contents of, AWG:32
item directory, AR2:376
memory-resident volume, AR2:52
for running PenPoint, PDT:25, 27, 54
volume handler, AR2:61
volumes, AWG:8

memory and, AWG:15
view, AWG:32

randO function, ARl:25

Raster line, ARl:33

rasterOp, AWG:l28

Raster operation, ARI :292-293
dynamic drawing and, ARl :293
XOR, ARl:293

. RC command, AR2:359-360

RC_INPUT structure, AWG: 167
for tttView quick help, AWG:168

r command, PDT: 103

RC_TAGGED_STRING resource, AWG:168

RC utility, PDT:165

Reactivating
documents, AR1:113-115
installable software, UI:98

Readability, designing for, UI:153

Reading
browser state, AR2:143
data resource, AR2:349

resource agents and, AR2:353
directory entries, AR2:87-89
files, AR2:83
object resources, AR2:350-351
objects and data, AR2:45
with serial port, AR2:271
streams, AR2: 134

with timeout, AR2:134-135
see also Writing

Receiver, AR2: 166

Rectangle
adding, shape, PDT: 187
bounding, PDT: 181-182

Rectangle figure, AR1 :272
with borders, AR1 :338-339

illustrated, AR1:338
bounding, AR1:340-341
clipping, AR1:277, 338
drawing, AR1:294
line thickness in, AR1:341
rounding problems, AR1 :294
without borders, AR1:337-338

illustrated, AR1:338

Reference buttons, AWG:40; UI:17, 20,
79-80; AR1:117

Application Framework and, UI:152
copying and, AR1:122
creating, UI:20, 79
design checklist and, UI:296
gesture response of, UI:79
illustrated, UI:28
labels, UI: 172
mark protocol and, UI: 171-172
marks and, AR1:129
moving, AR1:119, 122
option sheets, UI:80
outlined style, UI: 176
uses, UI:171
see also Buttons

Reference, Scope.identifier, PDT:88-89
Regions (progress bar), AR1:531

bounds determination, AR1:538-539
color and pattern, AR1:538
manipulating, AR1:537-539

structures for, AR1:537-538
size of, AR1 :538

Registering
address book, AR2:329
classes, AWG:175

Releasing application, AWG: 175

relWin value, AR1:393
alignment edge and, AR1 :393
constraints and, AR1:392
relative window and, AR1 :394
width and height dimensions and,

AR1:393-394
Remote file

access protocol, AR2:52
server, AR2:52

Remote interface, PDT:20

Remote server, AR2:295

Remote volumes, AWG:8; AR2:51-52

Removing
all list items, AR2: 130
document to stationary menu,

AR2:427
list items, AR2: 130
see also Deleting

Renaming
directories, AR2: 141
files, AR2: 141

Rendering
capability, initializing windows with,

AR1:560-561
scribbles, AR1:607
translated text, AR1:592
for visual feedback, AR1:59l

Repainting, AWG:129; AR1:222-223
advanced strategy for, AWG:152
code, AR1 :238 .

writing, AR1:241-242
dynamics, AR1:237-243

avoiding repaints, ARl:241
dirty windows, AR1 :237
explicitly painting occasions,

AR1:240
nesting, AR1:241
ordinary painting by repainting,

AR1:239
painting stages, AR1:241-242
sample repaint code, ARl:238
smart repainting, ARl:238-239
telling window to repaint, ARl:239
update region, AR1 :240-241
what happens in repainting,

AR1 :242-243
what to do when repainting,

AR1:237-238
window reception of

msgWinRepaint, ARl :237
wsSynchRepaint flag, AR1 :242

painting and, ARl :236
printing documents and, AR1:222-223
!~<iaring and, AWG:133
scrbllwin, ARl:460

Text subsystem and, AWG:155
TIFF object, AR1 :333
VI Toolkit, AR1:368

Replaceable shape matcher, AR2:439

Replacing
characters, AR2: 198
list items, AR2:130

Requestor field, in copying objects,
AR1:49-50

Required organization, AR2:381

RES_AGENT structure, AR2:354

RESAPPND utility, AR2:360; PDT: 165
bitmap resources and, PDT: 169

RESDVMP utility, AR2:360; PDT:165
RES_ENUM structure, AR2:352

RESFILE.H, AWG:145; AR2:343
macros, AR2:344-345

RES_FILE_NEW structure, AR2:348

RES_ID value, AR2:344

RES_INFO structure, AR2:349

resInput array, AR2:356
resInputFile, AR2:359

Resizing, UI:272-273
border windows, AR1:377
handles, UI:272
minimum and maximum sizes,

UI:272-273
scaling on resize, UI:273
windows, ARl:246-247

Resource, PDT:20

Resource agents, AR2:345, 353-354
reading and writing data resources

and, AR2:353
writing own, AR2:356

Resource Compiler, AWG:l68;
AR2:359-360

Resource definitions, AR2:356
example, AR2:356-357
structure, AR2:356

Resource file class, AR1:70
Resource files, AWG:14l; AR1:93;

AR2:337, 342; PDT:165
application, PDT: 169
application monitor, ARl:15l-152
benefits of using, AR1:365-366
compacting, AR2:353
default document names and, AR1 :98
definition, AWG:169; AR2:355
deleting resource from, AR2:348-349
in document activation, AR1:105
files for Tic-Tac-Toe, AWG:248-250
flushing, AR2:353
handle, AWG:145; AR2:348-349
header, AR2:342
note contents form, AR1:489-490
organization, AR2:355-356
Quick Help, AWG:167

resource definitions and, AWG:168
StdMsg and, AWG:168, 170
text strings and, AWG:63-64
viewing contents of, AR2:359, 360
see also Resources

Resource IDs, AR2:337, 338; PDT:169
Custom Resource 10 card,

PDT: 172-173
dynamic, AR2:343-344
system preferences and, AR2:362
using, AR2:344-345
well-known, AR2:343

list, AR2:344

Resource lists, AR2:337, 345-346
creating, AR2:346

Resource Manager, AWG:8

Resources, AR2:337-368
C language definition, AR2:355-357
compiling, AR2:359-360

RESAPPND utility, AR2:360
RESDUMP utility, AR2:360
running source compiler,

AR2:359-360
creating Quick Help, AWG:167-168
data, AR2:337, 342, 353

C language definition, AR2:355
reading, AR2:349
writing and updating,

AR2:349-350
defining Quick Help, AR2:356-357
deleting, AR2:352-353
developer's quick start, AR2:337-338
enumerating, AR2:351-352
identifying, AR2:342-344
Installer and, AWG:22
installing and deinstalling, UI: 1 09
locating, AR2:349
object, AR2:337, 341-342

once and many modes for, AR2:342
reading, AR2:350-351
replaceable, AR2:341
writing, AR2:351

overview, AR2:337
system preferences, AR2:361
types, AR2:343
when to create or destroy,

AWG:129-132
see also object

Resource utilities, PDT: 165

resOutputFile, AR2:359

RES_READ_DATA structure, AR2:349

RES_READ_OBJECT structure, AR2:350

Restoring
counter object, AWG:146
data, AWG:135-148
files, AWG:144-145

RES_WRITE_DATA structure, AR2:350

RES_ WRITE_OBJECT structure, AR2:351

RetO macros, ARI :24

Returned values, AWG:47, 79-81; AR1:14
message handlers and, AWG:I10
testing, AWG:80-81, 115-116
see also Status values

Revert, AWG:39

Revert command (Document menu),
UI:57,192

RGB color values, AR1:274, 295
compatibility, AR1 :295-296

Rich Text editing, AWG: 13

Right Arrow gesture, UI:25

Right-Down gesture, UI:26
guidelines, UI:240
ink editing, UI:259
MiniNote, UI:141
MiniText, UI:134

Right-Up-Flick gesture, UI:26
guidelines, UI:240
MiniText, UI:133

Right-Up gesture, UI:26
guidelines, UI:240
ink editing, UI:259
MiniNote, UI:141
MiniText, UI:133

Rings, AR2:103

Root classes, PDT: 14

Root directory, AR2:52
handle, AR2:60-61

Rotate command (Edit menu), PDT:171

Routines
DB runtime, PDT: 128-129
skipping execution of, PDT: 123-124

routineSet specification, PDT: 114

_ROUTINE_SET variable, PDT:125

Rows, table, AR2:213
adding, AR2:222-223

example, AR2:223
converting number to position,

AR2:226
deleting, AR2:224
getting length of, AR2:227
getting number of, AR2:227
see also Tables

RTF, UI:289
documen ts, AR2: 188
files, AR2:180
strings, AR2:191

RTS/CTS protocol, AR2:252

RTS (request-to-send) lines, AR2:270

Ruled pads, UI:50
compared to boxed pads and fill-in

fields, UI:50
writing, UI:48

pop-up, UI:48
ruled, UI:49
using, UI:51

Rules, AR1:600
built-in, AR1:600-601
knowledge source, AR1:601-602
post-processing, AR1 :602

RULES.TXT, AWG:206, 250

Running
Adder, AWG:261
Basic Service, AWG:272
Calculator, AWG:262
Clock, AWG:264
Counter Application, AWG:196
Empty Application, AWG:94, 177
Hello World (custom window),

AWG:187
Hello World (toolkit), AWG:181
Inputapp, AWG:270
MIL Service, AWG:23
Notepaper App, AWG:265
Paint, AWG:267
PenPoint on PC, PDT:25-62
system log application, PDT:141-142
Template Application, AWG:251
Test Service, AWG:273
Tic-Tac-Toe, AWG:205
Toolkit Demo, AWG:268-269
Writerap, AWG:271

Run-Time Libraries, PDT: 18

Run-time system, AR2:387-388

Sample
applications, PDT: 12
profiles, PDT: 115

Sample code, AWG:173-260
Counter Application, AWG:195-204
Empty Application, AWG:177-180
Hello World (custom window),

AWG:187-195
Hello World (toolkit), AWG:180-186
Template Application, AWG:251-259
Tic-Tac-Toe, AWG:204-250

Sampled images, AR1:272-274,
297-301; PDT: 167

cached images, AR1:273-274,
299-301

defined, AR1:269
drawing, AR1:273
messages, AR1 :297
operator, ARl:297-299

call backs, AR1:299
drawing, AR1:298
filter, AR1:298
image model, AR1 :299
rendering colors, AR1:299
run-length encoding, AR1 :298

Saving
Adobe font, PDT: 199-200
characters and bitmaps subset,

PDT: 196
counter object, AWG:145-146

data, AWG:135-148
object, AWG:153

documents, AR1:78-79
instance data, ARl:35
state, AWG:37, 135
typing, PDT:80-81

Scalability
design checklist and, UI:295
designing for, UI:153-154

ScaleVnits field, AWG:119

Scaling, UI:268
corner radius, AR1:339-340
fonts, ARl:276, 310-311
grafics, ARI :327
on resize, UI:273
pagination method, ARl:137
problems, UI:270
strategies, UI:268
with system font, UI:269-270

unscaled building blocks,
UI:269-270

using layout units, UI:269
with user defined font, UI:271

Scavenging, ARl:60
capability, ARl:27

Scav task, PDT: 152

Scope
referencing, PDT:88-89
specification, PDT:86-87

Scope.ldentifier specification, PDT:77

scopeSpec, PDT:86-87

Score, ARI :600

Scratch Out gesture, UI:25
guidelines for, UI:238
MiniNote, UI:140
MiniText, UI:133

Screen
capturing, PDT:175-178

before, PDT: 176
display, AWG:66
layout, UI:12
orientation preference, AR2:363
shots, AWG:174
size, UI:274

Screen Format (MiniText View menu),
UI:130

ScreenHeight keyword, PDT:39

Screen Width keyword, PDT:39

Scribble, data format, UI:289

Scribble, editing window component,
AWG:12

SCRIBBLE_NEW structure, ARI :609

Scribbles, AWG:1O; UI:254; ARl:555
base, ARl:607

. bounds, ARI :607
captured, ARl:555

translating and displaying,
ARl:557-558

concepts of, AR1:607-608
creating, object, ARI :609
defined, ARl:607
messages, ARl:608

attribute, ARl:608, 609
notification, ARl:608, 610
stroke, ARl:608, 609-610

objects, ARl:597
Pen menu and, UI:137
rendering, ARl:607
translator notification, ARI :608
using, AR1:607-610
see also clsScribble

Scripts, AWG:162

Scrollbar, ARI :453-462; PDT: 16
actions of, ARl:455
bubble, ARI :453
client notification, ARl:454-456
drag handle, ARl:453
frames and, ARI :498
illustrated, ARI :454
layout, ARl:453
normalizing scroll and, ARl:456-457
notification, ARl:453-454
offset, ARI :454

range, ARl:456
painting, ARl:453
providing information to, ARl:454
scroll windows, ARl:457-462
thumbing, ARl:454
updating, ARI :456

SCROLLBAR_SCROLL structure,
ARl:454-455

offset, ARl:455-456

Scroll function, UI: 16

Scrolling, UI:16, 263-265
to beginning/end, UI:36, 264
by flicking, UI:264-265
by screenful, UI:36, 263
by unit, UI:36, 263
guidelines for, UI:263-265
horiwntal, UI:274-275
line to top/bottom, UI:264
list boxes, ARI :466
lists, UI: 186-188

checklists, UI: 160
gesture accelerators for, UI:188
multiple checklists, UI: 187
pop-up checklists, UI:I96
of selectable items, UI: 187

marked location, UI: 172
normalizing, ARl:456-457
with Tap & Flick, UI:37
text view, AR2:29
with thumbing, UI:36
thumbing vs., ARl:455-456
vertical, ARl:455
window, inserting text view in, AR2:30

Scroll margins, UI:35-37, 56
Arrow & Drag Box style, UI:263-264

components, UI:36
control (Fonts & Layout preferences),

UI:93
gestural, UI:37
hiding, UI:56
horiwntal, UI:35
illustrated, UI:55
operations, UI:36, 263-264
showing and hiding, UI:264
style preference, AR2:365
Tap & Flick style, UI:37, 264
vertical, UI:35

Scrollwin, ARl:457
adding windows to, ARl:462
alignment, ARl:459
creating, ARI :458-459
inner window, ARl:459, 460
layout, ARl:460-461
multiple windows in, ARI :462
notification, ARl:461-462
repainting, ARI :460
style flags, ARl:459
windows, ARl:459
wsSynchRepaint flag and, ARl:242
see also Scroll windows

SCROLL_WIN_DELTA structure, ARl:461

Scroll windows, ARl:457-462
creating scrollwin, ARl:458-459
layout, ARl:460-461
multiple, ARl:462
notification; ARI :461-462
repainting, ARl:460
scrollwin windows, ARl:459
toolkit tables, ARI :462
see also clsScrollWin; Scrollwin

SCROLL_WIN_STYLE structure, ARl:461

SDK, AWG:l, 14
contents, PDT:22-23

compiler tools, PDT:23
optional goodies, PDT:23
PenPoint, PDT:22

directory, AR2:385, 389
contents, AR2:389

documentation·
API Reference, PDT:21
Application Writing Guide,

PDT: 11-12
Architectural Reference, PDT: 13-21
Development Tools, PDT:13
documents in, PDT: 10
feedback on, PDT: 10
library, PDT:9
organization of, PDT:13
sample applications in, PDT:12
suggested approach to, PDT:9-10
VI Design Reference, PDT: 13
see also Documentation

files, AWG:67
organization of, AWG:l
outline font editor, AWG:14

source-code symbolic debugger,
AWG:14

Search and replace, AR2:195-198
API function, AR2:124; PDT: 19
concepts, AR2:195
highlighting text and, AR2: 198
messages, AR2: 198
protocol, AR2:196
replacing characters and, AR2:198
searching text and, AR2: 197
setting initial search position, AR2:196
writing class and, AR2:196-198

Search (Find & Replace sheet), UI:63

Searching
address book, AR2:326-328

more information, AR2:327-328
search query, AR2:326-327
search result, AR2:327

tables, AR2:224-226

Sections, AWG:5, 34
application hierarchy arid, AWG:28
Connections notebook; VI: 1 05
creating new, UI:86-87
directory attributes for, AWG:34
document, AR1 :89
icon (open/closed), VI:76
names of, AWG:33
option sheets, UI:89
Settings notebook, UI:90
table of contents, AWG:34

Sector figure, AR1:272

Segments, PDT: 186
deleting, PDT: 186
shape mutation and, PDT:186

Select All command (Edit menu), UI:62

Select function, VI: 16

Selecting, VI:278-284
deselecting and, UI:279-283
an object, VI:278
a single object, UI:279

Selection, AWG:154
automatic, UI:283
classes that handle, AR2: 157
current, UI:278; AR2:155
determination, AR2: 157
dual, UI:284
event causing, AWG:154-155
extending, by dragging, UI:280
extending, with brackets, VI:280-281
feedback, UI:187, 278-279

for different object types,
UI:278-279

inversion and, UI:278
gestures, UI:187, 279
gestures over, UI:256
keyboard input and, AWG:153-155
list, adjusting, UI:281
move/copy protocol, AWG:155
multiple, UI:280

discontiguous, UI:282-283
option sheet relationship to, VI:203
in option sheets, UI:283-284
owners, AR2: 156

finding, AR2:161-162
messages sent to, AR2:159-161
preserving, AR2: 162
restoring, AR2: 162
setting, AR2:159, 162

preserved, UI:284
preserving, AR2: 156
supporting, AWG:155
targeting, UI:232
text, UI:283

adjusting with brackets, UI:281
move marquee fot, UI:287

transitions, AR2: 157
user model and, UI:278

Selection manager, AWG: 11-12;
AR2:155-163; PDT:19

client messages, AR2:158-159
concepts, AR2:155-157
determining selection, AR2:157
function, AWG:154; AR2:124
messages passes to, AR2:161-162
messages sent to selection owners,

AR2:159-161
observer notification and, AR2: 163
preserving selection and, AR2: 156
selection classes, AR2:157

messages, AR2:157-158
selection ownership and, AR2: 156
selection transitions and, AR2: 157

self Parameter, AR1:38
object UID and, AR1:35

Self (UID) , AWG:56-57
EmptyAppDestroy and, AWG: 11 0
message handler parameter, AWG:99,

109
SEL_OWNERS structure, AR2:161-162,

163

Semaphores, AR2: 101
clslnstallMgr and, AR2:414
counting, AR2:101
locked, AR2:101
table

example, AR2:222
shared, AR2:217
using, AR2:222

Sendable services, AR2:331-334
defined, AR2:331
messages, AR2:333-334
protocol, AR2:331-332

function, AR2:319

Send command, UI: 13; AR2:308
Document menu, UI:57

Send Document command (table of
contents Document menu),
UI:85

Sender, AR2:166

Sending
messages, AWG:45-48; AR1:13-15

to window hierarchy, AR1:251-252

Send user interface, AWG:13

Sequence numbers, AR1: 178
getting and setting, AR1:181

Serial driver, AR2:265

Serial handle
defaults, AR2:269
requesting and releasing, AR2:268

Serial 110 interface, AR2:251, 265-274
buffered data, AR2:265
concepts, AR2:265-266
concurrency issues, AR2:266
events, AR2:266
flow control, AR2:265-266
high-speed packet I/O concepts,

AR2:273-274
interrupt driven I/O, AR2:265
messages, using, AR2:267-273

detecting events, AR2:272-273
flow control, AR2:272
reading/writing with serial port,

AR2:271
reinitializing serial port, AR2:268
requestinglreleasing serial handle,

AR2:268
sending BREAK, AR2:272
serial port configuration,

AR2:268-271

Serial port, AR2:246; PDT:34
closing, AR2:268
configuration, AR2:268-271

baud rate, AR2:269
data modem, AR2:280
DTRlRTS output, AR2:270
flow control, AR2:269
flow control characters, AR2:270
input line status, AR2:270
line control, AR2:269
requesting settings, AR2:270-271

data modem and, AR2:279-280
configuring, AR2:280
getting handle, AR2:279-280

opening, AR2:268
reading and writing with, AR2:271
reinitializing, AR2:268
requesting all settings, AR2:270-271
writing to, PDT:136
see also Parallel port; Ports

Service addresses, AR2:322

Service applications, UI: 159

SERVICE directory, AR2:384, 386, 395
contents, AR2:387
files in, AR2:396
INST directory and, AR2:396

SERVICE,INI file, AR2:256, 385, 387
service directory and, AR2:444

Service installation manager, AR2:416
class, AR2:441

Service instances, AR2:439-440
creating, AR2:442, 454-455
dynamic, AR2:453-454
file system node, AR2:443
msgSvcSaveRequested and, AR2:466
preconfigured, AR2:473
saving state data and, AR2:466
static, AR2:453-454
using, AR2:442-443

Service manager, AR2:250, 251, 256-257
accessing service and, AR2:261
architecture, AR2:437
binding to service and, AR2:262
class, AR2:440
defined, AR2:256
finding handle and, AR2:263-264
finding service and, AR2:261-262
function, AR2:255, 256, 437
messages, AR2:260

change ownership protocol,
AR2:467-469

from, AR2:461-466
handled by clsService,

AR2:469-470
notification, AR2:259, 260
sent by, AR2:459-470

opening and closing service and,
AR2:262-263

predefined, AR2:258-259
receiving state notification and,

AR2:264
request for information, AR2:459-461
services and, AR2:440
setting service owner and, AR2:264
unbinding from service and, AR2:263
using, AR2:261-264

Service messages, AR2:443
SERVICE.RES file, AR2:387

service directory and, AR2:444, 445
Services, UI:163-165; ARl:76-77;

AR2:438, 438-439
accessing, AR2:258-259

overview, AR2:257
service manager and, AR2:261

binding to, AR2:259
broken connection and, AR2:247
chaining, AR2:446
classes, AR2:255-264, 439-441

initializing, AR2:451, 452
closing, AR2:263
clsStream messages and, AR2:470
connections, AR2:258, 446-447
connection status, AR2:248, 447
data storage, AR2:455
defined, AR2:250, 255
deinstalling, AR2:256, 456
design decisions, AR2:449
directory contents, AR2:444
distributing, AR2:473-474

documentation and, AR2:474
providing demo application,

AR2:473
providing preconfigured instances,

AR2:473
OLL and OLC files and, AR2:256
exclusive access, AR2:445-446
file system and, AR2:443-445
in file system at run time, AR2:445
In box and Out box, AR2:305

devices and, AR2:306-307
enabling and disabling,

AR2:307-308
installing devices and, AR2:307
passive and active, AR2:312-313
sections, AR2:306

installable, AR2:387
installation, AR2:378-379, 450-456

calling initialization routines,
AR2:451-452

calling InitService, AR2:452-453
calling other class initialization

routines, AR2:452
creating service instances,

AR2:454-455
static and dynamic service

instances, AR2:453-454
tasks and, AR2:455-456

installation to use overview,
AR2:441-443

installing, AR2:256
interfaces and, AR2:249-250
layered, AR2:248
messages sent to open, AR2:470
MIL, AR2:246-249, 439

see also Parallel port; Serial port
msgSvcGetMetrics response, AR2:460
msgSvcSetMetrics response, AR2:461
multiple access, AR2:445, 446
multiple volumes and, AR2:398
multi-user, AR2:446

msgSvcOpenDefaultsRequested
and, AR2:463

multiple openers and, AR2:452
non-port, AR2:439
on distribution/boot disks, AR2:444
opening, AR2:257, 259, 262-263
owner, AR2:247

setting, AR2:264
ownership, AR2:257

task, AR2:455-456
preconfigured, AR2:396
printer, AR2:250
programming, AR2:449-47i
service manager and, AR2:440
shared, AR2:446
targeting, AR2:258, 446
test examples, AR2:475-506

BASICSVC, AR2:485-487
MILSVC, AR2:487-506
TESTSVC, AR2:476-485

in theSelectedVolume, AR2:445

transaction, AR2:296
requesting, AR2:300
responding to, AR2:301

unbinding, AR2:263
upgrading, AR2:398
writing, AR2:435-472
see also Open service

Services Architecture, AWG:64; POT:21
Service sections, AR2:306
Service State Nodes, AR2:396, 444, 445
setbufO system service, AR2:65
Set string message, AWG:42-43
Settings

icon, UI:13, 76
powering down and, UI:97

Settings notebook, UI:90-106
configuration modification and,

UI:164
contents, UI:91
Fonts and Layout page

Field Font, UI:271
Hand Preference, UI:35
PenPoint Font, UI:271
scroll margin selection, UI:263
Tap & Flick, UI:37
Top Edge control, UI:276

Gesture Timeout, PDT:38
Installed Software section, UI:90,

97-101
Applications page, UI:98
Installed dictionaries page, UI: 100
Installed Fonts page, UI: 10 1
Installed Handwriting page,

UI:99-100
Installed Services page, UI:164
Installed User Profiles page, UI: 101

Installer, PDT:41
organization, UI:90
overview, UI:90-91
Preferences section, UI:90, 91-98

Date page, UI:94
Float & Zoom page, UI:94
Fonts & Layout page, UI:93
Pen page, UI:92
Power page, UI:96-97
Sound page, UI:95
Time page, UI:95
Writing page, UI:92

scaling and resizing and, UI:268
Status section, UI:90, 102-104

PenPoint status sheet, UI: 104
Storage Details sheet, UI:I03
Storage Summary sheet, UI: 1 02

table of contents, UI:91
Install button, UI:99

Writing Timeout preference, UI:33
see also Connections notebook; Help

notebook; Notebook;
Stationary notebook

Settings notebook. see Auxiliary
notebooks

SetUpFontO function, AR1:592

Setwidth, PDT: 180
changing, PDT: 188
character placement and, PDT: 181

S gesture, UI:27, 64
MiniNote, UI:142
MiniT ext, UI: 134

shadowGap style field, AR1:377

SHADOW_NEW_ONLY structure, AR1:509

Shadows, AR1:509
creating, AR1 :509
painting, AR1:377
turning on, AR1:378

Shapes. see Character shapes

Sheets
dialog, UI:40
input behavior for, UI:43
modal, UI: 178
modeless, UI: 178
multi-page, UI:43
option, UI:44-47

summary, UI:40
summary, UI:40
see also Layout option sheet; Option

sheets

Shift command (Edit menu), PDT: 171

Show menu (System Log), PDT:142

Show Special Characters control
(MiniText), UI: 132

ShowTextO function, AR1:592

Shrink-wrap, AR1:397
constraints and, AR1:395-396
parent-relative sizing and, AR1:398
points to watch for with, AR1:395
window layout and, AR1:382

Shutdown button (Power preferences),
UI:96,97

Signature pads, scaling, UI:269-270

Signed data types, AWG:76

Simple class, AR1:82-84
instance of, AR1:84

Single-stepping, PDT:77

SI 0_ CONTROL_IN_STATUS structure,
AR2:270

SIO_CONTROL_OUT _SET structure,
AR2:270

SIO_EVENT_HAPPENED structure,
AR2:272-273

SIO_EVENT_SET structure, AR2:272
getting current, AR2:273

SIO_FLOW _CONTROL_CHAR_SET
structure, AR2:270

SIO_FLOW_TYPE structure, AR2:269

SIO_INIT structure, AR2:268

SI ° _INPUT _BUFFER_STATUS structure,
AR2:271

SIO_LINE_CONTROL_SET structure,
AR2:269

SIO_METRICS structure, AR2:270-271

SIO_OUTPUT_BUFFER_STATUS structure,
AR2:271

Size menu, PDT: 173

SIZEOF type, AWG:77

SM_ACCESS structure, AR2:261

Small icons, UI:74

SmartDrive, PDT:27

smAttrStationaryMenu, AR1: 153

SM_BIND structure, AR2:262
in unbinding from service, AR2:263

SM_CLOSE structure, AR2:263

SM_CONNECTED_NOTIFY structure,
AR2:264

SM_FIND_HANDLE structure,
AR2:263-264

SM_OPEN_CLOSE structure, AR2:262-263
accessing socket and, AR2:298

SM_SET_OWNER structure, AR2:264

Snapshots, PDT: 175
file name, PDT: 176
full-screen, PDT: 177
of gestures, PDT: 177
impossible, PDT: 177
taking, PDT: 177

before, PDT: 176
writing to disk, PDT: 177

Socket, AR2:295-296
accessing, AR2:298
closing, handle, AR2:299
connection, AR2:296
identifier, AR2:296
transport address, AR2:296

SoftTalk interface, AR2:250, 295

Software
development environment,

AWG:15-16
hierarchy, AR1:76

Sort By menu (table of contents), UI:88

Sorting, directory entries, AR2:88-89

Sound preferences (Settings notebook),
UI:95

Sound routine, AR2: 1 05

Source application, A WG: 11

Source code
additional, AWG:90
debugging, PDT:72-73
Empty Application, AWG:99-101
setting breakpoint and, PDT:74
system debugger, AWG:14
viewing, PDT:77-78

Source code file, AWG:76

beginning of, A WG:99
organization, AWG:97-99

application C code file, AWG:98-99
message handler parameters,

AWG:99
method table file, AWG:98

structure, AWG:73

Source debugger. see Source level
debugger (DB)

Source level debugger (DB), AWG:133;
PDT:67

activation of, PDT:84
advanced techniques, PDT:123-131

cast operator, PDT: 131
compile time commands, PDT:124
context inside breakpoints,

PDT:131
controlling execution threads,

PDT:124
install and start commands,

PDT:131
on command, PDT:129-131
skipping execution, PDT: 123-124
tilde operator, PDT: 131
wait command, PDT: 131

built-ins, PDT:125-129
predefined types, PDT: 125-126
runtime routines, PDT:128-129
useful values, PDT: 126
useful variables, PDT: 127-128

command line editing, PDT:81
command reference, PDT:85-112

command datasheets, PDT:89-112
command summary, PDT:85-86
notation conventions, PDT:86-89

compiling and linking and,
PDT:69-70

context, PDT:73
executing code at prompt, PDT:79
exiting, PDT:84
features, PDT:67
files used in session, PDT:69
Hello World (custom window) and,

AWG:134
installing, PDT:70
invoking, PDT:71
memory use and, PDT:81-82
messages, objects, status values,

AWG:162
mini-debugger and, PDT: 145
profiling, PDT: 113-121

clearing profile information,
PDT:121

code profiling, PDT: 113-117
displaying profile information,

PDT: 119-120
object profiling, PDT: 117-118
profile breakpoints, PDT: 113
specific tasks, PDT: 121
type of profiles, PDT: 113

for saving typing, PDT:80-81

scripts, PDT:81
to send messages, PDT:82
speeding up debugging with,

AWG:133-134
for suspected code problems, AWG:87
tag name, AWG:70
using, AWG:2; PDT:71-84

breakpoints, PDT:73-74
ctx command, PDT:73
examining and setting values,

PDT:75-77
executing C code, PDT:79-80
gcommand, PDT:71
hexadecimal numbers, PDT:72
memory use and, PDT:81-82
for message sending, PDT:82
module names, process names, task

IDs, PDT:71
PAUSE key, PDT:71
prompting circumstances, PDT:84
saving typing, PDT:80-81
single-stepping, PDT:77
source code debugging, PDT:72-73
st command, PDT:74-75
string names for messages, objects,

statuses, PDT:82
t! command, PDT:80
u command, PDT:78-79
v command, PDT:77-78
watching memory, PDT:82-84

see also Debugging; Mini-debugger

Spacial modes, UI:244

Speaker, modem, AR2:284-285

Spell checking, UI:64

Spell command (Edit menu), UI:62, 64
mark protocol and, UI: 172

Spelling dictionary, AR1:601

Spell sheet, ul:64
modifying and replacing, UI:194

Spreadsheet, embedded chart in, UI:167

Square buttons, UI:28, 176

srcdir command, PDT:72-73, 77
datasheet, PDT:103

srcRect, AR1 :244

SR_GET_CHARS structure, AR2:197

SR_REPLACE_CHARS structure, AR2:198

S-Shot utility, AWG:174; PDT:175-178
bugs, PDT: 178
installing, PDT: 175
on Macintosh, PDT: 177
on pc, PDT: 178
specifying a file name, PDT: 176
taking snapshot, PDT: 177
using, PDT: 175-177

hints on, PDT: 177-178
specifying a delay, PDT: 176
specifying an area, PDT:175-176

window, PDT: 175

Stack trace, PDT:149

Stak task, PDT: 152

STAMP command, AWG:93-94
for EMPTYAPP, AWG:94

Stamping, AWG:164
applications, AWG:93-94

Stamp mapping, AR1:131-132

STAMP utility, AR2:390-391;
PDT:161-162

example, PDT:162
stationary and, AR2:392
syntax for, PDT:161-162

Standard application menus (SAMs),
AWG:33-34; AR1:163-170

check gesture handling, AR1:169-170
clsCntrApp, AWG:146
document and edit menus,

AR1:165-168
frames and, AR1:504-505
message handling and, AWG:108
options menu protocol, AR1:168-169
see also Menu

Standard message interface, AR1:492-496
defined, AR1 :487
kinds of, AR1:492-493

Standard modal command buttons,
UI:178-179

Standard modeless command buttons,
UI:178

StartApp keyword, PDT:39

start command, PDT:131

Starting point, locator, AR2:55

Stateful objects, AWG:89
creating, AWG:65
separate, AWG:150

States, AWG:135
application class, AR1:96

diagram of, AR1:95
browser, AR2:143
connection, notification, AR2:264
created, AR1: 100, 101
document, AR1:100

diagram of, AR1:100
transitions, AR1: 10 1

dormant, AR1:100, 101
filing, AWG:135

rule, AWG: 136
list boxes, AR1:467
saving, AWG:135
Tic-Tac-Toe, AWG: 150

STATIC keyword, PDT: 115

Stationary, AWG:5, 163-165; UI:120;
PDT:54

application, AR2:392-393
specific, AWG:38

building, AWG:165
custom, UI:120
design checklist and, Ul:295

directory, uI:162
documents, Ul:162; AR2:377

removing document to, AR2:427
icon, UI: 13, 76
installable, Ul: 162
loading and unloading, AR 1: 153-154
menu

adding document to, AR2:426
modifying, AR2:426-427

palette, AWG:104
pop-up menu, AWG:23, 163

illustrated, AWG:164
templates, AR2:387
Tic-Tac-Toe source files, AWG:250

Stationary notebook, AWG:22-23, 33;
UI:13, 120; AR2:393

applications in, AWG:104
document installation and, Ul:162
for document stationary, Ul: 162
Empty Application documents and,

AWG:95
illustrated, AWG:164
table of contents, UI: 120
see also other notebook types

STATNRY directory, AWG:164, 205;
AR2:387, 392-393

Tic-Tac-Toe stationary and, AWG:165

STATUS, AWG:77, 82
codes, input event, AR1:564, 569
gauges, Ul:13
index, AWG:169

Status-checking macros, AWG:87

Status section (Settings notebook), UI:90,
102-104

PenPoint status sheet, UI: 1 04
Storage Details sheet, Ul: 1 03
Storage Summary sheet, UI: 1 02

Status values, AWG:47, 79; AR1:11-12
in accessing service, AR2:261
checker, AWG:82
coding convention for, AWG:72
defined, AR1: 11
defining, AWG:80
generic, AWG:81
human-readable, AWG:81
less than stsOK, AWG:52
message handlers and, A WG: 110
pseudoclasses for, AWG:80
STATUS, AWG:77, 82
testing returned, AWG:80-81
see also Returned values

st command, PDT:74-75
datasheet, PDT: 104-105
in mini-debugger, PDT:148

StdErrorO, AWG:168-169; AR1:494
buttons and, AWG:170
resource files and, AWG:170

stdio calls, AR2:65

STOIO.H, AR2: 113

stdio run-time package
accessing file system with, AR2:65-66
for node creation, AR2:43
paths and, AR2:66
theWorkingDir and, AR2:61
translating between handles and FILE

pointers, AR2:65-66
using, AR2:66

StdioStreamBindO system service, AR2:65

STDLIB.H, AR2: 113

StdMsgO, AWG:168-169; ARl:493
buttons and, AWG:170
resource files and, ,A WG: 170

StdMsgCustomO, AWG:171

StdMsgResO procedure, ARI :493

StdMsg (standard message facility),
AWG:168-171

customization fUnction, AWG:171
defining buttons and, A WG: 170
dialog box, AWG:169
resource files/lists and, AWG: 170
routines, AWG:168-169
substituting text and, AWG: 170
text strings and, AWG:63
using, AWG:169-170

StdProgress, AWG:168-169

StdProgressDownO procedure, ARI :494

StdProgressUpO procedure, ARl:493-494

StdSystemErrorO, AWG: 168-169;
ARl:494

buttons and, AWG:170

StdUnknownErrorO, AWG:169; ARl:495

StealMem keyword, PDT:39

Stenciling image device, ARI :260-262

Storage Details sheet (Status section,
Settings notebook), UI: 103

Storage space, UI:I02
allocation, UI: 103

Storage Summary sheet (Status Section,
Settings notebook), UI:102

Storing, embedded objects, UI:166

STRAT.TXT, AWG:206, 250

Stream buffer, AR2: 168

Stream class, AR2:133-136
overview, AR2:133-134

Stream protocols, AR2:168

STREAM_READ_WRITE structure, AR2:83
serial port and, AR2:271
for streams, AR2: 134

STREAM_READ_ WRITE_TIMEOUT
structure, AR2:135

Streams
accessing, auxiliary data, AR2: 177
connecting, to producer, AR2: 178
creating

objects, AR2: 134

receiver, AR2:176-177
sender, AR2: 177

flushing, AR2:136
freeing, AR2: 177
initializing, AR2: 178
objects, AR2: 134
operations, AR2: 133
reading, AR2: 134

with timeout, AR2:134-135
writing, AR2:134

with timeout, AR2:134-135

STREAM_SEEK structure, AR2:135

Stream transfers, AR2:168-170
blocking protocol, AR2:168-169
producer protocol, AR2:168, 169

STRING.H, AR2:111-112

String list boxes, ARl:470-473
control dirty, ARl:472
creating, ARl:470-471
destroying, ARI :472
notification, ARI :472
painting, ARl:473
providing entries, ARl:471
value, ARI :472

String objects, AR2:211-212
concepts, AR2:211
creating, AR2:212
getting, AR2:212
messages, AR2:212
notification of observers, AR2:212
resetting, AR2:212

Strings
16-bit fUnction, AR2:111-114
composition fUnctions, AR2: 114
constants, AWG:62-63
date and time, AR2: 110
label, ARl:410
moving for internationalization,

AWG:63-64
names of, PDT:82
routines, AWG:62
StdMsg array, AWG:169

STRLB_NEW_ONLY structure, ARl:470

STRLB_PROVIDE structure, ARl:471

STRLB_STYLE fields, ARl:471

STROBLNEW_ONLY structure, AR2:212

Stroke, ARl:607
indexing, ARI :607

Structure
definitions, AWG:70
names, AWG:76
on-disk, AWG:174

stsAppMgrLowMemNoActivate, ARl: 148

stsBadAncestor, ARl:56, 60

stsBadObject, ARl:56

StsChk macro, AWG:82

stsEndOfData, ARl: 139

StsFailed macro, AWG:82, 83

stsGO, AWG:80

StsJmp macro, AWG:82, 83
status checking, AWG:87

stsNotUnderstood, ARl:42

stsOK, AWG:79; ARl:12, 18
testing and, AWG:80, 81

StsOK macro, AWG:81, 82, 84
status checking, AWG:87

stsProtection Violation, ARI :24

StsRet, AWG:82, 84

stsScopeViolation, ARl:56

stsSizeLimit, ARl:60

sts TblLayoutBadConstraint, ARI :386

stsTruncatedData, ARl:12

stsVetoed, ARl:58

StsWarn, AWG:81

StsWarn macro, PDT: 133

S_TTT.C, AWG:206, 223

Style fields, AWG:119

Styles, button, UI:175-178

Subclasses, AWG:43
of frames, ARI :505
_NEW_ONLY structure, AWG:50

Subclassing
clsAppMonitor, AR1:155
clsBorder, ARl:380
clsOpenServiceObject, AR2:471-472
clsSPaper, ARl:592-593
clsStream, AR2:133
clsTkTable, ARl:443
clsView, ARl:175
clsWin, ARl:226
file system classes, AR2:67

Submenus, UI:42
creating, ARl:448
dynamic, ARI :449
menu buttons displaying,

ARl:448-450

Subpage controls, UI:38
mode switch and, UI:251

Sub-pages, UI:158

Subsections, AWG:5

Subsystem, ARl:545
handwriting capture, ARl:555
handwriting translation, ARl:546,

551-553
hierarchy, ARl:545
input, ARl:545, 546-550

API, ARl:567-573
constants, ARl:568-570
procedures, ARl:571-573
UIDs, ARl:568

window and graphics, ARl:546

Subtasks, AR2:98-99
characteristics, AR2:99

sibling, AR2:99
see also Tasks

SuperScriptII, sample definition, PDT:61

Suspend
button (Power preferences), UI:96
capability, UI:96-97

SVC_BIND structure, AR2:462

SVC_GET_SET_METRICS structure
msgSvcGetMetrics and, AR2:459-460
msgSvcSetMetrics and, AR2:460

SVC_INIT _SERVICE structure,
AR2:452-453

SVC_NEW_ONLY structure, AR2:454-455

SVCOPEN_CLOSE structure, AR2:463

SVC_OWNED_NOTIFY structure, AR2:468

SVC_TERMINATE_VETOED structure,
AR2:458

Swap
boot, PDT:39
file, PDT:39

error messages and, PDT:47

Swap Boat keyword, PDT:39

SwapFileSize keyword, PDT:39

Switch
mode, UI:247

location, UI:251-252
presentation, UI:248-250

statements, AWG:76
two-state, UI:198
see also T oggie, switches

Symbolic debugger, AWG:85

Symbols
generating automatically, AWG:162
names of, AWG: 162-163

printing, AWG:163

sym command, PDT:72, 82
datasheet, PDT: 105

Synchronous message passing, PDT:14

SYSAPP.INI, AR2:385; PDT:44
in boot sequence, PDT:29
description, PDT:28

SYS_BOOT_STATE structure, AR2:431-432

SYSCOPY.INI, AR2:385; PDT:43
in boot sequence, PDT:29
description, PDT:28
files, PDT:43

SYSDC_CACHE_lMAGE structure, AR1:300

SYS_DC_COPY_lMAGE structure, AR1:300

sysDcDrawDynamic, AWG:128

sysDcDrawDynamic flag, ARl:293

sysDcDrawFast flag, ARI :293

sysDcDrawRectangle, ARI :212

SYSDC_FONLATTR structure, ARl:305

SysDcFontlD function, ARl:303

SYSDC_FONT _METRICS structure,
ARl:307-308

SysDcFontString function, ARl:303

sysDcHoldDetail, ARl:291

sysDcHoldLine, ARl:291

SYSDC_lMAGE_INFO structure,
ARl:297-298

SYSDC_LINE structure, ARl:291

SYSDC_MODE structure, ARI :292-293

sysDcPatNil, ARI :294

SYSDC_PIXEL structure, ARl:259

sysDcRopCopy, ARl:292-293

SYSDCTEXT_OUTPUT structure, ARl:311

sysDcWindingFill flag, AR1:292

SYS directory, AR2:385
run-time files and, AR2:387

System
address book, AR2:329-330
applications, PDT:44

file, PDT:53
dialog, ARl:493
directory messages, AR2:432
distribution, AR2:385-386
errors, ARl:494
font

scaling with, UI:269-270
size of, UI:274

layout, UI: 153
log icon, UI:77
Services, PDT: 18
tasks, PDT:151-152
user fonts preference and, AR2:363
see also System Log application

System class, AR2:429-432
concepts, AR2:429-431
messages, AR2:431-432

System drawing context, AWG:128
coordinate system, AWG:129

System layer, AWG:7-12·
data transfer, AWG:12
defined, AWG:6
file system, AWG:7-8
graphics, AWG:9
input and handwriting translation,

AWG: 1 0-11
networking, AWG:8
printing, AWG:9-10
Resource Manager, AWG:8
Selection Manager subsystem,

AWG:11-12
User Interface Toolkit, AWG:lO
windowing, AWG:8-9

System Log application, AWG:68;
PDT:141-143

debugger stream, AWG:85
viewing, AWG: 112

loading, PDT: 141
menus, PDT: 142-143

Font, PDT: 143
Log Size, PDT: 143
Show, PDT: 142
Trace, PDT: 142-143

on PC, PDT: 142
running, PDT:141-143
using, AWG:l12

System-modal note, ARl:487-488
application-modal note vs., ARI :490

System notebooks, AWG:5

System preferences, ARl: 170;
AR2:361-368

auto shutdown, AR2:365
auto suspend, AR2:364
bell, AR2:365
character box height, AR2:366
character box width, AR2:366
concepts, AR2:361-362
date format, AR2:367
display seconds, AR2:367
floating allowed, AR2:365
gesture timeout, AR2:364
hand preference, AR2:363
handwriting timeout, AR2:364
input pad style, AR2:366
line height, AR2:366
list of, AR2:362
observer of, AR2:368
pen cursor, AR2:366
power management, AR2:364
press-hold time~ut, AR2:364
primary input device, AR2:367
resource IDs and, AR2:362
resources, AR2:361
screen orientation, AR2:363
scroll margin style, AR2:365
system and user fonts, AR2:363
time and data, AR2:366
time format, AR2:367
unrecognized character, AR2:368
writing style, AR2:364
zooming allowed, AR2:365

Systick rate, setting, PDT:128

Syst task, PDT: 152

Tab
bars, ARl:428

adding items to, ARl:508
creating, AR1 :508
layout, ARI :508
windows, ARl:223

clipping and, ARl:230
setting, ARl: 183-184
see also Tabs

TAB_BAR,...NEW_ONLY structure, ARl:508

Table class, AR2:213-228
concepts, AR2:213-215
distributed DLL, AR2:213
messages, AR2:217 -218

Table data
files, AR2:214
getting, AR2:223-224
setting, AR2:223

Table layout, ARl:383
constraints, ARl:386-387
flags, ARl:384-385
sample, ARl:383
specifying, ARl:385-386
structure, ARl:384-385
using tWignBaseline for, ARl:388
see also clsTableLayout

Table-like mode, PDT:40-42

Table mapping, ARl:131

Table object
access concurrency characteristics,

AR2:216
accessing, AR2:216
creating, AR2:220
current state, AR2:215
observing, AR2:215

Table of contents, AWG:5
bookmark check box, AR2: 145
browser and, AR2:137-138
Connections notebook, UI: 105
creating, AR2: 138
default object, UI:46
document icons in, UI:216-217
edit pads and, UI:47
embedding documents and, UI:20
Empty Application title, AWG:96
Help notebook, UI:124
icons, UI:74

hot points and, UI:217
In box, UI:121
main, UI:87
menu line, UI:85
multiple documents and, UI:86
Notebook, UI:12, 15

checkboxes in, UI:185
menus, UI:85-87
option menus, UI:87-89
zero or one list style, UI:185

option sheets, UI:87-89
Document, UI:89
icon, UI:75
Layout, UI:88

Out box, UI:122, 160
for customized service, UI: 161
Enabled column, UI:160
for printer service, UI: 161
Status column, UI:160

Settings notebook, UI:91
Install button, UI:99

Stationary notebook, UI:120

Table of Contents (TOC) application,
AWG:13

Tables, AR2:213
accessing, AR2:214

beginning, AR2:221

ending, AR2:228
adding rows to, AR2:222-223
Boolean operators for, ~:225
creating, AR2:221
defined, AR2:213
defining, AR2:218-219
describing, AR2:213-214
discontiguous selection in, UI:283
dragging in, UI:288
files, AR2:214
freeing, AR2:228
horizontal scrolling and, UI:274-275
locating records in, AR2:215
messages for, AR2:217-218

information, AR2:226
observing, AR2:215, 220-221
positioning in, AR2:215
Quick Help and, UI:215
searching, AR2:224-226
selection feedback and, UI:279
semaphores and, AR2:222
shared, AR2:215-217

access to table object, AR2:216
concurrency, AR2:216-217
ownership, AR2:216

state, AR2:227
using, in database, AR2:217
see also Columns, table; Rows, table

TableServer, AWG:15 .

Tabs, UI:15
area, AWG:34 ,
Show Special Characters control

(MiniText), UI:132
toggling, UI:32
see also Tab

Tab Stop option sheet (MiniText),
UI:132

Tabular layout window, ARl:353

TA_CHAR_ATTRS structure, AR2: 16-17

TA_CHAR_MASK structure, AR2: 16-17

tagAppMgrDefaultDocName, AR1:98

Tag argument, AR2: 16
atomChar, AR2:16
atomPara, AR2: 17
atomParaTabs, AR2:18 \

TagNumO macro, AR1:12

tagPrAutoShutdown, AR2:365

tagPrAutoSuspend, AR2:364.

Tags, AWG:79; ARl:12
for data transfer types, AR2:166-167
jumping to structure definitions with,

AWG:118
for string array resource, AWG:167
window, ARl:216, 225

TAGS subdirectory, AR2:389

. TA_MANY_TABS structure, AR2:18

Tap & Flick scroll margins, UI:37, 264

TA_PARA_ATTRS structure, AR2:17

TA_PARA_MASK structure, AR2: 17

Tap gesture, UI: 16, 24
Double, Triple, Quadruple, UI:25

in gesture mode, UI:259
guidelines for, UI:239
for zooming, UI:266

family, UI:24
summary, UI:235

in gesture mode, UI:258
guidelines for, UI:236
hot point for, UI:231
for ink mode selection, UI:255-256
MiniNote, UI:140, 141
MiniText, UI:133
for selection, UI:279
Tap & Flick scroll margins and,

UI:37,264
see also Gestures

Tapping, UI: 17
boxed pads and, UI:50
clean and dirty controls and, UI:46-47
for deselection, UI:280
for drag & drop cancellation, UI:69
edit pads and, UI: 189
Help notebook, UI:124
icons, UI:74
Installed Dictionaries page, UI:I00
Installed User Profile page, UI:I01
in menu fields, UI: 199
menus and, UI:42
MiniNote and, UI:135
multi-page sheets and, UI:43
multiple checklists, UI:31
on fill-in field, UI:33
on page number, UI:15
pop-up checklists and, UI:30
Power preferences and, UI:96-97
Proof sheet and, UI:65
Quick Help sheet, UI:123
reference buttons and, UI:20, 79
for scrolling, UI:36
for selection, UI:279
Spell sheet and, UI:64
subpage controls and, UI:38
tab, UI:15
toggle switch and, UI:I0-181, 30
zero or one style and, UI:185
for zooming, UI:267

T ap-Press gesture, UI: 16, 24
in gesture mode, UI:258
guidelines for, UI:237
for initiating drag, UI:286
for ink editing, UI:255-256, 258
MiniNote, UI:135, 140, 141
for zooming, UI:266

Target, AR1:129
directory, AR2:59

changing, AR2:86
input, ARl:572-573
objects, AR1:548, 550

defined, AR1:550

record, AR1: 130
service, AR2:258

Targeting, UI:231-233
auto-selection and, UI:283
communication devices, AR2:307
drag destination, UI:288
guidelines for, UI:232-233
selection, UI:232
services, AR2:446
unselected objects, UI:232
window objects, UI:233
zone, UI:232

Task
commands, PDT:85
events, PDT:129-130
IDs, PDT:71, 121
name, PDT: 149
process, 0; PDT:153-154
profiling, PDT: 121
set, PDT:89
stack position, PDT:86
terminating, PDT: 124
values available for, PDT: 126
see also specific tasks; Tasks

Task list, PDT:80
mini-debugger, PDT:151-154

example, PDT: 149-150
system tasks in, PDT: 151-152

Task List (Show menu), PDT:142

Task management, AR2:98-99
priority level, AR2:99
processes, AR2:98
software task scheduler, AR2:99
subtasks, AR2:98-99

Tasks, AR2:98
80386 protected mode and, AR2: 102
family, AR2:99
priority level, AR2:99
privilege level, AR2: 103
services and, AR2:455-456
software, scheduler, AR2:99
see also Subtasks; Task

taskSet, PDT:89
in code profile syntax, PDT: 114
in object profile syntax, PDT: 117
in on command syntax, PDT:129
in task termination, PDT: 124

_TASK_SET variable, PDT: 126

TBL_BEGIN_ACCESS structure, AR2:220,
221

TBL_BOOL_OP, AR2:225

TBL_COL_DESC structure, AR2:218-219

TBL_COL_GET_SET_DATA structure
getting data and, AR2:223
setting data and, AR2:223

TBL_CONVERT _ROW _NUM structure,
AR2:226

TBL_CREATE structure, AR2:218

TBL_FIND_ROW structure, AR2:224-225

TBL_FREE_BEHAVE values, AR2:220

TBL_GET_SET_ROW structure
getting data and, AR2:224
setting data and, AR2:223

TBL_GET_STATE structure, AR2:227-228

TBL_LAYOUT _CONSTRAINT structure,
ARl:386

TBL_LAYOUT_COUNT structure, ARl:385
table layout constraints and, ARl:386

TBL_LAYOUT _INDEX structure,
ARI :388-389

TBL_LAYOUT_SIZE structure, AR1:386
table layout constraints and, ARl:386

TBL_LAYOUT_STYLE structure, ARl:384

TBL_NEW structure, AR2:220

TBL_ROW_POS value, AR2:215

TBL_STRING structure
getting data and, AR2:224
setting data and, AR2:223

TBL_TYPES, AR2:219

TD_METRICS structure, AR2: 14

TD_NEW structure, AR2:13

Template Application, AWG:251
classes, AWG:251
compiling, AWG:251
files, AWG:252
running, AWG:251-252
sample code, AWG:251-260
tutorial, A WG:90

TEMPLATE.RC, AWG:252, 259

Templates
constraining with, UI:242-243

levels of, UI:243

Template services, AR2:449-450

TEMPLTAP.C, AWG:252, 253-256

TEMPLTAP.H, AWG:252-253

Terminating
applications, AWG:38-40
documents, AWG:36-37;

ARl:110-113

Testing
application, PDT:44
Basic Service, AWG:272
Hello World (custom window),

AWG:187
Hello World (toolkit), AWG:181
MIL Service, A WG:273
return values, AWG:115-116
Test Service, A WG:273

Test Service, AWG:272-273

TESTSVC service, AR2:476-485
defined, AR2:475
METHOD.TBL, AR2:476
OPENOBJ,H, AR2:483-485

TESTSVC.C, AR2:477-483
TESTSVC.H, AR2:477

Text
boxes, UI:32, 33
character encoding, AR2:8
characters, AWG:9
characters in, ARI :312
component, PDT: 17-18

comparison with graphic
subsystem, PDT: 18

displays, UI:233
MiniText and, UI:130
scaling, UI:269-270
targeting unselected objects and,

UI:232 .

targeting zone, UI:232
default object, UI:46
dragging in, UI:288
drawing, ARl:311-312
fields, UI:32-34, 188; PDT: 16

fill-in, UI:33
fill-in vs. overwrite, UI: 188
font, UI:188
gestures in, UI:34
overwrite, UI:33
text boxes, UI:32, 33

fitting, ARl:313
formatting, UI:16
index, AR2:27-29
insertion pads, AR2:9

creating, AR2:33
destroying, AR2:33
messages, AR2:33
using, AR2:33

length, AR2: 14
list, UI:181-182
measuring, ARl:312
metrics, AR2: 14
for mode switch presentation, UI:248
moving word in, UI:69, 291
option sheet, UI: 16
with pictures, UI: 183
selection, UI:283

feedback for, UI:279
move marquee for, UI:287

spacing, ARI :312
splicing, ARl:313
style, getting and setting, AR2:32
substituting, AWG: 170
subsystem, AWG: 155
views, AWG:40
widths, ARl:309
see also Text subsystem; Text views

Text attribute arguments, AR2:16-20
character attributes, AR2: 16-17
paragraph attributes, AR2: 17-18
paragraph tabs, AR2: 18

TEXT_BUFFER structure, AR2:14, 15

TEXCCHANGE_ATTRS structure,
AR2:19-20

Text class
hierarchies,AJl2:4
see also cls Text

T extCreate T extScroliWin function,
AJl2:9,30

Text data object, AJl2:7-9
altering, AJl2: 15
attributes, AJl2:7-9
creating, AJl2:7, 13
embedding objects, AJl2:20
functions, AJl2:11-12
getting and setting attributes,

AJl2:16-20
getting and setting text metric, AJl2: 14
messages, AJl2: 12-13
observer messages, AJl2:21
organization of, AJl2:8
reading characters in, AJl2: 14
scanning ranges of characters in,

AJl2:15-16
text length and, AJl2: 14
using, AJl2:11-21

T extDeleteMany function, AJl2: 11

Text editor, help text and, AJl2:180

TEXT_EMBED_OBJECT structure, AJl2:20

TEXLGET_ATTRS structure, AR2:18-19

TEXT_INDEX type variables, AJl2:8

TextlnsertOne function, AJl2:12

Text menu (FEDIT), PDT:198

Text operations, ARl:269, 277-279
drawing, ARl:276-277
fonts, ARl:275-276

opening, ARl:275-276
scaling, ARl:276

messages, ARl:284

TEXT_SPAN_AFFECTED structure, AJl2:21

TEXT_SPAN structure, AJl2:15-16

Text subsystem
atoms, AJl2:37-38
classes, AJl2:7
comparison with graphics subsystem,

AJl2:5
for creating object of clsTextView,

AJl2:35
developer's quickstart, AJl2:5
features, AJl2:4-5
interaction with Input subsystem,

AJl2:27-29
obtaining text index, AJl2:27-29
processing input Xlist/gesture,

AJl2:29
overview, AJl2:3-4
paragraph attributes, AJl2:9
sample code, AJl2:35-36
text data object and, AJl2:7-9
text insertion pads, AJl2:9
text views, AJl2:9
units of measurement, AR2: 1 0
see also Text

TextView, AWG:15

Text views, AJl2:9
checking consistency of, AJl2:32
creating, AJl2:9, 24-26
embedding objects in, AJl2:26-27
getting and setting text style and,

AJl2:32
getting current selection and,

AJl2:30-31
getting viewed object's UID, AJl2:26
inserting in scroll window, AJl2:30
interacting with Input subsystem,

AJl2:27-29
messages, AJl2:23-24
scrolling, AJl2:29
using, AJl2:23-32
xRegions, AJl2:29

illustrated, AJl2:28
yRegions, AJl2:28

illustrated, AJl2:28
see also Text

T gesture, UI:27

th command, PDT: 124

theAddressBookMgr, AJl2:318
address book manager protocol and,

AJl2:320
address book protocol and, AJl2:319
changing information and, AJl2:328
getting more information and,

AJl2:327
observing, AJl2:330
option sheet protocol and, AJl2:330
system address book and,

AJl2:329-330

theAuxNotebookMgr, AJl2:380, 421
file system and, AJl2:422

theBootVolume, AWG:112; AJl2:431;
PDT:29, 38, 40

theBusyManager, AJl2: 193
in busy clock delay and reference

count, AJl2:194
example, AJl2:193
messages, AJl2: 193
using, AJl2: 193-194

theFileSystem, AJl2:49
observer, AJl2:89

theHighSpeedPacketHandlers, AJl2:252,
273

theInstalledApps, AJl2:377, 388, 406

theInstalledFonts, AJl2:388, 406
function, AJl2:416

theInstalledHWX, AJl2:378

theInstalledHWXProtos, AJl2:388, 406

theInstalledPDicts, AJl2:406

theInstalledPreferences, AJl2:361.,...362

theInstalledPrefs, AJl2:406

theInstaliedServices, AJl2:256, 388, 406
function, AJl2:416

in service deinstallation, AJl2:465
in service installation, AJl2:442

theParallelDevices, AJl2:251, 275
in closing port, AJl2:277
function, AJl2:276
in opening port, AJl2:276

thePrinterDevices, AJl2:257

thePrintManager, ARl:139; AJl2:308
output service, AJl2:308

theQuickHelp, AJl2:181
advanced topics, AJl2: 187
object, AJl2:182

theRootWindow, ARl:211, 216, 223, 255

theScreen, ARl:255

theSearchManager, ARl:168; AR2:196
creating mark and, AJl2: 196
replacing characters and, AJl2:198
searching text and, AJl2:197

theSelectedVolume, AWG:29; AJl2:431;
PDT:37,40

services in, AJl2:445
in table-like mode, PDT:41

theSelectionManager, AWG: 154;
ARl:502; AJl2:31 , 155

messages from clients to, AJl2:158-159
messages passed, AJl2:161-162
messages sent to selection owners,

AJl2:159-161
observer notification and, AJl2: 163
ownership and, AJl2:155-156
preserving selection and, AJl2: 156
promoting/demoting and, AJl2: 160
responsibilities, AJl2: 155
setting owner and, AJl2: 159

theSendableServices, AR2:319, 331

theSendManager, AJl2:308
output service, AJl2:308

theSerialDevices, AJl2:251, 257, 265
data modem and, AJl2:279-280
in requesting handle, AJl2:268

theSpellManager, ARl:168

theSystem, AJl2:429

theSystemPreferences, ARl: 170; AJl2: 11 0,
361

at boot time, AJl2:362
preference change notification and,

AJl2:368
screen orientation changes and,

ARl:262

theSystemResFile, AR2:346

theTimer, AJl2:103, 104
messages, AJl2: 1 04

theTransportHandlers, AJl2:298

theUndoManager, AJl2:200
aborting transaction and, AJl2:204
adding items and, AJl2:203

beginning transaction and,
AR2:202-203

ending transaction and, AR2:204
messages, AR2:202
transaction history size and, AR2:205
transaction metrics and, AR2:205

theWorkingDir, AR1:10j AR2:61
paths and stdio and, AR2:66
stdio operations and, AR2:65

Threads, of execution, PDT: 124

Thumbing, UI:36
scrollbar, AR1:454
vs.line/page scrolling, AR1:455-456

Tickmarks, AR1:531
for gauges, UI:38

ti command, PDT: 107
in mini-debugger, PDT: 148

Tic-Tac-Toe application, AWG:26, 27-28
application class creation, AR1:86
bitmaps (icons) and, AWG:171-172
classes, AWG:150, 205
compiling, AWG:205
debugging application, AWG:159-163
dumping, AWG:161
files, AWG:151, 205-206
handling input for, AWG:149-158
handwriting and gestures,

AWG:156-158
Help auxiliary notebook,

AWG:165-166
initialization routine, AR1 :97-98
installation features and, AWG:163
instances, AWG:150
main routine, AR1:97
makefile, AWG:164, 165
moving in, AR1:123-127

determining data type,
AR1: 125-126

move/copy icon, AR1:125
presenting, AR1:124-125

moving data, AR1:126-127
user move request, AR1:123

msgAppClose method for, AR1: 11 0
msgAppInit method for, AR1:105
msgAppOpen method for, AR1:108
msgInit method for, AR1: 1 04
msgRestore method for, AR1:114-115
msgSave method for, AR1:113
notifYing observers, AR1:53
objectives, AWG:205
objects, AWG: 149-150

components, AWG:149-150
separate stateful data, AWG:150

Quick Help, AWG:166-168
refining, A WG: 159-172
resources, PDT: 169
running, AWG:205
sample code, AWG:204-250
selection and keyboard input for,

AWG:153-155

stationary, AWG:38, 163-165
handling, AWG:165

status values, AWG:162
StdMsg and, AWG:168-171
structure, A WG: 151
tutorial for, AWG:90
view, AWG:152-153

data interaction and,
AWG:152-153, 155

window, AWG:151-152

Tidy command (MiniN ote Arrange
menu), UI:137

Tie gesture, UI:142
TIFF_NEW_ONLY structure, ARl:332

TIFF (Tagged Image File Format),
ARl:331j PDT: 175

images, AR1:331
metrics, AR1 :332
painting, AR1:333
in picture segments, ARl:333

Import option, PDT: 178
object

creating, ARI :332
destroying, ARl:333
filing, ARl:333
repainting, AR1:333

problems, PDT:178

Tilde operator, PDT:131

Tiling, ARI :292
pagination method, ARl:137

Time
current, AR2: 104
format preference, AR2:367
formats, AR2: 11 0
preferences, UI:95
strings, AR2: 110
system, AR2: 110
see also Dateltime services

Time and date preference, AR2:366

TIME.H, AR2:114

Time Management application,
AR2:391-392

Timer
interface, AR2:104-105
routines, AR2: 103

Timing-triggered notes, UI:212-213

Timr task, PDT: 152

Title bar, ARl:507

Title line, document, UI:56
capital letter gestures, UI:27
illustrated, UI:55
Quick Help and, UI:215

Titles, AWG:43

TkDemo application, AR1 :432-433
illustrated, AR1:433

TK_TABLE_ENTRY, AR1:429
array, ARI :430

for menu contents, AR1 :448

for option card, AR1 :432-433
child window creation and, AR1 :434
defining statistically, AR1:430
fields

interpretation, ARl:429
menu button, ARI :448

flags, AR1 :438
values in, AR1 :430-431

submenus and, AR1:448

TkTableFillArrayWithFonts, AR1:441

TKTABLE.H, AR1:435
TK_TABLE_NEW_ONLY structure,

AR1:428,434

tlChildrenMax constraint, AR1:387
tl command, PDT:80

datasheet, PDT:107

tlGroupMax constraint, AR1:386-387

tlMaxFit constraint, ARI :386
TOC browser, AR2:148

exporting and, AR2: 152
importing and, AR2: 148

Toggle
borders gesture, UI:20
gesture, UI:247-248
switches, UI:30-31, 180-181

for dual modes, UI:248
operation of, UI:31
tapping, UI:180-181

tables, AR1:427, 442
modifYing, AR1:442

Tokens (mark), AR1:130
comparing, AR1:201
creating, AR1:200
deleting, AR1:201
implementing, ARl:130-132
stamp mapping and, AR1:131-132
storing, AR1:131
table mapping and, AR1: 131

Toolkit
ancestors, AR1:367-370

borders, AR1:370
embedded windows, AR1 :370
gesture windows, AR1:368-370
objects, AR1 :367
windows, AR1:367-368

see also UI Toolkit

Toolkit Demo, AWG:267-269

Toolkit tables, AR1:364, 425-444j
PDT:16

changing defaults, AR1:434-435
flags to modifY items, AR1:435
low-level customization, AR1:435
specifYing item class, AR1:435
using default item class,

AR1:434-435
choices and, AR1:442-444
creating, AR1 :428-435

buttons and, AR1:429

changing defaults and,
ARl:434-435

child windows, ARI :434
class-dependent creation

information,
ARI :429-433

common creation information,
ARl:428

displaying installed fonts, ARl:441
flags, ARl:430-432

modifying items with, ARl:435
values, ARl:431

installed fonts and, ARl:441
kinds of, ARl:427-428
layout, ARl:437
list boxes vs., ARl:470
managers, ARl:438-440
messages, ARI :427
modifjring, ARI :436
notification, ARl:438
painting, ARl:436-437
removing items from, ARl:441
sample, ARI :426
scroll windows and, ARl:462
toggle tables, ARl:427, 442
window tags, ARI :436
see also clsTkTable; UI Toolkit

Tools
accessory palette, A WG:22
debug, PDT:67
development, PDT:5-7

Top Edge menu (Fonts & Layout
Preferences), UI:93

Topping, border windows, ARl:377

TOPS SoftTalk (Sitka), AR2:253, 295

TOPS software, AWG:8

TP_NEW_ONLY structure, AR2:298

TP _RECVFROM structure, AR2:300
TP _SENDRECVfO structure, AR2:300

TP _SENDTO structure, AR2:299

Trace menu (System Log), PDT: 142-143·

Tracing, AWG:159-160
Trackers, ARl:527-528; PDT:17

destroying, ARl:528
drawing, ARI :528
notification, ARI :528
see also cls Track

Transaction, AR2:199
aborting, AR2:204-205
adding items to, AR2:203-204
beginning, AR2:202-203
data, AR2:20 1
ending, AR2:204
history, changing size of, AR2:205
metrics, getting, AR2:205
services, AR2:296

requesting, AR2:300
responding to, AR2:301

undoing, AR2:206

Transfer
ASCII metrics, AR2:175
buffer

fixed-length, AR2: 174
structures, AR2:167
types, AR2:173-174
variable-length, AR2: 174-175

client-defined, AR2: 170
defined, AR2: 167

format supports, AWG:11-12
functions and messages, AR2: 170-171
one-shot, AR2:167-168

defined, AR2: 167
performing, AR2: 173-174
replying to, AR2:176

operations, AWG:8
protocols, AR2: 167-170
stream, AR2: 168-170

defined, AR2:167
performing, AR2:176-178

types, AR2: 166
adding to list, AR2: 172-173
establishing, AR2: 171-173
listing, AR2: 172
requesting, AR2: 172
searching list, AR2: 173

Transfer class, AR2:165-178; PDT: 19
concepts, AR2:165-167
establishing transfer type,

AR2:171-173
functions, AR2:124

messages and, AR2:170-171
performing one-shot transfers and,

AR2:173-176
performing stream transfers and,

AR2:176-178
transfer protocols, AR2: 167-170

Transfer services, UI:159-161
connected, UI:160
defined, UI:159

. disconnected, UI: 160
table of contents, UI: 160-161

modifjring, UI:161

Translate & Edit command (MiniNote
Edit menu), UI:137

Translating, 'captured scribbles,
ARl:557-558

Translation
boxed pads and, UI:50
data structures, ARl:598-600

XlATE_CASE_METRICS, ARl:599
XlATE_METRICS, ARl:598-599
XlATE_NEW, ARl:599
XlATE_NEW_ONLY, ARl:599

deferred, UI:253
using ink and, UI:255

handwriting, flags, ARl:600-602
immediate, UI:253
improving, UI:242
input and handwriting, AWG:I0-ll

messages, ARI :604-606
control messages, ARI :606
creating translator, ARl:605
initialization messages, ARI :605
notification messages, ARI :606

modes, UI:250
ruled pads and, UI:50
score, ARI :600
templates, ARl:602-603
of text strings, A WG:63

Translation classes, ARl:597-606
data structures, ARl:598-600
handwriting translation flags,

ARI :600-602
hierarchy of, ARl:598
translation messages, ARI :604-606
translation templates, ARl:602-603

Translation template, ARl:601
modes, ARI :603
types, ARI :602-603

Translator, ARl:479
clsSPaper, ARl:595-596
creating, ARl:605
notification, ARI :608
object, ARl:555, 597

setting, ARl:587-588
see also Handwriting, translators

Transparency (color) values, ARl:295

Transport
address, AR2:296

binding to, AR2:30 1
protocols, AR2:253
service types, AR2:296

Transport API, AR2:295-304
concepts, AR2:295-297
using clsTransport, AR2:297-301

for Apple Talk, AR2:30 1-304

Traversal drivers, ARl:129

Traverse
call back routine, AR2:82
ordering of, AR2:82
quicksort routine, AR2:82

Triple-Flick, UI:25

Triple-Tap, UI:25
in gesture mode, UI:259
guidelines for using, UI:239
MiniNote, UI:141
MiniText, UI:133
zooming and, UI:266

tsAlignEdge, AR2:29

TSR (terminate and stay resident),
PDT:165

TSS task, PDT:152

tt command, PDT: 124

t (T) commands, PDT:77
datasheet, PDT: 106

TTTAPP.C, AWG:206, 210

TttAppChangeTracing, AWG:159

TttAppCheckStationary, AWG:165

lTfAPP.H, AWG:206, 209-210

lTfDATA.C, AWG:206, 212-218

lTfDATA.H, AWG:206, 211-212

lTfDBG.C, AWG:161, 206, 218-220

TttDbgChangeTracing, AWG:160

TttDbgHelper, AWG:160
definition, AWG:161

lTfIPAD.C, AWG:206, 220-222

lTfMBAR.C, AWG:159, 206,222-223

lTfMISC.RC, AWG:206, 248

lTfPRIV.H, AWG:160, 206, 207-209

lTfQHELP.RC, AWG:206, 248-249

lTfSTUFF.TXT, AWG:165

lTfUTIL.C, AWG:206, 223-230

tttView, AWG:168

TITVIEW.C, AWG:206, 230-243

TttViewRepaint, AWG:154-155

TttViewSelBeginMoveAndCopyO
function, AR1:124

TttViewXferListO function, AR1:125

TITVOPT.C, AWG:206, 243-245

TTVXFER.C, AWG:206, 245-248

Turning page. see Page, turning

Turn to command (table of contents
View menu), UI:86

Tutorial programs, AWG:88
Counter Application, AWG:89
Empty Application, AWG:88
Hello World (custom window),

AWG:89
Hello World (toolkit), AWG:89
Template Application, AWG:90
Tic-Tac-Toe, AWG:90

TV_EMBED_METRICS structure, AR2:26

TV_NEW structure, AR2:9, 25
inserting text view in scrolling

window and, AR2:30
style flag, AR2:30

TV_RESOLVE structure, AR2:27

TV_SCROLL structure, AR2:29

TV_STYLE flags, AR2:25-26

Twips, AR2:10

Two-state switches, UI:198

type command, PDT:76
datasheet, PDT: 108

Typedefs, AWG:70, 74

Type extensions, AWG:76-84

Types
file section, AWG:74
predefined, PDT:125-126

Typing, saving, PDT:80-81

command line editing, PDT:81
DB.lNI file, PDT:80-81
using DB scripts, PDT:81

TZ keyword, PDT:39 ,_1-___ -1-"_-
u command, PDT:78-79

datasheet, PDT: 108-109

U gesture, UI:27
. MiniNote, UI:142

MiniText, UI: 134

UI components, AR1:349

UIDs (unique identifiers), AWG:49
administered value, AWG:53
class, AWG:102-103
component, AR1 :203
creating new objects and, AR1: 15
dynamic, AR1:9
filing, AWG:143
getting and setting, AR1: 181
getting viewed object and, AR2:26
identifying bits, AWG:102
input subsystem, AR1:568
for new object identification,

AWG:52-53
open service object class and, AR2:441
for published applications, AWG:175
of root container application, AR1: 187
saving, AWG:143
scope and type, AR1:1O.
self, AWG:56-57
test, (wknGDTa through

wknGDTg), AWG:102-103
well-known, AWG:102; AR1:9-11

global, AWG:53, 102
testing, AWG:103

UI Toolkit, AWG:18; UI:153, 205;
AR1:136; PDT: 16-17

additional information, AR1:356
button table class, AR1:236
choice list forms, UI:206
choices, AR1:450
classes, AWG:18, 116-117; AR1:209,

357-360
clsGWin and, AR1:617
graphics behavior, AR1:265
hierarchy of, AR1 :357
inheriting from clsControl,

AR1:359
kinds of, AR1:361
not inheriting from clsControl,

AR1:358
outline of, AR1:360

clipping and, ARI :236
compared with using windows,

AWG:l13
components, AWG:89, 113; AR1:350

creating, AWG: 116-119
custom window and, AWG: 125

filed representation and,
AR1:364-366

filing, AR1:365
illustrated, AWG: 117
nested, AR1:362-363
see also Toolkit; Toolkit tables

controls, leaf, AR1:382
developer's quick start, AR1:352-355
filing state, AR1 :368
instance creation and defaults,

AR1:364
label object, AWG:113
layout classes, AWG:122; AR1:251
lists and, VI: 181
menus, input filters and, AR1:548-549
overview, AR1 :349
page control, UI: 158
part organization, AR1:350-352
pop-up writing and editing pads,

UI:189
programming details, AR1:366
standard message interface,

AR1:492-496
table entries, AWG:146
text field styles, UI: 188
toggle control, UI:248
Toolkit Demo, AWG:267-269
user choice of fonts and, AR1 :304
window

nested control, AR1:383
repainting, AR1:368

window layout, AR1 :247
see also Hello World (Toolkit)

Unconstrained layout, window, AR1:224

Underline style, UI: 16

Undo
command, AR2: 199

Edit menu, UI:62, 194
gesture, UI:16, 24

in gesture mode, UI:258
guidelines for, UI:237
hot point for, UI:232

history, AR2:201
items, AR2:199, 201

deallocating buffer and, AR2:201

UNDO_ITEM structure, AR2:203

Undo manager, AR2:199-206; PDT:19
concepts, AR2:199-201
deallocating buffer and, AR2:20 1
function, AR2: 124
instance, AR2:200
messages, AR2:202

using, AR2:202-206

UNDO_METRICS structure, AR2:205

Undolredo model, UI:194

Unfilled region (progress bar), AR1:531
defaults, AR1:537
manipulating, AR1:537-539

Unicode, AWG:61

UniPen, PDT:56
command syntax, PDT:57-59
notes on using, PDT:60-62
sample definitions, PDT:61-62

VNIPENPORT tag (MIL.INI), PDT:60

VNIPENPROTOCOL tag (MIL.INI), PDT:61

VNIPENTYPE tag (MIL.INI), PDT:60
predefined types, PDT:60

Unique identifier (DID), PDT: 14
dynamic, PDT: 14
numbers, PDT:14
well known, PDT: 14

VNISTD.H, AR2:114

Units, for scrolling, VI:36

Universal serial pen driver, PDT:56-62
UniPen command, PDT:57-59
using, PDT:60-62

Unknown errors, AR1:495

Unrecognized character preference,
AR2:368

Unsigned data types, AWG:76

Update region, AR1 :222, 240
msgWinBeginPaint and, AR1:240
msgWinBeginRepaint and, ARl:240
smart repainting and, ARl:238
updating ends and, ARl:240-241

Up-Down gesture, VI:259

Up-Left gesture, VI:26
guidelines for, VI:240
in MiniNote, VI:142

Up-Right gesture, UI:26
guidelines for, VI:240
in MiniNote, VI:142
in MiniText, VI:133

U ... routines, AWG:62

User column, browser, AR2:145-146

User dictionaries, VI: 1 00

User interface, AWG:3, 18
access paths and, VI: 171
application layer and, AWG:13
automatic layout and, UJ:153
bitmap editor, PDT: 170-173
built with windows, AR1:218
buttons in, UJ:151, 171
class and object use in, AWG:20
comparisons, VI:11
consistency in, VI: 154
design, vI:149-150

consistency and, UJ: 149
development process and, VI:5
direct manipulation and, UJ: 151
graphic, UJ: 149
iterative development and, VI: 151
wording and, UJ: 151

design guidelines, AWG:17-18
designing, AWG:60
deviation from, AWG:18

displaying, AR2:332
fields and, ARI :485
frames and, ARl:507
layering, VI:224
layout speedup and, ARl:365
model, VI:245-246

modes and, vI:244-245
notebook metaphor, AWG:5; UJ:151
overview, VI:12-20
pen, AWG:4
resizing elements of, AWG:lO
resource files and, ARl:365-366
see also UI Toolkit

User Interface Toolkit, AWG:lO

User models, VI:245-246
drag & drop, UJ:285-286
for input modes, UJ:246
for moving and copying, vI:285-294
selection and, VI:278
see also Drag & drop interface

User profiles, VI:101
icon, VI:78
installed, UJ: 101

installable software views and,
VI:I09

Users, comparison of, UJ:9

Utilities
GDIR, PDT: 162
GO, PDT:165
MAKIABEL, PDT:162-163
MT, PDT:165
PAPPEND, PDT:163-164
PDEL, PDT:164
PSYNC, PDT:164
RC, PDT:165
RESAPPND, PDT:165
RESDUMP, PDT:165
S-Shot, PDT: 175-178
STAMP, PDT:161-162

Utility classes, AR2:123; PDT:19
features, AR2:124
see also specific classes

UUIDs (universal unique identifiers),
ARl:122

component, ARl:203
embedded window, ARl:193
getting and setting, ARl: 181
mark, ARI :20 1

uv command, PDT: 109-110

.....................
V86a task, PDT: 152

V86x task, PDT: 152

Values
attribute, AR2:78

getting length of, AR2:79
setting, AR2: 79
types of, AR2:76
zero, AR2:77

choice, ARl:443-444
control, ARI :403
examining and setting, PDT:75-77

? command, PDT:75-76
identifier types, PDT:76
known identifiers, PDT:76
lexical scope, PDT:77

getting, AWG:139-140
incrementing, AWG: 140
useful, in DB, PDT:126
xtmMode, ARl:603
xtmType, ARl:602-603

varArgs functions, AWG:169

Variables, AWG:70
DB useful, PDT: 127-128
debugging flag sets, PDT:134-135
setting, PDT: 127

vars command, PDT: 111

v command, PDT:77-78
datasheet, PDT: 11 0

Verbs use, in button labels, UJ: 175

ver command, PDT: 111

Versioning data, AWG:63

Version keyword, PDT:39

Version number, object, ARl:56

Versions, DLL file, AR2:402
operating system, AR2:403

Vertical Flip command (Edit menu),
PDT:171

VGA video adapter, PDT:25

View
data object and, AWG:155
dumping, AWG:161
Tic-Tac-Toe, AWG:150

data interaction, AWG:152-153,
155

msgGWinGesture, AWG:156
selection and, AWG:153-155
tracking and, AWG:154
window coordinates, AWG: 152

View class, AWG:26, 27-28; ARl:69,
173-175

concepts, ARl: 173
Tic-Tac-Toe, AWG:150
see also Classes; clsView

View menu, UJ: 196
MiniText, VI:130
samples of, UJ: 196
table of contents, VI:86

network disks, UJ: 114
network printers, UJ: 119

VIEW_NEW structure, AR 1: 174

View Preference dialog (FEDIT Options
menu), PDT:184-185

illustrated, PDT: 185

Views, for displaying data, ARl:78

"Virtual keyboard," AWG: 11

Visual segmentation cues, UI:241
spacial modality and, UI:244

Vmajor (minor), AWG:126

VolSel keyword, PDT:40

VOLSEL line, AWG:97

Volume connectivity strategy, AR2:244

Volumes, AR2:43, 49-52
boot, PDT:29
concepts, AR2:49
connecting and disconnecting, AR2:50
defined, AR2:49
directory structure on, AR2:53
distribution, AR2:390-398
general structure, AR2:384
getting information about, AR2:90-91
labelling, PDT:27-28
list of, AR2:49
messages specific to, AR2:91
metrics, AR2:49-50

information for, AR2:90
multiple, AR2:398
names, AR2:51; PDT:27

DOS, PDT:72
duplicate, AR2:50
local disk, AR2:51
memory-resident, AR2:52
remote, AR2:51
setting/changing, AR2:91

protection of, AR2:67
selected, PDT:37
selection, PDT:54
traversing, AR2:82
types, AR2:50-52

local disk, AR2:51
memory-resident, AR2:52
remote, AR2:51-52

uses of, AR2:381

Volume structure, AR2:383

vu command, PDT: 111-112

.~

WACOM510, sample definition, PDT:62

WACOM510C, sample definition,
PDT:62

Wacom pen tablet, PDT:45

wait command, PDT: 131

WarningO function, AR1:23

WATCOM, AWG:66
C/386 compiler, AWG:92
C/386 compiler and linker,

PDT:69-70
C/386 runtime functions, AWG:7
compiler and linker flags, AWG:92-93
Make files, PDT: 148
OSl2linker, AWG:67

protected mode applications and,
AWG:93

WATCOM C run-time library. see C
run-time library

Well-defined gestures, UI:236
guidelines for, UI:238

Well-known list resource IDs, AR2:344
defined, AR2:343
index, AR2:344

Well-known ports, AR2:296

Well-known resource IDs, AR2:343
defined, AR2:343

Well-known UIDs, AR1:9-10
administration of, AR1: 10-11
creating, AR1: 10
for development and testing, AR1: 11
global, AR1:9, 10-11
OBJECLNEW_ structure, AR1:47
private, AR1:10, 11
process-global, AR1: 10
scope of, AR1:9, 10

White space, in graphic design, UI: 149

Wild cards, A WG:98
method table, AR1:45, 46

WIN_COPY_RECT structure, AR1:243

WIN_DEV_PIXELMAP structure, AR1:258

Winding direction, PDT:188
merging and, PDT: 189-190
viewing and altering, PDT: 188

Window, AR1:209
address, AR2:332

creating, AR2:333
filling, AR2:333-334

application, AR1:196-197
baseline, AR1:387-388

alignment, AR1 :251, 387
bitmap edit, PDT: 194
borders, AR1:361
bounds, AR1:232

setting, AR1 :234
character selection, PDT: 182
child, AR1 :216

altering, AR1 :246
labels and, ARI :415-416

client, AWG:27; AR1:92
closing document and, AR1: 1 09
creating for application frame,

AR1:212-213
document termination and,

AR1:112
frame layout and, AR1:501
positioning scroll window, AR1:461

clipping, AR1:216, 219-221
regions, AR1:220

copying pixels in, AR1:243-244
creating, AR1:212, 217

size and position, AR1:232
style flags, AR1:232

custom, AWG:27
damaged, AR1 :222

copied pixels and, AR1:243

debugging, AR1:252
decoration, AR1:382
defined, AR1:215
delta, AR1:377
destination, AR1:259-260
destroying, AR1:218
devices, AR1 :210, 217

cached images for, AR1:273-274
setting, AR1:233

dirty, AR1:222, 237
image devices and, AR1:259
marking entire, AR1:239
receiving msgWinRepaint and,

AR1:237
region, AR1:238-239

drawing context bound to, ARl:21O
drawing in, AWG:133; AR1:236
embedded, AR1:117-118 .

child, AR1:193
creating, AR1:190
destroying, AR1: 190
metrics, AR1:190
moving or copying, AR1:191-193

between, AR1:118-119
style of, AR1: 190-191
toolkit ancestors and, AR1:370
uuro, AR1:193

enumerating, AR1:216, 225
environment information, AR1:253
extracting, AR1:218, 234
filing, AR1:216, 225, 253
filling, AR1 :294
flags, AR1:227, 228-229

input, AR1:228, 569-570
setting, AR1:234-235
style, AR1:228, 229, 232

floating, AWG:27; AR1:163
font attribute, PDT: 197
font header, PDT: 196
gesture, AR1:368-370

messages, AR1 :617-618
using, AR1:617-618

graphic classes and, AR1 :21 0-211
graphics subsystem and, AR1:546
grouping, AR1 :223
hint editing, PDT: 190-191

illustrated, PDT: 191
image, AR1:259-262
ImagePoint, AR1:210

creating and inserting,
AR1:556-557

initialization, AWG:131-132
initializing, AR1:560-561
inserting, AR1:217, 233-234
layout, AWG:122; ARl:216, 224-225,

247-248,381-382
adding child windows to, ARI :381
classes, ARl:381-382
dirty, AR1:249, 365
episodic, ARI :225
parent-veto, AR1:225
processing, ARl:249

shrink-wrap and, ARl:397
unconstrained, ARI :224

leaf, ARl:565
life cycle, ARl:217
lightweight, ARl:216, 218-219
location specification of, AWG:122
main, ARI :92

application, ARl:504
initializing clsSPaper-based,

ARl:593-594
setting, ARl:163

management, ARI :225-226
messages

creation, ARI :230
display, ARl:230-231, 235-244
filing, ARI :231
layout, ARl:231, 244-251
management, ARl:231, 251-253
metrics, ARI :230, 233-234
sending to DCs, ARl:289-290
sending to hierarchy, ARl:251-252

metrics, ARl:227-228
moving, ARl:246-247
object, AWG:133
objects, targeting, VI:233
off-screen, ARl:297
orphan, AR1:217
outline editing, PDT:183-184
overview, ARI :209
painting, ARl:239
parent, ARl:216

setting, ARl:233
position and size, AWG:122
printer, ARl:301
Quick Help, AR2: 181

example, AR2: 186
opening, AR2: 188

reason for appearance, AWG:121
repainting, ARl:212, 216, 222-223

dynamics, AR1:237-243
painting and, ARI :236

resizing, ARI :246-247
root,AR1:216
scribble editing, AWG:12
scroll, ARl:457-462
scrollwin, ARI :459
sibling relationship of, ARl:216
size and position, ARl:223-224
sorting, ARl:216, 225
subclasses, AR1:551-552

using, ARl:219
system, PDT: 15
table layout, ARI :383
tagging, AR1:216, 225
tags, AWG:79

setting, ARl:235
tag field for, ARI :228

for Tic-Tac-Toe, AWG:151-152
toolkit components, ARl:367-368
transparency, ARI :223
tree, ARl:215, 216, 550

extracting window from, ARl:550

illustrated, ARI :217
inserting window into, ARl:550
objects, ARl:548

update region, AWG:152
see also Window system

Window class, AWG:27; UI:233;
ARl:227-234

clsHelloWin, AWG:125
cls Win messages, AR1 :230-231
clsWin structures, ARl:227
creating new window and, ARl:232
enhancements, AWG:121-122
Hello World (custom window) and,

AWG:89
layout messages, AR1 :244-251
management messages, ARl:251-253
for storing numeric value, A WG: 136
summary, ARl:254
window display messages,

ARl:235-244
window metrics messages,

AR1:233-235
for window organization, AWG:122
see also Classes; cls Win

Window device classes, ARl:255-263
image devices, ARl:256-263
windowing devices, ARl:255
see also cls WinDev

Windowing, AWG:8-9
device, ARl:255

defined, ARl:255

Windows clipboard
copying to, PDT: 195
pasting from, PDT:195-196

Window system, ARl:215-226
advanced repainting strategy and,

AWG:152
caching desired sizes and, ARl:250
concept overview, AR1:215-226
embedded applications and, AWG:35
enumeration options, AR1 :225
imaging devices and, ARl:256
layout and geometry capture, ARI :251
layout episode, ARl:249
repaint algorithm, AWG:155
in repaint process, AR1 :242-243
smart repainting and, ARI :238-239
subclassing clsWin and, AR1:226
windowing devices and, AR1:255
see also Window

win.input.flags field, ARI :565

WIN_METRICS structure, ARl:227-228,
254

caching desired sizes and, ARl:250
child windows and, AR1 :246
laying out self and, ARl:250
window metric messages and,

ARl:233-235

WinMode keyword, PDT:40

WIN_NEW structure, ARI :232

WIN_SEND structure, AR1 :251

WIN_SORT structure, AR1:252

Wipe-through, UI:280

WKNAdminO macro, ARl:12

WknItemResldO macro, AR2:344

WknListResldO macro, AR2:344

WknObjResldO macro, AR2:345

WknResldO macro, AR2:345

WKNScopeO macro, ARl:12

WKNValueO macro, ARl:12

WKNVerO macro, AR1:12

WLINK command file, AWG:93

Wording
of button labels, UI:21O-211
fundamentals, VI: 151
guidelines, UI:21O-211
of messages, VI:210

Word lists, VI:242

Word processor
embedded icon in, text, VI: 168
large embedded icon in, text, UI: 168
open embedded document in, text,

UI:169

Work area, VI:56
icons, VI:74
illustrated, UI:55

Work space, UI:102 '

Wrapper document, AR2:31O

Wrapper. see Printing, wrapper

Writerap, AWG:271-272

WriterApplnitO, AR1:595

WriterAppTranslatorO method, AR1:595

WriterCompletedO, ARl:592

Writing
address book, AR2:328-330
agents, own, AR2:354
browser state, AR2: 143
data resource, AR2:349-350

resource agents and, AR2:353
to debugger stream, PDT:137-139
files, AR2:83
to log file, PDT: 135-136
object resource, AR2:351
objects and data, AR2:44-45
to parallel port, AR2:278
preferences (Settings notebook), UI:92
to second monitor, PDT:136-137
with serial port, AR2:271
to serial port, PDT: 136
services, AR2:435-472
streams, AR2: 134

with timeout, AR2:134-135
style preference, AR2:364
see also Reading

Writing pads
boxed/ruled, UI:50

using, UI:51
embedded, UI:49
pop-up, UI:48

Writing Paper application, AR2:31

Writing Timeout, UI:93
preference, UI:33

wsCaptureGeometry flag, ARl:247, 251

wsChildrenStay flag, ARl:244

wsClipChildren flag, ARl:236

wsClipParent flag, ARI :236

wsClipSiblings flag, ARl:236

wsDstNotDirty flag, ARl:243

wsFileInLine flag, ARl:253

wsFileLayoutDirty flag, ARl:365

wsFileNoBounds flag, ARl:253

wsGrow flags, AR1:246, 289

wsLayoutDirty flag, ARI :253

wsLayoutMinPaint flag, AR1:248

wsLayoutNoCache flag, ARl:250

wsLayoutResize flag, ARI :249
laying out self and, ARI :250

wsPlaneMask flag, AR1 :243

wsPlanePen flag, AR1:243

wsSaveUnder flag, AR1:241

wsSendFile flag, ARI :366

wsSendGeometry flag, ARI :246, 251

wsSendlntraProcess flag, AR1 :252

wsShrinkWrapHeight flag, AR1:250
label layout and, ARl:414

wsShrinkWrapWidth flag, AR1:250
label layout and, AR1 :414

wsSrcNotDirty flag, ARl:243

wsSynchPaint flag, ARI :240

wsSynchRepaint flag, ARl:237, 242

WYSIWYG correspondence, AWG:10

WYSIWYG text editor component, AWG:12

~---
XferAddldsO function, AR2: 171-172

to add transfer type to list, AR2: 172
parameters, AR2: 173
prototype for, AR2:172-173

XFER_ASCICMETRICS structure, AR2:31
in transfer, AR2: 175

XFER_BUF structure, AR2: 174-175

XFER_CONNECT structure, AR2: 178

XFER_FIXED_BUF structure, AR2:174

XFER.H, AR2: 173-174

XferListSearchO function, AR2:171
parameters, AR2: 173
prototype, AR2: 173

in searching transfer type list, AR2: 173

XferMatchO, AR1:327; AR2:171
to list transfer types, AR2: 172
parameters to, AR2: 172
prototype for, AR2:172

Xfer mechanism, AR2:30-31

xferPicSegObject, ARl:326

XferStreamAcceptO, AR2: 177

XferStreamConnectO function, AR2: 176
arguments, AR2: 176
function, AR2: 176-177

xferString, AR1: 126

xgs1Tap gesture, ARl:408

xgsQuestion gesture, AR1:408

xlate argument, AR1:479

XLATE_CASE_METRICS structure, ARl:599

XLATE.H, ARl:598

xlate.hwxFlags, AR1:600

XLATE_METRICS structure, ARl:598-599

XLATE_NEW_ONLY structure, AR1:599

XLATE_NEW structure, AR1:599

XList2Text filter function, AR1:592

XList, AR1:597
concepts, AR1:611-612
creating, AR1:614
data, ARl:588

functions, AR1:588
parsing, AR1:592

defined, AR1:611
elements, ARl:611-612

adding, AR1:615
data, AR1:612
deleting, AR1:614
flags, AR1:612
freeing, AR1:614
getting and setting, ARl:615
inserting, AR 1 :614

flags, AR1:611
functions, AR1:613

using, AR1:613-615
msgXlateData and, AR1 :606
traversing, ARl:614-615

XListDeleteO function, AR1 :614

XLIST_ELEMENT structure, ARl:611-612

XListFreeDataO function, AR1:614

XListFreeO function, AR1:614

XListGetO function, AR1:615

XList.H, AR1 :611

XListInsertO function, ARl:614, 615

XListNewO function, AR1:614

XListSetO function, AR1 :615

XListTraverseO function, AR1 :592,
614-615

XON/XOFF flow control, AR2:265-266
see also Flow control

XSONLY.TXT, AWG:206, 250

XTemplateCompileO function, AR1 :602

XTM_ARGS structure, ARl:602
xtmMode value, AR1:603
xtmType value, ARl:602-603

xtmMode value, AR1:603

xtmType value, AR1:602-603

XTRACT.H, AR1:598

X-Y distribution, ARl:565

\Your Company directory, AR2:384
organization, AR2:389
subdirectories, AR2:390

Zero or one, list style, UI: 185

ZIP_GETZONES structure, AR2:304

Zone protocol, Apple Talk, AR2:304

Zoom
commands, UI:267
control, UI:267

Zooming, AWG:95; UI:265-267;
AR1:502-503

allowed preference, AR2:365
gestures, UI:266
operations, UI:265

ZoomMarginkeyword, PDT:40
AutoZoom and, PDT:36

ZoomResize keyword, PDT:40
AutoZoom and, PDT:36

zp command, PDT: 121
datasheet, PDT: 112

Your comments on our software documentation are important to us. Is this
manual useful to you? Does it meet your needs? If not, how can we make it better?
Is there something we're doing right and you want to see more of?

Make a copy of this form and let us know how you feel. You can also send us
marked up pages. Along with your comments, please specify the name of the book
and the page numbers of any specific comments.

Please indicate your previous programming experience:

D MS-DOS D Minicomputer

D Macintosh

D Mainframe

D None D Other __________________ __

Please rate your answers to the following questions on a scale of 1 to 5:

1 2 :3 4
Poor Average

How useful was this book? D D D D D
Was information easy to find? D D D 0 D
Was the organization clear? D D D D D
Was the book technically accurate? D D D D D
Were topics covered in enough detail? D D D D D

Additional comments:

Your name and address:

Name

Company __ __

Address __ __

City _________________________ State ____________ __

Mail this form to:

Team Manager, Developer Documentation
GO Corporation
919 E. Hillsdale Blvd., Suite 400
Foster City, CA 94404-2128

Or fax it to: (415) 345-9833

Zip ____________ _

Package Design letter

Oo::u-nent Edit OI1IOnS View Insert Case

Can ycu desiWJ a li(jl~i~t, ~yclableJ 8 oz. 9-
plastic bottle !hat woo'tbreak.under moderate
implct? I'll be tra~lIingnextweek.rutycu
eM fax me suggested. propooals at213{
555·SlD3,

Suggesbon

CLu I~--------------~ I
~" ~~_~Iv _______________ ~

9 780201 608618

ISBN

