
GO Technical Library

PenPomt

PenPoinl'M
Architectural Reference

VOLUME I

G GO CORPORATION

GO TECHNICAL LIBRARY

PenPoint Application Writing Guide provides a tutorial on writing PenPoint
applications, including many coding samples. This is the first book you should
read as a beginning PenPoint applications developer.

PenPoint Architectural Reference Volume I presents the concepts of the fund
amental PenPoint classes. Read this book when you need to understand the
fundamental PenPoint subsystems, such as the class manager, application
framework, windows and graphics, and so on.

PenPoint Architectural Reference Volume II presents the concepts of the
supplemental PenPoint classes. You should read this book when you need
to understand the supplemental PenPoint subsystems, such as the text sub
system, the file system, connectivity, and so on.

PenPoint API Reference Volume I provides a complete reference to the
fundamental PenPoint classes, messages, and data structures.

PenPoint API Reference Volume II provides a complete reference to the
supplemental PenPoint classes, messages, and data structures.

PenPoint User Interface Design Reference describes the elements of the
PenPoint Notebook User Interface, sets standards for using those elements,
and describes how PenPoint uses the elements. Read this book before
designing your application's user interface.

PenPoint Development Tools describes the environment for developing, de
bugging, and testing PenPoint applications. You need this book when you
start to implement and test your first PenPoint application.

PenPo1nf

Pen Point™
Architectural Reference

GO CORPORATION

GO TECHNICAL LIBRARY

Addison-Wesley Publishing Company
Reading, Massachusetts + Menlo Park, California + New York
Don Mills, Ontario + Wokingham, England + Amsterdam
Bonn + Sydney + Singapore + Tokyo + Madrid + San Juan
Paris + Seoul + Milan + Mexico City + Taipei

Y~LUME I

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial capital letters.

The authors and publishers have taken care in preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

Copyright © 1991-92 GO Corporation. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo
copying, recording, or otherwise, without prior written permission of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

The following are trademarks of GO Corporation: GO, PenPoint, the PenPoint logo, the GO logo,
ImagePoint, GOWrite, NoteTaker, TableServer, EDA, MiniNote, and MiniText.

Words are checked against the 77,000 word Proximity/Merriam-Webster Linguibase, ©1983 Merriam
Webster. ©1983. All rights reserved, Proximity Technology, Inc. The spelling portion of this product is
based on spelling and thesaurus technology from Franklin Electronic publishers. All other products or
services mentioned in this document are identified by the trademarks or service marks of their respective
companies or organizations.

PenTOPS Copyright © 1990-1992, Sitka Corporation. All Rights Reserved.

Warranty Disclaimer GO CORPORATION MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
and limitation of LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

liability PURPOSE AND NONINFRINGEMENT, REGARDING PENPOINT SOFTWARE OR ANYfHING ELSE.

GO Corporation does not warrant, guarantee, or make any representations regarding the use or the
results of the use of the PenPoint software, other products, or documentation in terms of its correctness,
accuracy, reliability, currentness, or otherwise. The entire risk as to the results and performance of the
PenPoint software and documentation is assumed by you. The exclusion of implied warranties is not
permitted by some states. The above exclusion may not apply to you.

In no event will GO Corporation, its directors, officers, employees, or agents be liable to you for any
consequential, incidental, or indirect damages (including damages for loss of business profits, business
interruption, loss of business information, cost of procurement of substitute goods or technology, and the
like) arising out of the use or inability to use the documentation or defects therein even if GO Corporation
has been advised of the possibility of such damages, whether under theory of contract, tort (including
negligence), products liability, or otherwise. Because some states do not allow the exclusion or limitation
of liability for consequential or incidental damages, the above limitations may not apply to you. GO
Corporation's total liability to you from any cause whatsoever, and regardless of the form of the action
(whether in contract, tort [including negligence], product liability or otherwise), will be limited to $50.

u.s. Government ThePenPoint documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure
Restricted by the U.S. Government is subject to restrictions as set forth in FAR 52.227-19 (Commercial Computer

Software-Restricted Rights) and DFAR 252.227-7013 (c) (1) (ii) (Rights in Technical Data and Computer
Software), as applicable. Manufacturer is GO Corporation, 919 East Hillsdale Boulevard, Suite 400, Foster
City, CA 94404.

ISBN 0-201-60859-6

123456789-AL-9695949392

First Printing, April 1992

Preface

The PenPoint Architectural Reference provides detailed information on the various
subsystems of the PenPoint™ operating system. Volume I describes the functions
and messages that you use to manipulate classes and describes the fundamental
classes used by almost all PenPoint applications. Volume II describes the
supplemental classes and functions that provide many different capabilities to
PenPoint applications.

Intended Audience
The PenPoint Architectural Reference is written for people who are designing and
developing applications and services for the PenPoint operating system. We
assume that you are familiar with the C language, understand the basic concepts
of object-oriented programming, and have read the PenPoint Application Writing
Guide.

What's Here
The PenPoint Architectural Reference is divided into several parts, which are split
across two volumes. Volume I contains these parts:

• Part 1: Class Manager describes the PenPoint class manager, which supports
object-oriented programming in PenPoint.

• Part 2: PenPoint Application Framework describes the PenPoint Application
Framework, which provides you the tools you use to allow your application
to run under the notebook metaphor.

• Part 3: Windows and Graphics describes ImagePoint, the imaging system for
the PenPoint operating system, and how applications can control the screen
(or other output devices).

• Part 4: UI Toolkit describes the PenPoint classes that implement many of the
common features required by the PenPoint user interface.

• Part 5: Input and Handwriting Translation describes the PenPoint input
system and programmatic access to the handwriting translation subsystems.

Volume 11 contains these parts:

• Part 6: Text Component describes the PenPoint facilities that allow any
application to provide text editing and formatting capabilities to its users.

• Part 7: File System describes the PenPoint file system.

vi PENPOINT ARCHITECTURAL REFERENCE

• Part 8: System Services describes the function calls that applications can use
to access kernel functions, such as memory allocation, timer services, process
control, and so on.

• Part 9: Utility Classes describes a wide variety of classes that save application
writers from implementing fundamental things such as, list manipulation,
data transfer, and so on.

• Part 10: Connectivity describes the classes that applications can use to access
remote devices.

• Part 11: Resources describes how to read, write, and create PenPoint resource
files.

• Part 12: Installation API describes PenPoint support for installing appli
cations, services, fonts, dictionaries, handwriting prototypes,· and so on.

• Part 13: Writing PenPoint Services, describes how to write an. installable
servIce.

You can quickly navigate between these sections using their margin tabs. Each
volume has its own index. The PenPoint Development Tools has a master index
for all the manuals in the Software Development Kit.

Other Sources of Information
As mentioned above, the PenPoint Application Writing Guide provides a tutorial
on writing PenPoint applications. The tutorial is illustrated with several sample
applications.

The PenPoint Development Tools describes how to run PenPoint on a PC, how to
debug programs, and how to use a number of tools to enhance or debug your
applications. This volume also contains a Master Index to the five volumes
included in the PenPoint SDK.

The PenPoint API Reference is a set of "datasheets" that were generated from the
PenPoint SDK header files. These datasheets contain information about all the
messages defined by the public PenPoint classes. If you own the PenPoint SDK,
you can also find the header files in the directory \PENPOINT\SDK\INC.

To learn how to use PenPoint, you should refer to the PenPoint user documen
tation. The user documentation is included with the PenPoint SDK, and is usually
packaged with a PenPoint computer. The user documentation consists of these
books:

• Getting Started with PenPoint, a primer on how to use PenPoint

• Using PenPoint, a detailed book on how to use PenPoint to perform tasks and
procedures.

Type Styles In This Book

PREFACE
Type Styles in This Book

To emphasize or distinguish particular words or text, we use different fonts.

",. Computerese

We use fonts to distinguish two different forms of "computerese":

• C language keywords and preprocessor directives, such as switch,
case, tdefine, tifdef, and so on.

• Functions, macros, class names, message names, constants, variables,
and structures defined by PenPoint, such as msgListAddltem, clsList,
stsBadParam, P _LIST _NEW, and so on.

Although all these PenPoint terms use the same font, you should note that
PenPoint has some fixed rules on the capitalization and spelling of messages,
functions, constants, and types. By the spelling and capitalization, you can
quickly identify the use of a PenPoint term.

• Classes begin with the letters" cis"; for example, clsList.

• Messages begin with the letters "msg"; for example, msgNew.

• Status values begin with the letters "sts"; for example, stsOK.

• Functions are mixed-case with an initial upper case letter and trailing
parentheses; for example, OSMemAvailableO.

• Constants are mixed case with an initial lower case letter; for example,
wsClipChildren.

• Structures and types are all upper case (with underscores, when needed,
to increase comprehension); for example, U32 or LIST_NEW_ONLY.

Code Listings

Code listings and user-PC dialogs appear in a fixed-width font.

II
II Allocate, initialize, and record instance data.
II
StsJmp (OSHeapBlockAlloc (osProcessHeapld, SizeOf(*plnst), &plnst), \

s, Error);
plnst-»placeHolder = -lL;
ObjectWrite(self, ctx, &plnst);

vii

viii PENPOINT ARCHITECTURAL REFERENCE

Less significant parts of code listings are grayed out to de-emphasize them. You
needn't pay so much attention to these lines, although they are part of the listing.

new.object.uid
new.
new.cls,p.Msg
new.cIs.ancestor
ne'iV. cIs, size
new.cIs.

new , app,~1gr ,
strcpy{new.
new.app.Mgr.

&new, Sf Error);
= cIsTttAPPi

0;

cIsAPPi

true;
"'" false;

ObjCaIIJmp(msgNew, cIsAppMgr, &new, s, Error)i

Placeholders

Reserved. li
;

Anything you do not have to type in exactly as printed is generally formatted in
italics. This includes C variables, suggested filenames in dialogs, and pseudocode
in file listings.

Other Text
The documentation uses italics for emphasis. When a Part uses a significant term,

. it is usually emphasized the first time. If you aren't familiar with the term, you can
look it up in the Glossary in the PenPoint Application Writing Guide or the index
of the book.

DOS filenames such as \\BOOT\PENPOINT\APP are in small capitals. PenPoint file
names can be upper and lower case, such as \My Disk\\Package Design Letter.

Book names such as PenPoint Application Writing Guide are in italics.

'*' Part 1 / Class Manager '*" Part 4 / UI loolkit 343

1 / Introduction 5 30 / Introduction 349

2 / Class Manager Concepts 9 31 / Concepts and Terminology 357

3 / Creating aNew Class 31 32 / Toolkit Ancestors 367

4 / Manipulating Objects 49 33 / Border Windows 371

34 / Layout Classes 381
PV' Part 2 / PenPoint Application 61

35 / Controls 399 Framework
36/ Labels 409

5 / Introduction 67
37 / Buttons 417

6 / Application Environment Concepts 75
38 / Toolkit Tables 425

7 / Application Concepts 81
39 / Menus and Menu Buttons 445

8 / Life Cycles 95
40 / Scrollbars 453

9 / Embedded Documents 117
41 / List Boxes 463

10 / Mark Concepts 129
42/ Fields 475

11 r Printing 135
43/ Notes 487

12/ The Application Manager Class 145
44/ Frames 497

13 / The Application Monitor Class 151
45 / Frame Decorations 507

14 / The Application Class 157
46 / Option Sheets 511

15 / The View Class 173
47 / Icons 523

16 / The Application Directory Handle Class 177
48 / Trackers and Grab Boxes 527

17 / Container Application Classes 185
49 / Progress Bars 531

18 / Embedded Window Class 189

19 / Application Window Class 195 '*' Part 5 / Input and Handwriting 541

20 / The Mark Class 199 Translation

50 / Introduction 545 '*' Part 3 / Windows and Graphics 205
51 / Developer's Quick Start 555

21 / Introduction 209 52/ Event Processing 563
22 / Window System Concepts 215 53 / Input Subsystem API 567
23 / The Window Class 227 54 / Pen Events 575
24 / Window Device Classes 255 55 / Keyboard Events 581
25 / Graphics Concepts 265 56/ Using clsIP 585
26 / The Drawing Context Class 281 57 / Using clsSPaper 589
27 / The Picture Segment Class 317 58 / Using the Translation Classes 597
28 / Bitmaps and TIFFs 329 59 / Using Scribbles 607
29 / ImagePoint Rendering Details 335 60 / Using Xlists 611

61 / Using Gesture Windows 617

'*" Index 619

Part 1 /
Class Manager

~ Chapter 1 / Introduction 5 ~ Chapter 3 / Creating a New Class 31

About Object-Oriented Programming 1.1 5 Overview 3.1 31

An Overview of This Part 1.2 6 The Parts of a Class 3.1.1 31

Further Literature on Object-Oriented 1.3 7
Installation Summary 3.1.2 33

Programming Design Considerations 3.2 33

Creating Objects 3.3 34
Chapter 2 / Class Manager

Instance Data 3.4 34 Concepts 9
Memory Protection 3.4.1 34

Identifiers 2.1 9 Allocating Instance Data 3.4.2 34
Administration ofWell-KnowR UIDs 2.1.1 10 Accessing Your Instance Data 3.4.3 35
Messages 2.1.2 11 Maintaining Dynamic Instance Data 3.4.4 35
Status Values 2.1.3 11 Saving and Restoring Instance Data 3.4.5 35
Tags 2.1.4 12 Creating a Header File 3.5 36
Macros for Working with UIDs 2.1.5 12

Ancestor Calls 3.6 36
Sending Messages 2.2 13 o b jectCallAncestorO 3.6.1 36

Return Values 2.2.1 14 ObjectCallAncestorCtxO 3.6.2 36
Setting Up the Message Argument Structure 2.2.2 14

Creating the Methods 3.7 37
Creating a New Object 2.3 15 Declaring Entry Points for Methods 3.7.1 37

New Object Argument Structures 2.3.1 15 Message Parameters 3.7.2 38
Using msgN ewDefaults 2.3.2 17 Method Declaration Macros 3.7.3 39
Modifying Argument Data 2.3.3 17 Operations of a Method 3.7.4 41
Using msgN ew 2.3.4 18

Creating a Method Table 3.8 41
Creating an Object with Default Values 2.3.5 18

Method Table Overview 3.8.1 41
Handling Message Status 2.4 18 Creating a Method Table Definition File 3.8.2 42
Other Ways to Send Messages 2.5 19 Compiling a Method Table 3.8.3 45

ObjectSendO 2.5.1 20 Installing a Class in PenPoint 3.9 47
Functions Related to ObjectSendO 2.5.2 21 The Class Initialization Routine 3.9.1 47
ObjectPostO 2.5.3 21

Using the Message-Sending Macros 2.6 23 ~ Chapter 4 / Manipulating Obiects 49

DEBUG Warning Macros 2.6.1 23
Copying Objects 4.1 49

Error-Checking Macros 2.6.2 23
Using msgCopy 4.1.1 49

ObjectCallO Macros 2.6.3 24
Observing Objects 4.2 50

Using Keys 2.7 24
Adding an Observer 4.2.1 50

Capabilities 2.8 25 Adding an Observer with Position 4.2.2 51
Owner Capability 2.8.1 26 Removing an Observer 4.2.3 51
Freeing Capability 2.8.2 26 Getting Observers from a List 4.2.4 51
ObjectSendO Capability 2.8.3 26

Notifying Observers 4.3 52
ObjectCallO Capability 2.8.4 26 Posting to Observers 4.3.1 53
Observable Capability 2.8.5 27 Example of Observer Notification 4.3.2 53
Inheritance Capability 2.8.6 27

Getting Object and Class Information 4.4 54 Scavenging Capability 2.8.7 27
Confirming an Object's Class 4.4.1 54 Creation Capability 2.8.8 28
Confirming an Object's Ancestor 4.4.2 55 Creation Notification 2.8.9 28
Getting an Object's Class 4.4.3 55 Mutation Capability 2.8.10 28
Getting the Owner of an Object 4.4.4 55 Checking Capabilities 2.8.11 29
Getting a Class's Class 4.4.5 55 Changing Capabilities 2.8.12 29
Checking an Object for Validity 4.4.6 55

Checking an Object's Version Number 4.4.7 56

Getting Notification of Object Creation 4.4.8 56

Properties 4.5 56
Creating a Property 4.5.1 56
Retrieving Properties 4.5.2 57

Object Destruction 4.6 57
Destroying an Object 4.6.1 57
Handling Object Free Protocol 4.6.2 57
Handling Failures During msgInit and 4.6.3 59
msgRestore

Scavenging 4.7 60

Mutating Objects 4.8 60

List of Figures

3-1 Method Table and Class Implementation 32

3-2 Method Table Files and Build Sequence 43

~ List of Tables
2-1 UID Scope and Type 10

2-2 Object Capability Flags 25

3-1 Method Declaration Macros 39

3-2 MSG_INFO Option Flags 44

4-1 Observer Messages 50

4-2 Object and Class Information Messages 54

List of Examples

2-1 Sending a Message to an Object 15

2-2 Creating a New Object 18

2-3 Handling the Message Return Status 19

3-1 Using ObjectCallAncestorCtxO 37

3-2 Creating a New Class 48

4-1 Notifying Observers 53

Chapter 1 / Introduction

This chapter provides a brief introduction to the concepts and terminology used
in object-oriented programming, and it introduces the PenPoint Class Manager
subsystem within that context. The PenPoint Application Writing Guide provides
additional information on how to use the PenPoint Class Manager.

About Obiec'.Oriented Programming
This section introduces some of the basic terms used throughout this Part to
describe object-oriented programming techniques. If you have no prior experience
with object-oriented programming, read the section titled "Getting Started with
Classes" in the PenPoint Application Writing Guide.

Your PenPoint program uses functional units called objects. There are objects that
represent windows, scroll bars, lists, text views, etc. Objects communicate with
each other by sending and receiving messages.

Each object receives messages and responds to them in a particular way. For example,
a menu object responds to the message msgWinShow by displaying itself on the screen.

An object's behavior is determined by the class that it belongs to. A class is a
factory for creating objects. The class contains the code that handles the messages
received by an object. Thus, clsMenu defines the manner in which menu objects
respond to msgWinShow. The code that the object executes in response to a
message is called a message handler.

When a class creates an object, that object is said to be an instance of the class. The
special PenPoint class clsClass is a factory for creating objects which are themselves
classes. Thus there are two types of objects: classes and instances. Both can receive
and process messages, but only classes can create objects.

A class doesn't have to define all of its behavior from scratch. It can inherit
behavior from another class. For example, because a menu object is defined as a
type of window, clsMenu is defined as a subclass of clsWin. This means that
clsMenu inherits from clsWin, and in this case it is clsWin which contains most
of the code to display a menu on the screen.

In fact the behavior of a class is inherited from all of its ancestors. clsTkTable is
actually a subclass of clsTableLayout, which is a subclass of clsBorder, which is a
subclass of clsEmbeddedWin, clsGWin, clsWin, and clsObject (the fundamental
class). clsMenu, as a subclass of clsTkTable, inherits the behavior of all these
classes.

6 PENPOINT ARCHITECTURAL REFERENCE
Part 1 / Class Manager

When an object receives a message, the class that created the object handles the
message. As part of handling the message, the class can choose to pass the message
to its ancestor. The ancestor can also pass the message to its ancestor, and so on up
the hierarchy of inheritance, up to clsObject.

The PenPoineM operating system has a wide range of built-in classes that generate
the instances your application requires: windows, scrollbars, lists, data views, and
text objects. The PenPoint Class Diagram shows all the built-in PenPoint classes
and their hierarchy of inheritance.

If a built-in class doesn't provide quite the functionality that you need, you can
create your own class which inherits from it and has additional or modified
functionality. For example, your application is a class that you design, which
inherits many capabilities from the superclass of applications, clsApp. A running
instance of your application is an object created by your customized class.

An Overview of This Part
This part describes the PenPoint Class Manager. In addition, the following
manuals in the PenPoint Software Developer's Kit describe the programming
environment for PenPoint:

• PenPoint Application Writers Guide

• U1 Design Reference

After a general examination of object-oriented programming in PenPoint, the
functional elements of the Class Manager subsystem are covered. The root classes
of the API Class Hierarchy, clsObject and clsClass, are described along with
explanations of how to use them to create the objects that will comprise your
application. The chapters of this part cover the following information:

• Chapter 1 (Introduction, this chapter) provides a brief introduction to the
Class Manager and an overview of this part of the PenPoint Architectural
Reference.

• Chapter 2 (Class Manager Concepts) describes the concepts necessary for
understanding the PenPoil1t class manager and classes in general. The
sections describe the PenPoint object identifiers, how to send massages to
objects, how to create new objects, macros that aid you in passing messages
to objects, and properties that objects can have ..

• Chapter 3 (Creating a New Class) describes what you have to do to create a
new class. The chapter includes descriptions of instance data, method tables,
entry points for methods, method parameters, and how to install a class in
PenPoint.

• Chapter 4 (Manipulating Objects) describes the facilities provided by the
class manager for controlling objects. This chapter includes discussions on
copying objects, observing objects, getting information about objects, object
properties, destroying objects, and scavenging objects.

L2

CHAPTER 1 / INTRODUCTION
Further Literature on Object-Oriented Programming

Further Literature on Obiect.Oriented
Programming
This manual attempts to introduce object-oriented programming concepts at the
same time it introduces the PenPoint Class Manager and API Class Hierarchy. If
you are unfamiliar with object-oriented programming, you should read "Getting
Started with Classes" in the PenPoint Application Writing Guide. Here is some
recommended general reading on object-oriented programming.

• Object Oriented Programming - An Evolutionary Approach by Brad J. Cox,
Addison-Wesley Publishing Company, Reading, MA, 1986.

• "What's in an Object?" by Dave Thomas, Byte, Vol. 14,
No.3, March, 1989.

• Object-Oriented Programmingfor the Macintosh by Kurt J. Schmucker,
Hayden Book Company, Hasbrouck Heights, NJ, 1986.

• "What Is Object-Oriented Programming?" by Bjarne Stroustrup
(implementer of C++), IEEE Software, vol. 5, No.3, May 1988.

1.3

Chapter 2 / Class Manager Concepts

This chapter describes many of the Class Manager features that you will use when
writing applications for PenPoint. It covers sending messages, creating objects,
destroying objects to free resources, designing a class, and setting object
capabilities.

Topics covered in this chapter:

• Identifiers for PenPoint objects

• Sending messages to objects

• How to create a new object

• Other functions that you can use to send messages to objects

• Macros that you can use to send messages to objects

• Object capabilities

• Object keys.

Identifiers
To create an object or send a message in PenPoint, you must identify the. object or
the class of the message using a 32-bit unique identifier (UID).

There are two types of DIDs: well-known and dynamic. Well-known UIDs are
defined by you, GO, and other PenPoint developers at compile time. You typically
use well-known DIDs to identify classes, but they can also be used to identify
shared objects. Dynamic UIDs are created by the Class Manager at run time;
typically, you use dynamic DIDs to identify objects (instances of classes).

Well-known DIDs include an administered value. When you define a class, you
create a well-known DID that uses this value. All other identifiers related to that
class (for example, messages, tags, and status values) use the same administered
value. Chapter 4, Manipulating Objects, discusses the macros that you can use to
both create these identifiers and extract information from these identifiers.

A well-known DID contains flags that specify the scope of the DID, i.e., whether
it is known to all tasks in PenPoint (global), known to tasks in a particular process
(process global), or known only to the task that uses it (private).

A global well-known DID allows all processes in the system to access the same
object by using the same identifier. For example, clsWin is a global well-known
DID identifying the window class and theFileSystem is a global well-known DID
identifying the file system object. Any process that refers to theFileSystem will
reference the same file system object.

The term "well-known UID" is
sometimes shortened to just
"well-known."

10 PENPOINT ARCHITECTURAL REFERENCE
Part 1 / Class Manager

. A process-global well-known UID allows each process in the system to reference
different objects with a single identifier. This is useful for objects that exist in each
process, but that must have the same identifier. For example, theWorkingDir is a
process-global well-known UID identifying the process working directory. A
process that refers to theWorkingDir will reference its own working directory
object. Other processes that refer to theWorkingDir will reference different
working directory objects.

A private well-known UID belongs to the application developer. For example, a
component used only by your application should be identified by a private
well-known UID.

Dynamic object UIDs are allocated by the Class Manager during the creation of
an instance, and returned to the client for subsequent references. All dynamic
UIDs have global scope. Mter the object referenced by a dynamic UID is freed,
that UID may refer to a different dynamic object at a later time.

The scope of an object's UID specifies the maximal possible access to the object.
The actual access permitted by the object may be further restricted by the values
of the objCapCall and objCapSend capabilities for the object (described later in
this chapter).

:!k@pe ObiedType

Global Well-known

Process-Global Well-known

Private Well-known

Global Dynamic

Use

2~ 1

UID Scope and

Identifying system-wide objects, such as the FileSystem.

Identifying per-task objects, such as the WorkingDir.

Identifying objects specific to a task, such as an application-
specific class.

Identifying objects created by a client.

You use the MakeWKNO macro to create well-known UIDs in your source code.
For example, the code fragment below creates a value that is assigned to the
symbol clsFileSystem. When the program creates the class dsFileSystem, it uses
this value as the class identifier. You refer to this class with the dsFileSystem
constant in your application code.

#define clsFileSystem MakeWKN(62,1,wknGlobal)

In brief, the arguments to MakeWKNO specify:

• The administered value

• A version number

• The access for the UID.

Administration of Well-Known UIDs

GO Corporation maintains a register of well-known UIDs to ensure that they are
unique. If you do not register a global or process-global well-known UID, your
class UIDs and other identifiers might collide with identifiers created by another

CHAPTER 2 / CLASS MANAGER CONCEPTS

Identifiers

developer. Because the administered portion of the UID is used in other
identifiers (such as messages, status values, and tags), you only need to register one
UID per class.

You must contact GO Developer Support in order to obtain unique UID
numbers.

PenPoint defines several well-known global and well-known private UIDs that are
reserved for development and testing. These UIDs are defined in UID.H and have
the symbols wknGOT a through wknGDTk for the global UIDs and wknLDTa
throught wknLDT g for private UIDs. You must not use these UIDs in code
released outside your development organization.

Well-known private UIDs are private to a process. In other words, you can use
well-known private UIDs in your application without concern for whether other
applications use the same UIDs. You administer them yourself, choosing values
that are unique within your application to pass to MakeWKNO.

Messages
Like objects, messages are also identified by 32-bit constants. Messages identifiers
share the administered part of the UID of the class that defines the message.
Because message identifiers are associated with their class, you avoid the problem
of identifier collisions. This example defines the message msgWinGetMetrics that
is associated with the class, cls Win:

#define msgWinGetMetrics MakeMsg(clsWin, 5)

In brief, the arguments to MakeMsgO specify: 1) the class to which the message
belongs and 2) a message number that is unique for messages that belong to
this class. The macro extracts the administered portion of the class identifier
and combines it with the message number to create the message identifier. T~e
message number must be between 0 and 254, inclusive. Message number 255 is
reserved for use by the Class Manager.

Status Values
A status value is a constant value returned by a method when it has completed a
message's request. Your application source code uses the Class Manager macro
MakeStatusO to create status values. The following code fragment defines a status
value associated with the root class, clsObject:

#define stsScopeViolation MakeStatus(clsObject,5)

In brief, the arguments to MakeStatusO specify: 1) the class to which the status
value belongs and 2) a status number that is unique for status values that belong
to this class. The macro combines the administered portion of the class identifier
with the status number to create the status value constant. The status number
must be between 0 and 255, inclusive.

The sign-bit in the" status value indicates whether the status value is an error status
or a non-error status. This allows the client code to do a quick check on the value

, ,

12 PENPOINT ARCHITECTURAL REFERENCE
Part 1 I Class Manager

to look for error conditions (without having to match a series of status values).
You can create non-error status values with the MakeWarningO macro.

#define stsAlreadyAdded MakeWarning(clsObject,2)

The Class Manager defines stsOK as the usual non-error status that is returned by
a message handler.

#define stsOK MakeWarning(O,O)

Instead of testing for exact equality with stsOK, you should test whether a status
is less than stsOK. If it is less, an error condition was encountered; if it is greater
than or equal, the message handler successfully completed (the message sending
macros described in the section on Error-Checking Macros perform this test
for you). The message handler may return a status greater than stsOK to advise
the caller of an interesting condition which is not an error. For example, an
enumerator may return stsTruncatedData if passed a buffer smaller than the
number of items available for enumeration.

Tags

Another useful 32-bit constant is a tag. You use tags to identify well-known
constants that are used by different modules in your source code~ You use tags
most commonly to identify option sheets, option cards, and Quick Help strings.
This example defines a tag value for an option sheet used by clsTttView.

#define tagTttViewOptionSheet MakeTag(clsTttView, 0)

In brief, the arguments to MakeTagO specify: 1) the class to which the tag belongs
and 2) a tag ID that is unique for tags that belong to this class. The macro
combines the administered portion of the class identifier with the tag ID to create
the tag constant. The tag ID must be between 0 and 255, inclusive.

By using tags, you are guaranteed that an identifier is unique for the set of all
classes.

Macros for Working with UIDs

The macros described above (MakeWKNO, MakeStatusO, MakeMsgO, and
MakeTagO) are defined in the GO.H file. GO.H defines other Class Manager
macros that you can use to extract information from DIDs:

TagNumO extracts the tag ID from a tag.

WKNV erO extracts the version number from a well-known DID.

WKNAdminO extracts the administered value from a well-known DID.

WKNScopeO extracts the scope from a well-known DID.

WKNV alueO extracts the administrated value and the scope information
from a well-known DID.

2.1 .. 5

CHAPTER 2 / CLASS MANAGER CONCEPTS

Sending Messages

In addition, CLSMGR.H defines several macros to test the type of a UID:

ObjectlsDynamicO returns true if the object is dynamic, otherwise false.

ObjectlsWellKnownO returns true if the object is a well-known, otherwise
false.

ObjectlsWKNO is a synonym for ObjectlsWellKnownO.

ObjectlsGlobalO returns true if the object is global, otherwise false.

ObjectlsLocalO returns true if the object is local (that is process-global or
private well-known), otherwise false.

ObjectlsGlobalWKNO returns true if the object is a global well-known,
otherwise false.

ObjectlsProcessGlobalWKNO returns true if the object is a process-global
well-known, otherwise false.

ObjectlsPrivateWKNO returns true if the object is a private well-known,
otherwise false.

Sending Messages
You send messages to tell the instances to do things: to tell a window to resize itself
or to tell a table to send back an item from a certain row and column address.
Sending messages to objects is the primary mechanism for control and data flow
in PenPoint.

The Class Manager provides a set of C functions and macros that send messages to
objects. The functions take arguments that describe the target object, the message
being sent, and a pointer to a structure that can contain additional argument data.

The most commonly used function is ObjectCallO, whose function prototype
follows:

STATUS GLOBAL ObjectCall(
MESSAGE msg,
OBJECT object,
P ARGS pArgs

) ;

msg is the identifier for the message being sent.

object is the identifier for the object to which the message is being sent.

pArgs is the pointer to a structure that contains additional arguments to
accompany the message. In some cases this argument is used to convey a
32-bit value, rather than a pointer.

The ObjectCallO function passes the parameters to the method that handles the
message.

When you read more about how to create a class, in Chapter 3, Creating aNew
Class, you will understand more about how ObjectCallO locates the entry point.

13

14 PENPOINT ARCHITECTURAL REFERENCE
Part 1 / Class Manager

Return Values

When the method completes it returns a STATUS value. The ObjectCallO
function returns the STATUS value to its caller (your program).

Negative status values indicate errors conditions, positive values indicate non-error
conditions. Although some PenPoint classes use status codes to return data in
addition to indicating a condition, this technique is discouraged. If you need to
return data, it is best to pass it back in the message argument.

Because checking for return values is so common, the Class Manager provides
several macros that send a message and check the returned status value. "Using the
Message-Sending Macros," later in this chapter, discusses these macros.

Setting Up the Message Argument Structure

The third argument in the ObjectCallO function (and in most message-sending
functions) is a pointer to argument data. Each message requires a specific
argument structure; not all argument structures are the same. The message
description in the header files and in the PenPoint API Reference specifies the
argument structure required by each message.

For example, the dsTextData message msg TextModify takes as its argument
P _TEXT_BUFFER, a pointer to a TEXT_BUFFER data structure. You can examine
the file TXTDATA.H (where dsTextData is defined) to find the description of the
TEXT_BUFFER structure:

typedef struct TEXT_BUFFER
TEXT_INDEX first;
TEXT INDEX length;
TEXT INDEX bufLen;
P CHAR buf;
TEXT INDEX bufUsed;

TEXT_BUFFER, *P_TEXT_BUFFER;

II In
II In
II In
II In:Out via *buf
II Out

The PenPoint header files label the members of the argument structures with the
words In, Out or In:Out. In denotes arguments sent to the called object, but
which are not modified. Out denotes arguments sent back by the called object.
In:Out denotes members used to send data in both directions. If a member isn't
labelled with one of these words, it is implied to be In.

Of course, the argument structure can itself contain pointers to buffers allocated
by your program. The receiving object can also copy data to these buffers. In
the example above, the buf field is a pointer to an array of CHAR values used to
store text.

Usually message-sending between objects is done within the same task; passing
information between tasks or processes requires slightly more forethought (for
example, you must create buffers for data in shared memory).

Example 2-1 shows how to send msgTextModify to an instance of dsTextData.

The message argument is a
painter to the argument data.

CHAPTER 2 / CLASS MANAGER CONCEPTS 15
Creating a New Object

Example 2-1

Sending a Message to an Obiect
One of the things an instance of clsTextData does is maintain a text value. Object-oriented programming techniques restrict
you from knowing the internal representation of the text data, so you cannot modify it with a simple assignment. Instead,
you send the message msgTextModify to the clsTextData instance, with a pointer to a TEXT_BUFFER as an argument. The
TEXT_BUFFER carries the text value that you want the clsTextData instance to maintain.

This example shows how to prepare a TEXT_BUFFER argument with the string "Hello World" as its text value, and then to

send msgTextModify to an instance of clsTextData with the prepared TEXT_BUFFER as an argument. For simplicity, the
example assumes that the clsTextData object is defined and created elsewhere.

TEXT_BUFFER textBuf;
OBJECT textDataObject;
STATUS S;

textBuf.first = 0; II Modify textDataObject chars starting with first char
textBuf.length = 0; II Insert rather than overwriting existing text
textBuf.buf = "Hello World"; II the new text
textBuf.bufLen = strlen(textBuf.buf); II length of the new text
s = ObjectCall(msgTextModify, textDataObject, &textBuf); II send message

If the status code returned in s is stsOK, you can use the textBuf structure to examine the values passed back from the
message. Part 6: Text discusses dsTextData specifics such as these return values.

Creating a New Obiect
Thus far we have discussed objects without really discussing how an object is
created. This section describes how you create objects.

In brief, to create an object, you:

1 Declare the argument structure for the new object.

2 Send msgNewDefaults to the class for the object to initialize the argument
structure to default values.

3 Modify the default values if required.

4 Create the object by sending msgNew to the class of the object you want to
create, with a pointer to the argument structure as an argument.

When msgNew completes successfully, the argument structure contains the UID of
the newly created object. For purposes of sending messages, the UID is the new object.

New Obiect Argument Structures

To create an object that belongs to a particular class, you must find the description
of the class in either the PenPoint API Reference or in the header files. There you
will find the argument structure required by msgNewDefaults and msgNew.

The argument structures for a new object always end with _NEW. For example,
the argument structure for a note object (an instance of clsNote) is NOTE_NEW. If
you look in the header file for clsNote (NOTE.H), you will find the type definition
for NOTE_NEW:

typedef struct NOTE_NEW {
noteNewFields

NOTE_NEW, FAR *P_NOTE_NEW;

16 PENPOINT ARCHITECTURAL REFERENCE
Part 1 I Class Manager

The symbol noteNewFields is defined immediately before the NOTE_NEW type,
definition. :

#define noteNewFields \
frarneNewFields \
NOTE NEW ONLY note;

clsNote is a subclass of dsFrame. The above #define says that noteNewFields
consists of the fields defined by the symbol frameNewFields, and a new field
called note, containing a NOTE_NEW_ONLY structure. That is, the fields of a
NOTE_NEW structure are everything that frameNewFields is, plus a structure
containing the added data for a dsNote object.

The structure for NOTE_NEW _ONLY is described immediately above the #define
for noteNewFields:

typedef struct
NOTE METRICS
PCHAR
P UNKNOWN

rnetrics;
pTitle;
pContentEntries;

P_TK_TABLE_ENTRY pCrndBarEntries;
U32 spare;

NOTE_NEW_ONLY, *P_NOTE_NEW_ONLY;

II used to create the content
II used to create the command bar
II reserved

This structure describes the dsNote-specific arguments that pertain to the object
created by msgNew. The object contains metrics, a pointer to a title string, a
pointer to note text, a pointer to the command bar entries, and a spare U32 for
future use by GO Corporation.

More About the NewFields #define

The msgNew and msgNewDefaults argument structure used for a particular class
contains structures defined by each of the classes from which the class inherits. The
#define in the example above defined the symbol noteNewFields which contained
the symbol frameNewFields plus a NOTE_NEW_ONLY structure. This gives dsNote
all the data structure of its superclass, clsFrame, in addition to the clsNote-specific
data. If you go to the header file for clsFrame, you will find that frameNewFields is
defined as the symbol shadowNewFields and a FRAME_NEW _ONLY structure. You
can continue to trace this inheritance back to the structure OBJECT_NEW_ONLY,

which is defined by the fundamental class, clsObject.

CHAPTER 2 / CLASS MANAGER CONCEPTS
Creating a New Object

The PenPoint API Reference displays the expanded form of the _NEW structure for
each class. The expanded form of NOTE_NEW is:

typedef struct NOTE_NEW
OBJECT NEW ONLY
WIN NEW ONLY
GWIN NEW ONLY
EMBEDDED WIN NEW ONLY - - -
BORDER NEW ONLY
CSTM LAYOUT NEW ONLY - --
SHADOW NEW ONLY
FRAME NEW ONLY

object;
win;

gWin;
embeddedWin;
border;
custornLayout;
shadow;
frame;

NOTE NEW ONLY note;
NOTE_NEW, far *P_NOTE_NEW;

Thus, when you declare a structure using the type NOTE_NEW, the structure
contains the NOTE_NEW_ONLY structure and all the structures defined by
clsNote's ancestors.

It is important to understand the inheritance of the class from which you are
creating an object, because all of the structures defined by the _NEW structure
affect the object created by msgNew. msgNewDefaults sets most of the fields
defined by these structures to useful default values.

Using msgNewDefaults

You send msgNewDefaults to a class, passing a pointer to the uninitialized _NEW

structure, so that the class can set its default values for the argument structure. All
classes respond to msgNewDefaults. When you define your own classes, you must
design them to handle msgN ewDefaults by setting class-specific structures to
useful default values; in particular, you should set the default values of your
_NEW,-ONLY structure.

The datasheets in the PenPoint API Reference and the header file for the class
normally list the default values that msgNewDefaults assigns to the _NEW

structure.

Modifying Argument Data
To obtain some non-default behavior from the new object you are going to create,
you must modify some of the default _NEW values that msgNewDefaults sets.
Furthermore, for some _NEW fields, it is impossible to establish a useful default
value; you must set such fields explicitly.

In most cases, the default values are sufficient. The header file or data sheet for a
class should document the default values as well as which, if any, of the fields you
must set explicitly.

18 PENPOINT ARCHITECTURAL REFERENCE

Part 1 / Class Manager

Using msgNew
After you send msgNewDefaults to set default values for the _NEW structure (and

after modifying those defaults if necessary), you send msgNew to the class that

creates the object. The argument to msgNew is a pointer to the _NEW structure

that you have 'initialized.

Example 2-2 shows how to create a new instance of clsNote.

tX~::im:p~e 2-2
'P'c,Ait'l1!n,i"1! a New U~:lu::~cr

This example shows how to create a new object, in this case an instance of clsNote. The example does the following:

1 Sends msgNewDefaults to clsNote, with a pointer to a NOTE_NEW structure as an

argument, to set the NOTE_NEW structure to default values.

2 Modifies some of the default NOTE_NEW values.

3 Sends msgNew to clsNote, with the initialized and modified NOTE_NEW structure

as an argument, to create a new instance of clsNote.

NOTE_NEW noteNewi
TK_TABLE_ENTRY tkEntry[2]i
STATUS Si

s = ObjectCall(msgNewDefaults, clsNote, ¬eNew)i
II
noteNew.note.metrics.flags = nfAutoDestroy I nfDefaultAppFlagsi
noteNew.note.pContentEntries = tkEntrYi
II
s = ObjectCall(msgNew, clsNote, ¬eNew)i

clsNote responds to msgNew by manufacturing a new instance of clsNote, a note object. The Class Manager assigns a
dynamic UID to the new instance, and places this value in note.object~uid.

Creating an Obiect with Default Values

Sometimes there is no reason to change any of the default values that

msgNewDefaults sets. In these cases, rather than send msgNewDefaults followed

immediately by msgNew, you can use msgNewWithDefaults.

msgNewWithDefaults is a convenient way to get the effect of sending

msgNewDefaults followed immediately by msgN ew.

Handling Message Status
When the message handler for msgNew completes, it returns a status value

indicating whether clsN ote suceeded in' creating the new instance. If the message

completes successfully, it returns stsOK. You can now use the UID value in

note.object.uid asa target for messages; the UID identifies the new object.

If a message does not complete successfully, it returns a status other than stsOK.

Your code must be prepared to handle such conditions. Example 2-3 shows the

code structure required to handle return values other than stsOK.

2.4

CHAPTER 2 / CLASS MANAGER CONCEPTS 19
Other Ways to Send Messages

Example 2·3
ME~ssaae Return Status

This example creates a note object as in Example 2-2, then sends msgNoteShow to the note object to instruct the note to
display itself. The example shows the structure of code to handle errors from msgNew and msgNoteShow. It does not show
ways to handle particular errors, and it assumes that msgN ewDefaults will not return an error status.

NOTE_NEW noteNew;
TK_TABLE_ENTRY tkEntry[2];
STATUS S;

s = ObjectCall(msgNewDefaults, clsNote, ¬eNew);
II
noteNew.note.metrics.flags = nfAutoDestroy I nfDefaultAppFlags;
noteNew.note.pContentEntries = tkEntry;
II
s = ObjectCall(msgNew, clsNote, ¬eNew);
if (s stsOK)

II handle the error.
I I ...

s = ObjectCall(msgNoteShow, noteNew.object.uid, pNull);
if (s stsOK)

II handle the error.
II

Other Ways to Send Messages
Thus far we have limited our discussion to the ObjectCallO function for sending a
message to an object. ObjectCallO executes code in the task that calls ObjectCallO.
If your code sends a message with ObjectCallO, your execution thread goes from
your code, to the code of the message handler, then back to your code-all executing
in your code's task. This is why you normally use ObjectCallO to send msgNew to
create a new object. By using ObjectCallO, you cause the instance-creation code to
run in your task. Your task owns the object because it was created in your task.

However, the PenPoint™ operating system is multi-tasking. It supports many
different tasks; each task gets a share of CPU cycles. Every active document in
PenPoint is a separate task (thus embedded documents run in separate tasks from
their parent documents). The PenPoint operating system itself uses several tasks.
Your own application architecture may involve multiple tasks.

ObjectSendO works like ObjectCallO except that the message handler code runs
in the task that owns the object rather than in your task. Your task waits for the
ObjectSendO to return; while awaiting the return, your task will continue to
dispatch messages sent to objects owned by your task. This prevents a deadlock
condition from arising when you send to an object owned by another task, which
in turn sends to an object owned by your task.

ObjectPostO works like ObjectSendO in that the message handler code runs in
the object's owning task. However, ObjectPostO returns immediately, allowing
your task to continue its execution. At some later time, the message handler for
the posted message executes in the recipient object's task.

2.5

20 PENPOINT ARCHITECTURAL REFERENCE
Part 1 / Class Manager.

ObiectSend()
The multitasking aspect of the PenPoint operating system makes it likely that you
will at some time or another wish to send messages to objects that are not in your
task To send a message to an object in another task, you use the ObjectSendO
function (or one of the related functions described later in this chapter). When
you send a message with ObjectSendO, the execution thread goes from your code
running in your task, to the message handler code running in the object's task,
then back to your code running in your task.

There are two common reasons you would want to execute code in a different task:

You want to make use of an object owned by another task. Using ObjectSendO is
required when the object you want to send the message to is owned by another task
and does not have objCapCall enabled .

• You want to protect your task from errors. If you use ObjectCallO to send a
message to an object in another task, buggy code could terminate your task.
If you send the same message with Obj ectSend 0 , the error occurs in the
recipient object's task, leaving your task free to continue after the other task
terminates.

When you send a message with ObjectSendO, your code's task is suspended while
waiting for the message handler to return. Your task resumes operation when the
message handler returns.

ObjectSendO does not pass back updated message argument data. If your code
requires information from any of the Out fields of the argument structure, it
should use ObjectSendUpdateO (described below).

The function prototype for ObjectSendO is:

STATUS EXPORTED ObjectSend(
MESSAGE msg,
OBJECT object,
P ARGS pArgs, II In only: Not updated
SIZEOF lenArgs

) ;

ObjectSendO has one more argument than ObjectCall0 . In lenArgs, you must
specify the size, in bytes, of the data indicated by pArgs.

ObjectSendO usually copies the argument data to the address space of the task
that owns the object (using lenArgs to determine how many bytes to copy) and
then executes an ObjectCallO in that task. When the method returns,
ObjectSendO returns the status value to the calling task.

If lenArgs is zero, the pArgs pointer is passed without copying the data to which it
points. In this case, the data indicated by pArgs must be globally accessible from
any task.

If the object is owned by the calling task, the ObjectSendO becomes a normal
ObjectCallO. pArgs is not copied, but is used and modified directly.

CHAPTER 2 I CLASS MANAGER CONCEPTS
Other Ways to Send Messages

'r Functions Related to ObiectSend()

The functions ObjectSendUpdateO and ObjectSendU320 behave similarly to
ObjectSendO, but have been modified slightly to handle a different set of
arguments or to provide different information.

,.,., ObiectSendUpdate()

ObjectSendUpdateO works just like ObjectSendO except that it copies the
modified argument structure (the lenArgs bytes that pArgs points to) back to
your task. This is useful when your task needs to gain access to Out fields that the
message handler sets. The prototype for ObjectSendUpdateO is identical to that
of ObjectSendO, except that pArgs is In/Out rather than just In:

STATUS EXPORTED ObjectSendUpdate(
MESSAGE msg,
OBJECT object,
P ARGS pArgs, II In/Out: Updated
SIZEOF lenArgs

) ;

ObiectSendU32()

ObjectSendU320 is is the same as ObjectSendO, except that it assumes that the
lenArgs equals zero. ObjectSendU320 is slightly more efficient than ObjectSendO
when you know that the argument structure to which pArgs points is globally
accessible. In addition, since the data indicated by pArgs must be globally accessible,
ObjectSendU320 causes the pArgs to be updated, providing the caller access to the
Out fields of the pArgs.

The prototype for ObjectSendU320 is:

STATUS EXPORTED ObjectSendU32(
MESSAGE msg,
OBJECT object,
P ARGS pArgs II Out: updated

) ;

ObiectPost()
You use ObjectPost when you want to send a message to an object, but you don't
want the object to handle the message immediately. The two main reasons for
using ObjectPostO are:

• You are sending a notification message to observers and aren't concerned
about when the object receives it (observers and notification messages are
described in Chapter 4, Manipulating Objects) .

• You want to destroy an object, but want to allow it to complete its current
work before it receives the destruction message.

You can use ObjectPostO to send messages to an object in any task, including
your own.

2.5.2

2.5.2.1

2.5.2.2

2.5.3

2'

22 PENPOINT ARCHITECTURAL REFERENCE
Part 1 / Class Manager

ObjectPostO places the message in the input subsystem's input queue and returns
immediately. The status value returned by ObjectPostO merely indicates whether
the message was successfully added to the input queue. The message does not pass
back any of the Out values in the argument structure to which pArgs points.

The PenPoint input subsystem consists of a global input queue that receives
messages from device drivers (primarily the pen device driver) and other clients.
When a message reaches the front of the input queue, the input subsystem uses
ObjectSendO to send the message to the destination object. The destination
object processes the message in its own low-level message queue. Therefore, any
message sent by the input subsystem executes in the object's task, but it doesn't
execute until the object's task returns to its top-level dispatch loop.

When the method returns, the status code is returned to the input subsystem,
which can then handle the next message at the top of the input queue. In other
words, messages in the input queue are handled synchronously; no object receives
another message from the input queue until the object has completed its current
work. Although messages sent with ObjectPostO are not input messages, they are
processed synchronously by virtue of being posted to the input queue.

The function prototype for ObjectPostO is:

STATUS EXPORTED ObjectPost(
MESSAGE msg,
OBJECT object,
P ARGS pArgs,
SIZEOF lenArgs

) ;

ObiectPostU32()

A related message-sending function, ObjectPostU320, has the same relation-
ship to ObjectPostO that ObjectSend320 has to ObjectSendO. That is,
ObjectPost320 works just like ObjectPostO except that it assumes a lenArgs
equal to zero. Therefore, you do not need to specify lenArgs in the function call.
Also, as with ObjectSendU320, ObjectPostU320 does not copy the argument
structure to the task of the recipient object, so the data indicated by pArgs must
be globally accessible. In addition, since the actual handling of the message can be
indefinitely delayed, care must be taken to avoid having pArgs address memory that
becomes invalid before the message handler gets to execute.

The prototype for ObjectPostU320 is:

STATUS EXPORTED ObjectPostU32(
MESSAGE msg,
OBJECT object,
P ARGS pArgs

) ;

CHAPTER 2 I CLASS MANAGER CONCEPTS

Using the Message-Sending Macros

Using the Message-Sending Macros
CLSMGR.H defines a number of macros that invoke message-sending functions.
The message-sending macros serve two purposes:

• Conditional macros report errors when compiled with the IDDEBUG
compilation flag .

• Error-handling macros test the message return value and take special action
based on whether the status indicates an error.

DEBUG Warning Macros
CLSMGR.H defines a DEBUG-conditional macro for each message-sending
function. When you compile with the IDDEBUG compilation flag, these macros
compile to a ... WarningO form of the associated message-passing function. The
... WarningO functions print a message to the system error log if the message
returns an error status. If you do not specify IDDEBUG, the macros invoke their
base functions directly.

The names of the DEBUG-conditional macros are based on the names of the assoc
iated message-sending functions. For example, if you compile the ObjCallWarnO
macro without the IDDEBUG flag, it compiles to the ObjectCallO function. If you

2.6

use the IDDEBUG flag, ObjCallWarnO compiles to the ObjectCallWarningO function
which logs errors. The other DEBUG-conditional macros are named according to the
same pattern. For example, ObjSendWarnO compiles to ObjectSendO or
ObjectSendWarningO, and ObjPostWarnO compiles to ObjectPostO or
ObjectPostWarningO.

Error-Checking Macros

Because most messages return a status value, you need to write code to check
return values when you use the message-sending functions. To make your code
more readable, CLSMGR.H defines a variety of macros that provide useful shortcuts
for sending messages to an object and handling return values.

23

For example, ObjCalljmpO is a macro that calls ObjCallWarnO, tests the
returned status value, and jumps to labelled error-handling code if the status is
negative (recall that a negative status indicates an error). Take as an example the
following use of ObjCalljmpO:

The error-checking macros
take advantage of the DEBUG

conditional macros described
in the previous section.

ObjCallJmp(msgNoteShow, noteNew.object.uid, pNull, s, error);

This calls ObjCallWarnO as follows:

s = ObjCallWarn(msgNoteShow, noteNew.object.uid, pNull);

If the method returns a negative status, ObjCalljmpO jumps to the label error.
The status value is returned in s.

24 PEN POINT ARCHITECTURAL REFERENCE
Part 1 I Class Manager

The name of a message-sending macro indicates which message-sending function
it invokes. For example, ObjCallJ mpO invokes ObjCallWarnO. The letters (such
as J mp) after the name of the function indicate what the macros do. All of the
message-sending functions have the following associated macros:

• ... JmpO macros jump to a specified label if the function returned an error
code. Use this form to jump to error-handling code before returning. Typical
error-handling activities include freeing allocated memory and destroying
objects.

• ... RetO macros simply execute return(s), where s is the returned status value,
when the status is negative.

• ... OKO macros return true if the function returns a non-negative status code.

ObiectCaliO Macros
CLSMGR.H defines two further macros for ObjectCallO and ObjectCallAncestorO
only.

• ... FailedO macros return true if the function returns a negative status value.

• ... ChkO macros also return true if the function returns a negative status, but
they don't use the DEBUG-conditional macros and therefore never log errors.

Using Keys
Two fields in the OBJECT_NEW_ONLY structure are useful for controlling access to
objects:

key allows you to specify a key value when creating the object. If a client
attempts to destroy (or make substantial modifications to) the object, it
must use the same key value in its message. Ifprotecting an object isn't
particularly important, you can leave the default value (which is
objWKNKey, defined as «OBJ_KEY) 0)).

cap argument allows you to establish and restrict the capabilities of the
object. Capabilities are described in the next section.

Classes can control access to objects through keys. Several messages that request
basic object operations such as msgDestroy require the use of a key (unless the
capability flags that control these operations are specifically enabled). When you
define messages for your own classes, you can require keys for your messages.

A key is a 32-bit value; the class manager stores a key as part of the instance data
for an object. When you send a message that requires a key, you send the key in
the argument structure for the message. The method that handles the message gets
the key value from the argument structure and compares it to the key value in the
instance data. If the values match, the class allows the requested operation to take
place. If the values do not match, the method returns stsProtection Violation.

The actual key value depends on how you are going to use the object and how you
anticipate others might try to affect the object:

2.7

CHAPTER 2 / CLASS MANAGER CONCEPTS
Capabilities

• If you want exclusive control over each object, you can use the randO
function to create a non-zero key value that is likely to be unique. You must
remember this key value in some way.

• If you want any instance of your program to be able to affect objects that it
creates, you can create a 32-bit identifier or use some other common value
(such as your class's method table identifier).

Capabilities
In the discussion on setting up the arguments to msgNew, we touched briefly on
the object capabilities.

Capabilities are a set of flags that control some fundamental properties of objects and
classes. Before the class manager actually delivers a message to an object, it checks the
object's capabilities. For example, the object capability objCapCall indicates whether
an object can receive messages sent with the ObjectCallO function.

The only way to bypass a capability flag that prevents you from doing something is
to use the correct key value for the object with messages that support the use of keys.

The capability flags are enumerated in the definition of OBJ_CAPABILITY in
CLSMGR.H. The default capabilities for objects and classes are different.

Table 2-2 lists and briefly describes the capability flags. The sections following the
table describe the capabilities in detail.

Object
(11:1$$

(1:1p1:1bility Der1:1ult Destrlptt©n

Table ~2-2
Flags

objCapOwner true false Enables the object to receive msgSetOwner.

objCapFree true false Enables the object to receive msgDestroy.

objCapSend true false Enables the object to receive messages sent with
ObjectSendO.

objCapCall false true Enables the object to receive messages sent with
ObjectCallO.

objCapObservable true true Enables the object to receive msgAddObserver and
msgRemoveO bserver.

objCaplnherit nla true Enables clients to create a new class that inherits
from the class.

objCapScavenge nla true Enables the class to receive msgScavenge.

objCapCreate false false Enables the class to receive msgObjectNew.

objCapCreateNotify false false Directs the class manager to send msgCreated to a
new object when it is fully created.

objCapMutate true true Enables the object to receive msgMutate.

objCapProp true true Enables the object to receive properties-related
messages.

objCapUnprotected nla false

objCapNonSwappable false false

25

26 PEN POINT ARCHITECTURAL REFERENCE

Part 1 / Class Manager

Owner Capability
An object is owned by the task that creates it. Sometimes it is useful to be able to
change the owner of an object. For example, an object might maintain information
required by many clients. If the client that created the object needs to go away for
some reason, the client could change ownership of the object to another client that
requires the object.

To change the ownership of an object, you send msgSetOwner to the object. The
objCapOwner flag specifies whether the object can receive msgSetOwner.

If objCapOwner is true, anyone can change the ownership of the object; if it is
false, the only clients who can change ownership of the object are those that know
the key value for the object.

The default value for objCapOwner is true for objects and false for classes.

Freeing Capability
You destroy an object and free its memory by sending msgDestroy to the object.
The class manager handles msgDestroy and checks the object's objCapFree
capability. If the objCapFree is true, any client can destroy the object; if it is false,
only the clients that know the key for the object can destroy it.

The default value for objCapFree is true for objects, and false for classes.

ObiectSendO Capability
The objCapSend capability lets an object receive messages sent with the
ObjectSendO function, which executes the message handler·in the task of the
recipient object. When objCapSend is true, the object can receive messages sent
with ObjectSendO.

The default value for objCapSend is true for objects, and false for classes.

ObiectCaliO Capability
The objCapCall capability lets an object receive messages sent with the
ObjectCallO function, which executes the message handler code in the task of the
message sender. When objCapCall is true, the object can receive messages sent
with ObjectCallO from tasks other than the object's owning task.

The default value for objCapCall is false for objects and true for classes.

When a task sends a message to an object that it owns, objCapSend and
objCapCall are both assumed to be true. If both objCapSend and objCapCall are
false, no task other than the owner of the object can talk to the object.

CHAPTER 2 I CLASS MANAGER CONCEPTS
Capabilities

Observable Capability
For each object, the class manager maintains a list of observers. A client can add
itself an object's obsever list by sending msgAddObserver to the object; a client
can remove itself by sending msgRemoveObserver. When an object wants to send
a message to its observers, it sends msgNotifyObservers to itself and the class
manager sends the message specified in the arguments to all of the observers on
the observer list. Observer messages are described in more detail in Chapter 4,
Manipulating Objects.

The object capability objCapObservable specifies whether an object can receive
msgAddObserver and msgRemoveObserver. If objCapObservable is true, the
object can receive both messages. If false, the Class Manager returns
stsProtection Violation in response to both messages.

The default objCapObservable value is true for both objects and classes.

Inheritance Capability
You make a class inherit from another by specifying the superclass when you create
the subclass. However, there are times when you do not want your class to be
subclassed (this is true for some system classes).

The capability objCaplnherit specifies whether a class can be subclassed or not. If
objCaplnherit is true for a class, clients can create subclasses that inherit from that
class. If objCaplnherit is false for a class, clients will receive
stsProtection Violation when they try to create a subclass of the class.

This capability is meaningful only for classes. The default value for a class is true.

Scavenging Capability
When a task terminates, the class manager cleans up all existing classes and their
objects in a process called scavenging. The Class Manager sends msgScavenge to
every object that the terminating task owns. The details of scavenging are covered
in Chapter 4, Manipulating Objects.

objCapScavenge applies to an entire class, not to individual objects. If a class has
objCapScavenge set to true, its instances will process msgScavenge normally. If a
class has objCapScavenge set to false, its instances will return
stsProtection Violation in response to msgScavenge.

This capability is meaningful only for classes. The default value for a class is false.

2.8.5

2.8.6

2.8.7

28 PENPOINT ARCHITECTURAL REFERENCE
Part 1 / Class Manager

Creation Capability

A client can ask an object in another task to create a new object by sending
msgObjectNew to the object. If the object has objCapCreate set to true, it can
receive msgObjectNew.

The default value for this capability is false for both objects and classes.

Creation Notification

Sometimes an object needs to know when the class manager has created it, before
any clients can send messages to the object, so that it can perform some additional
work. If objCapCreateNotify is set to true before sending msgN ew, the class
manager will send msgCreated to the object when it is fully created, giving the
object an opportunity to respond by performing its additional work.

If you want a specific object to receive notification, you should set ,
objCapCreateNotify after sending msgNewDefaults and before sending msgNew.
If you specify objCapCreateNotify for a class, the class will receive msgCreated
when it is fully initialized.

If you want all objects created by a class to receive notification, the class must set
objCapCreateNotify to true when it handles msgNewDefaults.

msgCreated is described in Chapter 4, Manipulating Objects.

Mutation Capability

A client can change the class from which an object inherits by sending it
msgMutate. msgMutate is described in full in Chapter 4, Manipulating Objects.

The capability objCapMutate specifies whether a class can be mutated or not. If
objCapMutate is true for a class or for an object, clients can send msgMutate to
the object. If objCapMutate is false, clients will receive stsProtection Violation
when they try to mutate the object.

Properties Capability
Every object has an associated list of properties, data elements attached to the
object. Clients set an object's properties with msgSetProp, and read them with
msgProp. If an object's objCapProp is set to true, any object can send msgProp
and msgSetProp to the object. If objCapProp is set to false, clients cannot access
the object's properties without the object's key.

The default value for objCapProp is true for both classes and objects.

2.9

CHAPTER 2 / CLASS MANAGER CONCEPTS
Properties Capability

Checking Capabilities
To check specific capabilities of a particular object, you send msgCan to the
object. msgCan takes an OBJ_CAPABILITY value that specifies a group of capability
flags that you want to check. If the specified combination of capability flags is
enabled for the object, msgCan returns stsOK; otherwise it returns
stsProtectionViolation. For example, the following code fragment checks an
object to determine whether it has both the objCapObservable and objCapSend
capability flags set.

OBJ CAPABILITY objCaps;
STATUS s;
OBJECT someObject;
objCaps = objCapObservable I objCapSend;
s = ObjectSend(msgCan, someObject, objCaps};
if (s = stsOK)

else

Changing Capabilities
To enable or disable an object's capabilities, you send the message msgEnable or
msgDisable to the object. The messages take a pointer to an OBJ_CAPABILITY_SET

structure that contains:

key the key for the object that you want to change.

cap an OBJ_CAPABILITY value that contains the capabilities that you want
to enable or disable.

If key does not match the key value for the object, the message fails with
stsProtection Violation.

2.9.1

29

Chapter 3 / Creating a New Class

There are two main reasons why you might need to implement a new class:

• You are building a new application. All applications are classes that inherit
from clsApp, the application class. Application classes are described in detail
in Part Two: Application Framework.

• You need a class that provides functionality that is not available in any
existing classes. Usually you can find a class that has most of the behavior
that you require. You can then create a new class that is a subclass of that
class, reducing the amount of code you must write and test yourself.

This section describes how to write the skeleton for a new class. It is primarily
concerned with the organization of the fundamental parts of a class, how the
Class Manager routes messages to a particular: method, the parameters involved
in invoking a method, and the data maintained for each instance of a class. This
section does not describe how to actually implement the methods; that aspect of
classes is described in the PenPoint Application Writing Guide.

Overview
The next sections describe the different parts that you must create to implement a
new class and how the parts interact when you install the class.

The Parts of a Class

When you create a new class, you must create:

• A header file (.H file) that defines the new messages that your class
implements.

• A method table. When the Class Manager sends a message to your class, it
uses the method table to locate the method for that message. You compile
the method table with the PenPoint method table compiler, shipped with the
Software Developer's Kit (SDK) as \PENPOINT\SDK\UTIL\CLSMGR\MT.EXE.

• A C code file that contains a method for each message that your class and its
instances will handle. A method is a C function that defines the class's
behavior for each message. Because methods are the functions with which
classes handle incoming messages, you'll sometimes hear methods referred to
as message handlers.

A message identifier is defined only once (by a single header file), but there can be
any number of handlers for that message, written by any class that wants to handle
the message. msgNewDefaults is the classic example of such a message.

32 PENPOINT ARCHITECTURAL REFERENCE
Part 1 / Class Manager

Figure 3-1 shows the parts of a class and how they relate to one another. You can
find many source code examples for classes in the SDK directory \PENPOINT\

SDK\SAMPLE.

yourdass.h

#define clsYourClass
#define rnsgDoSornething

MakeWKN (...)
MakeMsg (...)

yourmeth.tbl

#include <yourclass.h>

MSG INFO yourClassMethods[] = {

msgDoSomething, ".D.Q.s.Qm~t.hing", 0,
....

o }; """

CLASS INFO classInfo[] = { \

"g)..§XQ.ll.£~.~.§..§.§.:r.§..g)..~", your :rlassMethods, 0,
o } i f

yourdass.c
::

...

#include ,fyourclass. h> .. /,,/

#include ./cyourrneth. h> ./f Created by MT
! ;t'"

MSG_HANqLER DoSornething (params)

{ \
//\~ethod for DoSomething

•....
'. ".

'"
".

STATUS FAR Cls~purClassInit (void)

••....•............ ,.

new. object. uid ="'~sYOurClass;
new.class.pMsg = clsYourClassTablei
ObjectCall(rnsgNew, clsClass, &new)i

CHAPTER 3 I CREATING A NEW CLASS
Design Considerations

Installation Summary

There are two ways to link a class: you can link a class with an application to
create an application executable file, or you can link a class into a DLL file. You
use DLL files when multiple clients may want to use your class.

In an application, you create your class by calling a class initialization routine from
your application's mainO routine. In a DLL, you create the class by calling a class
initialization routine from the DLLMainO routine.

When you have compiled a class into an executable or a DLL, you use the
Installed Software section of the PenPoint Settings notebook to copy it to the
PenPoint computer. The Settings notebook invokes mainO or DLLMainO, which
then calls the class initialization routine.

In your class initialization routine you install your new class by sending msgNew
to clsClass and specifying the new class in the message arguments.

Design Considerations
When you determine that you need to create a new class, you must also ask
yourself several questions about the design of your class. As you read the rest of
this chapter, keep these questions in mind:

• Do you want to maintain instance data in the object itself, or do you want to
maintain pointers to external instance data?

• Should the class be global? Should it be well known?

• Should you handle messages defined by your ancestors, or should you pass
them up to your ancestor?

• When you find that several methods require the same subroutine, do you
implement it as a function, or do you implement it as a new message and a
new method?

The advantages and disadvantages of these techniques are described throughout
the rest of this chapter.

To keep a high level of performance, you should avoid structuring your class so
that each message substitutes for a single function call from a procedural model of
your class. Passing a message using the Class Manager takes approximately two to
three times the amount of time as an equivalent function call.

From an object-oriented point of view, it is a good idea to send messages between
objects, but you should structure your messages and objects so that they operate
on large chunks of application data.

For example, you might want to create a raster object that controls a screen region,
but a raster line should not be an object to which you send messages like
msgDraw.

3.1.2

33

34 PENPOINT ARCHITECTURAL REFERENCE

Part 1 / Class Manager

Creating Obiects
A client creates an instance of your class by sending msgNewDefaults and
msgNew to your class. However, in passing msgNew, the Class Manager handles
the message and passes msgInit to your class instead. In short, when your class
receives msgInit, it is being asked to initialize a new instance of itself (the Class
Manager has already created the object).

Usually you handle msgInit by initializing your instance data (described below)
creating objects that an instance of your class requires to do its work. For
instance, a graphic editor class maintaining a list of shapes could create an instance
of dsList when it handles msgInit.

Instance Data
A class consists of a group of methods; the code for these methods is stored in a
shared area of memory. When an instance of a class receives a message, the
corresponding method handles the message.

However, each instance has its own, separate instance data. This instance data is
actually owned by the Class Manager and is available only to the instance. Each
ancestor of an object's class provides part of the instance data for the object. When
a class is created, it tells the Class Manager how much space needs to be added to
the object for the class to keep its part of the instance data.

Memory Protection

The Class Manager maintains the instance data in memory that is protected from
writes by unauthorized clients. Essentially only the Class Manager can write
instance data (although you can request the Class Manager to write a specific piece
of data for you). This restriction protects clients and subclasses from one
another-no program can overwrite another program's instance data.

Allocating Instance Data

When the Class Manager creates a new instance of a class, it allocates a specific
amount of memory for the instance data. You specify the size of the instance data
when you install your class (by sending msgNew to dsClass).

Usually you create a structure called something like XXX_INSTANCE_DATA (where
XXX is the class name), and use the sizeofO function to determine its size. The
maximum size for all of the instance data for all of the subclasses of an object is
slightly less than 64K.

3 .. 3

Your class must have methods
for both megNewDefaulte and
meglnit.

3.4

3.4,,2

CHAPTER 3 I CREATING A NEW CLASS
Instance Data

35

Accessing Your Instance Data

When the Class Manager invokes a method (a function that you define to handle
a message), it passes a pointer to your instance's instance data (pData). You can
read the instance data and copy it to your local storage, but you cannot write the
instance data directly.

To store instance data, you must call the ObjectWriteO function. The prototype
for the ObjectWriteO function is:

STATUS EXPORTEDO ObjectWrite(
OBJECT self,
CONTEXT ctx,
P UNKNOWN pData

) ;

In brief, self is the UID of the object whose instance data you wish to access, ctx
maintains information about the ancestor hierarchy, and pData is a pointer to the
local copy of the instance data.

Maintaining Dynamic Instance Data

If you need variable-sized instance data, you can use OSHeapBlockAllocO to
allocate data from your own process heap. You can store a pointer to the heap in
your instance data, instead of storing the entire block. This also allows faster write
access to your instance data, at the risk that another object in your process might
overwrite your data.

On the other hand, the the window system cannot risk data corruption-it stores
all of its data in write-protected memory.

Saving and Restoring Instance Data.

dsObject defines messages that tell objects to save and restore their instance data.
When an object receives msgSave, it must file its instance data; when an object
receives msgRestore, it must restore its instance data.

When an object receives msgSave, it uses the pointer to its instance data (pData)
when it writes its instance data.

Part Two: PenPoint Application Framework describes in detail how objects save and
restore their instance data when they receive the dsObject messages msgSave and
msgRestore.

Three Pen Point classes that
allocate their own heap block
are C15Li5t, cl56tring, and
Cl5TttData. Cl5TttData is
defined in the Tic-Tac-Toe
sample application in the
\PENPOINT\SDK\SAMPLE\TTT.

36 PENPOINT ARCHITECTURAL REFERENCE

Part 1 I Class Manager

Crealinga Header File
The header file for your class should contain #defines for all your well-known
UIDs, messages, tags, and status values.

You can use the header files (.H files) in \PENPOINT\SDK\INC as an example of
how you should write and organize your header files.

For documentation purposes your header files can also list (but shouldn't define)
messages that other classes define, but for which your class provides an alternate
or enhanced message handler. The actual definitions for those messages will come
from the header files that you include at the beginning of your header file.

Anceslor Calls
When an object receives a message, it has the option of sending the message to its
ancestor. As described earlier, the task handling the message remains the same and the
object is still the same. The only difference is that the method belongs to the ancestor.

The ancestor call is simply a function call to the method defined by the ancestor.
You use the ancestor call functions, because the Class Manager knows your
ancestor already. This makes it possible to execute code defined by another class
without having to rely on knowledge of the other class's structure.

ObiectCallAncestorO

You use ObjeetCallAneestorO in a method to send a message to the ancestor of
your class. ObjeetCallAneestorO uses etx to determine the class of the object that
called it, finds the ancestor's method for the message, and then calls the method
with the pArgs value. The function prototype is:

STATUS GLOBAL ObjectCallAncestor(
MESSAGE msg,
OBJECT self,
P ARGS pArgs,
CONTEXT ctx

) ;

The arguments to the function are identical to those of Obj ectCall 0 , except for
the addition of a CONTEXT value.

The Class Manager uses CONTEXT value etx to locate the correct ancestor.
Because ObjeetCallAneestorO is called from a method, you will have received a
etx value in your method parameters.

ObiectCaIIAncestorCtx()

ObjeetCallAneestorCtxO is a shorter version of Object Cal lAne est orO. It does
exactly the same thing as ObjectCallAneestorO, but the Class Manager uses the
same message and pArgs. used to invoke the method. You have to specify only your
etx. The function prototype is:

STATUS GLOBAL ObjectCallAncestorCtx(
CONTEXT ctx

) ;

CHAPTER 3 I CREATING A NEW CLASS 37
Creating the Methods

Example 3-1

Using ObiectCaliAncestorCtx()
This example shows how the method for msglnputEvent in the Tic-Tac-Toe application uses ObjectCallAncestorCtxO. For
key events, this method handles msglnputEvent itself; for other input events, it uses ObjectCallAncestorCtxO to send
msglnputEvent (along with the pArgs for this message handler) to dsTttView's ancestors.

/**
TttViewlnputEvent

msglnputEvent.
**/
'define (xl \

",tttViewDbgSet,OxlOOOOOO,x)
MsgHandlerWithTypes(TttViewlnputEvent, P_INPUT_EVENT, PP_TTT_VIEW_INST)
{

STATUS
switch

s;

s ""
break;

default:

) {

s = ObjectCallAncestorCtx(ctX)i
break;

return s;

/* TttViewlnputEvent */

Creating the Methods
This section describes how to write a method. While you read through this
section, refer to the example code for Tic-Tac-Toe in \PENPOINT\SDK\

SAMPLE\TTT in the PenPoint Software Development Kit.

Declaring Entry Points for Methods
When the Class Manager sends a message to an instance, the Class Manager uses
the method table to locate the entry point for the procedure that corresponds to
the message. The procedure is called a method or message handler (the terms are
synonyms). A single method can handle multiple messages; this allows one
method to respond to all messages defined by a class and also avoids unnecessary
replication of common code across the handling of several messages.

You must explicitly declare all methods. The Class Manager defines the symbol
MSG_HANDLER to identify message handling procedures. MSG_HANDLER and all
the macros described in this section are defined in CLSMGR.H. MSG_HANDLER

expands to SfATUS CDECL. Using the symbol MSG_HANDLER makes your code
much easier to read and search.

3.7

3.7.1

38 PEN POINT ARCHITECTURAL REFERENCE
Part 1 I Class Manager

Message Parameters

When the Class Manager sends a message to your method, it always passes along
the same five parameters:

msg the message.

self the UID of the object to which the message was sent.

pArgs the 32-bit value that indicates the client's arguments.

etx the context, required for calls by the method to ObjectWriteO and
ObjeetCallAneestorO ..

pData a pointer to your object's instance data.

These parameters are described in the next five sections.

~ The msg Parameter

The msg parameter contains the value that identifies the message that you re
ceived. This is one of the three parameters specified by the client that sent the
message to your object.

You use the msg parameter most frequently when you want to send the message to
your ancestor from within your method.

You can also use this parameter to do specific processing for messages, especially if
you have a wildcard method that needs to do special work for selected messages.

The self Parameter

The self parameter contains the UID of the object that was originally sent the
message. This is the second of the three parameters specified by the client that sent
the message to your object.

If an object needs to send a message to itself, the method uses self to identify the
object executing the method. To forward the message to the object's ancestor class,
use ObjeetCallAncestorO; using ObjeetCallO results in an infinite loop. Otherwise,
use ObjeetCallO or ObjeetSendO to provide subclasses a chance to modify the mes
sage behavior or to simply notice that the message was sent.

~. The pArgs Parameter

The pArgs parameter contains the 32-bit argument value specified by the client.
This is the third of the three parameters specified by the client that sent the
message to your object.

The pArgs parameter is typically a pointer to data, but in some cases is the argu
ment data (for example, when the only data required is a 32~bit value). When you
design a method, you must decide what argument data it requires. You use the
header file to document what data is required by each message.

~ The ctx Parameter

The etx parameter contains a CONTEXT structure that maintains information
about where the current class is in relation to the class hierarchy. The ctx

3,,7~2

CHAPTER 3 I CREATING A NEW CLASS
Creating the Methods

parameter is created and maintained by the Class Manager. ctx is used primarily
by ObjectCallAncestorO, ObjectReadO and ObjectW riteO.

~ The pData Parameter

The pData parameter contains a pointer to the instance data for the object.

As described already in the section on instance data, the Class Manager maintains
the instance data for each instance separately in write-protected memory.

If you will need to update your instance data, you must copy the instance data to
your local memory, update the instance data, then write the instance data back
with ObjectWriteO.

Method Declaration Macros
Many times when you define a method, you use the same declarations for all or
most of the parameters. To free you from declaring all these parameters, and to
make your code more readable, the Class Manager defines a number of macros
that declare the procedure and its parameters.

Additionally, there are macros to manipulate the instance data pointer pData in
your methods.

Table 3-1 lists the method macros.

Table 3~1

Method Declaration Macros
Purpose

Declares all parameters. MsgHandlerO

MsgHandlerArgTypeO

MsgHandlerWithTypesO

MsgHandler ParametersNo WarningO

Allows you to specify a different type for pArgs.

Allows you to specify different types for pArgs and pData.

Suppresses warning messages about unused parameters.

Using the MsgHandler() Macro

You use the MsgHandlerO macro when you do not need to explicitly define types
for the pArgs or pData parameters when you use them. You might do this when
your method simply issues a debug statement and returns (you might have
specified objCallAncestorBefore or objCallAncestorAfter in your method table).
The syntax for the MsgHandlerO macro is:

MsgBandler(fn)

fn is the name of the message handler. For example:

MsgHandler(XferListMsgNewDefaults)
{

STATUS Si

((P_XFER_LIST_NEW)pArgs)-»object.cap 1= objCapCall;
return stsOK;
II Prevent compiler warnings for unused parameters
MsgHandlerParametersNoWarning;

1* XferListMsgNewDefaults *1

II Abbrev. parameters

39

40 PENPOINT ARCHITECTURAL REFERENCE
Part 1 I Class Manager

~ Using MsgHandlerArgType()

You use the MsgHandlerArgTypeO macro when you want to explicitly cast the
type of the pArgs parameter in the method declaration.

The syntax for MsgHandlerArgType is:

MsgHandlerArgType (fn, pArgsType)

fn is the name of the message handler and pArgsType is the type to which to cast
pArgs. pArgsType must be a pointer type. In the following code example, the
type for pArgs is P _XFER_LIST _NEW:

MsgHandlerArgType(XferListMsgNewDefaults, P_XFER_LI ST_NEW)
{

STATUS s;
pArgs-»object.cap 1= objCapCall;
return stsOK;
II Prevent compiler warnings for unused parameters
MsgHandlerParametersNoWarning;

1* XferListMsgNewDefaults *1

~ Using MsgHandlerWithTypes()

You use the MsgHandlerWithTypesO macro when you want to explicitly cast the
types of both the pArgs and pData parameters in the method declaration. The
syntax for MsgHandlerWith Types 0 is:
MsgHandlerWithTypes(fn, pArgsType, pDataType)

fn is the name of the message handler, pArgsType is the type for pArgs, and
pDataType is the type for pData. Both pArgsType and pDataType must be
pointer types. In this example, the type of pArgs is P _OBJ_SAVE and the type
of pData is PP _ TTT _APP _INST:

MsgHandlerWithTypes(TttAppSave, P_OBJ_SAVE, PP_TTT_APP_INST)
{

TTT_APP_FILED_O filed;
STATUS s;
DbgTttAppSave «""»

~~ Using MsgHandlerParametersNoWarning()

Some C compilers generate warnings when you declare identifiers but don't use
them in the function where they are declared. The method macros described in
this section declare all five parameters passed by the Class Manager. If you do not
reference one of these parameters, the compiler may generate a warning message.

3.7.3.2

3.7.3.3

3.7.3.4

To suppress these messages, indude the macro MsgHandlerParametersNoWarningO
in your method. The macro simply adds references to all of a method's parameters that
will satisfy the compiler without generating any unnecessary code.

msg, self, pArgs, ctx, pData;

By mentioning all the parameters, the macro effectively suppresses the warning
messages.

CHAPTER 3 I CREATING A NEW CLASS
Creating a Method Table

Operations of a Method

The actual processing performed by each method is up to you. You can create
objects, send messages to objects, process data, or whatever to accomplish the
method's purpose.

Essentially the rest of this volume (the PenPoint Architectural Reference) is
dedicated to describing the things that you can do from a method.

The PenPoint Application Writing Guide explains how to write methods. For
examples of methods, see the example code in the \PENPOINT\SDK\SAMPLE

directory.

Creating a Method Table
A method has three options when it receives a message:

• Pass it up the ancestor hierarchy to be processed.

• Perform the requested service.

• Reject the message with no action.

Each class contains a method table responsible for handling all messages sent to
instances of that class. Method tables allow you to specify the procedure in your C
code that handles each message and whether the Class Manager should send the
message up the class hierarchy either before or after your procedure handles the
message.

Method Table Overview
When you design a class, you must define the messages that the class will process
and what methods wilf be used during the processing. These definitions are
implemented in a method table that is compiled as a separate object file and
attached at link time. When the class is installed (at cold boot, or by the Settings
Notebook) the method table is installed as part of the class into the Class Manager
database.

A method table definition file (with the extension .TBL) contains the tabular
definition for your class's messages and meth~ds. There is an entry in the table for
each message that your class will handle. For each message you specify:

• The message token (defined in a header file)

• The method to be executed when an instance of your class receives this
message

• A flag field that specifies options for memory or speed optimization, and
whether the ancestor of the class should process the message before or after
the class does, or not at all.

3.7.4

3.8

3.8.1

41

42 PENPOINT ARCHITECTURAL REFERENCE
Part 1 I Class Manager

The table contains entries only for those messages that your class intercepts and
processes. If the Class Manager attempts to send a message to an instance of your class
and the message is not defined in your method table, the Class Manager automatically
sends the message to your class's ancestors. If no class in the ancestry chain is able to
handle the message, the message eventually gets to clsObject. If clsObject cannot
handle the message, it returns stsN otU nderstood to the sender of the message.

Your method table is not limited to the messages defined by one of your classes. You
can create method table entries for any message that an instance of your class might
receive (no matter who defines the message). This is known as overriding a message.

If you override a message, you must be sure to include in your method table
definition file the header file that contains the #define for the message. Otherwise,
the reference to the message will fail.

You compile the method table with the PenPoint method table compiler
(\PENPOINT\SDK\UTIL\CLSMGR\MT.EXE), then you link the resulting method
table object file with the object file that defines the methods for the class.

There are five steps to setting up your method tables:

1 Create a method table definition file (a .TBL file).

2 Compile the table with MT.EXE.

3 Define the methods in your class's C code file with the MSG_HANDLER

identifier.

4 Add the method table's identifier to your class's msgNew initialization
. method.

S Compile your class's C code file and link it with the method table.

Figure 3-2 shows the build cycle and file dependencies for an application that
includes method tables.

Creating a Method Table Definition File
A method table definition file contains the definitions of at least two arrays:

• A MSG_INFO array that maps message names to method names. Each class
has exactly one associated MSG_INFO array .

• A ClASS_INFO array that contains one entry for each class. The ClASS_INFO

array associates each MSG_INFO array with a symbol that you use to identify
the method table when you install your class (part of the msgNewarguments
to clsClass).

Figure 3-1 shows the relationship between the principle elements in a method
table definition file and the source file in which you implement your class. In the
figure you can see how the method table defines the message name and the entry
point of the method called by the Class Manager. The figure also shows where the
method is defined in the C file that implements your class and also shows the
method that installs your class.

CHAPTER 3 I CREATING A NEW CLASS 43
Creating a Method Table

Figure 3-2

Method Table Files and Build Sequence

calcmeth.tbl

object file __ -t--~:;/:

mtcom.h

--- - --------------------------------------
--------------~-------

calc.h

calc.c

"'''' The MSG_INFO Array
The MSG_INFO array identifies the messages handled by a particular class and
specifies for each message the method that handles the message. For each class that
you implement in an executable file, you must define one MSG_INFO array. Thus,
if you defined three classes in a single executable file, the method table definition
file must have three MSG_INFO arrays.

3.8~2.1

" ,
\

"

\

\

\

/

/

\

\

\

\

44 PENPOINT ARCHITECTURAL REFERENCE

Part 1 / Class Manager

You can see a number of examples of method tables in the sample application
directories under \PENPOINT\SDK\SAMPLE. Here is an abbreviated example of the
MSG_INFO array for clsTttData from TTTTBL.TBL:

MSG_INFO clsTttDataMethods[]
msgNewDefaults,
msgInit,
msgFree,
msgTttDataGetMetrics,
msgTttDataSetMetrics,
msgTttDataSetSquare,
msgTttDataRead,
msgUndoItem,

"TttDataNewDefaults" ,
"TttDataInit" ,
"TttDataFree" ,
"TttDataGetMetrics" ,
"TttDataSetMetrics",
"TttDataSetSquare",
"TttDataRead",

objCallAncestorBefore,
objCallAncestorBefore,
objCallAncestorAfter,

"TttDataUndoItem" ,

° } ;

0,
0,

0,
0,

0,

The identifiers MSG_INFO and objCallAncestorBefore are defined in CLSMGR.H.

Each entry in the array has 3 fields:

• The message name.

• The name of the method for the message. The method name identifies the
entry point for the method. The method name must be in quotes.

• One or more options flags.

Table 3-2 lists the option flags and their meanings. The options flags can be OR'd
together. Some options may not make much sense when combined. For example,
it it is impossible to optimize memory usage with the save space option and at the
same time optimize performance with the save time option.

MS
Me{$flirt~

Call the object's ancestor before calling the method.

Call the object's ancestor after calling the method.

Handle the message when sent to the class.

Opth:m fl{$~

objCallAncestorBefore

objCallAncestorMter

objClassMessage

objSaveSpace

objSave Time

Optimize this entry for space. This option is not implemented.

Optimize this entry for time.

If you do not use any of these options, you must specify 0 as a placeholder in
the array.

CLASS_INFO Array

The CLASS_INFO array specifies which MSG_INFO array belongs to which class. In
a method table definition file there is only one CLASS_INFO array.

This example shows the CLASS_INFO array from TTTTBL.TBL:

CLASS_INFO classInfo[] = {

} ;

"clsTttViewTable" ,
"clsTttDataTable",
"clsTttAppTable",
a

clsTttViewMethods,
clsTttDataMethods,
clsTttAppMethods,

0,
0,
0,

3.8.2.2

on Flags

Each entry in the CLASS_INFO array has 3 fields:

CHAPTER 3 / CREATING A NEW CLASS

Creating a Method Table

• a method table name that you will use when you install the class

• The name of a MSG_INFO struct defined in this method table definition file

• An options flag.

The options flag is reserved for future use; put a 0 in this field as a placeholder.

~ Method Table Wildcards
The MSG_INFO array can contain wildcard message names. Wildcards match any
message within a given set of messages and call the associated method.

There are two types of wildcards:

• those that match all messages defined for a given class

• those that match all messages sent to instances of a given class (essentially you
use this as a match-alI-others in your MSG_INFO array)

A single MSG_INFO array can contain either type of wildcard, or both types. For
example, a MSG_INFO array might contain both a wildcard that matched all messages
for one of the classes that it handles and, at the end of the MSG_INFO array, a wildcard
for all messages sent to instances of the class for which the MSG_INFO array is defined.

To create a wildcard that matches all messages for a class, you must use the MakeMsgO
macro to create a message that uses your class (as usual) and has the special message
number objWildCard. For example, to create a wildcard (foo WildCard) that matches

all messages of clsFoo, you would use:

idefine fooWildCard MakeMsg(clsFoo, objWildCard)

To use the class wildcard, insert the message in the MSG_INFO array:

idefine fooWildCard MakeMsg(clsFoo, objWildCard).
MSG_INFO foo = {

fooWildCard, "HandleAllFooMsgs" , 0,

°
To match messages sent to objects created by a class, add a line to the end of the
MSG_INFO array that uses objWildCard as the message name and specifies a
method as usual. For example:

MSG_INFO foo = {

msgNew, "HandleMsgNew", 0,

objWildCard, "HandleAllOtherMsgs" , 0,

°
Compiling a Method Table
To compile a method table you need

• The C compiler (including DOS4GW.EXE)

• The method table compiler, MT.EXE.

45 GIl:

l

46 PENPOINT ARCHITECTURAL REFERENCE
Part 1 I Class Manager

The method table compiler is delivered with the PenPoint SDK in the directory
\PENPOINT\SDK\ UTIL\MT.

~. Running MT

Usually you compile your method table simply by running the method table
compiler, MT.EXE. Before you run the method table compiler, you must make sure
that MT.EXE is in your local directory or your path includes the directory that
contains MT.EXE.

The run command for the method table compiler has the following syntax:

NT infile

If the input file has a .C or .TBL extension, the method table compiler:

• Compiles your method table with the C compiler, which results in an
intermediate object file

• Processes the resulting object file to produce the method table object file and
corresponding header file.

Compiling Method Tables With Wildcards

When you compile method tables that use wildcards, the method table compiler
uses the assembler.

You must specify a path that includes the assembler during the compile phase for
method tables if you use wildcards. The simplest strategy is to put the assembler in
the same directory as the compiler executable files.

MT Output Files

The method table compiler produces a header file and an object file. These files
have the same name as the .TBL file, but with the extensions .H and .OBJ,

respectively. If you already have a file with the same name and the extension .H,

the method table compiler will overwrite it. For example, FOO.TBL will generate
FOO.H and overwrite any previous version of FOO.H.

The header file contains the declarations for each of the methods. You must
#include this file in the sources that define the methods for your class.

The object file contains the method table code used by the Class Manager when it
routes a message to an instance of your class.

"'~. Compiling in Two Steps

Although the method table compiler will run the C compiler for you, if you run
MT from MAKE, you may run out of memory. If this happens, you should compile
your method table in two steps:

1 Use the C compiler to compile your method table.

2 Run MT on the resulting intermediate object file to create the method table
object and header files. If MT does not detect a .C or .TBL extension, it does
not run the C compiler.

3.8.3.2

3.8.3.4

·.nstalling a Class in PenPoint

CHAPTER 3 I CREATING A NEW CLASS
Installing a Class in Pen Point

The way that you compile and link your class affects the way in which PenPoint
finds the routine used to install your class. You can compile and link your classes
one of two ways:

• If your class is part of an application and will not be used by any other
clients, you can link your class with your application to create an application
executable file.

• If your class might be used by a number of clients (including your appli-
cation), you can link your class separately to create a DLL file.

Your class must contain some code that sends msgNew to clsClass to install your
class. If the class is part of your application executable file, you install your class
when you install your application (that is, in mainO when process equals 0).

If the class is in a DLL file, you install the class from the DLLMainO routine. If
your application requires a class in a DLL file, it can name the DLL file in the
application installation .DLC file. For more information on DLL and .DLC files,
see PenPoint Application Writing Guide.

The Class Initialization Routine

The purpose of the class initialization routine is to send msgNew to clsClass.
clsClass is a special class that exists solely to install new classes.

Before you send msgNew to clsClass, you must create, initialize, and modifY a
CLASS_NEW structure that describes the new class. You initialize the CLASS_NEW

structure by sending msgN ewDefaults to clsClass.

The CLASS_NEW structure contains an OBJECT_NEW_ONLY structure (object)
and a CLASS_NEW_ONLY structure (cls). The OBJECT_NEW_ONLY structure
contains:

uid the well-known UID that you will use for this class.

key a key value for the class.

cap the capabilities for the class.

The CLASS_NEW_ONLY structure contains:

pMsg a pointer to the method table for your class. The method table name
is the first field in the CLASS_INFO entry that you created in your
method table definition file. If this is an abstract class (one that defines
messages but has no methods), you can specifY pNull.

ancestor the UID of the class that is the immediate ancestor of this class.

size The size of the instance data for instances of this class. The size of
instance data must be less than 64K bytes. If the size is not 0, you should
usually have methods for msgSave and msgRestore to handling filing of
the instance data.

47

48 PEN POINT ARCHITECTURAL REFERENCE

Part 1 / Class Manager

The instance data can be be a pointer to a heap where the data is stored.
Pointers are useful when you do not know what the exact size of the data for
a given instance will be.

newArgsSize The size of the _NEW structure used to create instances of this
class. It is usually set by SizeOf(..._NEW).

When you send msgN ew to clsClass, the message returns a status value. If the
Class Manager creates the class successfully, msgNew returns stsOK and the
object.uid field contains the UID of the new class.

Example 3~2

Creatin a New Class
This example from \PENPOINT\SDK\SAMPLE\TTT\TTTDATA.C shows how the routine CIsTttDatalnitO creates the class
clsTttData. TTTPRIY.H #defines the token clsTttData, and TTTTBL.TBL establishes clsTttDataTable as the identifier for
clsTttData's method table.

/**
CIsTttDataInit
Install the class.

*********************~**/

STATUS PASCAL
CIsTttDataInit (void)
{

CLASS NEW new;
STATUS s;
ObjCallJmp(msgNewDefaults, clsClass, &new, s, Error);
new.object.uid clsTttData;
new.object.key 0;
new.cls.pMsg clsTttDataTable;
new.cls.ancestor clsObject;
new.cls.size SizeOf(P_TTT_DATA_INST);
new.cls.newArgsSize SizeOf(TTT_DATA_NEW);
ObjCallJmp(msgNew, clsClass, &new, s, Error);
return stsOK;

Error:
return S;

} /* CIsTttDataInit */

Chapter 4 / Manipulating Obiects

When you have created an object you tell it to do things by passing messages to it.
Most of these messages are defined by the class that created the object.

Additionally, the PenPoint™ Class Manager provides a number of messages that
provide class manager support for those objects. These messages fall into four
categories:

• Copying objects.

• Observing objects and object notification.

• Getting object status information.

• Destroying objects.

Copying Obiects
Perhaps the most important object manipulation is the ability to copy objects. The
PenPoint Class Manager provides a low-level facility to copy objects. When
copying an object, all objects owned by the object are copied at the same time.

Copying objects can be done by either the client that owns the original object or
the client that will receive the copied object. The original owner and the receiver
do not have to be in the same process.

The object copy facility is used by many parts of the PenPoint operating system.
For instance, the embedded window move/copy protocol uses object copy to copy
objects from one window to another.

While there are two messages used in copying objects, msgCopyand
msgCopyRestore, clients only need to send msgCopy to the object to be copied.
When clsObject handles msgCopy it sends msgCopyRestore to the destination
object. Clients should almost never have to send msgCopyRestore.

Using msgCopy

To copy an object, send msgCopy to the object. The object being copied must be
able to file itself, that is, it must respond to msgSave and msgRestore.

msgCopy takes a pointer to an OBJ_COPY structure. The requestor field specifies
the UID of the object that will receive the copied object. If requestor is in a
different process from the client sending msgCopy, the requestor must have
objCapCall set on.

When you send msgCopy to an object, dsObject creates a temporary resource file
and sends msgSave to the object. Mter the object saves itself, clsObject sends
msgCopyRestore to the object that you specified in requestor.

50 PEN POINT ARCHITECTURAL REFERENCE

Part 1 I Class Ma nager

When an object receives msgCopyRestore, it passes the message to its ancestor.
When clsObject receives msgCopyRestore, it creates the new object that is the
copy and sends it msgRestore.

Mer the requestor restores the object, msgCopy closes and destroys the temporary
file and passes back the UID of the new object in the object field of the OBJ_COPY

structure.

Observing Obiecls
All objects can maintain a list of observers. An observer is an object that wants to
be notified when the observed object changes state.

The class manager creates and maintains thelist of observers for each object.

Table 4-1 lists the observer messages that are described in the sections following
the table. All of these messages are defined in CLSMGR.H.

Mes%@9B

msgAddObserver

pArgs

OBJECT

P _OBJ_OBSERVER_POS

OBJECT

OB%<rip%i{)~

4~1

Observer Messages

Adds an observer to the end of the object's observer list.

Adds an observer at the specified position in the observer list.

Removes an observer from the object's observer list.

msgAddObserverAt

msgRemoveObserver

msgNotifyObservers

msgPostObservers

msgEnumObservers

msgGetObserver

P _0 BJ_N OTI FY_OBSERVERS Sends a message to the observers.

msgNumObservers

msgAdded'

msgRemoved

msgChanged

P _OBJ_NOTIFY_OBSERVERS

P _ OB J_ENUM_ OBSERVERS

P _OBJ_OBSERVER_POS

OBJECT

OBJECT

OBJECT

Adding an Observer

Posts a message to the observers.

Passes back the observer list.

Passes back the observer at the specified position in the
observer list.

Passes back the number of observers for this object.

Sent to the observer when it is added to an object's observer
list.

Sent to the observer when it is removed from an object's
observer list.

Generic message that can be used to notify observers that a
change has occurred.

If you want to observe an object, you send msgAddObserver to the object that
you are interested in. The only argument for the message is the UID of the object
that will receive notifications; usually this is self (your object). To add an observer
to a specific location in an observer list, use msgAddObserverAt (described below).

For example, to receive notification messages when the list of volumes in the file
system changes, send msgAddObserver to theFileSystem.

ObjCallRet(msgAddObserver, theFileSystem, self, S)i

CHAPTER 4 / MANIPULATING OBJECTS
Observing Objects

When the message completes successfully, it returns stsOK. The class manager
adds the observer to the end of the object's observer list and sends msgAdded to
the object that sent msgAddObserver.

If the object's capability objCapObservable is false, the object cannot be observed;
the class manager returns stsProtection Violation.

Adding an Observer with Position

Normally the class manager adds an observer to the end of an object's observer list.
If you want your object to be the first one that receives notification, you can add
yourself to the beginning of the observer list.

To add an observer to a specific position within the object's observer list, send
msgAddObserverAt to the object. The message takes an OBJ_OBSERVER_POS

structure that contains:

observer the UID of the object that will r~ceive notifications. Usually this
is self.

position an integer that specifies the absolute position within the observer
list for the object. The value 0 adds the observer to the beginning of the
list. The value maxU16 adds the observer to the end of the list.

When the message completes successfully, it returns stsOK. When the class
manager adds the observer to the object's observer list, it sends msgAdded to the
object that sent msgAddObserver or msgAddObserverAt.

Removing an Observer

If you no longer wish to observe an object, you can send msgRemoveObserver to
that object. Like msgAddObserver, the only argument to the message is the UID
of the object that was to receive notifications.

ObjCallRet(msgRemoveObserver, theFileSystem, self, S)i

When the message completes successfully, it returns stsOK. When the class
manager removes the observer from the object's observer list, it sends
msgRemoved to the object that sent msgRemoveObserver.

GeHing Observers from a List

The class manager defines three messages that you can use to get information
about an object's observer list. You can send these messages to another object to
get information about that object's observer list, or you can send these messages to
self to get information about your own observer list.

~,,,, GeHing the Observer List

To get the entire observer list for an object, send msgEnumObservers to that
object. The message takes a pointer to an OBJ_ENUM_OBSERVERS structure that
contains:

max a U16 value that specifies the size of your pObservers array.

4.2.2

51

52 PENPOINT ARCHITECTURAL REFERENCE
Part 1 / Class Manager

count a UI6 value that specifies the number of observers that you expect to
receive. If this number is greater than max, the class manager will allocate
more memory for the observer list. You can tell the class manager to give
you all of the observers in its list (if necessary) by specifying maxUI6 for
count.

pObservers a pointer to the array of OBJECTs that will receive the list of
observers.

next a UI6 value that specifies the position of the first observer to get. If this
value' is 0, start at the beginning of the list.

When the message completes successfully, it returns stsOK and the
OBJ_ENUM_ OBSERVERS structure contains:

count the number of valid entries in pObservers.

pObservers a pointer to the array of observers. If the class manager had to
allocate memory for the list, this pointer may not be the same value that
was passed in. If the pointer value is changed, you must free the new
pObservers array when you are done with it.

next if count was less than max, the position of the next entry in the
observer list. You can use this value in a subsequent msgEnumObservers
to continue enumerating where you left off. To get all observers, continue
the enumeration until msgEnumObservers returns stsEndOfData.

,,~. GeHing an Observer by Position

To get the UID of a specific observer for an object, send msgGetObserver to that
object. The message takes a pointer to an OBJ_OBSERVER_POS structure that
contains a UI6 value that specifies the position in the observer list (position).

If the message returns successfully, it returns stsOK and passes back the
OBJ_OBSERVER_POS structure in which the observer field contains the UID of
the object at position.

~ GeHing the Number of Observers

To get the number of observers for an object, send msgNumObservers to that
object. The only argument for the message is a pointer to a UI6 value.

When the message completes successfully, it returns stsOK and copies the number
of objects in the observer list to the UI6 value specified in the message arguments.

Notifying Observers
When an object needs to send a notification message to its observers it uses
ObjectCallO to send itself msgNotifyObservers. The message takes a pointer to
an OBJ_NOTIFY_OBSERVERS structure that contains:

msg the message to send to observers.

pArgs the arguments for the message.

lenSend the length of the arguments, in bytes.

4.2.4.2

4.2 .. 4.3

4.3

CHAPTER 4 / MANIPULATING OBJECTS
Notifying Observers

The class manager handles msgNotifyObservers. It extracts the message and pArgs
from the OBJ_NOTIFY_OBSERVERS structure and sends the message to all objects
in the observer list.

If you don't want to define your own message to send to observers, you can use the
generic message, msgChanged. The only argument for the message is an OBJECT

value, which you usually use to pass the UID of the object that sent the
notification.

Posting to Observers

If you want to defer delivery of your notification message so that the receiver
handles it when its input queue is empty, you can 'use msgPostObservers rather
than msgNotifyObservers.

The message taks a pointer to an OBJ_NOTIFY_OBSERVERS structure, just like
msgN otifyObservers.

The status code returned from msgNotifyObservers merely indicates that the
message was posted successfully, it does not indicate the completion status of the
message.

Example of Observer Notification

The following sample from TTTDATA.C shows a utility routine used by the
Tic-Tac-Toe application when it needs to notifY observers.

Example 4,,1

Noti "1190b.set"vers ____________ M-* ________________ ~ ____ ~~ ______ ~ ________ ~_~_~ __ ~~ __ ~ __ ~~~~ ___ ~

/**
TttDataNotifyObservers

Sends notifications.
**/
#define DbgTttDataNotifyObservers(x) \

TttDbgHelper("TttDataNotifyObservers",tttDataDbgSet,Ox1,x)
STATIC STATUS PASCAL
TttDataNotifyObservers(

OBJECT
P ARGS

OBJ NOTIFY OBSERVERS
STATUS

self,
pArgs)

nobs;
s;

DbgTttDataNotifyObservers«"lI»
nobs.msg = msgTttDataChangedi
nobs.pArgs = pArgsi
nobs.lenSend = SizeOf(TTT_DATA_CHANGED)i
ObjCallJmp(msgNotifyObservers, self, &nobs, s, Error);
DbgTttDataNotifyObservers«" r eturn stsOK"»
return stsOKi

Error:
DbgTttDataNotifyObservers«"Error; return Ox%lx",s»
return Si

/* TttDataNotifyObservers */

53

54 PENPOINT ARCHITECTURAL REFERENCE

Part 1 I Class Manager

Getting Obiect and Class Information
These messages allow you to:

• Get information about objects and classes

• Confirm an object's inheritance

• Check the validity of an object or class.

These messages are useful in critical-path areas where a failed message transmission
will crash the application. Table 4-2 lists the object and class information messages.

The table is divided into two sections: the first section contains messages that you
pass directly to the object or class in question; these messages are only useful for
information about objects and classes within your task. The second section
contains messages that you pass to clsO'bject; the pArgs for these messages specify
the object or class you are interested in. You use these messages to find
information out about any object or class in the system.

Tabl~ 4~2

Obiect and Class Information Messages

msgIsA CLASS

msgAncestor IsA CLASS

msgClass P_CLASS

msgOwner P _ OS_ TASK_ID

msgAncestor P_CLASS

msgVersion pNull

msgObjectlsA P_OBJ_IS_A

msgObjectAncestorIsA P _OBJ_ANCESTOR_IS_A

msgObjectClass P _OBJ_CLASS

msgObjectOwner P _OBJ_OWNER

msgObjectValid OBJECT

msgObjectVersion OBJECT

Confirming an Obiecf's Class

Dir~d

Tests if the object's class inherits from the class.

Tests if self inherits from the class.

Passes back the class of the object.

Passes back the task that owns this object.

Passes back the ancestor of the class.

Returns the version of the object.

Using the object and the class in the pArgs. Tests if
the object's class inherits from the class.

Tests if the descendant class inherits from the ancestor.

Passes back the class for the object in pArgs.

Passes back the owning task for the object in pArgs.

Tests that the object in pArgs exists.

Returns the version of the object in pArgs.

To test that an object is an instance of a particular class, send msgIsA to the object
or send msgObjectlsA to clsObject. The only argument to msgIsA is a class UID.
msgObjectlsA takes a pointer to a OBJ_IS_A structure that contains:

object the UID of the object that you want to check.

objClass the UID of the class to which you think object belongs.

If the object is an instance of the specified class, either message returns stsOK.

CHAPTER 4 I MANIPULATING OBJECTS
Getting Obiect and Class Information

Confirming an Obiect's Ancestor
To test that a class inherits from a particular class, send msgAncestorIsA to the
class or send msgObjectAncestorIsA to clsObject. The only argument to
msgAncestorIsA is a class UID. msgObjectAncestorIsA takes a pointer to an
OBJ_ANCESTOR_IS_A structure that contains:

descendant the UID of the class that you want to check.

ancestor the UID of the class that you think is the ancestor of class.

If the class inherits from the specified class, either message returns stsOK.

Getting an Obiect's Class
To get the class that created an object, send msgClass to the object or send
msgObjectClass to clsObject. The only argument to msgClass is a pointer to a
CLASS value. msgObjectClass takes a pointer to an OBJ_CLASS structure that
contains the UID of the object that you want to check (object).

If either message completes successfully, it returns stsOK; msgClass copies the
UID of the class to the CLASS value indicated by pArgs; msgObjectClass passes
back the UID of the class in the objClass field of the OBJ_CLASS structure.

Getting the Owner of an Obiect
To get the owner of an object, send msgOwner to an object or send
msgObjectOwner to clsObject. The only argument to msgOwner is a pointer to
an OS_TASK_ID value. msgObjectOwner takes a pointer to an OBJ_OWNER

structure that contains the UID of the object about which you need information
(object).

If either message completes successfully, it returns stsOK and copies the owner
identification to the OS_TASK_ID value indicated by pArgs.

Getting a Class's Class
To get the immediate ancestor of a particular class, send msgAncestor to the class.
The only argument to the message is a pointer to a CLASS value.

If the message completes successfully, it returns stsOK and copies the UID of the
class to the CLASS value indicated by pArgs.

You can only send this message to a class.

Checking an Obiect for Validity
To check whether an object is valid (that is, whether it still is known to the class
manager), send msgObjectValid to clsClass. The only argument for the message is
the UID of the object that you are checking. There is no local form of this
message.

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

ss •

~

56 PENPOINT ARCHITECTURAL REFERENCE
Part 1 I Class Manager

If the object exists, the message returns stsOK. If the object does not exist, the
message returns stsBadObject. If the object has an invalid ancestor, the message
returns stsBadAncestor.

Checking an Obiect's Version Number

The UID for a well-known object contains a version number. You can check this
version number before you send a message to a class, that way you can be sure that
you are using the correct version of the class.

To get an object's version number, send msgVersion or msgObjectVersion to
clsObject. The only argument for either message is the UID of the object for
which you want the version number.

If the object exists and has a version number, the message returns the version
number (instead of stsOK).

Version numbers are only meaningful for well-known objects; if you send this
message to a dynamic object, it returns stsScope Violation.

If the argument value did not specify an existing object, the message returns
stsBadObject.

GeHing Notification of Obiect Creation

If you set the capability objCapCreateNotify to true before passing msgNew, the
class manager will send msgCreated to the object when it is fully initialized. The
message passes a _NEW structure for the object being created.

Properties
Properties allow objects to use additional storage space administered by the class
manager. Properties are useful if your objects need transient additional storage. By
using properties, you don't have to waste four bytes of instance data for a pointer
that is only occasionally used; you just create the property when you need it.
Properties also allow other clients to attach information to an object.

Each object maintains its own property list. Since all clients of an object share the
object's property list, you need a unique name for each property you add to an
object. You generate unique property names with the MakeTagO macro, using an
administered value that belongs to you and your own choice of tag ID.

Creating a Property

To create a property for an object, you send msgSetProp to that object. The
message takes a pointer to an OBJ_PROP structure that contains:

key a key value.

propId a tag to identify the property.

pData a pointer to the data to be copied to the property.

length the number of bytes to be copied to the property.

4.5.1

CHAPTER 4 I MANIPULATING OBJECTS

Object Destruction

To clear a property, you send msgSetProp to the object with pData set to NULL,

and length set to o.

Retrieving Properties

To get a copy of the data in a property, send msgProp to self. The message takes a
pointer to an OBJ_PROP structure that contains:

propld the tag for the property.

pData a pointer to a local buffer that will receive the property data.

length the size of the buffer indicated by pData ..

If the property does not exist, the length value passed back is O.

Obiect Destruction
Because an object may be depend on objects that depend on it, the Class Manager
defines a protocol that involves several steps to destroy an object. This provides
plenty of opportunity for objects to veto their destruction or to notify all related
objects that they are going away.

There are two aspects to destroying an object:

• The client that wants to destroy the object sends msgDestroy to the object .

• The class manager then sends a series of freeing messages to the object to be
destroyed.

Destroying an Obiect

To destroy an object, you send it msgDestroy. The message takes an OBJ_KEY

value that specifies the key used to create the object.

Do not send msgFree to an object; only the Class Manager should send msgFree.

The class manager handles msgDestroy and sends a series of freeing messages to
the object being destroyed. If the object eventually destroys itself, msgDestroy
returns stsO K.

It is often necessary to use ObjectPostO instead of ObjectCallO with msgDestroy.
For example, if an instance of clsButton sends your object msgButtonNotify, and
your method uses ObjectCallO to send msgDestroy to that button, the button
will fault after your method returns to it because its instance data will have been
freed. In general, you cannot use ObjectCallO to send msgDestroy to any object
(or any window subtree containing an object) that is notifying you of some
interesting event.

Handling Obiect Free Protocol

When you send msgDestroy to an object, the class manager sends these messages
to the object being destroyed:

1 msgFreeOK, which gives the object the opportunity to veto its destruction.

4.6

58 PENPOINT ARCHITECTURAL REFERENCE
Part 1 I Class Manager

2 msgFreeing, which tells the object that it is time to clean up and remove
itself from observer lists.

3 msgFree, which tells the object to destroy its data structures.

After the object handles msgFreeing, the class manager also sends
msgFreePending to all observers of the object.

In each of these steps, the object should pass the message to its ancestor with
ObjectCallAncestorO. This gives all the ancestor classes the chance to veto, to
clean up, and destroy data structures.

The object being destroyed should not handle msgDestroy directly.

The following sections describe the freeing messages in more detail.

'P-v' Handling msgFreeOK

When you receive msgFreeOK, the message passes the OBJ_KEY value used by the
client that sent msgDestroy. You should verify that it is OK to destroy the object.
If it is not OK, return stsVetoed.

If it is OK to destroy the object, pass msgFreeOK to your ancestor; often sending
the message to your ancestor is all you have to do. When the message reaches
clsObject, it checks the capability objCapFree. If no key is necessary, it returns
stsOK. If the capability is false and the object's key matches the pArgs, clsObject
returns stsO K .. Otherwise clsObject returns stsProtection Violation.

If your ancestor returns stsO K, return stsO K. If your ancestor returns an error
status value, return the error value.

You must not assume that just because you returned stsOK to msgFreeOK that
the object will, in fact, be destroyed-some other sub-class could veto the
destruction of the object.

If msgFreeOK returns to the class manager with stsOK, the class manager
continues with the protocol. Otherwise, the class manager returns from
msgDestroy to its caller with the status value that you returned.

'P"" Handling msgFreeing

When you receive msgFreeing, it means that all ancestor classes agreed that the
object can be destroyed. Most classes ignore msgFreeing.

Your handler for msgFreeing should clean up its data in preparation for destruction
of the object (such as removing itself from notification lists). When you have finished
your work, pass msgFreeing to your ancestor.

When your ancestor returns, return its status value to your caller.

~ Handling msgFreePending

Before the class manager sends msgFree to the object, it sends msgFreePending to
the object's observers. In effect, msgFreePending is the class manager's notification
to observers that the object is about to go away.

4.6.2.2

4.6.2.3

CHAPTER 4 I MANIPULATING OBJECTS
Obiect Destruction

When an observer receives msgFreePending, the observed object is still valid and
will respond to messages. An observer might take this opportunity to query the
state of the object one last time.

Most classes that observe objects will respond to msgFreePending, if only to note
that they had better not rely on the existence of the observed object.

As with all observer notifications in PenPoint, the class manager ignores the status
returned from msgFreePending.

Handling msgFree

msgFree is the last step in the destruction of an object. Most classes should handle
msgFree. When you receive msgFree, you must destroy objects and destroy and
deallocate data structures.

The last thing that you do with msgFree is pass it to your ancestor. You usually
call ancestor before you do anything else, but when you passmsgFree to your
ancestor, you won't see another message again.

When msgFree reaches clsObject, clsObject finishes the destruction by
invalidating the object and releasing resources allocated to that object.

Handling Failures During msglnit and msgRestore

msglnit and msgRestore are clsObject messages used to intialize instances of
objects and to restore instances after they have been saved.

An object must be in prepared to handle msgDestroy after msglnit or msgRestore
returns. If the Class Manager receives anything other than stsOK from msglnit or
msgRestore, it will turn around and send msgDestroy to the object.

When you leave your handler for msglnit or msgRestore, the object must be
prepared so that msgDestroy can destroy the object. This must be true even if
the allocations of this class or one of the ancestor classes failed.

To give msgDestroy something to destroy, the handler for msglnit and
msgRestore should do something like the following, in order. Obviously there are
several different coding styles that achieve the same effect.

MyHandler (...)
{

4.6.2.4

StsJmp(ObjectCallAncestor(msglnit or msgRestore, ...), s, ErrorExit)i
StsJmp(AllocateMylnstanceData(...), s, ErrorExit)i
ObjectWrite(my instance data)i
return stsOKi

ErrorExit:
ObjectWrite(some default instance data, perhaps NULL)
return Si

59

60 PENPOINT ARCHITECTURAL REFERENCE

Part 1 / Class Manager

Scavenging
When a task is terminated, the Class Manager destroys all objects owned by that task
on a class-by-class basis. This process of destroying objects is called scavenging. Clients
cannot scavenge; only the Class Manager can start scavenging.

Mutating Obiects
Occasionally you might need to override the behavior of an existing object by
changing the object's ancestor. This is a risky thing to do and should be avoided
if possible; it is not intended for general use. However, there are times when
overriding behavior is u~avoidable. At these times, you can send msgMutate to
the object.

The message takes a pointer to an OBJ_MUTATE structure, which contains:

newClass the CLASS of the new ancestor for the object.

key a key, if objCapMutate is false.

The size of the instance data for the original ancestor and the new ancestor must
be equal. If the size of the new and old instance data is not equal, the message fails
with stsSizeLimit.

If the message completes successfully, it returns stsOK. If the new Ancestor class is
not valid, the message returns stsBadAncestor.

Part 2 /
PenPoint Application

Frame1lWork

Chapter 5 / Introduction 67 '" Chapter 8 / Life Cycles 95

Overview 5.1 68 Application Class Life Cycle 8.1 95

Application Framework Classes 5.2 68 Installing an Application 8.1.1 96

ApplicatIon Class (clsApp) 5.2.1 69 Deinstalling an Application 8.1.2 99

Application Manager (clsAppMgr) 5.2.2 69 Document Life ~ycle 8.2 100

Application Monitor (clsAppMonitor) 5.2.3 69 Creating a Document 8.2.1 102

Embedded Window (clsEmbeddedWin) 5.2.4 69 Activating a Document 8.2.2 102

Marks (clsMark) 5.2.5 69 Opening a Document 8.2.3 107

View (clsView) 5.2.6 69 Closing a Document 8.2.4 109

Observed Object (Any Class Manager Class) 5.2.7 70 Terminating a Document 8.2.5 110

Resource File Handle (clsResFile) 5.2.8 70 Reactivating a Document 8.2.6 113

Application Directory Handle 5.2.9 70 Deleting a Document 8.2.7 115
(clsAppDirHandle)

Application Writer's Overview 5.3 71 Chapter 9 / Embedded Documents 117

mam 5.3.1 72 Embedded Window Concepts 9.1 117
msgInit 5.3.2 72 Marking Support 9.1.1 118
msgAppInit 5.3.3 72 Descendants of clsEmbeddedWin 9.1.2 118
msgAppOpen 5.3.4 72 Moving or Copying Between Embedded
msgAppClose 5.3.5 73 Windows 9.2 118
msgSave 5.3.6 73 Separate Messages 9.2.1 118
msgRestore 5.3.7 73 Why Use the Move and Copy Protocol? 9.2.2 119
msgFree 5.3.8 73

The Move and Copy Protocol 9.3 119
Organization of Part 2 5.4 73 Requesting a Move or Copy 9.3.1 120
Other Sources of Information 5.5 74 Identify the Selection 9.3.2 120

Chapter 6 / Application
Let the User Indicate the Destination 9.3.3 120

Tell the Destination to Move or Copy 9.3.4 121
Environment Concepts 75 Determining the Data Type 9.3.5 121

Applications and Components 6.1 76 OK the Move or Copy 9.3.6 121

Embedding Documents 6.2 77 Getting the Destination in the File System 9.3.7 122

Application Data 6.3 77 Moving or Copying the Data 9.3.8 122

Saving and Restoring Data 6.3.1 77
Getting the Exact Pen Location 9.3.9 123

Observing Objects 6.3.2 78 Example: Moving in Tic-Tac-Toe 9.4 123

Displaying Data 6.3.3 78 The User Requests a Move 9.4.1 123

Saved Documents 6.4 78 Presenting a Move/Copy Icon 9.4.2 124

The Move or Copy Icon 9.4.3 125

Chapter 7 / Application Concepts 81 Determining the Data Type 9.4.4 125

What is a PenPoint Application?
Moving the Data 9.4.5 126

7.1 81

Simple Classes and Application Classes
Intercepted Messages 9.5 127

7.2 82

A Look at Simple Classes 7.2.1 82
Gestures and Selection 9.6 128

Metaclasses 7.2.2 84 Chapter 10 / Mark Concepts
Application Classes

129
7.2.3 86

The Document 7.3 87
Mark Class 10.1 129

Information on Screen 7.3.1 87 Parts of a Mark 10.1.1 130

The File System and Documents 7.3.2 88 Implementing Tokens 10.2 130

The Document as a Process 7.3.3 89 Table Mapping 10.2.1 131

The Document as an Object 7.3.4 92 Stamp Mapping 10.2.2 131

The Parts of a Document 7.4 92

How to Support Marks 10.3 132 Chapter 14 / The Application Class 157

Creating and Holding Marks 10.4 133 clsApp Messages 14.1 157
Link Files 10.5 134 Document Hierarchy Messages 14.2 161

Chapter 11 / Printing
Managing Embedded Documents 14.2.1 161

135 Document Links 14.2.2 161
Concepts 11.1 135 Getting Document Information 14.2.3 161

Printing Embedded Documents 11.1.1 136 Setting Hot Mode 14.2.4 162
Making Pagination Decisions 11.1.2 137 Renaming a Document 14.2.5 162

Option Sheets for Printing 11.2 138 Getting an Application's Name 14.2.6 163

Handling msgAppAqdCards 11.2.1 138 Setting an Application's Title 14.2.7 163

Print Protocol Description 11.3 139 Document Window Messages 14.3 163

Print Layout Driver (PLD) 11.3.1 139 Setting the Main Window 14.3.1 163

Removing Frame Decorations 11.3.2 140 Standard Application Menus 14.4 163
Pagination 11.3.3 141 Document and Edit Menus 14.4.1 165
Handling Embeddees 11.3.4 142 Options Menu Protocol 14.4.2 168
Default Printing Behavior 11.3.5 143 Check Gesture Handling 14.4.3 169

Chapter 12 / The Application
Observing System Preferences 14.5 170

145
Manager Class Advanced Messages 14.6 171

Setting a Parent Document 14.6.1 171
Application Manager Metrics 12.1 145 Setting Priority 14.6.2 171
Installing aNew Class 12.2 146

Creating aNew Document 12.3 148 Chapter 15 / The View Class 173

Activating an Application Instance 12.4 148 View Concepts 15.1 173

Moving or Copying an Application Instance 12.5 148 View Filing 15.2 174

Deleting Application Instances 12.6 149 Creating a New View 15.3 174

Getting Metrics for a Class 12.7 149 Setting the Data Object 15.4 174

Observer Messages 12.8 150 Getting the Data Object 15.5 174

Subclassing cls View 15.6 175
Chapter 13 / The Application 151
Monitor Class Chapter 16 / The Application 177

Application Monitor Concepts 13.1 151 Directory Handle Class

Application Monitor in Installation 13.1.1 151 Using clsAppDir 16.1 177
Other Application Monitor Functions 13.1.2 152 Creating an Application Directory Handle 16.2 179
Stationery, Accessories, and Help 13.1.3 152

Destroying an Application Directory Handle 16.3 179
clsAppMonitor Messages 13.2 152

Getting the Application Directory Global 16.4 179
Using clsAppMonitor Messages 13.3 153 Sequence Number

Getting App Monitor Metrics 13.3.1 153 Getting and Setting Application Directory 16.5 180
Loading and Unloading Stationery 13.3.2 153 Attributes
Loading and Unloading Help 13.3.3 154 Getting and Setting All Attributes 16.5.1 180
Loading Other Information 13.3.4 154 Getting or Setting Individual Attributes 16.5.2 180

Subclassing clsAppMonitor 13.4 155 Getting Attributes for Many Application 16.6 182
Superclass Messages 13.4.1 155 Directories
Handling clsAppMonitor Messages 13.4.2 155 Determining a Document's Name 16.7 183

Counting Embedded Documents 16.8 183

Setting a Tab 16.9 183

--.. _--_ .. -----

Chapter 17'/ Container 185 Messages Sent to Components by 20.2 201

Application Classes msgMarkDeliver
Positioning Messages 20.2.1 202

Concepts 17.1 185
Messages Sent to Components That Have 20.2.2 202

Container Application Class 17.2 186 Children
Root Container Application Class 17.3 186 Messages Sent by Holders 20.3 202

dsRootContainerApp Concepts 17.3.1 187 Sending Messages to Marks 20.3.1 202
dsRootContainerApp Messages 17.3.2 187 Setting a Mark to a Component 20.3.2 203
Changing the Current Document 17.3.3 187 Getting a Component's UUID and UID 20.3.3 203
Cancelling the Reference Document 17.3.4 188 Copying a Mark 20.3.4 203
Turning to the Contents Page 17.3.5 188

List of Figures
Chapter 18 / Embedded Window 5-1 PenPoint Application F ramework Class~s 71
Class 189 Hierarchy

Using clsEmbeddedWin 18.1 189 6-1 PenPoint Software Hierarchy 76

Creating an Embedded Window 18.1.1 190 7-1 Predefined Classes 83
Destroying an Embedded Window 18.1.2 190 7-2 A Simple Class 84
Getting Embedded Window Metrics 18.1.3 190

7-3 An Instance of a Simple Class 84
Getting and Setting the Style of an Embedded 18.1.4 190
Window 7-4 Predefined Classes with clsAppMgr 85

Beginning a Move or Copy Operation 18.1.5 191 7-5 Inheritance of an Application Class 86

Moving or Copying an Embedded Window 18.1.6 192 7-6 Application Hierarchy: Screen Perspective 88
Confirming the Move or Copy 18.1.7 192 7-7 Application Hierarchy: File System 89
Getting the Destination of a Move or Copy 18.1.8 192 Perspective
Handling Child Embedded Windows 18.1.9 193 7-8 Application Hierarchy: Process Perspective 91
Getting Pen Offsets 18.1.10193

7-9 Parts of a Document Process 93 Setting an Embedded Window's UUID 18.1.11193
8-1 Application Class State Diagram 95

Chapter 19 / Application 195 8-2 Document State Diagram 100
Window Class 8-3 New Document Process 103

Using clsApp Win Messages 19.1 195 8-4 Document with Objects and Frame 107
Creating an Embedded Application 19.1.1 196 8-5 Opened Document 109
Changing the Style of an Application Window 19.1.2 196

8-6 Document after Termination 111
Opening an Application Window 19.1.3 196

Parts of a Mark Closing an Application Window 19.1.4 196 10-1 130

Getting the Metrics of an Application Window 19.1.5 196 17-1 Container Application Class Hierarchy 186

Chapter 20 / The Mark Class 199 List of Tables

Marks Sent to Components 20.1 200 8-1 Application Class States 96

Creating a Token 20.1.1 200 8-2 Document States 100

Deleting a Token 20.1.2 201 9-1 Embedded Window Gestures 127

Comparing Tokens 20.1.3 201 11-1 Printing Protocol Messages 140
Finding a Component's Ancestor 20.1.4 201 12-1 clsAppMgr Messages 146
Finding a Component's Parent 20.1.5 201

12-2 Flags Described by APP _MGR_FlAGS 147
Setting the UUIDs 20.1.6 201

Validating a Component 20.1.7 201 13-1 clsAppMonitorMessages 152

14-1 clsApp Messages 157

14-2 How clsApp Handles Menu Button Tags 164

14-3 Standard Application Menus 165

15-1 cls ViewMessages 173

16-1 clsAppDir Messages 178

16-2 File Mode Flags 180

17-1 clsRootContainerApp Messages 187

18-1 clsEmbeddedWin Messages 189

19-1 clsApp Win Messages 195

20-1 The Class Mark Messages 199

Chapter 5 / Introduction

Part 2: Application Framework describes the PenPoint Application Framework and
its associated classes.

The PenPoint Application Framework encompasses a number of topics, including
the file system, file organization, running processes, and screen displays.

Because this part covers some complicated topics, there is bound to be some
confusion about the terms used here.

An application is the executable file that you (the software designer) create
to run on the PenPoineM operating system. The application specifies how
its documents will respond to user actions and other messages.

The PenPoint Application Framework is a collection of classes that the
PenPoint operating system uses to run applications.

An application class is a PenPoint class that contains the code and
initialization data used to create documents. When the user installs your
application (your executable code), the PenPoint Application Framework
creates the application class for your application.

A Notebook is an application written by GO that provides the user
interface for the application framework and, along with the Section
application, maintains the document hierarchy. The Notebook sends
PenPoint Application Framework messages to documents to create, open,
close, and destroy documents.

A document is a set of objects and data created by an application class that
is able to interact with the user and the PenPoint Application
Framework. When closed, a document consists of a series of files and
directories in the file system; when active, a document consists of a
system process, an number of objects (including an instance of the
application class), in addition to the files and directories in the file system.

An instance of an application class, or an application object is an instance
of an application class that provides a document with an interface to the
PenPoint Application Framework.

An embedded document is a document that is contained within another
document. Embedded documents are not shown in the Notebook Table
of Contents.

An open document is a document that is currently displayed on the screen.

68 PEN POINT ARCHITECTURAL REFERENCE

Part 2 / PenPoint Application Framework

Overview
The PenPoint operating system and its Notebook metaphor differ greatly from
other operating systems. In other operating systems, the user issues a command or
clicks on an icon to run a particular program. The user must also specify which
data file to open. When finished with a task, the user must save the data to some
location before quitting, or risk loss of information.

In PenPoint, the user turns to the page that contains the desired document.
PenPoint knows where the document's data is stored and which application to
run. When the user turns to another page, PenPoint knows exactly where to store
the modified data.

In short, each page in the Notebook contains a document; an open document is a
running application.

To support this level of user friendliness, applications must interact much more
with the operating system than with traditional operating systems. The PenPoint
Application Framework provides the tools for this interaction.

The Notebook is actually a specialized application that is started when you boot
the PenPoint computer. The Notebook uses the PenPoint Application Framework,
just as any other application.

Much of the PenPoint Application Framework consists of messages defined by
several classes. When your application receives some of these messages, it must
perform specific processing actions; when it receives other messages, your
application must pass the messages to its ancestor.

Application Framework Classes
The PenPoint Application Framework consists of seven basic classes:

• Application manager class

• Application class

• Embedded window class

• Mark class

• View class

• Resource file class

• Application directory class

In addition to the~e classes, the PenPoint Application Framework makes extensive
use of the class manager's utility classes, described in Part 9: Utility Classes.

5 .. 1

5.2

CHAPTER 5 I INTRODUCTION 69

Application Framework Classes

Application Class (clsApp)
• Manages program startup, shutdown, checkpointing, and backup.

• Manages the application hierarchy.

• Controls application embedding.

• Is a descendant of clsObject.

• Creates views and objects.

• Informs its views and objects when and where to file.

Application Manager (clsAppMgr)
• Instances of clsAppMgr maintain information about each application class.

+" Each application class creates an application manager instance that knows
about that application.

• Is a descendant of clsClass.

Application Monitor (clsAppMonitor)
• Drives application installation and'deinstallation

• Reactivates applications on warm boot.

Embedded Window (clsEmbeddedWin)

• Controls view embedding.

• Provides move and copy behavior for components.

• Is a descendant of clsWin.

Marks (clsMark)
• Provides a mechanism to refer to a data item within a component.

• Provides a mechanism for traversing embedded documents.

View (clsView)

• Manages the user interface.

• Displays data for an object.

• Controls view embedding.

• Is a descendant of clsEmbeddedWin.

• Observes its objects.

5.2.1

5.2.2

70 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

Observed Obiect (Any Class Manager Class)

• Manages a list of observers.

• Communicates state changes and other events to its observers.

• Any object can be ·observed.

• Is the mechanism used by viewed objects to notify their views of changes.

Resource File Handle (clsResFile)

• Manages the structured reading and writing of objects to a file.

• Can re-create objects and their classes when their data is read in.

• Is a descendant of clsFileHandle.

• Used by many application classes to store or re-create their objects to and
from the file system.

• Used by viewed objects during file writing to file their multiple views.

Application Directory Handle (clsAppDirHandle)

• Represents a document in the document hierarchy.

• Manages application directories.

• Provides a working directory in which applications can checkpoint their data.

• Is a descendant of clsDirHandle.

• Used by applications to communicate with child (embedded) documents.

The PenPoint Application Framework classes are related in the class hierarchy
shown in Figure 5-1.

CHAPTER 5 / INTRODUCTION 71

Application Writer's Overview

Application Writer's Overview
The most elementary PenPoint application doesn't do anything. It lets the
PenPoint Application Framework do all the work by allowing clsApp to handle all
PenPoint Application Framework messages. You can see this in the two sample
programs, Empty Application and Template Application, described in the
PenPoint Application Writing Guide. The sources for these applications are in
\PENPOINT\SDK\SAMPLE.

As your program increases in sophistication, your application has to handle more
and more PenPoint Application Framework messages. This quick-start section lists
the PenPoint Application Framework messages that most applications have to
handle and describes briefly how to handle them. The messages are:

main 0
msglnit

msgApplnit

msgAppOpen

msgAppClose

msgFree

msgSave

msgRestore

5.3

mainO is actually a function.

72 PEN POINT ARCHITECTURAL REFERENCE

Part 2 / PenPoint Application Framework

maine)
The function mainO is the entry point to your application. An application
executable file must have a mainO function.

main() has two primary purposes:

• Installing your application class .

• Starting the dispatch loop for each document that uses your application.

The process Count parameter to mainO indicates how many other processes are
currently running this application program. When processCount is 0, the
application is being installed, so you call a routine to install your application class
and then call AppMonitorMainO, a PenPoint function that starts the application
monitor for your application class.

When processCount is greater than 0, the user is opening a document that uses
your application, so you call AppMainO, a PenPoint function that creates an
instance of your application class, passes it messages to initialize its data, and
enters a dispatch loop to receive messages.

msglnit

Your application's method table should call ancestor before handling msgInit. In
response to msgInit, clsApp allocates storage for your application's· instance data in
protected memory.

When your application receives msgInit, it should initialize its instance data and
use the function ObjectWrite to save the initialized instance data to protected
memory.

msgApplnit

Your application's method table should call the application's ancestor before
handling msgAppInit. In response to msgAppInit, clsApp creates an object
resource file and main window for the application.

When your application receives msgAppInit, it creates objects that it will use to
store permanent data for the document (as opposed to window and control
objects that it displays on screen).

msgAppOpen
Your application's method table should call the application's ancestor after
handling msgAppOpen.

When your application receives msgAppOpen, it creates windows to display data
and any other control objects and returns.

In response to msgAppOpen, clsApp then inserts the document's frame into the
main window, which displays the document on screen.

5.3.1

CHAPTER 5 I INTRODUCTION 73
Organization of Part 2

~ msgAppClose 5.3.5

Your application's method table should call the application's ancestor before
handling msgAppClose. In response to msgAppClose, clsApp extracts the frame
from the main window.

When your application receives msgAppClose, it destroys its windows and control
objects.

msgSave

Your application's method table should call the application's ancestor before
handling msgSave. In response to msgSave, your application's ancestors save data
and objects that they created. clsApp saves your main window, any data objects
observed by views, and, optionally, its client window.

When your application receives msgSave, it should:

• Write data that isn't maintained in objects to the resource file .

• Save "any permanent objects.

msgRestore

Your application's method table should call the application's ancestor before
handling msgRestore. In response to msgRestore, your application's ancestors
restore data and objects that they saved earlier. clsApp restores your main window
and its client window.

When your application receives msgRestore, it should restore any data that it
saved in msgSave.

msgFree

Your application's method table should call the application's ancestor after
handling msgFree.

When your application receives msgFree, it should destroy any permanent objects
that it created and frees any allocated memory. (The application receives msgSave
before it receives msgFree.)

In response to msgFree, your application's ancestors destroy objects and free
memory that they allocated.

Organization of Part 2
Part 2 is divided into two sub-parts. Chapters 5 through 11 present the PenPoint
Application Framework concepts. Chapters 12 through 20 describe each of the
classes used by the PenPoint Application Framework and their significant messages.

Chapter 5, Introduction, provides an introduction to the PenPoint
Application Framework and describes the organization of Part 2.

5.3.6

5.4

74 PEN POINT ARCHITECTURAL REFERENCE
Part 2 I PenPoint Application Framework

Chapter 6, Application Environment Concepts, describes the PenPoint
environment that supports applications and explains why the PenPoint
Application Framework is necessary.

Chapter 7, Application Concepts, describes the applications and their parts.
This chapter also provides a brief description of the classes that make up
the PenPoint Application Framework.

Chapter 8, Life Cycles, describes the life cycles of application classes and
documents. The life cycles are presented from both the user perspective
and the application perspective.

Chapter 9, Embedded Documents, describes the concepts related to
embedded windows and embedded applications.

Chapter 10, Mark Concepts, describes the concepts used when examining
applications with embedded documents.

Chapter 11, Printing, describes what you have to do to print.

The remaining chapters discuss the individual classes used by the PenPoint
Application Framework.

Chapter 12, The Application Manager Class, describes the messages defined
by clsAppMgr.

Chapter 13, The Application Monitor Class, describes the messages defined
by clsAppMonitor.

Chapter 14, The Application Class, describes the messages defined by clsApp.

Chapter 15, The View Class, describes the messages defined by clsView.

Chapter 16, The Application Directory Handle Class, describes the messages
defined by clsAppDir.

Chapter 17, Container Application Classes, describes the two classes that
implement containers (sections) and root containers (the Notebook).

Chapter 18, Embedded Windows Class, describes the messages defined by
clsEmbeddedWin.

Chapter 19, Application Windows Class, describes the messages defined by
clsAppWin.

Chapter 20, The Mark Class, describes the messages defined by clsMark.

Other Sources of Information
Part 2 should be read in conjunction with the PenPoint Application Writing Guide.
While Part 2 describes what the PenPoint Application Framework does for you,
the PenPoint Application Writing Guide describes how you use the PenPoint
Application Framework when you write an application.

Chapter 6 / Application
EnvironMent Concepts

The PenPoint Application Framework provides the environment in which all
PenPoint applications run. It is not a user interface shell or window system that
applications choose to use. If you want your application to fit into the Notebook
metaphor and interact correctly with other applications, it must use the PenPoint
Application Framework. Programs that run under the PenPoint™ operating system
must use the PenPoint Application Framework; there is no other way to start a
program in PenPoint.

The PenPoint operating system uses the PenPoint Application Framework
extensively to implement its Notebook user interface. The PenPoint Application
Writing Guide explains how your applications fit into an application hierarchy,
which includes the pages and section tabs of a Notebook. The PenPoint Application
Writing Guide also provides a good introduction to the ideas behind the PenPoint
Application Framework.

The PenPoint Application Framework provides a foundation on which you build
PenPoint applications. It is implemented as a collection of Pen Point classes that
you must use in order to write an application.

The following sections discuss aspects of applications and how they relate to the
PenPoint Application Framework:

• Relationships between applications and components.

• Embedded applications.

• Saving and restoring application data.

• Saved documents and application directories.

• Missing application classes.

Your PenPoint application will not
run unless it uses the PenPoint
Application Framework.

76 PENPOINT ARCHITECTURAL REFERENCE

Part 2 I PenPoint Application Framework

Applications and Components
Figure 6-1 shows the hierarchy of Pen Point software.

6~1

PenPoint Software Hierarchy

An application is a PenPoint class that defines how its active documents will
interact with the user or other devices to perform some useful work. To fit in the
PenPoint Notebook environment, an application must also define how its active
documents perform housekeeping operations, such as startup, shutdown, filing,
and message dispatching provided by the PenPoint Application Framework.

Components are classes that perform more specialized tasks: the file system,
windows, buttons, graphics, tables, text, lists, and many other classes. Your
application is responsible for orchestrating component behavior, including
creation, visual positioning, filing, and destruction. A well-designed PenPoint
application will take advantage of components wherever possible.

Components save you from having to write your own routines to perform these
tasks. However, if a component doesn't provide the functionality that you need,
you can either subclass an existing component class or create an entirely new
component class. You can document and publish your new component class so
that other application writers can take advantage of it.

In contrast with applications and components, services are PenPoint programs
that do not have a user interface, but do useful work in response to requests from
applications and components. Typical examples of services are MIL devices (device
drivers), database engines, or E-Mail backends. If you are contemplating a

CHAPTER 6 I APPLICATION ENVIRONMENT CONCEPTS 77
Application Data

PenPoint program that performs this type of task, you should read Part 13:
Writing PenPoint Services of the PenPoint Architectural Reference.

Embedding Documents 6.2

Just as someone might fill a page of a paper notebook with·text, a diagram, and
some notes and figures, PenPoint users should be able to intermix different
applications. The Notebook user interface makes this easy: the user just creates a
new document inside an existing document, or moves or copies one document
into another.

To support this style of interaction, the PenPoint Application Framework provides
facilities for applications and components to embed inside of other applications
and components without detailed knowledge about what is being embedded.
Write your applications so that the user can embed another well-behaved
application within it.

When you create a new application class, you specify whether the application
allows embedded documents. Embedded documents allow an embedded window
.and its parent application to negotiate how much space the embedded document
can use. For more information on embedded windows, see Chapter 9, Embedded
Documents.

The PenPoint Application Framework classes allow applications and components
to accept or reject embedding requests, determine the size and position of the
embedded objects, and tell the embedded objects when to file their data.

Application Data
Your application is responsible for maintaining, displaying, and filing its
application data.

Saving and Restoring Data

clsObject and clsResFile define messages that tell objects when to save and restore
their data. Your application must be prepared to receive these messages and act on
them. Your application can maintain its· own data, in which case it is responsible
for performing the necessary read and write operations. However, if your appli
cation stores its data in objects, it simply tells the handle for the resource file to
send, save, or restore messages to the objects.

Component classes (such as lists, tables, and text) file their own data. For
specialized types of data, you must write your own component class that can save
and restore its data. You need only write the component class once and you can
use it many times.

6.3

6.3.1

Each object is responsible for
saving and restoring its own
data. This is a key point of the
PenPoint operating system.

78 PENPOINT ARCHITECTURAL REFERENCE

Part 2 I Pen Point Application Framework

. Observing Obiects
Most applications go beyond creating descendants of clsObject and structure their
data into observable objects, which they then observe. The Class Manager allows
an object to keep track of other objects that are interested in that object, and to
send them messages when it changes. Such a style of interaction makes it easier for
applications to support multiple views of the same data: the data is maintained by
an observable object that notifies multiple views when the data changes.

Displaying Data
Usually, your applic~tion maintains its data as separate objects. Each object
is responsible for filing its own data. Your application can use views to display
the data.

As mentioned in the PenPoint Application Writing Guide, a view is a specialized
descendent of clsWin that displays a data object in its window. The data object
sends a message to the view when its data changes; the view takes care of
redisplaying the data. An application can associate more than one view with the
same data object.

Using views to display data objects automatically sends filing messages to its data
objects. Your application doesn't have to bother sending the filing messages to the
viewed objects. (However, the objects must be able to handle the filing messages.)

With careful design, your application data should know nothing about the form
of your application's user interface, nor whether your application is on screen, nor
even if your application has a user interface at all. The data objects simply respond
to messages on behalf of external agents.

Saved Documents
Each document has its own directory in the file system. The PenPoint Application
Framework helps to coordinate the location of each application directory.

The Notebook Table of Contents displays the list of documents. To the user, it
looks like each of the documents is ready and available. When the user turns to a
page, the document is visible; when the user turns to another page, another
document is visible. The user doesn't realize that when a document is visible on
screen, its application is running; when the document is not on screen, usually its
application is not running and its data is saved in memory.

Actually, the Notebook Table of Contents displays a list of document directories in
the file system. Each directory contains a resource file for the document's instance
data and an attribute that indicates the application that created the document.

When the user turns to a particular document, the PenPoint Application
Framework creates a process running an instance of the application and tells that
process to read in the document's data from the resource file. When the user turns
away from the page, the PenPoint Application Framework tells the document to
save its instance data and terminates the process.

CHAPTER 6 / APPLICATION ENVIRONMENT CONCEPTS 79

This is how documents survive while the power is off; documents are active only
while they are on the screen. When a document is not visible on the screen, its
data is safely stored in the file system.

Saved Documents

When a document runs in
hot mode it closes its
windows on a page turn,
but the process does not
terminate.

Chapter 7 / Application Concepts

This chapter describes PenPoint applications and how they relate to the
PenPoint™ Application Framework and the Notebook. It does not discuss
how to send or respond to Penpoint Application Framework messages (that
is covered in Chapter 8).

The following topics are covered in this chapter:

• How application classes differ from other classes.

• How application classes relate to application instances.

• How a document is represented on the screen, in the file system, and as a
process in the PenPoint operating system.

• The parts that make up an application.

The chapter concludes with a table that summarizes the purposes and
relationships of the PenPoint Application Framework classes.

What is a PenPoint Application?
In its simplest form, a PenPoint application is an executable file that can create
and maintain documents in the PenPoint computer.

An application contains a routine to create an application class, and methods that
handle messages sent to instances of an application class. The application class is
an instance of clsAppMgr.

When the user installs the application, the application invokes the routine to
create the application class. An installed application class is an active process in the
PenPoint computer.

When the user creates a document, the Notebook responds by creating an
instance of the appropriate application class. When active, a document is also a
process in the PenPoint computer. In most cases when a document is active, it is
displayed on screen. There are times, such as printing, when a document is active
but not on screen.

When the user taps or writes on the document, the methods defined in the
application class perform the work for the document.

82 PENPOINT ARCHITECTURAL REFERENCE

Part 2 / Pen Point Application Framework

Simple Classes and Application Classes
In Part 1: The Class Manager, we saw how classes generate instances of themselves.
Clients use instances of a class to describe particular sets of data. For example, a
client can request clsList to create two list objects; in each of those lists, the client
main tains separate sets of data.

Similarly, an application class generates application instances. Each application
instance describes the set of data that makes up a document. When the user turns
to a document in the Notebook, the PenPoint Application Framework creates an
application instance that manages that document. In fact, when we use the term
document, we are referring to both the application instance and the data that
make up that document.

When you write an application, you are actually defining a new application class.
The PenPoint Application Framework uses your application class to create new
documents. When the user installs an application, the PenPoint Application
Framework works with your application to create an application class. When the
PenPoint Application Framework sends msgNew to your application class, it
creates a document.

A Look at Simple Classes
Before we continue our discussion of application classes, let's take a look at classes
and their relationship to clsClass.

All classes and instances in the PenPoint operating system are objects, represented
by a 32-bit UID (unique identifier). An object is an instance of a particular class.
When you send msgN ew to a class, the class creates a new object. When you send
msgNew to clsClass, the new object created by clsClass is a new class.

clsClass is a special class whose sole purpose is to create and destroy classes.
Because clsClass cannot create itself, PenPoint creates clsClass at boot time.
clsClass inherits from clsObject.

One of the arguments in msgNew to clsClass specifies the ancestor of the new
class. The new class inherits the behavior of its ancestor class.

When an instance of a class receives a message, it can handle the message or it can
pass the message to its ancestor. The ancestor can handle the message or pass the
message to its ancestor, and so on, up to clsObject. clsObject is another special
class, which is the great ancestor of all classes, including clsClass. Because clsClass
inherits from clsObject,clsClass cannot create clsObject. Therefore PenPoint
creates clsObject at boot time.

Figure 7-1 shows clsClass and clsObject in the context of the system process. In·
this and following drawings, the objects are depicted as lozenges. The label above
the object identifies the specific object. The bottom-most class listed inside an
object tells what class created the object (and therefore tells you what the object
is). Thus, in the figure, both clsObject and clsClass are instances of clsObject.

This paragraph provides a key to
the next series of figures.

CHAPTER 7 I APPLICATION CONCEPTS 83
Simple Classes and Application Classes

Labeling the box that contains clsObject and clsClass a "system process" is a gross
simplification; the PenPoint operating system uses several processes.

This example from the Tic-Tac-Toe sample application shows a client creating a
new class called clsTttData.

CLASS NEW new;
STATUS s;
ObjCallJrnp(rnsgNewDefaults, clsClass, &new, s, Error);
new.object.uid clsTttData;
new.object.key 0;
new.cls.pMsg clsTttDataTable;
new.cls.ancestor clsObject;
new.cls.size SizeOf(P_TTT_DATA_lNST);
new.cls.newArgsSize SizeOf(TTT_DATA_NEW);
ObjCallJrnp(rnsgNew, clsClass, &new, s, Error);

When you send msgNew to a class, the class allocates space for the instance that it
is about to create, and sends msgNew to its ancestor. Eventually, clsObject
receives msgNew, creates a new object, assigns it a UID, and returns.

In this example, the client sends msgNew to a class, creating an instance of that
class.

TTT DATA NEW tttDataNew;
II Create the TttData object
ObjCallJrnp(rnsgNewDefaults, clsTttData, &tttDataNew, s, Error);
II no defaults to override
ObjCallJrnp(rnsgNew, clsTttData, &tttDataNew, s, Error);

II get the UlD of the new TttData object
pArgs->view.dataObject = tttDataNew.object.uid;

Figure 7-2 shows a simple example class (clsList). As you can see, the object
labeled "clsList" is an instance of clsClass and inherits from clsObject. When a
client sends a message to clsList, the messages are handled by methods defined by
clsClass. If clsClass cannot handle a message, it can 'pass the message to its
ancestor, clsObject.

Classes

84 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

When a client sends msgNew to clsList, the method defined by clsClass creates a
new object that is an instance of clsList. The new object responds to messages
defined by clsList and those defined by its ancestor, clsObject.

Figure 7-3 shows an instance of clsList.

AnotherProcess

Metaclasses
An application class is s~mply an extension of what we have discussed so far. At
this point, we know that;

• clsClass creates newldasses.

• Classes create instances of themselves (objects).

• Objects handle messages by performing methods defined by their class.

• If the class cannot handle a message, it can allow its ancestor to handle the
message.

CHAPTER 7 I APPLICATION CONCEPTS 85
Simple Classes and Application Classes

Most classes are instances of clsClass. Each class has a small amount of instance
data (describing the location of the method table for the class, how much room to
allocate for instances of the class, and so on). This common information is used by
all instances of the class, but because it is stored in a single location, it is extremely
space efficient.

Other classes can benefit from being able to store common information in a single
location. Unfortunately, the structure used by clsClass is specific only to clsClass.
It isn't possible for classes to add to the structure.

However, it is possible to define additional instance data by creating a new class that
inherits from dsClass. A class that inherits from dsClass is called a metaclass.
Because the class inherits from dsClass, it can create new classes. These new classes
can all use common instance data that is defined specifically for the metaclass.

Space efficiency is important to application classes. Each application class contains
a large amount of information that is used by each instance of the application
class, yet would be wasteful to copy over and over again. This information
includes the application name, icon, and initial size and position.

For application classes, PenPoint defines the metaclass clsAppMgr. An application
class is installed by creating an instance of clsAppMgr. An instance of clsAppMgr
contains instance data that includes the name, icon, and initial size and position
for instances of the application class.

Figure 7-4 shows the system classes, as described above, with the addition of
dsAppMgr.

We can add to our list above:

• clsAppMgr creates new application classes .

• Application classes create instances of themselves (documents).

Metaclasses are an extremely
powerful tool for extending the
abilities of existing classes.

86 PEN POINT ARCHITECTURAL REFERENCE

Part 2 / Pen Point Application Framework

Application Classes
While the metaclass clsAppMgr enables an application class to maintain instance
data used by all of its instances, the only thing that clsAppMgr actually does is to
create application classes.

Applications have to perform many, many actions in response to the PenPoint
Application Framework messages. All of the standard behavior for applications is
defined by the application class, clsApp.

All application classes are descendents of clsApp.

Because applications inherit from clsApp, they can allow clsApp to handle most
.PenPoint Application Framework messages, rather than handle the messages
themselves. This frees you, the application developer, from coding mundane tasks
and allows you to spend time writing the actual behavior of your application.

This example shows a client sending msgNew to clsAppMgr to create the
Tic-Tac-Toe application class.

APP _ MGR _NEW new;
STATUS s;
ObjCaIIJmp(msgNewDefauIts, clsAppMgr, &new, s, Error);
new.object.uid = clsTttApp;
new.object.key = 0;
new.cls.pMsg = clsTttAppTable;
new.cls.ancestor = clsApp;
new.cls.size = SizeOf(P_TTT_APP_INST);
new.cls.newArgsSize = SizeOf(APP_NEW);
new.appMgr.flags.stationery = true;
new.appMgr.flags.accessory = false;
strcpy(new.appMgr.company, "GO Corporation");

Figure 7-5 shows an application class (clsCalcApp). In the figure, you can see the
process that contains the application class (CalcApp Process 0), and the process
that contains the active document (CalcApp Document). Process 0 contains
clsCalcApp, which is an instance of clsAppMgr, and inherits from clsApp. The
document process contains aCalcApp, which is an instance of clsCalcApp.

Inheritance of an A

System Process CalcApp Process 0 CalcApp Document

CHAPTER 7 I APPLICATION CONCEPTS 87

In summary:

• An instance is an object.

• clsObject is an object; it has no ancestors.

• clsClass is an instance of clsObject that inherits behavior from clsObject.

• clsAppMgr is an instance of clsClass that inherits behavior from clsClass and
clsObject.

• clsApp is an instance of clsAppMgr that also inherits behavior from
clsObject.

• A class is an instance of clsClass that inherits behavior from the class
specified by its creator (and all of that class's ancestors).

• An application class is an instance of clsAppMgr that also inherits behavior
from clsApp and clsObject.

• A document is an instance of an application class; it inherits behavior from
its application class, clsApp, and clsObject.

The Doculllent
The concepts presented here apply to active documents (usually an active
document is visible on the screen). Later, we will discuss what happens to
documents that are inactive.

An active document has four aspects:

• It can display its information on screen.

• It has its own directory in the file system.

• It is a process.

• It is an object that receives messages from the PenPoint Application
Framework.

These aspects are related. However, because they are difficult to address
simultaneously, the next four sections describe them individually.

Information on Screen

Figure 7-6 shows a typical screen with four documents visible. The documents are:

• The Notebook.

• The Notebook Table of Contents.

• A MiniText document called "Package Design Letter."

• A MiniNote document called "Suggestion."

The Document

7.3

7.3.1

88 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / Pen Point Application Framework

The File System and Documents

The PenPoint file system has a hierarchical organization, much like MS-DOS.
Each volume has a root directory; directory entries can point to files or other
directories.

Figure 7-7 illustrates part of the file system organization for the screen shown
in Figure 7-6.

CHAPTER 7 I APPLICATION CONCEPTS 89
The Document

Figure 1·1
Application Hierarchy: File System Pers ective

NQlOIbQok: Ccriel'lts

~~;;,~~,:9~~,~~P~~

Book Shelf

tdoc.res
docstate.res
NB

t doc.res
docstate. res
Notebook Contents

doc.res
docstate.res
Browstat
Read Me First

t doc.res
docstate.res

li~~i;::~ Ideas I L etc ...
- Package Design Letter

t doc.res
docstate.res
Suggestion

tdoc.res
docstate. res

- etc ...

The Notebook uses the file system to organize its documents in parallel with the
organization of the table of contents.

• Each document in the Notebook has its own directory. This directory
contains the object resource file (DOCSTATE.RES) that holds the document's
instance data and a document resource file (DOC. RES) that holds resources
used by the document.

• Sections are a type of document; thus each section in the Notebook has its
own directory.

• If a document is contained in a section, the document's directory is a
subdirectory of that section's directory.

• If a document has an embedded document, the embedded document's
directory is a subdirectory of its enclosing document's directory.

• The NotebookTable of Contents is a big section that contains all the other
documents and sections.

The Document as a Process

An open document is a running application. An active document is also a process
in a PenPoint computer.

When a document is displayed on the screen, it has an active process. When a
document is not displayed on screen, it usually does not have a process. Much of
the work performed by the PenPoint Application Framework involves creating the

90 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / Pen Point Application Framework

process, making it an application object capable of receiving messages, and-when
the user turns away-destroying the process and saving its data.

The class manager maintains a database that associates the application process
with a UID, which identifies the process as an application object that can receive
messages.

Figure 7-8 illustrates the processes running for the screen shown in Figure 7-7.
Each of the boxes represent a running process. These processes are described in
greater detail in "The Parts of a Document," later in this chapter. Note that the
figure also shows the application class processes. Each application class is a process
that runs to create instances of itself.

-

''\.
'\.

'\.

CHAPTER 7 I APPLICATION CONCEPTS 91
The Document

Figure 7-8

Application Hierarchy: Process Perspective

Document Process Process 0

--

'\.
'\.

'\
'\.

-

'\.
'\.

'\
'\.

-

'\.
'\.

NB Process

+
Notebook Contents

n Letter

NB Application
Class

Section
Application Class

Appli4catiion Class

92 PEN POINT ARCHITECTURAL REFERENCE

Part 2 / PenPoint Application Framework

The Document as an Obiect

An open document is also an instance of a particular application class, and a
descendent of clsApp. The document object is shown in Figure 7-8.

The document responds to messages defined by its application class. Because the
document object inherits from clsApp, it also responds to clsApp messages.

The Parts of a Document
The preceeding discussion of applications and documents presented a number of
concepts and described how the document related to the rest of the PenPoint
operating system, but it didn't tell you much about what a document is (and what
you must provide when you write an application).

A document consists of these components:

• The application code. The application code is the executable file and DLLs
that you create. When loaded in PenPoint, it is loaded into a portion of
memory allocated specifically for applications (it isn't stored in the RAM
file system).

• A process. As described earlier, an active document is a process created by the
PenPoint Application Framework. The process has a queue for messages, an
entry point (mainO), and an AppMainO routine.'

• An application object, or an instance of an application class. The document
object has a VID that can receive messages from the PenPoint Application
Framework. The document object is the core of the document. It performs
work for the document, creates any child objects that the document uses,
and assigns work to the child objects.

• Component objects. Your application creates these objects from component
classes and uses them to perform tasks and store data. You can write classes
for your own component objects or you can use component classes that exist
already (such as those provided by GO).

• A main window. A main window is a special window created by the PenPoint
Application Framework for a document that contains a document's main
window, a title bar, a page number, a menu bar, horizontal and vertical scroll
bars, and other controls. Windows are described in Part 3: Windows and
Graphics; frames are described in Part 4: UI Toolkit.

• A client window. A client window displays a document's data. In PenPoint,
rather than have each object display its own data, you create window objects
that display the data object (called views). This separation frees the data
objects from having to repaint themselves, and allows the VI Toolkit to

/
perform most of the work.

• Other window objects.

7 .. 3 .. 4

CHAPTER 7 I APPLICATION CONCEPTS 93
The Parts of a Document

• A directory. When the user first taps on the Create menu to create a
document, the Notebook creates a directory in the file system. A directory
attribute indicates the application class that the document uses.

Later, when the user turns to the docum~nt, the Notebook uses the PenPoint
Application Framework to start an instance of that application class .

• Resourcetl files. A document uses a resource file to store its instance ,data.
Other resource files can contain replaceable objects and data used by the
document. When the user turns away from a document, the only things
that remain are the directory and the resource files (and the application code
and DLLs).

Figure 7-9 illustrates the parts of a document process. On the left side of the figure
are the document directory and the files in that directory (the object file, the
resource file, and other data files). As in previous figures in this chapter, the box
on the right represents the document process and the lozenges represent the
individual objects within the process.

figure 7@9
UAIY''iI'11I:: of a Document tt'n:)CE~SS

Chapter 8 / Life Cycles

The previous chapters discussed the concepts of where applications exist and what
they consist of. This chapter describes the life cycles for an application class and a
document.

At this stage, the discussion will begin to concentrate more on what you (the
application developer) must do and what the PenPoineM Application Framework
does for you.

The following topics are covered in this chapter:

• Life cycle of an application class.

• The purpose of main in application installation.

• The purpose of clsAppMgr messages in application installation and
deinstallation.

• Life cycle of a document.

• The purpose of main in document activation.

• The purpose of clsAppMgr and clsApp messages in document activation and
termination.

Application Class Life Cycle
Thi~ section describes the life cycle for an application class. As described in
Chapter 7, an application class is an instance of dsAppMgr that creates
documents.

Figure 8-1 shows the states of an application class; Table 8-1 describes the states
shown in the figure.

I~i(~ln'~ 8" 1

Ap lication Class State Diagrarn

96 PENPOINT ARCHITECTURAL REFERENCE
Part 2 I PenPoint Application Framework

State Description

Not Installed The application is totally unknown to PenPoint. The user cannot create or turn to
documents for the application, because the application class does not exist.

Installed The application appears on the Create menu. The user can create and turn to
documents for the application.

The following sections describe application installation in broad strokes.
Application installation is described in more detail in Part 13: Installation API

The transitions in Figure 8-1 are labeled. The user actions that cause these
transitions begin when the user turns to the Connections notebook in applications
view and performs the following actions:

1 Checks the Install check box in the applications view of the Connections
notebook. The PenPoint operating system loads the application .EXE file
from disk into the loader database, and creates the application class.

2 Clears the Install check box to deinstall the application. The PenPoint
operating system deletes the application class and removes the .EXE file from
memory.

Installing an Application

The most important part of installing an application is creating the application
class. Although most of your application contains methods (functions) that handle
messages that documents can receive, your application is also responsible for
sending msgNew to clsAppMgr to create a new application class.

When the user installs your application, the application installer loads the appli
cation executable file from a ,user-specified volume to the PenPoint computer. The
object code isn't stored in the file system; rather, PenPoint stores the object code in
an area of protected memory known as the loader database.

main in Application Installation

The installer calls the kernel function OSProgramlnstantiateO to create a process
using your application and transfers control to your application's main routine,
which is the process's entry point. main calls an application class initialization
routine, which establishes space for the class instance data and declares the
ancestor for instances of the class (usually clsApp).

main is the entry point for all application processes. OSProgramlnstantiateO
passes three parameters to main, argc, argv, and appProcess, which is a UI6 that
contains a process number. OSProgramInstantiateO assigns the process a process
number of 0, because there are no other processes running this application code
(at this time).

!

You create main and the
application class initialization
routine.

CHAPTER 8 / LIFE CYCLES 97
Application Class Life Cycle

If main finds that the process number equals 0, it calls initialization routines for
the application class and any other classes used by the application class. Finally,
it calls AppMonitorMainO, which starts the application monitor for the
application class.

If main finds that the process number is greater than 0, the application calls
AppMain, a routine provided by PenPoint, which creates a document for that
application.

This example shows the main routine used by the Tic-Tac-Toe application:

main (

*

U16 processCount)

if (processCount == 0) {
TttSymbolslnit();
StsWarn(ClsTttApplnit());
StsWarn(ClsTttViewlnit());
StsWarn(ClsTttDatalnit());
AppMonitorMain(clsTttApp, objNull);
else {

() ,:

~~ Application Class Initialization Routine

When main finds that the process number is 0, it calls the initialization routine
for that application class (and initializes any other classes required by the
application) .

The initialization routine for the application class creates an instance of
clsAppMgr, which is the application class object.

The routine declares an APP _MGR_NEW structure, initializes it (by sending
msgNewDefaults to clsAppMgr), modifies some of the arguments, and then
sends msgNew to clsAppMgr.

8.1.1.2

You must write the application
class initialization routine.

98 PENPOINT ARCHITECTURAL REFERENCE.
Part 2 I PenPoint Application Framework

This example shows the applications class initialization routine for the
Tic-T ac-Toe application.

1*** ***********************

Install the
************************~***/
STATUS PASCAL

(void)

APP_MGR_NEW new;
STATUS s;

new.object.uid
&new, s, Error);

cIsTttApp;
new.
new.cIs.
new.cIs.ancestor
new.cls.size

0;
clsTttAppTable;
cIsApp;

= SizeOf
SizeOf{APP_NEW);

new, "" true;
new.appMgr. ,accessory false;
strcpy(new.appMgr.companYf IlGO);
/1 213 (octal) is the ncircle-c n

new. = "\213 1992 GO
ObjCaIIJmp(msgNew, clsAppMgr, &new, s, Error);
return stsOK;

Error:
return S;

All Reserved,";

The message arguments specify the application class's well-known UID and
ancestor (which for applications is almost always clsApp), the name of the
application, its initial state (whether it is a floating document, whether it runs in
hot mode, and so on), the size of its instance data, and the ID of its method table.

If new. appMgr. defaultDocName contains pNull, the PenPointApplication
Framework will look for the default document name in
tagAppMgrDefaultDocName in the resource file APP.RES. This allows you to
localize your default document names by having different resource files (and thus
a different tagAppMgrDefaultDocName) for different languages or locales.

Because the application class uses a process, it can have a full-scale environment,
just like an application instance. This environment includes a floating window list
and initialized local copies of theProcessResList and theUndoManager. Using this
environment, your process 0 can actually provide its own user interface, if
necessary for altering application-global ~ettings. However, most of the time this
overhead is unnecessary. When you don't need a full enviroment for process 0, set
the fullEnvironment flag to false.

At this point, the process can send messages, but it has no object that can receive
messages.

CHAPTER 8 I LIFE CYCLES 99
Application Class Life Cycle

clsAppMgr creates the new object by sending msglnit to its ancestor, clsClass.
clsClass creates an application class object (an instance of clsAppMgr) for process
O. The new application class can now receive messages as well as send them.

clsClass then sends msglnit to the new instance of clsAppMgr (the application
class object). In response to msglnit, the application class sends msglnit to its
ancestor (clsClass) and then allocates and initializes its instance data.

When msglnit returns from clsClass, clsAppMgr initializes the instance data that
your application class will use to create instances of itself (documents). The
instance data includes your application name, your company's name, your icon,
the initial size and location for floating documents (if floating), whether it is a hot
mode application or not, and whether the user can create instances of it or not.
(Some applications, such as device drivers, should not be user-creatable.)

".,.. AppMonitorMainO in Installation

The last step that main executes in installing an application class is to create an
application monitor in your application class.

The application monitor is an object in your application class that helps to
maintain installation information about the application, including the UID of
the application manager object and the location of the application's home.

You create the application monitor by calling AppMonitorMainO. The
application monitor is described in Chapter 13, The Application Monitor Class.

Deinstalling an Application

To remove an application from the PenPoint computer, the user deinstalls the
application.

Deinstalling an application removes the program from the loader database and
removes the application directory and the application's attributes from the file
system. To use the application again, the user must reinstall the program, its
resources, and all other files.

~ msgFree in Deinstallation

When the user deinstalls your application, the installer program sends msgFree to
your application class, which destroys the application class object.

clsAppMgr's routine to handle msgFree first calls ancestor to free itself, then it
removes itself from the list of installed applications, and broadcasts its
deinstallation to all observers of clsApp.

PenPoint provides the
method for handling
meglnit received by an
application class (because
it is an instance of c;leAppMgr).

The new class object is an
instance of c;leAppMgr. Thus,
any messages received by your
application class are handled
first by the methods defined in
c;leAppMgr.

8 .. 1.1.3

8 .. 1.2

1

PenPoint provides the method for
megFree in deinstallation.

100 PENPOINT ARCHITECTURAL REFERENCE

Part 2 I PenPoint Application Framework

". Doculllent Life Cycle
This section describes the life cycle for a document.

Figure 8-2 shows the states of a document; Table 8-2 describes the states shown
in Figure 8-2.

State

Non-Existent

Created

Activated

Opened

Dormant

The document does not exist, nor does it have a directory. There is no resource file
for the document.

A directory exists for the document.

A process exists, the process contains a document object, and the application data
has been either initialized or restored.

The document is displayed on the screen.

A directory exists for the document, the application data is stored in a resource file,
but there is no process and no document object.

CHAPTER 8 I LIFE CYCLES 101
Document Life Cycle

Created and dormant states are similar, because in those states there is a directory,
but there is no process. However, in the created state there is no resource file; in
dormant, there is.

The transitions shown in in Figure 8-2 are labeled. The user actions that cause
these transitions are:

1 The user taps on the Create menu and chooses this application. The
PenPoint Application Framework creates a directory for the document.

2 The user deletes the document before turning to the document. The
PenPoint Application Framework deletes the document directory.

3 The user turns to the page containing the document. The PenPoint
Application Framework starts the document process, creates a document
object in the process, and initializes the document's data. If the document
displays itself on screen, processing continues with transition 4.

Normally, transition 4 occurs immediately after transition 3 or transition 7
without additional user action. This transition can also occur when the user turns
to a document running in hot mode or returns to a document that has an active
selection.

4 The PenPoint Application Framework creates the document's main window
and its views, and displays the document on screen.

S The user turns to another page. The PenPoint Application Framework
removes the document from the screen and destroys its view objects. If the
user didn't have anything selected and the document is not in hot mode,
processing continues with transition 6.

6 If the user didn't have anything selected, this step continues from transition
5. This transition is also made if the user had something selected and then
tapped anywhere on another page. The PenPoint Application Framework
saves the document's data and shuts down the process.

7 The user turned back to the document. The PenPoint Application
Fram~work starts a new application process and reads the document data
from the resource file. Usually when the document reaches the activated
state, it continues on transition 4 to the opened state.

S The user deleted the document. The PenPoint Application Framework
deletes the resource file and removes the document directory.

The following sections describe how the PenPoint Application Framework works
to create, save, and destroy instances of your document.

102 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

Creating a Document

When the user taps on the Create menu or chooses an item on the Stationery
menu, the Notebook sends msgAppMgrCopy to your application class.
msgAppMgrCopy creates a new subdirectory in the directory specified in the
message.' The message also stamps the directory with an attribute that indicates the
application class that will use this directory.

At this point, the page exists in the Notebook Table of Contents, but does not
contain any data, nor does any process exist for the document. The user might
turn to the document immediately or might continue working on the current
document.

Activating a Document

When the user turns the page to a document, the Notebook locates the directory
that corresponds to that document and finds the directory attribute that identifies
the document's application class. The Notebook then sends msgAppMgrActivate
to the application class.

Although this discussion centers on the Notebook, any application can start any
other application in just the same way, that is, by sending msgAppMgrActivate to
an application class. msgAppMgrActivate spawns a new process by calling
OSProgramlnstantiateO.

Because there is at least one other process running the same application code (the
application class), OSProgramlnstantiateO increments the last process number
that it generated and passes the new process number to that new process.

The process number merely distinguishes this process from other processes
running the same application code. It does not indicate the number of times that
the document has been reactivated, nor does it indicate the number of processes
simultaneously running the application code.

~ main in Activation

The entry point for the new process is mainO. msgAppMgrActivate transfers
control to the new process at mainO. Because the process number is greater than
zero, main transfers control to AppMainO. In AppMainO, the process waits to
receive something.

If the application has process-private classes, it creates and initializes the classes
with separate initialization routines before calling AppMainO.

8 .. 2.1

PenPoint provides
megAppMgrCreate.

PenPoint provides
megAppMgrActivate.

You write mainO and the class
initialization routines;PenPoint
provides AppMainO.

CHAPTER 8 / LIFE CYCLES 103
Document Life Cycle

This mainO comes from the Tic-Tac-Toe application (TTTAPP.C).

void CDECL
main (

int
char '*
U16

arge ,
a:rgv[] f

processCount)

if (processCount == 0)

}

0;
StsWarn ());
StsWarn(ClsTttViewInit());

else {
AppMain();

,,'-""', ... "''''-' •• ,-<.'-' 0) ..

II Suppress compiler's "unused parameter" warnings
Unused(argc)i Unused(argv)i

1* main *1

At this point, the document consists of the 'items shown in Figure 8-3. The
document directory exists and there is a process for the document.

8m 3
New Document Process

msgAppMgrActivate in Activation
In the meantime, the msgAppMgrActivate that was sent by the Notebook builds
a pArgs structure for msgNew and sends it to the new document process, using one
of the kernel's ITC (inter-task communication) messages. (The process does not yet
contain a document object to receive messages. That is why msgAppMgrActivate uses
an ITC message.) The new process (which we last left waiting in AppMain), receives
the pArgs and uses them to send a msgNew to your application class, using the
arguments received in the ITC message.

Your application class handles msgNew by calling its ancestor, clsClass, which
creates a document object (an instance of your application class) in the new
process, and sends msglnit to the new object.

Because your application class
is an instance of clsAppMgr.
clsAppMgr defines the method
for handling msgNew.

104 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

msglnit in Activation
Your application's method table for msglnit directs the class manager to pass the
message to your ancestor (clsApp) before passing it to your method.

When clsApp receives msglnit, it opens the document's directory in the file
system, allocates memory for the document's instance data, zeros the allocated
memory, performs some housekeeping, updates its own instance data, and returns.

8.2.2.3

When your document receives msglnit, it initializes its instance data and saves the You must define a method for

instance data in protected memory by calling ObjectWriteO, and then returns. m5ftlnit in your application.

The instance data and application directory handle are both examples of
activate-to-terminate objects that do not have state. That is, they do not need to
be saved when the document terminates.

When your application initializes the instance data, the data is local to the
method. However the instance data maintained by the class manager is in
protected memory. To update the protected instance data with the local copy, call
the function ObjectWriteO. ObjectWriteO stores the instance data in protected
memory, where it will stay until the process is terminated.

This example shows the method for msglnit used by the Tic-T ac-T oe application.

1**
TttAppInit

Initialize instance data of new object.
Note: clsrngr has already initialized instance data to zeros.

**1
#define DbgTttAppInit(x) \

TttDbgHelper("TttAppInit",tttAppDbgSet,Ox2,x)
MsgHandler(TttAppInit)
{

P_TTT_APP_INST pInst;
STATUS s;
DbgTttAppIni t ((""))
II
II Initialize for error recovery.
II
pInst= pNull;
II
II Allocate, initialize, and record instance data.
II
StsJrnp(OSHeapBlockAlloc(osProcessHeapId, SizeOf(*pInst), &pInst), \

s, Error);
pInst->placeHolder = -1L;
ObjectWrite(self, ctx, &pInst);
DbgTttAppInit (("returns stsOK"))
return stsOK;
MsgHandlerPararnetersNoWarning;

Error:
if (pInst) {

OSHeapBlockFree(pInst);

DbgTttAppInit (("Error; returns Ox%lx", s))
return s;

1* TttAppInit *1

CHAPTER 8 I LIFE CYCLES 105

Document Life Cycle

msgAppActivate and msgApplnit

When the msgNew sent by AppMainO returns, AppMainO sends
msgAppActivate to the document. You shouldn't define a method for
msgAppActivate; let dsApp handle it.

8.2.2.4

Reminder If you don't list a
message in your method table,
the class manager
automatically sends it to your
ancestor.

If this is the first time the document has been opened, msgAppActivate sends You must write a method for

msgApplnit and msgAppSave to the document; if the document has been opened m5gApplnit. If your document
has instance data or creates

before, msgAppActivate sends msgAppRestore to the document. objects, you must also write

• Your application's method table should call ancestor (dsApp) before handling
msgApplnit. dsApp creates the resource file and creates the main window.
When the message returns from dsApp, your method should create and
initialize any objects that both have instance data and that you need to save.
For example, if your application uses an instance of dsText, it should create
it and load any initial text at this time.

• Your application's method table should call ancestor before handling
msgAppSave. This will result in the document receiving msgSave. The
method for msgSave should save the document's instance data and any
stateful objects to the resource file. msgSave is described later.

• Your application's method table should call ancestor before handling
msgAppRestore. This will result in the document receiving msgRestore. The
method for msgRestore should restore the document's instance data and any
stateful objects from the resource file. msgAppRestore and msgRestore are
described later.

This example shows the method for msgApplnit for the Tic-Tac-Toe application.

methods for m5g5ave and
m5gRe5tore.

1**
TttAppAppInit

Respond to msgAppInit. Perform one-time app life-cyle initializations.
**1
#define DbgTttAppAppInit(x) \

TttDbgHelper("TttAppAppInit",tttAppDbgSet,Ox20,x)
MsgHandlerWithTypes(TttAppAppInit, P_ARGS, PP TTT APP_INST)
{

APP METRICS am;
TTT VIEW NEW tttViewNew;
BOOLEAN responsibleForView;
BOOLEAN responsibleForScrollWin;
OBJECT dataObject;
OBJECT scrollWin;
STATUS s;
DbgTttAppAppInit ((" "))
II
II Initialize for error recovery.
II
tttViewNew.object.uid = objNull;

, scrollWin = objNull;
responsibleForView = false;
responsibleForScrollWin = false;

106 PENPOINT ARCHITECTURAL REFERENCE
Part 2 I Pen Point Application Framework

II
II Create and initialize view. This creates and initializes
II data object as well.
II
ObjCallJmp(msgNewDefaults, clsTttView, &tttViewNew, s, Error);
ObjCallJmp(msgNew, clsTttView, &tttViewNew, s, Error);
responsibleForView = true;

II
II Check for stationery.
II
ObjCallJmp(msgViewGetDataObject, tttViewNew.object.uid, \

&dataObject, s, Error);
StsJmp(TttAppCheckStationery(dataObject), s, Error);
II
II Create and initialize scrollWin.
II
StsJmp (TttUtilCreateScrollWin (tttViewNew.object.uid, &scroIIWin), \

s, Error);
responsibleForScrollWin = true;
responsibleForView = false;
II
II Make the scrollWin be the frame's client win.
II
ObjCallJmp(msgAppGetMetrics, self, &am, s, Error);
ObjCallJmp(msgFrameSetClientWin, am.mainWin, (P_ARGS)scroIIWin, s, Error);
responsibleForScrollWin = false;
DbgTttAppApplnit (("returns stsOK"))
return stsOK;
MsgHandlerParametersNoWarning;

Error:
if (responsibleForView AND tttViewNew.object.uid) (

ObjCallWarn(msgDestroy, tttViewNew.object.uid, pNull);

if (responsibleForScrollWin AND scrollWin) {
ObjCallWarn(msgDestroy, scrollWin, pNull);

DbgTttAppApplnit (("Error; returns Ox%lx", s))
return S;

1* TttAppApplnit *1

clsApp also activates any embedded documents in the document being activated,
sets its priority, and returns.

Figure 8-4 shows the document at this point. The document process now
contains a number of the objects necessary for the document to be active in the
PenPoint Application Framework, however it doesn't have any instances of
non-stateful components (such as views on data and user interface control objects).

CHAPTER 8 I LIFE CYCLES 107
Document Life Cycle

Document with UrUe,![f§;

When msgAppActivate returns, AppMainO opens the document by sending
msgAppOpen to the new document.

Opening a Document

Usually, when the user turns to your document, processing continues immediately
from transition 3 or transition 7, as shown in Figure 8-2.

However, as noted before, documents that run in hot mode or have an active
selection might remain in the activated state and make transition 4 when the user
turns back to the document.

msgAppOpen

When your document receives msgAppOpen from AppMainO, it creates
windows to display data and other control objects. Most of the windows that your
document creates here are decribed in either Part 3: Windows and Graphics or Part
4: UI Toolkit of thePenPoint Architectural Reference.

Your method table entry for msgAppOpen should call ancestor after your method
handles the message. In response to msgAppOpen, clsApp displays the document
on screen by sending msgWinlnsert to the document's main window.

At this point, the user can interact with the document.

Frame

108 PENPOINT ARCHITECTURAL REFERENCE

Part 2 / PenPoint Application Framework

This example shows the method for msgAppOpen used by the Tic-Tac-Toe

application.

You must write a method for
m50AppOpen.

1**
TttAppOpen

Respond to msgAppOpen.
It's important that the ancestor be called AFTER all the frame
manipulations in this routine because the ancestor takes care of any
layout that is necessary.

**1
#define DbgTttAppOpen(x) \

TttDbgHelper("TttAppOpen",tttAppDbgSet,Ox40,x)
II
II Really a P_TK_TABLE_ENTRY
II
extern P_UNKNOWN tttMenuBari
MsgHandlerWithTypes(TttAppOpen, P_ARGS, PP_TTT_APP_INST)
{

APP METRICS
OBJECT
BOOLEAN
STATUS

ami
menui
menuAdded;
Si

DbgTt tAppOpen ((""))

II
II Initialize for error recovery.
II
menu = objNull;
menuAdded = false;

II
II Get app and frame Metrics.
II
ObjCallJmp(msgAppGetMetrics, self, &am, s, Error);

II
II Create and add menu bar.
II
StsJmp (TttUtilCreateMenu (am.mainWin, self, tttMenuBar, &menu), s, Error);
DbgTttAppOpen (("menu=Ox%lx" , menu)) i
ObjCallJmp(msgAppCreateMenuBar, self, &menu, s, Error);
StsJmp(TttUtilAdjustMenu(menu), s, Error);
ObjCallJmp(msgFrameSetMenuBar, am.mainWin, (P_ARGS) menu, s, Error)i
menuAdded = true;

DbgTttAppOpen «"returns stsOK"))
return stsOK;
MsgHandlerParametersNoWarning;

Error:
if (menuAdded) {

ObjCallWarn(msgFrameDestroyMenuBar, am.mainWin, pNull);
else if (menu) {
ObjCallWarn(msgDestroy, menu, pNull);

DbgTttAppOpen «"Errori return Ox%lx", s))
return Si

1* TttAppOpen *1

CHAPTER 8 I LIFE CYCLES 109
Document Life Cycle

When msgAppOpen returns, AppMainO sends msgAppDispatch to the
document. This makes the document eligible to receive other messages.

Figure 8-5 shows the fully opened document process, complete with non-stateful
objects.

8~5

Openet.i Do(u~nent

Closing a Document

When the user turns away from the document, the Notebook sends msgAppClose
to the document, which causes it to remove itself from the screen.

~f the document wasn't running in hot mode or didn't have a selection, the
Notebook also sends msgFree to the document, which causes the document to
save its instance data and destroy its objects.

~ msgAppClose

Your method for msgAppClose must remove your application from the screen by
setting the client window pointer to nil and freeing the window. The method for
msgAppClose should also destroy any non-stateful window objects.

If the document has an active selection in one of the windows, that window object
must be preserved.

You must write a method for
msgAppClose.

"0 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / Pen Point Application Framework

This code example shows the method for msgAppClose used by the Tic-Tac-Toe
application.

1**
TttAppClose

Respond to msgAppClose.
Be sure that the ancestor is called FIRST. The ancestor extracts the
frame, and we want the frame extracted before performing surgery on
it.

**1
#define DbgTttAppClose(x) \

TttDbgHelper("TttAppClose",tttAppDbgSet,Ox80,x)
MsgHandlerWithTypes(TttAppClose, P_ARGS, PP TTT APP_INST)
{

APP METRICS am;
STATUS s;
DbgTttAppClose ((""))
II
II Get the frame. Extract the menu bar from the frame. Then
II free the menu bar.
II
ObjCallJmp(msgAppGetMetrics, self, &am, s, Error);
ObjCallJmp(msgFrameDestroyMenuBar, am.mainWin, pNull, s, Error);
DbgTt tAppClose (("ret urns stsOK"))
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttAppClose (("Error; return Ox%lx", s))
return s;

1* TttAppClose *1

Terminating a Document

Usually, when the Notebook doses a document, it also terminates the document
process (unless there is a window with an active selection or the document is
running in hot mode).

If there was a window with an active selection and the user taps elsewhere in the
Notebook, the selection is lost and termination continues.

The Notebook does not terminate a hot-mode document until the user deletes it.

The Notebook terminates a document by sending it msgFree.

msgFree

When your application receives msgFree, it should free any objects that it has
created and release any data allocated from heap.

Your application's method table should call ancestor after handling msgFree.
When dsApp receives msgFree, it sends msgAppSave to self (the document). Your

8 .. 2 .. 5.1

You must write a method to
handle m5~Free.

CHAPTER 8 I LIFE CYCLES 111

application should not handle msgAppSave. If you omit msgAppSave from the
method table, the class manager will send it to clsApp.

When clsApp receives msgAppSave, it performs the following tasks:

1 Tells the embedded documents to save themselves (by self-sending
msgAppSaveChildren to each one).

2 Sends msgNew to clsResFile to create a handle on the document state
resource file in the document's directory. Note that when clsApp sends
msgNew to clsResFile, it specifies "truncate-on-open," that is, delete all
information in the file. From this point, until all objects have saved their
information in the file, a drastic failure (such as loss of power or a crash) in
the computer could cause a loss of data.

If data integrity is important, your application could copy its resource
file when it receives msgAppSave (provided it knows the name of the
resource file).

Document Life Cycle

When clsResFile receives msgNew, it writes a resource file header to the file.

3 Sends msgResW riteObject to the resource file handle and specifies self as the
object to file. When the resource file handle receives msgResWriteObject, it:

Writes a resource file header that identifies the object.

Sends msgSave to the document. Your application's responsibilities for
msgSave are described below.

When msgSave completes, the resource manager updates the number of
bytes written to the resource file and returns stsOK for msgResWriteObject.

4 When msgResWriteObject returns, clsApp closes the resource file.

S Finally, clsApp sends msgAppTerminateProcess to your document. Allow
your ancestor to handle this message, which terminates the document process.

When the document process terminates, the only thing that remains is the
directory in the file system, the resource file in the directory, and the resource files
for the document (plus any other files created by your document). Figure 8-6
shows what remains of the document.

112 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

This example shows the method used by the Tic-Tac-Toe application to handle
msgFree.

/**
TttAppFree
Respond to msgFree.
Note: Always return stsOK, even if a problem occurs. This is
(1) because there's nothing useful to do if a problem occurs anyhow
and (2) because the ancestor is called after this function if and
only if stsOK is returned, and it's important that the ancestor
get called.

**/
#define DbgTttAppFree(x) \

TttDbgHelper("TttAppFree",tttAppDbgSet,Ox4,x)
MsgHandlerWithTypes(TttAppFree, P_ARGS, PP TTT_APP_INST)
{

DbgTttAppFree «""))
OSHeapBlockFree(*pData);
DbgTttAppFree «"returns stsOK"))
return stSOKi
MsgHandlerParametersNoWarningi

/* TttAppFree */

msgSave

msgSave passes an OBJ_SAVE structure, which contains a handle on the file where
you must store your data.

Your application's method table should call ancestor before handling msgSave.
msgSave initiates the following process:

1 When clsApp receives msgSave, it does a ObjectCallAncestor to file its
instance data.

2 When ObjectCallAncestor returns, clsApp sends msgResWriteObject to the
resource file handle with the document's main window as the object.

3 clsWin files any of its child objects that have wsSendFile set.

4 clsFrame files its client view, if the view has wsSendFile set.

S The view receives msgSave and saves its instance data (the UID of its data
object).

6 The view sends msgResPutObject or msgResWriteObject to its data object.

This files your window data and its client window. Because views file their
corresponding data objects, your document doesn't have to save these objects.

When your application receives msgSave, it should save its instance data by
sending msgStreamWrite to the resource file handle; the pArgs indicate the
data to save.

Finally, your application should save its stateful objects by sending
msgResWriteObject or msgResPutObject to the resource file handle; the
pArgs indicate the object to save. These resource file messages then send
msgSave to the specified object.

8.2.5.2

You must write a method to
handle msg5ave.

CHAPTER 8 I LIFE CYCLES 113

Document Life Cycle

This example shows the method for msgSave used by the Tic-Tac-Toe application.

/**
TttAppSave
Save self to a file.

**/
#define DbgTttAppSave(x) \

TttDbgHelper("TttAppSave",tttAppDbgSet,Ox8,x)
MsgHandlerWithTypes(TttAppSave, P_OBJ_SAVE, PP TTT APP_INST)
{

TTT_APP_FILED_O filed;
STATUS s;
DbgTttAppSave ((" "))
StsJmp (TttUtilWriteVersion (pArgs->file, CURRENT VERSION), s, Error);
TttAppFiledDataOFromInstData(*pData, &filed);
StsJmp(TttUtilWrite(pArgs->file, SizeOf(filed) , &filed), s, Error);
DbgTttAppSave (("returns stsOK"»
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttAppSave (("Error; return Ox%lx", s»
return s;

/* TttAppSave */

Reactivating a Document

If the user turns back to the document, the notebook sends msgAppMgrActivate
to your application class. Processing is just the same as in document activation.
However, instead of sending msgAppInit to self, clsApp responds to
msgAppActivate by self-sending msgAppRestore.

Your application shouldn't handle msgAppRestore. Omit the message from your
method table so that the class manager will pass it to your application's ancestor,
clsApp.

When clsApp receives msgAppRestore, it starts the cascade of events that causes
all objects in a document to load themselves:

lOne of the msgAppRestore arguments is a directory handle. When clsApp
receives msgAppRestore, it looks in the directory for a resource file. When it
finds the resource file, it opens it by sending msgNew to clsResFile.

2 When clsResFile receives msgNew, it opens the file. If the resource file
index is saved in the file, clsResFile reads it in. If the index does not exist,
clsResFile creates one.

3 When the msgNew returns, clsApp sends msgResReadObject to the
resource file handle, specifying self as the object to restore.
msgResReadObject sends msgRestore to the document.

4 As described below, your application's method table passes msgRestore to its
ancestor first, which causes windows and client views with wsSendFile set to
receive msgRestore. The object then reads its state information and uses
msgResGetObject to re-create its objects.

114 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

5 clsApp determines the name of the directory and resource file, creates a file
handle on the resource file, and sends msgResReadObject to the resource file
handle. The pArgs for msgResReadObject indicates self is the object to read.

msgRestore

msgResReadObject sends msgRestore to self (the document); the pArgs includes
the handle on the resource file.

Your application's method table should pass msgRestore to its ancestor before
handling it, which causes the main window to read its instance data. The main
window also tells all its subwindows to read their objects back in. (This is similar
to how the main window uses msgSave to save all of its subwindows.)

When your application receives msgRestore, it should read its instance data from
the resource file (by sending msgStreamRead to the resource file handle) and
should restore its stateful objects (by sending msgResReadObject to the resource
file handle).

When your application reads the instance data, the data is local to the method. To
write that local copy to protected memory, you must call ObjectWriteO.

This example shows the method for msgRestore used by Tic-Tac-Toe.

You must write the method to
handle m5gRe5tore.

1**
TttAppRestore

Restore self from a file.
Note: clsmgr has already initialized instance data to zeros.

**1
#define DbgTttAppRestore(x) \

TttDbgHelper("TttAppRestore",tttAppDbgSet,OxlO,x)
MsgHandlerWithTypes(TttAppRestore, P_OBJ_RESTORE, PP TTT_APP_INST)
{

P_TTT_APP_INST pInst;
TTT_APP FILED_O filed;
STATUS s;
TTT VERSION version;
DbgTttAppRestore ((" "))

II
II Initialize for error recovery.
II
pInst = pNull;

II
II Read version, then read filed data. (Currently there's only
II only one legitimate file format, so no checking of the version
II need be done.)
II
II The allocate instance data and convert filed data.
II
StsJmp (TttUtilReadVersion (pArgs->file, MIN_VERSION, MAX_VERSION, \

&version), s, Error);
StsJmp(TttUtilRead(pArgs->file, SizeOf(filed) , &filed), s, Error);
StsJmp (OSHeapBlockAlloc (osProcessHeapId, SizeOf(*pInst), &pInst), \

s, Error);
TttAppInstDataFromFiledDataO(&filed, pInst);

CHAPTER 8 I LIFE CYCLES 115

Document Life Cycle

ObjectWrite{self, ctx, &plnst);
DbgTttAppRestore ({"returns stsOK"))
return stsOK;
MsgHandlerParametersNoWarning;

Error:
if (plnst) {

OSHeapBlockFree{plnst);

DbgTttAppRestore{{"Errori returns Ox%lx",s))
return Si

/* TttAppRestore */

,.". Deleting a Document

When the user deletes a document from the Notebook, the Notebook sends
msgAppMgrDelete to the application class, indicating the directory of the
document to be deleted.

msgAppMgrDelete searches the document's directory for embedded documents.
For each embedded document, msgAppMgrDelete sends msgFree to each
embedded document (if it exists), terminates the document processes (if it exists),
and deletes the document's directory.

8.2.7

Chapter 9 / Elllbedded Doculllents

One of the features that differentiates the PenPoint™ operating system from many
other operating systems is that components can contain other components. Both
the containing component and the contained component can have views on their
data. The contained component with a view on its data is called an embedded
window.

Chapter 9 covers these topics:

• Embedded window marks.

• Descendants of clsEmbeddedWin.

• Moving and copying between embedded windows.

• Creating and destroying embedded windows.

• Moving or copying to an embedded window.

• Handling child embedded windows.

• Selecting an embedded window.

Embedded Window Concepts
Embedded windows are described by clsEmbeddedWin, which is a descendant of
clsGWin.

As clsApp provides the default behavior for applications (save, restore, open,
close), clsEmbeddedWin provides default behavior for views (move, copy,
reference) .

There are many examples of embedded windows in the PenPoint operating system:

• Any view is actually an embedded window. Thus, text views are embedded
windows.

• Each line in the table of contents is a view.

• Reference (go to) buttons are embedded windows that contain an additional
mark on another document.

The user can move or copy information directly from any other view to an
embedded window (because all views descend from the embedded window class).

In move or copy operations, the source and destination components must agree
on the data exchange method and the destination component must be able to
present the data in a reasonable way. Is it easy to imagine a user moving data from
a text view into a spreadsheet view (perhaps as a label), but it is harder to conceive
of a user copying a spreadsheet formula into a drawing view.

Note Reference buttons are
called "goto" buttons in the
PenPoint header files.

118 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

To enable the components to agree on a data exchange method and to provide a
context for moving or copying the data, clsEmbeddedWin provides default
behavior for the move, copy, insert reference button, and other gestures.

Marking Support

The embedded window marks also provide support for application marking.
When a marking operation finds an embedded window, it must report its find to
the mark driver and then return to that location. clsMark uses the embedded
window marks to save its locations.

Descendants of clsEmbeddedWin

Among the descendants of clsEmbeddedWin are clsGotoButton, clsView, and
clsAppWin.

• clsGotoButton implements the reference (go to) buttons.

• cls View is an abstract class that defines messages used to display an object's
data. The descendants of clsView include clsTextViewand clsBrowView.
This is how text views or the browser responds to move and copy gestures.

• clsApp Win provides the interface for embedded applications. If you embed
an application, you must create a clsAppWin object.

The difference between clsEmbeddedWin and clsApp Win is that an embedded
window allows you to embed a component in a document (such as a reference
button), whereas an application window allows you to embed an application in ~
document (such as a graph application within a text document). When you
embed an application, it affects the file system directory tree because an embedded
application maintains its data in a subdirectory of the containing application.

Moving or Copying Between Embedded
Windows
One of the most important features of clsEmbeddedWin is its implementation of
the move and copy protocol.

The user can select data in a document (or an entire document) and move or copy
that data to another document that allows embedding. This section describes the
messages that are exchanged when copying or moving data from one object to
another.

Throughout this discussion, remember that both the source and destination
inherit from clsEmbeddedWin. When your class inherits from clsEmbeddedWin,
instances of your class can be either a source or a destination.

Separate Messages

The messages used by clsEmbeddedWin are usually sent to self If, when the
message is sent to self, the object that received the message cannot (or chooses not)
to handle the message, it can allow its ancestor to handle the message. Eventually

CHAPTER 9 I EMBEDDED DOCUMENTS 119
The Move and Copy Protocol

the message is handled by clsEmbeddedWin, which provides default behavior for
move and copy operations.

Usually, a class specifies that a message can be sent to its ancestor in the method
table for the class. However, classes can also call ancestor from their methods.

At first impression, it seems that the messages defined by clsEmbeddedWin could
be combined to make them more efficient. However, many of the tasks are
separated so that the messages can be sent to self, again allowing classes that
inherit from clsEmbeddedWin to implement their own behavior for each message.

By defining a separate message for each of the tasks, clsEmbeddedWin also
separates two types of translations that occur when the user makes a gesture:

• The translation from gestures to semantics.

• The translation from semantics to implementation.

Future PenPoint or third-party products can then replace either or both of these
translations with their own sets of gestures, semantics, or implementations.

Why Use the Move and Copy Protocol?

The move and copy protocol enables clsEmbeddedWin to provide default
behavior for moving or copying many types of data. The source could be: a
character, a word, a value, a sentence, a spreadsheet column, a file, a reference
button, or even an entire document. The destination can be a location in: a text
document, a spreadsheet, a directory, or a table of contents.

The advantage to always using the move and copy protocol is that you can
intercept messages where you want your application to do the work, and you allow
your ancestor to handle the messages when you want clsEmbeddedWin to do the
work. When moving a reference button, you allow clsEmbeddedWin to do all the
work. However, when moving your own data, you might let clsEmbeddedWin
handle the move or copy icon, but you might want to do the actual move or copy
of data.

Usually, objects use the transfer protocol defined by clsTransfer, which is
documented in Part 9: Utility Classes.

The Move and Copy Protocol
There are nine essential steps for moving or copying data:

1 The user selects the data and requests a move or copy operation.

2 The source determines what was selected.

3 The source allows the user to indicate the destination.

4 The source tells the destination object to move or copy the selection.

S The destination determines the type of data that the source has selected and
tells the source to send the data.

6 ,The source determines whether it can move or copy data to the destination.

9.3

120 PENPOINT ARCHITECTURAL REFERENCE
Part 2 I PenPoint Application Framework

7 The source determines the file system location of the destination.

8 The source moves or copies the data.

9 The destination determines exactly where to put the data.

The following discussion of the move and copy protocol simply describes the
messages used to implement the protocol. The next section describes a move
operation that actually uses the messages.

Requesting a Move or Copy
After making a selection, the user can start a move or copy in two ways:

• By making a gesture (press or tap and press) on the selection.

• By choosing Move or Copy on the Edit menu.

If the user holds the pen to the selection, the owner of the selection receives a
msgPenHoldTimeout input event. If the tap count is 0, the user wants to move
the selection; the selection owner sends msgSelBeginMove to self. If the tap count
is 1, the user wants to copy it; the selection owner sends msgSelBeginCopy to self.

If the user chooses Move or Copy from the Edit menu:

• dsApp sends msgAppMoveSel or msgAppCopySel to self.

• Your application allows its ancestor (dsApp) to handle the message.

• dsApp receives the message and sends msgSelBeginMove or
msgSelBeginCopy to the owner of the selection.

Identify the Selection

When your application receives msgSelBeginMove or msgSelBeginCopy (either
from self or from the standard application menu), it is in move or copy mode.

The class that handles the message should identify the current selection by:

• Locating the x-y position of the selection and the bounds of the selection.

• Storing the x-y and bounds in an EMBEDDED_ WIN_BEGIN_MOVE_COPY

structure.

• Sending msgEmbeddedWinBeginMove or msgEmbeddedWinBeginCopy
to self.

clsEmbeddedWin uses the bounds of the selection to determine the type of move
or copy icon to use. If the bounds are non-zero, the icon is a marquee around the
selected area; otherwise clsEmbeddedWin uses a default move or copy icon.

Let the User Indicate the Destination

When the source receives msgEmbeddedWinBeginMove or msgEmbedded
WinBeginCopy, it must provide a way for the user to indicate the destination
(UID of the object that will receive the data and the x-y coordinates on screen).
clsEmbeddedWin does this by providing the move or copy icon.

§!i:,

CHAPTER 9 I EMBEDDED DOCUMENTS 121
The Move and Copy Protocol

Jjr lell the Destination to Move or Copy 9.3.4

When the user indicates the destination, the class that prompted the user sends
msgSelMoveSelection or msgSelCopySelection to the destination.

The source does not necessarily have to be the object that sends
msgSelMoveSelection or msgSelCopySelection. If a destination object is able to
determine where the user wants to place the data, it can send one of these
messages to self.

For example, if your application maintains an insertion point and supports a
Paste command, the Paste command could send msgSelMoveSelection or
msgSelCopySelection to self, specifying the location of the insertion point as the
x-y location.

Determining the Data Type
When the destination receives msgSelMoveSelection or msgSelCopySelection, it
should send msgXferList to the source to determine the transfer type. At this
point, the embedded window move and copy protocol uses the transfer protocol
documented in Chapter 5, Class Transfer, in Part 9: The Utility Classes.

The object that handles msgXferList must add its transfer types to the list in the
messages arguments and send the message to its ancestor (so that the ancestor
classes can add their transfer types).

When the destination receives the completed list, it looks for compatible transfer
types. (If the data transfer types sent back by the source are unknown by the
destination, the object at the destination should call ancestor. Its ancestor can send
msgXferList to the source again and examine the returned list for compatible
transfer types.)

When the destination finds an acceptable transfer type, it determines what
protocol it will use for the move or copy operation.

If the transfer type was defined by dsXfer (for instance, xferString) the
destination sends msgXferGet to the source. msgXferGet is the next step in
the dsXfer protocol.

If the transfer type was dsEmbeddedWin, the destination sends
msgEmbeddedWinMove or msgEmbeddedWinCopy to the source.
msgEmbeddedWinCopy is the next step in the dsEmbeddedWin protocol.

OK the Move or Copy

Continuing with the description of the dsEmbeddedWin protocol,
when the owner of the source receives msgEmbeddedWinMove or
msgEmbeddedWinCopy, it determines whether it can perform the move
or copy by sending msgEmbeddedWinMoveCopyOK to self.

The owner of the source receives msgEmbeddedWinMoveCopyO K and uses the
destination's UID to determine whether it can move or copy to the destination

cl5EmbeaaeaWin and cl5Xfer are
the two principle move or coPY
protocols used by objects. There
can be many other transfer
types. However. it is up to the
implementors of the source and
destination objects to
understand and participate in
any other protocol.

122 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

object. For example, a graphic component might reject a request to move to a text
object.

The class that handles msgEmbeddedWinMoveCopyOK sends back values that
indicate whether it can allow move and copy operations.

The source examines the values and, depending on the type of operation and the
value, continues or returns an error.

Getting the Destination in the File System

If the move or copy is allowed, source sends msgEmbeddedWinGetDest to the
destination to get more specific information about the destination (rather than
just the location of the hot spot).

The destination receives the message and sends back a file system locator for its
instance directory, a path to the embedded window (if any), and the sequence
number in that directory.

When moving documents in the table of contents, the directory and sequence
number information are important. They indicate specifically which directory the
document will be moved to and the position of the moved document within that
directory.

The selection owner needs the destination information to update its references to
UUIDs (universal unique identifiers) in the global index table. When moving or
copying components that contain or are targets for reference buttons, the
PenPoint operating system must be able to redirect the reference button to the
new location of the component.

The directory and sequence number information is also important in case the
selection includes an embedded application. When the selection is moved, an
embedded application's directory structure must also be moved.

Moving or Copying the Data

The source sends its information to the destination using a protocol specific to the
transfer type:

• For one-shot and stream transfers, the source uses clsXfer messages.

• For transfers that use special protocols (other than the embedded window
protocol), the source and destination exchange data using that protocol.

For transfers that use the embedded window protocol, the message sent by the
source depends. on the type of move or copy:

• If the move or copy is within the same object, the source sends
msgEmbeddedWinMoveChild to the destination.

• If the move or copy is between different objects in the same process,
the source sends msgEmbeddedWinlnsertChild to the destination.

9~3.7

PenPoint uses UUIDs to identify
saved objects.

9.3.8

CHAPTER 9 / EMBEDDED DOCUMENTS 123

Example: Moving in Tic-Tac-Toe

• If the move or copy is between different processes, the source files the item,
sends msgEmbeddedWinRestoreChild to the destination, and then sends
msgEmbeddedWinlnsertChild to the destination.

GeHing the Exact Pen Location

One way to allow the user to indicate the destination is to create a marquee or
label that the user can move with the pen and drop at the location. However, for
two reasons, this creates a problem when determining the exact location:

• The user can put the pen down anywhere in the label to begin the move.

• When your application gets the x-y position of the label, the returned value
is the lower left corner of the label, not the pen position.

To compensate for this imprecision, the destination sends
msgEmbeddedWinGetPenOffset to the source. When clsEmbeddedWin created
the label and the user put the pen down on the label, clsEmbeddedWin saved the
x and y offsets from the pen position to the lower left corner of the label (as part
of the embedded window instance data).

When the source receives msgEmbeddedWinGetPenOffset, it allows its ancestor
to handle the message. clsEmbeddedWin sends back the offset values.

The destination can then use those offset values to calculate the exact location to
insert the moved or copied item.

Example: Moving in Tic-Tac-Toe
The sample Tic-Tac-Toe application implements the move and copy protocol (by
allowing clsEmbeddedWin to handle most of the protocol). The user can use the
move or copy menu items or make a move or copy gesture on the Tic-Tac-Toe
board. With the help of clsEmbeddedWin, the Tic-Tac-Toe application creates a
default move or copy icon, which the user can use to move the data in the
document to a new document. If the destination document is a MiniT ext
document, the data becomes a string of nine characters (Xs, Os, and spaces)
representing the characters on the board.

The User Requests a Move

To begin the example, the user either:

• Makes a hold gesture.

• Selects Move from the Edit menu.

Either way, the gesture translation system sends msgSelBeginMove to the
Tic-Tac-Toe view.

'24 PENPOINT ARCHITECTURAL REFERENCE,
Part 2 I PenPoint Application Framework

Presenting a Move/Copy Icon

When the Tic-Tac-Toe view receives msgSelBeginMove, it handles the gesture
with in the function TttViewSelBeginMoveAndCopyO. IfTic-Tac-Toe allowed
clsEmbeddedWin to handle the message, it would create a marquee around the
entire board (the entire view), which is too large to drag easily to another
document. Instead, TttViewSelBeginMoveAndCopyO:

• Creates an EMBEDDED_ WIN_BEGIN_MOVE_COPY structure.

• Sets the x-y coordinates in the structure using its pArgs.

• Sets the bounds in the structure to zero.

• Sends msgEmbeddedWinBeginMove to self.
1**

TttViewSelBeginMoveAndCopy

Handles both msgSelBeginMove and msgSelBeginCopy
**1
#define DbgTttViewSelBeginMoveAndCopy(x) \

TttDbgHelper("TttViewSelBeginMoveAndCopy",tttViewXferDbgSet,Oxl,x)

MsgHandlerWithTypes(TttViewSelBeginMoveAndCopy, P_XY32, PP_TTT_VIEW_INST)
{

EMBEDDED WIN BEGIN MOVE COpy bmc; - - - -
STATUS s;

DbgTttViewSelBeginMoveAndCopy ((" self=Ox%lx" ,self))
II
II If we don't handle this message, the default behavior is to
II draw a marquee around the entire selection. For ttt, the marquee
II would stretch around the entire board, which is too large to be
II be easily dragged into another document. So, we handle this message,
II and set the bounds of the move/copy area to zero.
II msgEmbeddedWinBeginMove/Copy will know to display a move/copy icon
II instead of drawing the marquee.
II
if (pArgs) {

bmc.xy = *pArgs;
else {

bmc.xy.x
bmc.xy.y 0;

bmc.bounds.origin.x
bmc.bounds.origin.y
bmc.bounds.size.w =

bmc.bounds.size.h = 0;
ObjCallJmp(MsgEqual(msg, msgSelBeginMove) ?

msgEmbeddedWinBeginMove : msgEmbeddedWinBeginCopy,
self, &bmc, s, Error);

DbgTttViewSelBeginMoveAndCopy(("returns stsOK"))
return stsOK;
MsgHandlerParametersNoWarning;

Error:
DbgTttViewSelBeginMoveAndCopy (("Error; return Ox%lx", s))
return Si

1* TttViewSelBeginMoveAndCopy *1

CHAPTER 9 I EMBEDDED DOCUMENTS 12S
Example: Moving in Tic-Tac-Toe

The Tic-Tac-Toe view does not handle msgEmbeddedWinBeginMove, but allows
its ancestor to handle the message. When clsEmbeddedWin handles
msgEmbeddedWinBeginMove it:

• Detects that the bounds are zero, so it creates a move or copy icon.

• Inserts the icon into the Tic-Tac-Toe view.

• Returns.

At this point, the current process is the icon instance.

The Move or Copy Icon

The move or copy icon is an instance of clsMoveCopylcon. It is the responsibility
of this class to handle pen input to move the icon on the screen, and to detect the
pen-up event when the user has chosen the exact destination for the move or copy.

The move or copy icon is the only place in moving a reference button where the
move and copy protocol is not handled by clsEmbeddedWin.

When the user lifts up on the pen, clsMoveCopylcon sends
msgMoveCopylconDone to self. The instance of clsMoveCopylcon handles the
message by determining the UID of the destination and sending
msgSelMoveSelection to the destination.

When the destination receives msgSelMoveSelection, it sends msgXferList to the
source.

Determining the Data Type

The Tic-T ac-T oe view handles msgXferList by calling the function
TttViewXferListO. The function adds the string type to the list and returns.
clsTttView doesn't allow its ancestors to handle the message, to prevent them
from adding other data types to the transfer list.

9.4.3

9.4.4

1**
TttViewXferList

**1
static TAG
sourceFormats[] = {xferString};

#define N_SOURCE_FORMATS (SizeOf(sourceFormats) I SizeOf(sourceFormats[O]))

#define DbgTttViewXferList(x) \
TttDbgHelper("TttViewXferList",tttViewXferDbgSet,Ox4,x)

MsgHandlerWithTypes(TttViewXferList, OBJECT, PP_TTT_VIEW_INST)
{

STATUS s;

DbgTttViewXferList«"self=Ox%lx",self))
II
II Don't let ancestor add types. We aren't interested in
II moving/copying the window, which is the only type the
II ancestor supports.
II
StsJmp(XferAddlds(pArgs, sourceFormats, N_SOURCE_FORMATS), s, Error);

126 PENPOINT ARCHITECTURAL REFERENCE

Part 2 / PenPoint Application Framework

DbgTttViewXferList (("returns stsOK"»
return stsOKi
MsgHandlerParametersNoWarningi

Error:
DbgTttViewXferList«"Errori return Ox%lx",s»
return Si

1* TttViewXferList *1

Moving the Data

When the destination receives the list, it selects the transfer type, that it can
handle. In the case of Tic-T ac~T oe, the only transfer type on the list should be
xferString. Because xferString is a type defined by dsXfer, the destination uses
the dsXfer protocol. Therefore, the destination sends msgXferGet to the
Tic-T ac-Toe view.

The Tic-Tac-Toe view responds to msgXferGet by packing its data into a string
and passing the buffer back when it returns.

1**
TttViewXferGet

**1
#define DbgTttViewXferGet(x) \

TttDbgHelper("TttViewXferGet",tttViewXferDbgSet,Ox2,x)

MsgHandlerWithTypes(TttViewXferGet, P_XFER_FIXED_BUF, PP TTT VIEW_INST)
{

STATUS Si

DbgTttViewXferGet ((" self=Ox%lx", self))

if (pArgs->id == xferString)
OBJECT· dataObj i
TTT_DATA_METRICS dm;
U16 row;
U16 COli

P_XFER_FIXED_BUF P = (P_XFER_FIXED_BUF)pArgs;
ObjCalIJmp(msgViewGetDataObject, self, &dataObj, s, Error);
ObjCalIJmp(msgTttDataGetMetrics, dataObj, &dm, s, Error);

II
II initialize the length to the number of squares (9) plus 1
II to allow for a string termination character (just in case
II the user copies/moves the string into a text processor.
II
p->len = 10;
p->data = OL;
for (row=O; row<3; row++) {

for (col=O; col<3; col++)
p->buf[(row*3)+col] = dm.squares[row] [col];

}
p->buf[9]
s = stsOK;

else {

, \0' ;

s = ObjectCallAncestorCtx(ctx);

CHAPTER 9 / EMBEDDED DOCUMENTS 127

DbgTttViewXferGet (("returns Ox%lx", s))
return s;
MsgHandlerPararnetersNoWarning;

Error:
DbgTttViewXferGet (("Error; return Ox%lx", s))
return s;

/* TttViewXferGet */

,...Inlercepled Messages
clsEmbeddedWin intercepts msgWinSend and msgGWinGesture.

It responds to msgWinSend so that it can modify uurD data in
msgEmbeddedWinGotoChild messages. Essentially, it modifies the
uurD data so that "go to" operations to a nested embedded window
perform the window location operations internally, before displaying the
reference location on the screen.

As mentioned in the description of a move operation above, clsEmbeddedWin
responds to msgGWinGesture. The class does not respond to all gestures,- only
those that have meaning for embedded windows.

Gesture Gesture Nume Meuning

dD xgsDblCirde Create reference button

A xgsUpCaret Show stationery menu

A xgsUpCaretDot Show stationery menu

~ xgsDblUpCaret Show stationery menu

~ xgsCirdeCrossOut Undo last saved action

~, xgsVertCounterFlick Toggle borders and controls

v' xgsCheck Show option sheet

U xgs UGesture Show option sheet

F xgsFGesture Start Find operation

cb xgsCirdeFlickU p Start Find operation

cp xgsCirdeFlickDown Start Find operation

S xgsSGesture Start spell check

p xgsPGesture Start spell check

clsEmbeddedWin sends all other gestures to its ancestor.

Intercepted Messages

Table 9~1
Window Gestures

128 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

Gestures and Selection
Some abstract messages defined in clsSelection are actually part of the embedded
window protocol. These messages are not sent to the owner of the selection, nor
are they sent to the selection manager. Rather, they are self-sent by the target of a
move, copy, or create reference button operation.

These messages are defined in clsSelection because they indirectly relate to the
selection; by defining these messages in clsSelection, others do not have to define
their own messages to do the same thing.

If you intend to handle msgSelMoveSelection, msgSelCopySelection, or
msgSelMarkSelection, you must perform these tasks:

• Establish the owner of the selection.

• Use clsXfer messages to obtain the selected data from the owner of the
selection.

• If the operation was a move, ensure that the owner of the selection knows to
delete its copy of the data.

• Insert the data at the x-y location specified by the move, copy, or mark
message.

9.6

Chapter 10 / Mark Concepts

In the PenPoint™ operating system, the data for most documents is stored in
one or more components (which usually inherit from clsEmbeddedWin). For
example, individual words can be stored in a text component, or shapes can be
stored in a drawing component. However, because components contain the data,
only the component knows how the data is stored.

Of course, there are times when other objects will want to manipulate the data
within a component. Reference buttons, for example, allow the user to link to a
specific point within a data item in a component; later, the user can use the
reference button to turn back to that very same point-even if the user has added
data before the point.

Another reason to want to manipulate data within a component is in traversal
operations, such as checking spelling, or searching and replacing. In these
operations, the traverser needs a mechanism for keeping track of its location
within a component that it knows nothing about.

To mark data within a component, the PenPoint operating system provides the
mark class (clsMark). Traversal drivers can use the mark class to traverse
applications and embedded windows.

All applications or components that allow themselves to be searched or spell
checked must handle clsMark messages, which implement the component half
of the protocol. If an application or component implements new functionality
similar to search and replace or spell-checking, it uses clsMark.

Mark Class
The mark class (clsMark) inherits from clsObject. Its messages, :fI:defines, and
data structures are defined in MARK.H.

A mark (which is an instance of clsMark) provides a way to refer to data items
within components. The data item in a component referenced by the mark is
called the target, because it is this data that the creator of the mark is really
interested in. Notice that the target is not an object.

The object that uses the mark is called the holder of the mark.

For example, in the case of a reference button, the piece of information identified
by the reference button is the target. The reference button itself is the holder of
the mark.

Data within a component is not
generally available outside the
component.

Traversal is directly related to
embedded documents. Before
reading this chapter, you should
read Chapter 9, Embedded
Documents.

130 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

Parts of a Mark

There are two parts to a mark (as shown in Figure 10-1):

• A component part. This identifies the component that contains the target.
The component part is managed by dsMark.

• A token part. This is used by the component to identify the specific location
of the target within instances of itself. The token part is managed by the
component.

A Mark

} component

} token

The component part of a mark contains:

• The UUID of the application containing the component.

• The UUID of the component that contains the target.

• The UID of the component that contains the target.

The token part of a mark contains:

• The UID of the class that contains methods to locate the target.

• Two 32-bit index values that are manipulated by the class.

Implementing Tokens
The token part of a mark is managed by the component. When you implement a
component that handles marks, you must establish a relationship between the
index values in the token and the actual location of the target within the
component. In a simple relationship, a database might use the token to hold a
record number. The mark then points to that specific record. However, a mark
might persist beyond a single operation. Storing a record number in a token
wouldn't work if records could be inserted or deleted from the database
positionally before the target record.

To support marks that persist, your component must establish a mapping between
the token and the target. If the target moves, the token must still be able to find
the target.

10~1

Parts of a Mark

A token references the target
data, but there is no way for the
com ponent to update the token,
once it is given to the holder.

CHAPTER 10 I MARK CONCEPTS 131
Implementing Tokens

There are two common forms of mapping: table mapping and stamp mapping.
Regardless of how you implement your token, your program must manage and
store the token.

Table Mapping 10.2. 1

In table mapping, your component creates and maintains a table that contains
pairs of token values and data that identifies what the token refers to. If the
position of the data changes (for example, if the user adds or deletes characters),
your component updates the positions in the token table so that the mark points
to the target at the correct location.

When a token is requested of a table-mapping component, the component creates
a new table entry with a new, unused token value. Once a number is used as a
token, it cannot be reused; this ensures the integrity of the token.

Min IT ext implements tokens using table mapping. Table mapping is
recommended if the data the program handles is densely stored.

Stamp Mapping
In stamp mapping, your component stores the token as a part of its target data.
When your component receives a request for a mark, it creates a token and inserts
it directly into the data. Your program must have a way to locate tokens within the
data and a way to to identify each token.

Stamp mapping is a viable way to implement tokens when the overhead of adding
a token to a data item is small. For example, the effort of storing a token for
individual characters is high; for a text-based application, it's unlikely that you'll
want to implement tokens using stamp mapping. However, with a stribble or
some other graphical object, the effort of storing a token may be small enough to
justify using stamp mapping.

The difficulty in implementing stamp mapping arises when you consider how to
handle multiple marks pointing to the same object. There are two possible
solutions:

• If your component can afford the storage space, it can store a token for each
mark that points to your data.

• If your component only has room for one token at a time, and it receives a
request for another mark, it can pass the current token to the new mark.
(Thus, there are two marks with the same token.) When one of the marks
moves, your component can assign a new token to the mark that moved.
With this scheme, you have to decide how to hand out new token values.
There are two alternatives:

• Create a token value for the data item and leave it there forever.
Although this is easy to implement, there is the possibility of running
out of token values.

10.2.2

'32 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

• Keep track of the number of marks that refer to a data item. When a
mark that targets the data item is repositioned and the reference count
is one, move the token value to the next data item and clear the token
on the old data item. MiniNote implements this variant of stamp
mappIng.

How to Support Marks
At the very least, your component must handle these basic messages:

msgMarkCreateToken requests that your component create a new token.

msgMarkDeleteToken requests that your component delete a token.

msgMarkGetDataAncestor requests that your component return the next
higher superclass that can traverse the component's data.

For a component that can be traversed, you must handle the following messages:

msgMarkPositionAtEdge requests that your component reposition a token
to one end or the other of its data.

msgMarkPositionAtToken requests that your component reposition a
token to the same position as another token in the same component.

msgMarkCompareTokens requests that your component compare the
ordering of two tokens.

For components that have a graphical view of data, you must handle:

msgMarkShowTarget requests that your component identify the window
that contains the view on the target.

msgMarkSelectTarget requests that your component select the target data.

msgMarkPositionAtSelection requests that your component reposition the
token to the current selection.

msgMarkPositionAtGesture requests that your component reposition the
token to the location of a gesture.

For components that manage their own embedded documents, you must handle:

msgMarkPositionAtChild requests that your component postion the token
to an embedded component.

msgMarkNextChild requests that your component position the token to
the next embedded component.

msgMarkGetChild requests that your component identify the component
at the token.

For components that are not descendents of clsEmbeddedWin or clsApp, you
must handle:

msgMarkGetParent requests that your component identify its parent
component.

msgMarkGetUUIDs requests that your component identify its own
application and component UUIDs.

CHAPTER 10 I MARK CONCEPTS 133
Creating and Halding Marks

",. Creating and Holding Marks 10.4

When a user selects an operation like Search/Replace or Spell, the PenPoint
Application Framework creates a driver for that operation. The driver creates a
mark, using some of the information it got from the PenPoint Application
Framework. The driver communicates with the application and its. embedded
components (including embedded applications executing in different processes) by
sending messages to the mark. The mark figures out what component to send
them to.

The clsMark protocol describes how drivers communicate with the mark and how
the mark communicates with client components. What it does not describe are the
details of the messages that drivers use to communicate with components (because
these messages vary depending on the job to be done).

Drivers communicate with components through a mark with three messages:
msgMarkDeliver, msgMarkDeliverPos, and msgMarkDeliverNext. Each of these
three messages "piggy-backs" a message and associated arguments that are sent
from a driver to a component.

The messages that the Search/Replace and Spell drivers use to communicate with
text-containing components are defined in SR.H.

A holder follows these steps to create and use a mark:

• Sends msgNewDefaults and msgNew to clsMark. This creates the mark
and sets up the component for the mark and, optionally, positions the mark
for you.

• Sends the appropriate msgMarkPosition message to the component using
the mark. This sets the mark where you want it.

• Sends a message using msgMarkDeliver, msgMarkDeliverPos, and
msgMarkDeliverNext to the component, using the mark, if you want to
manipulate the mark.

• Sends msgJ?estroy to the mark when you're finished with it.

With a persistent mark, the target of the mark will never receive a delete token
message, even if the holder is deleted. When a mark is copied or filed, it becomes
persistent.

134 PENPOINT ARCHITECTURAL REFERENCE
Part 2 I PenPoint Application Framework

Link Files
When a mark is saved and restored, clsMark uses three low-level messages to
create a link handle and link file that are used to keep track of the target data.
These messages are described in AW.H:

msgAppCreateLink creates a link to another document, passing back the
UUID of the document to be linked to. The linked-to document's
UUID is stored in DOC.LNK.

msgAppDeleteLink deletes a link to another document. You must specify a
link handle.

msgAppGetLink passes back the linked-to document's UUID.

10.5

Chapter " / Printing

Printing in the PenPoint™ operating system is different from printing in most
other operating environments because PenPoint can defer output until the user
connects the appropriate printer. When the application is requested to prepare its
output for the printer, the application uses the same layout messages that it would
for the screen, only the image is displayed on a piece of paper by a printer. This
approach frees the application developer from having to understand the command
set for a particular printer. All the application has to do is lay itself out for printing
(if that is different from laying itself out on screen).

When printing in PenPoint, your application does not explicitly print to a device.
It opens the document (or a copy of the document) in the background using a
window device that is bound to a printer, rather to than the screen.

This chapter describes the printing messages that your application receives and
how to respond to them.

The Out box mechanism, which is used to defer documents until the printer is
ready, is described in Part 10: Remote Interfaces.

This chapter covers these topics:

• The concepts of printing, which include an overview of the flow of control
in printing.

• How to participate in the option card protocol to add your own option cards
for printing.

• The print protocol and how an application should respond to printing
messages.

Concepts
Printing involves several aspects of the PenPoint operating system.

• When the user prints a document, the PenPoint operating system uses the
Out box mechanism to queue the document for printing.

• When the user connects the printer, the Out box service section that
contains the document creates, activates, and opens a printing wrapper for
the document.

• When the service section opens the wrapper, the wrapper uses PenPoint
Application Framework messages to open the document.

• The wrapper uses printing messages to tell the document when and what to
print. The messages allow the document to behave correctly if it contains
embedded documents.

136 PENPOINT ARCHITECTURAL REFERENCE
Part 2 I PenPoint Application Framework

• Finally, the document uses the UI Toolkit to layout its pages for the printer.

If you write an application that prints, you should determine if your application is
responsible for:

• Adding option cards to the Print Setup dialog sheets (the option card
protocol is discussed later in this chapter). J

• Handling open messages so that they remove unnecessary decorations from
your frame (such as scroll bars, borders, and menus).

• Laying out pages in response to the printing messages.

• Handling embedded documents so that they print correcdy.

All other aspects of printing (finding the device driver, queuing, and sending data
to the printer) are handled by the PenPoint operating system.

Printing Embedded Documents
-

The PenPoint operating system's embedded document architecture presents
certain challenges when printing documents that have embedded documents.
This is particularly true when the embedded document is a full-sized document,
of which the user only sees a portion through a scrolling window.

The Embedded Printing card of the Print Setup option sheet determines how to
print documents embedded within the document being printed (the parent
document). When the user prints a document, the Print option specifies whether
to print embeddees at all. The Location option specifies either:

• Print In Place. That is, print the visible portion of each embeddee in place in
the parent document where it is embedded.

• Print At End. That is, print each embedded document in full at the end of
the parent document.

Thus, there are three possible printing situations for embedded documents.

• Do not print the embedded document (Print is No).

• Print the portion of the embedded document that you see on screen just as it
appears (Print is Yes, Location is In Place).

• Print the entire embedded document after printing its embeddor (Print is
Yes, Location is At End).

The PenPoint Application Framework provides default implementations for not
printing and for printing At End.

If the user selects print at end and the PenPoint Application Framework
encounters an embedded document, it closes the embedded document and queues
it to the end of the print job. When the embedded document reaches the top of
the queue, the PenPoint Application Framework opens the document as a new,
top-level document, which can then receive printing messages. The embedded
document begins printing on a new page. This expansion can be recursive. A
deferred embeddee becomes top-level when it is printed. If the embedded

CHAPTER 11 I PRINTING 137

document has embeddees of its own, they are queued for printing immediately
after their parent.

Embedded documents printed In Place have no control of the page. You do not
have to do anything special for these documents when printing. They are opened
in place and are confined to the clipping window within their parent, just as they
are displayed on screen. However, the embedded documents do know that they're
printing, because they receive msgAppOpen. The message arguments for
msgAppOpen and their application metrics indicate that they are printing.

Making Pagination Decisions
The printing protocol handles two forms of pagination:

flow for documents that can display their information in an arbitrarily-sized
visual space. For example, MiniText documents can flow.

nonflow for documents that must display their information exactly as
described by the user. For example, MiniNote documents cannot flow.

The printing protocols will ask your application whether it is a flow or nonflow
document by sending msgPrintGetProtocols to your active document.

Paginating Nonflowing Documents

There are two methods for paginating a nonflowing document: tiling or scaling.
Tiling is well defined, invariant across documents, and easy to implement. For
these reasons, and to avoid duplication of tiling code in many applications,
printing in the PenPoint operating system provides tiling by default. You do not
have to do anything to paginate a tiling document.

The user interface for printing does not offer the tiling option to the user. An
application that wants to use tiling as a pagination method must present a tile
option to the user (on a Print Setup option card) or simply use it as its default
pagination method.

Scaling is much more difficult to implement and depends greatly on the type of
document being printed. For instance, scaling a spreadsheet that uses PenPoint
fonts is possible, because ImagePoint is built to scale its elements. However,
scaling a bitmap image, while possible, suffers from rounding errors and other
problems. You must design and write your own scaling pagination routines.

Designing a PenPoint Application in the PenPoint UI Design Reference provides user
interface guidelines on option presentation.

Paginating Flow Documents

Paginating flow documents is relatively simple. When your application receives a
next page message, it flows its data into the space available and adds any other
elements to the page. Your application must keep track of what it has printed and
what it hasn't printed. When it receives the next next page message, it can resume
flowing data where it left off.

Concepts

11.1.2

11.1.2.1

138 PENPOINT ARCHITECTURAL REFERENCE
Part 2 I PenPoint Application Framework

Option Sheets for Printing
This section provides a brief summary of the option sheet protocol. Part 4: UI
Toolkit describes option sheets and the option sheet protocol in detail. .

Before printing, the user can change document printing options by tapping on the
Print Setup button in the Document menu. Typically, the Print Setup option
sheet allows the user to change the margins and the headers and footers for the
document.

If your application has other printing options that you want the user to be able to
change, you can add your own option cards to the Print Setup sheet. For example,
if you are writing a drawing program, you might want to present the user with
some options for tiling pages when printing a drawing larger than a single sheet.

When the user taps on Print Setup, which sends msgAppPrintSetup to the
application, the following events occur:

1 clsApp handles msgAppPrintSetup by sending msgAppShowOptionSheet to
self, specifying tagAppPrintSetupOptSheet.

2 clsApp handles msgAppShowOptionSheet by creating an option sheet by
sending msgAppGetOptionSheet to self.

3 clsApp handles msgAppGetOptionSheet by creating the option sheet for the
printer setup dialog. Eventually it sends msgAppAddCards to self.

4 Your application should handle msgAppAddCards by adding its option cards
to the option sheet (as described below).

5 After handling msgAppAddCards, your application should allow its ancestor
to handle the message, so that its ancestors can add their own cards to the
option sheet.

6 clsApp adds its own option sheets and returns, which unwinds back to
clsApp handling msgAppShowOptionSheet

7 clsApp then sends msgOptionShowCardAndSheet to insert the option sheet
into your document's frame.

Handling msgAppAddCards

msgAppAddCards passes a pointer to an OPTION_TAG structure that contains:

option The UID of the option sheet.

tag The tag for that option sheet.

When your application handles msgAppAddCards, it should first check which
option sheet is being built. You can identify the option sheet by checking the tag
value. When creating the Print Setup option sheet, tag contains the value
tagAppPrintSetupOptSheet.

To add cards to the option sheet, send msgOptionAddCard to the option sheet
specified in option. When your application adds the last of its cards, use

11.2

1 L2.1

CHAPTER 11 I PRINTING 139

Print Protocol Description

msgOptionAddLastCard. If your application has only one card, it should
use msgOptionAddLastCard exclusively.

Mter adding option cards, your application sends msgAppAddCards to its
ancestor so that it can add its own cards.

Print Protocol Description
When the user taps on Print in the Document menu to print a document, the
button sends msgAppPrint to the document. Usually, your application allows its
ancestor (clsApp) to handle msgAppPrint. clsApp provides default print behavior
and communicates with thePrintManager. thePrintManager responds by
performing two actions:

• Displaying a dialog that asks the user to choose a printer .

• Moving a copy of the document to an appropriate service section in the
Out box.

The document remains in the Out box until the user connects the appropriate
printer. At that time, the manager of that service section creates a wrapper (a
special embeddor application that is an instance of clsPrint). When the service
section activates and opens the wrapper, the wrapper activates and opens your
document. However, the window device used by your document is not the screen;
it is a window device created by the wrapper.

Print Layout Driver (PLD)

When the wrapper activates and opens your document, it also creates an instance
of clsPrLayout called a print layout driver (PLD). The printer layout driver
essentially guides the pagination process by sending paginate page messages until
the document returns stsEndOfData (or an error).

11.3

The process described here is a
pagination process (as opposed
to imaging). The real imaging
happens as a result of the
ImagePoint messages
m5gWin5tartPage and
m5gWinRepaint.

140 PENPOINT ARCHITECTURAL REFERENCE

Part 2 / PenPoint Application Framework

The printing protocol messages listed in Table are defined by clsPrint and are
described in PRINT.H.

Table 11 ~1

Pri nti ng Protocol M~~ss;aCles
!)~$criptkm

msgPrintStartPage

msgPrintLayoutPage

msgPrintGetMetrics

msgPrintSetMetrics

msgPrintApp

msgPrintPaperArea

P_PRINT_PAGE

P_PRINT_PAGE

Advance document to its next logical page.

P _PRINT_METRICS

P _PRINT_METRICS

P _PRINT _DATA

Tells a document to layout its logical page.

Gets the print metrics.

Sets the print metrics.

Prints a document.

P _PRINT_AREA Passes back the width and height of the printing
area on the paper.

msgPrintGetProtocols

msgPrintEmbeddeeAction

P _PRINT_PROTOCOLS

P _PRINT _EM BED DEE_ACTION

Gets the pagination and embeddee protocols.

Requests document's permission to perform an
action on an embeddee.

msgPrintExamineEmbeddee Request from document to interpret embedded
window's print properties.

msgPrintSetPrintableArea

msgPrintGetPrintableArea

PRINTABLE_AREA

PRINTABLE_AREA

Requests margin adjustment for unprintable area.

Requests margin information.

Each time it is ready for the application to layout a page, the PLD sends
msgPrintStartPage to the top-level document being printed. This is a signal to the
application to advance its private context to the next page of display (depending
on its layout type: flow or nonflow). This could mean simply advancing a data
pointer or perhaps inserting a new window in the parent of the application's
mainWin.

If an application chooses to account for the unprintable area on a page, it sends
msgPrintGetPrintableArea and msgPrintSetPrintableArea to the PLD to make
the adjustment. The PLD's default tiling does this by default.

After sending msgPrintStartPage, the PLD sends msgPrintGetProtocols to the
top-level document. The message arguments passed back tell the PLD how the
application wants to paginate its logical page and how embeddees are to be
processed.

Removing Frame Decorations

When the printer wrapper is active, it activates and opens your document using
msgAppMgrActivate. The arguments for the activation message use the wrapper's
window device (the printer) as the window device for your document.

Eventually, the PenPoint Application Framework sends msgAppOpen to your
document.

clsApp self-sends msgAppSetPrintControls in its handler for msgAppOpen.
clsApp responds by:

11.3.2

CHAPTER 11 I PRINTING 141
Print Protocol Description

1 Turning off all frame decorations when the application is top level (pArgs
is true).

2 Turning off all frame decorations except alternate (user-set) borders when the
application is embedded (pArgs is false)~

The frame decorations include:

• Title, menu, and command lines.

• Tab bar.

• Scroll bars.

• Borders.

If you want non-standard behavior (for example, if you choose to leave some of
your frame decorations on for printing), you should handle
msgAppSetPrintControls.

When your application receives msgAppOpen, it should check the printing flag in
the message's pArgs. If printing is true, your application should remove anything
from its frame that you don't want to print (particularly things that are specific to
the user interface rather than presentation).

Your method table entry for msgAppOpen must specify call-ancestor-after. When
clsApp receives msgAppOpen, it self-sends msgAppSetPrintControls to remove
the title, menu bar, tab bar, border, command lines, and scroll bars from the
frame. clsApp does not remove decorations from custom frames that inherit from
clsFrame, nor can it remove custom decorations that you added to the frame. The
wrapper then sends messages to the document, telling it to paginate.

Pagination

The PLD can specify two forms of pagination: flow and tiling.

If paginationMethod is prPaginationFlow, pagination is left totally up to the
application.

If paginationMethod is prPaginationTile, the PLD will paginate the document's
main window by tiling it. All the document needs to do in preparation is to make
its main display window layout as full size. Then, when the print protocols
indicate that tiling is requested, the PLD performs these steps:

1 Set the shrink-wrap bits on the document's frame, if it has one.

2 Send msgWinLayout to the print window (prframe) and relax its parent's
constraints on the document's main window during the layout.

3 Send msgPrintLayoutPage to the document.

4 Calculate and process each tile.

Thus, the document can size its main display window when the document is
opened, in response to msgPrintStartPage, during winLayoutSelf, or in response
to msgPrintLayoutPage after the print protocols have been set.

142 PENPOINT ARCHITECTURAL REFERENCE
Part 2 I PenPoint Application Framework

If the document's main display window (usually the frame client Win) is sensitive
to shrinking (in other words, it won't expand back to full size when its parent
relaxes constraints), the document should protect it with a scroll window to make
sure the PLD's clipper window never forces it to shrink. Note that the PLD
clipper window always forces the document's outermost window to match its own
size before the PLD knows it is tiling.

msgWinLayout always follows msgPrintGetProtocols. msgPrintLayoutPage
follows msgWinLayout. msgPrintLayoutPage is similar to msgWinLayout, but is
intended for two types of clients:

• Clients wanting to be sure they only get one layout message per page.

• Clients having the page layout logic in the document, as opposed to in a view.

In response to msgPrintLayoutPage, a typical flow-type application begins
calculations to layout its contents. If the application encounters embedded
documents while laying its page out, it calls the print layout driver for the
embeddees.

Handling Embeddees
There are two ways to handle embeddees:

• The PLD can enumerare the embeddees after laying out a page
(prEmbeddeeSearchByPrintJob).

• The application finds the embeddees on its own (prEmbeddeeSearchByApp).

Using prEmbeddeeSearchByPrintJob

In prEmbeddeeSearchByPrintJob, the PLD uses winEnum to find all embedded
windows in the document's childAppParentWin after the application lays out a
logical page. Each time the PLD finds an embedded document, it sends
msgPrintEmbeddeeAction to the document (document's layout UID, specified
in pArgs to msgPrintStartPage) to inform it of the appropriate action. If the
response is stsOK or stsNotUnderstood, the PLD takes the action, if there is one,
and then sends msgWinLayout again. The current actions that PenPoint imple
ments are prEmbedActionAsIs and prEmbedActionExtract.

The PLD proposes prEmbedActionExtract when the embeddee's print properties
are set to invisible or defer to end. When the document approves the action, the
PLD extracts the embedded window from the window tree (if it is inserted) and
either forgets about it (invisibility) or puts in on a queue to deal with it after the
current document is finished printing.

11.3.4.1

CHAPTER 11 I PRINTING 143
Print Protocol Description

Handling prEmbeddeeSearchByApp 11.3.4.2

In prEmbeddeeSearchByApp, the document finds the embedded windows on its
own (usually in response to msgPrintLayoutPage) and calls the PLD on each one
(msgPrintExamineEmbeddee). The PLD obtains the embeddee's print properties
and proposes an action by msgPrintEmbeddeeAction, as above. The document
can process its embedded windows in response to either msgPrintStartPage or
msgPrintLayoutPage. However,in the former case, msgPrintEmbeddeeAction will
always be sent to the document, because the document has not yet returned an
appLayoutUID from msgPrintStartPage.

Default Printing Behavior
The printing protocol is designed so that even if an application doesn't handle the
printing messages, the PLD makes certain assumptions that enable it to print a
document (or at least a part of it).

If the PLD sends printing messages to a document but the application does not
define methods for the printing messages, the messages return stsNotUnderstood.

msgPrintStartPage Not Understood

If msgPrintStartPage returns stsNotUnderstood to the PLD, it indicates that the
document doesn't know how to paginate or only has one logical page to print
(such as a tiled drawing program or the Tic-Tac-Toe sample program).

When the PLD receives stsNotUnderstood in response to msgPrintStartPage, it
tells the document to layout and print the current page. If the document is not
tiled, it prints the upper left portion of the document (the portion of the
document's display window that is not clipped by the PLD clipper).

msgPrintGetProtocols Not Understood

If msgPrintGetProtocols returns stsNotUnderstood to the PLD, the PLD
assumes that:

• paginationMethod is prPaginationFlow .

• embeddeeSearch is prEmbeddeeSearchByPrintJob.

msgPrintEmbeddeeAction Not Understood

If msgPrintEmbeddeeAction returns stsNotUnderstood to the PLD, the PLD
acts as if the document returned stsOK. The assumption here is that if the
document didn't know enough not to return stsRequestDenied, the PLD should
be able to enter an embedded document anyway.

msgPrintLayoutPage Not Understood

If msgPrintLayoutPage returns stsNotUnderstood to the PLD, the PLD acts as if
the document returned stsOK.

11.3.5

11.3.5.2

11.3.5.3

Chapter 12 I The Application
Manager CI.5

The application manager class (clsAppMgr) defines messages to install application
classes, to keep track of installed application classes, and to create, activate, and
destroy instances of an application.

Your application uses these messages to create a new application class and to get
information about installed classes. The clsAppMgr messages also include two
observer messages that inform when applications have been installed or deinstalled.

This chapter covers the following topics:

• Installing a new application class.

• Creating a new document.

• Activating an application instance.

• Moving or copying an application instance.

• Deleting application instances.

Application Manager Metrics
Each application class has metrics that pertain to the class in general (not to each
instance):

.• The application name.

• The name of the company that wrote the application.

• How the application name appears in the Create menu.

• Whether the application allows embedding.

• Whether instances run in hot mode by default.

• Whether the user can create instances of the application.

This information allows the Notebook to let the user know about your application
and provide your application with the right environment.

Because clsAppMgr stores this general information once for each application class,
clsApp doesn't have to maintain it for each instance. Nor does clsApp have to
respond to messages requesting this information.

The clsAppMgr messages are defined in APPMGR.H. Table 12-1 lists the messages
defined by clsAppMgr.

146 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

M~$$C$g~

msgNew

msgNewDefaults

msgAppMgrGetMetrics

msgAppMgrCreate

msgAppMgrActivate

msgAppMgrMove

msgAppMgrCopy

msgAppMgrFSMove

msgAppMgrFSCopy

msgAppMgrDelete

msgAppMgrRename

msgAppMgrShutdown

msgAppMgrGetRoot

msgAppMgrSetIconBitmap

P _APP _MGR_NEW

P _APP _MGR_NEW

P _APP _MGR_METRICS

P_APP_MGR_CREATE

P _APP _MGR_ACTNATE

P _APP _MGR_MOVE_COPY

P _APP _MGR_MOVE_COPY

P _APP _MGR_FS_MOVE_COPY

P _APP _MGR_FS_MOVE_COPY

P _APP _MGR_DELETE

P _APP _MGR_RENAME

P _FS_LOCATOR

OBJECT

msgAppMgrSetSmallIconBitmap OBJECT

msgAppMgrRevert

msgAppMgrRenumber

msgAppMgrDumpSubtree

msgAppMgrGetResList

P_FS_LOCATOR

P _FS_LOCATOR

P _FS_LOCATOR

P _APP _MGR_GET _RES_LIST

Installing a New Class

D~$(dptit)f'I

Install a new class.

Initialize the defaults for a new class.

Get the class metrics.

Create an instance of an application.

Activate an instance of an applicati~n.

Move a doc to a new location.

Copy a doc to a new location.

Low-level move message. Used by msgAppMgrMove.

Low-level copy message. Used by msgAppMgrCopy.

Delete a doc.

Rename a doc.

Unconditionally shutdown an app instance and all
children.

Get the root application (clsRootContainerApp)
of a tree of applications.

Set the icon bitmap.

Set the small icon bitmap.

Revert to filed copy.

Renumber an application heirarchy.

Display the attributes of a subtree of apps.

Creates a resource list, given an application UUID.

When your application's main routine detects that process Count is 0, it should
call its application class initialization routine. This routine declares an
APPMGR_NEW structure, initializes it (by sending msgNewDefaults to
clsAppMgr), modifies some of the arguments, and then sends msgNew to
clsAppMgr. In addition to an OBJECT_NEW_ONLY structure, APPMGR_NEW

contains two structures: a CLASS_NEW_ONLY structure and an
APP _MGR_METRICS structure.

The CLASS_NEW_ONLY structure contains:

pMsg the address of the application's msgProc.

ancestor the application's ancestor class.

size a 20-bit value that specifies the size of the application class's instance
data, in bytes.

newArgsSize a 20-bit value that specifies the size of the application class's
_NEW structure.

The APP _MGR_METRICS structure contains:

CHAPTER 12 / THE APPLICATION MANAGER CLASS 147

dir the handle on the application directory that contains the installed
application.

Installing a New Class

appMonitor the UID of the application monitor object. The application
monitor is responsible for configuring an application the first time it is
loaded. If the application is already loaded, the application monitor loads
the application's resource file and other portions of the application.

resFile the handle on the resource file used by the application.

iconBitmap the resource ID of the icon bitmap for the application.

smallIconBitmap the resource ID of the small icon bitmap for the
application.

appWinClass the UID of the application's window class.

defaultRect a RECT32 structure that specifies the application's default
rectangle in points.

name a string that specifies the name of the application.

version a string that specifies the version of the application.

company a string that specifies your company's name.

defaultDocName a string that specifies the default name for a document
created by the application. If you specify pNull, the PenPoint
Application Framework will look for the default document name in
tagAppMgrDefaultDocName in the resource file APP.RES.

copyright a pointer to a string that contains the copyright notice for the
application.

programHandle an OS_PROG_HANDLE structure that specifies the location
to receive the handle on the application's executable file in the loader
database.

flags an APP _MGR_FLAGS structure that specifies other information about
the application. Table 9-2 describes the application manager flags.

Flag

stationery

accessory

hotMode

allow Embedding

confirmDelete

deinstallable

systemApp

lowMemoryApp

fullEnvironment

Put in Stationery notebook.

Put in Accessories menu.

Create instances in hot mode.

Allow child embedded applications.

Ask the user for confirmation before deleting.

The user can deinstall the application.

System application.

Allow activation of this application under low memory conditions.

Provide instance 0 with a full environment.

148 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

Creating a New Document
To create a new document, send msgAppMgrCreate to the application class.
msgAppMgrCreate creates a new directory and gives the directory an attribute
that specifies the application class. The actual application instance does not exist
until you send msgAppMgrActivate to clsAppMgr.

msgAppMgrCreate takes a pointer to an APP _MGR_CREATE structure that
contains:

locator a locator for the directory of the document's parent. Usually, this is
the Notebook Table of Contents or a section; for embedded documents,
this can be any document.

pName a pointer to a string that contains the name of the new application
instance.

sequence a U32 value that specifies the sequence number of the new
application instance in its parent application.

renumber a Boolean value that indicates whether the global sequence
numbers should be updated when creating this application instance.
If the value is true, clsAppMgr updates the global sequence numbers.

Activating an Application Instance
To activate a document and all its embedded documents, send
msgAppMgrActivate to the application class. The message takes a pointer to an
APP _MG~ACTIVATE structure that specifies:

winDev the UID of the window device for this application.

locator a locator for the directory that contains the application to activate.

parent the UID of the parent application.

uid a UID value that will receive the UID of the new application instance.

msgAppMgrActivate creates a new process and sends it the information it needs
to create a msgNew. In AppMain, your application creates a msgNew and sends it
to clsClass. This creates an application object in the process. From this point on,
the application instance is on its own, and responds to clsApp messages.

If the application monitor was unable to activate a document because there wasn't
enough memory, it returns stsAppMgrLowMemNoActivate.

12.4

Moving or Copying an Application Instance 12.5

To move or copy a document to a new location, send msgAppMgrMove or
msgAppMgrCopy to the application class for that document. Both messages take
a pointer to an APP _MGR_MOVE_COPY structure, which contains:

locator a file system locator for the source document.

source the UID of the source object.

dest the UID of the destination object that will contain the moved or
copied document.

CHAPTER 12 I THE APPLICATION MANAGER CLASS 149

Getting Metrics for a Class

xy an XY32 structure that specifies the x-y coordinates of the location within
the destination object where the document will be moved or copied.

name a string buffer that contains the name of the document being moved
or copied. If the destination already contains a document with the same
name, the application manager creates a new name for the document and
stores the new name in this buffer.

renumber a Boolean value that indicates whether the global sequence
numbers should be updated. If the value is true, clsAppMgr updates the
global sequence numbers.

style An APP _MGR_MOVE_COPY_STYLE enumerated value that specifies the
style for the move or copy. The possible values are:

showConfirm show the confirmation sheet to the user before moving
or copying.

showProgress show the progress of the move or copy to the user.

app Win the DID of the application window that was moved or copied.

Deleting Application Instances
You use msgAppMgrDelete to destroy a document. That is, you use it to free the
application object, destroy the process, delete the resource file, and delete the
directory. If the application instance doesn't go away when you send it
msgAppDelete, you can send msgAppMgrDelete to its class. msgAppMgrDelete
does the same thing as msgAppDelete, but it does not rely on the application
instance being able to respond to messages.

You send msgAppMgrDelete to the application's class, not to an instance of the
application. The message takes a pointer to an APP _MGR_DELETE structure that
contains:

locator a locator that specifies the document's directory.

renumber a Boolean value that indicates whether the global sequence
numbers should be updated. If the value is true, clsAppMgr updates the
global sequence numbers.

GeHing Metrics for a Class
To get the metrics for a particular class, send msgAppMgrGetMetrics to the
application class. The message takes a pointer to an APP _MGR_METRICS structure,
which is the same structure used in msgNew.

12.6

12.7

150 PEN POINT ARCHITECTURAL REFERENCE

Part 2 I PenPoint Application Framework

Observer Messages
When applications are installed or deinstalled, these messages are sent to observers
of clsApp:

msgApplnstaIled indicates that an application has been installed.

msgAppDelnstaIled indicates that an application has been deinstalled.

Both messages have a single argument, the UID of the class that was installed or
deinstalled.

Chapter 13 / The Application
Monitor Class

The application monitor drives application installation, performs application
global functions, and helps deinstall an application. An application monitor
instance runs in process 0 of an application, along with an application manager
instance.

The application monitor functions are defined by clsAppMonitor. Applications
can subclass clsAppMonitor to provide additional functions, such as performing
specialized installations, providing file import, setting and saving global
application configurations, and providing file converters.

Application Monitor Concepts
The application monitor assists in application installation and deinstallation.

For the application monitor to perform its work properly, your file organization
must conform to the organization described in the File Organization chapter of
Part 12: Installation AP 1.

Application Monitor in Installation

When the user installs your application:

1 The installer calls OSProcessCreate, specifying your application executable
file. The entry point for that file is main. Because the user is installing your
application, this is the first process running your application executable; thus,
it receives the process number o.

2Jur main routine examines the process number and, if it is 0, calls some class
initialization routines and then calls AppMonitorMain. AppMonitorMain is a
PenPoint-provided routine that creates an instance of clsAppMonitor, running in
the context of your process o. This instance of clsAppMonitor is your application's
application monitor .

. 3 AppMonitorMain sends msgApplnit to your application monitor.

4 If this is the first time the application has ever been installed, the application
monitor puts up the installation option sheet so the user can specify the
configuration. The results from the option sheet are stored in the
application's resource file (APP.RES). The PenPoint™ operating system defines
a default property sheet; your application can provide its own property sheet
to override the defaults.

5 The application monitor uses the application's resource file to drive the rest
of the installation.

'52 PENPOINT ARCHITECTURAL REFERENCE
Pa~t 2 I PenPoint Application Framework

6 Using the application resource file, the application monitor loads all other
portions of the application, such as Stationery, Help, Accessories, and any
miscellaneous resources.

To override the default behavior provided by clsAppMonitor, you may have to
subclass it. The considerations for subclassing clsAppMonitor are described in this
chapter in "Subclassing clsAppMonitor."

Other Application Monitor Functions

After installing an application, the application monitor does not go away.

When requested, the application monitor can deinstall the application.

Stationery, Accessories, and Help

The application monitor is also responsible for loading stationery, accessories, and
help templates from the application's distribution disk to their appropriate
notebooks.

The application monitor creates a section in the Stationery notebook for your
application and copies the stationery templates into that section. If you do not
provide stationery, the application monitor creates a blank document for your
application and stores it in the Stationery notebook.

If the application's distribution disk contains accessory templates, the application
monitor copies the accessories templates into Accessories. If there are no
accessories, the application monitor skips this stage.

The application monitor creates a section in the Help notebook for your
application and copies the help templates into that section.

clsAppMonilor Messages
The clsAppMonitor messages are defined in APPMON.H. Table 13-1 lists the
application monitor's messages.

13.1.2

13.1.3

13,,2

)NIOI'B~orAME~ssaaes

msgAM GetMetrics

msgAMLoadInitDll

msgAMLoadMisc

msgAMLoadStationery

msgAMRemoveStationery

msgAMLoadHelp

msgAMRemoveHelp

P _AM_METRICS

OBJECT

void

void

void

void

void

Gets the application monitor's metrics.

Loads, runs, and unloads an optional initialization .dll.

Loads the application's miscellaneous files.

Loads stationery and accessories templates from
application's distribution disk.

Removes all the stationery and accessory templates for
this application.

Load help into the Help notebook.

Removes all Help notebook items for this application.

CHAPTER 13 / THE APPLICATION MONITOR CLASS 1 S3
Using clsAppMonitor Messages

Table 13" 1

Des(f'iption

msgAMPopupOptions P_BOOLEAN Pops up the global option sheet the first time the
application is installed.

msgAMLoadAuxNotebooks

msgAMLoadFormatConverters

void

void

Performs all activities related to auxiliary notebooks.

Loads file format converter .dlls.

msgAMUnloadFormatConverters void

msgAMLoadOptionalDlls void

Unloads file format converter .dlls.

Loads an application's optional .dlls.

msgAMUnloadOptionalDlls

msgAMTerminateO K

msgAMTerminate

msgAMTerminateVetoed

void Unloads an application's optional .dlls.

P_OBJECT Asks if this application is willing to terminate.

void Terminates this application.

P _AM_ TERMINATE_VETOED Application termination sequence was vetoed.

Installs the application. msgAppInit

msgAppRestore

msgAppOpen To

msgAppCloseTo

msgAppClosed

DIR_HANDLE

pNull

APP _OPEN_TO

APP _ CLOSE_TO

APPMONITOR

Reinitializes the application after a warm boot.

Displays the application's configuration option sheet.

Removes the application's configuration option sheet.

Sent to observers when the configuration option sheet
is closed.

Using clsAppMoni.or Messages
You usually use the clsAppMonitor messages to get information about an appli
cation class (msgAMGetMetrics). From the application monitor's metrics, you
can find the DID of the application class.

Most of the other messages are used by the installer application to load and unload
an application's stationery, help, and related components.

GeRing App Monitor Metrics
To get the application monitor's metrics, send msgAMGetMetrics to an appli
cation monitor. The message takes a pointer to an AM_METRICS structure that is
uses to return the metrics. The structure contains a single element, the DID of the
application class (appClass).

Loading and Unloading Stationery
To load stationery templates from the application's distribution disk to the
Stationery notebook, send msgAMLoadStationery to the application monitor.
The message takes no arguments.

clsAppMonitor looks for stationery in a directory named statnry (in the application
directory). The stationery can be either a complete saved instance of a document,
or simply a directory. A piece of stationery is loaded into the Stationery notebook
only if its file has the attribute smAttrStationeryMenu.

13.3.2

154 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

To remove all stationery that belongs to an application from the Stationery
notebook, send msgAMRemoveStationery to the application monitor. The
message takes no arguments.

This message will remove:

• Stationery defined by the application that was loaded when the application
was installed.

• Stationery that the user defined and added to the Stationery notebook after
the application was installed.

Loading and Unloading Help

To load help applications from the application's distribution disk to the Help
notebook, send msgAMLoadHelp to the application monitor. The message takes
no arguments.

clsAppMonitor looks for subdirectories in a directory named help (in the
application's directory). Each help subdirectory can contain a help application and
its files or a single file that contains ASCII text or Microsoft RTF text.

If the application monitor finds a help directory in your application, it creates a
section for your application in the Help notebook and loads the contents of each
subdirectory as documents in that section. The name of each subdirectory in the
help directory becomes the name of a help topic in the Help notebook.

When the application monitor encounters a help directory that contains a single
file, the application monitor creates an instance of the text editor and imports the
file as a text editor document.

To remove help for an application from the Help notebook, send
msgAMRemoveHelp to the application monitor. The message takes no arguments.

clsAppMonitor locates the help files that belong to the application and removes
them from the Help notebook.

Loading Other Information
Some applications require other information, such as additional resource files or
data files. When distributing an application, these files are stored in a directory
named mise (in the application directory).

To load these files into an installed application directory, you send
msgAMLoadMisc to the application monitor. The message takes no arguments.

If the mise directory exists, clsAppMonitor copies the directory into the installed
application directory.

When you remove an application, it deletes everything in the application
directory, including anything loaded with msgAMLoadMisc.

13,,3.4

CHAPTER 13 / THE APPLICATION MONITOR CLASS 155
Subclassing clsAppMonitor

Sultelassing elsAppMonitor" 13.4

When you subclass clsAppMonitor, your subclass will receive the messages
described in this section. Although you might want to allow clsAppMonitor to
handle these messages, receiving these messages gives you the opportunity to
handle them yourself.

Because these messages and their arguments are already described above, this
section deals with special considerations and return values you that you may have
to use when you receive these messages.

Superclass Messages
The first set of messages you will receive are clsApp messages that are intercepted
and altered by clsAppMonitor.

Handling msgApplnit

If you subclass clsAppMonitor, you will receive msgApplnit at installation time.

Your method table for msgApplnit should send the message to ancestor
(clsAppMonitor) first. When you receive msgApplnit, you can perform any
first-time processing that you might need.

~. Handling msgAppTerminate

When the installer deinstalls your application class, it sends msgAppTerminate to
your application monitor.

Your method table for msgAppTerminate should call ancestor after you handle
the message. When you handle msgAppTerminate, you should clean up and save
whatever objects you need to save. When your ancestor (clsAppMonitor) receives
the message, it destroys your task, so you cannot expect to do any further
processing after the call ancestor.

Handling clsAppMonitor Messages
You should not have to handle most clsAppMonitor messages, your ancestor will
handle them for you. Those messages that must be handled by your ancestor are
labeled in the header file appmon.h.

Handling msgAMTerminateOK

Your method table entry for msgAMferminateOK should call ancestor before
handling the message. clsAppMonitor then sends msgAppMgrShutdown to your
application class for each of its active documents (by default, clsAppMonitor
unconditionally terminates all of your application's documents).

13.4~ 1

13.4.1" 1

13.4.2" 1

Chapter 14 / The Application Class

While clsAppMgr provides methods to create and activate a document (up to the
point where the process contains an application object), clsApp provides methods
to control the document once it has an application object. Most of these messages
are sent by clsApp or the PenPoint Application Framework; applications should
not need to send them.

Messages defined by clsApp perform tasks such as initializing, saving, or
re-creating the application instance data, opening and controlling the application
instance's windows, starting message dispatching, setting hot mode, floating,
zooming, and deleting application instances. All these topics are covered in this
chapter.

Application instances must be clsApp objects. When you define your application
class (in the application class initialization routine called by mainO), you must
specify that its ancestor is clsApp.

clsApp Messages
Table 14-1 lists the clsApp messages.

msgNew P_APP_NEW

msgN ewDefaults P~PP_NEW

msgApp Dispatch nothing

msgAppInit DIR_HANDLE

msgAppActivate nothing

msgAppOpen P_APP_OPEN

msgAppOpenTo U32

msgAppClose nothing

msgAppCloseT 0 U32

msgApp TerminateOK nothing

msgAppTerminate BOOLEAN

msgAppSave nothing

msgAppSaveT 0 DIR_HANDLE

msgAppRestore nothing

Creates and initializes a new document.

Initializes the APP _NEW structure to default values.

Starts message dispatching.

Creates the default document data file and main
window.

Activates a document and its children.

Opens a document's main window.

Opens a document to a specific state.

Closes a document's main window.

Closes a document to a specific state.

Checks if a document is willing to terminate.

Terminates a document.

Saves a document to its working directory.

Saves a document to a specified directory.

Restores an document from its saved instance data.

158 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / Pen Point Application Framework

Message

msgAppRestoreFrom

msgAppDelete

msgFree

msgFreeOK

msgAppGetRoot

msgAppSetParent

msgAppActivateChildren

msgAppActivateChild

msgAppSaveChild

msgAppSaveChildren

msgAppOpenChildren

msgAppOpenChild

msgAppCloseChildren

msgAppCloseChild

msgAppGetEmbeddor

msgAppCreateLink

msgAppDeleteLink

msgAppGetLink

DI~HANDLE

nothing

nothing

nothing

APP

nothing

P _APP _ACTIVATE_CHILD

APP

nothing

BOOLEAN

APP_OPEN_CHILD

nothing

APP

P_APP

P_APP_LINK

P_APP_LINK

P_APP_LINK

msgAppActivateCorkMarginChildren nothing

msgAppSetHotMode

msgAppSetMain Win

msgAppGetMetrics

msgAppSetName

msgAppGetName

msgAppRename

msgAppSetReadOnly

msgAppSetDeletable

msgAppSetMovable

msgAppSetCopyable

msgAppOwnsSelection

msgAppIsPageLevel

msgAppSetSaveOn Terminate

BOOLEAN

WIN

P _APP _METRICS

P_STRING

P_STRING

P_STRING

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

P _APP _OWNS_SELECTION

nothing

BOOLEAN

14-1

Descripti¢i1

Restores an document from a specified directory.

Deletes a document from the system.

Destroys a document.

Checks to see if a document and its children are
willing to be freed.

Gets the document's root document (which is
typically the Notebook).

Sets the parent document.

Activates the document's embedded documents.

Instantiates and activates an embedded document.

Saves the specified child document.

Saves a document's children.

Opens all of the documents on the metrics.children list.

Opens a specific child.

Closes a document's children.

Closes a specific child.

Gets a document's direct parent in the filesystem
heirarchy.

Creates a link to another document.

Deletes the specified link handle.

Gets the document's UUID for the specified link
handle.

Activates the embedded documents in the cork
margin.

Document Attributes

Turns hot mode on or off

Sets the document's main window.

Gets a copy of the application metrics.

Sets a document's displayed name (in its main window
title).

Gets a document's name.

Renames a document.

Sets the read only flag.

Sets the dele table flag.

Sets the movable flag. Not implemented.

Sets the copyable flag. Not implemented.

Tests if any object in a document owns the selection.

Asks a document if it shows up as a page in the
Notebook (as opposed to being embedded).

Tells the document to save itself before terminating.
(onfinued

Message

msgAppSet TitleLine

msgAppSetMenuLine

msgAppSetScrollBars

msgAppSetBorderStyle

msgAppSetCorkMargin

msgAppProvideMain Win

msgAppCreateMenuBar

msgAppCreateClientWin

msgAppGetEmbeddedWin

msgAppGetApp Win

msgAppAddFloatingWin

msgAppRemoveFloatingWin

msgAppFindFloating Win

msgAppSetChildAppParent Win

msgAppHide

msgAppSetFloatingRect

msgAppSetOpenRect

msgAppRevert

msgAppSend

msgAppPrint

msgAppPrintSetup

msgApplmport

msgAppExport

msgAppAbout

msgAppHelp

msgAppUndo

msgAppMoveSel

msgAppCopySel

msgAppDeleteSel

msgAppSelectAll

msgAppSearch

msgAppSpell

msgApplnvokeManager

Tokes

U32

U32

U32

U32

U32

P_OBJECT

P_OBJECT

P_OBJECT

CHAPTER 14 / THE APPLICATION CLASS 159
clsApp Messages

Table 14~ 1 !rnt'I'tltHIPrt!

Description

Turns the document's title line on or off.

Turns the document's menu bar on or off.

Turns the document's scroll bars on or off.

Sets the border style.

Turns the document's cork margin on or off.

Asks a document to provide its main window.

Creates the standard application menu bar.

Creates the document's client window.

P _APP _GET_EMBEDDED_ WIN Finds the specified clsEmbeddedWin object within
a document.

P _APP _GET _APP _ WIN

WIN

WIN

Finds a clsApp Win object within a document.

Adds a window to the document's list of floating
windows.

Removes a window from the document's list of floating
windows.

P _APP _FIND_FLOATING_WIN Finds the floating window that matches the given tag.

WIN Sets the window that is used as the parent window for
child documents.

nothing Hides an open document.

P_RECT32 Sets a document's floating size and position.

P_RECT32 Sets a document's open size and position.

Standard Menu

BOOLEAN Reverts to the filed copy of the document.

OBJECT Sends a document.

OBJECT Prints a document.

nothing Displays the print setup option sheet.

nothing Obsolete message. Not implemented.

OBJECT Prepares to export a document as a file.

nothing Displays the document's ''About'' option sheet.

nothinged Shows help for the application. Not implemented -
reserved.

nothing Undoes the previous operation.

nothing Prepares to move the document's selection.

nothing Prepares to copy the document's selection.

nothing Deletes the document's selection.

nothing Selects all of the objects in the document.

OBJECT Searches a document for a string.

OBJECT Prepares to check the document's spelling.

OBJECT Routes a message to a manager.
(onth'1ued

160 PENPOINT ARCHITECTURAL REFERENCE
Part 2 I PenPoint Application Framework

msgAppExecute

msgAppExecuteGesture

Descripth:in

Sent to the manager to execute the manager's
behavior on a document.

Invokes the default gesture behavior for a
document's title line.

msgAppAddCards

msgAppShowOptionSheet

P _OPTION_TAG Adds cards to the specified option sheet.

P _APP _SHOW_OPTION_SHEET Shows or hides an option sheet.

msgAppGetOptionSheet P _APP _GET_OPTION_SHEET Gets the requested option sheet.

msgAppGetDocOptionSheetClient P _OBJECT Gets the client for the document's option sheets.

msgAppApplyEmbeddeeProps

msgAppGetBorderMetrics

msgAppSetControls

msgAppSetPrintControls

msgAppDeleted

msgAppFloated

OBJECT

P _APP _BORDER_METRICS

U32

BOOLEAN

P _APP _DELETED

P _APP _FLOATED

msgApp TerminateConditionChanged nothing

msgAppSelChanged BOOLEAN

msgAppOpened APP_OPENED

msgAppClosed APP_CLOSED

msgAppCreated P _APP _CREATED

msgAppMoved P _APP _MOVED_COPIED

msgAppCopied P _APP _MOVED_COPIED

msgAppChanged P_APP_CHANGED

msgAppChildChanged P _APP _CHILD_CHANGED

msgAppInstalled CLASS

msgAppDeInstalled CLASS

Applies Embedded Printing option card values to
first level embeddees.

Gets the document's border metrics.

Turns controls on or off

Turns screen decorations off for printing.

Sent to observers of clsApp when a document is
deleted.

Sent to observers when a document is floated or
unfloated.

Try to terminate the document; sent when a terminate
condition changed.

Sent to a document when something in it becomes
selected or deselected.

Sent to observers when a document is opened.

Sent to observers when a document is closed.

Sent to observers of clsApp when a document is
created.

Sent to observers of clsApp when a document is
moved.

Sent to observers of clsApp when a document is
copied.

Sent to observers of clsApp when a document has
changed.

Sent to observers of a document when a child
document is opened or closed.

Sent to observers of clsApp when an application is
installed.

Sent to observers of clsApp when an application is
deinstalled.

Although the header file for clsApp (APP.H) describes msgNew in its comments,
clsApp does not define a method for msgNew. If you subclass clsApp, you should
provide a method for msgNew that initializes a new document life cycle messages.

CHAPTER 14 I THE APPLICATION CLASS 161
Document Hierarchy Messages

Several dsApp messages are intended only to be sent by the PenPoint Application
Framework, especially those used in the document lifecycle. If you need to use any
of these messages, refer to the PenPoint API Reference or the header file, APP.H.

msgApplnit

msgAppSave

msgAppRestore

msgAppOpen

msgAppClose

msgAppDelete

Document Hierarchy Messages
If your application cannot use the default PenPoint Application Framework
behavior for dealing with embedded documents, it can use these messages.

Managing Embedded Documents

Embedded documents are also known as child application instances. Usually the
Notebook and the create menu take care of creating embedded documents for the
user. However, if your application has a special need, you can use these messages
to create embedded documents.

Activating All Embedded Documents

To activate all embedded documents, send msgAppActivateChildren to the parent
application object. The message has no arguments.

Activating a Single Embedded Document

To activate a single embedded document, send msgAppActivateChild to the
parent application object. The message requires a pointer to an
APP _ACTNATE_CHILD structure that contains two arguments:

pPath the path to the child's directory, relative to self.

uid a location to receive the new child application's UID.

Document Links

The document links allow a document with embedded documents to be moved to
other locations, yet keep track of its embeddees.

GeHing Document Information

There are two messages that can get information about a specific document:
msgAppGetMetrics and msgAppGetRoot.

When a client sends msgAppGetMetrics to a document, it obtains the metrics for
that document. The message requires a pointer to an APP _METRICS structure that
receives these arguments:

uuid the document's VVID.

14.2

14.2.1

14.2. L 1

14.:2.2

14.2.3

162 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

dir the document's directory.

parent the document's parent document.

children a list of document activated by this document.

main Win the main window UID.

floating Wins the floating windows, if any.

childAppParentWin the parent window of a child application.

resList the resource file list for the document. The default resource list
contains

• A document resource file.

• An application resource file.

• A preference resource file.

• The system resource file.

resFile The document's resource file.

flags An APP _FLAGS value that contains flags for the document. The flags
values are:

state the document state. Possible values are: appTerminated,
appActivated, appOpened.

hotMode whether the document is in hot mode.

floating whether the document is floating.

printing whether the document printing.

top Level whether the document is printing as top level.

When a client sends msgAppGetRoot to an application object, it obtains the root
application object for a tree of applications. The only argument for the message is
a pointer to an application UID to receive the UID for the root application object.

Setting Hot Mode

To change an application's hot mode metric, send msgAppSetHotMode to the
application object. The only argument is a Boolean value that indicates whether
hot mode should be on or off.

Most applications do not handle this message. They allow dsApp to handle it
for them.

Renaming a Document

To rename a document, send msgAppRename to the application object. The only
argument for the message is a pointer to a string that contains the new name for
the document.

Applications should not process this message. They should allow dsApp to handle
it for them. When dsApp has changed the application's metrics, it sends
msgAppSetName to self (see below).

14.2.4

14.2.5

CHAPTER 14 I THE APPLICATION CLASS 163
Standard Application Menus

GeHing an Application's Name
To get an application's name, send msgAppGetName to the application object.
The only argument is a pointer to the string that receives the document's name.

SeHing an Application's Title

To set an application's main window title, send msgAppSetName to the appli
cation object. The only argument is a pointer to the string that receives the
document's name.

Document Window Messages

SeHing the Main Window

Mter creating a main window (usually in msgApplnit), applications need to set
the main window. To do this, they send should send msgAppSetMain Win to self.
The only argument is a UID that identifies the main window.

The application should not process msgAppSetMain Win, but should pass it
to clsApp.

To add a window to the list of floating windows, send msgAppAddFloatingWin
to the application object. The only argument is the UID of the window to add to
the list.

To remove a window from the list of floating windows, send
msgAppRemoveFloatingWin to the application object. The only argument is the
UID of the window to remove from the list.

Standard Application Menus
To provide continuity among all applications running under the PenPoint
operating system, three standard application menus (or SAMs) should appear on
the menu bar of all applications: Document, Edit, and Options. These menus
contain a number of predefined buttons. The system resource file contains a menu
bar with these standard application menus. When you create an application's user
interface, you can use this resource to add your own buttons to the menu bar.
(Part 4: UI ToolKit describes how to add the standard application menus to your
interface.)

When your application is opened, it should create a menu bar and then send
msgAppCreateMenuBar to self. clsApp handles msgAppCreateMenuBar by
adding the Document, Edit, and Option menus in front of any other menus
specified by your application. When msgAppCreateMenuBar returns, your
application can further adjust the menu by removing buttons from the menus
that your application does not support or adding additional buttons to the menus.

When the user taps on a menu (but before the menu is displayed), the menu sends
msgControlProvideEnable to the document for each of the buttons in the menu.
Each time msgControlProvideEnable is sent, it contains a tag for a menu button.

14.2.6

14.2.7

14.3

14.3. 1

14.4

The protocol for modifying the
Options menu is discussed in
"Options Menu Protocol," later in
this chapter.

164 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

It is up to your application and its ancestors to determine whether the particular
button should be enabled or disabled~ When a button is disabled, it still appears
on the menu, but it is grayed out.

Your application should first allow its ancestor to handle msgControlProvideEnable.
clsApp will enable or disable the buttons as described in Table 14-2. If your application
owns the selection, clsApp enables or disables tagAppMenuMove, tagAppMenuCopy,
or tagAppMenuDelete, depending on what is selected. If there is no data selected,
clsApp disables all three buttons. If the application data is read-only, clsApp disables
Move and Delete.

Apart from the selection-dependent buttons, clsApp simply enables or disables
buttons based on its own defaults. Your application does not necessarily have to
take clsApp's decision as final; clsApp doesn't know enough about an individual
application's data. For example, clsApp always disables tagAppMenuSelectAll.
However, if your application supports the Select All button, it should re-enable
tagAppMenuSelectAll.

When clsApp returns, your application should handle msgControlProvideEnable
by:

• Examining the tag that identifies the button in question.

• Determining whether you should disable or enable the button.

• Setting the enable bit in the pArgs for the message.

fable 14-2

let;

tagAppMenuPrintSetup

tagAppMenuAbout

tagAppMenuCheckpoint

tagAppMenuRevert

tagAppMenuSearch

tagAppMenuSpell

tagAppMenuUndo

tagAppMenuPrint

tagAppMenuSend

tagAppMenuMove

tagAppMenuCopy

tagAppMenuDelete

tagAppMenuSelectAll

Any unrecognized tag

Always enabled.

Always enabled.

. Always enabled.

Always enabled.

Always enabled.

Always enabled.

Haw clsApp Handles

Enabled when undo transactions exist.

Asks thePrintManager.

Asks theSendManager.

Asks theSelectionManager.

Asks theSelectionManager.

Asks theSelectionManager.

Always disabled.

Always disabled.

Buffan Tags

CHAPTER 14 I THE APPLICATION CLASS 165
Standard Application Menus

". Document and Edit Menus 14.4.1

When the user taps a menu button, the menu sends a specific message to self (the
document that owns the current selection). Table 14-3 lists the buttons in the
Document and Edit menus and the messages that result from tapping that button.
Some buttons in the table list the name of a well-known manager object, which is
sent as one of the message arguments. (The reason for this is described after the
table.)

Table 14-3
Standard Application Menus

Menu Button

Revert

Send

Print

Print Setup

Export

About

Undo

Move

Copy

Delete

Select All

Find

Spell

Message

msgAppRevert

msgAppSend

msgAppPrint

msgAppPrintSetup

msgAppExport·

msgAppAbout

msgAppUndo

msgAppMoveSel

msgAppCopySel

msgAppDeleteSel

msgAppSelectAll

msgAppSearch

msgAppSpell

Manager (if exists)

theSendManager

thePrintManager

theSearchManager

theS pellManager

For application-specific behavior, applications can intercept these messages and
perform the operations themselves. For example, the browser must intercept
msgAppPrint, msgAppSend, msgAppSpeU, and msgAppSearch so that it can act
on the selected documents, not the Browser itself.

If your application does not intercept these messages, clsApp does one of two
things:

• It provides the generic behavior.

• It routes the message to an object that provides the behavior.

To route the message to an object that provides the behavior, clsApp sends
msgAppInvokeManager to self. The argument to the message is the well-known
UID of a manager that performs the operation. When clsApp receives
msgAppInvokeManager, it sends msgAppExecute to the manager object indicated
by the argument to msgApplnvokeManager.

msgAppExecute takes a pointer to an APP _EXECUTE structure that contains four
arguments:

Document Menu

Menu

166 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

app the UID of the application requesting the action.

s~l the UID of the object that is currently selected. This argument is
optional, depending on the manager's implementation.

count the number of UUIDs in the uuid array.

uuid an array of UUIDs that the action will affect. Each UUID indicates an
application. This allows standard application menu messages to affect
more than one application. The minimum content of the uuid array is
usually this application.

When the manager object receives msgAppExecute, it uses this information to
perform the operation.

Adding Menu Buttons

Usually when you add a button to a menu, the message sent by the button is
defined by your application. However, if the button activates a system-wide
facility that you expect many applications to use (such as a grammar checker), the
button should send msgAppInvokeManager.

Because msgAppInvokeManager is handled by clsApp and reroutes the button
information, you can use it to add additional buttons to the standard application
menus without actually modifying clsApp.

If you are adding a system wide button to a standard application menu, specify
that the button sends msgAppInvokeManager, and that its argument is the
manager that handles the operation. When the user taps the button, the button
will send msgAppInvokeManager to self. clsApp then sends msgAppExecute to
your manager object.

~ Managers for Menu Buttons

A manager that is referenced by a standard application menu must respond to
msgAppExecute.

As described above, the arguments to msgAppExecute include:

• The DID of the application that is making the request. This allows the
application to implement behavior (pop-up dialogs go away when the
application goes away).

• An optional selection UID to indicate where functions such as spell and find
should start.

• An array of UUIDs that indicate the applications to operate upon. The
default behavior of clsApp is to send only the UDID of the application itself.

~ Default Behavior Provided by clsApp

The following sections describe the default behavior when clsApp handles the
messages generated by the standard application menus.

CHAPTER 14 I THE APPLICATION CLASS 167
Standard Application Menus

".,. msgAppPrintSetup 14.4. 1.4

When clsApp receives msgAppPrintSetup, it sends msgAppShowOptionSheet to
self. This allows your application to add its own option cards to the Print Setup
option sheet.

Your application should allow its ancestor to handle msgAppShowOptionSheet.
When clsApp receives msgAppShowOptionSheet, it creates an option sheet by
sending msgAppGetOptionSheet to self. Again, your application should allow
clsApp to handle msgAppGetOptionSheet. Eventually it sends msgAppAddCards
to self.

When your application receives msgAppAddCards, it can add its own option
cards to the option sheet (as described below).

msgAppAddCards passes an OPTION_TAG structure that contains two arguments:

option UID of the option sheet.

tag tag for that option sheet.

To add your own option cards to the Print Setup option sheet, make sure that tag
contains tagAppPrintSetupOptSheet. If it does, you add cards by sending
msgOptionAddCard to the option sheet specified in option.

Part 4: UI Toolkit describes option sheets and the. option sheet protocol in detail.

Mter adding your option cards, allow your ancestor to handle msgAppAddCards,
so that it can add its own cards.

msgAppPrint

When clsApp receives msgAppPrint, it prints the application that was sent
msgAppPrint. If your application allows other applications to be selected, you
must handle msgAppPrint yourself to print the selected applications.

clsApp will forward the msgAppExecute message, the application UID, the
selection UID (if the application owns the selection), and the application UUID
to a well-known object, thePrintManager, for processing.

msgAppSend

When clsApp receivesmsgAppSend, it sends the application that was sent
msgAppSend to the Out box. If your a,pplication allows other applications to be
selected, you must handle msgAppSend yourself to send the selected applications.

clsApp will forward the msgAppExecute message, the application UID, the
selection UID (if the application owns the selection), and the application UUID
to a well-known object, theSendManager, for processing.

msgAppSpell

When clsApp receives msgAppSpell, it starts a spelling check on the current
application. The spelling manager must use the traverse protocol to determine the
range to be checked.

14.4.1,,6

168 PENPOINT ARCHITECTURAL REFERENCE
Part 2 / PenPoint Application Framework

clsApp will forward the msgAppExecute message, the application UID, the
selection UID (if the application owns the selection), and the application UUID
to a well-known object, theSpellManager, for processing.

msgAppSearch
When clsApp receives msgAppSearch,it starts a search of the current application.
The search manager must use the traverse protocol to determine the range to be
searched.

clsApp forwards the msgAppExecute message, the application UID, the selection
UID (if the application owns the selection), and the application UUID to a
well-known object, theSearchManager, for processing.

msgAppRevert
When clsApp receives msgAppRevert, it terminates the current application
without saving the data and creates a new instance from the application files.
Applications that modify their application files (or other files that affect their state
directly) must provide their own support for msgAppRevert.

msgAppMoveSel

When clsApp receives msgAppMoveSel, it sends msgSelBeginMove to the owner
of the selection. This causes the move icon to pop up.

msgAppCopySel

When dsApp receives msgAppCopySel, it sends msgSelBeginCopy to the owner
of the selection. This causes the copy icon to pop up.

msgAppAbout

When dsApp receives msgAppAbout, it brings up the Comments option sheet for
the application and displays the About card. clsApp constructs the About card
from the information available to it when the class is installed.

msgAppSelectAIl

There is no default clsApp behavior for msgAppSelectA11.

Options Menu Protocol

The Options menu is dynamic; it contains options for both the document
and the selection. When the user taps on the Options menu, clsApp sends
msgAppAddCards to the document that contains the current selection. The
document can add cards to the option sheet before or after sending the message to
its ancestor. Each of its ancestors handle the message in the same way until dsApp
receives the message.·

clsApp then sends msgAppAddCards to the selected object. Again, the object and
its ancestors can add cards to the option sheet. Finally, when dsApp receives the
message again, it presents the Options menu on screen. The buttons in the menu

14.4. L 10

L11

14.4. L 12

14 .. 4.L13

Remember that an option sheet
can contain one or more option
cards.

CHAPTER 14 I THE APPLICATION CLASS 169
Standard Application Menus

reflect the titles of all the option cards in the option sheets. The position of your
card titles in the Options menu depends on whether you call ancestor before or
after you send msgOptionAddCard.

Responding to msgAppAddCards 14.4.2. 1

When your application or object receives msgAppAddCards, you can add cards by
sending msgOptionAddCard or msgOptionAddLastCard to the option sheet.
Send msgOptionAddLastCard to add your last (or only) card to the option sheet;
msgOptionAddLastCard creates the separator line in the option menu. At some
point in handling msgAppAddCards, you should also send msgAppAddCards to
your ancestor so that it can add its cards to the option sheet. You can send
msgAppAddCards to your ancestor before or after sending msgOptionAddCard
and msgOptionAddLastCard.

msgAppAddCardspasses a pointer to an OPTION_TAG structure that contains:

option the UID of the option sheet to which you can add cards.

tag a tag that identifies the option sheet. The tag is provided as a
convenience so that your application can quickly determine the option
sheet for which it is creating a card. For the Options menu protocol, tag
will always contain tagAppMenuOptions.

If you want to add cards to the option sheet, you send msgOptionAddCard to the
option sheet specified in option; to add the last (or only card) send
msgOptionAddLastCard to the option sheet. msgOptionAddCard and
msgOptionAddLastCard are described in Part 4: UI Toolkit. In brief, these
messages take a pointer to an OPTION_CARD structure that contains:

tag a tag that identifies the card to add.

pName pointer to a buffer holding the card's name.

win this field must contain pNull.

client the UID of the client that manages the card.

You do not actually create the card until the option sheet sends you
msgOptionProvideCardWin. This prevents a card from being created until the
user turns to it.

Check Gesture Handling

When the user makes a check v' gesture on an object in your application, you
must be prepared to begin an option sheet creation. You respond to the check
gesture by sending msgAppShowOptionSheet to OSThisAppO.

14.4.3

170 PENPOINT ARCHITECTURAL REFERENCE
Part 2 I PenPoint Application Framework

This code fragment shows how an application can respond to msgGWinGesture:

APP_SHOW_OPTION_SHEET show;

case Msg(xgsCheck) :
case Msg(xgsUGesture): II Allow the user to by sloppy

II Make self the selection.
ObjCallRet(msgSelSelect, self, pNull, s);

II Show the doc option sheet turned to the correct card.
show.sheetTag = tagAppDocOptSheet;
show.cardTag = tagAppOptGotoButtonCard; II your tag here
show. show = true;
ObjCallRet (msgAppShowOptionSheet, OSThisApp (), &show, s);

break;

Observing System Preferences
The system preferences are resources stored in the preferences resource file (in
\PENPOINT\SYS\PREFS\PREFS). The system preferences describe system settings,
such as the system font, left- or right-handed operation,· screen orientation, and so
on. Clients get and set the system preferences through the well-known object
theSystemPreferences.

Applications observe theSystemPreferences by default. Thus, when the user
changes the system preferences (such as the system font, user font, orientation,
and hand preference), theSystemPreferences sends msgPrefsPreferenceChanged
to observers.

Your application should not handle msgPrefsPreferenceChanged; but should
allow its ancestor to handle the message so that clsApp can dirty all windows that
are visible and lay them out again. This means that all your visible windows will
acquire the attributes specified by the new preference.

The message passes a pointer to a PREF_CHANGED structure that contains:

manager the UID of the object that sent the notification (usually
theSystemPreferences) .

prefld a RES_ID value that contains the id of the preference that changed.

If you receive msgPrefsPreferenceChanged while you have windows that are not
visible, you must dirty these windows and lay them out again yourself (after you
send the message to clsApp). This code fragment suggests how to do this.

WIN METRICS wm;

14.5

OBJECT someWin; II a window that needs re-laying out
ObjCallRet(msgWinSetLayoutDirtyRecursive, someWin, (P_ARGS) true, s);
wm.options = wsLayoutDefault;
ObjCallRet(msgWinLayout, someWin, &wm, s);

CHAPTER 14 I THE APPLICATION CLASS 171
Advanced Messages

". Advanced Messages 14.6

The messages described in this section are useful only if you are writing a systems
application such as the Notebook. Unless your application is performing systems
functions, it should not send or respond to these messages.

". SeHing a Parent Document 14.6. 1

You can establish the parent of a document by sending msgAppSetParent to the
document. The message takes the UID of the parent.

". SeHing Priority
To change the priority for an application task, send msgAppSetPriority to
the application object. msgAppSetPriority uses the same enums as the
OSTaskPrioritySet system service defined in OS.H. The message requires
an APP _SET _PRIORITY structure that contains:

priorityMode the task or group of tasks to be altered. Possible enum values
are: osThisT askOnly and osT askFamily. You cannot use osAlITasks with
this message.

priorityClass the priority class. The priorities are grouped into five classes:
system (which is for use by PenPoint only, and has no enum), high
(osHighPriority), medium high (osMedHighPriority), medium low
(osMedLowPriority), and low (osLowPriority). These enum values are
defined in OS.H.

priority the new priority value. The priority value must be between 1 and
50, where 50 is the lowest priority. If you specify 0 for this argument, the
priority value will stay the same; this allows you to change the class
without changing the priority.

14.6.2

Chapter 15 / The View Class

The view class (clsView) is an abstract class that defines messages used to display
an object's data. clsView is a descendent of clsEmbeddedWin. A view is a window
that observes a single data object. When inserted in a window, the view displays
the contents of the data object. A component is typically composed of a
view-object pair.

<#' Chapter 15 covers these topics:

• Creating new views

• Subclassing cls View

View Concep's
Because any PenPoint object can be observed and can send messages to its
observers, any object can be a data object. The observed object is responsible for
maintaining its data, including storing and manipulating it.

The messages defined by clsView allow clients to create new views, and change the
viewed object. clsView also responds to the object filing messages (msgSave and
msgRestore) and passes these messages to its viewed objects.

Because clsView is an abstract class, you must either define your own subclass of
clsView or use an existing subclass. Subclasses of clsView include clsTextView and
clsGrafpaper.

You don't have to use clsView to display information on screen. Any descendant of
clsWin is free to maintain its own data without having an associated data object.

clsView uses the window hierarchy; it does not maintain a separate view hierarchy.
clsView does not filter out or respond to any messages defined by clsWin, so a
subclass of clsView is free to manipulate the view with window messages if it
wishes.

Table 15-1 lists the clsView messages.

msgN ewDefaults

msgNew

msgViewSetDataObject

msgViewGetDataObject

P_VI EW_N EW

P_VIEW_NEW

OBJECT

P_OBJECT

Initializes arguments for a new view.

Creates a new view.

Sets a view's data object.

Gets a view's data object.

174 PENPOINT ARCHITECTURAL REFERENCE
Part 2 I PenPoint Application Framework

View Filing
Views file themselves like other objects. clsView responds to the common filing
messages defined by clsObject (msgSave and msgRestore). An advantage to using
views is that they then pass the filing messages to their viewed objects. The
viewed objects must then respond to the filing messages.

Creating a New View
To create a new view, send msgNewDefaults and msgNew to the subclass of
clsView. The message requires a VIEW_NEW structure that contains:

object an OBJECT_NEW _ONLY structure.

win a WIN_NEW_ONLY structure.

view a VIEW_NEW_ONLY structure that contains:

dataObject the UID of the object the view is to observe.

createDataObject a Boolean value that indicates whether the view
should automatically create the data object.

The msgNew defined by clsView cannot create the observed object (the
createDataObject argument is meaningless); however, if you subclass clsView,
your class can redefine msgNew to create the observed object.

When your subclass of clsView receives this message, it should check the
createDataObject argument. If the argument is true and the object does not exist,
your view should create the object. However, the arguments for VIEW _NEW_ONLY

do not tell your view which object to create. Either your view must know which
object to create, or it must define its own arguments to msgNew that include the
object to create.

SeHing the Data Obiect
To set or change the data object observed by a particular view, send
msgViewSetDataObject to the view. The only argument to the message is the
UID of the object to view.

Getting the Data Obiect
To find out what data object is observed by a particular view, send
msgViewGetDataObject to the view. The only argument to the message is a
pointer to the location that receives the UID of the object.

15.2

15.3

15.4

15.5

CHAPTER 15 I THE VIEW CLASS 175
Subclassing clsView

". Subclassing clsView
The messages defined by clsView provide object filing, allow clients to create
new views, and allow clients to change the viewed object. By themselves, these
messages do not perform any of the tasks that clients require from views. It is up
to your subclass of clsView to perform these tasks.

Your view class should:

+ Make itself a subclass of clsView.

+ Define a message that an observed object can send to your view when its data
changes.

+ Repaint its window when it receives the notification message.

Your view can also:

+ Enable the user to interact with the data.

+ Notify its observed object when the user makes a change (if the observed
object defines such a message).

15.6

Chapter 16 / The Application
Directory Handle Class

The application directory handle class, clsAppDirHandle, provides access
methods to manipulate documents in the application hierarchy. clsAppDirHandle
inherits from clsDirHandle.

clsAppDirHandle provides methods to access and modify application directory
attributes. Because clsAppDirHandle is a descendent of clsDirHandle, clients
can use clsAppDirHandle to create, destroy, and modify application directories.

Most application designers should not need to create an application directory
handle. It is created for you during Applnit by the PenPoint Application
Framework and stored in the dir element of the APP _METRICS structure.
Therefore, normal applications should never need to use the messages defined by
clsAppDirHandle.

This chapter covers the following topics:

• Creating application directories.

• Getting and setting application directory attributes.

• Getting attributes for many application directories.

• Determining a document's name.

• Counting embedded documents.

• Setting a document's tab.

Using clsAppDir
An application directory node represents a document in the document hierarchy.
The PenPoint Application Framework uses the application 'directory structure to
keep its documents in order and to communicate with the documents. Each
document uses its application directory to store its resource files and any other
files it uses. Because each document is contained in a separate directory in the file
system, clsAppDir defines messages that augment the messages defined by its
ancestor-clsDirHandle.

Application directory attributes contain information that pertains to several
components:

• The document.

• The document's application class.'

• The document's position within a section (or within another document).

16.1

178 PEN POINT ARCHITECTURAL REFERENCE
Part 2 I PenPoint Application Framework

• The tab for the document.

• The document's page number.

Note Tabs are called
"bookmarks" in thePenPoint API.

The document's position within a section is determined by the document's
sequence number. A document's page number within the Notebook is determined
by its global sequence number. Embedded documents do not have global
sequence numbers.

Mes$a~e

msgAppDirGetAttrs

msgAppDirSetAttrs

msgAppDirGetFlags

msgAppDirSetFlags

msgAppDirGetClass

msgAppDirSetClass

msgAppDirGetUUID

msgAppDirSetUUID

msgAppDirGetSequence

msgAppDirSetSequence

msgAppDirGetNumChildren

msgAppDirSetNumChildren

msgAppDirGetGlobalSequence

msgAppDirGetBookmark

msgAppDirSetBookmark

msgAppDirGetNextlnit

msgAppDirGetNext

msgAppDir Reset

msgAppDirSeq ToN arne

P _APP _DIR_UPDATE_CLASS

P _APP _DIR_ UPDATE_CLASS

P _APP _DIR_UPDATE_UUID

P _APP _DI~UPDATE_UUID

P _APP _DIR_ UPDATE_SEQ

Description

Get the application directory attributes
for a document.

Set the application directory attributes
for a document.

Get the application directory flags
for a document.

Set the application directory flags for
a document.

Get the application directory class.

Set the application directory class.

Get the application directory uuid.

Set the application directory uuid.

Get the application directory sequence.

P _APP _DI~UPDATE_SEQUENCE Set the application directory sequence.

P _APP _DIR_ UPDATE_NUM_ CHILDREN Get the numChildren attribute.

P _APP _DIR_UPDATE_NUM_CHILDREN Set the numChildren attribute.

p _APP _DI~GET_GLOBAL_SEQUENCE Get the application directory global
sequence number.

P _APP _DIR_GET_BOOKMARK Get the application tab.

P _APP _DI~SET _BOOKMARK

P _APP _DIR_NEXT

P _APP _DIR_NEXT

P _APP _DIR_NEXT

Set the application tab.

Initialize the get next structure.

Get the next application directory attributes.

Free resources after a series of
msgAppDirGetNext.

Return an embedded document's name
given its sequence number.

msgAppDirGetDirectNumChildren P _U32 Get the number of direct embedded
documents (not recursive).

msgAppDirGetTotalNumChildren P_U32 Get the number of embedded documents
(recursive).

CHAPTER 16 / THE APPLICATION DIRECTORY HANDLE CLASS 179
Getting the Application Directory Global Sequence Number

,,-Creatlng an Application Directory Handle 16.2

To create an application directory handle, send msgNewDefuults and msgNew to
clsAppDir. Both messages require a FS_NEW structure that contains:

object an OBJECT_NEW structure.

fs an FS_NEW_ONLY structure that contains:

locator a locator for the node, which includes a directory handle
and a path. If you do not specify the directory handle, the default is
the WorkingDir; if you do not specify a path, the default is nil.

dirIndex an optional directory index. If you use a directory index,
the locator indicates the volume to use.

mode flags that indicate handle characteristics.

exist what to do if the directory does or doesn't exist.

Part 7: The File System describes in great detail how to create directory handles.
Use msgNewDefaults to initialize the fields to their default values, then modify
any of the fields.

,,-Destroylng an Application Directory Handle 16.3

To destroy an application directory handle, send msgFree to the application
directory handle. The message takes a lock value.

,,-GeHlng the Application Directory Global 16~4
Sequence NUlliber
To get the global sequence number for an application directory, send
msgAppDirGetGlobalSequence to the application· directory. The message takes a
pointer to an APP _DIR.~.GET_GLOBAL_SEQUENCE structure that contains:

pPath a path, relative to the target directory.

globalSequence a U32 that will receive the directory global sequence value.

msgAppDirGetGlobalSequence calculates the global sequence number each time
you call it.

If you need to calculate many global sequence numbers or need to make the
calculation often, you should use the file system directly and not rely on
msgAppDirGetGlobalSequence because it traverses the File System for each
request.

For example, because the browser caches directories as it displays them, it
makes the global sequence calculation based on its own data structures. You
can calculate the globalSequence number of a document based on its local
sequence number (with msgAppDirGetSequence) and number of children
(with msgAppDirGetN urnChildren).

180 PENPOINT ARCHITECTURAL REFERENCE
Part 2 I PenPoint Application Framework

GeMing and SeMing Application Directory
AMributes
There·are two ways to get or set the application directory attributes: you can get
or set all of the attributes at once, or you can get or set specific attributes with
specific messages.

GeHing and SeHing All AHributes
To get all system attributes for a single application directory, send
msgAppDirGetAttrs to an application directory handle; to set all the attributes,
send msgAppDirSetAttrs to the application directory handle. Both messages take
an APP _DIR_GET_SET_ATTRS structure that contains:

pPath a path to the target application directory.

attrs an APP _DIR_ATTRS structure that contains:

appClass the application class.

uuid the application uuid.

sequence the local sequence number.

numChildren the total number of embedded documents within
a document, including nested embedded documents.

flags the application directory flags. The flags are described in
Table 16-2.

16.5

As a rule, it is faster to get or
set single attributes.

16.5.1

Table 16-2
File Mode Flags

~~~~~~~------~~-------------------------------------------------------------f!~$f 

application 

newInstance 

disabled 

bookmark 

readOnly 

deletable 

moveable 

copyable 

This is an application. 

This is a new application instance. 

The application is disabled. Do not activate it. 

The application has a tab. 

The application is read only. 

The application can be deleted. 

The application can be moved. 

The application can be copied. 

GeHing or SeHing Individual AHributes 
These messages get or set individual attributes for application directories. 

~ GeHing and SeHing Flags 

To get or set the application directory flags, send msgAppDirGetFlags or 
msgAppDirSetFlags to the application directory handle. Both messages take a 
pointer to an APP _DIR_GET_SET_FLAGS that contains: 

pPath a path, relative to the target directory. 

flags an APP _DIR_FLAGS structure, as described in Table 16-2. 

16.5.2 

16.5.2.1 



CHAPTER 16 I THE APPLICATION DIRECTORY HANDLE CLASS 1 a1 
Getting and Setting Application Directory Attributes 

".,. GeHing and SeHing the Class 16.5.2.2 

To get or set the application class, send msgAppDirGetClass or 
msgAppDirSetClass to the application directory handle. Both messages take a 
pointer to an APP _DIR_UPDATE_CLASS structure that contains: 

pPath a path, relative to the target directory. 

appClass a CLASS specifier. On msgAppDirSetClass, this field specifies the 
application class; on msgAppDirGetClass, the application class is passed 
back in this field. 

,.,.,.. GeHing and SeHing the UUID 

To get or set the application directory UUID, send msgAppDirGetUUID or 
msgAppDirSetUUID to the application directory handle. Both messages take a 
pointer to an APP _DIR_UPDATE_UUID structure that contains: 

pPath a path, relative to the target directory. 

uuid a UUID. On msgAppDirSetUUID, this field specifies the UUID; on 
msgAppDirGetUUID, the UUID is passed back in this field. 

GeHing and SeHing the UID 

To get or set the application directory UID, send msgAppDirGetUID or 
msgAppDirSetUID to the application directory handle. Both messages take a 
pointer to an APP _DIR_UPDATE_UID structure that contains: 

pPath a path, relative to the target directory. 

uid an application directory UID. On msgAppDirSetUID, this field 
specifies the UID; on msgAppDirGetUID, the UID is passed back in 
this field. 

GeHing and SeHing the Sequence Number 

To get or set the application directory sequence number, send msgAppDir
GetSequence or msgAppDirSetSequence to the application directory handle. 
Both messages take a pointer to an APP_DIR_UPDATE_SEQUENCE structure that 
contains: 

pPath a path, relative to the target directory. 

sequence a U32 for the sequence number. On msgAppDirSetSequence, 
this field specifies the sequence number; on msgAppDirGetSequence, 
the sequence number is passed back in this field. 

".,. GeHing and SeHing the Number of Embedded Docs 

To get or set the number of embedded documents in an application directory, 
send msgAppDirGetNumChildren or msgAppDirSetNumChildren to the 
application directory handle. Both iriessages take a pointer to an 
APP _DIR_UPDATE_NUM_CHILDREN structure that contains: 

pPath a path, relative to the target directory. 

16.5.2.3 

16.5.2 .. 4 

16.5,,2.5 



182 PEN POINT ARCHITECTURAL REFERENCE 
Part 2 I PenPoint Application Framework 

numChildren a U32 that specifies or passes back the number of embedded 
documents. 

GeHing andSeHing the Application Tab 

To get or set the application tab, send msgAppDirGetBookmark or 
msgAppDirSetBookmark to the application directory handle. 
msgAppDirGetBookmark takes a pointer to an APP_DIR_GET_BOOKMARK 

structure that contains: 

pPath a path, relative to the target directory. 

label a buffer of nameBufLength characters that will contain the tab label. 

msgAppDirSetBookmark takes a pointer to an APP _DIR_SET _BOOKMARK 

structure that contains: 

on a Boolean value that specifies whether to turn the tab on or off. 

pPath a path, relative to the target directory. 

label a buffer of nameBufLength characters that specifies the tab label. If 
label [0] is null, the use the default label (the name of the document). 

16,,5.2 .. 7 

Note Tabs are called 
"bookmarks" in the PenPoint API. 

Getting AHributes for Many Application 16,,6 

Directories 
clsAppDir provides messages to recursively get the attributes for a number of 
application directories, starting at a particular application directory. To get 
attributes in this way, you must first send msgAppDirGetNextlnit to clsAppDir. 
The message takes an APP _DIR_NEXT structure that contains: 

attrs an APP _DIR_ATTRS structure. This is the same structure that was 
described above in msgAppDirGetAttrs. 

pName a pointer to a name string. 

fsFlags a set of file system flags. 

pFirst a pointer to the first directory handle. When you initialize the 
structure, you use this argument to indicate where to start. On 
subsequent reads, this argument serves as a reminder for where you 
started. 

pNext a pointer to the next directory handle. 

handle a pointer to the current directory handle. 

When you have initialized the structure, you can get the attributes for the first 
directory in the search. Send msgAppDirGetNext to the directory handle, 
specifying the APP _DIR_NEXT structure that you initialized with 
msgAppDirGetNextInit. 

To get attributes for the succeeding applica~ion directories, send 
msgAppDirGetNext to the directory handle. 



CHAPTER 16 I THE APPLICATION DIRECTORY HANDLE CLASS '.3 

When you have examined all application directories (the pNext attribute is Nil), 
free the resources used by msgAppDirGetNext. To free the resources, send 
msgAppDirReset to the directory handle. 

Setting a Tab 

Determining a Document's Na.... 16.7 

If you have a document's sequence number or UUID, you can determine its name. 

To determine the document's name from its sequence number, send 
msgAppDirSeqToName to the application directory file handle. The message 
takes a APP _DIR_SEQ_ TO_NAME structure that contains: 

sequence the sequence number of the document. 

pName a pointer to the string that receives the document name. 

To determine an embedded document's name from its UUID, send 
msgAppDirUUIDToName to the application directory file handle of the 
document in which it is embedded. The message takes a 
APP _DIR_UUID_TO_NAME structure that contains: 

uuid the UUID number of the embedded document. 

pName a pointer to the string that receives the document name. 

Counting E ... bedded Docu ... ents 
To get the number of embedded documents in a document, send 
msgAppDirGetNumChildren to the application directory handle of the 
document you are interested in. The only argument for the message is a pointer 
to the U32 value that receives the number of children. 

The number of children is determined recursively. It includes not only the 
number of directly embedded documeIits, but the embedded documents within 
an embedded document, and so on. 

Setting a Tab 
Users can identify a document by creating a tab for that document (these tabs 
appear as the tabs on the edge of the Notebook). Because each application 
directory contains a specific document, it is natural for clsAppDir to provide a 
method for a client to create a tab associated with an application directory. 

To set a tab, send msgAppDirSetBookmark to the root container application. The 
message takes a pointer to an APP _DIR_SET_BOOKMARK structure that contains: 

on a Boolean value that indicates whether the tab is on or off. When this 
value is true, the tab is turned on. 

pPath the path to the file being marked, relative to the target directory. 
Usually this field is null, because the tab identifies the application 
directory. However, if you want to identify an embedded document, 
pPath contains the path to that document. 

16.8 

16.9 

Note Tabe; are called bookmarks 
in the C;16AppDlr API. 



'84 PEN POINT ARCHITECTURAL REFERENCE 
Part .2 I Pen Point Application Framework 

label a string containing the tab label. The label can be up to 
nameBuflength bytes. If the first byte of label is null, clsAppDir uses 
the default label (the application directory name). 

When the message completes successfully, it returns. 

You turn to a tab by sending msgRCAppGotoDoc and specifying the application 
UUID ,of the tab for the application UUID. 



Chapter 17 / Container 
Application Classes 

The PenPoint™ operating system uses container application classes to identify 
applications whose primary purpose is to contain (embed) other documents. 

You might use the container application classes if you write an alternative to the 
Notebook or if you create your own section application. 

Concepts 
The browser and other s~ch components rely on the container application classes 
to distinguish between documents embedded in a section and documents 
embedded in any other document. Documents embedded in a section or 
Notebook can be listed by the browser and must be page numbered. Documents 
embedded in any other document should not be numbered by the browser and 
should not have page numbers. Embedded documents are described in Chapter 9 
and Chapter 18. 

The PenPoint operating system defines two container application classes: 
clsContainerApp, which defines a container application (such as a section) 
and clsRootContainerApp, which defines a root container application (such as 
a Notebook). Both container application classes are descendents of clsApp; both 
are abstract su perclasses. 

Figure 17-1 shows the hierarchy of the container application classes. 



186 PENPOINT ARCHITECTURAL REFERENCE 
Part 2 I Pen Point Application Framework 

Container Application Class 
dsContainerApp describes an abstract superclass used to embed documents. 
Creating an application that descends from dsContainerApp implies that the 
application's embeddees can be page numbered. Note that other application classes 
can contain embedded documents (such as a text editor document containing a 
database application), but that those embedded documents are not assigned page 
numbers. 

Currently, the only descendent of dsContainerApp is dsSectApp, the section 
application. 

dsContainerApp doesn't define any messages. 

To test that a particular class descends from dsContainerApp, send 
msgAncestorIsA to the class, specifying dsContainerApp. 

Root Container Application Class 
dsRootContainerApp is an abstract superclass used to embed documents and 
containers. Creating a class that descends from clsRootContainerApp implies that 
the class is the highest level in the file system that should be searched for other 
containers. 

Currently, the only descendent of clsRootContainerApp is clsNBApp, the 
Notebook application. The desktop manager creates an instance of clsNBApp 
when the PenPoint operating system is booted. Other instances of clsNBApp 
include the Help notebook and the Stationery notebook. 

17,,3 



CHAPTER 17 I CONTAINER APPLICATION CLASSES 187 
Root Container Application Class 

clsRootContainerApp Concepts 11,3. 1 

Because an application cannot cause itself to be displayed on the screen, it must 
send a request to an application manager of some form. In PenPoint, clsNBApp 
receives the messages indicating which application to display. clsNBApp acts on 
the page turn messages by activating and deactivating instances of applications. 

The messages defined by clsRootContainerApp are concerned with turning to 
different pages. This is the generalized set of messages that any implementation of 
a root container would have to handle in order to replace the clsNBApp. 

A descendent of clsRootContainerApp manages its contents. It is responsible for 
displaying the current page on the screen and handling the page turn messages. 

To test that a particular class descends from clsRootContainerApp, send 
msgAncestorIsA to the class, specifying clsRootContainerApp. 

The root container application instance is created at boot time. If you need to get 
the UID of an application's root container application, send msgAppGetRoot to 
the application; to get the UID of your own root container application, send 
msgAppGetRoot to self. 

clsRootContainerApp Messages 

The messages for clsRootContainerApp are defined in RCAW.H. 

Message Description 

11.3.2 

msgRCAppN extDoc 

Takes 

nothing Increments pointer to the next document. 

msgRCAppPrevDoc 

msgRCAppExecuteGotoDoc 

msgRCAppCancelGotoDoc 

msgRCAppGotoContents 

msgRCAppGotoDoc 

nothing 

nothing 

P_UUID 

nothing 

P ..;..RCAPP ~GOTO_DOC 

Changing the Current Document 

Decrements pointer to the previous document. 

Moves to the goto document. 

Resets the goto document to the current document. 

Turns to the contents of the target root container. 

Turns to or brings to a document. 

To tell the root container application to go to the next or previous document, 
you must send two messages to the root container application. First, to 
establish the document to turn to (the reference document, you must send 
msgRCAppNextDoc or msgRCAppPrevDoc to the root container application. 
Then, to turn to the reference document, send msgRCAppGotoDoc to the root 
container application. 

All three messages take no arguments. msgRCAppNextDoc and 
msgRCAppPrevDoc return the UUID of the new reference document. 
When msgRCAppGotoDoc returns stsOK, the reference document is the 
current document. 



'88 PENPOINT ARCHITECTURAL REFERENCE 
Part 2 I PenPoint Application Framework 

"" Cancelling the Reference Document 
If you have set the reference document and want to reset the reference document 
to be the current document, send msgRDAppCancelGotoDoc to the root 

. container application instance. The message takes no arguments. If the message 
returns stsOK, it has successfully cancelled the reference document. 

Turning to the Contents Page 
To go to the contents page, send msgRCAppReferenceContents to the root 
container application instance. The message takes no arguments. If the message 
returns stsOK, the current document is the contents page. 

17 .. 3.4 

17 .. 3.5 



Chapter 18 / EMbedded Window 
Class 

Using clsEmbeddedWin 
The following table lists the messages defined by clsEmbeddedWin 
in EMBEDWIN.H. 

msgNewDefaults 

msgNew 

msgEmbeddedWinGetMetrics 

msgEmbeddedWinGetStyle 

msgEmbeddedWinSetStyle 

msgEmbeddedWinBeginMove 

msgEmbeddedWinBeginCopy 

msgEmbeddedWinMove 

msgEmbeddedWinProvidelcon 

msgEmbeddedWinCopy 

msgEmbeddedWinMoveCopyOK 

msgEmbeddedWinGetPenOffset 

msgEmbeddedWinGetDest 

P _EMBEDDED _WIN_NEW Initializes embedded window data. 

P _EMBEDDED_WIN_NEW Creates a new embedded window. 

P _EMBEDDED_WIN_METRICS Passes back the embedded window metrics. 

P _EMBEDDED_WIN_STYLE Passes back the style of the embedded window. 

P _EMBEDDED_WIN_STYLE Sets the style of the embedded window. 

P _EMBEDDED_ WIN_BEGIN_MOVE_COPY Places the embedded window in move mode. 

P _EMBEDDED_ WIN_BEGIN_MOVE_COPY Places the embedded window in copy mode. 

P _EMBEDDED_ WIN_MOVE_COPY Moves an embedded window to the destination. 

P _EMBEDDED_ WIN_PlDVIDE_ICON Provides the icon for move/copy. 

P _EMBEDDED_ WIN_MOVE_COPY Copies an embedded window to the destination. 

P _EMBEDDED_ WIN_MOVE_COPY_OK Checks that it is OK to move or copy the 
window to a destination. 

P ~ Gets pen offset during move or copy. 

P _EMBEDDED_ WIN_G ET_D EST Gets the destination for embedded window 
move or copy. 

msgEmbeddedWinForwardedGetDest P _EMBEDDED _ WIN_GET _DEST 
move or copy. 

Gets the destination for embedded window 

msgEmbeddedWinInsertChild 

msgEmbeddedWinExtractChild 

msgEmbeddedWinPositionChild 

msgEmbeddedWinShowChild 

msgEmbeddedWinSetUUID 

msgEmbeddedWinDestroy 

msgEmbeddedWinGetPrintInfo 

P _EMBEDDED_WIN_SHOW _CHILD 

P_UUID 

o Bl-KEY 

P _EMBED DEE_PRINT _INFO 

Inserts a child window into an embedded 
window. 

Extracts a child window into an embedded 
window. 

Repositions a child window within the same 
embedded window. 

Shows a given area to the user 

Sets the embedded window's UUID. 

Destroys an embedded window. 

Gets print information from an embedded 
window. 



190 PENPOINT ARCHITECTURAL REFERENCE 
Part 2 / PenPoint Application Framework 

Creating an Embedded Window 
Most clients do not sent msgNew to clsEmbeddedWin. Rather, they send 
msgNew to one of the descendents of dsEmbeddedWin. If you are writing a 
descendent of clsEmbeddedWin, you must be prepared to define your own 
procedure for msgNew and create the arguments required by clsEmbeddedWin., 

msgNew takes an EMBEDDED_WIN_NEW structure that contains structures for 
clsEmbeddedWin's ancestors (dsGWin, clsWin, and dsObject).and an 
EMBEDDED_ WIN_NEW_ONLY structure (embeddedWin) that contains: 

uuid a UUID that identifies the embedded window. 

style an EMBEDDED_ WIN_STYLE style structure that specifies the attributes 
of the embedded window. The style attributes specify whether the 
embedded window itself can be an embeddor or an embeddee. The 
actual attributes are described later in this chapter in "Getting and 
Setting the Style of an Embedded Window." 

Destroying an Embedded Window 
To destroy an embedded window, send msgEmbeddedWinDestroy to the 
embedded window object. The message takes a single argument: the object key 
used to create the embedded window object. 

Before destroying the object, the message cleans up all references to the embedded 
window (such as reference buttons that point to components in the window). 

After sending msgEmbeddedWinDestroy to the embedded window object, you 
should also send msgFree to the object. 

GeHing Embedded Window Metrics 
To get the metrics for an embedded window, send 
msgEmbeddedWindowGetMetrics to an embedded window object. The message 
takes a pointer to an EMBEDDED_ WIN_METRICS structure that the message uses 
to send back the metrics of the window. The structure contains: 

uuid the UUID of the embedded window. 

style an EMBEDDED_ WIN_STYLE structure that contains the style of the 
window. The contents of the style structure are explained in the 
following section. 

GeHing and SeHing the Style of an Embedded Window 
The EMBEDDED_ WIN_STYLE structure describes the attributes of an embedded 
window. This structure is part of the embedded window metrics, and is also used 
when creating a new embedded window. 

To get the style of an embedded window, send msgEmbeddedWinGetStyle to the 
window. To set the style of an embedded window, send 
msgEmbeddedWinSetStyle to the window. Both messages take a pointer to an 
EMBEDDED_ WIN_STYLE structure. The structure contains: 

18.1.2 



CHAPTER 18 I EMBEDDED WINDOW CLASS 191 
Using clsEmbeddedWin 

embeddor a Boolean value that indicates whether the embedded window 

allows embedding. 

embeddee a Boolean value that indicates whether the embedded window 
can be embedded. 

selection a two-bit value that indicates the selection style to take when the 
embedded window receives msgSelSelect. The three possible selection 
styles are: 

ewSelectp nknown the selection style is unknown; use the style of your 

parent windows. 

ewSelect make this window the current selection. 

ewSelectPreserve preserve the current selection before making this the 
current selection. 

moveable a Boolean value that indicates whether the embedded window 
can be moved. 

copyable a Boolean value that indicates whether the embedded window can 
be copied. 

moveCopyMode a two-bit value that indicates the current move or copy 
mode. Clients and subclasses must not alter the value of this field. 
Possible values are: 

ewMoveCopyModeOff not moving or copying. 

ewMoveMode moving in progress. 

ewCopyMode copying in progress. 

deletable a Boolean value that indicates whether the embedded window can 
be destroyed. 

moveCopyContainer a private Boolean value. 

embedForward a Boolean value that indicates whether 
msgEmbeddedWinGetDest should be forwarded to the embedded 
window's parent window. 

quickMove a Boolean value that indicates that dsEmbeddedWin should 

use optimizations when moving windows within a common parent or 
process. 

The selection styles are fully described in the Selection Manager chapter of Part 
Nine: Utility Classes. 

Beginning a Move or Copy Operation 

If the source in a move or copy operation uses the dsEmbeddedWin protocol it 
should indicate that it is ready to go into move or copy mode by sending 
msgEmbeddedWinBeginMove or msgEmbeddedWinBeginCopy to self. The 
message takes a pointer to an EMBEDDED_WIN_BEGIN_MOVE_COPY structure 
that contains: 

xy an xy32 structure that specifies the pen location when you begin the 
move or copy. 



192 PEN POINT ARCHITECTURAL REFERENCE 

Part 2 / Pen Point Application Framework 

bounds a rect32 structure . that specifies the bounding box around the area 
to move or copy. 

If the source allows clsEmbeddedWin to handle msgEmbeddedWinBeginMove 
or msgEmbeddedWinBeginCopy, it creates a default icon or a marquee around 
the selection and waits for the user to drop the object somewhere. If the bounds 
are zero, clsEmbeddedWin uses the default move/copy icon; otherwise, it uses the 
marquee. 

Moving or Copying an Embedded Window 

When the destination is ready to move or copy an embedded window from the 
source, it sends msgEmbeddedWinMove or msgEmbeddedWinCopy to the 
owner of the embedded window. The message takes a pointer to an 
EMBEDDED_ WIN_MOVE_COPY structure that contains: 

xy an xy32 structure that specifies the x-y location in the destination 
window. 

dest the DID of the destination. 

format a tag that specifies the data transfer format. 

The source should respond to this message by moving or copying itself to the 
destination. When the message returns, it passes back the DID of the object that 
was moved or copied (uid). 

". .. Confirming the Move or Copy 

When the owner of the source in a move or copy operation receives 
msgEmbeddedWinMove or msgEmbeddedWinCopy, it sends 
msgEmbeddedWinMoveCopyOK to self to ensure that the destination 
can handle the thing being moved. The message takes a pointer to an 
EMBEDDED_ WIN_MOVE_COPY_OK structure that the receiver uses to send back 
permission for a move and copy operation. The structure contains: 

moveOK a Boolean value that the receiver uses to specify that a move is 
possible. 

copyOK a Boolean value that the receiver uses to specify that a copy is 
possible. 

target an EMBEDDED_ WIN_MOVE_COPY structure that indicates the 
proposed move or copy operation. 

"" GeHing the Destination of a Move or Copy 
Before the source actually moves or copies the selection, it needs to determine the 
actual file system location of the destination object. This is especially true when 
moving or copying an embedded window. To get the file system location, send 
msgEmbeddedWinGetDest to the destination. The message takes a pointer to an 
EMBEDDED_WIN_GET_DEST structure that the destination uses to send back the 
destination information. The structure contains: 

18.1.7 



CHAPTER 18 / EMBEDDED WINDOW CLASS 193 

Using clsEmbeddedWin 

xy an xy32 structure that indicates the destination. 

locator a file system locator that indicates the parent of the destination. 

sequence a sequence number that indicates the sequence of the destination 
in the parent. 

path a pointer to the buffer that receives the path to an embedded window 
within the locator parent directory. Usually the path is null. 

source the UID of the object to be moved or copied. 

Handling Child Embedded Windows 
To move or copy a child window between different objects in the same task, the 
easiest thing to do is to extract the child window from one parent and insert it in 
another. To extract the child window, send msgEmbeddedWinExtractChild to the 
parent. The message takes a pointer to an EMBEDDED_ WlN_EXTRACT_CHILD 

structure that contains: 

xy an xy32 value that indicates the location in the source. 

win the UID of the embedded window to extract. 

source the UID of the object requesting the extraction (usually your UID). 

To insert the child in a different parent, send msgEmbeddedWinlnsertChild to 
the new parent. The message takes a pointer to an 
EMBEDDED_ WIN_INSERT_CHILD structure that contains: 

xy an xy32 structure that contains the destination relative to the window. 

win the UID of the embedded window to insert. 

source the UID of the object requesting the insertion (usually your UID). 

GeHing Pen OHsets 
As explained in this chapter, the x-y coordinates used by the embedded window 
move/ copy protocol does not necessarily indicate the pen location when the user 
indicates the destination. Rather, it usually iridicates the lower left corner of the 
icon or marquee when the user lifts the pen. To retrieve the offset of the pen from 
the lower left corner, send msgEmbeddedWinGetPenOffset to the source. The 
message takes a pointer to an xy32 structure that the message uses to send back 
the offsets. 

SeHing an Embedded Window's UUID 
To set the UUID for an embedded window, send msgEmbeddedWinSetUUID to 
an embedded window. The only argument for the message is a pointer to the new 
UUID. If the message returns stsOK, the embedded window has the new UUID. 

18. L 10 





Chapter 19 / Application 
Window Class 

clsApp Win is a descendent of clsEmbeddedWin that wraps an embedded 
application and provides the interface between the application and the PenPoint 
Application Framework. 

When clsApp Win contains an embedded application, the user can tap on the close 
box to shrink the embedded application down to a button in the document. When 
the user taps on the button, the embedded application expands to the size of the 
Notebook. When the user double taps on the button, the embedded application 
floats above the Notebook. clsAppWin implements this application window behavior. 

Using clsAppWin Messages 19.1 

The messages and #defines for the application window class are defined 
in APPWIN.H. 

msgN ewDefaults 

msgNew 

msgApp WinGetMetrics 

msgApp WinGetState 

msgApp WinSetState 

msgApp WinGetStyle 

msgApp WinSetStyle 

msgApp WinSetLabel 

msgApp WinSetIconBitmap 

P _APP _ WIN_NEW 

P _APP _WIN_NEW 

P _APP _WIN_METRICS 

P_UI6 

UI6 

P _APP _ WIN_STYLE 

APP _ WIN_STYLE 

P_STRING 

BITMAP 

msgApp WinSetSmallIconBitmap BITMAP 

msgApp WinOpen nothing 

msgApp WinClose 

msgApp WinDelete 

msgApp WinSetUUID 

msgApp WinCreateIcon 

msgApp WinDestroyIcon 

msgApp WinStyleChanged 

msgApp WinEditN arne 

nothing 

BOOLEAN 

P_UUID 

P_UUID 

P_UUID 

OBJECT 

nothing 

clsAp 

Initializes data for a new application window. 

Creates a new object. 

Gets the application window metrics. 

Gets the application window state. 

Sets the application window state. 

Gets the application window style. 

Sets the application window style. 

Sets the application window label. 

Sets the application window's icon bitmap. 

Sets the application window's icon bitmap. 

Opens a document associated with an app win. 

Closes a document associated with an app win. 

Deletes an application window. 

Sets the UUID to which an application window is 
linked. 

Creates the app win's icon. 

Destroys the app win's icon. 

Notification that an app win style changed. 

Pop-up edit pad to allow user to rename document. 



196 PENPOINT ARCHITECTURAL REFERENCE 
Part 2 / Pen Point Application Framework 

Creating an Embedded Application 
To create an application window, send msgNewDefaults and msgNew to 
clsApp Win. Both messages take an APP _ WIN_NEW structure that contains 
structures for clsCustomLayout and its ancestors and an APP _WIN_NEW _ONLY 

structure, which contains: 

appUUID the UUID of the application that will be embedded in the 
application window. 

style an APP _ WIN_STYLE value that specifies the styles for the application 
window. 

open the open style for the window. The possible values are: 
awOpenlnPlace and awOpenFloating. 

type the icon type. The possible values are: awPictAndTitle, 
awPictOnly, awSmallPictAndTitle, awSmallPictOnly, and 
awSmallPictOver Title. 

openStyleLock a Boolean value that specifies whether the open style can 
change. If true, the open style cannot be changed. 

state a U16 that specifies the state of the application window. The valid 
states are: awClosed, awOpenedFloating, awOpenedlnPlace, and 
awOpenedlnPlaceFloating. 

label a buffer that contains the icon label for the application window. 

Changing the Style of an Application Window 
The styles for application windows (~escribed above in msgNew) can be changed. 
To change the style, send msgAppWinSetStyle to the application window. The 
only argument is the new style (style). 

Opening an Application Window 
When you open an application window, you specify whether it should float above 
the or be in-line in its embeddor. To open a window, send msgAppWinOpen to 
the application window. The message takes no arguments. 

Closing an Application Window 
To close an application window, send msgApp WinClose to the application 
window object. The message takes no arguments. 

GeHing the Metrics of an Application Window 
To get the current settings of an application window, send msgApp WinGetMetrics 

19.1. 1 

19.1.2 

to the application window object. The message takes an APP _WIN_METRICS structure 
that returns: 

appUUID the UUID of the contained application. 

icon the application window icon. 

iconBitmap the icon used for the open button. 



CHAPTER 19 I APPLICATION WINDOW CLASS 197 

smallIconBitmap the small icon used for the open button. 

appClass the application's class. 

style the style of the application window. The styles are defined in 
APP _WIN_STYLE, and are listed in the description of msgNew. 

state the application window state. 

label the label used for the button. 

Using clsAppWin Messages 





Chapter 20 / The Mark Class 

This chapter provides a brief description of the messages defined by clsMark in 
MARK.H. The concepts of using marks are explained in Chapter 10. 

msgN ewDefaults 

msgNew 

msgMarkDeliver 

msgMarkDeliverPos 

msgMarkDeliverN ext 

msgMarkSend 

msgMarkSetComponent 
~ 

msgMarkGetComponent 

msgMarkCompareMarks 

msgMarkCopyMark 

msgMarkGotoMark 

msgMarkSetSaveMode 

msgMarkCreateToken 

msgMarkGet Token 

msgMarkDeleteToken 

msgMarkCompareTokens 

P_MARK_COMPONENT 

P _MARK_COMPONENT 

MARK 

P_MARK 

P_MARK_GOTO 

U32 

Iable 20~1 
""",ru<i0@iIJiIJ Mark "U~S5,a(jle5 

Ini tializes the MARK_NEW structure to default 
values. 

Creates a new mark, initialized to the given 
component. 

Delivers a message to the target that does not move 
the token. 

Delivers a message to the target that moves the token 
but does not change the component. 

Delivers a message to the target that moves the token 
and sometimes (but not always) changes the 
component. 

Sends a message not designed to work with marks to 
the target. 

Sets the mark to refer to the given component. 

Returns the UUID of the application that contains 
the token, and the UUID and UID of the 
component that contains the token. 

Determines if two marks refer to the same component, 
and if so, what order their targets are in. 

Creates a new mark identical to this mark. 

Causes a mark to be selected and displayed to the user. 

Sets the mode that the mark will use for future saves. 

P _MARK_ TOKEN Instructs a component to create a token for its data 
items, and starts the token pointing at before all 
data items. 

P _MARK_TOKEN Sent from one mark to another to get the other's 
token. 

P _MARK_TOKEN Tells a component that the given token will no 
longer be in use. 

P_MARK_COMPARE_TOKENS Asks a component to compare the ordering of two 
tokens. 



200 PENPOINT ARCHITECTURAL REFERENCE 
Part 2 I PenPoint Application Framework 

MeSSCige 

msgMarkGetDataAncestor 

msgMarkGetParent 

msgMarkGetUUIDs 

msgMarkValidateComponent 

msgMarkPositionAtEdge 

msgMarkPositionAtToken 

msgMarkPositionAtChild 

msgMarkPositionAtGesture 

msgMarkN extChild 

msgMarkGetChild 

msgMarkSelect Target 

msgMarkEnterChild 

msgMarkEnter Level 

msgMarkEnterParent 

P_CLASS 

P _MARK_COMPONENT 

Descripticn 

Asks for the next higher superclass that contains 
traversable data. 

Asks a component to set the argument to its parent 
(embedding) component. 

Asks a component to set the argument to its own 
application and component UUIDs, if it can. 

Asks a component to verify that it is OK to 
traverse it. 

Sent to 

P _MARK_POSITION_EDGE Asks a component to reposition the token to one 
end or the other of the data. 

P _MARK_POSITION_TOKEN Asks a component to reposition the token to 
the same position as another token for the same 
component. 

P _MARK_POSITION_CHILD Asks a component to reposition the token to 
the given child component, which is given as 
a UUID/UID pair. 

P _MARK_POSITION_GESTURE Asks a component to reposition the token at the 
given gesture. 

Requests the component to move the token to the 
next child. . 

Requests the component to fill in the component 
at the current token. 

Requests the component to select the target data 
item. 

Sent when a component requests the mark to enter 
a child (usually via returning stsMarkEnterChild 
to a message sent with msgMarkDeliverNext). 

Sent when a component requests the mark to bump 
up a level in its class chain, or when a position or 
next message fails and the mark tries the next class 
level. 

Sent when a component runs out of data altogether 
and the mark needs to move on (and up). 

Marks Sent to Components 20,,1 

If a component wants to support search and replace, spell checking, reference 
buttons, and so on, it must respond to clsMark messages. 

Creating a Token 

msgMarkCreateToken instructs a component to create a token for its data items 
and start the token pointing before all data items. 

Ll 



CHAPTER 20 / THE MARK CLASS 201 

Messages Sent to Components by msgMarkDeliver 

Deleting a Token 

msgMarkDeleteToken informs a component that a token will no longer be in use. 
It is up to the component and its mapping scheme to determine how to handle 
this message. 

Comparing Tokens 

msgMarkCompareTokens asks a component to compare the order of two tokens. 
Your component should examine the tokens and return one of these status values: 

stsMarkTokensEqual the two tokens point to the same place. 

stsMarkTokenAfter the first token comes after the second. 

stsMarkTokenBefore the first token comes before the second. 

Finding a Component's Ancestor 

msgMarkGetDataAncestor asks your component to pass back the first of its 
ancestors that can handle traversal within the component. 

Finding a Component's Parent 

If your component doesn't inherit from clsEmbeddedWin or clsApp, it should 
handle msgMarkGetParent by passing back either the UID or UUID of its parent 
(embedding) component. Components that inherit from clsEmbeddedWin or 
clsApp can allow their ancestors to handle this message. 

Setting the UUIDs 

If your component doesn't inherit from clsEmbeddedWin or clsApp, it should 
handle msgMarkGetUUID by passing back its UUID and the UUID of the 
application that contains it. If your component can't get this information, it 
should return stsMarkNoUUIDs. Components that inherit from 
clsEmbeddedWin or clsApp can allow their ancestors to handle this message. 

Validating a Component 

msgMarkValidateComponent is sent to objects before a mark refers to them, 
allowing the component to redirect the mark to another object. 

Messages Sent to Components by 
msgMarkDeliver 
The messages in this section are sent by the holder to marks or components by the 
mark delivery messages (msgMarkDeliver, msgMarkDeliverPos, or 
msgMarkDeliverNext). The mark delivery messages are described at the end of 
this chapter. 

These messages can be sent directly to the component without using mark 
delivery messages, but some special processing performed when the message is sent 
with mark delivery will not be done. 



202 PENPOINT ARCHITECTURAL REFERENCE 
Part 2 I PenPoint Application Framework 

Positioning Messages 

msgMarkPositionAtEdge requests your component to reposition the token to the 
beginning or the end of the data. 

msgMarkPositionAtToken requests your component to reposition the token to 
the same position as another token in the same component. 

msgMarkPositionAtChild requests your component to reposition the token to a 
specified child component. 

msgMarkPositionAtSelection requests your component to reposition the token to 
the current selection, assuming that your component owns the selection. 

msgMarkPositionAtGesture requests your component to reposition the token at a 
specified gesture. 

Messages Sent to Components That Have Children 

If your component contains children (embedded components), it might receive 
these mark messages. 

msgMarkNextChild requests your component to move the token to the next child. 

msgMarkGetChild requests your component to pass back the UID and UUID of 
the embedded component at the current token. 

Messages Senl by Holders 
A holder is an object that creates and uses a mark. Most applications and 
components will not need to hold marks. However, if your application must 
traverse documents or otherwise keep a pointer to a location in data, it should 
create a mark. 

Sending Messages to Marks 

After creating a mark and telling it to map its token, your application or 
component uses mark deljvery messages to pass your own protocol messages to the 
mark. For example, a spell chec~er might ask the component containing the target 
to search for the next word or embedded document. 

There are three delivery messages: 

• Deliver a message to the target. 

• Deliver a message that might reposition the mark. 

• Deliver a message to the component that contains the target. 

You use msgMarkDeliver to deliver a message to the target. Usually, you use 
msgMarkDeliver after the mark fills in the token field. 

You use msgMarkDeliverNext to deliver a messages that might reposition the 
mark or that might move the mark to a different component. 

20.3 



CHAPTER 20 I THE MARK CLASS 203 
Messages Sent by Holders 

You use msgMarkSend to deliver an arbitrary message to the component that 
contains the mark. Use this form when the message you are sending applies to the 
component as a whole, not the target in particular. 

Setting a Mark to a Component 20.3.2 

To set the mark to refer to a specific component, send msgMarkSetComponent to 
the mark. This message deletes the previous mark, if necessary. To make the mark 
point to nothing, pass a pointer to an all-zero structure; do not pass it a null 
pointer. 

This message sends a msgMarkCreate to the component. 

Getting a Component's UUID and UID 

To get the UUID and UID of the component that contains the mark, and the 
UUID of the application that contains the component, send 
msgMarkGetComponent to the mark. 

Copying a Mark 

msgMarkCopyMark creates a new mark that is identical to the mark that receives 
this message. The new mark is not associated with the mark it was copied from 
(the receiver of msgMarkCopyMark). If the receiver is moved, the mark created 
by msgMarkCopyMark does not move. 

20.3.3 

20.3.4 





Part 3 / 
Windows and Graphics 



~" Chapter 2 1 / Introduction 209 Creating a New Window 23.3 232 

Overview 209 
Size and Position 23.3.1 232 

21.1 
Window Style Flags 

Windows 21.1.1 209 
23.3.2 232 

ImagePoint 21.1.2 209 Window Metrics Messages 23.4 233 

Windows and ImagePoint Together 21.1.3 210 Setting the Window Device or Parent 23.4.1 233 

Windows and Graphics Classes 21.2 210 
Setting the Window Bounds 23.4.2 234 

Window Devices 21.2.1 210 
Setting the Window Flags 23.4.3 234 

Windows 21.2.2 211 
Setting the Window Tag 23.4.4 235 

Drawing Contexts 21.2.3 211 Window Display Messages 23.5 235 

Application Writer's Overview 21.3 212 
Clipping 23.5.1 235 

Example 21.3.1 212 
Drawing in a Window 23.5.2 236 

Repainting Dynamics 23.5.3 237 
Organization of This Part 21.4 213 Copying Pixels in Windows 23.5.4 243 
Other Sources of Information 21.5 214 Layout Messages 23.6 244 

Chapter 22 / Window System Altering Child Windows 23.6.1 246 

Concepts 215 
Resizing and Moving Windows 23.6.2 246 

Window Layout 23.6.3 247 
What is a Window? 22.1 215 More on msgWinLayout 23.6.4 248 

Window System Concept Overview 22.2 215 Window Management Messages 23.7 251 

Hierarchical Model 22.3 216 Sending Messages to a Window Hierarchy 23.7.1 251 

Parents, Children, and Siblings 22.3.1 216 Sorting Windows 23.7.2 252 

Window Devices 22.3.2 217 Debugging Windows 23.7.3 252 

Window Life Cycle 22.3.3 217 Filing Windows 23.7.4 253 

Windows are Lightweight 22.4 218 Summary 23.8 254 

Using Window Subclasses 22.4.1 219· 

Clipping 22.5 219 '" Chapter 24 / Window Device 

The Clipping Region 22.5.1 219 
Classes 255 

Overriding Automatic Clipping 22.5.2 220 Windowing Devices 24.1 255 

Repainting 22.6 222 Creation 24.1.1 255 

Why Windows Must Repaint 22.6.1 222 Root Window 24.1.2 255 

The Update Region 22.6.2 222 Image Devices 24.2 256 

Printing 22.6.3 222 Creating an Image Device 24.2.1 256 

Transparency 22.7 223 Binding an Image Device to a Pixelmap 24.2.2 257 

Window Size and Position 22.8 223 Dirty Windows 24.2.3 259 

Layout 
Drawing on an Image Device 24.2.4 259 

22.9 224 
Accessing Pixels in an Image Window 24.2.5 259 

Unconstrained Layout 22.9.1 224 
Multiple Pixelmaps 24.2.6 262 

Parent-Veto Layout 22.9.2 225 
Destruction 24.2.7 262 

Episodic Layout 22.9.3 225 
Landscape and Portrait Mode 24.2.8 262 

Window Management 22.10 225 Performance Tips 24.2.9 263 
Subclassing dsWin 22.11 226 

Pv Chapter 25 / Graphics Concepts 265 
Chapter 23 / The Window Class 227 

Models and Implementation 25.1 265 
cIs Win Structures 23.1 227 Imaging Models 25.1.1 265 

Window Metrics 23.1.1 227 Drawing Contexts 25.1.2 266 
Window Flags 23.1.2 228 The System Drawing Context 25.1.3 267 

cIs Win Messages 23.2 230 



Coordinate Systems 25.2 267 Fill Pattern Alignment 26.7.4 292 

Logical Unit Coordinates 25.2.1 267 Determining Filled Areas 26.7.5 292 

Coordinate Unit Size 25.2.2 268 Raster Operations 26.7.6 292 

Coordinate Rounding Error 25.2.3 269 Drawing Operations 26.8 293 

Drawing Context Features 25.3 269 Open Figures 26.8.1 293 

Local Clipping 25.4 270 Closed Figures 26.8.2 294 

Hit Detection 25.5 270 
Filling a Window 26.8.3 294 

Bounds Accumulation 25.6 270 
Color 26.9 295 

RGB Color Values 26.9.1 295 
Figure Drawing Operations 25.7 271 

Palette Colors 26.9.2 295 
Open Figures 25.7.1 271 

Closed Figures 25.7.2 271 
Inverting Colors 26.9.3 295 

Planes 26.9.4 296 

Sampled Images 25.8 272 
Sampled Images 

Drawing Sampled Images 25.8.1 273 
26.10 297 

Cached Images 25.8.2 273 
Sampled Image Operator 26.10.1 297 

Cached Images 26.10.2 299 

Color 25.9 274 

RGB Color Values 25.9.1 274 
Printing 26.11 301 

Hardware-Dependent Palette Colors 25.9.2 274 
Application Printing 26.11.1 302 

Text 25.10 275 
ImagePoint Font Support 26.12 302 

How You Use the API 26.12.1 302 
Fonts 25.10.1 275 

Opening a Font 25.10.2 275 
Text and the Drawing Context 26.12.2 302 

What is a Font? 26.12.3 303 
Scaling a Font 25.10.3 276 

Drawing Text 25.10.4 276 
Opening a Font 26.12.4 303 

Font Attributes 26.12.5 305 

Character Encoding and Missing Glyphs 25.11 277 Group 26.12.6 305 

Graphic State 25.12 277 Font Metrics 26.12.7 307 

Picture Segments 25.13 279 Character Metrics 26.12.8 310 

Scaling a Font 26.12.9 310 

Chapter 26 / The Drawing Drawing Text 26.12.10 311 

Context Class 281 Spacing Text 26.12.11 312 

System Drawing Context Messages 26.1 281 Measuring Text 26.12.12 312 

Creating a DC 26.2 285 
Determining How Much Text Fits 26.12.13 313 

Default Drawing Context State 26.2.1 285 
Finding a Glyph 26.12.14 313 

Should You Create a Drawing Context? 26.3 286 
Loading the Font Cache 26.12.15 314 

Improving Performance 26.12.16 315 

Drawing with a Drawing Context 26.4 286 

Drawing Coordinates 26.5 286 Chapter 27 / The Picture 

Defaults 26.5.1 287 Segment Class 317 

Units 26.5.2 287 Developer's Quick Start 27.1 318 

Scale 26.5.3 288 Grafics 27.2 319 
Rotation 26.5.4 288 Coordinates 27.2.1 320 
Translation 26.5.5 288 

Resetting L U C 26.5.6 288 
DC State 27.3 320 

Scaling to your Window (World Coordinates) 26.5.7 288 
Paint 27.3.1 320 

Transformation Matrices 26.5.8 289 
Picture Segment Storage 27.3.2 321 

Sending Window Messages to Drawing 
Using Picture Segments 27.4 322 

Contexts 26.6 289 Creating a Picture Segment 27.4.1 322 

Graphic State 26.7 290 
Drawing in a Picture Segment 27.4.2 322 

Filling and Stroking 26.7.1 290 
Picture Segment Drawing Messages 27.4.3 322 

Line Styles 26.7.2 290 
Drawing Other Objects in Picture Segments 27.4.4 323 

Line and Fill Patterns 26.7.3 291 
Building up a Picture Segment 27.4.5 323 



Using Picture Segments in Graphics 22-3 Clipping an Image 219 
Applications 27.5 323 22-4 Window Clipping Regions 220 

Editing a Picture Segment 27.5.1 324 22-5 Clipping Children 221 
The Current Grafic 27.5.2 324 
Drawing by Adding Grafics 27.5.3 325 

22-6 Clipping Siblings 221 

Hit Testing a Picture Segment 27.5.4 325 22-7 Sharing a Parent's Clipping Region 221 

Invisible Grafics 27.5.5 326 22-8 Grouping Windows in a Transparent 

Converting to Other Formats 27.5.6 326 Window 223 

What Picture Segments DON'T Do 27.5.7 326 22-9 Window Size and Position 224 

Moving and Copying Picture Segments 27.6 326 23-1 The Notebook 245 
Sender Responsibilities 27.6.1 326 25-1 A Simple Imaging Model 266 
Receiver Responsibilities 27.6.2 327 25-2 Transforming the LUC 268 

Chapter 28 / Bitmaps and TIFFs 329 25-3 Using a Local Clipping Rectangle 270 

Bitmaps 
25-4 Open Figures 271 

28.1 329 
Creating a New Bitmap 28.1.1 330 25-5 Closed Figures 272 

Using a Bitmap 28.1.2 330 26-1 Line Styles 290 

Modifying 28.1.3 330 26-2 Fill and Pattern Styles 292 
Notifications 28.1.4 331 26-3 Font Geometry 308 

cIsTiff 28.2 331 29-1 A Figure in a Logical Unit Coordinate 
Creating a New TIFF Object 28.2.1 332 System 335 
TIFF Image Metrics 28.2.2 332 29-2 End Points in One-Pixel Lines 337 
Repaint 28.2.3 332 

29-3 LDC Rounding to Positive Side ofLUC 337 
TIFF Images in Picture Segments 28.2.4 333 
Filing 28.2.5 333 

29-4 Rectanges With and Without Borders 338 

Destroying 28.2.6 333 29-5 Left-Hand and Right-Hand Edges 339 

29-6 Line Thickness in a Rectangle 341 
Chapter 29 / ImagePoint 
Rendering Details 335 List of Tables 

Logical Unit Coordinate (LUC) 29.1 335 23-1 Window Style Flags 229 

Logical Device Coordinate (LDC) 29.2 336 23-2 . cIs Win Messages 230 

Line Drawing 29.3 337 23-3 Default Window Style Flags 232 

Rectangular Figures Without Borders 29.3.1 337 26-1 cIsSysDrwCtx Messages 281 

Rectangular Figures With Borders 29.4 338 26-2 Default clsSysDC State 285 

Polygons 29.5 339 26-3 Messages to Set LUC Units 287 

Line Width and Corner Radius Scaling 29.6 339 26-4 Common PenPoint Fonts 306 

Rendering Geometric Shapes with Thick 27-1 cIsPicSeg Messages 317 
Borders 29.7 340 27-2 Drawing Messages Corresponding 

Figures Described by a Bounding Rectangle 29.7.1 340 to Picture Segment Grafics 319 
Figures Described by a Point Path 29.7.2 342 28-1 cIsBitmap Messages 329 

Differences from Earlier Releases 29.8 342 28-2 cIs Tiff Messages 331 

List of Figures ~ List of Examples 
21-1 A Drawing Context Bound to a Window 210 21-1 Creating and Drawing in a Window 213 
21-2 PenPoint Windows and Graphics Classes 24-1 Allocating a Small Bitmap 258 

Hierarchy 211 
24-2 More Complex Use of an Image Device 261 

22-1 A Simple Window Tree 217 
26-1 Drawing a Box 287 

22-2 A User Interface Built of Windows 218 



Chapter 21 / Introduction 

Every PenPoint™ operating system application with a user interface presents that 
interface in a rectangular area of the screen called a window. The application 
draws its user interface elements in that window using an imaging model called 
ImagePoint™. This part describes windows and ImagePoint, and how you use 
them together to create images on the screen or other devices (such as printers). 

Overview 
When your application creates an image on an output device such as the screen or 
a printer, it uses the features of ImagePoint to draw in a window on the output 
device. ImagePoint provides a rich selection of drawing operations to facilitate the 
construction of complex images. The fundamental window class, clsWin, defines 
basic characteristics of a window such as the area of the output device in which to 
draw. In practice, however, effective use of windows usually requires subclasses of 
clsWin that add to these basic characteristics. For example, the PenPoint User 
Interface (UI) Toolkit, described in Part 4: UI Toolkit, is a collection clsWin 
subclasses that implements common user interface components such as buttons, 
menus, and input fields. 

Windows 

A window defines an area of an output device in which a drawing context can 
draw. In PenPoint, a window is an instance of clsWin, and an output device that 
allows the display of windows is an instance of clsWinDev. PenPoint provides a 
well-known instance of clsWinDev called theScreen, which represents the primary 
display screen. Devices other than the screen (printers, for example) can also serve 
as window devices. 

ImagePoint 

An application uses a drawing context (or DC) to create images in a window. 
A drawing context is an a set of drawing operations (such as an operation to 
draw a rectangle) together with a graphic state (a set of attributes such as line 
thickness). The graphic state determines the way in which the DC executes its 
drawing operations. For example, with the line thickness attribute set to 0.1 
centimeters, the DC draws lines 0.1 centimeters thick. If an application changes 
the line thickness attribute to 0.25 centimeters, the DC draws subsequent lines 
0.25 centimeters thick. 

The User Interface Toolkit 
classes inherit from cle;Win, 
so you need to understand 
windows to use the UI Toolkit 
classes effectively. However, 
because the UI Toolkit classes 
handle rendering for you, you 
don't need to learn about 
ImagePoint to use them. 



210 PENPOINT ARCHITECTURAL REFERENCE 
Part 3 I Windows and Graphics 

Figure 21-1 

A Drawing Context Bound to a Window 

windowing device 

...... · ... · ... ··1 
(:;.. I 

._ •• 1 

The standard imaging model for the PenPoint operating system is called 
ImagePoint. Because ImagePoint is the system standard, an ImagePoint drawing 
context is called a system drawing context. In PenPoint, a system drawing 
context is an instance of clsSysDrwCtx. Every system drawing context shares the 
same set of ImagePoint drawing operations, but each drawing context maintains 
its own graphic state to determine the way in which it renders images. 

Windows and ImagePoint Together 
Before a drawing context can render an image, an application must specify the 
window in which to render it. The process of connecting a drawing context to a 
window is called binding. Once a drawing context and a window are bound, an 
application sends messages to the drawing context telling it which drawing 
operations to execute. The corresponding images appear in the area of the output 
device defined by the bound window. 

Winelows anel Graphics Classes 
This part describes three main class groups: devices, windows, and drawing 
contexts. These groups form the class hierarchy shown in Figure 21-2. 

~ Window Devices 

In PenPoint, an output device that supports the display of windows in an instance 
of cis WinDev. Each instance of cis WinDev corresponds to a physical output 
device that can display windows. For example, theScreen, a well-known instance 
of clsWinDev, represents the primary system display. clsImgDev is a subclass of 
clsWinDev which supports windows in memory, without a physical output 
device. See Chapter 24, Window Device Classes, for more information. 

21.1.3 

21.2 

21.2.1 

C;15PixDev is an abstract class 
that defines the minimal 
behavior of pixel-based devices. 
The only way you should use 
C;15PixDev is to create classes 
that inherit from it. 



CHAPTER 21 I INTRODUCTION 211 
Windows and Graphics Classes 

figure 21-2 

PenPoint Windows and Graphics Classes Hierarchy 

Windows 

clsWin is the fundamental window class. PenPoint creates theRootWindow, a 
well-known instance of clsWin, to serve as the root window of theScreen. The 
User Interface Toolkit classes, described in Part 4: UI Toolkit, are subclasses of 
clsWin with specialized user interface behavior. You will probably use the UI 
Toolkit classes in your applications, or create your own clsWin subclasses, rather 
than use clsWin directly, so it is important that you understand the basic behavior 
of clsWin. This chapter and Chapter 23, The Window Class, provide most of the 
information you need to understand the UI Toolkit classes and clsWin subclasses 
in general. 

Drawing Contexts 

System drawing contexts, drawing contexts that implement the system-standard 
ImagePoint imaging model, are instances of clsSysDrwCtx. clsSysDrwCtx is a 
subclass of the abstract drawing context class clsDrwCtx. It is possible to 
implement an imaging model other than ImagePoint as another subclass of 
clsDrwCtx. Chapter 26, The Drawing Context Class, describes clsDrwCtx and 
clsSysDrwCtx, but does not explain how to implement another imaging model as 

. a subclass of clsDrwCtx. 

21.2.3 



212 PENPOINT ARCHITECTURAL REFERENCE 

Part 3 / Windows and Graphics 

Application Writer's Overview 
The following steps provide an outline of the messages required to create a 
window and render images in it. 

1 Send msgNewand msgNewDefaults to clsSysDrwCtx and clsWin to create 
a drawing context and a window, respectively. 

2 Send msgWinInsert to the window to insert the window into a window tree. 
The parent window often is an application frame created by the PenPQint 
Application Framework. Part 2: PenPoint Application Framework and Part 4: 
U1 Toolkit describe frames in more detail. 

3 Send msgDcSetWindow to the drawing context to bind it to the window. 

4 Send graphic state messages such as msgDcSetLine Thickness to the drawing 
context. 

5 To render images in the window, selid drawing messages such as 
sysDcDrawRectangle to the drawing context. The drawing context will 
render the images in the window to which it is bound. 

Usually, your application renders an image not because it has new elements to 
draw, but because PenPoint informs one of your application's windows that it 
must repaint itself. Chapter 22, Window System Concepts, describes repainting 
in more detail. 

Example 
For almost every application, the PenPoint Application Framework creates a 
window called the application frame. The frame serves as a container for all of the 
application's other windows. The primary application window within the frame is 
the frame's client window (you can learn more about frames in Part 2: PenPoint 
Application Framework and Part 4: U1 Toolkit). 

The following code example shows how to create a client window for an appli
cation frame. You'll probably need to learn more about windows and ImagePoint 
before you can practically use the techniques shown here (for example by drawing 
in a window), the example provides a general idea of common use of windows. 



CHAPTER 21 I INTRODUCTION 213 
Organization of This Part 

Example 21-1 

Creating and Drawing in a Window 
This example from the Hello World SDK sample application (on the SDK distribution under \PENPOINT\SDK\SAMPLE\ 

HELLO\HELLO.C). The HelloOpenO message handler shows how to create a window and insert the window as the client of 
the application's main window, or application frame. 

MsgHandler(HelloOpen) 
{ 

HELLO WIN NEW hwn; 
APP METRICS ami 
STATUS S; 

II Get the app's metrics, including the app main window, or frame. 
ObjCallRet(msgAppGetMetrics, self, &am, S)i 

II Create the Hello window. 
II The Hello World app defines clsHelloWin as a subclass of clsWin 
ObjCallWarn(msgNewDefaults, clsHelloWin, &hwn); 
ObjCallRet(msgNew, clsHelloWin, &hwn, S)i 

II Insert the HelloWin (hwn.object.uid) as client window of the frame. 
ObjCallJmp(msgFrameSetClientWin, am. mainWin , (P_ARGS)hwn.object.uid, 

s, exit)i 
II Ancestor clsApp will display the windows on the screen. 

".. Organization of This Part 
This part is organized into nine chapters. This chapter, Chapter 21, provides an 
introduction to windows and ImagePoint. Of the remaining chapters, three 
describe windows, and four describe ImagePoint and related drawing classes. 

Chapter 22, Window System Concepts, provides a detailed overview of windows 
and window management in the PenPoint operating system. 

Chapter 23, The Window Class, describes the messages defined by dsWin for 
creating, displaying, and manipulating windows. It also discusses the use of 
subclasses of cls Win to implement specialized window behavior. 

Chapter 24, Window Device Classes, describes the messages defined by 
dsWinDev for creating a device that supports the display of windows. The 
chapter also describes clslmgDev, a subclass of cis WinDev that supports a 
window tree without an associated display device. 

Chapter 25, Graphics Concepts, provides a detailed overview of the features of the 
ImagePoint imaging model. If you can do your work entirely with the UI Toolkit 
classes (described in Part 4: UI Toolkit), you may be able to skip Chapter 5 and 
subsequent chapters in this part. Chances are good, though, that you will need to 
implement one or more custom subclasses of clsWin in order to build a fully 
functional application. 

21.4 

You may be able to U6e the UI 
Toolkit cla66e6 after reading 
only the fir6t four chapter6 in 
thi6 part. 



214 PENPOINT ARCHITECTURAL REFERENCE 
Part 3 / Windows and Graphics 

Chapter 26, The Drawing Context Class, describes the messages defined by 
clsSysDrwCtx for creating ImagePoint drawing contexts, binding them to 
windows, and drawing figures and text. 

Chapter 27, The Picture Segment Class, provides an overview of the features 
of clsPicSeg, a subclass of clsSysDrwCtx which adds special features to the 
ImagePoint model, and describes the messages defined by clsPicSeg. 

Chapter 28, Bitmaps and TIFFs, describes two classes that support the rendering 
of sampled bitmap and TIFF (Tagged Image File Format) images. 

Chapter 29, ImagePoint rendering details, provides a technical overview of some 
low-level implementation details of ImagePoint's rendering mechanism 

Other Sources of Information 
Some aspects of Pen Point windows and graphics are described elsewhere in this 
document. For example, Part 4: UI Toolkit describes frames, the application 
windows provided by the PenPoint Application Framework. 

Outside of this PenPoint Architectural Reference, the best source of information on 
using PenPoint windows and graphics is the Application Writing Guide. In 
particular, its Hello World and Tic-Tac-Toe application development tutorials 
provide good examples of the topics described in this part of the PenPoint 
Architectural Reference. 

21.5 



Chapter 22 / Window System Concepts 

This chapter describes the PenPoineM operating system model of windows and 
window management. It provides a detailed conceptual treatment of features of 
the window system, preparing you for the chapters describing the classes that 
implement those features. 

Topics covered in this chapter include: 

• The hierarchical window tree model 

• Graphics support such as clipping 

• The interactions between windows and the window system 

• Programming support features 

• Creating subclasses of clsWin. 

What is a Window? 
In the simplest sense, a window is an object that represents and defines a 
rectangular area of an output device. A window acts as a kind of canvas onto 
which a drawing context can render an image (in fact, some other window systems 
use the term canvas to describe what PenPoint refers to as a window). clsWin is 
the fundamental window class in PenPoint. 

In practice, PenPoint applications use subclasses of clsWin to implement a wide 
variety of display elements such as status messages and user interface controls. The 
User Interface Toolkit (described in Part 4: UI Toolkit) is a standard collection of 
subclasses of clsWin that implements most of the user interface elements 
applications require. You need to understand clsWin in order to understand the 
features the UI Toolkit classes inherit from clsWin. 

Much of the information in this chapter is useful in designing subclasses of 
clsWin. Because the UI Toolkit provides many standard clsWin subclasses, it may 
be tempting to skip this part and jump ahead to Part 4: UI Toolkit. However, 
every application requires that you design at least one custom subclass of clsWin 
(to act as the main window of the application), so it is important that you 
understand the information in this part. 

Window System Concept Overview 
The PenPoint window system offers a number of features that enhance the value 
of windows as a programming tool: 

• A hierarchical window tree supports the appearance of multiple, overlapping 
windows. 



216 PENPOINT ARCHITECTURAL REFERENCE 
Part 3 I Windows and Graphics 

• Windows are lightweight. You can use hundreds of them at once without 
overburdening the system, you can use subclasses of clsWin for 
frequently-used objects such as user interface elements. 

• Windows support clipping, so that images rendered outside the window 
bounds do not appear on the output device. 

• PenPoint automatically notifies a window that it needs to repaint itself when 
its image is damaged. 

• Window position is not tied absolutely to the display device, but is relative 
its parent window. Applications and the user can change the position and size 
of most windows. 

• Windows support a comprehensive layout system so that the arrangement of 
elements in the window is not dependent on the size of the window . 

• ' PenPoint provides methods for enumerating, tagging, sorting, searching for, 
and filing windows, and for sending a message that, will propagate up the 
window tree. 

• clsWin self-sends a number of messages, providing hooks for custom 
behavior in your clsWin subclasses. 

The remainder of this chapter describes these features in more detail. 

". Hierarchical Model 
The PenPoint window system can maintain many windows on a single output 
device, organizing them into a hierarchy called a window tree. Every output 
device that supports the display of windows must have an initial window to serve 
as the root window of its window tree. PenPoint provides a well-known object 
called theRootWindow to serve as the root window on the primary system display. 

"" Parents, Children, and Siblings 
The window tree is a hierarchy in which every window (except for the root 
window on the window device) is a child of some other window in the window 
tree. A window that has a child window is the parent of that child. Any two or 
more windows with the same parent share a sibling relationship. A tree of 
windows whose root is a child of the root of another tree is a subtree of that 
other tree. 

In figure 22-1, window A and windowB are siblings, since both are children of the 
same parent (theRootWindow). windowC is the only child of windowB, and thus 
has no sibling. windowB is the root of a subtree that includes windowB and 
windowC. Even though it has no children, windowA is also a subtree (this is a 
degenerate case). In the same sense, theRootWindow is a window tree even when 
it has no children. 

22.3 

22.3.1 

There is no limit to the number 
of children or siblings a window 
can have. The root window of a 
window device only has children. 



CHAPTER 22 I WINDOW SYSTEM CONCEPTS 217 
Hierarchical Model 

Figure 22-1 
A Simple Window Tree 

A window tree in memory ... .. .and on the window device. 

theRootWindow 

windowB 

window A 

I mnOOwC I 

Window Devices 

In almost every case, the system displays a window tree on a physical out-
put device. PenPoint represents each of these physical devices as an instance 
of clsWinDev. PenPoint associates the root window of a window tree with a 
particular window device, and renders the window tree on that device. Any device 
that supports the rendering of output, from display screens to printers, can be a 
window device. PenPoint provides a well-known object called theScreen to 
represent the primary system display. 

Window Life Cycle 
An instance of clsWin typically undergoes four procedures: creation, insertion, 
extraction, and destruction. 

Creation 

When an application creates a new window, the window exists in memory just like 
any other object, but it is not part of any window tree. A window such as this is 
called an orphan, because it has no parent in the· window tree. Orphan windows 
are not part of any window tree, and therefore cannot display themselves on the 
corresponding window device. 

Insertion 

Establishing an orphan window's parent in a window tree is called inserting the 
window into the window tree. Once inserted into the window tree, the window 
can display itself on the window device. In most cases, this means the window will 
display itself on the window device, because the window system instructs windows 
in the tree to redisplay themselves when there are changes in the window tree. 

When PenPoint prints a docu
ment, it simply attaches a coP,y 
of that document's window as 
the root window of the printer 
window device. The document 
displays itself on the printer 
just as it wou Id on the screen. 

22.3.3 

22.3.3.1 

22.3.3.2 

lL 



218 PENPOINT ARCHITECTURAL REFERENCE 
Part 3 / Windows and Graphics 

~ Extraction 

The process of removing a window from a window tree is called extracting the 
window from the window tree. Extracted windows (and their children, if any) 
are not part of any window tree, and therefore cannot display themselves on any 
window device. If an application later reinserts an extracted window into a 
window tree, the window will appear exactly as when it was extracted (unless the 
application changed some attributes ofrhe window while it was extracted). 

Destruction 

Destroying a window is like destroying any other PenPoint object: the window 
ceases to exist and the system frees up its memory for other uses. When you send a 
message to a window to destroy itself, it recursively sends the same message to its 
children (so the entire window subtree is destroyed). It is possible to set a flag in a 
window so that its parent does not destroy it in this way, but the flag is not on by 
default. Windows with this flag set become orphans, windows without parents, 
when their parent window is destroyed. 

Windows are Lightweight 
PenPoint implements windows as lightweight objects. This means that windows 
are not costly in terms of system resourc;es such as memory or processor time. It is 
possible for the system to display and maintain hundreds of windows with very 
little performance degradation. 

Figure 22-2 shows a typical user interface built of windows (actually, specialized 
subclasses of clsWin). Note that many windows, such as buttons and text fields, 
are not what the user normally considers to be a window. Nevertheless, these 
items inherit from clsWin. Because windows are so lightweight, even windows as 
common as user interface elements do not seriously reduce system performance. 

A 

22.4 



CHAPTER 22 I WINDOW SYSTEM CONCEPTS 219 

".. Using Window Subclasses 22.4.1 

Because windows are lightweight, you can design specialized classes that inherit from 
clsWin to implement commonly used user interface elements such as message displays 
and input fields. You can combine dozens of small windows, each responsible for 
managing a small part of your application's user interface, to create a complete inter
face for your application. In addition to reducing the time required to implement your 
application's user interface, the reuse of standard user interface elements makes your 
application easier to use. 

~Clipping 
If an application attempts to draw an image that extends outside the boundary 
of the window to which it is bound, the basic behavior of clsWin prevents the part 
of the image that falls outside the window bounds from appearing. This process of 
filtering out the parts of images that fall outside the window's bounds is called 
clipping the image. 

The Clipping Region 
Each window maintains a clipping region that defines the area in which it will 
allow drawing. Normally, a window clips any part of a child window that extends 
past the parent's bounds. In Figure 22-4, windowB clips its child, windowC (the 
gray line indicates the part of windowC that does not appear on the display). One 
consequence of this feature is that only siblings, such as windowA and windowB, 
can overlap one another. 

22.5 

22.5.1 

Clipping 

Figure 22·3 
Clipping an Image 

Application draws outside window's bounds. Window clips image at its borders. 



220 PENPOINT ARCHITECTURAL REFERENCE 
Part 3 / Windows and Graphics 

A window tree in memory ... . .. and on the window device. 

theRootWindow 

windowB 

windowA 

windowC 

I : ................................... ; '--____ ----11 

Clipping allows drawing operations to treat a window as a coherent drawing area. 
Drawing operations do not need to account for the fact that parts of the rectangle 
defined by a window object may be obscured on screen, either by the window's 
children or by its overlapping siblings. The disadvantage of clipping is that it can 
slightly increase the performance overhead of drawing operations. 

Overriding Automatic Clipping 
Clipping is not always necessary. For example, the VI Toolkit class clsTabButton 
is a descendant of clsWin that implements a tab along the side of a PenPoint 
notebook. An instance of clsTabButton displays a label inside a border, and its 
window is always large enough to contain the entire image. This means that the 
label image in each tab will never extend past the tab window bounds, and 
therefore that there is no need to prevent the window from drawing in its parent. 

PenPoint provides several levels of control over automatic clipping: clip children, 
clip siblings, and share parent clipping region. This allows you to optimize 
drawing operations by turning off the automatic clipping you know is unnecessary. 

Clip Children 

By default, window clipping prevents drawing operations from affecting the child 
windows contained within the bounds of the target window. When you want to 
allow drawing operations to affect children of the target (to fill them all with the 
same color, for example), you can turn off child clipping. 



CHAPTER 22 I WINDOW SYSTEM CONCEPTS 221 

Filling parent w/child clip on Filling parent w/child clip off 

Parent 

".,. Clip Siblings 

By default, window clipping prevents drawing operations from affecting siblings 
of the target window that happen to overlap the target window. When you want 
to allow drawing operations to affect overlapping siblings of the target window, 
you can turn off sibling clipping. 

Filling Child B w/sibling clip on Filling Child B w/sibling clip off 

Parent 

Child A 

ChiidB 

I 

Parent Clipping Region 

A window must reserve some memory to store its clipping region. To conserve 
memory, a window can use its parent's clipping region instead of maintaining its 
own. This is appropriate when you know there will never be an attempt to draw 
images in the child window that extend outside the window bounds. In the 
clsTabButton example above, for instance, because tabs are always as large as the 
label they display, a clsTabButton does not require its own clipping region. 

Each window has its own clip region Child shares parent's clip region 

Parent 

Clipping 

Figure 22-5 
Clipping Children 

22.5 .. 2.2 

C s 

ion 



222 PENPOINT ARCHITECTURAL REFERENCE 

Part 3 I Windows and Graphics 

Repainting 
Painting is the process of drawing an image in a window. An application paints a 
window by sending it a series of drawing requests, so painting is entirely under the 
application's control. However, a window's appearance may change because of 
factors outside of the application's control. For example, the user maY'resize the 
window. 

When the display no longer accurately reflects the structure of the window tree, 
the window system notifies modified windows that they must repaint themselves. 
The default repaint behavior of clsWin, the fundamental window class, is simply 
to fill its bounding rectangle with white. Applications typically use subclasses of 
clsWin to implement more useful user interface behavior. 

The window system does not keep track of the images displayed in windows. 
Each window is responsible for sending the appropriate drawing instructions 
when it receives a repaint request. By default, an instance of clsWin simply fills 
its bounding rectangle with white. Descendants of clsWin such as the User 
Interface Toolkit classes, add to or alter this basic behavior to repaint more 
meaningful imagery. 

Why Windows Must Repaint 

Each window must be prepared to repaint itself at any time. The window system 
will instruct a window to repaint itself whenever part of the window's image 
becomes damaged. A window is considered damaged when a change to the 
window tree affects one or more pixels contained within the window (the term 
dirty is a synonym for damaged, especially when referring to individual pixels). 

For example, suppose a sibling overlaps an underlying window. If the user moves 
the sibling, the move may expose some pixels in the underlying window. These 
newly-exposed pixels, still display whatever was in the overlapping window before 
the user moved it. The pixels are therefore dirty, so the window system instructs 
the underlying window to repaint itself. 

The Update Region 

Before sending a repaint request, the window system calculates the update region, 
a rectangle containing all damaged pixels. The performance cost of repainting an 
entire window can be high, especially if the window receives damage frequently or 
its imagery is complex. In these cases, if you are writing a class that inherits from 
clsWin, you can improve its performance by repainting only that portion of the 
window that falls within the update region. However, it is rare that a window will 
require a level of processing that warrants this kind of optimization. 

Printing 

Another reason it is important for clsWin subclasses to respond to repaint requests 
is that PenPoint uses the repaint mechanism to print documents. When the user 
asks to print a document, the system makes a copy of the document window on a 

22.6 

The information in this section is 
particularly useful if you are 
planning to create or use a class 
that inherits from ol5Win. 

22.6.1 

22.6.2 

22,,6.3 



CHAPTER 22 / WINDOW SYSTEM CONCEPTS 223 
Window Size and Position 

window device representing the printer, turns off the window borders, then sends 
a repaint request to the window. The window uses exactly the same code to 
repaint itself on the printer as it would on any window device, providing a printer 
image that is virtually identical to the screen image. 

Transparency 22.1 

Windows can be transparent. Transparent windows do not fill themselves with white 
when they repaint, so they don't obscure other windows. When a transparent window 
needs to repaint, the window system causes windows below it to repaint first. In effect, 
the transparent window uses whatever is in the window behind it as its own back
ground. In other words, if you don't draw in a transparent window, it is invisible. 

You can draw in a transparent window just as in an opaque one. The effect is like 
painting on a piece of glass. One use for a transparent window is to group its 
children without obscuring what is behind them. 

The UI Toolkit class clsTabBar is one example of the use of a transparent window 
to group several opaque child windows. clsTabBar implements the tab bar along 
the edge of the notebook as a transparent window. When the user adds a tab to 
the notebook, the notebook application creates the tab as an opaque child of the 
tab bar. Because the tab bar window is transparent, the window system instructs 
the window behind the tab bar to repaint before the tab bar can repaint itself. This 
ensures that any area not obscured by the opaque children shows through the 
grouping window. 

22~8 

Grouping Windows a Tt~ansparent Window 

Grouping window is opaque Grouping window is transparent 

Grouping window 

000 

Window Size and Position 
A window defines a rectangular region of the display device. Applications measure 
the x (horizontal) and the y (vertical) size of a window in pixels, and specify the 
origin (lower-left corner) of a window in pixels relative to the origin of its parent 
window. For example, in Figure 22-9, window A is a child of theRootWindow. 
Relative to theRootWindow's origin, window A's origin is 20 pixels in the x 

direction and 50 pixels in the y direction. window A's size is 100 pixels in the x 

direction and 75 pixels in the y direction. 



224 PENPOINT ARCHITECTURAL REFERENCE 
Part 3 I Windows and Graphics 

theRootWindow 

T windowA 

75 

11-----------1 T I<IIIEIC--- 100 ---...·1 

1~=======.J 
k20.J 

Although applications specify each window's initial position and size, several 
factors can change them. For example, if your application allows it, the user can 
move and resize the window outside of your application's control. If you are 
designing your own subclass of clsWin, the repaint code will have to take into 
account that the window size, or that the positions of child windows, can change. 
PenPoint provides a mechanism for prohibiting changes to a window's position 
and size outside of application control, on an instance-by-instance basis. 

Layout 
PenPoint provides a scalable user interface model. That means that your appli
cation can make no assumptions about the size of the display device. One user 
may run it on a clipboard-sized machine, while another may use a pocket-sized 
machine. An application window needs to layout its child windows (user 
interface components) in a reasonable fashion, independent of the size of the 
display. 

Every window class inherits a mechanism called window layout that gives each 
window varying degrees of control over the position and sizes of its children. 
PenPoint provides three layout models: unconstrained layout, parent-veto layout, 
and episodic layout. 

Unconstrained Layout 

Unconstrained window layout is the type of layout most window systems provide. 
In such window systems, you are responsible for hard-coding layout algorithms 
into your application. PenPoint allows you to use unconstrained layout in which 
the parent allows child windows of any position and size. By default, the parent 
will always clip children that extend past the bounds of the parent. Unconstrained 
layout may leave the parent completely covered by children, leaving no space of its 
own on which to draw. 

Note that for a window to lay 
itself out is for it to determine 
the positions and sizes of its 
children. 



CHAPTER 22 I WINDOW SYSTEM CONCEPTS 225 
Window Management 

", Parent-Veto Layout 

In the parent-veto layout model, the window notifies the parent window of any 
pending operation that will insert, remove, move, or resize a child window. The 
parent must respond by approving, constraining, or vetoing the operation. If the 
parent approves the operation, it proceeds as requested. If the parent constrains 
the operation, the operation must select from a range of sizes and positions the 
parent specifies. Finally, the parent may veto outrageous requests, in which case 
the insert, remove, move, or resize operation does not take place. 

22.9.2 

", Episodic Layout 22.9.3 

Episodic layout is the most flexible layout model. When the application deter-
mines that it is necessary to layout a window's children (for example when the 
parent changes its size), it instructs the parent to initiate a layout episode. The 
parent requests size and position proposals from all of its children, the children 
respond with proposals, and the parent lays out the child windows while trying 
to preserve the positions and sizes they requested. 

Since there may be conflicts between the various children's initial proposals, 
the parent may need to request additional rounds of proposals, mediating the 
children's requests until it establishes an acceptable compromise. Because of this, 
a layout episode can have a high performance cost, especially when there are many 
children involved. On the other hand, episodic layout provides the greatest degree 
of flexibility, because it keeps a user interface entirely independent of the size of 
the display or other variable elements. 

Episodic layout provides a great deal of flexibility at the cost of a somewhat 
complex programming model. Chapter 23, The Window Class, describes episodic 
layout in more technical detail. 

~indow Managelllent 
clsWin provides a number of features that facilitate the management of group of 
windows. These facilities can be particularly useful when you are designing a 
special-purpose subclass of clsWin: 

• A window can enumerate its children. In other words, it can generate a list 
of its children. The window system provides a number of enumeration 
options, including recursive enumeration. 

• An application can associate a unique identifying tag with any window, 
allowing it to later refer to the window by its tag. 

• An application can send a message to a window in a way that, if the window 
cannot respond to the message, the window will propagate a message up the 
window tree until one of its ancestors responds to the message (or the 
message reaches the root window). 

• A window can sort its children, changing their placement on top of or below 
one another, based on a comparison routine your application provides. 

To see an example of an 
intricate layout episode, change 
the system font. This causes a 
layout episode beginning with the 
root window of the system 
display. 

22.10 



226 PENPOINT ARCHITECTURAL REFERENCE 
Part 3 / Windows and Graphics 

• A window can file its state, possibly including its child windows, for later 
reference. For example, a window that files a complex layout state can later 
restore the layout from the file, without the performance overhead of a layout 
episode. 

Subelassing elsWin 
clsWin is a fairly abstract class; to get really useful behavior, you must use sub
classes of clsWin. For example, the UI Toolkit classes (described in Part 4: U1 
Toolkit), are clsWin subclasses that implement standard user interface elements 
such as text fields and buttons. However, you may have to design at least one 
custom subclass of cls Win to create an application. You can override the inherited 
response to certain messages to implement custom behavior. 

For example, when a window system instructs a window to repaint itself, 
an instance of clsWin simply fills itself with white. If you were writing a 
spreadsheet application, you might design a subclass of cls Win that responds to 
msgWinRepaint by displaying the elements of an array of values and formulas in 
a grid. Layout is another area that may require custom behavior in clsWin 
subclasses. See Chapter 23, The Window Class, to learn more about clsWin's 
default behavior and how you might want to override it. 

22.11 



Chapter 23 / The Window Class 

The window class (cls Win) provides basic window behavior upon which 
descendants such as the User Interface Toolkit classes (described in Part 4: 
VI Toolkit) are built. The primary purpose of windows is to serve as a canvas for 
drawing contexts, described in Chapter 26, The Drawing Context Class. This 
chapter describes the programming interfaces for cls Win, going on the assumption 
that you have read and understood the preceding chapter on window system 
concepts. 

Topics covered in this chapter: 

• Important structures in the implementation of clsWin 

• Messages to which clsWin responds. 

clsWin Structures 
Before using cls Win, it is important to have a general understanding of two 
structures: window metrics and window flags. Window metrics, encoded in the 
WIN_METRICS structure, define what makes each instance of clsWin unique. One 
important element of the WIN_METRICS structure is the flags field, which defines 
a window's display style and, for some subclasses of clsWin, its input behavior. 

Window Metrics 

Each instance of clsWin maintains a set of window metrics that define its 
appearance and behavior. An application can directly modify the window metrics 
before sending msgNew to create an instance of clsWin. Mter creating the 
window object, however, the application should modify its metrics only by 
sending messages that cls Win defines. 

The messages cls Win defines for reporting and modifying window metrics 
generally take a P _WIN_METRICS as an argument. P _WIN_METRICS is a pointer 
to a WIN_METRICS structure, which includes fields for all of the window metrics 
information. clsWin messages that use a P _WIN_METRICS argument either report 
particular window metrics in the corresponding fields of the WIN_METRICS 

argument, or set particular window metrics according to the corresponding fields 
in the WIN_METRICS argument. These messages ignore the WIN_METRICS fields 
that are not relevant to the operation at hand. 

The WIN_METRICS structure includes parent, child, bounds, flags, tag, and 
options fields. This section briefly describes how each of these fields is commonly 
in terp reted. 

23 .. 1 

Although messages ignore 
irrelevant WIN_METRICS fields in 
the final result, they may use 
them for intermediate 
calculations. Do not rely on the 
state of any WIN_METRICS fields 
except those the message is 
intended to report or set. 



228 PENPOINT ARCHITECTURAL REFERENCE 
Part 3 I Windows and Graphics 

• The parent field normally represents the window's parent in a window tree. 
One notable exception is that when used with msgWinlnsertSibling, the 
parent field represents the intended sibling of the window. 

• The child field is used by some window layout messages. 

• The bounds field represents the origin and size of the window. The origin is 
a coordinate pair (bounds.origin.x and bounds.origin.y) in parent window 
coordinates that defines the location of the window's lower left corner. The 
size is a coordinate pair (bounds.size.wand bounds.size.h) in logical window 
coordinates that defines the width and height of the window relative to its 
ongln. 

• The flags field defines two sets of flags, the window style flags (flags.style) 
and the window input flags (flags.input). The style flags define the display 
and layout behavior of the window. clsWin does not support input, so 
this chapter does not describe the input flags. The input flags support a 
common mechanism for specifying input behavior classes that inherit from 
cls Win (see Part 5: Input and Handwriting Translation for information about 
input flags). 

• The tag field holds the window's tag. A tag is an arbitrary value you can can 
associate with a window. cis Win defines a message that searches for a window 
with a particular tag. . 

• The purpose of the options field is defined by the message that is taking 
the P _WIN_METRICS as an argument. Most of the cls Win messages use 
P _WIN_METRICS as an argument. For those that need special information to 
complete their tasks, WIN_METRICS provides the options field to carry that 
information. 

Window Flags 

The display style and input behavior of each instance of clsWin is modified by a 
set of flags. clsWin supports the input flags to support subclasses of clsWin that 
respond to input, but because clsWin does not respond to input, it ignores the 
input flags. Window style flags, on the other hand, affect every instance of clsWin 
and all its subclasses. Table 23-1 lists the window style flags. 

23.1.2 

Input flags are discussed in 
Part 5: Input and Handwriting 
Translation. 



Flag 

wsClipChildren 

wsClipSiblings 

wsParentClip 

wsSaveU nder 

wsGrowTop 

wsGrowBottom 

wsGrowLeft 

wsGrowRight 

wsCaptureGeometry 

wsSendGeometry 

wsSendOrphaned 

wsSynchRepaint 

ws Transparent 

wsVisible 

wsPaintable 

wsSendFile 

wsShrinkW rap Width 

. wsShrinkWrapHeight 

wsLayoutDirty 

wsCaptureLayout 

wsSendLayout 

wsFilelnLine 

wsFileN oBounds 

wsFileLayoutDirty 

CHAPTER 23 I THE WINDOW CLASS 229 

What happens if flag is set 

clsWin Structures 

Table 23-1 
Window Style Flags 

Drawing operations in the window do not affect children. 

Drawing operations in the window do not affect overlapping siblings. 

The window shares the same clipping region as its parent. 

The window stores for later retrieval the pixels it obscures on insertion. 

When the window's size changes, the bottom edge of its image stays with the bottom 
edge of the window. 

When the window's size changes, the top edge of its image stays with the top edge of 
the window. 

When the window's size changes, the right edge of its image stays with the right edge of 
the window. 

When the window's size changes, the left edge of its image stays with the left edge of the 
window. 

The window gets a chance to veto any insertion, change in position or size, or extraction 
of a child window. 

The window system tells the window whenever it has been successfully inserted, moved, 
resized, or extracted. 

When the window's parent is freed, the window system sends msgWinOrphaned to the 
window instead of msgF ree. 

The window receives msgWinRepaint synchronously (via ObjectCall rather than 
ObjectSend) . 

The window is transparent. 

The window is visible. 

Painting operations can affect the window. 

msgFile will store the window in a file. 

During a layout episode, the width of the window will shrink to the minimum necessary 
to contain its children . 

During a layout episode, the height of the window will shrink to the minimum necessary 
to contain its children. 

The window will lay out its children during the next layout episode. 

The window will set wsLayoutDirty whenever a child window is inserted, moved, resized, 
or extracted. 

The window will set wsLayoutDirty whenever it changes parent, position, or size. 

The window will not file its object header when responding to msgFile. 

The window will not file its bounds when responding to msgFile. 

The window will set wsLayoutDirty when restored from a file. 



230 PEN POINT ARCHITECTURAL REFERENCE 

Part 3 /Windows and Graphics 

clsWin Messages 
Table 23-2 lists the messages defined by dsWin. They are· organized into the 
following categories: 

Creation messages handle the common tasks of creating and destroying 
windows. 

Window attribute messages set and report flags that determine the 
appearance of the window. 

Window display messages handle the display of window contents. 

Window layout messages implement the protocols for a parent to layout its 
children. 

Window management messages provide special functions for organizing 
and managing windows. 

Filing messages provide a mechanism for storing windows as files for later 
retrieval. 

23ru2 

clsWin Messages 

msgNew 

msgNewDefaults 

msgFree 

msgWinInsert 

msg WinlnsertSibling 

msg WinExtract 

tnsg WinDelta 

msg WinSetFlags 

msg WinSet Visible 

msg WinSetPaintable 

msgWinGetFlags 

msgWinGetTag 

msgWinSetTag 

msgWinGetMetrics 

msgWinRepaint 

msgWinBeginRepaint 

msgWinEndRepaint 

Creates a window. 

Initializes the WIN_NEW structure to default values. 

Destroys a window and frees its memory, and recursively destroys and frees any of the 
window's children that do not have wsSendOrphaned set. 

Sets the window's parent in the window tree. 

Sets,the window's parent'to the parent of another window. 

Sets the window's parent to objNull, removing the window from the window tree. 

Sets the window's size and position (bounds). 

Sets the window's flags. 

Sets the window's visibility flag, returns previous value. 

Sets the window's paintability flag, returns previous value. 

Reports window style and input flags. 

Reports the tag (if any) associated with a window. 

Sets the window tag. 

Reports full window metrics. 

Tells a window to repaint itself 

Sets up window for painting on dirty region. 

Tells window system that repainting has ended for this window. 



msg WinStartPage 

msg WinBeginPaint 

msgWinEndPaint 

msgWinDirtyRect 

msgWinUpdate 

msgWinCleanRect 

msgWinCopyRect 

msgWin TransformBounds 

msgWinLayout 

msgWinLayoutSelf 

msgWinGetDesiredSize 

CHAPTER 23 I THE WINDOW CLASS 231 
clsWin Messages 

Table 23·· 2 (continued) 

De.scription 

Advises window that it is on a printer, and printing is about to commence. 

Sets up window for painting on its visible region. 

Tells window system that painting has ended for this window. 

Marks all or part of a window dirty. 

Forces a window to repaint now, provided that it needs repainting. 

Marks all or part of a window clean. 

Copies pixels within a window. 

Transforms bounds from receiver's to another window's LWC. 

Tells a window sub-tree to layout. 

Tells a window to layout its children. 

Gets the desired size of a window (used during layout). 

msgWinGetBaseline Gets the desired x-y alignment of a window. 

msgWinSetLayoutDirty Turns wsLayoutDirty bit on or off, returns previous value. 

msgWinSetLayoutDirtyRecursive Turns wsLayoutDirty bit on for every window in subtree. 

msgWinInsertOK Informs a potential parent of a pending child insertion. 

msgWinExtractOK Informs parent of a pending child extraction. 

msgWinDeltaOK Informs parent of a pending change in a child window's size or position. 

msgWinFreeOK 

msgWinInserted 

msgWinExtracted 

msgWinMoved 

msgWinSized 

msgWinOrphaned 

msgWinSend 

msgWinEnum 

msgWinGetEnv 

msgWinFindT ag 

msg WinFindAncestorTag 

msgWinSort 

msgWinDumpTree 

msgFile 

msgRestore 

Informs parent of the pending destruction of a child window. 

Advises window that it has been inserted. 

Advises window that it has been extracted. 

Advises window that it, or an ancestor, has moved. 

Advises window that it, or an ancestor, has changed size. 

Tells a window its parent has been freed. 

Sends a message up a window ancestry chain. 

Enumerates a window's children. 

Gets the current window environment. 

Searches for a window tag in a window subtree. Returns match or objNull. 

Searches for a window tag in ancestor windows. Returns match or objNull. 

Sorts a window's children into a back to front order determined by a client supplied 
comparison function. 

In lieu of msgDump, dumps a dense subset of information for the window and all 
it's children recursively. 

Stores the window as a file. 

Restores a filed window. 



232 PENPOINT ARCHITECTURAL REFERENCE 
Part 3 / Windows and Graphics 

Creating a New Window 
The simplest window class is clsWin. To prepare to create an instance of clsWin, 
an application first sends msgNewDefaults to clsWin, with a WIN_NEW structure 
as an argument. msgNewDefaults initializes the WIN_NEW structure to contain 
default values. The application then must specify the window's parent in the 
window tree. Additionally, it may need to specify the window size and position, 
and various flags that determine the display and input behavior of the new 
window. Once the application has initialized the WIN_NEW structure, it creates an 
instance of cls Win by sending msgNew to cis Win, with the initialized WIN_NEW 

structure as an argument. 

Size and Position 23.3.1 

Unless you know that the new window's parent will position the new window (in 
a layout episode, for example), you should specify the window's initial size and 
location in bounds. bounds is a RECT32 structure, made up of four signed 32-bit 
coordinates: 

bounds.origin.x 

bounds.origin.y 

bounds.size. w 

bounds.size.h 

The origin coordinates specify the position of the new window's lower-left 
corner in pixels relative to the lower-left corner of the parent window. The size 
coordinates are in logical window coordinates (L We), or pixels relative to the 
origin of the new window. 

Window Style Flags 

The flags.style attributes control the display behavior of a window. msgNewDefaults 
initializes flags.style to wsDefault, a combination of window style flags summarized in 
Table 23-3. It sets all other window style flags false. 

23 m 3 
Default Window Ie Flags 

f!@~ 

wsPaintable 

wsVisible 

wsClipChildren 

wsClipSiblings 

wsLayoutDirty 

wsCaptureLayout 

wsSendLayout 

Wht1lt ht1l~~tm£ when the flag is set 

The window can be painted. 

The window is visible. 

Drawing operations in the window do not affect children. 

Drawing operations in the window do not affect overlapping siblings. 

The window will lay out its children during the next layout episode. 

The window will set wsLayoutDirty whenever a child window is inserted, moved, 
resized, or extracted. 

The window will set wsLayoutDirty whenever it changes parent, position, or size. 



CHAPTER 23 I THE WINDOW CLASS 233 
Window Metrics Messages 

Window Metrics Messages 23.4 

An application can directly modify the window metrics before sending msgNew 
to create an instance of dsWin. Mter creating the window, however, the application 
should send messages that dsWin defines for changing the window's metrics values. 
These messages generally take a P _WIN_METRICS (a pointer to a WIN_METRICS 

structure) as an argument, but most of the messages refer to only those WIN_METRICS 

fields relevant to the operation at hand. 

To determine a given window's complete metrics information, an application 
sends msgWinGetMetrics to the window with a P _WIN_METRICS as its 
argument. This sets the WIN_METRICS fields equal to the window's metrics 
information. The following sections describe how an application sets and retrieves 
subsets of a window's metrics information. 

SeHing the Window Device or Parent 
To establish a window's position in a window tree, the application must insert 
it into the tree. To insert a window into a window tree is to establish its parent 
window in that tree. dsWin supports three ways to insert a window into a 
window tree. The application may specify the intended parent window, the 
intended window device, or an intended sibling window. 

To remove a window from its window tree, an application must extract it. An 
extracted window still exists as an object, but it has no parent window. Because an 
extracted window has no parent window, neither the extracted window nor any of 
its children are visible on any window device. 

~ Inserting the Window 

An application sends msgWinlnsert to a window to specify the window's parent 
or window device. In either case, msgWinInsert takes a P _WIN_METRICS as an 
argument, either with the parent field set to the intended parent window or with 
the device fielu set to the intended window device. If the argument specifies a 
device, the window will have the device's root window as its parent. If the 
argument specifies a window, the new window will share the parent window's 
device. 

msgWinlnsert also looks at the options field of the passed WIN_METRICS to 
determine the front-to-back ordering of the new window. If options is set to 
wsPosTop, the window will insert in front of all of its siblings. If options is set 
to wsPosBottom, the window will insert behind all of its siblings. 

Instead of inserting a window by specifying an intended window device or 
parent window, an application can specify an intended sibling window. 
msgWinlnsertSibling, takes as an argument a P _WIN_METRICS with the parent 
field set, but the parent field specifies the intended sibling window rather than an 
intended parent. Mter receiving msglnsertSibling, the newly-inserted window has 
the same parent as does the sibling window specified in the parent field. 

23.4.1 

A subtree of windows does not 
appear on a device until the root 
of the subtree is inserted. When 
inserting a subtree of windows, 
you'll get the smoothest display 
by inserting all descendants of 
the subtree before inserting its 
root. 



234 PEN POINT ARCHITECTURAL REFERENCE 
Part 3 / Windows and Graphics 

Neither msgWinInsert nor msgWinInsertSibling refer to argument fields other 
than parent, device, and options. In particular, the insertion messages ignore the 
bounds information in the WIN_METRICS argument. Until an application sends 
msgWinDelta to a window, the window retains the bounds specified when it was 
created with msgNew. 

Extracting the Window 

To extract a window from the window tree, an application sends msgWinExtract 
to the window. msgWinExtract takes either a P _WIN_METRICS or pNull (a 
pointer to the null object) as its argument. If the window does not have a parent 
when the application sends it msgWinExtract, the message returns the status 
sts WinParentBad. 

If the argument is pN ull, msgWinExtract simply extracts the window from the 
window tree. If the argument is a P _WIN_METRICS, msgWinExtract sets the 
WIN_METRICS fields to reflect the metrics of the extracted window before 
extraction. 

This is useful, for example, when you want to temporarily extract a window 
subtree, then reinsert it with the original parent. If your application gives 
msgWinExtract a P _WIN_METRICS argument, it will set the parent field to the 
parent of the window before it was extracted. If the application later sends 
msgWinInsert with the same WIN_METRICS argument, it will insert the window 
as a child of the same parent. 

Setting the Window Bounds 
A window's bounds are defined by two coordinate pairs: an origin (starting 
position) measured in pixels relative to the lower left corner of the window's 
parent, and a size measured in pixels relative to the origin. In a WIN_METRICS 

structure, these two coordinate pairs are encoded as a RECT32 called bounds. 

:23.4.2 

To change the origin or size of an existing window, an application sends msgWinDelta 
to the window with a P _WIN_METRICS as an argument. msgWinDelta uses the 
bounds.origin.x and bounds.origin.y of the WIN_METRICS structure to set the origin 
of the window, and bounds.size.w and bounds.size.h to set its size. 

Setting the Window Flags 

In a WIN_METRICS structure, the window style flags are stored in the flags.style 
field. To set a window's flags, an application sets the flags.style fields of a 
WIN_METRICS structure to the desired values, then sends msgWinSetFlags to the 
window with a pointer to the WIN_METRICS structure (a P _WIN_METRICS) as its 
argument. To restore a window's style flags to the default, an application uses 
msgWinSetFlags twice: once to set the flags to zero, and once to set them to 
wsDefault. 

23.4.3 

Although this chapter does not 
discuss flags.input (described in 
Part 5: Input and Handwriting 
Translation), the messages 
described in this section use 
flags.input as well as flags.style. 



CHAPTER 23 I THE WINDOW CLASS 235 
Window Display Messages 

~ SeHing Individual Flags 

If an application sends msgWinGetFlags to a window, with a P _WIN_METRICS as 
its argument, the flags field of the argu~ent is set equal to the current flags of the 
window. The application can use bitwise logical operators to set and clear 
individual flags in the WIN_METRICS structure, then use the modified structure as 
an argument to msgWinSetFlags to set the window flags to the new values. 

Because the window system sets the wsVisible and wsPaintable flags frequently, 
clsWin defines messages optimized for this purpose. msgWinSetVisible takes 
a Boolean value as its argument, sets the window's wsVisible flag equal to 
the argument, and returns the previous value of the wsVisible flag. 
msgWinSetPaintable works exactly the same way for the wsPaintable flag. 

Setting the Window Tag 
clsWin lets an application associate an arbitrary 32-bit number, called a window 
tag, with any window. Window tags are zero by default. An application can 
determine the tag of a given window by sending msgWinGetTag to the window, 
with a P _ WIN_METRICS as its argument. This will set the tag field of the 
argument WIN_METRICS equal to the window's tag. 

An application sets a window's tag by sending msgWinSetT ag to the window with 
a P _WIN_METRICS as its argument. This sets the window tag equal to the tag field 
of the argument WIN_METRICS. Tags allow an application to identify the windows it 
creates without having to assign them well-known UIDs. 

If an application maintains many child windows with meaningful tags, it can 
search through them for a particular tag value by sending msgWinFindTag to the 
parent window, with the target tag value as its message argument. This recursively 
enumerates each child window (not including the parent) in breadth-first order 
and returns the UID of the first child window with a tag equal to the argument. 

Window Display Messages 
You display images in a window by sending messages to a drawing context bound 
to the window. The drawing context alters the window, but it is also subject to 
constraints the window defines. For example, the window defines the clipping 
region, which restricts the area in which the drawing context can render images. 
This section discusses the interactions between objects that result in the display of 
images in windows. 

Clipping 
clsSysDrwCtx cannot draw your entire figure if it is larger than your window or 
pixelmap, and if you're drawing in a window it won't draw in hidden portions of 
your window. This process of selective drawing is called clipping. Repainting 
Dynamics, covers window clipping in intense detail. 

23.4.3.1 

23.4 .. 4 

The easiest way to create a 
unique tag is to use MakeTag, 
which generates a tag from 
a well-known UID assigned to 
you (such asthe UID of your 
application class) and an 8-bit 
number you select. 

23.5.1 

--_._._----------



236 PENPOINT ARCHITECTURAL REFERENCE 

Part 3 I Windows and Graphics 

~Y Window Clipping 

Normally windows don't get to draw on each other; each window has its own 
clipping region which does excludes all other windows. However, if you want to 
draw in child or overlapping sibling windows, you can reset the wsClipChildren 
and wsClipSiblings window flags. 

For example, the UI Toolkit has a button table class which arranges its child 
windows into tables. The button table paints its background white; because it 
resets wsClipChildren this also paints the background of each child button. 

As a performance optimization, child windows can share the clipping region of 
their parent if their wsParentClip flag is set. This means that child window 
painting is not restricted to the boundaries of the child window. For example, 
buttons don't attempt to draw outside their window boundaries, so it is safe for 
the button table to turn on wsParentClip in its children. 

Unclipped Children 

If a parent window does not have wsClipChildren set, then its drawing operations 
will show up in its child windows. This might be useful if a parent window is 
drawing a background that is appropriate for its child windows-without 
wsClipChildren, each child will have to redraw the background in itself. 

Similarly, if a child window does not have wsClipSiblings set, then its drawing 
may show up on overlapping sibling windows. This isn't especially useful. 

Maintaining a clipping region for each window takes some memory. If a child 
window only draws inside itself, it does not need its own clipping. If you set 
wsParentClip, the child window will try to borrow its parent's clipping region. 
For example, VI Toolkit labels don't draw outside themselves, so they can share 
their parents clipping. 

Drawing in a Window 

Assuming you have a window, and have associated a drawing context with it, you 
can then proceed to draw in the window. 

~ Repainting is as Important as Painting 

The window system does not remember what you have painted 
in a window. If some or all of your window's pixels are no longer visible on the 
display, then when they reappear, you have to repaint their contents. If you are 
going to be painting in a window, you need to concern yourself with how its pixels 
will be repainted. It turns out that figuring out how you are going to repaint your 
window is as important as what you will paint in it. 



CHAPTER 23 I THE WINDOW CLASS 237 
Window Display Messages 

Repainting Dynamics 23.5.3 

Dirty Windows 23.5.3.1 

All windows must be able to redraw themselves at any time. The window system 
tells a window to repaint itself by sending it msgWinRepaint. This takes no 
arguments. Descendant classes sometimes create a DC and pass it with 
msgWinRepaint for their ancestors to draw with. You can check the message 
argument of msgWinRepaint to see if it is pNull. 

~~,' When You're Told to Repaint 23.5.3~2 

When part of the screen must be repaired, windows in that part can be 
sent msgWinRepaint redraw messages. Most programmers will want to have 
their windows sent redraw messages automatically. If you know that temporarily 
you don't want to receive these messages you can send your window 
msgWinSetPaintable with message argument false to reset its wsPaintable flag. 
For example, you might be repositioning many windows and want to delay 
repainting until you have finished. 

Once a window is dirtied, it will eventually receive msgWinRepaint if it is 
paintable. As for when it receives msgWinRepaint: 

• A window normally receives msgWinRepaint when its task has no other 
work to do: the task unwinds to its message dispatching loop, and takes 
msgWinRepaint off the queue. 

• A window may receive msgWinRepaint immediately if it has 
wsSynchRepaint set. This causes any dirtying of itself by code in 
the same process to be repaired by an immediate ObjectCall of 
msgWinRepaint. 

• A dirty window also receives msgWinRepaint if you send it msgWinUpdate 
yourself. 

• A window could receive msgWinRepaint at random if someone else sends 
the message. This should never happen. msgWinUpdate is the correct way to 
tell a particular window and its children to repaint. 

,~ What to Do When Repainting 

The first thing to do is to create a DC and bind it to your window, if you have not 
already. 

If your window has changed size, you may want to change the scale of your DC. 
(Often you set window flags in order to be notified of changes in size and position 
in advance of repaint.) 

Then you issue the appropriate msgDc ... commands to repair the damage to the 
window by repainting part of it. Now, you would like to redraw only those areas 
of your windo,,: that are dirty. The window system makes it easy to do this, 
because it knows what area of your window is dirty and requires repainting. You 

23.5.3.3 



238 PENPOINT ARCHITECTURAL REFERENCE 
Part 3 I Windows and Graphics 

must send msgWinBeginRepaint before you start repainting, so that your 
drawing operations only appear in the dirty region. 

After msgWinBeginRepaint, any drawing messages you send to your DC only 
affect the dirty portion of the window. (This clipping is independent of the 
clipping area which you can set for your DC.) 

Sample Repaint Code 

Most programmers will want to have their windows sent redraw messages 
automatically (this is the default). Here is a typical code fragment for repaint: 

MsgHandler(MyRepaint) 
{ 

SYSDC myDci II Created here, or in instance data, or shared. 
SYSDC NEW sdni 
STATUS Si 

ObjCallRet(msgWinBeginRepaint, self, pNull)i 
II Create DC, if not already existing. 
ObjCallRet(msgNewDefaults, clsSysDrwCtx, &sdn, S)i 

ObjCallRet(msgNew, clsSysDrwCtx, &sdn, S)i 

myDc = sdn.object.uidi 
II Bind DC to window, if not already done. 
ObjCallJmp(msgDcSetWindow, myDc, (P ARGS)self, s, Error)i 
II Send messages to set up myDc to as necessary (scale, color,line thickness, ... ). 

II Send messages to myDc to repaint entire window. 

ObjCallJmp(msgWinEndRepaint, self, Nil(P_ARGS), s, Error)i 
return stsOKi 

Error: 
II Clean up if DC created here. 
ObjCallWarn(msgDestroy, myDc, Nil(OBJ_KEY))i 
return Si 

clsHello Win in the sample program Hello World (in \PENPOINT\ SDK\SAMPLE\ 

HELLO\HELLOWIN.C) implements a similar system except that it creates its DC 
when it is created instead of during repaint. 

Smart Repainting 

Even though the window systems restricts the drawing to the dirty region, the 
window object still sent messages to redraw every pixel in the window. This 
includes pixels which didn't need repainting. The window system overhead for 
drawing that gets clipped away is marginal, so this may not be a problem. 
However, if repainting the window requires a lot of computation, or if it involves 
dozens of drawing messages, it may be worth being smarter about what to repaint. 
GrafPaper and text views both use smart repaint strategies. 

When you send msgWinBeginRepaint, the window system sets the update 
region to be the dirty region. If you pass in a pointer to a RECT32 structure, 
msgWinBeginRepaint passes back the coordinates of the bounding rectangle of 
your window's dirty region. If you write smart repainting code that can repaint 



CHAPTER 23 / THE WINDOW CLASS 239 

Window Display Messages 

parts of the window on demand, then you can look at the coordinates of this 
rectangle and only issue the messages to redraw the areas which need repainting. 

For example, in an organizational-chart drawing program you could soup up the 
repainting code to use the rectangle enclosing the dirty region. You determine 
which boxes fall in the dirty region, and only repaint those boxes and their 
attached connector lines. 

Ordinary Painting by Repainting 23.5.;:\.6 

We have gone through how to repaint a window, without covering how to get 
something drawn in it in the first place. It turns out that the easiest and best way 
to paint something in your window is often to mark the area you want painted as 
dirty, then wait for the window system to send your window a msgWinRepaint 
message telling it to repaint itself. You send msgWinDirtyRect to a window (or to 
a DC bound to it) to dirty part of it. The message takes a pointer to a RECT32 

structure in which you specify the area of the window to mark as dirty. The 
window system adds that area to the existing dirty region. 

The benefits of this approach are: 

• A single piece of code handles both painting and repainting . 

• There's a minimum of flashing while you paint, since the window system will 
often have collapsed several dirty regions into one repaint message by the 
time you receive it. 

However, the corresponding disadvantage of painting by marking dirty is that the 
image the user sees on the screen will be incorrect for a longer instant than if you 
painted immediately. 

For example, suppose the org-chart application needs to add a new box to its chart 
at the top right. It could update its internal state to reflect a medium-size box in 
the upper right corner, and then dirty that region of its window with 
msgWi~DirtyRect. At some point, the window gets sent msgWinRepaint. When 
the window starts repainting with msgWinBeginRepaint, the right corner will be 
part of the dirty region. 

To mark your entire window as dirty (and hence paint the entire window), pass 
pNull as the message argument to msgWinDirtyRect. 

~ Telling a Window to Repaint 

If you don't want to wait for the window system to get round to telling your 
window to repaint, you can use msgWinUpdate. This makes the window system 
send (using ObjectCall) msgWinRepaint to your window and all its children that 
need repainting. Because the msgWinRepaint is delivered synchronously, the 
repaint happens before msgWinUpdate returns. 



240 PENPOINT ARCHITECTURAL REFERENCE 
Part 3 I Windows and Graphics 

The Few Occasions When You Want to Explicitly Paint 

There are a few inter-related situations in which you might want to explicitly 
paint: 

• If you need to repaint synchronously (instead you could set wsSynchPaint 
and mark yourself dirty) 

• If you don't want the window system to collapse painting operations. 
Normally the window system collapses all pending window damage into a 
single msgWinRepaint message covering the entire damaged area. 

• If you need to paint during a grab, or in a single thread of control. 

In all these cases, if you paint by repainting, the interaction is over before your 
window receives msgWinRepaint and you can start repainting. 

Before starting painting, you must send msgWinBeginPaint to your window, and 
afterwards you must send msgWinEndPaint. This is like msgWinBeginRepaint, 
except that it sets the update region to the visible part of the window instead of 
the dirty region. 

The Update Region 

The update region is created at msgWinBeginPaint/msgWinBeginRepaint time. 
It belongs to the window and applies to all drawing (including nested calls to 
msgWinBeginPaint/msgWinBeginRepaint. Des paint into this region or a 
subset of it (if they have a clip rectangle set up with msgDcClipRect). 

msgWinBeginPaint sets the update region to be the visible area of the window. 

msgWinBeginRepaint sets the update region to be the dirty area of the window. 
The update region will always be the same as, or smaller than, the visible area, 
since only visible parts of the window can need repainting. 

• When Updating Ends 

The window system doesn't know when you've finished painting or repainting 
your window. You must always end a string of painting operati~ns initiated with 
msgWinBeginPaint or msgWinBeginRepaint with a corresponding 
msgWinEndPaint or msgWinEndRepaint message. 

When you send msgWinEndRepaint, if you've been repainting the dirty region, 
the window system believes that all damage that has accumulated has been 
repaired (new dirt may have slapped on while you were repainting-see the next 
section). 

When you send the window system assumes that the region which was dirty is 
now clean, so long as you received that area via msgWinBeginRepaint. 

If you've been painting, the window system makes no such assumption. If a region 
of your window is dirty, and you start painting (not repainting) in it, the window 
system can't tell whether or not your painting operations will repaint that region 
successfully. You might not repaint that area, or only paint every fifth pixel. So the 

23.5.3.8 

23.5.3.9 



CHAPTER 23 / THE WINDOW CLASS 241 

Window Display Messages 

window system will still later send you msgWinRepaint to repaint that area 
properly. 

The window system doesn't attempt to figure out which pixels you actually 
updated, so it's your responsibility to completely repaint the area which you were 
supposed to repaint. Also, it is important to remember that when you get 
msgWinRepaint, your window's dirty pixels are not white or anything but pure 
garbage. You must completely paint the damaged area when responding to 
msgWinRepaint. 

~ Nesting 

Both repainting dirty regions and painting new pixels are designed to nest 
properly. Every msgWinBeginPaint must be matched with a corresponding 
msgWinEndPaint, and msgWinBeginRepaint must similarly be matched 
with msgWinEndRepaint. Only the outer-level msgWinBeginPaint/ 
msgWinBeginRepaint chooses the region (dirty or visible) to update-
it doesn't change with nested paints and repaints. 

Avoiding Repaints 

Transient windows can turn on their wsSaveUnder flag to avoid dirtying the 
windows they appear over. See the explanation of wsSaveUnder elsewhere. 

Stages in Optimizing Painting 

In summary, here are the stages you should follow in writing your painting/ 
repainting code. 

1 Write code which repaints everything in response to msgWinRepaint. To 
paint stuff, mark your entire window as dirty by sending msgWinDirtyRect 
to self with argument pNull. 

2 To speed up painting, figure out what area of your window needs to be 
painted, and only mark that area as dirty with msgWinDirtyRect. 

If your window is an observer of a separate data object (the data/view 
model), write code to translate from notification of a change in the viewed 
object to marking part of the window dirty. 

3 To speed up repainting and painting, add code to your repaint routine which 
tries to reduce repaint operations to the area which is in the dirty rectangle. 
Remember, even without this optimization, the graphics subsystem will only 
draw in the area in the update region, but it may increase repaint speed. 

4 For areas of your application (if any) which need snappier or sequential 
painting, add code to do explicit painting (msgBeginPaint, msgEndPaint). 

5 Design your data structures so that when repainting you can quickly. 
determine from the dirty rectangle what you need to redraw, and that when 
you want to paint you can quickly figure out what rectangle to mark as dirty. 

23.5.3~ 12 



242 PENPOINT ARCHITECTURAL REFERENCE 
Part 3 / Windows and Graphics 

Design your application carefully to figure out how best to trade off between code 
size and speed of repainting. You want your window to draw quickly so that page 
turns and window manipulations are snappy, but you don't want to expend a lot 
of code space or memory on it. 

The wsSynchRepaint Flag 

Repaint messages always appear at the end of the message queue of the window's 
task. This means that when a window moves or disappears, other windows will 
ordinarily not repair themselves even though you may want them to. Consider 
a scrollwin (a window which scrolls another larger window inside itself) and its 
client window (the window inside the scrollwin). As the user scrolls the scrollwin 
by dragging its drag handle or thumb: 

• The scrollwin moves its client window. 

• The window system marks as dirty the parts of the client window which 
become exposed. 

The client window will find out that it is dirty when it receives msgWinRepaint. 
But while the user drags the scroll thumb, it receives input, so ordinarily other 
windows don't receive their messages. Thus, the window inside the scrollwin may 
not repaint until the user finishes scrolling. 

You might want the client window to repaint while the user drags the scroll 
thumb. If you set the wsSynchRepaint flag of a window, then if it needs 
repainting it will be repainted synchronously. The window system sends it 
msgWinRepaint using ObjectCall instead of ObjectSend. In the scroll thumb 
example, if you set the wsSynchRepaint flag of the client window, then if it is in 
the same subtask as the scrollwin, every motion of the scroll thumb will result in a 
call to the scrollbar to repaint. 

Although wsSynchRepaint ensures smooth repainting of other windows in the 
same process, it is no smarter than an ordinary repaint, since it results in the same 
msgWinRepaint. In the scrollwin example, it is possible that the underlying 
window called to repaint because of scrolling has other dirty areas which require 
repaint; their repainting might delay repainting so much that interactive response 
suffers. There is a tradeoff between smooth repainting versus jerky tracking. One 
answer would be to make the area which requires synchronous repainting a 
separate window from areas which take a long time to repaint. 

What Really Goes on When Repainting 

The window system and the Class Manager message system conspire to deliver 
window repaints. The effect is that: 

• msgWinRepaint is always the last message in a subtask's queue of Inter-Task 
Communication Messages. Thus objects receive all other pending messages 
before receiving msgWinRepaint. 

• There is only ever one msgWinRepaint in a subtask's message queue. Only 
windows owned by the current subtask are painted. 

3 



CHAPTER 23 I THE WINDOW CLASS 243 
Window Display Messages 

• The order in which a subtask's windows receive msgWinRepaint is as follows: 

• Windows damaged as a result of resizes, movements, insertions, and 
extractions in the same subtask which have the wsSynchRepaint flag 
set are painted synchronously, outside the normal message queue. 

• Otherwise, windows in the same subtask receive msgWinRepaint in 
back-to-front order . 

• The order in which windows owned by different subtasks receive 
msgWinRepaint is undefined-if moving a window exposes underlying 
windows in two different subtasks, there's no way of knowing which will 
receive msgWinRepaint first. 

Copying Pixels in Windows 
You can use msgWinCopyRect to copy pixels within a window. This copies all 
the pixels from a source rectangle to another area in the same window. You can use 
this message to reduce the amount of repainting you need to do. If what you want 
to draw is already in another part of your window, you can just copy it over instead 

23.5.4 

of reissuing drawing commands. The window system uses an equivalent of this message 
to implement the different window grow styles. You can use it if you do your own 
scrolling. (It may be easier to implement scrolling using dsScrollWin, which scrolls by 
repositioning your window inside another.) 

msgWinCopyRect takes a pointer to a WIN_COPY_RECT structure, in which you 
specify: 

srcRect the source rectangle in L WC. 

xy the lower-left corner of the destination location in L WC. 

flags a number of style and input attribute flags (the input flags are 
described in Part 5: Input and Handwriting Translation). 

planeMask an optional plane mask. 

Normally the flags value is wsCopyNormal (a normal copy of the normal painting 
planes). If you set the wsPlanePen flag, the pen plane is copied too. If you set the 
wsPlaneMask flag, the window system copies the planes specified in the 
planeMask message argument. 

~Y Copied Pixels and Window Damage 

The other flags determine how the window is dirtied after copying pixels. 
Normally when you copy part of the image in a window elsewhere, its original 
location needs to be filled with something else, so the window system marks the 
source rectangle dirty. However, this can be turned off by setting the 
wsSrcNotDirty flag. 

Similarly, suppose that some of the source rectangle pixels have been damaged or 
are covered by another window. The window system does not copy these bad 
source pixels to the destination, and marks the corresponding destination locations 
dirty. However, this can be turned off by setting the wsDstNotDirty flag. 

23.5.4.1 

Because it doesn't normally coPy 
dirty pixels, megWinCopYReat 
may not work while repainting. 
You should send it outside of a 
Begin/End update episode. 



244 PENPOINT ARCHITECTURAL REFERENCE 

Part 3 I Windows and Graphics 

~~' Copied Pixels and Child Windows 

Further complications arise when the source rectangle has child windows in it. 
Normally, the window system moves the child windows along with the source 
pixels, unless you set the wsChildrenStay flag. 

The operation of copying pixels in windows with child windows is complicated, 
and there are a few things to note about the interaction. 

• The child windows are not damaged, theyare'moved. 

• However, the move operation is not a first-class msgWinDelta operation, so 
capture geometry, layout, msgWinDeltaOK, and msgWinMoved are not 
involved. 

• The sibling order of child windows is unchanged. 

• If the child window is not completely enclosed by the srcRect, there may be 
problems. The window will not be moved, and the dirty region will probably 
be incorrect. It's best for you to expand the srcRect area to fully enclose any 
child windows pardy within it. 

Layout Messages 
Applications somtimes require windows to have a particular size and (less often) 
location. Furthermor~, when a window has many child windows, it needs to 
position each child window. As an example, take the main Notebook itself: 

23.6 



CHAPTER 23 / THE WINDOW CLASS 245 

Notebook: Contents < 1 > 

~ ~ 
[j Read Me First. . . . .. .. .. . .. .. . .. . .. .. .. .. .. . .. .. . .. .. . .. .. .. . .. .. .. .. 2 

[}] Sales Doc:umenaion............................................ 3 
c!I Pacific NW T erriby ............................... '" . . .... . . . 4 
I~ OrgeJ'1ize.tionai Chert.. .................... '" .. , . ...... . . ...... 5 

c!l Oreclions to Mfg PIeJ'1t .. ........ ............... .............. 6 

o w.:.k in Progress .............................. " ..... .. ... .. .. . .... 7 

o Metupdis "'suranm "'c. .......... " "'"' .: ......... " .. . ....... 12 

[}] ®am~::~~~~~·I~~~·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.~·.·.·.· ............. ~~ ............................. ~: 
[j Pa.cke.ge resign Letter ....................................... 17 

~ 8uilding Flo:rpleJ'1 , ..................................... " ... . .. 18 
Ciif'l M of N ' E d 19 :..::.J all ew ngleJ'1 ........................................ .. 
~ Pos!ed Note.................................................... 20 
(~ Corpore.teArl:wcrk ............................................. 21 

[j F dlow-up Letter ................................................ 22 

[j Address 80dl .......... ; .... .' ..... , ............................ 23 
c!l, 81o::k Pholos ............. ' ... ,....................... .......... 24 

o ComPleledPl:tJjt:ds .... n .... • ...................... ............. 25 
o lastYear"sCaiendw ............................................ 30 

~-----------------------------------.. ? "II ¢JQ !)il ~ ~.!to.it. 
Help $etfings Connectbns Sta:lionety AlXiE'Ssories Keyboard InbOl OutbOl 

The Notebook is usually full-width, and takes over most of the screen leaving 
some space for the Bookshelf. It attempts to provide maximum room for a page, 
but also needs to leave room for the tabs on the right side of the display. Moreover, 
the user can set a preference to allow the Notebook to float and zoom, which 
changes the permitted sizing. 

As this example shows, often the wants and needs of the parent window and its 
child windows conflict. This is one reason for the elaborate message passing 
involved when a window lays out its children. 

The overriding principle of window interaction is that child windows must live 
with whatever their parent does. Parents have (rather, they can elect to have) the 
ultimate say in t~e geometry of their children, while children have the ultimate say 
in what they paint. 

Layout Messages 



246 PENPOINT ARCHITECTURAL REFERENCE 

Part 3 I Windows and Graphics 

Altering Child Windows 
When a window receives msgWinlnsert or msgWinDelta, dsWin sends 
msgWinlnsertOK or msgWinDeltaOK to the window's parent if the parent has 
the wsCaptureGeometry flag set. These OK messages include the WIN_METRICS 

structure passed to the child window. The parent window can return stsOK to 
allow the insertion/move/resize to proceed, but it can change the relevant 
WIN_METRICS fields such as bounds and wsPosTop/wsPosBottom too. 

For example, a client sends its window msgWinlnsert to insert it in the parent 
window. However, the child's position would be outside the visible area of its 
parent. The parent has wsCaptureGeometry set, so the window system sends it 
msgWinlnsertOK. The parent realizes that the child window would be outside its 
boundary, so it changes the child's bounds.origin and bounds.size so that the 
child fits inside it, then returns stsOK. The msgWinlnsert succeeds, but the child 
window appears at a different place than the client code specified. When 
msgWinlnsert returns to the caller the WIN_METRICS structure has the revised 
metrics in it. 

Finally, the child and its desceqdant windows receive msgWinlnserted if 
wsSendGeometry is set in their flags. The message argument is the window that 
was actually inserted. I 

I 

Resizing and Moving Windows 
Your window receives msgWinDelta when someone wants to resize (or move) it. 
There are flags which control the behavior of a window on a resize. 

Avisible non-transparent window has an image in its pixels. When it is resized 
(whether expanded or shrunk), what should happen to the existing pixels? The 
flags wsGrowTop, wsGrowBottom, wsGrowLeft, and wsGrowRight control how 
visible pixels in the window are adjusted if the window expands or shrinks. You 
can think of these flags as controlling which sides of the window grow (or shrink) 
when the window changes size. The window system moves the window's contents 
(including repositioning child windows) as necessary. 

For example, if a window has wsGrow Top and wsGrowLeft set, then when the 
window is expanded, the visible pixels remain in the lower right corner and the 
window is damaged so that new pixels will be painted along its top and left edges. 
When the window is shrunk, pixels vanish from its top and left sides. 

This feature doesn't do much good in a layout episode (described below) because 
after a layout episode windows are usually made to completely repaint. 

If a window has wsSendGeometry set, then after it or its parent or any ancestor 
window is sent msgWinDelta, the window system sends it msgWinMoved or 
msgWinSized depending on whether the result moved or resized the window. 
msgWinMoved is sent, then msgWinSized, if the window was both moved and 
resized. Note that msgWinMoved is sent if the window moves relative to the root 
window; this is regardless of whether the window moved relative to the parent, or 
whether the parent's parent (and so on ... ) moved. 

---------------------- ------------ ---

23.6.l 



CHAPTER 23 I THE WINDOW CLASS 247 

The message arguments to msgWinMoved and msgWinSized are 
p _WIN_METRICS, as usual. clsWin sets child to be the window which was 
moved or sized; it is either self or some ancestor. clsWin also sets the bounds to 
the previous size and position of the window which actually moved in its parent's 
LWC. Note that wsWinMoved and wsWinSized flags in options are not set. 
Don't "borrow" the WIN_METRICS passed with msgWinMoved/msgWinSized.lt 
is used to send the same message to selfs sibling and child windows. If you write 
into it you will spoil the message for them. 

Window Layout 
Windows in PenPoint operating system are lightweight; you can afford to have 
lots of them. With windows inside windows, you must be concerned with how to 
position and reposition windows. There are three broad styles of window layout 
possible in PenPoint: 

• Please be nice to me. 

The parent allows child windows to position and size themselves wherever 
they want. The parent may wind up covered by greedy children with little 
space of its own to draw on. 

This is the style used by some notebook applications, which allow themselves 
to be covered by child windows. 

• I'll decide what you'll get away with. 

The parent has its wsCaptureGeometry flag set, so it gets msgWin ... OK 
messages whenever a child window attempts to insert/ extract/ move/ resize 

. itself. The parent can veto outrageous requests, or return stsWinConstrained 
along with suggested acceptable positions and sizes. 

This is the style used by applications with embedded applications inside 
them. The outside application can't allow an embedded application to 
obscure all its own views, and it must assume that the embedded application 
may make mistakes. 

• Give me your proposals. 

This is the most flexible. The parent asks the child windows to propose sizes 
and locations for themselves, then the parent lays the child windows out 
while trying to preserve the sizes and locations they asked for. This only 
works well if everyone who wants to adjust windows cooperates over use of 
msgWinLayout. Windows should not spontaneously resize themselves; 
instead an outside object should decide when windows need to be re-laid out 
and send msgWinLayout to a window at that point. 

This is the scheme used by the PenPoint User Interface Toolkit (described in 
Part 4: UI Toolkit). The client creates the various user interface components 
and then tells the parent window to lay itself and its children out. 

Layout Messages 



248 PENPOINT ARCHITECTURAL REFERENCE 

Part 3 I Windows and Graphics 

A window subclass may veto or modify the msgWinDelta and msgWinInsert 
size/position messages it receives, but will work better with others if it accepts 
whatever size and position that its parent deltas it to. 

More on msgWinLayout 

The third technique uses msgWinLayout. When you want windows to layout, 
send msgWinLayout to them. This message takes a pointer to a WIN_METRICS 

structure, but only pays attention to two fields, the bounds rectangle and options. 
If wsLayoutResize is set in options, the window receiving msgWinLayout is 
allowed to change its own size. If wsLayoutResize is not set, the window receiving 
msgWinLayout must use the bounds. origin and bounds.size in the message 
arguments. As an example of the latter, when the user resizes a floating window by 
dragging its shadow, the frame must layout exactly in that rectangle. The shadow 
sends the floating window msgWinLayout, with wsLayoutResize set false, and the 
bounds are the rectangle indicated by the user. 

Another flag in options that affects layout is wsLayoutMinPaint. If 
wsLayoutMinPaint is not set (the default), then the window system ensures 
that the window(s) will not repaint during layout. Making windows invisible 
during layout is faster for complicated layout changes, but means that entire 
windows must repaint when layout is finished. 

The window system handles msgWinLayout by figuring out which windows need 
to layout, by looking at the window flags of the windows. It sends these windows 
other layout messages. 

The idea is that the window laying out will reposition and resize its child windows 
as desired. The term layout is somewhat ambiguous here: laying out yourself 
involves positioning your child windows, but does not necessarily mean changing 
your own size or allowing your child windows to lay themselves out. 

clsWin does not know how the child windows of a given window should be 
positioned, but many descendant classes do. All the windows in the VI Toolkit 
know how to lay themselves out, and the dsCustomLayout and dsT ableLayout 
classes know how to position their child windows using complex relationships and 
rules. 

Since windows may be inserted inside windows inside other windows, re-Iaying 
out one window may involve a lot of messages and computation. The Application 
Framework sends your application's documents msgWinLayout when they first 
appear on-screen. To see an intricate layout in the system take place, change the 
system font. The implementation of window layout tries to be very smart about 
asking windows to layout, and is quite complex as a result. 



CHAPTER 23 I THE WINDOW CLASS 249 

The Client Interface to Layout 

When inserting, extracting, or moving windows, you alter the structure 
of a window subtree. When you are finished you should probably send 
msgWinLayout to the window you altered. Set wsLayoutResize if that window 
can change its size or specify the required bounds for that window. 

If you modify several related windows at once, instead of sending msgWinLayout 
to each one, you can instead dirty the layout of each one by sending it 
msgWinSetLayoutDirty with true as the message argument. When you finish 
perturbing the window subtree, send msgWinLayout to the parent window. The 
idea is that you set the layout dirty bit when you know the layout is dirty, and 
later send msgWinLayout when you want it too look right. 

Many operations, such as msgWinDelta, will mark a window's layout dirty 
automatically. 

If you know that a change makes an entire subtree dirty, you can send 
msgWinSetLayoutDirtyRecursive to the parent of the subtree to dirty the 
layouts of every window in the subtree. 

The rest of this subsection talks about what happens internally during layout, 
and what descendant classes must do to handle layout correctly. (The UI Toolkit 
classes do all of this for you.) 

What Happens in Layout Processing 

First the window system must figure out how much of the window tree will need 
to be re-laid out. It goes up the window hierarchy from the receiving window 
looking for a window which is not shrink-to-fit around its contents. A parent 
window with either of these constraints true will not cause its own parent to have 
to layout, hence it becomes the root of the layout subtree. 

A Layout Episode 

What happens next is the window system goes into a layout episode in
volving every window in the layout subtree. It looks at each window in the lay-
out subtree and if necessary sends each window either msgWinLayoutSelf or 
msgWinGetDesiredSize. As a result of one window figuring out how to layout 
or choose its size, other windows may be perturbed and will require laying out. 
A window may even have to re-lay out several times. The layout episode ends 
when every window in the layout subtree has settled on a size and position, at 
which point the window system actually modifies those windows whose desired 
size and position are different from before the layout episode. 

If you implement a descendant of clsWin, msgWinLayoutSelf and 
msgWinGetDesiredSize are the two messages you should respond to in order to 
layout nicely. You need not normally respond to msgWinLayout itself. 

Layout Messages 



250 PENPOINT ARCHITECTURAL REFERENCE 
Part 3 I Windows and Graphics 

~~~ Laying Out Self 

msgWinLayoutSelf is similar to msgWinLayout, but window clients do not send
it; instead the window system sends it to windows during layout.
msgWinLayoutSelf uses WIN_METRICS the same way: if wsLayoutResize is set,
you can change the window's size; if not, you must use the size in bounds.size.
Don't send the window msgWinDelta to change size; instead, pass back the
desired size in bounds.size to whomever sent you msgWinLayoutSelf.

If your window has child windows, it should position them. For example, your
class might tile windows, or allow them to overlap. To position the child windows,
send them msgWinDelta. Because the entire window layout subtree is in a layout
episode, clsWin intercepts the msgWinDelta and caches the size and position.

Some window classes ask child windows what size they would like to be. For
example, a window class which lays out child windows in a single row might fix
the height of the child windows, but be flexible as to the width of each child
window according to how wide the child would like to be. If your window class
cares about the size of child windows, send them msgWinGetDesiredSize.This
too takes a WIN_METRICS structure. The child should pass back its desired size in
bounds.size.

~, Getting Self's Desired Size

Your class should respond to msgWinGetDesiredSize by figuring out what size
the window should be.

".,,' Shrink-to-Fit

clsWin responds to msgWinGetDesiredSize by checking selfs wsShrink-
Wrap Width and wsShrinkWrapHeight flags. If these aren't set, then it assumes
that the window is not going to return a desired size, so it passes back the
window's current bounds.size. For this reason, it's important to be accurate about
your windows' shrink-to-fit flags: if your class' windows ever change size in
response to msgWinGetDesiredSize, set one or both of these flags.

If one or the other of the shrink-to-fit flags is set, then clsWin sends self
msgWinLayoutSelf, allowing it to change size.

~ Caching Desired Sizes

The window system usually caches desired window sizes during a layout episode,
so that it doesn't have to repeatedly send msgWinLayoutSelf to windows to get
their desired sizes. If your window's desired size is dynamic, your class should set
the wsLayoutNoCache flag in the options field of WIN_METRICS in response to
msgWinLayoutSelf to turn off this caching.

CHAPTER 23 I THE WINDOW CLASS 251

Window Management Messages

Baseline Alignment

The UI Toolkit's layout classes allow clients to ask that child windows be aligned
on their baselines. This may not be the same as the bottom of the window. For
example, the baseline of a boxed text label in a large font is several pixels away
from the bottom. Hence sophisticated parent windows may send
msgWinGetBaseline to their child windows. This takes WIN_METRICS;

classes should set the bounds.origin to reflect the child's desired position.

The baseline also applies in the vertical direction. For example, in option sheets
choices and toggle tables should align vertically on their vertical lines, not on the
left-most area where the checkmark appears. Hence bounds.origin.y is also
significant.

clsWin sets both bounds.origin.x and bounds.origin.y to O.

Layout and Geometry Capture

At the end of the layout episode, the window system actually moves those
windows which ended up with a different position and location. If a window is
capturing geometry and changes bounds in response to msgWinDeltaOK, this
may result in altering the window positions. The window system detects this and
goes back into the layout episode.

Since layout assumes that windows are cooperating, it rarely makes sense to turn
on wsCaptureGeometry or wsSendGeometry on while using msgWinLayout.

Window Management Messages
clsWin defines a variety of messages to facilitate the effective use of windows in an
application.

Sending Messages to a Window Hierarchy
Sometimes you know only that some ancestor window will respond to a
message. You can send a message and its message arguments to a window using
msgWinSend. If that window's classes do not respond to the message, the message
arrives at clsWin. clsWin responds to msgWinSend by forwarding the
msgWinSend message onto selfs parent window using ObjectSendUpdate. If the
message reaches the root window, then cls Win returns stsMessageIgnored.

msgWinSend takes a pointer to a WIN_SEND structure. In this you specify:

lenSend the size of the data to send.

flags some options to the way the message is sent (wsSendlntraProcess is
currently the only flag used).

msg the message you're packaging inside the msgWinSend.

data an array containing the data for the message.

23.6.4.9

23.1.1

252 PEN POINT ARCHITECTURAL REFERENCE

Part 3 / Windows and Graphics

If the wsSendIntraProcess flag is set, then the message will not be propagated
between processes (based on the owner of the window object) and dsWin returns
stsMessageIgnored.

lenSend must be at least SizeOf(WIN_SEND), but may be larger to move more
data to a window owned by another process. You can move 32 bits of data by
storing it in data[O]. If you have more data, declare a larger structure with
WIN_SEND as its first field.

Note that msgWinSend goes up the window hierarchy, whereas msgWinEnum
and msgWinFindTag go down the hierarchy.

Sorting Windows
You can sort a window's child windows, thereby reordering their placement in
front of or behind each other, by sending msgWinSort. This is used by the UI
Toolkit to sort tabs in the tab bar. dsWin doesn't know how to sort the windows:
you must supply a callback routine which can compare two windows.

msgWinSort takes a pointer to a WIN_SORT structure for its message arguments.
In this you specify:

• The callback routine which compares windows (pSortProc).

• A parameter which cis Win passes to your callback routine (pClientData).

clsWin passes your comparison routine (pSortProc) two windows at a time,
together with whatever pClientData you specified. Your comparison routine must
match the function prototype type P _WIN_SORT _PROC:

typedef S16 (FAR * PASCAL P_WIN_SORT_PROC) (WIN winA,
WIN winB,
P UNKNOWN pClientData
) ;

It should return -1 if winA comes before winB, + 1 if winB comes before winA,
and 0 if winA compares the same as winB.

Typically your comparison routine will look at some feature of the two windows
to compare them, such as the window tags, or the strings in label windows. You
can pass arbitrary instructions to the routine in pClientData, such as instructions
to sort alphabetically, in descending order, etc.

Debugging Windows
You can send msgDump to a window to get a dump of its metrics. If you send
msgWinDumpTree to a window, it dumps a dense subset of the information
about the window and all its children, recursively. If you set the IDW0002 debug
flag, the input flags for the windows are printed along with the window style flags.

Both of these messages only work if you have loaded the debugging version of
WIN.DLL, the PenPoint windowing dynamic link library.

23.7.2

23.7.3

CHAPTER 23 / THE WINDOW CLASS 253
Window Management Messages

Filing Windows
When a window receives msgSave, it files its state. One vital piece of state
information is all the child windows inside that window. If a child window has
wsSendFile set, then it is filed as part of its parent filing. clsWin sets wsSendFile
by default; some descendants of clsWin clear this style flag, but it is still true that
filing one window may result in many child windows being filed.

23.1.4

Details of Window Filing 23,,7 .4~ 'I

Windows file their position and size (bounds in window metrics), unless
wsFileNoBounds is set. When a parent window is restored, if its new size is the
same as its old size, it doesn't need to be sent msgWinLayout, and consequently
all its child windows do not have to take part in a layout episode either.

Window layout is usually affected by the orientation and pixel size of the
windowing device (windows are restored onto a different windowing device when
printed). Window layout is also affected by the default system font and system
font scale.

The window system' saves this window environment information for the root of a
tree of windows so that when the windows are restored it can decide what needs to
change. The window system uses the root and resld fields in OBJ_SA VE to figure
out whether it's saving the root or not. During msgRestore processing, the same
root and resld fields in OBJ_RESTORE tell the window system whether this
window filed the environment information or not. If you're sending msgSave or
msgRestore yourself, set root to objNull, and resld to the resource ID for the
object being saved or restored.

(The window system provides a message to get the current window environment,
msgWinGetEnv.)

If wsFilelnLine is set in a child window's style flags, the child window is not filed
with an object header. Although this conserves storage space, this prevents
someone using a resource file to read in the child window independently.

Re-Layout of Filed Windows

If wsFileNoBounds is set in a window's style flags, then the window's position and
size are not saved. This means that on restore, the window will need re-Iayout, so
cls Win sets wsLayoutDirty for the window upon restore.

You can also force a window to have dirty layout (wsLayoutDirty) when it is
restored by setting wsFileLayoutDirty.

However, if neither wsLayoutDirty or wsFileLayoutDirty is true when the window
is filed, the window is restored with wsLayoutDirty set to false, so it doesn't need
to be laid out.

254 PENPOINT ARCHITECTURAL REFERENCE

Part 3 /Windows and Graphics

Summary
clsWin provides basic window behavior. Though it isn't practically useful by itself,
it provides a common foundation for useful subclasses such as the User Interface
Toolkit classes (described in Part 4: UI Toolkit). The primary purpose of windows
is to serve as a canvas for drawing contexts, described in Chapter 2(i The Drawing
Context Class.

Window metrics, encoded in the WIN_METRICS structure, define what makes
each instance of clsWin unique. The WIN_METRICS structure is the common
argument for most messages clsWin defines, although most of the messages pay
attention to only a few fields of the structure.

The window style flags, part of the window metrics, define the display style of a
window. Windows also include input flags, but only to support clsWin subclasses
that handle input events.

cls Win defines a variety of messages for setting and getting window metrics,
handling painting in the window, implementing a protocol for laying out child
windows, and managing windows within an application.

Chapter 24 / Window Device
Classes

Every window is associated with a windowing device. The one you are most
familiar with is theScreen. However, there are other kinds of windowing devices,
including printers. In particular, there are image devices which you create to draw
in off-screen windows.

This chapter describes windowing devices and then image devices. Because
theScreen and printer windowing devices are managed by the window system, you
rarely interact directly with clsWinDev. Image devices, window devices in
memory without an associated display, are more common. clsImgDev inherits
from clsWinDev and you use several clsWinDev messages with image devices.

Windowing Devices
When you create a window, the window system must know what windowing
device it is intended for, so at window creation you either specify a device for the
new window or a parent window from which the window system can figure out
the target windowing device. The latter is much more common, since you usually
nest windows in other windows.

Creation

Application code should rarely need to create a windowing device. The window
system creates a windowing device, theScreen, during initialization, and creates a
transient windowing device on the printer during printing.

Root Window
When it creates a windowing device, clsWinDev creates a root window (an
instance of clsWin) on that device.

The message msgWinDevGetRootWindow passes back the UID of the root
window on a windowing device. The root window on theScreen is another
well-known object, called theRootWindow.

256 PENPOINT ARCHITECTURAL REFERENCE
Part 3 I Windows and Graphics

Image Devices
For drawing to appear on the screen or printer, it must take place in a window.
Often this is all that applications need: they draw what they want to appear in
their windows, and the window system colors in the visible pixels of these
windows on the screen or printer.

Unlike some other window systems, there is no backing store in PenPoint™
operating system for windows. If a screen window is not on-screen and you draw
on it, the pixels aren't saved somewhere.

In some situations it is useful to create an image off-screen

• Drawing a complex image over and over.

• Drawing an image through a mask or stencil.

• Storing window contents to speed repainting.

• Creating bitmap images such as icons in advance.

To speed these operations, you can use an image device. clsImgDev inherits from
cls WinDev. An image device is a windowing device where the image memory is
under the control of the client. All the things you can do on the screen you can do
on an off-screen image device: create trees of windows, bind a DC to a window,
draw in a window, etc. The differences with the screen or a printer are that you
must create an imaging device yourself, and that you can access the memory in
which the window system sets pixel values (the pixelmap).

The contents of windows on an image device can be copied to a window on
another device using pixel copy operations defined by clsSysDrwCtx. Unlike a
windowing device, an image device is not designed to be shared, so no automatic
locking takes place when drawing into one of its windows.

Creating an Image Device

Sending msgNew to clslmgDev creates an image device and automatically creates
a root window on it.

clslmgDev has no msgNewarguments of its own. In the WIN_DEV _NEW_ONLY

structure of its ancestor dsWinDev, you specify the number of windows on the
device (winDev.initialWindows). The default is 100. This is a soft limit: if you
create more windows on the device, the window system will silently allocate more
memory. However, if you know, that you will be creating, say, exactly one window
on your image device, set this to 1.

~ Accessing Image Devices

Since you draw using a DC bound to a window, the UID of the image device isn't
very useful. Instead of referring to an image device by its UID, you can send it
msgWinDevGetRootWindow to retrieve its root window, and then send
windowing device messages to its root window. When this root window receives
msgDestroy, it will destroy the image device along with itself.

24.2

CHAPTER 24 I WINDOW DEVICE CLASSES 257

You can also send windowing device messages to a DC bound to a window on the
image device.

linage Devices

Binding an Image Device to a Pixelmap 24.2,,2

At creation, the image device has no notion of the size or depth of its pixels, or of
the size of its pixelmap. Also, it has no memory associated with it to store the
pixelmap; attempts to draw on it will fail, because there's nowhere to hold the
pixel values. You specify all this information by sending
msgWinDevBindPixelmap. This takes a WIN_DEY _PlXELMAP structure, which
includes:

device the device with which the image device should be compatible.

size the width and height to allocate for the image device.

planeCount the number of planes to allocate for the image device.

pPlanes a pointer to memory for the planes in the image device.

As with all windowing device messages, you can send msgWinDevBindPixelmap
to a window on the device. Moreover, you can send this message to a drawing
context bound to a window on the image device, in which case size is interpreted
in LUC-the units and scale of the DC.

~ Pixel and Pixelmap Information

You tell the image device what kind of pixels it has by specifying in device a target
device with the same kind of pixels. For example, if you're going to use the image
device to store images copied from theScreen, or if images drawn into the image
device will be copied to theScreen, the image device will be trading images with
theScreen.

Instead of specifying a windowing device to be compatible with in device, you can
specify a window UID. clslmgDev figures out the window's device. Thus, you
could specify theRootWindow instead of theScreen for device.

Also, you need to specify the width, height and depth of the pixelmap that is to be
allocated or provided by the application. You can specify the size in LWC, or you
can specify it in LUC by sending the message to a DC bound to a window on the
image device. The DC figures out how many pixels on the target device
correspond to the size you want.

When you send msgWinDevBindPixelmap, clslmgDev does several things:

• It sets up the pixelmap with pixels like those of the specified device.

• If you sent msgWinDevBindPixelmap to a DC, it figures out the number of
pixels needed by translating size into the right number of pixels for device.

• It resizes the root window of the image device to conform to the dimensions
of the pixelmap; it and any other windows will be marked dirty.

• It allocates the number of planes specified in planeCount.

24.2.2.1

258 PENPOINT ARCHITECTURAL REFERENCE

Part 3 I Windows and Graphics

If you set planeCount to zero, dslmgDev creates a number of planes appropriate
for the device the image device is to trade with.

Accessing Memory

An image device has no pixelmap at first. You use msgWinDevBindPixelmap to
associate the image device with memory for its pixels' values. There are two ways
to manage the memory for the pixels.

The first is to let the device itself allocate and hold the memory needed. With this
method you can't directly access the memory. To get the image device to allocate
pixelmap memory, set pPlanes to pNull in the message arguments to
msgWinDevBindPixelmap. dslmgDevallocates enough memory for the number
of planes and number of pixels.

The second way is for you to allocate the memory yourself and pass a pointer to it
to the image device. This method is described in the next section.

Allocating Your Own Pixelmap

If you want to allocate the pixelmap memory yourself, then the first step is to
figure out how many bytes each plane requires. Instead of computing this yourself,
it's better to let the window system compute the size. To do so, you send
msgWinDevSizePixelmap to the image device. This takes a WIN_DEV_PlXELMAP

structure, as does msgWinDevBindPixelmap. You specify the same parameters for
target device and size. msg WinDevSizePixelmap passes back in planeSize the
number of bytes of memory for each plane, and in plane Count it passes back the
number of planes to allocate to match the plane count of the target device.

You should then allocate planeSize bytes of memory for each plane. To bind the
image device to the pixelmap, send it msgWinDevBindPixelmap. In this case, you
should make pPlanes point to an array of pointers; one for each plane specified in
planeCount. You don't have to allocate a pixelmap for each plane in the target
device; if you're using the image device to create stencils or black and white
images, you would allocate one plane, and set plane Count to 1.

24.2.:~.2

'ltNI"tlnl!5'< 24~ 1

Allocating a Small Bitmap
This example establishes a one-bit deep plane on the stack in the buffer planeO.

U8
P UNKNOWN

ppp[O] = planeO;
pm. device = id;
pm.size.w 72;
pm.size.h = 72;
pm.planeCount = 1;

planeO[200];
ppp [1];

pm.pPlanes = ppp;
ObjectCall(msgWinDevBindPixelmap,aDc,&pm);

CHAPTER 24 / WINDOW DEVICE CLASSES 259

Dirty Windows
After binding an image device to a pixelmap, the root window of its image device
is dirty. Also, windows on image devices can overlap, be resized, inserted, and
extracted, all of which cause the windows to be dirtied.

However, windows on image devices do not automatically receive msgWinRepaint
from the window system as do windows on other types of devices. To make them
receive msgWinRepaint, you must send them msgWinUpdate.

The root window on an image device paints itself white in response to
msgWinRepaint.

Drawing on an Image Device
You can just paint directly on the root window; or you can create one or more
windows as children of it and build up a window tree in the usual manner.

Accessing Pixels in an Image Window
Having created an image in a window on an image device, you'll probably want
to use it with another window at some point.

Remember that to draw correctly on the destination window, it must be within
a msgWinBeginPaintl msgWinEndPaint or msgWinBeginRepaintl
msgWinEndRepaint pair.

GeHing and SeHing Pixel Values

msgDcGetPixel gets the value of a pixel, msgDcSetPixel sets its value. Both take a
pointer to a SYSDC_PlXEL structure for their message arguments, which includes:

• rgb whether the value should be an RGB value or a hardware-dependent
palette color.

• color the color of the pixel.

• xy the location of the pixel, in LUC.

When you send msgDcSetPixel, you specify color; when you send msgDcGetPixel,
the current value of the pixel is passed back in color. If rgb is set, color is interpreted
as an RGB value, otherwise it is a SYSDC_COLOR (a hardware color palette index).

Copying

To copy the pixels in one window to another, send msgDcCopyPixels to a DC
bound to the destination ·window. This takes a SYSDC_PlXELS structure for its
message arguments in which you specify:

• srcWindow the source window on the image device.

• pBounds a pointer to the bounds of the area to copy in the source window.

• xy the location in the destination window.

• dstDirty whether pixels in the destination window should be marked dirty if
the corresponding source pixels are dirty.

Image Devices

24.2.3

260 PENPOINT ARCHITECTURAL REFERENCE
Part 3 / Windows and Graphics

msgDcCopyPixels copies the rectangle of pixels in the source window at pBounds
to the destination at location xy. If you specify a pBounds of pN ull, then the
entire image window is copied to the destination.

It's possible for windows in an image window to overlap, or be clipped by their
parent. This may result in some or all of the pixels in the source rectangle not
being part of the source window. If dstDirty is set, then the pixels in the
destination window that correspond to dirty pixels in srcWindoware marked
dirty. The destination window will then get a msgWinRepaint and can paint the
dirty pixels some other way. This allows an image device to capture an image from
theScreen where some of the pixels may be dirty or covered up by other windows.
When those pixels are copied, the copies are marked dirty.

Remember that image windows are created in a dirty state. Thus, if you never
cleaned up the damage and set dstDirty, the destination window will be marked
dirty. You can clear the dirty state of an image window using msgWinUpdate or
msgWinCleanRect.

Note that the dirty pixels are copied first and are then marked dirty. The source
pixels are copied to the destination regardless, whether dirty or not.

Landscape and portrait mode rotation is handled correctly; however, axis flipping
and rotation in the DC LUC space will work less intuitively than one might hope.

When pixels are copied from the image device to a visible window device (such as
theScreen) using msgDcCopyPixels, the meaning of the pixels is determined by
the visible device. For example, on a two-plane device, black is 00, and white is
binary 11. If you draw with RGB colors you should not have any surprises
copying images to other devices.

r", Stenciling

You can also use a one-plane image device as a stencil through which the DC
renders the current foreground and background colors. To do this, send
msgDcDrawPixels to the DC of the destination window. This takes the same
SYSDC_PIXELS message arguments as msgDcCopyPixels. The difference is that
instead of copying the pixels in the source to the destination, instead the pixels in
the source determine which pixels in the destination get the foreground and
background colors.

When using an image device as a stencil, it is important for the stencil to have a 1
bit where foreground color is to be applied and a 0 bit where background color is
applied (the background color can be transparent). To ensure this, it's easiest to set
the colors with msgDcSetForegroundColor and msgDcSetBackgroundColor.
Usually you set RGB colors to be device-independent, but here the meaning of the
stencil's pixels are independent of its device. You would do it as follows (theDc is
the DC bound to the stencil window on the image device):

ObjectCall(msgDcSetForegroundColor,theDc, (P_ARGS)l);
ObjectCall(msgDcSetBackgroundColor,theDc, (P_ARGS)O);

CHAPTER 24 I WINDOW DEVICE CLASSES 261

msgDcDrawPixels does not pay attention to the dstDirty flag. When drawing
images with a stencil, the window system assumes that the stencil is completely
constructed by the application and is not a snapshot of the screen.

Image Devices

The following code creates an image device, allocates memory for it, draws in it, then copies its pixels to another window.

IMG_DEV_NEW idn;
OBJECT id;
ObjectCall(msgNewDefaults,clslmgDev,&idn);
ObjectCall(msgNew,clslmgDev,&idn);
id = idn.object.uid;
ObjectCall(msgWinDevGetRootWindow,id,&id);

Notice that the msgWinDevGetRootWindow line is trading in the UID of the image device for the UID of the image
device's root window. F rom now on your code can forget about the image device itself, and treat it as a window.

Also, it is necessary to specify the width, height and depth of the pixelmap that is to be allocated or provided by the
application. As usual we want to be able to send these messages to a DC to obtain coordinate transformation into device
units; so the first thing we need to do is bind a DC to the window with which the image device will be trading images.

WIN
SYSDC

aScreenWindow
aDc;

II create the DC ...
ObjectCall(msgDcSetWindow,aDc, (P_ARGS)aScreenWindow);

To get the image device to allocate pixel map memory, we fill out the parameters to msgWinDevBindPixelmap like this:

WIN DEV PIXELMAP pm;
pm. device id; I I really "image device" root window
pm.size.w 72; II 72 points
pm.size.h 72; II 72 points
pm.planeCount 0; II use default *
pm.pPlanes = pNull; II I'm not providing memory
ObjectCall(msgWinDevBindPixelmap,aDc,&pm);

Note that we are sending this message to aDc, which is bound to aScreen Window, so the units are in LUC (points, by
default), not device units.

If we want to allocate the memory then the first step will be to find out how many bytes each plane must be. The following
message:

ObjectCall(msgWinDevSizePixelmap,aDc,&pm);

(with the same parameters in pm as before) will pass back in pm.planeSize the number of bytes of memory each plane
should be for a 72x72 image; and it will return in pm.planeCount the number of planes to allocate.

Assume we simply want to draw on the root window of our device and then copy the image to aScreen Window. We can
paint on the window returned by msgWinDevGetRootWindow in the usual manner:

RECT32 r;
WIN win;
ObjectCall (msgDcSetWindow, aDc, (P_ARGS)id);
ObjectCall(msgWinBeginPaint,aDc,&r);
ObjectCall(msgDcFillWindow,aDc,pNull);
ObjectCall(msgDcDrawEllipse,aDc,&r);
ObjectCall(msgWinEndPaint,aDc,pNull);

262 PENPOINT ARCHITECTURAL REFERENCE

Part 3 / Windows and Graphics

To copy the image in id to aScreenWindow use msgDcCopyPixels as follows:

SYSDC PIXELS cp;
cp.srcWindow = id;
II copy from window "id"
cp.pBounds = pNull;
cp.xy.x = 72;
cp.xy.y = 72;
cp.dstDirty = FALSE;

II copy entire window
II copy to 72,72 in the
II destination window (aScreenWindow)
II see discussion

ObjectCall(msgDcSetWindow,aDc, (P_ARGS)aScreenWindow);
ObjectCall(msgWinBeginPaint,aDc,pNull);
ObjectCall(msgDcCopyPixels,aDc,&cp);
ObjectCall(msgWinEndPaint,aDc,pNull);

The lower left hand corner of id will be copied to 72,72 in aScreen Window.

Multiple Pixel maps
Mter an image device has been created you can send it msgWinDevBindPixe1map
many times to create new pixelmaps. or to bind to old ones. If the window system
allocated the memory for the image device, it will free it. Thus, a single image
device can be used to handle a larger collection of pixelmap data.

Destruction

When you are finished with the image device itself, destroy it by sending it
msgDestroy; this frees it and any pixelmap it was holding at the time (unless you
supplied the memory). You can send msgDestroy to the root window on the
image device and it will destroy the image device as well.

Landscape and Portrait Mode

Image devices handle landscape and portrait modes correctly; the pixelmaps are
inherently device dependent and clsImgDev adjusts their notions of width and
height accordingly. However, it is your responsibility to flush and rebuild
pixelmaps when the user switches the orientation of theScreen. You can receive
notifications of changes in screen orientation by observing the well-known object
theSystemPreferences.

CHAPTER 24 I WINDOW DEVICE CLASSES 263

Performance Tips

If you use bitmap images repeatedly in your application, there are a variety of ways
to display them:

• Use msgDcDrawImage as necessary to draw the bitmaps.

• Create one image device, and draw the various bitmaps in its root window so
that they don't overlap, and copy the right pixels by specifying the right
pBounds in msgDcCopyPixels.

• Create one image device, create several child windows on it of the right sizes
for the bitmaps, and use msgDcCopyPixels with a pBounds of pNull.

• Create one image device, allocate memory for each bitmap, and bind the
image device to each pixelmap as needed.

All of these are appropriate in different situations.

I mage Devices

24.2.9

lL

Chapter 25 / Graphics Concepts

This chapter provides a detailed description of the PenPoint™ operating system
standard imaging model, ImagePoineM

, as well as a conceptual overview of its

implementation as clsSysDrwCtx (the system drawing context class). You'll find a

more detailed description of graphics-related classes in the remaining chapters of
this part.

If you plan to use the standard User Interface Toolkit classes (described in Part 4:
UI Toolkit) to build your user interface, you may be able to skip the remaining
chapters in this part and go directly to Part 4. You may nevertheless find the

information in this chapter useful, since it provides a framework for

understanding the graphics behavior the UI Toolkit classes provide.

Topics covered in this chapter include:

• The relationship between an imaging model and a drawing context.

• The ImagePoint imaging model as PenPoint's system drawing context.

• Coordinate systems and coordinate transformations.

• ImagePoint drawing operations.

• ImagePoint support for text and color.

• Special features of clsPicSeg, a subclass of clsSysDrwCtx.

Models and Implementation
Every computing system that displays graphics has some kind of underlying

imaging model. Imaging models provide an abstract method for describing

images. Computing systems must implement a programming interface based on

the imaging model. PenPoint's system imaging model is called ImagePoint. The

programming interface based on ImagePoint is the drawing context.

Imaging Models
An imaging model is a set of concepts and assumptions that supports the
description of visual images. Figure 25-1 shows a simple two-dimensional imaging

model involving line segments in an x-y coordinate system. The coordinate

system is defined by an arbitrary point called the origin and an arbitrary measure
of distance called the unit. It is possible to describe any point in the coordinate

system by specifying its unit distance from the origin in the x (horizontal) and y

(vertical) directions. For example, the coordinate pair (2, 3) specifies a point two

units to the right of the origin and three units above the origin. Two such points
describe a line segment, and you can combine several such line segments into
geometric forms.

266 PENPOINT ARCHITECTURAL REFERENCE
Part 3 / Windows and Graphics

/
(2,3)

(4,5)

PenPoint's system imaging model uses an x-y coordinate system as in the above
example, but supports more powerful features such as coordinate transformations,
filled and unfilled geometric figures, text, and color.

Drawing Contexts

In PenPoint, graphics appear in windows, rectangular areas of an output device.
PenPoint represents the output device internally as an instance of clsWinDev
(window device), which inherits from clsPixDev (pixel device). Each window is an
instance of a descendant of clsWin. Windows and window devices provide the
canvas for application graphics operations, but their graphic ability is limited to
defining the pixels a drawing operation can affect. The ability to render an image
is separately defined in descendants of clsDrwCtx (drawing context).

A drawing context (DC) is an implementation of an abstract imaging model. A
DC includes a set of drawing operations (such as an operation to draw a
rectangle) together with a graphic state (a set of attributes such as line thickness).
The graphic state determines the way in which the DC executes its drawing
operations. For example, with the line thickness attribute set to 0.1 centimeters,
the DC draws lines 0.1 centimeters thick. If an application changes the line
thickness attribute to 0.25 centimeters, the DC draws subsequent lines 0.25
centimeters thick.

To draw an image in a window, your application must bind a drawing context and a
window together. A drawing context renders images in the window to which it is
bound. Binding isn't permanent; your application can share a single drawing context
between many windows by binding the drawing context to one window after another.

CHAPTER 25 I GRAPHICS CONCEPTS 267

Coordinate Systems

"., The System Drawing Context

Because a drawing context based on ImagePoint is the standard for PenPoint
systems, an ImagePoint drawing context class is called a system drawing context.
A system drawing context is an instance of clsSysDrwCtx, which inherits from
dsDrwCtx. The drawing context class, clsDrwCtx, is an abstract class. It defines
the basic ability of binding to a target window, but does not provide any graphics
ability. dsSysDrwCtx adds the ability to draw images, according to the underlying
ImagePoint imaging model, in the bound window. Because a system drawing
context is the standard type of drawing context in PenPoint systems, it is often
referred to simply as a drawing context.

Coordinate Systems
The ImagePoint imaging model includes the concept of an x-y coordinate system
for specifying location in the drawing space. There are two coordinate systems
which you must understand:

• Logical unit coordinates (LUC) are the coordinates of the abstract
ImagePoint imaging model. Drawing contexts use LUC for almost all
drawing operations.

• Logical window coordinates (LWC) are measured in pixels relative to the
lower left corner of the window. The window system uses LWC to describe
the size of a window.

Drawing contexts use logical unit coordinates (LUC). The window system uses
logical window coordinates (L We). These are the coordinate systems you need to
understand to understand the material in this chapter.

Logical Unit Coordinates

The LUC system holds a special place because it is the abstract coordinate system
of the ImagePoint imaging model. LUC's abstract nature keeps it free of
dependency on pixel size, allowing flexibility and convenience for use with
drawing contexts.

The origin of the logical unit coordinate system initially maps to the origin of the
logical window coordinates (the lower left corner of the window). The unit
measurement ofLUC starts out as one typographer's point (1/72 of an inch).
Applications use logical unit coordinates when sending messages to drawing
contexts. Drawing contexts can receive all dsWin messages, and convert from
LUC toLWC as needed.

25.1 ~3

268 PENPOINT ARCHITECTURAL REFERENCE

Part 3 I Windows and Graphics

~ Coordinate System Transformations

Because logical unit coordinates are the abstract coordinates of the ImagePoint
imaging model, you are free to transform them in any way that is convenient for
your application. Transformations include scaling the coordinate units (changing
their size), translating (moving) the origin of the coordinate system, and rotating
the entire coordinate system about its origin. For example, as shown in Figure
25-2, you could change the LUC system to measure x (horizontal) units in inches
and y (vertical) units in millimeters, relative to an origin one centimeter to the
right of and above the lower left corner of the window, and rotated to a 45-degree
angle from horizontal.

2S w 2
Transforming the lUC

Drawing contexts support on-the-fly transformation from LUC to L WC. As a
convenience, dsSysDrwCtx implements all of the dsWin messages. You can send
a dsWin message to a drawing context with coordinates specified in LUC; the
DC will transform the coordinates into L WC for its bound window, then send the
message to the window. This allows you to implement all windows and graphics
code with a single, flexible coordinate system (LUC) that you customize to be as
convenient as possible for your application.

Coordinate Unit Size

To improve performance, drawing contexts use integral coordinates. In other
words, ImagePoint does not support fractional coordinates. Although this
improves graphics performance, it may be difficult to create effective images if
your LUC unit is too large. For example, if your LUC unit is one inch (2.54 cm),
you cannot specifY locations that do not fallon one inch increments from the
origin. This can result in unattractive displays, especially when drawing text.

As a result of this implementation, it is important to keep. LUC units sufficiently
small. Typically, this means keeping the units smaller than the smallest graphic
element your window will contain. By default, a new DC has a unit size of
one typographer's point (1/72 of an inch), which is small enough for most
applications. With this unit size, a rectangle 72 units high by 144 units wide is

CHAPTER 25 / GRAPHICS CONCEPTS 269
Drawing Context Features

one inch by two inches on the display. If points are not convenient for your
application, drawing contexts supports a variety of convenient unit sizes in
addition to its arbitrary scaling support.

Coordinate Rounding Error

The advantage of logical units is device-independent displays. With a unit size of
one point, 72 units is one inch, independent of whether the display device offers
72 pixels per inch or 1200 pixels per inch. The trade-off is that, because of
rounding error, you cannot specify an exact size or screen location unless you set
the unit size equal to the device units. As a rule, the rounding error is never larger
than two pixels (usually one pixel or less). Nevertheless, because window sizes and
positions are specified in device units, window edges always fall exactly on pixel
boundaries. Unless you give up device independence by setting the DC unit to
pixels, it is difficult to specify an image that is aligned exactly with the edge of a
window.

Rounding error also can cause an image to appear differently depending on
whether its location rounds up to the next pixel or down to the previous pixel.
One solution to this problem, if it occurs, is use origin translation or some other
method to snap the starting coordinate to the pixel nearest the intended location.
This guarantees consistent rounding no matter where the image is displayed.

If pixel alignment is absolutely critical to your application, you can use device
units as your DC unit. The cost is a complete loss of device independence. For
example, on a 72 pixel per inch display, 72 device units is one inch. On a 300
pixel per inch display, the same 72 units spans slightly less than a quarter of an
inch. So, unless your application demands exact pixel alignment, you should use
an LUC unit size that is not tied to device unit size.

Drawing Context Features
The remainder of this chapter describes features of ImagePoint as implemented in
clsSysDrwCtx, as well as the additional features of clsPicSeg (picture segment), a
subclass of clsSysDrwCtx. Drawing context features include:

• Local dipping to clip images outside a specified rectangle within the
window.

• Hit detection to determine whether a specified rectangle intersects with a
series 'of drawing operations.

• Bounds accumulation to determine the bounding rectangle of a series of
drawing operations.

• Figure drawing operations to create open figures (such as lines, arcs, and
Bezier curves) and closed figures (such as rectangles, ellipses, and arbitrary
polygons).

• Sampled image operations to display pixelmaps.

• RGB and palette color support.

270 PEN POINT ARCHITECTURAL REFERENCE

Part 3 I Windows and Graphics

• Text operations supporting scalable fonts .

• A structured graphic state that can be stored and retrieved (a single DC can
maintain a collection of useful graphic states).

dsPicSeg, which inherits from dsDrwCtx, adds the ability to record a series
of drawing operations. In addition, picture segments support splines (smoothly
connected sequences of Bezier curves) and the inclusion of arbitrary objects
In Images.

Local Clipping
In addition to the clipping regions the window system maintains for each window,
you can define a local clipping rectangle for each drawing context. A local
clipping rectangle effectively reduces the clipping region to the intersection of the
local clipping rectangle and the standard clipping region. As you can see in Figure
25-3, this can only reduce the size of the standard clipping region.

-------- ...
1 1
1 1

rr===========1 :
1
1

- __ I

Filled wIno local clip Local clip enclosed in window Local clip extends outside window

Hit Detection
PenPoint provides some low-level functions for determining whether one rectangle
contains or intersects another. dsSysDrwCtx supports the notion of hit detection
to determine whether an arbitrary drawing operations intersects with or contains a
specified rectangle. Hit detection is a special mode of operation for drawing
contexts. When hit detection is on, the drawing context does not render images.
Instead, it responds to drawing messages by reporting whether the requested
figures intersect with or are contained by the rectangle.

Bounds Accumulation
Bounds accumulation lets you calculate the bounding rectangle of a complex set
of figures. Like hit detection, bounds accumulation is a mode of operation during
which drawing contexts do not render images. While bounds accumulation is on,
the drawing context maintains a rectangle and responds to each drawing message
by expanding the rectangle to enclose the requested figures. Your application can
get the bounding rectangle while bounds accumulation is on, or get the final
rectangle when it turns bounds accumulation off.

25.5

25.6

CHAPTER 25 I GRAPHICS CONCEPTS 271
Figure Drawing Operations

For applications whose graphic elements are not static, you can use bounds
accumulation to improve the efficiency of window repainting. For example, if the
user moves a figure in a drawing application, the application can use bounds
accumulation to determine the bounding rectangles of the figure before and after
moving it. The application can then use the accumulated bounds to set the dirty
region of the window. This precludes the need to repaint the entire window
whenever the user moves an object.

Figure Drawing Operations 25.7

ImagePoint supports a relatively simple set of figure drawing operations. By setting
the various attributes of the graphic state (described later), your application can
use these drawing operations to create a wide variety of visual effects.

Open Figures

Open figures are composed of lines drawn according to the line pattern and
other line attributes of the graphic state. ImagePoint supports the following open
figures:

• A polyline is a series of connected line segments defined by a list of points.

• A Bezier curve is a smooth curve defined by four control points.

• An arc is a segment of the circumference of an ellipse, defined by an ellipse
and two points. The rays from the center of the ellipse through the two
points mark the limits of the arc.

Figure 25-4 shows some examples of open figures.

Poly line Bezier curve Arc

Closed Figures
Closed figures are composed of lines that properly encloses a region. The drawing
context draws the lines according to the line attributes of the graphic state, just as
with open figures, and additionally fills the enclosed region with the fill pattern
specified in the current graphic state. A transparent fill pattern to prevents the

25.7,,1

25.7.2

272 PENPOINT ARCHITECTURAL REFERENCE

Part 3 I Windows and Graphics

drawing context from filling the region, and a line width of zero prevents the
drawing context from drawing the enclosing lines.

ImagePoint supports the following dosed figures:

• A rectangle is a four-sided figure composed of four lines connected at right
angles. A rectangle is defined by a point representing the origin of the
rectangle, and a coordinate pair representing the rectangle's size in the x and y
directions.

• An ellipse is a regular, round figure (such as a circle) defined by an enclosing
rectangle.

• A polygon is a series of line segments defined by a list of points, like the
polyline described above, but with the first and last points in the list
connected to close the figure.

• A sector is a segment of an ellipse defined by an ellipse and two points, like
the arc described above, closed with two lines drawn from the endpoints of
the arc to the center of the ellipse.

• A chord is a segment of an ellipse defined by an ellipse and two points, like
the arc described above, closed with a single line connecting the endpoints of
the arc.

Figure 25-5 shows some examples of closed figures.

Rectangle Polygon Sector Chord

Sampled Images
A sampled image is an ordered collection of rows of image samples such as the
output of an image scanner. Displayed one after the other, the rows recreate the
image from which their values were sampled.

clsSysDrwCtx supports the conversion of sampled images into grayscale pixelmaps
it can render. It also provides a mechanism for rendering the sampled image once
into off-screen memory, and to quickly copy the stored pixelmap into a window.
This can improve performance, especially in situations where the drawing context
must repeatedly display a single sampled image.

CHAPTER 25 I GRAPHICS CONCEPTS 273

Drawing Sampled Images

A drawing context renders the sampled image into a destination rectangle within
the window. To prepare the sampled image for rendering, your application must
provide a pointer to the sample data in memory. In cases where the sampled image
is too large to fit in memory, your application can provide a callback function or
object that provides sample data to the drawing context, one row at a time, as the
DC requests it.

The drawing context scales the sampled image to fit into the destination rectangle,
then renders it. You provide the drawing context with information about the
sampled image, such as the maximum sample value. Sample values from zero to
the maximum sample value represent shades of grey increasing linearly from black
to white. A drawing context can reduce the sampled image to a single bit-deep
image mask which it can render in the current foreground and background color.

Cached Images

In rendering a sampled image, a drawing context handles the LUC coordinate
transformations, different device resolutions, different pixel aspect ratios, different
number of bit planes, dithering, and so on. This is a powerful mechanism, but it
can be somewhat slow especially with large images. If your application renders a
sampled image repeatedly on the same device at the same scale, you-can improve
efficiency by performing these transformations once to generate the desired
pixelmap, and then copying the pixelmap to the display as necessary.

Rather than directly rendering a sampled image, a drawing context can create a
cached image. The DC creates a memory buffer where it stores the pixelmap. It is
up to the controlling application to maintain and eventually free the cached image
buffer after the drawing context creates it. When the application wishes to display
the cached image, the it provides the drawing context a pointer to the cached
image and an x-y position in LUC. The drawing context quickly copies the
preprocessed pixel image to the window, aligning the image's hot spot (see below)
with the specified x-y position.

A cached image can have an associated hot spot and a mask. The hot spot is a
position offset in LUC. If the image has a nonzero hot spot, the drawing aligns
the hot spot with the x-y position the application supplies (rather than aligning
the lower left corner of the image with the x-y position). The image mask is a
bitmap of the same width and height as the cached pixelmap. If a cached image
has an associated mask, the drawing context renders only those pixels in the
cached image that correspond to 1 bits in the mask.

Cached images are optimized for the current window device when they are
created. They are inherently device-dependent. The application must free and
recreate the cached image whenever the window device changes pixel aspect ratio,
orientation, plane depth, and so on. Furthermore, you cannot render anything but
sampled images into a cached image buffer. If you need to draw synthesized
images that a drawing context can quickly copy to an on-screen window, use a

Sampled Images

The image cache facility is
optimized for use with small
sampled images.

A cached image mask can be any
arbitrary bitmap that has the
same width and height as the
cached image.

274 PENPOINT ARCHITECTURAL REFERENCE

Part 3 / Windows and Graphics

window on an image device. Image devices, which are optimized for use with large
windows and windo trees, are described in Chapter 24, Window Device Classes.

Color
Drawing contexts support a foreground color and background color. Drawing
context operations normally draw in the foreground color. Some draw in the
foreground and background colors simultaneously, such as when filling a closed
figure with a two-color pattern. The standard method for specifying colors is the
device-independent RGB (red-green-blue) method. While the use of palette colors
can result in slightly better graphics performance, it is highly device-dependent
and therefore not recommended for writers of portable applications.

RGB Color Values

An RGB (red-green-blue) color value is a combination of three values: red, green,
and blue. Each part of an RGB value can range from zero to 255. The higher the
value, the brighter the corresponding color component. For example, a red value
of 255 and blue and green values of zero yields a bright red. Red and blue values
of75 and a green value of zero yields a muted magenta. If the red, green, and blue
values are equal, the resulting color is a shade of gray, from black (all zero) to
white (all 255).

For the background color only, drawing contexts support a transparency value in
addition to the red, green, and blue values. A transparent background means that
the DC will not paint background pixels; whatever is behind the bacground will
show through. Like the RGB values, transparency can range from zero to 255. A
transparency value of zero yields a completely opaque background color, while a
transparency of 255 makes the background completely transparent. At present,
ImagePoint supports only these two levels of transparency, and only the
background color can be transparent.

When a drawing context's foreground and background colors are specified using
the RGB model, the drawing context automatically finds the best color match
independent of the display device to which it is bound. Whether it is drawing on a
black and white LCD or on a full-color printer, the drawing context will do its
best to render in the specified colors.

Hardware-Dependent PaleHe Colors

Some hardware platforms support a palette, or numbered list, of colors. Each
index into the palette corresponds to the color stored at that location in the list. It
is possible to specify a drawing context's foreground and background colors as
indices into the palette, but this is extremely device-dependent. The only
advantages to using this technique for specifying colors is a slight performance
improvement, particularly when repeatedly and rapidly changing the foreground
and background colors. If you specify either the foreground or background color
as a palette color, you must specify both as palette colors. Palette colors and RGB
colors are not compatible with one another.

25.9

25.9.1

25.9.2

In almost all cases the use of
palette colors makes an
application difficult to port to a
hardware platform other than
the one on which it was
developed.

CHAPTER 25 I GRAPHICS CONCEPTS 275

Texl
Drawing contexts support a sophisticated model for the creation and display of
text. The programming interface, however, is not too complex: the drawing
context opens a font, scales the font to the appropriate size, and draws text just as
it draws other synthesized images such as rectangles and ellipses. Some features of
the ImagePoint text model include:

• Device-independent, user-installable oudine fonts.

• On-the-fly generation of font bitmaps (cached for improved performance)
from font outlines, for any resolution device.

• Automatic selection of a closest match from the installed fonts when a
requested font is not available.

• Automatic transformation of font attributes (for example, transforming a
roman font to italic) when requested fonts are not available.

• Automatic substitution of glyphs from other fonts for characters not
available in the current font.

This section provides an overview of the technical concepts involved in the
ImagePoint font model. See Chapter 26, The Drawing Context Class, for more
detailed information.

Fonts

Every ImagePoint font has a font ID, a set of font metrics, and a set of glyph
oudines. The font ID is a unique code which GO Corporation assigns, so a given
font ID identifies the same font on all PenPoint systems for all time. Font metric
information includes size information such as the x height, em size, space width,
ascender height and descender depth, and largest and smallest character sizes for
the font. In addition, the font metrics provide a set of font attributes that
describe the general appearance of the font. Font attributes include information
such as the font group (modern Roman or sans serif, for example), weight or
boldness, the aspect or relationship between character width and height, whether
the font is italic, and whether it is monospaced.

The glyph outlines define the shape of each character, or glyph, in the font. All
ImagePoint fonts scale to any size, so the outlines do not include absolute size
information. Fonts can include bitmaps tuned for specific sizes and resolutions.
When a drawing context draws text in a font size that has a tuned bitmap for the
particular window device's resolution, it will use the tuned bitmap rather than
generate a bitmap from the font outline. This improves legibility at low resolution
or in very small font sizes.

Opening a Font

Before a drawing context can draw text in a particular font, it must open the font.
Because fonts are user-installable, there is no guarantee that a particular font will
be available when a drawing context tries to open it. For this reason, in addition to

Text

276 PEN POINT ARCHITECTURAL REFERENCE

Part 3 / Windows and Graphics

specifying a font ID for the font to open, you must also specify the desired
attributes of the font (bold, italic, and so on). The drawing context opens the
closest-match font and synthesizes any missing attributes.

For example, suppose you try to open a font ID corresponding to the serif font
Palatino Bold, with the group attribute set to modern Roman and the weight
attribute set to bold. IfPalatino Bold is one of the installed fonts, the drawing'
context will open it. IfPalatino Bold is not installed and Palatino Roman is the
closest match, the drawing context will open it and alter it to synthesize the bold
attribute. If no Palatino font is installed and the closest match is Times Roman,
the drawing context will use Times Roman and alter it to synthesize the bold
attribute.

Scaling a Font

When a drawing context opens a font, it scales the font so that the point size of
the font (its em height) is equivalent to one unit in the Des current logical unit
coordinates. By default, the Lue unit is the point (1/72 of an inch), so the default
font size is one point, much too small to be legible. Applications therefore need to
scale the font before drawing text with it. The font scaling factors describe a
multiple of the Lue unit.

For example, in the default case described above, the font is one point high when
the drawing context opens it. If you set the font scale to 12 in both the x and y
directions, the font scales up to 12 points (12 times the Lue unit of one point).
If you then scale the Lue so that the x unit is 0.1 inch and the y unit is one
millimeter, the font size for subsequent drawing becomes 1.2 inches in the x
direction and 12 millimeters in the y direction. The Lue scale affects the font
scale, but font scale does not affect the Lue scale.

Drawing Text

Mter a drawing context opens and scales a font, it can draw text in that font. An
application instructs the drawing context to draw a specific strings of text
beginning at a specific LUe origin. The drawing context generates bitmaps for
each character of the font, based on the font's scaled glyph outlines and the
resolution of the window device. To improve performance, the drawing context
generates the bitmaps for a particular font size and device resolution only once,
caching the bitmaps for later use.

The drawing context renders the character bitmaps in its bound window, filling
them with the current foreground color. The application may modify the way the
drawing context draws text with a number of drawing format attributes including
underline, strikeout, and modifiers for word spacing, letter spacing, and font
alignment. Underline and strikeout line thickness is defined in the font metrics,
independent of the current drawing context line thickness, to achieve an attractive
line weight. Alignment sets the ascender height, midpoint of x height, baseline, or

The important thing to
remember about opening a
font is that you must supply
a font ID and attributes.

If the LUC x and y scales are
radically different, it reqUires
radical compensation in the font
scale. Sometimes it is
appropriate to switch between a
drawing context for text and a
drawing context for all other
graphiCS.

CHAPTER 25 / GRAPHICS CONCEPTS 277

descender depth of the font equal to the y coordinate of the specified drawing
ongin.

Graphic State

Character Encoding and Missing Glyphs 25.11

Text strings exist in the system as strings of byte-encoded characters. The encoding
attribute with which the drawing context opens the font determines which glyphs
correspond to which character bytes. Most text encodings have the same glyphs
for the printable ASCII characters, but different encodings produce different
glyphs for control characters and ASCII characters beyond ASCII DEL (decimal
127). If a character in a text string corresponds to a glyph that is not defined by
the current font, the drawing context will try to locate the glyph in another
installed font. The replacement glyph may not look like part of the opened font (it
isn't), but at least it appears in the rendered text.

Graphic State
Every instance of clsSysDrwCtx supports the same methods for drawing figures
and text in a bound window. It is information such as logical unit coordinate
scaling, translation, and rotation, line thickness, foreground and background
color, and so on that differentiates one instance of clsSysDrwCtx from another.
This differentiating information, collectively, is a drawing context's graphic state.

Drawing contexts provide limited support for graphic state storage. clsDrwCtx
defines messages for temporarily storing one or more graphic states while creating
a new one for a special purpose, and for restoring a stored graphic state. You must
implement your own storage mechanism, such as a stack.

The most important elements of a graphic state, for purposes of rendering images,
include:

• The LUC unit (default is one point). The logical unit coordinate (LUC)
system is the coordinate system by which a drawing context interprets
coordinates for drawing operations. By default, a new drawing context
provides an LUC system whose units are one point (1/72 of an inch)
in both the x (horizontal) and y (vertical) directions. Drawing contexts
provide mechanisms for scaling the size of the LUC unit indepentently in
each direction. Logical unit coordinates are also discussed in "Coordinate
Systems," earlier in this chapter .

• Local clipping rectangle (default is entire window). The local clipping
rectangle restricts the area of a window which drawing operations affect.
For example, if the local clipping rectangle covers the upper left quarter
of a window, an operation to draw a line from the upper left corner of the
window to the lower right corner will draw only the portion of the line from

. the upper left corner to the center of the window. The remainder of the line,
which falls outside of the local clipping rectangle, is not rendered. The
concept of the local clipping rectangle is discussed in "Local Clipping,"
earlier in this chapter.

278 PENPOINT ARCHITECTURAL REFERENCE

Part 3 / Windows and Graphics

• Line thickness (default is one LUC unit). The drawing context maintains a
line thickness value. Initially, the drawing context draws lines that are one
unit thick (as mentioned above, the default unit is one point). If you change
the line thickness, the drawing context draws subsequent lines with the new
line thickness. The line thickness determines the thickness of all lines the
drawing context draws, including the outlines of closed figures.

• Line cap and join, which determine how line segments join together (default
is butt caps an.d mitre joins). The line cap determines the shape of the end of
a line segment that does not join with another line. A butt line cap simply
cuts off the line segment at its endpoint, perpendicular to the line's direction.
A square line cap has the effect of drawing a square as wide as the line
thickness, centered around the enpoint, with a center line parallel to the line
segment. A round line cap has the effect of drawing a circle whose diameter
is the line thickness, centered around the endpoint of the line.

• Foreground and background color (default is black foreground, white
background). Initially, the drawing context draws lines in the foreground
color, and fills closed figures with the background color. While it is possible
to display as many colors as the hardware supports on screen at one time, the
drawing context draws in only the foreground and background color at one
time.

• Line and fill pattern (default is foreground color lines, background color
fills). You can change the foreground and background color, as described
above, but the lines initially are solid foreground color, while fills are solid
background color. You can change the line pattern and fill pattern
independently to change the way the drawing context combines the
foreground and background color to draw lines and fills. For example, you
can change the line pattern so that the drawing context draws lines in a color
that is 750/0 foreground color and 250/0 background color, while it draws fills
as alternating diagonal lines of foreground color and background color.

• Font (default is system font, sized to one LUC unit). Graphic states
implement the ability to render text with a scaleable, outline font. In order to
do this, they maintain information about font with which to render text, and
the size at which to draw the font. It is a simple matter to change the font
family, the size, and a variety of other attributes of the font.

Chapter 26, The Drawing Context Class, describes the elements of the graphic
state in more detail.

CHAPTER 25 / GRAPHICS CONCEPTS 279

Picture Segments
A picture segment is an instance of clsPicSeg, which inherits from
clsSysDrwCtx. Picture segments have all of the capabilities and features of
drawing contexts, but add the notion of the grafic, a record of a drawing message
that the picture segment can redraw at a later time. A picture segment maintains a
list of grafics recording the drawing messages the picture segment has received, in
the order it received them. You can retrieve, alter, reorder, and delete individual
grafics. The picture segment can redraw all of the grafics, or just one, at any time,
and it can add and alter grafics with or without affecting the image in the picture
segment's bound window.

Picture segments also support splines (smoothly connected sequences of Bezier
curves), adding them to the suite of drawing context primitives such as polygons
and text. Furthermore, with minimal assumptions, picture segments support the
inclusion of arbitrary objects other than the standard DC primitives and splines
into their images. Chapter 27, The Picture Segment Class, describes picture
segments in more detail.

Picture Segments

Chapter 26 / The Drawing Context CI.5

System Drawing Context Messages
Here are the messages defined by clsSysDrwCtx. Many are described here; some
are described in later chapters.

msgNew

msgN ew Defaults

msgDcSet Window

msgDcGetWindow

msgDcInitialize

msgDcPush

msgDcPop

msgDcPushFont

msgDcPopFont

msgDcSetMode

msgDcGetMode

msgDcSetPreM ul tiply

, msgDcSetRop

msgDcPlaneN ormal

msgDcPlanePen

msgDcPlaneMask

msgDcGetLine

msgDcSetLine

msgDcSetLine Thickness

msgDcHoldLine

P _SYSDC_NEW

P _SYSDC_NEW

new WIN

pNull

pNull

P _SYSDC_ST ATE

P _SYSDC_ST ATE

P _SYSDC_FONT _STATE

P _SYSDC_FONT _STATE

new SYSDC_MODE

pNull

BOOLEAN

SYSDC_ROP

nothing

nothing

SYSDC_PLANE_MASK

P _SYSDC_LINE

P _SYSDC_LINE

COORD16

BOOLEAN

Creates a system drawing context.

Initializes the SYSDC_NEW structure to default
values.

Binds a window to the receiver and returns the
previously bound window.

Gets the window to which the drawing context is
bound.

Sets graphics state to initial values.

Gets the graphics state and stores it.

Sets the graphics state from one saved by msgDcPush.

Gets the font state and stores it.

Sets the font state from one saved by msgDcPushFont.

Sets the drawing mode and returns the old
SYSDC_MODE.

Gets the drawing mode.

Sets the pre-multiply state and returns the old state.

Sets the raster op and returns the old rop.

Sets the plane mask to the normal plane(s), returning
the old mask.

Sets the plane mask to the plane(s) for pen ink,
returning the old mask.

Sets an arbitrary plane mask, returning the old mask.

Gets all line attributes if pArgs is P _SYSDC_LINE.
Returns line thickness.

Sets all line attributes. Returns old line thickness.

Sets line thickness to new value; returns old line
thickness.

Turns hold line thickness mode on/off; returns old
hold mode.

282 PEN POINT ARCHITECTURAL REFERENCE

Part 3 / Windows and Graphics

msgDcSetForegroundRG B

msgDcSetBackgroundRGB

msgDcInvertColors

msgDcGetForegroundRGB

msgDcGetBackgroundRG B

msgDcMatchRGB

msgDcSetForeground Color

msgDcSetBackgroundColor

msgDcSetLinePat

msgDcSetFillPat

msgDcGetLinePat

msgDcGetFillPat

msgDcAlignPattern

msgDcGetMatrix

msgDcGetMatrixLUC

msgDcSetMatrixLUC

msgDcU nitsMetric

msgDcUnitsMil

msgDcU nits Points

msgDcU nits Twips

msgDcU nitsPen

msgDcUnitsLayout

msgDcU nits Rules

msgDcUnitsDevice

msgDcUnitsWorld

msgDcU nitsOut

msgDcIdentity

msgDcRotate

msgDcScale

msgDcScale World

msgDc Translate

U32

U32

pNull

P _U32 or P _SYSDC_RGB

P _U32 or P _SYSDC_RGB

SYSDC_PATTERN

SYSDC_PATTERN

pNull

pNull

P_XY32

P_MAT

P_MAT

P_MAT

pNull

pNull

pNull

pNull

pNull

pNull

pNull

pNull

pNull

MESSAGE

pNull

ANGLE

P_SCALE

P_SIZE32

P_XY32

Sets foreground color using an RGB specification.

Sets background color using an RGB specification.

Swaps foreground and background colors.

Returns foreground RGB value.

Returns background RGB value.

Returns palette entry that best matches an RGB.

Sets foreground color using a hardware palette index,
returning old color.

Sets background color using a hardware palette index,
returning old color.

Sets the line pattern; returns old value.

Sets the fill pattern; returns old value.

Gets the line pattern.

Gets the fill pattern.

Sets the pattern alignment in LUC.

Returns the L WC matrix.

Returns the LUC matrix.

Replaces the LUC matrix.

Sets input units to 0.01 mm.

Sets input units to 0.001 inch.

Sets input units to points (1/72 of an inch).

Sets input units to 1/20 of a point.

Sets input units to pen sample units.

Sets input units to UI toolkit layout units.

Sets input units to the rules associated with the
system font .

. Sets input units to device pixels.

Sets input units to an arbitrary number of device pixels.

Sets output units produced by transformation of
input units.

Sets LUC matrix to identity.

Rotates LUC matrix.

Scales LUC matrix.

Creates a world scale of window width/height.

Translates LUC matrix.

Mess©ge

msgDcL WCtoLUC_XY32

msgDcLUCtoL WC_XY32

msgDcL WCtoLUC_SIZE32

msgDcLUCtoL WC_SIZE32

msgDcL WCtoLUC_RECT32

msgDcLUCtoL WC_RECT32

msgDcClipRect

msgDcClipClear

msgDcClipNull

msgDcHitT est

msgDcAccumulateBounds

msgDcDirty Accumulation

msgDcGetBounds

msgDcDrawPolyline

msgDcDrawBezier

msgDcDrawArcRays

msgDcSetPixel

msgDcGetPixel

msgDcDrawRectangle

msgDcDrawEllipse

msgDcDrawPolygon

msgDcDrawSectorRays

msgDcDrawChordRays

msgDcFillWindow

msgDcDrawlmage

pArg!>

P_XY32

P_XY32

P _SIZE32

P _SIZE32

P_RECT32

P_RECT32

P _RECT32 or pNull

pNull

pNull

P _RECT32 or pN ull

P_RECT or pNull

P_RECT32 or pNull

P_RECT32

P .-XY32 (array of 4)

P _SYSDC_ARC_RAYS

P _SYSDC_PIXEL

P _SYSDC_PlXEL

P_RECT32

P_RECT32

P _SYSDC_POLYGON

P _SYSDC_ARC_RAYS

P _SYSDC_ARC_RAYS

pNull

P _SYSDC_lMAGE_INFO

CHAPTER 26 / THE DRAWING CONTEXT CLASS 283
System Drawing Context Messages

Table 26-

Transforms a point from window (device) space to

logical space.

Transforms a point from logical space to window
(device) space.

Transforms a size from window (device) space to
logical space.

Transforms a size from logical space to window -
(device) space.

Transforms a rectangle from window (device) space to
logical space.

Transforms a rectangle from logical space to window
(device) space.

Sets or clears clip rectangle.

Returns clipping to entire window.

Suspends all clipping (except to raw device).

Turns hit testing on/of£

Starts or stops bounds accumulation; retrieve bounds.

Marks accumulation dirty; turns accumulation off;
retrieves bounds.

Retrieves current accumulation bounds rectangle.

Draws a line; needs at least 2 points. Returns either
hit test or stsOK.

Draws a Bezier curve; needs exactly 4 points.

Draws an arc using the two rays method. Returns
either hit test or stsOK.

Sets a pixel with a value.

Gets a pixel value.

Draws a rectangle. Returns either hit test or stsOK.

Draws an ellipse. Returns either hit test or stsOK.

Draws a polygon. Returns either hit test or stsOK.

Draws a sector (pie wedge) using the two rays method.

Draws a chord using the two rays method. Returns
either hit test or stsOK.

Frames window with a line and fills the window.

Draws an image from sampled image data. The image
will be scaled, rotated, translated, according to the
current state.

284 PENPOINT ARCHITECTURAL REFERENCE
Part 3 / Windows and Graphics

Meu<lge

msgDcDrawImageMask

msgDcCacheImage

msgDcCopyImage

SysDcFonddO

SysDcFontStringO

msgDcOpenFont

msgDcScaleFont

msgDcldentityFont

msgDcDrawText

msgDcMeasureText

msgDcDraw TextRun

msgDcMeasureT extRun

msgDcDraw TextDebug

msgDcPreloadText

msgDcGetCharMetrics

msgDcGetFontMetrics

msgDcGetFontWidths

msgDcDrawPageTurn

msgDcCopyPixels

msgDcDrawPixels

pArss

P _SYSDC_IMAGE_INFO

Table 26-1 (continued)

Description

Draws a mask from sampled image data. Similar to
msgDcDrawImage.

Passes back a cached image in pCache, given a sampled
image and an optional mask.

Copies a cached image to the bound window.

Text IntAlI"irNlt"·&;>

Takes a 4 byte string font description and returns a
16-bit font id number.

Takes a 16-bit font id number and passes back a
4 char string.

P _SYSDC_FONT _SPEC or pNull Opens a font.

P _SCALE or pN ull

pNull

P_SYSDC_TEXT_OUTPUT

P_SYSDC_TEXT_OUTPUT

P _SYSDC_ TEXT_OUTPUT

P_SYSDC_TEXT_OUTPUT

P _SYSDC_TEXT_OUTPUT

P _SYSDC_ TEXT_OUTPUT

P _SYSDC_ CHAR_METRICS

P _SYSDC_FONT _METRICS

P _SYSDC_FONT _ WIDTHS

P _SYSDC_PAGE_TURN

P _SYSDC_PIXELS

P _SYSDC_PIXELS

Scales font matrix.

Sets font matrix scale to default of 1 unit (LUC).

Draws text in the current font.

Computes size of text and advances pArgs->cp
accordingly.

Like msgDcDrawText, except run spacing applies.

Like msgDcMeasureT ext, except run spacing applies.

Like msgDcDrawText, except text is drawn with
debugging lines around each char.

Preloads p Text into cache.

Gets char metrics information for a string.

Gets the font metries for the current font.

Gets the font width table of the current font.

Draws a page turn effect over the bound window.

Copies piXels from srcWindow to the bound window.

Draws foreground and background colors in the
bound window's pixels using srcWindow's pixel
values as a stencil.

In addition, drawing contexts respond to all clsWin messages by passing them on
to their bound windows. You often send the following window messages to a DC
because the DC transforms the specified coordinates from LUC into L WC before
passing it to its window.

msgWinDirtyRect

msgWinBeginRepaint

msgWinGetMetrics

msgWinDelta

msgWinCleanRect

msgWinBeginPaint

msgWin TransformBounds

CHAPTER 26 I THE DRAWING CONTEXT CLASS 285
Creating a DC

Creating a DC 26 • .2

To create a drawing context, send msgNewDefaults and then msgNew to
clsSysDrwCtx.

Default Drawing Context State

Here are the defaults for the new drawing context. You can also reset a DC to
these values by sending it msgDclnitialize. Most defaults are explained in more
detail in following sections.

-EleMent

units in

units out

matrix

clipping rectangle

premultiply

raster op

drawing mode

plane mask

line cap

line join

line thickness

line miter limit

line radius

foreground color

background color

fill pattern

fill mode

line pattern

font scale

default font

V1;l!ue

msgDcU nitsPoints

msgDcU nitsDevice

identity

none

false

sysDcRopCopy

sysDcDrawNormal

sysDcHoldDetail

sysDcPlaneNormal

sysDcCapButt

sysDc J oinMiter

10

0

sysDcRGBBlack

sysDcRGBWhite

sysDcPatBackground

even/odd

sysDcPatForeground

unspecified

Application specifies units to DC in points (1/72 of an inch).

DC specifies units to windows in pixels.

No scaling or rotation of LUC.

No local clipping rectangle.

Standard matrix concatenation order (post-multiply).

Source copied into destination.

Keep narrow lines visible.

Don't draw in the pen ink plane.

Line ends are squared off.

Line joins are mitered.

One unit in (a point, by default).

Lines meeting at angles less than 10 degrees don't produce
long spikes.

Corners of rectangles are squared off, not rounded.

Closest to black on every device.

Closest to white on every device.

Fill with background color (white, by default).

Method used to compute the area to fill.

Draw lines in foreground color (black, by default).

Initial font size is one unit in (one point, by default) tall.

It is best to open a font, though text output will find some
font.

286 PENPOINT ARCHITECTURAL REFERENCE

Part 3 / Windows and Graphics

Should You Create a Drawing Context?
A system drawing context is about 500 bytes long. You can create dozens of
windows without using up a lot of memory, but DC's are much bigger objects.
There is no global DC you can borrow. It is reasonable to create a DC per
window, if you have a small number of windows; this will also give you maximum
performance. Or, you can use one DC for all your windows, and bind it to each
window in turn. It is also OK to create a DC for every msgWinRepaint message,
use it to paint, and then free it; this will reduce the dynamic memory use of your
application.

If you have subtasks in your application, and wish to share a DC throughout your
process, you'll need to use semaphores to control access to it. (The same is true for
any shared object.)

Drawing with a Drawing Context
Your drawing context is not bound to any window or device when you create it.
Use msgDrwCtxSetWindow to bind it to a window. Or, use msgDcSetWindow;
it's the same message with the common SysDC Dc prefix. Once bound, drawing
via the DC occurs on the bound window.

Drawing Coordinates
When you issue drawing commands to your drawing context, you do so in LUC
(Logical Unit Coordinates). These go through several transformations before
finally ending up on the device. Unlike the other coordinate systems at work in
PenPoint™ operating system, you can set LUC to suit your drawing:

• You can set the size ofLUC units (so that one unit is one typographer's
point, for example).

• You can scale LUC units (so that one unit equals one inch, for example).

• You can change translate the origin (0,0) to some point other than the lower
left hand corner of the window.

• You can rotate the coordinate system.

Other levels of scalingltranslationl rotation are going on before your drawing
finally fills in the screen pixels. Your output window is probably not at the screen
origin, the hardware pixels may not be square, the hardware coordinate system
may start in a different quadrant, etc. If you need to use screen coordinates or
device units, send messages to your DC to convert back to these.

26.4

CHAPTER 26 I THE DRAWING CONTEXT CLASS 287
Drawing Coordinates

Defaults

By default, when you create a new DC, one unit in LUC is one point. One point
is 1/72 of an inch. If you draw a box 72 units on a side, it will be one inch square
on the physical device with which your DC is bound. Also, by default the origin is
in the lower-left corner of the window to which your DC is bound. So if you draw
the square at (72, 144), it will be one inch to the right and two inches above the
lower-left corner.

SYSDC NEW deni
SYSDC dei
WIN myWini
RECT32 recti
STATUS Si

ObjCallRet(msgNewDefaults, elsSysDrwCtx, &den, S)i
ObjCallRet(msgNew, elsSysDrwCtx, &den, S)i

myReet.origin.x = 72i
myReet.origin.y = 144i
myReet.size.w = myReet.size.h = 72i

ObjeetCall(msgDeDrawReetangle, dc, &myReet)i

Units

You can initialize the mapping ofLUC units to physical dimensions, by sending
your DC one of:

26.5.1

s-'!>(>"1I~~n,!"" 26~1

Dr'awing a

26.5.2

A\(~ssages to Set lUC

msgDcU nitsPoints

msgDcU nitsMetric

msgDcU nitsMil

msgDcUnits1wips

msgDcU nits Device

msgDcU nitsLayout

msgDcU nits World

msgDcU nitsPen

one point, or 1172 of an inch (this is the default)

0.01 millimeters, or 10 microns

one mil, or 0.001 inch

one twip, or 1120 of a point

one device pixel

118 of an em in the system font (not the open font); this is the unit the UI Toolkit
classes use

a division of the bound window's width and height (msgDcScaleWorld specifies the
number of divisions)

(obsolete) one pixel of the pen tracking sensor

288 PEN POINT ARCHITECTURAL REFERENCE
Part 3 I Windows and Graphics

Scale

After the unit system is initialized you can send msgDcScale to further scale your
coordinate system. You specifY scale using 32 bit fixed-point numbers.
Fixed-point numbers are special numbers which encode 16 bits of integer and 16
bits of fraction in 32 bits. You create and manipulate fixed-point numbers using
special routines as explained in Part 8: System Services.

For instance, if you send msgDcScale to a new DC as follows:

SCALE scale;
SYSDC dc;

scale.x = FxMakeFixed(2,O)i
scale.y = FxMakeFixed(3,O)i
ObjectCall(msgDcScale, dc, &scale);

Then a 72-point square will appear two inches wide and three inches high.

Rotation

You can send msgDcRotate to rotate LUC. This takes an ANGLE in degrees.
The angle must be an integral number of degrees from zero to 359.

~~ Translation

You can send msgDcTranslate to move the origin in LUC to any point. Thus
instead of drawing the square at (72, 144), you could achieve the same effect by
translating the origin (0,0) to (72, 144) and then drawing a 72-point square at
(0,0).

Resetting LUC

You can send msgDcIdentity to the DC to set the LUC matrix to identity; this
will set the scale to 1: 1, the rotation to 0, and the origin to (0,0). The LUC units
remain the same.

Scaling to your Window (World Coordinates)

Often you want to match your units to your window. For example, suppose you
want to draw a symbol which fills your window, and you have code to draw it 100
units across by 200 units tall. You can do this in a two-part operation. First you
send msgDcUnitsWorld to your DC. Then, you must send msgDcScaleWorld to
scale (100,200) up to match the current size of the window. Note that each unit
in LUC will not ~ecessarily be square. msgDcScaleWorld takes a SIZE32 as its
message arguments, so in this example if you pass it (100,200), then (50,100) in
LUC will be the center of your window (assuming you haven't sent other
coordinate transformation messages.)

To keep the world-scaled coordinates accurate, you must recalculate them
whenever your window changes size; Because msgDcUnitsWorld does not reset
the scaling matrix, you should normally send msgDcIdentity to the DC before
sending msgDcScale World a second time. Also, you should not set any of the

26.5.6

CHAPTER 26 I THE DRAWING CONTEXT CLASS 289
Sending Window Messages to Drawing Contexts

wsGrow window flags, or some pixels from the previous image will be preserved
when the window changes size.

Transformation Matrices 26.5.8

You can get and set matrices corresponding to the transformations of scaling,
rotating, translating, etc. Working with these matrices is more complicated than
using transformation messages defined by clsSysDrwCtx, but is potentially faster
than sending messages to your DC. Discussions of transformation matrices is
available in most textbooks on computer graphics.

msgDcGetMatrix passes back a matrix which transforms LUC space into
LWC space. Since LWC space uses pixel units, this transformation includes
information about the device, its orientation, and the units (Points, TWIPS,
etc.) You can use this matrix to generate coordinates for positioning windows
instead of sending msgDcLUCtoL WC_RECT32, msgDcLUCtoL WC~32,
and msgDcLUCtoL WC_SIZE32. There is no message to set this matrix-you
must
use msgDcScale, msgDcRotate, msgDcUnitsTwips, etc.

msgDcGetMatrixLUC returns a matrix which indicates transformations to LUC
space as a result of translations, scaling, and rotation, including
msgDcScaleWorld, but not msgDcUnitsPoints, msgDcUnitsMils, and other
unit-specific scalings. The matrix is a concatenation of these transformations. For
a default DC, or one which has been sent msgDcIdentity, the matrix is identity.

The LUC matrix represents transformations to an ideal, device-independent,
first-quadrant coordinate system with device independent units established
separately by the various msgDcUnits messages. You can set this matrix using
msgDcSetMatrixLUC.

If you need to control a complex pipeline of transformations, you can save and
restore the LUC matrix instead of sending the various scale/rotate/transform
messages. You can also use the matrix manipulation functions in
\PENPOINT\SDK\INC\GEO.H to modify this matrix directly.

Sending Window Messages to Drawing
Contexts
Drawing contexts respond to all of the messages defined by cls Win. The drawing
context passes the message on to the window to which it is bound. This lets you
use the same device-independent coordinate system of your DC for window
operations. For instance, clsSysDrwCtx responds to msgWinDelta, the clsWin
message to position and/or resize a window. Since clsSysDrwCtx gives you an
arbitrary coordinate system, it is inconvenient to have to convert DC coordinates
into device coordinates in order to size and position windows. Instead, the DC
behaves as if it were a window. You send it window messages but specify positions
and sizes in DC coordinates (LUC); it translates the coordinates to logical window

You can also send positioning
messages to a DC, and the DC
will convert LUC to LWC before
forwarding the messages to the
window to which it is bound.

26.6

290 PENPOINT ARCHITECTURAL REFERENCE
Part 3 / Windows and Graphics

coordinates (LWC), and sends the same messages with the transformed positions
and sizes to the window to which it is bound.

Another example of the tight coupling between DCs and windows is
msgDcFillWindow. The DC determines the size of the window to which it is
bound, fills that window then strokes its border. .

Graphic Siale
Many elements in the drawing context state affect drawing operations. These
elements, collectively called the graphic state, and the messages you send to set
them are described below. Color and text, because they are complex topics, are
covered separately.

Filling and Stroking

Some drawing operations create a closed geometric figure which is stroked with a
line and is also filled. The line is drawn with the line characteristics specified in
the DC, and the enclosed region is filled with the current fill pattern in the DC.
(The stroke and the fill do not overlap-a pixel is never touched twice by one
drawing primitive.) If the line pattern is null but the line width is non-zero, the
fill pattern still avoids where the surrounding line would be. If you want an area
without an edge that is completely filled, you must set the line width to zero.

Line Styles

The DC specifies several characteristics for lines drawn:

• Thickness.

• End style.

• Miter limit.

• Rectangle radius.

You can also specify patterns for lines. You can tinker with the DrawingPapelM

application (on the SDK Goodies disk) to get a sense for the handling of these
characteristics. Figure 26-1 shows some combinations.

26.7

26.7.1

26.7.2

figure 26-1
Line Styles

CHAPTER 26 I THE DRAWING CONTEXT CLASS 291

If you want to get the current line state, send msgDcGetLine, specifying a pointer
to a SYSDC_LINE structure as the message argument. msgDcGetLine returns the
current line thickness; if all you want is the current line thickness, send
msgDcGetLine with a message argument of pNull, and cast the return value from
ObjectCall to a U16.

To change the line state, send msgDcSetLine. If you only want to set the line
thickness you can send msgDcSetLineThickness. Both messages return the old
line thickness.

~ Thickness and Modes
By default, line thickness is affected by the units and scale chosen. Thus the
stroked outlines of figures and other lines get thicker as you scale up and thinner
as you scale down. If the scaling is different in the x and y directions, the line
thickness will be averaged. This is usually what you want, but not always:

• When you decrease the scale, at some point lines become invisible as their
thickness drops below half a pixel (thickness rounds down to zero).

• As you change the scale, lines get fatter or thinner.

The former is bad when you want to keep lines from disappearing. The latter is
bad when the lines should not change size, for example when drawing a grid or
drawing annotation lines over a figure.

You can control both of these using the SysDC mode flags sysDcHoldDetail and
sysDcHoldLine.

The sysDcHoldDetail mode flag stops lines from vanishing. You send
msgDcHoldLine with message argument of true or false. Setting sysDcHoldLine
using msgDcSetMode causes the current line thickness to be held so that it won't
be affected by subsequent scaling and units changes. You can use this to set a
particular line thickness that won't change as you scale your picture.

Sending msgDcHoldLine with an argument of False causes the window system to
recompute the correct line thickness relative to the current scale and units.

Note that line thickness is independent of device pixel size, shape, and resolution.
Note also that underline and strikeout lines drawn by the dsSysDnvCtx text
messages are unaffected by these line modes.

Line and Fill PaHerns

The DC specifies a pattern for both lines and fills. The messages msgDcSet
LinePat, msgDcGetLinePat, msgDcSetFillPat, and msgDcGetFillPat all take a
SYSDC_PATTERN. This is a U16 which specifies a pattern mixing the foreground
and background colors. The pattern determines which pixels will be set to the
foreground color and which will be set to the background color. There are many
predefined patterns of foreground and background in sysgraf.h, some set on the
diagonal. The following screen shot shows some combinations.

Graphic State

26.7.2~ 1

26.7.3

PenPoint does not currently
support the creation of custom
fill patterns.

292 PENPOINT ARCHITECTURAL REFERENCE
Part 3 / Windows and Graphics

Fill PaHern Alignment

ImagePoint uses tiling to fill closed figures. In other words, it maintains a s~all
rectangle, or tile, of the fill pattern and copies it again and again to fill an area.
Each tile lines up with the tiles adjacent to it to create a seamless, repeating fill

. pattern. To calculate the origin of a tile in the fill, ImagePoint measures from the
LUC origin in multiples of the tile width and height. That way, if your application
scrolls by translating the LUC origin (as most applications do), the fill pattern
alignment will move along with all the other rendered objects.

If you dGtermine for some reason that your application needs to scroll by actually
moving rendered figures relative to the LUC origin, then the fill pattern alignment
will not move with the figures. The result is that the pattern alignment will remain
stable relative to the LUC origin, but will change relative to the outlines of the
filled figures. If you need to keep the pattern alignment stable relative to the
figures, you can move the pattern alignment origin along with the figures with
msgDcAlignPattern. This will tile the pattern relative to the LUC coordinate you
specify, rather than to the LUC origin.

Determining Filled Areas

For a simple figure such as an ellipse, it is obvious what the filled area should be.
However, with a complex irregular polygon of crossing lines, it is not so obvious.
There are two ways to determine what falls inside and should be filled. The default
for clsSysDrwCtx is even/odd fill, but you can set the sysDcWindingFill flag in
SYSDC_MODE with msgDcSetMode to use a winding fill calculation.

Raster Operations

clsSysDrwCtx departs from a true stencil/paint imaging model in that you can
specify how new drawing operations combine with existing pixels. For any
drawing operation, clsSysDrwCtx figures out the value of each affected pixel,
and then in a separate step combines this value with the current value in that pixel.
The way in which pixels combine is called the raster operation, or raster op.· The
default raster op is sysDcRopCopy, which replaces the destination pixel's value
with the computed (source) value; this is what you would expect a painting
operation to do.

GO strongly discourages the use
of the raster op facility. It is
documented here for
completeness.

CHAPTER 26 I THE DRAWING CONTEXT CLASS 293
Drawing Operations

Using msgDcSetRop, you can set the raster op to combine source and destination
pixels in other ways. The possibilities are values of the enum SYSDC_ROP. They are
named after the logical operations which they perform.

""" Dynamic Drawing 26.7.6.1

On displays more than one bit deep, it is difficult to predict graphic behavior with
raster ops other than sysDcRopCopy. This difficulty makes raster op capabilities
most useful for one-bit displays. The XOR raster op provides a non-destructive
draw-erase sequence on a one-bit display, but is difficult to set up properly for
displays deeper than one bit. Because the XOR behavior is very useful, PenPoint
provides a dynamic drawing mechanism to achieve the XOR effect independent
of display depth.

If you set the sysDcDrawDynamic flag in SYSDC_MODE, then the raster op is
overridden to XOR and the foreground color is set up to XOR properly. This
ensures that (if you draw figures using the foreground color) they will be visible no
matter what is underneath; if you then repeat the same drawing messages, your
drawing will disappear and leave the original pixel values restored. This means you
don't have to save the contents of pixels when you draw over them; the only
drawback is that colors drawn over others will be different (e.g. black lines on a
black background are inverted). If you want to draw dynamically, use the
sysDcDrawDynamic flag instead of only setting the raster op to XOR.

You can also set the sysDcDrawFast mode flag to reduce the time it takes to draw.
This gives up certain ImagePoint features such as thick lines, patterns, and so on,
in exchange for greater drawing speed. The precise set of features given up in
sysDcDrawFast mode is device-dependent.

Drawing Operations
The actual set of drawing messages is quite small. It is by manipulating the DC
state that you can achieve a wide variety of effects. There are two kinds of figures,
open and closed.

Open Figures
Open figures are made up of lines drawn with the line pattern and line attributes.

msgDcDrawPolyline draws a line made up of multiple segments. It takes a
pointer to a SYSDC_POLYLINE, in which you specify a pointer to an array ofXY32
points (points) and the number of points in the array (count).

msgDcDrawBezier draws a single Bezier curve through four control points. It
takes a pointer to an array of four XY32" points.

msgDcDrawArcRays draws a single arc of an ellipse. It takes a pointer to a
SYSDC_ARC_RAYS, in which you specify the enclosing rectangle of the ellipse, and
two points. The arc drawn is the portion of the ellipse demarcated by rays from
the center of the ellipse to the two points.

26.8

26.8.1

294 PEN POINT ARCHITECTURAL REFERENCE
Part 3 / Windows and Graphics

Closed Figures
These are drawn with a line, and filled. You can draw only the line by setting the
fill pattern to sysDcPatNil (or by having a transparent fill pattern). You can fill
without outlining by setting the line width to O.

msgDcDrawRectangle draws a rectangle. It takes a pointer to a RECT32 which
specifies the rectangle. You can change the radius in the line style to a non-zero
value to get a rounded rectangle.

Note that the lines of a rectangle have thickness. msgDcDrawRectangle touches
every screen pixel touched by the rectangle's coordinates in LUC. Contrast this to
msgWinDirtyRect, which simply rounds the LUC coordinates to the nearest
pixel. This can sometimes result in msgWinDirtyRect dirtying a rectangle that is
smaller than the rectangle msgDcDrawRectangle draws, even when the specified
coordinates are the same.

One way to avoid rectangle rounding problems is to convert LUC to L WC for
msgWinDirtyRect coordinates, then to increase the size of the rectangle by one
pixel in each direction.

msgDcDrawEllipse draws an ellipse. It takes a pointer to a RECT32 which
specifies a rectangle enclosing the ellipse.

For both msgDcDrawRectangle and·msgDcDrawEllipse, if the line thickness is
non-zero, half of the line will fall outside the rectangle.

msgDcDrawPolygon draws a filled polygon. It takes a P _SYSDC_POLYGON, which
is the same structure as the P _SYSDC_POLYLINE described above. It closes the
polygon for you.

msgDcDrawSectorRays takes the same P _SYSDC_ARC_RAYS message arguments
structure as msgDcDrawArcRays, and computes the arc of the ellipse edge to
draw in the same manner. It creates a filled pie wedge shape by drawing lines to
the center of the ellipse from the end points of the arc.

msgDcDrawChordRays takes the same P _SYSDC_ARC_RAYS message arguments
structure as msgDcDrawSectorRays, and computes the arc of the ellipse edge to
draw in the same manner. It creates a filled shape by drawing a line between the
end points of the arc.

Filling a Window
msgDcFillWindow'draws a rectangle exactly the same size as a window. If the line
thickness is greater than zero, the lines will fall half within and half outside of the
window. Thus, if you wanted to get a three pixel border around your window
using this message, you must set the line width in the DC to six (assuming you
sent msgDcUnitsDevice to set LUC to pixels).

26.8.2

CHAPTER 26 I THE DRAWING CONTEXT CLASS 295

~Color
Class clsSysDrwCtx. draws with a foreground/background color metaphor. Most
drawing occurs in the foreground color, a few drawing operations draw in the
foreground and background colors simultaneously. The background color can be
transparent.

There are two ways to choose colors; as RGB (red, green, and blue) values, or as
colors in a hardware-dependent palette. The former style is the default and is
compatible with printers and future displays.

RGB Color Values
You can set the foreground and background colors to any color using
msgDcSetForegroundRGB and msgDcSetBackgroundRGB; there are equivalent
messages to get the colors. These take a pointer to a SYSDC_RGB structure
specifying red, green, blue, and transparency values between zero and 255. The
higher the value, the brighter the color component. ImagePoint will find the
closest available color on the display device. The colors are automatically
recalculated if you connect the DC to a different device.

Transparency can have only the extreme values of zero and 255. Use a transparency
of 0 for opaque colors; a transparency of255 leads to a transparent color (the red,
green, and blue values are ignored) . You cannot assign transparency to the
foreground color.

The macro SysDcGrayRGB creates a SYSDC_RGB value for an opaque shade of
gray from a single gray value.

Palette Colors

There is a separate mechanism to select a particular palette index, using
msgDcSetForegr~undColor and msgDcSetBackgroundColor. These take a 16-bit
SYSDC_COLOR. On a four-bit display, all requested colors will map to the
following predefined colors: black, white, light gray and dark gray
(sysDcInkBlack, sysDclnkWhite, sysDcInkGray33 and sysDclnkGray66). There
is also sysDclnkTransparent which stops the background color from painting
anything (the foreground color cannot be transparent).

Palette colors are hardware-dependent. You should use RGB color specifications.

Inverting Colors

msgDclnvertColors exchanges the foreground and background colors. This works
whether colors are specified as RGB or palette colors. If the background is
transparent, msgDclnvertColors will cause an error.

Color Compatibility

Using RGB values to specify colors is compatible with printers. If you bind your
DC to a different device, such as a printer, the DC will automatically recompute
the closest match for the current foreground and background RGB values.

Color

26.9

26.9~ 1

26.9 .. 3

296 PENPOINT ARCHITECTURAL REFERENCE
Part 3 / Windows and Graphics

Using palette colors is marginally faster than specifying RGB values, but it is
highly device-dependent. It is likely on a printer that the palette index of, say,
black will not be zero. If you need to change between different foreground and
background colors frequently, you can use msgDcMatchRGB to return the
SYSDC_COLOR palette indices which best match the RGB values you want to use,
and then use msgDcSetForegroundColor and msgDcSetBackgroundColor to
switch colors. So long as you redo the matching when you bind the DC to a
different device, this should be compatible with any printer.

Planes
A display device may support several bitmap planes in hardware. However, to
support certain special effects a DC is normally limited to drawing into a subset of
the hardware planes.

The DC is limited to drawing in certain planes by the plane mask. It is possible
to change the planes you draw in by altering the plane mask, although you should
generally avoid doing so because it can result in device-dependent code.
msgDcPlaneNormal sets the plane mask to the normal drawing plane(s); this
is the default.

~ The Pen Plane

msgDcPlanePen sets the plane mask to the plane(s) used for pen ink. This pen
plane is the plane(s) where pen ink is usually dribbled by the pen tracking
software. It is called the acetate layer because it acts behaves like a transparent
layer of acetate on which the pen tracking software lays down dribbles of ink as
the user moves the pen, then erases the ink.

You should avoid using the the pen plane unless your window has ink dribbling
disabled (inputlnk in its input flags). Otherwise your drawing in it will conflict
with pen tracking. Even so, the pen tracking software in the input system uses the
pen plane extensively. It will dribble ink in your window if the user starts writing
with the pen tip down in another window which does enable pen tracking, and it
will frequently erase the entire pen plane. As a general rule, it is best to adhere to
the default of msgDcPlaneNormal unless you have compelling reasons not to.

Other Planes

msgDcSetPlaneMask gives you precise control over which planes which will be
affected by drawing. This takes a SYSDC_PLANE_MASK (an unsigned number) as
its argument. Each bit in the plane mask enables a particular plane. If you disable
all planes (null value), no drawing takes place. .

msgDcPlaneNormal, msgDcPlanePen, and msgDcSetPlaneMask all return the
current plane mask (instead of STATUS) if they succeed.

Manipulating planes is inherently device-dependent, and may cause problems
when you port to other PenPoint computers. Not all PenPoint machines will have
the same number of planes or plane group divisions.

26.9.4

26,,9~4.1

CHAPTER 26 I THE DRAWING CONTEXT CLASS 297

Sampled Images
Most ImagePoint drawing operations are device- and resolution-independent. You
send a message to draw an idealized polyline, or filled ellipse, or text, and
ImagePoint figures out which pixels to turn on in the destination window.

However, sometimes you have to deal with images which have already been
broken down into pixels, such as scanner output. Or, you may want to work with
pixels for performance reasons or to get the best visual appearance at low
resolution. Such images are called sampled images rather than pixel images
because the image may not be stored as a set of pixel values, but in some other
format which produces a set of sample values.

ImagePoint provides several messages which deal with images made of samples.

msgDcDrawlmage reduces samples which you supply to gray values and
renders the image in shades of gray, without regard for the current
foreground and background colors.

msgDcDrawlmageMask reduces the samples which you supply to a bitmap
of ones and zeros, which it renders in the current foreground and
background colors.

msgDcCachelmage renders an image into a chunk of memory so that it
can later be quickly put on-screen.

msgDcCopylmage copies a cached image into a window.

• Related Messages

ImagePoint also has messages to copy pixels from one part of a window to
another, described in Chapter 23, The Window Class.

Another technique to boost performance is to draw into an off-screen window,
then copy pixels from this onto a visible window. Off-screen windows live on
image devices, which are described in Chapter 24, Window Device Classes.

Sampled Image Operator

The image operator msgDcDrawlmage draws an image from sampled image
data (pixel values). You can use this to draw pixelmaps in windows. The TIFF
object (clsTiff) uses msgDcDrawlmage to draw TIFF images on screen.
msgDcDrawlmage takes a pointer to a SYSDC_lMAGE_INFO structure as its
message arguments. In this you specify:

dstRect the size and position of the destination image.

srcSize the number of source samples.

callback an optional function or object to supply samples one row at a time.

pBuffer a pointer to the sample data.

Sampled Images

26.10

26.10.1

298 PENPOINT ARCHITECTURAL REFERENCE
Part 3 / Windows and Graphics

pClientData an optional pointer to client data to keep track of state if you
use callbacks.

flags various bit flags, described below.

msgDcDrawlmage can draw images from sample data at different resolutions and
different numbers of bits per sample than the destination. Thus you can scale a
sampled image to fill an area. The destination can either be a rectangle (dstRect)
or the entire window (set sysDclmageFillWindow in flags).

For example, to display an image from 8-bit samples, you would set
sysDcImage8BPS in flags, and pass data, one byte (eight bits) per sample, in
which 0 represents black, and 255 represents white.

Filter

The filter flag controls how msgDcDrawlmage filters the source samples when
reducing the size of the image. The possible values are:

sysDclmageNoFilter no filter, very low quality.

sysDclmageLoFilte faster than sysDclmageHiFilter, but lower quality.

sysDclmageHiFilter high-quality filter.

Use sysDclmageHiFilter for the most part. sysDclmageNoFilter favors speed over
fidelity to the original.

Run-Length Encoding

Black and white (1 bit per sample) sampled images can be passed in a simple
run-length encoded format to save space (sysDclmageRunLength). This encodes
runs of black or white pixels, which usually results in space savings. Patterns of
alternating black and white pixels may be larger when run-length encoded.
msgDcDrawlmage always converts black and white images to run-length
encoding internally, so run-length encoding is always the fastest format to use for
black and white images.

.. Encoding Format

The high bit of each byte indicates whether the run is black or white (0 is black,
1 is white). The other 7 bits is a count of the number of samples of that color.
For examPle, a run of 300 white pixels would be represented by the hexadecimal
values FF FF AC (FF hex= 128 white, FF hex= 128 white, AC hex=44 white).
The count is only for the current line-runs of samples don't continue onto the
next line.

Drawing

Sampled image drawing ignores the raster op, and the foreground and background
colors. It looks directly at the windowing device's palette to figure out what to put
in each pixel in the destination window to generate colors matching those in the
image. It assumes normal drawing planes.

26 .. 10 .. 1.1

26 .. 10.1,,2

26 .. 10,,1.3

CHAPTER 26 I THE DRAWING CONTEXT CLASS 299

Call Backs

You can either supply all the samples in pBuffer, or you can have
msgDcDrawImage call you back to supply the samples. In the latter case you can
either have it call a function you supply (set sysDcImageCalIBack), or send
msgDcGetSrcRow to an object (set sysDcImageCalIObject). ImagePoint will ask
your function or object to supply the next row of samples by passing it the
SYSDC_lMAGE_INFO structure. Your function or object passes back the samples in
pBuffer; it can keep track of its state in pClientData. If pBuffer is null, that
means that the sampled image operator does not in fact need the next line of
samples.

Rendering Colors

msgDcDrawImage assumes that input sample values from 0 to the maximum
sample value map to shades of gray increasing linearly from black to white. It
ignores the curr~nt foreground and background colors when rendering, using only
shades of gray. msgDcDrawImageMask, on the other hand, reduces the samples
to ones and zeros. By default, msgDcDrawImageMask renders ones in the current
foreground color and zeros in the current background color. If you set the
sysDcPolarityFalse flag in the SYS_DC_lMAGE_INFO argument,
msgDcDrawImageMask reverses its default color scheme, rendering ones in the
current background color and zeros in the current foreground color.

Image Model

The representation of pixelmaps for sample image data is similar to what
Postscript calls an image or a image mask. This is the representation that you
should use to import and represent pixel images, and to draw small images (such
as icons) on-screen. However, large areas of pixels in this representation cannot be
rendered quickly. To create and manipulate large pixelmaps, you should create an
image device and maintain windows in its off-screen memory ..

Cached Images

When you use msgDcDrawImage to draw sampled images on-screen, ImagePoint
handles the current LUC transformations, different device resolutions, different
pixel aspect ratios, different number of planes, dithering, etc. msgDcDrawImage
is powerful (see the Fax Viewer), but it's somewhat slow (see the Fax Viewer). If
you need to draw a sampled image repeatedly on the same device at the same scale,
what you would like to do is go through all these transformations once to arrive at
the desired pixelmap, and then copy this pixelmap to the screen.

ImagePoint supports this. You use msgDcCacheImage to load a sampled image
into a pixelmap in advance. The resulting pixelmap is called a cached image. You
use msgDcCopyImage to quickly copy the pixels in the cached image to a
window. msgDcCopyImage ignores most transformation and device issues and
puts the pixels in a cached image straight into the DC's window. You can think of

Sampled Images

26.10.1.4

26.10.1.5

300 PEN POINT ARCHITECTURAL REFERENCE

Part 3 / Windows and Graphics

msgDcCacheImage as converting a sampled image which draws slowly into a
cached image which draws fast.

Cache is somewhat of a misnomer. There is no cache of these images, each is
simply allocated by ImagePoint and it is up to the client to manage each one. In
other words, it is up to you to cache your images.

A cached image is a rectangular pixelmap, but it can maintain an associated mask
which controls which parts of the image appear. This is used for icons and cursors,
which do not have rectangular appearances. A cached image also has a hot spot,
which specifies the origin of the image. The move icon uses the hot spot to appear
with its center over the pen tip.

The Bitmap Editor creates bitmaps which you can load as cached images. It is
described in the PenPoint Development Tools volume.

Creating Cached Images

msgDcCacheImage creates a cached image from the sampled image you specifY.
It takes a SYSDC_CACHE_lMAGE structure for its message arguments. In this you
specify:

Image an array of two SYSDC_lMAGE_INFO structures, one for the image
and one for its optional mask.

hasMask a Boolean indicating if the image has a mask.

hotSpot the hot spot's coordinates relative to the lower-left of the image.

pCache ImagePoint passes back a pointer to the cached image.

The image array contains the information for an image, and if hasMask is true,
the information for the image's mask as well. msgDcCacheImage shares
SYSDC_lMAGE_INFO with msgDcDrawImage.

ImagePoint renders the sampled image into a pixelmap which it allocates. The
pixelmap is compatible with the windowing device of the window to which the
DC is bound. ImagePoint uses msgDcDrawImage to generate the image, so the
sampled image is scaled and sampled. The hotSpot is interpreted in LUC at this
point.

~ Drawing a Cached Image

To get the cached image to appear in a window, send msgDcCopyImage. This
takes a pointer to a SYS_DC_COPY_lMAGE structure for its message arguments. In
this you specify:

xy the location in LUC where the cached image's hot spot should be drawn.

pCache a pointer to the cached image.

pCache is the same pointer passed back from msgDcCacheImage. ImagePoint
draws the cached image so that its hotSpot is at xy in LUC.

26.10.2~ 1

CHAPTER 26 I THE DRAWING CONTEXT CLASS 301

• Mask

The mask controls which pixels in the destination are affected. Where pixels in the
mask are zero (black), the pixels in the destination are not affected. Only where

pixels in the mask are 1 (white) does something appear. If there is no mask, the
entire pixelmap of the cached image appears. Of course, the drawing is still

affected by the current update region and clipping region.

As with other sampled image operations, msgDcCopylmage ignores the current

foreground and background colors, and current raster op ..

Invalidating a Cached Image

Cached images are valid for the current windowing device. When you create a
cached image with msgDcCachelmage, the current LUC, windowing device pixel
aspect ratio, orientation, plane depth, etc. are taken into account. It is up to you
to detect that the windowing device has changed (for example, the user changes
from portrait to landscape) and to free (with OSHeapBlockFreeO) and then
recreate the cached image. Also, if your LUC transformation changes, and you
want the cached image to scale, you should free and re-create it.

~ Cached Images vs Image Devices

The only thing you can render into a cached image is a sampled image. If you
want to draw other types of figures (text, for example) into an off-screen image,
you must use an image device. If all you want to do is put some sampled pixels on
the screen, you can use cached images.

~. Related Classes

clsBitmap stores samples; it includes a message to load a cache from its
information. clsTiff is an object you associated with a sampled image in a TIFF
file; you can send it a message to draw its contents. See Chapter 28, Bitmaps and
TIFFs for more information on clsBitmap and clsTiff.

Printing
Printers are represented as objects of clsWinDev and are similar to theScreen
device. Drawing on a printer can be exactly the same as drawing on-screen.

Since printers are clsWinDev devices, you can either draw on the root window of

the printer (the page), or you can create child windows on it. The support for
windows on printing devices may seem curious. It exists because windows can be
used as drawing tools (viewports), thus, it is possible to create images using several
windows that could not be created otherwise. While printer windows can be
moved and resized, there is no real point in doing so beyond the usual layout
episode.

Printing

26.10 .. 2.3

26.11

302 PENPOINT ARCHITECTURAL REFERENCE
Part 3 / Windows and Graphics

Application Printing
When the user prints one of your application's documents, a copy of the
documented will be created in the Outbox in a queue for the current printer.
When the PenPoint computer is connected to that printer, the document will be
started up with its application main Win inserted as a child window on the printer.

The printing framework will send the application·msgWinRepaint. If your
application creates a standard set of windows within its frame and paints them in a
device-independent way in response to msgWinRepaint, then it should print its
window on the printer without any further work. The same arrangement of
windows will appear on the page as on the screen. Because of memory constraints,
the print device may ask each window to paint itself several times in order to
produce the page in a series of bands; thus like all windows, printer windows must
respond to msgWinRepaint on demand.

If you want to print a window differently on the printer, your window subclass
can intercept msgWinStartPage. This is sent to each window advising it that it is
on a printer (as opposed to the screen) and that printing is about to commence.
Your window class could set an instance variable to false at creation, set it to true
if it receives msgWinStartPage, and when responding to msgWinRepaint, it
would check this variable and modify drawing accordingly.

IlIIagePoint Font Support
Chapter 25, Graphics Concepts, describes some of the features of the ImagePoint
font model. This section explains the programming interface to the model.

How You Use the API
Hello World is a sample program that draws text in its window. It is described in
the PenPointApplication Writing Guide; its source code is in the SDK sample code
directory \PENPOINT\SDK\SAMPLE\HELLO.

Here are the steps involved in drawing text:

1 Send msgDcOpenFont to your DC, specifying the attributes of the font you
want to use (Modern Roman Bold Italic, for example).

2 Send msgDcScaleFont to your DC to scale the font to your desired size.

3 Send msgDcDraw Text to your DC to output a text string.

Text and the Drawing Context
Just as your drawing context includes the current line width, line style, fill pattern,
etc., it also includes the current font and current font scale. When you save and
restore the graphics state with msgDcPush and msgDcPop, you save and restore
this font information. If all you are doing is changing to a different font, you can
use msgDcPushFont and msgDcPopFont to save and restore only the font
information.

26.11.1

26.12

26.12.1

26.12.2

CHAPTER 26 I THE DRAWING CONTEXT CLASS 303

ImagePoint Font Support

What is a Font?
Fonts exist as files produced by the PenPoint font editor FEDIT. At cold-boot time
PenPoint loads the fonts in \\BOOT\PENPOINT\FONT into memory; later on the
user can install and remove fonts using the Installer. Thus different computers
have different sets of fonts installed.

26.12.3

Font IDs and Font Names 26. 12.3. 1

Each font file contains the instructions to create a specific font-a typeface with a
particular look. Each font has a unique 16-bit ID which GO assigns, so that a
font ID refers to the same font on all PenPoint computers for all time.

The font ID is a condensed version of a four-character string used to identify
fonts. The function SysDcFontlD performs this algorigthm, returning a 16-bit
font ID of the four-character string you pass it. Conversely, SysDcFontString
takes a pointer to a buffer and a 16-bit font ID, and passes back a null-terminated
string.

As an example of a short font name, the font string of GO's Sans Serif is HE55.

By convention, the DOS font file name is this four-character string with the
extension ,PCK. There is no length checking on the buffer; it must be at least 5
bytes long to hold the string.

The user-visible name of the font is the PenPoint file name of the font; in this
example, SANS SERIF (URW).

Font AHributes

Each font has attributes which indicate its visual appearance. These include:

group the typeface group (Venetian, Old style, Transitional, Script, etc.).

weight the font weight (light, normal, bold, extra-bold, etc.).

aspect the font aspect ratio (condensed, normal, extended, etc.).

angle the font obliqueness (whether it is italic or not).

The idea is that the font attributes describe the style of the font in great detail.
Note that, unlike in some other window systems, the size of the font is not part of
its attributes.

Opening a Font
You might expect to open a font simply by supplying its ID. However, different
PenPoint computers will have different fonts on them, and users can load and
remove fonts. There's no guarantee that the font ID which you want to use exists
on a computer.

So you also specify a desired set of font attributes, and ImagePoint will pick the
closest font matching those attributes. It can also synthesize some font attributes
from an existing font. For example, it can create a bold or italic version of a font.

You specify both a font ID and the attributes you desire at the same time that you
send msgDcOpenFont. If the font ID you request exists on the computer,

26.12.4

304 PENPOINT ARCHITECTURAL REFERENCE
Part 3 I Windows and Graphics

ImagePoint will use it (even if it doesn't remotely match the attributes you've
supplied). If the font ID is not available, ImagePoint finds the font which matches
most closely the attributes which you specified.

In both cases, ImagePoint then transforms the font it's using to fit the attributes
you have given. If the attributes match those of the font, this step doesn't involve
any work.

This scheme guarantees that the user will get the closest match possible, no matter
what fonts are installed on his or her PenPoint computer. However, it has some
important programming implications which you need to to be aware of:

• If the font ID you request is available and you supply font attributes which
do not match it, ImagePoint will alter the font to try to fit the attributes.

• If the font ID is not installed, ImagePoint does not know what kind of font
it is, so you must always supply the group attribute.

If you're not too concerned about which font to use, you can leave the font ID
field in SYSDC_FONT_METRICS as 0 and only specify the group. ImagePoint will
find (and if necessary, forge) a font close to what you want. The essential point is,
you must always supply font attributes.

User Choice of Font

You can avoid the difficulty of specifying a font altogether by letting the user pick
fonts. This also avoids limiting your application to a fixed set of fonts. The UI
Toolkit provides two components for this purpose, font list boxes and pop-up font
choices. Both of these display descriptive names of the installed fonts. You can
control whether they display non-alphanumeric fonts such as the GO symbol and
gesture fonts. See Part 4: VI Toolkit for more information.

Font Enumeration

You can find out yourself what fonts are installed by querying the installed font
manager, described in Part 12: Installation.

Storing Fonts

The combined font ID (a U16) and attributes (a SYSDC_FONT_ATTR structure)
form a 32-bit quantity (a SYSDC_FONT_SPEC). You can file this with text to
indicate its formatting, and on subsequent occasions just pass the stored value to
msgDcOpenFont; you are guaranteed to get the best match possible.

Font IDs and Font Strings

Font ID numbers are not random. A font ID is an encoded version of a
four-character font string, such as HESS. The two letters identify the font family,
while the ending two digits indicate the type of the font (extra-bold, oblique,
symbol, etc.). Unless you are creating fonts with GO's font editor, you don't need
to know the details of the font encoding scheme. Always refer to a font in source

CHAPTER 26 I THE DRAWING CONTEXT CLASS 305
ImagePoint Font Support

code by its four-character name, and use SysDcFontld to convert this to the id
required by msgDcOpenFont.

",. Font AHributes

The attributes of a font are in a SYSDC_FONT_ATTR structure. This contains:

group the type of the font.

weight how bold the font is.

aspect how wide or tall the characters in it appear.

angle whether the font is italic.

monospaced whether the font is monospaced.

encoding the type of encoding map to use.

Group

The group of a font is its broad classification; it categorizes a font according to
whether it looks like a newspaper headline, or writing in a book, or handwriting,
etc. The font group names are:

sysDcGroupDefault

sysDcGroup UserInput

sysDcGroup Venetian

sysDcGroupOldStyle

sysDcGroup Transitional

sysDcGroupModernRoman

sysDcGroupEgyptian

sysDcGroupSansSerif

sysDcGroupDisplayRoman

sysDcGroupScript

sysDcGroupGraphic

sysDcGroupTypewriter

Many monospace fonts are part of the sysDcGroupTypewriter category,
irrespective of the appearance of their glyphs.

Default Font

If you want to use the same font that is used in the Notebook, you can specify the
attr.group in the SYSDC_FONT_SPEC as sysDcGroupDefault. This is a pseudo-
group which the font machinery maps to the current system font. Similarly,
sysDcGroupUserInput is a group which maps to the font for user input. Note that
the binding is set at msgDcFontOpen. Thus if the system font changes, your DC

26.12.5

26.12.6

26.12.6.1

will still be bound to the old system font until another msgDcFontOpen. Applications
which want to respond to changes in the default font need to observe the system
preferences (theSystemPreferences).

306 PENPOINT ARCHITECTURAL REFERENCE

Part 3 / Windows and Graphics

The system and user input fonts and their sizes are system preferences which the
user can change using the Preferences application on the Bookshelf. Thus you can
also find out the system font by sending msgResReadID to theSystemPreferences.
This returns a SYSDC_FONT _SPEC which you pass to msgDcFontOpen .

.. Weight

The weight of a font indicates the thickness of its characters' strokes. The possible
values are:

sysDcWeightLight

sysDcWeightN orma!

sysDcWeightBold

sysDcWeightExtraBold

.. Aspect Ratio

The aspect ratio of a font indicates the height to width ratio of the font; roughly
speaking, this determines how tall or wide the characters in it appear. The possible
values are:

sysDcAspectCondensed

sysDcAspectNormal

sysDcAspectExtended

.. Other Attributes

An italic font often has slanted (oblique) characters.

The characters in a monospaced font all have the same width.

Common Fonts

There is no default font set in PenPoint. The user can always remove or add fonts.
However, there is a standard set of fonts on the PenPoint boot disks:

Courier

Sans Serif

Roman

Gestures

Dingbats

Symbols

CR65

HE55

TR55

GS80

PI80

G055

sysDcGroup Typewriter

sysDcGroupSansSerif

sysDcGroup Transitional

none applicable

sysDcGroupGraphic

none applicable

26 .. 4

Common PenPoint Fonts

CHAPTER 26 I THE DRAWING CONTEXT CLASS 307
Image Point Font Support

All the user fonts have normal weights, and aspects, except that Courier is
sysDcWeightBold and is monospace.

".". Encoding

Encoding is not a property of the font, it's an indication to ImagePoint of how
you are going to use the font. The encoding maps the 8-bit characters in your text
strings to the glyphs in the font. In one encoding, character 165 in a text string is
the Yen currency symbol (¥), in another it is the Ntilde symbol eN).
The possible font encodings are:

sysDcEncodeLinear

sysDcEncodeAdobeStandard

- sysDcEncodeAdobeSymbol

sysDcEncodeIBM850

sysDcEncodeGoSystem

sysDcEncodeHWX850

sysDcEncodeUnicode

Some of the font encodings are documented in the Font Editor chapter of
PenPoint Development Tools manual.

Transforming Fonts

ImagePoint can transform an existing font as necessary to match most of the
requested attributes you pass in to msgDcFontOpen. It will thicken a font's
characters to create a boldface weight font, expand or condense a font's characters
and character spacing to the requested aspect, slant a font's characters if italic is
set, and make all the font's character widths the same if monospaced is set.

ImagePoint will not attempt to change a font so that its appearance is more like
the group specified:.

The encoding of a font is not part of its definition, it is just something you specify
when you open the font. ImagePoint always honors it.

Font Metrics

After opening a font, you can draw text with it. Often to do this you need to know
additional information about the font, such as how wide a space is in it, how much its
characters go over or under the base line, and so on. msgDcGetFontMetrics returns
information about the current font in LUC in a SYSDC_FONT_METRICS structure.

SYSDC_FONT_METRICS contains a SYSDC_FONT_ATTR structure holding the
font ID and attributes of the font that ImagePoint actually uses to honor your
msgDcFontOpen request. If you asked for certain attributes, and ImagePoint
had to use another font or synthesize the font, the font attributes returned are
the natural attributes of the font it's using. For example, if you ask for Roman
condensed (sysDcAspectCondensed), and only Roman normal is installed, then the
aspect attribute passed back by msgDcGetFontMetrics will be sysDcAspectNormal,

26.12.6.3

PenPoint is migrating to
the Unicode 16-bit character
encoding scheme. When the
Unicode migration is complete
in PenPoint 2.0, there will be a
single encoding for all the
glyphs in use around the world.

26.12,,6.4

308 PEN POINT ARCHITECTURAL REFERENCE
Part 3 / Windows and Graphics

even though ImagePoint will synthesize a condensed font. SYSDC_FONT _METRICS

also contains additional information:

name the name of the font (up to 80 characters).

spaceWidth the width of a space in the font.

underThickness the best thickness to use for an underline.

underPos the best distance from the baseline to use for an underline.

xPos the height of a lowercase x in the font.

ascenderPos the ascender height for the font.

descenderPos the descender depth for the·font.

em the em size for the font.

maxY the highest coordinate touched by any character in the font (relative
to the baseline).

min Y the lowest coordinate touched by any character in the font (relative to
the baseline).

All the dimensions are passed back rounded to the nearest whole number in LUC.
To do precise work with font metrics, you need to have small enough units and
large enough font scale in effect. msgDcUnitsTwips is a good choice (a twip is one
twentieth of a point).

Also, all the dimensions are for the synthesized font. To use the same example, if
you ask for condensed and get a regular font, the character widths passed back will
be the narrower ones which ImagePoint synthesizes.

Name

This is the font identification for ownership and copyright purposes. It is not the
name displayed to the user, that name is the PenPoint name of the font file.

Character Geometry

The rest of the parameters are best shown graphically.

t1-o~~e .•...•...•. ···· .--•...•................... ~ .. -

.. " •••••••••••• "n •••••• "" n ...

ascenderPos

xPos

underPos (and underThickness)

descenderPos'

CHAPTER 26 I THE DRAWING CONTEXT CLASS 309
ImagePoint Font Support

The values for these dimensions are for the current x and y scaling of the current
font, and are in the current LUC (Logical Unit Coordinates) of your'DC. Note
that they are integers, hence are subject to gross round-off errors at small scales
and coarse units.

descenderPos, min Y, and underPos are negative numbers.

ascenderPos and descenderPos give the typographic line height. They indicate the
guidelines the font designer used in designing the font (similar to xHeight). You
might use these to draw a box around characters, or to adjust the gap between
lines, or leading, with different fonts on them.

maxY and minY give the height of the tallest character and the depth of the
deepest character in the font. You can use these to compute which lines of text fall
in an update region in order to minimize repaint.

underPos and underThickness indicate the best position and thickness for
underlines for characters. If you specify an underline when you draw text,
ImagePoint positions and sizes it using this information.

Note that the locations of xPos, ascenderPos, and descenderPos are aesthetic
judgements of the font designer, as are underThickness and underPos.

The em is a SIZE16 that indicates what the font is scaled to in the current LUC
and font scale. In other words, if you scale a font to 18 and scale LUC by 2 and 3,
em.w would be 36 and em.y would be 54. It's useful if you haven't been keeping
track of your LUC transformations and font scale.

• Ems and Text Widths

An em is a square whose sides are, roughly speaking, the distance from the lowest
descender to the highest ascender in the font. This is often approximately the
width of an M in the font, hence the name. Em size is the scale of the font: if the
font is 14 point, then em.h and em.w are both 14 with a default DC. Thus when
you open a font with a default DC, its em.w and em.h are both 1.

As a rule of thumb, the width of a string 20 characters long is about 10 em widths
in many fonts. Ten characters are almost guaranteed to fit into a space 10
em-widths wide (or 80 layout units in the UI Toolkit).

Character Widths

The rules of thumb relating the em-width of a font to text widths are useful to
figure out roughly how wide to make a text region, but if you really care you
should add up individual character widths. msgDcGetFontWidths helps you do
the former; it returns the widths of all 256 characters in the current font (based on
the current encoding specified in the font attributes). These widths are the
designer's guidelines for the visual widths of each character; it's possible for a
character's pixels to extend beyond its widths (for example the top of an italic
T might extend beyond its nominal width.

310 PENPOINT ARCHITECTURAL REFERENCE
Part 3 / Windows and Graphics

The character widths are constants and don't take into account how particular
letter combinations look better closer or further apart than their nominal widths
would indicate. Adjusting character combinations is called kerning. ImagePoint
does not currently support automatic kerning.

msgDcGetFontWidths will not work well with future large character sets (such as
Unicode), so it's better to use msgDcMeasureText or msgDcGetCharMetrics.

Character Metrics
You can get width information about particular characters in the current
font by sending msgDcGetCharMetrics. This message takes a pointer to a
SYSDC_CHAR_METRICS structure. You supply a pointer to a text string (pText),
and the length of it (len). Note that the string can have nulls in it, since null may
be a valid character. ImagePoint passes back a set of text extents (pExtents). An
extent is a SYSDC_EXTENTS16 structure which gives the minimum and maximum
x-y locations of each character (min and max, both XY16). The x and y coor
dinates are for each individual character relative to the origin-the characters
aren't rendered next to each other.

Unlike msgDcGetFontWidths, which passes back the type designer's aesthetic
sense of character widths, msgDcGetCharMetrics passes back the actual bounding
box of each character. Thus it's possible for any of the coordinates (min.x, max.x,
min.y, and max.y) to be positive or negative, depending on how the character is
designed. For example, an italic g might be designed to run slightly underneath
the character to its left.

Scaling a Font

When you open a font, ImagePoint sets it up so that the point size of the font (its
em height is one unit in your DC's current logical unit coordinates (LUC).
Hence the size of the current font is affected by the units and scaling of the DC.

You send msgDcScaleFont to your DC to scale fonts separately from other
drawing operations. For example, if you have sent msgDcUnitsPoints to set your
DC's coordinates to points, and you then send msgDcScaleFont with x and yof
12, you will set the font size to be 12 points with a normal aspect ratio. If you
change the DC scale with msgDcScale, the font size will be affected. The font
scaling is concatenated with the DC scaling.

Moreover, msgDcScaleFont is cumulative. In the previous example, if you sent
msgDcScaleFont a second time with x and y of9, you would end up drawing
lOB-point characters, not 9-point characters.

The message msgDcldentityFont resets the font matrix scale to the default of 1
unit in LUC. Note that msgDcldentity changes LUC (and thereby the size of
characters), but doesn't change the font scale itself.

If your scale is very small, obviously characters will be hard to read. Also, if you
use radically different x and y scales for your LUC and you do not adjust for them

msgDGSGaleFont takes a SCALE

as its argument. This is a pair of
fixed point numbers. Fixed point
math is explained in \PENPOINn
SDK\lNC\GOMATH.H and in Part
8: System Services.

CHAPTER 26 / THE DRAWING CONTEXT CLASS 311

ImagePoint Font Support

with msgDcScaleFont, your text will appear stretched or squashed. Sometimes it's
appropriate to maintain two drawing contexts; one for graphics and the other for
pleasing text.

Drawing Text

You send msgDcDrawText to your DC to draw text. ImagePoint renders your
text by filling the pixels of characters with the current foreground color, using the
current raster Ope You can set foreground color with msgDcSetForegroundColor
(the default foreground color is sysDcRGBBlack). Characters are not filled with the
current fill pattern, only the current foreground color.

msgDcDrawText takes a SYSDC_TEXT_OUTPUT structure as its message
arguments. You must initialize the structure before drawing text.

typedef struct
{

U16
U16
U16
P US
U16
XY32
COORD32
U16
COORD16

alignChr;
underline;
strikeout;
pText;

II use sysDcAlignChr ...
II use 0,1, or 2
II use 0 or 1

lenText; II in (and out for measure)
CPi II in and out, where to place string
stoPi II used by msgDcMeasureText
spaceChari II code for space, usually 32
spaceExtra, II added to width of space
otherExtrai II added to width of every char

SYSDC_TEXT_OUTPUT, FAR * P_SYSDC_TEXT_OUTPUTi

msgDcDrawText draws the text pointed to by pText starting at the location cp in
LUC. You can make the text appear underlined or thickly underlined by setting
underline, and can make it appear struck out by setting strikeout. The size of the
underline and strike-out rules comes from the font metrics. It is independent of
the current line style in the DC. Spaces between underlined or stuck out words are
underlined and struck out.

You specify the number of characters to draw in lenText.. Characters are drawn
from left to right with respect to LUC. You can can make text appear at an angle
by rotating your DC. Characters can be null, so you must specify lenText.

cp is the starting point for the text.

alignChr determines where characters are positioned vertically relative to the
origin specified in cpo The possible alignments are:

sysDcAlignChrTop align the ascenderPos of the font with the origin.

sysDcAlignChrCenter align the midpoint of the x height of the font (xPos)
with the origin (this is not the same as half the height of an uppercase
letter).

sysDcAlignChrBaseline align the baseline of the font on the origin.

sysDcAlignChrDescender align the descenderPos of the font on the origin.

The default alignment is sysDcAlignChrBaseline.

ImagePoint fonts are outlines,
but you can't stroke a single
glyph outline or fill it with
patterns as you can in
PostScript.

312 PENPOINT ARCHITECTURAL REFERENCE

Part 3 / Windows and Graphics

Characters in Text

Text is composed of encoded characters. The mapping from an encoded character
to a glyph in the font is determined by the value you 'specified for the encoding
field when you opened the current font. Most encodings have the same glyphs for
the standard typewriter ASCII characters, but different encodings produce
different glyphs for "control characters" and non-English characters.

PenPoint is migrating to the Unicode universal encoding standard. PenPoint 2.0
will use the 16-bit Unicode encoding standard for all characters in use around the
world.

The space character has a width. Displaying a space advances the current point by
the font's space width. There are no other carriage control codes in text. ASCII
codes such as tab, newline, carriage return, and form feed may have characters in
them, but none of them move the current position in any other way. Even
character a may have a glyph (for example, the happy face in the IBM 850
encoding).

Spacing Text
ImagePoint uses the character widths in the font to determine how much to
advance between characters. otherExtra is an additional amount of space which it
inserts between each character. spaceExtra is an additional amount of space which
it will add to the space character. You could use these to spread out or shrink lines
of text to produce justified right margins; using otherExtra stretches out every
character, while spaceExtra only stretches out the gaps between words.

Moreover, space Char indicates the character in pText to which spaceExtra will
be added.

otherExtra and spaceExtra can be positive (to expand space) or negative (to
tighten letter spacing).

Measuring Text

You can ask for the widths of the characters in the current font with
msgDcGetFontWidths or msgDcCharMetrics, and compute the width of a text
string using this. ImagePoint computes character locations for text strings in LUC
units.

When you send msgDcDrawText, you pass in the starting point for the text in cpo
Upon return, cp contains the location of the next character to draw. You can use
this to determine more exactly the length of a string after you've drawn it.

If you want to compute the length of a string before drawing it, use

msgDcMeasureText. This takes the same SYSDC_TEXT_OUTPUT message
argument structure as msgDcDraw Text. However, it draws nothing and only
returns the new cp value.

CHAPTER 26 / THE DRAWING CONTEXT CLASS 313
ImagePoint Font Support

".. Determining How Much Text Fits

A related problem to computing the width of text is computing how much text
fits in a line. For msgDcMeasureText, you can supply a stop coordinate indicating
the point beyond which text should not appear. This is in effect the right margin
for the text. Upon return from sending msgDcMeasureText to your DC, lenText
will indicate the offset of the last character which entirely fits in the space
available. cp will be the ending coordinate of the part of the string up to len Text
which does fit. You can then send msgDcDrawText with the original cp position
and new lenText value, and know that the text will not overshoot the right margin.

msgDcMeasureText doesn't handle the space character specially; if you don't want
spaces at the start of the new line, you must check yourself to see if the
character(s) after the line break are 'spaces. msgDcMeasureText is identical to
msgDcDrawText except that the former doesn't draw and the latter does not use
the stop message argument.

Splicing Text

msgDrawText and msgMeasureText do not include the optional otherExtra
spacing after the last character. This means that isolated lines of text will have
cosmetically correct lengths, and also that underlines and strikeout lines will not
extend beyond the last character. However, if you want to splice text together to
m<1ke continuous runs of characters, use the equivalent messages
msgDcDrawTextRun and msgDcMeasureTextRun. Text views use these when
repainting so that they can redraw part of a line of text without leaving any gaps.

Finding a Glyph

When you issue a command to draw or measure text, ImagePoint has to find the
glyphs. T.~e meaning of the bytes in the text string depends on the font encoding
you specified when you opened the font.

In total, all the encodings call for hundreds of different glyphs, far more than 256.
All the standard glyphs have a well-known unique number, the same in all fonts.
This allows a font to have all the glyphs in the standard encodings in it. Not all
characters for each encoding are present in all fonts; for example, the copyright
symbol is not present in the Roman font. However, ImagePoint will search in its
system fonts for the missing characters.

Font Search Path

ImagePoint searches for missing glyphs using a standard path. If it can't find the
missing character, it tries to find it in Sans Serif, Courier, and Symbol. If it still
can't find the character, it displays the missing symbol glyph (a square with a white
diamond in it). '

The font search mechanism is very useful. By selecting the appropriate encoding
you can open a single font, draw text with glyphs that aren't in that font, and rely
on the font machinery to find those characters.

26.12.13

26~ 12.13.1

PenPoint 2.0 will support
Unicode, a single encoding
standard that endcodes most
alphabets in use around the
world.

314 PENPOINT ARCHITECTURAL REFERENCE
Part 3 I Windows and Graphics

It's also nice when you create your own font, since it only needs to contain the few
characters you want to handle specially. The font machinery will find any
characters missing from your font: they may not blend aesthetically with your
font, but they won't be missing.

.. Metrics and Encoding

The font metrics passed back by msgDcGetFontMetrics do not take into account
the sizes of characters which will be substituted from other fonts. For example, if
you open Sans Serif using the sysDcEncodeIBM850 encoding and ask for the
font metrics, some of the characters will be very tall and deep on account of the
line draw characters, but this won't be accounted for by the metrics because those
characters are only available in a monospaced font.

However, msgDcGetFontWidths and msgDcGetCharMetrics do take into
account the characters that are substituted from the font search path.

Loading the Font Cache

ImagePoint creates bitmaps of glyphs at the right size and with the right attributes
from font outlines. After rendering a bitmap, the font machinery keeps the bitmap
in a font cache.

The time it takes to create a bitmap from an outline is noticeable: the time to
draw a character from the font cache is much smaller. If you want to get text to
appear without delay, you can preload the characters in the font cache. For
example, in a presentation program, you might be willing to have a delay between
prepared images, but then want text to draw quickly onto the screen.

You do this by sending msgDcPreloadText to your DC. msgDcPreloadText takes
the same SYSDC_TEXT_OUTPUT structure as msgDcDrawText. It prepares the
text and loads it into the cache, but it doesn't render the characters (nor does it
compute the new starting point). If the message arguments or pText are null, it
preloads a default set of upper- and lowercase Latin characters.

IfPenPoint runs low on memory, it discards the font cache. The font machinery
will allocate a new font cache the next time it needs to render a character.

Bitmap Fonts

Some fonts also have bitmaps of characters for some low resolutions. If a bitmap is
available at the right size, ImagePoint will use it instead of the outline. The font
machinery still renders the bitmap into the cache.

You can use FEDIT, the PenPoint Font Editor, to add bitmaps to an outline file.
You should not modify the built-in fonts. If you're interested in acquiring or
modifying other commercial fonts for PenPoint, contact GO Developer Support
for more information.

26.12.15.1

CHAPTER 26 / THE DRAWING CONTEXT CLASS 315

ImagePoint Font Support

Improving Performance 26.12.16

Font State 26. 1 ~2. 16. 1

If you need to switch between different fonts frequently, you can use
msgDcPushFont and msgDcPopFont. These are similar to msgDcPush and
msgDcPop, except they get and restore only the font state (current font and font
scale). Open one font, establish the font scale, then store the font state by
declaring a SYSDC_FONT_STATE structure and passing its address to
msgDcPushFont. Repeat this for the other fonts and sizes needed, and then use
msgDcPopFont to switch to a font. This is faster than sending msgDcOpenFont.

Chapter 27 / The Picture
Seglllent Class

When you draw in a window, you send a stream of messages to its drawing context

telling it what to draw. Often, to repaint or print your window's contents, you must
send the same stream of messages. Picture segments are drawing contexts which

remember the drawing messages they receive, thus saving you from much of the

burden of redrawing. Picture segments also let you reorder or change their elements.
You can store a picture segment for later use, and the same picture segment can be

drawn into many different windows.

clsPicSeg inherits from clsSysDrwCtx. Thus you bind a picture segment to a window

and draw in it exactly as you would with a DC. The picture segment stores certain
drawing messages it receives.

The unbundled DrawingPaperTM application uses a component that uses a picture

segment to store and redisplay graphic objects, and also to perform some editing
operations. The Fax Viewer, another unbundled application, uses a picture segment to

draw the FAX image and the user's notations. The FAX image itself in a separate TIFF

file maintained by a separate TIFF object, which the picture segment asks to paint.

Table 27-1 summarizes the messages clsPicSeg defines.

msgN ewDefaul ts

msgNew

msgPicSegGetMetrics

msgPicSegSetMetrics

msgPicSegSetFlags

msgPicSegGetFlags

msgPicSegDelta

msgPicSegGetGrafic

msgPicSegSetCurrent

msgPicSegGetCurren t

msgPicSegGetCount

msgPicSegSizeof

P _PIC_SEG_METRICS

P _PIC_SEG_METRICS

S32

P_S32

P _PIC_SEG_GRAFIC

P _PIC_SEG_GRAFIC

S32

P_S32

P_S32

P _PIC_SEG_GRAFIC

Initializes a PIC_SEG_NEW structure to default
values.

Creates a new picture segment.

Passes back the metrics of the picture segment.

Sets the metrics of the picture segment.

Sets the picture segment flags.

Gets the picture segment flags.

Changes the current grafic.

Gets the current grafic.

Sets the current grafic index.

Gets the index of the current grafic.

Gets the number of grafics in the picture segment.

Returns the size of the specified grafic's pData, in
bytes.

318 PENPOINT ARCHITECTURAL REFERENCE
Part 3 ! WindOW'$ ~"d Gr~ph!cs

Mess<tse

msgPicSegScale Units

msgPicSegTransform

msgPicSegPaint

msgPicSegDrawSpline

msgPicSegDrawObject

msgPicSegPaintObject

msgPicSegDrawGrafic

msgPicSegDrawGraficlndex

msgPicSegDrawGraficList

msgPicSegAddGrafic

msgPicSegErase

msgPicSegDelete

msgPicSegRemove

msgPicSegMakeInvisible

msgPicSegMake Visible

msgPicSegCopy

msgPicSegHitT est

msgPicSegChangeOrder

MESSAGE

MAT

pNull

P _PIC_SEG_SPLINE

P _PIC_SEG_GRAFIC

S32

P _PIC_SEG_LIST

P _PIC_SEG_GRAFIC

pNull

S32

S32

S32

S32

OBJECT

S32

Developer's Quick Start

DescriptlQn

Scales all coordinates in the picture segment from
the old units to the new units, then sets the units
of the picture segment to the new units.

Transforms all coordinates in the picture segment
database with the provided matrix.

Redraws all of the grafics in the picture segment.

Adds a spline grafic to the end of the picture
segment display list and draws it by sending
msgPicSegPaintObject.

Adds an arbitrary object to the picture segment
display list and draws it by sending
msgPicSegPaintObject.

The picture segment sends this message to its
grafics to cause them to draw themselves.

Draws a specified grafic.

Sets the current grafic index to the specified value and
draws the grafic associated with the index.

Draws all the grafics referred to by the list.

Adds a grafic to the picture segment and draws the
grafic.

Deletes all gtafics.

Deletes the grafic having the specified index, and
sends msgDestroy to the grafic object.

Deletes a grafic, takes a grafic index. Does not send
msgDestroy to the grafic object.

Makes the given grafic invisible.

Makes the given grafic visible.

Copies the contents of the specified picture segment
to self.

Passes back the index of the first grafic that intersects
a specified rectangle.

Changes the order of the grafics in the display,
moving the current grafic to the given index.

You create a picture segment much as you create a drawing context, and bind it to
a window as usual using msgDcSetWindow. The picture segment's own msgN ew
arguments are flags indicating if the picture segment should paint and if it should
store (both are set by default).

CHAPTER 27 / THE PICTURE SEGMENT CLASS 319

Thereafter, just send ordinary clsSysDrwCtx messages to the picture segment.
They will appear in the window it is bound to, and the picture segment will
remember them. When you wish to paint or repaint the picture segment's
window, send it msgWinBeginPaint or msgWinBeginRepaint as appropriate,
and then send msgPicSegPaint to the picture segment.

Grafics 27.2

A picture segment stores each figure drawing message sent to as a grafic. A grafic
is a compressed representation of some drawing operation which actually puts
something on the screen. Each grafic is composed of an opcode identifying the
drawing operation, and a pointer to the data required by that drawing operation.
Different drawing operations require different data, just as different DC messages
take different message ~rguments. Here's the structure of a PIC_SEG_GRAFIC:

typedef struct
OP CODE opCode;
P UNKNOWN pData;

}PIC_SEG_GRAFIC, FAR * P PIC_SEG_GRAFIC;

Since drawing operations correspond to DC messages, for the most part there is a
one-to-one correspondence between DC drawing messages and grafics. As a
picture segment receives DC drawing messages, it stores them as grafics and passes
them to its ancestor (so that they appear in the window). clsPicSeg also responds
to a few drawing messages of its own. Here are the drawing messages which add a
grafic to a picture segment, together with the grafic's opcode and data type:

Grafics

Table 21,,2

Drawing Allessages Corres

msgDcDrawEllipse opCodeEllipse

msgDcDrawRectangle opCodeRectangle

msgDcDrawPolyline opCodePolyLine

msgDcDrawPolygon opCodePolygon

msgDcDrawSectorRays opCodeSector Rays

msgDcDrawi\rcRays opCodekcRays

msgDcDrawChordRays opCodeChordRays

msgDcDrflwBezier opCodeSpline

msgDcDrawllext opCodell ext

msgDcDrawImage not implemented

msgPicSegDrawSpline opCodeSpline

msgPicSegDrawObject opCodeObject

to Pictui"e Segmeilt Grafics --

P _PIC_SEG_ELLIPSE

P _PIC_SEG_RECll

P _PIC_SEG_POL YLINE

P _PIC_SEG_POLYGON

P _PIC_SEG_AAC_RAYS

P _PI C_S EG_AAC_RAYS

P _PIC_SEG_AAC_RAYS

P _PIC_SEG_SPLINE

P _PIC_SEG_llEXll

P _PIC_SEG_SPLINE

P _PIC_SEG_OBJECll

320 PENPOINT ARCHITECTURAL REFERENCE
Part 3 / Windows and Graphics

The data storage structure is the way the information is stored in the grafic, not
the argument to the drawing message. The drawing messages take the usual
arguments. The storage type is interesting if you want to edit picture segments.

The picture segment drawing message msgPicSegDrawSpline is a special messages
implemented by picture segments to draw splines. This is an enhancement to the
drawing messages of ImagePoineM

• You can use clsPicSeg instead of
clsSysDrwCtx solely to gain access to the additional drawing capabilities.

Picture segments provide a means to draw other figures besides the various
ImagePoint primitives and splines. You can add an object to a picture segment
using msgPicSegDrawObject, so long as that object responds to msgPicSegPaint.

Picture segments do not support msgDcDrawlmage.

Coordinates

Most grafics require one or more coordinates as part of their data. DC drawing
messages take 32-bit coordinates (532). Picture segments convert these to 16-bit
coordinates (516) to save memory.

If you use small units and scales and computed coordinates, you end up with
coordinate values greater than maxS16 or less than minS16 (32767 and -32768,
respectively). These values won't work as expected if you switch from a drawing
context to a picture segment.

DC State
Messages which change DC state, such as msgDcSetLine Thickness,
msgDcSetForegroundRGB, and msgDcSetFillPat, are not stored as grafics in a
picture segment. Instead, every grafic encodes some of the graphics state along
with its drawing operation. The advantage is that you can reorder grafics and draw
individual grafics without having to set up the DC state up for each one. The
entire DC state is not stored with each grafic because of the size of the DC state
(hundreds of bytes) . .

Paint

Most grafics encode interesting DC state in a PIC_5EG_PAINT structure:

typedef struct
U16 linePat,

fillPati
SYSDC RGB foregroundRGB,

backgroundRGBi
U16 lineThickneSSi

PIC_SEG_PAINT, FAR * P_PIC_SEG_PAINTi

Note that line parameters such as join, cap, and miterLimit are not in this
structure, since they are only relevant for polylines, polygons, splines, and beziers.
The data types for these line drawing operations store this information in a
PIC_5EG_PLINE_ TYPE structure.

CHAPTER 27 / THE PICTURE SEGMENT CLASS 321

Some DC State Not Stored

Picture segments don't record several aspects of DC state, including:

• Plane control.

• Raster ops.

• Drawing context mode.

It is not a good idea to use these in the midst of sending drawing messages to a
picture segment, since they will not be recorded in the picture segment. The
picture segment inherits these parts of the graphic state. You should set these once
for the window to which the picture segment is bound, and then leave them alone
while drawing. Note that the picture segment stores LUC matrix and units with
each grafic, so you can change the LUC while recording grafics.

Colors

You should not use hardware color palette indices (SYSDC_COLOR) when setting
foreground and background colors. These are hardware-dependent and won't work
when printing, so picture segments store RGB values in PIC_SEG_PAINT and not
SYSDC_COLORs. In other words, use msgDcSetForeground/BackgroundRGB
instead of msgDcSetForegroundl BackgroundColor.

Text AHributes

clsPicSeg does not store all of the text-specific DC state with text grafics. It stores
the font spec, alignment, underline, and strikeout, but to save space it does not
store more obscure text attributes such as spaceChar, space Extra, otherExtra. It
uses the default values for these.

Although clsPicSeg does not store DC scaling, it does store text scaling set by
msgDcScaleFont and msgDddentityFont. It does this by storing the current
size (width and height) of the text in LUC at the time of msgDcDrawText. It
remembers this as a SIZE16, not as an SCALE32; thus the picture segment drops
fractional text scales and won't work at all if the scale is below 1.

To help clients display grab handles around text quickly, clsPicSeg calculates
the bounding rectangle of the text and stores it in the rectangle field of
PIC_SEG_ TEXT.

rr Picture Segment Storage

A picture segment stores its grafics (both opcodes and data) in the object's heap.
You can specify a heap in the object.heap of the PIC_SEG_NEW structure when
you create a picture segment. By default the heap is the OSProcessHeap of the
object's owner.

DC State

27.3.1.1

27.3.1.2

'27.3.1.3

322 PEN POINT ARCHITECTURAL REFERENCE

Part 3 I Windows and Graphics

Using Picture Segments

Creating a Picture Segment

The msgNew argument for clsPicSeg is a pointer to a PIC_SEG_NEW structure.
This includes the msgNew fields for clsSysDrwCtx, and a PIC_SEG_METRICS

structure. The PIC_SEG_METRICS structure contains:

• flags flags include:

• picSegAdd whether the picture segment should remember drawing
operations by adding grafics (default is true).

• picSegDraw whether the picture segment should paint by passing
drawing messages to its ancestor (default is true).

• Many attributes of the DC, including the fill pattern, line pattern, units,
foreground and background RGB values, line style, and font spec. The
picture segment sets these (remember, it is itself a drawing context), and new
grafics will use these values until you change them.

Drawing in a Picture Segment

clsPicSeg passes all clsSysDrwCtx messages that it receives to its ancestor. As
explained above, it stores drawing operations and keeps track of most the current
graphics state.

If you need to paint or repaint the entire contents of a picture segment:

• Send its window msgWinBeginRepaint (if you are repainting damage) or
msgWinBeginPaint (if you are painting outside a repaint handler).

• Send msgPicSegPaint to the picture segment.

The picture segment replays its grafics in the order you sent the original drawing
messages.

To change the contents of a picture segment, you can send it msgPicSegErase to
delete all its grafics, then draw new ones. This chapter later describes how you can
edit a picture segment rather than erase and start over.

If the window changes size, or if you are drawing the picture segment in part of a
window and wish to draw it elsewhere, you can change the scale, translation, and
rotation of the DC before redrawing the picture·segment.

Picture Segment Drawing Messages

There are a few special drawing messages supported by clsPicSeg which aren't
implemented by clsSysDrwCtx. These end up sending standard DC drawing
messages to self, but are more convenient to use.

CHAPTER 27 / THE PICTURE SEGMENT CLASS 323
Using Picture Segments in Graphics Applications

".,. msgPicSegDrawSpline

This message draws a spline in the window. A spline is a series of Bezier curve
control points. SysDC's msgDcDrawBezier allows you to draw a spline, but is
limited to a single curve with four control points; to draw a continuing path with
it you must send multiple msgDcDrawBezier messages.

21.4.3.1

'Jv Drawing Other Obiects in Picture Segments 27.4.4

Picture segments provide a means to draw other figures besides the various SysDC
primitives and splines. You can add an object to a picture segment using
msgPicSegDrawObject, so long as that object responds to msgPicSegPaintObject.
This takes a PIC_SEG_OBJECT as its message arguments. In the PIC_SEG_OBJECT,

you specify:

paint the paint to use.

object the object to draw and store.

rectangle the rectangle in which to draw the object.

The picture segment sends msgPicSegPaintObject to object, whose arguments
include a DC to use to draw itself. If object responds to msgPicSegPaintObject, it
can be stored in a picture segment and will redraw properly.

Of course, if you subclass clsPicSeg and you recognize the class of the object, you
can manipulate it directly.

Drawing Obiects Outside Picture Segments

If an object responds to msgPicSegPaint, msgPicSegGetGrafic, and
msgPicSegDelta, then you can send it these messages to draw itself outside a
picture segment. For example, you can tell a TIFF object to draw in your own
window without using a picture segment.

Building up a Picture Segment
It's possible to add grafics to a picture segment without drawing them, using
msgPicSegSetMetrics or msgPicSegSetFlags to reset the picSegDraw flag.
Conversely, you can draw in a window without adding to a picture segment by
clearing the picSegAdd flag. The latter is useful to draw a grid or background in
the window.

Using Picture Seglllents in Graphics
Applications
clsPicSeg supports several features which enable it to do much of the work needed
for a vector drawing application component. The picture segment acts as a display
list of the graphic display objects in the drawing, and the drawing program
provides a user interface for the addition, reorganization, and modification of
these objects.

27.4.4.1

27.5

324 PEN POINT ARCHITECTURAL REFERENCE

Part 3 / Windows and Graphics

Editing a Picture Segment
A picture segment is an ordered list of grafics. It's like a stack of cards where each
card is a grafic. You can count cards, shuffle cards, move cards, and delete cards.
Each grafic has an associated index, a signed 32-bit number. You can send
msgPicSegGetCount to determine how many grafics are in a picture segment.

For all messages which take a grafic index as a message argument, if you supply
picSegTopGrafic, the message affects the last grafic in the picture segment.
picSegTopGrafic is a constant with a special meaning to clsPicSeg. It is not the
maximum number of grafics you can store in a picture segment (which is limited
only by available memory).

You can repaint a particular graflc by sending msgPicSegDrawGraficIndex
(afterwards the current graflc is set to that grafic). You can delete a particular
graflc by sending msgPicSegDelete (afterwards, the current graflc is the topmost
grafic again).

The Current Grafic
clsPicSeg always adds new graflcs at the end of the display list. However, picture
segments keep track of the current grafic. You can set the current grafic using
msgPicSegSetCurrent.

msgPicSegGetGrafic retrieves the current graflc in a PIC_SEG_GRAFIC structure.
This includes a pointer (pData) to the data structure appropriate for the type of
graflc.

Note that clsPicSeg allocates the memory for the graflc-dependent data structure
from the process heap, but it is up to the client to free it with OSHeapBlockFreeO.

msgPicSegDelta changes the current grafic. It also takes a P _PIC_SEG_GRAFIC as
its message arguments.

To edit a graflc you must:

• Send msgPicSegSetCurrent to set the current grafic to the one you wish
to edit.

• Send msgPicSegGetGrafic to retrieve that grafic.

• Cast data pointer (pData) into the appropriate type (e.g.
P _PIC_SEG_ELLIPSE) and modify it.

• Send msgPicSegDeltaGrafic.

• Free the data pointed to by pData using OSHeapBlockFreeO ..

If you have a PIC_SEG_GRAFIC, you can paint it by sending
msgPicSegDrawGrafic. This never adds the grafic to the pictl;lre segment, it only
paints it in the window (if picSegDraw is set). This is useful if you want to redraw
a grafic slightly differently.

27.5.2

CHAPTER 27 I THE PICTURE SEGMENT CLASS 325
Using Picture Segments in Graphics Applications

To replace a grafic, you need not retrieve it, only:

• Send msgPicSegSetCurrent to set the current grafic to the one you wish to
replace.

• Declare or allocate a data structure of the appropriate type and set it up as
desired.

• Send msgPieSegSetGrafie, specifying the opeode and pData, to replace the
grafic.

msgPicSegChangeOrder moves the current grafic to the index you specify. This
effectively moves a grafic in front of or in back of other grafics.

Drawing by Adding Grafics
You can use msgPicSegAddGrafic to add a grafic to a picture segment. This will
also draw the grafic, so it accomplishes the same thing as using a SysDC drawing
message. msgPicSegAddGrafie is useful if you already have the opcode and data
for a grafic available and want to add it. For example, you might be duplicating
grafics, or copying grafics between picture segments.

Correct Opcode

When you use msgPicSegSetGrafie, msgPieSeglnsert, or msgPicSegAddGrafie,
you must ensure that the opcode and data are correct for each other and that the
opcode is valid. If clsPicSeg does not recognize an opcode, it ignores it or returns
an error.

Hit Testing a Picture Segment
You can send msgPicSegHitT est to a picture segment to determine if a grafic falls
within a rectangle. You can use this to see if something is selected by a user's pen
tap or selection rectangle. msgPicSegHitT est takes a pointer to a
PIC_SEG_HIT _LIST structure. In this you specify:

reet rectangle for the hit detection.

index the index of the starting grafic.

clsPicSeg traverses the picture segment from top to bottom, starting at the index
you supply (use picSegTopGrafie to start at the very top). It checks each grafic to
see if it intersects the RECT32 you supply. It passes back the index of the first grafic
it finds that intersects your rectangle. It returns the same status values as do
drawing messages when hit testing is on:

stsHitOn if the rectangle intersects the edge of the figure.

stsHitin if that grafic's fill is non-transparent and the rectangle intersects its
center.

stsHitOut if no grafic intersects the rectangle.

You must send msgWinBeginPaint to the window before using
msgPicSegHitTest, and msgWinEndPaint after it.

27.5.4

326 PEN POINT ARCHITECTURAL REFERENCE

Part 3 / Windows and Graphics

Invisible Grafics
msgPicSegMakelnvisible marks a grafic so that the picture segment does not draw
it during msgPicSegPaint.

Invisibility is controlled by the opCodeMaskInvisible flag bit in the grafic's
opcode. To find out if a grafic is invisible, use msgPicSegGetGrafic to get it and
check the opCodeMaskInvisible bit.

Converting to Other Formats
You can convert a picture segment into some other vector drawing file format by
getting each grafic from the picture segment in turn and converting it to the other
format.

What Picture Segments DON'T Do
clsPicSeg does not do everything needed for a graphics application. Here is an
incomplete list of what it does not support:

• Selections.

• Highlighting.

• Selection handles.

• Input processing, gesture translation (these would be up to the window to
which you bind the picture segment).

Moving and Copying Picture Segments
You can move and copy grafics in picture segments using the selection manager
and transfer mechanism. clsPicSeg does none of the work for this,. since it doesn't
handle selections.liowever, if you do provide a way for the user to select, delete,
and add grafics in your picture segment, you should probably implement this
protocol so that the user can cut and paste between it and drawing paper.

The following sections discuss the selection transfer of picture segment grafics.
The discussion describes what the sender of the selected grafics and the receiver of
the selected grafics each must do to implement a move or copy.

There is a special transfer type for picture segments, xferPicSegObject:. If as sender
you are asked for transfer types msgXferList, your XferAddldsO response should
include xferPicSegObject as well as any other formats in which you can provide
the selection.

Sender Responsibilities

As sender of the selected grafics, you receive msgXFerGet. The way to transfer the
selected grafics is to pass a picture segment to the receiver. Since the receiver may
be in a different process, you need to create a global heap and create a global
picture segment which uses that heap. This is the intermediate holder for the
transferred grafics.

27,,5.5

CHAPTER 27 / THE PICTURE SEGMENT CLASS 327
Moving and Copying Picture Segments

Set the id in msgXFerGet's XFER_BUF structure to xferPicSegObject, and set the
uid field to the UID of the transfer picture segment.

You should put the selected grafics in the provided transfer picture segment. To do
this, for each selected grafic send msgPicSegSetCurrent and msgPicSegGetGrafic
to your normal picture followed by msgPicSegAddGrafic to the transfer picture
segment.

If the operation was a move, the producer will receive msgSelDelete, and should
delete the selected grafics.

Receiver Responsibilities

As the receiver, you send msgXferList to the producer when you receive
msgSelMoveSelection or msgSelCopySelection. You can use XferMatchO to do
this and to check to see that one of the types is xferPicSegObject. Then send
msgXferGet, specifying an id of xferPicSegObject. As described above, the
producer should pass back a global intermediate picture segment.

You need to scale the transferred grafics to the units of your picture segment. Send
msgPicSegScaleUnits to the intermediate picture segment, passing in the message
indicating your picture segment's units (e.g. msgDcUnitsPoints). To perform the
copy, self-send msgPicSegCopy, specifying the intermediate picture segment as
the message argument.

27.6.2

Chapter 28 / Bitmaps and TIFFs

Everything which appears on screen is an instance of clsWin or of one of its
descendant class. For example, every class in the UI Toolkit is a descendant of
clsWin. Another popular window descendant class is clsView, which is a window
which observes another Class Manager object. The UI Toolkit is documented in
Part Four, and clsView is documented in Part 2: PenPointApplication Framework.

This chapter documents some other clsWin descendants and other classes which
provide additional functionality to the basic window:

• Bitmaps, which store sample values .

• TIFF objects, which display the contents of a TIFF bitmap file.

'Bitmaps
clsBitmap provides a way to store -the information used by msgDcDrawlmage
and msgDcCachelmage. This information is primarily the samples which these
sampled image operators draw. clsBitmap also supports a limited range of
operations on the bitmap information, mainly to support the PenPoint Bitmap
Editor. This tool is on the SDK Goodies disk and is documented in the PenPoint
Development Tools volume.

GO may change the format of the bitmap pixels, so you should not access them in
a way that relies on their format.

The image in an icon (a UI toolkit gadget of clslcon) can be specified as a bitmap
object. Table 28-1 summarizes the messages clsBitmap defines:

msgN ewDefaults

msgNew

msgBitmapGetMetrics

msgBitmapSetMetrics

msgBitmapSetSize

msgBitmapInvert

msgBitmapLighten

msgBitmapFill

msgBitmapCacheImageDefaults

P _BITMAP _NEW

P _BITMAP _NEW

P _GET_METRICS

P _BITMAP_METRICS

P_SIZE16

pNull

pNull

RGB

Initializes BITMAP_NEW structure to default values.

Creates a bitmap.

Gets bitmap metrics.

Sets bitmap metrics.

Sets bitmap size, resizing heap block if necessary.

Inverts the colors of the bitmap.

Lightens the colors of the bitmap by 114.

Fills bitmap pixels with specified RGB value leaving
mask alone.

Prepares argument structure for msgDcCacheImage.
c:ontinued

330 PENPOINT ARCHITECTURAL REFERENCE
Part 3 I Windows and Graphics

Message Takes

Table 28-1 (continued)

Description

Observer Notification

msgBitmapPixChange

msgBitmapChange

msgBitmapMaskChange

P _BITMAP_PIX_CHANGE

pNull

Sent to observing objects if a pixel is dirty.

Sent to observing objects if bitmap has changed.

pNull Sent to observing objects if bitmap's mask has changed.

",. Creating a New Bitmap
You send msgNew to clsBitmap to create a bitmap. This takes a BITMAP_NEW

structure which you should initialize with msgNewDefaults. You also specify:

style various style flags.

size the size of the bitmap.

pPixels a pointer to the samples.

clsBitmap copies the samples from pPixels into memory which it allocates.

",. Using a Bitmap
In fact, you rarely create bitmaps yourself. Usually you read bitmaps from resource
files, since the Bitmap Editor saves bitmaps as resources. The tag for bitmaps is
bitmapResId.

Having created a bitmap, you usually want to get it on the screen in some form.
The way to do this to send it msgBitmapCacheDefaults. This takes a pointer to
the SYSDC_IMAGE_INFO structure used by msgDcDrawImage. clsBitmap fills in
the structure with default values so that you can send it to msgDcDrawImage,
and the sampled image stored in the bitmap will be drawn in the window.

",. Modifying
You can change a bitmap's size using msgBitmapSetSize. clsBitmap frees the
memory for the bitmap.

You can change bitmap metrics by sending msgBitmapSetMetrics. This is
probably a bad thing to do since it (currently) doesn't resize or reallocate the
bitmap.

Bitmaps are not windows. You can't bind a DC to them. However, it is possible to
perform some graphic operations on them:

• You can invert a bitmap by sending it msgBitmapInvert.

• You can lighten a bitmap by 25% by sending it msgBitmapLighten.

• You can fill a bitmap with a color by sending it msgBitmapFill.

You can't lighten or fill a one bit per sample (black and white) bitmap.

28.1.1

28.1.2

28.1.3

CHAPTER 28 / BITMAPS AND TIFFS 331

clsTiff

Notifications
clsBitmap defines several observer notification messages which it sends to the
observer of a bitmap when it changes: msgBitmapPixChange,
msgBitmapChange, and msgBitmapMapChange. These are mainly used by the
Bitmap Editor.

28.1.4

clsTiH 28.2

clsTiff displays TIFF (Tagged Image File Format) images. An instance of clsTiff
refers to a pathname to a TIFF file, so the file must be in that location in order for
the clsTiff object to display its image. The class displays the TIFF image in the file.

TIFF objects are not windows. clsTiff inherits from clsObject, not clsWin.

The TIFF specification encompasses many different flavors of TIFF files. clsTiff
handles many (but not all) variants. It handles Intel and Motorola byte order,
packed data (1, 2, 4, or 8 samples per byte), fill order, orientation, photometric
interpretation, and dot size. It supports Type 1 (packed data), Group 3 FAX
encodings (types 2 and 3), and pack bits run-length encoding (type 32773).

clsTiff assumes the image is black and white or gray-scale; it does not support
color images or colormap (pseudocolor) images.

Table 28-2 summarizes the messages clsTiff defines.

Tabl~; 28&'2

clsTiff Messages

msgN ew Defaults

msgNew

msg Tiff Get Metrics

msg TiffSetMetrics

msg TiffSetGroup3Defaults

msg TiffGetSizeMils

msgTiffGetSizeMM

msgPicSegPaintObject

msg TiffSave

msg TiffGetRow

P_TIFF_NEW

P_TIFF_NEW

Initializes a TIFF_NEW structure to default values.

Creates a new TIFF object, and optionaly opens its
associated file.

P _TIFF _METRICS Passes back the metrics of the clsTiff object.

P _TIFF _METRICS Sets the metrics of the clsTiff object.

P _TIFF _SAVE Sets the clsTiff object metrics to Group 3
compression type 2 defaults.

P _SIZE32 Provides the actual size of the TIFF image in mils
(0.001 inch).

P _SIZE32 Provides the actual size of the TIFF image in
millimeters.

Urt"'ll'VV'llnN and Confrol Messages
,---,,,,,,-,,,,,,,,,,,,,,,,,,,-

P _PIC_SEG_PAINT_OBJECT Renders the TIFF image with a specified drawing
context object.

P _TIFF _SAVE Saves a the image as a TIFF file.

U32 Sent to the client of the TIFF _SAVE to get the next
row of the image.

332 PENPOINT ARCHITECTURAL REFERENCE
Part 3 I Windows and Graphics

Creating a New TIFF Obiect
You send msgNew to clsTiff to create a new TIFF object. Before doing this you
should probably have a TIFF file around, one that you have created yourself or are
importing.

You declare a TIFF_NEW structure. In the usual manner, one of the fields in this is
tiff, a TIFF_NEW_ONLY structure, in which you specify:

pN arne the pathname to the TIFF file.

imageFlags a subset ofSYSDC_IMAGE_FLAGS.

rectangle the origin and size you want the TIFF image to be.

The only valid SYSDC_IMAGE_FLAGS are sysDcImageFillWindow and
sysDcImageLoFilterlsysDcImageHiFilter. clsTiff passes these on to
msgDcDrawImage when it paints the TIFF object.

By default only sysDcImageFillWindow is set in tiff.imageFlags, and the origin
and size of the image are zero.

clsTiff creates a TIFF object. If tiff.pName is not null, it tries to open the named
TIFF file. If sysDcImageFillWindow is set, cis Tiff passes back the natural size of
the TIFF image in Mils in tiff.rectangle. (Remember, the TIFF image is not
associated with a window or DC, so there's no obvious LUC or L WC coordinates
to use.)

TIFF Image Metrics
msg TiffGetMetrics passes back information about the TIFF file. This takes a
pointer to a TIFF_METRICS structure. As well as the file name, rectangle, and flags,
clsTiff also passes back a wealth of information about the TIFF image in the file,
including:

• orientation.

• width and length.

• xResolution and yResolution, and the resolution Units.

This information is very technical and you'll need the complete TIFF file
specification to make sense of it. The TIFF specification is maintained by and
available from Aldus Corporation of Seattle, Washington (USA). You can contact
Aldus through their forum on CompuServe or their developer's bulletin board on
AppleLink.

You can set the metrics of the TIFF object and its image using msgTiflSetMetrics.
Note that indiscriminately modifying TIFF parameters without changing the
TIFF file will undoubtedly cause problems. The only safe TIFF file metrics to
change are the orientation, pDocumentNarne, and a few others.

Repaint
A TIFF object repaints when it receives msgPicSegRedraw. Since a TIFF object
isn't a window and isn't bound to one, you must pass in a drawing context as the

28.2.1

28.2.3

CHAPTER 28 I BITMAPS AND TIFFS 333

message argument to msgPicSegRedraw. You should bracket the send of
msgPicSegRedraw with either a msgWinBeginRepaint/msgWinEndRepaint or
msgWinBeginPaint/msgWinEndPaint pair sent to the DC's window.

To paint the TIFF image, clsTiff uses msgDcDrawlmage. It sets
msgDcDrawlmage's sysDclmageFillWindow, sysDclmageLoFilter, and
sysDclmageHiFilter flags to the values you specify. If you set
sysDclmageFillWindow, the TIFF image will fill whatever window the DC is
bound to. Otherwise, the TIFF image will be painted at the location and size you
specified in its metrics (rectangle). The coordinates in rectangle are interpreted in
the DC's LUC.

sysDclmageLoFilter and sysDclmageHiFilter control how much filtering the
system drawing context performs when it draws the pixels of the TIFF image. See
Chapter 25, The Drawing Context Class, for more information on
msgDcDrawlmage.

TIFF Images in Picture Segments

You can use TIFF objects with picture segments. msgPicSegDrawObject will add
and draw a TIFF object in the picture segment. So that it works in a picture
segment, clsTiff responds to msgPicSegPaintObject by drawing itself.

Filing

clsTiff saves and restores its instance data. However, it does nothing with the
separate TIFF file. It is up to the client of the TIFF object to maintain this file,
copying it as necessary.

Destroying

Likewise, when. a TIFF object receives msgFree, it does not delete the separate
TIFF file. If the TIFF file is in the document's directory, then the PenPoint
Application Framework will delete it when the document is deleted from the
Notebook.

clsTiff

28.2.4

Chapter 29 / IlI1agePoint
Rendering Details

This chapter discusses some low-level implementation details of the ImagePoint™

rendering mechanism. The information is technical and presented primarily for
developers working on graphics applications. The chapter covers the following
topics:

• Logical unit coordinates.

• Logical device coordinates.

• Line, rectangle, and polygon rendering.

• Line thickness issues.

• Differences from earlier releases.

Logical Unit Coordinate (LUC)
A logical unit coordinate system is an integer grid with the integer coordinate
pair positioned at the intersection of a pair of gridlines. The gridlines have no
thickness. Lengths measured from a given point starts at such an intersection. This

model applies to both figure rendering and clipping region construction.

ImagePoint defines an ellipse by the origin and size of its bounding rectangle.
Figure 29-1 illustrates drawing an ellipse whose bounding rectangle has origin
(1, 1), width 5, and height 4.

A

-----,----- --- - .-.-

29.1

336 PENPOINT ARCHITECTURAL REFERENCE
Part 3 / Windows and Graphics

Logical Device Coordina.e (LDC)
Throughout this chapter, it will. be helpful to consider a coordinate system that is
similar to the window system's L WC, but whose orientation is that of the LUC.
This system is the logical device coordinate system, or LDC. It is obtained by
transforming an LUC by theLTM and USC, where:

• LTM is the logical transformation matrix computed as a result of an
application issuing any number of msgDcIdentity, msgDcRotate, msgScale,
msgDcScale World, msgDcTranslate, and msgDcSetMatrix to the DC in
question.

• USC is a scaling matrix computed as a result of an application issuing any
one of the msgDcUnits ... messages. The USC establishes the LUC scaling to
that of the device, measured by the width of a pixel.

You can think of the LDC as a virtual display surface mapped onto your LUC
where one unit equals one hardware pixel. In device unit scaling, the LDC is
identical to the LUC.

An LUC not in device units usually produces fractional values when transformed
to the LDC. To arrive at an integer LDC value a LUC coordinate is transformed
into fractional LDC and then snapped to an integer LDC in the direction of
(toward) the IDC origin. Put simply, ImagePoint truncates toward the LDC
(hence LUC) origin. One can think of the LDC system as one in which the
integer coordinates are placed at the the lower-left hand corner of pixel
boundaries. More precisely, a pixel at (x,y) is a half-open region containing the
points [x, x+ 1) X [y, y+ 1).

The rendering details discussed in the following sections will use the LDC as the
frame of reference. In other words, where a drawing primitive takes LUC
parameters, the result figure will be invariant under different rotations of the
screen.

A word of caution: ImagePoint uses fixed point arithmetic in the construction of
these matrices as well as coordinate transformations. A fixed point, f, is a 32-bit
number encoding the real number 6S{36. Fixed point arithmetic is fast but limited
in precision and prone to propagation of errors due to rounding. Use as few steps
as possible in the construction of the LTM. For example, suppose you wish to
draw a series of squares along the x axis with unit dimensions. You can move the
origin of the square from (0, 0), to (1, 0), (2, 0), and so on, or you may choose to
translate your coordinate system by (1, 0) at each step with pre-multiplication and
always position the origin of the square at (0, 0). However, you will quickly find
that the pre-multiplication method results in gaps between the squares after a few
translations.

29,,2

CHAPTER. 29 I IMAGE POINT RENDERING DETAILS 337
Line Drawing

". Line Drawing 29.3

In drawing a line with a thickness of one pixel in LUC, the line is transformed to LDC.
In this transformation, the LUC endpoints of the ideal line are not considered. That is,
if the LUC endpoint of the ideal line is the only part of the line that intersects an LDC
pixel, that pixel is not set, as illustrated in Figure 29-2.

Figure 29M 2
End Points in One-Pixel Lines

- - -., - - - -1- -- -,. - - -., - - - -,- - - -,. - - - - - - -.,- - - -,- - - -,. - - -., - - - -,- - - -,. - - - - - - -., - - - -,- - - - r - - -., - - - -1- - - - r - - - - - - -., - - - -,- - - - r - - -., - - - -,- - - - ... - - --
, , I , I I I " I 'I I I " I , I I
I , , It, I I I I I I I I I I I, I I I , I ,

::II:.:i·-.~r:: :jj:::_~~fY:: :::i':~f:: -::T::~t:
:::!~~:-:-:::!::::;:::: :::kf:j-:::: -::[::: :t:::: :::!::::t :::t::: i"::\;::t :::: :: :j:: :::::: t:::j::::i;:d::::

Horizontal and vertical lines which fall exactly between two LDC pixels set the
pixels on the increasing (that is, most positive) side of the LUC. For exampl~, in
Figure 29-3, a four-pixel line drawn along the horizontal axis sets the pixels on the
increasing side of the horizontal axis. In figure 29-3, the LUC on the left increases
its vertical coordinates in the opposite direction ofLDC (screen coordinates),
while the LUC on the right increases its vertical coordinates in the same direction
asLDC.

LDC

screen coord
~ --; ~ ~ ~ ~ ~ ~ ~ ~,~ ~ ~ ~; ~ >-: ----,- ---,'- --- r---'----,----,.---,----,----,.----t ' , I I " I I I

~ f:: -y::;:.::.i .. ::.E.:.:,: ;:::::
!.. ____ , ___ .' ____ !.. ___ .1. ___ , ____ !. ___ _
I , I , , I ,

I I I I , I I

, I I I , I

I I I , , t I r---'----,----I"---,----,----,.----
, , I I I , I

I I , I I , I ,---j--------i---i----,----,----

::: l'j'··'t-·:t··:I.: ~,:::: L ~ • _ J ___ .'. ___ L ___ J ___ .'. ___ L ___ _

I I , , I I I

, I I I I I
.. ___ ~ ____ 1 ____ .. ___ oJ ___ .'. ___ .. ___ _

I I I I I , I

1 I I I I I , , , , , ,

". Rectangular Figures Without Borders
Rectangular figures are described by an origin along with a width and a height.
They include rectangles, ellipses, sectors, and chords. A rectangular figure without
a border is one where the line width is set to zero. During rendering, the origin of
the rectangle is transformed to LDC using the procedure described in the previous
sections. The device coordinates of the opposing corner are obtained by adding
the width and height to the origin in LUC, and only then applying the matrix
transformation.

29 .. 3.1

LUC

The system draws the pixels bound by the left and the bottom edges and up to but
not including the right and the top edges. The terms top, left, right, and bottom
are all relative to the LUC, not device space. This holds true for all rotations of the
LUC. This scheme allows you to line up adjacent rectangular figures without
overlapping pixels.

The pixels on the top and right
edges are not drawn.

338 PEN POINT ARCHITECTURAL REFERENCE

Part 3 I Windows and Graphics

The implication of this model is that locations are favored over pixel metrics.
Consider an LUC in which both axes are scaled 0.35 and draw the rectangle at (0,
0) with width and height 10. The pixels drawn will be the region [0,2] X [0,2].
Now draw the same rectangle at (2, 2), the pixels drawn will be the region
[0, 3] X [0, 3]. Thus pixel metrics vary with positions (this is a change of drawing
semantics from the Developer's Release ofPenPoint™).

Clipping rectangles obey the same rule of coordinate transformations and
rendering as described above as long as the DC is rotated by one of 00

, 900
,

1800
, or 2700

• If the DC is rotated by an arbitrary angle, the resulting clipping
rectangle is the minimal bounding box of the rotated rectangle (instead of the
rotated rectangle itself-this is because ImagePoint does not yet support
non-rectangular dipping regions). More precisely, a dipping rectangle with origin
(x, y), width wand height h is transformed into the 4 corners using the LUC
coordinates (x + w, y), (x + w, y + h), and (x, y + h). The minimal bounding
rectangle is then computed using these 4 transformed points in device space.

The image operator msgDcDrawImage obeys the same semantics. However, in
the case of an arbitrarily rotated DC, ImagePoint does not guarantee that
rectangles or images adjacent to the image have no overlapping pixels.

Rectangular Figures With Borders
Rectangular figures fall into three categories: those with no border, with a one
pixel border, or with a border of more than one pixel. This section discusses
rectangular figures with one pixel borders. "Rendering Geometric Shapes With
Thick Borders," later in this chapter, di~cusses rectangular figures with borders of
more than one pixel.

The border is the lines connecting the transformed vertices. The same rules of
transformations are applied for each, but the pixels hit vary. Figure 29-4 shows the
difference between drawing a rectangle without a border and one having a one
pixel border.

29.4

Figure 29-4
Rectanges With and Without Borders

, I I , 1 I I I I • I I , I ---- '----i~~"\~~~~~-----T-----
---- -----:~~~~~~~~-----:------

:::: :::::tlt::::;::::t::::::::::I::::t:::::
:::::::~~~::::L:::

_________ L _____ '- _____ , _____ .J _____ J _____ L ___ _

I I I I I I

I I , , I 1

I I , , I I

I , I I I t I I

I , , I I I I I

, I I I I I I I

, I I I I I ---- -----j-----,------,------,-----i-----j---- • I I I I I ... _-- -----r-----,------,------'-----l-----r----
I I , I I I I I I I • I
I I , , I I I I , I I ,

Rectangle without a border Rectangle with a border

CHAPTER 29 I IMAGEPOINT RENDERING DETAILS 339
Line Width and Corner Radius Scaling

The origin depicted in both figures would have the x in [1 ... 2), and the y in
[1 ... 2). The opposite corner depicted in both figures would have the x in [6 ... 7),
and the yin [5 ... 6).

". Polygons 29.5

The difference between drawing a polygon with and without a border is quite
similar to that of rectangles. In the case of drawing a polygon without a border,
the "right-hand-side" edges are not drawn. A right-hand-side edge is defined as
follows: draw a horizontal line starting at any point on the edge except the two
end points, extending to positive infinity. If the edge in question is a horizontal
line, we use a vertical test ray extending to negative infinity. If the test ray
intersects an even number of edges (or an odd number of edges in the case of a
horizontal edge) on the polygon, it is considered a right-hand-side edge. This test
is conducted in LUC space.

Figure 29-5
Left ... Hand and Right .. Hand Edges

right

left

Figure 29-5 illustrates the test. The purpose of this scheme, as in the case of
rectangles, is to allow adjacent polygons with common edges to line up without
overlapping pixels.

The concept of "right-handedness" breaks down with self-intersecting polygons
(such as a star-shaped polygon) because a test ray from an edge intersects a
different number of edges depending on where we start the test ray. If you wish to
draw such a polygon with predictable results, you should always draw it with a
border.

Line Width and Corner Radius Scaling
The messages· msgDcSetLine Thickness and msgDcSetLine set the line width and
corner radius for subsequent drawing. This section describes how they are scaled.
The scaling algorithm for both drawing parameters are identical, therefore the
following discussion refers only to line width.

A DC maintains a logical line width scale which starts out being unity. It is scaled
by msgDcScale ,(unless explicitly held by msgDcHoldLine).1t is reset to unity by
msgDcldentity. Other DC transformations such as rotation do not affect the line
width. When msgDcScale is applied to coordinates, the x and y scaling

29.6

340 PENPOINT ARCHITECTURAL REFERENCE
Part 3 / Windows and Graphics

components are applied independently. However, in the case of line width, the
effective scale is obtained by averaging the two scaling components. This aspect of
ImagePoint is markedly different from other imaging systems such as Adobe's
PostScript, where the line width is indeed scaled independently.

We now give an example to show why ImagePoint's approach is useful. Consider a
square drawn in a point coordinate system with some ftxed dimensions. Now
consider scaling the DC with the factors 2 and 1 for x and y respectively. That is a
square becomes twice as wide along the x axis while retaining the same height
along the y axis. In a model where the line width is scaled separately for the x and
y components, we would also observe that the vertical sides of the rectangle are
much thicker than the horizontal sides. While this is mathematically "pure," it
isn't particularly useful. We prefer a model in which the line width scales
identically in both dimensions, drawing lines with uniform thickness regardless of
coordinate transformations-thus the averaging of the scale factors.

The logical line width is multiplied by the logical line width scale to obtain the
line width measured by the width of a pixel. This number, called the physical line
width, is the line width with which the device level Imaging system renders
geometric figures.

Rendering Geometric Shapes with Thick 29~7
Borders
This section pertains to renderings of geometric figures. The messages applicable
to this section are msgDcDrawPolyline, msgDcDrawBezier, msgDcDraw
ArcRays, msgDcDrawRectangle, msgDcDrawEllipse, msgDcDrawPolygon,
msgDcDrawSectorRays, and msgDcDrawChordRays. All of these messages take
a set of points in LUC as parameters.

Closed figures render~with a zero line width are "drawn in much the same
manner as rectangles without borders, as described above. Figures rendered with a
line thickness of one pixel similarly follow the model for rectangles with one pixel
borders. In the cases where the line width is bigger than one pixel, we'll discuss the
different effects of the line thickening algorithm for the two broad catagories of
messages:

• Those described by a bounding rectangle: msgDcDrawArcRays,
msgDcDrawRectangle, msgDcDrawEllipse, msgDcDrawSectorRays and
msgDcDrawChordRays.

• Those described by a point path: msgDcDrawPolyline, msgDcDrawBezier,
and msgJ?cDrawPolygon.

Figures Described by a Bounding Rectangle
Figure 29-6 illustrates the line thickening algorithm with a rectangle originating at
Po' with width and height wand h respectively, all in LUC, and with a logical line
width of l Assume the L TM is the identity matrix and the device is not rotated.

CHAPTER 29 I IMAGE POINT RENDERING DETAILS 341
Rendering Geometric Shapes with Thick Borders

Figure 29-6
Line Thickness in a Rectangle

po'

h

po

w

The sequence of computations is as follows:

1 Compute the point PI = (pox + w, Pay + h) in LUC.

2 Transform Po and PI using the CTM, yielding Po' and PI', which are now the
upper left and lower right corners of the rectangle respectively.

3 Transform the logical line width I as described in the previous section
yielding lx-the thickness of the vertical edges in device units.

4 The outer vertical edges of the thickened rectangle is offset from the frame

at Po' by a quantity of Floor (Ix /2). This is Ixl in the figure.

S The inner vertical edges are offset from the frame at Po' by Ceiling (lx/2).
This is (0 in the figure. In other words, where a line width transformed into
an odd number of pixels, the inner frame gets the extra pixel.

6 The thickness of the horizontal edges is computed by Round (Ix X asp), where
asp is the aspect ratio of the device.

7 The offsets for the inner and outer horizontal edges are computed similarly
to step 4 and 5.

8 The pixels between the two frames, including those on the boundary of the
inner frame, are filled with the line pattern. The pixels enclosed by the inner
frame, excluding those on the boundary of the inner frame, are filled with
the fill pattern.

By offseting each pair of edges with the same amounts for the inner and outer
frames, the distribution of thickness is invariant under different rotations of the
device.

We will not go into the elaborate mathematics of rendering frames with arbitrary
rotations. It is sufficient to assert that the same rule of thickness distribution
applies.

Drawing elliptical figures follows the same algorithm above, with the outer and
inner frame bounding two ellipses. The pixels between the two ellipses, including
those pixels on the boundary of the inner ellipse, are drawn with the line pattern.

342 PENPOINT ARCHITECTURAL REFERENCE
Part 3 I Windows and Graphics

Figures Described by a Point Path
Figures with thick line widths traced out by a point path are treated in the same
manner as figures described by a bounding rectangle, with the exception that these
figures do not possess the symmetry property of a rectangle with respect to line width
distribution. As mentioned above, line widths with an odd number of pixels create an
unequal distribution of pixels to the two sides of the line. In a rectangular shape, this
poses no problem since each edge of the rectangle always has an opposing edge. Point
path figures, however, do not necessarily an opposing edge to which to allocate the
extra pixel.

In the PenPoint Developer's Release, ImagePoint allocated the extra pixel in the.
direction of increasing coordinate value in device space. This produced an
anomaly in which a thick segment did not have a consistent appearance under
different rotations of the screen. ImagePoint under PenPoint 1.0 solves this
problem by allocating the extra pixel in the direction of increasing coordinate
value in LUC.

Differences from Earlier Releases
We have described the major ImagePoint rendering details implemented in
PenPoint 1.0. Some of the rendering semantics differ from those implemented in
the earlier PenPoint Developers' Release. We summarize them as follows:

• For rectangular figures without a border, the image operator, and clipping
rectangles, the top and the right edges are excluded from rendering.

• For polygons without a border, the right-hand-side edges are not drawn.

• For polylines, the "ceiling side exclusion" semantics is implemented.

• For polylines with an odd pixel thickness, the extra pixel is allocated in the
direction of increasing coordinate value in LUC.

29,,7.2

Part 4 /
UI loolldt

Chapter 30 / Introduction 349 Descendants and Colors 33.4.4 376
Overview 30.1 349 Providing Custom Backgrounds 33.4.5 377

Organization of This Part 30.2
Painting the Shadow 33.4.6 377 350

Resizing, Dragging, Topping Developer's Quick Start 30.3 352 33.5 377

Creating a Choice Delta Window 33.5.1 377 30.3.1 352
Layout Creating a Menu Bar 30.3.2 353 33.6 378

Creating a Tabular Layout Window 30.3.3 353 Avoiding Repaint and Relayout 33.6.1 378
Creating a Custom Layout 30.3.4 353 Propagating and Notifying Visuals 33.7 378
Creating a Button 30.3.5 354 Border Geometry 33.8 379

Other Sources of Information 30.4 356 Outer Offsets 33.8.1 380
Subclassing clsBorder 33.8.2 380 JY Chapter 31 / Concepts and

JY Chapter 34 / Layout Classes Terminology 357 381
Toolkit Classes 31.1 357 Window Layout 34.1 381
Four Kinds of Classes 31.2 361 clsTableLayout and clsCustomLayout 34.1.1 382

Borders 31.2.1 361 Coordinate System 34.2 382
Layout 31.2.2 361 Table Layout 34.3 383

Nested Components 31.3 362 clsT ableLayout Messages 34.4 384 How Menus Work 31.3.1 363 Table Layout Structure 34.4.1 384
Instance Creation and Defaults 31.4 364 Specifying the Table Layout 34.4.2 385

Toolkit Tables 31.4.1 364 Table Layout Constraints 34.4.3 386
Filed Representation 31.5 364 Layout Baseline 34.4.4 387

One Approach to Filing VI Toolkit Layout Example: a Calculator 34.4.5 388
Components 31.5.1 365 Locations 34.4.6 388
Layout Speedup 31.5.2 365 Custom Layout 34.5 389
Other Benefits of Vsing Resource Files 31.5.3 365 Custom Layout Example: the Frame 34.5.1 389
VI Toolkit Programming Details 31.5.4 366 Creating a Custom Layout Window 34.6 390

JY Chapter 32 / Toolkit Ancestors Specifying Constraints 34.6.1 390
367 Four Child Window Constraints 34.6.2 391

Objects 32.1 367 Custom Layout Dimensions 34.6.3 391
Windows 32.2 367 Constraints 34.6.4 392

Repaint 32.2.1 368 Picking an Edge for Alignment Constraints 34.6.5 393
Filing 32.2.2 368 Aligning Width and Height Dimensions 34.6.6 393

Gesture Windows 32.3 368
Additional Constraint Flags 34.6.7 395

Gesture Propagation 32.3.1 368 Constraints and Shrink-Wrap 34.7 395
Responding to Gestures 32.3.2 369 Relative Window 34.7.1 396
Help IDs 32.3.3 370 Value 34.7.2 396

Embedded Windows 32.4 370
Custom Layout Initialization 34.7.3 396

Borders More on msgCstmLayoutGetChildSpec 34.7.4 396 32.5 370
Shrink-Wrap 34.8 397

JY Chapter 33 / Border Windows 371 Lazy Layout 34.9 397
clsBorder Messages 33.1 371 Layout Loops 34.10 397
Creating a Border Window 33.2 373

Shrink-Wrap and Parent-Relative Sizing 34.10.1 398

The bsUnitsLayout Measurement 33.3 375
Capturing vs. Layout 34.11 398

Painting a Border Window 33.4 375 JY Chapter 35 / Controls 399 Painting the Border 33.4.1 375
Filing Controls Painting the Background 33.4.2 376 35.1 399

Painting Background and Foreground 33.4.3 376 Message Dispatching 35.2 399

--~ .. ------.--.. --

Presentation and Interaction Behavior 35.3 400 Examples of Previewing 37.8.3 424

clsControl Messages 35.4 401 Unwanted Manager Notification 37.8.4 424

Creating a Control 35.5 402
~ Chapter 38 / loolkit lables

Control Style 35.5.1 402
425

Control Defaults 35.5.2 403 clsTkTable Messages 38.1 427

Values 35.6 403 Other Kinds of Toolkit Tables 38.2 427

Dirty Controls 35.6.1 403 Creating a Toolkit Table 38.3 428

Control Enable 35.7 404 Common Creation Information 38.3.1 428

Evaluating Control Enable 35.7.1 404 Class-Dependent Creation Information 38.3.2 429

Dynamic Control Enable 35.7.2 405 Creating the Child Windows 38.3.3 434

Internal Notification 35.8 405 Changing Defaults in a Toolkit Table 38.3.4 434

When Are Preview Messages Generated? 35.8.1 406 Modifying a Toolkit Table 38.4 436

Previewing 35.8.2 407 Creating and Adding Your Own Items 38.4.1 436

Gesture Notification 35.9 408 Modifying Items in a Toolkit Table 38.4.2 436

Special Gesture Handling 35.9.1 408 Toolkit Tables and Window Tags 38.4.3 436

Painting 38.5 436

Chapter 36 / Labels 409 Layout 38.6 437

clsLabe1 Messages 36.1 410 Notification 38.7 438

Creating a Label 36.2 411 Control Enable 38.7.1 438

Label Styles 36.2.1 411 Managers 38.8 438

Label Strings and Special Characters 36.3 413 Button Manager Notification Details 38.8.1 438

Layout 36.4 414
Menu Management 38.8.2 439

No Notification 36.5 414
Manager Classes 38.8.3 439

Painting 36.6 414
Displaying Installed Fonts in Tables 38.9 441

Child Windows 36.7 415
Removing Items from a Toolkit Table 38.10 441

Layout 36.7.1 415
Subclasses of clsTkTable 38.11 442

Painting 36.7.2 416 Toggle Tables 38.12 442

Field Support 36.8 416
Modifying Toggle Tables 38.12.1 442

Insertion Point 36.8.1 416 Choices 38.13 442

Character Positions 36.8.2 416 Creating a Choice 38.13.1 443

Notification 38.13.2 443

~ Chapter 37 / BuHons 417 Choice Manager 38.13.3 443

dsButton Messages 37.1 417
Choice Value 38.13.4 443

Other Kinds of Buttons 37.2 418 ~ Chapter 39 / Menus and Menu
Creating a Button 37.3 419 BuHons 445

Button Defaults 37.3.1 419 Menu Buttons 39.1 445

Notification 37.4 420 Creating a Menu Button
Simple Activation

39.2 446
37.4.1 420 Menu Button Style 39.2.1 446

Unwelcome Notification 37.4.2 421 Notification 446 39.2.2

Painting 37.5 422 Painting 39.2.3 447

Value 37.6 422 Menus 39.3 447

Control Dirty 37.6.1 422 Creating a Menu 39.3.1 447

Creating Many Buttons 37.7 422 Creating Submenus 39.3.2 448

Advanced Button Notification Techniques 37.8 423 Displaying a Menu 39.3.3 448

Manager Objects 37.8.1 423 How a Menu Button Displays its SubMenu 39.4 448

How clsButton and ds1kTable Respond to Dynamic SubMenu 39.4.1 449

Button Previewing Message 37.8.2 424 Control Enable 39.4.2 449

Notification 39.4.3 450

Pop-Up Choices 39.5 450 String List Boxes 41.14 470
Creating a Pop-Up Choice 39.5.1 451 Creating a String List Box 41.14.1 470
Miscellaneous Pop-Up Choice Messages 39.5.2 451 Providing Entries 41.14;2 471

Notification 41.14.3 472
Chapter 40 / Serollbars 453 Destruction 41.14.4 472

Layout 40.1 453 Painting 41.14.5 473

Painting 40.2 453 Font List Boxes 41.15 473

Notification 40.3 453
Creating a Font List Box 41.15.1 473

Thumbing 40.3.1 454
Notification 41.15.2 473

Providing Information 40.4 454 " Chapter 42 / Fielcls 475
Offset 40.4.1 454

Client Notification 40.5 454
Field Style Flags 42.1 475

What Goes On 40.5.1 455 Messages 42.2 476

Line, Page Scrolling versus Thumbing 40.5.2 455 Creating a Field 42.3 477
Offset Range 40.5.3 456 Style Flags 42.3.1 477
Updating 40.5.4 456 Custom Handwriting Translation 42.3.2 479

Normalizing the Scroll 40.6 456 Access to Field Properties 42.4 480

Scroll Windows 40.7 457 Component Creation 42.5 480

Creating a Scrollwin 40.7.1 458 Activation and Deactivation 42.6 481
Scrollwin Windows 40.7.2 459 Input Processing 42.7 482
Repaint 40.7.3 460 Delayed Input 42.8 483 Layout 40.7.4 460
Notification 40.7.5 461

Input Validation 42.9 484

Multiple Windows in a Scrollwin 40.7.6 462 Layout 42.10 485

Toolkit Tables 40.7.7 462 User Interface 42.11 485

Data-Specific Fields 42.12 486
Chapter 41 / List Boxes 463

Creating a List Box 41.1 464 " Chapter 43 / Noles 487

Style Fields 41.1.1 464 Standardized Messages 43.1 487
List Box Contents 41.2 464 Kinds of Notes 43.2 487
List Box Entries 41.3 465 clsN ote Messages 43.3 488
Supplying Entries 41.4 465 Creating a Note 43.4 488

Scrolling 41.4.1 466 Flags 43.4.1 489
Free Mode 41.4.2 466 Contents from Resource Files 43.4.2 489
Pre-Loading a List Box 41.4.3 467 System Modal vs. Application Modal 43.5 490

Modifying 41.5 467 Using a Note 43.6 490
Inserting and Removing Entries 41.6 467 Filter 43.6.1 490
State 41.7 467 Notification 43.7 491
Notification 41.8 467 What Comes Back 43.7.1 491

Gestures 41.8.1 468 Note Dismissal 43.7.2 491

Painting 41.9 468 Painting 43.8 492
Scrolling 41.9.1 468 Layout 43.9 492
Entry Visibility 41.9.2 468 Destruction 43.10 492

Layout 41.10 469 Standard Message Interface 43.11 492
Filing 41.11 469 System and Application Dialogs 43.U.l 493
Miscellaneous Messages 41.12 469 Progress Notes 43.11.2 493

Toolkit Tables versus List Boxes 41.13 470 Application Errors 43.11.3 494

System Errors 43.11.4 494 Performance 46.4.5 516

Unknown Errors 43.11.5 495 Option Sheet Protocol 46.5 517

Formatted Message Text 43.11.6 495 Check Gesture Processing 46.6 517

What the Card Client Does 46.6.1 519

Chapter 44 / Frames 497 Multiple Card Types per Object Type 46.6.2 520

Using clsFrame Messages 44.1 499 Indicating Mixed Attributes 46.6.3 520

Creating a Frame 44.2 500 Nested Components 46.6.4 521

Multiple Windows, Multiple Frames 44.2.1 500 Multiple Option Sheets Up at Once 46.6.5 521

Modifying a Frame 44.2.2 500 Dimmed Controls 46.6.6 521

Frame Layout 44.3 500 Selection Interaction 46.6.7 521

Notification 44.4 501 Option Tables 46.7 521

Selection 44.4.1 502 Command Sheets 46.8 521

Zoom 44.4.2 502 Creating a Command Sheet 46.8.1 522

Close, Float, Bring-to-Front, Delete 44.4.3 503

Filing 44.5 503
,. Chapter 47 / Icons 523

Frame Menus 44.5.1 503 Messages 47.1 523

PenPoint Application Framework and Frames 44.6 504 Creating 47.2 524

Application Main Window 44.6.1 504 Bitmap Picture 47.2.1 524

Standard Application Menus 44.6.2 504 Pixelmap Picture 47.2.2 525

Subclasses of Frames 44.7 505 Painting 47.3 525

Invalidation 47.3.1 525

,. Chapter 45 / Frame Decorations 507 Notification 47.4 525

Close Box 45.1 507 Layout 47.5 525

Creating a Close Box 45.1.1 507

Notification 45.1.2 507 ,. Chapter 48 / Trackers and Grab 527

Title Bars 45.2 507
Boxes

Creating a Title Bar 45.2.1 507 Drawing 48.1 528

User Interface 45.3 507 Notification 48.2 528

Tab Bars 45.4 508 Destruction 48.3 528

Creating a Tab Bar 45.4.1 508 Grab Boxes 48.4 528

Adding Items 45.4.2 508

Layout 45.4.3 508 r Chapter 49 / Progress Bars 531

Command Bar 45.5 508 Progress Bar Concepts 49.1 531

Page Number 45.6 509 Progress Bar Style and Metrics 49.2 532

Shadow 45.7 509 The PROGRESS_STYLE Structure 49.2.1 532

Creating a Shadow 45.7.1 509 Progress Bar Metrics 49.2.2 534

,. Chapter 46 / Option Sheets
Progress Bar Messages 49.3 535

511 Creating a Progress Bar 49.3.1 535

clsOption 46.1 511 Manipulating Style and Metrics Fields 49.3.2 536

clsOption Messages 46.2 512 Manipulating Region Appearance 49.4 537

Creating an Option Sheet 46.3 514 Structures for Manipulating Regions 49.4.1 537

Option Sheet Styles 46.3.1 514 Modifying Region Color and Pattern 49.4.2 538

Manipulating Cards 46.4 514 Determining Region Bounds 49.4.3 538

Layout 46.4.1 515 Responsibilities of Progress Bar Clients 49.5 539

Painting 46.4.2 515 Providing Custom Labels 49.5.1 539

Notification 46.4.3 516 Useful Inherited Messages 49.6 540

Destruction 46.4.4 516

". List of Figures 36-2 LABEL_STYLE Fields 411

30-1 VI Toolkit Components 350 37-1 clsButton Messages 417

31-1 VI Toolkit Classes Not Inheriting from 37-2 BUTTON_STYLE Styles 419

clsControl 358 37-3 clsButton Previewing Messages 423

31-2 VI Toolkit Classes Inheriting from 38-1 cls TkT able Messages 427
clsControl 359 38-2 Interpretation of TK_ TABLE_ENTRY

31-3 VI Toolkit Class Outline 360 Fields 429

31-4 A Choice and its Component Buttons 362 38-3 TK_TABLE_ENTRY Flag Values 431

31-5 Nesting of Controls in Menus 363 38-4 clsChoiceMgr Messages 440

33-1 Sample Border Windows 371 38-5 clsSelChoiceMgr Messages 440

33-2 Layout V nits 375 38-6 clsChoice Messages 443

33-3 Regions of a Border Window 379 39-1 clsMenuButton Messages 445

34-1 Sample Table Layouts 383 39-2 MENU_BUTTON_STYLE Fields 446

34-2 Horizontal Window Baselign Alignment 39-3 clsMenuMessages 447
in an Option Sheet 387 39-4 clsPopupChoice Messages 450

34-3 Calc's Positioning of Child Window Vsing 40-1 Scrollbar Actions 455
clsTableLayout 388

40-2 clsScrollwin Messages 458
34-4 Sample Custom Layouts 389

40-3 SCROlL WIN_STYLE Styles 459
34-5 Layout of Adjacent Windows by

41-1 clsListBox Messages 463 clsCustomLayout 394

36-1 Sample Labels 409 41-2 clsStringListBox Messages 470

37-1 Sample Buttons 417 41-3 STRLB_STYLE Fields 471

38-1 Sample Toolkit Tables 426 42-1 clsField Messages 476

38-2 Toolkit Table from TkDemo Application 433 42-2 Field Style Values 478

40-1 A Scrollbar 454 42-3 Component Creation Messages 480

42-1 Sample Fields 475 42-4 Activation and Deactivation Messages 481

43-1 Sample Application-Modal Note 487 42-5 Input Processing Messages 482

44-1 Different Frame Styles 498 42-6 Delayed Input Messages 483

46-1 Option Sheets and Option Cards 511 42-7 Input Validation Messages 484

49-1 Progress Bars 532 43-1 clsN ote Messages 488

44-1 clsFrameMessages 499

". List of Tables 44-2 Frame Action Messages 502

33-1 clsBorder Messages 371 46-1 clsOption Messages 512

33-2 BORDER_NEW Styles 373 47-1 clslcon Messages 523

34-1 cls TableLayoutMessages 384 48-1 cls Track Messages 527

34-2 Table Layout Flags 384 48-2 clsGrabBox Messages and Procedures 529

34-3 Table Layout Constraints 386 49-1 PROGRESS_STYLE Styles 533

34-4 clsCustomLayout Messages 390 49-2 clsProgressBar Messages 535

34-5 Layout Constraints for clsCustomLayout 392 49-3 Vseful Inherited Messages 540

35-1 clsControl Messages 401
List of Exalllpies

35-2 CONTROL_STYLE Fields 402

35-3 Values for Different Subclasses of clsControl 403 30-1 A Simple Menu with Nested Buttons and
a Choice 355

35-4 Previewing in Different Subclasses of
36-1 Creating an Annotation Label clsControl 406 413

35-5 Control Messages Sent in Response to 37-1 Creating a Button 421

Events 407 38-1 TK_ TABLE_ENTRY Array for an

36-1 clsLabel Messages 410 Option Card 432

~ .. -~----~- -

Chapter 30 / Introduction

'Overview
The VI Toolkit provides classes that layout windows to form user interface
elements such as buttons, tabs, handwriting fields, labels, icons, menus, frames,
and option sheets. These elements are called VI components. VI components
send messages among themselves and to their clients when the user interacts with
them.

The VI Toolkit implements the middle layer of the appearance and functionality
of the user interface architecture in PenPoint. It calls on the Windows & Graphics
subsystem to draw these windows. In turn, the PenPoint Application Framework
and the internal classes implementing the Notebook Vser Interface (NUl) use VI
Toolkit objects extensively.

You use VI Toolkit components whenever you want to provide these standard user
interface components to the user. If you want to provide alternate styles or
interactions, you can leverage the VI Toolkit code by subclassing at various class
levels.

PenPoint uses VI components for menus, option sheets, window decorations, the
default application frame, and many application windows. Nearly every window
that has a label or responds to the pen is a VI component of some sort.

Vsually, you use more than one VI component. You can layout components
inside other windows to form tables, control panels, and simple forms. The VI
toolkit uses this layout facility to create frames and option sheets.

Menus, command bars, and choices are themselves also VI components that
consist of groupings of buttons and labels.

Higher level application components built using VI components include option
sheets, search and replace, and the spell check dialog box. The overall Notebook
user interface appearance is largely the result of using standard VI components.

30.1

350 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

Organization of This Part
Part 4 provides some simple examples of how to create common user interface
combinations.

Chapter 31, Concepts and Terminology, explains the important concepts in the
UI Toolkit, and shows how these are implemented by several families and layers of
classes in the toolkit class hierarchy.

The rest of the chapters in Part 4 follow the layered implementation of the UI
Toolkit. They describe the UI Toolkit classes by functional area in more detail.
The toolkit's layered design provides a flexible and powerful toolkit, but it makes
the reference documentation quite complex for the beginning reader, since the
creation and behavior of a UI component is spread across several classes and,

Page Number

Frame

Title Bar

Menu Bar

Pull-down Menu

Menu Button

Tab Bars

Vertical Scrollbar

Option Sheet

Option Table

Labels

Shadow

Popup Choice

Toggle Table

Command Bar

Bookshelf

30.2

CHAPTER 30 I INTRODUCTION 351
Organization of This Part

hence, several chapters. You have to read something about the ancestors of a class
to understand how you can use their functionality, yet a lot of what an ancestor
does is used internally by each class and doesn't need to be touched by the
developer.

• Chapter 32, Toolkit Ancestors, explains how UI Toolkit classes use features
provided by their common ancestor classes.

• Chapter 33, Borders, covers clsBorder, which supports some common
features of toolkit window repainting, such as margins, and background and
foreground colors.

• Chapter 34, Layout Classes, covers general layout issues, and clsT ableLayout
and clsCustomLayout in particular. These classes implement two approaches
for positioning and sizing child windows.

• Chapter 35, Controls, covers clsControl, which implements the translation
of window input messages into messages sent to self and other objects.

• Chapter 36, Labels, covers clsLabel, which implements the display of a string
or decorative window. Buttons, menu buttons, toggle buttons, and frame
title bars all inherit this behavior from clsLabel.

• Chapter 37, Buttons, covers buttons, labels that the user activates by
applying a gesture such as a tap.

• Chapter 38, Toolkit Tables, covers toolkit tables. clsTkTable supports the
initialization, layout, and notification management for groups of toolkit
components (such as buttons). The capability to organize components in a
group is used by several subclasses: this chapter describes toggle tables and
choices, two particular subclasses of clsTkTable.

• Chapter 39, Menus and Menu Buttons, covers menus (clsMenu) and menu
buttons (clsMenuButton). Menu buttons are special buttons that display a
menu; menus are special toolkit tables that often group several menu buttons.

• Chapter 40, Scrollbars, covers scrollbars (clsScrollBar) and clsScrollWin, a
special descendant of clsBorder which handles a lot of the work of scrolling
for you.

• Chapter 41, List Boxes, covers list boxes (clsListBox). List boxes are scrolling
windows that support very large numbers of entries. Unlike table elements,
only those entries currently visible in the list box need have a window.
Descendants of clsListBox provide scrolling lists specifically for strings
(clsStringListBox) and for font names (clsFontListBox).

• Chapter 42, Fields, covers text fields (clsField), which are labels that you can
handwrite in. It also describes subclasses of clsField that have additional
semantics to support integer fields, date fields, fixed-point fields, and so forth.

• Chapter 43, Notes, covers notes (clsNote), which present transient
information to the user. Standard messages are a set of standard procedural
interfaces for displaying error information that use clsNote.

352 PEN POINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

• Chapter 44, Frames, explains frames (clsFrame), which manages a collection
of other VI components and a client window. Most applications use frames
for their main windows, dialog boxes, and pop-up windows.

• Chapter 45, Frame Decorations, explains some of the decorations of frames:
close boxes, title bars, tab bars, and command bars.

• Chapter 46, Option Sheets, describes the classes that support the option
sheet user interface. clsOption provides the option sheet, while the cards in
the sheet are usually instances of clsOption Table. Since the user can leave an
option sheet on-screen, the interaction between option sheets, option cards,
and the selection can be quite complex.

• Chapter 47, Icons, covers icons (clsIcon), which show an iconic menu
button made up of a bitmap image and a string.

• Chapter 48, Trackers and Grab Boxes, covers clsTrack, which grabs input
and draws transient rubber-banding figures in response to pen movements.
The toolkit uses this to provide feedback when the user drags or resizes items.
In particular, grab boxes (clsGrabBox) are the resize handles on frames and
scrollbars which use clsTrack internally.

• Chapter 49, Progress Bars, describes how to use clsProgressBar.
clsProgressBar implements a dynamic, bar-graph representation of a value.
You typically use a progress bar to indicate how far a long process has
progressed, or to show where a value falls in a range of possible values.

Developer's Quick S.ar.
Here are the basic steps in creating a typical control panel. They skip a lot of
details and aren't applicable to all VI components.

The best approach to take is to try to use toolkit tables (clsTkTable) as much as
possible. If you can organize your windows in a tabular arrangement, you can
create a single toolkit table and statically specify its contents. This saves you from
specifying the NEW structures for each component, worrying about the defaults to
override, and assembling them. Choices, menus, tab bars, command bars, and
option tables are all descendants of toolkit tables.

Creating a Choice 30*3~ 1

1 Statically define a TK_TABLE_ENTRY array. Each item in this array describes
one component in a toolkit table. In the case of clsChoice, the components
are instances of clsButton. The value of the first three fields of each
T~TABLE_ENTRY item varies, depending on the class of component (see
\PENPOINT\SDK\INC\TKTABLE.H for details). For clsButton components, the
first three fields of theTK_ TABLE_ENTRY specify the string to appear in the
button, the message it sends, and 32 bits of data to send as the message
argument.

CHAPTER 30 I INTRODUCTION 353
Developer's Quick Start

2 The rest of the fields for each toolkit table entry are a window tag, some
flags, and an override class, and an ID for Quick Help. The window tags are
important if you want to get to a particular component in the toolkit table
after you have created it: you can use 0, 1, 2, ... or MakeTag to define tags.
clsChoice sets the flags correctly for standard toggles. You can leave class as
objNull since all the buttons have the same class.

Send msgNewDefaults to clsChoice.

3 In CHOICE_NEW, specify tkTable.client as the UID of the client who will
respond to button messages.

4 Set tkTable.pEntries to the address of the static TK_TABLE_ENTRY array you
defined. You don't need to set tkTable.class to clsButton because that is the
default for clsChoice. You can also set the value of the choice by setting the
"on" button's tag in choice.value.

Send msgNew to clsChoice, with the modified CHOICE_NEW structure as its
argument.

Creating a Menu Bar

1 Specify the components of the menu in a TK_TABLE_ENTRYarray.

2 However, the components in the menu need not all be buttons; they can also
be choices or menu buttons. These entries themselves are toolkit tables, so
they take an array ofTK_TABLE_ENTRYs. The first two fields for a menu
button TK_TABLE_ENTRYare its string and the TK_TABLE_ENTRY array for
its pull-down menu.

Define an entire menu tree by nesting static TK_TABLE_ENTRYarrays. The
same goes for option sheets, and so on. Chapter 38, Toolkit Tables, discusses
toolkit table nesting in more detail.

Creating a Tabular Layout Window

1 Send msgNewDefaults to clsTableLayout.

2 Specify the constraints in tableLayout.

3 Send msgNew to clsTableLayout.

4 Use the normal msgWinInsert message (remember that all UI Toolkit classes
inherit from clsWin) to insert your UI Toolkit components in the table
layout window.

Creating a Custom Layout

1 Send msgNewDefaults and msgNew to clsCustomLayout.

2 Use the normal msgWinlnsert message to insert your UI component in the
custom layout window.

30.3.2

30.3.3

30.3.4

354 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

3 As you insert each component window, set up the appropriate constraints for
it in the metrics field of a CSTM_LAYOUT_CHILD_SPEC, put its VID in the
child field, and send the custom layout window
msgCstmLayoutSetChildSpec.

Creating a Button

If you need to create a free-standing VI component (instead of one inside a toolkit
table), here's how you would go about creating a button:

1 Send msgNewDefaults with the appropriate structure to clsButton.

2 Fill in the button.msg and button. data fields with the message and data you
want the button to send.

3 Set the control.client to the VID of the application instance (assuming the
application is the object handling button notifications). Set the label.pString
to a suitable name.

Send msgN ew to clsButton.

4 Insert the button into a window to make it visible.

5 The client must handle the button's message, so mention the message in the
application's method table and write a message handler for it.

You often create a main window in response to msgAppOpen and destroy it at
msgAppClose, since your application only needs a user interface while it is on
screen. See "Filed Representation" in Chapter 31, Concepts and Terminology, for
more information on when to create toolkit components and whether to file them.

CHAPTER 30 / INTRODUCTION 355
Developer's Quick Start

Example 30 .. 1

A Simple Menu with Nested BuHons and a Choice
The relatively simple toolkit table example below creates the menu bar in the WriterApp sample program
(in \PENPOINT\SDK\SAMPLE\WRITERAP\ WRITERAP .c).

The menu bar has two menu buttons:

• Clear operates immediately (it has no submenu)

• Translator has a pull-down submenu with a choice in it.

This is non-standard; a real application would normally have the Standard Application Menus (Document and Edit).

The code defining the menu as a set of nested toolkit tables is as follows:

II Data structure for the menu
static const TK_TABLE_ENTRY menuBar[] = {

} i

{"Clear", msgWriterAppClear, O},
{"Translator", 0, 0, 0, tkMenuPullDown},

{O, 0, 0, 0, 0, clsChoice},
{"Word", msgWriterAppTranslator, 0, 0, tkButtonOn},
{"Number", msgWriterAppTranslator, 1},
{"Text", msgWriterAppTranslator, 2},
{pNull}, II This pNull ends the clsChoice table

{pNull}, I I This pNull ends the "Translator" tkMenuPullDown
{pNull} IIThis pNull ends the tkTable

Later on, in its msgApplnit method, W riterApp creates the menu bar:

II WriterApp creates its own custom window

II Create the menu bar
ObjectCall(msgNewDefaults, clsMenu, &mNew)i
mNew.tkTable.pEntries = menuBari
mNew.tkTable.client = selfi
ObjCallRet(msgNew, clsMenu, &mNew, S)i

II Set the client window and menu bar in the application frame
ObjCallRet(msgFrameGetMetrics, am.mainWin, &fm, S)i
fm.clientWin = sNew.object.uidi
fm.style.menuBar = truei
fm.menuBar = mNew.object.uidi
ObjCallRet(msgFrameSetMetrics, am.mainWin, &fm, S)i

356 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Other Sources of Information
Nearly every class in the VI Toolkit is a descendant of clsObject, clsWin,
clsGWin, and clsEmbeddedWin. Chapter 32, Toolkit Ancestors, explains how the
toolkit classes use these classes. You don't need in-depth knowledge of these classes
to use the toolkit, but you need some familiarity with them. They are described in:

• Part 1: Class Manager (clsObject).

• Part 2: PenPoint Application Framework (clsApp).

• Part 5: Input and Handwriting Translation (clsGWin).

Similarly, VI component behavior is largely determined by window input
processing flags. However, if you haven't read Part 5: Input and Handwriting
Translation, you'll still be able to understand and use the VI Toolkit.

The PenPoint Application Framework is closely involved with the VI Toolkit. It
can supply applications with a default frame and a Standard Application Menu,
and can file and restore an application's VI. It is described in Part 2: PenPoint
Application Framework.

clsField and its descendants in the VI Toolkit let you create text controls for
hand-written input. These are built from the complex functionality of
handwriting translation, scribble collection, insertion pads, translation objects,
and so on, which are explained in detail in Part 5: Input and Handwriting
Translation.

The Application Writing Guide takes a tutorial approach towards some of the ideas
in Part 4. The Tic-Tac-Toe program developed in the tutorial peforms the
following tasks:

• Creates a menu bar of debugging commands.

• Creates a scroll window to scroll its board.

• Creates an option sheet containing numerous DI components.

In addition, sample programs that look like they create user interface components
probably do create VI toolkit objects or subclass VI Toolkit classes. For example,
the Calc program uses many DI Toolkit windows and nothing else for its user
interface. The Clock sample program (which is also part of the standard set of
tools) uses several approaches to layout classes to implement the clock display
desired· by the user.

The source to all these programs is in subdirectories of \PENPOINT\SDK\SAMPLE.

You can put together many different DI Toolkit component layouts. PenPoint UI
Design Reference suggests appropriate ways to use the VI Toolkit in keeping with
PenPoint's Notebook user interface.

Chapter 31 / Concepts and
Terminology

Toolkit Classes
The UI Toolkit class hierarchy is large because there are so many different kinds of
toolkit win~ows and controls. Figures 31-1 and 31-2 show the hierarchy of many
of the UI Toolkit classes. Some UI Toolkit classes are not shown in these figures.
For completeness, Figure 31-3 provides an outline view of the class hierarchy of all
UI Toolkit classes.

The layering of the class hierarchy ofUI components and their fluid design
provide a framework for constructing a wide variety of user interface tools. While
this makes it possible to create new and bizarre kinds of tools, deviations from the
standard UI components can confuse users. For this reason, you should restrict
yourself to the standard classes in the PenPoint UI Toolkit unless you can
determine that none of them meet your needs.

Similarly, the UI Toolkit does not preclude other combinations of components
besides those you see in PenPoint. For example, you can easily put a menu bar in
the middle of an option sheet (not the right place for a menu bar). See the
PenPoint UI Design Reference for information regarding the correct use of UI
Toolkit components and suggested ways of combining them consistently.

31.1

358 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

CHAPTER 31 I CONCEPTS AND TERMINOLOGY 359
Toolkit Classes

Figure 31-2
UI Toolkit Classes Inheriting from clsControl

other subclasses of dsBorder are on ~---i1----4
previous page

360 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

lsObject
crlsManager
CClsChoiceMgr

clsSelChoiceMgr
clsTrack
clsGrabBox
clsModalFilter
clsBusy

~Win
~SEmbeddedWin

lsBorder
lsControl

lSLabel
lsButton

clsGotoButton

t
SMenUButton
clsCloseBox
~SICOn

clsMoveCopylcon
clsPopupChoice

clsTabButton
clsTitleBar

~
SField

clsDateField
clsFixedField
clslntegerField
clsTextField

clsPageNum
clsProgressBar
clsScrollbar

lsCustomLayout
clsAppWin

~SIP
clsTextIP

clsPrintFrame
~sShadOw .

cr=sFrame
CClsNote

clsOption

E
SVieW
clsNotePaper
clsSPaper
clsTextView

E
SSCrOllWin
clsBrowser
clsGestureMargin
~ListBox

~sStringListBOX

clsFontListBox
T1STableLayout
CclsCounter

lsTkTable
~sChOiCe

clslconChoice
clsCommandBar
clsMenu
clsOptionTable
clsTabBar
~sToggleTable

clslconTable

CHAPTER 31 I CONCEPTS AND TERMINOLOGY 361

Four Kinds of Classes

Four Kinds of Classes
There are many classes involved in UI components because the UI Toolkit
separates the implementation of user interface components into different
functional parts, with corresponding classes:

• Window border

• Layout

• Message dispatching

• Presentation/interaction behavior

Borders

clsBorder supports the border styles of windows in the PenPoint UI:

• None

• Black

• Double

• Gray

• Rounded

• Shadow

• Resizing from the shadow or drag handles

• Inner margins

The clsBorder shadow is not a true shadow with transparent corners; see
clsShadow for a perfect shadow.

Layout

clsWin defines various layout messages and flags, plus related shrink-to-fit flags,
but it does not itself implement layout policies for windows. clsCustomLayout
and clsT ableLayout implement two useful styles of layout. They do not determine
how user interface components look; instead they specify how collections of user
interface components are arranged. A layout window lays out its child windows
according to these specifications. For example, a menu bar is a layout window that
lays out its elements in a row. .

Usually, you create layout windows to lay-out the components of your dialog
boxes and other windows. Although this use of layout windows is normally the
most convenient, you can insert UI component windows in any kind of window.
Conversely, you can use layout windows to layout other kinds of windows than
UI components.

31.2

31.2.1

31.2.2

362 PENPOINT ARCHITECTURAL REFERENCE

Part 4 / U.I Toolkit

Nested Components
The UI Toolkit allows you to combine components together to create interesting
new kinds of components. For example, a scrollwin groups two scrollbars with a
client window so .that the user can scroll the client window. As another example,
a string list box is a kind of scrollwin whose contents are a set of string labels.

The most common form of nested components is a toolkit table. The descendants
of clsTkTable group multiple'windows (often buttons) together to form more
complex toolkit components. For example, a choice component is a group of
buttons, each set up to provide feedback with a check mark.

In Figure 31-4, the Contents Layout option card includes a choice of
two buttons: Icons and Buttons. The choice buttons preview in the normal
way. And because only one button in the set can be on at any time, the
choice must also manage the set of buttons. The buttons send preview
messages (msgButtonBeginPreview, msgButton Update Preview,
msgButtonRepeatPreview, and msgButtonCancelPreview) to their manager,
which in this case- is their parent, the choice. The choice maintains a hidden
manager object which responds to a choice button's preview message by turning
off the currently selected button. When the user finally raises the pen, the button
sends its client its msgButtonNotify or other specified message, and notifies its
manager so that the manager knows which button is active.

Note that this choice is itself embedded in another window,' the option card.
The choice itself notifies its manager when the user raises the pen, and this sets
the option.

Also note the many forms that a choice can take. By inserting different kinds of
buttons in a choice and changing the choice's table alignment, you can create a
choice like the Alignment choice in the MiniText Paragraph option card shown
below the Layout card in Figure 31-4. It has the same manager protocol despite its
different appearance.

3L3

CHAPTER 31 I CONCEPTS AND TERMINOLOGY 363

Nested Components

Separating the manager object from the parent component supports other kinds of
complex components, such as menus and selected choices. The details of this
complex layered interaction are described in Chapter 38, Toolkit Tables.

How Menus Work

PenPoint's pull-right and pull-down menus may appear to be menus nested inside
other menus inside other menus, but the reality is simpler. A menu bar is a toolkit
table of several menu buttons (instances of clsMenuButton, a subclass of
clsButton), and the latter may each be associated with another menu made up of
other kinds of components. For example, Figure 31-5 shows the VI Toolkit
components involved when you choose About ... from the Document menu of
MinIText.

3L3.1

Pull is a misnomer for the
tap-based menu UI, but it
survives in the API.

31~S

Nesting of Controls Menus

The application menu bar is a toolkit table of several menu buttons. In MinIT ext,
the Document menu button has a menu associated with it, so it responds to
previewing by displaying its menu. The Document menu is a separate toolkit
table. Its manager is the Document menu button, but it is otherwise a separate
window containing its own set of components. One of these components is the
About menu button.

When the user taps on About, the button notifies its manager (the menu
manager). The Document menu notifies its manager (the Document button),
which sends a message which removes the Document menu from the screen. The
About ... button then notifies its client (the application) by sending it its message
(msgAppAbout). Thus, there are two communication paths:

• Vp the management chain .

• Directly to the client.

Note that in this example, the menu button, the meflu bar, and the default
application response are all handled by the PenPoint Application Framework.
Even the simplest applications with the Standard Application Menus provided
by the Application Framework display this menu and respond to it, without any
special coding on your part.

364 PEN POINT ARCHITECTURAL REFER~NCE
Part 4 I UI Toolkit

Inslance Crealion and D. •
As you can see from the class diagram, UI To<
Many descendant classes only work as do cum,
of their many ancestors. For example, buttons
input flags set. However, UI Toolkit classes d(
msgNewarguments to anc~stors, and they do

-.
ep.
ltion
rtain
)le

ancestors that might adversely affect their ope g for
performance reasons, and also because they are designed to be subclassed, and a
subclass implementation might well want radically different behavior.

You must always send msgNewDefaults to a UI Toolkit class before sending it
msgNew to create a "new instance. This will ensure reasonable behavior from the
component. The header files in \PENPOINT\SDK\INC for the various classes
document the defaults initialization performed in response to msgNewDefaults;
the same information is in the PenPoint API Reference.

You need to fill in some of the dozens of ancestor fields in the msgNew and
msgNewDefaults structure, but tinkering with others may lead to unpredictable
results. The header files describe the defaults for each class. You may find that to
get a component to work in a way it was not intended to work, it may not be
enough to change its style fields; you may need to create a new class.

Toolkit Tables

Toolkit tables provide a very different approach to creating UI components.
You can declare the contents of a toolkit table statically in an array that specifies
things like the string of a label, the number of columns in a field, and so on.
However, you can also create components in the usual way by sending them
msgNew, and then nest them in the toolkit table by sending it messages like
msgTkTableAddAsLast. clsTkTable knows how to create standard instances of
various components. See the example from the WriterApp sample program in
Chapter 30.

This approach of static specification reduces code size and is much easier to
maintain. If it's possible to create all or part of your UI as toolkit tables, you
should do so. Toolkit tables foster a certain homogeneity among components,
which is often what you want for standard application elements, such as menus
and option sheets.

Filed Represenlalion
Toolkit components file themselves. They also file their descendants. However,
you may not want to take advantage of this.

There is a paradox at work in the UI Toolkit: toolkit components do an excellent
job of filing their state, which is good, but to conserve memory, you don't want
lots of static toolkit components around (either as live objects or filed) when your
application is not on-screen.

31,,4

CHAPTER 31 I CONCEPTS AND TERMINOLOGY 365
Filed Representation

Another paradox: toolkit components should reflect the state of the application,
yet if you let them file, they duplicate the state of the application. For example, if
your application has a choice with which the user picks either circle mode or
rectangle mode, then when that choice is told to file, it will store the mode the
user chose. However, your application should probably also be storing its current
mode in its instance data or some other object. Keeping two copies of application
state is wasteful and can lead to internal inconsistencies.

One Approach to Filing UI Toolkit Components 3'1.5.1

It is difficult to generalize, but here is a scheme for creating and filing DI Toolkit
components that takes advantage of filing:

• Create your user interface in advance, for example in your application's
INIT.DLL.

• File it as one or more well-known resources.

• You can then read your DI from the resource list in each document.

• Don't file DI components per document.

• File application state separately from DI.

• Set DI state from application state.

This approach avoids duplicate filed copies of DI components in each document.

Layout Speedup
You can also file the DI in advance to speed up layout. When windows file, they
store their bounds. If, when a window restores, it is positioned with the same
bounds as when it was filed (and if some other conditions are met), it need not lay
out, nor layout its children-the sizes computed for the windows are valid. This
layout saving can speed up performance, especially when the parent window has
many descendant windows.

Windows filed with dirty layouts (wsLayoutDirty set) will require layout
whenever they are restored, reducing the efficiency of your application. To prevent
this, send msgWinLayout to the topmost window before filing the windows.
Another window style flag, wsFileLayoutDirty, ensures that the wsLayoutDirty
flag is set whenever the window is restored from a file.

Other Benefits of Using Resource Files

There are other benefits to using resource files:

• If the environment is the same when the DI is read from the resource file, its
windows won't have to layout again-the sizes computed for the windows
that were filed with them will be correct. However, if the top-most window is
a frame or client window, it may still be laid out as a result of the user
floating, zooming, or resizing the window.

31.5.2

This may not work as you expect,
depending on decisions made in
the PenPoint Application
Framework about when or
whether to layout.

366 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

• The code that uses the UI can be independent of the code that creates it. The
code that uses the UI just reads it from a resource file, without concern for
the appearance of the UI. Someone could, in theory, replace the filed UI
with a different resource, and the application would still work the same.
(N ote that the application often has to reach in and send specific messages to
controls in the UI, so this degree of independence is hard to achieve in
practice.)

• The code to create the UI can, in fact, be deleted after instance zero runs it.
The document instances never create the UI, they read it from the
application's resource list, so as part of installation you could deinstall the
installation code. One way to do this is to have your UI creation code in a
separate INIT.DLL that the Installer automatically runs at installation and
then immediately deinstalls.

UI Toolkit Programming Details

In instance zero of your application, create the UI . You could do this in a separate
INIT.DLL; when its DLLMain routine is called by the Installer, create the UI.

After creating the UI, send msgWinLayout to the highest level component (such
as the frame, or the option sheet) of each subtree. Then file the components you
want in the application's resource file. You can get the application resource file by
sending msgAppMgrGetMetrics to the class of your application.

In the other instances of your application (each document), respond to
msgAppOpen by reading in the filed instance information. Instead of reading the
information from the application resource file, just get the application's resource
list from its application metrics, and read the resource from that. This allows the
default UI to be overridden in one document or another.

Make sure you turn off the wsSendFile window flag of components in your main
window that came from a resource file so that they aren't filed by clsWin when the
PenPoint Application Framework files your application's frame.

Chapter 32 / Toolkit Ancestors

As you've probably noticed, there are many classes in the UI Toolkit. Some of
them provide obvious visual components. Others, such as clsControl and
clsTableLayout, provide vital support for other classes. Moreover, all classes in the
UI Toolkit are descendants of clsGWin.

All the functionality provided by these ancestor classes is available to you. The
msgNewarguments for any visual toolkit component include OBJECT_NEW_ONLY,

WIN_NEW _ONLY, GWIN_NEW _ONLY and EMBEDDED _ WIN_NEW _ONLY fields. You
can send object, window, gesture window, and embedded window messages to toolkit
components.

However, be aware that toolkit components rely on certain behavior from their
ancestor classes. Changing around ancestors may produce unexpected results. You
should rely on msgNewDefaults to set up the ancestor fields appropriately. Only
change them if a component does not operate as you want.

This chapter explains how toolkit components use features provided by ancestor
classes. It's intended to illustrate rather than explain in detail.

Obiecls
All toolkit components are objects.

Often, toolkit windows are embedded inside other toolkit windows. The parent
component may not know in advance what kind of components are inside itself.
Thus, toolkit sometimes ask their nested components. what their class is
(msgClass), or whether they inherit from a particular class (msgIsA).

Some of the machinery of the toolkit is implemented by objects you might not
know about. Many toolkit classes allow you to plug in other objects as their
children, managers, or clients. Never assume that you know the class of an object
passed back by the toolkit.

Windows
All visual toolkit components are windows. They use clsWin messages and
functionality for obvious things such as painting and UI component resizing.

The UI Toolkit nests components inside other components (such as buttons in
menus, labels in tables, fields ·in option sheets, and so on) by inserting them as
child windows of the parent component. Thus, the hierarchy of toolkit
components corresponds to the window tree. The UI Toolkit takes advantage of
this correspondence to perform the following tasks:

• List nested components using msgWinEnum.

1

32.2

368 PEN POINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

• Find nested components by tag using msgWinFindTag.

• Send messages from nested components to their ancestors using
msgWinSend.

• Propagate and respond to the layout messages msgWinLayoutSelf and
msgWinGetDesiredSize.

This nesting of components isn't always what you might expect. For example, the
client window inside a scrollwin is not a child of the scrollwin: it- is actually a child
of a child of the scrollwin. The pop-up menu associated with a menu button isn't
a child of it, but a child of the the root window.

Repaint

The UI Toolkit handles window repainting itself, so you rarely need to intercept
msgWinRepaint yourself. The UI Toolkit carries out all its drawing operations
using a private toolkit drawing context shared between all processes. You cannot
access this DC. However, several of the toolkit component classes let you affect
the drawing of components by setting certain metrics, such as background ink and
border thickness.

Filing

The UI Toolkit does an excellent job of filing its state. All (well, nearly all)
components are windows, so you can use the window hierarchy filing provided by
clsWin to file your entire user interface.

Geslure Windows
Most UI Toolkit components support gestures, in which the user handwrites a
symbol in the component. For example, the user can flick a vertical scrollbar up or
down by drawing an up or down stroke. clsGWin supports gestures in windows; it
handles the pen input, deciding when the user has completed the gesture, and the
translation of the gesture. It self-sends msgGWinGesture announcing the
translation of the gesture. The interpretation of the gesture is up to descendant
classes.

To disable gesture support, set gestureEnable in GWIN_STYLE to false.

Gesture Propagation

In the PenPoint user interface, gestures should propagate up the window tree
whenever possible. For example, a scrolling flick made on a label inside a table
inside a scrollwin should be passed up to the scrollwin, which will scroll the entire
table. Also, a question mark over one button of an exclusive choice should
generate help on the choice, rather than Help on the particular button of the
choice.

How this works in practice is clsGWin has a forwarding flag in GWIN_STYLE

(gesture Forward) set by default. When the user makes a gesture over a gesture

CHAPTER 32 I TOOLKIT ANCESTORS 369

window, it self-sends msgGWinGesture. If no descendant class handles
msgGWinGesture, the message ends up at clsGWin. If the gesture is not the Help
gesture, clsGWin returns stsRequestForward. If clsGWin gets stsRequestForward
back from sending msgGWinGesture, it assumes that this object did not handle
the gesture.

If gestureForward is set, clsGWin then propagates the message by self-sending,
msgWinSend with the sent message field set to msgGWinForwardedGesture.
msgWinSend propagates up the window tree. If it arrives at clsGWin, clsGWin
unpacks the msgGWinForwardedGesture message and self-sends it. If
msgGWinForwardedGesture returns stsRequestForward, msgWinSend goes to
the ancestor class.

This scheme allows components to be embedded in other windows (possibly
non-toolkit windows) without regard for tying them to a client, and still let some
window pick up their gestures. For example, all the frame components have their
gestures passed on via msgWinSend of msgGWinForwardedGesture, and the
frame would pick them up.

The GWIN_GESTURE structure for the message arguments to msgGWinGesture
and msgGWinForwardedGesture includes a uid field. clsGWin sets this field to
the UID of the window that received the gesture. Thus, if you have a parent
window that handles the gestures in child windows, it can still figure out which
child window received the gesture.

Responding to Gestures
If you create your own UI component class and want your class to respond to
gestures, your class should intercept msgGWinGesture. If your class recognizes
the gesture, it should respond to it and return stsOK. If your class doesn't
recognize the gesture, it should pass the gesture to its ancestor class. If none of the
ancestors handle the gesture, clsGWin will propagate the gesture to the instance's
parent window (if gesture Forward is set).

If you create your own UI component class and want to respond to gestures made
in child windows embedded in instances of your class, your class needs to respond
to msgGWinForwardedGesture. This message takes the same arguments as
msgGWinGesture. If your class doesn't distinguish between gestures in its own
windows and the gestures of their children, your class can handle both gesture
messages in the same procedure. You can self-send msgGWinTransformGesture
to transform the gesture bounds and hot point to the local window coordinate
system from the coordinates of the original window.

If your class uses instances of clsControl or one of its many descendant classes,
your class can get involved in gesture handling by setting up one of its objects
(such as the application) to be the cli~nt of a control. As explained in Chapter 35,
Controls, clsControl forwards gestures to its client. A control is sent gesture
messages, which it sends to its ancestor class, and then passes to its client object,
and then propagates to its parent window.

Gesture Windows

32.3.2

370 PEN POINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Help IDs
clsGWin does interpret one gesture: the Help? gesture. If no other class handles
xgsQuestion during all the propagation described above, when it reaches
clsGWin, it will try to display Quick Help by sending self msgGWinHelp. You
can assign a Quick Help ID to any gesture window (in clsGWin's metrics), and
clsGWin will find the Quick Help resource for that window and display it in the
Quick Help window using msgQuickHelpShow. If the window does not have a
Quick Help ID, dsGWin propagates msgGWinForwardedGesture in the manner
described above.

For more information on creating Quick Help resources, see Part 9: Utility Classes.

Embedded Windows
In PenPoint, you can freely move and copy applications and components into and
out of each other. The result that one application or component is embedded
inside another. clsEmbeddedWin supports the protocol for moving and copying
applications and components by moving their windows.

All UI Toolkit windows are embedded windows. However, the UI Toolkit does
not use the features of clsEmbeddedWin much itself, since UI components
cannot, in fact, be moved using the press-hold-and-drag technique.

Descendants of toolkit window classes that implement real components, such as
text views and application windows, do use clsEmbeddedWin functionality.
clsEmbeddedWin uses special move or copy icons during move and copy
operations.

For more information on embedded windows and the move/copy protocol, see
Part 2: PenPoint Application Framework.

Borders
UIToolkit components are descendants of clsBorder, which implements much of
the rendering and layout ability ofUI toolkit windows. See Chapter 33, Border
Windows, for more information on clsBorder.

32.4

Chapter 33 / Border Windows

Many VI components have similar visual elements, such as background colors,
shadows and outlines. To share code, all VI Toolkit classes are descendants of
clsBorder (a descendant of clsWin), which draws these elements.

33~1

'lPiHi"fu'1,RIA MJ!"'I&W'n&'11.W' Windows

Tk Demo: Borders

Dooument Edit Options Demo

White Background

White Background,
All Black Borders

Bottom border

Oouble Gray Bord er

Round Border

Black Border with
Shedon

Round Border with
Shedon

< 25>

I

I
Gray Background

Black Border,
Shedon, and Resize
Handle

"-___ .J

clsBorder Messages 33.1

Table 33-1 summarizes the messages clsBorder defines. The sections following
discuss these message in more detail.

msgN ewDefaults

msgNew

msgBorderGetStyle

msgBorderSetStyle

msgBorderSetStyleN oDirty

msgBorderGetLook

P _BORDER_STYLE

P _BORDER_STYLE

P _BORDER_STYLE

P_U16

Initializes the BORDER_NEW structure to default
values.

Creates a border window.

Passes back the current style values.

Sets all of the style values.

Sets all of the style values.

Passes back value of style.look.

372 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

Mess©ge

msgBorderSetLook

msgBorderSetPreview

msgBorderGetPreview

msgBorderSetSelected

msgBorderGetSelected

msgBorderPropagate Visuals

msgBorderSetDirty

msgBorderGetDirty

msgBorderGetForegroundRGB

msgBorderGetBackgroundRGB

msgBorderInkToRGB

msgBorderRGBToInk

msgB orderS et Visuals

msgBorderGetBorder Rect

msgBorderInset ToBorder Rect

msgBorderGetInnerRect

msgBorderInset ToInnerRect

msgBorderGetMarginRect

msgBorderInset ToMarginRect

msgBorderGetOuterSize

msgBorderGetOuterSizes

msgBorderGetOuterOffsets

msgBorderXOR

msgBorderPaint

msgBorderFlash

msgBorderTop

msgBorderConvertUnits

TCikes

U16 (bsLook. ..)

BOOLEAN

P_BOOLEAN

BOOLEAN

P_BOOLEAN

pNull

BOOLEAN

P_BOOLEAN

P _SYSDC_RGB

P _SYSDC_RGB

P _BORDER_STYLE

P_RECT32

P_RECT32

P_RECT32

P_RECT32

P_RECT32

P_RECT32

P_SIZE32

P_RECT32

P_RECT32

U16

VOID

VOID

U32

Description

Sets, style.look as in msgBorderSetStyle.

Sets style.preview as in msgBorderSetStyle.

Passes back value of style.preview.

Sets style. selected as in msgBorderSetStyle.

Passes back value of style. selected.

Propagates visuals to children.

Recursively sends msgBorderSetDirty to each child.

Passes back true if any child responds to
msgBorderGetDirty with true, otherwise passes
back false.

Passes back forground RGB to use given current
visuals.

Passes back background RGB to use given current
visuals.

Maps ink value (bsInkGray66, for example) to RGB.

Maps RGB value to ink value.

Sets only the visual fields from pArgs.

Passes back the rect on the border.

Assumes given rect is window bounds, insets to border
rect as in msgBorderGetBorderRect.

Passes back the rect after the inner margin.

Assumes given rect is window bounds, insets to inner
rect as in msgBorderGetInnerRect.

Passes back the rect after the border.

Assumes given rect is window bounds, insets to margin
rect as in msgBorderGetMarginRect.

Passes back the sum of the border, margin and
shadow sizes for width and height.

Passes back the breakdown of the outer size
requirements.

Passes back the distance from the outer edge to the
border rect in each dimension.

Sets the raster-op to XOR and paints the background.

Paints the border, background, shadow, and so on
using msgWinBeginPaint.

Flashes selfs window by drawing a thick border
and erasing it.

Brings the border window to the front with optional
UI feedback.

Converts values from one unit to another.
(ontirnJed

CHAPTER 33 I BORDER WINDOWS 373
Creating a Border Window

Table 33-1 (continued)

Message Takes Description

Subclass Responsibility Messages

msgBorderProvideDelta Win P _ WIN Receiver must provide window to be dragged,
resized or topped.

msgBorder ProvideBackground P _BORDER_BACKGROUND Receiver must provide rect and ink for drawing
background.

msgBorderPaintForeground VOID Receiver must paint the foreground, if any.

"Creating a Border Window
To create a border window, you send msgNew to clsBorder or one of its many
descendants. This takes a pointer to a BORDER_NEW structure. In BORDER_NEW

you specify:

style several style flags

These style flags are (currently) the only field in BORDER_NEW _ONLY. The flags
are in a BORDER_STYLE structure and are summarized in Table 33-2.

These are among the most important clsBorder flags. See the PenPointAPI
Reference and BORDER.H for more information on clsBorder flags.

You can set the style flags after sending msgNew with msgBorderSetStyle.

The border itself is not a separate window, it is just additional graphics drawn
inside VI component windows by their common ancestor, clsBorder.

Functional Description

33.2

Table 33 .. 2

Styles/Style Flags

edge
bsEdgeLeft
bsEdgeRight
bsEdgeTop
bsEdgeBottom

Defines which edges have borders. Can be bsEdgeAll, bsEdgeNone, or a combination
OR'd together.

join _
bsJoinRound
bsJoinSquare
bsJoinEllipse

lineStyle
bsLineSingle
bsLineDouble
bsLineMarquee
bsLineDashed
bsLineDoubleMarquee
bsLineDoubleDashed

borderlnk

backgroundInk

Describes how borders edges are joined.

Describes line border thickness.

Describes ink to draw border.

Describes ink to fill background.

374 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

Styi¢s/Sryi¢ fi£!95

shadow
bsShadowNone
bsShadowThinGray
bsShadow ThickGray
bsShadow ThinBlack
bsShadow ThickBlack
bsShadowThin White
bsShadowThickWhite
bsShadowCustom

bottomMargin,
leftMargin,
rightMargin,
topMargin

bsMarginNone
bsMarginSmall
bsMarginMedium
bsMarginLarge

marginUnits
bs UnitsLayout
bs Units Device
bsUnitsTwips
bs UnitsPoints
bsUnitsLines
bsUnitsRules
bsUnitsMetric
bsUnitsMil
bsUnitsFitWindow
bsUnitsFitWindowProper

shadowGap
bsGapNone
bsGapWhite
bsGapTransparent

reSIze
bsResizeNone
bsResizeCorner
bsResizeBottom
bsResizeRight
bsResizeAll

drag
bsDragNone
bsDragl1oldDown
bs DragD own
bsDragMoveDown

top
bsTopNone
bsTopUp
bsTopDrag

Tobie 33w 2 (continued)

~I.mdk)n£!! D¢scription

Describes border edge shadow style.

Use shadow Thickness and shadowInk.

Describes the four inner margin sizes, in marginUnits (described below), of the
component's window. Value can be anywhere from 0-15; some common values
predefined.

No inner margin.
One margin unit.
Two margin units.
Eight margin units.

Units for the four inner margins.
Use layout units (described below).
Use device units (pixels).
Use twips (0.05 points).
Use points (1172 inch).
Use system font line size.
Use rules (0.05 lines).
Use units of 0.0 1 millimeters.
Use mils (0.001 inch).
Compute units at layout time.
Compute units at layout time and preserve aspect ratio.

Determines whether the shadow contains notches.
No corner gaps.
Clear gaps to white.
Don't paint gaps.

Determines if UI component window has resize handles. A set of flags.
No resize handles; the default.
Lower right corner handle. User can resize in both dimensions.
Bottom edge handle. User can resize vertically.
Right edge handle. User can resize horizontally.
A combination ofbsResizeBottom, bsResizeCorner, and bsResizeRight.

Determines if and how user can drag UI component.
No dragging.
Drag when user press-holds down pen.
Drag when user touches pen.
Drag when user moves pen while down beyond threshold.

Determines if and how user can bring border window to front of its siblings.
Never top window.
Top window when user lifts pen.
Top window after user drags it.

continued

CHAPTER 33 / BORDER WINDOWS 375
Painting a Border Window

Table 3~}-2 (continued)

--~~-«----------=
Functional Description Styles/Style Flags

getDelta Win Determines if changing this window should affect it or other windows
(see msgBorder ProvideDelta Win).

preview

selected

previewAlter

selectedAl ter

Determines whether window is previewing.

Determines whether window is selected.

Determines what to alter when window is previewing.

Determines what to alter when window is selected.

---~~~~~~~~~~~~~

The bsUnitsLayout Measurement
The bsU nitsLayout unit is scaled so that eight horizontal units are the width
of a typographer's em in the system font, and eight vertical units are the height
of an em.

For example, if the user sets the system font to eight points, then a bsUnitsLayout
unit is one point; if the user sets the system font to 16 points, a bsUnitsLayout
unit is two points. Also, an em is always square, regardless of whether any
character in the font is square. Therefore, bsUnitsLayout units are always square.
For more information on font geometry, see Part 3: Windows and Graphics.

Painting a Border Window
In repaint, first clsBorder draws the background and border, then descendant
classes draw the contents of the window. If the window's size is fixed and the
contents are too large, they may overflow the margin, border, and shadow.
Descendants should send msgBorderGetlnnerRect to figure out the area in which
they should draw.

Painting the Border

msgDcDrawRect draws borders with square or rounded corners and the specified
thickness. If you specify that only some edges should be drawn, clsBorder draws
only those edges, maintaining the join style. If the join style is bsJoinEllipse,
clsBorder uses msgDcDrawEllipse to draw the joint.

33.3

33~2

layout Units

33.4" 1

376 PEN POINT ARCHITECTURAL REFERENCE

Part 4 I UI Toolkit

Painting the Background

clsBorder fills the background with backgroundlnk when it calls
msgDcDrawRect.

In a rounded-corner border window, there are gaps in the corners that the border

33 .. 4 .. 2

line will not touch. If the border window shares clipping with its parent (wsParentClip
is set to true) and the parent can write on its children (wsClipChildren is false),
clsBorder relies on the parent filling in these dog-ears. Otherwise, clsBorder clears
the entire background rectangle to the background ink. If the background ink is
bslnk Transparent, the background is not drawn at all.

Painting Background and Foreground

If a clsBorder instance isn't selected or being previewed, it uses the backgroundlnk
you specify. If selected or previewing, then the background ink is changed to look
like the window is selected or previewing. What this looks like depends on which
subclass of clsBorder you are working with.

You can't set the foreground ink directly. Instead, you choose a look, which gives
you either a black or gray foreground color. Rather than directly controlling the
foreground color and style of painting, you set certain properties of the border
window in its BORDER_STYLE field that affect painting. These properties are
called the visuals of the bordered window. They are the look, preview, selected,
and backgroundlnk fields in the border style.

The look (bsLookActive or bsLookInactive), preview, and selected fields all affect
the foreground color. The look takes precedence.

Descendants and Colors

It's entirely possible for you to create your own toolkit component classes.
However, if these are to work well with option sheets, menus, and other existing
components, they need to respond to changes in visuals. Rather than reimplement
all the border messages, it's easiest to inherit from clsBorder and let it handle these
messages.

It is much better to change visuals rather than to force windows to use a different
color; using the colors suggested by clsBorder will ensure that your own VI
gadgets have a similar interaction behavior to PenPoint's own components.

If, when you receive msgWinRepaint, you do inherit from clsBorder, you should
probably use the same colors for drawing as all other buttons and labels use.
clsBorder provides several messages that help you translate its current state into
specific colors to use, without having to hard-code the relationships between
different visuals, selected state, and colors. To get the correct foreground and
background colors, send msgBorderGetForegroundRGB and
msgBorderGetBackgroundRGB. clsBorder also provides msgBorderInkToRGB,
which maps the ink value of the line used for the border to an RGB value, and its
inverse, msgBorderRGBTolnk.

CHAPTER 33 I BORDER WINDOWS 377
Resizing, Dragging, Topping

Providing Custom Backgrounds

clsBorder provides another way for its descendants to adjust background painting.
When style.preview or style. selected is on, clsBorder self-sends
msgBorderProvideBackground during repaint. Subclasses can intercept this
message and alter the background ink and the rectangle used by clsBorder (or
both) during repaint of the background. This takes a pointer to a
BORDER_BACKGROUND structure, in which you specifY these parameters:

ink the background ink to use, for example, bslnkBlack.

rect the rectangle that clsBorder should fill with the background ink.

clsBorder fills these in with the ink and color it would use before sending
msgBorderProvideBackground to self.

Painting the Shadow
The shadow is also part of the window. It is drawn on the bottom and right of the
main part of the window. If the shadowGap style field is bsGapN one, the shadow
extends to the left and top of the rest of the window. Otherwise, there are two
gaps at the top and left of the shadow. The other values of the shadowGap style
field control how these gaps are painted. If the shadowGap is bsGapWhite, they
are cleared to white. If it is bsGapTransparent, they are not painted, and what is
behind the border window shows through the gaps.

Resizing, Dragging, Topping
If resize is on, the user can grab onto a resize corner or edge of a toolkit window. If
drag is set to a style other than bsDragNone, the user can hold the pen down and
then drag the window, and if top is set to a style other than bsTopNone, the user
can bring the window to the front of its siblings (or push it to the back if it is
already at the front). Normally, these actions affect the size and location of
self-the user resizes this window, and it changes size.

Delta Window

However, often the window with drag, resize, and/or top enabled is actually
inserted in another window. For example, the part of a frame with a resize handle
may actually be a child of another window that contains the shadow and tabs, and
it is the latter that needs to be dragged or resized when the user adjusts the size. To
support this (if getDelta Win is on), clsBorder uses msgWinSend to send
msgBorderProvideDelta Win up the window tree to get the window dragged,
resized, or topped. When clsBorder receives msgBorderProvideDelta Win, it
returns self's DID if getDeltaWin is set to false; otherwise, it lets the message
continue to its parent. The result is that the first window found without
getDelta Win set is the one that gets dragged, resized, and topped.

33.4.5

33.4.6

33.5

378 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Layout
If you turn on borders and shadows after creating a border, you increase the space
needed by a toolkit window, so you should layout the window again. dsBorder
dirties the window's layout when you change its style, but it doesn't actually send
it msgWinLayout. You need to send msgMinLayout to the horder window or its
parent window.

Avoiding Repaint and Relayout
Normally, when you send msgBorderSetStyle, the border window figures out
whether the change requires laying out the window again or repainting the
window. If it repaints one or the other, the border window self-sends
msgWinDirtyRect and msgWi~SetLayoutDirty. The former would usually cause
the border window to repaint, and the latter would result in the border window
being relaid out in the next layout episode. It's up to you to make sure that, at
some point, you send msgWinLayout. However, if you send
msgBorderSetStyleNoDirty, neither of these is sent to self, even if the new pixels
would dirty the window. This is an optimization for cases where you want to avoid
the computation and messages related to calculating the dirty region.

Propagating and Notifying Visuals
To support the nesting of components, you want to create high level components
out of other components, and have the high level component work as though it
were a single control. Thus, you want the components nested within it to share
the same visual appearance. By setting propagate Visuals, any changes in visuals
(look, preview, selected, and background ink) are propagated to child border
window's using msgBorderSetVisuals.

If you only want this to happen on demand, you can send
msgBorderPropagate Visuals to the border window to update child border
windows only once.

This works if the components are nested windows. However, if they are not, you
can still keep changes in sync by making components observers of the border
window and set notifyVisuals. Whenever the visuals of the border window
change, the observers are sent msgBorderSetVisuals (via msgNotifyObservers).

33.6

33.6.1

CHAPTER 33 I BORDER WINDOWS 379
Border Geometry

". Border Geometry 33.8

There are four regions to each border window, as illustrated in Figure 33-3:

figure 33-3
Regions of a Border Window

• The outer size of the border window, including border and shadow.

• The size of the bordered area, excluding the shadow.

• The size of the margin area.

• The size of the inner area, excluding the border, shadow, and margin.

The size of the inner rectangle is the size of the margin rectangle less the left, right,
top and bottom margins. You control the size of the margins by setting
leftMargin, rightMargin, bottomMargin, and topMargin in BORDER_STYLE to
some value. The contents of the window are drawn by some subclass of dsBorder.

The default margin units are layout units, so the margins scale with the size of the
system font.

Although a border window is a single window, you can find out the size of the
various parts of it using msgBorderGetBorderRect,msgBorderGetlnnerRect,
and msgBorderGetOuterSize. These all pass back the appropriate dimensions in
LWC (device units relative to the lower left corner of the window) as a RECT32

or SIZE32.

Often, the current size of the border window is not the final size, so you want to
compute the size of the border rectangle and inner rectangle.
msgBorderInsetToBorderRect and msgBorderlnsetTolnnerRect compute the
border and inner rectangles for the border window as if it were the size of the
rectangle passed in.

Conversely, you can self-send msgBorderGetOuterSize to get the total size
(including the border, margin, and shadow) for a particular size of border window.
This is useful for subclasses of dsBorder that are trying to compute their size in
response to msgWinLayoutSelf.

Outer rectangle

Border rectangle

Margin rectangle

Inner rectangle

380 PEN POINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Outer OHsets
The shadow and its border take up some amount of the outside edge of a window.
To zoom a window to fill another appropriately, you need to know where the
inner part of the window is so you can push all this border out of the way. If you
send msgBorderGetOuterOffsets to a border window, it passes back a RECT32.

These aren't the coordinates of a rectangle; they are the lengths of the offset of this
inner area from the four edges. For example, the origin.x is the distance from the
left edge to the left-most pixel of the inner area, and the size.h is the distance from
the top edge to the top-most pixel of the inner area.

Subclassing cis Border
If you are implementing a descendant of clsBorder, you need to draw inside the
rectangle passed back by msgBorderGetlnnerRect. To respect visuals, you should
use msgBorderGetForegroundRGB to figure out what color to use for foreground.

33.8.1

33.8.2

Chapter 34 / Layout Classes

The layout window classes orchestrate the recursive layout of a subtree of
windows. Broadly speaking, clsTableLayout positions windows in a tabular
format, while clsCustomLayout aligns windows relative to each other. You can use
these to create pleasing high level user-interface constructs, such as an option
sheet. The DI Toolkit itself uses table layout for menus, choices, and other toolkit
tables. The built-in frame class is a particular kind of custom layout window.

clsWin defines the layout protocol, its messages, and window flags; see Part 3:
Windows and Graphics for a full explanation. As part of a layout episode, windows
are told to lay themselves out with msgWinLayoutSelf. Layout uses a model in
which the parent gets desired sizes from child windows, then decides how to
position and size the children.

You can position windows of any kind using layout windows, not just control
windows. For example, if you have two or more windows in your application, you
can create a layout window as the frame's client view, and use the layout window
to position them.

Clients ordinarily tell a layout window to position its offspring by sending it
msgWinLayout. The window system figures out what subtree of the window
hierarchy will be affected by the change in layout, and coaxes windows into
position by sending them msgWinLayoutSelf.

Window Layout
When a layout window receives msgWinLayoutSelf, it asks each child for its
desired size with msgWinGetDesiredSize and, using algorithms from its class and
data supplied when it was created, it positions and resizes its children. As a side
effect of asking for the child's desired size, the window system may, in turn, ask
the child to lay itself out with msgWinLayoutSelf.

This message is defined by clsWin and is fully explained in Part 3: Windows and
Graphics, but here is a review. msgWinLayoutSelf tells a window to determine
how best to lay itself out, then tells it to go and do so. Re-Iaying out usually
involves moving child windows around. msgWinLayoutSelf takes a
WIN_METRICS structure that contains a flag indicating whether the window can
change its own size (wsLayoutResize).

The two layout window classes generally work as follows:

• You specify instructions on how a layout window shouid layout its child
windows. The layout window instance stores this information, not the
children .

• You add child windows to the layout window using msgWinlnsert.

382 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

When a layout window receives msgWinLayoutSelf, it:

• Gets the sizes of its child windows (using msgWinEnum).

• Computes new locations (and possibly sizes) for its child windows based on
their sizes, possibly their desired sizes, and its specifications for them.

• Sends each child msgWinDelta to position it.

• If positioning the child changed the child's size, the window system
sets the window's wsLayoutDirty bit. Later, when the window system
sends the child msgWinLayoutSelf, the dirty window will lay itself out
to fit the new space.

• If wsLayoutResize is set, the layout window can change its own size. You can
set up a layout window to shrink-wrap around its children by settings its
wsShrinkWrap Width and wsShrinkWrapHeight window style flags.

clsTableLayout and clsCustomLayout

Note that the layout window does not have to pay attention to the desired size of
child windows. The parent can simply tell them where to go. In the UI Toolkit,
most leaf controls (non-nesting controls such as labels, buttons, and so on)
respond to msgWinLayoutSelf by recomputing their size based on the current
system font.

clsTableLayout lays out its children in an invisible tabular grid. It takes constraints
for the row and column dimensions of the grid (for example, three rows tall with
each column as wide as the widest entry). By looking at the size of its child windows,
it computes the grid layout and positions its children. You can tell clsT ableLayout to
resize its child windows to match the space it computes for them.

clsCustomLayout takes constraints for the size and position of each child window
(for example, align on left edge, position after left of window A, extend height to
top edge of parent) and figures out how to position and size them when it receives
msgWinLayoutSelf. clsFrame uses clsCustomLayout to provide a consistently
decorated top-level frame window for applications.

Because clsCust?mLayout requires you to specify layout contraints for each
dimension of every window in the layout, it is best suited for a small, relatively
fIxed number of child windows, such as the decoration windows that implement
the controls on an application frame.

Coordinate System
Layout classes take lengths and positions in any of the measurement units that
clsBorder supports. The lower left corner is the origin, as standard in PenPoint
graphics.

34.1.1

34.2

CHAPTER 34 / LAYOUT CLASSES 383

Table Layout
clsTableLayout lays out child windows in tabular format. You specify constraints
for the number of rows and columns, the height of each row, and the width of
each column. The table layout window does not store any constraints for
particular items, rows, or columns. However, you can tell it to adjust the size of
each column to fit its members. For example, you can specify layouts:

• Child windows in three rows and two columns.

• Each row 10 units tall as many as will fit; three columns each as wide as the
widest entry.

• Two columns of menu buttons, the buttons in each column to be the same
width as the widest button in that column.

All of the UI Toolkit's nested control windows-choices, menus, toggle tables, and
so on-are toolkit tables, and clsTkTa:ble is a descendant of clsTableLayout.

Figure 34-1 shows some sample table layouts.

Table Layout

34.3

384 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

clsTableLayout Messages
Table 34-1 summarizes the messages clsT ableLayout defines.

msgNewDefaults

msgNew

msg TblLayoutGetMetrics

msg TblLayoutSetMetrics

msg TblLayoutGetStyle

msg TblLayoutSetStyle

msg TblLayoutXYToIndex

msg TblLayoutAdjustSections

msg TblLayoutComputeGrid

msg TblLayoutComputeGridXY

msg TblLayoutFreeGrid

P _ TBL_LAYOUT _METRICS

P_TBL_LAYOUT_METRICS

P_TBL_LAYOUT_STYLE

P _ TBL_LAYOUT _STYLE

BOOLEAN

Table 34~1

Initializes the TBL_LAYOUT _NEW structure
to default values.

Creates a table layout window.

Passes back current metrics.

Sets current metrics.

Passes back current style values.

Sets style values.

Determines a child zero-based index from an xy
position.

Adjusts the border edges and margins of children
to correctly reflect a sectioned table.

Computes the table grid parameters given the
current constraints.

Computes the table grid start xy given the other
grid parameters.

Frees any storage allocated by
msg TblLayoutComputeGrid.

Table Layout Structure

The TBL_LAYOUT _STYLE structure lets you specify a variety of flags which control
the behavior of the table layout. Table 34-2 summarizes the flags and their values.

fi$!ds/fie!d V~IV$S

tblXAlignment,
tblYAlignment

childXAlignment

tWignLeft
tWignCenter
tWignRight
tWignBaseline

F~,mdiona! O$scription

Determines the alignment of the table. You can specify the alignment of the table grid
as a whole within the table layout window. Possible values are the same as for child
window alignments, described below.

Determines the x alignment of the child windows within their grid cells. If grid cell size
is larger than child window, child will be aligned according to this value. You cannot
specifiy different alignments for child windows.

Position child window to the left in its cell.
Center the child window in its cell.
Position child window to the right in its cell.
Position the baseline of the child on the baseline of the cell (described in "Layout
Baseline," below).

Fields/Field Values

childYAlignment

tWignBottom
tWignCenter
tWignTop
tWignBaseline

growChildWidth

growChildHeight

placement

tlPlaceRowMajor
tlPlaceColMajor
tlPlaceStack
tlPlaceOrientation

reverseX,
reverseY

wrap

widthExtra,
heightExtra

tlExtraNone
tlExtraF irst
tlExtraAfterF irst
tlExtraLast
tlExtraBeforeLast
tlExtraAll
tlExtraBetweenAll

CHAPTER 34 I LAYOUT CLASSES 385
clsTableLayout Messages

Tobie 34-2 (continued)

Functional Description

Determines the y alignment of the child windows within their grid cells. If grid cell size
is larger than child window, child will be aligned according to this value. You cannot
specify different alignments for different child windows.

Position child window at the bottom of its cell.
Center the child window in its cell.
Position child window at the top of its cell.
Position the baseline of the child on the baseline of the- cell (described in
"Layout Baseline," below).

Determines whether the table layout should resize the width of the child windows to
fill their grid cells. For example, to maintain the same highlight width for each button in a
menu, menus set growChildWidth so that all menu buttons in a menu are the same width.

Determines whether the table layout should resize the height of the child windows to fill
their grid cells.

Determines whether table layout places child windows in the grid cells. Table layout also
enumerates child windows in back-to-front order to place children into the grid.

Top row fills before next row is started.
Left-most column fills before column to the right is started.
All children are stacked one on top of the other in the first (top left) grid cell.
Table layout uses tlPlaceColMajor if the table's window device is in portrait mode,
or tlPlaceRowMajor if it is in landscape mode.

Determines placement order of child windows. By default, dsTableLayout places
child windows from left to right, top to bottom. Setting reverseX or reverse Y reverses
the order of placement. For example, tab bars use this to get tabs to overlap appropriately.
Bookshelf also uses reverse to layout icon from bottom of screen upwards.

Determines whether to wrap long row or column to next row or column.

Determines what to do with extra space.

Leave extra space as is.
Put extra space before first row or column.
Put extra space after first row or column.
Put extra space after last row or column.
Put extra space before last row or column.
Divide extra space and add evenly to each row or column.
Divide extra space and add evenly after each row or column.

dsT ableLayout positions each child in the grid cell formed by the rowl column
intersections. If you set growChildWidth or growChildHeight, the table layout
window resizes child windows to fit their grid cells in that dimension. Otherwise,
child windows are aligned within their grid cells according to the table's
childXAlignment and childYAlignment styles. If a child window is too big it will
overlap some edge of its cell.

Specifying the Table Layout
You specify the number of rows and columns in two TBL_lAYOUT_COUNT

structures, one for rows (numRows) and one for columns (numCols). In this,
you specify:

constraint a table constraint, as described above in Table 34-2.

value an optional absolute number of rows or columns.

386 PEN POINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

You specify row height and column width in two TBL_IAYOUT_SIZE structures,
one for all rows (rowHeight), another for all columns (colWidth). In this you
specify:

constraint a table constraint, as described in Table 34-2.

value an optional absolute height or width.

gap the gap to put between rows or columns.

baseline an optional absolute baseline alignment, as described below.
PenPoint 1.0 implements only limited support for baseline alignment.

valueUnits the units in which to interpret the value field. This can be any
unit understood by clsBorder (bsUnitsLayout, for example). See Chapter
33, Border Windows, for more information on border units.

The gap is only between rows and columns.

Table Layout Constraints

Table 34-3 lists the possible values for a TBL_LAYOUT_CONSTRAINT. The same
constraints, more or less, can apply to both the number of rows and columns (in a
TBL_LAYOUT_COUNT structure) and the size of rows and columns (in a
TBL_LAYOUT_SIZE structure). If you specify a constraint that does not apply, you
will get back stsTblLayoutBadConstraint from msgWinLayoutSelf.

34.4.3

Table 34m 3
Table Layout Constraints

tlAbsolute

dChildrenMax

dGroupMax

dMaxFit

dlnfinite

M~t:min~ f©r num~©W$/ (©b

Fixed number of rows or columns given by value.

Not applicable.

Not applicable.

As many as will fit.

Unbounded number of rows or columns.

Mecming f©r (o!Width/RowHeight

Fixed size given by value.

Size is max of all children in table.

Size is max of children in column or row.

As wide or as high as possible.

Not applicable.

Using tlMaxFit for the number of rows or columns means as many rows or
columns as will fit given the height or width, row or column gap, and parent size.
Using tlMaxFit for row height or column width means as high or wide as possible,
given the number of rows or columns, row or column gap, and parent size.

If you OR tlBaselineBox with tlGroupMax, the constraints will take the
maximum of the ascender and descender of each child in the group. OR-ing
tlMaxFitlfConstrained with any of the colWidth/rowHeight constraints gives
you the equivalent of using tlMaxFit, but only if the width or height is
constrained during layout (for example, if one of wsLayoutResize,
wsShrinkWrap Width, or wsShrinkWrapHeight is not set).

When it receives msgWinLayoutSelf, dsTableLayout uses the grid size and row
and height information to create a grid of child window locations. It enumeraters
the table layout window's children using msgWinEnum and lays them out on this
grid. It places children in the table in window-depth order (bottom-most child

CHAPTER 34 I LAYOUT CLASSES 387
clsTableLayout Messages

window to top-most child window). To later reorder the child windows, you must
use msgWinlnsert, msgWinlnsertSibling, or msgWinSort.

If the rowHeight or colWidth is dChildrenMax or dGroupMax, dsTableLayout
asks each child window in the table (or only in the row or column) for its desired
size (by sending it msgWinGetDesiredSize). It computes the largest dimension in
the table (or only in the row or column) and uses that as the size. Note that this is
independent of growChildHeight or growChildWidth. The latter tells
dsT ableLayout to size each child window to fit its cell in the table, but this takes
place after dsT ableLayout computes the grid for the table.

If the table layout window has more children than space in the grid,
clsT ableLayout does not layout the children past the last column of the last row,
so their positions are left up-changed.

'r Layout Baseline

Windows have the notion of a baseline, a line that windows should be positioned
on to look good, just as there is a baseline for text along which individual letters
are positioned. clsTableLayout lets you position child windows relative to this
baseline so that they align pleasingly.

The message to determine the baseline for a window is msgWinGetBaseline. This
passes back the vertical offset of the baseline and a horizontal offset of the baseline;
the default for clsWin is (0, 0). The horizontal baseline allows label decorations
(such as the check mark on a toggle) to hang in the margin of a vertical set of
labels, as in the Clock option sheet in Figure 34-2.

Horizontal Window Baseli

34.4 .. 4

PenPoint 1.0 supports baseline
alignment only for child windows
with the colWidth or rowHeight
constraint set to tlGroupMax I
tlBaselineBox. Baseline
alignment is not implemented for
other colWidth or rowHeight
constraints.

Sheet

388 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

~ Using tlAlignBaseline for Table Layout

If childXAlignment or childYAlignment are set to tWignBaseline, the table layout
positions child windows with their baselines on the baseline of the row or column. In
the current PenPoint release, the only way to determine the row or column baseline is
to have the table compute it when it receives msgWinGetBaseline.

In order to support this behavior, you must OR the tlBaselineBox flag into the
TBL_LAYOUT_CONSTRAINT setting for the rowHeight or colWidth constraints.
Baseline alignment makes sense only in conjunction with tlGroupMax or
tlChildrenMax. Normally, if the constraint is tlGroupMax or dChildrenMax,
clsTableLayout gets the size of each child window and computes the largest size.
If dBaselineBox is OR'd in, clsTableLayout gets the baseline of each child window as
well as its size, and computes the row height or column width as the sum of the largest
ascender offset and largest descender offset of all the child windows. It doesn't really
make sense not to set the child alignment to tWignBaseline if you do this.

Layout Example: a Calculator

Menus are simple table layout windows, which arrange their child windows
(menu buttons) in a row (for example, your application's menu bar) or in
columns. A more complex example is the Calc sample program in the SDK
directory \PENPOINT\SDK\SAMPLE\CALC. The Calc program's main window
positions its calculator buttons in a matrix with gaps between them.

Locations

To convert an x-y location in a table layout window to an index in the
table, send the table msgTblLayoutXYToIndex. This takes a pointer to a
TBL_LAYOUT _INDEX structure. In this message, you specify the location in the
local window coordinates of the table (xy, an XY32 structure). clsTableLayout
passes back an index, such that if a child window were inserted there and the table
laid out, the new child would be at the specified x-y location. index is the
zero-based count of the new window in the child hierarchy of the table.

Positionin of ChUd Window Using clslal)leLa'1lfo~lJl

CHAPTER 34 I LAYOUT CLASSES 389

Note that neither clsWin nor clsTableLayout defines a message to insert a new window
as the Nth child of another. It is up to you to figure out the UID of the window at
index and specify this in msgWinlnsertSibling. However, cls Tk Table, a descendant of
clsTableLayout used in the UI Toolkit, provides a msgTkTableAddAt message.

The message is useful if you want to respond to gestures in a table layout window
by creating a new window in the table. .

Custom Layout

Custom Layout 34.5

clsCustomLayout is the opposite of clsTableLayout. It does not take any overall
specifications, except shrink-to-fit (see below). Instead, you specify constraints for
each child window. You can achieve consistent effects, such as placing one window
adjacent to another or making one window the same width as another. Or, you
can be strict, and specify the absolute size and position of a window.

Custom Layout Example: the Frame

The most common example of a custom layout in PenPoint is a frame. Most
applications appear in a page-sized frame, a container that surrounds (or
decorates) the application's own views with a title bar, a resize corner, a frame
header, scrollbars, and so on. clsFrame is a descendant of clsCustomLayout and
uses custom layout to position its child windows. There are no hard-coded
locations for any of the child windows in clsFrame, so frames can be resized while
preserving their appearance. This is important because the user can resize a
floating frame at will, and the frame must accomodate whatever size the user sets.

390 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

Table 34-4 summarizes the messages clsCustomLayout defines.

msgNew

msgNewDefaults

P _CSTM_LAYOUT _NEW

P _CSTM_LAYOUT _NEW

Creates a custom layout window.

Initializes the CSTM_LAYOUT _NEW structure
to default values.

msgCstmLayoutGetMetrics

msgCstmLayoutSetMetrics

msgCstmLayoutGetStyle

msgCstmLayoutSetStyle

msgCstmLayoutSetChildSpec

msgCstmLayoutGetChildSpec

P _ CSTM_LAYOUT _METRICS

P _ CSTM_LAYOUT _METRICS

Passes back current metrics.

Sets current metrics.

P _CSTM_LAYOUT_STYLE Passes back current style values.

P~CSTM_LAYOUT_STYLE Sets style values.

P _ CSTM_LAYO UT _ CHILD_SPEC Sets layout spec for given child.

P _ CSTM_LAYOUT _CHILD _SPEC Passes back the current spec for the specified
child.

msgCstmLayoutRemoveChildSpec· WIN Removes the spec for the specified child
window.

CstmLayoutSpecInitO Initializes the P _ CSTM_LAYOUT _SPEC
to zero.

Creating a Custom Layout Window
You send msgN ewDefaults and then msgNew to clsCustomLayout. In the
CSTM_LAYOUT_NEW_ONLY structure, the only field (currently) is
CSTM_LAYOUT_STYLE, and in this the only field (currently) is limitToRootWin,
which limits the size of a custom layout window so that it fits on-screen.

Specifying Constraints
When you insert a child window into a custom layout window, at some point you
will need to specify how the custom layout window positions the child window.
The next sections explain the form of this specification. There are two ways to
specify child window positioning:

• Specify a static constraint for the child window using
msgCstmLayoutSetChildSpec. The custom layout window stores the
constraint for the child window.

• Subclass clsCustomLayout and respond to msgCstmLayoutGetChildSpec
by supplying a constraint for the child window.

34.6.1

CHAPTER 34 I LAYOUT CLASSES 391

Creating a Custom Layout Window

The first method lets you create instances of clsCustomLayout directly. However,
the constraint information for each child window takes up memory (in addition
to the code filling in the constraint), so if you have a lot of windows in a custom
layout, the information uses up a lot of memory. The second method requires
you to create a descendant of clsCustomLayout that responds to
msgCstmLayoutGetChildSpec. The advantage is that you save memory.

Both messages take the same CSTM_LAYOUT_CHILD_SPEC structure. In both

cases, someone gives clsCustomLayout the information it needs to position the
child window; the difference is that in one a client (your application) is sending a
message telling clsCustomLayout what the child constraint specification is, while
in the other, your descendant of clsCustomLayout must respond to a message.

".. Four Child Window Constraints 34.6.2

CSTM_LAYOUT_CHILD_SPEC specifies the child window and its

CSTM_LAYOUT_SPEC. The latter is the structure in which you specify
four separate constraints for the child window's origin (x and y of its lower

left corner) and for its width and height. The possible constraints for these
four dimensions (they are really two dimensions and an origin) are the same,
and each is stored in a CSTM_LAYOUT_DIMENSION structure, described later.

The hierarchy of the nested structures is as follows:

A CTSM_IAYOUT _CHILD _SPEC specifies a child window and its
CSTM_LAYOUT_SPEC.

The CSTM_LAYOUT_SPEC specifies four CSTM_LAYOUT_DIMENSIONs.

Each CSTM_LAYOUT_DIMENSION specifies the constraints for a particular
dimension.

CSTM_LAYOUT_CHILD_SPEC also includes parentShrinkWrapWidth

and parentShrinkWrapHeight. When clsCustomLayout self-sends
msgCstmLayoutGetChildSpec, it sets these two booleans to indicate whether
the custom layout window (the parent) is shrink-to-fit in either dimension. In
some situations, you want the child to have different constraints if the parent is
going to adjust its size.

Custom Layout Dimensions

Each of the four CSTM_LAYOUT_DIMENSION structures (for the x-y, width,
and height of a child window) specifies the following values:

constraint a particular constraint enumerated in
CSTM_LAYOUT_CONSTRAINT (with additional optional
specifications OR'd in).

value an optional offset (or absolute value). valueUnits, below, specifies

the unit of measurement.

value Units the unit of measurement for value. valueUnits can be any unit
that clsBorder recognizes, such as bsUnitsLayout.

34.6.3

392 PEN POINT ARCHITECTURAL REFERENCE

Part 4 I UI Toolkit

relWin the window relative to which dsCustomLayout applies the
constraint (if applicable). If objNull, then constraint is relative to the
parent window (the custom layout window itself).

relWin Tag the tag of the window relative to which dsCustomLayout
applies the constraint (if applicable).

Constraints

The constraint field indicates the kind of constraint you want to apply to the
child window's x-y, width, or height. dsCustomLayout supports many different
layout techniques within the limitations of C structure syntax, so the specification
of constraints can be difficult to explain, but if you understand how to set them
up, you can specify almost any window layout. One way to learn is by looking at
other programs that use custom layout.

The six basic types of constraints are listed in Table 34-5.

34.6 .. 4

Table 34 .. 5
Layout Constraints for clsCustomLayout

Constraint Meaning for xl'! Meaning for width/height

cIAsls Leave unchanged. Use desired size.

dAbsolute Value gives absolute offset. Value gives absolute size.

dPctOf Value * relWin edge / 100. Value * relWin size/1 00.

dBefore Position one pixel less than relWin's. Size one pixel less than relWin's.

dSameAs Position same as relWin's. Size same as relWin's.

dAfter Position one pixel greater than relWin's. Size one pixel greater than relWin's

If the constraint for a dimension is clAsIs, do not change the dimension's value.
For width and height, the custom layout window sends msgWinGetDesiredSize
to the child, and uses the values the child passes back. value and relWin are
ignored.

If the .constraint clAbsolute is set for x or y, the value specifies an absolute position
relative to the parent window in border units. If clAbsolute is set for width or
height, the value specifies a width or height.

If the constraint is dPctOf, value specifies a percentage (for example 500/0 if value
is 50) relative to relWin.

The three remaining constraints all align this window with relWin. Sometimes
you want the windows to touch, other times you want one window to be exactly
adjacent (one pixel before or after) to the border of the other window. Hence, the
three flavors, dBefore, dSameAs, and dAfter. The alignment isn't strictly with the
edge of the other window; dsCustomLayout sends msgBorderGetOuterOffsets
to the child window to find out the inset (if any) from the child window's outer
edge to its border rectangle.

IIIIInnnll!ll

CHAPTER 34 I LAYOUT CLASSES 393

Creating a Custom Layout Window

Picking an Edge for Alignment Constraints

When you align windows, you are saying "I want this edge of this window to
touch (or be next to) this edge of the other." Rather than #define dozens of
possible alignments, clsCustomLayout provides a macro, CWignO, which
generates the appropriate constraint information with three parameters:

• The child edge to align.

• The type of alignment.

• The edge of relWin to align with.

For both the child window and the relWin, clsCustomLayout lets you pick from
several different edges to align:

clMinEdge the left or bottom edge.

clCenterEdge the middle of the side.

clMaxEdge the right or top edge.

clBaselineEdge the baseline of the window as reported by
msgWinGetBaseline.

The alignment type can be clBefore, clSameAs, dAfter, or clPctOf (with some
restrictions). The two edges in the macro can be independently set to clMinEdge,
clCenterEdge, or clMaxEdge. CWignO returns a bit pattern, which you set as the
x or y constraint in CSTM_LAYOUT_DIMENSION. For example:

metrics.x.constraint = CIAlign(clMaxEdge, clBefore, clMaxEdge)i

will place this window's right edge on the pixel to the left of relWin's right edge as
defined by msgBorderGetOuterOffsets. You might use this to place a component
right-adjusted inside a window without obscuring the window's border.

Aligning Width-and Height Dimensions
Aligning width or height is similar. You can tell clsCustomLayout to extend the
width or height of a window so that it aligns with the edge of another window.
The CIExtendO macro generates the constraint for you. For example:

metrics.w.constraint = CIExtend(clAfter, clMinEdge)i

will extend the width of a window so that it ends one pixel to the right of relWin's
left edge as defined by msgBorderGetOuterOffsets.

It is possible for constraints to conflict or be unresolvable. For example, the above
two constraints fail to determine an x position for this window if relWin's x
position is the same as relWin's width.

34.6.5

34.6.6

394 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

Figure 34-5 shows some examples of interesting layout constraints.

layout

I

2

4

5
.m.ld\i!f~

t"%*~""'J®~WWH~

6

3

7

relWin is parentWin and value is 0 unless otherwise indicated. The width
constraint is clAsIs, in most cases.

1 x = cWign(dMaxEdge, dBefore, dMaxEdge).
y = cWign(dMinEdge, dAfter, dMaxEdge).

2 x = cWign(dMinEdge, dAfter, dMinEdge).
y = cWign(dMaxEdge, dBefore, dMaxEdge).

3 x = cWign(dMinEdge, dSameAs, dMaxEdge).
y = cWign(dMaxEdge, dSameAs, dMaxEdge).

4 x = cWign(dCenterEdge, clSameAs, clCenterEdge).
y =cWign(dMaxEdge, dBefore, clMinEdge), with relWin set to the
window marked 2 in the illustration, and width set to clPctOf, value 32.

5 x = cWign(dMaxEdge, clSameAs, dMinEdge).
y = cWign(dMaxEdge, clSameAs, dMinEdge) , with relWin set to the
window marked 4 in the illustration.

6 x = cWign(dMinEdge, dSameAs, dMinEdge).
y = cWign(dMinEdge, dSameAs, dMinEdge).

7 x = cWign(dMinEdge, clAfter,dMaxEdge).
y = cWign(dMaxEdge, clBefore, dMinEdge).

CHAPTER 34 I LAYOUT CLASSES 395
Constraints and Shrink-Wrap

'Y Additional Constraint Flags
There are several additional flags that you can OR in to any
CSTM_IAYOUT_CONSTRAINT to produce additional effects. Some combinations
of constraints, edge specifications, and flags are meaningless or nonsensical.

You can OR the dOpposite flag with dBefore, dSameAs, or dAfter to refer to
the opposite dimension. Usually, you align the x position with the x position of
another window, but it is possible to align with the y position instead. You can use
this to ensure square windows, for example, to set the height of a window to be
the same as its width:

metrics.w.constraint
metrics.w.relWin

= clSameAs I clOpposite;
= self;

Constraints and Shrink-Wrap
If the custom layout window is set to shrink-wrap, it will shrink to the minimum
size necessary to show all of its children, then lay itself out. If all of the children
are sized relative to the layout window, this process will shrink them all out of
existence.

If you OR in clAsIsHShrinkWrap, dsCustomLayout will check to see if the
parent is set to shrink to fit in the relevant dimension, and if so, it will use the
child's size. dsFrame uses the clAsIsHShrinkWrap bit in specifying the width and
height of the dientWin, so that if the frame is shrink-to-fit it will leave the client
window its desired size, but if the frame is forced to a particular size (for example,
when it's a page in a Notebook), then the child window will fill it.

Another variant is that if the custom layout is shrink-to-fit, it should leave a child
window no smaller than its desired size. You can do this by OR'ing in
clAtLeastAsIs. An example is the command bar at the bottom of an option sheet.
If the frame is shrink-to-fit, it should not clip off the end of the command bar, but
if other components in the option sheet lead to a wider frame, then the command
bar should be expanded to the width of the frame.

Finally, if you wish to exclude a width or height constraint from the shrink-wrap
computation, OR clShrinkWrapExclude with the dimension you wish to exclude.
This is useful if you have overlapping children.

Other points to watch out for with shrink-wrap:

• If the parent is shrink-wrap, any margins around child windows (specified
with value) will be shrink-wrapped out of existence.

• If the parent is shrink-wrapped, and one or more children have width or
height constraint of clAsIs and have very large desired sizes, the parent
window may be too large to fit on-screen. You can set the custom layout
window's style flag limitToRootWin to ensure that it will never be sized
larger than the display root window.

34.6.7

34.7

396 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Relative Window

Every constraint but clAsIs and clAbsolute takes a window to which it is relative.
If it is more convenient, you can specify the relative window by its tag instead of
its UID by filling in relWinTag instead of relWin. clsCustomLayout looks up the
tag if relWin is objNull. relWin and relWinTag must refer to a sibling window.
This means that, for example, you can't align a window with the bookshelf. You
have to write your own layout class, which queries the window metrics of the
bookshelf, then converts them to your parent's window coordinates.

If relWin and relWinTag are both objNull, the constraint is relative to the parent
window. This is the default. If you want relWin to see the parent window, don't
use the, parent's UID, use objNull.

Value

For all constraints other than clAbsolute, clAsIs, and dPctOf, dsCustomLayout
adds the value you specify in CSTM_IAYOUT_DIMENSION to the computed value
of the dimension as an offset. For example, if you want to position a child five
units to the right of another child, use dAfter with value set to 5.

For dPctOf, value is the percentage of the relative dimension. For all other
constraints, value is an offset or value in some units. Value can be negative.

Custom Layout Initialization

You should always use CstmLayoutSpecInit to initialize a CSTM_IAYOUT _SPEC.

This initializes all the constraints to cIA$Is, value to zero, and value Units to
bsU nitsLayout.

More on msgCstmLayoutGetChiidSpec

When clsCustomLayout requires the constraint specifications for a child, it always
self-sends msgCstmLayoutGetChildSpec. If you subclass clsCustomLayout and
respond to this message, you can save on memory, especially if you use a lot of
windows. When you receive this, child is the UID of the window that needs a
layout spec. metrics has been initialized by CstmLayoutSpecInit.

If you specified a static custom layout constraint, the custom layout
window still receives msgCstmLayoutGetChildSpec. If you call your
ancestor first, you'll get the static constraint, which you can modifY. Your
msgCstmLayoutGetChildSpec method should never ObjectCallAncestor after
you modify the CSTM_IAYOUT_CHILD_SPEC, since it will ignore and overwrite
your changes.

34.7.1

34.7 .. 2

34.7.3

34.7.4

CHAPTER 34 / LAYOUT CLASSES 397

Layout Loops

", Shrink-Wrap 34.8

The window style flags of clsWin include two shrink-to-fit or shrink-wrap flags:
wsShrinkWrapWidth and wsShrinkWrapHeight. If a window with either of these
flags set receives msgWinLayoutSelf, it can compute a size to fit its contents (it
can expand as well as contract).

If a table layout or custom layout window has shrink-wrap turned on when it lays
out. it will will lay out its children as usual, then it will shrink or expand
horizontally or vertically to fit around the bounding box of its child windows. ...

l:~~:-The bounding box is the smallest rectangle that encloses all the child windows.
The layout window leaves enough room to support its border (inner margin,
border itself, and shadow).

Lazy Layout 34.9

In general, the VI Toolkit does not try to guess when windows need laying out. If
you change the size of a child window, add a new child window, or add a margin
around a child window, the layout window set its wsLayoutDirty bit, but will not
automatically reposition its children. It is up to the application, or possibly the
task that has altered the window layout, to decide when to send msgWinLayout.
They rely on someone telling them to layout. After altering a window, send it
msgWinLayout to cause a layout episode.

If you want to change several windows at once before laying out, send each
msgWinSetLayoutDirty before finally sending msgWinLayout (many changes to
the style of VI Toolkit windows do, in fact, mark a window's layout as dirty for
you, but they don't directly cause layout).

The exceptions to this lazy layout are scrollwins and option sheets, which self-send
msgWinLayout at appropriate times (for example, when changing to a new card
on an option sheet).

Layout Loops
You should not specify self-referential layout constraints, that is, constraints that
loop. If msgWinLayout determines that it is in a layout loop, it will return
sts WinInflniteLayout, stsTblLayoutLoop or stsCstmLayoutLoop.

In clsTableLayout, if you set the number of rows to tlMaxFit (fit in as many rows
as possible) and set the height of each row to tlMaxFit (make the row height as
high as possible), then clsTableLayout cannot determine either.

In clsCustomLayout, because you can use clsSameAs to set the dimension of one
window to be the same as another, you can have circular dependencies between
windows.

398 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

Shrink-Wrap and Parent-Relative Sizing
You can have the extent of the child windows depend on the parent's size in both
table layout windows and custom layout windows. If the parent is set to
shrink-wrap around its children, you might think that this creates a layout
loop-the child is as wide as the parent, but the parent contracts to fit around the
child.

Instead, the order of processing is as follows (size here refers to either width or
height).

1 The parent lays out its children using a size of (0,0).

2 The parent sizes itself (shrink-wraps) around its children.

3 The parent lays out its children a second time. At this point, it should have
shrink-wrapped around all its children of a fixed size, and its children whose
size depends on it should have adjusted to that size. The layout episode will,
continue until the parent window size becomes stable. If the size does not
become stable within a fixed number of iterations, the parent returns
stsCstmLayo.utLoop.

The net effect is that the UIToolkit can satisfy some requests for both a child that
fills its parent and a parent that wraps around its children, so long as there is a
window around with a definite size. A simple example of a example of an
erroneous situation is a shrink-to-fit custom layout window with a child window
whose width or height constraint is 1500/0 of its parent's size.

Capturing vs. Layout
Part 3: Windows and Graphics describes how you can set up a window (using
msgWinDeltaOk) so that it can modify or even veto its children's sizes and insert
requests. This approach is best when you need to guard against unfriendly child
windows, such as embedded applications, which may mess up your window.

On the other hand, the layout semantics described here allows a parent window to
position and direct its child windows. Capture is better for incremental layout, in
which the parent window handles the insertion and size changes of different child
windows. Layout is better for static window organizations that are periodically
re-Iaid out.

34.10.1

34.11

Chapter 35 / Controls

dsControl is an important ancestor class for many kinds of UI components.
Although its descendant classes have very different visual appearances, dsControl
provides them with a similar programmatic interface. dsControl mainly acts to
translate user inputs into notification messages which it sends to its client.

Here's a quick sketch of how you use controls in your programs. dsControl is
ancestor to a wide variety of toolkit elements: buttons, menu buttons, handwriting
fields, page numbers, scrollbars, and so on.

• You create the control you want.

• You specify a client for the control. The control notifies the client when the
user activates the control with a gesture (such as a tap). The form of the
notification is determined the particular subclass of clsControl that you use.

• Some controls have the notion of a current value which you can set and
retrieve.

• You can ask for more detailed notification of the user's interaction with a
control before he or she finally activates it (if at all). As a result, the control
self-sends additional preview messages.

• Each notification message (if any) sent by a control is triggered by an
intermediate message which clsControl self-sends in response to user input.

Filing Controls
clsControl responds to msgSave. It does not file its client object. However, if
the control's client is the application object (it uses OSThisAppO to check), then
during restore, dsControl will set the control's client to the new application object
passed back by OSThisAppO. Otherwise, the control's client will be objNull after
msgRestore, and you will have to go in and reset the client using
msgControlSetClient.

Message Dispatching
dsControl defines a set of messages and the circumstances under which controls
send them to their clients. dsControl converts pen input event messages in a
control window into intermediate control messages which clsControl sends to self.
Descendants of clsControl are free to respond to these intermediate messages as
they wish.

If the user activates a control, the final message that the control sends itself is
msgControlAcceptPreview. Before the control sends this message, the user has
been interacting with the control. For example, the user might move the pen tip

400 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

in and out of an item in a menu without choosing it. The menu items flicker on
and off during this interaction, even though the user hasn't really initiated any
action. This stage is called previewing, during which controls can self-send more
detailed messages, such as msgControlBeginPreview, msgControlCancelPreview,
and so on.

The main descendant of dsControl is dsButton. This responds to
msgControlAcceptPreview by notifying the control's client. A control's client can
be any object; typically it is the one that created the control. The button's message
to the client can be either msgButtonNotify, indicating that the user wants
something to happen, or an arbitrary message of your choice, such as
msgMyAppQuit.

Some components act like controls even though they do not inherit from
dsControl. This state of affairs arises because PenPoint classes inherit from only
one line of descent. For example, an exclusive choice responds to the
msgControlGetValue and msgControlSetValue, but it is not truly a subclass of
dsControl.

Presentation and Interaction Behavior
dsLabel is the workhorse class that depicts controls on-screen. It draws the text,
the highlight, and label decoration.

The descendants of dsLabel tell it what presentation style to use for their
particular style of label, such as button, toggle, or menu button. They also
determine the interaction behavior of the control and tell dsLabel how to draw
the various states of previewing.

The descendants of clsControl provide the interaction behavior of particular kinds
of controls. Buttons support various kinds of previewing (checking or unchecking,
highlighting, and so on).

". clsControl Messages
Table 35-1 summarizes the messages defined by clsControl:

Message

msgN ewDefaults

msgNew

msgControlGetMetrics

msgControlSetMetrics

msgControlGetStyle

msgControlSetStyle

msgControlGetClient

. msgControlSetClient

msgControlGetDirty

msgControlSetDirty

msgControl GetEnable

msgControlSetEnable

msgControlEnable

msgControlGetValue

msgControlSetValue

msgControlBeginPreview

msgControlUpdatePreview

msgControlRepeatPreview

msgControlCancelPreview

msgControlAcceptPreview

Takes

P _CONTROL_METRICS

P _CONTROL_METRICS

P _CONTROL_STYLE

P _CONTROL_STYLE

P_UID

UID

P_BOOLEAN

BOOLEAN

P_BOOLEAN

BOOLEAN

P _CONTROL_ENABLE

P_S32

S32

P _INPUT_EVENT

P _INPUT_EVENT

P _INPUT_EVENT

CHAPTER 35 I CONTROLS 401
clsControl Messages

35.4

Table 35-1
clsControl Messages

Description

Class Messages

Initializes the CONTROL_NEW structure to default
values.

Creates a control window.

Attribute Messages

Passes back the current metrics.

Sets the metrics.

Passes back the current style values.

Sets the style values.

Passes back metrics.client.

Sets metrics.client .

Passes back true if the control has been altered since
dirty was set false.

Sets style. dirty.

Passes back style. enable.

Sets style. enable.

The control re-evaluates whether it is enabled.

Passes back the current value of the control.

Sets the current value of the control.

Intermediate Preview ME~SS;a§':lleS

Self-sent when msgPenDown is received.

Self-sent when msgPenMoveDown is received.

Self-sent if style.repeatPreview is true. Initial delay is
600ms, then immediate repeat until msgPenUp.

Self-sent when style. previewGrab is false and
msgPenExitDown is received. Clients or subclasses
can send this to a control to cancel existing preview.

Self-sent when msgPen Up is received when
gestureEnable is false, or when xgsl Tap is received
when gestureEnable is true.

msgControlProvideEnable P _CONTROL_PROVIDE_ENABLE Sent out to client or specified object during
processing of msgControlEnable.

msgInputEvent Notification of an input event.

402 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

The following sections go through this interface in a top-down order. You usually
do not need to use the lower level API for controls described towards the end.
Moreover, much of the machinery provided by clsControl is used by descendant
classes, such as clsButton, which take care of it for you.

Creating a Control
Controls are an abstract class; there's no reason why you would create an
instance of clsControl itself. However, clsControl handles much of control
interaction and housekeeping, and there are important control initializations
you specify at msgNew time. This information is in the CONTROL_NEW_ONLY

structure (currently the same as the CONTROL_METRICS structure). The
CONTROL_METRICS structure contains two fields:

style various style fields for the control, described below.

client the client object that will receive all notifications from the
control. A control has only one client and generally does not notify
observers-adding observers to a control won't make the control
send messages to other objects.

You can get and set these with msgControlGetMetrics and
msgControlSetMetrics. clsControl also defines msgControlGetClient
and msgControlSetClient to get and set the client alone, and similar
msgControlGetStyle and msgControlSetStyle messages.

Control Style

The control style is a CONTROL_STYLE structure. Table 35-2 summarizes the
possible fields:

35.5.1

Jgble 35~2

CONTROl®",STYLE
fields/field V(3lues

enable

dynamicEnable
csDynamicN one
csDynamicClient
csDynamicObject
csDynamicP Args

previewEnable

previewGrab

previewRepeat

previewing

dirty

showDirty

Ft.H1diO!'l(3[Oe5<:riptiof'l

Describes how the control responds to input.

Describes how the enable value is determined.

Determines whether the control should self-send previewing messages.

Determines whether previewing starts an input grab. The default is it does not
grab input.

Determines whether the control sends out additional messages
(msgControlRepeatPreview after a certain period of time. The default is no repeat.

Determines whether the control is previewing at this moment. The default is no
previewing.

Determines whether the control is dirty-{has been altered). Up to subclasses to maintain
this information. The default is not dirty.

Determines whether the control should indicate that it is dirty. Up to subclasses to
make use of this. Default is it does indicate dirty.

CHAPTER 35 / CONTROLS 403

,..,. Control Defaults

By default (in the CONTROL_NEW_ONLY structure passed back by
msgNewDefaults), a control is enabled, does not grab input, does not repeat, and
is not previewing or dirty, and shows dirty (although the last is up to subclasses to
implement).

35.5.2

Values 35.6

Values

For many descendants of clsControl, it makes sense for the control to have an ...

l:~:
~ arbitrary value. For example, buttons are on or off, and scrollbars have a numeric

offset. clsControl defines msgControlGetValue and msgControlSetValue, but it is
up to descendant classes to respond to these. The value is a signed 32-bit value
(532). Table 35-3 shows examples of values for a number of standard subclasses of
clsControl.

The interpretation of the value is up to the descendant class. Some classes may
return stsBadParam if you set a value that the descendant doesn't like; other
control classes have no notion of a value and will send self msgNotUnderstood if
you try to get or set it.

Table 35'"3
Values for Differ<ent Subclasses of clsConh"ol

Button

Label

Scrollbar

Field

Integer field

Fixed field

Date field

Dirty Controls

o for off, 1 for on.

None.

Scrollbar offset.

Not applicable-the client must get the value Using msgLabelGetString.

Integer value of field (can also use msgLabelGetString).

Integer value of the field in hundredths.

Date value of field as a YYYYMMDD numeric string.

The dirty bit field in CONTROL_51YLE indicates if a control's value has changed.
clsControl doesn't check this; it is up to subclasses to interpret. You can set and get
it separate from the other style fields using msgControlSetDirty and
msgControlGetDirty. Note that this is different from a dirty window (which
needs repainting) or a dirty window layout (which needs to be relaid out).

The related style field showDirty indicates to subclasses whether they should
change the way they paint an instance to indicate that it is dirty. For example,
clsLabel draws its decoration in black if it is dirty, and in gray if it is not dirty. By
default, showDirty is set.

Descendants of clsControl use the dirty bit to indicate those controls in option
sheets that the user has fiddled with.

404 PENPOINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

Control Enable
A control responds to user input only if its enable bit is set. If the enable bit is
clear, the control is read-only. You can disable or enable a control by sending it
msgControlSetEnable with a message argument of true or false (or, to modify
enable along with other style values, you can send msgControlGetStyle, assigning
the values, and sending msgControISetStyle). One way for subclasses to disable or
enable input is to set the inputDisable window input flag to true or false.

To indicate that a control is inactive, clsControl sends msgBorderSetLook, with
an argument of either bsLookInactive or bsLookActtve. Most controls change
from black to gray ink if they are not enabled.

Whether a control is enabled or not is often dynamic. For example, the Move
command in the Edit menu should be disabled if there is no selection. The UI
Toolkit provides a protocol for the client to ask whether each control should be
enabled. This protocol allows items to have their enable state either static, or
dynamically based on criteria such as:

• A decision from the item's client.

• A decision from the current selection owner.

• Whether the current selection owner's process matches the application's
process.

The protocol works between several classes. clsControl defines the messages and
provides some default responses. Toolkit tables, described in Chapter 38, Toolkit
Tables, provide some semantics to check whether controls are enabled when
creating a tree of controls. Menu buttons, described in Chapter 39, Menus and
Menu Buttons, provide additional semantics for changing the enabled status of
the ~ontrols in their associated menus.

Evaluating Control Enable

When a control receives msgControlEnable, it should reevaluate whether it
is enabled. clsControl does different things based upon the value of its
dynamicEnable style field. msgControlEnable takes a pointer to a
CONTROL_ENABLE structure as its message arguments. In this the client should
specify the following values:

root the window originating the enable check.

object an object to query if the control's style is csDynamicObject.

enable a new enable value to use if the control's dynamicEnable style is
csDynamicPargs.

If the control's dynamicEnable style is:

csDynamicNone then the control returns stsOK.

csDynamicClient then the control sends msgControlProvideEnable to its
client, and then changes its enable value to what the client passed back
(if the client changed it).

CHAPTER 35 I CONTROLS 405
Internal Notification

csDynamicObject then the control sends the same
msgControlProvideEnable message, but it sends it to the object specified
in the message arguments of msgControlEnable.

csDynamicPargs then the control sets its enable value to match the enable
value specified in the message arguments of msgControlEnable.

".. Dynamic Control Enable
The msgControlProvideEnable message that dsControl sends out if
dynamicStyle is csDynamicClient or csDynamicObject takes a
CONTROL_PROVIDE_ENABLE as its message arguments. In this, the control
specifies between one to four arguments:

root the window originating the check. This is the same window as
specified in msgControlEnable.

control the message's VID.

tag the message's window tag.

enable its current enable value.

The receiver of msgControlProvideEnable should pass back the new enable value
of the control. Since the control itself is passed to the receiver of
msgControlProvideEnable, the receiver could choose to alter other attributes of
the control at that time.

The Toolkit Demo sample program creates a menu of buttons with different
enable styles. See \PENPOINT\SDK\SAMPLE\TKDEMO\TKDEMO.C.

Internal Notification
You need only read this subsection if you intend to create your own subclasses
of dsControi.

Many descendants of dsControl end up sending the client (the object stored in
the control's metrics) an activation message of some sort when the user activates
them. For example, a vertical scrollbar sends msgScrollbarVertScroll to client.

If you set previewEnable in CONTROL_STYLE, then underneath this interaction,
dsControl self-sends a stream of various notification messages. These are called
previewing messages because a control generates them while the user is working
with the controls but before the user activates the control (or decides not to
activate it). These messages are important for descendant classes because many
controls need to change as the user toys with them, mainly to provide visual
feedback.

For example, an individual button must highlight itself or show some kind of
decoration when preview begins, and de-highlight when previewing ends. The
messages that dsControl self-sends all have names of the form msgControl. .. Preview.
Descendant classes respond to these messages as they see fit. For example, clsButton
highlights in response to msgControlBeginPreview.

35.8

406 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Remember that a control sends these messages to itself. If you create an instance
of a control descendant, and make your application its client, your application
will not receive any of these messages. It is up to the control to notify its client in
someway.

The messages are:

msgControlBeginPreview The user has begun previewing.

msgControlUpdatePreview The user continues to preview in a manner
which requires the client to update. For example, if a slider and a text
field both indicate a value, then it might be appropriate for the client to
change the text field as the user moves the slider.

msgControlRepeatPreview The previewing has repeated. If a control's
previewRepeat style bit is set, then it will send
msgControlRepeatPreview after a timer notification. This is true for
scrollbars and the page turn buttons.

msgControlCancelPreview The user has finished previewing this control
but hasn't activated it.

msgControlAcceptPreview The user has activated this control.

The term activated is slightly misleading in this context. A button only sends a
message to its client when self receives msgControlAcceptPreview, but scrollbars
do something on msgControlUpdatePreview and msgControlRepeatPreview.
clsControl's definition of activation may not be the same as a given descendant's.

Every control should respond to msgControlBeginPreview by highlighting in
some way to indicate that the user has chosen it. Most controls invert, but others
do something else. For example, clsScrollbar moves the thumb up and down
when it receives msgControlBeginPreview over the thumb. Table 35-5
summarizes previewing behavior in some subclasses of clsControi.

SubdCIIS$

Normal button

Toggle button

Menu button

Label

Scrollbar

Field

Previewin9 Beh(J'IIk~r

Inverts foreground and background colors.

Displ;a.ys decoration.

Inverts foreground and background colors.'

Ignores preview messages (previewEnable is false).

Thumb bar inverts, arrow buttons use msgControlRepeatPreview, thumb creates
a tracker that moves the thumbing bar.

Depends on style fields; may display input focus indicator.

When Are Preview Messages Generated?

clsControl self-sends these msgControl. .. Preview messages when it receives
certain user input. The user input is delivered to clsControl in two forms: as pen
input events and as gestures. Pen input events are sent to the control from the
input system. The control calls its ancestor with all input events. Because one of

CHAPTER 35 I CONTROLS 407
Internal Notification

its ancestors is clsGWin, clsGWin receives pen events in the control. If the control
has gestures enabled, then dsGWin recognizes pen motions as gestures, and as a
result, self-sends msgGWinGesture. Also, if resizing or dragging are permitted in
clsBorder, dsBorder will grab certain input events.

The mapping from input events to these messages is as shown in Table 35-6.

Event

Control mE~ssaCles
Message Sent to Self

msgControlBeginPreview

msgControlUpdatePreview

Table 35-5
to Events

msgPenDown

msgPenMoveDown

msgPenExitDown

msgPenUp

msgControlCancelPreview (if gestures disabled and control is not grabbing input)

msgControlAcceptPreview (if gestures disabled)

xgslTap msgControlAcceptPreview (if gestures 'enabled)

msg TimerN otify msgControlRepeatPreview (if previewRepeat set)

If the control has gestures enabled (gestureEnable in GWIN_STYLE), then
dsControllooks for gestures, and accepts preview on receipt of xgslTap. If not,
then it accepts preview on msgPenUp and cancels preview on msgPenExitDown
(if previewGrab isn't enabled).

The mapping from window input flags to msgPen ... input events is explained in
Part 5: Input and Handwriting Translation. dsControl doesn't set window input
flags. If you want different input flags than clsGWin, you need to set them.

The message argument for every msgControl...Preview message is either pNull, or
a pointer to the INPUT_EVENT message arguments structure for the event that
caused the message. Control subclasses can use the information in the event to
determine where the pen was.

Previewing

When msgPenDown input arrives at clsControl, it triggers previewing. dsControl
sets the previewing bit in CONTROL_STYLE to true. It then self-sends the
corresponding msgControlBeginPreview message.

Stopping Preview

msgControlCancelPreview sets previewing to false when it arrives at dsControl.
msgControlAcceptPreview also sets previewing to false. The user can usually
cancel previewing by dragging the pen out of the control.

Descendants can terminate previewing at any time by not returning stsOK in
response to m~gControl. .. Preview messages. stsControlCancelPreview is a status
value defined for this purpose; it cancels preview but it is not negative, so
clsControl does not interpret it as an error.

35.8.2.1

408 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

Preview Grab

If previewGrab is set in the control's style bits, previewing starts an input grab.
The control will continue previewing even if the user drags the pen out of it;
normally, the control would send itself msgControlCancelPreviewing. The user
can still cancel previewing by drawing some unrecognizable gesture then lifting
the pen, or the descendant class can return some status other than stsOK.

Scrollbars set previewGrab so that the user doesn't have to keep the pen in them
while adjusting.

Preview Repeat

If previewRepeat is set in the control's style bits, msgControlBeginPreview
starts a timer by sending msgTimerRegister to theTimer. 600 milliseconds later,
theTimer sends a msgTimerNotify to the control. If previewing is still on (the
control is still previewing) and previewRepeat hasn't been reset, the control
generates msgControlRepeatPreview. Its message arguments are the event that
started the preview.

After self-sending msgControlRepeatPreview, the control registers a new timer
with theTimer. This has a zero timeout. The result is that controls that repeat start
repeating after 600 milliseconds, then repeat as fast as events can be delivered.

Gesture Notification
When dsControl receives msgGWinGesture or msgGWinForwardedGesture,
dsControl sends msgGWinForwardedGesture to the control's client. dsControl
returns whatever status is returned by its client. If the client does not return
stsO K, the gesture reaches clsGWin, which returns stsRequestForward to
propagate the message up the window tree. See "Gesture Windows" in Chapter
32, Toolkit Ancestors, for more information on how gestures are forwarded and
propagated in general.

Special Gesture Handling

Single Taps

Note that dsControl unconditionally steals away the xgslTap gesture and maps it
into msgControlAcceptPreview. This allows the user's tap on a button to execute
the button rather than send msgGWinForwardedGesture to the button's client.

""" Quick Help
xgsQuestion is one gesture that dsGWin handles itself. If the user makes the
Quick Help? gesture, no one responds to it, and the control has a Quick Help ID
specified in its gesture metrics, dsGWin will display the Quick Help text directly.

35.8.2,,2

35.8 .. 2.3

35.9.1

Chapter 36 / Labels

clsLabel handles the presentation of most controls (exceptions include clsScrollbar
and clsProgressBar). Buttons, menu buttons, individual toggles, and frame title
bars are all descendants of clsLabel. A label displays either a string you specify or a
window you provide. You can specify that it display other decorative elements,
such as check marks and arrows, next to the string or window. clsLabel does not
provide any notification or preview behavior at all.

Tk Demo: Labels <
Dooument Edit Demo

Left Justified I Label I
Centered I Label

Right Justified I Labell

Now is the time b all
m
f::

Word Wrap mdmento ~
III

Left Da:::oration "Label ~
i6"

Right Decoration Label'"
III

-I

Custom Font La1::el
~
~

Bold S,:/s:tem Font Label f

19 Small
~I

Jumbo Label i6"V1

[!J
111$
0"0
ii6"

ROtated i
Embedded ChHd 1,,-1 i o·
WindClYl ::s

III

410 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

". clsLabel Messages
Table 36-1 summarizes the messages defined by dsLabel.

msgNew

msgNewDefaults

msgLabelGetStyle

msgLabelSetStyle

msgLabelGetString

Description

Creates a label window.

Initializes the LABEL_NEW structure to default values.

Passes back the current style values.

Sets the style fields.

Passes back current string.

Sets the label string .

Passes back the child window.

Sets the child window.

Passes back the font spec.

Sets the font spec.

Passes back the font scale.

Sets the font scale.

Passes back the number of rows the label will size itself to.

Sets the number of rows the label will size itself to.

36.1

. msgLabelSetString

msgLabelGetWin

msgLabelSet Win

msgLabelGetFontSpec

msgLabelSetFontSpec

msgLabelGetScale

msgLabelSetScale

msgLabelGetRows

msgLabelSetRows

msgLabelGetCols

msgLabelSetCols

msgLabelGetBoxMetries

msgLabelResolveXY

msgLabelGetRects

Passes back the number of columns the label will size itself to.

Sets the number of columns the label will size itself to.

msgLabelAlign

msgLabelProvidelnsPt

msgLabelProvideBoxSize

Passes back the current box metries.

Resolves a point to a character in the string.

Computes the rectangle for each given character index.

Self-sent if style.xAlignment or style.yAlignment is IsAlignCustom. Subclass must set
pArgs-> offset.

Self-sent message to obtain where to render insertion point.

Self-sent message to obtain the character box size.

In its default usage, dsLabel paints the label string that you set with msgNew or
msgLabelSetString aligned at the bottom left corner of its window. You can set
the label style so that the label displays one of a fixed set of glyphs to the left or
right of the label string, and to control other aspects of the label's appearance.

Since the behavior of a label is quite different when its contents are a window
instead of a string, the details of labels with child windows are presented
separately, in Section 7.6.

CHAPTER 36 / LABELS 411

Creating a Label
You send msgNew to clsLabel to create a label. This takes a LABEL_NEW structure
as its message arguments; part of this is a LABEL_NEW_ONLY structure, as usual. In
this you specify:

style various style fields, described below.

pString the string for the label, or its child window, or its resource ID.

font the SYSDC_FONT _SPEC to open to draw the label string. Ignored if
style.fontType is set to IsFontSystem or IsFontUser.

fontName the name of the font to draw the label string. Ignored if
style.fontType is set to IsFontSystem or IsFontUser.

scale the scale of the label in scaleUnits.

rows the number of rows in the label. Each row has the height of one
typographer's em in the label's font. Ignored if style.numRows is
IsNumAsNeeded.

cols the number of columns in the label (zero indicates no limit). Each
column is one em (eight layout units) wide. Because PenPoint typically
uses a proportionally spaced font, it is impossible to predict what will fit
in a label with cols specified. Ignored if style.numCols is
IsN umAsN eeded.

Label Styles

The various styles are used by label subclasses to form the familiar UI Toolkit
components. LABEL_STYLE incorporates several categories of label appearance,
shown in Table 36-2:

Fields/Field \folLIes

infoType
IsInfoString
IsInfoS tringID
IsInfo Window

xAlignment
IsAlignLeft
IsAlignRight
IsAlignCenter
lsAlign Custom

yAlignment
IsAlignBottom
IsAlignTop
IsAlign Center
lsAlignCustom

runditm©1 Description

Label information type.
Label information is a string.
Label information is a resource ID.
Label information is a window UID.

Horizontal alignment of label.
Align with left edge.
Align with right edge.
Center horizontally.
Self-send msgLabeWign to get offset.

Vertical alignment of label.
Align with bottom edge.
Align with top edge.
Center vertically.
Self-send msgLabeWign to get offset.

Creating a Label

412 PENPOINT ARCHITECTURAL REFERENCE

Part 4 I UI Toolkit

fields/field V©lu©s

rotation
IsRotateNone
IsRotate90
IsRotate 180
IsRotate270

underline
Is UnderlineN one
Is U nderlineSingle
Is UnderlineDouble

strikeOut

decoration
IsDecorationN one
IsDecorationBlank
IsDecorationExclusiveOn
IsDecorationExclusiveOff
IsDecorationNonExclusiveOff
IsDecorationNonExclusiveOn
Is Decoration Check
Is Decoration Circle
IsDecorationBox
IsDecorationCheckedBox
Is Decoration Checked Circle
IsDecorationHollowLeft
IsDecorationHollowRight
IsDecorationSolidLeft
IsDecorationSolidRight
IsDecorationButtonOn
IsDecorationB utton Off
IsDecorationPopup
IsDecorationCustomLeft
IsDecorationCustomRight

numCols,
numRows

IsN umAbsol ute
IsNumAsN eeded

box
IsBoxNone
IsBoxSquare
IsBoxTicks
IsBoxInvisible

wordW"rap

fontType
IsFontSystem
IsFontUser
IsFontCustom

scaleUnits
bs UnitsLayout
bs UnitsPoints
bsUnits ...

stringS elected

fUf'ldi<m(l! Oescrir»ti()f'I

Degree of rotation of the text.
Do not rotate label text.
Rotate text 90 degrees.
Rotate text 180 degrees.
Rotate text 270 degrees.

Underline style of text.
Do not underline label text.
Single underline.
Double underline.

Determines whether text has a strikeout line through it.

Type of label decoration.

Style for the number of rows and columns.

Fixed number of rows or columns specified in rows or columns.
As many rows or columns as needed.

Style of box around characters in a label.
No box around characters.
Square box, for fields.
Ticks or combs, for fields.
Don't draw specified boxes.

36~ 2 (confirmed)

Determines whether label text should wrap to the next row at the end of a word.

Style of label font.
Use the system font.
Use the user font.
Use custom font specified by font or name.

Specifies scale of units.
Use the UI Toolkit layout units.
Use points (1/72 inch).
Use any other border unit (see BORDER.H).

Determines whether the string should show the selected visual.

CHAPTER 36 I LABELS 413
Label Strings and Special Characters

In general, each of the settings within a category is exclusive. A label can only have
one decoration; it can't have a pull-right arrow as well as a check box.

The VI Toolkit's label descendent classes set the LABEL_STYLE flags to achieve
different effects. They also make use of the drawing styles provided by clsBorder
to control their outline (none, rectangular, or round-cornered rectangle, with
different shades) and background; border windows are described in Chapter 33,
Border Windows.

The fact that labels do not respond to input might lead you to think that clsLabel
is an abstract class. However, this lack of behavior is perfect for annotations in
dialog boxes or option sheets.

Example 36-1 ,_@,,-- an Annotation label

The following code from the Hello World (Toolkit) sample program (in \PENPOINT\SDK\SAMPLE\HELLOTK\HELLOTK1.C)

puts the words Hello, World in the center of the window. It uses label styles to make the label scale to the window. Hello
World (Toolkit) creates this label in its msgApplnit handler.

LABEL NEW
STATUS

In;
S;

II Create the Hello label window.
ObjCaIIRet(msgNewDefaults, clsLabel, &In, s);
In. label. style. scaleUnits = bsUnitsFitWindowProper;
In. label. style.xAlignment = IsAlignCenter;
In.label.style.yAlignment = IsAlignCenter;
In . label. pString = "Hello World! ";
ObjCaIIRet(msgNew, clsLabel, &In, s);
II Insert In.object.uid in some window.

Label Strings and Special Characters
By default, label strings appear in the current system font. This font is used in the
notebook tabs, message box, and frame headers, as well as the VI Toolkit. The
encoding for the system font is sysDcEncodeGoSystem, which has several special
GO symbols in its low ASCII area, including symbols for label decorations. To
draw decorations, clsLabel merely draws a string of characters. If SysDC does not
find a special GO glyph in the font cache, it looks for the glyph in the current
system font. If the character is missing from the system font, SysDc looks for it in
a special GO glyph font. No matter what font you use, the VI Toolkit will display
decorations matching its size.

You can use some other font either by setting the fontName in LABEL_NEW _ONLY

to the system name of a font (such as HESS), or by supplying a SYSDC_FONT_SPEC in
the font field of LABEL_ NEW_ONLY. The fontName takes priority unless it is pNull
(the default).

36.3

cl5Labei copies the label string
you give it. You must send
m5gLabel5et5tring to change
the label string; changing your
own coPY of the string won't
work.

414 PEN POINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Layout
String labels are leaf windows-they don't have any child windows. Thus, a string
label has nothing in it to layout in response to msgWinLayoutSelf. But it does
contain a string, which may change in size when you send msgLabelSetString.
Sometimes you want the label to change its size to fit around the string, other
times you want the label to remain a fixed size.

Normally, a window recomputes its size and changes its size if necessary when it
receives msgWinLayoutSelfwith wsLayoutResize set. You can control whether a
label changes size by setting its wsShrinkWrapWidth and wsShrinkWrapHeight
window style flags. If these are false, the label will not change size.

If either is true, the label will recompute its width or height and size itself so that
it is just big enough to display its current label string and decorations in the style
you've specified inside the border you've specified. The exception to this is if
you've specified a fixed number of rows or columns (lsNumAbsolute), in which
case the label changes its size to fit the number of rows or columns in the label
font. The default is that both wsShrinkWrap Width and wsShrinkWrapHeight are
true, so that labels change size to fit their contents.

If you have a label with a changing string, you have several choices:

• Keep the label's size constant and run the risk that all of its string may not be
visible.

• Set the scaleUnits style to either lsScaleFitWindow or
lsScaleFitWindowProper so that the scale of the label's contents changes to
fit inside the label.

• Make the label grow and shrink.

In the latter case, you need to send msgWinLayout to the label with
wsLayoutResize set whenever you change its string.

No Notification
clsLabel does not turn on preview Enable in clsControl, or set any window input
flags. Thus, an instance of clsLabel does not respond to input, and clsControl
never generates any messages. By default, input in a label won't even be passed to
its parent window. It is the descendents of clsLabel that turn on different
combinations of window input flags and thereby receive msgControl. .. messages.

Painting
A label paints itself as best as it can within the rectangle of its window. It paints its:

• Border (by clsBorder).

• Label string.

• Label decoration.

• Insertion point.

36.4

36.5

36.6

CHAPTER 36 I LABELS 415

When you change the label style, clsLabel tries to be smart about painting, and
paints only what has changed.

clsLabel responds to msgBorderPaintForeground by painting its decoration and
string.

Child Windows

". Child Windows 36.7

This section describes how labels use child windows. You need read it only if you
want to put a window in a label. ...

~o~:: If you set a label's style.infoType to IsInfoWindow, it assumes pString is the UID r-

of a window. Or, if you send msgLabelSetWin to a label, this changes the
infoType to IsInfoWindow. You need to be careful not to set the infoType to
IsInfoString when displaying a child window, and vice-versa. Set pString to pN ull
first, then change infoType, then set pString to the new value.

Instead of painting a string of text, clsLabel inserts the window as a child of the
label. It never paints the child window; it relies on the child window repainting
itself in response to msgWinRepaint. Everything else about label window
behavior is unchanged.

If the child window's parent is not the label, clsLabel makes the label the child's
parent. If the label doesn't clip its children, then clsLabel sets the child window to
share the parent's clipping and not clip its own child windows.

If you know your child window will draw within its boundary, then you can
turn on wsParentClip in its window style flags, and set backgroundInk to
bsInk Transparent I bsInkExclusive. This will let the child window share the
update region of its parent (the label), which saves space and speeds repaint.

Layout

As explained in Section 7.3, labels will resize themselves when they receive
msgWinLayoutSelf if both the following hold:

• wsLayoutResize is set in the message arguments.

• One or both of wsShrinkWrap Width and wsShrinkWrapHeight are set in
the label's window style flags.

In the last case, the label will fit around the child window's current size.

If a window label does change size, it will ordinarily fit around the size of its child
window or string. However, ifbsUnitsFitWindow or bsUnitsFitWindowProper is
set in LABEL_STYLE, the label will resize its child window so that it fits within the
current size of the label. If your child window can repaint to fit its size, this is fine.
However, if your child window needs to be a particular size, you should not set
bsUnitsFitWindow or bsUnitsFitWindowProper. You might also want to reset
the label's wsShrinkWrap Width and wsShrinkWrapHeight window style flags so
that the label will not change its size. If you specify a fixed-size child window, note
that it won't handle the system font changing very well-all other labels will

416 PENPOINT ARCHITECTURAL REFERENCE

Part 4 I UI Toolkit

change size except the one with a child window. It's best to let the label size the
child window.

If you want to change the size of your child window, you should send
msgWinLayout to the label it's in to make the label change size also.

Painting

Your child window will receive msgWinRepaint when the label needs to repaint.
The label takes care of drawing the border and decorations, and if the child
window has wsParentClip set, then the label will clear the child window's area.

Field Support
Fields allow handwritten and keyboard input. They inherit from clsLabel (see
Chapter 42, Fields, for more information). clsLabel does the drawing for fields, so
it has some internal messages that dsField uses.

Insertion Point

clsLabel draws the boxes for the insertion point that indicates where the next
character from the keyboard will appear. To find out where it should draw the
insertion point, clsLabel self-sends msgLabelProvideInsPt. Descendants can
respond by passing back the zero-based character offset of the insertion point.

I

If the label style is non-boxed, dsLabel draws the insertion point as a vertical
before this character; if the label style is boxed, dsLabel highlights the baseline of
the box around this character. If the message gets to clsLabel, it passes back the
value -1, which tells itself not to draw the insertion point.

Character Positions

dsField handles gestures over fields. To figure out which character is closest to the
hot point of a gesture, it self-sends msgLabelGetRects. This computes the
bounding rectangles for a set of characters. It takes a pointer to an array of
LABEL_RECT structures. In each structure, the sender specifies the location in the
string (index). As in msgLabelProvideInsPt, characters are specified by a
zero-based index in the string. clsLabel computes the bounding rectangle for the
character in its string at index, and passes it back as a RECT32 in device units
(rect). clsLabel knows it has reached the end of the array of LABEL_RECTs when
the index specified is the value -1.

36.7.2

36.8.2

Chapter 37 / Buttons

Buttons are labels with input behavior-the user can tap a button. When the
user activates a button, the button sends its client (maintained by clsControl)
information that you specify.

elsBu60n Messages
Table 37-1 summarizes the messages defined by clsButton.

msgNew Creates a button window.

31~1

Sa e Buttons

Table 31m l

clsButton ME~5saCles

msgN ewDefaults Initializes the BUTTON_NEW structure to default values.

msgButtonGetMetrics

msgButtonSetMetrics

msgButtonGetStyle

msgButtonSetStyle

msgButtonGetMsg

msgButtonSetMsg

Passes back the current metrics.

Sets the metrics.

Passes back the current style values.

Sets the style values.

Passes back metrics.msg.

Sets metrics.msg.

418 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

Me5$<l~e

msgButtonGetData

msgButtonSetData

msgButtonSetNoNotifY

Oe$(ri~ti~rI

Passes back metrics.data.

Sets metrics.data.

Sets the value of the button without notifYing.

msgButtonDone

msgButtonBeginPreview

msgButton UpdatePreview

msgButtonRepeatPreview

msgBu~tonCancelPreview

msgButtonAcceptPreview

Sent via msgWinSend to the manager when button receives msgControlAcceptPreview.

Sent via msgWinSend to the manager when button receives msgControlBeginPreview.

Sent via msgWinSend to the manager when button receives msgControlUpdatePreview.

Sent via msgWinSend to the manager when button receives msgControlRepeatPreview.

Sent via msgWinSend to the manager when button receives msgControlCancelPreview.

Sent via msgWinSend to the manager when button receives msgControlAcceptPreview.

msgButtonNotifYManager

msgButtonNotifY

To create a button:

Sent to self when button wants to notifY its manager.

Sent to self when button wants to notifY its client.

• Specify a client for the button in the control part of its BUTTON_NEW

structure.

• Specify the visual appearance of the button in the BUTTON_STYLE part of its
BUTTON_NEW _ONLY structure.

• Specify a message and data that the button will send to its client when the
user activates it.

There are several different styles of button. The default button responds to input,
sets its border style to a rectangle with a shadow, centers its label. Buttons respond
to msgControlBeginPreview and msgControlAcceptPreview by providing some
kind of visual feedback. For example, the default button previews by becoming gray.

Other Kinds of BuHons
Menu buttons Menu buttons are a special kind of button. They display an

associated menu when the user taps on them. Menu buttons and menus
are explained in Chapter 39, Menus and Menu Buttons.

Pop-up choices Pop-up choices are buttons which display a current value of
chosen from a selection of values. The user can flick to move to other
values, or tap to display a pop-up menu showing all the choice values.
Pop-up choices are also documented in Chapter 39, Menus and Menu
Buttons.

Icons Icons are buttons which can display a bitmap as well as a string. Icon
toggles are icons which maintain an on or off state, displaying a different
picture for each of the two states.

31 .. 2

CHAPTER 37 I BUTTONS 419
Creating a Button

Creating a BuNon
dsButton's class-specific msgNew arguments (BUTION_NEW _ONLY) are the same
as its metrics (BUTTON_METRICS). The structure contains three fields:

style various style bits for the button, described below.

msg the message to send when the button is activated. This may just be raw
data, see Table 37-2.

data 32 bits of data. If sgrle.pArgs is bsPargsData, then this data will be
part of the message arguments sent to the client when the button is
activated.

You can get and set all of these with msgButtonGet/SetMetrics. In addition,
dsButton defines other messages to get and set individual elements of the metrics:
msgButtonGet/SetStyle, msgButtonGet/SetMsg, and msgButtonGet/SetData.

BuHon Defaults

By default (that is, in the BUTTON_NEW structure passed back by
msgNewDefaults), a button notifies its client by sending the msg you define for
it. In clsControl, a button is enabled, does not grab input, does not repeat, does
not send detailed previewing messages to its client, and is n~t previewing or dirty.

dsButton supports different kinds of controls: pushbuttons, toggles, and lock-on
buttons. It also supports different styles of notification that control how the msg
and data in the button's metrics are sent to the button's client. The look and
behavior are controlled by style flags in BUTTON_STYLE, shown in Table 37-2.

37.3

37.3.1

Table 37-2
BUTTON_STYLE Styles

contact
bsContactMomentary
bsContactToggle
bsContactLockOn

feedback

on

bsFeedbackN one
bsFeedbackInvert
bsFeedbackDecorate
bsFeedbackN one
bsFeedback3 D
bsFeedbackBox

onDecoration

offDecoration

pArgs
bsPargsData
bsPargs Value
bsPargsUID

notifyDetail

Fum::tioooi Description

Describes how the button behaves when pushed.
Button is changed momentarily to on, then off when the button is released.
Button is toggled on and offbetween each·push.
Button is set to on, but stays on after the user lets go. Used in choices where user can't
turn off a button by tapping on it.

Describes how the current value (on or off) should display.
No visual feedback.
Invert the button.
Use onDecoration or offDecoration to draw button.
No feedback.
Use three-dimensional shadow effect.
Outline the button with a box.

Determines whether button is on or off; the button's value.

Use when button is on if feedback is set to bsFeedbackDecorate.

Use when button is is off if feedback is set to bsFeedbackDecorate.

Determines the kind of button notification message arguments.
Message argument is the data in the button's metrics.
Message argument is the button's current value.
Message argument is the button's UID.

Determines whether the button sends messages to its manager for its detailed previewing
messages.

continued

420 PEN POINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

"' ;",,."', "'" fkt£js FUf'ldl(}f'lCtI Oescri;:»ti©f'I

37·2

notifyWithMsg Determines whether button's notification message is specified in msg or the generic
message msgButtonNotify.

halfHeight

manager
bsManagerNone
bsManagerParent
bsManagerClient

Notification

Simple Activation

Determines if button has partial border when not previewing or executing and a full
round; fill when previewing.

Determines the kind of manager the button has.
Button has no manager.
Button's parent window is the manager.
Button's control client is the manager.

The model for the simplest use of buttons is:

1 User interacts with button.

2 Button sends message to manager.

3 Button sends message to client at end of interaction if the user actually
activated the button.

Note that the button will send a message to its client even if the value of the
button (on in BUTTON_STYLE) is the same as it was before. It sends the message
whether the user or the API sets its value.

At this level, clsControl self-sends msgControlAcceptPreview. dsButton responds Buttons rely on ObjectCal1.

to this by sending self msgButtonNotify (the next sections describe how a button
comes to send itself this message). The arguments to this are in a
BUTTON_NOTIFY structure. clsButton responds to msgButtonNotify as follows:

• The notifyWithMsg button style field determines what clsButton sends to
the client when it receives msgButtonNotify. If set, the message that the
button sends to its client is the message you specified in the button's metrics
(msg). If msg is null, dsButton won't send any message.

• However, if notifyWithMsg is false, then the message that the button sends
to its client is' the same generic msgButtonNotify. The message arguments
are a BUTTON_NOTIFY structure containing the msg and data you specified
in the button's metrics, and the UID of the button sending the notification
message. In this case, the button does not interpret the msg field of
BUTTON_METRICS, so it, like data, could be any 32-bit data.

CHAPTER 37 I BUTTONS 421
Notification

Example 37 .. 1

Creating a Button
As an example of the first style, if your application has a button labeled Recalc, you could set notifyWithMsg and specify
msgMyAppRecalc as its message and the application UID as the client. When the user taps this button, the application
would receive msgMyAppRecalc. The nice thing here is that the application is isolated from its user interface. You could
change the button or add another way to recalculate, or the application could receive the message from an agent process
without requiring any changes to the application.

BUTTON NEW bn;
APP myAppi
STATUS s;

myApp OSThisApp () ;

ObjCallRet(msgNewDefaults, clsButton, &bn, S)i

bn.win.parent = parentWini
bn.win.options = wsPOSTOPi

bn.label.pString = "Recalc"i
bn.control.client = myAppi
bn.button.msg = msgMyAppUserRecalci
ObjCallRet(msgNew, clsButton, &bn, S)i

ObjCallRet(msgWinlnsert, bn.object.uid, &bn.win, s) i

The application object myApp will receive msgMyAppUserRecalc with P _ARGS of null when the user activates the button.
This example doesn't use the data field because all the information the client needs is the msgMyAppRecalc itself. You could
associate a different message with every button in your application. However, the cost of defining separate messages for every
button is that the client must respond to dozens of messages. The data field is useful when you want several buttons to share
the same message, but want to distinguish between them. For example, you might have several buttons to zoom in and out
of a diagram. Each could have the same msg field (msgMyAppZoom), and a different data corresponding to the different
zoom factors or styles associated with each button.

With notifyWithMsg set (as in this example), the client doesn't automatically get the UID of the button sending the
message. You can get around this by specifying in the BUTTON_S1YLE that its data be the UID of the button (set pArgs to
bsPargsUID).

Unwelcome Notification

A button normally notifies its client whenever someone sets its value. This is true
even if the new value is the same as the old value. This may cause problems. For
example, you have a toggle in your application that indicates the zoomed state of
the application. When you restore the application, you want to set the toggle to
show whether the view is zoomed or not. But if you send msgControlSetValue to
the toggle, it will notify its client that it has a new value.

If you want to temporarily avoid receiving these kinds of notifications, you can
either use msgButtonSetNoNotify to set the value of the button without
notifying its manager and client, or don't set the button's client until after you
have set it up.

422 PEN POINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

Painting
If halfl-leight is set in BUTTON_STYLE, then buttons draw a half-height border
when not previewing or executing, and a full-round fill when previewing.

The bsFeedbacldD style sets up many border metrics to provide the
three-dimensional effect.

clsButton responds to msgBorderGetForegroundRGB with the appropriate
RGB color to use for the foreground, given the current visuals. Usually, it calls
its ancestor, but if the button's style.look is bsFeedbacldD, it computes the
appropriate color to use.

Value
The value of a button is either 1 (on) or 0 (off). You can set a button's value with
msgControlSetValue and test it with msgControlGetValue. You can also
manipulate the value by setting and getting the BUTTON_STYLE fields, which
include on.

Control Dirty

When a button's value changes (either programmatically or by the user changing
it), the button self-sends msgControlSetDirty, so that if its showDirty control
style bit is set, it will indicate that its value is different. Someone else (probably the
button's client) is responsible for resetting the button's control dirty. For example,
the client might reset control dirty after it completes the action requested by the
button.

If a button's contact style is not bsContactMomentary, then as soon as the user
taps it (and it thereby receives msgControlBeginPreview), it sends itself
msgControlSetDirty with value true. Thus, a button is dirty as soon as the user
touches it. The intent of control dirty is to allow option tables and other
collections of controls to determine which of their nested controls has been
altered. If a control is dirty, then the change will be applied. The assumption is
that if a user has touched a button, then the user wants its value applied, even if
the user never changed its state.

Creating Many BuBons
If you need to create many buttons, then you can create them in a toolkit table.
clsTkTable lets you create all the nested buttons at once. clsToggleTable and
clsChoice are collections of buttons with additional semantics. See Chapter 38,
ToolkitTables, for more information on creating a set of buttons at once.

37.5

37.6

37.6.1

37.7

CHAPTER 37 / BUTTONS 423
Advanced Button Notification Techniques

Advanced BuHon Notification Techniques ~J.1'.8

Most developers need not be concerned with the internals of button notification.
A single button works as expected, as do the many classes that combine groups of
buttons. However, in the rare case that you must create a completely new class of
button, you will have to write code to handle low level button notifcation and
management protocols.

If you set the notifyDetail button style field, the button's manager will receive a
host of additional messages. You set the manager at creation time or in the
BUTTON_METRICS structure. The manager is an object that receives notification
messages from the button. These messages are called previewing messages because
a button generates them while the user is interacting with the button, but before
the user activates the button.

The manager can alter the behavior of the button or of other buttons in a group,
as for example, a choice does to coordinate its toggles. This is useful if you want to
change things around as the user toys with buttons. For example, you might want
to change the style of some sample text as the user touches the pen on a choice,
not just after the user makes his final choice.

The messages are all of the form msgButton ... Preview and an extra message,
msgButtonManagerNotify. These messages to the button manager correspond to
the msgControl. .. Preview messages that clsControl sends to the button. The
button sends them using msgWinSend, so that if its manager doesn't respond, the
message propagates to the manager's ancestor window, and on up the window tree.

Unless you need to create a
completely new class of button,
don't read this section!

Table 31~3
clsButton Previewh1g Messages

Messcge

msgButtonBeginPreview

msgButtonUpdatePreview

msgButtonRepeatPreview

msgButton Cancel Preview

msgButtonAcceptPreview

Manager Obiects

Description

The user has begun previewing.

The user continues to preview in a manner that requires the client to update. For
example, if a slider and a text field both indicate a value, then it might be appropriate
for the client to change the text field as the user moves the slider.

The previewing has repeated. If a button's previewRepeat control style bit is set,
then it will start repeating the last action after a while. This is true for scrollbars and the
page turn buttons.

The user has finished previewing this button but hasn't activated it.

The user has activated this button.

37.8.1

There are some common styles of button management, such as the exclusive-on
buttons in choices and multiple selectable buttons in a list box. The UI Toolkit
includes manager classes that do the housekeeping for the preview messages from
these sets of buttons: clsManager, clsChoiceMgr, and clsSelChoiceMgr. They are
described in more detail in Chapter 38, Toolkit Tables.

424 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

"'''' How clsBuHon and clsTkTable Respond to BuHon
Previewing Message

If the manager receiving these messages is itself a button or toolkit table, and it
calls ObjectCallAncestor, clsButton and clsTkTable respond to them by notifying
the manager's own manager if the manager's notifyDetail flag is set. In other
words, the previewing messages continue to flow up the chain of managers if they
all set notifyDetail.

Examples of Previewing
clsChoice is one built-in class that responds to msgButton ... Preview messages.
Choices are made up of several ordinary buttons (clsChoice is a toolkit table; this
type of class is described below), but the choice must ensure that only one of the
buttons is on at once. When the user previews another button by holding the pen
tip over it, the choice must turn off the current button. To implement this, a
choice sets the button style. manager of its buttons to bsManagerParent (the
parent of the buttons, that is, the choice itself), and uses a hidden object to handle
the button previewing messages. See Section 9.6 for more information.

As another example, if you were going to be a client of a joystick-like control, and
you wanted to update a view as the user moves the joystick or keeps it sideways,
you would set notifyDetail and update your view on receiving
msgButtonUpdatePreview and msgButtonRepeatPreview. The pseudo-joystick
control would need to be a subclass clsButton to generate these messages.

Unwanted Manager Notification
Since the button's value is the on field in its BUTTON_STYLE, one side effect of
sending msgButtonSetStyle or msgButtonSetMetrics is that the button sends
itself a msgButtonNotifyManager message and also notifies its client.

37 .. 8.2

The object sending notifyDetail
messages ignores the status
returned by the recipient.

31.8.3

Chapter 38 / Toolkit Tables

clsTkTable groups a collection ofUr Toolkit components, typically buttons or
descendants of clsButton, into a table. It creates all the items at once. The items
can be from different classes, and you can specify particular initialization for each
one. The items can even be toolkit tables themselves. Thus, not only can you
create homogeneous tables of buttons, such as a bank of switches, you can also put
choices, arrays of buttons, fields, submenus, and any other kind of Dr Toolkit
component in the same toolkit table. For example, many of the option cards in
PenPoint option sheets are created from a single toolkit table specification.

Menus, choices, option tables, tab bars, and command bars are all toolkit tables
that are composed of collections of labels and buttons. Each item in the menu, or
possible choice in the choice, or toggle in the toggle table, is a toolkit component
nested inside the toolkit table as a child window. These descendants of clsTkTable
are described in later sections.

The menu, choice or toggle table manages its component buttons, arranging them
and managing their previewing and notification. The arrangement aspect is best
handled by clsTableLayout, so clsTkTable inherits from clsTableLayout. To alter
the layout of buttons in toolkit tables, you can use the messages and structures
provided by clsT ableLayout.

426 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

CHAPTER 38 / TOOLKIT TABLES 427
Other Kinds of Toolkit Tables

,,- clsTkTable Messages 38.1

Table 38-1 summarizes the messages defined by clsTkTable.

Table 38-1
clsTkTable Messages

Message Description

msgNew Creates a toolkit table window.

msgN e:wDefaults Initializes the TK_ TABLE_NEW structure to default values.

msg Tk TableGetStyle

msg Tk TableSetStyle

msg Tk TableGetClient

msg Tk TableSetClient

Passes back the current style values.

Sets the style values.

Passes back the client of the first child in the table.

Sets the client of each child in the table to pArgs.

Passes back the manager.

Sets the manager.

Passes back the metrics.

Sets the metrics.

Sets the defaults in pArgs for a common child.

Inserts pArgs as the first child in the table.

Inserts pArgs as the last child in the table.

msg TkTableGetManager

msg Tk TableSetManager

msg Tk TableGetMetrics

msg Tk TableSetMetrics

msg Tk TableChildDefaults

msg Tk TableAddAsF irst

msg TkTableAddAsLast

msg TkTableAddAsSibling

msg Tk TableAddAt

msgTkTableRemove

Inserts pArgs->newChild in front of or behind pArgs->sibling.

Inserts pArgs->newChild table at zero-based index pArgs->index.

Extracts specified window from the table.

msgTkTablelnit Sent to TK_ TABLE_ENTRY. class after default mappings from entries to pChildNew.

Other Kinds of Toolkit Tables

.. Toggle Tables

A toggle table (clsToggleTable) is a table of independent toggle buttons.
clsToggleTable maintains a 32-bit bitmask encoding the values (on or off) of the
first 32 buttons in the table. This chapter describes toggle tables in more detail
after describing clsTkTable .

.. Choices

A choice (clsChoice) is a table of buttons of which only one button may be on.
When the user activates a button in a choice table, whatever button had been
previously activated is deactivated. This chapter describes choices in more detail
after describing clsTkTable.

38.2

428 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

• Menus
A menu is a toolkit table that organizes its nested components in a column.
Menus are documented in Chapter 39, Menus and Menu Buttons.

• Tab Bars
A tab bar (clsTabBar) arranges a set of tab buttons vertically, and let the user slide
tabs around to hide and expose tabs. Frames and option sheets can have attached
tab bars.

• Command Bars

A command bar (dsCommandBar) presents a centered set of buttons. Option
sheets have a standard command bar containing Apply and Apply & Close
buttons.

• Option Tables

An option table (clsOptionTable) presents the standard two-column layout of
pairs of bold labels and settings inside option sheets.

Creating a Toolkit Table
When you create a toolkit table, you indirectly specify the msgNew arguments for
the components in it as part of clsTkTable's own msgNewarguments.
TK_TABLE_NEW_ONLY permits a mass initialization of the nested components.
You can either specify msgNew arguments for each individual component, or a
global msgNew, or neither, and just set some flags for the common classes of
components. clsTkTable uses this information to create the child components
itself--it sends msgNew over and over to create each child, so you don't have to.

This means that there are two distinct ways to create most VI Toolkit
components: by sending msgNew, or by specifying it as a table entry when
creating a toolkit table.

Common Creation Information

Rather than requiring you to separately create each component in the table by
sending msgNewover and over, you supply some information common to all
the components, and a pointer to an array of information for each child
(P_TK_TABLE_ENTRY). The common information in TK_TABLE_NEW_ONLY is:

style the table style (currently empty).

client the client for controls in the table.

pEntries a pointer to the array of per-child information.

pButtonNew a default msgNew structure for all of the nested items
(if needed).

manager a manager to notifY ..

38.3

38.3.1

CHAPTER 38 / TOOLKIT TABLES 429
Creating a Toolkit Table

Class-Dependent Creation Information

The array of information that you specify for each button individually consists
of a null-terminated array of TK_ TABLE_ENTRY structures. The fields in a
TK_ TABLE_ENTRY are as follows:

argl, arg2, arg3 clsTkTable's interpretation of the fields depends on the
. class of the item. These are a P _UNKNOWN and two U32s, respectively.

tag a window tag. Because clsTkTable creates the items for you, the easiest
way to retrieve an object is to give it a tag (using MakeTag) and find it
with msgWinFindTag.

flags a set of flags that encode common variants of items in a toolkit table,
such as toggle-style button, wide border margins, and a menu button
with a pull-right menu. Many of the flags only apply to certain classes of
items.

class the class of the item. This is only needed to override the default class
defined in pButtonNew.

helpId a Help ID for the item, used by clsGWin to support Quick Help.

The three unknown fields and the flags field allow a single structure to define
most varieties of many different kinds of nested components, without having to
supply a custom msgNew structure for each component. For buttons, you usually
only set the string, message, and data. For a label, you only set the string.

Now for a menu button with a sub-menu, you want to specify the menu button's
string, and then information for each of the items in the sub-menu. This is
possible: the second argument for a menu button with a sub-menu is the address
of another TK_ TABLE_ENTRY array. The values of the fields for different classes are
as shown in Table 38-2.

(i@$S tH><gl

clsLabel pString N/A

clsButton pString msg

clsMenuButton (no submenu) pString msg

clsMenuButton (with submenu) pString pEntries

clsChoice pEntries num of rows or cols

cls Toggle Table pEntries num of rows or cols

clsPopupChoice pEntries num of rows or cols

clsPopupChoice (displaying fonts) prune (see below) num of rows or cols

clsField pString num of cols

clsListBox num of entries num of entries visible

clsFontListBox num of entries num of entries visible

N/A
data

data

N/A
N/A
N/A
N/A
N/A
N/A
N/A
look

430 PEN POINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Wherever this table calls for a pEntries in a TK_TABLE_ENTRY field, you supply

the address of another TK_TABLE_ENTRY array (or pNull, and clsTkTable will
read the embedded table's entries in-line).

Wherever this table calls for number of rows or columns in a TK_ TABLE_ENTRY

field, the interpretation of what you are setting depends on whether the flag
tkTableVertical or tkTableHorizontal is O~d into flags. For example, for a choice
in a toolkit table, the default orientation is vertical and the default number of
columns is one. However, if you set the tkTableHorizontal flag and set arg2 to 3,
you make the choice wrap onto three columns. If neither flag is set, arg2 is

ignored (flags are described below). Note that these flags apply to the nested table
item, not to the parent toolkit table; you would change the orientation of the
parent toolkit table by changing its TABLE_LAYOUT_NEW_ONLY fields.

prune is a FIM_PRUNE_CONTROL flags word, described in more detail in
"Displaying Installed Fonts in a Table," later in this chapter.

~,. Defining Table Entries Statically

You usually declare the TK_TABLE_ENTRY array statically:

static TK TABLE_ENTRY myMenuBar = {
{itemlargl, itemlarg2, itemlarg3, itemltag, itemlflags, itemlclass, itemlhelpld},
{item2argl, 0, , item2arg3, item2tag, item2flags, 0, O},

{pNull}
} ;

This saves the code required to initialize each of the entries. You can leave trailing
fields out and the C compiler will fill them with zeros.

Furthermore, wherever a particular component class calls for a pointer to another
TK_TABLE_ENTRY (a pEntries in the above table), instead of declaring a separate
array, you can embed a new array in the static definition. To do this enter pNull
where the pEntries pointer would go, and follow that entry with the entries for
the embedded TK_TABLE_ENTRY. clsTkTable will create the second toolkit table
from these entries.

If you do embed TK_TABLE_ENTRYs inside others, make sure that each array ends
with a null entry ({pNull}). clsTkTable has to find the empty entry to know
where the embedded table ends.

Toolkit Table Flags

The possible flags values in TK_ TABLE_ENTRY allow you to set common styles for

the existing label and button classes without having to resort to subclassing or
supplying a msgNew structure. The flags also work for classes descending from the
existing label and button classes. The flag values are listed in Table 38-3.

38.3.2 .. 2

Flag Values

tkLabelEntry

tkLabelStringId

tkLabelBold

tkLabelWordWrap

tkButtonPargs Value

tkButtonPargs UID

tkButtonOn

tkButtonHalfHeight

tkButtonManagerN one

tkButton Toggle

tkButtonBox

tkMenuPullRight

tkMenuPullDown

tkContentsSection

tkInputDisable

tkBorder EdgeT op

tkBorderEdgeBottom

tkBorderMarginNone

tkBorderLookInactive

tkTableHorizontal

tkT ableV ertical

tkNoProto

tkNoClient

tkPopupChoiceFont

tkControlDynamicClient

tkControlDynamicObject

tkControlDynamicPargs

tkControlCallSel

tkControlSelLocal

tkMenuButtonGetMenu

tkMenuButtonEnableMenu

CHAPTER 38 I TOOLKIT TABLES 431
Creating a Toolkit Table

Table 38-3
TK TABLE ENTRY Flag Values

argl is a P _TK_TABLE_ENTRY.

argl is a string resident.

Use bold system font in label.

Word wrap the label string.

Send value instead of data.

Send UID instead of data.

Turn on the button.

Use half-height button border.

Set button manager to bsManagerNone.

Make button a toggle.

Use bsFeedbackBox.

arg2 is pEntries for a pull-right menu.

arg2 is a pEn tries for a pull-down menu.

arg2 is a pEntries for section contents.

Disable input.

Turn on top border.

Turn on bottom border.

Turn off all margins.

Make entry inactive.

Table is horizontal.

Table is vertical.

Do not use prototypical pButtonNew.

Do not copy client fields.

Use current font name.

Set dynamicEnable equal to csDynamicClient.

Set dynamicEnable equal to csDynamicObject.

Set dynamicEnable equal to csDynamicPargs.

tkControlDynamicObject.

tkControlDynamicPargs.

Send msgMenuButtonProvideMenu.

Send msgMenuControlEnable.

432 PENPOINT ARCHITECTURAL REFERENCE

Part 4 I UI Toolkit

As an example of a complex nested toolkit table, the following example shows
the code from TkDemo for its sample option table (in \PENPOINT\SDK\SAMPLE\

TKDEMO\OPTABLES.C) .

tJU:lmDIDEt 38* 1

ion Card
Option cards, the client windows in option sheets, are usually instances of dsOptionTable, a descendant of dsTkTable.
The only differences between dsOptionTable and dsTkTable is that the defaults for the former are a two-column table of
bold labels. You can often specify every component in the option card in a deeply nested static TK_TABLE_EN1RY array.

To show off the flexibility of toolkit tables, two of the items nested in the table are identical custom-aligned On/Off/Show
groupings. The Header & Footer and the Background Doc options use this same item, so it is specified as a separate
TK_TABLE_ENTRY (onOffChoice) to avoid duplicating a staticarray. (Ifit weren't for this, the entire option table could be '
specified in one TK_TABLE_EN1RYarray.)

static const TK_TABLE_ENTRY onOffChoice[] = {
{O, 0, 0, 0, tkLabelEntry},

} ;

{O, 0, 0, tagNestedTbl, tkTableWideGap I tkTableHorizontal I tklnputDisable, clsTkTable},
{"On", 0, 0, 0, tklnputDisable I tkBorderMarginNone, clsLabel},
{"Show", msgButtonNotify, 0, 0, tkButtonManagerNone, clsButton},
{pNull} ,

{"Off", 0, 0, 0, tkButtonOn},
{pNull}

Here's the main TK_TABLE_EN1RY for the card.

static const TK TABLE ENTRY sampleCard[] = {

} ;

{"Pages:"}, {O, 0, 0, tagPagesChoice, tkNoClient, clsChoice},
{"All"},
{O, 0, 0, 1, tkLabelEntry I tkButtonOn},

{O, 0, 0, tagNestedTbl, tkTableHorizontal, clsTkTable},
{"From", 0, 0, 0, tkBorderMarginNone, clsLabel},
{"1", 2, 0, 0, 0, clslntegerField},
{"to", 0, 0, 0, tkBorderMarginNone, clsLabel},
{"1", 2, 0, 0, 0, clslntegerField},
{pNull} ,

{pNull},
{"No. of Copies:"},
{"Name:"} ,
{"Paper Size:"},

{"8 1/2 X 11"},

{"1", 0, 0, 0, 0, clslntegerField},
{O, 10, 0, 0, 0, clsTextField},
{O, 0, 0, 0, tkNoClient, clsChoice},

{"8 1/2 X 14", 0, 0, 1, tkButtonOn},
{pNull},

{"Printer:"},
{"HP"},

{O, 0, 0, 0, tkNoClient, clsChoice},

{"Diconix", 0, 0, 1},
{"Apple", 0, 0, 2, tkButtonOn},
{pNull},

{"Header & Footer:"},
{"Background Doc:"},
{pNull}

{onOffChoice, 0, 0, tagHFChoice, tkNoClient, clsChoice},
{onOffChoice, 0, 0, tagBDChoice, tkNoClient, clsChoice},

CHAPTER 38 / TOOLKIT TABLES 433
Creating a Toolkit Table

Example 38~ 1 (continued)

The example entry above is a static definition outside of any function. When the time comes to create the toolkit table, you
specify the top level TK_TABLE_ENTRY array as an argument to clsTkTable (or one of its descendants). clsTkTable creates all
the nested components, including other toolkit tables. In the case ofTkDemo, the application calls an internal routine
(AddOptionTableExamples) to create the option sheet as part of another window (parent).

STATUS LOCAL AddOptionTableExamples (WIN parent)
{

STATUS Si
OPTION TABLE NEW otni
AddLabel(parent, . "Standard Option Table, with Nested Tables")i
ObjCaIIRet(msgNewDefaults, clsOptionTable, &otn, S)i
otn.border.style.edge = bsEdgeAlli
otn.tableLayout.style.childYAlignment = tlAlignBaselinei
otn.tableLayout.rowHeight.constraint = tlGroupMax I tlBaselineBoxi
otn.tkTable.pEntries = sampleCardi
ObjCaIIRet(msgNew, clsOptionTable, &otn, S)i

StsRet(AdjustTbIAlignment((WIN) \
ObjectCall(msgWinFindTag, otn.object.uid, (P_ARGS) tagPagesChoice», S)i

StsRet(AdjustTbIAlignment((WIN) \
ObjectCall(msgWinFindTag, otn.object.uid, (P_ARGS) tagHFChoice», S)i

StsRet(AdjustTbIAlignment((WIN) \
ObjectCall(msgWinFindTag, otn.object.uid, (P_ARGS) tagBDChoice», S)i

otn.win.parent = parenti
ObjCaIIRet(msgWinInsert, otn.object.uid, &otn.win, S)i

return stsOKi
/* AddOptionTablesExample */

Figure 38-2 shows what the complete table looks like.

434 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Creating the Child Windows
When you send msgNew, clsTkTable creates the child windows specified in
P _TK_TABLE_ENTRY. It has to create a msgNew structure for each one. In this
structure, it sets the win.parent to self, sets the win. options to wsPosTop, and sets
the button.style.manager to bsManagerParent (if the child window is a button).

, It sets the other defaults using appropriate values from the prototypical msgNew
structure in TK_TABLE_NEW_ONLY (pButtonNew), the class specified, and the
values and flags in the TK_TABLE_ENTRY. The process of establishing these
defaults is quite complex, but often you can ignore it and just specify as few
parameters as possible.

clsTkTable then sends msgNew with the resulting structure to the class of the
nested component to create that child, and inserts it as a child window.

Changing Defaults in a Toolkit Table

When you create a toolkit table with a separate static TK_TABLE_ENTRYarray, you
eliminate all the code from your program, which declares the msgNew structures,
fills them in, and sets their values. Instead, clsTkTable creates the entries in the
toolkit table for you. If you want the default items in your toolkit table, you can
often get by with setting no more than the label strings and button messages,
leaving everything else to zero.

If you do want the entries to be different, there are several ways to change them.
clsTkTable uses several levels of defaulting to establish the appropriate msgNew
arguments when it creates the entries. On top of this are the changes made by the
common descendants of clsTkTable, such as menus and choices.

"" Using the Default Item Class

If you don't specify a class for an item in its TIC TABLE_ENTRY, clsTkTable uses
the default class for the nested items. The default class for the nested items comes
from the pButtonNew field in TK_TABLE_NEW_ONLYas follows:

• pButtonNew should point to a default msgNew structure for the default
child item in the table.

• When msgNewDefaults gets to clsClass, it sets pButtonNew->object.class
to the UID of the class that received msgNewDefaults.

• clsTkTable looks at pButtonNew->object.class to see what class to create I

• Since clsTkTable sets up pButtonNew by sending msgNewDefaults to
clsButton, its default child item is a button. However, you can tell
clsTkTable to use another class by declaring a _NEW structure for another
class, sending msgNewDefaults to that class, and passing the address of your
structure as pButtonNew.

If the class in an item's TK_TABLE_ENTRY is not set, then clsTkTable sends
msgNew to the default class for the child items, passing it the pButtonNew
structure. Thus, you can give different defaults for all items in the table by

If you're not sure what value
to give to one of the fields in
a TK_ TABLE_ENTRY, leave it as
zero, and cl5TkTa"le and its
descendants will probably
behave appropriately.

38.3.4.1

CHAPTER 38 I TOOLKIT TABLES 435
Creating a Toolkit Table

modifying pButtonNew. For example, if your class wanted to have a large margin
around every child window in the table, you could send msgNewDefaults yourself
to the class of the child windows, change border.style.margin to bsMarginLarge,
and set pButtonNew to the address of your custom msgNew arguments structure.

""" Specifying the Item Class
If class in an item's TK_TABLE_ENTRY is set, then clsTkTable does not use the
pButtonNew structure in TK_TABLE_NEW. Instead, it sends msgNewDefaults to
the entry's class to initialize it to default values. Thus, you can give different
defaults for a particular child in the table by specifying a class for it.

After getting a filled-in msgNewDefaults structure for the entry's class, clsTkTable
then self-sends msgTkTableChildDefaults so that it can modify this msgNew
structure. This allows clsTkTable and its subclasses to tinker with any component
placed inside them. For example, toolkit tables tinker with the border windows
and parent clip. For another example, clsMenu changes button items so that
the button's manager is its parent (bsManagerParent) so that it can take down
the menu.

clsTkTable and its subclasses determine how much memory to allocate the
msgNew and msgNewDefaults structures by sending msgNewArgsSize to the
class of the en try.

Using Flags to Modify Items
Another way to change the defaults for a particular child item is to set appropriate
flags in the item's TK_TABLE_ENTRY structure to get the desired behavior.
TIT ABLE.H defines flags for many common adjustments to items, including such
things as making labels bold (tkLabeIBold), making buttons send their UIDs
(tkButtonPargsUID), giving a menu button a pull-right menu
(tkMenuPulIRight), giving a child a bottom edge (tkBorderEdgeBottom), and so
on. clsTkTable checks to make sure that the class matches the flag set, so that if
you set, say, tkButtonPargsValue in an entry's flags and the entry isn't a button, it
won't try to change the entry.

Using Low-Level Customization

If all these adjustments fail, you can supply the address of a custom msgNe,v
arguments structure in the first field of a particular child item's TK_TABLE_ENTRY.

If you do this, you must set tkPNew in the entry's flags so that clsTkTable knows
about this change. This is similar to supplying a tkTable.pButtonNew, but the
former supplies custom msgNew arguments for every entry that doesn't specify a
class, whereas the latter is for a single entry only.

Finally, you can always let clsTkTable create a standard item, and then you can
locate it using msgWinFindTag and modify it as you desire.

38.3.4,2

38.3.4 .. 3

436 PENPOINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

Modifying a Toolkit Table

Creating and Adding Your Own Items

You can add new child items to a toolkit table using msgTkTableAddAsFirst,
msgTkTableAddAsLast, msgTkTableAddAsSibling (relative to a window UID
in the table), and msgTkTableAddAt (at a zero-based index).

If you do this, you probably want the items to have the same appearance and
behavior as other items in the toolkit table. To ensure this, after sending
msgNewDefaults to the class of the item, send msgTkTableChildDefaults to the
table, passing it the child's initialized _NEW structure. dsTkTable responds by
setting some window flags in the child window to improve performance;
descendants of clsTkTable make other changes. Send msgNew to the child's class,
passing the modified _NEW structure, then insert the child window.

Modifying Items in a Toolkit Table

After creation, you can get the UID of a nested child within a toolkit table using
msgWinFindTag to find a particular tagged window. Having retrieved the
window, you can modify its metrics. It's a bad idea to change those metrics, which
a toolkit table requires its nested items to have in order to work properly-know
what you're doing. For example, if you found a button in a menu and changed its
manager style, the user tapping on the button might no longer take down the
menu.

Toolkit Tables and Window Tags
You can use the window tag facility to locate items in toolkit tables without having
to remember the UIDs of every window.

Since msgWinFindTag propagates down into child windows, it's important
that you define unique tags for your components so as not to clash with other
components in the VI Toolkit. You can either use low numbers, or define your
tags using MakeTagO and one of your classes, hence guaranteeing unique tags.
GO publishes the tags of many items in system;{)ption sheets and menus so that
adventurous developers can find and modify them. The tags definitions are in
header files in \PENPOINT\SDK\INC, such as APPTAG.H and TV _TAGS.H.

Painting
A toolkit table may contain many child windows, which may contain their own
child windows. Using dozens of windows this way is very flexible, but can lead to
slow repainting. clsTkTable tinkers with window style flags and b9rder styles in
order to improve repainting. You need only be concerned about these changes if
you are putting special windows in a toolkit table, trying to draw in it yourself, or
otherwise making unusual use of clsTkTable.

Ordinarily, a child window is prevented from painting pixels outside its rectangle
on its parent, and if it is covered by sibling windows it can't paint pixels on them.

As with all classes, you should
let the defaults give you the
correct behavior and modify
fields only when the defaults
really don't work.

CHAPTER 38 I TOOLKIT TABLES 437

Similarly, a parent is prevented from painting pixels within its child windows. The
result is that windows don't paint over each other. The cost is that the window
system has to re-compute the area to draw on for each window.

For windows in a toolkit table, all this protection is usually unnecessary. Labels do
not draw outside their boundaries. clsTkTable places child windows so they do
not overlap. clsTkTable paints the background for its children but does not
otherwise paint over them.

Consequently, when clsTkTable creates its child windows, it changes their
window style flags. It turns on wsParentClip in each child window, and turns
off wsClipSiblings and wsClipChildren. In its own window style flags, it turns
off wsClipChildren. For more information on the effects of these window flags,
see Part 3: Windows and Graphics.

If a child window is a border window, clsTkTable sets its background ink to
transparent (border.style.backgroundlnk set to bslnkExclusive). When the toolkit
table paints its background, it will fill its child windows, so the border windows
don't need to fill their own backgrounds. .

Layout
clsTkTable inherits from clsTableLayout, and toolkit tables use table layout
functionality to position their nested components. By default (in response to
msgNewDefaults), clsTkTable sets its table layout to a single row and multiple
columns by setting:

• tableLayout.numRows.constraint to tlAbsolute.

• tableLayout.numRows.value to 1.

• tableLayout.colWidth.constraint to dGroupMax.

• tableLayout.style.growChildWidth to false.

• tableLayout.rowHeight.constraint to dChildrenMax.

• tableLayout.style.growChildHeight to true.

As a result, the nested components are all the same height but they are of different
widths. Descendant classes can override this when handling either msgNew or
msgNewDefaults. For example, a menu choice has one and many rows.

clsTkTable does not place any limitation on the size of its nested components,
which can cause problems if your application creates menus or choices out of lists
of strings that are not predefined. If one of the strings is very long, the toolkit
table will be very large and ill-proportioned. You can solve this problem by putting
the toolkit table in a scrollwin, described in Chapter 40, Scrollbars.

Layout

38.6

438 PEN POINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

Notification
You set a client for the toolkit table in its msgNew arguments. By default,
clsTkTable copies this client into each control within it, and within nested toolkit
tables within it. You can turn off this behavior if you set the flag tkNoClient in an
entry's TK_TABLE_ENTRY. clsTkTable also intercepts msgControlSetClient and
does the same copying into each of its controls.

A toolkit table simply relays notification messages from its nested controls to its
manager using msgWinSend.

clsTkTable does not set notifyDetail or respond to any msgButtonControl. ..
Preview messages.

Control Enable

When a toolkit table receives msgControlEnable, it recursively enumerate itself
and forwards the msgControlEnable to every instance that is a control within
itself, passing the original message arguments. Since a menu is a toolkit table, if
the menu receives msgControlEnable, the controls in the menu will also receive
the message.

There are two TK_TABLE_ENTRY flags that set the dynamicEnable control style
field to common values:

• tkControlDynamicClient sets it to csDynamicClient.

• tkControlDynamicPargs sets it to csDynamicPargs.

By setting these flags, you get dynamic control over whether a control in the
toolkit table is enabled, as explained in Chapter 35, Controls.

The tkMenuButtonGetMenu TK_TABLE_ENTRY flag sets a menu button's
getMenu style flag. The tkMenuButtonEnableMenu TK_ TABLE_ENTRY flag sets a
menu button's enableMenu style flag. By setting these flags, you get dynamic
control over a menu button's sub-menu, as explained in Chapter 39, Menus and
Menu Buttons. '

Managers
When you have a set of objects whose interactions need to be coordinated, you
can have a manager for them. clsTkTable maintains a manager field. The manager
gets certain notifications from buttons in the toolkit table whose
button.style.manager is bsManagerParent.

BuHon Manager Notification Details

If a button is in a toolkit table, it uses msgWinSend to send protocol messages (in
this case msgButtonDone, msgButtonAcceptPreview, and so on) to its manager
so long as button. style. manager is not bsManagerNone. clsWin responds to
msgWinSend by propagating the message to the instance's parent window.

38 .. 7

38.1.1

38.8

CHAPTER 38 I TOOLKIT TABLES 439

When someone sets the value of a button, it sends msgButtonDone to its
manager using msgWinSend.

For example, a toolkit table sets up the buttons that are its children so that their
button. style. manager is bsManagerParent. In other words, the buttons pass
manager notifications to the tooklkit table (their parent) via msgWinSend.
However, the toolkit table intercepts msgWinSend, and if the toolkit table has a
manager defined in its metrics, it jumps out of the window tree send and just
ObjectCalls its manager. If the manager returns stsManagerCorttinue, then the
button will continue propagation via msgWinSend.

The point of all this is that you can arbitrarily nest button components and have
them be managed by some object. You can have a button in a custom layout
inside another button send protocols up the tree and get to the appropriate
manager.

Menu Management

For menus, the manager is the menu button that puts up the menu. The menu
button takes down the menu when the user activates one of the buttons in the
menu, as follows:

• Button sends msgButtonDone using msgWinSend.

• Menu gets this and sends msgMenuDone to its manager, the menu button.

• Manager always receives msgButtonDone, even if it doesn't get all the detail
messages such as msgButton ... Preview.

The menu is doing a grab; it looks at the destination of input event, and if it's not
in a descendant, it sends manager msgMenuDone.

Manager Classes

Other classes require more sophisticated managers, so there are a few classes of
specialized manager objects, including dsChoiceMgr and dsSelChoiceMgr. The
former manages the settings in a choice so that only one button in it is ever on;
the latter manages objects that are selectable. Both these classes inherit from
clsManager. dsManager is an abstract class, which means that it is not useful to
create instances of dsManager. dsManager exists simply to define details that are
common to all its subclasses.

Choice Management

dsChoice creates an instance of dsChoiceMgr and sets that as the manager of the
toolkit table. The choice manager ensures that, at most, only one button is on.

Table 38-4 summarizes the messages defined by clsChoiceMgr:

Managers

38.8.2

440 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Table 38*4
clsChoic r Messages

--

msgNew

msgNewDefaults

msgChoiceMgrGetOnButton

msgChoiceMgrSetOnButton

msgChoiceMgrSetNoN otify

Class Messages

Creates a choice manager.

Initializes the CHOICE_MGR_NEW structure to default values.

Instance Messages

Gets the current on button. Passes back objNull if no button is on.

Sets the current on button.

Like msgChoiceMgrSetOnButton, but no notifications are generated.

~. Selection Choice Management 38.8~3.2

clsSelChoiceMgr goes further, and helps its client acquire the selection when one
of its objects is activated.

No classes in the UI Toolkit use selection choice managers, but other PenPoint
components that have to track selection choices do.

Table 38-5 summarizes the messages defined by clsSelChoiceMgr:

msgNew

msgNewDefaults

msgSel ChoiceMgrGetClient

msgSelChoiceMgrSetClient

msgSelChoiceMgrGetld

msgSel ChoiceMgrSetld

msgSelChoiceMgrNullCurrent

Table 38~5
clsSelChoiceMgr Messages

Class Messages

Creates a selChoiceMgr object.

Initializes the SEL_CHOICE_MGR_NEW structure to default values.

Passes back the client DID held by the receiver.

Sets the client DID held by the receiver.

Passes back the ID held by the receiver.

Sets the ID held by the receiver.

Tells the receiver to clear the visuals and state of the choice.

Instance Messages

Choite Manager M~~'%'%~~CI~~.% to which Seladion Choice Managers Also Respond

msgChoiceMgrGetOnButton

msgChoiceMgrSetOnButton

msgSel ChoiceMgrAcquireSel

msgSelChoiceMgrN ullSel

Gets the current on button. Passes back objN ull if no button is on.

Sets the current on button.

Client Responsibility Messages

Sent to the client whenever a different button is selected.

Sent to the client whenever a different button is selected.

Another example of the use of managers is if you have two toolkit tables, but want Other Management T echnique5

them to behave as one exclusive choice, you can specify the same manager for
both of them.

CHAPTER 38 I TOOLKIT TABLES 441

Removing Items from a Toolkit Table

Displaying Installed Fonts in Tables
Often, you want to create a toolkit table displaying the fonts available on the
system. TkTableFillArrayWithFonts is a utility function in TKCOMP.DLL that
allocates a TK_TABLE_ENTRY array filled in with the set of currently installed
fonts. It fills in argl of each entry with the name of the font and sets the tag field
to the FIM_SHORT_ID of the corresponding font. You can use this array to create
a choice, menu, set of labels, or whatever, of fonts.

To use TkTableFillArrayWithFonts, you pass in a heap from which the toolkit
allocates the TK_TABLE_ENTRYarray and strings, and a U16 controlling whether
the toolkit should prune the font list. Pruning refers to the removal of system and
other hidden fonts from the font list. TkTableFillArrayWithFonts passes back a
pointer to the allocated array.

After creating the toolkit table, you must call TkTableFreeArray to free the array
created by TkTableFillArrayWithFonts.

Pruning and FIM_SHORT _IDs are explained in Part 12: Installation. Briefly, prune
is a set of flags. It is defined to be a U16 in TKTABLE.H so as not to require
including lots of extraneous header files, but is actually a FIM_PRUNE_ CONTROL
structure defined by the installed font manager in <FONTMGR.H>. This lets you
reduce the number of fonts displayed. You can set prune to fimNoPruning to get
a full list, or OR in the following flags to reduce the font list:

fimPruneDupFamilies remove fonts in the same family, such as Swiss Bold,
Swiss Italic.

fimPruneSymbolFonts remove symbol fonts.

If you want to provide a pop-up choice showing the installed fonts, there's an even
more direct way to get the installed fonts. OR the flag tkPopupChoiceFont into
the flags field of a clsPopupChoice entry. The pop-up choice created will reflect
the list of installed fonts. In this case, you specify the pruning parameter in place
of pEntries in the first field of the entry.

FIM_SHORT_IDs are compact identifiers for fonts. clsFontinstallMgr provides a
message, msgFIMGetNameFromld, which provides the font name of an ID.

There's yet another way to create a list of installed fonts: using clsFontListBox.
This is described in Chapter 41, List Boxes.

Removing Items from a Toolkit Table
To remove a nested item from a toolkit table, send the table msgTkTableRemove,
specifying the UID of the child window to remove. This extracts the window, and
subclasses can clean up any references to it. Then you can destroy the removed
window.

38.9

38.10

442 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

". Subclasses of clsTkTable
There are several subclasses of dsTkTable. Some of these add a lot of
functionality; all change the toolkit table defaults and the defaults for nested
components to produce a different visual effect. Using a descendant of dsTkTable
further reduces the amount of defaults overriding you need to do. For example, to
create a vertical column of buttons with their text rotated 90 degrees using
dsTkTable, you would have to override the default child structure. But, if you use
dsTabBar, these settings are the default, and you are back to specifying only the
string, message, and data of each entry.

The rest of the sections in this chapter document the various descendants of
dsTkTable. Menus are covered in the next chapter.

Toggle Tables
Toggle tables are a group of independent toggle buttons. dsToggleTable sets the
button style during msgNew to toggle style (bsContactToggle).

Its value is a 32-bit bitmask giving the values (on or off) of the first 32 toggles
nested in itself msgControlSetValue and msgControlGetValue can be used to set
or get the mask value. If you place more than 32 toggles in a toggle table, you have
to enumerate or find the other toggles to get their UIDs in order to set and get
their values.

".. Modifying Toggle Tables

Toggle tables also respond to msgControlSetEnable, msgControlGetEnable,
msgControlSetDirty, and msgControlGetDirty in a similar fashion. For the Get
messages, dsToggleTable passes back a bitmask indicating which of the first 32
toggles have that style set. For the Set messages, you specify to dsToggleTable
which of the first 32 buttons should be on and off by turning bits on and off in
the bitmask.

The only reason to use a toggle table is so that you can set and get the values and
styles of several buttons at once. You don't have to use dsToggleTable to create a
group of buttons. You can always create a vanilla toolkit table by sending msgN ew
to dsTkTable, specifying tkButtonToggle in the flags of each entry's
TK_TABLE_ENTRY.

Choices
dsChoice is a descendant of dsTkTable. It sets child windows in the toolkit table
to be buttons with the bsContactLockOn style. However, dsChoice defines
additional semantics such that only one button can be on at any given time.

Table 38-6 summarizes the messages defined by dsChoice:

38.11

38.12

38 .. 12.1

38.13

CHAPTER 38 I TOOLKIT TABLES 443
Choices

Table 38-6
clsChoice Messages

msgNew

msgN ewDefaults

msgChoiceGetStyle

msgChoiceSetStyle

msgChoiceSetNoN otify

Creating a Choice

Description

Creates a choice (and its nested button windows).

Initializes the CHOICE_NEW structure to default values.

Gets the style of the receiver.

Sets the style of the receiver.

Like msgControlSetValue, but without button notifications.

You send msgNew to clsChoice to create a choice. This takes a CHOICE_NEW
structure. The most important field in this is tkTable.pEntries, a pointer to an
array ofTK_TABLE_ENTRYs that specify the buttons in the choice.

You specify the contents of the choice in the TK_TABLE_ENTRY array. The child
windows can be any kind of window. By default they are buttons. The
TK_TABLE_ENTRY fields for a button are pString, message, and data (and the
standard tag, flags, class, and helpld).

There are no fields currently used in the CHOICE_NEW_ONLY part of the
CHOICE_NEW structure.

Notification

The buttons within a choice notify their client(s) in the usual way. The buttons
also send previewing messages to their manager.

clsChoice is the only descendant of clsTkTable that turns on notifyDetail in its
nested buttons. It responds to their msgButtonChild ... Preview messages by
ensuring that the current choice is de-highlighted while the user previews other
items.

Choice Manager

clsChoice internally uses a clsChoiceMgr to ensure that, at most, only one button
is on. You can access the choice manager by sending the choice
msg TkTableGetManager.

Choice Value
By default, a choice sets up its child buttons to have the button style
bsContactLockOn set. This results in the behavior that the choice always has one
button on. You set the on button at creation by setting the flag tkButtonOn in
that buttons TK_TABLE_ENTRY array.

Class Me~SSClaE~S

38.13.1

38.13,,2

38.13.3

38.13.4

444 PENPOINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

To allow no button to be on, you need to change the choice so that its buttons
have the style bsContactToggle, by changing pButtonNew->button.style.contact
to bsContactToggle in the CHOICE_NEW structure.

clsChoiceMgr defines messages to get and set the current on button
(msgChoiceMgrGet/SetOnButton), but you can also get the choice's value by
sending the choice msgControlGetValue directly. Note that a choice is not a
control, but it responds to this message anyway. The value of a choice is the
window tag of the on button, not the index of the button in the choice or the
button's UID. If no button is on, clsChoice returns stsChoiceNoValue.
Conversely, you can set the value of a choice using msgControlSetValue.

To set the-value of the choice to be no value, send its manager
msgChoiceMgrSetOnButton with a message argument of objNull.

When you set the value of the choice, the button turned on sends its notification
message. Your code may be unprepared to deal with messages from buttons before
its user interface is fully realized. One way to avoid this is not to set up a client
until your code is ready to receive messages. You can also use
msgChoiceSetNoNotify (or msgChoiceMgrSetNoNotify to the choice's manager)
to change a choice's value without notification.

If you don't intend to set or get the value of the choice, you need not specify tags
for its buttons.

Chapter 39 / Menus and
Menu Buttons

A menu button may have an associated pop-up menu. If it does not, it acts like
other buttons. If the menu button does have a menu, the menu button displays its
menu when the user taps on the menu button. The menu can, in turn, have menu
buttons nested in it that pop up submenus.

clsMenuButton inherits from clsButton. clsMenu inherits from clsTkTable.

Menu Bu"ons
clsMenuButton implements a menu button. Menu buttons behave similarly to
regular buttons, but they can have a submenu that they pop up and take down.

Table 39-1 summarizes the messages defined by clsMenuButton:

msgNew

msgN ewDefaults

msgMenuButtonGetStyle

msgMenuButtonSetStyle

msgMenuButtonGetMenu

msgMenuButtonSetMenu

msgMenuButtonProvide Width

msgMenuButtonShowMenu

msgMenuButtonInsertMenu

msgMenuButtonExtractMenu

msgMenuButtonPlaceMenu

msgMenuButtonProvideMenu

msgMenuButtonMenuDone

Creates a menu button window.

Initializes the MENU_BUTTON_NEW structure to default values.

Passes back the current style values.

Sets the style values.

Passes back the pull-right or pull-down menu, objNull if none.

Sets the pull-right or pull-down menu.

Self-sent when style.getWidth is true.

Puts up or takes down the menu.

Self-sent when menu is down and the action specified by style.menuAction is detected.
Puts up the submenu by inserting it as sibling window of the menu button or by
sending msgMenuShow(true). .

Self-sent when menu is au and the action specified by style.menuAction is detected.
Takes down the submenu by extracting its window or by sending msgMenuShow(false).

Self-sent whenever a menu button needs to position its associated menu.

Sent to the client if style.getMenu is true.

Sent to the client if style.getMenu is true.

446 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

~ Creating a Menu BuNon

"..", Using Toolkit Tables Instead

You can create a free-standing menu button, but usually you use menu buttons as
nested controls in menus. Menus are toolkit tables, and permit you to create all
their menu buttons at once from a set ofTK_TABLE_ENTRYs. clsMenu is
explained in the next section.

Send msgNew to clsMenuButton to create a menu button. This takes a
MENU_BUTTON_NEW structure, which includes a MENU_BUTTON_NEW _ONLY
structure. In this, you specify:

style several menu button style fields, described below.

menu the submenu of the menu button, if it has one.

",. Menu Button Style

The menu button style is a MENU_BUTTON_STYLE structure. Table 39-2
summarizes the structures field elements:

fields/field Values

subMenu Type
mbMenuNone
mbMenuPullDown
mbMenuPullRight
mbMenuPopup
mbMenuSibling

FundicHlci Description

Determines type of button submenu.
No button submenu type defined.
Brings up submenu as a pull-down menu.
Brings up submenu as a pull-right menu.
Brings up submenu as a pop-up menu.
Inserts submenu as a sibling window of the menu button.

39.2

39.2.0.1

39.2.1

getWidth Specifies whether the menu button should dynamically compute the width of the
submenu.

getMenu

enableMenu

Specifies whether the menu button's client should dynamically provide the submenu.

Specifies whether the submenu should dynamically determine if its nested controls should
be enabled.

menuAction

menuIsUp

Determines if the submenu is brought up on a single tap or a double tap.

Determines whether submenu is visible (read-only).

If getWidth, getMenu, or enableMenu is set, the menu button self-sends
additional messages to determine these values; the messages are explained in more
detail in "Menus," laterin this chapter. You can also set and get the style separately
from msgNew using msgMenuButtonSetStyle and msgMenuButtonGetStyle.

Notification

A menu button will invert itself when it receives msgControlBeginPreview. Even
if the button has a submenu (submenuType is mbMenuNone), it does normal
control notification by sending its client its msg and data on
msgControlAcceptPreview Gust as an instance of clsButton does). A menu
button's client is usually the application.

39.2.2

CHAPTER 39 I MENUS AND MENU BUTTONS 447

",. Painting

If subMenuType is mbPullRight, the menu button sets its decoration style to
IsDecorationPullRight and clsLabel draws it with a pull-right arrow decoration to
the right of the string.

Menus
clsMenu defines the class for child windows in the toolkit table to be
clsMenuButton. You can set the menu style to be a horizontal menu bar
(msMenuBar), or a vertical menu (msMenu). Submenus off a menu bar and
pull-right menus ate both vertical menus. It sets selfs table layout constraints to
be either one row, many columns (if self's style is msMenuBar) or one column,
many rows (style msMenu).

Table 39-3 summarizes messages defined by clsMenu.

Menus

39.3

Table 39,*3

clsMenuMessages

msgNew

msgN ewDefaults

msgMenuGetStyle

msgMenuSetStyle

msgMenuShow

msgMenuDone

Creates a menu window, together with the child windows specified in pEntries.

Initializes the MENU_NEW structure to default values.

Passes back the current style values.

Sets the style values.

Puts up or takes down the menu by inserting or extracting it as a child of theRootWindow.

Sent via msgWinSend to the manager when the menu is "done."

msg TblLayoutAdjustSections now does what msgMenuAdjustSections did in
earlier versions of PenPoint, but is available to all descendants of clsTableLayout.
msgMenuAdjustSections is provided for backward compatibility; you should use
msgTblLayoutAdjustSections in your new clients.

Creating a Menu

You send msgNew to clsMenu to create a menu. This takes a MENU_NEW
structure. The most important field in this is tkTable.pEntries, a pointer to an
array ofTK_TABLE_ENTRYs that specify the contents of the menu.

The fields in MENU_NEW_ONLY include:

style style fields including shadow and margin style, as well as row and
column constraints.

menuButtonNew in-line storage for a MENU_BUTTON_NEW structure.

In msgN ewDefaults, clsMenu sets up menu.menuButtonNew to be the msgNew
arguments for a default menu button. It does this based on the menu. style. type of

448 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

the menu. It changes tkTable.pButtonNew to point to this structure. If you want
to change the defaults for the menu buttons, cast tkTable.pButtonNew to a
P _MENU_BUTTON_NEW; don't modify menu.menuButtonNew.
menuButtonNew only allocates storage for the msgNew structure so that
clsMenu doesn't have to.

You specify the contents of the menu in the TK_TABLE_ENTRYarray. The child
windows can be any kind of window. By default, they are menu buttons. The
TK_TABLE_ENTRY fields for a menu button with no submenu are the same as a
button's:

• pString, message, data (and the standard tag, flags, class, and helpld).

Creating Submenus
The menu buttons in the menu may have submenus of their own. You indicate
this by setting either tkMenuPullRight, tkMenuPullDown, or tkMenuPopup in
the flags field of a TK_TABLE_ENTRY. This tells clsMenu that the menu button
has a submenu. It then interprets the second field as a pointer to the array of
TK_TABLE_ENTRYs for the contents of the submenu, and the third field is ignored:

pString, pEntries, ... (and the standard tag, flags, class, and helpld)

As usual, if pEntries is pNull, then clsTkTable assumes it will find the
TK_TABLE_ENTRYs for the nested child windows in-line. You can define an entire
menu hierarchy using TK_TABLE_ENTRYs, and only need explicitly to create the
topmost menu.

Displaying a Menu
If you want to display a pop-up menu yourself, you can send it msgMenuShow.
This takes a Boolean: true to display the menu, false to take it down. Before
sending this to display a menu, you should set it to the desired location by
changing its bounds.origin using msgWinDelta. dsMenu ensures that the menu
is entirely on-screen, repositioning it as necessary, before inserting the menu in the
root window.

How a Menu BuNon Displays its Submenu 39$4

You are free to use a menu as you would any other toolkit component. You could
have a static menu in the middle of a window (TkDemo actually does this).
Typically, however, a menu is displayed by a menu button.,

When the user taps (or double taps, depending on the value of style.menuAction)
on a menu button, it sends its button message to its client in the usual manner. In
addition, if its subMen~Type is mbPullDown, mbPullRight, or mbPopup, on
msgC~ntrolAcceptPreview the menu button puts up its submenu, and on the
next msgControlAcceptPreview, it takes down its submenu.

CHAPTER 39 I MENUS AND MENU BUTTONS 449
How a Menu Button Displays its Submenu

In more detail, the menu button:

1 Sets itself as the manager of the menu (usingmsgTkTableSetManager).

2 Uses msgWinDelta to set the menu to the appropriate location relative to
itself.

3 Puts up the menu by sending it msgMenuShowor, if style.subMenuType is
mbMenuSibling, by inserting the menu as a window tree sibling of the
menu button.

4 Takes down the menu when it next receives msgControlAcceptPreview.

clsMenu ensures that the menu will never be off-screen. While it is up, the menu
grabs input so that it can see pen taps outside its window; a pen tap outside the
window dismisses the menu. clsMenu looks at the destination of the pen tap, and
if it is one of its nested buttons, it allows the tap to go to that button.

The menu button sets itself as the manager each time it puts up the submenu, in
case it is sharing the menu with another menu button. Menu buttons in the menu
typically set their manager to be bsManagerParent so that their notification
messages get forwarded to the toolkit table's parent, in this case, the menu.

Usually a menu button with a submenu does not notifY its own to its client; its
own control msg and data are unused and the client only gets activation messages
from the submenu's menu buttons.

If you set the subMenuT ype to mbPullDown, mbPullRight, or mbPopup, but
the menu button doesn't have a submenu, the menu button will preview but not
do anything.

Dynamic Submenu
If the getMenu menu button style is set, then when the menu button needs to put
up its submenu, it sends msgMenuButtonProvideMenu to its client. This takes a
MENU_BUTTON_PROVIDE_MENU structure as its message arguments, in which
the menu button sets menuButton as its UID, and menu as the UID of its
current submenu. The client can either modifY the passed menu (for example to
add, disable, or delete some items) or replace it with the UID of a new menu.

Control Enable

clsMenuButton checks the value of the instance's enableMenu style field. If this is
false (the default), then the menu button just puts up its submenu without further
ado (by sending the menu msgMenuShow). Otherwise, the menu button sends
msgControlEnable to its submenu. This takes a CONTROL_ENABLE structure, as
described in Chapter 35, Controls. clsMenuButton fills this out as follows:

1 Sets root to self.

2 Sets object to the current selection owner.

3 Sets enable to true or false, depending on whether the selection owner's
process is this application's task. If a menu button doesn't have some other

39.4.1

39.4.2

The control enable protocol is
implemented by oleControl,
0leMenu6utton, and
01 eTa bleLayo ut. For a full
understanding of the protocol,
you need to read about enable in
all three chapters.

450 PENPOINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

way of determining whether it is enabled, this disables it if the selection isn't
in this application.

The menu relies on its ancestor clsTableLayout to propagate msgControlEnable
to each control in the menu. The controls in .the submenu respond to
msgControlEnable by figuring out whether they should be enabled or not. See
Chapter 35, Controls, and Chapter 38, Toolkit Tables, for more information.

Notification
Notification is the same as clsTkTable. When the user activates a menu button, it
notifies its client, then its manager. The menu button's manager is its menu. If
that menu is itself a submenu, then its manager is the menu button that popped it
up. The menu button responds to .msgButtonAcceptPreview by taking down the
menu.

Pop-Up Choices
The VI Toolkit includes choices, which display several alternatives and allow the
user to pick one (clsChoice is explained in more detail in Chapter 38). However,
if there are several alternatives, the choice ends up taking up a lot of space on the
screen. You can put a choice in a pop-up menu, but then the user has to pop up
the menu to see the current value of the choice. clsPopupChoice is an alternative.

clsPopupChoice is a descendant of clsMenuButton. It displays a choice in a menu
when you tap it, much like a menu button with a choice. The difference is that
the pop-up choice's label string is a copy of the string of the current choice button.
Whenever the choice changes value, the pop-up choice copies the new value's
string to its label.

The user does not have to pop up the choice. The user can instead move to other
values by making scrolling gestures directly on the pop-up choice button. Vp and
down flicks move to the next and previous value in the choice, and double-flicks
move to the top or bottom value in the choice.

Table 39-4 summarizes the messages defined by clsPopupChoice.

Creates a pop-up choice button.

39.4.3

39.5

msgNew

msgNewDefaults Initializes the POPUP _CHOICE_NEW structure to default values.

msgPopupChoiceGetStyle

msgPopupChoiceSetStyle

msgPopupChoiceGetChoice

Passes back the receiver's style. (Currently there are no style fields defined in
POPUP _CHOICE_STYLE.)

Sets the receiver's style.

Passes back the choice associated with this pop-up.

CHAPTER 39 / MENUS AND MENU BUTTONS 451

"" Creating a Pop-Up Choice
If you create a pop-up choice using the C API, you create it as you would a menu,
but set the menuButton.menu field to the UID of an instance of dsMenu.

The suggested way to create a pop-up choice is to specify it as a static
TK_TABLE_ENTRY. This approach is described in Chapter 38, Toolkit Tables.

Pop-Up Choices

39.5.1

"" Miscellaneous Pop-Up Choice Messages 39.5.2

You can retrieve the UID of the toolkit table (usually a choice) associated with a i o:~:_t:
pop-up choice by sending it msgPopupChoiceGetChoice. Remember, the pop-up ...
choice itself is the button displaying the current value of the choice.

dsPopupChoice responds to msgControlGetValue by retrieving the tag of the
button that is on in the choice, just as dsChoice does.

Chapter 40 / Serollbars

Scrollbars let the user display more of a document than can fit in a window. The
user interface of a scrollbar provides information about the size of the document
and the offset of the visible part of the document relative to the whole. The
scrollbar UI also allows the user to move around in this document. In addition to
tapping in the scrollbar, the user can also flick to scroll up and down.

Scrollbars give the user the illusion of moving the window around relative to the
document it's displaying. The classic example is a long text document: using the
scrollbar, the user can move up and down to see different parts of the text file.
Note that the thing displayed in the window does not itself have to be a window,
or even an object.

Layout
Scrollbars can either be vertical (the default) or horizontal. It is up to you to
position them next to the window that displays the scrolling using, for example, a
custom layout window. Usually, you use a scroll window (described later in this
chapter in "Scroll Windows"), which positions the scrollbars and can often
perform scrolling as well.

Painting
A scrollbar indicates what relative location in the document is visible in the
document's window by drawing a drag handle (sometimes called a thumb) in
itself, representing the part of the document that is visible. The scrollbar draws
this bubble based on the length (or width, for a horizontal scrollbar) of the
document and the current offset in the document. However, the scrollbar does not
keep track of this information stuff itself.

The bubble indicates the relative position of the offset in the range. For example,
if the scrollbar offset is 350 and the range is -100 to 400, then the portion of the
thing shown in the window is near the end, and the scrollbar paints its bubble
near the bottom. When the user moves the pen into proximity near the bubble, it
grabs input and tracks the pen.

Notification
Although scrollbars are intended to manipulate a document in a window, they
have no explicit connection with a window. Instead, they communicate with a
client, asking it for information so they can display, and sending the client
scrolling messages. clsScrollbar inherits from clsControl, which maintains a client.
The client can be the document being scrolled, but it need not be.

40.3

454 PENPOINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

Figure 40-1 shows a vertical scroll bar along the right hand edge of a window. The
components are the same for a horizontal scrollbar.

Thumbing
The scrollbar handles thumbing by creating a track object. This grabs input and
moves the scrollbar up and down. The scrollbar does not notify its client until the
user finishes with the tracker by going out of proximity. Thus, the document does
not scroll while the user drags the thumb.

Providing Information
The scrollbar client must tell the scrollbar the size of the document, the size of the
view with which the scrollbar is associated, and the current offset into it, so that
the scrollbar can draw the bubble at the correct location.

Whenever a scrollbar needs to update its display, it sends its client either
msgScrollbarProvideVertlnfo or msgScrollbarProvideHorizInfo. These both take
a pointer to a SCROLLBAR_PROVIDE structure. The scrollbar supplies its UID in
sb; it is up to the client to provide the viewLength, docLength, and offset. These
are all S32; the client can supply these in any consistent units that make sense. The
offset should be the offset of the top (left) of the form.

OHset

Note that the offset in a vertical scrollbar increases as it reaches the bottom of the
document. This document model is different from the window system's lower left
origin coordinate system.

Client Notification
The scrollbar handles previewing internally. Pressing on the up and down arrow
generates msgButtonRepeatPreview messages.

A scrollbar sends its client msgScrollbarVertScroll or msgScrollbarHorizScroll,
depending on the scrollbar's orientation. These take a SCROLLBAR_SCROLL

structure as their message arguments. This structure includes:

sb the UID of the scrollbar that generated the message .

. _- .. ---.----

40-1

40.4

40 .. 5

CHAPTER 40 / SCROLL BARS 455
Client Notification

action the current action.

offset the current offset, or a proposed new offset if the user thumbed.

lineCoord the coordinate of the line where the user made the gesture in
root window space.

Table 40-1 lists the possible scrollbar actions and the user actions that cause them:

Vertictll Aditln

sbLineU p, sbLineDown

Horixol1ttll Action Gel'levcdeo By

Tap on arrow.

sbPageUp, sbPageDown

sb ThumbUpDown

sbLineToTop

sbTopToLine

sbLineLeft, sbLineRight

sbPageLeft, sbPageRight

sb ThumbLeftRight

sbColumn To Left

sbLeftToColumn

sbToLeft, sbToRight

sbEndScroll

Tap above or below bubble.

Double tap.

Flick up/flick left.

sbToTop, sbToBottom

sbEndScroll

Flick down/flick right."

Double-flick or drag bubble to end.

(Same)pen up.

What Goes On

In sbLineUp and sbLineDown, offset is not supplied (zero). The scrollbar client
should pass"back in offset the new desired offset. sbPageUp and sbPageDown are
similar.

In sbThumbUpDown, clsScrollbar does supply a suggested new offset. It does
this by converting the location of the tap in the scrollbar to an offset in the
document.

If your window is slow to repaint, it won't be able to keep up with repeating
scrolls. If this is the case, you cannot scroll in response to repeating messages
(sbLineUp/sbLineDown). At the end of the user's scroll, you receive sbEndScroll
as the action, at which point you can perform the entire scroll at once. You can
either keep track of the number of repeating messages received, or normalize the
offset each time and then perform the final scroll using the offset passed in along
with sbEndScroll.

Line, Page Scrolling versus Thumbing

For all scroll actions, the client must interpret the scroll action and redraw the
window to comply with the request (although often you can simplify the task
using clsScrollWin).

There are three main kinds of scrolling: line scroll, page scroll, and thumbing
scroll.

With a line or page scroll, the scrollbar has no idea how big a line or page is,
so it can't compute the new offset. The offset in the SCROLLBAR_SCROLL

structure is the current offset (the one returned by msgScrollbarProvideVertInfo
or msgScrollbarProvideHorizlnfo). You (the scrollbar client) must interpret how a

40.5~ 1

In the next sections, we'll only
use the vertical scroll action
names, but the same ideas apply
to horizontal scrolling.

456 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

line or a page scroll should change the offset of the scrollbar, and pass back the
new offset as an out parameter. If you don't respond to these messages, the .
position of the bubble doesn't change.

Typically, in a line scroll, you display a new part of the scrolling offset by a small
amount (a "line"), while in a page scroll, you offset the display by the same
amount or slightly less than the size of the window.

With a thumbing scroll (scrollbar action is sbThumbUpDown or
sb ThumbLeftRight), the user taps at a new location to indicate the offset.
Hence, the scrollbar can supply the new offset in the offset field in the
SCROLLBAR_SCROLL structure (based on the sizes of the view and document).

OHset Range
When you set the value of the scrollbar, you should set the offset of the top or left
edge of the scrolled object from the top or left edge of the window. This is the
calculation used by the scrollb,ar display code in figuring out where to draw the
thumb point~.

Note that the offset range is not 0 - docLength. The offset represents the location of
the top of the visible area relative to the document length, so an offset of docLength
would imply that the very end of the document is at the top of the view and the rest
of the view is empty. Instead, the range is 0 - (docLength - viewLength).

".. Updating
If the document view changes for some other reason than user interaction with the
scrollbar, you can force a scrollbar update by sending it msgScrollbarUpdate. The
scrollbar will ask its client to provide the information when it needs to repaint.

There is no easy way to programmatically cause a scroll. Your code must perform
the scroll and then tell the scrollbar to update, rather than simulating a user action
which then causes a scroll.

Norlllalizing .he Scroll
Even if you know in advance what the offset is, you often need to adjust it. For
example, if the window is displaying text, then you may want to change the offset
slightly to avoid clipping off the tops or bottoms of characters in a line of text.
This is called normalizing the scroll.

When the scrollbar client receives either a msgScrollBarVertScroll or
msgScrollBarHorizScroll, it can adjust the offset to avoid splitting up
important information at the edge of the window. In a msgScrollBarVertScroll
or msgScrollbarHorizScroll, the scrollbar specifies an offset. The client can pass
back a different offset.

You need to adjust offsets and repainting carefully to get this smooth presentation.
You can look at the previous offset field to determine the direction in which the
user is scrolling, and use this to normalize the top or bottom edge of the screen.

40.5.3

40.5.4

40.6

CHAPTER 40 I SCROLLBARS 457

When the user drags the bubble, the scrollbar sends its client
msgScrollbarProvideVertInfo. The client should respond with the appropriate
docLength, offset, and so on. Then the scrollbar sends msgScrollbarVertScroll,
with its best guess for the new offset. The client should normalize before doing the
scroll, and can modify the offset. The scrollbar will repaint the thumb in that
position.

The scrollbar is a border window. If you only need to scroll the display a small
amount, you can use msgWinCopyRect to copy the pixels on the screen from one
region to another. Then you only need to paint the strip of the scrolled thing that
has become visible. See Part 3: Windows and Graphics, for more information on
msgWinCopyRect.

Scroll Windows

Scroll Windows 40.7

The user's model of scrolling is that the window with scrollbars (such as the client
window in a frame) provides a porthole looking into the much larger document
surface. As he or she uses the scroll bars to scroll around, the porthole moves
around to show a different part of that surface.

It's often possible to implement scrolling this way from your program's point of
view. In response to a scrolling request, often all you need to do is display a
different portion of the same window. clsScrollWin lets you do this. An instance
of clsScrollWin acts as the porthole. It inserts your window as its child, and
repositions your window in response to the msgScrollbarVertScroll and
msgScrollbarHorizScroll messages from the scrollbars. Your window is isolated
from the scrollbar interface; all it has to do is repaint itself when it receives
msgWinRepaint, and the correct region of it will appear in the scrollwin (scroll
window).

The scrollwin has an inner window. Your window, the client window, is a child of
this inner window and is clipped by it. msgScrollWinGetlnnerWin passes back a
pointer to the UID of this window. You can have more than one client window in
a scrollwin; but only one is visible at any time.

clsScrollWin uses your window's size to compute its offset. It handles sbPageUp
and sbPageDown scroll actions by changing the offset by the size of its own
window. However, it still can't figure out how much to change the offset for
sbLineUp, sbLineDown, sbLineLeft, and sbLineRight scroll actions. You can
either statically tell it what the delta is for a line motion, or have it send you a
message asking you to dynamically compute a new line offset.

A scrollwin can display scrollbars around your window. It can even display a
scrollbar only when your window is not entirely visible in that dimension. It
responds to the scrollbar request messages msgScrollbarProvideVertInfo and
msgScrollbar ProvideHorizInfo by setting the viewLength to the size of the inner
window to which your window is clipped, and the docLength to the size of your
window.

458 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Table 40-2 summarizes the messages defined by clsScrollwin.

Creates a scrollwin window. msgNew

msgNewDefaults Initializes the SCROLL_ WIN_NEW structure to default values.

Returns the current style values.

Sets the style values.

Returns the metrics.

Sets the metrics.

Returns the current c}ientWin.

Sets the current clientWin.

Adds another clientWin.

The specified client window is extracted from the scrollWin.

Returns the vertical scroll bar.

Returns the horizontal scroll bar.

Returns the inner window of the scrollWin.

Self-sent when style.getDelta is set to true.

Self-sent when style.getSize is set to true.

msgScrollWinGetStyle

msgScrollWinSetStyle

msgScrollWinGetMetrics

msgScrollWinSetMetrics

msgScrollWinGetClient Win

msgScrollWinShowClientWin

msgScrollWinAddClientWin

msgScrollWinRemoveClientWin

msgScrollWinGet VertScrollbar

msgScrollWinGetHorizScrollbar

msgScrollWinGetInnerWin

msgScrollWinProvideDelta

msgScrollWinProvideSize

msgScrollWinCheckScrollbars Determines whether the on/off state of either scrollbar needs to change.

Creating a Scrollwin

Often, you use a scrollwin with a frame, so you make the scrollwin the frame's
client window.

clsScrollWin is a kind of layout window although it doesn't inherit from
clsCustomLayout. You pass clsScrollWin your window (scrollWin.clientWin) in
msgNew. This is the window on whose behalf it will manage scrolling. You also
need to give it the line offset information mentioned above. Eitheryou supply a
colDelta and rowDelta (for the horizontal and vertical line scrolls), or you supply
a client. The getDelta style flag indicates which method you want to use. You
need only set getDelta if you want to normalize line-by-line scrolling, or the line
size. For example, in an icon browser, some lines of icons may be much taller than
other lines.

The otherstyle flags for a scrolling window are summarized in Table 40-3.

40 .. 7.1

CHAPTER 40 I SCROLLBARS 459
Scroll Windows

Table 40-3
SCROLLWIN_STYLE Styles

Functional Description Styles/Style Flags

getDelta Specifies style of scroll method to use. Use if you want to normalize line-by-line
scrolling or line size.

colDelta
rowDelta

horizScrollbar ,
verticalScrollbar

Horizontal line scrolling.
Vertical line scrolling.

Specifies style of client for the scrollbar.

autoVertScrollBar,
autoHorizScrollBar

Overrides on/off flag; displays the scrollbar if the entire window dimension is not visible.

expandChildHeight,
expandChildWidth

Instructs scrollwin to expand child window to fit the inner window.

contractChildHeight,
contractChildWidth

Instructs scrollwin to make client window smaller when the scrollwin gets smaller.

forward Determines what messages to forward to the client.
Forward nothing.
Forward msgGWinGesture.

swForwardNone
swForwardGesture
swForwardXlist Forward msgGWinXlist (can be combined with swForwardGesture).

xAlignment,
yAlignment

Determines how the client window should be positioned if it is smaller.

swAlignLeft/ swAlign Top
sw Align Center
swAlignRight/ swAlignBottom
swAlignSelf

vertClient,
horizClient

Client window position combination.
Client window position.
Client window position combination.
Client window will align itself.

Specifies style of client for the scrollbar.

The initial offset of a scrollwin is that it is aligned according to alignment. By
default, it starts out looking onto the top left of the client window, not the usual
lower left origin, since the top left is where the minima of the scrollbars are. To
scroll the client window elsewhere programmatically, use msgWinDelta to move it.

Scrollwin Windows

A scrollwin is a border window with up to three child windows: the vertical and
horizontal scrollbar windows, and an inner window. clsScrollWin inserts your
document window to be scrolled as the child of this inner window.

You can retrieve the scrollbar windows and the inner windows using
msgScrollWinGetVertScrollbar, msgScrollWinGetHorizScrollbar, and
msgScrollWinGetlnnerWin. Normally, you set the document window that the
scrollwin is positioning at msgNew time, but you can also set and get it using
msgScrollWinSetClientWin and msgScrollWinGetClientWin.

40.7.2

460 PENPOINT ARCHITECTURAL REFERENCE

Part 4 I UI Toolkit

Repaint
The scrollwin itself is tiled by the two scrollbars and the inner window. The only
area it draws is the square notch at the lower right corner between the two
scrollbars. It usually draws this in white: however, clsScrollWin inherits from
clsBorder, so you can change the background ink if you want.

The inner window has no border and is normally filled by the client window, so it
does no repainting and relies on the client window painting in it. However, if the
client window is smaller than the size of the inner window, part of it will be
exposed. By default, it is painted white. The inner window is also a border
window, so you can change its style after retrieving it with
msgScrollWinGetlnnerWin.

Although the window in a scrollwin will be clipped to the inner window's
boundaries, it's potentially faster to only paint the area that is damaged (this
is passed back when you send msgWinBeginRepaint to self before starting to
repaint).

Layout
A scrollwin lays out its children in response to msgWinLayoutSelf (unless the
scrollwin is shrink-wrapped in either dimension). If the scrollwin is not
shrink-wrapped, you can resize it to any size and it will display as much of its
inner window as will fit. Thus, scrollwins are useful when you have a limited
amount of screen space available for a large or unbounded window, such as a
toolkit table with dozens of labels. In fact, since the user can change the system
font to be any size, most windows will not be entirely visible at very large font
SIzes.

If autoVertScrollbar or autoHorizScrollbar are set, clsScrollWin compares the size
of your window with the size of the scrollwin. During layout, if the client window
would be entirely visible without scrollbars, it takes down the scrollbars. If either is
set, then the scrollwin ignores values you give for the corresponding vertScrollbar
or horizScrollbar field-you give clsScrollWin responsibility to figure out when
to display the scrollbar(s).

40.7.3

40.7.4

You can find out whether the scrollwin is displaying the scrollbar by sending
msgScrollWinGetStyle and checking the vertScrollBar or horizScrollbar field. You
can also send msgScrollWinCheckScrollbars to see whether the on/off state of either
scrollbar needs to change. This takes a pointer to a Boolean. Ifit passes back true, then
you can cause the scroll bars to reappear or disappear as necessary by:

1 Sending msgWinSetLayoutDirty to dirty the layout of the scrollwin.

2 Sending msgWinLayout to get the scrollwin to lay itself out again.

clsScrollWin obeys the window shrink-wrap style bits (wsShrinkWrapWidth and
wsShrinkWrapHeight). If set, the scrollwin will size itself around the child
window. If the scrollwin is shrink-wrapping, then unless the scrollwin's parent
forces it to some size, the scrollwin won't need scrollbars.

CHAPTER 40 / SCROLLBARS 461
Scroll Windows

".,.. Positioning the Client Window 40.7.4.1

clsScrollWin will not allow the left edge of the child (your window) to extend past
the right edge of the scrollwin, nor let the bottom edge of the child go past the top
edge of the scrollwin. In other words, it keeps your window in view.

If the client window is smaller than the inner window, clsScrollWin aligns the
client window in the inner window according to the settings of xAlignment and
yAlignment in SCROLL_ WIN_STYLE. If the alignment is swAlignSelf, then it's up
to you to align the child window using msgWinDelta. ...

~:8~511t If you set expandChildWidth or expandChildHeight in SCROLL_ WIN_STYLE, the
scrollwin will expand the client window in that direction up to the width or
height of its inner window. This makes the alignment settings irrelevant, since the
client window will never be smaller than the inner window.

If you set contractChildWidth or contractChildHeight in SCROLL_ WIN_STYLE,

the scrollwin will shrink the client window in that direction to be the width of its
inner window. The scrollbar for that direction then becomes redundant, which is
useful when you want a client window to only scroll in one direction.

Notification 40.1.5

For the horizontal and vertical scrolling motions, you can specify what the client of
each scrollbar is. The scrollbar sends its standard msgScrollbarProvideVertInfo,
msgScrollbarProvideHorizlnfo, msgScrollbarVertScroll, and msgScrollbarHorizScroll
to that client. The default is scrollwin is the notification client (swClientScrollWin), so
scrollwin figures out how to scroll the window using the relationship of the inner
window to the scrolled window. When a scrollwin receives scroll notifications, it uses
msgWinDelta to move the client window (assuming the client for that direction
is swClientScrollWin). This preserves the pixels of your window visible on the screen,
thereby minimizing the region that your window needs to repaint.

If the client style is swClientWin, the scrolling is entirely the responsibility of the
client window. For example, consider a text view that can't use a scrollwin to do
vertical scrolling, since the text view would need to be a window the height of the
entire document. Therefore, the text view itself handles vertical scrolling.
However, documents are generally not very wide, so the text view can make itself
as wide as the document and let clsScrollWin scroll it horizontally.

There is an enhancement to this since the scrollwin doesn't know how big a line is.
You can either specify a line or column difference when you create the scrollwin,
or you can direct the scrollwin to query its client (or the scrolled window, if this is
objNull). However, if getDelta is true, a scrollwin will send
msgScrollWinProvideDelta to its client whenever it needs to perform a line scroll.
This message takes a SCROLL_ WIN_DELTA structure as its message arguments.
Many of the fields are the same as in a SCROLLBAR_SCROLL action structure. In
addition, there is a viewRect structure which gives (in your window's coordinates)
the position and size of the scrollwin-the part of your window that the porthole

462 PEN POINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

looks onto. You need to figure out where the new origin of viewRect should be
and pass this back in the origin field.

Multiple Windows in a Scrollwin

You can actually display different client windows in a scrollwin, one at a time.
Each of the windows is a child of the scrollwin's inner window, but only one has
its ws Visible window style flag set at any time. The effect is like a deck of cards,
with only one on top. To add a new window to a scrollwin, send the scrollwin
msgScrollWinAddClientWin, passing it the UID of the window you want
inserted as a child of the scrollwin's inner window. The new child window's
wsVisible flag is turned off, so it is invisible.

To switch the scrollwin to displaying a new client window, send it
msgScrollWinShowClientWin, passing it the UID of the window you want
shown. If this window isn't already a child of the scrollwin, the scrollwin will send
itself msgScrollWinAddClientWin to add it.

Send msgScrollWinRemoveClientWin to remove one of the client windows. If
you remove all the client windows, the inner window will be visible.

msgScrollWinGetClientWin passes back the current client window (the one last
shown with msgScrollWinShowClientWin). This takes a pointer to a WIN. You
can locate other client windows using msgWinFindTag or msgWinEnum.

Toolkit Tables

Because it inherits from dsBorder, dsTableLayout knows how to be the child of a
scrollwin; it responds to msgScrollWinProvideDelta by normalizing to align with
the rows and columns in the table.

40.1.6

Chapter 41 / List Boxes

List boxes provide a scrollable list of windows. The list can be of arbitrary length
(up to maxS16), useful when presenting a set of toggles or choices where the total
number of items is either very large or unknown.

clsListBox inherits from clsScrollWin; clsScrollWin provides the scrolling ability.
When you use a clsScrollWin direcciy, you must supply the client window that is
scrolled by clsScrollWin. clsListBox creates and maintains a client window for you.

There are two standard subclasses of clsListBox kinds of list boxes: string list
boxes, which display a list of strings that the user can select, and font list boxes,
which display a list of the installed fonts. Both are implemented by the descendant
classes clsStringListBox and clsFontListBox. Table 41-1 summarizes the messages
clsListBox defines.

msgNewDefaults

msgNew

msgListBoxGetMetrics

msgListBoxSetMetrics

msgListBoxAppendEntry

msgListBoxInsertEntry

msgListBoxRemoveEntry

msgListBoxGetEntry

msgListBoxSetEntry

msgListBoxF indEntry

msgListBoxEnum

msgListBoxEntry Is Visible

msgListBoxXYT oPosition

msgListBoxMakeEntryVisible

Initializes the LIST _BOX_NEW structure to default
values.

P _LIST_BOX_NEW Creates a list box (initially empty).

P _LIST _BOX_METRI CS Passes back the metrics for a list box.

P _LIST_BOX_METRICS Sets the metrics for a list box.

P _LIST _BOX_ENTRY Appends an entry to the list box after the specified
position.

P _LIST _BOX_ENTRY Insert an entry to the list box before the specified
position.

U16 Removes an entry from the list box.

P _LIST _BOX_ENTRY Gets an entry in a listBox by position.

P _LIST _BOX_ENTRY Sets an entry's information.

P _LIST _BOX_ENTRY Finds the position of the given entry window/ data.

P _LIST _BOX_ENUM Enumerates the entries of a listBox according to the
given flags.

P _LIST _BOX_ENTRY Passes back the visibility of an entry in a listBox.

P _LIST_BOX_POSITION_XY Gets the position for a given list box window
coordinate.

P _LIST _BOX_ENTRY Makes the specified entry visible.

464 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

msgListBoxProvideEntry

msgListBoxDestroyEntry

P _LIST _BOx...EN1RY

P _LIST _BOX_EN1RY

Self-sent when a listBox needs a window for display.

Sent to the client for an entry that has
IbFreeDataByMessage enabled.

msgListBoxEntryGesture Notifies the subclass or client that a gesture occurred
over an entry.

Creating a List Box
You send msgNew to clsListBox to create a new list box. This takes a pointer to a
LIST_BOX_NEW structure for its message arguments. The message arguments
include:

• The list box style, described below.

• The client to which the list box sends messages (listBox.dient).

• The number of entries in the list box (listBox.nEntries).

• The number of entries that should be visible in the list box
(listBox.nEntriesTo View).

List boxes are not layout windows, so you don't have any control over the size or
alignment of the child windows in the list box.

Note that you can't specify the contents of the list box when you create it. The list
box asks you to provide entries later, as you will see.

Style Fields

The fields in LIST _BO~STYLE include:

filing a filing style. The possible values are IbFileMin, IbFileEntryInfo, and
IbFileAlI. These are explained in "Filing," later in this chapter.

List Box Contents
The items displayed in a list box must be windows. However, the total number of
entries in a list box may be very large, and at any point only a fraction will be
displayed on-screen. Having a window for each entry could consume substantial
memory. Hence, dsListBox supports a protocol for creating and freeing the
windows for its items as it needs them on-screen.

This is very different from toolkit tables. Both have child windows. However, in a
toolkit table~ you can statically specify every "item" in the table, and the toolkit
table maintains every item as an inserted child window. In a list box, you have to
dynamically supply the child windows for the list box, and the list box may not
maintain the child windows. The "items" in a list box are called list box entries.

41.1

41.2

CHAPTER 41 I LIST BOXES 465

This protocol process saves memory. If a list box has many entries, at any point
only a few will be visible in the scrollwin's inner window. So the list box only
inserts child windows for those entries that are visible. It asks you (or a descendant
class) to provide the windows. Since the list box doesn't need a window for every
list box entry, you can ask it to destroy windows that are no longer visible.

The next sections explain the protocol of providing list box entries in more detail.
If you're using clsStringListBox or clsFontListBox, those classes handle the
protocol internally.

Supplying Entries

List Box Entries 41.3

The entries in a list box are indexed by position, starting at zero. There can be up
to maxS16 entries in a list box. clsListBox maintains information about each
entry, whether or not it has a child window for that entry. If clsListBox needs to
display the entry at some position and does not have a window for it, it sends
itself, and then its client, msgListBoxProvideEntry. You can get information
about the entry at a position by sending the list box msgListBoxGetEntry, and set
information about an entry using msgListBoxSetEntry. All these messages take a
pointer to a LIST _BOX_ENTRY structure. This includes the following arguments:

listBox the UID of the list box.

position the entry position.

win the entry's window, if it has one.

freeEntry the free mode of the entry, indicating what clsListBox should do
with it when it's no longer visible.

state the state of the entry.

data client data for the entry.

arg a message-specific argument.

Free mode and state are explained in more detail below.

You can also enumerate the entries in a list box with msgListBoxEnum; this
retrieves the LIST_BOX_ENTRY information for each entry.

Supplying Entries
When you create a list box, it has no entries. If you don't do anything special when
the list box goes on-screen, clsListBox will self-send msgListBoxProvideEntry. If no
descendant responds to this message (clsFontListBox and clsStringListBox both do),
clsListBox forwards it to its client. In the LIST_BOX_ENTRY structure, it fills in listBox,
and sets position to the desired window position.

You should respond by passing in the UID of the window to use for client. You
can also fill in state and data if you're using those to keep track of entries.

When the user scrolls the list box back to a previous position, clsListBox checks to
see if it still has a window for that position. If it does, it inserts the window and
does not send out a message. If the window is null, clsListBox sends out

466 PENPOINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

msgListBoxProvideEntry as above. The rest of the LIST _BOX_ENTRY fields will be
the same as before, so you need only fill in the window.

Scrolling
The same protocol occurs when the user scrolls the list box to a new position,
thereby exposing new entries.

If the user scrolls down, clsListBox will ask for an entry past nEntries. You are free
to respond with stsFailed if the number of entries is indeed fixed at nEntries.
However, if you do supply a window, clsListBox will insert it and update nEntries.
This way, you can let the user dynamically extend the list box size by scrolling
downwards.

Free Mode
clsListBox will remember the UID of the window you supply. However, if the list
box has lots of entries,you want to conserve memory by destroying the windows
of off-screen entries.

In LIST _BOX_ENTRY, you can set freeEntry to the desired freeing mode for an
entry. The possible values are a set of flags (LIST_BOX_DATA_FREE_MODE):

IbFreeDataNotVisible free the entry when it's no longer visible.

IbFreeData WhenDestroyed free the entry when the list box itself is
destroyed.

IbF reeDataByMessage free the en try by sending a message.

The default freeEntry mode, IbFreeDataDefault, is IbFreeDataNotVisible I
IbFreeData WhenDestroyed.

IbFreeDataByMessage

By default, clsListBox sends msgDestroy to an entry's window when it is time for
it to be destroyed.

If the data field of an entry is a pointer to other storage, then you need to have the
list box send you a message, instead of destroying the window directly, so you can
free that storage. If you set IbFreeDataByMessage, clsListBox self-sends (and then
its client, if no descendant intercepts the message) msgListBoxDestroyEntry. You
can then destroy the win and free storage associated with data. Mterwards,
clsListBox sets win to objNull.

You may want to receive this free entry message to implement other
management schemes for entries. For example, you could have a scheme where

, you maintain a fixed-size pool of windows for your list box. When the user scrolls
the list box, you need to set the window of the entry that's no longer visible to
objNull, so that you can provide that window for the new entry that has scrolled
into view. (clsListBox frees the child windows scrolled off-screen before sending
msgListBoxProvideEntry asking for the newly visible entries.)

41.4.1

41.4.2

CHAPTER 41 / LIST BOXES 467
Notification

,.". Pre-Loading a List Box 41.4.3

To speed up the initial drawing of a list box, you can pre-load the list box entries of
the entries that will be visible. For example, if at creation you set listBox.nEntries as 30

and listBox.nEntriesTo View as 5, then when you use msgListBoxSetEntry to specify
the windows for the first ten entries in the list box, clsListBox will not have to call back
to display the initial contents of the list box, nor will it need to when the user scrolls
d "" own one page.

,,- Modifying 41.5

You can send msgListBoxSetEntry to change the state of an entry. You don't have
to supply a window; if the window you give is objNull, clsListBox will ask you to
provide one with msgListBoxProvideEntry, as usual.

However, if that position already has a window, and you specify a different
window, then clsListBox will extract the old window but will not free it.

,,-Inserling and Removing Enlries
Sending msgListBoxSetEntry and responding to msgListBoxProvideEntry fill in
an existing entry but don't change the number of entries in the list box. You can

add a new entry to a list box by inserting it at or after a position using
msgListBoxInsertEntry or msgListBoxAppendEntry. These also take a pointer to
aLIST_BOX_ENTRY for their message arguments.

To remove an entry, reducing the number of entries in the list box, send
msgListBoxRemoveEntry. Again, it takes LIST _BOX_ENTRY.

Siale
In LIST _BOX_ENTRY you can set state to different values. The possible values are a
set of flags (LIST _BOX_ENTRY_STATE):

IbSelected

IbOpen

IbBusy

The default state, IbStateDefault, is 0, meaning that none of these flags are set.

clsListBox does not interpret state at all; state is a feature for use by subclasses of
clsListBox. For example, clsStringListBox, a subclass that displays a list of strings,
uses the IbSelected flag to mark string entries the user has selected.

NOlificalion
List boxes do not (currently) send client notifications. They are passive by design.
The user interacts with the list box, and later your application asks the list box
which entries are selected.

Like msgListBoxProvideEntry, all of the messages in this section are first sent to
the list box itself. This is so that subclasses of clsListBox may intercept these

41.6

41.7

41.8

468 PEN POINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

messages and process them as desired. If these messages reach dsListBox, it
forwards them on to the list box's client.

Gestures

The list box handles scrolling and other gestures.

In particular, many list boxes allow the user to select multiple items in the list
box. The list box does not handle these itself. It passes them to its client. However,
the individual entries in the list box themselves may handle certain gestures, such
as tap.

41.8.1

Thus, the list box's client receives all non-scrolling gestures that the target window
ignored. dsListBox self-sends, then sends its client msgListBoxEntryGesture. Like
the other messages, this takes a pointer to a LIST_BOX_ENTRY structure. clsListBox
determines the child window over which the user made the gesture, and supplies its list
box entry information. When you receive msgListBoxEntryGesture, position is the
position of the targeted child window, and win is its UID. The gesture information is
In argo

Painting
In msgNewDefaults, dsListBox sets border.style.edge to bsEdgeAll.
Consequently, it paints a border around the list box.

Each child window in the list box paints itself as normal.

clsListBox maintains a minimum line height for the list box. It does this by
remembering the smallest height of a child window that it encounters. If it does
not have a child window for a position, and the descendant or client does not
supply one in response to msgListBoxProvideEntry, dsListBox paints an empty
"hole" in its place. This region is the minimum height.

Scrolling

For line-by-line scrolling, clsListBox uses the minimum line height to figure out
how much a line scroll is.

Entry Visibility

You can send msgListBoxEntryIsVisible to determine if an entry is currently
visible in the list box. Like the other messages, this takes a pointer to a
LIST_BOX_ENTRY structure. clsListBox determines whether the entry at the
position you specify is visible or not. If the entry is not visible, dsListBox
passes back OL in the arg field, otherwise it passes back a non-zero value. If you
set position to ma'xU16, clsListBox checks the visibility of the window you
specify in win.

41.9

41.9.1

41.9.:2

CHAPTER 41 I LIST BOXES 469
Miscellaneous Messages

You can send msgListBoxMakeEntryVisible to make a specified entry visible. If
the item at position is not visible, clsListBox scrolls the list so that item is visible
in the view (you don't have to send msgWinUpdate to repaint the list box).
Specifying a position of maxU16 causes the list box to find the given win.

Layout
The list box computes its desired height by multiplying its line height, then
multiplying that by nEntriesT 0 View. If it has not yet computed its line height, it
will ask its client to provide one child window (msgListBoxProvideEntry) solely
to compute its size. Thus, the list box client may receive msgListBoxProvideEntry
before the list box is on-screen.

If the list box has wsShrinkWrap Width set, its width is the width of its widest
child (plus the border and scrollbar region).

Filing
The setting of the list box filing style determines how much state the list box files.
You can set the list box to:

IbFileMin file the minimum data necessary.

IbFileEntrylnfo file the entry information for each entry but not the
windows themselves.

IbFileAll file all the entry information and file the windows of those entries
that have a window.

After restoring a list box, it will still send msgListBoxProvideEntry to its client,
unless filing was set to IbFileAlI and every entry had a valid window UID at the
time of filing.

Miscellaneous Messages
msgListBoxXYToPosition is a utility message that converts an x-y location in the
local window coordinates of the list box to the position of the window underneath
those coordinates. This takes a pointer to a LIST _BOX_POSITION_XY structure. In
this you set the location of the coordinates (place, an XY32 structure); clsListBox
passes back the position of the list box entry at that location. Remember that
msgListBoxEntryGesture provides the same information.

msgListBoxEnum enumerates list box entries. You can restrict the enumeration to
just those list box entries with a certain state, for example, IbSelected. In this way,
a client or descendant can find out which entries in a list box are "selected."
(Remember that the list box does not interpret any gestures as indicating selection;
this would be up to a descendant or client.)

41.10

41.11

41.12

470 PEN POINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

loolkit lables versus List Boxes
You can achieve much the same functionality as a list box by embedding a toolkit
table in a scrollwin. You can set up the latter in advance and you don't have to
create the windows in response to a callback. Its performance will probably be
better than the list box. The disadvantage is that you consume memory for every
item in the table, whether it is visible or not.

String List Boxes
clsStringListBox is a descendant of clsListBox. It only supports putting strings in
a list box. Consequently, it has a simpler API. Unlike clsListBox, it interprets user
gestures on the contents of the list box. You can set up a string list box to behave
as a scrolling choice (exclusive or non-exclusive) or as a set of toggles.

Table 41-2 summarizes messages defined by clsStringListBox.

Mes$a~e lakes

41 .. 13

41.14

msgNewDefaults

msgNew

P _STRLB_NEW

P _STRLB_NEW

Initializes the STRLB_NEW structure to default values.

Creates a string listbox window.

msgStrListBoxGetStyle P _STRLB_STYLE

msgStr ListBoxGetDirty P_BOOLEAN

msgStrListBoxSetDirty BOOLEAN

msgStr ListBoxGet Value P_U32

msgStrListBoxSetValue U32

msgStrListBoxProvideString

msgStrListBoxNotify U32

Creating a String List Box

AHribute

Passes back the style of the receiver.

Passes back true if the listbox has been altered since
dirty was set false.

Sets the dirty bit of a string listbox.

Passes back the value of a string listbox.

Sets the value of a string listbox whose role is one of
slbRoleChoice.

This message requests the client (or subclass) to
provide a string.

This message is sent out whenever the value of a
string list box changes.

You send msgN ew to clsStringListBox to create a new string list box. This takes a
pointer to a STRLB_NEW structure for its message arguments. The message
arguments are the same as those for clsListBox, with the addition of a
STRLB_NEW_ONLY structure. The additional fields include:

stringListBox.value an initial value (if the string list box is acting like a
choice).

stringListBox.style several style fields.

CHAPTER 41 / LIST BOXES 471

The fields in STRLB_STYLE include:

Fi~kh/Fieid VC1!ues

role The overall behavior of the string list box.

String List Boxes

Table 41 ~3

fields

slbRoleToggle
slbRoleChoice 1
slbRoleChoiceO 1

Act like a toggle table so that zero, one, or more table entries can be activated.
Act like a choice which has a value, so that one entry is always activated.

look
slbLookInvert
slbLookDecorate

dirty

Providing Entries

Act like a choice which can have no value, so that either zero or one entities can be
activated.

The visual appearance of the string list box entries when activated.
Invert when activated.
Decorate when activated.

Determines whether the string list box is dirty. The same notion that controls maintain.

Just like a standard list box, a string list box has no entries when you create it.
When dsListBox self-sends msgListBoxProvideEntry, dsStringListBox responds
by sending first self, and then its client, msgStrListBoxProvideString. In response,
you provide a string. dsStringListBox creates a button out of the string. The look
and role style settings of the string list box determine the appearance of the button.

msgStrListBoxProvideString takes a pointer to a STRLB_PROVIDE structure. This
is similar to a LIST _BOX_ENTRY structure, and some of the fields are the same.
The fields include:

strListBox ,the UID of the string list box.

position the position of the requested entry.

pString a 256-byte buffer for the string.

data client data for the entry.

Ordinarily, you should copy the appropriate string for position into pString. If
you have a static string definition, you can pass a pointer to it in pString, but it
had better not change. You can supply a U32 of arbitrary data in data;
dsStringListBox copies this into dsListBox's LIST_BOX_ENTRY for the entry.

dsStringListBox does not remember any information about the entry beyond the
LIST_BOX_ENTRY information maintained by dsListBox. dsListBox needs to
display a window for an entry, so it self-sends msgListBoxProvideEntry.
dsStringListBox sends out msgStrListBoxProvideString and creates a button
from that string which it passes back to dsListBox.

dsStringListBox does not do fancy tricks to improve performance, such as
caching empty button windows, reusing button windows, or storing strings in
a heap.

If you subclass dsStringListBox, you can either respond to
msgStrListBoxProvideString or msgListBoxProvideEntry (or neither).

472 PENPOINT ARCHITECTURAL REFERENCE

Part 4 I UI Toolkit

Notification

Unlike clsListBox, clsStringListBox does respond to gestures made over its entries.
The only gesture it responds to is a single tap. clsStringListBox turns on the string
the user tapped, and depending on its role, it turns off any other on entries.

The string list box maintains the "on" state of each string in the LIST _BOX_ENTRY

information of its ancestor clsListBox.

A string list box doesn't send previewing or other messages to its client. This is true
even if you set its role to be slbRoleChoiceOI or slbRoleChoicel-these make it
respond to gestures like a choice, but don't give it an API like a choice. If you
want, you can change the buttons that it creates to send button messages to its
client.

Value

The value of a slbRoleChoiceO 1 or slbRoleChoice 1 string list box is the data of
the on string. You can get the value using msgStrListBoxGetValue. You provide
each entry's data in response to msgStrListBoxProvideEntry and can maintain it
by modifying the LIST_BO~ENTRY for that position. If the string list box role is
slbRoleChoiceOI and no entry is on, this returns stsStrListBoxNoValue.

If the role of the string list box is slbRoleToggles, msgStrListBoxGetValue returns
stsFailed. To find out those entries that the user has selected, send msgListBoxEnum
to the string list box, setting flags to IbSelected.

If the role is slbRoleToggles, sending msgStrListBoxSetValue will return
stsFailed. If the role is slbRoleChoiceO 1 and you set the value to maxU32, this
will deselect every en try.

Control Dirty

A string list box maintains a dirty status in STRLB_STYLE and displays itself
differently depending on how it is set. This is similar to the dirty field of a control,
which indicates whether or not the control has been altered. You can send
msgStrListBoxGetDirty or msgStrListBoxGetStyle to a string list box to find out
if the user has altered it. As with most controls, it is up to you to reset the control
dirty state of the list box.

Destruction

clsStringListBox destroys the button window it creates for a string when it
receives msgListBoxDestroyEntry. It doesn't have to free the string since it only
passed it to clsButton to create the entry's window.

41.14 .. 3

41..14 .. 4

CHAPTER 41 I LIST BOXES 473

"., Painting
clsStringListBox doesn't respond to repaint messages. It creates a left-aligned,
edgeless button of the appropriate kind in response to msgListBoxProvideEntry,
and the button paints itself. .

Fon. Lis. Boxes
clsFontListBox is a descendant of clsStringListBox. The strings it supplies are the
names of the currently installed fonts. You don't have to respond to any messages
to use it.

Font List Boxes

41.14.5

41.15

Creating a Font List Box 41. 1 5~ 1

You send msgNew to clsFontListBox to create a new font list box. This takes a
pointer to a FONTLB_NEW structure for its message arguments. The message
arguments are the same as those for clsStringListBox, with the addition of a
FONTLB_NEW _ONLY structure. Currendy, the only additional field is:

• style fields (fontListBox.style).

Currendy, the only field in STRLB_STYLE is:

prune the pruning control for the font list display. This is a set of
flags. It is defined to be a UI6 in FONTLBOX.H, but is actually a
FIM_PRUNE_CONTROL structure defined by the installed font manager
in FONTMGR.H. This lets you reduce the number of fonts displayed. You
can set prune to fimNoPruning to get a full list, or OR in the following
flags to reduce the font list:

fimPruneDupFamilies remove fonts in the same family, such as Swiss
Bold, Swiss Italic.

fimPruneSymbolFonts remove symbol fonts.

At msgNew time, clsFontListBox gets the list of installed fonts from the font
install manager. It stores their short ID's in an array and sets the number of entries
in the list box (listBooc.nEntries) to the number of ID's. When asked to provide a
string, it converts the font ID into a name.

Note that clsFontListBox does not regenerate the list of fonts when the set of
installed fonts changes.

Notification

You do not need to respond to any message from clsFontListBox.

41.15.2

Chapter 42 / Fields

clsField is a subclass of clsLabel representing an editable text field that the user can
fill in by handwriting with the pen. Since it inherits from clsControl and
ultimately from clsWin, a field has all the usual properties of windows and
controls. In particular, it has a client object that receives notification messages for
important user actions and events affecting the field.

Field Style Flags

Tk Demo: Fields

D~ument Edit Options Demo

< 25 >

Field

Date Field

Fil<ed Field

Integer Field

Text Field

oomete1d

10\61/Jl j 21 II 9101 i
m-

LIJ9i9J 01016J. IJ 2L i
11\

-I

[,1L9 L9LoLoJ61JJ2J I i=
11\

-I

~-~ i
if

The actions available to the user for entering or editing the contents of a field
depend on the style flags you specify when creating it:

• In-line fields provide full handwriting and gesture recognition, allowing the
user to write with the pen directly into the field itself. Alternatively, the user
can draw a circle gesture on the field to invoke a pop-up insertion pad with
more specialized editing capabilities.

• Overwrite fields have combed segments, with each character displayed in a
separate, outlined box of its own. Writing into a box that already contains a
character replaces that character with a new one.

• Pop-up fields perform no handwriting or gesture recognition of any kind.
Any pen stroke in such a field invokes an insertion pad for editing the field's
contents.

476 PEN POINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

Notice that in-line and pop-up fields allow the user the option of popping up an
insertion pad for editing the field's contents. An insertion pad has an area for
writing, and button controls for accepting, clearing, and canceling the contents of
the field.

Messages
Table 42-1 summarizes clsField messages. All of the object messages listed here are
defined in the heder file FIELD.H and are discussed in the relevant sections later in
this chapter.

&\~eS$©£1e

msgNew

msgNewDefaults

msgFieldGetStyle

msgFieldSetStyle

msgField GetXlate

msgFieldSetXlate

msgFieldGetMaxLen

msgFieldSetMaxLen

msgFieldSetCursorPosition

msgFieldGetCursorPosition

msgFieldCreatePopUp

msgFieldCreateT ranslator

msgFieldActivate

msgFieldDeactivate

msgFieldActivatePop Up

msgFieldAcceptPop Up

msgFieldCancelPop Up

msgFieldKeyboardActivate

l©Kes

P_FIELD_NEW

P_FIELD_NEW

P _FIELD _STYLE

P _FIELD_STYLE

P_UNKNOWN

P_UNKNOWN

P_U16

P_U16

P_U16

P_U16

Table 42~1

mE~ssaaes

Creates and initializes a new instance of clsField.

Initializes the FIELD _NEW structure to default values.

Passes back the style value held by the field.

Sets the style of the field.

Passes back the translator information for the field.

Specifies the translator information for the field.

Returns the maximum length allowed for input in
the field.

Sets the maximum length for input in the field.

Sets the position of the keyboard insertion point in
the field.

Returns the position of the keyboard insertion point
in the field.

Creates and returns the insertion pad when the
pop-up is invoked.

Self-sent to create a translator. Returns the translator.

void Forces activation of the field.

void Forces deactivation of the field.

P _FIELD_ACTIVATE_POPUP Sent to cause an insertion pad to be brought up for
the field.

void Causes the insertion pad to be accepted. Sent when
the user collapses the insertion pad by hitting the
OK button or accepts the n>.

void Cancels the edit in the pop-up insertion pad. The
previous value is unchanged. Sent when the user
hits the cancel button or cancels the n>.

void Activates field for keyboard use.

Message

msgFieldModified

msgFieldFormat

msgFieldClear

msgF ieldReadOnly

msgFieldGetDelayScribble

msgF ieldSetDelayScribble

msgFieldTranslateDelayed

msgFieldValidate

msgFieldPreValidate

msgFieldValidateEdit

msgFieldPost Validate

msgFieldNotifyInvalid

Creating a Field

Takes

self

void

NULL

self

P_OBJECT

P_OBJECT

NULL

void

self

P _FIELD_NOTIFY

self

P _FIELD_NOTIFY

CHAPTER 42 I FIELDS 477
Creating a Field

Table 42-1 (continued)

Description

Self-sent when a a field is modified.

Self-sent to perform formatting.

Clears the value of the field.

Self-sent when an attempt is made to modify a
read-only field.

Returns the delayed scribble for delayed fields.

Puts the field in delayed mode with the given
scribble.

Translates a field with delayed captured strokes.

Performs the validation protocall for a field.

Allows clients to pre-process the value of a field
before validation occurs. Sent to client if
field.style.clientPreValidate is set before validation.
Sent to the control.client if clientPreValidate is set
before validation.

Self-sent to perform validation on the field.

Self-sent to perform post-validation processing.

Sent to notify a client that a field was invalid.

The FIELD_NEW_ONLY structure, which holds the class-specific arguments to
msgNew for creating a new text field, is defined as follows:

typedef struct FIELD_NEW_ONLY {
FIELD_STYLE style; II field style, see below
FIELD_XLATE xlate; II translator or template

II for handwriting translation
U16 maxLen; II maximum text length in characters
U16 reserved; II reserved for future use, must be 0

FIELD NEW_ONLY, FAR *P_FIELD_NEW_ONLY;

The form and meaning of the style and xlate arguments are discussed below.
maxLen specifies the maximum number of text characters the field can contain;
all text entered in the field will be truncated to this maximum length. The default
value set by msgNewDefaults is 64 characters.

Style Flags

FIELD_STYLE contains flag settings to control the field's appearance and behavior,
as summarized in Table 42-2. The remaining flags are all concerned with input
processing and validatioon, and are discussed later in this chapter.

478 PENPOINT ARCHITECTURAL REFERENCE

Part 4 I UI Toolkit

Specific values for some of these style settings are further summarized in Table
42-2. Except for the editType, popUpType, and focusStyle settings, all of these
settings are concerned with input processing and validation and are discussed later
in this chapter.

~,. The editType SeHings

The value of editType determines the style of text entry and editing the field
supports: in-line, overwrite, or pop-up.

~~ The focusStyle SeHing

The focusStyle setting determines whether the field takes control of both the
global selection and input focus when activated, the input focus only, or neither.
Ordinarily, a field will want to take both, but it may occasionally be more
convenient to take only the input focus, leaving the existing selection unchanged.
(You might use this option, for example, to avoid disturbing the current selection
when placing a temporary pop-up box on the screen. In fact, the clsField code
itself uses it when displaying a field's insertion pad.) The fstNone option is
included for completeness, but it's hard to imagine a realistic situation in which it
would be useful. .

42.3.1.1

42.3.1.2

Table 42-2
Field Style Values

$tyl0s/StyleNalu0S

editType
fstlnLine
fstOverWrite
fstPopUp

popUpType
fstCharBox
fstChar BoxButton

xlate

true
false

focusStyle

fstInput
fstInputSelection
fstInputNone

noSpace

capOutput

fstCapAlI
fstCapAlIWords
bsDragAsls
fstCapFirstW ord

fl.m~th:mal !)escriptkm

Determines the style of text entry and editing supported by the field.
Supports direct in-line editing.
Supports overwrite-style editing.
Supports pop-up insertion pad only.

For backward compatibility, insertion pad type.
Character box.
Character box.

Whether the field uses a translator object or a translation template.
See "Custom HandwritingTranslation" for more detail.

Use a translation template.
Use a translator object.

Determines whether field takes control of global selection and input focus.
See "The focusStyle Setting" for more detail.

Take input focus only.
Take both selection and input focus.
Take neither selection nor input focus.

Defines the properties of the fields translator: instructs the translator to suppress all space
characters during input translation.

Defines properties of the field's translator: determines capitalization style for entered text.
Affects handwriting only when user's preference settings call for all uppercase character
recognition.

Capitalize all letters.
Capitlize first letter of each word.
Capitilize exactly as entered.
Capitlize first letter of first word.

continued

CHAPTER 42 I FIELDS 479
Creating a Field

Table 42-2 (continuedl

Functional Description Styles/StyleValues

upperCase Forces all input to uppercase from any source. Not limited to pen input (not a translator
only property).

Delay translation until explicitly requested.

Notify client when field's contents are modified.

Notify client on attempt to modify read-only fields.

delayed

clientNotifyModified

clientN otifyReadOnly

validatePending

clientPreValidate

client V alidate

clientPost Validate

clientN otifyInvalid

dataMoveable

dataCopyable

Indicates field's contents have been modified and not yet validated.

Notify client before beginning v~idation.
Notify client to perform validation.

Notify client after completing validation.

Notify client if validation fails.

Determines whether the field window or its string gets moved.

Determines whether the field window or its string gets copied.

Custom Handwriting Translation

Associated with every field is a translator for converting the user's input scribbles
into meaningful text characters. (Translators are discussed at length in Part 5:
Input and Handwriting Translation.) When you create a new field, the xlate
argument in FIELD_NEW identifies the type of translator the field is to use. A null
value for this argument calls for a standard translator of clsXW"ord. However, if
you have more specific knowledge of the kind of input the field will contain, you
can improve the accuracy of the handwriting translation by supplying a custom
translator of your own.

The xlate argument is defined to be of the following union type:

typedef union FIELD_XLATE {
OBJECT translator;
P_UNKNOWN pTemplate;

} FIELD_XLATE, FAR *P_FIELD_XLATEi

This allows you to supply either an existing translator (translator) or a template
from which to build one (pTemplate), as described in Part 5: Input and
Handwriting Translation. The xlateType flag in the FIELD_STYLE structure
distinguishes the two options: 0 for the translator itself, 1 for a template.

The FIELD_STYLE flags noSpace and capOutput define properties of the
field's translator. The field code uses these values when creating a translator on
your behalf, whether by default (xl ate = false) or from a template you supply
(xlate != false, xlateType = true). (If you supply your own translator directly by
setting xlate != false and xlateType = false, these flags are ignored. It is then your
responsibility to set the corresponding properties of the translator yourself.

42.3.2

480 PENPOINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

Access to Field Properties
The messages msgFieldSetStyle and msgFieldGetStyle allow you to access a field's
style flags. Both take a pointer to a FIELD_STYLE structure and either copy it to
the field's own style flags or fill it with their current values. msgFieldSetStyle will
fail (return stsFailed) if you attempt to send it to a field that is currently active on
the screen.

msgFieldSetXlate and msgFieldGetXlate set and retrieve the field's translator
information. The argument to both messages is of type P _UNKNOWN. If the
field's xlateType flag is 0, this is taken to be a P _OBJECT pointing to the translator
object itself; if xlateType is 1, it is a P _X'tEMPLATE pointing to a translator
template. msgFieldSetXlate accepts a raw (uncompiled) template, while
msgFieldGetXlate passes it back in compiled form. (Be careful not to send
msgFieldSetXlate to a field that is currently active or has an insertion pad present
on the screen. The results are undefined and probably undesirable.)

msgFieldSetMaxLen and msgFieldGetMaxLen manipulate the field's maximum
text length via an argument of type P _UI6. If maxLen is changed to less than the
number of characters the field currently contains, the text will be truncated to the
new length at the next editing operation. To access or change the current contents
of the field itself, use the inherited messages msgLabelGetString and
msgLabelSetString.

msgFieldSetCursorPosition and msgFieldGetCursorPosition set and retrieve the
cursor position marking the insertion point for keyboard input. Both messages
take an argument of type P _UI6. The cursor appears on the screen only when the
field is activated for keyboard input with msgFieldKeyboardActivate. If no cursor
position has been set explicitly, msgFieldSetCursorPosition reports it as 0.

COMponent Creation

D~$(';riptiml

42 .. 4

M~$£@g~

msgFieldCreatePopUp Creates and returns the insertion pad when the
pop-up is invoked.

msgFieldCreateTranslator P_OBJECT

msgFieldFieldGetSecondTrans P_OBJECT

Self-sent to create a translator. Returns the
translator.

Returns a second translator for editBox IP's.

When the user invokes a field's pop-up insertion pad, the field creates the pad by
sending itself msgFieldCreatePopUp. Ordinarily, this creates a standard insertion
pad of the type called for by the field's popUpType setting. If necessary, however,
you can customize the appearance or behavior of the insertion pad by creating a
specialized subclass of dsField and reimplementing msgFieldCreatePopUp to suit
your needs. This message takes an argument of the form:

CHAPTER 42 I FIELDS 481
Activation and Deactivation

typedef struct {
U16 type;
OBJECT ip;
U32 reserved;

FIELD_CREATE_POPUP, FAR * P_FIELD_CREATE_POPUP;

where type is one of the values:

#define fipReplaceAll a
#define fiplnsert 1
#define fipReplaceRange 2;

fipReplaceAlI calls for an insertion pad large enough to hold the field's full
maximum text length, as specified by its maxLen property. fiplnsert is used in
response to an insertion gesture by the user, and calls for only the number of
additional characters that the field could actually accommodate (that is, the
maximum text length minus the length of the current contents).

fipReplsGeRange is intended 1 ~005~-to replace a range of selected
text, but it is not yet
implemented.

If you write your own method for msgFieldCreatePopUp, it should create an
insertion pad of the requested size and pass back its UID in the ip field of the
FIELD _CREATE_POPUP structure.

Subclasses redefine the standard method for msgFieldCreateTranslator, which dsField
sends itself to create a field's translator object. If the field's xlateType flag is 1, the trans
lator is created from the template supplied by the client program via the FIELD _NEW

parameter xlate. If xlate Type is 0 and xlate is null, msgFieldCreate Translator must
create a standard dsXW ord translator. In either case, the newly created translator is
passed back through the method argument, which is of type P _OBJECT.

Activation and Deactivation

Meuoge

msgFieldActivate

msgF ieldDeactivate

msgF ieldActivatePop Up

msgFieldAcceptPopUp

msgFieldCancelPop Up

msgF ieldKeyboardActivate

iokes

void

void

void

void

void

Description

Forces activation of the field.

Forces deactivation of the field.

Sent to cause an insertion pad to be brought up for
the field.

Causes the insertion pad to be accepted. Sent when
the user collapses the insertion pad by hitting the
OK button or accepts the IP.

Cancels the edit in the pop-up insertion pad. The
previous value is unchanged. Sent when the user
hits the cancel button or cancels the IP.

Activates field for keyboard use.

The user normally activates a field by writing into it with the pen, causing the
field to send itself msgFieldActivate. This allocates some temporary memory and
prepares the field to receive the user's input. When the pen input is complete, the
field sends itself msgFieldDeactivate to deallocate the temporary memory.

482 PEN POINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

msgFieldActivatePopUp is sent when the user invokes a field's pop-up insertion
pad. This, in turn, self-sends msgFieldActivate to activate the field if necessary,
then displays the pop-up and prepares it for editing. The pop-up is normally
centered directly over the field, but you can supply a P _RECT32 (in root window
coordinates) to reposition it elsewhere.

msgFieldAcceptPopUp signals that the user has completed and confirmed an
editing operation in the insertion pad. This deactivates the field by self-sending
msgFieldDeactivate, removes the insertion pad from the screen, and sends
msgFieldModified to process the new value. Dismissing the insertion pad without
confirmation sends msgFieldCancelPopU p instead, deactivating the field but
leaving its previous contents unchanged.

msgFieldKeyboardActivate activates a field and prepares it to accept keyboard
input. This message is intended to be sent by client programs, and is useful mainly
for navigation between fields with the keyboard (for example, when the user
presses the z key).

·Inpul Processing

Me$$G~e

msgFieldModified

msgFieldFormat

msgFieldClear

msgFieldReadOnly

self

void

NULL

self

Descriptl<>ll

Self-sent when a a field is modified.

Self-sent to perform formatting.

Clears the value of the field.

Self-sent when an attempt is made to modify a
read-only field.

Whenever the contents of a field are modified, it sends itself msgFieldModified
to process the new value. If the FIELD _STYLE flag clientN otifyModified is set,
the same message is also sent to the field's client, allowing it to take any actions
that may be required to respond to the change. msgFieldModified also sets the
field's validatePending flag, triggering an input validation sequence. The flag
will be cleared after successful validation.

When the user enters or edits text in a pop-up insertion pad, msgFieldModified
is not sent to the client until the user dismisses the pad and confirms its edited
contents. When text is entered directly into an in-line or overwrite field, this
message may potentially be sent each time the handwriting translator recognizes
a character. However, the message is not sent if the field's dirty flag (part of the
CONTROL_STYLE structure inherited from clsControl) is set. That is, it is sent
only when the field's contents are modified for the first time from a known,
clean state. The standard method for msgFieldModified sets the dirty flag to
suppress the message at the next modification; it is the client's responsibility to
re-enable the message by clearing this flag when appropriate. The client can
clear the dirty flag immediately if it wishes to be notified each time a new
character is recognized (for example, to format the character on the screen

CHAPTER 42 I FIELDS 483

as soon it is received). Alternatively, the client can choose to leave the flag set,
deferring its input processing until some later time (such as when the field is
deactivated) .

After successfully validating any input, the field sends itself msgFieldFormat
to format its new contents for display on the screen. Subclasses of clsField can
redefine this message to perform any special formatting they may require.
msgFieldClear clears the field's contents, leaving it empty. (This message also
has another purpose in connection with delayed pen input; see belowfor details.)

The enable flag in a field's CONTROL_STYLE structure determines whether
the field is able to respond to user input. If this flag is not set, the field is
considered read-only: any attempt to enter input data into such a field is an
error. If the FIELD_STYLE flag dientNotifyReadOnly is also set, the field will
send msgFieldReadOnly to its client, allowing the client to take corrective
action such as sounding a beep or displaying an error message.

". Delayed Input

Delayed Input

42.8

Tobie 42 .. 6
Delayed Input Messages

Message

msgFieldGetDelayScribble

msgF ieldSetDelayScribble

msgF ieldTranslateDelayed

Takes

P_OBJECT

P_OBJECT

NULL

Desuiption

Returns the delayed scribble for delayed fields.

Puts the field in delayed mode with the given scribble.

Translates a field with delayed captured strokes.

By setting the delayed flag in FIELD_STYLE, you can specify that the user's pen
input in a field is to be saved for later processing, rather than translated
immediately on entry. In this case, incoming pen strokes are simply buffered as
they are received, with no attempt at handwriting translation. You must then
signal explicitly when to translate the accumulated input by sending
msgFieldTranslateDelayed. (For example, you might display an OK button on
the screen and send this message when the user "taps the button.)

If necessary, you can manipulate a field's pending pen input explicitly.
msgFieldGetDelayScribble passes back a pointer to the accumulated scribble
awaiting translation, and msgFieldSetDelayScribble takes a pointer to a new
scribble and substitutes it for the old one. In addition, msgFieldClear, already
mentioned earlier, serves a two-fold purpose for delayed fields. If the field
currently contains a value, msgFieldClear simply clears it to empty, as before. If
the field is already empty, this message clears its pending pen input instead. (You
might use this message, for example, to implement a Clear button for canceling all
previous pen input in the field and starting over.)

484 PEN POINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

Input Validation 42.9

Table 42-7

Input Validation Messages
Mess~~e

msgFieldValidate

msgFieldPreValidate

msgFieldValidateEdit

msgFieldPost Validate

msgFieldNotifyInvalid

P _FIELD_NOTIFY

self

P _FIELD_NOTIFY

Performs the validation protocol for a field.

Allows clients to pre-process the value of a field
before validation occurs. Sent to client if
field.style.clientPreValidate is set before validation.
Sent to the control.client if clientPreValidate is set
before validation.

Self-sent to perform validation on the field.

Self-sent to perform post-validation processing.

Sent to notify a client that a·field was invalid.

When a field receives a new value, you can send it msgFieldValidate to verify the
validity of the new value. For example, a field representing a day of the month
might want to verify that its value is an integer between 1 and 31, or a field

. containing a two-letter state abbreviation might check it against a list of known
abbreviations.

Input validation occurs automatically whenever a field loses the input focus after
its value has changed. You can also force validation by explicitly sending
msgFieldValidate at other appropriate times, such as the following:

• When the user writes directly into an in-line or overwrite field.

• When a field's insertion pad is accepted and dismissed.

• When a field is given a new value directly with msgLabelSetString.

The basic validation message msgFieldValidate, in turn, triggers a sequence of
subsidiary messages that perform the actual validation processing. Each stage of
the validation sequence is controlled by a flag bit in FIELD_STYLE, and can be
disabled by clearing the corresponding flag.

If the clientPre Validate flag is set, validation begins by sending msgFieldPre Validate
to the field's client. This allows the client to do any needed initialization to prepare for
validation processing.

Next, the field performs the actual validation by sending msgFieldValidateEdit. If the
client Validate flag is set, this message is directed to the field's client; otherwise it is sent
to the field itself. The latter option is particularly useful for subclassing. For example, a
field containing a two-letter state abbreviation might be implemented as a subclass of
clsField, redefining the method for msgFieldValidateEdit to check the value against a
list of known abbreviations. You would then want the validation message sent to the
field itself, to be intercepted by the newly sub classed method. If, on the other hand,
you wanted to verify a postal code field by comparing it for validity with the
corresponding state field, a subclass wouldn't work because one field's validation
method couldn't access the contents of the other field. In this case, you would set the

CHAPTER 42 I FIELDS 485

clientValidate flag to send the validation message to the client, and perform the
validation at the application level instead.

msgFieldValidateEdit takes an argument of the form:

typedef struct {
MESSAGE failureMessage;
OBJECT field;

} FIELD_NOTIFY, FAR * P_FIELD_NOTIFYi

User Interface

where field is the DID of the field requesting validation; the input value to be

validated can be obtained from the field with msgLabelGetString. If the 1 8:::::~~
validation is successful (that is, if the input value is valid), msgFieldValidateEdit =
returns stsOK; otherwise it returns an error status and passes back a failure
message in failureMessage.

Assuming validation was successful (and provided that the field's clientPostValidate
flag is set), the client is next notified via msgFieldPostValidate to perform any final
housekeeping it may require to complete the validation process. Then the field clears
its validate Pending flag and sends itself msgFieldFormat to format the new value for
display on the screen.

If the clientNotifylnvalid bit is set, the client will be notified of any unsuccessful
validation with msgFieldNotifylnvalid. This message takes an argument of type
FIELD_NOTIFY, whose failureMessage describes the reason for the failure. The
client can then respond in whatever way is appropriate, such as by displaying an
error message on the screen.

Layout 42$10

You can set the width of a field by specifying its label width. For example, in
FIELD_NEW, you can set .label.cols to 3 and .label.style.numCols to
lsN umAbsolute. This will set the label wide enough for the largest characters in
the font-the em-width of the font. If the field is, for example, only for numerals,
the width is often more than is really necessary.

If the field has a pop-up input pad, the user can resize the pop-up as he or she
would any other floating window. By setting .field.maxLen, you can restrict the
number of characters the user can enter.

User Interface
Even if a field does not allow direct handwritten entry, the user can still make
common editing gestures on it. See Chapter 7, Editing and Formatting Text, of
the Using PenPoint manual for information on the user interface of fields.

42.11

486 PENPOINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

Data-Specific Fields
clsDateField, clslntegerField, clsFixedField, and clsTextField are descendants of
clsField tailored to the handwritten entry of dates, integers, fixed-format numbers,
and text.

As well as setting and getting the actual text in these fields using
msgLabelSetString and msgLabelGetString, you can also set and retrieve the
values of these fields in a canonical format using specific messages:

msgDateFieldSetValue and msgDateFieldGetValue take P _TIME_DESC.

msgControlSetValue and msgControlGetValue take P _U32, passes value in
YYYYMMDD format.

msgDateFieldSetValue and msgDatFieldGetValue take P _TIME_DESC.

For clsFixedField:

msgControlSetValue and msgControlGetValue take P _U32, passes value in
hundredths format.

Chapter 43 / Notes

Notes are windows that appear, present information to the user, and encourage the
user to make some response. In other user interfaces, similar functionality is
provided by dialog boxes and alerts.

Standardized Messages
There are many standard messages to present to the user, such as "Low memory,"
"Disk full," and so on. You can put up standardized notifications, warnings, and
requests to the user using a procedural standard message interface. Standard
messages look exactly like notes, but use a procedural interface that isolates you
from the text of the message and its presentation. Notes, on the other hand, are
proper objects, controlled via a message interface. The standard message interface
is documented later in this chapter.

'Kinds of Notes
There are two broad kinds of notes: system and application. System-modal notes
consume all input and prevent the user from continuing until he or she has
dismissed the note. Application-modal notes only consume input to their
application and so don't lock up the whole user interface.

Tk Demo: Notes:

Opt ions: Demo

System Note.. No
Buttons IShowl

App Note, Two
Buttons: /showl

'Ue'Note, No Title or
Buttons /showl

488 PEN POINT ARCHITECTURAL REFERENCE

Part 4 I UI Toolkit

clsNote inherits from clsFrame. A note has an optional title, an optional
command bar, and contents. To provide a lot of flexibility, you specify the
contents as an array of toolkit table entries. You can also tell clsNote to get the
contents of the note from a resource file.

The input-locking functionality of system-modal notes is provided in part by an
instance of clsModalFilter, which is described in Part 5: Input and Handwriting
Translation.

Notes aren't restricted to applications. They are a reasonable way for any piece of
code, such as a DLL, to inform the user and interact with the user. For example,
the volume support code in the PenPoint file system prompts the user to insert
another floppy disk using a 'note.

clsNote Messages
Table 43-1 summarizes the messages defined by clsNote.

Creates a note.

43 .. 3

msgNew

msgNewDefaults

P_NOTE_NEW

P_NOTE_NEW Initializes the NOTE_NEW structure to default
values.

msgNoteGetMetries

msgNoteSetMetries

msgNoteShow

msgNoteCancel

P _NOTE_METRICS

P _NOTE_METRICS

P_MESSAGE

P_MESSAGE

Get the metries ofa note.

Set the metries of a note.

Displays a note.

Informs a note that it should take itself down.

msgNoteDone MESSAGE Sent to clients when a note is dismissed.

Creating a Note
You send msgN ew to clsNote to create a new note. This takes a pointer to a
NOTE_NEW structure for its message arguments. The NOTE_NEW structure
includes the following values:

metrics a NOTE_METRICS structure specifying the metrics of the note.

pTitle an optional string for the title. The title will be preceded with the
words "Note from" if metrics.flags includes nfU nformattedTitle.
Otherwise it will appear exactly as specified.

pContentsEntries an array ofTK_TABLE_ENTRYs specifying the content of
the note.

pCmdBarEntries an optional array of TK_T ABLE_ENTRYs specifying the
command bar of the note.

43.4

CHAPTER 43 I NOTES 489

clsNote creates labels from the toolkit table entries in note.pContentEntries,
unless you specify some other class in the class field of the TK_TABLE_ENTRYs.

If note.pCmdBarEntries is not objNull, clsNote creates a command bar from it.
You should only specify a string and a message for each button in the command
bar.

NOTE_METRICS includes:

flags various flags. The flags are described in the following section.

autoDismissMsg the message the note returns or sends if and when it is
dismissed.

modalFilter the filter the note uses.

timeout the timeout, in milliseconds, before the note auto-dismisses.

client the client of the note.

Usually, you set the filter to objNull and clsNote creates the right modal filter,
depending on the type of the note.

Flags

metrics.flags can contain any combination of the following flags (the descriptions
summarize behavior when the flags are set):

• nfSystemModal the note is system-modal.

• nfAutoDestroy the note is automatically destroyed after it is disrilissed.

• nfSystemTitle use system tide, ignoring pTitle.

• nfAppTitle use application name, ignoring pTitle.

• nfUnformattedTitle use pTitle as specified, without prep ending the
words "Note from."

• nffimeout dismiss on timeout as well as input.

• nfNoWordWrap don't word-wrap content labels.

• nfResContent pContentEntries is specified as a resource ID (a
P _NOTE_RES_ID structure).

• nfNoBeep disable preferencescontrolled beeping.

• nffixplicitCancel note will ignore cmdBar buttons.

The default flag setting for a system modal note is nIDefaultSysFlags, a
combination of nfSystemModal, nfAutoDestroy, and nfSystem Title. The default
flags setting for an application-modal note is nIDefaultAppFlags, a synonym for
nfAppTitle. nIDefaultFlags is a synonym for nIDefaultSysFlags.

Contents from Resource Files

If nfResContent is set, then pContentsEntries should not be an array of
TK_TABLE_ENTRYs. Instead, it should be a pointer to a NOTE_RES_ID structure.

The intent is to store strings, separate from the note and its toolkit table, as string
tables in resource files. This facility is used by the standard message procedural

Creating a Note

490 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

interface for displaying errors to the user. The standard message interface is
described later in this chapter.

System Modal vs. Application Modal
The behavior of a note is profoundly affected by whether it is system-modal or
application-modal. A system-modal note filters all input, preventing the user from
activating any other part of the user interface until it is dismissed.

An application-modal note filters all input for its process. It allows input
processing in other applications to continue. Hence the user can do other things
while the note is up, and these other operations may affect the application.

43.5

For example, if you display an application-modal "Do you want to abandon changes?"
note, the user can still access the Notebook tabs and tap them to turn to another page,
and your application will still receive PenPoint Application Framework messages, even
though it is dead to input. If you use application-modal notes, you'll probably have to
remember in your application's state that it has a note up so you know what parts of the
user interface to disable. Note that embedded documents are separate processes and
will still be live, although embedded components are in the same process.

If the user doesn't have to respond to a note and can do other things, it's probably
better to use an option sheet instead of a note.

The nfSystemModal flag you specify when creating a note is passed on by clsNote
to the modal filter it creates. If the note has no buttons, then clsNote sets the
mfAutoDismiss flag in the modal filter. If you specify a modal filter to use,
clsNote leaves its flags up to you.

Using a Note
Having created a note, you display it using msgNoteShow. This displays the note
on the screen.

msgNoteShow uses msgWinInsert, not msgAppAddFloatingWin, to display the
note-the note might not be displayed by an application. If the note is
application-modal, you probably should not permit the user to turn the page
while the note is displayed.

If nfSystemModal is on, then sending this message will block until the note is
dismissed. At that time, msgNoteShow will set pArgs to point to the message sent
by the button that was hit (or autoDismissMsg if the win was dismissed by its
modal filter). Be aware that the entire input system, and therefore the window
system, will be blocked while msgNoteShow is waiting for completion ·with
nfSystemModal on.

Filter

If you supplied a modal filter in metrics.modalFilter, clsN ote uses it to filter
input. Otherwise, it creates an instance of clsModalFilter.

43.6

43.6.1

CHAPTER 43 I NOTES 491

The filter that clsNote creates doesnot restrict input to its subtree, although that
is the perceived effect. It allows input to any children of the root that are menus or
insertion pads, on the assumption that these are part of the note. This lets you put
pop-up choices and handwriting fields in a note.

Notification

Notification 43.1

What Comes Back 43.1.1

If the note is system-modal, then msgNoteShow does not return until the note is I ~=~~
dismissed. When msgNoteShow does return, clsNote passes back (not by sending =
another message) a pointer to a value which indicates what happened. clsNote
never uses the client in the note's metrics.

If the note is application-modal, then msgNoteShow returns immediately. Your
application and the rest of PenPoint continue to run while the note is displayed.
When the note is dismissed, the note's client later receives msgNoteDone (as a
separate message). The message argument of msgNoteDone is a pointer to a value
that indicates what happened.

For convenience, you usually use MESSAGE values to indicate the result of
displaying the note.

Note Dismissal

A note may be dismissed programmatically or by the user. The message you get
back indicates what happened.

If the note has a command bar, the user can only dismiss it by tapping one of the
buttons. The message that comes back is the button message of the button that
the user activated.

If the note does not have a command bar, the user can dismiss the note by tapping
anywhere on it. The message that comes back is the message you specified in
note.metrics.autoDismissMessage.

If nffimeout is set in note. metrics. flags , then clsNote will dismiss the note after
the timeout in note.metrics. timeout expires. Again, the message that comes back
is the message you specified in note.metrics.autoDismissMessage. This means
that you can't tell the difference between the user tapping a note without a
command bar and it getting timed-out by the system.

If clsNote created its filter, it destroys it when the note is dismissed.

~" More Detailed Button Notification

You should not set the client of the buttons in the command bar or you will get a
double message from the button. First the note gets msgButtonDone and sends its
client msgNoteDone, then the button's own notification sequence will begin.

Similarly, don't bother setting data for the buttons in the command bar.
msgNoteDone only passes back the button's message, not its data.

43.7.2

492 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Painting
clsNote alters the word-wrap and shrink-wrap styles of any label items in its
contents toolkit table to get a pleasing appearance depending on whether the note
has a title and command bar or not. You can force the note not to word-wrap by
setting the flags.nfNoWordWrap flag in the note's metrics.

Layout
A note lays itself out at msgNew time, so that it appears on-screen more quickly
when it is shown.

If you supply an origin at new time in win. hounds. origin, clsNote will put the
note at that location. Otherwise, it centers the note on the screen. If you turn off
window shrink-wrap for the note, it will use the size you supply in
win.hounds.size. Otherwise, the note sizes to fit its contents.

Destruction
If the nfAutoDestroy flag in the note's metrics is set, when the note is dismissed,
clsNote will destroy it. Otherwise, the note still exists.

When the note is destroyed, it removes its modal filter from the filter list, if
n~cessary, and destroys it, if necessary.

If you want to take down a note yourself after creating it, you can use
msgNoteCancel.

If you supplied your own modal filter, you must destroy it yourself.

Standard Message Interface
The VI Toolkit provides a standard message interface for displaying standard
messages to the user. This uses the same VI components as a note, but is a purely
procedural interface. You specify a STATUS or TAG to identify a resource
containing the message text, and the procedure creates an instance of clsNote with
the text and optional command buttons.

There are five kinds of standard messages (associated procedure names are shown
in parentheses):

• Dialogs (StdMsgO) system and application dialog boxes, including
command buttons for interaction.

• Progress notes (StdProgressUpO) notes informing the user that a long
operation is taking place. There is currently no support for cancelling a
progress note, so there are no command buttons in the note.

• Application errors (StdErrorO) notes informing the user that an
application error has occurred.

• System errors (StdSystemErrorO) notes informing the user that a PenPoint
error has occurred.

43.8

43.9

43.11

CHAPTER 43 I NOTES 493
Standard Message Interface

• Unknown errors (StdUnknownErrorO) notes informing the user that an
error has occurred which your application cannot identif)r.

The standard message procedure for each of these types of standard messages is
discussed in its own section below. Following these discussions is an explanation of
how you can customize the text of each message using the format codes defined in
CMPSTEXT.H and specify command buttons for some notes using button
definitions.

System and Application Dialogs 43.11.1

A dialog is a mechanism for allowing the user to choose between several courses of 5tdM5gRe50 behaves exactly

action. To create a dialog, execute the StdMsgO procedure. Like most of the like ~tdM5g0, but I~ts you
. specify a resource file other

standard message procedures, StdMsgO has a vanable number of arguments. The than the process resource file

first argument is a TAG identifying a dialog message string in the process resource to search for the message text.

file. The remaining arguments, if any, are parameters interpreted for formatted
text. Format codes are described in more detail below.

By default, StdMsgO creates a note whose message is the text specified in the
resource, with a single OK button. When the user dismisses the dialog by tapping
the OK button, StdMsgO returns o. If the text of the message string defines one
or more buttons, then those buttons appear instead of the default OK button, and
StdMsgO returns the button number of the button the user taps to dismiss the
dialog. Button definitions are described in more detail below.

StdMsgO returns a negative error status if it had a problem bringing up the note.
If StdMsgO cannot find a resource matching the specified TAG, it returns
stsResResourceNotFound.

Progress Notes

A progress note is a mechanism for informing the user that a long procedure is
taking place. To create a progress note, execute the StdProgressUpO procedure.
Like most of the standard message procedures, StdMsgO has a variable number of
arguments. The first argument is a TAG identifying a string resource in the process
resource file. The second argument is a P _SP _TOKEN, a pointer to an SP _TOKEN

that StdProgressUpO will fill in. The remaining arguments, if any, are parameters
interpreted for formatted text. Format codes are described in more detail below.

StdProgressUpO creates a note with the text specified in the resource as its
message, and no command buttons. If the text of the message string defines one or
more buttons, the button definitions are ignored. Button definitions are described
in more detail below. StdProgressUpO also assigns a token to the SP _TOKEN

pointed to by its second argument. This token is used later to take the progress
note down, so do not alter it in any way.

StdProgressUpO returns a negative error status if it had a problem bringing up the
note. If StdProgressUpO cannot find a resource matching the specified TAG, it
returns stsResResourceNotFound.

43.11.2

Currently, there is no way for the
user to dismiss or "cancel" a
progress note.

494 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

When the procedure that the progress note describes is complete, execute
StdProgressDownO. StdProgressDown has only one argument, the P _SP _TOKEN

filled in when you executed StdProgressUpO. It uses this token to identify and
take down the correct progress note, so don't alter the token.

Application Errors

An application error note is a mechanism for informing the user that an error has
occurred within the application. To create an application error note, execute the
StdErrorO procedure. Like most of the standard message procedures, StdErrorO
has a variable number of arguments. The first argument is a STATUS identifying an
error message string in the process resource file. The remaining arguments, if any,
are parameters interpreted for formatted text. Format codes are described in more
detail below.

By default, StdErrorO creates a note whose message is the text specified in the
resource, with a single OK button. When the user dismisses the dialog by tapping
the OK button, StdErrorO returns o. If the text of the message string defines one
or more buttons, then those buttons appear instead of the default OK button, and
StdErrorO returns the button number of the button the user taps to dismiss the
dialog. Button definitions are described in "Message String Format Codes."

StdErrorO returns a negative error status if it had a problem bringing up the note.
If StdErrorO cannot find a resource matching the specified STATUS, it returns
stsResResourceNotFound.

System Errors

A system error note is a mechanism for informing the user that one of the
standard PenPoint errors has occurred. To create an system error note, execute the
StdSystemErrorO procedure. Like most of the standard message procedures,
StdSystemErrorO has a variable number of arguments. The first argument is a
STATUS identifying an error message string in the system resource file
(PENPOINT.RES). The remaining arguments, if any, are parameters interpreted for
formatted text. Format codes are described in "Message String Format Codes."

By default, StdSystemErrorO creates a note whose message is the text specified in
the resource, with a single OK button. When the user dismisses the dialog by
tapping the OK button, StdSystemErrorO returns o. If the text of the message
string defines one or more buttons, then those buttons appear instead of the
default OK button, and StdSystemErrorO returns the button number of the
button the user taps to dismiss the dialog. Button definitions are described in
"Specifying Command Buttons."

StdSystemErrorO returns a negative error status if it had a problem bringing
up the note. If StdSystemErrorO cannot find a resource matching the specified
STATUS, it returns stsResResourceNotFound.

5tdErrorRe50 behaves exactly
like 5tdErrorO, but lets you
specfty a resource file other than
tht'process resource file to
search for the message text.

43.1 L4

CHAPTER 43 I NOTES 495
Standard Message Interface

",. Unknown Errors'

An unknown error note is a mechanism for informing the user that your appli
cation has encountered an error it does not know how to handle. To create an
unknown error note, execute the StdUnknownErrorO procedure. Unlike most of
the standard messages, StdUnknownErrorO has just one argument, the SfATUS of
the error encountered.

StdUnknownErrorO creates a note whose message is the text specified in the
resource, with a single OK button. When the user dismisses the dialog by tapping
the OK button, StdUnknownErrorO returns o. If the text of the message string
defines one or more buttons, the button definitions are ignored. Any format code
included in the message string is replaced with "???". Button definitions and
format codes are described in "Specifying Commands Buttons" and "Message
String Format Codes."

If StdUnknownErrorO cannot find a resource matching the specified SfATUS, it
creates a standard "Error not found" message.

FormaHed Message Text

You specify the text of standard messages in resource files. For dialogs and progress
notes, you specify the TAG associated with the resource for the message text. For
error messages, you specify the SfATUS identifying the resource for the message
text. The message string resources may specify the text of one or more command
buttons to appear in the note. In addition, the text of the message string may
contain format codes, as specified in CMPSTEXT.H.

~ Specifying Command BuHons

Message strings may contain optional button definitions. A button definition is a
series of characters enclosed in square brackets ([]) before the text of the message.
The text between the square brackets appears in a command button on the
displayed note. You may define any number of buttons, but all buttons must be
defined at the beginning of the string, before the text of the message. Multiple
button definitions appear in the same left-to-right order on the displayed note as
they do in the message string. If you do not define any buttons, the standard
message procedures will display a single button with the text OK.

Button numbers increase from left to right, starting with 0 for the left-most
button. StdMsgO, StdErrorO, and StdSystemErrorO return the number of the
button pressed to dismiss the note. StdUnknownErrorO and StdProgressUpO
ignore button definitions. StdUnknownErrorO always displays a single OK
button. StdProgressUpO does not display any command buttons.

Message String Format Codes

Following any button definitions, the text of a message string resource may
contain any combination of literal text and the format codes defined in
CMPSTEXT.H. A format code is a caret (/\), followed by one or more digits,
followed by a single character. The digits identifies one of the procedure

43.11.5

43.11.6

496 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

arguments following the format string (recall that the standard message procedures
have a variable number of arguments), and the single character specifies how to
interpret the argument. '

A typical example of a format code is "2s, which indicates that the second
argument (identified by the 2) should be interpreted as a string (8) and the format
code replaced with the result. As a furthe~ example, suppose a TAG called
tagMyAppDialogl identified the string "Could not find a "Is called "2s." and
you executed the following procedure:

buttonHit = StdMsg(tagMyAppDialogl, "document", "Policy");

This would create a dialog box displaying the message, "Could not find a
document called Policy." Since the resource string does not define any buttons
(see above), StdMsgO would create a single OK button and return its button
number, 0, when the user tapped it to dismiss the note.

To include a literal caret (") in the format string, use two consecutive carets ("").
Otherwise, format code types include the following:

s the argument is a string.

r the argument is the resource ID of a string resource.

I the argument is the group number and indexed list resource ID for a
string list.

d the argument is a V32 which should be printed as a decimal number.

x the argument is a V32 which should be printed as a hexadecimal number.

{ the argument is a number which selects between a singular and a plural
term.

The left brace ({) character indicates that a singular and a plural term are to follow,
separated with a vertical bar (I) and terminated with a right brace (}), as in
"3{singularlplural}. If the specified argument is 1, the format code is replaced
with the singular term; otherwise, it is replaced with the plural term.

For example, suppose the string resource tagged with tagMyAppDialog1 is "There
"1 {is I are} "ld "1 {slotlslots} remaining." and you executed the following
procedure:

buttonHit = StdMsg(tagMyAppDialogl, 1);

The displayed note would read: "There is 1 slot remaining." On the other hand, if
the second argument were 2 instead of 1, the displayed note would read: "There
are 2 slots remaining."

Chapter 44 / Frames

Nearly every application in PenPoint has a frame. By default, the PenPoint
Application Framework automatically creates and files a frame for an application.
Even the simplest sample application (Empty Application, described in the
Application Writing Guide) has a fancy· frame.

A frame maintains a host of child windows. The most important one is the client
window, which you supply. This is where the application or component displays
its user interface. This is surrounded by several decoration windows that give
frames their familiar appearance. The decoration windows may include any or all
of the following components:

• Close box (the triangular corner at the left of the title bar).

• Title bar at the top.

• Page number.

• Menu bar.

• Tab bar.

• Cork margin.

• Command bar.

For document frames, some of these are controllable by the user. The user can
turn some of these on and off, either by setting options on the Options Controls ...
option sheet or by making gestures in the frame title bar. Other decorations are
under the control of the PenPoint Application Framework. For example, pages in
the regular Notebook don't have close corners if the system Preference for zooming
documents is turned off, and the PenPoint Application Framework decides which
documents have page numbers.

There are other components of a frame which it picks up from its ancestors.
Frames can have shadows from clsBorder (and clsShadow, described below), and
resize handles from clsBorder.

498 PENPOINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

Note that scrollbars aren't part of the frame. If you want scroll bars, you must put
your window in a custom layout with some scrollbars, or use clsScrollWin.

es

CHAPTER 44 I FRAMES 499
Using clsFrame Messages

,... Using clsFrame Messages 44.1

Table 44-1 summarizes the messages defined by dsFrame. The following sections
provide a more detailed discussion.

msgNew

msgN ewDefaults

msgF rameGetMetrics

msgF rameSetMetrics

msgF rameGetStyle

msgF rameSetStyle

msgF rameGetClient Win

msgF rameSetClient Win

msgF rameGetMenuBar

msgF rameSetMenuBar

msgF rameDestroyMenuBar

msgF rameSet Title

msgF rameGetClient

msgF rameSetClient

msgF rameGetAlt Visuals

msgF rameSetAl t Visuals

msgF rameGetNormalVisuals

msgF rameSetNormalVisuals

msgF rameSelect

msgF rameShowSelected

msgF rameMoveEnable

msgF rameResizeEnable

msgFrameZoom

msgF ramelsZoomed

msgF rameDelete

msgF rameClose

msgF rameFloat

msgFrameZoomOK

msgF rameSelectO K

msgF rameZoomed

Tokes Descriptions

Table 44-1
clsFrameMessages

Class ME~SSC:lQE~S

P _FRAME_NEW Creates a new frame window, setting pArgs->frame.

P _FRAME_NEW Initializes the FRAME_NEW structure to default values.

Property Manipulation Messages

P _FRAME_METRICS Passes back the metrics.

P _FRAME_METRICS

P _FRAME_STYLE

P_FRAME_STYLE

P_WIN

WIN

P_WIN

WIN

VOID

P_CHAR

P_OBJECT

OBJECT

P _BORDER_STYLE

P _BORDER_STYLE

P _BORDER_STYLE

P _BORDER_STYLE

VOID

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

P_BOOLEAN

pNull

pNull

VOID

P _FRAME_ZOOM

FRAME

P _FRAME_ZOOM

Sets the metrics.

Passes back the current style values.

Sets the style.

Passes back metrics.clientWin.

Sets metrics.clientWin.

Passes back metrics.menuBar.

Sets metrics.menuBar; sets style.menuBar as appropriate.

Sets style.menuBar to false and destroys the menu bar, if any.

Sets the string in the metrics.titleBar.

Passes back metrics.client.

Sets metrics.client.

Passes back the alternate border visuals.

Sets the alternate border visuals.

Passes back the normal border visuals.

Sets the normal border visuals.

Selects the frame.

Makes the frame look selected or not.

Enables or disables UI for moving.

Enables or disables UI for resizing.

Zooms the frame up or down.

Passes back true if the frame is currently zoomed.

Asks the frame's client to delete the frame.

Asks the frame's client to close the frame.

Asks the frame's client to float the frame.

Sent to the client when msgFrameZoom is received.

Sent to the client when msgFrameSelect is received.

Sent to client and observers after frame is zoomed.

500 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Creating a Frame
The FRAME_NEW structure has fields for the UID's of all these child windows. In
addition, it has a FRAME_STYLE structure. This contains bit fields indicating
whether each child window is present. You can plug your own decoration
windows into a frame, but clsFrame assumes that its windows have certain
behavior. For example, it assumes that its title bar is a label.

If you set the style bit for the appearance of a frame component, and do not
supply one to msgNew, clsFrame creates a default component of that type for you.

Usually, clsApp creates a frame for your application in response to
msgAppProvideMain Win, which it self-sends during msgAppInit processing.
Application frames are .explained in more "PenPoint Application Framework
and Frames."

Multiple Windows, Multiple Frames

Frames only support a single client window. If you want to have more than one
window in your application, you have two choices:

• Use a layout window to position your windows. The layout window is the
frame's client window, and its children are your windows.

• Create multiple frames. The PenPoint Application Framework supports a
single application main window, and it is this frame that it puts on-screen,
assigns a page number to, and so forth. However, your application is free to
create other frames outside this frame.

If you use the second approach, you can either insert your extra windows in the
window hierarchy yourself, or you can use msgAppAddFloatingWindow to
manage them. This is the method used by PenPoint to keep track of system
windows such as option sheets and pop-up insertion pads.

Modifying a Frame

If you later turn off the style bit for one of the frame decorations, clsFrame hides
the decoration window. When you turn it on again, clsFrame reinserts the
decoration window. If you want to save memory, you should destroy it. You must
layout the frame again at some point.

You can set and get the frame metrics using msgFrameSetMetrics and
msgFrameGetMetrics, set the frame title, set and get the frame style fields with
msgF rameSetStyle and msgFrameGetStyle, and set the client window with
msgFrameSetClientWin and msgFrameGetClientWin,.

Frame Layout
clsFrame is a descendant of clsCustomLayout. During layout, the frame looks at
its FRAME_STYLE bits and specifies constraints for each of its child windows
present.

44 .. 2

44.3

CHAPTER 44 I FRAMES 501

If wsLayoutResize is set in the message arguments to msgWinLayoutSelf and you
have turned on shrink-wrap, the frame will fit around its components and client
window, leaving the latter as is.

dsFrame aligns the client window so that it is inset from the surrounding
decorations (it uses dBefore and dAfter rather than dSameAs in its custom layout
child alignment specifications). This prevents the client window from overlapping
the borders of some controls.

Notification

A visible border on your client
window may yield double lines
when it is next to other children
'of the frame.

". Notification 44.4

A frame does not know what to do with most messages from controls, so you
should never make it the client for controls in your application; instead, your
application object should be the client for your controls. Frames receive messages,
self-send messages, and notify their clients of messages.

Frames receive messages from their decorations. One way this occurs is through
, simple button notification. The only example of this is the default frame close

corner. dsFrame sets the button message of the close corner to be msgFrameClose
and so it receives this message when the user taps on the close triangle.

Another way a frame responds to user actions in it is through gestures. A frame
receives forwarded gestures from all its child windows. However, the frame accepts
forwarded gestures only from its title bar. It forwards forwarded gestures from·
other child windows to its client. Thus, if you make an xgsCross gesture on the
title bar, the frame receives this and acts on it, but the frame ignores the same
gesture made in other windows, merely passing them on to its client.

Another way a frame responds to user actions in it is through subclass handling of
messages. Frames are borders and turn on resizing and dragging, so the user can
drag and resize the frame using the functionality provided by dsBorder.

Usually the frame doesn't know how to respond to a message, so it forwards the
message onto its client. For example, frames don't know what to do with
msgFrameDelete, so dsFrame sends this message to its client.

Like a control, a frame has a client to which it sends some messages. The
FRAME..::..METRICS structure inclues a client field. If dsApp creates your frame, the
client is your application object, or you can set the frame's Client to some other
object during msgNew or with msgFrameSetClient.

Frame notifications are not the same as control notifications. The frame client get
predefined messages with fixed arguments. Also, if a frame has observers, it sends
them some of the same messages that it sends its client.

Table'44-2 summarizes the frame action messages. Remember that resizing and
dragging a frame and bringing a frame to the front are handled by clsFrame's
ancestor dsBorder. Frames respond to recognized g~stures in their title bars by
sending themselves these frame messages. If dsFrame doesn't recognize a gesture in
the title bar, it forwards the gesture to the frame's client.

502 PEN POINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Table 44~2

F~"'(nne Action Messages

msg~rameDelete Sent to self and forwarded to client in response to delete gestures (xgsCross) in the
title bar.

Sent to frame by its close box. Il1sgF rameClose

msgFrameFloat Sent to self and forwarded to client in response to float gestures (xgs2Tap) in
the title bar.

msgFrameZoom Sent to self and forwarded to client in response to zoom gestures (xgsFlickUp,
xgsFlickDown) in the title bar.

msgFrameSelect Sent to self and forwarded to client in response to selection gestures (xgsPlus) in the
title bar.

triple-tap Upon receiving a triple tap (xgs3Tap), frames currently turn offMaskWrapWidth/Height,
and layout again. This allows windows that the user has resized to resize themselves to

their desired size.

triple-flick-up In the debugging version of the toolkit DLL, frames send msgWinDumpTree to self
when you triple-flick upwards on the title bar. In debugging versions of the windows
DLL, this prints out an informative dump of the window tree.

clsFrame can perform the bring-to-front operation itself because it inherits from
clsBorder. But it has to ask its client to do the other actions. For most, it just
sends the message to the client and the client must implement the action. For
zooming and selecting, clsFrame has special protocols.

Selection

The user can select a frame. When a frame receives a forwarded xgs 1 Plus gesture
from its title bar, it sends itself msgFrameSelect. clsFrame responds to this by
sending msgFrameSelectOK to its client.

When the client receives msgFrameSelectOK, the client should determine if it is
appropriate to acquire the selection, and acquire the selection if possible by
interacting with theSelectionManager. If the client is able to acquire the selection,
it should send its frame msgFrameShowSelected with true as the message
argument. Conversely, if the frame client detects that the frame has lost the
selection, it should send msgFrameShowSelected with false as the message
argument. Usually the frame's client is an application object, and clsApp does this
for you. By default, you cannot select the frame itself.

When a frame receives msgFrameShowSelected it should indicate that it is
selected or not, depending on the message argument. clsFrame does this by
drawing the frame's title bar (if the instance has one) with a double underline.

Zoom

The user can expand frames to fill the screen. This is called zooming. When a
frame receives a forwarded xgsFlickUp or xgsFlickDown gesture from its title bar,
it checks its zoomable style field and the Allow Zooming system preference. If

44.4.2

CHAPTER 44 / FRAMES 503

zooming is allowed, it sends itself msgFrameZoom. clsFrame responds to this by
sending msgFrameZoomOK to its client.

When the client receives msgFrameZoomOK, the client should determine if it is
appropriate zoom or unzoom, and set the window to zoom/unzoom to
accordingly. msgFrameZoomOK takes a FRAME_ZOOM structure. In this the
frame specifies:

frame the frame's UID.

up whether it wants to zoom (up is true) or unzoom (up is false).

The frame client can either veto the operation (by returning stsRequestDenied),
or allow it. If the client allows a zoom operation, it must pass back the window to
which the frame should zoom to (to Win).

If the frame is zooming, then it determines the dimensions of the window to
which it is zooming, then sizes and positions itself so that its border and shadow
are not visible. To do this, it sends itself msgBorderGetOuterOffsets. If the frame
is unzooming, it returns to its previous size. The frame also sets its tab bar window
to be opaque.

Finally, the frame sends msgFrameZoomed to its client and its observers.

Close, Float, Bring-to-Front, Delete

The button message of the close box is msgFrameClose, so that when the user
taps on it, it will tell the frame to close. Other gestures in title bars map to frame
float, close, and delete messages.

clsFrame can't respond to these messages, so it sends them to its client in the hope
that the client can implement them. Naturally, clsApp can and does.

Filing
Frames file their state and all their windows. They file their decoration windows if
they exist and have wsSendFile set in their window style flags. There are some
special tricks for menu bars: clsFrame checks to see if the frame's menu bar files. If
it does not, clsFrame will not file the menu bar object, and will file the menu bar
style flag as off. Because clsFrame inherits from clsWin, it will create a default
menu bar when it restores. clsFrame uses the same trick with command bars and
tab bars.

If the client window has wsSendFile set, clsFrame tells it to file (this behavior also
is inherited from clsWin). If the frame's notification client is the application, then
the frame will restore its client to be the new application UID (using
OSThisApp). Otherwise, you have to specify the client after a restore.

Frame Menus

You send msgFrameSetMenuBar to a frame to change its menu bar, or you can
get its metrics and change the menuBar UID and style flag.

Filing

44.5" 1

504 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

PenPoint Application Framework and
Frames

Application Main Window
The PenPoint Application Framework has a notion of an application's main
window. This is the window that the application framework fills a page with, or
floats, or embeds in another application. Usually, this is a frame; clsApp will create
a frame for your application by default. Your application instance can retrieve its
frame by sending msgApp.GetMetrics to self; in the APP _METRICS structure,
main Win is the UID of the frame.

Creating a Custom Main Window

While processing msgApplnit, clsApp normally creates a frame. It does this by
sending itself msgAppProvideMain Win, to which it responds by telling clsFrame
to create a frame with the standard defaults. If you want to create a different
application main window, you have several choices:

• You can create your own frame when your application receives msgApplnit
(before you ObjectCaIlAncestor), and use msgAppSetMainWin to inform
dsApp about it. When you pass the message to clsApp, it will see that the
application has a main window already and will leave it alone.

• You can also create your frame when your application receives
msgAppProvideMain Win.

• You could create your own kind of window altogether instead of a frame, but
that's a risky maneouver since there are so many frame messages.

• You can change the frame metrics to have a different set of windows after the
frame is created, for example, in msgAppOpen.

If your application's frame is a page in the Notebook, the Notebook's window is an
ancestor of your frame in the window tree. It captures size changes of notebook
pages, and vetoes them. Thus, pages (frames) in the Notebook don't change size
unless the user floats them or drags the Notebook's resize handle.

Standard Application Menus
Standard application menus (SAMs) are Document, Edit, and the other menus
that appear automatically for any instance of clsApp.

Applications should use this menu bar since it promotes visual consistency and
ease of learning and ease of use. You can disable those menu items that do not
apply to your application, and add others.

You can send msgAppCreateMenuBar to an application, and clsApp will pass
back a pointer to a SAM menu bar. If you pass in a pointer to an existing menu,
dsApp appends the supplied menu to the standard application menus.

44.6

44 .. 6.1~ 1

CHAPTER 44 I FRAMES 50S
Subclasses of Frames

clsApp defines unique tags (using MakeTag(clsApp, nnn)) for the submenus and
menu buttons in the standard application menu, such as tagAppMenuPrint and
tagAppMenuSelectAll. These distinguish them from all the other items that could
be in an application's menu bar. For the list of common tags, see \PENPOINT\SDK\

INC\APPTAG.H.

If some of the items in the SAM are never applicable to your application's current
state, you should remove them. If a menu item is sometimes applicable, but is not
currently, you can disable it. See the sections on "Control Enable" in the chapters
on Controls, Toolkit Tables, and Menus, and Menu Buttons. clsApp implements
default enabling behavior for some of the SAM items.

Border Adiustment 44,,6.2.1

The standard application Document menu has lines in it to break it into sections. It
does this by setting top and bottom margins in its menu items (tkBorderEdgeTop and
tkBorderEdgeBottom in clsTkTable). If you delete items, the menu break lines may
overlap or end the menu. Mter removing or adding items to the SAMs, you should
send msg TblLayoutAdjustSections to the menu. This takes a Boolean as its message
argument; if true, the menu will self-send msgWinLayout after adjusting its breaks.

Subclasses of Frames
Option sheets are a special kind of frame. You use them to display the properties,
or attributes, of the selected object. If the selected object has several different sets
of properties (for example, it is a span of characters, and also a paragraph), then
the option sheet has multiple "cards," one for each set of options.

Option sheets are covered in more detail in Chapter 46, Option Sheets.

44.7

Chapter 45 / Frame Decorations

Close Box
clsCloseBox is a descendant of clsMenuButton. It implements the small triangular
area at the top left of frames. When the user taps on the close box, the frame closes.

Creating a Close Box

Usually you let clsFrame create this for you. clsCloseBox has no tailorable
msgNew arguments of its own.

clsFrame sets the close box's message (maintained by clsButton) to
msgFrameClose, so that when the user taps the box, it sends this to its parent.

Notification

Close boxes send button notifications and put up a menu just like a regular menu
button. clsFrame does not supply a menu and sets the button message to '
msgFrameClose.

clsCloseBox determines whether the user tapped in the shaded part of the
triangle: if not, it doesn't send a message. It disables gestures.

Title Bars
clsTitleBar is a simple subclass of button. It has no instance data or metrics.
clsTitleBar cemters its string (the document title) relative to the top edge of the
frame, so that it includes the close box size in its centering calculation. To get this
opportunity, clsTitleBar sets self's horizontal alignment to IsAlignCustom, and
responds to msgLabelAlign.

Creating a Title Bar

Normally, you let the frame create a title bar for you. clsTitleBar sets its border
fields so that when the user taps and holds the pen over the title bar, it goes into
drag mode.

User Interface
If the user has used the Settings notebook to enable, zooming, the user zooms a
frame, drawing an flick up I on its title bar, and unzooms it by drawing a flick
down' on its title bar.

The user deletes a frame by writing the cross-out X gesture on its title bar.

508 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Tab Bars

Creating a Tab Bar
clsTabBa,.r inherits from clsTkTable. You specify the buttons in the tab bar as a set
ofTK_TABLE_ENTRYs. Consequently, the most important field in TAB_BAR_NEW
is tkTable.pEntries.

In TAB_BAR_NEW_ONLY, you specify:

style various style fields.

incrementalLayout how to re-lay out the tab bar when new tabs are added.

You can get and set the style fields alone using msgTabBarGetStyle and
msg TabBarSetStyle.

clsFrame creates an empty tab bar for you if tabBar in the frame style fields is set
and the frame doesn't have a UID for a tab bar.

The tab bar window itself is usually invisible. Only the buttons in the tab bar are
visible.

Adding Items

You send msgTkTableAdd ... messages to add tabs to a tab bar. If you set
incrementalLayout in TAB_BAR_STYLE, then the tab bar will alter its layout to get
the new child window inserted correctly, without causing a full re-layout. The
latter would "crunch" all the children at one end.

Layout
When there are too many child windows in a tab bar for them all to be fully
displayed, clsT abBar crunches the children together, causing them to overlap. The
user can flick on tabs to rearrange the overlapping of tabs.

clsFrame positions a frame's tab bar carefully so that it is outside the frame's
apparent shadow if the frame is not zoomed.

Command Bar
clsCommandBar is another class inheriting from clsTkTable. It creates the
command bars at the bottom of option sheets and other floating frames. It turns
off gestures in its nested buttons, and sets their button feedback style to
bsFeedback3D. clsCommandBar is also used to implement the document cork
margIn.

There are (currently) no fields in COMMAND_BAR_NEW_ONLY that are
interesting for application development. As usual, you specify the buttons in the
command bar as a set ofTK_TABLE_ENTRYs.

You can use clsOption directly to get an option sheet with a close corner and a
command bar with Apply and Apply & Close buttons.

45.4.1

CHAPTER 45 I FRAME DECORATIONS 509

Page Number
The PenPoint Application Framework tells clsFrame to create a page number for
Notebook pages.

If the page is floating ("torn out of the Notebook"), the page number is an
instance of clsPageNum. Page numbers are labels that display a number. The user
can flick sideways on the button to increase or decrease the number.

The PenPoint Application Framework changes the page number by getting the
frame's metrics, and then sending messages to the page number.

If a page is in the Notebook, the user can navigate to the next page. So the
PenPoint Application Framework creates an instance of clsCounter. A counter is a
variation on page number. It has arrows on either side that the user can tap on to
increment or decrement the number. clsCounter inherits from clsTableLayout.

Shadow
The shadow drawn by clsBorder is inside the window's edge, so if the notched
areas are damaged, they may not be painted properly. clsShadow displays a true
shadow if you set the true5hadow style bit. Frames, a subclass of clsShadow, use
this feature to draw a true shadow-a transparent painted effect.

clsFrame inherits from clsShadow. The frame window itself includes the shadow.
It has to do special things to handle its tab bar if it has a shadow.

A shadow is a transparent window and never draws anything. A shadow contains
two children and the children draw. The window being shadowed is any kind of
border window, which draws in the regular fashion. The shadow window positions
it at the top left of itself. The transparent shadow window places a second window
behind the border window, slightly below and to the right, to provide a
drop-shadow effect. The shadow window sets the second window's shadow border
style and shadowGap border style.

clsShadow inherits from clsBorder. clsBorder actually draws the shadow, and
clsShadow just sets some specialized options in BORDER_STYLE to get the right
area drawn.

Creating a Shadow

You create a shadow by sending it msgNew. In SHADOW _NEW _ONLY, you specify:

border Win the window to be shadowed.

style various style fields. The only one is:

trueShadow whether or not to create a separate window for a true
shadow effect.

The window being shadowed must be a border window so that clsShadow can
intercept its setting of its shadow bits and do the right thing.

Shadow

45.6

Page numbers are an eso
teric class used internally
in the Notebook. For more
information, see PAGENUM.H

and COUNiER.H.

45.7

------_• _-------

Chapter 46 / Option Sheets

Much of the PenPoint user interface uses a noun-verb, selection-oriented, property
sheet interaction model. The user selects something, then makes a gesture (usually
a check mark) to see the properties of the selection. clsOption and
clsOptionT able support the standard user interface for displaying the properties of
the selected object.

clsOplion
clsOption inherits from clsFrame; option sheets are a special kind of frame. You
use them to display the properties of the selected object. If the selected object has
several different sets of properties (for example, it is a span of characters, and also a
paragraph), the option sheet has several windows stacked in it like a deck of cards,
each with a menu button in the pop-up choice at the top that allows the user to
go to a different set of options. Each of these windows is called an option card,
although it can be any kind of window.

The frame client window of an option sheet is a scrollwin. This means that
option cards you display in the option sheet can be of any size. clsOption also
uses clsScrollWin's ability to maintain several windows at once while only
displaying one.

Option Sheets

In this screen shot, note that both Apply buttons are gray. The card is not
applicable because it is in an option sheet for Gadgets, but a Widget is selected.
The Apply won't be enabled until the user selects a Gadget. The code to create
the option cards shown in this screen shot is from \PENPOINT\SDK\SAMPLE\

TKDEMO\OPTIONS.C.

46.1

512 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

clsOption Messages
Table 46-1 summarizes the messages defined by dsOption.

msgNew

msgNewDefaults

msgSave

msgRestore

msgOptionGetStyle.

msgOptionSetStyle

msgOptionGetNeedCards

msgOptionSetNeedCards

msgOptionGetCard

msgOptionGet Top Card

msgOptionGetCardAndName

msgOptionEnumCards

msgOptionSetCard

msgOptionAddCard

msgOptionAddLastCard

msgOptionAddFirstCard

msgOptionAddAndInsertCard

msgOptionRemoveCard

msgOptionExtractCard

msgOptionShowCard

msgOptionShow Top Card

msgOptionGetCards

msgOptionApply

msgOptionApplyAndClose

msgOptionRefresh

msgOptionApplicable

P _OPTION_NEW

P_OPTION_NEW

P_OBJ_SAVE

P _0 BJ_RESTORE

P _OPTION_STYLE

P _OPTION_STYLE

P_BOOLEAN

BOOLEAN

P _OPTION_CARD

P _OPTION_CARD

P _OPTION_CARD

P_OPTION_ENUM

P _OPTION_CARD

P _OPTION_CARD

P _OPTION_CARD

P _OPTION_CARD

P _OPTION_CARD

P _OPTION_CARD

P _OPTION_CARD

P_OPTION_CARD

VOID

VOID

nothing

nothing

nothing

nothing

Creates an option or command sheet.

Initializes the OPTION_NEW structure to default values.

Causes an object to file itself in an object file.

Creates and restores an object from an object file.

Passes back the style of the receiver.

Sets the style of the receiver.

Passes back the value of style. need Cards.

Sets style. need Cards.

Passes back some information about a card in the receiver.

Passes back some information about the top card in the
receIver.

Passes back some information about a card in the
receIver.

Enumerates the tags of the cards in the option sheet.

Changes an existing card in the receiver.

Adds a card to the receiver.

Adds a the last card of a group to the receiver.

Adds a the first card of a group to the receiver.

Adds a card to the receiver and in~erts it into the sheet.

Removes a card from an option sheet and destroys
that card.

Extracts a card's window from an option sheet.

Causes the given card to be displayed as the current
card in the receiver option sheet. Will cause
msgOptionRefreshCard to be sent to that card.

Shows the client-defined top card.

Results in msgOptionAddCards to the option sheet's client.

Tells the receiver to initiate the Apply protocol.

Tells an option sheet to run the Apply protocol and
then close itself.

Tells an option sheet to refresh its card settings.

Tells an option sheet to ask the top card if it is applicable.

messoge Tokes

msgOptionDirty nothing

msgOptionClean nothing

msgOption ToggleDirty nothing

msgOptionClose nothing

msgOptionGetCardMenu P_MENU

msgOptionCardMenuDone MENU

msgOptionShowSheet P_OPTION_TAG

msgOptionProvideCardWin P _OPTION_CARD

msgOptionProvideT opCard P _OPTION_CARD

msgOptionProvideCardDirty P _OPTION_CARD

msgOptionApplyCard P _OPTION_CARD

msgOptionRefreshCard P _OPTION_CARD

msgOptionApplicableCard P _OPTION_CARD

msgOptionDirtyCard P _OPTION_CARD

msgOptionCleanCard P _OPTION_CARD

msgOption U pdateCard P _OPTION_CARD

msgOptionRetireCard P _OPTION_CARD

msgOptionClosed OPTION

msgOptionCreateSheet P_OPTION_TAG

msgOptionAddCards OPTION_TAG

CHAPTER 46 I OPTION SHEETS 513
clsOption Messages

Table 46-1 (continued)

Description

Tells an option sheet to ask the top card to dirty
its controls.

Tells an option sheet to ask the top card to clean
its controls.

Tells an option sheet to toggle the dirty state of
the cards.

Tells an option sheet to close itself.

Passes back the card navigation menu.

Indicates the caller is finished with the card menu.

Asks the client of the option sheet to show the option
sheet.

Asks the client of the card to provide the window for
the card.

Asks the client of the option sheet to provide the tag
for the top card.

Asks the client of the card to provide the dirtiness of
the card window.

This is sent to a card client when the card should apply
its settings.

Tells a card client to refresh its settings from the current
selection.

Asks a card whether it is applicable to the current
selection.

Sent to a card client when the card should dirty all its
controls.

Sent to a card client when the card should clean all its
controls.

Sent to a card client every time the card is about to be
shown.

Sent to a card client every time the current shown card
is about to be un-shown.

Sent to an option sheet's frame client when the sheet is
closed.

A message to be sent by convention by clients creating
option sheets.

Supplies the second part of the conventional way of
creating option sheets. Can be self-sent by an appli
cation to fill in a sheet with some cards, and allow
subclasses of the sheet creator to modify subclass
cards or add different ones.

514 PEN POINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

Creating an Option Sheet
You send msgNew to clsOption to create an option sheet. This takes a pointer to
an OPTION_NEW structure. This includes all the fields in FRAME_NEW, together
with OPTION_NEW_ONLY fields. The fields in OPTION_NEW_ONLY include:

style various style fields, described below.

pCmdBarEntries an optional pointer to a set ofTK_TABLE_ENTRYs for the
buttons in the command bar, if you want to override the default set.

Option Sheet Styles
In OPTION_STYLE you specify:

senseSelection whether the option sheet should observe
theSelectionManager.

modality whether the sheet is modal, and if so, whether system- or
application-modal.

cardNav whether to use a tab bar along the side of the option sheet frame
or the standard pop-up choice to navigate from one card to another.

getCards whether cards are static or dynamic. If dynamic, option sheet will
send msgOptionAddCards to client when cards are needed.

needCards whether the current list of cards is invalid.

needTopCard whether the top card is invalid.

Manipulating Cards
clsOption defines messages that support its user interface, including
msgOptionShowCard, msgOptionApply, msgOptionClose, and
msgOptionApplyAndClose.

The API also allows you to add a card to an option sheet, get a card, set a card,
and remove a card. All these messages take a pointer to an OPTION_CARD
structure as their message arguments. In this, you specify:

option when a card receives an OPTION_CARD structure as an argument,
this is the option sheet sending the message.

tag a tag to use for the option card's menu button in the option sheet's
pop-up choice.

win the DID of the option card window.

pName a pointer to the name of the card, which also appears in the menu
or tab bar button.

nameLen maximum length permitted for pName.

client the client of the card that receives apply messages.

clientData arbitrary client data.

46.4

CHAPTER 46 I OPTION SHEETS 515
Manipulating Cards

You add cards to an option sheet using msgOptionAddCard. You specify the UID
of the card window, a tag for its tab, a client for the card, and a name for the
window (and its tab). Usually, option cards are instances of clsOptionTable,
which is a kind of toolkit table that implements the standard two-column
appearance of option cards. clsOptionTable is described below.

You don't have to supply a UID to msgOptionAddCard. If the option sheet is
about to display a card, and the UID of that card is objNull, then clsOption will
send the card's client msgOptionProvideCard.

You can remove a card by sending msgOptionRemoveCard. This searches by tag
for an option card to remove.

To display a particular card, send msgOptionShowCard. Again, this searches by
tag for the card to display, then it retrieves the card's window.

You can set card information with msgOptionSetCard, and get it with
msgOptionGetCardWin.

~ Current Card

The displayed card in the option sheet is the client window of the option sheet's
scrollwin. Thus, you could determine the current card by sending
msgFrameGetClientWin to the option sheet to retrieve its scrollwin, then sending
msgScrollWinGetClientWin to the scrollwin. However, clsOption defines
msgOptionGetTopCard as a more convenient way to get information about the
displayed card.

~ Uniqueness

It's very important that the card tag you specify for a card is unique. You can use
MakeTag specifying your application class or some other well-known class in
order to guarantee uniqueness.

You can only reuse the same window for two option cards if you are sure that they
cannot both be asked to be on-screen at the same time-one window cannot be
inserted at two places!

Layout

When you add a card to an option sheet, it internally converts this to a
msgScrollWinSetClientWin to set the top window in its scroll window.
clsScrollWin checks to see if the window is already one of its children. If not,
clsScrollWin inserts the window in itself and sends msgWinLayout.

Painting
The option sheet displays a pop-up choice in its title bar, with a button for each
option card. The title bar displays the name of the currently displayed card.

46.4.1

516 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

The option sheet displays three buttons in its command bar: Apply, Apply &
Close, and Close. You can override these by supplying your own
TK_TABLE_ENTRY array in pCmdBarEntries.

Notification

Whenever a card is shown (by the user flicking the pop-up choice button, by
tapping on its menu, by a client sending msgOptionShowCard, or by the card
being the visible card), clsOption sends the client of that card the sequence:

msgOptionApplicableCard

msgOptionProvideCard, if needed

msgOptionRefreshCard, if needed

msgOption UpdateCard

msgOptionRefreshCard takes the familiar OPTION_CARD message arguments.
The client should modify the card as necessary to indicate the properties of the
selection. Note that this message is sent each time the card is shown. If win is
objNull, when the option sheet tries to show a card, clsOption sends
msgOptionProvideCard to that card's client.

Usually, the user closes the option sheet by tapping one of the three buttons.
However, you can programmatically drive this by sending msgOptionApply,
msgOptionApplyAndClose, or msgOptionClose.

When clsOption receives msgOptionApply or msgOptionApplyAndClose, it gets
the top option card and sends that card's client msgOptionApplyCard. Several
cards may have the same client,' so the message argument for
msgOptionApplyCard is a OPTION_CARD structure identifying the option card.
The client should figure out the settings of the option card and do whatever it
takes to apply them to the selection.

When clsOption receives msgOptionClose, it sends the frame client of the card
msgOptionClosed. The client should extract or destroy the card.

Destruction

When you destroy an option sheet, clsOption destroys each option card that you
defined.

If you want to preserve a card window after the option sheet is destroyed, you can
either set its tab's window to objNull, or remove the card and its tab with
msgOptionExtractCard.

Performance

Creating an option sheet and its option cards is fairly slow. You can increase
performance by creating option cards and option sheets in advance. When a sheet
comes down, you can choose to destroy the sheet or file it, or maybe only save
certain cards within the sheet. When your process is terminated, you should either
destroy or file any saved sheets or cards.

Option sheets can take a long
time to layout, but can be
restored from files quickly. For
example, you could create a card,
insert it, file it, then destroy it.

46.4.4

46.4.5

CHAPTER 46 / OPTION SHEETS 517
Check Gesture Processing

Another approach is to create option sheets and option cards in process 0 of your
application code, then file them as resources. You can then use
msgResFindResource to read in the option sheet or cards. If the page orientation
and default font haven't changed, the windows will not need to be relaid out.

This is a general technique for improving performance; it is also covered in
Chapter 31, Concepts and Terminology.

One possible trade-off between memory, start-up time, and display time is to
create the option sheet, install each card, but only provide the window for the first t:

~:~Sllt card. Tell the option sheet to layout, then file it with a well-known resource ID. r-

Create and layout the other cards separately, and save them under separate
resource IDs. This way, you can read the option sheet in quickly when needed,
since it doesn't have many child windows.

Option Sheet Protocol 46.5

Option sheets must interact with the selection holder so that the currently
displayed card shows the correct properties for the selection. Also, the option sheet
must notify the correct client if the user chooses to Apply changes in properties.
Moreover, option sheets are (usually) modeless-while an option sheet is displayed
the user may select something else. The option sheet must figure out whether it
still applies to the new selection.

The user can display an option sheet by choosing Options ... from the Edit menu,
or by making a check V gesture. The latter changes the selection and refreshes the
option sheet if it's already displayed.

Check Gesture Processing
In order for your option' sheets to have the correct behavior, you must follow a
complex protocol when using option sheets. To illustrate how this protocol works,
here's a run-through of what happens when the user makes a check gesture in an
application window. In this example, the gesture is received by clsMyView, an
application-specific subclass of clsTextView. The protocol is the same for any
application- or component-level subclass of a built-in window class which attaches
meaning to the check gesture.

1 The instance of clsMyView receives a check gesture (msgGWinGesture with
gesture ID of xgsCheck) and calls its ancestor clsTextView.

2 clsT extView determines whether to change the selection. If it does not, the
processing resumes with step 4, below.

3 clsT extView could go about changing the selection in two ways: either ~y
directly changing the selection, or by self-sending a public message and
changing the selection in response to that message. The latter method would
allow subclasses like clsMyView to get into the game and perhaps do
something different.

46.6

518 PENPOINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

Suppose clsTextView just changes the selection. By default, option sheets
have senseSelection set in their style fields, and hence, observe
theSelectionManager. Thus, any displayed option sheets receive
msgSelChangedOwner when the selection owner changes. Each does step
3a, and processing resumes with step 4.

3a When a displayed option sheet receives msgSelChangedOwner, it
determines whether the state of its Apply and Apply & Close buttons should
be enabled and active (black) or disabled and inactive (gray). It figures out
the new state by:

• Testing whether the new selection owner is in the same process as the
sheet. If it is not, the new button state is graylinactive-option sheets
only apply to their own process.

• If the selection owner is in the same process, then the option sheet
sends msgOptionApplicableCard to the current card. The status value
returned determines the new button state: stsOK means that Applying
that option card makes sense for the current selection; stsFailed means
that it does not.

The card changes its buttons as appropriate. If the selection is in the same
process, and the sheet remains applicable, it self-sends msgOptionDirtyCard.
This indicates to the user that every setting on the card will be applied if the
user chooses Apply.

4 clsTextView now calls its ancestor with the original msgGWinGesture.
Assuming gestureForward is set in the gesture window style fields, clsGWin
uses msgGWinForwardedGesture to pass the check gesture to the parent
window of the text view. Most classes should not need to handle the check
gesture specially, so they should call ancestor. The gesture message eventually
winds up in clsEmbeddedWin.

5 The process stops at clsEmbeddedWin, because it does not call ancestor
when it receives msgGWinForwardedGesture. If it's a check gesture, as in
this case, then clsEmbeddedWin sends the application msgOptionRefresh.

6 Application classes usually don't need to respond to msgOptionRefresh,
because clsApp responds by enumerating all the floating windows that
inherit from clsOption and sending each msgOptionRefresh. At this point,
each displayed option sheet in the same application has been told to refresh.

7 When an option sheet recejves msgOptionRefresh, the sheet checks the state
of its Apply buttons, and will send the current card msgOptionRefreshCard
if the Apply buttons are active (and do nothing if they're inactive).

8 clsEmbeddedWin then gets the current selection owner (the instance of
clsTextView/clsMyView) and sends it msgSelOptions.

Mter all this, the processing unwinds back to clsEmbeddedWin and finally
clsTextView (which called ancestor with msgGWinGesture).

CHAPTER 46 I OPTION SH'EETS 51.
Check Gesture Processing

9 dsMyView receives msgSelOptions and calls ancestor (dsTextView).
dsTextView checks to see if an option sheet of the correct type is already up
(probably by checking a UID in some instance data). If one is, then nothing
more needs to be done. If not, then we go to step 12.

10 dsT extView self-sends msgOptionCreateSheet. It fills in the OPTION_TAG

structure with the tag it wants for the option sheet and objNull for the
option sheet UID. A descendant class like clsMyView could choose to
intercept msgOptionCreateSheet to create its own sheet and plug its UID
into option. The logic in each class that responds to msgOptionCreateSheet
should be: if the option UID in OPTION_TAG is not objNull, then do
nothing assuming some descendant created the sheet, otherwise maybe create
a sheet.

Assuming that dsMyView does not create a custom sheet, othen
msgOptionCreateSheet reaches clsTextView with the UID in option still
objNull. clsTextView creates a sheet by sending msgNew to clsOption.

We now have an option sheet for the selection, but no cards in it.

11 dsT extView self-sends msgOptionAddCards, passing the option sheet tag
and UID. Again, clsMyView could add cards to the sheet. The usual handler
for msgOptionAddCards would first call ancestor, then add/change the cards
in the sheet and return.

When the message reaches dsTextView, it adds its cards for the paragraph
and character options, then dsMyView adds its cards, and so forth.

12 The last step dsT ext View takes in response to msgSelOptions is to display
the new option sheet by sending msgAppAddFloatingWin.

13 The process now unwinds to dsEmbeddedWin (which sent
msgSeIOptions), to dsGWin (which forwarded the gesture with
msgGWinForwardedGesture, to dsTextView (which called ancestor with
the original msgGWinGesture), and finally to dsMyView (which received
the initial check gesture).

When an option sheet comes down, it sends msgOptionClosed to its frame client.
When the client receives this message, it should use msgAppRemoveFloatingWin.
It can then send msgDestroy to the sheet if it does not want to cache the sheet.

".. What the Card Client Does

"".. Applicability to the Selection
The card's client receives msgOptionApplicableCard. It must figure out whether
or not the card is applicable to the selection.

A card client can find out whether it can apply protocol to see whether the
selection holder recognizes its tag. The card client can send msgSelOptionTagOK
to the selection holder, passing it its tag. If the selection holder recognizes the tag,
and judges that it is applicable to the selection, it should return stsOK. This
technique relies on you (as the developer of the option sheet) publishing the tags

46.6.1

46.6.1.1

520 PENPOINT ARCHITECTURAL REFERENCE

Part 4 I UI Toolkit

of your option cards as part of your API. In practice, few option cards will be
applicable to anything other than their own "native" selection type.

Applying

When a card client receives msgOpt~onApplyCard, it should apply all those
settings that are dirty (in the control dirty sense). To find all its settings, it can
either enumerate its child windows or find them by tag, using msgWinFindTag. It
can send each control msgConttolGetDirty, and if the argument passed back is
true, it should apply that setting. The card client must know how to apply the
settings to the selection, since it acknowledged msgOptionApplicableCard.

The card client will respond with one of the following actions:

• Send a message to the sel~cted object to get its current attributes.

• Change some attributes to the new values in dirty settings on the option card.

• Send a message to the object to set the new attributes.

Multiple Card Types per Obiect Type
Since the selection owner responding to msgSelOptions is at complete liberty to
put any cards in the sheet, anything goes. This API does not imply any
correspondence between the type of selection and the number of card types.

Indicating Mixed AHributes
Often, the selection may extend to have mixed attributes. For example, the user
may select several sen~ences in which some characters are bold, some are
underlined, and some are plain. Should the Bold control in the character format
option card be on or off?

The option sheet user interface does not indicate whether objects have
non-homogeneous attributes. Thus, Bold mayor may not be on, depending on
how clsT ext figures out what the character format is. For example, clsTextView
might look only at the first character of the selection.

clsOption does keep track of which controls on the card would be applied, and
gives the user some visual feedback about this. In this example, the Bold control
would not be dirty, indicating to the user that it would not be applied to the
selection. The user would have to touch that control in order to dirty it and make
it apply to the selection. Controls in cards in option sheets should have the
showDirty control style bit set in order for the visual distinction to show up.

When the card in an option sheet changes from inactive to active (its Apply
button becomes active), clsOption sends msgOptionDirtyCard to the current
card's client. If the card's client doesn't respond and the card is a toolkit table,
clsOption sends msgBorderSetDirty to the card window. clsBorder responds to
this by self-sending msgBorderSetDirty.

46.6.1.2

46.6.2

46.6,.3

CHAPTER 46 I OPTION SHEETS 521

",. Nested Components

Applying an option sheet will work across nested components that are in the same
process, so long as every object associated with a sheet is in the process that created
the sheet.

",. Multiple Option Sheets Up at Once

It is up to the components (such as clsT extView) that receive msgSelOptions to
figure out whether to use an existing displayed option sheet or to create a new one.

Dimmed Controls

Card clients can mark their controls as dirty to indicate whether or not they apply
to the current selection.

Selection Interaction

While an option sheet is up, the user may select items in the option sheet. The
option sheet preserves the selection using msgSelPromote and
msgSelSetOwnerPreserve.

Option Tables
You are free to put any kind of window in an option sheet. However, the PenPoint
U1 Guidelines encourage you to use a standard style for the appearance of an
option card. Typically, each of the "cards" in an option sheet is a table of option
settings. These adopt a standard form with a label on the left and the component
to the right, baseline-aligned.

clsOptionTable supports this layout. It inherits from clsTkTable. It organizes
toolkit components on the card as a table of label-item pairs. It sets the default
toolkit table style to be a bold label, and sets the table layout to be two column.

All clsOptionTable does is set up the appropriate table layout defaults in
msgNewDefaults. It has no msgNew arguments of its own. Use clsTkTable
messages to add and remove items in an option table.

Code to create a complex nested option table is in \PENPOINT\SDK\SAMPLE\

TKDEMO\OPTIONS.C and is excerpted in Chapter 32, Toolkit Tables.

Command Sheets
Command sheets are just like option sheets except that they have different buttons
in the command bar at the bottom of the frame. The format of an option sheet is
useful even if you don't need the entire API for Apply, Apply & Close, Close, and
so on. Consequently, there is no separate class for a command sheet.

The Export, Import, and Search and Replace dialogs are examples of command
sheets.

Command Sheets

46.6.4

46.6.5

46.6.6

46.6*7

46.7

46.8

~

522 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

~ Creating a Command Sheet
All you need to do is supply a TK_TABLE_ENTRYarray in option.pCmdBarEntries
which specifies the buttons in the command bar. By default, this is pNull, and
clsOption creates the standard Apply/Apply & Close command bar. clsOption
sets the client for the buttons in the command bar to be the frame's client.

If you don't want to play with all the selection protocols, you can turn off
senseS election in OPTION_STYLE. If the frame doesn't have multiple tabs and
client windows, doesn't need to scroll its client window, and doesn't interact with
the selection, then you're better off getting the same visual appearance by
modifying a standard frame.

46.8.1

Chapter 47 / Icons

dsIcon draws a picture and some text in a label. PenPoint uses icons extensively in
the icon bookshelf below the Notebook, and in the browser windows of the Disk
Viewer and tables of contents.

Icons inherit from dsMenuButton. An icon displays a picture as well as a string. It
can have a pop-up menu associated with it.

Messages
Table 47-1 summarizes the messages defined by clslcon.

msgNew

msgN ewDefaults

msgIcon GetStyle

msgIconSetStyle

msgIconGetPictureSize

msgIco nSetPictureS ize

msgIconGetActualPictureSize

msgIconFreeCache

msgIconGetRects

msgIconProvideBitmap

msgIconCopyPixels

msgIconSampleBias

P_ICON_NEW

P_ICON_NEW

P _ICON_STYLE

P_ICON_STYLE

P_SIZE16

P_SIZE16

P_SIZE16

pNull

P_RECT32

Creates an icon window.

Initializes the ICON_NEW structure to default
values.

Passes back the current style values.

Sets the style values.

Passes back the picture size.

Sets the picture size.

Computes and passes back the actual picture size.

Frees the cached picture, if any.

Passes back the bounds for the picture in pArgs[O]
and the label in pArgs [1] .

Sent to control client when icon needs the picture
bitmap.

Causes the icon to copy pixels from pArgs->srcWin
to a pixelmap.

Computes the sample-biased size for a given picture
SIze.

524 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Creating
The icon's string is maintained by clsLabel. You specify kin the
LABEL_NEW _ONLY arguments. You don't specify the picture at creation; instead,
you specify the picture style.

In ICON_NEW_ONLY, you specify:

style the style of the icon.

pictureSize the picture size in device units.

The fields in ICON_STYLE include:

transparent whether the icon background should be transparent.

picture the type of picture in the icon.

freeBitmap whether to send msgDestroy to the bitmap after providing the
icon.

open whether to modify the picture to make the icon look as though the
user has opened the icon by tapping it.

sizeUnits the units in which pictureSize is specified. This can be
bsUnitsDevice or bsUnitsLayout, as defined in BORDER.H.

sample Bias whether to round the icon size to a multiple of the bitmap size.

aspect how to determine the aspect ratio of the picture. Possible values are
isAspectWidthFromHeight (compute width based on sample size and
height), isAspectHeightFromWidth (compute Height based on sample
size and width), and isAspectAsIs (use the sample height and width as is).

The picture field in ICON_NEW _ONLY's style field indicates the style of picture for
the icon. The possible picture styles are:

isPictureBitmap the picture is in a bitmap.

isPictureNone there is no picture.

isPicturePixelmap the picture is a pixelmap.

Bitmap Picture
If the picture style is isPictureBitmap, then clsIcon sends the icon's client
msgIconProvideBitmap when it needs the bitmap for the icon. clsIcon fills in a
ICON_PROVIDE_BITMAP structure for the message arguments, specifying:

icon the DID of the icon requiring a bitmap.

tag the tag of the icon requiring a bitmap.

device the device on which the bitmap will be rendered.

pictureSize the size of the picture.

You should pass back a bitmap optimized for device and for size. In practice, the
two common icon sizes are ten layout units and 21 layout units. The constants
iconSizeSmall and iconSizeNormal define these two sizes. clsIcon uses the
sampled image operator to render it into a cached image, so your image will be
scaled and dithered if your bitmap isn't the right size or depth.

47.2

41,,2.1

CHAPTER 47 I ICONS 525

If free Bitmap is true, clslcon will free the bitmap you pass back. This is useful if
you read the bitmap in from a resource file.

clsBitmap is a useful class for storing sampled images as objects. It and the
sampled image operator are described in Part 3, Windows and Graphics.

Pixel map Picture

If the picture style is isPicturePixelmap, then you can get clslcon to grab its
picture from the pixels of some window. You do this by sending
msglconCopyPixels to the icon. This takes an ICON_COPY_PlXELS structure, in
which you specify:

srcWin the source window to copy pixels from.

srcXY the origin of the area to copy, in LWC of the source window.

dslcon gets the icon's picture from the pixels in srcWin. It pulls in the same
number of pixels as you specified for the icon size.

Now, the pixels in the area of the source window to be copied may not all be
visible. clslcon forces any hidden areas of the source window to repaint, even if in
front of of other windows, in order to get the pixels for its image.

Painting
dslcon uses the bitmap caching facilities of the Windows and Graphics system to
get good performance.

Invalidation

When it is about to paint an icon's picture, clslcon checks to see if it has a cached
picture. If the picture is not cached, it sends msglconProvideBitmap to its client if
the picture style is isPictureBitmap. If clslcon does have a cached image, it
checks the orientation and resolution of the output device. If these have changed,
the cached image is no good any more, so dslcon invalidates it.

You can programmatically invalidate the cached picture by sending
msglconFreeCache.

Notification
Icons can have an associated pop-up menu. The icons below the Notebook do not
have a menu, so they only send their button notification messages, but you can
supply a menu .

. Layout
The various layouts of icons are controlled by clsLa~el's alignment style flags. If
the label alignment is lsAlignCenter, the string appears below the icon. If the
alignment is lsAlignRight or lsAlignLeft, the string appears to the side of the icon.

Layout

47.2.2

Chapter 48 / Trackers and Grab Boxes

Trackers provide transient drawing feedback while the user is dragging the pen,
such as when resizing or moving objects. dsTrack handles some simple rectangular
drawing styles directly, but it sends client notifications so that you can draw any
figure in response to pen movements.

Note that trackers draw, but aren't windows.

To track the pen, trackers grab input.

clsT rack has several style flags specifically for drawing frames. If you drag or resize
a floating document or option sheet, notice how the outline includes the tab bar
and command bar.

Table 48-1 summarizes the messages defined by clsTrack.

msgNew

msgN ewDefaults

msgT rackGetStyle

msgT rackSetStyle

msgT rackGetMetrics

msgT rackSetMetrics

msgT rackS tart

msgTrackDone

msgTrackU pdate

msgT rackProvideMetrics

msgT rackConstrain

msgTrackShow

msgT rackHide

msgInputEvent

P _TRACK_NEW

P _TRACK_NEW

P _TRACK_STYLE

P _TRACK_STYLE

P_TRACK_METRICS

P_TRACK_METRICS

P_XY32

P _TRACK_METRICS

P _TRACK_METRICS

P _TRACK_METRICS

P-,XY32

P_TRACK_METRICS

P_TRACK_METRICS

P _INPUT _EVENT

Creates a tracker.

Initializes the TRACK_NEW structure to default
values.

Passes back current style values.

Sets style values.

Passes back the current metrics.

Sets the metrics.

Starts the tracker.

Sent to metrics.client when the track is done.

Sent to metrics.client when the pen moves.

Sent to a tracker client before tracker is created.

Constrains a point.

Displays the tracker visuals at pArgs->rect.

Removes the tracker visuals at pArgs->rect.

Notification of an input event.

528 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

Drawing
'If you set tsDrawViaMessages, the tracker forwards msg TrackShow and
msgTrackHide to its client. These take TRACK_METRICS as their message
arguments: From these the client can figure out what to draw.

Notification
If you set tsDrawViaMessages, you receive msgTrackUpdate. The tracker passes
you a pointer to a TRACK_METRICS structure that gives you enough information
to paint appropriate feedback.

Between each msg TrackUpdate, you receive msg TrackHide. You must remove the
old tracker visuals. The most common way to do this is to draw dynamically using
XOR or sysDcDrawDynamic.

At pen-up, you receive msg TrackDone.

Destruction
If autoDestroy is set in the tracker's style field, it will destroy itself when it's done
(on pen up).

You can create a tracker on the fly, or keep the object around for reuse. A tracker
maintains a drawing object in order to draw on the screen, which is a large object.

Grab Boxes
Grab boxes are objects that implement the pop-up handles on borders.
clsGrabBox uses clsTrack internally. Border windows use grab boxes to handle
resizing. Grab boxes draw, but aren't windows.

clsBorder watches for pen proximity events and checks the location of the pen to
see if it falls in certain "hot" regions. If so, clsBorder creates a grab box to track
the pen.

It's unlikely that you would ever want to use clsGrabBox directly, but Table 48-2
summarizes the messages and procedures defined by clsGrabBox.

48,,2

48,,3

48,,4

msgNew

msgNewDefaults

msgGrabBoxGetStyle

msgG rabBoxSetStyle

msgGrab BoxGetMetrics

msgGrab BoxSetMetrics

msgGrabBoxShow

GrabBoxIntersectO

GrabBoxLocToRectO

GrabBoxPaintO

msglnputEventO

msgT rackDoneO

Tokes

P _GRAB_BOX_NEW

P _GRAB_BOX_NEW

P _GRAB_BOX_STYLE

P _GRAB_BOX_STYLE

P _GRAB_BOX_METRICS

P _GRAB_BOX_METRICS

P_GRAB_BOX_INFO

P _INPUT_EVENT

P _TRACK_METRICS

CHAPTER 48 / TRACKERS AND GRAB BOXES 529

Grab Boxes

Tobie 48~:2

ME~.ssaCles and Procedures

Creates a grab box object.

Initializes the GRAB_BOX_NEW structure to

default values.

Passes back current style values.

Sets style values.

Passes back current metrics.

Sets metrics.

Puts up or takes down the grab box.

Determines where pRect is in win. Returns a grab
box location, for example, gbLocLRCorner.

Computes the rectangle of the grab box at the
given location.

Paints the grab box at the specified location.

Notification of an input event.

Sent by a tracker when it's done.

Chapter 49 / Progress Bars

clsProgressBar is a descendant of clsControl that implements a progress indicator
in the form of a dynamic bar graph. A progress bar's major axis can be horizontal
or vertical, with or without tick marks. Progress bars can also include numeric or
custom labels indicating the maximum, minimum, and current values represented
by the progress bar. Additionally, clsProgressBar supports flexible layout for the
dimensions and units of the bar itself and its associated labels, if any.

The following topics are covered in this chapter:

• Progress bar concepts.

• Progress bar style and metrics structures.

• How to use clsProgressBar messages.

• Some messages clsProgressBar inherits from ancestor classes.

Progress Bar Concepts
A progress bar is a visual indicator of a value relative to its minimal and maximal
possible values. It represents this information in the form of a bar graph. The
major axis of the progress bar is a line representing a range of possible values,
from zero to an arbitrary maximum value. A gray bar called the filled region
extends from zero to a point on the axis corresponding to the represented value.
That is, if the represented value is one third of the maximum value, then the filled
region is one third the length of the major axis. The minor axis of the progress
bar is a line extending from the zero end of the major axis through the thickness
of the filled region.

You can include decoration including tick marks and labels. Tick marks mark
regular intervals along the major axis of a progress bar. labels are strings
identifying the minimum and maximum values represented. You can specify
numeric labels or you can have the progress bar query its client for custom labels,
arbitrary strings to identify the minimum and maximum values. You can control
the color of the filled region as well as the remainder of the progress bar rectangle,
the unfilled region. Also, you can specify what combination of top, bottom, left,
and right edges of the rectangle the progress bar should draw.

Figure 49-1 shows a progress bar indicating the amount of disk space and
memory available in the system. The major axis represents the range of possible
values, from zero to the total amount of memory installed. The gray filled region
represents the number of megabytes still available in the system. If more memory
is consumed, the filled region will shrink to indicate the reduction in available
memory.

532 PENPOINT ARCHITECTURAL REFERENCE
Part 4 I UI Toolkit

The minimum internal value of a progress bar is zero. It is up to the client of the
progress bar to map actual values to a scale that begins at zero, but the labels may
indicate the actual values represented by that scale. If numeric values are not
sufficient (for example, if you wish to display units as in the figure), you can
instruct the progress bar to ask its client to specify custom labels, arbitrary strings
that the progress bar will display.

Progress Bar Style and Metrics
Like many toolkit classes, progress bars have associated style and metrics
structures that define or modify its behavior and appearance. Each instance
of clsProgressBar maintains its own set of metrics in a PROGRESS_METRICS

structure. The first field in a PROGRESS_METRICS structure is an inline
PROGRESS_STYLE structure called style. This section describes the meaning of
the PROGRESS~STYLE fields, then the remaining PROGRESS_METRICS fields.

The PROGRESS_STYLE Structure
The style field of a PROGRESS_METRICS structure describes the overall visual style
of a progress bar in an inline PROGRESS_STYLE structure. A PROGRESS_STYLE

structure describes only the overall visual style ofa progress bar, not the values and
measurements that make it meaningful.

A PROGRESS_STYLE structure includes the following bit fields:

49,,2

Styles/Style Values

labels
psLabelsNumeric
psLabelsNone
psLabelsCustom

ticks
psTicksSmall
psTicksFull
psTicksNone

direction
psDirectionHorizontal
psDirection Vertical

units
bsUnitsPoints

thickness
psThicknessRelFont
ps ThicknessF ixed

labelRotation
IsRotationNone

labelScale U ni ts
bs U nitsLayout

edge

psEdgeNone
psEdgeMinLat
psEdgeMaxLat
psEdgeMinLong

psEdgeMaxLong
psEdgeAll

labelFontType
IsFontSystem

CHAPTER 49 / PROGRESS BARS 533
Progress Bar Style and Metrics

Functional Description

Table 49-1
PROGRESS_STYLE Styles

Describes what kind of label to use for a progress bar.
Use numberic labels. The default.
Do not display labels.
Query client with msgProgressProvideLabel to determine text of text of labels.

Determines kind of tick marks to paint along the major axis.
Use small tick marks. The default.
Use full-height tick marks.
No tick marks.

Determines the orientation of the major axis, relative to the system.
Horizontal (left-to-right axis). The default.
Vertical (bottom-to-top axis).

Determines the units with which to scale progress bar components other than the labels.
The default. But any of the clsBorder unit specifications can be used. Note that
progress bar labels have a scale value, labelScaleUnits, which is independent of units.

Determines the tick mark thickness style.
Thickness varies with size of system font.
Thickness is fixed.

Determines the angle at which to draw the label text.
The default. But any of the clsLabel rotation specifications are available.

Determines the units with whch to scale progress bar labels.
The default. But any of the clsBorder unit specifications can be used. Note that value
is independent of units, which control the scale of progress bar components other
than the labels.

Determines which edges of the progress bar to draw. Edges are pixels next to the inner
rectangle occupied by the filled and unfilled region regions (the inner rectangle does not
intersect with the edge). Can be default, or any combination of the other flags.

No edges drawn.
Draw edge perpendicular to the major axis at the minimum value.
Draw edge perpendicular to the major axis at the maximum value.
Draw the bottom edge on horizontal progress bars, or the right edge on vertical

progress bars.
Draw the top edge on horizontal progress bars, or the left edge on vertical progress bars.
All edges drawn. The default.

Determines what font to use for displaying the labels.
The default. But any of the clsLabel font specifications can be used.

534 PEN POINT ARCHITECTURAL REFERENCE
Part 4 I 'UI Toolkit

Progress Bar Metrics

In addition to the overall visual style a PROGRESS_STYLE structure describes, a
progress bar is further defined by a number of measurements and values. The
PROGRESS_METRICS structure holds this information. The first field of a
PROGRESS_METRICS structure is an in-line PROGRESS_STYLE structure called
style. Thus, a PROGRESS_METRICS structure contains all of the information in a
PROGRESS_STYLE structure, as well as additional information that defines the
remaining metrics.

A PROGRESS_METRICS structure includes the following fields (data types are in
paren theses):

style (an in-line PROGRESS_STYLE structure) PROGRESS_STYLE is described
above.

numIntervals (S32) how many tick marks to include along the major axis.

ticksPerLabel (S32) how frequently to attach a label to tick marks. For
example, if you set ticksPerLabel to 5, then every fifth tick mark will
have a numeric label.

minNumericLabel (S32) the value of the numeric label to identify the
minimum value. This value is ignored unless style.labels is
psLabelsN umeric.

maxNumericLabel (S32) the value of the numeric label to identify the
maximum value. This value is ignored unless style.labels is
psLabelsN umeric.

thicknessBase (U16) the thickness of the progress bar, perpendicular to the
major axis. If style. thickness is ps ThicknessRelFont, thicknessBase is a
multiplier against the system font size. If style. thickness is
psThicknessFixed, thicknessBase is a fixed number of style.units.

latitude (U16) when the progress bar is shrink-to-fit along the minor axis,
the minimum size of the minor axis in style. units.

longitude (U16) when the progress bar is shrink-to-fit along the major axis,
the minimum size of the major axis in style.units.

maxvalue (S32) the maximum internal value of the progress bar. Although
progress bar labels may display any range of values, the internal value is
always between zero and maxvalue, inclusive. It is the client's
responsibility to map the represented value to a zero-based scale.

value (S32) the current value of the progress bar. See the note above
regarding mapping the represented value to a zero-based scale.

49,,2.2

CHAPTER 49 I PROGRESS BARS 535
Progress Bar Messages

". Progress Bar Messages 49.3

Table 49-2 summarizes the messages defined by clsProgressBar. The following
text describes these messages in more detail.

Message

msgNew

msgNewDefaults

msgProgressGetStyle

msgProgressSetStyle

msgProgressGetMetrics

msgProgressSetMetrics

msgProgressGetFilled

msgProgressSetFilled

msgProgressGet Unfilled

msgProgressSet Unfilled

msgProgressGet VisInfo

fakes

P _PROGRESS_NEW

P _PROGRESS_NEW

P _PROGRESS_STYLE

P _PROGRESS_STYLE

P _PROGRESS_METRICS

P _PROGRESS_METRICS

P _PROGRESS_REGION

P _PROGRESS_REGION

Table 49-2
Messages

Creates a progress indicator.

Initializes the PROGRESS_NEW structure to default
values.

Passes back the current style.

Sets the style.

Passes back the current metrics.

Sets the metrics.

Passes back the current filled region color and pattern.

Sets the current filled region color and pattern.

Passes back the current unfilled region color and
pattern.

Sets the current unfilled region color and pattern.

Passes back information about the current size of the
filled and unfilled regions.

ClitSWlt RtSl»D(1~Wl$~b~~itv M$1~55(~g~t5

msgProgressProvideLabel P _PROGRES S_PROVIDE_LABEL When style.labels is psLabelsCustom, sent to client
when progress bar labels are required.

Creating a Progress Bar

You create a progress bar just as you create any other PenPoint object:

1 Send msgNewDefaults to clsProgressBar to fill a PROGRESS_NEW structure
with default values.

2 Modify the default metrics and style fields, if necessary.

3 Send msgNew to clsProgressBar, with a pointer to the modified
PROGRESS_NEW structure as its argument.

When msgNew completes successfully, the PROGRESS_NEW structure contains
the UID of the new progress bar. When you send a message to an object, you
identify the object by its UID.

49.3.1

536 PEN POINT ARCHITECTURAL REFERENCE

Part 4 / UI Toolkit

Manipulating Style and Metrics Fields

The purpose of the style and metrics fields is described earlier in this chapter. This
section explains how to manipulate the style and metrics fields to read and modify
characteristics of the progress bar.

~., Determining Progress Bar Style

To determine the state of the progress bar metrics.style:

1 Declare a PROGRESS_STYLE structure.

2 Send msgProgressGetStyle to the progress bar, with a pointer to the
PROGRESS_STYLE structure as its argument.

When msgProgressGetStyle completes successfully, the PROGRESS_STYLE

structure will reflect the state of the progress bar style at the time you sent
msgProgressGetStyle.

".~ Modifying Progress Bar Style

To modify the state of the progress bar metrics.style:

1 Declare a PROGRESS_STYLE structure.

2 Set the fields of the PROGRESS_STYLE structure to reflect the desired progress
bar style.

3 Send msgProgressSetStyle to the progress bar, with a pointer to the
PROGRESS_STYLE structure as its argument.

When the progress bar receives msgProgressSetStyle, it sets all of its style fields
equal to those of the referenced PROGRESS_STYLE structure. If necessary, the
progress bar will set its layout bit dirty (as if with msgWinSetLayoutDirty) or
send itself msgWinDirtyRect after you modify its style. However, it is the client's
responsibility to send msgWinLayout to the progress bar when the style change
might affect the layout.

If you wish to set just a subset of the style fields, you must first initialize the
PROGRESS_STYLE structure with msgProgressGetStyle, make the necessary
changes to the structure, then use the structure with msgProgressSetStyle to set
the progress bar style.

".'" Determining Progress Bar Metrics

To determine the state of the progress bar metrics:

1 Declare a PROGRESS_METRICS structure.

2 Send msgProgressGetMetrics to the progress bar, with a pointer to the
PROGRESS_METRICS structure as its argument.

When msgProgressGetMetrics completes successfully, the PROGRESS_METRICS

structure will reflect the state of the progress bar metrics at the time you sent
msgProgressGetStyle.

49.3.2

49.3.2.1

49.3.2.2

49.3.2.3

CHAPTER 49 I PROGRESS BARS 537

Manipulating Region Appearance

Modifying Progress Bar Metrics

To modify the state of the progress bar metrics:

1 Declare a PROGRESS_METRICS.

2 Set the fields of the PROGRESS_METRICS structure to reflect the desired
progress bar metrics.

3 Send msgProgressSetMetrics to the progress bar, with a pointer to the
PROGRESS_METRICS structure as its argument.

When the progress bar receives msgProgressSetMetrics, it sets its metrics fields
equal to those of the referenced PROGRESS_METRICS structure. If necessary, the
progress bar will set its layout bit dirty (as if with msgWinSetLayoutDirty) or
send itself msgWinDirtyRect after you modify its metrics. However, it is the
client's responsibility to send msgWinLayout to the progress bar when the style
change might affect the layout.

If you wish to set just a subset of the metrics fields, you must first initialize the
PROGRESS_METRICS structure with msgProgressGetMetrics, make the necessary
changes to the structure, then use the structure with msgProgressSetMetrics to set
the progress bar metrics.

Manipulating Region Appearance
The main body of the progress bar indicator is composed of the filled region and
the unfilled region. The filled region represents the value of the progress bar; its
length in relation to the major axis is proportional to the progress bar's current
value in relation to its maximum value. The unfilled region fills the rest of the
progress bar's inner rectangle. By default, the filled region color is set to
sysDcRGBGray66, with pattern sysDcPatForeground. The unfilled region
defaults are sysDcRGBTransparent with pattern sysDcPatNil.

Structures for Manipulating Regions
The following sections explain how to manipulate the region colors and patterns,
and how to determine the size of both regions. The messages for reading and
modifying these data do not let you reach into the internals of the progress bar.
Instead, the arguments are passed in structures designed for passing the
information into and out of the progress bar. PenPoint provides two data
structures for this purpose: PROGRESS_REGION for color and pattern data, and
PROGRESS_ VIS_INFO for region size information.

~ Region Color and PaHern

The PROGRESS_REGION structure has two fields (field data types are shown in
paren theses):

rgb (U32) the RGB color of the region.

pattern (SYSDC_PATTERN) the pattern of the region.

49.3.2.4

You can read and modify
metrice;.value independently
with me;gControlGetValue and
me;gControI6etValue.

The edgee; of the progress bar
do not intersect the inner
rectangle containing the regions.

49.4~ 1

538 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

Region Size

The PROGRESS_VIS_INFO structure also has two fields:

filledRect (RECT32) the rectangle of the filled region.

unfilledRect (RECT32) the rectangle of the unfilled region.

Determining Region Color and PaHern

To determine the color and pattern of the filled region:

1 Declare a PROGRESS_REGION structure.

2 Send msgProgressGetFilled to the progress bar, with a pointer to the
PROGRESS_REGION structure as its argument.

When msgProgressGetFilled completes successfully, the PROGRESS_REGION

structure will reflect the color and pattern of the filled region at the time you sent
msgProgressGetFilled.

To determine the color and pattern of the unfilled region, follow the same steps,
but use msgProgressGetUnfilled instead of msgProgressGetFilled.

Modifying Region Color and PaHern

To modify the color and pattern of the filled region:

1 Declare a PROGRESS_REGION, structure.

2 Set the fields of the PROGRESS_REGION structure to reflect the desired color
and pattern.

3 Send msgProgressSetFilled to the progress bar, with a pointer to the
PROGRESS_REGION structure as its argument.

When the progress bar receives msgProgressSetFilled, it sets its filled region color
and pattern equal to those in the referenced PROGRESS_REGION structure. The
progress bar will send itself msgWinDirtyRect as necessary. However, it is the
client's responsibility to send msgWinLayoutSelf to the progress bar.

If you wish to modify just the color or the pattern, you must first initialize the
PROGRESS_REGION structure with msgProgressGetFilled, make the necessary
changes to the structure, then use the structure with msgProgressSetFilled to set
the filled region color and pattern.

To modify the color and pattern of the unfilled region, follow the same steps, but
use msgProgressGetU nfilled instead of msgProgressGetFilled.

Determining Region Bounds

It is possible to determine the sizes of the filled and unfilled regions, using
msgProgressGetVisInfo. To determine the sizes of the filled and unfilled regions:

1 Declare a PROGRESS_VIS_INFO structure.

2 Send msgProgr~ssGetVisInfo to the progress bar, with a pointer to the
PROGRESS_VIS_INFO structure as its argument.

49 .. 4~ 1.2

To determine progress bar value,
use m5gControlGetValue.

CHAPTER 49 I PROGRESS BARS 539
Responsibilities of Progress Bar Clients

When msgProgressGetFilled completes successfully, the two rectangles (RECT32s)

within the PROGRESS_ VIS_INFO structure will reflect the origins and sizes of the

filled and unfilled regions at the time you sent msgProgressGetVislnfo.

Responsibilities of Progress Bar Clients 49.5

The client of a progress bar has two primary responsibilities:

• To send msgWinLayoutSelf to the progress bar when appropriate (the

progress bar properly maintains its layout and dirty bits). ...

~o~::
• When using custom labels (style.labels is psLabelsCustom), to provide label

strings to the progress bar when the progress bar requests them.

Part 3: Windows and Graphics provides more information on layout and window

repainting. The remainder of this section explains the protocol for providing
custom labels.

Providing Custom Labels 49.5.1

If you write code that uses a progress bar, your code is a dient of the progress bar.
A progress bar provides a lot of service on its own. For example, if you request it to

display numeric labels (style.labels is set to psLabelsNumeric), you can specify

numbers to label the minimum and maximum values. The progress bar will

handle the work of converting the numbers to labels and rendering them in the
label font. If you ask it to, it will even create a series of numeric labels at intervals

along the major axis.

However, if you tell the progress bar that you want custom labels (style.labels is
set to psLabelsCustom), it cannot guess at what the labels should be. The progress

bar does as much as it can, but it must call on the client for the actual text of the

labels. The client must respond with this information on demand, since the

progress bar may ask for it at any time.

PenPoint provides the PROGRESS_PROVIDE_LABEL structure to facilitate the

custom label protocol between the progress bar and its client. The

PROGRESS_PROVIDE_LABEL structure includes the following fields (field data

types are shown in paren theses) :

progressBar (CONTROL) the progress bar requesting the custom label string.

position (UI6) the major axis position of the label (zero at a minimum).

pString (p _CHAR) a pointer to a 256-byte buffer which the progress bar

provides to hold the label string.

When a progress bar needs a custom label, it creates a pointer to a

PROGRESS_PROVIDE_LABEL structure. The progress bar sets the progressBar field

to its own UID, the position field to the major axis value for which the label is

required, and the pString field to point to a 256-byte buffer. The progress bar

then sends msgProgressProvideLabel to the client, with a pointer to the
PROGRESS_PROVIDE_LABEL pointer as its argument. '

540 PENPOINT ARCHITECTURAL REFERENCE
Part 4 / UI Toolkit

When a progress bar client receives msgProgressProvideLabel, it should check the
progressBar and position fields of the PROGRESS_PROVIDE_LABEL structure to
determine what the label string should be. The client should then copy the label
string into the buffer to which pString points. At that point, the progress bar can
take over, converting the string to a label and drawing it in the label font, just as it
does with numeric labels.

Useful Inherited Messages
Like most DI Toolkit classes, dsProgressBar inherits from a chain of ancestor
classes. For clsProgressBar, this chain begins at dsObject and continues through
clsWin, dsGWin, dsEmbeddedWin, dsBorder, and dsControl. You can read
about these ancestors of dsProgressBar in more detail in other chapters, but Table
49-3 summarizes a few useful messages dsProgressBar inherits from these classes.

Mess«:Jge Description

Custom labels can be no longer
than 256 characters, including
the terminating null.

49,,6

msgControl Get Value Passes back the progress bar's value.

msgControlSetValue

msgSave

msgRestore

msg WinLayoutSelf

P_OBJ_SAVE

P _0 BJ_RES TO RE

P _WIN_METRICS

Sets the progress bar's value. The progress bar will
self send msgWinDirtyRect as necessary.

Causes the progress bar to file itself in an object file.

Creates and restores a progress bar from an object file.

Tells the progress bar to recompute its layout
parameters.

If the progress bar that is shrink-to-fit in either dimension receives
msgWinLayoutSelf, it will use the latitude or longitude metric, as appropriate, to
determine the interior dimension of the progress bar (this does not include the
inked edges of the bar). If the progress bar is not shrink-to-fit in a dimension, it
ignores the corresponding latitude or longitude metric.

Part 5 /
Input and Hanchrriting

Translation

". Chapter SO/Introduction 545 msgPenExitUp and msgPenExitDown 54.1.5 578

The Input Subsystem 50.1 546
msgPenInProxU p 54.1.6 578

Input Registry 50.1.1 547
msgPen()utProxUp 54.1.7 578

Routing 50.1.2 548
msgPenStroke 54.1.8 579

Filters 50.1.3 548
msgPenTap 54.1.9 579

The Grabber 50.1.4 549
" Chapter 55 / Keyboard Events 581 Listener ()bjects 50.1.5 549

Window Tree 50.1.6 550 Keyboard Event Data 55.1 581
Target () b j ect 50.1.7 550 msgKeyDown 55.1.1 582
Inserting Events into the Input Stream 50.1.8 550 msgKeyUp 55.1.2 582

The Handwriting Translation Subsystem 50.2 551
msgKeyChar 55.1.3 583

Window Subclasses 50.2.1 551
msgKeyMulti 55.1.4 583

Translation Classes 50.2.2 552 Chapter 56 / Using clslP 585

" Chapter 51 / Developer's clsIP Messages 56.1 585
Quick Start 555 Creating an Insertion Pad 56.2 586

Capturing and Translating Handwriting 51.1 555 Displaying the Insertion Pad 56.3 587
Handling Low-Level Pen Input 51.2 . 558 Deleting an Insertion Pad 56.4 587

'V Chapter 52 / Event Processing
Setting the Translator Object 56.5 587

563
Handling Xlist Data 56.6 588

Event Generation 52.1 563

Event Handling 52.2 563 Chapter 57 / Using clsSPaper 589

X-Y Distribution Mechanism 52.3 565 clsSPaper Messages 57.1 589
Pen Input Sampling 52.4 565 clsSPaper Facilities 57.2 590

" Chapter 53 / Input Subsystem API
Parsing the Xlist Data 57.3 592

567
Rendering the Translated Text 57.4 592

Event Data Structure 53.1 567 Subclassing clsSPaper 57.5 592
Input Subsystem Constants 53.2 568 Creating an Instance of a clsSPaper Subclass 57.6 593 Input Subsystem UIDs 53.2.1 568

Setting the clsSPaper Input Flags 57.7 594 Standard Pen Event Codes 53.2.2 568
Input Event Status Codes 53.2.3 569 Dynamically Setting the clsSPaper Translator 57.8 595

Window Input Flags 53.2.4 569
Chapter 58 / Using the Messages 53.2.5 570 Translation Classes 597

Input Subsystem Procedures 53.3 571
Inserting a Message into the Event Queue 53.3.1 571 Hierarchy of the Translation Classes 58.1 598

Adding a Filter 53.3.2 571 Translation Data Structures 58.2 598
Removing a Filter 53.3.3 571 XlATE_METRICS Structure 58.2.1 598
Setting the Input Grabber 53.3.4 572 XlATE_ CASE_METRICS Structure 58.2.2 599
Getting Grab Information 53.3.5 572 XlATE_NEW Structure 58.2.3 599
Setting the Input Target 53.3.6 572 Handwriting Translation Flags 58.3 600
Getting the Target 53.3.7 573 Built-In Rules 58.3.1 600

Knowledge Source Rules 58.3.2 601
" Chapter 54 / Pen Events 575 Post-Processing Rules 58.3.3 602
Pen Event Data 54.1 575 Translation Templates 58.4 602

msgPenDown 54.1.1 576 Template Types 58.4.1 602
msgPenUp 54.1.2 576 Template Modes 58.4.2 603
msgPenMoveU p and msgPenMoveDown 54.1.3 577 Translation Messages 58.5 604
msgPenEnterUp and msgPenEnterDown 54.1.4 577 Creating a Translator 58.5.1 605

Initialization Messages 58.5.2 605 53-3 Input System Messages 570

Control Messages 58.5.3 606 54-1 msgPenDown Event Data 576
Notification Messages 58.5.4 606 54-2 msgPenUp Event Data 576

Chapter 59 / Using Scribbles 607 54-3 msgPenMoveUp and msgPenMoveDown
Event Data 577

Scribble Concepts 59.1 607 54-4 msgPenEnterUp and msgPenEnterDown
Stroke Indexing 59.1.1 607 Event Data 577
Scribble Base and Bounds 59.1.2 607

54-5 msgPenExitUp and msgPenExitDown
Rendering 59.1.3 607 Event Data 578
Translator Notification 59.1.4 608

54-6 msgPenInProxUp & msgPenInProxDown 578
clsScribble Messages 59.2 608 Event Data
Creating a New Scribble Object 59.3 609 54-7 msgPenOutProxUp Event Data 579

Scribble Attribute Messages 59.4 609 54-8 msgPenStroke Event Data 579

Stroke Messages 59.5 609 54-9 msgPenTap Event Data 580

Notification Messages 59.6 610 55-1 msgKeyDown Event Data 582

Chapter 60 / Using Xlists 611
55-2 msgKeyUp Event Data 582

55-3 msgKeyChar Event Data 583
Concepts 60.1 611

55-4 msgKeyMulti Event Data 584
Xlist Flags 60.1.1 611

Xlist Elements 60.1.2 611 56-1 clsIP Messages 585

Xlist Element Flags 60.1.3 612 56-2 Insertion Pad UI Styles 587

Xlist Element Data 60.1.4 612 56-3 Some Xlist Functions 588

Xlist Functions 60.2 613 57-1 clsSPaper Messages 589

Using the Xlist Functions 60.3 613 57-2 clsSPaper Input Flags 595

Creating a New Xlist 60.3.1 614 58-1 clsXlate Messages 604
·Inserting an Xlist Element 60.3.2 614 59-1 clsScribble Messages 608
Deleting an Xlist Element 60.3.3 614

60-1 Xlist Element Data Types 612
Freeing All Elements of an Xlist 60.3.4 614

Traversing an Xlist 60.3.5 614 60-2 Xlist Functions 613

Getting and Setting Xlist Elements 60.3.6 615 61-1 clsGWin Messages 618

Chapter 61 / Using Gesture List of Examples
Windows 617 51-1 Creating and Inserting an IP Window 556

Introduction 61.] 617 51-2 Translating and Displaying C~ptured

Gesture Window Messages 61.2 617 Scribbles 557

51-3 Handling Low-Level Pen Events 559

List of Figures 51-4 Initializing a Window with Rendering

50-1 PenPoint Subsystem Hierarchy 545 Capability 560

50-2 Event Routing 547 51-5 Inserting a Custom Window as the Main

50-3 Handwriting Capture Classes 551 Application Window 561

50-4 Handwriting Translation Classes 553 57-1 Using a Drawing Context to Render
Visual Feedback 591

58-1 Translation Class Hierarchy 598
57-2 Creating a Subclass of clsSPaper 593

List of Tables 57-3 Initializing a clsSPaper-Based Main

52-1 Input Event Status Codes 564
Window 593

53-1 Standard Pen Event Codes 568
57-4 Setting the Translator for a clsSPaper

Object 595
53-2 Window Input Flags 569

Chapter 50 I Introduction

The PenPoineM operating system is distinguished by its unique pen-driven user
interface. PenPoint provides user interface tools such as gesture windows and
insertion pads that your applications incorporate to recognize pen-based
commands and to capture handwritten text. You use three PenPoint subsystems to
implement this technology in your applications: input, windows and graphics, and
handwriting translation. PenPoint is designed to handle device driver input from
the pen and from other types of hardware that may be connected to the PenPoint
computer. PenPoint fully supports keyboard and hardware timer events, and it has
the flexibility to interface to third-party device drivers. Figure 50-1 shows the
relationship of these subsystems to the overall PenPoint software architecture.

The input subsystem converts device driver function calls into messages that are
handled by the class manager. The input subsystem determines which device
driver is sending an event, and then routes the event to the appropriate object. If
the event originated from the pen driver, the input subsystem routes the event
through the window tree. If the event originated from an attached keyboard (or
other device), the input subsystem routes the event to the object that is currently
assigned input focus. The input and the windows and graphics subsystems provide

546 PEN POINT ARCHITECTURAL REFERENCE
Part 5 / Input and Handwriting Translation

all of low-level coordinate system and'dispatch loop handling that most
applications need.

The handwriting translation subsystem operates at the class level. Your
applications use these classes to handle accumulated pen input and do shape
recognition, gesture (command) interpretation, or handwriting translation. A set
of special window classes is used to capture handwriting input, and another set of
translator classes is used to translate the captured pen stroke data.

The window and graphics subsystem handles conversion from hardware
coordinates to local window coordinates. It maintains a window tree that represents
which windows are "contained" in parent windows, and it handles the routing of input
events based on that hierarchy. All window objects have a set of flags that optionally
enable or disable sensitivity to different classes of pen events, giving your applications a
great deal of flexibility in defining the visual behavior of the user interface. Many of the
input and handwriting translation classes take advantage of windows and graphics
features other than window input flags. See Part 3: Windows and Graphics for details.

The Input Subsystem
The input subsystem is the central mechanism for handling user input events. An
input event is generated by a hardware device driver to indicate the occurrence of
an action by the user such as the pen touching the screen. Device drivers make
function calls to the input subsystem to communicate state changes. The input
subsystem translates the calls into msglnputEvent messages. The input event
messages are routed through, the input registry, a set of objects that have
expressed interest in receiving input. Any object in the input registry can process
any event message it receives, and it can either pass the message along the chain
for further processing or terminate processing by returning stslnputT erminate to
the input subsystem.

msgInputEvent has an argument structure that describes the type of event, the
time it occured, and x-y coordinate information if the event was generated by the
pen driver. Device drivers use this same data structure when making a function
call to the Input subsystem. Objects receiving the even't message use this
information to do the appropriate processing such as rendering in a window,
accumulating strokes for the translation classes, or changing the application's
mode due to a key event.

Figure 50-2 shows how events are sent from device drivers to the input subsystem,
and how the input subsystem routes them to your application as event messages.

50.1

CHAPTER SO/INTRODUCTION 547

The Input Subsystem

Input Registry

msglnputEvent

InputEventGen

InputEventinsert

listener 1 = null listener null

Input Registry

Mter a call from a device driver has been translated into a msglnputEvent,
the message is routed through the input registry, the set of objects that have
expressed interest in receiving input messages. These are the objects shown in
a shaded rectangle on the right side of Figure 50-2. Event messages are always
routed through the input registry recipients in the following order (each of these
recipients is described in more detail later):

1 Filter objects. You register an object as a filter object with the
InputFilterAddO function. The Input subsystem maintains a list of filter
objects, and always gives them the first crack at processing an event message.

2 Grabber object. At any time, a single object may be registered as the grabber
object. The grabber is similar to a filter in that it receives all input messages
that haven't been terminateed by the filters ahead of it. The grabber is
different from filters in that there is only one active grabber at a time.
Grabbing the input stream is meant to be a temporary, dynamic operation.

548 PENPOINT ARCHITECTURAL REFERENCE
Part 5 / Input and Handwriting Translation

3 Listener object. If the listener field in the event data structure is filled in by
the device driver when it calls the input subsystem (with a valid object VID),
the outgoing event message is sent directly to that object.

4 Window tree objects. If the x':'y coordinate field in the event data structure
is filled in by the device driver when it calls the input subsystem, the
outgoing event message is routed through the hierarchy of window objects.
You can optionally limit what types of pen events a particular window is
interested in by setting the window input flags field. This technique is
demonstrated in Chapter 51. The window input flags are described in
Chapter 53.

5 Target object. If the x-y coordinate field in the event data structure is not
filled in by the device driver, the event message is routed to the target object.
At any time a single object can be registered as the target object. The target is
a special object that has been singled out to receive non-x-y events such as
keyboard or modem input (this is similar to the input focus in some other
systems).

Routing
The input subsystem expects a status code reply from each of the objects which
receives the event message. The reply can specify that the input event should be
terminated (all processing completed), or continued (passed on to objects further
down the input registry). The status return is also used to set and release the
grabber object.

The input subsystem maintains an internal queue for events coming in from the
device drivers (and applications), and it parcels out event messages utilizing the
class manager ObjectSend mechanism. Events are serialized within the object
hierarchy because the input subsystem doesn't start processing another event until
the current event is terminated somewhere in the registry, or falls through and is
terminateed by the input subsystem itself (the input subsystem ignores such
events).

Filters

You use filters to provide behavior which persists over multiple input events.
Filters get the first opportunity to process each input event that enters the system.
Filters have priorities that determine the order in which multiple filters receive an
event. Filters return a status to terminate an event, or a status to allow the event to
continue to the next filter (or to the remainder of the input registry if there are no
more filters).

50.1.2

The Quick Help system and VI Toolkit menus provide two examples of the use of
input filters. When the user starts the Quick Help system, the Quick Help system
creates a high-priority filter to trap input events. The Quick Help system determines
which window falls under the user's tap, and gets and displays the Quick Help message

CHAPTER 50 I INTRODUCTION 549
The Input Subsystem

for that window. The filter prevents taps from activating the window the user tapped
on, and this behavior persists until the user quits Quick Help.

UI Toolkit menus use filters in a similar fashion. When the user brings up a menu
by tapping on a menu button, the menu inserts a filter to trap input events. If the
user taps within the menu, the menu processes the tap. If the user taps outside of
the menu, the menu takes itself down and terminates the input event. Again, the
filter prevents taps outside the menu from activating the window the user tapped
on, and this behavior persists until the menu comes down.

Writing input filters can be complicated, because the filters can modify the input
stream to the rest of the objects in the input registry. These other objects may
depend on particular sequences of input events, and may exhibit unexpected side
effects if new filters modify the input stream in unexpected ways.

The Grabber 50. 1.4

An object can establish itself as the grabber by returning stslnputGrab as the
result of receiving an event message (synchronously) or by calling the input
subsystem directly (with the InputGrabO function). Until the grab is terminated,
the grabber receives all input event messages that have passed through the filters
and must return status indicating whether an event should be passed on to the rest
of the input registry or if an event should be terminated. Grab termination is
usually controlled by the grabber object returning status to the input subsystem
without the stslnputGrab flag set.

A grab can also be terminated when one object requests a grab while another
object is already grabbing input events. The second grab request overrides the first.
The input subsystem maintains a stack of grab requests. Whenever the current
grabber relinquishes control, the previous grabber object on the stack is handed
back the grab. To prevent thrashing (two applications repeatedly overriding one
another's grabs), each client can override the grab only once.

Whenever a grab is terminated, the input subsystem sends msglnputGrabTerminated
to the previous grab object. This allows the new client to determine ifit really wants to
continue looking at the input stream.

Listener Obiects

If a driver has information about the current state of the object hierarchy in
PenPoint, it can request that input events be sent directly to a particular object. It
does this by setting the listener field of the input event structure to the UID of a
valid object when it places an input event in the input subsystem with
InputEventGen. The event is still passed to the filter objects and the grabber. If
none of these objects terminates the event, it is next passed to the listener object as
designated by the event data structure itself. If the input system routes an event to
a listener object, the event terminates there.

50.1.5

550 PEN POINT ARCHITECTURAL REFERENCE
Part 5 / Input and Handwriting Translation

Window Tree
If an input event has made it past the filters and grabber without being
terminated, it is next passed through the window tree to see if any of the open
windows on the PenPoint display want to react to the event.

The window tree is extended whenever you create a window object and fill in its
parent field. The hierarchy of windows and parent windows should not be
confused with the inheritance hierarchy of classes and superclasses. The first
window object in the display screen window tree is called theRootWindow. It
defines the total area of the computer's display. See Part 3: Windows and Graphics
to learn more about the window tree and its implementation.

A window can be extracted from the tree, in which case the window disappears
from the screen. It still exists in memory, but it does not receive input event
messages. When a window is inserted into the tree it appears on the screen and
may again receive input event messages as part of the input registry.

Any window in the window tree can selectively express interest in or ignore
different types of pen events. Windows express their interest in different types of
pen event through the win.Hags.input field. This field includes flags to express
interest in events such as pen-out-of-proximity, pen-moved-while-down,
pen-moved-out-of-window, and so on. Chapter 53 describes the available input
flags. Chapter 51 demonstrates their use.

Target Obiect

The target object is an object that is designated to receive input events that are
not associated with a specific area of the display (for example, a keyboard event).
The input subsystem routes an event to the target object when all of the following
circumstances are true:

• The x-y field is null.

• The filters and grabber did not terminate the event.

• The listener field is null.

You use the InputSetT argetO function to make an object the target object.
Typically, the target is an object that is designated to receive and process keyboard
events. Only one object at a time can be designated as the target.

Inserting Events into the Input Stream

The input subsystem also allows events to be inserted into the input stream by
applications through a procedure-call interface. Events may be added at the end of
the input queue (processed after all of the events currently in the input queue) or
at the head of the input queue (processed before the events currently in the input
queue). Inserted events are treated the same as events generated by devices.

50.1.8

CHAPTER 50 I INTRODUCTION 551
The Handwriting Translation Subsystem

The Handwriting Translation Subsystem
Several PenPoint classes handle the capture and processing of handwriting. Some
specialized subclasses of clsWin capture pen input. clsXtract and its subclasses
translate the captured input.

Window Subclasses
Several subclasses of clsWin capture pen input. Figure 50-3 shows the hierarchical
relationship of the window subclasses that handle handwriting capture.

The figure shows the complete inheritance ancestry of the handwriting capture
classes. Not all of these classes are important to the discussion of handwriting
capture and translation. The principal classes that your application will interact
with are introduced in the following paragraphs.

Handwritin

50.2

50.2 .. 1

552 PENPOINT ARCHITECTURAL REFERENCE
Part 5 I Input and Handwriting Translation

• clsGWin is a special lightweight subclass of clsWin that automatically creates
and attaches a gesture translator from clsXGesture. The application decides
what kind of data is to be displayed under the gesture capture region, and
what (if any) effects the gestures will have on the data. clsGWin instances
also maintain a reference to a quick help resource file, so that a help gesture
drawn over a clsGWin instance will cause a contextually appropriate help
text to be displayed.

• clsView is used to allow user interaction with different data objects in
PenPoint; it gives you a view on your data by serving as the connection
between a window and the actual data. This allows your application to
perform operations on data without having to worry about updating
windows. The view object manages all window interaction, both input and
display, while your application is concerned primarily with the algorithms for
processing data.

• clsSPaper is a subclass of clsView. clsSPaper (scratch paper) objects have the
capability of accumulating "scribbles." An clsSPaper object is always attached
to a window, and it maintains a scribble data object.

• clsScribble objects hold pen stroke data. It is a direct descendant of
clsObject. A scribble is a list of pen vectors strokes. It is the scribble that is
passed to a translation object to be converted into a meaningful gesture or
ASCII character.

• clsIP provides a class of powerful user-interface components called insertion
pads. An insertion pad is a window that accepts handwriting input, performs
on-the-spot translation, and displays the result. Insertion pads are used for
various kinds of text data entry such as text-insertion during word processing
or mini-graphics capture within the context of a text document.

Chapter 56, Using clsIP, Chapter 57, Using clsSPaper, and Chapter 12, Using
clsGWin, show how to use these classes to capture pen input.

~" Translation Classes

clsXtract and its subclasses are used to execute the translation of captured
scribbles. Each specialized subclass provides one type of translation object which is
attached to a capture object (described above). Figure 50-4 shows the hierarchical
relationship of the handwriting translation classes in PenPoint.

50.2.2

CHAPTER 50 I INTRODUCTION 553
The Handwriting Translation Subsystem

• dsXtract is the parent of all the translator classes. It contains the functional
interface into the feature extraction engine. It observes a given scribble and
handles strokes as they are added to the scribble, as well as the determination
of when a scribble has been completed by the user. When it completes the
extraction of a scribble from the user interface, it sends a message to itself.
The specialized subclasses respond to the message differently to process the
stroke information in different ways.

• dsXGesture interprets the information from a scribble to determine if
it is one of a set of defined gesture shapes. A dsXGesture translator is
automatically created whenever a clsGWin object receives input.

• dsXText provides the basic interface for processing ASCII characters written
in English-form. dsXText can process horizontally split, left-to-right
sequences of words. clsXText chains lists of characters together and has a
number of heuristic analysis modes available: trigram, vertical placement,
overlapping segments, and common words.

• dsXW' ord provides translator objects that are used to recognize words.

Chapter 58, Using the Translation Classes, shows how to use these classes in your
application to translate captured pen input.

Chapter 51 / Developer's
Quick Start

This chapter shows you how to add handwriting recognition to the user interface
for your application. The example uses VI Toolkit components that are standard
in the PenPoint™ SDK. In a second example, you are shown how to add direct
pen handling to the user interface of your application. This allows you to track the
pen in a window for rendering, placement, or control tasks.

Capturing and Translating Handwriting
If you want to capture handwriting as input for your application, the application
sends msgNew to one of the handwriting capture classes to create a handwriting
capture object, which is inserted into the window tree as a child of your
application's window. You must then connect a translator object to receive the
captured scribbles and translate them into ASCII characters which are then
delivered to your application's data manipulation algorithms.

This section uses an example application to demonstrate a simple use of the
handwriting capture subsystem. The application is a simple arithmetic sum
expression calculator. The user writes an expression such as 5-2 into an insertion
pad. Mter translation, the application parses the expression, does the required
calculations, and returns a value for display.

The following steps highlight the actions an application must perform to setup
and execute handwriting input:

• Initialize a structure defining a new insertion pad by sending
msgNewDefaults to clsIP.

• Initialize a structure defining a new translator by sending msgNewDefaults
to clsXText.

• Specify and compile a template that allows only the desired characters to be
accepted for input. The template is then added as a part of the translator
msgNew arguments.

• Create the translator by sending msgNew to clsXText.

• Add the DID for the new translator as a part of the insertion pad msgNew
arguments.

• Create the insertion pad by sending msgN ew to clsIP.

• Make the insertion pad visible on the screen by inserting it into the
application's main window.

556 PENPOINT ARCHITECTURAL REFERENCE
Part 5 / Input and Handwriting Translation

Example 51-1 shows how these steps are implemented in the Adder application.
You can find the source code for the Adder application in the SDK distribution
directory \PENPOINT\SDK\SAMPLES\ADDER. Example 51-1 is from the
CreatelnsertWindowO function defined in ADDERAPP.C.

Adder sets itself up as an observer of the insertion pad (by setting the ipNew.ip.client field to self in the msgNewarguments
as shown in the example. Notice also that the physical appearance of the insertion pad is determined by setting style fields in
the msgNew arguments.

STATUS LOCAL Create Insert Window
P_ADDER APP_INST pInst,
OBJECT self)

STATUS Si

WIN METRICS
IP NEW

WIDi

ipNew;
pNewTemplatei P UNKNOWN

XLATE NEW
U16
XTM"ARGS

xNewTransi
xlateFlagsi
xtmArgsi

II
II Create an insertion pad, which is the standard mechanism
II for accepting handwritten input.
II
ObjectCall(msgNewDefaults, clsIP, &ipNew)i
II Do not show the resize button.
ipNew.border.style.resize = bsResizeNonei
II Translate when the user lifts the pen out of proximity
ipNew.ip.style.buttonType = ipsProxButtoni
ipNew.ip.style.embeddedLook = truei
II set the listener field for notifications
ipNew. ip. client = selfi

II
II Create a translator for the insertion pad
II
ObjectCall(msgNewDefaults, clsXText, &xNewTrans)i
II
II Create a template for the insertion pad
II
xtmArgs.xtmType xtmTypeCharListi
xtmArgs.xtmMode Oi II no special modes
xtmArgs.pXtmData "0123456789+-."i II ascii template
StsRet(XTemplateCompile(&xtmArgs, osProcessHeapId, &pNewTemplate), S)i

xNewTrans.xlate.pTemplate = pNewTemplatei
II
II
II
II
II
II
II
II
II
II

The handwriting engine is geared primarily towards text
translation. We can improve numeric translation by
disabling these context assumptions:

alphaNumericEnable - enables character recognition that is
geared towards text-processing (e.g., most characters
are assumed to be letters, and numbers are separated from
letters by spaces.)

punctuationEnable - enables punctuation rules that are geared

CHAPTER 51 I DEVELOPER'S QUICK START 557
Capturing and Translating Handwriting

II towards text-processing (e.g., periods are always followed
II by a space).
II verticalEnable - enables rules that help recognize a character
II based on its vertical orientation (e.g., "t" versus "+").
II
II By disabling these flags, we get far fewer unrecognized characters
II in our numeric expressions.
II
xNewTrans.xlate.hwxFlags &=

-(alphaNumericEnable 1 punctuationEnable 1 verticalEnable)i
ObjCallRet(msgNew, clsXText, &xNewTrans, S)i

ipNew.ip.xlate.translator = xNewTrans.object.uid;
II give our template veto power during the translation
ObjCallRet(msgXlateGetFlags, xNewTrans.object.uid, &xlateFlags, S)i

xlateFlags 1= xTemplateVeto 1 spaceDisablei
ObjCallRet(msgXlateSetFlags, xNewTrans.object.uid, (P_ARGS)xlateFlags, S)i

ObjCallRet(msgNew, clsIP, &ipNew, S)i
pInst->iPad = ipNew.object.uidi

II
II Insert the insertion pad into our adderWin window
II
wm.parent = pInst->adderWini
wm.options = wsPosToPi
ObjCallRet(msgWinInsert, ipNew.object.uid, &wm, S)i

return stsOKi
1* CreateInsertWindow *1

Note that the IP notifies the application with msgIPDataAvailable whenever the
IP receives and translates input. In Adder, the method to handle this message is
GetlnsertPadDataO. Example 51-2 shows its code.

"".~ """'" 51 ~2

Translating and Displaying Ca Scribbles
GetlnsertPadDataO gets a list of translated characters from the insertion pad by sending msgIPGetXlateString to the
insertion pad. GetlnsertPadDataO next tries to clean up some common handwriting translation errors. After that it sends
the string to the expression analyzer engine with msgAdderEvaluatorEval. Finally, it displays the result in a label window
with msgLabelSetString.

MSG HANDLER GetInsertPadData
const MESSAGE
const OBJECT
const OBJECT
const CONTEXT
const PP ADDER APP INST

msg,
self,
pArgs,
ctx,
pData)

IP STRING
STATUS
char
EVAL FRAME
P ADDER APP INST
pInst = *pDatai

ipStri
Si
display[MAX_DISP]i
eXi

pInsti

558 PENPOINT ARCHITECTURAL REFERENCE
Part 5 I Input and Handwriting Translation

II
II Get the text from our instance's insertion pad into ex.expresssion ...
II
ipStr.len = SizeOf(ex.expression);
ipStr.pString = ex.expression;
ObjCallRet(msgIPGetXlateString, plnst->iPad, &ipStr, s);
StsRet(RemoveNewLines (ex. expression) , s);

II
II ... and evaluate the expression.·
II
ObjCallRet(msgAdderEvaluatorEval, plnst->evalObj, &ex, s);
Debugf ("GetlnsertPadData () returned from msgAdderEvaluatorEval: ex. badExpr = %s,"

" value = %g valueStr = <%s>", ex.badExpr? "true":"false",
ex.value, ex.valueStr);

II
II Construct the string to display
II
sprintf(display,"%s = %s", ex. expression, ex.valueStr);

II
II Display the string
II
ObjCallRet(msgLabelSetString, plnst->label, display, s);
return stsOK;
MsgHandlerParametersNoWarning;

1* GetlnsertPadData *1

Handling Low-Level Pen Input
In some cases, you may want to handle low-level pen input events directly. You
may want to provide visual user feedback, or you may want to control your own
rendering processes. To do this, you subclass clsWin (the window class), and not
one of the more specialized subclasses such as clsIP or clsSPaper which
automtically provide pen handling and input interpretation.

This example shows how the input flags are set for a window to track particular
pen input events. When one of these events occures, a method is activated that
renders a simple cursor in the window to give visual feedback for the location of
the pen.

The following steps highlight the actions an application must perform to setup
and respond to low-level pen input.

• Subclass clsWin and add the functionality for the responses to pen input that
you need in your application.

• Add a drawing context to the window that will render the user feedback.

• Add the methods that will call the drawing context appropriately according
to the type of pen events that are detected in the window.

• Install this new clsWin subclass.

• Create and install an application class that uses an instance of the dsWin
subclass as its main window.

51.2

CHAPTER 51 I DEVELOPER'S QUICK START 559
Handling Low-Level Pen Input

When you launch the application, it comes up with the window ready to receive
input, and responds according to the methods in your special window class.

Example 51-3 shows how a specialized subclass of clsWin handles msglnputEvent.
The code comes from INPlJfAW.C, part of a demonstration application in the
SDK distribution directory \PENPOINT\SDK\SAMPLE\INPlJfAPP.

Example 51 w3

Handling low .. level Pen Events
INPUTAPP.C defines dsInWin as a local subclass of dsWin. clsInWin handles msgInputEvent with the InWinInputO
method. msgInputEvent always arrives with an input event data structure pointed to by pArgs (Chapter 53 describes
the data structure in detail). The structure fields indicate what kind of device initiated the event, spatial data, modal data,
and so on.

pArgs->devCode is a standard message token defined with the MakeMsgO macro. MakeMsgO binds a class UID and a
message number to create a unique token. In the case of input events, however, the second value represents an event type
rather than a message number. The case statement below produces different on-screen behavior depending on the message
number (the type of pen event).

In WinInputO handles msgInputEvent by drawing a small square at the location of the input event.

MsgHandlerArgType(InWinlnput, P_INPUT_EVENT)
{

INWIN_INST inst;
RECT32 box;
inst = *(P_INWIN_INST)pData;
box.size.w = 14;
box.size.h = 14;
ObjCallWarn(msgWinBeginPaint, inst.dc, Nil(P_ARGS));
switch (pArgs->devCode) {

case msgPenDown:
/* draw a rectangle with the origin at the point */
box. origin = pArgs->xy;
ObjectCall(msgDcDrawRectangle, inst.dc, &box);
inst.prevLoc = pArgs->xy;
ObjectWrite(self, ctx, &inst);
break;

case msgPenExitDown:
case msgPenOutProxDown:
case msgPenUp:

/* redraw the rect at the last location to clear it */
box. origin = inst.prevLoc;
ObjectCall(msgDcDrawRectangle, inst.dc, &box);
inst.prevLoc.x = minS32;
ObjectWrite(self, ctx, &inst);
break;

case msgPenMoveDown:
if (inst.prevLoc.x != minS32) {

/* redraw the rect at the last location */
box.origin = inst.prevLoc;
ObjectCall(msgDcDrawRectangle, inst.dc, &box);

continued

560 PENPOINT ARCHITECTURAL REFERENCE
Part 5 / Input and Handwriting Translation

1* draw a rectangle with the origin at the point *1
box. origin = pArgs->xy;
ObjectCall(msgDcDrawRectangle, inst.dc, &box);
inst.prevLoc = pArgs->xy;
ObjectWrite(self, ctx, &inst);
break;

default:
break;

ObjectCall(msgWinEndPaint, inst.dc, Nil(P_ARGS));
return (stslnputTerminate); II indicates completion of the event
MsgHandlerParametersNoWarning;

1* InWinlnput *1

In the case where the user has placed the pen down on the screen (msgPenDown)
a square is drawn at the location of the event. Note how easily the units are
handled. The input subsystem provides the x-y location of the event in local
window coordinates (pixels), and the drawing context which is bound to this
window (shown in a later fragment) also knows how to handle these coordinates
without any scaling.

It is useful to see how rendering capability was added to this otherwise unem
bellished subclass of clsWin. Example 51-4 shows how clslnWin initializes its
instances when it receives msgNew or msgRestore.

tX(Jlmple 51 ~4

apabiUty.
clsSysDrwCtx is a standard Window and Graphics class that is used to create a drawing context (DC) object. A DC
manages rendering in a window. InWinInputO, shown in Example 51-3, sends msgDcDrawRectangle to the DC to render
a small rectangle in the window. You can render in a window under programmatic control or, using the technique shown
here, you can allow input events to drive the rendering process.

InWinInitO, shown here, creates a DC and sets the DC to operate in raster XOR mode (sysDcRopXOR). In this mode,
drawing the rectangle a second time in the same position restores the pixels to their original state. Using this feature,
InWinInputO can animate the rectangle by first drawing at the old location to XOR it out, and then drawing it at the new
location.

MsgHandler(InWinlnit)
{

INWIN_INST inst;
SYSDC_NEW dcNew;
STATUS s;
II ~cestor called in method table
II Clear the locat instance data
memset(&inst, 0, sizeof(inst));
II Crea~e a drawing context to perform the drawing
ObjectCall(msgNewDefaults, clsSysDrwCtx, &dcNew);
ObjCallRet(msgNew, clsSysDrwCtx, &dcNew, s);
II Tie the window and the drawing context together
ObjectCall(msgDcSetWindow, dcNew.object.uid, self);
II we'll only deal in screen coordinates in this example
ObjectCall(msgDcUnitsDevice, dcNew.object.uid, Nil(P_ARGS));
II Tell the DC how the drawing will be done
ObjectCall(msgDcSetRop, dcNew.object.uid, (P_ARGS)sysDcRopXOR);

CHAPTER 51 I DEVELOPER'S QUICK START 561
Handling LoW'-Level Pen Input

II Write out the instance data
inst.dc = dcNew.object.uid;
inst.prevLoc.x = inst.prevLoc.y = minS32;
return ObjectWrite(self, ctx, &inst);
MsgHandlerParametersNoWarning;

1* InWinInit *1

That's how a drawing context is bound to a window, and how the window handles
input events when they are handed to it. To see how the window object is told
what input events to be interested in, we must look at how it is inserted into the
window tree, and thus entered in the input registry.

The application is responsible for inserting the window. Example 51-5 shows how
clslnputApp inserts an instance of clsln Win as its main application window.

a Custom

Example 51-4 (continued)

clsInputApp calls the initialization method InputMsgAppOpenO whenever it receives msgAppOpen (for example, when
you launch a new instance of clsInputApp by tapping on its entry in the stationery menu).

The application uses msgNewDefaults to initialize the msgNew argument structure inNew, then modifies the window
input flags field, inNew.win.flags.input. This field determines to which pen input events the window responds (Chapter 53
describes window input flags in detail). In this case, the input system will send only the msgPenUp, msgPenDown,
msgPenMoveDown, msgPenMoveUp, msgPenOutProxUp, msgPenExitDown, msgPenExitUp, and msglnProxVp pen
events to the window. msgNew creates the new cIslnWin object. The window input flags filter pen events only. They do not
filter out events from other input sources.

The application sends msgFrameGetMetrics to the main window of the application to copy the application frame metrics to

frameMetrics, sets the client window (frameMetrics.cIientWin) to the new instance of cIs In Win, then sends
msgFrameSetMetrics to establish these changed metrics as the metrics of the application frame. As soon as the application
manager displays your application's VI on the screen, the window can receive input event messages.

MsgHandler(InputMsgAppOpen)
{

STATUS
WIN NEW
FRAME METRICS
APP METRICS
WIN METRICS

s;
inNew;
frameMetrics;
appMetrics;
winMetrics;

II Ancestor called in method table
II Create an instance of the inWin class
ObjCallRet(msgNewDefaults, clsInWin, &inNew, s);
II set the input flags to get tip & move events
inNew.win.flags.input = inputTip I inputMoveDown I inputMoveUpl

inputOutProx I inputExit I inputInProx I
inputMoveDelta I inputAutoTerm;

ObjCallRet(msgNew, clsInWin, &inNew, s);

562 PEN POINT ARCHITECTURAL REFERENCE
Part 5 I Input and Handwriting Translation

II Tell the frame of the application about the client window
ObjCallJmp(msgAppGetMetrics, self, &appMetrics, s, Error!);
ObjCallJmp(msgFrameGetMetrics, appMetrics.mainWin, &frameMetrics, \

s, Error!);
frameMetrics.clientWin = inNew.object.uid;
ObjCallJmp(msgFrameSetMetrics, appMetrics.mainWin, &frameMetrics, \

s, Error!);
II Relayout the window
winMetrics.options = wsLayoutDefault;
ObjCallJmp(msgWinLayout, appMetrics.mainWin, &winMetrics, \

s, Error!);
return stsOK;
II Recover from errors here. In particular, free resources.

Error!:
(void) ObjCallWarn(msgFree, inNew.object.uid, pNull);
(void) ObjCallAncestorWarn(msgDestroy, self, pNull, ctx);
return s;
MsgHandlerParametersNoWarning;

1* InputMsgAppOpen *1

Chapter 52 / Event Processing

The input system translates the event data provided by device drivers into event
messages and distributes them according to standard mechanisms. The input
system uses ObjectSendO to send msglnputEvent to the first object in the input
registry. This object processes the event, then either terminates the event or allows
the input system to send the input event to the next object in the input registry.

Event Generation
Events normally enter the system through the InputEventGenO interface. Device
drivers use this interface to deposit event information in the input system's event
queue. The event information includes, as a minimum, the devCode, a message
that identifies the device driver and the type of event. Optionally, the event
information may include an x-y coordinate in local window units, a specific
listener object, and up to 24 bytes of other event-specific data.

For example, when the pen touches the screen in a window, the event data might
include msgPenDown as the devCode, and the local window coordinates of the
pixel the pen touched. Depending on the design of the device driver and the
capabilities of the hardware, the event-specific data might include such
information as the hardware device coordinates of the touched pixel, pen pressure,
and so on.

Event Handling
When the input system sends an input event message to an object, the object
processes the message by switching control to the message handler for
msglnputEvent. The method does the necessary processing, typically based on the
devCode value of the input event, then returns an input event status return value.
Table 52-1 summarizes the possible return values and their meanings.

564 PENPOINT ARCHITECTURAL REFERENCE
Part 5 / Input and Handwriting Translation

~t@t~$ (©cl~

stsInputContinue

stsInput Terminate

stsInputGrabContinue

stsInputGrab Terminate

stsInputGrab

stsInputlgnored

stsInputGrabIgnored

~©r ~ilteu Only

R~s~!t

The input system processes the event normally, passing it to the next object in the
input registry.

The input system does not pass the event to other objects in the input registry.

The input system gives the grab to the object returning this status and continues
to pass the event to other objects in the input registry.

The input system gives the grab to the object returning this status and does not
pass the event to other objects in the input registry.

Identical to stsInputGrabTerminate. The input system gives the grab to the
object returning this status and does not pass the event to other objects in the
input registry.

The input system interprets this status identically to stslnputContinue. An
ancestor class can use stslnputlgnored instead of stslnputContinue to inform
subclasses that the ancestor was not interested in the input event.

The input system interprets this status identically to stslnputGrab. An ancestor
class can use stslnputGrahlgnored instead of stsInputGrab to inform subclasses
that the ancestor was not interested in the input event.

stsInputSkip The input system passes the event to the next object in the input registry that
is not filter.

stsInputSkipTo2 The input system passes the event to the next object in the input registry
that is not a filter in the first range (zero through 63) of filter priorities.

stsInputSkipTo3 The input system passes the event to the next object in the input registry
that is not a filter in the first range (zero through 63) or second range
(64 through 127) of filter priorities.

stsInputSkipTo4 The input system passes the event to the next object in the input registry
that is not a filter in the first range (zero through 63), second range
(64 through 127), or third range (128 through 191) of filter priorities.

stsInputTerminateRemoveStroke The input system does not pass the event to other objects in the input registry.
Furthermore, the input system removes any remaining input events from the
same stroke.

stsInputGrab TerminateRemoveStroke The input system gives the grab to the object returning this status and does not
pass the event to other objects in the input registry. Furthermore, the input
system removes any remaining input events from the same stroke.

An object receiving an input event message must return one of these status codes
in response to every input event it receives. An object that is not the grab object
should send stslnputContinue to continue normal processing of the event
through the input registry, stslnputT erminate to stop the processing of the event,
or stslnputGrab to become the grab object. A grab object should return
stslnputGrabTerminate to keep the grab and terminate the input event, or
stslnputGrabContinue to both keep the grab and let the event continue through
the input registry.

The input system attempts to return the status and event data to the device driver
that created the event. This feature allows device drivers to determine when the
processing of the event is complete. For example, the pen driver uses this feature
to free up the memory it allocates for stroke events.

CHAPTER 52 I EVENT PROCESSING 565
Pen Input Sampling

,... X-Y Distribution Mechanism
Due to the spatial nature of window-based input, a sophisticated distribution
mechanism for processing events is provided. This mechanism allows child
windows to pass events to their parent windows for processing. The mechanism is
activiated for any event with a x-y coordinate other than (minS32, minS32),
whether the event is the result of an InputEventGenO call from a device driver, or
an InputEventlnsertO call from an application.

The input system uses a leaf-to-root model of x-y distribution. This means that
when an event occurs in a window, that window receives the event message first.
The window processes the message, then terminates the event or allows it to
continue. If the window does not terminate the event, the input system sends the
message to the window's parent, which in turn processes the message, then either
terminates it or allows it to continue. Thus, if no window terminates the event,
the input system will send the message to each window from the window in which
the input occurred (the leaf window) up the chain to the root window.

The input system uses ObjectSendO to send the input event message to each
window in the chain, and it always transforms the event coordinates into the
window's local coordinates before sending the message. Thus, the input event
appears to penetrate any window that does not terminate it, and is finally
processed as if the event had occurred in the same screen position in a window
behind the child window.

For more details on the PenPoint™ window system, see Part 3: Windows
and Graphics.

Pen Input Sampling
The input system uses the window system to locate the frontmost window which
contains the digitizer x-y coordinates for an event, and to access the window tree
to determine the window ancestor chain of that frontmost window. In addition,
each window has a win.input.flags field to optimize event processing by filtering
pen events. The win.input.flags field provides a means for each window to limit
what types of pen events it receives.

Chapter 53 describes the possible input flag values. The input flags flags are used
for filtering only pen events generated by the standard PenPoint pen driver. Other
input events with x-y coordinates will always find their way to the window tree if
not sent to a listened or terminated by a filter or grabber.

In addition to the pen event input flags that control which pen events the input
system sends to a window, the input system defines a number of special flags that
control how the input system samples pen input events. The more interesting of
these special flags follow (see \PENPOINT\SDK\INC\lNPUT.H for the others):

inputMoveDelta controls when msgPenMoveUp and msgPenMoveDown
events are sent. With this flag set, the pen will send out move events only
when the previous move event has been fully processed. This helps to
prevent a backlog of unprocessed move events.

52.3

52.4

566 PENPOINT ARCHITECTURAL REFERENCE
Part 5 I Input and Handwriting Translation

inputlnk controls inking in the acetate plane. Acetate inking provides
immediate feedback when writing with the pen. Because the acetate
exists in a different drawing plane than normal windows, it can be erased
without affecting the underlying display. When the pen goes out of
proximity (or after a brief timeout on hardware that does not support
proximity detection), the system erases the acetate plane.

inputlnkThrough controls inking in the window receiving the input event.
With this flag set, the input system deposits ink directly onto the
window. Unlike ink in the acetate plane, this ink is not erased on
out-of-proximity. The window need not draw the strokes until it
becomes dirty and must repaint.

inputNoBusy controls whether the system displays the busy clock if the
message recipient does not return a status before a certain period of time.

inputResolution controls the resolution at which the points are reported.
With this flag set, the input system sends pen events when the pen moves
at least one digitizer point. With this flag clear, the input system sends
pen events are sent when the pen moves at least one screen pixel.

input Transparent forces the window system to ignore the client window
when determining the location of an event.

Chapter 53 / Input Subsystem API

dslnput is a descendant of dsObject that provides the interface between low-level
input device drivers and the object-oriented PenPoint™ operating system input
registry. Recall from Chapter 50, Introduction, that the input registry is the set of
objects that can process input events.

dslnput uses procedural APIs for interacting with device drivers, and message
based APIs for interacting with the input registry.

Event Data Structure
When a device driver sends an input event to the input subsystem (with
InputEventGenO), it uses an INPUT_EVENT structure to describe the input event.
Similarly, when the input subsystem sends msglnputEvent to the objects in the
input registry, it also uses an INPUT_EVENT structure. An INPUT_EVENT structure
includes the following elements:

length the length of the event packet.

flags various flags affecting the distribution of the input event.

devCode the event type, encoded as a message corresponding to the event.
For example, the devCode for a pen-down event is msgPenDown. The
Input Subsystem Constants section, below, further discussed the creation
of devCode messages.

timestamp the time at which the event entered the input queue, measured
in milliseconds since system startup.

:x:y the location of the event local window coordinates (pixels) from the
lower-left corner of the window in which the input event occurred. For
keyboard events and other events with no specific screen location, the
device driver sets both the x and y coordinates to minS32.

listener the listener object. Mter the input system passes the input event
through any input filters or grabbers in the input registry, it routes the
input event directly to the listener object.

destination the frontmost window enclosing the input event :x:y location.
Currently, the pen driver is the only input device driver to set the
destination.

originator the object that generated the event. For example, the pen device
driver sets originator to thePen.

eventData an array containing information device-specific event
information. For keyboard events, eventData may contain key codes
and key translations. Each device driver specifies the contents of the
eventData array as appropriate for the particular device.

568 PENPOINT ARCHITECTURAL REFERENCE
Part 5 / Input and Handwriting Translation

Device drivers calling InputEventGenO or objects sending msgInputEvent fill in
the structure's fields according to the event type. For example, a keyboard event
sets the xy field to (minS32, minS32) and uses different devCode values than a
pen event.

".Input Subsystem Constants
This section describes the various constants that the input system uses to
communicate event types to the input registry.

Input Subsystem UIDs
PenPoint uses well-known UIDs to refer to the standard pen and keyboard device
drivers, and for references to the input subsystem itself.

In each case, the device and class UIDs are synonymous and refer to the same class
manager object. The device is instantiated during the boot process-only one
instance of it exists in the system.

• theInputManager and clsInput represent the Input subsystem.

• thePen and clsPen represent the pen device.

• theKeyboard and clsKey represent the keyboard device.

The class UIDs are never subclassed. However, theyare used to define messages in
the class manager macro MakeMsgO, as described in the next section.

Standard Pen Event Codes

Table 53-1 lists the standard event codes generated by the PenPoint pen device
driver.

eventTipUp

eventTipDown

eventMoveUp

eventMoveDown

eventEnterUp

eventEnterDown

eventExitUp

eventExitDown

eventInProxU p

event()utProxUp

eventStroke

eventTap

eventHoldTimeout

Meaning

Pen tip in proximity

Pen tip touches the screen.

Pen moved while in proximity.

Pen moved while touching the screen.

Pen entered a window in proximity.

Pen entered a window touching the screen.

Pen exited a window in proximity.

Pen exited a window touching the screen.

Pen entered proximity while not touching the screen.

Pen exited proximity while not touching the screen.

Pen made a stroke.

Pen made a tap.

Pen down and hold timed out.

PenPoint includes device drivers
for the pen (described in Chapter
54) and the keyboard (described
in Chapter 55).

53.2

53.2.1

CHAPTER 53 I INPUT SUBSYSTEM API 569
Input Subsystem Constants

These event codes are not used to set the INPUT_EVENT devCode for pen events.
The devCode is a device message derived from the UID of the device object and
the event code. For example, when the user touches the pen to the screen, the pen
device driver generates an INPUT_EVENT with devCode set to msgPenDown. The
PEN.H header file defines msgPenDown with the MakeMsgO macro, using the
UID of the pen device and the unique event code:

idefine msgPenDown MakeMsg(clsPen, eventTipDown)

Input Event Status Codes 53.2.3

A method for handling an input event must return an event status. For example,
suppose your client code receives msglnputEvent and determines that an
eventOutProxUp event has occured. The client switches to a method that does
whatever processing is appropriate for that event. That method could return
stslnputGrabContinue when it has processed the event to indicate that the client
wants to grab subsequent events until further notice and that the input system
should continue passing the event through the input registry. Chapter 52, Event
Processing, discusses input event status values in more detail.

Window Input Flags

The creator of a window must set the window input flags to indicate what types
of pen input events the input system should send to the window. Mter creating a
window, you can read and modify these flags with msgWinGetFlags and
msgWinSetFlags. Some of these flags correspond to a type of pen event; when a
window has such a flag set, it receives pen events of the type corresponding to the
flag. Other flags indicate a particular type of input system behavior. Table 53-2
summarizes the available pen input flags for windows.

53.2 .. 4

These flags enable the dispatch
only of pen events.

53~2

Window In
flag

inputTip

inputMoveUp

inputEnter

inputExit

inputInProx

inputOutProx

inputStroke

inputMoveDown

inputHoldTimeout

inputTap

inputNoBusy

inputChar

inputMultiChar

inputMakeBreak

Meaning

Enables TipUp and TipDown events.

Enables MoveUp events.

Enables EnterUp and EnterDown.

Enables ExitUp and ExitDown.

Enables InProxUp and InProxDown.

Enables OutProxUp and OutProxDown.

Enables Stroke events.

Enables MoveDown events.

Enables holdtimeout events.

Enables tap events.

Disables default busy UI processing.

Enables character events.

Enables multiple character events.

Enables receipt of make/break events.

570 PENPOINT ARCHITECTURAL REFERENCE

Part 5 I Input and Handwriting Translation

Flag

inputMoveDelta

inputDestOnly

inputLRContinue

inputDisable

inputResolution

inputlnk

inputlnk Through

inputEnableAll

inputAutoTerm

inputGrab Tracker

inputlnkDisable

inputTransparent

inputSigVerify

Messages

Meartirt$J

Enables compression of move events.

Send if destination == self.

Allows LR dist to continue.

Disables input to the window.

o pixel, I digitizer.

I ink on, 0 ink off.

I to ink in the window instead.

I to allow ALL event to be sent to grabbers.

I to automatically terminate events if Grab doesn't have the event flag enabled ..

I to disable hit detect during grab.

I to disable all pen inking.

I invisible to hit detect (WIN).

I to switch to high-speed sampling.

The input subsystem is primarily procedural, but there are a few messages that it
sends to objects in the input registry. If you create a class of object that is intended
to handle input, it will need to handle msglnputEvent, and may need to handle
some of the other messages summarized in Table 53-3.

Message

msgInputEvent

msgInputFilterTerminated

msgInputGrabPushed

msgInputGrabPopped

msgInputTargetActivated

msgInput TargetDeactivated

pAw$Js

P _INPUT_EVENT

NULL

OBJECT

OBJECT

OBJECT

OBJECT

Table S3~3

stem Me~sages
DescriptiQ!1

Requests that the input registry object process the
specified input event.

Notifies that an input filter is terminated.

Notifies the input registry object that it is losing the
input grab to the specified object.

Notifies the input registry object that the specified
object is giving up the input grab.

Notifies the input registry object that it is the target
object.

Notifies the input registry object that it is no longer
the target object.

CHAPTER 53 I INPUT SUBSYSTEM API 571
Input Subsystem Procedures

Input Subsystem Procedures
The remainder of the input system API is based on a procedural interface. This
section describes all of the input system procedures.

Inserting a Message into the Event Queue

To insert a message into the event queue, call the function InputEventlnsertO.

Applications use InputEventinsertO to insert event messages into the inpuJ stream
and utilize the input system's distribution mechanisms. You can add an event at
the end of the input queue (to be processed after all events already in the queue)
or at the head of the queue (to be processed before other events in the queue). The
prototype for the function is:

STATUS EXPORTEDO InputEventInsert{
P_INPUT_EVENT pEvent, II pointer to the event structure
BOOLEAN stamp II true for end of queue, false for head

) ;

pEvent is a pointer to an event data structure with at least the devCode and
originator fields filled in.

If you want to add the event to the end of the queue, set stamp to TRUE. This
causes InputEventlnsertO to stamp the event with the current system clock value.

If you set stamp to FALSE, InputEventinsertO will not stamp the event with the
current system clock value. This will insert the input event at the head of the
input queue.

Adding a Filter

To add an event to the input filter list, call the function InputFilterAddO. The
prototype for the function is:

STATUS EXPORTED InputFilterAdd{
OBJECT listener, II object to add to the list

53.3

53.3.1

53.3.2

U8 priority II priority within the list, 0 high, 255 low
) ;

listener is the UID of the filter object to be placed on the filter list.

priority is a value from 0 to 255 that indicates the relative priority of the filter.
This value specifies the position of the filter in the list.

Filters are inserted into the list in priority order, the higher the priority, the closer
to the head of the list. More than one filter can have the same priority; within a
single priority, filters are sorted in the order in which they are added.

Removing a Filter

To remove an object from the filter list, call the fuction InputFilterRemoveO. The
function prototype is:

STATUS EXPORTEDO InputFilterRemove{
OBJECT listener II object to be removed

) ;

53.3.3

572 PEN POINT ARCHITECTURAL REFERENCE

Part 5 / Input and Handwriting Translation

listener is the UID of the filter object that you want to remove from the list.

SeHing the Input Grabber

To set an object that grabs all input events as they are popped from the event
queue, call the function InputSetGrabO. This function grabs input events rather
than returning the stsInputGrab code from an event. The input system will send
msgInputGrabPushed to the prior grab object, if any.

This function may be called during the processing of an input message even if
another object currently is grabbing input. The system will correctly create the
new grab object after the response for the input message is returned.

The function prototype is:

STATUS EXPORTED InputSetGrab(
OBJECT grabber, II object Id for new grabber
U32 flags II flags for use during grab (ORd with windowflags)

) ;

grabber is the object to send input events.

flags are flags specific to the grab object.

If the grab was successful, the function returns stsO K.

GeHing Grab Information

To get information about the grab object, call the function InputGetGrabO. The
function prototype is:

void EXPORTED InputGetGrab(
P_OBJECT pGrabber,
P_U32 pFlags

) ;

II object Id for graber
II current Grab flags

InputGetGrabO sets grabber to the UID of the current grab object, and flags to
the current grab flags. If there is no grabber, the function sets grabber to NULL.

SeHing the Input Target

To make an object the target of input system messages that are not redirected by
filters and grabs, call the function InputSetT argetO. The function has the
prototype:

STATUS EXPORTED InputSetTarget(
OBJECT target, II new target object
U32 flags II new target flags

) ;

target is the UID of the object that is the new target for input event messages.

flags specifies filter flags for the target object.

Applications do not normally call this function. It is used by the application
framework's selection model to redirect input.

53.3.6

CHAPTER 53 I INPUT SUBSYSTEM API 573
Input Subsystem Procedures

"., GeHing the Target
To get the UID of the current Input target, call the function InputTargetGetO.
The function prototype is:

OBJECT EXPORTED InputGetTarget(void);

The function has takes no parameters. It returns the object UID of the current
target object.

53.3.7

Chapter 54 / Pen Event

The pen and screen act in concert to produce a series of events based on the
windows presently displayed on the screen. When the pen is held out of proximity
of the screen, no events are generated. A typical sequence of events generated by
the pen include:

1 An in-proximity (msgPenlnProxUp) event is generated when the pen 'fIrst
comes within the sensing range of the screen.

2 As the pen moves over the window, move events (msgPenMoveUp) are sent
to the window.

3 When the pen touches down in the window, a pen-down event
(msgPenDown) is sent to the window.

4 As the pen moves around the window, more move events
(msgPenMoveDown) are sent to the window.

S As the pen crosses the window boundary, a pen exit event (msgPenExitUp or
msgPenExitDown) is sent to the exited window, and a pen enter event
(msgPenEnterUp or msgPenEnterDown) message is sent to the entered
window.

6 When the pen is lifted from the screen, a pen-up event(msgPenUp) is sent to
the window.

7 When the pen leaves the sensing range of the screen, a out-proximity
(msgOutProxUp) event is sent to the window.

Pen Event Data
This section describes how the fields in the input event data structure are filled

. in for the pen event types. These definitions are for pen events generated by the
standard PenPoineM pen driver.

The input event data structure for pen events includes the following fields:

devCode a message representing the type of input event.

timestamp the time at which the event entered the input queue, measured
in milliseconds from system startup.

xy where on the screen the event occurred, in local window coordinates.

listener not used for pen events.

destination the UID of the window to receive the input event. Normally,
this is the frontmost window that does not have inputT ransparent set.

originator the object that generated the event. For pen events, the
originator is always thePen.

The input system sends pen
events to each window according
to the window's input flags, as
described in Chapter 53, Input
Subsystem API.

576 PENPOINT ARCHIT'ECTURAL REFERENCE
Part 5 / Input and Handwriting Translation

eventData for pen events, a PEN_DATA structure (defined in PEN.H)

containing the location of the pen in hardware digitizer coordinates
(penXY) and a pointer to any stroke data associated with the event
(pStroke).

The following sections describe each of the pen input event types and summarize
the event data for each type.

msgPenDown

The input subsystem sends msgPenDown when the pen tip changes touched the
screen. The event data structure contains the following information:

Fi~!d

devCode msgPenDown

Table 54~1

timestamp the time at which the event entered the input queue, measured in milliseconds from

xy

listener

destination

originator

eventData
penXY
pStroke

msgPenUp

system startup.

where the event occurred, in LWC

not used

frontmost window without inputTransparent

the object that generated the event. For pen events, the originator is always thePen.

digitizer location of the pen
pNull

54.1.2

The input subsystem sends msgPenUp when the pen tip is lifted from the screen.
The event data structure contains the following information:

Fle!d

devCode

timestamp

xy

listener

destination

originator

eventData
penXY
pStroke

m

msgPenUp

the time at which the event entered the input queue, measured in milliseconds from
system startup.

where the event occurred, in LWC

not used

frontmost window without inputTransparent

the object that generated the event. For pen events, the originator is always thePen.

digitizer location of the pen
pNull

CHAPTER 54 / PEN EVENTS 577

,.,.. msgPenMoveUp and msgPenMoveDown

The input subsystem sends msgPenMoveDown when the pen tip is moved over
the surface of the screen. The pen must move at least one pixel to generate these
events (see inputResolution). Depending on how quickly the pen moves, the
reported points will not necessarily be adjacent pixels. The event data structure
contains the following information:

Pen Event Data

54.1.3

Table 54~3
PenMoveDown ,",,"'N"-"""''''' Data

Field

devCode

timestamp

xy

listener

destination

originator

eventData
penXY
pStroke

msgPenMoveUp or msgPenMoveDown

the time at which the event entered the input queue, measured in milliseconds from
system startup.

where the event occurred, in L WC

not used

frontmost window without inputTransparent

the object that generated the event. For pen events, the originator is always thePen.

digitizer location of the pen
pNull

msgPenEnterUp and msgPenEnterDown 54~ 1.4

The input subsystem sends when msgPenEnterUp and msgPenEnterDown when
the pen tip enters a window diplayed on the screen which has inputEnabled and is
not inputTransparent. The event data structure contains the following
information:

Field

devCode

timestamp

xy

listener

destination

originator

eventData
penXY
pStroke

lable 54-4
msgPenEnterUp and tnsgPenEntet·Do~?tl Event Data

msgPenMoveUp or msgPenMoveDown

the time at which the event entered the input queue, measured in milliseconds from
system startup.

where the event occurred, in L we
not used

frontmost window without inputTransparent

the object that generated the event. For pen events, the originator is always thePen.

digitizer location of the pen
pNull

578 PENPOINT ARCHITECTURAL REFERENCE
Part 5 I Input and Handwriting Translation

msgPenExitUp and msgPenExitDown

The input subsystem sends msgPenExitUp and msgPenExitDown to the last
window that was entered when the pen tip enters another window. The event data
structure contains the following information:

54.1.5

54-5
«::MIIWAft ~'V 1I .. ,III'I "'AAI'n Event Data

field

devCode msgPenExitUp or msgPenExitDown

timestamp the time at which the event entered the input queue, measured in milliseconds from

xy

system startup.

where the event occurred, in LWC

not used

frontmost window without inputTransparent

listener

destination

originator

eventData

the object that generated the event. For pen events, the originator is always thePen.

penXY
pStroke

msgPenlnProxUp

digitizer location of the pen
pNull

The input subsystem sends msgPenInProxUp when the pen tip moves into the
sensing range of the screen. The event data structure contains the following
information:

ms PenlnProxUp and m

devCode msgPenInProxUp

54.1 ~6

timestamp the time at which the event entered the input queue, measured in milliseconds from

xy

listener

destination

system startup.

where the event occurred, in LWC

not used

frontmost window without inputTransparent

originator

eventData
penXY
pStroke

the object that generated the event. For pen events, the originator is always thePen.

msgPenOutProxUp

digitizer location of the pen
pNull

The input subsystem sends msgPenOutProxUp when the pen leaves the sensing
range of the screen. The event data structure contains the following information:

54.1.7

Field

devCode

timestamp

xy

listener

destination

originator

eventData
penXY
pStroke

msgPenStroke

Contents

msgPenOutProxU p

CHAPTER 54 I PEN EVENTS 579
Pen Event Data

Table 54-7
msgPenOutProxUp Event Data

the time at which the event entered the input queue, measured in milliseconds from
system startup.

where the event occurred, in L WC

not used

frontmost window without inputTransparent

the object that generated the event. For pen events, the originator is always thePen.

digitizer location of the pen
pNull

54.1 ~8

The input subsystem sends msgPenStroke between the msgPenDown and
msgPenUp events and passes the collected stroke points (at digitizer resolution).
The event data structure contains the following information:

Field

devCode msgPenStroke

timestamp the time at which the event entered the input queue, measured in milliseconds from

xy

listener

destination

system startup.

where the event occurred, in L WC

not used

frontmost window without inputTransparent

originator

eventData
penXY
pStroke

the object that generated the event. For pen events, the originator is always thePen.

digitizer location of the pen
pointer to the stroke data, a PEN_STROKE structure (see PEN.H)

msgPenTap

The input subsystem sends msgPenTap when the pen tip goes Down-Up within a
fixed amount of time. Multiple taps are counted and the count is passed in a
subfield of eventData. This event is generated in addition to the normal
msgPenDown/msgPenUp sequence. The event data structure will have the
following information:

54.1.9

580 PENPOINT ARCHITECTURAL REFERENCE
Part 5 I Input and Handwriting Translation

Field

devCode

timestamp

xy

listener

destination

originator

eventData
penXY
taps

msgPenTap

the time at which the event entered the input queue, measured in milliseconds from
system startup.

where the event occurred, in LWC

not used

frontmost window without inputTransparent

the object that generated the event. For pen events, the originator is always thePen.

digitizer location of the pen
penTapCount, the number of taps before timeout

Chapter 55 / Keyboard Events

Unlike pen events, keyboard events are not associated with a particular screen
location. When keyboard events are routed through the input subsystem, they
typically are sent to the input target object maintained by the selection manager.

Keyboard Event Data
This section describes how the fields in the event data structure are filled in for the
keyboard event types. The input event data structure for keyboard events includes
the following fields:

devCode a message representing the type of input event.

timestamp the time at which the event entered the input queue, measured
in milliseconds from system startup.

xy Keyboard events have no associated screen location. To indicate this, the
x and y coordinates of xy are both set to minS32 for keyboard events.

listener not used for keyboard events.

destination the object which is to receive the event. For keyboard events,
destination is always null. The selection manager keeps track of which
object is to receive keyboard events.

originator the object which generated the event.

eventData a KEY_DATA structure (defined in KEY.H) containing infor-
mation about the kyboard event, such as the keycode of the pressed key.

For keyboard events, the eventData field of the event data structure is a
KEY_DATA structure (defined in KEy'H). The KEY_DATA structure, which is
specific to keyboard events, contains the following fields:

keyCode the ASCII value associated with the key.

scanCode the scan code that the keyboard associates with the key. This
value is specific to the type of keyboard, and therefore any code which
relies on it is hardware-dependent.

shiftState the state of the shift, control, alt, and other keyboard modifiers at
the time the key was pressed. The various shift states are defined in KEY.H.

repeatCount the number of times this ASCII character character has been
repeated. In the case of msgKeyMulti events, the number of entries in
the multi array.

multi an array of KEY_MULTI structures, representing a number of
keypresses queued for processing in a single event. A KEY_MULTI

structure includes every field that a KEY_DATA structure includes, except
for the multi field (see KEY.H for more details).

KEY.H describes keyboard input
event APls. Do not confuse it
with KEYBOARD.H, which provides
support for software keyboard
emulations.

582 PEN POINT ARCHITECTURAL REFERENCE

Part 5 / Input and Handwriting Translation

The following sections' describe each of the pen input event types and summarize
the event data for each type.

msgKeyDown
The input subsystem sends msgKeyDown when a key is depressed. The
msgKeyDown event data structure contains the following information:

field

devCode msgKeyDown

timestamp

xy

time the event entered the input queue, in milliseconds since system startup

(minS32, minS32)

listener

destination

originator

eventData
keyCode
scancode
shiftState
repeatCount
multi

msgKeyUp

not used

null

object which generated the event

null
scan code for the key
shift state when the key was pressed
1
null

55.1,,2

The input subsystem sends msgKeyUp when a key is released. The msgKeyUp
event data structure contains the following information:

fjeld

devCode

timestamp

xy

listener

destination

originator

eventData
keyCode
scancode
shiftState
repeatCount
multi

Table SS~2
ms Event Data

msgKeyUp

time the event entered the input queue, in milliseconds since system startup

(minS32, minS32)

not used

null

object which generated the event

null
scan code for the key
shift state when the key was pressed
1
null

CHAPTER 55 I KEYBOARD EVENTS 583
Keyboard Event Data

"" msgKeyChar
.The input subsystem sends msgKeyChar after the msgKeyDown event; the
message yields the translation of the key scan code and the shift state into an
ASCII key code. This event is sent whenever a new key is depressed and whenever
the processing for the same key has completed. If the ASCII key code is the same
as the last one reported, the repeatCount value is incremented. The msgKeyChar
event data structure contains the following information:

Field

devCode

Contents

msgKeyChar

55~ 1 ~3

timestamp

xy

time the event entered the input queue, in milliseconds since system startup

(minS32, minS32)

listener

destination

originator

eventData
keyCode
scancode
shiftState
repeatCount
multi

msg KeyMu Iti

not used

null

object which generated the event

ASCII character associated with the key
scan code for the key
shift state when the key was pressed
number of repeats since last msgKeyChar
null

The input subsystem sends msgKeyMulti after the msgKeyChar; the message is
used to group sequences of characters into a single event. This single event
summarizes all msgKeyChar events since the last time that a msgKeyMulti event
was sent. Because the msgKeyMulti event duplicates the information in the
msgKeyChar events, process either msgKeyChar or msgKeyMulti messages, not
both. The msgKeyMulti event data structure contains the following information:

field

devCode

timestamp

xy

listener

destination

originator

eventData
keyCode
scancode
shiftState
repeatCount
multi

msgKeyMulti

time the event entered the input queue, in milliseconds since system startup

(minS32, minS32)

not used

null

object which generated the event

null
null
null
number of KEY_MULTI structures in the multi array
an array of KEY_MULTI structures

Chapter 56 / Using clslP

dsIP is called to create insertion pads for use as UI components in applications.
Insertion pads are windows that accept pen input, accumulating the strokes in a
scribble object and handing the accumulated stroke information to a translation
object when the user has finished entering input.

Topics covered in this chapter are:

• Creating and destroying insertion pads.

• Inserting an insertion pad into a parent window.

• Deleting an insertion pad.

• Handling the translation data.

clslP Messages
dsIP inherits from dsBorder. Table 56-1 summarizes the messages dsIP defines.

Message

msgNew

msgN ewDefaults

msgIPGetStyle

msgIPSetStyle

msgIPGet Translator

msgIPSet Translator

msgIPGetClient

msgIPSetClient

msgIPSetString

msgIPf ranslate

msgIPCancelled

msgIPClear

pitrgs

IP_NEW

P_IP_NEW

P_IP_STYLE

P_IP_STYLE

P_OBJECT

P_OBJECT

P_OBJECT

P_OBJECT

P_CHAR

BOOLEAN

OBJECT

OBJECT

Creates a new insertion pad object.

Initializes the IP _NEW structure to default values.

Passes back the style flags for the IP.

Changes the style flags for the IP.

Passes back the translator for the IP.

Sets the translator for the IP.

Passes back the client of the IP.

Sets the client of the IP.

Stores a string into the IP.

Forces the translation of scribbles in the IP.

Indicates cancellation of the IP.

Clears the value in an IP.

586 PENPOINT ARCHITECTURAL REFE,RENCE
Part 5 I Input and Handwriting Translation

msgIPCopied

msgIPDataAvailable

msgIPTransmogrified

m~gIPGetXlateData

msgIPGetXlateString

msgFree

msgSave

msgRestore

msgSetOwner

msgSPaperXlateCompleted

msgWinStartPage

msgCstmLayoutGetChildSpec

msgGWinForwardedKey

msgInput TargetActivated

msg TrackProvideMetrics

msg TrackU pdate

msg TrackDone

OBJECT

OBJECT

OBJECT

P_OBJ_KEY

P_OBJ_SAVE

P _OBJ_RESTORE

P_OBJ_OWNER

OBJECT

Table 56~ 1 (continued)

Indicates data copied or translated from a delayed
state.

Indicates availability of data from the II?

Indicates that the displayType style of the IP has
been changed.

Returns the translated data from the insertion pad
via an xlist.

Used instead of msgIPGetXlateData if a simple
string is needed.

Defined in CLSMGR.H.

Defined in CLSMGR.H.

Defined in CLSMGR.H.

Defined in CLSMGR.H.

Defined in SP APER.H.

nothing Defined in WIN.H.

P _CUSTOM_LAYOUT _CHILD _SPEC Defined in CLAYOUT.H.

P_INPUT_EVENT Defined in GWIN.H.

OBJECT Defined in INPUT.H.

P_TRACK_METRICS

P_TRACK_METRICS

P_TRACK_METRICS

Defined in TRACK.H.

Defined in TRACK.H.

Defined in TRACK.H.

Creating an Insertion Pad 56 .. 2

Normally, you create an insertion pad as you build up and initialize the user
interface for your application. You send msgNew to clsIP to get a new insertion
pad object, and msgWinlnsert to insert the insertion pad as a child window of
one of the windows in the VI for your application. Typically, you will insert the
new insertion pad into a,custom layout.

If the insertion pad is created in response to user activity, it will be inserted into
the window tree as a child of the window where the activity took place, causing it
to "pop up" on the display.

To create a new insertion pad, you must initialize an IP _NEW typed structure
variable by sending it along with msgNewDefaults to clsIP. When the filled-in
structure is returned you may modify the fields to get the insertion pad behavior
that·is appropriate for your application.

Like all UI Toolkit classes, clslP
inherits from clsWin, which
means that you can insert them
into a tree of windows.

CHAPTER 56 / .USING clslP 587
Setting the Translator Obiect

The most interesting fields to modify for an insertion pad are the ones that
control the style of the insertion pad. Of these, the ip.style.displayType field
creates the most common visible aspect of the insertion pad. Table 56-2 lists the
possible values of the ip.style.displayType field.

Table S6~2
Insertion Pad UI S es

Style Setting

ips RuledLi nes

ipsCharBox

ipsCharBoxButtons

ips Signature

ipsBlank

Description

Standard ruled lines.

Character boxes.

Same as ipsCharBox.

Signature pad.

Same as ipsSignature.

Displaying the Insertion Pad
Mter you create the insertion pad, you must insert it into a window tree to make
it visible. To insert the IP into a window tree, set its wm.parent to the intended
parent window and send it msgWinlnsert. The following code fragment shows
how to insert a new insertion pad object into the main window of an application:

II
II Insert the pad into the window.
II
pInst->iPad = ipNew.object.uidi
wm.parent = pInst->parentWini
wm.options = wsPosToPi
ObjCallRet(msgWinInsert, ipNew.object.uid, &wm, s);

When exprWin is displayed, the insertion pad will be displayed in front of it
(wsPosTop). This is how the parent/child window relationship works: the status of
the parent window (displayed or not) determines the status of the child window.

Deleting an Insertion Pad
To extract an insertion pad from the display, send msgWinExtract to the IP
object. To make the insertion pad appear on the screen again, send msgWinlnsert
to the object. These dsWin messages are described in Part 3: Windows and
Graphics. To destroy the object completely and free the memory used by the
instance, send msgDestroy to the object. The consequences of destroying an
object are discussed in Part 1: Class Manager.

SeHing the Translator Obiect
When you are creating an insertion pad, you should have at hand an already
created translation object so that you can pass its UID in the msgNew structure
for the new insertion pad.

56.3

56.4

56.5

588 PENPOINT ARCHITECTURAL REFERENCE
Part 5 I Input and Handwriting Translation

You can also dynamically change the translator object for an insertion pad. For
example, you might want to change from alphabetic character translation to
numeric translation based on some mode in your form. To do this you must first
create the new translator object, and then send its UID in the pArgs (which is a
simple P _OBJECT structure) for msgSetTranslator to the insertion pad Instance.

Handling Xlist Data
Your application must be ready to handle msgIPDataAvailable which is a clsIP
message. The insertion pad and translation objects are designed to integrate well
together, so you don't need to oversee the input control and data handling that
occurs between them during a translation. When you create an insertion pad you
register the client in the ip.client field. Typically, you enter self (your application)
in this field. This registers the client in a notification list for the insertion pad
object when it is created. The insertion pad is in turn registered in the notification
list for the translator object that is attched to it. When the translator is done it
notifies the insertion pad which in turn notifies the client that the translated input
is ready.

The data is returned in the form of a dynamic array called an Xlist. The
IP _XIATE_DATA data type is used to handle the specific type ofXlist handed back
by an insertion pad.

After being notified the data is ready with msgIPDataAvailable, the client must
send msgIPGetXlateData to the insertion pad. msgIPGetXlateData takes an
IP _XIA TE_DATA structure as its pArgs.

Once you have received the data back in the IP _XIA TE_DATA structure, Xlist.H

defines several functions that you can use to decompose the raw Xlist. Table 56-3
lists the more important functions for extracting Xlist information:

To avoid memory leaks, always
delete the old translation object
when you delete the IF or reset
its translator.

56.6

Table 56-3
Some Xlist Functions

Fum:tic:m

Xlist Traverse 0
XlistGetPtrO

XlistGetO

Xlist2GestureO

Xlist2S tringO

Description

Iterate across the list of elements.

Return a pointer to a specific element.

Return a copy of a specific element.

Extracts the gestures from an Xlist.

Extracts the text from an Xlist.

Most Xlist functions are described in Chapter 60, Using Xlists. \PENPOINT\SOK\

SAMPLE\AOOER, a sample program included with the PenPoint™ Software
Developer's Kit, provides a good example of the use of insertion pads and
translators.

Chapter 57 / Using clsSPaper

dsSPaper (scratch paper) is called to create a view object that will both display a
user interface window that accepts pen input and manage the collected input in a
data object called a scribble. Additionaly, instances of dsSPaper have the built-in
facility to attach and manage a translator object from the handwriting translation
classes.

Topics covered in this chapter are:

• dsSPaper messages.

• Subclassing dsSPaper in your application.

• Rendering feedback with a drawing context.

• Handling the translation message cycle.

clsSPaper Messages
dsSPaper inherits from dsView. Table 57-1 summarizes the messages defined by
dsSPaper.

msgNew

msgN ewDefaults

msgSPaperGetFlags

msgSPaperSetFlags

msgSPaperGetCellMetrics

msgSPaperSetCellMetrics

msgSPaperGetSizes

msgSPaperSetSizes

msgSPaperGet Translator

msgSPaperSetT ranslator

msgSPaperGetScribble

P _SP APER_NEW

P _SPAPER_NEW

P_U16

P_U16

P _SPAPER_ CELL_METRICS

P _SPAPER_ CELL_METRICS

P_SIZE16

P_SIZE16

P_OBJECT

P_OBJECT

Creates a new clsSPaper object.

Intializes the SP APER_NEW structure to default
values.

Passes back the flags.

Sets the flags.

Passes back the metrics for the internal divisions.

Changes the cell metrics and resizes window.

Passes back the line height and character width sizes,
in points.

Sets the line height and character width sizes, in
points.

Passes back the translator object uid.

Replaces the translation object, passes back the old
translator.

Passes back the scribble object (may be NULL).

590 PEN POINT ARCHITECTURAL REFERENCE
Part 5 / Input and Handwriting Translation

Mes$@%]e

msgSPaperSetScribble

msgSPaperClear

msgSPaperAddStroke

msgSPaperLocate

msgSPaperDeleteStrokes

msgSPaperComplete

msgSPaperAbort

msgSPaperXlateCompleted

NULL

P _INPUT_EVENT

P _SP APE~LOCATE

P_RECT32

nothing

nothing

OBJECT

msgSPaperGetXlateData P _XLATE_DATA

msgSPaperGetXlateDataAndStrokes P _SP APER_XDATA

msgFree P_OBJ_KEY

msgSave P_OBJ_SAVE

msgRestore P _0 BJ_RESTORE

msgXlateCom pleted nothing

msgWinRepaint nothing

msg WinSized P _WIN_METRICS

msg WinLayoutSelf P _WIN_METRICS

msgInputEvent P _INPUT_EVENT

clsSPaper Facilities

Descripti@~

Replaces the SPaper scribble object. Returns the old
scribble object through P _OBJECT.

Clears the stored strokes.

Add a stroke to the spaper and scribble.

Sub-class call to set up for stroke processing.

Deletes the strokes under the given rectangle.

Indicates that stroke entry is done.

Indicates that stroke entry is cancelled.

Sent when there is data to get out of the translator.

Returns the latest translated data.

Passes back the latest translated data with the stroke
data.

Defined in CLSMGR.H.

Defined in CLSMGR.H.

Defined in CLSMGR.H.

Defined in XLATE.H.

Defined in WIN.H.

Defined in WIN.H.

Defined in WIN.H.

Defined in INPUf.H.

57.2

clsSPaper provides general facilities for accepting pen input on the screen,
handling the collected data, performing a tfanslation on the pen data, and
rendering user feedback. Other more specialized classes such as clsIP use
clsSPaper's general functionality, and then wrap a useful component or toolkit
interface around it. With clsIP you only need to set a style flag to get various
forms of pen input capture and translation. Using these clsSPaper-based
componen~s makes it easier for you to build advanced input capabilities in the
use~ interface for your application.

clsSPaper maintains a scribble object and a translator object. As a descendent of
clsView, it displays a window and the data object that it maintains is the scribble.
It then orchestrates interaction with the input subsystem so that pen strokes are
accumulated in the scribble data object.

clsSPaper manages the window display with options that will display rule lines
or character boxes to aid handwriting input. Because clsSPaper maintains the
scribble data object, you can ask clsSPaper to redisplay the user's original digitized
input.

CHAPTER 57 I USING clsSPaper 591
clsSPaper Facilities

Whenever the user terminates input at the screen (different styles of termination
are options that are settable) clsSPaper passes the accumulated scribble data to a
translator object. When the translator object has completed its pass on the data,
clsSPaper notifies the client that the translation data is available for processing .

• Examples

To use clsSPaper directly in your application VI, you should create a subclass of
clsSPaper that adds the particulars necessary for the capture and translation of pen
input. Your subclass will need to add:

• Rendering for user feedback in the window.

• clsSPaper options for input and translation styles.

This section provides examples showing the steps to do this using the sample
program WriterApp. The application source files are part of the PenPoint™ SDK
distribution, in the directory \PENPOINT\SDK\SAMPLE\WRITERAP.

It x,tuyu:ue 57 m 1

Using a Feedback
Your clsSPaper-based window will need to show some sort of feedback as the user writes input in it. This example shows
how WriterApp sets up a drawing context (DC) so that it will print text characters in the window after the translation
is done.

WriterCompletedO is the message handler for msgSPaperXLateCompleted, which clsSPaper self-sends when the user has
completed input and the translation object has finished the translation. You will see in a moment how to set up a window as
a subclass of clsSPaper, so that self (the window object) inherits the capability to self-send msgSPaperXLateCompleted.

1**
WriterCompleted
Called when the translation is complete. Will get xlist from the spaper
(self), set up a de to draw the text, and traverse the xlist to draw the
text.

***1
MsgHandler(WriterCompleted)
{

XLATE_DATA xData;
SHOW_DATA show;
SYSDC_NEW dcNew;
STATUS s;
II Get the translated data from the spaper (self)
xData.heap = osProeessHeapld;
ObjCallRet(msgSPaperGetXlateData, self, &xData, s);
II Convert the xlist form bounds/word/bounds/word pairs to
II bounds/text/bounds/text
XList2Text(xData.pXList);
II Create a drawing context to paint the text and initialize
ObjeetCall(msgNewDefaults, elsSysDrwCtx, &deNew);

ObjCallRet(msgNew, elsSysDrwCtx, &dcNew, s);
ObjeetCall(msgDcSetWindow, deNew.object.uid, self);
ObjeetCall(msgDeUnitsDevice, dcNew.object.uid, Nil(P_ARGS));

592 PEN POINT ARCHITECTURAL REFERENCE
Part 5 I Input and Handwriting Translation

ObjectCall(msgDcSetForegroundRGB, dcNew.object.uid, (P_ARGS)sysDcRGBBlack);
ObjectCall(msgDcSetBackgroundRGB, dcNew.object.uid, (P_ARGS)sysDcRGBWhite);
II Set up the font of the drawing context to something reasonable
SetupFont(SysDcFontld("HE55"), 16, 16, dcNew.object.uid);
II Begin painting
ObjCallJmp(msgWinBeginPaint, dcNew.object.uid, Nil(P_ARGS), s, error);
II Traverse the xlist and display the text
show.self = self;
show.dc = dcNew.object.uid;
XListTraverse(xData.pXList, ShowText, &show);

error:
LI End the painting, destroy the drawing context, and free the xlist
ObjectCall(msgWinEndPaint, dcNew.object.uid, Nil(P_ARGS));
ObjectCall(msgDestroy, dcNew.object.uid, Nil(P~ARGS));
XListFree(xData.pXList);
return stsOK;
MsgHandlerParametersNoWarning;

Parsing the Xlist Data
The first thing that WriterCompletedO does is ask for the translated data in the
form of an Xlist. Because clsSPaper automatically manages a scribble data object
and a translator object, you don't need to worry about these. The method simply
sends msgSPaperGetXLate data to the client object self. The message will find its
way up to the ancestor clsSPaper and be processed correctly. The data is returned
and further formatted by being passed through the Xlist2T ext filter function.

Rendering the Translated Text
ThenWriterCompletedO sends a series of messages to clsSysDrwCtx to create
and initialize a DC. The local SetUpFontO function opens and sets the
characteristics of the font for the DC. Finally, the DC is activated when the Xlist
is traversed with the XlistTraverse function. This call contains a pointer to the
local Show TextO function which actually pulls the characters from the Xlist and
plugs them into the DC. The window repaints whenever data is released to the
DC, because msgWinBeginRepaint was sent to the DC giving it the right to
repaint the window with new rendering.

Subelassing elsSPaper
WriterApp's main window is a view object that incorporates both the inherited
functionality from dsSPaper as well as the customization in WriterCompletedO.
To do this requires a subclass of clsSPaper with additional behavior. The following
example from WriterApp's WriterInitO function shows how to create a subclass of
cslSPaper called clsWriter.

57,,3

57.4

51.5

CHAP~ER 57 I USING clsSPaper 593
Creating an Instance of a clsSPaper

Example 57-2

Creating a Subclass of clsSPaper
This example shows how to create a subclass of cIsSPaper. It starts by sending msgNewDefaults to clsClass, assigning the
ClASS_NEW variable c to contain the defaults for all new classes. The following statements set the values specific to the new
class, such as its UID (cIs Writer) and ancestor in the class hierarchy (cIsSPaper). Finally, it uses this completed ClASS_NEW

structure as the argument to msgNew, to which cIsClass responds with the new class.

1***
WriterInit
Intalls the clsWriter class. This is a subclass of spaper.
**1

STATUS GLOBAL WriterInit(void)
{

CLASS_NEW Ci

ObjectCall(msgNewDefaults, clsClass, &C)i

c.object.uid = clsWriteri
c.object.cap 1= objCapCalli
c.object.key = (OBJ_KEY)clsWriteri/
c.cls.pMsg = clsWriterTablei
c.cls.ancestor clsSPaperi
c.cls.size = Nil(SIZEOF)i II no instance data
c.cls.newArgsSize = SizeOf(SPAPER_NEW)i
return ObjectCall(msgNew, clsClass, &C)i

Crealing an Inslance of a clsSPaper
Subclass
Now that you have defined this special view class, you need to build the appli
cation shell that will run it. The applkation provides hooks into the PenPoint
application environment-it registers the application as an entry in the stationery
menu, provides a frame with a title bar and close corner, and in this example it
provides a local menu bar that allows the user to select the type of translation
object to use.

51.6

This code fragment shows how the application initializes its user interface. It creates an instance of cIsWriter to be used as
the main window in the application. It also sets up a menu for selecting translation styles, and creates a first default translator
object to be attached to the cIs Writer instance when the application is opened. WriterAppInitO is called whenever the user
launches an instance of the application.

1***
WriterAppInit

Initialize the display for the first time.
**1
MSG_HANDLER WriterAppInit(

const MESSAGE
const
const
const

OBJECT
P ARGS
CONTEXT

msg,
self,
pArgs,
ctx,

594 PENPOINT ARCHITECTURAL REFERENCE
Part 5 / Input and Handwriting Translation

const P IDATA pData)

APP METRICS am;

FRAME METRICS fmi
WIN METRICS WIn;
MENU NEW mNew;
SPAPER NEW sNew;
STATUS s;
II Ancestor called in method table
II Get the main window
ObjCallRet(msgAppGetMetrics, self, &am, s);
II Create the client window
ObjCallRet(msgNewDefaults, clsWriter, &sNew, s);
sNew.sPaper.flags 1= spCapture 1 spRedisplay 1 spGrab 1 spProx;
ObjCallRet(msgNew, clsWriter, &sNew, s);
II Create the menu bar
ObjectCall(msgNewDefaults, clsMenu, &mNew);
mNew.menu.style.type = msTypeMenuBari
mNew.tkTable.pEntries = menuBar;
mNew.tkTable.client = self;
ObjCallRet(msgNew, clsMenu, &mNew, S)i

II Set the client window and menu bar in the application frame
ObjCallRet(msgFrameGetMetrics, am.mainWin, &fm, s);
fm.clientWin = sNew.object.uid;
fm.style.menuBar = true;
fm.menuBar = mNew.object.uid;
ObjCallRet(msgFrameSetMetrics, am.mainWin, &fm, s);
II Force a translator (word) to be created
ObjectCall(msgWriterAppTranslator, self, (P_ARGS)O);
II Force the applicaiton to lay itself out
WIn.options = wsLayoutResize;
ObjectCall(msgWinLayout, am.mainWin, &WIn);
return stsOK;
MsgHandlerParametersNoWarning;

SeHing the clsSPaper Input Flags
One of the first things WriterApplnitO does is send msgNew to dsWriter to get a
new instance of your special view class. As a part of the pArgs for this message, the
application sets several flags that control the input termination style and pen
inking behavior. The flags are defined in SPAPER.H. Table 57-2 lists the dsSPaper
input flags briefly to show what is available.

57.7

CHAPTER 57 I USING clsSPaper 595
Dynamically Setting the clsSPaper

Table 57~2

clsSPaper Input FI~gs~"~",",,,
Meaning when set

save scribbles between translations

out of proximity calls msgSPaperComplete

top left is fixed during resize

Input Flag

spCapture

spProx

spFixedPos

spPenCoords

spGrab

spScribbleEdit

spRedisplay

spSuppressMarks

spRuling

spVRuling

spGrid

spBaseLine

spTick

window-relative pen coordinates from Xlist (for xtPolyline and xtSpline only)

grab input on penDown, release after msgSPaperAbort or msgSPaperComplete

enable scribble editing

redraw and display strokes

disable spRuling, sp VRuling, sp Tick and spGrid display

enable horizontal ruling

enable vertical ruling

enable grid lines (with spRuling)

make horizontal rules a baseline

enable tick marks (with spRuling)

Mter building the application menu (the menu table entries are defined at the top
of WRITERAP.C) , WriterApplnitO plugs all of the VI elements into the frame
metrics for the application. The clsWriter instance is inserted as the application's
main window with the line:

fm.clientWin = sNew.object.uid;

The metrics are set when the method sends msgFrameSetMetrics.

Dynamically Se"ing the clsSPaper
Translator
The default translator object is set when WriterApplnitO sends
msgWriterAppTranslator to self. This invokes a method WriterAppTranslatorO
that dynamically sets the translation object in the clsWriter instance.

57.8

This code fragment shows the message handler WriterAppTranslatorO. This method is called whenever the user selects a
translation style from WriterApp's Translator menu. It is also called by the initialization method WriterApplnitO when the
application is opened so that the view object will have a default translator when the UI is presented to the user.

Depending on the selection that the user has made in the Translator menu, this method will create a new clsXW"ord or
clsXText object and pass the new object's UID to the view object with msgSPaperSetTranslator.

Because clsWriter is a subclass of clsSPaper, and has its spRedisplay flag set, the view object automatically keeps the scribble
data around between translations. This makes it possible for the user to toggle between translators and retranslate the current
input. This is done with the line:

ObjectCall(msgSPaperComplete, fm.clientWin, null);

596 PENPOINT ARCHITECTURAL REFERENCE
Part 5 /'Input and Handwriting Translation

This in effect simulates an input termination to the view object which then begins the translation using the old scribble data.

1**
WriterAppTranslator
Called when the translator is changed from the menu in the application.
Will create a new translator based on which menu item was chosen and
and give to the spaper. Will cause translation to re-occur.
***1

MsgHandler(WriterAppTranslator)
{

APP_METRICS am;
FRAME_METRICS fm;
XLATE_NEW xNew;
STATUS s;
OBJECT oldTranslator;
ObjCaIIRet(msgAppGetMetrics, self, &am, s);
ObjCaIIRet(msgFrameGetMetrics, am.mainWin, &fm, s);
switch ((U16) (U32)pArgs) {

}

case 0:
IlclsXWord
ObjectCall(msgNewDefaults, clsXWord, &xNew);
ObjCaIIRet(msgNew, clsXWord, &xNew, s);
break;

case 1:
II clsXText with only numbers
ObjectCall(msgNewDefaults, clsXText, &xNew);
xNew.xlate.charConstraints = disableUpperCase I disableLowerCase

I disableCommonPunct I disableOtherPunct;
ObjectCall(msgNew, clsXText, &xNew);
break;

case 2:
II clsXText
ObjectCall(msgNewDefaults, clsXText, &xNew);
ObjectCall(msgNew, clsXText, &xNew);
break;

default:
return stsOK;

II dirty everything for the repaint
ObjejctCal1 (msgWinDirtyRect, fm.clientWin, Nil (P_ARGS));
II force ,the repaint
ObjectCall(msgWinUpdate, fm.clientWin, Nil(P~ARGS));
ObjCaIIRet(msgSPaperGetTranslator, fm.clientWin, &oldTranslator, s);
ObjCaIIRet(msgSPaperSetTranslator, fm.clientWin, &xNew.object.uid, s);
II Free the old translator
if (oldTranslator != objNull)

ObjectCall(msgDestroy, oldTranslator, Nil(P_ARGS));
II force retranslation
ObjectCall(msgSPaperComplete, fm.clientWin, Nil(P_ARGS));
return stsOK;
MsgHandlerParametersNoWarning;

Chapter 58 / Using the
Translation Classes

The translation classes segment the strokes of a scribble object into sets of one or
more strokes and translate the sets into computer-readable characters or other
meaningful content. Different translation classes focus on various types of expected

input such as gestures, letters, numbers, or whole words. The appropriate translator
object can be created by the client according to the context of the input session.

A translation object can accept stroke data from a scribble as the user enters
strokes, or it can wait until the user has completed the input and then translate the
accumulated stroke data. Translator objects return gesture IDs or ASCII character

data to the client in a dynamic array called an Xlist.

The client object that manages the input window, scribble data object, and translator

object is typically an instance of clsView or one of its descendants, such as clsSPaper.
For example, an input pad manages an input window for the purpose of gathering
scribble data from the user. The input pad also manages a translator object, to which
it passes the scribble data for translation.

Topics covered in this chapter are:

• Translation class hierarchy.

• Translation class data structures.

• Handwriting translation flags.

• Translation templates.

• Translation class messages.

In the current version of Pen Po in eM , the translation classes are designed for American

English input. Future versions of Pen Point with international language support will
use an improved approach to handwriting translation.

A stroke is a mark defined
by the path of the pen from
the point at which the pen tip
touches the display to the
point at which it comes up
from the display. A scribble is
simply a collection of strokes.

598 PEN POINT ARCHITECTURAL REFERENCE
Part 5 I Input and Handwriting Translation

Hierarchy of the Translation Classes
The translation classes all descend from clsXtract, which contains the functional
interface to the feature extraction and recognition engine. Figure 58-1 shows the
inheritance hierarchy of the translation classes.

For historical reasons, two header files declare the messages and functions to
which clsXtract can respond. XLATE.H declares most of the messages; XTRACT.H

declares the rest. As a result, many of the data structures and messages clsXtract
uses include the term xlate in their names. Keep in mind that clsXtract is the real
class. There is no clsXlate.

Translation Data Structures
clsXtract defines several data structures that serve as arguments to its messages.
Some of the data structures, such as the XIATE_METRICS data structure, are
composed of a collection of smaller, lower level data structures. This section
describes each of these data structures.

XLATE_METRICS Structure
The XIATE_METRICS structure contains information about the insertion pad to
which the translator is attached. The insertion pad sets the values in this structure
when the translator is attached with msgIPSetTranslator. The XIATE_METRICS

structure contains the following fields (the types of each field appear in
parentheses following the name):

lineCount (UI6) number of lines in the insertion pad. If this value is zero,
the number of lines is not fixed.

Remember to include both
XLATE.H and XTRACT.H when you
need to use c;leXtrac;t.

58.2

58.2.1

CHAPTER 58 / USING THE TRANSLATION CLASSES 599

Translation Data Structures

charCount (U16) number of character columns in the insertion pad. If this
value is zero, the number of columns is not fixed.

charBox (SIZE32) height and width of character box.

baselineOffset (S32) baseline offset to bottom of char box (if charCount is
not zero).

~ XLATE_CASE_METRICS Structure
Translators can use "smart case" heuristics for handling letter case. If the
smartCaseDisable flag is not set (see "Handwriting Translation Flags," below),
then the translator uses the information in its XlATE_CASE_METRICS structure to
determine how to capitalize words.

type (XLATE_CASE_TYPE) whether to translate as a field or sentence.
Possible values for type include:

xcmN one force everything to lower case.

xcmSentence capitalize the first letter of each sentence. Use the con
text.sentence value to determine letter case heuristics.

xcmField use the context. field value to determine letter case heuristics.

writer (XlATE_CASE_ WRITER) whether to expect all uppercase or
mixed-case text. This normally reflects the user preference set in the
Settings notebook. Possible values for writer include:

xcmMixedCase Writer writer uses mixed upper and lower case.

xcmAllCapsWriter writer uses all upper case letters.

context (union of SPELL_ CASE_CONTEXT and XLATE_CASE_FIELD) context
guidelines for translating text. If type is xcmSentence, use
context. sentence , a SPELL_CASE_CONTEXT structure as defined in
SPELL.H. If type is xcmField, use context. field, an XIATE_CASE_FIELD

structure with the following possible values:

xcmOneInitialCapField capitalize first letter in the field.

xcmAlllnitialCapsField capitalize first letter in each word.

xcmAllCapsField captialize all letters in the field.

XLATE_NEW Structure

The XIATE_NEW structure includes an OBJECT_NEW_ONLY structure called
object, through which clsXtract inherits from clsObject. For information specific
to clsXtract, the XIATE_NEW structure includes an XLATE_NEW_ONLY structure
called xlate. The following section describes the XLATE_NEW_ONLY structure.

XLATE_NEW_ONLY Structure

The XIATE_NEW structure includes an XLATE_NEW_ONLY structure called xlate.
xlate includes the following fields:

600 PENPOINT ARCHITECTURAL REFERENCE
Part 5 / Input and Handwriting Translation

hwxFlags (U32) a set of flags representing translation rules (see
msgXlateFlagsSet). "Handwriting Translation Flags," below, discusses the
flags in more detail.

charConstraints (UI6) flags constraining the characters the writer is
expected to write. This may improve translation accuracy because the
shape matcher will know that it does not need to consider certain
characters as possibilities. The possible contraints (which you may'
combine) include:

xltDisableUpperCase disallow A through Z.

xltDisableLowerCase disallow a through z.

xltDisableNumerals disallow 0 through 9.

xltDisableCommonPunct di~allow .,'!?;:%$#+-I*O"=.

xltDisableOtherPunct disallow all other punctuation.

metrics (XLATE_METRICS) information about the insertion pad to which
the translator is attached. See "The XLATE_METRICS Structure," above,
for details.

pTemplate (p _UNKNOWN) a pointer to a compiled translation template, or
pNull if none. See "Translation Templates," below, for details.

xlateCaseMetrics (XIA TE_ CASE_METRICS) case post-processing controls.
See "The XLATE_CASE_METRICS Structure," above, for details.

Handwriting Translation Flags
A translator receives a scribble from an input pad, then segments the scribble into
sets of one or more strokes. The translator translates the sets of strokes and
associates a score, a measure of confidence in the translation, with the translation.

Translators use a number of rules in scoring a translation, giving higher scores to
translations that obey the rules. One of the fields in an XLATE_NEW structure is a
U32 called xlate.hwxFlags, which contains a variety of flags that govern which
rules to use in this process. You can think of these rules as falling into three
categories:

built-in rules rules involving translation abilities built into the translator.

knowledge-source rules rules involving external sources of inforination
such as a spelling checker or template.

post-processing rules rules involving changes to the text after it is
translated.

The following sections discuss each of these types of rules and the xlate.hwxFlags
flags associated with them.

Built-In Rules

The built-in rule flags direct the translation object use various default language
rules to assist recognition. When a flag is turned on, the translator will show a
preference for translations which obey the rule associated with that flag. For

58.3

58.3.1

CHAPTER 58 I USING THE TRANSLATION CLASSES 601
Handwriting Translation Flags

example if caseEnable is on, the translator will show a preference for words that
are all lower case, all upper casem, or all lower case except the first letter.

The flags governing the built-in rules include:

xltSegmentVeto disallow translations that yield more than one character per
character box.

xltCaseEnable weigh in favor of translations that fit standard rules of
capitalization (the first word of each sentence is capitalized, for example).

xltAlphaN umericEnable weigh in favor of translations that fit standard
groupings of letters and digits (for example, a word that begins with a
digit is a number).

xltPunctuationEnable weigh in favor of translations that fit standard rules
of punctuation (for example, a comma does not follow a space).

Knowledge Source Rules

PenPoint supports two knowledge sources which a translator can use to improve its
translation accuracy: the spelling dictionary and translation templates. The spelling
dictioD;,ary is a list of correctly spelled words and rules for generating other correct
words (by adding word endings, for example). A translation template improves
translation accuracy by constraining the way in which the translator interprets
handwritten input. "Translation Templates," later in this chapter, discusses translation
temp~ates in more detail

Certain translation flags direct the translator to use to these knowledge sources as an
aid to handwriting recognition. There are three types of flag for each knowledge source:

Enable enables the use of a particular knowledge source, giving preference
to translations that conform to the source.

Veto when the knowledge source is enabled, rejects any translation that
does not conform to the source.

Propose when the knowledge source is enabled, if the translator can't
generate a translation with a high enough score, the knowledge source
proposes translations that conform to the source.

Therefore, the valid knowledge-source flags include:

xltSpellingEnable use spelling dictionary and give preference to words in
the dictionary.

xltSpellingVeto reject words not in the spelling dictionary.

xltSpellingPropose propose words froln the dictionary when the translator
doesn't find a best guess.

xltT emplateEnable use the translation template and give preference to
words that match the template.

xltTemplateVeto reject words that do not match the template.

xltT emplatePropose propose translations that match the template when the
translator doesn't find a best guess.

602 PENPOINT ARCHITECTURAL REFERENCE
Part 5 I Input and Handwriting Translation

The Veto and Propose flags may be used individually or combined, but they have
no effect unless the corresponding Enable flag is set.

Post-Processing Rules
The translation object can apply postprocessing rules to assist errorchecking and
proofing, or spelling correction. The only post-processing currently implemented
is the smart case behavior. This capability calls for the translator to use linguistic
rules to correct the capitalization of the translation. The translator applies smart
case corrections unless you disable this behavior by setting the
xltSmartCaseDisable flag.

Translation Templates
A translation template is a data structure that defines constraints on the way a
translator interprets handwriting input. For example, using a translation template,
you can force the translator to restrict its output to a certain set of words or
characters. By limiting the translator output to a smaller set, translation templates
can improve translation accuracy.

A translation template is a single, allocated block of memory containing no
internal pointers. PenPoint provides a function, XTemplateCompileO, that lets
you "compile" an XTM_ARGS data structure into a translation template. An
XTM_ARGS structure includes the following fields:

xtmType (XTEMPLATE_TYPE) the type of translation template. Each of the
types is discussed further in "Template Types," below.

xtmMode (XTEMPIA TE_MODE) the way in which the translator should use
the template. Each of the modes is discussed in "Template Modes," below.

pXtmData a pointer to the data set defining the template, according to
template type. For example, pXtmData might point to a list of
acceptable characters, or a list of acceptable words.

Template Types
The xtmType value specifies how to interpret the data to which pXtmData
points. Possible values are:

xtm TypeNone The template does not restrict translations in any way.
pXtmData is ignored.

xtmTypeGesture the template restricts translations to a limited set of
gestures. pXtmData points to an XTEMPLATE_GESTURE structure,
which includes the following fields:

count (U32) the number of gestures in the list of acceptable translations.

pGestures (p _MESSAGE) a pointer to an array of count acceptable gestures
(32-bit codes defined in XGESTURE.H).

58.4

The XTEMPLT.H SDK header file
describes a variety of utility
functions for working with
translation templates.

CHAPTER 58 I USING THE TRANSLATION CLASSES 603
Translation Templates

xtmTypeCharList the template restricts translations to a limited set of
characters. pXtmData is a P _STRING pointing to a null-terminated array
of acceptable characters.

xtmTypeWordList the template restricts translations to a limited set of
words. pXtmData is a PP _STRING pointing to an array of
null-terminated strings denoting the acceptable words. To identify the
end of the array of acceptable words, the last pointer in the list must be
Nil(p _STRING).

xtmTypePicture the template restricts translations to strings matching a
specific pattern, or picture. pXtmData points to a string representing the
picture. Certain characters in a picture string have special meanings:

• 9 the corresponding character must be numeric (a digit from 0 to 9).

• a the corresponding character position must be alphabetic.

• A the corresponding character position must be upper-case alphabetic.

• n the corresponding character position must be alphabetic or numeric.

• N the corresponding character posistion must be upper-case
alphabetic or numeric.

• x the corresponding character position may be any character.

• [the following characters up to but not including the next right
square bracket (]) define a set of characters of which the corresponding
character position must match one. The 9, a, A, n, N, and x characters
do not have special meanings within square brackets. A hyphen within
square brackets indicates a range of characters. For example, [abe]
matches a, b, or e, while [ab-e] matches a, b, c, d, or e.

• \ ignore any special meaning for the following character literally. For
example, 9 matches any digit, while \9 matches only the digit 9.
Similarly, [a-c] matches a, b, or c, while [a\-c] matches a, -, or c.

Template Modes

The xtmType values described in the previous section specify how to interpret the
template data (for example, as a list of words). The xtmMode value specifies how
to apply the data set to the translations. Possible values for xtmMode include:

xtmModeDefault reject any translation that does not match the template
exactly.

xtmModePreflXOK consider translations that match any prefix of the
template to match the template.

xtmModeLoopBackOK consider translations that match any number of
repetitions of the template to match the template.

xtmModeCoerced coerce the translation to match the template, even if it
doesn't match exacdy. This is meaningful only for templates of type
xtm Type WordList.

58.4.2

604 PENPOINT ARCHITECTURAL REFERENCE
Part 5 I Input and Handwriting Translation

Translation Messages 58.5

For historical reasons, the two header files that declare clsXtract declare some
private messages which you should not use. A future release of PenPoirtt will
correct this problem. For now, just don't use the private messages.

Do not use private messages.

Table 58-1 summarizes the public clsXtract messages and functions.

msgNewDefaults

msgNew

msgXIateModeSet

msgXIateModeGet

msgXIateMetricsSet

msgXIateMetricsGet

msgXIateStringSet

msgXIateSetFlags

msg}QateGetFlags

msgXIateFlagsClear

msgXIateCharConstrainsSet

msgXIateCharConstrainsGet

msg}Qate T emplateGet

msgXIate T emplateSet

msgXIateCharMemorySet

msgXIateCharMemoryGet

msgXIateSer}QateCaseMetrics

msgXIateGer}QateCaseMetriq

msgXIateSetHistory Template

msgXIateGetHistory Template

msgXtractGetScribble

HW_MODE

P_HW_MODE

P _XLATE_METRICS

U32

P_U32

U32

P_U16

P_U16

PP_UNKNOWN

P_UN KN OWN

P _CHARACTER_MEMORY

P _XLATE_ CASE_METRICS

P _XLATE_ CASE_METRICS

P_UNKNOWN

PP_UNKNOWN

Initializes the XLATE_NEW structure to default
values.

Creates a new translation object.

Sets the mode of the translation object.

Gets the mode of the translation object.

Set the translation object's XLATE_METRICS to
communicate UI-based information that may assist
in segmenting the incoming strokes into characters.

Reports the translation object's XLATE_METRICS
values.

Sets the current textual context for the translation
object.

Sets the translation flags of the translation object.

Gets the translation flags of the translation object.

Clears the translation flags of the translation object.

Sets the character constraints of the translation object.

Gets the character constraints of the translation object.

Gets the template for the translation object.

Sets the template for the translation object.

Sets the current character memory for character
box mode.

Gets the current character memory for character
box mode.

Sets the "smart case" metrics.

Gets the "smart case" metrics.

Subclass hook for implementing a translation
history for the translator.

Gets the current alternate translation template, if the
subclass implements such behavior.

Reports the UID of the scribble object to which the
translator is attached.

continued

CHAPTER 58 / USING THE TRANSLATION CLASSES 605
Translation Messages

Tobie 58-1 (continued)

Message pArgs Description

Translation Control Me~SSClaE~S

msgScrAddedStroke P _SCR_ADDED_STROKE The scribble object sends this message to the
translator when it gets a new stroke.

msgScr RemovedStroke P _SCR_REMOVED _STROKE The scribble object sends this message to the
translator when an existing stroke is deleted.

msgScrCompleted pNull When the scribble knows there will be no more
strokes added, it sends this message to the
translator. This causes the translator to self-send
msgXtractComplete.

msgXtractComplete pNull Self-sent in response to msgScrCompleted. Provides
hook for subclasses to complete translation of
scribble.

Notification

msgXIateData

msgXIateCompleted

Reports translated data from a translation object.

Notifies client that translation is complete.

".. Creating a Translator

Client normally will respond by sending
msgXlateData to discover the translation result.

You create instances of subclasses of clsXtract, not of clsXtract itself.

You create a translator in the usual way. Send msgNewDefaults, with a
P _XIATE_NEW as its argument, to a clsXtract subclass (clsXText, clsXW'ord, or
clsXGesture). clsXtract sets the referenced XLATE_NEW structure to default values.
You then send msgNew to the class, with the same P _XIATE_NEW as its argument.
This creates a new instance of the class, and the class sets the uid field of the
referenced XLATE_NEW to the UID of the new instance.

If you think you need to change any of the default values, you can do so after
sending msgNewDefaults, by directly assigning fields of the XIA TE_NEW

structure, or after creating the translator object with msgNew. Mter creating the
object, you can change these values by sending msgXIateMetricsSet,
msgXlateStringSet, and msgXlateSetFlags.

Initialization Messages

Translator initialization messages are messages sent before the translator interprets
the user's input. For example, msgXIateSetFlags sets the translator flags described
in "Handwriting Translation Flags," above. Another initialization message,
msgAdded, establishes the translator as an observer of a particular scribble object.
After the translator is attached to a scribble in this way, the scribble object will
send messages to the translator to notify it of changes in the st~te of the scribble.

606 PENPOINT ARCHITECTURAL REFERENCE
Part 5 / Input and Handwriting Translation

Control Messages

Control messages are messages that control how the translator gathers stroke data
from the scribble it is observing. The scribble sends msgScrAddedStroke to the
translator every time the user adds a stroke to the input, and msgScrRemovedStroke
every time the user removes a stroke. The translator can use these notifications to
implement dynamic translation.

When the scribble determines that the user input is complete (for example, when
the user presses the OK buttton on the input pad), it sends msgScrCompleted to
the translator. The translator object responds to msgScrCompleted by self-sending
msgXtractComplete. clsXtract subclasses should respond to msgXtractComplete
by translating the stroke data that the clsXtract object has gathered.

Notification Messages

The translator object sends msgXlateCompleted to its client (usually an input
pad) to notify the client that the translation is complete.

The client sends msgXlateData to get the result of the translation. The translation
result is an X1ist whose specific type depends on the specific subclass of clsXtract.
See Chapter 60, Using Xlists, for more information on Xlists. The client can send
msgXlateData only once, after which the translator frees all resources related to
the translated data.

58.5.4

Chapter 59 / Using Scribbles

A stroke is a mark defined by the path of the pen from the point at which the
pen tip touches the display to the point at which it comes up from the display.
A scribble is simply a collection of strokes. clsScribble, which inherits directly
from clsObject, provides a storage mechanism for scribbles, enables scribbles to
render themselves, and establishes a protocol for communicating with translators
(subclasses of dsXtract).

Scribble Concepts
This section describes some of the basic concepts of scribbles.

Stroke Indexing

A scribble object maintains a collection of strokes in an indexed, internal list. The
strokes are numbered from zero, and the index increases for each added stroke.
Strokes may be removed from a scribble, as well, but this does not affect the
indexing. When a stroke is removed, it is simply marked as removed; its structure
remains intact.

Scribble Base and Bounds

Each scribble has a base, a point in digitizer coordinates that specifies the scribble's A current optimization requires

offset from the origin of the window in which it exists. The coordinates of strokes all of the strokes in a single
scribble must be within 32767

in the scribble are stored relative to the scribble base.

This arrangement-the strokes relative to the scribble base,. the scribble base
relative to the window origin-lets you position the scribble as a unit within the
window. An input pad, for example, resets its scribble's base when the user changes
the window origin by resizing the input pad. By changing the scribble base, the
input pad keeps the scribble a constant distance from the top of the input pad
even though the base is specified relative to the window origin.

A scribble's bounding rectangle, or simply bounds, is the smallest rectangle that
encloses all of the scribble's strokes (except those strokes marked as removed).

Rendering

If you provide a drawing context, a scribble can render itself. Input pads take
advantage of this behavior whenever the input pad window becomes dirty. See
Part 3: Windows and Graphics for more information about windows and drawing
contexts.

digitizer points of one another
to allow the use of 16-bit values
in the handwriting translation
system.

608 PENPOINT ARCHITECTURAL REFERENCE
Part 5 I Input and Handwriting Translation

Translator Notification

A scribble implements part of the handwriting translation protocol by defining
messages to send to a translator observing the scribble. A scribble notifies its
observing translator when the scribble adds or removes a stroke, and when the
scribble determines that the user is not going to add more strokes.

clsScribble Messages 59,,2

Table 59-1 summarizes the messages dsScribble defines. The following sections
discuss these messages in more detail.

Me$$~~e

msgNewDefaults

msgNew

msgScrSetBase

msgScrGetBase

msgScrGetBounds

msgScrCount

msgScrAddStroke

msgScrCat

msgScr DeleteStroke

msgScr DeleteStrokeArea

msgScrClear

msgScrHit

msgScr Render

msgScrStrokePtr

msgScrComplete

msgScrCompleted

msgScrAddedStroke

msgScr RemovedStroke

pAr~$

P_SCR_NEW

P_SCR_NEW

P_XY32

P_XY32

P_RECT32

P_U16

P _SCR_ADD_STROKE

SCRIBBLE

U16

P _SCR_DELETE_STROKE_AREA

void

void

NULL

59~1

clsScribble Messa es

Sets the default values for the msgNew arguments.

Creates and initializes a new scribble object.

Sets the stroke coordinate base for the scribble.

Passes back the scribble base.

Passes back the scribble bounds.

Passes back the total number of strokes in the
scribble) including strokes marked as removed.

Adds a stroke to the scribble.

ConcateIl:ates the strokes from another scribble.

Deletes (marks as removed) the stroke associated
with a specified index.

Deletes all the strokes that touch the specified area.

Deletes and frees all of the scribble)s stroke data.

Searches for the next stroke which intersects the
specified rectangle.

Given a drawing context) renders the scribble in a
window.

Passes back a pointer to a specific stroke.

Clients send this messsage to the scribble to notify
the scribble that stroke entry is complete.

Sent to observers to indicate that the stroke entry
is completed.

Sent to observers to notify them of the addition of
a stroke to the scribble.

Sent to observers to notify them of the removal
of a stroke from the scribble.

CHAPTER 59 I USING SCRIBBLES 609

Creating a New Scribble Obiect
You create a scribble in the usual way, by sending msgNewDefaults to clsScribble
to set a SCRIBBLE_NEW structure to default values, then msgNew to create the
scribble object. The only value in the scribble part of a SCRIBBLE_NEW is
scribble. base, an XY32 giving the scribble base offset from the lower left corner of
the window.

Stroke Messages

59.3

Scribble AHribute Messages 59.4

A scribble object has a base offset which determines where it will begin to render
itself in the window. The scribble base represents digitizer coordinates relative to
the lower left 'corner of the window. You can change the scribble base with

msgScrSetBase, and learn its current value with msgScrGetBase. ~

...... ~!'" A scribble maintains a bounding rectangle, which is the smallest rectangle that
contains all of its strokes. You can determine the origin and size of the bounding
rectangle, relative to the scribble base, by sending msgScrGetBounds to a scribble
object.

You can determine the number of strokes a scribble object has recorded by sending
msgScrCount to the scribble. The number passed back is the total number of
strokes, including strokes marked as removed. You normally use msgScrCount to
set an index for a loop that iterates over every stroke in the scribble.

Stroke Messages
The primary purpose of a scribble object is to maintain a collection of stroke
objects, so it is not surprising that most of the messages clsScribble defines are
related to the management and manipulation of the strokes.

You can add a stroke to the end of a scribble's list of strokes by sending
msgScrAddStroke to the scribble, passing the stroke as an argument. You can also
copy all of the strokes from one scribble object to another by sending msgScrCat
to the destination scribble object, passing the source scribble as an argument.

Deleting a stroke does not destroy or free the stroke data, but simply marks the
stroke as removed by setting a bit in the stroke data structure. You send
msgScrD~leteStroke to a scribble object to delete a stroke whose index you
specifY. You can also delete all strokes within a specified rectangle by sending
msgScrDeleteStrokeArea to the scribble object. msgScrDeleteStrokeArea
interprets the rectangle origin and size relative to the scribble base, and marks as
removed any stroke whose bounding rectangle intersects the area rectangle.

YOl! can send msgScrClear to delete all strokes in the scribble. Unlike
msgScrDelete and msgScrDeleteArea, msgScrClear does not simply mark
the strokes as removed, but destroys the stroke data and frees the memory space
they used.

59.5

610 PENPOINT ARCHITECTURAL REFERENCE
Part 5 / Input and Handwriting Translation

You can find strokes that fall within a specified rectangle by sending msgScrHit to
a scribble, passing a pointer to a SCR_HIT structure as an argument. You pass in a
rectangle (relative to the scribble base) and stroke index in the SCR_HIT structure.
The scribble passes back the index of the first stroke whose bounding rectangle
intersects the rectangle you pass~d in.

You can instruct a scribble to render all of its scribble by sending msgScrRender to
the scribble, passing a pointer to a SCR_RENDER data structure as an argument.
The SCR_RENDER structure specifies a drawing context, a rectangle, and a range
of stroke indices. msgScrRender renders the strokes in the window to which the
drawing context is attached, rendering' only those strokes which fall within the
spe~ified rectangle (interpreted in L WC) and stroke range. It does not render
strokes marked as removed.

If you wish to manipulate an individual stroke, you can send msgScrStrokePtr to
a scribble, passing a pointer to a SCR_STROKE_PTR structure as an argument. You
pass in a stroke index in the SCR_STROKE_PTR argument. The scribble passes
back a pointer to the stroke whose index you passed in. Be careful when you use
this messageScrStrokePtr, as it generates a pointer to the stroke data, not a copy
of the stroke.

Notification Messages
Clients of scribble objects typically establish a protocol for interacting with
scribbles, so clsScribble defines a few notification messages to facilitate such
protocols. For example, clients can send msgScrComplete to a scribble object to
inform it that there are no more strokes to process.

Scribble objects send three notification messages to objects that observe the
scribble. A scribble sends msgScrAddedStroke to observers when the scribble adds
a stroke to its stroke list. A scribble sends msgScrRemovedStroke to its observers
when the scribble marks a stroke as removed. Finally, a scribble sends
msgScrCompleted to observers when the scribble receives msgScrComplete.

59.6

Chapter 60 / Using Xlists

An Xlist is a dynamic array of elements, stored in a heap you associate with the Xlist
when you create it. Xlists of various types are used throughout the system. The primary
purpose ofXlists is to pass translated information between translator objects and their
clients (such as input pads), but it is possible to use Xlists for other purposes.

Xlist.H defines functions that you use to:

• Create, modify, and destroy Xlists.

• Traverse lists, access, and set list element.

• Filter data from Xlists.

An Xlist filter converts an Xlist into an Xlist of a different format (see XLFILTER.H

for an example).

Concepts
An Xlist is a data structure that contains of a list of pointers to Xlist elements, a set
ofXlist flags, and other internal data. The actual organization of an Xlist is
private; you use the Xlist functions to create and modifY Xlists.

When a client creates an Xlist, the list and its elements are allocated from a heap
specified by the client. A client can use this heap to allocate space for the list
elements (with XlistAlloc; the element flag must be xfHeapAlloc). The data
allocated from the heap is deallocated when the client frees the Xlist or calls
XlistFreeData. Clients can allocate other data from the Xlist heap, but it is not
recommended (it is the client's responsibiltity to free this data).

Xlist Flags

Each Xlist has a 32-bit value used for flags. These flags store data about the Xlist. Do
not confuse these Xlist flags with the element flags that are stored in each Xlist element.

The flag values flagO through flag15 are used by PenPoint™ (and are described
below). The flag values flag16 through flag31 can be, used by clients.

The only flag defined by PenPoint is xflXlistlText, which indicates that the Xlist
has already been processed through the function XlistlT ext.

Xlist Elements

Each Xlist element is defined by the structure XliscELEMENT. The structure
contains the following fields:

flags (UI6) element flags.

type (XTYPE) the type of the data in pData.

612 PENPOINT ARCHITECTURAL REFERENCE
Part 5 I Input and Handwriting Translation

pData (p _UNKNOWN) a pointer to element data.

These Xlist element values are explained in detail below.

~ Xlist Element Flags 60.1.3

Each Xlist has a set of flags that specifies how the element's data should be treated
when the list is freed or duplicated. The flags are:

xfHeapAlloc the element's data was allocated from the Xlist heap.

xfObject the pData is the UID for an object. Do not duplicate this element.

xfXlist the element's data is a pointer to another Xlist.

xfExtracted the element's data is used somewhere else and should not be
freed when freeing the Xlist. If you set this flag, it is your responsibility to

free the data.

The first three flags (xfHeapAlloc, xfObject, and xfXlist) are mutually exclusive.
Setting more than one of these flags will have unpredictable results.

Xlist Element Data 60.1.4

Each Xlist element contains a pointer to data (pData). The type of data is

specified in the type indicator. Table 60-1 lists the Xlist element types and the
corresponding pData interpretations.

Type

xtNull

xtBounds

xtGesture

xtText

xtObject

xtBoundsX

xtCharAttrs

xtParaAttrs

xtTabs

xtCharPos

xtTextList

xt TextListEnd

xtTextWord

xtStroke16

xt TeachData

xtUID

xtEmbedObject

xtExtended

P_BDATA

P_GDATA

P_STRING

OBJECT

P_BDATA

P _Xlist_ CH~ATTRS

P _Xlist_PARA_ATTRS

P _Xlist_ TABS

TEXT_INDEX

P_WORD_LIST

NULL

P _XTEXT _WORD

P _SP APER_STROKE_DATA

P _XTEACH_DATA

UID of a gesture object

P_TEXT_EMBED_OBJECT

UID of data object

labie 60~1

p~ata refers t@

Null element. Used for placeholders and dummy
elements.

Bounds data used by clsXGesture and clsXf ext.

Gesture data used by clsXGesture.

Text data used by clsXText and the function
Xlist2TextO.

Object data.

Screen relative bounds data.

Character attributes data used by clsT ext (TXTXlist.H).

Paragraph attributes data used by cls Text (TXTXlist.H).

Tabs data used by clsText (TXTXlist.H).

Character position data.

Word list data used by handwriting translation.

End of word list indicator used by clsSPaper.

Text data used by clsXtext and clsSPaper.

Stroke data used by clsSPaper.

Teaching data used by clsXteach;

A gesture object.

Embedded text object data used by clsText.

Extended data.

CHAPTER 60 I USING XlistS 613
Using the Xlist Functions

". Xlist Functions
Table 60-2 lists the Xlist functions and provides a brief description for each one.

Fundion

XlistNewO

XlistFreeO

XlistGetFlags 0
XlistSetFlagsO

XlistMetrics 0
XlistInsertO

XlistDelete 0
Xlist TraverseO

XlistIndexO

XlistSetO

Description

Creates a new Xlist.

Frees an Xlist and all its data.

Passes back the Xlist flags for the Xlist.

Sets the Xlist Flags.

Passes back the number of entries and heap Id.

Create a new element at the index'th location.

Delete the element at the index'th location.

Iterates across the list of elements.

Passes back the current traversal index.

Stores the copy of the index'th element.

Passes back a copy of the index'th element.

Passes back a pointer to the index'th element.

Allocates some memory from the Xlist heap.

Releases the data with the given entry.

Duplicates the contents of one Xlist into another.

Duplicates the source element, append to the destination.

Extracts the gestural information from an Xlist.

60.2

Table 60-2
Xlist Functions

XlistGetO

XlistGetPtrO

XlistAllocO

XlistFreeDataO

XlistDupO

XlistDupElementO

Xlist2GestureO

Xlist2StringLength 0
Xlist2StringO

XlistDumpO

XlistDumpSetupO

Passes back the length of the string that Xlist2String will need.

Extracts the text information from an Xlist.

Debugging interface for displaying an Xlist in the debug log.

Sets the Xlist debug log display routine by type.

Using the Xlist Functions
Typical clients create Xlists with XlistNewO, add and delete elements with
XlistlnsertO and XlistDeleteO, access the value of elements through filters or with
XlistGetO, traverse the elements with XlistTraverseO, and destroy and free all the
elements with XlistFreeO.

The other functions, while useful in certain circumstances, are rarely used. These
functions are described in the PenPoint API Reference and in the file Xlist.H.

614 PENPOINT ARCHITECTURAL REFERENCE
Part 5 / Input and Handwriting Translation

Creating a New Xlist

To create a new Xlist, call the function XlistNewO. The function has two

parameters:

heap (OS_HEAP _10) the heap from which to allocate the Xlist and its

elements.

ppXlist (p _Xlist) a pointer to the Xlist the function creates.

Inserting an Xlist Element

To insert an element in an Xlist, call XlistlnsertO. The function has three

parameters:

pXlist (p _Xlist) a pointer to the Xlist in which to insert the element.

Index (UI6) an index to the location where the new element is to be

inserted.

pElem (p _Xlist_ELEMENT) a pointer to the Xlist_ELEMENT to insert.

If the index is greater than the current number of entries, the element is added to

the end of the Xlist.

Deleting an Xlist Element

To delete an Xlist element, call XlistDeleteO. The function has two parameters:

pXlist (p _Xlist) a pointer to the Xlist from which to delete the element.

index (UI6) the index of the element to delete.

XlistDeleteO calls XlistFreeDataO to free the m.emory of the Xlist element
structure as well as of the data to which the element p~ints.

Freeing All Elements of an Xlist

To destroy all of an Xlist's elements and free their memory, call XlistFreeO. The

message has only one parameter: a P _Xlist pointing to the Xlist whose elements it
is to free.

This function traverses the Xlist, frees the data for each element (unless the

element has xffixtracted set) and frees the elements data structures themselves.

Traversing an Xlist

The function XlistTraverseO allows you to iterate across the elements in an Xlist.

For each element in the Xlist, XlistTraverseO calls a callback function which you

provide. If the callback routine returns anything but stsOK, XlistTraverseO

terminates and returns the same status that the callback funtion returns. You can

use XlistT raverseO to perform nested traversals.

The XlistTraverse takes three parameters:

pXlist (p _Xlist) a pointer to the Xlist to traverse.

pProc (p _XPROC) a pointer to the callback function.

60.,3.3

CHAPTER 60 / USING XlistS 615
Using the Xlist Functions

pUserData (p _UNKNOWN) a pointer to user data that will be passed to the
callback function.

The prototype for the the callback function is:

STATUS (PASCAL *P_XPROC) (P_Xlist pXlist, P_Xlist_ELEMENT pElem, P_UNKNOWN pUserData);

The parameters are:

pXlist a pointer to the Xlist being traversed

pElem a pointer to the current element in the list

pUserData a pointer to the user data passed to XlistTraverseO.

GeHirig and SeHing Xlist Elements
To get an element from an Xlist, call XlistGetO; to set an element in an Xlist, call

XlistSetO.

Both messages take three parameters:

pXlist (p ~ist) a pointer to the Xlist whose element the function should get
or set.

index (UI6) the index of the element to get or set.

pPtr (p _XliscELEMENT) a pointer to an XliscELEMENT structure.

XlistGetO copies the element from the Xlist to to pPtr, while XlistSetO copies
pPtr to the Xlist. Remember that an Xlist element is a pointer to some data.
XlistGetO and XlistSetO copy pointers to data, but they do not make copies of
the data itself.

If the index is greater than the number of elements in the list, XlistGetO will get
the last element in the list and XlistSetO will store the last element in the list.

XlistSetO replaces the existing element specified by the index. If you want to add a
new element, use XlistlnsertO.

60.3.6

Chapter 61 / Using Gesture
Windows

Introduction
clsGWin (Gesture Window) inherits from clsWin. clsGWin adds some special
functionality to the standard window input handling capabilities described in
Chapter 53 (Input Subsystem API). The various clsGWin subclasses use this
functionality to interpret pen input as gestures. Many of the PenPoint™
Windows and Graphics and VI Toolkit classes inherit from clsGWin.

You will very rarely need to use a clsGWin instance directly, or subclass it. In most
cases where you want to capture gestural input from the screen, you can use a
standard VI Toolkit class.

clsGWin also implements the Quick Help interface. This interface lets you specify
a resource ID for each of the VI Toolkit components the user interface for your
application. Whenever the Quick Help gesture? is drawn over an element that
inherits from clsGWin, the Quick Help manager uses the resource ID that is
stored in the clsGWin object's helpID field to locate the help text resource to
display.

A clsGWin object is able to receive pen input, test to see if it is a gesture, and if a
gesture is recognized send msgGWinGesture to clients. msgGWinGesture has a
pArgs data structure GWIN_GESTURE that describes what gesture has been entered
by the user, as well as some state information about the size (bounds) of the glyph
that the user has made, and the x-y coordinate of the gesture hotspot. The
frontmost window containing the hotspot is typically the target of the gesture.

A clsGWin object automtically creates a clsScribble object whenever it receives
pen input.

clsGWin implements a lightweight window that automatically interprets input as
gestures. When it receives input, a clsGWin object collects the strokes in a
scribble. When the input event is terminated, the gesture window creates an
clsXGesture translator and passes the scribble data to it. The gesture window then
reports the translator results to the relevent client code.

Gesture Window Messages
Table 61-1 summarizes the messages clsGWin defines.

eL2

618 PEN POINT ARCHITECTURAL REFERENCE
Part 5 I Input and Handwriting Translation

MessQge pArgs

msgNewDefaults P_GWIN_NEW

msgNew P_GWIN_NEW

msgGWinGetStyle P _ GWIN_STYLE

msgGWinSetStyle P _ GWIN_STYLE

msgGWinSetHelpId U32

msgGWinGetHelpId P_U32

msgGWinGet Translator P_OBJECT

msgGWinSet Translator P_OBJECT

msgGWinTransformGesture P _GWIN_GESTURE

msgGWinTransformXList P_XLIST

msgGWinAbort pNull

msgGWinBadGesture P_GWIN_GESTURE

msgGWinHelp pNull

msgGWinForwardGesture P _ GWIN_ GESTURE

msgGWinForwardedGesture P_GWIN_GESTURE

msgGWinForwardKey P _INPUT_EVENT

msgGWinForwardedKey P _INPUT _EVENT

msgGWinIsComplete P _ GWIN_ GESTURE

msgGWinGestureDone P _ GWIN_ GESTURE

msgGWinStroke P _INPUT_EVENT

msgGWinTranslator P_OBJECT

msgGWinComplete pNull

msgGWinXList P_XLIST

msgGWinGesture P _GWIN_GESTURE

msgGWinKey P _INPUT_EVENT

msgGWinBadKey P _INPUT_EVENT

Description

Table 61-1

clsGWin ME~SSC:aaE~S

Initializes the GWIN_NEW structure to default
values.

Creates and initializes a new instance.

Returns the current style.

Sets the style settings.

Sets the gesture windows helpId for quick help.

Returns the gesture window's helpId.

Returns the gesture window's translator object.

Sets the translator object and returns the previous one.

Transforms gesture information into local window
coordinates.

Transforms xlist information to local window coordinates.

Stop processing a gesture.

Displays feedback for unrecognized and unknown
gestures.

Displays quick help for the gesture window.

Instructs the gesture window to forward a gesture to
parent windows.

Gesture window sends this message to parent window
in response to msgGWinForwardGesture.

Instructs the gesture window to forward a keyboard
event to parent windows.

Gesture window sends this message to parent window
in response to msgGWinForwardKey.

Determine whether there are more gestures to process.

Sent to indicate the end of a gesture.

Self-sent to process a pen stroke received froIrl'the
input system.

Self-sent to retrieve the translator used to gather and
translate strokes.

Self-sent to process a gesture, typically in response to
msgGWinForwardedGesture.

Self-sent to process an xlist.

Self-sent to process a gesture.

Self-sent to process a key input event, typically in
response to msgGWinForwardedKey.

Self-sent to allow a subclass to
handle bad keys.

Acetate layer, 296

Activating
documents, 102-107
embedded documents, 161
fields, 481-482

Adder application, 556

Aligning
constraints for, 393
width and height dimensions,

393-394

Ancestors, 5-6
calls, 36-37
CLASS_NEW_ONLY structure, 47
confirming object, 55
inheritance and, 82
mark component, 201
toolkit, 367-370

APP _ACTIVATE_CHILD structure, 161

APP_DIR_GET_BOOKMARK structure, 182

APP _DIR_ GET_SET _ATTRS structure, 180

APP_DIR_GET_SET_FLAGS structure, 180

APP _DIR_NEXT structure, 182

APP _DIR_SEQ_ TO _NAME structure, 183

APP _DIR_SET _BOOKMARK structure,
182, 183-184

APP_DIR_UPDATE_CLASS structure, 181

APP _DIR_UPDATE_NUM_CHILDREN
structure, 181-182

APP_DIR_UPDATE_SEQUENCE,181

APP _DI~_ UPDATE_ UID structure, 181

APP_DIR_UPDATE_UUID structure, 181

APP _DIR_ UUID _TO _NAME structure, 183

APP _EXECUTE structure, 165-166

APP _GET _GLOBAL_SEQUENCE
structure, 179

Application, 28, 76
classes, 86-87

container, 185-188
code, 92

activating document and, 102
components, 76-77, 349
concepts, 81-93
data, 77-78

displaying, 78
observing objects and, 78
saving and restoring, 77

defined,67,81
deinstallation, 96-99

msgF ree in, 99
dialog,493
embedded,77, 195

creating, 196
environment concepts, 75-79
errors, 494

frame, 212
hierarchy

file system perspective, 89
screen perspective, 88

installation, 96-99
AppMonitorMainO in, 99
initialization routine, 97-99
main in, 96-97

installer, 96
instances, 82

activating, 148
copying, 148-149
deleting, 149
moving,148-149

main window, 504
inserting custom window

as, 561-562
marking, 118
menu bar, 363
name, 163
object, 92

instance of, 67
printing, 302
root container, 187
standard, menus, 363
tab, 182
title, 163
TkDemo, 432-433
writers overview, 71-73, 212-213
see also Application directory;

Application Framework;
Application monitor

Application class, 69,82,157-171
advanced messages, 171
clsApp messages, 157-161
defined,67
document hierarchy messages,

161-163
document window messages, 163
efficiency, 85
embedded documents, 77
getting and setting, 181
initialization routine, 96, 97-99
instance of, 67, 92
life cycle, 95-99

deinstalling application, 99
installing application, 96-99

messages, 157-161
received by, 99

observing system preferences, 170
processes, 90-91
standard application menus, 163-170
state diagram, 95
states, 96
see also clsApp

Application directory, 177
attributes, 180-182

many, 182-183

flags, 180
global sequence number, 179
handle, 177

creating, 179
destroying, 179

Application directory handle class,
70,177-184

counting embedded documents, 183
creating directory handle, 179
destroying directory handle, 179
directory attributes, 180-182
directory global sequence number, 179
documents name, 183
setting a tab, 183-184
using clsAppDir, 177-178
see also clsAppDirHandle

Application Framework
application instance and, 82
classes, 68-70

hierarchy, 71
defined,67
document process and, 89-90
framesand,504-505
messages, 71-73
Notebook,68

User Interface, 75
overview, 68
printing and, 136

Application manager class, 69, 145-150
activating application instance, 148
creating new document, 148
deleting application instances, 149
installing new class, 146-147
metrics, 145-146

getting for class, 149
moving/ copying application

instance, 148-149
observer messages, 150
see also clsAppMgr

Application-modal note, 487
system-modal note vs., 490

Application monitor, 151
getting metrics, 153
in installation, 151-152
other functions for, 152
for stationary, accessories, help, 152

Application monitor class, 69, 151-155
concepts, 151-152
messages, 152-153

using, 153-154
subclassing, 155
see also clsAppMonitor

Application window
changing style of, 196
closing, 196
metrics of, 196-197
opening, 196

620 INDEX

Application window class, 195-197
see also clsApp Win

AppMainO function, 72
document activation and, 102, 105

AppMain routine, 97

APP _METRICS structure, 161-162

APP_MGR_ACTIVATE structure, 148

APP_MGR_CREATE structure, 148

APP _MG~DELETE structure, 149

APP _MGR_METRICS structure,
146-147, 149

APP _MGR_MOVE_COPY

structure, 148-149

APP _MG~NEW structure, 97

AppMonitorMainO function, 72, 97, 151
in installation, 99

appProcess parameter, 96

APP_SET_PRIORITY structure, 171

APP _WIN_METRICS structure, 196-197

APP _ WIN_NEW _ONLY structure, 196

Arc, 271

argc parameter, 96

Argument data, 14
modifying, 17

argv parameter, 96

Background colors, 274
graphic state element, 278
painting, 376
palette colors, 295
RGB color values, 295

backgroundlnk,376

Baseline alignment, 387-388

Bezier curve, 271

Binding, 210

Bitmap, 329-331
creating, 330
images, 263

allocating,258
fonts and, 314

messages, 329-330
modifying,330
notifications, 331
pictures, 524-525
tags, 330
using,330

BITMAP_NEW structure, 330

BORDE~BACKGROUND structure, 377

BORDER_NEW structure, 373
styles, 373-375

Border rectangle region, 379

Borders, 361
adjusting, 505
geometry, 379-380

outer offsets, 380
subclassing clsBorder and, 380

toolkit ancestors and, 370
see also Border windows

BORDER_STYLE structure, 373

Border windows, 371-380
bsUnitsLayout measurement, 375
creating, 373-375
geometry, 379-380
layout, 378
messages for, 371-373
painting,375-377
propagating/notifying visuals and, 378
regions of, 379
resizing, dragging, topping, 377
sample, 371
visuals of, 376
see also clsBorder

Bounding box, 397

Bounds, 232
accumulation, 270-271

defined,269
client interface to layout, 249
DC, 256-257
scribble, 607
setting, 234

bsUnitsLayout units, 375

Buf field, 14

Built-in rules, 600-601
defined, 600

Button definition, 495

BUTTON_METRICS structure, 423

BUTTON_NEW _ONLY structure, 419

Buttons, 417-424
choice component, 362
command, 495
creating, 354, 419-420, 421

many, 422
defaults, 419
kinds of, 418
manager, 423
messages, 417-418
notification, 420-421

advanced techniques, 423-424
unwelcome, 421

painting, 422
preview messages, 362
sample, 417
showDirty control, 422
styles of, 418, 419-420
value, 422
see also clsButton; Icons; Menu

buttons; Pop-up choices;
Reference buttons

BUTTON_STYLE, 419
styles, 419-420

Button table, 236

Cached image, 273-274, 299-301
creating, 300
defined, 299
drawing, 300-301
hot spot, 273, 300
image devices vs., 301
invalidating, 301
mask, 300, 301
related classes, 301

Callback function, 273
sampled images and, 299

Canvas, 215

Capabilities, object, 25-29
changing capability, 29
checking capability, 29
creation capabilities, 28
creation notification, 28
flags, 25
freeing capability, 26
inheritance capability, 27
mutation capability, 28
ObjectCallO capability, 26
ObjectSendO capability, 26
observable capability, 27
owner capability, 26
scavenging capability, 27

Cap argument, 24
changing capabilities and, 29
OBJECT_NEW _ structure, 47

Changing capability, 29

Character
metrics, 310
positions, 416
widths, 309-310

Check gesture
handling,169-170
processing, 517-521

card client activity, 519-520
dimmed controls, 521
mixed attributes, 520
multiple card types, 520
multiple option sheets, 521
nested components, 521
run-through,517-519
selection interaction, 521

Checking capability, 29

Child windows, 216
altering, 246
labels and, 415-416
layout, 415-416
painting, 416
toolkit tables, creating, 434

ChkO macros, 24

Choice, 427, 442-444
component buttons, 362
creating, 352-353, 443
management, 439-440

selection, 440

manager, 443
messages, 443
notification, 443
value, 443-444

CHOICE_NEW structure, 443, 444

Chord figure, 272

CWignO macro, 393

C language code file, 31

Classes, 5
application, 82, 86-87

clsAppMgr and, 85
container, 185-188
inheritance of, 86
initialization routine, 96, 97-99
life cycle of, 95-99
processes of, 90-91
state diagram, 95
states of, 96
summary, 87

Application Framework, 68-70
hierarchy, 71

class's, getting, 55
compiling,47
components, 76
creating, 6, 31-48

ancestor calls and, 36-37
design considerations, 33
header file and, 36
installing and, 47-48
instance data and, 34-35
methods for, 37-41
method table and, 41-46
objects and, 34
overview, 31-33
reasons for, 31

defined, 5
getting information about, 54-56
handwriting

capture, 551
translation, 552-553

implementation of, 32
installing,47-48

new, 146-147
summary of, 33

keys and, 24
layout, 381-398
linking,47
manager, 423, 439-440
metaclasses, 84-85
method tables, 119
object

confirming, 54
getting,55

parts of, 31-32
predefined, 83.

with clsAppMgr, 85
return values and, 14
simple, 82-84
UI Toolkit, 357-360

inheriting from clsControl, 359
kinds of, 361

not inheriting from clsControl, 358
outline of, 360

CLASS_INFO array, 44-45
defined,42
entry fields, 45

Class initialization routine, 47-48

Class Manager
capabilities and, 25-29
concepts, 9-29
creating new objects and, 15-18
document process and, 90
handling message status and, 18-19
identifiers, 9-13
instance data, 34
memory protection and, 34
message-sending macros, 23-24
method entry points and, 37
method invocation, 35
method table and, 41-42
observable objects and, 78
overview, 6
passing messages with, 33
repaint process and, 242-243
scavenging and, 60
sending messages, 13-15

other ways for, 19-22
using keys and, 24-25

CLASS_NEW_ONLY structure, 47-48
contents, 47-48

CLASS_NEW structure, 47

CLASS_ONLY_NEW structure, 146

Class value, 55

ClExtendO macro, 393

Client window, 92
closing document and, 109
creating, for application frame,

212-213
document termination and, 112
frame layout and, 501
positioning scroll window, 461

Clipping, 219-221, 235
children, 221

unclipped, 236
disadvantage of, 220
local, 269, 270
messages, 283
on image, 219
overriding, 220
rectangles, 338
region, 219-220

defined,235
sharing parent's, 221
window, 220

siblings, 221
window, 236

Close box, 507

Closed figures, 271-272
drawing,294
messages, 283-284

INDEX 621

Closing
application window, 196
documents, 109-110

clsApp, 6, 31, 69
Application Framework messages, 71
default behavior, 166
document activation and, 105, 106
document object and, 92
header file, 160-161
menu button, 163-164

tags and, 144
messages, 157-161

advanced, 171
Application Framework, 161
class, 157
document attributes, 158
document hierarchy, 158, 161-163
document life cycle, 157-158
document window, 159, 163
observer, 160

printing, 160 ~
standard application menu, ~z:

159-160,163-170 ...
msgAppAbout, 168
msgAppActivate, 113
msgAppClose, 73
msgAppCopySel, 168
msgAppInit, 72
msgAppMoveSel, 168
msgAppPrint, 167
msgAppPrintSetup, 167
msgAppRevert, 168
msgAppSave, III
msgAppSearch, 168
msgAppSend, 167
msgAppSpell, 167-168
msgFree and, 110-111
msgInit and, 72, 104
msgResReadObject and, 113-114
msgRestore and, 73, 113
msgSave and, 73, 112
option sheets for printing and, 138
overview, 86
in removing frame decorations,

140-141
in requesting move or copy, 120
standard application menus

and,504-505
see also Application class

clsAppDir, 177
messages, 178
using,177-178
see also Application directory

handle class ..
clsAppDirHandle, 70

see also Application directory
handle class

clsAppMgr, 69
application classes and, 87
function of, 86
initialization routine and, 97-99

622 INDEX

instance of, 82
messages, 145, 146
metrics and, 145
msgFree routine, 99
predefined classes with, 85
see also Application manager class

clsAppMonitor, 69,151
for loading and unloading help, 154
for loading and unloading

stationary, 153-154
messages, 152-153

descendent modified, 153
handling, 155
instance, 152-153
using, 153-154

misc directory and, 154
monitor installation and, 151-152
overriding default behavior, 152
subclassing, 155
see also Application monitor class

clsApp Win, 118
messages, 195

using, 195-197
'see also Application window class

clsBitmap, 301, 329, 525
messages, 329-330

notification, 331

clsB~rder, 361, 370
custom backgrounds and, 377
descendants and colors and, 376
flags, 373-375
frames and, 501-502
label classes and, 413
messages, 371-373

attribute, 371-372
border geometry, 372
class, 371
rendering,372
subclass responsibility, 373

painting
background, 376
border, 375
foreground,376

sub classing, 380
see also Borders; Border windows

clsButton, 352, 354
controls support, 419
messages, 417-418
msgBorderGetForegroundRGB

and,422
msgControlAcceptPreview and, 400
previewing messages, 423

response to, 424
see also Buttons .. '

clsCalcApp, 86

clsChoice, 352-353, 442
choice management and, 439, 443
messages, 443
notification, 443
value, 444

clsChoiceMgr, 439
choice value and, 444
messages, 440

clsClass, 5, 6
application classes and, 87

initialization routine, 98-99
classes relationship to, 82-84
class installation and, 33, 47-48
metaclass and, 85
purpose of, 82
in system process, 82-84

clsCloseBox, 507

clsCommandBar, 508

clsContainerApp, 185, 186

clsControl, 399
button notification and, 420
control enable and, 404
dirty controls and, 403
in filing controls, 399
gesture handling and, 369
label notification and, 414
message dispatching and, 399-400
messages, 401-402
msgGWinGesture and, 408
previewing and, 406-407
subclasses values of, 403
UI Toolkit classes inheriting

from, 359
UI Toolkit classes not inheriting

from, 358
xgs 1 Tap gesture and, 408
see also Controls

clsCounter, 509

clsCustomLayout, 196,353-354
aligning edges and, 393
clsFrame and, 389
function, 361, 381
layout constraints, 392

specifying, 390-391
layout loop and, 397
layout of adjacent windows by, 394
messages, 390
shrink-wrap and, 395
window layout and, 382
see also Custom layout

clsDateField,486

clsDrwCtx,211
storing graphic states and, 277

clsEmbeddedWin, 69, 117
clsApp Win comparison, 118
in creating embedded window, 190
default behavior, 118
descendants of, 118
getting exact pen location and, 123
identifying selection and, 120
inheriting from, 118
message intercepts, 127
messages, 118-119, 189

in move and copy operations,
191-192

protocol, 121
move and copy, 119

Tic-T ac-T oe application and, 123
translations, 119
UI Toolkit and, 370
using, 189-193
see also Embedded window class

clsField, 356, 475
messages, 476-477

clsFileSystem, 10

clsFixedField, 486

clsFontlnstallMgr, 441

clsFontListBox, 463, 473

clsF rame, 112
creating close box and, 507
filing state and, 503
frame layout and, 501
messages, 499
modifying frame and, 500
page number creation and, 509
shrink-wrap and, 395
tab bars and, 508
see also Frames

clsGotoButton, 118

clsGrabBox, 528
messages, 529

clsGWin, 368-370, 552, 617
clsScribble object, 617
Help gesture and, 370
help ID field, 617
message previewing and, 407
messages, 617-618
xgsQuestion gesture and, 408
see also Gesture windows

clsHello Win, 238

clslcon
bitmap picture and, 524-525
messages, 523
painting and, 525
pixelmap picture and, 525
see also Icons

clslmgDev, 210, 255
creating imaging device and, 256
landscape and portrait mode and, 262
memory allocation and, 258

clslnput, 567

clslnputApp, 561

clslntegerField, 486

clsln Win, 560

clsIP, 552
clsSPaper general facility, 590
messages, 585-586
using, 585-588

creating insertion pad, 586-587
deleting insertion pad, 587
displaying insertion pad, 587

translator object, 587-588
Xlist data, 588

clsLabel, 400
child windows and, 415
decoration drawing and, 413
dirty controls and, 403
field support and, 416
function, 409
icon layout and, 525
messages, 410
notification, 414
painting and, 415
see also Labels

clsList, 83-84

clsListBox, 463
entries and, 465-466
gestures and, 468
messages, 449, 463-464
painting and, 468-469
scrolling and, 466
see also List boxes

clsManager, 439

clsMark, 69, 129
embedded window marks and, 118
instance (mark), 129
link messages, 134
messages

class, 199
holders send to marks, 199
marks sent to

components, 199-200
messages sent to components, 200
sent internally, 200

protocol, 133
see also Marks class

clsMenu, 5,445
creating menus and, 447-448
displaying menu and, 448
messages, 447
see also Menus

clsMenuButton, 363, 445
messages, 445

clsModalFilter, 488

clsMoveCopyIcon, 125

clsMyView, 517-519

clsNBApp, 186-187

clsNote, 488
argument structure, 15-16
creating new instance of, 18
filter, 490-491
label creation, 489
message handling status and, 18
messages, 488
painting and, 492
see also Notes·

clsObject, 5-6
application classes and, 87
clsClass and, 82
cls View and, 174

method tables and, 42
msgCopy and, 49-50
msgFree and, 59
msgFreeOK and, 58
object/class information messages

and,54
saving/ restoring data and, 77
savinglrestoring instance data and, 35
in system process, 82-84
see also Objects

clsOption, 508, 511
card destruction and, 516
command sheets and, 522
indicating mixed attributes and, 520
messages, 512-5 13

dsOptionTable, 521

clsPageN um, 509

clsPicSeg, 270, 279, 317
grafics and, 319-320
graphics applications and, 323-326
hit testing and, 325
messages, 317-318

drawing, 319
text attributes, 321
see also Picture segment class

dsPixDev, 210, 266

dsPopupChoice, 450
messages, 450, 451

dsPrint, 140

dsPrLayout, 139

clsProgressBar, 531
messages, 535

inherited, 540
metrics, 532
see also Progress bar

clsResFile, 70
msgNewand, 111, 113
saving and restoring data, 77

clsRootContainerApp, 185, 186
concepts, 187
messages, 187

dsScribble, 552,607
messages, 608

clsScrollbar, 453

clsScrollWin, 457
creating scrollwin and, 458
messages, 458
option card layout and, 515
scrollwin layout and, 460-461

clsSelChoiceMgr, 439
messages, 440

clsSelection, 128

clsShadow, 509

clsSPaper, 552, 589-596
creating subclass, 593

instance of, 593-594
facilities, 590-592

examples, 591-592

INDEX 623

functions, 589
input flags, 594
messages, 589-590
parsing Xlist data, 592
rendering translated text, 592
subclassing, 592-593
subclass instance, 593-594
translator, 595-596

clsSrollWin, 243

clsStringListBox, 463, 470
destroying button window and, 472
messages, 470
painting and, 473
providing entries and, 471

clsSysDc,285

clsSysDrwCtx, 210-211, 235, 267
colors and, 295
in coordinate system

transformations, 270
drawing context features and, 269
fill areas and, 292
hit detection and, 270
messages, 281-284

drawing, 319
picture segments and, 319
raster operation and, 292-293
sampled images and, 272
in sending window messages, 289
see also Drawing context (DC)

dsTabBar, 223, 508
subclasses of clsTkTable and, 442

clsTabButton, 220, 221

clsTableLayout, 353, 381
Calc's positioning of child window

using, 388
control enable and, 450
function, 361, 383
layout loop and, 397
messages, 384
table window constraints, 386-387
toolkit table buttons and, 425
window layout and, 382
see also Table layout

clsText, 105

clsTextField,486

clsTextView,517-519

clsTiff,331-333
messages, 331
TIFF object creation and, 332

clsTkTable, 352, 425
changing defaults and, 434
creating buttons with, 422
creating child windows and, 434
creating toolkit tables and, 428, 430
descendants, 362
flags, 435
function, 425
manager field, 438
messages, 427

624 INDEX

notification, 438
painting and, 436-437
response to button previewing

messages, 424
specifYing item class and, 435
subclasses of, 442
table layout and, 437
see also Toolkit tables

clsToggleTable, 442

clsTrack,527
clsGrabBox and, 528
messages, 527

cls Transfer, 119

clsTttView, 125

clsView, 69, 118, 552
concepts, 173
creating new view and, 174
messages, 173
subclassing, 175
view filing and, 174
see also View class

clsWin, 5
behavior, 211
default repainting behavior, 222
input and, 228
inserting window and, 233
layout policies and, 361
low-level pen input and, 558
messages, 230-231

drawing contexts and, 284
moving/resizing windows and, 247
msgSave and, 112
procedures for instances of, 217-218
self-sending messages, 216, 226
structures, 227-229
subclasses, 209

custom, 215
subclassing,326
see also Window class

clsWinDev, 209, 210, 217
messages, 255
printers, 301
root window, 255
see also Window device classes

clsXfer protocol, 121, 122
Tic-T ac-T oe application and, 126

clsXGesture, 553

clsXlate messages, 604-605

clsXTest, 553

clsXtract, 551,553
function, 552
translation classes and, 598

c1sXW ord, 553

Colors, 269, 274, 295-296
border window, 376
compatibility of, 295-296
inverting, 295

palette, 295
hardware-dependent, 274, 295

planes and, 296
RBG values, 274, 295
rendering, 299

Command bars, 428
notes with, 491

Command sheets, 521-522
creating, 522

Compiling, method tables, 45-46

Component classes, 76
saving/restoring data and, 77

Component (mark), 130
ancestor, 201
parent, 201
UUID and UID, 203
validating, 201

Component objects, 92

Components
application, 76-77, 349
decoration window, 497
field, creation, 480-481
frame, 497
laying out, 349
nested, 362-363

how menus work and, 363
option sheets, 521

UI,349
UI Toolkit, 350

filed representation and, 364-365
filing,365
nested, 362-363

Connections notebook, 96

Constraints
custom layout, 392

alignment, 393
flags, 395
four child window, 391
specifYing,390-391
types of, 392

shrink-wrap and, 395-396
relative window, 396
value, 396

table layout, 386-387

Container application classes, 185-188
contents page and, 188
hierarchy, 186
reference document and, 188
root, 186-188
see also Embedded document

CONTROL_ENABLE structure, 404-405

CONTROL_METRICS structure, 402

CONTROL_PROVIDE_ENABLE structure,
405,449-450

Controls, 399-408
creating, 402-403
default,403
dirty,403

enable, 404-405
dynamic, 405
evaluating,404-405
protocol, 449

filing,399
gesture notification and, 408
how to use, 399
inactive, 404
internal notification and, 405-408
message dispatching and, 399-400
messages, 401-402

previewing stage and, 400
sent in response to events, 407

nesting of, 363
presentation and interaction behavior

of,400
sent in response to events, 407
style of, 402

fields, 402
values of, 403
see also clsControl

CONTROL_STYLE structure, 402

Coordinates
drawing, 286-289

defaults, 287
resetting LUC, 288
rotation, 288
scale, 288
transformation matrices, 289
translation, 288
units, 287
world coordinates, 288-289

grafics, 320
integral, 270
rounding error, 269
unit size of, 270

Coordinate system, 265-266, 478
conversion messages, 283
layout classes, 382
logical unit coordinates

(LUC), 267-268
logical window coordinates

(LWC),267-268
transformations, 268

Copy icon, 120, 125
presenting, 124-125

Copying
data, steps for, 119-120
between embedded windows, 118-119
embedded windows, 191-193
mark,203
objects, 49-50
picture segments, 326-327
pixels, 259-260

Copy protocol, 119-123
copying data, 122-123
data type determination, 121
destination by user, 120
destination in file system, 122
destination to copy, 121

getting exact pen location, 123
identifying selection, 120
OK copy, 121-122
reasons for using, 119
requesting copy, 120

Corner radius scaling, 339-340

createDataObject argument, 174

CreatelnsertWindowO function, 556

Creating
application directory handle, 170
application main.window, 504
bitmap, 330
border windows, 373-375
buttons, 354, 419-420, 421

many, 422
cached images, 300
choice, 352-353, 443
classes, 6, 31-48
client window, 212-213
close box, 507
clsSPaper subclass, 593

instance of, 593-594
command sheets, 522
control, 402-403
custom layout, 353-354

window, 390-395
DC, 285
documents, 102, 148
embedded application, 196
embedded window, 190
field, 477-479
font list boxes, 473
frames, 500
header file, 36
icons, 524-525
imaging device, 256
insertion pads, 586-587
IP window, 556-557
marks,133
menu bar, 353
menu buttons, 446-447
menus, 447-448
methods, 37-41
method tables, 41-46
notes, 488-490
objects, 15-18,34

with default values, 18
option sheets, 514
picture segment, 318-319, 322
pop-up choices, 451
progress bar, 535
scribbles object, 609
scrollwin, 458-459
shadows, 509
string list boxes, 470-471
submenus, 448
tab bars, 508
tabular window layout, 353
TIFF object, 332
title bar, 507
tokens, 200

toolkit table, 428-435
child windows, 434

translator, 605
window, 212

size and position, 232
style flags, 232

Xlist, 614

Creation capability, 28

Creation notification, 28

CSTM_LAYOUT_CHILD_SPEC

structure, 391

CSTM_LAYOUT _DIMENSION

structure, 391-392
alignment constraints and, 393
value and, 396

CstmLayoutSpecInit, 396

ctx parameter, 35
defined, 38-39
ObjectCallAncestorO and, 36

Custom layout, 389-390
creating, 353-354, 390-395

aligning width/height dimensions,
393-394

alignment constraints, 393
constraint flags, 395
constraints, 392
dimensions, 391-392
four child window constraints, 391
specifying constraints, 390-391

dimensions, 391-392
initialization, 396 .
sample, 389
see also clsCustomLayout

Deactivating fields, 481-482

Debugging windows, 252

DEBUG, warning macro, 22

Decoration window components, 497

Default values, 17
changing, 18

#define, NewFields, 16

Definition file, method table, 41
creating,42-45

Deinstalling, applications, 99

Deleting
documents, 115
insertion pads, 587
tokens, 201
Xlist element, 614

Destroying
application directory handle, 179
embedded window, 190
image device, 262
notes, 492
option card, 516
string list boxes, 472
TIFF file, 333

trackers, 528
window, 218

devCode, 563
defined,569

INDEX 625

in INPUT_EVENT structure, 567

Device drivers, 567
INPUT_EVENT structure and, 567-568
pen event codes, 568

Device-independent RGB method, 274

Devices. see Image device; Windowing
device

Dialogs, system and application, 493

Directories, 89
document component, 93
see also Application directory

Displaying
captured scribbles, 557-558
insertion pads, 587

DLL file, 33, 47

DLLMainO routine, 33, 47
UI Toolkit programming and, 366

Document hierarchy messages, 161-163
application's name, 163
application's title, 163
document information, 161-162
document links, 161
embedded documents, 161
hot mode, 162
renaming document, 162

Document menu, 165
MiniT ext, 363
Print command, 139
Print Setup button, 138

Documents, 82, 87-92
activating, 102-107

main in, 102-103
msgAppActivate in, 105-107
msgAppInit in, 105-107
msgAppMgrActivate in, 103
msgInit in, 104

active, 87
closing, 109-110
creating, 102, 148
defined,67
deleting, 115
directories, 89
embedded,67,117-128

counting, 183
directory, 89
getting and setting number

of, 181-182
printing, 136-137
traversal and, 129

embedding, 77
file system and, 88-89
global sequence number, 178
life cycles, 100-115
as objects, 92
with objects and frames, 107

626 INDEX

open,67
process, 109

opening, 107-109
paginating, 137
parts of, 92-93
printing, 135-136

repainting and, 222-223
as processes, 89-91
reactivating, 113-115
renaming, 162
saved, 78-79
screen information and, 87-88
sequence number, 178
state diagram, 100
states of, 100

transitions, 101
terminating, 110-113

Document window messages, 163

Dragging, 377

Drag handle; 453

Drawing
box, 287
cached images, 300-301
cOQrdinates, 286-289
with a drawing context, 286
dynamic, 293
line, 337-338
on image device, 259
operations, 293-294

closed figures, 294
filling window, 294
open figures, 293

in picture segments, 322
other objects, 323

sampled image, 298
text, 302, 311-312
trackers, 528
in window, 236

Drawing context (DC), 209, 211, 266
binding, 266
bound to window, 210
class, 281-290
clsHello Win, 238
color, 295-296
creating, 285
default state, 285
defined, 266
destination rectangle, 273
drawing coordinates, 286-289
drawing operations, 266, 293-294
drawing with, 286
encoding attribute, 277
features, 269-270

bounds accumulation,
269,270-271

color, 269, 274
figure drawing operations,

269,271-272
graphic state, 270, 277-278
hhderection, 269, 270
local clipping, 269, 270

picture segments, 279
sampled images, 269, 272-274
text operations, 269, 275-276

graphic state, 266, 290-293
in handling low-level pen input, 558
image mask, 273
ImagePoint font support, 302-315
messages, 281-284

associating DCs with windows, 281
class, 281
clipping and hit detection, 283
cls Win messages and, 284
coordinate conversion, 283
drawing operation, 283-284
graphic state, 281
hardware-dependent color, 282
matrix manipulation, 282
RGB color, 282
text interface, 284

msgWinDevBindPixelmap, 257
printing, 301-302
for rendering visual

feedback, 591-592
sampled images, 297-301
scaling fonts and, 310
state, 320-321

not stored, 321
paint, 320-321
picture segment storage, 321

system, 210, 267
text and, 302
unit size, 270
when to create, 286
window messages to, 289-290
window repaint and, 237-238
see also clsDrwCtx; clsSysDrwCtx

DrawingPaper application, 317

Dynamic drawing, 293

Dynamic UIDs, 9, 10

Editing
grafics, 324
picture segment, 324

Edit menu, 165
Copy command, 120
Move command, 120

Ellipse figure, 272
drawing, 341

Embedded application, 77, 195
creating, 196

Embedded document, 67, 117-128
activating, 161
counting, 183
directory, 89
embedded window concepts, 117-118

moving and copying
between, 118-119

gestures and, 128

getting and setting number
of,181-182

intercepted messages and, 127
managing, 161
move/copy protocol and, 119-123
moving in Tic-T ac-T oe and, 123-127
printing, 136-137

situations for, 136
selection and, 128
traversal and, 129
see also Container application classes

Embedded Printing card, 136

Embedded window, 117
child, 193
concepts, 117-118

clsEmbeddedWin decendants, 118
marking support, 118

copying, 191-193
between, 118-119

creating, 190
destroying, 190
examples, 117
gestures, 127
metrics, 190
moving, 191-193

between, 118-119
protocol, 122
style of, 190-191
toolkit ancestors and, 370
UUID,193

Embedded window class, 69, 189-193
see also clsEmbeddedWin

EMBEDDED_ WIN_EXTRACT_CHILD

structure, 193

EMBEDDED_ WIN_GET_DEST

structure, 193

EMBEDDED_ WIN_INSERT_CHILD

structure, 193

EMBEDDED_ WIN_METRICS structure, 190

EMBEDDED_ WIN_MOVE_COPY_OK

structure, 192

EMBEDDED _ WIN_MOVE_COPY

structure, 191-192

EMBEDDED_ WIN_NEW _ONLY

structure, 190

EMBEDDED_ WIN_STYLE

structure, 190-191

Embedding documents, 77

Ems, 308, 309

Encoding
character, 277
font, 307

field,312
run-length, 298
universal standard, 312

Entries
list box, 465

defined,464

inserting and removing, 467
supplying, 465-467

Entry points
for application process, 96-97
for document activation, 102
for methods, 37

Episodic layout, window, 225

Error-checking macros, 23-24

Errors
application, 494
system, 494
unknown, 495

Event
generation, 563
handling,563-564
inserting, 550
keyboard,581-584

data, 581-584
low-level pen, 559-560
messages, 546-547
pen, 575-580
processing, 563-566

pen input sampling and, 565-566
x-y distribution and, 565

queue, inserting messages in, 571
routing, 547
status codes, 564

Event data, 575-580
msgKeyChar, 583
msgKeyDown, 582
msgKeyMulti,584
msgKeyUp,582
msgPenDown, 576
msgPenEnterDown, 577
msgPenEnterUp,577
msgPenExitDown, 578
msgPenExitUp, 578
msgPenlnProxDown, 578
msgPenlnProxUp, 578
msgPenMoveDown, 577
msgPenMoveUp,577
msgPenOutProxUp,579
msgPenStroke, 579
msgPenTap, 580
msgPenUp,576

Extracting
window, 218, 234

from window tree, 550

Facilities
clsSPaper, 590-592

examples, 591-592

FailedO macros, 24

Fax Viewer application, 317

Field
activation and deactivation, 481-482

messages, 481
component creation, 480-481

creating,477-479
custom handwriting translation,

479
style flags, 477-479

data-specific, 486
delayed input, 483
input processing, 482-483
input validation, 484-485
layout, 485
messages, 476-477
properties access, 480
sample, 475
style flags, 475-476

editType settings, 478
focusStyle setting, 478

translator, 479
user interface and, 485
see also clsField

FIELD_NEW_ONLY structure, 477

Fields, 475-486
support, 416

FIELD_STYLE, 477
flags, 479
values, 478-479

Figure drawing operations, 271-272
closed figures, 271-272, 294
defined,269
open figures, 271, 293

File system
documents and, 88-89
embedded windows and, 122
organization, 88-89

Filing
controls, 399
frames, 503
list boxes, 469
UI Toolkit components, 365
windows, 253

Filled region (progress bar), 531
defaults, 537
manipulating, 537-539

Fill patterns, 291
alignment, 292
determining,292
graphic state element, 278
styles, 292
windows and, 294

Filter, 548-549
adding,571
objects, 547
removing, 571

FIM_PRUNE_CONTROL structure, 441

FIM_SHORT _IDs, 441

Fixed-point numbers, 288

Flags
built-in rule, 600-601
clsBorder style, 373-375
constraint, 395
described by APP _MGR_FLAGS, 147

field style, 475-476
file mode, 180
filter, 298

INDEX 627

getting and setting, 180
handwriting translation, 600-602
input, 558, 565-566

clsSPaper, 594-595
window, 569-570

knowledge source, 601-602
note, 489
object capability, 25
scrollwin, 459
table layout, 384-385
toolkit table, 430-432

modifying items with, 435
values, 431

window, 228-229
input, 228
setting,234-235
style, 228, 229, 232

Xlist, 611
element, 612

Flow pagination, 137

FONTLB_NEW _ONLY structure, 473

Font list boxes, 473
creating,473
notification, 473

Fonts, 275-276
aspect ratio of, 306
attributes, 275, 303, 305
bitmap, 275, 314
cache loading, 314
changing, 302
common, 306-307
default, 305-306
defined, 303
encoding, 307

fields, 312
enumeration of, 304
geometry, 308-309
graphic state element, 278
groups of, 305-307
ID, 275, 276, 303

opening fonts and, 303-304
installed, displaying, 441
metrics, 275, 307-310
names, 303, 308
opening,275-276,303-305
outline, 275
scaling, 276, 310-311
search path, 313-314
state, 315
storing, 304
strings, 304-305
switching between, 315
system, 306
transforming, 307
user choice of, 304
user-visible, 306
weight of, 306

628 INDEX

Foreground colors, 274
graphic state element, 278
painting,376
palette colors, 295
RGB color values, 295

Format codes, 495-496

Frame application, 212

Frame decorations, 141,507-509
close box, 507
command bar, 508
page number, 509
removing, 140-141
shadow, 509
tab bars, 508
title bars, 507
user interface, 507

frameNewFields, 16

FRAME_NEW structure, 500

Frames, 497-505
Application Framework and, 504-505
components of, 497
creating, 500
custom layout example, 389
filing,503
layout, 500-501
messages, 499
modifying, 500
multiple, 500
notification, 501-503

close, float, bring-to-front,
delete, 503

selection, 502
zoom, 502-503

resizing and dragging, 501
scrollbars and, 498
styles of, 498
subclasses of, 505
see also clsF rame

FRAME_STYLE structure, 500

FRAME_ZOOM structure, 503

Freeing capability, 26

FS_NEW _ONLY structure, 179

FS_NEW structure, 179

fullEnvironment flag, 98

Geometric shapes, rendering with thick
borders, 340-342

Gestures
embedded window, 127
hot spots, 617
list box, 468
notification, 408
propagation of, 368-369
responding to, 369
and selection, 128
UI Toolkit components and, 368

Gesture windows, 368-370
gesture propagation, 368-369
messages, 617-618
Quick Help IDs, 370
responding to gestures, 369
using,617-618
see also clsGWin

Getting and setting
application directory attributes,

180-182
all, 180
individual, 180-182

embedded window style, 190-191
pixel values, 259
Xlist elements, 615

Global sequence numbers, 178
getting, 179

Glyphs
finding, 313-314 .

metrics and encoding, 314
search path, 313-314

missing,277

Goto buttons. see Reference buttons

Grabber, 549
input, 572
object, 547

Grab boxes, 528-529

Grafics, 319-320
coordinates, 320
current, 324
defined,319
drawing by adding, 325
drawing messages and, 319
editing, 324
index, 324
invisible, 326
opcode, 319
scaling,327

Graphics
classes, 210-211

hierarchy, 211
coordinate systems, 267-269
drawing context features, 270
models and implementation, 265-267
using picture segments in, 323-326

Graphic state, 270, 277-278
determining filled areas, 292
elements, 277-278
filling and stoking, 290
fill pattern alignment, 292
line and fill patterns, 291-292
line styles, 290-291
messages, 281
raster operations, 292-293
setting attributes of, 271
storage, 277

Group, font, 305-307
common, 306-307
default, 305-306
encoding, 307

names, 305
transforming, 307

growChildHeight flag, 385, 387

growChildWid.th flag, 385, 387

GWIN_GESTURE structure, 369, 617

Handwriting capture
classes, 551
object, 555
subsystem, 555

Handwriting translation, 479
flags, 600-602

built-in rules, 600-601
knowledge source rules, 601-602
post-processing rules, 602

subsystem, 546, 551-553
translation classes, 552-553
window subclasses, 551-552

Header files, 31
for clsApp, 160-161
creating, 36
goto buttons, 117
labels, 14
MT output file, 46
UI Toolkit classes, 364

Help
loading and unloading, 154
notebook, 154

Hierarchy
Application Framework classes, 71
clsApp messages, 158, 161-163
container application classes, 186
graphics classes, 211
software, 76
subsystem, 545
translation class, 598
UI Toolkit classes, 357
window, 251-252

Hit detection, 270
defined, 269
messages, 283

Holder, 202
messages sent by, 202-203

Hot mode
documents in, 79, 107
setting, 162

Hot spot
cached image, 273, 300
gesture, 617

ICON_COPY_PlXELS structure, 525

ICON_NEW_ONLY structure, 524

Icons, 418, 523-526
creating, 524-525
layout, 525
messages, 523

notification, 525
painting, 525
picture styles for, 524
see also clslcon

ICON_STYLE structure, 524

Identifiers. see UID; UUIDs

Image device, 256-263
accessing, 256-257

pixels in image window
and, 259-262

binding, 257-258
cached images vs., 301
comparison with windowing

devices, 256
complex use of, 261-262
creating, 256-257
defined, 255
destroying, 262
dirty windows and, 259
drawing, 259
landscape and portrait mode, 262
multiple pixelmaps and, 262
performance tips, 263
target device, 257, 258
UID and, 256

Image mask, 273
cached, 273

ImagePoint, 209
font support, 302-315

amount of fitting text, 313
API use, 302
character metrics, 310
drawing text, 311-312
finding glyph, 313-314
font attributes, 305
font cache, 314
font defined, 303
font metrics, 307-310
group, 305-307
improving performance, 315
measuring text, 312
opening font, 303-305
scaling font, 310-311
spacing text, 312
text and drawing context, 302

overview, 209-210
rendering details, 335-342

earlier release differences, 342
geometric shapes with thick

borders, 340-342
LDC,336
line drawing, 337-338
line width and corner radius

scaling, 339-340
LUC,335
polygons, 339

tiling and, 292
windows and, 210

Image window, 259-262
copying pixels in, 259-260

getting and setting pixel values in, 259
overlapping windows in, 260
stenciling in, 260-262

Imaging models, 265-266
abstract coordinates o£ 267
sampled images and, 299
simple, 266

In:Out arguments, 14

In arguments, 14

Index, table, 388

Inheritance, 82
of application class, 86

Inheritance capability, 27

In-line fields, 475

Inner rectangle region, 379

Input
delayed, 483

messages, 483
device drivers, 567

INPUT_EVENT structure
and,567-568

event
status codes, 564, 569
see also Event

flags, 558, 565-566
clsSPaper, 594-595
window, 569-570
see also specific input flags

focus, 548
functions

InputEventlnsertO, 565, 571
InputFilterAddO, 547, 571
InputFilterRemoveO, 571
InputGetGrabO, 572
InputGetTargetO, 573
InputSetGrabO, 572
InputSetTargetO,572
InputTargetO, 550

grabber, 572
leaf-to-root model and, 565
low-level pen, 558-562
pen, sampling, 565-566
processing, 482-483

messages, 482
registry, 547-548, 567

defined, 546
system messages, 570
target, 572-573

object, 581
validation, 484-485

messages, 484

INPUTAPP.C, 559-560

INPUT_EVENT_DATA structure, 575-576
for keyboard events, 581

InputEventGenO interface, 549, 563

INPUT_EVENT structure, 567

inputlnk flag, 566

inputlnkThrough flag, 566

INDEX 629

inputMoveDelta flag, 565

inputNoBuy flag, 566

inputResolution flag, 566

Input subsystem, 545, 546-550
API, 567-573

event data structure, 567-568
constants, 568-570
event routing, 547
filters, 548-549
grabber, 549
input registry, 547-548
inserting events, 550
listener objects, 549
messages, 570
procedures, 571-573

adding filter, 571
getting grab information, 572
getting target, 573
inserting message into event

queue, 571
removing filter, 571
setting input grabber, 572
setting input target, 572

routing, 548
target object, 550
UIDs, 568
window tree, 550

inputTransparent flag, 566

Inserting
custom window as main application

window, 561-562
events in input stream, 550
IP window, 556-557
list box entries, 467
messages in event queue, 571
window in window tree, 550
windows, 217, 233-234
Xlist element, 614

Insertion pads, 585
creating, 586-587
deleting, 587
displaying, 587
UI styles, 587

Insertion point, 416

Installing
application monitor and, 151-152
applications, 96-99
classes, 33, 47-48

new, 146-147

Instance data, 33, 34-35
accessing, 35
allocating, 34
contents, 99
defining additional, 85
document activation and, 104
maintaining dynamic, 35
memory protection and, 34
saving and restoring, 35
size, 47-48

630 INDEX

Instances, 5
application, 82
of simple class, 84

Integral coordinates, 268

IP _NEW typed structure, 586

IP _XIATE_DATA structure, 588

]mpO macros, 24

Kerning, 310

Keyboard event data, 581-584

KEYBOARD.H, 581

KEY_DATA structure, 581-582

KEY.H,581

Keys, 24
changing capabilities and, 28
OB]ECT_NEW_ structure, 47
using, 24-25

Knowledge source, 601
rules, 601-602

defined, 600
spelling dictionary, 601
translation template, 601

LABEL_NEW_ONLY structure, 411
label strings and, 413

LABEL_RECTs structure, 416

Labels, 409-416
child windows and, 415-416
creating, 411-413

annotation, 413
displays of, 409
field support and, 416
layout, 414
messages, 410
notification, 414
painting, 414-415
progress bar, 531

custom, 531, 539-540
sample, 409
strings and special characters, 413
styles of, 411-413

fields, 411-412
see also clsLabel

LABEL_STYLE structure, 411, 411-412

Layout, 361
baseline, 387
border window, 378
calculator example, 388
capturing vs., 398
child windows, 415-416
custom, 389-390

creating, window, 390-395
dimensions, 391-392

initialization, 396
sample, 389

field,485
frames, 500-501
icons, 525
labels, 414
lazy,397
loops, 397-398
notes, 492
option card, 515
scrollbar, 453
scrollwin, 460-461
speedup, 365
tab bars, 508
table, 383

constraints, 386-387
flags, 384-385
specifYing,385-386
structure, 384-385
using tlAlignBaseline for, 388

toolkit table, 437
units, 375
window,216,224-225,247-248

adding child windows to, 381
classes, 381-382
dirty, 249, 365
episodic,225
parent-veto, 225
processing,249
shrink-wrap and, 397
unconstrained, 224

Layout classes, 381-398
capturing vs. layout, 398
coordinate system, 382
custom layout, 389-390

creating, 390-395
layout loops, 397-398
lazy layout, 397
shrink-wrap, 397

constraints and, 395-396
table layout, 383
window layout, 381-382

IbFreeOataByMessage flag, 466

Leaf-to-root model, 565

Life cycles, 95-115
application class, 95-99

deinstalling, 99
installing, 96-99

document, 100-115
activating, 102-107
closing, 109-110
creating, 102
deleting, 115
opening, 107-109
reactivating, 113-115
terminating, 110-113

Line
cap and join, 278
drawing, 337-338
end points in one-pixel, 337

modes, 291
patterns, 271, 291-292

graphic state element, 278
segments, 265
stoking and, 290
styles, 290-291
thickness, 291

graphic state element, 278
in rectangle, 341

width, 339-340
physical, 340

Link files, 134

L1ST_BOX_ENTRY structure, 465
free mode, 466 .
inserting and removing entries

and, 467
setting state with, 467

List boxes, 463-473
contents of, 464-465
creating, 464
en tries, 465

inserting and removing, 467
supplying,465-467

filing,469
font, 473
gestures, 468
messages, 463-464, 469
modifYing, 467 .
notification, 467-468
painting, 468-469
pre-loading, 467
scrolling,466
state, 467
string, 470-473
toolkit table vs., 470
see also clsListBox

LIST _BOX_NEW structure, 464

LIST _BOX_STYLE structure, 464

Listener
field,549
objects, 548, 549

Loader database, 96

Local clipping, 270
defined, 269
rectangle, 270

graphic state element, 277
Logical device coordinates (LOC), 336 .

rendering details, 336
rounding to positive side of LUC, 337

Logical transformation matrix
(LTM),336

Logical unit coordinates (LUC),
267-268,335

coordinate systems
transformations, 268

drawing coordinates and, 286-287
graphic state element, 277
messages to set, 287

obtaining, 336
origin, 292
scaling fonts and, 276, 310
system, figure, 335
transforming,268
units, 287
unit size, 268-269

Logical window coordinates (L WC),
232,267-268

Macros
DEBUG warning, 23
declaration, 39-40
error-checking, 23-24
for extracting information from

UIDs,12
message sending, 23-24
for testing UIDs, 13
see also specific macros

main function, 72
in application installation, 96-97
in document activation, 102-103
initialization routine and, 97

mainO routine, 33

Main window, 92
application, 504

creating, 504
inserting custom window

as, 561-562
in document activation, 105
ini tializing clsS Paper -based, 593-594
setting, 163

MakeMsgO macro, 11
class UIDs and, 568

MakeStatusO macro, 11

MakeTagO macro, 12, 235
defining window tags and, 436

MakeWarningO macro, 12

MakeWKNO macro, 10

Manager
button, 438-439
choice, 443
classes, 423, 439-440
objects, 423

Managers, 438
for menu buttons, 166
for toolkit tables, 438

button manager notification
details, 438-439

menu management, 439

Mapping, 130-131
stamp,131-132
table, 131

Margin rectangle region, 379

Mark,129
copying,203
creating and holding, 133

delivery messages, 201-202
positioning, 202
sent to components that have

children, 202
holder of, 129
messages, 132
parts, 130
sending message to, 202-203
setting, to component, 203
supporting, 132

Marks class, 69, 129-130, 199-203
embedded windows and, 118
messages, 199-200
see also clsMark

Matrix
manipulation messages, 282
transformation, 289

Memory
for application code, 92
instance data and, 34
protection, 34

Menu bar, 363
creating,353

MENU_BUTTON_NEW _ONLY

structure, 446

Menu buttons, 163-164,418
adding, 166
creating, 446-447
displaying submenus with, 448-450
document and edit menus, 165-166
managers for, 166
messages, 445
painting, 447
pop-up menu, 445
style of, 446
tags, 164
see also clsMenuButton

MENU_BUTTON_STYLE structure, 446

MENU_NEW_ONLY structure, 447

Menus, 428,447-448
creating, 447-448

submenus, 448
displaying, 448
frame, 503
management, 439
nesting of controls in, 363
standard application, 363
working of, 363
see also clsMenu

Message argument, 14
structure, 14-15

new object, 15-17

Message handler, 18, 31
code, 19
defined, 5
status values and, 12
see also Methods

Message parameters, 38-39

INDEX 631

Messages, 5
activation and deactivation, 481
clsApp, 157-161

advanced, 171
Application Framework and, 161
class, 157
document attributes, 158
document hierarchy, 158, 161-163
document life cycle, 157-158
document window, 159, 163
observer, 160
printing, 160
standard application menu,

159-160, 163-170
clsAppDir, 178
clsAppMgr, 145, 146
clsAppMonitor, 152-153

handling, 155
using, 153-154

clsApp Win, 195
clsBitmap, 329-330
clsBorder, 371-373
clsButton, 417-418
clsChoice, 443
clsChoiceMgr, 440
clsControl, 401-402
clsCustomLayout, 390
clsEmbeddedWin, 118-119, 189
clsF ield, 476-477
clsFrame, 499
clsGrabBox, 529
clsGWin, 617-618
clslcon, 523
clsIP, 585-586
clsLabel,410
clsListBox, 449, 463-464
clsMark, 129, 199-200
clsMenu, 447
clsMenuButton, 445
clsNote, 488
clsOption, 512-513
clsPicSeg, 317-318

attribute, 317-318
class, 317
drawing, 318

clsPopupChoice, 450, 451
clsProgressBar, 535
clsRootContainerApp, 187
clsScribble, 608
clsScrollWin, 458
clsSelChoiceMgr, 440
in clsSelection, 128
clsSPaper, 589-590
clsStringListBox, 470
clsTableLayout, 384
clsTiff, 331
clsTkTable, 427
clsTrack, 527
clsWin, 230-231
defined, 5
delayed input, 483
delivery, 201-202

632 INDEX

drawing context, 281-284
event, 546~ 54 7
field component creation, 480
frame action, 502
identifiers, 11
input

processing,482
subsystem, 570
system, 570
validation, 484

intercepted, 127
method table specifications for, 41
move and copy protocol and, 119
notification, 399
object, 49

and class information, 54
ObjectCallO and, 19
ObjectPostO and, 21-22
ObjectSendO and, 20
observer, 50, 150
overriding, 42
preview, 399, 405-406

message argument for, 407
preview button, 362
printing, 135, 136

protocol, 140
progress bar, 535-537

inherited, 540
propagating,225
sampled images, 297
sending, 13-15 _

macros for, 23-24
message argument structure

and, 14-15
to object, 15
return values and, 14

sent by holders, 202-203
sent to components, 201-202
superclass, 155
translation, 604-606

control, 606
initialization, 605
notification, 606

window
creation, 230
display, 230-231, 235-244
filing,231
layout, 231, 244-251
management, 231, 251-253
metrics, 230, 233-234
sending to hierarchy, 251-252

see also specific messages

Message status, 18-19

Message text, 495-496
message string format codes, 495-496
specifying command buttons, 495

Metaclasses, 84-85
clsAppMgr and, 85

Methods, 31
ancestor calls and, 36-37
code for, 34

creating,37-41
declaration macros, 39-40
declaring entry points, 37
message parameters, 38-39
operations and, 41

for msgAppClose, 109
for msgAppInit, 105
for msgAppOpen, 108
for msgFree, 110
for msgRestore, 105, 114
for msgSave, 105, 112
see also Message handler

Method tables, 31
class implementation and, 32
compiling,45-46

two steps, 46
with wildcards, 46

creating, 41-46
build sequence, 43
five steps for, 42

definition file, 41
creating,42-45

in document activation, 105
entry for msgAppOpen, 107
overview, 41-42
wildcards, 45

Metrics, 145
bitmap,330
character, 310
font, 275, 307-310
getting, application monitor, 153
getting, application window, 196-197
getting, embedded window, 190
getting, for class, 149
progress bar, 534, 536-537
TIFF image, 332
window messages, 233-235

MiniNote, document pagination, 137

MiniText
Document menu buttons, 363
document pagination, 137
token implementation, 131

Move icon, 120, 125
presenting, 124-125

Move protocol, 119-123
data type determination, 121
destination by user, 120
destination in file system, 122
destination to move, 121
getting exact pen location, 123
identifying selection, 120
moving data, 122-123
OK move, 121-122
reasons for using, 119
requesting move, 120

Moving
data, embedded window, 126-127
data, steps for, 119-120
documents, 122
embedded windows, -191-193

between, 118-119
picture segments, 326-327
in Tic-Tac-Toe, 123-127
windows, 246-247

msgAdded, 51
translation and, 605

msgAddObserver, 27, 50-51

msgAddObserverAt, 50-51

msgAMGetMetrics, 153

msgAMLoadHelp, 154

msgAMLoadMisc, 154

msgAMLoadStationary, 153

msgAMRemoveHelp, 154

msgAMRemoveStationary, 154

msgAMTerminateOK, 155

msgAncestor,55

msgAncestorlsA, 55

msgAppAbout, 168

msgAppActivate, 105-107
in document reactivation, 113

msgAppAddCards, 138, 168-169
handling, 138-139
responding to, 169

msgAppAddFloating Win, 163
managing multiple windows and, 500

msgAppClose,73
closing document and, 109-110
for Tic-Tac-Toe application, 110

msgAppCopySel, 120, 168

msgAppCreatedLink, 134

msgAppCreateMenuBar, 163

msgAppDeInstalled, 150

msgAppDelete, 149

msgAppDeletedLink, 134

msgAppDirGetAttrs, 180

msgAppDirGetBookmark, 182

msgAppDirGetClass, 181

msgAppDirGetFlags, 180

msgAppDirGetGlobalSequence, 179

msgAppDirGetNext, 182-183

msgAppDirGetN extlnit, 182

msgAppDirGetN umChildren, 181
for counting embedded

documents, 183

msgAppDirGetSequence, 181

msgAppDirGetUID,181

msgAppDirGetUUID, 181

msgAppDirSeqToName, 183

msgAppDirSetAttrs, 180-

msgAppDirSetBookmark, 182, 183

msgAppDirSetClass, 181

msgAppDirSetFlags, 180

msgAppDirSetN umChildren, 181

msgAppDirSetSequence, 181

msgAppDirSetUID, 181

msgAppDirSetUUID, 181

msgAppDirUUIDToName, 183

msgAppDispatch, 109

msgAppExecute, 165
adding menu buttons and, 166
arguments to, 166

msgAppGetLink, 134

msgAppGetMetrics, 161

msgAppGetN arne, 163

msgAppGetOptionSheet, 137

msgAppGetRoot, 161, 162, 187

msgAppInit, 72
in application monitor

installation, 151
creating frames and, 504
msgAppActivate and, 105-107
subclassing clsAppMonitor, 155

msgAppInstalled, 150

msgAppInvokeManager, 165
adding menu buttons and, 166

msgAppMgrActivate, 102
in activating application instance, 148
in activation, 103
in document creation, 148
in document reactivation, 113

msgAppMgrCopy, 102
in copying application instance, 148

msgAppMgrCreate, 102
creating iIew document and, 148

msgAppMgrDelete, 115
in deleting application instances, 149

msgAppMgrGetMetrics, 149

msgAppMgrMove, 148

msgAppMgrShutdown, 155

msgAppMoveSel, 120, 168

msgAppOpen, 72, 107-109
printing embedded documents

and, 137
in removing frame decorations,

140-141
for Tic-T ac-T oe application, 108

msgAppPrint, 139, 167

msgAppPrintSetup, 138, 167

msgAppRemoveFloatingWin, 163

msgAppRename, 162

msgAppRevert, 168

msgAppSave, 111

msgAppSaveChildren, 111

msgAppSearch, 168

msgAppSelectAlI, 168

msgAppSend,167

msgAppSetHotMode, 162

msgAppSetMain Win, 163

msgAppSetN arne, 163

msgAppSetParent, 171

msgAppSetPrintControls, 140-141

msgAppSetPriority, 171

msgAppShowOptionSheet, 138, 169

msgAppSpell, 167-168

msgApp Terminate, 155

msgApp T erminateProcess, 111

msgApp Win Close, 196

msgApp WinGetMetrics, 196

msgAppWinOpen, 196

msgApp WinSetStyle, 196

msgBitmapSetMetrics, 330

msgBitmapSetSize, 330

msgBorde~GetBackgroundRGB, 376

msgBorderGetBorderRect, 379

msgBorderGetForegroundRGB,376
clsButton and, 422

msgBorderGetInnerRect, 375, 379
subclassing clsBorder and, 380

msgBorderGetOuterOffsets, 380
custom layout constraints and, 392

msgBorderGetOuterSize, 379

msgBorderInkToRBG,376

msgBorderPropagate Visuals, 378

msgBorderProvideBackground,377

msgBorderProvideDelta Win, 377

msgBorderRGBToInk,376

msgBorderSetLook, 404

msgBorderSetStyle, 378

msgBorderSetVisuals, 378

msgButtonAcceptPreview, 438

msgButtonDone, 438-439

msgButtonGet/SetMetrics, 419

msgButtonNotify, 400, 420

msgButtonNotifyManager, 424

msgButtonSetNoNotify,421

msgCan, 29

msgChanged, 53

msgChoiceMgrSetOnButton, 444

msgChoiceSetNoNotify, 444

msgClass, 55, 367

msgControlAcceptPreview, 399-400, 406
menu button notification and, 446
stopping preview and, 407

msgControlBeginPreview, 405-406,407
menu button notification and, 446
preview repeat and, 408

msgControlCancelPreview, 406
stopping preview and, 407

INDEX 633

msgControlEnable, 404-405
submenusand,449-450
toolkit table notification and, 438

msgControlGetDirty, 403
toggle tables and, 442

msgControlGetMetrics, 402

msgControlGetStyle, 404

msgControlGetValue, 400, 403
button value and, 422
toggle tables and, 442

msgControlProvideEnable, 164, 405

msgControlRepeatPreview, 406, 408

msgControlSetClient, 399

msgControlSetDirty, 403
button value and, 422
toggle tables and, 442

msgControlSetEnable, 404
toggle tables and, 442

msgControlSetMetrics, 402

msgControlSetStyle, 404

msgControlSetValue, 400, 403
button notification and, 421
button value and, 422
choice value and, 444
toggle tables and, 442

msgControlUpdatePreview, 406

msgCopy,49
using,49-50

msgCopyRestore, 49-50

msgCreated, 28, 56

msgCstmLayoutGetChildSpec,
390-391,396

msgCstmLayoutSetChildSpec, 390

msgDcAlignPattern, 292

msgDcCacheImage, 297, 299
creating cached images and, 300
drawing cached images and, 300
invalidating cached images and, 301

msgDcCharMetrics, 312

msgDcCopyImage, 297
cached images and, 299
copying cached images and, 300-301

msgDcCopyPixels, 259-260, 263

msgDcDrawArcRays, 293, 294, 340

msgDcDrawBezier, 293, 340
msgPicSegDrawSpline and, 323

msgDcDrawChordRays, 294, 340

msgDcDrawEllipse, 294, 340

msgDcDrawImage, 263, 297
cached images and, 299-300
call backs, 299
filtering and, 298
painting TIFF image with, 333
picture segments and, 320
run-length encoding and, 298

634 INDEX

msgDcDrawImageMask,297
rendering colors and, 299

msgDcDrawPixels, 260-261

msgDcDrawPolygon, 294, 340

msgDcDrawPolyline, 293, 340

msgDcDrawRect, 375-376

msgDcDrawRectangle, 292, 340

msgDcDrawSectorRays, 294, 340

msgDcDraw Text, 302, 311
measuring text and, 312-313

msgDcDraw TextRun, 313

msgDcFillWindow, 290, 294

msgDcFontOpen, 305-306

msgDcGetCharMetrics, 310

msgDcGetFontMetrics, 307

msgDcGetFontWidths, 310, 312

msgDcGetLine, 291

msgDcGetMatrix, 289

msgDcGetMatrixLUC, 289

msgDcGetPixel, 259

msgDcHoldLine, 291

msgDcldentity, 288, 310

msgDcldentityFont, 310
clsPicSeg and, 321

msgDclnitialize, 285

msgDclnvertColors, 295

msgDcLine Thickness, 291

msgDcMatchRGB, 296

msgDcMeasureText, 310, 312-313

msgDcMeasure T extRun, 313

msgDcOpenFont, 302, 304-305

msgDcPlaneNormal,296

msgDcPlanePen, 296

msgDcPop, 302

msgDcPopFont, 315

msgDcPreloadT ext; 314

msgDcPush, 302

msgDcPushFont, 315

msgDcRotate, 288

msgDcScale, 288

msgDcScaleFont, 302, 310-311
clsPicSeg and, 321

msgDcScale World, 288

msgDcSetBackgroundColor, 260, 295

msgDcSetBackgroundRGB, 295

msgDcSetForegroundColor, 260, 295

msgDcSetForegroundRGB, 295

msgDcSetLine, 291

msgDcSetLine Thickness, 212

msgDcSetMode, 291, 292

msgDcSetPixel, 259

msgDcSetPlaneMask, 296

msgDcSetRop, 293

msgDcSetWindow, 212, 286

msgDcTranslate, 288

msgDcUnitsTwips, 308

msgDcUnitsWorld,288

msgDestroy, 26
dsMark and, 133
in destroying image device, 262
in destroying object, 57-58
key use and, 24

msgDisable, 29

msgDrwCtxSetWindow, 286

msgDump, 252

msgEmbeddedWinBeginCopy,
120, 191-192

msgEmbeddedWinBeginMove, 120,
124-125, 191-192

msgEmbeddedWinCopy, 121, 192

msgEmbeddedWinDestroy, 190

msgEmbeddedWinExtractChild, 193

msgEmbeddedWinGetDest, 122, 192

msgEmbeddedWinGetMetrics, 190

msgEmbeddedWinGetPen Offset,
123, 193

msgEmbeddedWinGotoChild, 127

msgEmbeddedWinInsertChild,
122-123, 193

msgEmbeddedWinMove, 121, 192

msgEmbeddedWinMoveChild, 122

msgEmbeddedWinMoveCopyOK,
121-122, 192

msgEmbeddedWinRestoreChild, 123

msgEmbeddedWinSetUUID, 193

msgEmbeddedWinStyle, 190

msgEnable,29

msgEnumObservers, 51

msgF ieldActivate, 481-482

msgFieldActivatePop Up, 482

msgFieldClear, 483

msgFieldCreatePop Up, 480-481

msgFieldCreateTranslator, 481

msgF ieldDeactivate, 481-482

msgFieldDelayScribble, 483

msgFieldGetCursorPosition, 480

msgFieldGetMaxLen, 480

msgFieldGetStyle, 480

msgFieldGetXlate, 480

msgFieldKeyboardActivate, 482

msgFieldModified,482

msgFieldPre Validate, 484

msgFieldReadOnly, 483

msgFieldSetCursorPosition, 480

msgFieldSetMaxLen, 480

msgFieldSetStyle, 480

msgFieldSetXlate, 480

msgFieldTranslateDelayed,483

msgFieldValidate, 484

msgFieldValidateEdit, 484-485

msgFIMGetN ameFromId, 441

msgFrameClose, 501, 503
dose boxes and, 507

msgF rameGetClient Win, 500

msgFrameGetMetrics, 500

msgFrameGetStyle, 500

msgFrameSelect, 502

msgFrameSetClientWin, 500

msgFrameSetMenuBar, 503

msgFrameSetMetrics, 500, 595

msgFrameSetStyle, 500

msgFrameShowSelected,502

msgFrameZoom, 503

msgFree, 57, 73
in deinstallation, 99
in destroying application directory

handle, 179
in document deletion, 115
in document termination, 110-112
handling, 59

msgFreeing,58
handling,58

msgFreeOK,57-58
handling,58

msgFreePending,58
handling,58-59

msgGetObserver,52

msgGWinForwardedGesture, 369, 408

msgGWinGesture, 127
application response to, 170
gesture propagation and, 369
gesture windows and, 368
responding to gestures and, 369

msgGWin TransformGesture, 369

MSG_HANDLER, 37

MsgHandlerArgTypeO macro, 39
using,40

MsgHandlerO macro, 39
using,39

MsgHandlerParameterN 0 WarningO
macro, 39

using,40

MsgHandlerWithTypesO macro, 39
using,40

msglconCopyPixels, 525

msglconFreeCache, 525

msglconProvideBitmap, 524
cached picture and, 525

MSG_INFO array, 43-44
for clsTttData, 44
defined,42
en try fields, 44
option flags, 44
wildcards and, 45

msgInit,72
creating objects and, 34, 98
in document activation, 104
failures during, 59
method for, 104

msgInputEvent, 546
input event status codes and, 569

msgInputGrabPushed, 572

msgInputGrab Terminated, 549

msgInsertSibling, 233

msgIPDataAvailable, 588

msgIPGetXlateData, 588

msgIPSetTranslator, 598

msgIsA, 54,367

msgKeyChar, 583
event data, 583
msgKeyMulti and, 583

msgKeyDown, 582
event data, 582

msgKeyMulti, 583-584
event data, 584

msgKeyUp,582
event data, 582

msgLabelGetRects, 416

msgLabelGetString,486

msgLabelProvideInsPt, 416

msgLabelSetString, 410
data specific fields and, 486
label layout and, 414

msgListBoxAppendEntry, 467

msgListBoxDestroyEntry, 466

msgListBoxEntryGesture, 468

msgListBoxEntryIs Visible, 468

msgListBoxEnum, 469
user selected entries and, 473

msgListBoxGetEntry, 465

msgListBoxInsertEntry, 467

msgListBoxMakeEntryVisible, 469

msgListBoxProvideEntry,465-466
list box layout and, 469
list box painting and, 468

msgListBoxRemoveEntry,467

msgListBoxSetEntry, 465
for changing entry state, 467

msgListBoxXYT oPosition, 469

msgMarkCompare Token, 201

msgMarkCompareTokens, 132

msgMarkCopyMark, 203

msgMarkCreateToken, 132,200

msgMarkDeleteToken, 132,201

msgMarkDeliver, 201-202

msgMarkDeliverNext, 202

msgMarkGetChild,132

msgMarkGetComponent, 203

msgMarkGetDataAncestor, 132, 201

msgMarkGetParent, 132, 201

msgMarkGetUUID, 132,201

msgMarkNextChild, 132

msgMarkPositionAtChild, 132

msgMarkPositionAtEdge, 132

msgMarkPositionAtGesture, 132

msgMarkPositionAtSelection, 132

msgMarkPositionAtToken, 132

msgMarkSelect Target, 132

msgMarkSend, 203

msgMarkSetComponent, 203

msgMarkShowTarget, 132

msgMarkValidateComponent, 201

msgMenuButtonGetStyle, 446

msgMenuButtonProvideMenu, 449

msgMenuButtonSetStyle, 446

msgMenuDone, 439

msgMinLayout, 378

msgMutate, 28, 60

msgMyAppQuit, 400

msgNew,15
application class initialization routine

and,97
argument structure and, 15-17
capturing handwriting and, 555
class installation and, 33, 47-48
clsApp and, 160
clsClass and, 82
clsMark and, 133
clsResFile and, 111, 113
creating application class and, 96
creating application directory handle

and,179
creating application instance and, 148
creating bitmap and, 330
creating buttons and, 419
creating choice and, 443
creating controls and, 402
creating custom layout window

and,390
creating embedded application

and, 196
creating embedded window and, 190
creating fields and, 477
creating font list box and, 473
creating imaging device and, 256

INDEX 635

creating insertion pad and, 586
creating labels and, 411
creating list box and, 464
creating menu button and, 446
creating menus and, 447-448
creating new view and, 174
creating new window and, 232
creating notes and, 488
creating objects and, 34
creating option sheets and, 514
creating picture segments and, 322
creating progress bar and, 535
creating scribble object and, 609
creating string list boxes and, 470
creating TIFF object and, 332
creating toolkit table and, 428

changing defaults, 434
child windows, 434

creating translator and, 605
creation notification and, 28
document activation and, 103
document creation and, 82
message handler, 18
modifYing toolkit table and, 436
in system process, 83-84
UI Toolkit classes and, 364
using, 18

msgNewArgsSize, 435

msgNewDefaults, 15
application class initialization routine

and,97
argumen t structure and, 17
clsMark and, 133
creating application directory handle

and,179
creating bitmap and, 330
creating buttons and, 419
creating custom layout window

and,390
creating embedded application

and, 196
creating menus and, 447
creating new insertion pad and, 586
creating new view and, 174
creating new window and, 232
creating objects and, 34
creating progress bar and, 535
creating scribble object and, 609
creating toolkit tables and, 435
creating translator and, 605
creation notification and, 28
handwriting input and, 555
UI Toolkit classes and, 364
using, 17
window style flags and, 232

msgNewWithDefaults, 18

msgNoteCancel,492

msgNoteDone, 491

msgNoteShow, 490

msgNotifYObservers, 27, 52-53

636 INDEX

msgNumObservers,52

msgObjectClass, 55

msgObjectIsA,54

msgObjectNew, 28

msgObjectOwner, 55

msgObjectValid,55

msgObjectVersion, 56

msgOptionAddCard, 138,515

msgOptionAddLastCard, 139, 169

msgOptionApplicableCard,
516,518-520

msgOptionApply, 516

msgOptionApplyCard, 516, 520

msgOption Close, 516

msgOptionCreateSheet, 519

msgOptionDirtyCard, 520

msgOptionExtractCard, 516

msgOptionProvideCard, 516

msgOptionRefreshCard, 516

msgOptionRemoveCard, 515

msgOptionSetCard, 515

msgOptionShowCard, 515

msgOutProxUp, 575

msgOwner,55

msg parameter, 38
in OBLNOTIFY_OBSERVERS

structure, 52

msgPenDown, 407, 563, 575
event data, 576

msgPenEnterDown, 575, 577
event data, 577

msgPenEnterUp, 575, 577
event data, 577

msgPenExitDown, 575, 578
event data, 578

msgPenExitUp, 575, 578
event data, 578

msgPenHoldTimeout, 120

msgPenInProxUp, 575, 578
event data, 578

msgPenMoveDown, 575, 577
event data, 577

msgPenMoveUp, 575, 577
event data, 577

msgPenOutProxUp, 578-579
event data, 579

msgPenStroke, 579
event data, 579

msgPenTap, 579-580
event data, 580

msgPenUp, 407,575,576
event data, 576

msgPicSegAddGrafic, 325

msgPicSegChangeOrder, 325

msgPicSegDelete, 324

msgPicSegDelta, 324

msgPicSegDrawGrafic, 324

msgPicSegDrawGraficIndex, 324

msgPicSegDrawObject, 320, 323

msgPicSegDrawSpline, 320, 323

msgPicSegErase, 322

msgPicSegGetCount, 324

msgPicSegGetGrafic, 324

msgPicSegHitTest, 325

msgPicSegMakelnvisible, 326

msgPicSegPaint, 319

msgPicSegPaintObject, 323

msgPicSegRedraw, 333

msgPicSegScaleUnits, 327

msgPicSegSetCurrent, 324

msgPicSegSetFlags, 323

msgPopupChoiceGetChoice, 451

msgPostObservers,53

msgPrefsPreferenceChanged, 170

msgPrintEmbeddeeAction, 143

msgPrintGetProtocols, 137, 140
not understood, 143

msgPrintLayoutPage, 141, 142
not understood, 143

msgPrintStartPage, 140
not understood, 143

msgProgressGetFilled,538

msgProgressGetMetrks, 536, 537

msgProgressGetStyle, 536

msgProgressGetUnfilled, 538

msgProgressGetVisInfo, 538-539

msgProgressProvideLabel,539-540

msgProgressSetFilled,538

msgProgressSetMetrics, 537

msgProp, 28, 57

msgQuickHelpShow, 370

msgRCAppGotoDoc, 184, 187

msgRCAppNextDoc, 187

msgRCAppPrevDoc, 187

msgRCAppReferenceContents, 188

msgRDAppCancelGotoDoc, 188

msgRemoveObserver, 27, 51

msgResFindResource, 517

msgResGetObject, 113

msgResPutObject, 112

°msgResReadID,306

msgResReadObject, 113-114

msgRestore, 35, 73
failures during, 59

filing windows and, 253
method for, 105, 114
in reactivating document, 113-114
in Tic-T ac-T oe application, 114-115

msgResWriteObject, 111, 112

msgSave, 35, 73
filing windows and, 253
method for, 105
terminating document and,

111, 112-113
in Tic-T ac-T oe application, 113

msgScavenge, 27

msgScrAddedStroke, 606

msgScrCat, 609

msgScrClear, 609

msgScrComplete, 610

msgScrCompleted,606

msgScrCount, 609

msgScrDeleteStroke, 609

msgScrGetBounds, 609

msgScrHit, 610

msgScrollbarHorizScroll,454
normalizing scroll and, 456
scroll windows and, 457

msgScrollbarProvideHorizInfo, 454
scroll windows and, 457

msgScrollbar Provide VertInfo, 454
normalizing scroll and, 457
scroll windows and, 457

msgScrollbarUpdate, 456

msgScrollbarVertScroll, 454
normalizing scroll and, 456-457
scroll windows and, 457

msgScrollWinAddClientWin, 462

msgScrollWinCheckScrollbars, 460

msgScrollWinGetInnerWin, 457, 460

msgScrollWinGetStyle, 460

msgScrollWinProvideDelta, 461, 462

msgScrollWinShowClientWin, 462

msgScrRemovedStroke, 606

msgScrRender, 610

msgScrStrokePtr, 610

msgScrXtractComplete, 606

msgSelBeginCopy, 120

msgSelBeginMove, 120, 123-124

msgSelCopySelection, 121
handling, 128
picture segments and, 327

msgSelMarkSelection, 128

msgSelMoveSelection, 121, 125
handling, 128
picture segments and, 327

msgSelOptions, 520, 521

msgSelPromote, 521

msgSelSetOwnerPreserve, 521

msgSetOwner, 26

msgSetProp, 28, 56-57

msgSetTranslator, 588

msgShowMenu, 448

msgSPaperGetXLate, 592

msgSrollWinGetClientWin, 459

msgSrollWinSetClientWin, 459

msgStreamRead, 114

msgStreamWrite, 112

msgStrListBoxGetDirty, 473

msgStrListBoxGetStyle, 473

msgStrListBoxGetValue, 472

msgStrListBoxProvideString,471

msgTabBarGetStyle, 508

msgTabBarSetStyle, 508

msg T ableChildDefaults, 436

msgTblLayoutAdjustSections, 447

msg TblLayoutXYf oIndex, 388

msg TiffGetMetrics, 332

msg TimeRegister, 408

msg Tk TableAddAsFirst, 436

msg Tk T ableAddAsLast, 436

msgTkTableAddAsSibling, 436

msg Tk T ableAddAt, 436

msg Tk T ableGetManager, 443

msgTkTableRemove, 441

msgTrackDone, 528

msg T rackHide, 528

msgTrackShow, 528

msgTrackUpdate, 528

msgVersion, 56

msgViewGetDataObject, 174

msgViewSetDataObject, 174

msgWin*OK messages, 247

msg WinBeginPaint, 240
picture segments and, 319

msgWinBeginRepaint, 238
painting with, 239
picture segments and, 319
scrollwin and, 460
update region and, 240

msgWinCleanRect, 260

msgWinCopyRect, 243
for scrollbar display and, 457

msgWinDelta, 234
laying out self and, 250
resizing/ moving and, 246
scrollwin notification and, 461
window layout and, 382

msgWinDevBindPixelmap, 257
accessing memory and, 258
allocating pixelmap and, 258

for multiple pixelmaps, 262

msgWinDevGetRootWindow, 255, 256

msgWinDirtyRect, 239, 294
writing code and, 241

msgWinDumpTree, 252

msgWinEndPaint, 240

msgWinEndRepaint, 240

msgWinEnum, 367

msg WinExtract, 234
deleting insertion pad and, 587

msgWinFindTag, 235, 368
clsTkTable and, 435
modifYing items in toolkit table

and,436

msgWinGetBaseline, 251, 387

msgWinGetDesiredSize, 249, 250
custom layout constraints and, 392
UI Toolkit and, 368

msgWinGetFlags, 235
window input flags and, 569

msgWinGetMetrics, 233

msgWinGetTag,235

msgWinInsert, 107,212,233-234
altering child windows and, 246
insertion pad

creating, 586
displaying, 587

msgWinInsertSibling, 228, 233

msgWinLayout, 141,247,248
baseline alignment, 251
caching desired sizes, 250
client interface to layout and, 249
function, 381
laying out self, 250
layout and geometry capture, 251
layout episode, 249
layout loop and, 397
layout processing, 249
in layout speedup, 365
lazy layout and, 397
progress bar and, 536, 537
scrollwin layout and, 460
self s desired size, 250
shrink-to-fit, 250
UI Toolkit programming and, 366
when sent, 248
window border layout and, 378

msgWinLayoutSelf, 249, 250, 381
clsCustomLayout and, 382
clsTableLayout and, 382
function, 381
label child windows and, 415
label layout and, 414
scrollwin layout and, 460
table layout constraints and, 386
UI Toolkit and, 368

msgWinMoved, 246-247

INDEX 637

msgWinRepaint, 226, 237
application printing and, 302
child windows and, 415, 416
explicitly painting and, 240
image devices dirty windows and, 259
painting window with, 239
repainting process and, 242-243
in writing paintlrepaint code, 241
wsSynchRepaint flag and, 242

msgWinSend, 127,368
in gesture propagation, 369
toolkit table manager notification

., and, 438-439
toolkit table notification messages

and,438
window hierarchy and, 251-252

msgWinSetFlags, 234-235
window input flags and, 569

msgWinSetLayoutDirty, 249

msgWinSetPaintable, 235, 237

msgWinSetTag,235

msgWinSetVisible, 235

msgWinSized, 246-247

msgWinSort, 252

msgWinStartPage, 302

msgWinUpdate, 237
image devices dirty windows

and,259-260
to tell window to repaint, 239

msgWriterAppTranslator, 595

msgXferGet, 121, 126
picture segments and, 326-327

msgXfer List, 121, 1 ~5
picture segments and, 326-327

msgXIateCompleted, 606

msgXIateData, 606

msgXlateMetricsSet, 605

msgXIateSetFlags, 605

msgXIateStringSet, 605

Mutation capability, 28

..................... ;
Nesting, 241

of controls, 363

newArgsSize, 48

_NEW structure, 17, 18

Nonflow pagination, 137

Notebook application, 68
activating document and, 102
Application Framework and, 68
creating document and, 102
defined,67
document page number in, 178
file system and, 89
layout messages and, 244-245
sections, 89

638 INDEX

table of contents, 78, 89
terminating document and, 110

Notebook User Interface (NUl), 75, 349
embedding documents with, 77

NOTE_METRIC structure, 489

NOTE_NEW_ONLY structure, 16, 17

NOTE_NEW structure, 16, 17,488

Notes, 487-496
application error, 494
application-modal, 487

sample, 487
contents from resource files, 489-90
creating,488-490
destroying,492
dismissal of, 491
flags, 489
kinds of, 487-488
layout, 492
messages, 488
notification, 491
option sheets instead of, 490
painting, 492
progress, 493-494
standardized messages, 487
system error, 494
system-modal, 487-488

vs. application-modal, 490
unknown error, 495
using,490 .
see also clsNote

Notification
button, 420-421

simple activation and, 420-421
unwelcome, 421

choice, 443
client, scrollbar, 454-456
close box, 507
font list boxes, 473
frames, 501-503
gesture, 408
icons, 525
internal, 405-408
list boxes, 467-468
menu button, 446
messages, 399
notes, 491
option card, 516
scribbles translator, 608
scrollbar, 453-454
scrollwin, 461-462
string list boxes, 472
submenu, 450
toolkit table, 438
trackers, 528

Notifying, observers, 52-53

R1I

OBLANCESTOR_IS_A structure, 55

ObjCall]mpO macro, 23-24

ObjCallWarnO macro, 23-24

objCapCall, 25, 26

objCapCreate, 28

objCapCreateNotify, 28, 56

objCapFree,26

objCaplnherit, 27

objCapMutate, 28

objCapObservable, 27, 29, 51

objCapOwner, 26

objCapProp, 28

objCapScavenge,27

ObjCapSend, 26, 29

ObjectCallAncestorO, 24, 36
ctx parameter and, 39
msgSave and, 112
self parameter and, 38

ObjectCallAncestorCtxO, 36
using,37

ObjectCallO function, 13, 19
argument data pointer and, 14
capability, 25, 26
macros, 24
for notifying observers, 52
in object destruction, 57
return values and, 14
self parameter and, 38

ObjectCallWarningO function, 23

OBJECT_NEW_ONLY structure, 24
contents, 47

Object-oriented programming, 5-6
literature on, 7

ObjectPostO function, 19,21-22
compared to ObjectCallO, 19
in object destruction, 57
prototype, 22
reasons for using, 21

ObjectPostU320 function, 22

ObjectRead, ctx parameter and, 39

Objects
argument structures, 15-17
capabilities, 25-29
component, 92
copying,49-50
creating, 15-18, 34

with default values, 18
defined, 5
destruction of, 57-59
documents as, 92
filter, 547
grabber, 547, 549
handwriting capture, 555
identifiers for, 9-13
information about, 54-56

checking object's version
number, 56

checking object validity, 55-56
confirming object's ancestor, 55

confirming object's class, 54
getting class's class, 55
getting object's class, 55
getting owner of object, 55

lightweight, 218-219
listener, 548, 549
manager, 423
mutating, 60
notifying observers and, 52
observing, 50-52, 78
properties of, 56-57
saving and restoring data, 77
scavenging, 60
target, 548, 550
toolkit components, 367
translator, 555
types of, 5
window tree, 548

ObjectSendO function, 19, 20-21
capability, 26
compared to ObjectCallO, 19
for event processing, 563, 565
functions related to, 21
prototype, 20
reasons for using, 20
self parameter and, 38

ObjectSendU320 function, 21

ObjectSendUpdateO function, 21, 251

ObjectWriteO function, 35
ctx parameter and, 39
in document activation, 104
in document reactivation, 114
pData parameter and, 39

OBLENUM_ENUM_OBSERVERS

structure, 51-52

OBLIS_A structure, 54

OBLMUTATE structure, 60

OBLNOTIFY_OBSERVERS structure, 52-53

OBLPROP structure, 56-57

OBLSAVE structure, 112

ObjWildCard, 45

objWKNKey, 24

Observable capability, 27

Observed object class, 70

Observer, 50
adding an, 50-51

with position, 51
getting from list, 51-52
messages, 50, 150
notification, 50

example of, 53
notifying, 52-53
posting to, 53
removing, 51

OKO macros, 24

Opcode, grafic, 319
correct, 325
opCodeMaskInvisible flag, 326

Open document, 67
process, 109

Open figures, 271
drawing, 293
messages, 283

Opening
application window, 196
documents, 107-109
fonts, 275-276, 303-305

Option card, 511
current, 515
destroying, 516
illustrated, 5 11
layout; 515
manipulating, 514-515
notification, 516
painting, 515-5 16
performance, 516-517
tagging, 515
TK_TABLE_ENTRYarray for, 432-433

OPTION_CARD structure, 169, 514

OPTION_NEW_ONLY structure, 514

Option sheets, 505, 511-522
check gesture processing, 517-521

run-through, 517-519
command sheets and, 521-522
creating, 5 14
displaying, 517
illustrated, 511
increasing performance of, 516-517
instead of notes, 490
manipulating cards and, 514-517
messages, 512-5 13
option tables and, 521
for printing, 138-139
protocol, 517
styles of, 514
see also clsOption

Options menu, protocol, 168-169

OPTION_STYLE structure, 514

Option tables, 428, 521

OPTION_TAG structure, 138, 167, 169

OSHeapBlockAllocO,35

OSProcessCreate, 151

OSProgramInstantiateO, 96
in activating documents, 102

OSThisApp, 399

Out arguments, 14

Out box, printing and, 135,302

Outer rectangle region, 379

Overwrite fields, 475

Owner capability, 26

Page numbers, 509

Paginating
decisions, 137

flow documents, 137
nonflow documents, 137

paginationMethod, 141

Painting, 222
border window, 375-377

background,376
border, 375
foreground,376
shadow, 377

buttons, 422
child windows, 416
icons, 525
labels, 414-415
list boxes, 468-469
menu buttons, 447
nesting and, 241
notes, 492
option card, 515-516
repainting as, 239
repainting as important as, 236
scrollbar, 453
stages in optimizing, 241-242
string list boxes, 473
toolkit tables, 436-437
writing, code, 241-242

Palette colors, 274, 295
compatibility, 296

Parent-relative sizing, 398

Parent-veto layout, window, 225

pArgs parameter, 20-21, 22
defined,38
in document reactivation, 114
in document termination, 112
msgAppMgrActivate and, 103
MsgHandlerArgTypeO macro and, 40
MsgHandlerO macro and, 39
MsgHandlerWithTypesO macro

and,40
object and class information messages

and, 54
in OBLNOTIFY_OBSERVERS

structure, 52

Parsing, Xlist data, 592

Paste command, 121

pOata parameter, 35
defined, 39
MsgHandlerO macro and, 39
MsgHandlerWithTypesO macro

and,40

Pen
event, 575-580

codes, 568
data, 575-580
low-level, 559-560

input
low-level, 558-562
sampling, 565-566

offsets, 193
plane, 296

INDEX 639

PenPoint Class Diagram, 6

Physical line width, 340

PIC_SEG_ GRAFIC structure, 319

PIC_SEG_HIT_LIST structure, 325

PIC_SEG_METRICS structure, 322

PIC_SEG_OBJECT structure, 323

PIC_SEG_PAINT structure, 320

picSeg T opGrafic, 324

Picture segment, 279
building up, 323
changing contents of, 322
colors and, 321
converting, format, 326
copying, 326-327
creating, 318-319, 322
drawing in, 322
drawing messages, 322-323
drawing other objects in, 323
editing,324
hit testing, 325
moving, 326-327
pain ting/ repain ting, 322
storage, 321
TIFF images in, 333

Picture segment class, 317-327
DC state, 320-321
developer's quick-start, 318-319
grafics, 319-320
messages, 317-318
moving and copying, 326-327
using,322-323

in graphics applications, 323-326
see also clsPicSeg

Pixelmap, 256
allocating own, 258
binding image device to, 257-258
cached,273
information, 257-258
membry, 258
multiple, 262
pictures, 525

Pixels
accessing, in image window, 259-262
alignment, 269
child windows and, 244
clsIcon and, 525
coordinate rounding errors and, 269
copying, 259-260

in windows, 243-244
damaged, 222
dirty,222
getting and setting values, 259
information, 257-258
LOC, 337
memory management, 258
metrics, 338
nesting and, 241
patterns and, 291
raster operations and, 292-293

640 INDEX

repainting and, 236, 238
updating and, 241
window damage and, 243
window measurement, 223

Plane mask, 296

Planes, 296

Point path figures, 342

Polygon figure, 272, 339
left-hand and right-hand edges, 339

Polyline, 271

Pop-up choices, 418, 450-451
creating, 451
messages, 450, 451

Pop-up fields, 475-476

Pop-up menu, 445

Post-processing rules, 602
defined,600

PREF _CHANGED structure, 170

prEmbeddeeSearchByApp, 143

prEmbeddeeSearchByPrintJ ob, 142

Preview, 405-406
grab,408
messages, 399, 405-406

clsButton, 423
message argument for, 407
timing of generation, 406-407

repeat, 408
stopping, 407

previewGrab, 408

Previewing
button,423

examples of, 424
controls, 407-408
scrollbar, 454

previewRepeat, 408

Printing, 135-143
application, 302
DC, 301-302
default behavior, 143
documents, 13 5-136
embedded documents, 136-137
messages, 135, 136
option sheets for, 138-139
PenPoint differences, 135
print protocol description

and, 139-143
protocols, 137
wrapper, 135, 139

in removing frame
decorations, 140-141

Print layout driver (PLD), 139-140
forms of pagination, 141

Print protocol, 139-143
handling embeddees, 142-143
messages, 140
pagination, 141-142
print layout driver (PLD), 139-140

removing frame decorations, 140-141

Print Setup dialog sheets, 136

Print Setup option sheet, 136
for changing margins, headers,

footers, 138

process Count parameter, 72

Process, document, 92

Progress bar, 531-540
client responsibilities, 539-540
concepts, 531-532
creating, 535
custom labels, 532

providing,539-540
defined, 531
illustrated, 532
messages, 535-537

inherited, 540
metrics, 534, 536-537

determining,536
modifying, 537

region appearance, 537-539
shrink-to-fit, 540
style, 532-533

determining,536
modifying, 536

tick marks, 531
value determination, 538
see also clsProgressBar

PROGRESS_METRICS structure, 532, 534

Progress note, 492-493

PROGRESS_PROVIDE_LABEL

structure, 539-540

PROGRESS_REGION structure, 537

PROGRESS_STYLE structure, 532
styles, 533

PROGRESS_ VIS_INFO structure, 538

Properties, 56-57
capability, 28
creating, 56-57
retrieving, 57

prPaginationFlow, 141

prPagination Tile, 141

Pruning, 441

P_TK_TABLE_ENTRY structure, 434

P _WIN_METRICS pointer, 227
window metric messages

and,233-235

Quick Help, 370
clsGWin and, 617
ID,370
input filters and, 548-549

Quick start, developer's
capturing and translating handwriting,

555-558
creating a choice, 352-353

creating buttons, 354
creating custom layout window,

353-354
creating menu bar, 353
creating tabular layout window, 353
handling low-level pen

input, 558-562
simple menu with nested buttons

illustrated, 355
UI Toolkit, 352-355

randO function, 25

Raster line, 33

Raster operation, 292-293
dynamic drawing and, 293
XOR,293

Reactivating, documents, 113-115

Rectangle figure, 272
with borders, 338-339

illustrated, 338
bounding, 340-341
clipping, 277, 338
drawing,294
line thickness in, 341
rounding problems, 294
without borders, 337-338

illustrated, 338

Reference buttons, 117
copying and, 122
marks and, 129
moving, 119, 122

Regions (progress bar), 531
bounds determination, 538-539
color and pattern, 538
manipulating,537-539

structures for, 537-538
size of, 538

relWin value, 393
alignment edge and, 393
constraints and, 392
relative window and, 394
width and height dimensions

and,393-394

Rendering
capability, initializing windows

with, 560-561
scribbles, 607
translated text, 592
for visual feedback, 591

Repainting, 222-223
code, 238

writing,241-242
dynamics, 237-243

avoiding repaints, 241
dirty windows, 237
explicity painting occasions, 240
nesting, 241

ordinary painting by repainting,
239

painting stages, 241-242
sample repaint code, 238
smart repainting, 238-239
telling window to repaint, 239
update region, 240-241
what happens in repainting,

242-243
what to do when repainting,

237-238
window reception of

msgWinRepaint, 237
wsSynchRepaint flag, 242

painting and, 236
printing documents and, 222-223
scrollwin, 460
TIFF object, 333
UI Toolkit, 368

Requestor field, in copying objects, 49-50

Resizing
border windows, 377
windows, 246-247

Resource £Ie class, 70

Resource files, 93
application monitor and, 151-152
benefits of using, 365-366
default document names and, 98
in document activation, 105
note contents form, 489-490

RetO macros, 24

Return values, 14

RGB color values, 274, 295
compatibility, 295-296

Rules, 600
built-in, 600-601
knowledge source, 601-602
post-processing,602

!@ _ .. a.,~~~ .,.~

Sampled images, 272-274, 297-301
cached images, 273-274, 299-301
defined,269
drawing,273
messages, 297
operator, 297-299

call backs, 299
drawing, 298
filter, 298
image model, 299
rendering colors, 299
run-length encoding, 298

Saving
documents, 78-79
instance data, 35

Scaling
corner radius, 339-340
fonts, 276, 310-311

grafics, 327
pagination method, 137

Scavenging, 60
capability, 27

Score, 600

SCRIBBLE_NEW structure, 609

Scribbles, 555
base, 607
bounds, 607
captured,555

translating and displaying,
557-558

concepts of, 607-608
creating, object, 609
defined, 607
messages, 608

attribute, 608, 609
notification, 608, 610
stroke, 608, 609-610

objects, 597
rendering, 607
translator notification, 608
using, 607-610
see also clsScribble

Scrollbar, 453-462
actions of, 455
bubble, 453
client notification, 454-456
drag handle, 453
frames and, 498
illustrated, 454
layout, 453
normalizing scroll and, 456-457
notification, 453-454
offset, 454

range, 456
painting, 453
providing information to, 454
scroll windows, 457-462
thumbing,454
updating,456

SCROLLBAR_SCROLL structure, 454-455
offset, 455-456

Scrolling
list boxes, 466
normalizing, 456-457
thumbing vs., 455-456
vertical, 455

Scrollwin, 457
adding windows to, 462
alignment, 459
creating, 458-459
inner window, 459, 460
layout, 460-461
multiple windows in, 462
notification, 461-462
repainting, 460
style flags, 459
windows, 459

INDEX 641

wsSynchRepaint flag and, 242
see also Scroll windows

SCROLL_WIN_DELTA structure, 461

Scroll windows, 457-462
creating scrollwin, 458-459
layout, 460-461
multiple, 462
notification, 461-462
repain ting, 460
scrollwin windows, 459
toolkit tables, 462
see also clsScrollWin; Scrollwin

SCROLL_WIN_STYLE structure, 461

Sections, document, 89

Sector figure, 272

self Parameter, 38
object UID and, 35

Sending
messages, 13-15

to window hierarchy, 251-252

Sequence numbers, 178
getting and setting, 181

Services, 76-77

SetUpFontO function, 592

shadowGap style field, 377

SHADOW_NEW _ONLY structure, 509

Shadows, 509
creating, 509
painting,377
turning on, 378

Show T extO function, 592

Shrink-wrap, 397
constraints and, 395-396
parent-relative sizing and, 398
points to watch for with, 395
window layout and, 382

Simple class, 82-84
instance of, 84

smAttrStationaryMenu, 153

Software hierarchy, 76

Spelling dictionary, 601

srcRect, 244

Stamp mapping, 131-132

Standard application menus (SAMs),
163-170

check gesture handling, 169-170
document and edit menus, 165-168
frames and, 504-505
options menu protocol, 168-169

Standard message interface, 492-496
defined, 487
kinds of, 492-493

States
application class, 96

diagram of, 95
created, 100, 101

642 INDEX

document, 100
diagram of, 100
transitions, 101

dormant, 100, 101
list boxes, 467

Stationary, loading and unloading,
153-154

Status codes, input event, 564, 569

Status values, 11-12
defined, 11

StdErrorO procedure, 494

StdMsgO procedure, 493

StdMsgResO procedure, 493

StdProgressDownO procedure, 494

StdProgressUpO procedure, 493-494

StdSystemErrorO procedure, 494

StdUnknownErrorO procedure, 495

Stenciling image device, 260-262

String list boxes, 470-473
control dirty, 472
creating,470-471
destroying,472
notification, 472
painting,473
providing entries, 471
value, 472

Strings, label, 410

STRLB_NEW_ONLY structure, 470

STRLB_PROVIDE structure, 471

STRLB_STYLE fields, 471

Stroke, 607
indexing, 607

stsAppMgrLowMemNoActivate, 148

stsBadAncestor, 56, 60

stsBadObject, 56

stsEndOfData, 139

stsNotUnderstood,42

stsOK, 12, 18

stsProtection Violation, 24

stsScope Violation, 56

stsSizeLimit, 60

sts TblLayoutBadConstraint, 386

sts T runcatedData, 12

stsVetoed, 58

Subclasses, of frames, 505

Subclassing
clsAppMonitor, 155
clsBorder, 380
clsSPaper, 592-593
clsTkTable, 443
clsView, 175
clsWin, 226

Submenus
creating, 448

dynamic, 449
menu buttons displaying, 448-450

Subsystem, 545
handwriting capture, 555
handwriting translation, 546, 551-553
hierarchy, 545
input, 545, 546-550

API, 567-573
constants, 568-570
procedures, 571-573
UIDs, 568

window and graphics, 546

SYSDC_CACHE_IMAGE structure, 300

SYS_DC_COPY_IMAGE structure, 300

sysDcDrawDynamic flag, 293

sysDcDrawFast flag, 293

sysDcDrawRectangle, 212

SYSDC_FONT_ATTR structure, 305

SysDcFontlD, 303

SYSDC_FONT _METRICS

structure, 307-308

SysDcFontString, 303

sysDcHoldDetail, 291

sysDcHoldLine, 291

SYSDC_IMAGE_INFO structure, 297-298

SYSDC_LINE structure, 291

SYSDC_MODE structure, 292-293

sysDcPatNil, 294

SYSDC_PIXEL structure, 259

sysDcRopCopy, 292-293

SYSDC_TEXT_OUTPUT str:ucture, 311

sysDcWindingFill flag, 292

System
dialog,493
errors, 494

System-modal note, 487-488
application-modal note vs., 490

System preferences, 170

Tab
clipping and, 230
setting, 183-184

TAB_BAR_NEW_ONLY structure, 508

Tab bars, 428
adding items to, 508
creating, 508
layout, 508
windows, 223

Table layout, 383
constraints, 386-387
flags, 384-385
sample, 383
specifying, 385-386
structure, 384-385

using dAlignBaseline for, 388
see also cls T ableLayout

Table mapping, 131

Tabular layout window, 353

tagAppMgrDefaultDocName,98

TagNumO macro, 12

Tags, 12
window, 216, 225

Target, 129
input, 572-573
objects, 548, 550

defined, 550
record, 130

TBLLAYOUT_CONSTRAINT structure, 386

TBL LAYOUT_COUNT structure, 385
t~ble layout constraints and, 386

TBL_LAYOUT _INDEX structure, 388-389

TBL LAYOUT SIZE structure, 386
t~ble layo~t constraints and, 386

TBLLAYOUT_STYLE structure, 384

Terminating, documents, 110-113

Text
characters in, 312
drawing,311-312
fitting, 313
measuring, 312
spacing, 312
splicing, 313
widths, 309

Text operations, 269, 277-279
drawing,276-277
foms, 275-276

opening,275-276
scaling,276

messages, 284

thePrintManager, 139

theRootWindow, 211, 216, 223, 255

theScreen, 255

theSearchManager, 168

theSelectionManager, 502

theSpellManager, 168

theSystemPreferences, 170
screen orientation changes and, 262

theWorkingDir, 10

Thumbing
scrollbar, 454
vs. line/page scrolling, 455-456

Tick marks, 531

Tic-T ac-T oe application
application class creation, 86
initialization routine, 97-98
main routine, 97
moving in, 123-127

determining data type, 125-126
move/copy icon, 125
presenting, 124-125

moving data, 126-127
user move request, 123

msgAppClose method for, 110
msgApplnit method for, 105
msgAppOpen method for, 108
msglnit method for, 104
msgRestore method for, 114-115
msgSave method for, 113
notifying observers, 53

TIFF_NEW_ONLY structure, 332

TIFF (tagged Image File Format), 331
images, 331

metrics, 332
painting, 333
in picture segments, 333

object
creating,332
destroying,333
filing, 333
repainting,333

Tiling,292
pagination method, 137

Title bar, 507

TkDemo application, 432-433
illustrated, 433

TK_TABLE_ENTRy,429
array, 430

for menu contents, 448
for option card, 432-433

child window creation and, 434
defining statistically, 430
fields

interpretation, 429
menu button, 448

flags, 438
values in, 430-431

submenus and, 448

TkTableFillArrayWithFonts, 441

TKTABLE.H,435

TK_ TABLE_NEW _ONLY structure,
428,434,

tlChildrenMax constraint, 387

tlGroupMax constraint, 386-387

tlMaxFit constraint, 386

Toggle tables, 427, 442
modifying,442

Tokens (mark), 130
comparing, 201
creating, 200
deleting, 201
implementing, 130-132
stamp mapping and, 131-132
storing, 131
table mapping and, 131

Toolkit
ancestors, 367-370

borders, 370
embedded windows, 370

gesture windows, 368-370
objects, 367
windows, 367-368

see also VI Toolkit

Toolkit tables, 364, 425-444
changing defaults, 434-435

flags to modify items, 435
low-level customization, 435
specifying item class, 435
using default item class, 434-435

choices and, 442-444
creating,428-435

buttonsand,429
changing defaults and, 434-435
child windows, 434
class-dependent creation

information, 429-433
common creation information, 428

displaying installed fonts, 441
flags, 430-432

modifying items with, 435
values, 431

installed fonts and, 441
kinds of, 427-428
layout, 437
list boxes vs., 470
managers, 438-440
messages, 427
modifying, 436
notification, 438
painting,436-437
removing items from, 441
sample, 426
scroll windows and, 462
toggle tables, 427, 442
window tags, 436
see also cls Tk Table; VI T oolki t

Topping, border windows, 377

Trackers, 527-528
destroying, 528
drawing, 528
notification, 528
see also cls Track

Translating, captured scribbles, 557-558

Translation
data structures, 598-600

XLATE_CASE_METRICS, 599
XLATE_METRICs,598-599
XLATE_NEW, 599
XLATE_NEW_ONLY, 599

handwriting, flags, 600-602
messages, 604-606

control messages, 606
creating translator, 605
initialization messages, 605
notification messages, 606

score, 600
templates, 602-603

Translation classes, 597-606
data structures, 598-600

INDEX 643

handwriting translation flags, 600-602
hierarchy of, 598
translation messages, 604-606
translation templates, 602-603

Translation template, 601
modes, 603
types, 602-603

Translator, 479
clsSPaper, 595-596
creating, 605
notification, 608
object, 555, 597

setting, 587-588

Transparency (color) values, 295

Traversal drivers, 129

T tt ViewSelBeginMoveAndCopyO
function, 124

TttViewXferListO function, 125

VI components, 349

VID
component, 203
creating new objects and, 15
dynamic, 9
getting and setting, 181
input subsystem, 568
of root container application, 187
scope and type, 10
well-known, 9-11

VI Toolkit, 136
additional information, 356
button table class, 236
choices, 450
classes, 209, 357-360

clsGWin and, 617
graphics behavior, 265
hierarchy of, 357
inheriting from clsControl, 359
kinds of, 361
not inheriting from clsControl, 358
outline of, 360

clipping and, 236
components, 350

filed representation and, 364-366
filing,365
nested, 362-363
see also Toolkit; Toolkit tables

controls, leaf, 382
developer's quick start, 352-355
filing state, 368
instance creation and defaults, 364
layout classes, 251
menus, input filters and, 548-549
overview, 349
part organization, 350-352
programming details, 366
standard message interface, 492-496
user choice of fonts and, 304

644 INDEX

window
nested control, 383
repainting, 368

window layout, 247

Unconstrained layout, window, 224

Unfilled region (progress bar), 531
defaults, 537
manipulating, 537-539

Unknown errors, 495

Update region, 222, 240
msgWinBeginPaint and, 240
msgWinBeginRepaint and, 240
smart repainting and, 238
updating ends and, 240-241

User interface
built with windows, 218
fields and, 485
frames and, 507
layout speedup and, 365
resource files and, 365-366

UUIDs (universal unique identifiers), 122
component, 203
embedded window, 193
getting and setting, 181
mark,201

Values
choice, 443-444
control, 403
xtmMode, 603
xtmType, 602-603

Version number, object, 56

View class, 69, 173-175
concepts, 173
see also cls View

VIEW_NEW structure, 174

Views, for displaying data, 78

WarningO function, 23

Well-known UIDs, 9-10
administration of, 10-11
creating, 10
for development and testing, 11
global, 9, 10-11
OBJECT_NEW_ structure, 47
private, 10, 11
process-global, 10
scope of, 9, 10

Wildcards, method table, 45, 46

WIN_COPY_RECT structure, 243

WIN_DEY _PIXELMAP structure, 258

Window, 209
application, 196-197
baseline, 387-388

alignment, 251, 387
borders, 361

bounds, 232
setting, 234

child,216
altering, 246
labels and, 415-416

client, 92
closing document and, 109
creating for application frame,

212-213
document termination and, 112
frame layout and, 501
positioning scroll window, 461

clipping, 216, 219-221
regions, 220

copying pixels in, 243-244
creating, 212, 217

size and position, 232
style flags, 232

damage,d,222
copied pixels and, 243

debugging,252
decoration, 382
defined, 215
delta, 377
destination, 259-260
destroying, 218
devices, 210, 217

cached images for, 273-274
setting, 233

dirty, 222, 237
image devices and, 259
marking entire, 239
receiving msgWinRepaint and, 237
region, 238-239

drawing context bound to, 210
drawing in, 236
embedded, 11 7-118

child, 193
creating, 190
destroying, 190
metrics, 190
moving or copying, 191-193

between, 118-119
style of, 190-191
toolkit ancestors and, 370
UUID,193

enumerating, 216, 225
environment information, 253
extracting, 218, 234
filing, 216, 225, 253
filling, 294
flags, 227,228-229

input,228,569-570
setting,234-235
style, 228, 229, 232

floating, 163
gesture, 368-370

messages, 617-618
using, 617-618

graphic classes and, 210-211
grouping, 223
image, 259-262

ImagePoint, 210
creating and inserting, 556-557

initializing, 560-561
inserting, 217, 233-234
layout, 216, 224-225, 247-248

adding child windows to, 381
classes, 381-382
dirty, 249, 365
episodic, 225
parent-veto, 225
processing, 249
shrink-wrap and, 397
unconstrained, 224

leaf,565
life cycle, 217
lightweight, 216, 218-219
main, 92

application, 504
initializing

clsSPaper-based, 593-594
setting, 163

management, 225-226
messages

creation, 230
display, 230-231, 235-244
filing,231
layout, 231, 244-251
management, 231, 251-253
metrics, 230, 233-234
sending to Des, 289-290
sending to hierarchy, 251-252

metrics, 227-228
moving,246-247
off-screen, 297
orphan, 217
overview, 209
painting,239
parent, 216

setting, 233
printer, 301
repainting, 212, 216, 222-223

dynamics, 237-243
painting and, 236

resizing, 246-247
root, 216
scroll,457-462
scrollwin, 459
sibling relationship of, 216
size and position, 223-224
sorting,,216,225
subclasses, 551-552

using,219
table layout, 383
tagging, 216, 225
tags

setting, 235
tag field for, 228

toolkit components, 367-368
transparency,223
tree, 215, 216, 550

extracting'window from, 550
illustrated, 217

inserting window into, 550
objects, 548

see also Window system

Window and graphics subsystem, 546

Window class, 227-234
clsWin ~essages, 230-231
cls Win structures, 227
creating new window and, 232
layout messages, 244-251
management messages, 251-253
summary, 254
window display messages, 235-244
window metrics messages, 233-235
see also cIs Win

Window device classes, 255-263
image devices, 256-263
windowing devices, 255
see also cIs WinDev

Windowing device, 255
defined,255

Window layout, 381-382
classes, 381-382

Window system, 215-226
caching desired sizes and, 250
concept overview, 215-226
enumeration options, 225
imaging devices and, 256
layout and geometry capture, 251
layout episode, 249
in repaint process, 242-243
smart repainting and, 238-239
subclassing cls Win and, 226
windowing devices and, 255
see also Window

win.input.flags field, 565

WIN METRICS structure, 227-228, 254
c~ching desired sizes and, 250
child windows and, 246
laying out self and, 250
window metric messages

and,233-235

WIN_NEW structure, 232

WIN_SEND structure, 251

WIN_SORT structure, 252

WKNAdminO macro, 12

WKNScopeO macro, 12

WKNValueO macro, 12

WKNVerO macro, 12

Wrapper. see Printing, wrapper

WriterApplnitO, 595

WriterAppTranslatorO method, 595

WriterCompletedO, 592

wsCaptureGeometry flag, 247, 251

wsChildrenStay flag, 244

wsClipChildren flag, 236

wsClipParent flag, 236

wsClipSiblings flag, 236

wsDstNotDirty flag, 243

wsFileInLine flag, 253

wsFileLayoutDirty flag, 365

wsFileNoBounds flag, 253

wsGrow flags, 246, 289

wsLayoutDirty flag, 253

wsLayoutMinPaint flag, 248

wsLayoutNoCache flag, 250

wsLayoutResize flag, 249
laying out self and, 250

wsPlaneMask flag, 243

wsPlanePen flag, 243

wsSaveUnder flag, 241

wsSendFile flag, 366

wsSendGeometry flag, 246, 251

wsSendlntraProcess flag, 252

wsShrinkWrapHeight flag, 250
label layout and, 414

wsShrinkWrapWidth flag, 250
label layout and, 414

wsSrcNotDirty flag, 243

wsSynchPaint flag, 240

wsSynchRepaint flag, 237, 242

XferMatch, 327

xferPicSegObject, 326

xferString, 126

xgs iT ap gesture, 408

xgsQuestion gesture, 408

xlate argument, 479

XLATE_CASE_METRICS structure, 599

XLATE.H, 598

xlate.hwxFlags, 600

XLATE_METRICS structure, 598-599

XLATE_NEW_ONLY structure, 599

XLATE_NEW structure, 599

XList2T ext filter function, 592

Xlist, 597
concepts, 611-612
creating, 614
data, 588

functions, 588
parsing, 592

defined, 611
elements, 611-612

adding,615
data, 612
deleting, 614
flags, 612
freeing, 614
getting and setting, 615
inserting, 614

INDEX 645

flags, 611
functions, 613

using, 613-615
msgXlateData and, 606
traversing, 614-615

XListDeleteO function, 614

XLIST _ELEMENT structure, 611-612

XListF reeDataO function, 614

XListF reeO function, 614

XListGetO function, 615

XLIST.H,611

XListInsertO function, 614, 615

XListNewO function, 614

XListSetO function, 615

XListTraverseO function, 592,614-615

XT emplateCompileO function, 602

XTM_ARGS structure, 602
xtmMode value, 603
xtmType value, 602-603

xtmMode value, 603

xtmType value, 602-603

XTRACT.H, 598

X-Y distribution, 565

Zooming, 502-503

Your comments on our software documentation are important to us. Is this manual

useful to you? Does it meet your needs? If not, how can we make it better? Is there

something we're doing right and you want to see more of?

Make a copy of this form and let us know how you feel. You can also send us marked

up pages. Along with your comments, please specify the name of the book and the page

numbers of any 'specific comments.

Please indicate your previous programming experience:

D MS-DOS D Minicomputer

D Macintosh

D Mainframe

D None D Other __________________ __

Please rate your answers to the following questions on a scale of 1 to 5:

~ 2 l 4
~~~r Average 

How useful was this book? D D D D D 
Was information easy to find? D D D D D 
Was the organization clear? D D D D D 
Was the book technically accurate? D D D D D 
Were topics covered in enough detail? D D D D D 

Additional comments: 

Your name and address: 

Name 

Company ______ ~ _________________________ __ 

Address _____________________________________ __ 

City __________________ State ___________ _ 

Mail this form to: 

Team Manager, Developer Documentation 
GO Corporation 
919 E. Hillsdale Blvd., Suite 400 
Foster City, CA 94404-2128 

Or fax it to: (415) 345-9833 

Zip _______ _ 



&<no 
D Reed Me Frs l 

l:D .......... D_",,,,,,,...., 
D Prl ... """",'-

V PIlc:t..a.ge Design ~ttet 

lJco.rnenl EdIt OptlOn$ Vie.v Insert Case 

Can yru desi91 a li~~i9J.t, recyclable, 8 02 . oCf' 

plastic bottle that 'WCSI'tbreakundermcderate 
impact11 ' Il be travelling next week, butyru 
can fax me sugges~ prop:::sals at213{ 
555-\633. 

SuggestlOl'l 

Cl_u 
I~--------------~ I 
~~---------------~ 

9 780201 608595 
ISBN 0-201-60859-6 

60859 


