
GUZIK INTEGRATED TEST ENYIRONMENT {GITE) 

I. INTRODUCTION. 

GrI'E is designed to ease access to various functions of Guzik Read-Write Analyzers, reduce development time of 

new tests and help achieve upward compatibility of tests with future models of the RWA and other equipment 

. . 

GrI'E is developed under DESQview multitasking system'. bESQview allows several tasks (in DESQview 

terminology also called applications) to run at the same .time. All applications reside in conventional and extended 

memory, and control can be quickly switched from one to another. On the screen, each application has its own 

window, which can overlap and partially or completely hide windows of other applications. Operator keystrokes are 

passed to the application which is currently selected as foreground. With some limitations, DESQview allows such 

selection, invocation of new applications, and deletion of running ones, to be done from any running application as 

well as directly from the keyboard. An application can also put itself into a "sleeping" mode, waiting for 
environment events without using the CPU, which is a shared resource. 

GrI'E uses separate applications to handle different instruments in the test configuration, including RWA; and to 
allow a test program, running as a yet another application, the use of various functions provided by the handlers. 

Handler applications could have been called drivers of their respective hardware devices... but for the fact that the 
·-· -

level of functions they perform is significantly higher than is customary for device drivers; which in turn increases 

their size and, consequently, pulls in a multitasking environment like DES()_v_i~· Th~~~-~an!ages of this approach 
include: 

the environment is easily customized for a particular test hardware configuration by simply loading 
appropriate handlers; 

handlers help achieve compatibility between different models of hardware by providing an additional 
level at which the differences may be buffered; 

the high level of functions supported by the handlers makes test applications themselves simple and 
easy to modify. 

However, because of their size, the handlers not only use up memory, but require a multitasking environment with 

intertask communication, which slows the operation down as compared to a single task. 

The intertask communication capabilities, provided by DESQview through its Application Program Interface 

(API) library, are crucial for the operation of GrI'E. Extended memory requirements are also high: GITE requires 

that all active applications reside in memory, which calls for a 386-compatible machine with at least 2Mbytes RAM. 



Guzik Integrated Test Environment (GITE) 2 

II. THE INTERPRETER. 

To reduce dependence of applications upon one another, GTI'E introduces a special application called the 

Interpreter, which acts as a communication manager for the applications that choose to use its services. Through 

the Interpreter, any application can: 

declare its presence and inquire what other applications have done likewise; 

declare some of its variables read- or read/write-accessible to other applications, and access variables 
in other applications that have been likewise declared; 

declare some of its functions invocable by other applications and invoke functions in other 
applications that have been likewise declared, passing parameters and getting back return values, if 
any; 

load repeatedly used command sequences into the Interpreter and into other conforming applications, 
and then invoke them by a single command to speed up execution. 

No multi-application protection is implemented: it is not possible to make functions or variables available to some 

applications but not others. The environment is not recursive: an application may not, directly or indirectly, use the 

Interpreter to access its own variables and invoke its own routines. Recursion may be introduced in future releases, 

however. 

Applications communicate their declarations and requests to the Interpreter through GITE library routines (and, 

on a lower level, DESQview AP! routines). Requests coming to the application from the Interpreter, including 

variable read/write and function invocation requests, are processed by the GITE library. No user code is required 

to handle these requests. 

The act of declaring a function or a variable accessible, through the Interpreter.-to other applications, is called, in 

GITE terminology, "installing a symbol in the Interpreter". The information supplied to the Interpreter during 

installation includes (but is not limited to) a (unique within an application) name by which the symbol shall be 

known and accessed, symbol type (function or variable) and the address of the object in question. 

The Interpreter maintains a table of installed symbols. When the Interpreter receives a request from an application 

to access a symbol (also called an Interpreter command), it searches through the table for a symbol of this name, 
and sends the request for an action to the application which installed the symbol. When the requested memory 

read/write or function execution is completed, the application notifies the Interpreter and sends it a return value, if 

any. The Interpreter then relays the return value to the requester, and tells it the operation is completed. The 

requester application may not issue new commands before this. 

No new request, not even an abort request, is considered by an application while it is actively executing. The next 

request, if any, is processed when the application is in, or is preparing to switch itself into, wait state. An application 

switches itself into wait state when its processing of the last incoming request is completed, or when it is awaiting 

completion of a request of its own. 



Guzik Integrated Test Environment (GITE) 3 

This Interpreter-assisted dynamic linking approach makes requests independent from particular addresses in 

applications. which may change when applications are modified. 

Environment operations may be speeded up if a repeatedly used command sequence is communicated to the 

Interpreter in advance. The sequence (called a program) is stored inside the Interpreter in a partially compiled 

form, thus saving not only requester-Interpreter communications, but also most of the run-time table search during 

repeated invocations. If a program uses symbols of only one application, the efficiency may be further increased by 

advance downloading it into this application; in this case both table searches and intertask communications are 

completely eliminated at run-time and the time overhead is reduced to a minimum. The amount of memory taken 

by such programs is not significant; the principal limitation rather stems from the fact that, as implemented, 

Interpreter programs take no parameters, and give back no return values. 

The Interpreter accepts a startup batch file with Interpreter commands. The file, if any, must be specified on the 

DOS command line when the Interpreter is invoked, in quotes and with a "-s" flag (example: '-s "intstrt.prg"'). 

(DESQview supports command line parameters for applications running under it) The Interpreter executes 

commands in the startup batch file before it begins taking commands from other applications. The startup file is 

usually used to automatically activate certain applications and make foreground the application which functions as 

user interface. 

III. REQUEST FORMATS. 

Any application wishing to access a variable or invoke a function installed by another application uses a GITE 

" _______ library__routine to send a request string to the Interpreter and fetch a return value, if expected. The requests 

include the symbol name with which the object had been installed by another application. If several applications 
had installed symbols with the same name, the request will be resolved to the object which had been installed first, 

unless the request specifies the desired application name in the form APPLICATIONNAME.SYMBOLNAME. A 
reference to a symbol that had not been installed creates an error condition or is ignored, according to the settings 

of the Interpreter (see "symchk" command). 

The formats of the requests are: 

SYMBOLNAME 

To examine a variable. A return value is produced. 

SXMBOLNAME newvalue 

To change a variable. No return value. 

SXMBOLNAME valnel value2 value3 keywordl:value4 keyword2:value5 

To invoke a function. The values listed after SYMBOLNAME are sequentially assigned as actual values 
for parameters one, two, etc. of the function call. After the sequence, values preceded by keywords are 
assigned as actual values for parameters associated with the respective keywords. Both the sequential 
and the keyworded parts are optional. If a parameter is not assigned any value by either, the default 



Guzik Integrated Test Environment (GITE) 4 

·value is substituted by the Interpreter. or an error condition is declared. according to the settings of 
the Interpreter (see "parchk" command). If a value is assigned to a parameter more than once, the 
right-most assignment overrides previous ones. An unknown keyword, or a surplus of parameters in 
the sequence, however, constitute an error. The number of parameters, their associated keywords and 
defaults are among the information supplied to the Interpreter when a function symbol is being 
instatled. A return value may or may not be produced, depending on the nature of the function. 

Several commands may be given on a single line. separated by semicolons. If any parameter in a command is meant 

to be a string but contains semicolons, tabulations, spaces, or may be mistaken for a number, it must be quoted. If 
a return value is produced, it will be lost unless fetched by the application before it issues its next Interpreter 

command; an attempt to fetch a value where none is produced results in a timeout condition. 

IV.VALIDATION. 

Validation is an additional service provided by the Interpreter. For every request for modification of a variable, the 

new value is checked against certain rules; for every request for a function invocation, the number of parameters 

and actual values of each parameter are checked, as well as the function return value. Any request or return value 

which does not pass the check is rejected; it is not sent to the application it would otherwise be sent to, and the 

Interpreter declares an environment error condition. 

Rules used in validation are specified in the form of yalidation strings, separately and independently for every 

function, parameter and variable, during symbol- installation. Value types (long int, short int, double float, or

string) are also specified at installation time. The sysfexn considers these types (called target types), would-be values 

(source values), and validation strings, ancttries to reconcile them. 

- If the target type is a string, the value is considered valid if, and only if, the source is also a string; any specified 
validation is ignored. Validation for a numerical target can be bypassed by specifying an empty validation string. 

For numerical targets, three different types of validation expressions are supported: comparative, enumerated, and 

defining. A validation string contains one or more validation expressions of similar or different types, separated by 

semicolons. The expressions are scanned from left to right, until the source satisfies one of them. 

A comparative validation expression is a combination like "> 10&<201 I== l" (meaning "greater than 10 and less than 

20 or equal to 1). >, <, >=, <=,==,and!= are the comparisons supported; & (and) and II (or) are performed from 

left to right, with equal priority. 

"1-YELLOW'' is an example of a defining validation. A string source "YELLOW" would, by this expression, 
considered valid, with the numerical target being set equal to 1. When validating a return value, "l" is converted 

into "YELLOW''. "1 @ YELLOW GREEN RED" (enumerated validation) is equal to "1-YELLOW;2-
GREEN;3-RED" (the values assigned to words begin with the one specified and continue with increments of 1). 

Negative and non-integer values ar also supported. 



Guzik Integrated Test Environment (GITE) 5 

V. ERROR RECOVERY. 

Any running application can at any time declare an environmental error condition. The Interpreter may also 

declare the error condition, in the event of an undefined symbol, for example. When the condition is declared, the 

Interpreter sends every application known to it a special abort message. The abort message does not say which 

application had declared the error condition, or what error message had been put forward. Such information is 

sent, however, to the application currently selected as the global error message recipient (if any is so selected), 

which is also made foreground at this moment. The global error message recipient is selected by "aplsetmsg" 

Interpreter command (see); any application named "KEYBOARD" automatically assumes this status when 
loaded. 

Inside applications, the error recovery is implemented using the C "long jump" mechanism (see an appropriate C 
manual for more information on long jumps). When an application receives an abort message, GTIE routines 

inside it execute a standard C longjump function "longjmp(dv_jbuf.-1)". dv_jbuf must be declared as an external 
long jump buffer ("extern jmp _ buf dv _jbuf;"; jmp _ buf is a type defined in a standard C library file "setjmp.h"). It 

is essential for the correct error recovery that applications set return points for this longjump according to the 

GTIE convention outlined in the section on GTIE-aware applications. When the return points are so set, the 

longjump executed by an application on receiving an abort message makes the application give up any pending 

requests it had issued, abandon any request it was executing, reinitialize itself, and enter wait state, ready for new 

incoming requests. Since at an environmental error condition all applications known to the Interpreter receive an 
abort message, this condition leads to all of them aborting pending requests and reinitiali.Zing themselves. 

VI. PROGRAMMING FEATURES. 

A set of commands may be defined for the Interpreter as a program for future execution. When a program is being 

defined, it is stored inside the Interpreter and_Qartially compiled. Afterwards a requester application can invoke it 

with a single command. This eliminates unneeded requester-Interpreter communications and table searches at run

time. Interpreter-executor communications are not affected in this case; but they may be dispensed with as well if a 

program contains references to symbols of one application only: the Interpreter may then download the program 

into this application. 

The following Interpreter commands are used to manage programs. The APPLICATIONNAME parameter is put 
in brackets to show it as optional (the brackets are not part of the syntax). When this parameter is present, 

commands refer to programs downloaded into the application; otherwise they deal with programs stored in the 

Interpreter. 

prog PROGRAMNAME CAPPLICATIONNAME] 

Begins a program definition. 

label I..ABELNAME 

Set a label at this point. 



Guzik Integrated Test Environment ( GITE) 6 

jz LABELNAME 

jnz LABELNAME 

jump LABELNAME 

Jump to the label if the return value of the last request was zero I not zero I unconditionally. 

Return (the same as a jump to the end of the program). 

Ends program definition. 

call PROGRAMNAME fAPPLICATIONNAME] 

Invoke a program already downloaded into an application I stored in the Interpreter. 

Output the directory of programs stored in the Interpreter (programs downloaded into applications are 
not included in the list). 

delp PROGRAMNAME APPLICATIONNAME 

Delete a program downloaded into an application I stored in the Interpreter. 

All Interpreter commands between "prog" and "endp" are stored rather than executed (with the exception of 

functions installed with specific directions to do otherwise; see GITE library symbol installation routine). 

A program stored in the Interpreter can access any symbol installed in the environment, and call any other 

program. No parameters can be passed and no return values can be received. Two additional limitations are 
imposed on downloaded programs: they can only refer to symbols of the application fiifo which they are 

downloaded, and they may not use labels, jumps and returns. 

A program may be invoked by any application with a single "call" command. For Interpreter-resident programs, 

the command processing is considered completed when the program execution is finished; for downloaded 
programs - when the program execution is initiated. In this latter case, the requester application is not directly 

informed when, or indeed if, the program execution is completed. 

VII. BUILT-IN SYMBOLS. 

The following symbols are always defined in the Interpreter. All of them are declared as functions (rather than 
variables); the corresponding actions are carried out by the Interpreter itself. In the descriptions below parameter 
keywords are enclosed in brackets to show that they are optional as long as parameters are listed in the order 

specified. 



Guzik Integrated Test Environment (GITE) 7 

aplstart [apl:]APPLICATIONNAME [pir:J PIFFILENAME 

Start an application. PIFFILENAME is a special data file describing the application for DESQview. (Such 
a file is necessary to start any application under DESQview, GITE or no GITE; DESQview provides 
means of creating and editing these files.) APPLICATIONNAME is the name under which the 
application is going to be known to the Interpreter. This overrides the name the application tries to 
give itself when it executes dv_start (see the section on GITE library). Unlike the name in dv_start, 
this APPLICATIONNAME must be unique in the environment. 

apldumb fapl:]APPLICATIQNNAME [pir:JPTFFILENAME 

Start a dumb application. Dumb applications are not expected to acknowledge themselves to the 
Interpreter (which non-dumb applications do by executing dv_start), and the Interpreter supports no 
communication to or from them, except via "aplkey" command (below). Parameters are the same as in 
aplstart. 

aplkey fapl:J APPLICATIONNAME [key:] STRING [status:] INT 

Send the STRING to the specified application as its keyboard input, character by character. INT (8 bits) is 
sent together with every key as status. (By DESQview convention, a key is represented by a 2-byte 
extended key code, the second byte being called the status byte. For standard keys, the status byte is 
zero; for Alt and special keys, the character code is zero, while the status byte describes the key.) 

apldel fapl:]APPLICATIONNAME 

Delete the specified application, remove all its symbols from the tables. 

aplcheck 

An application may be removed directly from DESQview, bypassing the Interpreter. This would create an 
inconsistency in the Interpreter tables. This command makes the Interpreter check the tables against 
the information available from DESQview. 

aplpresent fapl:J APPLICA TIONNAME 

Returns a long unsigned integer: application ID if the application is active, 0 if not. 
The answer is based on Interpreter tables. Application IDs are used to identify applications for low
level API routines. If the Interpreter application list is inconsistent (see "aplcheck" above), the return 
value is meaningless. 

aplsetmsg [apl:JAPPLICATIONNAME 

Set the specified application the recipient for global environment error messages. Whenever an application 
with the name "KEYBOARD" is activated by aplstart, it automatically becomes such a recipient. 

aplsetcall fapl:JAPPLICATIONNAME fcall:] syMBOLNAME fparam:] PARAMETERSTRING 

This invokes a function installed as SYMBOLNAME with parameters contained in 
PARAMETERSTRING (the string can contain any number of parameters as long as it is quoted). 
The symbol SYMBOLNAME must be installed as a function from the application 
APPLICATIONNAME. Unlike an ordinary "SYMBOLNAME PARAMETERSTRING" request. 
this command orders the application to invoke the function not once but repeatedly with the same 
actual parameters. (The application checks its mail between invocations, though: this allows it to break 
on error conditions, abort and "aplclrcall".) The Interpreter does not monitor the progress of the 
looping application; the request is considered completed as soon as the loop is initiated. No return 



Guzik Integrated Test Environment ( GITE) 8 

values are gotten by the requester while the looping is in progress, nor when it is terminated by 
"aplclrcall". 

aplclrcall Capl:J Af PLICA TIONNAME 

Terminate the looping initiated by "aplsetcall" inside the specified application, if any had been in progress 
there. 

include fftle:J FILENAME 

Open the specified file and take next commands from there, till an "endf' command or the end of the file. 
The file may contain other "include" commands, up to 3 levels. 

In an batch file opened by "include", directs the Interpreter to finish the processing of the batch file it is 
found in. 

Start the timer. The Interpreter has one timer inside it. 

Stop the timer and read elapsed time. Returns a string like "Elapsed time 8.000000 Sec.". 

cset COUNTERNUMBER INITIALVALUE 

Set the specified counter to the specified-long integer value. The Interpreter has 10 different counters, 
numbered 0 through 9. 

cdec COUNTERNUMBER VALUE 

cine COUNTERNUMBER VALUE 

Increment I decrement the specified counter by the specified long integer. No return value for the 
requester, but in an Interpreter program (see Programming Features section), 'jz' I 'jnz' conditionals, 
if used immediately afte_r_'c_dec' /'cine', will be based on the value of the counter. 

symchkFLAG 

Defines the Interpreter's reaction to a request for access to an undefined symbol. FLAG=O -- declare an 
error condition, FLAG=l -- ignore the request. 0 is the default. 

parchkFLAG 

Defines the Interpreter's reaction to a missing parameter on a request tine. FLAG=O -- use the default 
value (defined at installation time), FLAG=l -- declare an error condition. 0 is the default. 

prog autodel FLAG 

Defines the Interpreter's reaction to an attempt to redefine an existing program stored in the Interpreter. 
FLAG=O-- declare an error condition, FLAG=l -- supersede the old program. 0 is the default. 



Guzik Integrated Test Environment (GITE) 9 

The following commands return several lines of text to the requester. Only a special application like KEYBOARD 

can handle such a return. These commands are not designed to be used from conventional applications. 

Displays the complete list of applications, their IDs, PIF-tiles and hidden/unhidden status. The 
information is based on Interpreter tables. 

Displays all installed symbols, together with names of applications which installed them. 

help SXMBOLNAME 

Displays additional information on the specified symbol, including object type, validation, and for 
functions - types, validations and keywords for all parameters. A limited use of wildcards is supported 
SYMBOLNAME: ••• matches all names, 'AB•' - all names beginning with AB. Symbols installed by a 
particular application may be selected using 'APPLICATIONNAME.SYMBOLNAME' or 
'APPLICATIONNAME.*'. 

The following commands alter the application's status from DESQview's point of view, but not from the 
Interpreter's. 

aplgorore fapl:JAPPLICATIONNAME 

Set an application foreground. In DESQview, the foreground application receives direct keyboard input; 
also, if the application had been suspended~ it resumes -execution- if moved to foreground. If the 
application's window had been hidden, the window does not appear on the screen until it is unhidden 
(see aplhide/aplunhide below). ------ -----

--- ----------- -

aplsuspend [apl:J APPLICATIONNAMc· 

Move the application into background, hide its windows, and stop the application's execution. The 
execution resumes when the ~pplication is moved to foreground. 

aplhide Capl:]APPLICATIONNAME 

Hide the application's window. The window disappears from - the screen. The application's 
foreground/background status is not affected. 

aplunhide [apl:J APPLICA TIONNAME 

Unhide the application window and redraw it on the screen. The application's foreground/background 
status is not affected. 

aplredraw fapl:] APPLICA TIONNAME 

Redraw the window of the specified application. 



Guzik Integrated Test Environment ( GITE) 10 

VIII. GITE LIBRARY. 

All routines are declared, and all symbols mentioned are defined, in a header file "GITE.H". 

int dv start (name, rev, cnt, arge. argv) 

Applications use this routine to acknowledge themselves to the Interpreter. Returns O if the new 
application can not be accepted. 

char* name 

char* rev 

int cnt 

int argc 
char* argv 

int dv aplpresent (aplname) 

The name under which the application wants to be known. The 
names of active applications are available upon request to other 
active applications. Up to 12 characters. If the application is 
started through the Interpreter, this name is overridden by 
"aplstart" command parameters. 

Revision ID. Both (*name) and (*rev) are displayed in the 
application window during the execution of dv_start. The 
revision ID has no significance other than this. 

The desired application name in (*name) need not be unique. If 
an application with this name is already active, dv_start tries to 
use names like NAME_l, NAME_2, etc. If cnt number of such 
applications already exist, the dv _start request is rejected. Most 
applications use cnt= 1. 

These describe a parameter string in the C language convention~ 
Two command flags are supported: 

-b Draw no border for the application window, 

-s After starting, immediately hide the application 
window. Same as the 'aplhide' Interpreter command. 

Check the presence of an application in the Interpreter tables. Sends an "aplpresent" request to the 
Interpreter, fetches and returns its reply, which is 1 if the application is present, 0 otherwise. 

char* aplname Application name. 

char* parse add svm (ptr. name, adclr, type, val type, vlcl) 

Install a symbol in the Interpreter. If a function with parameters is being installed, the call to 
parse_add_sym must be followed by a call to parse_add_par (see below) for every parameter; the 
return value ofparse_add_sym is then important for parse_add_par. 

char* ptr Not used. Should be NULL. 



cbar-9 name 

void• addr 

int type 

int val_ type 

char-9 vld 

Guzik Integrated Test Environment ( GITE) 11 

Symbol name, up to 12 characters. Used by other applications to 
refer to the symbol in service requests. Case-sensitive. Must be 
unique within the application; uniqueness throughout the 
environment is recommended but not necessary. If several 
applications install symbols with the same name, all references 
will be resolved to the one installed first; but a reference in the 
form APPLICATIONNAME.SYMBOLNAME will be resolved 
to the symbol belonging to the application mentioned. 

Address of the object (function or variable) which is being made 
accessible to other applications through this symbol. Note that 
in C language, a variable must be preceded by an '&' sign to use 
its address rather than value. 

One of the following (defined in 6SYSDEFS.H): 

S_GVAR 
made read/write accessible, 

S_GVAR!CONST_DATA 
be made read-only accessible, 

if the object is a variable to be 

if the object is a variable to 

S_GFNC if the object is a function, S_IFNC if the object is a 
function which cannot be included into a program; if the 
command is entered during a program definition, it (the 
command) is executed immediately rather than stored with the 
program. 

If the object is a variable, this defines its type; if the object is a 
function, this defines the return value type. Must be one of the 
following (defined in 6SYSDEFS.H): ~ 

S_LONG 

S_SHORT 

long integer (32 bits), 

short integer (16 bits), 

S_FLTdouble precision tloat (32 bits), 

S_STRstring, 

VOID if the object is a function, tells the Interpreter the 
function is void. 

Validation string. If the object is a variable, validates the 
variable; if the object is a function, validates the return value. 
See the section on the validation system. 

void parse add par (head, tvoe. keywrcl, vlcl, dnt, val,ptr) 

Used to conclude the installation procedure of a function with parameters. Each call describes one 
parameter of the parent function. Calls must follow the parse_add_sym( ... ) which began the 
installation, and describe parameters in the same order as in the C declaration of the parent function. 



Guzik Integrated Test Environment (GITE) 12 

char' head 

int type 

char* keywrd 

char' vld 

char* dfit 

int val 

char' ptr 

void dv proc 0 

The value returned by parse_add_sym when the function 
installation began. 

Parameter type. S_LONG, S_SHORT, S_FLT, S_STR, like 
in parse_add_sym. 

A keyword associated with the parameter. Up to 12 characters 
or NULL if keyword access to this parameter is not desired. 

Validation string for the parameter. (See the section on the 
validation system.) 

Parameter default value (in ASCII form, even for numerical 
parameters). 

Not used. 

Not used. 

This routine moves the application moves into wait state and waits for environmental events (these include 
keystrokes, mail messages, and timeouts; see the section on GITE-aware applications). 

void server reg fbnO 

Issue an Interpreter command. 

char' but Command text. 

void server wait ready 0 

Wait till the request is finished. It is necessary to wait for a request before issuing the next one. Waiting 
where no request had been issued results in a timeout condition. 

void server printf (fmt, pl, p2. p3, p4, p5. p6) 

Issue an Interpreter command and wait for completion. The command text is formed using (*fmt) as the 
format string, and pl-p6 as parameters, like in printf. The text may not be longer than 200 characters. 

char' fmt; pl-p6 according to the format in 
*fmt 

The parameters are similar to those of an ordinary C printf. 
Like in printf, trailing parameters may be omitted if not used, 
but (unlike printf) no more than 6 parameters are allowed. 

void server print! nowait (fmt, pl. p2, p3. p4, p5. n6) 

Same as server_printf, but do not wait for the completion of the request. 



Guzik Integrated Test Environment (GITE) 13 

int server get int (f'mt. p 1. p2. p3. p4) 

long server get long (f'mt. pl. p2. p3, p4) 

double server get nt (f'mt. pl. p2. p3. p4) 

char* server get str (buf, maxlen, fmt, pt, p2. p3. p4) 

Issue an Interpreter command, wait for completion and fetch a return value of a certain type. A return 
value is always passed from the Interpreter as an ASCII string. Server_get_str copies it into the 
specified user buffer, and an error is declared if the buffer size is not sufficient. Other routines attempt 
to convert the string into an integer, a long integer, and a double precision float, respectively, and pass 
the result as their return value; this result is undefined if the string cannot be so converted. 

char* fmt; pl-p4 according to the format in 
•rmt 

char* buf 

intmaxlen 

unsigned long dv set wait timeout (t) 

The format and parameters of the command text, like in 
server_printf, and the same text length limitation applies; but if 
fmt==NULL, no command is issued (there is no such check in 
server _printt). 

User buffer to put the received string in. 

Buff er size. 

-- Set-the-request completion timeout value. If the application is in wait state pending the completion of a 
- -- -request-longer than the specified period of time, GITE routines inside it declare an environmental 

---error condition, thereby aborting the request (as well as all other requests in the environment 
currently pending; see the Error Recovery section). The previous timeout value is returned by the 

- - ---------------routine. 

unsigned long t 

void kbd nash O 

The timeout interval in O.Olsec units. The value is 1000 when 
the application is started. 

Skip any currently waiting keystrokes that may be queued for the application. 

void dv dsplerr (buO 

Displays a message DESQview-style, at the left-top of the application window, in a separate box. waits for 
an Escape key before proceeding, then erases the message. 

char* buf Message text pointer. 

void err rnsg raise (code, fmt, pl. p2, p3. p4) 

Process an error. A call to this routine aborts the current request and makes a C "long jump" to a pre
defined point in the beginning of the application program ("longjmp(dv_jbuf,-1)"; see the section on 
GITE-aware applications for more details). If the application is executing an internal loop initiated by 
an "aplsetcall" command, (where the Interpreter does not monitor the progress of the req~<:5t), 
err msg raise takes no other action. In all other cases, it declares an environmental error condition, 
and the Interpreter sends -a special message to all applications known to it, making all these 



Guzik Integrated Test Environment ( GITE) 14 

applications perform similar longjumps. See Error Recovery and GITE-aware Applications sections 
for more information on global and local error recovery procedures, respectively. 

int code 

cbar4' fmt; pl·p4 according to the format in 
*fmt 

void dv closeO 

Error code. Codes below 1000 are reserved for GITE use; 
otherwise an application may use any value and it is not 
significant 

The format and parameters used to compile the error message 
text, which, if the environmental condition is being declared, 
then goes, through the Interpreter, to the global error message 
recipient application (see Error Recovery section); if the 
environmental error condition is not declared, err_msg_raise 
caJls dv_dsplerr to display the message locally. 

Log out of the Interpreter and terminate the application. 

The GITE library also includes higher level routines for interfacing with utility applications provided for the 

environment See the section on utility applications. 

IX. DUMB APPLICATIONS. 

A dumb application is one that chooses not to declare itself t~_~he__!nterpreter. Such applications will not receive 

any requests from the Interpreter, and are not expected to send any; they do not need any GITE library routines to 

handle such requests. Any task can be run as- a- dumb- application;· even if it had been developed without any 
knowledge of GITE. - -------------

If a dumb application is not invoked through the Interpreter, its presence will not be detected. If a dumb 

application is invoked thrQ'!gh the Interpreter ("apldumb" command), its whereabouts will be known, and the 

Interpreter will be able to emulate keystrokes for it ("aplkey" command). This one-way "send keystroke" operation 

is the only type of communication with a non-cooperative application supported by GITE (and DESQview). 

X. GITE-AWARE APPLICATIONS. 

A GITE-aware application is one which supports the GITE communication protocol, implemented in the GITE 

library. Such applications are required to declare themselves to the Interpreter, and it does not matter whether or 

not they are invoked through the Interpreter. 

In GITE (and in DESQview), an application is not open to any incoming communications until it switches itself 

into wait state, either because it has finished processing an incoming request, or because it is waiting completion of 

a request of its own. As long as the application is actively executing, even an abort command from the Interpreter 

or an unsolicited keystroke will only be queued for the application but not get through to it. (A keystroke is called 

unsolicited if it arrives when the application has not issued a keyboard input request.) 



Guzik Integrated Test Environment ( GITE) 15 

When an application is in wait state, DESQview does not give it any CPU time (and thus other application are not 

slowed down). DESQview moves the application out of the wait state when an environment event for this 

application occurs. Such events include the following: 

A mail package is received for the application, 

An unsolicited keystroke is received for the application, either directly from the keyboard (if the 
application is at the moment foreground), or emulated by another application, 

The time interval previously set in the timer has expired. 

The DESQview mail and timer mechanisms are crucial for the functioning of the GITE, and to avoid confusion in 

communications the user is not allowed to use either. Any mail or timer event over and above those intended for, 

and processed by, the GITE library routines inside the application, either is ignored, or creates an error condition. 

However. an application must include an "int apl_kbd_event (int k)" routine to process unsolicited keystrokes. 

By DESQview convention. a keystroke is represented by a 2-byte extended code (the second byte is called key 

status), where for standard keys the first byte is the ASCII character code and the status is zero, while for Alt and 

special keys the first byte is zero and the status byte describes the key. When an unsolicited keystroke event occurs 

for the application (either because a key was pressed while the application was foreground, or because a keystroke 

was emulated by another application), GITE routines dequeue the extended code and invoke "apl_kbd_event". 

The integer parameter passed to "apl_kbd_event" describes the key, but not in the DESQview convention: for 

standard keys, it equals ASCII character code, and for special keys, (256+<key status byte>). "Apl_kbd_event" 

may process the event in any way; but its return value must be a keystroke code-. like- its" parameter, and directs 

future processing of the event to be done by GITE library routines. 

For different return values (the key code symbols are defined in GITE.H), this pro<:essing is:--

CTRL_ Q -- Log off the Interpreter and terminate the application; 

CTRL_E -- Erase the application window; 

CTRL_N -- Display a memory allocation map for the application; 

CTRL_Z -- Call 'err_msg_raise (5001, "Keyboard abort")' (which will create an environmental error 
condition, see the description of "err_msg_raise"); 

CTRL T -- Call an dummy function called "test()" (this is useful when using a debugger and having a 
breakpoint at this function); 

Fl KEY -- Invoke a routine displaying a help text for the above mentioned keys, and then the user 
"cmnd_help()" routine (described below); 

OxOO - No action; 

All others - in this software version, no action. 

Usually, if the keystroke is application-specific, "apl_kbd_event" returns zero; if not, it just returns the value of its 

parameter, thus allowing standard keystroke processing. 

There are two other routines which must be included in the user code for a GITE-aware application. GITE library 

routines call them in situations described below. 



Guzik Integrated Test Environment ( GITE) 16 

void apl close O 

An application-specific exit function. Called when the application is being shut down by GITE library 
routines (which happens when they process a "dv _close()" call, a ctrl/Q keystroke or an abort 
message from the Interpreter). An application may be terminated or terminate itself directly, however; 
in this case apl_close is not called (and Interpreter tables may contain inconsistencies after thcit). 

void cmnd help 0 

Application-specific help. Called when GITE library routines process an Fl keystroke, after general help 
text is displayed by these routines themselves. 

The sequence of actions in a GITE-aware application is usually following (see an example of such an application in 

Appendix B). When it is run, it acknowledges itself to the Interpreter (" dv _start" routine), installs its symbols 

("parse_add_sym" and "parse_add_par" routines), performs self-initializations (if any), and moves itself into 

wait state ("dv_proc" routine). On respective Interpreter mail messages, GITE library routines inside the 

application report and change installed variables or invoke installed functions. When an installed function truces 

control, it may send Interpreter commands to be executed by other applications, and get return values from them. 

as necessary ("server_printf', "server_get_int" and other routines). If the operation cannot continue, the 

function declares an environmental error condition ("err_msg_raise" routine). In the end the function produces a 

return value and returns to the GITE library routine from which it.had been called; this routine passes the return 

value to the Interpreter and returns the application into wait state. 

In addition, return points must be set for long jumps executed as a part of the error recovery procedures. Return 

points must be set using istandard C library routine "setjmp", and the context must be stored in the buffer called 

"dv_jbuf' (this is a global name, the space for the buffer is allocated in GITE library routines). (For more 

information on the long jump mechanism, see an appropriate C manual.) In case an error is-detected by the 

environment, a return point must be defined before the first call to "dv_start"; but since an application must not 

reinstall its symbols after a run-time error, the return point must be redefined in the self-initalization section of the 

application (between symbol installations and a call to "dv _proc"). "setjmp" must be called before_ initializations 

which have to be done after each environmental error, and after those which, like symbol installations, are only 

done at start-up time. Usual C restrictions on setjmp function calls also apply: the function from which setjmp is 

issued may not be exited before "dv _proc" is called. The placement of "setjmp"s is very important for correct error 

recovery; see an example of a correct placement in Appendix B. 

Any external events are processed as described whenever the application moves itself into wait state, whether 

having finished an incoming request or pending completion of a request of its own. If the event is an environmental 

error condition, the application, from GITE routines inside it, executes a long jump "longjmp(dv _jbuf)" back into 

its self-initialization section, works its way to the call to "dv _proc", and returns to the wait state. 

XI. UTILITY APPLICATION ENVIRONMENT. 

Several utility applications are provided in the environment for basic user interface functionality. Their presence in 

the environment is not essential if a (sufficient level ot) user interface is provided by other applications. The utility 



Guzik Integrated Test Environment ( GITE) 17 

environment, however, provides a tool for programming user interfaces, and helps present a set of GrrE 
applications to the user as a single unified system. Standard user interface utility applications include KEYBOARD 

(a direct user interface with the Interpreter), MENU (a 1·2-3-style menu system for invoking Interpreter 
commands), and VOUT (an output handler). 

1. The Keyboard Application. 

The KEYBOARD application (when foreground) accepts direct ASCII user input from the keyboard and relays it 
to the Interpreter; any replies from the Interpreter are displayed by the KEYBOARD application in its window. 

The application supports most conventional mechanisms of editing command lines, including Backspace to erase 

the last typed in character, Escape to erase current line, and arrows up and down to move between previously 

entered lines. When loaded, the KEYBOARD application assumes the status of global error message handler, so 
that in case of an environmental error condition it is informed which application· had declared the condition and 
what error message had been put forward; this information is also promptly displayed in the KEYBOARD 
application window. The KEYBOARD application may be used for interactive execution and debugging of 
applications. 

2. The Menu Application. 

The MENU application supports one or several menu trees. It provides commands to configure the trees, and a 

----command-t0c-"pass control" to a menu tree which has already been configured. At this point the MENU 
-----application::goe:r to foreground and takes control of the user keyboard input. The user then can move betw~en 

nodes of-the tree, and, at the leaf level of the tree, execute Interpreter commands. At each node, MENU displays 
prompts of all choices open at the moment. As the cursor is moved, 1-2-3-style, from prompt to prompt with arrow 

keys, another screen line shows a help text associated with the item it is currently at. The selection of an item is 
made with the Enter key, at which point one of the following actions is taken by the MENU application, depending 

on the type of the selected item: 

• If the item type is EXIT, the menu is erased from the screen, the MENU application goes into 
background, the command which "passed control" to the tree is considered completed, and MENU is 
ready to accept further commands. 

- If the item type is UP, the user moves to the node immediately above the current one; if the current 
node is the root of the tree, no action is taken. (The same happens if the Escape key is pressed at any 
item.) 

- If the item type is MENU, the user moves to a lower-level node. (MENU type items of nodes are 
associated with lower-level nodes at tree-configuration time.) 

- If the item type is EXEC, MENU issues an Interpreter command and waits for its completion (after 
which the 1·2-3-style selection resumes). To prevent recursion in the environment. no requests to the 
MENU application should be made in the meanwhile. The Interpreter command bein~ issued. is 
defined at tree-configuration time. and cannot be changed or modified by the user at run·tilne (which 
is probably the main limitatibri of this interface system). 



Guzik Integrated Test Environment ( GITE) 18 

The following two commands are implemented in the MENU application. to configure menu trees. New trees, 

nodes, and leaves may be added . to the, configuration at any time, but once created, they cannot be removed or 

modified. The notation below is the same as in the "Built-in symbols" section. 

menonew [name:JNODENAME 

Add a new node with the specified name. 

menoltem [name:JNODENAME fcode:]{EXITjUPIMENUIEXEQ Cstr:]PROMPT Cclscr:JHELP Cprog:]SMB 

Add an item under the (existing) parent node named NODENAME. PROMPT and HELP are the item's 
prompt and help strings. During selection, the cursor is moved between prompts of items underlying 
the current node, all of which are displayed until the selection is made; while the help string appears 
only for the item the cursor is at at any given time. Code selects the type of the item; if an item is 
selected, the action taken depends on this type, as described above. The interpretation of the string 
SMB depends on the type of the item. If this type is EXEC. SMB is the Interpreter command to issue; 
if the type is MENU, SMB is the name of the lower-level node to go to; if the type is UP or EXIT, 
SMB is ignored. 

The following command is used to draw, and "pass control" to, a menu tree. The tree must already exist by the 

time this command is issued. 

menu Cname:JNODENAME 

Pass control to a tree underlying the specified node. The node must not necessarily be the root node of the 
tree, but the user will not be able to move abQY.C it even it it isn't.. The request is completed when, and, 
only when, the user selects an EXIT-type-item. 

The following command changes the positi<:?I!._Qf the_fI!C:I1_ujp,side the MENU application window. It is not usually 
_used, but when it is,it is essential that the screen area allocated is large enough and not outside the application 

window. 

menuconfig Crow:]Nl-[col:J Ml [rows:] N2 [cols:J M2 

Specifies the position of the upper left comer (Nl, Ml), and the size (N2, M2) of the menu area relative to 
the MENU application window. 

The usual sequence of operations with the MENU application is this. MENU is invoked ("aplstart" command) in 
the Interpreter startup batch file before applications which are going to use it. A single tree structure is used in 

most cases, and it is also configured from the startup file, with commands described above. Then, also from the 
startup file, other applications are invoked ("aplstart" again), and initialize themselves. At this time applications 

expand the tree structure ("menunew", "menuitem"), making their own commands available to users of the menu 
system. Applications using MENU are aware of pre-configured nodes in the tree, and usually only add EXEC-type 

items. When all the necessary applications are invoked and have initialized, the interface system is kicked off by a 

"menu" command, which usually concludes the Interpreter startup batch file. 

The following is an example of configuring a simple menu tree. 



menonew "root" 

Root node. 

Guzik Integrated Test Environment ( GITE) 

menuitem "root" EXEC ''Test_l" "Execute test number one" Tl 

First item: execute test number one. Tl is the command the test is invoked with. 

menuitem "root" EXEC ''Test_2" "Execute test number two" T2 

Second item: execute test number two. T2 is the command the test is invoked with. 

menuitem "root" MENU "Exit" "Exit the system" "quit" 

Another item: exit the system. 

menonew "quit'' 

The underlying node to quit. 

menuitem "quit'' EXIT ''Yes" "Quit the system?" 

Quit confirm. 

menuitem "quit" UP "No" "Quit the system?" 

Quit cancel, go back up. 

19 

The GITE library has a feature to help make MENU-using applications more environment-independent. The 

dv_start routine (always called in the beginning of an application) checks the presence of the MENU application 

in the environment; this information is then used by the following routine to prevent an error condition if MENU 

is not present (the application thus does not crash and can be used without modification through KEYBOARD, 

for example). 

void menu add exec (pt. p2. 03. p4) 

If the MENU application had been available at the time dv _:_ start(J was ~calred, this routine issues an 
Interpreter command "menuitem <pl> EXEC <p2> <p3> <p4>''-(witn parameter strings substituted 
for pl, p2, p3,-p4 ). If the MENU application had not been available, no action is taken. 

char"' pl, p2, p3, p4 Parameter strings for "menuitem". 

3. The Video Output Application. 

The VOUT output handler application is another element of the utility environment. It must be invoked before 

applications which are going to use it (usually from the Interpreter startup batch file), because VOUT's presence is 

checked as a part of the "dv _start" procedure. VO UT does not have any conventional Interpreter commands, and 

is only accessible via the following GITE library routine. 

void vid orintf (fmt. pl, p2. 03. p4, 05. p6. 07. p8) 

If VOUT had been available at the time of dv_start() execution, an output line is sent to VOUT; 
otherwise the output line is displayed locally in the caller application window (as with a simple 
printf()). 



Guzik Integrated Test Environment (GITE) 20 

char* tmt; pl·p8 according to the format in The parameters are similar to those of an ordinary C printf 
. •tmt function. The output line is formed using c•fmt) as the format 

string and pl·p8 as parameters. As in printf(), trailing 
parameters may be omitted if not used, but (unlike printt) no 
more than 8 parameters are allowed. 

An application like VOUT may provide ways of redirecting and/or post-processing output data. In the present 
release, however, all output lines received by VOUT are simply displayed in its window on the First-Received· 

First-Displayed basis. 

APPENDIX A. KNOWN BUGS AND PROBLEMS. 

L Symbol table memory is not correctly released when applications are removed by "apldel" command, the 
Interpreter may run out of memory and crash after a while. 

APPENDIX B. AN EXAMPLE OF A GITE·AWARE APPLICATION. 



/*****************************************' 
General purpose test aplication 

**** .............................. **********/ 

#Include <stdlo.h> 

#Include <setjmp.h> 

#Include <gite.h> 

/* 
Standard defines for symbol Installation. 

Function declaration 

Key codes 

*/ 

char revO .. "0.00"; 

char aplnameO • "tr"; 

/*----------------*/ 
/*----- REQUIRED FUNCTIONS -----*/ 

/*----------------*/ 

main Ont argc, char **argv) 
.... ~-- -·--~--

{· 
extem jmp_buf dv_jbut, /* REQUIRED */ 

if (setjmp (dv.Jbuf)) 

{ 
/*REQUIRED*/ 

/* The control is transferred here if an error is detected 

* during initialization. 

* Example: Display error. 

*/ 
dv_dsplerr ("Error during initialisation"); 

exit (1); 

} 

/*Install application into the GITE environmnet */ 
dv_start (aplname, rev, 1, argc, argv); 

/* Perfonn application specific lntialisation. Typicaly: 

* Install it's symbols 

* Check presence of required applications 

* Example: 

*/ 
apl_symb O; 
apl_init O; 

/*REQUIRED*/ 

if (setjmp (dv_jbuf)) 

{ 
/*REQUIRED */ 

/* Control is transferred here if an error detected 



* by this application, or an environmental error condition 

* declared by any application. 

*/ 
} 

/* Perform functions to be done after start and after error recovery 

*/ 

/* Wait for requests and Process them *I 
dv_proc 0: /*REQUIRED*/ 

} 

/*--------------*/ 

/* Process keyboard event. 

RETURNS: 

KEV CODE • can be different from the code passed to the function 

O • further processing not required. 

*/ 

int apl_kbd_event (k) 

int k; /*Key code*/ 

} 

{ 
switch (k) 

{ 

case 

/* Example: Execution key *I 
CTRL_I: 

sample_fnc (1~2t, 3.4, _"SSJ_:c,~~
break; 

/*Example: Conversion_o!__~ey */__ 

case CTRL_L: 

return (CTRL_N); 

default: 

/*Return keys which are not processed •r 
return (k); 

} 

/*Tell that this keys were processed */ 

return (0); /* RECOMENDED */ 

/* ~ 
/* Application specific exit function */ 

void apl_close O 
{ 
} 

/* ~ 
/*Display application specific help*/ 

void cmnd_help O 
{ 

·. 

/* RECOMENDED */ 

/* RECOMENDED */ 



/*Example: Implementation*/ 

dv _printf ("\n"); 
dv_printf ( 

dv_printf ( 

} 

"Al - Call sample function"); 

"AL - Convert it to ANj; 

,. _______________ ., 
/*----- APPLICATION EXAMPLES -----*/ 
/*---------------*! 

/*Example: lntlalisatlon function*/ 

apl_initO 

{ 
inti; 
unsigned long timeout; 

/* Example of verification of appUcatlon presence */ 

/* Example: send command send to Interpreter and get integer value *I 
i .. server_get_int ("aplpresent ABC"); 

/* Example: Error generation */ 
if (IQ 

err_msg_raise (1001, "Aplicatlon ABC is not present*"); 

/* Example: Disable wait for resonse timeout */ 

timeout .. dv_set_wait_timeout ((unsigned long) O); 

-·-·---··--·- ·---- ----·-·----

/*Example: command send to Interpreter, wait for end of execution */ 

server_printf ("ABC.start"); _ __ __ 

/*Example: Restore timeout*/ 

dv_set_wait_timeout (timeout); 

} 

/*---------------*! 

/* Exmaple: Integer to be installed in Interpreter*/ 

int sample _int = 1; 

/* Exmaple: Function to be installed in Interpreter*/ 

sample_fnc (p1, p2, p3, p4) 

int p1; 

long p2; 

double p3; 
char p4; 

{ 

printf ("Sample Function call: p1 .. %cl, p2 .. %Id, p3 = %If, p4 .. %s\n", 

p1 • p2, p3, p4); 

/* Example: command send to Interpreter, wait for end of execution *I 
server_printf C-aplcheck''); 



} 

/*·--------------"/ 
/*Example: Symbol Installation*/ 

apl_symb O 
{ 
char*s; 

s • parse_add_sym (NULL, "sfnc", sample_fnc ,S_GFNC, VOID.NULL}; 
parse_add_par (s,S_SHORT."par1 ","O@ OFF ON","1 ",O,NULL}; 

parse_add_par (s,S_LONG, "par2","> 10&<1000", "100" ,O,NULL}: 
parse_add_par (s,S_FLT, "par3",NULL. "1.2",0,NULL}: 

parse_add_par (s,S_STR ,"par4",NULL "sample",O,NULL}: 

s"' parse_add_sym (NULL "sint", &sample_int ,S_GVAR, S_SHORT,NULL}: 

} 


