
USER'S MANUAL
RevisionE

July 1990

HK80N960E
VMEbus Single-Board Computer

HElRIK9N ~
OPEN SYSTEMS::OPEN TOOLS

HK80N960E
VMEbus Single-Board Computer

USER'S MANUAL
RevisionE
july 1990

OPEN SYSTEMS::OPEN TOOLS

ii

The information in this manual has been checked and is believed to be accurate and
reliable. HOWEVER. NO RESPONSIBILIlY IS ASSUMED BY HEURIKON FOR ITS USE
OR FOR ANY INACCURACIES. Specifications are subject to change without notice.
HEURIKON DOES NOT ASSUME ANY LIABILITY ARISING OUT OF USE OR OTHER
APPLICATION OF ANY PRODUCT, CIRCUIT OR PROGRAM DESCRIBED HEREIN. This
document does not convey any license under Heurikon's patents or the rights of others.

Heurikon is a registered trademark of Heurikon Corporation. Intel is a trademark of Intel
Corporation. Ethernet is a trademark of Xerox Corporation. UNIX is a registered
trademark of AT&T. VxWorks is a trademark of Wind River Systems, Inc.

REVISION HISTORY

Revision Principal Changes Date of Board
Level Publication Revision

A (Preliminary) First publication November 1989 EP1

B (Preliminary) Expanded text and December 1989 EP1,EP2
added illustrations

C (Preliminary) Added power January 1990 EP1,EP2
requirements and
clarified text.

D Extensive revision for June 1990 P
release to production.

E Added Appendix C. July 1990 P

Copyright 1990 Heurikon Corporation. All rights reserved. Portions copyright
Intel Corporation 1989. Used with permission.

80960CA
Level

A4

B1

HK80N960E User's Manual

Table of Contents

1 - Overview
1.1 Introduction

1.2 Features

1.3 Block Diagram

1.4 Component Map
1.5 Bus Summary

1.6 Jumpers, Connectors, and Switches

1.6.1 Jumpers
1.6.2 Connectors

1.6.3 Reset

1.7 Overview of the Manual

1.7.1 Terminology and Notation

1.7.2 Additional Technical Information

2 - Getting Started
2.1 Equipment

2.2 Preliminary Considerations
2.2.1 Electrical

2.2.2 Physical

2.2.3 Environmental

2.3 Installation and Power-up

2.4 Troubleshooting and Service Information

2.5 Monitor Summary

3 - MPU Summary Information
3.1 Introduction

3.2 MPU Initialization

3.2.1 Initialization Boot Record (IBR)

3.2.2 Process Control Block (PReB)

3.3 Byte Ordering

3.4 MPU Interrupts

3.4.1 Interrupt Structures

3.4.1.1 The Interrupt Table
3.4.1.2 The Interrupt Stack Frame

3.4.2 The Nonmaskable Interrupt (NMI)

3.4.3 Hardware Interrupts

Revision E I July 1990

1-1

1-1

1-3
1-4

1-5

1-6
1-6
1-7

1-7

1-7

1-7

1-7

2-1

2-2
2:'2

2-2

2-2

2-2

2-3
2-5

3-1

3-1

3-2

3-2

3-4

3-5

3-5

3-5
3-6

3-6

3-7

iii

iv

3.4.3.1 Interrupt Priority 3-10
3.4.3.2 Interrupt Mask Register (IMSK) 3-11
3.4.3.3 Interrupt-Pending Register (IPND) 3-11
3.4.3.4 Interrupt Mapping Registers

(IMAPO-IMAP 2) 3-11

3.4.3.5 Interrupt Control Register (ICON) 3-13
3.4.4 Software Interrupts 3-13

3.5 MPU Faults 3-14
3.5.1 The Fault Table 3-14
3.5.2 The Fault Stack Frame 3-15

3.6 MPU DMA Support 3-16
3.6.1 HK80/v96oE Implementation 3-17
3.6.2 Registers/Instructions 3-18

3.6.2.1 DMA Command Register (DMAC) 3-18
3.6.2.2 The Set-up-DMA (sdma) Instruction 3-18
3.6.2.3 Update DMA-Channel RAM Instruction

(udma) 3-18

3.6.3 DMA Interrupts 3-19
3.6.4 DMA Data Alignment 3-19

3.7 MPU Trace Events 3-20

3.8 MPU Caches 3-21
3.8.1 Data RAM Cache 3-21
3.8.2 Instruction Cache
3.8.3 Register Cache

3.9 MPU Processing Modes
3.10 MPU Register Summary

4 - System Error Handling
4.1 Introduction
4.2 Error Conditions

4.2.1 Hardware Errors
4.2.2 Software Errors

5 - On-card Memory Configuration
5.1 Introduction
5.2 ROM
5.3 On-card RAM

5.4 Bus Memory
5.5 Physical Memory Map
5.6 Memory Timing
5.7 Nonvolatile RAM

6 - VMEbus Control
6.1 Introduction
6.2 VMEbus Signal DeSCriptions
6.3 VIC Register Map

3-21
3-22
3-22
3-22

4-1

4-1
4-1
4-2

5-1
5-1

5-3

5-3
5-4
5-5

5-6

6-1
6-2

6-5

HK80N960E User's Manual

6.4 VMEbus Interrupts
6.4.1 Interrupter Operation

6.4.2 Interrupt Handler Operation
6.4.2.1 VIC Interrupt Requests
6.4.2.2 VIC Interrupt Acknowledges

6.5 Mailbox Interface
6.6 VMEbus System Controller
6.7 VMEbus Master Interface

6.8 VMEbus Slave Interface
6.8.1 Extended Space
6.8.2 Standard Space

6.8.3 Short Space
6.9 SYSF AIL Control
6.10 VMEbus and Local Bus Watchdog Timers
6.11 VMEbus Interface

6.11.1 VMEbus Pin Assignments, P 1
6.11.2 VMEbus and VSB Pin Assignments, P2

7 - VME Subsystem Bus IVSB) Control
7.1 Introduction

7.2 VME Subsystem Bus (VSB) Signal Descriptions

7.3 VSB Operation
7.4 VSB Termination

7.5 VMEbus and VSB Pin Assignments, P2

8 - User LEDs and Front Panel Interface
8.1 User LEDs
8.2 Front Panel Interface (FPI), J2

9 - CIO Usage
9.1 Introduction

9.2 Port C Bit Definition

9.3 Port B Bit Definition

9.4 Port A Bit Definition

9.5 Counter/Timers
9.6 Register Address Summary (CIO)

9.7 CIO Initialization

10 - Serial 1/0

Revision E I July 1990

10.1 Introduction

10.2 RS-232 Pin Assignments, P5
10.3 Signal Naming Conventions (RS-232)

10.4 Connector Conventions
10.5 SCC Initialization Sequence
10.6 Port Address Summary

10.7 Serial DMA

6-8
6-8

6-9
6-9

6-10

6-13
6-15
6-16

6-17
6-17
6-18
6-20

6-20
6-20

6-21
6-21
6-22

7-1

7-1

7-3
7-4

7-5

8-1
8-2

9-1

9-1

9-2

9-3

9-4
9-5

9-5

10-1
10-1

10-4
10-6
10-6
10-7

10-7

v

10.8 Baud Rate Constants
10.9 RS-422 Operation
10.10 Relevant Jumpers (Serial I/O)
10.11 Serial I/O Cable Drawing

11 - Ethernet Interface
11.1 Introduction
11.2 Components

11.2.1 Network Interface Controller
11.2.2 Serial Network Interface

11.3 Ethernet Access
11.3.1 Arbiter Enable
11.3.2 Port Access
11.3.3 Channel Attention (CA)

11.3.4 Ethernet Byte Ordering
11.4 Ethernet Port Pin Assignments, p6
11.5 Transceiver Configuration

12 - SCSI Port
12.1 Introduction

10-8
10-9

10-9
10-10

11-1
11-1

11-1
11-2
11-2

11-3
11-3
11-4

11-4
11-5
11-6

12-1

12.2 SCSI DMA 12-1
12.3 Register Address Summary (SCSO 12-2
12.4 SCSI Reset 12-2
12.5 SCSI Port Pin Assignments, P4 12-3
12.6 SCSI Termination 12-4

13 - Centronics Port
13.1 Introduction 13-1

13.2 Centronics Port Pin Assignments, P3 13-1
13.3 Centronics Control Port Address 13-3
13.4 Centronics Printer Interface Cable 13-5

14 - Real-Time Clock (RTe)
14.1 Introduction 14-1
14.2 RTC Implementation 14-1

15 - Summary Information
15.1 Software Initialization Summary 15-1
15.2 On-Card I/O Addresses 15-1

15.3 Hardware Configuration Jumpers 15-3
15.4 Power Requirements 15-5
15.5 Environmental Requirements 15-5
15.6 Mechanical Specifications 15-5

vi HK80N960E User's Manual

Appendix A - Code Examples

Appendix B - NV-RAM Information

Appendix C - 80960CA and 82596CA Implementation
Notes and Errata

C.1 8096oCA C-1

C.l.l 8096oCA Step A4 C-2

C. 1. 1.1 Type A Errata - Features That Are Not

Implemented C-2

C.l.1.2 Type B Errata - Implemented Features

That Do Not Function As Desired C-3

C.l.2 80960CA Step B 1 C-14

C.l.2.1 Type A Errata - Anomalies That Have

Serious Consequences C-14

C.1.2.2 Type B Errata - Anomalies That Have

Performance/Specification Implications C-14

C.l.2.3 Type C Errata - Anomalies That Have

Definitional Implications

C.2 82596cA

C-15

c-16

C-16

c-16

C.2.1

C.2.2

C.2.3

C.2.4

C.2.5

Erratum 1 - FIFO Operation Failure Region

Erratum 2 - Truncated Frame on Transmit

Erratum 3 - Receive Unit (RU) Start When

RU Active
Erratum 4 - Command Unit (CU) Abort when

CU Suspended

Erratum 5 - Revision of SCP Bit Values

C-17

C-18

C-19

Figures

Revision E I July 1990

Figure 1-1

Figure 1-2

Figure 1-3

Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 3-5

Figure 5-1

Figure 5-2

Figure 5-3

Figure 5-4

HK80N96oE Block Diagram

HK80N96oE Component Map

Jumpers, Connectors, and Switches

MPU Structures and Control Table

MPU Interrupt Table

HK80/v96oE Interrupt Architecture
MPU Fault Table

Fault Table Entries

ROM Capacity and Jumper Positions

ROM Positioning Diagram

Physical Memory Map

EEPROM Partitions

1-3

1-4
1-6

3-3

3-6
3-9

3-14

3-15

5-2

5-2
5-4

5-8

vii

Figure 6-1 HK80/v96oE Interrupt Architecture 6-9

Figure 6-2 VMEbus Mailbox Structure 6-14

Figure 6-3 PI and P2 VMEbus and VSB Connectors 6-21

Figure 7-1 Location of VSB Terminators 7-5

Figure 7-2 VSB Connector, P2 7-5

Figure 8-1 Location of User LEDs 8-1

Figure 8-2 Location of Front Panel Interface, J2 8-2

Figure 10-1 RS-232 Connector, P5 10-1

Figure 10-2 Serial I/O Cable 10-10

Figure 11-1 Ethernet Connector, p6 11-5

Figure 12-1 SCSI Connector, P4 12-3
Figure 12-2 Location of SCSI Terminators 12-4

Figure 13-1 Centronics Connector, P3 13-1

Figure 13-2 Centronics Interface - Block Diagram 13-4

Figure 13-3 Centronics Printer Interface Cable 13-5

Figure 15-1 HK80IV96oE Jumper Locations 15-4

Figure C-l Erratum B-2-k Workaround c-6
Figure C-2 Erratum 3 System Control Block Status and

Control Words C-17
Figure C-3 Erratum 4 System Control Block Status and

Control Words C-18

Figure C-4 Erratum 5 SCP Values C-19

Tables
Table 1-1 HK80IV96oE Components 1-5

Table 2-1 Power Requirements 2-2
Table 2-2 Summary of Editing Commands for the Monitor

Program 2-6

Table 3-1 Little-endian and Big-endian Byte Ordering 3-4
Table 3-2 HK80IV96oE Error Status Latch Encoding 3-7
Table 3-3 External Interrupt Pin Mappings 3-8
Table 3-4 Interrupt Mask Register 3-11
Table 3-5 Interrupt-Pending Register 3-11
Table 3-6 Interrupt Mapping Registers 3-12
Table 3-7 Interrupt Mapping Register Format 3-12
Table 3-8 PRCB Definition 3-12
Table 3-9 ICON Register Definition 3-13

viii HK80N960E User's Manual

Table 3-10 80960CA Fault Types and Subtypes 3-16
Table 3-11 80960CA DMA Channels on the HK80IV96oE 3-17

Table 4-1 HK80IV96oE Error Status Latch Encoding 4-2

Table 5-1 ROMINH Value and ROM Addresses 5-1
Table 5-2 HK80IV96oE Memory Space 5-3
Table 5-3 80960CA Clock Cycles for Zero Wait States 5-5
Table 5-4 RAM Access Time Required for the HK80N96oE 5-6
Table 5-5 Nonvolatile RAM Addresses 5-7

Table 6-1 VIC Register Map 6-6

Table 6-2 VIC Interrupt Lines and Associated Acknowledge

Addresses 6-10
Table 6-3 Interrupt Priorities 6-12
Table 6-4 Mailbox Enable 6-14

Table 6-5 HK80IV96oE "Short" Space Slave Mapping on
VMEbus (Mailbox) 6-15

Table 6-6 Bus Control Jumpers 6-16
Table 6-7 Relationship of Physical Addresses to VMEbus and

VSB Memory Regions 6-16
Table 6-8 Slave "Extended" Space Enable 6-17

Table 6-9 Slave "Extended" Space Slave Mapping
on VMEbus 6-18

Table 6-10 Slave "Standard" Space Enable 6-19
Table 6-11 HK80IV960E "Standard" Space Slave Mapping on

VMEbus 6-19
Table 6-12 VMEbus Connector Pin Assignments, PI 6-21
Table 6-13 VMEbus and VSB Connector

Pin Assignments, P2 6-23

Table 7-1 VSB Release Modes 7-4
Table 7-2 VSB Arbiter Enable 7-4
Table 7-3 VSB Terminations 7-5
Table 7-4 VMEbus and VSB Connector

Pin Assignments, P2 7-6

Table 8-1 User LEDs - Addresses 8-1
Table 8-2 Front Panel Interface Connector

Pin Assignments, J2 8-2
Table 8-3 J2 Interrupt and Reset Signals 8-3

Revision E I July 1990 ix

Table 9-1 HK80IV960E "Standard" Space Slave Mapping
on VMEbus 9-2

Table 9-2 HK80IV960E "Short" Space Slave Mapping
on VMEbus 9-3

Table 9-3 Slave "Extended" Space Slave Mapping

on VMEbus 9-4

Table 9-4 CIO Register Addresses 9-5

Table 10-la Serial Port Pin Assignments, P5 - Port A 10-2
Table 10-lb Serial Port Pin Assignments, P5 - Port B 10-2

Table 10-lc Serial Port Pin Assignments, P5 - Port C 10-3
Table 10-1d Serial Port Pin Assignments, P5 - Port D 10-3
Table 10-2 RS-232 Signal Naming Conventions 10-5

Table 10-3 RS-232 Reversal Cable 10-5
Table 10-4 SCC Initialization Sequence 10-7
Table 10-5 SCC Register Addresses 10-7
Table 10-6 Baud Rate Constants 10-8
Table 10-7 Relevant Jumpers - Serial I/O 10-9

Table 11-1 Ethernet Accesses 11-2

Table 11-2 82596cA Port Accesses 11-3
Table 11-3 82596cA Port Access Definition 11-4
Table 11-4 Ethernet Byte Ordering 11-5
Table 11-5 Ethernet Connector Pin Assignments, p6 11-5
Table 11-6 Transmit Differential Line Configuration, Jl1 11-6

Table 12-1 SCSI Register Address Summary 12-2
Table 12-2 SCSI Pin Assignments, p4 12-3

Table 13-1 Centronics Pin Assignments, P3 13-2
Table 13-2 Centronics Control Addresses 13-3
Table 13-3 Centronics Data/Status Addresses 13-3

Table 14-1 RTC Accesses 14-1

Table 15-1 Address Summary 15-1
Table 15-2 Jumper and Terminator Configurations 15-3
Table 15-3 HK80N96oE Power Requirements 15-5
Table 15-4 Mechanical Specifications 15-5

Table B-1 EEPROM Addresses B-1

Table C-1 Guide to 80960CA versions C-l
Table C-2 Erratum B-7-n - Current Device Operation C-12
Table C-3 Errant and Correct Fault Types and Subtypes C-13

x HK80N960E User's Manual

1.1 INTRODUCTION

1.2 FEATURES

MPU

Ethernet

RAM

EPROM

NV-RAM

1

Overview

The HK80/V96oE is a 32-bit single-board computer based on
the Intel 80960CA microprocessor and the Intel 82596cA
Ethernet coprocessor. The HK80/V96oE also has four RS-232
serial ports, a SCSI port, a Centronics port, mailbox interrupt
support, a real-time clock, and VMEbus/VSB compatibility.

The microprocessor is an Intel SuperScalar 80960CA RISC
chip operating at 25 MHz or 33 MHz. The 80960CA has a 32-
bit internal architecture with 32-bit address and data paths,
a 4-Gbyte addressing range, 1 Kbyte of static data RAM, a 1-
Kbyte instruction cache, and a programmable register
cache. The 80960CA also has a 4-channel, 32-bit DMA con
troller and high-speed interrupt controller.

The Ethernet interface consists of an Intel 82596CA 32-bit
LAN coprocessor for CSMAlCD MAC, 10BASE5IEEE-802.3
communications. The coprocessor has transmit and receive
FIFOs and on-chip DMA with 116 Mbyte/sec bus bandwidth.
The coprocessor provides network management and self
test diagnostics.

The HK80/V96oE has 2- or 8-Mbyte RAM capacity and one
parity bit per byte (optional). RAM uses 256K x 4 or 1024K x
4 DRAMs. The HK80/v960E uses hardware logic for refresh.

The HK80/V96oE has one ROM socket with a I-Mbyte
capacity.

The HK80/V96oE has nonvolatile static RAM in an 8K x 8
configuration for user-definable and system parameters. The
internal EEPROM has loo-year retention and 10,000 store
cycle lifetime.

1-2

VMEbus

VSB

Serial I/O

SCSI

Centronics

LEDs

CIO

Mailbox

FPI

RTC

HK80N960E User's Manual

The HK80N96oE uses the VTC VIco68 intelligent VMEbus
controller/arbiter for the VMEbus, which uses a 32-:-bit
address bus with 24- or 32-bit address modes (4-Gbyte
range) and a 32-bit data bus with 8-, 16-, or 32-bit board
compatibility. There are seven bus interrupts.

The VME subsystem bus provides high-speed local memory
expansion. The VSB supports secondary bus masters.

The HK80N96oE has four serial I/O ports via two Z85C30
SCCs. There are separate baud rate generators for each port
and asynchronous and synchronous modes. The RS-232C
interface is standard; RS-422 is optional.

The HK80N96oE uses an ANSI X3T9.2-compatible con
troller (WD33C93A) for a SCSI interface. The SCSI interface
supports up to eight disk drive controllers or other devices,
and provides synchronous protocol support.

There is one 8-bit parallel port for a Centronics type of
printer or other device.

There are four user LEDs under software control and two
Ethernet LEDs.

The HK80N96oE uses· a Zilog Z8536 counter/timer and
parallel I/O unit that has three 16-bit counter/timers. There
are three parallel ports for on-card control functions.

The mailbox allows remote control of the HK80N96oE via
specified VMEbus addresses.

The front panel interface allows remote display of system
status.

The HK80/V960E has a real-time dock with battery backup.

Revision E I July 1990

Overview 1-3

1.3 BLOCK DIAGRAM

A l

(Ethernet
~),

,
Z85C30

:J
Serial

.... ---- --r- sec (\J~
1/0 ~8""" C?cu

"
2 ports (\Jt

....... - • Q) Ports 00_
Baud Rate a:.£

(A&B)
82596CA Generators

~ 32 ""'- LAN .J 32 "'-- ,. - ,.

Controller

z~~o ~~J
~ sec ~ g Serial

........ , 2 ports d;] va
Ports

Q) 80960CA Q)
Baud Rate a:.£ ~

(C&D) 32 .r: .r: 32 Generators
.J 0 CPUlOMA 0 J
"""'- cu cu """"'- -() ()

1 Mbyte,8"" Z8536
N - CIO
~ 20 EPROM 8
(/) ~ _
::J

,.
1 32-pin socket -- -co N

(/) f2.
(/)

(/) (])
'- ::J
-0 DS1216F co
-0 m « ""'- Real-Time

.J "'- as
(ij - """"'- ,.

0 _8_ Centronics Parallel 0 Clock " Interface
,. Ow va >-.c

0...

22 " DRAM
DRAM

2-8 Mbytes J32-"'o., .- Controller-
Parity Logic

4-....... 4 User
.- LEOs 8 ""'- Nonvolatile J 4

" ,
RAM

....... .-

J 32
Mailbox VSB

VME Bus Bus ~ 32",
.....,.8

WD33C93A- ,.
SCSI Interface Interface -

), Controller
), !.-- ~ :>""),

32

" 32 J V ~

J l

(VME Bus ,\, SCSI Bus , r
I

J ~
VSB Bus , ,

FIGURE 1·1. HK80N960E block diagram

Revision E I July 1990

:0
CD
<
Ci)'
o·
:::l

m -c....
c
-<
.......
CD
CD o

Not InstClU"d RES E ~ QUAD U~E~WITCH -
.-- Ethernet LEDs

LED~\

PIN MOLEX CONNnO o

4mi=-=-l""""'_-fr-'1 Ul V96_CEN. ~~~~==;:~K~bE~"''''~A~J>s~''A~4~i~~~~
1<n4 220/330 II "I "J ~~v,. ofIofIV "

U8-ALS244A-l

...
CR5 SI

P6-ETHERNEI~]
~a aU

USOI--62C50IAD
L...1------iVln:;1I

~U9-ALS373] ~ U6-14C89
Ul1 WD33C93A Ut2 Z85C30 U13 ZS5C30

USOO S2596CA
E:"thernet

II
1126 1IE!3 ~
1112 Ilea j~
1125 lIel j~
lI26 lIeo I

11126 I eo
,trl~'2 •• l)'n "fft~ I nC'2I.PAl

US32 L.PGC

PClrlty

SCSI sec A I. D SCCCIoD CIO U55 2SC64A I ~
NV-RAM II

'" 01
i"'/ V3 M 20MHz
.,. E"therne"t
<X Clock

U99 V96_ACl It

.nn f ~NA' • nil'
L~ I ""U"'~.I ... n"J U477 V96_CS1 .. Vt

US31 L.PGC 64 MHz
P"rlph"rClI

clock

~IUI5 EPROM
<X

~
Clnd J

ReClI-Tll'le Clock CRTC)
1!1 '163

9 ~= ~(;~:' B! ~11D'19il6~ ;;; \ n;;;,)

i~ ;i I~~ P';" :: i,,~ +", .. ; f U56-we""] fUS
7-HCT2S'] 1':'2 i i ~!:~::! ~ f U"'-~AA'

I

U476 V96_ARB *' ~U711-AS04 ~rU238-ASI61 I ~U475 V96:Vlit-iJ
11-J1~18~6="::,?~I~P~O=_A~S?~:S~8~ 'fS?-CZTpO-AS258 .,I1~12~6~9-='~S::3~?~' r- = II Ii_

U1DD 80960CA. l-
I I e~~ I I e~!! ~ U471 V96_VSO ..

~l U400 VIC068 II
}U8D-HCT393 I o,D'

~ U474 V96_ VMO It ~I

}U54-HCTJ931 ~ U47J V96_ VM1 II I r250-AS32/

fU91 V96_RDE. I }U89 V96_AHC ~ ~U193 V96~CASiJ I!~
1195-£244 1197-F?4' ~

f VRB U94 i 111l96-E?44 111198-E244

1I1o'-AS2" 11106-AS24,

VSB Ul03 T) I M5-'S24 5 • 11107-'$245 I ~

JIII!/ iJ!rp: (i!;.IlJ~~: I:~ lI~n7-'!'i?1

~ RN14 6.8K I RN900 10K RN72 100 ~';Ia
-f'!'i4~ -..,9-' 'I25'-E543 11206-(373 fmC-Ai $641A 1 @

• " II C2

b..

I P2 96 PIN DIN CONN. ~ fum-Aso< I ~
~ 0

C:§tf· ~U_ Pi 96 PIN DIN CONN. / @
o 0

FIGURE 1·2. HK80N960E component map

... .
~

n o a:
" o
Z
m
Z ...
a:
~

"

.b.

:r:
:A
0:>
o
<
CD
en
o
m
c
(fl

~
(fl-

~
P>
:::l
C
~

Overview

1.5 BUS SUMMARY

TABLE 1·1
HK80N960E t componen 5

Component Number

U100

U800

U400

U16,U17,U18,U22,U25,U26,U27,
U31,U35,U39,U44,U48,U116,
U117,U118,U122,U125,U126,
U127,U 131,U135,U139,U 144,
U148

U15

U55

U12,U13

CAS

CR6,CR7

U14

U11

P1

P2

P3

P4

P5

P6

J2

S1

1-5

Function

80960CA

82596CA

VIC068

RAM

EPROM and RTC

EEPROM (NV-RAM)

Serial 1/0

User LEOs

Ethernet LEOs

CIG

SCSI

VMEbus

VMEbus and VSB

Centronics

SCSI

Serial 1/0

Ethernet

Front Panel Interface

Reset Switch

The VMEbus offers high throughput for data transfers between
boards or sub-systems on the VMEbus, and is the main conduit
for transferring system level information between processor
subsystems. The VME subsystem bus (VSB) allows high-speed
local communications among a set of VME boards without
using the the VMEbus.

Revision E I July 1990

1-6 HK80N960E User's Manual

1.6 dUMPERS, CONNECTORS, AND SWITCHES

1.6.1 dumpers

Twelve jumpers are used to configure the HK80/v96oE for the
following selections:

• Serial port selection and power - eight jumpers
• SCSI bus power - one jumper
• HK80/V960E as system controller - one jumper
• Ethernet transceiver type - one jumper
• ROM size - one set of jumpers

Refer to Figure 15-1 for detailed descriptions of jumpers.

Reset switch i

U15 EPROM
Socket is ATC. J171

~------------~

r---------------------~~
P1-VME J10

FIGURE 1·3. Jumpers, connectors, and switches.

Revision E I July 1990

Overview

1.6.2

1.6.3

Connectors

The HK80/V96oE has seven ports:

• PI and P2 - Standard 96-pin VMEbus and VSB
connectors

• P3 - 34-pin parallel port connector (Centronics
interface)

• P4 - Standard 50-pin SCSI connector
• P5 - 50-pin serial port connector (four RS-232 ports)
• p6 - Standard IS-pin Ethernet port connector
•)2 - 14-pin front panel interface connector

Reset Switch

1-7

This switch resets the HK80/v96oE and also resets the VMEbus
if the HK80/V96oE is the VME system controller.

1.7 OVERVIEW OF THE MANUAL

1.7.1

1.7.2

• Chapters 1 and 2 contain introductory material.

• Chapters 3 through 14 describe board components and
interfaces.

• Chapter 15 contains summary information, including on
card I/O addresses and a jumper diagram.

Terminology and Notation

Throughout this manual byte refers to 8 bits; short refers to 16
bits; word and long word refer to 32 bits; and quad word refers
to 4 long words (that is, 128 bits).

Hexadecimal numbers are subscripted with a 16 and binary
numbers with a 2.

The word "CAUTION" is used to label procedures that must be
taken to prevent damage to the board.

Additional Technical Information

This manual describes Heurikon's implementation of the intelli
gent components of this board. Further information on basic
operation and programming can be found in the following
documents:

Revision E I July 1990

1-8 HK80N960E User's Manual

• For details on the MPU, read the Intel 80960CA User's
Manual, Intel publication number 270710-001 (Santa Clara:
CA: Intel Corporation, 1989).

• For information on the Ethernet interface, read Intel
82596CA User's Manual and the Intel 82C501AD Data
Sheet.

• For details on the VME interface, read the VIC068 VMEbus
Interface Controller SpecificaHon (Bloomington, MN: VTC
Incorporated, 1989) and the VMEbus Specification G.l
(Motorola, 1985).

• For details on the VME Subsystem Bus, read Parallel Sub
System Bus of the IEC 821 Bus, Revtsion C (International
Electromechanical Commission, 1986).

• For details on the serial interface, read EIA Standard RS-
232-C (Washington, DC: Electronic Industries Association,
1969) and Z8030 Z-BUS SCClZ8530 SCC Serial
Communications Controller Technical Manual (Campbell,
CA: Zilog, Inc., 1989).

• For information on the real-time clock, read DS1216F
Dallas Semiconductor Clock Module Data Sheet

• For information on the SCSI interface, read the WD33C93A
Technical Specification.

Feel free to contact our Customer Support Department at 1-800-
327-1251 if you have questions. We are prepared to answer gen-:
eral questions and provide help with documentation and
specific applications.

Revision E I July 1990

2.1 EQUIPMENT

2

Getting Started

You need the following equipment to install the Heurikon
HK80N960E:

• Heurikon HK80/V96oE microcomputer board
• VME card cage and power supply
• Serial interface cable (RS-232)
• CRT terminal
• Heurikon EPROM, which includes both monitor and

bootstrap

CAlIT10N: All semiconductors should be handled with care.
Static discharges can easily damage the components
on the HK80/V96oE. Keep the board in an antistatic
bag whenever it is out of the system chassis and do
not handle the board unless absolutely necessary.
Ground your body before touching the HK80/V96oE
board.--

CAUTION: IDgh operating temperatures will cause unpredictable
operation and could damage the HK80/V960E.
Because of the high chip density, fan cooling is
required for all configurations, even when cards are
placed on extenders.

CAUTION: Do not install the board in a rack or remove the board
from a rack while power is appUed, at risk of damage
to the board.

For basic operation, programming information, and a basic
understanding of the intelligent components of this board, the
following documents are essential:

• Intel 80960CA User's Manual
• VTC VIC VMEbus Interface Controller Specification
• Intel 82596CA User's Manual and the Intel 82C501AD

Data Sheet

2-2 HK80N960E User's Manual

Contact us or the vendors for these documents.

2.2 PRELIMINARY CONSIDERATIONS

2.2.1

2.2.2

2.2.3

Electrical

Note:

If you are adding the HK80/v960E to an enclosure, the power
supply must be sufficient for the additional board, as shown in
Table 2-1.

TABLE 2·1
Power re~utrements

Voltage Current Usage

+5 9.0A All logic

+12 1.0 A RS-232 interface and
Ethernet

-12 1.0A RS-232 interface

All of the "+5" and "Gnd" pins on PI and P2 must be con
nected to ensure proper operation.

Physical

The board is a single-height VMEbus board (9.187·' W x 6.299" H
x 0.6" D) that occupies one slot in a VMEbus card cage.

Environmental

CAUTION:

As with any printed circuit board, be sure that air flow to the
board is adequate. Recommended air flow rate is about 2-3
cubic feet per minute, depending on card cage constraints and
other factors. Operating temperature is specified at 00 to 550 C
ambient, as measured at the board.

High operating temperatures will cause unpredictable
operation and could damage the HK80/V960E.
Because of the high chip density, fan cooling is
required for all configurations, even when cards are
placed on extenders.

2.3 INSTALLATION AND POWER·UP

All products are fully tested before they are shipped from the
factory (please contact us if you would like to have current

Revision E I July 1990

Getting Started 2-3

information on MTBF [mean time between failures)). When you
receive your HKOOIV960E, follow these steps to ensure that the
system is operational:

1. Visually inspect the board(s) for components that could
have become loose during shipment. Visually inspect
the chassis and all cables. Be sure all boards are seated
properly in the VME card cage. Be sure all cables are
securely in place. Power requirements are shown in
Table 2-1.

2. Connect a CRT terminal to serial port B (port A for the
VxWorks operating system), via connector P5. If you are
making your own cables, refer to the drawing in section
10.11. Set the terminal as follows:

• 9600 baud, full duplex
• Eight data bits (no parity)
• Two stop bits for transmit data
• One stop bit for receive data
• If your terminal does not have separate controls for

transmit and receive stop bits, select one stop bit
for both transmit and receive.

3. Turn the system on.

4. Push the system RESET button. A sign-on message and
prompt from the monitor should appear on the screen.
If not, check your power supply voltages and CRT
cabling.

5. Now is the time to read the monitor manual and the
operating system literature. Short course: type help to
view a list of monitor commands, or type bootrom to
boot the operating system, if an operating system is
accessible.

6. Reconfigure the jumpers, etc., as necessary for your
application. See section 15 for a summary of I/O device
addresses and configuration jumpers.

2.4 TROUBLESHOOTING AND SERVICE INFORMATION

CAUTION:

In case of difficulty, use this checklist.

Always be sure you are grounded when you touch the
HK80/V960E.

1. Be sure the system is not overheating.

2. Inspect the power cables and connectors.

3. If the monitor program is executing, run the diagnostics
by using the monitor testmem command.

Revision E I July 1990

2-4 HK80N960E User's Manual

4. Check your power supply for proper DC voltages. If pos
sible, use an oscilloscope to look for excessive power
supply ripple or noise. Note that the use of P2 is
required to meet the power specifications.

5. Check the chips to be sure they are firmly in place. Look
for chips with bent or broken pins. In particular, check
the EPROM.

6. Check your terminal switches and cables. Be sure the P5
connector is on properly. If you have made your own
cables, pay particular attention to the cable drawings in
sections 10.11 and 13.4.

7. Check the jumpers to be sure your board is configured
properly. All jumpers should be in the "standard con
figuration" positions shown in section 15.3. Check the
EPROM jumpers, especially.

8. Since the HK80IV96oE monitor uses its on-card non
volatile RAM (NY-RAM) to configure and set the baud
rates for its console port, the lack of a prompt might be
caused by incorrect terminal settings, an incorrect con
figuration of the NV-RAM, or a malfunctioning ~TV-RAM.
Another possible cause is that the autoboot parameters
are set in NY-RAM so that the monitor is trying to
autoboot something. Try pressing the H character a few
times after a reset If the prompt comes up, the NY-RAM
was most likely configured to autoboot. For more
information about the way that the NV-RAM configures
the console port baud rates, refer to the summary at the
end of this manual (Appendix B).

9. After you have checked all of the above items, call our
Customer Service Department for help. Please have the
following information handy:

• The monitor program revision level. The revision
level can be found on the display screen as part of
sign-on message and on the EPROM label.

SERIAL NUMBER • The HK80!V96oE p.c.b. serial number (inscribed
along the card edge)

t············ j

• The serial number of the operating system

If you plan to return the board to Heurikon for service,
contact our Factory Service Deparunent at 1-800-327-
1251 to obtain a Return Merchandise Authorization
(RMA) number. Be prepared to provide the items listed
above, plus your purchase order number and billing
information if your HKOOIV96oE is out of warranty. If
you return the board, be sure to enclose it in an
antistatic bag such as the one in which it was Originally
shipped. Send it prepaid to:

Revision E I July 1990

Getting Started

Heurikon Corporation
Factory Service Department
8310 Excelsior Drive
Madison, WI 53717

2-5

Please put the RMA number on the outside of the package so we
can handle your problem most efficiently. Heurikon cannot
accept material received without an RMA number.

2.5 MONITOR SUMMARY

Help

Command editor

An optional EPROM-based debug-monitor!bootstrap for the
HK80/V960E is available. General features and functions include
the ability to:

• Manually download data or 80960CA program code.
• Check the processor, memory, VME, VSB, and I/O devices.
• Execute a bootstrap (for example, boot an operating

system).
• Disassemble 80960CA program code.

The monitor uses the area between 40016 and 1000016 for stack
and uninitialized-data space. Any writes to that area can cause
unpredictable operation of the monitor. The monitor initializes
this area (that is, writes to it) to prevent parity errors, but it is
the programmer's responsibility to initialize any other memory
areas that are accessed.

Type help to read a summary of monitor commands, or
just type the command name to view selections. Each
command may be typed with the shortest number of
characters that uniquely identifies the command.

The monitor provides a command line editor that uses typ
ical UNIX® vi editing commands. You can edit any com
mand line you type. First press the ESC key to invoke the
editor. Press Enter or Return to send a carriage return <cr>,
which executes the current command and exits the editor. A
summary of the editor commands is shown in Table 2-2.

Revision E I July 1990

2-6 HK80N960E User's Manual

TABLE 2·2
Summary of editing commands for the monitor
program

Key Function

<ESC> At the monitor prompt, invokes the editor.

<Cf'> Once the editor is invoked, causes the current
command to be executed and the editor to be "exited."

k Scroll "backward" through command list.

j Scroll "forward" through command list.

h Move cursor "left" in command line.

I Move cursor "right" in command line.

Other vi-like commands that can be used are x, i, a, A, $, 0, W,

cw, dw, r, and e.

Revision E I July 1990

3.1 INTRODUCTION

3

MPU Summary Information

This section details some of the important features of the
80960CA MPU chip and, in particular, items that are specific to
its implementation on the Heurikon HK80IV96oE.

Refer to the 80960CA user's manual for more information on
the processor's implementation of the features described in this
section.

3.2 MPU INITIALIZATION

After the HK80N96oE is powered up (or after an HK80N96oE
reset), the 80960CA begins its initialization. It uses an initial
memory image (IMI) to establish its state. The IMI contains the
initialization boot record (IBR) , the process control block
(PRCB), and the system data structures. The 80960CA reads in
the IBR and PRCB, does the specified configuration, and then
starts execution of the user program specified in the IBR.

The 80960CA may be reinitialized by software (via the ASM960
syscd instruction). When reinitialization takes place, a new
PRCB and a reinitialization instruction pointer are specified.
Reinitialization is useful for relocating data structures from ROM
to RAM after initialization.

Refer to Figure 3-1 below for a general overview of the 80960CA
structures. For more details of these structures, refer to the
80960CA user's manual.

3-2

3.2.1

3.2.2

HK80N960E User's Manual

Initialization Boot Record (IBR)

The 80960CA internally defines the base of the IBR to be at
FFFF,FFOO16 (which is why ROM needs to be in this area at
power-up). The IBR is the primary data structure (12 long words)
required to initialize the 80960CA.

Process Control Block (PCRB)

The PReB contains pointers to system data structures, and
also contains information used to configure the processor
at initialization (Fig. 3-1).

Revision E I July 1990

MPU Summary Information

AXED OAT A STRUCTURES

FFFF,FFoo.. INITIALIZATION BOOT RECORD

FFFF,FF10,.

FFFF,FF14 ...

FFFF,FF18..

FFFF,FF2C ..

Initial Bus Configuration (least
significant byte of each word)

First Instruction Pointer

PRCB Pointer

6 Check Words (for bus
confidence self-test)

RELOCATABLEDATASTRUCTURES

USER CODE

~
I---

PROCESS CONTROL BLOCK (PRCB)

Fault Table Base Address

r-- Control Table Base Address

AC Register Initial Image

Fault Configuration Word

-r-- Interrupt Table Base Address

--r-- System Procedure Table Base Address

Reserved

Interrupt Stac:t< Pointer

Instruction Cache Configuration Word

Register Cache Configuration Word

l..,
Control Table

""':::...
~

Interrupt Table

""';::..
~

System Procedure Table

""';::...

Other Architecturally Defined Data
Structures (not required as part of IMI)

FIGURE 3·1. MPU structures and control table

3-3

0,.

41.

8..

c..
10 ..

14 ••

18 ••

31 0
1c..

IP Breakpoint 0 (IPOO)

~ IP Breakpoint 1 (IPB1)
24

Data Address Breakpoint 0 (OABO)

Data Address Breakpoint 1 (OAB1)

0,.

C ••

Interrupt Map 0 (MAPO)

Interrupt Map 1 (MAP1)
""'it-

Interrupt Map 2 (MAP2)
18"

Interrupt Control (ICON)

""':::..
Memory Region 0 Configuration (MCCONO)

20"

24 ••
Memory Region 1 Configuration (MCCON1)

""'?'- Memory Region 2 Configuration (MCCON2)
28 ••

2C,.
Memory Region 3 Configuration (MCCON3)

Memory Region 4 Configuration (MCCON4)

Memory Region 5 Configuration (MCCON5)
38"

Memory Region 6 Configuration (MCCON6)

Memory Region 7 Configuration (MCCON7)

Memory Region 8 Configuration (MCCON8)
44"

Memory Region 9 Configuration (MCCON9)
48 ••

Memory Region 10 Configuration (MCCON10)

Memory Region 11 Configuration (MCCON11)
4C ••

so,.
Memory Region 12 Configuration (MCCON12)

Memory Region 13 Configuration (MCCON13)
58 ••

Memory Region 14 Configuration (MCCON14)
sc .•

Memory Region 15 Configuration (MCCON15)
60 ••

Reserved

Breakpoint Control (BPCON)
68 ..

Trace Controls (TC)
sc ..

Bus Configuration Control (BCON)

Adapted from 80960CA User's Manual, 1989, pages E-13 and E-19. Used by permission.

Revision E I July 1990

3-4 HK80N960E User's Manual

3.3 BYTE ORDERING

TABLE 3-1

The 80960CA supports both little-endian (Intel) and big-endian
(Motorola) byte ordering. The byte ordering determines which
memorY location stores the least significant byte of the
operand. For little-endian systems, the least significant byte is
stored at the lowest byte address. For big-endian systems, the
most significant byte is stored at the lowest address. The num
ber of bytes per operand depends on the data type. For exam
ple, if a Motorola (big-endian) processor writes the long word
12345678'6 to location 0, the HKBON960E (in little-endian
mode) reading a byte from location 0 sees 78,6 , From location
1, it sees 56,6 , from location 2 it sees 34,6 , and from location 3 it
sees 12'6 (see Table 3-1).

Little-endian and big-endian byte ordering

Byte

Word

Long
Word

Long Word Written by a Big-endian Processor:
Location 0
D31 - DO

12345678,•

Read by HK80N960E in Read by HK80N960E in
Little·endian Mode Big-endian Mode

location ° location 1 location 2 location 3 location ° . location 1 location 2 location 3
(A1Ao::OO2> (A1Ao=01 2> (A1Ao=102> (A1Ao=112) (A1Ao=OO2) (A1Ao=012) (A1Ao=102) (A1Ao=112)

07-00 015-08 023-016 031-024 031-024 023-016 015-08 07-00
= 78'6 =56,6 :::34

'6 = 12'6 = 12'6 =34,6 =56,6 = 78'6

location 0 location 2 location 0 location 2
(A 1 A0=002) (A1Ao=102) (A1Ao=OO2) (A1Ao=102)

015 - 00 = 5678'6 031 - 016 = 1234'6 031- 016 = 1234'6 015 - DO = 5678'6

location 0 location 0
(A 1 A0=002) (A1Ao=OO~

031 - DO = 12345678'6 031 - DO = 12345678'6

The 80960CA uses little-endian byte ordering internally. From
the 8096OCA's point of view, all of the memory regions (there
are 16), including the on-chip data RAM, may be individually
configured as big-endian or little-endian via the memory con
figuration registers (MCONO-MCON15) of the 8096OCA. Data
and instructions may be located in either big- or little-endian
regions.

The HK80N96oE user's manual is valid for a little-endian im
plementation. That is, the device addresses are correct for little-

Revision E I July 1990

MPU Summary Information

3.4 MPU INTERRUPTS

3-5

endian, but some data regions (such as VMEbus) may be con
figured either way. Compilers that are currently used only
support little-endian code generation.

Please refer to the 80960CA user's manual for further details, or
contact Heurikon regarding implementation possibilities.

The 80960CA interrupt controller manages three types of inter
rupts:

1. Twelve hardware interrupt sources coming from eight exter
nal interrupt pins and the four internal DMA interrupt
sources.

2 A single, nonmaskable interrupt (NMI) pin that indicates
serious system failures.

3. Software interrupts that can be posted directly by a user's
program or by another processor.

This section describes the hardware and NMI interrupts, the
data structures used for interrupt handling, and the method by
which these data structures are used by the interrupt handler.

3.4.1 Interrupt Structures

3.4.1.1 The Interrupt Table

The interrupt table is a l028-byte table that is referenced by
software and hardware interrupts (Fig. 3-2). The table base is
described in the process control block (PRCB), which is read at
power-up or during processor reinitialization. The interrupt
table must be long word aligned Vectors 0-7 are not defined in
the 80960CA architecture; the locations are used by the interrupt
controller to control pending software interrupts. The first 36
bytes of the interrupt table used for software interrupts are
described in the 80960CA user's manual. The remainder of the
table describes the address of the interrupt handler for vectors
8-255 (816 -FF,6).

Revision E I July 1990

3-6

Table ~
base

HK80N960E User's Manual

31 INTERRUPT TABLE

Pending Priorities

Pending Software Interrupts

Vector 8

Vector 9

Vectors 10-243
~.".

Vectors 244-247 (reserved)

Vector 248 (NMI)

Vectors 249-251 (reserved)

.~

o

4~

~~

... ~

416

2416

2816

30416

3E416

3E816

3F416 r Vectors 252-255 I
~-------------------...... 3FF16

FIGURE 3·2. MPU interrupt table

The address of the long word location associated with any par
ticular vector can be calculated by multiplying the vector by 4
and adding the result to the table base plus 4.

The C expression below can be used to write the address of an
interrupt handler into the interrupt table for a given vector.

* «unsigned long *) (INT_TABLE~BASE + 4 + (Vector « 2») = Intr_Handler () ;

3.4.2

3.4.1.2 The Interrupt Stack Frame

When an interrupt is serviced, an interrupt record containing
the vector number and control registers is written on the inter
rupt stack. A stack frame containing the return instruction
pointer is also allocated on the interrupt stack. The interrupt
stack pointer is loaded from the PRCB during initial power-up
and during reinitialization.

The Nonmaskable Interrupt (NMI)

The NMI interrupt is caused by the assertion of a dedicated
external interrupt pin. The NMI is always vectored to the inter
rupt table entry for vector 248 (byte offset 3E416 from the table
base) and has a priority of 31. Either of the following two condi
tions can cause an NMI:

Revision E I July 1990

MPU Summary Information 3-7

TABLE 3·2

1. Bus error - A bus error occurs either when a bus access
was not acknowledged before the bus watchdog timer
expired (time-out time is programmable via the VIC chip,
as described in section 6-10), or when an illegal bus access
was requested (for example, a 32-bit request from an 8-bit
port.)

2. Parity error - A parity error occurs when the RAM inter
face detects bad parity read from memory. This can happen
for a "true" parity error or if uninitialized RAM is read.

For both error conditions, the cycle in which the error occurred
is terminated, and then the NMI interrupt handler is serviced. It
is the responsibility of the interrupt handler to determine the
cause of the interrupt. When an NMI occurs, the interrupt ser
vice routine must read the status latch to remove the interrupt.
The status latch is an 8-bit port that removes the NMI interrupt
request and provides a 3-bit code that indicates the cause of the
failure. If the NMI service routine fails to read the status latch,
the program will hang indefinitely in the service routine; that is,
the hardware will not remove the NMI Signal. The encoding of
the status latch is described in Table 3-2. Note that only the low
est three bits are defined. All others are undefined. The status
latch is located at address 0210,000016 and should be read as a
byte port.

HK80N960E error status latch encoding
Port address: 0210,000016 "

D2 D1

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

3.4.3

Size: Byte. Type: Read.

DO Failure Type Owner of Local Bus

0 Bus error Unknown

1 Parity error Unknown

0 Bus error 82596CA (Ethernet)

1 Parity error 82596CA (Ethernet)

0 Bus error VIC068 (VME slave access)

1 Parity error VIC068 (VME slave access)

0 Bus error 80960CA (MPU)

1 Parity error 80960CA (MPU)

An example program can be found in Appendix A.

Hardware Interrupts

There are 12 possible sources for hardware interrupts - four
internal DMA channel interrupts and eight external I/O inter
rupts. Table 3-3 shows the connections of external interrupt pins

Revision E I July 1990

3-8 HK80N960E User's Manual

to external devices, and Figure 3-3 shows the HK80N960E
interrupt architecture.

TABLE 3·3
E xternal Interrupt pin mappings

80960CA Interrupt Pin Connected To Device:

XINT7 CIO (counter timer)

XINT6 SCSI

XINT5 sec ports A and 8

XINT4 SCC ports C and 0

XINT3 Ethernet

XINT2 VMEVIC068

XINT1

XINTO

Revision E I July 1990

MPU Summary Information 3-9

Watchdog
BERR

NAI

RAM PERR

CIOIRO
XINT7

SCSIRESET SCSIlRO
XINT6

RINGA SCCABIRO
XINT5

RNGC SCCCOIRO
XINT4

82596CA ETHIRO
XINT3 Ethernet

1PL2 XINT2

SCSI RESET UR07

'---_R;....;.NGA;....;.;....;.~ UR06

L-.-_.....;R~INGC=~ UR05 VlC068 IPlO t-----... XINTO

80960CA
MPU

EXTlRO(FPI)------==~ UR04
.---....:..VS::..;;B:.:.:.IR..:.:O~ D'ROO

notu

Cent. CENTiRa

VSB bus

1Jml2
r:tml1

lACK
FCIACK 1-4-------1 addressl4-------J

decode

FIGURE 3-3. HK80N960E Interrupt architecture

The 80960CA interrupt controller can operate in one of three
modes - dedicated, expanded, or mixed. The HK80N960E
supports only the dedicated mode and must be initialized, via
the interrupt control register ICON, to this state to function
properly.

The 80960CA is an extremely flexible architecture that allows
the programmer to control and configure external interrupts
through several registers. The programmer can control the fol
lowing functions:

Revision E / July 1990

3-10

3.4.3.1

HK80N960E User's Manual

1. Individual mask bits are provided for each hardware inter
rupt by writing to the special function register one (s£1) , also
called the interrupt mask register OMSK).

2. Individual hardware interrupt(s) can be detected in software
by using the special function register zero (sID), also called
the interrupt-pending register (IPND).

3. Each hardware interrupt can be mapped to one of 16 prior
ity levels. The priority levels are set in the interrupt map
(IMAP) registers loaded from the processor control table
specified in the PRCB. (Refer to the 80960CA user's manual
for details on the PRCB.)

4. Each hardware interrupt can be programmed as either
level-sensitive or edge-sensitive.

5. Interrupts can be programmed either to debounce the inter
rupts for several clocks or to respond immediately for faster
response times.

6. Interrupts can be cached in the internal data RAM for faster
response times.

All of these functions are controlled through several registers.
The next few sections describe them, and a suggested register
initialization is given when applicable.

Interrupt Priority

The interrupt controller assumes a unique priority for each vec
tor in the table. Vector 256 has the highest priOrity and vector 8
has the lowest priority.

At all times, the processor is executing at one of 31 priorities,
which are encoded by five bits of the processor's control word.
The priority level can be read or modified with the ASM960
modpc instruction. When an interrupt is detected, its priority is
compared with the priority of the currently running program. If
the interrupt's priority is greater than the processor's current
priority, the interrupt handler is serviced, and the processor's
priority is modified to the higher level. When multiple interrupt
requests are pending at the same priority level, the highest vec
tor number is serviced first. If the interrupt priority is less than
or equal to the 8096oCA's priority, the processor does not ser
vice the request.

The priority of an interrupt is calculated by shifting the vector
number right by three bits. Vectors 8-15 are priority 1, vectors
16-23 are priority 2, and vectors 248-255 are priority 31. Priority
o is not defined in the 80960CA architecture.

Revision E I July 1990

MPU Summary Information 3-11

3.4.3.2 Interrupt Mask Register (lMSK)

TABLE 3·4
InterruDt mask register

11 10 9 8

DMA DMA DMA DMA
Ch.3 Ch.2 Ch.1 Ch.O

3.4.3.3

TABLE 3·5
Interrupt·pending register

11 10 9 8

DMA DMA DMA DMA
Ch.3 Ch.2 Ch.1 Ch.O

The interrupt mask register OMSK), which is special function
register 1 (sf1) , allows masking of any of the twelve hardware
interrupts. The format of this register and the device associated
with each bit are described in Table 3-4. Writing a 1 enables the
interrupt. Writing a 0 disables the interrupt.

7 6 5 4 3 2 1 0

XINT7 XINT6 XINT5 XINT4 XINT3 XINT2 XINT1 XINT
CIO SCSI sec sec Ethernet VIC VIC VIC

A&B C&D Level 2 Level 1 Level 0

Interrupt.Pending Register (IPND)

The format of the interrupt-pending register OPND), which is
spedal function register 0 (sID), is the same as the mask register.
. When it is read, the register indicates a pending interrupt with
a 1. The interrupt-pending register can also be used to generate
interrupts by writing a 1 to the associated bit. This register must
be cleared after every interrupt acknowledge. The format of this
register and the device associated with each bit are described in
Table 3-5.

7 6 5 4 3 2 1 0

XINT7 XINT6 XINT5 XINT4 XINT3 XINT2 XINT1 XINT
CIO SCSI sec sec Ethernet VIC VIC VIC

A&B C&D Level 2 Level 1 Level 0

3.4.3.4 Interrupt Mapping Registers (IMAPO.IMAP2)

Three interrupt map registers OMAPO-2) are used to determine
the priority of hardware interrupts. Each interrupt source is
associated with a 4-bit value in the register. Table 3-6 shows the
relationship between the value written, the interrupt vector, the
priority of the interrupt, and the location for caching the vector.
A suggested setting is also included. The interrupt map registers
are loaded at reset from the PRCB or by the ASM960 sysctl
instruction.

Revision E I July 1990

3-12 HK80N960E User's Manual

TABLE 3-6
. t Interrupt mapping regis ers

Value in IMAP

11112

11102

11012

11002

10112

10102

1001 2

10002

0111 2

01102

0101 2

01002

0011 2

00102

0001 2

Interrupt Associated Internal RAM Suggested
Priority

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

Vector Number Address Source
(if cached)

242 (F216) 3e16 -
226 (E216) 3816 -
210 (02,6) 34'6 -
194 (C2,S) 30'6 OMA channel 3

178 (B2,6) 2C'6 OMA channel 2

162 (A2,6) 28'6 OMA channel 1

146 (92,6) 24'6 OMA channel 0

130 (82,6) 20'6 CIO counterltimer

114 (72,6) lC'6 SCSI

98 (62,6) 1816 SCC ports A&B

82 (52,6) 14'6 SCC ports C&D

66 (42,6) 10'6 Ethernet

50 (32,6) OC'6 VIC level 2

34 (22,6) 0816 VIC level 1

18 (12,6) 04
'6

VIC level 0

The format of the interrupt mapping registers is outlined in
Table 3-7.

TABLE 3-7
Itt • t f n errup' mapPing regis er orma t
Register Bits 15-12 Bits 11-8 Bits 7-4

IMAP2 DMAch.3 OMAch.2 OMAch.l

IMAP1 XINT7 XINT6 XINT5
CIO SCSI SCCports

A&B

IMAPO XINT3 XINT2 XINTl
Ethernet VIC level 2 VIC level 1

Bits 3-0

DMAch.O

XINT4
SCCports
C&D

XINTO
VIC level 0

The definition in the PRCB shown in Table 3-8 would initialize
the interrupts as suggested in Table 3-6.

TABLE 3-8
PReB definition
IMAP2: .word 000OCBA916

IMAP1: .word 00008765'6

IMAPO .word 00004321 16

Revision E I July 1990

Interrupt control register 2

Interrupt control register 1

Interrupt control register 0

MPU Summary Information 3-13

3.4.4

3.4.3.5 Interrupt Control Register (ICON)

The interrupt control register (ICON) is a collection of bit fields
that are used to configure the interrupt controller. The bits are
defined in Table 3-9. This register is read by the processor at
reset from the PRCB or loaded by using the ASM960 sysctl
instruction.

TABLE 3·9
ICON - t d f- -t-regis er e Inl Ion

Register Definition Suggested setting
bits

1-0 Selects interrupt controller 0-Dedicated mode
mode.

9-2 Indicates if level- or edge- o - Level, active low,
sensitive for XINT7-0 respectively.

10 Global interrupt enable O-Enable

12-11 Determines interrupt mask 0- Mask unchanged
operation.(See 80960CA
user's manual.)

13 Enables caching of all O-Enable
vectors.

14 Sample mode for 1 - Fast, no debounce
interrupts.

15 DMA suspension on 1-Yes
interrupt.

The following PRCB definition is derived from the suggested
setting in Table 3-9:

ICON: .word OOOOC00016 # Interrupt config register

Software Interrupts

Interrupts may be requested directly by a user program. This
mechanism may be useful for requesting and prioritizing low
level tasks in a real-time application. Software can request inter
rupts in the following two ways:

1. With the syscd instruction

2 By the 80960CA (or another processor) posting an
interrupt in the pending-priorities/pending-interrupts
fields of the interrupt table (see Figure 3-2).

Refer to the 80960CA user's manual for details.

Revision E I July 1990

3-14 HK80N960E User's Manual

3.5 MPU FAULTS

During processor execution, numerous conditions can cause the
processor to follow an alternate execution thread or to calculate
incorrect results. These conditions are considered "fault condi
tions." Examples of fault conditions are division by zero, invalid
operands, protection violations, and trace faults.

This section briefly describes the data structures used for han
dling faults and the faults defined in the 80960CA architecture.
For a detailed description of faults, refer to the 80960CA user's
manual.

3.5.1 The Fault Table

The fault table is a 256-byte table that provides a pathway to
fault-handling procedures. The fault table base address is
defined in the PReB. The fault table must be long word aligned.
There is one 8-byte entry for each fault type in the table. The
processor uses each entry to determine the location and type of
fault handling procedure to use. Figure 3-4 shows how the
80960CA fault table is organized.

Table ~
base

31

~

Parallel Fault Entry

Trace Fault Entry

Operation Fault Entry

Arithmetic Fault Entry

Reserved

Constraint Fault Entry

Reserved

Protection Fault Entry

Reserved

Type Fault Entry

Reserved

FIGURE 3-4. MPU fault table

o

~

016

816

1016

1816

2016

2816

3016

3816

4016

4816

5016

FF16

Two types of fault table entries are allowed: a local-call entry
and a system-call entry. Both entry types are two long words in
length. Figure 3-5 shows the format for both entry types.

Revision E I July 1990

MPU Summary Information 3-15

31 2 1 0

LOCAL-CALL
Fault Handler Procedure Address

1
0

1
0

ENTRY
0000,0000 16

31 2 1 0

SYSTEM-CALL Fault Handler Procedure Number 11 1 0

ENTRY
0000,027F 16

FIGURE 3-5. Fault table entries

The local-call entry provides an instruction pointer to the fault
handling procedure. The system-call entry provides fault
handling through the system procedure table. The system pro
cedure table is described in the 80960CA user's manual.

3.5.2 The Fault Stack Frame

When a fault is detected, the processor allocates a new set of
registers on the currently active stack and creates a fault record
on the stack. The fault record contains the processor's control
registers, the address of the faulting instruction, and one long
word encoded with the type of fault Table 3-10 shows the types
of faults defined in the 80960CA architecture.

Revision E I July 1990

3-16

TABLE 3·10
80960CA f It t au :ypes an d

Fault Type

Number Name

016 Parallel

116 Trace

216 Operation

316 Arithmetic

416 Reserved

su bt ,pes
Fault

Number/Bit
Position

216 -FF16

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

116

216

316

416

116

216

HK80N960E User's Manual

Subtype Fault Record

Name

Indicates number of XXOO.XX0216
faults that occur in

XXOO.XXFFI6 paranel.

Instruction Trace XX01.XX0216

Branch Trace XX01,XX0416

Call Trace XX01,XX0816

Return Trace XX01.XX1016

Prereturn Trace XX01,XX2016

Supervisor Trace XX01.XX4016

Breakpoint Trace XX01.XX8016

Invalid Opcode XX02.XX01 16

Unimplemented XX02,XX0216

Unaligned XX02,XX0316

Invalid Operand XX02.XX0416

Integer Overflow XX03.XX01 16

Arithmetic Zero- XX03,XX0216
Divide

(Floating Point)

516 Constraint 116 Constraint Range XX05.XX01 16

216 Privileged XX05,XX0216

616 Reserved .

716 Protection Bit 1 Length XX07,XX01 16

816 -916 Reserved

A16 Type 116 Type Mismatch XXOA,XX01 16

816 - F16 Reserved

SOURCE: 80960CA User's Manual, 1989, p. 7-3.

3.6 MPU DMA SUPPORT

Refer to the 80960cA user's manual for more detail of the pro
cessor's implementation of the features described in this
section.

Revision E I July 1990

MPU Summary Information 3-17

The CPU (80960CA) has an on-chip DMA controller, which can
manage four independent channels of DMA concurrently. All
channels support the following:

• Standard multi-cycle transfers with byte-assembly

• Multiple operand size combinations, for example:

8 to 8 bits

8 to 32 bits

32 to 8 bits

32 to 32 bits

128 to 128 bits (that is, burst mode)

• Memory-to-memory transfers (block mode, synchro
nized), in which the source and destination can be any
combination of internal data RAM (cache) or external
memory

• Memory-to-device transfers (demand mode, synchro
nized)

• Device-to-memory transfers (demand mode, synchro
nized)

• Chained DMA transfers (source and/or destination)

• Burst DMA transfers (using the 128-byte quad transfer
mode)

• Fixed or rotating channel priority

3.6.1 HK80N960E Implementation

In the HK80N960, all four channels are dedicated to on-card
devices (Table 3-11). The channels can still be used for mem
ory-to-memory transfers.

TABLE 3·11
80960CA DMA channels on the HK80N960E

80960CA DMA Device Section
Channel

0 SCCportD 10.7

1 SCCportC 10.7

2 SCCportA 10.7

3 SCSI 12.2

Revision E I July 1990

3-18

3.6.2

HK80N960E User's Manual

Registers/Instructions

3.6.2.1

Multiple registers and instructions are associated with the
80960CA DMA. Their descriptions and access methods are
described below.

DMA Command Register (DMAC)

This register is specified as special function register 2 (sf2) in
Intel ASM960 assembler. Refer to the 80960CA user's manual for
details. The register contains the following:

• The enable for the channels

• The status of the channels during and after a transfer

• The channel priority mode (fixed or rotating)

• The DMA throttle, which selects the maximum ratio of
DMA!CPU clocks

3.6.2.2 The Set·up·DMA (sdma) Instruction

ASM960 assembler

SYNTAX: sdma opll op21 op3

opl specifies channe1 number (0 - 3).

op2 specifies the DMA control word, which includes:

• Transfer type

• Operand size

• Demand or block mode

• Chaining select

• Termination conditions

op3 This quad-aligned register must be the first of
three consecutive registers, where:

op3 = byte count

ojJ..3 + 1] = source address

oJld + 2] = destination address

3.6.2.3 Update DMA·Channel RAM Instruction (udma)

ASM960 assembler

SYNTAX udma

This command causes the current status of the DMA channels
to be written to the dedicated DMA RAM, which is between
0000,004016 and OOOO,OOC016•

Revision E I July 1990

MPU Summary Information 3-19

3.6.3

3.6.4

DMA Interrupts

There is a dedicated interrupt for each DMA channel (0 - 3).
Refer to section 3.4 ("MPU Interrupts") and the 80960CA manual
for a detailed discussion of DMA interrupts. Take special note of
the following 80960CA registers:

• Interrupt Control Register (ICON)
• Interrupt Mapping Register (IMAP2)
• Interrupt Mask Register OMSK), ASM960 syntax - sft
• Interrupt Pending Register (IPND), ASM960 syntax - sfO

Interrupt priorities may be user-defined; Table 3-6 and Table 3-8
show the recommended set-up.

DMA Data Alignment

In many cases, the DMA controller in the 80960CA may per
form operations on source and destination data that are not
aligned in memory. In other words, the source and destination
addresses do not need to be aligned to a module memory
boundary, or aligned with respect to one another. Alignment
restrictions are as follows:

For all DMA where the source and destination addresses
increment (except "quad" transfers), there are no alignment
restrictions.

Source, destination, and byte-count must be quad-word aligned
for "quad" transfers.

If the source address is fixed (rather than incrementing), the
source address must be aligned.

If the destination address is fixed (rather than incrementing),
the destination address must be aligned.

In general, aligned DMA transfers perform better than non
aligned transfers.

Many nonaligned cases execute byte-long bus requests to load
or store data at the nonaligned address. For example, a non
aligned 16- to 8-bit transfer would revert to 8- to 8-bit.

Consult the 80960CA user's manual for further details.

Revision E I July 1990

3-20 HK80N960E User's Manual

3.7 MPU TRACE EVENTS

The 80960cA architecture provides facilities for monitoring the
activity of the processor through the generation of "trace
events." A trace event indicates a condition in which the pro
cessor has just executed (or is about to execute) a particular
instruction.

When the processor detects a trace event, it generates a trace
fault and makes an implicit call to the fault-handling procedure
for trace faults. This procedure can be used to call debugging
software to display or analyze the state of the processor when
the trace event occurred

Tracing is enabled by the trace-enable bit in the process
controls register (pc) and a set of trace-mode bits in the trace
controls register (tc). Alternately, the mark and fmark instruc
tions can be used to generate trace events explicitly from a
program.

Also provided are four hardware "breakpoint" registers that gen
erate trace events and trace faults. Two registers are dedicated to
trapping on instruction execution addresses, while the remain
ing two registers can trap on the addresses of various types of
data accesses.

Trace modes are summarized below:

Instruction

Branch

Call

Return

Prereturn

Supervisor

Breakpoint

Traps on every instruction.

Traps on every branch instruction.

Traps on every call instruction.

Traps on every return instruction.

Traps before every return instruction.

Traps on every call-system instruction.

Traps on breakpoints specified in break
point registers.

The trace registers are summarized below.

tc Trace controls register

IPBO-IPBl Instruction address breakpoint registers

DABO-DABl Data address breakpoint registers

BPCON Hardware breakpoint control registers

Revision E I July 1990

MPU Summary Information

3.8 MPU CACHES

3-21

Refer to the 80960CA user's manual and section 3.5 ("MPU
Faults") of this manual for details about faults and tracing. If you
are using the Heurikon HK80/V960E monitor EPROM, refer to
Appendix A for details about our implementation of tracing.

The 8Q96oCA supports three caching mechanisms: data RAM,
instruction cache, and register cache. These are briefly
described below.

Refer to the 80960CA user's manual for further details.

3.8.1 Data RAM Cache

3.8.2

One Kbyte of user-visible high-speed (528 Mbytes/sec at 33
MHz) internal data RAM is integrated on the 80960CA on an
internal 128-bit bus, which is mapped into the first 1 Kbyte of
address space on the HK80/V960: 000016 - 040016 • Allocated
correctly, this resource can be used to dramatically increase the
performance of critical application algorithms.

Data RAM is accessed by loads, stores, or DMA transfers.
Instruction fetches to these addresses will cause an "operation
unimplemented" fault to occur. Some of the data RAM may
optionally be used to store DMA status, cached interrupt vec
tors, and cached local registers. Application software may use
the data RAM.

Instruction Cache

The 80960CA contains a 1-Kbyte two-way set associative instruc
tion cache, which is organized into two sets of 16 eight-word
lines. Each line is composed of four two-word blocks.

The instruction cache enhances the 80960CA's performance by
reducing the number of instruction fetches from slower external
RAM, resulting in fast execution of cached code, and also pro
vides more bus bandwidth for data operations to external
memory.

The instruction cache may be enabled or disabled via the
"Instruction Cache Configuration Word" at initialization in the
PRCB or by using the ASM960 sysctl instruction. See the
8096ocA user's manual for details.

Revision E I July 1990

3-22

3.8.3

HK80N960E User's Manual

Register Cache

At initialization, the "Register Cache Configuration Word" is
used to specify the number of register sets (0 to 15) that may be
cached on-chip. The local register set is saved to the local regis
ter cache when a "call" is made. When the cache is full, the old
est set of local registers is flushed to the stack in external
memory.

3.9 MPU PROCESSING MODES

The capability of a separate "user" and "supervisor" execution
mode by the 80960CA creates a code and data protection
mechanism referred to as the "user-supervisor protection
model". This mechanism may be used to restrict access to all or
parts of the operating system (kernel) by application code.

Refer to the 80960CA user's manual for further details.

3.10 MPU REGISTER SUMMARY

The 80960CA consists of the following registers and structures.
Refer to the 80960CA user's manual for details (a summary can
be found in the appendix to the 80960CA user's manual).

REGISTERS
gO-g15

rO-r15

sfrO-sfr2

pfp

sp

DESCRIPTION
Sixteen 32-bit global registers
gO-gt4 General purpose
gt5 Frame pointer (FP)

Sixteen 32-bit local registers, which provide
local storage for each active procedure,
where:
rO
rt
r2
r3-rt5

Previous frame pointer (pfp)
Stack pointer (sp)
Return instruction pointer (rip)
General purpose

Three special function registers whose
meanings are:
sf 0 Interrupt-pending register (IPND)
sft Interrupt mask register (IMSK)
sf2 DMA command register (DMAC)

Previous frame pointer (cO)

Stack pointer (rl)

Revision E I July 1990

MPU Summary Information

rip

ac

pc

ICON

IPND

IMSK

IMAPO-IMAP2

DMAC

DMACW

tc

IPRO-IPBl

DABO-DABI

BPCON

3-23

Return instruction pointer (r2)

Arithmetic controls register

Process controls register

Interrupt control register

Interrupt-pending register (s£O)

Interru pt mask register (sf1)

Interrupt mapping registers

DMA command register (sf2)

DMA control word: accessed via assembler:
sdma

Trace controls register

Instruction address breakpoint registers

Data address breakpoint registers

Hardware breakpoint control register

MCONO-MCONI5 Memory configuration registers

BCON

CONTROL
STRUCTURES

IMI

IBR

PRCB

Bus configuration register

DESCRIPTION

Initial memory image

Initialization boot record

Process control block

Revision E I July 1990

4.1 INTRODUCTION

4

System Error Handling

Many events can caus~ either a hardware or software error. The
responses to those error conditions are carefully controlled.
This section describes the error types and sources.

4.2 ERROR CONDITIONS

4.2.1 Hardware Errors

Hardware errors are errors that are detected in the hardware .
logic of the HK801V960E.

The following error conditions might arise during MPU cycles:

CONDITION

Parity Error

Bus Error

DEFINITION

Incorrect parity was detected during a read
cycle from on-card RAM memory. This
might result from a true parity error (RAM
data changed) or because the memory loca
tion was not initialized prior to the read
and it contained garbage.

Parity errors generate a nonmaskable
interrupt.

The bus error occurs when an access has
timed out before the cycle has been
acknowledged. Allan-card accesses and
accesses to either the VMEbus or the VSB
bus are timed by the VME interface con
troller (VIC). The timeout period is pro
grammable and enabled in the VIC (see
section 6.10).

4-2

TABLE 4·1

HK80N960E User's Manual

Accesses to nonexistent locations on the
VMEbus or undefined on-card I/O can
cause the bus to hang indefinitely if no
watchdog timer is enabled.

Bus errors generate a nonmaskable
interrupt.

Bus errors and parity errors assert the nonmaskable interrupt
pin and then terminate the cycle normally. The processor then
traps to the NMI exception routine. When read, the error status
latch removes the nonmaskable interrupt and provides a 3-bit
code that indicates the bus master at the time of failure and the
source of the failure (Table 4-1).

HK80N960E error status atch enco Ing
Port address: 0210,000016 ,

02 01

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

4.2.2

Size: Byte. Type: Read.

00 Failure Code Owner of Local Bus

0 Bus error Unknown

1 Parity error Unknown

0 Bus error 82596CA (Ethernet)

1 Parity error 82596CA (Ethernet)

0 Bus error VIC068 (V ME slave access)

1 Parity error VlC068 (VME slave access)

0 Bus error 80960CA (MPU)

1 Parity error 80960CA (MPU)

Software Errors

Software errors are errors that are detected by the 80960CA and
are all handled through the fault table as described in section
3.5. For a detailed description of methods the processor uses to
deal with these errors, refer to section 3.5 ("MPU Faults") and
the 80960CA user's manuaL

CONDITION SUB1YPE AND DEFINITION

Operation Faults An operation fault indicates that the pro
cessor cannot execute the current instruc
tion because of invalid instruction syntax
or operand semantics.

Invalid opcode: The processor has
detected an undefined opcode or
addressing mode.

Revision E I July 1990

System Error Handling 4-3

Unimplemented: The processor has
attempted to execute an instruction that
was fetched from on-chip RAM.

Unaligned: The processor has attempted
to access an unaligned word or group of
words in memory. This error can be dis
abled in the fault configuration word.

Invalid operand: The processor has
attempted to execute an instruction for
which one or more of the operands have
special requirements that are not satisfied.

Arithmetic Faults An arithmetic fault indicates that the
processor has encountered a problem
while attempting to execute an arithmetic
operation.

Type Fault

Protection fault

Constraint fault

Parallel fault

Integer OVerJWw: The result of an inte
ger instruction overflows the destination.
This error can be disabled in the arith
metic controls register.

Zero mvide: A zero divide indicates that
the divisor operand of a divide operation
is zero.

The Type Mismatch fault indicates the
processor has attempted to perform an
illegal operation of an architecturally
defined data type or a typed data struc
ture. From user mode, attempts to execute
the modpc instruction and attempts to
access on-chip data RAM or a special
function register generate this fault.

The Length fault indicates that the index
in a call's instruction points to an entry
beyond the extent of the system proce
dure table.

The Privileged fault is generated when a
program or procedure attempts to use a
supervisor-only instruction from user
mode. Privileged instructions are sdma,
udma, and sysctl.

The ParaUeI fault indicates that one or
more faults occurred when the processor
was executing instructions in parallel by
different execution units. (Multiple faults
can occur simultaneously because the
processor can execute multiple instruc
tions in parallel.) If this happens, a fault
record is created for each fault that
occurs.

Revision E I July 1990

5

On-card Memory Configuration

5.1 INTRODUCTION

5.2 ROM

The Heurikon HK80N960E microcomputer accommodates a
variety of RAM and ROM configurations. There is a single ROM
socket for PROM, EPROM or EEPROM, 24 ZIP RAM positions,
and a nonvolatile RAM. Off-card memory may be accessed via
the VMEbus or the VSB.

The HK80N96oE's ROM is accessible during the initial power
up sequence until the ROMINH bit is set. When the ROMINH bit
is cleared (reset state) ROM is mirrored throughout the highest
1 Mbyte of memory (FFFO,OOO016 - FFFF,FFFF16). When the
ROMINH bit is set, the highest 1 Mbyte becomes the VME
extended memory space (see Table 5-1). Although execution out
of ROM is impossible when ROMINH is set, it is still possible to
access the real-time clock module.

TABLE 5-1
ROMINH value and ROM addresses
Port address : 0200,004016 • Size: long. Type: Write.

DO ROM Address Space

0 FOOO,OOOO - FFFO,OOOO is reserved.

FFFO,OOO016 - FFFF,FFFF16 is ROM.

1 FOOO,000016 - FFFF,FFFF16 is VME extended space.

Associated with the ROM socket is a set of jumpers that must be
set according to the type of ROM being used. The HK80N960E
supports EPROM sizes from 64 Kbit to 8 Mbit (2764 - 27080).
The ROM size and associated configuration are shown in Figure
5-1:

5-2

64 Kbit-
256 Kbit

10 0 ~9 80 0 7

6~ 05
40 0 3

2 0 01

HK80N960E User's Manual

512 Kbit 1 Mbit 2Mbit 4 Mblt 8 Mbit t
10
0

~
0

q
0
0
0

0

10 01 10 oj
0

~ ~~ 0

~
0 ~o
0 o 0

10 0\

~o
~~ o 0

10 01
~ 0

~~
10 01

Front panel

VMEbus
connector

FIGURE 5-1. ROM capacity and Jumper positions

Jumper J17 is for ROM CU15). See section 15.3 for help in locat
ing the jumpers.

The ROM socket has 32 pins. When using a 28-pin device, justify
it so that socket pins 1, 2, 31, and 32 are empty. Twenty-four-pin
devices are not supported. The ROM access time must be ~250
nanoseconds.

ROM ROM
jumper socket

10 0 0 9 00
80 0 7

60 0 5

40
20

32 31

28-pin
device

FIGURE 5·2. ROM positioning diagram

t
Front panel

VMEbus
connector

Note: If you make your own ROMs, keep in mind that no matter
what size the ROM is (or where it is located), some part of it
should be at the IBR Onitialization Boot Record) address
FFFF,FFOO16 • This address is a function of the 80960CA and
cannot be changed. Therefore, the ROM must contain the
JBR and it must be at this address (mirror or otherwise)
from the 80960CA's point of view. Refer to the 80960CA
user's manual for further details.

Revision E I July 1990

On-card Memory Configuration

5.3 ON-CARD RAM

5.4 BUS MEMORY

5-3

The HK80!V960E uses 24 ZIP RAM packages. Standard memory
configurations are 2 or 8 Mbytes. On-card RAM occupies physi
cal addresses starting at 0000,040016 , The first 40016 of memory is
the on-chip DATA RAM of the 80960CA. The memory spaces
are given in Table 5-2.

TABLE 5-2
HK80/V960E memory space

Memory Size Memory Address Space

1-Kbyte data cache 0000,000016 - 0000,040016

2 Mbytes 0000,040016 - 0020,040016

6 Mbytes (optional) 0020,040016 - 00080,040016

See sections 6 and 7 for details concerning the VME/vSB bus
interface.

Revision E I July 1990

5-4 HK80N960E User's Manual

5.5 PHYSICAL MEMORY MAP

See section 15.2 for an I/O device address summary.

FFFF,FFF

FFFO,OOO

F

0

FOOO,OOO 0

""'"

4000,000 0

0400,000 0

0300,000 0

0200,000 °

° 0100,000

0080,040 °
0020,040

0000,040

0000,000

0

°
°

VMEbus Ext Addr.
Space or ROM

VMEbus Ext Addr.
Space or Reserved

VMEbus
::::.... Extended

Address Space

VSB

VME
Standard
Address
Space

On-Card 110

VME Short
Address
Space

Reserved

RAM (optional 6 Mbyte)

RAM (2 Mbyte)

80960CA data RAM

::....

;::....

0300,0000

02FO,OOOO

02EO,oooO

0200,0000

02CO,Oooo

0280,0000

02A0,OOOO

0290,0000

0280,0000

0270,0000

0260,0000

0250,0000

0240,0000

0230,0000

0220,0000

0210,0000

0200,0000

RTCAccess

CIO

SCSI DMA Address

Centronics

VIC-VME lACK

VIC Registers

BhemetCA

Ethernet Port

NVRAM ReadIWrite

NVRAMRecall

NVRAMStore

SCSI

SCC2

SCCl

Error Status Latch

System Control

FIGURE 5-3. Physical memory map

Revision E I July 1990

0200,0200

0200,01 CO

0200,0180

0200,0140

0200,0100

O2OO,OOCO

0200,0080

0200,0040

0200,0038

0200,0030

0200,0028

0200,0020

0200,0018

0200,0010

0200,0008

Ethernet Arbiter Enable

Reserved

SCSI Reset

VME Extended Space Enable

VME Standard Space Enable

WE Short Space Enable

ROMINH

User lEO 4

User LEO 3

User LEO 2

User LEO 1

VSB Arbiter Enable

VSB Release on Request

Ethernet lEIBE Select

On-card Memory Configuration

5.6 MEMORY TIMING

5-5

The HK80/v960E memory logic has been carefully tuned to
. give optimal memory cycle times under a variety of conditions.

The base cycle time for an 80960cA is two clock cycles for a
RAM read or write and one clock cycle for subsequent burst
cycles. Although the 80960CA cannot perform memory accesses
any faster than this, it can be made to perform slower accesses.
Table 5-3 shows the base cycle times for the 80960CA for
accesses with no wait states:

TABLE 5-3
80960 CA I k e oe eye es f or zero wa. sa es

Cycle Number of Clocks

Reads 2

Writes 2

Burst Read (4 accesses) 5

Burst Write (4 accesses) 5

The HK80/V960E utilizes several features to provide the mem
ory bandwidth the processor requires.

Reads

Writes

The HK80/V960E provides a bank inter
leave memory structure that allows the con
current access of adjacent long words in
memory. The bank interleaving of read
cycles allows the processor to achieve no
wait states on the second, third, and fourth
accesses of a burst read cycle at 33 MHz.

The HK80/v96oE also performs write post
ing of memory write cycles. This allows the
processor to terminate the write cycle early,
permitting the memory to complete the
write cycle. With the combination of bank
interleaving and write posting, the
HK80/V960E can achieve no wait state
cycles for writes and burst writes.

The use of bank interleaving and write posting provides the
HK80IV96oE with nearly no-wait-state performance. The only
wait state occurs on read cycles and the first cycle of a read
burst cycle.

Table 5-4 describes the expected wait states for the
HK80IV96oE:

Revision E I July 1990

5-6 HK80N960E User's Manual

TABLE 5·4
RAM t- • d f th HK80N960E access ame require or e

Cycle Total Clock Wait States
Cycles

Reads 4 2

Writes 2 0

Burst Read (4 accesses) 7 2-0-0-0

Burst Write (4 accesses) 5 0-0-0-0

The HK80/V960E will provide either 2 or 8 Mbytes of memory
using 70-nanosecond DRAMs.

There are two other sources of wait states that DRAM architec
tures can exhibit:

1. When a refresh must be performed and the DRAM con
troller is unable to perform the refresh during non-RAM
cycles. This happens so infrequently that any performance
degradation is usually unnoticeable.

2. When the processor is required to perform back-to-back
memory cycles with no delays, which rarely occurs because
of the instruction cache and data RAM. In such a case,
single reads and writes would require five clock cycles, and
burst reads and writes would require eight clock cycles.

While the above information is important in comparing the
relative performance of DRAM designs, the performance of
individual DRAM designs has much less impact on overall sys
tem performance than one might expect. The reason for this is
that the internal cache and data RAM built into the B0960CA
chip helps to decouple the processor from slower speed memo
ries such as DRAMs.

To summarize, the higher the cache hit rates, the less impact
external memory has on system performance.

5.7 NONVOLATILE RAM

A particularly useful feature of the HK80/V96oE is its non
volatile RAM (NV-RAM), which allows precious data and system
configuration information to be stored and recovered across
power cycles. The NV -RAM is configured as 8 Kbytes of 8-bit
words Oow byte of every other long word), of which 6 Kbytes
are user-accessible (Table 5-5).

Revision E I July 1990

On-card Memory Configuration 5-7

TABLE 5·5
Nonvolatile RAM addresses

Address

0270,0000'6 _ 0271,0000'6

0270,0000'6 _ 0270,COOO'6

Mode Size Function

Read 8 Kbytes Readable portion of nonvolatile
memory

Write (read-modify-write) 6 Kbytes Writeable portion of nonvolatile
memory

To avoid destruction of nonvolatile memory by an errant pro
gram, a read-modify-write cycle is required to write the non
volatile memory (ASM960 atomic modify atmod, ASM960
atomic add atadd). Examples of modifying nonvolatile memory
can be found in Appendix A.

Physically, the nonvolatile memory is an 8-Kbyte-by-8-bit
EEPROM (or equivalent). Reads from nonvolatile memory take
about 300 nanoseconds. Writes to nonvolatile memory are
much more time consuming; they take about 10 milliseconds. A
write can be verified by continually reading the location until
the expected value is returned. To reduce the write delays, the
nonvolatile memory supports a burst mode, which allows the
writing of a 32-byte block of memory at one time. The chip is
rated for 10,000 write cycles per location.

The nonvolatile memory device has been partitioned into three
sections, which are outlined in Figure 5-4 and further described
in this section.

Revision E I July 1990

5-8

0270,0000 16

0270,0008
16

0270,0010 16

0270,8000 16

0270,COOO 16

0271,0000 16

HK80N960E User's Manual

63 7 0

r-----------------~~~---B~eO

User
NV-RAM
(5,632 bytes)

Monitor and Board
Configuration (512 bytes)

Heurikon Manufacturing,
Service, and Hardware

Configuration Information
(2,048 bytes)

ReadIWrlte
Section

Read-Only
Information
Section

FIGURE 5-4. EEPROM partitions

The first section (5,632 bytes) is the user-configurable read/write
section of the nonvolatile memory. This section can be modi
fied by a user's application with no effect on the other sections.

The second section consists of 512 bytes of information for
configuring the monitor and board upon reset. This section
should not be modified by a user's application.

The last quarter (2,048 bytes) of the nonvolatile memory is
reserved for Heurikonts use and contains manufacturing infor
mation, service information, and hardware configuration
information. This region is hardware write protected and can
only be written by Heurikon Corporation.

The HK80/v960E addresses nonvolatile memory so that 1 byte
is mapped to every other long word location. On this basis, the
first byte is located at 0270,0000, the second byte is at 0270,0008,
the third byte at 0270,0010, and so forth.

We recommend that you use a function that reads portions of
the nonvolatile memory into contiguous memory buffers for
easy manipulation. See Appendix B for the definitions and con
tents of the Heurikon-defined structures. Also see Appendix A
for programming examples for maintaining the nonvolatile
memory structures.

Revision E I July 1990

6.1 INTRODUCTION

6

VMEbus Control

The HK80N960E has a VMEbus interface that conforms to the
specifications set forth in the following section. The VMEbus
interface consists of the VIC068 VMEbus Interface Controller
(VIC) and required support circuitry to perform all VMEbus
functions. The control logic for the VMEbus allows numerous
bus masters to share the resources on the bus. Up to 21 boards
may be used on the VMEbus.

Please refer to the VIC068 VMEbus Interface Controller
Specification from VTC for a detailed description of the VIC.

The HK80N96oE VME interface has the following features:

Address

Data

Interrupts

Mailbox

The VMEbus interface uses 32 address
lines for a total of 4 Gbytes of VMEbus
address space. Supported are the "short,"
"standard," and "extended" address
modes, which use 16, 24, and 32 address
lines, respectively.

The VMEbus interface uses 32 data lines
to support 8-, 16-, 24-, or 32-bit data
transfers.

The VIC handles the seven VMEbus
interrupts and multiple local interrupts.

The mailbox consists of a collection of 8-
bit registers that can be used for
interprocessor communications over the
VMEbus.

System Controller The HK80N96oE may be configured as
the VMEbus system controller, and would
perform the necessary system controller
functions of SYSCLK, BeLR, SYSRESET,
bus watchdog, and bus arbiter.

6-2

VSB

HK80N960E User's Manual

The HK80N96oE supports the VME sub
system bus (VSB) expansion interface,
which allows high speed 8-, 16-, 24-, 32-bit
data transfers without the need for the
VME bus. See section 7 for details.

6.2 VMEbus SIGNAL DESCRIPTIONS

VME signals, described below, are defined on Pl and part of P2.
VSB is defined on the rest of P2j VSB signal descriptions are
described in section 7.

Refer to the Motorola VMEbus specification, revision C.l, for
detailed usage of VME signals. All signals are bidirectional
unless otherwise stated.

The following signals on connectors PI and P2 are used for the
VMEbus interface. For a complete listing of the pins, refer to
section 6.11.

AOI-A15

A16-A23

A24-A31

ACFAIL*

AMO-AM5

AS·

BBSY·

ADDRESS bus (bits 1-15). Three-state
address lines that are used to broadcast a
short address.

ADDRESS bus (bits 16-23). Three-state
address lines that are used in conjunction
with AOI-A15 to broadcast a standard
address.

ADDRESS bus (bits 24-31). Three-state
address lines that are used in conjunction
with AOI-A23 to broadcast an extended
address.

AC F AlLURE. This signal is an input to the
HK80N96oE and may be used to generate
an interrupt to the 80960CA by program
ming the VIC accordingly.

ADDRESS MODIFIER (bits 0-5). Three-state
lines that are used to broadcast information
such as address size and cycle type.

ADDRESS STROBE. A three-state signal that
indicates when a valid address has been
placed on the address bus.

BUS BUSY. An open-collector signal driven
low by the current MASTER to indicate that
it is using the bus. When the MASTER re
leases this line, the resultant rising edge
causes the ARBITER to sample the bus
request lines and grant the bus to the high-

Revision E I Juty 1990

VMEbus Control

BCLR*

BERR*

BGOIN*-BG3IN*

BGOOUT*
BG30UT*

BRO*-BR3*

DOO-D31

DSO*, DSl*

DTACK*

IACK*

6-3

est priority requester. Early release mode is
supported.

BUS CLEAR. A totem-pole signal generated
by the ARBITER to indicate when there is a
higher priority request for the bus. This sig
nal requests the current MASTER to release
the bus.

BUS ERROR. An open-collector signal gen
erated by a SLAVE or BUS TIMER. This sig
nal indicates to the MASTER that the data
transfer was not completed.

BUS GRANT (0-3) IN. Totem-pole signals
generated by the ARBITER and RE
QUESTERS. Bus-grant-in and bus-gcant-out
signals form bus grant daisy chains. An
input to the HK80N960E, the bus-grant-in
signal indicates that the HK80N960E may
use the bus.

BUS GRANT (0-3) OUT. Totem-pole signals
generated by REQUESTERS. An output from
the HK80N960E, the bus-gcant-out signal
indicates to the next board in the daisy
chain that it may use the bus.

BUS REQUEST (0-3). Open-collector signals
generated by REQUESTERS. Assertion of
one of these lines indicates that some
MASTER needs to use the bus.

DATA BUS. Three-state bidirectional data
lines used to transfer data between
MASTERS and SLAVES.

DATA STROBE ZERO, ONE. A three-state
signal used in conjunction with LWORD*
and AOl to indicate how many data bytes
are being transferred (one, two, three, or
four). During a write cycle, the falling edge
of the first data strobe indicates that valid
data are available on the data bus.

DATA TRANSFER ACKNOWLEDGE. An
open-collector signal generated by a
SLAVE. The falling edge of this signal indi
cates that valid data are available on the
data bus during a read cycle, or that data
have been accepted from the data bus dur
ing a write cycle. The rising edge indicates
when the SLAVE has released the data bus
at the end of a READ CYCLE.

INTERRUPT ACKNOWLEDGE. An open-col
lector or three-state signal used by an
INTERRUPT HANDLER acknowledging an

Revision E I July 1990

6-4

IACKIN*

IACKOUT*

IRQl*-IRQ7*

LWORD*

RESERVED

SERCLK

SERDAT*

SYSCLK

SYSFAIL*

HK80N960E User's Manual

interrupt request It is routed, via a back
plane signal trace, to the IACKIN* pin of
slot 1, where it forms the beginning of the
IACKIN* -lACKOU,.. daisy-chain.

INTERRUPT ACKNOWLEDGE IN. A totem
pole signal and an input to the
HK80/V960E. The IACKIN* indicates that
the board may respond to the INTERRUPT
ACKNOWLEDGE CYCLE that is in progress.

INTERRUPT ACKNOWLEDGE OUT. A
totem-pole signal and an output from the
HK80N96oE. The IACKIN· and lACKOU,..
signals form a daisy-chain. The lACKOU,..
signal indicates to the next board in the
daisy-chain that it may respond to the
INTERRUPT ACKNOWLEDGE CYCLE in
progress.

INTERRUPT REQUEST 0-7). Open-collector
signals, generated by an INTERRUPTER,
which carry interrupt requests. When several
lines are monitored by a single INTERRUPT
HANDLER, the highest numbered line is
given the highest priority.

LONG WORD .. A three-state signal used in
conjunction with DSO·, DSl*, and AOI to
select which byte location(s) within the 4-
byte group are accessed during the data
transfer.

RESERVED. A signal line reserved for future
VMEbus enhancements. This line must not
be used.

SERIAL CLOCK. A totem-pole signal that is
used to synchronize the data transmission
on the VMEbus. This signal is not imple
mented on the HK80!V960E.

SERIAL DATA. An open-collector signal
that is used for VMEbus data transmission.
This signal is not implemented on the
HK80N96oE.

SYSTEM CLOCK. A totem-pole signal that
provides a constant 16-MHz dock signal
that is independent of any other bus timing.
This signal is driven if the HK80N960E is a
system controller.

SYSTEM FAIL. An open-collector signal that
indicates a failure has occurred in the sys
tem. It is also used at power-on to indicate
that at least one VMEbus board is still in its
power-on initialization phase. This signal

Revision E I July 1990

VMEbus Control

SYSRESET*

WRITE·

+5V STOBY

6-5

may be generated by any board on the
VMEbus. The VIC drives this signal low at
power-up and may be programmed to gen
erate an interrupt if asserted by another
board in the system. Details are given in
section 6.9.

SYSTEM RESET. An open-collector signal
that, when asserted, causes the system to be
reset.

WRITE. A three-state signal generated by the
MASTER to indicate whether the data trans
fer cycle is a read or a write. A high level
indicates a read operation; a low level indi
cates a write operation.

+5 Vdc STANDBY. This line supplies +5
Vdc to devices requiring battery backup.
This signal is not used on the HK80N96oE.

6.3 VIC REGISTER MAP

The base address of the VIC chip is 02AO,OOOO,S.

Table 6-1 shows the VIC register offsets from the base. Please
refer to the VIC068 VMEbus Interjace Controller Specification
from VTC for a detailed description of the VIC registers.

Revision E I July 1990

6-6

TABLE 6-1
VIC . t regis er map
Offset Acronym

Address

0 '6 VIICR

4 '6 VICR1

8'6 VICR2

C '6 VlCR3

10'6 VICR4

14'6 VICRS

18'6 VICR6

1C'6
VICR7

20 '6
OSICR

24'6 L1CR1

2816 LlCR2

2C'6 LlCR3

30 '6 LlCR4

34
'6

L1CR5

38 '6 LlCR6

3C'6 LlCR7

40 '6 ICGSICR

44'6 ICMSICR

48 '6 EGICR

4C
'6 ICGSIVBR

50 '6 ICMSIVBR

54 '6 LlVBR

58 '6 EGIVBR

5C'6 ICSR

60 '6 ICRO

64 '6 ICR1

68 '6 1CR2

6C'6 ICR3

Continues.

HK80N960E User's Manual

Register Name

VMEbus Interrupter Interrupt Control Register

VMEbus Interrupter Control Register 1

VMEbus Interrupter Control Register 2

VMEbus Interrupter Control Register 3

VMEbus Interrupter Control Register 4

VMEbus Interrupter Control Register 5

VMEbus Interrupter Control Register 6

VMEbus Interrupter Control Register 7

OMA Status Interrupt Control Register

Local Interrupt Control Register 1

Local Interrupt Control Register 2

Local Interrupt Control Register 3

Local Interrupt Control Register 4

Local Interrupt Control Register 5

Local Interrupt Control Register 6

Local Interrupt Control Register 7

ICGS Interrupt Control Register

ICMS Interrupt Control Register

Error Group Interrupt Control Register

ICGS Interrupt Vector Base Register

ICMS Interrupt Vector Base Register

local Interrupt Vector Base Register

Error Group Interrupt Vector Base Register

Interprocessor Communications Switch Register

Interprocessor Communications Register 0

Interprocessor Communications Register 1

Interprocessor Communications Register 2

Interprocessor Communications Register 3

Revision E I July 1990

VMEbus Control 6-7

TABLE 6-1 - Continued.
VIC . t regis er map

70'6 ICR4 Interprocessor Communications Register 4

74'6 ICAS Interprocessor Communications Register 5

78'6 ICR6 Interprocessor Communications Register 6

7C'6 ICR7 Interprocessor Communications Register 7

80'6 VIRSR VMEbus Interrupt Request and Status Register

84'6 VIVR1 VMEbus Interrupt Vector Register 1

88'6 VIVA2 VMEbus Interrupt Vector Register 2

8C'6 VIVR3 VMEbus Interrupt Vector Register 3

90'6 VIVR4 VMEbus Interrupt Vector Register 4

94'6 VIVR5 VMEbus Interrupt Vector Register 5

98'6 VIVR6 VMEbus Interrupt Vector Register 6

9C'6 VIVR7 VMEbus Interrupt Vector Register 7

AO'6 TIR Transfer Timeout Register

A4'6 LBTR Local Bus Timing Register

A8'6 BIDR Block Transfer Definition Register

AC'6 VICR1 VMEbus Interface Configuration Register 1

BO,6 ARCR Arbiter and Requester Configuration Register

B4'6 AMSR Address Modifier Source Register

B8'6 BESR Bus Error Status Register

BC'6 DMASR DMA Status Register

CO'6 SSOCRO Slave Select 0 Control Register 0

C4'6 SSOCR1 Slave Select 0 Control Register 1

C8'6 SS1CRO Slave Select 1 Control Register 0

CC'6 SS1CR1 Slave Select 1 Control Register 1

00'6 RCA Release Control Register

04'6 BTCR Block Transfer Control Register

08'6 BTLRO Block Transfer Length Register 0

OC'6 BTLR1 Block Transfer Length Register 1

EO'6 SYSRR System Reset Register

E4'6 Undefined

E8'6 Undefined

EC'6 Undefined

FO'6 Undefined

F4'6 Undefined

F8'6 Undefined

FC'6 Undefined

Revision E I July 1990

6-8 HK80N960E User's Manual

6.4 VMEbus INTERRUPTS

6.4.1

VMEbus interrupt generation and handling capability is pro
vided by the VIC chip. The following features are included:

• Conformance to the Motorola VMEbus specification
revision C.l

• The capability to interrupt other boards on the VMEbus
using any of the seven VMEbus interrupt levels

• The capability to generate interrupts on multi pIe levels at
the same time

• The capability to intercept VMEbus, VIC, and on-board
interrupts and provide an interrupt to the MPU

• Capability to provide vectors for VIC and local interrupts

• A timer interrupt

The seven VMEbus interrupts are monitored and controlled by
the VIC chip (as shown in Fig. 6-1). An interrupt to the 80960CA
can be generated when a desired bus interrupt signal is on.
There are two functions described below. The interrupter
generates bus interrupts; the intenupt handler receives
interrupts from the bus.

For details on the VIC processor, read the VlC068 VMEbus
Interface Controller Specification by VTC Incorporated.

Interrupter Operation

The VIC may assert interrupt requests on the VMEbus at all of
the seven interrupt levels. It may generate interrupt requests on
multiple levels simultaneously.

Interrupt generation is programmed through the VMEbus inter
rupt request/status register (VIRSR) of the VIC processor. This
register allows each interrupt to be set and reset by writing a 1
or a 0 to the corresponding bit in the register.

The VIc068 also includes seven VMEbus interrupt vector regis
ters (VIVRl-VIVR7) that must be initialized before the interrupt
is turned on. When a VMEbus interrupt is acknowledged, an
internal interrupt can be generated to complete the handshake
without polling the VMEbus interrupt request and status register
(VIRSR) for the acknowledge of an interrupt. The local interrupt
for acknowledges is programmed using both the VMEbus inter
rupter interrupt control register (VIICR) and the error group
interrupt vector base register (EGIVBR).

Revision E I July 1990

VMEbus Control

Watchdog
BERR

RAM PERR

CIOIRQ

SCSIRESET SCSIIRQ

RINGA SCCABIRO

Rt4GC SCCCDIRO

82596CA ETHIRO
Ethernet

IPl2

IPl1
SCSIRESET

lIR07
RINGA

lIRQ6
RINGC lIR05 VIC068 IPlO

URQ4 EXTIRO (FPI)
VSBIRO rmoo

notu UR02

Cent. CENTIRO r:iRQ1 FCIACK

VSB bus

t<N1

XINT7

XINT6

XINTS

XINT4

XINT3

XINT2

XINT1

XINTO

6-9

80960CA
MPU

lACK
address -------'
decode

FIGURE 6·1. HK80N960E interrupt architecture

6.4.2 Interrupt Handler Operation

6.4.2.1

The VIC controller handles all VMEbus interrupts (IRQl·
IRQr) and some local interrupts (see Table 6-3).

VIC Interrupt Requests

VIC interrupts are presented to the 80960CA on three lines,
IPLO-IPL2. The VIC chip can be programmed to present one of

Revision E I July 1990

6-10 HK80N960E User's Manual

seven priority levels on the IPL lines. The 80960cA interrupt
controller treats these lines as dedicated interrupt requests.

Note: Because the IPL lines are interpreted by the B0960CA as
nonencoded interrupt requests, the VIC must never be pro
grammed to assert two IPL lines for any interrupt source. In
other words, the VIC should be programmed to drive IPL2-0
values of 0116 , 0~6' and 0416 corresponding to IPLO, IPL1,
and IPL2, respectively. Programming any other values into
the VIC registers will result in unpredictable program
behavior that might prove very difficult to debug.

6.4.2.2 VIC Interrupt Acknowledges

The VIC indicates an interrupt condition to the processor on
either IPL2, IPL1, or IPLO and is received by the processor on
XINT2, XINTl, and XINTO, respectively. When the 80960cA has
detected an interrupt and the correct interrupt handler is exe
cuted, it is the responsibility of the interrupt handler to remove
the VIC interrupt request by reading the interrupt vector. One
interrupt acknowledge address is associated with each interrupt
line (shown in Table 6-2). These lACK addresses are used for
on-card interrupt sources from the VIC and VME interrupts.
Thus, during a VME interrupt cycle, reading these addresses will
cause the VIC to fetch the STATUS/ID and perform an lACK
cycle on the VMEbus.

TABLE 6-2
VIC interrupt lines and associated acknowledge
addresses

IPL(2:0) Interrupt Interrupt Acknowledge
Source Address

01 16 IPLO 8-bit vector (STATU SilO) at
0280,001016

0216 IPL1 8-bit vector (STA TUS/IO) at
0280,000416

0416 IPL2 8-bit vector (STATUS/IO) at
0280,000816

Reading an interrupt acknowledge address causes an 8-bit vector
to be read and the interrupt to be removed. An attempt to read
a vector when no interrupt is present results in a bus error.

The VIC can be programmed to generate interrupts to the
80960cA for the following sources:

• Error Group Interrupts: Refer to the VIC error group
control register (EGICR) and the error group interrupt vec
tor base register (EGNBR).

Revision E I July 1990

VMEbus Control 6-11

ACFAIL: If a power failure module is installed on the
VMEbus backplane, the VIC may be programmed to
generate an interrupt if a power failure occurs (that is,
VMEbus ACFAIL· asserted).

SYSFAIL: The VIC may be programmed to generate
an interrupt when a system failure is indicated (that is,
VMEbus SYSF AIL· asserted).

Arbitration timeout: When the VIC times out on arbi
tration, the VIC can be programmed to generate an
interrupt.

Write posted cycle failure: If a write cycle that was
posted by the processor fails, the processor is notified
by this interrupt

• Local Interrupts {URQ7-LIRQO} The VIC can be pro
grammed to generate interrupts for SCSI Resets, Ring
Detection on SCC ports A and C, front panel interrupt
requests, and VSB interrupt requests. Refer to the VIC local
interrupt control registers (LICRI-LICR7) and local interrupt
vector base register (LNBR).

• leGS Group Interrupts: The interprocessor communica
tions global switches (lCGS) allow other VMEbus boards to
interrupt the HK80N960E for global events. Refer to the
VIC ICGS interrupt control register (ICGSICR) and ICGS
interrupt vector base register (lCGSIVBR).

• ICMS Group Interrupts: The interprocessor communica
tions module switches (ICMS) allow other VMEbus boards
to interrupt the HK80N96oE for HK80N960E-specific
events. Refer to the VIC ICMS interrupt control register
(ICMSICR) and ICMS interrupt vector base register
(ICMSIVBR).

• VMEbus Interrupts (IRQ7-IRQO): The VIC can be pro
grammed to receive and generate the seven VMEbus inter
rupts with STATIJS/ID (vector) information. Refer to the
VIC VMEbus interrupt control registers (VICRl-VICR7) and
VMEbus interrupt vector registers (VIVRl-VIVR7).

• DMA Status/Complete Interrupt: If this interrupt is
enabled, the VIC generates an interrupt if either the DMA
completes, or a BERR occurs Oocal or VME), during the
DMA transfer. Refer to the DMA status interrupt control reg
ister (OSICR) and error group interrupt vector base register
(EGNBR).

• VME interrupter handshake: When a VMEbus interrupt
generated by the HK80N960E is acknowledged, this inter
rupt can be used to indicate the acknowledge has taken
place. Refer to the VMEbus interrupter interrupt control reg
ister (VIICR) and the error group interrupt vector base
register (EGIVBR).

Revision E I July 1990

6-12 HK80N960E User's Manual

Interrupts are internally prioritized, as shown in the following
table.

TABLE 6-3
I 1 1 - -I-n errup' priori les

Rank Interrupt

19 LlR07 (SCSI Reset)

18 Error Group Interrupt

17 LlR06 (Ring Deted Port A)

16 LlR05 (Ring Detect Port C)

15 LlR04 (External Interrupt FPI)

14 LlR03 (VSB Interrupt Request)

13 LlR02 (not used)

12 LlR01 (Centronics Interrupt Request)

11 ICGS Group Interrupt

10 ICMS Group Interrupt

9 IR07 (VME Interrupt Request Level 7)

8 IR06 (VME Interrupt Request Level 6)

7 IR05 (VME Interrupt Request Level 5)

6 IR04 (VME Interrupt Request Level 4)

5 IR03 (VME Interrupt Request Level 3)

4 IR02 (VME Interrupt Request Level 2)

3 IR01 (VME Interrupt Request Level 1)

2 DMA Status/Complete Interrupt

1 VME Interrupt Acknowledged

Vector base registers are provided for each of the following
groups of interrupts:

• ICGS
• ICMS
• Local interrupts
• Error interrupts

If the interrupt source is a VME interrupt, then the VIC latches
the STATUS/ID (vector) onto the local bus during the local
lACK cycle.

Revision E I July 1990

VMEbus Control 6-13

6.5 MAILBOX INTERFACE

VIC REGISTER

ICR4-ICRO

ICR5-ICR7

ICGSO-ICGS3

ICMSO-ICMS3

Interprocessor communication (also known as mailbox) is pro
vided by the VMEbus Interface Controller (VIC) processor. This
section provides a brief description of the interprocessor com
munications facilities of the HK80N96oE. For a detailed
description, read the VIc068 spedfication.

The mailbox interface consists of a collection of 8-bit registers
and memory locations that can be used for communications
with the HK80N960E through the VMEbus. A description of the
VIC registers follows:

DESCRIPTION

Five general-purpose, dual-port "Interprocessor
Communications" registers, which can be accessed from the
VMEbus and from the HK80N960E local bus. These regis
ters are 8 bits wide and each has an associated semaphore
bit in ICR7.

Four global switch registers.

ICR5

ICR6

ICR7

ICR5 is a VIC-specific register that specifies the
revision level of the VIC.

ICR6 is read only from the VMEbus and provides
the status of the HK80N96oE.

IeR7 is a dual-port register accessible from the
VMEbus and the HK80!V960E local bus. This
register provides semaphore bits for ICRO-ICR4,
status of the HK80N960E, and a means for
remote resetting of the HK80N960E.

Four interboard communications "global switch" registers,
which are used to generate interrupts for global events.

Four interboard communications "module switch" registers,
which are used to generate interrupts for V960E-specific
events.

The local bus register addresses are shown in Table 6-1. The
VMEbus mailbox structure is shown in Figure 6-1.

Revision E I July 1990

6-14 HK80N960E User's Manual

Al·AO=Ol Al • AO = 11
Mailbox Base Address ______ 0"

Supervisory or user
accesses
AM5 - AMO = 29'6or 20,6

Supervisory access only
AM5 - AMO = 20,6

Supervisory or user
accesses
AM5 - AMO = 29'6 or 20,6

ICRO ICRl

ICR2 ICR3
8,&

ICR4 ICRS
C,s

ICR6 ICR7
10,&

Clear Clear
14,,-I----=.;~---1--..::...:.::..:::.:...--+_----.,;~---'---.;;~~-__.,

18,.

lC,&

20,&

24"-I----.:;...:....:..-.~........L....,,.__-----+_----~~~----__I

28,&

2C,.

FIGURE 6·2. VME mailbox structure

All accesses are defined as 8-bit, and accesses to undefined
areas may result in a bus error. An access from the VMEbus to
the appropriate address in the VMEbus short space results in
the VIC's responding (as a slave) to the access.

The VMEbus mailbox can be mapped to any of 256 256-byte
boundaries within the VMEbus short addressing space. All regis
ters are accessible from the supervisory short space (AM5 -
AMO = 2D,6) and all but the global switches are accessible from
the user short space (AM5 - AMO = 29,6)' The mailbox interface
is enabled by writing a 1 to 0200,0080'6 and disabled by writing
a 0 (see Table 6-4).

tABLE 6-4
Mailbox enable
Port address: 0200,0080,6'

DO

0

1

Size: Long. Type: Write.

Function

Mailbox disabled (default).

Mailbox enabled.

The mailbox base address is an 8-bit value stored in a latch that
is compared to address lines A15-AS on a VMEbus short space
access (Table 6-5). The mailbox base address is stored in port B
of the CIO. When the CIO has been initialized properly, the

Revision E I July 1990

VMEbus Control 6-15

mailbox base is modified by writing to 02EO,0008,6 (port B of
CIO). Appendix A contains an example of initializing the CIO
for the HK80N960E.

TABLE 6-5
HK80N960E "short" space slave mapping
on VMEbus (mailbox)
CIO Port B Compare Mailbox Base Address for 2· and 8-

Address Mbyte HK80N960E

00'6 XXXX,0000'6

01'6 XXXX,0100'6

02'6 XXXX,0200'6

0316 XXXX,0300'6

OF'6 XXXX,OFOO'6

10'6 XXXX, 1 000'6

11 '6 XXXX, 1100'6

12'6 XXXX,1200'6

13'6 XXX X, 1300'6

FF'6 XXXX,FFOO'6

Also see Figure 6-2, "VME Mailbox Structure."

6.6 VMEbus SYSTEM CONTROLLER

Nearly all VMEbus operations of the HK80N960E are handled
by the VMEbus Interface Controller processor (VIC068). The
VIC processor can be jumpered to provide the VMEbus system
controller functions via jumper JI0 (see Table 6-6).

As the system controller, the VIC drives Sysclk (SYSCLK), Bus
Clear (BeLR), and System Reset (SYSRESE1). The system con
troller also provides the system bus arbitration in one of three
modes: "prioritized," "round robin," and "single level" arbitra
tion. See the VIC arbiter and requester configuration register
(AReR). If configured as the system controller, the VIC also
monitors the VMEbus interface as a watchdog timer (with a
programmable time-out; see section 6.10).

The VIe processor is configured as the system controller by
installing jumper 110 (Table 6-6). When the HK80N960E is

Revision E I July 1990

6-16 HK80N960E User's Manual

configured as the system controller, it must be installed in slot 1
with a programmable time-out.

TABLE 6-6
Bus control jumpers

.Jumper Function

J 10 System Controller Enable - When this jumper is
installed, the HK80N960E acts as a VMEbus
system controller as described in the VIC User's
Manual.

NOTE: Only one board in a VME system should be system controller.

6.7 VMEbus MASTER INTERFACE

f h e a Ions IP 0 PI Iyslca
On-card Addresses

0100,000016 - 01 00,FFFF16

0300,000016 - 03FF,FFFF16

0400,000016- 3FFF.FFFF16

4000,0000'6 - FFFF,FFFF'6

a

The HK80/v960E can access the VMEbus with any of the three
address modes "short," "standard," and "extended" on any of
the four bus request levels. Refer to the VIC registers - arbiter
and requester configuration register CARCR) and the address
modifier source register (AMSR). Short addresses use 16 address
lines to specify a target address. Standard addresses use 24
address lines, and extended addresses use all 32 address lines.
Table 6-7 shows the relationship between the on-card physical
address and the corresponding VMEbus and VSB regions.

dd resses t VMEb 0 us an d VSB memory regions
Bus Address Memory Region

000016 - FFFF16 VMEbus short address space

00,000016 - FF,FFFF16 VMEbus standard address space

0400,000016- 3FFF,FFFF'6 VSB address space

4000,000016 - FFFF.FFFF16 VMEbus extended address space

NOTE: FOOO,000016 - FFFF,FFFF16 IS not available to VME if ROMINH = o. See Table 5-1.

Extended VME addresses from 0000,000016 to 4000,000016 are
not accessible. The region from 0400,000016 to 4000,000016 is the
only accessible VSB region.

The VMEbus master release modes are programmed by writing
to the RCR (release control register) of the VIC chip. If the
HK80/V960E is the bus master when the requested bus opera
tion is completed, the bus will be released according to the state
contained in the RCR register. The release mode is either:

ROR - Release-on-request will release the VMEbus (BBSY*)
when a request is detected and there are no HK80/V960E bus
requests.

Revision E I July 1990

VMEbus Control 6-17

RWD - Release-when-done will release the bus when there are
no further HKOON960E bus requests.

ROC - Release-on-clear will retain the bus until BCLR· has
been asserted by the system controller.

6.8 VMEbus SLAVE INTERFACE

6.8.1

The HKOON960E can be accessed from the VMEbus in both
"extended" and "standard" space. "Short" space is used for the
mailbox only. The slave logic for each space is enabled or dis
abled by writing to the appropriate addreSs.

Extended Space

For the HKOON960E to respond to a VMEbus extended address"
the following steps must be taken:

1. The VIC register SSlCRO (slave select one, control register
0) must be configured to respond to A32/D32 types of
cycles (bits 2, 3, and 4 must be set to 100J.

2. The extended space compare address must be written to
port A of the CIO.

3. The extended space enable at 0200,010016 must be set. (See
Table 6-8.)

TABLE 6-8
SI n t d d" ave ex en e space ena bl e
Port address: 0200,010016 , Size: Long. Type: Write.

DO Function

0 Extended space disabled (default).

1 Extended space enabled.

The slave extended space compare address can map the
HK80N960E's RAM to one of 256 16-Mbyte boundaries. The
compare address is stored in port A of the CIO and is com
pared to the VMEbus address lines A31-A24 (Table 6-9). When
the CIO is initialized correctly, the slave compare address is
modified by writing to 02EO,OO10,6 (CIO port A). For detailed
instructions for initializing the CIO, refer to section 9 and
Appendix A. When the HK80IV96oE is selected as a slave in the
extended space, all on-card RAM is mapped to the bus, starting
at the base of the 16-Mbyte region that corresponds to the slave
compare address.

Revision E I July 1990

6-18 HK80N960E User's Manual

TABLE 6·9
HK80N960E "extended" space slave mapping on VMEb us

VMEbus Address HKSOJV960E Memory
Mapped to Bus

CIO Port A 2.Mbyte S.Mbyte 2.Mbyte S.Mbyte
Compare HKSON960E HKSON960E HKSON960E HKSON960E
Address

00'6 0000,0000'6 - 001 F,FFFF'6 0000,0000'6 - 007F,FFFF'6 2 Mbytes 8 Mbytes

01 '6 0100,0000'6 - 011 F,FFFF'6 0100,0000'6 - 017F,FFFF'6 2 Mbytes 8 Mbytes

02'6 0200,0000'6 - 0~1F,FFFF'6 0200,0000'6 - 027F,FFFF'6 2 Mbytes 8 Mbytes

03'6 0300.0000'6 - 031 F,FFFF'6 0000,0000'6 - 037F,FFFF'6 2 Mbytes 8 Mbytes

OF'6 OFOO,OOOO'6 - OF1 F,FFFF'6 OFOO,ooOO'6 - OF7F,FFFF'6 2 Mbytes 8 Mbytes

10'6 1000,0000'6 -101 F,FFFF'6 1000,0000'6 -1 07F,FFFF'6 2 Mbytes 8 Mbytes

11'6 1100,0000'6 - 111 F,FFFF'6 1100,OOOO'6- 117F,FFFF'6 2 Mbytes 8 Mbytes

12'6 1200,OQOO'6 - 121 F,FFFF'6 1200,0000'6 - 127F,FFFF'6 2 Mbytes 8 Mbytes

13'6 1300,OOOO'6- 131F,FFFF'6 1300,0000'6 -137F,FFFF'6 2 Mbytes 8 Mbytes

FF'6 FFOO,OOOO'6 - FF1 F,FFFF'6 FFOO,OOOO'6 - FF7F,FFFF'6 2 Mbytes 8 Mbytes

6.8.2 Standard Space

For the HK80IV96oE to respond to a VMEbus standard address,
the following steps must be taken:

1. VIC register SSOCRO (slave select 0, control register 0) must
be configured to respond to A24/D32 types of cycles (bits 2,
3, and 4 must be set to 1012),

2. The standard space compare address must be written to
port C of the CIO.

3. The standard space enable at 0200,OOCO'6 must be set. (See
Table 6-10.)

Revision E I July 1990

VMEbus Control

TABLE 6·11
HK80N960E II t d d" s an ar

6-19

TABLE 6-10
SI d d" ave stan ar space ena bl e
Port address: 0200,OOCO,6 . Size: Long. Type: Write.

DO Function

0 Standard space disabled (default).

1 Standard space enabled.

The slave standard space compare address can map 1 Mbyte of
the internal RAM to one of 16 1-Mbyte boundaries. The com
pare address for the standard space is stored in port C of the
CIO (4 bits only) and is compared to VMEbus address lines
A23-A20. When the CIO is initialized correctly, the slave com
pare address is modified by writing to 02EO,OOOO'6 (CIO port C).
When the HK80IV96oE is selected as a slave in the standard
space, 1 Mbyte of internal RAM is mapped to the bus, as
described in Table 6-11:

space s ave mapPing on VMEb us
HK80N960E Memory

Mapped to Bus

CIO Port C VMEbus Address for 2- and 8-Mbyte 2.Mbyte a.Mbyte
Compare Address HK80N960E HK80N960E HK80N960E

0'6 XXOO,OOOO,6 - XXOF,FFFF'6 1st Mbyte 1st Mbyte

116 XX10,OOOO,6 - XX1 F,FFFF'6 2nd Mbyte 2nd Mbyte

216 XX20,OOOO'6 - XX2F,FFFF'6 1st Mbyte 3rd Mbyte

3'6 XX30,0000,6 - XX3F,FFFF'6 2nd Mbyte 4th Mbyte

416 XX40,0000,6 - XX4F,FFFF'6 1st Mbyte 5th Mbyte

516 XX50,0000'6 - XX5F,FFFF'6 2nd Mbyte 6th Mbyte

6'6 XX60,0000,6 - XX6F,FFFF'6 1st Mbyte 7th Mbyte

7'6 XX70,0000,6 - XX7F,FFFF'6 2nd Mbyte 8th Mbyte

8'6 XX80,OOOO,6 - XX8F,FFFF'6 1st Mbyte 1st Mbyte

9'6 XX90,OOOO,6 - XX9F,FFFF'6 2nd Mbyte 2nd Mbyte

A'6 XXAO,OOOO,6 - XXAF,FFFF'6 1st Mbyte 3rd Mbyte

B16 XXBO,0000,6 - XXBF,FFFF'6 2nd Mbyte 4th Mbyte

C'6 XXCO,OOOO,6 - XXCF,FFFF'6 1st Mbyte 5th Mbyte

0 16 XXDO,0000,6 - XXDF,FFFF'6 2nd Mbyte 6th Mbyte

E'6 XXEO,000016 - XXEF,FFFF'6 1st Mbyte 7th Mbyte

F'6 XXFO,0000,6 - XXFF,FFFF'6 2nd Mbyte 8th Mbyte

Revision E I July 1990

6-20

6.8.3

HK80N960E User's Manual

Short Space

Refer to section 6.5 ("Mailbox Interface") for information on
short space.

6.9 SYSFAIL CONTROL

The SYSFAIL line is controlled by the VIC processor. It is both
an input and an open-collector output.

As an output, the VIC asserts the SYSFAIL line after power-up,
and it remains asserted until self-tests and diagnostics are
complete. It can then be removed (or set) by setting control
bits in Interprocessor Communication Registers 6 and 7 (that is,
ICR6 and ICR7). See the VIC manual for further details. At
power-up, all other boards in the system should also do the
same; that is, they should assert SYSFAIL until their diagnostics
are complete. Once all boards are initialized, SYSF AIL should
not be asserted by any board, except to indicate a failure of
some kind.

As an input, the SYSFAIL line is used to indicate a system fail
ure. If the VIC detects SYSFAIL asserted and if the VIC "Error
Group Interrupt" is enabled, and the Error Group Interrupt
Control Register (EGICR) has the SYSFAIL interrupt enabled,
then the processor will be interrupted, and the Error Group
Interrupt Vector Base Register (EGIVBR) will indicate a SYSFAIL
interrupt.

6.10 VMEbus AND LOCAL BUS WATCHDOG TIMERS

All local accesses and accesses to the VMEbus are monitored
by the VIC chip. The VIC chip has two timers; one for the local
bus (default is 32 microseconds) and one for the VMEbus
(default is 64 microseconds). These values may be changed via
the VIC Transfer Timeout Register (TfR). The local timer
defaults to being on, while the VMEbus timer is only on if the
VIC is configured as the system controller.

If the VMEbus timer expires, BERR is asserted (on-card), which
will issue an NMI (nonmaskable interrupt) to the 80960CA and
drive BERR on VMEbus.

If the local timer expires, BERR is asserted (on-card only),
which will issue an NMI (Non-Maskable Interrupt) to the
8096oCA.

Revision E I July 1990

VMEbus Control

Note:

6-21

If the timer values are changed to "infinite," the correspond
ing bus will hang indefinitely if a nonexistent or
unresponding location is accessed.

6.11 VMEbus INTERFACE

6.11.1

The VMEbus interface consists of PI and P2. PI is used for most
of the VME address, data, and control lines. P2 is used for the
extended VME address and data lines, and all of the VSB lines.
The VSB is described in section 7.

VMEbus PIN ASSIGNMENTS, Pi

Not all of the PI Signals are used on the HK80N96oE. See sec
tion 6.1 and 6.2 for details and signal descriptions.

C32 P2 C1

~(j" l!~ P1

832 ~:; ; 81
I W .. ·· on

................... •• .. ··JI L
A32 A1

FIGURE 6·3. Pi and P2 VMEbus and VSB connectors

TABLE 6-12
VMEbus connector pin assignments, Pi

Pi Pin Row A Signal Row B Signal Row C Signal
Number Mnemonic Mnemonic Mnemonic

1 000 BBSY* 008

2 001 BCLR* 009

3 002 ACFAIL* 010

4 003 BGOIN* 011

5 004 BGOOUT* 012

6 005 BG1IN* 013

7 006 BG1OUT* 014

8 007 BG2IN* 015

9 Gnd BG20UT* Gnd

10 SYSCLK BG3IN* SYSFAIL*

11 Gnd BG30UT BERR*

12 OS1* BRO* SYSRESET*

13 OSO* BR1* LWORO*

Continues.

Revision E I July 1990

6-22

6.11.2

HK80N960E User's Manual

TABLE 6-12 - Continued.
V Eb t t Pi M us con nee or pin assignmen 5,

Pi Pin Row A Signal Row B Signal Row C Signal
Number Mnemonic Mnemonic Mnemonic

14 WRITE* BR2* AMS

15 Gnd BR3* A23

16 DTACK* AMO A22

17 Gnd AM1 A21

18 AS* AM2 A20

19 Gnd AM3 A19

20 IACK* Gnd A18

21 IACKIN* SERCLK A17

22 IACKOUT* SERDAT* A16

23 AM4 Gnd A15

24 A07 IRQ7* A14

25 A06 tRQ6* A13

26 A05 IRQ5* A12

27 A04 IRQ4* A11

28 A03 IRQ3* A10

29 A02 IRQ2* A09

30 A01 IRQ1* A08

31 -12V +5VSTDBY +12V

32 +5V +5V +5V

VMEbus and VSB PIN ASSIGNMENTS, P2

P2 is used for both the VMEbus and the VSB. The center row of
pins (row B) are the upper address and data lines of the
VMEbus. The outer two rows (A and C) make up the VSB.

The use of P2 is required in order to meet VME power
specifications.

Revision E I July 1990

VMEbus Control 6-23

TABLE 6-13
VMEbus an d S t P2 V B connector pin assignmen 5,

P2 Pin Row AVSB Row B Row C VSB
Number Signal VMEbus Signal

Mnemonic Signal Mnemonic
Mnemonic

1 ADOO +5 AD01

2 AD02 Gnd AD03

3 AD04 (reserved) ADOS

4 ADOS A24 AD07

5 AD08 A25 AD09

6 AD10 A26 AD11

7 AD12 A27 AD13

8 AD14 A28 AD15

9 AD16 A29 AD17

10 AD18 A30 AD19

11 AD20 A31 AD21

12 AD22 Gnd AD23

13 AD24 +5 AD25

14 AD26 016 AD27

15 AD28 D17 AD29

16 AD30 D18 AD31

17 Gnd D19 Gnd

18 IRQ* D20 Gnd

19 DS* D21 Gnd

20 WR* D22 Gnd

21 SPACED D23 SIZEO

22 SPACE1 Gnd PAS*

23 LOCK* D24 SIZE1

24 ERR* D25 Gnd

25 Gnd 026 ACK*

26 Gnd D27 AC

27 Gnd D28 ASACK1*

28 Gnd 029 ASACKO*

29 Gnd D30 CACHE*

30 Gnd 031 WAIT*

31 BGIN* Gnd BUSY*

32 BREQ* +5 BGOUr

Revision E I July 1990

7

VME Subsystem Bus (VS8) Control

7.1 INTRODUCTION

The VSB is a local bus extension designed for high-speed access
to memory or other facilities without the need to use the
VMEbus. The HK80N96oE operates on the VSB in master or
secondary modes onlYi it cannot operate as a slave. It has the
required arbitration logic to handle multiple VSB masters. The
VSB is a super-set of the VMX32bus; VMX32bus slaves may be
used

7.2 VME SUBSYSTEM BUS (VS8) SIGNAL DESCRIPTIONS

The following signals on connector P2 are used for the VSB
interface. For a complete listing of the P2 pin assignments, refer
to section 7.5.

ADOO-31 MULTIPLEXED ADDRESSED/DATA LINES.
The three-state multiplexed address/data
path (32 lines) that is controlled by the
three-state drivers on the master and slave
devices.

PAS· VSB ADDRESS STROBE. A three-state line
in which the falling edge indicates that a
valid address is present on AD31-ADOO.

SPACEO-SPACEI VSB ADDRESS SPACE SELECT. Three-state
signals that select one of four address
spaces or signify an interrupt acknowledge
or parallel arbitration cycle. On the
HK80N960E, these signals are not used;
they are driven high when the HK80N96oE
is the VSB master, which selects the System
Address Space.

DS· VSB DATA STROBE. Three-state signal
whose falling edge indicates a transfer will
occur over AD31-ADOO. During write cycles,

7-2

WR·

SIZEO,SIZEI

LOCK·

ASACKO·
ASACKl·

WAIT·

AC

CACHE·

HK80N960E User's Manual

write data are valid at the falling edge of
DS·.

VSB WRITE. WR·. A three-state signal used
to indicate a read or write operation. When
the signal is low, the operation is a write.
When the signal is high, the operation is a
read.

VSB BUS SIZE. Three-state lines that, in
conjunction with addresses ADOO and
ADOl, determine the data transfer size and
position on the data bus.

VSB BUS LOCK. When asserted, this line
indicates that the bus is locked and that no
other master can obtain possession of the
bus. This allows for noninterruptible cycles,
such as read-modify-write cycles, to occur
from the VSB to a dual-ported resource.
LOCK· can also indicate that a block trans
fer cycle is in progress.

VSB ADDRESS/SIZE ACKNOWLEDGE.
Open-collector lines that serve two func
tions: (1) The responding SLAVE drives its
size code on these lines, and (2) The
responding slave drives at least one of these
lines to inform the HK80/V96oE to switch
the multiplexed address/data bus from
address to data.

WAIT. An open-collector line that is gated
with AC (Decode Complete) on the master
device. The condition AC active and WAIT·
inactive, while PAS· is asserted, means that
no VSB slave module has decoded the
address being driven at that time or that
there are no VSB slave modules installed.
This gives the VSB master the option to
switch to the VMEbus when VSB slaves are
not responding, which allows VSB and
VMEbus to share a common address space.

VSB DECODE COMPLETE. An open-collec
tor line that is asserted by slave modules to
indicate to the master that address decod
ing has been completed. A slave device
allows AC to go high after completing
decoding or other conditions (see W AIr),
regardless whether the device is selected by
the current address on the bus.

VSB CACHEABLE. An open-collector signal
that, when asserted, indicates to the master
that the selected address location is

. cacheable. CACHE· is asserted only by the.

Revision E I July 1990

VME Subsystem Bus (VSB) Control

selected VSB slave module. This signal is
not used on the HK80IV960E.

7-3

ACK* VSB DATA TRANSFER ACKNOWLEDGE.
An open-collector line that is asserted by
the selected slave module to complete the
handshake for a transfer operation.

ERR·

IRQ*

BREQ·

BGIN·

BGOUT·

BUSY·

GAO-GA2

7.3 VSB OPERATION

VSB DATA ERROR. An open-collector line
that is asserted by the selected slave device
to indicate a fault condition while attempt
ing the data transfer operation. This would
typically be the result of a parity error
detected on a slave device.

VSB INTERRUPT REQUEST. An open-col
lector line that, when asserted, indicates that
a master or slave device is attempting to
interrupt another master. On the
HK80IV960E, this signal generates a local
interrupt to the VIC (LIRQ3), and the inter
rupt level to the processor may be config
ured in the VIC.

VSB BUS REQUEST. An open-collector line
that is asserted by a requester whenever bus
mastership is required.

VSB BUS GRANT IN. A totem-pole line that,
as an input to the HK80IV960E, indicates
that it has been granted the bus. BGIN and
BGOUT form a bus grant daisy-chain.

VSB BUS GRANT OUT. A totem-pole line
that, as an output from the HK80IV96oE,
indicates to the next board in the daisy
chain that it may use the bus.

VSB BUS BUSY. An open-collector line that
is asserted by a requester that has been
granted the bus, to indicate ownership of
the bus.

VSB GEOGRAPHICAL ADDRESSES. These
lines are connected to ground on the
HK80N960Ej the geographical addressing
feature is not implemented.

VSB is accessible from 0400,0000'6 to 4000,0000'6'

Physically, the bus interface uses 32 multiplexed address and
data lines. Data transfers may be 8, 16, 24 or 32 bits in length. It
is an asynchronous bus.

Revision E / July 1990

7-4 HK80N960E User's Manual

There is one interrupt line, IRQ, associated with the VSB. When
asserted, this signal generates a local interrupt to the VIC
(LIRQ3), and the interrupt . level to the processor may be config
ured in the VIC.

There are two control bits that affect the operation of the VSB
interface.

Release-On-Request The HKOON960E supports two VSB
release modes. The bus can be released
between every access or only if another
master requests the bus. A one-bit latch
at address 0200,001016 controls the VSB
release mode.

TABLE 7·1
VSB release modes
Port address: 0200,001016 • Size: Long. Type: Write.

DO Function

0 Release only if another request.

1 Release after every operation.

VSB Arbiter Enable The "first" VSB master board - the
primary master, should be the arbiter.
Other VSB masters should not be the
arbiter. The arbiter indicates the begin
ning of the VSB arbitration daisy chain.
The VSB-arbiter-enable bit must be set
true if the HK80N960E is the "first"
board, that is, the arbiter. A 1-bit latch
at address 0200,001816 controls the VSB
arbiter enable.

TABLE 7·2
VSB arbiter enable
Port address: 0200,001816 • Size: Long. Type: Write.

DO Function

0 Not enabled: HK80N960E is not arbiter.

1 Enabled: HK80N960E is arbiter.

7.4 VSB Termination

The VSB signals must be properly terminated to ensure correct
bus operation. Use this chart to determine if VSB resistor packs
should be installed on the HK80/V960E for your system config
uration. The HK80N960E VSB resistor pack terminations are

Revision E I July 1990

VME Subsystem Bus (VSB) Control 7-5

designated RNIS-RN24 and are located on the lower left of the
HKSO/v96oE, just above the P2 connector.

RN18-RN24
VSB Terminators

FIGURE 7·1. Location of VSB terminator.

TABLE 7·3
VSB terminations

HK80N960E as Other VSB
End Board Boards

Install VSB terminations none

Remove none VSB terminations

Summary: Remove VSB terminations on all but one end board.

The VSB specification calls for the terminators to be within 2
inches of one end of the signal lines. If your VSB backplane in
cludes the signal terminations, then the resistor packs should be
removed on all of the VSB modules. Six or fewer boards may be
used on the VSB.

7.5 VMEbus AND VSB PIN ASSIGNMENTS, P2

P2 is used for both the VMEbus and the VSB. The center row of
pins (row B) are the upper address and data lines of the
VMEbus. The outer two rows (A and C) make up the VSB.

C32 P2 C1

~~··························9BH= 832:= .. • .. • .. • • • ... • .. • .. • • • .. -:=- 81
A32 Al

FIGURE 7·2. VSB connector, P2

P1

·11l::::::::::::::::::::::::::::::::~ L

Revision E I July 1990

7-6 HK80N960E User's Manual

TABLE 7·4
VMEbus an d VSB t P2 connector pin assignmen 5,

P2 Pin Row AVSB RowS Row C VSB
Number Signal VMEbus Signal

Mnemonic Signal Mnemonic
Mnemonic

1 AOOO +5 AD01

2 AOO2 Gnd AD03

3 AD04 (reserved) AOO5

4 AD06 A24 AD07

5 A008 A25 AD09

6 A010 A26 AD11

7 AD12 A27 AD13

8 A014 A28 AD15

9 AD16 A29 AD17

10 A018 A30 A019

11 AD20 A31 AD21

12 A022 Gnd AD23

13 A024 +5 A025

14 A026 016 AD27

15 A028 017 AD29

16 A030 018 AD31

17 Gnd D19 Gnd

18 IRa· 020 Gnd

19 os· 021 Gnd

20 WR· 022 Gnd

21 SPACEO 023 SIZEO

22 SPACE1 Gnd PAS·

23 LOCK· 024 SIZE1

24 ERR· 025 Gnd

25 Gnd 026 ACK·

26 Gnd 027 AC

27 Gnd 028 ASACK1·

28 Gnd 029 ASACKO·

29 Gnd 030 CACHE·

30 Gnd 031 WAIT·

31 BGIN· Gnd BUSY·

32 BREO· +5 BGOUT*

Revision E I July 1990

VME Subsystem Bus (VSB) Control

The use of P2 is required in order to meet VME power
specifications.

Revision E I July 1990

7-7

8

User LEOs and Front Panel Interface

8.1 USER LEDs

There are four LEDs located near the reset button (Fig. 8-1)
whose meanings may be defined by software.

Reset Switch ~

User LEOs

8 FRONT PANEL

FIGURE 8-1. Location of user LEOs

TABLE 8-1
User LEDs - addresses

LED Number Address (write-only)
-

1 0200,002016

2 0200,002816

3 0200,003016

4 0200,003816

Writing a 0 turns the chosen LED on; writing a 1 turns it off. At
power-on or after a system reset, the LEDs will be ON.

8-2 HK80N960E User's Manual

8.2 FRONT PANEL INTERFACE (FPI), J2

There are five status outputs that allow remote monitoring of the
HKBO/V960E. Connections are made through a 14-pin header J2
located behind the Centronics connector (Fig. 8-2). Because
there is no front panel connector associated with)2, a ribbon
cable must be brought out the side of the card cage, or an
empty slot must be left above the HK80/v96oE. The connector
pin assignments are outlined in Table 8-2:

I J2· Front Panel Interface I

FIGURE 8·2. Location of front panel interface, J2

TABLE 8-2
Front panel interface connector pin
assignments, ..12
J2 Pin Name Meaning

2 Super The a0960CA is in supervisory state.

4 User The 80960CA is in user state.

6 OMA The 80960CA is bus master in DMA mode.

a HALT The 80960CA is halted.

10 BUS VIC owns the local bus (that is, a VME slave
access is in progress.)

1,3,5,7,9 vee Vcc (+5) volts

12,14 GND Signal ground

The output signals are low when true. Each is suitable for con
nection to an LED cathode. An external resistor must be pro
vided for each output to limit current to 15 milliamperes.

Two input signals are also provided on J2 for interrupt and
reset:

Revision E I July 1990

User LEOs and Front Panel Interface 8-3

TABLE 8-3
.12· t t In errup' an d rese t . signa s
J2 Pin Name Function

J2-11 INTR* External interrupt input: Connected to the VIC
local interrupt lIRQ4. (Refer to section 6.)

J2-13 Reset* When low, causes the HK80N960E to reset.

Revision E I July 1990

9.1 INTRODUCTION

9

CIO Usage

The on-card CIO device performs a variety of functions. In
addition to the three 16-bit timers that may be used to generate
interrupts or count events, the CIO has three parallel ports.

While the three 16-bit timers may be used for user-defined
applications, ports A, B, and C are used for comparing slave
addresses in the VMEbus interface. All three ports should be
programmed as outputs.

The CIO interrupt is tied to XINTI of the 8096oCA.

Refer to the CIO manual for further details.

9.2 PORT C BIT DEFINITION

Port C of the CIO is used for the VMEbus standard space
accesses. This 4-bit port is compared to VMEbus address lines
A23-A20 on standard space accesses only. There are 16 possible
values that can be written to port C. Each allows 1 Mbyte of on
card memory to appear on the bus. Table 9-1 lists the effect of
each value on the slave decode:

9-2 HK80N960E User's Manual

TABLE 9-1
HK80N960E "standard" space slave mapPing on VMEb us

HKSON960E Memory
Mapped to Bus

CIO Port C VMEbus Address for 2- and S.Mbyte 2.Mbyte S·Mbyte
Compare Address HKSON960E HKSON960E HKSON960E

0'6 XXOO,OOOO'6 - XXOF,FFFF'6 1st Mbyte 1st Mbyte

1'6 XX10,OOOO'6 - XX1 F,FFFF'6 2nd Mbyte 2nd Mbyte

2'6 XX20,OOOO'6 - XX2F,FFFF'6 1st Mbyte 3rd Mbyte

3'6 XX30,OOOO'6 - XX3F,FFFF'6 2nd Mbyte 4th Mbyte

4'6 XX40,OOOO'6 - XX4F,FFFF'6 1st Mbyte 5th Mbyte

5'6 XX50,OOOO'6 - XX5F,FFFF'6 2nd Mbyte 6th Mbyte

6'6 XX60,OOOO'6 - XX6F,FFFF'6 1st Mbyte 7th Mbyte

7'6 XX70,OOOO'6 - XX7F,FFFF'6 2nd Mbyte 8th Mbyte

8'6 XX80,OOOO'6 - XX8F,FFFF'6 1st Mbyte 1st Mbyte

9'6 XX90,OOOO'6 - XX9F,FFFF'6 2nd Mbyte 2nd Mbyte

A'6 XXAO,OOOO'6 - XXAF,FFFF'6 1st Mbyte 3rd Mbyte

8 '6 XXBO,OOOO'6 - XXBF,FFFF'6 2nd Mbyte 4th Mbyte

C'6 XXCO,OOOO'6 - XXCF,FFFF'6 1st Mbyte 5th Mbyte

0'6 XXDO,OOOO'6 - XXDF,FFFF'6 2nd Mbyte 6th Mbyte

E'6 XXEO,OOOO'6 - XXEF,FFFF'6 1st Mbyte 7th Mbyte

F'6 XXFO,OOOO'6 - XXFF,FFFF'6 2nd Mbyte 8th Mbyte

9.3 PORT B BIT DEFINITION

Port B of the CIO is used for comparison of VMEbus short
address space accesses. The B-bit value written to port B is used
to match the upper 8 address lines of a VME short space
address cYME AB-A15) (Table 9-2). This allows the mailbox to
be mapped to 256 different locations (on 256-byte boundaries)
in short address space.

Revision E I July 1990

CIG Usage

TABLE 9-2
HK80/V960E "short" space slave mapping
on VMEbus

9-3

CIO Port C VMEbus Address for 2- and 8-Mbyte
Compare Address HK80N960E

016 XXOO,000016 - XXOF,FFFF16

116 XX10,000016 - XX1 F,FFFF16

2'6 XX20,OOOO'6 - XX2F,FFFF'6

3'6 XX30,00OO16 - XX3F,FFFF16

416 XX40,OOOO16 - XX4F,FFFF16

516 XX50,000016 - XX5F,FFFF'6

616 XX60,000016 - XX6F,FFFF16

716 XX70,000016 - XX7F,FFFF16

816 XX80,0000'6 - XX8F,FFFF16

916 XX90,000016 - XX9F,FFFF16

A16 XXAO,000016 - XXAF,FFFF16

B16 XXBO,000016 - XXBF,FFFF16

C16 XXCO,000016 - XXCF,FFFF16

0 16 XXDO,000016 - XXDF,FFFF16

E16 XXEO,000016 - XXEF,FFFF16

F16 XXFO,000016 - XXFF,FFFF16

9.4 PORT A BIT DEFINITION

Port A on the CIO chip is used to compare VMEbus extended
space accesses. This 8-bit value is compared directly to VMEbus
address lines 24-31 (Table 9-3). This allows local RAM to be
mapped to one of 256 16-Mbyte locations in the extended
address space on the bus.

Revision E I July 1990

9-4 HK80N960E User's Manual

TABLE 9·3
HK 9 OE • SO/V 6 d d" lexten e space s ave mapPing on VMEb us

VMEbus Address HK80N960E Memory
Mapped to Bus

CIO Port A 2.Mbyte a.Mbyte 2.Mbyte S.Mbyte
Compare HKSON960E HK80N960E HKSON960E HKSON960E
Address

00'6 0000,0000'6 - 001 F,FFFF'6 0000,0000'6 - 007F,FFFF'6 2 Mbytes 8 Mbytes

01 '6 0100,0000'6 - 011 F,FFFF'6 0100,0000'6 - 017F,FFFF'6 2 Mbytes 8 Mbytes

02'6 0200,0000'6 - 021 F,FFFF'6 0200,0000'6 - 027F,FFFF16 2 Mbytes 8 Mbytes

03'6 0300,0000'6 - 031 F,FFFF'6 0000,0000'6 - 037F,FFFF'6 2 Mbytes 8 Mbytes

OF'6 OFOO,OOOO'6 - OF1 F,FFFF'6 OFOO,OOOO'6 - OF7F,FFFF'6 2 Mbytes 8 Mbytes

1016 1000,0000'6 - 101 F,FFFF'6 1000,0000'6 -107F,FFFF16 2 Mbytes 8 Mbytes

11'6 1100,000016 - 111 F,FFFF'6 1100,0000'6 - 117F,FFFF'6 2 Mbytes 8 Mbytes

12'6 1200,0000'6 -121 F,FFFF,S 1200,0000'6 -127F,FFFF'6 2 Mbytes 8 Mbytes

FF'6 FFOO,0000'6 - FF1 F,FFFF'6 FFOO,OO0016 - FF7F,FFFF'6 2 Mbytes 8 Mbytes

9.5 COUNTER/TIMERS

There are three independent, 16-bit counter/timers in the CIa.
For long delays, timers 1 and 2 may be internally linked
together to form a 32-bit counter chain. When programmed as
timers, the following equation may be used to determine the
time constant value for a particular interrupt rate.

TC = 2,000,000 / interrupt rate (in Hz)

The CIa is externally clocked at 4-MHz (±O.Ol %), which is inter
nally divided by two to make an internal count rate of 2 MHz.
The maximum cumulative timing error will be about 9 seconds
per day, although the typical error is less than 1 second per day.
Better long-term accuracy may be achieved via a power line (60
Hz) interrupt (using a bus interrupt) or the real-time clock
(RTC) (refer to section 14).

Revision E I July 1990

CIO Usage 9-5

9.6 REGISTER ADDRESS SUMMARY (CIO)

TABLE 9·4
CO dd I register a resses

Register Address Function

Port C, Data 02EO,OOOO'6 VME standard space compare
address

Port B, Data 02EO,OOO8'6 VME short space compare address

Port A, Data 02EO,OO10'6 VME extended space compare
address

Control 02EO,OO18'6 CIO configuration and control
Registers

All registers are 8 bits wide.

Refer to the CIO manual for further details about register usage
and descriptions.

9.7 CIO INITIALIZATION

Appendix A shows a typical initialization sequence for the CIO.
The first byte of each data pair in "dotable" specifies an inter
nal CIO register; the second byte is the control data. Read sec
tion 3 for information concerning CIO interrupt vectors.

Read the 28536 technical manual for more details on program
ming the CIO. Some people find the CIO technical manual diffi
cult to understand. We encourage you to read all of it twice,
before you pass judgment.

Revision E I July 1990

10.1 INTRODUCTION

10

Serial I/O

There are four RS-232C serial I/O ports on the HK80N96oE
board. Each port may optionally be configured for RS-422
operation with a special interface cable, as detailed in section
10.11. Each port has a separate baud rate generator and can
operate in asynchronous or synchronous modes.

Refer to the AMD Z85C30 SCC manual for programming details.

The SCC interrupts are tied to the XINf5 (ports A and B) and
XINT4 (ports C and D) signals on the 80960CA.

10.2 RS·232 PIN ASSIGNMENTS, P5

Data transmission conventions are with respect to the external
serial device. The HK80N960E board is wired as a "Data Set."
The connector is shown in Figure 10-1 and pin assignments are
listed in Table 1.

D D

P5
P4

DOOQDOOCC ODD

Q DOD

FIGURE 10-1. RS·232 connector, P5

10-2 HK80N960E User's Manual

TABLE 1()'1a
S . I rt· t P5 P rt A erla po pin assignmen S, - 0

Pin "D·' R5-232 Direction
Pin Function

1 2 Port A Tx Data In

2 15 Tx Clock In

3 3 Rev Data Out

4 16 (not used)

5 4 Request to Sends In

6 17 Rev Clock In

7 5 Clear to Send Out

8 18 Ring Detect In

9 6 Data Set Ready Out

10 19 (not used)

11 7 Gnd

12 20 Data Terminal In
Readys

sec Pin
Function

Rev Data

Rev Clock

Tx Data

oeD

Tx Clock

DlR

Ring Ind

RTS

Sig Gnd

CTS

aThis signal uses default pull-up resistors that are controlled by J1.

TABLE 1()'1b
Serial port pin assignments. PS - Port B

Pin liD" R5-232 Direction sec Pin
Pin Function Function

13 2 Port B Tx Data In Rev Data

14 15 Tx Clock In Rev Clock

15 3 Rev Data Out Tx Data

16 16 + 12v (via J3)

17 4 Request to SendS In oeD

18 17 Rev Clock Out Tx Clock

19 5 Clear to Send Out DlR

20 18 +5v (via J4)

21 6 Data Set Ready Out RTS

22 19 -12v (via J5)

23 7 Gnd Sig Gnd

24 20 Data Terminal In CTS
Readya

aThis signal uses default putt-up resistors that are controlled by J1.

Revision E I July 1990

Serial 110 10-3

TABLE 1()'1c
Serial port pin assignments (PS) - Port C

Pin "D" R5-232 Direction sec Pin
Pin Function Function

25 2 Port C Tx Data In Rev Data

26 15 Tx Clock In Rev Clock

27 3 Rev Data Out Tx Data

28 16 (not used)

29 4 Request to Sends In DC[)

30 17 Rev Clock In Tx Clock

31 5 Clear to Send Out DlR

32 18 Ring Detect In Ring Ind

33 6 Data Set Ready Out RTS

34 19 (not used)

35 7 Gnd Sig Gnd

36 20 Data Terminal In CTS
Readys

aThis signal uses default pull-up resistors that are controlled by J1.

TABLE 1()'1d
Serial port pin assignments (PS) - Port D

Pin IIDI • R5-232 Direction sec Pin
Pin Function Function

37 2 Port D Tx Data In Rev Data

38 15 Tx Clock In Rev Clock

39 3 Rev Data Out Tx Data

40 16 + 12v (via J6)

41 4 Request to Sends In DC[)

42 17 Rev Clock Out Tx Clock

43 5 Clear to Send Out DlR

44 18 +5v (via J7)

45 6 Data Set Ready Out RTS

46 19 -12v (via J8)

47 7 Gnd Sig Gnd

48 20 Data Terminal In CTS
Readys

49 (not used)

50 (not used)

aThis signal uses default pull-up resistors that are controlled by J1.

Revision E I July 1990

10-4

Note:

HK80N960E User's Manual

Ports Band 0 are wired somewhat differently from ports A and
C. In particular, the RS-232 signals Rev Clock (,'0" Pin 17) is an
output on ports Band 0, and Ring Detects are provided only
on ports A and C. Note that the interconnect cable from P5 is
arranged in such a manner that the "0" connector pin
assignments are correct for RS-232C conventions. Not all pins
on the "0" connectors are used. Recommended mating
connectors are Ansley PIN 609-5001CE and Molex PIN 15-29-
8508.

Signals marked with a superscript a in Table 10 have default
pull-up resistors that are controlled by J1.

The serial ports may appear to be inoperative if J1 is set to
default "FALSE" and if the device connected to the port
does not drive the DTR and RTS pins TRUE. The monitor
software, for example, initializes the SCC channels to
respect the state of DTR and RTS. The RI signals for ports A
and C are routed to the VIC chip (refer to section 6.4.2.2).

10.3 SIGNAL NAMING CONVENTIONS (RS-232)

Since the RS-232 ports are configured as "data sets," the naming
convention for the interface signals may be confusing. The
interface signal names are with respect to the terminal device
attached to the port while the SCC pins are with respect to the
sec as if it, too, were a terminal device. Thus all signal pairs, for
example, "RTS" and "CTS," are switched between the interface
connector and the sec chip. For example, "Transmit Data," Px-
1, is the data transmitted from the device to the HK80N960E
board; the data appears at the SCC receiver as "Received Data."
For the same reason, the "DTR" and "RTS" interface signals
appear as the "CTS" and "DSR" bits in the SCC, respectively. If
you weren't confused before, any normal person should be by
now. Study the chart below and see if that helps.

Revision E I July 1990

Serial 1/0 10-5

TABLE 1()'2
RS 232 . . signa naming conven Ions

sec Signal Interface Direction
Signal

Tx Data Rev Data to device

Rev Data Tx Data from device

Tx Clock Rcv Clock from device (ports A & C)

Tx Clock Rcv Clock to device (ports 8 & D)

Rcv Clock Tx Clock See Table 10-1.

RTS DSR to device

CTS DlR from device

DlR CTS to device

OCO RTS from device

- Ring Ind. from device

The see was designed to look like a "data terminal" device.
Using it as a "data set" creates this nomenclature problem. Of
course, if you connect the HK80N960E board to a modem
("data set"), then the see signal names are correct; however, a
cable adapter is needed to properly connect to the modem.
Three pairs of signals must be reversed.

TABLE 10·3
RS·232 reversal cable

see Px Pin "0" Pin "0" Pin RS-232
Signal Numbers Number Number Signal

at HK801 at
V960E Modem

x x 1 1 Prot Gnd

RcvData 1 2 3 Rcv Data

Tx Data 3 3 2 Tx Data

OCD 5 4 6 DSR

RTS 9 6 4 RTS

DlR 7 5 20 DlR

CTS 12 20 5 CTS

(Ring Ind) 8 18 22 Ring Ind

(Sig God) 11 7 7 SigGnd

Summary: The HK80N960E may be directly connected to a
"data terminal" device. However, a cable reversal is required for
a connection to a "data set" device (for example, a modem).

Revision E I July 1990

10-6 HK80N960E User's Manual

10.4 CONNECTOR CONVENTIONS

Paragraph 3.1 of the EIA RS-232-C standard says the following
concerning the mechanical interface between data communica
tions equipment:

"The female connector shall be associated
with ... tbe data communications equipment An
extension cable with a male connector shall be
provided with the data terminal eqUip-
ment When additional junctions are provided
in a separate unit inserted between tbe data
terminal equipment and the data communica
tiOns equipment, tbe female connector ... sball be
associated witb the side of this unit wbich inter
faces witb the data terminal equipment while
the extension cable with the male connector
sball be provided on the side which interfaces
with tbe data communications equipment."

Substituting "modem" for "data communications equipment"
and "terminal" for "data terminal equipment" leaves us with the
impression that the modem should have a female connector
and the terminal should have a male.

The Heurikon HK80N960E microcomputer interface cables are
designed with female "0" connectors, because the serial I/O
ports are configured as data sets (modems). Terminal manufac
turers typically use a female connector also, despite the fact that
they produce terminals, not modems. Thus, the extension cable
used to run between a terminal and the HK80N96oE (or a
modem) will have male connectors at both ends.

If you do any work with RS-232 communications, you will end up
with many types of cable adapters - double males, double
females, double males and females with reversal, cables with
males and females at both ends, you name it! We will be happy
to help make special cables to fit your needs.

10.5 SCC INITIALIZATION SEQUENCE

The following table shows a typical initialization sequence for
the SCC. This example is for port A. Other ports are pro
grammed in the same manner, substituting the correct control
port address.

Revision E I July 1990

Serial I/O 10-7

TABLE 1()'4
sec - -t- r t-Inl la lza Ion sequence

Data Register Function
(hex) Address

00 0220,0008'6 (write) Reset see register counter

og,eo Force reset (do for ports A & e only)

04,4C Async mode, x16 clock, 2 stop bits tx

05,EA Tx: RTS, Enable, 8 data bits

03,El .. If Rev: Enable, 8 data bits

01,00 If .. No Interrupt, Update status

08,56 No Xtal, T x & Rev c1k internal, SR out

Oe,baudl If .. Set low haH of baud rate constant

OD,baudH Set high haH of baud rate constant

OE,03 Null, SR enable

Note: the notation "09,eO" (etc.) means the values 09'6 and CO'6
should be sent to the specified see port. The first byte selects
the internal sec register; the second byte is the control data.
The above sequence only initializes the ports for standard asyn
chronous I/O without interrupts. The baudL and baudH values
refer to the low and high halves of the baud rate constant, which
may be determined from Table 10-6 ("Baud Rate Constants")
below.

For information concerning sce interrupt vectors, refer to seC
tion 3. Read the Z8530 technical manual for more details on
sec programming.

10.6 PORT ADDRESS SUMMARY

10.7 SERIAL DMA

TABLE 1()'S
see - t dd regis er a resses

Register Port A Port B Port C Port 0

Control 0220,0008'6 0220,0000 '6 0230,0008'6 0230,0000'6

Data 0220,0018'6 0220,0010 '6 0230,0018 '6 0230,0010'6

All ports are eight bits.

Serial ports A, C, and D are hardwired to the 80960CA's DMA as
follows:

Revision E I July 1990

10-8

PortA
Port C
Port D

HK80N960E User's Manual

DMA channel 2
DMA channel 1
DMA channel 0

The assertion of the W lREQx pin of the see is used as the
DMA request for the associated DMA channel. The DMA chan
nel is required to read the Port Data register to service the
request. Refer to the 80960eA user's manual for details on the
DMA.

10.8 BAUD RATE CONSTANTS

If the internal see baud rate generator logic has been selected,
the actual baud rate must be specified during the see initializa
tion sequence by loading a 16-bit time constant value into each
generator. The following table gives the values to use for some
common baud rates. Other rates may be generated by applying
a formula.

TABLE 10·6
Baud rate constants

Baud Rate xi clock rate xi6 clock rate

110 72,725 4541

300 26,665 1665

1200 6665 415

2400 3331 206

4800 1665 102

9600 831 50

19,200 415 24

38,400 206 11

The time constant values listed above are computed as follows:

7r;X16) = 500 000 2
baud

TGX1) = 8 OOQ.QQQ 2
baud

The x16 mode will obtain better results with asynchronous pro
tocols because the receiver can search for the middle of the
start bit. (In fact, the xl mode will probably produce frequent
receiver errors.)

The maximum sec data speed is I megabit per second, using
the xl dock and synchronous mode. For asynchronous trans-

Revision E I July 1990

Serial I/O

mission, the maximum practical rate using the x16 clock is
62,500 baud.

10-9

10.9 RS-422 OPERATION

As an option, one or more of the serial ports on the
HK80N96oE may be configured for RS-422 operation. The RS-
422 option may either be installed when the board is ordered,
or an existing HK80IV960E board may be factory-upgraded to
add the option. Please contact Heurikon's Customer Service
department for more information.

10.10 RELEVANT dUMPERS (SERIAL I/O)

TABLE 10-7
R I . I 1/0 e evant Jumpers - serla
Jumper Function Position

1 RS-232 A,B,C,D Status J1-A (True)
Default

J1-B (False)

3 + 12 power port B Installed

4 +5 power port B Installed

5 -12 power port B Installed

6 + 12 power port D Installed

7 +5 power port D Installed

8 -12 power port D Installed

Revision E I July 1990

:0
CD
S.
en
c)"
::J

m -C-
C
-<
-A
(0
(0
a

~Q

PINS 1 AND 2 OPEN

PINS

SIO C

PINS 1 AND 2 OPEN

25 PIN
FEMALE "D" CONN.
HEURIKON P/N-1940147
W/STRAIN RELIEF
(4 PLACES)

SIO B

PINS 1 AND 2 OPEN

SIO A

PINS 1 AND 2 OPEN

FICURE 10-2. Sarlall/O cable

o

PINS 49 AND 50 OPEN

50 PIN
TRANSITION CONN.
HEURIKON P/N-2010321
W/STRAIN RELIEF AND
POLARIZATION TAB

50 CONDUCTOR RIBBON CABLE ~P I N 1

(STRIPES DOWN) P/N-1560006
(STRIP CONDUCTORS 49-50)

HEURIKON CORP.
OWN: Pt.CW ICKD:
DATE:7/20/88ISCAlE: N. T. S.

r--:-::::-:--=---:-----+--I----l.----I T ITL.£::
ADO V3EjV960E I A 1 RJC 1·- Ou I V2EfV3E/V960E P5 SERiAl INTERFACE CABLE

DESCRIPTION IREV.I REV.

...
?
(I»
rrI
:D
;
r-
.e:: o
n
J=m
rm
a
:D

~
i
~

-"

'?
-"
o

:::r::

" (X)
o
<:
(0
(j)
o
m
C en
~
en-

~
Il>
::J
c:
fE.

11.1 INTRODUCTION

11.2 COMPONENTS

11

Ethernet Interface

The HK80N96oE is equipped with an Ethernet interface, which
uses the Intel 82596CA 32-bit coprocessor to implement a stan
dard IEEE-802.3 CSMA/CD 10BASE5 (10 megabits per second)
Ethernet interface.

The Ethernet interrupt is tied to the XINT3 interrupt pin of the
8096oCA.

Refer to the 82595CA user's manual (Intel publication number
296443-001) for more detail on the operation and programming
of this device.

The Ethernet interface consists of two functional units - the
Network Interface Controller and the Serial Network Interface.

11.2.1 Network Interface Controller

The network interface controller on the HK80N960E is the Intel
82596CA high-performance 32-bit local area network coproces
sor. It performs complete CSMA/CD Medium Access Control
(MAC) functions according to IEEE-802.3 independently of the
CPU. Features include:

• On-chip memory management
• Bus master with on-chip DMA using a 32-bit RAM

interface
• Statistics management
• Transmit and receive FIFOs
• Network monitor mode
• Self-test diagnostics and loopback mode
• 82586 software compatibility mode

11-2

11.2.2

•
•

HK80N960E User's Manual

Little-/big-endian (that is, Intel/Motorola) byte ordering
Burst bus transfers

The 82596CA runs at the CPU (80960CA) speed and has up to a
105 Mbytes per second bus bandwidth.

Serial Network Interface

The Manchester encoder/decoder serial network interface for
the Ethernet interface on the HK80/V960E is the Intel
82C501AD. Conforming to IEEE-802.3, it interfaces the network
interface controller (82596CA) to the Ethernet network, per
forming the required Manchester encoding/decoding of net
work packets. Features include:

• 10 megabits per second Manchester encoding and
decoding with receive clock recovery

• Loopback capability for diagnostics

• Selectable for use with Ethernet 1.0 or .JEEE-802.3
transceivers via jumper J11 (see Table 11.6).

11.3 ETHERNET ACCESS

There are four ways for the CPU (80960CA) to communicate
with the Ethernet portion of the HK80/V960E: ARB, PORT, CA,
and LEiBE (Table 11-1).

TABLE 11·1
Ethernet accesses

Access R/W Address 031.04 03- Function
00

ARS W 0200,01 C016 XXXX,XXXX16 0 Ethernet disabled.

1 Ethernet enabled.

PORT W 0280.00XX16 XXXX,XXXX16 0 Reset the 82596CA.

Results address 1 Perform a SELF TEST on
82596CA.

SCP address 2 Write a new SCP address.

Dump address 3 Dump the 82596CA registers.

CA R/W 0290,00XX16 XXXX.XXXX16 X Channel Attention

LEISE W 0200.000816 0000.000X16 0 82596CA is big-endian
(Motorola).

1 82596CA is little-endian (Intel).

Revision E f July 1990

Ethernet Interface

11.3.1

11.3.2

TABLE 11·2

11-3

Arbiter Enable

To use the Ethernet facilities of the HK80N96oE, the Ethernet
Arbiter (ARB) must be enabled. Without this bit set, 82596cA
requests to the CPU (80960CA) will be ignored. A I-bit latch at
address 0200,OlC016 controls the Ethernet Arbiter.

Port Access

The 82596CA has a CPU port process state that allows the CPU
(8096OCA) to cause the 825%CA to execute certain functions
when address 0280,000016 is accessed. These functions are:

• Reset: Performs a reset of the 82596CA without disturb
ing the rest of the system.

• Self-test: Performs a self-test on the 82S96CA and writes
the resultS to a specified location in memory.

• New SCP: Write an alternate system configuration
pointer address (SCP). This function is useful when the
default SCP (OOFF,FFF616) conflicts with system memory
(on the HK80N960E, this function must be used,
because the default conflicts).

• Dump: Performs a dump of the internal state (registers
and memory) of the 82596CA, and writes it to a speci
fied location in memory.

The format of the PORT commands are summarized in the
table below.

8259 6eA . ~ort accesses
Address is 0280,OOXX16

Function

Reset

Self-test

NewSCP

Dump

D31 •••••••••••••••••••••••••••• D4 03 02 01

.............•. Don1 care••...• 0 0

A31 Self-test results address ..•.... A4 ° 0

A31 Alternate SCP address ...•... A4 0 0

A31• Dump area pointer••... A4 ° °
For every PORT command, there must be two accesses
(Table 11-3).

Revision E I July 1990

0

0

1

1

00

0

1

0

1

11-4 HK80N960E User's Manual

TABLE 11·3
f 82596CA port access de inition

Big endian

Little endian

11.3.3

11.3.4

First Access Second Access

015-00> Lower Command Word 031-016 > Upper Command Word

031-016> Lower Command Word 015-00> Upper Command Word

Therefore, two back-ta-back 32-bit accesses each using the same
32-bit data may be used to complete the PORT command
(because the "other half" of the 32-bit value is ignored). A delay
of at least one clock cycle is required between successive PORT
commands. Software should account for this. Refer to the
82596CA user's manual and the 82596CA initialization code in
Appendix A for more details.

Channel Attention (CA)

Accessing address 0290,OOxxt6 issues Channel Attention (CA) to
the 82S96CA and causes it to begin executing memory-resident
command blocks. The first CA after a reset forces the 82596CA
into the initialization sequence beginning at location OOFF,FFF616

or an alternate SCP address written to the 82S96CA using the
PORT access mechanism. All subsequent CAs cause the
82S96CA to begin executing new command sequences
(memory-resident command blocks) from the system control
block (SCB).

Since the default SCP address (OOFF,FFF616) is not accessible
memory on the HK80N960E, the NewSCP PORT Access com
mand must be issued prior to the first CA after a reset.

Refer to the 82596CA user's manual for more details.

Ethernet Byte Ordering

The 82596CA supports both little-endian (Intel) and big-endian
(Motorola) byte ordering. Byte ordering determines which
memory location stores the least significant byte of the
operand. For little-endian systems, the least significant byte is
stored at the lowest byte address. For big-endian systems, the
most significant byte is stored at the lowest address. The num
ber of bytes per operand depends on the data type. The byte
ordering can be selected by accessing address 0200,000816

(Table 11-4).

Revision E I July 1990

Ethernet Interface 11-5

TABLE 11-4
Eth t b t d • erne ty· e or erlng
Port address 0200,000816 , Size: Long. Type: Write.

Byte Ordering (LElBE) DO

Big endian o (default after reset)

Little end ian 1

11.4 ETHERNET PORT PIN ASSIGNMENTS, P6

Connector p6 is an Ethernet 1S-pin D connector (Fig. 11-1).

P6

FIGURE 11·1. Ethernet connector, P6

TABLE 11·5
Eth t erne t t P6 connec or pin assignmen sJ

Pin Name Function
Number

1 CIS Control In Shield

2 CI+ Control In +

3 DC>+ Data Out +

4 DIS Data In Shield

5 DI+ Data In +

6 VC Voltage Common

7 CO+ Control Out +

8 COS Control Out Shield

9 CI- Control In -

10 DO- Data Out-

11 DOS Data Out Shield

12 01- Data In-

13 VP Voltage Plus

14 VS Voltage Shield

15 CO- Control Out -

Revision E I July 1990

11-6 HK80N960E User's Manual

11.5 TRANSCEIVER CONFIGURATION

The transmit differential line for the Ethernet interface may be
configured for either half- or full-step modes to facilitate its use
with different types of transceivers, via configuration jumper J11.

Ethernet configuration is briefly summarized in the following
table:

ransml I eren la Ine con Igurallon, .Iii
Position Configuration

J 11 installed o idle differential voltage on TX lines: haH-step mode
(for use with IEEE-802.3-type transceivers)

J11 not installed + (positive) idle differential voltage on TX lines: full-
step mode (for use with Ethernet 1.0-type
transceivers)

Currently the 82596CA driver code is proprietary and confiden
tiaL Please contact the factory for programming examples.
Future revisions of the manual will include 82596CA program
ming examples.

Revision E I July 1990

12.1 INTRODUCTION

12.2 SCSI DMA

12

SCSI Port

The HKSO/V960E uses the Western Digital WD33C93 chip to
implement a Small Computer- System Interface (SCSI) port
(commonly pronounced "scuzzy").

The SCSI port may be used to connect to a variety of peripheral
devices. Most common are Winchester disks, floppy diskettes,
and streamer tape drives.

Supported features and modes include:

• Initiator role
• Target role
• Arbitration
• Disconnect
• Reconnect
• S0960CA DMA interface

Data transfer functions can be handled in a polled I/O mode or
by using the DMA functions provided by the MPU. The SCSI
interrupt is tied to XINT6 of the 8096oCA.

Refer to the WD33C93A technical specification for program
ming details.

The DMA for the SCSI port is provided through the 8096oCA's
DMA port 3. The SCSI handshakes both request and acknowl
edge with the DMA port. The DMA should be programmed to
perform dual address transfers using the byte assembly feature
of the DMA in order to reduce the number of RAM accesses.
The DMA Control Word of the 80960CA (using the sdma
instruction) should be set as follows:

12-2 HK80N960E User's Manual

SCSI Read: OOOO,OOA3'6

That is:
• 8 to 32 bit
• Source address hold
• Demand mode (synchronize)
• Source synchronized

SCSI Write: OOOO,OODC'6

That is:
• 32 to 8 bit
• Destination address hold
• Demand mode (synchronize)
• Destination synchronized

Refer to the 80960CA user's manual for further details on DMA.

Using these modes, the SCSI/DMA interface can support a 4-
Mbyte per second transfer rate with the WD33C93A chip.

12.3 REGISTER ADDRESS SUMMARY (SCSI)

12.4 SCSI RESET

TABLE 12·1
SCS dd I register a ress summary

Address R/W Bits Function

0240,0000'6 W 8 Set Controller Address Register

0240,0000'6 R 8 Read Auxiliary Register

0240,0008'6 fWI 8 SCSI Controller Registers

0200,0000'6 fWI 8 SCSI Data Register (DMA) address

0200,0140'6 W 1 SCSI Bus Reset (1 =reset,
O=release)

The SCSI reset pin (RST - pin 40) is connected to the VIC
interrupt pin LIRQ7, thus enabling the VIC to interrupt the
processor if a SCSI reset occurs. See section 6.4 and Table 6-3.

Revision E I July 1990

SCSI Port 12-3

12.5 SCSI PORT PIN ASSIGNMENTS, P4

P5
P4

a a 0 a D DOC

PIN 50'

FIGURE 12·1. SCSI connector, P4

TABLE 12·2
SCSI t P4 pin assign men 5,

Pin number Name Function

Odd pins Ground

2 DBOI Data bit 0

4 DB11 Data bit 1

6 DB2I Data»it 2

8 DB31 Data bit 3

10 DB41 Data bit 4

12 DB51 Data bit 5

14 DB61 Data bit 6

16 DB71 Data bit 7

18 nBPI Data parity bit

26 TERMPWR Termination Power (+5)

32 ATNI Attention

34 Spare

36 BSYI SCSI Bus busy

38 ACKI Transfer acknowledge

40 RSTI Reset

42 MSGI Message

44 SEU Select

46 C/O ControVData

48 REO/ Transfer request

50 1/01 Data movement direction

Revision E I July 1990

12-4 HK80N960E User's Manual

Recommended mating connectors are Ansley PIN 609-5001 CE
and Molex PIN 15-29-8508.

12.6 SCSI TERMINATION

If necessary, use RN4-RN6 at the top of the HK80/V960E near
the SCSI connector on the HK80N960E for SCSI termination
(Fig. 12-2). Jumper J9 should be installed if termination is
present.

RN4-RN6
SCSI Terminators

FIGURE 12.2. Location of SCSI terminators

Revision E I July 1990

13.1 INTRODUCTION

13

Centronics Port

This 8-bit parallel port is designed for direct connection to a
Centronics compatible printer (or other) device. Since the
handshake lines (STROBE and INIT) are under software control,
this interface can be used as a general-purpose output port.

13.2 CENTRONICS PORT PIN ASSIGNMENTS, P3

P3

DOD 0 0

\ PIN 2

FIGURE 13·1. Centronics connector, P3

13-2 HK80N960E User's Manual

TABLE 13·1
C t t P3 en ronlcs pin assignmen S,

P3 Pin Centronics Direction Signal
Pin

2-24 (even) (19-30) Gnd

1 1 Output STROBEl

3 2 Output DATA1 (00)

5 3 Output DATA2

7 4 Output DATA3

9 5 Output DATM

11 6 Output DATAS

13 7 Output DATA6

15 8 Output DATA7

17 9 Output DATA8(D7)

19 10 Input ACKI

21 11 Input BUSY

23 12 Input PE

25 13 Input SELECT

26 31 Output INITI

27 14 Gnd

28 32 Input ERROR!

29 15 nle

30 33 Input spare 1

31 16 Gnd

32 34 Input spare 2

33 17 nle

34 35 Input spare 3

- 18 nle

- 36 nle

Recommended mating connectors are Ansley PIN 609-3401CE
and Molex PIN 15-29-8348.

The falling edge of ACK! is used to turn on the Centronics
interrupt signal going to the VIC local interrupt line LIRQ1. To
clear the interrupt signal, read from the interrupt reset location,
02CO,001816 •

Revision E I July 1990

Centronics Port 13-3

13.3 CENTRONICS CONTROL PORT ADDRESS

The Centronics interface logic uses the following physical mem
ory addresses for data and control functions:

TABLE 13·2
Centronics control addresses

Address Direction Function

02CO.OOOO'6 W Data Latch (see below)

02CO.OOOO16 R Status Port (see below)

02CO.000816 W Turn STROBE on

02CO,000816 R Turn STROBE off

02CO.0010'6 W Turn INITon

02CO,001016 R Turn INIT off

02CO,OO1816 R Reset ACK Interrupt

TABLE 13·3
Centronics data/status addresses

Bit 02CO,00001. (Write) Data 02CO,OOO01. (Read)
Latch Status Port

07 DATA8 (spare 1)

D6 DATA7 (spare 2)

OS DATA6 (spare 3)

D4 DATAS ERROR!

03 DATM SELECT

02 DATA3 PE

01 DATA2 BUSY

DO DATA1 ACKI (Negative true pulse)

After power-on, the state of the Data Latch is indeterminate;
STROBE and INIT will be false. The Data Latch is not changed
by a board reset; however, STROBE and INIT will go false.

Follow this procedure when using this port for a Centronics
printer:

1. Wait for the printer BUSY signal to go false.

2. Write the character to port 02CO,OOOO16'

3. Assert STROBE (write to 02CO,000816).

Revision E I July 1990

13-4 HK80N960E User's Manual

MPU

4. Delay at least one microsecond.

5. De-assert STROBE (read from 02CO,000816).

6. Wait for ACK (wait for an interrupt via the VIC). The ACK
signal at the Centronics status port (bit DO of 02CO,OOOO16)
will be just a fleeting pulse.

7. Reset the ACK interrupt signal by reading from 02CO,001816 •

(See Table 13.2.)

8. Repeat for the next character.

Data -~r--" 8-bit
Latch

8 Bus

MPU

Control
Logic

Data '-~-+----f
Bus

J------~ P3 STROBEl

J------~ P3 INITI

Gate

Interrupt 4
to CPU 4""111----

Interrupt Edge Detector -----.-I ACKI
to VIC ~---;'_"":" ___ ---1

FIGURE 13·2. Centronics interface - block diagram

Revision E I July 1990

:0
CD
< 00'
0'
:J

m
c...
c
-<
~

<0
<0 o

34 PIN
TRANSITION CONN.
POLARIZED
P/N-2010313

PIN 1

FIGURE 13·3. Centronics printer Interface cable

34

34 CONDUCTOR RIBBON CABLE
(STRIPES DOWN) P/N-1560004

ADD V3EjV960E B RJC 12/89

PIN

36 PIN
IDC CONNECTC~
FEMALE
P/N-1991059

PINS 18 AND 36 OPEN

HEURIKON CORP.
KES 8/89 ICABLE-A-91°WN: KES ICKD:

OATE:8/15/89 SCALE: N. T. S,
CHANGE TO I DC CONN. A

REVI S IONS TITLE:

~U;Xi:~:~~~]:~~1;~~~~~!r:!1!~!r.~!:~t!f:h:t£!~~r*!:tM. V2E/V3EfV960E CENTRON I CS 1 IF CABLE
:~ti!::t!.."l:!f:fn.~~rlk!:~toPlft. or oth 1 tthout (M prtor SHEET: 1 OF 1 I COPYR I GHT: 1989 OWG. NO: 528AOO4-B

...
W
~

n
."
Z
-I
~
o
z
n
fA

" ~ -Z
-I
."
~ -Z
-I
."
~ ..,
J>
n
"' n
J>
eD
r
."

()
CD
;:l
a
:J o·
(J)

'"0 g

~

w
0,

14.1 INTRODUCTION

14

Real-Time Clock (RTC)

The HK80IV96oE has a real-time clock module (Dallas
Semiconductor, part number DS1216F or equivalent), which
includes a built-in CMOS watch circuit and a lithium battery.
The module is located underneath the HK80IV96oE EPROM
(that is, the module also functions as a socket for the EPROM).

14.2 RTC IMPLEMENTATION

The RTC logic does not generate interrupts; a CIO timer chan
nel is used for that purpose. The RTC contents, however, may be
used to check for long-term drift of the system clock, and as an
absolute time and date reference after a power failure. Leap year
accounting is included. Heurikon can provide complete operat
ing system software support for the RTC module.

The RTC module time resolution is 10 milliseconds. The RTC
internal oscillator is accurate to 1 minute per month, at 25
degrees C.

The clock contents are set or read using a special sequence of
commands, as detailed in the program example, in Appendix A.

To access the RTC, a specific sequence of 64 accesses must
occur to "unlock" the device for use. Then, a series of serial read
commands may be initiated at the addresses shown in Table
14-1 to perform the actual reading and writing of the clock.

TABLE 14-1
RTC accesses

Byte Read at Address

02FO,OOOO16

02FO,OOO3'6

02FO,OO0416

Function

Write a 0 to RTC.

Write a 1 to RTC.

ReadRTC.

14-2

Note:

HK80N960E User's Manual

Do not execute the module access instructions out of ROM.
The instruction fetch cycles will interfere with the module
access sequence. Also, be certain the reset disable bit
(rtc_data.day bit D4) is always written as a 1.

Example code for the real-time clock is provided in
Appendix A.

Revision E I July 1990

15

Summary Information

15.1 SOFTWARE INITIALIZATION SUMMARY

Refer to the example code in Appendix B for guidance on soft
ware initialization.

15.2 ON·CARD I/O ADDRESSES

This section is a summary of the on-card port addresses. It is
intended as a general reference for finding additional informa
tion about a particular device. Refer to section 5.5 for a pictorial
description of the system memory map.

TABLE 15-1
Add ress summary

Address Type Device Reference
(Hexadecimal) Section

4xxx,xxxx ANI VMEbus (Extended Space) 6.7

0400,0000- ANI VS8 bus 7.3
3FFF,FFFF

03xx,xxxx ANI VMEbus (Standard Space) 6.7

02FO,00xx ANI RTC 14

02EO,00xx ANI CIO 9.6

0200,OOxx ANI SCSIDMA 12.3

02CO,00xx ANI Centronics 13.3

0280,0000 R VIC (Interrupt 6.4.2.2
Acknowledge)

02AO,Oxxx ANI VIC (Registers) 6.3

0290,xxxx ANI Ethernet Channel Attention 11.3

0280,00xx W Ethernet Port Access 11.3

Continues.

15-2 HK80N960E User's Manual

TABLE 15-1 - Continued.

Address summarr
Address Type Device Reference

(Hexadecimal) Section

0270,xxxx fWJ NV-RAM (ReadlWrite) 5.7

0240,OOxx fWJ SCSI 12.3

0230,OOxx RIW SCC2 (Ports C & 0) 10.6

0220,OOxx fWJ SCC1 (Ports A & B) 10.6

0210,0000 R Error Status latch 3.4.2

0200,01 CO - Ethernet Arbiter Enable 11.3

0200,0180 - Reserved

0200,0140 W SCSI Reset 12.3

0200,0100 W VME Extended Space 6.8.1
Enable

0200,OOCO W VME Standard Space 6.8.2
Enable

0200,0080 W VME Short Space Enable 6.5

0200,0040 W ROMINH 5.2

0200,0038 W User lEO 4 8.1

0200,0030 W User LEO 3 8.1

0200,0028 W User LEO 2 8.1

0200,0020 W User LEO 1 8.1

0200,0018 W VSB Arbiter Enable 7.3

0200,0010 W VSB Release on Request 7.3

0200,0008 W Ethernet LEIBE Select 11.3

0100,xxxx fW.J VMEbus (Short Space) 6.7

OOxx,xxxx ANI On--card RAM 5.3

Revision E I July 1990

Summary Information 15-3

15.3 HARDWARE CONFIGURATION ,JUMPERS

Jumper settings and terminator configurations are detailed in
the manual section pertaining to the associated device. This
section can be used as a cross reference for finding additional
information.

TABLE 15-2
,J d umper an

Jumper or
Terminator

1

3

4

5

6

7

8

9

10

11

17

RN4-RN6

RN18-RN24

t f· termlna or con Igura
Function

Ports A,B,C,D defaults

RS-232 power, + 12V port B

RS-232 power, +5V port B

RS-232 power, -12V port B

RS-232 power, + 12V port 0

RS-232 power, +5V port 0

RS-232 power, -12V port D

SCSI bus power

System controller

Ethernet transceiver type

ROM size

SCSI terminators

VSB terminators

Revision E I July 1990

Ions
Reference Standard

Section Configuration

10.10 Installed

10.10 Removed

10.10 Removed

10.10 Removed

10.10 Removed

10.10 Removed

10.10 Removed

12.6 Removed

6.6 Installed

11.5 Not installed

5.2 1 Mbit

12.6 Installed

7.4 Installed

15-4

RN4-RN6
SCSI Terminators

J11

J1 - Port A.B,C,O defaults

1001

Installed - True (-12V)
Not installed - False (+ 12V)

Idle differential voltage on Tx +/
Installed - Half-step mode:

IEEE802.3. zero differential
voltage

Not installed - FUll-step mode:
Ethernet 1.0, positive
differential voltage

J3-8 RS232 Power
J3-+12VPortB
J4- +5V Port B
J5--12V PortB
J6 - +12V Port 0
J7 - +5V Port 0
J8--12VPortD

[Qg

64 Kblt-
256KbII

FIGURE 15·1. HK80N960E jumper locations

Revision E I July 1990

512KbIt

rc:IS
0 0

~
0

0
0 0

HK80N960E User's Manual

J9 SCSI Bus Power
Installed:

+5TERMPWR
Removed:

TERMPWR open

[g]

Ethernet
(P6)

LEOs

oj

I 015 EPROM

J17 '-..L-_Sock_el_is_RT_C_. ___ ~

J10 System Controller
Installed: HK8ON960E l!..
system controller_
Removed: HK8ON960E m.
D2tJ;ystem controlier.

J17 ROMSIZE

1Mbit 2MbII 4MbII aMbit

r.scg fEQJ I:2:::QJ rn:::::2J

~ ~ i~
~o ~ 0

~ ~ ~~ o ~
rn:::::2J

Summary Information 15-5

15.4 POWER REQUIREMENTS

TABLE 15-3
HK80N960E power requirements

Voltage Current Usage

+5 9.0 A All logic

+12 1.0 A RS-232 interface
and Ethernet

-12 1.0 A RS-232 interface

All "+5" and "Gnd" pins on PI and P2 must be connected to
ensure proper operation.

15.5 ENVIRONMENTAL REQUIREMENTS

Operating temperature: 0 to +55 degrees Centigrade, ambient, at
board.

Humidity: 0% to 85%.
Storage temperature: -40 to +70 degrees C.
Typical power dissipation: About 45 W

FAN COOUNG IS REQUIRED for the HK80N96oE board
whenever power is applied, even when the board is on an
extender card. Recommended air flow rate is 2-3 cubic feet per
minute, depending on card cage constraints and other factors.

15.6 MECHANICAL SPECIFICATIONS

TABLE 15-4
M h I ec anlca spec. Ica Ions

Width Depth

9.187 in. 6.299 in.

233.35mm 160mm

Height (above
board)

0.6 in.

15.25 mm

Standard board spacing is 0.8 inches. The HK80N96oE is a 10-
layer board.

Revision E I July 1990

Appendix A - Code Examples

README

BoarcLc

BoarcLh

Bug.h

BoardAsm.s

CIO.c

Proc.c

Proc.h

ProcAsm.s

RTC.c

SCC.c

SCSI.c

VME.c

This appendix contains the example code listed below:

A brief description of the example files.

This file is the catchall for the miscellaneous board-related
functions.

This file describes the HK80/V960E hardware addresses and
data structures.

This file is intended to provide standard constants and data
structures common to all files independent of processor,
compiler, and board model.

This file contains much of the 8O%OCA-specific data
structures and functions necessary to configure the
HK80/V96oE properly. Many of the processor-specific
functions must be configured as shown in this file for the
HKBO!V96oE to function reliably.

This file contains the functions necessary to read, write, and
configure the Z85C36 counter/timer parallel port chip.

The functions contained in this file provide the monitor
with the commands to handle interrupts and faults as well as
providing program tracing.

The interrupt wrapper is a relocatable assembly language
module that is allocated on the stack. The interrupt table
vector location is initialized to point to the wrapper and the
wrapper is initialized to point to the interrupt handler. This
level of indirection will reduce the necessity for assembly
code.

This file contains routines for interrupt functions.

This file contains functions for operating the real-time
clock.

This file contains the functions necessary to read, write, and
configure the ZB5C30-16 serial controller.

This file contains the functions necessary to read, write, and
configure the WD33C93A SCSI controller.

This file contains the functions necessary to initialize the
VMEbus as well as examples for performing several basic
VME functions.

Jun 22 1990 10:32:28 README

The code examples in this directory/manual are provided to
give you an example of how to interface to the 80960CA and
the devices on the V960E board. The code examples consist
of the device- and processor-specific sections of the V960E
debug monitor.

Note that the complete programming environment has not been
provided. These files will compile and fUnction properly
but are nothing more than a collection of files and perform
no useful function without the upper level programs. For more
detailed programming examples and the programming
environment contact your sales representative and ask about
the debug monitor or functional test software. These software
packages provide more complete device and environment
examples.

Page 1

Jun 25 1990 11 :55:39 Board.c Page 1

/~.~ •• * •• *.** •• * ••• * •• ** •• ****.*****.** •• ************* * ••• ** ••• *.********

• Copyright (c) 1990 Heurikon Corporation
* All Rights Reserved

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION.
The copyright notice above does not evidence any
actual or intended publication of such source code.

* Heurikon hereby grants you permission to copy and modify
* this software and its documentation. Heurikon grants
* this permission provided that the above copyright notice
* appears in all copies and that both the copyright notice and
* this permission notice appear in supporting documentation. In
* addition, Heurikon grants this permission provided that you
* prominently mark as not part of the original any modifications
* made to this software or documentation, and that the name of
* Heurikon Corporation not be used in advertising or publicity
* pertaining to distribution of the software or the documentation
• without specific, written prior permission.

* Heurikon Corporation does not warrant, guarantee or make any
* representations regarding the use of, or the results of the use
• of, the software and documentation in terms of correctness,
• accuracy, reliability, currentness, or otherwise; and you rely
• on the software, documentation and results solely at your own
• risk.

• MODIFICATIONS:

*····1

'include "Bug.h"
.include "Board.h"
finclude "NvMonDefs.h"

/** ••••••• ** ••••• * ••••• **.**** •• **.****.** ••• *.************ •• ***.** ••• **.
• Board.c: This file is the catchall for the miscellaneous board-related

functions. Defined in this module are:

···1
extern NV HkDefined HKFields;
extern NV-MonDefs NvMonDefs;
char BoardModel [] = "V960E";

/* •• * ••• * ••••••• ** •• *.*.*.* •• * •••• * •••• * ••••• ***.*.* •• ** •• *.***.*********
* BoardInit(): Initialize the minimum hardware to the default state

defined by the NV device structures.
***1

BoardInit ()
(

SetSerDevs () ;
ConfigVmeBus();
InitCIOState () ;
ResetSCSI () ;
BPlnit () I

1* Initialize serial to default state.
1* Initialize VMEBus to default state.

*1
*1

1**·***.***********
* BoardConfig(): Initialize the board hardware completely to the state
* defined by the NV device structures.
··*1

Jun 25 1990 11 :55:39 Board.c Page 2

BoardConfig ()
1

SetSerDevs () ; /* Initialize serial to NV specified state. */
ConfigVmeBus () ; /* Initialize VMEbus to NV specified state. */
InitSCSIState();
ConfigEthernet(); /* Initialize 596CA to NV specified state. */
Conf1gVsbBus () ; 1* Initialize VSBbus to NV specified state. *1

/*****.**.******.**
* ConfigEthernet(): Initialize the Ethernet byte ordering and arbiter.
***/

ConfigEthernet ()
{

NV_MonDefPtr Conf &NvMonDefs;

if (EthByteEndian(Conf» 1
*ETHERNET LEBE OxFF;

I else 1 -
*ETHERNET LEBE = OxOO;

I -
if (EthArbiterEnbl(Conf» 1

*ETHERNET ARB EN OxFF;
else (--

*ETHERNET_ARB_EN = OxOO;

1* Set up byte ordering. *1

1* Enable bus arbitration. *1

1****·******************************·*·****····***··** *.******.* •• ***.***
* ConfigVsbBus(): Initialize the VSB release modes and arbiter.
***1

ConfigVsbBus ()
1

NV_MonDefPtr Conf &NvMonDefs;

if (VsbReleaseMode(Conf»
*VSB RLSE REQ OxOO;

else 1- -

I
*VSB_RLSE_REQ = OxFF;

if (VsbMasterEnbl(Conf» {
*VSB ENBL ARB OxFF;

else (- -
*VSB_ENBL_ARB = OxOO;

/* Enable VSB Master interface.*1

1* Set up Release Mode for VSB.*/

/.****.* •• **.*.** •••• ** ••••••••••••• * •• **.**.*** •• *****************.*****
* PrStatus(): This monitor function should print useful information
• about the board configuration.
***/

PrStatus ()
(

unsigned long Temp;

xprintf("\n VME System controller -> ");
if (IsSystemController(» (

}

xprintf("On\n");
else (

xprintf("Off\n");

Temp HKFields.Manuf.SerialNumber;

Jun 25 1990 11 :55:39 Board.c Page 3

xprintf(" Ethernet physical 10 -> OO:80:F9:89:%2.2x:%2.2x\n",
(Temp » 8) & OxFF, Temp & OxFF);

1**
* SetLedDisplay(): This function presents the lower four bits of the
* 'Value' on the user LEOs.
***1

SetLedDisp1ay(Value)
unsigned long Value;
{

*LE01
*LE02
*LED3
*LED4

(-Value);
(-Value» 1);
(-Value » 2);
(-Value» 3);

1*** *******************
* MemTop(): This function determines the address of the last long

word in DRAM. The size of the DRAM is determined by the
NV memory configuration.

***1

unsigned char *MemTop()
{

return«unsigned char *) (Ox400 + HKFields.Hardware.DRAMSize - 4»;

1**
* MemSase(): This function determines the base address of the available

DRAM. The base of RAM is determined by the compiler created
variable 'end' which indicates the end of the 'bss' section.

***1

extern unsigned long end[};
unsigned char *MemBase()
{

return«unsigned char *) end);

1**
* Delay(): This function is intended to provide a fixed delay for
* timing. It isn't very accurate ! (very compiler dependent).
***1

fdefine HUND_SEC_DELAY 25000

Delay (HundSec)
lnt HundSec;
I

volatile int i;

for(i=Hundsec * HUND_sEe_DELAY; i; i--);

1**
* IntErr(): When an unexpected interrupt is received it is necessary to

remove the error condition before returning to the monitor.
This function is called from the function UnExplntr() which
parses the interrupt record for the address and the vector

Jun 25 1990 11 :55 :39 Board.c
associated with the interrupt. The device is dealt with
accordingly and the monitor is resumed.

Because the interrupt condition may be a program which
is determined to beat its head into a wall it is
necessary to abort the program and return directly to

Page 4

*
***1

the monitor level. This is done in a function IntRecov()
which causes the processor to return into the line editor.

1* Generic resonse messages *1
static char NMIEStr[} "\n\n~GUnexpected NMI Exception at Ox%.ax - %s(%s)\n",
static char DevIntStr[] = "\n\nAGUnexpected %s Interrupt at Ox%.8X\n";
static char UnkIntStr(] = "\n\nAGUnexpected Interrupt at Ox%.8X Vector Ox%x\n";

1* Error type for NMI *1
char *BusMasterErrTable() = { "??? unknown", "Ethernet", "VMEBus",

"Parity Error" 11 char *NmiErrTab1e () { "Bus Error",

IntrErr(Addr, Vector)
long Vector;
char *Addr;
{

Unsigned char status;

switch (Vector) {

}

case NMI VECTOR: {
Status = *STATUS LATCH;
xprlntf(NMIEStr,Addr,NmiErrTable[Status & Ox01),

BusMasterErrTable[«Status & Ox06) » 1)]);
break;

case CIO VECTOR: {
InitCIOState () ;
xprintf(DevIntStr,"CIO",Addr);
break;

case SCSI VECTOR:
ResetSCSI () ;
xprintf(DevIntStr,"SCSI",Addr);
break;

case SCCAS VECTOR:
case SCCCD-VECTOR:

SetSerOevs 0 1
xprintf (DevlntStr, "SCC" ,Addr);
break;

case ETR VECTOR: {
xprintf(DevIntStr,"ETHERNET",Addr);
break;

case IPL2 VECTOR:
case IPLI-VECTOR:
case IPLO-VECTOR: {

}

xprintf(DevIntStr,"VIC-IPL(%x)";Addr, Vector);
UnMaskVMEInt.(O) ;
break;

default: {
xprintf(UnkIntStr, Addr, Vector);
break;

DumpRegs () ;
FlushCache () 1

"80960CA" };

2

Jun 25 1990 11 :55:39 Board.c Page 5
IntRecovery () ; /* Restart Monitor.*/

3

Jun 25 1990 11 :55:56 Board.h Page 1
1*** *******************

* Copyright (c) 1990 Heurikon Corporation
* All Rights Reserved
* * THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION.
* The copyright notice above does not evidence any

actual or intended publication of such source code.

* Heurikon hereby grants you permission to copy and modify
* this software and its documentation. Heurikon grants
* this permission provided that the above copyright notice
* appears in all copies and that both the copyright notice and
* this permission notice appear in supporting documentation. In
* addition, Heurikon grants this permission provided that you
* prominently mark as not part of the original any modifications
* made to this software or documentation, and that the name of
* Heurikon Corporation not be used in advertising or publicity
* pertaining to distribution of the softwar~ or the documentation
* without specific, written prior permission.

Heurikon Corporation does not warrant, guarantee or make any
* representations regarding the use of, or the results of the use
* of, the software and documentation in terms of correctness,
* accuracy, reliability, currentness, or otherwise; and you rely
* on the software, documentation and results solely at your own
* risk.

* MODIFICATIONS:
* *****1

1**
* Board.h: This file describes the v960e hardware addresses and data

structures. Included in this file are the definitions for:

*
*

*
*
***1

80960CA Interrupt Vector Assignments
Z85C36 CIO Counter Timer
Z85C30 SCC Serial Controller, Ports A-D
WD33C93 SCSI Controller
DS1216F Real-time Clock
VSB Interface
User LEOs
NMI Status Latch
CENTRONICS Interface
82596CA Ethernet Controller
VIC068 VMEBus Controller and Configuration Registers
28C64 EEPROM

1*** *******************
* This section defines the interrupt vectors and mask bit associated
* with each v960 interrupt source.
*1

'define NMI VECTOR OxF8 /* Vector Definitions for the V960 *1
fdefine DMA-CHAN3 VECTOR OxC2 1* are fixed according to how the *1
#define DMA-CHAN2-VECTOR OxB2 1* Interrupt Map registers are set *1
'define DMA-CHANI-VECTOR OxA2 1* This definition is accurate for *1
'define DMA-CHANO-VECTOR Ox92 /* the Map defined in the file *1
'define CIO-VECTOR Ox82 1* 80960CAs.s *1
'define scsI VECTOR Ox72
.define SCCAS VECTOR Ox62
'define SCCCD-VECTOR Ox52

Jun 25 1990 11 :55:56 Board.h Page 2
'define ETH VECTOR Ox42
'define lPL"2" VECTOR Ox32
'define lPLCVECTOR Ox22
'define IPLO:VECTOR Ox12

'define DMA CHAN3 MASK Ox800 1* The Interrupt Mask Bits are *1
'define DMA-CHAN2-MASK Ox400 1* fixed and should never be *1
fdefine DMA - CHANCMASK Ox200 1* modified. The mask bits are *1
'define DMA-CHANO-MASK Ox100 1* determined by the v960 *1
'define CIO-INT MASK Ox080 1* hardware.
'define scsI INT MASK Ox040
'define SCCAS INT MASK Ox020
'define SCCCD-INT-MASK Ox010
'define ETH INT MASK Ox008
'define IPL"2" INT MASK Ox004
Idefine IPL1-INT-MASK Ox002
ltdefine IPLO::lNT::MASK Ox001

/**
* CIO: Definitions for the Z85C36 CIO counter Timer and parallel ports
***1

Idefine CIOPORT Ox02EOOOOO

Idefine CIO AData «volatile unsigned char *) (CIOPORT + Ox10»
'define CIO-BData «volatile unsigned char *) (CIOPORT + OxOB»
Idefine CIO-CData «volatile unsigned char *) (CIOPORT + OxOO»
'define CIO::CTRL «volatile unsigned char *) (ClOPORT + Ox18»

1*** *******************
* SCC: Definition for the Z85C30 serial ports A-D.
***1

'define SCC REG SPREAD OxOF
'define seC:PORT_SPREAD Ox08

'define BaudToTimeConst(baud)

1* Distance between registers
1* Distance between ports

«500000 I baud) - 2)

struct SCCPort { 1* Serial device structure
unsigned char Control;
unsigned char Dummy[SCC REG SPREAD];
unsigned char Data; - -

} ; 1* Define port addresses

«struct SCCPort *) Ox02200000)

*1
*1

*1

*1

*1

'define SCC PORTB
'define SCC-PORTA
'define SCC-PORTD
Idefine SCC:PORTC

«struct SCCPort *) «int) SCC PORTB + SCC PORT SPREAD»
«struct SCCPort *) Ox02300000) --
«struct SCCPort *) «int) SeC_PORTO + SCC_PORT_SPREAD»

1*** *******************
* SCSI: Definition for the WD33C93 SCSI interface.
***1

Idefine SCSI_ADDR

'define SCSI_RESET

Ox02400000 1* Base Address of SCSI schip

«unsigned char *) Ox02000140) 1* Bus reset

struct SCSIChip {
unsigned char SC AddrPtr;
unsigned char SC-Dummy[7];
unsigned char sC-Registerl

1* Define SCSI structure

*1

*1

*1

}, - 1* Define macros to read and write *1

Jun 25 1990 11 :55:56 Board.h Page 3

'define SCSI «struct SCSIChip *) SCSI_ADOR)

'define SCWriteReg(Reg, Val) SCSI->SC AddrPtr = Reg;\
SCSI->SC=Register = Val

.define SCReadReg(Reg, Val) SCSI->SC AddrPtr = Reg;\
Val = SCSI->SC_Register

/**
* SCSI bus interface controller registers
***/

'define SREG OWNIO OxOO
'define SREG-CTRL Ox01
'define SREG-TIMEOUT Ox02
'define SREG-TSECT Ox03
'define SREG-THEAD Ox04
.define SREG-TCYLH Ox05
Idefine SREG-TCYLL Ox06
.define SREG-HH LAOR OxO?
.define SREG-HM-LAOR OxOS
.define SREG-LM-LAOR Ox09
'define SREG-LL-LAOR OxOA
'define SREG-SECT oxoa
.define SREG-HEAD OxOC
.define SREG-CYLH OxOO
.define SREG-CYLL OxOE
'define SREG-TLUN OxOF
.define SREG-CPHASE Ox10
.define SREG-SYNT Ox11
.define SREG-HTCNT Ox12
.define SREG-MTCNT Od3
.define SREG-LTCNT Ox14
'define SREG-OEST 10 Od5
#define SREG-SRC 10 Ox16
.define SREG-SCSI STAT Ox1?
'define SREG-CMD - OxlS
.define SREG=OATA Ox19

'define SREG COBl Ox03
.define SREG-COB2 Ox04
.define SREG-COB3 Ox05
.define SREG-COB4 Ox06
'define SREG-COB5 OxO?
.define SREG-COB6 OxOS
'define SREG-COB? Ox09
'define SREG-COB8 OxOA
'define SREG-CDB9 OxOB
'define SREG-COB10 OxOC
'define SREG-COB11 OxOD
.define SREG=COB12 OxOE

/***
* OMA Control Words for SCSI Read and Write transfers.
***/

.define SCOMA RCTRL WORD
'define SCOMA=WCTRL:WORD

'define SCOMA CHANNEL
'define SCDMA:ADORESS

OxOOOOOOA3
OxOOOOOOOC

1* Control word for SCSI OMA read */
1* Control word for SCSI OMA write *1

Ox3 1* Channel associated with SCSI
Ox02000000 1* OMA Acknowledge address

*1
*1

1***

Jun 25 1990 11 :55 :56 Board.h Page 4

* RTC: Data structures and addresses for the real-time clock
***/

.define WATCH BASE «volatile unsigned char *) Ox02FOOOOO)
'define WRO WATCH «volatile unsigned char *) (WATCHBASE »
'define WR1-WATCH «volatile unsigned char *) (WATCHBASE + 3»
'define RD_WATCH «volatile unsigned char *) (WATCHBASE + 4»

struct rtc data 1* 07 06 05 04 03 02 01 00 *1
unsigned-char dotsec; 1* -- 0.1 sec ----- 0.01 sec *1
unsigned char sec; 1* -- 10 sec ------ seconds ------ *1
unsigned char min; 1* ---10 min ------ minutes ------ *1
unsigned char hour; 1* A 0 B Hr ---- hours -------- *1
unsigned char weekday; 1* o 0 0 1 ----- day ---------- */
unsigned char date; /* 10 date------ date --------- */
unsigned char month; 1* 10 Month ---- month -------- *1
unsigned char year; 1* 10 year ----- year --------- *1

I;

1*** ********************
* VSB: Control bits associated with the VSB interface
***1

.define VSB ENBL ARB
'define VSB:RLSE:REQ

«unsigned char *) Ox02000018)
«unsigned char *) Ox02000010)

1*** ********************
* LEO: This is the definitions for the four user LEOS.
*1

'define LE01
'define LE02
'define LE03
'define LE04

«unsigned char *) Ox02000020)
«unsigned char *) Ox0200002B)
«unsigned char *) Ox02000030)
«unsigned char *) Ox02000038)

1*** ********************
* The status latch returns a 3 bit error code indicating the state of
* the system when an NMI exception has occurred. The format of the latch is:

Bits
2 1 o Indication

x x 0 NMI caused by a bus error.
x x 1 NMI caused by a parity error.

0 1 x NMI occurred while Ethernet owned the bus.
1 0 x NMI occurred while slave VMEBus owned the bus.
1 1 x NMI occurred while the processor owned the bus.

0 0 x Bus ownership unknown (shouldn't occur).

*/

'define STATUS_LATCH «unsigned char *) Ox02100000)

'define STATUS PERR(x) «x Ox1) 1)
.define STATUS:BERR(X) «x Ox1) 0)

'define STATUS 80960CA(x) «x Ox6) 6)
'define STATUS-S2596CA(x) «x Ox6) 2)
'define STATUS=VMESLAVE(x) «x Ox6) 4)

2

Jun 25 1990 11 :55:56 Board.h Page 5

/***
* CENTRONICS: Definition for the Centronics Interface
*/

Idefine CENT_BASE «unsigned char *) Ox02COOOOO)

Idefine CENT DATA «unsigned char *) (CENT BASE + OxOO»
'define CENT-STATUS «unsigned char *) (CENT-BASE + OxOO»
Idefine CENT-SET STROBE «unsigned char *) (CENT-SASE + OxOS»
Idefine CENT-CLEAR STROBE {(unsigned char *) (CENT-BASE + OxOS»
Idefine CENT-SET INIT «unsigned char *) (CENT-BASE + OxlO»
Idefine CENT-CLEAR INIT «unsigned char *) (CENT:BASE + OxlO»
Idefine CENT-INT ENBt {(unsigned char *) (CENT BASE + OxlS»
Idefine CENT:INT:CLR ({unsigned char *) (CENT:BASE + OxlS»

1*** ********************
* S2596CA: Definition for the Ethernet data structures and addresses
***/

Idefine ETHERNET PORT
Idefine ETHERNET-CA
Idefine ETHERNET-LEBE
,define ETHERNET:ARB_EN

«unsigned char *) Ox02S00000)
«unsigned char *) Ox02900000)
({unsigned char *) Ox0200000S)
«unsigned char *) Ox020001CO)

/***
* VICOGS: Definition for the VIC Chip Registers
***1

.define VIC «struct VicChip *) Ox02AOOOOO)

Idefine VIC_lACK_BASE «unsigned char *) Ox02BOOOOO)

Ide fine VIC lACK IPLO ({unsigned char *) (VIC lACK SASE + OxlO»
'define VIC-IACK-IPLl «unsigned char *) (VIC-lACK-BASE + Ox04»
Idefine VIC:IACK:IPL2 «unsigned char *) (VIC:IACK:SASE + OxOS»

typedef struct vic Reg {
unsigned char Reg;
unsigned char Dummy[3];

} VicReg;

/* Structure to define register spacing */

struct VicChip {
VicReg VMElntlntCntrl;
VicReg VMElntCntrl[7];
VicReg DMAlntCntrl;
VicReg LoclntCntrl[7];
VicReg ICGSlntCntrl;
VicReg ICMSlntCntrl;
VicReg ErrlntCntrl;
VicReg ICGSVecBase;
VicReg ICMSVecBase;
VicReg LocVecBase;
VicReg ErrVecBase;
VicReq ICSwitch;
VicReg IeR[8l;
VicReq VMEIntReqStat;
VicReg VMElntVec(7];
VicReg TranTimeOut;
VicReg LocBusTiming;
VicReq BlkTranDef;
VicReg VMEconfiq;
VicReg ArbReqConfig;
VicReg AdQModSrc;
VicReg BerrStat;

/* VIC06S Register description */

Jun 25 1990 11 :55:56 Board.h Page 6

} ;

VicReg DMAStat;
VicReg SlvSel[2] [2];
VicReg RelCntrl;
VicReg BlkTranCntrl;
VicReg BlkTranLen[2];
VicReg SysReset;

/***
* Mailbox structure definitions as they would appear on the
* VMEBus.
***/

typedef struct ICReg {
unsigned char Reg;
unsigned char Dummy;

} ICReg;

typedef struct Switch {
unsigned char Set;
unsigned char Clear;

I Switch;

typedef struct MailBox
ICReg ICR[S];
Switch ICGs[41;
Switch Dumrny{41;
switch ICMS[4];

MailBox;

/* This how the Interconnect Registers */
/* appear on the VMEbus */

/* The Module and Global Switches */

/* The Mailbox data structure consists */
/* of 8 Interconnect registers 4 */
/* mOdule and 4 global SWitches. The */
1* base address of this structure is *1
/* determined by the CIO port B value. */

1***···************····*****·*··*··******··********-** ********************
* VMEBus configuration registers for slave mapping
***/

Idefine SLAVE EXT ENBL
#define SLAVE-STD-ENBL
Idefine SLAVE:SHT:ENBL

«unsigned char *) Ox02000100)
«unsigned char *) Ox020000CO)
«unsigned char *) Ox020000S0)

/********** •• ***
* 2SC64 EEPROM: Definition for the NV Memory Interface
***/

Idefine NV BASE Ox02700000 /* Base address of NV memory
Idefine NV-SIZE OxOOOO2000 /* Size in bytes of NV memory

*/
*/

'define NV-PROTECTED OxOOOOlSOO /* Beginning of protected NV memory */
Idefine NV:MON_DEFS OxOOOO1600 /* Beginning of monitor NV defs. */

'define NV MAX NBR WRITES 10000 /* Limit on the number of writes */
'define NV-PAGE SIZE 1 /* Page size of 32 for fast program */
'define NV:SPACING 8 1* Number of bytes between bytes *1

3

Jun 22 1990 10:33:03 Bug.h Page 1
1**
* * Copyright (c) 1990 Heurikon Corporation
* All Rights Reserved

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION.
The copyright notice above does not evidence any
actual or intended publication of such source code.

* Heurikon hereby grants you permission to copy and modify
* this software and its documentation. Heurikon grants
* this permission provided that the above copyright notice
* appears in all copies and that both the copyright notice and
* this permission notice appear in supporting documentation. In
* addition, Heurikon grants this permission provided that you
* prominently mark as not part of the original any modifications
* made to this software or documentation, and that the name of
* Heurikon Corporation not be used in advertising or publicity
* pertaining to distribution of the software or the documentation
* without specific, written prior permission.

* Heurikon Corporation does not warrant, guarantee or make any
* representations regarding the use of, or the results of the use
* of, the software and documentation in terms of correctness,
* accuracy, reliability, currentness, or otherwise; and you rely
* on the software, documentation and results solely at your own
* risk.

* MODIFICATIONS:

*****1

1***
Bug.h: This file is intended to provide standard constants and

data structures common to all files independent of
processor compiler and board model.

***1

1***
Define the constants for TRUE, FALSE, NULL and ERROR.

***1

'define NULL 0
'define TRUE 1
'define FALSE 0
'define ERROR -1

'define FAILED 0
'define PASSED 1

'define READ 0
'define WRITE 1

1***
* Character definitions
***1

'define EOF 0
'define DEL Ox7F
'define ESC OxlB
'define SP
'define as '\b'
'define CR ' \r'
'define LF '\n'
'define TAB ' \t'

Jun 22 1990 10:33:03 BUJl.h Page 2

1*** ********************
* UNIX style time structure
***1

struct tm (
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

I;

long tm fsec;
long tm-sec;
long tm-min;
long tm-hour;
long tm-mday;
long tm-mon;
long tm-year;
long tm:=wdaYI

typedef struct tm tm;

1* fractions of seconds (0 - 99) *1
1* seconds (0 - 59) *1
1* minutes (0 - 59) *1
1* hours (0 - 23) *1
1* day of month (1 - 31) *1
1* month of year (0 - 11) *1
1* year - 1900 *1
1* day of week (sunday = 0) *1

1

Jun 22 1990 10:33:51 BoardAsm.s Page 1 · ---• This file contains much of the 80960CA-specific data structures and functions
• necessary to configure the v960 properly. Many of the processor-specific
• functions must be configured as seen in this file for the v960 to function
• reliably. • · ---

.file "BugAsm.s"
• text
.align 4 · ---• • • t

Initialization: The initialization of the v960 includes reading a new prcb
and control table, which must be located in RAM. Also, the
Vector and Fault tables are initialized, and the board is
initialized to a known state.

f

.set

.set

.set
• set
• set
.set
.set
• set
.set
• set
.set

.globl

.globl

.globl

.globl

.globl

REQUEST INTR,
INVALIO::CACHE,
CONFIG CACHE,
RE INITIALIZE,
LO-CTRL REGO,
LO-CTRL-REGl,
LO-CTRL-REG2,
LO-CTRL-REG3,
LO-CTRL-REG4,
LO-CTRL-REG5,
LO::::CTRL::::REG6,

start ip
-ColdStart
-MonEntryPt
-end
-_RcvTrace

OxOOO
OKlOO
Ox200
Ox300
Ox400
Ox401
Ox402
Ox403
Ox404
Ox405
Ox406

Pause 500 mSec for RAM and then do a RAS/CAS cycles to initialize
memory.

MonEntryPt:
::::ColdStart:

_start_ip:

Ramlnit:

ClearsysMem:

ldconst
ldconst
st
st
st
st
ldconst
ldconst
ldconst
st
addo
cmpobne

Ox02000020, r4
OxFFFFFFFF, r5
rS, (r4)
r5, OxOa(r4)
r5, Oxl0(r4)
r5, Oxla (r4)
OxOOO, r4
Ox400, r6
OxOl0, r5
r5, (r6)
1, r4, r4
r4, r5, RamInit

ldconst Oxeeeeeeee, r3
Ida int table, r4
lda ::end; r5

st r3, (r4)
addo 4, r4, r4

f Clear LED's

• counter
t RAM Address
t Loop Count

Write to RAM

cmpobne r4, r5, ClearSysMem

ldconst RE INITIALIZE,r3
Ida getpcb,r4
Ida newprcb,r5

t Re-initialize op Code
t Address to start execution
t Address of new prcb block

Jun 22 1990 10:33:51 BoardAsm.s Page 2

getpcb:

SetState:

StartMon:

_warm:

i

sysctl r3, r4, r5

ldconst LO CTRL REG2,r3
sysctl r3; r3,-r3

ldconst LO CTRL REG3,r3
sysctl r3; r3,-r3

ldconst LO CTRL REG4,r3
sysctl r3; r3,-r3

ldconst LO CTRL REG5,r3
sysctl r3; r3,-r3

ldconst Ox1FI002,r3
ldconst OxOOOO02,r4
modpc 0,r3,r4
ldconst Ox001000,r3
ldconst Ox001000,r4
modac 0,r3,r4

Ida sup stack,r4
mov r4,sp
mov 0,g14

callx _VectInit
callx FaultInit -
callx StartMonitor -ret

.globl _warm

calIx
callx
b

VectInit
-FaultInit
SetState

.globl _IntRecovery

Reinitialize 80960CA.

t Read Register Group.
t Number 2 from ctrl table.

Read Register Group.
Number 3 from ctrl table.

t Read Register Group.
t Number 4 from ctrl table •

Read Register Group.
Number 5 from ctrl table.

Modify state to priority 0,
supervisory / executing state

t Modify arithmetic controls so
t no imp fIts and iof masked.

t New supervisory stack
t address •
t Fix compiler bug •

Initialize Vector Table.
Initialize Fault Table •

t Start program •

Initialize Vector Table.
Initialize Fault Table.

• Note that this section is necessary for the B step parts to work.
t

_IntRecovery:

RecovO:

ldconst RE INITIALIZE,r3
Ida RecovO,r4
Ida newprcb,r5
sysctl r3, r4, r5

Idconst
ldconst
modpc
ldconst
ldconst
modac

Ida
mov
mov
callx

OxlF1002,r3
Ox000002,r4
O,r3,r4
OxOOl000,r3
OxOOl000,r4
O,r3,r4

sup stack,r4
r4,sp
O,g14
_LineEdit

t Re-initialize op Code
t Address to start execution
t Addesss of new prcb block
t Reinitialize 80960CA.

Modify state to priority 0,
supervisory / executing state.

Modify arithmetic controls so
no imp fIts and iof masked.

New supervisory stack
address.
Fix compiler bug.

f Note that this section is necessary for the A step parts to work.

• f Ida Recov1,rip returns to ExcInt

• ret
iRecovl: Ida Recov2,rip returns to OnExplnt
i ret
fRecov2: Ida _LineEdit,rip t returns to before interrupt

Jun 22 1990 10:33:51 BoardAsm.s Page 3
ret

.globl _AtomicModify

AtomicModify: atmod gO, g1, g2
- ret

t ---
t

• f

f
f

• • • • f
f

• • •

Region Table: There are three different ways that the v960 memory can be
configured.

1) 32-bit, burst enabled is the configuration for region 0
and should never be configured otherwise. This allows the
on card DRAM to use burst.

2) 32-bit, burst disabled is the configuration for regions
1 through 14 and should never be configured otherwise.
Region 15 should be configured this way when ROM has been
inhibited.

3) a-bit, burst disabled is the configuration for region 15
when ROM is not inhibited. This allows the ROM to be
accessed as an a-bit-wide memory.

.set

.set

.set

BURST 32BIT,
NONBURST 32BIT,
NONBURST::::SBIT,

Ox00100003
Ox00100002
Ox00000002

PRCB: The processor control block indicates the interrupt and fault tables
to be used, sets up a pointer to the new control table and initailizes
the stacks, caches and control registers.

.align 4

newprcb: .word - flt table f Fault table base address (ram)
ctl-table

/'

.word • Control table base address (rom)

.word OxOOOO1000 • AC register initial image
f Mask integer overflow faults

.word Ox40000001 f Fault Configuration Word
f (Mask unaligned bus req. faults)

.word int table • Interrupt table base address

.word -sys-table t System procedure table base

.word OxOOOOOOOO t Reserved

.word int stack f Interrupt stack pointer

.word TI'xOOTI'10000 f Instruction cache config

.word OxOOOOOOO5 f Register cache config
f Num cached register sets 5

.space 2*4 f Make an even quad word

t ---
I

t
f

Control Table: The control table is organized as 7 groups of 4 words each.
Groups 2-5 indicate the memory region configurations. Group 0
is the breakpoint registers, Group 1 the interrupt Map and
control registers, and Group 6 is the misc. registers.

.align 4

.globl ctl table

.globl :RegTon15

Jun 22 1990 10:33:51 BoardAsm.s Page 4

_ctl_table:
----- Breakpoint Registers

CtlGroupO: .word OxOOOOOOOO IPBO IP Breakpoint register 0
.word OxOOOOOOOO IPB1 IP Breakpoint register 1
.word OxOOOOOOOO DABO Data Addr Breakpoint reg
.word OxOOOOOOOO DABl Data Addr Breakpoint reg

f ----- Interrupt map and control registers ---
CtlGroup1: .word OxOOO04321 t IMAPO Interrupt Map register 0

.word OxOOOOS765 t IMAPl Interrupt Map register 1

.word OxOOOOCBA9 t IMAP2 Interrupt Map register 2

.word OxOOOOSOOO t Interrupt controller

• ----- Memory Region Configuration Registers
CtlGroup2:

CtlGroup3:

CtlGroup4:

CtlGroup5:

_Region15:

.word BURST 32BIT f Region 0

.word NONBURST-32BIT f Region 1

.word NONBURST-32BIT f Region 2

.word NONBURST-32BIT t Region 3

.word NONBURST-32BIT f Region 4

.word NONBURST-32BIT f Region 5

.word NONBURST-32BIT t Region 6

.word NONBURST-32BIT f Region 7

.word NONBURST-32BIT f Region S

.word NONBURST-32BIT t Region 9

.word NONBURST-32BIT t Region 10

.word NONBURST-32BIT • Region 11

.word NONBURST-32BIT t Region 12

.word NONBURST-32 BIT t Region 13

.word NONBURST-32BIT t Region 14

.word NONBURST:SBIT t Region 15

t ----- Breakpoint, Trace, and Bus Control registers
CtlGroup6:

.word OxOOOOOOOO N!U Not Used •
• word OxOOOOOOOO BPCON Breakpoint Control Reg
.word OxOOOOOOO1 TC Trace Controls
.word OxOOOOOOO1 BCON Bus Configuration Ctrl

• #
t

• f

STACK DEFINITIONS: The following data definitions define the stacks for the
S0960CA. The interrupt, supervisory and user stacks are
defined. Depending on the application, the size of these
definitions may be increased or decreased.

f
t
t
I
I

• t
t

DATA STRUCTURES:

.align

.data

Space for the interrupt, fault and system procedure
tables are defined here. The size of these tables is a
fixed quantity. Details of how these structures are used
can be found in the S0960CA manual. The initialization of
these structures is performed by other functions.

.globl int table

.bss -int:table, Ox0420, 8

.globl _fIt_table

.bss nt_table, Ox0200, 8

.globl _sys_table

.bss _sys_table, Ox0200, 8

.globl usr_stack

2

Jun 221990 10:33:51 BoardAsm.s Page 5
.bss _usr_stack, Oxosoo, S

.globl int stack

.bss :int:stack, OxOSOO, S

.globl _sup_stack

.bss _sup_stack, Ox2000, S · ---• Powerup detection: The following routines determine powerup conditions and
• allow the user to set the powerup magic number
f ---

_IsPowerUp:

IsPowerUP:

.set POWER UP MAGIC NUMBER, OxS2364767

.set POWER:UP:LOCATION, Ox00000004

.text

.align 4

.globl _IsPowerup

ldconst POWER UP LOCATION, rS
ldconst POWER-UP-MAGIC NUMBER, r6
ld (rS),r4 - -
cmpobne r4, r6, IsPowerUP
mov OxO,gO
ret

mov
ret

Oxl,gO

Powerup detection: The following routines determine powerup conditions and
allow the user to set the powerup magic number

.text

.align 4

.globl _SetNotPowerUp

SetNotPowerUp: ldconst POWER UP LOCATION, rS
- ldconst POWER-UP-MAGIC NUMBER, r6

st rb,(rS)-
ret

Jun 22 1990 10:34:13 CIO.c Page 1
1**

* Copyright (c) 1990 Heurikon Corporation
* All Rights Reserved

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION.
The copyright notice above does not evidence any
actual or intended publication of such source code.

*
* Heurikon hereby grants you permission to copy and modify
* this software and its documentation. Heurikon grants
* this permission provided that the above copyright notice
* appears in all copies and that both the copyright notice and
* this permission notice appear in supporting documentation. In
* addition, Heurikon grants this permission provided that you
* prominently mark as not part of the original any modifications
* made to this software or documentation, and that the name of
* Heurikon Corporation not be used in advertising or publicity
* pertaining to distribution of the software or the documentation
* without specific, written prior permission.

* Heurikon Corporation does not warrant, guarantee or make any
* representations regarding the use of, or the results of the use
* of, the software and documentation in terms of correctness,
* accuracy, reliability, currentness, or otherwise; and you rely
* on the software, documentation and results solely at your own
* risk.

* MODIFICATIONS:

*****1

linclude "Bug.h"
linclude "Board.h"

1*** ********************
* CIO.Cf This file contains the functions necessary to read, write and

configure the z85c36 Counter Timer I parallel port chip.
The functions defined in this module are listed below:

ResetCIO() InitCIOState ()
WriteCIOPortB ()

StartTimer ()
Wri teCIOPortC () Wri teCIOPortA ()

ciointr ()
***1

/***
* This file contains all the CIO specific subroutines necessary to reset,
* initialize, read and write to the CIO ports and counter timers.

* ResetCIO():

* InitCIOState():

* WriteCIOPortA()
* WriteCIOPortB()
* WriteCIOPortC():

*1

Sets the CIO to the hardware reset state.

This is the default state of the CIO and it should be set
to this state at reset.

These are the routines used to write to ports A-C of
the CIO.

/***
* ResetCIO(): This function resets the counter timer regardless

what state the chip might be in.

Jun 22 1990 10:34:13
***1

ResetCIO ()
{

CIO.c

volatile unsigned char *p, c;

p = CIO CTRL;
c = *p;-
*p = OxOO;
c = *p;
*p OxOO;
*p OxOl;
*p = OxOO;

1* make sure we're waiting for a reg ptr */
/* master int ctl reg ptr *1
/* (must be a good reason to do it again) *1

1* reset bit on, off *1

Page 2

1*** ********************
* InitCIOState(): This function initializes the counter timer to the

state expected by the monitor. The configuration sets
the parallel ports as bit output ports so that the
VME slave comparison addresses can be written to ports

* A, Band C.
***1

InitCIOState ()
{

static unsigned char
OxOO, OxOO,
Ox28, OxOO,
Ox20, OxOO,
Ox2B, OxOO,
Ox23, OxOO,
Ox06, OxOO,
Ox2C, OxOO,
Ox24, OxOO,
Ox07, OxOO,
Ox2D, OxOO,
Ox09, Ox20,
OxOl, Ox94

I;
register int cnt;

ciotable(] = (
1* Clear register interrupts VIS
/* Port B as bit port
1* Port A as bit port
/* Port B all outputs
/* Port A all outputs
1* Port C all outputs
1* Port B normal ilo
1* Port A normal ilo
1* Port C normal ilo
/* All pattern registers cleared
1* Clear interrupts
1* enable port A and port B

volatile unsigned char *p;

ResetCIO();
p = CIO CTRL;
for(cnt-= 0; cnt < sizeof(ciotable); cnt++)

*p = ciotable(cnt);

*1
*/
*/
*/
*/
*/
*1
*1
*1
*1
*1
*1

1*** ********************
* WriteCIOPortA()
* WriteCIOPortB()
* WriteCIOPortC() These functions provide the ability to write to the

CIO output ports. Ports A, Band C are used for the
VMEbus slave maps for the Extended, Short and Standard
spaces, respectively.

***1

WriteCIOPortA(Data)
unsigned char Data;
{

*CIO_AData Data;

Jun 22 1990 10:34:13 CIO.c Page 3

WriteCIOPortS(Data)
unsigned char Data;
{

*CIO_BData Data;

WriteCIOPortC(Data)
unsigned char Data;
{

*CIO_CData Data;

/***k*****
* StartTimer(): This function is intended to provide an example of how

to initialize the CIO counter timers. Here the CIO is
initialized, the interrupt handler is attached, and then
the counter is started. In this example the location
, NumTicks' is incremented for every interrupt received
and a dot is printed every second. This function is
turned off by calling InitCIOState() and disconnecting
the interrupt handler.

***/

volatile int NumTicks;

Start Timer ()
{

int cnt;
int ciointr () I
static unsigned char ctitable(]

} i

OxOO, Ox86,
OxlE, Ox80,
Ox1A, Ox82, Oxls,
OxOC, Ox20,
OxlD, Ox80,
Ox18, Ox50, Ox19,
OxOS, Ox20,

OdC,
Ox16,
OxOA,
Ox05,
Ox06,
Ox07,
Ox01,
OxOC,
OxOB,
OxOA,

Ox80,
Ox31,
Ox20,
OxOO,
OxFF,
OxOO,
Ox40,
Oxc6,
OxC6,
OxC6

Ox17,

Ox35,

Ox8A,

OxCl,

/*. Enable master interrupt VIS
/* Channel 3 Continuous
/* Channel 3 Count (1/60th sec)
/* Clear IP and IUS for channel 3
/* Channel 2 Continuous
/* Channel 2 Count (l/97th sec)
/* Clear IP and IUS for channel 2

/* Channel 1 Continuous
/* Channel 1 Count (1/157th sec)
/* Clear IP and IUS for channel 1
/* Set up port 3 */

/* Enable counters 1, 2, and 3
/* Enable Interrupts, start count

xprintf("NumTicks loaded at Ox\x\n", &NumTicks);
ConnectHandler(CIO VECTOR, ciointr);
NumTlcks - 0; -
ResetCIO();
*CIO CTRL = Ox04;
*CIO-CTRL = oxao;
for(cnt = 0; cnt < sizeof(ctitable); cnt++)

*CIO CTRL = ctitable[cnt);
UnMasklnts(OxaO);

/***
* ciointr(): This is the interrupt handler for the counter timer.

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/

*/
*/

Jun 22 1990 10:34:13 CIO.c Page 4
This function removes the interrupt in the device and
then clears the interrupt in the processor.

***/

static ciointr ()
{

unsigned char Vector, Status;
int i;

forI i = 0 ; i < Ox1000 ; i++);
Vector = *CIO CTRL;
*CIO CTRL = Oi04;
Vector = *CIO_CTRLi

*CIO CTRL = OxOA;
Status = *CIO CTRL;
*CIO CTRL = OiOA;
if «NumTicks++ % 157) 0) {

PutC (' .') ;
}
*CIO CTRL = Ox24;
for(-l = 0 ; i < Ox1000 I i++);

ClrlntPend () ;

/* This delay is necessary to allow */
/* the CIO to drive the interrupt high.*/
/* The interrupt mask in the processor */
/* must be cleared in the processor. */

Jun 22 1990 10:34:28 Proc.c Page 1
1*** *******************
*
* Copyright (c) 1990 Heurikon Corporation
* All Rights Reserved

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION.
The copyright notice above does not evidence any
actual or intended publication of such source code.

* Heurikon hereby grants you permission to copy and modify
* this software and its documentation. Heurikon grants
* this permission provided that the above copyright notice

appears in all copies and that both the copyright notice and
this permission notice appear in supporting documentation. In

* addition, Heurikon grants this permission provided that you
* prominently mark as not part of the original any modifications
* made to this software or documentation, and that the name of
* Heurikon Corporation not be used in advertising or publicity
* pertaining to distribution of the software or the documentation

without specific, written prior permission.

* Heurikon corporation does not warrant, guarantee or make any
representations regarding the use of, or the results of the use
of, the software and documentation in terms of correctness,

* accuracy, reliability, currentness, or otherwise; and you rely
* on the software, documentation and results solely at your own
* risk.

* MODIFICATIONS:

*****1

'include "Bug.h"
.include "Proc.h"

1*** *******************
Proc.c: The functions contained in this file provide the monitor

with commands to handle interrupts and faults as well as
providing program tracing. The functions contained in
this module are listed below:

*
***1

VectToVectAddr()
ConnectHandler()
FaultInit ()

And trace files:

VectInit ()
DisConnectHandler()
FaultErr()

Trace()
Step()
RcvTrace ()
ModeToMask ()

ExecTrace ()
BPoint ()
SaveState ()

BPlnit ()
Oi spTrace ()
OneWordlnstr ()

extern unsigned long int table[];
extern unsigned long flt:table[]1

/* Address of interrupt table *1
/* Address of fault table */

unsigned long TraceEnabled; 1* Trace controls register *1
unsigned long TraceMask; /* Trace controls register */
unsigned char TraceFlag;

1*** *******************
* VectToVectAddr(): Converts 'Vector" to a vector address contained in
* the interrupt table.
***1

Jun 22 1990 10:34:28

unsigned long *VecToVecAddr(Vector)
unsigned long Vector;
{

Proc.c

return «unsigned long *) (int_table + I + Vector));

Page 2

/**
* VectInit(): The Vector table consists of 36 Bytes of Pending interrupt
* bits followed by 992 Bytes of Vector Table. A total of

102B bytes of data.

*
*
***/

Note that the NMI interrupt always resides in the
B0960CA Data RAM at location O.

VectInit ()
(

int i, UnExpIntr();
unsigned long *VectPtr;

VectPtr = int table;
for(i = 0; i < 9; i++)

*VectPtr++ 0;
I
for(i = 9; i < 257; i++) {

*VectPtr++ (unsigned long) UnExpIntr;
I
*«unsigned long *) 0) = (unsigned long) UnExpIntr;

1*** *******************
* ConnectHandler(): The function allocates a interrupt wrapper, links

the wrapper into the interrupt table and then
initializes the wrapper to call the Handler address.

***1

struct IntWrapper IntCode = (

I;

Oxb2B05000, Oxb2a06010, Oxb2c06020, Oxa2e06030, OxBc200040, Ox590B4004,
Ox9027f400, OxfffffffB, OxSc2S00ff, Ox5BB940S4, Ox5c801602, OxB6003000,
Oxeeeeeeee,
OxBc200040, Ox59084104, Oxb0805000, OxbOa06010,
OxbOc06020, OxaOe06030, OxOaOOOOOO,
Oxeeeeeeee, Oxeeeeeeee, Oxeeeeeeee

ConnectHandler(Vector, Handler)
unsigned long Vector;
int Handler();
(

unsigned long *CodePtr, *MemPtri
struct IntWrapper *wrapper;
int i, UnExpIntr();
unsigned long *VectPtr, *VecToVecAddr();
char *Malloc();

VectPtr = VecToVecAddr(Vector);
FlushCache () ;

if (*VectPtr != (unsigned long) UnExpIntr) {
Wrapper = (struct IntWrapper *) *VectPtr;
Wrapper->CallAddr = (unsigned long) Handler;
return;

Memptr (unsigned long *) Malloc(sizeof(struct IntWrapper));

Jun 22 1990 10:34:28 Proc.c
codePtr = (unsigned long *) & IntCode;
wrapper = (struct IntWrapper *) MemPtr;

Page 3

for (i = 0; i < (sizeof(struct IntWrapper) / sizeof(unsigned long»; i++) {
*MemPtr++ = *CodePtr++;

I
wrapper->CallAddr = (unsigned long) Handler;

*VectPtr = (unsigned long) Wrapper;
if (Vector == NM! VECTOR) {

*«unsigned long *) 0) = (unsigned long) Wrapper;
I
FlushCache () ;

/**.*.*.*.****.**.************** •• ************************* •• ****** •• ***.
* DisConnectHand1er(): Modifies vector table back to unexpected
• interrupt handler.
**./

DisConnectHand1er(Vector)
unsigned long Vector;
{

unsigned long 01dWrapper, *VecToVecAddr();
int UnExpIntr();

OldWrapper = *VecToVecAddr(Vector);
Free(Oldwrapper);
*VecToVecAddr(Vector) = (unsigned long) UnExplntr;

/******.****.**** •• ****.****.***.**.*.* •• *.* •••• ****.* ••• ***.*** •• **.****
* FaultErr(): This function is called when a processor fault is called
* if the fault was unexpected then an errOr message is
* printed indicating the cause of the fault.
***/

static char FltStr (] = "\n\n"GUnexpected fault at Ox%x, Type ' %s' h\n";
static char Unknown[) = "Unknown";
static char Reserved (] = "Reserved";

char ·FaultTypes[] = (
"Parallel", /* OxOO *1
"Trace", /* OxOl *1
"Operation", 1* Ox02 *1
"Arithmetic", 1* Ox03 *1
Reserved, /. Ox04 */

"Constraint", 1* OxOS *1
Reserved, I· Ox06 *1

"Protection", 1* OxO? *1
Reserved, 1* OxOS *1
Reserved, 1* Ox09 *1

"Type Mismatch", 1* OxOA *1
Unknown, 1* OxOB *1
Unknown, 1* OxOC *1
Unknown, /* OxOD *1
Unknown, 1* OxOE */
Unknown, /* OxOF *1

I;

char *TraceFaultTypes[) = {
Unknown, /* OxOl *1

"Instruction", /* Ox02 *1
"Branch", 1* Ox04 */

Jun 22 1990 10:34:28
"Call", /* Ox08 ·1
"Return", /. Ox10 */
"PreReturn" , /* Ox20 *1
"Supervisory", /* Ox40 *1
"BreakPt" /* Ox80 *1
I;

char *OperFaultTypes[) = (
"Inv. OpCode", /* Ox01 */
"Unimplemented", /* Ox02 */
"Unaligned", /* Ox03 *1
"Inv. Operand" /* Ox04 */
I;

FaultErr(Addr, Type)
long Type;
char *Addr;
{

Proc.c

unsigned long SubTypeBit, TypeBits;
char *TypeStr, *SubTypeStr;

TypeBits = «Type » 16) & OxOF);
TypeStr = FaultTypes[TypeBits);
if (TypeBits == 1) {

I

subTypeBit = FindBitSet(Type & OxFF);
SubTypeStr = TraceFaultTypes[SubTypeBit);

else if (TypeBits == 2) {
SubTypeBit «Type - 1) & Ox03);
SubTypeStr OperFaultTypes[SubTypeBit);

else (
SubTypeStr - ,

xprintf(FltStr, Addr, TypeStr, subTypeStr);
DumpRegs();
LineEdit () ;

Page 4

1******·****·****·****************************··*··*** *****.****.********
* Faultlnit(): The fault table consists of 32 - 8 bytes fault entries.

All faults are initialized to the unexpected fault
handler.

***/

struct FltWrapper FltCode = {

I;

Oxb2805000, Oxb2a06010, Oxb2c06020, Oxa2e06030, Ox8c200040, Ox59084004,
Ox9027f400, Oxfffffff8, Ox8c283000, OxOOffOOff, Ox58894084, Ox9087f400,
Oxfffffffc, Ox86003000,
Oxeeeeeeee,
Ox8c200040, OxS9084104, Oxb080S000, OxbOa06010,
OxbOc06020, OxaOe06030, OxOaOOOOOO,
Oxeeeeeeee, Oxeeeeeeee, Oxeeeeeeee

FaultInit ()
{

int i, UnExpFault();
unsigned long ·FaultPtr;

TraceFlag = 0;
Faultptr = f1t table;
forti = 0; i <-32; i ++) {

·Fau1tPtr++ (unsigned long) UnExpFault;
*FaultPtr++ = (unsigned long) 0;

Jun 22 1990 10:34:28 Proc.c PageS

1**
Trace events that happen on the next V960 bug 'call' instruction.
The 'call' routine must be modified to set the pc and tc.

***1

'define
'define
'define

'define
'define
'define
'define
'define
'define
'define
'define

PCTRACE ENABLE
MAX BREAK POINTS
FMARK_OPCODE

STEP
BRANCH
CALL
RETURN
PRERETURN
SUPERVISOR
BREAKPOINT
ALL

Ox02
Ox04
OxOS
Ox10
Ox20
Ox40
Ox80
OxFE

struct TraceTable

} ;

char *Name;
unsigned long Mask;

OxOl
20
Ox66003eOO

1* Single step trace */
1* branch trace *1
/* call trace */
1* return trace *1
/* Pre-return trace *1
1* supervisor trace ·1
1* supervisor trace ·1
/* All traces *1

static struct TraceTable TTable[]
STEP, "Step",

"Branch",
"Call",
"Return",
"PreReturn",
"Supervisor",
"BreakPoint",

11

BRANCH,
CALL,
RETURN,
PRERETURN,
SUPERVISOR,
BREAKPOINT

static int BreakPointFlag;
static unsigned long *BreakPointAddr;
static unsigned long OldTraceMask;

extern unsigned long LocalTraceRegFile[], GlobalTraceRegFile(j,
CntrITraceRegFile(];

extern unsigned long LocaIRegFile(], GlobalRegFile[J, CntrlRegFile(J;

Trace(Flag, ModeStr)
char Flag, *ModeStr;
{

unsigned long Mode;

if (ModeStr != NULL) {
if «Mode = ModeToMaskCModeStr» == 0) {

xprintfC"\nIllegal Mode request: %s", ModeStr);
return;

}
if (Flag == 'a') {

TraceMask = TraceMask
}
if (Flag == 'r') {

TraceMask = TraceMask
I
DispTrace () ;
if (TraceMask)

TraceFlag = TRUE;

Mode;

-Mode;

Jun 22 1990 10:34:28 Proc.c Page 6

else
TraceFlag FALSE;

1·** *******************
* ModeToMask(): This function converts the 'Mode' indicating a tracing

mode into a bit mask corresponding to the trace
mask register. This is useful for turning on and off
the trace mechanisms.

***1

static ModeToMask(Mode)
char *Mode;
{

unsigned long il

fore i = 0; i < (sizeof(TTable) I sizeof(struct TraceTable» ; i++) {
if (CmpStr(Mode,TTable[il.Name»

return(TTable(il.Mask);
}
return(OxOO);

/*.************************** ••••• * •••• *.***.**.**************.**********
• DispTrace(): This function displays which trace mechanisms have been
* enabled.
***1

static DispTrace()
{

unsigned long ii

PrNewLine();
for(i '" 0; i < (sizeof(TTable) I sizeof(struct TraceTable» 1 i++) I

if (TraceMask & TTable[il.Mask)
xprintf("%s trace on\n", TTable[il.Name),

struct BPts {

} ;

unsigned long Address;
unsigned long OpCode;

static struct BPts BreakPoints(MAX BREAK POINTSj;
static int NumBreakPoints; -

/***.*.**********************.******.*.***.*.******************.*********
* BPInit(): This function initializes the breakpoint data structures

as containing no breakpoints.
***1

BPlnit ()
{

int i;

forti = 0; i < MAX BREAK POINTS; i++)
BreakPoints (ij7Address NULL;
BreakPoints(ij.OpCode = NULL;

I
TraceEnabled TraceFlag
BreakPointFlag = FALSE;

TraceMask NumBreakPoints 0;

3

Jun 22 1990 10:34:28 Proc.c Page 7
/**

* BPoint(): This monitor function provide the abilty to add, remove and
display breakpoints. The 'Flag' indicates the operation of
add (-a), remove (-r) and display (-d). The 'Address' is used
only for the add and remove functions that add or remove
a breakpoint.

***/

BPoint(Flag, Address)
unsigned char Flag;
unsigned long Address;
{

int i;
unsigned long OpCode;
unsigned long *Memory;

Memory = (unsigned long *) (Address & OxFFFFFFFC);

if (Flag == 'a') {

}

if (!OneWordlnstr(*(Memory - 1») (
xprintf("\nIllegal breakpoint address");
return;

}
for (i = 0; i < MAX BREAK POINTS ; i++) {

}

if (BreakPointsTi].Address == NULL) {
BreakPoints[i].Address = (unsigned long) Memory;
BreakPoints[i].OpCode = *Memory;
*Memory = (unsigned long) FMARK OPCODE;
NumBreakPoints++; -
break;

if (i == MAX BREAK POINTS) (
xprintf("\nMaxBreak points exceeded\n");

}
else if (Flag == 'r') {

for (i = 0; i < MAX BREAK POINTS ; i++) {

)

if (BreakPointsTi].Adoress == (unsigned long) Memory) (
*Memory = BreakPoints[i].OpCode;
BreakPoints[i).Address = 0;
NumBreakPoints--;
break;

if (i == MAX BREAK POINTS) (
xprintf("\nBreakPoint at Ox%x not set\n", Address);

}
else if (Flag == 'd t) (

for (i = 0; i < MAX BREAK POINTS ; i++) {
if (BreakPointsTi}.Adoress != NULL) (

xprintf("\nBreakPoint at Ox%x",BreakPoints[i].Address);

}
PrNewLine () ;

if (NumBreakPoints) {
TraceMask 1= BREAKPOINT;
TraceFlag = TRUE;

else (
TraceMask &= NBREAKPOINT;
TraceFlag = FALSE;

/**

Jun 22 1990 10:34:28 Proc.c
* SaveState(): This function copies the state of the register files

of the faulting program to the trace save area. This
is necessary because unexpected faults at the monitor
would destroy the original registers.

***/

static SaveState()
(

int i;

for(i = 0; i < 16; i++) (
LocalTraceRegFile[i] = LocalRegFile[i);
GlobalTraceRegFile[i] = GlobalRegFile[i];

}
for(i = 0; i < 8; i++) (

CntrlTraceRegFile[i) CntrlRegFile[i);

Page 8

1*** *******************
* RcvTrace(): This function is called when a fault has occurred that

was set up to occur. The state of the program is saved
useful information is printed and the monitor is called
again.

***/

RcvTrace(Addr, Record)
unsigned long Record;
unsigned long *Addr;
(

unsigned long Type, SubType, i;

Type = «Record » 16) & OxFF);
SubType = (Record & OxFE);

if (BreakPointFlag) (

}

SaveState();
BreakPointFlag = FALSE;
* (unsigned long *) BreakPointAddr
TraceMask = oldTraceMask;
ResumeTrace();

FMARK_OPCODE;

if «Type == 1) && (SubType & TraceMask» (
SaveState();
fori i = 0; i < (sizeof(TTable) / sizeof(struct TraceTable» ; i++) {

if (SubType & TTable[il.Mask)
break;

}
if (SubType & BREAKPOINT) {

BreakPointFlag TRUE;
BreakPointAddr Addr;

else (
BreakPointFlag FALSE;

}
DumpRegs () ;
xprintf("\nRecleved fault type' h' at Ox%x", TTable [i).Name, Addr);
DisAssemble (Addr, 2);

else (
FaultErr(Addr, Record);

1*** *******************
* Step(): This monitor function provides the ability to step through

Jun 22199010:34:28

***/

Step()
(

int i;

programs being debugged.

if (I TraceEnabled) (

Proc.c

xprintf("\nTrace not initiated by call");
return;

if (BreakPointFlag)
for (i = 0; i < MAX BREAK POINTS ; i++) {

Page 9

if (BreakPointsTi).Adaress == (unsigned long) BreakPointAddr) {
*(unsigned long *) BreakPointAddr = BreakPoints[i].OpCode;
break;

}
LocalTraceRegFile[2) -= 4;
OldTraceMask = TraceMask;
TraceMask 1= STEP;
ResumeTrace();

else (
ResumeTrace();

1*** *******************
* OneWordlnstr(): This function examines the 'OpCode' of an instruction

and determines if the instruction is a one word
instruction. This is necessary to determine if a
breakpoint can be asserted at a specific address.

***/

static oneWordInstr(OpCode)
unsigned long OpCode;
{

unsigned long Mode;

if «(OpCode » 24) & OxFF) < OxBO)
return TRUE;

if «OpCode & Ox00001000) == 0)
return TRUE;

Mode = «(OpCode » 10) & OxOF);
if «Mode == Ox4) II (Mode == Ox7»

return TRUE;
return FALSE;

1**
* ExecTrace(): This monitor function initiates the trace mechanism
* for the function 'Funct' and calls the function
* with arguments 'ArgO' to 'Arg7'.
***/

ExecTrace(Funct, ArgO, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7)
int (*Funct) ();
unsigned long ArgO, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7;
(

StartTrace(ArgO, Argl, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Funct);

5

Jun 22 1990 10:34:42 Proc.h Page 1
tdefine NMI_VECTOR OxFS /* Vector Definitions for the V960 *1

1*** *********************
The Interrupt Wrapper is a relocatable assembly language module which
is allocated on the stack. The Interrupt table vector location is
initialized to point to the wrapper and the wrapper is initialized to
point to the interrupt handler. This level of indirection will r~duce

* the dependency of the software on the type of processor and remove
* the necessity for assembly code.

* The assembly language module is included below:

stq
stq
stq
stt
1da
addo

ld
ldconst
and
mov
callx

lda
subo
ldq
ldq
ldq
ldt
ret

.space

.space

.space

gO, (sp)
g4, 16 (sp)
g8, 32 (sp)
g12,48(sp)
Ox40, r4
r4, sp, sp

-8(fp),r4
OxFF,r5
r4,r5,g1
rip,gO
_IntHdl

Ox40, r4
r4, sp, sp
(sp), gO
16(sp), g4
32(sp), g8
48(sp), g12

4
4
4

t Save registers gO-g14 and
t bump stack pointer.

t get vector
t mask
t Vector Level
t Address of exception
t IntHdl(Addr,Vector)

t Restore processor state.
t Registers gO-g14, sp

t Return to program.

t For debug or storage
t
t

**************** disassembly for Interrupt Wrapper ***********************

0 b2805000 stq gO, (sp)
4 b2a06010 stq g4, Ox10 (sp)
8 b2c06020 stq g8, Ox20 (sp)
c a2e06030 stt g12, Ox30 (sp)

10 8c200040 lda Ox40, r4
14 59084004 addo r4, sp, sp
18 9027f400 fffffff8 ld Oxfffffff8 (fp), r4
20 Sc2S00ff lda Oxff, r5
24 58894084 and r4, r5, gl
28 5cS01602 mov rip, gO
2c 86003000 xxxxxxxx callx OxO
34 8c200040 lda Ox40, r4
38 59084104 subo r4, sp, sp
3c b0805000 ldq (sp), gO
40 bOa06010 Idq OxlO (sp), q4
44 bOc06020 ldq Ox20 (sp), g8
48 aOe06030 1dt Ox30 (sp), g12
4c OaOOOOOO ret
50 xxxxxxxx .word OxO
54 xxxxxxxx • word OKO
58 xxxxxxxx .word OxO

**/

struct IntWrapper {
unsigned long CodeSegO[12];

Jun 22 1990 10:34:42

} ;

unsigned long CallAddr;
unsigned long CodeSeg1[7);
unsigned long DatSegO[3];

Proc.h Page 2

/**************** disassembly for fault Wrapper ***************************
*

stq
stq
stq
stt
lda
addo

ld
1da
and
ld
callx

1da
subo
ldq
1dq
ldq
ldt
ret

.space

.space

.space

gO, (sp)
g4, 16 (sp)
ga, 32 (sp)
g12,4a(sp)
Ox40, r4
r4, sp, sp

Oxfffffff8 (fp), r4
OxffOOff, r5
r4, r5, q1

Oxfffffffc (fp), gO
OxOO

Ox40, r4
r4, sp, sp
(sp), gO
16 (sp), g4
32(sp), q8
48 (sp), g12

4
4
4

Save registers qO-g14 and
bump stack pointer.

t Read fault type off stack.
t Mask off good bits.

t Read fault address of stack.
t Call fault handler.

t Restore processor state.
t Registers gO-g14, sp

t Return to program.

t For debug or storage
t
t

0: b2805000 stq gO, (sp)
4: b2a06010 stq g4, Ox10 (sp)
8: b2c06020 stq ga, Ox20 (sp)
c: a2e06030 stt g12, Ox30 (sp)

10: ac200040 lda Ox40, r4
14: 59084004 addo r4, sp, sp
18: 9027f400 fffffffa ld Oxfffffff8 (fp), r4

* 20: 8c283000 OOffOOff lda OxffOOff, r5
* 28: 58894084 and r4, r5, gl
* 2c: 9087f400 fffffffe ld Oxfffffffc (fp), gO
* 34: 86003000 00000000 callx OxO

3c: 8c200040 1da Ox40, r4
40: 59084104 subo r4, sp, sp
44: b0805000 ldq (sp), gO
48: bOa06010 Idq Ox10 (sp), g4
4c: bOc06020 ldq Ox20 (sp), g8
50: aOe06030 ldt -Ox30 (sp), g12
54: OaOOOOOO ret
58: 00000000 .word OxO
5c: 00000000 .word OxO
60: 00000000 .word OxO

**1

struct FltWrapper {

} ;

unsiqned long CodeSegO[14];
unsigned long CallAddr;
unsigned long CodeSeg1[7);
unsigned long DatSegO(3);

Jul17 1990 09:22:38 ProcAsm.s Page 1

#***
t
Copyright (c) 1990 Heurikon Corporation
t All Rights Reserved
t
t
t
t
I
t
I

t
t , , , ,
t

,
I

t ,

I

* t

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION.
The copyright notice above does not evidence any
actual or intended publication of such source code.

Heurikon hereby grants you permission to copy and modify
this software and its documentation. Heurikon grants
this permission provided that the above copyright notice
appears in all copies and that both the copyright notice and
this permission notice appear in supporting documentation. In
addition, Heurikon grants this permission provided that you
prominently mark as not part of the original any modifications
made to this software or documentation, and that the name of
Heurikon Corporation not be used in advertising or publicity
pertaining to distribution of the software or the documentation
without specific, written prior permission.

Heurikon Corporation does not warrant, guarantee or make any
representations regarding the use of, or the results of the use
of, the software and documentation in terms of correctness,
accuracy, reliability, currentness, or otherwise; and you rely
on the software, documentation and results solely at your own
risk.

MODIFICATIONS:

t****

'***
I ProcAsm.s: This file contains the assembly language functions used by
I the board, monitor, and processor functions to perform
t processor-specific functions. Below is a list of functions
I defined in this module that can be used by other functions.
1***

.text

.align

• globl
.globl
.globl
.globl
.globl
.globl
.globl
.globl
.globl
.globl
.globl
.globl

ReadlntMask
-ReadlntPend
-ClrIntPend
-Masklnts
-UnMaskInts
-UnExpFault
-UnExplntr
-FlushCache
-ResumeTrace
-StartTrace
-ReadTCW
::ModifyTCW

I Exported Functions.

1*** ******************
Below is a list of data structures that can be referenced by other
I functions.
1***

.globl LocalTraceRegFile

.globl =GlobalTraceRegFile
f Exported Data.

Jul17 199009:22:38 ProcAsm.s Page 2

-

-

;globl _CntrlTraceRegFile

t***
Below is a list of functions referenced from this module that must
t be defined in another module.
1***

.globl

.globl

.globl

.globl

.globl

.globl

.globl

.globl

.globl

.globl

.globl

.globl

.globl

LocalRegFile Imported Functions.
-GlobalRegFile
-CntrlRegFHe
-LocalTraceRegFile
-GlobalTraceRegFile
-CntrlTraceRegFile
-FaultErr
-ReadPCW
-ModHypcw
-RcvTrace
-TraceEnabled
-TraceMask
::::SPInit

.***
* Constants associated with the 'sysctl' instruction.
.***

.set REQUEST INTR, OxOOO

.set INVALID-CACHE, Ox100

.set CONFIG CACHE, Ox200

.set RE INITIALIZE, Ox300

.set LO-CTRL REGO, Ox400

.set LO-CTRL-REG1, Ox40l

.set LO-CTRL-REG2, Ox402

.set LO-CTRL-REG3, Ox403

.set LO-CTRL-REG4, Ox404

.set LO-CTRL-REG5, Ox405

.set LD::CTRL::REG6, Ox406

f***
• Below are the basic procesor functions and an example of the calling
1 sequence from a C program •
.***

ReadIntPend: mov sfO,gO Data = ReadIntPend();
ret Returns interrupt pending reg.

ClrIntpend: mov OxO, sf 0 I ClearIntPend()i
ret I Clears interrupt pending reg.

_MaskInts: notand stl,gO,stl MaskInts(IntMask);
ret Turn off bits in mask.

ReadlntMask: mov stl, gO Mask = ReadIntMask();
ret returns interrupt mask register.

UnMaskInts: mov - 0, sf 0 UnMaskInts(IntMask);
or gO, stl, stl Clear interrupt pending register
ret and turn on bits in mask.

FlushCache: ldconst INVALID CACHE,r3 FlushCache () ; - sysctl r3, r3,-r3 Invalidate cache opcode
ret

Jul17 1990 09:22:38 ProcAsm.s Page 3

_ModifyPCW: modpc gO,gO,gl t ModifyPCW(PCWMask);
ret t

-ReadPCW: modpc O,O,gO t ReadPCW();
ret t

_ModifyTCW: modtc gO,gl,g2 ModifyTCW(TCWMask);
ret

ReadTCW: modtc - O,O,gO ReadTCW();
ret

t***t***
t ERROR RECOVERY: The following routines are intended to provide error
t recovery from unexpected faults and interrupts. The
• functions UnExplntr and UnExpFault should be written
t to all unused vector locations in both the interrupt
• and the fault table.
• ***

t***
t UnExpFault: This is the fault recovery mechanism, which notifies the
user of the fault and then restarts the system. If the
trace flag indicates tracing is enabled and a masked fault
has occurred then the monitor is returned to gracefully after
• the program state has been saved.
#***

_UnExpFault: flushreq

lda GlobalReqFile,r4
stq qO, (r4)
stq g4, 16(r4)
stq g8, 32 (r4)
stq g12, 48(r4)

ldconst 0, g14

mov pfp,rS
ldconst OxFFFFFFFO,r6
and r6,rS,rS
st rS, 60(r4)

lda

ldq
stq
ldq
stq
ldq
stq
ldq
stq

lda
modpc
st
modac
st
mov
st
mov
st
modtc
st

_LocalRegFile,r4

(rS), gO
qO, (r4)
16 (rS), gO
gO, 16(r4)
32(r5), gO
gO, 32 (r4)
48(r5), gO
qO, 48(r4)

_CntrlRegFile,r4
O,O,rS

rS, (r4)
0,0,r5

rS, 4(r4)
sfO,rS
rS, 8 (r4)

sfl, rS
rS, 12 (r4)

O,O,rS
rS, 16(r4)

Flush all registers.

Save Global Registers.

Required to reset context.

Get Previous Frame ptr.

Save as FP of faulting proc.

Save Local Registers.

t Save Local Registers.

Jul17 199009:22:38 ProcAsm.s

NotTrace:

Id -8(fp),r4
Idconst OxFFOOFF,r5
and r4,r5,gl
ld -4(fp),gO
Ida TraceFlag, r4
ld (r4), r5
cmpobe 0, r5, NotTrace

callx
callx

callx
callx

RcvTrace
:LineEdit

FaultErr
:start_ip

Get fault type.
Mask.
Fault Type and Subtype.
Fault Address.

Print error message.

I Print error message.
t Start over.

Page 4

t***
UnExpIntr: This is the interrupt recovery mechanism, which notifies the
• user of the interrupt, removes the interrupt, and then restarts
t the system •
#***

_UnExpIntr: flushreg

lda GlobalRegFile,r4
stq gO, (r4)
stq g4, 16 (r4)
stq g8, 32(r4)
stq g12, 48(r4)

Ida LocalRegFile,r4
mov - pfp,rS
ldconst OxFFFFFFFO,r6
and r6,rS,rS
ldq (rS), gO
stq gO, (r4)
ldq 16(r5), gO
stq gO, 16 (r4)
Idq 32(rS), gO
stq gO, 32 (r4)
Idq 48(rS), gO
stq qO, 48 (r4)

Ida
modpc
st
modac
st
mov
st
mov
st
modtc
st

CntrlReqFile,r4
-O,O,rS
r5, (r4)
o,a,rS

r5, 4 (r4)
sfO,r5
rS, 8 (r4)

stl, r5
r5, 12 (r4)
0,0,r5

r5, 16 (r4)

ld -8(fp),r4
Idconst OxFF,r5
and r4,r5,q1
mov rip,gO

callx
callx

IntrErr
:start_ip

Flush all registers.

Save Global Registers.

I Save Local Registers.

t Save Local Registers.

t Get vector.
Mask.
t Vector Level.
I Interrupt address.

Print error message.
Start over.

J***

2

Jul17 199009:22:38 ProcAsm.s Page 5
f ResumeTrace(): This function is called when tracing is enabled and
f an expected trace is recognized.
t***

_ResumeTrace: flushreq

lda _GlobalTraceRegFile,r5
lda LocalTraceReqFile,r3
ld -60(rS), pfp
andnot OxOOOOOOOf, pfp, r14

ldq
stq
ldq
stq
Idq
stq
ldq
stq

lda
ldq
ldq
ldq
ldt

lda
ld
ldconst
and
and
or

lda
ld
ldconst
modpc
and
not
and
or

(r3), r4
r4, (r14)
16(r3), r4
r4, 16 (r14)
32(r3), r4
r4, 32 (r14)
4B(r3), r4
r4, 4B (r14)

Globa1TraceRegFile,r3
- (r3), gO
16 (r3) , q4
32 (r3), gB
4B (r3), g12

LocalTraceRegFile,r3
8(r3), r4
Oxfffffffc, r6
r6, r4, r4
Ox03, rip, r5
r4, r5, rip

CntrlTraceRegFile,r3
(r3), r4
OxffeOeefc, rS
OxOO,OxOO, r6
r5, r6, r7
r5, r5
r4, r5, r4
r4, r7, rB

or OxOl, r8, r8
st rB, -Ox10(fp)

ld
ldconst
modac
and
not
and
or
st

4(r3), r4
Oxffff6efB, r5
OxOO, OxOO, r6
r5, r6, r7
r5, r5
r4, r5, r4
r4, r7, rB
r8, -OxOc(fp)

flushreq

lda TraceMask, r3
Id -(r3), r4
ldconst OxFE, rS
modtc r5, r4, r4

mov
modpc
or
ret

Ox02, rS
OxOO, rS, r5
Ox01, pfp, pfp

f Restore Global Registers.
Restore Global Registers.

Restore Global Registers.

Restore RIP.

f Restore PCW.

f Restore ACW.

Return into Context.

Update trace settings.

Set to Supervisory State.
f Set Return from fault.

Jul17 199009:22:38 ProcAsm.s Page 6

1*** ******************
t StartTrace(): This function is called when tracing is enabled and
starts an instruction trace of the function defined
t by register g8 using parameters gO-g7. An example call
t is:
f
f StartTrace(ArgO, Argl, Arg2, Arg3, Arg4, ArgS, Arg6, Arg7, Function);
f
f***

lda TraceEnabled, r3
ldconst 1, r4

_StartTrace: f Flag tracing started.

st r4, (r3)

lda TraceMask, r3 f Set trace bits.
ld (r3), r4
ldconst OxFE, r5
modtc rS, r4, r4

ldconst OxOl, r5 Enable tracing.
modpc r4, r5, r5

callx (gB) Call function.

ldconst 0, r3
ldconst OxFE, r5
modtc r5, r3, r4 Disable trace bits.

ldconst OxOl, r5 • Disable tracing.
mod pc r4, rS, r3

callx BPInit -ret

1*** ******************
f Below are data definitions that are used in storing trace data.
f***

.align

.data

.bss LocalTraceRegFile, Ox0040,

.bss -GlobalTraceRegFile, Ox0040,

.bss :CntrlTraceRegFile, Ox0020,

3

Jun 251990 10:34:13 RTC.e Page 1
1*** *1o*****************
*
* Copyright (c) 1990 Heurikon Corporation
* All Rights Reserved

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION.
The copyright notice above does not evidence any
actual or intended publication of such source code.

* Heurikon hereby grants you permission to copy and modify
* this software and its documentation. Heurikon grants
* this permission provided that the above copyright notice
* appears in all copies and that both the copyright notice and
* this permission notice appear in supporting documentation. In
* addition, Heurikon grants this permission provided that you
* prominently mark as not part of the original any modifications
* made to this software or documentation, and that the name of
* Heurikon Corporation not be used in advertising or publicity
* pertaining to distribution of the software or the documentation
* without specific, written prior permission.

* Heurikon Corporation does not warrant, guarantee or make any
* representations regarding the use of, or the results of the use
* of, the software and documentation in terms of correctness,
* accuracy, reliability, currentness, or otherwise; and you rely
* on the software, documentation and results solely at your own
* risk.
*
* MODIFICATIONS:

*****1

iinclude "Bug.h"
iinclude "Board.h"

unsigned char Key[S]; /1o bss and data versions of RTC Key */
static unsigned char InitKey[1 = {

OxCS, Ox3A, OxA3, OxSC, OxCS, Ox3A, OxA3, OxSC
};

/**101o************1o**1o***1o
* rtc acc: This function reads or writes the real-time clock, depending

1o/

- on 'Type'. The 'data' is received and returned in the format
of the real-time clock (Board. h). This fUnction cannot be
loaded into ROM; because of the way the RTC operates, the
clock would be reset by ROM execution.

static rtc acc(data, Type)
unsigned cnar *data;
int Type;
{

int i, bit;
unsigned char temp;

i = *RD WATCH;
for(i =-0; i < 8, i++) {

for (bit = 1; bit & OxFF; bit «= 1) {
temp = (Key[i) & bit) ? 1oWR1_WATCH *WRO_WATCH;

if (Type)
forti = 0; i < 8; i++){

for (bit = 1; bit & OxFF; bit «= 1) {

Jun 25 1990 10:34:13 RTC.e Page 2

}
else {

temp (data [1]

forti = 0; i < 8; i++) (
data [iJ = 0;

bit) *WR1_WATCH

for (bit = 1; bit & OXFF; bit «= 1) {
data [i] 1= (*RD_WATCH & 1)? bit : 0;

*WRO_WATCH;

/*******************1o********1o***
* RtcAcc: This function accepts the structure 'Time' and either reads

the time into or writes the new time from this structure.
'Flag' indicates whether the function is reading or writing
the time. There are several very strange things that should be
described about this function:

***1

Because the RTC stores the time as packed nibbles internally
it is necessary to convert to packed nibbles when writing
and to binary when reading the RTC.

Because the ROM cannot be accessed when the RTC is being read
it is necessary to copy the function rtc acc into RAM and then
execute the function. This is also why tne 'Key' is located in
the 'bss' section. Great care was taken to assure that the
function rtc_acc was relocatable so be careful!!!.

RtcAcc(Time, Flag)
tm *Time;
int Flag;
(

int (*Funct) ();
lnt SiZe, nibble(), rtc acc();
char *Malloc(); -
unsigned long tmp;

struct rtc_data RtcData;

CopyMem(InitKey, Key, sizeof(InitKey»;

if (Flag == WRITE)
RtcData.hour BinToHex(Time->tm hour); 1* Write * /
RtcData.min BinToHex(Time->tm-min);
RtcData.month BinToHex(Time->tm-mon);
RtcData.weekday Time->tm wday I Ox10;

if (Time->tm_wday ~= 0) 1* Converts sunday to 7
*1

RtcData.weekday = Ox17;
RtcData.date BinToHex(Time->tm mday);
RtcData.year BinToHex(Time->tm-year);
RtcData.sec 0; -
RtcData.dotsec 0;
}

Hfdef RAM MON 1* If RAM based monitor */
rtc acc(&RtcData, Flag);

ielse -
Size = (int) RtcAcc - (int) rtc acc;
Funct = (int (*) () Malloc(Size);
FlushCache () ;
CopyMem(rtc acc, Funct, Size);
Funct(&RtcData, Flag);
Free(Funct);

1* If EPROM based monitor *1
/* Size of function to copy */
1* Allocate memory for function.*!

1* Copy function to memory. *1
1* Call function. *1

1

Jun 251990 10:34:13 RTC.c
lendif

if (Flag == READ)

} ;

Time->tm fsec HexToBin(RtcData.dotsec);
Time->tm-sec HexToBin(RtcData.sec);
Time->tm-min HexToBin(RtcData.min);
Time->tm-hour HexToBin(RtcData.hour);
Time->tm-mday HexToBin(RtcData.date);
Time->tm-mon HexToBin(RtcData.month);
Time->tm-year HexToBin(RtcData.year);
Time->tm-wday (RtcData.weekday & Ox?);

If (Time->tm wday == ?)
Time->tm_wday = 0;

Page 3

/* Read */

/* Converts sunday to 0 */

2

Jun 25 1990 12:00:56 SCC.c Page 1

/**
*
" Copyright (c) 1990 Heurikon Corporation
" All Rights Reserved

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION.
The copyright notice above does not evidence any
actual or intended publication of such source code.

* Heurikon hereby grants you permission to copy and modify
* this software and its documentation. Heurikon grants
* this permission provided that the above copyright notice
* appears in all copies and that both the copyright notice and
* this permission notice appear in supporting documentation. In

addition, Heurikon grants this permission provided that you
prominently mark as not part of the original any modifications

* made to this software or documentation, and that the name of
• Heurikon Corporation not be used in advertising or publicity
• pertaining to distribution of the software or the documentation
• without specific, written prior permission.

* Heurikon Corporation does not warrant, guarantee or make any
* representations regarding the use of, or the results of the use
* of, the software and documentation in terms of correctness,
* accuracy, reliability, currentness, or otherwise; and you rely
* on the software, documentation and results solely at your own
* risk.

* MODIFICATIONS:
*
*"***/

tinclude "Bug.h"
tinclude "Board.h"
Jinclude "NvMonDefs .h"

/***
* SCC.c: This file contains the functions necessary to read, write and

configure the ZB5C30-16 serial Controller.
The functions defined in this module are listed below:

*
*
***/

GetChar()
TxEmpty ()
SCCReset ()

extern NV_MonDefs NvMonDefs;

volatile unsigned long ConDev;
volatile unsigned long ModDev;

static unsigned long SerDevList[]
(unsigned long) SCC PORTA,
(unsigned long) see-PORTB,
(unsigned long) SeC-PORTe,
(unsigned long) See-PORTO,

}; -

putChar()
ChangeBaud ()
FoundBreak()

KeyHit ()
SetSerDevs ()
ConfigPort ()

/* Monitor defined configuration

/* Console Device
/* Modem/Download Device

*/

*/
*/

1* List of port assignments */
1* Corresponds to NV definitions.*/

/**
* GetChar(): Get a character from specified device 'Port'. This function
* is also set up to check for a 'break' and allows the monitor
* to perform fUnctions on break, like reset or baud changes.
*******/

GetChar(Port)

Jun 25 1990 12:00:56
volatile struct SCCPort *Port;
{

unsigned char Data;

Port->Control = 0;
while (1) {

if (Port->Control & Ox01) {

SCC.c

Data = Port->Data;
if (Port->Control & Ox80) {

Page 2

Port->Control = OxlO; /* Reset Ext/Status Ints */
Port->Control = Ox10; /* Only works if done twice */

FoundBreak(Port);
} else {

return(Data);
I

/********"****************.*********"*************"***"**".*.* •••• ".,,.****,,**
* PutChar(): Put a character 'c' to specified device 'Port'
*******/

PutChar(Port, c)
volatile struct SCCPort *Port;
char c;
{

Port->Control = 0;
while (! (Port->Control
Port->Data = c;

Ox04»);

/************"**"**************
* KeyHit(): Check for character on specified device 'Port'. This is
* useful during powerup and transparent mode.
*"*****/

KeyHit(Port}
volatile struct SCCPort *Port;
{

Port->Control = 0;
return(Port->Control & OxOl);

/**
* TXEmpty(): Check transmitter if empty on specified device 'Port'. This
* function is useful for transparent mode.
*"***"*/

TxEmpty(Port)
volatile struct SCCPort *Port;
(

return«Port->Control & Ox04) TRUE FALSE};

/**
* ChanqeBaud(): Change baud rate for specified port 'Port' to rate 'Baud'.
*******1

Change Baud (Baud, Port)
volatile struct SCCPort *Port;
int Baud;
{

int tc;
unsigned short dummy;

Jun 25 1990 12:00:56 SCC.c Page 3
for (tc :: 0: tc < OxlOOO; tc++);

tc = BaudToTimeConst(Baud);

dummy :: Port->Control;
Port->Control OxOC;
Port->Control :: tc;
Port->Control = OxOD;
Port->Control = tc » 8;

for (tc :: 0; tc < OxlOOO; tc++);

/**
* SCCReset(): This function hard resets both ports associated with 'Port'
* because it's too clumsy to reset individual ports.
*******1

static SCCReset(Port)
volatile struct SCCPort *Port;
(

Port->Control 0;
Port->Control Ox09;
Port->Control = OxCO;

1**
* SetSerDevs(): This function uses the current definitions in the

NV structure 'NvMonOefs' to configure the serial ports.
This function is called once when NvMonDefs contains
the default system configuration and once after the
NV memory has been read with the user's configuration.

* NOTICE: It is important that the NvMonDefs be valid when this
function is called!

* * /

SetSerDevs ()
{

SCCReset(SCC PORTB};
SCCReset(SCC:PORTD);

/* Reset all serial devices. *1

ConDev :: SerDevList[NvMonDefs.Console.PortNum]; /* Set up Console. */
ConfigPort(ConDev, &NvMonDefs.Console);
ChangeBaud(NvMonDefs.Console.Baud, ConDev);

ModDev = SerDevList[NvMonDefs.DownLoad.PortNum]; /* Set up Download.*1
ConfigPort(ModDev, &NvMonDefs.DownLoad);
ChangeBaud(NvMonDefs.DownLoad.Baud, ModDev);

/**
* ConfigPort(): Initialize specified port 'Port' to the configuration

specified by 'Conf'. The configurable portion of this
function includes:

**/

Data Bits
Stop Bits
Parity
XOnXOff

static ConfigPort(Port, Conf)
volatile struct SCCPort *Port;
NVU Port *Conf;
{ -

5,6,7 or 8.
l,or 2.
None, Even or Odd.
On/Off

Jun 25 1990 12:00:56 SCC.c Page 4
static unsigned

Ox09, OxOO,
OxOA, OxOO,
OxOB, OxS6,
OxOE, Ox02,
OxOE, Ox03,
OxOF, oxeo,
OxOl, OxOO,

}I

char SCCTabl[] =
/* No Reset
/* NRZ
/* TxClk = Rxclk = Baud Rate Gen
/* Baud Rate Generator Source
/* Start Baud Rate Generator
/* Enable interrupt on break

register int Cnt;
register unsigned char Mask;

for (Cnt = 0; Cnt < OxlOOO; Cnt++);

Port->Control = 0;
for(Cnt = 0; Cnt < sizeof(SCCTabl) I Cnt++)

Port->Control = SCCTabl(Cnt];

Mask = OxO;

*/
*/
*/
*1
*1
*1

if (Parity (Conf)
Mask = Ox3;

if (Parity (Conf)
Mask :: Oxl;

SP _PARITY_EVEN)

SP_PARITY_ODD)

1* Determine parity.

if (StopBits(Conf»
Mask = Mask I Ox08;

1* Determine stop bits.

/* Write register 4

*1

*1

*1 Port->Control Ox04;
Port->Control Ox44 I Mask; 1* 16x clock, parity, stop bits *1

Mask = DataBits(Conf);
Mask = «Mask & Oxl) « 1)

+ «Mask & Ox2) » 1) I
Port->Control = OxOS;
Port->Control = (OxBA I (Mask « 5»;

Mask = Mask « 6;
if (XOnXOff(Conf»

Mask = Mask I Ox20;
Port->Control Ox03;
Port->Control = (OxOl I Mask);

Port->Control = Ox38;
Port->Control :: Ox30;
Port->Control = OxlO;
for (Cnt :: 0; Cnt < OxlOOO; Cnt++);

1* Determine data bits.

/* Set Tx bit size, enable Tx.

/* Turn on auto enables.

/* Set Rx Bit Size, Enable Rx

1* Reset highest IUS.
1* Reset errors.
1* Reset Ext/Status Ints.

1*** ***********************
* FoundBreak(): This function performs functions defined by the NY memory
* configuration when a break is received. Either the monitor
* is reset or the baud rate is changed.
*******/

static FoundBreak(Port)
volatile struct SCCPort *Port;
{

NYU_Port *Conf;

if «unsigned long) Port == ConDev) {
ConE:: &NvMonDeEs.Console;

else if «unsigned long) Port =: ModDev)
Cont = &NvMonDefs.DownLoad;

else {

*/

*1

*1

*/
*/
*1

*1

2

Jun 25 1990 12:00:56 SCC.c
return;

if (ResetOnBreak(Conf» /* If reset on break allowed
MonEntryPt () ; /* Reset monitor

if (ChBaudOnBreak(Conf» (/* If baud changes on break
Conf->Baud = GetNextBaud(Conf->Baud);

ChangeBaud(Conf->Baud, Port);
xprintf("\nChanged baud rate to \d\n", Conf->Baud);

Page 5

*/

*/
*/

Jul17 1990 15:07:00 SCSl.c Page 1
/**
*
* Copyright (c) 1990 Heurikon Corporation
* All Rights Reserved

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION.
The copyright notice above does not evidence any
actual or intended publication of such source code.

* Heurikon hereby grants you permission to copy and modify
* this software and its documentation. Heurikon grants
* this permission provided that the above copyright notice
* appears in all copies and that both the copyright notice and
• this permission notice appear in supporting documentation. In
* addition, Heurikon grants this permission provided that you
* prominently mark as not part of the original any modifications
* made to this software or documentation, and that the name of
* Heurikon Corporation not be used in advertising or publicity
* pertaining to distribution of the software or the documentation
* without specific, written prior permission.

* Heurikon Corporation does not warrant, guarantee or make any
* representations regarding the use of, or the results of the use
* of, the software and documentation in terms of correctness,
* accuracy, reliability, currentness, or otherwise; and you rely
* on the software, documentation and results solely at your own
* risk.

* MODIFICATIONS:

*****/

'include "Bug.h"
'include "Board.h"
linclude "NvMonDefs.h"

extern NV_MonDefs NvMonDefs;

/***
* SCSI.c: This file contains the functions necessary to read, write and

configure the WD33C93A SCSI Controller.
The functions defined in this module are listed below:

* ResetSCSI(): Sets the SCSI to the hardware reset state and removes
the reset interrupt.

* InitSCSI(): This sets the state of the SCSI according to the NV
definitions.

***/

extern NV_MonDefs NvMonDefs; 1* Monitor-defined configuration */

.define SC RESET
'define FREQ_SEL

OxOC
Ox80

1* Issues an RESET Command to WD33C93 */
/* Select Frequency for Divisor of 4 */

ResetSCSI()
{

unsigned char Stat;

MaskInts(SCSI INT MASK);
SCWriteReg(SREG OWNID, FREQ SEL);
sCReadReg(SREG SCSI STAT, Stat);
SCWriteReg(SREG CMD; SC RESET);
SCReadReg(SREG_SCSI_STAT, Stat);

/* Disable Interrupts. */
/* Initailize for 16MHZ operation.*/
1* Read Status register. */
1* Generate SCSI Reset. */
1* Remove SCSI Interrupt. *1

JuI17199015:07:00

InitSCSIState ()
{

unsigned char Stat;
NV_MonDefPtr Conf = &NvMonDefs;

ResetSCSI () ;
if (ScsiResetEnbl(Conf»

*SCSI RESET 1;
Delay(100);
*SCSI RESET = 0;
I

SCSLc

/* Reset SCSI on reset? */
/* Toggle the reset line. */
/* Leave on - 1 second. */
/* Remove SCSI reset. */

Page 2

Jun 22 1990 15 :30 :09 VME.c Page 1

1**
* * Copyright (c) 1990 Heurikon Corporation
* All Rights Reserved

* THIS IS UNPUBLISHED PROPRIETARt SOURCE CODE OF HEURIKON CORPORATION.
The copyright notice above does not eVidence any
actual or intended publication of such source code.

* Heurikon hereby grants you permission to copy and modify
* this software and its documentation. Heurikon grants
* this permission provided that the above copyright notice

appears in all copies and that both the copyright notice and
this permission notice appear in supporting documentation. In

* addition, Heurikon grants this permission provided that you
* prominently mark as not part of the original any modifications
* made to this software or documentation, and that the name of
* Heurikon Corporation not be used in advertising or publicity
* pertaining to distribution of the software or the documentation
* without specific, written prior permission.

* Heurikon Corporation does not warrant, guarantee or make any
* representations regarding the use of, or the results of the use
* of, the software and documentation in terms of correctness,
* accuracy, reliability, currentness, or otherwise; and you rely
* on the software, documentation and results solely at your own
* risk.
*
* * MODIFICATIONS:
*
*****1

'include "Bug.h M

'include "Board.h"
'include "NvMonDefs.h"

1*** ********************
* VME.c: This file contains the functions necessary to initialize the

VMEbus as well as examples of how to perform several basic
VME functions.

ConfigBus() SlaveEnable() SlaveDis ()
UnMaskVMElnt()

***1

extern NV_MonDefs NvMonDefs; 1* NV Monitor definitions *1

1*** *******************
* ConfigVmeBus(): This function uses the current definitions in the

NV structure 'NvMonDefs' to configure the VME bus.
This function is called once when NvMonDefs contains
the defualt system configuration and once after the
NV memory has been read with the users configuration.

Configured in the function are the following:

Extended Space
Standard Space
Short Space
Bus Req Level
Bus Rel Modes
Local Bus Timer
VME Bus Timer
Arbiter Mode
Write Post Slv

Address and Enable
Address and Enable
Address and Enable
BR3, BR2, BR1, BRO
WhenDone, OnReq, OnClear, Never
4us to Infinite
4us to Infinite
RoundRobin, Priority
On/off

Jun 22 1990 15:30:09
Write Post Mst
Turbo mode
Sys Fail State
Indiv R-Mod-Wr

VME.c
On/Off
On/Off
On/Off
On/Off

Page 2

* NOTICE:
*

It is important that the NvMonDefs be valid when this
function is called!

***1

ConfigVmeBus ()
(

NVU 8usConfig *Conf = &NvMonDefs.VmeBus;
-unsigned char RegVal, Mask;

int i;

VIC->ArbReqConfig.Reg (BusReqLev(Conf) « 5)

VIC->TranTimeOut.Reg

VIC->RelCntrl.Reg
VIC->VMEConfig.Reg

I (ArbiterMode(Conf)
(VmeBusTimer(Conf) « 5)

I (LocBusTimer(Conf)
(MastRelMode(Conf) « 6);
(TurboMode(Conf) ? 2 : 0)

I (IndivRMC(Conf)

RegVal = VIC->SlvSel(l) [O).Reg & Ox3F;
Mask = (SlaveWrPost(Conf) ? OxBO : 0) I (MasterWrPost(Conf)

vIc->SlvSel(l) [O).Reg = RegVal I Mask;

if (ExtSlaveEnbl(Conf» (
SlaveEnable('e',ExtSlaveMap(Conf»;

} else (
SlaveDis('e');
}

if (StdSlaveEnbl(Conf» (
SlaveEnable('s',StdSlaveMap(Conf»;

} else (
SlaveDis('s');
}

if (ShtslaveEnbl(Conf» (
SlaveEnable('c',ShtSlaveMap(Conf»;

else (
SlaveDis('c');
}

VIC->ICR[1).Reg = OxOO; 1* Allow masking of SYSFAIL.
if (Sysfail(Conf») {

VIC->ICR(6).Req Ox40; 1* Remove SYSFAIL.
} else {
VIC->ICR[6).Req OxOO; 1* Assert SYSFAIL.
}
for (i = 0; i < 5 ; i++)
VIC->ICR(i).Req = Conf->IComReg[i);

OxBO 0);

« 2);

Ox40 0);

Ox40 0);

*1

*/

*1

1*** *******************
* IsSystemController(): This function returns true if the board is the
* VMEbus system controller.
***1

IsSystemController()
{

if (VIC->VMEConfig.Reg & OxOl)
return FALSE;

else {
return TRUE;

1

Jun 22 1990 15:30:09 VME.c Page 3

/**
* SlaveEnable(): This monitor function allows for enabling and disabling

of the 3 slave VMEBus address spaces. The 'Flag'
indicates either 'e' (extended space), 's' (standard
space) or 'c' (communications or short space). The

* 'Address' should contain the base address to be
* mapped to. The significant portion of the address field

is defined as:

*
****/

FFxxxxxx
xxFxxxxx
xxxxFFxx

for the extended space
for the standard space
for the short space

SlaveEnable(Flag, Address)
char Flag;
unsigned long Address;
I

unsigned char RegVal;

switch (Flag) I
case 'E':
case 'e': I

RegVal = VIC->SlvSel[lj [O}.Reg & OxCO;
VIC->Slvsel[l] [O].Reg = RegVal I Ox10;
VIC->SlvSel [1] [1] .Reg = OxOO;
WriteCIOPortA((unsigned char) (Address» 24»;
*SLAVE EXT ENBL = 1;
break;- -

case'S' :
case ' S': {

Vlc->SlvSel[O] (O].Reg
VIC->SlvSel[O] [l).Reg
WriteCIOPortC«unsigned
*SLAVE STD ENBL = 1;
break;- -

case 'C':
case' c': {

Ox14;
OxOO;
char) (Address » 20»;

WrlteCIOPortB «unsigned char) (Address » 8»;
*SLAVE SHT ENBL = 1;
break;- -

default: {
xprintf("\nIllegal flag expected -e, -s or -chI;

I

/**
* SlaveDis(): Disables the VMEbus Address Space specified by 'Flag'

which indicates either 'e ' (extended space), 's'
(standard space) or 'c' (communications or short space).

***/

SlaveDis(Flag)
char Flag;
I

I, _:'

switch (Flag)
case' E' :
case' e': {

*SLAVE EXT ENBL 0;
break;- -

Jun 22 1990 15:30:09

case'S' :
case 's': {

*SLAVE STD ENBL
break;- -

case 'C':
case' c': I

*SLAVE SHT ENBL
break;- -

default: I

VME.c

0;

0;

xprintf("\nIllegal flag expected -e, -s or -c");
I

Page 4

/**
* UnMaskVMElnt(): Unmasks VME interrupt number IRQNum. The interrupt

is presented to the B0960CA on IPLO (INTO), IPL1
(INT1) or IPL2 (INT2) according to IPLNum. If the
IRQNum is 0 then all interrupts are masked off.

***/

UnMaSKVMElnt(IRQNum, IPLNum)
unsigned char IRQNum, IPLNum;
I

if (IRQNum == 0) {
for(IRQNum = 0; IRQNum < 8; IRQNum++) {

VIC->VMElntCntrl[IRQNum].Reg = Ox80;
I

elsel
VIC->VMElntCntrl[IRQNum - l].Reg (1 « IPLNum);

Appendix B - NV-RAM Information

NvMonDefs.h

NVAssign.h

NVDefs.h

NVLib.e

NV.e

The NY-RAM memory is an 8,192-byte EEPROM that contains
manufacturing, service, and hardware configuration information;
monitor and board initialization information; and user-defined
information. The start address, size, and description of the
device are given in Table B-1:

TABLE B-1
EEPROM addresses

Device Byte Offsets Data
Address

0270,000016 0-15FF16 User-defined data area

0270,800016 160016 -17FF16 Monitorlboard initialization

0270,COO016 180016 -1 FFF16 Manufacturing/service hardware
information

This appendix contains the following files:

This header file defines the bit field assignments for the
NVRAMIEEPROM, as they are defined by the board.

This header file defines the bit field assignments for the
NVRAM!EEP ROM , as they are defined by Heurikon.

This header file includes the basic error codes and the
codes passed to NVOp to indicate the type of operations to
perform on nonvolatile memory.

This file contains the nonvolatile library functions used to
manage NVRAM or EEPROM.

This file contains the functions necessary to read, write, and
configure the 28C64 EEPROM.

Jun 22 1990 10:28:12 NvMonDefs.h Page 1
1*** *******************

* Copyright (c) 1990 Heurikon corporation
* All Rights Reserved

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION.
The copyright notice above does not evidence any
actual or intended publication of such source code.

* Heurikon hereby grants you permission to copy and modify
* this software and its documentation. Heurikon grants
* this permission provided that the above copyright notice
* appears in all copies and that both the copyright notice and
* this permission notice appear in supporting documentation. In
* addition, Heurikon grants this permission provided that you
* prominently mark as not part of the original any modifications
* made to this software or documentation, and that the name of
* Heurikon corporation not be used in advertising or publicity
* pertaining to distribution of the software or the documentation
* without specific, written prior permission.

* Heurikon Corporation does not warrant, guarantee or make any
* representations regarding the use of, or the results of the use
* of, the software and documentation in terms of correctness,
* accuracy, reliability, currentness, or otherwise; and you rely
* on the software, documentation and results solely at your own
* risk.

* MODIFICATIONS:

*****1

'include "NVAssign.h"

'define MPU S0960CA
'define MMU-NONE
'define CACHE NONE
'define FPU NONE
'define DMA-960CA
'define MEMEXP NONE
'define STREAM:NONE

'define ETH S2596CA
'define ETH:NONE

4
o
o
o
5
o
o

1
o

'define HDISK NONE 0
'define HDISK:WD33C93A 4

1* Pull in the Internal data definitions

1* Fixed Hardware devices

1* Ethernet may be optional

1* SCSI may be optional

*1

*1

*1

*1

1*** ************************
* NvMonDefs.h: This header file defines the bit field assignments

* NOTICE:

for the NVRAM/EEPROM, as they are defined by the board.
It can be used where a program needs to know which bit fields
are assigned to what.
This section describes the board specifics and includes the
Heurikon-specific structures and internal data structures
necessary to maintain NV memory (NVAssign.h).

Because different compilers may generate different spacing
between structures and structure elements based on the
alignment it is important to define structures carefully.
Problems can be avoided by forcing shorts and longs onto
long and short boundaries and padding structures to be
a multiple of long words in size.

An early version of the ic960 compiler generated the wrong

Jun 22 1990 10:28:12 NvMonDefs.h Page 2
structure addresses when the structures were organized as
(long, short, byte) quantities in that order. If the smaller
fields are first in the structure it works much better, so
be careful !1!!.

***1

1******* SERIAL DEFINITIONS ***
* This structure provides the definitions for a serial port. This
* includes the port number, baud rate and configuration.
* This structure should be loaded in the user-configurable portion of
* the nonvolatile memory array.
***1

typedef struct NVU Port {
unsigned char -Reserved;
unsigned char PortNum;
unsigned short PortFlaqs;
unsigned long Baud;

1* Port struct = 8/4 bytes

1* Port number (A,B,C or D)
1* Flags for port
1* Port baud rate

NVU_Port;

1* Warning: These macros only work with pointers

'define Parity(x) (x->PortFlags OxOO03)
'define DataBits(x) ((x->PortFlags OxOOOC) » 2)
'define XOnXOff(x) (x->PortFlags Ox0010)
'define ChBaudOnBreak(x) (x->PortFlags Ox0040)
'define ResetOnBreak(x) (x->PortFlags OxOOSO)
'define StopBits(x) (x->PortFlags Ox0100)

'define SP APORT 0 1* Serial Port Assignments
'define SP-BPORT 1
'define SP-CPORT 2
'define SP:OPORT 3

'define SP PARITY EVEN 0 1* Parity Type Assignments
'define SP-PARITY-ODD 1
'define SP-PARITY-NONE 2
'define SP:PARITY:FORCE 3

'define SP DATA SBITS 0 1* Data Bits Assignments
'define SP-DATA-6BITS 1
'define SP-DATA-7BITS 2
'define SP:DATA:8BITS 3

'define SP STOP lBITS 0
'define SP=STOP=2BITS 1

*1

*1
*1
*1

*1

*1

*1

*1

1******* BOOT DEFINITIONS ***
* This sections defines the boot parameters for loading an application
* from a device and executing the application. This section should be
* located in the user section of the nonvolatile memory device.
***1

typedef struct NVU_Boot I 1* Boot struct = 32/20 bytes *1
unsigned char AutoBootDev; 1* Auto Boot Device *1
unsigned char Device; 1* Boot Device *1
unsigned char Number; 1* Boot Device Number *1
unsigned char BootFlags; 1* Boot Flags *1
unsigned long LoadAddress; 1* Load Address */
unsigned long RomSize; 1* Boot ROM Size */
unsigned long RomBase; 1* Boot ROM Base address *1

Hfdef NV SMALL
char Reserved[4];

'else
char Reserved[16];

'endif

1

Jun 22 1990 10:28:12
} NVU_Boot;

'define ClrMemOnBoot(x)

'define AS DONT
'define AS-WINCH
'define AS-FLOPPY
'define AS-TAPE
.define AB-SERIAL
,define AS-ROM
'define AB:ETHERNET

o
1
2
3
4
6
7

NvMonOefs.h Page 3

(x->BootFlags & Ox01) 1* Clear on boot */

1* Auto Soot Definitions *1

/******* VME BUS DEFINITIONS **
* This structure defines the VMEbus configuration of the slave interface
* and Vic configuration registers. This structure should be loaded in
* the user-defined section of the NY memory.
***/

typedef struct NYU BusConfig (
unsigned char - IComReg[5];
unsigned char Padding;
unsigned short MiscBusFlags;
unsigned long SlaveSusMap;
unsigned char Reserved(4);

1* BusConfig struct = 16/4 bytes */
/* Communications reg 0-4 values */
1* Reserved *1
1* Misc bus configuration bits */
1* Slave bus map configuration *1
1* Reserved */

NVU_BusConfig;

Idefine ExtSlaveMap(x) (x->SlaveBusMap & OxFFOOOOOO)
'define StdSlaveMap(x) (x->SlaveBusMap & OxOOFOOOOO)
'define ShtSlaveMap(x) (x->SlaveBusMap & OxOOOOFFOO)

'define ExtSlaveEnbl(x) (x->SlaveBusMap OxOO080000)
'define StdSlaveEnbl(x) (x->SlaveBusMap OxOO040000)
'define ShtSlaveEnb1(x) (x->SlaveBusMap OxOO020000)

'define BusReqLev(x) (x->MiscBusFlags & OxOO03)
'define MastRelMode(x) «X->MiscBusFlags & OxOOOC) » 2)
'define LocBusTimer(x) «x->MiscBusFlaqs & Ox0070) » 4)
'define VmeSusTimer(x) «x->MiscBusFlags & Ox0380) » 7)
,define ArbiterMode(x) (X->MiscSusFlags & Ox0400)
,define SlaveWrPost(x) (x->MiscBusFlaqs & Ox0800)
'define MasterWrPost(x) (x->MiscBusFlaqs & Ox1000)
'define Sysfai1(x) (x->MiscBusFlags Ox2000)
'define TurboMode(x) (X->MiscBusFlaqs Ox4000)
'define IndivRMC(x) (x->MiscBusFlags Ox8000)

/******* MONITOR DEFINED DEFINITIONS *************************************
* This section binds the Monitor-defined data structures into one
* common structure, which should be loaded into NY memory in the user
* read/write section.
***1

typedef struct NY MonDefs (
NV Internal - Internal;
unsigned long MiscFlags;
unsigned long ProcFlags;
NVU Port Console;
NVU-Port DownLoad;
NVU-Boot Bootl
NVU-BusConfig VmeBus;

NV_MonDefs, *NY_MonDefPtri

/* Mon Defs struct = 76/48
1* Internal definitions
1* Misc monitor flags
/* Proc monitor flags
/* Console Port Configuration
1* Download Port Configuration
1* Boot Definitions
/* Bus ConfigUration Definitions

*/
*/
*/
*/
*/
*/
*/
*/

,define
,define
,define

ClrMemOnPowerUp(x) (x->MiscFlags Ox01)
Ox02)
Ox04)

/* Clear on powerup *1
ClrMemOnReset(x) (x->MiscFlaqs /* Clear on reset *1
DoPowerDiaq(x) (X->MiscFlags 1* Do powerup diagnostics */

Jun 22 1990 10:28:12 NvMonOefs.h Page 4
'define VsbMasterEnbl (x) (x->MiscFlags & Ox08) /* VSB Master enable */
,define VsbReleaseMode(x) (X->MiscFlaqs & Ox10) /* VSB Release modes */
,define EthArbiterEnbl(x) (x->MiscFlags & Ox20) /* Ethernet Arbiter Enbl */
'define EthByteEndian(x) (x->MiscFlags & Ox40) /* Ethernet Arbiter Enbl */
'define ScsiResetEnbl (x) (x->MiscFlags & OxBO) /* Scsi reset enable */

'define InstCacheEnble(x) (x->ProcFlags Ox10) /* Instruction cache Enbl */
'define RegCacheSize(x) (x->ProcFlags OxOF) /* 960 Regs cached */

2

Jun 22 1990 10:28:35 NVAssign.h Page 1

1**
*
* Copyright (c) 1990 Heurikon Corporation
* All Rights Reserved

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION.
The copyright notice above does not evidence any
actual or intended publication of such source code.

* Heurikon hereby grants you permission to copy and modify
* this software and its documentation. Heurikon grants
* this permission provided that the above copyright notice
* appears in all copies and that both the copyright notice and
* this permission notice appear in supporting documentation. In
* addition, Heurikon grants this permission provided that you

prominently mark as not part of the original any modifications
made to this software or documentation, and that the name of

* Heurikon Corporation not be used in advertising or publicity
* pertaining to distribution of the software or the documentation
* without specific, written prior permission.

* Heurikon Corporation does not warrant, guarantee or make any
* representations regarding the use of, or the results of the use
* of, the software and documentation in terms of correctness,
* accuracy, reliability, currentness, or otherwise; and you rely
* on the software, documentation and results solely at your own
* risk.

* MODIFICATIONS:

*****1

1**
* NVAssign.h: This header file defines the bit field assignments
* for the NVRAM/EEPROM, as they are defined by Heurikon.

It can be used where a program needs to know which bit fields
are assigned to what.
Note that the memory is divided into two separate sections:

* the Heurikon-defined, or write-protected, region and the
* user-defined region that can be modified interactively
* from the monitor or external programs.
*
* NOTICE: Because different compilers may generate different spacing

between structures and structure elements based on the
alignment it is important to be careful defining structures.
Problems can be avoided by forcing shorts and longs onto
long and short boundaries and padding structures to be

NOTE:
*

a multiple of long words in size.

The definition 'NV SMALL' is intended to conserve space
for smaller NV devIces, which can be as small as 128 bytes.

*
***1

1******* INTERNAL BIT DEFINITIONS ************************************
This structure provides the internal structures necessary to
maintain a nonvolatile section of memory. The magic number is
used to quickly determine if the structure has been initialized.
The checksum is used to verify the validity of the data. The
write count indicates the number of times the section has been
written and provides an indicator of the lifetime of the component.

This structure must be the first entry in a nonvolatile section.
Many of the functions that manipulate nonvolative sections assume that
this is the first structure in the section and will not function

Jun 22 1990 10:28:35 NVAssign.h Page 2

if it is omitted.
***1

typedef struct NV Internal {
unsigned short Magic;
unsigned short WriteCnt;
unsigned long ChkSum;

NV_Internal, *NV_InternalPtr;

'define NV_MAGIC Ox57CE

1* Internal structure
1* Magic number
1* Write Count
1* CheckSum

8 bytes

1* Magic number for nv memory

*1
*1
*1
*1

1******* BOARD BIT DEFINITIONS ***************************************
* The Manufacturing structure provides information necessary to
* track the board's manufacturing history, revision, ship date, etc.
* This structure is located in the write-protected region of the
* nonvolatile memory device. Modification should only be done
* by Heurikon's manufacturing departement.
***1

typedef struct NVH Manufacturing
unsigned char -Revision;
unsigned char ECOLevel;
unsigned short SerialNumber;

Ufdef NV SMALL
char Reserved(4);

.else
char Model[8];
char ManDate(12);
char ManPartNum[l2);
char WorkOrderNum[12);
char Reserved(40);

.endif
I NVH_Manufacturing;

1* Manuf struct = 88/8 bytes
1* Board Revision
1* Board EeO Level
1* Board Serial Number

1* Board Model
1* Manufacturing Date
1* Manufacturing Part Number
1* Work Order Number

*1
*1
*1
*1

*1
*1
*1
*1

1******* SERVICE DEFINITIONS ***
* This structure provides the service record of the board. This
* structure consists of the RMA number, Ship Date, Technician name
* and a short description of the problem. The last 3 records are
* allowed to be stored in nonvolatile memory.
***1

typedef struct NVH ServRec 1* ServRec Struct = 72 bytes
char RecNum[12T; 1* Service Record Number
char Date[12]; 1* Service Record Date
char Tech(8); 1* Service Record Technician
char Problem[40]; 1* Service Record Technician

NVH_ServRec;

typedef struct NVH Service 1* Service Struct = 232 bytes
NVH ServRec Rec(3); 1* Storage for the last three
char Reserved[16J; 1* service records

NVH_Service;

*/
*1
*1
*1
*1

*1
*1
*1

*1

1******* HARDWARE DEFINITIONS ***
* Board Hardware definitions are provided by this structure, which
* describes memory sizes and peripheral configuration.
***1

typedef struct NVH Hardware {
unsigned char MPUType;
unsigned char MMUType;
unsigned char CacheTypei
unsigned char FPUType,
unsigned char DMAType;
unsigned char MemExpType;
unsigned char DiskType;

1* Hardware Struct 36/24 bytes
/* Processor Type
1* MMU Type
1* Cache Type
1* Floating Point Type
1* DMA Type
1* Memory Expansion Type
1* Hard Disk Controller Type

*1
*1
*1
*1
*1
*1
*1
*1

1

Jun 22 1990 10:28:35 NVAssign.h
unsigned char TapeType;
unsigned char EthernetType;
unsigned char Padding[3);
unsigned long DRAMSize;
unsigned long SRAMSize;
unsigned long NVMemSize;

fifnde£ NV SMALL
char Reserved[12];

fendif
} NVH_Hardware;

fdefine RAMSIZ 0
fdefine RAMSIZ-12S
fdefine RAMSIZ-SK
fdefine RAMSIZ-16K
#define RAMSIZ-32K
fdefine RAMSIZ-64K
fdefine RAMSIZ-12SK
'define RAMSIZ-256K
fdefine RAMSIZ-S12K
fdefine RAMSIZ-IM
fdefine RAMSIZ-2M
fdefine RAMSIZ-3M
'define RAMSIZ-4M
'define RAMSIZ-SM
fdefine RAMSIZ-12M
'define RAMSIZ-16M
'define RAMSIZ-32M
fdefine RAMSIZ:64M

OxOOOOOOOO
OxOOOOOOSO
Ox00002000
Ox00004000
OxOOOOSOOO
Ox00010000
Ox00020000
Ox00040000
OxOOOSOOOO
Ox00100000
Ox00200000
Ox00300000
Ox00400000
OxOOSOOOOO
OxOOcOOOOO
Ox01000000
Ox02000000
Ox04000000

1* Streaming Tape Type
1* Ethernet Controller Type

1* Dynamic RAM Size
1* Static RAM Size
1* Nonvolatile memory size

Page 3
*1
*/

*1
*1
*/

1******* COMBINED HEURIKON DEFINED VALUES **.***.*.***********************
* The combination of the hardware, manufacturing record and the service

record are bound together in this structure, which is stored in the
protected region of the nonvolatile memory.

**./

typedef struct NV HkDefined {
NV Internal - Internal;

/* Hk struct = 40/444 bytes */
1* Internal definitions */

NVH Hardware Hardware; 1* Hardware definitions *1
NVH-Manufacturing Manuf;

fifndef-NV SMALL
/* Manuf definitions */

NVH Service Service; /* Service record */
.endif -
} NV_HkDeflned;

2

Jun 221990 15:42:14 NVOefs .. h Page 1
/**

* Copyright (c) 1990 Heurikon Corporation
* All Rights Reserved

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION.
The copyright notice above does not evidence any
actual or intended publication of such source code.

* Heurikon hereby grants you permission to copy and modify
* this software and its documentation. Heurikon grants
* this permission provided that the above copyright notice
* appears in all copies and that both the copyright notice and
* this permission notice appear in supporting documentation. In
* addition, Heurikon grants this permission provided that you
* prominently mark as not part of the original any modifications
* made to this software or documentation, and that the name of
* Heurikon Corporation not be used in advertising or publicity
* pertaining to distribution of the software or the documentation
* without specific, written prior permission.

* Heurikon Corporation does not warrant, guarantee or make any
* representations regarding the use of, or the results of the use
* of, the software and documentation in terms of correctness,
* accuracy, reliability, currentness, or otherwise; and you rely
* on the software, documentation and results solely at your own
* risk.

* MODIFICATIONS:

*****/

/**
NVDefs.h: This header file includes the basic error codes and the

codes passed to NVOp to indicate the type of operations
to perform on nonvolatile memory.

***/

/**
The Error flags are defined below. Note that these error codes have

been used to construct error tables and must not be modified for
any reason.

*/

'define NVE NONE 0 /* No error
.define NVE-OVERFLOW /* Warning: To many writes done
'define NVE-MAGIC 2 /* Bad magic number in NVRAM image
'define NVE-CKSUM 3 /* Bad checksum in NVRAM image
'define NVE-STORE 4 /* Could not write NVRAM to memory
'define NVE:CMD 5 /* Unknown command requested

'define NV OP FIX 0 /* NVOp Command to fix checksum
'define NV-OP-CLEAR 1 /* NVOp Command to clear NV section
'define NV-OP-CK 2 /* NVOp to checksum NV sections
'define NV-OP-OPEN 3 /* NVOp to Open NV Section
.define NV:OP:SAVE 4 /* NvOp to Save NV Section

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

Jun 22 1990 10:29:22 NVLib.c Page 1
/**

* Copyright (c) 1990 Heurikon Corporation
* All Rights Reserved

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION.
The copyright notice above does not evidence any
actual or intended publication of such source code.

* Heurikon hereby grants you permission to copy and modify
* this software and its documentation. Heurikon grants
* this permission provided that the above copyright notice
* appears in all copies and that both the copyright notice and
* this permission notice appear in supporting documentation. In
* addition, Heurikon grants this permission provided that you
* prominently mark as not part of the original any modifications
* made to this software or documentation, and that the name of
* Heurikon corporation not be used in advertising or pUblicity
* pertaining to distribution of the software or the documentation
* without specific, written prior permission.

* Heurikon Corporation does not warrant, guarantee or make any
* representations regarding the use of, or the results of the use
* of, the software and documentation in terms of correctness,
* accuracy, reliability, currentness, or otherwise; and you rely
* on the software, documentation and results solely at your own

risk.

* MODIFICATIONS:
*
*****/

/***
* NVLib.c: This file contains the nonvolatile library functions used to

manage NVRAM or EEPROM. The functions defined in this module
are listed below:

*/

#include
#include
include

NVSet ()
F indGroup ()
FieldRead ()
NVUpdate ()

"Bug.h"
"NVDefs.h"
"NVAssign.h"

extern NVGroup
extern NV_HkDefined

NVGroups[];
HKFields;

NVDisplay ()
FindField ()
FieldWrite ()
NVOpen()

NVInit ()
DispFieldName ()
Continue ()
NVOp()

/* NV memory groupings structure
/* Heurikon defined structure

*/
*/

/***
* NV Error Strings():

* NOTE: The Error table strings are defined according to the
definitions in 'NVDefs.h'. Neither of these files should be
modified without fear of complete disaster.

****/

static char NVErrOStr[]
static char NVErrlStr[]
static char NVErr2Str[]
static char NVErr3Str[]
static char NVErr4Str[)
static char NVErr5Str[)

"No error";
"Maximum write count exceeded";
"Bad magic number";
"Illegal checksum",
"Write to NV memory does not verify";
"Unknown command";

Jun 22 1990 10:29:22 NVLib.c
static char *NVErrTable[) = {

} ;

NVErrOStr, NVErrlStr, NVErr2Str, NVErr3Str, NVErr4Str,
NVErr5Str

Page 2

/**
* String definitions for error reporting.
***/

static char NVSupStr1[) "\nError while %s NV memory. %s.";
static char NVSupStr2 [) "\nWarning protected region of NV memory %s.";

/***
* NVOp(): This function provides the operations on the NV memory
* structures to read, write, clear, checksum and update
* NV memory.
****/

NVOp(Operation, Base, Size, offset)
unsigned long Operation, Size, Offset;
unsigned char *Base;
{

int ByteNum, DataSize;
unsigned char *DataSect;

unsigned char NVRamAcc()1
unsigned long Sum;
NV_Internal *Internals = (NV_Internal *) Base;

DataSect = (unsigned char *) &Internals[ll;
DataSize = Size - sizeof(NV Internal);
Sum = CheckSumMem(DataSect,-DataSize);

switch (Operation) {
case NV OP FIX: (

Internals->Magic
Internals->ChkSum
return(NVE_NONE);

case NV OP CLEAR: (
ClearMem(DataSect,
Internals->Magic
Internals->ChkSum
return(NVE_NONE);

case NV OP CK: {

NV MAGIC;
Sum;

DataSize);
NV MAGIC;

= 0;-

if (Internals->Magic != NV MAGIC)
return(NVE MAGIC);

if (Internals->ChkSum != Sum)
return(NVE CKSUM);

if (Internals->WriteCnt > NVRMaxNbrWrites(»
return(NVE OVERFLOW);

return(NVE_NONE);

case NV OP OPEN: (
nv recall();
for (ByteNum = 0; ByteNum < Size; ByteNum++) (

Base [ByteNuml = NVRamAcc(READ, Offset + ByteNum);
}
return(NVE_NONE);

case NV OP SAVE: {
nv store();
for (ByteNum = 0; ByteNum < Size; ByteNum++) (

NVRamAcc(WRITE, Offset + ByteNum, &Base[ByteNum]);
}
nv_recaU ();

Jun 22 1990 10:29:22 NVLib.c PageS

for (ByteNum = 0, ByteNum < Size; ByteNum++) {
if (Base [ByteNum] != NVRamAcc(READ, Offset + ByteNum» (

return(NVE_STORE);

}
return (NVE_NONE)1

}
default: (

return(NVE_CMD);

1*** ********************
* NVUpdate(): This monitor command updates the NVRAM from the image

maintained in memory. Error messages are displayed if an
*
****/

NVUpdate ()
{

error occurs.

register int Err;
NV Internal * NvMon
unsigned long NvMonSiz
unsigned long NvMonOff
unsigned long NVHkOff

NvMon->WriteCnt++;

= (NV Internal *) NvMonAddr();
NvMonS! ze () ;
NvMonOffset () ;

= NvHkOffset () ;

Err = NVOp(NV OP CK, NvMon, NvMonSiz);
if (Err != NVE NONE) (

xprintf(NVSupStrl, "reading", NVErrTable[Err);
return;

}
Err = NVOp(NV OP SAVE, NvMon, NvMonSiz, NvMonOff);
if (Err != NVE NONE) (

xprintf(NVSupStrl, "storing", NVErrTable[Err);
return;

HKFields.lnternal.WriteCnt++1
NVOp(NV OP CK, &HKFields, sizeof(NV HkDefined»;
Err = NVOp(NV OP SAVE, &HKFields, sIzeof(NV HkDefined) , NvHkOff);
if (Err ! = NVE NONE) (-

xprintr(NVSupStr2, "was not modified");
return;

1*** ********************
* NVOpen(): This monitor command opens the NVRAM and loads the memory
* image from the device. Errors are detected and displayed
* if they occur.
****1

NVOpen ()
{

register int Err;
NV Internal *NvMon
unsigned long NvMonSiz
unsigned long NvMonOff
unsigned long NvHkOff

(NV Internal *) NvMonAddr();
NvMonSize () ;
NvMonOffset () ;
NvHkOffset () ;

NVOp(NV_OP_OPEN , &HKFields, sizeof(NV HkDefined) ,NvHkOff);

Jun 22 1990 10 :29 :22 NVLib.c
NVOp(NV OP OPEN, NvMon, NvMonSiz, NvMonOff);
Err = NvoplNV OP CK, &HKFields, sizeof(NV HkDefined»;
if (Err != NVE NONE) (-

xprintf(NVSupStr2, "is corrupt");
}
Err = NVOp(NV OP CK, NvMon, NvMonSiz);
if (Err != NVE NONE) (

xprintr(NVSupStrl, "reading", NVErrTable(Err);

return Err;

Page 4

2

Jun 25 1990 12:06:18 NV.c Page 1
1*************·*·***····*····***···******·************ *******************

* copyright (c) 1990 Heurikon Corporation
* All Rights Reserved

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF HEURIKON CORPORATION
The copyright notice above does not evidence any
actual or intended publication of such source code.

* Heurikon hereby grants you permission to copy and modify
* this software and its documentation. Heurikon grants
* this permission provided that the above copyright notice
* appears in all copies and that both the copyright notice and
* this permission notice appear in supporting documentation. In
* addition, Heurikon grants this permission provided that you
* prominently mark as not part of the original any modifications
* made to this software or documentation, and that the name of
* Heurikon Corporation not be used in advertising or publicity
* pertaining to distribution of the software or the documentation
* without specific, written prior permission.

* Heurikon Corporation does not warrant, guarantee or make any
* representations regarding the use of, or the results of the use
* of, the software and documentation in terms of correctness,
* accuracy, reliability, currentness, or otherwise; and you rely
* on the software, documentation and results solely at your own
* risk.

* MODIFICATIONS:
*
*****1

finclude "Bug.h"
finclude "Board.h"
.include "NvMonDefs.h"

1***
* NV.c: This file contains the functions necessary to read, write and

configure the 2Bc64 EEPROM.
The functions defined in this module are listed below:

*
nv recall ()
NVRMaxNbrWrites()
NvMonSize ()

nv store()
NviikOffset ()
NvMonAddr ()

NvMonOffset ()
NVRarnAcc ()

* NOTE: This file contains several functions that allow compatability
with NVRAM that requires store and recall operations.

***1

extern NV HkDefined
extern NV:MonDefs

HKFields;
NvMonDefs;

1***
* nv recall():
* nv-store(): included to provide compatability with NVRAM.
***1-

nv recall ()
nv=:store()

1* No Recall for EEPROM *1
1* No Store for EEPROM *1

1***
* NVRMaxNbrWrites(): This function allows the NV libraries to determine

the lifetime of a component without including

Jun 25 1990 12:06:18 NV.c Page 2
the board header file.

***1

NVRMaxNbrWrites()
return(NV_MAX_NBR WRITES);

/* Returns limit of write count *1

/***
* NvHkOffset () :
* NvMonOffset():
* NvMonSi ze () :
* NvMonAddr(): These functions may seem a bit overkill but they allow the

NV library functions to operate on the NV memory sections
without actually compiling the board con fig files into the
library. This is desirable because they will change from
board to board.

***/

NvHkOffset ()
return(NV_PROTECTED);

NvMonOffset ()
return(NV_MON DEFS);

NvMonSize () (
return(sizeof(NV_MonDefs»;

NvMonAddr() (
return ((int) &NvMonDefs);

/***
* NvRarnAcc(): This function provides the reading and writing of the

device itself. The 'Mode' indicates if a read or write
is requested, the 'Cnt' indicates the byte location to
modify (if NV were seen as a linear array), and 'Val'
is the value when doing a write.

***/

Returned from this function is the number of bytes
written to the device or the value read from the device
depending on 'Mode'. This function supports bursts on
writes to speed the storing of data around 32 times.
The burst size is determined by NV PAGE SIZE. Another
optimization is that only bytes that diIfer are written.

unsigned char NVRarnAcc(Mode, Cnt, Val)
unsigned long Mode, Cnt;
unsigned char *Val;
{

int i, j;
unsigned char *NVRead, *NVWrite;
unsigned char RamVali
int IsSame = TRUE;

NVRead = NVWrite = (unsigned char *) (NV_BASE + (NV_SPACING * Cnt»;

if (Mode == READ) (1* Read: return value *1
return(*NVRead);

else { 1* Write: scan page for changes. If none return *1
for (i = 0; i < NV PAGE SIZE; i++) {

if (*NVRead !=-Val[I) {

1

Jun 25 1990 12:06:18
IsSame
break;

FALSE;

}
NVRead += NV_SPACING;

}
if (IsSame) (

return(NV PAGE SIZE);
} -
/* write page to EEPROM */

NV.c

/* If no chanqes then return */

for (i = 0; i < NV PAGE SIZE; i++) (
AtomicModify(NVWrite, OxFF, Val[i));

Page 3

NVWrite += NV_SPACING;
/* Repeatedly attempt to verify */

for (j = 0; j < OxlOOO; j++) {
NVRead = (unsiqned char *) (NV BASE + (NV SPACING * Cnt»;

}

IsSame = TRUE; --
for (i = 0; i < NV PAGE SIZE; i++) {

if (*NVRead !=-Val[I]) {
IsSame = FALSE;

}

}
NVRead += NV_SPACING;

if (IsSame) (
return(NV_PAGE SIZE);

return(NV_PAGE SIZE);

Appendix C

80960CA and 82596CA

Implementation Notes and Errata

C.1 80960CA

Main Differences
between A4 and Bl:

There are currently two versions of the 8096oCA CPU Qocation
UIOO): the A4 and the newer Bl.

The package marking on the CPU includes designation of the
8096oCA version, as shown in Table C-l.

TABLE C-1
Guide to 80960CA versions

Part Description Version Package Markings

80960CA-33MHz A4 Q 8231 or S V743

80960CA-25MHz A4 SV595

80960CA-33MHz B1 Q 8264 or S V735

80960CA-25MHz B1 SV734

This document contains a list of functions that are either not
fully implemented or do not function as originally documented
for both 80960CA versions. In some instances, workaround
solutions are suggested.

The details of 80960CA versions have been provided by Intel
Corporation for Heurikon customers only and must remain
confidential.

One of the main differences between the A4 step and the B 1
step of the 80960CA is the addition of a "backoft" mecha
nism (similar to the one used on the 82S96CA) that allows
the HK80N96oE to recover correctly from VMEbus colli
sions. A collision could result when an HK80/v96oE request
for the VMEbus, via either the 80960CA or the 82S96cA,
occurs simultaneously with a VMEbus slave access to the

C-2 HK80N960E User's Manual

HK80IV96oE. An HK80IV96oE equipped with the A4 step of
the 80960CA does not manage VMEbus collisions because
the A4 step has no backoff mechanism. If a collision occurs,
a deadlock usually results and the HK80N960E hangs. This
is not a problem in the B 1 step of the 8096oCA.

Using a 14-pin transition connector on J2:

If a 14-pin transition connector is used on J2 (the front
panel interface), it might need to be trimmed slightly on
the right side because the POOCENO PAL is so close. We can
provide cable-connector assemblies that work properly. with
J2. The problem will be ftxed in the next board revision.

C.1.1 80960CA Step A4

C.1.1.1

TRANSFER 1YPE

1H 8 to 16

4H 16 to 8

5H 16 to 16

Type A Errata - Features That Are Not

Implemented

Erratum A-I - One-X Clock Mode Not Implemented

The one-x input mode for CLKIN is not implemented. The
CLKMODE pin must be left unconnected, or must be grounded
at all times for proper operation of A-O material (in the two-x
mode). When the one-x mode is implemented, it will be
enabled by pulling CLKMODE high at all times.

Erratum A-2 - DMA Modes and Alignment Restrictions

The DMA modes supporting 8 to 16 (mode 1) and 16 to 8
(mode 4) were not implemented. These two modes cannot be
used. The absence of these modes also places alignment con
straints on other modes. These constraints are as follows:

CONSTRAINT

Not Implemented

Not Implemented

F or synchronized transfers, the source and destination
addresses must be 16-bit aligned, and the byte count must
be an even number of bytes. Block transfers are not
affected.

Revision E I July 1990

CONFIDENTIAl. For Heurikon customers only.

Appendix - 80960CA and 82596CA Implementation Notes and Errata C-3

7H 16 to 32

ODH 32 to 16

Source-synchronized transfers must have 16-bit aligned
source and destination addresses, and the byte count must
specify an even number of bytes. Destination-synchronized
transfers must have 32-bit aligned destination addresses,
and the byte count must specify a multiple of 4 bytes. For
block transfers, the DMA controller will perform the trans
fers as documented, with the exception that 8- to 8- bit
transfers will be used to handle unaligned cases where the
DMA should use 16- to 8-, or 8- to 16-bit transfers.

Destination-synchronized transfers must have 16-bit aligned
source and destination .addresses, and the byte count must
specify an even number of bytes. Source-synchronized
transfers must have 32-bit aligned source and 16-bit aligned
destination addresses, and the byte count must specify a
multiple of 4 bytes. For block transfers, the DMA controller
will perform the transfers as documented, with the excep
tion that 8- to 8-bit transfers will be used to handle
unaligned cases where the DMA should use 16- to 8-, or 8- to
16-bit transfers.

Erratum A-3 - Locked Cache Not Implemented

The feature which allows interrupt routines to be locked into the
instruction cache was not implemented. On the A-O material,
only the interrupt entry type 002 is supported.

Erratum A-4 - Self-Test Not Implemented

The internal self-test feature is not implemented. The processor
does perform the external bus confidence test, but no specific
internal self-testing is performed, regardless of the STEST pin
setting. Even without a special self-test routine, approximately
50% of the processor's internal nodes toggle during the execu
tion of the bus confidence test and the other initialization
activity.

C.1.1.2 Type B Errata - Implemented Features That Do

Not Function As Desired

Erratum B-1 - Instructions

a. baIx and bx are One Clock Slow. The balx and bx
instructions are one clock slower than documented in the
first edition of the user manual. The user's manual will be
changed to reflect this.

b. calls Followed by Conditional Instruction. A condi
tional instruction that immediately follows a calls will exe
cute based upon the condition code state prior to the call.
During proper operation the conditional instruction would
execute based upon the state of the condition codes as

Revision E I July 1990

CONFIDENTIAL. For Heurikon customers only.

C-4 HK80N960E User's Manual

modified by the called procedure. Place two nops after calls
instructions as a workaround if needed. Since this situation
is pathological, the assembler does not emit an automatic
workaround.

c. callx Frame Spills. If a calIx using the (regl)[reg2*scaIeJ or
disp (regl)[reg2*scaleJ addressing modes causes a frame
spill, the processor will malfunction. Insert a call to a
dummy procedure, or insert a flushreg instruction prior to
such cal1x instructions. The linker which supports the
80960CA warns of these callx occurrences.

d. shrdi with fixup. When execution of the shrdi instruction
requires dividend fIxup, and the shrdi is followed immedi
ately by a micro-flow instruction, the processor will hang up.
The ASM960 which supports the 80960CA will insert two
nops after all shrdi instructions.

e. Zero-Divide on Remainder and Modulo Instructions. A
divide-by-zero fault on remi, remo and modi instructions
could cause the processor to hang up. The ASM960 which
supports the 80960CA contains a switch which inserts a
workaround for this condition. When these instructions are
encountered, a cmp·, faulte sequence is inserted to detect
for zero division.

f. Micro-Flow Branch Target after Unaligned Access. The
processor will malfunction when executing the following
sequence of instructions:

• unaligned memory reference
• RISC branch (Machine Type C)
• to a Micro-flow MEM-format instruction (Machine

Type .).

The ASM960 which supports the 80960CA detects branch
targets of machine type • and inserts a nop between the
branch target label and the branch target.

g. Overflow Flag. When an overflow occurs on a divi instruc
tion but the integer overflow fault is disabled, the integer
overflow flag in the Arithmetic Controls Register is not set.
When an overflow occurs on an addi, shli, stib, stis or
mull instruction, but the integer overflow fault is disabled,
the integer overflow flag may not be set. The flag will not be
set if a microcoded instruction accessing the arithmetic
controls register (AC) is executed prior to the completion
of the overflowing instruction (6 clocks for mull, 2 clocks
for others). During proper operation, the overflow flag
should be set on integer overflows when the integer
overflow fault is disabled.

h. Replaced the next description.

1. Current RIP is r2, not on stack. During proper opera
tion, the return instruction pointer (RIP) for the currently
active procedure is located in the register save area of the
previous stack frame. To speed return operations, the

Revision E I July 1990

CONFIDENTIAL. For Heurikon customers only.

Appendix - 80960CA and 82596CA Implementation Notes and Errata C-5

processor caches the current RIP in r2 of the active register
set. However, the processor uses this cached RIP as the
return pointer for every return operation. Hence, modifying
the RIP in the previous stack frame, even after a flushreg,
does not change the location to which the next ret will
return. Programs which modify the current RIP must (1)
execute a flushreg, (2) perform a call, a procedure which
modifies the desired RIP in memory, and (3) execute a ret.
Since the procedure called in step 2 will not be modifying
its current RIP, the modified memory-based RIP will be that
cached by the processor during the return operation in step
3. During proper operation, modification of any previous
stack frame contents, following a flusbreg would properly
take effect on the subsequent return operations.

This workaround is architecturally compatible and will be
portable across 80960 implementations. There is, however, a
faster work around which will not be portable. rnE
FOLLOWING WORKAROUND MAY NOT WORK. ON
FUTURE STEPPINGS OF THE CHIP, AND WILL NOT
EXECUTE CORRECTLY ON ANY OrnER 80960
IMPLEMENTATIONS. When a program desires to modify
the current RIP, the program may modify the upper 30 bits
of register r2 to the desired new RIP value, while preserving
the values of the least significant two bits of the register. A
flushreg is not required.

j. link Pointers and RIPs. The processor may erroneously
set one or both of the two least significant bits of a
branch_and_link link pointer, and the two least significant
bits of any return pointer (RIP). During proper operation
these bits are always zero. Since the processor ignores these
bits when the values are used by control instructions, link
pointers and RIPs may be used directly by branches and
calls. However, using a link pointer or RIP as a component
of an effective address for memory operations will not work
properly. For this version of the chip, copy the desired link
pointer and dear the last two bits of the copy for use as a
memory address of a load, store or atomic memory
reference.

k. Returning to user mode. When a supervisor procedure
returns to the user mode procedure which called it, the
processor does not switch back to user mode. The stack
switch back to the procedure stack from the supervisor stack
occurs correctly, but the processor is left in supervisor
mode. To work around this problem, create a dummy user
mode system procedure which calls the desired supervisor
mode system procedure with a calIs. Upon return from the
supervisor procedure, the dummy procedure should then
set the processor back to user mode before returning. The
workaround flows as follows.

Revision E I July 1990

CONFIDENTIAL. For Heurikon customers only.

C-6 HK80N960E User's Manual

User-mode caller ~ calls ~User Mode System Procedure

continue ~II-------I calls Oesired.J)roc -- cal/~ Oesired_proc

set user mode ~------I

using modpc

I--- rat ret

FIGURE C-1. Erratum B·2-k workaround

LId, ldl, ldt, ldq Followed by a frame spill If load multiple
instruction (ldl, Idt, Idq) is immediately followed by a call
or an interrupt which forces a frame spill, the load will
properly take place, but the registers which were the
destination of the load will remain "scoreboarded". When
this happens, the processor will hang at the first instruction
that attempts to access these registers. If an ld instruction is
executed and a frame spill occurs, the data in the
destination register MAY be corrupted. There is no simple
workaround relative to this particular problem other than to
suggest that the user frequently flush the internally cached
registers to insure that frame spills won't occur.

Erratum B-2 - Bus Controller

a. LOCK# Deasserts Early. The LOCK# pin will deassert one
clock prior to the last ADS# of a sequence of atomic access.
During proper operation, the pin should deassert after the
last ASD# of a sequence of atomic accesses.

b. Pipelined Region Limitation. Each pipe lined region
which has burst enabled must have Ready Control disabled
in that region. During proper operation, the ready pins
would be ignored during reads in a pipelined region, but
could be used in a write to a pipelined region.

c. Region 0 Initialization. The control table specified in the
PRCB must contain the memory region configuration for
region 15 in both the MCONO and MCON15 entries. If the
user desires a memory configuration for region 0 which is
different from that for region 15, the user's initialization
routine must reprogram the bus controller before accessing
region O. During proper operation, the control table
pointed to by the PRCB would contain the accurate region 0
configuration in MCONO.

d. Fixed on A·4 stepping.

e. Back-to-back accesses. When two unaligned memory
accesses of different types (e.g., unaligned LDQ followed by
unaligned LDL) are executed back-to-back out of the instruc
tion cache, an error may occur.

Revision E I July 1990

CONFIDENTIAL. For Heurikon customers only.

• Appendix - 80960CA and 82596CA Implementation Notes and Errata C-7

f. Pipelined Fetches. A two clock delay is encountered in a
region programmed for pipelined accesses. This delay is
only encountered for instruction fetches, not for loads or
stores. The expected operation for a pipelined fetch is as
follows (A = Address; D = Data):

ADD D D
ADD D D

ADD D D

However, the A4-stepping of the 80960CA performs a
pipelined access as follows:

ADD D D
X X ADD D D

X X ADD D

This, of course, reduces the bandwidth of the pipelined bus.

g. Burst Fetches. A one clock delay is encountered in a
region programmed for burst access. This delay is only
encountered for instruction fetches, not for loads or stores.
The expected operation for a burst fetch is as follows (A =

Address; D = Data):

ADD D DAD D D DAD D D D

However, the A4-stepping of the 80960CA performs a burst
fetch as follows:

ADD D D X ADD D D X ADD D D

This, of course, also reduces the bandwidth of the pipelined
bus.

Erratum B-3 - Instruction cache

a Cache Disable Mode. The cache disable configuration of
the instruction cache turns off most, but not all, of the
cache. When disabled, the cache will still cache two lines
(16 words) of instructions. During proper operation, the
entire cache would be disabled.

h. Cache Flushing The sysctl command to invalidate the
instruction cache does not work. Furthermore, a sysctl reini
tialize command does not flush the instruction cache as
part of the software reset sequence. To invalidate the
instruction cache, call a permanently located procedure
longer than 256 words.

c. Cache Control Initialization. Although the instruction
cache is successfully invalidated by a hardware chip reset,
the cache replacement logic does not reset in a
deterministic fashion. This makes it impossible to syn
chronously reset two processors to run in lock-step using
only the RESET# pin. A possibleworkaround would be to
have initialization routines in each processor perform a

Revision E I July 1990

CONFIDENTIAL. For Heurikon customers only.

C-8 HK80N960E User's Manual

cache flush as described above, then issue an external read
to a ftxed address, allowing external hardware to
synchronize the processors.

Erratum B-4 - Register Cache

a. Local Register cache Size. Programming a register cache
size of 0 causes 15 sets to be allocated. During proper oper
ation, the register cache should be disabled by
programming 0 frames.

Erratum B-5 - DMA

a. Temporary Lockout Condition. The DMA controller
could be frozen out by a user program which continually
issues one-clock MEM-side instructions every clock. For
example, a program which swamps the MEM-side of the
processor with Ida instructions could delay the DMA
controller by as long as the longest uninterrupted sequence
of ldas. This situation is rare for general code. For highly
optimized code, the DMA delay could range from just a few
clocks to the length of the optimized loop. There is no gen
erally acceptable workaround. During proper operation, the
user's program would not lock out the DMA.

h. On-chip Data RAM as a Source. The DMA will lock up if
the source for a channel is in the internal data RAM. The
DMA operates properly if only the destination is in internal
data RAM. During proper operation, either the source or
destination (or both) of a DMA transfer could be in data
RAM.

c. DACK3:0#. The DACK3:0# pin associated with an access
will stay active during Nxda cycles. During proper opera
tion, the DACKx# pin which is asserted during a cycle would
go high (inactive) during Nxda clocks. In addition, when a
DMA-related bus transfer is pipelined with the following bus
transfer, the DACKx# associated with the access will go high
when the pipelined address for the next transfer appears.
During proper operation, the DACKx# pin should go high
after the last data cycle of the DMA transfer.

d. Data Chaining Fly-by. Fly-by transfers do not operate
properly when data-chained. As a result, data chaining fly
by DMA transfers is not supported on this version of the
chip.

e. Data Chaining Alignment. When chaining with the 16-32
and 32-16 bit modes, the source address and destination
addresses must be aligned to the source and destination
widths, respectively. During proper operation, there would
be no such requirement.

f. Byte Count and EOPI. When an 8-32 or 16-32 bit destina
tion synchronized demand transfer is terminated by an
EOP# input, the final byte count will be less than the actual
byte count by exactly 4 bytes. Source synchronized transfers

Revision E I July 1990

CONFIDENTIAL. For Heurikon customers only.

Appendix - 80960CA and 82596CA Implementation Notes and Errata C-9

provide a correct byte count when terminated with an EOP#
input. During proper operation, the byte count would reflect
the actual number of bytes actually written to the destina
tion when destination synchronized.

g. EOP during 8-32 bit transfers. If an EOP occurs during
the last cycle of an 8-32 DMA transfer, the final byte(s) may
be stored in consecutive destination addresses. This will
only occur if the last word cannot be stored to a word
aligned address.

h. Corrupted 16 bit transfers. 16-32, 32-16 and 16-16 bit
transfers may corrupt data when buffers are not aligned to
the "natural" boundaries while in the chaining mode.

i. EOP/TC too early. When programmed as an output the
EOP fTC pin can potentially be asserted before the last
DACK. This can only occur when the DMA channel is pro
grammed in the DSDEM or destination synchronized
demand transfer mode.

Erratum 8-6 - Interrupts

a. Temporary Lockout Condition. No interrupt will be ser
viced between two back-to-back instructions which are
micro-flows (Machine type = .). RISe nop instructions
could be inserted between long micro-flow instructions (e.g.,
flushreg, sysctl) to reduce the spot interrupt latency;
however, there is no generally acceptable workaround.

b. One Software Interrupt Per Priority. When the proces
sor services an interrupt which was posted with the sysctl
instruction, it clears the correct pending priority bit in the
interrupt table without checking the associated pending pri
orities field for other interrupts. As a result, any other soft
ware posted interrupts which are also pending at the same
priority level are lost. External interrupt requests are not
affected. One workaround is to post no more than one
interrupt per priority level with the sysctl instruction. If
more than one software-interrupt per priority level is
required, a software interrupt handler could check the
pending interrupt bits associated with its priority, and re
post remaining interrupts using the sysctl instruction.

c. "Posting" Priority Zero. When the syscd instruction is
used to post a priority zero interrupt, the processor does
not check all memory-based pending interrupt bits. Under
normal operation, posting a priority zero interrupt should
cause the processor to check the entire pending interrupt
portion of the interrupt table for interrupts. This deviation
is bothersome for multiprocessor applications. There is no
general workaround. Workarounds will be application
specific.

d. Inoperative Mask Saving. The interrupt controller option
which governs the handling of the interrupt mask must be
set to 002, disabling special mask handling. If any other

Revision E / July 1990

CONFIDENTIAL. For Heurikon customers only.

C-10 HK80N960E User's Manual

option is specified the interrupt mask will be cleared during
an interrupt service and its proper value will be lost. If a
workaround is required, interrupt handlers may save and
clear the interrupt mask upon entry. However, the absence
of the mask saving options precludes the use of a level sen
sitive priority 31 interrupt. All priority 31 interrupts must be
edge sensitive in this version of the chip. During proper
operation, the interrupt mask handling options should allow
the user to specify what is done to the interrupt mask as an
automatic part of processor interrupt handling.

e. Pending Field Consistency Required. If, when reading
the memory-based pending interrupts field of the interrupt
table, the processor detects a mismatch between the pend
ing priorities field and the pending interrupt field, proces
sor state will be corrupted. This mismatch can occur if an
external agent only half-posts an interrupt by setting a bit in
the pending priorities field without setting a bit in the asso
ciated pending interrupts field. Proper enforcement of
locked atomic accesses among multiple agents should
prevent this situation.

f. DMA and interrupts. The DMA suspension option for
interrupt handling must be selected. If the DMA is not sus
pended during interrupt context switches, the processor
could cease to operate properly.

g. NMI Lockout. If the NMI interrupt handler does a software
reset, all future interrupts will be locked out. The only
workaround is not to do a software reset while handling an
NMI interrupt.

Erratum B-7 - Faults

a. Unaligned. Although the processor correctly performs
unaligned memory accesses when the unaligned fault is dis
abled, the processor will hang up if an unaligned access
occurs when the fault is enabled. During proper operation, a
fault should be generated when an unaligned memory
access is issued and the unaligned fault is enabled.

b. Invalid Opcode in the User Mode. An instruction which
faults due to an invalid opcode may also cause an sfr pro
tection fault. During proper operation, only the invalid op
code fault would be generated.

c. Trace Controls on a return. On a return from a non
trace fault handler to a user mode procedure, the Trace
Controls Register (TC) is restored to its value prior to the
fault. As a result, any modification of TC by a non-trace fault
handler will be lost when the handler is returning to a user
mode program. Furthermore, the TC event bits are
automatically cleared during every return from a trace-fault
handler. During normal operation the TC would not be
altered by a return from a fault handler.

Revision E I July 1990

CONFIDENTIAL. For Heurikon customers only.

Appendix - 80960CA and 82596CA Implementation Notes and Errata C-11

d. Trace Faults on Faults and Interrupts. A Trace Fault will
not be taken after an implicit call even if Call Trace is
enabled. To regain implicit call trace, place fmark instruc
tions at the beginning of each fault handler. (Interrupts are
not expected to generate implicit call faults. Neither K-series
nor C-series processors do so.)

e. Data Address Breakpoint Fault. When a Data Address
breakpoint fault occurs on a ca1lx, or any call with a frame
flush, the return IP (RIP) reported will be that of the call.
The RIP should point to the first instruction of the called
procedure. The trace fault handler must detect this condi
tion and adjust the RIP before returning.

f. sysctl and Faults. No fault is generated when an unimple
mented message is specified as an operand of the sysctl
instruction. During proper operation, an operation. operand
fault should be generated.

g. Fault which shouldn't. An instruction fetch from the on
chip data RAM will cause an operation-unimplemented fault
even if the fetched data was not executed. During proper
operation, this fault should only be generated if the proces
sor attempts to execute data which was fetched from the
data RAM.

h. Data Address Breakpoints on stacks and tables. If a
data address breakpoint occurs on a memory access associ
ated with the processor's interrupt or fault context switches,
or execution of a calls instruction, the fault may not be sig
naled. If it is signaled, the assodated fault record may be
incorrect and the Trace Controls Register (TC) may be
trashed. During proper operation, the data address break
point fault would be signaled after completion of all opera
tions associated with these microcoded sequences. For this
version of the silicon, it is recommended that data address
breakpoints not be set on the system procedure table, fault
table, interrupt table, or stack locations which will contain
interrupt records or fault records.

i. Pre-return Trace. When a pre-return trace event occurs, a
return trace is also signaled even if return trace was not
enabled. The return trace event bit in the trace controls is
erroneously set and the sub-type field of the fault record
correctly reports a pre-return trace and incorrectly reports
a return trace event. During proper operation, the TC event
flags are only set if the associated TC mode is enabled.

j. Call trace on calls. A calls instruction currently signals
both a supervisor trace event and a call trace event, even if
the call is a local (non-supervisor) call. During proper
operation, a system call (calls) should always signal a call
event. The instruction should also signal a supervisor trace
event if the system call is a supervisor call from user mode.

Revision E I July 1990

CONFIDENTIAL. For Heurikon customers only ..

C-12

TABLE C-2
E rratum B -7-n-

Address

OH-oFFH

100H-3FFH

c urrent

HK80N960E User's Manual

k. Trace Control Event Bits. The modtc instruction does
not allow modification of the breakpoint event bits in the
Trace Controls Register (TC). During proper operation, all
event bits are open to modification by a modtc instruction.

1. No Unimplemented sfr fault. The processor does not
signal a fault when the program attempts to access an
unimplemented special function register. During proper
operation a fault should be signaled.

m. Trace Fault stack problem. When a trace fault handler is
serviced without a stack change, and the stack pointer (SP)
prior to the fault is greater than FP+64 and is quad-word
aligned, the processor clobbers the last word on the stack
during the fault context switch. This condition occurs when
a user mode trace fault handler is invoked when the proces
sor is executing in user mode, and when a supervisor mode
fault handler is invoked when the processor is executing in
supervisor mode. The condition cannot occur when a
supervisor mode fault handler is invoked when the
processor is executing user mode code.

n. Protection faults and Data RAM. During proper opera
tion, a user-mode attempt to write to protected data RAM
should fault while attempts to read the data RAM are
allowed even if protected. Supervisor mode programs may
freely read and write any data RAM, protected or not. The
first 256 bytes of data RAM are always protected while the
remainder of the data RAM is optionally protected. The
current version of the device operates as follows:

d eVlce operation
Protected? User-Mode Read User-Mode Write

Always

No

Yes

Faults, but shouldn't Faults

Read completes Write blocked

No fault No fault

Read completes Write wrongly blocked

Faults, but shouldn't Faults

Read Completes Write blocked

Supervisor reads and writes of any data RAM complete cor
rectly with no faults.

o. Fault Type and Subtype errata. Table C-3 lists the errant
fault .types and subtypes generated by this version of the
device and the types and subtypes which should be
generated during proper operation. Fault types or subtypes
not listed are properly generated by this version of the
device.

Revision E I July 1990

CONFIDENTIAL. For Heurikon customers only.

Appendix - 80960CA and 82596CA Implementation Notes and Errata C-13

TABLE C-3
Errant an d correct f au t types an d su bt types

Condition

Unaligned memory access

Attempt to execute from on-chip
RAM

Reference to unimplemented sfr

Invalid sysctl message

Protected RAM write in user mode

Protection-length

Fault Generated Correct Fault

Operation-implemented Operation - unaligned

Type-mismatch Operation - unimplemented

None Operation - unimplemented

None Operation - invalid operand

Type-mismatch Protection - page rights

Subtype bit 0 Subtype bit 1

Erratum 8-8 - Parallel Faults

Parallel faults exhibit unexpected operation when the following
conditions occur and the processor is executing with the NlF bit
cleared. When the NlF bit is set, parallel fault conditions will not
occur (except item [eD.

a. Lost Branch Trace. When branch trace is enabled, and a
branch executes in parallel with another instruction that
causes a non-trace fault, the branch trace fault will not be
seen. During proper operation, both faults would be
reported at once with a parallel fault

h. Two Faults, not One: Parallel Branch. When branch
trace is enabled, and a branch executes in parallel with
another instruction that causes a breakpoint trace fault, the
branch trace fault will be seen after the breakpoint trace
fault. During proper operation, both faults would be
reported at once with a parallel fault

c. Two Faults, not One: Parallel R-M. If a REG-side and a
MEM-side instruction are issued in parallel, and there is an
IP breakpoint set on the REG instruction, any fault arising
from the MEM instruction will be seen prior to the break
point fault. During proper operation, all faults for both
instructions should be reported in a single parallel fault
record.

d. Invalid Fault Record. If both a zero-divide fault and an
integer overflow fault from a multiply are reported in the
same parallel fault record, the IP of the faulting multiply
instruction and its associated fault record will be invalid.
This situation occurs if an instruction which will cause a
zero-divide fault is issued before the fault from a prior mul
tiply is signaled. During proper operation, both faults would
be correctly reported in a parallel fault record.

e. Parallel Faults in NIF Mode. When NIF is set: if a REG-side
and MEM-side instruction could have been issued in paral
lel, all faults arising from the REG instruction and the MEM

Revision E I July 1990

CONFIDENTIAL. For Heurikon customers only.

C-14 HK80N960E User's Manual

instruction are reported in a single parallel fault record.
During proper operation, the faults related to the two
instructions would be reported through two faults, with the
REG-related fault first.

C.1.2 80960CA Step B 1

C.1.2.1 Type A Errata - Anomalies That Have Serious

Consequences

None identified.

C.1.2.2 Type B Errata - Anomalies That Have

Performance/Specification Implications

Erratum B-1 - Bus Controller

a. Pipelined Fetches. A two clock delay is encountered in a
region programmed for pipe lined accesses. This delay is
only encountered for instruction fetches, not for loads or
stores. The expected operation for a pipelined fetch is as
follows (A = Address; D = Data):

ADD D D
ADD D D

ADD D D

However, the B-stepping of the 80960CA performs a
pipelined access as follows:

ADD D D
X X ADD D D

X X ADD D

This, of course, reduces the bandwidth of the pipelined bus.

b. Burst Fetches. A one clock delay is encountered in a
region programmed for burst access. This delay is only
encountered for instruction fetches, not for loads or stores.
The expected operation for a burst fetch is as follows (A =
Address; D = Data):

ADD D DAD D D DAD D D D

However, the B-stepping of the 80960CA performs a burst
fetch as follows:

ADD D D X ADD D D X ADD D D

This, of course, also reduces the bandwidth of the pipelined
bus.

Revision E I July 1990

CONFIDENTIAL. For Heurikon customers only.

Appendix - 80960CA and 82596CA Implementation Notes and Errata C-15

Erratum B-2 - Reset Related

a. Self-Test Implementation Flaw. Unlike the A-stepping,
the B-stepping does implement the self-test feature.
However, a microcode flaw prevents it from being properly
used. In order for the processor to initialize, you will need
to tie STEST low (pin B02).

C.1.2.3 Type C Errata - Anomalies That Have Definitional

Implications

Erratum C-l - Instruction Cache

a. Cache Disable Mode. When the instruction cache is dis
abled, two cache lines (16 words) of the cache remain
enabled. These two lines are not part of the 1024 byte cache,
but they are more or less a cache queue. Given the burst
and pipe lining capability of the 80%OCA's bus, disabling
the entire cache is a relatively difficult task. We would
appreciate· feedback relative to addressing this problem.

Erratum C-2 - Register Cache

a. Local Register Cache Size. Programming a register cache
size of 0 causes 15 sets to be allocated. During proper oper
ation, the register cache should be disabled by program
ming 0 frames.

Erratum C-3 - Faults

a. Data Address Breakpoint Fault. When a Data Address
breakpoint fault occurs on a callx, or any call with a frame
flush, the return IP (RIP) reported will be that of the call.
The architecture states that the RIP should point to the first
instruction of the called procedure. The trace fault handler
must detect this condition and adjust the RIP before
returning.

b. Data Address Breakpoints on stacks and tables. If a
data address breakpoint occurs on a memory access associ
ated with the processor's interrupt or fault context switches,
or execution of a calls instruction, the fault may not be sig
naled. If it is signaled, the associated fault record may be
incorrect and the Trace Controls Register (TC) may be cor
rupted. During proper operation, the data address break
point fault would be signaled after completion of all opera
tions associated with these microcoded sequences. For this
version of the silicon, it is recommended that data address
breakpoints not be set on the system procedure table, fault
table, interrupt table, or stack locations which will contain
interrupt records or fault records.

Revision E I July 1990

CONFIDENTIAL. For Heurikon customers only.

C-16 HK80N960E User's Manual

Erratum C-4 - Bus Controller

a. Pipelined Region Limitation. Each pipelined region
which has burst enabled must have Ready Control disabled
in that region. During proper operation, the ready pins
would be ignored during reads in a pipelined region, but
could be used in a write to a pipelined region.

C.2 82596CA

C.2.1

The details of 82596CA versions have been provided by Intel
Corporation for Heurikon customers only and must remain
confidential.

Erratum 1 - FIFO Operation Failure Region

Description: Corrected in the 82596A-l stepping.

C.2.2 Erratum 2 - Truncated Frame on Transmit

Description: If CRS# deasserts (resulting from the end of a receive) dur
ing a 29-system-clock window that occurs near the time of
the 82596 Transmit Command Block structure bus accesses,
then the 82596 can transmit a truncated frame. The problem
only occurs when all the following conditions are true.

Consequences:

Solutions:

Solution 1

• When using the Flexible Data Structure for transmit.

• The byte count in the transmit command block is
greater than zero.

• The receive unit of the 82596 is receiving a frame with a
destination address matching the 82596 address.

• A Transmit command is currently processing.

The 82596 will append an apparently correct CRC even if
the truncation occurs. The receiving station will receive the
frame without detecting a CRC error.

If the receiving station does not compare the number of
bytes received with the . length field within the frame, the
missing bytes can cause errors that will propagate to the
upper layers of software.

When using the Flexible data structures, the byte count in
the Transmit Command Block should be set to less than 54

Revision E I July 1990

CONFIDENTIAL. For Heurikon customers only.

Appendix - 80960CA and 82596CA Implementation Notes and Errata C-17

C.2.3

Solution 2

bytes. If truncation occurs, the 82596 will transmit a frame of
less than 64 bytes. Receiving stations will reject this short
frame.

Note: Short frames are quite common due to collisions,
especially on networks meeting the proposed 10BASE-T
standard.

Use 82586-compatible or simplified data structures.

Erratum 3 - Receive Unit (RU) Start When RU Active

Descri ption: If the Receive Unit (RU) is in the ready state, and an RU
Start command is attempted, there is a small time-window
in which the Receive Frame Descriptor list will be linked
incorrectly. The state of the Receive Unit can be found in
the RUS field of the System Control Block (SCB) Status
word. An RU Start command is performed through the RUC
field of the SCB Command word. The SCB Status and
Control words are shown in Figure C-2.

Consequences:

Solution:

Command Word
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Status Word
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

FIGURE C·2. Erratum 3 system control block status
and control words

Incorrectly linking the Receive Frame Descriptors or
Receive Buffer lists can cause lost or corrupted data in the
receiving system.

Before attempting an RU Start command through the RUC
field, check the RU Status bits. If the status field indicates
Ready (100 in 82586 Mode or xlOO in 32-bit Segmented and
Linear Modes) the 82596 receive operation should be sus
pended or aborted before attempting the RU Start The 3-bit
RUC field in the Command word is used to perform the
Suspend (011) or Abort (100) commands.

Revision E / July 1990

CONFIDENTIAL. For Heurikon customers only.

C-18

C.2.4

HK80N960E User's Manual

Erratum 4 - Command Unit (CU) Abort when CU

Suspended

Description: If the Command Unit (CU) is in the Suspended state when a
CU Abort command is issued, then a spurious write opera
tion is performed after the CU is next started. This extra
operation writes a 0 to the Busy bit of the prefetched
Command Block (CB) of the previously aborted Command
Block List (CBL). The Busy bit was already set to 0 by the

Solutions:

Solution 1

CU Abort command. If no CB was prefetched before the CU
Abort command, or if a CU Resume command is per
formed before the CU Abort command, the extra write
operations will not occur.

The state of the 82596's Command Unit can be found in the
CUS field of the System Control Block (SCB) Status word. A
CU Start command is. performed through the CUC field of
the SCB Command Word. The SCB Status and Control
words are shown in Figure C-3.

Command Word
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Status Word
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

FIGURE C-3. Erratum 4 system control block status
and control words

The second clearing of the Busy bit in the prefetched
Command Block (CB) can cause a data corruption, but only
if the memory space corresponding to that prefetched
Command Block is allocated for some other purpose
during the time after the CU Abort but before the next CU
Start command. Another possible error can occur if the
Command Unit is started with the previously prefetched
Command Block as the start of the new Command Block
List. If the software examines the status of the Busy bit, it can
seem to go inactive before the 82596 has actually completed
the command.

Before attempting a CD Suspend command or setting the S
bit in a CB, a software flag should be set. Before attempting

Revision E I July 1990

CONFIDENTIAL. For Heurikon customers only.

Appendix - 80960CA and 82596CA Implementation Notes and Errata C-19

C.2.5

Solution 2

a CU Abort command, the software flag should be checked.
If it is set, the following procedure should be completed
before an CBs are designated as available for reprocessing.

1. Generate the CU Abort command.

2 Load the CBL Offset field in the SCB with the address of
a NOP CB with its EL bit set.

3. Generate a CU Start command.

4. Reprocess CB.

The CU status should be checked before attempting a CU
Abort command. If the CU is in the Suspended state, a CU
Resume command should be performed before the CU
Abort. This will result in the completion of one or more CB
after the suspended CB.

Erratum 5 - Revision of SCP Bit Values

Description: Bits 0 through 15 (at byte ADR and ADR + 1) of the SCP
should be set to zero and bit six of the Sysbus byte should
be set to a one. If these bits are not set then the 82596 can
fail to function properly.

31 2423 1615 8 7 o

xxxxxxxx SYSBUS 00000000 0000 0000 ADR

xxxxxxxx xxxx xxxx xxxx xxxx xxxx xxxx ADR+4

AAAAAAAA ISCP ADDRESS ADR+8

FIGURE C-4. Erratum 5 SCP values

Byte (AAAA AAAA) is defined as not checked in 82586-
Compatible mode and is used as A31-A24 in the 32-bit
Segmented and Linear modes.

The bits marked x are defined as not checked in 82586-
Compatible mode and as zero in all other modes.

Revision E I July 1990

CONFIDENTIAL. For Heurikon customers only.

Sales and • ••••• • •••• • • •• •
Customer Service Offices • • • • • • • • • •

Central Region

Western Region

Heurikon Corporate Office
8000 Excelsior Drive
Madison, WI 53717
Watts: 800-356-9602
Phone: 608-831-0900
Fax: 608-831-4249

Heurikon Customer Support
and Factory Service Office
8310 Excelsior Drive
Madison, WI 53717
Watts: 800-327-1251
Phone: 608-831-5500

Heurikon Northeast Regional Office
67 South Bedford, Suite 400 W.
Burlington, MA 01803
Phone: 617-229-5831
Fax: 617-272-9115

Heurikon Southeast Regional Office
2010 Corporate Ridge, Suite 700
McLean, VA 22102
Phone: 703-749-1474
Fax: 703-556-0955

Heurikon Central Regional Office
13100 West 95th Street, Level 40
Lenexa,KS 66215
Phone: 913-599-1860
Fax: 913-599-1918

Heurikon Western Regional Office
16496 Bernardo Center Drive, Suite 213
San Diego, CA 92128
Phone: 619-487-9771
Fax: 619-487-2562

HElRIK8N@
OPEN SYSTEMS :: OPEN TOOLS

Regional Sales Representatives

• NORTHEAST REGION • SOUTHEAST REGION

CT, DE, ME, MA, Daner-Hayes, Inc. MO, VA and Spectro Associates
NH, NJ, NY. 62 West Plain Street Washington, DC 1107 Nelson Street, #203
Eastern PA, RI Wayland, MA 01778 Rockville, MD 20850
andVT Tel: (508) 655-0888 Tel: (301) 294-9770

Fax: (508) 655-0939 Fax: (301) 294-9772

IN, KY, MI, OH, Systems Components, Inc. • WESTERN REGION
Western PAand 1327 Jones, Suite 104
WV Ann Arbor, MI 48105 Al, CO, NV, NM and Compware Marketing

Tel: (313) 930-1800 UT 100 Arapahoe Ave.
Fax: (313) 930-1803 Suite 7

Boulder, CO 80302
• CENTRAL REGION Tel: (303) 786-7045

Fax: (303) 786-7047
AR, LA, OK and TX Acudata, Inc.

720 Avenue F. Suite 104 10. MT. OR, WAf WY Electronic
Plano, TX 75074 and Canada (Alberta Component Sales
Tel: (214) 424-3567 and British Columbia) 9311 S. E. 36th Street
Fax: (214) 424-7342 Mercer Island, WA

98040-3795
MN, NO. SO and Micro Resources Corp. Tel: (206) 232-9301
Northwest WI 4640 W. 77th Street. Fax: (206) 232-1095

Suite 109
Edina, MN 55435 CA Qualtech
Tel: (612) 830-1454 333 West Maude Avenue,
Fax: (612) 830-1380 Suite 108

Sunnyvale, CA 94086
IL, lA, KS. MO, NE Panatek Tel: (408) 732-4800
and Southeast WI 2500 West Higgins Road, Fax: (408) 733-7084

Suite 305
Hoffman Estates, IL 60195
Tel: (708) 519-0867
Fax: (708) 519-0897

092490

A
address summary 15-1
arbiter enable, Ethernet 11-3
arbitration, bus 6-1
arithmetic faults 4-3

B
baud rates 10-8
branch instruction 3-20
branch trace mode 3-20
breakpoint registers 3-20
breakpoint trace mode 3-20
bus arbitration 6-1
bus collision 3-6
bus control 6-1
bus control request level 6-1
bus error 3-6
bus error (MPU) 4-1
bus grant 6-1
bus interrupts 6-4, 8
bus memory 5-3
bus priorities 6-3
bus watchdog timers 6-20
byte ordering 3-4; 11-1,2,4

C
cable, Centronics 13-5
cable, serial 10-10

cache 3-17
cache, data RAM 5-6
cache, instruction 3-21, 5-6
cache, register 3-22
caches 3-21, 5-6, 7-3
call instruction 3-20
call trace mode 3-20
call-system instruction 3-20
Centronics connector, P3 13-1

Centronics interrupt 13-2
channel attention 11-2, 4
CIO Port C function 9-1

Index

CIO register address summary 9-5
CIO usage 9-1
clock, CIO 9-4
component locations 1-5
component map 1-4
configuration, memory 5-1
connector, Centronics, P3 13-1
connector, Ethernet 11-5
connector, SCSI 12-3
connector, VMEbus 6-21
connector, VSB 6-21
connectors 1-6,7
counter/timers (CIO) 9-4
CRT terminal, setup 2-3
customer service 2-5

D
damage in shipping 2-3
dedicated mode 3-9
DMA 3-16
DMA command register (DMAC) 3-18
DMA data alignment 3-19
DMA interrupts 3-19
DMAC 3-18

E
EEPROM 5-7
EEPROM partitions 5-8
EEPROM addresses B-1
environmental requirements 15-5
EPROM 2-4, 14-1
equipment for setup 2-1
error, timer frequency 9-4
errors, system response 4-1

Index-2

ESD prevention 2-1
Ethernet arbiter enable 11-3

Ethernet byte ordering 11-2, 4
Ethernet connector 11-5
Ethernet port pin assignments, p6 11-5

expanded mode 3-9
extended space 2-2,6-17

F
factory service 2-5
fault stack frame 3-15
fault table 3-14

features 1-1
fmark instruction 3-17, 20

FPI 8-2
front panel interface 8-2

H
hardware interrupts, MPU 3-5, 7

IBR 3-2
ICON register 3-9,13
IMAP registers 3-9,10,11,12
IMSK register 3-9,10,11
initialization 3-1
initialization boot record 3-2
initialization, CIa 9-5
installation 2-1

instruction cache 3-21

Instruction Cache Configuration Word 3-21
instruction trace mode 3-20

integer overflow 4-3

interrupt architecture 3-9
interrupt caching 3-9

interrupt control mades 3-9
interrupt control register 3-9, 13
interrupt handling, bus 6-9

interrupt map register format 3-12
interrupt mapping registers 3-11
interrupt mask register 3-10,11

interrupt priority 3-10

interrupt stack frame 3-6
interrupt structures 3-5

interrupt support, MPU 3-6
interrupt table 3-5

HK80N960E User's Manual

interrupt table base 3-5
interrupt, NMI 3-5
interrupt, VSB 7-3
interrupt-pending register 3-9,11
interrupter module, bus 6-8
interrupts, bus 6-4
interrupts, MPU 3-5
invalid opcode 4-2

invalid operand 4-2
IPND register 3-10,11

IRQ interrupt 7-3

..
J2 pin assignments 8-3
jumper settings 15-3
jumpers 1-6

jumpers, bus control 6-16

jumpers, watchdog 6-16

L
LEDs, user 8-1
length fault 4-3

M
mailbox 1-2; 6-1,13-15
mailbox interface 6-13-15

mark instruction 3-17, 19
mechanical specifications 15-5
memory configuration 5-1

memory map 5-4

memory space 5-3
memory timing 5-5
memory, bus 5-3
mixed mode 3-9
madpc instruction 3-10, 4-3

monitor 5-8
monitor program editor 2-6
MPU DMA support 3-16
MPU faults 3-14
MPU interrupt stack frame 3-6
MPU interrupts 3-5
MPU interrupts, hardware 3-7

N
NMI interrupt 3-6

Revision E I July 1990

HK80N960E User's Manual

nonmaskable interrupt 3-6
nonvolatile RAM 2-4; 5-6; B-1
NV-RAM 2-4; 5-6; B-1

o
operating temperature 2-1, 15-5
operation-unimplemented fault 3-22

P
PI pin assignments (VMEbus) 6-21
PI signal descriptions 6-2
P2 pin assignments (VMEbus, VSB) 6-22
P2 pin assignments (VMEbus, VSB) 7-5
P2 signal descriptions 7-1
P3 pin assignments (Centronics) 13-1
P4 pin assignments (SCSI) 12-3
P5 pin assignments (RS-232) 10-1
p6 connector 11-5
p6 pin assignments, Ethernet 11-5
parallel fault 4-3

parity error 3-7
parity, RAM 5-3
physical memory map 5-4
pin assignments, Centronics, P3 13-1
pin assignments, Ethernet, p6 11-5
pin assignments, front panel interface

connector 8-2
pin assignments, RS-232, P5 10-1
pin assignments, SCSI, P4 12-3

pin assignments, VMEbus 6-21,23

pin assignments, VSB 7-5
Port A bit definition 9-3

port access 11-2

port addresses, CIa 9-5
Port B bit definition 9-2

Port C bit definition 9-1
power requirements 2-2, 15-5
PRCB 3-2, 5, 10
precautions 2-1
prereturn trace mode 3-20
privileged fault 4-3

processor control block 3-2, 5
processor reinitialization 3-5, 6
protection fault 4-3

R
RAM parity 5-3
RAM, bus 5-3
RAM, nonvolatile 2-4; 5-6; B-1
RAM, on-card 5-3
real-time clock 14-1
register address summary (CIa) 9-5
register address summary (SCSI) 12-2

register cache 3-22

Index-3

Register Cache Configuration Word 3-22
register summary 3-22
reset switch 1-6,7
return instruction 3-20
return trace mode 3-20
returning boards 2-5
ROM 2-4, 14-1
RS-232 pin assignments 10-1

RTC accesses 14-1

5
SCSI connector, P4 12-3
SCSI register address summary 12-2
SCSI reset 12-2
sdma instruction 3-18, 4-3
service department 2-5
setup 2-1
setup, CRT terminal 2-3
sfa register 3-10
sfl register 3-10

shipping damage 2-3
short space 2-2; 6-14, 20

sizing memory 5-3

software interrupts, MPU 3-5,13
special function registers 3-9,11
standard space 2-2; 6-18

status latch 3-6, 7; 4-2
supervisor trace mode 3-20
sysctl instruction 3-12,13; 4-3
SYSF AIL bus signal 6-4
SYSFAIL control 6-20
system controller board 6-16

T
technical documents 1-7, 2-1
timers (CIO) 9-4

Revision E I July 1990

lndex-4

timing, memory 5-5
trace events 3-20
type fault 4-3
type mismatch 4-3

U
uclma instruction 3-18; 4-3
unaligned words 4-3
unimplemented instruction 4-2
user LEDs 8-1

V
VMEbus interrupts 6-8
VME extended space mapping 9-3
VME short space mapping 9-2
VMEbus and local bus watchdog timers

6-20
VMEbus connector ,6-21
NMEbus master interface 6-16

. VMEbus slave interface 6-17

VMEbus system controller functions 6-15

VMX32bus 7-1
VSB connectors 6-21

VSB description 7-1
VSB operation 7-3
VSB termination 7-4
VSB terminators 7-5

W
wait states 5-5

Z
zero divide 4-3

Revision E I July 1990

HK80N960E User's Manual

Heurikon Corporation
8310 Excelsior Drive

Madison, WI 53717
Customer Support 1-800-327-1251

