
HONEYWELL

IDPS 8 & DPS 88
ASSEMBLY
INSTRUCTIONS

SOFTWARE

SUBJECT

DPSS&DPS88

ASSEMBLY
L~STRUCTIONS

Description of the Assembly Instructions for the CP-6 and DPS 8/DPS 88
Information Systems

SPECIAL INSTRUCTIONS

This is the first revision to DH03-00, dated April 1980. Because of extensive
changes, change bars have not been used.

SOFTWARE SUPPORTED

CP-6, Software Release B03
GCOS 8, Software Release 2300

ORDER NUMBER

DH03-01 Junf' 1984

Honeywell

PREFACE

This manual contains information that enables the user to code programs in
symbolic machine language which is then translated into binary machine
instructions.

This manual is directed to users who are experienced in coding within the
environment of a large-scale computer installation. Considerable knowledge and
practical experience is required in the use of address modification with
indirection, hardware indicators, fault interrupts and recovery routines, macro
operations, pseudo-operations, and other features normally encountered in a
large computer with a flexible instruction repertoire under control of a master
executive program. It is assumed that the user is familiar with the twos
complement number system as employed in a sign-number machine (see Appendix F).

This manual includes the processor capabilities, modes of operation,
detailed descriptions of machine instructions, virtual memory addressing,
paging, and the representation of data. It should prove useful to programmers·
who 1re responsible for analyzing conditions that cause system failures.

aelated manuals:

.:;cos ! os GMAP user~s Guide, Order Number DHOl.

The information and specifications in this document a..-e subject to change without notice. Consult
your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1984 File No.: 1Q23, 1V23, 1W23 DH03-01

LISTING OF MANUALS

A listing 0£ large system software manuals is available to any Honeywell user
who has access to an uppercase and lowercase ASCII terminal with a line length
of 80 or more characters. The manuals are categorized both by software release
and by software category. This listing is updated regularly to enable ordering
of manuals as soon as they are published. Instructions on how to order manuals
are output with the listing.

To obtain the listing:

1.

2.

Dial aoorooriate telephone number to connect your terminal with the
Multics.system in Phoenix.

1200-baud
terminals

{602} 249-5356
249-6430

300-baud
terminals

249-7501 249-7801
249-7701

150-baud
terminals

249-7554

System response - computer system identification

Example: Multics MRl0.1: Honeywell LCPD Phoenix, System M
Load=35.0 out of 125.0 units: users=35

Enter the following login command: I login Sam I
must be used - it is not a sample
for any proper name}

(the identifier nsam"

Press carriage return key.

3.

4.

System response - request for password

Example: Password:
•••BBBB•BBBBBBBBBBRB {password strikeover mask}

Enter the password: I Multics

Press carriage return key.

System response - Welcome message followed by a query and "r" message

Example: Welcome to the Multics system
For services available online type:

: list
rllll.7 Thu (ready message)

To obtain a list of commands, enter: I =list

Press carriage return Key;

System response - list of commands available for specific topics and
"r" message.

5. Enter command selected and press carriage return key.

6. To log off Multics system, enter:

System response - logout message

Example: Sam SRB logged out 02/04/84 1110.3 mst fri
CPU usage 3 sec, memory usage 22.4 units

iii/iv DH03-01

Section I

Section II

Section HI

Section IV

CONTENTS

Introduction
Processor Features •

Functional Units ••
Address Modification • . • • • • • •
Faults And Interrupts •
Execution Of Interrupts

Processor Modes Of Operation
Addressing Modes

Absolute Mode
,Paging Mode • . • • • • • • • •

Interval Timer •.

Representation Of Data
Bit Groupings •
Position Numbering •
The Machine Word • • •
Character-Strings •...•••.•••••

Character Positions • •
Bit Positions •••••••••

Literals • • • . • • • • • • • • ••••
Binary Numbers • • • • • • ••••

Fixed-Point Numbers • • • ••••
Floating-Point Numbers •••
Normalized Binary Floating-Point Numbers
Hexadecimal Floating-Point Numbers
Binary Representation Of Fractional
Values . • • • • • • • • • • •

Decimal Numbers • • • • • • • • •
Decimal Data Character Codes
Floating-Point Decimal Numbers
Decimal Number Ranges • • ••••

Memory Characteristics ••
General Description
Virtual Memory • • • • • •

Working Spaces And Pages
Segments . • • • • • .
Descriptors •••••••

Standard Descriptor •••.••
Standard Descriptor With Working Space

Number • • • • • • • • • • • •
Super-Descriptor •.•••.••
Super-Descriptor With Working Space

Number • • • • • • • ..
Domains • • . . • • •

Entry Descriptor •.•.•
Dynamic Linking Descriptor
Shrinking ••••••

Processor Accessible Registers .••.•..•
Accumulator Register (A) ••••
Quotient Register (Q) ••••
Accumulator-Quotient Register (AQ)
Exponent Register (E) • • • • • •
Exponent-Accumulator-Quotient Register (EAQ)
Index Registers (Xn) ••
Indicator Register- (IR) •••••••

v

Page

1-1
1-1
1-2
1-2
1-2
1-3
1-4
1-6
1-6
1-6
1-6

2-1
2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-4
2-4
2-6
2-6
2-7

2-8
2-8
2-9
2-10
2-11

3-1
3-1
3-2
3-2
3-3
3-4
3-5

3-7
3-8

3-9
3-10
3-12
3-13
3-13

4-1
4-3
4-4
4-4
4-5
4-6
4-6
4-7

DH03-0l

Section v

CONTENTS (cont)

Timer Register (TR)
Instruction Counter (IC)
Address Registers (ARn)•
Pointer And Length Registers (DPS 8)
Pointer And Length Registers (DPS 88)
Mode Register (MR)
Cache Mode Register (CMR)
Fault Register (FR)
Fault Register Format •.
Control Unit History Registers (CUn) ••
Operations Unit History Registers (OUn)
Decimal Unit History Registers (DUn) -
Virtual Unit History Registers (VUn)
Working Space Registers (WSRn) -
Safe Store Register (SSR) -
Linkage Segment Register (LSR)
Argument Stack Register (ASR)
Parameter Stack Register (PSR) .
Instruction Segment Register (ISR)
Operand Descriptor Registers (DRn)
Segment Identity Registers (SEGIDn) .••.
Instruction Segment Identity Register -

SEGID (IS) •..••........
Pointer Re9isters (PRn) •......
Data Stack Descriptor-Register (DSDR)
Data Stack Address Register (DSAR) •..
Page Directory Base Register (PDBR)
Option Register (OR)•..••••

Address Modification And Development
Address Modification Features • . .

Basic Modification • • • • .
Indirect Addressing
Tag Field • • ••.
Types Of Address Modification . . • . . .

Register (R) • • • • • • •
Register Then Indirect (RI)
Indirect Then Register (IR)
Indirect Then Tally (IT) • .

Indirect Word Format .•.
Variations Under IT Modification

Address Modification Octal Codes
Address Modification Flowchart
Floatable Code .••..•.•.
Address Modification With Address

Registers••.•.•.
Single-Word Address Modification
Multiword Address Modification • .
Multiword Modification Field ...

Operand Descriptors•.•..
Bit String Operand Descriptor •
Alphanumeric Operand Descriptors .
Numeric Operand Descriptors
Indirect Word•
Operand Descriptor Address Preparation

Bit String Address Preparation
Alphanumeric/Numeric Address
Preparation•

Address Development
Virtual Memory Addressing

Operand Address Procedure
Instruction Address Procedure

Virtual Address Generation
Standard Descriptor

vi

Page

4-11
4-11
4-14
4-15
4-16
4-16
4-20
4-22
4-25
4-26
4-28
4-31
4-34
4-36
4-37
4-38
4-38
4-39
4-40
4-40
4-41

4-42
4-43
4-43
4-44
4-45
4-46

5-1
5-1
5-1
5-1
5-2
5-3
5-3
5-7
5-9
5-13
5-15
5-16
5-24
5-25
5-26

5-26
5-27
5-30
5-31
5-34
5-34
5-35
5-35
5-38
5-39
5-41

5-42
5-47
5-47
5-47
5-48
5-48
5-48

DH03-0l

Section VI

CONTENTS (cont)

Super-Descriptor •••
Absolute Addressing Mode
Paging Addressing Mode

Page Table Directory Word Format
Page Table Word Format .••..

Mapping The Virtual Address To A Real
Address • • • • • • . . . • • . • • • •

Locating The Page Table Directory Word
Dense Page Table • • • •
Fragmented Page Table .•.••
Associative Memory • • .

Address Truncation . . ••
Bounds Checking • • • • • •

Word And Double-Word Operations
Byte Operations ..••.
Bit Strings And Index Table Of
Translate Instruction .

Bound Check Equations •
Address Wraparound . . • • •

Multiprocessor Memory Management .•..

Machine Instructions••••.•••
Basic Features . .
Single-Word Instructions •

Boolean Operations
Comparison Operations .
Data Movement Instructions
Data Shifting Instructions
Effective Address To Register

Instructions •....•••
Fixed-Point Arithmetic Instructions •
Floating-Point Arithmetic Instructions
Special Processor Instructions

Multiword Instructions .•••.•••
Alphanumeric Instructions ••••
Numeric Instructions
Bit String Instructions .••••••
Conversion Instructions .••••••
Multiword Instruction Capabilities
Edited Move Micro-Operations
Instruction Repertoire
Functional Classifications

Address Register Instructions •••••
Address Register Load •••••••
Address Register Store •••••••
Address Register Special Arithmetic •

Boolean Operation Instructions ..•
Boolean Expressions • . . • . . • • • • •
Evaluation Of Boolean Expressions
Boolean AND • • • • • • •
Boolean OR . • . • . • • • • • •
Boolean EXCLUSIVE OR • • • •
Boolean COMPARATIVE AND • • . •
Boolean COMPARATIVE NOT AND • • • • •

Descriptor Register Instructions •
Descriptor Register Load •..••
Descriptor Register Save
Descriptor Register Store •

Fixed-Point Instructions
Data Movement Load
Data Movement Store •
Data Movement Shift •
Fixed-Point Addition
Fixed-Point Subtraction .

vii

. . . .

Page

5-50
5-54
5-56
5-56
5-57

5-58
5-60
5-60
5-64
5-68
5-69
5-70
5-70
5-71

5-71
5-72
5-73
5-73

6-1
6-1
6-1
6-1
6-2
6-2
6-2

6-2
6-3
6-3
6-4
6-4
6-4
6-4
6-5
6-5
6-5
6-6
6-6
6-6
6-7
6-7
6-8
6-8
6-10
6-10
6-10
6-11
6-11
6-11
6-12
6-12
6-13
6-13
6-13
6-13
6-14
6-14
6-14
6-14
6-15
6-15

DH03-0l

CONTENTS (cont)

Fixed-Point Multiplication
Fixed-Point Division
Fixed-Point Comparison .•..
Fixed-Point Negate

Floating-Point Instructions
Data Movement Load . . ••
Data Movement Store • . • • • .
Floating-Point Addition •
Floating-Point Subtraction
Floating-Point Multiplication
Floating-Point Division •
Floating-Point Comparison
Floating-Point Negate .•
Floating-Point Normalize
Floating-Point Round

Multiword Instructions ...•..••.•.
Operand Descriptors And Indirect Pointers

Operand Descriptor Indirect Pointer
Format

Alphanumeric Instructions ...••...
Alphanumeric Operand Descriptor Format
Alphanumeric Compare .•...•••.
Alphanumeric Move•..

Numeric Instructions
Numeric Operand Descriptor Format
Numeric Compare
Numeric Move•..

Bit String Instructions
Bit String Operand Descriptor Format .
Bit String Combine
Bit String Compare
Bit String Set Indicators

Data Conversion Instructions
Data Conversion • .

Arithmetic Instructions
Decimal Addition ...
Decimal Subtraction
Decimal Multiplication
Decimal Division

Micro-Operations For Edit Instructions MVE,
MVNE, And (DPS 88: MVNEX)•.

Micro-Operation Sequence
Edit Insertion Table
Edit Flags
MVNE, MVE, And (DPS 88: MVNEX)

Differences
Numeric Edit (MVNE And MVNEX)
Alphanumeric Edit (MVE)

Micro Operations
Pointer Register Instructions

Pointer Register Load
Pointer Register Store
Pointer Register Miscellaneous

Privileged Instructions
Register Load
Register Store
Clear Associative Memory Pages
Clear Cache
Memory Control (DPS 8 Only)
System Control

Transfer Instructions
Conditional Transfer
Unconditional Transfer
Domain Transfer (CLIMB)

viii

Page

6-15
6-15
6-16
6-16
6-17
6-17
6-17
6-17
6-17
6-17
6-17
6-18
6-18
6-18
6-18
6-19
6-19

6-19
6-19
6-19
6-21
6-21
6-21
6-22
6-24
6-24
6-24
6-25
6-26
6-26
6-26
6-26
6-26
6-27
6-27
6-27
6-27
6-27

6-28
6-28
6-28
6-29

6-30
6-30
6-30
6-31
6-32
6-32
6-32
6-32
6-33
6-33
6-33
6-34
6-34
6-34
6-34
6-35
6-35
6-35
6-35

DH03-0l

Section VII

Section VIII

Appendix A

CONTENTS (cont}

Miscellaneous Operations • • .
All Mode Instructions ••.
Binary-To-BCD Conversion
Execute Instructions
Gray-To-Binary Conversion .
Programmed Fault
No Operation
Repeat Instructions

Processor Instructions •...
Format Of Instruction Description
Abbreviations And Symbols
Common Attributes Of Instructions

Illegal Modification
Parity Indicator •.••

Instruction Word Formats •..
Single-Word Instructions •.•..•..
Multiword Instructions • • .
Address Register Special Arithmetic

Instructions•.•.
List Of Instructions
Conversion Constants

Micro Operations • • . •.•••
Micro Operation Code Assignment Map
Terminating Micro Operations
Micro Operation Example•.

Faults And Interrupts • . . . • • • •
Description Of Faults And Interrupts
Fault Procedure ••
Fault Priority •.•..•••••..•••
Fault Recognition • • . • • •.•
Fault Categories •••••

Instruction-Generated Faults .•••
Program-Generated Faults ...•••
Virtual Memory-Generated Faults
Hardware-Generated Faults ••

Mode Faults •••••••••.
Privileged Master Mode Faults
Master Mode Faults •..••
Slave Mode Faults •
Any Mode Faults •.

Miscellaneous Faults •••
Segment Descriptor Flag Faults ••
Page Table Word Control Field Faults
Mode Register Fault Traps (DPS 8 Only)
Input-Output Multiplexer {IOM)-Detected
Faults (DPS 8 Only) • • • • • • • • • •

User Faults • • • • • • • • • • • • •
!OM Central-Detected User Faults
Channel-Detected Faults • • . •••

System Faults • . . • • • • • • • • •
System Controller-Detected Faults ••••

!OM Central-Detected System Faults
Interrupt Procedure ••••••••••••

System Controller Interrupts (DPS 8)
Central Interface Unit Interrupts (DPS

8 8) • • • • • • • • • • • • •
Inward Climb •••••••••
Multiword Instruction Interrupts
Pointer And Length Registers

IC Values Stored On Faults And Interrupts

Operation Code Map

ix

Page

6-36
6-36
6-36
6-36
6-37
6-37
6-37
6-37

7-1
7-1
7-3
7-5
7-5
7-5
7-6
7-6
7-7

7-8
7-9
7-63
7-504
7-522
7-522
7-522

8-1
8-1
8-1
8-2
8-2
8-5
8-5
8-8
8-10
8-16
8-18
8-18
8-18
8-18
8-18
8-19
8-19
8-22
8-23

8-24
8-24
8-25
8=25
8-26
8-26
8-27
8-30
8-30

8-30
8-31
8-31
8-32
8-32

A-1

DH03-0l

Appendix B

Index

Figure 1-1.
Figure 3-1.
Figure 3-2.
Figure 3-3.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.

Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure· 4-19.
Figure 4-20.
Figure 4-21.
Figure 4-22.
Figure 4-23.
Figure 4-24.
Figure 4-25.
Figure 4-26.

Figure 4-27.
Figure 4-28.
Figure 4-29.
Figure 4-30.
Figure 5-1.
Figure 5-2.

Figure 5-3.

Figure 5-4.

Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.
Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 5-13.
Figure 5-14.
Figure 5-15.

CONTENTS (cont)

Standard Character Set

ILLUSTRATIONS

Status Of Processor Mode Determinants
Layout Of Segments On Pages . . .
Domain Of Noncontiguous Segments
Shrunken Descriptor For Corresponding New

Segment
Accumulator Register (A) Format . .
Quotient Register (Q) Format •.
Accumulator-Quotient Register {AQ) Format
Exponent Register (E) Format
Exponent-Accumulator-Quotient Register (EAQ)
Format •

Index Register (Xn) Format
Indicator Register (IR) Format
Timer Register (TR) Format .. .
Instruction Counter (IC) Format .
Address Register (ARn) Format .
Pointer And Length Register Formats (DPS 8)
Pointer And Length Register Formats (DPS 88)
Mode Register (MR) Format
Cache Mode Register (CMR) Format •
Fault Register (FR) Format
Control Unit History Register (CUn) Format
Operations Unit History Register (OUn) Format .
Virtual Unit History Register {VUn) Format
Working Space Register (WSRn) Format
Safe Store Register (SSR) Format
Linkage Segment Register (LSR) Format
Argument Stack Register (ASR) Format
Parameter Stack Register (PSR) Format .
Instruction Segment Register (ISR) Format .
Segment Identity Register (SEGIDn) Format .
Instruction Segment Identity RegTster - SEGID

(IS) Format•..
Data Stack Descriptor Register {DSDR) Format
Data Stack Address Register (DSAR) Format .
Page Directory Base Register (PDBR) Format
Option Register (OR) Format ...••..
Address Modification Flow Chart . . .
Flowchart For Operand Descriptor Address
Preparation . • . . •••

Virtual Address Generation Using Standard
Descriptor •

Virtual Address Generation Using
S uoer-Descr iotor . .

BASE For Standard Descriptor (DPS 88)
BOUNDS For Standard Descriptor (DPS 88)
Resulting Virtual Address Check .
Working Space Page Table Directory Format .
Page Table Word Format
Virtual Address . . .
Locating The PTDW . . .
Virtual Address, Dense Page Table
Dense Page Table Mapping DPS 8
Dense Page Table Mapping DPS 88
Fragmented Page Table • . .

x

Page

B-1

i-1

1-4
3-3
3-10

3-14
4-3
4-4
4-4
4-5

4-6
4-6
4-7
4-11
4-11
4-14
4-15
4-16
4-17
4-20
4-22
4-26
4-28
4-34
4-36
4-37
4-38
4-38
4-39
4-40
4-41

4-42
4-43
4-44
4-45
4-46
5-25

5-40

5-49

5-51
5-52
5-53
5-55
5-56
5-57
5-59
5-60
5-61
5-62
5-63
5-64

DH03-0l

Figure 5-16.
Figure 5-17.
Figure 5-18.
Figure 5-19.
Figure 5-20.
Figure 6-1.
Figure 6-2.
Figure 7-1.
Figure 7-2.
Figure 7-3.

Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.

Table 2-1.
Table 2-2.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 5-1.
Table 5-2.
Table 5-3.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 7-1.
Table 7-2.
Table 8-1.
Table 8-2.
Table 8-3.
Table 8-4.
Table 8-5.
Table 8-6.
Table 8-7.
Table 8-8.
Table 8-9.
Table A-1.
Table A-2.

CONTENTS {cont)

Virtual Address, Fragmented Page Table ••••
Fragmented Page Table, Directory Entry ••••
Fragmented Page Table Addressing (DPS 8)
Fragmented Page Table Addressing (DPS 88)
Associative Memory Word • • . • • • . • • • . •
Address Register Special Arithmetic •••
Micro-Operation (MOP) Character Format
Single-Word Instruction Format
Multiword Instruction Format . • • •
Address Register Special Arithmetic Instruction

Format • . . . • . .
Fault Trap Address • .
Channel Status Word •
Safe Store Stack (DPS 88)
Safe Store Stack (DPS 8)

TABLES

Ranges Of Fixed-Point Numbers
Ranges Of Binary Floating-Point Numbers
Processor Accessible Registers
Processor Faults By Priority
System Controller Illegal Action Codes
Fault Register Format
Address Modification Octal Codes
Reg is tet Codes
Bound Check Equations • . . •
Alphanumeric Character Number (CN) Codes
Alphanumeric Data Type (TA) Codes . . .
Sign And Decimal Type (S) Codes
Default Edit Insertion Table Characters
Binary-To-BCD Conversion Constants
Micro Operation Code Assignment Map
Processor Faults By Fault Code (DPS 8)
Processor Faults By Fault Code (DPS 88)
Processor Modes
!OM Central Status Codes (DPS 8)
!OM Channel Status Codes {DPS 8)
System Controller Fault Codes (DPS 8)
!OM Central System Faults (DPS 8) . . .
Classes Of Faults And Interrupts (DPS 8)

.

. .

. . .

.

Classes Of Faults And Interrupts (DPS 88)
Operation Code Map (Bit 27 0)
Operation Code Map (Bit 27 = 1) . . .

xi

.

. . .

.

.

Page

5-65
5-65
5-66
5-67
5-68
6-8
6-28
7-6
7-7

7-8
8-23
8-24
8-33
8-34

2-5
2-7
4-2
4-13
4-24
4-25
5-24
5-32
5~72

6-20
6-20
6-23
6-29
7-64
7-522
8-3
8-4
8-11
8-25
8-26
8-27
8-28
8-36
8-37
A-2
A-3

DH03-01

SECTION I

INTRODUCTION

The assembler contains a set of machine instructions used to produce code
for the Honeywell hardware and operating systems. The systems are highly modular,
allowing system configuration to be matched to the work load mix. This section
describes the essential characteristics of the central processors for these systems.

Each processor module in the system has full program ex:cution capability.
The processors conduct all · actual computational processing (data movement,
arithmetic, logic, comparison, and control operations) within the information
system. The processor communicates only with the system controller (DPS 88:
Central Interface Unit) and associated memory. The processors contain several
special features that make significant contributions to multiprogramming, high
throughput, and rapid turnaround. These features are under the control of the
operating system which maintains automatic supervision and complete control of
the multiprogramming/multiprocessing environment.

PROCESSOR FEATURES

A processor contains the following general features:

1. Memory protection to place access restrictions on specified segments.

2. Capability to interrupt program execution in response to an external
signal (e.g., I/O termination), to save processor status, and to restore
the status at a later time without loss of program continuity.

3. Capability to fetch instructions and to buffer instructions.

4. Overlapping instruction execution, address preparation, and instruction
fetch. While an instruction is being executed, address preparation
for the next operand (or the operand following it) or the next instruction
pair is taking place.

5. Interleaving direct main memory accesses to interleaved system controller
modules.

6. ****DPS8: Intermediate storage of address and control information in
high-speed registers addressable by content (associative memory).****

7. Absolute address computation at execution time.

8. Ability to hold recently referenced operands and instructions in a
high-speed look-aside memory.

1-1 0803-01

Functional Units

The processor consists of independent units. The decimal unit performs
decimal arithmetic and bit-string/character-string operations. The virtual unit
is used to derive an absolute memory address from a virtual address. This
process, called mapping, uses a page table to translate the virtual address into
an absolute address.

Address Modification

The address modification capability enables the user to dynamically develop
an address contained in an instruction (or indirect word). Before each main
memory access, two major phases of address preparation take place:

1. Address modification by register or indirect word content, if specified
by the instruction word or indirect word.

2. Address modification in which a virtual memory address is translated
(mapped) into an absolute address for accessing main memory (no user
control).

The address modification procedure can go on almost indefinitely (limited
by lock-up time) with one type of modification leading to repetitions of the
same type or to other types of modification before accessing main memory for an
operand.

Faults And Interrupts

The processor detects certain illegal instruction usages, faulty communication
with main memory, programmed faults, certain external events, and arithmetic
faults. Many of the processor fault conditions are deliberately caused by the
software and do not necessarily involve error conditions. The processor communicates
with the other system modules (I/O multiplexers and other processors) by setting
and answering external interrupts. When a fault or interrupt is recognized, a
"trap" results. When the processor responds to a fault or interrupt, control is
transferred to an operating system module via an inter-domain transfer using an
entry descriptor obtained from a fixed memory location.

The interrupt, fault, and systems entry (PMME) vector locations in real
memory containing the entry descriptors are as follows:

Vector Location

Interrupt 30-31 (octal)

Fault 32-33 (octal)

Systems Entry 34-35 (octai)

Backup Fault 40-41 (octal) ****DPS 88: No backup fault****

1-2 DH03-01

Interrupts and certain low-priority faults are recognized only at specific
times during program execution. If, at these times, bit 28 in the instruction
word is set ON, the trap is inhibited and program execution continues. The
interrupt or fault signal is saved for future recognition and is reset cnly when
the trap is recognized.

Execution Of Interrupts

In a multiprogranuning/multiprocessing computer system, both the hardware
and software must be freed from the burden of checking other components of the
system either for completion of; or requests for, service. To accomplish this,
all active modules that have completed assigned tasks, or that require service,
generate faults or interrupts to the normal flow of instructions in a processor.

Each system controller (DPS 88: Central Interface Unit) has its program
interrupt cells connected in a priority sequence. Any interrupt request generated
by an active module will set the particular interrupt cell trat the interrupting
device has been assigned to use.

Normally, upon the completion of executing each instruction word pair in
the processor, a check is made for the presence of an interrupt. If no interrupts
are present, or if interrupts have been inhibited, instruction execution continues
in the normal sequence. If one or more interrupts are present (and not inhibited),
the system controller (DPS 88: Central Interface Unit} reports the identity of
the highest priority cell that is set and then resets that interrupt cell. This
causes the processor to execute an inward CLIMB. The processor servicing an
interrupt may load the interrupt enable registers with suitable combinations of
bits to prevent any undesired interrupts and to prevent other processors from
being interrupted. Servicing of the interrupt can then proceed without use of
the interrupt inhibit bit. The processor can be protected against undesirable
interrupts but can be interrupted, in turn, by enabled, higher-priority interrupts.

Each input/output module will generate interrupts to indicate events such
as:

1. Successful completion of a requested I/0 action

2. Unsuccessful initiation of a requested I/O action

3. Special interrupts (e.g., unit becoming READY)

4. Error conditions

1-3 DH03-0l

PROCESSOR MODES OF OPERATION
~~~~- -~~ ~ 

The three processor modes of operation are Privileged Master mode, Master 
mode, and Slave mode. The determinants involved in defining these processor 
modes are the ma~ter mode bit in the indicator register, the privileged bit in 
the instruction segment register (ISR), and the housekeeping bit in the page 
table word (PTW) for the instruction. 

The status of the determinants for each mode is shown in Figure 1-1. 

Processor Modes a 

Determinants Privileged Master Slave 

Master Mode Bit ON ON OFF 
in 

Indicator Register 

Privileged Bit in 
Instruction Segment ON OFF OFF 
Register 

Housekeeping Bit 
ON b in Page Table Word ON/OFF OFF 

for the Instruction 

aAll other combinations are illegal and result in a Security Fault, Class 
1. 

bwhen working space zero is referenced, the housekeeping bit is assumed to 
be ON and the processor addresses real memory directly. 

Figure 1-1. Status Of Processor Mode Determinants 

1-4 DH03-01 



A fault or an interrupt causes the processor to enter Privileged Master 
mode. If the processor is in Privileged Master mode, an instruction can change 
to Master mode by transferring to a segment not marked privileged. The reverse 
is also true when transferring to a segment marked privileged. The use of a 
CLIMB instruction between Master and Privileged Master modes, like the transfer, 
not only allows a change of processor execution modes but also a change of 
domains. Refer ·to the CLIMB instruction definition, documented later in the 
manual, for a detailed description of the variations of the CLIMB instruction. 

The master mode bit in the indicator register can be turned ON as follows: 

1. Occurrence of an interrupt or a fault 

2. Execution of the PMME version of the CLIMB instruction, which causes a 
system entry 

3. Execution of the OCLIMB version of the CLIMB instruction where the 
master mode bit of the restored indicator register is ON 

The following mode-dependent processor functions are listed by mode. None 
of these functions are permitted in Slave mode. 

Functions allowed in Master and Privileged Master modes: 

1. Accessing through working space register zero 

Reading operands from a housekeeping page of type T 
segments 

0, 2, 4, or 6 

3. Executing instructions from housekeeping pages of type T = O segments 

4. Executing an !CLIMB or GCLIMB instruction or a transfer to a privileged 
executable segment. 

Functions allowed only in Privileged Master mode: 

1. Executing Privileged Master mode instructions (e.g., load working space 
registers) 

2. Executing Privileged Master mode options of the LDDn, LDPn, or CLIMB 
instructions, such as copying the safe store register (SSR) to a descriptor 
register {DR,!!) 

3. Accessing or executing in working space zero (absolute addressing) 

4. Writing on housekeeping pages of type T O, 2, 4, or 6 segments, 
using instructions other than CLIMB, SDRn, STDn 

1-5 DHOJ-01 



ADDRESSING MODES 

Absolute Mode 

Virtual memory provides an absolute addressing mode. When the processor 
utilizes the absolute addressing mode, a virtual address is generated. However, 
the virtual address is not mapped to a real address; it is used as the real 
address (with a maximum size limitation of 2**26 bytes (64 mb) ****DPS 88 maximum 
size is 2**28 bytes (256 mb) ****). 

The processor utilizes the absolute addressing mode each time working space 
number zero is referenced. Any time a working space other than zero (WSN=O) is 
referenced the processor utilizes the paging mode. For example, assume that the 
descriptor contained in the instruction segment register (ISR) points to working 
space register (WSR) 1, which contains zero, that the instruction refers to DR2, 
which points to WSR 3, and that WSR 3 contains 20. Then, the instructions and 
operands with ISR modification (bit 29 OFF) would be accessed in the absolute 
addressing mode, and operands referenced with bit 29 ON and DR2 selected would 
be accessed in the paging mode from working space 20. 

To utilize the absolute addressing mode, the processor must be in Privileged 
Master mode. The master mode bit in the indicator register and the privileged 
bit in the instruction segment register must be ON. If these two conditions are 
not met, an attempted reference to WSN 0 results in a Command fault. The housekeeping 
bit is assumed ON when WSN 0 is referenced. 

Paging Mode 

The memory paging mode is an integral part of the address translation process 
for mapping a virtual memory address to a real memory address. Each of the 512 
working spaces is supported by a page table. The location of the page table 
supporting a particular working space (WS) is found by using the nine-bit working 
space (WS) number to index a 512-word table that contains the supporting page 
table~s absolute memory address. This 512-word table is called the page table 
directory (PTO). This table is located in memory by a special base register 
called the page directory base register (PDBR). 

INTERVAL TIMER 

The processor contains a timer that provides a program interrupt (timer 
runout fault) at the end of a variable interval. The timer is loaded by the 
operating system and can be set to a maximum of approximately four minutes total 
elapsed time. 

1-6 DH03-01 



SECTION II 

REPRESENTATION OF DATA 

BIT GROUPINGS 

The processor is functionally organized to process 36-bi t groupings of 
information. Special features are also included for ease in manipulating 4-bit 
groups, 6-bit groups, 9-bit groups, 18-bit groups, and 72-b. ~ double-precision 
groups. These bit groupings are used by the hardware and software to represent 
a variety of forms of information. 

POSITION NUMBERING 

The numbering of bit positions, character positions, words, etc., starts 
with zero and increases from left to right as in conventional alphanumeric text. 

THE MACHINE WORD 

The machine word consists of 36 bits arranged as follows: 

a 1 l 
7 8 

One Machine/word 

Upper Half-Word Lower Half-Word 

3 

Data transfers between the processor and memory are double-word oriented; 
36 bits are transferred at a time for single-precision data and two parallel 
36-bit word transfers occur for double-precision data. When words are transferred 
to a memory unit, EDAC bits are added to each 36-bit word before storing it. 
When words are requested from a memory unit, the EDAC bits are read from memory, 
verified, and removed from the transferred word before sending the word to the 
processor. 

2-1 DH03-0l 



The processor has many built-in features for efficient transferring and 
processing of pairs of words. In transferring a pair of words to or from memory, 
a pair of memory locations is accessed; their addresses are an even number and 
the next higher odd number. A pair of machine words is arranged as follows: 

0 
0 

Even A ress 

3 3 
5 6 

A Pair of Machine Words 

ress 

7 
1 

In addressing such a pair of memory locations in an instruction that is 
intended for handling pairs of machine words, either of the two addresses may be 
used as the effective address (Y). Thus, 

If Y is even, the pair of locations (Y, Y+l) is accessed. If Y is odd, the 
pair of locations (Y-1, Y) is accessed. The term "Y-pair" is used for each 
such pair of addresses. Preferred coding practice refers to the even address; 
the GMAP assembler issues a warning diagnostic if Y is odd. 

CHARACTER-STRINGS 

Character Positions 

Alphanumeric data is represented by 9-bit, 6-bit, or 4-bit characters. A 
machine word contains either four, six, or eight characters, respectively. The 
character positions within the word are as follows: 

9-Bit Character (Bytes) : 

0 0 0 1 1 2 2 3 .__JBit positions 
0 8 9 7 8 6 7 5 within word 

I 0 I 1 I 2 I 3 I ...,Byte positions 
within word 

6-Bit Characters: 

0 0 0 1 1 1 1 2 2 2 3 3 
0 

Sr 
1 2 7 8 3 4 9 0 5 

I 0 1 I 2 I 3 I 4 I 5 I 

2-2 0803-01 



4-Bit Characters (Packed Decimal): 

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 

1:r 
4 5 0

1:r ~r 2

1:r 2r ~1!( ·1~ 
5 

I I 0 1 2 3 4 5 6 7 

The z represents the bit value O: other numbers in the fields represent the 
character positions. 

Bit Positions 

Bit positions within a character are as follows: 

IOlll2l31 4-bit character 

10lll21314ISI 6-bit character 

9-bit character 

Thus, both bit and character positions increase from left to right as in 
normal reading. 

LITERALS 

For information on literals refer to the GMAP User~s Guide. 

2-3 0803-01 



BINARY NUMBERS 

Fixed-Point Numbers 

Binary fixed-point numbers are represented with half-word, single-word, and 
double-word precision as shown below. 

Precision Re:eresentation 
0 1 
0 7 

Upper Half I I 
1 3 

Half-word 8 5 

Lower Half I I 
0 ! I 0 

Single-word I assumed 
decimal 
point 

0 3 3 -;i 
0 5 6 1 

Double-word I I I 
Even Address Odd Address 

Instructions can be divided into two groups according to the way in which 
the operand is interpreted: the "logic" group and the "algebraic" group. 

For logic operations, operands and results are regarded as unsigned, positive 
binary numbers. In the case of addition and subtraction, the occurrence of an 
overflow is reflected by the carry out of the most significant (leftmost) bit 
position: 

1. Addition - If the carry out of the leftmost bit position equals 1 
(Carry indicator ON), the sum is above the range. 

2. Subtraction - If the carry out of the leftmost bit position equals O 
(Carry indicator OFF), the difference is below the range. 

In the case of comparisons, the zero and Carry indicators show the relation. 

2-4 DH03-01 



For algebraic operations, operands and results are regarded as signed binary 
numbers, and the leftmost bit is used as a sign bit (a 0 being plus and 1 
minus). When the sign is positive, all the bits represent the absolute value of 
the number; when the sign is negative, they represent the twos complement of the 
absolute value of the number. 

In the case of addition and subcraction, the occurrence of an overflow is 
reflected by the carries into and out of the leftmost bit position (the sign 
position). If the carry into the leftmost bit position does not equal the carry 
out of that position, then overflow has occurred. If overflow has been detected 
and if the sign bit equals O, the result is below range; if with overflow the 
sign bit equals 1, the result is above range. 

In integral arithmetic, the location of the decimal point is assumed to the 
right of the least significant bit position; that is, depending on the precision, 
to the right of bit position 35 or 71 (17 for upper half-word). 

The number ranges for the various cases of precision, interpretation, and 
arithmetic are given in Table 2-1. 

Table 2-1. Ranges Of Fixed-Point Numbers 

Precision 

Inter-
.. 

pretation Arithmetic Half-Wor·d · Single_;Word Double-Word 
(Xn, YO ••• 17) (A,Q,Y) (AQ, Y-pair) 

Integral - 2 l 7 2N 2_ ( 2 l 7 -1 ) - 2 3 5 ~N 2_ ( 2 3 5 -1 ) -2 712N2_ (2 71-1) 
Algebraic 

Fractional -12 N~(l-2-17) -1 2 N2_(1-2-35) -1< N < (1-2-71 ) -

Integral 02_N2_ (218_1) 02N2_(2 36 -l} 02N2_ (2 7 2-1) 
Logic 

Fractional 0 2_N 2_ ( 1-2 -18 ) 02_N2_(1-2- 36 ) 02_N2_(1-2-?2) 

2-5 DH0)-01 



Floating-Point Numbers 

Binary floating-point numbers are represented with single-word and double-word 
precision. The upper eight bits represent the integral exponent to the base 2 
in twos complement form, and the lower 28 or 64 bits represent the fractional 
mantissa in twos complement form. The format for a floating-point number is: 

Sing le-Word 
Precision: 

0 
0 

s 

0 0 0 
1 7 8,j 

s 

assumed .-- radix point 
0 3 
~ _5_ 

•4 ____ Exponent-+ •4 ____ Mantissa -----•• 

Double-Word 
Precision: 

0 
0 

s 

0 
1 

assumed 
radix point 

0 0 0 
7 s. ~ 

s 

7 
1 

•
4 
___ Exponent-+ .-----------------Mantissa __________________ ..,. 

where S sign bit 

Before performing floating-point additions or subtractions, the processor 
aligns the number that has the smaller exponent. To maintain accuracy, the 
lowest permissible exponent of -128, together with the mantissa of zero, has 
been defined as the machine representation of the number zero (which has no 
unique floating-point representation). Whenever a floating-point operation yields 
an untruncated resultant mantissa equal to zero (71 bits plus sign because of 
extended precision}, the exponent is automatically set to -128. 

Normalized Binary Floating-Point Numbers 

For normalized binary floating-point numbers, the binary point is placed at 
the left of the most significant bit of the mantissa (to the right of the sign 
bit). Numbers are normalized by shifting the mantissa (and correspondingly adjusting 
the exponent) until no leading zeros are present in the mantissa for positive 
numbers, or until no leading ones are present in the mantissa for negative 
numbers. Zeros fill in the vacated bit positions. 

The number ranges resulting from the various cases of precision, normalization, 
and sign are given in Table 2-2. 

2-6 0803-01 



Table 2-2. Ranges Of Binary Floating-Point Numbers 

Sign Single Precision Double Precision 

Positive 2-129~N~(l- 2-27; 2 127 2-129~N~(l- 2-63) 2127 
Normalized 

Negative (-l+2-26) 2-129~N~- 2 127 {-l+2-62) 2-129~N~- 2 127 

Positive 2-lSS~N~(l- 2-27) 2127 2-19l~N~(l- 2-63) 2 127 
Unnormalized 

Negative _ 2-lSS>N>- 2127 -2-19l>N>- 2127 - - - -

NOTE: The floating-point number zero is not included in the table. 

Hexadecimal Floating-Point Numbers 

The hexadecimal option may be used in floating-point operations to declare 
hexadecimal constants, either explicitly or by default. The term hexadecimal 
refers to a floating-point format where the mantissa is a binary number, while 
the exponent represents a power of 16 (2**4). The mantissa is shifted by the 
number of places for 4-bit groups as required by the exponent. 

When decimal data is declared in source images, the characters "X" or "XO" 
are specified in the variable field of the DEC pseudo-operation in place of "E" 
or "D" to indicate single- or double-precision hexadecimal floating-point binary 
data, respectively. (See the GMAP User's Guide.) These characters control the 
computation of the exponent, the positioning of the binary mantissa, and the 
storage required by the data. When reading the converted data, the user should 
be aware that the exponent represents a power of 16~ therefore, a normalized 
positive mantissa may have as many as three leading binary zeros. 

The hexadecimal floating-point mode is enabled only when both bit 32 of the 
Indicator Register and bit 33 of the Mode Register (DPS 88: bit O of the Option 
Register) are set to 1. The operating system sets the Mode Register (DPS 88: 
Option Register) via an operating system service request before giving control 
to a process. After the hexadecimal floating-point mode is requested, the user 
controls the floating-point mode via the Indicator Register. If the bi ts are 
not both ls, the floating-point mode will be binary. 

If a decimal point is present in the variable field of the DEC pseudo-operation 
and no other controls are defined, the mechanism defaults to floating-point 
format. The HXFLPT pseudo-operation will alter the default mechanism to hexadecimal 
floating-point format. The default mechanism may be further controlled by including 
the ON, OFF, SAVE, or RESTORE options in the variable field of the HXFLPT 
pseudo-operation. (See the GMAP User's Guide for additional information.) 

2-7 DB03-0l 



Binary Representation Of Fractional Values 

A decimal fraction of a given number of digits cannot necessarily be represented 
exactly by a binary fraction of any finite number of bits. Consider, for example, 
the value 1/5, which is represented in decimal notation as 0. 2. Trying to 
represent it by a four-bit binary fraction, one obtains (.0011) 2 or 3/16; with 
eight.bits, one obtains (.00110011) 2 or 51/256. In fact, the exact value must 
be written as 

(0.2>10 = (0.0011)2 •.. 

which means that the bit pattern 0011 in the binary expansion keeps repeating 
indefinitely. If the decimal value 0.2 is converted to a binary expansion of 71 
bits and then converted back, the one-digit result would be 0.1, quite different 
from 0.2. The four-digit result would be 0.1999, which is almost (but not 
quite) equal to 0.2. If computations were involved instead of only conversions, 
the imprecision in the decimal result could be propagated. 

Various adjustments can be made to binary fractional values to make exact 
decimal results highly probable. The sure way is to use decimal numbers; 
alternatively, one may use binary integer notation to represent all values, 
whether integral or fractional, but this may make multiplication or division of 
an operand by a power of ten necessary in the course of a computation. 

DECIMAL NUMBERS 

Scaled decimal numbers that are used directly in hardware arithmetic commands 
are expressed as decimal digits in either the 4-bit or 9-bit character format. 
They are expressed as unsigned numbers or as signed numbers using a separate 
sign character. 

Decimal data utilizes the following formats: 

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 
0 1 4 5 8 9 0 3 4 7 8 9 2 3 6 7 8 1 2 5 

H 0 I 1 H 2 I 3 H 4 I 5 H 6 I 7 I 
Packed Decimal (4-bit) 

0 0 0 0 1 1 1 1 2 2 2 3 
0 1 8 9 0 7 8 9 6 7 8 5 

lzl 0 I z I 1 I z I 2 17.1 3 I 
I I I I I I r1 I 

ASCII (9-bit) 

The ~Z~ represents the bit value 0 while other numbers in the fields represent 
the character positions. 

2-8 DH03-0l 



Decimal Data Character Codes 

During arithmetic operations, decimal digits and signs are checked by the 
hardware as 4-bit data (the 4 least significant bits from a 9-bit numeric). The 
following interpr~tations are made: 

Bit Pattern for Illegal Procedure 
Character Interpreted as {IPR) if 

0000 0 
0001 1 
0010 2 found where 
0011 3 descriptor 
0100 4 specifies sign 
0101 5 
0110 6 
0111 7 
1000 8 
1001 9 

1010 + 
1011 + found where 
1100 + descriptor 
1101 - specifies digits 
1110 + 
1111 + 

The following codes {9-bit zones are created by prefixing binary 00010) are 
generated for output signs; the octal values are: 

Plus Minus 

4-bit 14(13) 15 

9-bit 053 055 

For several numeric instructions, a sign value of 13 can be optionally 
generated. 

2-9 DHOJ-01 



~loating-Poin~ Decimal Numbers 

The format for a floating-point decimal number expressed in 9-bit characters 
is: 

9-Bit 8-bit l 
SIGN ion. .10 2 101 io 0 0 EXPONENT 

where: SIGN can start at ~ legal 9-bit character boundary. 

In 4-bit character notation, there are four formats for floating-point decimal 
numbers: 

4-Bi t 8-Bit l 
0 SIGN 10 n ... 0 10 3 10 2 0 10 1 io 0 0 EXPO NENT 

·~ 

Even character boundary, odd i of digits (t of digits = n+l) 

4 
4 l 

SIGN 0 10n ... 10 3 0 10 2 io 1 0 10° EXPO 0 NENT 

411~ 

Odd character boundary, odd t of digits (t of digits = n+l) 

The 8-bit exponent field, which now spans two character positions, is 
interpreted the same as in 9-bit character mode. The other two formats are 
formed with n+l even. This effectively exchanges the two exponent representations 
in the formats shown. 

2-10 DHOJ-01 



The number ranges for decimal numbers are: 

1. Fixed-point unsigned integer: 

Range= 0 ... 1063 

2. Fixed-point signed integer: 

Range = ~ 10 6 2 

3. Floating-point (implicitly signed) : 

a. 9-bit format range - + 1061 * 10.±_121 
-

b. 4-bit format range - + 1060 * 10.±_121 
-

c. zero = +O * 10 121 

2-11 0803-01 





SECTION III 

MEMORY CHARACTERISTICS 

GENERAL DESCRIPTION 

Each memory module is composed of a system controller (DPS 88: Central 
Interface Unit) and associated memory units. Systems are memory-oriented, 
permitting processor and I/O multiplexer functions to execute asynchronously and 
simultaneously. 

The memory module has neither program execution nor arithmetic capability, 
but acts as a passive system component. It serves the processor and I/O multiplexer 
modules that call upon the memory module to save or retrieve information or to 
communicate with other system components. 

In the memory module 36-bi t words are paired with EDAC bi ts to provide 
error detection and correction. For purposes of memory management, the memory 
is organized into pages of 1024 words (4096 bytes) each. 

Increased system throughput is achieved by operating the memory module and 
associated memory units on a 72-bit parallel basis. This corresponds to two 
single-word instructions, two data words, or one double-precision fixed-point or 
floating-point number. 

Systems with more than one system controller provide an increased effective 
information rate, since each system controller operates independently and its 
functions can be overlapped with those of other system controllers. 

Additional overlap is provided by address interleaving. Address interleaving 
considerably reduces the possibility of the same memory unit being accessed in 
succession. Furthermore, the processor and system controller are especially 
designed to utilize memory accesses of two memory units in rapid succession. 
These two factors contribute to higher access rates and more effective memory 
cycle times. 

3-1 DH03-0l 



VIRTUAL MEMORY 

Virtual memory (VM) provides an extremely large, directly addressable memory 
space (2**43 bytes) and a complement of registers and instructions to manage 
virtual address space. To provide for efficient management and control, the VM 
space is divided into equal parts called "working spaces". The working spaces 
are further divided into variable sizes called "segments". A segment within a 
working space is described by a "segment descriptor", which has a base relative 
to the origin of the working space and a bound relative to the base, together 
with control information. Thus, for all memory references, virtual memory addresses 
are prepared relative to a particular working space and to a particular segment 
base within the working space. These virtual memory addresses are then mapped 
to real memory addresses by a hardware algorithm, of which memory paging is an 
integral part. 

To access (generate a memory address for) an area of VM, a process (used 
here to mean the smallest working unit of software) must have a segment descriptor 
that "frames" the particular segment of VM and that gives the desired permission 
for using this segment of VM; that is, Read permission, Write permission, or 
Execute permission. A process cannot create a segment descriptor, nor change 
the base and bound to access an area of VM not enclosed by the area originally 
"framed", nor increase the permissions field. Therefore, a process is limited 
to accessing only those areas of VM described by segment descriptors that are 
available to the process. Segment descriptors are passed to a process either by 
the operating system or by another process (all descriptors are created by the 
operating system but they may be passed by one process to another process). 

In the most secure form of operation, segment descriptors are passed to a 
process only through one or more of three segment descriptor "stacks" maintained 
in main memory. Each of these stack areas of memory is defined by a special 
hardware register. A unique transfer of domain (CLIMB) instruction is provided 
that allows the process to specify which descriptors in the stacks are to be 
passed to another process. Then, during the execution of this instruction, the 
descriptor stack registers are manipulated by the hardware to pass descriptors 
as specified by the process performing the transfer. 

The hardware environment for the virtual memory is composed of four elements: 
working spaces, domains, segments, and pages. The working spaces and pages are 
physical elements, whereas the segments and domains are logical elements. These 
elements are treated as separate components of the virtual memory but must be 
interpreted in the context of the whole environment, since they are closely 
related in their interaction with each other. 

Working Spaces And Pages 

The virtual memory is divided into 512 (0 through 511) equal working spaces 
of 2**34 bytes, each of which is divided into fixed-length parts called pages. 
These pages are used for memory management and have a fixed size of 1024 words 
(4096 bytes) each. 

Each working space has an associated page table that identifies the real 
memory allocation. The page table for each working space is located in real 
memory by a pointer that resides in the page table directory. This directory 
has 512 entries and the pointer to the directory is stored in the page directory 
base register (PDBR) that can only be altered in the Privileged Master mode. 

3-2 DH03-0l 



In a memory operation, there is a virtual address and a real address. The 
virtual address is automatically transformed to a real address by the hardware. 
The virtual address has three components: a working space number (WSN), a page 
number, and a byte number (commonly called an offset). 

Segments 

Another division of the working space is the segment. Each segment is a 
logical entity of variable length and may be as small as one bytee Consequently, 
a segment may reside on a portion of a page or span several pages (see Figure 
3-1). 

Page O 

Page 1 

Page 2 

Page 3 

i..----

Working Space 

~ 

+--Segment a 

+--Segment b 

Segment c 

Figure 3-1. Layout Of Segments On Pages 

The relationship of a segment and a page is analogous to the relationship 
of a file and a tape reel. As a multif ile reel may contain many files on one 
reel, a page may contain several segments. As a multireel file has one file 
that occupies several reels, a segment may extend over several pages. 

3-3 DH03-0l 



A segment is characterized by its elements and the form of access to these 
elements, which can be Execute, Read, or Write. Segments are classified either 
as descriptor segments or nondescriptor segments. The descriptor segments may 
be used as linkage, parameter, argument, or safe store segments; whereas the 
nondescriptor segments may be instruction-only, data-only, instruction and data 
segments, or data stack segments as illustrated in the following diagram: 

Linkage 
Segment 

(LS) 

Segment~ 

Descriptor~ Nondescriptor 
Segments Segments 

Parameter 
Segment 

(PS) 

Argument 
Segment 

(AS) 

Safe Store 
Segment 

(SS) 

Instruction 
Segment 

(IS) 

Data 
Segment 

(OS) 

Data Stack 
Segment 

(DSS) 

A segment of either class may also be described in one of the eight operand 
descriptor registers (DRQ). 

Descriptors 

A descriptor consists of a 72-bit word-pair and locates a segment in virtual 
memory. When the processor hardware obtains a descriptor from memory, the processor 
assumes that the descriptor is located on an even-word boundary and ignores the 
least significant bit of the virtual word address. If a descriptor is stored 
from a register, the processor hardware stores on an even-word boundary. 

To allow a process to have access to a segment, a copy of the descriptor 
must be obtained to locate the segment in virtual memory. Also, the descriptor 
delimits, through a set of flags, what forms of access to the segment are available. 

Those segments containing instructions, data, or a combination of both 
(nondescriptor segments) are commonly called operand segments and have descriptors 
that are either type O, 2, 4, or 6 to indicate operand storage. The segments 
containing only descriptors, that is, descriptor segments, have descriptors that 
are either type 1 or 3 to indicate descriptor storage. Operand memory references 
are always accomplished through operand segment descriptors, usually to 
nonhousekeeping pages, whereas descriptor references are made through descriptor 
segment descriptors to housekeeping pages. 

3-4 DH03-0l 



Ten types of descriptors are available. Four of the ten descriptor types 
are used to define segments that contain data or instructions, and two are used 
for segments containing segment descriptors. The remaining four descriptors are 
used only during the execution of the special transfer-of-domain (CLIMB) instruction. 
The list of descriptor types is given below. 

~ 

0 
2 
4 
6 

1 
3 

5 
8 
9 

11 

Descriptor 

Standard 
Standard with WSN 
Super 
Super with WSN 

Standard 
Standard with WSN 

Dynamic linking} 
Entry 
Entry 
Entry 

Descriptor 
Segment 

l 
Standard 

Descriptor 

~ 
WSR WSN 

Contents 

Instructions/operands 
Operands 
Operands 
Operands 

Descriptors 
Descriptors 

Used only with 
CLIMB 

Segment 

Nondescr iptor 
Segment 

/\ 
Standard Super 

Descriptor Descriptor 

~· ~ 
WSR WSN WSR WSN 

Descriptor Type 1 3 0 2 4 6 

STANDARD DESCRIPTOR 

The format of the standard descriptor is: 

0 
0 

Bound -

Bound 

1 2 
9 0 

20 

Base 

Flags 

2 2 
8 9 

9 
WSR 

3 3 
1 2 

Type 
3 

3 
5 

4 

36 

Even 
Word 

Odd 
Word 

A 20-bit field that is the maximum valid byte address within the 
segment; bits 0-17 are the word address and bits 18-19 are the 
9-bit byte address. The bound is relative to the base. A zero 
bound indicates a one-byte segment if bit 27 is 1. 

3-5 DH03-0l 



Flags - A 9-bi t field that describes the access privileges as well as 
other control information associated with the descriptor: 

Flag 
Bit Code Meaning 

20 R Read 
O Read not allowed 
1 Read allowed 

21 W Write 

22 s 

23 c 

24 x 

25 E 

26 p 

27 B 

28 A 

O Write not allowed 
1 Write allowed 

Store by STDn 
O Descriptor may not be stored in a type 1 or 3 

segment by the STDn instruction. 
1 Descriptor may be stored in a type 1 or 3 

segment by the STDn instruction. 

Cache Use Control 
0 <<L66 

Cache (2K or SK) is not used for any fetches 
through this descriptor. 

<<DPS 8/20 and 8/44 
Cache (2K) is not used for fetches through 
this descriptor. (8K cache not bypassed.) 

<<DPS 8/47, 8/49, 8/52, 8/62, 8/70, and 88 
Cache is always used. Not interpreted by 
hardware. 

1 Cache is utilized for all memory references 
through this descriptor. 

Reserved for software. 

Execute 
O Execute not allowed 
1 Execute allowed 

Privilege 
O Privileged Master mode not required for 

execution. 
l Privileged Master mode required for execution 

Bound valid 
O Bound is not valid7 segment is empty. 
l Bound field is maximum valid address 

Available segment 
O Segment not available7 references not allowed. 
1 Segment available1 references are allowed. 

WSR A 3-bi t field that specifies which of the eight working space 
registers to use with this descriptor. The working space register 
supplies the working space number (WSN). 

3-6 DH03-0l 



Type 

Base 

A 4-bit field that defines the descriptor type. The two types 
for standard descriptors are: 

Type 

Type 

0 The descriptor "frames" instruction/operand space. 

1 The descriptor •frames" an address space containing 
descriptors. 

A 36-bit virtual byte address that is relative to the working 
space defined in the WSR. Bits 0-33 are a 34-bit word address 
and bits 34-35 represent a 9-bit byte within the word. 

STANDARD DESCRIPTOR WITH WORKING SPACE NUMBER 

The format of the standard descriptor with working space number (WSN) is: 

0 
0 

Bound 

1 2 
9 0 

2 2 
2 3 

Flags 
20 3 

Base 

WSN 

3 3 3 
1 2 5 

Type 
9 4 

36 

Even 
Word 

Odd 
Word 

This format is the same as that for the standard descriptor with the exception 
that the flags field has been truncated to allow the descriptor to contain the 
actual working space number rather than point to a working space register. The 
three flag bits are the same as the corresponding flag bits of the standard 
descriptor. The state of the truncated flags is assumed as follows: 

1. 

2. 

3. 

4. 

5. 

WSN 

Type 

Execute not allowed (NE) 

Not privileged (NP) 

Bound valid (B) 

Segment is available (A) 

Bypass cache (for DPS 8/ 20 and 8/44 only) (NC) 

The actual working space number. 

The two types of the standard descriptor with WSN are: 

Type 2 The descriptor "frames" operand space. 

Type 3 The descriptor "framas" an address space containing 
descriptors. 

3-7 0803-01 



SUPER-DESCRIPTOR 

When segments larger than 256K (2**18) words are required, super-descriptors 
are used to define the large segments. The definitions of the flagsf WSR, WSN, 
and type fields of the super-descriptor are the same as those of the standard 
descriptor. The· base and bound fields are automatically extended on the right 
to a length of 36 bits. The base is extended with zeros and the bound is 
extended with ls. Therefore, a super-descriptor with base, location, and bound 
of zero describes a segment that begins at location zero of a working space and 
extends 2** 26 bytes (16 million words). A super-descriptor with a base of 1, 
and location of zero, and a bound of 3 describes a segment that starts at 
location 2**26 and extends 2**28 bytes (64 million words). 

The format of the super descriptor is: 

0 
0 

Base 

Bound 

Flags 

WSR 

Type 

Base 

0 1 
9 0 

10 
Bound 

1 2 
9 0 

10 

Location 

Flags 

2 2 
8 9 

9 
WSR 

3 3 
1 2 

Type 
3 

3 
5 

4 

36 

Even 
Word 

Odd 
Word 

A 10-bit virtual address (unit 2**26 bytes) within a working 
space. The 10-bit base is converted to a 36-bit base (unit 1 
byte) by extending to the right by 26 zero bits. 

A 10-bit virtual address (unit 2**26 bytes) that is the maximum 
valid address within the segment. Conversion to a 36-bit bound 
(unit 1 byte) is accomplished by extending the 10-bit field to 
the right by 26 one bits. The bound is relative to the base. 

The flags field describes the access privileges associated with 
the descriptor and is identical to the flags field for the 
standard descriptor. 

A 3-bit field that specifies which of the eight working space 
registers to use with this descriptor. (Identical to the WSR 
field for the standard descriptor.) 

A 4-bit field that defines the type for the super-descriptor. 

Type = 4 The descriptor "frames" operand space. 

Location - A 36-bit byte virtual address relative to the base; that is, an 
offset from the 10-bit base. The area framed by the 
super-descriptor extends from (Base + Location) through (Base + 
Bound). 

3-8 DH03-0l 



SUPER-DESCRIPTOR WITH WORKING SPACE NUMBER 

The format of the super-descriptor with working space number (WSN} is: 

0 
0 

Base 

0 1 
9 0 

, (\ 
.1.V 

Bound 

1 2 
9 0 

Flags 
10 

Location 

2 2 
2 3 

3 
WSN 

3 3 
1 2 

Type 
9 

3 
5 

4 

36 

Even 
Word 

Odd 
Word 

This format is the same as that for the super-descriptor with the exception 
that the truncated flags field contains three bits that are defined identically 
as the corresponding three bits of the standard descriptor. The state of the 
truncated flags is assumed as follows: 

1. 

2. 

3. 

4. 

5. 

WSN 

Type 

Execute not allowed (NE) 

Not privileged (NP) 

Bound valid (B) 

Segment is available (A} 

Bypass cache (For DPS 8/20 and 8/44 only) (NC) 

The actual working space number. 

A 4-bit field that defines the descriptor type as "super with 
WSN". 

Type = 6 The descriptor "frames" operand space. 

3-9 DH03-01 



Domains 

Another logical element of the virtual environment is the domain. The 
domain is a flexible and temporary range of operation that may encompass several 
noncontiguous segments in one or more working spaces (see Figure 3-2). Two or 
more domains may ·interact by including the same segment. Each domain contains 
exactly one linkage segment to define the domain. A change of domain implies a 
change of linkage segment and vice versa. The linkage segment contains descriptors 
for the segments constituting the domain. Descriptors for the domain may be in 
descriptor segments described in the linkage segment, in descriptor registers, 
or in the parameter segment. 

WSN X WSN Y 

Page 0 Segment a Page 0 

Page 1 Segment d Page 1 
Segment b 

Page 2 Domain Page 2 

Page 3 Segment e Page 3 

Segment c 

Page 4 

Figure 3-2. Domain Of Noncontiguous Segments 

Like the linkage segment, only one argument segment is contained in a domain. 
This segment provides additional descriptor storage in the form of a descriptor 
stack which is accessed through the argument stack register (ASR) • The stack is 
empty until descriptors are entered during execution. This segment is used 
mainly to store descriptors previously loaded in registers, while the registers 
are used for other descriptors, and to form descriptor segments for communication 
across domains. 

3-10 0803-01 



The parameter segment contains one descriptor for each parameter and its 
contents may vary from call to call. Unlike the descriptors in the linkage 
segment which are available each time control is passed to a domain, the descriptors 
in the parameter segment are specific to the call and become unavailable when 
control is returned from the called domain. Thus, the descriptors in the parameter 
segment for a domain provide accessibility in the called domain to the described 
segments only while the call is active. 

The bounds and forms of access of the domain are set by the descriptors 
that define the segments that contain the items to be accessed within a domain. 
Change from one domain to another is normally performed by the execution of an 
!CLIMB instruction that establishes a new linkage segment and, usually, a new 
parameter segment. An interrupt or fault also causes a change of domain. 

Also associated with the process are the safe store stack and the data 
stack segments. The safe store stack is always used (except for GCLIMB and 
PCLIMB) in a change of domain, but a new domain may or may not choose to access 
a different portion of the data stack segment. It does not have access to that 
portion used by the calling domain. 

Normally, a change of domain is accomplished through a succession of operations 
that are associated with the !CLIMB instruction. Starting with two separate 
domains, which for convenience are referred to as calling domain and called 
domain, the entry descriptor accessed in the calling domain describes the 
called-domain linkage segment and identifies a specific initial instruction in 
an instruction segment described in that linkage segment. The contents of the 
domain registers (LSR, ASR, PSR, and DSAR}, as well as those of any other registers 
specified by the type of entry descriptor, are safestored. 

The change-of-domain CLIMB instruction indicates whether there are parameters 
and the number of arguments. The arguments may be either vectors or descriptors. 
If the arguments are vectors, descriptors are prepared for the vectors, stored 
in the parameter segment of the called domain, and the argument segment becomes 
empty. Refer to the description of the LDDn instruction documented later, for 
information concerning vector operations. 

The source of the list of vectors or descriptors is given as the contents 
of pointer register zero. (Descriptor register zero identifies the segment in 
which the list occurs and indicates whether vectors or descriptors are listed. 
Address register zero gives the offset in that segment of the list.) On 
change-of-domain return, the contents of the calling-domain~s domain registers 
and any other register contents that were safestored are restored. 

3-11 DHOJ-01 



ENTRY DESCRIPTOR 

An entry descriptor is required to call a new domain. The entry descriptor 
describes the linkage segment that defines the new domain, a segment containing 
instructions to be initially executed in the domain, and an offset relative to 
the origin of that segment to which control is transferred. The entry descriptor 
is used with the CLIMB instruction and has the following format: 

0 
0 

Entry 

LBOUND 

Entry Location 

F 

ISEG No. 

WSR 

Type 

LBOUND 

Linkage Base 

1 1 1 
7 8 9 

2 2 
8 9 

3 3 
1 2 

3 
5 

Location F ISEG No. WSR Type Even 
Word 

10 

18 10 3 

Linkage Base 
26 

4 

000 Odd 
Word 

An 18-bit word address that is loaded into the instruction 
counter when the entry descriptor is used as an argument 
of the CLIMB instruction. The entry location is relative 
to the base of the new instruction segment. 

Bit 18 is the "store" permission bit and is interpreted 
the same as flag bit 22 of the standard and 
super-descriptors. 

The number of the descriptor to be loaded into the 
instruction segment register (ISR). The ISEG number is 
expressed in units of descriptors and is an index relative 
to the new linkage segment base. The ISEG number is 
extended with three zeros to be expressed in bytes and 
is also used in loading the SEGID (IS) register as follows: 

11 bits 0-1 
ISEG No. = bits 2-11 

The working space register containing the number of the 
working space to which the linkage base is relative. 

A 4-bit field that defines the entry descriptor type. 

Type = 8, 9, or 11 Each number has a special meaning 
for the CLIMB instruction 
(determining the registers to be 
saved in the safe store stack upon 
change of domain) . 

The bound of the linkage segment expressed in units of 
descriptors. To form a standard descriptor bound, bound 
= OOOOOOOllLBOUNDI 1111. 

The virtual starting address of the linkage segment 
relative to the working space defined by the working 
space register pointed to by the WSR field. When an 
entry descriptor is utilized, the associated linkage 
segment must be contained in the first 2** 26 bytes of 
the working space. The last three bits of the linkage 
base are shown as zeros since the linkage segment must 
start on a double-word boundary; in actual practice, 
the hardware ignores the contents of these three bits. 

3-12 DH03-0l 



DYNAMIC LINKING DESCRIPTOR 

The dynamic linking descriptor has a double-word format with a type field 
of T=S entered in bits 32-35 of the even word. Bits 0-21, 23-31, and 36-71 are 
available to software for defining how the linkage is to be resolved. Bit 22 is 
for store permission. A dynamic linking fault will occur when the CLIMB instruction 
attempts to address through a dynamic linking descriptor. Any attempt by the 
STDn instruction to store a dynamic linking descriptor with the store permission 
bit (bit 22) of word one equal to zero in a type T=l or 3 segment causes an SCL2 
fault. The dynamic linking descriptor has the following format: 

0 
0 

Reserved for 

Type 

SHRINKING 

Software 
22 

2 
2 

1 
Reserved for 

Reserved for Software 

Software 
9 

3 3 
1 2 

Type 
4 

36 

3 
5 

Even 
Word 

Odd 
Word 

A 4-bit field that defines the dynamic linking descriptor. 

Type = 5 

NOTE: The software usually replaces this descriptor with 
a Type = 11 entry descriptor while processing a 
dynamic linking fault. 

A feature commonly used to provide descriptor access control is called 
shrinking. This is the only means available to the Slave mode for the creation 
of descriptors. In this process a new descriptor of decreased scope is formed 
in one of the descriptor registers from a descriptor already available. In 
essence a new subordinate segment identified by the shrunken descriptor is formed 
as shown in Figure 3-3. 

3-13 DH03-01 



Given 
Descriptor 

Given 
Segment 

New 
Segment 

DRn 

Shrunken 
Descriptor 

Figure 1-3. Shrunken Descriptor For Corresponding New Segment 

Shrinking is 1.JSed to prepare parameter descriptors for another domain, to 
facilitate access to portions of the domain, and to restrict access to specific 
shared portions of the domain. Shrinking operations may be performed on both 
standard and super-descriptors, but the result is always a standard descriptor. 
A shrunken descriptor may be stored in a descriptor segment on a housekeeping 
page or in the descriptor stack addressable by the Argument Stack Register (ASR). 
Storing requires that the descriptor to be stored has store permission. 

Shrinking is done via the Load Descriptor Register n (LDDn) instruction, or 
a domain call or transfer version of the CLIMB instruction (ICLIMB or PCLIMB}. 
In both instances, operands are used to define the shrinking operation in terms 
of a base address, size, and segment. The operands are called vectors and each 
is composed of two contiguous words. Each vector specifies one of the following 
functions to be performed by the instruction: copy descriptor, normal shrink, 
or data stack shrink. An operand of a Load Descriptor instruction may be in the 
same segment as the Load Descriptor Register n instruction or in another segment. 
If the operand is in a descriptor segment, it is a descriptor, not a vector, and 
replacement occurs rather than shrinking. 

A companion of the vector is an internal offset (a combination of a segment 
identifier (SEGID) and an address value) called a pointer. The pointer is a 
36-bit operand with sufficient information to identify an operand within a domain. 
Since a pointer is relative to a domain, it can be used only to address operands 
within its domain. Pointers for one domain cannot be used in another domain; 
however, pointers can be exchanged and used by several instruction segments 
within a domain. 

3-14 DH03-0l 



SECTION IV 

PROCESSOR ACCESSIBLE REGISTERS 

A processor register is a hardware assembly that holds information for use 
in some specified manner. An accessible register is a register whose contents 
are available to the user. Some accessible registers are explicitly addressed 
by particular instructions, some are implicitly referenced during the execution 
of instructions, and some are used in both ways. The accessible registers are 
listed in Table 4-1. Refer to the "Processor Instructions" section for a discussion 
of each instruction to determine the way in which the registers are used. 

4-1 DHOJ-01 



Table 4-1. Processor Accessible Registers 

Registe·r Name 

Accumulator Register 
Quotient Register 
Accumulator-Quotient Register 1 

Exponent Register 
Exponent-Accumulator-Quotient Registerl 
Index Registers 
Indicator Register 
Timer Register 
Instruction Counter 
Address Registers 
Mode Register (Not in DPS 88) 
Cache Mode Register (Not in DPS 88) 
Fault Register 
Control Unit History Registers 

(Not in DPS 88) 
Operations Unit History Registers 

(Not in DPS 88) 
Decimal Unit History Registers 

(Not in DPS 88) 
Virtual Unit History Registers 

(Not in DPS 88) 
Working Space Registers 
Safe Store Register 
Linkage Segment Register 
Argument Stack Register 
Parameter Stack Register 
Instruction Segment Register 
Operand Descriptor Registers 
Segment Identity Registers 
Instruction Segment Identity Register 
Pointer Regi~ters2 
Data Stack Descriptor Register 
Data Stack Address Register (DPS 8) 
Data Stack Address Register (DPS 88) 
Page Directory Base Register (DPS 8)3 
Page Directory Base Register (DPS 88) 
Option Register (DPS 8)3 
Option Register (DPS 88} 
Pointer and Length Registers 
Pointer and Length Registers (DPS 88)4 
Stack Control Register 

Mnemonic 

A 
Q 

AQ 
E 
EAQ 
Xn 
IR 
TR 
IC 
ARn 
MR 
CMR 
FR 
CUn 

OUn 

DUn 

vun 

WSRn 
SSR 
LSR 
ASR 
PSR 
!SR 
DRn 
SEGIDn 
SEGID(IS) 
PRn 
DSDR 
DSAR 
DSAR 
PDBR 
PDBR 
OR 
OR 
P&L 
P&L 
SCR 

Length 
(bits) 

36 
36 
72 

8 
80 
18 
18 
27 
18 
24 
34 
28 
72 
72 

72 

72 

72 

9 
72 
72 
72 
72 
72 
72 
12 
12 

108 
72 
17 
15 
15 
17 

3 
36 
36 
36 

2 

Quantity 

1 
1 
1 
1 
1 
8 
1 
1 
1 
8 
1 
1 
1 

16 

16 

16 

16 

8 
1 
1 
1 
1 
1 
8 
8 
1 
8 
1 
1 
1 
1 
1 
1 
1 
8 
2 
1 

l'l'hil='~~ ronic:.t-orc. .:lro nn~ C!.O'f"""ll.!:l.-::::i.~o ..,......,,..,.~;,...~1 ~r.-~,_.,.,.,1-..1 ; ....... ,.. t.... ...... --- .~v~-111'-u·.1.'-11a-f-.1.!u--11:::. u-.1..~ ____ .._ _ __ ':JI ______ ~-- •• ...,._ ....,'-t'.,.._"'6'"""'"' ,t-'1.1.:z~~"""u...a.. U..:Ji~'41;"111U~.&.CW UU'- QLC' - - ..... 

their constituent registers. 

2The pointer registers are not distinct 
group of registers (DR~, AR~, SEGID~). 

3The PDBR uses 15 bits for DPS 8; 17 for 
The OR uses 3 bits for DPS 81 36 for DPS 

nh,,c;,.. ~ l 
t""··i - _""" .... .-

DPS 88. 
88. 

registers but a collective 

4The pointer and length registers are described later in this document. 

4-2 DH03-0l 



In the descriptions that follow, the diagrams given for register formats do 
not imply that a physical assembly possessing the pictured bit pattern actually 
exists. The diagram is a graphic representation of the form of the register 
data as it appears in memory when the register contents are stored or how data 
bits must be assembled for loading into the register. 

If the diagrams contain the character "x" or "O", the value of the bit in 
the position shown is irrelevant to the register. Bits pictured as "x" are not 
changed in the receiving cell when the register is stored. Bits pictured as "O" 
are set to o in the receiving cell when the register is stored. Neither nx" 
bits nor "O" bits are loaded into the register. 

ACCUMULATOR REGISTER (A) 

Format: 36 bits 

0 1 1 3 

A-Upper A-Lower 

18 18 

Figure 4-1. Accumulator Register (A) Format 

Description: 

A 36-bit physical register. 

Function: 

In fixed-point binary instructions, holds operands and results. 

In floating-point binary instructions, holds the most significant part of 
the mantissa and the result. 

In shifting instructions, holds original data and shifted results. 

In address preparation, may hold two logically independent offsets, A-upper 
and A-lower, or an extended range bit- or character-string length. 

4-3 DHOJ-01 



QUOTIEN'r REGISTER (Q) 

Format: 36 bits 

0 
0 

Q-Upper 

1 1 

Q-Lower 

18 

Figure 4-2. Quotient Register (Q) Format 

Description: 

A 36-bit physical register. 

Function: 

In fixed-point binary instructions, holds operands and results. 

3 

18 

In floating-point binary instructions, holds the least significant part of 
the mantissa. 

In shifting instructions, holds original data and shifted results. 

In address preparation, may hold two logically independent offsets, Q-upper 
and Q-lower, or an extended range bit- or character-string length. 

ACCUMULATOR-QUOTIENT REGISTER (AQ) 

Format: 72 bits 

0 
0 

Even Word 

3 3 
5 6 

36 

Odd Word 

Figure 4-3. Accumulator-Quotient Register (AQ) Format 

4-4 

7 
1 

36 

DH03-0l 



Description: 

A combination of the accumulator (A) and quotient (Q) registers. 

Function: 

In fixed-point binary instructions, holds double-precision operands and 
results. 

In floating-point binary instructions, holds the mantissa and the result. 

In shifting instructions, holds original data and shifted results. 

EXPONENT REGISTER ~ 

Format: 8 bits 

0 
0 

0 0 
7 8 

3 
5 

exponent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 28 

Figure 4-4. Exponent Register (E) Format 

Description: 

An 8-bit physical register. 

Function: 

In floating-point binary instructions, holds the exponent. 

4-5 DHOJ-01 



EXPONENT-ACCUMULATOR-QUOTIENT REGISTER (EAQ) 

Format: 80 bits 

0 0 0 7 
0 'El 7 0 'Agl 1 

I exponent 
I 

mantissa I 
8 72 

Figure 4-5. Exponent-Accumulator-Quotient Register (EAQ) Format 

Description: 

A combination of the exponent (E), accumulator (A), and quotient (Q) registers. 
Although the combined register has a total of 80 bits, only 72 are involved in 
transfers to and from main memory. The low-order 8 bits are discarded on store 
and zero-filled on load (that is, Q-register bits 28-35 are zero on load; bits 
64-71 of theAQ Register are ignored). See •Floating-Point Arithmetic Instructions" 
documented later in this manual. 

Function: 

In floating-point binary instructions, holds operands and results. 

INDEX REGISTERS (Xn) 

Format: 18 bits each 

0 1 

18 

Figure 4-6. Index Register (XE) Format 

4-6 DH03-0l 



Description 

Eight 18-bit physical registers numbered 0 through 7. Index register data 
may occupy the position of either an upper or lower 18-bit half-word operand. 

Function: 

In fixed-point binary instructions, hold half-word operands and results. 

In address preparation, hold bit, character, or word offsets or held extended 
range bit- or character-string lengths. 

INDICATOR REGISTER (IR) 

Format: 18 bits 

0 
0 

1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 
7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 

x x x x x x x x x x x x x x x x x x a b c d e f g h i j k 1 m 0 n 

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Figure 4-7. Indicator Register (IR) Format 

Description: 

MBZ 

3 
5 

3 

An assemblage of 14 indicator flags from various uni ts of the processor. 
The data occupies the position of a lower 18-bit half-word operand. When interpreted 
as data, a bit value of 1 corresponds to the ON state of the indicator; a bit 
value of 0 corresponds to the OFF state. 

4-7 DH03-0l 



Function: 

The functions of the individual indicator bits are given below. 

Indicator name 

a Zero 

b Negative 

c Carry 

d Overflow 

e Exponent overflow 

Action 

This indicator is set ON whenever the output of 
the main binary adder consists entirely of zero 
bits for binary or shifting instructions or the 
output of the decimal adder consists entirely of 
zero digits for decimal instructions; otherwise, 
i t is set OFF . 

This indicator is set ON whenever the output of 
bit 0 of the main binary adder has value 1 for 
binary or sh if ting instructions or the sign character 
of the result of a decimal instruction is the negative 
sign character; otherwise, it is set OFF. 

This indicator is set ON for any of the following 
conditions; otherwise, it is set OFF. 

(1) If a bit propagates leftward out of bit O of 
the main binary adder for any binary or shifting 
instruction. 

(2) If lvaluell <= lvalue21 for a decimal numeric 
comparison instruction. 

(3) If charl <= char2 for a decimal alphanumeric 
comparison instruction. 

This indicator is set ON if the arithmetic range 
of a register is exceeded in a fixed-point binary 
instruction or if the target string of a decimal 
numeric instruction is too small to hold the integral 
part of the result. It remains ON until reset by 
the Transfer On Overflow (TOV) instruction or is 
reset by some other instruction that loads the IR. 
The event that sets this indicator ON may also 
cause an overflow fault. (See overflow mask 
indicator below.) 

This indicator is set ON if the exponent of the 
result of a floating-point binary or decimal numeric 
instruction is greater than +127. It remains ON 
until reset by the Transfer On Exponent Overflow 
(TEO) instruction or is reset by some other 
instruction that loads the IR. The event that sets 
this indicator ON may also cause an overflow fault. 
(See overflow mask indicator below.) 

4-8 DH03-0l 



Indicator name 

f Exponent underflow 

g Overflow mask 

h Tally runout 

i Parity error 

j Parity mask 

Action 

This indicator is set ON if the exponent of the 
result of a floating-point binary or decimal numeric 
instruction is less than -128. It remains ON until 
reset by the Transfer On Exponent Underflow (TEU) 
instruction or is reset by some other instruction 
that loads the IR. The event that sets this indicator 
ON may also cause an overflow fault. (See overflow 
mask indicator.) 

This indicator is set ON or OFF only by the 
instructions that load the IR. When set ON, it 
inhibits the generation of the fault for those events 
that normally cause an overflow fault. If the 
overflow mask indicator is set OFF after occurrence 
of an overflow event, an overflow fault does not 
occur even though the indicator for that event is 
still set ON. The state of the overflow mask 
indicator does not affect the setting, testing, or 
storing of any other indicator, nor does it affect 
the overflow fault caused by the truncation 
indicator. 

This indicator is set OFF at initialization of any 
tallying operation. It is then set ON for any of 
the following conditions: 

(1) If any Repeat instruction terminates because 
of tally exhaust. 

(2) If a Repeat Link (RPL) instruction terminates 
because of a zero link address. 

(3) If a tally exhaust is detected for an Indirect 
then Tally modifier. The instruction is 
executed whether or not tally exhaust occurs. 

(4) If a string scanning instruction reaches the 
end of the string without finding a match 
condition. 

This indicator is set ON whenever a system controller 
(DSP 88: Central Interface Unit) signals an 
uncorrectable error or the processor detects an 
internal parity error condition. The indicator is 
set OFF only by instructions that load the IR. 

This indicator is set ON or OFF only by the 
instructions that load the IR. When it is set ON, 
it inhibits the generation of the parity fault for 
all events that set the parity error indicator. 
If the parity mask indicator is set OFF after the 
occurrence of a parity error event, a parity fault 
does not occur even though the parity error indicator 
may still be set ON. The state of the parity mask 
indicator does not affect the loading, testing, or 
storing of any other indicator. 

4-9 DH03-0l 



k 

1 

m 

n 

MBZ 

Indicator name 

Master mode 

Truncation 

Multi-word instruction 
interrupt 

Hex J1lode 

Action 

This indicator is set OFF only by the execution of 
the Transfer After Setting Slave (TSS) instruction 
or the execution of an OCLIMB or RET instruction 
with an operand in which the bit is OFF. It is 
set ON only by the execution of the PMME version 
of the CLIMB instruction, the execution of an OCLIMB 
instruction with an operand in which the bit is 
ON, or an occurrence of a fault or interrupt. 

This indicator is set ON whenever the target string 
of a decimal numeric instruction is too small to 
hold all the digits of the result or the target 
string of a bit string or alphanumeric instruction 
is too small to hold all the bits or characters to 
be stored. Also see the overflow indicator for 
decimal numeric instructions. The event that sets 
this indicator ON may also cause an overflow fault. 
(See overflow mask indicator above.) 

This indicator is set OFF by the execution of the 
SPL instruction and by the end of execution of all 
multi-word instructions, and is set ON by the events 
described below. The indicator has meaning only 
when determining the proper restart resequence for 
an interrupted multi-word instruction. The events 
that set this indicator are: 

(1) Any fault during the execution of a multi-word 
instruction. 

(2) Occurrence of an interrupt signal during 
execution of those multi-word instructions that 
are interruptible. 

(3) If the processor is in Master or Privileged 
Master mode, by the execution of a Load Indicator 
Register (LOI) or Return (RET) instruction with 
bit 30 set to 1 in the IR data. 

This indicator is set ON or OFF only by the 
instructions that load the IR. When set ON, it 
causes the floating-point instructions to be executed 
in the hexadecimal exponent mode if bit 33 of the 
mode register (DPS 88: bit O of the option Register) 
is also ON. (This function may not be available 
on all processors.) 

Bit 31 and bits 33-35 must be zero (MBZ). 

4-10 DH03-0l 



TIMER REGISTER (TR) 

Format: 27 bits 

0 2 2 3 
6 7 5 

Timer value la 0 0 0 0 n 0 0 ol v 

27 9 

Figure 4-8. Timer Register (TR) Format 

Description: 

A 27-bit settable, free running clock. The value decrements at a rate of 
512 kHz. Its range is 1.953125 microseconds to approximately 4.37 minutes. 

Function: 

The TR may be loaded with any convenient value with the Load Timer Register 
(LDT) instruction. When the value next passes through zero, a timer runout 
fault is signalled. If the processor is in Slave mode with interrupts not 
inhibited or is stopped at an uninhibited Delay Until Interrupt Signal (DIS) 
instruction, the fault occurs immediately. If the processor is in Master or 
Privileged Master mode or has interrupts inhibited, the fault is delayed until 
the processor returns to Slave mode or stops at an uninhibited Delay Until 
Interrupt Signal (DIS) instruction. 

INSTRUCTION COUNTER (IC) 

Format: 18 bits 

0 1 

Instruction address 

18 

Figure 4-9. Instruction Counter (IC) Format 

4-11 DH03-0l 



Description: 

An 18-bit physical register. 

Function: 

Holds the address of the current instruction being executed. The IC is 
incremented by one by the control unit for the sequential execution of single-word 
instructions or by the appropriate amount (2, 3, or 4) for multi-word instructions. 
The content of the IC is changed by a transfer-of-control instruction or by a 
fault or interrupt. Upon recognition of a fault, the contents of the instruction 
counter are as shown in the list of faults in Table 4-2. 

Faults in Groups I and II terminate the operations in the processor 
unconditionally. 

Faults in Groups III and IV (DPS 88: Groups III, IV, v, VI) terminate the 
operations in the processor when the operation currently being executed is completed. 

Faults in Group V (DPS 88: Group VII) are recognized under the same conditions 
that program interrupts are recognized. Faults in Group V (DPS 88: Group VII) 
have priority over program interrupts and are also subject to being inhibited 
from recognition by engaging the inhibit bit in the instruction word. 

4-12 DHOJ-01 



Table 4-2. Processor Faults By Priority 

Group 
Priority 

Fault Code Fault Name Priority IC Contents (1) 
(5) DPS 8 

DPS 8 DPS 88 8/47 DPS 88 
BL49 

01100 Startup (SUF) 1 1 I I N+O, +l, or +2 
01111 Execute (EXF) 2 2 I I N+O, +l, or +2 
01011 Operation not 

completed (FONC) 3 4 II II N+O, +l, or +2 
00111 Lockup (LUF) 4 5 II II N+O, +l, or +2 
01110 Divide check 

(FDIV) 5 7 III III N (3) 
01101 Overflow (FOVF) 6 8 III III N 
01001 Parity (FPAR) 7 IV II N (2) 

DPS 88: (MEM SYS) 6 
00101 Command (FCMD) 8 9 IV IV N 
00001 Store memory (STR) 9 

DPS 88: (BND) 10 IV IV N (3) 
00010 Master mode entry 

(MME) 10 11 IV v N (3) 
00110 Derail (DRL) 11 12 IV v N (3) 
01010 Illegal procedure 

(IPR) 12 13 IV v N 
00011 Fault tag (FTAG) 13 14 IV v N (3) 
10000 Security fault, 

Class 1 (SCLl) 14 17 IV v N 
·10001 Dynamic linking 

(DYNLF) 15 18 IV v N 
10010 Missing segment 

(MSE) 16 19 IV VI N 
10011 Missing working 

space (MWS) 17 20 IV v N 
10100 Missing page (MPG) 18 21 IV VI N 
10101 Security fault, 

Class 2 (SCL2) 19 22 IV VI N 
00000(4) Safe store stack 

fault (SSSF) 20 IV VI 
10111 DPS 88: (SSSF) 23 
01000 Connect (CON) 21 27 v VII N 
00100 Timer runout 

(TROF) 22 28 v VII N 
00000 Shutdown (SDF) 23 29 v VII N 

NOTES: 1. N = address of last instruction executed. 

2. The processor stops the execution stream at the point where 
the parity error is detected. Therefore, depending upon what 
the processor was doing the following may result: 

o If parity fault occurred on operand fetch, operation ~+l 
was completed with faulty data 

o If parity fault occurred on instruction fetch, opera~ ion 
N+l was not completed 

4-13 DH03-01 

. 

. ~ 



o If parity fault occurred on Indirect Tally (IT), IT was not completed 

3. These operations are considered complete when the fault is recognized. 

4. The Safestore Stack fault occurs in conjunction with a programmed CLIMB 
instruct.ion, or in conjunction with the wired-in CLIMB instruction 
that is the result of a fault or interrupt. The Safestore Stack fault 
is an indication to the operating system that the Safestore Stack has 
only one or two 64-word frames remaining. See Section VIII for additional 
information. 

5. **** DPS 8: A specific value may not be predictable when the cache 
memory option is enabled.**** 

ADDRESS REGISTERS (ARn) 

Format: 24 bits each 

0 

Word 

1 1 1 2 
7 8 9 0 

18 2 

Figure 4-10. Address Register (AR~) Format 

2 

Bit 

4 

Description: 

Eight 24-bit physical registers numbered 0 through 7 that are associated 
with the operand descriptor registers {DR~) and that allow addressing on a word, 
character, or bit basis. 

Function: 

The address registers provide address modification to the word, byte, and 
bit level: 

Word - 18 bits; a word offset within the segment described by the associated 
operand descriptor register. 

Char - 2 bits; designates one of the four 9-bit characters (bytes) of which 
the word is composed. 

Bit - 4 bits; designates one of the 9 bits within the character. 

4-14 DH03-0l 



POINTER AND LENGTH REGISTERS (DPS .!!l_ 

0 

1 

2 

3 

4 

5 

6 

7 

z 

N 

0 
0 
0 

0 

0 
0 

0 
0 

0 
0 

-------:.-------
--------------

0 0 1 1 1 
8 9 0 1 2 
0 z N 0 

0 z N 0 

9 1 1 1 

0 1 1 
9 0 1 

1 
2 

Descriptor 1 Pointer 

Tally Counter 

Tally Counter 

2 2 22 2 2 
3 4 56 7 9 

0 TA 0 0 0 
24 2 3 

3 3 3 
0 1 2 
I FA 

3 
3 
0 0 

3 
5 

24 

3 
5 

0 
3 

Level 0 0 Descriptor 1 Length Residue 

10 2 24 

1 1 2 2 22 2 2 3 3 3 3 3 
l 2 3 4 56 7 9 0 1 2 3 5 

Descriptor 2 Pointer 0 TA 0 0 0 R LA 0 F D 
24 2 3 3 

0----------------------0 Descriptor 2 Length Residue 

12 24 

l 1 2 2 22 2 2 3 3 3 
1 2 3 4 56 7 9 0 5 

Descriptor 3 Pointer 0 TA 0 0 0 R 
24 2 3 3 

0----------------------0 Descriptor 3 Lengt ue 

12 24 

Figure 4-11. Pointer And Length Register Formats (DPS 8) 

- Bit string instruction results are all zero. 

- Negative overpunch found in 6-4 alphanumeric move. 

Tally Counter - The number of characters examined by the SCD, SCOR, SCM, 
SCMR, TCT, or TCTR instruction (up to the interrupt). 

Descriptor 
Pointer 

TA 

I 

- The last double-word accessed by the descriptor (bits 17-23 
valid only for initial access). 

- Bits 21-22 (alphanumeric type) of each descriptor. 

- Used by hardware to control restarting of interrupted 
instruction (ignore request). 

4-15 DH03-01 



F 

Level 

L 

D 

Descriptor 

- First time. (Information in descriptor is valid.) 

- Used by hardware to control restarting of interrupted 
instruction. 

- The difference in the number of characters received by the 
processor and the number sent from the processor. 

- Logical OR of bits 34-35 of descriptor 2. 

- Descriptor 2 is a direct type (DU). 

Length Residue - The amount of data left in each descriptor. 

R 

UBH 

- The last cycle performed must be repeated. (This bit cannot 
be loaded.) 

- Used by hardware; may contain any bit pattern. 

POINTER AND LENGTH REGISTERS (DPS .!!!Ll_ 

0 

1 

0 
0 

0 

0 

z 

N 

-------------

-------------

0 0 1 1 1 
B 9 0 1 2 

0 z N 0 

0 z N 0 

9 1 1 1 

TALLY COUNTER 

TALLY COUNTER 

Figure 4-12. Pointer And Length Register Formats (DPS BB) 

- All bit string instruction results are zero. 

- Negative overpunch found in 6-4 alphanumeric move. 

3 
5 

24 

Tally 
Counter - The number of characters examined by the SCD, SCM, SCMR, TCT, 

or TCTR instruction up to the interrupt. 

MODE REGISTER ~ 

**** DPS 8 ONLY **** 

Format: 34 bits 

Even-word of Y-pair as stored by Store Central Processor Register (SCPR) 
instruction with TAG = 06. 

4-16 0803-01 



0 
0 

Description: 

FFV 

1 1 1 1 1 1 2 2 2 2 2 2 2 
4 5 6 7 8 9 0 1 2 3 4 5 6 

15 1 1 1 1 1 1 1 2 2 

2 2 2 3 3 3 3 3 3 

2 1 1 1 1 1 1 1 1 

Figure 4-13. Mode Register (MR) Format 

An assemblage of flags and registers from the control unit. The mode register 
and the cache mode register are both stored into a Y-pair by a Store Central 
Processor Register {SCPR) instruction with TAG= 06. The mode register is loaded 
by a Load Central Processor Register (LCPR) instruction with TAG =04. 

Function: 

The mode register controls the operation of those features of the processor 
capable of being enabled and disabled. 

a 

b 

The functions of the constituent flags and registers are: 

Flag or 
register 

FFV 

OC TRAP 

ADR TRAP 

OPCODE 

Function 

A floating fault vector address. The 15 high-order bits of 
the beginning address of an 8-word block constituting a floating 
fault vector. Traps to these floating faults are generated 
by other conditions settable by the mode register. 

Trap on OPCODE match. If this bit is set ON and OPCODE 
matches the operation code of the instruction for-which an 
address is being prepared (including indirect cycles}, generate 
the second floating fault (XED FFV+2}. (See NOTE below.) 

Trap on ADDRESS match. If this bit is set ON and the computed 
address (TPR.CA) matches the setting of the address switches 
on the processor maintenance panel, generate the fourth floating 
fault (XED FFV+6). (See NOTE below.) 

The operation code on which to trap if OC TRAP (bit 16, key 
a) is set ON or for which to strobe all control unit cycles 
into the control unit history registers if O.C$¢ (bit 29, 
key j) is set ON. 

or 

Processor conditions (codes as follows) if OC TRAP (bit 16, 
key a) and O.C$¢ (bit 29, key j) are set OFF and¢ VOLT (bit 
32, key m) is set ON. 

4-17 DH03-01 



Flag or 
register Function 

Key Condition 

c Set control unit overlap inhibit if set ON. The control 
unit waits for the operations unit to complete execution 
of the even instruction of the current instruction pair 
before it begins address preparation for the associated 
odd instruction. The control unit also waits for the 
operations unit to complete execution of the odd 
instruction before it fetches the next instruction pair. 

d Set store overlap inhibit if set ON. The control unit 
waits for completion of a current main memory fetch 
(read cycles only) before requesting a main memory access 
for another fetch. 

e Set store incorrect data parity if set ON. The control 
unit causes incorrect data parity to be sent to the 
system controller for the next store instruction and 
then resets bit 20 (key e). 

f Set store incorrect zone-address-command (ZAC) parity 
if set ON. The control unit causes incorrect 
zone-address-command (ZAC) parity to be sent to the system 
controller for each main memory cycle of the next store 
instruction and resets bit 21 (key f) at the end of the 
instruction. 

g Set timing margins. If¢ VOLT (bit 32, key m) is set 
ON and the margin control switch on the processor 
maintenance panel is in PROG position, set processor 
timing margins as follows: 

22,23 
0,0 
0,1 
1,0 
1,1 

Margin 
normal 

slow 
normal 
fast 

h Set +5 voltage margins. If ¢ VOLT (bit 32, key m) is 
set ON and the margin control switch on the processor 
maintenance panel is in the PROG position, set +5 voltage 
margins as follows: 

24,25 
~ 

0,1 
1,0 
1,1 

Margin 
normal 

low 
high 

normal 

4-18 DH03-01 



i 

j 

k 

1 

m 

n 

p 

**** 

Flag or 
register 

STROBE ¢ 

FAULT RESET 

¢ VOLT 

HEX 

MR ENABLE 

Function 

Trap on control unit history register counter overflow if 
set ON. If this bit and STROBE ¢ (bit 30, key k) are set ON 
and the control unit history register counter overflows, 
generate the third floating fault (XED FFV+4}. Further, if 
FAULT RESET (bit 31, key 1) is set, reset STROBE t (bit 30, 
key k), locking the history registers. A Load Central Processor 
Register (LCPR) instruction (with TAG = 04} that sets bit 28 
{key i) ON resets the control unit history register counter 
to zero. (See NOTE below. } 

Strobe control unit history registers on OPCODE match. If 
this bit and STROBE ¢ (bit 30, key k} are set ON and the 
operation code of the current instruction matches OPCODE, 
strobe the control unit history registers on all control 
unit cycles (including indirect cycles}. 

Enable history registers. If this bit is set ON, all history 
registers are strobed at appropriate points in the various 
processor cycles. If this bit is set OFF or MR ENABLE {bit 
3 5, key n) is set OFF, all history registers are locked. 
This bit is set OFF with a Load Central Processor Register 
(LCPR) instruction (with TAG = 04) providing a O bit, by an 
Operation Not Completed fault and, conditionally, by other 
faults (see FAULT RESET (bit 31, key 1) below). Once set 
OFF, this bit must be set ON with a Load Central Processor 
Register (LCPR) instruction (with TAG = 04) providing a 1 
bit to re-enable the history registers. 

History register lock control. If this bit is set ON, set 
STROBE ¢ (bit 30, key k) OFF, locking the history registers 
for all faults including the floating faults. (See NOTE 
below.) 

Test mode indicator. This bit is set ON whenever the TEST/NORMAL 
switch on the processor maintenance panel is in TEST position 
and is set OFF otherwise. It serves to enable the program 
control of voltage and timing margins. 

Hexadecimal exponent mode floating-point format is enabled. 

Enable mode register. When this bit is set ON, all other 
bits and controls of the mode register are active. When 
this bit is set OFF, the mode register controls are disabled. 

NOTE: The traps described above (ADDRESS match, OPCODE match, control 
unit history register counter overflow) occur after completion of 
the next odd instruction following their detection. The complete 
priority sequence (in increasing order) is: 

1 - Connect 
2 - Timer runout 
3 - Shutdown 
4 - OPCODE trap 
5 - Control unit history register counter overflow 
6 - Address match trap 
7 - Interrupts 

4-19 DH03-01 



CACHE MODE REGISTER (CMR) 

**** DPS 8 ONLY **** 

Format: 28 bits 

Odd-word of Y-pair as stored by Store Central Processor Register {SCPR) 
instruction with TAG = 06. 

3 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 

CACHE DIR ADDRESS a b 0 c d e f O g h i j 0 0 0 0 0 0 k 

15 1 1 1 1 1 1 1 1 1 1 1 2 6 2 

Figure 4-14. Cache Mode Register (CMR) Format 

Description: 

An assemblage of flags and registers from the control unit. The mode register 
and cache mode register are both stored into the Y-pair by a Store Central 
Processor Register (SCPR) instruction with TAG = 06. The cache mode register is 
loaded by a Load Central Processor Register (LCPR) instruction with TAG = 02. 

The data stored from the cache mode register is address-dependent. The 
algorithm used to map main memory into the cache memory is effective for the 
Store Central Processor Register (SCPR) instruction. In general, the user may 
read out data from the directory entry for any cache memory block by proper 
selection of certain subfields in the 24-bit absolute main memory address. In 
particular, the user may read out the directory entry for the cache memory block 
involved in a suspected cache memory error by ensuring that the required 24-bit 
absolute main memory address subfields are the same as those for the access that 
produced the suspected error. 

The fault handling procedure(s) should bypass cache (segment descriptor bit 
23 0) and the history registers and cache memory should be disabled as quickly 
as possible in order that vital information concerning the suspected error not 
be lost. 

Function: 

The cache mode register provides configuration information and software 
control over the operation of the cache memory. Excep~ Lor ~nose 1cems iaenc1r1ed 
below by an "x" in the column headed L, the cache mode register can be loaded by 
a Load Central Processor Register (LCPR) instruction with TAG = 02. 

4-20 DH03-0l 



The functions of the constituent flags and registers are: 

Key !! Register 

x CACHE DIR 
ADDRESS 

a x PAR BIT 

b x LEV FUL 

c CSHl ON 

d CSH2 ON 

e OPND ON 

f INST ON 

g CSH REG 

h x STR ASD 

i x COL FULL 

j x RRO A,B 

k LUF MSB,LSB 

**** 

Function 

15 high-order bits of the cache memory block address 
from the cache directory. 

Cache memory directory parity bit. 

The selected column and level is loaded with active data. 

Enable the upper 1024 words of cache memory (4096 words if 
SK cache memory}. 

Enable the lower 1024 words of cache memory (4096 words if 
8K cache memory). 

Enable cache memory for operands. 

Enable cache memory for instructions. 

Enable cache-to-register (dump} mode. When this bit is set 
ON, double-precision operations unit read operands (e.g., 
Load AQ (LDAQ) operands) are read from the cache memory according 
to the mapping algorithm and without regard to matching of 
the full 24-bit main memory address. All other operands 
address main memory as though the cache memory were disabled. 
This bit is reset automatically by the hardware for any fault 
or interrupt. 

Enable store aside. The processor proceeds after the cache 
memory cycle is complete. 

Selected cache memory column is full. 

Cache round-robin counter. 

Lockup fault timer setting. The lockup fault timer may be 
set to one of four different values according to the value 
of this field. 

LUF Lockup 
value time 

0 2 ms 
1 4 ms 
2 8 ms 
3 16 ms 

The lockup timer is set to 32 ms when the processor is initialized 
in Master mode. 

4-21 



FAULT REGISTER (FR) 

**** DPS 8 ONLY **** 

Format: 72 bits 

Even-word of Y-pair as stored by Store Central Processor Register (SCPR) 
instruction with TAG = 01. 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 
0 2 3 4 

a b c d e f g h i j k 1 m n o O !AA !AB IAC !AD p q r s 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 1 1 1 1 

Odd-word of Y-pair as stored by Store Central Processor Register (SCPR) 
instruction with TAG = 01 {if 8K cache memory is installed). 

3 3 3 3 4 4 4 4 4 4 4 4 7 
6 7 8 9 0 1 2 3 4 5 6 7 1 

t u v w x y z ~ b ~ d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - -
1 1 1 1 1 1 1 1 1 1 1 25 

Figure 4-15. Fault Register (FR) Format 

Description: 

A combination of flags and registers all located in the control unit. The 
register is stored and cleared by a Store Central Processor Register {SCPR) 
instruction with TAG-;-01. Note that the data is stored into the word pair at 
location Y and that bits 47-71 of Y+l are cleared. The fault register cannot be 
loaded. 

Function: 

The fault register contains the conditions in the processor for several of 
the hardware faults. Data is stored into the fault register during a fault 
sequence. Once a bit or field in the fault register is set, it remains set 
until the register is stored and cleared. The data is not overwritten during 
subsequent fault events, except that bits 16-31 are stored for each memory error 
and may be overwritten. 

4-22 DH03-01 



a 

b 

c 

d 

e 

f 

g 

h 

i 

j 

k 

1 

m 

n 

0 

p 

q 

r 

s 

The functions of the constituent flags and registers are: 

Flag or 
register 

ILL OP 

ILL MOD 

ILL SLV 

ILL PROC 

NEM 

OOB 

DU MISC 

PROC PARU 

PROC PARL 

$CON A 

$CON B 

$CON C 

$CON D 

DA ERRl 

DA ERR2 

!AA 

!AB 

!AC 

!AD 

CPAR DIR 

CPAR STR 

CPAR IA 

CPAR BLK 

Function 

An illegal operation code was detected. 

An illegal address modifier was detected. 

An illegal slave procedure was encountered. 

All illegal procedure other than the above three was 
encountered. 

A nonexistent main memory address was requested. 

A boundary violation occurred. 

An illegal decimal digit or sign or invalid micro-operation 
was detected by the decimal unit. 

A parity error was detected in the upper 36 bits of data. 

A parity error was detected in the lower 36 bits of data. 

A $CONNECT signal was received through port A. 

A $CONNECT signal was received through port B. 

A $CONNECT signal was received through port C. 

A $CONNECT signal was received through port D. 

Operation is not complete. Processor/system controller 
interface sequence error 1 was detected. ($DATA-AVAIL received 
with no prior $INTERRUPT sent.) 

Operation not complete. Processor/system controller interface 
sequence error 2 has been detected. (Multiple $DATA-AVAIL 
received or $DATA-AVAIL received out of order.) 

Coded illegal action, port A (see Table 4-3). 

Coded illegal action, port B (see Table 4-3). 

Coded illegal action, port c (see Table 4-3). 

Coded illegal action, port D (see Table 4-3). 

A parity error was detected in the cache memory primary 
directory. 

A data parity error was detected in the cache memory. 

An illegal action was received from a system controller during 
a store operation with cache memory enabled. This implies 
that the data is correct in cache memory and incorrect in 
main memory. 

A cache memory parity error occurred during a cache memory 
data block load. 

4-23 DH03-01 



The following 
installed: 

Flag or 
Key re9ister 

t BUFO-A 

u BUFO-B 

v BUFO-C 

w BUFO-D 

x BUFO-PD 

y WNI-PE 

z DIR-0-PE 

~ DIR-1-PE 

b DIR-2-PE 

.s: DIR-3-PE 

d MTCH-ERR 

functions are stored only if the SK cache memory option is 

Function 

Buffer overflow, port A 

Buffer overflow, port B 

Buffer overflow, port C 

Buffer overflow, port D 

Buffer overflow, primary directory 

Interface parity error, system controller to processor (any 
port) 

Parity error, level O 

Parity error, level 1 

Parity error, level 2 

Parity error, level 3 

Multimatch error (duplicate directory) 

Table 4-3. System Controller Illegal Action Codes 

Code 
(Octall 

00 
01 
02 
03 
04 
05 
06 
07 

10 
11 
12 
13 
14 

- -.l :> 
16 

17 

Priority 

--
--
05 
01 
--
12 
11 
10 

04 
13 
03 
07 
02 

- -Ub 
08 

09 

Fault 

None 
Command 
Store 
Command 

Parity 
Parity 
Parity 

Command 
Command 
Command 
Store 
Parity 

- .. .Parity 
Parity 

Parity 

Reason 

No ilTegal action 
Unassigned 
Nonexistent addrers 
Stop on condition 
Unassigned 
Data parity, store unit to system controller 
Data parity in store unit 
Data parity in store unit and 

store unit to system controller 
NOT controll 
Port not enabled 
Illegal command 
Store unit not ready 
zone-address-command parity, 

proces~or to system controller 
-uata parity, processor to system controller 
zone-address-command parity, 

system controller to store unit 
Data parity, system controller to store unit 

1Fault not returned if 4 megaword system controller 

**** 

4-24 DH03-0l 



FAULT REGISTER FORMAT 

**** DPS 88 ONLY **** 

**** 

Table 4-4. Fault Register Format 

Reg. 
Bit 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

27 
28 
29 
30 
31 
32 

Prior
ity 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

28 
29 
30 
31 
32 
33 

Group 

1 
1 
2 
2 
2 
2 
3 
3 
4 
4 
5 
5 
5 
5 
5 
5 
5 
5 
6 
5 
6 
6 
6 
6 
7 
7 
7 

7 
7 
7 
7 
7 

Fault 
Mnemonic 

SUF 
EXF 

ONC 
LUF 
MEMSYS 
DIV 
OFL 
CMD 
BND 
MME 
DRL 
IPR 
FTAG 

SCLl 
DYNL 
MSE 
MWS 
MPG 
SCL2 
SSSF 

DIS 
CIOC 
CON 

TRO 
SDF 

HTRO 
!FLT 

Description 

Start Up Fault 
Execute Fault 
(undefined) 
Operation Not Complete Fault 
Lockup Fault 
Memory System Fault 
Divide Check Fault 
Overflow Fault 
Command Fault 
Bound Fault 
Master Mode Entry Fault 
Derail Fault 
Illegal Procedure Fault 
Fault Tag 

(undefined) 
(undefined) 
Security Fault, Class 1 
Dynamic Linking Fault 
Missing Segment Fault 
Missing Work Space Fault 
Missing Page Fault 
Security Fault, Class 2 
Safe-store Stack Fault 
(undefined) 
DIS,Hypermode Entry Fault 
CIOC Hypermode Entry Fault 
Connect Received Fault 
(CPU is destination) 

Timer Runout Fault 
Shut Down Fault 
(undefined) 
(undefined) 
Hypertimer Runout 
Interrupt 

33 Bits 33, 34, and 35 are currently not 
34 implemented. On occurrence of a SFR instruction, 
35 these bits are zeroed. 

4-25 DH03-01 



CONTROL UNIT HISTORY REGISTERS (CUn) 

**** DPS 8 ONLY **** 

Format: 72 bits each 

Even-word of Y-pair as stored by Store Central Processor Register {SCPR} 
instruction with TAG= 20. 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 3 3 
_g_ 1 2 3 4 5 _6_ 7 8 9 0 1 2 3 4 5 6 7 8 7 8 9 0 5 

a b c d e f g h i j k 1 m n o p q r OPCODE I p TAG 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 1 1 6 

Odd-word of Y-pair as stored by Store Central Processor Register {SCPR) 
instruction with TAG = 20. 

3 5 5 5 5 6 6 6 6 6 6 6 6 7 7 

ADDRESS CMD SEL 

5 4 1 1 1 1 1 1 1 1 1 

Figure 4-16. Control Unit History Register (CU~) Format 

Description: 

Sixteen combinations of flags and registers from the control unit (may be 
optionally increased). The sixteen registers are handled as a rotating queue 
controlled by the control unit history register counter. The counter is always 
set to the number of the oldest entry and advances by one for each history 
register reference (data entry or Store Central Processor Register (SCPR) 
instruction). Multicycle instructions such as Load Address Registers (LAREG) 
have an entry for each of their cycles. 

Function: 

A control unit history register entry shows the conditions at the end of 
the control unit cycle to which it applies. The sixteen registers hold the 
conditions for the last sixteen control unit cycles. Entries are made according 
to controls set in the mode register. 

NOTE: Bits 54-71 of the odd-word of the control unit history register are 
undefined when the virtual memory option is installed and operational. 

4-26 DH03-0l 



The meanings of the constituent flags and registers are: 

Key Flag Name 

a PIA 

b POA 

c RIW 

d SIW 

e POT 

f PON 

g RAW 

h SAW 

i TRGO 

j XDE 

k XDO 

1 IC 

m RPTS 

n WI 

0 AR F/E 

p XIP 

q FLT 

r BASE 

OPCODE 

I 

p 

TAG 

ADDRESS 

CMD 

SEL 

s XEC-INT 

t INS-FETCH 

u CU-STORE 

Meaning 

1 Prepare instruction address 

1 Prepare operand address 

1 Request indirect word 

1 Restore indirect word 

1 Prepare operand tally (indirect tally chain) 

1 Prepare operand no tally (as for POT except no chain) 

1 Request read-alter-rewrite word 

1 Restore read-alter-rewrite word 

1 Transfer GO (conditions met) 

1 Execute even instruction from Execute Double (XED} pair 

1 Execute odd instruction from Execute Double (XED) pair 

1 Execute odd instruction of the current pair 

1 Execute a repeat instruction 

1 Wait for instruction fetch 

1 Address register has valid data 

1 NOT prepare interrupt address 

1 NOT prepare fault address 

1 = NOT slave mode 

Operation code from current instruction word 

Interrupt inhibit bit from current instruction word 

Pointer register flag bit from current instruction word 

Current address modifier (this modifier is replaced by the 
contents of the TAG fields of indirect words as they are 
fetched during indirect chains) 

Current computed address (lower 18 bitsj 

System controller command 

Port select bits (valid only if port A-D is selected} 

1 An interrupt is present 

1 Perform an instruction fetch 

1 Control unit store cycle 

4-27 DH03-0l 



Key Flag Name Meaning 

v OU-STORE 1 Operations unit store cycle 

w CU-LOAD 1 Control unit load cycle 

x OU-LOAD 1 Operations unit load cycle 

y DIRECT 1 Direct cycle (for example, DU, DL, shift) 

z PC-BUSY 1 Port control logic not busy 

* BUSY 1 Port interface busy/cache memory read 

**** 

OPERATIONS UNIT HISTORY REGISTERS (OUn) 

**** DPS 8 ONLY **** 

Format: 72 bits each 

Even-word of Y-pair as stored by Store Central Processor Register {SCPR) 
instruction with TAG= 40. 

0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 
0 8 9 0 1 2 3 4 5 6 7 8 

I RP REG 

l°lalEACH 
RS REG 

OP CODE I al 
b 

9 1 3 1 1 2 1 9 1 1 1 1 1 1 1 1 1 

Odd-word of Y-pair as stored by Store Central Processor Register (SCPR) 
instruction with TAG = 40. 

3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 
7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

5 5 
3 4 

ICT TRACKER 

Figure 4-17. Operations Unit History Register (OU~) Format 

4-28 DH03-0l 



Description: 

Sixteen combinations of flags and registers from the operations unit and 
control unit (may be optionally increased). The sixteen registers are handled 
as a rotating queue controlled by the operations unit history register counter. 
The counter is always set to the number of the oldest entry and advances by one 
for each history register reference (data entry or Store Central Processor Register 
(SCPR) instruction) . 

Function: 

An operations unit history register entry shows the conditions at the end 
of the operations unit cycle to which it applies. The sixteen registers hold 
the conditions for the last sixteen operations unit cycles. As the operations 
unit performs various cycles in the execution of an instruction, it does not 
advance the counter for each such cycle. The counter is advanced only at successful 
completion of the instruction or if the instruction is terminated for a fault 
condition. Entries are made' according to controls set in the mode register. 

The meanings of the constituent flags and registers are: 

Key Flag Name 

RP REG 

OP CODE 

a 9 CHAR 

b TAGl,2,3 

c CR FLG 

d DR FLG 

EAC 

RS REG 

e FRBl-FULL 

f FRP-FULL 

g FRS-FULL 

Meaning 

Primary operations unit operation register. RP REG receives 
the operation code and other data for the next instruction 
from the control unit during the control unit instruction 
fetch cycle while the operations unit may be busy with a 
prior instruction. RP REG is further substructured as: 

The 9 high-order bits of the 10-bit operation code from the 
instruction word. Note that some instructions do not involve 
bit 27; hence the 9-bit field is sufficient to determine the 
instruction. 

Character size for Indirect then Tally address modifiers (bit 
30 of IT word) : 

0 6-bit 
1 9-bit 

The 3 low-order bits of the address modifier from the instruction 
word. This field may contain a character position for an 
Indirect then Tally address modifier. 

Character modification (IT) flag 

Direct operation flag (0 = DU, 1 = DL) 

Address counter for LREG/SREG instructions 

Secondary operations unit operation register. OP CODE is 
moved from RP REG to RS REG during the operand fetch cycli 
and is held until completion of the instruction. 

1 OP CODE buff er is loaded 

1 RP REG is loaded 

1 RS REG is loaded 

4-29 DHvJ-0 



Key Flag Name 

h FGIN 

i FGOS 

j FGDl 

k FGD2 

l FGOE 

m FGOA 

n FGOM 

0 FGON 

p FGOF 

q FSTR-OP-AV 

r DA-AV 

A A-REG 

Q Q-REG 

0 XO-RG 

I Xl-RG 

2 X2-RG 

3 X3-RG 

4 X4-RG 

5 XS-RG 

6 X6-RG 

7 X7-RG 

ICT TRACKER 

**** 

Meaning 

1 = First cycle for all OU operations. RP operation code in 
execution 

1 Second cycle for multicycle OU operations 

1 First divide cycle 

1 Second divide cycle 

i Exponent compare cycle 

1 Mantissa alignment cycle 

1 General operations unit cycle 

1 Normalize cycle 

1 Final operations unit cycle 

1 Store (output) data available (reset by CU) 

1 Data not available 

1 A-register not in use 

1 Q-register not in use 

1 XO not in use 

1 Xl not in use 

1 X2 not in use 

1 X3 not in use 

1 X4 not in use 

1 XS not in use 

1 X6 not in use 

1 = X7 not in use 

The current value of the instruction counter. Since the 
control unit and operations unit run asynchronously and overlap 
is usually enabled, the value of ICT TRACKER may not be the 
address of the operations unit instruction currently being 
executed. 

4-30 DH03-01 



DECIMAL UNIT HISTORY REGISTERS (DUn) 

**** DPS 8 ONLY **** 

Format: 72 bits each 

Decimal unit history register data is 
Register (SCPR) instruction with TAG = 10. 
data is defined as individual bits. 

Description: 

stored by a Store Centrai Processor 
No format diagram is given since the 

Sixteen combinations of flags from the decimal unit (may be optionally 
increased). The sixteen registers are handled as a rotating queue controlled by 
the decimal unit history register counter. The counter is always set to the 
number of the oldest entry and advances by one for each history register reference 
(data entry or Store Central Processor Register (SCPR) instruction}. 

The decimal unit and the control unit run synchronously. There is a control 
unit history register entry for every decimal unit history register entry and 
vice versa (except for instruction fetch and descriptor fetch cycles). If the 
processor is not executing a decimal instruction, the decimal unit history register 
entry shows an idle condition. 

Function: 

A decimal unit history register entry shows the conditions in the decimal 
unit at the end of the control unit cycle to which it applies. The sixteen 
registers hold the conditions for the last sixteen control unit cycles. Entries 
are made according to controls set in the mode register. 

A minus sign 
the flag is shown. 

(-) preceding the flag name indicates that the complement of 
Unused bits are set ON. 

The meanings of the constituent flags are: 

Bit Flag Name Meaning 

0 -FPOL Prepare operand length 

1 -FPOP Prepare operand pointer 

2 -NEED-DE SC Need descriptor 

3 -SEL-ADR Select address register 

4 -DLEN=DIRECT Length equals direct 

5 -DFRST Descriptor processed for first time 

6 -PEXR Extended register modification 

7 -DLAST-PRST Last cycle of DFRST 

4-31 DH03-0l 



Rit Flag Name 

8 -DDU-LDEA 

9 -DOU-STAE 

10 -DREOO 

11 -DLVL<WD-SZ 

12 -EXH 

13 DENO-SEQ 

14 -DENO 

15 -DU=RO+WR'I' 

16 -PTRAOO 

17 -PTRAOl 

18 FA/Il 

19 FA/I2 

20 FA/I3 

21 -WRO 

22 -NINE 

23 -SIX 

24 -FOUR 

25 -BIT 

26 

27 

28 

29 

30 FSAMPL 

31 -DFRST-CT 

32 -ALI 

33 -MIF 

34 -INHIB-STCl 

35 

36 DUD 

37 -GOLDA 

38 -GOLOB 

39 -GDLDC 

Meaning 

Decimal unit load 

Decimal unit store 

Redo operation without pointer and length update 

Load with count less than word size 

Exhaust 

End of sequence 

End of instruction 

Decimal unit read or write 

PR address bit 0} 
load/store registers 

PR address bit 1 

Descriptor 1 active 

Descriptor 2 active 

nescriptor 3 active 

Word operation 

9-bit character operation 

6-bit character operation 

4-bit character operation 

Bit operation 

Unused 

Unused 

Unused 

Unused 

Sample for multiword instruction interrupt 

Specified first count of a sequence 

Adjust length 

Multiword instruction interrupt 

Inhibit STCl (force "STCO") 

Unused 

Decimal unit idle 

Descriptor load gate A 

Descriptor load gate B 

Descriptor load gate C 

4-32 DH03-0l 



Bit ~_!_~9._ _f'i_a_~~ Meaning 

40 NLDl Prepare alignment count for first numeric operand load 

4 1 GLDPl Numeric operand one load gate 

42 NLD2 Prepare alignment count for second numeric operand load 

43 GLDP2 Numeric operand two load gate 

44 ANLDl Alphanumeric operand one load gate 

4 5 ANLD2 Alphanumeric operand two load gate 

46 LDWRTl Load rewrite register one gate 

47 LDWRT2 Load rewrite register two gate 

48 -DATA-AVLDU Decimal unit data available 

49 WRTl Rewrite register one loaded 

50 GSTR Numeric store gate 

51 ANSTR Alphanumeric store gate 

52 -FSTR-OP-AV Operand available to be stored 

53 -FEND-SEQ End sequence flag 

54 -FLEND<l28 Length less than 128 

55 FGCH Character operation gate 

56 FAN PK Alphanumeric packing cycle gate 

57 FEXMOP Execute MOP gate 

58 FBLNK Blanking gate 

59 Unused 

60 DGBD Binary-to-decimal execution gate 

61 DGDB Decimal-to-binary execution gate 

62 DGSP Shift procedure gate 

63 FFLTG Floating result flag 

64 FRND Rounding flag 

65 DADD-GATE Add/subtract execution gate 

66 DMP+DV-GATE Multiply/divide execution gate 

67 DXPN-GATE Exponent network execution gate 

68 Unused 

69 Unused 

70 Unused 

71 Unused 

**** 

4-33 0803-01 



VIRTUAL UNIT HISTORY REGISTERS (VUn) 

**** DPS 8 ONLY **** 

Format: 72 bits each 

Even-word of Y-pair as ·stored by Store Central Processor Register (SCPR) 
instruction with TAG= 00. 

0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 

OP CODE 

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Odd-word of Y-pair as stored by Store Central Processor Register (SCPR) 
instruction with TAG = 00. 

3 

REAL MEMORY ADDRESS 

5 6 6 6 6 
9 0 1 2 3 

~ b ~ 

24 1 1 1 

BITS 20-23 
OF VIRTUAL 

ADDRESS 

6 6 6 6 7 7 
6 7 8 9 0 1 

d ~ f 9. h -

4 1 1 1 1 1 

Figure 4-18. Virtual Unit History Register (VU~) Format 

Description: 

Sixteen combinations of flags and registers from the virtual unit (may be 
optionally increased). The sixteen registers are handled as a rotating queue 
controlled by the virtual unit history register counter. The counter is always 
set to the number of the oldest entry and advances by one for each history 
register reference (data entry or Store Central Processor Register (SCPR) 
instruction) . 

NOTE: The virtual memory option must be installed in the processor and 
enabled to enter data into and retrieve data from the virtual unit 
history registers. 

Function: 

A virtual unit history register entry shows the conditions in the virtual 
unit at the end of an address preparation cycle in the virtual mode. The sixteen 
registers hold the conditions for the last sixteen such address p.reparation 
cycles. Entries are made according to controls set in the mode register. 

4-34 DH03-01 



The meanings of the constituent flags and registers are: 

Key Flag Name 

OP CODE 

a DFA 

b FABS 

c FAM-MCH 

d FPTD 

e FKTW 

f FPTWK 

g FPTWD 

h FWR-PTW 

i FVl 

j FV2 

k FCD 

1 FCLR 

m FSAS 

n FXD 

o FFXD 

p FXID 

q FDT 

r FIDT 

s FSSW 

t FVU-OP 

u FSSR 

v DSLAVE 

w DMASTER 

x FVU-STR-FLT 

y FVU-CMD-FLT 

z FVU-ILP-FLT 

Bits 36-59 } 
are RADDROO 
through 
RADDR23 

Meaning 

The ten bi ts of the operation code from the instruction 
word. 

Final address preparation cycle 

Absolute address preparation cycle 

Associative memory match 

Fetch page table directory word cycle 

Fetch key table word cycle 

Fetch page table word (PTW) cycle for fragmented page table 

Fetch PTW cycle for dense page table 

Write (modify) PTW cycle 

Fetch vector word 0 and 1 cycle 

Fetch vector word 2 and 3 cycle 

Fetch descriptor for copy or shrink cycle 

Clear memory 

Store to argument stack cycle 

Fetch transfer descriptor cycle 

Fetch fault/interrupt transfer descriptor cycle 

Fetch transfer descriptor from indirect cycle 

Domain transfer 

Interdomain transfer 

Safe store write cycle 

Virtual unit operational 

Safe store read cycle 

Slave mode 

Master mode 

Store fault 

Command fault 

Virtual unit IPR fault 

Real memory address 

4-35 DH03-0l 



Key Flag Name 

~ FPIA-VU 

b FTRGO-VU 

£ FEA-VU 

Bits 63-66 
are RVA20 
through 
RVA23 

d DAMSEL1+3 

~ DAMSEL2+3 

f FVU-FAULT 

9: EXT-SEG-FLG 

h FHOLD-START 

**** 

} 
} 

Meaning 

Prepare instruction address for virtual unit 

Transfer to GO flag for virtual unit 

Effective address for virtual unit 

Virtual address bits 20-23; associative memory 
row select 

Associative memory column select 

Virtual unit fault indicator 

External segment flag 

Inhibit virtual unit initialization 

WORKING SPACE REGISTERS (WSRn) 

Format: 9 bits each 

0 0 

Working Space Number 

Figure 4-19. Working Space Register (WSR~) Format 

Description: 

Eight 9-bi t registers located in the virtual unit that hold the working 
space {WS) number that is used to form a virtual address. 

Function: 

A working space register is referred to by the WSR field of a descriptor. 
The LOWS and STWS instructions are used to load and store the working space 
registers, respectively. To execute these two instructions, the processor must 
be in Privileged Master mode. When the processor is initialized and cleared, 
working space register 0 is set to all zeros {DPS 88: working space registers 
0-7 are set to zeros). The working space registers provide the means for sharing 
and isolating working spaces. 

4-36 DH03-0l 



SAFE STORE REGISTER (SSR) 

Format: 72 bits 

0 
0 

Bound 

1 2 
9 0 

2 2 
2 3 

Flags 

Flags 
20 3 

Base 

2 2 
8 9 

9 

WSN 

WSR 

3 3 
1 2 

3 

9 

Type=l 

Type=3 

3 
5 

4 

4 

36 

Figure 4-20. Safe Store Register (SSR) Format 

Description: 

Even
Word 

Odd
Word 

A 72-bit register located in the virtual unit that holds a Type 1 or 3 
standard descriptor that describes the safe store stack of the current process. 
Note that, the format for a Type 3 descriptor differs in that the Flags field is 
truncated at bit 22 to allow the desc·riptor to contain the actual working space 
number (WSN) rather than point to a Working Space Register (WSR). 

Function: 

The safe store register describes the safe store stack of the current process 
(see Figure 8-3). The safe store register is loaded and stored with the Privileged 
Master mode instructions LOSS and STSS. A 2-bit hardware stack control register 
(SCR) is associated with the safe store register. The SCR determines the size 
of the safe store frame as follows: 

00 - 16 words 
01 - 24 words 
11 - 64 words 

When the frame size is 64 words, the actual number of words stored may 
depend on the state of indicator register bit 30 (multiword instruction interrupt 
or fault). The actual number of words stored is: 

**** DPS 8: 
DPS 8/70, 8/50, 8/52, and 8/62 store 48 words; however, if IR bit 30=1, 56 

words will be stored. 
DPS 8/20 and 8/44 store 48 words; however, if IR bit 30=1, 52 words will be 

stored. **** 
**** DPS 88 stores 50 words. **** 

4-37 DH03-01 



LINKAGE SEGMENT REGISTER (LSR) 

Format: 72 bits 

0 
0 

Bound 

1 2 
9 0 

20 

Base 

Flags 

2 2 
8 9 

9 

WSR 

3 3 
1 2 

3 

Type= 
1 

3 
5 

4 

36 

Even
Word 

Odd
Word 

Figure 4-21. Linkage Segment Register (LSR) Format 

Description: 

A 72-bi t register that holds a type 1 standard descriptor that describes 
the linkage segment of the current domain of the currently executing process. 

Function: 

The linkage segment register is loaded only by executing a CLIMB instruction. 
The linkage segment register may be stored by 
LSR to an operand descriptor register (DRn) 
bound field of the LSR is loaded, bits 0-6 are 
forced to 111 .. Thus, the size of the linkage 
1024 descriptors. 

ARGUMENT STACK REGISTER (ASR) 

Format: 72 bits 

0 1 2 
9 0 

J Flags lo Bound 

LU I 

Base 

transferring the contents of the 
and then storing DRn. When the 
forced to zero and bits 17-19 are 
segment is effectively limited to 

2 2 3 3 3 
8 9 1 2 5 

_I WSR _I Trpe=. I Even-
Word 

~I jl 

41 
Odd-

361 
Word 

Figure 4-22. Argument Stack Register (ASR) Format 

4-38 DH03-01 



Description: 

A 72-bit register that holds a type 1 standard descriptor that describes 
(or frames) the argument stack of the current domain of the currently executing 
process. 

Function: 

Instructions are provided for loading (Privileged Master mode) and storing 
the argument stack register. The argument stack register is utilized by and may 
have its contents changed by the hardware during the execution of a Save Descriptor 
Register (SDRn) or CLIMB instruction. When the bound field of the ASR is loaded, 
bits 0-6 are -forced to zero; if flag-bit 27 = 1 {not empty), bits 17-19 are 
forced to 111. Thus, the size of the argument stack is effectively limited to 
1024 descriptors. 

PARAMETER STACK REGISTER (PSR) 

Format: 72 bits 

0 1 2 2 2 3 3 3 
__Q_ 9 0 8 9 1 2 5 

Bound Flags WSR Type= 
1 

20 9 3 4 

Base 

36 

Figure 4-23. Parameter Stack Register (PSR) Format 

Description: 

Even
Word 

Odd
Wor d 

A 72-bit register that holds a type 1 standard descriptor that frames the 
parameter stack of the current domain of the currently executing process. 

Function: 

Instructions are provided for loading {Privileged Master mode) and storing 
the parameter stack register. The parameter stack register is utilized by and 
may have its contents changed by the hardware during the execution of the CLIMB 
instruction. When the bound field of the PSR is loaded, bits 0-6 are forced to 
zero; if flag-bit 27 = 1 (not empty} bits 17-19 are forced to 111. Thus, the 
size of the parameter stack is effectively limited to 1024 descriptors. 

4-39 DH03-01 



INSTRUCTION SEGMENT REGISTER (ISR) 

Format: 72 bits 

0 
0 

Bound 

1 2 
9 0 

20 

Base 

Flags 

2 2 
8 9 

9 

WSR 

3 3 
1 2 

3 

Type= 
0 

3 
5 

4 

36 

Figure 4-24. Instruction Segment Register (ISR) Format 

Description: 

Even
Word 

Odd
Word 

A 72-bit register that holds a type 0 standard descriptor that describes 
the current instruction segment for the current domain of the currently ex~cuting 
process. 

Function: 

The instruction segment register may not be loaded or stored directly. The 
register is loaded during the execution of a CLIMB or transfer instruction with 
bit 29 ON. The ISR may be stored indirectly by moving its con ten ts to an 
operand descriptor register {DRn) and then storing DRn. If bit 29 of an instruction 
word is zero or the AR bit in-the MF field of a multiword instruction is zero, 
the instruction segment register is used in forming the virtual address of the 
operand. The base and bound values placed in the ISR are constrained; the 5 
least significant bits of the base field must be zero and the 5 least significant 
bits of the bound field must be ls. 

OPERAND DESCRIPTOR REGISTERS (DRn) 

Format: 72 bits each 

Description: 

Eight 72-bit registers that hold operand descriptors that describe address 
space contained within the current domain of the currently executing process. 
The format of the descriptors is in accordance with the type fields; type fields 
0, 2, 4, and 6 are used for operand segments and type fields 1 and 3 are used 
for descriptor segments. 

4-40 DH03-0l 



Function: 

Instructions are available for loading and storing the operand descriptor 
registers and for modifying their contents. An operand descriptor register is 
invoked for virtu~l operand address development when bit 29 of the instruction 
is 1, and address bits O, 1, and 2 specify which the combined operand descriptor 
register (DRn) and address register n (ARn) is to be used. Each of these eight 
operand descriptor registers is assocTated-with a corresponding address register. 
For example, an AR3 modification refers to the segment whose descriptor is the 
contents of DR3. For multiword instructions, the use of ARn and the associated 
DRn is specified by the AR bit in the MF field. Refer to "Multiword Modification 
Fiild" documented later in this manual. 

SEGMENT IDENTITY REGISTERS (SEGIDn) 

Format: 12 bits each 

0 2 2 2 2 

D 

Figure 4-25. Segment Identity Register (SEGID~) Format 

Description: 

Eight 12-bit registers that have a one-to-one correspondence with the operand 
descriptor registers (DRn). The segment identity registers point to the source 
of the descriptor in the-DRn. 

Function: 

The Load Pointer Register (LDPn) and Store Pointer (STPn) instructions are 
available for directly loading and storing the segment identity registers. The 
S and D field codes used in these registers indicate the origin of the descriptor 
(S = segment, D = descriptor offset). 

4-41 DH03-0l 



When S = 0: 

For D = 1760 through 1777 (octal), the descriptors identified by S, D were 
obtained from: 

D = 1760 
D = 1761 
D 1762 
D 1763 
D 1764 
D 1765 
D 1766 
D = 1767 
D 1770 
D 1771 
D 1772 
D 1773 
D 1774 
D = 1775 
D 1776 
D = 1777 

Undefined 
Undefined 
Instruction Segment Register (ISR) 
Data Stack Descriptor Register (DSDR) 
safe Store Register (SSR) 
Linkage Segment Register (LSR) 
Argument Stack Register (ASR) 
Parameter Stack Register (PSR) 
ORO, Descriptor Register O 
DR!, Descriptor Register 1 
DR2, Descriptor Register 2 
DR3, Descriptor Register 3 Self Identifying 
DR4, Descriptor Register 4 
DRS, Descriptor Register 5 
DR6, Descriptor Register 6 
DR?, Descriptor Register 7 

For D = 0000 through 17 5 7 (octal) , the descriptor in DRn was loaded from 
the parameter stack and D was the index to the desired descriptor. 

When S = 2, the descriptor DRn was loaded from the argument stack using D 
as the index to the descriptor. 

When S = 1 or 3, the descriptor in DRn was loaded from the linkage segment 
using D as the index to the descriptor. 

INSTRUCTION SEGMENT IDENTITY REGISTER - SEGID (IS) 

Format: 12 bits 

0 2 2 2 2 3 
0 3 4 

:r 
5 

I J s D 

l°' 
Figure 4-26. Instruction Segment Identity Register - SEGID (IS) Format 

4-42 DH03-01 



Description: 

A 12-bit register that is associated with the instruction segment register 
(ISR) in the same manner that a SEGIDn register is associated with an operand 
descriptor register (DRn). This register points to the source of the descriptor 
in the ISR. -

Function: 

The instruction segment identity register may not be loaded or stored directly; 
it is loaded with the identity of the source of the descriptor when a transfer 
or CLIMB instruction loads the Instruction Segment Register (ISR). The Sand D 
field codes used in these registers indicate the origin of the descriptor. See 
SEGIDn codes. 

POINTER REGISTERS (PRn) 

Format: A collective grouping of registers 

Description: 

Eight "convenience" logical combinations of registers. 

Function: 

The pointer registers are not physical registers but are convenient terms 
used to refer to operand descriptor register (DRn), segment identity register 
(SEGID~), and address register (AR~) utilized as a-collective register. 

DATA STACK DESCRIPTOR REGISTER (DSDR) 

Format: 72 bits 

0 
0 

Bound 

1 2 
9 0 

20 

Base 

Flags 

2 2 
8 9 

9 

WSR 

3 3 
1 2 

3 

Type= 
0 

3 
5 

4 

36 

Figure 4-27. Data Stack Descriptor Register (DSDR) Format 

4-43 

Even
Word 

Odd
Word 

DH03-01 



Description: 

A 72-bit register located in the virtual unit that holds a type 0 standard 
descriptor that frames the data stack area of memory for the current process. 

Function: 

Privileged Master mode instructions are available for loading and storing 
the data stack descriptor register. The contents of the data stack descriptor 
register are utilized by the hardware when the vector of the Load Descriptor 
Register (LDDn} or CLIMB instruction indicates that a working data stack descriptor 
is to be generated. 

DATA STACK ADDRESS REGISTER (DSAR} 

Format: 

**** DPS 8 **** 

17 bits 

0 1 1 3 
0 7 8 

I Base of next H stack area 

17 1 18 

**** DPS 88 **** 

15 bits 

0 1 1 3 
0 5 8 

I 

Base of next 
loool stack area 

15 3 18 

Figure 4-28. Data Stack Address Register (DSAR) Format 

Description: 

A 17-bit (DPS 88: 15-bit) special-purpose index register that points to 
the next available double-word (DPS 88: mod 8 word) location within the data 
stack area of memory framed by the Data Stack Descriptor Register (DSDR). Bit 
17 (DPS 88: 15-17) is always zero. 

4-44 DH03-0l 



Function: 

Privileged Master mode instructions are available for loading and storing 
the Data Stack Address Register. The contents of the DSAR may be altered during 
the execution of the Load Descriptor Register (LDD,!!) instruction, Load Data 
stack Address Register (LDDSA) instruction, or CLIMB instruction. 

PAGE DIRECTORY BASE REGISTER (PDBR) 

Format: 

**** DPS 8 **** 

15 bits 

0 1 1 3 

lo Base location 

4

1
5 

zeroes 

15 

**** DPS 88 **** 

17 bits 

0 1 1 3 

Zeroes 

17 1 18 

Figure 4-29. Page Directory Base Register (PDBR) Format. 

Description: 

A 15-bit {DPS 88: 17-bit), modulo 512 word register that contains the base 
location of the working space page table directory. 

Function: 

Privileged Master mode instructions (LPDBR, SPDBR) are available for loading 
and storing the page directory base register. 

4-45 DH03-01 



OPTION REGISTER (OR) 

Format: 

**** DPS 8 **** 

3 bits 

0 
0 

**** DPS 88 **** 

36 bits 

0 0 0 0 0 
0 1 2 3 4 

s D 
H L s s 
E u B c 
x F F F 

1 2 1 1 

1 1 1 
7 8 9 

D s 
s s 
c B 
F F 

18 1 1 

2 
4 

c 
R 
c 
F 

4 1 

2 2 2 2 2 
3 4 5 6 7 

c H c 
I p p 
u u 

18 1 1 2 

CIU 
0 

ICR 

2 3 
9 0 

3 

Figure 4-30. Option Register (OR) Format 

Description: 

CIU 
1 

ICR 

3 3 
2 3 

3 

D 
E 
c 
0 
R 

3 
5 

11 

3 
5 

3 

**** DPS 8: A 3-bit register located in the virtual unit that controls the 
clearing of data stack space, bypassing the safe store portion of an inward 
CLIMB (!CLIMB) instruction, and bypassing cache memory. Bit 18 is the Data 
Stack Clear Flag (DSCF), bit 19 is the Safe Store Bypass Flag (SSBF), and bit 24 
is the Cache Read Control Flag (CRCF). **** 

**** DPS 88: This 36-bit register controls various options in the CPU. 
Instructions are provided for ioading (LDO, LDHC, LGCOS, LMSD, LVMSj and Storing 
(STO) . **** 

Function: 

The option register is loaded with the Load Option Register (LOO) instruction 
and stored with the Store Option Register (STO) instruction. 

4-46 DH03-0l 



SECTION V 

ADDRESS MODIFICATION AND DEVELOPMENT 

ADDRESS MODIFICATION FEATURES 

Address modification features permit the user to alter an address contained 
in an instruction (or in an indirect word referenced by an instruction). The 
address rpodification procedure is generally directed by the tag field of the 
instruction or indirect word. 

Basic Modification 

Address modification is performed in 4 basic ways: Register (R), Register 
Then Indirect {RI), Indirect Then Register (IR), Indirect Then Tally (IT). A 
fifth way, address register modification, is discussed later in this section 
under "Address Modification With Address Registers". Each of these basic types 
has a number of variations in which selectable registers can be substituted for 
R in R, RI, and IR and in which various tallying or other substitutions can be 
made for T in IT. I indicates indirect address modification and is represented 
by the asterisk placed in the variable field of the program statement as *R or 
R* when IR or RI is specified. To indicate IT modification, only the substitution 
for T appears in the variable field; the asterisk is not used. 

Indirect Addressing 

Generally, in indirect addressing, the content of bits 0-17 in the word 
addressed by the instruction address {y) is treated as another address, rather 
than as the operand of the instruction. Indirect address modification is performed 
by the hardware whenever called for by a program instruction. When I modification 
is called for by a program instruction, an indirect word is always obtained from 
memory. This indirect word may call for I modification again, or it may specify 
the effective address {Y) to be used for the original instruction. Indirect 
addressing for RI, IR, and IT modification is indicated by a binary 1 in either 
position of the tag modifier field {bit positions 30 and 31) of an instruction 
or indirect word. 

NOTE: A 1 in bit position 30 or 31 of an indirect word does not necessarily 
mean further indirection. 

5-1 DH03-01 



Tag Field 

An address modification procedure generally takes place as directed by the 
tag field of an instruction and the tag field of an indirect word. Repeat mode 
instructions and .character store instructions do not provide for address 
modification. 

The tag field consists of two parts, tag modifier (tm) and tag designator 
(td), appear as follows: 

3 3 3 3 3 3 
Bit = 0 1 2 3 4 5 

I I I 
+- tm--+ I• td • 
• tag field • where: 

tm specifies one of four possible modification types: Register {R), Register 
Then Indirect (RI), Indirect Then Register (IR), and Indirect Then Tally 
(IT) . 

their 

td specifies the activity for each modification type: 

1. In the case of tm = R, RI, or IR, td is called the register designator 
and generally specifies the register to be used in indexing. 

2. In the case of tm = IT, td is called the tally designator and specifies 
the tallying in detail. 

The following table shows the valid mnemonics for address modification and 
relationship to the classes R, RI, IR, and IT. 

tm=OO tm=Ol tm=ll tm=lO 
td R RI IR IT 

00 Blank * 
00 N N* *N F 
01 AU AU* *AU 
02 QU QU* *QU 
03 DU *DU 
04 IC IC* *IC SD 
05 AL AL* *AL SCR 
06 QL QL* *QL 
07 DL *DL 
10 0 O* *O CI 
11 1 l* *l I 
12 2 2* *2 SC 
13 3 3* *3 AD 
14 4 4* *4 DI 
15 5 5* *5 DIC 
16 6 6* *6 ID 
17 7 7* *7 IDC 

5-2 DH03-0l 



~Of Address Modification 

The four basic modification types, their mnemonic substitutions as used in 
the variable field of the program statement, and their binary forms are as 
follows: 

Modification Coding Binary 
Type Mnemonic Forms Example 

3 3 3 3 
0 1 2 5 

I tm I td I 
3 3 3 3 
0 1 2 5 

R BETA, {R) I 0 0 11 1 0 11 BETA,5 

3 3 3 3 
0 1 2 5 

RI BETA, (R) * I 0 1 11 0 1 ol BETA, 2* 

3 3 3 3 
0 1 2 5 

IR BETA,* (R) I 1 1 11 1 1 11 BETA,*7 

3 3 3 3 
0 1 2 5 

IT BETA, (T) [ 1 0 11 0 1 ol BETA,SC 

The parentheses enclosing R and T indicate that substitutions are made by 
the user for R and T as explained under the separate discussions of R, IR, RI, 
and IT modification below. Binary equivalents of the substitution are used in 
the tm subfield. 

REGISTER (R) 

The processor performs register address modification whenever an R-type 
variation is coded. The assembler places binary zeros in both positions of the 
modifier subfield tm of the general instruction. Accordingly, 1 of 16 variations 
under R will be performed by the processor, depending upon bit configurations 
generated by the assembler, and will be placed in the designator subfield (td) 
of the general instruction. The 16 variations, their mnemonic substitutions 
used on the assembler coding sheet, the td field binary forms presented to the 
processor, and the effective address Y generated by the processor are indicated 
below. 

5-3 DH03-01 



A type of address modification variation is provided under R modification. 
The use of the instruction address field as the operand is called direct operand 
address modification, of which there are two types: (1) Direct Upper (DU) and 
(2) Direct Lower (DL). With the DU variation, the address field of the instruction 
serves as bit positions 0-17 of the operand and zeros serve as bit positions 
18-35 of the operand. With the DL variation, the ~ddress field of the instruction 
serves as bit positions 18-35 of the operand and zeros serve as bit positions 
0-17 of the operand. 

IC modification should only be used with an absolute operand. A relative 
operand that has IC modification is flagged with an R by the assembler. 

Binary 
Modification Mnemonic Form Effective 
variation Substitution ~ td Field) Address 

(R) =XO 0 1000 Y=y+C (XO) 

=Xl 1 1001 Y=y+C (Xl) 

=X2 2 1010 Y=y+C (X2) 

=X3 3 1011 Y=y+C (X3} 

=X4 4 1100 Y=y+C (X4) 

=XS 5 1101 Y=y+C (XS) 

=X6 6 1110 Y=y+C (X6) 

=X7 7 1111 Y=y+C (X7) 

=A AU 0001 Y=y+C (A) 
0-17 0-17 

=A AL 0101 Y=y+C (A) 
18-35 18-35 

=Q QU 0010 Y=y+C (Q) 
0-17 0-17 

=Q QL 0110 Y=y+C (Q) 
18-35 18-35 

=IC IC 0100 Y=y+C (IC) 

direct upper DU 0011 Bits 0-17 of operand = y; 
bits 18-35 of operand = 0 

direct lower DL 0111 Bits 0-17 of operand = O; 
bits 18-35 of operand = y 

=None Blank or N 0000 Y=y 
=Any symbolic Any defined 

index register symbol 

1 Symbol must be defined as one of the index registers by using an applicable 
pseudo-operation (EQU or BOOL). 

5-4 DH03-0l 



The following examples _show how R-type modification variations are entered 
and how they affect effective addresses. 

Examples: 

Effective 
1 8 16 Address 

(1) EAXO 1 
LOA B,O Y=B+l 

(2) LOA =2,DL 
LOA C,AL Y=C+2 

(3) EAQ 3 
LOA M,QU Y=M+3 

( 4) ABC LOA -2,IC Y=ABC-2 

( 5) XYZ LDA *,DU operand =XYZ,operand =O 
0-17 18-35 

(6) EAX7 ABC 
LOA 1,7 Y=ABC+l 

( 7) LDA 2,DL operand =O,operand =2 
0-17 18-35 

(8) LOA B Y=B 

(9) LOA B,N Y=B 

(10) EAX ALPHA,10 
LOA C,ALPHA 

ALPHA EQU 2 Y=C+lO 

Coding examples of R-type modification follow: 

o {R) = N 

ALPHA LDA ADRESl,N 

is equivalent to 

ALPHA LDA ADRESl 

No address modification results; ADRESl is the effective operand. 

o (R) = Xn where n = O to 7 

ALPHA LOA ADRES2 I 5 

XS contains the value 2. 

ADRES2 DEC 12 

OCT 7777 

OCT 123456765432 

ADRES2+2 becomes the effective address and its contents (octal 
123456765432) are loaded into the A-register. 

5-5 DH03-0l 



A-register XS 

Before 77 34123150 26 000002 

After 123456765432 000002 

0 . (R) AU, AL, QU, QL 

ALPHA LOA ADRES3,QU 

Bits 0-17 of the Q-register contain the value 3. 

ADRES3 DEC 10 

OCT 12 

OCT 14 

OCT 16 

ADRES3+3 becomes the effective address and its contents (octal 16) are 
loaded into the A-register. 

A-register Q-register 

Before 123456765432 000003 123456 

After 000000000016 000003 123456 

o (R) = DU,DL 

ALPHA LOA ADRES4,DU 

There is no memory access to obtain modification of ADRES4. The address 
represented by the symbol ADRES4 is placed in bits 0-17 of the A-register; 
bits 18-35 are filled with zeros. 

ADRES4 OCT 10 (assume ADRES4 is at location 001002 octal) 

Before 0 0 0 0 0 0 0 0 0 0 1 6 

After 0 0 1 0 0 2 0 0 0 0 0 0 l 

5-6 0803-01 



A simple program segment, the movement of 50 words from ABC to XYZ, may 
help illustrate the power of address modification. 

Without Address Modification With Address Modification 

START LDXl: =OB17 START LDXl O,DU 
LDA ABC LOA ABC,l 
STA XYZ STA XYZ,l 
LDA =1Bl7 ADLXl l,DU 
ASA START+l CMPXl 50,DU 
ASA START+2 TNC START+! 
ADLXl =1Bl7 
CMPXl =50Bl7 
TNC START+l 

REGISTER THEN INDIRECT (RI) 

Register Then Indirect address modification is a combination in which both 
indexing (register modification) and indirect addressing are performed. For 
indexing modification under RI, the mnemonic substitutions for Rare the same as 
those given under the discussion of register (R) modification with the exception 
that DU and DL are invalid for RI usage. For indirect addressing (I), the 
processor interprets the contents of the operand address associated with the 
original instruction or with an indirect word. 

Under RI modification, the effective address Y is found by first performing 
the specified register modification on the operand address of the instruction; 
the result of this R modification under RI is the address of an indirect word 
which is then retrieved. 

After the indirect word has been accessed from memory and decoded, the 
processor carries out the address modification specified by this indirect word. 
If the indirect word specifies RI, IR, or IT modification (any type specifying 
indirection), the indirect sequence is continued. When an indirect word is 
found that specifies R modification, the processor performs R modification, using 
the register specified by the td field of this last-encountered indirect word 
and the address field of the same word, to form the effective address Y. 

The variations DU and DL of register modification (R), when used with Register 
Then Indirect modification (RI), cause an Illegal Procedure (IPR} fault. 

To refer to an indirect word from the instruction itself without including 
register modification of the operand address, the "no modification" variation 
should be specified; under RI modification, this is indicated by placing only an 
asterisk (*) in the tag position. 

The following examples illustrate the use of RI moa1~1cat1on, including the 
use of (R) = N (no register modification). The asterisk appearing in the modifier 
subfield is the assembler symbol for I (Indirect). The address-subfield, 
single-symbol expressions shown are not intended as realistic coding examples, 
but to show the relation between operand addresses, indirect addressing, and 
register modification. 

5-7 DH03-01 



Examples: 

l 8 

(1) EAA 
EAXl 
STA 
ORG 
ARG 

(2) EAQ 
MPY 

z ARG 

(3) EAX3 
EAX5 
STQ 

z ARG 
ORG 
ARG 
OrG 
ZERO 

16 

1 
2 
Z,AU* 
Z+l 
B,l 

3 
Z,* 

B,QU 

3 
5 
Z,* 

B,5* 
B+S 
c, 3* 
C+3 
M 

Modification 
Type 

(RI) 

(R) 

(RI) 

(R} 

(RI} 

(RI) 

(RI) 

(R) 

Effective 
Address 

Y=B+2 

Y=B+3 

Y=M 

Coding examples of RI modification follow: 

o (RI} = N* 

0 

ALPHA LOA AORESl,N* 

is equivalent to 

ALPHA LOA AORESl,* 

The indirect word at AORESl is obtained; if this indirect word 
specifies further indirect modification, the process continues 
until an indirect word is obtained with (R) modification. 

(RI} (X_!!) * 

EAX5 
EAX2 

ALPHA LOA 

where .!! 

5 
2 
AORES2,5* 

O to i 

The indirect word at AORES2+5 is obtained. If the indirect word 
at this location is 

LOQ AO RES 3 , 2 

the effective address is ADRES3+2. 

5-8 0803-01 



INDIRECT THEN REGISTER (IR) 

Indirect Then Register address modification is a combination in which both 
indirect addressing and indexing (register modification) are performed. IR 
modification is not a simple inverse of RI; several important differences exist. 

Under IR modification, the processor first fetches an indirect word from 
the memory location specified by the address field y of the machine instruction; 
the C(R) of IR are safe-stored for use in making the final index modification to 
develop the effective address Y. 

Next, the address modification, if any, specified by this first indirect 
word is examined. If this modification is again IR, another indirect word is 
retrieved from storage immediately; and the new C(R) are safe-stored, replacing 
the previously safe-stored C (R). If an IR loop develops, the above process 
continues, each new C(R) replacing the previously safe-stored C(R), until a type 
other than IR is encountered in the sequence. 

If the indirect sequence produces an RI indirect word, the R-type modification 
is performed immediately to form another address; but the I of this RI treats 
the contents of the address as an indirect word. The chain then continues with 
the C(R) of the last IR still safe-stored, awaiting final use. At this point 
the new indirect word might specify IR-type modification, possibly renewing the 
IR loop noted above; or it might initiate an RI loop. In the latter case, when 
this loop is broken, the remaining modification type is R or IT. 

When either R or IT is encountered, it is treated as type R where R is the 
last safe-stored C(R) of an IR modification. At this point the safe-stored C(R) 
is combined with the y of the indirect word that produced R or IT, and the 
effective address Y is developed. 

If an indirect modification without register modification is desired, the 
"no modification" variation (N) of register modification should be specified in 
the instruction. This normally will be entered on coding sheets as *N in the 
modifier part of the variable field. (The entry * alone is equivalent to N* 
under RI modification and must be used in that way.) 

5-9 DH03-0l 



Coding examples of IR modification follow: 

Example 1 

(IR) *N 

ALPHA LOA AORESl,*N 

The indirect word at AORESl is obtained. If the indirect word at this 
loca~ion is: 

AORESl LOQ ADRES2 

the effective address is: 

AORES2 

Example 2 

Indirect Then Register and then Register or Indirect Then Tally 

(IR) = *(X~) where n 0 to 7 

EAX5 15 

ALPHA LOA AORESl,*5 

The indirect word at AORESl is obtained. If the indirect word is: 

AORESl LDQ ADRES2, (R) 

or 

AORESl LOQ ADRES2, (T) 

the effective address is: 

ADRES2+15 

Example 3 

Indirect Then Register and then Register Then Indirect 

(IR) = *(X~) where~= 0 to 7 

EAXS 16 

EAX2 17 

ALPHA LOA ADRESl,*5 

ADRESl LOQ ADRES2,2* 

ADRES2+17 LOA AORES4 

the effective address is: 

ADRES4+16 

5-10 0803-01 



Example 4 

Indirect Then Register and then Indirect Then Register 

(IR) = * (X_!!) .where !! = 0 to 7 

EAXS 18 

EAX3 19 

ALPHA LOA AORESl I* 5 

ADRESl LOA AORES2, * 3 

ADRES2 LDA AORES3 

the effective address is: 

AORES3+19 

The following examples illustrate the use of IR-type modification, intermixed 
with R and RI types, under the several conditions noted above. 

5-11 OH03-0l 



Examples: 

Modification Effective 
l 8 1§ T~ee Address 

(1) LOQ l,OL 
LOA Z ,*QL (IR) Y=M+l 

z ARG M (R) 

(2) EAX3 2 
EAX5 3 

ABC LOA z, * 3 (IR) Y=C+2 

z ARG B,5* (RI) 
ORG B+3 
ARG C,IC (R) 

(3) EAX3 4 
EAX5 5 
EAQ 6 
EAX7 7 
LOA z I* 3 (IR) Y=M+6 

z ARG B,*5 (IR) 
B ARG C,*QU (IR) 
c ARG M, 7 (R) 

(4) EAX3 8 
LOQ 9,0L 
LOA Z ,*OL (IR) C{A)=M 

z ARG B,3* (RI} 
ORG B+8 
ARG M,QL (R) 

(5) LOA 10,0L 
LOA Z,*AL (IR) Y=B+lO 

z ARG B,AO (IT) 

(6) EAXl 11 
LOA Z,*N (IR) Y=B 

z ARG B,3 (R) 

(7) EAXS 12 
LOA Z,*N (IR) Y=M+l2 

z ARG B,*5 (IR) 
B ARG M,OU (R) 

( 8) EAXS 13 
LOA Z,* (RI) Y=M+l3 

z ARG B,*5 (IR) 
B ARG M,OU (R) 

(9) EAXl 14 
LOA X,* (RI) Y=Z+l4 

x ARG B,*l (IR) 
B ARG Z,IO (IT) 
z TALLY A,10 (IT) 

5-12 OHOJ-01 



INDIRECT THEN TALLY (IT) 

Indirect Then Tally address modification is a combination in which both 
indirect addressing and automatic incrementing/decrementing of fields in the 
indirect word are. performed as hardware features, thus relieving the user of 
these responsibilities. The automatic tallying and other functions of IT 
mod if ica ti on allow processing of tabular data in memory, provide a means for 
working upon character data, and allow termination on user-selectable numeric 
tally conditions. If an unassigned IT tag is used, an Illegal Procedure (IPR) 
fault occurs. 

The variations under IT modification are summarized below. The mnemonic 
substitution for IT is (T); the designator I for indirect addressing in IT is 
not represented. (Note that one of the substitutions for T is I.) 

Variation 

Fault 

Character indirect 

Sequence character 

Sequence character 
reverse 

Indirect 

Binary 
Mnemonic Form 

Substitution (td Field} 

F 0000 

CI 1000 

SC 1010 

SCR 0101 

I 1001 

5-13 

Effect on Processor and Indirect 
(Tally) Word for Each Reference 

None. The processor is forced to 
a fault trap. The indirect word 
is not examined. 

None. Applies to TALLY, TALLYB. 

Obtain the operand address from 
the tally word; then add 1 to the 
character position value in the 
tag field and subtract 1 from the 
tally count field; add 1 to the 
address field and set the character 
position value to zero when the 
character position crosses a word 
boundary. Applies to TALLY, 
TALLYB. 

Subtract 1 from the character 
position value in the tag field 
and add 1 to the tally count field; 
subtract 1 from the address field 
and set the character position 
value to 3 (TALLYB) or 5 (TALLY) 
when the character position crosses 
a word boundary. Then obtain the 
operand address from the tally 
word. Applies to TALLY, TALLYB. 

None. The operand address is the 
word to which the tally word address 
field refers. Applies to all tally 
pseudo-operations. 

DH03-0l 



variation 

Increment address, 
decrement tally 

Decrement address, 
increment tally 

Increment address, 
decrement tally, 
and continue 

Decrement address, 
increment tally, 
and continue 

Add delta 

Subtract delta 

Binary 
Mnemonic Form Effect on Processor and Indirect 

Substitution (td Field) (Tally) Word for Each Reference 

ID 

DI 

IDC 

DIC 

AD 

SD 

1110 

1100 

1111 

1101 

1011 

0100 

5-14 

Obtain the operand address from 
the tally word; add 1 to the address 
field and subtract 1 from the tally 
count field. Applies to all tally 
pseudo-operations. 

Subtract 1 from the address 
field, add 1 to the tally count 
field, and then obtain the operand 
address from the tally word. 
Applies to all tally 
pseudo-operations. 

Obtain the operand address from 
the tally word and then add 1 
to the address field and subtract 
1 from the tally count field. 
Additional address modification 
will be performed as specified by 
the tag field. Applies to TALLYC. 

Subtract 1 from the address 
field, add 1 to the tally count 
field, and then obtain the operand 
address from the tally word. 
Additional address modification 
will be performed as specified by 
the tag field. Applies toTALLYC. 

Obtain the operand address from 
the tally word and then add an 
increment to the address field and 
subtract 1 from the tally count 
field. Applies to TALLYD. 

Subtract an increment from the 
address field; add 1 to the tally 
count field, and then obtain the 
operand address from the tally 
word. Applies to TALLYD. 

DH03-0l 



Indirect Word Format 

The location of the indirect word is specified by the address field (y) of 
the instruction or previous indirect word (IDC or DIC). IT modification causes 
the indirect word to be fetched and interpreted as specified by the td subfield 
of the instruction or previous indirect word that referred to the indirect word. 

The format of the indirect word is: 

0 

I 
g 

where: 

y 

y = address field 

Tally = tally field 

Tag tag field 

l l 

Zr 
2 3 3 lr ~ 

I Tally Tag 

Depending upon the prior tally designator, the tag field for the indirect 
word is used in one of the following ways: 

Tally Designators Tag Field 

3 3 3 3 3 3 

I,DI,ID,F I 
g • ' J ~ ~ 

I Ignored 

DIC,IDC,IR,RI tm td 

CI,SC,SCR tb 0 01 cl 

AD,SD Delta 

where: 

tm tag modifier 

td tag designator 

tb character size indicator (0=6-bit, 1=9-bit) 

cf character position field 

Delta delta field (Size of increment) 

5-15 DH03-0l 



Variations Under IT Modification 

Fault (T) = F Variation. The Fault variation enables the user to force 
program transfers to operating system routines or to corrective routines 
during the execution of an address modification sequence. (This will usually 
indicate some abnormal condition for which the user desires protection.) 

Character Indirect (T) = CI Variation. The Character Indirect (CI) variation 
is provided for operations on 6-bit or 9-bit characters in any situation 
where repeated reference to a single character in memory is required. The 
character size field (tb) of the indirect word specifies the character 
size. 

For this variation substitution, the effective address is the address field 
of the CI indirect word obtained via the tentative operand address of the 
instruction or preceding indirect word that specified the CI variation. 
The character position field (cf) of the indirect word is used to specify 
the character to be involved in the operation. 

This variation is similar to the SC variation except that no incrementing 
or decrementing of the address, tally, or character position is performed. 
Some examples are: 

Modification Effective Character 
1 8 16 T:£Ee Address Position 

LDA Z,CI (IT) Y=B 4 

z TALLY B,,4 

1 8 16 

LDA ADDR,CI 

ADDR TALLY ADD,, 3 

or 

ADDR TALLYB ADD,,3 

The effective address is ADD. The character in character position 3 is 
loaded into the A-register in character position 5 for 6-bit characters or 
into position 3 for 9-bit characters. The remainder of the A-register is 
loaded with all zero bits. 

Sequence Character (T) = SC Variation. The Sequence Character (SC) variation 
is provided for programmed operations of 6=bit or 9=bit characters that are 
accessed sequentially in memory. The character size indicator (tb) of the 
indirect word is used to specify the character size. Processor instructions 
that exclude character operations ar.e so indicated in the individual instruction 
descriptions. For the SC variation, the effective operand address is the 
address field of the indirect word obtained via the tentative operand address 
of the instruction or preceding indirect word that specified the SC variation. 

5-16 DH03-01 



Characters are operated on in sequence from left to right within the machine 
word. The character position field (cf) of the indirect word is used to 
specify the character to be involved in the operation. The Tally Runout 
indicator is set when the tally field of the indirect word reaches O. The 
following is an example of the coding: 

1 

A 
TABLE 

8 16 

LDA A,SC 

TALLY 
BSS 

TABLE,70,4 
13 

in which 70 is the count and 4 designates the character position of the 
tally start. 

For register loads under the SC variation, a character is fetched from the 
indicated position of the memory location and is written into the lower end 
of the register; the remaining bits of the register are set to zero. For 
stores under the SC variation, a character is fetched from the lower end of 
the register and written into the indicated position in the memory location; 
the remaining character positions in the memory location remain unchanged. 

The tally field of the indirect word is used to count the number of times a 
reference is made to a character. Each time an SC reference is made to the 
indirect word, the tally is decremented by 1, and the character position is 
incremented by 1 to specify the next character position. When character 
position 5 (for 6-bit characters) or 3 (for 9-bit characters} is incremented, 
it is changed to position O and the address field of the indirect word is 
incremented by 1. All incrementing and decrementing are done after the 
effective address has been provided for the current instruction execution. 
The effect of successive references using SC modification is shown in the 
following examples: 

Effective Character 
1 8 16 Address Position Reference 

LOA Z,SC B 0 1 

z TALLY B,80,0 B 1 2 

B BSS 14 

B 5 6 
B+l 0 7 

The Tally Runout indicator 
is set on the 80th reference. 

B+n 0 6~+1 

5-17 DH03-0l 



1 8 16 

ADDl LOA ADDR,SC 

TTF ADD! 

ADDR TALLY ADD,12,3 (6-bit characters) 

or 

ADDR TALL YB ADD,12,3 (9-bit characters) 

ADD BSS 4 

The first effective address is ADD. The character in character position 3 
is loaded into the A-register in position 5 (for 6-bit characters) or into 
position 3 (for 9-bit characters). The second reference will load ADD 
character 4 (if 6-bit) or ADD+! character O (if 9-bit), etc. The tally is 
decremented from 12 too. The destination in the A-register does not change. 

Sequence Character Reverse (T) = SCR Variation. The SCR variation is the 
reverse of SC. The character position is decremented by 1 and the tally is 
incremented by 1 before the indirect word address field and character position 
are used as the operand character address. When the character position 
attempts to go negative, it is set to the maximum value (3 or 5) and the 
address is decremented by 1. 

Indirect (T) = I Variation. The Indirect (I) variation of IT modification 
is in effect a subset of the ID and DI variations described below in that 
all three -- I, ID, and DI -- make use of one indirect word in order to 
refer to the operand. The I variation is functionally unique, however, in 
that the indirect word accessed by an instruction remains unaltered; no 
incrementing/decrementing of the address field or tally occurs. Since the 
tag field of the indirect word under I is not interrogated, this word will 
always terminate the indirect chain. 

The following differences in the coding and the effects of *, *N, and I 
should be observed: 

1. RI modification is coded as R* for all cases, excluding R=N. 

For R=N under RI, the modifier subfield can be written as N* or 
as * alone, according to preference. 

When N* or just * is coded, the assembler generates a machine 
word with octal 20 in bit positions 30-35; octal 20 causes the 
processor to add O to the address field y of the word containing 
the N* or * and then to access the indirect word at memory location 
y. 

5-18 DH03-0l 



2. IR modification is coded as *R for all cases, including R=N. 

For R=N under IR, the modifier subfield must be written as *N. 

When *N is coded, the assembler generates octal 60 in bit positions 
30-35 of the associated machine word: octal 60 causes the processor 
to (1) retrieve the indirect word at the location (y) specified 
by the machine word, and (2) effectively safe store zeros (for 
possible final index modification of the last indirect word). 

3. IT modification is coded using only a variation designator lJ., 
ID, DI, SC, SCR, CI, AD, SD, F, !DC, or DIC); that is, no asterisk 
(*) is written. Thus, a written IT address modification appears 
as ALPH,DI; BETA,AD: etc. 

For the variation I under IT, the assembler generates a machine 
word with octal 51 in bit positions 30-35; 51 causes the processor 
to examine one, and only one, indirect word to be retrieved from 
memory to obtain the effective address Y. For example: 

Modification Effective 
1 8 16 Type Address 

EAX5 1 
LOA Z,I (IT) Y=B 

z ARG B,*5 (IR) 

Increment Address Decrement Tall T = ID variation. The ID variation 
under IT modi ication provides automatic (hardware) incrementing or 
decrementing of an indirect word that is best used for processing tabular 
operands (data located at consecutive memory addresses). The indirect word 
always terminates the indirect chain. 

In the ID variation, the effective address is the address field of the 
indirect word obtained via the tentative operand address of the instruction 
or preceding indirect word, whichever specified the ID variation. Each 
time such a reference is made to the indirect word, the address field of 
the indirect word is incremented by 1 and the tally portion of the indirect 
word is decremented by 1. The incrementing and decrementing are performed 
after the effective address is provided for the instruction operation. When 
the tally reaches zero, the Tally Runout indicator is set. 

The following examples show the effect of ID: 

Modification Effective 
i § i§ Ty2e Address Reference 

LOA Z,ID (IT) B 1 

z TALLY B,12 B+l 2 
B BSS 12 

B+n _!!+l 
The Tally Runout indicator is 
set on the 12th reference. 

5-19 DH03-0l 



1 8 16 

ADRESl LOA ADRES2 ,ID 

TTF ADRESl 

ADRES2 TALLY ADRES3,10 

ADRES3 BSS .10 

The first effective address is ADRES3; the second is ADRES3 plus 1, etc. 
The tally is decremented from 10 to zero. The TTF instruction checks the 
Tally Runout indicator. If the tally is not zero, transfer is made to 
ADRESL If the tally is zero, processing continues with the instruction 
following TTF. Without the TTF instruction, only one effective address is 
obtained. 

Decrement Address, Increment Tally J.!l = DI Variation. 
under IT modification provides automatic (hardware) 
decrementing of an indirect word that is best used for 
operands (data located at consecutive memory addresses). 
always terminates the indirect chain. 

The DI variation 
incrementing and 

processing tabular 
The indirect word 

In the DI variation, the effective address is the modified address field (1 
less than the value before modification) of the indirect word obtained via 
the tentative operand address of the instruction or preceding indirect word, 
whichever one specified the DI variation. Each time a reference is made to 
the indirect word, the address field of the indirect word is decremented by 
1 and the tally portion is incremented by 1. The incrementing and decrementing 
are performed prior to providing the effective address for the current 
instruction operation. 

The effect of DI is shown in the following examples: 

Modification 
1 8 16 

LOA Z,DI 

z TALLY B,-18 

B BFS 18 

The Tally Runout indicator 
is set on the 18th reference~ 
there, the 12-bit tally field 
in the indirect word overflows 
and becomes all zeros. 

5-20 

Type 

(IT) 

Effective 
Address 

B-1 

B-2 

B-n 

Reference 

1 

2 

DHOJ-01 



1 

ADRESl 

ADRES2 
ADRES3 

8 16 

LOA ADRES2,DI 

TTF ADRESl 

TALLY 
BFS 

ADRES3,-10 
10 

The first effective address is ADRES3 -1; the second is ADRES3 -2; etc. 
The tally increases from -10 to 0. 

Increment Address Decrement Tall and Continue T) = !DC Variation. The 
!DC variation under IT modi ication unctions in a manner simi ar to the ID 
variation except that, in addition to automatic incrementing/decrementing, 
it permits the user to continue the indirect chain in obtaining the instruction 
operand. Where the ID variation is useful for processing tabular data, the 
!DC variation permits processing of scattered data by a table of indirect 
pointers. More specifically, the ID portion of this variation gives the 
sequential stepping through a table; and the C portion (continuation) allows 
indirection through the tabular items. The tabular items may be data pointers, 
subroutine pointers, or a transfer vector. 

The address and tally fields are used as described under the ID variation. 
The tag field uses the set of instruction address modification variations 
under the following restrictions: no variation is permitted that requires 
an indexing modification in the !DC cycle since the indexing adder is in 
use by the tally phase of the operation. Thus, permissible variations are 
any form of IT or IR; but if RI or R is used, R must equal N. 

The effect of successive references using IDC modification is indicated in 
the following examples: 

Effective 
J. a J.g Aggress R~feren5'~ 

LOA Z,IDC x 1 

z TALLYC B,10,I y 2 
B ARG x z 3 

ARG y 
ARG z 

The Tally Runout indicator 
is set on the 10th reference. 

1 8 16 

ADRESl LOA ADRES2,IDC 
TTF ADRESl 

ADRES2 TALLYC ADRES3, 4 ,* 
ADRES3 ARG ADl 

ARG AD2 
ARG AD3 
ARG AD4 

ADl is the first effective address, AD2 is the second, AD3 is the third, 
and AD4 is the fourth. 

5-21 DH03-0l 



Decrement Address, Increment Tally, and Continue (T) = DIC Variation. The 
DIC variation under IT modification performs in much the same way as the DI 
variation except that, in addition to automatic decrementing or incrementing, 
it allows the user to continue the indirect chain in obtaining an instruction 
operand. The continuation function of DIC operates in the same manner and 
under the same restrictions as IDC except that (1) it increments in the 
reverse direction, and (2) decrementing/incrementing is performed prior to 
obtaining the effective address from the tally word. (Refer to the first 
example under IDC; work from the bottom of the table to the top.) DIC is 
especially useful in processing last-in, first-out lists. Some examples 
follow: 

8 16 

LOA Z,DIC 

B,-10,I 
z TALLYC B, 10, I 

ARG z 
ARG ·X 
ARG y 

B NULL 

Modification 
Type 

(IT) 

(IT) 

Effective 
Address 

y 

x 
z 

Reference 

1 
2 
3 

Assuming an initial tally of -10, the Tally Runout indicator is set on 
the 10th reference; there, the 12-bit tally field in the indirect word 
overflows and becomes all zeros. 

1 8 16 

ADRESl LOA ADRES2,DIC 
TTF ADRESl 

ADRES2 TALLYC ADRES3 ,-4, *N 
ARG AD4,* 
ARG AD3 
ARG AD2,*N 
ARG ADl,*N 

ADRES3 BSS 1 
t\Dl ARG A 
AD2 ARG B 
AD4 ARG c 

A is the first effective address, B is the second, AD3 is the third, and C 
is the fourth. 

Add Delta (T) = AD Variation. The Add Delta (AD) variation is provided for 
programming s1 tuat1ons where tabular data to be processed is stored at 
equally spaced locations, such as data items, each occupying two or more 
consecutive memory addresses. It functions in a manner similar to the ID 
variation, but the incrementing (delta) of the address field is selectable 
by the user. 

Each time such a reference is made to the indirect word, the address field 
of the indirect word is increased by delta and the tally portion of the 
indirect word is decremented by 1. The addition of delta and decrementing 
are done after the effective address is provided for the instruction operation. 

5-22 DH03-0l 



The following examples show the effect of successive references using AD 
modification: 

1 

z 
B 

78 

LDAQ 

ETALLY 
EBSS 

16 

Z,AD 

B,20,2 
40 

The Tally Runout indicator 
is set on the 20th reference. 

1 78 

ADRESl LDAQ 
TTF 

ADRES2 ETALLYD 

ADRES3 EBSS 

16 

ADRES2,AD 
ADRESl 

ADRES3,10,2 

20 

Modification Effective 
Type Address Reference 

(IT) B 1 

B+2 2 
B+4 3 

B+2n _!!+l 

The first effective address is ADRES3; the second is ADRES3+2. The tally 
decreases from 10 to O. 

Subtract Delta (T) = SD Variation. The Subtract Delta (SD} variation is 
useful in processing tabular data in a manner similar to the AD variation 
except that the table can easily be scanned from back to front using a 
programmer-specified increment. The effective address from the indirect 
word is decreased by delta and the tally is increased by 1 each time the 
indirect word is used. This is done before supplying the operand address 
to the current instruction, making the SD variation analogous to the DI 
variation. 

5-23 DH03-0l 



Address Modification Octal Codes 

Address modification and 2 digit octal codes for each type of modification 
are listed in Table 5-1. 

Table 5-1. Address Modification Octal Codes 

LOW ORDER OCTAL DIGIT 

0 1 2 3 4 5 6 7 

H 0 N AU QU DU IC AL QL DL 
I 
G 
H 1 0 1 2 3 4 5 6 7 

0 
R 2 N* AU* QU* IC* AL* QL* 
D 
E 
R 3 O* l* 2* 3* 4* 5* 6* 7* 

0 
c 4 F SD SCR 
T 
A 
L 5 CI I SC AD DI DIC ID !DC 

D 
I 6 *N *AU *QU *DU *IC *AL *QL *DL 
G 
I 
T 7 *O *l *2 *3 *4 *5 *6 *7 

5-24 DH03-0l 



Address Modification Flowchart 

The process of address modification is illustrated in flowchart form in 
Figure 5-1. Address register modification is not included in this example. 

tm "' 
Type IT 

Modification 

td 
or 

Is it the IT 
variable of 

a Fault ? 

t_·_s-~e~1 c-1-· f_i_e_s~ 

Reg. is used to 
modify operand 
address to obtain 
effective address 
of indirect word. 

Perform increment
ing/decrementing. 
Get indirect word 
and examine reg. 

I Perform other IT 
Modifications (I, 
ID,DI,SC,SCR,CI, 
AD, SD). Obtain 
indirect word. 
Obtain effective 
address from 
~rect word. 

E 

Fault Routine 

tm z 11 
TYPE IR 

Modification 

Yes 

R+IT 

tm z 01 
Type RI 

Modification 

tdzOlll or 0011 
DU or DL? 

No 

Perform type R 
modification 
specified by td 
to get address 
of indirect word. 
Pull indirect 
WOfd 

I 
Reg. specifies 
none. Modify 
address with 
saved reg. to 
obtain effective 
operand address 

© 

Is Type RI 
Modification 
specified 

No 

Yes 

tm " 00 
Type R 

Modification 

td " 
0111 

No 

Add contents of 
register specified 
by td to operand 
address to get 
effective address 
Y. 

Convert type R to 
None. Load the 

next indirect word 

'--------------+i c 

A 

Obtain operand 
from effective 

address Y 
Execute the 
instruction 

Figure 5-1. Address Modification Flow Chart 

5-25 

Yes/;;\ 
-~ 

DH03-0l 



Floatable Code 

Program statements may be written in floatable code. Such statements may 
then be executed from any location in memory without relocation at load time. 
Floatable code is created by use of instruction counter (IC) modification in all 
references to locations within a program. Thus, to transfer to location SYM, 
the following statement can be written: 

TRA SYM-*, IC 

or 

TRA SYM,$ 

The assembler accepts the currency symbol ($) as a valid IC register designator. 
The following tag fields in a machine instruction are permitted: 

Mnemonic Octal Code 

$ 04 

$* 24 

The assembler computes the difference between the value of the address 
location argument of the variable field and the current location as the content 
of the address field of the instruction word. The IC is then supplied for 
modification. *$ is illegal and will be assembled as *IC. 

NOTE: The FLOAT pseudo-operation or $ modification does not apply when 
used with SYMREF symbols or within the range of a BLOCK pseudo-operation. 

Address Modification With Address Registers 

Address registers (AR~) provide a second-level indexing capability. 

The address register format allows addressing on a character or bit basis 
and is used by the character and bit manipulation instructions of the processor. 
When an address register is used to modify an address in which character and/or 
bit addressing is not used, the character and bit positions of the address 
register are ignored. 

5-26 DH03-0l 



SINGLE-WORD ADDRESS MODIFICATION 

When an address register is to be used in address preparation, its application 
is specified in the instruction word. All single-word instructions to which 
dddress modification is applicable have the same instruction word format: 

0 0 0 0 1 1 2 2 2 3 3 3 3 
0 1 2 5 

TAG 

I Tm Td 
y OP CODE 

AR# - Address register number, if bit 29 1. 

S - Sign bit, if bit 29 = 1. 

y - Address field bits 0-17 or bits 3-17, depending on the state of bit 
29. Must be an absolute value if AR mode is used. 

OP CODE - 10-bit operation code field. 

I - Program interrupt inhibit bit. 

AR - Address register bit. If bit 29 = 1, use address register specified 
in bits O, 1, and 2 of y field for address modification. Bit 3 (sign) 
is then extended to bits O, 1, and 2. If bit 29 = 0, no address 
register modification is performed. 

TAG - Tag field: Used to control address modification. 

Tm - (Bits 30-31): Type of address modification. 

Td - (Bits 32-35): Index register or modification variation designator. 

NOTE: Address register modification is illegal (DPS 88, DPS 8/20 and 8/44: 
legal) for instructions executed under control of RPT, RPD, and RPL 
instructions. Address register modification is ignored in an indirect 
word in a multilevel indirection condition. 

The address preparation for a single-word instruction with bit 29 
as follows: 

1 proceeds 

1. The three most significant bits of y (0, 1, 2) are decoded to determine 
which of the eight address registers is to be used. 

2. Bit 3 of the y field is extended to fill bit positions 2, 1, and 0, 
thus forming a twos complement signed number. 

3. The twos complement y field is then added to the contents of the 
specified address register. The character and bit positions of the 
address register are ignored and the contents of the address register 
remain unchanged. 

4. Address modification continues as specified by the tag field of the 
instruction word. 

5-27 DHOJ-01 



Diagramatically, address preparation is described below: 

0 0 0 0 

+ 

0 
_Q_ 

AR 

0 
0 -'Ir. 

y + AR 

-111r 

Continue modification 
as specified by 

tag field 

0 
_Q_ .Jr. 

Effective Address 

1 

1 1 
7 8 

1 
7 

1 
1 

2 
3 

ignored 

y field of instruction 
with bit 3 extended 

Contents of an address 
register 

Sum of y field and 
address register 

All legal modifications 
are allowed. Indirect 
words cannot specify an 
address register 

Operand address 

When bit 29 = O, the first step of the address modification procedure using 
the address register is omitted and the only address modification performed is 
that specified by the tag field. 

5-28 0803-01 



When an address register is specified, extending bit 3 of the y field to 
form a twos complement signed number effectively designates bit 3 as a sign bit. 
This leaves 14 bits, 4 through 17, with which to designate an address offset. 
Thus an address offset with values between -2**14 and 2**14-1 can be specified. 
An address register, then, contains a complete 18-bit memory address which may 
be offset + 16K by the partial address contained in the y field of the instruction, 
as shown below. · 

AR 
Points Here 

0 

L 
l'ltJ 

"'"' 

.. ~ 

~~ 

MEMORY l 
,rt# 

- 16K Offset Range 

+ 16K Offset Range 

,..., 

T~ ___ ___.r 
256K 

Coding Examples: 

1. LDQ 4,N,2 

Effective Address 
4 + bits 0-17 of C(AR2) 

2. LDQ -4,N,2 

Effective Address 
-4 + bits 0-17 of C(AR2) 

5-29 

y field, bit 3 1 

y field, bit 3 0 

DH03-01 



MULTIWORD ADDRESS MODIFICATION 

The general format of a multiword instruction is as follows: 

Memory 
Loe. 0 

0 

0 

1 

2 

3 

Variable Field 

Operand Descriptor 

Operand Descriptor 

Operand Descriptor 

1 1 
7 8 

1 or 

2 or 

3 or 

OP CODE 

2 2 2 
7 8 9 

I 

Indirect Word 

Indirect Word 

Indirect Word 

MFl 

3 
5 

Instruction 
Word 

Descriptor 1 

Descriptor 2 

Descriptor 3 

where: 

Variable Field - Contains additional information concerning the 
operation to be performed, depending on the particular 
instruction. 

OP CODE 

I 

MFl 

- The 10-bit operation code field; octal representation 
consists of three octal digits corresponding to bit 
positions 18-26 and a 1 for bit position 27. 

- The program interrupt inhibit bit. 

- Modification field 1 (MFl) describes address 
modification that is to be performed for descriptor 
1. When descriptors 2 and 3 are present, most 
instructions provide a corresponding MF2 (bits 11-17) 
and MF3 (bits 2-8) within the variable field to describe 
the address modification to be performed on these 
operands. Exceptions to this are the MVT, TCT, and 
TCTR instructions. 

5-30 DHOJ-01 



MULTIWORD MODIFICATION FIELD 

Each modification field (MF) contained in a multiword instruction is a 
7-bit field specifying address modification to be performed on the operand 
descriptors. The. modification field is interpreted as follows: 

2 3 

11 12 

29 30 

4 

13 

31 

5 through 8 4-- bits (MF3) 

14 through 17 +--bits (MF2) 

32 through 35 +--bits (MFl) 

~l_A_R~l--R_L~l __ rD-!""l ________ R_E_G ________ l·4----------subfield 

1 1 1 4 •
4 
______ number of bits 

AR - Address Register Specifier 

O - No address register used. 

1 - Bits 0-2 of the operand descriptor address field specify the address 
register to be used in computing the effective address of the 
operand. 

RL - Register or Length 

O - Operand length is specified in the N field (bits 32-35) of the 
operand descriptor. 

1 - Length of operand is contained in the register that is specified 
by code in the N field (bits 32-35) of th;e operand descriptor, in 
the machine format of REG (the coding format is different). 

ID - Indirect Operand Descriptor 

O - The operand descriptor follows the instruction word in its sequential 
memory location. 

1 - The operand descriptor location contains an indirect word that 
points to the operand descriptor. Only one level of indirection 
is allowed. 

REG - Address modification register selection for R-type modification of 
the operand descriptor address field. The REG codes are approximately 
the same as the single-word modifications. In addition, for indirect 
string length specification (RL = 1), the N field codes are similar 
to the REG field. A comparison of these codes follows. 

5-31 DH03-0l 



Table 5-2. Register Codes 

Operand Descriptor 
Octal R Type REG (MF Field) N (32-35) 
Code (MF Field) (See Note 1) If RL = 1 (See Note 2) 

00 No Register (N) No Register (N) Illegal (causes IPR) 

01 AU AU AU 

02 OU QU QU 

03 DU Illegal (causes IPR) Illegal (causes IPR) 

04 IC IC Illegal (causes IPR) 

05 AL A A 

06 QL Q Q 

07 DL Illegal (causes IPR) Illegal (causes IPR) 

10 0 0 XO 

11 1 1 Xl 

12 2 2 X2 

13 3 3 X3 

14 4 4 X4 

15 5 5 XS 

16 6 6 X6 

17 7 7 X7 

The index register designations may be specified by a symbol defined by the 
user to have a value in the octal range of 0, 1, ••• , 7 (or 10, 11, ••• , 17 when 
the RL usage is in a descriptor that does not follow the multiword instruction 
immediately - an indirect descriptor). 

Example: 

1 8 16 

XA BOOL 17 

MLR 
ADSC9 
ADSC9 

(0 ,1), (0 ,1) 
A,O ,XA 
B,O,XA 

is used to specify a move of the number of characters specified by the current 
value of index register 7. 

5-32 DH03-01 



Similarly, 

1 8 

MLR 
ARG 
ADSC9 

16 

.C0,1,1), (0,1) 
LA 
B,O,XA 

LA ADSC9 A,O,XA 

provides for the sending address of the move to be specified indirectly in the 
word labe·led LA. 

As a precautionary measure, all index register symbols should be defined 
with octal values in the range 10, 11, ... ,17, since the assembler uses only the 
low-order 3 bits in all contexts except the indirect descriptor where the symbol 
cannot be identified from context as an index register designation. 

NOTE 1 {When used as a REF field of an indirect operand descriptor) 

When the REG field of an indirect word contains one of the register codes, 
the specified register contents are interpreted as a word index (see "Indirect 
Word" later in this section) . 

When the REG field of the modification field contains one of the register 
codes, the designated register content is interpreted as a character or bit 
index. For an alphanumeric descriptor, this index is the number of 9-bit, 
6-bit, or 4-bit charactersj depending upon the data type specified in the 
descriptor. For a numeric descriptor, it is the number of 9-bit or 4-bit 
characters, also dependent upon the data type specified. For a bit descriptor, 
it is the number of bits. 

The A- and Q-registers provide for indexing by a number greater than 2**18-1. 
When one of these registers is specified, the number of right-justified 
bits for indexing depends on the type of unit reference specified in the 
operand referring to the A- or Q-register, as follows: 

18 bits for full-word (36-bit) operations 

20 bits for 9-bit character operations 

21 bits for 6-bit and 4-bit character operations 

24 bits for bit operations 

All addressing is modulo addressing. For example, when software desires to 
index backwards by N words, it indexes forward by 2**18-N words. This same 
method is also used in character and bit indexing. 

Unit No. of Uni ts/ Word No. to Effectively yield -N 

Word 1 218 -N 

9-bit character 4 4 x 218 -N (220 -N) 

4-bit character 8 8 x 218 -N (221 -N) 

6-bit character 6 6 x 218 -N 

1 bit 36 36 x 218 -N 

5-33 DH03-01 



Si28e the Todulo addressing for 9- and 4-bit characters is a power of 2 
(2 and 22 respectively) and the hardware ignores the remaining high-order 
bits, the A and Q can be loaded with a -N directly. For 1-bit and 6-bit 
characters, A and Q can be respectively loaded with 36 ,DU and 6 ,DU and N 
can then be subtracted. 

The content of the IC is always interpreted as a word address when used in 
address modification. During the entire execution of a multiword instruction, 
the IC points to the instruction word. Thus, if IC address modification is 
involved with a descriptor word, the instruction word address is used. 

Specifying DU or DL type address modification in the REG field of an indirect 
operand descriptor is illegal and causes an IPR fault. 

DU address modification is legal for MF2 of the SCD, SCOR, SCM, and SCMR 
instructions; for all other instructions, an IPR fault occurs. 

NOTE 2 (When used as a register designator in a descriptor) 

Except in the cases of A and Q, when a string length is contained in a 
register, the full 18 bits is interpreted as the length. Lengths in A or Q 
utilize the same number of bits as stated in Note 1 above for the REG field 
of a modification field (MF). 

Operand Descriptors 

The operand descriptors describe the data to be used in the operation and 
provide the basic address for obtaining the data from memory. A unique operand 
descriptor format is required for each of the three data types: bit string, 
alphanumeric, and numeric. The operand descriptor machine formats are as follows: 

BIT STRING OPERAND DESCRIPTOR 

0 0 0 1 1 1 2 2 2 3 
0 2 3 7 8 9 0 3 4 5 

I I y I c I b I N I 
Coding format for the bit string descriptor, BDSC, is: 

BDSC - Bit descriptor 

1 8 16 

BDSC LOCSYM,N,c,b,AM 

5-34 DHOJ-01 



ALPHANUMERIC OPERAND DESCRIPTORS 

0 0 0 1 1 2 2 2 2 2 3 

y N 

Coding formats for the alphanumeric descriptors are: 

ADSC9 - ASCII alphanumeric descriptor 

1 8 16 

ADSC9 LOCSYM,CN,N,AM 

ADSC9 sets the TA field for 9-bit ASCII characters. 

ADSC6 - BCI alphanumeric descriptor 

1 8 16 

ADSC6 LOCSYM,CN,N,AM 

ADSC6 sets the TA field for 6-bit BCI characters. 

ADSC4 - Packed decimal alphanumeric descriptor 

l 8 16 

ADSC4 LOCSYM,CN,N,AM 

ADSC4 sets the TA field for 4-bit packed decimal characters. 

NUMERIC OPERAND DESCRIPTORS 

0 0 0 l l 2 2 2 2 2 2 3 3 

r T 
y SF N 

5-35 0803-01 



Coding formats for the numeric descriptors are: 

NDSC9 - ASCII numeric descriptor 

8 16 

NDSC9 LOCSYM,CN,N,S,SF,AM 

NDSC9 sets the TN field for 9-bit ASCII characters. 

NDSC4 - Packed decimal numeric descriptor 

1 8 16 

NDSC4 LOCSYM,CN,N,S,SF,AM 

NDSC4 sets the TN field for 4-bit packed decimal characters. 

The legend for the machine and coding for ma ts of the descriptors is as 
follows: 

y original data word address. 
18 bits (0-17) if address register not specified in MF. 
15 bits (3-17) if address register specified in MF, with bit 3 extended: 

i.e., if bit 3 is zero, bits 0-2 are also considered to be zero; 
if bit 3 is 1, bits 0-2 are also considered to be ls. 

c original character position within a word of 9-bit characte·rs. 

Code Char. 

00 0 
01 1 
10 2 
11 3 

b = original bit position within a 9-bit character. 

Code Bit Code Bit 

0000 0 0101 5 All other combinations of 
0001 1 0110 6 these 4 bits are illegal 
0010 2 0111 7 codes and will cause an IPR 
0011 3 1000 8 fault. 
0100 4 

N = either the number of characters or bits in the data string er a 4-bit 
code (bits 32-35) that specifies a register that contains the number 
of characters or bits. 

CN = original character number within the data word specified by the original 
data word address. Code for the CN depends on the data type as shown 
below. Coding entry is by character. 

5-36 DH03-0l 



TA = 

TN = 

s 

Data CN Legal Illegal 
~ Character Codes Codes 

9-bit 0 000 001 
1 010 011 
2 100 101 
3 110 111 

6-bit 0 000 110 
1 001 111 
2 010 
3 011 
4 100 
5 101 

4-bit 0 000 
1 001 
2 010 
3 011 
4 100 
5 101 
6 110 
7 111 

a code that defines which type of alphanumeric character is used 
data. 

Data 
Code ~ 

00 9-bit 
01 6-bit 
10 4-bit 
11 Illegal - causes IPR fault 

a code that defines which type of numeric character is specified. 

Data 
Code !YE! 
0 9-bit 
1 4-bit 

sign and decimal type (coding entry is by character). 

s 
Character 

0 
1 
2 
3 

Code 

00 
01 
10 
11 

Description 

Floating-point, leading sign 
Scaled fixed-point, leading sign 
Scaled fixed-point, trailing sign 
Scaled fixed-point, unsigned 

in the 

SX sign and scaling (for X operation codes) 

If TN = 0 (unpacked data) 
00 leading sign, overpunched, scaled 
01 leading sign, separate, scaled 
10 trailing sign, separate, scaled 
11 trailing sign, overpunched, scaled 

If TN = 1 (packed data) 
00 leading sign, separate, floating point 
01 leading sign, separate, scaled 
10 trailing sign, separate, scaled 
11 no sign, scaled 

5-37 DH03-01 



SF scaling factor 

A twos complement binary number that gives the scale point position 
for scaled decimal numbers. The decimal point is assumed to be immediately 
to the right of the least significant digit. The scaling factor is 
treated. as a power of ten exponent where a positive number moves the 
scaled decimal point to the right and a negative number moves it to 
the left. Since the SF field is six bits, the largest number expressible 
is M x 10**31 and the smallest number is M x 10**-32, where M is the 
value of the data described by the numeric operand descriptor. 

This field is ignored if S = 00. 

Example: If data = 12345, S is not 00, and SF 
12.345. 

AM address register modification 

-3, the value is 

INDIRECT WORD 

The basic instruction word containing the operation code is followed by 
either zero, two, or three descriptor words, with the number of descriptor words 
determined by the particular instruction. The descriptor words contain either 
the operand descriptor or an indirect word that points to the operand descriptor. 
When an indirect word points to the descriptor, the format of the indire~t word 
is as follows: 

0 
0 

4 

0 0 
2 3 

Address 

Address Register Number 
(if bit 29 specifies address 
modification) 

1 1 
7 8 

register 

Ignored 

2 2 
8 9 

AR 

~r 

3 3 
0 1 

0 0 

3 
2 

REG 

3 
5 

Register Moditication 
Specifier 

Address Register Modif1cat1on 
Specifier 

The AR and REG fields are identical in function with the corresponding 
modification fields in the instruction word, except that the register content 
specified by the REG field of an indirect word is interpreted as word index 
only. ~~ 

Indirect words can be generated with the ARG pseudo-operation as follows: 

l 

where: 

8 16 

ARG LOCSYM,RM,AM 

LOCSYM 
RM 
AM 

address 
= register modification 
= address register modification 

5-38 0803-01 



For example: 

1 8 16 

ARG DFPRSS,,4 (7,,4) 

OPERAND DESCRIPTOR ADDRESS PREPARATION 

A flowchart of the operations involved in operand descriptor address preparation 
is shown in Figure 5-2. The chart depicts the address preparation for operand 
descriptor 1 of a multiword instruction as described by modification field 1 
(MFl). A similar type address preparation would be carried out for each operand 
descriptor as specified by its MF code. A detailed description of the flowchart 
follows: 

® 

© 

© 

® 

® 

The multiword instruction is obtained from memory. 

The indirect (ID) bit of MFl is queried to determine if the descriptor 
for operand one is present or is an indirect word. 

Th is step is reached only if an indirect word was in the operand 
descriptor location. Address modification for the indirect word is 
now performed. If the AR bit of the indirect word is 1, ::tddress 
register modification step © is performed. 

The y field of the indirect word is added to the contents of the 
specified address register. 

A check is now made to determine if the REG field of the indirect word 
specifies that a register type modification be performed. 

The indirect address as modified by the address register is now modified 
by the contents of the specified register, producing the effective 
address of the operand descriptor. 

The operand descriptor is obtained from the location determined by the 
generated effective address in ©. 
Modification of the op~and descriptor address begins. This step is 
reached directly from ~ if no indirection is involved. The AR bit 
of MFl is checked to determine if address register modification is 
specified. 

Address register modification is performed on the operand descriptor 
as described under "Address Modification with Address Registers" above 
except that the character and bit positions of the specified address 
register are not ignored. Rather, they are used in one of two ways 
depending upon the type of operand descriptor; i.e., whether the type 
is a bit string descriptor or a numeric or alphanumeric descriptor. 

5-39 DH03-0l 



No 

Yes 

Modify Y of 
Operand 

Descriptor 
by AR 

No 

Fetch 
Instruction 

from Memory 

Modify Y of 
Operand 

Descriptor 
with REG 

Fetch 
Operand from 

Memory 

0 
Yes 

No 

Modify Y of 
Indirect Word 

with AR 

0 

Modify Y of 
Indirect Word 

with REG 

© 
Fetch Oper. 
Descriptor 

from Memory 

Figure 5-2. Flowchart For Operand Descriptor Address Preparation 

5-40 DH03-0l 



Bit String Address Preparation 

0 0 0 1 1 1 2 2 
0 2 3 7 8 9 0 3 

14 I I I I 
y, c, and b fields of 

y c b descriptor with bit 3 
of y extended 

+ 

CHARI 
contents of address 

WORD BIT register specified by 
bits O, 1, 2 of y 

yields 

modified descriptor 
y c B address 

where: 

Y = WORD + y 

C CHAR + c 

B BIT + b 

1. If (BIT + b) exceeds 8, a carry is generated to character position C 
and B = (BIT + b) -9: 

BIT 
b 

BIT + b 

7 
5 

12, carry 1 to C and B = 12 -9 = 3 

2. If (CHAR + c + carry from B) exceeds 3, a carry is generated to the 
word address and C = (CHAR + c + carry from B) -4: 

CHAR 2 
c = 3 

carry 1 
6, carry 1 to word address and 

c = 6 -4 = 2 

5-41 DH03-01 



Alphanumeric/Numeric Address Preparation 

First the data type designator (TA for alphanumeric, TN for numeric) is 
checked to determine the character size. If the data is in 9-bit characters, 
then the descriptor address and CN fields can be added directly to the address 
register contents·as follows: 

1 1 1 2 

y 

1 1 
7 9 

WORD 

1 1 
7 9 

WORD + y 

y and CN fields of the 
numeric or alpha numeric 
descriptor, bit 3 extended 

contents of WORD and CHAR 
positions of address 
register designated by 
bits O, 1, 2 of y 

modified character 
address 

Bi ts 20-23 of the address register are ignored. CHAR is added to bi ts 18 
and 19 of CN. Bit 20 of the descriptor is zero and is not used. If CHAR + CN 
is greater than 3, a carry is generated to WORD + y and CHAR + CN = (CHAR + CN) 
-4. 

If the data is in 4- or 6-bit characters, the 9-bit character representation 
contained in the CHAR and BIT portions of the specified address register is 
interpreted to determine the corresponding 4- or 6-bit character position within 
the memory word. Translation to a 4-bit character location can be accomplished 
as follows: 

C = 2 (CHAR) + [(BIT+ 4)/9 truncated] 

If CHAR= 3 and BIT 7, 

then C = 2(3) + 1 = 7 

If CHAR 3 and BIT = 4, 

then C 2(3) + 0 = 6 

Translation to a 6-bit character location can be accomplished as follows: 

9 (CHAR) + BIT 
c = 6 (truncated) 

If CHAR= 3 and BIT= 7, 

9 (3) + 7 
then C 6 = 5 

5-42 DH03-0l 



The remainder of 4 which represents the bit position within character position 
5 is ignored. This means forcing the address register to point to the next 
lower character boundary. 

0 
0 

'· I 

0 
0 

I 
0 
0 

I 

The address modification can now take place. 

o a 
2 3 

I 
I 

y 

+ 

WORD 

yields 

WORD + y 

1 1 
7 8 

1 1 

1 1 

CN 

CAR 

2 
0 

2 

2 

CN + 01 
CAR . 

y and CN fields of the 
numeric or alphanumeric 
descriptor, bit 3 extended 

contents of WORD position 
of address register desig
nated by bits O, 1, 2 of y; 
CAR is the character loca
tion translated from 
CHAR and BIT of address 
register 

For 4-bit character mode, if CN +CAR is greater than 7, a carry is generated 
to WORD + y and CN + CAR = (CN + CAR} -8. 

For 6-bit character mode, a carry is generated to WORD + y when CN + CAR is 
greater than 5 and CN + CAR = (CN + CAR) -6. 

The REG field of MFl is checked for a legal code. If DU is specified in 
the REG field of MF2 in one of the four multiword instructions (SCD, SCDR, 
SCM, SCMR) for which DU is legal, the CN field is ignored and the character 
or characters are arranged within the 18 bits of the word address portion 
of the operand descriptor as follows: 

OEerand descriEtor word address field (y) Character type (TA) 

0 0 0 1 
0 8 9 7 

I CHAR 0 I CHAR 1 I 9-bit characters 

0 0 0 l l 1 
0 5 6 1 2 7 

I CHAR 0 I CHAR 1 I ignored I 6-bit characters 

0 0 0 0 0 0 1 
0 1 4 5 8 9 7 

H CHAR 0 I CHAR 1 I ignored I 4-bit characters 

5-43 DH03-0l 



In the cases where only one character is involved (SCM, SCMR), only character 
O is used. 

@ The count contained in the register specified by the REG field code is 
appropriately converted and added to the operand address. The count conversion 
required depends upon the type of data. 

Bit Operations. The bit count contained in the register is effectively 
divided by 36 to give a word count (WO) with a bit remainder (BR). 
Dividing the bit remainder by 9 gives a character count with a bit 
remainder. Thus the original bit count (BC) is converted to a word 
count, 9-bit character count (CC) and bit remainder, and is in proper 
form to add to the bit operand address. An example of the effective 
conversion is shown below: 

bit count from register/36 WD and BR 

BR/9 = cc and BC 

Expressed as a 24-bit address modifier 

0 1 1 1 2 

WD 

+ 

0 1 1 1 2 

ym 

yields YCB: 

0 1 1 1 2 
0 7 8 9 0 

I I CC+ I WD + ym cm 

2 

BC 

2 

bm 

2 
3 

BC+ 
bm I 

converted bit 
count 

modified bit 
descriptor 
operand 
address 

effective bit 
address 

Carries may occur from (B~ bm) to (CC + cm) and from (CC + cm) to 
(WO+ ym) as described in~· 

5-44 DH03-0l 



There are two conditions to note in forming WO: 

1. If WD is a small number (expressible in less than 18 bits), it is 
right-justified in the 18-bit word area with zero-fill in the 
most significant bit positions. Thus bit counts are always positive; 
they are not twos complement and there are no bit extensions. 

2. If the bit count comes from the A- or Q-registers, division by 36 
may produce a WD greater than 2**18-1. In such a case, the result 
is interpreted modulo 2** 18. For example, if the bit count is 
(2**24)-1: 

(2**24)-1 
36 

Thus, WO 

And, BR/9 

So that, WO 

cc 

BC 

466,033 with BR 27 

466,033 - 262,144 = 203,889 

27/9 = 3 with 0 remainder 

203,889 

3 

0 

No errors occur; the operation is legal and the results are 
predictable. 

Character Operations. The character count contained in the register 
is divided by 4, 6, or 8 (depending upon the data type), which gives a 
word count with a character remainder. The word and character counts 
are then appropriately arranged in 21 bits (18-word address and 3 for 
character position) and added to the modified descriptor operand address. 
The appropriate carries occur from the character positions to the word 
when the summed character counts exceed the number of characters in a 
36-bit word. When the A- or Q-registers are specified, large counts 
can cause the result of the division to be greater than 2**18-1, which 
is interpreted modulo 2**18, the same as for bit addressing. 

5-45 DH03-0l 



~ The operand is retrieved from the calculated effective address location. 

EXAMPLES: 

1 8 16 32 

* OPERAND DESCRIPTOR EXAMPLES 

MLR , , 020,1 move blanks to output record 
ADSC6 ,,0 
ADSC6 PRTOUT,O,SS+80-31 

MLR move columns 31-80 
ADSC6 RDWRK+S,0,80-31+1 to print columns SS-104 
ADSC6 PRTOUT+9,0,80-31+1 

LDX7 31-1,DU ditto 
LDX6 SS-1,DU 
LARS =Vl8/RDWRK 
LAR4 =Vl8/PRTOUT 

MLR (1,,,7), (1,,,6) 
ADSC6 ,,80-31+1,S 
ADSC6 , ,80-31+1,4 

LARS =Vl8/RDWRK ditto 
LAR4 =Vl8/PRTOUT 
LDX3 80-31+1,DU 

MLR (1,1), (1,1) 
ADSC6 5,0,X3,5 
ADSC6 9,0,X3,4 

DH03-0l 



ADDRESS DEVELOPMENT 

Virtual Memory Addressing 

Virtual memory provides the processor with a virtual memory capability, 
consisting of a directly addressable virtual space of 2**43 bytes and the mechanisms 
for translating this virtual memory address to a real memory address. Memory 
paging is an integral part of the translation process for converting a virtual 
memory address to a real memory address. An absolute addressing mode that allows 
bypassing the translation process is also provided. When the processor is operating 
in the absolute addressing mode, the virtual memory address and the real memory 
address are the same, and the total address space is limited to 2**26 (DPS 88: 
2** 28) bytes. 

To provide for virtual memory management, assignment, and control, the 2**43 
byte virtual memory space is divided into smaller units called working spaces 
and segments. 

a. Working Spaces (WS) 

The 2**43 virtual memory space is first divided into 512 working spaces. 
Each WS is 2**34 bytes in size. The WS number to be used in generating 
a particular virtual memory address is contained either in one of the 
eight working space registers (WSRs) or in the descriptor tegister 
being used. 

b. Segments 

A segment is part of a working space and may be as small as one byte 
or as large as four working spaces (2** 36 bytes). Thus, unlike the 
fixed size of a WS, a segment size is variable. Segments are described 
by two 72-bit data items called descriptors. 

When used in virtual address generation, the descriptor (more commonly 
referred to as the segment descriptor) is contained in a register such 
as the instruction segment register (ISR). For operands, the descriptor 
may be contained in other registers. The area of virtual memory 
constituting a segment is "framed" by the segment descriptor by defining 
a base value relative to the WS and a bound value relative to the 
base. 

Virtual memory affects memory address development for both instructions and 
operands in Privileged Master, Master and Slave modes of operation. 

OPERAND ADDRESS PROCEDURE 

The first phase of operand address development proceeds as follows: The 
effective address (EA) of the operand is formed. The EA is defined as the 
address that is formed after all register modification and indirection have been 
completed and is either an 18-bit (word), 20-bit (byte), or 24-bit (bit) address, 
depending upon the instruction. 

5-47 DH03-0l 



After the EA has been formed, the processor hardware forms the virtual 
memory address of the operand using the base, bound, and WS values from 1 of 9 
segment descriptors. If bit 29 of the instruction for which the operand address 
is being prepared is zero, then the operand resides in the instruction segment 
and the base, bound, and WS from the instruction segment register (ISR) are used 
to form the virtual address of the operand; if bit 29 of the instruction is one, 
then descriptor r.egister ..!! (DR_!!) specified by bits O, 1, and 2 of the address 
field of the instruction is used. Note that specifying DRn constitutes specifying 
ARn and vice versa. -

When indirect EA development is involved, the following rules apply: 

a. ·when DRn and ARn are involved (instruction bit 29 = 1), ARn is applied 
only to- the first address in a chain of indirect addresses. However, 
the base, bound, and WS from DRn are applied to each memory reference 
in the indirect chain. -

b. When no DRn/ARn is specified (instruction bit 29 = 0), the base and 
bound of the ISR are applied to each memory reference in an indirect 
chain. 

c. A word in an indirect chain cannot specify a DR_!!. 

d. An XEC or XED instruction does not con st i tu te an indirect chain; therefore, 
the instruction executed may specify a different DRn than the XEC/XED 
instruction, or no DRn. If the instruction executed by the XEC/XED 
does not specify a DRn~ the base, bound, and WS from the ISR are used 
to form the virtual address of the operand. 

INSTRUCTION ADDRESS PROCEDURE 

Virtual addresses for instructions are always formed using the value in the 
instruction counter (IC) and the base, bound, and WS the ISR. 

Virtual Address Generation 

The mechanics of generating the virtual memory address depend on whether 
the involved segment descriptor is a standard descriptor or a super-descriptor. 
For all memory accesses, a virtual address must be generated. Thus, the procedure 
described below for generating the operand virtual address with a standard descriptor 
also applies to virtual address generation for accessing the instruction, argument, 
parameter, and linkage segments (the registers holding the descriptors that define 
these segments may only contain standard descriptors). 

STANDARD DESCRIPTOR 

~L- --~L-~ -~ ~---~--.1 U'C Jll'C l..llVU V.L .LVI. uu.uy 

is shown in Figure 5-3. 
29 = 1, then DRn is used. 

an operand virtual address with a standard descriptor 
If instruct-ion bit 29 = O, the ISR is used; if bit 

5-48 DH03-01 



STR FAULT IF 
CARRY IS 
GENERATED 

BITS 0 AND 1 
MUST BE SAVED 
TO MAKE 
THE WSN ACCESS 
CONTROL CHECK 

0 

o------o 
--------

I 
+ 

f o 
BASE FROM 

i 

! 
I 

lo 1 
I 

OR !SR 

17 18 19 20 

B 

I 

I 
33·34 35 

DRn B 

33 34 35 

EA + BASE B 

OR + 

0 6 :7 8 

a 

WSN 

EFFE TIVE 
WSN 

8 9 404142 1 

BYTE ADDRESS WITHIN 
WORKING SPACE 

where: B - byte 
WNS - working space number 

23 a 19 

BIT DRn BOUND or 
!SR BOUND 

RELATIVE VIRTUAL ADDRESS 

VIRTUAL ADDRESS 

Figure 5-3. Virtual Address Generation Using Standard Descriptor 

The bound check is applied to the effective address at the byte level. The 
bound check is shown for byte or bit instruction; the checks for single word or 
multiword instructions require inclusion of the base in upper- and lower-bound 
algorithms. 

If a carry is generated when the EA is added to the base, an out-of-bound 
situation exists, resulting in an STR or BND fault. 

The effective WSN is formed by ORing the low-order two bits of the worki~g 
space number with bits 0 and 1 of the sum of EA + BASE. 

The bit address from the EA becomes the bit address of the virtual address. 

5-49 DH03-0l 



SUPER-DESCRIPTOR 

**** DPS 8 **** 

The method of .forming an operand virtual address with a super-descriptor is 
shown in Figure 5-4. 

s-so DHOJ-01 



0 
0 

1 11 2 2 0 1 2 3 
7 89 0 3 0 9 0 5 

0-------------01 EA DRn BOUND 1---------1 'TT + 
J I 

~1!~1 , ! 
0 

STR FAULT IF 
CARRY IS LOCATION FROM ORN B 
GENERATED 

STR FAULT IF 
CARRY IS 
GENERA GED 

3 33 
0 3 45 

LOCATION + EA B 

--~-

DRn BASE 0--------0 

---------
0 ---------------

STR FAULT IF 
BITS 0 AND 1 
MUST BE SAVED 
TO MAKE THE 
WS ACCESS 
CONTROL CHECK 

3 33 OUT-OF-BOUNDS 
3 45 

EA + LOC + BASE B RELATIVE VIRTUAL ADDRESS 

OR 

0 678 

EFFECTIVE 
WSN 

0 8 9 

BYTE ADDRESS 
EFFECTIVE WITHIN WORKING 
WSN SPACE 

4 
2 

0 8 9 
3 3 4 44 
0 1 0 12 

EFFECTIVE PAGE NUMBER WIT RD B 
WSN 

VIRTUAL ADDRESS 

WSN WORKING SPACE NUMBER 
B BYTE 

Figure 5-4. Virtual Address Generation Using Super-Descriptor 

5-51 

3 
5 

DHOJ-01 



**** DPS 88 **** 

The processor does not use the super-descriptor directly for address generation. 
Instead, each time a DRn is loaded with a super-descriptor, or each time the 
LDEAn instruction is executed, the processor generates a standard descriptor 
from the super descriptor and holds this generated descriptor in a temporary 
working register. Then, any time a DRn containing a super descriptor is referenced 
for address generation, the processor uses the standard descriptor previously 
generated. 

The above procedure is transparent to software, and improves processor 
efficiency when super-descriptors are used. Any software operation (such as 
copy to another DR or store in memory) with a super-descriptor contained in a 
DRn is performed using the super-descriptor, not the generated standard descriptor. 

The following steps describe how the processor generates a standard descriptor 
from a super-descriptor: 

1. Base for standard descriptor is formed as shown in Figure 5-5. If a 
carry occurs, flag bit 27 of the formed descriptor is forced to zero 
(empty). Thus, any attempt to generate an address using the formed 
standard descriptor will result in a BND fault. 

0 
0 

0 1 
9 0 

3 
5 

DRn BASE 10--------------~----------------------------------0 I 
+ 

LOCATION from DRn 

_J(t_ 

BASE for Standard Descriptor 

Figure 5-5. BASE For Standard Descriptor (DPS 88) 

5-52 DH03-0l 



2. Bound for standard descriptor is formed as shown in Figure 5-6. 

0 
0 

0 
0 

0 
0 

o If resulting bits 0-15 are zero, bits 16-35 become the 20-bit 
bound field. 

o If . resulting bits 0-15 are not zero, the 20-bit bound field of 
the standard descriptor is forced to all ones. 

o If a borrow occurs in the above operation, flag bit 27 of the 
formed descriptor is forced to zero (empty). Thus any attempt to 
access the segment using the formed standard descriptor will result 
in a BND fault. 

0 1 
9 0 

DRn BOUND 11 

3 
5 

- - - - - - - - - - - - - - - - - - - - - - - - 1 

LOCATION from DRn 

1 1 
6 7 

20-Bit BOUND 

3 
5 

Figure 5-6. BOUNDS For Standard Descriptor (DPS 88) 

3 
5 

When a T = 6 descriptor is loaded into a DRn register, a "standardized" 
descriptor is formed. If this standardized descriptor is to be marked "empty", 
i.e., bit 27 = O, the instruction loading the DRn will terminate with a BND 
fault. This action is required since T = 2, 3, 6 descriptors are assumed to 
have bit 27 = 1. 

5-53 DH03-0l 



Absolute Addressing Mode 

Virtual memory provides an absolute addressing mode. When the processor 
utilizes the absolute addressing mode, the virtual address is generated as previously 
described. However, the virtual address is not mapped to a real address; it is 
used as the real address but with a maximum size limitation of 2**26 (DPS 88: 
2**28) bytes. 

The processor utilizes the absolute addressing mode each time working space 
number zero is referenced. For example, assume that the descriptor contained in 
the instruction segment register (ISR) points to working space register 1, containing 
zeros; that the instruction refers to DR2, that points to WSR 3; and that WSR 3 
contains 20. Then, the instruction and operands with bit 29 OFF would be accessed 
in the absolute addressing mode, and operands referenced with bit 29 ON and the 
DR2 selected would be accessed in the virtual addressing mode from working space 
20 (assuming bits 0-1 of the resulting virtual address= 00). 

To utilize the absolute addressing mode, the processor must be in Privileged 
Master mode. The master mode bit in the indicator register and the privileged 
bit of the segment descriptor must be ON. If these two conditions are not met, 
an attempted reference to working space zero in Master or Slave mode causes a 
Command fault. The housekeeping bit is assumed ON when working space zero is 
referenced. 

5-54 0803-01 



When the processor utilizes the absolute addressing mode, address preparation 
proceeds as in normal virtual address development. After the resulting virtual 
address has been generated and bound checks have been made, the processor performs 
the checks indicated below. 

**** DPS 8 **** 

0 

EFFECTIVE 
WSN 

**** DPS 88 **** 

0 
0 

EFFECTIVE 
WSN 

0 0 
8 

9 

0 0 
8 9 

9 

1 1 

EFFECTIVE WSN 
BYTE ADDRESS 

4 4 4 
1 2 

B 
2 

Used as the 26-bit absolute 
byte address of real memory. 

If EWSN bits 0-8 = 0, 
then bits 9-16 must be zero. 
If not zero, an STR fault occurs. 

1 1 
4 5 

EFFECTIVE WSN 
BYTE ADDRESS 

4 4 4 
0 1 2 

B 
2 

Used as the 28-bit absolute 
byte address of real memory. 

If EWSN bits 0-8 = 0, then 
bits 9-14 must be zero. If not 
zero, an STR fault shall occur. 

Figure 5-7. Resulting Virtual Address Check 

5-55 DH03-0l 



Paging Addressing Mode 

Memory paging is an integral part of the address translation process for 
mapping a v ir tu al memory address to a real memory address. Each of the 512 
working spaces is supported by a page table. The location of the page table 
supporting a particular WSN is found by using the 9-bit WSN to index a 512-word 
table that contains the supporting page table directory words. This 512-word 
table is called the working space page table directory (WSPTD). This table is 
located in real memory by a special register called the page directory base 
register (PDBR). 

PAGE TABLE DIRECTORY WORD FORMAT 

The format of the page table directory word (PTDW) is given below. 

**** DPS 8 **** 

0 
0 

1 1 
7 8 

1 2 
9 0 

2 2 
1 2 

2 2 
7 8 

3 
5 

ABSOLUTE LOCATION OF PAGE TABLE (MOD64) Q p T RESERVED PT BOUND 
(MOD 64) 

18 2 1 1 6 8 

.__Type of PT 

.__Present 

.._ WS Access Control 

**** DPS 88 **** 

0 0 2 2 2 2 2 2 2 3 
Jl _l_ 0 1 2 3 4 -5. _6_ 5 

R ABSOLUTE LOCATION OF PAGE TABLE (MOD64) Q p T R PT BOUND 

1 

DPS 8 
Bits 

0-17 

18,19 

20 

(MOD 64) 
20 2 1 1 l 10 

Figure 5-8. Working Space Page Table Directory Format 

DPS 88 
Bits 

1-20 

21,22 

23 

Absolute location of page table. 

WS access control provides a hardware method to force the 
isolation of working spaces. When one or more working 
spaces is allocated to a process, software will record in 
these bit positions of the associated PTDW, the two bits 
that will be checked against the first two bits of EA+LOC+BASE. 
This check can result in a fault. 

= O, the page table is not present. 
1, the page table is present. 

5-56 DH03-01 



DPS 8 
Bits 

21 

22-27 

28-35 

DPS 88 
Bits 

24 

0,25 

26-35 

Description 

= O, the page table is dense. 
= 1, the page table is fragmented. 

Reserved to enable future increase in page table size. 

Modulo 64 size of a dense page table. All zeros means 
size is 64 words. Has no meaning for a fragmented page 
table. 

When the page table directory word (PTDW) is accessed and bit 20 0 
(DPS 88: bit 23=0), a Missing Working Space fault is generated. 

PAGE TABLE WORD FORMAT 

The format of the page table word is given in Figure 5-9. 

**** DPS 8 **** 

0 0 0 
O_ _3_ 4 

RES ABSOLUTE ADDRESS 
(MOD 1024) 

4 

**** DPS 88 **** 

0 0 0 
0 1 2 

RES 

2 

ABSOLUTE ADDRESS 
(MOD 102-4) 

OF PAGE 

OF PAGE 

1 1 2 2 2 3 
7 8 .1_ __a_ _9_ 0 

RESERVED FOR RES 

14 

1 1 
7 8 

SOFTWARE 
10 2 

2 2 2 3 
7 8 9 0 

RESERVED FOR RES 
SOFTWARE 

16 10 2 

Figure 5-9. Page Table Word Format 

Bits Description 

0-3 Reserved for future increase in memory size. 
0-1 (DPS 88) 

4-17 Absolute address of page. 
2-17 (DPS 88) 

CONTROL 
FIELD 

CONTROL 
FIELD 

3 
5 

6 

3 
5 

6 

18-27 Reserved for software use and may not be altered by the 
hardware. 

28,29 Reserved for hardware use and may be changed by the hardware. 

5-57 DH03-01 



Control Field: 

30 

31 

32 

33 

34 

35 

- Processor page present/missing bit } 
= O, page is not in memory (missing) 
= 1, page is in memory (present) 

Interpreted only 
by processor 

- Write control vit } 
O, page may not be written by processor 

= 1, page may be written by processor 

Bit 31 is 
interpreted by 
processor and 
IOX (DPS 88) , 
but not by IOM. 

- Housekeeping bit 
= O, nonhousekeeping page 
= 1, housekeeping page 

} Interpreted only by processor 

- !OM (DPS 88 : IOX) page present/missing bit 
= O, page is not in memory (missing) 
= 1, page is in memory (present) } 

Not inter
preted by 
processor 

- Page modified bit } 
O, page was not modified Interpreted only by processor 

= 1, page was modified 

- Page access bit } 
O, page was been accessed Interpreted only by processor 

= 1, page was accessed 

When the processor accesses the page table word (PTW), the hardware checks 
bit 30. If bit 30 = O, a Missing Page fault occurs and no other faults that 
might be caused by the page table word are checked. Refer to the discussion of 
"Page Table Word Control Field Faults" later in this document. 

Note that the processor and the !OM (DPS 88: !OX) have separate bits to 
indicate a missing page. Thus, during I/O, a page may be present to the IOM 
(DPS 88: !OX) but missing to the processor or vice-versa. When a page is 
accessed, and the PTW is accessed in main memory by hardware, bit 35 of the PTW 
is set to 1 by the hardware. 

When a write occurs to a page, and the modified bit in the page table word 
in the paging associative memory or paging buffer is O, this bit is set to 1 and 
bits 34 and 35 of the page table word in main memory are set to 1 by the 
hardware. 

Note that if a write occurs to a page, and the modified bit in the page 
table word in the paging associative memory or paging buffer is 1, no changes 
are made to the page bits. Software may have reset the page access bit, bit 35, 
to zero. This bit remains zero under this condition. 

Mapping The Virtual Address To A Real Address 

If a prior memory reference to the same page has already mapped that page 
to real memory, and if that mapping is still present in the associative memory 
or paging buffer of the processor, then the mapping is accomplished by concatenating 
the Word field of the virtual address to the modulo 1024 real add.ress of the 
page, to produce the real address for the memory reference. Otherwise the mapping 
proceeds by locating and obtaining the Page Table Directory Word (PTDW). 

5-58 DHOJ-01 



If the PTDW indicates that the page table is not present (PTDW.P=O), then 
the mapping is not completed, and a Missing Working Space fault is generated. 
If the page table is present (PTDW.P=l) but PTDW.Q # bits 0-1 of the relative 
virtual address, then the mapping is not completed, and a Security Fault, Class 
2, is generated. 

If PTDW.T=O, then the page table is a Dense Page Table. 

If PTDW.T=l, then the page table is a Fragmented Page Table. 

Regardless of which type of page table is used, the virtual address can be 
interpreted as shown in Figure 5-10. More detailed interpretations of the virtual 
address are also shown in Figures 5-12 and 5-16. 

0 0 0 3 3 4 4 4 
0 8( 

°11 
0 1 2 

I EFFECTIVE WSN PAGE NUMBER WORD I B I 
Figure 5-10. Virtual Address 

5-59 DH03-0l 



LOCATING THE PAGE TABLE DIRECTORY WORD 

The Page Directory Base Register (PDBR) contains the 0 modulo 512 word 
address of the Working Space Page Table Directory (WSPTD). Figure 5-11 shows 
how the hardware uses the effective WSN from the virtual address as an offset 
into the WSPTD to obtain the Page Table Directory Word (PTDW) for the particular 
working space. 

**** DPS 8 **** 

0 1 
0 4 

PDBR 

9-BIT 
EFFECTIVE 
WSN 

**** DPS 88 **** 

0 
0 

PDBR 

9-BIT 
EFFECTIVE 
WSN 

1 
6 

DENSE PAGE TABLE 

WSPTD 
0 

PTDW 

511 

WSPTD 
0 

PTDW 

511 

0 
0 

0 
0 

0 
0 

0 
0 

C(PDBR) 

·~ 

1 0 
4 0 

EFFECTIVE 
WSN 

-'II~ 

ABSOLUTE WORD ADDRESS 

C (PDBR) 

•• 

OF PTDW 

1 0 
6 0 

EFFECTIVE 
WSN 

...11!.. 

ABSOLUTE WORD ADDRESS 
OF PTDW 

Figure 5-11. Locating The PTDW 

0 
8 

3 
2 

0 
8 

2 
5 

The Dense Page Table that supports a particular working space must have the 
entire table in real memory, one word (PTW) per page. The location and size of 
the page table (PT) is defined by the Page Table Directory Word (PTDW). The 
maximum size of a Dense PT is 16K (DPS 88: 64K) words. 

When the PTDW specifies a Dense PT, the virtual address is interpreted as 
shown in Figure 5-12. 

5-60 DH03-0l 



**** DPS 8 **** 

0 
0 

I 
**** 

0 

0 0 1 1 3 3 4 4 4 
8 9 6 7 

EFFECTIVE WSN I MBZ I PAGE NUMBER WORD 

DPS 88 **** 

0 0 1 1 3 3 4 4 4 
0 1 2 

EFFECTIVE WSN PAGE NUMBER 

Figure 5-12. Virtual Address, Dense Page Table 

FIELD INTERPRETATION 

EFFECTIVE 
WSN The working space to be accessed. 

MBZ M~st be zero for a Dense PT. Thus, the upper 28 x 16K (DPS 88: 
2 x 64K) pages of a working space are not addressable via a 
Dense PT. If these bits are not zero an STR or BND fault shall 
occur. 

PAGE# 

WORD 

B 

This page number is used as the off set, or Index, into the PT 
for this working space to locate the PTW. The page number is 
relative to the PT base address, which comes from the PTDW. 

Locates the word within the 1024 word page that is being accessed. 

The byte position within the word. 

Virtual to real mapping through a Dense PT is shown in Figure 5-13 for DPS 
8, and is shown in Figure 5-14 for DPS 88. 

The PTDW contains the base address (0 modulo 64) of the PT. The address of 
the PTW is equal to the base address plus the 14-bi t (DPS 88: 16-bi t) page 
number. The mapping of the virtual address to the real address is completed 
when the PTW is obtained. The mapping is then saved by the hardware in the 
associative memory or paging buffer. The PTW contains the real address (0 modulo 
1024) of the page. The 10-bit Word field of the virtual address is concatenated 
with the page real address to form the real word address. 

5-61 DH03-0l 



* * * * DPS 8 * * * * 

PTDW BASE OF, PT 
PT 

PTW BASE OF .. PAGE 
PAGE T 

16K MAX 4 WORD 
HADDRESSED 

1-----------~ WORD 

PTW ADDRESS 

0 
0 

1 
7 

lK 

ABSOLUTE PT BASE ADDRESS FROM PTDW 0 -------

0 0 1 + 
0 9 7 

0 --------------- 0 14-BIT PAGE i FROM 
VIRTUAL ADDRESS 

(CARRY IGNORED) ~ 

~ 0 
0 _J 

-..c •. 

·-
PTW ABSOLUTE WORD ADDRESS ~ 

WORD ADDRESS 
0 1 3 
4 7 1 

ABSOLUTE PAGE WORD PART OF 

2 
3 

0 

3 
0 

2 
8 

3 
5 

PT SIZE FROM 
PTDW (MOD 64) 1 ------- 1 

2~ 

~ 
_1 

_J 

SIZE CHECK 

4 
0 

•• ADDRESS FROM PTW VIRTUAL ADDRESS c STR FAULT IF ) 
0 
0 

I 

1 
ABSOLUTE WORD ADDRESS 

I 

l 2 
3 

Figure 5-13. Dense Page Table Mapping DPS 8 

5-62 

OUT-OF-BOUNDS 

DH03-0l 



**** DPS 88 **** 

PTDW BASE OF, PT 
PT 

PTW BASE OFL 
PAGE T -.-

64K MAX 

lK 

PTW ADDRESS 

0 2 
_l_ 0 

ABSOLUTE PT BASE ADDRESS FROM PTDW 0 -------

0 0 1 + 
0 _9_ 5 

0 --------------- 0 16-BIT PAGE # FROM 
VIRTUAL ADDRESS 

(CARRY IGNORED) -.::::::::: 

~ 0 
0 --'ll 

.... .... .... 
PTW ADDRESS --- - .... --

WORD ADDRESS 
0 1 3 
2 7 1 

PA(;E ADDRESS FROM PTW WORD PART OF 

.... 

2 
6 

0 

I 
3i 

I 
2 

Qi 6 

ADDRESSED 
WORD 

PT SIZE FROM 

3 
5 

PTDW (MOD 64) 1 ------- 1 

21~ 

~~ 
5 

""" ~ 

SIZE CHECK 

4 
0 

-".._ 
VIRTUAL ADDRESS BOUND FAULT IF 

OUT-OF-BOUNDS 

T T 
0 

! l 2 

REAL WORD ADDRESS 

Figure 5-14. Dense Page Table Mapping DPS 88 

5-63 DH03-0l 



FRAGMENTED PAGE TABLE 

The Fragmented PT provides a special way for accessing pages in a large 
working space without requiring a large, contiguous page table to be present in 
real memory. The algorithm is similar to a directory set associative cache 
memory addressing scheme. The maximum size of a Fragmented PT is 384 words. 
The first 128 words are a directory containing page keys that correspond to up 
to 256 PTWs in the last 256 words of the PT. See Figure 5-15. This allows for 
mapping of up to 256K words of memory with one setting of the PT. These 256 
pages can be noncontiguous virtual pages, and are a subset of the total working 
space. The only difference in virtual to real memory mapping when a Fragmented 
PT is used is the method of locating the PTW. As was the case with the Dense 
PT, the base address of the Fragmented PT is contained in the PTDW, obtained 
from the -WSPTD. 

EJ 
2 * (PAGE I ENTRY) r 

128 

4 * (PAGE I ENTRY) 
+ KEY MATCH NUMBER jr_ 

383 

FRAGMENTED PT 

PAGE KEY 0 PAGE KEY 1 

PAGE KEY 2 PAGE KEY 3 

PTW 

f-- BASE OF PT 

""I 

> 

.I 

+-

H 

4 KEYS FOR EACH 
OF THE 64 ENTRIES 
IN THE DIRECTORY 

PTW ORIGIN 

PAGE TABLE 
WORD 

Figure 5-15. Fragmented Page Table 

When the PTDW specifies a Fragmented PT, the virtual address is interpreted 
as shown in Figure 5-16. 

5-64 DH03-0l 



0 0 0 2 2 3 3 4 4 4 
_Q_ 8 _2_ 4 5 0 1 0 1 2 

PAGE NUMBER 
EFFECTIVE WSN WORD B 

PAGE KEY . I PAGE i ENTRY 

Figure 5-16. Virtual Address, Fragmented Page Table 

The directory in the first 128 words of the Fragmented PT consists of 64 
word pairs (directory entries), each containing four (i = O, 1, 2, 3) 16-bit 
page keys with an associated bit (K) to indicate if the corresponding key is 
valid. See Figure 5-17. 

0 0 1 1 1 3 
_Q_ 1 7 _a 9 5 

K PAGE KEY 0 K PAGE KEY l 

K PAGE KEY 2 K PAGE KEY 3 

BITS 0,18 NOT INTERPRETED BY HARDWARE 

K 0, PAGE KEY NOT VALID 
K 1, PAGE KEY VALID 

Figure 5-17. Fragmented Page Table, Directory Entry 

The address of a particular directory entry is determined by multiplying 
the 6-bit page number entry from virtual address bits 25-30 by 2, and adding 
this quantity to the modulo 64 base address for the page table, obtained from 
the PTDW. See Figures 5-18 and 5-19. The 16-bit page key field from virtual 
address bi ts 9-24 is compared with each of the valid page key fields in the 
selected directory entry. If the page key from the virtual address matches none 
of the valid page keys in the selected directory entry (or if there are not 
valid page keys), then the operation terminates with a Missing Page fault. If 
the page key from the virtual address matches more than one valid page key in 
the selected directory entry, then the operation ends with a Missing Page fault 
(DPS 88, DPS 8/20 and 8/44: the first matching page key is used). After a 
match is fo~nd, the address of the PTW, in the last 256 words of the PT, is 
equal to the modulo 64 base address for the PT, obtained from the PTDW, plus 
128, plus 4 times the 6-bit page number entry from virtual address bits 25-30, 
plus i, where i identifies the matching page key (i = O, 1, 2, 3). See Figures 
5-18 and 5-19. 

The mapping of the virtual address to the real address is completed when 
the PTW is obtained. The mapping is then saved by the hardware in the associative 
memory or paging buffer. 

No hardware size check is performed when accessing the fragmented page 
table. It is the responsibility of systems software to ensure that fragmented 
page tables are always allocated in a contiguous block of 384 words. 

5-65 DH03-0l 



ADDRESS OF DIRECTORY ENTRY 

0 1 1 
_a_ 61 

1 
PT BASE . (FROM PTDW) 

I 
0 ------- 0 

2 + 3 
5 0 

0 ----------------------------- 0 PAGE I 0 
ENTRY 

0 (CARRY IGNORED) 
0 --~ 

24-BI'r REAL ADDRESS OF DIRECTORY ENTRY 

ADDRESS OF PTW 

0 1 
Jl.. 7 

PT BASE (FROM PTDW) I 0 ------- 0 

2 + 3 
5 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 PAGE I 0 0 
ENTRY 

0 (CARRY IGNORED) 
0 -"It._ 

24-BIT REAL ADDRESS OF DIRECTORY ENTRY 

2 
3 

2 
3 

2 
3 

2 
3 

MOD 64 ADDRESS 

2 * (PAGE I ENTRY) 
FROM VIRTUAL ADDRESS 

MOD 64 ADDRESS 

128 + 4 * (PAGE I ENTRY) +i 
i=0,1,2,3 

Figure 5-18. Fragmented Page Table Addressing (DPS 8) 

5-66 DHOJ-01 



ADDRESS OF DIRECTORY ENTRY 

0 1 2 2 
1 9 0 6 

__________ P_T __ B_A_s_E--~F_R_O_M __ P_T_D_w_) _______ l-~l __ o __ -_-_-_-_--_-__ a_ .... I MOD 64 ADDRESS 

12 + 3 
5 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PAGE # 0 
ENTRY 

0 (CARRY IGNORED) 2 
a •• 5 

26-BIT REAL ADDRESS OF DIRECTORY ENTRY 

ADDRESS OF PTW 

0 2 2 
1 0 _6_ 

PT BASE (FROM PTDW) 0 ------- 0 

2 + 3 
5 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 PAGE # 0 0 
ENTRY 

l 

0 {CARRY IGNORED) 2 
_Q_ ~lif_ 5 

26-BIT REAL ADDRESS OF DIRECTORY ENTRY 

2 * (PAGE i ENTRY) 
FROM VIRTUAL ADDRESS 

MOD 64 ADDRESS 

128 + 4 * (PAGE # ENTRY) +i 
i=0,1,2,3 

Figure 5-19. Fragmented Page Table Addressing (DPS 88) 

5-67 DH03-0l 



ASSOCIATIVE MEMORY 

**** DPS 8 **** 
After a virtual address has been mapped to a real address as described in 

the previous paragraphs, this information is stored in the associative memory 
(AM) so that a subsequent reference to this page can be mapped in one step. The 
data stored in the associative memory is shown below. 

0 
_Q_ 

EFFECTIVE 
ws 

Bits 

0-26 

27-40 

41-44 

0 0 
_8_ _9_ 

18 

9 

2 2 4 4 4 4 4 
_ft_]__ _Q_ J, 2_ _1 A 

MOST SIGNIFICANT BITS ABSOLUTE PAGE 
OF VIRTUAL PAGE NO. ADDRESS 

18 

Figure 5-20. Associative Memory Word 

Description 

w 

14 

H I M 

PAGE CONTROL 
BITS 

The fir st 27 bi ts of the virtual address. (Note: bi ts 27-30 
of the virtual address are used as the entry to the associative 
memory.) 

The absolute page address from the page table word. 

Page control bits: 

W - write 
H - housekeeping 
I - IOM page present/missing 
M - modified 

When an operand virtual address is mapped from an associative 
memory entry and the operation modifies the page, the hardware 
checks the modified (M) control bit. If the M bit in the AM 
entry is OFF, the processor turns the M bit of the AM entry 
ON, ref etches the page table word for this AM entry from 
main memory, and turns the M control bit in the page table 
word ON. The access bit in the page table word is also set 
ON at this time, since it may have been turned OFF by the 
software. If the M bit of the AM entry is ON at the beginning 
of the mapping, no change is required. 

The associative memory is arranqed in 16 rows by four columns (DPS 8/20 and 
8/44: 64 by two columns): Each iniersection of a ~ow and a column contains a 
45-bit entry as shown above. In the first phase of virtual to real memory 
mapping, bi ts 37-40 of the virtual address are used to select one of 16 (DPS 
8/20 and 8/44: 64) rows. Then, bits 0-26 of the effective virtual address are 
compared against bi ts 0-26 of each of the four (DPS 8/20 and 8/ 44: two) row 
entries. If a match is found, the accompanying 14-bi t absolute page address 
(modulo 1024) is obtained. If two or more matches are found, an STR fault is 
generated and the associative memory is disabled. The 10-bit word p~rt of the 
virtual address is appended to form the absolute memory word address. Note that 
the two-bit comparison with bits 18 and 19 of the page table directory word is 
not made for PTWs mapped in the associative memory. 

5-68 DHOJ-01 



When a new address not contained in the associative memory has been mapped 
and the associative memory is full, the new entry replaces the oldest entry in 
the row (round-robin algorithm). 

The associative memory may be disabled (any further comparisons or matches 
are ignored) by: · 

a. Setting the "PTW-AM Control" switch on the VU Maintenance Display and 
Control panel to the OFF position. 

b. Executing a· CAMP instruction with effective address bits 16-17 = 01. 

c. ·Encountering an address compare of two or more columns in one of the 
16 rows. 

The associative memory is enabled and cleared when the "PTW-AM Control" 
switch is in the ON position and a CAMP instruction with effective address bits 
16-17 = 10 is executed. 

**** 

The associative memory is cleared whenever: 

a. The processor is manually initialized. 

b. It is enabled, and the CAMP instruction is executed with effective 
address· bits 16-17 equal to 00, 10, or 11. If EA bits 16-17 = 01, the 
associative memory is disabled but not cleared. 

c. It is disabled, and the CAMP instruction is executed with effective 
address bits 16-17 = 10. 

d. It is enabled, and the LPDBR instruction is executed. 

Address Truncation 

The instruction set contains instructions that operate on words, double-words, 
9-bit bytes, 6-bit characters, 4-bit characters, and bits. Instructions and 
indirect and tally words that specify 6- or 9-bit characters are considered word 
instructions. In accessing the operand,-the full byte level virtual address is 
determined. The address is then truncated in accordance with the address type 
of the instruction, and the access is also in accordance with the type of instruction. 

An exception to this procedure applies to the 8-word instructions, such as 
LREG and SREG. The effective address is truncated to a modulo 8 word address 
prior to adding the base. Following the addition of the base, the virtual 
address is then truncated to a double-word address. 

Correctness of operation of an instruction as influenced by such address 
truncation is the responsibility of the user. 

5-69 0803-01 



Bounds Checking 

One of the capabilities provided by virtual memory is that of specifying 
the base and bound of a segment to the 9-bit byte level, enabling a higher level 
of security control and more efficient use of main memory. Since the processor 
interfaces with word-oriented main memories, certain restrictions are also imposed 
to minimize the impact on performance and hardware complexity. The size of a 
segment described by a super-descriptor is modulo 2**26 bytes; therefore, the 
bounds checking is always the same: BOUND (extended with 26 one bits) > LOCATION 
+EFFECTIVE ADDRESS. The following information applies only to standard descriptors. 

WORD AND DOUBLE-WORD OPERATIONS 

Word, double-word, or a succession of word accesses as in the LREG and SREG 
instructions are made to real memory word or double-word boundaries. Segments 
that begin or end on byte or word positions and that do not correspond to word 
or double-word boundaries may be accessed by word or double-word instructions. 
The processor adds the 2-bit byte position held in an address register (if 
selected) to the byte position of the base before truncating the final virtual 
address to point to a word or double-word. If this truncation results in the 
virtual address dropping below the base value, a lower bound check will declare 
an out-of-bounds condition in this case and an STR (DPS 88: BND) fault occurs. 
Thus, the first word or double-word of a segment may be accessed with word-oriented 
instructions only when the word or double-word is entirely within the segment. 

Half-word accesses such as the LXLn instruction are treated as word accesses 
in both the lower and upper bounds check. If a segment begins in the middle of 
a word, the LXLn and SXLn instructions cannot be used to access the lower half-word. 
If the segment-ends in-the middle of a word, the LDXn, STXn, LXLn, ADXn, etc., 
instructions cannot be used to access the upper half-word. - - -

The STCA, STCQ, STBA, and STBQ instructions store 6-bit or 9-bit characters 
into character/byte locations within a word. These are considered as word accesses 
and require the entire word to be within the segment. 

Indirect and tally words that specify character/byte locations are considered 
as addressing words that must be fully contained in the segment. The virtual 
address is truncated to the next lowest word boundary: that is, the character 
position in the base is not added to the character position held in the indirect 
and tally word. 

NOTE: The preceding information is included to provide a warning for operating 
system and user software. If segments are "shrunk" (see the LDDn 
and CLIMB instructions), and the byte portion of the virtual base is 
changed, a word or double-word access to the new segment may be 
truncated to a different location within the segment. 

All instruction segments must begin at a O modulo 8 location and end at a 7 
modulo 8 location. Any transfer or CLIMB instruction that attempts to load the 
instruction segment register must specify a segment base whose 5 least significant 
bits are Os, and a segment bound whose five least significant bits are ls. This 
condition allows the processor to access blocks of eight words for LPL, SPL, 
LREG, SREG, LAREG, and SAREG instructions with the assurance that if the first 
word is on an assigned page and is within the segment boundary, the ·other words 
will also be so located. 

5-70 DHOJ-01 



All descriptors loaded into the SSR, PSR, LSR, ASR, or DSDR registers must 
begin and end on double-word boundaries (the three least significant bits of the 
base are Os and the three least significant bits of the bound are ls). 

**** DPS 88: SSR, .DSR 

base = O mod 32 bytes 
bound 31 mod 32 bytes 

BYTE OPERATIONS 

**** 

For all 9-bit and 4-bit character operations using multiword instructions, 
the upper bound check is made at the 9-bit byte level. A lower bound check is 
not required since the effective address is always greater than or equal to 
zero. 

For all 6-bit character dperations using multiword instructions (except for 
DPS 8/20 8/ 44 instructions), the boundary checking is on a double-word basis, 
meaning that a double-word containing any 6-bit character of the operand must be 
fully in bounds. If attempted access is made to a segment with a base or bound 
not on a double-word boundary, an STR (DPS 88: BND) fault is generated. 

BIT STRINGS AND INDEX TABLE OF TRANSLATE INSTRUCTION 

Multi word bit str in9 instructions and the index table of the Translate 
instructions (MVT, TCT 1 and TCTR) have double-word bound checking applied. Thus, 
a double-word that includes any part of these operands must be fully in bounds. 
If access is attempted to a segment that has a base or bound not on a double-word 
boundary, an STR (DPS 88: BND) fault is generated. 

5-71 DH03-0l 



BOUND CHECK EQUATIONS 

The address truncation procedure described previously forces bounds checking 
to vary depending upon the type of instruction specified. The resulting three 
upper bound and lower bound checks are listed in Table 5-3. An STR (DPS 88: 
BND) fault is generated if the bound checks are violated. 

Instruction 

Double-Word 
(includes bit 
string and 6-
bit character 
instructions) 

Single-Word 

Byte 
(includes 
9-bit byte, 
4-bit byte) 

Table 5-3. Bound Check Equations 

Bound Check 

Upper 

Lower 

Upper 

Lower 

Upper 

Lower 

(BASE+ EA)o-3211111 2 BASE+ BOUND 

(BASE+ EA) 0_ 32 1 IOOO > BASE 

(BASE + EA) 0_ 33 I 111 2 BASE +BOUND 

(BASE + EA) 0_ 33 I 100 ~ BASE 

EA 0-19 < BOUND 

Always satisfied 

The base, bound, and effective address (EA) addresses represented in the 
bound check equations are for 9-bit bytes. For 4-bit byte and bit instructions, 
the effective address represents the 9-bit byte in which these small quantities 
are contained. The single- and double-word bound check equations include the 
effect of address truncation; the truncated address is then extended to the 
largest byte contained therein for the upper bound check and to the lowest byte 
for the lower bound check. The byte checks refer to the byte accessed; in 
multibyte instructions such as MLR, the access checks are applied to each byte. 

Physical accesses, which may be larger than those corresponding to a given 
instruction (and which therefore may include bytes not contained in the segment), 
are not bound checked beyond the byte range corresponding to the instruction. 

Bound checking is also performed on page table sizes for dense page tables. 
The page number from the virtual address is bounded by: 

**** DPS 8: page number 17 _ 30 2 WSPTD PT Bound 28 _ 35 I 1111111 
and oaae number~ ,, 
- .. "' - -- -- - - ~-.lo must be zero **** 

**** DPS 88: Page number lS-)O 2 WSPTD PT BOUND f~_ 35 I 1111111 
and page num5er 9 _14 must be zero * * 

5-72 DH03-0l 



In the absolute addressing mode, the virtual address is checked for the 26-bit 
(DPS 88: 28-bit} range of byte address. 

**** DPS 8: Virtual address 9_ 16 must be zero **** 

**** DPS 88: Virtual address 9_14 must be zero **** 

ADDRESS WRAPAROUND 

The execution of a multiword instruction that develops addresses at both 
the upper and lower boundaries of a maximum size segment is not permitted. This 
restriction is required due to the address wraparound development of the effective 
address (EA). For each 9-bit byte (each effective address byte), checks are 
made as follows: 

a. For left-to-right instructions: following the calculation of the first 
effective address, bits 0-19 of all subsequent effective addresses are 
greater than those of the first effective address. 

b. For right-to-left instructions: following the calculation of the first 
effective address, bits 0-19 of all subsequent effective addresses are 
less than those of the first effective address. 

If these checks are violated, an STR (DPS 88: BND) fault is generated. 

Multiprocessor Memory Management 

The virtual memory option permits base and bound segments to be located on 
a byte boundary, both as a virtual address and a real address. Normal software 
multiprocessor protection does not exist across a segment boundary. Therefore, 
data may be lost when: 

o two processors simultaneously refer to and change the same double word 
in memory, 

o the double word contains a segment boundary, and 

o one or both processors are executing a multiword instruction, unless 
the segment bouldary is modulo two words. 

This condition may occur since the processor always reads a double-word 
from memory, changes the character(s) involved in the operation, and writes the 
double-word back to memory. Thus, between the reading of the double-word for a 
multiword instruction on one processor and the subsequent double-word store, a 
second processor could change that part of the double-word not affected by the 
multiword instruction, and the changed data would be destroyed when the double-word 
is stored. 

5-73 DH03-0l 





SECTION VI 

MACHINE INSTRUCTIONS 

BASIC FEATURES 

Many of the instructions available in the instruction repertoire are familiar 
to experienced users of large-scale computers. However, additional instructions 
have been provided to supply extended capability for character handling, decision 
making, and advanced programming techniques involving list processing. In addition, 
numerous instructions are provided that have capabilities for processing bytes, 
BCD characters, packed decimal data, and bit strings. 

SINGLE-WORD INSTRUCTIONS 

Single-word instructions provide for multiple variations by permitting the 
user to specify not only the type of address modification desired, but also the 
source and/or destination registers associated with particular operation codes. 
For example, the operation field for a Transfer and Set Index Register ~ (TSX~) 
instruction specifies the index in the operation field, leaving full address 
modification capability free for destination calculation. 

The processor performs efficient operations on 6-, 9-, 18-, 36-, and 72-bit 
operands. 

The following operations are performed by single-word instructions: 

o Boolean Operations 
o Comparison Operations 
o Data Movement Instructions 
o Data Shifting Instructions 
o Effective Address to Register Instructions 
o Fixed-Point Arithmetic Instructions 
o Floating-Point Arithmetic Instructions 
o Special Processor Instructions 

Boolean Operations 

The logical operations AND, OR, and EXCLUSIVE OR are permitted between 
storage and the index registers, A- and Q-registers, and the AQ-register. 

6-1 DH03-0l 



Comparison Operations 

Comparison operations do not alter the contents of storage or the specified 
register, but merely set or clear the appropriate indicators as the result dictates. 
The compare inst~uctions enable the user to make many types of program decisions. 

Fixed-point compare instructions permit comparison of absolute values, 
(algebraic or characters); provide for tests of word fields; permit searches for 
identical, selectable word fields; and permit searches for a value within selectable 
1 imi ts. 

Floating-point compare instructions are included for single- and 
double-precision operations on absolute values and algebraic values. All compare 
instructions are repeatable using the RPT, RPO, or RPL instructions. 

Data Movement Instructions 

Character handling and manipulation are facilitated by the "indirect and 
tally" (IT) address modification option, and by instructions for directly storing 
selected characters of the accumulator or quotient register. Instructions are 
also included for directly loading the index registers from either memory or the 
A- and Q-registers, directly storing any register into memory, and loading registers 
with the twos complement (negative) of the contents of the memory location specified. 

Data Shifting Instructions 

Shifting is accomplished using a "gear-shifting" algorithm, so that long 
shifts are executed essentially as fast as short shifts. The A- and Q-registers 
can be shifted individually or as one unit. The shift commands include right
or left-shift arithmetic, right-shift logical, and left-shift rotate (right-shift 
rotate is omitted because the high speed of the left-shift rotate makes the 
right-shift rotate unnecessary). 

Effective Address To Register Instructions 

The Effective Address to Register instructions permit the effective address 
of such an instruction to be placed in any of the index registers, in the 
A-register, or in the Q-register. Thus, any effective address referenced frequently 
in a program can be stored in a register and used without lost processing time 
in repeatedly redeveloping the effective address. Furthermore, the instructions 
provide the user with the capability of transferring data among any of the index 
registers and to the A-register and the a-register. 

6-2 DH03-0l 



Fixed-Point Arithmetic Instructions 

Instructions for both fractional and integral multiplication and division 
afford the programmer freedom from scaling the results of such operations. 
Fractional multip+ications are performed with the multiplicand in the A-register; 
the result appears in bit positions 0 through 70 of the AQ-register, automatically 
scaled with the binary point to the right of position O. Integral multiplications 
are performed with the multiplicand in the Q-register; the result appears in bit 
positions 1 through 71 of the AO-register, automatically scaled with the binary 
point to the right of position 71. 

Fractional divisions use the full range of the AQ-register for the dividend; 
the quotient appears in the A-register with the remainder in the Q-register. 
The binary point is automatically scaled to the right of position O. Integral 
divisions have the dividend in the Q-register, with the binary point to the 
right of position 35. After division, the quotient is in the Q-register with 
the binary point automatically placed to the right of position 35; the remainder 
is in the A-register. 

Normally, integral operations of divide and multiply occur in the Q-register, 
and fractional operations of divide and multiply occur in the A-register. This 
convention permits easy programming of fixed-point arithmetic operations. 

Instructions are provided for combining the contents of memory locations 
directly with the contents of registers and storing the results in the same 
locations, without recourse to separate store instructions. In all such cases, 
the programmer can use the 18-bit indexing registers, XO through X7, and the 
36-bit A- and Q-registers. In effect, the Add and Subtract to Storage instructions 
make arithmetic accumulators of all available memory locations. In all such 
cases, the register contents are undisturbed. 

Floating-Point Arithmetic Instructions 

Floating-point operations can be performed on both single- and double-precision 
data words; complete sets of data movement, arithmetic, and control instructions 
are provided for use in both types of operations. Unless otherwise specified by 
the programmer, the mantissas of all floating-point operation results, except 
divides, are automatically normalized by the hardware. In additions and 
subtractions, the operands are automatically aligned. 

Operations on floating-point numbers are performed using an extended register 
composed of a 72-bit AQ-register, which holds the mantissa, and a separate 8-bit 
exponent register; operations on the exponent and mantissa are performed by two 
separate adders. The existence of separate exponent and mantissa registers and 
adders enables the programmer to efficiently intermix single- and double-precision 
instructions. 

The floating-point instruction repertoire includes two special divide 
instructions: Floating Divide Inverted (FDI) and Double-Precision Floating Divide 
Inverted (DFDI). These instructions cause the contents of the memory location 
to be divided by the contents of the AO-registers - the reciprocal of other 
divide instructions in the repertoire. Thus, regardless of whether the contents 
of the AQ-register must be a dividend or a divisor, the programmer can always 
perform a division without recourse to wasteful data movement operations. 

6-3 DH03-01 



Floating Negate, Normalize, Add to Exponent, and Single- and Double-Precision 
Compare instructions further facilitate effective programming. 

Special Processor .Instructions 

Slave mode instructions available to provide the operating system with program 
gating for multiprocessor configurations include: LDAC, LDQC, and SZNC. They 
provide for clearing the referenced memory cell to zero after the contents are 
transferred to the processor. The DPS 88 instructions STAC and STACQ provide 
for conditional storing in the referenced memory cell, depending on the current 
contents of the memory cell. 

The slave mode instructions providing rounded floating-point results include: 
DFSTR, FRO, DFRD, and FSTR. 

Four master mode instructions provide system information and control for 
DPS 8: LCPR, SCPR, RSCR, and SSCR. 

MULTIWORD INSTRUCTIONS 

Multiword instructions fall into four general categories: 

1. Alphanumeric instructions 

2. Numeric instructions 

3. Bit string instructions 

4. Conversion instructions 

Alphanumeric Instructions 

Alphanumeric instructions permit moving, transliteration, editing, and 
comparing of alphanumeric data. The operands for these instructions (with the 
exception of comparisons) can be any combination of alphanumeric types (9-bit, 
6-bi t, or 4-bi t) and are translated as part of the instruction execution to 
permit the different types of character strings to be manipulated in the same 
instruction. 

Numeric Instructions 

Numeric instructions include decimal arithmetic functions in addition to 
moving, comparing, and editing of numeric data. Decimal add, subtract, multiply, 
and divide operations are permitted. The numeric instructions can be two- or 
three-operand instructions. The operands themselves can be either 9-bit or 4-bit 
packed decimal. The numbers employed as data can be floating-point with leading 
sign, scaled fixed-point with trailing sign, leading sign, or no sign. As with 
alphanumeric instructions, numeric instructions achieve these various 
characteristics within a single multiword instruction (in conjunction with 
associated operand descriptors). 

6-4 DH03-01 



Bit String Instructions 

Bit string instructions allow a comparison to be made between two bit strings 
on a bit-by-bit basis and provide a capability for performing Boolean operations 
to combine strings and set indicators. 

Conversion Instructions 

Conversion instructions provide for decimal/binary and binary/decimal 
conversion. 

Multiword Instruction Capabilities 

The capabilities of the multiword instructions are given below. 

1. Decimal Arithmetic Capability 

a. Data types as packed decimal and direct ASCII (may be intermixed). 

b. Decimal arithmetic operands of 1 to 63 digits in length (including 
s'ign) . 

c. Numeric data as fixed-point and/or floating-point (intermixed fixed
and floating-point data is allowed). 

d. A full set of decimal arithmetic instructions (each is a multiword 
instruction with either two or three descriptor words) including 
add, subtract, multiply, and divide. 

e. All numeric instructions with a hardware rounding option. 

2. Data Manipulation Capability 

a. Four native data modes - ASCII, BCD, packed decimal (numeric only), 
and bit string. (DPS 88: A fifth data mode - EBCDIC) 

3. Data Movement Capability 

a. Alphanumeric movement from left or right with character-fill. 

b. Numeric move with fill and/or rounding and scale change. 

c. Bit string manipulation using any of 16 different Boolean operations. 

d. Radix conversion and transliteration instructions. 

4. Data Comparison Capability 

a. Alphanumeric comparison with fill. 

b. Numeric comparisons between fields of the same or different format 
and character type. 

c. Bit string comparisons with fill. 

d. String scan for a match of one or two characters. 

6-5 DH03-0l 



5. Second-Level Indexing Capability 

a. Eight address registers providing for second-level indexing for 
all instructions (including single-word instructions). 

Edited Move Micro-Operations 

Both alphanumeric and numeric edited move instructions (MVE and MVNE; DPS 
88: MVNEX) utilize micro-operations (MOPS) to perform editing functions. The 
sequence of micro-steps to be executed is contained in memory and is referenced 
by the second operand descriptor of the edited move instructions. 

Micro-operations provide alphanumeric and numeric edited move instructions 
with the capability to edit character and numeric strings on a character-by-character 
or digit-by-digit basis, or in concatenated series of characters and digits. 

Micro-operations are not altered by their execution; therefore, a sequence 
of micro-operations can be set to describe a data field and then can be used 
repeatedly by the edit instructions. A single instruction can perform a complicated 
edit function with great speed. 

The special edit characters are contained in a hardware edit table and 
table entries are modified using micro-operations designed for this purpose. 
Refer to "Micro-Operations For Edit Instructions MVE, MVNE, And (DPS 88: MVNEX)" 
later in this section for detailed information. 

Instruction Repertoire 

The processor interprets a 10-bi t field of the instruction word as the 
operation code. This field size yields 1024 possible instructions of which over 
half are implemented. 

Functional Classifications 

Detailed below are the processor instructions and operation codes sorted 
alphabetically on the mnemonic by function. Under each category, the mnemonic, 
the operation code, and a brief description are given. 

6-6 DH03-01 



ADDRESS REGISTER OPERATIONS ADDRESS REGISTER OPERATIONS 

ADDRESS REGISTER INSTRUCTIONS 

This set of instructions provides the capability for using address registers 
to manipulate the address portion of numeric and alphanumeric descriptors. If 
an address register is to be used in address preparation, its usage is specified 
in the instruction word. All single-word instructions to which address modification 
is applicable have the same machine instruction word format: 

0 0 0 
0 2 1 

ARiI 

ARI 

LOCSYM 

1 1 2 2 2 3 3 3 3 
.2 Ji 1 _B_ _9__ _Q_ _l _2_ _5_ 

LOCSYM Tm Td 
OP CODE I AR 

DISPLACEMENT (y) TAG 

- One of eight address registers (0-7). 

- Represents either address of operand or displacement from a 
base. 

DISPLACEMENT (y) - A 15-bit displacement from the address register address (twos 
complement: values from -16,384 to +16,383). 

OP CODE 

I 

AR 

TAG 

Address Register 

AARn 56n (1) 
LARn 76n (1) 
LA REG 463 (1) 
NARn 66n (1) 

- A 10-bit operation code field. 

- Program interrupt inhibit bit. 

If bit 29 is 1, an address register is to be used and is 
specified by bits 0, 1, and 2 of the y field. If bit 29 is 
0, no address register is used. 

- Tag field controls all other address modification. If an 
address register is used on an instruction with indirect 
addressing, it is applied only on the fetch of the indirect 
word. 

Tm - tag modifier 
Td - tag designator 

Load 

Alphanumeric Descriptor To Address Register n 
Load Address Register n 
Load Address Registers 
Numeric Descriptor to Address Register n 

6-7 DH03-0l 



ADDRESS REGISTER OPERATIONS ADDRESS REGISTER OPERATIONS 

Address Register Store 

ARAn 
ARn 
SA Rn 
SA REG 

54n (1) 
64n (1) 
74n (1) 
443 (1) 

Address Register n to Alphanumeric Descriptor 
Address Register n to Numeric Descriptor 
Store Address Register n 
Store Address Registers 

Address Register Special Arithmetic 

This set of instructions provides the capability for replacing, adding to, 
or subtracting from the contents of an address register on either a word, character, 
or bit address basis. The operation is register-to-register, with no memory 
fetch involved. 

The special arithmetic instructions have the same instruction format: 

0 0 0 0 1 1 2 2 2 3 3 3 3 
7 8 9 0 1 2 r ARI 

y OP CODE DR 

Figure 6-1. Address Register Special Arithmetic 

AR# - Selects address register to be altered. 

S - Sign bit. 

y - Used as a word displacement (no character or bit position included) 
along with the contents specified in the DR field to alter the contents 
of the specified address register. Bit 3 provides negative (twos 
complement) or positive word displacement. 

OP CODE - 10-bit operation code field. 

I - Program interrupt inhibit bit. 

AR - Address register bit. 

If bit 29 = 1, the sum of the DR {in characters, words, or bits) and 
the y field (in words) are added to or subtracted from the contents of 
the AR specified in b;ts 0-2. 

If bit 29 = 0, the above described sum or its twos complement is 
loaded into the AR for addition or subtraction, respectively. 

If the mnemonic is coded with X (for example, AWDX}, bit 29 is forced 
to zero. 

6-8 0803-01 



ADDRESS REGISTER OPERATIONS ADDRESS REGISTER OPERATIONS 

MBZ - Bits 30-31 must be zero. 

The operand length is contained in the register specified by DR. 

DR - Displacement register. 

Specifies which register contains the displacement value. The register 
codes and register lengths are the same as those used in MF fields 
except that IC modification is illegal. See Table 5-2. 

The operations for adding a value to the contents of an address register 
proceed identically as with effective operand address preparation from an operand 
descriptor, with the final results being stored in the specified address register. 
The subtract operation differs only in that the contents of the register specified 
by the code in the DR field are first added to the y field. This result is then 
subtracted from the actual contents of the address register or from the implied 
zero contents and the result is placed in the address register. The codes for 
DU, DL, and IC are illegal for the DR field and cause an IPR fault. 

Indicators are unaffected by these instructions. 

A4BD 502 (1) Add 4-Bit Displacement to Address Register 
A6BD 501 (1) Add 6-Bit Displacement to Address Register 
A9BD 500 (1) Add 9-Bit Displacement to Address Register 
ABD 503 (1) Add Bit Displacement to Address Register 
AWD 507 (l} Add Word Displacement to Address Register 
S4BD 522 (1) Subtract 4-Bit Displacement from Address Register 
S6BD 521 (1) Subtract 6-Bit Displacement from Address Register 
S9BD 520 (1) Subtract 9-Bit Displacement from Address Register 
SBD 523 (1) Subtract Bit Displacement from Address Register 
SWD 527 (1) Subtract Word Displacement from Address Register 

6-9 DH03-0l 



BOOLEAN OPERATIONS BOOLEAN OPERATIONS 

BOOLEAN OPERATION INSTRUCTIONS 

The logical operations AND, OR, and EXCLUSIVE OR are permitted between 
storage and the index reg~sters, A- and Q-registers, and the AQ-register. 

Boolean Expressions 

A Boolean expression is defined similarly to an algebraic expression except 
that the operators *, I, +, and - are interpreted as Boolean operators. The 
meaning of these operators is defined below: 

1. The expression that appears in the variable field of a BOOL 
pseudo-operation uses Boolean operators. 

2. The expression that appears in the octal subfield of the variable 
field of a VFD pseudo-operation uses Boolean operators. 

Evaluation Of Boolean Expressions 

A Boolean expression is evaluated following the same procedure used for an 
algebraic expression except that the operators are interpreted as Boolean. 

In a Boolean expression, the operators+,-, *,and/ have Boolean meanings, 
rather than their normal arithmetic meanings, as follows: 

Operator 

+ 

* 

I 

Meaning 

OR, inclusive OR, union 

EXCLUSIVE OR 
synunetric difference 

AND, intersection 

ls complement, 
complement, NOT 

6-10 

Definition 

0 + 0 0 
0 + 1 1 
1 + 0 1 
1 + 1 1 

0 - 0 0 
0 - 1 1 
1 - 0 1 
1 - 1 = 0 

0 * 0 0 
0 * 1 = 0 
1 * 0 0 
1 * 1 1 

/0 1 
/1 0 

DH03-0l 



BOOLEAN OPERATIONS BOOLEAN OPERATIONS 

Although / is a unary operation involving only one term, by convention A/B 
is taken to mean A* /B. This is not regarded as an error by the assembler. 
Thus, the table f·or / as a two-term operation is: 

0/0 0 
0/1 0 
1/0 1 
1/1 0 

and other conventions are: 

+A 
-A 
*A 
A/ 

A+ 
A
A* 
A/O 

Boolean AND 

ANA 
ANAQ 
ANQ 
ANSA 
ANSQ 
ANSXn 
ANXn 

375 (0) 
377 (0) 
376 (0) 
355 (0) 
356 (0) 
34n (0) 
36 n ( 0) 

Boolean OR 

ORA 
ORAQ 
ORQ 
ORSA 
ORSQ 
ORSXn 
ORXn 

27 5 (0) 
277 (0} 
27() (0) 
255 (0) 
256 (0) 
24n (0) 
26 n (0} 

A 
A 
0 
A 

Boolean EXCLUSIVE OR 

ERA 
ERAQ 
ERQ 
ERSA 
ERSQ 
ERSXn 
ERXn 

675 (0) 
677 
676 
655 
656 
64n 
66n 

1n \ 
\VJ 

(0) 
(0) 
(0) 
(0) 
(0) 

(possible error-operand missing) 

AND to A-Register 
AND to AQ-Register 
AND to Q-Register 
AND to Storage from A-Register 
AND to Storage from Q-Register 
AND to Storage from Index Register n 
AND to Index Register n 

OR to A-Register 
OR to AQ-Register 
OR to Q-Register 
OR to Storage from A-Register 
OR to Storage from Q-Register 
OR to Storage from Index Register n 
OR to Index Register n 

EXCLUSIVE OR to A-Register 
to AQ-Register 
to Q-Register 

EXCLUSIVE 

to Storage with A-Register 
to Storage with Q-Register 

EXCLUSIVE 
EXCLUSIVE 
EXCLUSIVE 
EXCLUSIVE 
EXCLUSIVE 

OR 
OR 
OR 
OR 
OR 
OR 

to Storage with Index Register n 
to Index Register n 

6-11 DH03-01 



-------
BOOLEAN OPERATIONS 

Boolean COMPARATIVE AND 

CANA 
CANAQ 
CANQ 
CANXn 

Boolean 

CNAA 
CNAAO 
CNAO 
CNAXn 

315 (0) 
317 (0) 
316 (0) 
30n (0) 

COMPARATIVE 

215 (0) 
217 (0) 
216 (0) 
20n (0) 

NOT AND ----

BOOLEAN OPERATIONS 

Comparative AND with A-Register 
Comparative AND with AO-Register 
Comparative AND with O-Register 
Comparative AND with Index Register n 

Comparative NOT AND with A-Register 
Comparative NOT AND with AO-Register 
Comparative NOT AND with O-Register 
Comparative NOT AND with Index Register n 

6-12 DH03-0l 



DESCRIPTOR REGISTER OPERATIONS DESCRIPTOR REGISTER OPERATIONS 

DESCRIPTOR REGISTER INSTRUCTIONS -----

These instructions provide the capability of loading or storing a descriptor 
register (DRn} with a new descriptor or modifying the descriptor currently contained 
in DRn. The-LDDn instruction has a direct load option and a vector option. 

Descriptor. Register Load 

LDDn 67n (1) Load Descriptor Register n 

Descriptor Register Save 

SDRn lln (1) Save Descriptor Register n 

Descriptor Register Store 

STDn OSn (1) Store Descriptor Register n 

6-13 DH03-0l 



FIXED-POINT OPERATIONS 

FIXED-POINT INSTRUCTIONS 

Data Movement Load 

EAA 
EAO 
EAXn 
LCA 
LCAO 
LCO 
LCXn 
LOA 
LDAC 
LDAO 
LOI 
LOO 
LDQC 
LDXn 
LREG 
LXLn 

635 (0) 
6 36 ( 0) 
62n (0) 
335 (0) 
337 (0) 
336 (0) 
32 n (0) 
235 (0) 
0 34 ( 0) 
237 (0) 
634 (0) 
236 (0) 
032 (0) 
22n (0) 
07 3 (0) 
72n (0) 

Data Movement Store 

SREG 
STA 
STAO 
STBA 
STBO 
STCl 
STC2 
STCA 
STCO 
STI 
STQ 
STT 
STXn 
STZ 
SXLn 

753 (0) 
755 (0) 
757 (0) 
551 (0) 
55.2 (0) 
554 (0) 
750 (0) 
751 (0) 
752 (0) 
754 (0) 
756 (0) 
454 (0) 
74n (0) 
450 (0) 
44n (0) 

Data Movement Shift 
~~ ~~-

ALR 
ALS 
ARL 

LLR 
LLS 
LRL 
LRS 
OLR 
OLS 
ORL 
ORS 

-, C: C' 11'\ \ 
IJJ \VJ 

735 (0) 
771 (0) 
.,~, tn• 
I J.J. \V} 

777 (0) 
737 (0) 
773 (0) 
7 33 (0) 
776 (0) 
736 (0) 
772 (0) 
732 (0) 

FIXED-POINT OPERATIONS 

Effective Address to A-Register 
Effective Address to O-Register 
Effective Address to Index Register n 
Load Complement into A-Register 
Load Complement into AO-Register 
Load Complement into O-Register 
Load Complement into Index Register n 
Load A-Register 
Load A-Register and Clear 
Load AO-Register 
Load Indicator Register 
Load O-Register 
Load O-Register and clear 
Load Index Register n from Upper 
Load Registers 
Load Index Register n from Lower 

Store Registers 
Store A-Register 
Store AO-Register 
Store 9-bit Bytes of A-Register 
Store 9-bit Bytes of O-Register 
Store Instruction Counter Plus 1 
Store Instruction Counter Plus 2 
Store 6-bit Characters of A-Register 
Store 6-bit Characters of O-Register 
Store Indicator Register 
Store O-Register 
Store Timer Register 
Store Index Register n in Upper 
Store Zero 
Store Index Register n in Lower 

A-Register Left Rotate 
A-Register Left Shift 
A-Register Right Logical Shift 
A-Register Right Shift 
Long Left Rotate 
Long Left Shift 
Long Right Logical Shift 
Long Right Shift 
O-Register Left Rotate 
O-Register Left Shift 
O-Register Right Logical Shift 
O-Register Right Shift 

6-14 DH03-0l 



FIXED-POINT OPERATIONS 

Fixed-Point Addition 

ADA 075 (0) 
ADAQ 077 (0) 
AOL 033 ( 0} 
ADLA 035 (0) 
ADLAQ 037 (0) 
ADLQ 036 (0) 
ADLXn 02n (0) 
ADQ 076 (0) 
ADXn 06n (0) 
AOS 054 (0) 
ASA 055 (0) 
ASQ 056 (0) 
ASXn 04n ( 0) 
AWCA 071 (0) 
AWCQ 072 (0) 

Fixed-Point Subtraction 

SBA 175 (0) 
SBAQ 177 (0) 
SBLA 135 (0) 
SBLAQ 137 (0) 
SBLQ 136 (0) 
SBLXn 12n ( 0} 
SBQ 176 ( 0} 
SBXn 16n (0) 
SSA 155 ( 0) 
SSQ 156 (0) 
SSXn 14n (0) 
SWCA 171 (0) 
SWCQ 172 (0) 

Fixed-Point Multiplication 

MPF 401 (0) 
MPY 402 ( 0) 

Fixed-Point Division 

DIV 
DVF 

506 {0} 
507 (0) 

FIXED-POINT OPERATIONS 

Add to A-Register 
Add to AQ-Register 
Add Low to AQ-Register 
Add Logical to A-Register 
Add Logical to AQ-Register 
Add Logical to Q-Register 
Add Logical to Index Register n 
Add to Q-Register 
Add to Index Register n 
Add 1 to Storage 
Add to Storage from A-Register 
Add to Storage from Q-Register 
Add to Storage from Index Register n 
Add With Carry to A-Register 
Add With Carry to Q-Register 

Subtract from A-Register 
Subtract from AQ-Register 
Subtract Logical from A-Register 
Subtract Logical from AQ-Register 
Subtract Logical from Q-Register 
Subtract Logical from Index Register 
Subtract from Q-Reg ister 
Subtract from Index Register n 
Subtract Stored from A-Register 
Subtract Stored from Q-Reg ister 
Subtract Stored from Index Register n 
Subtract With Carry from A-Register 
Subtract With Carry from Q-Reg ister 

Multiply Fraction 
Multiply Integer 

Divide Integer 
Divide Fraction 

6-15 

n 

DH03-0l 



------- ------
FIXED-POINT OPERATIONS FIXED-POINT OPERATIONS 

Fixed-Point Comparison 

Fixed-point compare instructions permit comparison of absolute values, 
algebraic values or characters; provide for test of word fields; permit searches 
for identical, selectable word fields; and permit searches for a value within 
selectable limits. Compare instructions are repeatable using the RPT, RPO, or 
RPL instruction. 

CMG 405 (0) 
CMK 211 (0) 
CMPA 115 ( 0) 
CMPAO 117 (0) 
CMPO 116 ( 0) 
CMPXn lOn ( 0) 
CWL 111 ( 0) 
SZN 234 (0) 
SZNC 214 (0) 

Fixed-Point Negate 

NEG 
NEGL 

531 (0) 
533 (0) 

Compare Magnitude 
Compare Masked 
Compare with A-Register 
Compare with AO-Register 
Compare with O-Register 
Compare with Index Register n 
Compare with Limits 
Set Zero and Negative Indicators 
Set Zero and Negative Indicators 

Clear 

Negate (A-Register) 
Negate Long (AO-Register) 

6-16 

from Storage 
from Storage and 

0803-01 



FLOATING-POINT OPERATIONS 

FLOATING-POINT INSTRUCTIONS 

Data Movement Load 

DFLD 
FLD 
LDE 

433 (0) 
431 (0) 
411 (0) 

Data Movement Store 

DFST 
DFSTR 
FST 
FSTR 
STE 

457 (0) 
472 (0) 
455 (0) 
470 (0) 
456 (0) 

Floating-Point Addition 

ADE 
DFAD 
DUFA 
FAD 
UFA 

415 (0) 
477 (0) 
437 (0) 
475 (0) 
435 (0) 

Floating-Point Subtraction 

DFSB 
DUFS 
FSB 
UFS 

577 (0) 
537 (0) 
575 (0) 
535 (0) 

Floating-Point Multiplication 

DFMP 
DUFM 
FMP 
UFM 

46 3 ( 0) 
423 (0) 
461 (0) 
421 (0) 

Floating-Point Division 

DFDI 
DFDV 
FDI 
FDV 

527 (0) 
567 (0) 
525 (0) 
565 (0) 

FLOATING-POINT OPERATIONS 

Double-Precision Floating Load 
Floating Load 
Load Exponent Register 

Double-Precision Floating Store 
Double-Precision Floating Store Rounded 
Floating Store 
Floating Store Rounded 
Store Exponent Register 

Add to Exponent Register 
Double-Precision Floating Add (Normalized) 
Double-Precision Floating Add (Unnormalized) 
Floating Add (Normalized) 
Floating Add (Unnormalized} 

Double-Precision Floating Subtract 
Double-Precision Unnormalized Floating Subtract 
Floating Subtract 
Unnormalized Floating Subtract 

Double-Precision Floating Multiply 
Double-Precision Unnormalized Floating Multiply 
Floating Multiply 
Unnormalized Floating Multiply 

Double-Precision Floating Divide Inverted 
Double-Precision Floating Divide 
Floating Divide Inverted 
Floating Divide 

6-17 DHOJ-01 



FLOATING-POINT OPERATIONS FLOATING-POINT OPERATIONS 

Floating-Point Comparison 

Floating-point compare instructions are used for single- and double-precision 
operations on absolute values and algebraic values. Compare instructions are 
repeatable using the RPT, RPO, or RPL instruction. 

DFCMG 427 (0) 
DFCMP 517 ( 0) 
FCMG 425 (0) 
FCMP 515 (0) 
FSZN 430 (0) 

Floating-Point Negate 

FNEG 513 (0) 

Floating-Point Normalize 

FNO 57 3 (0) 

Floating-Point Round 

DFRD 
FRO 

473 (0) 
471 (0) 

Double-Precision Floating Compare Magnitude 
Double-Precision Floating Compare 
Floating Compare Magnitude 
Floating Compare 
Floating Set zero and Negative Indicators from 

Storage 

Floating Negate 

Floating Normalize 

Double-Precision Floating Round 
Floating Round 

6-18 DH03-0l 



MULTIWORD OPERATIONS MULTIWORD OPERATIONS 

MULTIWORD INSTRUCTIONS 

Operand Descriptors And Indirect Pointers 

The words following a multi word instruction word are either operand descriptors 
or indirect pointers to the operand descriptors. The interpretation of the 
words is performed according to the settings of the control bits in the associated 
modification field (MF). 

OPERAND DESCRIPTOR INDIRECT POINTER FORMAT 

An indirect pointer to an operand descriptor is interpreted as shown below 
(also see "Indirect Word" earlier in this manual): 

0 0 0 
0 2 3 

I AR# I 
AR# 

y 

AR 

REG 

1 1 2 2 3 3 3 3 

y 

- A 3-bit pointer register number. 

- An 18-bit main memory address or a 15-bit word offset. 

- Indirect via pointer register flag that controls the interpretation 
of the y field of the indirect pointer. 

- The address modifier for the y field. 

Alphanumeric Instructions 

Alphanumeric instructions permit moving, transliteration, editing, and 
comparing of alphanumeric data. 

ALPHANUMERIC OPERAND DESCRIPTOR FORMAT 

For any operand of a multiword instruction that requires alphanumeric data. 
the operand descriptor is interpreted as shown below (also see "Alphanumeric 
Operand Descriptors" documented earlier in this manual): 

0 
0 

ARi 

0 0 
2 3 

LOCSYM 

DISPLACEMENT (y) 

1 1 2 2 2 2 
7 8 0 1 2 3 

CN TA 

18 3 2 

6-19 

0 

l 

2 
4 

N 

ZEROS 

3 
2 

(LENGTH) 

8 

REG 

3 
5 

4 

DH03-0l 



MULTIWORD OPERATIONS MULTIWORD OPERATIONS 

ARt - A 3-bit address register number. 

LOCSYM - Location or displacement value. 

DISPLACEMENT (y) - An 18-bit main memory address or a 15-bit word offset 
relative to the address register~s content. 

CN 

TA 

- Character number. This field gives the character position 
within the word at y of the first operand character. 
I ts interpretation depends on the data type (see TA below) 
of the operand. Table 6-1 shows the interpretation of 
the field. Adigit in the table indicates the corresponding 
character position (see Section II for data formats) and 
an •x• indicates an invalid code for the data type. Invalid 
codes cause IPR faults. 

Table 6-1. Alphanumeric Character Number (CN) Codes 

Data type 
C(CN) 

4-bit 6-bit 9-bit 

000 0 0 0 
001 1 1 x 
010 2 2 1 
011 3 3 x 
100 4 4 2 
101 5 5 x 
110 6 x 3 
111 7 x x 

- Type alphanumeric. This is the data type code for the 
operand. The interpretation of the field is shown in 
Table 6-2. The code shown as Invalid causes an IPR fault. 

Table 6-2. Alphanumeric Data Type (TA) Codes 

C(TA) 

00 
01 
10 
11 

Data type 

9-bit 
6-bit 
4-bit 

Invalid 

6-20 DHOJ-01 



MULTIWORD OPERATIONS MULTIWORD OPERATIONS 

N - Operand length. If RL = 0, this field contains the string 
length of the operand. If RL = 1, this field contains 
the code for a register holding the operand string length 
(see "Register Codes", Table 5-1). 

The alphanumeric operand descriptor is coded as follows: 

1 8 16 

{ 
ADSC9} 
ADSC6 
ADSC4 

LOCSYM,CN,N,AM 

where: LOCSYM - An expression containing either the location of the data 
or an off set from the base. 

CN - Character number (see above). 

N - Symbol or decimal value containing either length or a register 
code. 

AM - Address register containing the base. 

ALPHANUMERIC COMPARE 

106 (1) 
120 (1) 
121 (1) 
124 (l) 
125 (1) 
164 (1) 
16 5 ( 1) 

CMPC 
SCD 
SCOR 
SCM 
SCMR 
TCT 
TCTR 
CMPCT 166 (1) (DPS 88 only) 

ALPHANUMERIC MOVE 

MLR 100 (1) 
MRL 101 (1) 
MVE 020 (1) 
MVT 160 (1) 
MMF 364 (1) (DPS 88 only) 
MRF 360 ( 1) (DPS 88 only) 

Numeric Instructions 

Compare Alphanumeric Character Strings 
Scan Characters Double 
Scan Characters Double in Reverse 
Scan with Mask 
Scan with Mask in Reverse 
Test Character and Translate 
Test Character and Translate in Reverse 
Compare Characters and Translate 

Move 
Move 
Move 
Move 
Move 
Move 

Alphanumeric Left to Right 
Alphanumeric Right to Left 
Alphanumeric Edited 
Alphanumeric with Translation 
to Memory Format 
to Register Format 

The set of numeric instructions deals with sign and magnitud.e operands. 
Floating-point decimal zero is represented as+ 0 * 10**127. If any computation 
is performed that would result in a zero representation other than this, the 
hardware forces the zero representation to this format, thus preventing loss of 
data during decimal point alignment. 

6-21 DH03-0l 



MULTIWORD OPERATIONS MULTIWORD OPERATIONS 

All numeric operations are limited to final results not to exceed 63 characters 
(sign, digits, exp~:>nent). If any numeric move, compare, or calculation is specified 
involving either a number with more than 63 characters or a final product with 
more than 63 characters, the operation is performed as though 63 characters were 
specified and no fault occurs unless the specific description of an instruction 
states that such a fault occurs and/or that operation does not take place. 

All characters are carried internally as 4 bits. The upper 5 bits of any 
9-bit input character (TN = 0) are truncated. If a 9-bit output is specified, 
00011 (ASCII numeric zone) is appended to form the numeric digits; octal 053 
forms the plus sign and octal 055 forms the minus sign. 

NUMERIC OPERAND DESCRIPTOR FORMAT 

For any operand of a multiword instruction that requires numeric data, the 
operand descriptor is interpreted as shown below (also see "Numeric Operand 
Descriptors" documented earlier in the manual): 

0 
0 

ARI 

0 0 
2 3 

ARI 

DISPLACEMENT (y) 

1 1 2 2 
7 8 0 1 

CN TN 

18 3 1 

2 2 2 
2 3 4 

s 
or 
sx 

2 

- A 3-bit address register number. 

SF 

2 3 
9 0 

6 

N (LENGTH) 

REG 

3 
5 

6 

DISPLACEMENT (y) - An 18-bit main memory address or a 15-bit word offset 
relative to the address register~s content. 

CN 

TN 

s 

- Character number. This field gives the character position 
within the word at y of the first operand digit. Its 
interpretation depends on the data type (see TN below) 
of the operand. 

- Type numeric. This is the data type code for the operand. 
The codes are: 

C(TN) 

0 
1 

Data type 

9-bit 
4-bit 

- Sign and decimal type of data. The interpretation of 
the field is shown in Table 6-3. 

6-22 DH03-0l 



MULTIWORD OPERATIONS MULTIWORD OPERATIONS 

Table 6-3. Sign And Decimal Type (S) Codes 

C(S) Sign and Decimal type 

00 Floating-point, leading sign 
01 Scaled fixed-point, leading sign 
10 Scaled fixed-point, trailing sign 
11 Scaled fixed-point, unsigned 

SX - Sign,and scaling 

SF 

N 

If TN = O (unpacked data) 
00 leading sign, overpunched, scaled 
01 leading sign, separate, scaled 
10 trailing sign, separate, scaled 
11 trailing sign, overpunched, scaled 

If TN = 1, (packed data) 
00 leading sign, separate, floating point 
01 leading sign, separate, scaled 
10 trailing sign, separate, scaled 
11 no sign, scaled 

- Scaling factor. This field contains the twos complement 
value of the base 10 scaling factor: that is, the value 
of m for numbers represented as n * lO**m. The decimal 
point is assumed to the right of the least significant 
digit of n. Negative values move the decimal point to 
the left: -positive values, to the right. The range of m 
is (-32,31). -

- Operand length. If RL = O, this field contains the operand 
length in digits. If RL = 1, it contains the REG code 
for the register holding the operand length and C(REG) 
is treated as a 0 modulo 64 number. 

The numeric operand descriptor is coded as follows: 

1 8 16 

{
NDSC9} LOCSYM,CN,N,S,SF,AM 
NDSC4 

where: LOCSYM - An expression containing either the location of the data 
or an offset from the base. 

CN - Character number (see above). 

N - A symbol or decimal value containing either the length or 
a register code. 

6-23 DHOJ-01 



MULTIWORD OPERATIONS MULTIWORD OPERATIONS 

S - The sign and decimal type in two bits: 

Code 

0 
1 
2 
3 

Description 

Floating-point, leading sign 
Scaled fixed-point, leading sign 
Scaled fixed-point, trailing sign 
Scaled fixed-point, unsigned 

SF - The scaling factor for scaled decimal numbers; range is 
+31 to -32 treated as the powers of ten. 

AM - Address register containing the base. 

NUMERIC COMPARE 

303 (1) CMPN 
CMPNX 343 (1) (DPS 88 only) 

NUMERIC MOVE 

MVN 300 (1) 
MVNX 340 (1) (DPS 88 only) 
MVNE 024 ( 1) 
MVNEX 004 (1) (DPS 88 only) 

Bit String Instructions 

Compare Numeric 
Compare Numeric Extended 

Move Numeric 
Move Numeric Extended 
Move Numeric Edited 
Move Numeric Edited Extended 

These instructions provide the capability of performing Boolean operations 
on bit strings. The Boolean Result (BOLR) control field (bits 5, 6, 7, and 8 of 
the instruction word) defines one of 16 possible logical operations to be performed. 
The four bits in this field are associated with the four possible combinations 
of bits from the two operands. The association rule is: 

If first operand and second operand then result 
bit is: bit is: is from bit 

0 0 5 

0 1 6 

1 0 7 

1 1 8 

6-24 DH03-01 



MULTIWORD OPERATIONS MULTIWORD OPERATIONS 

Boolean operations most commonly used are: 

BOLR Field Bits 
02eration 5 6 7 8 

MOVE 0 0 1 l 

AND 0 0 0 1 

OR 0 1 1 1 

NANO 1 1 1 0 

EXCLUSIVE OR 0 1 1 0 

Clear 0 0 0 0 

Invert 1 1 0 0 

The four bits contained in the Boolean control field are represented in the 
instruction format by one or two octal digits. 

BIT STRING OPERAND DESCRIPTOR FORMAT 

For any operand of a multiword instruction that requires bit string data, 
the operand descriptor is interpreted as shown below (also see "Bit String Operand 
Descriptor" documented earlier in this manual): 

0 
jl_ 

AR# 

0 0 1 1 1 2 2 2 3 3 
_2_3_ .1 _a _9_ _o_ ..3. A -2. .5. 

y N 
c B 

DISPLACEMENT ( y) 0 0 R 

ARt - Address register containing the base. 

Y - Nominal address of data. 

y - Displacement from base. 

C - The character number of the 9-bit character within they field containing 
the first bit of the operand. 

B - The bit number within the 9-bit character, C, of the first bit of the 
operand. 

N - Operand length. If RL = O, this field contains the string length of 
the operand. If RL = 1, this field contains the code for a register 
holding the operand string length. 

R - Register containing data length. 

6-25 DH03-0l 



MULTIWORD OPERATIONS MULTIWORD OPERATIONS 

The bit string operand descriptor is coded as follows: 

1 8 16 

BDSC LOCSYM,N,C,B,AM 

where: LOCSYM - An expression containing either the location of the data 
or an offset from the base. 

N - Symbol or decimal value containing either length or a register 
code. 

C - Character position (0-3). 

B - Bit within character (0-8). 

AM - Address register containing the base. 

BIT STRING COMBINE 

CSL 
CSR 

060 (1) 
061 ( 1) 

BIT STRING COMPARE 

CMPB 066 (1) 

BIT STRING SET INDICATORS 

SZTL 

SZTR 

064 (1) 

06 5 ( 1) 

Data Conversion Instructions 

Combine Bit Strings Left 
combine Bit Strings Right 

Compare Bit String 

Set zero and Truncation Indicators with Bit 
Strings Left 
Set zero and Truncation Indicators with Bit 
Strings Right 

Conversion instructions are used for conversions between binary and decimal 
numbers where the binary number is stored as a character string, starting and 
ending on 9-bit character boundaries, and the decimal number is stored as a 
character string. 

DATA CONVERSION 

BTD 
OTB 

301 (1) 
30 5 { 1) 

Binary-to-Decimal Convert 
Decimal-to-Binary Convert 

6-26 DHOJ-01 



MULTIWORD OPERATIONS MULTIWORO OPERATIONS 

Arithmetic Instructions 

DECIMAL ADDITION 

AD2D 202 (1) Add Using Two Decimal Operands 
AD2DX 242 (1) (DPS 88 only) Add Using Two Decimal Operands Extended 
AD3D 2_22 (1) Add Using Three Decimal Operands 
AD3DX 262 (1) (DPS 88 only) Add Using Three Decimal Operands Extended 

DECIMAL SUBTRACTION 

SB2D 203 (1) Subtract Using Two Decimal Operands 
SB2DX 243 (1) (DPS 88 only} Subtract Using Two Decimal Operands Extended 
SB3D 223 (1) Subtract Using Three Decimal Operands 
SB3DX 263 (1) (DPS 88 only} Subtract Using Three Decimal Operands Extended 

DECIMAL MULTIPLICATION 

MP2D 206 (1) Multiply Using Two Decimal Operands 
MP2DX 246 (1) (DPS 88 only) Multiply Using Two Decimal Operands Extended 
MP3D 226 (1) Multiply Using Three Decimal Operands 
MP3DX 266 (1) (DPS 88 only) Multiply Using Three Decimal Operands Extended 

DECIMAL DIVISION 

DV2D 207 (1) Divide Using Two Decimal Operands 
DV2DX 247 (1) (DPS 88 only) Divide Using Two Decimal Operands Extended 
DV3D 227 (1) Divide Using Three Decimal Operands 
DV3DX 267 (1) (DPS 88 only) Divide Using Three Decimal Operands Extended 

6-27 DH03-0l 



MICRO-OPERATIONS MICRO-OPERATIONS 

MICRO-OPERATIONS FOR EDIT INSTRUCTIONS MVE, MVNE, AND (DPS 88: MVNEX) 

The Move Alphanumeric Edited (MVE), Move Numeric Edited (MVNE), and Move 
Numeric Edited Extended (MVNEX) instructions require micro-operations to perform 
the editing functions in an efficient manner. The sequence of micro-operation 
steps to be executed is contained in memory and is referenced by the second 
operand descriptor of the instruction. Some of the micro-operations require 
special characters for insertion into the string of characters being edited. 
These special characters are shown under "Edit Insertion Table" below. 

Micro-Operation Sequence 

The micro-operation string-operand descriptor points to a string of 9-bit 
bytes that specifies the micro-operations to be performed during an edited move. 
Each of the 9-bit bytes defines a micro-operation and has the following format: 

0 0 0 0 

MOP IF 

5 

Figure 6-2. Micro-Operation (MOP) Character Format 

MOP 5-bit code specifying the micro operator. 

IF Information field containing one of the following: 

1. A sending string character count. A value of 0 is interpreted 
as 16. 

2. The index of an entry in the edit insertion table to be used. 
Permissible values are 1 through 8. 

3. An interpretation of the "blank-when-zero" operation. 

Edit Insertion Table 

While executing an edit instruction, the processor provides a register of 
eight 9-bit bytes to hold insertion information. This register, called the edit 
insertion table. is not maintained after execution of an edit instruction. At 
th~-start of each edit instruction, the processor initializes the table to the 
values given in Table 6-4. For MVE and MVNE, the ASCII code is used for each 
initial value. (DPS 88: For MVNEX, the EIT field in the instruction word determines 
the character set (ASCII, BCD, or EBCDIC) to be used for the initial values.) 

6-28 DH03-01 



MICRO-OPERATIONS MICRO-OPERATIONS 

Table 6-4. Default Edit Insertion Table Characters 

Table Entry 
Number Character 

1 blank 
2 * 
3 + 
4 
5 $ 
6 
7 
8 0 (zero) 

The relationship between the ASCII character bit positions and the table 
character positions is as follows: 

O 1 2 3 4 5 6 7 8 Table character bit positions 

9 8 7 6 5 4 3 2 1 ASCII character bit pos1t1ons 

where unused high order bit positions of the character are zero-filled. One or 
all of the table entries may be changed by the Load Table En try (LTE) or the 
Change Table (CHT) micro-operation to provide different insertion characters. 

The processor provides the following four edit flags for use by the micro 
operations. 

ES End suppression flag; initially OFF and set ON by a micro-operation 
when zero-suppression ends. 

SN Sign flag; initially set OFF if the sending string has an alphanumeric 
descriptor or an unsigned numeric descriptor. If the sending string 
has a signed numeric descriptor, the sign is initially read from the 
sending string from the digit position defined by the sign and the 
decimal type field (S or SX); SN is set OFF if positive, ON if 
negative. 

z zero flag; initially set ON and set OFF whenever a sending string 
character that is not decimal zero is moved into the receiving string. 

BZ Blank-when-zero flag; initially set OFF and set ON by either the ENF 
or SES micro operation. If, at the completion of a move (Ll exhausted), 
both the z and BZ flags are ON, the receiving string is-filled with 
character 1 of the edit insertion table. 

6-29 DH03-0l 



MICRO-OPERATIONS MICRO-OPERATIONS 

MVNE, MVE, And (DPS 88: MVNEX) Differences 

The processor executes MVNE and MVNEX in a slightly different manner than 
it executes MVE. This is due to the inherent differences in how numeric and 
alphanumeric data is handled. The following are brief descriptions of the basic 
operations. 

NUMERIC EDIT (MVNE AND MVNEX) 

1. Load the entire sending string number (maximum length 63 characters) 
into the decimal unit input buffer as 4-bit digits (high-order truncating 
9-bit data). Strip the sign and exponent characters (if any), put 
them aside into special holding registers, and decrease the input buffer 
count accordingly. 

2. Test sign and, if required, set the SN flag. 

3. Execute micro-operation string, starting with the first (4-bit) digit. 

4. If an edit insertion table entry or MOP insertion character is to be 
stored, ANDed, or ORed into a receiving string of 4- or 6-bit characters, 
high-order truncate the character accordingly. 

5. If the receiving string is 9-bit characters, high-order fill the (4-bit) 
digits from the input buffer with bits 0-4 of character 8 of the edit 
insertion table. If the receiving string is 6-bit characters, high-order 
fill the digits with "00". 

ALPHANUMERIC EDIT (MVE) 

1. Load the decimal unit input buffer with sending string characters. 
Data is read from memory in unaligned units (not modulo 8 boundary) of 
four double-words. The number of characters loaded is the minimum of 
the remaining sending string count, the remaining receiving string 
count, and 64. 

2. Perform tests for zero on the four least significant bits of each 
character. 

3. Execute micro-operation string, starting with the first receiving string 
character. 

4. If an edit insertion table entry or MOP insertion character is to be 
stored, ANDed, or ORed into a receiving string of 4- or 6-bit characters, 
use the lower 4 or 6 bits. 

5. If the receiving string is 6- or 9-bit characters, the zero-fill is 
already supplied; do not append bits of any edit insertion table entry 
as the most significant bits. 

6-30 DH03-01 



MICRO-OPERATIONS 

Micro Operations 

CHT 
ENF 
IGN 
INSA 
INSB 
INSM 
INSN 
INSP 
LTE 
MFLC 
MFLS 
MORS 
MSES 
MVC 
MVZA 
MVZB 
SES 

021 
002 
014 
011 
010 
001 
012 
013 
020 
007 
006 
017 
016 
015 
005 
004 
003 

Change Table 
End Floating Suppression 
Ignore Source Characters 
Insert Asterisk on Suppression 
Insert Blank on Suppression 
Insert Table Entry One Multiple 
Insert On Negative 
Insert On Positive 
Load Table Entry 

MICRO-OPERATIONS 

Move With Floating Currency Symbol Insertion 
Move With Floating Sign Insertion 
Move and OR sign 
Move and Set Sign 
Move Source Characters 
Move With Zero Suppression and Asterisk Replacement 
Move With Zero Suppression and Blank Replacement 
Set End Suppresion 

6-31 DH03-0l 



POINTER REGISTER OPERATIONS 

POINTER REGISTER INSTRUCTIONS 

Pointer Register Load 

LDPn 47n (1) 

Pointer Register Store 

STPn 45n (1) 

Pointer Register Miscellaneous 

EPP Rn 
LDEAn 

63n (1) 
6ln (1) 

POINTER REGISTER OPERATIONS 

Load Pointer Register n 

Store Pointer n 

Effective Pointer to Pointer Register n 
Load Extended Address n 

6-32 DH03-0l 



PRIVILEGED-REGISTER LOAD OPERATIONS PRIVILEGED-REGISTER LOAD OPERATIONS 

PRIVILEGED INSTRUCTIONS 

Privileged instructions are comparable to Master mode instructions. However, 
three conditions must be met before the instructions can be executed: 

1. The master mode bit in the indicator register must be ON. 

2. The privileged bit in the instruction segment register must be ON. 

3. The housekeeping bit in the page table word for the page containing 
the instruction must be ON; if the processor is in the absolute addressing 
mode, this bit is assumed ON. 

If any of the above conditions does not exist upon the attempted execution 
of a privileged instruction, a Command fault (DPS 88: IPR fault) occurs. 

When v ir tu al memory is installed in the processor and is enabled, all of 
the former Master mode only instructions become Privileged Master mode instructions 
and require all of the above three conditions before they can be executed. 

Register Load 

LDAS 
LDDSA 
LDDSD 
LOPS 
LOSS 
LOWS 
LPDBR 

77 0 (1) 
170 (1) 
571 (1) 
771 {l) 
773 (1) 
772 (1) 
171 (1) 

Register Store 

SPDBR 151 (1) 
STDSA 150 (1) 
STDSD 551 (1) 
STPDW 155 {l) 
STPTW 157 (1) 
STSS 753 {l) 
STTA 553 (1) 
STTD 550 {l) 
STWS 752 (1) 

(DPS 8 
(DPS 8 

{DPS 8 

only) 
only) 

only) 

Load Argument Stack Register 
Load Data Stack Address Register 
Load Data Stack Descriptor Register 
Load Parameter Stack Register 
Load Safe Store Register 
Load Working Space Registers 
Load Page Table Directory Base Register 

Store Page Table Directory Base Register 
Store Data Stack Address Register 
Store Data Stack Descriptor Register 
Store PTWAM Directory word 
Store PTWAM Register 
Store Safe Store Register 
Store Test Address Registers 
Store Test Descriptor Registers 
Store Working Space Registers 

6-33 DH03-01 



PRIVILEGED-REGISTER LOAD OPERATIONS PRIVILEGED-REGISTER LOAD OPERATIONS 

-----------

Clear Associative Memory Pages 

CAMP 
CAMPn 

532 (1) (DPS 8 only) 
53n ( 1) (DPS 88 only) 

Clear Cache --- ---

Clear Associative Memory Pages 
Clear Paging Associative Memory 

CCAC 
CCACn 

011 (1) (DPS 8 only) Clear Cache 
376 (1) (DPS 88 only) Clear Cache and Flush 
377 (1) (DPS 88 only) 

Memory Control (DPS ~ Only) 

RMCM 
SMCM 
SMIC 

233 (0) 
55 3 (0) 
451 (0) 

Read Memory Controller Mask Register 
Set Memory Controller Mask Register 
Set Memory Controller Interrupt Cells 

System Control 

ABSA 212 ( 0) (DPS 88 only) Absolute Address to A Register 
CIOC 015 (0) Connect Input/Output Channel 
DIS 616 ( 0) Delay Until Interrupt Signal 
LCCL 057 ( 0) (DPS 88 only) Load Calendar Clock 
LCPR 674 (0) (DPS 8 only) Load Central Processor Register 
LDAT 336 ( 1) (DPS 88 only) Load Address Trap Register 
LOO 172 ( 1) (DPS 88 only) Load Option Register 
LDT 637 ( 0) Load Timer Register 
LIMR 553 (0) (DPS 88 only) Load Interrupt Mask Register 
RIMR 233 ( 0) (DPS 88 only) Read Interrupt Mask Register 
RIW 412 ( 0) (DPS 88 only) Read Interrupt Word Pair 
RRES 231 ( 9) (DPS 88 only) Read Reserved Memory 
RSCR 413 ( 0) Read System Controller Register (Any Mode) 
RSW 231 ( 0) (DPS 8 only) Read Switches (Any mode) 
SCPR 452 (0) (DPS 8 only) Store Central Processor Register 
SFR 452 (0) (DPS 88 only) Store Fault Register 
SSCR 057 (0) (DPS 8 only) Set System controller Register 
TTES 531 ( 0) (DPS 88 only) Transfer Table Entry Store 
TTEZ 524 (0) (DPS 88 only) Transfer Table Entry Zero 
TTTL 552 (0) (DPS 88 only) Transfer Trace Table Lock 
TTTU 523 (0) (DPS 88 only) Transfer Trace Table Unlock 

6-34 DH03-0l 



TRANSFER OPERATIONS TRANSFER OPERATIONS 

TRANSFER INSTRUCTIONS 

The program transfer instructions permit the instruction counter to be stored 
in index registers XO through X7 and also permit conditional and unconditional 
transters. Conditional transfers on zero, plus, and carry also have the corollary 
transfers nonzero, minus, and no carry. The transfers on overflows and underflows 
are made to maskable fault routines. If the normal fault routine is masked, 
transfer is optional. 

The CLIMB domain transfer instruction provides the software with a hardware 
mechanism for transferring control from one software function to another with a 
high level of software security. This two-word instruction has five versions 
and performs the functions of call, return, and co-routine invocations for intra
and inter-instruction segments and intra- and inter-domain references. 

Conditional Transfer 

TEO 
TEU 
TM! 
TMOZ 
TNC 
TNZ 
TOV 
TPL 
TPNZ 
TRC 
TRTF 
TRTN 
TTF 
TTN 
TZE 

614 (0) 
615 (0) 
604 (0) 
604 (1) 
602 (0) 
601 (0) 
617 (0) 
605 (0) 
605 {l) 
603 (0) 
601 {l) 
600 (1) 
607 (0) 
606 (1) 
600 (0) 

Unconditional Transfer 

RET 
TRA 
TSS 
TSXn 

630 (0) 
710 (0) 
715 (0) 
70n (0) 

Domain Transfer (CLIMB) 

CLIMB 713 (1) 

Transfer on Exponent Overflow 
Transfer on Exponent Underflow 
Transfer on Minus 
Transfer on Minus or zero 
Transfer on No Carry 
Transfer on Nonzero 
Transfer on Overflow 
Transfer on Plus 
Transfer on Plus and Nonzero 
Transfer on Carry 
Transfer on Truncation Indicator OFF 
Transfer on Truncation Indicator ON 
Transfer on Tally Runout Indicator OFF 
Transfer on Tally Runout Indicator ON 
Transfer on Zero 

Return 
Transfer Unconditionally 
Transfer After Setting Slave 
Transfer and Set Index Register n 

Domain Transfer 

6-35 DH03-0l 



MISCELLANEOUS OPERATIONS 

------·--·------

MISCELLANEOUS OPERATIONS 

All Mode Instructions 

EPAT 412 (1) 
LDO 172 (1) 

PAS 176 (1) 
STAS 750 (1) 
STO 152 (1) 
STPS 751 (1) 

Binary-To-BCD Conversion 

MISCELLANEOUS OPERATIONS 

Effective Pointer and Address to Test 
Load Option Register (DPS 88: LDO is a privileged 
instruction} 
Pop Argument Stack 
Store Argument Stack Register 
Store Option Register 
Store Parameter Stack Register 

The Binary to Binary-Coded-Decimal (BCD} instruction converts the magnitude 
of a 33-bit or smaller binary number to its decimal equivalent in BCD form. The 
conversion is made automatically, one decimal digit per instruction execution, 
using previously-stored conversion constants. The BCD form of the converted 
number is readily available for further operations. 

BCD 505 (0) Binary-to-BCD Convert 

Execute Instructions 

The Execute and Execute Double (XEC and XED) instructions allow remote 
instructions to be executed singly or in pairs. A program will continue sequentially 
after the XEC or XED instructions are executed, as long as the referenced instructions 
do not alter the instruction counter. If a referenced instruction affects the 
instruction counter, a program transfer occurs. 

XEC 
XED 

716 (0) 
717 (0) 

Execute 
Execute Double 

6-36 DH03-0l 



MISCELLANEOUS OPERATIONS MISCELLANEOUS OPERATIONS 

Gray-To-Binary Conversion 

The Gray-To-Binary (GTB) instruction converts a 36-bit word containing data 
in the Gray code (for example, coded analog information from an analog-to-digital 
input device) to its binary equivalent in only one execution of the instruction. 
This instruction enhances the use of the information system in real-time 
applications, such as telemetry. 

GTB 77 4 (0) 

Programmed Fault 

DRL 
MME 

002 (0) 
001 (0) 

No Operation 

NOP 
PULSl 
PULS2 

011 (0) 
012 (0) 
013 (0) 

Repeat Instructions 

Gray-to-Binary Convert 

Derail 
Master Mode Entry 

No Operation 
Pulse One 
Pulse Two 

The RPT and RPO instructions permit execution of the next one or two instructions 
a selected number of times according to program requirements; they are especially 
useful for operating upon sequential lists in memory. For example, if RPT is 
used with any of several compare instructions to search a list, termination 
occurs when a "hit" is made according to conditions specified in the RPT instruction. 
The "hit" causes transfer to the next sequential instruction. 

RPO 
RPL 
RPT 

560 (0) 
500 (0) 
5 20 ( 0) 

Repeat Double 
Repeat Link 
Repeat 

6-37 DH03-01 





SECTION VII 

PROCESSOR INSTRUCTIONS 

FORMAT OF INSTRUCTION DESCRIPTION 

Each instruction in the repertoire is described in this section. The 
descriptions are presented in the format shown below. 

MNEMONIC 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE : 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLE (S): 

INSTRUCTION NAME 

Figure or figure reference 

Text 

Text 

Text and/or bit transfer equations 

Text 

Text 

Text and/or logic statements 

Text 

If applicable 

Line 1: MNEMONIC, INSTRUCTION NAME, OPCODE 

This line has three parts that contain the following: 

OPCODE 

1. MNEMONIC -- The mnemonic code for the operation field of the assembler 
statement. The assembler recognizes this character string value and 
maps it into the appropriate binary pattern when generating the actual 
object code. 

7-1 DH03-0l 



2. INSTRUCTION NAME -- The name of the machine instruction from which the 
mnemonic was derived. 

3. OPCODE -- The ·octal value of the operation code for the instruction. 
A 0 or a 1 in parentheses following an octal code indicates whether 
bit 27 (opcode extension bit) of the instruction word is OFF or ON. 

Line 2: FORMAT 

The layout and definition of the subfields of the instruction word or words 
either as a figure or as a reference to a figure. 

Line 3: CODING FORMAT 

The format to be used in coding the instruction. 

Line 4: PROCESSOR MODE 

The mode the processor should be in to execute the instruction. 

Line 5: SUMMARY 

The change in the state of the processor affected by the execution of the 
instruction described in a short, symbolic form. If reference is made to the 
state of an indicator, it is the state of the indicator before the instruction 
is executed. 

Line 6: ILLEGAL ADDRESS MODIFICATIONS 

A list of those modifiers that cannot be used with the instruction. An 
Illegal Procedure fault occurs when illegal address modification is used. 

Line 7: ILLEGAL REPEATS 

A list of the repeat instructions that cannot be used with the instruction. 

Line 8: INDICATORS 

A list of only those indicators whose state can be changed by the execution 
of the instruction. In most cases, a condition for setting ON as well as one 
for setting OFF is stated. If only one of the two is stated, then the indicator 
remains unchanged if the condition is not met. Unless stated otherwise, the 
conditions refer to the contents of registers existing after instruction execution. 

Line 9: NOTES 

Further explanations for those cases where the summary may not be sufficient 
to understand the operation. 

7-2 DH03-0l 



Line 10: EXAMPLE(S) 

Any coding examples, if required for clarity. 

ABBREVIATIONS AND SYMBOLS 

The following abbreviations and symbols are used in the descriptions of the 
machine operations. 

Symbol 

AND 

AM 

ARn 

b 

BOLR 

: (BOLR) : 

c 

C{ 

C (R) 

C(R)i 

C(R)i-j 

CN 

DR 

EA 

F 

FILL 

I 

ID 

L 

LOCSYM 

Meaning 

The Boolean connective AND {symbol ~) 

Address register modification 

Address register ~ specifier in operand descriptor (n 0, 1, ••• ,7) 

The original bit position within a 9-bit character 

Boolean results (4 bits). The BOLR field is used in bit string 
operations. The bits specify the resultant octal value for four 
combinations of two input sources 

A Boolean operation defined by the BOLR field 

The original character position within a data word of 9-bit characters 

The contents of 
string 1 

) • C (string 1) is defined as the contents of 

The complete contents of register R 

The contents of bit i of register R 

The contents of bits i through j of register R 

The original character number within the data word referred to by 
the original data word address 

Displacement register {bits 32-35) 

Character set definition, EBCDIC (0) or ASCII (1) 

Bit value specifier (0 or 1) for bit string fill. Used when 
combining/comparing a short bit string with a long bit string to 
make the shorter string appear to be the same length as the longer 
string 

A character used when moving or comparing a short string of characters 
to a longer string to make the short string appear to be the same 
length as the longer string (see note under MASK) 

Program interrupt inhibit bit 

Indirect operand descriptor indicator 

The actual length of the character or bit string, as determined by 
the register or length (RL) bit in the modification field and by N 

A symbol representing either the address of the operand or the 
displacement from a base 

7-3 DH03-0l 



MASK 

MBZ 

MFn 

N 

NS 

OP CODE 

OR 

p 

REG 

RL 

RM 

s 

SF 

sx 

Bi ts used in the instruction word. Each 1 bit in the mask causes 
that bit position in the two characters not to enter into the comparison 
(coded as octal digits) 

NOTE: FILL and MASK are 9 bit fields. When using 6- or 4-bit characters, 
the character must be right-justified in the 9-bit field. 

Must be zero 

Modification field n describing address modification to be performed 
in operand descriptor ~: 

MFl modification field 1 (bits 29-35) 
MF2 modification field 2 (bits 11-17), if operand descriptor 2 is 

specified 
MF3 modification field 3 (bits 2-8) , if operand descriptor 3 is 

specified 

Either the number of characters or bi ts in the data string or a 
4-bit code (bits 32-35) that specifies a register that contains the 
number of characters or bits (see L above) 

If O, there is no effect upon the operation of the instruction. If 
1, there is no effect upon the instruction unless TN = 0 and SX = 00 
or 11, in which case (output is supposed to be overpunched sign) the 
appropriate overpunched sign character will not be placed in the 
specified field. Instead, the appropriate numeric (0-9) character 
will be placed in the specified field, independent of whether the 
calculated sign would have been plus or minus. This results in a no 
sign output. For other values of TN and SX the NS bit is ignored. 
This procedure applies to both EBCDIC and ASCII. 

Operation code field 

The Boolean connective OR (symbol V ) 

If p O, positive signed 4-bit results are stored with octal 14 as 
the plus sign 

If P 1, positive signed 4-bit results are stored with octal 13 as 
the plus sign 

The ith bit, character, or byte position of R 

Bit, character, or byte positions i through j of R 

Rounding numeric indicator flag: 
If RD O, no rounding takes place 
If RD = l, rounding takes place as the final operation: the stored 

result is incremented by 1 at the least significant character 
if the most significant character of the truncated part 
is 5 or more 

Address modification register selection for R-type modification of 
the operand descriptor address field 

Register or length indicator 

Register modification 

Sign and decimal type 

Scaling factor 

Sign and scaling 

7-4 DH03-0l 



Symbol 

T 

TA 

TAG 

TN 

TR 

y 

y 

Y-pair 

YC 

YCB 

z 

--> 

.. . . 
XOR 

Meaning 

Truncation fault enable indicator: 
If T = O, the truncation fault is disabled 
If T = 1, the truncation fault is enabled 

A code that defines which type of alphanumeric character is used in 
the data 

Tag field used to control address modification (bits 30-35) 

A code that defines which type of numeric character is used in the 
data 

Timer register 

A 15-bit displacement from the address register address 

The effective word address (18 bits) of the designated instruction 

A symbol denoting that the effective address Y designates a pair of 
main memory locations (72 bits) with successive addresses, the smaller 
address being even. When Y is even, it designates the pair (Y, 
Y+l); when Y is odd, it designates the pair (Y-1, Y). The main 
memory location with the smaller (even) address contains the most 
significant part of a double-word operand or the first of a pair of 
instructions 

The effective address for character data 

The effective address for bit string data 

The temporary pseudo-result of a nonstore comparison operation 

Replace(s) 

Is compared with 

The Boolean connective EXECLUSIVE OR 

Not equal 

COMMON ATTRIBUTES OF INSTRUCTIONS 

Illegal Modification 

If an illegal modifier is used with any instruction, an illegal procedure 
fault with a subcode class of illegal modifier occurs. 

Parity Indicator 

The parity indicator is turned ON at the end of a main memory access that 
has incorrect parity. 

7-5 DH03-0l 



INSTRUCTION WORD FORMATS 

Single-Word Instructions 

The single-word instruction format is described in Figure 7-1. 

0 0 0 0 

y 

1 
7 

1 
8 

OP CODE 

2 
7 

2 2 
8 9 

Figure 7-1. Single-Word Instruction Format 

A Rt - Address register number, if bit 29 1. 

S - Sign bit, if bit 29 = 1. 

3 
0 

Tm 

3 
1 

3 
2 

r Td 

3 

Y - Address field; bits 0-17 or bits 3-17, depending on the state of bit 
29. 

OP CODE - 10-bit operation code field stated as a 3-digit octal number followed 
by the content of bit 27 (0 or 1) in parentheses. 

I - Program interrupt inhibit bit. 

AR - Address register bit. If bit 29 = 1, use address register specified 
in bits O, 1, and 2 of Y field for address modification. Bit 3 
(sign) is then extended to bits O, 1, and 2. If bit 29 = O, no 
address register modification is performed. 

TAG - Tag field; used to control address modification. 

Tm - (Bits 30-31) Type of address modification. 

Td - (Bits 32-35) Index Register or modification variation designator. 

The Repeat (RPT), Repeat Double (RPO), and Repeat Link (RPL) machine 
instructions and variations of these instructions use special formats and have 
special tally, terminate, repeat, and other conditions associated with them. 
There is no address modification for the Repeat instructions. Address modifications 
for the repeated instructions are limited to R and RI with designators specifying 
Xl, ••• ,X7. XO is used to control terminate conditions and tally. 

Indirect words, used for address modification, have the same general format 
as the instruction words; however, the fields are used in a somewhat different 
way. 

7-6 DH03-0l 



Multiword Instructions 

Alphanumeric, numeric, and bit string multiword instructions have the general 
machine format described in Figure 7-2. 

0 0 0 0 0 0 1 1 1 1 1 2 2 2 3 3 
0 1 2 5 _.s_ _i _Q_ _l_ A _1_ ..B. 7 8 9 _2_ __5_ 

F MF3 or FILL MF2 MFl 
0 
~ 

0 T R OP CODE I 
A R I D A R I A R I 

p R L D REG R L D REG R L D REG 

The number of words and fields within the words will vary by instruction, 
but use the following general format: 

1 

2 

3 

F 

p 

FILL 

T 

RD 

MFl 

MF2 

MF3 

Operand Descriptor or Indirect Pointer to 
Operand Descriptor 1 

Operand Descriptor or Indirect Pointer to 
Operand Descriptor 2 

Operand Descriptor or Indirect Pointer to 
Operand Descriptor 3 

(When Required By the Instruction) 

Figure 7-2. Multiword Instruction Format 

- Bit value specifier for bit string fill. 

- Plus sign indicator (octal 13 or 14). 

- Fill character specifier. 

- Truncation fault enable indicator. 

- Rounding indicator. 

- Modification field 1 (bits 29-35) denotes address modification to be 
performed for operand descriptor 1. (See "Multiword Modification Field" 
documented earlier in this manual.) 

- Bits 11-17 describe address modification to be performed on this operand 
for operand descriptor 2. 

- Bits 2-8 describe address modification to be performed on this operand 
for operand descriptor 3. 

OP CODE - 10-bit operation code field. Octal representation consisting of three 
octal digits followed by the content of bit 27 (1) in parentheses. 

I - Program interrupt inhibit bit. 

7-7 DH03-01 



AR - Address register indicator. 

RL - Register containing length indicator. 

ID - Indirect operand descriptor indicator. 

REG - Type of register modification (A, AU, Q, QU, IC, DU, XE). 

Address Register Special Arithmetic Instructions 

This set of instructions provides the capability for replacing, adding to, 
or subtracting from the contents of an address register on either a word, character, 
or bit address basis. The operation is register-to-register, with no memory 
fetch involved. 

The special arithmetic instructions have the format shown in Figure 7-3: 

0 0 0 0 1 1 2 2 2 3 3 3 3 
0 2 3 4 7 8 7 8 9 0 1 2 5 

I ARI I s I y 

I 

OP CODE 

I 

I 
I ARI MBZ I 

DR I 
Figure 7-3. Address Register Special Arithmetic 

Instruction Format 

ARI - Selects address register to be altered. 

S - Sign bit. 

y - Used as a word displacement (no character or bit position included) 
along with the contents specified in the DR field to alter the contents 
of the specified address register. Bit 3 provides negative or positive 
word displacement. 

OP CODE - 10-bit operation code field. Octal representation consisting of three 
octal digits followed by the content of bit 27 (1) in parentheses. 

I - Program interrupt inhibit bit. 

AR - Address register bit. If bit 29 = 1, the sum of the DR (in characters, 
words, or bits) and the y field (in words) are added to or subtracted 
from the contents of the AR specified in bits 0-2. If bit 29 = O, the 
described sum or its twos complement is loaded into the AR for addition 
or subtraction, respectively. If the mnemonic is coded with X (for 
example, AWDX), bit 29 is forced to zero. 

MBZ - Bits 30-31 must be zero. The operand length is contained in the register 
specified by DR. 

DR - Displacement register. Specifies which register contains the 
displacement value. The register codes and register lengths are the 
same as those used in MF fields except that IC modification. is illegal. 

7-8 DH03-0l 



The operations fvr adding a value to the contents of an address register 
proceed identically as with effective operand address preparation from an operand 
descriptor, with the final results being stored in the specified address register. 
The subtract operation differs only in that the contents of the register specified 
by the code in the DR field are first added to the y field. This result is then 
subtracted from the actual contents of the address register or from the implied 
zero contents and the result is placed in the address register. The codes for 
DU, DL, and IC are illegal for the DR field and cause an IPR fault. 

No indicators are affected by these instructions. 

List Of Instructions 

The following pages will detail in alphabetical order the machine instructions. 

7-9 DH03-0l 



A4BD 
A4BDX 

A4BD 
A4BDX 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

EXAMPLES: 

1 8 

EAX3 
A4BDX ......... ~ 
n'tDU 

n-. v• 
J:onA't 

A4BDX 
EAX5 
A4BD 

Add 4-Bit Displacement to Address Register 502 

Special arithmetic instruction format (see Figure 7-3) 

l 8 16 

fMBD} 
\A4BDX word displacement,R,AR 

A4BD 
A4BDX 

( 1) 

When the mnemonic is coded with an x (A4BDX), bit 29 is 
forced to zero. 

Any 

Description is the same as for A6BD except that the register 
specified by the DR field contains a count of 4-bit characters 
that must be effectively divided by 8. The AR is forced to 
point to a 4-bit character boundary prior to addition. 

All except N, AU, QU, AL, QL, and index registers 

RPT, RPO, RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

16 

9 
2,3,5 
0,3,5 

6 
0,4,3 
9 
4,5,3 

32 

AR5 octal contents 
AR5 octal contents 

AR3 octal contents 

AR3 octal contents 

7-10 

0 0 0 0 0 3 0 5 
0 0 0 0 0 4 2 0 

o o a a a a 6 a 

o a o o a s 6 s 

0803-01 



A6BD 
A6BDX 

A6BD 
A6BDX 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

Add 6-Bit Displacement to Address Register 501 

A6BD 
A6BDX 

( 1) 

Special arithmetic instruction format (see Figure 7-3) 

1 8 16 

{A6BD} 
\A6BDX word displacement,R,AR 

When the mnemonic is coded with an X (A6BDX), bit 29 is 
forced to zero. 

Any 

The count of 6-bi t characters contained in the register 
specified by the DR field is effectively divided by 6, producing 
a word count and a character count. The word count is added 
to the y field (bit 3 extended} and if bit 29 = O, this sum 
replaces bits 0-17 of the specified AR, with the character 
count (from the divide) being translated into bit string 
representation and replacing bits 18-23 of ARo With bit 29 
= 1, the sum of the word count (from the divide) and y field 
is added to bits 0-17 of the specified AR. The CHAR and BIT 
portions (bits 18-23) of the specified AR are forced to point 
to a 6-bit character boundary. The resulting 6-bit character 
count is added to the character count from the divide operation, 
with the result being translated back into bit string 
representation. These formed values for the WORD, CHAR, and 
BIT fields are stored in bits 0-23 of the specified AR. 

All except N, AU, QU, AL, QL, and index registers 

RPT, RPD I RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-11 DH03-01 



A6BD 
A6BDX 

EXAMPLES: 

1 8 

EAX2 
A6BDX 
A6BD 

EAX4 
A6BDX 
A6BD 

16 32 

8 
3,2,6 AR6 octal 
2,2,6 AR6 octal 

15 
0,4,7 AR7 octal 
2,4,7 AR7 octal 

7-12 

contents 0 0 0 0 0 
contents 0 0 0 0 0 

contents 0 0 0 0 0 
contents 0 0 0 0 0 

4 2 
7 4 

2 4 
7 0 

3 
6 

0 
0 

A6BD 
A6BDX 

DH03-0l 



A9BD 
A9BDX 

A9BD 
A9BDX 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

Add 9-Bit Displacement to Address Register 500 

A9BD 
A9BDX 

( 1) 

Special arithmetic instruction format (see Figure 7-3) 

1 8 16 

fA9BD} 
\A9BDX word displacement,R,AR 

When the mnemonic is coded with an X (A9BDX), bit 29 is 
forced to zero. 

Any 

The count of 9-bi t characters contained in the register 
specified by the DR field is effectively divided by 4, producing 
a word count and a character count. This word count is then 
added to they field (bit 3 extended). If bit 29 = O, the 
resulting s~~ of the word addresses and the character count 
(from the divide operation) replaces bits 0-19 of the specified 

AR. If bit 29 = 1, the resulting sum of the word addresses 
is added to bits 0-17 of the specified AR and the character 
count (from the divide operation) is added to bits 18-19 of 
C (AR). These results ar-e then stored in bi ts 0-19 of the 
specified AR. In either case, bits 20-23 of the specified 
AR are zeroed. 

All except N, AU, QU, AL, QL, and index registers 

RPT I RPO, RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-13 DH03-0l 



A9BD 
A9BDX 

EXAMPLES: 

1 a 
EAXl 
A9BDX 
A9BD 

EAX2 
A9BDX 
A9BD 

·~ J~ 

6 
2,1,2 AR2 octal 
2,,2 AR2 octal 

15 
4,2,6 AR6 octal 
0,2,6 AR6 octal 

7-14 

contents 0 0 0 0 
contents 0 0 0 0 

contents 0 0 0 0 
contents 0 0 0 0 

0 3 
0 5 

0 7 
1 3 

4 
4 

6 
4 

0 
0 

0 
0 

A9BD 
A9BDX 

DH03-0l 



AARn 

AA Rn -

FORf.>il.AT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

AA Rn 

Alphanumeric Descriptor To Address Register E 56n (1) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

AA Rn LOCSYM,R,AR 

Any 

For n = O, 1, ••. or 7 as determined by op code 

C(Y)0-17 --> C(ARn)0-17 

C(Y) translated C(ARn) 
18-20 ----------> 18-23 

The alphanumeric descriptor is fetched from the computed 
effective address Y. The TA field, bits 21 and 22, is examined 
to determine the type of data des er i bed. If the TA code 
indicates 9-bit character data, bits 18 and 19 of the descriptor 
CN field go to the corresponding bit positions of ARn and 
zeros fill bits 20-23 of ARn. If the TA code indicates 6-
or 4-bit character data,- the descriptor CN field is 
appropriately translated into bit string representation and 
goes to bits 18-23 of AR_!!. In all cases, the word portion 
of the fetched descriptor is placed in the word portion (bits 
0-17) of AR_!!. 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modification is used or if the descriptor TA field contains 
code 11. 

**** DPS 88: An Illegal Procedure fault occurs if descriptor 
CN field contains xxl for TA = 00, or llx for TA = 01. **** 

7-15 DH03-0l 



AARn 

EXAMPLES: 

1 8 16 

AAR4 DES CR 

DESCR ADSC9 FLDl,3,1 

32 

load data string address into AR4 
memory contents in octal 

001023600001 - descriptor 
AR4 octal contents - 0 0 1 0 2 3 6 0 

7-16 

AARn 

DH03-0l 



ABO 
ABDX 

ABO 
ABDX 

FORMAT: 

CODING FORMAT 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

EXAMPLES: 

1 8 

EAX6 
ABDX 
ABD 

EAXl 
EAX2 
ABDX 
ABO 

Add Bit Displacement to Address Register 503 

Special arithmetic instruction format (see Figure 7-3). 

1 8 16 

word displacement,R,AR 

ABO 
ABDX 

( 1) 

When the mnemonic is coded with an X (ABDX), bit 29 is forced 
to zero. 

Any 

The bit count contained in the register specified by the DR 
field is converted into a word, character, and bit address, 
and the word portion is added to the y field (bit 3 extended). 
If bit 29 = O, the resulting word address from the add and 
the character and bit values from the divide operation replaces 
bits 0-23 of the specified AR. If bit 29 = 1, these values 
are added to bi ts 0-23 of the specified AR and this result 
replaces bits 0-23 of the specified AR. 

All except N, AU, QU, AL, QL, and index registers 

RPT, RPO, RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

16 

85 
7,6,2 
2,6,2 

74 
30 
4,1,3 
0,2,3 

32 

AR2 octal contents 
AR2 octal contents 

AR3 octal contents 
AR3 octal contents 

7-17 

0 0 0 0 1 1 2 4 
0 0 0 0 1 5 5 0 

0 0 0 0 0 6 0 2 
0 0 0 0 0 6 6 5 

0803-01 



ABSA ABSA 

**** DPS 88 ONLY **** 

ABSA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

**** 

Absolute Address to A Register 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode. 

Final main memory address, Y --> C(A) 0_ 25 
00-->0 C(A) 26_ 35 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

zero - If C(A) = O, then ON: otherwise, OFF 

Negative - If C(A)o = 1, then ON; otherwise, OFF 

212 (0) 

1. The use of this instruction in other than the Privileged 
Master mode causes an IPR fault. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-18 0803-01 



AD2D AD2D 

AD2D Add Using Two Decimal Operands 202 { l) 

FORMAT: 

0 0 0 0 1 1 1 1 Op Code 2 2 2 3 

0 

0 

CODING FORMAT : 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS : 

Yl 

Y2 

1 

Any 

MF2 

8 

AD20 
NDSCn 
NDSCn 

16 

202 ( 1) 

1 1 2 2 22 2 
7 8 0 1 23 4 

1 l 2 2 22 2 

(MFl), {MF2) ,RD,P,T 
LOCSYM,CN,N,S,SF,AM 
LOCSYM,CN,N,S,SF,AM 

SFl 

SF2 

C{string 2) + (string 1) --> C(string 2) 

MFl 

2 3 3 

Nl 

2 3 3 

N2 

Same as AD3D, except that the sum is stored using YC2, TN2, 
S2 and, if S2 indicates a scaled format, SF2. 

DU, DL for MFl and MF2 

RPT, RPO, RPL 

Same as for AD3D 

7-19 0803-01 



AD2D 

NOTES: 

EXAMPLES: 

1 8 

AD2D 
NDSC4 
NDSC9 
USE 

FLDl EDEC 
FLD2 EDEC 

USE 

AD2D 
NDSC9 
NDSC4 
USE 

FLDl EDEC 
FLD2 EDEC 

USE 

AD2D 

1. All notes for AD3D apply also to AD2D. 

2. Illegal Procedure fault same as for MVN. 

3. An Illegal Procedure fault occurs if illegal address 
modification is used. 

16 

, , , , 1 
FLDl,0,8,2,-2 
FLD2,0,6 
CONST. 
8Pl23456+ 
6A+lE+2 

, , , 1 
FLDl,0,4 
FLD2,l,7,2,-4 
CONST. 
4A+99. 
8Pl23456+ 

32 

with truncation enable option 
FLDl addend operand descriptor 
FLD2 addend operand descriptor 
memory contents 
0 1 2 3 4 5 6 + 
+ 0 0 0 1 2 
+ 1 3 3 4 0 (Sum) (truncation fault) 

with plus sign octal 13 option 
FLDl addend operand descriptor 
FLD2 addend operand descriptor 
memory contents 
+ 9 9 0 
0 1 2 3 4 5 6 + 
0 1 1 3 4 5 6 + (Sum) {overflow fault) 

EXAMPLE WITH ADDRESS MODIFICATION: 

1 8 

EAXl 
EAX7 
EAX4 
AWDX 
AD2D 
NDSC4 
NDSC9 
USE 

FLDl EDEC 
FLD2 EDEC 
INDSC2 NDSC9 

USE 

16 32 

1 load character modifier into Xl 
7 load FLDl length into X7 
FLDl load FLDl address into X4 
0,4,4 put FLDl address into AR4 
(l,l,,Xl),(,,1),1,1 rounding and plus sign options 
O,,X7,2,-2,4 FLDl operand descriptor (FLDl,1,7,2,-2) 
INDSC2 pointer to FLD2 indirect operand descriptor 
CONST. memory contents 
8Pl23450- 0123450-
8A+9876E+2 + 0 0 9 8 7 6 2 

FLD2,0,8 FLD2 indirect operand descriptor 
+ 9 8 6 3 6 6 0 (Sum) 

7-20 DH03-0l 



AD2DX AD2DX 

**** DPS 88 ONLY **** 

AD2DX Add Using Two Decimal Operands Extended 242 ( 1) 

FORMAT: 

0 0 0 0 0 1 l 1 1 Op Code 2 2 2 3 

0 

0 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

Yl 

Y2 

MF2 

Any 

242 ( 1) 

l 1 2 2 22 2 
7 8 0 l 23 4 

l 1 2 2 22 2 
7 8 0 1 23 4 

SFl 

SF2 

C(string 2) + C(string 1) --> C(string 2) 

MFl 

2 3 3 

Nl 

2 3 3 

N2 

The decimal number of data type TNl, sign and decimal type 
SXl, and starting location YCl, is added to the decimal number 
of data type TN2, sign and decimal type 5X2, and starting 
location YC2. The sum is stored starting in location YC2 as 
a decimal number of data type TN2 and sign and decimal type 
SX2. If SX2 indicates a scaled format, the results are stored 
using scale factor SF2, which causes leading or trailing 
zeros (4 bits - 0000, 9 bits - 000110000) to be supplied 
and/or most significant digit overflow or least significant 
digit truncation to occur. If SX2 indicates a floating-point 
format, the result is right-justified to preserve the most 
significant nonzero digits even if this causes least significant 
truncation. The character set is def ine<l by EA. Placement 
of an overpunched sign in the output is controlled by NS. 
If RD is 1, rounding takes place prior to storage. The 
contents of the decimal number that starts in location YCl 
remains unchanged. 

DU, DL for MFl and MF2 

7-21 DH03-0l 



AD2DX 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

**** 

AD2DX 

RPT, RPO, RPL 

zero - If result equals zero, then ON1 otherwise, OFF 

Negative - If result is negative, then ON1 otherwise, OFF 

Truncation - If in the preparation of the final result, one 
or more least significant digits (zero or nonzero) 
are lost and rounding is not specified, then 
ON. Otherwise (i.e., no least significant digits 
lost or rounding specified}, OFF. 

Overflow - If data is lost in most significant positions, 
then ON: otherwise, unchanged. 

Exponent 
Overflow - If exponent of floating point result > 127, then 

ON: otherwise, unchanged. 

Exponent 
Underflow - If exponent of floating point result < -128, 

then ON: otherwise, unchanged. 

1. Truncation fault occurs if the truncation indicator is 
set and the truncation fault enable (T) bit is a 1. 

2. Illegal Procedure fault same as for MVN. 

3. Independent of the data type being used, either packed 
decimal or 9-bit numeric, floating point or scaled, 
significant digits of the result may be lost if the 
result field as defined by the result descriptor is not 
large enough to contain the calculated result after it 
has been aligned. 

4. All notes for AD3D apply to AD2DX. 

5. For coding of overpunched signs, see MVNX. 

6. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-22 DH03-0l 



AD3D AD3D 

AD3L> Add Using Three Decimal Operands 222 ( 1) 

FORMAT: 

f) 0 0 0 0 1 1 1 1 Op Code 2 2 2 3 
0 1 2 8 9 0 1 7 8 1

1:r 
5 

1+1 MF3 HRDI MF2 I 222 ( 1) MFl I 
0 1 1 2 2 22 2 2 3 3 
0 7 8 0 1 23 4 9 0 5 

I Yl ICN+lH SFl I Nl I 
0 1 1 2 2 22 2 2 3 3 
0 7 8 0 1 2~ 4 

91° 
5 

I Y2 ICN21TN+I SF2 N2 I 
0 1 1 2 2 22 2 2 3 3 
0 7 8 0 1 23 4 9 0 5 

I Y3 ICN+N3H SF3 I N3 I 
CODING FORMAT: The AD3D instruction is coded as follows: 

l 8 16 

AD3D (MFl), (MF2), (MF3) ,RD,P,T 
NDSCn LOCSYM,CN,N,S,SF,AM 
NDSCn LOCSYM,CN,N,S,SF,AM 
NDSCn LOCSYM,CN,N,S,SF,AM 

PROCESSOR MODE: Any 

7-23 DH03-0l 



AD3D 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

AD3D 

C(string 2) + C(string 1) --> C(string 3) 

The decimal number of data type TNl, sign and decimal type 
Sl, and starting location YCl, is added to the decimal number 
of data type TN2, sign and decimal type S2, and starting 
location YC2. The sum is stored starting in location YC3 as 
a decimal number of data type TN3 and sign and decimal type 
S3. If S3 indicates a scaled format, the results are stored 
using scale factor SF3, which causes leading or trailing 
zeros (4 bits - 0000, 9 bits - 000110000) to be supplied 
and/or most significant digit overflow or least significant 
digit truncation to occur. If S3 indicates a floating-point 
format, the result is right-justified to preserve the most 
significant nonzero digits even if this causes least significant 
truncation. If P = 1, positive signed 4-bit results are 
stored using octal 13 as the plus sign. If P=O, positive 
signed 4-bi t results are stored with octal 14 as the plus 
sign. If RD is 1, rounding takes place prior to storage. 
The contents of the decimal numbers that start in locations 
YCl and YC2 remain unchanged. 

DU, DL for MFl, MF2, and MF3 

RPT, RPO, RPL 

zero - If result equals zero, then ON; otherwise, OFF 

Negative - If result is negative, then ON; otherwise, OFF 

Truncation - If, in the preparation of the final result, one 
or more least significant digits (zero or nonzero) 
are lost and rounding is not specified, then 
ON. Otherwise (i.e., no least significant digits 
lost or rounding is specified), OFF 

Exponent 
Overflow - If exponent of floating-point result is greater 

than 127, then ON; otherwise, unchanged 

Exponent 
Underflow - If exponent of floating-point result is less 

than -128, then ON; otherwise, unchanged 

Overflow - If data is lost in most significant positions, 
then ON; otherwise, unchanged 

1. Truncation fault occurs if the Truncation indicator is 
set and the truncation fault enable (T) bit is a 1. 

2. Illegal Procedure fault same as for MVN. 

7-24 DH03-01 



AD3D 

EXAMPLE: 

1 

FLDl 
FLD2 
FLD3 

8 

AD3D 
NDSC9 
NDSC9 
NDSC4 
USE 
EDEC 
EDEC 
BSS 
USE 

3. 

AD3D 

Independent of the data type being used (either packed 
decimal or 9-bi t numeric; floating point or scaled) 
significant digits in the result may be lost if: 

a. The difference between the scaling factors 
(exponents) of the source operands is large enough 
to cause the expected length of the intermediate 
result to exceed 63 digits after decimal point 
alignment of source operands, followed by addition. 

****DPS 88: Note that DPS 88 accommodates all 
possible intermediate results without loss of 
significant digits.**** 

b. The result field as defined by the result descriptor 
is not large enough to contain the calculated result 
after it has been aligned. 

4. ****DPS 88: If an illegal digit or sign is detected, 
part or all of the receiving field may be changed before 
the IPR fault occurs.**** 

16 

,,,1,1 
FLDl,0,4,3,-2 
FLD2,0,8,2,-2 
FLD3,2,6,1 
CONST. 
4A1234 
8A654321+ 
1 

32 

with rounding and plus sign options 
FLDl addend operand descriptor 
FLD2 addend operand descriptor 
operand descriptor for sum field 
memory contents 
1 2 3 4 
0654321+ 
xx+06556 (Sum) 
instruction fault? no 

EXAMPLE WITH ADDRESS MODIFICATION: 

1 

FLDl 
FLD2 
FLD3 

DFLD3 

8 

EAX2 
EAX6 
EAX4 
AWDX 
AD3D 
NDSC9 
NDSC4 
ARG 
USE 
EDEC 
EDEC 
BSS 
NDSC4 
USE 

16 32 

2 load character modifier into X2 
6 load FLDl length into X6 
FLDl load FLDl address into X4 
0,4,4 put FLDl address into AR4 
(1) ,(,l,,X2) ,(,,1) ,1,1 
0,0,4, FLDl operand descriptor (FLDl,0,4,0) 
FLD2,,X6,3,-2 FLD2 operand descriptor (FLD2,2,6,3,-2) 
DFLD3 pointer to FLD3 operand descriptor 
CONST. memory contents 
4A-12E+2 - 1 2 2 
8Pl23456 00123456 
l xxx+0346 (Sum) 
FLD3,3,5,l,-l FLD3 sum operand descriptor 

instruction fault? no 

7-25 DH03-0l 



AD3DX AD3DX 

****DPS 88 ONLY**** 

AD3DX Add Using Three Decimal Operands Extended 262 ( 1) 

FORMAT: 

0 0 0 0 0 0 1 1 1 Op Code 2 2 2 3 
0 1 2 8 9 0 1 7 8 7 8 9 5 

IEAH MF3 HRDI MF2 

I 
262 ( 1) H MFl 

I 

0 1 1 2 2 22 2 2 3 3 
g z ~ g i n ~ 

91° 
5 

I Yl ICN+N1lsx1I SFl Nl 
I 

0 1 1 2 2 22 2 2 3 3 
0 7 8 0 1 23 4 9 0 5 

I Y2 ICN2ITN2lsx2I SF2 
I 

N2 
I 

0 1 1 2 2 22 2 2 3 3 
2 z ~ Q • '~ 4 

91° 
5 

I 
YJ ICNJ ITNJ lsX3 I SF3 N3 I 

PROCESSOR MODE: Any 

SUMMARY: C(string 2) + C(string 1) --> C(string 3) 

7-26 DH03-01 



AD3DX 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

AD3DX 

The decimal number of data type TNl, sign and decimal type 
SXl, and starting location YCl, is added to the decimal number 
of data type TN2, sign and decimal type SX2, and starting 
location YC2. The sum is stored starting in location YC3 as 
a decimal number of data type TN3 and sign and decimal type 
SX3. If SX3 indicates a scaled format, the results are stored 
using scale factor SF3, which causes leading or trailing 
zeros (4 bi ts - 0000, 9 bi ts - 000110000) to be supplied 
and/or most significant digit overflow or least significant 
digit truncation to occur. If SX3 indicates a floating point 
format, the result is right-justified to preserve the most 
significant nonzero digits even if this causes least significant 
truncation. The character set is defined by EA. Placement 
of overpunched sign in the output is controlled by NS. If 
RD is 1, rounding takes place prior to storage. The contents 
of the decimal numbers that start in locations YCl and YC2 
remain, unchanged. 

DU, DL for MFl, MF2 and MF3 

RPT I RPD I RPL 

Zero - If result equals zero, then ON; otherwise, OFF 

Negative - If result is negative, then ON; otherwise, OFF 

Truncation - If, in the preparation of the final result, one 
or more least significant digits (zero or nonzero) 
are lost and rounding is not specified, then 
ON. Otherwise (i.e., no least significant digits 
lost or rounding specified), OFF. 

Overflow - If data is lost in most significant positions, 
then ON; otherwise, unchanged. 

Exponent 
Overflow - If exponent of floating point result> 127, then 

ON; otherwise, unchanged. 

Exponent 
Underflow - If exponent of floating point result < -128, 

then ON; otherwise, OFF. 

l. Truncation fault occurs if the truncation indicator is 
set and the truncation fault enable (T) bit is a 1. 

2. Illegal Procedure fault sa~e as for MtlN. 

7-27 DH03-0l 



AD3DX 

3. 

4. 

5. 

AD3DX 

Independently of the data type being used (either packed 
decimal or 9-bi t numeric; floating point or scaled) 
significant digits of the result may be lost if the 
result field as defined by the result descriptor is not 
large enough to contain the actual calculated result 
after it has been aligned. 

If an illegal digit or sign is detected, part or all of 
the receiving field may be changed before the IPR fault 
occurs. 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-28 DH03-0l 



ADA 

ADA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS : 

INDICATORS: 

I· Add to A-Register 

Single-word instruction format (see Figure 7-1) 

Any 

C(A) + C(Y) --> C{A); C(Y) unchanged 

None 

None 

zero - If C(A) = O, then ON; otherwise, OFF 

Negative - If C(A)o = 1, then ON; otherwise, OFF 

Overflow - If range of A is exceeded, then ON 

ADA 

075 (0) 

Carry If a carry out of bit 0 of C (A) is generated, 
then ON; otherwise, OFF 

7-29 DH03-01 



ADAQ ADAQ 

ADAQ · 1 Add to AQ-Register 077 ( 0) 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS : 

NOTE: 

Single-word instruction format (see Figure 7-1) 

Any 

C(AQ) + C(Y-pair) --> C(AQ); C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AO>o = 1, then ON; otherwise, OFF 

Overflow - If range of AO is exceeded, then ON 

Carry - If a carry out of bit O of C(AQ) is generated, 
then ON; otherwise, OFF 

An Illegal Procedure fault occurs if an illegal address 
modification is used. 

7-30 0803-01 



ADE 

ADE 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS : 

NOTE: 

ADE 

Add to Exponent Register 415 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(E) + C(Y) 0_7 --> C(E) 

CI, SC, SCR 

None 

zero - Set OFF 

Negative - Set OFF 

Exponent 
Overflow - If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-31 DHOJ-01 



AOL 

AOL 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

I· Add Low to AO-Register 

single-word instruction format (see Figure 7-1) 

Any 

C{AQ) + C(Y, right-adjusted) --> C(AQ) 

CI, SC, SCR 

None 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

Overflow - If range of AQ is exceeded, then ON 

AOL 

033 ( 0) 

Carry - If a carry out of bit 0 of C (AQ) is generated, 
then ON; otherwise, OFF 

1. This instruction forms the following 72-bit number: 

0 3 3 7 
9 5 6 

C (Y) 

That is, bits 0-35 are each identical to bit 0 of C(Y). 
This number is added to C(AQ). 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-32 DH03-0l 



ADLA 

ADLA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

ADLA 

I Add Logical to A-Register I 035 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(A) + C(Y) --> C(A): C(Y) unchanged 

None 

None 

zero - If C(A) = O, then ON: otherwise, OFF 

Negative - If C(A)o = 1, then ON: otherwise, OFF 

Carry - If a carry out of bit 0 of C (A) is generated, 
then ON; otherwise, OFF. When the Carry indicator 
is ON, the range of A has been exceeded 

1. This instruction is identical to ADA with the exception 
that the Overflow indicator is not affected and an Overflow 
fault does not occur. Operands and results are treated 
as unsigned, positive binary integers. 

2. An I !legal Procedure fault occurs if illegal address 
modification is used. 

7-33 DH03-0l 



ADLAQ 

ADLAQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

ADLAQ 

Add Logical to AO-Register 037 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(AQ) + C(Y-pair) --> C(AQ); C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

Zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

Carry - If a carry out of bit 0 of C (AQ) is generated, 
then ON; otherwise, OFF. When the Carry indicator 
is ON, the range of AQ has been exceeded. 

1. This instruction is identical to ADAQ with the exception 
that the Overflow indicator is not affected and an Overflow 
fault does not occur. Operands and results are treated 
as unsigned, positive binary integers. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-34 DH03-0l 



ADLQ 

ADLQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS : 

NOTE: 

ADLQ 

I· Add Logical to Q-Register 036 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(Q) + C(Y) --> C(Q); C(Y) unchanged 

None 

None 

zero - If C(Q) = O, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON; otherwise, OFF 

Carry - If a carry out of bit 0 of C (Q) is generated, 
then ON; otherwise, OFF. When the Carry indicator 
is ON, the range of Q has been exceeded. 

This instruction is identical to ADQ with the exception that 
the Overflow indicator is not affected and an Overflow fault 
does not occur. Operands and results are treated as unsigned, 
positive binary integers. 

7-35 DHOJ-01 



ADLXn 

ADLXn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

ADLXn 

Add Logical to Index Register .!! 02n (0) 

Single-word instruction format (see Figure 7-1) 

Any 

For n 0,1 ••• , 7 as determined by op code 
C(X_!!) + C(Y>o-17 --> C(X_!!); C(Y) unchanged 

CI, SC, S9R 

RPT, RPO, RPL of ADLXO 

zero - If C(XE) = 0, then ON; otherwise, OFF 

Negative - If C(XE>o = 1, then ON; otherwise, OFF 

Carry 

1. 

- If a carry out of bit O of C (Xn) is generated, 
then ON; otherwise, OFF. When the Carry indicator 
is ON, the range of XE has been exceeded 

This instruction is identical to ADXn with the exception 
that the Overflow indicator is not affected and an Overflow 
fault does not occur. Operands and results are treated 
as unsigned, positive binary integers. 

2. DL modification executes with all zeroes for data. 

3. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-36 0803-01 



ADQ 

ADQ 

FORMAT: 

PROCESSOR !«)OE : 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

1· Add to Q-Register 

Single-word instruction format (see Figure 7-1) 

Any 

C(Q) + C(Y) --> C(Q); C(Y) unchanged 

None 

None 

zero - If C(Q) = O, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON; otherwise, OFF 

Overflow - If range of Q is exceeded, then ON 

ADQ 

076 (0) 

Carry - If a carry out of bit 0 of C(Q) is generated, 
then ON; otherwise, OFF 

7-37 DH03-01 



ADXn 

ADXn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Add to Index Register E 

Single-word instruction format (see Figure 7-1) 

Any 

For n 
C (XE) + 

O, 1 ••. , or 7 as determined by op code 
C(Y) 0_17--> C(XE); C(Y) unchanged 

CI, SC, SCR 

RPT, RPO, RPL of ADXO 

Zero - If C(XE) = 0, then ON; otherwise, OFF 

Negative - If C(XE>o = 1, then ON; otherwise, OFF 

Overflow - If range of Xn is exceeded, then ON 

ADXn 

06_!! (0) 

Carry If a carry out of bit 0 of C (XE) is generated, 
then ON; otherwise, OFF 

1. DL modification is flagged as illegal but is executed 
with all zeros for data. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-38 DH03-0l 



ALR 

ALR 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS : 

NOTES: 

ALR 

I · A-Register Left Rotate 775 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

Rotate C (A} left the nwnber of positions indicated by bi ts 
11-17 of Y (Y modulo 128); enter each bit leaving bit position 
0 into bit position 35. 

DU, DL, CI, SC, SCR 

RPL 

Zero - If C(A) = O, then ON: otherwise, OFF 

Negative - If C(A)o = 1, then ON; otherwise, OFF 

1. The rotate count in the instruction must be a decimal 
nwnber. To 'right-rotate' ~ bits, use ALR 36-~. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-39 DH03-0l 



ALS 

ALS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

ALS 

A-Register Left Shift 735 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

Shift C (A) left the number of positions indicated by bi ts 
11-17 of Y (Y modulo 128); fill vacated positions with zeros. 

DU, DL, CI, SC, SCR 

RPL 

Zero - If C(A) = O, then ON; otherwise, OFF 

Negative - If C(A)o = 1, then ON; otherwise, OFF 

Carry 

1. 

- If C(A) 0 changes during the shift, then ON; 
otherwise, OFF. When the Carry indicator is ON, 
the algebraic range of A has been exceeded 

The shift count in the instruction must be a decimal 
number. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-40 DH03-01 



ANA 

ANA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

AND to A-Register 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 35, C(A)i AND C(Y)i --> C(A)i; 
C(Y) unchanged 

None 

None 

Zero - If C(A) = 0, then ON; otherwise, OFF 

Negative - If C(A)o = 1, then ON~ otherwise, OFF 

7-41 

ANA 

375 (0) 

DH03-0l 



ANAQ 

ANAQ 

FORMAT: 

PROCESSOR MOOE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS : 

NorE: 

I AND to AO-Register 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 71, C(AQ)i AND C(Y-pair)i --> C(AQ)i; 
C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

ANAQ 

377 (0) 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-42 DH03-0l 



ANQ ANQ 

ANQ I· AND to Q-Register 376 (0) 

FORMAT: Single-word instruction format (see Figure 7-1) 

PROCESSOR MODE: Any 

SUMMARY: For i = 0 to 35, C(Q)i AND C(Y)i --> C(Q)i; 

ILLEGAL ADDRESS 
MODIFICATIONS: None 

ILLEGAL REPEATS: None 

IND! CATORS : zero - If C(Q) = O, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON; otherwise, OFF 

7-43 0803-01 



ANSA 

ANSA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

AND to Storage from A-Register 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 35, C{A)i AND C(Y)i --> C(Y)i; 
C(A) unchanged 

DU, DL, er, SC, SCR 

RPL 

zero - If C(Y) = O, then ON; otherwise, OFF 

Negative - If C(Y} 0 = 1, then ON; otherwise, OFF 

ANSA 

355 (0) 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-44 DH03-0l 



ANSQ 

ANSQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

AND to Storage from Q-Register 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 35, C(Q)i AND C(Y)i --> C(Y)i; 
C(Q) unchanged 

DU, DL, CI, SC, SCR 

RPL 

Zero - If C(Y) = O, then ON: otherwise, OFF 

Negative - If C(Y) 0 = 1, then ON: otherwise, OFF 

ANSQ 

356 ( 0) 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-45 DH03-01 



ANSXn 

ANSXn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

AND to Storage from Index Register E 

Single-word instruction format (see Figure 7-1) 

Any 

For n = O, 1, ••• , or 7 as determined by op code 
For i = 0 to 17, C(Xn)i AND C(Y)i --> C(Y)i: 
C(Xn) and C(Y) 18_35 unchanged 

DU, DL, CI, SC, SCR 

RPT or RPO of ANS XO: RPL 

ANSXn 

34n (0) 

zero - If bits C(Y) 0_17 = O, then ON: otherwise, OFF 

Negative - If C(Y)o = 1, then ON: otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-46 DH03-0l 



ANXn 

ANXn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NOTE: 

t AND to Index Register n 

Single-word instruction format (see Figure 7-1) 

Any 

For n = O, 1 ••• , or 7 as determined by op code 
For i = 0 to 17, C(Xn)i AND C(Y)i --> C(Xn)i; 
C(Y) unchanged 

CI, SC, SCR 

RPT, RPO, RPL of ANXO 

zero - If C(XE) = O, then ON; otherwise, OFF 

Negative - If C(Xn) 0 = 1, then ON; otherwise, OFF 

ANXn 

36.!! (0) 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-47 DH03-0l 



AOS 

AOS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS : 

NOTE: 

( Add One to Storage 

Single-word instruction format (see Figure 7-1) 

Any 

C(Y) + 0 ••• 01 --> C(Y) 

DU, DL, CI, SC, SCR 

RPL 

zero - If C(Y) = O, then ON: otherwise, OFF 

Negative - If C(Y) 0 = 1, then ON; otherwise, OFF 

Overflow - If range of Y is exceeded, then ON 

AOS 

054 ( 0) 

Carry If a carry out of bit 0 of C (Y) is generated, 
then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-48 DH03-0l 



ARAn 

ARAn -

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

ARAn 

Address Register E to Alphanumeric Descriptor 54n (1) 

Single-word instruction format (see Figure 7-1) 

l 8 16 

ARAn LOCSYM,R,AR 

Any 

For n = O, 1 ••. , or 7 as determined by op code 

C(ARn>o-17--> C(Y>o-17 

C(ARn) translated C(Y) 
18-23 ----------> 18-20 

C(Y) 21_ 35 unchanged 

This instruction is the converse of AARn. The alphanumeric 
descriptor is fetched from the computed effective address Y. 
The TA field code is examined to determine the type of data~ 
Bi ts 18-23 of ARn are appropriately translated and replace 
bits 18-20 of the-descriptor, and the word address (0-17) of 
ARn replaces bi ts 0-17. The updated descriptor is then stored 
back into location Y. 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modification is used, if the descriptor TA field contains 
code 11, or if descriptor bit 23 = 1. 

****DPS 88, DPS 8/30 and DPS 8/44: IPR occurs if the descriptor 
TA field contains code 11, if descriptor CN field contains 
xxl for TA = 00, or if descriptor CN field contains llx for 
TA = 01.**** 

7-49 DH03-0l 



ARAn ARAn 

EXAMPLE: 

1 8 16 32 

ARA6 DES CR AR6 octal contents - 5 0 1 0 2 4 0 7 

memory contents in octal 
DESCR ADSC9 , , 4 5 0 1 0 2 4 0 0 0 0 0 4 - DESCR after 

7-50 DH03-0l 



ARL 

ARL 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS : 

NOTES: 

ARL 

· A-Register Right Logical Shift 771 (0) 

Single-word instruction format (see Figure 7=1) 

Any 

Shift C (A) right the number of positions indicated by bi ts 
11-17 of Y (Y modulo 128); fill vacated positions with zeros. 

DU, DL, er, sc, SCR 

RPL 

Zero - If C(A) = O, then ON: otherwise, OFF 

Negative - If C(A) 0 = 1, then ON: otherwise, OFF 

1. The shift count in the instruction must be a decimal 
number. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-51 0803-01 



ARNn ARNn 

ARNn Address Register ~ to Numeric Descriptor 64n (1) -

FORMAT: Single-word instruction format (see Figure 7-1) 

CODING FORMAT: 1 8 16 

ARNn LOCSYM,R,AR 

PROCESSOR MODE: Any 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NDrE: 

For n = 0 ,, 1 •• , or 7 as determined by op code 
C(ARn>o-17 --> C(Y>o-17 

translated 
C(ARn)lB-23 --> C(Y)lB-20 
Bits 2I-35 of C(Y) unchanged 

This instruction is the converse of NARn. The numeric 
descriptor is fetched from the computed effective address Y 
and the TN field bit is examined. Bits 0-17 of ARn replace 
the descriptor bits 0-17. Bits 18-23 of ARn are appropriately 
translated and replace bi ts 18-20 of the descriptor. The 
updated descriptor is then stored back in location Y. 

DU, DL, CI, SC, SCR 

RPT, RPD I RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

****DPS 88, DPS 8/20 and 8/44: An Illegal Procedure fault 
occurs if descriptor CN field contains xxl for TN = O.**** 

7-52 DH03-0l 



ARS 

ARS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NOTES: 

ARS 

A-Register Right Shift 731 ( 0) 

Single-word instruction format (see Figure 7-1) 

Any 

Shift C (A) right the number of positions indicated by bi ts 
11-17 of Y (Y modulo 128); fill vacated positions with bit O 
of C(A). 

DU, DL, CI, SC, SCR 

RPL 

zero - If C(A) = O, then ON; otherwise, OFF 

Negative - If C(A)o = 1, then ON; otherwise, OFF 

1. The shift count in the instruction must be a decimal 
number. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-53 DH03-01 



ASA 

ASA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NOTE: 

Add To Storage From A-Register 

Single-word instruction format (see Figure 7-1) 

Any 

C(A) + C(Y) --> C(Y); C(A) unchanged 

DU, DL, CI, SC, SCR 

RPL 

zero - If C(Y) = O, then ON; otherwise, OFF 

Negative - If C(Y) 0 = 1, then ON; otherwise, OFF 

Overflow - If range of Y is exceeded, then ON 

ASA 

055 ( 0) 

Carry If a carry out of bit O of C (Y) is generated, 
then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-54 DHOJ-01 



ASQ 

ASQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

Add To Storage From Q-Register 

Single-word instruction format (see Figure 7-1) 

Any 

C(Q) + C(Y) --> C(Y); C(Q) unchanged 

DU, DL, CI, SC, SCR 

RPL 

Zero - If C(Y) = O, then ON; otherwise, OFF 

Negative - If C(Y) 0 = 1, then ON; otherwise, OFF 

Overflow - If range of Y is exceeded, then ON 

ASQ 

056 ( 0) 

Carry If a carry out of bit 0 of c (Y) is generated, 
then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-55 DH03-01 



ASXn 

ASXn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

Add To Storage From Index Register E 

Single-word instruction format (see Figure 7-1) 

Any 

For n 0, 1, ••• , or 7 as determined by op code 
C(Xn) + C(Y) 0_17 --> C(Y); C(Xn) unchanged 

DU, DL, CI, SC, SCR 

RPT or RPO of ASXO 

zero - If C(Y) 0_17 = O, then ON; otherwise, OFF 

Negative - If C{Y) 0 = 1, then ON; otherwise, OFF 

Overflow - If range of Y0_17 is exceeded, then ON 

ASXn 

04n (0) 

Carry - If a carry out of bit O of C (Y) is generated, 
then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-56 DH03-0l 



A\«:A 

AWCA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLE: 

1 8 

LOI 
LOA 
EAX2 
EAX3 
RPDA 
ADLA 
AM:A 
CMPA 
TNZ 
LOI 

AWCA 

I Add with Carry to A-Register I 071 (OJ 

Single-word instruction format (see Figure 7-1) 

Any 

If Carry indicator is OFF, then C(A) + C(Y) --> C(A); 
C(Y) unchanged 

If Carry indicator is ON, then C (A) + C (Y) + 0 ••• 01 --> 
C(A); C(Y) unchanged 

None 

None 

Zero - If C(A) = 0, then ON; otherwise, OFF 

Negative - If C(A)o = 1, then ON; otherwise, OFF 

Overflow - If range of A is exceeded, then ON 

Carry If a carry out of bit O of C (A) is generated, 
then ON; otherwise, OFF 

1. This instruction operates similarly to the ADA instruction 
except that if the Carry indicator is ON prior to the 
execution of the instruction, a 1 is added to the least 
significant position of the A-register. 

2. This instruction is intended for use with multiword 
precision binary arithmetic and for calculating checksums. 
The positive 1 added when the Carry indicator is ON 
represents the carry from the next less significant word 
of the multiword addition. 

(Checksum Calculation) 

16 32 

=11324,DL 
IN CARD 
INCARD+2 
=O 
22,1 
0,2 
0,3 
INCARD+l 
ERROR 
=0500000,DL 

7-57 DH03-0l 



AWCQ 

AVK:Q 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

AN:O 

Add with Carry to Q-Register 072 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

If Carry indicator is OFF, then C(Q) + C(Y) --> C(Q); C(Y) 
unchanged 

If Carry indicator is ON, then C(Q) + C(Y) + 0 ••• 1 --> C(Q); 
C(Y) unchanged 

None 

None 

zero - If C(Q) = 0, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON: otherwise, OFF 

Overflow - If range of Q is exceeded, then ON 

Carry If a carry out of bit O of C (0) is generated, 
then ON: otherwise, OFF 

1. This instruction operates similarly to the ADO instruction 
except that if the Carry indicator is ON prior to the 
execution of the instruction, a l is added to the least 
significant position of the Q-register. 

2. This instruction is intended for use with multiword 
precision binary arithmetic and for calculating checksums. 
The positive l added when the Carry indicator is ON 
represents the carry from the next less significant word 
of the multiword addition. 

7-58 0803-01 



AWCQ AWCQ 

EXAMPLE: (Triple-precision Binary Fixed-point Addition) 

1 8 16 32 

STI c save overflow and overflow mask 
LXLO c 
ANXO =0044000,0U 
STXO REST 
LOA =1B24,0L set overflow mask ON 
ORSA c 
LOI c 
LOQ A+2 add low-order bits 
AOLQ B+2 
STQ C+2 
LOQ A+l add intermediate bits 
AWCQ B+l 
STQ C+l 
STI c restore overflow and overflow mask 
LOA =0733777 ,OL 
ANA c 

REST ORA **,OL 
STA c 
LOI c 
LOQ A add high-order bits 
AWCQ B 
STQ c 

7-59 OHOJ-01 



AWD 
AWDX 

AWD 
AWDX 

FORMAT: 

CODING FORMAT: 

Add Word Displacement to Address Register 507 

Special arithmetic instruction format (see Figure 7-3) 

1 8 16 

word displacement,R,AR 

AWD 
AWDX 

( 1) 

When the mnemonic is coded with X (AWDX), bit 29 is forced 
to zero. 

PROCESSOR MODE: Any 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

If bit 29 

If bit 29 

1: C{ARE>o-11 + y + C(DR) --> AREo-11 

0: y + C(DR) --> ARE0-17 

In either case, zeros --> ARE 18_23 

The y field (with bit 3 extended) is added to the contents 
of the register specified by the code in the DR field. Then, 
if bit 29 = O, this value replaces bits 0-17 of the AR 
specified by bi ts 0-2 of the y field. If bit 29 = 1, this 
value is added to bits 0-17 of the specified AR and the 
resulting sum is stored in bits 0-17 of the specified AR. 
In either case, bits 18-23 of the specified AR are zeroed. 

All except N, AU, QU, AL, QL, and index registers 

RPT, RPO, RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-60 DH03-01 



AWD 
AWDX 

EXAMPLES: 

1 

FLDl 

FLD2 

8 

BOOL 
EAX4 
AWDX 
AWD 

BOOL 
EAX2 
EAX3 
AWDX 
AWD 

16 32 

20100 
FLDl X4 octal contents 
0,4,7 AR7 octal contents -
2,, 7 AR7 octal contents -

10000 
FLD2 X2 octal contents 
512 X3 octal contents 
0,2,4 AR4 octal contents -
1,3,4 AR4 octal contents -

7-61 

0 2 0 l 
0 2 0 1 
0 2 0 1 

0 1 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 

0 0 
0 0 
0 2 

0 0 
0 0 
0 0 
0 1 

0 
0 

0 
0 

0 
0 

0 
0 

AWD 
AWDX 

DH03-01 



BCD 

BCD 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS : 

NOTES: 

BCD 

I· Binary-to-BCD Convert 505 (0) I 
Single-word instruction format (see Figure 7-1) 

Any 

Shift C(A) left 3 positions 

IC (A) I + C (Y) --> 4-bi t quotient; 
C(A) - ( C(Y) *quotient) --> remainder 

Shift C(Q) left 6 positions; 
4-bit quotient --> co32_35 
remainder --> C(A) 

CI, SC, SCR 

RPL 

zero - If C(A) = O, then ON; otherwise, OFF 

Negative - If prior to execution bit O of C(A) = 1, then ON; 
otherwise, OFF 

1. Restrictions 

o The largest number that can be converted with the 
BCD instruction is that represented by 33 bits. 

o One 6-bit character is produced each time the BCD 
instruction is executed. 

o The character produced represents a decimal digit 
from O to 9. 

o One full 36-bit word cannot be directly converted 
by the BCD instruction. 

o An Illegal Procedure fault occurs if illegal address 
modification is used. 

2. The BCD instruction carries out one step of an algorithm 
for the conversion of a binary number to the equivalent 
binary-coded decimal, which requires the repeated short 
division of the binary number or last remainder by a 
36-bit constant from memory. 

c i = 8 i * 1 on- i (for i = 1, 2, ••• ) , 

with n being defined by lOn-l ~ I number 

7-62 DH03-0l 



BCD BCD 

For base K other than 10: 

Ci = ai * Kn-l, where Kn-l < I number I < Kn-1. 

EXAMPLE: 

1 8 16 

LOA =15,DL 
LDQ O,DL 
BCD =80,DL 
BCD =64 ,DL 

Conversion Constants 

The BCD instruction converts the magnitude of the contents of the accumulator 
to the binary-coded decimal equivalent. The method employed is to effectively 
divide a number by a constant, place the result in bits 30-35 of the quotient 
register and leave the remainder in the accumulator. The execution of the BCD 
instruction allows the user to convert a binary number to BCD, one digit at a 
time, with each digit coming from the high-order part of the number. The address 
of the BCD instruction refers to a constant to be used in the division; a 
different constant is needed for each digit. In the process of the conversion, 
the number in the accumulator is shifted left three positions. The quotient 
register is shifted left six positions before the new digit is stored. 

The values in the table below are the conversion constants to be used with 
the binary-to-BCD instruction. Each vertical column represents the set of constants 
to be used depending on the initial value of the binary number to be converted 
to its decimal equivalent. The instruction is executed once per digit, using 
the constant appropriate to the conversion step with each execution. 

An alternate use of the table for conversion involves the use of the constants 
in the row corresponding to conversion step 1. If, after each conversion, the 
contents of the accumulator are shifted right three positions, the constants in 
the conversion step 1 row may be used one at a time in order of decreasing value 
until the conversion is complete. 

7-63 DH03-0l 



BCD BCD 

Starting 
Range 

of 
C (AR) 

Conversion 

Step 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Table 7-1. Binary-To-BCD Conversion Constants 

-1010 + 1 --> -109 + 1 --> -lOa + 1 --> 

1010 - 1 109 - 1 lOa - 1 

al x 109 a x 108 a x 107 

92 x 108 92 x 107 a 2 x 106 

93 x 10 7 93 x 106 93 x 105 

a 4 x 106 94 x 10 5 94 x 10 4 

95 x 105 95 x 10 4 95 x 103 

a6 x 10 4 a6 x 10 3 96 x 102 

a7 x 103 97 x 102 a 7 x io1 

8a x 102 98 x io1 98 

a9 x io1 99 

alO 

7-64 

-107 + 1 --> 

107 - 1 

8 x 106 

a 2 x 105 

93 x 104 

a4 x 10 3 

as x 102 

a6 x 101 

a7 

DH03-01 



BCD BCD 

Table 7-1 (cont). Binary-To-BCD Conversion Constants 

L106 + i --> 

! 

-105 + l --> -10 4 + l --> -10 3 + l --> -10 2 + 1 --> L10 1 + l --> 

I 106 - 1 10 5 - 1 10 4 - 1 10 3 - 1 10 2 - 1 101 -1 

8 x 105 8 x 10 4 8 x 103 8 x 10 2 8 x 101 8 

s2 x 10 4 a2 x 103 a2 x 10 2 92 x 101 s2 

93 x 10 3 93 x 10 2 0 3 x 101 93 

94 x 102 94 x 101 94 

95 x 101 as 

s6 

7-65 DH03-01 



BTD BTD 

BTD Binary-to-Decimal Convert 301 ( 1) 

FORMAT: 

0 0 1 1 1 1 Op Code 2 2 2 3 

MF2 301 ( 1) MFl 

0 0 0 l l 2 2 2 3 3 3 

Yl 

Yl 

0 0 0 1 1 2 2 22 2 2 3 3 3 
_Q_ 2 3 7 8 0 1 23 4 9 0 2 5 

Y2 N2 
CN2 TN2 S2 0---------0 

a2 Y2 00 R2 

CODING FORMAT: 1 8 16 

BTD (MFl) , (MF2) ,P 
NDSC9 LOCSYM ,CN ,N,, ,AM 
NDSCn LOCSYM,CN,N,S,,AM 

PROCESSOR !«>DE: Any 

7-66 DH03-01 



BTD 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

EXAMPLES: 

1 8 

BTD 
NDSC9 
NDSC9 
USE 

FLDl DEC 
FLD2 BSS 

USE 

BTD 
NOSC9 
NDSC9 
USE 

FLDl DEC 
FLD2 BSS 

USE 

BTD 

converted 
C(string 1) ---------> C(string 2) 

The twos complement binary integer starting at location YCl 
is converted into a signed string of decimal characters of 
data type TN2, sign and decimal type S2 (S2 = 00 is illegalj 
and scale factor O, and is stored, right-justified, as a 
string of length L2 starting at location YC2. If the string 
generated is longer than L2, the high-order excess is truncated 
and the Overflow indicator is set. The contents of string 1 
remain unchanged. The length of string 1 (Ll) is given as 
the number of 9-bit segments that make up the string. Ll is 
equal to or is less than 8. Thus, the binary string to be 
converted can be 9, 18, 27, 36, 45, 54, 63, or 72 bits long. 
CNl designates a 9-bit character boundary. If P=l, positive 
signed 4-bit results are stored using octal 13 as the plus 
sign. If P=O, positive signed 4-bit results are stored with 
octal 14 ~s the plus sign. 

DU, DL for MFl and MF2 

RPT, RPD, RPL 

Zero - If the resultant number generated is zero, then 
ON; otherwise, OFF 

Negative - If the resultant sign is negative, then ON; 
otherwise, OFF 

Overflow - If L2 is less than the length of the string generated, 
then ON; otherwise, unchanged 

An Illegal Procedure fault occurs if DU or DL modification 
is used for MFl or MF2, if Ll is less than one or greater 
than eight, if CNl does not contain a legal code, if S2 = 
00, or if N2 is not large enough to specify at least one 
digit excluding sign. 

16 

FLDl,2,2 
FLD2,0,4,l 
CONST. 
-512 
1 

FLDl,3,1 
FLD2,l,3,2 
CONST. 
255 
1 

32 

binary operand descriptor 
decimal operand descriptor 
memory contents in octal 
7 7 7 7 7 7 7 7 7 0 0 0 
0 5 5 0 6 5 0 6 1 0 6 2 
any indicators set? negative 

binary operand descriptor 
decimal operand descriptor 
memory contents in octal 
0 0 0 0 0 0 0 0 0 3 7 7 
0 0 0 0 6 5 0 6 5 0 5 3 
any indicators set? overflow 

7-67 DH03-0l 



CAMP 

****DPS 8 ONLY**** 

CAMP 

FORMAT: 

PROCESSOR l«>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

CAMP 

Clear Associative Memory Pages 532 ( 1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode. 

When the PTWAM is ON: 

If EA.16-l'Z = 00 I 10 
descrfbeabelow. 

or 11; the PTWAM is cleared as 

If EA16_ 17 = 01, the PTWAM is 
cleared. 

turned OFF but is not 

When the PTWAM is OFF: 

If EA 6 _ 17 = 10, the PTWAM is cleared. It is also 
turned-ON if the PTWAM Control switch on the vu Maintenance 
Display and Control panel is in the ON position. 

If EA 16_ 17 = 00, 01 or 11, the PTWAM is not affected. 

Ignored 

RPT, RPD, RPL 

None affected 

1. Refer to •cache Mode Register (CMR)" and "Associative 
Memory• documented earlier in this manual. 

2. When the Page Table Word Associative Memory (PTWAM) is 
enabled, the full or empty bit (PTW.F) of each of the 
18 sets of associative memory registers is reset and 
the •round-robin• counter (RRO) is cleared to zero in 
each set. 

When the PTWAM is ON and effective address bits 16-17 = 
00, 10, or 11, the PTWAM is cleared. If effective address 
bi ts 16-17 = Oli the PTWAM is turned OFF but is not 
cleared. 

When the PTWAM is OFF and effective address bits 16-17 
= 10, the PTWAM is cleared. It is also .turned ON if 
the PTWAM control switch on the vu control panel is ON. 
If effective address bits 16-17 = 00, 01, or 11, the 
PTWAM is not affected. 

7-68 DHOJ-01 



CAMP CAMP 

This instruction must be issued twice to enable and 
clear the PTWAM after it has been disabled. 

3. An Illegal repeat causes an Illegal Procedure (IPR) fault. 

4. If the processor is not in the Privileged Master mode, 
the execution of this instruction causes a Command fault. 

7-69 DH03-01 



CAMPn 

****DPS 88 ONLY**** 

CAMPn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

CAMPn 

Clear Paging Associative Memory 53n ( 1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode. 

CAMPO: In the executing processor, the PTW at the Paging 
Buffer entry location corresponding to bi ts 0-9 of the effective 
address is marked invalid. 

CAMPl: In all processors having the same Control CIU and 
the same ICR, the PTW at the paging buffer entry location 
corresponding to bits 0-9 of the effective address is marked 
invalid. 

CAMP2: All PTWs in the paging buffer of the executing processor 
are marked invalid. 

CAMP3: All PTWs in the paging buffers of all processors 
having the same Control CIU and the same ICR are marked 
invalid. 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. The use of this instruction in other than Privileged 
Master mode causes an IPR fault. 

2. For CAMPl and CAMP3, the issuing processor must wait 
for an acknowledgement from the CIU. Because of the 
effect on performance, use of CAMPl and CAMP3 should be 
limited to situations requiring this function. 

3. This instruction must be gated under software control 
to ensure that no more than one processor allocated to 
the same operating system can execute a CAMPl or CAMP3 
at the same time. 

4. For CAMPl and CAMP3, processor port selection (which 
CIU) is determined by bit 23 (Control CIU) of the Option 
Register. The Interrupt Cell Register (ICR) is determined 
by bits 27-32 of the Option Register. 

5. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-70 DH03-0l 



CANA 

CANA 

FORMAT: 

PROCESSOR r-DDE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

Comparative AND with A-Register 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 35, C(Z)i = C(A)i AND C(Y)i 
C(A) and C(Y) unchanged 

None 

None 

zero - If C(Z) = O, then ON: otherwise, OFF 

Negative - IfC(Z)o = 1, then ON: otherwise, OFF 

7-71 

CANA 

315 ( 0) 

DH03-0l 



CANAQ 

CANAQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

Comparative AND with AO-Register 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 71, C(Z). = C(AQ)· AND C(Y-pair)i 
C(AQ) and C(Y-pair) ufichanged 

1 

DU, DL, CI, SC, SCR 

None 

Zero - If C(Z) = O, then ON: otherwise, OFF 

Negative - If C(Z)o = 1, then ON: otherwise, OFF 

CANAQ 

317 (0) 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-72 DH03-0l 



CANO 

CANQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

Comparative AND with Q-Register 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 35, C(Z)i = C(Q)i AND C(Y)i 
C(Q) and C(Y) unchanged 

None 

None 

Zero - If C(Z) = 0, then ON; otherwise, OFF 

Negative - If C{Z)o = 1, then ON; otherwise, OFF 

7-73 

CANQ 

316 (0) 

DHOJ-01 



CANXn 

CANXn -

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS : 

NOTES: 

Comparative AND with Index Register E 

Single-word instruction format (see Figure 7-1) 

Any 

For n = O, 1, ••• , or 7 as determined by op code 
For i = 0 to 17, C(Z)i = C(Xn)i AND C(Y)i 
C(Xn) and C(Y) unchanged 

CI, SC, SCR 

RPT, RPO, RPL of CANXO 

zero - If C(Z) = O, then ON; otherwise, OFF 

Negative - If C(Z)o = 1, then ON; otherwise, OFF 

CANXn 

30_!! (0) 

1. DL modification is flagged illegal but executes with 
all zeros for data. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-74 DB03-0l 



CCAC 

****DPS 8 ONLY**** 

CCAC 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

CCAC 

Clear Cache 011 (1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

O --->full/empty bits of Cache Directory 

None 

RPT, RPO, RPL 

None affected 

1. Illegal repeats cause an IPR fault. 

2. If the processor is not in the Privileged Master mode, 
the execution of this instruction causes a Command fault. 

3. Operand address developnent is allowed to proceed but 
has no effect on operation. 

7-75 DH03-0l 



CCAC 

EXAMPLE: 

1 8 16 32 

INHIB ON 

**** 

* 
PINIT TZE 

LDQ 
CANQ 
TNZ 
CANQ 
TZE 
EAX7 
REM 
LOP 
LDQ 
QLS 
STQ 
LPDBR 
LCPR 
XEC 
LCPR 
SCPR 
XEC 
CAMP 
CCAC 
LOP 
LOO 
LOSS 
LOWS 
LOWS 
LXLl 

DIS not configured, park it 
.CRCMC,AL,P.CR is RLSEP active at this time 
.FBT3 ,DU 
WHOA yes, park processor 
.FBT4,DU is it returning to service 
DIS no, stop processing 
O,AL yes, set processor number 
INITIALIZE CACHE 
PO,SD.RMS,DL 
SD.PTD*2-SD.SLS*2+1,,PO 
10 
M13AV 
M13AV 
NMODE, 04 
.CRCSH, 7 ,P.CR 
.CRLUF, 02, P .CR 
RGSV0,01 
.CRCSH, 7, P .CR 

PO,SD.PID,DL 
=0204000,DL 
.KLKPS, 7* ,KLS 
4, ,PO 
5, ,PO 
.CRNPC I ,P .CR 

clear associative memory 
clear cache 

enable safe store and cache 
load safe store for processor process 
load WSR 0-3 and 4-7 

7-76 

CCAC 

DH03-0l 



CCACn 

****DPS 88 ONLY**** 

CCACO 
CCACl 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

**** 

CCACn 

376 ( 1) 
Clear Cache and Flush 377 ( 1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode. 

For CCACl 
In the processor executing this instruction, all cache blocks 
which have the valid bit and the written bit ON are written 
to main memory. 

For CCACO and CCACl 
0 ---> Valid bi ts of instruction and operand cache directories 
in the processor executing this instruction. 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected. 

1. The use of this instruction in other than Privileged 
Master mode causes an IPR fault. 

2. Operand address development is allowed to proceed but 
has no effect on operation. 

3. Normally the software cache clearing will not be used; 
however, some mechanism is required to flush cache under 
exception conditions. 

4. Attempted execution of the instruction CCAC, op code 
011 (1), will be treated as a no-op. 

5. If the memory hierarchy is operational, any use of CCACO 
must be preceded by the CCACl instruction in order to 
preserve system integrity. 

6. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-77 DH03-01 



CIOC 

****DPS 8 ONLY**** 

CIOC 

FORMAT: 

PROCESSOR t«>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS : 

NOTES: 

EXAMPLE: 

IOMCON STZ 
C!OC 
EAX3 
TNZ 
EAX7 
STX7 
STZ 
STZ 
TSX7 
ARG 
TDCW 
TRA 

CIOC 

Connect Input/Output Channel 015 ( 0) 

Single-word instruction format (see Figure 7-1) 

Master Mode 

sends a connect pulse through the channel that is specified 
by C (Y) 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. The CIOC instruction is the only input-output instruction 
in the system repertoire. The processor, having set up 
the I/O commands in memory, issues a CIOC instruction 
to the input/output multiplexer, which then assumes I/O 
responsibility. 

2. The effective address Y is used to access a memory location. 
The memory module uses bits 33-35 of C(Y) to select one 
of its eight ports, sends a connect pulse to the unit 
on this port. 

3. If the use of this instruction is attempted by a processor 
in the Slave mode, a Command fault occurs. 

4. An Illegal Procedure fault occurs if illegal address 
modification is used. 

IOt-mT I 3 
ll'T.~T~ 1 'D~ ... ._ ... __ - , ... , .. .,, 

,3 
RES TA 
IOt-mT 
ISIRG 
I OS TS 
INTWS 
STARTA 
TAPE2I 
TPDCW 
IODIS 

32 

clear status word 
connect to I OM 
see if regular or alternate I/O 
if alternate, return 

set up to return status at I/O complete 
reset important flags in case of fault 

start alternate I/O if possible 

go wait for interrupt 

7-78 0803-01 



CIOC 

****DPS 88 ONLY**** 

CIOC 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILL.EGAL REPEATS: 

INDICATORS: 

BOUND FAULT: 

CIOC 

Connect Input/Output Channel 015 ( 0) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

The processor uses C (A) 18_35 with the contents of two internal 
registers, the Reservea Memory Base Register {RMBR) and the 
Connect Base Register (CBR), to develop the address of a 
Connect Table Word (CTW). See notes 1, 2, and 3. 

If the coding in the CTW does not cause a fault (see notes 4 
and 5) the processor forms two words of information to transmit 
to its control CIU. A Command Address Word (CAW) is transmitted, 
followed by a Connect Control Word (CCW). 

Development of the CIOC instruction~s address field proceeds 
normally (effective address, virtual address, real address, 
physical address). The resulting physical address is placed 
in the CAW. When the IOX is the destination of the connect, 
this address becomes the Channel Mailbox address. See note 
6. 

The CIU action varies, depending on destination port steering 
information contained in the ccw. See note 7. 

For an IOX central or channel-destined connect, a connect 
signal accompanies the CCW to the destination, followed by 
the CAW. See notes 8, 9, and 10. 

For a processor-destined connect, only a connect signal is 
sent to the destination. See note 11. 

For an SSF-destined connect, the CIU sends an Alarm signal 
to the SSF and buffers the CCW and CAW for subsequent transfer 
to the SSF. See note 12. 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected. 

If C(A) 18_35 + C(Connect Base Register) >Reserved 
Memory Sauna, a Bound fault shall occur. 

7-79 DH03-01 



CIOC 

COMMAND FAULT: 

HYPERMJDE FAULT: 

NOTES: 

0 
_Q_ 

BECOMES 

CIOC 

If bit 0 of the Connect Table Entry is ON (C (CTW) =l} , a 
Command fault occurs in the processor that executes °the CIOC 
instruction. 

If C(CTW>o-1 = 01 and HFER25 = 1, a CIOC Hypermode Entry 
fault occurs, causing entry into Hypermode. 

1. 

ccw 

The content of the A register is used in executing the 
CIOC instruction. C(A) must have the following format: 

0 0 1 1 3 
_8_ _9_ _1-8._ _5_ 

OFFSET FROM CONNECT BASE 
TO CONNECT TABLE ~RD 

0-8 

See note 3 for more information about how bi ts 18-35 
are used. See notes 9-12 for more information about 
how bits 0-8 are used. 

2. The connect table provides dynamic determination of the 
set of processors and I/O channels with which the operating 
system communicates. If the destination is not configured 
to the OS issuing the connect, the entry in the connect 
table will be coded to cause either a Command fault or 
a CIOC Hypermode Entry fault. See notes 4 and 5. 

The connect table also allows connects intended for a 
configured destination to be intercepted and redirected 
to another destination that is capable of receiving the 
connect. 

The connect table is located in reserved memory. The 
connect base register specifies the offset in words from 
the reserved memory base to the first word of the connect 
table. The connect table is initialized and maintained 
by SMAS software in the SSF. When multiple operating 
systems are configured on a DPS 88 system, each OS has 
its own reserved memory, and its own connect table. 

7-80 DH03-0l 



CIOC 

0 

l 

2 

3 

4 

s 

6 

7 

8 

135 

136 

263 

264 

391 

392 

519 

0 
0 

CIOC 

Format of Connect Table: 

3 
s 

HYPERSWITCHER ENTRY CONNECT 

SSF CONNECT (PRIMITIVE COMMUNICATION) 

CONNECT TO CPU-0 

CONNECT TO CPU-1 

CONNECT TO CPU-2 

CONNECT TO CPU-3 

IOX-0 
LOGICAL CHANNELS 
0-127 

IOX-1 
LOGICAL CHANNELS 
0-127 

IOX-2 
LOGICAL CHANNELS 
0-127 

IOX-3 
LOGICAL CHANNELS 
0-127 

7-81 DH03-01 



CIOC 

0 0 0 
0 1 2 

Each CTW has the following format: 

2 2 
2 3 

CIU 
PORT 

2 2 
6 7 

CIOC 

3 
5 

.._ HYPERMODE ENTRY 

~INVALID CONNECT 

The format of CTW bits 2-22 and 27-35 varies according 
to the destination of the connect. See notes 9-12. 

3. The processor selects the appropriate CTW from the connect 
table by using C (A) lS-3.S as an offset into the connect 
table from the connect-oase. 

4 
4 

0 
0 

PHYS I 

1 
8 

• 0 
0 

• 5 
2 

C (A) 

CONNECT BASE 

6 
5 

RMBR BASE 

6 
6 

3 
5 

1 1 1 
4 5 7 

6 
9 

0 0 0 0 

2 

L ADDRESS OF ONNECT TABLE \«)RD 

4. A 1 in bit 0 of the addressed CTW indicates that the 
processor or I/O channel at the destination has not 
been configured to the operating system (see note 2); 
the CIOC instruction terminates with a Ccnmand fault in 
the originating processor, and no other action is taken. 

5. The hypermode fault enable register (HFER) provides one 
bit for each type of fault, and enables entry into the 
Hypervisor when any of the selected faults occurs. Bit 
25 of the HFER allows the CIOC instruction to cause 
entry into hypermode via the CIOC Hypermode Entry fault. 
If bits 0-1 of the addressed CTW = 01 and bit 25 of the 
HFER = 1, then hypermode is entered through the hypervisor 
fault vector or entry descriptor, associated with the 
operating system~s reserved memory. 

7-82 0803-01 



CIOC 

I 

0 
0 

0 
0 

6. 

CIOC 

If C(CTW)o = 0, and either HFER25 = 0 or C(CTW)l = 0, 
the processor transmits the CAW and CCW to the control 
CIU, using bit 23 (Control CIU) of the processor option 
register to select the control CIU. The CAW and ccw 
are formed as shown: 

0 0 l 
8 9 0 

3 
5 

CIU COMMAND PHYSICAL ADDRESS FROM CIOC INSTRUCTION 
540 0 

8 

CAW: COMMAND ADDRESS WORD 

0 0 3 
8 9 5 

C (A) C(CONNECT TABLE WORD) 
0-8 I 9-35 I 

CCW: CONNECT CONTROL WORD 

The address in bits 10-35 of the CAW is the physical 
address determined from the address field of the CIOC 
instruction, using tag and AR fields. Transposition of 
address bits to reflect interlacing is not performed. 
Subsequent use of this address by the IOX as the address 
of the channel mailbox will cause appropria_te interlacing 
to be performed by the hardware. 

7. If the ports are not masked between the originating 
processor and the control CIU, the CIU uses bits 23-26 
of the CCW to select the port to which is sends the 
connect signal: 

ccw 2-Port CIU 4-Port CIU 
Bits Port Port 
23-26 Selection Selection 

0000 CIU Processor Port 0 CIU Processor Port 0 
0001 CIU Processor Port 1 CIU Processor Port 1 
0010 invalid CIU Processor Port 2 
0011 invalid CIU Processor Port 3 
OlXX invalid invalid 
1000 CIU CMPA Port 0 (!OX) CIU CMPA Port 0 (IOX) 
1001 CIU CMPA Port 1 (IOX) CIU CMPA Port 1 (IOX) 
1010 • 1 • ,:i 

inva~1 .... CTTT ...v CMPA Port 2 {IOX} 
1011 invalid CIU CMPA Port 3 (IOX) 
1100 invalid CIU CMPA Port 4 (SSF) 
1101 invalid invalid 
1110 CIU CMPA Port 2 (SSF) invalid 
1111 invalid invalid 

CMPA = CIU Multiplex Port Adapter 

7-83 DH03-01 



CIOC CIOC 

If any port is masked between the originating processor 
and the destination, the destination port will not be 
notified of the connect, and the originating processor 
will receive no abnormal indication, except for lack of 
response from the destination. 

8. If CCW bits 23-26 = lOXX, the destination is an IOX 
(see note 7) • The CIU sends a connect signal to the 
IOX, along with the CCW and CAW. When the IOX receives 
a connect signal with the CCW and CAW, it examines bits 
0, 1, and 9 of the CCW to determine the format of the 
CCW and the action to he taken. See notes 9 and 10. 

9. When the IOX receives a connect signal with the CCW and 
CAW, in which bits O, 1, and 9 of CCW 1 101, the CCW 
received by the TOX has the following format: 

0 0 0 0 0 0 0 0 0,0 l 1 l l 2 2 2 2 2 2 3 J 3 ) 

0 
C(A) C(CTW) 

0-8 9-)C:, 

TD 0 0 X I 
TT P H 0 

CHANNEL 
NUMBER 1 0 X X 0 0 P 0 SYS ID 

T X 0 0 SWP 

TT H 

00 x 
01 x 

10 0 

11 x 

Action 

Connect will be ignored by IOX 
Channel-only connect. TD defines action. No 
status or interrupt. 
IOXC-only. Read scratchpad word pair (SWP) of 
channel. CAw10_ 35 is the physical address where 
word pair from scratchpad gets stored. 
Channel connect. CAW10_ 35 is the physical 
address of the Channel Mailbox. 
TD defines channel action. 

TD Channel Action (TT= 01, 11): 

0000 
0001 
0011 
0110 
1000 

Standard connect 
Mask logical channel 
Mask adapter 
Mask adapter and reset controller 
Initiate DI channel 

SWP Scratchpad Word Pair (TT= 10): 

SWP 5 = 0 
SWP6_ 8 = 000-111, specifying l of 8 zero-modulo-2 
addresses in the IOXC'" s 16-word Command word 
Processor {CWP) scratchpad for the logical 
channel specified by ccw10_ 17 • Each connect 
of this type reads the CWP scratchpad word pair 
specified by SWP 6_ 8 and stores the word pair 
in the main memory location specified by 
CAWl0-35 • 

On completion of the two-word data transfer to 
main memory, no status is stored and no interrupt 
is sent. 

7-84 DH03-0l 



CIOC CIOC 

This register command can be issued to a logical 
channel regardless of its busy state. If it 
is busy, the command will not interfere with 
the operation under way. Word 15 of the CWP 
scratchpad is used by this command and contains 
CAW10735 .and CCW 29 _ 35 • The IOX sets bit 26 = 
o to ina1cate non-hypermode. 

P Paged (0) or nonpaged (1) operation 

XPT This bit is saved by the IOX for use in selecting 
one of its two CI u ports for program interrupts. 
This is not a CIU number. 

IOX These two bits are used only as a software 
reference, and are not used by DPS 88 hardware. 
The bits are saved in the IOX scratchpad and 
returned in the interrupt word when the I/O 
terminates. 

SYS ID The SYS ID field is used by the IOX as an 
index into its hyperbase and hyperbound tables 
to obtain the hyperbase and hyperbound of the 
OS in for ming physical addresses. The hyper base 
and hyperbound tables are initialized and 
maintained by SMAS software in the SSF using 
the mechanism described in note 10. 

The SYS ID field is saved in the IOX scratchpad 
for inclusion in the first interrupt word, where 
it is used by the CIU to select the interrupt 
cell register (ICR) that has been allocated to 
the OS. 

10. When the IOX receives a connect signal with CCW and CAW in which 
bits O, 1, and 9 of the CCW = 101, the CCW received by the IOX 
has the following format: 

0 1 2 
0 1 2 

C (A) 

0 0 
4 5 

0-8 

l 0 x x x TI 
0-3 

0 0 1 
8 9 0 

1 TI 
4-12 

7-85 

1 1 
8 9 

TD 

2 2 
2 3 

C (CTW) 
9-35 

1 0 x 
0-3 

2 2 
6 7 

x TD 
4-12 

3 
5 

DH03-0l 



CIOC 

0 
0 

I C(A) 

I a 

ccw 
Bits 
2-4 

CIOC 

000 Disable hyperaddressing. TI, TD not used. 
100 Enable hyperaddressing. TI, TD not used. 
XOl Hyperpage table change. 

TI 0_ 1 = 00 (reserved for future use). 
TI 2_ 12 specifies the address of a hyperPTW entry 

in the IOXC's 2K word hyperpage table. 
TD0_ 12 is the data which is loaded into the hyperPTW 

entry addressed by TI~_ 12 • TD0 = 1 indicates a 
missing hyperpage; ir tlie hyperPTW is accessed 
with bit 0 = 1, the IOX reports an error. 

TD1_ 12 specifies the high order 12 bi ts of the 
hyperpage address to be used in IOXC address 
development. 

XlO Hyperbase table change. 
TI 0_8 = o 

TI 9_12 = 0000-1111; in effect, this is the SYS ID 
field. It specifies the address of 1 of 16 
entries in the IOXC's hyperbase table. 

TD0_12 is the data which is loaded into the entry 
aaaressed by the TI field. TD 0 is set to zero. 

TD1_ 12 specifies the high order 12 bits of the 
hyperbase address to be used in IOXC address 
development. 

Xll Hyperbound table change. 
TI 0_8 = 0 

TI 9_ 12 = 0000-1111; in effect this is the SYS ID 
field. In specifies the address of 1 of 16 
entries in the IOXC's hyperbound table. 

TD0_ 12 is the data which is loaded into the entry 
aaaressed by the TI field. TD0 is set to zero. 

TD1_ 13 specifies the high order 12 bi ts of the 
hyperbound address which is checked against the 
high order 12 bits of the original "real memory 
address". An error occurs if the high order 
bits of the real memory address > hyperbound. 

11. If CCW bits 23-26 = OOXX, the destination is a processor 

0-8 

(see note 7) • The CIU sends a connect signal to the 
destination processor, which causes a Connect Received 
fault to occur in the destination processor. The CIU 
does not send the CAW or the CCW to the destination 
processor. The CCW received by the CIU has the following 
format: 

0 0 2 2 2 2 3 
n n 2 3 6 7 5 0 ':I 

I C{CTW) I 9-35 

I 0 0 0 x xi 0 I 

7-86 DH03-0l 



CIOC 

**** 

0 
0 

C (A) 

0 

12. 

0-8 

CIOC 

If CCW bits 23-26 = llXO, the destination is an SSF 
attached to the SSF port on the CIU (not to be confused 
with an SSF attached to a DI channel of an IOX). See 
note 7. The CIU sends an Alarm signal to the SSF, and 
buffers the CCW and CAW: 

0 0 1 
8 9 0 

1 0 

2 2 
2 3 

C(CTW) 
9-35 

1 1 

2 2 
6 7 

x 0 0 

3 3 
1 2 

3 
5 

SYS ID 

Bit 9 of the CCW is coded with a 1 to provide the SSF 
with a way to differentiate between connects through 
the SSF port of the CIU and connects through a DI channel 
of an IOX. 

13. The use of this instruction in other than Privileged 
Master mode ca uses an IPR Fault. 

14. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

7-87 DH03-0l 



CLIMB CLIMB 

CLIMB I Domain Transfer 713 (1) 

FORMAT: 

0 1 1 Op Code 2 2 2 3 3 

ADDRESS 713 ( 1) 

First Word 

0 0 0 1 1 1 2 2 2 2 3 

p UNUSED c D 

Second Word 

The first word has the standard single-word instruction format (see Figure 7-1). 
The second word of the CLIMB instruction contains four control fields: C22-23, 
ClB-19, E and P, and S and D. Bits 10-17 and 20-21 are not interpreted. The 
four control fields are defined as follows: 

O C2 2 , 23. Instruction Version 

This field determines one of the four versions of the instruction to 
be executed: 

00: Inward CLIMB (!CLIMB) Version - functions as a CALL, i.e., a 
procedure invokes another procedure to accomplish a task and expects 
return of control from that other procedure. Additional descriptors 
may be passed in a new parameter segment: an empty argument segment 
is created. The processor state is saved (safe stored) if the 
SSBF flag of the option register = 1. If S,D = 0,1760, this is 
the PMME version (System Entry). If S,D ~ 0,1760, this is the 
!CLIMB version. 

01: Outward CLIMB (OCLIMB) Version (RET) - functions as a return to 
the caller. The processor state is restored to the last safe 
store frame. 

10: Later al Transfer with same Parameter and Argument Segments (LTRAS) . 
This version functions as an unconditional transfer, giving the 
callee the same visibility as the caller. The processor state is 
not saved. LTRAS is also called GCLIMB. 

11: Lateral Transfer with new Parameter and Argument Segments (LTRAD). 
This version functions the same as the CALL version, except that 
the processor state is not saved. LTRAD is also called PCLIMB. 

7-88 DHOJ-01 



CLIMB CLIMB 

The terms inward, outward and lateral refer to use of the stack 
segments. Inward means push the safe store frame on the safe 
store stack (saving the present processor state), frame a new 
parameter segment (PS) and open a new (empty) argument segment 
(AS). Outward means pop the safestore frame off the safestore 
stack (restoring the former processor state) and return PSR, ASR, 
LSR, ISR, IC' IR, SEGID (IS} ' DSAR, and if specified' ARO-AR?' 
SEGIDO-SEGID7, DRO-DR7, XO-X7, A, Q, E and the Pointer/Length 
registers, to their prior settings. Lateral means leave the safe 
store stack unchanged. The LTRAS version (10) keeps the PSR and 
ASR unchanged, while the LTRAD version (11) activates new PSR and 
ASR values in the same manner as an Inward CLIMB. 

o c18 , XO Control 

The C 18 bit allows the caller to load the effective address of the 
CLIMB instruction into XO if c 18 = l and if an entry descriptor is 
referenced during execution of the CLIMB. For OCLIMB, only the condition 
c 18 = l is required to cause XO to be loaded with the effective 
address of the CLIMB. If c 18 = O, XO is not loaded, regardless of 
CLIMB version. 

o Cl9, Slave Mode 

For a CALL, LTRAS, or LTRAD, the C 9 bit allows Slave mode to be set. 
For RET c19 is ignored. If the CLI~ is the result of a fault interrupt, 
or invokes the System Entry (PMME), the c 19 bit is overridden, and the 
Master Mode indicator is set. 

Otherwise for CALL, LTRAS, LTRAD 
if c19 = O: 0 --->C(IR) 28 
if c19 =l ; no change to C(IR) 28 

If a CALL, LTRAS, or LTRAD attempts to transfer to a privileged segment 
(flag bit 26 = 1) and c19 = O, an SCLl or Security Fault, class 1 
shall occur. 

o E and P Argument Passing 

The E and P fields are interpreted only for the CALL and LTRAD versions 
of the CLIMB instruction. 

If E = 1, P+l descriptors are passed to the called routine. These 
descriptors are either prepared (shrunk and pushed onto the argument 
stack) by the instruction, or they are found in a descriptor segment, 
depending on the contents preset by the caller in DRO. When DRO refers 
to an operand segment, a vector list is interpreted by the instruction 
to prepare descriptors; when DRO refers to a descriptor·segment, the 
descriptors are in the segment. In both cases, the PSR is loaded with 
a type 1 descriptor, framing the P+l descriptors of parameters. 

If E = 0, no parameters are passed. 

In both cases the ASR is updated such that it locates the next available 
even-word location of the descriptor stack. The updated ASR bound 
field is set to zero and marked "not valid". 

7-89 DH03-0l 



CLIMB CLIMB 

The E and P fields are not interpreted for the RET and LTRAS versions 
of the CLIMB instruction. 

o S,D 

For CALL, LTRAS, or LTRAD, this field indicates from where the descriptor 
that determines the destination of the CLIMB is to come from (SEGIO), 
or that the CLIMB is a System Entry (PMME). 

For Outward CLIMB (RET) this field is ignored. 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

ILLEGAL EXECUTES: 

IND! CAT ORS : 

NOTES: 

Any 

The CLIMB instruction provides a highly secure hardware 
mechanism for transferring control from one software function 
to another. This instruction performs the functions of call, 
return, and co-routine (goto) invocation for intra- and 
inter-instruction segments and intra- and inter-domain 
references. 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

XEC or XED 

Master Mode - See notes below and discussion of "Cl9, Slave 
Mode" above 

1. Versions of the CLIMB instruction include: 

Mnemonic Meaning 

!CLIMB Change of domain call 
(Inward CLIMB) 

PCLIMB Change of domain transfer 
(Lateral Transfer- LTRAD) 

GCLIMB 
/T.::a+-or ::al '1" r::ancr or-T.l'f'l'DllC \ ,_.__.._ ..... .._ -- ... - ....,.,., • ..,_ .._.., ..,..., .. -w::a.~ I 

OCL!MB 
(Outward CLIMB) 

PMME 
(System Entry CLIMB) 

Change of domain transfer 
with passed arguments and 
parameters 

Change domain return 

Privileged Master mode entry 

2. Interpretation of the fields varies with the version of 
the CLIMB instruction being executed. 

7-90 DH03-01 



CLIMB CLIMB 

The following list contains each of the five versions 
of the CLIMB instruction with their respective fields, 
which are defined below. The underlined fields are 
required; all others are optional. 

!CLIMB - entry, count, effective address, flags 

PCLIMB - entry, count, effective address, flags 

GCLIMB - entry, effective address, flags 

OCLIMB - effective address 

PMME - effective address, count, flags 

The fields in the CLIMB instruction are described below: 

entr'y 

count 

effective 
address 

- Name of an entry or a 12-bi t number that 
identifies a descriptor specifying a new 
linkage segment and instruction segment or 
the same linkage segment and an instruction 
segment. 

- Decimal expression representing a value in 
the range 0 < count < 512. This value 
indicates the nillnber of vectors or descriptors 
(one for each argument}. The first of these 
is at the location indicated by pointer 
register zero. A value of zero means that 
no arguments, and consequently no vectors 
or descriptors, are present. If no value 
is given, zero is assumed. 

- The effective address may include a tag 
pointer designation. When this occurs, the 
field must be enclosed by parentheses; e.g., 
(address, tag) or (address, tag, pointer) . 
The effective address is used to establish 
the next instruction location, but only when 
the entry identifies a descriptor that does 
not specify a linkage segment. The effective 
address is a requirement only for the PMME 
version to designate the Master mode entry. 

If the entry identifies a descriptor that 
specifies a linkage segment (entry 
descriptor), index register O may be loaded 
with the effective address. If the entry 
identifies a descriptor that does not specify 
a linkage segment (standard descriptor), this 
address is added to the base of the instruction 
segment (described in the descriptor) to 
establish the next instruction location and 
may be loaded in index register O. If bit 
18 of field C is zero or this address is 
omitted, the content of the effective address 
field is not loaded in index register O. 
Note that an explicit zero is required to 
load index register 0 with a zero, since a 
null field prevents register loading. 

7-91 DH03-0l 



CLIMB 

flags 

CLIMB 

- The keyword SLAVE indicates that the processor,, 
will enter Slave mode upon change of domaih'~ 
If this field is omitted, the mode is not 
changed, except for the PMME version which 
is always set to Privileged Master mode. 

The keyword EAXO indicates that the effective 
address field is to be loaded in index register 
o. 

No flags are used for the OCLIMB version. 

If both keywords are needed, the field must 
be enclosed by parentheses with a comma 
separating the keywords: (EAXO, SLAVE). 

3. The instruction version to he executed is determined by 
bi ts 1 22 and 23 of the C field which are defined as 
follows: 

00 !CLIMB or PMME - Functions as a call; that is, one 
segment transfers control to another segment to 
accomplish a task and upon completion of the task 
regains control. Additional descriptors may be 
prepared (shrunken) and placed in the argument 
segments; new parameter and argument segments are 
framed. The processor state is saved (safe stored) 
if bit 19 of the option register is 1. 

11 PCLIMB - Functions in the same manner as !CLIMB, 
with new parameter and argument segments, except 
that the processor state is not saved. 

10 GCLIMB - Functions as an unconditional transfer 
with the same parameters and arguments. The 
processor state is not saved. 

01 OCLIMB - Functions as a return to the caller. The 
processor state is restored from the last frame of 
the safe store stack (see Figure 8-3). 

NOTE: All versions of the CLIMB instruction make use 
of stack segments. I CLIMB means push the safe 
store stack, frame a new parameter segment, and 
open a new argument segment. OCLIMB means pop 
the safe store stack, and restore the parameter 
segment and argument segment to previous settings. 
PCLIMB and GCLIMB mean leave the safe store stack 
unchanged. GCLIMB leaves the parameter segment 
and argument segment registers unchanged: whereas 
PCLIMB activates a new parameter segment and 
argument segment in the same manner as !CLIMB. 

7=92 DH03-0l 



CLIMB 

4. 

CLIMB 

Each version of the CLIMB instruction is described below: 

!CLIMB (Inward CLIMB) - 00 

The S and D fields are interpreted in the same manner 
as the s and D fields of the vector in the LDDn instruction, 
except that in this instance the values S = 0 and D = 
li60 (octal) define a PMME. If S = 0 and D = 1761 or 
1763-1767 (octal), an IPR fault is generated. 

If the CLIMB is a result of a fault or interrupt, this 
is an inter-domain transfer, requiring an entry 
deSCr iptOr I Which iS Obtained f ram lOCatiOnS in the 
operating system as follows: 

Interrupt: 30-31 octal 
Fault: 32-33 octal 

The referenced descriptor must be one of the following 
types: 

a. Standard Descriptor (T = 0) 

b. Descriptor Segment Descriptor (T = 1 or 3) 

c. Entry Descriptor (T = 8, 9, or 11) 

If the CLIMB instruction has not yet been linked to one 
of the preceding descriptors, the obtained descriptor 
may be a dynamic linking descriptor (T = 5). In this 
case, the CLIMB instruction is terminated and a Dynamic 
Linking fault is generated. All other descriptor types 
(T = 2', 4, 6, 7, 10, or 12-15) terminate the CLIMB 
instruction and cause an IPR fa~lt. 

Given a descriptor segment descriptor, an entry 
descriptor, or a standard descriptor, the activity varies 
as follows: 

a. Standard Descriptor. (T=O) 

When the descriptor referenced by the S and D fields 
is a standard descriptor, the CLIMB instruction is 
an intra-domain transfer and the linkage segment 
register is not changed. 

The obtained descriptor becomes the new instruction 
segment descriptor. Flag bits 25, 27, and 28 are 
checked and must be 1: otherwise, an appropriate 
fault occurs. The base and bound are checked for 
modulo 32 bytes; if the test fails, an IPR fault 
occurs. 

7-93 DH03-01 



CLIMB 

b. 

CLIMB 

Descriptor Segment Descriptor (T = 1 or 3) 

When a type 1 or 3 descriptor is referenced by the 
S and D fields of the CLIMB instruction, the base 
of the type 1 or 3 descriptor is used as a pointer 
to an entry descriptor. Flag bits 20, 27, and 28 
must be 1 and the bound field must be > 7 bytes; 
otherwise, an STR fault occurs. If the obtained 
descriptor is not an entry descriptor nor dynamic 
linking descriptor, an IPR fault occurs. If a dynamic 
linking descriptor is obtained, a Dynamic Linking 
fault occurs. 

c. Entry Descriptor (T = 8, 9, or 11) 

When an entry descriptor is referenced by the S 
and D fields of the CLIMB instruction (either directly 
or indirectly) the CLIMB instruction is an 
inter-domain transfer. The type of entry descriptor 
determines how much data (register contents) will 
be safe stored. 

Using the entry descriptor, the new instruction 
segment descriptor is obtained from the new linkage 
segment described by the entry descriptor. The 
new linkage segment is assumed to be present in 
real memory, because the entry descriptor does not 
have a flags field to indicate this, and the hardware 
attempts to obtain the new instruction segment 
descriptor. The obtained instruction segment 
descriptor must be a standard descriptor with T = 
0 and flag bits 25, 27, and 28 must be 1. If flag 
b.it 25 is O, a Security Fault, Class 2 occurs; if 
flag bit 28 = O, a Missing Segment fault occurs; 
if flag bit 27 = 0, an STR fault occurs. The 
hardware also checks the base and bound of the new 
instruction segment descriptor for modulo 32 bytes; 
if the test fails, the instruction terminates in 
an IPR fault. If T is not O, an IPR fault occurs. 

7-94 DH03-0l 



CLIMB CLIMB 

The size of the safe store frame to be created and the 
data to be stored is determined by the referenced 
descriptor (the T field of the descriptor pointed to by 
the S ,D field of the Inward CLIMB) • The base of the 
safe store register (SSR) points to the starting address 
of the previous frame (the most recently stored frame 
that has not been returned to). Thus, before storing a 
new frame, the base address is incremented by the last 
frame size. A code is contained in the 2-bit stack 
control register (SCR) associated with the SSR that denotes 
the size of the last frame on the stack. (Note that 
the SCR is initialized to 11 binary when the LOSS 
instruction is executed.) The base and bound fields of 
the SSR are adjusted as follows: 

Change to Change to 
SCR (binary) Base of SSR Bound of SSR 

002 + 16 words - 16 words 

012 + 24 words - 24 words 

112 + 64 words - 64 words 

The SSR base now points to the start of the new safe 
store frame to be created for the CLIMB instruction. 
The contents of the SCR are stored in the new safe 
store frame and the TEMP SCR is loaded according to the 
referenced descriptor as follows: 

Field of Entry Descriptor (T Field) 

0 or 8 

9 

11 

SCR (binary) 

The new SCR value determines the amount of data stored 
in the new safe store frame (16, 24, or 48-56 words). 
When the frame size is 64 words, the a'ctual number of 
words stored is 48, unless indicator register bit 30 = 
1 (multiword instruction interrupt). If the indicator 
register bit 30 = 1, the actual number of words stored 
is: ****DPS 8/70, 8/50, 8/52, and 8/62: 56 words; 
**** DPS 8/10 and 8/44: 52 words; **** DPS 88: 50 
words. The following describes the contents of the safe 
store frame where all values are as at the beginning of 
the CLIMB instruction: 

**** DPS 8 And Level 66: 
Words 0-1 - Undefined **** 

7-95 DH03-0l 



CLIMB CLIMB 

**** DPS 88: 
Word O 

Word 

Bits 0-13 - Undefined 
Bits 14-17 - ITC. Count of the number of indirect 

tally words updated in an indirect 
chain. If the count is 15 , the 
processor cannot recover f ram a\.Pissi ng 
Page fault; the operating system must 
handle the recovery or terminate the 
process. 

Bits 18-27 - Opcode of the faulting instruction for 
faults other than Startup, Execute, 
ONC, Lockup, or MEMSYS. Not defined 
for interrupts, programmed CLIM.as, and 
the above five fault types. 

Bit 28 - Interrupt inhibit bit of the faulting 
instruction. Not defined for 
interrupts, programmed CLIMBs, and 
Start up, Execute, ONC, Lockup, and 
MEMSYS faults. 

Bit 29 - Address register bit of the faulting 
instruction. Not defined for 
conditions listed in Bit 28. 

Bi ts 30-3 5 - Tag field of the f aul ting instruction. 

1 

Bits 0-15 
Bits 16-17 
Bit 18 
Bit 19 

Bit 20 

Bit 21 

Bit 22 
Bit 23 

Bit 24 
Bit 25 

Bits 26-29 
Bits 30-34 

Not defined for conditions listed in 
Bit 28. 

- Undefined 
- zero 
- IPR fault was caused by illegal opcode. 
- IPR fault was caused by illegal tag, 

illegal execute, or illegal repeat. 
- IPR fault was caused by illegal mode 

(i.e., attempted execution of 
Privileged Master Mode instruction 
while in Slave mode). 

- Fault occurred during an instruction 
fetch. 

- Zero 
- Fault occurred during an attempted read 

of a descriptor from a linkage, argument 
or parameter segment; Opcode and tag 
are invalid. 

- Undefined 
- IPR fault was caused by illegal EIS 

digit, sign, MOP, etc. 
- Undefined 

Indicators used by the 
conj unction with words 
restart from certain 

processor 1 n 
2 and 3 to 

faults which 
occurred during the execution of RPT, 
RPO, RPL, XEC, and XED. If equal to 
zero the Return CLIMB instruction 
ignores words 2 and 3 and no restart 
functions are performed. 

7-96 DH03-0l 



CLIMB 

Bit 35 

**** 

CLIMB 

- Demand Paging Recovery Flag (DPRF) 
0 Missing Page fault (not 

recoverable) 
1 Missing Page fault (recoverable) 

**** DPS 8/70, 8/50, 8/52, and 8/62: 

Word 2 - Undefined **** 

**** DPS 8/20 and 8/44: 

Word 2 

**** Level 66 

Words 2-3 

- The faulting instruction when fault 
occurs **** 

- The even/odd instruction pair when 
fault occurs **** 

**** DPS 8/20, 8/44, 8/70, 8/50, 8/52, and 8/62: 

Word 3 - Undefined **** 

Word 4 

Bits 0-17 - Programmed CLIMB 
Instruction counter (IC) value for 
CLIMB plus 2 

- Interrupt-during multi word instruction 
IC of first word of multiword 
instruction 

- Interrupt after completed multiword or 
single word instruction 

IC of next instruction 
- Fault while attempting to fetch 

"Transferred To" instructions 
resulting from CLIMB 

IC of "Transferred To" instruction 
- Safestore stack fault on a programmed 

CLIMB 
IC of "Transferred To" instruction 

- Startup or Execute fault 
IC undefined 

- Op not complete, Lockup, Memory System 
faults 

**** DPS 8: IC of faulting 
instruction + 1 **** 
**** DPS 88: IC undefined **** 

- Connect, Timer runout, or Shutdown 
faults during multiword instruction 

IC of first word of multiword 
instruction 

- Connect, Timer r unout, or Shut down 
faults after completed multiword or 
single word instruction 

IC of next instruction 

7-97 DH03-0l 



CLIMB CLIMB 

- Any other fault 
**** DPS 8: IC of faulting 
instruction + 1 **** 
**** DPS 88: IC of faulting 
instruction **** 

Bits 18-32 - Contents of indicator register (IR) 
Bits 33-35 - Undefined 

Word 5 

Bit 0 

Bits 1-7 
Bit 8 

Bit 9 

Bit 10 

Bit 11 

- Undefined 
**** DPS 8/20 and 8/44: FRTRY -
If zero, instruction cannot be 
retried, if 1, the instruction can 
be retried **** 

- Undefined 
- Undefined 

**** DPS 88: RVA - Valid flag 
(!=valid} **** 

- Undefined 
**** DPS 8/70, 8/50, 8/52, 8/62: 
MRT - if 1, safe store is the result 
of an address trap, an opcode trap 
or a CU history register overflow 
**** 

- Set to 1 if new SSR bound field is 
less than 192; Safe Store Stack fault 
occurs 

- I f CL I MB was due to a fault or programmed 
!CLIMB, bit 11 is O; if due to interrupt, 
bit 11 is 1 

Bits 12-16 - Fault or interrupt codes 

Bit 
Bit 
Bits 
Bits 
Bits 

Word 6 

- **** DPS 88: For interrupts and 
programmed CLIMB bits 12-16 = O **** 

17 - zero 
18 - Undefined 
19-21 - Processor number 
22-23 - Stack control register (old value} 
24-35 - Instruction segment identity register 

- SEGID(IS) 

Bits 0-16 - The value stored is the content of 
the data stack address register (DSAR} 
at the beginning of the CLIMB 
instruction **** DPS 88: Bits 0-14 
**** 

Bits 17-26 - Undefined 
**** DPS 88: Bits 15-26 undefined**** 

Bits 27-35 - Effective workina space nqmber when 
the fault occurred 

Word 7 

Words 8-9 

- Upon occurrence of an instruction 
fault, the relative virtual address 
when the fault occurred 

- Instruction segment register {ISR) 

7-98 DH03-0l 



CLir-18 

Words 

Words 

Words 

Words 

Words 

W'ords 

CLIMB 

10-11 - Argument stack register (ASR) 

12-13 - Linkage segment register (LSR) 

14-15 - Parameter stack register (PSR) 

16-23 - Address register (ARl}) and segment 
identities 

24-39 - Descriptor registers (DRE) 

40-47 - SREG registers (index, accumulator, 
quotient, exponent, and timer 
registers) 

NDrE: All register values stored reflect the 
contents of the register at the 
beginning of the CLIMB. If descriptors 
are pushed onto the argument stack 
during the CLIMB, the bound value of 
the safe-stored ASR is the value before 
the push occurred. 

Words 48-55 - Pointer and length registers are stored 
in response to a fault or interrupt 
**** DPS 88: Words 48-49 **** 
**** DPS 8/20, 8/44: Words 48-51; mid 
instruction interrupt recovery data for 
firmware **** 

Words 56-63 - Undefined 
**** DPS 88: Words 50-63 undefined 
**** 
**** DPS 8/20, 8/44: Words 52-63 
undefined **** 

Refer to Figure 8-3, Safe Store Stack, for a detailed 
diagram of the storage. 

If field E of the second word of the CLIMB instruction 
is zero, then no descriptors are to be passed. If field 
E is 1, descriptors are to be passed and the action 
depends on the descriptor type contained in ORO as 
described below (if ORO contains a type T = 3, 5, or 
7-15 descriptor, an IPR fault occurs): 

a. Descriptor Type in ORO = 1 

If the descriptor type contained in DRO is 1, the 
descriptors to be passed as parameters have already 
been prepared and are the last P+l descriptors in 
this descriptor segment. Thus, the hardware will 
not prepare any descriptors but will frame these 
last P+l descriptors with the paraiueter stack 
register. However, an STR fault occurs at this 
point if P+l > ORO bound field. ****DPS 88**** A 
BND fault occurs at this point if P+l > DRO bound 
field. 

7-99 DH03-0l 



CLIMB 

b. 

CLIMB 

Descriptor Type in ORO = 0, 2, 4, or 6 

If the descriptor type contained in DRO is O, 2, 
4, or 6, the hardware prepares descriptors. The 
vector list is located by pointer register zero 
(i.e., ARO and DRO combined). The descriptor 
identified by the S and D fields of each vector is 
obtained, prepared exactly as described in the 
definition of the LDDn instruction, and placed in 
the next available location in the argument segment 
as described in the definition of the SDRn 
instructio·n. This procedure is continued until alI 
P+l descriptors have been prepared and placed in 
the argument segment. Various faults may occur 
during this operation as described in the definitions 
of the LDDn and SDRn instructions. Note that a 
vector with an S ana D field of S = 0, D = 1761 
(octal) causes an IPR fault: s and D field values 
of S = 0, D = 1763 or 1764 (octal) require that 
the processor be in Privileged Master mode (as 
described in LDDn), which in this case refers to 
the processor mode at the beginning of the CLIMB 
instruction. 

Although generating a data stack descriptor during 
the CLIMB instruction is permissible, clearing of 
the framed stack space is not allowed. Thus, if a 
vector specifies that a data stack descriptor is 
to be formed and the associated bit in the option 
register specifies that the stack space is to be 
cleared, the CLIMB instruction ignores the clear 
function. 

With the state saved in the safe store stack, the registers 
are changed as follows: 

a. Load the Linkage Segment Register {LSR) 

(1) For an intra-domain transfer, the linkage 
segment does not change. 

(2) For an inter-domain transfer, a standard 
descriptor from the entry descriptor is placed 
in the LSR as follows: 

{a) Base = Linkage base (LBASE) with zeros 
in the 10 most significant bit positions 

{b) Size = Linkage bound {LBOUND) extended 
with three 1 bits on the right and with 
zeros in the 7 most significant bit 
positions 

{cj WSR = WSR (working space register) 

(d) T = 1 

{e) Flags - Bits 20, 22, 23, 27, and 28 1 
Bits 21, 24, 25, and 26 = 0 

****DPS 88: Although bit 23 is never 
interpreted by the hardware, it will be 
forced to 1 for software 
compatibility.**** 

7-100 DH03-0l 



CLIMB 

b. 

CLIMB 

Load the Instruction Segment Register (ISR) 

(1) For an intra-domain transfer, the standard 
descriptor referenced by the S and D fields 
of the instruction is placed in the ISR. If 
s and D fields referenced a DRn (177n}, then 
SEGIDn --> SEGID (IS)~ otherwise, s and D --> 
SEGID{IS). 

( 2) For an inter-domain transfer, the descriptor 
pointed to by the ISEGNO field of the entry 
descriptor is loaded into the !SR. SEGID(IS) 
is set to S = 3, D = ISEGNO. 

c. Load the Instruction Counter (IC) 

(1) For an intra-domain transfer, an effective 
address is formed using the address field of 
the CLIMB instruction and applying the indicated 
AR and/or tag field modification. This 18-bit 
effective address is placed in the instruction 
counter. 

(2) For an inter-domain transfer, the 18-bit entry 
location contained in the entry descriptor is 
placed in the instruction counter. 

d. Adjust the Argument Stack Register (ASR) and the 
Parameter Stack Register (PSR) as follows: 

(1) If E bit = O (pass no parameters) 

(a) Set PSR flag bit 27 to O to indicate 
bound not valid. 

(b) If the current ASR flag bit 27 is O, no 
change to ASR; the bound is not valid 
and the base does not change. 

(c) If the current ASR flag bit 27 is 1, set 
the ASR base to point to the next available 
location by replacing ASR base with ASR 
base + (ASR bound + 1) , and the ASR bound 
and flag bit 27 to zero. 

7-101 DH03-01 



CLIMB CLIMB 

(2) If E bit = 1 (pass parameters) and DRO type = 
0, 2, 4, or 6 

(a) Using the current values from the ASR 
base and bound fields (bound field will 
have increased if descriptors were 
prepared by hardware; ASR flag bit 27 is 
1), set the ASR and PSR as shown below: 

ASR Base--> 

Argument 
Segment 

-----
- <--Set PSR base to point here 

p + 1 

ASR Bound->..,.. ___ ~<--Set PSR bound to here 
(P double-words) 

Set ASR base to point to next 
available double word location 

(b) Copy the ASR flag field (with the exception 
of bit 27) to the PSR flag field. (This 
makes the PSR subordinate to the ASR; 
i.e., the PSR frames a portion of the 
space that was framed by the ASR and should 
not be allowed to grant additional 
privileges to the space control.) This 
also sets bit 27 of the PSR to 1, thereby 
indicating that it is not empty. 

The new base and bound for the ASR are 
formed identically as described above for 
the case in which E bit is 0 and ASR 
flag bit 27 is 1. 

7-102 Dff 03-01 



CLIMB CLIMB 

(c) Set ASR flag bit 27 to O to indicate 
that the segment is empty and zero the 
bound field. 

(3) If E bit~ l and DRO type = 1 

(a) 

(b) 

{ c) 

( d) 

(e) 

The descriptors to be framed by the PSR 
are the last P+l descriptors in the 
descriptor segment pointed to by ORO. 

' The ASR base and bound are adjusted exactly 
as described for the above case when the 
E bit is O. Also, ASR flag bit 27 is 
set to zero. 

The new PSR base is set to the value ORO 
base + ORO bound - 2P 

The new PSR bound is set to (2P-l) 

The new base and bound values formed above 
are loaded into the PSR, framing the last 
P+l descriptors of the segment. Bits 20-35 
of the first word of ORO (flags field, 
WSR or WSN field, and T field) are copied 
to the corresponding bit positions of the 
PSR. 

e. Selectively Load Pointer Registers 

If type 11 entry descriptor was referenced by the 
S and D fields of the CLIMB instruction, set all 
pointer registers to the value of the target IS as 
fallows: 

ISR --> ORO through OR7 

SEGIO (IS) --> SEGIOO through SEGI07 

0 0 --> ARO through AR7 

f. Load SSR 

If SCR = 11 2 
then 

SSR Base+loo 8 words --> SSR Base 
SSR Bound-100 8 words --> SSR Bound 

If SCR = 01 2 
then 

SSR Base+30- words --> SSR Base 
SSR Bound-388 words --> SSR Bound 

If SCR = 00 2 
then 

SSR Base+208 words --> SSR Base 
SSR Bound-208 words --> SSR Bound 

g. Load SCR: TEMP SCR --> SCR 

7-103 DH03-0l 



CLIMB CLIMB 

h. Selectively Set Index Register 0 

If bit 18 of the C field is 1 and if this is an 
inter-domain CLIMB instruction (an entry descriptor 
is involved), then the effective address for the 
instruction as generated is loaded into ir1dex 
register O. 

PCLIMB (Lateral Transfer - LTRAD) - 11 

The execution of the PCLIMB version is identical with 
that of !CLIMB, except that the processor state is not 
saved in the safe store stack, the SCR remains unchanged, 
and the pointer registers are not set to the state of 
the instruction segment. 

GCLIMB (Lateral Transfer - LTRAS) - 10 

In the GCLIMB version of the CLIMB instruction, the 
safe store register and the parameter stack register 
remain unchanged. Also, the base and bound of the argument 
stack register remain unchanged. 

The bit in the E field is not interpreted and the SCR 
remains unchanged. 

The GCLIMB may be an 
that is determined by 
S and D fields. This 
except as indicated. 
is not saved, control 
executing the GCLIMB. 

inter- or intra-domain transfer 
the descriptor referenced in the 
version functions as the !CLIMB, 
Since the state of the processor 
cannot return to an instruction 

If the descriptor referenced 
the GCLIMB instruction is a 
pointer registers are set to 
instruction segment and the 
zero-filled. 

OCLIMB (Outward CLIMB) - 01 

by the s and D fields of 
type 11 descriptor, the 
the state of the target 

address registers are 

In the OCLIMB version of the CLIMB instruction, a return 
occurs according to the last frame stored in the safe 
store stack. 

The E, P, S, and D fields, and bi ts 19, 20, and 21 of 
the C field are ignored. The value of the stack control 
register (SCR) at the beginning of the OCLIMB determines 
the number and type of registers to be restored in addition 
to the following registers which are always restored. 

a. Instruction counter (IC) 

b. Indicator register (IR} 

c. Stack control register (SCR) 

d. Instruction segment identity register - SEGID (IS) 

e. Data stack address register (DSAR) 

7-104 DH03-0l 



CLIMB CLIMB 

f. Instruction segment register (ISR) 

g. Linkage segment register (LSR) 

h. Argument stack register (ASR) 

i. Parameter stack register (PSR) 

NOTE: If the Safe Store Bypass Flag, bit 19 {DPS 88: 
bit 3) in t:ne option register, is zero, an IPR 
fault occurs. 

When SCR = 00 (binary), all the normal checks are made 
before loading the listed registers from the safe store 
stack. If any test fails, the appropriate fault occurs. 

When SCR = 01 (binary) , all the registers that meet the 
checks for SCR = 00 (binary) are restored, plus AR 0-7 
and SEGID 0-7. 

When SCR = 10 or 11 (binary) , the registers for SCR = 
01 (binary), the eight descriptor registers, the eight 
index registers, and the A, Q, and E registers are restored. 
If bit 30 of the indicator register is 1, the pointer 
and length registers are also restored. (DPS 88: The 
pointer and length registers are restored 
unconditionally.) 

The base and bound values of the safe store register 
(SSR) are adjusted according to the new values placed 
in the SCR from the safe store stack as follows: 

SCR (binary) Base of SSR Bound of SSR 

00 -16 +16 

01 -24 +24 

10 or 11 -64 +64 

If bit 18 of the C field is 1, the effective address 
loaded in index register O. Control is transferred to 
the instruction pointed to by the instruction counter 
and the instruction segment register (!SR). When 
restoring the indicator register, the Master mode 
indicator bit may be turned ON. 

If a fault occurs during execution of the OCLIMB the 
saved state will be the same as at the beginning of the 
OCLIMB, except that the values of the IR stored in the 
new safe store stack frame for the fault may be the 
values of the instruction being returned instead of the 
state of the indicators at the start of the OCLIMB. 

PMME (System Entry CLIMB) - 00 

In the PMME version of the CLIMB instruction, the system 
protected entry is activated for s = 0 a·nd D = 1760 
(octal). An entry descriptor is obtained from operating 
system location 34-358 • The Master mode indicator bit 
is always set ON and oit 19 is ignored. 

7-105 DH03-01 



CLIMB CLIMB 

All modifications are allowed except DU, DL, CI, SC, 
and SCR. 

The illegal repeats and executes are RPT, RPO, RPL, and 
XEC, XED. 

Any of the following conditions cause an IPR fault: 

a. If illegal repeats 
modifications. 

and executes precede 

b. If the base and bound fields of the instruction 
segment descriptor are not modulo 32 bytes. 

c. If the s and D fields are S = O and D = 1760 
(octal), and the descriptor from the System Entry 
location is not an entry descriptor. 

d. If the descriptor referenced in the S and D fields 
is not a standard, entry, or dynamic linking 
descriptor {T = O, 5, 8, 9, or 11). 

e. ·If the S and D fields of the vector or instruction 
are 5 = 0 and D = 1761 {octal). 

A Command fault occurs if the S and D fields of the 
vector are s = O and D = 1763 or 1764 (octal) and the 
processor is not in Privileged Master mode. 

Missing Segment and Missing Page faults may also occur. 

The following conditions may cause an STR fault: 

a. The !CLIMB version of the instruction if field E 
1 and either P + 1 > ASR bound field or P + 1 > 
descriptor register O bound field (the bound field 
to test P + 1 depends on descriptor type in descriptor 
register 0) • 

b. If flag bit 27 of the instruction segment descriptor 
is O (empty). 

c. If a carry occurs in forming a new argument stack 
register {ASR) or parameter stack register (PSR) 
base. 

A Security Fault, Class 2 occurs if flag bit 25 of the 
instruction segment descriptor is O (no execute 
permission). 

7-106 DHOJ-01 



CLIMB CLIMB 

Summary of CLIMB Instruction Format 

0 0 0 1 1 Op Code 2 2 2 2 3 3 

0 0 
0 1 

IEI 
3 
6 

ADDRESS 

0 1 
9 0 

p I UNUSED 

713 (1) 

First Word 

1 1 1 2 2 2 2 2 2 2 
7 8 9 0 1 2 3 4 5 6 

Mtl I 

T 

I I 

y s 
p 

Second Word 

TAG 

D 

3 

7 
2 

The control fields are defined as follows: 

E 0 

E = 1 

p N-1 

XO 0 

XO 1 

SLV 0 

SLV 1 

TYP 00 

TYP 01 

TYP 10 

TYP 11 

S,D 

- No parameters are passed 

- Pass P+l parameters (!CLIMB, PCLIMB only) 

- Number (minus 1) of descriptions or vectors to pass if E 1 

- Climb will not affect XO 

If entry descriptor (T = 8, 9, or 11) is referenced or OCLIMB 
is executed, XO is loaded with the effective address designated 
by the address tag and AR fields of the CLIMB instruction 

- Set Slave mode 

- Do not change Master mode indicator 

- !CLIMB (or PMME) 

- OCLIMB 

- GCLIMB (LTRAS) - Transfer with same ASR and PSR: 
Do not save processcr state 

- PCLIMB (LTRAD) - Transfer with new ASR and PSR: 
Do not save processor state 

- Target SEGID 

7-107 DH03-01 



CLIMB CLIMB 

Coding Format: 

1 

entry 

count 

ea 

flags 

8 16 

I CLIMB 
PCLIMB 
GCLIMB 
OCLIMB 
PMME 

entry,count,(ea),(flags) 
entry,count,{ea) ,(flags) 
entry, {ea), {flags) 
{ea) 
{ea),count,{flags) 

- SEGID - Least significant 12 bits are used 

- Number of parameters to pass, pointed to by PRO; 
If count field is specified, the assembler sets bit O of the 
second word of the instruction 

- Effective address to be transferred to or loaded into XO: 
On OCLIMB, ea sets bit 18 of the second word 

- EAXO - Sets bit 18 of the second word. 

NEAXO - Clears bit 18 of the second word 

SLAVE - Clears bit 19 of the second word (for PMME, bit 18 of 
the second word is forced on, bit 19 is ignored by 
the hardware) 

MASTER - Sets bit 19 of the second word 

NOTE: PMME is synonymous with !CLIMB with 17608 coded in the entry field. 

7-108 DB03-0l 



CLIMB 

EXAMPLES: 

1 8 

* 
INHIB 

OOOF NULL 
NEPRl LOO 

SOR 
LOO 
SOR 
LOO 
SOR 
LOO 
MLR 
AOSC9 
AOSC9 
LOP 
I CLIMB 

* VFD 
* VFD 

* 
INHIB 

TRVCEL NULL 
TRA 
NOP 
EPP RO 
TRA 
EPP RO 
TRA 
EPP RO 
TRA 

TRVCOl LDP7 
TRA 
NOP 
NOP 

TRVC03 GCLIMB 
* VFD 
* VFD 

LOD6 
I CLIMB 

* VFO 
* VFD 

TRA 

16 

OFF 

PO ,DSTKS 
PO 
Pl,ODRSH 
Pl 
Pl, !ALPS 
Pl 
Pl, ISRS 
(1), (1) 
0,0,256,P.SSR 
0,0,256,PO 

32 

!CLIMB 

shrink data stack (64 words) 

ODRS ••• shrink safe store 

!SR, ASR, LSR, PSR 

!SR (R,W) 
copy safe store frame to data stack 

PO, .ASR,DL copy ASR to PO 
.DR+4,3,,SLAVE climb exception procedure 
18/,09/713,l/l,l/O,l/0,6/M. 
l/l,9/3-l,8/0,l/.N,l/.0,2/0,2/0,l2/.0R+4 

ON 

2,IC 
,DL 

GCLIMB/ICLIMB 

l,IC .TROPN (system domain only) 
.CRT RV+ 12,, P .CR 
l,IC .TROPN none (system domain only) 
2,IC 
l,IC .TROPN all (slave domain} 
• CRT RV+ 14 , , P • CR 
**,OL .TRPUT (system domain) 
TPUTS Y- •• OISP,, P7 
,DL *.TROPN all macros removed 
,DL 
**,TOPNG .TROPN extension 
18/TOPNG,09/713,l/l,l/O,l/0,6/M. 
l/0,9/0,8/0,l/.N,l/.0,2/0,2/2,12/** 
DP.CYl'E,,P.SSL .TROPN all for slave domain extension 
.DR6 
18/,09/713,l/l,l/O,l/0,6/M. 
l/0,9/0,8/0,l/.N,l/.0,2/0,2/0,l2/.DR6 
0, ,PO 

CLIMB 

7-109 DH03-0l 



CMG 

CMG 

FORMAT: 

PROCESSOR ~"10DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Compare Magnitude 

Single-word instruction format (see Figure 7-1) 

Any 

IC (A) I - IC (Y) I --> C (Z); C (A), C (Y) unchanged 

None 

None 

zero - If C(Z) = 0, then ON; otherwise, OFF 

Negative - If C(Z)o = 1, then ON; otherwise, OFF 

zero 

0 
1 
0 

Negative 

0 
0 
1 

Relation 

I g ~~~ I : lg ~i ~ I 
C (A) < C (Y) 

CMG 

504 ( 0) 

This instruction compares the magnitude of signed algebraic 
nwnbers. For example, if -1 and +l are compared, they are 
considered equal and the Zero indicator is set ON. 

7-110 DH03-0l 



CMK 

CMK 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

CMK 

I· Compare Masked 211 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 3 5, 

C(Z)i = C(Q)i AND [C(A)i XOR C(Y)i] 
C(A), C(Q), c(Y) unchanged 

None 

None 

zero - If C(Z) = O, then ON; otherwise, OFF 

Negative - If bit O of C(Z) = 1, then ON: otherwise, OFF 

1. This instruction compares for identity those corresponding 
bit positions of A and Y that are not masked by a 1 in 
the corresponding bit position of Q. 

2. The Zero indicator is set ON if the comparison is successful 
·for all bit positions: i.e., if for all i = 0, 1, ••• , 35 
there is 

either C(A)i = C(Y)i 
or 
c (Q) i = 1 

Otherwise, the zero indicator is set OFF. 

The Negative indicator is set ON if the comparison is 
unsuccessful for bit position O; i.e., if 

C (A) O i C (Y) O 
and 
c (Q) 0 0 

Otherwise, the Negative indicator is set OFF. 

7-111 DH03-01 



CMK 

EXAMPLE: 

CMK 

In the following example, the comparison is equal after 
execution of CMK, and the TZE exit is taken. Only the 2s in 
NUMBER and DATA are compared; all other bits are masked by 
ones in the Q-register. 

1 8 16 

LDQ MASK 
LDA NUMBER 
CMK DATA 
TZE OUT 

MASK OCT 777777777707 
NUMBER OCT 300333333326 
DATA OCT 666666666625 

7-112 DH03-01 



CMPA 

CMPA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

CMPA 

., Compare with A-Register 115 { 0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(A) - C(Y) --> C(Z); C(A) and C(Y) unchanged 

None 

None 

zero - If C(Z) = 0, then ON; otherwise, OFF 

Negative - If C(Z) 0 = 1, then ON; otherwise, OFF 

Carry - If a carry out of bit O of C (Z) is generated, 
then ON; otherwise, OFF 

1. Algebraic comparison (Signed Binary Operands) 

zero Neg 

0 0 
1 0 
0 1 

Relation 

C (A) >C (Y) 
C(A)=C(Y) 
C (A) <C (Y) 

2. Logical comparison (Unsigned Positive Binary Operands) 

0 
1 
0 

1 
1 
0 

7-113 

Relation 

C (A) >C (Y) 
C (A) =C (Y) 
C (A) <C (Y) 

DH03-01 



CMPAQ 

CMPAQ 

FORMAT: 

PROCESSOR MODE: 

SU.Mi."1ARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

CMPAQ 

t Compare with AO-Register 117 ( 0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(AQ) - C(Y-pair) --> C(Z); C(AQ) and C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

ILLEGAL REPEATS: None 

INDICATORS: 

NOTES: 1. 

Zero - If C(Z) = 0, then ON; otherwise, OFF 

Negative - If C(z) 0 = 1, then ON; otherwise, OFF 

Carry - If a carry out of bit 0 of C(Z) is generated, 
then ON; otherwise, OFF 

Algebraic comparison (Signed Binary Operands) 

zero Neg 

0 0 
1 0 
0 1 

Relation 

c AQ)>C {Y-pair) 
C (AQ) =C (Y-pai r) 
c (AQ) <C (Y-pai r) 

2. Logic comparison (Unsigned Positive Operands) 

zero 

0 
1 
0 

1 
1 
0 

Relation 

C (AQ) >C (Y-pai r) 
C (AQ)=C (Y-pair) 
c (AQ)<C (Y-pair) 

3. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-114 DH03-0l 



CMPB CMPB 

CMPB I Compare Bit Strings 066 ( 1) 

FORt-1.AT: 

0 0 1 1 1 1 Op Code 2 2 2 3 

0 0 0 
0 2 3 

I al 

0 0 0 
0 2 ]_ 

a2 

CODING FORMAT: 

MF2 066 (1) MFl 

1 1 1 2 2 2 
7 8 9 0 3 4 

Yl 

I I I 
Nl 

Cl Bl 

Yl 0-------------------0 

1 1 1 2 2 2 
7 8 9 0 ]_ 4 

Y2 N2 
C2 B2 

Y2 0-------------------0 

The CMPB instruction is coded as follows: 

1 8 

CMPB 
BDSC 
BDSC 

16 

(MFl) , (MF2) ,F 
LOCSYM,N,C,B,AM 
LOCSYM,N,C,B,AM 

3 3 
2 5 

Rl I 
3 3 
2 5 

R2 

PROCESSOR MODE: Any 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

C(string 1) :: C(string 2) 

The string of bi ts starting at location YCBl is logically 
compared with the string of bi ts starting at location YCB2 
until an inequality is found or until the larger tally (Ll 
or L2) is exhausted. If Ll is not equal to L2, the fill bit 
(F) is used to pad the least significant bits of the shorter 
string. The contents of both strings remain unchanged. 

DU, DL for MFl and MF2 

7-115 DH03-01 



CMPB 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLES: 

CMPB 
BDSC 
BDSC 
TRC 
USE 

FLDl OCT 
FLD2 OCT 

USE 

CMPB 
BDSC 
BDSC 
TZE 
TRC 
TRA 
USE 

FLDl VFD 
FLD2 VFD 

USE 

EXAMPLE WITH ADDRESS 

1 8 

EAX2 
EAX6 
EAX4 
AWDX 
CMPB 
BDSC 
ARG 
TZE 
USE 

FLDl VFD 
FLD2 VFD 
INDS CR BDSC 

USE 

CMPB 

RPT, RPO, RPL 

zero Carry RelationshiE 

0 0 C (string 1) < C(string 2) 

1 1 C(string 1) C (string 2) 

0 1 C (string 1) > c (string 2) 

1. ****DPS 88: If Ll=L2=0, both the zero and Carry indicators 
are turned ON**** 

2. An Illegal Procedure fault occurs if DU or DL modifications 
are used for MFl or MF2. 

, , 1 fill bit 1 option 
FLDl,45,0,0 FLDl operand descriptor 
FLD2,48 FLD2 operand descriptor 
EQU.GR FLDl equal/greater than FLD2 
CONST. bits compared (octal representation) 
0,777000000000 0 0 0 0 0 0 0 0 0 0 0 0 7 7 7 7 
0,777000000000 0 0 0 0 0 0 0 0 0 0 0 0 7 7 7 0 

Result - FLDl > FLD2 

no options 
FLDl,36,0,0 FLDl operand descriptor 
FLD2,19,l,3 FLD2 operand descriptor 
EQUAL FLDl = FLD2 
FLDlGR FLDl > FLD2 
FLDlLS FLDl < FLD2 
CONST. bits compared (octal representation) 
18/-1 7 7 7 7 7 7 0 0 0 0 0 0 
12/0,19/-1 7 7 7 7 7 7 4 0 0 0 0 0 

Result - FLDl < FLD2 

MODIFICATION: 

16 32 

12 load FLDl"s bit modifier into X2 
6 load FLDl ... s length into X6 
FLDl load FLDl ... s address into X4 
0,4,4 put FLDl~s address into AR4 
( 1, 1, , X2) , ( , , 1) with modification 
O,X6,0,0,4 FLDl operand descriptor 
INDS CR pointer to FLD2's indirect descriptor 
EQUAL FLDl = FLD2 
CONST. bits compared memory conten.ts 
12/0,6/1 7 7 0 000077000000 
24/0,6/1 7 7 0 0000000077 00 
FLD2,9,2,6 FLD2 indirect operand descriptor 

Result - FLDl FLD2 

7-116 DH03-0! 



CMPC CMPC 

CMPC Compare Alphanumeric Character Strings 106 ( 1) 

FORMAT: 

0 0 0 1 1 1 1 Op Code 2 3 
0 8 9 0 1 7 8 8 5 

I FILL I 0 I 0 I MF2 I 106 ( 1) I I I MFl I 
0 0 0 1 1 2 2 2 2 3 3 
0 2 _1 7 8 1 2 3 4 2 5 

Yl Nl 
CNl TAl 0 

al Yl 0-----------------~o Rl 

0 0 0 1 1 2 2 2 3 3 
0 2 3 7 8 1 3 4 2 5-

Y2 

I I I 
N2 

I 
CN2 

Y2 0------------------0 R2 I a2 

CODING FORMAT: The CMPC instruction is coded as fallows: 

1 8 16 

CMPC (MF 1 ) , (MF 2 ) , FILL 
ADSCn LOCSYM,CN,N,AM 
ADSCn LOCSYM,CN,N,AM 

PROCESSOR MODE: Any 

SUMMARY: C (string 1) : : C (string 2) 

Starting at location YCl, the string of alphanumeric characters 
of type TAl is logically compared with the string of alphanumeric 
characters of assumed type TAl that starts at location YC2 
until either an inequality is found or until the larger tally 
(Ll or L2) is exhausted. If Ll is not equal to L2, the FILL 
character is used to pad the least significant characters of 
the shorter string. The contents of both strings remain 
unchanged. Bits 21-23 of descriptor 2 are not interpreted. 

7-117 DH03-01 



CMPC 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS : 

INDICATORS: 

NOTES: 

EXAMPLE: 

1 8 

CMPC 
ADSC6 
ADSC6 
TZE 
TRC 
NULL 
USE 

FLDl BCI 
FLD2 BCI 

USE 

CMPC 

DU, DL for MFl and MF2 

RPT, RPO, RPL 

zero Carry Relationshi:e 

0 0 C (string 1) < C(string 2) 

1 1 C (string 1) = C(string 2) 

0 1 C (string 1) > C(string 2) 

1. If Ll=L2=0 both the zero and Carry indicators are turned 
ON. 

2. An Illegal Procedure fault occurs if DU or DL modification 
is used for MFl or MF2. 

3. **** DPS 88, DPS 8/20, and DPS 8/44: Depending on TAl, 
Bits 0-8, 3-8, or 5-8 of the FILL character are used to 
pad the least significant characters of the shorter 
string.**** 
**** DPS 8/70: Bits 0-8 (independent of TAl) of the 
FILL character are used to pad the least significant 
characters of the shorter string.**** 

16 32 

, , 020 compare with blank fill 
FLDl,0,6 field 1 operand descriptor 
FLD2,4,4 field 2 operand descriptor 
ECUAL both fields equal 
FLDlGR field 1 greater 

field 1 less 
CONST. characters compared 
l,ABCD ABCD)S,lS 
2, XXXXABCDXXXX ABCD,lS,lS 

Result - FLDl = FLD2 

7-118 DH03-0l 



CM PCT CM PCT 

****DPS 88 ONLY**** 

CMPCT 

FORMAT: 

0 

FILL 

0 

0 

0 

PROCESSOR MODE: 

SUMMARY: 

Compare Characters and Translate 166 ( 1) 

0 0 1 1 1 1 Op Code 2 2 2 3 

Yl 

Y2 

Y3 

MF2 

Any 

166(1) 

1 1 2 2 2 2 2 
7 8 0 1 2 3 4 

1 1 2 2 2 2 2 
7 8 0 1 2 3 4 

MF! 

3 

Nl 

3 

N2 

l 1 2 2 3 3 3 3 

Starting at location YCl, the string of alphanumeric characters 
of type TAl is logically compared with the string of alphanumeric 
characters of assumed type TAl that starts at location YC2, 
until either an inequality is found or until the larger tally 
(Ll or L2) is exhausted. 

If an inequality is found, the next action depends on dl and 
d2. If dl and d2 = 0, then both characters are transliterated 
and the resulting characters compared. This is accomplished 
as follows. 

7-119 DHOJ-01 



CMPC? 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS : 

INDICATORS: 

NOTES: 

CMPCT 

The character from the string starting at YCl and the character 
from the string starting at YC2 are each used as an index to 
a table of 9-bit characters starting at location Y3. The 
two characters thus taken from the table are compared, the 
indicators set as indicated below, and the instruction 
terminates. For the case dl = d2 = 1, no transliteration 
takes place; the indicators are set according to the way the 
two original characters compared. When dl i d2, one character 
is translated and the other is not, and then the two characters 
are compared. For example, if dl = 1 and d2 = 0 the character 
from the string starting at YC2 is transliterated (as described 
above) and compared with the character from the string starting 
at YCl and the indicators are set accordingly. 

Note that a 9-bit compare is always made. For the case dl i 
d2 and the nontranslated character is a 4- or 6-bit character, 
then the upper bit positions of the character are zero-filled 
for the 9-bit compare. 

If L 1 i L2, bi ts 0-8, 3-8, or 5-8 of the FILL char act er 
(depending on TAl) are used to pad the least significant 
characters of the shorter string. The contents of both strings 
remain unchanged. 

DU, DL for MFl or MF2 

RPT, RPO, RPL 

Let Cl = c (last char from string 1, translated if dl 0) 
Let C2 = C (last char from string 2, translated if d2 0) 

zero Carry 

0 
1 
0 

1. 

0 Cl < C2 
1 Cl C2 
1 Cl > C2 

When Ll or L2 = O, the zero and Carry indicators are 
still affected as indicated in the above table. If 
Ll=L2=0, both the zero and Carry indicators are turned 
ON. 

2. A 9-bit character (zero-filled as appropriate) and/or 
the full 9 bi ts of the table entry are used in all 
comparisons. 

3. The CMPCT instruction is intenaea r:or comparisons in 
situations where the character collating sequence is 
different from the sequence of character codes. 

4. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

7-120 DH03-0l 



CMPN CMPN 

CMPN 1· Compare Numeric 303 (1) 

FORMAT: 

0 1 

loo--------------: 

0 0 0 
0 2 3 

I al 

0 0 0 
0 2 3 

I a2 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

Yl 

Yl 

Y2 

Y2 

1 
1 

MF2 

1 1 

1 1 
7 8 

I 
1 1 
7 8 

I 

2 
0 

CNl 

2 
0 

CN2 

Op Code 2 2 2 

303(1) 

2 22 2 
1 23 4 

I 
TNl 

151 I SFl 

2 22 2 
1 23 4 

I TN2 152 I SF2 

The CMPN instruction is coded as follows: 

1 a 16 

CMPN (MF 1) , {MF 2) 
NDSCn LOCSYM,CN,N,S,SF,AM 
NDSCn LOCSYM,CN,N,S,SF,AM 

Any 

C(string 2) .. C(string 1) 

3 

MF! 

2 3 3 
9 0 5 

I 
Nl 

I 
2 3 3 
9 0 5 

I 
N2 

I 

Starting at location YCl, the decimal number of data type 
TNl and sign and decimal type Sl is algebraically compared 
with the decimal number of data type TN2 and sign and decimal 
type S2 that starts at location YC2. The comparison effectively 
subtracts number 1 from number 2. Zeros (4 bits - 0000) are 
used to pad the integral and fractional parts of the shorter 
field. Both numbers remain unchanged. · 

7-121 DH03-0l 



CMPN 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

CMPN 

DU, DL for MFl and MF2 

RPT, 

zero 

0 

1 

0 

Zero 

0 

1 

0 

1. 

RPO, RPL 

Ne9ative RelationshiE 

1 C{number 1) > C(number 2) 

0 C(number 1) C(number 2) 

0 C(number 1) < C(number 2) 

Carry RelationshiE 

0 IC(number l> I > IC<number 2> I 
1 IC(number l> I = jC(number 2> I 
1 IC(number l> I < IC(number 2> I 

An IPR fault occurs if any character (least four bits) 
other than 0000 - 1001 is detected where digits are 
defined, or any character (least four bits) other than 
1010 - 1111 is detected where the sign is defined by 
the numeric descriptor. 

An IPR fault occurs if the values for the number of 
characters (Ni) of the data descriptors are not large 
enough to hold the number of characters required for 
the specified sign and/or exponent, plus at least one 
digit. 

2. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

7-122 0803-01 



CMPN 

EXAMPLES: 

1 

CMPN 
NDSC4 FLDl,0,8,1,-2 
NDSC4 FLD2,0,8,0 
TZE EQUAL 
TMI LESS 
TNC ABS.LT 
USE CONST. 

FLDl EDEC SP-12345 
FLD2 EDEC SP-123.45 

USE 

CMPN 
NDSC9 FLDl,2,2,3 
NDSC4 FLD2, 0 ,,8, 2 ,-3 
TZE EQUAL 
TMI LESS 
TRA GREATER 
USE CONST. 

FLDl EDEC 4A0012 
FLD2 EDEC 8Pl2000+ 

USE 

EXAMPLE WITH ADDRESS MODIFICATION: 

1 

FLDl 
FLD2 
FLD2.I 

8 

EAX2 
EAX6 
EAX4 
AWDX 
CMPN 
NDSC4 
ARG 
TZE 
TPL 
TRA 
USE 
EDEC 
EDEC 
NDSC4 
USE 

16 

2 
6 
FLDl 
0,4,4 
(l,l,,X2), (,,1) 
O,O,X6,3,-3,4 
FLD2.I 
EQUAL 
MORE 
LESS 
CONST. 
8Pl23456 
8Pl23456+ 
FLD2,0,8,2,-2 

no modification 
FLDl operand descriptor 
FLD2 operand descriptor 
FLD2 = FLDl 
FLD2 < FLDl 
IFLD21 < IFLDll 
numbers compared 
- 0 0 1 2 3 4 5 
- 0 0 1 2 3 4 5 
Result - FLD2 = FLDl 

no modification 
FLDl operand descriptor 
FLD2 operand descriptor 
FLD2 = FLDl 
FLD2 < FLDl 
FLD2 > FLDl 
numbers compared 
+ 0 0 1 2 0 0 0 
+ 0 0 1 2 0 0 0 
Result - FLD2 = FLDl 

32 

load character modifier into X2 
load FLDl length into X6 
load FLDl address into X4 
put FLDl address into AR4 
with address modification 
FLDl operand descriptor (FLDl,2,6,3,-3) 
pointer to FLD2 operand descriptor 
FLD2 = FLDl 
FLD2 > FLDl 
FLD2 < FLDl 
numbers compared 
+ 0 0 1 2 3 4 5 6 
+ 0 1 2 3 4 5 6 0 

Result - FLD2 > FLDl 

CMPN 

7-123 0803-01 



CMPNX CMPNX 

****DPS 88 ONLY**** 

CMPNX Corn pare Numeric Extended 34 3 ( 1) 

FORMAT: 

0 0 0 1 1 1 1 Op Code 2 2 2 3 

0 

Yl 

0 

Y2 

MF2 34 3 ( 1) 

1 1 2 2 2 2 2 2 3 
7 8 0 1 2 3 4 9 0 

1 1 2 2 2 2 2 2 3 
7 8 0 1 2 3 4 9 0 

MFl 

3 

Nl 

3 

N2 

PROCESSOR MODE: Any 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

C (string 1) : : c (string 2) 

Starting at location YC 1, the decimal number of data type 
TNl and sign and decimal type SXl is algebraically compared 
with the decimal number of data type TN2 and sign and decimal 
type SX2 that starts at location YC2. The comparison 
effectively subtracts number 1 from number 2. zeros (4 bits 
- 0000) are used to pad the integral and fractional parts of 
the shorter field. Both numbers remain unchanged. 

DU, DL for MFl or MF2 

RPT, RPO, RPL 

7-124 DH03-01 



CMPNX 

INDICATORS: 

NOTES: 

**** 

zero 

0 
1 
0 

0 
1 

1. 

Negative 

1 
0 
0 

Relationship 

C{number 1) > C(number 2) 
C(number 1) C(number 2} 
C(number 1) < C(number 2) 

Relationship 

IC(number 1) I > IC(number 2) I 
C(number 1) ~ C(number 2) 

CMPNX 

An IPR fault occurs if any character (least four bits) 
other than 0000 - 1001 is detected where digits are 
defined, or any character (least four bits) other than 
1010 - 1111 is detected where the sign is defined by 
the numeric descriptor. 

2. An IPR fault occurs if the values for the number of 
characters (Ni) of the data descriptors are not large 
enough to hold the number of characters required for 
the specified sign and/or exponent, plus at least one 
digit. 

3. See MVNX for information on coding of overpunched signs. 

4. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

7-125 DH03-01 



CMPQ 

CMPQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

CMPQ 

Compare with 0-Register 116 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(Q) - C(Y) --> C(Z); C(Q) and C(Y) unchanged 

None 

None 

Zero - If C(Z) = O, then ON; otherwise, OFF 

Negative - If C(Z)o = 1, then ON; otherwise, OFF 

Carry - If a carry out of bit 0 of C(Z) is generated, 
then ON; otherwise, OFF 

1. Algebraic comparison (Signed Binary Operands) 

Zero Neg Relation 

0 0 C(Q)>C(Y) 
1 0 C(Q)=C(Y) 
0 1 C(Q)<C(Y) 

2. Logical comparison (Unsigned Positive Binary Operands) 

zero 

0 
1 
0 

1 
l 
0 

7-126 

Relation 

C(Q) > C(Y) 
C(Q) = C(Y) 
C(Q) < C(Y) 

DH03-0l 



CMPXn 

CMPXn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Compare with Index Register n 

Single-word instruction format (see Figure 7-1) 

Any 

For n = 0,1, ••• , or 7 as determined by op code 
C(Xn) •• C(Y) 0_17 ; C(Xn) and C(Y) unchanged 

CI, SC, SCR 

RPT, RPO, RPL of CMPXO 

zero - If C(Z) = 0, then ON; otherwise, OFF 

Negative - If C(Z)o = 1, then ON; otherwise, OFF 

CMPXn 

lOn (0} -

Carry - If a carry out of C (Z) 0 is generated, then ON; 
otherwise, OFF 

1. Algebraic (signed binary) comparison: 

zero Neg Relation 

0 0 C(Xn)>C(Y>o-17 
1 0 C(Xn)=C(Y>o-17 
0 l C(Xn)<C(Y>o-11 

2. Logical comparison (Unsigned Positive Binary Operands} 

Zero 

0 
1 
0 

1 
1 
0 

Relation 

C(Xn) > C(Y>o-17 
C{Xn) = CCY>o-17 
C(X~) < C(Y>o-l? 

3. DL modification is flagged as illegal but executes with 
all zeros for data. 

4. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

7-127 DH03-0l 



CNAA 

CNAA 

FORMAT: 

PROCESSOR t«>OE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INOI CATORS : 

Canparative NOT AND with A-Register 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 35, C(Z)i = C{A)i AND C(Y)i 
C(Q) and C(Y) unchanged 

None 

None 

zero - If C(Z) = O, then ON; otherwise, OFF 

Negative - If C(Z)o = 1, then ON~ otherwise, OFF 

7-128 

CNAA 

215 (0) 

DH03-0l 



CNAAQ 

CNAAQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS : 

NOTE: 

CNAAQ 

Comparative NOT AND with AO-Register 217 ( 0) 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 71, C(Z). = C(AQ)· AND C(Y-pair>1· 
• l l 

C(AQ) and C(Y-pa1r} unchanged 

DU, DL, CI, SC, SCR 

None 

Zero - If C(Z) = O, then ON; otherwise, OFF 

Negative - If C(Z) 0 = 1, then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-129 DHOJ-01 



CNAQ 

CNAQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

CNAQ 

Comparative NOT AND with Q-Register 216 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

For i Q tO 3 5 I c ( Z) i C (Q) i AND C (Y) i 

None 

None 

zero - If C(Z) = O, then ON; otherwise, OFF 

Negative - If C(Z)o = 1, then ON; otherwise, OFF 

7-130 DH03-0l 



CNAXn 

CNAXn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Comparative NOT AND with Index Register E 

Single-word instruction format (see Figure 7-1) 

Any 

For n = 0,1, ••• , or 7 as determined by op code 

For i = 0 to 17, C(Z)i = C(Xn)i AND C(Y)i 
C(Xn) and C(Y) unchanged 

CI, SC, SCR 

RPT, RPO, RPL of CNAXO 

zero - If C(Z) = O, then ON; otherwise, OFF 

Negative - If C(Z) 1, then ON; otherwise, OFF 

CNAXn 

20.!} (0) 

1. DL modification is flagged illegal but executes with 
all zeros for data. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-131 0803-01 



CSL CSL 

CSL Combine Bit Strings Left 060 ( 1) 

FORMAT: 

0 0 0 0 0 0 1 1 1 1 Op Code 2 2 2 3 

0 0 0 
0 2 3 

0 0 0 

CODING FORMAT: 

MF2 060 (1) MFl 

1 1 1 2 2 2 
7 8 9 0 3 4 

Yl 

I I I 
Nl 

Cl Bl 

Yl 0-------------------0 

1 1 1 2 2 2 
7 8 9 0 3 4 

Y2 

I I I 
N2 

C2 B2 

Y2 0-------------------0 

The CSL instruction is coded as follows: 

l 8 

CSL 
BDSC 
BDSC 

16 

(MF l ) , (MF 2 ) , SOL RI F , T 
LOCSYM,N,C,B,AM 
LOCSYM,N,C,B,AM 

3 3 
2 5 

Rl I 
3 3 
2 5 

R2 I 

PROCESSOR MODE: Any 

SUMi.u\RY: c (string lj {BOLRj C(string 2) --> C(string 2} 

The string of bits starting at location YCBl is evaluated, 
bit by bit, with the string starting at location YCB2 and 
the appropriate bit from the BOLR control field is placed 
into each corresponding bit of the string starting at location 
YCB2. If Ll is greater than L2, the least significant Ll-L2 
bits of string 1 are truncated and the Truncation indicator 
is set. If Ll is less than L2, the fill bit (F). is used as 
the L2-Ll least significant bits of string 1. The contents 
of string 1 remain unchanged. 

7-132 DH03-0l 



CSL 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLES: 

1 8 

REM 
CSL 
BDSC 
BDSC 
USE 

FLDl VFD 
FLD2 LDA 

USE 

REM 
CSL 
BDSC 
BDSC 
USE 

FLD2 DEC 
USE 

CSL 

DU, DL for MFl and MF2 

RPT, RPO, RPL 

Zero - If all the resultant bits generated are zero, 
then ON; otherwise, OFF 
**** DPS 88: If L2=0, then ON.**** 

Truncation - If Ll is greater than L2, then ON; otherwise, 
OFF 
****DPS 88: If Ll>O and L2=0; then ON. If 
Ll=L2=0, then OFF.**** 

1. An I !legal Procedure fault occurs if DU or DL modification 
is used for MFl or MF2. 

2. ****DPS 88,DPS 8/20 and 8/44: The Zero and Truncation 
indicators are affected even if Ll and/or L2=0.**** 

16 32 

BITS 0-17 OF FLD2 FORCED ON 
,,07,,1 "ORI NG" with truncation enable option 
FLDl,24,1,3 FLDl operand descriptor 
FLD2,18,0,0 FLD2 operand descriptor 
CONST. memory contents in octal 
12/0,18/-1,6/0 0 0 0 0 7 7 7 7 7 7 0 0 
0,2 0 0 0 0 0 0 2 3 5 0 1 2 

7 7 7 7 7 7 2 3 5 0 1 2 (Result) 

BITS 18-35 OF FLD2 INVERTED 
"06' 1 exclusive OR with f il 1 bit 1 option 
,0 FLDl operand descriptor 
FLD2,18,2,0 FLD2 operand descriptor 
CONST. memory contents in octal 
0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 7 7 7 7 7 7 (Result) 

EXAMPLE WITH ADDRESS MODIFICATION: 

1 8 

EAX6 
EAX7 
EAX4 
AWDX 
CSL 
ARG 
BDSC 
USE 

FLD2 VFD 
BDSC 
USE 

16 32 

12 load char and bit address modifier into X6 
54 load FLD2 length into X7 
FLD2 load FLD2 address into X4 
0,4,4 put FLD2 address into AR4 
(,,1) ,00, (1,1,,6) ,00 clear operation with address modification 
2,4 pointer to FLDl indirect operand descriptor 
O,X7,,,4 FLD2 operand descriptor (FLD2,54.,l,3) 
CONST. memory contents in octal 
36/-1,36/-1 777777777777 777777777777 
,0 FLDl operand descriptor {control field zeros) 

777700000000 000000000077 (Result) 

7-133 DH03-0l 



CSR CSR 

CSR I Combine Bit Strings Right 061 (1) 

FORMAT: 

0 0 0 0 0 0 1 1 1 1 Op Code 2 2 2 3 
·4 5 0 1 8 9 g l 

2r 2 § ~ ~ 

I Fl 0000 I BOLR IT I ol MF2 061(1) 
I 

I 
I 

MFl I 
0 0 0 
0 2 3 

al 

0 0 0 

CODING FORMAT: 

1 1 1 2 2 2 
7 8 9 0 3 4 

Yl Nl 
Cl Bl 

Yl 0-------------------0 

1 1 1 2 2 2 
7 8 9 0 3 4 

Y2 

I I I 
N2 

C2 B2 

Y2 0-------------------0 

The CSR instruction is coded as follows: 

1 8 16 

CSR (MF1),(MF2),BOLR,F,T 
BDSC LOCSYM,N,C,B,AM 
BDSC LOCSYM,N,C,B,AM 

3 
2 

3 
2 

Rl 

R2 

3 
5 

3 
5 

I 

PROCESSOR MODE: Any 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

C(string 1) : (BOLR) : C(string 2) --> C(string 2) 

same as for CSL except that the starting locations are YCBl 
+ (Ll-1) and YCB2 + (L2-l) and the evaluation is from right 
to left (least to most significant bits). Any truncation or 
fill is of most significant bits. 

DU, DL for MFl and MF2 

7-134 DHCJ-01 



CSR CSR 

ILLEGAL REPEATS: RPT, RPD, RPL 

INDICATORS: Same as for CSL 

NOTE: Illegal Procedure fault same as for CSL. 

EXAMPLES: 

1 8 16 32 

CSR ',14, ,1 invert with truncation fault enable option 
BDSC FLDl,18,2,0 FLDl operand descriptor 
BDSC FLD2,12,0,0 FLD2 operand descriptor 
USE CONST. memory contents in octal 

FLDl OCT 444444 000000444444 
FLD2 DEC 0 333300000000 (Result) 

USE truncation 

CSR , , 17 force ones operation 
BDSC ,0 FLDl operand descriptor 
BDSC FLD2,36,0,0 FLD2 operand descriptor 
USE CONST. memory contents in octal 

FLD2 BSS 1 7 7 7 7 7 7 7 7 7 7 7 7 (Result) 
USE none 

7-135 DH03-0l 



CWL 

CWL 

FORMAT: 

PROCESSOR K>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NOTE: 

CWL 

Compare with Limits 111 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(Y) •• closed (algebraic) interval ~(A), C{Q)) and with 
number C(Q); C(Y), C(A), C(Q) unchanged 

None 

None 

zero - If C (Y) is contained in the closed interval [C (A), 
C(Q)) i.e., either C(A) < C(Y) < C(Q) or C(A) > 
C(Y) ~ C(Q), then ON; otherwise,-OFF 

~ Carry Relation 

0 

0 

1 

1 

0 

1 

0 

1 

C (Q) > C (Y) 

c (Q) > C (Y) } 

C (Q) < C (Y) 

C (Q) < C (Y) 

C(Q)O 0, C (Y) O 1 

C (Q) O = C {Y) O 

C(Q)o = 1, C(Y)o = 0 

This instruction tests the algebraic value of C (Y) to determine 
if it is within the range of algebraic values bounded by 
C (A) and C (Q). This instruction is not recommended for logical 
{unsigned) comparisons. 

7-136 DH03-01 



DFAD 

DFAD 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS : 

INDICATORS: 

NOTES: 

Double-Precision Floating Add 

Single-word instruction format (see Figure 7-1) 

Any 

[C(EAQ) + C(Y-pair)] normalized--> C(EAQ); 
C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

Zero - If C (AQ) = 0, then ON; otherwise, OFF 

Negative - If C(AQ)O = 1, then ON; otherwise, OFF 

Exponent 
Overflow - If exponent is greater than + 127, then 

Exponent 
Underflow - If exponent is less than -128, then ON 

DFAD 

4 77 ( 0) 

ON 

Carry - If a carry out of bit O of C(AQ) is generated, 
then ON; otherwise, OFF 

1. The definition of normalization is located under the 
description of the FNO instruction. 

2. When indicator bit 32=1 and the Hex Permission Flag = 1 
the floating point alignment and normalization are 
hexadecimal. Otherwise the floating point alignment and 
normalization are binary. The Hex Permission Flag is: 

****DPS 8: 
****DPS 88: 

Mode register, bit 33 **** 
Option register, bit 0 **** 

3. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-137 DH03-01 



DFCMG 

DFCMG 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

DFCMG 

Double-Precision Floating Compare Magnitude 427 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

IC(E,A00_63 > I :: IC<Y-pair) I; magnitude comparison 
C(EAQ), C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

zero 

0 

1 

0 

1. 

Neg. Relation 

0 IC<E,A00_ 63 > I > IC CY-pair) I 

0 IC<E,A00_63 > I = IC (Y-pair) I 

1 1ccE,A00_ 63 > I < IC CY-pair} I 

This comparison is executed as follows: 

a. Compare C (E) . • C (Y) 0_ 7 , select the number with 
the lower exponent, and shift its mantissa right 
as many places as the difference of the exponents. 
If the number of shifts equals or exceeds 72, the 
number with the lower exponent is defined as zero. 

****DPS8/20 and 8/44: If the number of shifts equals 
or exceeds 72 and if IC(E,A00_ 63 >1 < ICCY-pair)j, 
the processor fails to turn on the Negative 
indicator.**** 

b. Compare the absolute values of the mantissas and 
set the indicators accordingly. 

2. The DFCMG instruction is identical to the DFCMP instruction 
except that the magnitudes of the mantissas are compared 
instead of the algebraic values. 

3. When indicator bit 32 = 1 and the Hex Permission Flag = 
1 the floating point alignment is hexadecimal. Otherwise, 
the floating point alignment is binary. The Hex Permission 
flag is: 

**** DPS 8: Mode register, bit 33 **** 
**** DPS 88: Option register, bit O **** 

4. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-138 DP.03-01 



DFCMP 

DFCMP 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

DFCMP 

Double-Precision Floating Compare 517 (0) 

Single-word ·instruction format (see Figure 7-1) 

Any 

C(E,AQ0_ 63 ) .. C(Y-pair); C(EAQ), C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

zero 

0 

1 

0 

1. 

Neg. Relation 

0 C(E,AQ0-63) > C(Y-pair) 

0 C(E,AQ0-63) = C(Y-pair) 

1 C(E,AQ0-63) < C(Y-pair) 

This comparison is executed as follows: 

a. Compare C(E) • . C(Y) 0_ 7 , select the number with 
the lower exponent, and shift its mantissa right 
as many places as the difference of the exponents. 
If the number of shifts equals or exceeds 72, the 
number with the lower exponent is defined as zero. 

b. Compare the mantissas and set the indicators 
accordingly. 

2. The DFCMP instruction is identical to the FCMP instruction 
except for the precision of the mantissas actually 
compared. 

3. When indicator bit 32 = 1 and the Hex Permission Flag = 
1, the floating point alignment is hexadecimal. 
Otherwise, the floating point alignment is binary. The 
Hex Permission Flag is: 

**** DPS 8: Mode register, bit 33 **** 
****DPS 88: Option register, bit 0 **** 

4. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-139 DHOJ-01 



DFDI 

DFDI 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

DFDI 

Double-Precision Floating Divide Inverted 527 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C (Y-pair) C(EAQ) --> C(EAQ); C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

INDICATORS: If div is ion occurs: If no division occurs: 

NorES: 

zero - If C(AQ) = O, then ON; If divisor mantissa = O, 
then ON; otherwise, OFF otherwise, OFF 

Negative - If C(AQ) 0 = 1, then 
ON; otherwise, OFF 

If dividend < O, then 
ON; otherwise, OFF 

Exponent 
Overflow If quotient exponent is greater than +127, 

then ON 

Exponent 
Underflow - If quotient exponent is less than -128, then ON 

1. If the divisor mantissa C (AQ) is zero, the division 
does not take place. Instead, a Divide Check fault 
occurs and all registers remain unchanged. 

2. ****DPS 88: Dividend and divisor are normalized by the 
hardware prior to division.**** 

3. 

****DPS 8: Dividend and divisor are not normalized by 
the hardware prior to division.**** 

**** DPS 8: If AQ64 _71 1 0 and A = 0, 1 is added to 
AQG<· 0 --> ~964 _71 , un~~ndition~°-1.1y. 0 ~Q0_h 3 is then 
USeO as the OlVlSOr man~ISSa. The dlVldend exponent 
and mantissa are placed in working registers (8 and 72 
bits, respectively). The dividend mantissa is shifted 
right, and the dividend exponent is increased accordingly 
until: !Dividend mantissa I < IC (AQ) 0_63 1. When such a 
shift occurs, significant bits from the dividend may be 
lost. **** 

7-140 DH03-0l 



DFDI DFDI 

4. ****DPS 88: C(AQ) 0_ 71 is used as the divisor mantissa.**** 

****DPS 8**** C(AQ) 0_ 63 is used as the divisor 
mantissa.**** 

5. ****DPS 88: 72 bits of quotient mantissa are placed in 
AQ.**** 

****DPS 8: 64 bits of quotient mantissa are placed in 
AQ0_63 . zeros are placed in A064_ 71 .**** 

6. When indicator bit 32=1 and the Hex Permission Flag = 1 
the floating point alignment and normalization are 
hexadecimal. Otherwise, the floating point alignment 
and normalization are binary. The Hex Permission Flag 
is: 

****DPS 8: 
****DPS 88: 

Mode Register, bit 33 **** 
Option Register, bit O **** 

7. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-141 DH03-01 



DFDV 

DFDV 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

DFDV 

Double-Precision Floating Divide 567 ( 0) 

Single-word instruction format (see Figure 7-1) 

Any 

· C (EAQ) + C (Y-pai r) --> C (EAQ); C (Y-pai r) unchanged 

DU, DL, CI, SC, SCR 

None 

INDICATORS: If division occurs: If no division occurs: 

NOTES: 

zero - If C(AQ) = O, then ON; If divisor mantissa = O, 
then ON; otherwise, OFF otherwise, OFF 

Negative - If C(AQ) 0 = 1, then 
ON; otherwise, OFF 

If dividend < O, then 
ON; otherwise, OFF 

Exponent 
Overflow If quotient exponent is greater than +127, 

then ON 

Exponent 
Underflow - If quotient exponent is less than -128, then ON 

1. If the divisor mantissa C(Y-pair) 8_71 is zero, then the 
division does not take place. Instead, a Divide Check 
fault occurs. The divisor C(Y) remains unchanged, C(AQ) 
contains the dividend magnitude in absolute, and the 
Negative indicator reflects the dividend sign. 

2. ****DPS 88: Dividend and divisor are normalized by the 
hardware prior to division.**** 

****DPS 8: Dividend and divisor are not normalized by 
the hardware prior to division.**** 

3. ****DPS 8: The dividend mantissa C (AQ) is shifted right 
and the dividend exponent is increased accordingly until: 

When 
1;u~~O>g-7s~if\ l~~~:~:~r)s8i.-J11\tiic~~tze~~t~ilflr~~ the 

dividend may be lost.**** 

7-142 DH03-0l 



DFDV DFDV 

4. C(AQ) 0_ 71 are used by this instruction. 

s. ****DPS 88: 72 bits of quotient mantissa are placed in 
AQ.**** 

****DPS 8: 64 bits of quotient mantissa are placed in 
AQ0_ 63 • zeros are placed in AQ 64_71 e**** 

6. When indicator bit 32=1 and the Hex Permission Flag = 1 
the floating point alignment and normalization are 
hexadecimal. Otherwise, the floating point alignment 
and normalization are binary. The Hex Permission Flag 
is: 

****DPS 8: Mode register bit 33 **** 
****DPS 88: Option register, bit O **** 

7. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-143 DH03-01 



DFLD 

DFLD 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIF !CATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

Double-Precision Floating Load 

Single-word instruction format (see Figure 7-1) 

Any 

C(Y-pair), 00 ••• o --> C(EAQ): C(Y-pair) unchanged 

C(Y>o-? --> C(E) 
C(Y-pa1r>a-11 --> C(AO>o-63 
00 ••• 0 --> C(AQ) 64 _71 

DU, DL, CI, SC, SCR 

None 

zero - If C(AQ) = O, then ON: otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

DFLD 

433 ( 0) 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-144 DH03-01 



DFMP 

DFMP 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Double-Precision Floating Multiply 

Single-word instruction format (see Figure 7-1) 

Any 

[C(EAQ) * C(Y-pair)] normalized--> C(EAQ); 
C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

Zero - If C (AQ) = 0, then ON; otherwise, 

Negative - If C{AQ)O = 1, then ON; otherwise, 

Exponent 
Overflow - If exponent is greater than + 127, 

Exponent 

OFF 

OFF 

then 

Underflow - If exponent is less than -128, then ON 

This multiplication is executed as follows: 

1. C ( E) + C ( Y - pa i r ) 
0 

_ 7 - - > C { E ) • 

DFMP 

463 (0) 

ON 

2. C(AQ) * C(Y-pair) 8 _
11 

results in a 134-bit product plus 
sign, the leading 7 bits plus sign of which--> C(AQ). 

3. 

4. 

C(EAQ) normalized--> C(EAQ). 

The definition of normalization is located under the 
description of the FNO instruction. 

When indicator bit 32=1 and Hex Permission Flag = 1 
floating point alignment and normalization are 
hexadecimal. Otherwise, the floating point alignment 
and normalization are binary. The Hex Permission Flag 
is: 

****DPS 8: Mode register, bit 33 **** 
****DPS 88: Option register, bit 0 **** 

5. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-145 DH03-0l 



DFKD 

DFRD 

FORMAT: 

PROCESSOR MODS: 

S Uivl:v\A RY : 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IN DI CAT ORS : 

NOTES: 

Double-Precision Floating Round 

Single-word instruction format (see Figure 7-1) 

Any 

C(EAQ) rounded to 64 bits and normalized--> C(EAQ) 

None 

RPL 

zero - If C(AQ) = 0, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

Exponent 

DFRD 

473 (0) 

Overflow If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128~ then ON 

1. A true round is performed on C (EAQ) to reduce the mantissa 
of the floating-point number to 64 bits. The exponent 
is set to -128 if the rounded mantissa = 0. 

2. This instruction is identical with FRO except that ~he 
rounding constant is added to bits 65-71 ard the res~lts 
are rounded to 64 bits of precisio~1. Bits 64-71 of 
C(AQ) are replaced by zeros. 

3. The definition of normalization is locatl'.~d under the 
description of the FNO instruction. 

4. When indicator bit 32=1 and the Hex Permission Flag = 1 
the floating point alignment and normalization are 
hexadecimal. Otherwise, the floating point alignment 
and normalization are binary. The Hex Permission Flag 
is: 

****DPS 8: 
****DPS 88: 

Mode register, bit 33 **** 
Option register, bit O **** 

7-146 DH03-0l 



DFSB 

DFSB 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDI CA.TORS: 

NOTES: 

Double-Precision Floating Subtract 

Single-word instruction format (see Figure 7-1) 

Any 

[C(EAQ) - C(Y-pair)] normalized--> C(EAQ); 
C(Y-pair) unchanged 

DU, DL, C~, SC, SCR 

None 

Zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C{AQ) 0 = 1, then ON; otherwise, OFF 

Exponent 

DFSB 

577 (0) 

Overflow - If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

Carry - If a carry out of bit O of C(AQ) is generated, 
then ON: otherwise, OFF 

1. The definition of normalization is located under the 
description of the FNO instruction. 

When indicator bit 32=1 and the Hex Permission Flag = 1 
the floating point alignment and normalization are 
hexadecimal. Otherwise, the floating point alignment 
and normalization are binary. The Hex Permission Flag 
is: 

****DPS 8: 
****DPS 88: 

Mode register, bit 33 **** 
Option register, bit O**** 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-147 DH03-0l 



DFST 

DFST 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IN DI CA TORS : 

NOTE: 

Double-Precision Floating Store 

Single-word instruction format (see Figure 7-1) 

Any 

C{E) --> C{Y-pair>o-7 
C(AQ)0-63 --> C(Y-pa1r>a-11 
C{EAQ) unchanged 

DU, DL, CI, SC, SCR 

RPL 

None affected 

DFST 

457 (0) 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-148 DHO 3-0 l 



DFSTR 

DFSTR 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

DFSTR 

Double-Precision Floating Store Rounded 472 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(EAQ) 0_71 rounded, normalized--> C(Y-pair); 
C(EAQ) unchanged 

DU, DL, CI, SC, SCR 

RPL 

zero - If C (Y- pa i r ) 
otherwise, OFF 

floating-point zero, then ON; 

Negative - If C(Y-pair) 8 = 1, then ON; otherwise, OFF 

Exponent 
Overflow - If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

1. This instruction performs a true round on C(EAQ) to 64 
bits of precision in C (AQ). The result is normalized 
and stored in the Y-pair. C(EAQ) is unchanged. The 
exponent is stored as -128 if the rounded mantissa = O. 

2. Except for precision, this instruction is identical with 
the FSTR instruction. 

3. See the FRO instruction for the definition of true round. 

4. The definition of normalization is located under the 
description of the FNO instruction. 

When indicator bit 32=1 and the Hex Permission Flag = 1 
the floating point alignment and normalization are 
hexadecimal. Otherwise, the floating point alignment 
and normalization are binary. The Hex Permission Flag 
is: 

****DPS 8: Mode Register, bit 33 **** 
****DPS 88: Option register, bit O**** 

5. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-149 DH03-0l 



DIS 

DIS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
tvJ.ODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

DIS 

Delay Until Interrupt Signal 616 (0) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

No operation takes place, and the processor does not continue 
with the next instruction, but waits for a program interrupt 
signal. 

None. The modification specified will be performed including 
the modification of any indirect words specified. However, 
the effective address will have no effect on the operation. 

RPT, RPO, RPL 

None affected 

1. The inhibit bit in this instruction only affects the 
recognition of a Timer Runout (TROF) fault as follows: 

a. I nhi bit ON causes the recognition of a TROF to be 
delayed until the processor enters Slave mode. 

b. Inhibit OFF allows the TROF to interrupt the DIS 
state. 

2. For all other faults and interrupts, the inhibit bit is 
ignored. The use of this instruction in the Slave mode 
causes a Command fault. 

****DPS 88: The use of this instruction in other than 
Privileged Master Mode causes an IPR fault.**** 

7-150 DH03-0l 



DIV 

DIV 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

I· Divide Integer 

Single-word instruction format (see Figure 7-1) 

Any 

C (Q) ~ C (Y) 
integral quotient-~ C(Q), right adjusted 
integral remainder -~ C(A), right adjusted 
C(Y) unchanged 

None 

None 

If division takes place: 

Zero - If C(Q) = O, then ON; otherwise, OFF 

DIV 

506 ( 0) 

Negative - If bit O of C(Q) = 1, then ON; otherwise, OFF 

If no division takes place: 

zero - If divisor = O, then ON; otherwise, OFF 

Negative - If dividend < O, then ON; otherwise, OFF 

7-151 DH03-0l 



DIV 

NOTES: 1. 

DIV 

This instruction divides a 36-bit integral dividend 
(including sign) by a 36-bit integral divisor {including 
sign) to form a 36-bit integral quotient (including sign) 
and a 36-bi t integral remainder (including sign). The 
remainder's sign is equal to the dividend's sign unless 
the remainder's is zero. 

0 0 3 0 0 3 

dividend divisor 

c (Q) C (Y) 

yielding: 

0 0 3 0 0 3 

remainder quotient 

C{A) C(Q) 

If the dividend = -2**35 and the divisor = -1, or if 
the divisor is O under any condition, division does not 
take place. Instead, a Divide Check fault occurs, C(Y) 
remains unchanged, C(Q) contains the dividend magnitude, 
and the Negative indicator reflects the dividend sign, 
and C(A) is set to zero. 

2. ****DPS 88: 
-2**35 (the most negative integer) divided by +l results 
in the correct answer of A=O, Q=02**35.**** 

3. ****DPS 8: 
If -2**35 {the most negative integer) is di~1ided by +1 
a Divide Check fault occurs, C (Y) remains unchanged, 
C{Q) contains the dividend magnitude, the Neg~tive 
indicator reflects the dividend's sign, and C(A) is set 
to zero.**** 

7-152 DH03-01 



DRL 

DRL 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

DRL 

I· Derail 002 (0) 

Single-word instruction format {see Figure 7-1) 

Any 

Generates a DRL fault, which causes the processor to switch 
to Privileged Master mode to execute an Inward CLIMB instruction 
using the entry descriptor obtained from the word pair in 

****DPS 8: 
****DPS 88: 

Real memory location 32 octal **** 
Operating system memory location 32 octal **** 

None 
**** DPS 8/70, 8/50, 8/52, 8/62: CI, SC and SCR generate an 
illegal condition that causes the history registers to be 
locked if mode register bit 31 = 1. No IPR fault occurs as 
the MME fault has higher priority. **** 

RPT, RPD, RPL 

Master Mode - ON 

1. If the safestore bypass flag in the option register 
1, a safestore frame is generated. The size of this 
safestore frame is determined by the type of the entry 
descriptor. The occurrence of the DRL fault is indicated 
in the safestore frame by a code of 00110 in bits 12-16 
of word 5. 

2. The wired-in CLIMB instruction functions as though the 
second word of the CLIMB instruction had the following 
characteristics: 

E = 0 No parameters. 
c18 O Do not load xo: 
c19 has no effect. Turn Master Mode indicator ON. 
c 22 23 = 00 Inward CLIMB. 
s,o nas no effect. 

3. The entry descriptor specifies a descriptor to be obtained 
from the linkage segment for loading into the instruction 
segment register {ISR). The entry descriptor also 
specifies the value to be loaded into the instruction 
counter (IC) . 

4. The processor is placed in Privileged Master mode for 
the execution of the wired-in CLIMB. Upon completion 
of the CLIMB, the processor remains in Privileged Master 
mode if flag bit 26 of the new ISR = 1 (privileged). 
Otherwise the processor changes to Master mode. 

7-153 DH03-01 



DTB 

OTB Decimal-to-Binary Convert 

FORMAT: 

0 1 1 1 1 Op Code 2 2 
7 8 

MF2 305 { 1) 
I I I 

0 0 0 1 1 2 2 22 2 

0---------0 

0 0 0 1 1 2 2 
7 8 0 1 

Y2 

I 
CN2 

I 
0------------------0 

Y2 

CODING FORMAT: The DTB instruction is coded as follows: 

1 

PROCESSOR K>DE: Any 

8 

DTB 
NDSCn 
NDSC9 

16 

(MFl) , (MF2) 
LOCSYM,CN,N,S,,AM 
LOCSYM ,CN ,N,, ,AM 

7-154 

DTB 

305 ( 1) 

2 3 
9 5 

MFl I 
2 3 3 3 
9 0 2 5 

I 
Nl 

I 00 Rl 

2 3 3 3 
9 0 2 5 

I 
N2 

00 R2 

DH03-0l 



OTB 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

OTB 

converted 
C(string 1) -----> C(string 2) 

The string of decimal characters of data type TNl, sign and 
decimal type Sl (Sl = 00 is illegal), and scale factor 0 
that starts at YCl is converted into a twos complement binary 
integer and stored, right-justified, as a character string 
of length L2 and starting at location YC2. If the string 
generated is longer than L2, the high-order excess is truncated 
and the Overflow indicator is set. CN2 is given in the 
9-bit character format with legal codes of 000, 010, 100, 
and 110. The length specified by L2 is given as the number 
of 9-bi t segments that make up the length of the binary 
number to be stored and is equal to or is less than 8. Thus 
the stored binary number can be 9, 18, 27, 36, 45, 54, 63, 
or 72 bits long. The contents of string 1 remain unchanged. 

DU, DL for MFl and MF2 

RPT, RPD, RPL 

Zero - If all the resultant bi ts generated are zero, 
then ON; otherwise, OFF 

Negative - If the resultant sign is negative, then ON; 
otherwise, OFF 

Overflow - If L2 is less than the number of 9-bit segments 
generated, then ON; otherwise, unchanged 

1. An Illegal Procedure fault occurs if DU or DL modifications 
are used for MFl or MF2, if L2 is less than 1 or greater 
than 8, if CN2 does not contain a legal code, if Sl = 
00, if illegal digit or sign is detected in string 1, 
or if Nl is not large enough to specify the number of 
characters required for the specified sign and/or 
exponent, plus at least one digit. 

2. ****DPS 8: If string 1 has the value -2**(9*L2-l), the 
result is zero and the overflow indicator is turned ON. 
**** 

3. If string 1 contains more than 22 significant digits, 
an incorrect result is produced and the Overflow indicator 
is turned ON. 

4. If the binary result is longer than L2 9-bit characters, 
the most significant nontruncated bit 

****DPS 8: is forced to agree with the result sign 
**** 
****DPS 88: may be different from the result sign **** 

7-155 DHOJ-01 



OTB 

EXAMPLES: 

1 

FLDl 
FLD2 

FLDl 
FLD2 

FDLl 
FLD2 

FLDl 
FLD2 

8 

DTB 
NDSC4 
NDSC9 
USE 
EDEC 
BSS 
USE 

DTB 
NDSC9 
NDSC9 
USE 
EDEC 
BSS 
USE 

OTB 
NDSC4 
NDSC9 
USE 
EDEC 
DEC 
USE 

OTB 
NDSC9 
NDSC9 
USE 
EDEC 
DEC 
USE 

16 

FLDl,3,5,2 
FLD2,0,4 
CONST. 
8Pl234-
l 

32 

decimal operand descriptor 
binary operand descriptor 
memory contents in octal 
0 0 0 0 0 1 0 4 3 1 1 5 
7 7 7 7 7 7 7 7 5 4 5 6 (Result) 
any indicators set? negative 

FLDl,0,22,3 decimal operand descriptor 
FLD2,0,8 binary operand descriptor 
CONST. memory contents 
22A2361183241434822606847 (maximum decimal value) 
2 377777777777777777777777 (Result) 

FLDl,3,3,3 
FLD2,2,2 
CONST. 
8P51200 
-1 

FLDl,0,4,3 
FLD2,3,l 
CONST. 
4Al023 
0 

any indicators set? none 

decimal operand descriptor 
binary operand descriptor 
memory contents in octal 
0 0 0 0 0 5 0 2 2 0 0 0 
7 7 7 7 7 7 0 0 1 0 0 0 
any indicators set? none 

decimal operand descriptor 
binary operand descriptor 
memory contents in octal 
0 6 1 0 6 0 0 6 2 0 6 3 
0 0 0 0 0 0 0 0 0 7 7 7 
any indicators set? overflow 

EXAMPLE WITH ADDRESS MODIFICATION: 

1 

FLDl 
FLD2 

8 

EAXO 
EAX2 
EAX7 
AWDX 
DTB 
ARG 
NDSC9 
TZE 
TM! 
TOV 
USE 
EDEC 
OCT 
NDSC4 
USE 

16 

0 
2 
FLD2 
0,7,4 
(,,1) ,(1,1,,0) 
1, I 4 
O,,X2,,,4 
*+3 
*+2 
*+l 
CONST. 
4PL-512 
111111 
FLDl,0,4,1 

32 

load FLO character modifier into XO 
load FLD2 length into X4 
load FLD2 address modifier into X7 
put FLD2 address modifier into AR4 
with modification 
pointer to FLDl indirect descriptor 
binary FLD2 descriptor (FLD2,0,2) 
zeros was the result 
negative result 
high-order bit truncated 
memory contents in octal 
3 2 5 0 2 2 0 0 0 0 0 0 
7 7 7 0 0 0 1 1 1 1 1 1 
decimal operand descriptor 
any indicators set? negative 

7-156 

DTB 

DH03-0l 



DUFA 

DUFA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NarES: 

Double-Precision Unnormalized Floating Add 

Single-word instruction format (see Figure 7-1) 

Any 

[C(EAQ) + C(Y-pair)] not normalized--> C(EAQ) 
C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

Exponent 

DUFA 

437 ( 0) 

Overflow ..... If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

Carry - If a carry out of bit 0 of C(AQ) is generated, 
then ON; otherwise, OFF 

1. When indicator bit 32=1 and the Hex Permission Flag = 
1, the floating point alignment is hexadecimal. 
Otherwise, the floating point alignment is binary. The 
Hex Permission Flag is: 

****DPS 8: 
****DPS 88: 

Mode register, bit 33 **** 
Option register, bit O ****. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-157 DH03-0l 



DUFM 

DUFM 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Double-Precision Unnormalized Floating Multiply 

Single-word instruction format (see Figure 7-1) 

Any 

[C(EAQ) * C(Y-pair)] not normalized--> C(EAQ) 
C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

zero - If C(AQ) = 0, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

Exponent 

DUFM 

423 (0) 

Overflow - If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

1. This multiplication is executed 1 i ke the DFMP instruction, 
with the exception that the final normalization is 
performed only in the case of both factor mantissas 
being= -1.00 ••• 0. 

2. Except for the precision of the mantissa of the operand 
from main memory, the DUFM instruction is identical to 
the UFM instruction. 

3. When indicator bit 32=1 and the Hex Permission Flag = 
1, the floating-point alignment and normalization are 
hexadecimal. Otherwise, the floating-point alignment 
and normalization are binary. The Hex Permission Flag 
is: 

****DPS 8: Mode register, bit 33 **** 
****DPS 88: Option register, bit 0 **** 

4. An Illegal Procedure fault occurs if illegal address 
mnni F; ,....~+-; "'P\ ; ~ u~-~ 
···-- ... - ... ""'"'6'-'.&......,11 ..a..t.J u~..::;::u • 

7-158 DH03-0l 



DUFS 

DUFS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Double-Precision Unnormalized Floating Subtract 

Single-word instruction format (see Figure 7-1) 

Any 

[C(EAQ) - C(Y-pair)] not normalized--> C(EAQ) 
C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

Exponent 

DUFS 

537 ( 0) 

Overflow - If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

Carry - If a carry out of bit 0 of C(AQ) is generated, 
then ON; otherwise, OFF 

1. When indicator bit 32=1 and the Hex Permission Flag = 
1, the floating-point alignment is hexadecimal. 
Otherwise, the floating-point alignment is binary. The 
Hex Permission Flag is: 

****DPS 8: 
****DPS 88: 

Mode register, bit 33 **** 
Option register, bit 0 **** 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-159 DH03-01 



DV2D DV2D 

DV2D Divide Using Two Decimal Operands 207 ( 1) 

FORMAT: 

0 0 0 1 1 1 1 Op Code 2 2 2 3 
0 1 9 0 1 7 8 7 8 9 5 

IPI o------------o IRDI MF2 I 207 ( 1) H MFl I 
0 
0 

I 
0 
0 

I 
CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS : 

NOTE: 

Yl 

Y2 

1 1 2 2 22 2 2 3 3 
7 8 0 l 23 4 9 0 5 

ICNl,TNlH SFl I Nl I 
1 1 2 2 22 2 2 3 3 
7 8 0 1 23 4 9 0 5 

jcN+N2H SF2 

I 
N2 I 

The DV2D instruction is coded as follows: 

1 8 16 

DV2D (MFl), (MF2) ,RD ,P 
NDSCn LOCSYM,CN,N,S,SF,AM 
NDSCn LOCSYM,CN,N,S,SF,AM 

Any 

C(string 2) 7 C(string 1) --> C(string 2) 

Same as for DV3D except that the quotient is stored using 
YC2, TN2, S2 and, if S2 indicates a scaled format, SF2. 

DU, DL for MFl and MF2 

RPT, RPO, RPL 

Same as for DV3D 

The notes of DV3D apply. 

7-160 DH03-0l 



DV2D DV2D 

EXAMPLES: 

1 8 16 32 

DV2D 
NDSC4 FLDl,4,4,2,-4 divisor operand descriptor 
NDSC4 FLD2,0,8,0 dividend operand descriptor 
USE CONST. memory contents 

F'LDl EDEC 8P2+ 0002+ 
FLD2 EDEC 8P+8642EO +08642 +O 

USE +43210 +3 (Quotient) 

DV2D , , l with rounding option 
NDSC9 FLDl,0,4,1,-3 divisor operand descriptor 
NDSC4 FLD2,0,8,l,-2 dividend operand descriptor 
USE CONST. memory contents 

FLDl EDEC 4A+5 + 005 
FLD2 EDEC 8P+l234 +0001234 

USE +0246800 (Quotient) 
* indicators on? none 

7-161 DH03-0l 



DV2DX DV2DX 

****DPS 88 ONLY**** 

DV2DX Divide Using Two Decimal Operands Extended 24 7 ( 1) 

FORMAT: 

0 0 0 0 1 1 1 1 Op Code 2 2 2 3 
0 1 2 9 0 1 

0 

0 

PROCESSOR K:>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

**** 

Yl 

Y2 

MF2 24 7 ( 1) MFl 

1 1 22 2 2 2 2 3 3 
7 8 0 1 2 3 4 9 0 

lcN1 ITNl lsx1I SFl 
I 

Nl 

1 1 2 2 2 2 2 2 3 3 
7 8 0 1 2 3 4 9 0 

lcN2 ITN2 lsx2 I SF2 
I N2 

Any 

C(string 2) + C(string 1) --> C(string 2) 

Same as for DV3DX except that the quotient is stored using 
YC2, TN2, SX2 and, if SX2 indicates a scaled format, SF2. 

DU, DL for MFl or MF2 

RPT, RPO, RPL 

Same as for DV3D 

1. Notes of DV3D apply. 

2. See MVNX for information about coding of overpunched 
signs. 

7-162 0803-01 



DV3D DV3D 

DV3D Divide Using Three Decimal Operands 227 (1) 

FORMAT: 

0 0 0 0 0 1 1 1 1 Op Code 2 2 2 3 
0 1 2 8 9 0 1 7 8 7 8 9 5 

1+1 MF3 HRDI MF2 I 227 ( 1) H MFl I 

0 1 1 2 2 22 2 2 3 3 
a 7 8 0 1 23 4 9 0 5 

I Yl ICNl,TNlH SFl I Nl 
I 

a 1 1 2 2 22 2 2 3 3 
0 7 8 0 1 23 4 9 a 5 

I Y2 ICN21TN+I SF2 I N2 I 
0 1 1 2 2 22 2 2 3 3 
0 1 a a 1 23 4 9 0 5 

I Y3 ICN3,TN3H SF3 I N3 I 
CODING FORMAT: The DV3D instruction is coded as follows: 

1 8 16 

DV3D (MFl) I (MF2) I {MF3) ,RD ,P 
NDSCn LOCSYM,CN,N,S,SF,AM 
NDSCn LOCSYM,CN,N,S,SF,AM 
NDSCn LOCSYM,CN,N,S,SF,AM 

PROCESSOR MODE: Any 

7-163 DH03-0l 



DV3D 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

DV3D 

C (string 2) -:- C (string 1) --> C (string 3) 

The decimal number of data type TNl, sign and decimal type 
Sl, and starting location YCl, is divided into the decimal 
number of data type TN2, sign and decimal type S2, and starting 
location YC2. The quotient is stored starting in location 
YC3 as a decimal number of data type TN3 and sign and decimal 
type S3. If S3 indicates a scaled format, the quotient is 
stored using scale factor SF3, which may cause leading or 
trailing zeros (4 bits - 0000, 9 bits - 000110000) to be 
supplied and/or most-significant-digit overflow or 
least-significant-digit truncation to occur. If 53 indicates 
a floating-point format, the quotient is right-justified to 
preserve the most significant nonzero-digits; this may cause 
least-significant-digit truncation. If P=l, positive signed 
4-bit results are stored using octal 13 as the plus sign. 
If P=O, positive signed 4-bit results are stored with octal 
14 as the, plus sign. If RD is a 1, the quotient is rounded 
prior to storage. The contents of the decimal numbers that 
start in locations YCl and YC2 remain unchanged. A Divide 
Check fault occurs under either of the following two conditions: 

1. If the divisor is equal to zero. The divisor is the 
number starting at YCl. 

2. If S 3 specifies that the quotient be stored in scaled 
format and the calculated length required for the quotient 
is greater than 63 (see Note 2). 

DU, DL for MFl, MF2, and MF3 

RPT, RPO, RPL 

Zero - If result equals zero, then ON; otherwise, OFF 

Negative - If result is negative, then ON; otherwise, OFF 

Exponent 
Overflow - If exponent of floating-point result is greater 

than 127, then ON; otherwise, unchanged 

Exponent 
Underflow - If exponent of floating-point result is less than 

-128, then ON; otherwise, unchanged 

Overflow - If fixP.d-point integer ov~~rflow, then ON; 
otherwise, unchanged 

****DPS 8: If internal r;•qi.ster overflow then 
ON; otherwise, unchanged **** 

7-164 DH03-01 



DV3D 

NOTES: 1. 

DV3D 

The divide operation stops when the number of required 
digits have been formed or, in the case where rounding 
is specified (RD= 1), when the required number of quotient 
digits plus 1 have been formed. In fixed-point operations 
or floating-point operations where the quotient is stored 
in fixed-point format, the required number of quotient 
digits is determined as described in Note 2. In 
floating-point operations the required number of quotient 
digits is determined as described in Note 3. 

2. When the quotient descriptor specifies that the quotient 
is to be stored in scaled format, the necessary number 
of quotient digits to form is calculated as follows: 

#QD = (LD-#LZD+l)-(LDR-#LZR}+(ED-EDR-EQ) 

where: 

#QD number of quotient digits to form 

LD length of dividend 

#LZD number of leading zeros in dividend 

LDR length of divisor 

#LZR number of leading zeros in divisor 

ED = exponent of dividend 

EDR = exponent of divisor 

EQ = scale factor for quotient 

The hardware performs this calculation prior to beginning 
the divide operation and, if #QD > 63, the divide operation 
does not take place; a Divide Check fault occurs. 

****DPS 88: If #QD20, then zero is stored **** 

3. ****DPS 8/70, 8/20, 8/44: In a floating-point divide 
operation with the divisor greater than the dividend, a 
leading zero is generated in the quotient. The leading 
zero counts as one of the generated output digits. For 
example, if 4-digit output accuracy is specified and 
the above relationship exists between the divisor and 
the dividend, only 3-digit accuracy will be attained. 
Under this condition, it would be necessary to specify 
a 5-digit output to achieve 4-digit accuracy.**** 

****DPS 88: In a floating-point divide operation with 
the divisor greater than the dividend, the algorithm 
generates a leading zero in the quotient. This 
characteristic of the algorithm is taken into account 
along with rounding requirements when determining the 
required number of digits for the quotient, so that the 
resulting quotient contains as many significant digits 
as specified by the quotient descriptor.**** 

7-165 DH03-01 



DV3D 

EXAMPLE: 

1 

FLDl 
FLD2 
FLD3 

8 

DV3D 
NDSC9 
NDSC4 
NDSC4 
USE 
EDEC 
EDEC 
BSS 
USE 

4. 

DV3D 

An Illegal Procedure fault occurs if: 

a. DU or DL modification is specified for MFl or MF2. 

b. Any character (least four bits) other than 0000 -
1001 is detected where digits are defined, or any 
character (least four bits) other than 1010 - 1111 
is detected where the sign is defined by the numeric 
descriptor. 

c. The values for the number of characters (Nl or N2) 
of the data descriptors are not large enough to 
hold the number of characters required for the 
specified sign and/or exponent, plus at least one 
digit. 

5. ****DPS 88: If an illegal digit or sign is detected, 
part or all of the receive field may be changed before 
the IPR fault occurs.**** 

****DPS 8: If an illegal digit or sign is detected, 
the receive field is not changed before the IPR fault 
occurs.**** 

16 

,,,1,1 
FLDl,1,3,2,-2 
FLD2,0,9,0 
FL D 3 , 2 , 6 I 1 , - 1 
CONST. 
4A2-
9P-876543E-3 
1 

32 

with rounding and plus sign options 
divisor operand descriptor 
dividend operand descriptor 
quotient operand descriptor 
memory contents 
002-
-876543-3 
xx+38272 (Quotient) 
instruction fault? overflow 

EXAMPLE WITH ADDRESS MODIFICATION: 

1 

FLDl 
FLD2 
FLD3 

8 

EAX2 
EAX7 
EAX4 
AWDX 
DV3D 
NDSC9 
NDSC9 
ARG 
USE 
EDEC 
EDEC 
BSS 
NDSC4 
USE 

16 32 

2 load character modifier into X2 
8 load FLD2 length into X7 
FLDl load FLDl address into X4 
0,4,4 put FLDl address into AR4 
(1,,,2} ,(,l} ,(,,1) ,l,l with address modification options 
0,0,2,3,-2,4 divisor operand descriptor {FLDl,2,2,3,-2) 
FLD2,0,X7,0 dividend operand descriptor (FLD2,0,8,0) 
2,2,4 pointer to quotient operand descriptor 
CONST. memory contents 
4A2 0002 
8A+876543E-3 +876543-3 
1 x+438272 
FLD3,l,7,l,-l quotient operand descriptor 

instruction fault? none 

7-166 DH03-01 



DV3DX DV3DX 

****DPS 88 ONLY**** 

DV3DX Divide Using Three Decimal Operands Extended 267 ( 1) 

FORMAT: 

0 0 0 0 0 1 1 1 1 Op Code 2 2 2 3 
0 1 2 8 9 0 1 7 8 7 8 9 5 

HNsl MF3 HRDI MF2 I 267 ( 1) H MFl I 

0 1 1 2 2 2 2 2 2 3 3 
0 7 8 0 1 2 3 4 9 0 5 

I Yl lcN+N1lsx1I SFl I Nl I 

0 1 1 2 2 2 2 2 2 3 3 
0 7 8 0 1 2 3 4 9 0 5 

I Y2 1CN+N2lsx2I SF2 I N2 I 

0 1 1 2 2 2 2 2 2 3 3 
Q 7 8 Q 1 2 3 4 9 0 5 

I Y3 ICN3 ITN3 ISX3 I SF3 
I 

N3 I 

PROCESSOR MODE: Any 

7-167 DH03-0l 



DV3DX 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NC1I'ES: 

**** 

DV3DX 

C(string 2) 7 C(string 1) --> C(string 3) 

The decimal number of data type TNl, sign and decimal type 
SXl, and starting location YCl, is divided into the decimal 
number of data type TN2, sign and decimal type SX2, and 
starting location YC2. The quotient is stored starting in 
location YC3 as a decimal number of data type TN3 and sign 
and decimal type SX3. If SX3 indicates a scaled format, the 
quotient is stored using scale factor SF3, which may cause 
leading or trailing zeros (4 bits - 0000, 9 bits - 000110000) 
to be supplied and/or most-significant-digit overflow or 
1 east-significant-digit truncation to occur. If SX3 indicates 
a floating-point format, the quotient is right-justified to 
preserve the most significant nonzero digits; this may cause 
least-significant-digit truncation. The character set is 
defined by EA. Placement of overpunched sign in the output 
is controlled by NS. If RD is a 1, the quotient is rounded 
prior to storage. The contents of the decimal numbers that 
start in locations YCl and YC2 remain unchanged. A divide 
check fault occurs under either of the following two conditions: 

1. If the divisor is equal to zero. The divisor is the 
number starting at YCl. 

2. If SX3 specifies that the quotient be stored in scaled 
format and the calculated length required for the quotient 
is greater than 63 (see Note 2 of DV3D). 

DU, DL for MFl, MF2, or MF3 

RPT I RPD, RPL 

Same as for DV3D. 

1. Notes of DV3D apply. 

2. See MVNX for information about coding of overpunched 
signs. 

7-168 DH03-0l 



DVF 

DVF 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

f Divide Fraction 

Single-word instruction format {see Figure 

Any 

C(AQ) + C(Y) 

.,_,' , .. , 

fractional quotient--> C(A), left adjusted 
fractional remainder--> C(Q), left adjusted 
C(Y) unchanged 

None 

None 

If division takes place: 

Zero - If C(A) = 0, then ON; otherwise, OFF 

Negative - If C(A) 0 = 1, then ON; otherwise, OFF 

If no division takes place: 

Zero - If divisor = O, then ON; otherwise, OFF 

DVF 

50 7 { 0) 

Negative - If dividend < O, then ON; otherwise, OFF 

7-169 DH03-01 



DVF 

NOTE: 

DVF 

This instruction divides a 71-bit fractional dividend 
(including sign) by a 36-bit fractional divisor (including 
sign) to form a 36-bit fractio~al quotient (including sign) 
and a 36-bit fractional remainder (including sign). Bit 35 
of the remainder corresponds to bit 70 of the dividend. The 
remainder sign is equal to the dividend sign unless the remainder 
is zero. Bit 71 of C(AQ) is not used. 

0 0 7 7 
0 1 0 1 

Is I dividend I xi 
C (AQ) 

0 0 3 
0 1 5 

I s 
I 

divisor I 
C (Y) 

yielding: 

0 0 3 0 0 3 
0 1 5 0 1 5 

Is I quotient I Is I remainder I 
C (A) c (Q) 

If ldividendl >= jdivisorl or if the divisor = 0, division 
does not take place. Instead, a Divide Check fault occurs, 
C(Y) remains unchanged, C(AQ) contains the dividend magnitude 
in absolute, and the Negative indicator reflects the dividend 
sign. 

7-170 DH03-0l 



EAA 

EAA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EAA 

· Effective Address to A-Register 635 ( 0) 

Single-word instruction format (see Figure 7-1) 

Any 

Y --> C(A) 0_ 17 ; 0 ••• 0 --> C(A) 18_35 ; C(Y) unchanged 

DU, DL 

RPL 

zero - If C(A) = O, then ON; otherwise, OFF 

Negative - If C(A) 0 = 1, then ON; otherwise, OFF 

1. This instruction facilitates inter-register data 
movement; the data source is specified by the address 
modification and the data destination by the operation 
code of the instruction. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-171 0803-01 



EAQ 

EAQ 

FORMAT: 

PROCESSOR_ MODE : 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS : 

INDICATORS: 

NCYI'ES: 

EAQ 

Effective Address to Q-Register 636 ( 0} 

Single-word instruction format (see Figure 7-1) 

Any 

Y --> C(Q) 0_ 17 ; 0 ••• 0 --> C(Q) 18_35 ; C(Y) unchanged 

DU, DL 

RPL 

zero - If C(Q) = 0, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON; otherwise, OFF 

1. This instruction facilitates inter-register data 
movement; the data source is specified by the address 
modification and the data destination by the operation 
code of the instruction. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-172 DH03-01 



EAXn 

EAXn -

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IN DI CA TORS : 

NOTES: 

Effective Address to Index Register .!! 

Single-word instruction format {see Figure 7-1) 

Any 

For n = 0,1 ••• or 7 as determined by opcode 
Y --> C(X_!!); C(Y) unchanged 

DU, DL 

RPL 
RPT or RPO of EAXO cause IPR fault. 

zero - If C(X_!!) = O, then ON; otherwise, OFF 

Negative - If C{X_!!)o = 1, then ON; otherwise, OFF 

EAXn 

62n (0) 

1. This instruction facilitates inter-register data 
movement; the data source is specified by the address 
modification and the data destination by the operation 
code of the instruction. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-173 DH03-0l 



EPA'r 

EPAT 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EPAT 

Effective Pointer and Address to Test 412 ( 1) 

Single-word instruction format {see Figure 7-1) 

Any 

****DPS 8: 000 --> C(test register 0) 0_ 2 

Real memory address--> C(test register 0) 3_ 26 

Effective working space number--> C(test register 0) 27 _ 35 

Relative virtual address--> C(test register 1) 0_ 35 · 

C(Descriptor register {effective)) --> C(test registers 2 
and 3)**** 

****DPS 88: 0 --> C(test register) 0 

Real Memory Address--> C(test register) 1_ 26 

Effective WSN --> C(test register) 27 _ 35 

virtual Address 27 _42 --> C(test register) 36 _71 **** 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. This instruction provides the capability to test the 
real address preparation. All address preparation takes 
place in the normal sequence and the results are entered 
in the four special test registers instead of accessing 
memory. Ref er to the STTA and STTD instructions for 
information concerning the special test registers. 

****DPS 88: The EPAT instruction ignores the contents 
of the paging buffer and accesses the PTDW from memory.**** 

2. Modifications DU, DL, CI, SC, SCR, and illegal repeats 
RPT, RPO, RPL cause an IPR fault. 

3. ****DPS 88: The EPAT instruction has two functions. 
It can be used with the STTA instruction. to test the 
address preparation and hardware in the processor. It 
can also be used for forming virtual addresses for the 
LDAT instruction. Both STTA and LDAT are privileged 
instructions.**** 

7-174 DH03-0l 



EPAT 

4. ****DPS 88: If WSN 
undefined.**** 

EPAT 

O, C(test register) 1_ 26 is 

5. **** DPS 8: An IPR fault occurs if the descriptor type 
is not O, 2, 4, or 6. **** 

6. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-175 DH03-0l 



EPP Rn 

EPP Rn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EPP Rn 

Effective Pointer to Pointer Register E 63_!! (1) 

Single-word instruction format (see Figure 7-1) 

Any 

If instruction bit 29 0 then 

SEGID(IS) --> SEGIDn 

C(ISR) --> C(DRn) 

IF instruction bit 29 
farming EA then 

1 and indirection is not used in 

EA--> C(ARn) 0_ 23 

****DPS 88: IF EA 20 _ 23 > 8 then 8 --> C(ARn) 20 _ 23 **** 

SEGIDm --> SEGIDn 

c (DRm) --> DRn 
m is selected by instruction bits 0,1,2 

IF instruction bit 29 = 1 and indirection is used in forming 
EA then 

EAo-17 --> C(ARn)0-17 

o •• o --> C(ARn>1a-23 

SEGIDm --> SEGIDn 

C (DRm) --> DRn 

DU, DL, CI, SC, SCR 

RPT I RPO, RPL 

None affected 

1. This set of eight instructions provides the capability 
of generating an effective pointer and storing it in a 
pointer register {a collective term referring to ARn, 
SEGIDn, and DRn). 

2. Modifications DU, DL, CI, SC, SCR, and illegal repeats 
RPT, RPD, RPL cause an IPR fault. 

7-176 DH03-01 



EPP Rn 

EXAMPLES: 

l 

NSGCHK 

UNOO 

8 

XED 
TZE 
LDA 
CANA 
TNZ 
LDP 
LDD 
EPPR 
TRA 

EQU 
.CALL 
INHIB 
EPP RO 
TRA 
ZERO 
INHIB 

16 

.CRNSG, ,P .CR 
NSGOK 
.CRGID, 7*, P .CR 
=03000,DL 
SHSYS 
PO, .SSR,DL 
PO, • WISR, , PO 
PO,O,AU,PO 
SHSYS+2 

* 
.MSWAP, 4 
SAVE,ON 
*+3,$ 
.CRCAL I, p .CR 
.MSWAP, 4 
RESTORE 

EPP Rn 

32 

test shut gates 
no 
get shut pointer 
is it system 
yes 
no, user 

get gate painter 

*if enabled, go unswap it 

sets return address 

7-177 DH03-0l 



ERA 

ERA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

EXAMPLE: 

I . EXCLUSIVE OR to A-Register 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 35, C(A)i XOR C(Y)i --> C(A)i; 
C(Y) unchanged 

None 

None 

zero - If C(A) = O, then ON; otherwise, OFF 

Negative - If C(A)o = 1, then ON; otherwise, OFF 

l 8 16 

LOA FLIP 
ERA FLOP 
ERSA FLIP 
ERSA FLOP 

i-178 

ERA 

675 (0) 

DH03-0l 



ERAQ 

ERAQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

EXCLUSIVE CR to AQ-Register 

Single-word instruction format (see Figure ?-1) 

Any 

For i = 0 to 71, C(AQ)i XOR C(Y-pair)i --> C(AQ)i; 
C(Y-pair) unchanged 

DU, DL, Cl, SC, SCR 

None 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

ERAQ 

677 (0) 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-179 DH03-0l 



ERQ 

ERQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

EXCLUSIVE OR to Q-Register 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 35, C(Q)i XOR C(Y)i --> C(Q)i; 
C(Y) unchanged 

None 

None 

zero - If C(Q) = O, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON; otherwise, OFF 

7-180 

ERQ 

676 (0) 

DH03-0l 



ERSA 

ERSA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

. EXCLUSIVE OR to Storage with A-Register 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 35, C(A)i XOR C(Y)i --> C(Y)i; 
C(A) unchanged 

DU, DL, CI, SC, SCR 

RPL 

zero - If C(Y) = O, then ON; otherwise, OFF 

Negative - If C(Y) 0 = 1, then ON; otherwise, OFF 

ERSA 

655 (0) 

An Illegal Procedure fault occurs if illegal address 
modification is used~ 

7-181 DH03-0l 



ERSQ 

ERSQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

EXAMPLE: 

EXCLUSIVE OR to Storage with Q-Register 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 35, C(Q)i XOR C(Y)i --> C(Y)i; 
C(Q) unchanged 

DU, DL, CI, SC, SCR 

RPL 

zero - If C(Y) = O, then ON; otherwise, OFF 

Negative - If C(Y)o = 1, then ON; otherwise, OFF 

ERSQ 

656 ( 0) 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

1 8 

LDQ 
ERSQ 

16 

=l,DL 
FLAG 

7-182 DH03-0l 



ERSXn 

ERSXn -

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

EXCLUSIVE OR to Storage with Index Register n 

Single-word instruction format (see Figure 7-1) 

Any 

For n = 0,1, ••• ,7 as determined by op code 
For i = 0 to 17, C(Xn)i XOR C(Y)i --> C(Y)i; 
C(Xn) and C(Y) 18_ 35 unchanged 

DU, DL, CI, SC, SCR 

RPL 
RPT or RPD of ERS XO 

ERSXn 

64n (0) -

Zero - If C(Y) 0_17 = 0, then ON; otherwise, OFF 

Negative - If C(Y) 0 = 1, then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-183 DH03-0l 



ERXn 

ERXn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NOTES: 

E XCL US IVE OR to Index Register E 

Single-word instruction format (see Figure 7-1) 

Any 

For n=O,l, ••• , or 7 as determined by op code 
For i = 0 to 17, C(Xn)i XOR C(Y)i --> C(Xn)i; 
C(Y) unchanged 

CI, SC, SCR 

RPT, RPO, RPL of ERXO 

zero - If C(XE) = O, then ON; otherwise, OFF 

Negative - If C(XE)o = 1, then ON: otherwise, OFF 

ERXn 

66n (0) 

1. DL modification is flagged illegal but executes with 
all zeros for data. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-184 DH03-0l 



FAD 

FAD 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

FAD 

1 · Floating Add 4 75 ( 0) 

Single-word instruction format (see Figure 7-1) 

Any 

[C(EAQ) + C(Y)] normalized--> C(EAQ); C(Y} unchanged 

CI, SC, SCR 

None 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

Exponent 
Overflow - If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

Carry - If a carry out of bit 0 of C(AQ) is generated, 
then ON; otherwise, OFF 

1. When indicator bit 32 = 1 and the Hex Permission Flag = 
1, the floating-point alignment and normalization are 
hexadecimal. Otherwise, the floating-point alignment 
and normalization are binary. The Hex Permission Flag 
is: 

****DPS 8: Mode register, bit 33 **** 
****DPS 88: Option register, bit 0 **** 

2. See the FNO instruction for a definition of normalization. 

3. An Illegal Procedure' fault occurs if illegal address 
modification is used. 

7-185 DH03-0l 



FCMG 

FCMG 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS : 

NOTES: 

FCMG 

Floating Compare Magnitude 425 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

IC (E ,AQ0_27 ) I : : jc (Y) I; magnitude comparison; 
C(EAQ), C(Y) unchanged. 

CI, SC, SCR 

None 

zero 

0 

1 

0 

1. 

Neg. Relation 

0 ICCE,AQ0_27 1 > I c (Y) I 
0 jC(E,AQ0-271 I c (Y) I 
1 I c (E ,A00021 I < IC (Y) I 

This comparison is executed as follows: 

a. Compare C (E) . • C (Y) 0_7 , select the number with 
the lower exponent, and shift its mantissa right 
by the number of places (binary or hex) determined 
by the difference of the exponents. If the number 
of shifts equals or exceeds 72, the number with 
the lower exponent is defined as zero. 

****DPS 8/20 and 8/44: If the number of shifts 
equals or exceeds 72 and if IC (E,AQ0_27 ) I < IC (Y) I the 
processor fails to turn on the Negative indicator 
**** 

b. Compare the absolute values of the mantissas and 
set the indicators accordingly. 

2. The FCMG instruction is identical to the FCMP instruction 
except that the magnitudes of the mantissas are compared 
instead of the algebraic values. 

3. When indicator bit 32 = 1 and the Hex Permission Flag = 
1 the floating-point alignment is hexadecimal. Otherwise, 
the floating-point alignment is binary. The Hex 
Permission Flag is: 

****DPS 8: Mode register, bit 33 **** 
****DPS 88: Option register, bit 0 **** 

4 • An I 11 egal P roced ur e fault occurs if il 1 egal address 
modification is used. 

7-186 DH03-0l 



FCMP 

FCt-1..P 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

FCMP 

Floating Compare 515 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(E,AQ0_27 ):: C(Y); algebraic comparison 

CI, SC, SCR 

None 

zero 

0 

1 

0 

1. 

Neg. Relation 

0 C (E,AQ0_ 27 ) > C (Y) 

0 C (E ,AQ0_ 27 ) C (Y) 

1 C (E, AQ0_ 27 ) < C (Y) 

This comparison is executed as follows: 

a. Compare C (E) . • C (Y) 
0

_
7

, select the number with 
the lower exponent, and shift its mantissa right 
by the number of places {binary or hex) determined 
by the difference of the exponents. If the number 
of shifts equals or exceeds 72, the number with 
the lower exponent is defined as zero. 

b. Compare the mantissas and set the indicators 
accordingly. 

2. When indicator bit 32 = 1 and the Hex Permission Flag = 
1, the floating-point alignment is hexadecimal. 
Otherwise, the floating-point alignment is binary. The 
Hex Permission Flag is: 

****DPS 8: 
****DPS 88: 

Mode register, bit 33 **** 
Option register, bit 0 **** 

3. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-187 DH03-01 



FDI 

FDI 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

FD! 

I Floating Divide Inverted 525 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C (Y) C(EAQ) --> C(EA); 00 ••• 0 --> C(Q) 

CI, SC, SCR 

None 

INDICATORS: If division occurs: If no division occurs: 

NOTES: 

zero - If C(A) = O, then ON; If divisor mantissa = O, 
then ON; otherwise, OFF otherwise, OFF 

Negative - If C(A) 0 = 1, then 
ON; otherwise, OFF 

If dividend < O, then 
ON; otherwise, OFF 

Exponent 
Overflow - If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

1. If the divisor mantissa C (AQ) is zero, the division 
does not take place. Instead, a Divide Check fault 
occurs and all registers remain unchanged. 

2. ****DPS 88: Dividend and divisor are normalized by the 
hardware prior to division **** 

****DPS 8: Dividend and divisor are not normalized by 
the hardware prior to division **** 

3. ****DPS 8: If A028 _71 1 o and A0 = o, then 1 is added 
to A0 27 . O -->. A928 _71 unc.ondi tionally •. .Ao0_27 is then 
used as the d1v1sor mantissa. The d1v1dena exponent 
and mantissa are placed in working registers (8 and 72 
bits, respectively). 

The dividend mantissa is shifted right and the dividend 
exponent is increased accordingly until 

!Dividend mantissa I < ICCAOo-2 7>. 
When such a shift occurs, only zeros from the dividend 
will be lost. **** 

7-188 DH03-0l 



FD! 

4. ****DPS 88: 
**** 

****DPS 8: 
**** 

FD! 

C(AQ) 0_71 is used as the divisor mantissa 

C (AQ) 0_27 is used as the divisor mantissa 

5~ 36 bits of quotient mantissa are placed in A. 

6. When indicator bit 32 = 1 and the Hex Permission Flag = 
1, the floating-point alignment and normalization are 
hexadecimal. Otherwise, the floating-point alignment 
and normalization are binary. The Hex Permission Flag 
is: 

****DPS 8: Mode register, bit 33 **** 
****DPS 88: Option register, bit O **** 

7. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-189 DH03-01 



FDV 

FDV 

FORMAT: 

PROCESSOR K>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

FDV 

Floating Divide 565 ( 0) 

Single-word instruction format (see Figure 7-1) 

Any 

C (EAQ) C(Y) --> C(EA); 00 ••• 0 --> C(Q); C(Y) unchanged 

CI, SC, SCR 

None 

INDICATORS: If division occurs: If no division occurs: 

NOO'ES: 

zero - If C(A) = o, then ON; If divisor mantissa = O, 
then ON; otherwise, OFF otherwise, OFF 

Negative - If C(A) 0 = 1, then 
ON; otherwise, OFF 

If dividend < O, then 
ON; otherwise, OFF 

Exponent 
Overflow - If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

1. If the divisor mantissa (bits 8-35 of C(Y)) is zero, 
the di vision does not take place. Instead, a Divide 
Check fault occurs. The divisor C(Y) remains unchanged, 
C (AQ) contains the dividend.- s magnitude in absolute, 
and the Negative indicator reflects the dividend~s sign. 

2. ****DPS 8: This division is executed as follows: 

The dividend mantissa C (AQ) is shifted right and the 
dividend exponent C(E) is increased accordingly until 

IC(AQ) 0_71 1 < IC(Y-pair) 8_35 with zero fill I. 
When such a shift occurs, significant bits from the 
dividend may be lost. **** 

3. ****DPS 88: Dividend and divisor are normalized by the 
hardware prior to division **** 

4. ****DPS 8: Dividend and divisor are not normalized by 
the hardware prior to division **** 

7-190 DH03-01 



FDV FDV 

5. ****DPS 88: C(AQ) 0_71 is used by this instruction **** 

6. 36 bits of quotient mantissa are placed in A. 

7. When indicator bit 32 = 1 and the Hex Permission Flag= 
1, the floating-point alignment and normalization are 
hexadecimal. Otherwise, the floating-point alignment 
and normalization are binary. The Hex Permission Flag 
is: 

****DPS 8: Mode register, bit 33 **** 
****DPS 88: Option register, bit O **** 

8. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-191 DH03-0l 



FLO 

FORMAT: 

PROCESSOR K>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NOTE: 

·Floating Load 

Single-word instruction format (see Figure 7-1) 

Any 

C (Y) O-? --> C (E) 

C(Y>a-35 --> C(AO>o-27 

00 •• 0 --> C(AQ) 28_17 

CI, SC, SCR 

None 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AO)o = 1, then ON; otherwise, OFF 

FLO 

431 (0) I 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-192 DH03-0l 



FMP 

FMP 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

FMP 

Floating Multiply 461 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

[C(EAQ) * C(Y)] normalized--> C(EAQ); C(Y) unchanged 

CI, SC, SCR 

None 

Zero - If C (AQ) = 0, then ON; otherwise, OFF 

Negative - If C (AQ) O = 1, then ON; otherwise, OFF 

Exponent 
Overflow - If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

1. This multiplication is executed as follows: 

C(E) + C(Y) 0 _ 7 --> C(E) 

C(AQ) * C(Y) 8_35 resul~s in a 98-bit product plus 
sign, the leading 71 bits plus sign of which --> 
C (AQ) • 

C(EAQ) normalized--> C(EAQ). 

2. The definition of normalization is located under the 
description of the FNO instruction. 

3. When indicator bit 32 = 1 and the Hex Permission Flag = 
1, the floating-point alignment and normalization are 
hexadecimal. Otherwise, the floating-point alignment 
and normalization are binary. The Hex Permission Flag 
is: 

****DPS 8: 
****DPS 88: 

Mode register, bit 33 **** 
Option register, bit O **** 

4. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-193 DH03-0l 



FNEG 

FNEG 

FORMAT: 

PROCESSOR K>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS : 

NOTES: 

Floating Negate 

Single-word instruction format (see Figure 7-1) 

Any 

-C (EAQ) normalized--> C(EAQ) 

None 

RPL 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

Exponent 

FNEG 

513 ( 0) 

Overflow If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

1. This instruction changes the number in C (EAQ) to its 
normalized negative (if C (AQ) # 0). The operation is 
executed by first forming the twos complement of C(AQ), 
and then normalizing C(EAQ). 

2. Even if C (EAQ) is already normalized, an exponent overflow 
can still occur, namely when C (E) = +127 and C (AQ) = 
100 ••• o which is the twos complement representation for 
the decimal value -1.0. 

3. The definition of normalization is located under the 
description of the FNO instruction. 

4. When indicator bit 32 = 1 and the Hex Permission Flag = 
1, the floating-point alignment and normaliz@ation are 
hexadecimal. Otherwise, the floating-point alignment 
and normalization are binary~ The Hex Permission Flag 
is: 

****DPS 8: Mode reaister. bit 33 **** 
****DPS 88: Option-register, bit 0 **** 

7-194 DH03-0l 



FNO 

FNO 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

FNO 

I Floating Normalize 573 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(EAQ) normalized--> C(EAQ} 

None 

RPL 

zero - If C(AQ} = 0, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

Exponent 
Overflow - If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

Overflow - Set OFF 

1. The instruction normalizes the number in C (EAQ). If 
the Overflow indicator is ON, then the number in EAQ is 
normalized one place to the right; the sign bit 0 of 
C(AQ) is then inverted to reconstitute the actual sign. 
The Overflow indicator is set OFF. 

This instruction can be used to correct overflows that 
occur with fixed-point numbers: 

1 8 16 

TOV l,IC 
LDAQ M 
ADAQ N 
LOE =71B25,DU 
FNO 

will normalize C(M-pair} + C(N-pair) correctly, whether 
or not the addition caused an overflow (assuming overflow 
masked or successful recovery from Overflow fault). 

7-195 DH03-01 



FNO 

2. 

3. 

4. 

5. 

6. 

FNO 

A normalized floating binary number is defined as one 
whose mantissa lies in the interval (0.5, 1.0) such 
that 

0. 5 2 I c (AQ) I < 1. 0 
which, in turn, requires that C(AQ) 0 # C(AQ) 1 

A normalized floating hexadecimal number is defined as 
one whose mantissa lies in the interval (0.0625,1.0) 
such that 

0.0625 2 IC(AQ) I < 1.0 
which, in turn, requires that 

~f C(AQ) 0 = O, then C(AQ) 1_4 1 0000, and 
lf C(AQ)o = 1, then C(AQ)l-4 # 1111 

Normalization is performed by shifting C(AQ)l-jl to the 
left (one place if binary, four places if hex) and reducing 
C(E) by 1, repeatedly, until the conditions for C(AQ) 0 and C'(AQ) 1 or C (AQ) 1_ 4 are met. Bits shifted out of 
AQ1 are lost. 

If C (AQ) =o, then C (E) is set to -128 and the zero indicator 
is set ON. 

When indicator bit 32 = 1 and the Hex Permission Flag = 
1, the floating-point alignment and normalization are 
hexadecimal. Otherwise, the floating-point alignment 
and normalization are binary. The Hex Permission Flag 
is: 

****DPS 8: Mode register, bit 33 **** 
****DPS 88: Option register, bit 0 **** 

7-196 0803-01 



FRD 

FRD 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NarEs: 

FRD 

·Floating Round 471 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(EAQ) rounded to 28 mantissa bits and normalized--> C(EAQ) 

None 

RPL 

Zero - If C(AQ) =zero, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

Exponent 
Overflow - If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

1. This instruction performs a true round of C (EAQ) to a 
precision of 28 bits in C (AQ). The result is then 
normalized and restored to the EAQ registers. A true 
round means that the same rounding operation applied to 
a number of the same magnitude and with an opposite 
sign would result in a sum of the two rounded numbers 
of exactly zero. 

The rounding operation is performed as follows: 

a. A constant (all ls) is added to bits 29-71 of the 
mantissa. 

b. If the number being rounded is positive, a carry 
is inserted into the least significant bit position 
of the adder. 

c. If the number being rounded is negative, the carry 
is not inserted. 

d. Bits 28-71 of C(AQ) are replaced by zeros. 

7-197 DH03-0l 



FRO 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

FRD 

If the mantissa overflows upon rounding, it is shifted 
right one place and a corresponding correction is made 
to the exponent. 

If the mantissa does not overflow and is nonzero upon 
rounding, normalization is performed. 

If the resultant mantissa is all zeros, the exponent is 
forced to -128 and the Zero indicator is set. 

If the exponent resulting from the operation is greater 
than +127, the Exponent Overflow indicator is set. 

If the exponent resulting from the operation is less 
than -128, the Exponent Underflow indicator is set. 

The definition of normalization is located under the 
description of the FNO instruction. 

When indicator bit 32 = 1 and the Hex Permission Flag = 
1, the floating-point alignment and normalization are 
hexadecimal. Otherwise, the floating-point alignment 
and normalization are binary. The Hex Permission Flag 
is: 

****DPS 8: 
****DPS 88: 

Mode register, bit 33 **** 
Option register, bit 0 **** 

7-198 DH03-0l 



FSB 

FSB 

FORMAT: 

PROCESSOR M:>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

FSB 

Floating Subtract 575 ( 0) 

Single-word instruction format (see Figure 7-1) 

Any 

[C(EAQ) - C(Y)] normalized--> C(EAQ); C(Y) unchanged 

CI, SC, SCR 

None 

Zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

Exponent 
Overflow - If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

Carry - If a carry out of bit O of C(AQ) is generated, 
then ON; otherwise, OFF 

1. The definition of normalization is located under the 
description of the FNO instruction. 

2. When indicator bit 32 = 1 and the Hex Permission Flag = 
1, the floating-point alignment and normalization are 
hexadecimal. Otherwise, the floating-point alignment 
and normalization are binary. The Hex Permission Flag 
is: 

****DPS 8: 
****DPS 88: 

Mode register, bit 33 **** 
Option.register, bit 0 **** 

3. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-199 DH03-0l 



FST 

FST 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

FST 

Floating Store 455 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(E) --> C(Y) 0 _ 7 
C(A>o-21 --> C(Y>a-35 
C(E), C(A) unchanged 

DU, DL, CI, SC, SCR 

RPL 

None affected 

An Illegal Procedure fault occurs 
modification is used. 

7-200 

• i: 
11.. illegal address 

DH03-01 



FSTR 

FSTR 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NOI'ES: 

FSTR 

Floating Store Rounded 4 70 ( 0) 

Single-word instruction format (see Figure 7-1} 

Any 

C(EAQ) rounded and normalized--> C(Y); C(EAQ) unchanged 

DU, DL, CI, SC, SCR 

RPL 

zero - If C (Y) 
OFF 

floating-point zero, then ON; otherwise, 

Negative - If C(Y) 8 1, then ON; otherwise, OFF 

Exponent 
Overflow - If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

1. This instruction performs a true round of C(EAQ) to a 
precision of 28 bits in C(AQ). The result is then 
normalized and stored in Y. A true round means that 
the same rounding operation applied to a number of the 
same magnitude and opposite sign would result in a sum 
of the two rounded numbers of exactly zero. 

2. Upon completion of the rounding and normalization, the 
exponent and truncated mantissa are stored as follows: 

Exponent in bits 0-7 of C(Y) 
Bits 0-27 of mantissa in bits 8-35 of C(Y) 

If the resultant mantissa bits 0-27 are all zero, the 
exponent is forced to -128 and the zero indicator is 
set (floating-point zero). 

3. The rounding, then normalization operation of this 
instruction is identical with FRO. 

4. The definition of normalization is located under the 
description of the FNO instruction. 

7-201 DH03-0l 



FSTR 

5. 

FSTR 

When indicator bit 32 = 1 and the Hex Permission Flag = 
1, the floating-point alignment and normalization are 
hexadecimal. Otherwise, the floating-point alignment 
and normalization are binary. The Hex Permission Flag 
is: 

****DPS 8: Mode register, bit 33 **** 
****DPS 88: Option register, bit O **** 

6. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-202 DH03-0l 



FSZN 

FSZN 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

FSZN 

Floating Set zero and Negative Indicators from 430 ( 0} 
Storage 

Single-word instruction format {see Figure 7-1) 

Any 

Test C(Y); C(Y) unchanged 

CI, SC, SCR 

None 

zero Neg. Relation 

0 0 Mantissa C (Y) 8 _ 3 5 > 0 

1 0 Mantissa C(Y) 8_ 35 0 

0 1 Mantissa C(Y),_35 < 0 
(bit 8 of C(Y = 1) 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-203 DH03-01 



GTB 

GTB 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NOTES: 

GTB 

Gray-to-Binary Convert 774 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(A) is converted from Gray code to a 36-bit binary number 

None 

RPL 

zero - If C(A) = O, then ON: otherwise, OFF 

Negative - If C(A) 0 = 1, then ON: otherwise, OFF 

1. This conversion is defined by the following algorittun 
in which R and S denote the contents of bit position i 
of the A-register before and after the conversion: 

so Ro 

S1 (Ri AND si-1> OR (Ri AND si-1> 

w her e : i = 1 , ••• , 3 5 • 

2. Gray code is a method of transmitting numeric code 
cyclically, one bit at a time, to eliminate transmission 
errors and is defined as follows: 

a. A positional binary notation for numbers in which 
any two sequential numbers whose difference is 1 
are represented by expressions that are the same 
except in one place or column, and in that place 
or column differ by only one unit. 

b. A type of cyclic unit-distance binary code evolved 
from the four-word, two-bit unit distance code (00, 
01, 11, 10) according to the following rule: 

To construct an (n+l)-bit reflected binary code 
from an n-bi t reflected binary code, write 
the n-bi t code twice in sequence, first in 
forward and then in reverse sequence of code 
words. Prefix an extra bit to each word, 
assigning the value O to the forward version 
and the value 1 to the backward version of 
the n- bit code. 

7-204 DH03-0l 



LARn 

LARn 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE : 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILI .. EGAL REPEATS: 

INDICATORS: 

NOTE: 

EXAMPLE: 

1 8 

LAR7 

Load Address Register n 

Single-word instruction format (see Figure 7-1) 

1 8 16 

LARn LOCSYM ,R,AR 

Any 

For n=O,l .. , or 7 as determined by op code 
C(Y>o-23 --> C(ARE)i C(Y) unchanged 

DU, DL, CI, SC, SCR 

RPT I RPO, RPL 

None affected 

LARn 

76n (1) 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

16 32 

ADDR load bits 0-23 of address into AR7 

ADDR BDSC 512,,8,8 
*CONTENTS OF AR7 AFTER: 

0 0 1 0 O 0 7 0 0 0 0 0 memory contents 
0 0 1 0 0 0 7 0 

7-205 DH03-0l 



LA REG 

LA REG 

FORMAT: 

CODING FORMAT: 

PROCESSOR t«>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NOTES: 

EXAMPLE: 

l 8 

LAREG 

REGW DEC 
* 

LAREG 

Load Address Registers 463 ( 1) 

Single-word instruction format (see Figure 7-1) 

l 8 16 

LAREG LOCSYM ,R,AR 

Any 

C(Y,Y+l, ••• ,Y+7) 0_ 23 --> C(ARO,AR1, ••• ,AR7) 

The hardware assumes bi ts 15-17 of Y = 000. No check is 
made. 

DU, DL, CI, SC, SCR 

RPT, RPO I RPL 

None affected 

1. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

2. Location Y must be forced to a multiple of 8 by entering 
an 8 in column 7 of the statement that defines Y, or by 
using the EIGHT pseudo-operation. 

16 32 

REGW load ARO .•• AR7 from REGW ... REGW+7 

O,O,O,O,O,O,O,O 

... n-..... 1 .... ;,. ~\...-.a- -11 -...::IA-.--- o--;_....._ __ ,,.. 
- .L'\.CWU..L'- .LW '-11Q'- Q.L..L QUU.LC'.:11~ .l'C'jl.1...:.1\...C'.L.::J Q.L.~ 

* cleared. 

7-206 DH03-01 



LCA 

LCA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

Load Complement into A-Register 

Single-word instruction format (see Figure 7-1) 

Any 

-C(Y} --> C(A); C(Y) unchanged 

None 

None 

zero - If C(A) = 0, then ON; otherwise, OFF 

Negative - If C(A) 0 = 1, then ON; otherwise, OFF 

Overflow - If range of A is exceeded, then ON 

LCA 

335 (0) 

This instruction changes the number to its negative (if # 0) 
while moving it from Y to A. The operation is executed by 
forming the twos complement of the string of 36 bits. An 
overflow condition exists if C(Y) = 2**35. 

7-207 DH03-0l 



LCAQ 

LCAQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Load Complement into AO-Register 

Single-word instruction format (see Figure 7-1) 

Any 

-C(Y-pair) --> (AQ): C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

zero - If C(AQ) = O, then ON: otherwise, OFF 

Negative - If C(AO>o = 1, then ON; otherwise, OFF 

Overflow - If range of AQ is exceeded, then ON 

LCAQ 

337 (0) 

1. This instruction changes the number to its negative (if 
# 0) while moving it from Y-pair to AQ. The operation 
is executed by forming the twos complement of the string 
of 72 bits. An overflow condition exists if C(Y)-pair) 
= -2**71. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-208 DH03-01 



LCCL 

****DPS 88 ONLY**** 

LCCL 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

LCCL 

Load Calendar Clock 674 (0) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C(AQ) 0_ 71 --> C(Calendar Clock) 0_71 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None 

1. Address development is allowed to proceed but has no 
effect on the loading of the Calendar Clock. 

2. Processor port selection (which CIU) is determined by 
bit 23 (Control CIU) of the Option Register. This Control 
CIU bit can be changed by the SSF, or by the LDHC instruction 
in Hyper mode, if reconfiguration requires the use of 
the Calendar Clock in the other CIU. 

3. The LCCL instruction loads the Calendar Clock in the 
Control CIU. The 72-bit binary value covers a period 
of 272-1 microseconds, which is more than 149 million 
years. The Calendar Clock increments by one every 
microsecond. 

4. The Calendar Clock is initially loaded by the SSF (SMAS) 
with a value that is the number of microseconds that 
have elapsed since 00: 00 hours, Greenwich Mean Time (GMT), 
January 1, 1901. When an operating system loads the 
Calendar Clock with the LCCL instruction, the value loaded 
should represent GMT since the SSF will resync its clock 
to this newly loaded value, and expects the value to 
represent GMT. 

5. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

7-209 DH03-0l 



LCPR 

****DPS 8 ONLY**** 

LCPR 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

LCPR 

Load Central Processor Register 674 (0) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C(Y) --> C(register specified by tag field); C(Y) unchanged 

Tag 

02 

03 
04 
07 
11 

12 

13 

15 

17 

C{Y) 8_17 Ignored 
****PS 8/20 and 8/44: C(Y} 18_ 24 -->Cache Mode Register**** 
C(Y) 25_ 33 Ignored 
C(Y) 34_ 35 -~>Lockup ~ault Register 
0 ••• 0 -->History Registers 
C(Y) --> Mode Register 
1 ••• 1 -->History Registers 
****DPS 8/20 and 8/44: C(Y) 0_ 17 -->Configuration 
Register**** 
C(Y) 18_ 35 Ignored 
C{Y) 0_ 26 --> Address Trap Register 
C(Y) 27_ 35 Ignored 
C(Y) 0_ 5 Ignored 
C(Y) 6_12 --> Fault Base Register 
C(Y) 13_ 33 Ignored 
C(Y) 34_ 35 --> C.P. Number Register 
Bits 7-15 of Effective Address -->Cache Directory Address 
Register (Specifies Column and Level to be Loaded) 
C(A) --> Cache Directory (Level OFF Flag is Set and RRO 
Counter is Cleared) 
Bits 11-17 of Effective Address --> Associative Memory 
Address Register (Specifies Column and Level to be Loaded) 
C(A) --> Associative Memory Directory 

Tag field defines register. 

RPT, RPD, RPL cause IPR fault 

None affected 

The use of this instruction in Slave mode causes a Command 
fault. 

7-210 DH03-0l 



LCPR 

EXAMPLE: 

**** 

1 8 

LOA 
STA 
LCPR 

LCPR 

16 32 

=3,DL Set lockup timer to 16 ms on DPS 8/70 
*** 
***,02 

7-211 DH03-01 



LCQ 

LCQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

EXAMPLE: 

LCQ 

Load Complement into Q-Register 336 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

-C(Y) --> C(Q); C(Y) unchanged 

None 

None 

zero - If C(Q) = O, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON; otherwise, OFF 

Overflow If range of Q is exceeded, then ON 

This instruction changes the number to its negative (if ~ 0) 
while moving it from Y to Q. The operation is executed by 
forming the two'"s complement of the string of 36 bits. An 
overflow condition exists if C(Y) = -2**35. 

1 8 16 32 

LCQ =5 ,DL Loads -5 into the Q-register 

7-212 DH03-0l 



LCXn 

LCXn -

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NOTES: 

Load Complement into Index Register .!! 

Single-word instruction format (see Figure 7-1) 

Any 

For n=O,l •••• or 7 as determined by opcode 
-C(Y) 0_ 17 --> (XE): C(Y) unchanged 

CI, SC, SCR 

RPT, RPO, RPL of LCXO 

Zero - If C(XE) = 0, then ON; otherwise, OFF 

Negative - If C(XE>o = 1, then ON; otherwise, OFF 

Overflow - If range of Xn is exceeded, then ON 

LCXn 

32n (0) 

1. This instruction changes the number to its negative (if 
~ 0) while moving it from bi ts 0-17 of Y to Xn. The 
operation is executed by forming the twos complement of 
the string of 18 bits. An overflow condition exists if 
C(Y)O-l? = -2**17. 

2. DL modification is flagged as illegal but executes with 
all zeros for data. 

3. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

7-213 DH03-0l 



LDA 

LDA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

LDA 

Load A-Register 235 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(Y) --> C(A); C(Y) unchanged 

None 

None 

Zero - If C(A) = O, then ON; otherwise, OFF 

Negative - If C(A) 0 = 1, then ON; otherwise, OFF 

7-214 DH03-0l 



LDAC 

LDAC 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

LDAC 

·Load A-Register and Clear 034 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(Y) -->C(A); 0 ••• 0-->C(Y) 

DU, DL, CI, SC, SCR 

None 

zero - If C(A) = O, then ON; otherwise, OFF 

Negative - If C(A) 0 = 1, then ON; otherwise, OFF 

L The LDAC instruction should only be used for gating 
purposes. It should not be used as a substitution for 
an LDA, STZ pair because of the performance penalty 
that is introduced. 

2. ****DPS 88: LDAC, LDQC, SZNC, STAC, and STACQ are the 
only instructions that can be used for the indivisible 
test-and-set operations which are required for setting 
and releasing locks, or for closing and opening gates. 

since execution of LDAC, LDQC I SZNC' STAC' and STACQ 
depends on the previous C(Y), the processor will obtain 
ownership of the 8-word block containing C(Y) prior to 
using C(Y) to execute the instruction. Obtaining 
ownership of the 8-word block means that the requesting 
processor, and the Memory Hierarchy Control of the CIU, 
will ensure that a valid copy of the block is obtained, 
and that the block is cleared from the cache of all 
other processors before the instruction is executed. 
After obtaining ownership of the block the processor 
completes execution of the instruction to set or release 
the lock without permitting the block to be siphoned to 
another processor. Thus the block is isolated in a 
time window where it can be accessed and modified only 
by the processor executing the instruction which sets 
or releases the lock. 

7-215 DH03-0l 



LDAC LDAC 

To ensure that a lock does not get released before the 
actual completion of all stores performed while the lock 
was set, a synchronizing function is accomplished by 
coding a SYNC or STC2 instruction immediately before 
the instruction which releases the lock. If the value 
stored by STC2 is consistent with operating system 
conventions for a released lock, then the use of STC2 
for synchronizing can also serve to release the lock.**** 

3. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-216 DH03-01 



LDAQ 

LDAQ 

FORMAT: 

PROCESSOR MODE: 

S UML\1A. RY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

LDAQ 

Load AQ-Register 237 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(Y-pair) --> C(AQ); C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-217 DH03-01 



LDAS 

LDAS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS : 

NOTES: 

LDAS 

Load Argument Stack Register 770 ( 1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C(Y-pair) --> C(ASR); C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. A descriptor is fetched from even/odd memory locations 
Y and Y+l and the following checks are performed on the 
descriptor: 

a. Type field T 1. 

b. Base and bound are modulo 8 bytes (the three least 
significant bits of base must be zeros; the three 
least significant bits of bound must be ones if 
flag bit 27 is 1). 

2. If these conditions are met, the descriptor is loaded 
into the argument stack register (ASR). During ASR 
loading, bits 0-6 of the ASR bound field are forced to 
zero by the processor instead of being loaded from the 
memory operand. If flag bit 27 of the operand descriptor 
is zero, the entire bound field is forced to zero, 
regardless of any value the operand descriptor bound 
field may contain and the bound check is bypassed. 

3. Any of the following conditions cause an IPR fault: 

a. Modifications DU, DL, CI, SC, and SCR. 

b. Illegal repeats RPT, RPO, and RPL. 

c. Type field T is not 1. 

d. If the base and bound limits of the operand des er i ptor 
are not modulo 8 bytes (subject to flag bit 27). 

4. If the processor is not in the Privileged Master mode, 
the execution of this instruction causes a Command fault 
(DPS 88: IPR fault). 

7-218 DH03-0l 



LDAS 

EXAMPLE: 

1 a 16 32 

* 
* 

ROUTINE TO LOAD REGISTERS - ASR, PSR, DSAR 
CALLING TSX Z,RDSPRG 
POST LOST PO,Z 

RDSPRG EQU 
LDP 
LDP 
LDDSA 
LDAS 
LOPS 
TRA 

* 
PO, .SSR,DL 
PO, .CTYP ,DL 
.WDSAR, ,PO 
• WASR,, PO 
.WPSR, ,PO 
,z 

•safe store frame access 
*change type 
*DSAR 
*ASR 
*PSR 
*OK 

7-219 

LDAS 

0803-01 



LDAT 

****DPS 88 ONLY**** 

LDAT 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

LDAT 

Load Address Trap Register 336 ( 1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

If EA ( 17) = 0, then 
C(Test Reg,) 27 _3~ --> C(Address Trap Reg. O>o-8 
O --> C(Address rap Reg. 0) 9 C(Test Reg.) 44 _69 --> C(Address Trap Reg. 0 >10-35 

If EA ( 17) = 1, then 
C(Test Reg.) 27_ 3~ --> C(Address Trap Reg. 1 >0-0 
o --> C(Address rap Reg. 1) 9 C(Test Reg.) 44 _69 --> C(Address Trap Reg. 1 >10-35 

If EA ( 15) = 1 
then IPR fault on any attempted READ of the address 

If EA ( 16) = l 
then IPR fault on any attempted WRITE of the address 

CI, SC, SCR 

RPT, RPO, RPL 

None affected. 

1. The processor provides two 36-bi t Address Trap Registers 
that allow software to dynamically monitor READ/WRITE 
references to two locations defined by their virtual 
addresses. 

The LDAT instruction loads address trap register 0 or 
1, as a function of EA(l7), from bits 27-35 and 44-69 
of the text register loaded by the EPAT instruction 
immediately preceding the LDAT instruction. These bits 
from the test register are the virtual address from the 
EPAT instruction, arid represent the working space number, 
page number, and word in a working space that is mapped 
via a dense page table. 

The address trap registers should not be loaded from 
the virtual address of an EPAT instruction referencing 
a working space that is mapped via a fragmented page 
table. 

2. To disable an Address Trap register, both the READ and 
WRITE flags for that register must be set to zero, i.e., 
EA(l5-16) = 00. 

7-220 DH03-0l 



LDAT 

3. 

4. 

5. 

**** 

LDAT 

Upon successfully •trapping" an address, the processor 
will execute an IPR fault entry into the Operating System. 

The use of this instruction in other than Privileged 
Master Mode causes an IPR fault. 

An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

7-221 0803-01 



LDDn 

LDDn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

LDDn 

Load Descriptor Register ~ 67n (1) 

Single-word instruction format (see Figure 7-1) 

Any 

This set of eight instructions provides the capability of 
loading a descriptor register (DRn) with a new descriptor or 
modifying the descriptor currently contained in DRn. The 
instructions have a direct load option and a vector of>tion. 

DIRECT LOAD OPTION 
When the DRn is loaded from a descriptor segment, the contents 
of even and odd locations Y and Y+l of the segment identified 
by DRm are loaded directly into DRn with no modification. 

The ARn and SEGIDn registers are affected by this sequence 
of the -instruction- as fallows: 

a. ARn is set to all zeros. 

b. SEGIDn is set to be self-identifying (S 
as described in next sequence. 

O, D 177,!!) 

VECTOR OPTION 
When the effective address of the instruction operand is 
within a data segment the function performed by this instruction 
is specified by the vector at the even and odd locations Y 
and Y+l. The vector has the following format: 

VEC!'OR 

0 1 2 2 3 3 3 
LOC 0 9 0 9 0 1 5 WORD 

············ ............ 
y SIZE FLAGS v ............ 

1 ............ ............ 
9 

............ 
20 :;_;_:;_;_;_:···· 

Y+l BASE ADDER ~l;~rnm s D 2 
20 2 10 

The shaded portion of the words is not interpreted and may 
contain any bit pattern. 

The V field (bi ts 29 and 30) specifies the function to be 
performed. 

7-222 DH03-0l 



LDDn LDDn 

V Field Function 
(Bi ts 29 and 30) 

00 

01 

11 

COPY 

Copy 

Copy selected descriptor into DRn; set 
SEGIDn to indicate where the descriptor 
came from; zero-fill ARn 

Normal Shrink 

Shrink selected descriptor as indicated 
and load into DRn; set SEGIDn to indicate 
DRE as the source; zero-fill-ARE 

Data Stack Shrink 

Form a working data stack descriptor using 
DSDR and DSAR; load new descriptor into 
DRn; update DSAR; zero-fill ARn; set SEGIDn 
to- indicate DRn as the source (DPS 87 
conditionally clear address space framed 
by new descriptor). 

Vector Type = 00 (See also LDPn instruction) 

The S and D fields of the vector specify the descriptor to 
be loaded into DRn as follows: 

When S = 0: 

For D = 0000 through 175 7 (octal) and D< PSR bound, the 
descriptor is loaded from the parameter stack and D is used 
as an index to the desired descriptor. The value in D is 
the number of the descriptor to be loaded and can be treated 
as a modulo 8 byte index; that is, D can be converted to a 
byte address by appending three zeros as the three least 
significant bits. 

For D = 1760 through 1777 (octal), the descriptors referenced 
by s, D are contained in selected registers and copied to 
the DR_!!. 

D 1760 Undefined, IPR fault 
D = 1761 Change Descriptor Type Field in DRn 
D = 1762 Instruction Segment Register (ISR) 
D = 1763 Data Stack Descriptor Register (DSDR) 
D = 1764 Safe Store Register (SSR) 
D = 1765 Linkage Segment Register (LSR) 
D 1766 Argument Stack Register (ASR) 
D 1767 Parameter Stack Register (PSR) 
D = 1770 DRO, Descriptor Register 0 
D = 1771 DRl, Descriptor Register 1 
D = 1772 DR2, Descriptor Register 2 
D = 1773 DR3, Descriptor Register 3 
D = 1774 DR4, Descriptor Register 4 
D = 1775 DRS, Descriptor Register 5 
D = 1776 DR6, Descriptor Register 6 
D = 1777 DR7, Descriptor Register 7 

7-223 DH03-0l 



LDDn LDDn 

NOTE: When D = 1761 (octal) and the processor is in the 
Privileged Master mode, if the descriptor contained 
in DRn is type 1 or 3, the type is changed to O or 2 
respectively; however, if the descriptor is not type 
1 or 3, no change and no fault occurs. 

When S = 2: 

The on descriptor of the current argument segment is selected. 
A relative byte offset is formed by extending the D field by 
3 zeros. 

When S = 1 or 3: 

The Dn descriptor of the current linkage segment is selected. 
A relative byte offset is formed by extending the D field by 
3 zeros. 

For all values of S, the loading of DRn affects the nth 
address register (ARn) and the nth segment-identity register 
{SEGID~) as follows:-

a. ARn is set to zero. 

b. If DRn was loaded from another DR or the instruction 
segment register (ISR), the associated segment identity 
content is transferred to SEGIDn= otherwise, SEGIDn is 
set to the s and D value contained in the vector. -

c. If an IPR or an STR (DPS 88: BND) fault occurs, DR~, 
AR~, and SEGID~ are not changed. 

SHRINK 
vector Type = 01 

The descriptor identified by the vector (as indicated for 
copy) is obtained, shrunk as indicated, and loaded into DRn. 
In Privileged Master mode for S = 0 and D = 1761 (octal),-a 
type 1 or 3 descriptor is changed to 0 or 2 respectively, 
and shrunken. 

The shrink operation is possible only when the S and D fields 
of the vector point to a standard descriptor or a 
super-descriptor. 

a. Standard Descriptor 

In a standard descriptor the base adder and size fields 
of the vector are relative to the base and bound fields 
of the selected descriptor. 

New Base = Old Base + Base Adder 

• l....carry causes STR 
(DPS 88: BND) fault 

New Bound = Size 

7-224 DH03-0l 



LDDn LDDn 

The flags field of the vector specifies permission to 
be granted or withheld and is combined with the flags 
field of the selected descriptor in such a way that no 
more permission is granted than is available (i.e., a 
bit-by-bit logical AND of the two flag fields). A fault 
will not occur if more permission is requested than is 
available. The result of the combination of the two 
flag f ietds is loaded into the DRn flag field. For a T 
: 2 Or 3 descriptor I the flags r ield iS Only 3 bi tS; 
therefore, only these 3 bits are logically ANDed with 
the corresponding 3 bits from the vector. 

The corresponding ARn is zero-filled and the SEGIDn is 
set to be self-ident[fying. 

b. Super-Descriptor 

The shrinking of a super-descriptor produces a standard 
descriptor. A super-descriptor of type T = 4 or 6 yields 
a standard descriptor of type T = O or 2, respectively. 

The base value for the resulting standard descriptor is 
formed from the base and location fields of the selected 
descriptor and the base adder field of the vector as 
shown: 

0 35 

Location field of Descriptor 

9 16 

+ 
+ 0 19 

Base Adder (from Vector) 

0 9 

Base (from 
Descr i__Q_torl 

__Q_ .Jll!.. .i. 35 

Base of Resulting Descriptor for DRn -

New Base Base + {Location + Base Adder) 

L 
Lcarry causes STR 

(DPS 88: BND) fault 

Carry causes STR 
(DPS 88: BND) fault 

7-225 DH03-0l 



LDDn LDDn 

This new base and the size field from the vector are 
loaded in the base and bound field of DRn. 

The new flags field is formed in the same manner as for 
the standard descriptor. SEGIDn is set as for the standard 
descriptor shrink and ARn is zero-filled. 

DATA STACK SHRINK 
vector Type = 11 

Word 2 of the vector is ignored and the descriptor is generated 
from the data stack descriptor register (DSDR), the data 
stack address register (DSAR), and the size and flags fields 
of word 1 of the vector. 

a. The first requirement is that: 

DSAR + Size < Bound (DSDR) 

The three (DPS 88: five) least significant bits of the 
size field from the vector are forced to ones. 

****DPS 8/70, 8/50, 8/52, 8/62: A size value that is 
one greater than it should be is used to check the DSDR 
bound**** 

If the sum of DSAR plus size (rounded) exceeds the bound 
field or a carry is generated, an STR (DPS 88: BND) 
fault occurs and DR~, AR~, and SEGID~ remain unchanged. 

b. The next requirement is a successful validation in which 
the new base is formed by adding DSAR to the base (DSDR) • 
Generation of a carry causes an STR (DPS 88: BND) fault 
with no change in the contents of the registers. 

c. ****DPS 8: Then, the data stack clear flag of the option 
register (OR) is checked. If this bit = O, no clearing 
is required. If this bit = 1, the entire memory space 
to be framed by the generated descriptor is cleared. 

Any fault, including a Missing Page fault or STR fault 
generated during the clear memory operation, causes 
termination of this instruction with no change in the 
contents of the registers.**** 

d. Upon successful completion of the preceding operations, 
the new base (DSAR +Base (DSDR)) is loaded in the DRn 
base and the vector size field is loaded into the DRn 
bound field. 

e. The new flags field for DRn is formed by combining the 
flags field of the vector -and the flags field of the 
DSDR as described for the normal shrink of a standard 
descriptor. 

7-226 DH03-0l 



LDDn 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS : 

NOTES: 

LDDn 

f. The contents of the WSR and Type fields of DSDR are 
transferred to the WSR and T fields of DRE· 

g. 

h. 

The corresponding ARn is set to zero and SEGIDn is set 
to be self-identifying as described for a normal shrink 
operation. 

The DSAR is loaded with the value DSAR plus size 

***DPS 8: C (DSAR) O-lG + SIZE0_16 + 1 --> C (DSAR) 0_ 16**** 

***DPS 88: C(DSAR>o-14 + SIZEo-14 + 1 --> C(DSAR>o-14 

The DSAR is not allowed to "wraparound"; therefore, an 
STR (DPS 88: BND) fault is generated if the addition 
produces a carry. 

DU I DL I IR I RI I IT 

RPT I RPO I RPL 

None affected 

1. Illegal Procedure (IPR) Faults 

Any of the following conditions causes an IPR fault: 

a. Modifications RI, IR, IT, DU, and DL. 

b. Illegal repeats RPT, RPO, and RPL. 

c. Vector fields S = 0 and D = 1760 (octal). 

d. If vector field V=Ol and descriptor obtained is 
type T=5 or 7-15. 

e. If instruction bit 29 = 1 and DRm contains a type 
T = 5 or 7-15 descriptor. 

f. If vector field V=lO. 

7-227 DH03-0l 



LDDn 

2. 

LDDn 

Command Faults 

A Command fault is generated 

a. If vector fields S = 0 and D = 1761, 1763, or 1764 
(octal) and the processor is not in Privileged Master 
mode 

b. If an access for a descriptor or vector (DPS 8: 
or for the memory clear) 

Specifies working space zero and the processor 
is not in Privileged Master mode 

Specifies working space register O and the 
processor is in the Slave mode 

3. Memory Faults {STR; DPS 88: BND) 

Any of the following conditions cause an STR (DPS 88: 
BND) fault: 

a. Vector fields S = 0 and (D > bound field of parameter 
stack register and D < 1760). 

b. vector fields s = 2 and D > bound field of argument 
stack register. 

c. vector fields s = 1 or 3 and D > bound field of 
linkage segment register. 

d. Attempted shrink operation on standard descriptor 
with Base Adder + Size > bound field (DR~). 

e. Attempted shrink operation on super-descriptor with 
Location (DRn) + Base Adder + Size > bound field 
(DR~) • -

f. An illegal carry or borrow while forming or size 
checking the base and bound fields or when generating 
the new DSAR value for a data stack shrink. 

g. An associative memory error. 

h. Descriptor flag bit 27=0 (not valid). 

i. Virtual address > 22 4 words (DPS 88: 226 words) 
and WS zero or dense paging is specified. 

4. Missing Segment Faults 

A Missing Segment fault is generated if access is attempted 
to a segment for a vector, descriptor, or memory clear 
~~A ~1~~ h;~ ~Q ~~ ~ha ~a~~a~~ Aa~~~;~~~~ ;~ n ...... ,_,. ..__.. ..... "=' ..,.a,."'" &.U '"'.._ '-&&V ...,,._~olHW&A'- '\.A~~V.&.. ~t''-"".L. ..&..~ U • 

7-228 DH03-0l 



LDDn 

s. 

LDDn 

Missing Page Faults 

A Missing Page fault is generated if access is attempted 
to a segment for a vector, descriptor, or memory clear 
and flag bit 30 of the page table word (PTW) for the 
accessed page is O. 

6. Missing Working Space Faults 

A Missing Working Space fault is generated if access is 
attempted to a segment for a vector, descriptor, or 
memory clear and flag bit 20 (DPS 88: flag bit 23) of 
the page table directory word (PTDW) is O. 

7. Security Fault, Class 1 

Any of the following conditions cause a Security Fault, 
Class 1: 

a. Attempted access to a segment for vectors when flag 
bit 32 of the PTW for the specified page is 1 
(housekeeping) and the processor is in Slave mode. 

b. Attempted access to a segment for a descriptor when 
flag bit 32 of the PTW for the specified page is 0 
(nonhousekeeping). 

c. ****DPS 8: An attempted data stack clear operation 
to a housekeeping page (flag bit 32 of the PTW is 
1) and the processor is not in Privileged Master 
mode.**** 

8. Security Fault, Class 2 

Any of the following conditions cause a Security Fault, 
Class 2: 

a. Attempted access to a segment for a vector or 
descriptor when read flag bit 20 of the segment 
descriptor is O. 

b. ****DPS 8: An attempted data stack clear operation 
when flag bit 21 of the data stack descriptor register 
(DSDR) is O or the accessed page does not have 
write permission (flag bit 31 of the PTW is 0) • **** 

7-229 DH03-0l 



LDDn 

EXAMPLES: 

Direct Load: 

1 8 

LDDO 

Copy: 

1 8 

LDDO 

CRYDR7 CVEC 

Normal Shrink: 

1 § 

LDDO 

BUFFER BSS 
BUFVEC VEC 

16 32 

0,,7 
Load DRO from 
location zero of 
descriptor segment 
framed by DR7 
1770 --> SEGI DO 
zeros --> ARO 

16 32 

CPYDR7 Copy DR7 into DRO 
1777 --> SEGIDO 
zeros ARO 

.DR7 

16 J2 

BUFVEC 

320 
.ISR,BUFFER,320,READ 

7-230 

LDDn 

DHOJ-01 



LOOS A 

LOOS A 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLE: 

LDDSA 

Load Data Stack Address Register 170 ( 1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

Bits 0-16 of C(Y) --> C(DSAR) 
****DPS 88: Bits 0-14 of C(Y) --> C(OSAR)**** 

DU, DL, CI, SC, SCR 

RPT I RPO, RPL 

None affected 

1. The DSAR is a 17-bi t register that holds an even word 
address. 

****DPS 88: The DSAR is a 15-bit register that holds a 
mod 8 word address.**** 

2. Modifications DU, DL, CI, SC, SCR and illegal repeats 
RPT, RPD, RPL cause an IPR fault. 

3. If the processor is not in the Privileged Master mode, 
the execution of this instruction causes a Command fault. 

****DPS 88: If the processor is not in the Privileged 
Master mode, . the execution of this instruction causes 
an IPR fault.**** 

(from module ROL3) 

1 8 

LOP 
LOP 
LDDSD 
STZ 
LDDSA 

16 

P,PSH,SD.PSH,DL 
P ,PSH, .CTYP ,DL 
PB.ADS, ,P.PSB 
TEMP I ,P.DSR 
TEMP, ,P.DSR 

7-231 0803-01 



LDDSD 

LDDSD 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

LDDSD 

Load Data Stack Descriptor Register 571 (1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C(Y-pair) --> C(DSDR) 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. The double-word memory operand is fetched from even and 
odd memory locations Y and Y+l. The operand must be in 
standard descriptor format with a type field of T = O. 

2. Any of the following conditions causes an IPR fault 
(the DSDR remains unchanged): 

a. Modification CI, SC, SCR, DU, or DL. 

b. Illegal repeat RPT, RPO, or RPL. 

c. If type field T is not equal to O. 

d. ****DPS 8: If the base is not 0 modulo 8 bytes; 
or if bound is not 7 modulo 8 bytes; or if flag 
bit 22 is not O.**** 

e. ****DPS 88: If the base is not 0 modulo 32 bytes; 
or if bound is not 31 modulo 32 bytes; or if flag 
bit 22 is not O.**** 

7-232 DH03-0l 



LDDSD 

EXAMPLE: 

1 

EXP 

8 

LDP 
LDD 
LDP 
ADLA 
STA 
LDD 
LDAS 
LOPS 
LDDSD 
LDDSA 
LOSS 
STX6 
SXL3 
LDD 
LCQ 
ANSQ 

LDDSD 

3. If the processor is not in the Privileged Master mode, 
the execution of this instruction causes a Canmand fault. 

****DPS 88: If the processor is not in the Privileged 
Master mode, the execution of this instruction causes 
an IPR fault.**** 

16 

PO,SD.PSH,DL 
PO,PH.USL,,PO 
PO, .CTYP ,DL 
UL • IS R+ 1 , , PO 
S. ISR+l,QU ,P4 
Pl, S. ISR,QU ,P3 
S.APR,,P4 
S.APR,,P4 
S .DSR,, P4 
SBDH 
.KLSDS ,PN* ,P.KL 
.KLPRG,7,P.KL 
.KLPRG,7,P.KL 
P2,S.ENT,QU,P3 
=0204020,DL 
.QFST, 3, P6 

32 

Pl = sub-dispatch ISR 
load special registers 

load SSR for sub-disp by processor nwnber 
set processor flags for sub-disp 

P2 = entry descriptor to climb with 

clear fault status bits 

7-233 DHOJ-01 



LOE 

LOE 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS : 

INDICATORS: 

NOTE: 

LOE 

Load Exponent Register 411 (0) I 
Single-word instruction format (see Figure 7-1) 

Any 

C(Y) 0_7 --> C(E); C(Y) unchanged 

CI, SC, SCR 

None 

zero - Set OFF 

Negative - Set OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-234 DH03-0l 



LDEAn 

LDEAn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLE: 

1 8 

MSCN7 NULL 
EAX2 
CMPX2 
TZE 
LOA 
ANA 
AOS 
CMPA 
TZE 
LDEA 
LOA 
ASA 
TRA 

LDEAn 

Load Extended Address n 6ln (1) 

Single-word instruction format (see Figure 7-1) 

Any 

C(Y) --> location field of Descriptor Register (DR~) 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. This set of 8 instructions enables the loading of the 
location field of a descriptor register (DRn) from memory 
address Y. The DRn must contain a super descriptor 
(type field T must Ee 4 or 6); otherwise, an IPR fault 
occurs. 

2. Any of the following conditions causes an IPR fault: 

a. Modification DU, DL, CI, SC, or SCR. 

b. If descriptor type field T of DRn is not 4 or 6. 

c. Illegal repeat RPT, RPO, or RPL. 

16 

1,2 
4,DU 
ESCN 
.KLMSZ, ,KLS 
=0777777 ,DL 
AD DRS 
AD DRS 
ESCN 
RMS,SUPAD 
1K*4,DL 
SU PAD 
MSCN2 

32 

is defective memory table full? 
yes 
no 
isolate real memory size 
advance page number 
is this page the last? 
yes 
loading location field of super descriptor 
adjust byte 

next page scan 

7-235 DHOJ-01 



LDI 

LDI 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NOTES: 

LDI 

· Load Indicator Register 634 { 0) 

Single-word instruction format {see Figure 7-1) 

Any 

C(Y) 18_32 --> C(IR); C(Y) unchanged 

CI, SC, SCR 

RPT, RPO, RPL 

Master mode - Not affected 

All others If corresponding bit in C (Y) = 1, then ON; 
otherwise, OFF 

1. The relation between bit positions of C (Y) and the 
indicators is as follows: 

Bit Position 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33-35 

Indicator 

zero 
Negative 
Carry 
Overflow 
Exponent overflow 
Exponent underflow 
Overflow mask 
Tally runout 
Parity error 
Parity mask 
Master mode 
Truncation 
Multiword instruction interrupt 
Undefined 
Hexadecimal mode 
Undefined 

2. The Tally Runout indicator reflects bit 25 of C (Y) 
regardless of what address modification is performed on 
the LOI instruction for tally operations. 

3. Master Mode cannot be changed by the LDI instruction. 

4. An Overflow Fault does not occur when the Overflow 
Indicator, Exponent Overflow Indicator, or Exponent 
Underflow Indicator is set ON via the LOI instruction, 
even if the Overflow Mask indicator is OFF. 

5. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

7-236 0803-01 



LOO 

LOO 

****DPS 8: 

FORMAT: 

PROCESSOR M:>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NOTES: 

LOO 

Load Option Register 172 (l} 

Single-word instruction format (see Figure 7-1). 

Any. 

Data Stack Clear Flag (DSCF} is loaded from C(Y) 18 
0 = do not clear 
1 = clear 

Safe Store Bypass Flag (SSBF) is loaded from C(Y) 19 
O = bypass saf estore during !CLIMB 
1 = perform saf estore during !CLIMB 

Cache Read Control Flag (CRCF) is loaded from C(Y) 24 
0 bypass cache 
1 = use cache 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. Although this instruction is legal in all processor modes, 
the setting of the three flag bits is mode dependent. 

In Privileged Master mode 
DSCF, SSBF, CRCF are loaded 

In Master mode 
DSCF and SSBF are not changed; CRCF is loaded 

In Slave mode 
DSCF, SSBF, CRCF are not changed 

2. Modifications DU, DL, CI, SC, SCR, and illegal repeats 
RPT, RPD, RPL cause an IPR fault. 

3. If the SSBF is set to a 1, it is the responsibility of 
the operating system to preload the SSR. 

4. ****DPS 8/20 and 8/44: This instruction is also valid 
for execution when the VS mode switch is . in the OFF 
position; however, only the CRCF can be loaded.**** 

7-237 DH03-01 



LOO 

5. 

6. 

EXAMPLE: 

LOO 

The DSCF controls the clearing of memory when a data 
stack shrink is performed with the LDDn instruction. 
DSCF = 1 means clear memory; DSCF = O means do not clear 
memory. 

The SSBF controls bypassing the safestore part of an 
Inward CLIMB. SSBF = 0 means bypass safestore; SSBF = 
1 means perform safestore. 

2 

* LOAD SAFE STORE REGISTER AND OPTION REGISTER; Privileged Master 

**** 

LOSS 
LOO 
TRA 

SLVSS LOSS 
LOO 

CPOSS 
=0204000,DL 
MSFRM 
CPNOSS 
=0200000,DL 

mode only 

SSBF ,CRCF ON 

SSBF ON 

7-238 0803-01 



LOO 

LOO 

****DPS 88: 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Load Option Register 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C(Y) 0 --> Hex Permission Flag 
O = inhibit hex; 1 = enable hex 

C(Y) 1_ 2 -->Lockup Fault Time Limit 
See note 1. 

C(Y) 3 --> Safe-Store Bypass Flag (SSBF) 
0 = perform; 1 = bypass 

C(Y) 4 --> Data Stack Clear Flag (DSCF) 
O = don#t clear; 1 = clear 

C(Y) 5_17 -->Option Register bits 5-17 

CI, SC, SCR 

RPT , RPO , RPL 

None affected. 

1. The Lockup fault time limit is: 

Bits 1-2 Time Limit 
00 2 ms 
01 4 ms 
10 8 ms 
11 16 ms 

LOO 

172 (1) 

The specified time limit is effective in Slave mode 
only. When in Privileged Master or Master mode the 
Lockup fault time limit is 32 milliseconds. Upon entry 
to, and while executing in Hyper mode, the Lockup fault 
timer is reset to zero. Thus the Lockup fault may not 
be detected until up to 64 milliseconds have elapsed. 

2. Bi ts 5-17 should be filled with zero values to ensure 
compatibility with future systems. These fields are 
ignored and have no effect on operation. 

7-239 DHOJ-01 



LOO 

3. 

4. 

s. 

**** 

LOO 

The execution this instruction in other than Privileged 
Master mode causes an IPR fault. 

Bits 18-35 of the Option Register can only be loaded by 
the following instructions, which are valid in Hyper 
mode only: LDHC (bi ts 18-32) , LOCOS (bit 33) , LVM.S 
( bi t 3 4 ) I LM.S D (bi t 3 5 ) • 

An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

7-240 DB03-0l 



LDPn 

LDPn 

FORMAT: 

PROCES_SOR K>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NorEs: 

Load Pointer Register E 

Single-word instruction format (see Figure 7-1) 

Any 

If DU or DL modifications are not used 
C(Y>o-23 --> C(ARn) 
C(Y} 24_35 --> ~(SEGIDn) 
C(Y)24735 ~re ~nterpreted as S,D field 

If DU mod1f1cat1on is used 
EA --> C(ARn>o-17 

0 --> C(ARn>1s-23 
0 --> C (SEGIDn) 

0,0 is interpreted as S,D field 
If DL modification is used 

0 --> C{ARn>o-11 
EAo-s --> C(ARn>1a-23 
EA6-17 --> ~(SEGrDn) 
EA6_17 are interpreted as S,D field 

In all cases 

LDPn 

47n (1) 

S,D selects a.descriptor as in the Copy version of LDDn 
C(Selected Descriptor) --> C(DRn) or DRn type field is 
changed. SEGIDn is loaded as in the Copy Version of 
LDDn 

CI, SC, SCR 

RPT, RPO I RPL 

None affected 

1. This set of eight instructions is similar to the LDDn 
instruction with the copy option~ however, no vector is 
required and ARn may be loaded with a value other than 
all zeros. -

Bits 0-23 of the contents of memory location Y are loaded 
in ARn and bits 24-35 are interpreted as S and D fields. 
The interpretation of the S and D fields and the pertinent 
action are described in note 2 below. 

7-241 0803-01 



LDPn 

2. 

LDPn 

The s and D fields of the pointer locate the descriptor 
to be loaded into DRn as follows: 

When S = 0: 

For D = 0000 through 1757 (octal) and D < PSR bound, 
the descriptor is loaded from the parameter stack and D 
is used ·as an index to the desired descriptor. The 
value in D is the number of the descriptor to be loaded 
and can be treated as a modulo 8 index; that is, D can 
be converted to a byte address by appending three zeros 
as the three least significant bits. 

For D = 1760 through 1777 (octal) , the descriptors 
referenced by s, D are contained in selected registers 
and copied to DRE· 

D 1760 Undefined, IPR fault 
D = 1761 Change Descriptor Type Field in DRn 
D 1762 Instruction Segment Register (ISR) 
D = 1763 Data Stack Descriptor Register (DSDR) 
D = 1764 Safe Store Register (SSR) 
D = 1765 Linkage Segment Register (LSR) 
D = 1766 Argument Stack Register (ASR) 
D = 1767 Parameter Stack Register (PSR) 
D 1770 ORO, Descriptor Register 0 
D = 1771 DRl, Descriptor Register 1 
D = 1772 DR2, Descriptor Register 2 
D = 1773 DR3, Descriptor Register 3 
D = 1774 DR4, Descriptor Register 4 
D = 1775 DRS, Descriptor Register 5 
D = 1776 DR6, Descriptor Register 6 
D = 1777 DR7, Descriptor Register 7 

NOTE: When D = 1761 (octal) and the processor is in 
Privileged Master mode, if the descriptor contained 
in DRn is type 1 or 3, the type is changed to 0 
or 2,- respectively; however, if the descriptor 
is not type 1 or 3, no change is made and no 
fault occurs. 

When S = 2: 

The On descriptor of the current argument segment is 
selected. A relative byte offset is formed by extending 
the D field by 3 zeros. 

7-242 DH03-0l 



LDPn 

EXAMPLE: 

TPUTEX SZN 
TZE 
LDP6 

SAR6 
LDP6 
LOA 
ANA 
CMPA 
TZE 

TRAPOK LDP6 
* 

TRA 

LDPn 

When S = 1 or 3: 

The Dn descriptor of the current linkage segment is 
selected. A relative byte offset is formed by extending 
the D field by 3 zeros. 

For all values of S the loading of DRn affects the nth 
address register (ARn) and the nth -segment identTty 
register (SEGID~) as follows: -

a. ARn is set to zero. 

b. If DRn was loaded from another DR or the instruction 
segment register (ISR), the associated segment 
identity content is transferred toSEGIDn; otherwise, 
S§.GID_!! is set to the S and D value contained in 
the pointer. 

c. If an IPR or STR (DPS 88: BND) fault occurs, DRn, 
AR_!!, and SEGID_!! are not changed. 

3. An IPR fault occurs if bit 29=1 and the operand segment 
is not type T = O, 2, 4, or 6. 

4. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

TRAPTR 
TRAPOK 
TRAP TR 

TRAP CT 
TRAP CT 
0, ,P6 
TRAP MK 
TRAPVL 
GOTCHA 
SD.SSA,DL 

0,4 

test for trap in use 
no trap enabled 
trapping -- get location (ensuring that 

address register has off set 
and descriptor is type 0) of 
cell to be monitored in AR via 
P6; mask it for desired pattern, 
and compare it with bad value 

trap has sprung 
reload P.SSA (here if no/OK trap) 
TRA monitor if monitor active 
exit 

7-243 DH03-01 



LOPS 

LOPS 

FORMAT: 

PROCESSOR f«>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLE: 

LOPS 

Load Parameter Stack Register 771 ( 1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C(Y-pair) --> C(PSR): C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. The descriptor is fetched from even/odd memory locations 
Y and Y+l. The hardware performs the following checks 
on the descriptor. 

o Type field must have a value of T = 1. 
o Base must be O modulo 8 bytes. 
o If flag bit 27 = 1 (bound valid), bound must be 7 

modulo 8 bytes. 

2. If these conditions are met, the descriptor is loaded 
into PSR. During PSR load, PSR bound field bits 0-6 
are forced to zero by the hardware rather than being 
loaded from the memory operand. Also, if flag bit 27 
of the operand descriptor is equal to zero, the entire 
bound field of the PSR is forced to zero, independent 
of any value the operand descriptor bound field may 
contain, and the bound check is bypassed. 

3. This instruction is identical with LDAS, except that it 
loads the parameter stack register (PSR) instead of the 
argument stack register (ASR). 

4. Illegal Procedure faults and Command faults are the same 
as for LDAS. 

(BRTl vicarious fault handler) 

, 0 , ~ 32 ..... 0 .LQ 

LOP P.SSR, .SSR,DL (Load descriptor of fault 
frame in saf estore stack) 

LOP P.SSR, .CTYP ,DL (Change to type 0) 
LOAS • WAS R, , P • SS R {Restore ASR from safes tore) 
LOPS • wP s RI , p • SS R (Restore PSR from safes tore) 

7-244 DH03-0l 



LDQ 

LDQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

LDQ 

Load Q-Register 236 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(Y) --> C(Q); C(Y) unchanged 

None 

None 

zero - If C(Q) = O, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON; otherwise, OFF 

7-245 DH03-0l 



LDQC 

LDQC 

FORMAT: 

PROCESSOR l«>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS : 

NOTES: 

LDQC 

Load Q-Register and Clear 032 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(Y) --> C(Q): 0 ••• 0 --> C(Y) 

DU, DL, CI, SC, SCR 

None 

zero - If C(Q) = O, then ON; otherwise, OFF 

Negative - If bit 0 of C(Q) = 1, then ON: otherwise, OFF 

1. The LDQC instruction should only be used for gating 
purposes. It should not be used as a substitution for 
an LDQ, STZ pair because of the performance penalty 
that is introduced. 

2. ****DPS 88: LDAC, LDQC, SZNC, STAC, and STACQ are the 
only instructions that can be used for the indivisible 
test-and-set operations which are required for setting 
and releasing locks, or for closing and opening gates. 

since execution of LDAC, LDQC, SZNC, STAC, and STACQ 
depends on the previous C(Y), the processor will obtain 
ownership of the 8-word block containing C(Y) prior to 
using C(Y) to execute the instruction. Obtaining 
ownership of the 8-word block means that the requesting 
processor, and the Memory Hierarchy Control of the CIU, 
will ensure that a valid copy of the block is obtained, 
and that the block is cleared from the cache of all 
other processors before the instruction is executed. 
After obtaining ownership of the block, the processor 
completes execution of the instruction to set or release 
the lock without permitting the block to be siphoned to 
another processor. Thus the block is isolated in a 
time window where it can be accessed and modified only 
by the processor executing the instruction which sets 
or releases the lock. 

7-246 0803-01 



LDQC LDQC 

To ensure that a lock does not get released before the 
actual completion of all stores performed while the lock 
was set, a synchronizing function is necessary. This 
synchronizing function is accomplished by coding a SYNC 
or STC2 instruction immediately before the instruction 
which releases the lock. If the value stored by STC2 
is consistent with operating system conventions for a 
released lock 1 then the use of STC2 for synchronizing 
can also serve to release the lock.**** 

3. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-247 DH03-01 



LDSS 

LDSS 

FORMAT: 

PROCESSOR ?«>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NorES: 

LOSS 

I Lo~ Safe Store Register 773 (1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C(Y-pair) --> C(SSR); C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected 

1. The operand is fetched from even and odd memory locations 
Y and Y+l. The operand must be a standard descriptor 
with type T = 1 or 3. The following checks are performed 
on the descriptor: 

a. flag bits 20, 21, 27, and 28 = 1 and flag bits 25 
and 26 = 0 for T = 1. 

b. flag bits 20 and 21 = 1 for T = 3. 

c. ****DPS 8: Base must be 0 modulo 8 bytes**** 

d. ****DPS 88: Base must be O modulo 32 bytes**** 

If these conditions are met, the descriptor is loaded 
into the safe store register (SSR); otherwise, an IPR 
fault is generated and the SSR remains unchanged. 

2. Each successful execution of LDSS causes the 2-bit stack 
control register (SCR) to be initialized to binary 11 
indicating a previous frame size of 64 words. (The SCR 
is associated with the SSR and contains a code that 
denotes the size of the last frame on the stack.) 

3. Any of the following conditions causes an IPR fault: 

a. Modification DU, DL, CI, SC, or SCR. 

b. Illegal repeat RPT~ RPD~ or RPL~ 

c. If T is not equal to 1 nor 3. 

d. If either the flag bit or the base checks fail. 

7-248 DH03-0l 



LOSS 

EXAMPLE: 

1 

FANY 

8 

STZ 
LDXO 
TZE 
STSS 
LDAQ 
ADLAQ 
STAQ 
LDSS 
LOP 
LDXO 
STXO 
TRA 

LOSS 

4. **** DPS 8: If the processor is not in the Privileged 
Master mode, the execution of this instruction causes a 
Command fault.**** 

****DPS 88: If the processor is not in the Privileged 
Master mode, the execution of this instruction causes 
an IPR fault.**** 

1 

.SVFLT,,P.SSA 

.ST2CS, ,P.SSA 
NEPRA Not type 2 critical 
.STEMP+6,,P.SSA 
SSRXX 
.STEMP+6,,P.SSA backup safe store to prior frame 
.STEMP+6, ,P .SSA 
.STEMP+6,,P.SSA 
PO,.SSR,DL 
=0377001,DU 
• WREGS, ,PO 
RE TOUT 

7-249 DH03-0l 



LDT 

LDT 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS : 

NOTES: 

LDT 

1· Load Timer Register 637 (0) 

Single-word instruction format {see Figure 7-1) 

Privileged Master Mode 

C(Y) 0_ 26 --> C(TR); C(Y) unchanged 

CI, SC, SGR 

RPT, RPD, RPL 

None affected 

1. ****DPS 8: The use of this instruction in the Slave 
mode causes a Command fault.**** 

2. ****DPS 88: The use of this instruction in other than 
Privileged Master mode causes an IPR fault.**** 

3. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

7-250 DH03-0l 



LOWS 

LOWS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NDrES: 

LOWS 

Load Working Space Registers 772 (1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

If EA17 = o, then 
C(Y)0-8, 9-17, 18-26, 27-35 --> C(WSR)0,1,2,3 

If EA17 = 1, then 
C(Y>o-8, 9-17, 18-26, 27-35 --> C(WSR)4,5,6,7 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected 

1. The contents of memory location Y replace the contents 
of working space registers (WSRs) O, 1, 2, and 3 or WSR 
4 , 5, 6 , and 7 based on the value of bit 1 7 of the 
effective address. 

****DPS 88: Execution of this instruction clears the 
associated "hidden" registers holding the WSPTD words 
for the most recently accessed working spaces.**** 

2. Modifications CI, SC, SCR, DU, DL and illegal repeats 
RPT, RPO, RPL cause an IPR fault. 

3. ****DPS 8: If the processor is not in the Privileged 
Master mode, the execution of this instruction causes a 
Command fault.**** 

****DPS 88**** If the processor is not in the Privileged 
Master mode, the execution of this instruction causes 
an IPR fault.**** 

4. If the LOWS instruction is used to change the contents 
of the WSR that is currently the WSR for the instruction 
segment, then the LOWS must be followed immediately by 
a TRA *+l to ensure that the new contents of the WSR 
take effect immediately. 

7-251 DH03-0l 



LOWS 

EXAMPLE: 

1 

WS03 
WS4 

8 

EVEN 
VRD 
VFD 

DLWS 
LOWS 

16 32 

9/001, 9/001, 9/013, 9/27 
9/45, 9/45, 9/63, 9/510 

WS03 
W547 

7-252 

Load WSR 0-3 from EVEN word 
Load WSR 4-7 from Odd word 

LDWS 

DH03-0l 



LDXn 

LDXn -

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS : 

NOTES: 

Load Index Register E from Upper 

Single-word instruction format (see Figure 7-1) 

Any 

For n = 0,1, ••• 7 as determined by op code 
C(Y) 0_ 17 --> C(XE); C(Y) unchanged 

CI, SC, SCR 

RPT, RPD, RPL of LDXO cause IPR fault. 

zero - If C(XE) = 0, then ON; otherwise, OFF 

Negative - If C(XE)o = 1, then ON; otherwise, OFF 

LDXn 

22n (0) 

1. DL modification is flagged as illegal but executes with 
all zeros for data. 

2. An I !legal Procedure fault occurs if illegal address 
modification is used. 

7-253 DH03-01 



LIMR 

****DPS 88 ONLY**** 

LIMR 

FORMAT: 

PROCESSOR MJDE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Load Interrupt Mask Register 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C(A) 0 _7 --> C(Interrupt Mask Register) 0_7 

If C{A) 8 = 1 the "ALL" register is set to OFF. 

C(A) 9_35 must be zero. 

LIMR 

553 (0) 

When i = O to 7, a O in bit i of the Interrupt Mask Register 
will prevent acknowledgement of interrupt level queue i; a 1 
in bit i of the interrupt Mask Register will permit 
acknowledgement of interrupt level queue i, and if there is 
a pending interrupt in queue i, the CIU will send an interrupt 
present signal. 

C{A), C(Y) unchanged 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected. 

1. The use of this instruction in other than Privileged 
Master mode causes an IPR fault. 

2& Bits 9-35 are to be filled with zero values in order to 
ensure compatibility with future systems. Nonzero values 
in these fields are ignored and will have no effect on 
the operation. 

3. The ALL register (one bit) can only be set ON by the 
CIU hardware, and causes all interrupt levels to be 
masked. If C {A) 8 = O, then the ALL register remains 
unchanged. If C(A) 8 = 1, then the ALL register is set 
r\"C''CI T,,D 1 ..... .,,,,.,..,, 1-....; .... ~ ,..~...., h.n. ~~t- ~~A ,....,,.~1t.a °'""t- .. ~ l!!!!t.t::! ~~~ 
\J.&:°&;• ~'-.&.'- ..l.'CY~..I.. U~'-MI VQI& LJl"'I;; .;ii..;;:._ Ql&U 'i\.&'4;;\,&~ .,;;;a.&'-.L.l."li;lii.-, WYIA 

be made, independent of the state of the ALL register. 

7-254 DH03-0l 



LIMR 

4. 

5. 

LIMR 

This instruction loads the Interrupt Mask Register in 
the port assigned to this CPU in the Control CIU. CPU 
port selection (which CIU) is determined by bit 23 (Control 
CIU) of the Option Register. The Control CIU bit can 
be changed by the SSF, or by the LDHC instruction in 
Hyper mode, if reconfiguration requires the use of an 
alternate Port-CIU-Interrupt Mask Register. 

In DPS 8/70, 8/50, 8/52, 8/62 processors the mnemonic 
SMCM (Set Memory Controller Mask Register) was assigned 
to operation code 553(0). The mnemonic has been changed 
to reflect the new functionality. C(A) 0_ 7 rather than 
C(A) 0 _ 15 . and C(Q) 0_ 15 , are used to set the Interrupt 
Mask Register. 

6. Interrupt queue entries are processed by the RIW 
instruction. 

7. The effective address (Y) is not used by the LIMR 
instruction. 

8. When LIMR is used to mask interrupts, program an RIMR 
instruction immediately following the LIMR instruction 
to ensure that the masking has been accomplished before 
executing other instructions which depend on the 
interrupts being masked. 

9. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

7-255 DH03-01 



LLR 

LLR 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

LLR 

Long Left Rotate 777 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

Rotate C (AQ) left by the number -of positions indicated by 
bits 11-17 of Y (Y modulo 128); enter each bit leaving bit 
position 0 of AQ into bit position 71 of AQ. 

DU, DL, CI, SC, SCR 

RPL 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AO)o = 1, then ON; otherwise, OFF 

1. The rotate count in the instruction must be a decimal 
number. To ~right-rotate~ E bits, use LLR 72-E· 

2. An Illegal Procedure fault occurs if illegal address 
modification or an illegal repeat is used. 

7-256 DHOJ-01 



LLS 

LLS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

LLS 

Long Left Shift 737 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

Shift c (AQ) left by the number of positions indicated by 
bits 11-17 of Y (Y modulo 128); fill vacated positions with 
zeros. 

DU, DL, CI, SC, SCR 

RPL 

Zero - If C(A) = O, then ON; otherwise, OFF 

Negative - If C(A) 0 = 1, then ON; otherwise, OFF 

Carry - If bit 0 of C(AQ) changes during the shift, then 

1. 

ON; otherwise OFF. When the Carry indicator is 
ON, the algebraic range of AQ has been exceeded 

The shift count in the instruction must be a decimal 
number. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-257 DH03-01 



LPDBR 

LPDBR 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLE: 

Load Page Table Directory Base Register 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

**** DPS 8: 

****DPS 88: 

C(Y) 0_14 --> C(PDBR) 

C(Y) 0_16 --> C(PDBR) 

C(Y) unchanged 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

**** 

**** 

LPDBR 

171 ( 1) 

1. The contents of bits 0-14 (DPS 88: 0-16) of Y replace 
the contents of the page directory base register (PDBR) 
and the Page Table Word Associative Memory (PTWAM) (DPS 
88: Paging Buffer), if enabled, is cleared. 

2. Modifications CI, SC, SCR, DU, DL and illegal repeats 
RPT, RPO, RPL cause an IPR fault. 

3. ***DPS 8: If the processor is not in the Privileged 
Master mode, the execution of this instruction causes a 
Canmand fault.**** 

****DPS 88: If the processor is not in the Privileged 
Master mode, the execution of this instruction causes 
an IPR fault.**** 

* LOAD PAGE TABLE DIRECTORY BASE REGISTER 
LPDBR PDBAS base is 512 
RSW 
CANA 
TNZ 
ANA 
STA 
ANA 
TNZ 

2 
.FBT5,DU 
*+2 
=0777777777773 
YOKO 
7,DL 
SLVSS 

7-258 DH03-0l 



LPL 

LPL 

FORMAT: 

CODING FO~T: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

LPL 

I . Load Pointers and Lengths 467 (1) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

LPL LOCSYM,R,AR 

Any 

**** DPS 8: Control information required to recover from a 
mid-instruction interrupt of a multiword instruction is loaded 
from C(Y,Y+l, .•• ,Y+7) C(pointer and length registers) 

Bits 15-17 of Y = 000 for the first location. The actual 
contents of these bit positions are ignored and are assumed 
to be zero.**** 

****DPS 88: Control information required to recover from a 
mid instruction interrupt of a multiword instruction is loaded 
from C(Y,Y+l). The hardware assumes Yl7 = 0 for the first 
location and increments addressing accordingly~ No check is 
made.**** 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

2. The LPL instruction provides the capability for loading 
the pointers for sending and receiving addresses, for 
sending and receiving field lengths, and for other required 
control information when an interruptible multiword 
instruction is interrupted during execution. See "Pointer 
And Length Registers" in Section IV. 

3. ****DPS 8: The address register bit of the modification 
field for the operand descriptor is stored in bit 29. 
Bits 33-35 are the address registers designated by bits 
0-2 of the Y field of the descriptor. Word 3 of the 
operand stores this data for operand descriptor 1, word 
5 of the operand stores this data for operand descriptor 
2, and word 7 of the operand stores this data for operand 
descriptor 3.**** 

7-259 DH03-0l 



LPL 

4. 

5. 

LPL 

The pointer and length registers enable the hardware to 
resume processing an interrupted instruction after a 
return from servicing the interrupt. 

****DPS a: Location Y must be forced to a multiple of 
a by entering an a in column 7 of the statement that 
defines Y, or by using the EIGHT pseudo-operation.**** 

****DPS 88: Location Y must be forced to a multiple of 
2 by entering an 1 in column 7 of the statement that. 
defines Y, or by using the EVEN pseudo-operation.**** 

6. This instruction is normally only used by routines that 
process interrupts. 

7-260 DHOJ-01 



LREG 

LREG 

FORMAT: 

PROCESSOR MOOE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOO'ES: 

LREG 

Load Registers 073 (0) 

Single-word instruction format (see Figure 7=1} 

Any 

C (Y, ••• , Y+6) --> C(XO, ••• ,X7,A,Q,E) where bits 15-17 of y = 
000; C(Y, ••• ,Y+6) unchanged 

Registers are loaded as follows: 

Bits 0-17 of C (Y) --> C (XO) 
Bits 18-35 of C (Y) --> C (Xl) 
Bits 0-17 of C (Y+l) --> C (X2) 
Bits 18-35 of C(Y+l) --> C (X3) 
Bits 0-17 of C (Y+2) --> C (X4) 
Bits 18-35 of C (Y+2) --> C (XS) 
Bits 0-17 of C (Y+3) --> C (X6) 
Bits 18-35 of C (Y+3) --> C (X7) 
Bits 0-35 of C (Y+4) --> C (A) 
Bits 0-35 of C (Y+S) --> c (Q) 
Bits 0-7 of C (Y+6) --> C (E) 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. Location Y must be forced to a multiple of 8 by means 
of an 8 entered in column 7 of the statement that defines 
Y, or by means of the EIGHT pseudo-operation. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-261 DH03-01 



LRL 

LRL 

FORMAT: 

PROCESSOR MJDE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NOTES: 

LRL 

·Long Right Logical Shift 773 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

Shift C (AQ) right by the number of positions indicated by 
bits 11-17 of Y (Y modulo 128); fill vacated positions with 
zeros. 

DU, DL, CI, SC, SCR 

RPL 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

1. The shift count in the instruction must be a decimal 
number. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-262 DH03-0l 



LRS 

LRS 

FORMAT: 

PROCESSOR K>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS : 

NOTES: 

LRS 

Long Right Shift 733 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

Shift C (AQ) right by the number of positions indicated by 
bits 11-17 of Y (Y modulo 128); fill vacated positions with 
bit 0 of C (AQ) • 

DU, DL, CI, SC, SCR 

RPL 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

1. The shift count in the instruction must be a decimal 
number. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-263 DH03-0l 



LXLn 

LXLn 

FORMAT: 

PROCESSOR f.DDE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NOTES: 

Load Index Register E from Lower 

Single-word instruction format (see Figure 7-1) 

Any 

For n = 0,1 •••. or 7 as determined by op code 
C(Y) 18_35 --> C(X_!!); C(Y) unchanged 

CI, SC, SCR 

RPT, RPO, RPL of LXLO cause IPR fault. 

zero - If C(X_!!) = O, then ON; otherwise, OFF 

Negative - If C(XE>o = 1, then ON; otherwise, OFF 

LXLn 

72n (0) 

1. DU modification is flagged as illegal but executes with 
all zeros for data. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-264 DH03-0l 



MLR MLR 

MLR Move Alphanumeric Left to Right 100 ( 1) 

FORMAT: 

0 0 0 l l l l Op Code 2 2 2 3 

FILL MF2 100 ( l) MFl 

0 0 0 l l 2 2 2 2 2 3 3 
_Q_ 2 3 7 8 0 l 2 3 4 2 5 

Yl Nl 
CNl TAl 0 

al Yl R 

0 0 0 1 1 2 2 2 2 2 3 3 
_Q_ 2 3 7~ 0 l 2 3 4 2 5 

Y2 N2 
CN2 TA2 0 

a2 Y2 R2 

CODING FORMAT: The MLR instruction is coded as follows: 

1 ~ l~ 

MLR (MFl), (MF2) ,FILL,T 
ADSCn LOCSYM ,CN ,N ,AM 
ADSCn LOCS YM ,CN ,N ,AM 

PROCESSOR MODE: Any 

7-265 DH03-0l 



MLR 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS : 

INDICATORS: 

NOTES: 

MLR 

C(string 1) --> C(string 2) 

Starting at location YCl, the alphanumeric characters of data 
type TAl of string 1 replace, from left to right, the 
alphanumeric characters of data type TA2 of string 2 that 
starts at location YC2. If TAl and TA2 are dissimilar, each 
character will have high-order truncation or zero-fill, as 
appropriate. If Ll is greater than L2, the least significant 
(Ll-L2) characters are not moved and the Truncation indicator 
is set. If Ll is less than L2, bits 0-8, 3-8, or 5-8 of the 
FILL character (depending on TA2) are inserted as the least 
significant (L2-Ll) characters. If Ll is less than L2, bit 
0 of C(FILL) = 1, TAl = 01, and TA2 = 10 (6-4 move); the 
hardware looks for a 6-bit overpunched sign. If a negative 
overpunch sign is found, a negative sign (octal 15) is inserted 
as the last FILL character. If a negative overpunch sign is 
not found, a positive sign (octal 14) is inserted as the 
last FILL character. The contents of string 1 remain unchanged 
except in cases of string overlap. 

DU, DL for MFl and MF2 

RPT, RPD, RPL 

Truncation - If Ll is greater than L2, then ON; otherwise, 
OFF 

1. An Illegal Procedure fault occurs if DU or DL modification 
is used for MFl or MF2 or if illegal repeats are used. 
A Truncation fault occurs if the Truncation indicator 
is set and the truncation fault enable (T) bit is a 1. 

2. L2 = O does not necessarily mean that the instruction 
functions as a no-op, as the Truncation indicator may 
be affected. 

3. For speed, the MLR and MRL instructions operate on four 
double-words at a time. This mode of operation does 
not cause a problem when moving between either 
nonoverlapped strings or between any normal combination 
of any length overlapped strings. (In the latter case, 
software must choose between MLR and MRL to ensure that 
the overlapped sending characters are moved before they 
are moved into because they are also receiving characters.) 
This mode of operation can cause a problem when MLR or 
MRL is used to replicate a pattern across a string. 

7-266 DH03-0l 



MLR 

EXAMPLES: 

NOTE: 

1 

FLDl 
FLD2 

FLDl 
FLD2 

8 

MLR 
ADSC6 
ADSC6 
USE 
BC! 
BSS 
USE 

MLR 
ADSC6 
ADSC4 
USE 

BC! 
BSS 
USE 

16 

MLR 

For example, one procedure used to replicate a pattern 
of K characters across a string of L characters is to 
1) store the K characters into character positions l 
through K of the string and 2) "move" a string of length 
L - K and starting position 1 to the same length string 
starting at position K + 1. In this way, the last L -
K sending characters are created "on the fly". The 
mode of operating on four double-words at a time does 
not allow this creation "on the fly" for K less than 
four double-words of characters (when K starts on a 
word boundary, or K is less than eight double-words of 
characters when K does not start on a word boundary). 

To replicate a pattern between two characters and four 
double-words of characters, additional instructions must 
be used to initialize the first four double-words of 
the string of L characters. To replicate a 1-character 
pattern (most common application), a simple move with 
fill from a zero-length string can be used. 

32 

I 120 move with blank fill 
FLDl, ,12 sending descriptor 
FLD2, 4, 14 receiving descriptor 
CONST. memory contents 
2, ABCDEFGHIJ KL 
3 xxxxABCDEFGHIJKL~t> (Result) 

, , 400 move with sign captured 
FLDl,3,9 sending descriptor 
FLD2,6,10 receiving descriptor 
CONST. 

2 ,t>t>t>l234 56 7 SR 
2 xxxxxxl23456789- (Result) 

MFl and MF2 (Multiword Modification Fields) are 7-bit fields 
specifying address modifications to be performed on the operand 
descriptors. They are broken into four subfields represented 
as (bitl, bit2, bit3, Index-register) in the instruction. 
They may be coded as follows: 

If bi tl 
bitl 

If bi t2 

bit2 

0 
1 

0 

1 

No address register used 
the address register is defined in the 
operand descriptor address field (e.g., 
ADSC9 I, ,AR) 

Operand 1 ength is specified in the N field 
of the operand descriptor (e.g., ADSC6 
I I 24 I ) 

Operand length is contained in the register 
specified by the code in the N field of 
the operand descriptor (e.g., ADSC4 , ,X4,) 

7-267 DH03-0l 



MLR 

EXAMPLE: 

If bi t3 

bit3 

0 

1 

Index-register 

1 8 

MLR 
ADSC9 
ADSC9 

16 

MLR 

The operand descriptor follows the 
instruction word in its memory location. 
The operand descriptor location following 
the instruction in memory points to the 
operand descriptor 

the address modification register defined 
as 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , ALL , QU , A , 
or Q. 

( 1, 0 , 0 I ALL) ( I , , QU ) 
0,0,24,P.IOQ 
It 24 

This example would move 24 words from P.IOQ to QU. 

See "Multiword Modification Field" and "Alphanumeric Operand 
Descriptors" in Section v, and "Alphanumeric Instructions" 
under "Multiword Operations" in Section VI for additional 
information. 

7-268 DH03-0l 



MME 

MME 

FORMAT: 

PROCESSOR M:>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS : 

IND! CATORS: 

NOTES: 

MME 

1 · Master Mode Entry I 001 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

Generates a MME fault which causes the processor to switch 
to Privileged Master mode and to execute an Inward CLIMB 
instruction using the entry descriptor obtained from the word 
pair in 
****DPS 8: 
****DPS 88: 

real memory location 32 octal.**** 
operating system memory location 32 octal.**** 

None 
****DPS 8/70, 8/50, 8/52, 8/62: CI, SC, SCR generate an 
illegal condition that causes the history registers to be 
locked if mode register bit 31 = 1. No IPR fault occurs as 
the MME fault has higher priority.**** 

RPT, RPD, RPL cause an Illegal Procedure fault. 

Master Mode - ON. 

L If the safestore bypass flag in the option register = 
1, a safestore frame is generated. The size of this 
saf estore frame is determined by the type of the entry 
descriptor. The occurrence of the MME fault is indicated 
in the safestore frame by a code of 00010 in bits 12-16 
of word 5. 

2. The wired-in CLIMB instruction functions as though the 
second word of the CLIMB instruction had the following 
characteristics: 

E = O No parameters. 
c 18 O Do not load XO. 
c 19 has no effect. Turn Master Mode indicator ON. 
c 22_ 23 = 00 Inward CLIMB. 
S ,D fias no effect. 

3. The entry descriptor specifies a descriptor to be obtained 
from the linkage segment for loading into the instruction 
segment register (!SR) • The entry descriptor also 
specifies the value to be loaded into the Instruction 
Counter (IC) • 

4. The processor is placed in Privileged Master mode for 
the execution of the wired- in CLIMB. Upon completion 
of the CLIMB the processor remains in Privileged Master 
mode if flag bit 26 of the new !SR =l (privileged). 
Otherwise, the processor changes to Master mode. 

7-269 DH03-0l 



MMF MMF 

****DPS 88 ONLY**** 

MMF Move to Memory Format 364 ( 1) 

FORMAT: 

0 0 0 1 1 1 1 2 2 2 3 

0 

0 

0 

PROCESSOR MODE: 

SUMMARY: 

5 

MF2 364 ( 1) MFl I 
1 1 2 2 2 3 3 
7 8 0 1 9 0 5 

Yl I CNl I 0 I Nl I 
1 1 2 2 2 3 3 

Y2 
7( 

CN2 
Qr 

0 91° 
5 

I N2 

Any 

This instruction performs the inverse of MRF. Starting at 
location YCl+(Ll-1), 1, 2, 3, or 4 characters are moved 
right-to-left to locations starting at YC2+(L2-l). Maximum 
allowable length for Ll and L2 is 4. Only the rightmost 6 
bits (30-35) of descriptors are interpreted for length. 
Likewise, when a register is specified as containing the 
length, only the rightmost six bits of the register are 
interpreted. 

The EC (bit 0) and B (bit l} bits of word 1 have the following 
effect on the move: 

o If B = O, characters are moved unchanged from string 1 
to string 2~ 9 bits at a time. 

o If B = 1, 8-bit characters (a byte) are picked up from 
strina 1. and a zero is concatenated in the most sianificant 
bit position to form a 9-bit character. This 9-bit 
character is placed in string 2. String 1 contains a 
binary integer which is converted to memory character 
format. 

7-270 DH03-0l 



MMF 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS : 

IND! CATORS : 

NOTES: 

0 

MMF 

EC = 1 enables the following check, providing a hardware 
method to detect that overflow occurred during some 
previous operation on the binary data contained in string 
1. After the last 9-bit character or 8-bit byte to be 
moved has been picked up from string 1, bit zero of 
this character or byte is compared with all of the bits 
remaining in string 1 which were not moved. A successful 
compare indicates that no data has been lost, but an 
unsuccessful compare means data has been lost and the 
Overflow indicator will be set. 

Note that this check is not conclusive. If numerous 
arithmetic operations are performed on 16/32 bit binary 
data, it is possible to overflow, generate a carry out 
of the working register, and produce a case where the 
extended sign bits again agree with the designated sign 
bit. Thus, the programmer should make intermediate checks 
for overflow and/or carry as appropriate to ensure that 
data is not lost. 

o If EC = 0, the above check does not take pl ace and the 
overflow indicator is not affected. 

DU, DL for MFl, MF2 

RPT, RPO, RPL 

Overflow indicator may be turned ON. See Summary. 

1. If L2 > Ll or Ll > 4, an IPR fault will occur. 

2. On an unsuccessful extended sign compare (EC = 1), the 
data is always moved. Then the Overflow indicator is 
turned ON. If the Overflow Mask indicator is OFF, the 
processor executes the overflow fault. 

3. When bytes (binary data) are being moved, there will 
always be bits in string 1 which are not moved. However, 
when 9-bit characters are being moved, all of string 1 
contents may be moved. In such a case, EC = 1 has no 
effect on the operation. 

4. If L2 = 0 or Ll = L2 = O, the Overflow Indicator is not 
affected and the instruction functions as a no-op. 

5. If EC = 1 and the check is successful, the Overflow 
Indicator is not affectedi i.e.i it is not reset. 

6. The primary purpose of this instruction is for the case 
where string 1 is effectively word or upper half word 
aligned, while string 2 is byte aligned. However, no 
hardware check is made to force string 1 to be word or 
upper half word aligned. 

7. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-271 DH03-01 



MP2D 

MP2D 

FORMAT: 

0 0 

1:110----------0 

0 

0 

CODING FORMAT: 

PROCESSOR K>DE: 

SUMMARY: 

ILLEGAL ADDR-ESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

MP2D 

Multiply Using Two Decimal Operands 206 ( 1) 

0 0 1 1 1 1 Op Code 2 2 2 3 
8

1:1:1 
1 7 8 7

1:r MF2 I 206 ( 1) MF'l 

Yl 

Y2 

1 1 2 2 22 2 
7 8 0 1 23 4 

1 1 2 2 22 2 
7 8 0 1 23 4 

SFl 

SF2 

The MP2D instruction is coded as follows: 

1 

Any 

8 

MP2D 
NDSCn 
NDSCn 

16 

(MF l) , (MF 2) , RD , P, T 
LOCSYM,CN,N,S,SF,AM 
LOCSYM,CN,N,S,SF,AM 

C(string 2) * C(string 1) --> C(string 2) 

2 3 3 

Nl 

2 3 3 

N2 

Same as for MP3D except that the product is stored using 
YC2, TN2, S2 and, if S2 indicates a scaled format, SF2. 

DU, DL for MFl and MF2 

RPT, RPO, RPL 

zero - If result equals zero, then ON; otherwise, OFF 

Negative - If result is negative, then ON; otherwise, OFF 

7-272 DH03-0l 



MP2D MP2D 

NOTES: 

Truncation - If, in the preparation of the final result, one 
or more least significant digits (zero or nonzero) 
are lost and rounding is not specified, then 
ON. Otherwise (i.e., no least significant digits 
lost or rounding is specified), OFF 

Exponent 
Overflow - If exponent of floating-point result is greater 

than 127, then ON: otherwise unchanged 

Exponent 
Underflow If exponent of floating-point result is less 

than -128, then ON: otherwise unchanged 

Overflow - If data is lost in most significant positions 
then ON: otherwise, unchanged 

1. A Truncation fault occurs if the Truncation indicator 
is set and the truncation fault enable (T) bit is a 1. 

2. An Illegal Procedure fault occurs if: 

a. DU or DL modification is specified for MFl or MF2, 
or if illegal repeats are used. 

b. Any character (least four bits) other than 0000 -
1001 is detected where digits are defined, or any 
character (least four bits) other than 1010 - 1111 
is detected where the sign is defined by the numeric 
descriptor. 

c. The values for the number of characters (Nl or N2) 
of the data descriptors are not large enough to 
hold the number of characters required for the 
specified sign and/or exponent, plus at least one 
digit. 

****DPS 88: If an illegal digit or sign is detected, 
part or all of the receive field may be changed 
before the IPR fault occurs.**** 

****DPS 8: If an illegal digit or sign is detected, 
the receive field is not changed before the IPR 
fault occurs.**** 

7-273 DH03-0l 



MP2D MP2D 

EXAMPLES: 

1 8 16 32 

MP2D I I 1, 1 rounding and plus sign options 
NDSC9 FLDl, O, 4, 2,-3 multiplier operand descriptor 
NDSC4 FLD2,0,8,l,-2 multiplicand operand descriptor 
USE CONST. memory contents 

FLDl EDEC 4A2+ 0 0 2 + 
FLD2 EDEC 8P+l234567 +1234567 

USE +0002469 (Product) 
* indicators on? none 

MP2D I I 1 rounding option 
NDSC4 FLDl,0,8,3,-2 multiplier operand descriptor 
NDSC4 FLD2, 0 I 8 multiplicand operand descriptor 
USE CONST. memory contents 

FLDl EDEC 8Pl0 00000010 
FLD2 EDEC 8P+l23.45 +12345-2 

USE +12345-3 (Product) 
* indicators on? none 

7-274 DH03-0l 



MP2DX 

****DPS 88**** 

r MP2DX 
l 

FORMAT: 

MP2DX 

Multiply Using Two Decimal Operands Extended 246 ( 1) 

0 0 0 0 0 1 1 1 1 Op Code 2 2 2 3 

0 

0 
0 

I 
0 
0 

I 
PROCESSOR M:>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MpDIFICATIONS: 

ILLEGAL REPEATS : 

INDICATORS: 

NOTES: 

**** 

Yl 

Y2 

MF2 246 ( 1) MFl 

1 1 2 2 2 2 2 2 
7 8 0 1 2 3 4 9 

ICN +Nl I SXl I SFl I Nl 

1 1 2 2 2 2 2 2 

'1~:1~2 l:x:r 
9 

I SF2 N2 

Any 

C(string 2) * C(string 1) --> C(string 2) 

Same as for MP3DX except that the product is stored using 
YC2, TN2, SX2 and, if SX2 indicates a scaled format, SF2. 

DU, DL for MFl or MF2 

RPT, RPO, RPL 

Same as for AD3D. 

1. Notes of MP3D apply. 

2. See MVNX for information about coding of overpunched 
signs. 

7-275 0803-01 



MP3D MP3D 

MP3D Multiply Using Three Decimal Operands 226 (1) 

FORMAT: 

0 0 0 0 0 1 1 1 1 Op Code 2 2 2 3 
0 1 2 8 9 0 1 7 8 7 8 9 5 

1+1 MF3 HRDI MF2 
I 

226 ( 1) H MFl 
I 

0 1 1 2 2 22 2 2 3 3 
0 7 8 0 1 23 4 9 0 5 

I Yl ICN+NlH SFl I Nl 
I 

0 l l 2 2 22 2 2 3 3 
0 7 8 0 1 23 4 

91° 
5 

I Y2 ICN2,TN2H SF2 N2 I 
0 1 l 2 2 22 2 2 3 3 
0 7 8 0 1 23 4 9 a 5 

I Y3 ICN31TN3H SF3 I N3 I 
CODING FORMA.Ti The MP3D instruction is coded as follows: 

l 8 16 

MP3D (MF 1) , (MF 2) , (MF 3) , RD, P, T 
NDSCn LOCSYM,CN,N,S,SF,AM 
NDSCn LOCSYM,CN,N,S,SF,AM 
NDSCn LOCSYM,CN,N,S,SF,AM 

PROCESSOR MODE: Any 

7-276 0803-01 



MP3D 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

MP3D 

C(string 2) * C(string 1) --> C(string 3) 

The decimal number of data type TN2, sign and decimal type 
S2, and starting location YC2, is multiplied by the decimal 
number of data type TNl, sign and decimal type Sl, and starting 
location YCl. The product is stored starting in location 
YC3 as a decimal number of data type TN3 and sign and decimal 
type S3. If S3 indicates a scaled format, the results are 
stored using SF3, which may cause leading or trailing zeros 
(4 bi ts - 0000, 9 bi ts - 000110000) to be supplied and/or 
most significant digit overflow or least significant digit 
truncation to occur. If S3 indicates a floating-point format, 
the result is right-justified to preserve the most significant 
nonzero digits even if this causes least significant truncation. 
If P=l, positive signed 4-bit results are stored using octal 
13 as the plus sign. If P=O, positive signed 4-bit results 
are stored with octal 14 as the plus sign. If RD is a 1, 
rounding takes place prior to storage. The contents of the 
decimal numbers that start in locations YCl and YC2 remain 
unchanged. 

DU, DL for MFl, MF2, and MF3 

RPT, RPO I RPL 

zero - If result equals zero, then ON; otherwise, OFF 

Negative - If result is negative, then ON; otherwise, OFF 

Truncation - If, in the preparation of the final result, one 
or more least significant digits (zero or nonzero) 
are lost and rounding is not specified, then 
ON. Otherwise (i.e., no least significant digits 
lost or rounding is specified), OFF 

Exponent 
Overflow - If exponent of floating-point result is greater 

than 127, then ON; otherwise, unchanged 

Exponent 
Underflow - If exponent of floating-point result is less 

than -128, then ON; otherwise, unchanged 

Overflow - If data is lost in most significant positions, 
then ON; otherwise, unchanged 

l 
..L. A Truncation fault occurs if the Truncation indicator 

is set and the truncation fault enable (T) bit is a 1. 

2. An Illegal Procedure fault occurs if: 

a. DU or DL modification is specified for MFl, MF2, 
or MF3, or if illegal repeats are used. 

7-277 DH03-0l 



MP3D 

EXAMPLES: 

1 

FLDl 
FLD2 
FLD3 

FLDl 
FLD2 
FDL3 

* 

8 

MP3D 
NDSC4 
NDSC4 
NDSC9 
USE 
EDEC 
EDEC 
BSS 
USE 

MP3D 
NDSC4 
NDSC4 
NDSC4 
USE 
EDEC 
EDEC 
EDEC 
USE 

MP3D 

b. Any character (least four bits) other than 0000 -
1001 is detected where digits are defined, or any 
character (least four bits) other than 1010 - 1111 
is detected where the sign is defined by the numeric 
descriptor. 

c. The values for the number of characters (Nl or N2) 
of the data descriptors are not large enough to 
hold the number of characters required for the 
specified sign and/or exponent, plus at least one 
digit. 

3. ****DPS 88: If an illegal digit or sign is detected, 
part or all of the receive field may be changed before 
the IPR fault occurs.**** 

****DPS 8: If an illegal digit or sign is detected, 
the receive field is not changed before the IPR fault 
occurs.**** 

16 

I I I 1 
FLDl,6,2,2 
FLD2,0,8,l,-3 
FLD3,l,7,l,-2 
CONST. 
8P5+ 
8P+l234567 
2 

, , , , 1 
FLDl,0,2,3,-2 
FLD2,0,8,l,-3 
FLD3,l,7 
CONST. 
2PL25 
SP-1234567 
8P+O 

32 

with rounding option 
multiplier operand descriptor 
multiplicand operand descriptor 
product operand descriptor 
memory contents 
0000005+ 
+1234567 
+617284 (Product) 
indicators on? none 

multiplier operand descriptor 
multiplicand operand descriptor 
product operand descriptor 
memory contents 
25000000 
-1234567 
+-3086-1 (Product) 
instruction fault? no 
indicators on? truncation and negative 

7-278 DH03-01 



MP3DX MPJDX 

****DPS 88 ONLY**** 

MP3DX Multiply Using Three Decimal Operands Extended 266 ( 1) 

FORMAT: 

0 0 0 0 0 1 1 1 1 Op Code 2 2 2 3 
0 1 2 8 9 0 1 7 8 71:( 5 

IEAH MF3 HRDI MF2 

I 
266 ( 1) MFl 

I 

0 1 1 2 2 2 2 2 2 3 3 
0 7 8 0 1 2 3 4 9 0 5 

I Yl ICN+Nllsxil SFl I Nl I 

0 1 1 2 2 2 2 2 2 3 3 
0 7 8 _O_ 1 2 3 4 9 0 5 

I Y2 lcN++x2I SF2 I N2 I 
0 1 1 2 2 2 2 2 2 3 3 

I 
Q 7 ~ Q l 2 J 4 

91° 
5 

Y3 ICN3 ,TN3 ISX3 I SF3 NJ I 
PROCESSOR MODE: Any 

7-279 DHOJ-01 



MPJDX 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS : 

INDICATORS: 

NOTES: 

**** 

MPJDX 

C(string 2) * C(string 1) --> C(string 3) 

· The decimal number of data type TN2, sign and decimal type 
SX2, and starting location YC2, is multiplied by the decimal 
number of data type TNl, sign and decimal type SXl, and 
starting location YCl. The product is stored starting in 
location YCJ as a decimal number of data type TNJ and sign 
and decimal type SX3. If SX3 indicates a scaled format, the 
results are stored using SF3, which may cause leading or 
trailing zeros (4 bi ts - 0000, 9 bi ts - 000110000) to be 
supplied and/or most significant digit overflow or least 
significant digit truncation to occur. If SX3 indicates a 
floating-point format, the result is right-justified to 
preserve the most significant nonzero digits even if this 
causes least significant truncation. The character set is 
defined by EA. Placement of overpunched sign in the output 
is controlled by NS. If RD is a 1, rounding takes place 
prior to storage. The contents of the decimal numbers that 
start in locations YCl and YC2 remain unchanged. 

DU, DL for MFl, MF2 

RPT, RPO, RPL 

Same as for MP3D. 

1. Notes of MP3D apply. 

2. See MVNX for information about coding of overpunched 
signs. 

7-280 0803-01 



MPF 

MPF 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

MPF 

Multiply Fraction 401 ( 0) 

Single-word instruction format {see Figure i-1) 

Any 

C(A) * C(Y) --> C(AQ), left adjusted; C(Y) unchanged 

CI, SC,, SCR 

None 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If bit O of C{AQ) = 1, then ON; otherwise, OFF 

Overflow - If range of AQ is exceeded, then ON 

1. This instruction multi plies two 36-bi t fractional factors 
(including sign) to form a 71-bit fractional product 
(including sign). The product is stored in AQ, left 
justified. Bit 71 of C (AQ) is fi_lled with a zero bit. 

2. Overflow can occur only when A and Y both = -1 and the 
result exceeds the range of the AO-register. 

0 0 3 

factor 

C {A) 

yielding: 

0 0 

0 0 

* 

product 

C (AQ) 

factor 

C (Y) 

3 

7 7 
0 l 

3. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-281 DH03-0l 



MPY 

MPY 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

MPY 

Multiply Integer 402 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(O) * C(Y) --> C{AO), right adjusted; C(Y) unchanged 

CI, SC, SCR 

None 

zero - If C(AO) = O, then ON; otherwise, OFF 

Negative - If bit O of C(AO) = l, then ON; otherwise, OFF 

1. This instruction multiplies two 36-bit integral factors 
(including sign) to form a 71-bit integral product 
(including sign). The product is stored in AO, 
right-justified. Bit 0 of C (AO) is filled with an 
•extended sign• bit. 

0 0 3 0 0 3 
0 1 5 0 1 5 

Is I factor I . Is I factor I 
c (0) C (Y) 

yielding: 

0 0 0 7 

product 

C (AO) 

In the case of (-2**35) * (-2**35) = +2**70, bit 1 of 
AO is used to represent the product rather than the 
sign. No overflow can occur. 

2~ An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-282 DH03-0l 



MRF MRF 

****DPS 88 ONLY**** 

MRF Move to Register Format 360 ( 1) 

FORMAT: 

0 0 1 1 1 1 1 2 2 2 3 

0 

0 

0 

PROCESSOR MODE: 

SUMMARY: 

5 

MF2 360 ( 1) MFl I 
1 1 2 2 2 3 3 

Yl 

7 8 0 1 9 0 

I CNl I 0 I Nl 

5 

I 
1 1 2 2 2 3 3 
7 8 0 1 9 0 5 

Y2 I CN2 I 0 I N2 I 
Any 

Starting at location YCl+(Ll-1), 1, 2, 3, or 4, 9-bit characters 
are moved, right to left, to starting location YC2+(L2-l). 
Maximum allowable length for Ll and L2 is 4. Only the rightmost 
6 bi ts (30-35) of descriptors are interpreted for length. 
Likewise, when a register is specified as containing the 
length, only the rightmost 6 bits of the register are 
interpreted. Bits O (SE) and 1 (B) of the first word enable 
the following actions to occur during the move. 

B =O. SE = 0.1 

When B = 0, the 9-bi t characters from string 1 are moved 
unchanged to string 2. When L2 > Ll, the remaining character 
positions of L2 are filled as follows: 

If SE = O, zeros fill the remaining character positions. 

If SE = 1, bit O of the last character moved is treated as 
the sign and is extended to fill the remaining character 
positions. 

7-283 DH03-0l 



MRF 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

MRF 

B = 1. SE = 0.1 

When B = 1, bit 0 is removed from each 9-bit character of 
string 1 and the resulting 8-bi t bytes are placed right justified 
in string 2, i.e., the 9-bi t characters from string 1 represented 
binary data but the extra bit (bit O of the 9-bit characters) 
separated each 8-bit byte of binary data. The SE bit will 
affect the results of the move as follows: 

If SE = O, zeros fill the remaining bit positions of string 
2. 

If SE= 1, bit 0 of the last 8-bit byte moved to string·2 
(this is bit 1 of the original 9-bit character from string 
1) is extended to fill the remaining bit positions of string 
2. 

DU, DL for MFl, MF2 

RPT, RPO, RPL 

None affected 

1. If Ll > L2 or if L2 > 4, an IPR fault will occur. 

2. The primary purpose of this instruction is to move a 
byte-aligned sending field to a word or upper 
half-word-aligned receive field, operating on the 
characters as described during the move. Note that no 
hardware check is made to force the word or upper half-word 
alignment of the receive field. 

3. If Ll = O or Ll = L2 = O, the instruction functions as 
a no-op. 

4. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-284 DH03-01 



MRL 

MRL 

FORMAT: 

0 0 0 
0 8 9 

I FILL I T 

0 0 0 
__Q_ 2 3 

al 

0 0 0 
0 2 3 

I a2 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

1 
0 

I 0 

MRL 

Move Alphanumeric Right to Left 101 ( 1) 

1 l 1 Op Code 2 2 2 3 
1 7 8 7 8 9 5 

I MF2 I 101 ( 1) I I I MFl I 
1 1 2 2 2 2 2 3 3 
7 8 0 1 2 3 4 2 5 

Yl Nl 
CNl TAl 0 

Yl R 

l 1 2 2 2 2 2 3 3 
7 8 0 1 2 3 4 2 5 

Y2 

I I I I 
N2 

I 
CN2 TA2 0 

Y2 IR2 

The MRL instruction is coded as follows: 

1 § 1§ 
MRL (MFl), (MF2) ,FILL,T 
ADSCn LOCSYM,CN,N,AM 
ADSCn LOCSYM,CN,N,AM 

Any 

C(string 1) --> C(string 2) 

This instruction is identical with MLR except that the starting 
locations are YCl + (Ll-1) and YC2 + (L2-l) and the movement 
is from right to left (from least significant character toward 
most significant character). Consequently, any truncation 
or fill is of the most significant characters. 

DU, DL for MFl and MF2 

7-285 DHOJ-01 



MRL 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLE: 

1 

FLDl 
FLD2 

FLDl 
FLD2 

8 

MRL 
ADSC6 
ADSC6 
USE 
BCI 
BSS 
USE 

MRL 
ADSC6 
ADSC4 
USE 
BCI 
BSS 
USE 

MRL 

RPT, RPO, RPL 

Truncation - If Ll is greater than L2, then ON; otherwise, 
OFF 

1. An Illegal Procedure fault occurs if DU or DL modification 
is used for MFl or MF2 or if illegal repeats are used. 
A Truncation fault occurs if the Truncation indicator 
is set and the truncation fault enable (T) bit is a 1. 

2. Refer to Note 3 of the MLR instruction for information 
on string replication. 

3. L2 = 0 does not necessarily mean that the instruction 
functions as a no-op because the truncation indicator 
may be affected. 

16 

t I 20 
FLDl,,12 
FLD2,4,14 
CONST. 
2, ABCDEFGHIJ KL 
3 

I I 400 
FLDl,3,9 
FLD2,4,12 
CONST. 
2 ,t>t>l>l234 567 SR 
2 

32 

move with blank fill 
sending descriptor 
receiving descriptor 
memory contents 

xxxxt>)SABCDEFGHIJKL {Result) 

move with sign and fill 
sending descriptor 
receiving descriptor 
memory contents 

xxxx-00123456789 (Result) 

7-286 DH03-0l 



MVE 

MVE 

FORMAT: 

0 0 0 

0 
0 

0 
0 

0 
0 

al 

a2 

a3 

0 0 
2 3 

0 0 
2 3 

0 0 
2 3 

MF3 

CODING FORMAT: 

PROCESSOR MODE: 

Move Alphanumeric Edited 

0 0 1 1 

MF2 

Yl 

Yl 

Y2 

Y2 

Y3 

Y3 

1 l Op Code 

020 ( 1) 

1 1 2 2 2 2 2 
7 8 0 1 2 3 4 

CNl TAl 0 

1 1 2 2 2 2 2 
7 8 0 1 2 3 4 

CN2 TA2 0 

1 1 2 2 2 2 2 
7 8 0 1 2 3 4 

CN3 TA3 0 

2 2 2 

not 
interpreted 

not 
interpreted 

not 
interpreted 

The MVE instruction is coded as follows: 

l 8 16 

MVE (MFl), (MF2), (MF3) 
ADSCn LOCSYM ,CN ,N ,AM 
ADSC9 LOCSYM ,CN ,N ,AM 
ADSCn LOCSYM,CN,N,AM 

Any 

7-287 

MFl 

2 3 
9 0 

2 3 
9 0 

2 3 
9 0 

MVE 

020 ( 1) 

3 
2 

3 
2 

Nl 

Rl 

N2 

3 
2 

R2 

N3 

R3 

3 

3 
5 

3 
5 

3 
5 

DH03-01 



MVE 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

MVE 

string 2 control 
C{string 1) ---------------> C{string 3) 

Starting at location YCl, the string of alphanumeric characters 
of data type TAl is moved under control of the micro-operation 
sequence of length L2 and type TA2 = 00 that starts at location 
YC2 to the string of alphanumeric characters of data type 
TA3 starting at location YC3. Maximum allowable length for 
Ll, L2, and L3 is 63; they are not checked for length greater 
than 63. Only the rightmost six bits (30-35) are interpreted 
for length. Likewise, when a register is specified as 
containing the length, only the rightmost six bits of the 
register are interpreted. The operation stops when L3 is 
exhausted. (The hardware is not responsible for results, 
nor can it guarantee identical results on future machines, 
if any overlap is defined for the three strings.) The contents 
of the alphanumeric character string that starts at YCl and 
the micro-operation sequence that starts at YC2 remain 
unchanged. 

DU, DL for MFl, MF2, and MF3 

RPT, RPO, RPL 

None affected 

1. An Illegal Procedure fault occurs if DU or DL modification 
is used for MFl, MF2, or MF3; if a move from an exhausted 
sending string or call to an exhausted micro operation 
sequence is attempted, if L2 = O, or if illegal repeats 
are used. 

****DPS 88: If an IPR fault occurs for one of the 
conditions described in the preceding sentence, part or 
all of the receive field may be changed before the IPR 
fault occurs.**** 

2. TA2 is assumed to be 00 and is not interpreted by the 
hardware. 

3. Ref er to "Micro-Operations" in this section for additional 
information. 

4. On the processor, L3 = 0 is the normal termination; 
thus, at the start of the instruction, if L3 = O and 
there are no faults (see Note 1), no operation is performed 
and the instruction terminates normally, independently 
of whether Ll or L2 equals zero, because the hardware 
does not access these fields when L3 = O. 

7-288 DH03-0l 



MVE 

EXAMPLES: 

1 

FLDl 
FLD2 

* * The 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
FLO 

FLDl 
FLD2 
* 
FLD3 

8 

MVE 
ADSC6 
ADSC9 
ADSC6 
USE 
BCI 
MI CROP 
MI CROP 
MI CROP 
MI CROP 

16 

FLDl,2,20 
FLD2,0,25 
FLD3,0,30 

32 

move alphanumeric edited 
sending field operand descriptor 
micro-op string operand descriptor 
receiving field operand descriptor 

CONST. 
4,12SMITHROGERWILLIAMS25AB 
(CHT,0) ,SH* I .-)S)S)S)S, (SES,8) I (INSB,l) '{INSB,5) 
(MVC I 10) ' ( INSB I 2) I ( INSB I 5) , {MVC, 7) 
(INSB,5), (MVC,l), {INSB,3) I (INSB,5) 
(INSB,4), (INSB,5), {INSB,0) ,lHi, (MCV,2) 

MVE 

following is an explanation of the above micro-operation sequence: 
(CHT,0) ,8H*,.-)S)S)S)S - Change Edit Table to these 8 Hollerith characters 
(SES,8) - Set End Suppression Flag ON 
(INSB,l) - Insert Edit Table Entry il (*) 
(INSB,5) - Insert Edit Table Entry #5 ()S) 
(MVC,10) - Move 10 characters from FLDl (SMITHROGER) 
(INSB,2) - Insert Edit Table Entry #2 (,) 
(INSB,5) - Insert Edit Table Entry #5 ()S) 
(MVC,7) - Move 7 characters from FLDl (WILLIAM) 
(INSB,5) - Insert Edit Table Entry i5 ()S) 
(MVC,l) - Move 1 character from FLDl (S) 
(INSB, 3) - Insert Edit Table Entry #3 (.) 
(INSB, 5) - Insert Edit Table Entry #5 (.L'>) 
(INSB,4) - Insert Edit Table Entry i4 (-) 
(INSB,5) - Insert Edit Table Entry #5 ()S) 
(INSB,0) ,lH# - Insert specified character (#) 
(MVC,2) - Move 2 characters from FLDl (25) 

memory contents in BCD characters 
BSS 5 * ):SSMITHROGER,)SWILLIAM)SS. )S-))#2 5 
USE 

MVE 
ADSC9 
ADSC9 
ADSC9 
USE 
ASCII 
MI CROP 

ASCII 

FLDl,0,7 
FLD2,0,6 
FLD3+1,l,7 
CONST. 
2,ERROR-2 

move alphanumeric edited 
sending field operand descriptor 
micro-op string operand descriptor 
receiving field operand descriptor 

(LTE,l) ,lAi, (MVC,5) I (INSM,l), (IGN,l), (MVC,l) 
memory contents in ASCII characters 

3,CODE code)Serrort2 (Result) 

7-289 DH03-01 



MVE 

l 8 

MVE 
ADSC9 
ADSC9 
ADSC9 
MVT 
ADSC9 
ADSC9 
ARG 
USE 

MOPSC MICROP 
MI CROP 
OCT 

TABLE OCT 
OCT 
OCT 
OCT 
OCT 
OCT 
OCT 
OCT 
OCT 
OCT 
USE 

16 

RDWRK,2,6 
MOPSC,0,11 
A9,l,7 

A9,l,7 

32 

A,1,7 NDSC9 A,l,7,2 
TABLE-12 
CONST. 
(LTE, 3) I 10000, (LTE I 4) , 10100 
(MSES,6), (LTE,3) ,lA+, (LTE,4) ,lA-, (SES), (ENF) 
000000000053,000055000000 05X 
060061062063,064065066067 06X 
070071000000,000000000000 07X 
000000000000,000000000000 !OX 
000000061062,063064065066 llX 
067070071000,000000000000 12X 
000000000000,000000060000 13X 
000000000000,000000000000 14X 
000000061062,063064065066 15X 
067070071000,000000000000 16X 
000000000000,000000000000 17X 

7-290 

MVE 

0803-01 



MVN MVN 

MVN I Move N wner i c 300 (1) 

FOR..t.!..\T: 

0 0 0 0 1 1 1 1 Op Code 2 2 2 3 
0 1 8 9 0 1 7 8 7 8 9 5 

I Pl o-----o I TIRO I MF2 
I 

300 ( 1) 

I 
I 

I 
MFl I 

0 0 0 1 1 2 2 2 2 2 2 3 3 
0 2 3 7 8 0 1 2 3 4 9 0 5 

I 
Yl 

I I 151 I I I 
CNl TNl SFl Nl 

al Yl 

0 0 0 1 1 2 2 2 2 2 2 3 3 
0 2 3 7 8 0 1 

f 2l 

9 0 5 

I 
Y2 I CN2 I I I 

TN2 SF2 N2 

a2 Y2 

CODING FORMAT: The MVN instruction is coded as follows: 

l ~ 12 
MVN (MFl) ,(MF2) ,RD,P,T 
NDSCn LOCSYM,CN,N,S,SF,AM 
NDSCn LOCSYM,CN,N,S,SF,AM 

PROCESSOR MODE: Any 

7-291 DH03-0l 



MVN 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

MVN 

C(string 1) --> C(string 2) 

Starting at location YCl, the decimal number of data type 
TNl and sign and decimal type Sl is moved, properly scaled, 
to the decimal number of data type TN2 and sign and decimal 
type S2 that starts at location YC2. If S2 indicates a 
scaled format, the results are stored as L2 digits using 
scale factor SF2, and thereby may cause most significant 
digit overflow and/or least significant digit truncation. 
If P = 1, positive signed 4-bit results are stored using 
octal 13 as the plus sign. Rounding is legal for both floating 
and scaled formats. If P = O, positive signed 4-bit results 
are stored with octal 14 as the plus sign. The contents of 
the decimal number that starts in location YCl remain unchanged. 

DU, DL for MFl and MF2 

RPT, RPD, RPL 

zero - If result equals zero, then ON; otherwise, OFF 

Negative - If result is negative, then ON; otherwise, OFF 

Truncation - If least significant truncation without rounding, 
then ON; otherwise, OFF 

Exponent 
Overflow - If exponent of floating-point result is greater 

than 127, then ON; otherwise, unchanged 

Exponent 
Underflow If exponent of floating-point result is less 

than -128, then ON; otherwise, unchanged 

Overflow - If fixed point integer overflow, then ON; 
otherwise, unchanged. 

1. 

****DPS 8: In addition, if internal register 
overflow, then ON; otherwise, unchanged.****. 

Truncation fault occurs if the Truncation indicator is 
set and the truncation fault enable (T) bit is 1. 

2. An Illegal Procedure fault occurs if: 

PU or or. monifi~;:it:ion is !=:.nP~ifiPn for MFl or 1"'...F2. 
or if ii1~9~i-~~~~t--i~-u~~a:-----

h. Any character (least four bits) other than 0000 -
1001 is detected where digits are defined, or any 
character (least four bits) other than 1010 - 1111 
is detected where the sign is defined by the numeric 
descriptor. 

7-292 DH03-0l 



MVN 

EXAMPLES: 

1 

FLDl 
FLD2 

FLDl 
FLD2 

8 

MVN 
NDSC4 
NDSC4 
USE 
EDEC 
EDEC 
USE 

MVN 
NDSC9 
NDSC4 
USE 
EDEC 
BSS 
USE 

MVN 

c. The values for the number of characters (Nl or N2) 
of the data descriptors are not large enough to 
hold the number of characters required for the 
specified sign and/or exponent, plus at least one 
digit. 

3. Refer to Note 3 of the MLR instruction for information 
on string replication. 

4. ****DPS 88: If an illegal digit or sign is detected, 
part or all of the receive field may be changed before 
the IPR fault occurs.**** 

****DPS 8: If an illegal digit or sign is detected, 
the receive field is not changed before the IPR fault 
occurs.**** 

16 

,,1 
FLDl, 0, 8, 2 I - 3 
FLD2,l,7,1,-2 
CONST. 
8Pl234567+ 
8PO 

, , , , 1 
FLDl,3,9,2,-2 
FLD2,0,8,0 
CONST. 
12Al2345678-
l 

32 

with rounding option 
sending field operand descriptor 
receiving field operand descriptor 
memory contents 
1 2 3 4,5 6 7 + 
0 + 1 2 3 4 4 5 7 (Result) 
no indicators set ON 

with truncation fault enable option 
sending field operand descriptor 
receiving field operand descriptor 
memory contents 
0 0 0 1 2 3 4 5 6,7 8 -
- 1 2 3 4 5 + 1 {Res ul t) 
negative and truncation set ON 

EXAMPLE WITH ADDRESS MODIFICATION: 

1 

FLDl 
FLD2 

8 

EAXl 
EAX2 
EAX7 
EAX4 
AWDX 
MVN 
NDSC9 
ARG 
USE 
EDEC 
EDEC 
NDSC4 
USE 

16 32 

1 load character address into Xl 
2 load address modifier into X2 
7 load FLDl length into X7 
FLDl load FLDl address into X4 
0,4,4 put FLDl address into AR4 
(1,1,,1) ,(,,1) ,1,1 - with rounding and plus sign options 
O,,X7,2,-2,4 FLDl~s operand descriptor (FLDl,1,7,2,-2) 
FLD2+1 pointer to indirect operand descriptor 
CONST. memory contents 
8Al23456+ 0 l 2 3 4 4 5 6 + 
8PO 0 0 0 0 1 2 3 5" (Result) 
FLD2,2,6,3,-2 receiving field indirect operand descriptor 

no indicators set ON 

7-293 DHOJ-01 



MVNE 

MVNE 

FORMAT: 

I 
0 
0 

0 
0 

0 
0 

0 
0 

0 0 

00 

al 

a2 

a3 

l 2 

I 
0 0 
2 3 

0 0 
2 3 

0 0 
2 3 

MF3 

CODING FORMAT: 

·Move Numeric Edited 

0 0 l l 

MF2 

Yl 

Yl 

Y2 

Y2 

Y3 

Y3 

l l Op Code 

024(1) 

l l 2 2 2 2 2 
7 8 0 1 2 3 4 

CNl TNl Sl 

l 1 2 2 2 2 2 
7 8 0 1 2 3 4 

CN2 TA2 0 

1 1 2 2 2 2 2 
7 8 0 1 2 3 4 

CN3 TA3 0 

2 2 2 

not 
interpreted 

not 
interpreted 

not 
interpreted 

The MVNE instruction is coded as follows: 

1 8 

NDSCn 
ADSC9 
ADSCn 

16 

/U'C11 \ /U'C''"l\ /U"Ct"l\ 
\'"&.&: .LI I \ru· ,c. I r \L"U:: .:>I 

LOCSYM,CN,N,S,,AM 
LOCSYM,CN,N,AM 
LOCSYM,CN,N,AM 

PROCESSOR MODE: Any 

7-294 

MFl 

2 3 
9 0 

2 3 
9 0 

2 3 
9 0 

M\TNE 

024 (1) 

3 
2 

3 
2 

3 
2 

Nl 

Rl 

N2 

R2 

N3 

R3 

3 

3 
5 

3 
5 

3 
5 

DH03-01 



MVNE 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS : 

INDICATORS: 

NOTES: 

MVNE 

string 2 control 
C(string 1) ---------------> (string 3) 

Starting at location YCl, the string of numeric characters 
of data type TNl is moved to the string of alphanumeric 
characters of data type TA3 starting at location YC3. The 
move is under control of the micro-operation sequence of 
length L2 and type TA2 = 00 that starts at location YC2. 
Maximum allowable length for Ll, L2, and L3 is 63; they are 
not checked for length greater than 63. Only the rightmost 
6 bits (30-35) are interpreted for length. Likewise, when a 
register is specified as containing the length, only the 
rightmost 6 bits of the register are interpreted. The hardware 
is not responsible for results, nor can it guarantee identical 
results on future machines, if any overlap is defined for 
the three strings. The operation stops when L3 is exhausted. 

The sign and decimal type of the sending field is given by 
Sl. The contents of the numeric character string that starts 
a·t YCl and the micro-operation sequence that starts at YC2 
remain unchanged. 

DU, DL for MFl, MF2, and MF3 

RPT, RPD, RPL 

None affected 

1. Illegal Procedure fault same as for MVN. In addition, 
an Illegal Procedure fault occurs if L2 equals zero 
{DPS 8: IPR if L3 = 0), or if the micro-operation 
sequence terminates abnormallye 

****DPS 88: Normal termination occurs when L3 is 
decremented to zero; thus, if L3 = 0 at the start of 
the instruction, and there are no other faults, no 
operation is performed and the instruction terminates 
normally. No attempt is made by hardware to access the 
Ll or L2 field when L3 0 at the start of the 
instruction.**** 

****DPS 88: If an IPR fault occurs because of an illegal 
numeric digit (not illegal sign), illegal micro operation, 
or insufficient length of Ll or L2, part or all of the 
receive field may be changed before the IPR fault 
occurs.**** 

2. Refer to "Micro-Operations" in this section for additional 
information. 

7-295 DH03-01 



MVNE 

EXAMPLES: 

1 

FLDl 
FLD2 

FLD3 

FLDl 
FLD2 

* 
FLD3 

MOPS 
TABLE 

8 

MVNE 
NDSC9 
ADSC9 
ADSC6 
USE 
EDEC 
MI CROP 
MI CROP 

BSS 
USE 

MVNE 
NDSC4 
ADSC9 
ADSC9 
USE 
EDEC 
MI CROP 
MI CROP 

BSS 
USE 

MVNE 
NDSC4 
ADSC9 
ADSC6 
MVT 
ADSC6 
ADSC9 
ARG 
USE 
MI CROP 
ASCII 
VFD 
OCT 
OCT 
UASCI 
VFD 
OCT 
OCT 
USE 

16 32 

with {$) float and (.} inserted 
FLDl,0,10,2 sending field operand descriptor 
FLD2,0,14 micro-op string operand descriptor 
FLD3,0,12 receiving field operand descriptor 
CONST. memory contents in ASCII characters 
10A300405- 000300405-00 
(CHT, 0) I SH}S*+-$ I. 0, (MFLC I 7) I (ENF I 8) I ( INSB I 7) 
(MVC,2) ,(INSN,4) memory contents in BCD characters 

2 )S )S ~ $ 3 0 0 4 • 0 5 - (Result) 

MVNE 

with (*) protection and (.) insertion 
FLDl,0,8,2 sending field operand descriptor 
FLD2,0,6 micro-op string operand descriptor 
FLD3,0,12 receiving field operand descriptor 
CONST. memory contents in packed decimal 
8P250509- 025059-
(MVZA, 5) , (SES, 8) , (INSA, 7) , (MVC, 2) 
( INSN, 4) , ( INSM I 3) 

memory contents in ASCII characters 
3 * 2 5 0 5 • 0 9 - ~ ~ ~ (Result) 

6PACK,3,5,l 
f«>PS,0,6 
PRTOU'l',0,4 

PRTOU'I' I 0 I 4 
APRINT, O, 4 
TABLE 
CONST. 

+1234 ----> 1234 
-1234 ----> 123M 

(MVC,3) I (LTE,3) ,10000, (LTE,4) ,10040, (MORS,l) 
2,01234567 OX 
Al8/89,18/0,36/0 lX 
0,0 2X 
0,0 3X 
2, JKLMNOP 4X 
Ul8/QR,18/0,36/0 SX 
0,0 6X 
O, 0 7X 

7-296 DH03-0l 



MVNEX MVNEX 

****DPS 88 ONLY**** 

MVNEX Move Numeric Edited Extended 004 ( 1) 

FORMAT: 

0 0 0 0 0 1 1 1 l Op Code 2 2 2 3 
0 1 2 8 9 0 1 1 8 7 8 9 5 

IF+ I MP3 I EIT I MF2 I 004 ( 1) H MFl I 
0 l l 2 2 2 2 2 2 3 3 
0 7 8 0 1 2 3 4 9 0 5 

I Yl ICNl ITNl ISXl I not 

I 
Nl 

I 
interpreted 

0 l l 2 2 2 2 2 2 3 3 
0 7 8 0 l 2 3 4 9 0 5 

I Y2 ICN2 ,TA2 I 0 I not 

I 
N2 I interpreted 

0 l 1 2 2 2 2 2 2 3 3 
g z § Q i ~ J ~ 

9r 
5 

I Y3 
ICNtA31 0 

I 
not N3 I interpreted 

PROCESSOR MODE: Any 

7-297 0803-01 



MVNEX 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NorES: 

**** 

string 2 control 
C(string 1) --> C(string 3) 

MVNEX 

The function of this instruction is similar to the MVNE 
instruction, but with the added capability of allowing the 
specification of the coded character set (ASCII or EBCDIC) 
used in the input data, and the coded character set (ASCII, 
EBCDIC, or BCD) used in initializing the Edit Insertion Table 
(EIT) for output. Bit O (EA) of the instruction specifies 
the coded character set for the input data (O=EBCDIC, l=ASCII). 
Bits 9 and 10 (EIT) specify the coded character set for 
initializing the EIT as follows: 

EIT 
QC) EBCDIC 
01 BCD 
10 ASCII 
11 BCD 

TNl determines whether the input data is unpacked (0) or 
packed (1). TA3 determines the character size (9, 6, or 4 
bits) of the output data. It is the user"s responsibility 
to make TA3 consistent with bits 9 and 10 of the instruction. 
SXl determines the location of the sign of the input data 
(leading, trailing, overpunched, separate). 

DU, DL for MFl, MF2, and MF3 

RPT, RPO I RPL 

None affected 

1. Notes for MVNE apply to MVNEX. 

2. Overpunched signs - The MVNEX instruction does not derive 
appropriate information from ASCII input data with 
over punched signs. Incorrect result data or an IPR fault 
occurs. Such data must be moved via the MVNX instruction 
(or via other processing) to produce data with separate 
signs or no signs. 

3. Refer to "Micro-Operations" for additional information. 

4. An Illegal Procedure fault occurs if DU or DL modifications 
are specified for MFl, MF2, or MF3, or if illegal repeats --- ·---~ CU. C Ui:>CU o 

7-298 DH03-0l 



MVNX MVNX 

****DPS 88 ONLY**** 

MVNX Move Numeric Extended 340 ( 1) 

FORMAT: 

0 0 0 0 0 1 1 1 1 Op Code 2 2 2 3 

0 

0 
0 

I 
0 
0 

I 
PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS : 

Yl 

Y2 

MF2 340 ( 1) MFl 

1 1 2 2 2 2 2 2 
7 8 0 1 2 3 4 9 

lcN1 ITNl lsx1 I SFl 

I 
Nl 

1 1 2 2 2 2 2 2 
7 8 0 1 2 3 4 9 

ICN+N21SX21 SF2 

I 
N2 

Any 

C(string 1) --> C(string 2) 

Starting at location YCl, the decimal number of data type 
TNl and sign and decimal type SXl is moved, properly scaled, 
to the decimal number of data type TN2 and sign and decimal 
type SX2 that starts at location YC2. If SX2 indicates a 
fixed point format, the result is stored as L2 digits using 
scale factor SF2, and thereby may cause most significant 
digit overflow and/or least significant digit truncation. 
Rounding is legal for both floating and scaled formats. The 
contents of the decimal number that starts in location YCl 
remain unchanged. 

DU, DL for MFl or MF2 

RPT, RPO, RPL 

7-299 DH03-0l 



MVNX 

INDICATORS: 

NOTES: 

MVNX 

zero - If result is zero, then ON; otherwise, OFF 

Negative - If result is negative, then ON; otherwise, OFF 

Truncation - If least significant truncation without rounding, 
then ON; otherwise, OFF 

Overflow 

Exponent 

- If fixed-point integer overflow, then ON; 
otherwise, unchanged. 

Overflow - If exponent of floating-point result > 127, then 
ON; otherwise, unchanged 

Exponent 
Underflow - If exponent of floating-point result < -128, 

then ON; otherwise, unchanged 

1. A Truncation fault occurs if the Truncation indicator 
is set and the truncation fault enable bit (T) is a 1. 

2. An IPR fault occurs if any character (least four bits) 
other than 0000 - 1001 is detected where digits are 
defined, or any character {least four bits) other than 
1010 - 1111 is detected where the sign is defined by 
the numeric descriptor. 

3. An IPR fault occurs if the values for the number of 
characters {Nl or N2) of the data descriptors are not 
large enough to hold the number of characters required 
for the specified sign and/or exponent, plus at least 
one digit. 

4. An IPR fault occurs if DU or DL modifications are specified 
for MFl or MF2, or if illegal repeats are used. 

5. Refer to Note 3 of MLR for information on string 
replication. 

6. If an illegal digit or sign is detected, part or all of 
the receive field may be changed before the IPR fault 
occurs. 

7. The hardware recognizes an implied plus sign on input 
data. For unpacked data (TN=O) with indicated over punched 
sign {SXl = 00 or 11), if the hardware does not find a 
plus or minus overpunched sign character in the overpunched 
sign character position, the hardware checks for a numeric 
digit (0-9). The zone bits are not included in the 
check; only the lower order 4 bi ts are checked. If 
this check indicates a numeric digit from the appropriate 
character set, the hardware accepts the digit and assumes 
the sign to be plus. Otherwise an IPR fault is generated. 

7-300 DH03-0l 



MVNX MVNX 

The following table shows the character codes for ASCII 
and EBCDIC overpunched signs: 

Card Punch Normal Ovrpnch ASCII EBCDIC 
Code I nteq~. Inteq~. Code Code 

0 0 0 060 360 
1 1 1 061 361 
2 2 2 062 362 
3 3 3 063 363 
4 4 4 064 364 
5 5 5 065 365 
6 6 6 066 366 
7 7 7 067 367 
8 8 8 070 370 
9 9 9 071 371 

12 + +O 053 NA 
space space +O 040 NA 
12-0 { +O 173 300 
12-1 A +l 101 301 
12-2 B +2 102 302 
12-3 c +3 103 303 
12-4 D +4 104 304 
12-5 E +5 105 305 
12-6 F +6 106 306 
12-7 G +7 107 307 
12-8 H +8 110 310 
12-9 I +9 111 311 

11 -o 055 NA 
11-0 (GBCD) 

,., 
-0 136 NA 

11-0 {ASCII)} -o 175 320 
11-1 J -1 112 321 
11-2 K -2 113 322 
11-3 L -3 114 323 
11-4 M -4 115 324 
11-5 N -5 116 325 
11-6 0 -6 117 326 
11-7 p -7 120 327 
11-8 Q -8 121 330 
11-9 R -9 122 331 

7-301 DH03-01 



MVT 

MVT 

FORMAT: 

0 0 0 l 
0 8 9 0 

I FILL I T I 0 

0 0 0 
0 2 3 

I al 

0 0 0 
Jl_ _2_ 3 

a2 

0 0 0 
Jl --'- _3_ 

a3 

CODING FORMAT: 

Move Alphanumeric with Translation 

l l l Op Code 2 2 2 
l 7 8 7 8 9 

I MF2 I 160 ( 1) I I I 
l 1 2 2 2 2 2 
7 8 0 1 2 3 4 

Yl 

I I I I 
Nl 

CNl TAl 0 

Yl 0-------------0 

1 1 2 2 2 2 2 
7 8 0 1 _Q_ 2 4 

Y2 N2 
CN2 TA2 0 

Y2 0-------------0 

1 1 2 2 3 
1 8 _a _9 D_ 

Y3 
0----------------0 AR3 00 

Y3 

The MVT instruction is coded as follows: 

l 8 

MVT 
ADSCn 
ADSCn 
ARG -

16 

(MFl) ! (MF2) !FILL!T 
LOCSYM,CN,N,AM 
LOCSYM ,CN ,N ,AM 
TABLE 

PROCESSOR t«>DE: Any 

7-302 

MVT 

160 ( 1) 

3 
5 

MFl I 
3 3 
2 5 

Rl I 
3 3 
2 5 

R2 

3 3 3 
1 2 5 

REG 

DH03-0l 



MVT 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS : 

NOTES: 

MVT 

Starting at location YCl, the alphanumeric characters of data 
type TAl are used as an index to a table of contiguous 9-bit 
characters that start at location Y3 (character position 0). 
The octal code of the character of string-I is used as an 
index to string-3. The indexed 9-bit characters (or 
right-justified 4- or 6-bit characters) of string-3 replace 
the contents of string 2 1 starting at location YC2~ If TAl 
and TA2 are dissimilar, each character will have high-order 
truncation. If Ll is less than L2, the FILL character {the 
entire 9 bits) is used as the index to the table to replace 
the L2-Ll least significant characters of string 2. The 
contents of string 1 remain unchanged except in cases of 
string overlap. The hardware is not responsible for results, 
nor can it guarantee identical results on future machines, 
if any overlap is defined for the three strings. 

DU, DL for MFl, MF2, and REG field for Y3 

RPT, RPO, RPL cause an Illegal Procedure fault. 

Truncation - If Ll is greater than L2, then ON; otherwise, 
OFF 

1. An Illegal Procedure fault occurs if DU or DL modification 
is used for MFl, MF2, or REG fields for Y3a A Truncation 
fault occurs if the Truncation indicator is set and the 
truncation fault enable (T) bit is a 1. 

2. Refer to Note 3 of the MLR instruction for information 
on string replication. 

3. ****DPS 8/20 and 8/44: When pre-paging, the hardware 
assumes that the length of the translate table corresponds 
to the data type identified by TAl as follows: 

TAl 
4-bit 
6-bit 
9-bit 

Table Length 
4 words 

16 words 
128 words **** 

4. L2 = O does not necessarily mean that the instruction 
functions as a NOP; because, the Truncation indicator 
may be affected. 

7-303 DH03-0l 



MVT MVT 

EXAMPLES: 

1 8 16 32 

MVT , , 52 with fill index a minus 
ADSC6 FLDl,4,7 indexing operand descriptor 
ADSC4 FLD2,0,8 receiving operand descriptor 
ARG TABLE pointer to 4-bit table 
USE CONST. memory contents 

FLDl BCI 2,bbbbbl23456 202020202001020304050620 
FLD2 BSS 1 0123456- (Result) 

TABLE NULL 
OCT 000001002003,004005006007 ox 
OCT 010011017017,017017017017 lX 
OCT 000017017017,017017017017 2X 
OCT 017017017017,017017017017 3X 
OCT 017017017017,017017017017 4X 
OCT 017017015017,017017017017 SX 
OCT 014017017017,017017017017 6X 
OCT 017017017017,017017017017 7X 
USE 
MVT 
ADSC4 FLD3 I I 8 
ADSC4 FLD4 I I 8 
ARG TAB 
USE CONST. 

FLD3 OCT 022064126317 123456++ 
FLD4 BSS 1 02 2064126314 (Result) 
TAB NULL 

OCT 000001002003,004005006007 
OCT 010011014014,014015014014 
USE 

NOTE: The translation table length is determined by the highest possible 
index character octal value that may be found in the indexing data 
string. 

7-304 0803-01 



1 

FLDl 
FLD2 
TABLE9 

NOTES: 

8 

MVT 
ADS CG 
ADSC9 
ARG 
USE 
BCI 
BSS 
EDITP 
UASCI 
UASCI 
UASCI 
UASCI 
UASCI 
UASCI 
UASCI 
UASCI 
EDITP 
USE 

1. 

16 32 

,,040 blank fill 
FLDl,0,18 
FLD2,0,20 
TABLE9 pointer to translation table 
CONST. 
3 ,TTYMESSAGE201 
5 
SAVE,ON 
2,01234567 ox 
2,89[1@:>? lX 
2,~ABCDEFG 2X 
2, HI & • ] (<\ 3X 
2, "'JKLMNOP 4X 
2,QR-$*);' SX 
2,/STUVWX 6X 
2,YZ ,%="! 7X 
RESTORE 

The translation table length is determined by the highest octal 
value for the characters of the indexing string (Field 1). 
The table is always indexed in 9-bit increments, regardless of 
the data type being moved. The 9-bit character represented in 
the table must be the same data type as the receiving field. 

2. The characters in the above translation table are represented 
in 9-bit ASCII code, the same data type as the receiving field 
(Field 2) • Also, the table is 64 characters in length, in 
direct relation to the BCD character set {highest value octal 
77). 

7-305 DH03-0l 



NARn 

NARn 

FORMAT: 

CODING FORMAT: 

PROCESSOR K>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS : 

NOTE: 

EX.~MPLES: 

A 

NAR2 

DESCR NDSC4 
* 

Numeric Descriptor to Address Register E 

Single-word instruction format (see Figure 7-1) 

1 8 16 

NARn LOCSYM,R,AR 

Any 

For n = 0,1, ••• ,or 7 as determined by op code 
C(Y>o-17 ~-> C(ARn>o-17 

translated 
C(Y) 18_20 ---------> C(ARn) 18_23 ; C(Y) unchanged 

NARn 

66_!! ( 1) 

The numeric descriptor is fetched from the computed effective 
address Y and the TN bit is examined. If TN = O (9-bit 
characters) , bi ts 18 and 19 of the CN field go to the 
corresponding positions of ARn and zeros fill bits 20-23 of 
ARn. If TN = 1, the 4-bit character contained in the CN 
field is converted to bit string representation and placed 
in bits 18-23 of ARn. In either case, the descriptor word 
address field (0-17)-goes to bits 0-17 of AR_!}. 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

****DPS 88, DPS 8/20 and 8/44: Illegal Procedure fault occurs 
if descriptor CN field contains xxl for TN = O.**** 

1 f\ 

DES CR load data string address into AR2 

FLDl,7,8,3,2 0 3 2 4 2 6 7 7 O 2 l 0 - descriptor 
0 3 2 4 2 6 6 5 - result in AR2 

7-306 0803-01 



NEG 

NEG 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

Negate (A-Register) 

Single-word instruction format (see Figure 7-1) 

Any 

- C(A) --> C(A) if C(A) # 0 

None 

RPL causes IPR fault 

zero - If C(A) = 0, then ON; otherwise, OFF 

Negative - If C(A)o = 1, then ON; otherwise, OFF 

Overflow - If range of A is exceeded, then ON 

NEG 

531 (0) 

This instruction changes the number in A to its negative (if 
# 0). The operation is executed by forming the two's complement 
of the string of 36 bits. 

7-307 DH03-01 



NEGL 

NEGL 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

Negate Long (AO-Register) 

Single-word instruction format (see Figure 7-1) 

Any 

- C(AQ) --> C(AQ) if C(AQ) # 0 

None 

RPL causes IPR fault 

Zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

Overflow - If range of AQ is exceeded, then ON 

NEGL 

533 (0) 

This instruction changes the number in AQ to its negative 
(if # 0). The operation is executed by forming the twos 
complement of the string of 72 bits. 

7-308 DH03-0l 



NOP 

NOP 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

NOP 

No Operation 011 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

No operation takes place: the effective address is always 
prepared. 

None 

RPT, RPO, RPL 

The use of Indirect then Tally modifiers ID, DI, IDC, DIC, 
SCR, or SC causes changes in the address and tally fields of 
the referenced indirect words; the Tally Runout indicator 
may be set ON. 

1. No operation takes place but address preparation is 
performed according to the specified modifier, if any. 
If modification other than DU or DL is used, the generated 
addresses may cause faults. 

2. An Illegal Procedure fault occurs when an illegal repeat 
is used. 

7-309 DH03-0l 



ORA 

ORA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS : 

ORA 

OR to A-Register 275 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 35, 
C(A)i OR C(Y)i --> C(A)i; C(Y) unchanged 

None 

None 

zero - If C(A) = O, then ON; otherwise, OFF 

Negative - If C(A)o = 1, then ON; otherwise, OFF 

7-310 DH03-0l 



ORAQ 

ORAQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

ORAQ 

OR to AQ-Register 277 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 71, 
C(AQ)i OR C(Y-pair)i --> C(AQ)i: C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-311 DH03-0l 



ORQ 

ORQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

ORQ 

OR to Q-Register 276 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 35, 
C(Q)i OR C(Y)i --> C(Q)i; C(Y) unchanged 

None 

None 

zero - If C(Q) = 0, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON; otherwise, OFF 

7-312 DH03-0l 



ORSA 

ORSA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MOD IF I CAT IONS : 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

ORSA 

OR to Storage from A-Register 255 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

For i = O to 35, 
C(A)i OR C(Y}i --> C(Y)i; C(A) unchanged 

DU, DL, CI, SC, SCR 

RPL 

zero - If C(Y) = O, then ON; otherwise, OFF 

Negative - If C(Y) 0 = 1, then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-313 DH03-0l 



ORSQ 

ORSQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS : 

NOTE: 

ORSQ 

OR to Storage from Q-Register 256 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

For i = 0 to 35, 
C(Q)i OR C{Y)i --> C(Y)i; C(Q) unchanged 

DU, DL, CI, SC, SCR 

RPL 

zero - If C(Y) = O, then ON; otherwise, OFF 

Negative - If C(Y) 0 = 1, then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-314 DH03-0l 



ORSXn 

ORSX_!! 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

OR to Storage from Index Register n 

Single-word instruction format (see Figure 7-1) 

Any 

For n = 0,1, ••• ,or 7 as determined by op code 
For l = 0 to 17, C(Xn)i OR C(Y)i --> C(Y)i; 
C(Xn) and C(Y) 18_ 35 unchanged 

DU, DL, CI, SC, SCR 

RPL 
RPT or RPO of ORSXO 

ORSXn 

24n (0) 

zero - If C (Y) O-l? O, then ON; otherwise, OFF 

Negative - If C(Y) 0 ~ 1, then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-315 DH03-01 



ORXn 

ORXn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

IND! CATORS: 

NOTES: 

OR to Index Register E 

Single-word instruction format (see Figure 7-1) 

Any 

For n=O,l, ••• ,or 7 as determined by op code 
For i = 0 to 17, C(Xn)i OR C(Y)i --> C(Xn)i; 
C(Y) unchanged 

CI, SC, SCR 

RPT, RPO, RPL of ORXO 

zero - If C(XE) = 0, then ON; otherwise, OFF 

Negative - If C(XE>o = 1, then ON; otherwise, OFF 

ORXn 

26~ (0) 

1. DL modifications is flagged illegal but executes with 
all zeros for data. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-316 0803-01 



PAS 

PAS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

PAS 

Pop Argument Stack 176 ( 1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode or Master Mode 

Modify bound field of the argument stack register (ASR). 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. This instruction provides a means of modifying the bound 
field of the ASR. The one-word operand is obtained 
from memory location Y. The memory operand has the 
following format: 

0 1 2 3 

SIZE 

6

1mmmrnm iii ~r llirnmmrnf ii _ ................. _ 1 _ ................ _ 

If ASR flag bit 27 = O nothing occurs. The argument 
segment is empty and the instruction terminates. 

If ASR flag bit 27 = 1, the instruction proceeds. The 
SIZE field is the number of descriptors to be framed, 
minus one; that is, the number of double-word memory 
locations. 

The descriptor SIZE field is converted to number of 
bytes by appending three 1 bits as the least significant 
bi ts, producing a 20-bi t byte size (SIZE-bytes). 
Accordingly, a memory operand SIZE field of zero means 
frame one descriptor. Using the 20-bit SIZE-bytes, the 
instruction proceeds as follows (shaded area is ignored): 

If memory operand bit 27 = O, ASR flag bit 27 and ASR 
bound field are set to zero and the instruction terminates. 

7-317 DH03-0l 



PAS 

EXAMPLE: 

l 8 

INHIB 
SVPTRl STAS 

SDR 
STP 
TRA 

RTPTRl NULL 
LDP 
PAS 
TRA 

PAS 

If memory operand bit 27 = 1, the SIZE-bytes is compared 
with the bound field of the ASR as follows: 

If SIZE-bytes < Bound then SIZE-bytes replaces 
contents of ASR Bound field. 

If SIZE-bytes ~Bound then ASR remains unchanged. 

2. Modifications DU, DL, CI, SC, SCR, and illegal repeats 
RPT, RPD, RPL cause an IPR fault. An IPR fault is also 
generated if the execution of this instruction is attempted 
when the processor is not in the Privileged Master or 
Master mode • 

16 

ON 
SAVEl 
Pl,O 
Pl,SAVll 
0,5 

Pl,SAVll 
SAVEl 
0,5 

32 

store argument stack 
save descriptor register 1 
store pointer to descriptor register l 

locates and restores descriptor register l 
restores argument stack 

7-318 DH03-0l 



PULSl 

PULSl 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

PULSl 

,. Pulse One 012 {0} 

Single-word instruction format (see Figure 7-1) 

Any 

No operation takes place 

None 

RPT, RPO, RPL 

None affected 

1. The PULS! instruction is identical to the NOP instruction 
except that it causes certain unique synchronizing signals 
to appear in the processor logic circuitry. 

2. Attempted repetition with the RPT, RPO, or RPL instruction 
causes an IPR fault. 

7-319 DHOJ-01 



PULS2 

PULS2 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

PULS2 

Pulse Two 013 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

No operation takes place 

None 

RPT, RPD, RPL 

None affected 

1. The PULS2 instruction is identical to the NOP instruction 
except that it causes certain unique synchronizing signals 
to appear in the processor logic circuitry. 

2. Attempted repetition with the RPT, RPD, or RPL instructions 
causes an IPR fault. 

7-320 DH03-0l 



QLR 

QLR 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

QLR 

Q-Register Left Rotate 776 {0) 

Single-word instruction format (see Figure 7-1) 

Any 

Rotate C (Q) left by the number of positions indicated by 
bits 11-17 of Y (Y modulo 128); enter each bit leaving bit 
position 0 of Q into bit position 35 of Q. 

DU, DL, CI, SC, SCR 

RPL 

zero - If C(Q) = O, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON; otherwise, OFF 

1. The rotate count in the instruction must be a decimal 
number. To ~right-rotate~ E bits, use QLR 36-E. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-321 DH03-0l 



QLS 

QLS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS : 

NOTES: 

QLS 

Q-Register Left Shift 736 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

Shift C(Q) left by the number of positions indicated by bits 
11-17 of Y (Y modulo 128); fill vacated positions with zeros. 

DU, DL, c+, SC, SCR 

RPL 

zero - If C(Q) = O, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON; otherwise, OFF 

Carry - If C(Q) 0 changes during the shift, then ON; 
otherwise, OFF. When the Carry indicator is ON, 
the algebraic range of Q has been exceeded 

1. The shift count in the instruction must be a decimal 
nwnber. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-322 DH03-01 



QRL 

QRL 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

QRL 

Q-Register Right Logical Shift 772 ( 0) 

Single-word instruction format (see Figure 7-1) 

Any 

Shift C (Q) right by the number of positions indicated by 
bits 11-17 of Y (Y modulo 128); fill vacated positions with 
zeros. 

DU, DL, CI, SC, SCR 

RPL 

zero - If C(Q) = O, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON; otherwise, OFF 

1. The shift count in the instruction must be a decimal 
number. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-323 DH03-01 



QRS 

QRS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

QRS 

· Q-Register Right Shift 732 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

Shift C (Q) right by the number of positions indicated by 
bits 11-17 of Y (Y modulo 128); fill vacated positions with 
bit O of c (Q) • 

DU, DL, CI, SC, SCR 

RPL 

zero - If C(Q) = O, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON; otherwise, OFF 

1. The shift count in the instruction must be a decimal 
number. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-324 DH03-0l 



RCCL 

****DPS 88 ONLY**** 

RCCL 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

**** 

RCCL 

Read Calendar Clock 633 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(Calendar Clock) --> C(AQ) 0_71 

DU, DL, CI, SC, SCR 

RPT, RPD I RPL 

None affected 

1. The operand address development is allowed to proceed 
but does not affect the instruction. 

2. Processor port selection {which CIU) is determined by 
bit 23 {Control CIU) of the Option Register. This control 
CIU bit can be changed by the SSF, or by the LDHC instruction 
in Hyper mode, if reconfiguration requires the use of 
an alternate Port-CIU-Clock. The Calendar Clock can be 
loaded via the privileged LCCL instruction. 

3. The Calendar Clock counts in units of one microsecond. 

4. The Calendar Clock is initially loaded by the SSF (SMAS) 
with the value that is the number of microseconds that 
have elapsed since 00: 00 hours, Greenwich Mean Time (GMT) , 
January 1, 1901. 

7-325 DH03-01 



RET 

RET 

FORMAT: 

PROCESSOR K>DE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

RET 

·Return 630 ( 0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(Y>o-11 --> C(IC); C(Y)l8-35 --> C(IR); C(Y) unchanged 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

Master Mode - If C(Y) 28 is 1, then no change~ otherwise, OFF 

All other - If corresponding bit in C(Y) is 1, then ON; 
indicators otherwise, OFF 

1. 

2. 

The relation between the bit positions of C(Y) and the 
indicators is as follows: 

Bit Position 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33-35 

Indicator 

zero 
Negative 
Carry 
Overflow 
Exponent overflow 
Exponent underflow 
Overflow mask 
Tally runout 
Parity error 
Parity mask 
Master mode 
Truncation 
Multiword instruction interrupt 
0 
Hexadecimal 
000 

The handlinq of the master mode indicator is described 
under Indicator, above. 

3. The Tally Runout indicator will reflect bit 25 of C(Y) 
regardless of any address modification performed on the 
RET instruction (for tally operations). 

7-326 DH03-0l 



RET 

4. 

5. 

6. 

7. 

8. 

RET 

The RET instruction does not load the instruction segment 
register {ISR) and the SEGID(IS). The return is always 
within the current instruction segment. 

The RET instruction may be thought of as an LOI instruction 
followed by a transfer to the location specified by 
C (Y) 0-17" 

An Overflow Fault does not occur when the Overflow 
Indicator, Exponent Overflow Indicator, or Exponent 
Underflow Indicator is set ON via the RET instruction, 
even if the Overflow Mask Indicator is OFF. 

****DPS 88: The RET instruction does not function properly 
if it is placed in a fault vector or interrupt vector.**** 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-327 DH03-0l 



RIMR 

****DPS 88 ONLY**** 

RIMR 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

**** 

Read Interrupt Mask Register 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C(Interrupt Mask Register) 0_7 --> C(A) 0_7 
000 •••• 000 --> C{A)S-35 

RIMR 

233 (0) 

CPU port selection (which CIU) is determined by bit 23 (Control 
CIU) of the Option Register 

DU, DL, CI, SC, SCR. Address modifications have no effect 
on the operation but are performed by the hardware. 

RPT I RPO I RPL 

None affected 

1. The use of this instruction in other than Privileged 
Master mode causes an IPR Fault. 

2. A CPU cannot read the Interrupt Mask Register in a CIU 
port which is not assigned to that CPU. 

3. In DPS 8 processors, the mnemonic RMCM (Read Memory 
Controller Mask Register) was assigned to operation code 
233 (0). The mnemonic has been changed to reflect the 
change in functionality. 

4. The Interrupt Mask Register is only loaded into the 
A-register, rather than the A- and Q-registers. 

5. The effective address is not used by the RIMR instruction. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-328 0803-01 



RIW 

****DPS 88 ONLY**** 

RIW 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

RIW 

Read Interrupt Word Pair 412 (0) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

If any unmasked interrupt queue has an entry, then C (Word 
Pair Entry from Interrupt Queue) --> C (AQ). The Control 
CIU ... s Interrupt Queue Base Register and internal queue pointers 
are used'for locating the oldest entry in the highest priority 
unmasked interrupt queue. No CPU address information is used. 
The entry from the interrupt queue contains the level number. 

If no unmasked interrupt queue has an entry, then C (Y + 
Reserved Memory Base Register) --> C (AQ). The effective address 
Y is added to the Reserved Memory Base Register, and the 
resulting address is used to read the contents of a Reserved 
Memory location with no paging. This Reserved Memory location 
should be established by convention as the •null" word pair 
location. 

DU, DL, RI, IR, IT 

RPT, RPO, RPL 

None affected. 

1. The use of this instruction in other than Privileged 
Master mode causes an IPR fault. 

2. The interrupt level bit is reset provided no other entry 
remains in the queue for that level. Information returned 
is for the highest priority interrupt level present in 
the ICR. (ICR bit O has highest priority, bit 7 has 
lowest priority.) 

3. An Illegal Procedure fault occurs if illegal address 
modification or illegal repeats are used. 

7-329 DH03-0l 



RIW 

4. 

RIW 

The "null" word pair location and contents are defined 
by C(Reserved Memory Base Register) plus the effective 
address. 

Null Word Pair Contents (to be initialized by SSF): 
1st word = constant value that is different from any 
valid queue entry, 2nd word= "don~t care". 

5. CPU port selection (which CIU) is determined by bit 23 
(Control CIU) of the Option Register. 

6. Queue Entry Format: 

Each queue entry is a word pair. The first word has 
the following format: 

INTERRUPT REPORT WORD 

0 

0 0 
0 1 

1 

**** 

0 0 1 1 2 2 2 2 2 2 2 3 3 3 

RESERVED C 
COMMAND CHANNEL NUMBER FOR FUTURE I IOX RFU LVL SYS ID 

IN 

USE U 

2nd word - level 1 (fault status): 

0 0 
3 4 

ZERO 

CIU STATUS 

1 1 
6 7 

1.11~1 

1 
8 

IOX OR CHANNEL 
FAULT STATUS 

2 2 
6 7 

TRANSACTION 

3 
5 

2nd word - level 7 (special status): This word will contain information 
from the device controller. 

2nd word - other levels - undefined. 

7-330 DH03-0l 



RMCM 

****DPS 8 ONLY**** 

RMCM 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

RMCM 

Read Memory Controller Mask Register 233 (0) 

.. 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C (Memory Controller Interrupt Mask Register) } 
c (Memory Controller Access Mask Register) --> C(AQ) 
of Memory Unit specified by bits 0-2 of Y 

DU, DL, CI, SC, SCR 

****DPS 8/20 and 8/44 ONLY: RPT, RPO, RPL**** 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

1. The effective address Y is used in selecting a memory 
module as with a normal memory access request. However, 
the selected module does not transmit the contents of 
an addressed memory location, but the contents of its 
Memory Controller Interrupt Mask Register (IMR) and Memory 
Controller Access Mask Register (AMR) • 

Interrupt Mask Access Mask 
Register Register 

zeros zer OS 

-"f. -"~ 

0 15 0 3 16 31 4 7 

0 ! 15 16 l ! 31 32 35 36 l 51 52 l 
__________________ combined AO-register ________________ __ 

7-331 DH03-0l 



RMCM 

**** 

2. 

3. 

RMCM 

If the use of this instruction is attempted by a processor 
in the Slave mode, a fault occurs. 

If the processor has no mask register assigned to it, 
then zeros are returned to C(AQ). 

4. l'"s in C (AQ) indicate interrupt cells or ports which 
are masked. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-332 DH03-0l 



RPO 

RPO 

FORMAT: 

0 0 0 0 1 1 

( TALLY 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

RPO 

Repeat Double 560 (0) 

1 1 Op Code 2 2 2 2 3 3 

TERM. COND. 560(0) 

RPO N, I, kl, k2, •.• , k7. (A=B=C=l.) The command generated by 
the assembler from this format will cause the two instructions 
immediately following the RPD instruction to be iterated N 
times and the effective addresses of those two instructions 
to be incremented by the value I for each of N iterations. 
The meaning of kl, k2, ... , k7 is the same as for the RPT 
instruction. Since the repeat double must fall in an odd 
location, the assembler will force this condition and a NOP 
instruction is used for a filler when needed. 

RPDX ,I. (A=B=C=O.} This instruction operates just as the 
RPD instruction with the exception that A ,B ,N and the conditions 
for termination are loaded by the user into index register 
zero. 

RPDA N,I,kl,k2, .•. ,k7. (A=C=l. B=O.) This instruction 
operates just as the RPO instruction with the exception that 
only the effective address of the first instruction following 
the RPDA instruction will be incremented by the value of I 
for each of N iterations. 

RPDB N,I,kl,k2, .•• ,k7. (A=O. B=C=l.) This instruction 
operates just as the RPO instruction with the exception that 
only the effective address of the second instruction following 
the RPDB instruction will be incremented by the value I for 
each of N iterations. 

Any 

The instructions from the next Y-pair are fetched and saved 
in the processor; they are executed repeatedly until a specified 
termination condition is met. 

No modifications are allowed 

RPT, RPD, RPL 

7-333 DH03-01 



RPO 

INDICATORS: 

NOTES: 

RPO 

The RPO instruction itself does not af feet any of the indicators. 
However, the execution of the repeated instructions may affect 
indicators. The repeat mode entered as a result of the 
instruction affects the Tally Runout indicator. 

1. The RPO instruction must be stored in an odd memory 
location except when accessed via the XEC or XED 
instructions. In this case, the RPO instruction can be 
either even or odd, but the XEC or XED instruction must 
be in an odd memory location. 

2. If C = 1, then bits 0-17 of the RPO instruction --> 
C (XO) • 

****DPS 88: This occurs prior to any detection of an 
IPR fault that may occur on the instructions to be 
repeated.**** 

3. The terminate condition (s) and tally from XO control 
the repetition for the instructions following the RPO 
instruction. An initial tally of zero is interpreted 
as 256. A fault also causes an exit from the cycle. 

4. The repetition cycle consists of the following steps: 

a. Execute the pair of repeated instructions. 

b. Bits 0-7 of C(XO) - 1 -->bits 0-7 of C(XO). 

c. If a terminate condition is met (see 7b), set the 
Tally Runout indicator OFF and exit. 

d. If bits 0-7 of C(XO) = 0, set the Tally Runout 
indicator ON and exit. 

e. Go to (a). 

5. Many instructions cannot be repeated. If an instruction 
cannot be repeated, an illegal repeat causes on IPR 
fault to occur. Refer to the individual instruction 
descriptions to determine if a particular instruction 
can be repeated. 

6. Address modification 
instructions: 

for the pair of repeated 

For each of the two repeated instructions, only the 
modifiers R and RI and only the designators specifying 
Xl, ••• ,X7 are permitted. 

All other modifier designations result in an IPR fault. 

****DPS 88, DPS 8/20 and 8/44: 
permitted.**** 

7-334 

AR modification is 

DH03-0l 



RPO RPO 

The effective address Y (for R) or the address YI of 
the indirect word being referred to (for RI) with bit 
29 0 (no AR modification) is: 

a. For the first execution of each of the two repeated 
instructions: 

Y + C(R) --> Y1 or YI 1 

Yl or YI 1 --> C(R) 

b. For any subsequent execution of the first of the 
two repeated instructions: 

If A=l, then DELTA + C(R) --> Yn or Yin 

Yn or Yin --> C(R) 

If A=O, then C(R) --> Yn or Yin, where n>l 

c. For any subsequent execution of the second of the 
two repeated instructions: 

If B=l, then DELTA+ C(R) --> Yn or Yin; 
Yn or Yin --> C(R) 

If B=O, then C(R) --> Yn or Yin, where n>l 

The effective address Y (for R) or the address YI of 
the indirect word being referred to (for RI) with bit 
29 = 1 (AR modification) is: 

****DPS8/70,8/50,8/52,8/62: 
fault**** 

Bit 29=1 causes an IPR 

a. For the first execution of each of the two repeated 
instructions: 

(se)Y + C(R) + C(ARm} --> Y1 or YI1 

(se)Y + C(R) --> C(R) 

b. For any subsequent execution of the first of the 
two repeated instructions: 

If A=l, then DELTA+ C(R) + C(ARm) --> Yn or Yin; 
DELTA+ C(R) --> C(R} 

If A=O, then C(R} + C(AR) --> Yn or Yin 

c. For any subsequent execution of the first of the 
two repeated instructions: 

If B=l, then DELTA+ C(R) + C(ARm) --> Yn or Yin 

DELTA+ C(R) --> C(R) 

If B=O, then C(R) + C(ARm) --> Yn or Yin 

where: se - sign extended 

A and B - the contents of bits 8 and 9 of 
index register 0 (XO) 

7-335 DH03-01 



RPO 

ARm 

RPO 

- address register m selected by 
instruction bits 0,1, and 2 

In the case of RI, only one indirect reference is 
made per repeated execution. The tag field of the 
indirect word is not interpreted as usual but is 
ignored. Instead, the modifier R and the designator 
R = N are applied. 

7. The Exit Conditions: 

An exit is made from the repeat cycle if one of the 
terminate conditions exists or if tally = O after the 
execution of the odd instruction of the repeated pair. 
Also, an exit is made when a fault occurs. 

The program-controlled exit conditions are: 

a. Tally = 0 

b. Terminate Conditions: 

The bit configuration in bit positions 11-17 of 
the RPO instruction defines the terminate conditions. 
If more than one condition is specified, the repeat 
terminates if any one of the specified conditions 
is met. 

The Carry, Negative, and Zero indicators each use 
two bi ts, one for the OFF condition and one for 
ON. A zero in both positions for one indicator 
causes this indicator to be ignored as a terminate 
condition. A 1 in both positions causes an exit 
after the first execution of the repeated instruction 
pair. 

Bit 17 

Bit 17 

Bit 16 

Bit 15 

Bit 14 

Bit 13 

Bit 12 

Bit 11 

= 

= 

0: Ignore all overflows. The respective 
Overflow indicator is not set ON, and 
an overflow fault does not occur. 

1: Process overflows. If the Overflow 
Mask indicator is ON when an overflow 
occurs, then exit from the repetition 
cycle. If the Overflow Mask indicator 
is OFF when an overflow occurs, then 
an overflow fault occurs. (See 7-c 
below.) 

1: 

1: 

1: 

1: 

1: 

1: 

Terminate if Carry indicator is OFF. 

Terminate if Carry indicator is ON. 

Terminate if Negative indicator is OFF. 

Terminate if Negative indicator is ON. 

Terminate if zero indicator is OFF. 

Terminate if Zero indicator· is ON. 

7-336 0803-01 



RPO 

c. 

RPO 

Overflow Fault: 

If bit 17 = 1 and an overflow occurs with the 
Overflow Mask indicator OFF, an overflow fault occurs 
and an exit is made from the repetition cycle when 
the fault processor returns control. 

A non-program-controlled exit from the repetition cycle 
occurs if any fault other than an overflow occurs. If 
any fault (overflow, divide check, parity error on indirect 
word or operand fetch, etc.) occurs on the even 
instruction, the odd instruction will not be executed. 

****DPS 88: The IC reported with this fault points to 
the RPO instruction and not the instruction being repeated. 
This is required for restart purposes. 

8. Upon exit from the repetition cycle: 

Bits 0-7 of C(XO) contain the tally residue; that is, 
the number of repeats remaining until a tally runout 
would have occurred. The terminate conditions in bits 
11-17 remain unchanged. 

If the exit was due to tally= O or a terminate condition, 
the Xn specified by the designator of each of the two 
repeated instructions will contain either: 

a. The contents of the designated Xn after the last 
execution of the repeated pair - plus the DELTA 
associated with each instruction, as A or B, the 
DELTA designators (bits 8 and 9 of XO) = 1, or 

be The contents of the designated Xn after the last 
execution of the repeated pair if A or B, 
respectively, is zero. 

If the exit was due to a fault, the Xn specified by the 
designator of each of the two repeated instructions may 
contain either: 

a. The contents of the designated Xns when the fault 
occurred plus the DELTA assoc"'lated with each 
instruction A and B = 1, or 

b. The contents of the designated Xns when the fault 
occurred. 

9. A Repeat Double (RPO) of instructions that have long 
execution times may cause a Lockup fault (LUF) if the 
time involved is greater than the lockup time interval, 
which may be 2, 4, 8, or 16 milliseconds. 

10. The repeated instruction must use index register 
modification; otherwise, an IPR fault occurs. 

11. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-337 DHOJ-01 



RPO RPO 

EXAMPLE: l 8 16 

EAX6 FROM 
EAX7 TO 
RPO 100,2 
LDAQ 0,6 
STAQ 0,7 

EVEN 
FROM BSS 200 
TO BSS 200 

7-338 0803-01 



RPL 

RPL 

FORMAT: 

0 0 0 0 1 1 
0 7 8 9 0 1 

I TALLY loo H 
CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

RPL 

Repeat Link 500 (0) 

1 1 Op Code 2 2 2 2 3 3 
7 8 6 7 8 9 0 5 

TERM. COND. 

I 
500(0) l+H 000000 

I 

RPL N,kl,k2, ..• ,k7. (C 1.) This format causes the 
instruction immediately following the RPL instruction to be 
repeated N times or until one of the conditions specified in 
kl, ••• ,k7 is satisfied, or until the link address of zero is 
detected. The range of N is 0-255. If N = O, the instruction 
will be iterated 256 times. If N is greater than 255, the 
instruction will cause an error flag (A) to be printed on 
the assembly listing. The fields kl, k2, ••• , k7 may or may 
not be present. They represent conditions for termination 
which, when needed, are declared by the conditional transfer 
instructions TMI, TNC, TNZ, TOV, TPL, TRC, and TZE. These 
instructions affect the termination condition bits in position 
11-17 of the Repeat instruction. 

It is also possible to use an octal number rather than the 
transfer instructions to denote termination conditions. Thus, 
if the field for kl, k2, •.• , k7 is found to be numeric, it 
will be interpreted as octal, and the low-order 7 bits will 
be ORed into bit positions 11-17 of the Repeat instruction. 
The variable field scan is terminated with the octal field. 

RPLX (C = 0). This instruction operates just as the RPL 
instruction except that N and the conditions for termination 
are loaded by the user into index register zero. 

Any 

Execute the next instruction either a specified number of 
times, until a specified termination condition is met, or 
until the link address of zero is detected. 

No modifications are allowed 

RPT, RPD, RPL 

The RPL instruction itself does not affect any of the indicators. 
However, the execution of the repeated instruction may affect 
the indicators. The repeat mode entered as a result of the 
instruction affects the Tally Runout indicator. 

7-339 DH03-01 



RPL 

NOTES: 1. 

RPL 

If C = 1, then bits 0-17 of the RPL instruction --> 
C(XO). 

****DPS 88: This occurs prior 
IPR fault that may occur on 
repeated.**** 

to any detection of an 
the instruction to be 

2. The terminate condition (s) and tally from XO control 
the repetition for the instruction following the RPL 
instruction. An initial tally of zero is interpreted 
as 256. A fault also causes an exit from the cycle. 

3. The repetition cycle consists of the following steps: 

a. Execute the repeated instruction. 

b. Bits 0-7 of C(XO) - 1 --> bits 0-7 of C(XO). 

c. If a terminate condition is met (see 6c), set the 
Tally Runout indicator OFF and exit. 

d. If the tally bits 0-7 of C(XO) = O, or the link 
address bi ts 0-17 of C (Y) = 0 and no terminate 
condition is met, set the Tally Runout indicator 
ON and exit. 

e. Go to {a). 

4. Many instructions cannot be repeated. If an instruction 
cannot be repeated, an illegal repeat causes an IPR 
fault to occur. Refer to the individual instruction 
descriptions to determine if a particular instruction 
can be repeated. 

5. Address modification for the repeated instruction: 

For the repeated instruction, only the modifiers R and 
RI (the designators specifying R Xl, ••. ,X7) are 
permitted. The modifier is effective only for the first 
execution of the repeated instruction. 

****DPS 88, DPS 8/20 and 8/44: AR modification is 
permitted and is effective on each execution.**** 

The effective address Y with bit 29 = 0 is: 

a. For the first execution of the repeated instruction: 

y + C(R) --> Y1 or YI1 

b. For any subsequent execution of the repeated 
instruction: 

Yn = C(Yn-1) 0_17 

If C(Yn-l>o-17 # 0 

then C(Yn-1) 0_ 17 --> C(R) 

7-340 DH03-01 



RPL RPL 

The effective address Y with bit 29 = 1 is: 

****DPS 8/70: Bit 29=1 is an IPR fault**** 

a. For the first execution of the repeated instruction: 

{se)Y + C(R) + C(ARm) --> Y1 or YI 1 ; 

Y1 or YI1 --> C(R) 

b. For any subsequent execution of the repeated 
instruction: 

yn = C(Yn-l>0-17 + C(ARm); 

if C(Yn-l>0-17 #0, 

then C(Yn-l>O-l? --> C(R) 

where: se - sign extended 

ARm - address register m selected by 
instruction bits O, 1, 2 

The effective address Y is the address of the next 
list word. The lower portion of the list word 
contains the operand to be used for this execution 
of the repeated instruction. The operand is: 

Bits 0-17 oo ••• o 

Bits 18-35 C(Y)l8-35 

Bits 36-71 C(Y) 36_ 71 for double precision 

The upper 18 bi ts of the list word contain the 
link address; that is, the address of the next 
successive list word, and thus the effective address 
for the next successive execution of the repeated 
instruction. 

6. The Exit Conditions: 

An exit is made from the repeat cycle if one of the 
terminate conditions exists or if tally = 0 or link 
address O after the execution of the repeated 
instruction. Also, an exit is made when a fault occurs. 

The program-controlled exit conditions are: 

a. Tally = O. 

b. Link Address 0. 

7-341 DH03-01 



RPL 

c. 

RPL 

Terminate Conditions: 

The bit configuration in bit positions 11-17 of 
the RPL instruction defines the terminate conditions. 
If more than one condition is specified, the repeat 
terminates if any one of the specified conditions 
is met. 

The Carry, Negative, and Zero indicators each use 
two bits, one for the OFF condition and one for 
ON. A zero in both positions for one indicator 
causes this indicator to be ignored as a terminate 
condition. A 1 in both positions causes an exit 
after the first execution of the repeated 
instruction. 

Bit 17 = 0: Ignore all overflows. The respective 
Overflow indicator is not set ON, and 
an overflow fault does not occur. 

Bit 17 

Bit 16 

Bit 15 

Bit 14 

Bit 13 

Bit 12 = 

Bit 11 

1: Process overflows. If the Overflow 
Mask indicator is ON when an overflow 
occurs, then exit from the repetition 
cycle. If the Overflow Mask indicator 
is OFF when an overflow occurs, then 
an overflow fault occurs. See 6-d 
below. 

1: Terminate if Carry indicator is OFF. 

1: Terminate if Carry indicator is ON. 

1: Terminate if Negative indicator is OFF. 

1: Terminate if Negative indicator is ON. 

1: Terminate if zero indicator is OFF. 

1: Terminate if Zero indicator is ON. 

d. Overflow Fault: 

If bit 17 = 1 and an overflow occurs with the 
Overflow Mask indicator OFF, an overflow fault occurs 
and an exit is made from the repetition cycle when 
the fault processor returns control. 

A non-program-controlled exit from the repetition cycle 
occurs if any fault other than an overflow occurs (divide 
check, parity error on indirect word or operand fetch, 
etc.) • 

****DPS 88: The IC points to the RPL instruction and 
not the instruction being repeated. This is required 
for restart purposes.**** 

7-342 DH03-0l 



RPL 

EXAMPLE: 

7. 

RPL 

Upon exit from the repetition cycle: 

Bits 0-7 of C(XO) contain the tally residue; that is, 
the number of repeats remaining until a tally runout 
would have occurred. The terminate conditions in bits 
11-17 remain unchanged. 

The Xn specified by the designator of the repeated 
instruction contains the address of the list word that 
contains: 

a. In its lower half, the operand used in the last 
execution of the repeated instruction. 

b. In its upper half, the address of the next list 
word. 

8. The repeated instruction must use index register 
modification; otherwise, an IPR fault occurs. 

9. An exit will not occur if the effective address is 0 
for the first execution of the linked instruction. This 
address specifies the location of the first word in the 
link table and is not interpreted as a link address. 

10. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

1 8 16 

EAX7 A 
LDA =3HIDD,DL 
RPL 5,TZE 
CMPA 0,7 
TNZ ERROR 

A VFD 18/B,Hl8/IDA 

B VFD 18/C,HlS/IDB 

c VFD 18/D,HlS/IDC 

D VFD 18/E,Hl8/IDD 

E VFD 18/0 ,Hl8/IDE 

7-343 DH03-01 



RPT 

RPT 

FORMAT: 

0 0 0 0 1 1 
_Q_ 7 8 ~ 0 

TALLY 0 0 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

c 

ILLEGAL REPEATS: 

1 

RPT 

Repeat 520 (0) 

1 1 Op Code 2 2 2 2 3 3 
7 8 6 7 8 9 0 5 

TERM. COND. 520(0) 0 1 0 DELTA 

RPT N,I,kl,k2, ... ,k7. (Bit C=l.) The command generated by 
the assembler from this format will cause the instruction 
immediately following the RPT instruction to be iterated N 
times and that instruction ... s effective address to be incremented 
by the value I for each of N iterations. The range for N is 
0-255. If N = 0, the instruction will be iterated 256 times. 
If N is greater than 256, the instruction will cause an 
error flag (A) to be printed on the assembly listing. The 
fields kl,k2, ... k7 may or may not be present. They represent 
conditions for termination which, when needed, are declared 
by the conditional transfer instructions TMI, TNC, TNZ, TOV, 
TPL, TRC, and TZE. These instructions affect the termination 
condition bits in positions 11-17 of the Repeat instruction. 

It is also possible to use an octal number rather than the 
transfer instructions to denote termination conditions. Thus, 
if the field for kl,k2 ••. ,k7 is found to be numeric, it will 
be interpreted as octal and the low-order 7 bits will be 
ORed into bit positions 11-17 of the Repeat instruction. 
The variable-field scan will be terminated with the octal 
field. 

RPTX ,I (Bit C = 0). This instruction operates just as the 
RPT instruction with the exception that N and the conditions 
for termination are loaded by the user into bit positions 
0-7 and 11-17, respectively, of index register zero (instead 
of being embedded in the instruction) . 

Any 

Execute the next instruction either a specified number of 
times or until a specified termination condition is met. 

No modifications are allowed 

RPT, RPO, RPL 

7-344 DH03-0l 



RPT 

INDICATORS: 

NOTES: 

RPT 

The RPT instruction itself does not affect any of the indicators; 
however, the execution of the repeated instruction may affect 
indicators. The repeat mode entered as a result of the 
instruction affects the Tally Runout indicator. 

l. If C = 1, then bits 0-17 of the RPT instruction --> 
C (XO). 

****DPS 88: This occurs prior 
IPR fault that may occur on 
repeated.**** 

to any detection of an 
the instruction to be 

2. The terminate condition(s) and tally from XO control 
the repetition for the instruction following the RPT 
instruction. An initial tally of zero is interpreted 
as 256. A fault also causes an exit from the loop. 

3. The,repetition cycle consists of the following steps: 

a. Execute the repeated instruction. 

b. C(XO>o-7 - 1 --> C(XO>o-1· 

c. If a terminate condition is met (see 6b), set the 
Tally Runout indicator OFF and exit. 

d. C(x0) 0 _ 7 ~ o, 
ON and exit. 

then set the Tally Runout indicator 

e. Go to (a). 

4. Many instructions cannot be repeated. If an instruction 
cannot be repeated, an illegal repeat causes an IPR 
fault to occur. Refer to the individual instruction 
descriptions to determine if a particular instruction 
can be repeated. 

5. Address modification for the repeated instruction: 

For the repeated instruction, only the modifiers R and 
RI and only the designators specifying Xl, ••• ,X7 are 
permitted. 

****DPS 88, DPS 8/20 and 8/ 44: 
permitted.**** 

AR modification is 

The effective address Y (for R) or the address YI of 
the indirect word being referred to (for RI) with bit 
29 0 is: 

a. For the first execution of the repeated instruction: 

Y + C(R) --> Yl or YI 1 ; 

Y1 or YI1 --> C(R) 

7-345 DH03-0l 



RPT RPT 

b. For any subsequent execution of the repeated 
instruction: 

DELTA + C(R) --> Yn or Yin; 

Yn or YI 0 --> C(R) 

The effective address Y (for R) or the address YI of 
the indirect word being referred to (for RI) with bit 
29 = 1 is: 

****DPS 8/70: Bit 29=1 causes an IPR fault.**** 

a. For the first execution of the repeated instruction: 

(se)Y + C(R) + C(ARm) --> Y1 or YI1 

(se)Y + C(R) --> C(R) 

b. For any subsequent execution of the repeated 
instruction (A or B = 1): 

DELTA + C(R) + C(ARm) --> Yn or Yin 

DELTA + C(R) --> C(R) 

where: se - sign extended 

ARm - address register m selected by 
instruction bits O, 1, 2 

In the case of RI, only one indirect reference is 
made per repeated execution. The tag field of the 
indirect word is not interpreted as usual but is 
ignored. Instead, the modifier R and the designator 
R = N are applied. 

6. The Exit Conditions: 

An exit is made from the repeat cycle if one of the 
terminate conditions exists or if tally is zero after 
the execution of the repeated instructione Also, an 
exit is made when a fault occurs. 

The program-controlled exit conditions are: 

a. Tally = o. 

b. Terminate Conditions: 

The bit configuration in bit positions 11-17 of 
the RP"r instruction defines the terminate conditions. 
If more than one condition is specified, the repeat 
terminates if any one of the specified conditions 
is met. 

7-346 DHOJ-01 



RPT 

c. 

RPT 

The Carry, Negative, and zero indicators each use 
two bits, one for the OFF condition and one for 
ON. A zero in both positions for one indicator 
causes this indicator to be ignored as a terminate 
conditiona A one in both positions causes an exit 
after the first execution of the repeated 
instruction. 

Bit 17 = 0: Ignore all overflows. The respective 
Overflow indicator is not set ON, and 
an overflow fault does not occur. 

Bit 17 = 1: Process overflows. If the Overflow 
Mask indicator is ON when an overflow 
occurs, then exit from the repetition 
cycle. If the Overflow Mask indicator 
is OFF when an overflow occurs, then 
an Overflow fault occurs. See 6-c 
below. 

Bit 16 1: Terminate if Carry indicator is OFF. 

Bit 15 1: Terminate if Carry indicator is ON. 

Bit 14 1: Terminate if Negative indicator is OFF. 

Bit 13 1: Terminate if Negative indicator is ON. 

Bit 12 = 1: Terminate if Zero indicator is OFF. 

B;~ -- 11 - 1: Terminate if zero indicator is ON. 

Overflow Fault: 

If bit 17 = 1 and an overflow occurs with the 
Overflow Mask indicator OFF, an overflow fault occurs 
and an exit is made from the repetition cycle when 
the fault processor returns control. 

A non-program-controlled exit from the repetition cycle 
occurs if any fault other than an overflow occurs (divide 
check, parity error on indirect word or operand fetch, 
etc.) • 

****DPS 88: The IC reported with this fault points to 
the RPT instruction and not the instruction being repeated. 
This is required for restart purposes.**** 

7-347 DH03-0l 



RPT 

EXAMPLE: 

7. 

RPT 

Upon exit from the repetition cycle: 

Bits 0-7 of XO contain the tally residue; that is, the 
number of repeats remaining until a tally runout would 
have occurred. The terminate conditions in bit 11-17 
remain unchanged. 

If the exit was due to tally= 0 or a terminate condition, 
the Xn specified by the designator of the repeated 
instruction contains the contents of the designated Xn 
after the last execution plus DELTA. -

If the exit was due to a fault, the X~ specified by the 
designator of the repeated instruction may con ta in either: 

a. The contents of the designated Xn at the time the 
fault occurred, or 

b. The contents of the designated Xn at the time the 
fault occurred, plus DELTA. 

If bits 0-7 of C(XO) are equal to zero, the Tally Runout 
indicator is set ON; otherwise, OFF. 

8. The repeated instruction must use index register 
modification; otherwise an IPR fault occurs. 

9. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

1 8 16 

LOA KEY 
EAX4 TABLE 
RPT 64,l,TZE 
CMPA 0,4 
TZE FOUND 

TABLE BSS 64 
KEY BSS 1 

7-348 DH03-0l 



RRES 

****DPS 88 ONLY**** 

RRES 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

RRES 

Read Reserved Memory 231 (0) 

Single-word instruction format {see Figure 7-1) 

Privileged Master Mode 

C(Y + Reserved Memory Base Register) --> C(A) 

The effective address Y is added to the Reserved Memory Base 
Register. The resulting address is used to read the contents 
of a Reserved Memory location with no paging. 

DU, DL, RI, IR, IT 

RPT , RPD , RPL 

None affected. 

1. This instruction is intended primarily for use in 
Privileged Master mode. The use of this instruction 
with effective address Y > 7 in Master mode or Slave 
mode causes a Bound fault. 

2. Bit 29 should be filled with zero to ensure compatibility 
with future systems. The value of bit 29 is ignored -
none of the Address Registers, nor any Descriptor Registers 
is used in the address formation. 

3. The Reserved Memory Base Register is initialized by SMAS 
software to point to location 0 of some memory bank. 
The contents of the Reserved Memory area are initialized 
by SMAS to provide configuration reference information 
for Operating System Startup software5 

7-349 DH03-01 



RRES 

**** 

4. 

RRES 

To ensure compatibility with Slave programs that used 
the RSW instruction, SMAS software initializes and 
maintains the contents of the Reserved Memory area as 
follows: 

Word O (Data Switches) is set to the value specified to 
SMAS in OS configuration information or through 
maintenance console verbs. 

Word 1 (Configuration Switches) is set to zero by SMAS. 

Word 2 (Model Characteristics) is initialized as follows 
by SMAS, based on configuration information supplied to 
SMAS: 

Bits 

0-3 
4-5 
6-11 
12-17 
18 
19 
20 
21-23 
24 

25 
26-33 
34-35 

Model Characteristics 

Zero 
Processor Type = 11 (DPS 88) 
Fault Base Register (0 modulo 64) 
zero 
1 BCD installed 
1 = DPS installed 
1 = Cache installed 
zero 
zero (Program can obtain the decor 
information via the STO instruction.) 
1 = NPL peripherals 
zero 
Processor Number 

Words 3 through 7 are set to zero by SMAS. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-350 DH03-0l 



RSCR 

****DPS 8 ONLY**** 

RSCR 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

RSCR 

Read System Controller Register 413 (0) 

Single-word instruction format (see Figure 7-1). 

Any 

NOTE: In slave mode all addresses cause the Elapsed Time 
Clock to be selected. 

The final real memory address is used in selecting a system 
controller and the function to be performed as follows: 

Effective 
Address 

xxxxxxox 
XXXXXXlX 
XXXXX02X 
XXXXX12X 
XXXXX22X 
XXXXX32X 
XXXXX42X 
XXXXX52X 
XXXXX62X 
XXXXX72X 
XXXXXX3X 
XXXXXX4X 
xxxxxxsx 
XXXXXX6X 
XXXXXX7X 

Function 

SCU Mode Register (Level 66 only) 
C(Configuration switches) --> 
C(Interrupt mask port 0) --> 
C(Interrupt mask port 1) --> 
C(Interrupt mask port 2) --> 
C(Interrupt mask port 3) --> 
C(Interrupt mask port 4) --> 
C(Interrupt mask port 5) --> 
C(Interrupt mask port 6} --> 
C(Interrupt mask port 7) --> 
C(Interrupt cells) --> 
C(Elapsed time clock} --> 
C(Elapsed time clock} --> 
C(Mode Register selected store unit) --> 
C(Mode Register selected store unit} --> 

C (AQ) 
C (AQ) 
C (AQ) 
C (AQ) 
C (AQ) 
C (AQ) 
C (AQ) 
C (AQ) 
C (AQ) 
C (AQ) 
C (AQ) 
C(AQ) 
C {AQ) 
C (AQ) 

NOTE: X - Address bits not used in determining the selected 
register, but used in selecting the pertinent system 
controller. 

GCOS ~ Operation (Master ! Privileged Master Mode) 

Absolute Mode (Working Space Number O): The Real address (no virtual to 
real address mapping) is equivalent to the effective address of GCOS III, without 
Master BAR modification. 

Non-Absolute Mode (Working Space Number~ 0): The virtual address is generated 
using all legal tag field modification, address register and descriptor modification. 
This virtual address is then mapped to a real address. This real address is 
then the effective address of the instruction. 

7-351 DH03-0l 



RSCR RSCR 

Slave Mode Operation 

The effective address is generated, using the address register modification 
and any legal tag field modification (the BAR (Base Register) modification is 
not included in the effective address modification). When the effective address 
cycle is complete, the CPU shall force an address of 00000040 and cause the 
Elapsed Time Clock to be read from the System Controller that contains this 
memory address. 

Level 66 System Controller 

CONFIGURATION SWITCHES 

0 
_Q_ 

3 
6 

Mask A 

0 0 
8_ -9.. 

4 4 
4 5 

Store 
Size 

1 1 
_l 2 

l 1 
5 £ 

On-
line 

1 2 
-9.. 

Port 
No. 

5 5 
6 7 

_Q_ 

N 
u 

2 2 2 3 
J.. _2_ -9.. _Q_ 

M Nonexist- In 
0 

d 
e 

ent 
Address 

6 6 
3 4 

1 
a 
c 
e 

6 6 
7 8 

3 3 
l_ 2 

L 
0 

w 
e 
r 

Port 
Mask 

3 
5 

7 
1 

Mask B Not Used Cyclic Not Port 

Field 

Mask A 
Mask B 

Store Size 

Code 

1 

000 
001 
010 
011 
100 
101 
110 
111 

Priority Used Mask 

Meaning 

A 1 in one or more of bit positions 0 through 7 and 36 
through 43 indicates that the corresponding ports will 
receive all interrupts that are unmasked by interrupt 
mask registers A and B. Masks A and B may be assigned 
to more than one port under program control, but both 
interrupt mask registers A and B must not be assigned 
to the same port. 

A 1 in bit position 8 indicates that the interrupt mask 
register is unassigned and any ls in bits O through 7 
are ignored by the system controller. 

32K 
64K 
128K 
256K 
512K 
lM 
2M 
4M 

7-352 0803-01 



RSCR 

Online 

Port Number 

Configuration 
Mode 

Nonexistent 
Address 

Interlace 

Lower Store 

Port Masks 

Cyclic Priority 

1 

0 

1 

0 

1 

0 

1 

1 

0 

0 

RSCR 

Store unit is able to accept requests. Bits 12 through 
15 correspond to units A, Al, B, and Bl, respectively. 

This field tells the requesting CPU its own 
port number assignment in the SCU. 

Configuration register is not altered and instruction 
terminates normally. 

All settable bits of configuration register may be 
altered; not settable under program control. 

Logic not active for controller instructions RSCR and 
SSCR. Active for all others. 

Store selection is based solely on higher address bit 
(not interlaced). 

Stores A and B are selected based on address bit 22 and 
a higher order address bit determined by store size. 

Lower address is in store pair A/Al. 

Lower address is in store pair B/Bl. 

Bits 32, 33, 34, 35 and 68, 69, 70, 71 indicate the 
state of ports O, 1, 2, 3 and 4, 5, 6, 7, respectively. 

Indicates port enabled. 

Indicates port OFF. 

These bits may be altered by the SMCM instruction and 
the SSCR instruction if the configuration mode switch 
is in the program positione 

Ports grouped with equal priorities. 

Zero between groups of 1 bit separates priority groups. 

1 Adjacent 1 bits increase the number of ports within a 
group. 

7-353 DH03-01 



RSCR 

0 
0 

RSCR 

The Read System Controller interrupt mask port n instructions 
cause the contents of the program interrupt mask register assigned 
to the spec if ic port of the system controller to be loaded 
into the AQ-register. In addition, the contents of the port 
enable register (PER, one per system controller) are presented 
in the same format as for the RMCM instruction. If no program 
interrupt mask register is assigned to the port specified, 
only the PER is returned with the remaining bits as zeros. 
The format is as follows: 

1 1 
5 6 

3 3 
1 2 

3 3 
5 6 

5 5 
1 2 

6 6 
7 8 

7 
1 

Interrupt PER Interrupt PER 
Mask Register zeros Bits Mask zeros Bits 

Bits 0-15 0-3 Register 4-7 
Bits 16-31 

a.---------------------------------C(AQ) ------------------------------------

0 
0 

Interrupt 
Cells 0-15 

The Read System Controller - Interrupt Cells instruction causes 
the contents of the interrupt cells to be loaded into the 
AQ-register. This instruction reads (without resetting) the 
cells. After the execution of this instruction, the AQ-register 
has the following format: 

1 1 
5 6 

Zeros 

3 3 
5 6 

Interrupt 
Cells 16-31 

5 5 
1 2 

Zeros 

7 
1 

---------------------------------C(AQ) --------------------------------_,,. 

Define layout in groups of four: 

0-3 level O for !OM 0,1,2,3 
4-7 level 1 for IOM 0,1,2,3 

Levels 1, 3, 5, and 7 are used for fault, terminate, marker, and special interrupts 
for channels O through 32. 

Levels O, 2, 4 and 6 are used for fault, terminate, marker, and special interrupts 
for channels 32 through 63. 

7-354 DH03-0l 



RSCR 

0 

0 

zeros 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

**** 

RSCR 

The Read System Controller - Elapsed Time Clock instruction 
causes the elapsed time clock register to be read into the 
AO-register. Two versions of the elapsed time clock register 
exist. In early model controllers, the clock, in microsecond 
increments, is not settable and turns over approximately every 
19 hours. This format in the AO-register is as follows: 

3 3 7 

Zeros Elapsed Time Clock (Bits 0-35) 

(6000 System Controller) 

In later model controllers, the clock, in microseconds, is 
settable and turns over approximately every 142 years. Bits 
20-55 are settable. This format in the AO-register is as follows: 

1 2 7 

Elapsed Time Clock (Bits 0-51) 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. When used with a 6000 system controller, the effective 
address must be within the lower store otherwise, a 
Command fault occurs. 

2. The execution of the read elapsed time clock function 
of the RSCR instruction is allowed in Master, Privileged 
Master, and Slave modes of operation. 

3. Port selection is based on the effective address = Y + 
Xn + AR; therefore, the base value of the descriptor is 
not added and the virtual to real address translation 
is not made. However, if bit 29 is 1, the specified 
address register is added when forming the effective 
address. 

4. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-355 DH03-01 



RSCR 

RSCR 

****DPS 88: 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

**** 

RSCR 

Read System Controller Register 413 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(Calendar Clock) --> C(AQ) 0_ 71 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected. 

1. The operand address development is allowed to proceed 
but does not affect the instruction. Processor port 
selection (which CIU) is determined by bit 23 (control 
CIU) of the Operation Register. This control CIU bit 
can be changed by the SSF, or by the LDHC instruction 
in Hyper mode, if reconfiguration requires the use of 
an alternate Port-CIU-Clock. The calendar clock can be 
loaded via the privileged LCCL instruction. 

2. The RSCR instruction performs the same function as the 
RCCL instruction, and is included in the repertoire to 
provide software compatibility. 

3. The calendar clock counts in units of one microsecond. 

4. The calendar clock is initially loaded by the SSF (SMAS) 
with the value that is the number of microseconds that 
have elapsed since 00: 00 hours, Greenwich Mean Time (GMT) , 
January 1, 1901. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-356 DH03-0l 



RSW 

****DPS 8 ONLY**** 

RSW' 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

**** 

RSW 

Read Switches 231 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

The final computed address is used to select certain processor 
switches whose settings are read into the A-register. 

The switches are selected in accordance with the type of 
processor installed. The configuration of the hardware control 
switches may vary for each type of processor. · 

None 
****DPS 8/20, 8/40: DU, DL, RI, IR, IT**** 

RPT, RPO, RPL 

None affected 

Illegal repeats RPT, RPO, and RPL cause an IPR fault. 

****DPS 8/20, 8/40: Illegal address modification causes an 
IPR fault.**** 

7-357 DHOJ-01 



S4BD S4BD 

S4BD (X) Subtract 4-Bit Displacement from Address Register 522 (1) 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

EXAMPLES: 

1 8 

EAX3 
S4BDX 
S4BD 

EAX6 
S4BDX 
S4BD 

Special arithmetic instruction format (see Figure 7-3) 

1 8 16 

S4BD(X) word displacement,R,AR 

When the mnemonic is coded with an X (S4BDX), bit 29 is 
forced to zero. 

Any 

Description is the same as for A4BD except that the formed 
values are subtracted from the AR. 

All except N, AU, QU, AL, QL, and index registers 

RPT, RPD, RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

1§ J2 

10 
2,3,4 AR4 octal contents 7 7 7 7 7 4 6 o 
0,3,4 AR4 octal contents 7 7 7 7 7 3 4 o 

7 
3,6,2 AR2 octal contents 7 7 7 7 7 4 0 5 
0;6;2 AR2 octal contents 7 7 7 7 7 3 2 0 

7-358 DH03-0l 



S6BD 

S6BD (X) 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

EXAMPLES: 

1 8 

EAXS 
S6BDX 
S6BD 

EAX6 
S6BDX 
S6BD 

S6BD 

Subtract 6-Bit Displacement from Address Register 521 (1) 

Special arithmetic instruction format {see Figure 7-3) 

1 8 16 

S6BD(X) word displacement,R,AR 

When the mnemonic is coded with an X (S6BDX), bit 29 is 
forced to zero. 

Any 

Description is the same as for A6BD except that the formed 
values are subtracted from the AR. 

All except N, AU, QU, AL, QL, and index registers 

RPT, RPO, RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

16 

14 
0,5,2 
2,5,2 

5 
1,6,7 
0,6,7 

32 

AR2 octal contents 
AR2 octal contents 

AR7 octal contents 
AR? octal contents 

7-359 

7 7 7 7 7 5 4 6 
7 7 7 7 7 1 2 3 

7 7 7 7 7 6 0 5 
7 7 7 7 7 5 2 3 

DH03-0l 



S9BD S9BD 

S9BD{X) Subtract 9-Bit Displacement from Address Register 5 20 (1) 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

EXAMPLES: 

1 § 

EAX7 
S98DX 
S9BD 

EAX2 
S98DX 
S9BD 

Special arithmetic instruction format (see Figure 7-3) 

1 8 16 

S9BD(X) word displacement,R,AR 

When the mnemonic is coded with an X {S9BDX) , bit 29 is 
forced to zero. 

Any 

Description is the same as for A9BD except that the formed 
values are subtracted from the AR. 

All except N, AU, QU, AL, QL, and index registers 

RPT, RPO, RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

·~ J~ 

9 
1,7,5 AR5 octal contents 7 7 7 7 7 4 6 0 
1,,5 AR5 octal contents 7 7 7 7 7 3 6 0 

7 
2,2,6 AR6 octal contents 7 7 7 7 7 4 2 0 
0,2,6 AR6 octal contents 7 7 7 7 7 2 4 0 

7-360 DH03-0l 



SA Rn 

SA Rn 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

EXAMPLES: 

1 8 

SAR5 

ADDRWS BSS 

Store Address Register Q 

Single-word instruction format (see Figure 7-1) 

1 8 16 

SARn LOCSYM,R,AR 

Any 

For n=O,l, .. , or 7 as determined by op code 
C(ARn) --> C{Y>o-23i C(Y)24-351 C(ARn) unchanged 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected 

SARn 

74n (1) 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

16 32 

ADDRWS 0 0 1 7 5 0 2 7 AR5 contents 

l 0 0 1 7 5 0 2 7 x x x x memory after 

7-361 DH03-01 



SA REG 

SA REG 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLE: 

1 8 

SA REG 

EIGHT 

Store Address Registers 

Single-word instruction format (see Figure 7-1) 

1 8 16 

SA REG LOCSYM,R,AR 

Any 

C(ARO,AR1, •.. ,AR7) --> C(Y,Y+l, ••• ,Y+7) 0 _ 23 

Zeros--> C(Y,Y+l, ... ,Y+7}24-35 

SA REG 

443 (1) 

The hardware assumes bits 15-17 of Y 
location. No check is made. 

000 for the first 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

2. Location Y must be forced to a multiple of 8 by entering 
an 8 in column 7 of the statement that defines Y, or by 
using the EIGHT pseudo-operation. 

16 32 

REGWS 

REGWS BSS 8 

7-362 DH03-0l 



SB2D 

SB2D 

FORMAT: 

0 0 
0 1 

El 0----------0 

0 
0 

I 
0 
0 

I 
CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

SB2D 

Subtract Using Two Decimal Operands 20 3 ( 1) 

0 0 1 1 1 1 Op Code 2 2 2 3 
8 9 0 1 7 8 7 8 9 

l+0I MF2 I 20 3 ( 1) H MFl 

Yl 

Y2 

The SB2D 

1 

Any 

1 1 2 2 22 2 
7 8 0 1 23 4 

ICNllTNlH SFl 

1 1 2 2 22 2 
7 8 0 1 23 4 

jcN}2H SF2 

instruction is coded as follows: 

8 

SB2D 
NDSCn 
NDSCn 

16 

(MFl), (MF2),RD,P,T 
LOCSYM,CN,N,S,SF,AM 
LOCSYM,CN,N,S,SF,AM 

C(string 2) - C(string 1) --> C(string 2) 

2 3 3 
9 0 

I Nl 

2 3 3 

910 
N2 

Same as SB3D except that the difference is stored using YC2, 
TN2, 52 and, if S2 indicates a scaled format, SF2. 

DU, DL for MFl and MF2 

RPT, RPD, RPL 

zero - If result equals zero, then ON; otherwise, OFF 

Negative - If result is negative, then ON; otherwise, OFF 

7-363 DH03-01 



SB2D SB2D 

NOTES: 

Truncation - If, in the preparation of the final result, one 
or more least significant digits (zero or nonzero) 
are lost and rounding is not specified, then 
ON. Otherwise (i.e., no least significant digits 
lost or rounding is specified), OFF 

Exponent 
Overflow - If exponent of floating-point result is greater 

than 127, then ON; otherwise, unchanged 

Exponent 
Underflow - If exponent of floating-point result is less 

than -128, then ON; otherwise, unchanged 

Overflow - If fixed-point integer, or internal register 
overflow, then ON; otherwise, unchanged 

l. Truncation fault same as for AD3D. 

2. Illegal Procedure fault same as for MVN. 

3. Independent of the data type being used (either packed 
decimal or 9-bit numeric; floating point or scaled) 
significant digits in the result may be lost if: 

a. The difference between the scaling factors 
{exponents) of the source operands is lar~e enough 
to cause the expected length of the intermediate 
result to exceed 63 digits after decimal point 
alignment of source operands, followed by 
substraction. 

****DPS 88: Note that DPS . 88 
possible intermediate results 
significant digits.**** 

accommodates all 
without loss of 

b. The result field as defined by the result descriptor 
is not large enough to contain the calculated result 
after it has been aligned. 

4. ****DPS 88: If an illegal digit or sign is detected, 
part or all of the receiving field may be changed before 
the IPR fault occurs. 

7-364 DH03-0l 



SB2D 

EXAMPLES: 

1 

FLDl 
FLD2 

8 

SB2D 
NDSC4 
NDSC9 
USE 
EDEC 
EDEC 
USE 

SB2D 
NDSC4 
NDSC9 
USE 

FLDl EDEC 
FLD2 EDEC 

USE 
*INSTRUCTION 

16 

' '1 
FLDl,0,4,2,-3 
FLD2,0,8 
CONST. 
4Pl25+ 
8A+6543.21 

' ' , 1 
FLDl,0,8,3,-4 
FLD2,0,8,3,-2 
CONST. 
8Pl2345678 
8A87654321 

FAULT? YES 

32 

with rounding option 
subtrahend operand descriptor 
minuend operand descriptor 
memory contents 
1 2 5 + 
+ 6 5 4 3 2 1 -2 
+ 6 5 4 3 0 9 -2 (Result) 

with truncation enable option 
subtrahend operand descriptor 
minuend operand descriptor 
memory contents 
12345678 
87654321 
87530864 (Result) 

WHAT KIND? truncation fault 

7-365 

SB2D 

DH03-01 



SB2DX SB2DX 

****DPS 88 ONLY**** 

SB2DX Subtract Using Two Decimal Operands Extended 243 (1) 

FORMAT: 

0 0 0 0 0 1 1 1 1 Op Code 2 2 2 3 
8 9 0 1 7 8 7 8 9 5 

0 HRDI MF2 I 24 3 ( 1) H MFl I 
0 

0 

PROCESSOR: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

**** 

Yl 

Y2 

Any 

1 1 2 2 2 2 2 
7 8 0 1 2 3 4 

ICNllTNllSXl I 
1 1 2 2 2 2 2 
7 8 0 1 2 3 4 

SFl 

SF2 

C(string2) - C(stringl) --> C(string2) 

2 
9 

I Nl 

2 

N2 

Same as for SB3DX except that the difference is stored using 
YC2, TN2, SX2 and, if SX2 indicates a scaled format, SF2. 

DU, DL for MFl or MF2 

RPT , RPO, RPL 

Same as for AD3D 

1. All notes for AD3D apply to SB2DX. 

2. See MVNX for information about coding of overpunched 
signs. 

7-366 DH03-01 



SB3D 

SB3D 

FORMAT: 

0 0 0 

MF3 

0 

0 

0 

CODING FORMAT: 

Subtract Using Three Decimal Operands 

0 0 1 1 1 1 Op Code 2 2 2 

Yl 

Y2 

Y3 

MF2 223 (1) 

1 1 2 2 22 2 
7 8 0 1 23 4 

1 1 2 2 22 2 
7 8 0 1 23 4 

1 1 2 2 22 2 
7 8 0 1 23 4 

SFl 

SF2 

SF3 

The SB3D instruction is coded as follows: 

1 8 

SB3D 
NDSCn 
NDSCn 
NDSCn 

16 

(MF 1 ) , (MF 2 ) , (MF 3 ) , RD , P , T 
LOCSYM,CN,N,S,SF,AM 
LOCSYM,CN,N,S,SF,AM 
LOCSYM,CN,N,S,SF,AM 

2 3 

2 3 

2 3 

PROCESSOR MODE: Any 

7-367 

SB3D 

223 (1) 

3 

MFl 

3 

Nl 

3 

N2 

3 

N3 

DH03-0l 



SB3D 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

SB3D 

C(string 2) - C(string 1) --> C(string 3) 

The decimal number of data type TNl, sign and decimal type 
Sl, and starting location YCl, is subtracted from the decimal 
number of data type TN2, sign and decimal type S2, and starting 
location YC2. The difference is stored starting in location 
YC3 as a decimal number of data type TN3 and sign and decimal 
type 53. If S3 indicates a scaled format, the results are 
stored using scale factor SF3, which may cause leading or 
trailing zeros (4 bits - 0000, 9 bits - 000110000) to be 
supplied and/or most significant digit overflow or least 
significant digit truncation to occur. If S3 indicates a 
floating-point format, the result is right-justified to 
preserve the most significant nonzero digits even if this 
causes least significant truncation. If P=l, positive signed 
4-bit results are stored using octal 13 as the plus sign. 
If P=O, positive signed 4-bit results are stored with octal 
14 as the plus sign. If RD is a 1, rounding takes place 
prior to storage. The contents of the decimal numbers that 
start in locations YCl and YC2 remain unchanged. 

DU, DL for MFl, MF2, and MF3 

RPT, RPO, RPL 

Same as for SB2D 

1. Truncation fault same as for AD3D. 

2. Illegal Procedure fault same as for MVN. 

3. Independent of the data type being used (either packed 
decimal or 9-bit numeric; floating point or scaled) 
significant digits in the result may be lost if: 

a. The difference between the scaling factors 
(exponents) of the source operands is large enough 
to cause the expected length of the intermediate 
result to exceed 63 digits after decimal point 
alignment of source operands, followed by 
subtraction. 

****DPS 88: Note that DPS 88 
possible intermediate results 
significant digits.**** 

accommodates all 
without loss of 

b. The result field as defined by the result descriptor 
is not large enough to contain the calculated result 
after it has been aligned. 

4. ****DPS 88: If an illegal digit or sign is detected, 
part or all of the receiving field may be changed before 
the IPR fault occurs. 

7-368 DH03-0l 



SB3D SB3D 

EXAMPLES: 

l 8 16 32 

SB3D , , , l with rounding option 
NDSC4 FLDl,0,4,2 subtrahend operand descriptor 
NDSC4 FLD2,0,4,l minuend operand descriptor 
NDSC9 FLD3,3,5 operand descriptor for result field 
USE CONST. memory contents 

FLDl EDEC 4Pl23- 123-
FLD2 EDEC 4P-123 -123 
FLD3 BSS 2 x x x + 0 0 0 +127 (Result) 

USE zero indicator ON 

SB3D with truncation enable option 
NDSC9 FLDl,0~8 subtrahend operand descriptor 
NDSC9 FLD2,0,8 minuend operand descriptor 
NDSC4 FLD3,0,8,l,-2 result operand descriptor 
USE CONST. memory contents 

FLDl EDEC 8A-123456E-3 - 1 2 3 4 5 6 -3 
FLD2 EDEC 8A-987654E-3 - 9 8 7 6 5 4 -3 
FLD3 BSS 1 -0086419 (Result) 

USE indicators on? - negative and truncation 

7-369 DH03-0l 



SB3DX SB3DX 

****DPS 88 ONLY**** 

SB3DX Subtract Using Three Decimal Operands Extended 263 (1) 

FORMAT: 

0 0 0 0 0 1 1 1 1 Op Code 2 2 2 3 

1:A1~sl 
2 8

1:1:0 1 

1 7 8 7

1:r 
5 

I I 
MF3 MF2 26 3 ( 1) MFl 

0 1 1 2 2 2 2 2 2 3 
0 7 8 0 1 2 3 4 9 5 

I Yl ICN+NllSXll SFl 
I 

Nl I 
0 1 1 2 2 2 2 2 2 3 
0 7 8 0 1 2 3 4 9 5 

I Y2 ICN2 ITN21SX2 I SF2 
I 

N2 I 
0 1 1 2 2 2 2 2 2 5 
0 7 8 0 1 2 3 4 9 

I Y3 ICNJITN31SX31 SF3 I N3 

PROCESSOR MODE: Any 

7-370 Dff 03-01 



SB3DX 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

**** 

SBJDX 

C(string 2) - C(string 1) --> C(string 3) 

The decimal number of data type TNl, sign and decimal type 
SXl, and starting location YCl, is subtracted from the decimal 
number of data type TN2, sign and decimal type SX2, and 
starting location YC2. The difference is stored starting in 
location YC3 as a decimal number of data type TN3 and a sign 
and decimal type SX3. If SX3 indicates a scaled format, the 
difference is stored using scale factor SF3, which may cause 
leading or trailing zeros (4 bits - 0000, 9 bits - 000110000) 
to be supplied and/or most significant digit overflow or 
least significant digit truncation to occur. If SX3 indicates 
a floating-point format, the result is right-justified to 
preserve the most significant nonzero digits even if this 
causes least significant truncation. The character set is 
defined by EA. Placement of overpunched sign in the output 
is controlled by NS. If RD is a 1, rounding takes place 
prior to storage. The contents of the decimal numbers that 
start in locations YCl and YC2 remain unchanged. 

DU, DL for MFl, MF2, or MF3 

RPT, RPO, RPL 

Same as for AD3D 

1. All notes for AD3D apply to SB3DX. 

2. See MVNX for information about coding of overpunched 
signs. 

7-371 Dff 03-01 



SBA 

SBA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

Subtract from A-Register 

Single-word instruction format (see Figure 7-1) 

Any 

C(A) - C(Y) --> C(A); C(Y) unchanged 

None 

None 

zero - If C(A) = O, then ON; otherwise, OFF 

Negative - If C(A) 0 = 1, then ON; otherwise, OFF 

Overflow - If range of A is exceeded, then ON 

SBA 

175 (0) 

Carry If a carry out of bit O of C(A) is generated, 
then ON; otherwise, OFF 

7-372 DH03-01 



SBAQ 

SBAQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

Subtract from AO-Register 

Single-word instruction format (see Figure 7-1) 

Any 

C(AQ) - C(Y-pair) --> C(AQ); C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ} 0 = 1, then ON; otherwise, OFF 

Overflow - If range of AQ is exceeded, then ON 

SBAQ 

177 (0) 

Carry - If a carry out of bit 0 of C (AQ) is generated, 
then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-373 DH03-01 



SBD 

SBD ( X) 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

EXAMPLES: 

1 8 

EAXl 
SBDX 
SBD 

EAX2 
SBDX 
SBD 

SBD 

Subtract Bit Displacement from Address Register 523 (1) 

Special arithmetic instruction format (see Figure 7-3) 

1 8 16 

SBD(X) word displacement,R,AR 

When the mnemonic is coded with an X (SBDX), bit 29 is forced 
to zero. 

Any 

Description is the same as for ABD except that the formed 
values are subtracted from the AR. 

All except N, AU, QU, AL, QL, and index registers 

RPT, RPD, RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

16 

48 
2,1,6 
0,1,6 

75 
1,2,3 
0,2,3 

32 

AR6 octal contents 
AR6 octal contents 

AR2 octal contents 
AR2 octal contents 

7-374 

7 7 7 7 7 4 4 6 
7 7 7 7 7 3 2 3 

i i i 7 7 4 6 6 
7 7 7 7 7 2 6 3 

DH03-0l 



SBLA 

SBLA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

SBLA 

Subtract Logical from A-Register 135 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(A) - C(Y) --> C(A); C(Y) unchanged 

None 

None 

Zero - If C(A) = O, then ON; otherwise OFF 

Negative - If C(A) 0 = 1, then ON; otherwise OFF 

Carry - If a carry out of bit O of C(A) is generated, 
then ON; otherwise, OFF. When the Carry indicator 
is OFF, the range of A has been exceeded. 

This instruction is identical to SBA with the exception that 
the Overflow indicator is not affected and an Overflow fault 
does not occur. Operands and results are treated as unsigned, 
positive binary integers. 

7-375 DH03-01 



SBLAQ 

SBLAQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

SBLAQ 

Subtract Logical from AQ-Register 137 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(AQ) - C(Y-pair) --> C(AQ); C(Y-pair) unchanged 

DU, DL, CI, SC, SCR 

None 

Zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

Carry - If a carry out of bit 0 of C(AQ) is generated, 

1. 

then ON; otherwise, OFF. When the Carry indicator 
is OFF, the range of AQ has been exceeded. 

This instruction is identical to SBAQ with the exception 
that the Overflow indicator is not affected and an Overflow 
fault does not occur. Operands and results are treated 
as unsigned, positive binary integers. 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-376 DHOJ-01 



SBLQ 

SBLQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

SBLQ 

Subtract Logical from Q-Register 136 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(Q) - C(Y) --> C{Q) ~ C(Y) unchanged 

None 

None 

zero - If C(Q) = O, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON; otherwise, OFF 

Carry If a carry out of bit 0 of C (Q) is generated, 
then ON; otherwise, OFF. When the Carry indicator 
is OFF, the range of Q has been exceeded 

This instruction is identical to SBQ with the exception that 
the Overflow indicator is not affected and an Overflow fault 
does not occur. Operands and results are treated as unsigned, 
positive binary integers. 

7-377 DH03-0l 



SBLXn 

SBLXn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATION$: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Subtract Logical from Index Register !! 

Single-word instruction format {see Figure 7-1) 

Any 

For n 0,1, ••• , or 7 as determined by op code 
C(Xn} - C{Y) 0_17 --> C{Xn); C(Y) unchanged 

CI, SC, SCR 

RPT, RPO, RPL of SBLXO 

zero - If C(X!!) = O, then ON; otherwise, OFF 

Negative - If C(X!!>o = 1, then ON; otherwise, OFF 

SBLXn 

12n - ( 0) 

Carry - If a carry out of bit 0 of C(Xn) is generated, 
then ONi otherwise, OFF. When the Carry indicator 
is OFF, the range of X!! has been exceeded. 

1. This instruction is identical to SBXn with the exception 
that the Overflow indicator is not affected and an Overflow 
fault does not occur. Operands and results are treated 
as unsigned, positive binary integers. 

2. DL modification is flagged as illegal but executes with 
all zeros for data. 

3. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-378 0803-01 



SBQ 

SBQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

Subtract from Q-Register 

Single-word instruction format (see Figure 7-1) 

Any 

C(Q) - C(Y) --> C(Q); C(Y) unchanged 

None 

None 

Zero - If C(Q) = O, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON; otherwise, OFF 

Overflow - If range of Q is exceeded, then ON 

SBQ 

176 (0) 

Carry If a carry out of bit o of C(Q) is generated, 
then ON; otherwise, OFF 

7-379 DH03-01 



SBXn 

SBXn -

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Subtract from Index Register .!! 

Single-word instruction format (see Figure 7-1) 

Any 

For n O, 1, ••• , or 7 as determined by op code 
C(Xn) - C(Y) 0_17 --> C(Xn}; C(Y) unchanged 

CI, SC, SCR 

RPT, RPO, RPL of SBXO 

zero - If C(X,!!) = 0, then ON; otherwise, OFF 

Negative - If C(X.!!>o = 1, then ON; otherwise, OFF 

Overflow - If range of Xn is exceeded, then ON 

SBXn 

16n (0) 

Carry If a carry out of bit O of C(X_!!) is generated, 
then ON; otherwise, OFF 

1. DL modification is flagged as illegal but executes with 
all zeros for data. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-380 DH03-0l 



SCD SCD 

SCD I Scan Characters Double 120 (1) 

FORMAT: 

0 l l 1 1 Op Code 2 2 2 3 
0 0 1 7 8 7 8 9 5 

I 0--------------0 MF2 I 120(1) 
I 

I 

I 
MFl 

I 

0 0 0 1 1 2 2 2 2 2 3 
0 2 3 7 8 0 1 2 3 4 5 

I 
Yl 

I I I I 
Nl 

I 
CNl TAl 0 

al Yl 0-------------0 Rl 

0 0 0 1 1 2 2 3 
0 2 3 7 8 0 1 5 

I 
Y2 

I I I 
CN2 not interpreted 

a2 Y2 

0 0 0 1 1 2 2 3 3 3 3 
0 2 3 7 8 8 9 0 1 2 5 

I 
Y3 I o----------------0 I 

I I I 
AR3 00 REG3 

a3 Y3 

CODING FORMAT: The SCD instruction is coded as follows: 

1 8 16 

SCD (MFl), (MF2) 
ADSCn LOCSYM,CN,N,AM 
ADSCn LOCSYM, CN, ,AM 
ARG LOCSYM,RM,AM 

PROCESSOR MODE: Any 

7-381 DH03-0l 



SCD 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLES: 

1 8 

SCD 
ADSC6 
ADSC6 
ZERO 
TTF 
USE 

FLDl BC! 
FLD2 BC! 
FLD3 BSS 

USE 

SCD 

Starting at location YCl, Ll-1 concatenated pairs of type 
TA! characters are compared with the two assumed type TAl 
characters that are either stored in location YC2 and YC2 + 
1 or contained in bits 0-7, bits 0-11, or bits 0-17 of the 
address field of operand descriptor 2 when the REG field of 
MF2 specifies DU modification. The compare continues until 
an identical match is found or until the Ll-1 tally runs 
out. A count of compares is kept and for each unsuccessful 
match, the count is incremented by 1. When a match is found 
or the tally is exhausted, the compare count is stored in 
bits 12-35 of Y3 and bits 0-11 of Y3 are zeroed. Bits 21-35 
(or 18-35 if DU modification is specified) of descriptor 2 
are not interpreted. 

DU, DL for MFl or REG3; DL for MF2 

RPT, RPO, RPL 

Tally - If the tally (Ll-1) is exhausted without a 
successful match, then ON; otherwise, OFF 

1. For i = 1 to Ll-1, compare YCl-l+i with YC2, and compare 
YCl+i with YC2+1. 

2. ****DPS 88: When Nl = O or 1, zero is stored in bits 
12-35 of Y3 and the Tally indicator is still affected.**** 

3. The RL bit in the MF2 field is not used. 

4. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

16 

FLDl,,6 
FLD2,3 
FLD3 
HAVE! 
CONST. 
1,123456 
1 t:. C:.A 'l '> 1 
•ru..1~..1 .. .L 

1 

32 

with no options 
scanned string operand descriptor 
character pair operand descriptor 
FLD3 operand descriptor pointer 
match found - tally runout OFF 
characters compared 
123456 
32 
unmatched count - 5 
Result - no match found 

7-382 DH03-0l 



SCD SCD 

EXAMPLE WITH ADDRESS MODIFICATION: 

1 8 16 32 

EAXS 5 load 5 into XS 
EAX7 7 load 7 into X7 
EAX4 FLDl load FLDl address into X4 
AWDX 0,4,4 put FLDl address into AR4 
SCD ( 1 , l , , 5 ) , ( , , , DU ) - with address modification 
ADSC9 O,O,X7,4 FLDl operand pointer (FLDl+l,l, 7) 

FLD2 VFD Al8/ 45 FLD2 operand 
ARG FLD3 pointer to count FLD3 
TTN *+2 no match found 
NULL match found 
USE CONST. characters compared 

FLDl EDEC 12Al234567 000001234567 
FLD3 DEC 0 unmatched count - 3 

USE Result - match found on 4th pair 

7-383 DH03-01 



SCOR 

SCOR 

FORMAT: 

COD ING FORMAT : 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLES: 

SCOR 
ADSC9 
VFD 
ARG 
TTF 
USE 

FLDl UASCI 
FLD3 BSS 

USE 

SCOR 

Scan Characters Double in Reverse 121 (1) 

Same as Scan Characters Double (SCD) format 

The SCOR instruction is coded as follows: 

1 8 16 

SCOR (MFl), (MF2) 
ADSCn LOCSYM,CN,N,AM 
ADSCn LOCSYM,CN, ,AM 
ARG LOCSYM,RM,AM 

Any 

Same as for SCD except that start is at location YCl + (Ll-1) 
and pairs are scanned in reverse to location YCl. 

DU, DL for MFl or REG3; DL for MF2 

RPT, RPO, RPL 

Tally - If the tally (Ll-1) is exhausted without a 
successful match, then ON; .otherwise OFF 

1. For i 1 to Ll-1, compare YCl + Ll - i with YC2 + 1 
and 
YCl + Ll - 1 - i with YC2. 

2. **DPS 88: When Nl = 0 or 1, zero is stored in Y3 12_ 35 
and the Tally indicator is still affected.**** 

3. The RL bit in the MF2 field is not used. 

4. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

I (I I I DU) 
FLDl,0,8 
Ul8/AB 
FLD3 
HAVEl 
CONST. 
2,ABCDE 
1 

DU modification of FLD2 operand descriptor 
scanned string operand descriptor 
FLD2 character pair - A B 
pointer count word 
match found - tally runout OFF 
characters compared 
A,B ,C,D,E ,).S,).S,).S 
unmatched count - 6 
Result - match found on 7th pair 

7-384 DH03-01 



SCOR SCOR 

EXAMPLE WITH ADDRESS MODIFICATION: 

1 8 16 32 

KO EQU 0 
K7 EQU 7 

EAX2 1 
EAX3 FLDl load FLDl address into X3 
AWDX 0,3,4 put FLDl address into AR4 
SCOR (1,, ,2), (,,,DU) - with address modification 
ADSC4 0, KO, K7 ,4 FLDl operand descriptor (FLD 1,1,7) 
EDEC 2PL23 FLD2 operand descriptor pointer 
ARG FLD3 pointer to count word 
TTN OOPS no match - tally runout ON 
NULL match found 
USE CONST. characters compared 

FLDl EDEC 8Pl2345'6 0123456 vs 23 
FLD3 BSS 1 unmatched count - 3 

USE Result - match found on 4th pair 

7-385 DH03-0l 



SCM SCM 

SCM · Scan with Mask 124 (1) 

FORMAT: 

0 0 0 1 1 1 1 Op Code 2 2 2 3 
0 8 9 0 1 7 8 7 8 9 5 

I MASK I 0 I 0 I MF2 I 124(1) I I I MFl I 
0 0 0 1 1 2 2 2 2 2 3 
0 2 3 7 8 0 1 2 3 4 5 

I 
Yl 

I I I I 
Nl 

I 
CNl TAl 0 

al Yl 0-------------0 Rl 

0 0 0 1 1 2 2 3 
0 2 3 7 8 0 1. 5 

I 
Y2 

I I I 
CN2 not interpreted 

a2 Y2 

0 0 0 1 1 2 2 3 3 3 3 
0 2 3 7 8 8 9 0 1 2 5 

I 
Y3 I o----------------0 I I I I 

AR3 00 REG3 

a3 Y3 

CODING FORMAT: The SCM instruction is coded as follows: 

1 8 16 

SCM (MFl), (MF2) ,MASK 
ADSCn LOCSYM,CN,N,AM 
ADSCn LOCSYM, CN, ,AM 
ARG LOCSYM,RM,AM 

PROCESSOR MODE: Any 

7-386 DH03-0l 



SCM 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

SCM 

Starting at location YCl, the Ll type TA! characters are 
masked and compared with the assumed type TA! character 
contained either in location YC2 or in bits 0-8 or 0-5 of 
the address field of operand descriptor 2 when the REG field 
of MF2 specifies DU modification. The mask is right-justified 
in bit positions 0-8 of the instruction word. Each bit position 
of the mask that is a 1 prevents that bit position in the 
two characters from entering into the compare. The masked 
compare operation continues until either a match is found or 
until the tally (Ll) is exhausted. For each unsuccessful 
match, a count is incremented by 1. When a match is found 
or when the Ll tally runs out, this count is stored 
right-justified in bits 12-35 of location Y3 and bits 0-11 
of Y3 are zeroed. The contents of location YC2 and the 
source string remain unchanged. Bits 21-35 (or 18-35 if DU 
modification is specified) of descriptor 2 are not interpreted. 

DU, DL for MFl or REG3; DL for MF2 

RPT, RPD, RPL 

Tally - If the tally (Ll) is exhausted without a successful 
match, then ON; otherwise OFF 

1. If Nl O, zero is stored in Y3 (bits 12-35) and the 
tally indicator is affected. 

2. If Nl > O and a match is found in the first character, 
zero is stored in Y3 (bits 12-35) and the tally indicator 
is not affected. 

3. The RL bit of the MF2 field is not used. 

4. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-387 DH03-0l 



SCM 

EXAMPLES: 

1 

FLDl 

FLD2 
FLD3 

FLDl 
FLD3 

8 

SCM 
ADSC9 
ADSC9 
ARG 
TTF 
NULL 
USE 
ASCII 

ASCII 
BSS 
USE 

SCM 
ADSC4 
EDEC 
ARG 
TTF 
NULL 
USE 
EDEC 
BSS 
USE 

16 

,,760 
FLDl,0,4 
FLD2,3 
FLD3 
GOT.IT 

CONST. 
l ,ABCD 

1,0004 
1 

, (, , , DU) 
FLDl,3,5 
8PL-l 
FLD3 
GOT. IT 

CONST. 
SP-1234 
1 

32 

mask to eliminate zone bits 
character string operand descriptor 
compare character operand descriptor 
pointer to unmatched count word 
match found 
no match - tally runout ON 

SCM 

octal representation of scanned characters 
141 142 143 144 (before masking) 
001 002 003 004 (after masking) 
octal representation of compare character 
064 {before masking) 
004 (after masking) 
unmatched compare count - 3 
Result - match found on 4th character 

DU type REG modifier on FLD2 
character string operand descriptor 
FLD2's compare character -
pointer to unmatched count word 
match found 
no match - tally runout ON 
character scanned 
0,1,2,3,4 
unmatched compare count - 5 
Result - no match found 

EXAMPLE WITH ADDRESS MODIFICATION: 

FLDl 
FLD2 
FLD3 

EAXl 
EAX2 
EAX4 
AWDX 
SCM 
ARG 
ARG 
ARG 
TTN 
USE 
EDEC 
EDEC 
BSS 

INDSC2 ADSC9 
USE 

1 load FLD2 character modifier into Xl 
2 load FLDl character modifier into X2 
FLDl load FLDl address into X4 
0,4,4 put FLDl address into AR4 
(1,1,1,2), (1, ,1,1) ,010 with all options 
INDSCl pointer to FLDl indirect descriptor 
INDSC2 pointer to FLD2 indirect descriptor 
FLD3 pointer to unmatched count word 
OY no match - tally runout ON 
CONST. character compared 
8PL4321 2 1 
4P0987 1 
1 unmatched compare count - 1 
n v~ A ~Tni ------~ ~----:-~-- 1~Tn, ~ ~' u 11 n,,-s ._ . ...,IJ..L vpic-1.a11u UC;;>\,,l.Lj:"\..Vl. \1:1.IU.1.ri:.ri:./ 

FLD2,0 FLD2 operand descriptor (FLD2,l) 
Result - match found on 2nd character 

7-388 DH03-0l 



SCMR 

SCMR 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Scan with Mask in Reverse 

Same as Scan with Mask (SCM) format 

The SCMR instruction is coded as follows: 

1 

Any 

8 

SCMR 
ADSCn 
ADSCn 
ARG 

16 

(MF 1 ) , {MF 2 ) , MASK 
LOCSYM,CN,N,AM 
LOCSYM,CN, ,AM 
LOCSYM,RM,AM 

SCMR 

125 (1) 

Same as SCM except start at location YCl + {Ll-1) and progress 
toward location YCl. 

DU, DL for MFl or REG3; DL for MF2 

RPT, RPD, RPL 

Tally - If the tally (Ll) is exhausted without a successful 
match, then ON; otherwise, OFF 

1. If Nl = 0, zero is stored in Y3 (bi ts 12-35) and the 
tally indicator is affected. 

2. If Nl > 0 and a match is found in the first character, 
zero is stored in Y3 (bits 12-35) and the tally indicator 
is not affected. 

3. The RL bit of the MF2 field is not used. 

4. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-389 DH03-01 



SCMR 

EXAMPLES: 

FLDl 
FLD3 

8 

SCMR 
ADSC4 
EDEC 
ARG 
TTF 
NULL 
USE 
EDEC 
DEC 
USE 

16 

, ( , , , DU ) , 7 6 0 
FLDl,0,6 
1P4 
FLD3 
*+2 

CONST. 
8PL654321-
0 

32 

DU type register modification with mask 
character string operand descriptor 
FLD2~s compare character - 4 
pointer to unmatched count word 
match found 
no match - tally runout ON 
characters scanned 
6,5,4,3,2,1 
unmatched count - 3 
Result - match found on 4th character 

SCMR 

EXAMPLE WITH ADDRESS MODIFICATION: 

1 8 16 32 

EAX6 6 load FLDl length into X6 
EAX2 2 load character modifier into X2 
EAX4 FLDl load FLDl address into X4 
AWDX 0,4,4 put FLDl address into AR4 
SCMR (1,1,1,2),, 760 with all options 
ARG FLD3+1 pointer to FLDl indirect descriptor 
ADSC4 FLD2,0 pointer to compare character 
ARG FLD3 pointer to unmatched count word 
TTN OUCH no match - tally runout ON 
TRA WHEW match found 
USE CONST. characters compared 

FLDl EDEC 8P0123456- 2,3,4,5,6,-
FLD3 DEC 0 unmatched compare count - 4 

ADSC4 0,, X6, 4 FLDl operand descriptor(FLD 1,2,6) 
FLD2 EDEC 4PL3 FLD2 compare character 3 

USE Result - match found on 5th compare 

7-390 DH03-0l 



SCPR 

****DPS 8 ONLY**** 

SCPR 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

SCPR 

Store Central Processor Register 452 (0) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

The contents of the register specified by the tag field replace 
the contents of the specified Y-pair. All other tag field 
values, except as specified below, cause an IPR fault. 

Octal 
~ 
00 

01 

03 

06 

06 

10 

12 

15 

16 

17 

20 

40 

<<Pro
duct>> 
DPS 8/70 

all 

DPS 8/20 and 
8/44 
DPS 8/70 

DPS 8/20 and 
8/44 

DPS 8/70 

DPS 8/20 and 
8/44 

DPS 8/20 and 
8/44 

DPS 8/20 and 
8/44 

DPS 8/20 and 
8/44 

all 

DPS 8/70 

Register Selection 
Virtual Unit il History Register 

Fault Reg. 0_ 35 ; O -->. C(Y-pair} 36_ 71 Then O --> Fault Register 
Extended Fault Register 0_ 35 ; 
0 --> C(Y-pair} 36_71 
Mode Register 0_ 35 ; O --> C(Y-pair) 36_ 71 

Mode Register 0735 ; 0 --> C(Y-p~ir) 36_ 53 Cache Mode Register--> C(Y-pair) 54_60 ; 
0 --> C(Y-pair) 61_69 ; 
Lockup Fault Register --> C(Y-pair) 70_ 71 

Virtual Unit i2 History Register 

Address Trap Register --> C(Y-pair) 0_ 26 ; 
O --> C(Y-pair) 27_ 71 

Cache Directory Entry 
selected by Y7_15 --> C{A) 

Associative Memory Directory Entry 
selected by Y11_17 --> C(A) 

Associative Memory Entry 
selected by Y11_17 --> C(A) 

Control Unit History Register 

OU/DU History Register 

7-391 DH03-01 



SCPR 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

**** 

SCPR 

Tag field defines register 

RPT, RPO, RPL 

None affected 

1. For tag field values 00, 10, 20, and 40, the history 
register stored is selected by the current value of a 
cyclic counter for each unit. The individual cyclic 
counters are advanced by one count for each execution 
of the instruction. 

2. The use of tag field values other than those defined 
above causes an IPR fault. 

3. Attempted repetition with the RPT, RPO, or RPL instructions 
causes an IPR fault. 

4. Attempted execution by a processor that is in Slave 
mode causes a Command fault. 

7-392 DH03-0l 



SD Rn 

SD Rn -

FORMAT: 

PROCESSOR MODE: 

SUM.MARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

SD Rn 

Save Descriptor Register ~ lln (1) 

As described below 

Any 

This instruction stores the descriptor from DRn in the next 
available location of the argument stack. 

The Y field of this instruction is not interpreted by hardware. 
No address bound checks are made. The argument stack is the 
operanq segment. 

Fault: If ASR flag bit 28 shows AS missing, a Missing Segment 
fault is generated; 

****DPS 8: If ASR bound + 8 > 8192 bytes, an STR 
fault is generated.**** 

****DPS 88: If ASR bound + 8 > 8192 bytes, a BND 
fault is generated.**** 

If ASR flag bit 27 = 1 (bound valid), then 
Effective Address = ASR Bound +l 

If ASR flag bit 27 = 0 (bound not valid), then 
Effective Address = 0 

C(DRn) ==> C(AS, EA-pair) 

If the store into the argument segment does not cause a 
fault, then continue. 

If ASR flag bit 27 = 1 (bound valid), then 
ASR Bound + 8 --> ASR Bound 

If ASR flag bit 27 = 0 (bound not valid), then 
7 --> ASR Bound, 
1 --> ASR flag bit 27 (bound valid) 

2 --> SEGIDno-1 

ASR Bound7_16 --> SEGIDn2_11 

DU, DL, RI, IR, IT 
****DPS 88: None**** 

RPT, RPO, RPL 

None affected 

7-393 DH03-0l 



SD Rn 

NOTES: 

EXAMPLE: 

1. 

SD Rn 

If a save is attempted to a nonhousekeeping page, an 
SCLl fault is generated. 

2. A missing Working Space, Missing Segment, or Missing 
Page fault may occur. 

3. An STR fault occurs if there is an attempt to address 
more than 2 24 words and either absolute or dense paging 
address is used; or if ASR Bound + 1 byte ~ 8192 bytes 
(before ASR is updated). 

****DPS 88: A BND fau~~ occurs if there is an attempt 
to address more than 2 words and either absolute or 
dense paging address is used; or if ASR Bound + 1 byte 
~ 8192 bytes (before ASR is updated).**** 

4. An SCL2 fault occurs if there is an attempted working 
space violation, or if the specified page does not have 
write'permission. The descriptor itself does not require 
write nor save permissions. 

5. An Illegal Procedure fault occurs if illegal repeats 
(****DPS 8: and illegal address modifications) are used. 

(To save and restore DR3) 

1 3 

SDR3 
STP3 

LDP3 

16 

SAVE3 

SAVE3 

SAVE3 BSS 1 

7-394 

32 

(SAVE) 

(RESTORE) 

DH03-0l 



SFR 

****DPS 88 ONLY**** 

SFR 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

**** 

Store Fault Register 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C(Fault Register) --> C(Y) 0_ 32 ; O --> C(Y) 33_ 35 
C(FR) unchanged 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected. 

SFR 

452 (0) 

1. The use of this instruction in other than Privileged 
Master mode causes an IPR fault. 

2. The Fault Register is not cleared after storing. The 
Fault Register is loaded each time a fault trap occurs. 
Thus no "clear" functionality is required. 

3. In DPS 8 processors, the mnemonic SCPR (Store Central 
Processor Registers) was assigned to operation code 
452 (0). The mnemonic has been changed to reflect the 
change in functionality. 

4. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-395 DH03-0l 



SMCM 

****DPS 8 ONLY**** 

SMCM 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

SMCM 

Set Memory Controller Mask Register 553 (0) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

{ 

C (Memory Controller Interrupt Mask Register) 
C(AQ) --> C (Memory Controller Access Mask Register) of 

Memory Unit specified by bits 0-2 of Y 
C(AQ), C(Y) unchanged 

DU, DL, CI, SC, SCR 

****DPS 8/70: RPL**** 
****DPS 8/20, 8/44: RPT, RPO, RPL**** 

None affected 

1. The effective address Y is used in selecting a memory 
module as with a normal memory access request. However, 
the selected module does not store the data received in 
a memory location but in its Memory Controller Interrupt 
Mask Register and Memory Controller Access Mask Register. 

__________________ Combined AQ-register __________________ _ 

0 15 51 

0 15 HI 
L 

t t t t 
Interrupt Mask ~'------t---------Acc~ss Mask I 
Register___________________________ Register ........J 

2. If the use of this instruction is attempted by a processor 
in the Slave mode, a Command fault occurs. 

7-396 DH03-0l 



SMCM 

3. 

4. 

**** 

SMCM 

The address field used to select the SCU (port number) 
is the absolute page address. 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-397 DHOJ-01 



SMIC 

****DPS 8 ONLY**** 

SMIC 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

**** 

SMIC 

Set Memory Controller Interrupt Cells 451 (0) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C{A) is used to set selected interrupt cells ON in the system 
controller of the memory unit selected by bits 0-2 of Y; 
C(A), C(Y) unchanged 

DU, DL, CI, SC, SCR 

****DPS 8/20 and 8/44: RPT, RPO, RPL**** 

None affected 

1. The effective address Y is used in selecting a memory 
module as with a normal memory access request. However, 
the selected module does not store the data received in 
a memory location, but uses it to set selected interrupt 
cells ON. 

For i = O, 1, ••. ,15 and bit 35 of C{A) = 0: 

if bit i of C(A) = 1, then set interrupt cell i ON 

For i = O, 1, ••• ,15 and bit 35 of C(A) = 1: 

if bit i of C(A) = 1, then set interrupt cell (16+i) 
ON. 

2. If the use of this instruction is attempted by a processor 
in the Slave mode, a Command fault occurs. 

3. The address field used to select the SCU {port number) 
is the absolute page address. 

4. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-398 DH03-0l 



SPDBR 

SPDBR 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Store Page Table Directory Base Register 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

****DPS 8: C(PDBR) --> C(Y)0-14 

O --> C(Y)15-35 

****DPS 88: 

**** 

C(PDBR) --> C(Y)O-lG 

O --> C(Y)17-35**** 

C (PDBR) unchanged 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

SPDBR 

151 (1) 

1. The contents of the page directory base register (PDBR) 
replace the contents of Y. The PDBR remains unchanged. 

2. Modifications DU, DL, CI, SC, SCR and illegal repeats 
RPT, RPO, RPL cause an IPR fault. 

3. ****DPS 8: If the processor is not in the Privileged 
Master mode, the execution of this instruction causes a 
Command fault. **** 

****DPS 88: If the processor is not in the Privileged 
Master mode, the execution of this instruction causes 
an IPR fault.**** 

7-399 0803-01 



SPL SPL 

SPL ·Store Pointers and Lengths 447 (1) 

FORMAT: Single-word instruction format (see Figure 7-1) 

CODING FORMAT: 1 8 16 

SPL LOCSYM,R,AR 

PROCESSOR MODE: Any 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

****DPS 8: C(pointer and length registers) --> 
C(Y,Y+l, ••• ,Y+7) 

Bi ts 15-17 of Y = 000 for the first location. The actual 
contents of these bit positions are ignored and are assumed 
to be zero.**** 

****DPS 88: C (pointer and length registers) --> C(Y,Y+l). 
The hardware assumes Y17 = 0 **** 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

Multiword Instruction Interrupt indicator (bit 30) OFF 

1. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

2. The SPL instruction provides the capability for storing 
the pointers for sending and receiving add~e~se.s, for 
stmdin9· and re<;:e.iving field lengths, and fo·r· other required 
control information when an interruptible multiword 
instruction is interrupted during execution. These 
registers enable the hardware to resume processing an 
interrupted instruction after a return from servicing 
the interrupt. See "Pointer And Length Registers" in 
Section IV. 

3. ****DPS 8: The address reqister bit of the modification 
field for the operand descriptor is stored in bit 29. 
Bits 33-35 are the address registers designated by bits 
0-2 of the Y field of the descriptor. Word 3 of the 
operand stores this data for operand descriptor 1, word 
5 of the operand stores this data for operand descriptor 
2, and word 7 of the operand stores this data for operand 
descriptor 3.**** 

7-400 DH03-0l 



SPL 

EXAMPLE: 

1 8 

SPL 

REGWS BSS 

4. 

SPL 

****DPS 8: Location Y must be forced to a multiple of 
8 by entering an 8 in column 7 of the statement that 
defines Y, or by using the EIGHT pseudo-operation.**** 

****DPS 88: Use E in column 7, or use the EVEN 
pseudo-operation.**** 

5. The SPL instruction is normally only used by routines 
that process interrupts. 

6. After an interrupt occurs, the SPL must be executed 
before any multiword instruction to avoid destruction 
of the pointer and length information. 

16 32 

REGWS store interrupt registers 

WO 0 0 0 0 z/n Tally Counter - IRl 
+l 0 0 0 z/n Tally Counter - IR2 
+2 Desc. 1 Pointer Control Data - IR3 
+3 Level O Descr. 1 Len. Res. - IR4 
+4 Descr. 2 Pointer Control Data - IRS 
+5 0 0 0 0 Descr. 2 Len. Res. - IR6 
+6 Descr. 3 Pointer Control Data - IR7 
+7 0 0 0 0 Descr. 3 Len. Res. - IRS 

indicator affected? - interrupt set OFF 

7-401 DH03-0l 



SREG 

SREG 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS~ 

NOTES: 

Store Registers 

Single-word instruction format (see Figure 7-1) 

Any 

C(XO, ..• ,X7,A,Q,E,TR) --> C(Y, .•• ,Y+7} 
where Y15 _17 = 000 

Registers are stored as follows: 

C (XO) 
C (Xl) 
C (X2) 
C (X3) 
C (X4) 
C (X5) 
C (X6) 
C (X7} 
C(A) 
c (Q) 
C(E) 
C (TR) 

--> C(Y)o-17 
-->'C(Y) -35 
--> C(Y+Ho-11 
--> C(Y+l)18-35 
--> C(Y+2)0-17 
--> C(Y+ 2 )18-35 
--> C(Y+3)0-17 
--> C(Y+ 3 )18-35 
--> C(Y+4)0-35 
--> C(Y+5)0-35 
--> C(Y+6) 0 _ 7; 0 ••• 0 --> C(Y+6) 8 _ 35 
--> C(Y+7) 0 _ 26 ; 0 •.• 0 --> C(Y+7> 27 _ 35 

Registers unchanged 

DU, DL, CI, SC, SCR 

RPT , RPO , RPL 

None affected 

SREG 

753 (0) 

1. Location Y must be forced to a multiple of B by entering 
an 8 in column 7 of the statement that defines Y, or by 
means of the EIGHT pseudo-operation. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-402 DHOJ-01 



SSA 

SSA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

Subtract.stored from A-Register 

Single-word instruction format (see Figure 7-1) 

Any 

C(A) - C(Y) --> C(Y); C(A) unchanged 

DU, DL, CI, SC, SCR 

RPL 

Zero - If C(Y) = O, then ON; otherwise, OFF 

Negative - If C(Y) 0 = 1, then ON; otherwise, OFF 

Overflow - If range of C(Y) is exceeded, then ON 

SSA 

155 (0) 

carry - If a carry out of bit 0 of C (Y) is generated, 
then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-403 DH03-01 



SSCR 

SSCR 

****DPS 8 ONLY**** 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

SSCR 

Set System Controller Register 057 (0) 

Single-word instruction format (see Figure 7-1) 

This instruction is used with the Level 66 (four-megaword) 
System Controller. 

Privileged Master Mode 

The SSCR instructions are the inverse of the RSCR instructions. 
These instructions are executed on the Level 66 System 
Controller regardless of the state of the TEST/NORMAL switch. 
The address codes are as follows: 

Octal 
Address Re9isters 

xoooox C (AQ) --> SCU Mode Register 
XOOOlX C (AQ) --> Configuration Switches 
X0002X C(AQ) --> Interrupt Enable Register, port 0 
X0012X C (AQ) --> Interrupt Enable Register, port 1 
X0022X C (AQ) --> Interrupt Enable Register, port 2 
X0032X C(AQ) --> Interrupt Enable Register, port 3 
X0042X C (AQ) --> Interrupt Enable Register, port 4 
X0052X C (AQ) --> Interrupt Enable Register, port 5 
X0062X C (AQ) --> Interrupt Eriable Regi~ter~ port 6 
X0072X C (AQ} --> Interrupt Enable Register, port 7 
X0003X C (AQ) --> Interrupt Cells 
X0004X C (AQ) --> Elapsed Time Clock 
xooosx C (AQ) --> Elapsed Time Clock 
X0006X C(AQ) --> Mode Register - Selected Store Unit 
X0007X C(AQ) --> Mode Register - Selected Store Unit 

DU, DL, CI, SC, SCR 

****DPS 8/20 and 8/44: RPT, RPO, RPL**** 

None affected 

7-404 DH03-0l 



SSCR 

NOTES: 

**** 

1. 

SSCR 

If the processor does not have a mask register assigned 
in the selected system controller, an STR fault (not 
control) occurs. 

2. For computed addresses X0006X and X0007X, store unit 
selection is done by the normal address decoding function 
of the system controller. 

3. The address field used to select the SCU (port number) 
and the register is the absolute page address. 

4. A Command fault occurs if execution of this instruction 
is attempted by a processor in Slave mode. 

5. An Illegal Procedure fault occurs if illegal address 
modifications (DPS 8/20, 844: or illegal repeats) are 
used. 

6. Refer to the RSCR instruction for System Controller 
formats. 

7-405 DH03-0l 



SSQ 

SSQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

Subtract Stored from Q-Register 

Single-word instruction format (see Figure 7-1) 

Any 

C(Q) - C(Y) --> C(Y); C(Q) unchanged 

DU, DL, CI, SC, SCR 

RPL 

Zero - If C(Y) = O, then ON; otherwise, OFF 

Negative - If C(Y) 0 = 1, then ON; otherwise, OFF 

Overflow - If range of C(Y) is exceeded, then ON 

sso 

156 (0) 

Carry - If a carry out of bit O of C (Y) is generated, 
then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-406 DH03-0l 



SSXn 

SSXn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

·subtract Stored from Index Register .!! 

Single-word instruction format (see Figure 7-1) 

Any 

For n 0,1, .•. , or 7 as determined by op code 
C(Xn) - C(Y) 0_17 --> C(Y) 0_17 ; C(Xn) unchanged 

DU, DL, CI, SC, SCR 

RPL 
RPT or RPO of SSXO 

SSXn 

14n (0) -

zero - If C(Y) 0_17 = 0, then ON; otherwise, OFF 

Negative - If C(Y)o = 1, then ON; otherwise, OFF 

Overflow - If range of C(Y) is exceeded, then ON 

Carry - If a carry out of bit O of C (Y) is generated, 
then ON; otherwise, OFF 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-407 DH03-0l 



STA 

STA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

STA 

J Store A-Register 755 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(A) --> C(Y); C(A) unchanged 

DU, DL 

RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-408 DH03-0l 



STAC 

****DPS 88 ONLY**** 

STAC 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

STAC 

Store A Conditional 354 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

If C ( Y) O, then C(A) --> C(Y) 

DU, DL, CI, SC, SCR 

RPL 

zero - If initial C(Y) O, then ON; otherwise OFF 

1. ****DPS 8: STAC causes an IPR fault in these 
processors.**** 

2. If the initial C(Y) is nonzero, then C(Y) is not changed 
by the STAC instruction. 

3. LDAC, LDQC, SZNC, STAC, and STACQ are the only instructions 
that can be used for the indivisible test-and-set 
operations which are required for setting and releasing 
locks, or for closing and opening gates. 

Since execution of LDAC, LDQC, SZNC, STAC, and STACQ 
depends on the previous C(Y), the processor will obtain 
ownership of the 8-word block containing C(Y) prior to 
using C(Y) to execute the instruction. Obtaining 
ownership of the 8-word block means that the requesting 
processor, and the Memory Hierarchy Control of the CIU, 
will ensure that a valid copy of the block is obtained, 
and that the block is cleared from the cache of all 
other processors before the instruction is executed. 
After obtaining ownership of the block, the processor 
completes execution of the instruction to set or release 
the lock without permitting the block to be siphoned to 
another processor. Thus the block is isolated in a 
time window where it can be accessed and modified only 
by the processor executing the instruction which sets 
or releases the lock. 

7-409 DHOJ-01 



STAC 

**** 

STAC 

To ensure that a lock does not get released before the 
actual completion of all stores performed while the lock 
was set, a synchronizing function is necessary. This 
synchronizing function is accomplished by coding a SYNC 
or STC2 instruction immediately before the instruction 
which releases the lock. If the value stored by STC2 
is consistent with operating system conventions for a 
released lock, then the use of STC2 for synchronizing 
can also serve to release the lock. 

4. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-410 DH03-0l 



STACQ 

****DPS 88 ONLY**** 

STACQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

STACQ 

Store A Conditional on Q 654 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

If C(Y) = C(Q), then C(A) --> C(Y) 

DU, DL, CI, SC, SCR 

RPL 

Zero - If initial C ( Y) . = C (Q), then ON; otherwise OFF 

1. If the initial C(Y) is# C(Q), then C(Y) is not changed 
by the STACQ instruction. 

2. LDAC, LDQC, SZNC, STAC, and STACQ are the only instructions 
that can be used for the indivisible test-and-set 
operations which are required for setting and releasing 
locks, or for closing and opening gates. 

Since execution of LDAC, LDQC, SZNC, STAC, and STACQ 
depends on the previous C(Y), the processor will obtain 
ownership of the a-word block containing C(Y) prior to 
using C(Y) to execute the instruction. Obtaining 
ownership of the a-word block means that the requesting 
processor, and the Memory Hierarchy Control of the CIU, 
will ensure that a valid copy of the block is obtained, 
and that the block is cleared from the cache of all 
other processors before the instruction is executed. 
After obtaining ownership of the block, the processor 
completes execution of the instruction to set or release 
the lock without permitting the block to be siphoned to 
another processor. Thus the block is isolated in a 
time window where it can be accessed and modified only 
by the processor executing the instruction which sets 
or releases the lock. 

7-411 DH03-0l 



STACQ 

**** 

STACQ 

To ensure that a lock does not get released before the 
actual completion of all stores performed while the lock 
was set, a synchronizing function is necessary. This 
synchronizing function is accomplished by coding a SYNC 
or STC2 instruction immediately before the instruction 
which releases the lock. If the value stored by STC2 
is consistent with operating system conventions for a 
released lock, then the use of STC2 for synchronizing 
can also serve to release the lock. 

3. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-412 DH03-0l 



STAQ 

STAQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

STAQ 

Store AQ-Register 757 (0) 

Single-word instruction format (see Figure 7=1) 

Any 

C{AQ) --> C(Y-pair): C(AQ) unchanged 

DU, DL, CI, SC, SCR 

RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used= 

7-413 DH03-01 



STAS 

STAS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLE: 

STAS 

Store Argument Stack Register 750 (1) 

Single-word instruction format (see Figure 7-1) 

Any 

C(ASR) --> C(Y-pair); C(ASR) unchanged 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. The execution of this instruction causes the current 
contents of the argument stack register (ASR) to be 
stored in even and odd memory locations Y and Y+l. The 
contents of the ASR remain unchanged. 

2. Modifications DU, DL, CI, SC, SCR and illegal repeats 
RPT, RPO, RPL cause an IPR fault. 

1 8 16 

STAS SVASR 
SOR PO 
STP PO,SVPO 
SOR Pl 
STP Pl ,SVPl 

LOP PO,SVPO 
LOP Pl ,SVPl 
PAS SVASR 

7-414 DH03-0l 



STBA 

STBA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

9-Bit Byte 
Positions of 
A and Y 

EXAMPLE: 

STBA 

Store 9-bit Bytes of A-Register 551 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

9-bit bytes of C (A) --> corresponding characters of C (Y); 
the byte positions affected are specified in the tag field; 
C(A) unchanged 

All modifications except for address register 

RPT, RPO, RPL cause an IPR to occur 

None affected 

Binary ls in the tag field specify the byte positions of A 
and Y affected as indicated in the diagram below. The tag 
field is entered as one two-digit octal number. Bit positions 
34 and 35 are ignored. 

3 3 3 3 3 3 
Tag 0 1 2 3 4 5 
Field 

1116111 
! l + 

I I 
0 0 0 1 1 2 2 3 
0 8 9 7 8 6 7 5 

I 0 I 1 I 2 I 3 I 
The instruction STBA LOC,04 moves byte 3 from C(A) to the 
corresponding byte position of C (LOC) (04 octal = 000100 
binary). All other byte positions of C(LOC) are unaffected. 

7-415 DH03-0l 



STBQ 

STBQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

9-Bit Byte 
Positions of 
Q and Y 

EXAMPLE: 

STBQ 

Store 9-bit Bytes of Q-Register 552 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

9-bit bytes of c (Q) --> corresponding bytes of C (Y); the 
byte positions affected are specified in the tag field; C(Q) 
unchanged 

All modifications except for address register 

RPT, RPO, RPL cause an IPR to occur 

None affected 

Binary ls in the tag field specify the byte positions of Q 
and Y affected as indicated in the diagram below. The tag 
field is entered as one two-digit octal number. Bit positions 
34 and 35 are ignored. 

Tag 0 1 2 3 4 5 
Field 111[!' II 

! l + 
I I 

0 0 0 1 1 2 2 3 
0 8 9 7 8 6 7 5 

I 0 I l I 2 I 3 I 
The instruction STBQ LOC, 04 moves byte 3 from C (Q) to the 
corresponding byte position of C (LOC) (04 octal = 000100 
binary). All other byte positions of C(LOC) are unaffected. 

7-416 0803-01 



STBZ 

****DPS 88 ONLY**** 

STBZ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

**** 

STBZ 

Store Block of Zeros 257 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

0 ••. 0 --> C(Y, .•• ,Y+7) 
where b,i ts 15-17 of Y are forced to zero for the first location 
and then incremented through the block of eight words. 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. This instruction is performed using a block store, in 
which the processor declares ownership of the block and 
then stores the zeros into a block in the 0-cache without 
first reading the addressed block from the memory 
hierarchy. The block is not forced to memory from the 
0-cache. The use of the CCACl instruction, or the natural 
displacement mechanism of the cache causes the block to 
be written to memory. 

2. This instruction has the following purposes: 

o It provides a means for initializing some or all 
of main memory with correct EDAC. 

o It may provide a performance advantage when clearing 
cache/memory. 

o It allows an operating system to clear main memory 
blocks which have uncorrectable EDAC errors prior 
to giving the memory to the maintenance software. 

3. The segment containing Y must start at a O mod 8 boundary. 

4. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-417 DH03-0l 



STCl 

ST Cl 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

STCl 

Store Instruction Counter Plus 1 554 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(IC) + 1 --> C(Y); C(IR) --> C{Y) 18_ 32 ; 000 --> C(Y) 33_35i 
C(IC), C(IR) unchanged 

DU, DL, Ct, SC, SCR 

RPT, RPD, RPL 

None affected 

1. The relation between bit positions of C(Y) and the 
indicators is as follows: 

Bit Position 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33-35 

Indicator 

zero 
Negative 
Carry 
Overflow 
Exponent overflow 
Exponent underflow 
Overflow mask 
Tally runout 
Parity error 
Parity mask 
Master mode 
Truncation 
Multiword instruction interrupt 
0 
Hexadecimal 
000 

2. The ON state corresponds to a 1 bit; the OFF state 
corresponds to a O bit. 

3. Bit 25 of C(Y) will contain the state of the Tally 
Runout indicator prior to address modification of the 
STCl instruction (for tally operations). 

4. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-418 DH03-0l 



STC2 

STC2 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

STC2 

Store Instruction Counter Plus 2 7 50 (0} 

Single-word instruction format (see Figure 7-1) 

Any 

C(IC) + 2 --> C(Y) 0_17 ; C(Y) 18_35 , C(IC) unchanged 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected 

1. ****DPS 88, DPS 8/50, 8/52, 8/62, and 8/70: 
Execution of STC2 is delayed until all other outstanding 
writes have been initiated by the System Control Unit. 
This delay provides a synchronizing function which is 
required at the end of a block of gated code, immediately 
preceding the operation that opens that gate. Otherwise 
the hardware will not guarantee that all stores preceding 
the gate opening have been completed. STC2 combines 
the synchronizing function with the gate-opening 
function.**** 

2. ****DPS 88: 
LDAC, LDQC, SZNC, STAC, and STACQ are the only instructions 
that can be depended upon for the indivisible test-and-set 
operations which are required for setting and releasing 
locks, or for closing and opening gates. 

Since execution of LDAC, LDQC, SZNC, STAC, and STACQ 
depends on the previous C(Y), the processor will obtain 
ownership of the 8-word block containing C(Y) prior to 
using C(Y) to execute the instruction. Obtaining 
ownership of the 8-word block means that the requesting 
processor, and the Memory Hierarchy Control of the CIU, 
will ensure that a valid copy of the block is obtained, 
and that the block is cleared from the cache of all 
other processors before the instruction is executed. 
After obtaining ownership of the block, the processor 
completes execution of the instruction to set or release 
the lock without permitting the block to be siphoned to 
another processor. Thus the block is isolated in a 
time window where it can be accessed and modified only 
by the processor executing the instruction which sets 
or releases the lock. 

7-419 DH03-0l 



STC2 STC2 

To ensure that a lock does not get released before the 
actual completion of all stores performed while the lock 
was set, a synchronizing function is necessary. This 
synchronizing function is accomplished by coding a SYNC 
or STC2 instruction immediately before the instruction 
which releases the lock. If the value stored by STC2 
is consistent with operating system conventions for a 
released lock, then the use of STC2 for synchronizing 
can also serve to release the lock.**** 

3. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-420 DH03-01 



STCA 

STCA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

6-Bit Character 
Positions of 
A and Y 

STCA 

·Store 6-bit Characters of A-Register 751 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

Characters of C(A) -->corresponding characters of C(Y): the 
character positions affected are specified in the tag field: 
C(A) unchanged 

All modifications except for address register 

RPT, RPO, RPL 

None affected 

1. 

0 

Binary ls in the tag field specify the character positions 
of A and Y affected as indicated in the diagram below. 
The tag field is entered as one two-digit octal number. 

0 0 

0 

Tag 
Field 

1 

1 1 

2 

3 3 
3 4 

1 1 2 2 2 3 3 

3 4 5 

For example, the instruction STCA LOC, 07 moves characters 
3, 4, and 5 of C(A) to corresponding character positions 
of C(LOC) (07 octal= 000111 binary). Character positions 
0, 1, and 2 of C(LOC) are unaffected. 

2. ****DPS 88: 
The processor does not zone store to memory. Thus, in 
executing this instruction, the processor reads the word 
from memory, updates the specified character position, 
and writes the word back to memory. This is accomplished 
as two separate memory operations and no memory lock is 
invoked on the read.**** 

3. An Illegal Procedure fault occurs if illegal repeats 
are used. 

7-421 DH03-0l 



STCQ 

STCQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

6-Bit Character 
Positions of 
Q and Y 

STCQ 

Store 6-bit Characters of Q-Register 752 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

Characters of C(Q) -->corresponding characters of C(Y); the 
character positions affected are specified in the tag field. 

All modifications except for address register 

RPT, RPD, RPL 

None affected 

1. 

0 

Binary ls in the tag field specify the character positions 
of Q and Y affected as indicated in the diagram below. 
The tag field is entered as one two-digit octal number. 

0 0 

0 

Tag 
Field 

1 

1 1 

2 

3 3 
3 4 

1 1 2 2 2 3 3 

3 4 5 

For example the instruction STCQ LOC,07 moves characters 
3, 4, and 5 of C(Q) to corresponding character positions 
of C (LOC) (07 octal= 000111 binary). Character positions 
O, l, and 2 of C(LOCj are unaffected. 

2. ****DPS 88: 
The processor does not zone store to memory. Tnus, in 
executing this instruction, the processor reads the word 
from memory, updates the specified character position, 
and writes the word back to memory. This is accomplished 
as two separate memory operations and no memory lock is 
invoked on the read.**** 

3. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-422 DH03-01 



STDn 

STDn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

Store Descriptor Register ~ 

As described below 

Any 

C(DR~) --> C(Y),C(Y-pair); C(DRn) unchanged 

If instruction bit 29 = 0 
then C(DRn) --> C{Y-pair) in instruction segment. 

If instruction bit 29 = l 
and DRm descriptor type T = 1,3 
(m is selected by instruction bits 0,1,2) 

then C(DRn) --> C(Y-pair) of descriptor segment. 

STDn 

05n (l} 

Faults: If DRn does not have store permission. (bit 18 for 
T = 8,9,11; bit 22 for all other types) an SCL2 
fault occurs. 
If DRm page is not housekeeping, an SCLl fault occurs. 
If DRm segment or page does not have write permission, 
an SCL2 fault occurs. 

If instruction bit 29 = 1 
and DRm descriptor type T = 0,2,4,6 

then C{DRn) --> C(Y-pair) of an operand segment. 
Note: DRn store permission is not required. 
Faults: If processor in Master or Slave mode and DRm page 

is housekeeping, an SCLl fault occurs. 
If DRm segment or page does not have write permission, 
an SCL2 fault occurs. 

If instruction bit 29 = l 
and DRm descriptor type T 

then an IPR fault occurs. 
5 or 7-15 

****DPS 8: DU, DL, IR, RI, IT cause IPR fault.**** 

****DPS 88: If descriptor of operand segment has type T=l 
or 3, then DU, DL, IR, RI, IT cause IPR fault. If descriptor 
of operand segment has type T=O, 2, 4, 6, then DU, DL, CI, 
SC, SCR cause IPR fault.**** 

RPT, RPD, RPL 

7-423 DH03-01 



ST On 

INDICATORS: 

NOTES: 

STDn 

None affected 

1. This set of eight instructions is used to store the 
contents of a descriptor register (DRn) in the even and 
odd memory locations Y and Y+l, in either a descriptor 
or operand segment. 

2. If the descriptor register (DRn) is being stored in a 
descriptor segment the store flag (of DRn) must be on. 

3. When storing a descriptor register into an operand segment 
the store flag is not examined by hardware. 

4. Illegal address modifications and illegal repeats RPT, 
RPD, RPL cause an IPR fault. An IPR fa ult is also 
generated if ORm contains a type T = 5 or 7-15 descriptor. 

7-424 DH03-0l 



STD SA 

STD SA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLE: 

Store Data Stack Address Register 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

****DPS 8: C(DSAR) --> C(Y)0-16 

0 - - 0 --> C(Y)17-35 **** 

****DPS 88: 

C(DSAR) --> C(Y) 0_14 

0 - - 0 --> C(Y)15-35 **** 

C(DSAR) unchanged 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

STD SA 

150 (1) 

1. Modifications DU, DL, CI, SC, SCR, and illegal repeats 
RPT, RPO, RPL cause an IPR fault. 

2. ****DPS 8: If the processor is not in the Privileged 
Master mode, the execution of this instruction causes a 
Command fault.**** 

1 

****DPS 88: If the processor is not in the Privileged 
Master mode, the execution of this instruction causes 
an IPR fault.**** 

78 16 

STDSD SVREG 
STDSA SVREG+2 
LDXO SVREG+2 
ADLXO NWPS,DU 
CMPXO SVREG 
TPNZ NO GOOD 
LDD P.DS,DSVEC 

SVREG SBSS 8 
DSVEC FVEC NWDS I (ALL) 

7-425 DH03-0l 



STDSD 

STDSD 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

STDSD 

Store Data Stack Descriptor Register 551 (1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C(DSDR) --> C(Y-pair); C(DSDR) unchanged 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. Modifications DU, DL, CI, SC, SCR, and illegal repeats 
RPT, RPO, RPL cause an IPR fault. 

2. ****DPS 8: If the processor is not in the Privileged 
Master mode, the execution of this instruction causes a 
Command fault.**** 

****DPS 88: If the processor is not in the Privileged 
Master mode, the execution of this instruction causes 
an IPR fault.**** 

7-426 DH03-0l 



STOSO STOSO 

EXAMPLES: 

l 8 16 32 

INHIB OFF 
SNDPR NULL 

LOP P4,SO.RMS,OL 
RSW 2 read processor number 
EAX7 O,AL 
ANX7 3,0U extract processor number 
STA RSWA2, 7 save RSW2 
RSW 1 
STA RSWAl, 7 save RSWl 
LOP PO,SO.HOP,OL 
XEC CACHS,7 save cache control bits 
LOX3 POINT, 7 
STSS SREGS,3 store SSR 
STOSO SREGS+2,3 store OSOR 
STWS SREGS+4,3 
STWS SREGS+S,3 
STO SREGS+6,3 store option register 
SPOBR SREGS+7,3 store page table directory base register 
LOP P.CR,SO.CR,OL 
LOP KLS,SO.KL,OL 
LCPR .CRLUF,02,P.CR reset control bits to lock cache 

7-427 OH03-0l 



STE 

STE 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

[ Store Exponent Register 

Single-word instruction format (see Figure 7-1) 

Any 

C ( E } --> C ( Y} _? ; 0 0 ... 0 - - > C ( Y} 8 - l 7 ; 
C(Y)lB-35' ccH> unchanged 

DU, DL, CI, SC, SCR 

None 

None affected 

STE 

456 (0) 

An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-428 DH03-0l 



STI 

STI 

FOR..lli!A T : 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

STI 

I Store Indicator Register 754 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(IR) --> C(Y)l8-35; C(Y>o-17' C(IR) unchanged 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. The relation between bit positions of C(Y) and indicators 
is as follows: 

Bit Position 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33-35 

Indicator 

zero 
Negative 
Carry 
Overflow 
Exponent overflow 
Exponent underflow 
Overflow mask 
Tally runout 
Parity error 
Parity mask 
Master mode 
Truncation 
Multiword instruction interrupt 
0 
Hexadecimal 
000 

2. The ON state corresponds to a l bit; the OFF state to a 
0 bit. 

3. Bit 25 of C(Y) will contain the state of the Tally 
Runout indicator prior to address modification of the 
STI instruction (for tally operations). 

4. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-429 DH03-0l 



STO 

****DPS 8 ONLY**** 

STO 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

STO 

Store Option Register 15 2 ( 1) 

Single-word instruction format (see Figure 7-1) 

Any 

C(DSCF) --> bit 18 of C (Y) 

C(SSBF) --> bit 19 of C (Y) 

C(CRCF) --> bit 24 of C (Y) 

0 - - 0 --> remaining 33 bits of C (Y) 

DU, DL, CI, SC, SCR 

RPT , RPO , RPL 

None affected 

l. This instruction allows the Data Stack Clear Flag (DSCF), 
the Safe Store Bypass Flag (SSBF), and the Cache Read 
Control Flag (CRCF) to be stored. (See the LOO 
instruction.) 

DSCF 0 = do not clear 
1 = clear 

SSBF 0 = bypass safe-store during !CLIMB 
1 perform safe-store during !CLIMB 

CRCF 0 bypass cache 
1 = use cache 

2. Modifications DU, DL, CI, SC, SCR, and illegal repeats 
RPT, RPO, RPL cause an IPR fault. 

7-430 0803-01 



STO 

EXAMPLES: 

**** 

1 8 

ORNCHE BOOL 
MPOR EQU 

LDO 
STO 
STO 
LOA 
ERSA 
TRA 

*SAVE VIRTUAL 
STREG NULL 

STWS 
STWS 
SPDBR 
STO 
SZN 

16 

4000 
* 
.SORSV I ,P .SSA 
.CRORR,PN,P.CR 
.CRORS,PN,P.CR 
ORNCHE,DL 
.CRORS,PN,P.CR 
X.RED+l 

UNIT REGISTERS 

REG+l2 
REG+l3 
REG+40 
REG+41 
SSFALT+.WICI 

STO 

32 

*CRCF bit of option register 

*set with CRCF ON 

*reset CRCF to OFF 

safestore frame saved? 

7-431 DH03-0l 



STO 

****DPS 88 ONLY**** 

STO 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Store Option Register 

Single-word instruction format (see Figure 7-1) 

Any 

Hex Permission Flag --> C(Y) 0 
O = inhibit hex; 1 = enable hex 

Lockup Fault Register --> C(Y) 1_ 2 
See note 2. 

Safestore Bypass Flag --> C(Y) 
0 = perform safestore; 1 = ~ypass 

Data Stack Clear Flag --> C(Y) 4 
0 = don't clear; 1 = clear 

Option Register bits 5-22 --> C(Y) 5_ 22 
Control ~IU --> C(Y) 23 
Hyperpag1ng Bypass --> C(Y) 24 
Processor Number --> C(Y> 25_26 
CIU 0 ICR Select --> C(Y) 27 _ 29 
CIU 1 !CR Select --> C(Y) 30 _ 32 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected. 

STO 

15 2 ( 1) 

1. Bits 0-17 of the Option Register can be loaded via the 
LOO instruction. Bits 18-35 of the Option Register can 
be loaded by the following instructions, which are valid 
in Hyper mode only: LDHC (bits 18-32), LGCOS (bit 33), 
LVMS (bit 34), LMSD (bit 35). 

7-432 0803-01 



STO 

**** 

2. 

STO 

The Lockup fault time intervals are: 

Bits 1-2 Time Interval 
00 2 ms 
01 4 ms 
10 8 ms 
11 16 ms 

The specified time interval is effective in Slave mode 
only. When in Privileged Master or Master mode the 
Lockup fault time interval is 32 milliseconds. Upon 
entry to, and while executing in Hyper mode, the Lockup 
fault timer is reset to zero. Thus the Lockup fault 
may not be detected until up to 64 milliseconds have 
elapsed. 

3. Modifications DU, DL, CI, SC, SCR, and illegal repeats 
RPT I RPO and RPL cause an IPR fault. 

7-433 DH03-01 



STPn 

STPn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLE: 

l 

NEPR 

8 

EPPR 
STP 
LOP 
LOP 
LOO 
LOO 
LOA 
CNAA 
TZE 

Store Pointer .!! 

Single-word instruction format (see Figure 7-1) 

Any 

C(AR_!!) --> C(Y) 0_ 23 

C(SEGID_!!) --> C(Y) 24 _ 35 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

STPn 

45n (1) 

1. This set of eight instructions provides the means to 
store the address register (ARn) and the associated segment 
identity register (SEGIDn) in a single memory location. 
The contents of the registers remain unchanged. 

2. Modifications DU, DL, CI, SC, SCR, and illegal repeats 
RPT, RPO, and RPL cause an IPR fault. 

16 

PO ,FANY 
PO,.SVFLT,,P.SSA 
PO, .PS ,DL 
Pl, .SSR,DL 
PO,O,,PO 
P 1, • WLSR, , P 1 
0, ,PO 
=020160 ,DL 
FANY 

32 

error handler 
store pointer 0 
old argument segment 
safe-store 
get argument 0 
get original linkage 
get EPPA pointer 
test null descriptor 

7-434 

segment 

DH03-0l 



ST POW 

****DPS 8 ONLY**** 

ST POW 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

ST POW 

Store PTWAM Directory Word 155 (1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

Word~ of C(PTWAM Directory) --> C(Y)0-29 

0 --- 0 --> C(Y)30-35 

where: 

bits 12-17 of Y } 

bits 12-15 specify row of 
associative memory 

bits 16-17 specify column of 
associative memory 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. The contents of Page Table Word Associative Memory (PTWAM) 
directory word n are stored in bits 0-29 of memory location 
y and zeros are stored in bits 30-35. 

Bits 0-26 represent the combination of working space 
number and virtual address that is stored in the directory 
word for subsequent association. 

If bit 27 is 1, the row in which the directory word is 
stored is full. 

Bits 28-29 specify 
row in which this 
associative memory. 

the "round 
directory 

robin" counter 
word is stored 

for the 
in the 

2. The PTWAM directory has 4 columns and 16 rows. The 
four least significant bits of the virtual address (bits 
27-30) are used to select a row. Thus, the four entries 
in each row have the same four least significant bits. 

****DPS 8/20 and 8/ 44: The PTWAM is 64 rows by 2 columns. 
Bits 25-30 of the virtual address select a row. Thus, 
the two entries in each row have the same 6 least 
significant bits.**** 

7-435 DH03-0l 



STPDW 

EXAMPLE: 

**** 

STPDW 

3. Modifications CI, SC, SCR, DU, DL and illegal repeats 
RPT, RPO, RPL cause an IPR fault. 

4. The STPDW instruction functions regardless of whether 
the PTWAM is ON or OFF. 

5. If the processor is not in the Privileged Master mode, 
the execution of this instruction causes a Command fault. 

1 8 

ORG 
AMDW BSS 
AMPTW BSS 

INHIB 
CAMP 
LDX4 

AMLOOP NULL 
STPDW 
STPTW 
ADLX4 
CMPX4 
TNC 

16 

64 
64 
64 

ON 
1 
O,DL 

AMDW,4 
AMPTW,4 
l,DU 
64,DU 
AMLOOP 

7-436 Dff 03-01 



STPS 

STPS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLE: 

STPS 

·store Parameter Stack Register 751 (1) 

Single-word instruction format (see Figure 7-1) 

Any 

C(PSR) --> C(Y-pair) 

DU, DL, er, SC, SCR 

RPT, RPO, RPL 

None affected 

1. The execution of this instruction causes the current 
contents of the parameter stack register (PSR) to be 
stored in even and odd memory locations Y and Y+l. The 
contents of the PSR remain unchanged. 

2. Modifications DU, DL, CI, SC, SCR and illegal repeats 
RPT, RPO, RPL cause an IPR fault. 

(PMME processing) 

1 8 16 32 

STPS .STEMP, ,P .SSA STASH PSR 
LOA .STEMP, ,P .SSA 
CANA .FBT27 ,DL ANY PARAMETERS? 
TZE NO PARM NO,XFER 
LOP Pl, .PS O,DL+YES, GET FIRST 

7-437 DH03-0l 



STPTW 

****DPS 8 ONLY**** 

STPTW 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

STPTW 

Store PTWAM Register 157 (1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

Word n of C(PTWAM Register) --> C(Y)0-35 

where: 

bits 12-17 of Y { 
bits 12-15 specify row of 
associative memory 

bits 16-17 specify column of 
associative memory 

DU, DL, CI, SC, SCR 

RPT I RPO I RPL 

None affected 

1. The contents of Page Table Word Associative Memory (PTWAM) 
directory word n are stored in memory location Y. The 
memory address -(mod 1024) of the referenced page is 
stored in bits 4-17. Bits 0-3 and 18-29 are stored as 
zeros. 

Bits 18-27 are the software control bits and bits 30-35 
are the hardware control field bits in the Page Table 
Word (bit 30 and 35 are stored as ls). 

2. The PTWAM directory has 4 columns and 16 rows. The 
four least significant bits of the virtual address (bits 
27-30) are used to select a row. Thus, the four entries 
in each row have the same four least significant bits. 

****DPS 8/20 and 8/ 44: The PTWAM is 64 rows by 2 columns. 
Bits 25-30 of the virtual address select a row. Thus, 
the two entries in each row have the same 6 least 
significant bits.**** 

7-438 DH03-0l 



STPTW 

3. 

4. 

5. 

**** 

STPTW 

Modifications DU, DL, CI, SC, SCR, and illegal repeats 
RPT, RPO, and RPL cause an IPR fault. 

The STPTW instruction functions regardless of whether 
the PTWAM is ON or OFF. 

If the processor is not in the Privileged Master mode, 
the execution of this instruction causes a Command fault. 

7-439 DH03-0l 



STQ 

STQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

STQ 

Store Q-Register 756 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(Q) --> C(Y); C(Q) unchanged 

DU, DL 

RPL 

None affected 

Address modifications DU, DL, and illegal repeat RPL cause 
an IPR fault. 

7-440 DH03-0l 



STSS 

STSS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

STSS 

Store Safe Store Register 753 (1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C(SSR) --> C(Y-pair) 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected 

1. The contents of the safe store register (SSR) are stored 
in even and odd memory locations Y and Y+l. The contents 
of the SSR remain unchanged. 

2. Modifications DU, DL, CI, SC, SCR, and illegal repeats 
RPT, RPD, and RPL cause an IPR fault. 

3. If the processor is not in the Privileged Master mode, 
the execution of this instruction causes a Command fault. 

****DPS 88: If the processor is not in the Privileged 
Master mode, the execution of this instruction causes 
an IPR fault.**** 

7-441 DH03-0l 



STSS 

EXAMPLES: 

1 

SOVTE 

8 

NULL 
LOP 
LOP 
STSS 
LOA 
ADA 
ORA 
STA 
SBA 
EAX2 
LDQ 
QRL 
ADQ 
CMPQ 
EAX2 
SBA 
ALS 
STA 
LOP 
LOP 
LOP 
LXLO 
LDAQ 
STAQ 
STSS 
LOA 
ANA 
ORA 
STA 
LDD 

16 

PO,SD.PSH,DL 
p 0 , . CTYP I DL 
.SSSR, ,P .SSA 
.SSSR+l,,P.SSA 
1K*4.,DL 
=07777 ,DL 
.SVFLT+l, ,P .SSA 
192*4,DL 
1,3 
PH .SS, ,PO 
16 
PH.SS+l, ,PO 
.SVFLT+l,,P.SSA 
0 
.SSSR+l, ,P .SSA 
16 
.SVFLT+l,,P.SSA 
Pl,SD.DGS ,DL 
PO,SD.DGS,DL 
PO,.CTYP,DL 
POINT,7 
0,0,PO 
.SSSR, ,P .SSA 
0,0,PO 
0,0,PO 
=0177777 I DL 
.SVFLT+l, ,P .SSA 
0,0,PO 
P2,0,0,Pl 

32 

copy push segment descriptor to PO 
change push descriptor type 
store SSR 
SSR base 
+ lK words 
adjust page bound 
save it 

original SSR bound + base 

get max virtual address for safe store 

get new bound 

store new bound 
load DGS segment descriptor 

change type GOS descriptor 

store current contents 
store SSR to generate page load segment 

set new bound 

load new safe store descriptor 

STSS 

7-442 DH03-0l 



STT 

STT 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

STT 

Store Timer Register 454 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

C(TR) --> C{Y) 0 _ 26 ; 0 •.• 0 --> C(Y) 27 _ 35 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected 

1. Bit 26 has a significance of 1/512 millisecond. 

2. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-443 DH03-0l 



STTA 

STTA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

STTA 

Store Test Address Registers 553 (1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

****DPS 8: 
****DPS 88: 

C(test registers O, 1) --> C(Y-pair)**** 
C(test register) 0 _ 71 --> C(Y-pair)**** 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected 

1. The test registers are loaded by the EPAT instruction. 
The STTA instruction then stores the results of the 
EPAT into memory. 

****DPS 88: The contents of the Test Register are 
undefined except when the STTA immediately follows the 
EPAT instruction.**** 

2. The contents of test registers 0 and 1 are stored in 
memory locations Y and Y+l. The contents of the test 
registers remain unchanged. 

3. Modifications DU, DL, CI, SC, SCR and illegal repeats 
RPT, RPD, RPL cause an IPR fault. 

4. If the processor is not in the Privileged Master mode, 
the execution of this instruction causes a Command fault 
(DPS 88: IPR fault). 

7-444 DH03-0l 



STTD 

****DPS 8 ONLY**** 

STTD 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

**** 

STTD 

Store Test Descriptor Registers 550 (1) 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C(test registers 2, 3) --> C(Y-pair) 

DU, DL, CI, SC, SCR 

RPT , RPO, RPL 

None affected 

1. The test registers are loaded by the EPAT instruction. 
The STTD instruction then stores the results of the 
EPAT into memory. 

2. The contents of test registers 2 and 3 are stored in 
even and odd memory locations Y and Y+l. The contents 
of the test registers remain unchanged. 

3. Modifications DU, DL, CI, SC, SCR, and illegal repeats 
RPT, RPD, and RPL cause an IPR fault. 

4. If the processor is not in the Privileged Master mode, 
the execution of this instruction causes a Command fault. 

7-445 DH03-0l 



STWS 

STWS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLE: 

1 8 

TODES NULL 
STWS 
STWS 

Store Working Space Registers 

Single-word instruction format (see Figure 7-1) 

Privileged Master Mode 

C(WSR) 0, 1, 2, 3 --> C(Y)0-8 2_-17, 18-26, 27-35 
if bit 17 of effective addres~ O 

C(WSR) 4, 5, 6, 7 --> C(Y>o-8 -~-17, 18-26, 27-35 
if bit 17 of effective addres~ I 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

STWS 

752 (1) 

1. The contents of working space registers (WSRs) O, 1, 2, 
and 3 or the contents of WSRs 4, 5, 6, and 7 are stored 
in memory location Y based on the value of bit 17 of 
the effective address. 

2. Modifications DU, DL, CI, SC, SCR, and illegal repeats 
RPT, RPD, and RPL cause an IPR fault. 

3. If the processor is not in the Privileged Master mode, 
the execution of this instruction causes a Command fault. 

16 

****DPS 88: If the processor is not in the Privileged 
Master mode, the execution of this instruction causes 
an IPR fault.**** 

32 

WSR 
WSR+l 

store WSR 0-3 
store WSR 4-7, store contents 

7-446 DH03-0l 



STXn 

STXn 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

Store Index Register .!! in Upper 

Single-word instruction format (see Figure 7-1) 

Any 

For n = 0,1, ••• ,or 7 as determined by op code 
C(XQ) --> C(Y) 0_ 17 : C(Y) 18 _ 35 unchanged 

DU, DL, CI, SC, SCR 

RPL 
RPT, RPO of STXO 

None affected 

STXn 

74n (0) 

An Illegal Procedure fault occurs if illegal address 
modif ieations or illegal repeats are used. 

7-447 DH03-0l 



STZ 

STZ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

STZ 

I · Store Zero 450 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

00 ••• 0 --> C (Y) 

DU, DL 

RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-448 DH03-0l 



SWCA SWCA 

SWCA Subtract with Carry from A-Register 171 (0) 

FORMAT: Single=word instruction format (see Figure 7-1) 

PROCESSOR MODE: Any 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

If Carry indicator is ON, then C(A) - C(Y) --> C(A); C(Y) 
unchanged 

If Carry indicator is OFF, then C(A) - C(Y) - O ••• 1 --> 
C(A); C{Y) unchanged 

None 

None 

zero - If C(A) = 0, then ON; otherwise, OFF 

Negative - If C(A) 0 = 1, then ON; otherwise, OFF 

Overflow - If range of A is exceeded, then ON 

Carry If a carry out of bit O of C(A) is generated, 
then ON; otherwise, OFF 

1. 

2. 

This instruction is identical to SBA with the exception 
that when the Carry indicator is OFF at the beginning 
of the instruction, a positive 1 is subtracted from the 
least significant position. 

This instruction is 
precision arithmetic. 
reworded as follows: 

intended for use with multiword 
Thus, the summary above can be 

If Carry indicator is ON, then C{A) + l ... s complement 
of C{Y) + 0 ••• 1 --> C(A) 

If Carry indicator is OFF, then C(A) + l ... s complement 
of C(Y) --> C(A) 

The positive l added when ON represents the carry from 
the next less significant part of the multiword 
subtraction. 

7-449 DH03-0l 



SWCQ 

SWCQ 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

SWCQ 

Subtract with Carry from Q-Register 17 2 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

If Carry indicator is ON, then C (Q) - C (Y) --> C (Q); C (Y) 
unchanged 

If Carry indicator is OFF, then C ( Q) - C ( Y) - 0 ••• 1 --> 
C(Q); C(Y) unchanged 

None 

None 

zero - If C(Q) = 0, then ON; otherwise, OFF 

Negative - If C(Q) 0 = 1, then ON; otherwise, OFF 

Overflow - If range of Q is exceeded, then ON 

Carry 

1. 

- If a carry out of bit 0 of C(Q) is generated, 
then ON; otherwise, OFF 

This instruction is identical to SBQ with the exception 
that when the Carry indicator is OFF at the beginning 
of the instruction, a positive 1 is subtracted from the 
least significant position. 

2. This instruction is intended for multiword precision 
arithmetic. Thus, the summary above can be reworded as 
follows: 

If Carry indicator is ON, thenC(Q) + l"'scomplement 
of C(Y) + 0 •.• 1 --> C(Q) 

If Carry indicator is OFF, then C(Q) + l'"s complement 
of C (Y) --> C (Q) 

The positive 1 added when ON represents the carry from 
the next less significant part of the multiword 
sub traction. 

7-450 DH03-0l 



SWCQ 

EXAMPLE: 

l 

A 
B 
c 

8 

STI 
LOA 
ORSA 
LOI 
LOQ 
SBLQ 
STQ 
LOQ 
SWCQ 
STQ 
STI 
LOA 
ANSA 
LOI 
LDQ 
SWCQ 
STQ 

DEC 
DEC 
BSS 

SWCQ· 

(Triple-precision binary fixed-point subtraction) 

16 32 

c set overflow mask ON 
=1B24 ,DL 
c 
c 
A+2 subtract low-order bits 
8+2 
C+2 
A+l subtract intermediate bits 
B+l 
C+l 
c set overflow and overflow mask OFF 
=0733777 ,DL 
c 
c 
A subtract high-order bits 
B 
c 

9,8,7 
6,5,4 
3 

7-451 DH03-0l 



-SWD SWD 

SWD (X) Subtract Word Displacement from Address Register 527 (1) 

FORMAT: Special arithmetic instruction format (see Figure 7-3) 

CODING FORMAT: 1 8 16 

SWD(X) word displacement,R,AR 

PROCESSOR MODE: Any 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

EXAMPLE: 

1 8 

EAXS 
SWDX 
SWD 

EAX4 
SWDX 
SWD 

If bit 29 = 1: C(AR~) 0 _ 17 - (y+C(DR)) 

> C(AR~)0-17 

If SWDX, bit 29 O: -(y+C(DR)) --> C(AR~)0-17 

In either case, zeros--> C(AR~> 18 _ 23 
Description is the same as for AWD except that the sum of 
the y field and the contents of the register specified by 
the DR field are subtracted from the AR. When the mnemonic 
is coded with an X (SWDX), bit 29 is forced to zero. 

All except N, AU, QU, AL, QL, and index registers 

RPT, RPO, RPL 

None affected 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

16 

2 
2,5,4 
0,5,4 

1 
4,4,7 
1,4,7 

32 

AR4 octal contents 
AR4 octal contents 

AR7 octal contents 
AR? octal contents 

7-452 

7 7 7 7 7 4 0 0 
77777200 

7 7 7 7 7 3 0 0 
7 7 7 7 7 1 0 0 

DH03-0l 



SXLn 

SXLn -

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

Store Index Register .!! in Lower 

Single-word instruction format (see Figure 7-1) 

Any 

For N=O,l, ..• , or 7 as determined by op code 
C(Xn) --> C(Y) 18 _ 35 ; C(Y) 0 _ 17 unchanged 

DU, DL, CI, SC, SCR 

RPL 
RPT, RPO of SXLO 

None affected 

SXLn 

44n (0) 

An Illegal Proced~re fault occurs if illegal address 
modifications or illegal repeats are used. 

7-453 DH03-01 



SYNC 

****DPS 88 ONLY**** 

SYNC 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

SYNC 

Gate Synchronize 014 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

This instruction causes the processor to wait until all of 
its outstanding memory hierarchy commands have been completed 
before executing the next instruction. 

None. Address modifications have no effect on the operation 
but are performed by the hardware. 

RPT, RPO, RPL cause an IPR fault. 

None affected. 

1. LDAC, LDQC, SZNC, STAC, and STACQ are the only instructions 
that can be used for the indivisible test-and-set 
operations which are required for setting and releasing 
locks, or for closing and opening gates. 

2. Since execution of LDAC, LDQC, SZNC, STAC, and STACQ 
depends on the previous C (Y) , the CPU will obtain ownership 
of the 8-word block containing C(Y) prior to using C{Y) 
to execute the instruction. Obtaining ownership of the 
8-word block means that the requesting CPU, and the 
Memory Hierarchy Control of the CIU, will ensure that a 
valid copy of the block is obtained, and that the block 
is cleared from the cache of all other CPUs before the 
instruction is executed. After obtaining ownership of 
the block, the CPU completes execution of the instruction 
to set or release the lock without permitting the block 
to be siphoned to another CPU. Thus the block is isolated 
in a time window where it can be accessed and modified 
only by the CPU executing the instruction which sets or 
releases the lock. 

3. To ensure that a lock does not get released before the 
actual completion of all stores performed while the lock 
was set, a synchronizing function is necessary. This 
synchronizing function is accomplished by coding a SYNC 
or STC2 instruction immediately before the instruction 
which releases the lock. If the value stored by STC2 
is consistent with operating system conventions for a 
released lock, then the use of STC2 for synchronizing 
can also serve to release the lock. 

7-454 DH03-0l 



SZN 

SZN 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

Set zero and Negative Indicators from Storage 

Single-word instruction format (see Figure 7-1) 

Any 

C(Y) --> C(Z); C(Y) unchanged 

None 

None 

zero - If C(Z) = O, then ON; otherwise, OFF 

Negative - If C(Z) 0 = 1, then ON; otherwise, OFF 

Zero 

0 
l 
0 

Negative 

0 
0 
l 

Relation 

Number C(Y} > O 
Number C(Y) 0 
Number C(Y) < O 

7-455 

SZN 

234 (0) 

DH03-0l 



SZNC 

SZNC 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

SZNC 

Set Zero and Negative Indicators from Storage 214 (0) 
and Clear 

Single-word instruction format (see Figure 7-1) 

Any 

C(Y) --> C(Z); 0 ••• 0 --> C(Y) 

DU, DL, CI, SC, SCR 

None 

zero - If C(Z) = O, then ON; otherwise, OFF 

Negative - If C(Z) 0 = 1, then ON; otherwise, OFF 

1. Zero 

0 
1 
0 

Negative 

0 
0 
1 

Relation 

Number C(Y) > O 
Number C(Y) 0 
Number C{Y) < O 

2. ****DPS 8: Loss of efficiency may occur when using 
this instruction, since cache memory is cleared when 
the instruction is executed. If cache memory clearance 
is not desired, the SZN instruction should be used followed 
by a STZ instruction, instead of SZNC. (This condition 
does not exist when the 8 K cache memory opt ion is 
installed.)**** 

3. ****DPS 88: LDAC, LDQC, SZNC, STAC, and STACQ are the 
only instructions that can be used for the indivisible 
test-and-set operations which are required for setting 
and releasing locks, or for closing and opening gates. 

Since execution of LDAC, LDQC, SZNC, STAC, and STACQ 
depends on the previous C(Y), the processor will obtain 
ownership of the 8-word block containing C(Y) prior to 
using C (Y) to execute the instruction. Obtaining 
ownership of the 8-word block means that the requesting 
processor, and the Memory Hierarchy Control of the CIU, 
will ensure that a valid copy of the block is obtained, 
and that the block is cleared from the cache of all 
other processors before the instruction is executed. 
After obtaining ownership of the block, the processor 
completes execution of the instruction to set or release 
the lock without permitting the block to be.siphoned to 
another processor. Thus the block is isolated in a 
time window where it can be accessed and modified only 
by the processor executing the instruction which sets 
or releases the lock. 

7-456 DH03-0l 



SZNC SZNC 

To ensure that a lock does not get released before the 
actual completion of all stores performed while the lock 
was set; a synchronizing function is necessary. This 
synchronizing function is accomplished by coding a SYNC 
or STC2 instruction immediately before the instruction 
which releases the lock. If the value stored by STC2 
is consistent with operating system conventions for a 
released lock, then the use of STC2 for synchronizing 
can also serve to release the lock.**** 

4. ****DPS 8/50, 8/52, 8/62 and 8/70: This instruction 
bypasses the cache memory and clears the cache block (4 
words) containing address Y.**** 

5. The SZNC instruction should only be used for gating 
purposes. It should not be used as a substitute for a 
sequence of SZN, TZE, STZ because of the performance 
penalty that is introduced. 

6. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-457 DH03-0l 



SZTL SZTL 

SZTL Set Zero and Truncation Indicators with Bit 064 (1) 
Strings Left 

FORMAT: 

0 0 0 0 0 0 1 1 1 1 Op Code 2 2 2 3 
0 1 4 5 8 9 0 1 

I Fl 0000 I soLR IT I al MF2 064(1) MFl 

0 0 0 
0 2 3 

I al 

0 0 0 
0 2 3 

I a2 I 
CODING FOR.lo~T: 

PROCESSOR MODE: 

SUMMARY: 

1 1 1 2 2 2 3 3 
7 8 9 0 3 4 2 5 

Yl 

I I I 
Nl 

I 
Cl Bl 

Y2 0-------------------0 Rl 

1 1 1 2 2 2 3 3 
7 8 9 0 3 4 2 5 

Y2 

I I I 
N2 

I 
C2 B2 

Y2 0-------------------0 R2 

1 8 16 

SZTL (MFl), (MF2),BOLR,F,T 
BDSC LOCSYM,N,C,B,AM 
BDSC LOCSYM,N,C,B,AM 

Any 

C(string 1) (BOLR) : C(string 2) 

The string of bits starting at location YCBl is evaluated, 
bit bv bit. with the strinq startinq at location YCB2 until 
either the ·resultant bit from the BOLR field is a 1 or until 
L2 is exhausted. If Ll is greater than L2, the Truncation 
indicator is set. If Ll is less than L2, the fill bit (F) 
is used as the L2-Ll least significant bits of string 1. 
The contents of both strings remain unchanged. 

7-458 DH03-0l 



SZTL 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

EXAMPLES: 

1 

FLDl 
FLD2 

FLDl 
FLD2 

8 

SZTL 
BDSC 
BDSC 
TZE 
TRTN 
USE 
DEC 
DEC 
USE 

LDI 
LDX7 
STI 
SZTL 
BDSC 
BDSC 
TNZ 
USE 
BSS 
DEC 
USE 

SZTL 

DU, DL for MFl and MF2 

RPT, RPD, RPL 

zero - If all the resultant bits generated are zero, 
then ON; otherwise, OFF 

Truncation - If Ll is greater than L2, then ON; otherwise, 
OFF 

****DPS 88: The Zero and Truncation indicators 
are affected even if Ll and/or L2 = O.**** 

1. An Illegal Procedure fault occurs if DU or DL modifications 
are used for MFl or MF2 or if illegal repeats are used. 

2. L2=0 does not necessarily mean that the instruction 
functions as a no-op, as the Truncation_ indicator may 
be affected. 

16 

, , 6 
FLDl,36,0,0 
FLD2,35,0,l 
ALL OFF 
TRUNC 
CONST. 
-1 
-1 

O,DL 
-1,DU 
FLDl 
,,1 
FLDl,1,2,1 
FLD2,l,2,l 
190N 
CONST. 
1 
1Bl9 

32 

exclusive OR operation 
FLDl operand descriptor 
FLD2 operand descriptor 
zero indicator ON 
truncation indicator ON 
memory contents in octal 
777777777777 
777777777777 
indicators set? - zero and truncation 

load negative value into X7 
store processor indicators 
AND operation 
FLDl operand descriptor 
FLD2 operand descriptor 
not zero - negative indicator ON 
memory contents in octal 
x x x x x x 2 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 0 
indicators set? - none 

7-459 DH03-0l 



SZTR SZTR 

SZTR Set Zero and Truncation Indicators with Bit 065 (l} 
Strings Right 

FORMAT: 

0 0 0 0 0 0 1 1 1 1 Op Code 2 2 2 3 
0 1 4 5 8 9 0 1 

I Fl 0000 I BOLR IT I ol MF2 065(1) MFl 

0 0 0 
0 2 3 

I al 

0 0 0 
0 2 3 

I a2 I 
CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

1 1 1 2 2 2 3 3 
7 8 9 0 3 4 2 5 

Yl 

I I I 
Nl 

I 
Cl Bl 

Y2 0-------------------0 Rl 

1 1 1 2 2 2 3 3 
7 8 9 0 3 4 2 5 

Y2 

I I I 
N2 

I 
C2 B2 

Y2 0-------------------0 R2 

1 8 16 

SZTR (MFl), (MF2),BOLR,F,T 
BDSC LOCSYM,N,C,B,AM 
BDSC LOCSYM,N,C,B,AM 

Any 

C(string 1) (ROLR) : Cfstrina ?\ \ -- - ... - J - , 

Same as for SZTL except that starting locations are YCBl + 
(Ll-1) and YCB2 + (L2-l) and the evaluation is from right to 
1 e ft ( 1 east s i g n if i cant b it to most s i g n if i cant b it) . Any 
fill (used in comparison) is of most significant bits. 

7-460 DH03-0l 



SZTR 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

EXAMPLES: 

1 8 

SZTR 
BDSC 
BDSC 
TNZ 
USE 

FLDl DEC 
USE 

LOI 
LDX7 
STI 
SZTR 
BDSC 
BDSC 
TZE 
USE 

FLDl BSS 
USE 

DU, DL for MFl and MF2 

RPT, RPO, RPL 

Same as for SZTL 

Notes for SZTR are the same as for SZTL. 

16 

"3, 1 
FLDl,1,2,l 
0,1 
190N 
CONST. 
1Bl9 

O,DL 
0,DU 
FLDl 
, , 14 
FLDl,1,2,0 
0,1 
180N 
CONST. 
1 

32 

evaluate FLDl as is (move) 
FLDl operand descriptor (bit 19) 
FLD2 operand descriptor 

memory contents in octal 
0 0 0 0 0 0 2 0 0 0 0 0 
indicators set? - none 

clear processor indicators 
load zeros into X7 
store processor indicators 
invert 
FLDl operand descriptor (bit 18) 
FLD2 operand descriptor 
zero indicator ON 
memory contents in octal 
x x x x x x 4 0 0 0 0 0 
indicators set? - zero 

7-461 

SZTR 

DH03-0l 



TCT TCT 

TCT Test Character and Translate 16 4 ( 1) 

FORMAT: 

0 1 1 Op Code 2 2 2 3 
0 7 8 7 8 9 5 I 0------------------------------ol 1,64(1) I I I MFl I 
0 0 0 1 1 2 2 2 2 2 3 3 
0 2 3 7 8 0 1 2 3 4 2 5 

I 
Yl 

I I I I 
Nl 

I 
CNl TAl 0 

al Yl 0-------------0 Rl 

0 0 0 1 1 2 2 3 3 3 3 
0 2 3 7 8 8 9 0 1 2 5 

I 
Y2 

I I I I I 
0----------------0 AR2 00 REG2 

a2 Y2 

0 0 0 1 1 2 2 3 3 3 3 
0 2 3 7 8 8 9 0 1 2 5 

I 
Y3 

I I I I I 
0----------------0 AR3 00 REG3 

a3 Y3 

CODING FORMAT: l 8 lf\ 

TCT (MFl) 
ADSCn LOCSYM,CN,N,AM 
ARG LOCSYM,RM,AM 
ARG LOCSYM,RM,AM 

PROCESSOR MODE: Any 

7-462 DH03-0l 



TCT 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TCT 

Starting at location YCl, each type TAl character is used as 
an index to a table of 9-bit characters that starts at location 
Y2. If the table entry is zero, a counter is incremented by 
1. The operation terminates if a nonzero table entry is 
found or if the tally (Ll) is exhausted. At the conclusion 
of the instruction, the counter contents are stored 
right-justified in bits 12-35 of Y3. The last accessed table 
entry is placed in bits 0-8 of Y3. Zeros are placed in bits 
9-11 of Y3. Except in cases of string overlap, the contents 
of the source field and the table remain unchanged. 

DU, DL for MFl, REG2, REG3 

RPT , RPO , RPL 

Tally - If the tally (Ll) is exhausted and table entry is 
zero, then ON; otherwise, OFF 

1. If Nl=O, zero is stored in Y3 (bits 12-35) and the 
tally indicator is affected. 

2. If Nl>O and a match is found in the first character, 
zero is stored in Y3 (bits 12-35) and the tally indicator 
is not affected. 

3. ****DPS 8/20 and 8/ 44: When pre-paging, the hardware 
assumes that the length of the translate table corresponds 
to the data type identified by TAl as follows: 

TAl Table Length 

4-bit 
6-bit 
9-bit 

4 words 
16 words 

128 words **** 

4. An Illegal procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-463 DH03-0l 



TCT 

EXAMPLE: 

1 

FLDl 
FLD3 

8 

TCT 
ADSC6 
ARG 
ARG 
TTF 
USE 
BCI 
BSS 

TABLE OCT 
OCT 
OCT 
USE 

16 

FLDl,0,12 
TABLE 
FLD3 
FOUND 
CONST. 
2,~1234567890# 
1 

32 

no modification 
indexing string operand descriptor 
pointer to table 
pointer to character and count word 
nonzero character found 
memory contents 
200102030405060710110013 (octal} 
character and count - 020000000013 

0 1 2 3 4 5 6 7 
000000000000,000000000000 
000000020020,020020020020 
000000000000 

Octal 
Index 
ox 
lX 
2X 

Result - nonzero character found 

TCT 

NOTE: The highest possible value in Field 1 is an octal 20, a "blank". 

EXAMPLE WITH ADDRESS MODIFICATION: 

1 

X6 

FLDl 
FLD3 
INDSCR 
TABLE 

NOTE: 

8 

BOOL 
EAX2 
EAX3 
EAX6 
AWDX 
TCT 
ARG 
ARG 
ARG 
TTF 
NULL 
USE 

ASCII 
BSS 
ADSC9 
BSS 
OCT 
OCT 
USE 

16 32 

16 
2 put 2 into X2 
FLDl put FLDl address in to X3 
6 put FLDl length into X6 
0,3,7 put FLDl address into AR7 
(1,1,1,2} with all modification options 
INDSCR pointer indirect operand descriptor 
TABLE pointer to table 
FLD3 pointer to FLD3 
*+2 nonzero found 

tally runout ON 
CONST. memory contents 

2,~~1234;5 040040061062063064073065 (octal) 
1 character and count 040000000004 
O,O,X6,7 indexing FLDl operand descriptor (FLDl,2,6) 
12 generate 60 table characters 
000000000000,000000000000 (060-067} 
000000000040 (070-073} 

Result - nonzero found 

The highest possible value in Field 1 is an octal 073, a n. 11 

' . 

7-464 DH03-0l 



TCTR TCTR 

TCTR Test Character and Translate in Reverse 165 (1) 

FORMAT: Same as Test Character and Translate (TCT) format 

CODING FORMAT: 1 8 16 

TCTR (MFl) 
ADSCn LOCSYM,CN,N,AM 
ARG LOCSYM,RM,AM 
ARG LOCSYM,RM,AM 

PROCESSOR MODE: Any 

SUMMARY: Same as TCT except start at location YCl + (Ll-1) and progress 
toward YCl. 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

DU, DL for MF!, REG2, REG3 

RPT, RPO, RPL 

INDICATORS: Tally - If the tally (Ll) is exhausted and table entry is 
zero, then ON; otherwise, OFF 

NOTE: Notes for TCTR are the same as for TCT. 

EXAMPLE: 

1 8 

TCTR 
ADSC4 
ARG 
ARG 
TTF 
NULL 

16 

FLDl,6,10 
TABLE 
FLD3 
*+2 

USE CONST. 
FLDl EDEC 16Pl234567890 

32 

no modification 
indexing string operand descriptor 
pointer to table 
pointer to character and count word 
nonzero found 
nonzero not found - tally runout ON 
memory contents 
0000001234567890 

FLD3 BSS 1 character and count 000000000012 (octal) 
TABLE OCT 0,0 

OCT 000000014014,000000014014 
*HIGHEST POSSIBLE VALUE IN FLDl IS OCTAL 17 

USE Result - no illegal character found 

7-465 DH03-0l 



TEO 

TEO 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TEO 

Transfer on Exponent Overflow 614 (0) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TEO LOCSYM,R,AR 

Any 

If Exponent Overflow indicator ON, then Y --> C(IC) 
If Exponent Overflow indicator ON and instruction bit 29=1 
then 

n = Yo 2 
C(DRn) --> C(ISR); C(SEGIDn --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

Exponent Overflow - Set OFF 

1. An IPR fault occurs if 
instruction attempts to 
that is not type T=O; 
modulo 32 bytes; or has 
32 bytes. 

instruction bit 29=1 and the 
load the ISR from a descriptor 
or has a base that is not O 
a bound that is not 31 modulo 

2 . A Sec u r it y Fa u 1 t , c 1 ass 2 oc cu r s if instr uc ti on b it 
29=1 and the instruction attempts to load the ISR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attemots to load the ISR from a 
descriptor for which flag bit 28=0. 

5. If instruction bit 29=1! and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-466 DH03-0l 



TEU 

TEU 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TEU 

Transfer on Exponent Underflow 615 (0) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TEU LOCSYM,R,AR 

Any 

If Exponent Underflow indicator ON, then Y --> C(IC) 
If Exponent Underflow indicator ON and instruction bit 29=1 
then 

n = Yo 2 
C(DRn) --> C(ISR}; C(SEGIDn) --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

Exponent Underflow - Set OFF 

1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O: or has a base that is not O 
modulo 32 bytes; or has a bound that is not 31 modulo 
32 bytes. 

2. A Security Fault, class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the ISR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 28=0. 

5. If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-467 DH03-0l 



TMI 

TMI 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TMI 

I Transfer on Minus 604 (0) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TMI LOCSYM,R,AR 

Any 

If Negative indicator ON, then Y --> C(IC) 
If Negative indicator ON and instruction bit 29=1 then 

n = YO 2 
C(DRn) --> C(ISR); C(SEGIDn) --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. An IPR fault occurs if 
instruction attempts to 
that is not type T=O; 
modulo 32 bytes; or has 
32 bytes. 

instruction bit 29=1 and the 
load the ISR from a descriptor 
or has a base that is not O 
a bound that is not 31 modulo 

2. A. Security Fault, class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the !SR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attempts to load the !SR from a 
descriptor for which flag bit 28=0. 

5. If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-468 DH03-0l 



TMOZ 

TMOZ 

FO&.V.T: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TMOZ 

Transfer on Minus or Zero 604 (1) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TMOZ LOCSYM,R,AR 

Any 

If Negative indicator ON or zero indicator ON, then 

Y --> C(IC) 

If Negative indicator ON or zero indicator ON; and instruction 
bit 29=1 then 

n = YO 2 
C(DRn) --> C(ISR); C(SEGIDn) --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected 

1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the !SR from a descriptor 
that is not type T=O; or has a base that is not O 
modulo 32 bytes; or has a bound that is not 31 modulo 
32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the ISR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attempts to load the !SR from a 
descriptor for which flag bit 28=0. 

7-469 DH03-01 



TMOZ 

EXAMPLES: 

1 8 

LCQ 
TMOZ 
NULL 

*DID TRANSFER 

5. 

6. 

16 

2,DL 

TMOZ 

If inst.ruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and wo.rking space f.rom DRn (not the ISR) a.re 
used in developing the add.resses of indirect words. 

An Illegal P.rocedure fault occurs if illegal address 
modifications or illegal repeats are used. 

32 

NOPLUS transfer on minus or zero 
plus .routine 

OCCUR? YES TO WHAT LOCATION? NOPLUS 

7-470 DH03-0l 



TNC 

TNC 

FORMAT: 

COOING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TNC 

Transfer on No Carry 602 (0) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TNC LOCSYM,R,AR 

Any 

If Carry indicator OFF, then Y --> C(IC) 
If Carry indicator OFF and instruction bit 29=1 then 

n = Yo 2 
C(ORn) --> C(ISR); C(SEG!On} --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT , RPO , RPL 

None affected 

1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O; or has a base that is not O 
modulo 32 bytes; or has a bound that is not 31 modulo 
32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the ISR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 28=0. 

5. If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the !SR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-471 DH03-01 



TNZ 

TNZ 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TNZ 

Transfer on Nonzero 601 (0) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TNZ LOCSYM,R,AR 

Any 

If zero indicator OFF, then Y --> C(IC) 
If zero indicator OFF and instruction bit 29=1 then 

n = Yo 2 
C(DRn} --> C(ISR); C(SEGIDn) --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected 

1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O; or has a base that is not O 
modulo 32 bytes; or has a bound that is not 31 modulo 
32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the ISR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 28~0. 

5. If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-472 DH03-0l 



TOV 

TOV 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TOV 

Transfer on Overflow 617 (0) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TOV LOCSYM,R,AR 

Any 

If Over~low indicator ON, then Y --> C(IC) 
If Overflow indicator ON and instruction bit 29=1 then 

n = Yo 2 
C(DRn) --> C(ISR); C(SEGIDn) --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT , RPO, RPL 

Overflow - Set OFF 

1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the !SR from a descriptor 
that is not type T=O; or has a base that is not O 
modulo 32 bytes; or has a bound that is not 31 modulo 
32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the !SR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the !SR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attempts to load the !SR from a 
descriptor for which flag bit 28=0. 

5. If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-47 3 DH03-0l 



TPL 

TPL 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TPL 

Transfer on Plus 605 (0} 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TPL LOCSYM,R,AR 

Any 

If Negative indicator OFF, then Y --> C(IC) 
If Negative indicator OFF and instruction bit 29=1 then 

n = YO 2 
C(DRn) --> C(ISR); C(SEGIDn) --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT , RPD, RPL 

None affected 

1. An IPR fault occurs if 
instruction attempts to 
that is not type T=O; 
modulo 32 bytes; or has 
32 bytes. 

instruction bit 29=1 and the 
load the !SR from a descriptor 
or has a base that is not O 
a bound that is not 31 modulo 

2. A Security Fault, Class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the ISR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction at tempts to load the ISR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruct ion at tempts to load the I SR from a 
descriptor for which flag bit 28=0. 

5. If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-474 DH03-0l 



TPNZ 

TPNZ 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TPNZ 

Transfer on Plus and Nonzero 605 (1) 

Single-word instruction format (see Figure 7-1} 

1 8 16 

TPNZ LOCSYM,R,AR 

Any 

If Negative indicator OFF and Zero indicator OFF, then 

Y --> C(IC) 
If Negative indicator OFF and Zero indicator OFF and instruction 
bit 29=1 then 

n = YO 2 
C(DRn} --> C(ISR); C(SEG!Dn} --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected 

1. An IPR fault occurs if 
instruction attempts to 
that is not type T=O; 
modulo 32 bytes; or has 
32 bytes. 

instruction bit 29=1 and the 
load the ISR from a descriptor 
or has a base that is not O 
a bound that is not 31 modulo 

2. A Security Fault, Class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the ISR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 28=0. 

5. If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-475 DH03-0l 



TPNZ TPNZ 

EXAMPLES: 

1 8 16 32 

EAXS 6 load address modifier into XS 
EAX6 PLUSRT load transfer address into X6 
AWDX 0,6,6 put transfer address into AR6 
LOA 5,DL load +5 into A-register 
TPNZ 0,5,6 transfer on plus and nonzero 
NULL zero and negative routine 

*DID TRANSFER OCCUR? YES TO WHAT LOCATION? PLUSRT+6 

EAX2 3 load address modifier into X2 
LDX7 4,DU load +4 into X7 
TPNZ TRANS,2 transfer on plus and nonzero 
NULL zero and negative routine 

*DID TRANSFER OCCUR? YES TO WHAT LOCATION? TRANS+3 

7-476 DH03-0l 



TRA 

TRA 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TRA 

Transfer Unconditionally 710 (0) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TRA LOCSYM,R,AR 

Any 

Y --> C (IC) 
If instruction bit 29=1 then 

n = YO 2 
C(DRn) --> C(ISR); C(SEGIDn) --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT , RPO, RPL 

None affected 

1. An IPR fault occurs if 
instruction attempts to 
that is not type T=O; 
modulo 32 bytes; or has 
32 bytes. 

instruction bit 29=1 and the 
load the ISR from a descriptor 
or has a base that is not O 
a bound that is not 31 modulo 

2. A Security Fault, Class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the !SR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the !SR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attempts to load the !SR from a 
descriptor for which flag bit 28=0. 

5. If instruction bit 29= 1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the !SR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-477 DH03-0l 



TRC 

TRC 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TRC 

Transfer on Carry 603 (0) 

Single-word instruction format (see Figure 7-1) 

l 8 16 

TRC LOCSYM,R,AR 

Any 

If Carry indicator ON, then Y --> C(IC) 
If Carry indicator ON and instruction bit 29=1 then 

n = YO 2 
C(DRn) --> C(ISR); C(SEGIDn) --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected 

1. An IPR fault occurs if 
instruction attempts to 
that is not type T=O; 
modulo 32 bytes; or has 
32 bytes. 

instruction bit 29=1 and the 
load the ISR from a descriptor 
or has a base that is not O 
a bound that is not 31 modulo 

2. A Security Fault, Class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the ISR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attempts to load the !SR from a 
A----.:-.a..-- ~-- .... \....:-'- &1-- 1.....:~ "'\n-n 
U0::::;::>\...1. LJ:·"-V'- 1.V.I.. WUJ.\...11 J....LQ~ LILI... Lo-v. 

5. If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-478 DH03-0l 



TRTF 

TRTF 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TRTF 

Transfer on Truncation Indicator OFF 601 ( 1) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TRTF LOCSYM,R,AR 

Any 

If Truncation indicator OFF, then Y --> C(IC) 
If Truncation indicator OFF and instruction bit 29=1 then 

n = YO 2 
C(DRn) --> C(ISR); C(SEGIDn) --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected 

1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O; or has a base that is not 0 
modulo 32 bytes; or has a bound that is not 31 modulo 
32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the ISR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 28=0. 

5. If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-479 DH03-01 



TRTF 

EXAMPLE: 

1 8 

MLR 
ADSC9 
ADSC4 

'TRTF 
NULL 

16 

FLDl,0,4 
FLD2,0,4 
NT RU NC 

32 

move alphanumeric left to right 
sending operand descriptor 
receiving operand descriptor 
truncation indicator OFF 
truncation indicator ON 

*DID TRANSFER TO NTRUNC OCCUR? YES 

*STATE OF TRUNCATION INDICATOR AFTER? OFF 

TRTF 

7-480 DH03-0l 



TRTN 

TRTN 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TRTN 

Transfer on Truncation Indicator ON 600 (1) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TRTN LOCSYM,R,AR 

Any 

If Truncation indicator ON, then Y --> C{IC) 
If Truncation indicator ON and instruction bit 29=1 then 

n = Yo 2 
C(DRn) --> C(ISR); C(SEGIDn) --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

Truncation - If ON, it is turned OFF 

1. An IPR fault occurs if 
instruction attempts to 
that is not type T=O; 
modulo 32 bytes; or has 
32 bytes. 

instruction bit 29=1 and the 
load the ISR from a descriptor 
or has a base that is not O 
a bound that is not 31 modulo 

2. A Security Fault, Class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the !SR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 28=0. 

5. If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-481 DH03-0l 



TRTN 

EXAMPLE: 

1 8 

MLR 
ADSC4 
ADSC6 
TRTN 
TRA 

*TO WHERE WAS 

16 

FLDl,0,8 
FLD2,0,6 
TRUNC 
TRUNC+6 

TRANSFER? 

32 

move alphanumeric left to right 
sending operand descriptor 
receiving operand descriptor 
truncation indicator ON 
truncation indicator OFF 

TRUNC 

*STATE OF TRUNCATION INDICATOR AFTER? OFF 

MLR 
ADSC9 FLDl,0,8 
ADSC4 FLD2,0,4 
TRTN TRUNC 
NULL 

*DID TRANSFER OF CONTROL OCCUR? 

move alphanumeric left to right 
sending operand descriptor 
receiving operand descriptor 
truncation indicator ON 
no truncation routine 

YES WHERE TO? TRUNC 

*STATE OF TRUNCATION INDICATOR AFTER? OFF 

7-482 

TRTN 

DH03-0l 



TSS 

TSS 

FORMAT~ 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TSS 

Transfer After Setting Slave 715 (0) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TSS LOCSYM,R,AR 

Any 

Y --> C(IC) 
If instruction bit 29=1 then 

n = Yo 2 
C(DRn) --> C(ISR); C(SEG!Dn) --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

Master Mode - Set OFF 

1. An IPR fault occurs if 
instruction attempts to 
that is not type T=O; 
modulo 32 bytes; or has 
32 bytes. 

instruction bit 29"'"1 and the 
load the ISR from a descriptor 
or has a base that is not O 
a bound that is not 31 modulo 

2. A Security Fault, Class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the !SR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 28=0. 

5. If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-483 DH03-01 



TSS 

7. 

TSS 

For a fault that occurs as a result of execution of a 
TSS instruction in Master mode, the state of bit 28 
(Master Mode indicator) in the copy of the indicator 
register stored in the safestore frame is: 

o If fault is IPR or Fault Tag fault, caused by the 
tag field in the instruction or indirect word, then 
IR28 = 1. 

o If fault is STR or BND, caused by attempt to access 
an indirect word, then IR28 = 1. 

o If fault is STR or BND, caused by attempt to access 
the target location then 

****DPS 8/20 and 8/44 IR28 o. **** 

****DPS 88, DPS 8/50, 8/52, 8/62, and 8/70: IR28 
= 1. **** 

7-484 DH03-0l 



TSXn 

TSXn -

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Transfer and Set Index Register !! 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TSXn LOCSYM,R,AR 

Any 

For n = 0,1, .•. , or 7 as determined by op code 
C{IC) +0 •.. 01 --> C(Xn); Y --> C(IC) 
If instruction bit 29~1 then 

n = YO 2 
C(DRn) --> C(ISR); C(SEGIDn) --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

TSXn 

70n (0) 

1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O; or has a base that is not O 
modulo 32 bytes; or has a bound that is not 31 modulo 
32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the ISR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the !SR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attempts to load the !SR from a 
descriptor for which flag bit 28=0. 

5. If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. · 

7-485 DH03-0l 



TTES 

****DPS 88 ONLY**** 

TTES 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TTES 

Transfer Table Entry Store 531 (0) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TTES LOCSYM,R,AR 

Privileged Master Mode 

C(Transfer Table) 0 _ 71 --> C(Y=pair) 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected. 

1. The use of this instruction in other than Privileged 
Master mode causes an IPR fault. 

2. The Transfer Table is a LIFO (Last-in, First-out) queue 
containing information identifying the last 16 transfers 
that were taken. Each entry in the Table has the following 
format: 

Bits 0-8 Effective working space number (EWSN) of 
target segment. 

Bits 9-35 Word level virtual address (bits 14-40 of 
virtual address). If the virtual address 
refers to a fragmented page table, the five 
most significant bits of the 16-bit page 
key are lost. 

Bits 36-53 Old instruction counter. 

Bits 54-71 New instruction counter. 

When a successful transfer is executed, the appropriate 
entry is "pushed" onto the top of the table. 

3. TTES causes the most recent entry to be "popped" off 
the stack and placed in memory at the location specified 
using the normal address development. 

7-486 DH03-0l 



TTES 

4. 

5. 

6. 

**** 

TTES 

The TTTL instruction can be used to lock the table. 
When the table is locked, no further entries are made 
until the table is unlocked using the TTTU instruction. 

The TTEZ instruction causes the hardware to push a zero 
entry into the table to allow software to mark the boundary 
between different sections of code. Subsequently, when 
the table is stored into memory, the zero entry can be 
used to distinguish between different sections of code. 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-487 DH03-0l 



TTEZ 

****DPS 88 ONLY**** 

TTEZ 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TTEZ 

Transfer Table Entry Zero 524 (0) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TTEZ LOCSYM,R,AR 

Privileged Master Mode 

Load zero Entry in Transfer Table 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected. 

1. The use of this instruction in other than Privileged 
Master mode causes an IPR fault. 

2. The Transfer Table is a LIFO (Last-in, First-out) queue 
containing information identifying the last 16 transfers 
that we re taken. Each en try in the Table is a double-word 
quantity. See description of TTES for format. 

When a successful transfer is executed, the appropriate 
entry is "pushed" onto the top of the table. 

3. TTES causes the most recent entry to be "popped" off 
the stack and placed in memory at the location specified 
using the normal address development. 

4. The TTTL instruction can be used to lock the table. 
When the table is locked. no further entries are made 
until the table is unlocked using the TTTU instruction. 

5. The TTEZ instruction causes the hardware to push a zero 
entry into the table to allow software to mark the boundary 
between different sections of code. Subsequently, when 
the table is stored into memory, the zero entry can be 
used to distinguish between different sections of code. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-488 DH03-0l 



TTF 

TTF 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TTF 

Transfer on Tally Runout Indicator OFF 607 (0) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TTF LOCSYM,R,AR 

Any 

If Tally Runout indicator OFF, then Y --> C(IC) 
If Tally Runout indicator OFF and instruction bit 29=1 then 

n = YO 2 
C(DRn) --> C(ISR); C(SEGIDn) --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. An IPR fault occurs if 
instruction attempts to 
that is not type T=O; 
modulo 32 bytes; or has 
32 bytes. 

instruction bit 29= l and the 
load the ISR from a descriptor 
or has a base that is not O 
a bound that is not 31 modulo 

2. A Security Fault, Class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the ISR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 28=0. 

5. If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-489 DH03-01 



TTN 

TTN 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TTN 

Transfer on Tally Runout Indicator ON 606 (1) 

Single-word instruction format (see Figure 7-1) 

The TTN instruction is coded as follows: 

1 8 16 

TTN LOCSYM,R,AR 

Any 

If Tally Runout indicator ON, then Y --> C(fC) 
If Tally Runout indicator ON and instruction bit 29=1 then 

n = Yo 2 
C(DRn) --> C(ISR); C(SEGIDn) --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected 

1. An IPR fault occurs if instruction bit 29=1 and the 
instruction attempts to load the ISR from a descriptor 
that is not type T=O; or has a base that is not O 
modulo 32 bytes; or has a bound that is not 31 modulo 
32 bytes. 

2. A Security Fault, Class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the ISR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29~1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 28=0. 

5. If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base, 
bound, and working space from DRn (not the ISR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-490 DH03-01 



TTN 

EXAMPLES: 

1 

TABLE 
FLDl 
FLD3 

8 

·rcT 
ADSC9 
ARG 
ARG 
TTN 
NULL 
USE 
OCT 
BCI 
BSS 
USE 

16 

FLDl,0,12 
TABLE 
FLD3 
NMATCH 

32 

test character and translate 
indexing string operand descriptor 
pointer to table 
operand pointer to count word 
tally runout ON - nonzero entry 
tally runout OFF 

CONST. 
,,20020,020020020020,0 
2,)Sl234567890t 
1 

*DID TRANSFER OCCUR? NO 

TCT 
ADSC4 
ARG 
ARG 
TTN 
TRA 
USE 

TABLE OCT 
FLDl OCT 

USE 

FLDl,0,8 
TABLE 
FLD3 
CHAROK 
ERROR 
CONST. 
, ,14014 ,14014 
022064126317 

test character and translate 
indexing string operand descriptor 
pointer to table 
pointer to character and count word 
tally runout ON 
tally runout OFF 

*TO WHAT LOCATION WAS TRANSFER MADE? ERROR 

7-491 

TTN 

DH03-0l 



TTTL 

****DPS 88 ONLY**** 

I TTTL 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TTTL 

Transfer Trace Table Lock 5 22 (0) 

Single-word instruction format (see Figure 7-1) 

l 8 16 

TTTL LOCSYM,R,AR 

Privileged Master Mode 

Lock the Transfer Table 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

None affected. 

1. The use of this instruction in other than Privileged 
Master mode causes an IPR fault. 

2. The Transfer Table is a LIFO (Last-in, First-out) queue 
containing information identifying the last 16 transfers 
that were taken. Each entry in the Table is a double-word 
quantity. See description of TTES for format. 

When a successful transfer is executed, the appropriate 
entry is "pushed" onto, the top of the table. 

3. TTES causes the most recent entry to be "popped" off 
the stack and placed in memory at the location specified 
using the normal address development. 

4. The TTTL instruction can be used to lock the table. 
When the table is locked, no further entries are made 
until the table is unlocked using the TTTU instruction. 

5. The TTEZ instruction causes the hardware to push a zero 
entry into the table to allow software to mark the boundary 
between different sections of code. Subsequently, when 
the table is stored into memory, the zero entry can be 
used to distinguish between different sections of code. 

7-492 DH03-01 



TTTL 

**** 

6. 

TTTL 

Address modifications have no effect on the operation, 
but are performed by the hardware. 

7. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-493 DH03-0l 



TTTU 

****DPS 88 ONLY**** 

TTTU 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

TTTU 

Transfer Trace Table Unlock 523 (0) 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TTTU LOCSYM,R,AR 

Privileged Master Mode 

Unlock the Transfer Table 

DU, DL, CI, SC, SCR 

RPT , RPD I RPL 

None affected. 

1. The use of this instruction in other than Privileged 
Master mode causes an IPR fault. 

2. The Transfer Table is a LIFO (Last-in, First-out) queue 
containing information identifying the last 16 transfers 
that were taken. Each entry in the Table is a double-word 
quantity. See description of TTES for format. 

When a successful transfer is executed, the appropriate 
entry is "pushed" onto the top of the table. 

3. TTES causes the most recent entry to be "popped" off 
the stack and placed in memory at the location specified 
using the normal address development. 

4. The TTTL instruction can be used to lock the table. 
\.Zhen the table no further 
until the table is unlocked using the TTTU instruction. 

5. The T!'EZ instruction causes the hardware to push a zero 
entry into the table to allow software to mark the boundary 
between different sections of code. Subsequently, when 
the table is stored into memory, the zero entry can be 
used to distinguish between different sections of code. 

c. u. Address modifications have no effect on the operation, 
but are performed by the hardware. 

7-494 DH03-0l 



TTTU 

7. 

**** 

TTTU 

An Illegal Procedure fault occurs if illegal address 
modification or illegal repeats are used. 

7-495 DH03-0l 



TZE 

TZE 

FORMAT: 

CODING FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Transfer on zero 

Single-word instruction format (see Figure 7-1) 

1 8 16 

TZE LOCSYM,R,AR 

Any 

If Zero indicator ON, then Y --> C(IC) 
If Zero indicator ON and instruction bit 29=1 then 

n = Yo 2 
C(DRn) --> C(ISR); C(SEGIDn) --> C(SEGID(IS)) 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

None affected 

TZE 

600 (0) 

1. An IPR fault occurs if 
instruction attempts to 
that is not type T=O; 
modulo 32 bytes; or has 
32 bytes. 

instruction bit 29=1 and the 
load the ISR from a descriptor 
or has a base that is not O 
a bound that is not 31 modulo 

2. A Security Fault, Class 2 occurs if instruction bit 
29=1 and the instruction attempts to load the ISR from 
a descriptor for which flag bit 25=0. 

3. A Store or Bound fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 27=0. 

4. A Missing Segment fault occurs if instruction bit 29=1 
and the instruction attempts to load the ISR from a 
descriptor for which flag bit 28=0. 

5. If instruction bit 29=1, and if any form of indirect 
addressing is specified in the tag field, then the base~ 
bound, and working space from DRn (not the ISR) are 
used in developing the addresses of indirect words. 

6. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-496 DH03-0l 



UFA 

UFA 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTE: 

EXAMPLE: 

Unnormalized Floating Add 

Single-word instruction format (see Figure 7-1) 

Any 

[C(EAQ) + C(Y)] not normalized --> C(EAQ) 

CI, SC, SCR cause an IPR to occur. 

None 

Zero - If C(AQ) = O, then ON; otherwise OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise OFF 

Exponent 

UFA 

435 (0) 

Overflow - If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

Carry - If a carry out of bit 0 of C(AQ) is generated, 
then ON; otherwise OFF 

When indicator bit 32=1 and the Hex Permission Flag = 1, the 
floating point alignment is hexadecimal. Otherwise, the 
floating point alignment is binary. The Hex Permission Flag 
is: 

****DPS 8: Mode register, bit 33**** 

****DPS 88: Option register, bit O**** 

(Convert from floating to fixed) 

1 8 16 32 

F!X!T ~...ACRO 

!NE i 1 , "' . EA Q. "' , 1 
FLD il 
FCMP -0110400 ,DU 2** 35 
TM! 2,IC 
NOP ,F 
FCMP =0107000,DU -2** 35 
TM! 02,IC 
UFA =71B25 ,DU 
INE i 2, "'.QR."', 1 
STQ #2 
ENDM FIXIT 
FIXIT X,I I=X 

7-497 DH03-0l 



UFM 

UFM 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEA'rs : 

INDICATORS: 

NOTES: 

Unnormalized Floating Multiply 

Single-word instruction format (see Figure 7-1) 

Any 

[C(EAQ) * C(Y)] not normalized--> C{EAQ) 

CI I SC I SCR 

None 

zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

Exponent 

UFM 

421 (0) 

Overflow If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

1. This multiplication is executed like the FMP instruction 
with the exception that the final normalization is 
per formed only in the case of both factor mantissas 
being= - 1.00 ••• o. 

2. The definition of normalization is located under the 
description of the FNO instruction. 

3. When indicator bit 32=1 and the Hex Permission Flag= 1 
the floating point alignment and normalization is 
hexadecimal. Otherwise, the floating point alignment 
and normalization binary. The Hex Permission Flag is: 

****DPS 8: Mode register, bit 33**** 

****DPS 88: Option register, bit O**** 

4. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-498 DH03-0l 



UFS 

UFS 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

Unnormalized Floating Subtract 

Single-word instruction format (see Figure 7-1) 

Any 

[C(EAQ) - C(Y)] not normalized--> C(EAQ) 

CI, SC, SCR 

None 

Zero - If C(AQ) = O, then ON; otherwise, OFF 

Negative - If C(AQ) 0 = 1, then ON; otherwise, OFF 

Exponent 

UFS 

535 (0) 

Overflow - If exponent is greater than +127, then ON 

Exponent 
Underflow - If exponent is less than -128, then ON 

Carry - If a carry out of bit O of C(AQ) is generated, 
then ON; otherwise, OFF 

1. When indicator bit 32=1 and the Hex Permission Flag = 1 
the floating point alignment is hexadecimal. Otherwise, 
the floating point alignment is binary. The Hex Permission 
Flag is: 

****DPS 8: Mode register, bit 33**** 

****DPS 88: Option register, bit O**** 

2. An Illegal Procedure fault occurs if illegal address 
modification is used. 

7-499 DH03-01 



XEC 

XEC 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

XEC 

I Execute 716 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

Obtain and execute the instruction stored at memory location 
y 

DU, DL, CI, SC, SCR 

RPT, RPD, RPL 

The XEC instruction itself does not affect any indicator. 
However, the execution of the instruction from Y may affect 
indicators. 

1. If the instruction obtained from location Y is not a 
Repeat Double (RPD) instruction, and is not a multiword 
instruction, the next instruction to be executed is 
obtained from C(IC) + 1. This is the instruction contained 
in the memory location immediately following the location 
containing the XEC instruction, unless the contents of 
the instruction counter have been changed by the execution 
of the instruction obtained from memory location Y. 

2. To Execute (XEC) a Repeat Double (RPD) instruction, the 
XEC instruction must be in an odd location. The 
instructions repeated are those that immediately follow 
the XEC instruction. The next instruction to be executed 
is obtained from C(IC) + 3. 

3. An XEC instruction may point to a multiword instruction. 
However, the descriptors for the mul t iword instruction 
must be stored immediately following the XEC instruction. 
The next instruction to be executed is obtained from 
C(IC) + n + 1, where n is the number of descriptors for 
the multiword instruction. 

4. If IC modification is used with the instruction being 
executed, the value of IC will be the same as the location 
of the XEC instruction. 

5. An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

7-500 DH03-0l 



XEC XEC 

EXAMPLE: 

1 8 16 32 

REM X7 has value 0 or 1 
REM X6 has value 1, 2, 3, 4 or 5 
XEC OOIT, 7 add or subtract 
USE SMARTS 

DOIT ADQ FF 
SBQ FF 
USE 
XEC BRANCH-1,6 5-way branch 
USE YE RHED 

BRANCH NOP 
AOS FLAG2 
TRA .83 
TRA .84 
TRA WRAP UP 
USE 

7-501 0803-01 



XED 

XED 

FORMAT: 

PROCESSOR MODE: 

SUMMARY: 

ILLEGAL ADDRESS 
MODIFICATIONS: 

ILLEGAL REPEATS: 

INDICATORS: 

NOTES: 

XED 

Execute Double 717 (0) 

Single-word instruction format (see Figure 7-1) 

Any 

Obtain and execute the two instructions stored at the memory 
Y-pair locations (must be even and next odd location). 

DU, DL, CI, SC, SCR 

RPT, RPO, RPL 

The XED instruction itself does not affect any indicator. 
However, the execution of the two instructions from Y-pair 
may affect indicators. 

1. The first instruction obtained from Y-pair must not alter 
the memory location from which the second instruction 
is obtained, and must not be another XED instruction. 

2. If the first instruction obtained from Y-pair alters 
the contents of the instruction counter, this transfer 
of control is effective immediately, and the second 
instruction of the pair is not executed. 

3. If the instruction obtained from the odd location of 
Y-pair is not a Repeat Double (RPO), the next instruction 
to be executed is obtained from C(IC) + 1. This is the 
instruction contained in the memory location immediately 
following the location containing the XED instruction 
unless the contents of the instruction counter have been 
changed by the execution of the two instructions obtained 
from the memory location Y-pair. 

4. To Execute Double (XED) a pair that has Repeat Double 
(RPO) as the odd instruction of the pair, XED must be 
located at an odd address. The instructions repeated 
are those that immediately follow the XED instruction. 
The next instruction to be executed is obtained from 
(CIC) + 3. 

5. If RPO is specified within a sequence of XEDs, the original 
and all subsequent XEDs in the sequence must be in odd 
locations. - -

6. An Illegal Procedure fault occurs if an attempt is made 
to XED any multiword instruction. 

7-502 DH03-01 



XED 

EXAMPLES: 

7. 

8. 

1 

XED 

If IC modification is used with either of the instructions 
being executed, the value of IC will be the same as the 
location of the XED instruction. 

An Illegal Procedure fault occurs if illegal address 
modifications or illegal repeats are used. 

8 16 32 

REM X7 0 = 0,2,4, or 6 
XED ENTRY,7 

EVEN 
ENTRY NULL 

STCl SAVE! 
TRA FIRST 
STCl SAVE2 
TRA .SECOND 
STCl SAVE3 
TRA THIRD 
STCl SAVE4 
TRA FOURTH 

7-503 DH03-01 



MICRO OPERATIONS MICRO OPERATIONS 

MICRO OPERATIONS 

A description of the 17 micro-operations (MOPs) follows. The mnemonic, 
name, octal value, and the function performed is given for each MOP in a format 
similar to that for processor instructions. 

Checks for termination are made during and after each micro-operation. All 
MOPs that make a zero test of a sending-string character, test only the four 
least significant bits of the character. 

7-504 DH03-0l 



CHT 

CHT 

SUMMARY: 

FLAGS: 

NOTE: 

CHT 

Change Table 21 

The edit insertion table is replaced by the string of eight 
9-bit characters immediately following the CHT micro-operation. 

None affected 

C(IF) is not interpreted for this operation. 

7-505 DH03-0l 



ENF 

ENF 

SUMMARY: 

FLAGS: 

ENF 

·End Floating Suppression 02 

Bit 0 of IF (IFO) specifies the nature of the float.,ing 
suppression. 

Bit 1 of IF (IFl) specifies if blank when zero option is 
used. 

For IFO = 0 (end floating-sign operation): 

If ES is OFF and SN is OFF, then edit insertion table 
entry 3 is moved to the receiving field and ES is set 
ON. 

If ES is OFF and SN is ON, then edit insertion table 
entry 4 is moved to the receiving field and ES is set 
ON. 

If ES is ON, no action is taken. 

For IFO = 1 (end floating currency symbol operation): 

If ES is OFF, then edit insertion table entry 5 is 
moved to the receiving field and ES is set ON. 

If ES is ON, no action is taken. 

For !Fl 1 (blank when zero): the BZ flag is set ON. 

For IFl O (no blank when zero) : no action is taken. 

(Flags not listed are not affected) 

ES - If OFF, then set ON 

BZ - If bit l of C(IF) = 1, then set ON; otherwise, unchanged 

7-506 DH03-01 



IGN 

IGN 

SUMMARY: 

FLAGS: 

IGN 

Ignore Source Characters 14 

IF specifies the number of characters to be ignored, where 
IF = O specifies i6 characters. 

The next IF characters in the source data field are ignored 
and the sending tally is reduced accordingly. 

None affected 

7-507 DH03-01 



INSA 

INSA 

SUMMARY: 

FLAGS: 

NOTE: 

INSA 

Insert Asterisk on Suppression 11 

Same as INSB except that if ES is OFF, then edit insertion 
table entry 2 is moved to the receiving field. 

None affected 

If C(IF) > 8, an Illegal Procedure fault occurs. 

7-508 DH03-0l 



INSB 

INSB 

SUMMARY: 

FLAGS: 

NOTE: 

INSB 

Insert Blank on Suppression 10 

IF specifies which edit insertion table entry is inserted. 

If IF = O, the 9 bits immediately following the INSB 
micro-operation are treated as a 9-bit character (not a MOP) 
and are moved or skipped according to ES: 

If ES is OFF, then edit insertion table entry 1 is 
moved to the receiving field. If IF = O, then the next 
9 bits are also skipped. If IF is not O, the next 9 
bits are treated as a MOP. 

If ES is ON and IF= 0, then the 9-bit character immediately 
following the INSB micro-instruction is moved to the 
receiving field. 

If ES is ON and IF ~ O, then IF specifies which edit 
insertion table entry (1-8) is to be moved to the receiving 
field. 

None affected 

If C(IF) > 8, an Illegal Procedure fault occurs. 

7-509 DHOJ-01 



INSM 

INSM 

SUMMARY: 

FLAGS: 

INSM 

Insert Table Entry One Multiple 01 

IF specifies the number of receiving characters affected, 
where IF = 0 specifies 16 characters. 

Edit insertion table entry 1 is moved to the next IF (1-16) 
receiving field characters. 

None affected 

7-510 DH03-0l 



INSN 

INSN 

SUMMARY: 

FLAGS: 

NOTE: 

INSN 

~nsert On Negative 12 

IF specifies which edit insertion table entry is inserted. 
If IF = O, the 9 bits immediately following the INSN 
micro-operation are treated as a 9-bit character (not a MOP) 
and are moved or skipped according to SN: 

If SN is OFF, then edit insertion table entry 1 is 
moved to the receiving field. If IF = O, then the next 
9 bits are also skipped. If IF is not O, the next 9 
bits are treated as a MOP. 

If SN is ON and IF= 0, then the 9-bit character immediately 
following the INSN micro-instruction is moved to the 
receiving field. 

If SN is ON and IF is not equal to O, then IF specifies 
which edit insertion table entry (1-8) is to be moved 
to the receiving field. 

None affected 

If C(IF) > a, an Illegal Procedure fault occurs. 

7-511 DHOJ-01 



INSP 

INSP 

SUMMARY: 

FLAGS: 

NOTE: 

INSP 

·insert On Positive 13 

Same as INSN except that the responses for the SN values are 
reversed. 

None affected 

If C(IF) > 8, an Illegal Procedure fault occurs. 

7-512 DH03-0l 



LTE 

LTE 

SUM!t4.ARY: 

FLAGS: 

NOTE: 

LTE 

Load Table Entry 20 

IF specifies _the edit insertion table entry to be replaced. 

The edit insertion table entry specified by IF is replaced 
by the 9-bit character immediately following the LTE micro 
instruction. 

None affected 

If C (IF,) O or C(IF) > 8, an Illegal Procedure fault occurs. 

7-513 0803-01 



MFLC 

MFLC 

SUMMARY: 

FLAGS: 

NOTE: 

MFLC 

Move with Floating Currency Symbol Insertion 07 

IF specifies the number of characters of the sending field 
upon which the operation is performed, where IF = O specifies 
16 characters. 

Starting with the next available sending 
the next IF characters are individually 
following conditional actions occur: 

field character, 
fetched and the 

If ES is OFF and the character is zero, edit insertion 
table entry 1 is moved to the receiving field in place 
of the character. 

If ES is OFF and the character is not zero, then edit 
insertion table entry 5 is moved to the receiving field, 
the character is also moved to the receiving field, and 
ES is set ON. 

If ES is ON, the character is moved to the receiving 
f,ield. 

The number of characters placed in the receiving field is 
data-dependent. If the entire sending field is zero, IF 
characters are placed in the receiving field. However, if 
the sending field contains a nonzero character, IF+l characters 
(the insertion character plus the characters from the sending 
field) are placed in the receiving field. 

An IPR fault occurs when the sending field is exhausted before 
the receiving field is filled. In order to provide space in 
the receiving field for an inserted currency symbol, the 
receiving field must have a string length one character longer 
than the sending field. When the sending field is all zeros, 
no currency symbol is inserted by the MFLC micro-operation 
and the receiving field is not filled when the sending field 
is exhausted. The user should provide an ENF (ENF,12) 
micro-operation after a MFLC micro-operation that has as its 
character count the number of characters in the sending field. 
The ENF micro-operation is engaged only when the MFLC 
micro-operation fails to fill the receiving field; then, it 
supplies a currency symbol to fill the receiving field and 
blanks out the entire field. 

(Flags not listed are not affected) 

ES If OFF and any of C (Y) is less than decimal zero, 
then ON; otherwise, unchanged 

Since the number of characters moved to the receiving string 
is data-dependent, a possible Illegal Procedure fault may be 
avoided by ensuring that the z and BZ flags are ON. 

7-514 DH03-0l 



MFLS 

MFLS 

SUMMARY: 

FLAGS: 

NOTE: 

MFLS 

· Move with Floating Sign Insertion 06 

IF specifies the number of characters of the sending field 
upon which the operation is performed, where IF = 0 specifies 
16 characters. 

Starting with the next available sending field character, 
the next IF characters are individually fetched and the 
following conditional actions occur: 

If ES is OFF and the character is zero, edit insertion 
table entry 1 is moved to the receiving field in place 
of the character. 

If ES is OFF, the character is not zero, and SN is OFF; 
then edit insertion table entry 3 is moved to the receiving 
field, the character is also moved to the receiving 
field, and ES is set ON. 

If ES is OFF, the character is nonzero, and SN is ON; 
edit insertion table entry 4 is moved to the receiving 
field; the character is also moved to the receiving 
field, and ES is set ON. 

If ES is ON, the character is moved to the receiving 
field. 

The number of characters placed in the receiving field is 
data-dependent. If the entire sending field is zero, IF 
characters are placed in the receiving field. However, if 
the sending field contains a nonzero character, IF+l characters 
(the insertion character plus the characters from the sending 
field) are placed in the receiving field. 

An IPR fault occurs when the sending field is exhausted before 
the receiving field is filled. In order to provide space in 
the receiving field for an inserted sign, the receiving field 
must have a string length one character longer than the sending 
field. When the sending field is all zeros, no sign is 
inserted by the MFLS micro-operation and the receiving field 
is not filled when the sending field is exhausted. The user 
should provide an ENF (ENF,4) micro-operation after a MFLS 
micro-operation that has as its character count the number 
of characters in the sending field. The ENF micro-operation 
is engaged only when the MFLS micro-operation fails to fill 
the receiving field; then, it supplies a sign character to 
fill the receiving field and blanks out the entire field. 

(Flags not listed are not affected) 

ES If OFF and any of C (Y) is less than decimal zero, 
then ON; otherwise, unchanged 

Since the number of characters moved to the receiving string 
is data-dependent, a possible Illegal Procedure fault may be 
avoided by ensuring that the z and BZ flags are ON. 

7-515 DH03-0l 



MORS 

MORS 

SUMMARY: 

FLAGS: 

MORS 

I . Move and OR Sign 17 

IF specifies the number of characters of the sending field 
upon which the operation is performed, where IF = O specifies 
16 characters. 

Starting with the next available sending 
the next IF characters are individually 
following conditional actions occur: 

field character, 
fetched and the 

If SN is OFF, the next IF characters in the source data 
field are moved to the receiving data field and, during 
the move, edit insertion table entry 3 is ORed to each 
character. 

If SN is ON, the next IF characters in the source data 
field are moved to the receiving data field and, during 
the move, edit insertion table entry 4 is ORed to each 
character. 

MORS can be used to generate a negative overpunch for a 
receiving field to be used later as a sending field. 

None affected 

7-516 DH03-0l 



MSES 

MSES 

SUMMARY: 

FLAGS: 

MSES 

· Move and Set Sign 16 

IF specifies the number of characters of the sending field 
upon which the operation is performed, where IF = 0 specifies 
16 characters. 

For MVE, starting with the next available sending field 
character, the next IF characters are individually fetched 
and the following conditional actions occur: 

Starting with the first character during the move, a 
comparative AND is made first with edit insertion table 
entry 3. If the result is nonzero, the first character 
and the rest of the characters are moved without further 
comparative ANDs. If the result is zero, a comparative 
AND is made between the character being moved and edit 
insertion table entry 4. If that result is nonzero, 
the SN indicator is set ON (indicating negative) and 
the first character and the rest of the characters are 
moved without further comparative ANDs. If the result 
is zero, the second character is treated like the first. 
This continues until one of the comparative AND results 
is nonzero or until all characters are movedo 

For MVNE (sign already set), IF characters are moved into 
the receiving string {MSES equivalent to MVC). 

****DPS 88: For MVNEX (sign already set), if characters are 
moved into the receiving string {MSES equivalent to MVC). 

(Flags not listed are not affected) 

SN If edit insertion table entry 4 is found in C (Y-1), 
then ON; otherwise, unchanged 

7-517 DH03-01 



MVC 

MVC 

SUMMARY: 

FLAGS: 

MVC 

· Move Source Characters 15 

IF specifies the number of characters to be moved, where IF 
= O specifies 16 characters. 

The next IF characters in the source data field are moved to 
the receiving data field. 

None affected 

7-518 DHOJ-01 



MVZA 

MVZA 

SUMMARY: 

FLAGS: 

MVZA 

·Move with Zero Suppression and Asterisk 05 
Replacement 

Same as MVZB except that: 

If ES is OFF and the character is zero, then edit insertion 
table entry 2 is moved to the receiving field. 

(Flags not listed are not affected) 

ES If OFF and any of C (Y) is less than decimal zero, 
then ON; otherwise, unchanged 

7-519 DH03-0l 



MVZB 

MVZB 

SUMMARY: 

FLAGS: 

MVZB 

·Move with zero Suppression and Blank Replacement 04 

IF specifies the number of characters of the sending field 
upon which the operation is performed, where IF = 0 specifies 
16 characters. 

Starting with the next available sending 
the next IF characters are individually 
following conditional actions occur: 

field character, 
fetched and the 

If ES is OFF and the character is zero, then edit insertion 
table entry 1 is moved to the receiving field in place 
of the character. 

If ES is OFF and the character is not zero, then the 
character is moved to the receiving field and ES is set 
ON. 

If ES is ON, the character is moved to the receiving 
field. 

(Flags not listed are not affected) 

ES If OFF and any of C (Y) is less than dee imal zero, 
then ON; otherwise, unchanged 

7-520 0803-01 



SES SES 

SES 1· Set End Suppression 03 

SUMMARY: Bit 0 cf IF (IFO) specifies the setting of the ES switch. 

Bit 1 of IF (IFl) specifies if blank when zero option is 
used. 

If IFO 0, the ES flag is set OFF. 

If IFO 1, the ES flag is set ON. 

If IFl 1, the BZ flag is set ON. 

If, IFl o, no action is taken. 

FLAGS: (Flags not listed are not affected) 

ES Set by this micro-operation 

BZ If bit 1 of C(IF) = 1, then ON; otherwise, unchanged 

7-521 Dff 03-01 



Micro Operation Code Assignment Map 

Operation code assignments for the micro-operations are shown in Table 7-1. 
A dash (----) indicates an unassigned code. All unassigned codes cause an Illegal 
Procedure fault. 

Table 7-2. Micro Operation Code Assignment Map 

00 
10 
20 
30 

0 

----
INSB 
LTE 
----

1 

INSM 
INSA 
CHT 
----

Terminating Micro Operations 

2 

ENF 
INSN 
----
----

3 4 5 6 

SES MVZB MVZA MFLS 
INSP IGN MVC MSES 
---- ---- ---- ----
---- ---- ---- ----

7 

MFLC 
MORS 
----
----

The micro-operation sequence is terminated normally when the receiving string 
length is exhausted. The micro-operation sequence is terminated abnormally (with 
an Illegal Procedure fault) if an attempt is made to move from an exhausted 
sending string or to use an exhausted MOP string. 

Micro Operation Example 

1 8 

MVNE 
NDSC4 
ADSC9 
ADSC6 
USE 

MOPLST MICROP 
MI CROP 
MI CROP 
USE 

MVNE 
NDSC4 
ADSC9 
ADSC6 
MVNE 
NDSC4 
ADSC9 
ADSC6 

16 32 

EPACK,5,11,2 PIC 59(10) 
MOPLST,0,9 
PRTOUT+J,0,12 PIC Z(7).999-
DETOUR 
(LTE,l),lH~,(MVZB,7),(SES,8) 
( INSB) , lH • , ( MVC I 3 ) I ( INSN) 
lH-,(LTE,l),lH~,(MVZB,2),(MVC,l) 

FPACK,5,11,2 PIC 59(10) 
MOPLST,0,9 
PRTOUT+6,0,12 PIC z (7) • 999-

SEQPAK, 5 ,3 I 3 PIC 999 
MOPLST+2,l,4 
PRTOUT+l,3,3 PIC ZZ9 

7-522 DH03-01 



SECTION VI II 

FAULTS AND INTERRUPTS 

Faults and interrupts both result in an interruption of normal sequential 
processing, but there is a difference in how they originate. Generally, faults 
are caused by events or conditions that are internal to the processor; but 
interrupts are caused by events or conditions that are external to the processor. 
Faults and interrupts enable the processor to respond promptly when conditions 
occur that require system attention. 

DESCRIPTION OF FAULTS AND INTERRUPTS 

When the processor responds to a fault, interrupt, or special systems entry 
(PMME), the ICLIMB version of the CLIMB instruction is executed. Since this 
version is an inter-domain transfer of control, an entry descriptor is required; 
the entry descriptor is obtained from a fixed memory location. The interrupt, 
fault, special systems entry, and Backup fault (DPS 8 Only) vector locations (in 
real memory) containing the entry descriptors are as follows: 

Location (octal) 

30-31 
32-33 
34-35 
40-41 

FAULT PROCEDURE 

Vector 

Interrupt 
Fault 
Special systems entry 
Backup fault (DPS 8 only) 

When a fault occurs, the processor generates the appropriate fault code and 
executes the !CLIMB version of the CLIMB instruction. During the safe store 
part of the !CLIMB, the generated fault code is stored along with a flag to 
indicate that the safe store frame is the result of the occurrence of a fault 
(bit 11 of word 5 is set to 0). 

If the fault occurred during a multiword instruction, the pointer and length 
registers will be saved in the safe store frame, provided the Stack Control 
Register (SCR) defines the frame size as 64 words. 

The second word of the "wired-in" !CLIMB instruction is assumed as described 
for interrupts. (See "Interrupt Procedure" later in this section.) 

8-1 DH03-0l 



**** DPS 8: If an en try descriptor is not found in the fixed fault vector 
location or if another fault should occur (e.g., a parity error) while the 
processor is attempting to CLIMB to the fault handler, the processor attempts to 
obtain an entry descriptor from the Backup fault vector location. If this second 
location does not contain an entry descriptor, the processor enters the DIS 
state. If the second fault occurs prior to the transfer of control to the new 
domain at the end of the !CLIMB, then the safe store frame will overlay the 
original frame (with the same information except for fault code). If the second 
fault occurs during the transfer of domains, such as a page fault when obtaining 
the next instruction, then a second frame will be filled specifying the new 
domain and the fault code of the type of fault that caused the backup condition. 
**** 

**** DPS 88: If an entry descriptor is not found in the fixed fault vector 
location or if another fault should occur while the processor is attempting to 
CLIMB to the fault handler, SSF is notified and the processor halts. **** 

The processor is placed in the Privileged Master mode for the execution of 
the "wired-in" !CLIMB instruction. Upon exiting the !CLIMB, the processor remains 
in the Privileged Master mode if flag bit 26 of the new instruction segment 
register ( ISR) is 1. If flag bit 26 of the new ISR is O, the processor cycles 
to Master mode. 

FAULT PRIORITY 

Faults are organized into five (DPS 88: seven) groups to establish priority 
for the recognition of a spec if ic fault when two or more faults occur at the 
same time in different groups. See Tables 4-2 (DPS 88: Table 4-4) and 8-1 (DPS 
88: 8-2). 

Only one fault within a priority group can be active at any one time. If 
two or more faults occur concurrently within a priority group, only the fault 
that occurs first through normal program sequence is recognized. 

FAULT RECOGNITION 

Processor detected faults can be categorized in several ways. Table 8-1 
lists the faults in order of the fault code, and shows the priority assigned by 
the processor, and the priority group number. 

Faults in Groups I and II cause the operations in the processor to terminate 
unconditionally. 

**** DPS 8: Faults in Groups III and IV cause the operations in the processor 
to terminate when the operation currently being executed is completed. 

Faults in Group V are recognized under the same conditions that program 
interrupts are recognized. Faults in Group V have priority over program interrupts 
and also can be inhibited from recognition by engaging the inhibit bit in the 
instruction word. **** 

8-2 DH03-0l 



Table 8-1. Processor Faults By Fault Code (DPS 8) 

Octal Group 
Fault Code Code Fault Name Priority Priority 

00000 00 Shutdown (SDF) 23 v 

00001 I 02 Store memory (STR) 9 IV 

00010 04 Master mode entry (MME) 10 IV 

00011 06 Fault tag (FTAG) 13 IV 

00100 10 Timer runout (TROF) 22 v 

00101 12 Command {FCMD) 8 IV 

00110 14 Derail (DRL) 11 IV 

00111 16 Lockup {LUF) 4 II 

01000 20 Connect (CON) 21 v 

01001 22 Parity (FPAR) 7 IV 

01010 24 Illegal procedure (IPR) 12 IV 

01011 26 Operation not completed (FONC) 3 II 

01100 30 Startup (SUF) 1 I 

01101 32 Overflow {FOVF) 6 III 

01110 34 Divide check (FDIV) 5 III 

01111 36 Execute (EXF) 2 I 

10000 40 Security fault, class 1 {SCLl) 14 IV 

10001 42 Dynamic linking {DYNLF) 15 IV 

10010 44 Missing segment (MSE) 16 IV 

10011 46 Missing working space (MWS) 17 IV 

10100 50 Missing page (MPG) 18 IV 

10101 52 Security fault, class 2 (SCL2) 19 IV 

{See NOTE} -- Safe store stack fault (SSSF) 20 IV 

NOTE: The safe store stack overflow fault has no fault code since it may occur 
with any other fault. The fault code is contained in bits 12-16 of safe 
store stack frame word 5. If a safe store stack fault occurs, bit 10 of 
word 5 is set in the safe store frame. Refer to Figure 8-4 for a description 
of the safe store stack. 

8-3 DH03-0l 



Table 8-2. Processor Faults By Fault Code (DPS 88) 

Fault Fault 
Code Mnemonic Fault Name Priority Group 

00000 SDF Shutdown 29 VII 
00001 BND Bound 10 IV 
00010 MME Master Mode Entry 11 v 
00011 FTAG Fault Tag 14 v 
00100 TRO Timer Runout 28 VII 
00101 CMD Command 9 IV 
00110 DRL Derail 12 v 
00111 LUF Lockup 5 II 
01000 CON Connect Recei¥fd 27 VII 
01001 MEMSYS Memory System 6 II 
01010 IPR Illegal Procedure 13 v 
01011 ONC Operation Not Complete 4 II 
01100 SUF Startup 1 I 
01101 OFL Overflow 8 III 
01110 DIV Divide Check 7 III 
01111 EXF Execute 2 I 
10000 SCLl Security Fault, Class 1 17 v 
10001 DYNLF Dynamic Linking 18 v 
10010 MSE Missing Segment 19 VI 
10011 MWS Missing Working Space 20 v 
10100 MPG Missing Page 21 VI 
10101 SCL2 Security Fault, Class 2 22 VI 
10110 -- Undefined 24 VI 
10111 SSSF Safestore Stack Fault 23 VI 
11000 -- Undefined 15 v 
11001 -- Undefined 16 v 
11010 -- Undefined 30 VII 
11011 -- Undefined 31 VII 
11100 ors* DIS Hypermode Entry 25 VII 
11101 crnC: CIOC Hypermode Entry 26 VII 
11110 HTRO Hypertimer Runout 32 VII 
11111 -- Undefined 3 II 

* Hyperclimb only. 
"undefined"8 

If there is no hyperswitcher, these are classified as 

** Parity fault has been renamed as Memory System fault. 

8-4 DH03-01 



FAULT CATEGORIES 

There are four general categories of faults: 

1. Instruction-generated faults. 

2. Program-generated faults. 

3. Virtual memory-generated faults. 

4. Hardware-generated faults. 

Instruction-Generated Faults 

An instruction generated fault can be traced to the execution of a particular 
instruction. It may be an operating system service request or an illegally 
coded instruction. The instruction-generated faults are: 

1. Master Mode Entry (MME) 

A Master Mode Entry instruction was executed. 

2. Derail (DRL) 

A Derail instruction was executed. 

3. Fault Tag 

A fault tag address modifier (F) was recognized. Fault tag is a variation 
of the Indirect then Tally modification. Indirect cycles will terminate 
upon recognition of F, and the operation will not be completed. The 
tag field (bits 30-35} of the instruction or indirect word is set to 
40 (octal) to cause the Fault Tag fault. 

4. Connect (CON} 

The processor received a signal from a system controller (DPS 88: 
Central Interface Unit) indicating that some processor in the system 
executed a CIOC instruction directed to this processor. 

5. Illegal Procedure (IPR) 

An illegal operation code, an illegal address (for instructions using 
the address field to specify a register), an illegal modifier (or 
modifier sequence), or an illegal instruction sequence was used. 

The attempted execution of an illegal instruction sequence or modification 
will generate an IPR fault. The attempted execution of a legal Master 
mode instruction in the Slave mode will cause a Command (FCMD) fault 
(DPS 88: IPR fault). 

The attempted execution of any of the unassigned instruction operation 
codes generates an Illegal Procedure fault. 

An IPR fault occurs for any register specification that contains a tag 
defined as illegal. 

8-5 DH03-0l 



An IPR fault occurs if an attempt is made to repeat any multiword 
instruction with the use of RPT, RPO, or RPL instructions or to XEC or 
XED any multiword instruction. (An XEC instruction may point to a 
multiword instruction; however, the descriptors for the multiword 
instruction must be stored in memory immediately following the XEC 
instruction.) 

An Illegal Procedure fault is generated for each of the following 
conditions when the virtual memory is installed and enabled (DPS 8: 
each condition sets bit O of the fault register). 

An IPR fault occurs for: 

a. any attempt to address through a descriptor of type T 7, 10, or 
12-15 by any instruction; 

b. any attempt to address through a descriptor of type T 5, 8, 9, 
or 11 by any instruction other than CLIMB; 

c. any attempt to address through a descriptor of type T 1 or 3 by 
any instruction other than CLIMB, LDDn, or STDn; 

d. any attempt to address through a descriptor of type T = 1, 3, 5, 
8, 9, or 11 for vectors by the LDDn or CLIMB instruction. 

An IPR fault occurs when a CLIMB instruction is passing parameters (E 
1, ORO = O, 2, 4, or 6) and attempts to use a vector that has S and 

D fields = 00, 1760 (octal) or 00, 1761 (octal) or V = 10 binary. 

An IPR fault occurs when a LDDn instruction attempts to use a vector 
that has sand D fields= 00, 1760 (octal), or V = 10 binary. 

An IPR fault occurs when a LDPn instruction attempts to use an operand 
that has Sand D fields= 00, l760 (octal). 

An IPR fault occurs when the S and D fields of a CLIMB instruction 
have S = 00 and D = 1761, or 1763 through 1767 (octal). 

An IPR fault occurs if the LDDn or CLIMB instruction specifies a shrink 
operation (normal or data stack) of a descriptor with T 5 or 7-15. 

An IPR fault occurs during a CLIMB instruction when a valid entry 
descriptor does not refer to a standard descriptor (T = 0). 

An IPR fault occurs if the OCLIMB version of the CLIMB instruction is 
specified and the Safe Store Bypass Flag (option register bit 19; bit 
3 in DPS 88) is zero. 

An IPR fault occurs during a CLIMB instruction that either was initiated 
by a fault or interrupt or encounters the special systems entry and 
the descriptor accessed from the fixed location is not T = 5, 8, 9, or 
11. 

An IPR fault occurs during the CLIMB instruction if the descriptor 
referenced by the s and D fields is not T = 0; l; 3; 8; 9; o:r lL 
Also, if this descriptor has T = 1 or 3, it must refer to a descriptor 
with T = 5, 8, 9, or 11 or the fault will occur. 

8-6 0803-01 



An IPR fault occurs during an LOSS instruction if the descriptor to be 
loaded into the safe store register (SSR): 

a. Does not have T = 1 or 3. 

b. Has T = 1 but does not have flag bits 20, 21, 27, and 28 
flag bits 25 and 26 = 0. 

1 and 

c. Has T = 3 but does not have flag bits 20 and 21 = 1. 

d. Has a base that is not modulo-2 words (bits 33-35 are not equal 
to 000). 

**** DPS 88: Has a base that is not modulo-8 words (bits 31-35 
are not equal to 00000). **** 

An IPR fault occurs during the LDDSD instruction if the descriptor to 
be loaded into the data stack descriptor register (DSDR): 

a. Does not have T = O. 

b. Has a base that is not modulo-2 words (bits 33-35 are not equal 
to 000). 

**** DPS 88: Has a base that is not modulo-8 words (bits 31-35 
are not equal to 00000.) **** 

c. Has a bound that is not 7 modulo-8 bytes (bits 17-19 are not 
equal to 111) . 

**** DPS aa: Has a bound that is not 31 modulo-32 bytes (bits 
27-31 not equal to 11111). **** 

d. Has flag bit 22 (store; = 1. 

An IPR fault occurs during the LDEAn instruction if the descriptor to 
be loaded does not have T = 4 or 6 [Super descriptor). 

An IPR fault occurs during the LDAS and LOPS instruction if the descriptor 
to be loaded: 

a. Does not have T = 1. 

b. Has a base that is not modulo-2 words (bits 33-35 are not equal 
to 000). 

c. Has flag bit 27 equal to 1 and a bound that is not 7 modulo-8 
bytes (bits 17-19 are not equal to 111). 

An IPR fault occurs when an unconditional transfer (TRA, TSXn), or a 
satisfied conditional transfer (TNZ, TPL, etc.) attempts to load a 
descriptor into the instruction segment register (ISR) that either 
does not have type T O or does not have a modulo-a word base and 
bound. If this fault is detected, the ISR is not changed. 

An IPR fault occurs in the CLIMB instruction when a standard descriptor 
(T = 0) that is to become a new ISR descriptor does not have a modulo-a 
word base and bound. This fault occurs before the domain registers 
are changed. 

8-7 DH03-0l 



Program-Generated Faults 

The program-generated faults occur through some action under the control of 
either the process itself or the operating system. There are three major categories 
of program generated faults, each of which has several subcategories: 

1. Arithmetic Faults 

a. Overflow (FOVF). An arithmetic overflow, exponent overflow, or 
exponent underflow has been generated. The generation of this 
fault is inhibited when the overflow mask is in the masked state. 
Subsequent clearing of the overflow mask to the unmasked state 
will not generate this fault from previously set indicators. The 
Overflow fault mask state does not affect the setting, testing, 
or storing of indicators. 

For the automatic fault on truncation, the processor executes the 
Overflow fault. Note that the overflow mask bit (indicator register) 
will not affect automatic fault on truncation. 

b. Divide Check (FDIV). A Divide Check fault is generated when the 
actual div is ion cannot be carried out for one of the reasons 
specified below: 

1) DIV instruction - If the dividend equals -2**35 and the divisor 
equals zero or minus 1. 

2) DVF instruction - If the absolute value of the dividend is 
greater than or equal to the absolute value 
of the divisor or if the divisor equals 
zero. 

3) FDV, FD!, DFDV, DFDI instructions - If the mantissa of the 
divisor equals zero. 

4) DV2D, DV3D instructions - If the divisor is equal to zero or 
if the quotient is to be stored in 
scaled format and the calculated 
length required for the quotient 
is greater than 63. 

2. Elapsed Time Interval Faults 

a. Timer Runout (TROF). This fault is generated when the timer count 
reaches zero and cycles to minus 1. 

**** DPS 8: If the processor is in Privileged Master mode, the 
recognition of this fault will be delayed until the processor 
returns to the Master or Slave mode; **** 

**** DPS 88: If the processor is in the Privileged Master mode 
or Master mode the recognition of this fault will be delayed 
until the processor returns to Slave mode; **** 

This delay does not inhibit the counting in the timer register. 
(See DIS instruction for an exception to this action.) 

b. Lockup (LUF). The processor remains inhibited for .greater than 
the lockup time. Examples of this condition are the coding TRA 
*, the continuous use of the inhibit bit, or repeat mode loops 
exceeding the lockup time. 

8-8 DH03-0l 



Master mode lockup time is set at 32 milliseconds and Slave mode 
lockup time is specified by the lockup fault register, which can 
be loaded in Privileged Master mode using the LCPR (DPS 88: LOO) 
instruction with the register specified in the tag field (TAG = 
0 2). 

c. Operation Not Completed (FONC). This fault is generated due to 
one of the following conditions: 

1) No system controller is attached to the processor for the 
address specified. 

2) Operation is not completed. An FONC fault can be generated 
by disabling the SCU ports via program control while the 
program is being executed. 

NOTE: A FONC fault can also be generated by hardware 
malfunction. 

3. Command Faults 

4. 

a. ****DPS 8: Attempted execution of instructions requiring Privileged 
Master mode when the processor is not in Privileged Master mode. 
**** 

b. Attempted use of working space register zero in Slave mode, or 
attempted access to working space zero when the processor is not 
in the Privileged Master mode. 

c. **** DPS 8: Answer an XIP (interrupt present) or to execute 
RSCR, SSCR, RMCM, or SMCM inst.ructions with respect to the interrupt 
mask register from a system controller port with no interrupt 
mask register assigned. **** 

d. Use a vector in Master mode or Slave mode with a LDDn or LDPn 
instruction that specifies S = 00 and D = 1761, 1763; or 1764 
(octal) (type change, DSDR or SSR). 

NOTES: 1. A fault or interrupt places the processor in 
Privileged Master mode for the execution of 
"wired-in" !CLIMB instruction. 

the 
the 

2. If a CLIMB instruction specifies the special system 
entry version (PMME), this fault is not checked for 
the access of the new !SR. 

Store Memory (STR) (DPS 88: BND). This fault is generated when: 

a. No physical memory exists for the effective address. 

b. An address is outside the segment boundary. 

c. An attempt is made to select a processor port not enabled. 

d. An attempt is made to access a "not ready" memory. 

8-9 DH03-0l 



e. An attempt is made to use absolute addressing or dense paging 
with a relative virtual address > 2**24 words (DPS 88: 2**26 
words). 

f. An attempt is made to access the contents of an empty segment 
(flag bit 27 0) of a type T = 0, 1, or 4 segment}. 

NOTES: 1. When "pushing" descriptors on the argument segment 
during the execution of the SDR_!! or CLIMB instruction, 
the fault does not occur if flag bit 27=0 but does 
occur if ASR bound plus 8 bytes > 8192 bytes (2K 
words). 

2. If this fault occurs for any version of the CLIMB 
instruction, it is generated when the new descriptor 
for the instruction segment register (ISR) is obtained. 

g. An attempt is made to access the contents of a type T = O, 1, ~' 
or 3 segment and: 

h. 

a. The upper or lower bound is exceeded. 

b. The addition of the base and the effective address fields 
produces a carry. 

An attempt is made to access the contents of a type T 
segment and: 

a. The bound field is exceeded. 

4 or 6 

b. The addition of either the location and effective address 
fields or the location, effective address, and base fields 
produces a carry. 

i. The E field is 1 during the execution of the CLIMB instruction, 
descriptor register O contains a T=l descriptor (parameters are 
framed by descriptor register 0), and P+l > ORO bound, or ORO 
flag bit 27=0 (bound not valid) 

j. Boundary violations occur in the shrink operation as indicated in 
the descriptions for the LDDn instruction, or when preparing 
descriptors during a CLIMB instruction. 

k. An attempt is made to execute a multiword instruction that specifies 
6-bit or bit string data in a segment whose base or bound is not 
modulo-2 words. 

1. **** DPS 88: When a T = 6 descriptor is loaded into a DRn and 
the base or bound calculation for forming the standard descr1ptor 
produces a carry or borrow repectively. **** 

Virtual Memorv-Generated Faults 

Virtual memory-generated faults are: 

1. Security Fault, Class 1 (SCLl) 

A Security Fault, Class 1, occurs: 

a. Upon an attempt to obtain instructions via a sequential instruction 
fetch, an unconditional transfer, a satisfied conditional transfer, 
or a CLIMB instruction in one of the illegal processor modes 
specified in Table 8-3. 

8-10 DH03-0l 



Table 8-3. Processor Modes 

Privileged Master Slave Illegal 
Bit Status Master Mode Mode Mode Combinationl 

Master Mode ON ON OFF ON OFF OFF OFF 
Bit in Indicator 
Register (IR) 

Privileged Bit in ON OFF OFF ON ON ON OFF 
Instruction Segment 
Register 

Housekeeping Bit 32 in ON ON OFF OFF OFF ON OFF ON 
Page Table Word (PTW) 

the Instruction2 for 

1 Results in a Security Fault, Class 1. 

2 The housekeeping bit is assumed to be ON when working space zero is referenced 
and the processor addresses real memory directly. (There is no page table 
from which to retrieve the housekeeping bit.} 

b. Upon an attempt to modify a housekeeping page of a type T = O, 2, 
4, or 6 segment in Master mode. 

Housekeeping pages of type T = 1 or 3 segments may be modified in 
Master mode under the following conditions: 

1) CLIMB instruction - Safestore and push parameters on the 
argument stack. 

2) SORn instruction - Push to the argument stack. 

3) STOn instruction 
1 or 3. 

If instruction bit 29 = 1 and ORm is T 

c. Upon an attempt to access or modify a housekeeping page of a type 
T = O, 2, 4, or 6 segment in Slave mode. 

NOTE: When a CLIMB instruction is executed in Slave Mode and it 
invokes the special systems entry (PMME) , the Security Fault, 
Class 1, occurs if E = 1, ORO = 0, 2, 4, or 6, and a 
housekeeping page is accessed. 

This condition cannot occur for the SORn instruction but occurs 
for the LOP~, LOO~, CLIMB, and STOn instructions as follows: 

1) LOPn - Operand access. 

2) LOOn - Vector access(es) and data stack clear. 

3) CLIMB - Vector access(es) and the access for the second word 
of the instruction. If the systems entry (PMME) ·is invoked, 
the fault detection is not overridden. 

8-11 OH03-0l 



4) STD,!! - Instruction bit 29 = 1, DRm type T = O, 2, 4, or 6. 

d. Upon an attempt to access or alter a nonhousekeeping page of a 
type T = 1, 3, 8, 9, or 11 segment. 

This condition only occurs for the LDD_!!, LDPE, CLIMB, SDR,!!, and 
STDri instructions. Any other reference to a type T = 1 or 3 
segment causes an IPR fault. The conditions under which the Security 
Fault, Class 1, can occur are: 

LDD,!! or LDPn - Accesses of descriptor from parameter segment 
(S = 00, D < 1760), argument segment (S = 
10), or linkage segment (S = 01 or 11). 

LDDn 

CLIMB 

STDn 

SDRn 

- Instruction bit 29 = 1, DRm is type T = 1 or 
3. 

- Accesses to obtain the new LSR and !SR 
descriptors. 

- Accesses for safe store or restore. 

- Accesses to the parameter, argument, or linkage 
segments for descriptors to be passed. 

- Accesses to the argument segment to store 
parameters. 

- Instruction bit 29 
or 3. 

1 and DRm is type T 

- Write to argument segment. 

1 

2. Dynamic Linking Fault (DYNLF) 

A Dynamic Linking fault occurs if the S,D field of a programmed CLIMB 
(CALL, LTRAS, LTRAD) points to a dynamic linking descriptor (T = 5), 
or to an indirect descriptor (T = 1 or 3) which points to a dynamic 
1 inking descriptor. Any attempt by any other instruction to address 
through a dynamic linking descriptor causes an IPR fault. 

3. Missing Segment Fault (MSE) 

A Missing Segment fault is generated when an attempt is made to access 
memory using a segment descriptor that has flag bit 28 equal to zero. 
This condition can occur only with descriptor types T = O, 1, or 4. 

4. Missing Working Space Fault (MWS) 

A Missing Working Space fault is generated during virtual to real 
memory mapping when the word obtained from the working space page 
table directory has bit 20 (DPS 88:bit 23), page table missing/present, 
equal to zero. 

5. Missing Page Fault (MPG) 

A Missing Page fault is generated during virtual to real memory mapping 
when the page table word has bit 30 (page missing/present) equal to 
zero or, in the case of a fragmented page table, no key match is found 
(DPS 8/70, 8/50, 8/52, 8/62: or multiple key matches are found). 

**** DPS 88: Word 1, bit 35 of the safe store frame is defined as the 
Demand Paging Recovery Flag (DPRF). DPRF has a defined· value only 
when a Missing Page fault occurs. The value of DPRF is undefined for 
all other faults. 

8-12 DH03-0l 



When a Missing Page fault occurs the processor stores an appropriate 
value in DPRF to indicate whether or not the fault is recoverable if 
software supplies the missing page and returns to the program. 

O Missing Page fault is not recoverable 
1 = Missing Page fault is recoverable **** 

**** DPS 8/20, 8/44: Word 5, bit 0 of the safe store frame is defined 
as the Retry Flag (FRTRY). FRTRY has a defined value only when a 
Missing Page fault occurs. The value of FRTRY is undefined for all 
other faults. 

When a Missing Page fault occurs the processor stores an appropriate 
value in FRTRY to indicate whether or not the fault is recoverable if 
software supplies the missing page and returns to the program. 

O = Missing Page fault is recoverable 
1 = Missing Page fault is not recoverable **** 

Recoverable means that if the faulting instruction did not modify the 
instruction being executed, or any of its string descriptors, and if 
software pages in the missing page, updates the PTW, and OCLIMBs; then 
execution is resumed exactly as if the fault had not occurred, except 
for the time delay. 

**** DPS 88: The only reasons for which the processor sets DPRF O 
(not recoverable) in the safe store frame are: 

a. Occurrence of a Missing Page fault while executing an RPT, RPO, 
or RPL instruction. 

b. Occurrence of a Missing Page fault while executing one of the 
pair of instructions pointed to by an XED instruction. Note that 
if a Missing Page fault occurs while fetching the pair of instructions 
pointed to by an XED instruction, the hardware sets DPRF = 1 in 
the safe store frame. 

c. Occurrence of a Missing Page fault during indirect and tally 
operations in which the number of indirect tally words updated 
(ITC) is> 7. See word O, bits 14-17. **** 

**** DPS 8/20, 8/44: The only reasons for which the processor sets 
FRTRY = 1 (not recoverable) in the safe store frame are: 

a. Occurrence of a Missing Page fault while executing an RPT, RPO, 
or RPL instruction. 

b. Occurrence of a Missing Page fault while executing an instruction 
pointed to by an XEC or XED instruction. 

c. Occurrence of a Missing Page fault during an indirect and tally 
operation. **** 

**** DPS 88, DPS 8/20, 8/44: Before the EIS numeric, MVE, OTB, or BTD 
instructions will execute, all pages containing parts of the operands 
and pages in which the results will be stored must be in memory 
concurrently. Thus, in processing a Missing Page fault on one of 
these instructions, the paging software should not remove one of the 
pages referenced by the instruction; otherwise, upon return to the 
instruction, another Missing Page fault will occur. **** 

**** DPS 88: On an indirect and tally chain the same indirect word 
must not be referenced more than once. On a recoverable ·tally chain 
(ITC< 7 when Missing Page fault occurs), the hardware will "rewalk" 
the chain, requiring that all pages in the chain remain in memory 
before the operand can be reached. **** 

8-13 DH03-01 



**** DPS 8/70, 8/50, 8/52, 8/62: There is no hardware retry bit for 
the processor. Software can analyze the faulting instruction to determine 
whether recovery is possible. If it finds any of the three conditions 
listed above for the DPS 8/20 or 8/44 processor, or if it finds an EIS 
instruction with overlapped operands, then it must not resume the 
operation. EIS instructions interrupted by Missing Page faults must 
not be resumed from the point of interruption, but must be restarted. 
**** 

6. Security Fault, Class 2 {SCL2) 

A Security Fault, Class 2, is generated for the following flag field 
violations on descriptors and page table words: 

a. In a segment descriptor, if an attempt is made to violate flag 
bits 20, 21, 22, or 25 (read, write, store, or execute) as follows: 

1) An attempt is made to read any type of data (except instructions 
for execution and for the ISR in the CLIMB instruction) from 
a segment whose descriptor has flag bit 20 = 0 (read not 
allowed). 

2) An attempt is made to alter (write) a segment whose flag bit 
21 = 0, except when pushing descriptors on the argument stack 
during the CLIMB or SDR~ instructions. 

3) An attempt is made to store data into type T = 1 or 3 segments 
using the STDn instruction and the descriptor being stored 
does not have store permission (bit 18 of an entry descriptor 
with type T = 8, 9, or 11; bit 22 for all other descriptor 
types) . 

4) An attempt is made to execute a transfer instruction to a 
segment in which the execute control flag (bit 25) is not 
equal to 1. This fault is also detected in the CLIMB instruction 
when the new ISR is obtained and before any registers have 
changed. 

b. In a page table word, if an attempt is made to violate flag bit 
31 (write control). 

A Security Fault, Class 2, is generated when bits 18 and 19 (working 
space access control) of the page table directory word do not match 
bits 0 and 1 of the 36-bit relative virtual address (attempt to violate 
working space). 

This fault is also generated as follows during the execution of the 
OCLIMB version of the CLIMB instruction if the data being loaded from 
the safe store frame is incorrect: 

a. The descriptor to be loaded into the ISR does not have the following 
format: 

1) Type field T = O. 

2) Flags field bits 25, 27, and 28 1. 

3) Base field = 0 modulo-32 bytes. 

4) Bound field= 31 modulo-32 bytes. 

b. The descriptors to be loaded into the PSR and ASR do not have the 
following format: 

1) Type field T = 1. 

2) Base = 0 modulo-8 bytes. 

8-14 DH03-01 



3) Bound = 7 modulo-a bytes when flag bit 27 = 1. 

c. The descriptor to be loaded in to the LSR does not have the following 
format: 

1) Type field T = 1. 

2) Flags field bits 20, 22, 23, 27, and 28 = 1, and bits 21, 
24, 25, and 26 O. ****DPS aa: Bits 23 and 24 are not 
checked. **** 

3) Base field = O modulo-a bytes. 

4) Bound field = 7 modulo-a bytes. 

A Security Fault, Class 2, is generated on intersegment transfers when 
flag bit 25 = 0 in the descriptor for the target segment. 

7. Safe Store Stack F~ult (SSSF) 

The Safe Store Stack fault occurs in conjunction with the CLIMB instruction 
(programmed, or as the result of a fault or interrupt), to report to 
the operating system that the safe store stack has only one or two 
64-word frames remaining. This fault occurs and is reported as follows: 

a. Programmed CLIMB 

Programmed CLIMB. After completing the safe store on a programmed 
Inward CLIMB (S~R base and bound have been updated), if SSR bound 
< 191 words + 3 bytes, then the hardware does not access the 
instruction pointed to by the new !SR and IC, but executes the 
Safe Store Stack fault, which causes another safe store stack 
frame to be stored. This frame contains the "transferred to" 
domain registers from the programmed CLIMB. Word 5, bit 10 (SSSF) 
is set to one, and the fault code in bits 12-16 of word 5 are set 
to: 

**** DPS a 000000 **** 
**** DPS aa 10111, to indicate the Safe Store Stack fault. **** 

b. Fault or Interrupt CLIMB 

While generating the safe store frame, the hardware updates the 
SSR base and bound to determine whether a Safe Store Stack fault 
should be indicated in the safe store frame along with the original 
fault or interrupt. If SSR bound < 191 words + 3 bytes, then the 
hardware sets word 5, bit 10 (SSSF) to one, leaving the original 
fault code (DPS a: or interrupt cell i) in word 5, bits 12-16. 
The Safe Store Stack fault will NOT be executed; a separate safe 
store stack frame will NOT be stored. 

NOTE: GCOS 8 monitors the SSSF bit in each fault or interrupt 
frame in the safe store stack and initiates appropriate 
action whenever this bit is 1. 

c. Refer to Figures a-3 (DPS aa} and a-4 (DPS a) for a description 
of the safe store stack. 

a-15 DH03-01 



8. **** DPS 8: Backup Fault 

A Backup fault occurs if a fault or interrupt occurs during the initiation 
of a "wired-in" !CLIMB instruction, or if any fault occurs during the 
execution of this !CLIMB. **** 

Hardware-Generated Faults 

The hardware generated faults generally occur due to a failure in the hardware. 
The hardware generated faults are: 

1. Operation Not Completed (FONC). This fault is generated due to one of 
the following conditions: 

a. The processor did not generate a memory operation within 1 to 2 
milliseconds and is not executing the Delay Until Interrupt Signal 
(DIS) instruction. 

b. The system controller (DPS 88: Central Interface Unit) terminated 
a double-precision cycle. 

c. When returning to an interrupted multiword instruction, incorrect 
data is loaded into the Pointer and Length Registers. 

2. **** DPS 8: Parity (FPAR). This fault is generated when a parity 
error is detected in any of the following: 

a. Single- or double-word fetch. If the odd instruction contains a 
parity error, the instruction counter retains the location of the 
even instruction. 

b. Indirect word fetch. If a parity error exists in an Indirect 
then Tally word in which the word is normally altered and replaced, 
the contents of the memory location are eliminated. 

c. Operand fetch. When a single-precision operand, C (Y), is requested, 
the contents of the memory pair at Y, Y+l where Y is even, or 
Y-1,Y where Y is odd, are read from memory. The system controller 
will not report a parity error if it occurs in C(Y+l) or C(Y-1), 
but will restore the C(Y+l) or C(Y-1) with its parity bit unchanged. 

d. On any instruction for which the C (Y) are taken from a memory 
location (this includes the "to storage" instructions such as ASA 
and ANSA), the processor operation is completed with the faulty 
operand before entering the fault routine. 

e. On data from the system controller. 

f. On data from the processor data bus. 

g. On zone-address-coroIDand (ZAC) lines in the system controller and 
memory units. 

The generation of this fault is inhibited when the Parity Mask indicator 
is in the masked state. Subsequent clearing of the parity mask to the 
unmasked state will not generate this fault from a previously set 
Parity Error indicator. The parity mask does not affect the setting, 
testing, or storing of the Parity Error indicator. **** 

8-16 DH03-01 



3. **** DPS 88: Memory System (MEMSYS). This fault occurs on the following 
conditions: 

a. The data transfer from the CIU to the CPU is invalid. The selected 
CIU has returned a "fatal error• signal. 

b. An uncorrectable EDAC error has been detected by the CIU resident 
logic; note that detection is on an 8-word block basis. 

c. The processor has detected a parity error in the CIU interface 
port while verifying incoming parity. This condition will cause 
the CPU to Halt, in contrast to the prior system taking a fault; 
however, the resultant action may be a fault (SSF support is 
required). 

4. Power Signal Faults. The power signal faults are as follows: 

a. Startup (SUF) - **** DPS 8: A Startup fault is generated when 
power restoration is detected. The operating system ignores the 
Startup fault. **** 

**** DPS 88: The Startup fault shall originate from the SSF 
maintenance computer; when the corresponding ASR control bit is 
set the Startup Fault shall be generated. **** 

b. Shutdown {SDF} - **** DPS 8: A Shutdown fault is generated when 
an impending power failure is detected. This fault is normally 
initiated by the frequency sensor that indicates decreasing 
rotational speed of the motor generator providing prime power to 
the system. The operating system ignores Shutdown faults. **** 

**** DPS 88: The power monitoring functions of the DPS 88 systems 
have detected a System shutdown condition. The Processor is notified 
via a signal sent to the collector which will cause a SDF fault. 
The source of the SDF fault can be the PASA or the SSF via an ASR 
control bit. **** 

c. Execute {EXF) - **** DPS 8: An Execute fault is generated when 
the EXECUTE switch on the processor maintenance panel is depressed. 
**** 

**** DPS 88: The Execute Fault shall originate from the SSF 
maintenance computer; when the corresponding Processor ASR control 
bit is set, the Execute Fault shall be generated. The Maintenance 
Panel Function (MPF) via the SSF provides the equivalent to the 
Execute pushbutton used on the prior systems. **** 

5. **** DPS 8: Store Memory (STR) Fault. An STR fault is generated when 
an associative memory error occurs. However, an associative memory 
error is not detected during the execution of the STPDW or STPTW 
instruction. **** 

8-17 DH03-0l 



MODE FAULTS 

Privileged Master Mode Faults 

When the processor is in Privileged Master (nonabsolute addressing) mode, 
all instructions must be fetched from a housekeeping pages of type T = 0 segments. 
An attempt to obtain an instruction from a nonhousekeeping page causes a Security 
Fault, Class 1. An exception applies for those instructions executed by an XEC 
or XED. Such instructions may be accessed from either housekeeping or 
nonhousekeeping pages. 

References to type T = O, 2, 4, and 6 segments to access or alter data 
other than instructions may be to either housekeeping or nonhousekeeping pages. 
References to type T = 1 and 3 segments for descriptors must be to housekeeping 
pages or a Security Fault, Class 1, will be generated. 

Master Mode Faults 

When the processor is in Master mode, instructions may be fetched from 
housekeeping or nonhousekeeping pages of type T = 0 segments; operands may be 
fetched from housekeeping or nonhousekeeping pages of type T = 0, 2, 4, or 6 
segments. However, operands may not be stored on housekeeping pages (only Privileged 
Master mode instructions may modify these housekeeping pages); any attempt to 
modify a housekeeping page in Master mode causes a Security Fault, Class 1. 

The only instructions that may modify type T = 1 or 3 segments without 
generating an IPR fault are the CLIMB (safe store and pushing parameters on the 
argument stack), the SDRn, and the STDn instructions. For these operations, 
housekeeping pages must be referenced or a Security Fault, Class 1, is generated. 

Slave Mode Faults 

When the processor is in Slave mode, instructions must be fetched from 
nonhousekeeping pages of type T = 0 segments. Attempt to obtain an instruction 
from a housekeeping page shall result in a Security Fault, Class 1. Operands 
must be fetched from or stored into nonhousekeeping pages of type T = 0, 2, 4, 
or 6 segments. Since descriptors in type T = 1 or 3 segments are not treated as 
operands, they may be stored or fetched from housekeeping pages in Slave mode. 
Thus, the SDRn and STDn instructions may store the contents of a DRn in a type T 
= 1 or 3 segment, but the page must be a housekeeping page; otherwise, a Security 
Fault, Class 1, is generated. Also, the LDDn, LDPn, and CLIMB instructions may 
obtain descriptors from a type T = l or r segment, but the page must be a 
'------•----.!-- ----- -.&....1-----!-- - ,, _____ .:.&.... __ ~- _,L.. ,..., ___ "t !- ------.L..-...:1 
uuu:::H::!Kt::t::l:'l.lll::J l:'GlYt::; Ul..llt::l. w J.::>t::, Cl i:lt::\,;UL J. l..Y r c::l.UJ.. I..' \..J..c::I.::>::> .1., J.::> yt::llt::l. Cl l..t::U. 

Any Mode Faul ts 

Instructions that may refer to type T = 1 or 3 segments (LDPn, LDDn, SDRn, 
STDn, and CLIMB) must refer to a housekeeping page when obtaining or storing the 
identified descriptor or safe store data; otherwise, a Security Fault, Class 1, 
is generated. 

8-18 DH03-0l 



Privileged instructions (such as LOSS, LDAS, and STSS) that load descriptors 
from type T = O, 2, 4, or 6 segments into registers, or store descriptors from 
registers into segments, do not require the housekeeping bit. 

Nonprivileged instructions (such as STAS, STPS, and STD,!!) that store descriptors 
from registers into T = O, 2, 4, or 6 segments do not require the housekeeping 
bit. (However, the STD,!! instruction may refer to either main memory or descriptor 
memory.) 

MISCELLANEOUS FAULTS 

Segment Descriptor Flag Faults 

The flags field in a segment descriptor provides the operating system software 
a procedure for assigning use attributes to the address space framed by the 
segment descriptor. Once assigned by software, these attributes defined by the 
flags field are hardware-enforced. The following is a discussion of the use of 
the flags field and the manner in which faults are generated upon an attempt to 
"violate" one of the flags. The definition of the flags field is given under 
"Memory Characteristics" discussed earlier in this document. 

1. Read/Write Permission Flags (bits 20-21) - The read/write flags apply 
to memory accesses for operands, descriptors, and indirect words from 
T = O, 1, 2, 3, 4, and 6 segments (obtaining instructions from a 
segment is con trolled by the execute flag) • Thus, in preparing the 
operand address for a read-from-memory instruction (e.g., LOA), the 
hardware checks the read flag to determine if a read from memory is 
allowed; if not allowed, the hardware terminates the operation with a 
Security Fault, Class 2, and the page accessed bit in the PTW is not 
set. In a similar manner, when preparing the operand address for 
store-to-memory instructions (e.g., STA), the hardware checks the write 
flag to determine if a store operation is allowed in the segment; if 
not, a Security Fault, Class 2, is generated, the page accessed and 
modified bits in the PTW are not set, and the operand is not stored. 

Write permission is not needed for the SDRn instruction, for pushing 
descriptors on the argument segment in the-CLIMB instruction, or for 
the STDn instruction when bit 29 = 1 and the descriptor in DRm has ~ = 
1 or 3. 

When a read-alter-rewrite opera ti on (e.g., AOS instruction) is performed, 
the write flag is checked on the read cycle. Thus, if write permission 
is not allowed, a Security Fault, Class 2, occurs before the read 
portion is executed, preventing any change in the indicators. 

All indirect operand address preparation requires the segment to have 
read permission to obtain the indirect word. For an Indirect then 
Tally operation, the segment must have both read and write permission; 
read permission to obtain the indirect word and write permission to 
store it. If these permissions are not granted, a Security Fault, 
Class 2, is generated. 

8-19 DH03-0l 



The segment descriptor contained in the instruction segment register 
(ISR) must have execute permission (see following description of execute 
flag). 

**** DPS 88, DPS 8/20, 8/44: Read permission is not required to access 
a current instruction segment. Thus, in preparing an operand address 
using the ISR (bit 29 of instruction= 0 or, for multiword instructions, 
the AR bit of the MF field= 0), a read-from-memory is always permitted 
independent of the read flag (write flag must still be checked as 
described above for a store operation). The execute flag overrides 
the read flag only when the descriptor is in the ISR. **** 

When an XEC or XED instruction refers to its operand with bit 29 ON 
(using some DRn), the operand descriptor in the DRn must provide read 
permission (execute permission is not required). -

2. Store By STDn Permission Flag (bit 22; or bit 18 of T = 8, 9, and 11 
descriptors) - This flag is checked by the hardware only during the 
execution of an STDn instruction that is to store a DRn in a T = 1 or 
3 segment. An attempt to save a DRn in a T = l or 3 segment with the 
DRn store flag bit = O causes a Security Fault, Class 2. 

3. **** DPS 8: Bypass Cache Flag (bit 23) - Cache memory control operates 
as follows: 

a. The execution of one of the three read-and-clear memory instructions 
LDAC, LDQC, and SZNC does not cause the cache to be cleared. 
Also, operand fetches for these three instructions are always 
made from main memory, bypassing the cache. However, if a directory 
match occurs for the operand, the directory location is cleared. 

b. The execution of the Clear Cache (CCAC) instruction clears the 2K 
memory, but does not clear the SK cache memory. 

c. The Cache Read Control Flag {CRCF) in the option register affects 
only operand reads from cache; instruction reads from cache continue 
to operate normally. When CRCF = 0, the cache is bypassed on all 
operand reads; if a directory match occurred for the operand, the 
directory location is cleared. When CRCF = 1, operand reads from 
cache operate normally. 

The CRCF has no effect on operand store operations; an operand 
store operation goes to backing store and, if a directory match 
occurs, the operand is also stored in cache memory. 

This control is subordinate to the mode register control. 

d. The CRCF also determines the type of memory command the processor 
sends to the Systems Control Unit {SCU) when performing operand 
read/store operations for all read-alter-rewrite {RAR) instructions. 
If CRCF 0 on RAR instructions, the processor generates a 
read-lock/write-unlock command sequence to the SCU; if a cache 
directory match occurs, the directory location is cleared. 

If CRCF = 1 on all RAR instructions and a directory match occurs, 
the operand is read from 
cache and backing store, 
store command to the SCU. 
the processor generates a 
(the lock function is not 

l.:al.:ut:, modified, and stored to both 
and the processor generates a normal 
When a directory match does not occur, 
normal RAR command sequence to the SCU 
invoked). **** 

8-20 DH03-0l 



e. **** DPS 8/20, 8/44: When flag bit 23 of a segment descriptor 
with type T = O, 1, or 4 is O, cache memory is bypassed on all 
memory references using the descriptor. However, if a cache 
directory match occurs in a store operation (this should not normally 
happen), the operand will be stored both in cache· and backing 
memory, but on a read operation cache is not interrogated. To 
avoid any inconsistency, operating system software ensures that 
this situation does not occur. 

The above applies to both instruction and operand fetches. For 
example, if the descriptor in the ISR has flag bit 23 = 0, the 
cache is bypas·sed on all instruction fetches and all operand fetches 
not specifying a DRn; but if the instruction specifies a DRn for 
the operand address-and the DRn has flag bit 23 = 1, normal cache 
usage would apply to the operand fetch. **** 

f. **** DPS 8: Cache is not cleared upon the occurrence of an external 
interrupt. 

g. If the virtual memory option is enabled but cache memory is not, 
the execution of the CCAC instruction results in no operation. 
Flag bit 23 has no effect on the operation, and the CRCF bit in 
the option register controls the command sequence generated by 
the processor to the SCU for RAR instructions as follows: 

If CRCF O, a read-lock/write-unlock sequence is generated. 

If CRCF 1, a normal read/write sequence is generated. 

At processor initialization, cache is cleared and disabled (turned 
OFF}; it remains disabled until enabled by operating system software. 
When cache memory is disabled, flag bit 23 has no effect on the 
operation. **** 

4. · Execute Flag (bit 25) - The execute flag determines whether instructions 
from the segment may be executed. A segment that has execute permission 
does not require read permission in order to execute instructions; to 
execute instructions encompasses reading them from memory (instruction 
fetch). 

The execute flag is checked by the hardware before a new instruction 
segment descriptor is loaded into the ISR during execution of the 
CLIMB instruction or one of the transfer instructions that has bit 29 
= 1. Thus, if an attempt is made to load the ISR with a descriptor of 
type T = 0 that has flag bit 25 = 0 (no execute), a Security Fault, 
Class 2, is generated. 

5. Privileged Flag (bit 26) - The privileged flag applies only to instruction 
segments. To load the ISR with a descriptor of type T = O that has 
flag bit 26 = 1 {privileged}, the Master Mode indicator bit must be ON 
(except during an OCLIMB, ICLIMB, PCLIMB, or GCLIMB instruction that 
either invokes the special systems entry or is the result of a fault 
or interrupt}; otherwise, a Security Fault, Class 1, occurs. With the 
processor executing in Privileged Master mode, operands and instructions 
executed by an XEC or XED may originate from nonprivileged segments. 
When the processor is in Master mode or Slave mode, the instructions 
executed by an XEC or XED may originate from a privileged segment; 
that is, the hardware does not check the privileged bit of the segment 
from which the XEC or XED instruction obtains the instructions to be 
executed. 

8-21 DH03-0l 



6. Bound Valid Flag (bit 27) - The bound valid flag specifies that the 
bound field of the descriptor is valid (the descriptor describes a 
nonempty segment). Any attempt to access an empty segment of type T = 
O, 1, or 4 (flag bit 27 = 0) results in a STR or BND fault. The 
hardware does not allow the !SR to be loaded with the descriptor in 
which th~ bound is not valid. The bound valid flag has a somewhat 
different use with respect to the ASR in that descriptors may be pushed 
on the argument stack when the stack descriptor indicates not valid 
and ASR flag bit 27 is set to 1 by the hardware {see the CLIMB and 
SOR~ instructions). 

7. Available Segment Flag (bit 28) - The available segment flag indicates 
if the segment is present in real memory (bit 28 = 1). Any attempt to 
generate a memory address using a type T = O, 1, or 4 segment descriptor 
that has bit 28 = O (segment not available) causes a Missing Segment 
fault. The hardware does not allow the !SR to be loaded with a "missing" 
segment descriptor. For type T = 2, 3, or 6 descriptors, the segment 
present bit is assumed to be 1 and the segment must be available. 

Page Table Word Control Field Faults 

Certain control field bits of the page table word (PTW) are monitored by 
the hardware and may cause particular faults to occur. Each bit of the PTW 
control field and associated faulting is discussed below (the PTW format is 
described in Section V). 

1. Processor Page Present/Missing Control Field (bit 30) - Each time the 
processor hardware fetches a PTW in mapping a virtual address to a 
real address, control field bit 30 is checked. If bit 30 = 0 (page 
missing), a Missing Page fault 'is generated; if bit 30 = 1 (page 
present), the operation continues. 

2. Write Control Field (bit 31) - The PTW control field bit 31 provides 
for controlling a memory write operation to the page level by processors 
and IOX (but not !OM). Even though the segment containing the page 
may have flag field write permission, writing (altering) the page may 
be denied at the page level. Thus, a memory store (write) operation 
requires both segment descriptor flag field write permission and PTW 
control field write permission. If a PTW has write permission, but 
the segment descriptor does not, the segment write condition takes 
precedence, causing a Security Fault, Class 2. 

The segment descriptor write flag is checked during operand address 
preparation for a store-to-memory operation; if write permission is 
denied, the instruction is terminated and the PTW write control field 
is not checked. 

Thus, when a store-to-memory operation proceeds to the point where the 
PTW is obtained, PTW bit 31 is checked. If bit 31 = 1 (write permission), 
the operation continues; if bit 31 = 0 (write denied), the operation 
terminates with a Security Fault, Class 2. 

8-22 0803-01 



3. Housekeeping Control Field (bit 32 - Processor only) - The housekeeping 
bit of the PTW control field allows operating system software to assign 
certain mode-dependent use attributes on a page basis. The hardware 
monitors the PTW housekeeping bit on all instruction fetches, all operand 
fetches and stores, and all descriptor fetches and stores. The 
instructions and operands must be contained in a segment described as 
a typ~ T = O, 2, 4, or 6 descriptor and the pages may be assigned as 
housekeeping or nonhousekeeping pages. Descriptors to be used by a 
process must be contained in a type T = 1 or 3 segment and the pages 
must be assigned as housekeeping pages or the operation terminates 
with a Security Fault, Class l. 

4. IOM or IOX Page Present/Missing Control Field (bit 33) - This bit is 
not monitored or changed by the processor hardware. 

5. Page Modified Control Field (bit 34) - Each time a processor performs 
a write (store) on a page and bit 34 of the PTW = O, the hardware sets 
bit 34 of the associated PTW = 1 to indicate that the page has been 
modified. No fault is associated with bit 34. 

6. Page Access Coqtrol Field (bit 35) - Each time a page is accessed by a 
processor (either read or write) and bit 35 of the PTW = O, the hardware 
sets PTW bit 35 = 1 to indicate that the page has been accessed. No 
fault is associated with bit 35. 

Mode Register Fault Traps (DPS ~ Only} 

With the virtual memory option installed in the processor and enabled, the 
mode register functions as described below: 

1. Bits 0-14 of the mode register are used as the modulo-8 real memory 
word address of the vector location from which the fault hardware 
obtains an en try descriptor. This address formed by the hardware is 
shown below: 

0 0 0 2 2 2 2 

Figure 8-1. Fault Trap Address 

xx - bits 21 and 22 are supplied by the hardware according to trap 
conditions as follows: 

xx 00, not used 
xx 01, op code trap 
xx 10, counter overflow 
xx 11, address match trap 

2. The "trap on address match" is a comparison of the addres$ switches on 
the maintenance panel with the 18-bit effective word address, which 
consists of y + Xn + ARE. 

8-23 DH03-0l 



3. When one of the above three fault traps occurs, the resulting safe 
store frame uniquely identifies the fault as follows: 

a. Bit 9 of word 5 is set to 1. 

b. The 5-bit fault code is: 

00001 - op code trap 
00010 - counter overflow 
00011 - address match trap 

Input-Output Multiplexer (IOM)-Detected Faults (DPS ~ Only) 

The input-output multiplexer provides for the detection and indication of 
abnormal operating conditions, or faults. The two classes of faults recognized 
by the !OM are: 

1. User faults 

2. System faults 

USER FAULTS 

A user fault is an abnormal condition that may be caused by a user program 
operating in Slave mode in the processor. A user fault may be detected by the 
!OM Central or by a channel. If it is detected by the IOM Central, the fault is 
indicated to the channel and the channel is responsible for reporting the fault 
as a status in its regular status queue. A user fault condition does not cause 
the channel to be masked by the hardware, al though the software may mask the 
channel. Because of their timing relationships, certain hardware malfunctions 
must be reported as user faults. 

User faults are reported to the software in the channel status word as 
described below. 

0 
_Q_ 

1 1 2 2 2 2 3 
"]___ _8_ _Q_ l 3_ A 5_ 

!OM 
Peripheral Status Chan. Cent. Peripheral Status 

Figure 8-2. Channel Status Word 

Chan. - Bits 18-20 indicate the channel status as determined by the 
channel. 

IOM Cent. - Bits 21-23 indicate the central status as it was received from 
the IOM Central. 

8-24 DH03-0l 



IOM Central-Detected User Faults 

IOM Central faults are encoded on the user fault flag lines at the completion 
of service to the channel. The channel returns this code in the status word 
exactly as it is received from the IOM Central. The IOM Central status codes 
are given in Table 8-4. 

Table 8-4. IOM Central Status Codes (DPS 8) 

Fault Code (Octal) Meaning 

1 The list pointer word (LPW) tally field (bits 
24-35) was zero and bits 21-22 contained 01, 
requesting tally checking. 

2 The !OM Central was given two consecutive 
transfer data control words (TDCWs) during 
1 ist service. 

3 A boundary error occurred when performing the 
boundary check on a data control word (DCW) 
fetched during list service, with the data 
or DCW list referred to the page table. 

4 A TDCW attempted to set the address extension 
control bit in the LPW (bit 20) when the LPW 
indicated restricted mode (LPW bit 18=1}. 

5 An instruction DCW (IDCW) was encountered 
during list service and the LPW indicated 
restricted mode {LPW bit 18=1). 

6 A DCW fetched during list service indicated 
an illegal character position. 

7 A parity error was detected on data from a 
channel during a data store service. 

Since only three bits (bits 21-23) are available for central status indication, 
it is not possible to report simultaneous faults. The cause of a simultaneous 
fault indicated to the channel is the lowest numbered fault code described in 
Table 8-4. 

Channel-Detected Faults 

The channel status is defined as those fault conditions detected by the 
channel that are recorded in the channel status word, independent of a possible 
simultaneous indication from the ICM Central. The IOM Channel status codes are 
given in Table 8-5. 

8-25 DH03-0l 



Table 8-5. IOM Channel Status Codes (DPS 8) 

Fault Code (Octal} Meaning 

1 An unexpected peripheral control word (PCW) 
was encountered (i.e., a connect was received 
while the channel was busy). 

2 An illegal instruction to the channel was 
encountered in the PCW. 

3 The channel encountered an incorrect DCW. 

4 The channel received an incomplete instruction 
sequence. 

5 

6 

7 

Not used. 

A parity error occurred at the peripheral 
interface. 

A parity error occurred on the I/0 bus, 
data-to-channel-from-Central. 

As in the case of IOM Central-detected faults, the channel-detected faults 
are ordered so that the lowest numbered fault is reported if simultaneous faults 
occur. 

SYSTEM FAULTS 

A system fault is an abnormal condition that cannot be caused by a user 
program operating in Slave mode, and therefore is assumed to have been caused by 
a software error or a hardware malfunction. System faults are detected by the 
IOM Central or the system controller and indicated by the system fault channel. 
The data channel being serviced when the system fault was detected is automatically 
masked by the IOM Central in an attempt to protect the system from another 
occurrence of the fault. 

System Controller-Detected Faults 

The system controller fault coaes are placed in the system fault word by 
the IOM exactly as they are received on the illegal action lines from the system 
controller. The system controller fault codes are given in Table 8-6. 

8-26 DH03-0l 



Fault 

Table 8-6. System Controller Fault Codes (DPS 8) 

Code. (Octal) 

1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

5 

16 

17 

Meaning 

Not used. 

Nonexistent address. 

Fault on condition (not used on a 4 megaword 
SCU). 

Not used. 

Data parity on transfer from memory to system 
controller. 

Data parity in memory. 

Data parity on transfer from memory to system 
controller and in memory. 

Not control port (not used on a 4 megaword 
SCU). 

Port disabled (masked) • 

Illegal instruction. 

Memory not ready. 

ZAC parity, active module to system controller. 

Data parity, active module to system controller 

ZAC parity, system controller to memory unit. 

Data parity, system controller to memory unit. 

IOM Central-Detected System Faults 

The system faults detected by the IOM Central are given in Table 8-7. 

8-27 DHOJ-01 



Table 8-7. IOM Central System Faults (DPS 8) 

Fault Code (Octal) Meaning 

1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

The channel requested does not have a 
scratchpad. 

A channel requested a service with an illegal 
code or a channel number of zero. 

The page table pointer of the page table word 
scratchpad failed to properly store incoming 
data, or a parity error on the read data for 
the page table pointer, the page table word, 
or control words was detected. 

The control word address is incremented to 
all zeros and the tally is not decremented 
to zero. 

The tally was zero for an update LPW when 
the LPW was fetched for the connect channel. 

The DCW fetched for the connect channel service 
did not have bits 18-20 equal to 7. 

The DCW fetched for a data service was a 
TDCW or had bits 18-20 equal to 7. 

The DCW fetched for a 9-bit channel specified 
an illegal character position. 

No response occurred to an interrupt from a 
system controller within 16.5 microseconds. 

A parity error occurred on the read data when 
accessing a system controller. 

Illegal tally control for an LPW (bits 21-22 
= 0) when the LPW was fetched for the connect 
channel. (May also indicate improperly 
installed NSAIG and NSAIE boards.) 

The internally stored page table pointer flag 
for the requesting channel was zero. (May 
also indicate improperly installed cable from 
NSAIC to NSBIM.) 

Caused by one of three conditions: 

a. Page missing. 

b. Channel data segmented (LPW 23=1), and 
indirect store service is required, and 
write control is reset (PTW 31=0} or 
housekeeping page is set (PTW 32=1). 

c. Channel requests a direct store and write 
control is reset {PTW 31=0) or housekeeping 
page is set (PTW 32=1). 

8-28 DH03-01 



Table 8-7 (cont) • IOM Central System Faults (DPS 8) 

Fault Code (Octal) Meaning 

16 The LPW fetched indicates use of address 
extension (LPW 20=1) while operating in the 
standard operating system mode. 

17 No port was selected during an attempt to 
access memory. 

8-29 DH03-0l 



INTERRUPT PROCEDURE 

System Controller Interrupts (DPS 11 

Each system controller contains · 32 interrupt cells that are used for 
communication among the active system modules (processors, I/O multiplexers, 
etc.}. The interrupt cells are organized in a numbered priority chain. Any 
active system module connected to a system controller port may request the setting 
of an interrupt cell with a system controller command. 

When one or more interrupt cells in a system controller are set, the system 
controller activates the interrupt present line to all system controller ports 
having an assigned interrupt mask in which one or more of the interrupt cells 
that are set are unmasked. Interrupt masks should be assigned only to processors. 

During the initial part of the external interrupt procedure, the processor 
receives the 5-bit interrupt cell number from the System Controller Unit (SCU). 
After this number is received from the scu, the processor generates an appropriate 
fault code and executes the "wired-in" !CLIMB version of the CLIMB instruction 
through the entry descriptor in locations 30-31 (octal}. During the safe store 
portion of the !CLIMB, the hardware stores the 5-bit interrupt cell number and 
sets bit 11 of word 5 of the safe store frame ON to indicate that the safe store 
frame resulted in response to an interrupt. 

Central Interface Unit Interrupts {DPS 88) 

The Central Interface Unit (CIU} provides two sets of eight interrupt cells. 
Each set of eight can be assigned to. either of the CPU ports, but each CPU port 
can have only one set of eight interrupt cells assigned to it. The eight interrupt 
cells correspond to the eight interrupt levels that can be selected to each I/O 
channel in the channel link word of the channel mailbox. Each CPU port has a 
mask register that permits the operating system to mask interrupts from any or 
all interrupt cells. 

Each interrupt cell in the CIU has a queue of up to 256 entries (512 words} 
in Reserved Memory associated with it. The operating system obtains the next 
queue entry from Reserved Memory via the RIW (Read Interrupt Word) instruction. 
Each queue entry identifies the channel causing the interrupt, so that the operating 
system can locate the channel mailbox which contains the status information. 

8-30 DH03-01 



Inward Climb 

The second word of the "wired-ini'i ICLIMB instruction has the following 
parameters: 

E bit 

c field 

bit 

bit 

bit 

bit 

18 

19 

20 

21 

- 0 (no parameters) 

- O (index register O is not changed) 

Ignored. The Master Mode bit of the indicator register is 
set ON but no descriptors are prepared. 

- Unused 

- Ignored 

bits 22-23 - 0 (!CLIMB version) 

S,D fields - Ignored. **** DPS 8: If an entry descriptor is not found 
at a fixed memory location, the processor generates a Backup 
fault. **** 

**** DPS 8: If an entry descriptor is not found at the fixed interrupt 
vector location or if another fault occurs (e.g., a parity error) while the 
processor is attempting to CLIMB to the interrupt handler, the processor attempts 
to obtain an entry descriptor from the Backup fault vector location. If this 
second location does not contain an entry descriptor, the processor enters the 
DIS state. If the second fault occurs prior to the transfer of control to the 
new domain at the end of the !CLIMB, then the safe store frame will overlay the 
original frame (with the same information except for fault code). If the second 
fault occurs during the transfer of domains, such as a page fault when obtaining 
the next instruction, then a second frame will be filled specifying the new 
domain and the fault code of the type of fault that caused the backup condition. 

**** 

**** DPS 88: If an entry descriptor is not found in the interrupt vector 
location, or if a fault occurs while the processor is attempting to CLIMB to the 
interrupt handler, the SPF is notified and the processor halts. **** 

The processor is placed in the Privileged Master mode for the execution of 
the "wired-in" !CLIMB instruction. Upon exiting the !CLIMB instruction, the 
processor will remain in the Privileged Master mode if flag bit 26 of the new 
instruction segment register (!SR) is 1. If flag bit 26 of the new ISR is O, 
the processor will cycle to Master mode. 

Multiword Instruction Interrupts 

If an interrupt occurs during a multiword instruction, the processor sets 
bit 30 of the indicator register to 1. If the entry descriptor is type T = 11, 
the pointer and length registers are saved in the safe store frame. Indicator 
register bit 30 is reset to zero (OFF), but is safe stored as a 1 (ON) in word 
4. 

8-31 DH03-0l 



Pointer And Length Registers 

Eight (DPS 88: two) 36-bit registers are utilized to store and load pointers 
for sending and receiving addresses and field lengths, and for other control 
information when a multiword instruction is interrupted. 

The formats for these pointer and length registers are described earlier in 
this manual under the topic "Address Registers•. 

IC VALUES STORED ON FAULTS AND INTERRUPTS 

If the safe store bypass flag in the option register is O, a safe store is 
executed for any fault or interrupt. A description of the safe store stack is 
given in Figures 8-3 (DPS 88) and 8-4 (DPS 8). 

8-32 DHOJ-01 



SCR VALUE 

rn 
0 0 0 0 0 0 0 0 0 0 1 l l l l l l l l l 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 

WORD 0 l 2 3 4 5 6 7 8 9 0 l 2 3 4 5 6 7 a 9 0 l 2 3 4 5 6 7 a 9 0 1 2 3 4 5 

0 

16 2 
WORDS 3 

24 
WOkDS 

64 
WORDS 

4 

5 

6 

7 

8 - 9 
10 - 11 
12 - 13 
14 - 15 

16 

23 
24 

39 

40 

47 

48 

OP CODE 

rnrnrnrnmmmmmmm1mmmrnirnmrnmm 
~ ~ ~ ~ ~ ~ ~~ ~ ~~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~~ rn ~~ ~ ~ ~~ ~ ~ ~ ~ ~ ~~ ~ ~ ~~~ ~ ~ ~ ~ ~ ~ g ~ ~~~ ~ ~~ ~ ~ ~ o o ................................................................ 
:::::::::::::::;;;_;:::::::::::::::::::::::::::::::::::::::::::: 

ADDITIONAL INFORMATION REQUIRED BY 
PROCESSOR FOR RESTART AFTER FAULTS 

IC 

DSAR 

XO 

X2 

lf4 

X6 

E 

S F FAULT 
s I 
S I CODE 
F 

0 10 CPt SCR 

RELATIVE VIRTUAL ADDRESS 

ARCJ 
THRU 
AR7 

TSR 
ASR 
LSR 
PSR 

ORO 
THRU 
DR7 

A 

TIMER REGISTER 

POINTERS and LENGTHS 

IR 

SEGID (IS) 

TAG 

D 
p 

IND ~1 

L ....... . t ......... . 

EFFECTIVt: 

Xl 

XJ 

X7 

WSN 

SEGIDO 
THRU 
SEGID7 

l :: ll!!!lll!lllllll!llllllll!lllllllllllllllll!l!lllllllll!llllllll!lllllllllllllllllllillllill!llllllillllllllllll!!l"lllllllllill!lllllllllllllllllll 
Figure 8-3. Safe Store Stack (DPS 88) 

• Stored on faults only. 

• 

• 

8-33 DH03-01 



2 
WORDS 

48 
WORUS 

WOHIJ 

0 -

4 

5 

6 

1 

8 - 9 
10 - 11 
12 - 13 
14 - 15 

16 

23 
24 

40 

47 

ST RED ONLY 48 
ON FAULTS OH 
INTERRUPTS 
11•' 11{ IJ l'f 
rn-1 

0 0 0 0 0 0 0 0 0 0 1 
0 1 2 3 4 ~ 6 1 ij 9 0 

l 
2 

l l 1 l 1 l 2 2 2 2 2 2 2 2 2 2 3 3 ] ) 3 
4..f 6 1 8 9 0 l 2 3 4 5 6 7 6 9 0 l 2 3 4 1

1 

IC 

llllllli!ll~lllllllllli!ll!lll! 
M S F 
R S I 
·r S I 

F 

ODD INSTRUCTION 

IR 

5-BIT 
0 ~gg CPI SCR SEGID(IS) 

CODE 

DSAR ;;;!· 1 ::·1::11:; 1 1!1.·111:~ 1 ·1,··i,.::11.1111· EFFECTIVE 
WSN 

XO 

X2 

X4 

Xo 

E 

RELATIVE VIRTUAL ADDRESS 

ARO 
TURU 
AR7 

TSR 
AS!t 
LSR 
PSR 

DRO 
THRU 
DR7 

0 

POINT1rns AND I.E:NGTHS 

Figure 8-4. Safe Store Stack (DPS 8) 

Xl 

-S-EGIDO 
THkU 
SEGID7 

ll( .. ·• 
1 ...... . 

* Stored on faults and interrupts only. 

8-34 DH03-0l 



**** DPS 8/20, 8/ 44: The instruction is stored in word 2 in Figure 8-4. 
Words O, 1, and 3 are not used. In word 5, bit 8 is not used, but bits 17-18 
contain 00. Word 47 is used for RTMR, word 5, bit 0 is for FRTRY, and words 
48-51 is for Mid-Instruction Interrupt Recovery Data for Firmware. **** 

The contents of the safe store stack frame following a fault or interrupt 
for DPS 8 are described in Table 8-8. The designation of the fault group priorities 
is given in Table 8-1. 

The contents of the safestore stack frame following a fault or interrupt for 
DPS 88 are described in Table 8-9. The designation of the fault group priorities 
is given in Table 8-2. 

8-35 DH03-01 



(XI 

I 
l,,, 
CJ'\ 

0 = 0 
l.t.I 
I 

0 
I-' 

SAFE STORE 
DATA 

WcJRDS 0--1 

INSTR. 
EV/000 
WORDS 2-3 

~gs.a-1 1 

IR 
wo~B 4 

SEGID (IS) 
WORD 5 

DSAR, EWSN 
RVA 
WORD 6-7 

ISR 
WORDS 8-9 

ASR 
WORDS 10-11 
LSR 
WORDS 12-13 
PSR 
WORDS 14-15 

REGISTERS 
WORDS 16-47 

SAFE STORE 
OF P L 
WORDS 48-55 

EVEN INSTR 
IS FAULTING 
INSTR. IF 
SAFE STORED 
IC 

Table 8-8. Classes Of Faults And Interrupts \DPS 8) 

FAULT GROUP II - v 

FAeLT 1 FAULT 2 FAULT 3 FAULT 4 FAULT 5 FAt:LT 6 
FAULT .r..LL OTHERS DURING DURING DURING DURING H"-LINE 
GROUP I NOT IN 2-6 EIS TRANSFER TRANSFER CLIMB INSTR. 

IN CLIMB FETCH 

NOT USED 

t:'ND:E:FINED FAULTING PAIR 

IC OF LAST COMPLETED IC OF IC OF LAST 
UNDJ::FINED INSTR. +l "TRANSFERRED COMPLETED 

TO" INSTR. INSTR. + 1 

1 ORO- 0 1 0 

IS OF IS OF IS OF 
CURRENT IS TRA NE~ INSTR. CLIMB 

-
LAST VALUE OF DSAR; EWSN AND RVA ****DPS 8/70, 8/50 I 8/52, 
CORRESPOND TO LAST SEGl"..ENT ACCESSED ARE NOT REFERRENCED**** 

..IL 

ISR OF ISR OF NEW ISR OF 
CURRENT TRA DOMAIN CLIMB 

-
CURRENT OF NEW PRIOR TO 

DOMAIN CLIMB 

-
LAST VALUE OF REGISTERS 

IF IR~fT IF ENTRY 
AND E RY NO DESCRIPTOR NO 
DESCRIPTOR' T•ll 
T•ll 

UNDE:PINED 
IC 17•0 IC 17•0 Ic17•0 

INTERRUPT 

INTER. T INTER. -i· PROGRAMM:tD 
NOT DURING EIS CLH:? 
DURING EIS 

PAIF PAIR 
LAST PAIR INCLUDING INCL ti DING 
COMPLETED EIS INSTR. CLH'.3 

IC OF EIS IC OF 
INSTR. CLIME 

INSTR. + 2 

l 0 

IS OF 
CURRENT IS CL IMS 

6/62: SEQUENTIAL I FETCHES 

PRIOR TO 
CURRENT ISR CLIMB 

CURRENT PRIOR TO 
CLIMB 

IF ENTRY 
DESCRIPTOR NO 
T•ll 

IF IC 17=0 
IC 17•0 CLIMB 

N/A WAS EVEN 



00 
I 

w 
......J 

0 
::r: 
0 
w 
I 

0 ..... 

Table 8-9. Classes Of Faults And Interrupts (DPS 88) 

FAULT GROUP II - V 
INTERRUPT 

FAULT T FAULT 2 FAULT J FAULT 4 FP.ULT 5 FAULT 6 
SAFE STORE FAULT ALL OTHERS DURING DURING DURING DURING IN-LINE INTr:E. 1 IN'I'ER. l. PROGRMt.~:ED 
DATA GROUP I NOT IN 2-6 EIS TRANSFER TRANSFER CLIM3 INS7R. NOT DURING rrs CLIMB 

IN CLIMB FETCH DURING EIS 

WORDS 0-3 INFORMATION REQUIRED BY PROCESSOR FOR RESTART AFTER FAULTS N7A ·-
~gRB-1 7 IC OF FAULTING IC OF IC OF FAULTING IC OF LAST IC OF EIS IC OF 

UNDEFINED INSTRUCTION "TRANSFERRED INSTRUCTION COMPLETED INSTR. CLIMB 
TO" INSTR. INSTR. + 1 INSTR. + 2 

IR 
wotlo 4 

1 OR 0 0 1 0 1 0 

SEGID (IS) CURRENT IS IS OF IS PRIOR CURRENT IS 
WORD 5 NEW INSTR. '!'0 CLIMB 

DSAR, EWSN 
RVA LAST VALUE OF DSAR: EWSN AND FVA CORRESPOND TO LAST SEGMENT ACCESSED 
WORDS 6-7 

ISR CURRENT ISR OF NEW ISR PRIOR CURRENT ISR PRIOR 
WORDS 8-9 DOMAIN TO CLIMB TO CLIMB 

ASR 
WORDS 10-11 
LSR CURRENT OF NEW PRIOR TO CURRENT PRIOR TO 
WORDS 12-13 DOMAIN CLIMB CLIMB 
PSR 
WORDS 14-15 

REGISTERS 
WORDS 16-47 LAST VALUE OF REGISTERS 

SAFE STORE 
OF P L IF ENTRY DESCRIPTOR T=ll 
WORDS 48-49 

EVEN INSTR IF 1c 17•0 
IS FAULTING IC17•0 Ic17 =0 CLIMB 
INSTR. IF UNDEFINED N/A WAS EVEN 
SAFE STORED 
IC IS 

NOTE: In general, DPS 88 will not change any register values on a faulting Instruction (including TSS or RET). The one 
execption is a fault occurring on a transfer at the end of the CLIMB. In this case, the Safestore data will 
reflect the new domain. 



**** DPS 8: The definition of the classes of faults and interrupts contained 
in Table 8-8 is given below: 

FAULT 1 - A group II to V fault not covered by FAULT 2 through FAULT 6, 
including XECs and RPTs. For XECs and RPTs, if a fault occurs on 
the "to" instruction, the faulting instruction is the XEC or RPT 
instruction. 

FAULT 2 - A group II to V fault due to a multiword instruction. 

FAULT 3 - A group II to V fault that occurs while attempting to fetch 
"transferred to" instructions resulting from a TRA, TSX_!!, TSS, 
RET, or a satisfied conditional transfer. 

FAULT 4 - A group II to V fault that occurs while attempting to fetch 
"transferred to" instructions resulting from a CLIMB instruction. 

FAULT 5 - A group II to V fault that occurs on a CLIMB instruction prior to 
fetching "transferred to" instructions. 

FAULT 6 - A group II to V fault that occurs on an inline instruction fetch. 

INTER 1 - An interrupt that occurs any time except during an interruptible 
multiword instruction. 

An interrupt that occurs during an interruptible multiword instruction. **** 

****DPS 88: The definition of the classes of faults and interrupts contained 
in Table 8-9 are given below. 

FAULT 1 - A fault, other than Group 1, not covered by FAULT 2 through FAULT 
6, including executes and repeats. For faults on instructions 
which are executed or repeated, the IC and ISR represent the 
execute or repeat instruction. 

FAULT 2 - A fault, other than Group 1, due to an EIS multiword instruction. 

FAULT 3 - A fault, other than Group 1, while attempting to fetch "transferred 
to" instructions resulting from a TRA, TSXn, TSS, RET or a satisfied 
conditional transfer. 

FAULT 4 - A fault, other than Group 1, occurring while attempting to fetch 
"transferred to" instructions resulting from a CLIMB instruction. 

FAULT 5 - A fault, other than Group 1, occurring on a CLIMB instruction 
prior to fetching "transferred to" instructions. 

FAULT 6 - A fault, other than Group 1, occurring on an inline instruction 
fetch. 

INTER l - An interrupt occurring any time except during an interruptible 
EIS multiword instruction. 

INTER 2 - An interrupt occurring during an interruptible EIS multiword 
instruction. **** 

8-38 DH03-0l 



**** DPS 8: The effective working space number (EWSN) and relative virtual 
address (RVA) are .not valid for MME and DRL instructions for faults and interrupts 
that are not generated by the virtual memory hardware, since the EWSN and RVA 
always reflect the last segment accessed and the last indirect word for the 
fault tag. If the virtual memory hardware detects the fault, the EWSN and RVA 
will reflect the faulting segment that is referenced. **** 

The instruction counter (IC) values stored in bits 0-17 of word 4 of the 
safe store stack during faults and interrupts are described below: 

a. Programmed CLIMB -

IC of CLIMB + 2 

b. Interrupt during multiword instruction or connect, Timer Runout, or 
Shutdown faults during multiword instruction -

IC of the first word of the multiword instruction 

c. Interrupt after completed multiword or single-word instruction -

IC of next instruction 

d. Fault while attempting to fetch "transferred to" instructions resulting 
from a CLIMB instruction -

IC of "transferred to" instruction 

e. Safestore stack fault on programmed CLIMB 

IC of "transferred to" instruction 

f. Startup or Execute fault -

IC undefined 

g. Operation Not Completed, Lockup, or Store Memory faults -

DPS 8: 
DPS 88: 

IC of faulting instruction + 1 
IC undefined 

h. Connect, Timer Runout, or Shutdown faults after completed multiword or 
single-word instruction -

IC of next instruction 

i. Any other fault -

DPS 8: 
DPS 88: 

IC of faulting instruction + l 
IC of faulting instruction 

8-39 DH03-0l 





APPENDIX A 

OPERATION CODE MAP 

This appendix contains the operation code map for the processor in Tables 
A-1 and A-2. The operation codes are separated into sections: the first section 
lists operation codes with bit 27 = 0 and the second section with bit 27 = 1. 

A-1 DH03-0l 



Table A-1. Operation Code Map (Bit 27 = 0) 

000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017 
000 MME DRL NOP PULSl PULS2 SYNC CIOC 
020 ADLXO ADLXl ADLX2 ADLX3 ADLX4 ADLX5 ADLX6 ADLX7 LDQC ADL LDAC ADLA ADLO AD LAO 
040 ASXO ASX! ASX2 ASX3 ASX4 ASX5 ASX6 ASX7 AOS ASA ASO SSCR= 

LCCL 
060 ADXO ADXl ADX2 ADX3 ADX4 ADX5 ADX6 ADX7 AWCA AWCO LREG ADA ADO ADAO 

100 CMPXO CMPXl CMPX2 CMPX3 CMPX4 CMPX5 CMPX6 CMPX7 CWL CMPA CMPO CMPAQ 
120 SBLXO SBLXl :SBLX2 SBLX3 SBLX4 SBLX5 SBLX6 SBLX7 SBLA SBLO SBLAQ 
140 ssxo SSXl :SSX2 SSX3 SSX4 SSX5 SSX6 SSX7 SSA SSO 
160 SBXO SBXl :SBX2 SBX3 SBX4 SBX5 SBX6 SBX7 SWCA SWCO SBA SBO SBAQ 

200 CNAXO CNAXl CNAX2 CNAX3 CNAX4 CNAX5 CNAX6 CNAX7 CMK ASSA SZNC CNAA CNAQ CNAAO 
220 LDXO LDXl 1:.ox2 LDX3 LDX4 LDX5 LDX6 LDX7 RSW• RMCM= SZN LOA LDO LDAO 

:J:-
RRES RIMR 

I 240 ORS XO ORSXl ORSX2 ORSX3 ORSX4 ORSX5 ORSX6 ORSX7 ORSA ORSQ STBZ 
N 260 ORXO ORXl ORX2 ORX3 ORX4 ORX5 ORX6 ORX7 ORA ORO ORAO 

300 CAN XO CANXl CANX2 CANX3 CANX4 CANX5 CANX6 CANX7 CANA CANO CAN AO 
320 LCXO LCXl LCX2 LCX3 LCX4 LCX5 LCX6 LCX7 LCA LCO LCAQ 
340 ANS XO ANSXl J~NSX2 ANSX3 ANSX4 ANSX5 ANSX6 ANSX7 STAC ANSA ANSO 
360 ANXO ANXl J~NX2 ANX3 ANX4 ANX5 ANX6 ANX7 ANA ANO ANAO 

400 MPF MPY CMG LDE RIW RSCR ADE 
420 UFM DUFM FCMG DFCMG FSZN FLO DFLD UFA DUFA 
440 SXLO SXLl SXL2 SXL3 SXL4 SXLS SXL6 SXL7 STZ SMIC SCPR .. STT FST STE DFST 

SFR 
460 FMP DFMP FSTR FRO DFSTR DFRD FAD DFAD 

500 RPL BCD DIV DVF FNEG FCMP DFCMP 
520 RPT TTES 'I'TTL TTU TTEZ FDI DFDI NEG NEGL UFS DUFS 
540 STBA STBO SMCM=- STCl 

LIMR 
560 RPO FDV DFDV FNO FSB DFSB 

600 TZE TNZ TNC TRC TMI TPL TTF TEO TEU DIS TOV 
620 EAXO · EAXl EAX2 EAX3 EAX4 EAX5 EAX6 EAX7 RET HALT RCCL LOI EAA EAO LDT 
640 ERSXO ERSXl ERSX2 ERSX3 ERSX4 ERSX5 ERSX6 ERSX7 STACO ERSQ 
660 ERXO ERXl ERX2 ERX3 ERX4 ERXS ERX6 ERX7 LCPR ERA ERO ERAO 

700 TSXO TSXl TSX2 TSXJ TSX4 TSX5 TSX6 TSX7 TRA TSS XEC XED 
720 LXLO LXLl LXL2 LXL3 LXL4 LXLS LXL6 LXL7 ARS ORS LRS ALS OLS LLS 

0 740 STXO STXl Sl'X2 STX3 STX4 STXS STX6 STX7 STC2 STCA STCO SREG STI STA STQ STAQ ::x: 760 ARL QRL LRL GTB ALR QLR LLR 0 
w 
I 

0 
I-' 



Table A-2. Operation Code Map (Bit 27 = 1) 

000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017 

000 MVNEX CCAC 
020 MVE MVNE 
040 STl>O STDl STD2 STD3 STD4 STD5 STD6 STD7 
060 CSL CSR SZTL SZTR CMPB 

100 MLR MRL CMPC SORO SDRl SDR2 SOR3 SDR4 SDR5 SOR6 SDR7 
120 SCO SCOR SCM SCMR 
140 STD SA SPOBR STO STPDW STPTW 
160 MVT TCT TCTR CM PCT LODSA LPOBR LOO PAS 

200 AD2D SB2D MP2D DV2D 
220 AD30 SB3D MP3D DV3D 
240 A02DX SB20X MP20X OV2DX 

)ii 260 AD3DX SB3DX MP3DX DV3DX 
I 

w 300 MVN BTO CMPN OTB 
320 
340 MVNX CMPNX CCACQI CCACl 
360 MRF MMF 

400 EPAT 
420 
440 SA REG SPL STPO STPl STP2 STP3 STP4 STPS STP6 STP7 
460 LAREG LPI, LDPO LDPl LOP2 LDP3 LDP4 LOPS LDP6 LDP7 

500 A9BD A6BD A4BD ABD AWD 
520 S9BO S680 S4BO SBO SWO CAMPO CAMPl CAMP2 CAMP3 
S40 ARAO ARAl ARA2 ARA3 ARA4 ARA5 ARA6 ARA7 STTO STDSI> STTA 
S60 AARO AARl AAR2 AAR3 AAR4 AAR5 AAR6 AAR7 LOO SD 

600 TRTN TRTF TMOZ TPNZ TTN LDEAO LOEAl LDEA2 LDEA3 LDEA4 LDEAS LDEA6 LDEA7 
620 EPPRO EPPRl EPPR2 EPPR3 EPPR4 EPPRS BPPR6 BPPR7 
640 ARNO ARNl ARN2 ARN3 ARN4 ARNS ARN6 ARN7 
660 NARO NARl NAR2 NAR3 NAR4 NAR5 NAR6 NAR7 LDDO LODl L002 LDD3 LD04 LDDS LOD6 LDD7 

700 CLIMB 
720 
740 SARO· SARl SAR2 SAR3 SAR4 SARS SAR6 SAR7 STAS STPS STWS STSS 
760 LARO LARl LAR2 LAR3 LAR4 LARS LAR6 LAR7 LOAS LOPS LOWS LOSS 

c 
::i:: 
0 
w 
I 

0 
~ 





APPENDIX B 

STANDARD CHARACTER SET 

The ASCII column is used to indicate the octal code generated by the assembler 
for an ASCII pseudo-operation (lowercase characters); however, the statement 
contains uppercase characters since it is converted before being acted upon by 
the assembler. The UASCI pseudo-operation allows the assembler to generate uppercase 
ASCII characters. 

standard 
Character 

Set 

0 
1 
2 
3 
4 
s 
6 
7 
8 
9 
[ 
i 
@ 

> 
? 
lS 
A 
B 
c 
D 
E 
F 
G 
H 
I 
& 

] 
( 
< 
\ 

or 1 
J 
K 
L 
M 
N 
0 
p 
Q 
R 

Internal 
Machine 

Code 

000000 
000001 
000010 
000011 
000100 
000101 
000110 
000111 
001000 
001001 
001010 
001011 
001100 
001101 
001110 
001111 
010000 
010001 
010010 
010011 
010100 
010101 
010110 
010111 
011000 
011001 
011010 
011011 
011100 
011101 
011110 
011111 
100000 
100001 
100010 
100011 
100100 
100101 
100110 
100111 
101000 
101001 

Octal 
Code 

00 
01 
02 
03 
04 
05 
06 
07 
10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
33 
34 
35 
36 
37 
40 
41 
42 
43 
44 
45 
46 
47 
50 
51 

Hollerith 
Card 
Code 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
2-8 
3-8 
4-8 
5-8 
6-8 
7-8 
(blank) 
12-1 
12-2 
12-3 
12-4 
12-5 
12-6 
12-7 
12-8 
12-9 
12 
12-3-8 
12-4-8 
12-5-8 
12-6-8 
12-7-8 
11-0 
11-1 
11-2 
11-3 
11-4 
11-5 
11-6 
11-7 
11-8 
11-9 

B-1 

Octal Codes Generated by Pseudo
Operations 

BCD ASCII UASCI EBCDIC 

00 
01 
02 
03 
04 
05 
06 
07 
10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
33 
34 
35 
36 
37 
40 
41 
42 
43 
44 
45 
46 
47 
50 
51 

060 
061 
062 
063 
064 
065 
066 
067 
070 
071 
133 
043 
100 
072 
076 
077 
040 
141 
142 
143 
144 
145 
146 
147 
150 
151 
046 
056 
135 
050 
074 
134 
136 
152 
153 
154 
155 
156 
157 
160 
161 
162 

060 
061 
062 
063 
064 
065 
066 
067 
070 
071 
133 
043 
100 
072 
076 
077 
040 
101 
102 
103 
104 
105 
106 
107 
110 
111 
046 
056 
135 
050 
074 
134 
136 
112 
113 
114 
115 
116 
117 
120 
121 
122 

360 
361 
362 
363 
364 
365 
366 
367 
370 
371 
112 
173 
174 
172 
156 
157 
100 
301 
302 
303 
304 
305 
306 
307 
310 
311 
120 
113 
132 
115 
114 
340 
137 
321 
322 
323 
324 
325 
326 
327 
330 
331 

DH03-0l 



Octal Codes Generated by Pseudo-
Standard Internal Hollerith Operations 
Character Machine Octal Card BCD ASCII UASCI EBCDIC 

Set Code Code 

101010 52 11 52 055 055 140 
$ 101011 53 11-3-8 53 044 044 133 
* 101100 54 11-4-8 54 052 052 134 

101101 55 11-5-8 55 051 051 135 
I 101110 56 11-6-8 56 073 073 136 ,,. 

101111 57 11-7-8 57 047 047 175 
+ 110000 60 12-0 60 053 053 116 
I 110001 61 0-1 61 057 057 141 
s 110010 62 0-2 62 163 123 342 
T 110011 63 0-3 63 164 124 343 
u 110100 64 0-4 64 165 125 344 
v 110101 65 0-5 65 166 126 345 
w 110110 66 0-6 66 167 127 346 
x 110111 67 0-7 67 170 130 347 
y 111000 70 0-8 70 171 131 350 
z 111001 71 0-9 71 172 132 351 

or ~- 111-1- 72 0-2-8 72 137 137 155 
I 111011 73 0-3-8 73 054 054 153 
% 111100 74 0-4-8 74 045 045 154 

111101 75 0-5-8 75 075 075 176 
II 111110 76 0-6-8 76 042 042 177 

111111 77 0-7-8 77 041 041 117 

B-2 DHOJ-01 



INDEX 

4-BIT 
4-Bit Characters 2-3 
Add 4-Bit Displacement To Address 

Register 7-10 
Packed Decimal (4-bit) 2-8 
Subtract 4-Bit Displacement from 

Address Register 7-358 

6-BIT 
6-Bit Characters 2-21 5-18 
Add 6-Bit Displacement To Address 

Register 7-11 
store 6-bit Characters of A-Register 

7-421, 7-422 
Subtract 6-Bit Displacement from 

Address Register 7-359 

9-BIT 
9~Bit :Bytes 2-2 
9-bit output 6-22 
Add 9-Bit Displacement to Address 

Register 7-13 
ASCII (9-bit) 2-8 
Store 9-bit Bytes of A-Register 

7-415 
Store 9-bit Bytes of Q-Register 

7-416 
Subtract 9-Bit Displacement from 

Address Register 7-360 

A-REGISTER 
A-Register Left Rotate 7-39 
A-Register Left Shift 7-40 
A-Register Right Logical Shift 7-51 
A-Register Right Shift 7-53 
Absolute Address to A-Register 7-18 
ACCUMULATOR REGISTER (A) 4-3 
Add Logical to A-Register 7-33 
Add to A-Register 7-29 
Add To 'Storage From A-Register 7-54 
Add with Carry to A-Register 7-57 
AND to A-Register 7-41 
AND to Storage from A-Register 7-44 
Comparative AND with A-Register 

7-.71 
Comparative NOT AND with A-Register 

7-128 
Compare with A-Register 7-113 
Effective Address to A-Register 

7-171 
EXCLUSIVE OR to A-Register 7-178 
EXCLUSIVE OR to Storage with 

A-Register 7-181 

A-REGISTER (cont) 

i-1 

Load A-Register 7-214 
Load A-Register and Clear 7-215 
Load Complement into A-Register 

7-207 
Negate (A-Register) 7-307 
OR to A-Register 7-310 
OR to Storage from A-Register 7-313 
Store 6-bit Characters of A-Register 

7-421, 7-422 
Store 9-bit Bytes of A-Register 

7-415 
Store A Conditional 7-409 
Store A Conditional on Q 7-411 
Store A-Register 7-408 
Subtract from A-Register 7-372 
Subtract Logical from A-Register 

7-375 
Subtract Stored from A-Register 

7-403 
Subtract with Carry from A-Register 

7-449 

A4BD 
A4BD 7-10 

A6BD 
A6BD 7-11 

A9BD 
A9BD 7-13 

AARN 
AARn 7-15 

ABBREVIATIONS 
ABBREVIATIONS AND SYMBOLS 7-3 

ABD 
ABD 7-17 

ABSA 
ABSA 7-18 

ABSOLUTE 
Absolute Address to A-Register 7-18 
Absolute Addressing Mode. 5-54 
Absolute Mode 1-6 

ACCESS 
Page Access Control Field 8-23 

DH03-01 



ACCESSIBLE 
PROCESSOR ACCESSIBLE REGISTERS 4-1, 

4-2 

ACCUMULATOR 
ACCUMULATOR REGISTER (A) 4-3 

ACCUMULATOR-QUOTIENT 
ACCUMULATOR-QUOTIENT REGISTER (AQ) 

4-4 

AD 
AD 5-14 
AD Variation 5-22 
Add Delta (AD) variation 5-22 

AD2D 
AD2D 7-19 

AD2DX 
AD2DX 7-21 

AD3D 
AD3D 7-23 

AD3DX 
AD3DX 7-26 

ADA 
ADA 7-29 

ADAQ 
ADAQ 7-30 

ADD 
Add 4-Bit Displacement To Address 

Register 7-10 
Add 6-Bit Displacement To Address 

Register 7-11 
Add 9-Bit Displacement to Address 

Register 7-13 
Add Bit Displacement To Address 

Register 7-17 
Add delta 5-14 
Add Delta (AD) variation 5-22 
Add Logical to A-Register 7-33 
Add Logical to AO-Register 7-34 
Add Logical to Index Register n 

7-36 
Add Logical to Q-Register 7-35 
Add Low to AO-Register 7-32 
Add One to Storage 7-48 
Add to A-Register 7-29 
Add to AQ-Register 7-30 
Add to Exponent Register 7-31 
Add to Index Register n 7-38 
Add to Q-Register 7-37 
Add To Storage From A-Register 7-54 
Add To Storage From Index Register n 

7-56 
Add To Storage From Q-Register 7-55 
Add Using Three Decimal Operands 

7-23 
Add Using Three Decimal Operands 

Extended 7-26 
Add Using Two Decimal Operands 7-19 
Add Using Two Decimal Operands 

Extended 7-21 

ADD (cont) 
Add with Carry to A-Register 7-57 
Add with Carry to Q-Register 7-58 
Add Word Displacement to Address 

Register 7-60 
Double-Precision Floating Add 7-137 
Double-Precision Unnormalized 

Floating Add 7-157 
Floating Add 7-185 
Unnormalized Floating Add 7-497 

ADDRESS 

i-2 

Absolute Address to A-Register 7-18 
Add 4-Bit Displacement To Address 

Register 7-10 
Add 6-Bit Displacement To Address 

Register 7-11 
Add 9-Bit Displacement to Address 

Register 7-13 
Add Bit Displacement To Address 

Register 7-17 
Add Word Displacement to Address 

Register 7-60 
Address Development 5-47 
address interleaving 3-1 
Address Modification 1-2 
ADDRESS MODIFICATION AND DEVELOPMENT 

5-1 
Address Modification Features 5-1 
Address Modification Flowchart 5-25 
ADDRESS MODIFICATION OCTAL CODES 

5-24 
Address Modification with Address 

Register 5-26 
address preparation 1-1 
ADDRESS REGISTER INSTRUCTIONS 6-7 
Address Register n to Alphanumeric 

Descriptor 7-49 
Address Register n to Numeric 

Descriptor 7-52 
Address Register Special Arithmetic 

6-8 
Address Register Special Arithmetic 

Instructions 7-8 
Address Register Specifier 5-31 
ADDRESS REGISTERS (ARn) 4-14 
address translation 5-56 
Address Truncation 5-69 
Address Wraparound 5-73 
Alphanumeric Descriptor To Address 

Register n 7-15 
ALPHANUMERIC/NUMERIC ADDRESS 

PREPARATION 5-42 

BIT STRING ADDRESS PREPARATION 5-41 
DATA STACK ADDRESS REGISTER (DSAR) 

4-44 
Decrement address 5-14 
Decrement Address, Increment Tally 

(T) 5-20 
Decrement Address, Increment Tally, 

and Continue 5-22 
Decrement Address, Increment Tally, 

and Continue (T) 5-20 
direct operand address modification 

5-4 
effective address 5-47 

DH03-0l 



ADDRESS (cont) 
Effective Address to A-Register 

7-171 
Effective Address to Index Register 

n 7-173 
Effective Address to Q-Register 

7-172 
Effective Address to Register 

Instructions 6-2 
effective addresses 5-5 
Effective Pointer And Address To 

Test 7-174 
Fault Trap Address 8-23 
Increment address 5-14 
Increment Address, Decrement Tally 

(T) 5-19 
Increment Address, Decrement Tally, 

and Continue 5-21 
Instruction Address Procedure 5-48 
Load Address Register n 7-205 
Load Address Registers 7-206 
Load Address Trap Register 7-220 
Load Data Stack Address Register 

7-231 
Load Extended Address n 7-235 
Mapping The Virtual Address To A 

Real Address 5-58 
Multiword Address Modification 5-30 
Numeric Descriptor to Address 

Register n 7-306 
Operand Address Procedure 5-47 
Operand Descriptor Address 

Preparation 5-39 
real address 1-6 
Single-Word Address Modification 

5-27 
Store Address Register n .7-361 
Store Address Registers 7-362 
Store Data Stack Address Register 

7-425 
Store Test Address Registers 7-444 
Subtract 4-Bit Displacement from 

Address Register 7-358 
Subtract 6-Bit Displacement from 

Address Register 7-359 
Subtract 9-Bit Displacement from 

Address Register 7-360 
Subtract Bit Displacement from 

Address Register 7-374 
Subtract Word Displacement from 

Address Register 7-452 
Types of Address Modification 5-3 
valid mnemonics for address 

modification 5-2 
virtual address 1-6, 5-59 
Virtual Address Generation 5-48 
Virtual Address Generation, Super 

Descriptor 5-51 
Virtual Address, Dense Page Table 

5-61 
word address 5-34 

ADDRESSING 
Absolute Addressing Mode 5-54 
ADDRESSING MODES 1-6 
Indirect Addressing 5-1, 5-7 
indirect addressing and indexing 

5-9 

ADDRESSING (cont) 
Paging Addressing Mode 5-56 
Virtual Memory Addressing 5-47 

ADE 
ADE 7-31 

AOL 
ADL 7-32 

ADLA 
ADLA 7-33 

ADLAQ 
ADLAQ 7-34 

ADLQ 
ADLQ 7-35 

ADLXN 
ADLXn 7-36 

ADQ 
ADQ 7-37 

ADSC4 
ADSC4 - Packed decimal alphanumeric 

descriptor 5-35 

i-3 

ADSC6 
ADSC6 - BCI alphanumeric descriptor 

5-35 

ADSC9 
ADSC9 - ASCII alphanumeric 

descriptor 5-35 

ADXN 
ADXn 7-38 

ALPHANUMERIC 
Address Register n to Alphanumeric 

Descriptor 7-49 
ADSC4 - Packed decimal alphanumeric 

descriptor 5-35 
ADSC6 - BCI alphanumeric descriptor 

5-35 
ADSC9 - ASCII alphanumeric 

descriptor 5-35 
Alphanumeric Character Number (CN) 

Codes 6-20 
Alphanumeric Data Type (TA) Codes 

6-20 
Alphanumeric Descriptor To Address 

Register n 7-15 
ALPHANUMERIC EDIT (MVE) 6-30 
Alphanumeric instructions 6-4, 6-19 
ALPHANUMERIC OPERAND DESCRIPTOR 

FORMAT 6-19 
ALPHANUMERIC OPERAND DESCRIPTORS 

5-35 
ALPHANUMERIC/NUMERIC ADDRESS 

PREPARATION 5-42 
Compare Alphanumeric Character 

Strings 7-117 
Move Alphanumeric Edited 7-287 
Move Alphanumeric Left to Right 

7-265 

DH03-0l 



ALPHANUMERIC (cont} 
Move Alphanumeric Right to Left 

7-285 
Move Alphanumeric with Translation 

7-302 

ALR 
ALR 7-39 

ALS 
ALS 7-40 

ALTER 
alter an address 5-1 

ANA 
ANA 7-41 

ANAQ 
ANAQ 7-42 

AND 
AND to A-Register 7-41 
AND to AQ-Register 7-42 
AND to Index Register n 7-47 
AND to Q-Register 7-43 
AND to Storage from A-Register 7-44 
AND to Storage from Index Register n 

7-46 
AND to Storage from Q-Register 7-45 
Comparative AND with A-Register 

7-71 
Comparative AND with AO-Register 

7-72 
Comparative AND with Index Register 

n 7-74 
Comparative AND with O-Register 

7-73 
Comparative NOT AND with A-Register 

7-128 
Comparative NOT AND with AO-Register 

7-129 
Comparative NOT AND with Index 

Register n 7-131 
Comparative NOT AND with Q-Register 

7-130 
FAULTS AND INTERRUPTS 8-1 

ANO 
ANQ 7-43 

ANSA 
ANSA 7-44 

ANSQ 
ANSO 7-45 

ANSXN 
ANSXn 7-46 

ANXN 
ANXn 7-47 

AOS 
AOS 7-48 

AO-REGISTER 
ACCUMULATOR-QUOTIENT REGISTER (AQ) 

4-4 
Add Logical to AO-Register 7-34 
Add Low to AQ-Register 7-32 
Add to AQ-Register 7-30 
AND to AO-Register 7-42 
Comparative AND with AQ-Register 

7-72 
Comparative NOT AND with AQ-Register 

7-129 
Compare with AQ 7-114 
EXCLUSIVE OR to AQ-Register 7-179 
Load AO-Register 7-217 
Load Complement into AQ-Register 

7-208 
Negate Long (AQ-Register} 7-308 
OR to AQ-Register 7-311 
Store AQ-Register 7-413 
Subtract from AO-Register 7-373 
Subtract Logical from AO-Register 

7-376 

ARAN 
ARAn 7-49 

ARGUMENT 
argument segment 3-10 
argument stack register (ASR) 3-10, 

4-38 
Load Argument Stack Register 7-218 
Pop Argument Stack 7-317 
Store Argument Stack Register 7-414 

ARITHMETIC 
Address Register Special Arithmetic 

6-8 
Address Register Special Arithmetic 

Instructions 7-8 
Arithmetic Faults 8-8 
Arithmetic Instructions 6-27 
Decimal Arithmetic 6-5 
Fixed-Point Arithmetic Instructions 

6-3 
Floating-Point Arithmetic 

Instructions 6-3 

ARL 
ARL 7-51 

ARN 
ADDRESS REGISTERS (ARn) 4-14 

ARNN 
ARNn 7-52 

ARS 
ARS 7-53 

ASA 
ASA 7-54 

ASCII 
ADSC9 - ASCII alphanumeric 

descriptor 5-35 
ASCII (9-bit) 2-8 
character codes for ASCII and EBCDIC 

overpunched sign 7-301 

i-4 DH03-01 



ASCII (cont) 
NDSC9 - ASCII numeric descriptor 

5-36 

ASQ 
ASQ 7-55 

ASR 
argument stack register (ASR) 3-10, 

4-38 

ASSOCIATIVE 
Associative Memory 5-68 
Associative Memory Word 5-68 
Clear Associative Memory Pages 7-68 
Clear Paging Associative Memory 

7-70 
paging associative memory 5-58 

ASTERISK 
asterisk placed in the tag 5-7 
Insert Asterisk on Suppression 

7-508 
Move with zero Suppression and 

Asterisk Replacement 7-519 

ASXN 
ASXn 7-56 

ATTRIBUTES 
COMMON ATTRIBUTES OF INSTRUCTIONS 

7-5 

AVAILABLE 
Available Segment Flag 8-22 

AWCA 
AWCA 7-57 

AWCQ 
AWCQ 7-58 

AWD 
AWD 7-60 

BACKUP 
Backup Fault 8-16 

BASE 
Base 3-7, 3-8 
base value 5-47 
Linkage Base 3-12 
Load Page Table Directory Base 

Register 7-258 
Page Directory Base Register (PDBR) 

1-6, 4-45, 5-60 
segment base 3-2 
Store Page Table Directory Base 

Register 7-399 

BASIC 
BASIC FEATURES 6-1 
Basic Modification 5-1 

BCD 
BCD 7-62 
Binary-To-BCD Conversion 6-36 
Binary-to-BCD Convert 7-62 

BCI 
ADSC6 - BCI alphanumeric descriptor 

5-35 

BDSC 
BDSC - Bit descriptor 5-34 
BDSC pseudo-operation 6-26 

BINARY 
binary expansion 2-8 
Binary Numbers 2-4 
Binary Representation of Fractional 

Values 2-8 
Binary to Decimal Convert 7-66 
Binary-To-BCD Conversion 6-36 
Binary-to-BCD Convert 7-62 
conversions between binary and 

decimal numbers 6-26 
Decimal to Binary Convert 7-154 

BIT 
Add Bit Displacement To Address 

Register 7-17 
BDSC - Bit descriptor 5-34 
Bit Groupings 2-1 
Bit Operations 5-44 
Bit Positions 2-3 
BIT STRING ADDRESS PREPARATION 5-41 
Bit string instructions 6-5, 6-24 
BIT STRING OPERAND DESCRIPTOR 5-34 
BIT STRING OPERAND DESCRIPTOR FORMAT 

6-25 
Bit Strings and Index Table of 

Translate Instruction 5-71 
Combine Bit Strings Left 7-132 
Combine Bit Strings Right 7-134 
Compare Bit Strings 7-115 
EDAC bits 2-1 
housekeeping bit 6-33 
master mode bit 6-33 
Master Mode bit in the Indicator 

Register 1-5 
privileged bit 6-33 
Set zero and Truncation Indicators 

with Bit Strings Left 7-458 
Set zero and Truncation Indicators 

with Bit Strings Right 7-460 
Subtract Bit Displacement from 

Address Register 7-374 

BLANK 
Insert Blank on Suppression 7-509 
Move with zero Suppression and Blank 

Replacement 7-520 

i-5 

BLANK-WHEN-ZERO 
Blank-when-zero flag 6-29 

BND 
BND Faults 8-9 

BOLR 
BOLR 6-24 
BOLR control field 7-132 

BOOL 
BOOL 6-10 

DH03-0l 



BOOLEAN 
Boolean Expressions 6-10 
Boolean Operation Instructions 6-10 
Boolean Operations 6-1, 6-24 
Evaluation of Boolean Expressions 

6-10 

BOUND 
Bound 3-5, 3-8 
Bound Check Equations 5-72 
bound field 7-218, 8-10 
Bound Valid Flag 8-22 
bound value 5-47 
Bounds Checking 5-70 
lower bound check 5-71 
modifying the bound field 7-317 
upper bound check 5-71 

BOUNDARY 
byte boundary 5-73 

BTD 
BTD 7-66 

BUFFER 
buffer instructions 1-1 

BYPASS 
Safe Store Bypass Flag (SSBF) 4-46 

BYTE 
byte boundary 5-73 
byte checks 5-72 
Byte Operations 5-71 
byte positions 7-415, 7-416 

BYTES 
9-Bit Bytes 2-2 
Store 9-bit Bytes of A-Register 

7-415 
Store 9-bit Bytes of Q-Register 

7-416 

CACHE 
Bypass Cache Flag 8-20 
cache memory clearance 7-456 
cache memory error 4-20 
CACHE MODE REGISTER (CMR) 4-20 
Cache Read Control Flag (CRCF) 4-46, 

8-20 
Clear Cache 7-75 
Clear Cache (CCAC) 8-20 
Clear Cache and Flush 7-77 

CALENDAR 
Load Calendar Clock 7-209 
Read Calendar Clock 7-325 

CAMP 
CAMP 5-69, 7-68 

CAMPN 
CAMPn 7-70 

CANA 
CANA 7-71 

CANAQ 
CANAQ 7-72 

CANO 
CANQ 7-73 

CANXN 
CANXn 7-74 

CARRY 
Add with Carry to A-Register 7-57 
Add with Carry to Q-Register 7-58 
Carry 4-8 
Carry indicator 2-4 
Subtract with Carry from A-Register 

7-449 
Subtract with Carry from Q-Register 

7-450 
Transfer On Carry 7-478 
Transfer On No Carry 7-471 

CATEGORIES 
FAULT CATEGORIES 8-5 

CCAC 
CCAC 7-75 
Clear Cache (CCAC) 8-20 

CCACN 
CCACn 7-77 

CELLS 
interrupt cells 8-30 
Set Memory Controller Interrupt 

Cells 7-398 

CENTRAL 
Central Interface Unit Interrupts 

8-30 
IOM Central Detected System Faults 

8-27 
IOM Central Status Codes 8-25 
IOM Central-Detected User Faults 

8-25 
Load Central Processor Register 

7-210 
Store Central Processor Register 

7-391 

CHAIN 
indirect chain 5-48 

CHANGE 
Change Table 7-505 

CHANNEL 
Channel Status Word 8-24 
Connect I/O Channel 7-78 
IOM Channel Status Codes 8-26 

CHANNEL-DETECTED 
Channel-Detected Faults 8-25 

CHARACTER 
Alphanumeric Character Number (CN) 

Codes 6-20 
character codes for ASCII and EBCDIC 

overpunched sign 7-301 

i-6 DH03-0l 



CHARACTER (cont) 
Character indirect 5-13 
Character Indirect (CI) variation 

5-16 
Character Operations 5-45 
Character Positions 2-2, 7-422 
Char,acter-Str ings 2-2 
Compare Alphanumeric Character 

Strings 7-117 
Decimal Data Character Codes 2-9 
Sequence character 5-13 
Sequence Character (SC) variation 

5-16 
Sequence character reverse 5-13 
Sequence Character Reverse (T) 5-18 
STANDARD CHARACTER SET B-1 
Test Character and Translate 7-462 

CHARACTERS 
4-Bit Characters 2-3 
6-Bit Characters 2-2, 5-18 
characters 2-7 
Compare Characters and Translate 

7-119 
Ignore Source Characters 7-507 
Move Source Characters 7-518 
Scan Characters Double 7-381 
Scan Characters Double in Reverse 

7-384 
Store 6-bit Characters of A-Register 

7-421, 7-422 

CHT 

CI 

CHT 7-505 

Character Indirect (CI) variation 
5-16 

CI 5-13 
CI variation 5-16 

CIOC 
CIOC 7-78, 7-79 

CIRCUITRY 
processor logic circuitry 7-320 

CLASS 
Security Fault, Class 1 (SCLl) 8-10 
security Fault, Class 2 7-229 
Security Fault, Class 2 (SCL2) 8-14 
Security Faults, Class 1 7-229 

CLEAR 
cache memory clearance 7-456 
Clear Associative Memory Pages 7-68 
Clear Cache 7-75 
Clear Cache (CCAC) 8-20 
Clear Cache and Flush 7-77 
Clear Paging Associative Memory 

7-70 
Data Stack Clear Flag (DSCF) 4-46 
Load A-Register and Clear 7-215 
Load Q-Register and Clear 7-246 
set zero and Negative Indicators 

from Storage and Clear 7-456 

CLIMB 
CLIMB 3-5, 4-38, 4-39, 4-45, 7-88 
!CLIMB (Inward CLIMB) - 00 7-93 
OCLIMB (Outward CLIMB) - 01 7-104 
Outward CLIMB 7-104 
PMME (System Entry CLIMB) - 00 

7-105 
System Entry CLIMB 7-105 

CLOCK 
Elapsed Time Clock 
free running clock 
Load Calendar Clock 
Read Calendar Clock 

CMG 
CMG 7-110 

CMK 
CMK 7-111 

CMPA 
CMPA 7-113 

CMPAQ 
CMPAQ 7-114 

CMPB 
CMPB 7-115 

CMPC 
CMPC 7-117 

CM PCT 
CM PCT 7-119 

CMPN 
CMPN 7-121 

CMPNX 
CMPNX 7-124 

CMPQ 
CMPQ 7-126 

CMPXN 
CMPXn 7-127 

CMR 

7-355 
4-11 

7-209 
7-325 

CACHE MODE REGISTER (CMR) 4-20 

CN 
Alphanumeric Character Number (CN) 

Codes 6-20 

CNAA 
CNAA 7-128 

CNAAQ 
CNAAQ 7-129 

CNAQ 
CNAQ 7-130 

CNAXN 
CNAXn 7-131 

i-7 DH03-0l 



CODES 
ADDRESS MODIFICATION OCTAL CODES 

5-24 
Alphanumeric Character Number (CN) 

Codes 6-20 
Alphanumeric Data Type {TA) Codes 

6-20 
character codes for ASCII and EBCDIC 

overpunched sign 7-301 
Decimal Data Character Codes 2-9 
FLOATABLE CODE 5-26 
!OM Central Status Codes 8-25 
IOM Channel Status Codes 8-26 
Micro Operation Code Assignment Map 

1~522 
mnemonic code 7-1 
octal value of the operation code 

7-2 
Operation Code Map (Bit 27 = 0) A-2 
Operation Code Map (Bit 27 = 1) A-3 
Processor Faults By Fault Code 8-3 
Register Codes 5-32 
System Controller Fault Codes 8-27 
System Controller Illegal Action 

Codes 4-24 

COMBINE 
Combine Bit Strings Left 7-132 
Combine Bit Strings Right 7-134 

COMMAND 
Command Faults 7-228, 8-9 

COMPARATIVE 
Comparative AND with A-Register 

7-71 
Comparative AND with AQ-Register 

7-72 
Comparative AND with Index Register 

n 7-74 
Comparative AND with Q-Register 

7-73 
Comparative NOT AND with A-Register 

7-128 
Comparative NOT AND with AQ-Register 

7-129 
Comparative NOT AND with Index 

Register n 7-131 
Comparative NOT AND with Q-Register 

7-130 

COMPARE 
Compare Alphanumeric Character 

Strings 7-117 
Compare Bit Strings 7-115 
Compare Characters and Translate 

7-119 
Compare Magnitude 1-110 
Compare Masked 7-111 
Compare Numeric 7-121 
Compare Numeric Extended 7-124 
Compare with A-Register 7-113 
Compare with AQ 7-114 
Compare with Index Register n 7-127 
Compare with Limits 7-136 
Compare with Q-Register 7-126 
Comparison Operations 6-2 
Data Comparison 6-5 

COMPARE (cont) 
Double-Precision Floating Compare 

7-139 
Double-Precision Floating Compare 

Magnitude 7-138 
Floating Compare 7-187 
Floating Compare Magnitude 7-186 

COMPLEMENT 
Load Complement into A-Register 

7-207 
Load Complement into AQ-Register 

7-208 
Load Complement into Index Register 

n 7-213 
Load Complement into Q-Register 

7-212 

CON 
Connect (CON) 8-5 

CONNECT 
Connect 7-79 
Connect (CON) 8-5 
Connect I/O Channel 7-78 

CONSTANTS 
conversion constants 7-63 

CONSTITUENT 
constituent flags and registers 

4-23, 4-27 

CONTINUE 
and continue 5-14 
Decrement Address, Increment Tally, 

and Continue 5-22 
Decrement Address, Increment Tally, 

and Continue (T} 5-20 
Increment Address, Decrement Tally, 

and Continue 5-21 

CONTROL 

i-8 

CONTROL UNIT HISTORY REGISTERS (CUn} 
4-26 

CONTROLLER 
Read Memory Controller Mask Register 

7-331 
Read System Controller Register 

7-351 
Set Memory Controller Interrupt 

Cells 7-398 
Set Memory Controller Mask Register 

7-396 
Set System Controller Register 

7-404 
System Controller Illegal Action 

Codes 4-24 
System Controller Interrupts 8-30 
System Controller-Detected Faults 

8-26 

CONVERSION 
Binary to Decimal Convert 7-66 
Binary-To-BCD Conversion 6-36 
Binary-to-BCD Convert 7-62 
conversion constants 7-63 

DH03-0l 



CONVERSION (cont) 
Conversion instructions 6-5 
conversions between binary and 

decimal numbers 6-26 
Data Conversion Instructions 6-26 
Decimal to Binary Convert 7-154 
Gray-To-Binary Conversion 6-37 
Radix conversion 6-5 

COPY 
Copy 7-223 
copy option 7-241 

COUNTER 
INSTRUCTION COUNTER (IC) 4-11 
Store Instruction Counter Plus 1 

7-418 
Store Instruction Counter Plus 2 

7-419 

CRCF 
Cache Read Control Flag (CRCF) 4-46, 

8-20 

CSL 
CSL 7-132 

CSR 
CSR 7-134 

CUN 
CONTROL UNIT HISTORY REGISTERS (CUn) 

4-26 

CURRENCY 
Move with Floating Currency Symbol 

Insertion 7-514 

CWL 
CWL 7-136 

DATA 
Alphanumeric Data Type (TA) Codes 

6-2C 
Data Comparison 6-5 
Data Conversion Instructions 6-26 
Data Manipulation 6-5 
Data Movement 6-5 
Data Movement Instructions 6-2 
Data Shifting Instructions 6-2 
DATA STACK ADDRESS REGISTER {DSAR) 

4-44 
Data Stack Clear Flag (DSCF) 4-46 
DATA STACK DESCRIPTOR REGISTER 

(DSDR) 4-43 
Data Stack Shrink (11) 7-226 
Decimal Data Character Codes 2-9 
double-precision data 2-1 
Load Data Stack Address Register 

7-231 
Load Data Stack Descriptor Register 

7-232 
processing of scattered data 5-21 
processing of tabular data 5-13 
single-precision data 2-1 
Store Data Stack Address Register 

7-425 

DATA {cont) 
Store Data Stack Descriptor Register 

7-426 

DEC 
DEC 2-7 

DECIMAL 
Add Using Three Decimal Operands 

7-23 
Add Using Three Decimal Operands 

Extended 7-26 
Add Using Two Decimal Operands 7-19 
Add Using Two Decimal Operands 

Extended 7-21 
ADSC4 - Packed decimal alphanumeric 

descriptor 5-35 
Binary to Decimal Convert 7-66 
conversions between binary and 

decimal numbers 6-26 
Decimal Arithmetic 6-5 
Decimal Data Character Codes 2-9 
Decimal Number Ranges 2-11 
Decimal Numbers 2-8 
Decimal to Binary Convert 7-154 
decimal unit 1-2 
DECIMAL UNIT HISTORY REGISTERS (DUn) 

4-31 
Divide Using Three Decimal Operands 

7-163 
Divide Using Three Decimal Operands 

Extended 7-167 
Divide Using Two Decimal Operands 

7-160 
Divide Using Two Decimal Operands 

Extended 7-162 
Floating-Point Decimal Numbers 2-10 
Multiply Using Three Decimal 

Operands 7-276 
Multiply Using Three Decimal 

Operands Extended 7-279 
Multiply Using Two Decimal Operands 

7-272 
Multiply Using Two Decimal Operands 

Extended 7-275 
NDSC4 - Packed decimal numeric 

descriptor 5-36 
Packed Decimal 2-3 
Packed Decimal ( 4-bi t) 2-8 
Subtract Using Three Decimal 

Operands 7-367 
Subtract Using Three Decimal 

Operands Extended 7-370 
Subtract Using Two Decimal Operands 

7-363 
Subtract Using Two Decimal Operands 

Extended 7-366 

DECREMENT 
Decrement address 5-14 
Decrement Address, Increment Tally 

(T) 5-20 
Decrement Address, Increment Tally, 

and Continue 5-22 
Decrement Address, Increment Tally, 

and Continue (T) 5-20 
decrement tally 5-14 

i-9 DH03-0l 



DECREMENT (cont) 
Increment Address, 

(T) 5-19 
Increment Address, 

and Continue 

Decrement Tally 

Decrement Tally, 
5-21 

DELAY 
Delay Until Interrupt Signal 7-150 
Delay Until Interrupt Signal (DIS) 

8-16 

DELTA 
Add delta 5-14 
Add Delta (AD) 
Subtract delta 
Subtract Delta 

DENSE 

variation 5-22 
5-14 

(SD) variation 

DENSE PAGE TABLE 5-60 

5-23 

Virtual Address, Dense Page Table 
5-61 

DERAIL 
Derail 7-153 
Derail (DRL) 8-5 

DESCRIPTOR 
Address Register n to Alphanumeric 

Descriptor 7-49 
Address Register n to Numeric 

Descriptor 7-52 
ADSC4 - Packed decimal alphanumeric 

descriptor 5-35 
ADSC6 - BCI alphanumeric descriptor 

5-35 
ADSC9 - ASCII alphanumeric 

descriptor 5-35 
Alphanumeric Descriptor To Address 

Register n 7-15 
ALPHANUMERIC OPERAND DESCRIPTOR 

FORMAT 6-19 
ALPHANUMERIC OPERAND DESCRIPTORS 

5-35 
BDSC - Bit descriptor 5-34 
BIT STRING OPERAND DESCRIPTOR 5-34 
BIT STRING OPERAND DESCRIPTOR FORMAT 

6-25 
DATA STACK DESCRIPTOR REGISTER 

(DSDR) 4-43 
DESCRIPTOR REGISTER INSTRUCTIONS 

6-13 
Descriptor Segment Descriptor 7-93 
descriptor stack 3-10 
descriptor storage 3-4 
Descriptors 3-4 
Dynamic Linking Descriptor 3-13 
Entry Descriptor 3-12! 7-93, 7-105, 

8-1, 8-31 
ID - Indirect Operand Descriptor 

5-31 
Load Data Stack Descriptor Register 

7-232 
Load Descriptor Register n 7-222 
NDSC4 - Packed decimal numeric 

descriptor 5-36 
NDSC9 - ASCII numeric descriptor 

5-36 

DESCRIPTOR (cont) 
Numeric Descriptor to Address 

Register n 7-306 
NUMERIC OPERAND DESCRIPTOR FORMAT 

6-22 
NUMERIC OPERAND DESCRIPTORS 5-35 
Operand Descriptor 7-7 
Operand Descriptor Address 

Preparation 5-39 
OPERAND DESCRIPTOR INDIRECT POINTER 

FORMAT 6-19 
OPERAND DESCRIPTOR REGISTERS (DRn) 

4-40 
Operand Descriptors 5-34 
Operand Descriptors and Indirect 

Pointers 6-19 
Save Descriptor Register n 7-393 
segment descriptor 3-2, 5-47 
Segment Descriptor Flag Faults 8-19 
Standard Descriptor 3-5, 5-48, 7-93, 

7-224, 7-248 
Standard Descriptor With Working 

Space Number 3-7 
Store Data Stack Descriptor Register 

7-426 
Store Descriptor Register n 7-423 
Store Test Descriptor Register 

7-445 
Super Descriptor 3-8 
Super Descriptor 7 7-225 
Super Descriptor With Working Space 

Number 3-9 
Virtual Address Generation, Super 

Descriptor 5-51 

DESIGNATOR 
register designator 5-2 
tag designator (td) 5-2 
tally designator 5-2 
Tally Designators 5-15 

DFAD 
DFAD 7-137 

DFCMG 
DFCMG 7-138 

DFCMP 
DFCMP 7-139 

DFDI 
DFDI 7-140 

DFDV 
DFDV 7-142 

DFLD 
DFLD 7-144 

DFMP 
DFMP 7-145 

DFRD 
DFRD 7-146 

DFSB 
DFSB 7-147 

i-10 DH03-01 



DFST 
DFST 7-148 

DFSTR 
DFSTR 7-149 

DI 
DI 5-14 
DI variation 5-20 

DIC 
DIC 5-14 
DIC Variation 5-22 

DIRECT 
direct load option 7-222 
Direct Lower (DL) 5-4 
direct operand address modification 

5-4 
Direct Upper (DU) 5-4 

DIRECTORY 
Load Page Table Directory Base 

Register 7-258 
LOCATING THE PAGE TABLE DIRECTORY 

WORD 5-60 
Page Directory Base Register (PDBR) 

1-6, 4-45, 5-60 
page table directory 3-2 
PTWAM directory 7-438 
Store Page Table Directory Base 

Register 7-399 
Store PTWAM Directory Word 7-435 

DIS 
Delay Until Interrupt Signal .(DIS) 

8-16 
DIS 4-11, 7-150, 8-8 

DISPLACEMENT 
Add 4-Bit Displacement To Address 

Register 7-10 
Add 6-Bit Displacement To Address 

Register 7-11 
Add 9-Bit Displacement to Address 

Register 7-13 
Add Bit Displacement To Address 

Register 7-17 
Add Word Displacement to Address 

Register 7-60 
Displacement register 6-9, 7-8 
Subtract 4-Bit Displacement from 

Address Register 7-358 
Subtract 6-Bit Displacement from 

Address Register 7-359 
Subtract 9-Bit Displacement from 

Address Register 7-360 
Subtract Bit Displacement from 

Address Register 7-374 
Subtract Word Displacement from 

Address Register 7-452 

DIV 
DIV 7-151 

DIVIDE 
Divide Check (FDIV) 8-8 
Divide Fraction 7-169 

DIVIDE (cont) 
Divide Integer 7-151 
Divide Using Three Decimal Operands 

7-163 
Divide Using Three Decimal Operands 

Extended 7-167 
Divide Using Two Decimal Operands 

7-160 
Divide Using Two Decimal Operands 

Extended 7-162 
Double-Precision Floating Divide 

7-142 
Double-Precision Floating Divide 

Inverted 7-140 
Floating Divide 7-190 
Floating Divide Inverted 7-188 

DIVISION 
division 6-3 

DL 
Direct Lower (DL) 5-4 

DOMAIN 

i-11 

change of domain 3-11 
domain registers 3-11 
Domain Transfer 7-88 
Domains 3-10 
inter-domain references 7-90 

DOUBLE 
7-502 

7-333 
Execute Double 
Repeat Double 
Scan Characters 
Scan Characters 

Double 7-381 
Double in Reverse 

7-384 

DOUBLE-PRECISION 
double-precision data 2-1 
Double-Precision Floating Add 7-137 
Double-Precision Floating Compare 

7-139 
Double-Precision Floating Compare 

Magnitude 7-138 
Double-Precision Floating Divide 

7-142 
Double-Precision Floating Divide 

Inverted 7-140 
Double-Precision Floating Load 

7-144 
Double-Precision Floating Multiply 

7-145 
Double-Precision Floating Round 

7-146 
Double-Precision Floating Store 

7-148 
Double-Precision Floating Store 

Rounded 7-149 
Double-Precision Floating Subtract 

7-147 
Double-Precision Unnormalized 

Floating Add 7-157 · 
Double-Precision Unnormalized 

Floating Multiply 7-158 
Double-Precision Unnormalized 

Floating Subtract 7-159 

DH03-0l 



DOUBLE-WORD 
Word and Double-Word Operations 

5-70 

DR 
DR 6-9, 7-8 

DRL 
Derail (DRL) 8-5 
DRL 7-153 

DRN 
DRn 4-41 
OPERAND DESCRIPTOR REGISTERS (DRn) 

4-40 

DSAR 
DATA STACK ADDRESS REGISTER (DSAR) 

4-44 

DSCF 
Data Stack Clear Flag (DSCF) 4-46 

DSDR 
DATA STACK DESCRIPTOR REGISTER 

(DSDR) 4-43 

DTB 
DTB 7-154 

DU 
Direct Upper (DU) 5-4 

DUFA 
DUFA 7-157 

DUFM 
DUFM 7-158 

DUFS 
DUFS 7-159 

DUN 
DECIMAL UNIT HISTORY REGISTERS (DUn) 

4-31 

DV2D 
DV2D 7-160 

DV2DX 
DV2DX 7-162 

DV3D 
DV3D 7-163 

DV3DX 
DV3DX 7-167 

DVF 
DVF 7-169 

DYNAMIC 
Dynamic Linking Descriptor 3-13 
Dynamic Linking Fault (DYNLF) 8-12 

DYNLF 
Dynamic Linking Fault (DYNLF) 8-12 

E 
EXPONENT REGISTER (E) 4-5 

EAA 
EAA 7-171 

EAQ 
EAQ 7-172 
EXPONENT-ACCUMULATOR-QUOTIENT 

REGISTER (EAQ) 4-6 

EAXN 
EAXn 7-173 

EBCDIC 
character codes for ASCII and EBCDIC 

overpunched sign 7-301 

EDAC 
EDAC bits 2-1 

EDIT 
ALPHANUMERIC EDIT (MVE) 6-30 
Edit Flags 6-29 
Edit Insertion Table 6-28 
Edited Move Micro Operations 6-6 
MICRO OPERATIONS FOR EDIT 

INSTRUCTIONS MVE AND MVNE 6-28 
Move Alphanumeric Edited 7-287 
Move Numeric Edited 7-294 
Move Numeric Edited Extended 7-297 
NUMERIC EDIT (MVNE And MVNEX 6-30 

EFFECTIVE 
effective address 5-47 
Effective Address to A-Register 

7-171 
Effective Address to Index Register 

n 7-173 
Effective Address to Q-Register 

7-172 
Effective Address to Register 

Instructions 6-2 
effective addresses 5-5 
Effective Pointer And Address To 

Test 7-174 
Effective Pointer To Pointer 

Register n 7-176 

EIGHT 
EIGHT 7-206, 7~260, 7-261, 7-362, 

7-402 

ELAPSED 
Elapsed Time Clock 7-355 
Elapsed Time Interval Faults 8-8 

ENABLE 
port enable register 7-354 

END 
End Floating Suppression _7-506 
End suppression flag 6-29 
Set End Suppression 7-521 

ENF 
ENF 7-506 

i-12 DH03-0l 



ENTRY 
Entry Descriptor 3-12, 7-93, 7-105, 

8-1, 8-31 
Entry Location 3-12 
Master Mode Entry 7-269 
Master Mode Entry {MME) 8-5 
Transfer Table Entry Store 7-486 
Transfer Table Entry Zero 7-488 

EPAT 
EPAT 7-174, 7-444, 7-445 

EPP RN 
EPPRn 7-176 

EQUATIONS 
Bound Check Equations 5-72 

ERA 
ERA 7-178 

ERAQ 
ERAQ 7-179 

ERQ 
ERQ 7-180 

ERROR 
cache memory error 4-20 
parity error 4-9 

ERSA 
ERSA 7-181 

ERSQ 
ERSQ 7-182 

ERSXN 
ERSXn 7-183 

ERXN 
ERXn 7-184 

EVEN 
EVEN 7-260 

EXAMPLES 
examples of IR modification 5-10 
examples of R-type modification 5-5 
examples of RI modification 5-8 
Micro Operation Examples 7-522 

EXCLUSIVE 
EXCLUSIVE OR to A-Register 7-178 
EXCLUSIVE OR to AQ-Register 7-179 
EXCLUSIVE OR to Index Register n 

7-184 
EXCLUSIVE OR to Q-Register 7-180 
EXCLUSIVE OR to Storage with 

A-Register 7-181 
EXCLUSIVE OR to Storage with Index 

Register n 7-183 
EXCLUSIVE OR to Storage with 

Q-Register 7-182 

EXECUTE 
Execute 7-500 
Execute (EXF) 8-17 

i-13 

EXECUTE (cont) 
Execute Double 7-502 
Execute Flag 8-21 
Execute Instructions 6-36 
Execution of Interrupts 1-3 

EXF 
Execute (EXF) 8-17 

EXPANSION 
binary expansion 2-8 

EXPONENT 
Add to Exponent Register 7-31 
exponent 2-6 
Exponent overflow 4-8 
EXPONENT REGISTER (E) 4-5 
Exponent underflow 4-9 
hexadecimal exponent mode 4-10, 

4-19 
Load Exponent Register 7-234 
Store Exponent Register 7-428 
Transfer On Exponent Overflow 7-466 
Transfer On Exponent Underflow 

7-467 

EXPONENT-ACCUMULATOR-QUOTIENT 
EXPONENT-ACCUMULATOR-QUOTIENT 

REGISTER (EAQ) 4-6 

EXPRESS IONS 
Boolean Expressions 6-10 
Evaluation of Boolean Expressions 

6-10 

EXTENDED 

F 

Add Using Three Decimal Operands 
Extended 7-26 

Add Using Two Decimal Operands 
Extended 7-21 

Compare Numeric Extended 7-124 
Divide Using Three Decimal Operands 

Extended 7-167 
Divide Using Two Decimal Operands 

Extended 7-162 
Load Extended Address n 7-235 
Move Numeric Edited Extended 7-297 
Move Numeric Extended 7-299 
Multiply Using Three Decimal 

Operands Extended 7-279 
Multiply Using Two Decimal Operands 

Extended 7-275 
Subtract Using Three Decimal 

Operands Extended 7-370 
Subtract Using Two Decimal Operands 

Extended 7-366 

F Variation 5-16 

FACTOR 
scaling factor 5-38, 6-23, 7-25 

FAD 
FAD 7-185 

FAULT 
System Controller Fault Codes 8-27 

DH03-0l 



FAULTS 
Any Mode Faults 8-18 
Arithmetic Faults 8-8 
Backup Fault 8-16 
BND Faults 8-9 
Channel-Detected Faults 8-25 
Classes of Faults and Interrupts 

8-36 
Command Faults 7-228, 8-9 
DESCRIPTION OF FAULTS AND INTERRUPTS 

8-1 
Dynamic Linking Fault (DYNLF) 8-12 
Elapsed Time Interval Faults 8-8 
Fault 5-13 
FAULT CATEGORIES 8-5 
FAULT PRIORITY 8-2 
FAULT PROCEDURE 8-1 
FAULT RECOGNITION 8-2 
FAULT REGISTER (FR} 4-22 
FAULT REGISTER FORMAT 4-25 
Fault Tag 8-5 
Fault Trap Address 8-23 
Fault variation 5-16 
Faults And Interrupts 1-2, 8-1 
Hardware Generated Faults 8-16 
IC Values Stored On Faults And 

Interrupts 8-32 
Illegal Procedure (IPR) Faults 

7-227 
Input-Output Multiplexer (IOM) 

Detected Faults 8-24 
Instruction-Generated Faults 8-5 
!OM Central Detected System Faults 

8-27 
IOM Central-Detected User Faults 

8-25 
IPR fault 8-6 
Master Mode Faults 8-18 
Memory (STR) Faults 8-9 
Memory Faults (STR) 7-228 
MISCELLANEOUS FAULTS 8-19 
Missing Page fault 5-58, 8-12 
Missing Page Fault (MPG) 8-12 
Missing Page Faults 7-229 
Missing Segment Fault 8-12 
Missing Segment Fault (MSE) 8-12 
Missing Segment Faults 7-228 
Missing Working Space Fault 8-12 
Missing Working Space Fault (MWS) 

8-12 
Missing Working Space Faults 7-229 
MODE FAULTS 8-18 
Mode Register Fault Traps 8-23 
Page Table Word Control Field Faults 

8-22 
Power Signal Faults 8-17 
Privileged Master Mode Faults 8-18 
Processor Faults By Fault Code 8-3 
Processor Faults by Priority 4-13 
Program Generated Faults 8-8 
Safe Store Stack Fault (SSSF) 8-15 
Security Fault, Class 1 (SCLl) 8-10 
Security Fault, Class 2 7-229 
Security Fault, Class 2 (SCLZ) 8-14 
Security Faults, Class 1 7-229 
Segment Descriptor Flag Faults 8-19 
Slave Mode Faults 8-18 
Store Fault Register 7-395 

i-14 

FAULTS (cont) 
Store Memory (STR} Fault 8-17 
System Controller-Detected Faults 

8-26 
SYSTEM FAULTS 8-26 
User Faults 8-24 
Virtual Memory Generated Faults 

8-10 

FCMG 
FCMG 7-186 

FCMP 
FCMP 7-187 

FD! 
FD! 7-188 

FDIV 
Divide Check {FDIV) 8-8 

FDV 
FDV 7-190 

FIELD 
BOLR control field 7-132 
bound field 7-218, 8-10 
flags field 3-6, 3-7, 3-8, 3-9 
Housekeeping Control Field 8-23 
!OM or IOX Page Present/Missing 

Control Field 8-23 
modifying the bound field 7-317 
Multiword Modification Field 5-31 
Page Access Control Field 8-23 
Page Modified Control Field 8-23 
Page Table Word Control Field Faults 

8-22 
Processor Page Present/Missing 

Control Field 8-22 
Tag Field 5-2 
Write Control Field 8-22 

FIXED-POINT 
Fixed-Point Arithmetic Instructions 

6-3 
FIXED-POINT INSTRUCTIONS 6-14 
Fixed-Point Numbers 2-4 
Ranges Of Fixed-Point Numbers 2-5 

FLAG 
Available Segment Flag 8-22 
Blank-when-zero flag 6-29 
Bound Valid Flag 8-22 
Bypass Cache Flag 8-20 
Cache Read Control Flag (CRCF) 4-46, 

8-20 
constituent flags and registers 

4-23, 4-27 
Data Stack Clear Flag (DSCF) 4-46 
Edit Flags 6-29 
End suppression flag 6-29 
Execute Flag 8-21 
flags field 3-6, 3-7, 3~8, 3-9 
Privileged Flag 8-21 
Read/Write Permission Flags 8-19 
Safe Store Bypass Flag (SSBF) 4-46 
Segment Descriptor Flag Faults 8-19 
Segment Present Flag 8-22 

DH03-0l 



FLAG (cont) 
sign flag 6-29 
zero flag 6-29 

FLO 
FLO 7-192 

FLOATABLE 
FLOATABLE CODE 

FLOATING 

5-26 

Double-Precision Floating Add 7-137 
Double-Precision Floating Compare 

7-139 
Double~Precision Floating Compare 

Magnitude 7-138 
Double-Precision Floating Divide 

7-142 
Double-Precision Floating Divide 

Inverted 7-140 
Double-Precision Floating Load 

7-144 
Double-Precision Floating Multiply 

7-145 
Double-Precision Floating Round 

7-146 
Double-Precision Floating Store 

7-148 
Double-Precision Floating Store 

Rounded 7-149 
Double-Precision Floating Subtract 

7-147 
Double-Precision unnormalized 

Floating Add 7-157 
Double-Precision Unnormalized 

Floating Multiply 7-158 
Double-Precision Unnormalized 

Floating Subtract 7-159 
End Floating Suppression 7-506 
Floating Add 7-185 
Floating Compare 7-187 
Floating Compare Magnitude 7-186 
Floating Divide 7-190 
Floating Divide Inverted 7-188 
Floating Load 7-192 
Floating Multiply 7-193 
Floating Negate 7-194 
Floating Normalize 7-195 
Floating Round 7-197 
Floating Set Zero and Negative 

Indicators from Storage 7-203 
Floating Store 7-200 
Floating Store Rounded 7-201 
Floating Subtract 7-199 
Move with Floating Currency Symbol 

Insertion 7-514 
Move with Floating Sign Insertion 

7-515 
Unnormalized Floating Add 7-497 
Unnormalized Floating Multiply 

7-498 
Unnormalized Floating Subtract 

7-499 

FLOATING-POINT 
Floating-Point Arithmetic 

Instructions 6-3 
Floating-Point Decimal Numbers 2-10 

i-15 

FLOATING-POINT (cont) 
FLOATING-POINT INSTRUCTIONS 6-17 
Floating-Point Numbers 2-6 
Hexadecimal Floating-Point Numbers 

2-7 
Normalized Floating-Point Numbers 

2-6 
Ranges Of Floating-Point Numbers 

2-7 
rounded floating-point 6-4 

FLOWCHART 
Address Modification Flowchart 5-25 

FLUSH 
Clear Cache and Flush 7-77 

FMP 
FMP 7-193 

FNEG 
FNEG 7-194 

FNO 
FNO 7-195 

FONC 
Operation Not Completed (FONC) 8-9, 

8-16 

FORMAT 
ALPHANUMERIC OPERAND DESCRIPTOR 

FORMAT 6-19 
BIT STRING OPERAND DESCRIPTOR FORMAT 

6-25 
FAULT REGISTER FORMAT 4-25 
FORMAT OF INSTRUCTION DESCRIPTION 

7-1 
Indirect Word Format 5-15 
INSTRUCTION WORD FORMATS 7-6 
Move to Memory Format 7-270 
Move to Register Format 7-283 
NUMERIC OPERAND DESCRIPTOR FORMAT 

6-22 
OPERAND DESCRIPTOR INDIRECT POINTER 

FORMAT 6-19 
Page Table Word Format 5-57 

FOVL 
Overflow (FOVL) 8-8 

FPAR 
Parity (FPAR) 8-16 

FR 
FAULT REGISTER (FR) 4-22 

FRACTION 
Divide Fraction 7-169 
Multiply Fraction 7-28l 

FRACTIONAL 
Binary Representation of· Fractional 

Values 2-8 
fractional mantissa 2-6 

FRAGMENTED 
FRAGMENTED PAGE TABLE 5-64 

DH03-0l 



FRAMED 
framed stack space 7-100 

FRO 
FRO 7-197 

FREE 
free running clock 4-11 

FSB 
FSB 7-199 

FST 
FST 7-200 

FSTR 
FSTR 7-201 

FSZN 
FSZN 7-203 

FUNCTIONAL 
Functional Units 1-2 

GATE 
Gate Synchronize 7-454 

GATING 
program gating 6-4 

GCLIMB 
GCLIMB 7-104 
GCLIMB (Lateral Transfer LTRAS) - 10 

7-104 

GENERAL 
General Description 3-1 

GENERATION 
Virtual Address Generation, Super 

Descriptor 5-51 

GRAY-TO-BINARY 
Gray-to-Binary 7-204 
Gray-To-Binary Conversion 6-37 

GTB 
GTB 7-204 

HARDWARE 
Hardware Generated Faults 8-16 
hardware rounding option 6-5 

HEXADECIMAL 
hexadecimal exponent mode 4-10, 

4-19 
Hexadecimal Floating-Point Numbers 

HISTORY 

"'l .. 
.G- I 

CONTROL UNIT HISTORY REGISTERS (CUn) 
4-26 

DECIMAL UNIT HISTORY REGISTERS (DUn) 
4-31 

OPERATIONS UNIT HISTORY REGISTERS 
(OUn) 4-28 

VIRTUAL UNIT HISTORY REGISTERS (VUn) 
4-34 

HOUSEKEEPING 
housekeeping bit 6-33 
Housekeeping Control Field 8-23 
housekeeping page 8-11 
housekeeping pages 3-4 

HXFLPT 
HXFLPT 2-7 

I 
I 5-13 
I variation 5-18 
Indirect (I) variation 5-18 

I/O 

IC 

Connect I/O Channel 7-78 

IC Values Stored On Faults And 
Interrupts 8-32 

INSTRUCTION COUNTER (IC) 4-11 

I CLIMB 

ID 

!CLIMB 8-1 
!CLIMB (Inward CLIMB) - 00 7-93 
wired-in !CLIMB 8-30 

ID 5-14 
ID - Indirect Operand Descriptor 

5-31 
ID variation 5-19 

IDC 
IDC 5-14 
me variation 5-21 

IDENTITY 
INSTRUCTION SEGMENT IDENTITY 

REGISTER - SEGID (IS) 4-42 
SEGMENT IDENTITY REGISTERS (SEGIDn) 

4-41 

IGN 
IGN 7-507 

IGNORE 
Ignore Source Characters 7-507 

ILLEGAL 
Illegal Modification 7-5 
Illegal Procedure (IPR) 8-5 
Illegal Procedure (IPR) Faults 

7-227 
System Controller Illegal Action 

Codes 4-24 

INCREMENT 
Decrement Address, Increment Tally 

(T) 5-20 
Decrement Address, Increment Tally, 

and Continue 5-22 
Decrement Address, Increment Tally, 

and Continue (T) 5-20 
Increment address 5-14 
Increment Address, Decrement Tally 

(T) 5-19 

i-16 DH03-01 



INCREMENT (cont) 
Increment Address, Decrement Tally, 

and Continue 5-21 
increment tally 5-14 

INDEX 
Add Logical to Index Register n 

7-36 
Add to Index Register n 7-38 
Add To Storage From Index Register n 

7-56 
AND to Index Register n 7-47 
AND to Storage from Index Register n 

7-46 
Bit Strings and Index Table of 

Translate Instruction 5-71 
Comparative AND with Index Register 

n 7-74 
Comparative NOT AND with Index 

Register n 7-131 
Compare with Index Register n 7-127 
Effective Address to Index Register 

n 7-173 
EXCLUSIVE OR to Index Register n 

7-184 
EXCLUSIVE OR to Storage with Index 

Register n 7-183 
index register symbols 5-33 
INDEX REGISTERS (Xn) 4-6 
Load Complement into Index Register 

n 7-213 
Load Index Register n from Lower 

7-264 
Load Index Register n from Upper 

7-253 
OR to Index Register n 7-316 
OR to Storage from Index Register n 

7-315 
Store Index Register n in Lower 

7-453 
Store Index Register n in Upper 

7-447 
Subtract from Index Register n 

7-380 
Subtract Logical from Index Register 

n 7-378 
Subtract Stored from Index Register 

n 7-407 
Transfer And Set Index Register n 

7-485 

INDEXING 
indirect addressing and indexing 

5-9 
second-level indexing 5-26, 6-6 

INDICATOR 
Carry indicator 2-4 
Indicator Register 2-7 
INDICATOR REGISTER (IR) 4-7 
Load Indicator Register 7-236 
Master Mode bit in the Indicator 

Register 1-5 
Parity Indicator 7-5 
Set zero and Negative Indicators 

from Storage 7-455 
Set zero and Negative Indicators 

from Storage and Clear 7-456 

i-17 

INDICATOR {cont) 
Set zero and Truncation Indicators 

with Bit Strings Left 7-458 
Set Zero and Truncation Indicators 

with Bit Strings Right 7-460 
Store Indicator Register 7-429 
Transfer on Tally Runout Indicator 

OFF 7-489 
Transfer On Tally Runout Indicator 

ON 7-490 
Transfer On Truncation Indicator OFF 

7-479 
Transfer On Truncation Indicator ON 

7-481 

INDIRECT 
Character indirect 5-13 
Character Indirect (CI) variation 

5-16 
ID - Indirect Operand Descriptor 

5-31 
5-13 Indirect 

Indirect 
Indirect 
indirect 

(I) variation 5-18 
Addressing 5-1, 5-7 
addressing and indexing 

5-9 
indirect chain 5-48 
Indirect Then Register (IR) 5-1, 

5-9 
Indirect Then Tally (IT) 5-1, 5-13 
INDIRECT WORD 5-38 
Indirect Word Format 5-15 
OPERAND DESCRIPTOR INDIRECT POINTER 

FORMAT 6-19 
Operand Descriptors and Indirect 

Pointers 6-19 
Register then Indirect (RI) 5-1, 

5-7 

INPUT 
input-output instruction 7-78 
Input-Output Multiplexer (IOM) 

Detected Faults 8-24 

INSA 
INSA 7-508 

INSB 
INSB 7-509 

INSERT 
Insert Asterisk on Suppression 

7-508 
Insert Blank on Suppression 7-509 
Insert On Negative 7-511 
Insert On Positive 7-512 
Insert Table Entry One Multiple 

7-510 

INSERTION 
Edit Insertion Table 6-28 
Move with Floating Currency Symbol 

Insertion 7-514 
Move with Floating Sign Insertion 

7-515 

INSM 
INSM 7-510 

DH03-0l 



INSN 
INSN 7-511 

INSP 
INSP 7-512 

INSTRUCTION 
INSTRUCTION COUNTER (IC) 4-11 
INSTRUCTION SEGMENT IDENTITY 

REGISTER - SEGID (IS) 4-42 
INSTRUCTION SEGMENT REGISTER (ISR) 

4-40 
Store Instruction Counter Plus 1 

7-418 
Store Instruction Counter Plus 2 

7-419 

INSTRUCTIONS 
ADDRESS REGISTER INSTRUCTIONS 6-7 
Address Register Special Arithmetic 

Instructions 7-8 
All Mode Instructions 6-36 
Alphanumeric instructions 6-4, 6-19 
Arithmetic Instructions 6-27 
Bit string instructions 6-5, 6-24 
Bit Strings and Index Table of 

Translate Instruction 5-71 
Boolean Operation Instructions 6-10 
buffer instructions 1-1 
COMMON ATTRIBUTES OF INSTRUCTIONS 

7-5 
Conversion instructions 6-5 
Data Conversion Instructions 6-26 
Data Movement Instructions 6-2 
Data Shifting Instructions 6-2 
DESCRIPTOR REGISTER INSTRUCTIONS 

6-13 
Effective Address to Register 

Instructions 6-2 
Execute Instructions 6-36 
Fixed-Point Arithmetic Instructions 

6-3 
FIXED-POINT INSTRUCTIONS 6-14 
Floating-Point Arithmetic 

Instructions 6-3 
FLOATING-POINT INSTRUCTIONS 6-17 
FORMAT OF INSTRUCTION DESCRIPTION 

7-1 
input-output instruction 7-78 
Instruction Address Procedure 5-48 
Instruction Repertoire 6-6 
INSTRUCTION WORD FORMATS 7-6 
Instruction-Generated Faults 8-5 
MACHINE INSTRUCTIONS 6-1 
MICRO OPERATIONS FOR EDIT 

INSTRUCTIONS MVE AND MVNE 6-28 
Multiword Instruction Capabilities 

6-5 
Multiword Instruction Interrupts 

8-31 
MULTIWORD INSTRUCTIONS 6-4, 6-19, 

7-7 
Numeric instructions 6-4, 6-21 
POINTER REGISTER INSTRUCTIONS 6-32' 
PRIVILEGED INSTRUCTIONS 6-33 
Repeat Instructions 6-37 
SINGLE-WORD INSTRUCTIONS 6-1, 7-6 
Special Processor Instructions 6-4 

INSTRUCTIONS (cont) 
Transfer Instructions 6-35 

INTEGER 
Divide Integer 7-151 
Multiply Integer 7-282 

INTER-DOMAIN 
inter-domain references 7-90 

INTERFACE 
Central Interface Unit Interrupts 

8-30 

INTERLEAVING 
address interleaving 3-1 

INTERNAL 
internal offset 3-14 

INTERRUPT 
Delay Until Interrupt Signal 7-150 
Delay Until Interrupt Signal (DIS) 

8-16 
interrupt cells 8-30 
Interrupt Procedure 8-30 
Load Interrupt Mask Register 7-254 
Read Interrupt Mask Register 7-328 
Read Interrupt Word Pair 7-329 
Set Memory Controller Interrupt 

Cells 7-398 

INTERRUPTS 
Central Interface Unit Interrupts 

8-30 
Classes of Faults and Interrupts 

8-36 
DESCRIPTION OF FAULTS AND INTERRUPTS 

8-1 
Execution of Interrupts 1-3 
Faults And Interrupts 1-2, 8-1 
IC Values Stored On Faults And 

Interrupts 8-32 
Multiword Instruction Interrupts 

8-31 
System Controller Interrupts 8-30 

INTERVAL 
Elapsed Time Interval Faults 8-8 
Interval Timer 1-6 

INWARD 
!CLIMB {Inward CLIMB) - 00 7-93 

!OM 
Input-Output Multiplexer (IOM) 

Detected Faults ij-i4 
IOM Central Detected System Faults 

8-27 
IOM Central Status Codes 8-25 
IOM Central-Detected User Faults 

8-25 
IOM Channel Status Codes 8-26 
IOM or IOX Page Present/Missing 

Control Field 8-23 

i-18 DH03-0l 



IOX 
IOM or !OX Page Present/Missing 

Control Field 8-23 

IPR 

IR 

Illegal Procedure (IPR) 8-5 
Illegal Procedure (IPR) Faults 

7-227 
IPR fault 8-6 

examples of IR modification 5-10 
INDICATOR REGISTER (IR) 4-7 
Indirect Then Register (IR) 5-1, 

5-9 

IR-TYPE 

IS 

use of IR-type modification 5-11 

INSTRUCTION SEGMENT IDENTITY 
REGISTER - SEGID (IS) 4-42 

ISEG 
ISEG No. 3-12 

ISR 

IT 

INSTRUCTION SEGMENT REGISTER (ISR) 
4-40 

Indi~ect Then Tally (IT) 5-1, 5-13 
variations under IT modification 

5-13, 5-16 

LA REG 
LAREG 4-26, 7-206 

LARN 
LARn 7-205 

LATERAL 
GCLIMB (Lateral Transfer LTRAS) - 10 

7-104 
Lateral Transfer - LTRAD 7-104 
Lateral Transfer - LTRAS 7-104 
PCLIMB (Lateral Transfer - LTRAD) -

11 7-104 

LAYOUT 
Layout of Segments on Pages 3-3 

LBOUND 
LBOUND 3-12 

LCA 
LCA 7-207 

LCAQ 
LCAQ 7-208 

LCCL 
LCCL 7-209 

LCPR 
LCPR 4-20, 7-210 

LCQ 
LCQ 7-212 

LCXN 
LCXn 7-213 

LOA 
LDA 7-214 

LDAC 
LDAC 7-215, 7-246 

LDAQ 
LDAQ 4-21, 7-217 

LDAS 
LDAS 7-218 

LDAT 
LDAT 7-174, 7-220 

LDDN 
LDDn 3-14, 4-41, 4-43, 4-45, 7-222 

LDDSA 
LDDSA 4-45, 7-231 

LDDSD 
LDDSD 7-232 

LDE 
LOE 7-234 

LDEAN 
LDEAn 7-235 

LDI 
LDI 4~10, 7-236 

LDO 
LDO 4-46, 7-237 

LDPN 
LDPn 7-241 

LOPS 
LOPS 7-244 

LDQ 
LDQ 7-245 

LDQC 
LDQC 7-215, 7-246 

LDSS 
LOSS 4-37, 7-248 

LDT 
LDT 4-11, 7-250 

LDWS 
LDWS 4-36, 7-251 

LDXN 
LDXn 7-253 

LENGTH 
Load Pointers and Lengths 7-259 

i-19 DH03-01 



LENGTH (cont) 
POINTER AND LENGTH REGISTERS 4-15, 

8-32 
RL - Register or Length 5-31 
Store Pointers and Lengths 7-400 
translation table length 7-305 

LIMITS 
Compare with Limits 7-136 

LIMR 
LIMR 7-254 

LINK 
Repeat Link 7-339 

LINKAGE 
Linkage Base 3-12 
linkage segment 3-10 
LINKAGE SEGMENT REGISTER (LSR) 4-38 

LINKING 
Dynamic Linking Descriptor 3-13 
Dynamic Linking Fault (DYNLF) 8-12 

LLR 
LLR 7-256 

LLS 
LLS 7-257 

LOAD 
direct load option 7-222 
Double-Precision Floating Load 

7-144 
Floating Load 7-192 
Load A-Register 7-214 
Load A-Register and Clear 7-215 
Load Address Register n 7-205 
Load Address Registers 7-206 
Load Address Trap Register 7-220 
Load AQ-Register 7-217 
Load Argument Stack Register 7-218 
Load Caiendar Clock 7-209 
Load Central Processor Register 

7-210 
Load Complement into A-Register 

7-207 
Load Complement into AQ-Register 

7-208 
Load Complement into Index Register 

n 7-213 
Load Complement into Q-Register 

7-212 
Load Data Stack Address Register 

7-231 
Load Oata Stack Descriptor Register 

7-232 
Load Descriptor Register n 7-222 
Load Exponent Register 7-234 
Load Extended Address n 7-235 
Load Index Register n from Lower 

7-264 
Load Index Register n from Upper 

7-253 
Load Indicator Register 7-236 
Load Interrupt Mask Register 7-254 
Load Option Register 7-237 

LOAD (cont) 
Load Page Table Directory Base 

Register 7-258 
Load Parameter Stack Register 7-244 
Load Pointer Register n 7-241 
Load Pointers and Lengths 7-259 
Load Q-Register 7-245 
Load Q-Register and Clear 7-246 
Load Registers 7-261 
Load Safe Store Register 7-248 
Load Table Entry 7-513 
Load Timer Register 7-250 
Load Working Space Registers 7-251 

LOCATION 
Entry Location 3-12 
Location 3-8 

LOCKUP 
Lockup (LUF) 8-8 

LOGIC 
logic operations 2-4 
logical operations 6-1, 6-10 
processor logic circuitry 7-320 

LOGICAL 
A-Register Right Logical Shift 7-51 
Add Logical to A-Register 7-33 
Add Logical to AQ-Register 7-34 
Add Logical to Index Register n 

7-36 
Add·Logical to Q-Register 7-35 
Long Right Logical Shift 7-262 
Q-Register Right Logical Shift 

7-323 
Subtract Logical from A-Register 

7-375 
Subtract Logical from AQ-Register 

7-376 
Subtract Logical from Index Register 

n 7-378 
Subtract Logical from Q-Register 

7-377 

LONG 
Long Left Rotate 7-256 
Long Left Shift 7-257 
Long Right Logical Shift 7-262 
Long Right Shift 7-263 
Negate Long (AQ-Register) 7-308 

LOW 
Add Low to AO-Register 7-32 

LOWER 
Direct Lower (DL) 5-4 
Load Index Register n from Lower 

7-264 
lower bound check 5-71 
Store Index Register n in Lower 

7-453 

LPDBR 
LPDBR 5-69, 7-258 

LPL 
LPL 7-259 

i-20 DH03-0l 



LREG 
LREG 5-70, 7-261 

LRL 
LRL 7-262 

LRS 
LRS 7-263 

LSR 
LINKAGE SEGMENT REGISTER (LSR) 4-38 

LTE 
LTE 7-513 

LTRAD 
Lateral Transfer - LTRAD 7-104 
PCLIMB {Lateral Transfer - LTRAD) -

11 7-104 

LTRAS 
GCLIMB (Lateral Transfer LTRAS) - 10 

7-104 
Lateral Transfer - LTRAS 7-104 

LUF 
Lockup {LUF) 8-8 

LXLN 
LXLn 7-264 

MACHINE 
MACHINE INSTRUCTIONS 6-1 
The Machine Word 2-1 

MAGNITUDE 
Compare Magnitude 7-110 
sign and magnitude operands 6-21 

MANAGEMENT 
Multiprocessor Memory Management 

5-73 

MANTISSA 
fractional mantissa 2-6 

MAP 
Micro Operation Code Assignment 

7-522 
Map 

Operation Code Map {Bit 27 0) 
Operation Code Map (Bit 27 1) 

A-2 
A-3 

MAPPING 
Mapping The Virtual Address To A 

Real Address 5-58 

MASK 
Load Interrupt Mask Register 7-254 
Overflow mask 4-9 
Parity mask 4-9 
Read Interrupt Mask Register 7-328 
Read Memory Controller Mask Register 

7-331 
Scan with Mask 7-386 
Scan with Mask in Reverse 7-389 
Set Memory Controller Mask Register 

7-396 

i-21 

MASKED 
Compare Masked 7-111 

MASTER 
Master mode 1-4, 4-10 
master mode bit 6-33 
Master Mode bit in the Indicator 

Register 1-5 
Master Mode Entry 7-269 
Master Mode Entry (MME) 8-5 
Master Mode Faults 8-18 
Privileged Master mode 1-4 
Privileged Master Mode Faults 8-18 

MEMORY 
Associative Memory 5-68 
Associative Memory Word 5-68 
cache memory clearance 7-456 
cache memory error 4-20 
Clear Associative Memory Pages 7-68 
Clear Paging Associative Memory 

7-70 
Memory (STR) Faults 8-9 
Memory Faults (STR) 7-228 
memory module 3-1 
Memory paging 5-56 
Memory System {MEMSYS) 8-17 
Move to Memory Format 7-270 
Multiprocessor Memory Management 

5-73 
paging associative memory 5-58 
Read Memory Controller Mask Register 

7-331 
Read Reserved Memory 7-349 
Set Memory Controller Interrupt 

Cells 7-398 
Set Memory Controller Mask Register 

7-396 
Store Memory {STR) 8-9 
Store Memory (STR) Fault 8-17 
Virtual Memory 3-2 
Virtual Memory Addressing 5-47 
Virtual Memory Generated Faults 

8-10 

MEMSYS 
Memory System (MEMSYS) 8-17 

MFLC 
MFLC 7-514 

MFLS 
MFLS 7-515 

MICRO 
Edited Move Micro Operations 6-6 
Micro Operation Code Assignment Map 

7-522 
Micro Operation Examples 7-522 
Micro Operations 7-504 
MICRO OPERATIONS FOR EDIT 

INSTRUCTIONS MVE AND MVNE 6-28 
Micro-Operation Sequence - 6-28 
Terminating Micro Operations 7-522 

MINUS 
Transfer On Minus 7-468 
Transfer On Minus Or zero 7-469 

DH03-01 



MISCELLANEOUS 
MISCELLANEOUS FAULTS 8-19 
MISCELLANEOUS OPERATIONS 6-36 

MISSING 
Missing Page fault 5-58, 8-12 
Missing Page Fault (MPG) 8-12 
Missing Page Faults 7-229 
Missing Segment Fault 8-12 
Missing Segment Fault (MSE) 8-12 
Missing Segment Faults 7-228 
Missing Working Space Fault 8-12 
Missing Working Space Fault (MWS) 

8-12 
Missing Working Space Faults 7-229 

MLR 
MLR 7-265 

MME 
Master Mode Entry (MME) 8-5 
MME 7-269 

MMF 
MMF 7-270 

MNEMONIC 
mnemonic code 7-1 

MNEMONICS 
valid mnemonics for address 

modification 5-2 

MODE 
Absolute Addressing Mode 5-54 
Absolute Mode 1-6 
ADDRESSING MODES 1-6 
All Mode Instructions 6-36 
Any Mode Faults 8-18 
CACHE MODE REGISTER (CMR) 4-20 
hexadecimal exponent mode 4-10, 

4-19 
Master mode 1-4, 4-10 
master mode bit 6-33 
Master Mode bit in the Indicator 

Register 1-5 
Master Mode Entry 7-269 
Master Mode Entry (MME) 8-5 
Master Mode Faults 8-18 
MODE FAULTS 8-18 
Mode Register 2-7 
MODE REGISTER (MR) 4-16 
Mode Register Fault Traps 8-23 
Paging Addressing Mode 5-56 
Paging Mode 1-6 
Privileged Master mode 1-4 
Privileged Master Mode Faults 8-18 
Processor Mode Determinants 1-4 
Processor Modes 8-11 
Processor Modes of Operation 1-4 
Slave mode 1-4 
Slave Mode Faults 8-18 

MODIFICATION 
Address Modification 1-2 
ADDRESS MODIFICATION AND DEVELOPMENT 

5-1 
Address Modification Features 5-1 

MODIFICATION (cont) 
Address Modification Flowchart 5-25 
ADDRESS MODIFICATION OCTAL CODES 

5-24 
Address Modification with Address 

Register 5-26 
Basic Modification 5-1 
direct operand address modification 

5-4 
examples of IR modification 5-10 
examples of R-type modification 5-5 
examples of RI modification 5-8 
Illegal Modification 7-5 
Multiword Address Modification 5-30 
Multiword Modification Field 5-31 
Single-Word Address Modification 

5-27 
Types of Address Modification 5-3 
use of IR-type modification 5-11 
valid mnemonics for address 

modification 5-2 
variations under IT modification 

5-13, 5-16 

MODIFIER 
tag modifier (tm) 5-2 

MOP 
MOP 7-504 

MORS 
MORS 7-516 

MOVE 
Data Movement 6-5 
Data Movement Instructions 6-2 
Edited Move Micro Operations 6-6 
Move Alphanumeric Edited 7-287 
Move Alphanumeric Left to Right 

7-265 
Move Alphanumeric Right to Left 

7-285 
Move Alphanumeric with Translation 

7-302 
Move and OR Sign 7-516 
Move and Set Sign 7-517 
Move Numeric 7-291 
Move Numeric Edited 7-294 
Move Numeric Edited Extended 7-297 
Move Numeric Extended 7-299 
Move Source Characters 7-518 
Move to Memory Format 7-270 
Move to Register Format 7-283 
Move with Floating Currency Symbol 

Insertion 7-514 
Move with Floating Sign Insertion 

7-515 
Move with zero Suppression and 

Asterisk Replacement 7-519 
Move with zero Suppression and Blank 

Replacement 7-520 

MP2D 
MP2D 7-272 

MP2DX 
MP2DX 7-275 

i-22 DH03-0l 



MP3D 
MP3D 7-276 

MP3DX 
MP3DX 7-279 

MPF 
MPF 7-281 

MPG 
Missing Page Fault (MPG) 8-12 

MPY 
MPY 7-282 

MR 
MODE REGISTER (MR) 4-16 

MRF 
MRF 7-283 

MRL 
MRL 7-285 

MSE 
Missing Segment Fault (MSE) 8-12 

MSES 
MSES 7-517 

MULTIPLE 
Insert Table Entry One Multiple 

7-510 

MULTIPLEXER 
Input-Output Multiplexer (IOM) 

Detected Faults 8-24 

MULTIPLICATION 
multiplication 6-3 

MULTIPLY 
Double-Precision Floating Multiply 

7-145 
Double-Precision Unnormalized 

Floating Multiply 7-158 
Floating Multiply 7-193 
Multiply Fraction 7-281 
Multiply Integer 7-282 
Multiply Using Three Decimal 

Operands 7-276 
Multiply Using Three Decimal 

Operands Extended 7-279 
Multiply Using Two Decimal Operands 

7-272 
Multiply Using Two Decimal Operands 

Extended 7-275 
Unnormalized Floating Multiply 

7-498 

MULTIPROCESSOR 
Multiprocessor Memory Management 

5-73 

MULTI WORD 
Multiword Address Modification 5-30 
Multiword Instruction Capabilities 

6-5 

MULTIWORD (cont) 
Multiword Instruction Interrupts 

8-31 
MULTIWORD INSTRUCTIONS 6-4, 6-19, 

7-7 
Multiword Modification Field 5-31 

MVC 
MVC 7-518 

MVE 
ALPHANUMERIC EDIT (MVE) 6-30 
MICRO OPERATIONS FOR EDIT 

INSTRUCTIONS MVE AND MVNE 6-28 
MVE 7-287 
MVNE and MVNEX And MVE Differences 

6-30 

MVN 
MVN 7-291 

MVNE 
MICRO OPERATIONS FOR EDIT 

INSTRUCTIONS MVE AND MVNE 6-28 
MVNE 7-294 
MVNE and MVNEX And MVE Differences 

6-30 
NUMERIC EDIT (MVNE And MVNEX 6-30 

MVNEX 
MVNE and MVNEX And MVE Differences 

6-30 
MVNEX 7-297 
NUMERIC EDIT (MVNE And MVNEX 6-30 

MVNX 
MVNX 7-299 

MVT 
MVT 7-302 

MVZA 
MVZA 7-519 

MVZB 
MVZB 7-520 

MWS 
Missing Working Space Fault (MWS) 

8-12 

NARN 
NARn 7-306 

NDSC 
NDSC pseudo-operation 6-23 

NDSC4 
NDSC4 - Packed decimal numeric 

descriptor 5-36 

NDSC9 
NDSC9 - ASCII numeric descriptor 

5-36 

NEG 
NEG 7-307 

i-23 DH03-0l 



NEGATE 
Floating Negate 7-194 
Negate (A-Register) 7-307 
Negate Long (AO-Register) 7-308 

NEGATIVE 
Floating Set zero and Negative 

Indicators from Storage 7-203 
Insert On Negative 7-511 
Negative 4-8 
Set zero and Negative Indicators 

from Storage 7-455 
Set zero and Negative Indicators 

from Storage and Clear 7-456 

NEGL 
NEGL 7-308 

NO 
No Operation 7-309 

NONCONTIGUOUS 
Noncontiguous Segments 3-10 

NONHOUSEKEEPING 
nonhousekeeping page 8-12 
nonhousekeeping pages 3-4 

NONZERO 
Transfer on Nonzero 7-472 
Transfer On Plus And Nonzero 7-475 

NOP 
NOP 7-309 

NORMALIZE 
Floating Normalize 7-195 

NOT 
Comparative NOT AND with A-Register 

7-128 
Comparative NOT AND with AO-Register 

7-129 
Comparative NOT AND with Index 

Register n 7-131 
Comparative NOT AND with 0-Register 

7-130 
Operation Not Completed (FONC) 8-9, 

8-16 

NUMBERING 
Position Numbering 2-1 

NUMBERS 
Floating-Point Decimal Numbers 2-10 

NUMERIC 
Address Register n to Numeric 

Descriptor 7-52 
ALPHANUMERIC/NUMERIC ADDRESS 

PREPARATION 5-42 
Compare Numeric 7-121 
Compare Numeric Extended 7-124 
Move Numeric 7-291 
Move Numeric Edited 7-294 
Move Numeric Edited Extended 7-297 
Move Numeric Extended 7-299 

NUMERIC (cont) 
NDSC4 - Packed decimal numeric 

descriptor 5-36 
NDSC9 - ASCII numeric descriptor 

5-36 
Numeric Descriptor to Address 

Register n 7-306 
NUMERIC EDIT (MVNE And MVNEX 6-30 
Numeric instructions 6-4, 6-21 
NUMERIC OPERAND DESCRIPTOR FORMAT 

6-22 
NUMERIC OPERAND DESCRIPTORS 5-35 

OCLIMB 
OCLIMB 7-104 
OCLIMB (Outward CLIMB) - 01 7-104 

OCTAL 
ADDRESS MODIFICATION OCTAL CODES 

5-24 
octal value of the operation code 

7-2 

OFFSET 
internal offset 3-14 
offset 3-3 

ONE 
Pulse One 7-319 

OPERAND 
Operand Address Procedure 5-47 
Operand Descriptor 7-7 
Operand Descriptor Address 

Preparation 5-39 
OPERAND DESCRIPTOR INDIRECT POINTER 

FORMAT 6-19 
OPERAND DESCRIPTOR REGISTERS (DRn) 

4-40 
Operand Descriptors 5-34 
Operand Descriptors and Indirect 

Pointers 6-19 
operand storage 3-4 

OPERATIONS 
Comparison Operations 6-2 
logic operations 2-4 
logical operations 6-1, 6-10 
Operation Not Completed (FONC) 8-9, 

8-16 
OPERATIONS UNIT HISTORY REGISTERS 

(OUn) 4-28 
rounding operation 7-197 

OPTION 
copy option 7-241 
direct load option 7-222 
hardware rounding option 6-5 
Load Option Register 7-237 
Option Register 2-7 
OPTION REGISTER (OR) 4-46 
Store Option Register 7-430, 7-432 
vector option 7-222 

OR 
EXCLUSIVE OR to A-Register 7-178 
EXCLUSIVE OR to AO-Register 7-179 

i-24 DHOJ-01 



OR (cont) 
EXCLUSIVE OR to Index Register n 

7-184 
EXCLUSIVE OR to Q-Register 7-180 
EXCLUSIVE OR to Storage with 

A-Register 7-181 
EXCLUSIVE OR to Storage with Index 

Register n 7-183 
EXCLUSIVE OR to Storage with 

Q-Register 7-182 
Move and OR Sign 7-516 
OPTION REGISTER (OR) 4-46 
OR to A-Register 7-310 
OR to AQ-Register 7-311 
OR to Index Register n 7-316 
OR to Q-Register 7-312 
OR to Storage from A-Register 7-313 
OR to Storage from Q-Register 7-314 
RL - Register or Length 5-31 

ORA 
ORA 7-310 

ORAQ 
ORAQ 7-311 

ORQ 
ORQ 7-312 

ORSA 
ORSA 7-313 

ORSQ 
ORSQ 7-314 

ORSXN 
ORSXn 7-315 

ORXN 
ORXn 7-316 

OUN 
OPERATIONS UNIT HISTORY REGISTERS 

(OUn) 4-28 

OUTPUT 
9-bit output 6-22 
input-output instruction 7-78 
Input-Output Multiplexer (IOM) 

Detected Faults 8-24 
output sign 2-9 

OUTWARD 
OCLIMB (Outward CLIMB) - 01 7-104 
Outward CLIMB 7-104 

OVERFLOW 
Exponent overflow 4-8 
Overflow 4-8 
Overflow (FOVL) 8-8 
Overflow mask 4-9 
Transfer On Exponent Overflow 7-466 
Transfer On Overflow 7-473 

OVERPUNCHED 
character codes for ASCII and EBCDIC 

overpunched sign 7-301 

PACKED 
ADSC4 - Packed decimal alphanumeric 

descriptor 5-35 
NDSC4 - Packed decimal numeric 

descriptor 5-36 
Packed Decimal 2-3 
Packed Decimal (4-bit) 2-8 

PAGE 
Clear Associative Memory Pages 7-68 
DENSE PAGE TABLE 5-60 
FRAGMENTED PAGE TABLE 5-64 
housekeeping page 8-11 
housekeeping pages 3-4 
IOM or IOX Page Present/Missing 

Control Field 8-23 
Layout of Segments on Pages 3-3 
Load Page Table Directory Base 

Register 7-258 
LOCATING THE PAGE TABLE DIRECTORY 

WORD 5-60 
Missing Page fault 5-58, 8-12 
Missing Page Fault (MPG) 8-12 
Missing Page Faults 7-229 
nonhousekeeping page 8-12 
nonhousekeeping pages 3-4 
Page Access Control Field 8-23 
Page Directory Base Register (PDBR) 

1-6, 4-45, 5-60 
Page Modified Control Field 8-23 
page table directory 3-2 
Page Table Word Control ·Field Fauits 

8-22 
Page Table Word Format 5-57 
Processor Page Present/Missing 

Control Field 8-22 
Store Page Table Directory Base 

Register 7-399 
Virtual Address, Dense Page Table 

5-61 
Working Spaces and Pages 3-2 

PAGING 
Clear Paging Associative Memory 

7-70 
Memory paging 5-56 
Paging Addressing Mode 5-56 
paging associative memory 5-58 
Paging Mode 1-6 

PARAMETER 
Load Parameter Stack Register 7-244 
parameter segment 3-11 
PARAMETER STACK REGISTER (PSR) 4-39 
Store Parameter Stack Register 

7-437 

PARITY 
Parity (FPAR) 8-16 
parity error 4-9 
Parity Indicator 7-5 
Parity mask 4-9 

PAS 
PAS 7-317 

i-25 DH03-0l 



PATTERN 
replicate a pattern across a string 

7-266 

PCLIMB 
PCLIMB 7-104 
PCLIMB (Lateral Transfer - LTRAD) -

11 7-104 

PDBR 
Page Directory Base Register (PDBR) 

1-6, 4-45, 5-60 
PDBR 5-56, 7-258, 7-399 

PERMISSION 
Read/Write Permission Flags 8-19 

PLUS 
Transfer On Plus 7-474 
Transfer On Plus And Nonzero 7-475 

PMME 
PMME 4-10, 7-105 
PMME (System Entry CLIMB) - 00 

7-105 

POINTER 
Effective Pointer And Address To 

Test 7-174 
Effective Pointer To Pointer 

Register n 7-176 
Load Pointer Register n 7-241 
Load Pointers and Lengths 7-259 
OPERAND DESCRIPTOR INDIRECT POINTER 

FORMAT 6-19 
Operand Descriptors and Indirect 

Pointers 6-19 
POINTER AND LENGTH REGISTERS 4-15, 

8-32 
POINTER REGISTER INSTRUCTIONS 6-32 
POINTER REGISTERS (PRn) 4-43 
Store Pointer n 7-434 
Store Pointers and Lengths 7-400 

POP 
Pop Argument Stack 7-317 

PORT 
port enable register 7-354 

POSITIVE 
Insert On Positive 7-512 

POw'"ER 
Power Signal Faults 8-17 

PRIORITY 
FAULT PRIORITY 8-2 
Processor Faults by Priority 4-13 

PRIVILEGED 
privileged bit 6-33 
Privileged Flag 8-21 
PRIVILEGED INSTRUCTIONS 6-33 
Privileged Master mode 1-4 
Privileged Master Mode Faults 8-18 

i-26 

PRN 
POINTER REGISTERS (PRn) 4-43 

PROCESSING 
processing of scattered data 5-21 
processing of tabular data 5-13 
processing tabular operands 5-19 

PROCESSOR 
Load Central Processor Register 

7-210 
PROCESSOR ACCESSIBLE REGISTERS 4-1, 

4-2 
Processor Faults By Fault Code 8-3 
Processor Faults by Priority 4-13 
Processor Features 1-1 
processor logic circuitry 7-320 
Processor Mode Determinants 1-4 
Processor Modes 8-11 
Processor Modes of Operation 1-4 
Processor Page Present/Missing 

Control Field 8-22 
Special Processor Instructions 6-4 
Store Central Processor Register 

7-391 

PROGRAM 
program gating 6-4 
Program Generated Faults 8-8 

PSEUDO-OPERATION 
BDSC pseudo-operation 6-26 
NDSC pseudo-operation 6-23 

PSR 
PARAMETER STACK REGISTER (PSR) 4-39 

PTDW 
PTDW 5-60 

PTWAM 
PTWAM 7-68, 7-258, 7-435 
PTWAM directory 7-438 
Store PTWAM Directory Word 7-435 
Store PTWAM Register 7-438 

PULSl 
PULSl 7-319 

PULS2 
PULS2 7-320 

PULSE 
Pulse One 7-319 
Pulse Two 7-320 

Q-REGISTER 
Add Logical to Q-Register 7-35 
Add to Q-Register 7-37 
Add To Storage From Q-Register 7-55 
Add with Carry to Q-Register 7-58 
AND to Q-Register 7-43 
AND to Storage from Q-Register 7-45 
Comparative AND with Q-Register 

7-73 
Comparative NOT AND with Q-Register 

7-130 
Compare with Q-Register 7-126 

DH03-0l 



Q-REGISTER (cont) 
Effective Address to Q-Register 

7-172 
EXCLUSIVE OR to 
EXCLUSIVE OR to 

Q-Registe~ 
Load Complement 

7-212 

Q-Register 7-180 
Storage with 

7-182 
into Q-Register 

Load Q-Register 7-245 
Load Q-Register and Clear 7-246 
OR to Q-Register 7-312 
OR to Storage from Q-Register 7-314 
Q-Register Left Rotate 7-321 
Q-Register Left Shift 7-322 
Q-Register Right Logical Shift 

7-323 
Q-Register Right Shift 7-324 
QUOTIENT REGISTER (Q) 4-4 
Store 9-bit Bytes of Q-Register 

7-416 
Store A Conditional on Q 7-411 
Store Q-Register 7-440 
Subtract from Q-Register 7-379 
Subtract Logical from Q-Register 

7-377 
Subtract Stored from Q-Register 

7-406 
Subtract with Carry from Q-Register 

7-450 

QLR 
QLR 7-321 

QLS 
QLS 7-322 

QRL 
QRL 7-323 

QRS 
QRS 7-324 

QUOTIENT 
QUOTIEN'I' REGISTER (Q) 4-4 

R 
Register (R) 5-1, 5-3 

R-TYPE 
examples of R-type modification 5-5 

RADIX 
Radix conversion 6-5 

RANGES 
Decimal Number Ranges 2-11 

RCCL 
RCCL 7-325 

READ 
Cache Read Control Flag (CRCF) 4-46, 

8-20 
Read Calendar Clock 7-325 
Read Interrupt Mask Register 7-328 
Read Interrupt Word Pair 7-329 
Read Memory Controller Mask Register 

7-331 

READ (cont) 
Read Reserved Memory 7-349 
Read Switches 7-357 
Read System Controller Register 

7-351 
Read/Write Permission Flags 8=19 

READ-LOCK/WRITE-UNLOCK 
read-lock/write-unlock sequence 

8-21 

REAL 
Mapping The Virtual Address To A 

Real Address 5-58 
real address 1-6 

REG 
REG 5-31 

REGISTER 
Absolute Address to A-Register 7-18 
ACCUMULATOR REGISTER (A) 4-3 
ACCUMULATOR-QUOTIENT REGISTER (AQ) 

4-4 
Add 4-Bit Displacement To Address 

Register 7-10 
Add 6-Bit Displacement To Address 

Register 7-11 
Add 9-Bit Displacement to Address 

Register 7-13 
Add Bit Displacement To Address 

Register 7-17 
Add Logical to Index Register n 

7-36 
Add to Exponent Register 7-31 
Add to Index Register n 7-38 
Add To Storage From Index Register n 

7-56 
Add Word Displacement to Address 

Register 7-60 
Address Modification with Address 

Register 5-26 
ADDRESS REGISTER INSTRUCTIONS 6-7 
Address Register n to Alphanumeric 

Descriptor 7-49 
Address Register n to Numeric 

Descriptor 7-52 
Address Register Special Arithmetic 

6-8 
Address Register Special Arithmetic 

Instructions 7-8 
Address Register Specifier 5-31 
ADDRESS REGISTERS (ARn) 4-14 
Alphanumeric Descriptor To Address 

Register n 7-15 
AND to Index Register n 7-47 
AND to Storage from Index Register n 

7-46 
argument stack register (ASR) 3-10, 

4-38 
CACHE MODE REGISTER (CMR) 4-20 
Comparative AND with Index Register 

n 7-74 
Comparative NOT AND with Index 

Register n 7-131 
Compare with Index Register n 7-127 
constituent flags and registers 

4-23, 4-27 

i-27 DH03-0l 



REGISTER (cont) 
CONTROL UNIT HISTORY REGISTERS (CUn) 

4-26 
DATA STACK ADDRESS REGISTER (DSAR) 

4-44 
DATA STACK DESCRIPTOR REGISTER 

(DSDR) 4~43 

DECIMAL UNIT HISTORY REGISTERS (DUn) 
4-31 

DESCRIPTOR REGISTER INSTRUCTIONS 
6-13 

Displacement register 6-9, 7-8 
domain registers 3-11 
Effective Address to Index Register 

n 7-173 
Effective Address to Register 

Instructions 6-2 
Effective ~ointer To Pointer 

Register n 7-176 
EXCLUSIVE OR to Index Register n 

7-184 
EXCLUSIVE OR to Storage with Index 

Register n 7-183 
EXPONENT REGISTER (E) 4-5 
EXPONENT-ACCUMULATOR-QUOTIENT 

REGISTER (EAQ) 4-6 
FAULT REGISTER (FR) 4-22 
FAULT REGISTER FORMAT 4-25 
index register symbols 5-33 
INDEX REGISTERS (Xn) 4-6 
Indicator Register 2-7 
INDICATOR REGISTER (IR) 4-7 
Indirect Then Register (IR) 5-1, 

5-9 
INSTRUCTION SEGMENT IDENTITY 

REGISTER - SEGID (IS) 4-42 
INSTRUCTION SEGMENT REGISTER (!SR) 

4-40 
LINKAGE SEGMENT REGISTER (LSR) 4-38 
Load Address Register n 7-205 
Load Address Registers 7-206 
Load Address Trap Register 7-220 
Load Argument Stack Register 7-218 
Load Central Processor Register 

7-210 
Load Complement into Index Register 

n 7-213 
Load Data Stack Address Register 

7-231 
Load Data Stack Descriptor Register 

7-232 
Load Descriptor Register n 7-222 
Load Exponent Register 7-234 
Load Index Register n from Lower 

7-264 
Load Index Register n from Upper 

7-253 
Load Indicator Register 7-236 
Load Interrupt Mask Register 7-254 
Load Option Register 7-237 
Load Page Table Directory Base 

Register 7-258 
Load Parameter Stack Register 7-244 
Load Pointer Register n 7-241 
Load Registers 7-261 
Load Safe Store Register 7-248 
Load Timer Register 7-250 
Load Working Space Registers 7-251 

i-28 

REGISTER (cont) 
Master Mode bit in the Indicator 

Register 1-5 
Mode Register 2-7 
MODE REGISTER (MR) 4-16 
Mode Register Fault Traps 8-23 
Move to Register Format 7-283 
Numeric Descriptor to Address 

Register n 7-306 
OPERAND DESCRIPTOR REGISTERS (DRn) 

4-40 
OPERATIONS UNIT HISTORY REGISTERS 

(OUn) 4-28 
Option Register 2-7 
OPTION REGISTER (OR) 4-46 
OR to Index Register n 7-316 
OR to Storage from Index Register n 

7-315 
Page Directory Base Register (PDBR) 

1-6, 4-45, 5-60 
PARAMETER STACK REGISTER (PSR) 4-39 
POINTER AND LENGTH REGISTERS 4-15, 

8-32 
POINTER REGISTER INSTRUCTIONS 6-32 
POINTER REGISTERS (PRn) 4-43 
port enable register 7-354 
PROCESSOR ACCESSIBLE REGISTERS 4-1, 

4-2 
QUOTIENT REGISTER (Q) 4-4 
Read Interrupt Mask Register 7-328 
Read Memory Controller Mask Register 

7-331 
Read System Controller Register 

7-351 
Register (R) 5-1, 5-3 
Register Codes 5-32 
register designator 5-2 
register selection 5-31 
Register then Indirect (RI) 5-1, 

5-7 
RL - Register or Length 5-31 
SAFE STORE REGISTER (SSR) 4-37 
Save Descriptor Register n 7-393 
SEGMENT IDENTITY REGISTERS {SEGIDn) 

4-41 
Set Memory Controller Mask Register 

7-396 
Set System Controller Register 

7-404 
special test registers 7-174 
stack control register (SCR) 4-37, 

7-248 
Store Address Register n 
Store Address Registers 

7-361 

Store Argument Stack Register 7-414 
Store Central Processor Register 

7-391 
Store Data Stack Address Register 

7-425 
Store Data Stack Descriptor Register 

7-426 
Store Descriptor Register n 7-423 
Store Exponent Register 7-428 
Store Fault Register 7-395 
Store Index Register n in Lower 

7-453 
Store Index Register n in Upper 

7-447 

DH03-0l 



REGISTER (cont} 
Store Indicator Register 7-429 
Store Option Register 7-430, 7-432 
Store Page Table Directory Base 

Register 7-399 
Store Parameter Stack Register 

7-437 
Store PTWAM Register 7-438 
Store Registers 7-402 
Store Safe Store Register 7-441 
Store Test Address Registers 7-444 
Store Test Descriptor Register 

7-445 
Store Timer Register 7-443 
Store Working Space Registers 7-446 
Subtract 4-Bit Displacement from 

Address Register 7-358 
Subtract 6-Bit Displacement from 

Address Register 7-359 
Subtract 9-Bit Displacement from 

Address Register 7-360 
Subtract Bit Displacement from 

Address Register 7-374 
Subtract from Index Register n 

7-380 
Subtract Logical from Index Register 

n 7-378 
Subtract Stored from Index Register 

n 7-407 
Subtract Word Displacement from 

Address Register 7-452 
TIMER REGISTER (TR) 4-11 
Transfer And Set Index Register n 

7-485 
VIRTUAL UNIT HISTORY REGISTERS (VUn) 

4-34 
working space register 3-12 
working space registers 3-6 
WORKING SPACE REGISTERS (WSRn) 4-36 

REPEAT 
Repeat 
Repeat 
Repeat 
Repeat 

REPLICATE 

7-344 
Double 7-333 
Instructions 
Link 7-339 

6-37 

replicate a pattern across a string 
7-266 

RESERVED 
Read Reserved Memory 7-349 

RET 
RET 4-10, 4-40, 7-326 

RETURN 
Return 7-326 

REVERSE 
Scan Characters Double in Reverse 

7-384 
Scan with Mask in Reverse 7-389 
Sequence character reverse 5-13 
Sequence Character Reverse (T) 5-18 
Test Character and Translate in 

Reverse 7-465 

i-29 

RI 
examples of RI modification 5-8 
Register then Indirect (RI) 5-1, 

5-7 

RIMR 
RIMR 7-328 

RIW 
RIW 7-329 

RL 
RL - Register or Length 5-31 

RMCM 
RMCM 7-331 

ROTATE 
A-Register Left Rotate 7-39 
Long Left Rotate 7-256 
Q-Register Left Rotate 7-321 

ROUND 
true round 7-149, 7-197, 7-201 

ROUNDING 
hardware rounding option 6-5 
rounding operation 7-197 

RPO 
RPO 7-333 

RPDA 
RPDA 7-333 

RPDB 
RPDB 7-333 

RPDX 
RPDX 7-333 

RPL 
RPL 4-9, 7-339 

RPT 
RPT 7-344 

RRES 
RRES 7-349 

RSCR 
RSCR 7-351 

RSW 
RSW 7-357 

RUN OUT 
Tally runout 4-9 
Timer Runout (TROF) 8-8 
Transfer on Tally Runout Indicator 

OFF 7-489 
Transfer On Tally Runout Indicator 

ON 7-490 

S4BD 
S4BD 7-358 

DH03-0l 



S6BD 
S6BD 7-359 

S9BD 
S9BD 7-360 

SAFE 
Load Safe Store Register 7-248 
Safe Store Bypass Flag (SSBF) 4-46 
SAFE STORE REGISTER (SSR) 4-37 
safe store stack 7-92, 8-32 
Safe Store Stack Fault (SSSF) 8-15 
Store Safe Store Register 7-441 

SAREG 
SAREG 7-362 

SARN 
SARn 7-361 

SAVE 
Save Descriptor Register n 7-393 

SB2D 
SB2D 7-363 

SB2DX 
SB2DX 7-366 

SB3D 
SB3D 7-367 

SB3DX 
SB3DX 7-370 

SBA 
SBA 7-372 

SBAQ 
SBAQ 7-373 

SBD 
SBD 7-374 

SBLA 
SBLA 7-375 

SBLAQ 
SBLAQ 7-376 

SBLQ 
SBLQ 7-377 

SBLXN 
SBLXn ?-378 

SBQ 
SBQ 7-379 

SBXN 
SBXn 7-380 

SC 
SC 5-13 
SC variation 5-16 
Sequence Character (SC) variation 

5-16 

SCALING 
scaling factor 5-38, 6-23, 7-25 

SCAN 
Scan Characters Double 7-381 
Scan Characters Double in Reverse 

7-384 
Scan with Mask 7-386 
Scan with Mask in Reverse 7-389 

SCD 
SCD 7-381 

SCOR 
SCOR 7-384 

SCLl 
Security Fault, Class 1 (SCLl) 8-10 

SCL2 
Security Fault, Class 2 (SCL2) 8-14 

SCM 
SCM 7-386 

SCMR 
SCMR 7-389 

SCPR 
SCPR 4-16, 4-20, 4-22, 4-26, 4-28, 

4-31, 4-34, 7-391 

SCR 
SCR 5-13 
SCR Variation 5-18 
stack control register (SCR) 4-37, 

7-248 

SD 
SD 5-14 
SD Variation 5-23 
Subtract Delta (SD) variation 5-23 

SDF 
Shutdown (SDF) 8-17 

SORN 
SDRn 4-39, 7-393 

SECOND-LEVEL 
second-level indexing 5-26, 6-6 

SECURITY 
Security Fault, Class l (SCLl) 
~Pr-nr i t-v Fault; Class 2 ?-229 -------J. 
Security Fault, Class 2 (SCLZ) 
Security Faults, Class 1 7-229 

SEGID 
INSTRUCTION SEGMENT IDENTITY 

REGISTER - SEGID (IS) 4-42 

SEGIDN 

8-10 

8-14 

SEGMENT IDENTITY REGISTERS (SEGIDn) 
4-41 

SEGMENT 
argument segment 3-10 

i-30 DH03-0l 



SEGMENT (cont) 
Available Segment Flag 8-22 
Descriptor Segment Descriptor 7-93 
INSTRUCTION SEGMENT IDENTITY 

REGISTER - SEGID (IS) 4-42 
INSTRUCTION SEGMENT REGISTER (ISR) 

4-40 
Layout of Segments on Pages 3-3 
linkage segment 3-10 
LINKAGE SEGMENT REGISTER (LSR} 4-38 
Missing Segment Fault 8-12 
Missing Segment Fault (MSE) 8-12 
Missing Segment Faults 7-228 
Noncontiguous Segments 3-10 
parameter segment 3-11 
segment base 3-2 
segment descriptor 3-2, 5-47 
Segment Descriptor Flag Faults 8-19 
SEGMENT IDENTITY REGISTERS (SEGIDn) 

4-41 
Segment Present Flag 8-22 
Segments 3-3 

SEQUENCE 
Sequence character 5-13 
Sequence Character (SC) variation 

5-16 
Sequence character reverse 5-13 
Sequence Character Reverse (T) 5-18 

SES 
SES 7-521 

SET 
Floating Set Zero and Negative 

Indicators from Storage 7-203 
Move and Set Sign 7-517 
Set End Suppression 7-521 
Set Memory Controller Interrupt 

Cells 7-398 
Set Memory Controller Mask Register 

7-396 
Set System Controller Register 

7-404 
Set Zero and Negative Indicators 

from Storage 7-455 
set zero and Negative Indicators 

from Storage and Clear 7-456 
Set zero and Truncation Indicators 

with Bit Strings Left 7-458 
Set Zero and Truncation Indicators 

with Bit Strings Right 7-460 
STANDARD CHARACTER SET B-1 
Transfer And Set Index Register n 

7-485 

SFR 
SFR 7-395 

SHIFT 
A-Register Left Shift 7-40 
A-Register Right Logical Shift 7-51 
A-Register Right Shift 7-53 
Data Shifting Instructions 6-2 
Long Left Shift 7-257 
Long Right Logical Shift 7-262 
Long Right Shift 7-263 
Q-Register Left Shift 7-322 

i-31 

SHIFT (cont) 
Q-Register Right Logical Shift 

7-323 
Q-Register Right Shift 7-324 

SHRINK 
Data Stack Shrink (11) 7-226 
Normal Shrink (01) 7-224 

SHRINKING 
Shrinking 3-13 

SHUTDOWN 
Shutdown (SDF) 8-17 

SIGN 
sign and magnitude operands 6-21 
Sign flag 6-29 

SIGNAL 
Power Signal Faults 8-17 

SINGLE-PRECISION 
single-precision data 2-1 

SINGLE-WORD 
Single-Word Address Modification 

5-27 
SINGLE-WORD INSTRUCTIONS 6-1, 7-6 

SLAVE 
Slave mode 1-4 
Slave Mode Faults 8-18 
Transfer After Setting Slave 7-483 

SMCM 
SMCM 7-396 

SMIC 
SMIC 7-398 

SOURCE 
Ignore Source Characters 7-507 
Move Source Characters 7-518 

SPACE 
framed stack space 7-100 
Load Working Space Registers 7-251 
Missing working Space Fault 8-12 
Missing Working Space Fault (MWS) 

8-12 
Missing Working Space Faults 7-229 
Standard Descriptor With Working 

Space Number 3-7 
Store Working Space Registers 7-446 
Super Descriptor With Working Space 

Number 3-9 
working space number (WSN} 3-3 
working space register 3-12 
working space registers 3-6 
WORKING SPACE REGISTERS (WSRn) 4-36 
working spaces 3-2, 5-47 
Working Spaces and Page~ 3-2 

SPDBR 
SPDBR 7-399 

DH03-01 



SPECIFIER 
Address Register Specifier 5-31 

SPL 
SPL 7-400 

SREG 
SREG 5-70, 7-402 

SSA 
SSA 7-403 

SSBF 
Safe Store Bypass Flag (SSBF) 4-46 

SSCR 
SSCR 7-404 

SSQ 
SSQ 7-406 

SSR 
SAFE STORE REGISTER (SSR) 4-37 

SSSF 
Safe Store Stack Fault (SSSF) 8-15 

SSXN 
SSXn 7-407 

STA 
STA 7-408 

STAC 
STAC 7-215, 7-246, 7-409 

STACK 
argument ~tack register (ASR) 3-10, 

4-38 
DATA STACK ADDRESS REGISTER (DSAR) 

4-44 
Data Stack Clear Flag (DSCF) 4-46 
DATA STACK DESCRIPTOR REGISTER 

(DSDR) 4-43 
Data Stack Shrink (11) 7-226 
descriptor stack 3-10 
framed stack space 7-100 
Load Argument Stack Register 7-218 
Load Data Stack Address Register 

7-231 
Load Data Stack Descriptor Register 

7-232 
Load Parameter Stack Register 7-244 
PARAMETER STACK REGISTER (PSR) 4-39 
n"" 1\..-,..,,'ft\""9"\+. ~,._-'!lo,..t, .,_..,,.., 
C"-',t' r1.L.';:jUHl'l;;&&\... L.Jl\..UVI'\. I. J.J..I 

safe store stack 7-92, 8-32 
Safe Store Stack Fault {SSSF) 8-15 
~~~~~ ~~n~r~1 ro~;~~or l~~D\ A-~~ 
""'"'"""'"""'"" V'lrtJl&"-.&..'-'..L .L'-~.L~\...,,.;...&. \U""".L'/ , ..I I I

7-248
Store Argument Stack Register 7-414
Store Data Stack Address Register

7-425
Store Data Stack Descriptor Register

7-426
Store Parameter Stack Register

7-437

STACQ
STACQ 7-215, 7-246, 7-411

STANDARD
Standard Descriptor 3-5, 5-48, 7-93,

7-224, 7-248
Standard Descriptor With Working

Space Number 3-7

STAQ
STAQ 7-413

STARTUP
Startup (SUF) 8-17

STAS
STAS 7-414

STATUS
Channel Status Word 8-24
IOM Central Status Codes 8-25
IOM Channel Status Codes 8-26

STBA
STBA 7-415

STBQ
STBQ 7-416

STBZ
STBZ 7-417

STCl
STCl 7-418

STC2
STC2 7-216, 7-419

STCA
STCA 7-421

STCQ
STCQ 7-422

STDN
STDn 7-423

STD SA
STDSA 7-425

STD SD
STDSD 7-426

STE
Com~ '"J_ A 'lO u.LJ:J ,-~,o

ST!

STO
STO 4-46, 7-430, 7-432

STORAGE
Add One to Storage
Add To Storage From
Add To Storage From

7-56

7-48
A-Register 7-54
Index Register n

Add To Storage From Q-Register 7-55

i-32 DH03-0l

STORAGE (cont)
AND to Storage from A-Register 7-44
AND to Storage from Index Register n

7-46
AND to Storage from Q-Register 7-45
descriptor storage 3-4
EXCLUSIVE OR to Storage with

A-Register 7-181
EXCLUSIVE OR to Storage with Index

Register n 7-183
EXCLUSIVE OR to Storage with

Q-Register 7-182
Floating Set zero and Negative

Indicators from Storage 7-203
operand storage 3-4
OR to Storage from A-Register 7-313
OR to Storage from Index Register n

7-315
OR to Storage from Q-Register 7-314
set zero and Negative Indicators

from Storage 7-455
Set zero and Negative Indicators

from Storage and Clear 7-456

STORE
Double-Precision Floating Store

7-148
Double-Precision Floating Store

Rounded 7-149
Floating Store 7-200
Floating Store Rounded 7-201
IC Values Stored On Faults And

Interrupts 8-32
Load Safe Store Register 7-248
Safe Store Bypass Flag {SSBF) 4-46
SAFE STORE REGISTER (SSR) 4-37
safe store stack 7-92, 8-32
Safe Store Stack Fault (SSSF) 8-15
Store 6-bit Characters of A-Register

7-421, 7-422
Store 9-bit Bytes of A-Register

7-415
Store 9-bit Bytes of Q-Register

7-416
Store A Conditional 7-409
Store A Conditional on Q 7-411
Store A-Register 7-408
Store Address Register n 7-361
Store Address Registers 7-362
Store AO-Register 7-413
Store Argument Stack Register 7-414
Store Block of zeros 7-417
Store Central Processor Register

7-391 .
Store Data Stack Address Register

7-425
Store Data Stack Descriptor Register

7-426
Store Descriptor Register n 7-423
Store Exponent Register 7-428
Store Fault Register 7-395
Store Index Register n in Lower

7-453
Store Index Register n in Upper

7-447
Store Indicator Register 7-429
Store Instruction Counter Plus 1

7-418

i-33

STORE {cont)
Store Instruction Counter Plus 2

7-419
Store Memory (STR) 8-9
Store Memory {STR) Fault 8-17
Store Option Register 7-430, 7-432
Store Page Table Directory Base

Register 7-399
Store Parameter Stack Register

7-437
Store Pointer n 7-434
Store Pointers and Lengths 7-400
Store PTWAM Directory Word 7-435
Store PTWAM Register 7-438
Store Q-Register 7-440
Store Registers 7-402
Store Safe Store Register 7-441
Store Test Address Registers 7-444
Store Test Descriptor Register

7-445
Store Timer Register 7-443
Store Working Space Registers 7-446
Store Zero 7-448
Subtract Stored from A-Register

7-403
Subtract Stored from Index Register

n 7-407
Subtract Stored from Q-Register

7-406
Transfer Table Entry Store 7-486

STPDW
STPDW 7-435

STPN
STPn 7-434

STPS
STPS 7-437

STPTW
STPTW 7-438

STQ
STQ 7-440

STR
Memory (STR) Faults 8-9
Memory Faults (STR) 7-228
Store Memory (STR) 8-9
Store Memory (STR) Fault 8-17

STRING
BIT STRING ADDRESS PREPARATION 5-41
Bit string instructions 6-5, 6-24
BIT STRING OPERAND DESCRIPTOR 5-34
BIT STRING OPERAND DESCRIPTOR FORMAT

6-25
Bit Strings and Index Table of

Translate Instruction 5-71
Character-Strings 2-2
Combine Bit Strings Left 7-132
Combine Bit Strings Right 7-134
Compare Alphanumeric Character

Strings 7-117
Compare Bit Strings 7-115
replicate a pattern across a string

7-266

DH03-01

STRING (cont)
Set zero and Truncation Indicators

with Bit Strings Left 7-458
Set zero and Truncation Indicators

with Bit Strings Right 7-460

STSS
STSS 4-37, 7-441

STT
STT 7-443

STTA
STTA 7-174, 7-444

STTD
STTD 7-174, 7-445

STWS
STWS 4-36, 7-446

STXN
STXn 7-447

STZ
STZ 7-448

SUBTRACT
Double-Precision Floating Subtract

7-147
Double-Precision Unnormalized

Floating Subtract 7-159
Floating Subtract 7-199
Subtract 4-Bit Displacement from

Address Register 7-358
Subtract 6-Bit Displacement from

Address Register 7-359
Subtract 9-Bit Displacement from

Address Register 7-360
Subtract Bit Displacement from

Address Register 7-374
Subtract delta 5-14
Subtract Delta (SD) variation 5-23
Subtract from A-Register 7-372
Subtract from AO-Register 7-373
Subtract from Index Register n

7-380
Subtract from 0-Register 7-379
Subtract Logical from A-Register

7-375
Subtract Logical from AO-Register

7-376
Subtract Logical from Index Register

n 7-378
Subtract Logical from Q-Register

7-377
Subtract Stored from A-Register

7-403
Subtract Stored from Index Register

n 7-407
Subtract Stored from O-Register

7-406
Subtract Using Three Decimal

Operands 7-367
Subtract Using Three Decimal

Operands Extended 7-370
Subtract Using Two Decimal Operands

7=363

i-34

SUBTRACT (cont)
Subtract Using Two Decimal Operands

Extended 7-366
Subtract with Carry from A-Register

7-449
Subtract with Carry from O-Register

7-450
Subtract Word Displacement from

Address Register 7-452
Unnormalized Floating Subtract

7-499

SUF
Startup (SUF) 8-17

SUPER
3-8 Super Descriptor

Super Descriptor
Number 3-9

Virtual Address
Descriptor

With Working Space

Generation, Super
5-51

SUPPER
Super Descriptor 7 7-225

SUPPRESSION
End Floating Suppression 7-506
End suppression flag 6-29
Insert Asterisk on Suppression

7-508
Insert Blank on Suppression 7-509
Move with Zero Suppression and

Asterisk Replacement 7-519
Move with zero Suppression and Blank

Replacement 7-520
Set End Suppression 7-521

SWCA
SWCA 7-449

SWCO
SWCO 7-450

SWD
SWD 7-452

SWDX
SWDX 7-452

SWITCHES
Read Switches 7-357

SXLN
SXLn 7-453

SYMBOLS
ABBREVIATIONS AND SYMBOLS 7-3
index register symbols 5-JJ
Move with Floating Currency Symbol

Insertion 7-514

SYNC
SYNC J-216, 7-454

SYNCHRONIZE
Gate Synchronize 7-454

DH03-0l

SYSTEM
Read System Controller Register

7-351
System Controller Fault Codes 8-27
System Controller Illegal Action

Codes 4-24
System Controller Interrupts 8-30
System Controller-Detected Faults

8-26
System Entry CLIMB 7-105
SYSTEM FAULTS 8-26
system information and control 6-4

SZN
SZN 7-455

SZNC
SZNC 7-215, 7-246, 7-456

SZTL
SZTL 7-458

SZTR

T

SZTR 7-460

Decrement Address, Increment Tally
(T) 5-20

Decrement Address, Increment Tally,
and Continue (T) 5-20

Increment Address, Decrement Tally
(T) 5-19

Sequence Character Reverse (T} 5-18

TA
Alphanumeric Data Type (TA) Codes

6-20

TABLE
Bit Strings and Index Table of

Translate Instruction 5-71
Change Table 7-505
DENSE PAGE TABLE 5-60
Edit Insertion Table 6-28
FRAGMENTED PAGE TABLE 5-64
Insert Table Entry One Multiple

7-510
Load Page Table Directory Base

Register 7-258
Load Table Entry 7-513
LOCATING THE PAGE TABLE DIRECTORY

WORD 5-60
page table directory 3-2
Page Table Word Control Field Faults

8-22
Page Table Word Format 5-57
Store Page Table Directory Base

Register 7-399
Transfer Table Entry Store 7-486
Transfer Table Entry Zero 7-488
Transfer Trace Table Lock 7-492
Transfer Trace Table Unlock 7-494
translation table length 7-305
Virtual Address, Dense Page Table

5-61

TABULAR
processing of tabular data 5-13

i-35

TABULAR (cont)
processing tabular operands 5-19

TAG
asterisk placed in the tag 5-7
Fault Tag 8-5
tag designator (td) 5-2
Tag Field 5-2
tag modifier {tm) 5-2

TALLY
Decrement Address, Increment Tally

{T) 5-20
Decrement Address, Increment Tally,

and Continue 5-22
Decrement Address, Increment Tally,

and Continue (T) 5-20
decrement tally 5-14
Increment Address, Decrement Tally

(T) 5-19
Increment Address, Decrement Tally,

and Continue 5-21
increment tally 5-14
Indirect Then Tally {IT) 5-1, 5-13
TALLY 5-13
tally designator 5-2
Tally Designators 5-15
Tally runout 4-9
Transfer on Tally Runout Indicator

OFF 7-489
Transfer On Tally Runout Indicator

ON 7-490

TALL YB
TALLYB 5-13

TALLYC
TALLYC 5-14

TALL YD
TALLYD 5-14

TCT
TCT 7-462

TCTR
TCTR 7-465

TD
tag designator (td) 5-2

TEO
TEO 4-8, 7-466

TEST
special test registers 7-174
Store Test Address Registers 7-444
Store Test Descriptor Register

7-445
Test Character and Translate 7-462
Test Character and Translate in

Reverse 7-465

TEU
TEU 4-9, 7-467

TIME
Elapsed Time Clock 7-355

DH03-01

TIME (cont)
Elapsed Time Interval Faults 8-8

TIMER

TM

Interval Timer 1-6
Load Timer Register
Store Timer Register
TIMER REGISTER (TR)
Timer Runout (TROF)

7-250
7-443

4-11
8-8

tag modifier {tm) 5-2

TMI
TMI 7-468

TMOZ
TMOZ 7-469

TNC
TNC 7-471

TNZ
TNZ 7-472

TOV
TOV 4-8, 7-473

TPL
TPL 7-474

TPNZ
TPNZ 7-475

TR
TIMER REGISTER (TR) 4-11

TRA
TRA 7-477

TRACE
Transfer Trace Table Lock 7-492
Transfer Trace Table Unlock 7-494

TRANSFER
Domain Transfer 7-88
GCLIMB (Lateral Transfer LTRAS) - 10

7-104
Lateral Transfer - LTRAD 7-104
Lateral Transfer - LTRAS 7-104
PCLIMB (Lateral Transfer - LTRAD) -

11 7-104
Transfer After Setting Slave 7-483
Transfer And Set Index Register n

7-485
Transfer Instructions o-J~
Transfer On Carry 7-478
Transfer On Exponent Overflow 7-466
Transfer On Exponent Underflow

7-467
Transfer On Minus 7-468
Transfer On Minus Or Zero 7-469
Transfer On No Carry 7-471
Transfer on Nonzero 7-472
Transfer On Overflow 7-473
Transfer On Plus 7-474
Transfer On Plus And Nonzero 7-475

TRANSFER (cont)
Transfer on Tally Runout Indicator

OFF 7-489
Transfer On Tally Runout Indicator

ON 7-490
Transfer On Truncation Indicator OFF

7-479
Transfer On Truncation Indicator ON

7-481
Transfer On zero 7-496
Transfer Table Entry Store 7-486
Transfer Table Entry zero 7-488
Transfer Trace Table Lock 7-492
Transfer Trace Table Unlock 7-494
Transfer Unconditionally 7-477

TRANSLATE
Bit Strings and Index Table of

Translate Instruction 5-71
Compare Characters and Translate

7-119
Test Character and Translate 7-462
Test Character and Translate in

Reverse 7-465

TRANSLATION
address translation 5-56
Move Alphanumeric with Translation

7-302
translation table length 7-305

TRANSLITERATION
transliteration 6-5

TRAP
Fault Trap Address 8-23
Load Address Trap Register 7-220

TRAPS
Mode Register Fault Traps 8-23

TRC
TRC 7-478

TROF
Timer Runout (TROF} 8-8

TRTF
TRTF 7-479

TRTN
TRTN 7-481

TRUE
true round 7-149, 7-197, 7-201

TRUNCATION
Address Truncation 5-69
Set zero and Truncation Indicators

with Bit Strings Left 7-458
Set zero and Truncation Indicators

with Bit Strings Right 7-460
Transfer On Truncation rndicator OFF

7-479
Transfer On Truncation Indicator ON

7-481
Truncation 4-10

i-36 DH03-0l

TSS
TSS 4-10, 7-483

TSXN
TSXn 7-485

TTES
TTES 7-486

TTEZ
TTEZ 7-488

TTF
TTF 7-489

TTN
TTN 7-490

TTTL
TTTL 7-492

TTTU
TTTU 7-494

TWO
Pulse Two 7-320

TYPE
Alphanumeric Data Type {TA) Codes

6-20

TZE
TZE 7-496

UFA
UFA 7-497

UFM
UFM 7-498

UFS
UFS 7-499

UNDERFLOW
Exponent underflow 4-9
Transfer On Exponent Underflow

7-467

UNIT
virtual unit 1-2
VIRTUAL UNIT HISTORY REGISTERS {VUn)

4-34

UPPER
Direct Upper (DU) 5-4
Load Index Register n from Upper

7-253
Store Index Register n in Upper

7-447
upper bound check 5-71

USER
User Faults 8-24

VALID
Bound Valid Flag 8-22
valid mnemonics for address

modification 5-2

i-37

VALUE
base value 5-47
Binary Representation of Fractional

Values 2-8
bound value 5-47
octal value of the operation code

7-2

VARIATION
AD Variation 5-22
Add Delta {AD} variation 5-22
Character Indirect (CI) variation

5-16
CI Variation 5-16
DI variation 5-20
DIC Variation 5-22
F variation 5-16
Fault variation 5-16
I Variation 5-18
ID variation 5-19
!DC Variation 5-21
Indirect (I) variation 5-18
SC Variation 5-16
SCR Variation 5-18
SD Variation 5-23
Sequence Character (SC) variation

5-16
Subtract Delta (SD) variation 5-23

VARIATIONS
variations under IT modification

5-13, 5-16

VECTOR
vector option 7-222
vectors 3-11

VFD
VFD 6-10

VIRTUAL
Mapping The Virtual Address To A

Real Address 5-58
virtual address 1-6, 5-59
Virtual Address Generation 5-48
Virtual Address Generation, Super

Descriptor 5-51
Virtual Address, Dense Page Table

5-61
Virtual Memory 3-2
Virtual Memory Addressing 5-47
Virtual Memory Generated Faults

8-10
virtual unit 1-2
VIRTUAL UNIT HISTORY REGISTERS (VUn)

4-34

VUN
VIRTUAL UNIT HISTORY REGISTERS (VUn)

4-34

WIRED-IN
wired-in !CLIMB 8-30

WORD
Associative Memory word 5-68
Channel Status word 8-24
INDIRECT WORD 5-38

DH03-0l

WORD (cont)
Indirect Word Format 5-15
INSTRUCTION WORD FORMATS 7-6
LOCATING THE PAGE TABLE DIRECTORY

WORD 5-60
Page Table Word Control Field Faults

8-22
Page Table Word Format 5-57
Read Interrupt Word Pair 7-329
Store PTWAM Directory Word 7-435
Subtract Word Displacement from

Address Register 7-452
The Machine Word 2-1
word address 5-34
Word and Double-Word Operations

5-70

WORKING
Load Working Space Registers 7-251
Missing Working Space Fault 8-12
Missing Working Space Fault (MWS)

8-12
Missing Working Space Faults 7-229
Standard Descriptor With Working

Space Number 3-7
Store Working Space Registers 7-446
Super Descriptor With Working Space

Number 3-9
working space number (WSN) 3-3
working space register 3-12
working space registers 3-6
WORKING SPACE REGISTERS (WSRn) 4-36
working spaces 3-2, 5-47
working Spaces and Pages 3-2

WRAPAROUND
Address Wraparound 5-73

WRITE
Read/Write Permission Flags 8-19
Write Control Field 8-22

WSN
working space number (WSN) 3-3

WSPTD
WSPTD 5-56, 5-60

WSR
WSR 3-6

WSRN
WORKING SPACE REGISTERS (WSRn) 4-36

XEC
XEC 7-500

XED
XED 7-502

XN
INDEX REGISTERS (Xn) 4-6

Y-PAIR
Y-pair 2-2

ZERO
Floating Set zero and Negative

Indicators from Storage 7-203
Move with Zero Suppression and

Asterisk Replacement 7-519
Move with zero Suppression and Blank

Replacement 7-520
Set zero and Negative Indicators

from Storage 7-455
Set zero and Negative Indicators

from Storage and Clear 7-456
Set Zero and Truncation Indicators

with Bit Strings Left 7-458
Set zero and Truncation Indicators

with Bit Strings Right 7-460
Store zero 7-448
Transfer On Minus Or zero 7-469
Transfer On zero 7-496
Transfer Table Entry zero 7-488
zero 4-8
zero flag 6-29

ZEROS
Store Block of zeros 7-417

i-38 DH03-0l

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE

DPS 8 & DPS 88 ASSEMBLY INSTRUCTIONS l
ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME--------------------~----

TITLE -------- _____ _

COMPANY -------

ADDRESS-------~---------------

ORDER NO. DH03-0l

DATED I JUNE 1984

DATE

PLEASE FO LO ANO TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms·

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM. MA02154

POST AGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

....

Together, we can find the answers.

Honeywell
Honeywell lnfonnation S~s

U.S.A.: 200 Smith St., MS 485, Walt .. am, MA 02154
C8nada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7

Mexico: Av. Constituyentes 900, 11950 Mexico, D.F. Mexico
U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano

Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

41483, 7.5C1084, Printed in U.S.A. DH03-01

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	7-001
	7-002
	7-003
	7-004
	7-005
	7-006
	7-007
	7-008
	7-009
	7-010
	7-011
	7-012
	7-013
	7-014
	7-015
	7-016
	7-017
	7-018
	7-019
	7-020
	7-021
	7-022
	7-023
	7-024
	7-025
	7-026
	7-027
	7-028
	7-029
	7-030
	7-031
	7-032
	7-033
	7-034
	7-035
	7-036
	7-037
	7-038
	7-039
	7-040
	7-041
	7-042
	7-043
	7-044
	7-045
	7-046
	7-047
	7-048
	7-049
	7-050
	7-051
	7-052
	7-053
	7-054
	7-055
	7-056
	7-057
	7-058
	7-059
	7-060
	7-061
	7-062
	7-063
	7-064
	7-065
	7-066
	7-067
	7-068
	7-069
	7-070
	7-071
	7-072
	7-073
	7-074
	7-075
	7-076
	7-077
	7-078
	7-079
	7-080
	7-081
	7-082
	7-083
	7-084
	7-085
	7-086
	7-087
	7-088
	7-089
	7-090
	7-091
	7-092
	7-093
	7-094
	7-095
	7-096
	7-097
	7-098
	7-099
	7-100
	7-101
	7-102
	7-103
	7-104
	7-105
	7-106
	7-107
	7-108
	7-109
	7-110
	7-111
	7-112
	7-113
	7-114
	7-115
	7-116
	7-117
	7-118
	7-119
	7-120
	7-121
	7-122
	7-123
	7-124
	7-125
	7-126
	7-127
	7-128
	7-129
	7-130
	7-131
	7-132
	7-133
	7-134
	7-135
	7-136
	7-137
	7-138
	7-139
	7-140
	7-141
	7-142
	7-143
	7-144
	7-145
	7-146
	7-147
	7-148
	7-149
	7-150
	7-151
	7-152
	7-153
	7-154
	7-155
	7-156
	7-157
	7-158
	7-159
	7-160
	7-161
	7-162
	7-163
	7-164
	7-165
	7-166
	7-167
	7-168
	7-169
	7-170
	7-171
	7-172
	7-173
	7-174
	7-175
	7-176
	7-177
	7-178
	7-179
	7-180
	7-181
	7-182
	7-183
	7-184
	7-185
	7-186
	7-187
	7-188
	7-189
	7-190
	7-191
	7-192
	7-193
	7-194
	7-195
	7-196
	7-197
	7-198
	7-199
	7-200
	7-201
	7-202
	7-203
	7-204
	7-205
	7-206
	7-207
	7-208
	7-209
	7-210
	7-211
	7-212
	7-213
	7-214
	7-215
	7-216
	7-217
	7-218
	7-219
	7-220
	7-221
	7-222
	7-223
	7-224
	7-225
	7-226
	7-227
	7-228
	7-229
	7-230
	7-231
	7-232
	7-233
	7-234
	7-235
	7-236
	7-237
	7-238
	7-239
	7-240
	7-241
	7-242
	7-243
	7-244
	7-245
	7-246
	7-247
	7-248
	7-249
	7-250
	7-251
	7-252
	7-253
	7-254
	7-255
	7-256
	7-257
	7-258
	7-259
	7-260
	7-261
	7-262
	7-263
	7-264
	7-265
	7-266
	7-267
	7-268
	7-269
	7-270
	7-271
	7-272
	7-273
	7-274
	7-275
	7-276
	7-277
	7-278
	7-279
	7-280
	7-281
	7-282
	7-283
	7-284
	7-285
	7-286
	7-287
	7-288
	7-289
	7-290
	7-291
	7-292
	7-293
	7-294
	7-295
	7-296
	7-297
	7-298
	7-299
	7-300
	7-301
	7-302
	7-303
	7-304
	7-305
	7-306
	7-307
	7-308
	7-309
	7-310
	7-311
	7-312
	7-313
	7-314
	7-315
	7-316
	7-317
	7-318
	7-319
	7-320
	7-321
	7-322
	7-323
	7-324
	7-325
	7-326
	7-327
	7-328
	7-329
	7-330
	7-331
	7-332
	7-333
	7-334
	7-335
	7-336
	7-337
	7-338
	7-339
	7-340
	7-341
	7-342
	7-343
	7-344
	7-345
	7-346
	7-347
	7-348
	7-349
	7-350
	7-351
	7-352
	7-353
	7-354
	7-355
	7-356
	7-357
	7-358
	7-359
	7-360
	7-361
	7-362
	7-363
	7-364
	7-365
	7-366
	7-367
	7-368
	7-369
	7-370
	7-371
	7-372
	7-373
	7-374
	7-375
	7-376
	7-377
	7-378
	7-379
	7-380
	7-381
	7-382
	7-383
	7-384
	7-385
	7-386
	7-387
	7-388
	7-389
	7-390
	7-391
	7-392
	7-393
	7-394
	7-395
	7-396
	7-397
	7-398
	7-399
	7-400
	7-401
	7-402
	7-403
	7-404
	7-405
	7-406
	7-407
	7-408
	7-409
	7-410
	7-411
	7-412
	7-413
	7-414
	7-415
	7-416
	7-417
	7-418
	7-419
	7-420
	7-421
	7-422
	7-423
	7-424
	7-425
	7-426
	7-427
	7-428
	7-429
	7-430
	7-431
	7-432
	7-433
	7-434
	7-435
	7-436
	7-437
	7-438
	7-439
	7-440
	7-441
	7-442
	7-443
	7-444
	7-445
	7-446
	7-447
	7-448
	7-449
	7-450
	7-451
	7-452
	7-453
	7-454
	7-455
	7-456
	7-457
	7-458
	7-459
	7-460
	7-461
	7-462
	7-463
	7-464
	7-465
	7-466
	7-467
	7-468
	7-469
	7-470
	7-471
	7-472
	7-473
	7-474
	7-475
	7-476
	7-477
	7-478
	7-479
	7-480
	7-481
	7-482
	7-483
	7-484
	7-485
	7-486
	7-487
	7-488
	7-489
	7-490
	7-491
	7-492
	7-493
	7-494
	7-495
	7-496
	7-497
	7-498
	7-499
	7-500
	7-501
	7-502
	7-503
	7-504
	7-505
	7-506
	7-507
	7-508
	7-509
	7-510
	7-511
	7-512
	7-513
	7-514
	7-515
	7-516
	7-517
	7-518
	7-519
	7-520
	7-521
	7-522
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	i-07
	i-08
	i-09
	i-10
	i-11
	i-12
	i-13
	i-14
	i-15
	i-16
	i-17
	i-18
	i-19
	i-20
	i-21
	i-22
	i-23
	i-24
	i-25
	i-26
	i-27
	i-28
	i-29
	i-30
	i-31
	i-32
	i-33
	i-34
	i-35
	i-36
	i-37
	i-38
	replyA
	replyB
	xBack

