
HON EYVVE LL ·

NEW USERS'
IN'IRODUCTION
TO MULTICS
PART I

SOFTWARE

SUBJECT

Basic Introduction to Multics

SPECIAL INSTRUCTIONS

SERIES 60 (LEVEL 68)

NEW USERS' INTRODUCTION
'1'0 1\5TTT rpT""8 DA"O'P T
~ '-J .L.~U~~~'--' - ~ ~,,~ ~

This manual is part of a two-volume set entitled New Users'Introduction to
Multics (Order Nos. CH24 and CH25). The introductory set, along with one of
the Multics text editor user guides, are prerequisites to all further Multics
manuals. The text editor user guides are:

qedx Text Editor Users' Guide
Emacs Text Editor Users' Guide

SOFTWARE SUPPORTED

iviultics Software Release 8.0

ORDER NUMBER

CH24-00

Order No. CG40
Order No. CH27

November 1979

Honeywell

PREFACE

The purpose of this manual is to help you become familiar
with the Multics system. This manual provides you with a basic
introduction to Multics, a workbook that guides you through your
first sessions at a terminal. The topics covered here are
fundamental Multics concepts that are immediately useful to the
new user. Many examples are included, illustrating both correct
and incorrect ways of sending instructions to Multics. Many of
the concepts presented here are covered more thoroughly in Part
II.

Section 1 of this manual introduces the Multics system.

Section 2 covers how to enter and leave Multics. Multics
conventions are presented in Section 3, as you learn to use
several basic commands (instructions). Here you are also
introduced to communication with other users via Multics.

In Section 4 you learn to enter text or other information,
in units referred to as segments, for storage and processing on
Multics. Segments are discussed more fully in Section 5, which
also includes commands allowing you to manipulate your own
segments.

The organization of all users' segments
Section 6. This section also suggests ways of
own segments, and describes commands for using
segments. Commands concerning access control
share segments with other users) are presented in

is explained in
organizing your
other people's

(permission to
Section 7.

A glossary of the terms used in this manual can be found in
Appendix A. Appendix B contains a list of the commands
introduced in the manual, including the correct usage and a brief
description for each.

Honeywell disclaims the implied warranties of merchantability and fitness for a particular pur
pose and makes no express warranties except as may be stated in its written agreement with
and for its customer.

In no event is Honeywell liable to anyone fur any indirect, special or consequential damages. The
infurmation and specifications in this document are subject to change without notice. Consult
your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1979 File No.: lL13 CH24-00

The information presented here· is a subset of that contained
in the primary Multics reference document, the Multics
Programmers' Manual (MPM). The MPM should be used as a reference
~o Multics once you have become familiar with the concepts
covered in this introductory guide. The MPM consists of the
following individual manuals:

RoT'oT"oi'ir.o Guide Order !J o. f,,0rH
.J."v..&..v .. v.1..1.'-',-" 1-'.a.'J"J :

Commands and Active Functions Order No. AG92

Subroutines Order No 0 AG93

Subsystem Vlri ters' Guide Order No. AK92

Peripheral Input/Output Order No. AX49

Communications Input/Output Order No. CC92

Throughout this manual, references are made to both the MPM
Commands and Active Functions manual and the New Users'
Introduction- to Multics Part II. For convenience, these
references wil~be as follows:--

Mpr~ Commands
Part II

The Multics operating system is referred to in this manual
as either "Multics" or "the system". The term "computer" refers
to the hardware on which the operating system runs.

iii CH24-00

Section 1

Section 2

Section 3

Section 4

CONTENTS

Introduction.
The Multics System .
Manual Conventions .
Multics Conventions.

Entering and Leaving Multics
User Identification on Multics .
Connecting the Terminal

Logging In.
Login Problems

Logging Out
Login/Logout Variations: Control

11. r gum en t s.

Basic Multics Commands.
Command Conventions ..

Command Names . . .
Command Lines . .
Stopping a Command.

Argument Conventions
The Standard Argument
Pathname Arguments
Control Arguments
Default Arguments

Communicating with Other Users
Message Commands

Receiving Messages .
Sendi ng ~~essages

Mail Commands . .
Reading Mail .
Sending Mail .

tle~p Commands
The help Command.
The list_help Command .

Creating and Editing Text ..
Text Editing Commands ..
The qedx Editor -- Printing Terminals.

Creating Text
Editing Text
Saving Text

The emacs Editor -- Video Terminals ..
Creating Text

iv

Page

1 -1
1 -1
1-2
1-2

2-1
2-1
2-2
2-2
2-4
2-6.

2-7

3-1
3-1
3-1
3-2
3-3
3-4
3-4
3-5
3-7
3-8
3-8
3-9
3-9
3-10
3-12
3-13
3-15
3-16
3-16
3-18

4-1
4-1
4-1
4-2
4-2
4-5
4-6
4-6

CH24

Section 5

Section 6

Section 7

Appendix A

Appendix B

Index

CONTENTS (cont)

emacs Requests ..
Editing Text ...
Saving Text
Getting Help From Emacs .

S e gmen t s
Viewing Segments . .

The print Command .
The dprint Command ..

Naming Segments ...
Segment Attributes
Deleting Segments.

Directories
Pathnames

Absolute Pathnames
Relative Pathnames.

Sharing Segments
Access to Segments.

Creating Directories .
Changing Directories .
Deleting Directories

Access.
Segment Access .
Directory Access

Glossary

Command Descriptions ..

v

Page

4-7
4-7
4-9
4-9

5-1
5-1
5-1
5-2
5-3
5-5
5-6

6-1
6-4
6-4
6-4
6-5.
6-6
6-6
6-8
6-10

7-1
7-1
7-4

B-1

i-1

CH24

SECTION 1

INTRODUCTION

THE MULTICS SYSTEM

A large-scale computer is a machine that can store very
large amounts of information, and can process that information
very quickly. A computer consists of hardware, all the physical
devices and electronic circuitry, and software, all the programs
and other machine instructions that control the activities of the
computer. The software is said to "run" or "execute" on the
hardl,vare.

In order for people to use a computer, there must be a set
of programs within it that can interpret users' instructions,
control the hardware, and otherwise supervise the basic operation
of the computer. This portion of the software is called the
operating system.

Your operating system is called Multics. It is a
general-purpose system developed to serve large and diverse user
communities. Because Multics is a timesharing system, the work
of many users is processed almost simultaneously. The normal
mode of operation on Multics is interactive, or "conversational":
each instruction that you type goes directly to the computer and
is acted on immediately; if Multics needs any further
information from you in order to follow your instruction, you are
asked for it. In addition, all of your work can be seen and used
by other users through a system of access control: levels of
n p. 1'" m i Q Q i (yn ('> (") 1'1 + yo (") 1 1 c rl h 1T ,T (") 11
.J:"'-------~-- ~~----~--~~ -J J~~-

1 -1 CI-l24-00

You will do your work on Multics from a terminal; in fact,
this may be the only piece of hardware you see. A terminal looks
very much like an electric typewriter (or a television screen)
with extra keys. It is connected to the computer, either
directly or through normal telephone lines. Although there are
many different kinds of terminals, each with slightly different
keyboards and instructions for use, all terminals can be classed
as either printing terminals (also called "hard-copy" terminals
because they print onto paper) or video terminals (with a screen
and cathode ray tube, CRT, rather than paper).

MANUAL CONVENTIONS

A few conventions and special symbols should be introduced
before you begin to explore the Multics environment.

Technical or other unfamiliar terms are underlined when used
the first time, and are included in the glossary (Appendix A).

Quotation marks are used to indicate the exact spelling of a
word, or the way a word should appear on a line typed
For example, part of a person's identification on
called a Person id, and that term is unquoted, but
example of it, say "PSissle", is quoted. You do not
quotation marks.

by a user.
Multics is
a specific
type these

Another convention within examples is the use of an
exclamation point to indicate lines you type. The exclamation
point does l~OT appear on your terminal -- you do not type it, and
Multics does not type it to prompt you. Exclamation points
appear ONLY in examples, and O~LY to show which lines you type.

Line numbers and text within angle brackets « ... » are used
within examples for explanatory purposes ONLY. They are not
actually typed by Multics, and they should not be typed by you.

MULTICS CONVENTIONS

Several characters have special meanings on Multics.

1-2 C.L124-00

Two special characters are deletion characters that you can
use to correct typing mistakes. To delete single characters, use
the !I#" character (called the erase character) directly after the
characters you want deleted, one "#" for each character you want
to delete. Thus this line:

My name is Pm#am.

is seen by Multics as:

IVIy name is Pam.

The erase character, when used to erase a blank space, will erase
ALL the blank spaces between characters. For example, this line:

IvIy name i s### is Pam.

is seen as:

My name is Pam.

because the first # erases the "s", the second erases the next
row of 4 blanks, and the third erases the "i".

The "@" character (the kill character) deletes all
characters to the left of it on the line; for example:

Myn aemi s@My name is Pam.

1S seen as:

My nane is Pam.

1-3 Cli24-00

You should avoid some characters unless you are specifically
instructed that you may use them. These are:

() L] ": *

You will learn about the correct use of these characters in Part
II.

On Multics, names are not allowed to contain blank spaces.
If a na:rne consists of more than one word, the"" (underscore)
character is used to separate the words. Fo~ example, the
send message command name has an underscore connecting the two
words. This convention is treated fully in Section 3.

Other characters have special meanings only in some
contexts. Such characters are noted where necessary.

1-4 CH24-00

SECTION 2

ENTERING AND LEAVING MULTICS

Entering the Hultics system is called logging in, and
leaving the system is called logging out.

USER IDENTIFICATION ON MULTICS

To successfully log in on Multics, you must be registered as
a Multics user at your site. When you get registered, you are
assigned your own identifying name, called a User ide Here is a
sample User id:

1 PSissle.Doc

There are two components, separated by a period, in this User id:
the Person id (PSissle), which is a unique (to Multics) ver~ion
of Pam SissIe's name, and the Project id (Doc), an abbreviation
of the name of the group she works with, which is included for
administrative and accounting purposes. (A third component, the
tag, is discussed in Section 7.)

Your User in identifies you as a registered user, with
authorization to use the resources of the system: computer time
for interacting with the system and space (memory) to store the
work you've done. Although your User id is unique, it is public
and can be known by everyone.

You also receive a preliminary password when you register.
One of the first things you learn to do on the system is to
change the assigned password to one you make up, so that it will
be completely private. Your password ensures that only you can
log in with your User id because you are the only person who
knows what your password is. The password system is the most
important key to the security that Multics offers.

2-1 CH24-00

CONNECTING THE TERMINAL

Now you are a registered user, sitting at a terminal. After
turning the terminal on (there is an on/off switch on the body of
the terminal), you must make an electronic connection between it
and the computer. Before you make this connection, the terminal
is just another electric typewriter, with a few extra characters
on the keyboard. (If you have a hardwired terminal -- one that
is connected directly and permanently to the computer -- you are
ready to turn to the next part of this section and log in.) This
procedure is simple, but it differs slightly at each site. Your
site probably has detailed instructions available. Here is a
general description of terminal connection.

Terminal connection is made through normal telephone lines
using a modem. The modem sends electronic signals to and from
the terminal in the form of high-pitched tones. It may be built
into the terminal, or it may be a separate unit connected by a
cable to the terminal. If it is built in, you see only a cradle
that accepts a telephone receiver, and there is a regular
telephone nearby. Otherwise, you use a dataset, which looks very
much like a regular telephone with several pushbuttons along it.

Pick up the telephone receiver, listen for a dial tone, and
dial the phone number of your system (this number should be
included with the instructions for your particular site, and may
also be posted near the terminal). You will hear the phone
ringing, and then a steady shrill tone when the connection is
made. At this point, if you have a built-in modem, place the
receiver firmly into the cradle, with the cord positioned as
indicated on the unit. If your modem is a dataset, push the
indicated button (labeled "DATA" or "HOLD") and then set the
receiver back into its place on the modem. Usually, either the
modem or the terminal turns on a small light when the connection
is made. When this light goes off, it means you are
disconnected.

Terminal connection sounds complicated, but it will become
automatic for you very soon. If you have problems, make sure
everything is plugged in and turned on, and ask another user for
assistance.

Logging In

When you have successfully connected your terminal, Multics
prints a banner, or greeting message. This is the signal for you
to log in and identify yourself. Here is a sample login sequence
for Pam SissIe, opening with a typical site canner. The lines
are numbered for this example ONLY; the example is followed by an
explanation of each line.

2-2 CH24-00

1. Multics MRS.O: Honeywell LISD Phoenix, System M
Load = 42 out of 125.0 units: users = 39. 05/02/80

2. login PSissle Doc
3. Password:
4. pwsWWWMWWWWW
5. You are protected from preemption until 1007.8
6. PSissle Doc logged in 05/02/80 0907.5 mst Fri from
7. Last login 05/01/80 1326.4 mst Wed from ...
8. r 10:07 1.486 34

NO~E: Remember that you do NOT type exclamation points or
line numbers to begin your command lines.
Exclamation points are provided in this manual only
as an aid to readers, to indicate lines that are
typed by a user. Line numbers are used only for
purposes of explanation.

1 . The typical Multics banner is a two-line message giving
the current version of Multics software, the name and
location of your site, the number of people logged in,
the total number of users the system can accept at one
time, and the date and time.

2. The word "login" is the command (a command is a
specific instruction to the computer) that identifies
you and gives you access to Multics. Actions that you
want performed by Multics are conveyed by commands.

Pollow the login command Wl~n a space and yuu.r own
Person id and Project ide Then press the RETURN key
(this -key may be labeled "RET" or "CR" on your
terminal). All lines sent to Multics must be
terminated by typing the RETURN key or else Multics
will not act on them. This is a complete command line.

3. The login command is an interactive command: it
responds to your Person id and Project id by requesting
your password.

4. Both you and Multics use this line. First Multics
prepares to conceal your password, so that nobody can
read it. Depending on the kind of terminal you have,
the printing of your password is either suppressed
entirely or hidden in a string of cover-up characters.
Then you type your password, and the RETURN key.

example, Pam SissIe ty~ed in her preliminary
of "pws", her initials ~all lowercase). Pam's

is left visible in these examples to
the correct response to the login password

In this
password
password
illustrate
request.

2-3 CH24-00

5. This message tells you how much time you are guaranteed
on the system during this login session; after the
stated time (here it is 10:07 am), you may occasionally
be logged out (with advance warning), but usually you
have as much time as you want. This line also serves
as acknowledgment of a successful login.

6. Your User id and the date, time, day and location of
your curr~nt login session are listed.

7. The date, time, day and location of your last login
session are listed. You can use this information to
detect unauthorized use of your User id and Person id
and Project ide fv1ultics will also inform you here of
any unsuccessful attempts to log in using your
Person id and Project id (including your own attempts,
if you-misspell your ~assword).

8. The last line is a ready message. Included in this is
the current time of day (on a 24-hour clock), and other
information that reflects your use of system resources.
~he ready message appears when you are at command
level: whenever Multics is ready to receive another
command from you.

Now you are ready to begin working on Multics.

LOGI~J PROBLEMS

It is possible that the first time you type the login
command line, you will not receive the prompting message
"Password:". In fact, almost nothing will happen: your carriage
(or cursor, the white square or blinking underscore on video
terminals) moves over to the beginning of the login line without
moving down to the next line. In this case, also press the 1F
(or LINBFBED) key. After you receive the prompting message and
type your password, press both the RETURN and the 1F keys again.
When you receive the ready message from Multics, type:

set tty -modes Ifecho,crecho

and both the RETURN key and the LF key. From now until you log
out, you can type just the RETURN key to send your command lines
to Multics.

You will learn more about the set tty command in Part II,
but for now, if you do not want to type this command line every
time yOQ log in, ask your project administrator to make your
HETURN key include a line feed permanently. (You can also do
this yourself after reading the "exec com" section in Part II.)

2-4

If you make a mistake while logging in, and you have already
typed RETURN without using the erase or kill characters, Multics
tells you 'by printing an error message, and asks you to try
again. Several error messages are shown in this section.
Multics sends you an error message whenever you send it a line
that it cannot process, because of incorrect format or inadequate
information. No harm has occurred when you receive an error
message; check your command line and try it again.

Here is an example of a typing mistake (Psissle rather than
PSissle) on the command line:

login Psissle Doc
Password:
pwsWWWWWMWWW
The user name you supplied is not registered.
Please try again or type "help" for instructions.
login PSissle Doc

Although the error was on the first line, Multics checked for a
matching password before sending an error message. When you try
again, start with the login command line.

Typing mistakes are the most common errors. It is important
to type words exactly as they are indicated, with attention to
both uppercase and lowercase letters (Multics distinguishes
between uppercase and lowercase).

Here is another example, in which Pam forgot the space after
the command:

10ginPSissle Doc
Incorrect login I,vord "loginPSi ssle 11.

Please try again or type "help" for instructions.
login PSissle Doc

Another easy mistake to make is to type your password
incorrectly. (It is also hard to correct a mistyped password
using the erase character, because you cannot see what you
typed.) Multics responds this way:

2-5 Cli24-00

login PSissle Doc
Passvford:
owsWW:WWWW:WWW
Incorrect password supplied.
Please try again or type "help" for instructions.
login PSissle Doc

After you mistype your password, you must type the entire login
sequence again, beginning with the login command.

Each site administrator sets a limit to the amount of time
you have and the number of attempts you can make to log in during
one session; you usually have about 6 minutes or 6 tries. When
you have exceeded this limit, Multics tells you to hang up the
telephone, because it is automatically breaking your terminal
connection:

login PSissle Doc
Password:
o Vf s WW:WWWWWWW
Incorrect password supplied.
hangup

If you typed everything correctly but are still denied
entrance to Multics, you may not be registered yet. Check with
your project administrator if you think this is the case. There
may be other reasons for denying you access, such as a system
shutdown, for which you receive an explanatory message from
Hultics.

Logging Out

When you finish your work on Multics, wait for a ready
message and type the logout command to break your terminal
connection. Multics responds by printing your User id, the date
and time that you log out, and your total system resource usage.
It then reminds you to hang up the telephone:

r 11: 25 0.072. 68
logout
PSissle Doc logged out 07/26/80 1125 mst Fri
CPU usage 13 sec, memory usage 5.6 units, cost $2.58.
hangup

2-6 CH24-00

Do not hang up the telephone before Multics has logged out; wait
for the word "hangup".

You should always log out, hang up the telephone, and turn
off the terminal before leaving, to avoid wasting computer time
and to allow others to use the terminal. If you do not log out,
another person can issue commands that Multics will interpret as
being from you. This activity is charged to you, and may also
result in damage to your work.

Login/Logout Variations: Gontrol Arguments

Most commands are flexible, letting you vary the way the
commands work. The command name specifies an action to be taken;
to direct the action of the command, you supple~ent it with
information by typing words called arguments after the command
name. The different kinds of arguments are discussed fully in
Section 3, but one kind is of special interest to you at this
point: the control argument.

The control argument is distinguished from other kinds of
arguments by the hyphen which always precedes it. It is used as
an optional argument -- one that you include on the command line
if you want the variation it stands for. Both the login and the
logout commands take control arguments. You are introduced to a
few of the most useful ones here.

The most important control argument for the new user, used
with the login command, is -change password. As discussed above,
it is very important that you be the only person who knows your
password. Here is an example of how to change a password:

login PSissle Doc -change_password
Passvlord:
pitT s WWWWWWWWW
lJeTJIT Pass-vvord:
n elcJ pas s WWWWW
New Password Again:
nev-TpassWWWWW
Password changed .

. You are protected from preemption ...
PSissle Doc logged in 07/26/80
Last login 07/26/80
r 11 :27 2.019 889

2-7 CH24-00

Your password must be 8 characters or fewer (with no blanks).
You may change your password as often as you like, but do not
choose a word that people are likely to guess, such as your
initials or the name of a pet. Try not to forget the one you
use, because there is no record of it available to any person.
If you do forget it, you must contact your project administrator
and request a new one.

~nother useful contr'l argu~ent for the login command is
-brief. If you use the terminal several times a day, you may not
want to see the introductory information that follows receipt of
your password (lines 5 through 7 in the first example). Here is
an example of logging in using the -brief control argument:

login PSissle Doc -brief
Password:
newpassWWWWW
r 11:29 1.798699

The logout com:nand also accepts a -brief control argument.:

logout -brief
hangup

When used with the logout command, -brief suppresses the logout
banner.

The -hold control argument to the logout command aids the
person who uses your termi~al after you. It retains the terminal
connection after you have logged out, and prints the ~ultics
banner in readiness for another person to log in:

logout -hold
PSissle Doc logged out ...
CPU usage ...

\1ultics MR8.0:
Load = 23 out of 60

2-8 C124-00

You can include several control arguments with one command,
as long as they are acceptable to the command and are typed after
the command but on the same line. For example:

login PSissle Doc -change_password -brief
Password:
pwsWWWWWWWWW
New Password:
newpassWWWWW
~ew Password Again:
newpassWWWWW
Password changed.
r 11:37 2.381 1121

Nhen you combine the two control arguments to the logout command,
the results may surprise you. Yere is the complete interaction,
from ready message to new login -- Pam is trying this out by
logging in again:

r 11:39 0.043 32
logout -brief -hold
<blank line from ~ultics here>
login PSissle Doc

The -brief control argument carries over into the new login
session -- no banner is printed! You must still use the "login
-brief" command line if you want the shortened version of your
new login session, th0ugh. The only indication you have that
~ultics is ready for a new user is that ~ultics sends a blank
line after it logs you out.

As you learn about more com~ands, read through the commarld
descriptions (Appendix 8) to find out about the control arguments
available to you with each command.

2-9 C~24-00

SECTION 3

BASIC MU1TICS COMMANDS

COMMAND CONVENTIONS

Nearly all work that you want to accomplish on Multics is
conveyed by commands. There are over 400 commands, many of which
you may never use, some that you will use often. Most commands
share several established rules of usage called conventions.
(Some com~ands do not conform to some conventions -- exceptions
are documented in the individual command descriptions, Appendix
B.) Several basic commands are introduced to illustrate the
concepts and conventions presented in this section.

Command Names

Multics differentiates between uppercase and lowercase
letters. Conmand names are always typed in lowercase letters.
}10 rex am p 1 e ,iN hen you log in to the system you type "login" . If
Pam SissIe types "LOGIN" instead, Multics responds with an error
message:

LOGIN PSissle Doc
Incorrect login 'tlord "LOUIN".
Please try again or type "help" for instructions.

Command names never contain blanks. Another way to say this
is that a command name is always one character 8tring~ one group
of alphabetic, numeric, and some special characters (periods,
hyphens and underscores) unbroken by blanks. When two or more
words are incorporated in one character string, an underscore is
used to simulate blanks bet'.rleen vlords, as -'IIi th the "send message"
command or the "-change_passr,{ord" control argument. -

3-1 CH24-00

Many command names have shortened versions, called short
names, that can be used interchangeably with the full names. The
login command has the shortest short name, "1" (the logout
command has no short name). Pam SissIe can log in this way:

1 PSissle Doc

Many of the most common control arguments have short names, too.
Here is the full version and the shortened version of a login
line from Section 2:

login PSissle Doc -change password -brief
1 PSissle Doc -cpw -bf -

Short names are given in command descriptions (Appendix B), next
to the full names of those commands and control arguments that
have shortened versions. In this manual, short names also appear
lD parentheses after command names.

Command Lines

A command line consists of a command name, any desired or
necessary arguments (separated from each other by blanks), and a
newline. You must use blanks to separate the name of the command
from its arguments, and to sefarate arguments from each other.
Multics processes command lines in the order that they were
typed.

Every command line ends with a newline. The newline
functions as a simultaneous carriage return (returning you to the
beginning of the same line) and linefeed (dropping you to a new
line). These two actions are a signal to Multics that you have
completed a command line and want it acted on. The newline is
sent to Multics by typing the key marked "RETURN It (some terminals
have a different key for this function -- check at your site for
the correct key). The RETURN keys on most terminals act as
newlines automatically; if your RETURN key does not (if you must
accompany it with a linefeed to send your command line to
lVIultics), see "Login Problems" in Section 2 or talk to your
project administrator.

3-2 CH24-00

Stopping a Command

If you want to stop a command while it is acting, you can do
so by issuing a QUIT signal. The who camand provides a good
example. The whO--Command prints a list of all the users
currently logged in, preceded by a Multics banner like the one
you see 'v'lhen you log in. When you type liwho iI to find out who is
logged in, you may not want to see the entire list of current
users. As soon as the system displays the names you are
interested in, you may issue a QUIT signal by pressing the "QUIT"
key only (this key may be labeled BREAK, ATTrl, or INTERRUPT on
your terminal). When Multics receives the QUIT signal (there may
be a short delay), it interrupts the command and displays a QUIT
message:

who

Multics MR8.0, load 32.0/40.0; 32 users, 28 interactive,
2 daemons.

Absentee users 2/3
IO.SysDaemon
Dunper.Daemon
Roach.SysMaint
DAdam. Soft1tlork
PSissle.Doc (she presses QUIT here)
QUIT
r 13:14 0.099 59 level 2

At this point, you are at command level 2; Multics has created a
new command level for you. To return to command level 1, you
should type release -all:

r 13:14 0.099 59, level 2
release -all
r 13:15 0.062 41

When Multics prints a ready message with no level number, you are
back at command level 1, which is where you startedw For more
information on the QUIT signal~ see Part II.

3-3 CH24-00

ARGUMENT CONVENTIONS

Arguments are character strings included on the command line
that provide any information necessary for a command to act as
you want it to. The way arguments are typed in a command line is
shown on a syntax line in the individual command descriptions
(Appendix B). A generalized example of a syntax line is:

command argument1 argument2 argument3

for as many arguments as the command accepts. Each command has
its own list of the arguments that it can accept; these lists of
arguments are also included in command descriptions.

One command may accept several different kinds of arguments;
each kind is discussed below. When several arguments can be
accepted on one command line, the order in which they are typed
is often significant. (Such requirements are indicated in the
syntax lines.) If you type arguments in the wrong order, or if
you type fewer arguments than necessary for the command to do
what you want, Multics usually sends you an error message
pointing out your mistake:

whom
Segment whom not found.
r 13:18 0.068 98

If your mistaken command is still understandable to Multics, the
command acts on whatever information you gave it. In this case,
the results will probably not be what you intended.

The Standard Argument

One kind of argument is called simply an argument. It can
be any item on which the command performs its action. Thus, such
items as numerical values, the Person id, and the Project id
function as arguments when they are called for in a command line.
You have already seen two examples of this kind of argument in
the login command line:

login PSissle Doc

3-4 CH24-00

This syntax line in the "login" command description would be:

followed
arguments

login Person id Project id

by a description of what words could be used as the
in this case the user's Person id and Project ide

~hese two arguments are required with the login command; if
you don't include them you will receive a message reminding you
to do so. Other arguments, ·those placed in braces on the syntax
line, are optional. Here is an example of a command syntax line
that includes an optional argument:

[calendar {date}

The braces ({}) indicate that the enclosed argument is optional.
If you type only "calendar il on t~e comrn.and line, the system
prints out, at your terminal, a calendar of the current month.
If you type the command name and a date of the form MN/DD/YY:

calendar 03/01/72

you receive a calendar for the month you specified. (Note: yOQ
must be using a terminal that has 120 or more characters per line
for the calendar to be printed correctly.)

Pathname Arguments

The most common kind of argument is the pathname argument.
All information that you create and store on MultlCS is grouped
into segments. For example, this section of this manual is
stored in a segment nao.ed "section 3". You give your segments
names, called pathnames, that tell the system where your segments
are located. (Segments are discussed in more detail in Sections
4 and 5, and pathnames in Section 6.)

Many commands are designed to act on segments; for these
commands, you provide the pathname of the appropriate segment on
the command line. When you type the name of this segment as one
of the arguments to a command, the system finds the segment by
its pathname and gives it to the command to act on.

3-5 C.LI24-00

The syntax line for a command with a pathname argument is:

command path

or, if the pathname is optional:

command lpath}

An example of a command that requires a pathname argument is the
print command (short name "pr"), which prints a header and the
text of Pam Sissle'~ segment "tadpole" at her terminal:

print tadpole

tadpole 05/02/80 1322.5 mst Mon

Selective listing: Class Amphibia, Superorder Salienta,
Order Anura, Suborder Procoela.
<rest of text>

In the print command, the order of arguments on a command line is
significant. The print command takes two optional arguments:
line numbers that specify where to begin and end printing. You
give these arguments if you do not want your whole segment
printed (when using line number arguments, the header is not
printed). If you want to use these arguments, you must type them
after the pathname. For example:

print tadpole 23 25
Family Atelopodidae

Atelopus pachydermus
A. carrikeri

r 13:23 0.067 67

This restriction is conveyed by the order of the arguments in the
syntax line:

print path {begin_line} {end line}

3-6 C~i24-00

Such restrictions are usually explained in the text of a command
description.

Control Arguments

With all of the arguments described above, you replace the
argument terms given in a syntax line -- "Person id", "date" -
Tlli th the information you want the command to act on -- "PSissle",
"10/17/80". Control arguments represent the special features of
a command. With control arguments, you' always type the same
control argument (preceded by a hyphen, of course) to get that
particular modification. Because control arguments cause a
command to act differently than it normally would, they are
nearly always optional. See "Variations" in Section 2 for
several examples of control arguments.

Control arguments rarely need to be typed in a given order.
However, control arguments do sometimes take arguments
themselves, and there may be various kinds of restrictions to
this kind of argument. One example of a command with a control
argument that takes an argument -was sho'i.vn in Section 2, "Login
Problems":

set tty -modes lfecho,crecho

where the -modes control argument takes the character string
iilfecho,crecho" as an argunent. Restrictions on the order of
control arguments in a command line are not revealed by the
syntax line of the comnand description. For example, here is the
syntax line of the set tty command (short name "stty"):

set tty {-contrOl argsf

Such restrictions are explained in the description of the
relevant control argument.

3-7 CH24-00

Default Arguments

The last kind of argument is the default argument, an
argument that the system assumes is present if you have typed
nothing but a command name on the command line. Default
arguments are assumntions about what the user wants from a
command. The print ~command (pr) offers a clear example of a
default argument. If your segment named "tadpole" has 39 lines
in it, then typing:

print tadpole

is the same as typing:

print tadpole 1 39

(except that the header is suppressed when you specify line
Y1"YYlhO ... ,.... \
.LJ. LA.L • .L IJ c; J. 0 J •

Very few commands have no arguments at all -- many commands
have default arguments.

COMf'lIUNICA~INU \vITlI OT~IER USERS

Multics offers several commands that allow you to
communicate with other users. This facility -- known as the mail
facility is very useful for such purposes as requesting
permission to look at or use someone's segments, informing other
users of upcoming events, or asking other users for assistance.

The mail facility commands are described below in two
groups: message commands and mail commands. Message commands
are intended primarily for interactive exchanges between two
logged-in users. Mail commands provide the advantage of writing,
sending and reading mail at your convenience, whether the other
user is logged in or not. In order to receive either type of
communication, you must have your own mailbox, a specially
protected segment with the name Person id.mbx (for example, Pam's
mailbox is named PSissle.mbx). Your first use of the
accept messages command creates a permanent mailbox for you
automatically.

3-8 CH24-00

llessage Commands

RECEIVING MESSAGES

In order to receive upcoming messages from other users, you
must type the accept messages command (short name Hamli) each time
you log in. In addition, to receive the messages that have been
sent to your mailbox since you last logged out, include the
-print control argument on the command line. The accept messages
command allows subsequent messages from other users to be printed
at your terminal instantaneously. The User id of the sender is
included with each nessage, as well as the d~te and time:

accept messages -print
From JTIMulty.Doc 05/01/80 1107 mst Tues:

Welcome to computers!

After your messages are printed at your terminal they are deleted
from your mailbox.

Incoming messages are printed on your terminal regardless of
what you may be working on. Although messages can interrupt you,
they have no adverse effect on what you are doing. If you have
only half a command line typed when a message arrives, simply
read the message and then continue typing from where you were
stopped -- the message is not sent to the system as part of your
command line. For example, here Pam receives a message while she
is typing the who command. Notice that until Pam presses the
newline, her command line is not sent to the system.

who <she has not typed a newline yet>

From JTKissle.SoftWork 05/02/80 0828 mst Wed: Hello!

-brief <newline now>
IO.SysDaemon
Backup.Daemon
Roach - SysIlJ!aint
Abelian.Groups
JKLisa.SoftWork

3-9 C1I24-00

If a message arrives while the system is printing out
information, the message is printed and the system returns to
printing as if nothing else had happened:

DAdam.SoftWork

From JTKissle.SoitWork 05/02/80 0829 mst Wed:
I just got registered today, too.

FBar. dard\;fork
JCIVIulty.Doc
PSissle.Doc
JTKissle.SoftWork
JiJI1ie.Groups
Ualois.Groups

There may be times when you don't want your work to be
interrupted by messages. You can have your incoming messages
collected and saved in your mailbox by typing the defer messages
command (dm). When you are ready to receive messages- aL your
terminal, just type the accept_messages command, with the -print
control arguoent, again.

You automatically stop accepting messages at your terminal
when you log out. Remember that you should type this command:

accept_messages -print

as soon as you log in each time.
automatically after reading the "exec

SEND I~JG HBSSAGES

(You can have this done
com" section in Part II.)

Interactive messages are sent with the send message command
(sm). There are two ways to send messages, as -the syntax line
implies:

send_message User id {message}

3-10 C~I24-00

For a short message, you can type the whole command line,
including your message, on one line:

send_message JTKissle.SoftWork Hello, there.

You may want to type a long message. When you type just the
command, the user id, and a newline, the system responds with the
word "Input: ". No~w you are in input mode, the second form of the
send message command. As long as you remain in input ~ode, each
line-you type is sent immediately to the user you specified. To
leave input mode and return to command level, type a period as
the first and only character on a line, and then type a newline.
A ready message will follow.

send message JTKissle.SoftWork
Input:
Are you reading the New Users' Intro?
I'm just learning how to send messages - can I
practice on you?

r 1 4 : 1 0 0.084 1 1 7

When you are in input mode, Multics expects normal text from
you, rather than commands. It recognizes only the erase and kill
characters as special sy~bols. You may therefore use any of the
other special characters listed in Section 1, even though you
should not use them when your message is included on the command
line. In fact, you may even type command lines as messages, and
they won't be acted on. nere is an example of both these
features:

send message JTKissle.SoftWork
Input:
Say, Jakob, try typing this (it's really neat):
sm JTKissle.SoftWork I know your password!

r 14:13 0.229 252

3-11 CH24-UO

When you and another user both enter input mode, you can
"chat" back and forth vITi th each other:

send message JTKissle.SoftWork
Input:
Are you reading the New Users' Intro?
From JTKissle.30ftWork:
Yes - I see you also got to Section 3.
What are you using Multics for?
From JTKissle.30ftWork:
I'm storing data from my research on infant behavior.
Very interesting. Well, back to Section 3.

r 14:19 0.378 327

Remember the period that takes you out of input mode! The period
is easy to forget, and when you do, you send command lines to
another user instead of to the computer.

~he send message comoand is an interactive command, the same
way that Multics is an interactive system. You talk to Multics
using comQands, and Multics responds with requested information
and ready messages. An interactive command talks to you by means
of pro ill p t.3, 1 ike " In put:" 0 r " Pas s \>J" 0 r d : 11, an d you t a I k to i t
usin8 requests, like the period that terminates input mode in the
send message command. After you type the command line and a
newlIne for interactive commands, you are at request level: the
system expects either appropriate information (like messages or a
password) or a request from that command's list of accepted
requests.

Ivlai I Commands

The mail commands, print mail (prm) and send mail (sdm), are
more complex interactive commands than the send message command.
Both comr:J.ands have their own sets of requests for use wi thin the
command. Your first use of print mail creates a permanent
mailbox for you automatically, if you-do not already have one.

Once you have a mailbox, you can receive mail as well as
messages. Incoming mail always goes directly to your mailbox.
If you are logged in and are accepting messages, you
automatically get ~ notice each time new mail arrives:

Pro m rJ C 11 u I t Y . Doc 05/02 /80 1 2 1 3 . 7 rn s t TvI e d: You h a verna i I .

3-12 Cj.124-0J

READINGr·1AI1

You can read your mail at any time by typing the print mail
command (prm). The system tells you how many messages you-have
(within the mail facility.mail is referred to as messages), and
prints the messages, with banners, one at a time. After each
message is printed, the system sends you a prompting message and
waits for you to type a request word in response. For example:

print mail
You h-ave 1 message.

#1 (3 lines) 05/01/80 9:16 Mailed by: FBar.HardWork
Date: 2 May 1980 1210 mst
From: FBar.HardWork
Subject: Meeting

REMEMBER -- there will be a meeting of all
people involved in the company carpool plan,
on Thursday at lOam in Davis Adam's office.

print_mail: Delete #1? <request here>

Five requests are accepted in answer to the prompt:

yes
deletes that message and prints the next one

no
retains that message and prints the next one

reprint

quit

abort

repeats that message and the prompt

retains that message and any messages not yet seen, and
returns you to command level

retains ALL current messages (even those you have
deleted) and returns you to command level

3-13 C:I24-00

Keep in mind that you may save mail in your mailbox as long as
you want. When you have answered the prompts for each message,
you are returned to command level. A complete example follows:

print mail
You h~ve 3 messages

#1 (7 lines) 05/02/80 10:02 Mailed by: JCMulty.Doc
Date: 2 May 1980 10:02 mst
From: JCMulty.Doc

-Subject: Greetings

Welcome onto the Multics system; once you learn a few
of the basics, I think you'll find it very useful.

I'm your project administrator. If you have any
questions or problems, please feel free to talk to me.

Have fun!

print_mail: Delete #1? ! yes

#2 (2 lines) 05/02/80 10:42 Mailed by: JTKissle.SoftWork
Date: 2 May 1980 10:42 mst
Fro~: JTKissle.SoftWork
Subject: practice

It's me again, practicing the send mail command.
That's all I can think of to say rIght now - bye.

print mail: Delete #2?
r 18:54 0.394 489

! quit

Pam deleted her first message, read her second one, and returned
to command level, so now she has two messages in her mailbox.

A useful control argument
"-list", which prints a sUrlmary
the text of each one. Here is
messages:

print mail -list
-

Msg# Lines Date Time

1 (2) 05/02/80 10:42
2 (1) 05/02/80 10: 49

to the print mail command is
of your messages before printing
the summary of Pam's remaining

From Subject

JTKissle.SoftNork practice
JTKissle.SoftWork Junk Hail

3-14 C1124-00

SENDING r.~AIL

To ~rite and send mail, use the send mail command (sdm).
Because this is a powerful command, you may use it at anyone of
several levels of complexity. Two ways of using send mail are
shown here.

The easiest way to send mail is to type "send mail" and the
User id of the person you want to write to. The command prompts
you for a title and for the text of the mail; at this point you
are at send mail request level, in input mode. Conclude your
mail in the same way as you terminate input mode when using the
send message command (sm): type a period as the first character
on a- line, and then type a newline. You now receive a message
telling you that your mail has been sent, and you are returned to
command level. This is how Jakob Kissle sent his first piece of
mail to Pam SissIe:

send mail PSissle.Doc
Subject: practice
IVIes sage:
It's me again, practicing the send mail command.
That's all I can think of to say rIght now - bye.

Mail delivered to PSissle.Doc
r 14:47 0.487 675

You may want to make changes to your mail before you send
it. You can edit the message after you type it in, by typing
"\f" (backslash-f) instead of a period when you end the message.
Now you are in send mail edit mode! It is very similar to the
qedx edit mode, EXCEPT youdOnotrleed to use the "w" request -
that is done automatically. (For information about qedx edit
mode requests, read Section 4, "Creating and Editing Text".) To
leave edit mode, type "q". Rather than returning you to command
level, the send mail command stays at request level. It allows
you several cholces by prompting you for a request. The three
most useful requests are:

print

send

quit

prints the mal~ you just typed

sends the mail to the mailbox of the user specified on
the command line

leaves send mail request level and returns to command
level.

3-15 C1I24-00

Here is the way Jakob wrote his second piece of mail to Pam:

send mail PSissle.Doc
Subject: Junk Mail
Message:
1 am doing more practicing.
\f
s/l am dOing/This is/
p
This is more practicing.
q
send mai 1.:
l'vlail-deli vered
send mail:
r 15:08 ...

send
to PSissle.Doc
quit

A variety of other requests are available for both the
send mail command (sdm) and the read mail command. (The
read-mail command is more vowerful than print mail for
mani~ulating your incoming mail.) When you are comfor~able with
the capabilities introduced here, tryout some of the options
listed in the descriptions of these commands in the MPM Commands.

HELP COIvIMANDS

The help Command

The help command is an extremely useful interactive command
that enables you to obtain information at your terminal about any
given Multics command. The syntax line of the help command is:

help {command_name} {-control_argsf

Typing the help command with the name of another command (and no
control arguments) causes Multics to begin printing the info
segment about the command you requested: this is an "information
segment" consisting of blocks of information about a given
command. The first block informs you of how long that first
block is, how long the entire info segment is, the full name and
short name of the command, the date on which the command was last
modified, and the syntax line and function of the command. After
each block, Multics prints the title of the next block and asks
you if you want ~ore help:

3-16 C:-:I24-00

help print
)doc)info>pr.info (6 lines follow; 25 in info)
01/27/76 print, pr

S I a t' \'oeg"n" one) l,end ll'ne',~, ,-ynlJ<_x: pr pa_n ~. <....>l _l..l !

Function: prints an ASCII segment.

Arguments required (13 lines). More help? <request>

Some of the requests you may ·use are:

yes
print the next block

skip
skips the next block

rest
prints the rest of the info segment, and returns you to
command level

quit
stops printing information, and returns you to command
level

Two of the control arguments to the help command, added to
the command line after you
also particularly useful:

-brief

info segments, are

prints a summary of the command information, including
the syntax line and all arguments and control arguments

-all
prints the entire info segment without prompting you

Try the help command with the name of one of the other
commands you have worked with. You can use it to remind yourself
of the correct syntax line of a command, or to learn about
arguments and control arguments not discussed in this manual.

3-17 CH24-00

The list help Command

There are more than 500 info segments available to you at
your terminal. The list help command gives you a list of info
segments that pertain to a given topic. The syntax line for this
command is:

list_help {topic} {-control_arg}

It lists all the info segments whose names contain the given
topic. For example, this command line:

produces this list:

list_help help

help. changes
help
help
info-seg_format.gi

Typing the list help command with just the -all control argument:

list help -all

gives you a (very long) list of all the info QPamon+Q,. -D 4.'-"..:....a. v"-'.

3-18 CH24-00

SECTION 4

CREATING AND EDITING TEXT

TEXT EDITING COMMANDS

After logging in and becoming familiar with
Multics environment, you will probably want to create
information on Multics.

the basic
and edit

Multics has several text editors, powerful interactive
commands that enable you to--Create, edit, and store your own
segments. The two primary text editors on Multics are commands
named qedx (short name "qx") and emacs. The qedx editor is a
line-oriented editor; that is, you may make changes to one or
more lines of text on a line by line basis. It is designed to be
used on a printing terminal. There are two modes of operation in
qedx: an input mode for entering new text, and an edit mode.
The emacs editor-is a character-oriented editor designed for
video terminals. In emacs, no distinction is made between edit
and input ~odes - you are free to edit as you type in text.

This section is a very brief introduction to both qedx and
emacs. It describes the fundamentals of the commands and
provides you with some of their most useful requests. However,
the qedx and emacs editors have user guides that explain them
fully: the emacs ~ext Editor Users' Guide, Order No. CH27, and
the qedx Text Editor Users' Guide, Order No. CG40. One of these
manuals should be among your group of essential Multics manuals.

THE qedx EDITOR -- PRINTING TERMINALS

~here are two modes of operation in qedx: an input mode for
entering new text, and an edit mode. In input mode, you type
information into the system;~a~s, you create text. In edit
mode, you ~ake changes to already existing text. A set of qedx
requests allows you to enter and leave input mode, perform the
various editing functions (substitution, deletion, printing), and
save your text in segments.

4-1 CH24-00

To enter the qedx editor, you type the qedx command, "qedx"
(or "qx") , and a newline. Now you are in edit mode; notice that
there is no prompt to remind you of this. In edit mode, qedx
expects requests froD you.

To enter input mode and create text, type "a" -- the append
request -- and then a newline. Now you type in your text. The
erase and kill characters still perform their correcting
functions within input mode. The characters "\f" together
(backslash-f) at the beginning of a line end your input session
and return you to edit mode. Here is an example of creating
text:

r 13:17 1.010 93
qedx
a

Doggerel
My dog is Brie:
he folloTws me
and chews on tennis balls.
He's got a stick,
but not one tick,
and sometimes barks in halls.
\f

Be sure to type the lI\f" as soon as you want to stop creating
text. Until you type "\f", EVERYTHING you type is included as
part of your text, including any requests you type thinking that
you have already left input mode! 30, if qedx does not respond
to your editing requests, try typing "\f". When this occurs, you
will probably need to delete several lines of editing requests
from your text.

Editing Text

The qedx editor treats text as a series of numbered lines,
the top line being line 1. The editor also renumbers the text
every time lines are added or deleted. For example, if you
delete line 1 of your text, then line 2 becomes line 1, and line
3 becomes line 2. Because the number of lines in your text
changes often, the "$" character has been established to stand
for the the last line, no matter what its number is. These line
numbers are implied -- they do NOT appear n~xt to your text.

4-2 CH24-00

vii thin the edi tor is an implici t "current -11ne pointer",
which is always "pointing at" one line of your text -- the last
line you typed in or edited. The "=" (equal) request prints the
line number of the current line, that is, where the current line
pointer is located at the moment.

Another method of locating lines of text moves the current
line pointer to the line you request and then prints that line.
This method consists only of an address: either an absolute line
number ("2", "$"), a relative line number (relative to the
current line: "-1", "+3"), a character string between slashes
(It fBr f!!), or a per iod, whi ch al"\.llays pr ints the current line. For
example:

5
He's got a stick,
+1
but not one tick,
$

and sometimes barks in halls.

There is no letter associated with this method of finding lines.

Addresses are often used in conjunction with editing
requests to specify on which lines changes are to be made. The
request can be preceded by one address, as in this example using
the "d" (delete) request to delete the line:

/gg/d

or it can be preceded by two addresses with a comma between (but
no spaces), as in this example using the "p" (print) request:

1 ,2p
My dog is Brie:
he follows me

4-3 ClI24-00

Using two addresses with a request means that the request
operates on the first line THROUGH the last line addressed. It
is a good idea to use the "p" request often, to make sure that
you are doing what you intended.

To modify words \''lithin lines, use the "s" (substitute)
request preceded by one or two addresses. The "s" request
expects to be followed by two character strings separated by
slashes (FOR\vARD slashes not the backslash of the "\f"
request!) telling it the old string and the new string:

s/from old/to new/

If you wanted to change the word "and" to the word "And" on the
third line, you might type:

1s/a/A/

Be careful, though - an tis" request makes this change on ALL
instances of the character string you supply, on the line or
lines you specify. If there is a mistake, you can use the "s"
request to fix it:

3
And chews on tennis bAlls.
s/bA/ba/

d chews on tennis balls.

The default value for the "d", "p", and "s" requests is the
current line.

4-4 CH24-00

Saving Text

When iou are in the qedx editor (in either mode), the text
you enter is kept in a temporary space called a buffer. All your
work in this buffer is discarded when you leave qedx and return
to command level (with the quit request, "q"). In order to save
your work In a segment, you must use the "w H (writej request,
along with a name you choose, to write a copy of your work from
the buffer into a segment with the name you have provided:

<text of poem>
w Doggerel
q
r 13:29 2.749 1102

Now you have a permanent segment named
unless you type a "w" and the name of the
not saved.

"Doggerel". Remember:
segment, your work is

When naming your segments, keep in mind that you should use
only alphabetic and numeric characters, underscores (rather than
spaces), periods, and hyphens. Names can be up to 32 characters
long. Remember also that uppercase characters are distinguished
from lowercase characters.

When you want to return to qedx and edit an already existing
segment, for example the "tadpole" segment, you must "read" a
COpy of it into the editor at the beginning of your editing
session. Do this at qedx request level. by typing the "r" (read)
request, followed by the name of your segment:

qx
r tadpole

Before you do this, the buffer is empty. Now it contains a copy
of the segment "tadpole".

Check the qedx Text Editor Users' Guide for any questions
you may have. It describes all aspects of the qedx editor in
complete detail.

4-5 CH24-00

TrlE emacs EDITOR -- VIDEO TERMINALS

The emacs editor is designed especially for use at a video
terminal. It is a character-oriented editor: the cursor of the
terminal (the blinking underscore or square) acts as a visible
pointer to one character at a time. Text is entered simply by
typing. Changes can be made at any time, by typing requests that
move the cursor to the point desired and then adding or deleting
as you wish. A limited set of requests is described below.

Creating Te~t

To enter the emacs editor, you type the emacs command and a
newline. Your screen clears, and you are at request level, in
Emacs Fundamental mode; a banner announcing this, called the
mode line, is displayed now at the bottom of your screen. The
space above displays the contents of the buffer (the temporary
workspace for text entry and editing) and is called a window.
Below the mode line is a space called the mini buffer; messages
from emacs, and your replies, are displayed here, so as not to
interfere with your text. Here is a diagram illustrating a video
screen after you've entered emacs:

[J <this is the cursor>

<this is the window>

Emacs (Fundamental) - main
<above is the mode line>

<this is the minibuffer>

To enter text, you simply type, as you would on a
typewriter. Your text appears on the screen a few seconds after
you enter it; type a carriage return whenever you want to start
a new line. The lines displayed in the window are EXACTLY what
your text contains.

4-6 C.ff24-00

You may erase characters and kill lines as you normally do
on Multics, and then type in the correct text. Notice that while
you work with emacs, the erase and kill characters actually cause
the deleted material to disappear from your screen.

emacs Requests

You have a whole array of emacs requests for moving the
cursor to the point where a correction is needed. The two types
of requests introduced here are control characters and escape
characters.

A control character, for instance a "control pIT, is executed
with the key labeled CTL or CONTROL. You use it like the shift
key, so that for a "control pI! you hold down the CTL key WHILE
typing an uppercase or lowercase P. A control character is
expressed by a carat (A) followed by the appropriate character:
"p for "control P".

Escape characters use the
ALTMODE on your terminal. Do
type its associated character
THEN type the next character.
by the letters ESC followed by
for "escape V".

Editing Text

key labeled ESC, ESCAPE, ALT, or
not hold this key down while you
-- type ESC and release it, and
An escape character is expressed
the appropriate character: ESC V

In order to change some text already entered, you need to
know how to position the cursor. Here is a short list of
requests that move the cursor through the lines of your text.
These requests operate even if the affected lines are not
currently on display in the window (the window displays only
about 20 lines of your text at a time).

A p (prev-line-command)

Al\T
l'l

moves the cursor to the previous line, trying to stay
in the same column.

(next-line-command)
moves the cursor to the
the column.

next trying to stay in

AV (next-screen)
displays the next screenful of text in this buffer,
leaving the cursor ot the top of the screen.

4-7 CH24-00

ESC V

ESC <

ESC >

(prev-screen)
displays the previous screenful of text (one back) in
this buffer, leaving the cursor at the top of the
screen.

(go-to-beginning-of-buffer)
moves to the first line of text in the buffer, leaving
the cursor in front of the first character.

(go-to-end-of-buffer)
moves to the last line of text in the buffer, leaving
the cursor just after the last character.

The following requests are useful for moving the cursor within
one line:

(forward-char)
moves the cursor forward a character at a time.

(backward-char)
moves the cursor backward a character at a time.

ESC F (forward-word)
moves the cursor forward a word at a time.

~SC B (backward-word)
moves the cursor backward a word at a time.

(go-to-beginning-of-line)
moves the cursor in front of the beginning of a line.

AE (go-to-end-of-line)
moves the cursor to just after the last character of a
line.

Once you reach the right place, you can use either the erase
and kill characters or one of the following deletion requests:

AD (delete-char)

ESC D

delete the character at the cursor.

(delete-word)
delete the word at and forward (to t~e right) of the
cursor.

AK (kill-lines)
delete from the cursor to the end of that line; when at
an empty line, delete that.

When you type any of these requests, the deleted text
disappears from your screen, and surrounding text closes up the
space. The cursor remains, and you just type in any text you'd
like to add. The surrounding text moves aside as you type.

4-3 CH24-0a

Saving Text

As noted above, when you are in the emacs editor, the text
you enter is kept in a temporary space called a buffer; All your
work in this buffer is discarded when you leave emacs and return
to command level. In order to save your work on emacs, you must
issue the "write-file" request, "'x"'w, to copy your text into a
segment with a name you have provided. After typing "x"'w, a
message in the minibuffer prompts you for the pathname of the
segment into which you vlant to "wri te", or copy, your buffer IS

contents. (Whenever emacs prompts you, the cursor moves into the
minibuffer so you can type your reply there without interfering
with your previous work.) Type the pathname and a carriage
return. Now a permanent segment is created with the contents of
your buffer, and the cursor returns to its previous position in
your text. Note that the pathname appears in the minibuffer. At
this point you can continue adding text if you want, and repeat
this request later, or you can leave the editor.

To leave emacs, you type the "quit-the-editor" request,
"'X"'C. If you have typed new text into your buffer, or changed it
in any way without writing it out, emacs asks you if you really
want to quit. You have to respond "yes" if you do. If you did
write your buffer out, yOQ are immediately returned to command
level.

When you want to return to emacs and edit an already
existing segment, for example the "tadpole" segment, you must
place a COpy OI Gne segment into the editoris buffer at the
beginning of your editing session. Do this at emacs request
level by typing the "find-file l

! request, "'X"F, which will prompt
for the name of the segment to be edited. After the segment is
read in and displayed in the window, the cursor is left at the
beginning of the buffer. Since your screen is small, it does not
always display your whole buffer, but it is there, nevertheless.

Getting Help From Emacs

The emacs editor has an extensive online documentation
system that can provide information about any request, tell you
what any request does, tell you what requests you gave recently,
1lT' h~l Y\ ,Tllll rI~+o""m~ YlD T.rhO+ ""0""''''''''''''+ ., r-. >A0r,;J,....;J .pr,~ ~ ,....,,...,,....,...,~.p~ '" +r.,.,l. _
_I..~-.....z....1::' J 'JI.A. 'I..A..'-" V'-.L .L.LJ....L~.1.'-' VY.iJ.~U ..L v'1.lA.v0 U ..LO .ll.GGUGU ...LVi a.. 0l!vv.L.J...J...\..,., lJCLD.L'lr...

To find out what any
type ESC? and then the
questions about.

given key or control character does,
key or control character you have

4-9 CH24-00

All other help requests center around the emacs "help"
request, (control-underscore). (On some terminals, A?
performs thIs function; if one doesn't ·work, try the other). The
help request may be your most useful request, as you begin
experimenting with emacs. Type "A ?" to find out more about what
help facilities a~e available.

Use the "LINBFE.2;D" or "LF" key to remove the displays
produced by these requests. If your terminal has an automatic
line feed, you may need to turn off this feature to prevent these
displays from vanishing from your screen as soon as they appear.

See the emacs Text Editor Users' Guide for any questions you
may have. It describes, in tutorial style, all aspects of the
emacs editor.

4-10 Cd24-00

SECTION 5

SEGNENTS

A segment is a collection of information identified by a
pathname. A single segment may contain any amount of
information, from none to over one million printed characters.

As a new user, you will be working with ASCII(1) segments.
An ASCII segment contains information that can~ printed on a
terminal, for instance a list of names or a section of a manual.
A non-ASCII segment cannot successfully be printed on a terminal:
it would appear as strings of digits and backslashes.

There are many commands on Multics that enable you to work
with both your own segments and those of other users. In this
section you are introduced to several commands that help you
manipulate your segments.

VIEWING SEGr1ENTS

The print Command

One of the most common commands used with
print command (short name "pr"), introduced in
is the syntax line again:

print path {begin line} {end line}

segments is the
Section 3. Here

Try printing one of your segments using one or both of the
optional arguments.

(1) The "llord !lASCII" is the acronym for American Standard Code
for Information Interchange. This is the code used by
Multics and other computer systems to represent printable
text.

5-1 CH24-00

Another way to see your segment is
command, as you did to create your segments.

to use an editing
For example:

The dprint Comm~nd

qedx
r Doggerel
1 ,$p
l\1y dog is B r i e :
he follows me
and chews on tennis balls.
He's got a stick,
but not one tick,
and sometimes barks in halls.
q
r 14:230.119 150

Another way to receive a printed copy (a dprint) of your
segment is to use the dprint command (1p). This command orders a
copy of your segment to be printed, not at your terminal, but on
a high-speed printing device called a line printer. The syntax
line for the dprint command is:

dprint l-control_argsf path

Two useful control arguments to this command are:

-copy H, -cp ~T
prints 2, 3, or 4 copies, whichever you specify in
place of N. If you do not use this control argument,
you receive 1 copy (in other words, 1 is the default
value for N).

-destination "address", -ds "address"
allows you to specify where the dprint is to be sent.
You type the address as an argument to the -ds control
argument; if you want to include blanks, you must
enclose the entire address in quotation ~arks, as
indicated above. If you do not use this control
argument, the default address is your Project ide

Your site may require that you include the -ds control
argument with a particular value, in order to aid in
delivery. Check with your project adninistrator to see
if this is required at your site.

5-2 Cil24-00

The order in which you type arguments is significant with this
command: you should type the pathname AFTER you type all the
control arguments.

Here is a complete sample dprint interaction:

dprint -ds "4th floor" tadpole
1 request signalled, 2 in printer queue 3.
r 14:26 0.442 236

The message sent by Multics displays the number of dprints Pam
requested, and informs her of the number of requests already in
line (in "queue 3") waiting to be dprinted.

Find out where you can have dprints delivered, and try
dprinting a segment.

N Ar1ING SEGf·1ENT S

As you saw when you created segments with an editor, you
provide a name for each of your segments. You may add extra
names, called alternate names, to the original name of your
segment with the add name command (an). The syntax line for the
add name command is:

add name path name1 { ... nameN}

The path argument is your segment's original pathname, and name1
is an alternate name; "t ... nameNJ" means that you can also add
as many alternate names as you wish. For example:

add name tadpole polliwog amphibian
r 14: 27 O. 1 02 73

In this example, two alternate names "polliwog" and
"amphibian" -- are added to the segment "tadpole".

5-3 CH24-00

It is also possible to rename a segment, with the rename
command (rn). Its syntax line is:

rename path name

and it allows only one new name ("frog") to replace the old name
("tadpole"):

The rename command
segment might have:

rename tadpole frog
r 14:29 0.061 67

has no effect on any alternate names your
the alternate names remain with the segment.

If you decide that one (or more) of the names of a segment
in not appropriate, you may delete it with the delete name
command (dn):

Here is an example:

delete name paths

delete name polliwog
r 14:29 0.054 55

NOvT the segment "frog" has only one alternate name: "amphibian".

Deleting the names of a segment is quite different from
deleting the segment itself. You may delete as many names as you
want, as long as you do not delete every name from the segment.
A segment must have at least one name though, so if you
accidentally attempt to delete every name, you receive a warning
message:

delete name amphibian frog
delete-name: The operation would leave no names on

entry. >udd>Doc>PSissle>frog

The first name listed on the above comnand line does get deleted,
though.

5-4 CH24-00

SEGMENT ATTRIBUTES

The names of a segment are considered to be among its
attributes, or characteristics. Other attributes of a segment
are the author, the length, and the access modes: what permission
you have to see, change, and add to your segment (access
information is described in Section 7, "Access").

The list command (Is)
attributes of your segments.

gives you information about several
The list command syntax line is:

[list! path l

When you include the name of a segment on the list command line,
you receive information concerning three attributes of that
segment. Here is a list of the attributes of the segment
"Doggerel":

list Doggerel

Segments = 1, Lengths =

r W Doggerel

r 14:35 0.103 78

The list command response begins with a header line that gives
the total number of segments and the sum of their sizes. On the
next line, the first group of letters ("r wit) identifies what
combination of the three access modes you are permitted on the
segments. Here you have permission to read (see) your segment
an d w r i t e (e d it) it. The sec 0 n d at t r i but e (" 1 ") is the s i z e 0 f
your-segment, in pages. A page of a segment is up to or exactly
4096 characters. The third attribute is the list of names for
the segment, in this case the one name "Doggerel".

5-5 CH24-00

When you type the list command with no arguments, you get a
list like the one described above, except that it includes
information' about all of your segments. It also begins with a
header:

list

Segments = 4, Lengths = 5

r w 2 lizard
r w 2 frog
r w 1 Doggerel

0 PSissle.mbx

r 1 4: 40 0.271 1 02

The last segment listed is Pam's mailbox. The absence of access
attributes, and the "0" length, do not mean that you have no mail
now. They signify that you cannot use your mailbox segment with
any standard commands (like print); you have access only through
the mail facility commands.

DELETING SEGMENTS

Finally, to get rid of a segment that you no longer need,
use the delete command (dl) with the name of a command:

delete frog
r 14:42 0.305 214

When you delete a segment that has alternate names, they are
automatically deleted too.

Try creating a few practice segments. Add, change, and
delete names and segments, using the list command to check what
you have done.

For information on seeing other people's segments, read
Section 6, "Directories". To discover how to share your segments
with other users, read Section 7, "Access".

5-6 CH24-00

SECTION 6

DIRECTORIES

A d ire c tor y is a cat a I 0 gu e 0 f the s e gm en t s ., ben eat h!l it. It
contai ns information about all the attri butes of each segment.
Every segment and directory in the system (except the root
directory, the originating directory of the ~1ultics systemf-is
immediately under another directory. Imagine it this way:

directory

Vii thout realizing it, you have been working "under ll your own
directory. This directory is called your home directory. It is
usually named after you; its name is the same as-your Person id.
You are always placed in your home directory when you log in~ so
when you log in, your home directory is your working directory.
(You learn how to make another directory your working~irectory
in "Changing Di rectories" below.) The list command can be
thought of as a command that prints the contents of your home
di rectory: the list of segments under your Person id, and the
attributes of each segment. Here is a diagram of -Pam SissIe's
home directory:

PSissle

6-1 CH24-00

Each user in your project has a home directory similar to
yours. The home directories of users are often called user
directories. All of the user directories of the people in your
project are grouped under another directory: the project
directory. Your project directory has the same name as your
Project ide For exa~ple:

Doc

PSissle JCMulty

Your project is one of many projects that use your Multics
system. All of the project directories are gathered under a
directory called the user directory_directory, or "udd".

6-2 CH24-00

The segments and directories just described are part of the
Multics storage system. Its organization is analogous to the
structure of. an inverted tree:

udd sss

Doc SoftWork

PSissle

The udd directory, and several additional directories governing
other parts of the ~ultics system (not shown above), are directly
beneath the root directory, which stands alone at the top of the
directory hierarchy.

6-3 CY24-00

PATHNAt"lES

Absolute Pathnames

Every segment in the ~ultics storage system is identified by
its absolute pathname. The absolute pathname of a segment is
actually a series of names, separated by the ">,, (greater-than)
character, representing the position of that segment in this
directory hierarchy. For example, the pathname:

>udd>Doc>PSissle>frog

stands for the segment named "frog", located under the user
directory named "PSissle". The "PSissle" directory is stored
under the project directory "Doc", which in turn is stored under
the directory "udd", which is stored under the root directory
(" > ") •

When you type the absolute pathname of a segment: it always
ends with the segment name. The other names in the absolute
pathname are all names of directories.

~otice that the root directory is not explicitly named in
the absolute pathname. Because it is present in the path of
every segment, its presence is always implied by the initial ">,,
character of the pathname.

Relative Pathnames

The pathnames you have been using in earlier sections of
this manual are called relative pathnames. Relative pathnames
(which never begin with the ">,, character) are shortened versions
of absolute pathnames. The relative pathname of a segment begins
after -- is RELATIVE to -- the name of your working directory.
When you type a relative pathname, the system automatically adds
on the absolute pathname of your working directory. Thus when
Pam SissIe is in her home directory and types:

print Doggerel

6-4

She sees the same segment that she would see if she typed:

print >udd>Doc>PSissle>Doggerel

Por convenience, use relative pathnames whenever you can: for
all segments under your working directory.

SnARING SEGMENTS

There are many times when absolute pathnames are useful, and
even essential. To print someone else's segment, you type the
absolute pathname, since you do not have that segment in your own
directory. Pam SissIe, from her home directory, prints Jakob
Kissle's segment "neonate" with this command line:

print >udd>SoftWork>JTKissle>neonate

To place a copy of this segment
that she may modify it for her own use,
(cp) :

in her own directory, so
Pam uses the copy command

copy >udd>SoftWork>JTKissle>neonate neonate
r 14:54 0.191 82

The syntax line for the copy command is:

The first pathname is the name of the segment that is to be
copied. The segment "neonateTl is in Jakob's directory, so Pam
specifies its absolute pathname. one wants ~ne copy of Jakob's
segment to be placed in her home directory. Because she is
already in her home directory, the system automatically places
the rest of the absolute pathname in front of the relative
pathname.

6-5 C1l24-00

Access to Segments

Many of the commands you have learned about in previous
sections can be used with absolute pathnames, for example the
dprint command and the segment naming commands (see Section 5).
However, you may not have the correct access to the segments when
you try to use these commands. If you do not, you will receive
an error message like this one:

copy)udd)Groups)JMLie)ortho eight
copy: Incorrect access on entry~)udd)Groups)JMLie)ortho
r 14:56 0.076 69

If this happens to you, try sending a message to the person whose
segment you want, asking for the correct access. Also, read
Section 7, "Access", for more information about access.

CREATING DIRECTORIES

It is possible to remain in your home directory and do all
your work on Multics from there. It is also possible for you to
create a directory underneath your home directory. You can even
create your own directory hierarchy, if you like. You can then
place both new and existing segments into these directories.
This can be very useful as a means of organizing your segments
into categories.

To create a directory, use the create dir command (cd) with
the name of the new directory:

create dir mammals
r 14:59 0.068 69

You may use the create dir
directory hierarchy under
directories from the root.

command (cd) to continue building a
your home directory up to 15

To place existing segments under the "mammals" directory,
you may use either the copy command (cp) or the move command.
The copy command is used primarily for making copies of other
people's segments, as shown above.

6-6 CH24-00

The move command (mv) is most useful for moving your own
segments from your home directory to a more appropriate
directory. While the copy command leaves the original segment
where it is and makes a copy in the new location, the move
command moves the original segment away from the first location
and into the new location. The syntax line is:

For example, Pam uses the move command from her home directory:

move Doggerel mammals>Doggerel
r 15:01 0.489 166

In this example, Pam SissIe moves her "Doggerel" segment from her
home directory down to her "mammals" directory, using relative
pathnames (relative to her home directory) for both arguments.

T·o place new segments under her "mammals ii di rectory, Pam can
use an editor to specify the location she wants at the same time
she creates the segment.

qedx
a
I do not have a cat.
What do you think of that?
\f
w mammals>Cattery
q
r 15:05 0.254 256

6-7 Cl{24-00

Instead of writing her text with just a segment name, she gives
it a longer relative pathname that places the segment named
"Cattery" in the "mammals" directory, which is assumed by IJIultics
to be underneath her home directory. Here is a diagram of Pam's
current directory hierarchy:

PSissle

mammals

The segment naming commands introduced in Section 5 can be
used to add, change, and delete directory names also.

CiIAlhIIiJG DIRECTORIES

You may want to cnange to another directory and use it as
your ~orking directory. Your home directory has been your
working directory so far. ~o change your working directory, uSe
the change wdir command with the pathname of the directory you
wish to work with:

change wdir mammals
r 15:09 0.036 67

When you are working in another directory, relative pathnames are
relative to ~JA1 directory. For example, when Pam is in her home
directory and she Vlants to print the "Catt ery l1 segment (which is
located in her "mammals" directory), she types:

print mammals>Cattery

6-8 C.ti24-00

When she moves to the "mammals" directory, she types:

change wdir mammals
r 15:11 0.039 52
print Cattery

To check on what your current working directory is, use the
print wdir command (pwd):

print wdir
)udd)Doc)PSissle)mammals
r 15:14 0.034 43

The print wdir command always prints the absolute pathname of
your working directory.

To return to your home directory, use the change wdir
command without any pathnames after it. In the example below,
Pam has followed the change wdir command with the print~wdir
command, to reassure herself of her position:

change wdir
r 1 5 : 15 0.027 40
print vvdir
)udd)Doc)PSissle
15:15 0.035 42

The default argument of the change wdir command is always the
pathname of your home directory. -

6-9 CH24-00

DELETING DIRECTORIES

Finally, you may delete directories as well as segments,
with the delete dir command (dd). Because the accidental
deletion of a directory could cause so much pain, the system asks
if you really want to take this step:

delete dir mammals
delete-dir: Do you want to delete the directory

- >udd>Doc>PSissle>mammals?? yes
r 14:57 0.434 102

When you delete a directory, you delete ALL the directories and
segments under it, so be cautious with this command.

6-10 CH24-00

SECTION 7

ACCESS

The access control facility provides both flexibility and
security for your work on Multics. You control who has access to
each of your segments: which users have the right to see a given
segment, to modify it, and, for a segment that contains a
program, to execute it. Directories may also be controlled in
this manner.

SEGMENT ACCESS

There are four access modes that you set to determine the
level of permission a user has for a particular segment. Listed
below are descriptions of the four modes, and those commands
treated in this manual that a user has available with each mode.

read (r)
allows a user to read, or view, the contents of the
segment

wr i te ('.v)

COMHANDS:

copy
dprint (dp)
move
print (pr)
qedx "r" request

allows a user to change the contents of the segment

COMiVIANDS:

qedx "w" request

7-1 CH24-00

execute (e)
if the segment is a program, allows a user to execute
the program. Execute access is not necessary at the
level of this manual.

null (n)
denies a user all access to the segment

You may assign any combination of the r, w , and e modes. If you
want to assign the n mode, you must assign it alone.

Every segment has its own ACL -- access control list. This
list contains the full User ids of those users who have access to
the segment, and which access modes each user has been assigned.
The full User id is a three-component name that includes the tag
component discussed briefly at the beginning of Section 2:

JTKissle.SoftWork.*

The tag indicates ~hether you are uoing the system interactively
or as an "absentee" user (see Part II). It is usually "*", which
means "any tag is acceptable". Whenever anyone tries to use any
segment, that person's full User id must match one of the entries
on the ACL of that particular segment; otherwise the user has no
access to that segment.

You see part of an ACL when you type the list command (Is);
the access modes that you have been assigned to your own segments
by default constitute your AC1 entry. Here Pam SissIe checks her
access to her "Doggerel" segment:

list Doggerel

Segments = 1, Lengths =

r w 1 Doggerel
r 1 6 : 1 8 0.070 90

She has read and write permission on her segment, which allows
her to do all she needs. This combination is the automatic
default for most of your segments.

7-2 CH24-00

To see the com.plete ACL for her "Doggerel" segment, Pam uses
the list acl command (la) with the name of the segment:

list acl Doggerel
r w PSissle.Doc.*
r w *.SysDaemon.*
r 16:20 0.084 89

Until you have added more ACL entries yourself, there are two
default entries for every segment you create. The first one is
your own (the one you see when you use the list command), giving
read and write access to you when you log in with the given
Project ide The second is for the system daemons, software
facilitIes that 'perform such functions as d'printing and saving
backup copies of segments. Other users have null access by
default.

To
(sa) .

grant other users access, you use
The syntax line for this command is:

the

set acl path access modes User id

set acl command

Here Pam gives Jakob Kissle read access to flDoggerel", because he
wants to make a dprint of it:

set acl Doggerel r JTKissle.30ftWork
r 1"5:21 0.047 42

(If you are registered on more than one project, you may want to
grant access to your other User ids!)

If Pam wants to let Jakob add his own verses to Doggerel,
she must give him additional access. To change his access, she
simply resets the ACL with the set acl command:

set acl Doggerel rw JTKissle.SoftWork
r 16:21 0.037 45

7-3 CH24-00

Now Tilhen Pam checks the ACL on "Doggerel" this is what she sees:

list acl Doggerel
r w PSissle.Doc.*
r w JTKissle.SoftWork.*
r w *.SysDaemon.*
r 16:23 0.064 83

But when Jakob tries to add an alternate name to the
segment, all he gets is an error message:

add name Doggerel wag tales
add-name: Incorrect access to directory containing

entry.)Doc)PSissle)Doggerel
r 16:25 0.093 92

lIe has tried to change an ATTRIBUTE of the segment. The access
modes for segments govern the CONTENTS of segments. Segment
attributes are stored in the directory containing the segments,
so Pam must also give Jakob appropriate access to her directory,
if she wants to allow him to add alternate names.

DIRECTORY ACCESS

These are the four access modes for directories. Notice
that all the affected commands govern attributes of segments
(names and access modes).

status (s)
allows a user to see the ATTnIBUTnS of the existing
segments under the specified directory

COlJIMAnDS:

list (ls)
list acl (la)

7-4 CH24-00

modify (m)
allows a user to modify attributes of the existing
segments under the specified directory

COMMANDS:

add name (an)
delete (dl)
delete acl (da)
delete-name (dn)
rename (rn)
set acl (sa)

append (a)
allows a user to create, copy, or move segments 'under
the specified directory

null (n)

COlvIMANDS:

copy (cp)
create dir (cd)
move (mv)

denies a user all access to the directory. May not be
assigned in combination with any of the other directory
access modes.

As with the segment access modes, both you and the system daemons
have complete access (sma) to all your segments and directories
by default.

Use the set acl command (sa) again to set the ACL for
directories. Aside from using s, m, and a combinations rather
than r, e, and w, there is one quirk you may take advantage of
when setting access for directories: when setting access on your
working directory, you may use "-wd" in place of the directory's
pathnarne. Por example, here Pam gives Jakob access to her
directory so that he may add alternate names to the segments in
that directory:

Set acl -wd sma JTKissle.SoftWork

Of course, Jakob is now free to do other things in the directory
too, such as changing the access on the segments underneath it,
or even deleting them. It is often a good idea to think
carefully before granting more than "r" and "s" access to other
users.

7-5 C.;:I24-00

To see who now has access to her directory, Pam uses the
list acl command (la) with the -wd argument:

list acl -\-Jd

sma PSissle.Doc.*
sma JTKissle.SoftWork.*
sma *.SysDaemon.*
r 16:51 0.040 77

Finally, to delete the access of a particular user, use the
delete acl command (da). Its syntax line is:

delete acl path User id

For example, here Pam has decided not to let Jakob have access to
her directory (the -wd argument can be used with all the access
commands):

delete acl -wd JTKissle.SoftWork
r 16: 56 0.03 4 J~ 5

Jakob still maintains the segment access that Pam gave him,
though. If Pam decides to delete his access to the "Doggerel"
segment, she uses the delete acl command with the name of the
segment:

delete acl Doggerel JTKissle.Soft~ork
r 16:5"3" 0.038 41

The access control facility is much more extensive than this
brief introduction has suggested. For a complete discussion of
access, see the descriptions of these commands in the MPM
Commands manual.

7-6 CLI24-00

APPENDIX A

GLOSSARY

absolute pathname
see pathname, absolute

access control
a system of permission assigned by users for their own
segments and directories, determining who may see,
change, and add to each one. See Section 7, "Access".

access modes
identify the types of access that may be set for a
segment or directory. The access modes for segments
are read (r), write (w), execute (e), and null (n);
those for directories are status (s), modify (m),
append (a), and null (n) . See "Segment Access It in
Section 7.

ACL, access control list
a list of the users who have access to a particular
segment or directory, and a description (using access
modes) of the degree of access allowed to each user.
See "Segment Access" in Section 7.

address
within the qedx command, a character
string that identifies one line of text.
Editor" in Section 4.

alternate naoe

or character
See ItThe cledx

an additional name for a segment or directory, assigned
by the add_name command. A segment or directory can be
referred to equally well by its original name or any of
its alternate names. See ItHaming Segments" in Section
5 .

argument
information included with a command on a command line.
See "Argument Conventions" in Section 3.

A-1 CH24-00

ASCII
acronym for American Standard Code for Information
Interchange, the standard code used to represent
printable text on Multics. With it, all the characters
normally found on a typewriter keyboard, plus many
special characters, may be represented. See Section 5,
"Segments".

attribute
a characteristic of a segment. A segment has many
attributes, such as its names, the author, its ACL, and
its size; the attributes can be examined with the list
command. See "Segment Attributes" in Section 5.

banner
one or more lines, in a standard format, that begin or
comprise certain computer messages; also called a
header. See "Logging In" in Section 2.

buffer
within a text editing command (qedx or emacs), a
temporary workspace in which you create and edit text.
To store that work in a segment you must "wri te it· out"
(make a permanent copy) using the qedx "w" (write)
request or the emacs ftXft W request. See Section 4,
"Creating and Editing Text".

character string
one group of characters
one word to Multics.
alphabetic, numeric,
(periods, hyphens, and
Hames" in Section 3.

command

unbroken by blanks; signifies
The characters may include

and some other characters
underscores). See "Command

an instruction to Multics; the command name. See
Section 3, "Basic l\lultics Commands".

command level
the state the system is in when it is ready to accept a
command from you. See also "request level". See
"Logging In" in Section 2.

command line
one complete instruction to Multics, including a
command name, arguments to that command, if any, and a
newline. See "Command Lines" in Section 3.

control argument
an optional command argument that begins with a hyphen.
Control arguments are typed exactly as indicated in
command descriptions. See "Login/Logout Variations H in
Section 2.

A-2 CH24-00

crash
an unplanned termination of computer operation, due to
hardware or software difficulties.

cursor
the blinking square or underscore that
current position on a video terminal.
Problems" in Section 2.

daemon

marks your
See "Login

one of several system facilities that perform such
services as dprinting segments on a line printer
(IO.SysDaemon is the User id for this facility) and
saving copies of segments as a means of backup
(Dumper.SysDaemon). See "Segment Access" in Section 7.

default
the value or action that the system
has been specified by the user.
Arguments" in Section 3.

directory

assumes when none
See ilDefault

a "catalogue" containing the names and other attributes
of all segments and directories immediately beneath it
in the storage system (the directory hierarchy). See
Section 6, "Directories".

directory, home
the directory that you work from when you first log in.
The pathname for this directory is usually of the form
)udd)Project id>Person ide See Section 6,
"Directories". -

directory, root
see root directory.

directory, working
the directory that you are currently working from.
Your home directory is always the working directory
when you log in; to move to another directory, use the
change wdir command (cwd) with the desired pathname.
See Section 6, "Directories".

directory hierarchy
the orgB,ni 7.ati onal structure of the ~1ultic8 storage
system. It resembles an inverted tree, with the root
directory at the top, and subordinate directories
emanating downward as branches. The lowest levels of
each branch, the "leaves", are segments. See Section
6, "Directories".

A-3 CH24-00

dprint (for daemon print)
the command to print segments
than a terminal. The printed
referred to as dprints. See
Section 5.

on a line printer rather
segments themselves are

"The dprint Command" in

edit mode
a mode
(Cledx,
accept
level" .

of operation within a few interactive commands
send mail) in which the command is ready to
editIng requests from you. See also "request

erase character
the "#" character; i t erases
continuous series of blanks or
preceding it. For example, both

the character, or
tabs, immediately

"tha#e"

and

"tha e###e"

are seen by Multics as
Conventions" in Section 1.

error message

"the". See "Multics

a message sent by Multics informing you that a command
you typed was not carried out, and indicating what was
wrong. For example, "Segment! not found." is returned
if you mistakenly type the exclamation point before a
command. See "Login Problems" in Section 2.

hardware
the physical devices
comprise a computer.
Section 1 .

and electronic circuitry that
See "The Multics System" in

hardwired
connected directly and permanently
usually refers to terminals. See
Terminal" in Section 2.

header
see banner

help file
see info segment.

home directory
see directory, home

A-4

to the computer;
"Connecting The

CH24-00

info segment
a segment containing information about a given command.
Typing the help command, followed with the name of a
command, prints the info segment for that command at
your terminal. See "The help Command" in Section 3.

input mode
a mode of operation within many interactive commands
(for example, qedx or send message) in which the
command is ready to accept text from you. Input mode
is usually terminated by you with a special character
(described in individual command descriptions, Appendix
B). See "Sending r·1essages" in Section 3.

interactive
a mode of operation in which you and the computer
exchange information directly and immediately, through
a terminal. Multics is primarily an interactive
s y s t em. See Ii The I-1 ul tic s S Y s t em" inS e c t ion 1 •

interactive command
a command that communicates interactively with you: the
command expects requests or other appropriate
information from you (such as a password or the text of
a message), and responds to you with messages or other
prompts. Examples of interactive commands are qedx,

"Sending send message, help and print_mail. See
Messages" in Section 3.

kill character
the "@" character; it deletes
characters on the current line.

all previously-typed
J:!lo r exampl e ,

"Itdellet esall@ It"

becomes

" It"

See "IJIultics Conventions" in Section 1 •

logging in
Entering the Multics sYBtem.
with the login command.
interactive command. SAP
Leaving rVIultics".

logging out

This can be accomplished
The login command is an
8 e c t jon ? ~ " "fiJn t e r i. n g an d

Leaving the Multics system (with the logout comnand).
See Section 2, "Entering and iJeaving Hultics".

A-5 Cd24-00

mailbox
a .specially protected segment used to store messages
and mail from other users. Typically, each person has
a mailbox named Person id.mbx under the home directory.
A permanent mailbox is created for you the first time
you type the accept messages command (am) or the
print mail command (prm). See "Communicating With
Other-Users" in Section 3.

memory

modem

the computer hardware in which all segments are stored.
See "User Identification" in Section 2.

the machinery that transmits electronic signals between
a terminal, a telephone, and the computer. See
"Connecting The Terminal" in Section 2.

newline
the newline, caused by typing the key labeled "RETUHN"
(or another key designated for this purpose, such as
"CR" or ".-uP"), consists of two actions: a carriage
return and a linefeed. It is the signal to Multics
that a command line is ready to be processed. See
"Command Lines" in Section 3.

operating system

page

the system software that supervises the processing of
commands, controls system hardware, and organizes the
tasks to be accomplished. See "The Multics System" in
Section 2.

the smallest unit of storage that
segments. One page contains up to
See "Segment Attributes" in Section 5.

is allocated to
4096 characters.

passvlord
A character string known only to you. The system knows
only an encoded form of your password. A password is
assigned to you when you are registered on the system.
The password is used when you log in, along with the
Person id, to verify your identity. See "User
Identification" in Section 2.

pathname
a name of a segment or directory that specifies its
location in the storage system. A pathname is either
absolute or relative. See "Pathname Arguments" in
Section 3 and "Pathnames" in Section 6.

A-6

pathname, absolute
a s~gment or directory name preceded by the series of
directory names that lead from the root to that
segment; each level in the pathname is preceded by a
">". For example, the absolute pathname for a segment
under a user's home directory is designated this way:

>udd>Project id>Person_id>segment_name

All absolute pathnames begin with ">". See "Absolute
Pathnames" in Section 6.

pathname, relative
the pathname that 'uniquely locates a segment or
directory relative to your working directory, by
listing only that part of the absolute pathname that
comes after the name of the working directory. For
example, the relative pathname for a segment that
resides in a directory one level under the working
directory is designated this way:

lower_dir>segment name

All relative pathnames begin WITHOUT
"Relative Pathnames" in Section 6.

">". See

Person id
A-unique user identification; the first component of
the User ide See "User Identification" in Section 2.

project administrator
Within this manual, this term is used for those people
who have special access privileges that enable them to
register new users, control the allocation of their
system resources, and perform other administrative
functions. At your site these functions may be shared
among several people, perhaps having several different
titles (system administrator and registrar, for
instance). See "Login Problems" in Section 2.

Project id
The second component of
accounting purposes. See
Section 2.

process

the User id; used for
"User Identification" in

one session with Multics, usually from login to logout.
For the user, this means one terminal session.

A-7 CH24-00

QUIT signal
a signal to Multics that you want to interrupt its
current action. To send this signal you press the key
labeled "ATTN", "BREAK", or "INTERRUPT"; the system
responds with a QUIT banner and a ready message from a
new command level. Type "release -all" to return to
the first command level. The QUIT signal has nothing
to do with the "quit" requests of interactive commands.
See "Stopping A Command" in Section 3.

ready message
the signal that Multics is at command level, ready for
the next command. Ready messages may differ from site
to site, but often' include information such as the
current time and date, and some measure of total system
resource usage. See "Logging In" in Section 2.

relative pathname
see pathname, relative

request
within an interactive command, an instruction to the
command, given at request level; the requests of an
interac~lve command are analogous to the commands of
the rJIul tics sys tern. See "Sending I\1essages" inSect i on
3.

request level
the state in which an interactive command (for example
qedx or send mail) is ready to receive either
appropriate inf~rmation (text, a message) or a request
from the command's list of accepted requests. Within
the qedx command, request level is called "edit mode".
See "Sending Messages" in Section 3.

root directory
the directory at the top of the Multics storage system;
all other directories are subordinate to it. In
absolute pathnames it is referred to by the initial
">". See Section 6, "Directories".

segment
a unit of information (for example, text or a computer
program), which is created and named by a user, and
stored in the storage system. Each segment has a set
of attributes, such as its primary and alternate names
and its AC1. See Section 5, "Segments".

short name
the shortened version of a command or control argument
name, used interchangeably with the full name. The
short names are listed in individual command
descriptions (Appendix B). See "Command ~~~ames" in
Section 3.

A-8

softTV'lare
the programs that control the activities of the
computer. See "The fJIul tics System" in Section 1.

storage system
the combination of hardware and software that Multics
uses for storing information. The information is
grouped into segments and catalogued in dire9tories.
See also IIdirectory hierarchy". See Section 6,
"Directories".

syntax line
in command
structure
particular
Section 3.

descriptions, the line that demonstrates the
of a . complete command line for that
command. See "Argument Conventions" in

SysDaemon
see daemon

tag
see User id

terminal
a typewriter-like piece of hardware that allows a user
to interact directly with the computer system. See
"The Multics System" in Section 1 and "Login Problems"
in Section 2.

text editor
a very powerful interactive command that allows you to
enter text into the system and to edit it. See Section
4, nCreating and Editing Text".

timesharing
the ability of the computer system to allow many users,
with tasks of all sizes, to use the system
simultaneously. See "The Multics System" in Section 1.

User id
-A unique three-component name assigned to each Multics

user. The User id discussed in this manual consists
most often of th~ first two components, separated by a
period:

Person id.Project id

The third
Section 7.
2.

working directory

component, the "tag", is discussed in
See also "User Identification" in Section

see directory, working.

A-9 CH24-00

APPENDIX B

COMMAND DESCRIPTIONS

This appendix contains abbreviated descriptions of the
commands and arguments discussed in this manual. For complete
descriptions of these and other commands, see the MPM Commands
manual. The "help!! command is another useful source of
information, especially while you are at your terminal.

accept messages, am
Allows incoming messages to be printed at the user's
terminal.

SYJTAX: am t-control_argf

ARGUMEiJT:

-print, =pr
this control argument prints all deferred
messages: those that Nere received since the user
last typed the defer messages command or logged
out. If -print is not given, the default is to
print only those messages that are sent after this
accept_messages command is typed.

B-1 CH24-00

add name, an
- Adds alternate names to the existing names of a

segment.

SY1JTAX: an path name1 { ... nameN}

ARGUI-1ENTS:

path
is the pathname of the segment or directory to .
which the alternate names are added.

names

calendar

are the altern~te names to be added to the segment
or directory.

Prints a one-month calendar.

calendar {date}

ARGUMENT:

date
is a date, of the form MMjDD/YY, that identifies
which month is to be printed. If date is not
given, the default is to print a calendar for the
current month.

change wdir, cwd
Changes the user's working directory to the directory
specified.

SYlJ~AX: cwd tpathf

ARGUMENT:

path
is the pathname of the directory that is to become
the working directory. If path is not given, the
home directory is assumed.

B-2 CrI24-00

copy, cp
Creates a copy of the specified segment in the
specified directory with the specified name.

SYNTAX:

ARGUJ.'vIENTS:

original path
is the pathname of the segment to be copied.

new_path
is the pa~nname of the
the segment nqme of
pathname.

create dir, cd

copy. The user may choose
the copy when typing this

Creates a directory at a specified location in the
directory hierarchy.

SYNTAX: cd path

ARGUMENT:

path
is the pathname of the directory to be created.

defer messages~ dill
Prevents messages from being printed at the user's
terminal. (See also the accept_messages command.)

SYN~AX: dm

B-3 CH24-00

delete, dl
Deletes the specified segment.

SYNTAX: dl path

ARGUMENT:

path
is the pathname of the segment to be deleted.

delete acl, da
Deletes entries from the ACL (ac,cess control list) of a
segment or a directory.

SYl{S:AX: da path User id

ARGUMEHTS:

path
is the pathname of the segment or directory for
which access is to be removed. This argument may
be "-wd" if you want to delete access from the
working directory.

User id
i~ the User id of the person who is to be removed
from the ACL.

delete dir, dd
Deletes the specified directory and its subtree.

SYNTAX: dd path

ARGUMBNT:

path
is the pathname of the directory to be deleted.

B-4 CH24-00

delete_name, dn
Deletes specified names from a segment or directory.

SYNTAX: dn paths

ARGUMENT:

paths
are the pathnames to be deleted.

dprint, dp
Prints the specified segment on a high-speed line
printer.

SYNTAX: dp l-control_argsJ path

ARGU~qENTS :

-copy II, -cp H
this control argument prints 2, 3, or 4 copies of
the specified segment, according to the number
supplied by the user~ If -copy is not given, the
default is 1 copy.

-destination "address", -ds "address"

path

This control argument specifies where the dprint
is to be sent. To include blanks in the address,
enclose the entire address in quotation marks; for
a single character string this is unnecessary. If
-ds is not given, the default is the user's
Project ide

All control arguments must be typed before the
path argument.

is the pathname of the segment to be dprinted.

B-5 CH24-00

emacs

help

Creates and edits text segments.

Refer to Section 4 for command description.

Prints blocks of information (info segments) about how
to use the specified command.

SYNTAX: help 1 command_name} l-control_args}

ARGUMENTS:

command name
is the name of a Multics command. If no command
name is given, the default is the help command
info segment.

-all, -a
this control argument prints the entire info
segment without prompting the user after each
block. If -all is not given, the default is to
prompt the user for a request after each block of
information.

-brief, -bf
this control argument prints only a one-block
summary of the command information. If -brief is
not given, the default is to begin printing the
standard set of information blocks, each one
followed by a prompt.

REQUESTS:

quit
stops printing information, and returns the user
to command level.

rest
prints the rest of the info segment, and returns
the user to command level.

skip
skips one information block.

yes
prints the next information block.

B-6 CH24-00

list, Is
Prints information about
directories.

specified segments and

SYNTAX: Is {path} l-control_args

ARGUMENTS:

path
is the pathname of the segment or directory to be
listed. The pathname of a segment is used without
the -dir control argument to print the size, all
names, and access information about that segment.
The pathname of a directory is used with the -dir
control argument to print access and name

-directory, -dir, -dr
this control argument, when used without the path
argument, prints access and name information about
all directories located immediately beneath the
working directory.

When no arguments are given with the list command,
the default is to print information about all
segments immediately beneath the working
directory.

list acl, la
-Lists the AC1 (access control list) of a segment or

directory.

SYNTAX: la path

ARGUME1JT:

path
is the pathname of the segment or directory for
which the ACL is to be listed. This argument may
be "-wd " if you want to list the ACL of thp
working directory.

B-7 CH24-00

list help, lh
Prints a list of the info segments that pertain to the
specified topic.

SYNTAX: lh topic {-control argJ

ARGUME~TS:

topic
is the topic to be searched for.

-all, -a

login, I

this control argument prints the names of all the
info segments. ,If -all is not given, the default
is to print the names of only those info segments
that pertain to the topic given.

Identifies the user and grants access to the system.

SY~TAA: I Person id Project id {-control_argsJ

ARGUMErlTS:

Person id
is the Person id of the user logging in.

Project id
is the Project id of the user logging in. This
argument is optional under some circumstances;
check with your project administrator.

-brief
this control argument suppresses the standard set
of messages associated with a successful login.
If -brief is not given, the default is to print
these messages as soon as the user types the
correct password.

-change password, -cpw
this-control argument changes the user's password
to a newly given password of the user's choice
(not longer than eight characters). The user is
prompted for both the old and the new password
after this control argument is given; the user
should NOT type the new password on the command
line.

B-8 CH24-00

logout

move

Terminates a user session and breaks the terminal's
connection to the computer.

SYNTAX:

ARGUMENTS:

-brief, -bf
this control argument suppresses the standard
logout messages. If -brief is not given, the
default is to print the logout message.

-hold, -hd
this control argument terminates the user's
session but retains the terminal connection,
allowing another user to log in without redialing
the modem; the initial Multics banner (greeting
message) is printed. If -hold is not given, the
default is to end both the user session and the
terminal connection, and print the message
"hangup". If both -hold and -brief are given,
neither the logout message nor the initial Multics
banner are printed, and only a newline signals the
user to log in.

Moves a segment to the specified directory with a
specified name.

SYNTAX:

ARGUMEIJTS:

original path
is the pathname of the segment to be moved.

new path
lS the pathname of the moved segment. The user
may choose the name of the moved segment when
typing thi3 pathname.

B-9 CH24-00

print, pr
Prints a specified segment on the user's terminal.

SYNTAX:

ARGUMENTS:

path
is the pathname of the segment to be printed.

begin line
is-the line number on which printing begins. If no
number is given, the default is to begin printing
from line 1.

end line
Is the line number on which printing ends. If no
line number is given, the default is to stop
printing after the last line of the segment. The
end line argument can only be used when the
begTn_line argument is also used.

:print mail, :prm
Prints all messages residing in the user's mailbox, and
prompts for re~uests about deletion after each message.

SYNTAX: prm !-control_argf

ARGUMENT:

-list, -Is
this control argument prints a summary of the
messages in the mailbox, before printing the
messages. If -list is not given, the default is to
begin printing the messages immediately.

REQUESTS:

abort

no

retains all current messages and returns the user
to command level.

retains the preceding message and prints the next
one.

B-10 CH24-00

quit
retains the preceding message and any subsequent
(unprinted) messages, and returns the user to
command level.

reprint

yes

repeats the preceding message and the prompting
message.

deletes the preceding message and prints the next
one.

print wdir, pwd
Prints the pathname of the user's current working
directory.

SYNTA.X: pwd

qedx, qx
Creates and edits text segments.

Refer to Section l~ for command description.

release, rl
Returns the user to the previously held command level;
typed after the user sends a QUIT signal.

SYNTt\X: rl {-control arg}

ARGUIvlENT:

-all, -a
this control argument returns the u~er to command
level 1. If -all is not given, the default is to
return the user to the most recently held com~and
level.

8-11 CH24-00

rename, rn
Renames the specified segment or directory with the
specified name.

SYNTAX: rn path name

ARGUMENTS:

path
is the pathname of the segment or directory to be
renamed.

name
is the new n~me of the segment or directory.
Remember that no two segments or directories that
reside immediately under the same directory can
have the same name.

send mail, sdm
-Sends mail to another person registered on the

the send mail command prompts for the User id
recipient-:-

SYl~TAX : sdm User id

R3QUESTS:

print
prints the existing message.

quit

system;
of the

leaves the send mail request level and returns the
user to command-level.

send
sends the existing message to the mailbox of the
user specified on the command line, along with an
interactive message that prints ilyou have mail."

B-12 CH24-00

send message, sm
-Sends one or more interactive messages to another user.

SYNTAX: sm User id tmessage}

ARGUI1:IEN'lS:

User id
is the User id of the recipient, in the form
"Project id.Person id". Note the period between
the recipient's Person id and Project ide

message
is the one-lin~ message to be sent. If message is
not given on the command line, the default is to
print the prompting message "Input:" and a
newline. The user may then type as many one-line
messages as desired; each line is sent
immediately.

Type a period (.) to terminate message input and
return to command level.

set acl, sa
Modifies the ACL (access control list) of a segment or
directory.

SYNTAX: sa path access modes User id

ARGUMENTS:

path
is the pathname of the segment or directory for
which access is to be set. This argument may be
"-wd" if you want to set the ACL on the working
directory.

B-13 Cli24-00

who

access modes
are-the access modes you wish to set for the given
user on the given segment. Access modes are:

SEGMENTS: DIRECTORIES:

read (r) status (s)
write (w) modify (m)
execute (e) append (a)
null (n) null (n)

User id
is the User id of the person whose ACL entry you
wish to add ~r Change.

Prints a header similar to the initial banner seen at
login, and lists the User ids of the people currently
logged in to the system.

SYNTAX: who {-control_arg}

ARGUME1{T:

-brief, -bf
this control argument suppresses printing of the
header.

B-14 C1:I24-00

INDEX

lVIISCELLANEOUS am
see accept_messages command

(underscore) character 3-1 an

character 1-2

(erase) character 1-3, A-4

@ (kill) character 1-3, A-5

A

absolute pathname 6-4, A-7

accept messages command 3-9,
B-1 -

access control 1-1, 7-1, A-1

access modes A-1
directories 7-4
see also ACL
segments 5-5, 7-1

ACL (access control list) 7-2~
A-1

address (~edx) 4-3, A-1

add name command 5-3, B-2

alternate names 5-3, A-1

i-1

see add name command

argument 2-7, 3-4, A-1
control argument 2-7, 3-7,

A-2
default 3-8
optional 3-5
pathname 3-5

ASCII segments 5-1, A-2

attributes 5-5, A-2

B

banner 2-2, A-2

buffer A-2
emacs 4-6
~edx 4-5

r'I
'v

calendar command 3-5, B-2

carriage return
see newline

CH24

cd
see create dir command

change_wdir command 6-8, B-2

character string 3-1, A-2

command 3-1
argument 2-7, 3-4, A-1

see also argument
command level 2-4, 3-3, A-2
command line 2-3, 3-2, A-2
definition 2-3, A-2
descriptions B-1
interactive 2-3, 3-12, A-5
names 3-1

alternate names 5-3, A-1
short names 3-2, A-8

QUIT signal 3-3, A-8
syntax line 3-4, A-9

commands
accept messages 3-9, B-1
add name 5-3, B-2
calendar 3-5, B-2
change wdir 6-8, B-2
copy 6-5, 6-6, B-3
create dir 6-6, B-3
defer messages 3-10, B-3
delete 5-6, B-4
delete acl 7-6, B-4
delete-dir 6-10, B-4
delete name 5-4, B-5
dprint 5-2, B-5
emacs 4-6, B-6
help 3-16, B-6
list 5-5, 7-2, B-7
list acl 7-3, 7-6, B-7
list help 3-18, B-8
login 2-3, 2-7, B-8
logout 2-6, B-9
move 6-7, B-9
print 3-6, 3-8, 5-1, B-10
print mail 3-13, B-10
print-wdir 6-9, B-11
q e dx - 4-1, B-1 1
release 3-3, B-11
rename 5-4, B-12
send mail 3-15, B-12
send-message 3-10, B-13
set acl 7-3, 7-5, B-13
set-tty 2-4, 3-7

i-2

commands (cont)
who 3-3, 3-9, B-14

computer 1-1

control argument 2-7, 3-7,
A-2

copy command 6-5, 6-6, B-3

cp
see copy command

crash A-2

create dir command 6-6, B-3

creating text 4-1 , 6-7

cwd
see change_wdir command

D

da
see delete acl command

daemon 7-3, A-3

dd
see delete dir command

default 3-8, A-3

default argument 3-8

defer messages command 3-10,
B-3-

delete command 5-6, B-4

delete acl command 7-6, B-4

delete dir command 6-10, B-4

delete name command 5-4, B-5

deletion
of characters 1-3

of directories 6-10

CH24

deletion (cont)
of lines 1-3
of segment names 5-4
of segments 5-6

directory 6-1, A-3
access modes 7-4
home 6-1, A-3
root 6-1, 6-4, A-8
sharing

see access control
working 6-4, 6-8, A-3

directory hierarchy 6-3, 6-6,
A-3

dl
see delete command

dm
see defer _messages command

dn
see delete name command

dp
see dprint command

dprint A-4

dprint command 5-2, B-5

E

edit mode A-4
qedx command 4-1
send mail command 3-15

editor
see text editors

emacs command 4-6, B-6

erase (#) character 1-3, A-4

error message 2-5, A-4

exclamation point 1-2

i-3

G

glossary A-1

H

hardware 1-1, A-4

hardwired 2-2, A-4

help command 3-16, B-6

home directory 6-1, A-3

I

identification 2-1
password 2-1, A-6

changing 2-7
Person id 2-1, A-7
Project id 2-1, A-7
User id 2-1, A-9

info segment 3-16, 3-18, A-5
see also help command

input mode A-5
qedx command 4-1
send mail command 3-15
send=message command 3-11

interactive 1-1, A-5

interactive command
emacs 4-1
help 3-16
login 2-3
print mail 3-12
qedx 4-1
--.-- _,~~ ":~;J":--.! ,.:J ___ '
uCC CI..Li:iV .l..HU.l..V.l..ULlt:L.L

names
send mail 3-12
send=message 3-10

3-12, A-5

command

CH24

K

kill (@) character 1-3, A-5

L

1
see login command

la
see list acl command

linefeed
see newline

list command 5-5, 7-2, B-7

list acl command 7-31 7-6 J

B-7

list_help command 3-18, B-8

login 2-1, 2-2, A-5
problems 2-4

login command 2-3, 2-7, B-8

logout 2-1, 2-6, A-5

logout command 2-6, B-9

Is
see list command

mail 3-12
reading
saving
sending

3-13
3-13

3-15

mailbox 3-8, 5-6, A-6

memory 2-1, A-6

messages
error 2-5, A-4

i-4

messages (cont)
interactive 3-9

deferring 3-10
receiving 3-9
sending 3-10

ready 2-4, A-8

modem 2-2, A-6

move command 6-7, B-9

mv
see move command

newline 3-2, A-6

o

operating system 1-1, A-6

p

page 5-5, A-6

password 2-1, A-6
changing 2-7

pathname 3-5, A-6
absolute 6-4, A-7
argument 3-5
relative 6-4, 6-8, A-7

Person id 2-1, A-7

pr
see print command

print command 3-6, 3-8, 5-1,
B-10

print_mail command 3-13, B-10

print_wdir command 6-9, B-11

CH24

prm s
see print_mail command

process A-7 sa
see set acl command

project administrator 2-4,
A-7 sdm

project directory 6-2

Project id 2-1, A-7

pwd
see print_wdir command

Q

qedx command 4-1, B-11

QUIT signal 3-3, A-8

C{x
see qedx command

R

ready message 2-4, A-8

read mail command 3-16

relative pathname 6-4, 6-8,
A-7

release command 3-3, B-11

rename command 5-4, B-12

request 3-12, A-8
request level 3-12, A-8

RETURN key
see newline

rn
see rename command

root directory 6-1, 6-4, A-8

i-5

see send mail command

segments 3-5, 5-1, A-8
access modes 7-1
attributes 5-5, A-2
creating 4-1, 6-7
info segment

see info segment
sharing 6-6

see also access control
size (page) 5-5, A-6

send mail command 3-15, B-12

send message command 3-10,
B-13

set acl command 7-3, 7-5,
B=-13

set tty command 2-4, 3-7

sharing segments 6-6
see also access control

short names 3-2, A-8

sm
see send_message command

software 1-1, A-8

storage system 6-2, A-9

stty
see set tty command

syntax line 3-4, A-9

T

tag 7-2, A-9

CH24

terminal 1-2, A-9
connection 2-2
hardwired 2-2, A-4

text editors 4-1, A-9
emacs 4-6
qedx 4-1

timesharing 1-1, A-9

u

udd 6-2

underscore () character 3-1

user directory 6-2

user directory_directory 6-2

User id 2-1, A-9
tag 7-2, A-9

vi

who command 3-3, 3-9, B-14

working directory 6-4, 6-8,
A-3

i-6 CH24

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

ISERIES 60 (LEVEL 68)
TITlE I NEW USERS' • INTRODUCTION TO MULTICS

,PART I

I
ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME ------.

TITLE _______ _

COMPANY

ADDRESS __________________________________ ___

ORDER NO.

I

DATED I

DATE

CH24-00

!
NOVEMBER 19791

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Together. we can find the answers.

Honeywell
Honeywell Information Systems

U.S.A.: 200SmithSt., MS486, Waltnam, MA02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7

U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11 , D. F. Japan: 2·2 Jinbou-Cho Kanda, Chiyoda-Ku Tokyo

Australia: 124 Walker St., North Sydney, N.S. W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

33375, 7.5C1281, Printed in U.SA CH24-00

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	replyA
	replyB
	xBack

