Level 68

- MULTICS CONCEPTS
AND UTILIZATION

Student Handbook
Course Code FO1

uoneosnpg unajie iy 1139 MASUOH

ISSUE DATE:
REVISION: 4.1

REVISION DATE:

Copyright (ec)
1977

June 27, 1977

October 1978

RECEIVEDOCT 17 1978

Honeywell Information Systems,

Inc.

Duration:.

Intended For:

Course Synopsis:

Objectives:

Prerequisite:

FO1

- COURSE DESCRIPTION

Multics Concepts and Utilization

Five Days

Personnel requiring capability to use the Multics
system.

This course presents the basic information needed
to use the Multics system, including discussions
and examples of: the typing conventions used for

‘Multics terminals; a Multics text editor;

commands used to write, compile and execute
programs; utility command which provide of the
user environment, manipulation of files, and
inter-user communication; and the types of errors
which can occur, with procedures for. recovery. &
general overview of Multics hardware and softwure
facilities is also presented.

Interactive workshops are included to reinforce
the material presented.

Upon completion of this course, the student should
be able to:

1. Login to and logout from the Multics system.

2. Create and edit files in the storage system
with the gedx text editor.

A

—

Ll .]
3. Compile, run, and debug simple programs, and
manipulate the run-time environment.

4., Use other system commands to manipulate files,
~ tailor the wuser environment, and communicate
with other users.

Programming Logic and Flowcharting (G024) or
previous data processing experience.

i FO1

F 01

TOPIC M AP

DAY

MORNING TOPICS

AFTERNOON TOPICS

Welcome/Administration

- s = oe e @n on e = ome e we ew e e

Workshop #1

gedx Basics

More qedx

The Storage System

- e e s e e e em W e e wm e ee e

Workshop #3

The Command Language

Workshop #4

Programming on Multics

- e as e e W mr Ge e e s e o - -

WOrkshop #5

Access Control

Workshop #6

More Abbrev Processor

- mm me mm me e e e wm m we we we e me
T Y e T

- e e e aw s em e e ax em em e= ee

Workshop #7

Absentee Usage

Workshop #8

Additional Commands

Workshop #9

Software Overview

e w wm e e E e AR e ae em es em e e

Questions

(=3
(=]

FO

CONTENTS

Page

Topic I Multics Overview . . .
Some Basic Termlnology .
Development History
Multics Design Goals and Results
Administration .

— e e) e
| I I |

—ADUT — —
wn

Topic 1I How to Access Multics
Remote Terminal Access
User Registration and Identlflcatlon
Characteristics of Terminals .
Access Sequence
login and logout Commands
Typing Conventions
Some Simple Commands .

!
LSOOV =NV s -

i

Topic III qedx Basics .
What is qedx
gedx Concepts
Basic gedx Requests
Basic qedx Examples

i
COUIN - —

Topic IV More qedx . .
qedx Termlnology .
Special Symbols
Examples . . .
Addressing . . .
Additional Buffers . e e .
Areas for Additional Study .

i '
= WO-JON =

(@]

PN - WUL)LA)L'«)UU PPN NN

Topic V The Storage System .
Segments .
Directories . .
Storage System Control
Storage System Hierarchy .
Pathname Conventions

— 2 O —

w O

Topic VI Storage System Commands . .
Directory Manipulation Commands
Segment Manipulation Commands
Storage System Examples

[
— A — -

[eaN e o) Ne)l (R RCI R RO RS]
!
o=

iii FO1

Topic

Topic

Topic

-3
0
ol

Topic

Topic

Topic

Topic

VII

VIII

IX

XI

XII

XIII

XIv

CONTENTS (cont)

The Command Language
What is a Command
Command Arguments .
Common Control Arguments
Star Convention
Subsystems

Exec_com Basics
What is an Exec com
Exec_com Mechanism . ..
Start_up Exec_coms

The Abbrev Processor . . .
What is the Abbrev Processor
Abbrev Mechanism
Abbrev Requests
Abbrev Examples

Developing a Source Program
Compiling a Source Program .
Entrynames and Entry Point Names
Executing an Object Program
Debugging Tools

Dynamic Searching

Access Control . . . e e e e
What 1is Access Control e e e e
Access Control List (ACL)
Access Manipulation Commands .
Default and Initial ACL Entries
Access Examples « v e e

User Communication
Message Facility .
Mail Facility
Memo Facility

Multics Input/Output Facilities
Multies Input/Qutput
System Input/Output Modules
Input/Output Switches
Input/Output Commands
Examples . .

More About the Abbrev Processor

The do Command . . .
Areas for Addltlonal Study .

iv

g
oY
m
@

[
L, OV

!
=N =

—) -t -

OO0 WWOWW O ~T~3-1-3-3-3
Pt) 1

N E s O EN s =

Topic

Topic

Topic

Topic

Topic

Topic

Topie

CONTENTS (cont)

Xv Active Functions . .
What is an Active Fun

ctlon .

Active Function Mechanism .
Active Function Examples

Areas for Additional

XVI More About Exec_com's
Review . .
Argument Substitution
Control Statements
Exec _com Examples .
Areas for Additional

XVII Absentee Usage .
What is Absentee Usag
Absentee Commands
Areas for Additional

XVIII Software Conventions
Command Language Spec
Segment Name Suffixes
Suffix Convention
Canonical Form .
set_tty Command

XIX Additional Commands

Study .

. . .

Study :
e .

Study .

1a1 Symbols

Access to the System .

Storage System, Segme
Storage System, Manip
Formatted Output Faci
Performance Monitorin
Debugging

nt Contents
ulation .
lities .

g

Command Level Env1ronment

Accounting
Absentee Computatlons
Miscellaneous Tools

XX Software Overview

The Operating System .

QVQ"‘AM Qennnﬁ 4.:)'

Ring Mechanism .

System Daemons . . .
System Libraries and
Application Packages

XXI Hardware Overview .
Hardware Description
System Requirements
Configuration Limits

Directories

i ﬁeeo;dé)

L 18-1

Page

15-1
15-1
15-3
15-4
15 7

16-1
16-1
16-3
16-4
1610
16-13

17-1
17-1
177
17-9

181

18-7
18-9
18-10
18-12

19-1
19-1
19-5
19-10
19-13
19-14
19-15

19-16

19-18
19-19
19-21

20-~1

. 20-1

20-2

. 20-8
.. 20-9
L 20-11

20-16

21-1
21=1

. 21-3

21-5

FO1

CONTENTS (cont)

O
[
o]
@

Appendix A Multics Documentation
Multics Programmers' Manual (MPM)
Multics Pocket Guides .
Multics Administrators’ Manuals (MAM)
Program Logic Manuals (PLM)
Other Multics Manuals

o B o
!
NN EwWwN = =

Appendix B Multics Technical Briefs . . .
Level 68/Distributed Proce351ng System .
Distributed Proce331ng System: Multics
Overview . .
Multics Virtual Memory and Storage
System .
Administration and Operatlng Features
Interactive Programming Environment
Controlled Sharing and Securlty
Multlcs PL/I . .

114&d A ADI
nlua.u.a.\,o AL

Multics Data Base Manager

LINUS . .

Word Proce351ng System WORDPRO
Multics Graphics System . .
Multics Electronic Mail Fa0111ty

w C‘DUJ
— —

| I T B N | t
- mmd ed) ek md —

1
P S

DwowowoIwo oo
1

Appendix C Articles of Interest .
Multics: The First Seven Years .
Highlights of the Multics System .

aaa
1
_ s

Appendix D Multics Courses

()
1

=)

Appendix Commands/Manuals Cross-reference

Commands/Manuals Cross-reference

™
1t
—

Appendix F Error Messages

]
1
-

Appendix G TYMNET Data Communications Network . . .
The TYMNET Network
TYMNET Telephone Numbers

[}
O\ =

Appendix H Abbrev Examples « e e e
Abbrev Examples

e ofiia o] (2NN
1

!
— k.

Appendix W Workshops .

Workshop One

Workshop Two . .
Workshop Three
Workshop Four

Workshop Five
Workshop Six

Workshop Seven

!
[T e, B
- WO

ii;"-’.fiiiis

vi v _ FO1

CONTENTS (cont)

workShop Eight » w-—24
Workshop Nine « « . . . W-28

vii FO1

This page has intentionally
been left blank.

viii _ FO1

STUDENT BACKGROUND
Multics Concepts and Utilization (FO01)

NAME: PHONE:

TITLE:

COMPANY ADDRESS:

MANAGER: OFFICE PHONE:

INSTRUCTOR'S NAME: 5524%”V7' c:ﬁéﬁfV%/

Do you meet the prerequisite as stated in the "Course Description”
of the student text? 1If yes, check "a" or "b".
If no, check "c" or "d",

a [] Prerequisite satisfied by attending course indicated in
"Course Description".

b [] Meet prerequisite by equivalent experience (explain briefly)

¢ [] Elected or instructed to attend course anyway.

d [] Was not aware of prerequisite.

What related aneywell courses have you attended? Furnish dates
and instructors if possible.

(PLEASE TURN OVER)

ix FO1

STUDENT BACKGROUND

Check the boxes for which you have any related experience. (May
be other than Honeywell's)

[1 PL1 [1 coBOL [] FORTRAN [] ASSEMBLY

[1JcL [] OPERATIONS [] Gcos [] MULTICS
[

bod

OTHER COMPUTER RELATED

Detail any Multics experience you have had:

Objectives for attending this course (May check more than one).
[] Require information to provide support for a Multics system
[] To maintain an awareness of this product

[] To evaluate or compare its potentials

[] Required to use or implement

[] Need update from a previous release

[] Require a refresher

[] Other:

Some Basic Termindlogy

Development History . . .
Multics Design Goals and Results

Administration

MULTICS OVERVIEW

TOPIC I

1=-1

Page

— S D
LI I |
= A0 -

FO1

This page has intentionally

been 1left blank.

1=-ii FO1

SOME BASIC TERMINOLOGY

& HARDWARE

I REFERS TO THE PHYSICAL COMPONENTS OF A COMPUTER; ESPECIALLY TO
THE ELECTRONIC CIRCUITRY

I MAJOR COMPONENTS: CENTRAL PROCESSOR UNIT (CPU), MAIN MEMORY,
- DISK DRIVES, TAPE UNITS, PRINTER, CARD READER, CARD PUNCH

e SOFTWARE

I REFERS TO THE PROGRAMS, PROCEDURE, CODE, OR INSTRUCTIONS THAT
EXECUTE ON THE HARDWARE

I EXAMPLES: A FORTRAN PROGRAM, THE PL/I COMPILER, THE DATA BASE
MANAGER, THE OPERATING SYSTEM

1.1 o FO1

SOME BASIC TERMINOLOGY

SYSTEM RESOURCES
I CENTRAL PROCESSOR / CPU (TIME OCCUPIED)

I MAIN MEMORY / PRIMARY MEMORY / CORE (AMOUNT OCCUPIED ¥ TIME
OCCUPIED)

I PERIPHERAL DEVICES
I DISK DRIVES (AMOUNT OF DATA TRANSFERRED)
I TAPE DRIVES (AMOUNT OF DATA TRANSFERRED)
I CARD PUNCH (AMOUNT OF DATA PUNCHED)
I PRINTER (AMOUNT OF DATA PRINTED)

I TERMINALS (CONNECT TIME & AMOUNT OF DATA TRANSFERRED)

I MEDIA

I DISK PACKS / SECONDARY MEMORY (AMOUNT OF DATA STORED)

I TAPES (NUMBER USED)
I CARDS (NUMBER PUNCHED)

I PRINTER PAPER (AMOUNT USED)

I SYSTEM AND SITE PROVIDED SOFTWARE (RENTAL)

1.2 - FO1

SOME BASIC TERMINOLOGY

BIT

HE MOST FUNDAMENTAL UNIT OF INFORMATION

==
3

I A BIT IS EITHER ON OR OFF (1 OR 0)

BYTE

I A SMALL UNIT FOR MEASURING THE AMOUNT OF MEMORY, THE SIZE OF A
PROGRAM OR FILE, OR THE SPACE ON A TAPE OR DISK PACK

I ON MOST LARGE SCALE HONEYWELL EQUIPMENT, A BYTE EQUALS 9 BITS

Sop—

PR

I ON MULTICS, ONE ASCII CHARACTER OCCUPIES ONE BYTE

WORD

I A LARGER UNIT FOR MEASURING THE AMOUNT OF MEMORY, THE SIZE OF A
PROGRAM OR FILE, OR THE SPACE ON A TAPE OR DISK PACK

I ON MOST LARGE SCALE HONEYWELL EQUIPMENT, A WORD EQUALS 4 BYTES
OR 36 BITS -_— o

205 %/oﬂ AT

{

purd

1-3 FO1

SOME BASIC TERMINOLOGY

® USER

I ONE WHO USES THE COMPUTER FACILITY

® PROJECT

I A SET OF USERS GROUPED TOGETHER FOR ACCOUNTING AND ACl:&SS
PURPOSES

I A PROJECT IS OFTEN A GROUP OF USERS WORKING TOWARDS A COMMON
GOAL - '

I USERS ON A PROJECT OFTEN -WORK FOR THE SAME DEPARTMENT OR UNIT

DEVELOPMENT HISTORY

MULTICS

I MULTIPLEXED INFORMATION AND COMPUTING SERVICE

1960-1963: CTSS DEVELOPMENT
I FIRST LARGE-SCALE TIME-SHARING SYSTEM

1 EXPERIENCED GAINED WAS USED LATER IN THE MULTICS PROJECT

I CTSS WAS USED TO DEVELOP MULTICS SOFTWARE

1964: INITIAL SPECIFICATIONS FOR MULTICS

1-5 FO1

DEVELOPMENT HISTORY

® 1964-1965: INITIAL MULTICS DEVELOPMENT WAS A JOINT EFFORT BY:

I MASSACHUSETTS INSTITUTE OF TECHNOLOGY (PROJECT MAC)
I OVERALL PROJECT CO-ORDINATION

[OPERATING SYSTEM

I SELECTION AND DESIGN MODIFICATIONS OF THE HARDWARE (GE 63F.

§ BELL TELEPHONE LABORATORIES
I COMPILERS AND ASSEMBLER

I FILE SYSTEM

I GENERAL ELECTRIC COMPUTER DIVISION (HONEYWELL)

I HARDWARE MODIFICATION

@ 1965: FALL JOINT COMPUTER CONFERENCE

I PRIMARY TECHNICAL PAPERS PRESENTED

1-6 FO1

1967:

1967:

1968:

1969:

1971:

1972:

DEVELOPMENT HISTORY

GE 645 HARDWARE AVAILABLE (MODIFIED GE 635)

SOFTWARE DEVELOPMENT UNDERWAY

AVAILABLE TO SYSTEM PROGRAMMERS

AVAILABLE FOR USE AT MIT

PROJECT MAC FUNDING STOPPED.

6180 HARDWARE AVAILABLE

I BULK STORE REPLACED DRUM

1 EXTENDED INSTRUCTION SET (EIS)

I RING MECHANISM MOVED TO HARDWARE

1-7

HIS ADOPTS.

FO1

1973:

1974

DEVELOPMENT HISTORY

ANNOUNCED AS A "STANDARD" HIS PRODUCT

LEVEL 68 HARDWARE

I 68/60 MOS MEMORY

I 68/80 MOS MEMORY AND CACHE STORE

1975:

1975:

1976:

1977:

COBOL-T4

SORT/MERGE

MULTICS DATA BASE MANAGER (MDBM)

WORD PROCESSING SYSTEM (WORDPRO)

1-8

01

MULTICS DESIGN GOALS AND RESULTS

REMOTE TERMINAL ACCESS AS NORMAL USAGE MODE

=

ALL SYSTEM RESOURCES AVAILABLE VIA TERMINALS
I USAGE OF CARDS IS MINIMAL

I INTERACTIVE AND BATCH ENVIRONMENTS ARE COMPATIBLE

I INTER-USER COMMUNICATION

CONTINUOUS/UTILITY GRADE OPERATION

I EXTREMELY STABLE OPERATING SYSTEM
1 MODULAR DESIGN

I WRITTEN IN PL/I

0 ON LINE METERING, ACCOUNTING, BILLING AND SOFTWARE INSTALLATION

I OPERATORS REQUIRED: ONE

I UNATTENDED OPERATION MODE

1-9 - FO1

MULTICS DESIGN GOALS AND RESULTS

@ ABILITY TO GROW AND CONTRACT WITHOUT SYSTEM OR USER REORGANIZATION

I SYSTEM SIZE - TRANSPARENT TO USERS, PROGRAMS, AND OPERATING
SYSTEM

] CHANGES TO SYSTEM SIZE ARE MADE WITHOUT REGENERATING THE
OPERATING SYSTEM OR USER PROGRAMS

I DYNAMIC RECONFIGURATION - TRANSPARENT TO USERS AND PROGRAYMY

e DECENTRALIZATION OF THE SYSTEM'S ADMINISTRATION

I HIERARCHY OF ADMINISTRATORS:
I THE SYSTEM ADMINISTRATOR

0 PROJECT ADMINISTRATORS

I USERS

1-10 FO1

MULTICS DESIGN GOALS AND RESULTS

& DECENTRALIZATION OF THE SYSTEM'S LOGICAL FILE SPACE

I HIERARCHY OF DIRECTORIES:
I ROOT DIRECTORY
I SYSTEM DIRECTORIES
I PROJECT DIRECTORIES

I USER DIRECTORIES

® RELIABLE FILE SYSTEM
I INCREMENTAL BACKUP SYSTEM (Backup SysDaemon)
I AUTOMATED RETRIEVAL

1 SALVAGE SUBSYSTEM

1-11 ' : FO1

MULTICS DESIGN GOALS AND RESULTS

ACCESS CONTROLS THAT ALLOW SELECTIVE SHARING OF INFORMATION AND
SERVICES

[MULTICS IS THE MOST SECURE COMMERCIAL OPERATING SYSTEM
AVAILABLE '

I USER AUTHENTICATION (BY PASSWORD)

I ACCESS CONTROL LIST - ACL (BY NAME AND PROJECT)

=
|
(@]

I RING STRUCTURE (8 LEVEL MASTER/SLAVE HIERARCHY)

SERVES BOTH LARGE AND SMALL USERS EFFICIENTLY

I RESOURCES ARE AUTOMATICALLY ALLOCATED ON DEMAND - WHEN NEEDED,
AND IN PROPORTION TO THE SIZE OF THE TASK

1-12 FO1

MULTICS DESIGN GOALS AND RESULTS

COMBINE SYSTEM FLEXIBILITY WITH EASE OF USE

i VIRTUAL MEMORY

] ONLY ONE STORAGE SYSTEM FOR BOTH USERS AND OPERATING SYSTEM
I ASCII CHARACTER SET USED THROUGHOUT

I INTERACTIVE AND BATCH ENVIRONMENTS ARE COMPATIBLE

I EXEMPLARY COMMAND LANGUAGE (NO JCL!)

I COMMAND NAMES
I FULL NAME (DESCRIPTIVE)
I SHORT NAME (CONVENIENT)

I CONTROL ARGUMENTS WITH INTELLIGENT DEFAULTS
I ACTIVE FUNCTIONS

I STAR AND EQUAL CONVENTION

=3

COMMAND ITERATION
I ABBREV PROCESSOR

I EXEC_COMS (COMMAND FILES)

1-13 Fo1

MULTICS DESIGN GOALS AND RESULTS

ADIFFERENT ENVIRONMENTS AND HUMAN INTERFACES WITHIN A SINGLE SYSTEM
I STANDARD SERVICE (FULL MULTICS)

I SUBSYSTEM (E.G. FAST, BASIC, APL)

I LIMITED SERVICE

I TAILORED ENVIRONMENT

EVOLUTIONARY DESIGN ABLE TO INCORPORATE TECHNOLOGICAL IMPROVEMENTS
AND TO MEET GROWING USER EXPECTATIONS

I MODULAR DESIGN
I GENERAL (NOT SPECIFIC) SOLUTIONS

I COMPATIBLE EXPANSIONS

1-14 FO1

ADMINISTRATION

@ THE EFFECTIVE ADMINISTRATION OF A LARGE COMPUTER INSTALLATION CAN
BE A DIFFICULT JOB

e FOR MULTICS, A HIERARCHY OF ADMINISTRATORS HAS BEEN DEFINED IN
ORDER TO: : '

I DECENTRALIZE CONTROL OF SYSTEM RESOURCES BY DISTRIBUTING
AUTHORITY AND RESPONSIBILITY TO LOWER LEVELS

© THE MULTICS ADMINISTRATION HIERARCHY CONSIST OF THREE LEVELS:

] SYSTEM ADMINISTRATOR(1)

I PHYSICAL, ADMINISTRATIVE AND FINANCIAL CONCERNS OF THE
SYSTEM ' :

I PROJECT ADMINISTRATOR(Z2)

I ADMINISTRATIVE AND FINANCIAL CONCERNS OF THE PROJECT

I USER

I CONTROL AND USAGE OF RESOURCES ALLOCATED TO HIM/HER

(1) Related Multiecs Course: System Administration (F60)
(2) Related Multics Course: Project Administration (F61)

1-15 FO1

ADMINISTRATION

|
|

SYSTEM
ADMINISTRATOR
ProjA PROJECT FO01 PROJECT
ADMINISTRATOR ADMINISTRATOR
USER USER USER USER USER USER USER
May Kerr Avel S_01 S 02 S_03 S_04

1-16 FO1

ADMINISTRATION

THE SYSTEM ADMINISTRATOR

0

ESTABLISHES SYSTEM CONFIGURATION AND OPERATING PARAMETERS
(METERING AND TUNING)

DEFINES, CREATES, AND ALLOCATES RESOURCES TO THE SYSTEM
PROJECTS

ADMINISTERS THE SYSTEM'S SECURITY NEEDS

REGISTERS USERS AND ASSIGNS INITIAL (AND NEW) PASSWORDS
MAINTAINS RECORDS OF SYSTEM USAGE

SETS RESOURCE USAGE PRICES AND DETERMINES BILLING CYCLE

GENERATES STATEMENT OF CHARGES TO RECOVER THE COST OF SYSTEM
RESOURCES USED

PERFORMS ALL OF THE ABOVE TASKS FROM A TERMINAL AND WITHOUT
INTERRUPTION OF SERVICE

1-17 | FO1

ADMINISTRATION

THE PROJECT ADMINISTRATOR

I DISTRIBUTES RESOURCES AND ATTRIBUTES ALLOCATED TO PROJECT

I HAS ACCESS TO THE PROJECT'S RESOURCE USAGE AND ACCOUNTING bATA
I ADDS AND DELETES REGISTERED (AND ANONYMOUS) USERS TO PROJECT

] DEFINES THE ENVIRONMENT AND SETS RESOURCE LIMITS FOR USERS

I SETS ACCESS ON USERS' HOME DIRECTORY

THE USER
I HAS CONTROL OVER RESOURCES ALLOCATED TO HIM
I HAS ACCESS TO HIS OWN RESOURCE USAGE AND ACCOUNTING DATA

I MAY SELECTIVELY SHARE HIS PROGRAMS AND DATA WITH OTHER USERS

1 MAY CHANGE HIS PASSWORD

1-18 FO1i

HOW TO ACCESS MULTICS

Remote Terminal Access

User Registration and Identification
Characteristics of Terminals

Access Sequence . .

login and logout Commands :

Typing Conventions
Some Simple Commands

-

TOPIC II

.
.

2-i

.

FO1

This page has intentionally
been left blank.

2-ii f - FO1

REMOTE TERMINAL ACCESS

REMOTE TERMINAL ACCESS IS THE NORMAL MODE OF ACCESS

ALL SYSTEM RESOURCES ARE ACCESSIBLE VIA REMOTE TERMINAL

USES STANDARD TELEPHONE LINES

"LOGGING IN" REFERS TO THE PROCESS OF:

I TELEPHONING THE MULTICS SYSTEM
I CONNECTING THE TELEPHONE TO THE TERMINAL

I WAITING FOR MULTICS TO SEND YOU A GREETING

I IDENTIFYING YOURSELF TO THE SYSTEM

2-1 FO1

USER REGISTRATION AND IDENTIFICATION

NEW USERS ARE REGISTERED BY THE SITE SYSTEM ADMINISTRATOR

ADMINISTRATOR ASSIGNS A Project id,

PASSWORD

Person id's

Project id's

TSmith ProjA
Greenberg ProjA

Student 04 FO1

PASSWORD 'S

ts

$$$!
atlanta

xs

A USER MAY BELONG TO MORE THAN ONE PROJECT - HOWEVER, ONE PROJECT
IS ALWAYS DESIGNATED AS THE USER'S "DEFAULT PROJECT"

THE USER'S PASSWORD IS ASSOCIATED WITH HIS Person_id ONLY

User_id

0

REFERS TO THE Person_id.Project_id PAIR

TSmith.ProjA

SWebber.Doc_66

2-2

FO1

USER REGISTRATION AND IDENTIFICATION

THE USER'S PASSWORD IS REQUIRED IN ORDER TO AUTHENTICATE THE USE
OF THE USER'S Person_id

THE USER'S Person_id AND Project id ARE THE KEYS THAT DETERMINE
WHAT INFORMATION AND SERVICES HE IS AUTHORIZED TO ACCESS AND
CONTROL . ,

Password

AUTHORIZES
USE OF

Person_id.Project_id

AUTHORIZES
USE OF

DESIGNATED FILES
AND SERVICES '

2-3 _ FO1

CHARACTERISTICS OF TERMINALS
TERMINALS BEHAVE LIKE ELECTRIC TYPEWRITERS
MANY HAVE SEPARATE "CARRIAGE RETURN" AND "LINE FEED" KEYS

CONCEPTUALLY, THE "LINE FEED" KEY SENDS THE TYPED LINE

TERMINAL SWITCHES
e L
DUPLEX: HALF oREZ% MODE : LINE
CASE: LOWER RATE - 30

PARITY: EVEN

TERMINAL TO COMPUTER COUPLINGS:
I HARDWIRED (A PERMANENT WIRE CONNECTS TERMINAL TO COMPUTER)

Il TELEPHONE-MODEM (TELEPHONE LINE CONNECTS TERMINAL TO COMPUTER)

I ACOUSTIC (PROXIMITY)

I DIRECT (PUSH A BUTTON)

—

ACCESS SEQUENCE

PLUG-IN AND TURN ON THE TERMINAL

- SET THE TERMINAL SWITCHES

IF HARDWIRED TERMINAL

[IDENTIFY YOURSELF VIA THE login COMMAND

IF TELEPHONE-MODEM TERMINAL
I DIAL THE APPROPRIATE NUMBER AND WAIT FOR HIGH-PITCHED TONE
[CONNECT THE PHONE TO THE COUPLER DEVICE

I WAIT FOR MULTICS TO RESPOND WITH A MESSAGE SIMILAR TO:

Multics MR6.0: Honeywell LISD Phoenix, System M
Load = 51.0 out of 95.0 units: users = 51

e

I IDENTIFY YOURSELF VIA THE login @OMMAND

2-5 ” FO1

LOGIN AND LOGOUT COMMANDS

login, 1

A COMMAND USED TO GAIN ACCESS TO MULTICS

INITIATES A PROGRAM CALLED THE USER'S PROCESS

USAGE: login Person_id {Project_id}
1 TSmith

1 TSmith FED
1 Student_07 FO1

IF A Project_id IS NOT SPECIFIED THE USER'S DEFAULT Project_ id
IS ASSUMED

RESULTS: THE USER WILL BE ASKED TO SUPPLY THE PASSWORD
ASSOCIATED WITH HIS Person_id

I A PASSWORD MASK WILL BE GENERATED -OR- PRINTING OF THE
PASSWORD WILL BE INHIBITED

] SUPPLYING THE CORRECT PASSWORD COMPLETES THE USER'S LOG IN
SEQUENCE

THE Project _id USED AT LOG IN DETERMINES WHO RECEIVES THE BILL
FOR THE CURRENT TERMINAL SESSION

THE Person_id AND Project id USED AT LOG IN DETERMINES WHERE IN
THE MULTICS VIRTUAL MEMORY THE USER "FINDS" HIMSELF

2-6

b |
o
—

LOGIN AND LOGOUT COMMANDS

<DIAL TELEPHONE NUMBER>
<CONNECT TERMINAL/TELEPHONE>
<WAIT FOR LOGIN HERALD>

"
Multics MR6.0: Honeywell LISD Phoenix, System M
Load = 51.0 out of 95.0 units: users = 51

1 TSmith
Password
EEEEREEREERE
TSmith ProjA logged in 06/28/77 1553.2 mst Tue from terminal "243".
Last login 06/28/77 1425.8 mst Tue from terminal "013"
A new PL/1 compiler was installed; type help new_pl1l.
Type help sked for hours of operatlon Fw31

r 1553.5 1.314 1.332 30

® READY MESSAGE

0 A MESSAGE THAT IS PRINTED EACH TIME THE USER IS AT "COMMAND
LEVEL"

I THE READY MESSAGE REPORTS:
] THE TIME OF DAY
0 THE NUMBER OF CPU SECONDS USED SINCE THE LAST READY MESSAGE
I THE NUMBER OF MEMORY UNITS USED SINCE THE LAST READY MESSAGE

] THE NUMBER OF PAGES (1024 WORDS) BROUGHT INTO MEMORY FOR THE
USER SINCE THE LAST READY MESSAGE

2=7 FO1

LOGIN AND LOGOUT COMMANDS

logout

0 INFORMS MULTICS THAT THE USER IS THROUGH WITH THE CURRENT
TERMINAL SESSION

] USAGE: 1logout

0 RESULTS: THE USER WILL BE DISCONNECTED FROM MULTICS

logout
TSmith ProjA logged out 06/28/77 1749.4 mst Tue
CPU usage 17 sec, memory usage 103.1 units
hangup
new_proc
I DESTROYS THE USER'S CURRENT PROCESS AND CREATES A NEW ONE

I EFFECTIVELY THE SAME AS LOGGING OUT AND LOGGING IN AGAIN

] OFTEN USED "WHEN ALL ELSE FAILS"™ OR TO RESET THE USER'S
ENVIRONMENT

0 USAGE: new_proc

2-8 FO1

TYPING CONVENTIONS

e # (NUMBER SIGN)

I USED TO "ERASE" THE PREVIOUS CHARACTER

login TSM#mith

login TSMith####mith
logen##in TSme#ith
logim T###n TSmith

I NOTE: WHITE SPACE IS COUNTED AS ONE CHARACTER WHEN USING THE
ERASE CHARACTER

@ @ (AT SIGN)

I USED TO "KILL" THE CURRENT LINE

login TSMith@login TSmith
logen@login TSme#ith

logen##im#n Tsm##Sme@login TSmith

FO1

TYPING CONVENTIONS

\ (BACKSLASH)

I THE CHARACTER \ IS A FRONT-END PROCESSOR ESCAPE SEQUENCE THAT

CAUSES CERTAIN CHARACTER THAT FOLLOWS TO BE INTERPRETED AS A
LITERAL

I OFTEN USED TO SUPPRESS (ESCAPE) THE SPECIAL MEANING OF #, @,
linefeed AND OTHER SPECIAL CHARACTERS

sm TSmith.ProjA I need a \#8 tin can.

sm TSmith.ProjA He's selling 3 \€ $4.50 each.

COMMAND LINE FLOW

TYPED LINE (AT THE TERMINAL)
* -
FRONT-END PROCESSOR (# AND @ EDITING AND LINE DISCIPLINE)
v .
COMMAND PROCESSOR (INTERPRETS THE TYPED LINE)
v
EXECUTION

who

' SOME SIMPLE COMMANDS

0 LISTS THE NAMES AND PROJECTS OF ALL USERS CURRENTLY LOGGED IN

I

-USAGE«

who
who
who
who
who
who

who

{args} {-control_args}
. S22
, _ s’
-name | %%W ‘J

- it

.ProjA
May .FO1 .ProjA

& how many users, hmu

0

1

TELLS HOW MANY USERS ARE CURRENTLY LOGGED IN

USAGE:

how_

hmu
hmu
hmu
hmu

hmu

many_users {args} {-control_args}

-long

TSmith

.ProjA

May .FO1 .ProjA

2-11 FO1

SOME SIMPLE COMMANDS

®@ help (YA WANT IT, WE GOT IT)
I PROVIDES INFORMATION ABOUT THE MULTICS SYSTEM AND ITS COMMANDS
I USAGE: help {name}
help who
help sked

help help

[ANSWER: ves, no, rest

® 1list, 1s (ROLL CALL)

I RETURNS INFORMATION ABOUT THE USERS SEGMENTS (FILES)

I USAGE: 1list

ls

SOME SIMPLE COMMANDS

accept messages, am (I'M LISTENING)

=a

ENABLES THE USER TO RECEIVE MESSAGES AT HIS TERMINAL

I OTHERWISE, MESSAGES WILL GO TO THE USER'S MAILBOX (A SEGMENT
HAVING THE NAME Person_id.mbx)

I CREATES A'PERMANENT MAILBOX FOR THE USER IF NONE EXISTS
I USAGE: accept_messages

am

send_message, sm

I SENDS MESSAGES TO A GIVEN USER ON A GIVEN PROJECT

I MESSAGES ARE EITHER:

I PRINTED ON THE RECIPIENT'S TERMINAL, OR
I PLACED IN THE RECIPIENT'S MAILBOX
I USAGE: send_message Person_id.Project_id message

sm TSmith.ProjA When are you going to lunch?

sm Greenberg.FED May I have access to your file?

2-13 ‘ FO1

SOME SIMPLE COMMANDS

print_messages, pm
0 PRINTS ALL MESSAGES STORED IN'THE USER'S MAILBOX
I MESSAGES ARE ﬁELETED FROM THE MAILBOX WHEN PRINTED
I USAGE: print_messages
pm
defer_messages, dm (I'M BUSY...NO DISTRACTIONS WANTED)
I REDIRECTS ANY AND ALL INCOMING MESSAGES TO THE USER'S MAILBOX
I ELIMINATES UNWANTED INTERRUPTIONS
I THIS IS THE DEFAULT UPON LOGIN
I "UNDONE" BY THE accept_message COMMAND

I USAGE: defer_messages
dm

2-14 FO1

SOME SIMPLE COMMANDS

YOU ARE NOW READY FOR WORKSHOP
#

2-15 FO1

This page has intentionally
been left blank.

2-16 FO1

TOPIC III

QEDX BASICS

Page
What iS qedx 3"1
gedx Concepts . . . o ¢ e s s e e ¢ o e s 3-2
Basic qedx Requests o .o o . 3-5
Basic qedx Examples 3-8

- 3-1 FO1

This page has intentionally
been left blank.

3-ii FO1

WHAT IS QEDX

® gedx, gx

I ONE OF SEVERAL TEXT EDITORS AVAILABLE ON MULTICS USED TO
] MODIFY THE CONTENTS OF EXISTING ASCII SEGMENTS

‘I CREATE (INPUT) THE CONTENTS OF DESIRED ASCII SEGMENTS

0 A SUBSYSTEM WHICH CAN ONLY BE ENTERED BY COMMAND,'AND EXITED BY
REQUEST

l USAGE: qedx

qQx

COMMAND LINE FLOW

TYPED LINE

v
FRONT-END PROCESSOR

qedx SUBSYSTEM

EXEég&ION

3-1 FO1

QEDX CONCEPTS

@ USER INVOKES THE EDITOR BY TYPING qedx OR qgx

@ THERE ARE TWO PRINCIPAL MODES OF OPERATION WITHIN qedx

0 EDIT MODE

1

1

I

0

THE INITIAL (DEFAULT) MODE WHEN ENTERING gedx

THE USER READS THE CONTENTS OF AN EXISTING SEGMENT INTO A
BUFFER (A SCRATCH PAD)

THE USER THEN PERFCRMS EDITING FUNCTIONS ON THE CONTENTS OF
THE BUFFER BY TYPING EDIT REQUESTS:

I LOCATING

I SUBSTITUTING

I DELETING

I PRINTING

THE USER THEN WRITES (SAVES) THE EDITED VERSION OF THE
SEGMENT BACK TO THE SAME (OR A NEW) SEGMENT

I INPUT MODE

I

i

THE USER ENTERS THE INPUT MODE (FROM THE EDIT MODE) BY
TYPING ONE OF THREE INPUT REQUESTS

ALL SUBSEQUENT TEXT FROM THE TERMINAL (EXCEPT ESCAPE
SEQUENCES) IS APPENDED TO THE USER'S BUFFER (A SCRATCH PAD)

"\f" IS AN ESCAPE SEQUENCE THAT RETURNS THE USER TO THE EDI1

AT

MODE

3-2 | FO1

QEDX CONCEPTS

ALL LINES IN A gedx BUFFER ARE GIVEN IMAGINARY LINE NUMBERS
STARTING WITH 1 (ONE)

THERE EXISTS A CONCEPTUAL POINTER TO INDICATE THE "CURRENT LINE"

gedx REQUESTS MAY DO ONE OR MORE OF THE FOLLOWING
‘I MOVE THE CONCEPTUAL POINTER
I PERFORM OPERATIONS ON THE CURRENT LINE

I PERFORMS OPERATIONS ON A SET OF LINES WITH 1 (ONE)

ALL LINES CAN BE ADDRESSED BY SUPPLYING THEIR LINE NUMBER.
NO LINE NUMBER IMPLIES "CURRENT LINE"

p (PRINT CURRENT LINE)
5p (PRINT THE FIFTH LINE)

w
\O
(o B

(DELETE LINES 3 THROUGH 9)

3-3 | ~ FO1

QEDX CONCEPTS

THE ADDITION AND DELETION OF LINES AFFECT THE IMAGINARY LINE
NUMBERS IMMEDIATELY

AFTER EACH gedx REQUEST, THE "CURRENT LINE" GENERALLY BECOMES THE
LAST LINE ADDRESSED

FOR CONVENIENCE, THE LAST LINE CAN ALSO BE ADDRESSED BY UST". " HE
SYMBOL $ (DOLLAR SIGN)

3-4 FO1

EDIT REQUESTS

r

path

/xxx/

s/existing/new/

x

£L

path

command_line

BASIC QEDX REQUESTS

DESCRIPTICN

READ: READ CONTENTS OF THE SEGMENT
SPECIFIED BY path AND APPEND AFTER THE
SPECIFIED LINE ($ ASSUMED)

PRINT: PRINT THE SPECIFIED LINE(S) ON THE
TERMINAL

LINE NUMBER: PRINT LINE NUMBER OF SPECIFIED
LINE

DELETE: DELETE SPECIFIED LINE(S} FROM THE
BUFFER

LOCATE: LOCATE AND PRINT THE NEXT LINE
CONTAINING THE xxx CHARACTER STRING. WRAP
AROUND IF NECESSARY

SUBSTITUTE: SUBSTITUTE EVERY OCCURRENCE OF
THE EXISTING STRING WITH THE NEW CHARACTER
STRING IN SPECIFIED LINE(S)

WRITE: WRITE THE SPECIFIED LINE(S) OF THE
BUFFER INTO SEGMENT HAVING THE NAME path
(ENTIRE BUFFER IS THE DEFAULT)

EXECUTE: PASS THE REMAINDER OF THE REQUEST
LINE TO THE MULTICS COMMAND PROCESSOR FOR
EXECUTION

QUIT: EXIT FROM THE EDITOR

3-5 FO1

INPUT REQUESTS

a

BASIC QEDX REQUESTS

DESCRIPTION

APPEND: ENTER INPUT
LINE(S) TYPED AT THE

SPECIFIED LINE

INSERT: ENTER INPUT
LINE(S) TYPED AT THE
SPECIFIED LINE

CHANGE:
SPECIFIED LINE(S)
THE TERMINAL

N

3-6

ENTER INPUT MODE

MODE AND
TERMINAL

APPEND THE
AFTER THE

MODE AND INSERT THE
TERMINAL BEFORE THE

AND REPLACE THE

WITH THE LINE(S) TYPEN AT

g s e (AT

FO1

® ADDRESSING SYNTAX . s ; -
= 6k¢uf,4042>;6%%222/0“*‘“‘i;?

BASIC QEDX REQUESTS

| o cunmathme ,
Lo g

_//——A

I qgedx REQUEST MAY TAKE ONE OF THREE GENERAL FORMS:

[X K REQREZT2

<request> -~ GENERALLY APPLIED TO THE CURRENT LINE

r temp.pl1 : (APPENDS TO END OF BUFFEB)j::>

p
s/o0ld/new/

d
—_—
w add.pl1 (WRITES THE ENTIRE BUFFER) >

ADR<request> - APPLIED TO THE LINE ADDRESSED

6r >udd>FED>Kerr>temp.pl1
5p

T7s/0ld/new/

9

3w add.pl1

ADR,ADR<request> - APPLIED TO THE RANGE OF LINES ADDRESSED

e - /Aﬂvcl&¢&?7’,¢ﬁuﬂ4¢oub4y£3unv

5,15s/01d/new/
9,12d

1,20w add.pl1
<R EQUESTY ELATIVE
o £ APSSET aiindd

COVTEXT
3-7 FO1

tun sum sen e sum

BASIC QEDX EXAMPLES

qedx

a

"Now is hte time
for al good

(;gfir county
\f,]

V%ﬁﬂ

1,$p ,

"Now is hte time
for al good
their county

2p

for al good
s/al/all/
$s/ty/try.""/

p

their country."
W Henry.quote

/good/

for all good
a

men to come
to hte aid of
1,$p '
\f

RESULTING BUFFER

"Now is hte time
for al good
their county

"Now is hte time
for all good
their country."

RESULTING BUFFER

"Now is hte time
for all good

men to come

to hte aid of
1,$p

their country."

NI =W —

w N =

w o —

FO1

tan Sap PN an Sum Cvw Sum Sem Cum

BASIC QEDX EXAMPLES

p
1,$p
d

1,$s/hte/the/ o 2
Ww Henry.quote

1,8d
a

-Patrick Henry —p
\f

ﬁ} Henry.quote
p

their country.m"
a _+

\f
1i :
FAMOUS QUOTE:

\f
w Henry.quote

#2

RESULTING BUFFER

"Now is the time
for all good

men to come

to the aid of
their country."

RESULTING BUFFER

-Patrick tenry

RESULTING BUFFER

FAMOUS QUOTE:

"Now is the time
for all good

men to come

to the aid of

their country."

-Patrick Henry

YOU ARE NOW READY FOR WORKSHOP

FO1

U EWN -

—

—2OWoO~TOUI£ZWND —

This page has intentionally
been left blank.

3-10 , FO1

TOPIC IV

MORE QEDX

Page
qedx Terminology . . . Y-
Special Symbols . . . L.z
Examples e e e e e % e s . . . 4-6
Addressing . . s s s 4 o o & . 4.7
Additional Buffers . . e v e e e e e 4.9
Areas for Additional Study © e e e e e e e s 4-10

y-i FO1

This page has intentionally
been left blank.

4-ii FO1

QEDX TERMINOLOGY

& REGULAR ; H

§ ANY NUMBER OF CHARACTERS (INCLUDING NONE) DELIMITED BY A RIGHT
SLANT AND OBEYING A CERTAIN SYNTAX

/abc/ /a.c/
/old/ /old.*$/
/calendar/ /“calendar/

® SEARCH EXPRESSION:

I A REGULAR EXPRESSION IMMEDIATELY FOLLOWING A qedx REQUEST.
(/abe/ IN THESE EXAMPLES) ‘

s/abe/xyz/
- 1,258/abe//
/abe/

& REPLACE EXPRESSION:

I THE SECOND CHARACTER STRING IN A SUBSTITUTE REQUEST. (/abe/ IN

THESE EXAMPLES)
s/old/abec/
1,5s8/0ld/abe/

4-1 . F01

SPECIAL SYMBOLS

@ / (RIGHT SLANT -OR- SLASH)

I DELIMITS A REGULAR EXPRESSION

/" character/

/ters.%$/

(PERIOD)

@ AS PART OF AN ADDRESS IN A gedx REQUEST

I ADDRESSES THE CURRENT LINE

i USAGE 2:) AS A CHARACTER IN A SEARCH EXPRESSION

I MATCHES ANY CHARACTER

/a.c/ MATCHES: aac
abe
azc
ac

..ete

4.2 FO1

SPECIAL SYMBOLS

s * (ASTERISK)

I HAS SPECIAL MEANING ONLY IN A SEARCH EXPRESSION

I MEANS ANY NUMBER (INCLUDING NONE) OF THE PRECEDING CHARACTER
—

P e S e]

/ab¥*c/ MATCHES: ac
: abe
abbe
abbbe
...etc

/a.*c/ MATCHES: ac
axc
axyzc
...ete

@ $ (DOLLAR)

AS PART OF AN ADDRESS IN A qedx REQUEST

I ADDRESSES THE LAST LINE OF THE USER'S BUFFER

1,%p
$d

§ USAGE 2: / AS THE LAST CHARACTER OF A SEARCH EXPRESSION

I MATCHES THE END OF A LINE (I.E., THE IMAGINARY CHARACTER
FOLLOWING THE LAST CHARACTER OF A LINE)

/calendar$/ MATCHES: calendar
IF "calendar" ENDS A LINE

4-3 FO1

SPECIAL SYMBOLS

@ ~ (CIRCUMFLEX)

I HAS SPECIAL MEANING ONLY AS THE FIRST CHARACTER OF A SEARCH
EXPRESSION

I MATCHES THE BEGINNING OF A LINE (I.E. AN IMAGINARY CHARACTER
PRECEDING THE FIRST CHARACTER ON A LINE)

/" calendar/ MATCHES: calendar
IF "calendar" BEGINS A LINE

@ & (AMPERSAND)

I HAS SPECIAL MEANING ONLY IN THE - REPLACE EXPRESSION OF A
SUBSTITUTE REQUEST

I EACH & IS REPLACED BY THE STRING WHICH MATCHED THE REGULAR
EXPRESSION IN THE SEARCH EXPRESSION

s/camp/&ing/ SAME AS: s/camp/camping/
s/ junk/"&"/ SAME AS: s/junk/"junk"/
s/ab/&&&/ SAME AS: s/ab/ababab/

s/a.c/&def/ SAME AS: s/aac/aacdef/
. s/abc/abcdef/
s/azc/azecdef/
s/a c¢/a cdef/
...ete

y-y | | FO1

SPECIAL SYMBOLS

[// (DOUBLE RIGHT SLANT - OR - SLASH SLASH)

I USAGE 13 AS THE REPLACE EXPRESSION OF A SUBSTITUTE REQUEST

I THE REPLACE EXPRESSION IS THE NULL STRING (A MEANS OF
DELETING EXISTING CHARACTER STRINGS)

s/abe//

AS A SEARCH EXPRESSION

I qedx REMEMBERS THE LAST SEARCH EXPRESSION DEFINED BY THE
USER

I // STANDS FOR THE LAST SEARCH EXPRESSION DEFINED

/a.c/ /a.c/
s//xyz/ SAME AS: s/a.c/xyz/
// /a.c/

8
e \¢ (LEFT SLANT C -OR- BACKSLASH C)

I THE SEQUENCE \e¢ IS A qedx ESCAPE SEQUENCE THAT CAUSES THE
CHARACTER THAT FOLLOWS TO BE INTERPRETED AS A LITERAL

I SUPPRESSES (ESCAPES) THE SPECIAL MEANING OF gedx SPECIAL
SYMBOLS

~/a\ec.b/

s/\c"echpplex/“echoplex/
s/aba/\ckdef/

4.5 FO1

EXAMPLES

INTERPRET THE FOLLOWING qedx REQUESTS:

1,$s/a.%b/xyz/
1,$s/a..%b/xyz/
1,$s/a.\c.*b/xyz/
1,$8/a..\c*b/xyz/
1,$s/%a...b//

1

~
$s/"a...

(<2

, $/7
1,$s/./a/

1,$s/./8&/

1,$s/.%/&&/
1,$s/ " a%*bRc*d/abed/
1,$s/"a.%b.¥%c.*d/abecd/
1,8s/° %//

1,8/ %/ e/
1,$s/".8/8&%/

4-6

"FO1

ADDRESSING

& qedx REQUEST MAY TAKE ONE OF THREE GENERAL FORMS
I <request>
I ADR<request>

I ADR,ADR<request>

® ADDRESSES MAY TAKE ONE OF THREE GENERAL FORMS.

I ABSOLUTE LINE NUMBERS
5d
“$p
‘10,12$/abc/xyz/
3

I RELATIVE LINE NUMBERS (RELATIVE TO "CURRéNT.LINE")
.+l4d
+Ud
-2,.p
-2,+5s/abec/xyz/
$-4,8p
-2

47 FO1

ADDRESSING

I CONTEXTUAL ADDRESSING

I AN ADDRESS MAY BE A REGULAR EXPRESSION

1 A LINE CAN BE ADDRESSED BY MATCHING REGULAR EXPRESSIONS TO
STRINGS IN THE LINE

~ /abe/d
/abe/,25p
/abe/+2,25p
/abe/+2,+25p

/"ab®*c/+2,/x.2/-38/boat /boating /

4.8 . FO1

@ THE USER'S
b(0)

ADDITIONAL : BUFFERS

INITIAL BUFFER (SCRATCH PAD) HAS A RESERVED NAME OF

® USERS MAY DEFINE AN ARBITRARY NUMBER OF ADDITIONAL BUFFERS BY
SIMPLY REFERRING TO THEM BY SOME CHOSEN NAME

BUFFER REQUESTS

m(name)

\b(name)

b(name)

DESCRIPTION

MOVE : MOVE THE SPECIFIED LINE OR LINES IN THE

CURRENT BUFFER TO A BUFFER HAVING THE SPECIFIED
NAME

REPRESENTS THE CONTENTS OF THE SPECIFIED BUFFER

BUFFER: CHANGE BUFFERS. MAKE THE SPECIFIED
BUFFER THE "CURRENT" BUFFER

STATUS: PRINT A SUMMARY OF THE STATUS OF ALL
BUFFERS - ‘

4 .

@ CUT AND PASTE EXAMPLK. MOVE LINES 14 THROUGH 17 IMMEDIATELY BELOW

LINE 10

14:17!71‘(1)-

10a

\b(1)\f

4-9 FOT1

AREAS FOR ADDITIONAL STUDY

e ADDITIONAL DOCUMENTATION OF qedx
0 MPM COMMANDS AND ACTIVE FUNCTIONS (AG92)
I NEW USER'S GUIDE (AL40)

I help qedx

@ STUDY TOPICS
I MULTIPLE REQUEST ON A LINE
dp
s/abe/xyz/p
s/abe/xyz/w file 13
\fw |

4-10 FO1

AREAS FOR ADDITIONAL STUDY

I ADDITIONAL qedx EDIT REQUESTS
g (global) =) a}g? :

gp/xyz/
1,10gd/xyz/
10,26g=/kyz/

v (exclude)

vp/xyz/
1,10vd/xyz/

1,.v=/xyz/
n (nothing)
5n
" (comment)

"This is a comment in a macro

411 FO1

AREAS FOR ADDITIONAL STUDY

ADDRESSING USING ™;" INSTEAD OF ","
ADR ;ADR<request>
/abe/;+5d

DELIMITERS OTHER THAN "/"

RESERVED BUFFERS: b(0), b(exec), b(args)

qedx MACRO FACILITY

I BY TYPING THE FOLLOWING COMMAND LINE:

qedx my macro.qedx add
THE FOLLOWING MACRO IS INVOKED WITH BUFFER b(args)
CONTAINING THE ARGUMENT add

my_macro.qedx

r \b(args).fortran
1,$s/write.®)/print/
W

q

4-12 FO1

TOPIC V

THE STORAGE SYSTEM

Page
Segments . . ¢ 4 e v e v e e e e e e e 5-2
Directories . . . « . ¢ « 4 0 4 4 e . 5-6
Storage System Control 5-8
Storage System Hierarchy . . . o e e e s 5-10
Pathname Conventions o o s s e . 5-13

5-1 . | FO1

This page has intentionally
been left blank.

- 5-1i : FO1

& SYSTEM GOALS:

I DECENTRALIZATION OF THE SYSTEM'S LOGICAL FILE SPACE

I EASE OF USE

@ EFFECT ON STORAGE SYSTEM
I HIERARCHY OF DIRECTORIES

I PATHNAME CONVENTION

>udd>FED>LJones>tools>my_editor

I WORKING DIRECTORY CONCEPT

change _wdir >udd>FED>LJones>tools

5-1 FO1

SEGMENTS

o jihllolnes)
/’(/4}‘?/ ’"%";(f J

SEGMENT
I THE BASIC UNIT OF INFORMATION STORAGE
I SOMETIMES REFERRED TO AS A FILE

I SEGMENTS RESIDE ON DISK PACKS (SECONDARY STORAGE)

[SIZE IS INTEGER NUMBER OF RECORDS (1024 WORDS). 0,1,2,3...

0 MAXIMUM SIZE IS 256 RECORDS (256K WORDS)

ALL SEGMENTS HAVE AT LEAST ONE GIVEN NAME (ENTRYNAME)
home_work_3

add.pl1

start_up.ec

5-2

FO1

SEGMENTS

@ MUST DISTINGUISH BETWEEN THE CONTENTS OF A SEGMENT AND THE
ATTRIBUTES OF A SEGMENT .

I THE CONTENTS OF A‘SEGMENT MAY BE:
I DATA (EITHER RAW OR FORMATTED)
I TEXT (USUALLf ASCII)
I SOURCE OR OBJECT PROGRAM

I EMPTY (ZERO LENGTH)

I SOME ATTRIBUTES OF A SEGMENT ARE:
I THE NAME(S) OF THE SEGMENT (CALLED ENTRYNAME(S))

] THE SEGMENTS UNIQUE IDENTIFIER (A UNIQUE, 36 BIT, INTERNALLY
USED NAME)

1 THE AUTHOR (I.E., THE user_id OF THE CREATOR)
] THE LENGTH (IN BITS) OF THE SEGMENTS CONTENTS

1 THE BIT COUNT AUTHOR (I.E. THE wuser_id OF THE LAST PERSON
TO MODIFY THE CONTENTS) -

I THE ACCESS CONTROL LIST SPECIFYING WHO MAY ACCESS THE
SEGMENT AND HOW THEY MAY ACCESS IT

I THE AMOUNT OF DISK SPACE (IN RECORDS) OCCUPIED BY THE
SEGMENT

5-3 | FO1

SEGMENTS

I DATE AND TIME SEGMENT'S CONTENTS WERE LAST MODIFIED

I DATE AND TIME THE SEGMENT'S ATTRIBUTES WERE LAST MODIFIED

DATE AND TIME SEGMENT'S CONTENTS WERE LAST DUMPED (I.E.,
COPIED TO TAPE BY THE MULTICS BACKUP PROCEDURES)

I DATE AND TIME SEGMENT'S CONTENTS WERE LAST REFERENCED
[THE STATE OF THE SEGMENT'S COPY SWITCH

I THE STATE OF THE SEGMENT'S SAFETY SWITCH

THE CONTENTS OF A SEGMENT MAY BE READ BY USING THE print COMMAND
OR qedx's "r" AND "p" REQUESTS

THE ATTRIBUTES OF A SEGMENT MAY BE OBTAINED BY USING THE list OR
THE status COMMAND

THE ACCESSING OF A SEGMENT'S CONTENTS AND A SEGMENT'S ATTRIBUTES
ARE INDEPENDENTLY CONTROLLED BY THE MULTICS ACCESS CONTROL
MECHANISM

54 FO1

CONTENTS

The Multics System i
s a general purpose
computer system deve

achusetts Institute
of Technology and H
oneywell Infor-\012
mation Systems. Int

1 markets\012in Janu
ary 1973, Multics w
as then the result o
f more than 7 years
of research.\012

loped by the\012Mass

roduced to commercia}

SEGMENTS

ATTRIBUTES

names:
author:

access:

bit count:

records used:

date modified:

date dumped:

date used:

ATTRIBUTE VALUE

home_work_3, hw3
May.FED.a

w May.FED.*
W % SysDaemon.*

r
r
49698

2

03/721/77 1034.4 mst
03/21/77 1051.0 mst

09/07/77 0818.9 mst

MAY HAVE UP TO 19 MILLION SEGMENTS IN A SYSTEM (512 MSU * 38,000

SEGMENTS)

e ——

_/

3 ME SEGMENTS CONTAIN THE NAMES,
kﬁiﬁiﬁiﬁfﬁ\fﬁD ATTRIBUTES OF OTHER S

I THESE SEGMENTS SERVE AS A CATALOG OF THE OTHER SEGMENTS

I THESE "CATALOG" SEGMENTS\ARE CALLED DIRECTORIES)

FO1

DIRECTORIES

® DIRECTORY

I A SEGMENT CONTAINING THE NAMES, ADDRESSES AND ATTRIBUTES OF
OTHER SEGMENTS AND/OR OTHER STORAGE SYSTEM ENTITIES

I A MEANS OF ORGANIZING (CATALOGING) SEGMENTS AND/OR OTHER
STORAGE SYSTEM ENTITIES

I SPECIFICALLY, A DIRECTORY MAY BE A CATALOG OF THE FOLLOWING
STORAGE SYSTEM ENTITIES:

=
1)
—f
Ty
2]

- —

I SEGMENTS (SINGLE SEGMENT FILES)
I MULTISEGMENT FILES

I OTHER DIRECTORIES
I LINKS

MAY BE EMPTY

=3

® ALL DIRECTORIES HAVE AT LEAST ONE GIVEN NAME (ENTRYNAME)

udd s~ aéuﬁzgy aiunzzéﬁ
FO1
Dir_A

system_library unbundled

5«6 FO1

DIRECTORIES

seg_1

ATT'S

Student _01

Prince

ATT'S

T

hw_dir‘

ATT'S

\

add.pl1

ATT'S

N\

seg_1

hw_dir

Student 01

add.pl1

seg_1

Prince

5-7

hw_dir

FO1

STORAGE SYSTEM CONTROL

MAY HAVE UP TO 19 MILLION SEGMENTS IN A SYSTEM, SOMEONE MUST
CONTROL:

I THE ALLOCATION OF DISK SPACE TO USERS (WHO GETS WHAT?)

] THE CREATION AND USE OF SEGMENTS (I'VE GOT A SECRET!)

I THE SHARING OF SEGMENTS (YOU MAY USE MINE TOO!)

HIERARCHY OF ADMINISTRATORS
I THE SYSTEM ADMINISTRATOR
I PROJECT ADMINISTRATORS

[USERS

5-8 FO1

STORAGE SYSTEM CONTROL

 SYSTEM
ADMINISTRATOR
ProjA PROJECT FO1 PROJECT
ADMINISTRATOR ADMINISTRATOR
USER USER USER USER| |USER| Juser] |Juskr
May- Kerr Abel s o1] s 02} s 03] Is o4

5-9 | FOT

STORAGE SYSTEM HIERARCHY

® NEED TO PARTITION THE FAMILIES OF DIRECTORIES AND SEGMENTS INTO
MANAGEABLE COMMUNITIES :

® STORAGE SYSTEM IS MAPPED ONTO ADMINISTRATION HIERARCHY

- /"'\ M‘J?
ROOT
DIRECTORY
USER DIRECTORY Y
DIRECTORY i
ProjA , FO1
DIRECTORY DIRECTORY
May Kerr Abel S 01 S 02 S 03 S 04
DIR DIR DIR DIR |pTR DIR DIR

5-10 FO1

STORAGE SYSTEM HIERARCHY

THE STORAGE HIERARCHY IS ANALOGOUS IN FORM TO AN INVERTED TREE

THE USER DIRECTORY DIRECTORY (udd) EMANATES FROM THE ROOT
DIRECTORY

ALL PROJECT DIRECTORIES EMANATE FROM THE USER DIRECTCRY
DIRECTORY (udd)

ALL USER DIRECTORIES EMANATE FROM THEIR RESPECTIVE PROJECT
DIRECTORIES

USERS MAY ARBITRARILY CREATE DIRECTORIES SUBORDINATE TO THEIR OWN
USER DIRECTORY - UP TO A MAXIMUM DIRECTORY DEPTH OF 16 (TOP TO
BOTTOM) —_ T

A SEGMENT WHOSE POSITION IS IMMEDIATELY BELOW A GIVEN DIRECTORY IS
SAID TO BE:

Iln the directory"
- OR -
"Under the directory"

5-11 FO1

STORAGE SYSTEM HIERARCHY

system_library_

user dir dir

system_library_

standard (udd)™ unbundled
ProjA FO1
May Kerr Abelv S 01 S 02 S 03 S 04

l seg_1 l ' Prince'

hw_dir Aladd.pl1l

FO1

PATHNAME CONVENTIONS

& ABSOLUTE PATHNAME

|

A PATHNAME THAT UNIQUELY IDENTIFIES A SEGMENT (OR DIRECTORY) BY
ITS ABSOLUTE POSITION IN THE DIRECTORY HIERARCHY

FORMED BY CONCATENATING A SEGMENT'S (OR DIRECTORY'S) ENTRYNAME
WITH ALL SUPERIOR DIRECTORIES LEADING BACK TO THE ROOT

>udd>F01>Student 01>add.plt

THE > (GREATER-THAN) CHARACTER IS USED TO SEPARATE THE
ENTRYNAMES IN A PATHNAME

s

AN ABSOLUTE PATHNAME ALWAYS BEGINS WITH > (GREATER-THAN)

0 DIRECTORY ABSOLUTE PATHNAMES
>udd>Pr6jA
>udd>F01>Student_01
>udd>F01>Student_01>hw_dir

I SEGMENT ABSOLUTE PATHNAMES
>udd>F01>Student_01>add.pl1
>udd>F01>Student_01>hw_dir>lesson_2

>udd>ProjA>Kerr>start_up.ec

5-13 FO1

PATHNAME CONVENTIONS

NOTICE THAT AN ABSOLUTE PATHNAME SUCH AS

>udd>ProjA>Kerr>start_up.ec

IDENTIFIES:)
I THE ENTRYNAME OF THE SEGMENT (start_up.ec)

I THE Person_id OF THE "OWNER" (Kerr)

5-14 | ' FO1

PATHNAME CONVENTIONS

e HOME DIRECTORY (WHERE THE HEART IS)

I THE DIRECTORY IN WHICH THE USER "FINDS"™ HIMSELF IMMEDIATELY
AFTER LOG IN

I THE INITIAL WORKING. DIRECTORY

I THE Person_id AND Project_id GIVEN AT LOG IN DETERMINE THE HCHE
DIRECTORY

I IS GENERALLY: >udd>Project_id>Person_id

>udd>F01>Student_02
>udd>ProjA>Abel

& WORKING DIRECTORY (WHERE THE ACTION IS)

I THE DIRECTORY 1IN WHICH THE USER IS CURRENTLY WORKING (THE
INITIAL WORKING DIRECTORY IS THE HOME DIRECTORY)

I THE USER MAY CHANGE HIS WORKING DIRECTORY, AS DESIRED, TO ANY
OTHER DIRECTORY IN THE STORAGE SYSTEM

I COMMANDS SUCH AS list AND qedx's "r" and "w" WILL OPERATE ON
THE SEGMENTS IN THE USER'S WORKING DIRECTORY

5-15 FO1

PATHNAME COﬁVEﬁTIONS

RELATIVE PATHNAME

I A PATHNAME THAT UNIQUELY IDENTIFIES A SEGMENT (OR DIRECTORY) BY
ITS POSITION RELATIVE TO THE USER'S WORKING DIRECTORY

I NEVER BEGINS WITH > (GREATER-THAN)

-

- rromamn—r—
e —

1 DIRECTORY RELATIVE PATHNAME

ProjA
udd>ProjA

Student 01
FO1>Student 01

hw_dir
Student_01>hw_dir
FO1>Student_0T>hw_dir

I SEGMENT RELATIVE PATHNAMES

add.pl1
Student_01>add.pl1

lesson_2
hw_dir>lesson_2

start_up.ec
Kerr>start_up.ec
ProjA>Kerr>start_up.ec

THE WORKING DIRECTORY CONCEPT IS SIMPLY A CONVENIENCE THAT ALLOWS

THE USER TO TYPE RELATIVE PATHNAMES INSTEAD OF THE LONGER ABSOLUTE
PATHNAMES

:: ¢%; P /@g P2 Affqdv;i

5«16 ' FO1

PATHNAME CONVENTIONS

ENTRYNAMES (PATHNAME MEMBER)

i

1 TO 32 CHARA

SHOULD NOT IN
——

(UNDERSCOR

I SIMULATES

(PERIOD)

I SEPARATES COMPONENTS OF AN ENTRYNAME

CTERS LONG
CLUDE > < #* = 7?2 % $

E)

A SPACE FOR READABILITY

Bobs orig_editor.pl1

ms_tester.old.fortran

" () SPACE OR TAB

LAST COMPONENT OF AN ENTRYNAME IS CALLED THE SUFFIX

ENTRYNAMES MUST BE UNIQUE WITHIN A DIRECTORY

SEGMENTS AND DIRECTORIES MAY HAVE MORE THAN ONE ENTRYNAME-

test.14 may.new_compiler

t.14m.nc

may_comp

5-17

homework_dir
hw_dir

hw

FO1

PATHNAME CONVENTIONS

@ NOTICE THAT IN THE SIMPLEST - CASE (WHERE A USER LOGS IN, CREATES
AND EDITS HIS HOME DIRECTORY FILES) NO KNOWLEDGE OF THE HIERARCHY
IS REQUIRED

5-18 : FO1

TOPIC VI

STORAGE SYSTEM COMMANDS

Directory Manipulation Commands « . « « . . 6-1
Segment Manipulation Commands « 6=3
Storage System Examples ¢ ¢« ¢ ¢ ¢« ¢ o o « o & o b6b=-1

6~1 FO1

This page has intentionally
been left blank.

6-11 ' FO1

DIRECTORY MANIPULATION COMMANDS

)

/

® print_wlir, pwd (WHERE AM I?)
\ = 7

.v"”
"\w.._., ———— -

0 PRINTS THE PATHNAME OF THE CURRENT WORKING DIRECTORY

I USAGE: print_wdir

pwd

e

L

® change_wéf:; cwd (MOVE OUTI)

i s
\ ‘\N‘“w—w’/” o

] CHANGES THE USER'S WORKING DIRECTORY

] USAGE: change_wdir {path}
cwd dir_A
cwd >udd>F01>Student_08>dir_A

cwd

6-1 FO1

DIRECTORY MANIPULATION COMMANDS

/
create_dir, cd (UP-TO 16 DEEP)

e

] CREATES AN EMPTY DIRECTORY
] DOES NOT CHANGE THE USER'S WORKING DIRECTORY

0 USAGE: create_dir paths {-control_args}
ed dir_A

cd >udd>F01>Student_09>myd

delete_dir, dd (DO YOU REALLY...?)

d
St
\
0 DELETES™(DESTROYS) SPECIFIED DIRECTORIES (AND ALL SUBORDINATE
DIRECTORIES AND SEGMENTS)

0 USAGE: delete_dir paths

dd programs

dd >udd>F01>Student_01>programs

6-2 - FO1

SEGMENT MANIPULATION COMMANDS

create, cr. (SELDOM NEEDED)

-

I CREATES AN EMPTY SEGMENT

I USAGE: create paths
cr seg 1
cr seg_1 seg_2 A B

cr >udd>F01>5tudent_07>add.pl1

delete, dl

—
ey

I DELETES (DESTROYS) SPECIFIED SEGMENTS

I USAGE: delete paths
dl seg_1 add.pl1

FO01

SEGMENT MANIPULATION COMMANDS

® copy, cp
R

zé#@amwxfﬁ&%(‘t”°J%&A i;'éEZ?Mj
0 COéiES A SPECIFIED SEGMENT TO A NEW POSITION iN THE HIERARCHY

I DOES NOT COPY A SEGMENT'S "ADD NAMES" UNLESS REQUESTED

1 USAGE: copy path1 {path2} {-control_args}
cp >udd>FED>LJones>add >udd>FED>LJones>exp>add
cp >udd>FED>LJones>add add.old
cp >udd>FED>LJones>add

cp >udd>FED>LJones>add -name

/:-Fv“‘,,‘.wﬂs e _ | Af{W i ‘ ‘
8/ move S ﬁéﬂﬁ_mwi:w@wfaﬁgy0ﬁzgé ﬁ“??”*";Zh

] MOVES A SPECIFIED SEGMENT (TO INCLUDE ACL AND ADD NAMES) TO A
NEW POSITION IN THE HIERARCHY :

I USAGE: move pathl {path2} {-control_args}
move >udd>FED>Kerr>dev>x_sort >udd>FED>Kerr>tools>sort
move >udd>FED>Kerr>dev>x_sort sort

move >udd>FED>Kerr>dev>x_sort

6-4 FO1

SEGMENT MANIPULATION COMMANDS

A T

add_name, an (gLIAS) /Wﬂub-fzujf

!

I ADDS ALTERNATE NAME(S) TO A SEGMENT OR DIRECTORY
I SUCH NAMES ARE CALLED "ADD NAMES®

0 USAGE: add_name path names
P . N g =
an seg_l.new @ _1.n @1

an >udd>F01>Student_01>seg_1.new sin

vfw
b b y
pots B

delete name, dn
. - : -—:

N
s

0 DELETES NAME(S) FROM SEGMENTS AND DIRECTORIES

1l USAGE: delete_name paths

dn seg_1.new sin

6-5 FO1

SEGMENT MANIPULATION COMMANDS

® rename, rn

{ 4

e

I REPLACES A SEGMENT OR DIRECTORY NAME WITH ANOTHER

I USAGE: rename pathl namel...pathn namen

rn s_1.n seg_1l.new

1

® list; 1s /(ROLL CALL)

S~

./

S

0] RETURNS ATTRIBUTE INFORMATION ABOUT STORAGE SYSTEM ENTITIES

(? Dyt , f,«jk)z»f{’, zvéféa:é«&;fa—

%ﬂ BY DEFAULT ONLY SEGMENTS ARE LISTED ég ;2_-' Z
/’z"/’MJ

I USAGE: list {entrynames} {-control_args}
1s

ls add.pl1 seg_1 4 -
N - . e g ‘A.WW) 22 i
ls<£§;L\/'ﬂé“¥2;;””‘ é # 7

ls -all -sort name

list -date_time_contents _modified

6-6 ~ FO1

SEGMENT MANIPULATION COMMANDS

,‘/“.‘“)

e status, st (WHO, WHAT, WHERE, AND WHEN)

—

5,
. -

=1

RETURNS STATUS INEORMATION ABOUT SEGMENTS AND DIRECTORIES,
INCLUDING E—— ——

I DATE AND TIME MODIFIED, USED AND DUMPED
] User_id OF AUTHOR AND User_id OF LAST MODIFIER

i SIZE, ACCESS CLASS, ACCESS MODES, RING BRACKETS

I USAGE: - status paths {-control_args}
- st seg_1
- st seg_1 -length

. 8t seg_2 -author -date

I PRINTS THE CONTENTS OF A SEGMENT
il dedLil-1R

e

———

I USAGE: print path {begin} {end}
pr seg_1
pr add.pl1l 150
pr prince 40 120
pr >udd>F01>Student_08>add.pl1

6-7 FO1

SEGMENT MANIPULATION COMMANDS

compose, comp (PLASTIC SURGERY)

FORMATS TEXT SEGMENTS INTO MANUSCRIPT FORM

SEGMENTS MUST HAVE SUFFIX OF compin AND NORMALLY CONTAIN
CONTROL STATEMENTS WHICH DRIVE THE FORMATTING

IF OUTPUT IS DIRECTED TO A SEGMENT, THE ENTRYNAME IS GIVEX A
SUFFIX OF compout

COMMAND EPLACES runoff COMMAND, AND PROVIDES A

THIS THE
SU PERSET OF THE runoff CAPABILITIES TO INCLUDE INLINE ARTWORK

USAGE: compose paths {-control_argsl

comp thesis.compin

comp thesis.compin -in 10 -of -dv dtc300s -pass 2

6-8 FO1

SEGMENT MANIPULATION COMMANDS

dprint, dp (START THE PRESSES!)

I QUEUES A REQUEST TO PRINT THE CONTENTS OF A SPECIFIED SEGMENT
ON THE LINE PRINTER

I THE USER MAY SPECIFY ONE OF THREE PRIORITY QUEUES (QUEUE "3" IS
ASSUMED - LOWEST PRIORITY, LOWEST COST)

I THE PRINTING IS DONE BY ONE OF THE SYSTEM DAEMONS (A SERVICE
PROCESS)

1 USAGE: dprint {-control_args} {paths}
dp seg_1
dp -cp 4 -ds MD_104 seg 1 ‘
dp seg_1 -cp 3 seg_2 ~-ds Bldg_4 seg_3
dp -he "Tom Smith" -notify seg_1 add.pli
dp -delete -q 1 Prince

I DEFAULTS: =-cp 1, -ds Project_id, -he Person_id, -q 3

6-9 FO1

oL-9

104

110029 Kstser.F0tu.a for Student 09 (4. 4] 110029
>udd>Becriiddconpose.artuork,infe
e

L2222 *s [24

*e e *e (21

-e *e *e *v

X221yl L 2] e -d
*e e oo -t

. e e -8
ee e se s)

so 7 ee secnas

- - .

G3/727/78 142%.6 est Mon pres Noneywell LISD Phesnins Systeo W
(2213127 L1 [1] L X]

*e * L1} -r -e *d e

e e [23 o ey ee e

*oeshO® sestoe e .o 122213 (1221} *® dddas ahbaded ad ok *d

e ‘0 -h -0 .t L 1] L 2] "o o*h e o *h LR *d
ad *e L X LX) *e *e addddde (L] 1] *e L 1] e e
[) [12 e LA as e -t -e LT) e *e * *e .d
*e06ae L 1] toaNbee asatdee atabed [T3 L 23 *s L L] dodede
odesased
>udd>boc>libd>compose-artwork, info
110029 Ksigser.FOlu.a for Student_01 FOY 110029

l”m"-”l.'lwmgl"..m..“lMIOMMIHWI“”””“W :l mmmm: B ‘

Vv © © © ©

[N R Y ™ I ¥ V)

-

Q © VvV VvV v v

SANYWWOD NOILVINJINYW INIWDIS

t1-9

Lod

A A A A A A A A A n ’HJ

~ ~ ~ ~ ~

~

A A A A AN

(A L2 1]

* -
LX L S]]

110029 >D>udd>doc>lib>compose. srtuork,info

L 24 2] tee L d - date L1 R ttae
* » . eos e L] . - » -
- - * & & e (22T .] st
- - - » - - L] *
(XXl ate - L - LR L2221

cenne
-
L2322
*
taknw

. ssee feeen

-« » * - - :
ceese esne .
. . o e .
. - . e - .

L4 *ne
- -

* -
e]

- L2 2

$55ISTSSSEISSSESESISSSSSSIESSSE8SES8SSSSSTSSSETITSETISITTISLES
s i s

$ Reguested 03/27/78
Output a3/27/778

printer queuye 3

1410.5 ast %en
1425.6 ast Moo

prta

122 Llines ot 30.50 per 1000 Lines

Charge to Kaiser .FOiv.a

s
s
s
s
3
$ 3 pages
s
]
4
]
s
$

$$5$8338333SS355S3SSSSSSSTSTSETSLTESTITIISIISESSSISSSSSSSSSSSS

110029 >udd>doc>libd>compose.artwork.info

s
4
s
s
4
$
s
s
s
s
0,06 S
1]
$

18029

110029

L N B 3 3

LI L2

LN N I 2
LI)
LI 3N N 3

-

A e

[o

3

SANVAWOD NOILVINdINVW INIWDIS

SEGMENT MANIPULATION COMMANDS

® dpunch, dpn (START THE PUNCHES!)

I QUEUES A REQUEST TO PUNCH THE CONTENTS OF A SPECIFIED SEGMENT
ON THE CARD PUNCH

I CONTROL ARGUMENTS AND DEFAULTS ARE THE SAME AS THE dprint
COMMAND 'S

I USAGE: dpunch {-control_args} {paths}

dpn -he Larry -ds "Room 21" prince

. .
h //
N

® list_daemon_requesps; lggﬂ_
/ /

.

R

I PRINTS INFORMATION ABOUT OUTSTANDING dprint AND dpunch REQUESTS
IN A SPECIFIED QUEUE (DEFAULT IS -queue 3)

I USAGE: 1list_daemon requests {-control_args}

ldr

ldr -queue 1

6-12 . FO1

SEGMENT MANIPULATION COMMANDS

cancel daemon requést, edr
- = L —

*a

§ CANCELS A dprint OR dpunch REQUEST IN THE QUEUE SPECIFIED
(DEFAULT IS -queue 3)

I USAGE: cancel_daemon_request request_id {-control_args}
" edr prince
cedr -id 202008

cdr -entry prince

walk subtree, ws (AND DON'T COME BACK UNTIL YOU ARE THROUGH!)

| EXECUTES ANY SUPPLIED COMMAND LINE IN A SPECIFIED DIRECTORY
AND ALL INFERIOR DIRECTORIES

1 A LIBRARY MANAGEMENT TOOL

I USAGE: walk subtree path "command_line" {-control_args}
ws >udd>F01 "list -all"
WS -wd "sa ¥# # ¥ #n

WS Gﬂﬁﬁ"da LJones.*.*¥" _pottom_up

|
dZL Wo £ Kive D IRECTER)

6-13 ‘ FO1

STORAGE SYSTEM EXAMPLES

NOTE: THE READY MESSAGE IS NOT SHOWN IN THE FOLLOWING TERMINAL
SESSION ‘

W_DIR ‘
\ Student_01
! pwd (print_wdir)
>udd>F01>Student_01 (output)
! 1s (1ist)
ﬂﬂﬁﬁzi///,//"birectory empty. (output)
Y] qx (gedx)
! a (append mode)
! add: proc (text)
! end add (text)
! \f (edit mode)
! w add.pl1 (write)
! q (quit)
! cr seg_1 Prince | (create)
! cd hw_dir (create_dir)
W_DIR |

\ Student_01

seg_1 Prince hw_dir add.pl1

6-14 ' FO1

STORAGE SYSTEM EXAMPLES

pwd :
>udd>F01>Student_01

ls

"
—
-

Segments = 3, Lengths

rw 0 Prince
rw 0 seg 1
rw 1 add.pl1

ls -sort name =-all

Segments = 3, Lengths = 1.
rw 1 add.plt

rw 0 seg_1

rw 0 Prince

Directories = 1.

sma hw_dir

er hw_dir>lesson_1.math
cwd hw dir

pwd ~ |
>udd>F01>Student_01>hw_dir

cr lesson_12.eng

6-15

(print wdir)

(output)

(1list)

(output)
(output)
(output)
(output)
(output)
(output)

(list)
(output)

(output)

(output)
(output)
(output)
(output)
(output)
(output)
(output)
(output)

(create)

(change_wdir)

(print wdir)

(output)

(create)

FO1

STORAGE SYSTEM EXAMPLES

Student_01

seg_1

W_DIR

~\

Prince.

hw_dir

add.pl1

lesson_12.eng

lesson_1.math

FO1

STORAGE SYSTEM EXAMPLES

ls lesson_12.eng | y (list)
&v' (output)
Segments = 1, Lengths = 0. jU”JF% (output)
i& L (output)
rw 0 1lesson_12.eng % (output)

PR /

ls -sort name -reversek:ftﬁjd/ (1ist)
' - . (output)
Segments = 2, Lengths = 0. (output)

' _ (output)
09/13/77 0849.2 r w 0 1lesson 12.eng (output)
09713777 0849.1 r w 0 lesson_tl:.math (output)
cwd A , (change_wdir)
pwd (print_wdir)
>udd>F01>Student_01 (output)
dp add.pl1 (dprint)

1 request signalled, 22 already in queue 3 (output)

ws =-wd "ls -brief"

(walk subtree)

(output)

>udd>F01>Student _01 (output)

(output)

Segments = 3, Lengths = 1. (output)
(output)

Prince . (output)
seg 1 ' (output)
add.pl1 (output)
- (output)

>udd>F01>Student_01>hw_dir (output)

_ : (output)

Segments = 2, Lengths = 0. (output)
(output)

lesson 12.eng (output)
lesson_1.math (output)

YOU ARE NOW READY FOR WORKSHOP
#3

6-17 - FO1

This page has intentionally
been left blank.

6-18 . FO1

TOPIC VII

‘THE COMMAND LANGUAGE

What is a Command 7-1
Command Arguments . « « &« ¢ « ¢ o ¢ s s o « o« o o o o « . T4
Common Control Arguments ¢« . « + « « . . T-6
Star Convention . . « v v v v v v e e e e e e e e e e e 7T
Subsystems 4 v 4 i et e e e e e e e e e e 7-1

7-1 FO1

This page has intentionally
been left blank.

7-ii FO1

WHAT IS A COMMAND

& COMMAND PROCEDURE

I A PROGRAM - USUALLY WRITTEN BY A SYSTEMS PROGRAMMER
-1 RESIDES IN ONE OF THE SYSTEM'S LIBRARIES
[EXECUTED BY TYPING ITS NAME

I DESIGNED TO
[PERFORM EXPECTED TASK
I ACCEPT AN ARBITRARY NUMBER OF ARGUMENTS
I REPORT TYPING ERRORS

I HANDLE OTHER USER ERRORS

7-1 FO1

WHAT IS A COMMAND

COMMAND

I THE CHARACTER STRING TYPED AT THE TERMINAL TO INVOKE A SPECIFIC
COMMAND PROCEDURE

-1 EXAMPLES:

I THE COMMAND PROCEDURE accept messages IS INVOKED BY TYPING
THE COMMANDS:

accept_messages

am

I THE COMMAND PROCEDURE print IS INVOKED BY TYPING THE
 COMMANDS: -

print seg_1

pr treasure_hunt

7-2 FO1

WHAT IS A COMMAND

COMMAND LINE

I A LINE TYPED AT THE TERMINAL WHEN AT MULTICS COMMAND LEVEL

I MAY BE ONE COMMAND
accept_messages
am

print seg 1

I MAY BE A MISTYPED COMMAND

primt seg_1

I MAY BE MORE THAN ONE COMMAND SEPARATED BY SEMI-COLONS
accept messages; pr seg 1

am; print start_up.ec; who

\

I MAY BE NULL (I.E., JUST A LINEFEED) Y :

I FREE FORMAT ACCEPTED (EXTRA SPACES ARE IGNORED)
list -all; sm LJones.FED TECO is ready!
print add.pl1
am; pm;who

am ;pm; who ;;

7-3 FO1

COMMAND ARGUMENTS

ARGUMENTS

I A SERIES OF CHARACTER STRINGS THAT FOLLOW A COMMAND

PATHNAME ARGUMENTS

I THE NAMES OF SEGMENTS OR DIRECTORIES UPON WHICH THE COMMAND IS
TO ACT

cwd >udd>F01>Student_01

print seg_1

CONTROL ARGUMENTS

I ARGUMENTS THAT MODIFY THE MANNER IN WHICH THE COMMAND PERFORMS
ITS TASK

I ALWAYS START WITH A - (MINUS)
list -segment
list -directory
list -all

list seg 1 -date_time_used

7-4 FO1

COMMAND ARGUMENTS

ARGUMENTS OF CONTROL ARGUMENTS

dprint -copy 2 -ds MS_102 add.pl1

dp ~cp 2 -ds *"MS 102" add.pl1
set_tty -modes crecho

memo -time 8am WAKE UP!

OTHER ARGUMENTS

sm Student_O4.F01 Going to lunch?

~print seg_2 15 40
login TSmith

NO ARGUMENTS
. e —“"_.\\\

-

ST print_wdir

defer_messages

" s i

DEFAULT ARGUMENTS (HURRAH FOR DEFAULTS!)

7 , .
fjm;mmgnange_wdlr {Home Directory}
LA |

A print seg_2 {first last}

7-5

FO1

COMMON CONTROL ARGUMENTS

LONG FORM SHORT FORM
-all -a
-brief -bf
-copy n -cp n
~-directory -dr
-long -1g
-optimize -ot
-print -pr
-queue n -g n
-segment -sm
-table -tb
-time {dt} -tm {dt}
-totals - ~tt

USUAL MEANING

OPERATE ON ALL TYPES OR ALL ENTRIES

SHORTEN THE VERBOSITY AND/OR
CONTENTS OQF RESPONSE

CREATE n COPIES

OPERATE ON DIRECTORIES

INCREASE THE VERBOSITY AND/OR

CONTENTS OF RESPONSE
OPTIMIZE

COMDPTI TRC)

LAV B ol B Y o T

GENERATED CODE (FOR

PRINT A STATUS OR SUMMARY REPORT
USE PRIORITY QUEUE n

OPERATE ON SEGMENTS, OR SEND OUTPUT
TO A SEGMENT

GENERATE A
COMPILERS)

SYMBOL TABLE (FOR

DELAY UNTIL THE SPECIFIED TIME, OR -
GENERATE TIMING STATISTICS

PRINT TOTALS

7-6 FO1

'STAR CONVENTION

@ STAR CONVENTION

o,

- N

I A SHORTHAND NOTATION ACCEPTED BY MANY COMMANDS USED TO SPECIFY
A GROUP OF SEGMENTS OR DIRECTORIES

I * MATCHES ANY SINGLE COMPONENT OF AN ENTRYNAME
o |

[%% MATCHES AN¥1GROUP OF COMPONENTS IN AN ENTRYNAME

1 ’z_ﬂATCHES ANY CHARACTER IN A COMPONENT OF AN ENTRYNAME

® ASSUME SOME DIRECTORY CONTAINS THE FOLLOWING SEGMENTS:

a.fortran seg_1.pl1
ad.fortran seg_1.new

add : - seg_1l.new.cobol
add.pl1 seg_1.0ld

new seg_1.0ld.pl1
new.a.fortran seg_l.old.test.pl1

@ EXAMPLES USING THE 1ist COMMAND (THE 1list HEADER IS NOT SHOWN)

list seg_1.pl1 seg_1l.new seg_1.0ld

rw 1 seg_1.pl1
rw 2 seg l.new
rw 1 seg_1.o0ld

7-7 FO1

list

STAR CONVENTION

seg_1.%
rw 1 seg_1.pl1
rw 2 seg_l.new
rw 1 seg_1l.0ld
list seg_1.%.*
rw 1 seg_l.new.cobol
rw 2 seg_l.old.pl1
P/
(
list new.¥% 7~ —"
rw 1 new
rv 1 new.a.fortran
list *.pl1
rw 1 add.plit
rw 1 seg_l.pl1
list #% pl1
rw 1 add.pl1
rw 1 seg_1.pl1
rw 2 seg_l.old.pl1
rw 1 seg_1.old.test.pl1
list # % # &
rw 1 seg_1l.old.test.pl1
&’%’/é}’b\—"
list a. ~——————— .Jﬂé“‘ . / Y
rw 1 add / ’
7-8

FO1

STAR CONVENTION

seg_l1.old.test.pl1

list s¥*.* pl1
rw 2 seg_).old.pl1
list s¥ ##% p¥ »
rw 1 seg_1l.pl1
rw' 2 seg_l.old.pl1
rw 1
list 2?77
rw 1 add
rw 1 new
list a?.%*
rw: 1 ad.fortran
list a?7%.#%
rw 1 ad.fortran
rw 1 add.pl1
list ad¥*.%#
rw 1 add
rw 1 add.pl1
rw 1 ad.fortran
list *#

<all segments>

7-9

FO1

SUBSYSTEMS

SUBSYSTEM

|

A COLLECTION OF PROGRAMS THAT PROVIDE A SPECIAL ENVIRONMENT FOR
SOME PARTICULAR PURPOSE

I EDITING
edm

qedx

0 CALCULATION

=Y
cal

I DEBUGGING
probe

debug

A USER ENTERS A SUBSYSTEM BY COMMAND AND EXITS THE SUBSYSTEM BY
REQUEST

TYPED LINES ARE INTERPRETED BY THE SUBSYSTEM, NOT BY THE
MULTICS COMMAND PROCESSOR; THEREFORE, THEY ARE NOT COMMAND
LINES

THE SUBSYSTEM MAY PERFORM 1ITS OWN REQUEST PROCESSING, FILE
HANDLING, AND ACCOUNTING

7-10 ‘ ' FO1

SUBSYSTEMS

@ REQUEST LINE FLOW

TYPED LINE

v

FRONT-END PROCESSOR

v

SUBSYSTEM

v

EXECUTION

& COMMAND LEVEL

I THE PROCESS STATE IN WHICH TYPED LINES ARE INTERPRETED BY THE
MULTICS COMMAND PROCESSOR

I TYPED LINES ARE REFERRED TO AS COMMAND LINES

® SUBSYSTEM LEVEL

I THE PROCESS STATE 1IN WHICH TYPED LINES ARE INTERPRETED BY THE
SUBSYSTEM

I TYPED LINES ARE REFERRED TO AS REQUEST LINES

T7=-11 FO1

This page has intentionally
been left blank.

7-12 FO1

TOPIC VIII

EXEC_COM BASICS

What is an Exec_com S, . . 8-1
"Exec_com Mechanism« 82
Start_up Exec_coms 8-4

8-1i FO1

This page has intentionally
been left blank.

8-11 ' FO1

WHAT IS AN EXEC COM

mnai—— ————— o——

EXEC_COM
I A SEGMENT THAT CONTAINS A SERIES OF COMMAND LINES
I MAY BE CREATED USING A TEXT EDITOR
I SEGMENT NAME MUST HAVE A SUFFIX OF ec
A.ec
print.ec

start_up.ec

0 THE COMMAND LINES ARE EXECUTED SEQUENTIALLY, AS A SET, BY USING
THE exec_com COMMAND

8-1 ‘ FO1

EXEC COM MECHANISM

g
w’“’“ﬁ\f % W“xxﬁ” i o %/(W

® exec kcom, ec_ /

=

0 EXECUTES THE COMMAND LINES CONTAINED IN AN EXEC_COM SEGMENT

I COMMAND LINES ARE PRINTED ON THE USER'S TERMINAL AS THEY ARE
EXECUTED

I USAGE: exec_com path
ec A.ec
ec print.ec

ec start_up.ec

® EXEC_COM LINE FLOW

EXEC_COM LINES

v
COMMAND PROCESSOR

v
EXECUTION

8-2 7 FO1

EXEC COM MECHANISM

EXAMPLE: LET THE SEGMENT print.ec CONTAIN THE FOLLOWING TEXT:

print.ec

cwd >udd>F01>Student_0T7
1s :

pr seg_ 1

logout

I TYPING THE ONE COMMAND
ec print.ec

HAS THE SAME EFFECT AS TYPING THE FOUR COMMANDS ABOVE

8-3 FO1

START UP EXEC COMS

e START_UP EXEC_COM
I HAS THE NAME start_up.ec
I LOCATED IN USER'S HOME DIRECTORY

THE COMMAND LINES CONTAINED WITHIN ARE
FOR THE USER AT LOGIN

I CAN ALSO BE INVOKED MANUALLY

ec start_up.ec

\?ﬁﬁiX(ﬂ SET-UP USER'S ENVIRONMENT

/ i
i

I CHECK ON EVENTS SINCE LAST LOGIN

I PERFORM ANY DESIRED TASKS AT LOGIN

8-4

AUTOMATICALLY EXECUTED

FO1

START UP EXEC COMS

@& EXAMPLE: LET THE SEGMENT start_up.ec CONTAIN THE FOLLOWING TEXT:

start_up.ec

am
pm

\

I THESE TWO COMMANDS ARE AUTOMATICALLY EXECUTED FOR THE USER AT
LOGIN

® NOTE: THE PRESENCE OF A start up.ec.WILL SUPPRESS THE PRINTING OF
THE SYSTEM'S MESSAGE OF THE DAY AT LOG IN

8-5 ’ FO1

START UP EXEC COMS

print_motd, pmotd

0 PRINTS OUT THE MESSAGE OF THE DAY IF THE USER HASN'T SEEN'IT

I CREATES AND USES A HOME DIRECTORY SEGMENT NAMED person_id.motd
I THIS COMMAND IS NORMALLY FOUND IN USER'S start up.ec

0l USAGE: print_motd

nmotAd
r..l' w -

8-6 , FO1

TOPIC IX

THE ABBREV PROCESSOR

What is the Abbrev Processor . . 9-1
Abbrev Mechanism . . .« & ¢ ¢ ¢ ¢ ¢ « + o o o o « . 9-2
Abbrev Requests [. . . . » 9"“
Abbrev Examples . . . « « « . ' 9-8

9-1 FO1

This page has intentionally
been left blank.

9-ii FO1

WHAT IS THE ABBREV PROCESSOR

® ABBREV PROCESSOR

I A FACILITY ALLOWING USERS TO ABBREVIATE PARTS OF (OR WHOLE)
COMMAND LINES

I A SUBSYSTEM WHICH MUST BE EXPLICITLY INVOKED BY THE USER
(ABBREV MODE) :

I FUNCTIONS
I RESPOND TO ABBREV REQUEST LINES

I EXPAND ABBREVIATIONS IMBEDDED IN COMMAND LINES

9-1 © FO1

ABBREV MECHANISM

® abbrev, ab_ .~

0 PLACES THE USER IN ABBREV MODE. (INVOKES THE ABBREV PROCESSOR)

I USAGE: abbrev
ab

® COMMAND LINE FLOW

TYPED LINE

+

FRONT-END PROCESSOR

v -
{ABBREV pRc:cessom,;“?";”‘;;’a

v

COMMAND PROCESSOR

v
EXECUTION

9-2 . FO1

ABBREV MECHANISM

® ABBREV MECHANISM

I ABBREV PROCESSOR EXAMINES TYPED COMMAND LINES

] ABBREV REQUEST LINES
I BEGIN WITH "."
-0 DEFINE, DELETE, LIST ABBREVIATIONS
n bONTROL OTHER ABBREV OPERATIONS

§ COMMAND LINES
I DO NOT BEGIN WITH "."

I ANY AND ALL PREVIOUSLY DEFINED ABBREVIATIONS FOUND ARE
EXPANDED » ,

I COMMAND LINE IS THEN PASSED ON TO THE COMMAND PROCESSOR

I TATIONS ARE MAINTAINED IN A HOME DIRECTORY SEGMENT NAMED

Person_id.profile

-

9-3 . FO1

ABBREV REQUESTS

~

o
74

§ ADD AN ABBREVIATION TO THE USER'S PROFILE SEGMENT

)
/7 ’

I ABBREVIATIONS MUST BE 8 CHARACTERS OR LESS

1 USAGE: .a abbrev meahing-of-abbreviation
.a F1 >udd>F01
.a LARRY LJones.FED

0 ADD AN ABBREVIATION WHICH IS VALID ONLY AT THE BEGINNING OF A
COMMAND

I USAGE: .ab abbrev meaning-of-abbreviation
.ab dp dprint -he T.Smith -ds Stat_14
.ab cata list

.ab GO ec run_it.ec

9-4 FO1

ABBREV REQUESTS

. . d/’ (‘,,/J
% = o

\&www‘ -

! DELETE SPECIFIED ABBREVIATION(S) FROM THE USER'S PROFILE

I USAGE: .d abbrevl...abbrevn
.d LARRY

T

““o,\!

I LIST CURRENTLY DEFINED ABBREVIATIONS AND WHAT THEY STAND FOR

I USAGE: .1 {abbrevl...abbrevn}
.1
.1 F1 dp

@ .la

- -

0 LIST ABBREVIATIONS THAT BEGIN WITH THE SPECIFIED LETTER(S)
I USAGE: .la letterl...lettern

.la m

.lamd

9-5 FO1

ABBREV REQUESTS

e ‘A%;ZK
W 0 QUIT USING THE ABBREV PROCESSOR

/!
I USAGE: .q

i EXPAND AND SHOW THE COMMAND LINE WITHOUT .EXECUTING IT

I USAGE: .s text
.8 cwd F1; dp add.pll

9-6 o FO1

[=}

ABBREV REQUESTS

EXECUTE THE COMMAND LINE WITHOUT EXPANDING IT

USAGE 1: . text
(DON'T EXPAND) '
. print A.lunch.cb

USAGE 2:
(ACKNOWLEDGE)

ACKNOWLEDGE THAT THE USER IS IN ABBREV MODE (ABBREV RESPONDS
WITH "ab")

OFTEN USED TO AFFIRM COMMAND LEVEL WHEN "MULTING" WITH THE
READY MESSAGE OFF

9-7 FO1

ABBREV EXAMPLES

@ LET TSmith's PROFILE SEGMENT CONTAIN THE FOLLOWING ABBREVIATIONS

ft fortran
cb cobol
LARRY LJones.FED
home >udd>ProjA>TSmith
F1 >udd>F01
lunch sm LJones.FED Lunch time!
b dp dprint -he TSMITH -ds Stat_14

® EXAMPLES OF COMMAND LINE EXPANSION (IF IN ABBREV MODE)

print array dot.ft
print array_dot.fortran

sm LARRY Where's your dims program?
sm LJones.FED Where's your dims program?

cwd F1>Student_ 01
cwd >udd>F01>Student_01

dp add.pli
dprint ~he TSmith -ds Stat_14 add.pl?

list dp.ft
list dp.fortran

lunch
sm LJones.FED Lunch time!

9-8 | FO1

ABBREV EXAMPLES

print A.lunch.cb
print A.sm LJones.FED Lunch time!.cobol

. print A.lunch.cb
print A.lunch.cb

. print A.lunch.cobol
print A.lunch.cobol

print clunch.cb
print clunch.cobol

print A_lUnch.pl1
print A_lunch.pl1

® CANDIDATES FOR EXPANSION MUST BE
I PART OF COMMAND LINE (MAY BE THE ENTIRE COMMAND LINE)

I CHARACTER STRING, 8 CHARACTERS OR LESS, THAT ARE

[BOUNDED BY BREAK CHARACTERS

tab * <
newline . >
space ; [
" i]
$ ({
,) }

NOTE: _ : AND ? ARE NOT A BREAK CHARACTERS!

9-9 FO1

ABBREV EXAMPLES

YOU ARE NOW READY FOR WORKSHOP
#4

9-10 FO1

What is Programming .
Developing a Source Program .

Compiling a Source Program

PROGRAMMING ON MULTICS

TOPIC X

Entrynames and Entry Point Names
Executing an Object Program .

Debugging Tools . .
Dynamic Searching .

10-i

Page
10-1

10-4
10-7

. 10-11

10-13
10-18
10-21

FO1

This page has intentionally
been left blank.

10-1i FO1

WHAT IS PROGRAMMING

& PROGRAM

n

I A LOGICAL SEQUENCE OF OPERATIONS TO BE PERFORMED BY A COMPUTER

I SOURCE PROGRAM
I WRITTEN IN AN ENGLISH-LIKE PROGRAMMING LANGUAGE
I CREATED BY A USER VIA A TEXT EDITOR
I KEPT IN A SEGMENT CALLED THE SOURCE SEGMENT

I CANNOT BE EXECUTED

I OBJECT PROGRAM
I WRITTEN IN BINARY MACHINE LANGUAGE

I CREATED BY A COMPILER (WHICH IS ALSO AN OBJECT PROGRAM) FROM
THE SOURCE PROGRAM

l. KEPT IN A SEGMENT CALLED THE OBJECT SEGMENT

I EXECUTED BY TYPING ITS NAME

10-1 - FO1

WHAT IS PROGRAMMING

___PROGRAMMING LANGUAGES SUPPORTED BY MULTICS(1)

ﬁV_,PLLL-a (VERSATILE, BLOCK STRUCTURE, DYNAMIC ALLOCATION
J=—RECURSIVE, MANY DATA TYPES) ’

/

I FORTRAN (SCIENTIFIC COMPUTATIONS) ’5777

e e
o

I COBOL (BUSINESS APPLICATIONS, VERBOSE, WIDELY USED)

I BASIC (COMPUTATIONS, EASY TO LEARN, LIMITED DATA TYPES)

I APL (DATA MANIPULATION, CRYPTIC BUT POWERFUL)

] ALM (MULTICS ASSEMBLER LANGUAGE - YES! WE HAVE AN ASSEMBLER)

THERE EXISTS A SYSTEM PROGRAM, CALLED A COMPILER, FOR EACH
PROGRAMMING LANGUAGE SUPPORTED. COMPILERS ARE DESIGNED TO
TRANSLATE A PARTICULAR PROGRAMMING LANGUAGE INTO MACHINE LANGUAGE

(1) RELATED MULTICS COURSES: APL (G11 & F11), BASIC (F127), COBOL-T4

(F13), FORTRAN (F14), PL/I (F15, F15C, F15D).
10-2 FO1

WHAT IS PROGRAMMING

PROGRAMMING

DEVELOPING THE SOURCE PROGRAM 1IN THE PROGRAMMING LANGUAGE OF
CHOICE ’ ‘

COMPILING (TRANSLATING) THE SOURCE PROGRAM (SOURCE SEGMENT)
INTO AN OBJECT PROGRAM (OBJECT SEGMENT)

EXECUTING THE OBJECT PROGRAM USING TEST DATA
DEBUGGING THE SOURCE PROGRAM TO CORRECT ALL OBSERVED PROBLEMS

MAKING THE OBJECT PROGRAM AVAILABLE"

I SYSTEM PROGRAMS MUST BE ™INSTALLED"™ IN ONE OF THE SYSTEM
LIBRARIES :

I USER PROGRAMS NEED NO FURTHER ACTION EXCEPT THE SETTING OF
ACCESS TO ALLOW USE BY OTHER USERS

10-3 FO1

DESIGNING (OUTLINING) A SOURCE PROGRAM

DEVELOPING A SOURCE PROGRAM

I TOP-DOWN DESIGN

I MODULAR DESIGN

I FLOWCHARTING

I EXTERNAL

I INTERNAL
PROGRAM)

DOCUMENTATION (PURPOSE, GENERAL DESIGN, HOW TO USE)

DOCUMENTATION (STEP BY

I "SELF-DOCUMENTING" LANGUAGES

WRITING (CODING) THE SOURCE PROGRAM.
PROGRAMMING LANGUAGE

["GO-TO-LESS" PROGRAMMING

I MNEMONIC VARIABLE NAMES

10-4

STEP

(USUALLY ON

DESCRIPTION OF

THE

PAPER) IN SOME

FO1

DEVELOPING A SOURCE PROGRAM

.ﬂ ERROR DETECTION AND HANDLING

@ INPUTTING THE SOURCE PROGRAM, VIA A TEXT EDITOR, TO A SOURCE
SEGMENT .

I A SOURCE SEGMENT MAY BE GIVEN _ANY DESIRED NAME, HOWEVER, THE
SUFFIX MUST BE THE ENTRYNAME OF THE PROGRAMMING LANGUAGE USED

add.pl1 ran_num_gen.basic
A_alpha.cobol page_fault.alm

array_dot.fortran

OPTIONALLY FORMATTING THE SOURCE PROGRAM (COSMETICS)

[SEVERAL COMMANDS EXIST FOR THE PURPOSE OF FORMATTING SOURCE
PROGRAMS

I DONE TO IMPROVE THE READABILITY OF A SOURCE PROGRAM

I THE COMMANDS DETECT AND REPORT CERTAIN TYPES OF SYNTAX ERRORS,
AND ARE OFTEN USED AS A PRE-COMPILE EXAMINATION

10-5 FO1

DEVELOPING A SOURCE PROGRAM

[indent, ind

I IMPROVES THE READABILITY OF A PL/1 SOURCE SEGMENT

{path2} {control arg}

I USAGE: indent pathi
ind add.pl? add.ind.pl1
ind add.pli

ind >udd>F01>Student_09>add.pl1 -indent 3

I format_cobol_source, fcs

I CONVERTS FREE-FORM COBOL SOURCE PROGRAMS TO FIXED-FORMAT

I USAGE: format_cobol_source path1 path2

fes A_alpha.cobol A _alpha.fes.cobol

10-6 FO1

COMPILING A SOURCE PROGRAM

& COMPILER:

I A SYSTEM PROGRAM DESIGNED TO TRANSLATE A PARTICULAR PROGRAMMING
LANGUAGE (ENGLISH-LIKE) INTO MACHINE LANGUAGE (BINARY)

;ﬁgﬁp COMPILE COMMANDS (CREATE OBJECT PROGRAM AND OBJECT SEGMENT!)

I USAGE: language_name path {-control args}
pltl add.pli
pll >udd>F01>Student_09>add.pl1
cobol A _alpha.cobol
fortran array_dot.fortran
basic ran_num_gen.basic

alm page_fault.alm

& OBJECT PROGRAMS

I ALL OBJECT PROGRAMS PRODUCED BY MULTICS COMPILERS ARE:

I PURE (DO NOT MODIFY THEIR OWN CODE)

A ———————
e

I RE-ENTRANT (MORE THAN ONE USER MAY EXECUTE THE SAME CODE)

I RECURSIVE (A PROGRAM CAN CALL ITSELF)

I IN STANDARD FORMAT (OBJECTS GENERATED FROM DIFFERENT
LANGUAGES MAY CALL EACH OTHER EASILY) '

10-7 . FO1

{

Y
b

COMPILING A SOURCE PROGRAM

THE OBJECT PROGRAM IS PLACED 1IN A SEGMENT (CALLED THE OBJECT
SEGMENT) IN THE USER'S WORKING DIRECTORY

THE OBJECT SEGMENT IS GIVEN THE CORRESPONDING SOURCE SEGMENT'S
ENTRYNAME WITH THE SUFFIX REMOVED

add ran_num_gen
A_alpha | page_fault
array_dot

a COMPTLER LISTINGC

v~

1

1

VA s dedd bt BV b e ™t & AY

SOME CONTROL ARGUMENTS WILL CAUSE A COMPILER TO PRODUCE A
COMPILER LISTING OPTIONALLY CONSISTING OF A LINE-NUMBERED

SOURCE LISTING, A SYMBOL TABLE, AN OBJECT CODE MAP, ERROR
MESSAGES, ETC.

THE COMPILER LISTING IS PLACED IN A SEGMENT (CALLED THE LIST
SEGMENT) IN THE USER'S WORKING DIRECTORY ‘

THE LIST SEGMENT IS GIVEN THE CORRESPONDING SOURCE SEGMENT'S
NAME WITH THE ORIGINAL SUFFIX REPLACED BY THE SUFFIX list

add.list ran_num_gen.list

A_alpha.list page_fault.list
array_dot.list

COMPILING A SOURCE PROGRAM

@ DIAGNOSTICS

I COMPILERS WILL COMPLAIN ABOUT:
I SYNTAX ERRORS
I MISSPELLINGS

I UNDEFINED REFERENCES
I ERROR MESSAGES ARE PRINTED AT THE USER'S TERMINAL

| SEVERE ERRORS WILL SUPPRESS THE FORMATION OF THE OBJECT PROGRAM
AND OBJECT SEGMENT

[THE FORMAT OF ERROR MESSAGES IS COMPILER-DEPENDENT. THE
FOLLOWING IS A PL/I ERROR MESSAGE:

ERROR 158, SEVERITY 2 ON LINE 30
A constant immediately follows the identifier "zilch"
SOURCE: a = zilch 4;

10-9 FO1

COMPILING A SOURCE PROGRAM

Ml
/. \

DEVELOPED
l INTO
SOURCE
PROGRAM
WRITTEN
(VIA EDITOR)
INTO
INPUT TO .
M
SOURCE FORMATTING
SEGMENT ¢ FORMATS PROGRAM
(add.pl1)
INPUT
TO
OPTIONALLY
OBJECT 4 PRODUCES COMPILER PRODUCES) SOURCE
PROGRAM (A PROGRAM) 1 LISTING

WRITTEN ' WRITTEN

(BY COMPILER) (BY COMPILER)

INTO INTO
OBJECT LIST
SEGMENT - SEGMENT

(add) ' | (add.list)

10-10 FO1

ENTRYNAMES AND ENTRY POINT NAMES

® ENTRYNAME (
Al

] A NAME GIVEN TO AN ITEM CONTAINED IN A DIRECTORY

(g ="

ﬁ(‘ ENTRY POINT NAME

I THE NAME ASSOCIATED WITH AN ENTRY POINT IN AN OBJECT SEGMENT
. ——————— T e

® UNLESS OTHERWISE SPECIFIED, MULTICS ASSUMES THE ENTRY POINT NAME
IS THE SAME AS THE ENTRYNAME

</4.A/A/,) e (38

/) - 7
é;n'éf‘/ SLJ”é'L , 'Z ’cm/é}'/' -~

A

10-11 _ ~ FO1

oS

ENTRYNAMES AND ENTRY POINT NAMES

e

$ (DOLLAR SIGN)

—

I SEPARATES THE ENTRYNAME OF AN OBJECT SEGMENT FROM THE ENTRY
POINT NAME WITHIN THE OBJECT SEGMENT

I EXAMPLE USING AN OBJECT SEGMENT add HAVING ENTRY POINTS add AND

max
ﬁgjyﬂ«f INVOKED INTERPRETED ENTRY
N~ add AS AS POINT
. _~-fadd: v
szjtjzv | add add$add add
add$max add$max max
. lmax:
max max$max ?

0 EXAMPLE AS ABOVE WITH ALIAS NAME max ADDED TO THE SEGMENT

. v‘m%i add "INVOKED INTERPRETED ENTRY
L max ~_AS AS POINT
add:

add add$ add ‘add

add$max add$max max
max:

max max$max max

10-12 FO1

EXECUTING AN OBJECT PROGRAM

° AN OBJECT PROGRAM (OBJECT SEGMENT) IS EXECUTED BY TYPING ITS NAME
AT A TERMINAL

add : ran_num_gen
A_alpha page_fault

array_dot ' >udd>F01>Student_09>add

® POSSIBLE RESULTS OF EXECUTING A PROGRAM

L ——

e

I PROGRAM RUNS TO NORMAL TERMINATION & USER RECEIVES READY
MESSAGE :

I PROGRAM PAUSES FOR INPUT FROM THE USER'S TERMINAL

I PROGRAM HALTS BECAUSE OF A USER-IMPLANTED BREAKPOINT (A
DEBUGGING TOOL)

I PROGRAM HALTS BECAUSE OF A FATAL EXECUTION ERROR
ZALRL manLU R s

I OVERFLOW UNDERFLOW, DATA CONVERSION ERROR, . UNDEFINED
REFERENCE

I HALTS (INTERRUPTS) THE EXECUTION OF A PROGRAM OR COMMAND.
(FROZEN IN MID-AIR)

] RESPONDS WITH A READY MESSAGE CONTAINING A level CLAUSE

r 1038.5 0.185 0.012 27 qge_wﬁ@
s o ooz L
by =T g

10-13 FO1

EXECUTING AN OBJECT PROGRAM

| /z/w«ﬂ/“"ﬁ |
/\/ /

PROGRAM ISSUED A QUIT SIGNAL

I TERMINAL KEY LABELED ATTN, BRK, INTRPT, INTERRUPT,...

HALTS (INTERRUPTS) THE EXECUTION OF A

PROGRAM OR COMMAND.
(FROZEN IN MID-AIR)

I RESPONDS WITH A READY MESSAGE CONTAINING A level CLAUSE
r 1038.5 0.185 0.012 27 level 2,11

10-14

EXECUTING AN OBJECT PROGRAM

® THE USER'S STACK (A HISTORY OF CURRENT EVENTS)

< User logs in.

1 user.init_.admin —$ user—_init—admin..

-+ Given default overseer.

2 process_overseer_$ process_oversesr—)
Receives ready message.

User types “add”.

3 listen_$ listen_— ' level 1,3

. Abbrev processor called.

4 abbrev_$ abbrev..

- ,
§ command_processor_$ command_processor \)
i - - - _ Command line

— - . .
is interpreted.

6 command_processor_$ read_list
Program "add”

begins execution.

7 add $add

“‘add”’ requests i .

terminal read l .

and then WaitS{* 8 tty_$tty_get_line

User hits “‘break”. l

l_ l l 9 ipc_$ block quit

System
recovers | l I 10 return_to_ring.0_$ return_to_ring_.0_

from “‘Break”’.

I l 11 default_error_handler_$ wall

User receivesl l ' 12 get_to_cl_$ unclaimed_signal

level 2, 14 >
ready message.

| -

13 listen_$ release_stack level 2, 13

10-15 FO1

EXECUTING AN OBJECT PROGRAM

'POSSIBLE USER ACTIONS AFTER A QUIT SIGNAL OR FATAL ERROR

I IGNORE THE OLD LEVEL(S) AND PROCEED (EXPENSIVE)

| OBSERVE WHAT WAS HAPPENING USING DEBUGGING TOOLS

value k

value qty_on_hand

0 CHANGE VALUES OF VARIABLES USING DEBUGGING TOOLS

L RPN
ileL K=4

let qty _on_hand = 0

I start, sr —

RESTARTS THE PROGRAM OF THE IMMEDIATELY PREVIOUS LEVEL AT
THE INTERRUPT POINT

USAGE: start

_—

EXAMPLE:V WHILE IN gedx, THE USER SIGNALS QUIT WHILE DOING A

1,$p. AFTER RECEIVING A READY MESSAGE THE USER TYPES start,
AND THE 1,$p CONTINUES '

10-16 | FO1

EXECUTING AN OBJECT PROGRAM

I program_interrupt, pi
I RESTARTS THE PROGRAM AT A PROGRAMMER DETERMINED POINT

I PROGRAM MUST HAVE BEEN WRITTEN WITH A program interrupt
- HANDLER

I USAGE: program_interrupt
pi
I EXAMPLE: WHILE IN qedx, TRE USER SIGNALS QUIT WHILE DOING A

1,$p. AFTER RECEIVING A READY MESSAGE THE USER TYPES pi,
AND FINDS HIMSELF BACK IN THE EDITOR AT REQUEST LEVEL

I release, rl

e Y

I RELEASES THE IMMEDIATELY PREVIOUS LEVEL(S) (ONE OR ALL)

I USAGE: release {-control_arg}
rl
rl -all

10-17 FO1

DEBUGGING TOOLS

DEBUGGING TOOLS

I SUBSYSTEMS WHICH ARE USEFUL IN LOCATING, EXAMINING, AND

CORRECTING UNEXPECTED OCCURRENCES OR CONDITIONS WITHIN OBJECT
PROGRAMS

I SUCH TOOLS MINIMIZE THE NEED FOR MEMORY DUMPS

debug, db
[INVOKES AN INTERACTIVE DEBUGGING AID
I HARDWARE LEVEL, SYMBOLIC, CRYPTIC

I PROCEDURES MAY HAVE ORIGINATED FROM ANY LANGUAGE. (SYMBOLIC
CAPABILITY ONLY AVAILABLE FOR PL/I AND FORTRAN)

I IN ORDER TO UTILIZE SYMBOLIC CAPABILITIES, THE SOURCE PROGRAM
MUST HAVE BEEN COMPILED WITH THE -table CONTROL ARGUMENT

I USES A HOME DIRECTORY SEGMENT NAMED Person_id.breaks

[USAGE: debug
db

10-18 : FO1

DEBUGGING TOOLS

probe, pb

INVOKES AN INTERACTIVE DEBUGGING AID
SYMBOLIC, SOURCE LEVEL

PROCEDURES MUST HAVE ORIGINATED FROM PL/I, FORTRAN, OR COBOL
SOURCE

IN ORDER TO UTILIZE SYMBOLIC CAPABILITIES, THE SOURCE PROGRAM
MUST HAVE BEEN COMPILED WITH THE -table CONTROL ARGUMENT

USAGE 1: probe path
(SETTING) |

USAGE 2: probe
(EXAMINING)

A THOROUGH DISCUSSION OF THE probe COMMAND MAY BE FOUND IN THE
COMMANDS AND ACTIVE FUNCTIONS MANUAL AG92

10-19 FO1

DEBUGGING TOOLS

DEBUG
CAPABILITIES

EXAMINE DATA, SOURCE AND OBJECT
MODIFY DATA AND OBJECT

EXECUTE COMMANDS

CONDITIONAL BREAK POINTS

EXAMINE MACHINE CONDITIONS
EXAMINE REGISTERS
DUMP DATA IN VARIOUS FORMATS

10-20

PROBE
CAPABILITIES

EXAMINE DATA AND SOURCE
MODIFY DATA
EXECUTE COMMANDS

CONDITIONAL BREAK POINTS
AND/OR OPERATIONS

. - ——_
DYNAMIC SEARCHING)

@ RECALL:

I COMMAND PROCEDURE

I A PROGRAM INVOKED BY TYPING ITS NAME

[OBJECT PROGRAM

| EXECUTED BY TYPING ITS NAME

® COMMAND LINE INTERPRETATION

I THE FIRST WORD OF EVERY COMMAND IS ASSUMED TO BE THE NAME OF AN
OBJECT PROGRAM

list =-all
1s

send_message Student_05.F01 Where are you?

add

0 MULTICS SEARCHES THROUGH VARIOUS (PREDETERMINED) DIRECTORIES TO
FIND AN OBJECT SEGMENT HAVING THE SPECIFIED NAME

I IF THE SEARCHING IS SUCCESSFUL, LINKING OCCURS ("THE LINK IS
SNAPPED") AND EXECUTION COMMENCES

10-21 FO1

DYNAMIC SEARCHING

¢

ALL COMMANDS (SYSTEM PROGRAMS), USER-WRITTEN PROGRAMS, AND
SUBROUTINE MUST BE "FOUND" BEFORE THEY CAN BE EXECUTED

9

S s

E 4; }y e
2 v
N /// [

SEARCH RULES (WHERE, O'WHERE)

I A LIST SPECIFYING THE NAMES AND THE ORDER OF DIRECTORIES TO BE
SEARCHED

] SEARCH RULES ONLY HAVE SIGNIFICANCE FOR THE EXECUTION OF OBJECT
PROGRAMS. COMMANDS SUCH AS list AND print DO NOT SEARCH FOR

rT e T T A N R e Yol nl a2 1]

\‘W
'éﬁw DEFAULT SEARCH RULES

e

Ay 7 - 3
,;Aﬁﬁlf@“famwzf&wzv~w-r-initiated segments
i .} referencing directory
. working directory
- >system_library standard

A %éaj%wé‘\ >system_library unbundled
fﬁéﬁ%w‘ ' | >system library 1
’ >system_library tools
>system_library auth_maint

10=-22 FO1

SEARCH RULES EXAMPLE FOR USER JONES

Jones |<—Working Smith
directory

=
i
N
w
Jones’ TERMINAL INPUT ; Jones’ INITIATED SEGMENT LIST
COMMAND LINE TYPED SEGMENTS FOUND | REFERENCE
A ; NAME SEGMENT INITIATED
login Jones (login RELATED >,, o) : v) :
password SEGMENTS J™ 25 : < P } (login RELATED
: SEGMENTS
pwd > sss > pwd
Bl ' >udd>...> Jones >3 pwd , > sss > pwd
>udd>...>Jones >T S >udd > ... >Jones >$S
>udd > ...>Smith >XYZ >udd> ...>Smith > XYZ - T F >udd>...>Joqes>T
‘ >sudd>...>Smith>R . XYZ >udd > ... >Smith > XYZ
XYz >udd > ... >Smith > XYZ R >udd> ... >Smith > R
s>udd >...>Smith >R ABC >udd> ... >Jones >ABC
ABC > udd > ... >Jones > ABC pr > §$s > pr
' >udd >...>Smith>R : el
pr >udd>...>Smith >R.pl1 > $8S > pr
"O’l pr R.pl1 > sss > pr

ONIHOYVAS JIWVYNAQ

DYNAMIC SEARCHING

&

?ﬁ o(’j-r_int__search_rules, psr %Jféﬁlﬁdﬁﬂﬁ?

o

0 PRINTS THE USER'S CURRENT SEARCH RULES

I USAGE: print_search_rules

psr

§ﬁ7g7 ® add_search_rules, asr

.o—————__\

-:h-\N

[ADDS A DIRECTORY TO THE USER'S SEARCH RULES

I USAGE: add_search_rules pathl {-control_arg path2}

asr >udd>F01>Student_01>tools -after working_dir

initiated segments
referencing directory
working directory
>udd>F01>Student_01>tools
>system_library standard
>system_library unbundled
>system_library 1
>system_library tools
>system_library auth_maint

10-24

FO1

v \

' DYNAMIC SEARCHING

@ delete search rules, dsr /i%¢%4;2é¢wsv:>

I DELETES ONE OR MORE DIRECTORINS FROM THE USER'S SEARCH RULES

I USAGE: delete_search_rules paths
dsr >udd>F01>Student_06>tools
® initiate, in
I ENABLES USERS TO INITIATE (MAKE KNOWN) SEGMENTS DIRECTLY

I THE SEGMENTS REFERENCE NAME AND ITS ABSOLUTE PATHNAME ARE
PLACED IN THE USER'S LIST OF INITIATED SEGMENTS

I USAGE: initiate path {ref_names} {-control_args}

in >udd>FED>Kerr>tools>editor

in >udd>FED>Kerr>tools>editor gx

10-25 ' FO1

DYNAMIC SEARCHING

A
<fv}23—a)€ Aééw/{ :Z?baﬁfZév ;
@ 1list_ref names, lrn fxé?“; -

I LISTS THE REFERENCE NAME, PATHNAME AND SEGMENT NUMBER OF
SEGMENTS KNOWN TO THE USER'S PROCESS (I.E. INITIATED SEGMENTS)

I USAGE: 1ist_ref names {paths}{-control_args)

lrn

lrn >udd>F01>Student_07>add

® terminate ref name, tmr
Trel

i
0] ALLOWS THE USER TO REMOVE A SEGMENT FROM THE LIST OF SEGMENTS
KNOWN TO HIS PROCESS (I.E. INITIATED SEGMENTS)

I USAGE: terminate_ref name ref_names

tmr add who

10-26 FO1

DYNAMIC SEARCHING

® where, wh (... HOW I WONDER WHERE YOU ARE!)

(=]

USES CURRENT SEARCH RULES TO LOCATE AND PRINT THE ABSOLUTE
- PATHNAME OF A SEGMENT

I ONLY THE PRIMARY NAME OF THE LOCATED SEGMENT I3 PRINTED
I MAY BE USED TO CHECK IF A NAME IS "SAFE"™ TO USE FOR A SEGMENT

I USAGE: where ref_name {-control_arg}
wh gx
wh sort
wh wh -all

wh >udd>F01>Student_06>add.pl1

@ NOTE THAT IN THE SIMPLEST CASE (WHERE A USER LOGS IN, CREATES AND
EXECUTES PROGRAMS IN HIS HOME DIRECTORY), NO KNOWLEDGE OF SEARCH
RULES OR INITIATED SEGMENTS IS REQUIRED

YOU ARE NOW READY FOR WORKSHOP
#5

10-27 FO1

This page has intentionally
been left blank.

10-28 . FO1

What is Access Control
Access Control List (ACL)
Access Manipulation Commands

ACCESS CONTROL

TOPIC XI

Default and Initial ACL Entries .

Access Examples .

L

11-4

Page

— ewd el el -
— e e b b
I S I R |

-— o \D \) —
LA —a

FO1

This page has intentionally

been left blank.

11-11 . FO1

WHAT IS ACCESS CONTROL

® ACCESS CONTROL

I A FACILITY FOR CONTROLLING (IN A SELECTIVE MANNER): .
I ACCESS TO THE CONTENTS OF SEGMENTS
I ACCESS TO THE‘ATTRIBUTES OF SEGMENTS
0 ABILITY TO CREATE SEGMENTS

I ABILITY TO DELETE SEGMENTS

I A FACILITY ALLOWING USERS TO SELECTIVELY SHARE THEIR PROGRAMS
AND DATA WITH OTHER USERS

I USER MUST EXPLICITLY GRANT (SET) ACCESS IF SHARING IS DESIRED

I set_acl, delete_acl & list_acl COMMANDS

I SELECTIVE SHARING
I BY Person_id
I BY Project_id

I BY ACCESS MODE (READ, WRITE ...)

11-1 FO1

ACCESS CONTROL LIST (ACL)

ACCESS CONTROL LIST (ACL)

I EVERY SEGMENT AND DIRECTORY HAS 1ITS OWN ACCESS CONTROL LIST
(ACL)

I AN ACL IS A LIST OF User_ids-LIKE ENTRIES CALLED ACCESS
IDENTIFIERS, AND ASSOCIATED ACCESS MODES

r TSmith.ProjA.*

rw Student O4.F01.*%

r ® FED.*

I IN ORDER FOR A USER TO ACCESS A SEGMENT (OR DIRECTORY):
Il THE USER'S User_id MUST "MATCH"™ AN ENTRY ON THE ACL

] FURTHERMORE, THE USER IS RESTRICTED TO THE ACCESS MODE(S)
SPECIFIED BY THAT PARTICULAR ACL ENTRY

I BY DEFAULT, USERS ARE GIVEN COMPLETE ACCESS TO THE SEGMENTS AND
DIRECTORIES THEY CREATE

I USERS MAY ADD AND DELETE ENTRIES FROM THE ACL'S OF THEIR

SEGMENTS AND DIRECTORIES VIA THE set_acl AND delete acl
COMMANDS

112 FO1

ACCESS CONTROL LIST (ACL)

[AN ACL IS CONSIDERED AN ATTRIBUTE OF A SEGMENT OR DIRECTORY.

IN ORDER TO set_acl OR delete_acl, THE USER MUST HAVE THE
APPROPRIATE PERMISSION TO DO SO ‘

I ACCESS VIOLATIONS ARE TRAPPED BY THE SYSTEM AND THE VIOLATOR IS
INFORMED

I ACCESS CHANGES OCCUR INSTANTANEOUSLY SINCE ACCESS RIGHTS ARE
CHECKED BY HARDWARE WITH EVERY ACCESS

11=-3 FO1

ACCESS CONTROL LIST (ACL)

;ﬁg%gi ACCESS MODES FOR SEGMENTS (rew n)

L - e AR

I CONTENTS OF THE SEGMENT CAN BE READ BY THE DESIGNATED
USER(S)

I print, copy, move, gedx's "r" request

y Cyé—% /,,.’,g’ VP &w«!@,«cj

HE SEGMENT CAN BE EXECUTED BY THE DESIGNATED

) CONTEN FT
‘?ﬁe USER(S). (MEANINGFUL ONLY FOR OBJECT SEGMENTS)
)
,(,\"/ 0| DEPENDING ON THE OBJECT PROGRAM, READ MAY ALSO BE REQUIRED
W FOR EXECUTION
ig

I add, >udd>F01>Student_01>add

o

I CONTENTS OF THE SEGMENT CAN BE MODIFIED (OVER WRITTEN) BY
THE DESIGNATED USER(S)

gedx's "w" request

w0 bl e o

; S .
s ey v
]

I ALL ACCESS TO THE CONTENTS OF THE SEGMENT IS EXPLICITLY
DENIED FOR THE DESIGNATED USER(S)

ACCESS CONTROL LIST (ACL)

;Q%Y ACCESS MODES FOR DIRECTORIES . (sma n)---DO NOT INFLUENCE ACCESS ON
J INFERIOR DIRECTORIES '

/(1 sTaTus (s;\

I ATTRIBUTES OF EXISTING ENTRIES IN THE DIRECTORY CAN BE
OBTAINED BY THE DESIGNATED USER(S)

I status, list

T T . 2/ 3?*“’/
I MODIFY (m) ppr 7f

n‘ ATTRIBUTES OF EXISTING ENTRIES IN THE DIRECTORY CAN BE
MODIFIED BY THE DESIGNATED USER(S).

0 ENTRIES CAN ALSO BE DELETED BY THE DESIGNATED USER(S)

I add_name, rename, delete, set_acl, delete acl

//M X
I APPEND QE?\\
2)
T

Il NEW SEGMENTS, DIRECTORIES, AND LINKS CAN BE CREATED IN (OR
MOVED TO) THE DIRECTORY BY THE DESIGNATED USER(S)

I create, create_dir, link, copy, move

/VM;LJZZ
;Mjﬁﬂhfi} NULEa(H{:)

oy
———

I ALL ACCESS TO THE ATTRIBUTES OF EXISTING ENTRIES IN THE
DIRECTORY IS EXPLICITLY DENTED FOR THE DESIGNATED USER(S)
~AND- THE CREATION OF ENTRIES IN THE DIRECTORY IS EXPLICITLY
DENIED FOR THE DESIGNATED USER(S)

11-5 FO1

ACCESS CONTROL LIST (ACL)

® ACCESS IDENTIFIERS

I THREE-COMPONENT CHARACTER STRING

Person id.Project id.tag

I TAG IDENTIFIES THE TYPE OF PROCESS

I a - AN INTERACTIVE PROCESS (A REAL USER)

I m - AN ABSENTEE PROCESS (AN "ABSENT" USER)

-1 z - A SYSTEM PROCESS (A DAEMON) LOGGED IN BY THE OPERATOR

o

I MULTICS ASSIGNS EVERY USER AN ACCESS IDENTIFIER AT LOG IN

I WHEN USED IN AN ACCESS CONTROL LIST, ACCESS IDENTIFIERS ARE
OFTEN CALLED "ACL ENTRIES"

ENTRY IS A STAR (ASTERISK), THE STAR

IS INTERPRETED AS MATCHING ANY Person id, ANY Project id, OR
ANY tag; DING ON ITS POSITION IN THE ACCESS IDENTIFIER

% FO1.a

Student_09.% #

MATCHES ALL INTERACTIVE FO1 USERS

MATCHES Student_09 REGARDLESS OF
HOW HE LOGS IN

MATCHES ALL ABSENTEE USERS

MATCHES EVERYONE

ACCESS CONTROL LIST (ACL)

ENTRIES IN SEGMENT® RE AUTOMATICALLY ORDERED - MOST
FIC IDENTIFIERS FIRST

Frommer.FO01.a
Frommer .FO1.%
Frommer.%*, a
Frommer .% %

* FO01.a

.F01 0

@ MATCHING User_id WITH ENTRIES ON AN ACL
I PROCEEDS FROM TOP TO BOTTOM
I FIRST MATCH DETERMINES ACCESS MODE(S)

I NO MATCH IMPLIES NO ACCESS

11=7 ’ FO1

EXAMPLE:

LET

ACCESS CONTROL LIST (ACL)

seg_1 HAVE THE FOLLOWING ACCESS CONTROL LIST

seg_1's ACL

rew LJones.FED.a

rw Student_07.F01.%

r TSmith.ProjA.*

rew White.*. %

rw ® _ProjA.*%

n ® FED.#®

rw % SysDaemon.¥

n ¥ % m

r LA B
USER USER'S ACCESS
LJones.FED.a rew
LJones.FED.m n
TSmith.ProjA.a r
TSmith.FED.a n

Green.ProjA.a

White.ProjA.a

White.FED.a

LJones.FO1.m

LJones.FED.m

Kerr.MAC.a

11-8

FO1

~ACCESS MANIPULATION COMMANDS

- - - 2 pae iR

///::f set_aéiziggj\\ széz ~ ' 5¢wﬂ4f4ajﬁzuazz;y:?fuvﬁurwaL@wjé
\\-____,f—~w/’”////// caégzzaéz;zé/‘éiuéy'

i MANIPULATES THE ACL'S—OF SEGMENTS AND DIRECTORIES
I USAGE: é;;_ac 'pat@{Todelxgser_idl;;;ﬂmggéQNQSer_idﬁf;

sa add.pll rw Student_O4.FO1.¥

sa add.pl1 r ¥ FO1.% rw % FED.*®
sa *.,pl1 r LJones.*. #

sa dir_A sma LJones.FED.¥

Sa %% p * ¥ &
. .

delete_acl, da

] REMOVES ENTRIES FROM ACL'S OF SEGMENTS AND DIRECTORIES

I USAGE: delete_acl {path {User_ids}}
~da add.pll ¥ FO1.#%
da add.pl1 Student_O4.FO01.% * FED.*
da dir_A LJones .FED.*

11-9 FO1

ACCESS MANIPULATION COMMANDS

] LISTS THE ACL'S OF SEGMENTS AND DIRECTORIES

1 1IF path OMITTED THEN NO User_id POSSIBLE

I USAGE: 1ist_acl {path {User_ids}}
la add.pl1

la add.pl1 LJones.FED.*
la

11-10

FO1

DEFAULT AND INITIAL ACL ENTRIES

& WHEN SEGMENTS AND DIRECTORIES ARE CREATED, AN ACL IS AUTOMATICALLY
PROVIDED BY MULTICS CONTAINING DEFAULT ACL ENTRIES

I FOR MOST SEGMENTS:

rw Person_id.Project_id.*
rw % SysDaemon.*

I FOR DIRECTORIES:
sma Person_id.Project_id.*
sma *# SysDaemon.#¥

® NORMAL ACCESS GIVEN TO SYSTEM DIRECTORIES:
I A USER IS GIVEN "sma" ON HIS HOME DIRECTORY
I A USER IS GIVE“ "s" ON HIS PROJECT DIRECTORY
I A PROJECT ADMINISTRATOR IS GIVEN "sma" ON THE PROJECT DIRECTORY

] THE SYSTEM'S ADMINISTRATOR HAS "sma" ON >udd.

11-1 FO1

DEFAULT AND INITIAL ACL ENTRIES

® INITIAL ACCESS CONTROL LIST

I A FACILITY FOR DEFINING ADDITIONAL DEFAULT ACL ENTRIES TO BE
INCLUDED IN THE ACL OF SEGMENTS AND DIRECTORIES WHEN CREATED

I DEFINABLE AT THE DIRECTORY LEVEL

I REFER TO THE DESCRIPTION OF THE FOLLOWING COMMANDS IN THE
~MULTICS COMMANDS MANUAL

set_iacl_seg, sis set_iacl_dir, sid
list_iacl_seg, lis list_ijaecl_dir, lid
delete_iacl seg, dis delete_iacl_dir, did

11=-12 FO1

ACCESS EXAMPLES

ACCESS EXAMPLE FOR STUDENT_02

e

. Student _01 Student_02 J

sa r n sma 14,

n
Dir.1 ‘X , Dir. 2 Dir_3 | ‘ Y } Dir_4

56 66 66 66

11-13 | FO1

ACCESS EXAMPLES

IN WHICH DIRECTORIES CAN Student_02 SUCCESSFULLY EXECUTE THE list
COMMAND?

IN WHICH DIRECTORIES CAN Student_OZ CREATE A SEGMENT?

SUPPOSE Student_02 CREATES A SEGMENT IN DIRECTORY Dir_1 BY TYPING

create >udd>F01>Student_01>Dir_1>Z

CAN Student 02 DELETE THIS SEGMENT? /o%d’,’,/4“““”(”“éﬁﬂ
fucﬂiwk;§“27'

CAN Student_02 rename THIS SEGMENT? .z« ¢/

CAN Student 02 READ AND WRITE THE CONTENTS OF THIS SEGMENT? izfﬁhﬁ

IN WHICH DIRECTORIES CAN Student_02 SUCCESSFULLY EXECUTE THE
rename COMMAND?)
iy e ste 2 £ pus 3

IN WHICH DIRECTORY CAN Student 02 SUCCESSFULLY EXECUTE THE set acl
COMMAND? -

11-14 : FO1

ACCESS EXAMPLES

TC WHICH SEGMENTS CAN Student_02 WRITE?
e
/

TO WHICH SEGMENTS COULD Student 02 EVENTUALLY WRITE BY SETTING THE
APPROPRIATE ACCESS?

B i i

SUPPOSE Student_02 CREATES A DIRECTORY UNDER Dir_1 BY TYPING:

create_dir >udd>F01>Student_01>Dir_1>Dir_5

WHAT PERMISSIONS WILL Student 02 HAVE ON THIS DIRECTORY? :>//51/)’
WHAT PERMISSIONS WILL Student_01 HAVE ON THIS DIRECTORY? p

CAN Student_01 GIVE HIMSELF PERMISSIONS ON Dir_ 5% 2}#“2/

11-15 FO1

- This page has intentionally
been left blank.

11-16

TOPIC XII

USER COMMUNICATION

Page
Message Facility . . . « . ¢ ¢ ¢ ¢ ¢ v . v e e e e e e w1241
Mail Facility P -

Memo Facility T P2

12-1 FO1

This page has intentionally
been left blank.

12-ii FO1

~ MESSAGE FACILITY

T NS e e

i

TEXT WHICH IS COMMUNICATED BETWEEN USERS VIA THE send_message
COMMAND

(>

0

A SEGMENT IN THE DIRECTORY >udd>Project_id>Person_id HAVING THE
NAME Person_id.mbx

® accepl messages, am

(I'M LISTENING)

ALLOWS ANY AND ALL INCOMING MESSAGES TO BE PRINTED ON THE
USER'S TERMINAL

OTHERWISE, MESSAGE WILL GO TO THE USER'S MAILBOX
ALSO CREATES A MAILBOX IF NONE EXISTS
USAGE: accept_messages {-control_args}

am

am -print

am ~-brief

12-1 FO1

MESSAGE FACILITY

send_message, sm

| SENDS A MESSAGE TO A SPECIFIED USER ON A SPECIFIED PROJECT

I SMALL MESSAGES (ONE LINE)

[MESSAGES ARE EITHER

I PRINTED ON THE RECIPIENTS TERMINAL, OR

I PLACED IN THE RECIPIENTS MAILBOX

I USAGE 1:
I USAGE 2:
(DIALOGUE

send_message Person_id.Project id message
sm TSmith.Project_id When are you going to lunch?

sm Greenberg.FED May I have access to your file?

send_message Person_id.Project
MODEY

sm TSmith.FED

Input:

When are you going to lunch?

From TSmith.FED 11/10/78 1546.3 mst Fri: 12:00
Mary wants to go with us.

=:Fine, bring her along.

Meet you in the lobby.

12-2

FO1

MESSAGE FACILITY

/’“\d\){

<\j defer—messffiii——f//\l'ﬁ BUSY...NO DISTRACTIONS WANTED)

I REDIRECTS ANY AND ALL INCOMING MESSAGES TO THE USER'S MAILBOX
I ELIMINATES UNWANTED INTERRUPTIONS

I USAGE: defer_messages

dm

print_messages, pm

0 PRINTS ALL MESSAGES STORED IN THE USER'S MAILBOX
] MESSAGES ARE DELETED FROM THE MAILBOX WHEN PRINTED
I USAGE: print_messages {-control_arg}

pm

pm -last

12-3 FO1

MAIL FACILITY

COMMUNICATED BETWEEN USERS VIA THE mail COMMAND

mail, ml

7%ﬁ PRINTS ANY AND ALL MAIL (OR MESSAGES) IN A USER'S MAILBOX, OR

49 SENDS THE CONTENTS

C
LS

A SEGMENT TO ANOTHER USER
I WHEN SENDING, MAIL IS PLACED IN THE RECIPIENT'S MAILBOX

I USAGE 1: mail {path} {-control_arg}
(PRINTING)

ml
ml -bf

ml >udd>F01>Student_O04>Student OU.mbx

I ALSO CREATES A RING-PROTECTED MAILBOX IF NONE EXISTS

!
" USAGE 2: mail User_ids {-control_arg}
’ (SENDING)

mail fw16.report LJones.FED
mail letter Student_05.F01 -ack

mail S_letter.runout TSmith.ProjA Boyd.ProjA

12-4 FO1

MAIL FACILITY

USAGE 3: mail(E;User_ids
(SENDING)

mail * LJones.FED TSmith.ProjA

Input:

The finance committee will begin meeting
on Tuesdays at 3:30 starting

- Coffee will be provided.

49 Wﬁz

mbx_create, mber

RELATED COMMANDS

‘mbx_delete, mbdl
mbx_add_name, mban
mbx_delete_name, mbdn
mbx_rename, mbrn
mbx_set_acl, mbsa
mbx_delete_acl, mbda
mbx_list_acl, mbla

mbx_set_max_length, mbsml

12-5 FO1

MEMO FACILITY

MEMO FACILITY
I AN INTERACTIVE NOTEBOOK AND REMINDER LIST

N A HOME DIRECTORY SEGMENT NAMED

MAINTAINED THEE'

Person_id.memo)

MEMO

I A MESSAGE DELIVERED TO THE USER AT A PREDETERMINED DATE AND
TIME, OR

I A COMMAND EXECUTED BY THE SYSTEM AT A PREDETERMINED DATE AND
TIME

I MATURE MEMOS MAY BE ACTIVATED
1 EXPLICITLY (VIA THE memo COMMAND), OR

I AUTOMATICALLY (WHILE USER IS LOGGED IN)

I MEMOS OPERATE INDEPENDENT OF THE accept_messages/defer_messages
COMMANDS

12-6 FO1

e memo /

MEMO FACILITY

0 CREATES AND MAINTAINS AN INTERACTIVE NOTEBOOK AND REMINDER LIST

I USAGE 1: memo
(EXECUTING)

memo

I USAGE 2: memo
(LISTING)

memo

memo

[USAGE 3: memo
(SETTING)

memo
memo
memo
memo
memo

§ USAGE 4: memo
(DELETING)

memo

memo

-list {optional args}

-list

-list -match Birthday

{optional_args} memo_text

Good job Tom!!! Keep up the good work!

~-time "Friday 8am est" 10am meeting with Olson

~-date 5/6/78 -repeat 1year Jan's Birthday:May 9
-call -tm Friday sm May ProjA Report due today.

-alarm -repeat 1day -time noon Lunch time!

-delete optional_args

~-delete -match Birthday

-delete -call

12-7 FO1

This page has intentionally
been left blank.

12-8 FO1

Multies Input/Qutput
System Input/Output Modules

MULTICS INPUT/OUTPUT FACILITIES

Input/Output Switches .
Input/Output Commands .

Examples

.

%

TOPIC XIII

13-1

« ® o . e

Page

. 13-1

13-2
13-4
13-10
13-15

FO1

This page has intentionally

been left blank.

13-11 FO1

MULTICS INPUT/QUTPUT

LOGICAL 1/0

DEVICE INDEPENDENT

SYSTEM I/0 MODULES CONTROL THE PHYSICAL DEVICES

I/0 "SWITCHES"™ CHANNEL THE FLOW OF DATA BETWEEN PROGRAM ACCESSIBLE
STORAGE AND DEVICES, FILES, ETC

13-1 FO1

SYSTEM INPUT/OUTPUT MODULES

SYSTEM INPUT/OUTPUT MODULES

THE Multics SYSTEM CONTAINS THE FOLLOWING I/O MODULES:

discard_

IS A SINK FOR UNWANTED OUTPUT

rdisk_

SUPPORTS I/0 FROM/TO REMOVABLE DISK PACKS

record_stream_
PROVIDES A MECHANISM FOR DOING RECORD I/O ON AN UNSTRUCTURED
FILE, OR VICE VERSA

syn

ESTABLISHES ONE SWITCH AS A SYNONYM FOR ANOTHER

tape_ansi_
SUPPORTS 1I/0 FROM/TO MAGNETIC TAPE FILES ACCORDING TO

STANDARDS PROPOSED BY THE AMERICAN NATIONAL STANDARDS
INSTITUTE (ANSI)

tape_ibm_

SUPPORTS I/0 FROM/TO MAGNETIC TAPE FILES ACCORDING TO
STANDARDS ESTABLISHED BY IBM

tape_mult__

SUPPORTS I/0 FROM/TO MAGNETIC TAPE FILES IN Multics STANDARD
TAPE FORMAT

13-2 FO1

SYSTEM INPUT/OQUTPUT MODULES

I tty

SUPPORTS I/0 FROM/TO TERMINALS

.
1 vfile_

SUPPORTS I/0 FROM/TO FILES IN THE STORAGE SYSTEM

I THESE MODULES ARE DESCRIBED IN SECTION III OF THE MPM
SUBROUTINES AND IN THE MPM PERIPHERAL INPUT/OUTPUT

I THE USER MAY CONSTRUCT HIS OWN I/O SYSTEM INTERFACE MODULES.
' SEE "WRITING AN I/O MODULE"™ IN SECTION IV OF THE MPM SUBSYSTEM
WRITERS' GUIDE

13-3 FO1

(]

INPUT/OQUTPUT SWITCHES

SOFTWARE CONSTRUCT WHICH MAKES I/O DEVICE INDEPENDENT

CONNECTS THE SOURCE OF A READ OR WRITE TO THE TARGET (FILE, TAPE,

ETC.) THROUGH A SYSTEM I/0O MODULE

{ PROGRAM }
S $

[1/0 SWITCH ‘1

discard __

R

13-4

FO1

INPUT/OUTPUT SWITCHES

TO PERFORM 1I/0, THE FOLLOWING FIVE STEPS MUST BE CARRIED OUT
(EITHER EXPLICITLY OR IMPLICITLY):

1)

2)

3)

L)

5)

ATTACH AN I/0 SWITCH. THIS STEP SPECIFIES THE SEGMENT
PATHNAME, TAPE VOLUME NAME, ETC. FROM/TO WHICH THE
INPUT/OUTPUT OPERATION IS MADE AND THE 1I/0 MODULE WHICH
PERFORMS THE OPERATION (vfile_, tape_ansi_, etc.)

OPEN THE I/0 SWITCH. THIS STEP PREPARES THE SWITCH FOR A
PARTICULAR MODE OF PROCESSING (E.G. READING RECORDS
SEQUENTIALLY) USING THE ALREADY ESTABLISHED ATTACHMENT

PERFORM THE REQUIRED DATA TRANSFER WORKING THROUGH THE SWITCH
CLOSE THE I/O SWITCH

DETACH THE I/O0 SWITCH

SWITCHES MAY BE ATTACHED BY

io_call COMMAND
SUBROUTINE CALL TO iox_$attach_ioname
LANGUAGE OPEN STATEMENT (IF NOT PREVIOUSLY ATTACHED)

DEFAULT WHEN RUNNING FORTRAN, PL/1, AND COBOL

13-5 FO1

INPUT/OUTPUT SWITCHES

SWITCHES MAY BE OPENED BY

I ;o_call COMMAND

| SUBROUTINE CALL TO iox_$open LANGUAGE
I LANGUAGE OPEN STATEMENTS

I DEFAULT WHEN RUNNING FORTRAN, PL/1, AND COBOL

DATA TRANSFER MAY BE PERFORMED BY:

I io_call COMMAND

I SUBROUTINE CALL TO iox_, ioa_

I get, put, read, write, etc. in PL/1
[read, write, ete. in FbRTRAN

I read, write, etc. in COBOL

I I/0 STATEMENTS IN OTHER LANGUAGES

13-6 FO1

INPUT/OUTPUT SWITCHES

@ THE I/0 SWITCH MAY BE CLOSED BY:
I io_call COMMAND

I LANGUAGE close STATEMENT (IF THE SWITCH WAS OPENED BY A
LANGUAGE OPEN STATEMENT !

I close_file COMMAND

® THE I/0 SWITCH MAY BE DETACHED BY:
I io_call COMMAND
I SUBROUTINE CALL TO iox_$detach_iocb

I LANGUAGE close STATEMENT (IF THE SWITCH WERE ATTACHED BY THE
LANGUAGE open STATEMENT)

13-7 Fo1

INPUT/QUTPUT SWITCHES

FOUR SWITCHES ATTACHED DURI“G PROCESS CREAT;ON (login, new_pfOC)
[u§er_i/o

I user_input

0 wuser_output

I error_output

user_i/o IS ATTACHED TO THE USER'S TERMINAL THROUGH tty AN
OPENED FOR STREAM INPUT AND OUTPUT

user_input, user_output, - and error_output ARE ATTACHED TO
user i/o THROUGH syn_ AND ARE OPENED FOR INPUT, OUTPUT, AND OUTPUT
RESPECTIVELY ' :

13-8 FO1

user_input 1

syn

INPUT/QUTPUT SWITCHES

PROCESS

\ J

arror_output J

user_output

user_i/o

A
) 4
©
A

Y

TERMINAL I

STANDARD ATTACHMENTS

FO1

INPUT/OUTPUT COMMANDS

® ijo_call, io

I PERFORMS AN OPERATION ON A DESIGNATED I/O SWITCH

I USAGE: 1io_call opname switchname {args}
io attach payroll_tape tape ansi_ payrol
-cr -nm employee rec
-nb 1 -retain all
io attach poem vfile_ >udd>FO01>Student_02>The Ravin
io open poem stream_input
ic get_line poem

io close poem

io detach poem

® close_file, cf
0 CLOSES SPECIFIED FORTRAN AND PL/1 FILES
I USAGE: close_file {-control_argl filenames

close file poem file0O8

close_file -all

13-10 | FO1

INPUT/QUTPUT COMMANDS

e print_attach_table, pat

0° PRINTS INFORMATION ON THE USER'S TERMINAL ABOUT I/0 SWITCH
ATTACHMENTS)

I USAGE: print_attach table {-control_args} {switch_names}
pat .
pat poem

® file_output, fo

0 DIRECTS ALL SUBSEQUENT USER'S OUTPUT (TERMINAL OUTPUT) TO A
SEGMENT UNTIL THE revert_output COMMAND IS ENCOUNTERED

I ATTACHES user_output TO A SPECIFIED OUTPUT FILE

] ERROR MESSAGES (IF THEY OCCUR) STILL APPEAR ON THE USER'S
TERMINAL

I USAGE: file_output {path}

fo who_save

fo

13-11 -~ FO1

INPUT/OUTPUT COMMANDS

‘revert_output, ro
0 RESTORES USER'S OUTPUT (TERMINAL OUTPUT) TO THE TERMINAL

I USAGE: revert_output

ro

13-12 FO1

INPUT/OUTPUT COMMANDS

PROCESS
——— —
¥
user_input] ‘ [error_output user_output
\
syn_ syn_ vfile_

user_i/o

TERMINAL

file_output my_file

13-13

FO1

INPUT/QUTPUT COMMANDS

copy _file, cpf
I COPIES RECORDS FROM A STRUCTURED INPUT FILE TO AN OUTPUT FILE

I USAGE: copy_file in_ctrl_arg out_ctrl_arg {-control_args}

cpf -input_description "vfile_ >udd>F01>Student_O01>funky"
~output_switch funky_ sw

cpf -isw funky sw -ods "tape_ansi foo -nm first_file -nb 1"

cpf -ct 13 -ids "tape_ansi_ 887677 -nm TEST21 -ret all"
-ods "recard_stream_ user_output"

epf -isw in -osw cut -from 43 -tc 78

copy_cards

I COPIES SPECIFIED CARD IMAGE SEGMENTS FROM THE SYSTEM POOL
STORAGE INTO A USER'S DIRECTORY

I THE SEGMENTS TO BE COPIED MUST HAVE BEEN CREATED USING THE
Multics CARD IMAGE FACILITY

I USAGE: copy_cards deck_name {pathname}

copy_cards card_deck

copy_cards card_deck my file

13-14 | | FO1

EXAMPLES

EXAMPLE 1

I READ RECORDS FROM A TAPE WITH A VOLUME NAME OF payrol AND A
FILE NAME OF emp

Il READ THESE RECORDS ONE AT A TIME FROM COMMAND LEVEL

io attach pt tape_ansi_ payrol -name emp -nb 1 -ret all

io open payroll tape sequentlal input

pat pt

pt tape_ansi_ payrol -name emp -nb 1 -ret all sequential_ input

io read pt 85
io_call: 85 characters returned. 15093Robert Redford 5534 W.Yucca

io read pt 85

io_call: End of information reached. No data returned by pt.
io close pt

pat pt

pt ' tape_ansi_ payrol -name emp -number 1 -retain all

(not open)
io detach pt

I NOTE: THE TAPE RESOURCES WERE ALLOCATED PRIOR TO THE ATTACH.
OTHERWISE, A MESSAGE WHICH WOULD INDICATE THE TAPE WAS BEING
MOUNTED WOULD HAVE BEEN RETURNED AFTER THE io attach

13-15 ' FO1

EXAMPLES

& EXAMPLE 2
I READ DATA FROM A FILE AND WRITE TO ANOTHER

I USING THE SAME PROGRAM, READ FROM A FILE AND WRITE TO THE

TERMINAL. (USE 1io_call AND ATTACH THE OUTPUT SWITCH EXTERNAL
TO THE PROGRAM) '

I THE PROGRAM:

example_2: proc;
del payroll in file,
sysprint file,
1 emp_record,
2 pay_no char (5),
2 emp,
3 name char (20),
3 address char (20),
(endfile, record, transmit) condition;

on endfile (payroll_in) go to finij;

on record (payroll in) ;

on transmit (payroll_in) begin;
put skip list
("TRANSMIT ERROR. LAST RECORD READ WAS:", emp_record);
go to fini;

end;

open file (payroll_in)

title ("vfile_ payroll file") input;
open file (payroll out)

title ("vfile_ payroll_file_2") output;

do while ("1"b);
get file (payroll in) list (emp_record);

put file (payroll_out) skip list (emp_ record)
end;

fini: close file (payroll_in), file (payroll_out);
put skip list ("done");
end example 2;

13-16 FO1

EXAMPLES

I INPUT FILE, payroll file:
®12002", "Barbara Striesand", "4040 N. 30th lane"

"15093", "Robert Redford", "5534 W. Yucca"
"15666", "Julie Christie", "3322 W. Milky Way"

] SEQUENCE OF EXECUTION
example 2

done
pr payroll file 2

payroll file 2 11/09/78 1710.8 mst Thu
"12002" "Barbara Striesand m "4Q40 N. 30th Lane "
"15093" "Robert Redford " "5534 W. Yucca "
"15666" "Julie Christie " "3322 W. Milky Way "
pat
user_i/o tty_ tty724 stream_input_output
user_input syn_ user_i/o
user_output - syn_ user_i/o
error_output syn_ user_i/o
sysprint syn_ user_output

io attach payroll out syn_ user_output

! pat payroll out

payroll out™ syn_ user_output
example 2 ‘

"12002" "Barbara Striesand " w4040 N. 30th Lane "

"15093" "Robert Redford " "5534 W. Yucca "
"15666" "Julie Christie " m3322 W. Milky Way "
done

pat payroll out

payroll out syn_ user_output

13-17 FO1

EXAMPLES

YOﬁ ARE NOW READY FOR WORKSHOP
#6

13-18 FO1

EXAMPLES

EXAMPLE 3

I

-

=7

READ A DECK OF CARDS INTO THE SYSTEM AND CREATE A SEGMENT IN
YOUR WORKING DIRECTORY CONTAINING THE CARD IMAGES

STEP 1: YOU MUST BE REGISTERED BY THE SYSTEM ADMINISTRATOR FOR
CARD INPUT. YOU WILL RECEIVE A PASSWORD FOR YOUR CARD DECKS

STEP 2: CREATE A SEGMENT IN YOUR HOME DIRECTORY CALLED
card_input.acs

STEP 3: SET ACL ON THE SEGMENT TC "r" FOR <STATION_ID>.*.¥ ANp
FOR Card_Input.Daemon.*

STEP 4: PREPARE THE CARD DECK
++DATA DECK_NAME PERSON_ID PROJECT_ID
++PASSWORD xxx

++FORMAT MCC LOWERCASE
++INPUT

STEP 5: SUBMIT THIS DECK TO THE OPERATOR. A MESSAGE WILL BE .
SENT TO YOU WHEN IT HAS BEEN READ

STEP 6: EXECUTE THE COPY CARDS COMMAND

copy_cards deck_name

13-18. FO1

TOPIC XIV

MORE ABOUT THE ABBREV PROCESSOR

Page

The dO Command ’o .] [] ° 1“"1
Areas for Additional Study ¢ ¢ . + « + . . . 14-5

14«1 FO1

This page has intentionally

been left blank.

14-11 FO1

THE DO COMMAND

& MOTIVATION:
I WOULD LIKE TO BE ABLE TO DO THE FOLLOWING:
.ab PL1 ind; pl1

PL1 add.pl1

I WHICH EXPANDS TO:
ind; pl1 add.pli

] BUT WANT:

- ind add.plt1; pl1 add.pl1

] SUBSTITUTES SUPPLIED ARGUMENTS INTO A COMMAND LINE
I PRIMARILY INTENDED FOR USE IN ABBREVIATIONS
I USAGE: do "command line" args

do "ind &1; pl1 &1" add.pl1

do "ind &1; ind &2; ind &3" add.pll sub.pll mult.pll

141 FO1

THE DO COMMAND

COMMAND LINE FLOW

TYPED LINE

+

FRONT-END PROCESSOR

v ¢
{ABBREV PROCESSOR}

!

COMMAND PROCESSOR =p do COMMAND PROCEDURE

EXECUTION

14-2 FO1

THE DO COMMAND

EXAMPLES USING THE FOLLOWING ABBREVS:

“PL1 do "ind &1; pl1 &1
PL1_DP do "PL1 &1; dp &1"
PL1_EX do "ind &1.pl1; pl1 &1.pl1; &1".
0 EXAMPLE 1:
| PL1[add.pl1 (AS TYPED)
ldo "ind &1; pl1 &1"l add.pl1 (ABBREV PROCESSOR)
ind add.pl1; pl1 add.pl1 (DO COMMAND)
I EXAMPLE 2:
| PL1_EX add (AS TYPED)
ldo "ind &1.pl1; pl1 &1.pll; &1" add "~ (ABBREV PROCESSOR)
ind add.pl1; pl1 add.pll; add : (DO COMMAND)

14-3 ' ' FO1

THE DO COMMAND

0 EXAMPLE 3:

PL1_DP add.pl1 ’ ‘ (AS TYPED)

L | ’
'do "PL1 &1; dp &1" add.pli (ABBREV PROCESSOR)
PL1, add.pl1; dp add.plt (DO COMMAKD)

‘do "ind &1; pl1 &1" add.pl1; dp add.plt (ABBREV PROCESSOR)

ind add.pll; pl1 add.pll; dp add.pl1 (DO COMMAND)

14-4 ' FoO-

AREAS FOR ADDITIONAL STUDY

e ADDITIONAL DOCUMENTATION

I MPM COMMANDS AND ACTIVE FUNCTIONS (AG92)

[help abbrev

® STUDY TOPICS

I ADDITIONAL abbrev REQUESTS

I .u (USE ANOTHER PROFILE)

I .p (PRINT THE PATHNAME OF THE PROFILE BEING
USED)

I .af (FORCE REDEFINE)

I .abf (FORCE REDEFINE)

I .r (REMEMBER MODE)

1 .f (FORGET MODE ~ THE DEFAULT)

I .s (SHOW LAST LINE)

14-5 FO1

This page has intentionally
been left blank.

14-6 ' FO1

TOPIC XV

ACTIVE FUNCTIONS

Page

What is an Active Function ¢+ « + ¢« + . . 15=~1
Active Function Mechanism ¢ ¢« ¢ ¢« ¢« « ¢« « « « « 15-3
Active Function Examples . . « ¢« ¢ ¢ « ¢ ¢« o« o« « « « « « 15 4
Areas for Additional Study 15=T

15-1 : FO1

This page has intentionally

been 1left blank.

15-1i1i FO1

WHAT IS AN ACTIVE FUNCTION

————— an—— —

ACTIVE STRING

A SUB-STRING (A PART) OF A COMMAND LINE DELIMITED (SET OFF) BY
SQUARE BRACKETS

1 INTENDED TO BE REPLACED BY A CORRESPONDING VALUE

I EXAMPLES:

sm [last_message_sender] Thank you!
sm LJones.ProjA Thank you!

delete [oldest_segment]
delete seg_ 1

I LIKE A DYNAMIC (OR QARIABLE) ABBREVIATION
1 FREQUENTLY USED WITHIN ABBREVIATIONS

I THERE ARE MORE THAN 70 ACTIVE STRINGS DEFINED BY MULTICS

15-1 FO1

WHAT IS AN ACTIVE FUNCTION

@ ACTIVE FUNCTION

1 A PROGRAM EXPLICITLY DESIGNED TO EVALUATE AND RETURN THE VALUE
OF AN ACTIVE STRING

I USERS MAY DEFINE THEIR OWN ACTIVE STRINGS AND WRITE THEIR OWN
CORRESPONDING ACTIVE FUNCTIONS

I MANY ACTIVE FUNCTIONS MAY ALSO BE INVOKED AS COMMANDS
last_message_sender

A
uave

15-2 FO1

ACTIVE FUNCTION MECHANISM

® ACTIVE FUNCTION MECHANISM
I ACTIVE STRINGS ARE IMMEDIATELY EVALUATED (EXECUTED)

0 THE RESULTING VALUE IS SUBSTITUTED FOR THE ACTIVE STRING IN THE
COMMAND LINE

I THE COMMAND LINE IS THEN RETURNED TO THE COMMAND PROCESSOR

® COMMAND LINE FLOW

TYPED-LINE

v

FRONT-END PROCESSOR

v |
{ABBREV PROCESSOR}

¢

v .
COMMAND PROCESSOR =) ACTIVE FUNCTION

v
EXECUTION

18- FO1

ACTIVE FUNCTION EXAMPLES

® last_messagé_sender, lms

I RETURNS THE User_id OF THE SENDER WHO SENT THE LAST MESSAGE
RECEIVED

I USAGE 1: 1last_message_sender

lms
LJones.FED

I USAGE 2: [last_message_sénder]

sm [ims] THANK YOU
sm LJones.FED THANK YOU!

who [1lms]
who LJones.FED

0 RETURNS THE PATHNAME OF THE USERS WORKING DIRECTORY

I USAGE 1: wd
wd
>udd>FED>May

0 USAGE 2: [wd]

sm Kerr.FED THE pathname is [wd]>add.pl1
sm Kerr.FED THE pathname is >udd>FED>May>add.plt

15-4 FO1

® date

I

ACTIVE FUNCTION EXAMPLES

RETURNS THE DATE IN mm/dd/yy FORM

USAGE 1:

USAGE 2:

® home_dir

1

date {dt}

date
11/01/77

date ™12 June"
06/12/78

[date {dt}]

create alpha.version_[date].pli
create alpha.version_11/01/77.pl1

RETURNS THE PATHNAME OF THE USERS HOME DIRECTORY

USAGE 1:

USAGE 2:

home_dir

home_dir
>udd>F01>Student_07

(home_dir]

pr [home_dir]>add.plt
pr >udd>F01>Student_07>add.pl1

15-5 FO1

ACTIVE FUNCTION EXAMPLES

segments, segs

I RETURNS THE ENTRYNAMES (SEPARATED BY A BLANK) OF ALL SEGMENTS
MATCHING A GIVEN STARNAME

] USAGE: [segments starname]

dprint [segs #*#% ,pl1] _
dprint add.pl1 seg_1.pl1

[¢)
QO
=3
ctr
[0}
=3
ct
w

I RETURNS THE CONTENTS OF A SPECIFIED ASCII SEGMENT SEPARATED B’
BLANKS -

I USAGE: [contents path]

sm TSmith.FED Their names are: [contents Names]
sm TSmith.FED Their names are: LJones.FED Kerr.MED

mail letter.2 [contents Names]
mail letter.2 LJones.FED Kerr.MED

15-6 FO1

AREAS FOR ADDITIONAL STUDY

@ ADDITIONAL DOCUMENTATION
I MPM COMMANDS AND ACTIVE FUNCTIONS (AG92)

I help <active function name>

® STUDY TOPICS

I ARITHMETIC ACTIVE FUNCTIONS

l ‘ceil, divide, floor, max, min, minus, mod, plus, quotient,
times, trunc ‘ ‘

I CHARACTER STRING ACTIVE FUNCTIONS

I default, format_line, index, index_set, 1length, search,
string, substr, underline, unique, verify

[DATE AND TIME ACTIVE FUNCTIONS

I date, date_time, day, day _name, hour, long_date, minute,
month, month name, time, year

I LOGICAL ACTIVE FUNCTIONS

I and, equal, exists, greater, less, nequal, ngreater, nless,
not, or

15=7 FO1

AREAS FOR ADDITIONAL STUDY

PATHNAME MANIPULATION ACTIVE FUNCTIONS

I directory, entry, equal_name, path, strip, strip_entry,
suffix

QUESTION ASKING ACTIVE FUNCTIONS

I query, response

STORAGE SYSTEM ATTRIBUTES ACTIVE FUNCTIONS

] 1lv_attached, status

STORAGE SYSTEM NAMES ACTIVE FUNCTIONS

I directories, files, get_pathname, home_dir, links,
nondirectories, nonlinks, nonsegments, pd, segments, wd

USER PARAMETER ACTIVE FUNCTIONS

1 have_mail, last_message_sender, last_message_time,
last_message, system, user

15-8 FO1

MORE ABOUT EXEC_COM'S

Review
Argument Substitution N
Control Statements . . .

Exec com Examples . .
Areas for Additional Study

TOPIC XVI

.
o o . o -

16-1

. o e o o

o o * o 3

Page

16-1
16--3
16-14
16-10
16-13

FO1

This page has intentionally

bheen left blan

----- -

w

16-1ii FO1

REVIEW

EXEC_COM

A SEGMENT CONTAINING A SERIES OF COMMAND LINES .
CREATED USING A TEXT EDITOR

NAME MUST HAVE SUFFIX OF ec

THE COMMAND LINES ARE EXECUTED SEQUENTIALLY, AS A SET, WHENEVER
INVOKED BY THE USER

ABBREVIATIONS ARE EXPANDED IN THE NORMAL MANNER

MAY BE RECURSIVELY INVOKED

exec_com, ec

EXECUTES THE COMMAND LINES CONTAINED IN AN EXEC_COM SEGMENT

ec weird.ec flower tree add

16--1 FO1

REVIEW

EXEC_COM LINE FLOW

EXEC_COM LINES

COMMAND PROCESSOR

v
EXECUTION

16-2 FO1

ARGUMENT SUBSTITUTION

ARGUMENT SUBSTITUTION

i

CERTAIN CHARACTER STRINGS ARE REPLACED BY A CORRESPONDING VALUE
BEFORE THE EXEC_COM IS EXECUTED

EXAMPLES USING EITHER OF THE FOLLOWING COMMAND LINES

ec welrd.ec flower tree add
ec >udd>F01>Student_05>weird.ec flower tree add

&<{number>

I REPLACED BY THE CORRESPONDING OPTIONAL ARGUMENT
(POSITIONAL)

&1 44— flower

&3 4—add
&5 4—<nothing>

&n

0 REPLACED BY THE NUMBER OF ARGUMENTS SUPPLIED
&n &3

&ec_name

0 REPLACED BY THE ENTRYNAME PORTION OF THE EXEC_COM'S
PATHNAME WITHOUT THE ec SUFFIX

&ec name &——yeird

&ec_dir

0 REPLACED BY THE DIRECTORY NAME PORTION OF THE EXEC COM
PATHNAME ‘ -

&ec_dir 4—>udd>F01>Student_05

.16-3 FO1

CONTROL STATEMENTS

CONTROL STATEMENTS

I EXEC_COM LINES THAT BEGIN WITH SPECIAL KEY WORDS

I ALL KEY WORDS BEGIN WITH & (AMPERSAND)

I PROVIDE VARIETY AND CONTROL DURING EXECUTION

&command_line off

I SUPPRESSES THE PRINTING OF SUBSEQUENT COMMAND LINES

I USAGE: &command_line off

&command_line on

I CAUSES SUBSEQUENT COMMAND LINES TO BE PRINTED. (THE DEFAULT)

I USAGE: &command_line on

16-4 . FO1

CONTROL STATEMENTS

® &print text

0 CAUSES THE TEXT FOLLOWING &print TO BE PRINTED ON THE USER'S
TERMINAL

I USAGE: &print text
gprint BEGINNING COMPILE PHASE

A

e i

i,

/////f/d \\\\
&label location :

0 IDENTIFIES A PLACE TO WHICH AN &goto TRANSFERS CONTROL

I USAGE: &label label _name
&label Arg_Check
&label &1

ppre: M\\
® &goto location

I CAUSE CONTROL TO BE TRANSFERRED TO THE PLACE SPECIFIED
I USAGE: &goto label name

&goto Arg_Check
&goto &1

16-5 E FO1

STEY ~me odes u/wf/ex fﬂg'z‘ e replay

CONTROL STATEMENTS

z, ,./%z‘% Ao
a,zwvé/é'
Myf W el e enf
&if, &then, &else - 2 xwf
el

[ALLOWS EXEC_COM LINES TO BE CONDITIONALL INTERPRETED

I USED WITH LOGICAL ACTIVE FUNCTIONS (WHICH RETURN "true" OR
"false")

I USAGE 1: &if [ACTIVE_FUNCTION {args}l]
&then EXEC_COM STATEMENT

&if [exists seg add.pl1]
&then pl1 add.pli;add

0 USAGE 2: &if [ACTIVE_FUNCTION {args}]
&then EXEC_COM STATEMENT
&else EXEC_COM STATEMENT

&if [equal [wd] [home_dir]]

&then &goto 0K
&else &print Assuming working dir is correct

0 USED TO INDICATE A COMMENT LINE

I USAGE: & text

& THIS EXEC_COM DETERMINES THE USER'S PrOJect id
& AND THE TIME OF DAY IN ORDER TOQ

16-6 FO1

CONTROL STATEMENTS

r—————

I CAUSES EXECUTION OF THE EXEC COM TO HALT (DEFAULT AT END OF
SEGMENT)

D USAGE: &quit

/ ,,,...-_-w,\

CAUSES SUBSEQUENT COMMANDS WHICH NORMALLY TAKE THEIR INPUT FROM
THE TERMINAL TO TAKE THEIR INPUT FROM THE EXEC_COM SEGMENT

| USAGE: &attach _= é¢ﬁxa¢’]QWV2ﬂf“&6

I EXAMPLES:

qedx REQUESTS ARE
READ FROM TERMINAL

qedx REQUESTS ARE
READ FROM EXEC_COM

&command_line off
cwd >udd>FED>May
qedx

cwd >udd>FED>Kerr

16-7

&command_line off
&attach

cwd >udd>FED>May
gedx

r seg_1

1,8s/0once/twice/w

q
cwd >udd>FED>Kerr

FO1

CONTROL STATEMENTS

jg§z¥7ussn TO REVERT &attach

I CAUSES SUBSEQUENT COMMAND WHICH NORMALLY TAKE THEIR INPUT FROM
THE TERMINAL TO CONTINUE TO TAKE THEIR INPUT FROM THE TERMINAL

R ‘/ﬂ:“—""‘\
<:§\“3?E DEFAULT WHEN ENTERING RN EXEC_COM

I USAGE: &detach

® &input_line off

I SUPPRESSES THE PRINTING OF SUBSEQUENT INPUT LINES (SUCH AS
REQUEST LINES)

I USAGE: &input_line off

™

ANy

I CAUSE SUBSEQUENT INPUT LINES TO BE PRINTED\(DEFAULT)

16-8 FO1

CONTROL STATEMENTS

&ready on

CAUSES THE INVOCATION OF THE USER'S READY PROCEDURE AFTER THE
EXECUTION OF EACH COMMAND LINE WITHIN THE EXEC_COM

N

&ready off

o,

m::::\}
(DEFAULT))

0] CAUSES THE USER'S READY PROCEDURE NOT TO BE INVOK
WITHIN THE EXEC_COM

exec_com DEFAULTS:

&command_line on
&input_line on
&ready off
&detach

16-9 FO1

EXEC COM EXAMPLES

& EXAMPLE 1: LET pl1_pr.ec CONTAIN:

pli_pr.ec

ind &1.pl1
pii &1.pl1 -map
dp &1.1ist

ind &2.pl1
pl1l &2.pl1 -map
dp &2.list

A

0 LET THE COMMAND LINE BE: ec pl1_pr.ec add sub

] LET THE COMMAND LINE BE: ec pli_pr.ec sub

® EXAMPLE 2: LET pl1_pr.ec CONTAIN:

plil_pr.ec

&command_line off
&if [nless &n 1] &then &quit

“ind &1.pl1
pl1 &1.pll -map
dp &1.1list

ind &2.p11
plt &2.pl1 -map
dp &2.1list
&quit

16-10 FO1

EXEC COM EXAMPLES

e EXAMPLE 3: LET pl1 pr.ec HAVE AN ADD NAME OF pli_pr_.ec AND
CONTAIN:

plil_pr.ec
pli_pr_.ec

&goto &ec_name

&label plT1_pr

&command line off

&print Beginning &ec_name exec_com

&if [ngreater &n 0] &then &goto plil_pr_
&print Usage is: ec &ec_name.ec paths™
&quit

&label pli1_pr_

dl &1 -brief

ind &1.pl1

pl1 &1.pl1 -map

& CHECK FOR A SUCCESSFUL COMPILE. (WAS OBJECT CREATED).
&if [exists segment &1] &then dp &1.1list

&if [ngreater &n 1] &then ec &ec_dir>pl1_pr_.ec &2 &3 &4
&quit

16-11 FO1

EXEC COM EXAMPLES

ADDITIONAL EXAMPLES OF EXEC_COM CONTROL STATEMENTS:
&if [equal [day _name] Monday] &then
&if Lquery "Do you really ...?2"] &then
&if [equal all [response "How many do you want?"]] &then
&if'[equal TSmith.FED tlast_message_sender]] &then
&if [equal S [substr [user name]l 1 1]] &then
4if [equal O [min &1 &2 &3 &4]] &then
&if [or [equal eees] [less ved]] &then
&if [nless O [index "&1 &2 &3 &4" -alll] &then
&if [equal O [mod &n 2]] &then

16-12 ' FO1

“AREAS FOR ADDITIONAL STUDY -

® ADDITIONAL DOCUMENTATION OF exec_com FACILITIES:
§ MPM COMMANDS AND ACTIVE FUNCTIONS (AG92)

I help exec_com

e STUDY TOPICS

I ARGUMENT SUBSTITUTION
I &qi, &ri (QUOTING AND REQUOTING OF ARGUMENTS)
0 &fi (THE ARGUMENT STRING STARTING WITH THE iTH ARGUMENT)

I &qfi, &rfi (QUOTING AND REQUOTING OF ARGUMENT STRINGS)

I CONTROL STATEMENTS

I &print CONTROL STRINGS: ~/, 3/, “=, “4-, *

-
>
n
-
]
>

YOU ARE NOW READY FOR WORKSHOP
#

16-13 : FO1

This page has intentionally
been left blank.

16-14

FO1

TOPIC XVII

ABSENTEE USAGE

Page

What is Absentee Usage . . .
Absentee Commands
Areas for Additional Study .

. - . - 17"1
. . . . Ny 17“7
. . . . Y e e 17"9

17-1 - FO1

This page has intentionally
been left blank.

17-11 FO1

WHAT IS ABSENTEE USAGE

ABSENTEE FACILITY

I A FACILITY FOR RUNNING BACKGROUND JOBS (i.e. BATCH JOBS)

GIVES USERS THE ABILITY TO EXECUTE LARGE JOBS WITHOUT WAITINF
AT THE TERMINAL WHILE THE JOB IS IN PROGRESS

CHARGES FOR ABSENTEE USAGE IS USUALLY LOWER THAN CHARGES Fnh
INTERACTIVE USAGE

A USER MAY RUN MANY ABSENTEE JOBS AT ONCE, BUT IS SUBJECT TN.
THE CURRENT SYSTEM LIMIT ON THE NUMBER OF ABSENTEE JOBS

LANGUAGE FOR ABSENTEE USAGE IS IDENTICAL TO THE INTERACTIVE
COMMAND LANGUAGE

PROCESS

A PROGRAM CREATED FOR THE USER AT LOG IN, AND DESTROYED AT uOG
ouT

AN ACTIVE AGENT WHICH DOES

m
]
"o
-3
o
™
c:
(2]
s
)

LIKE A PRIVATE COMPUTER, WORKING IN ITS OWN MEMORY UNDER THE
CONTROL OF THE USER :

17-1 FO1

'WHAT IS ABSENTEE USAGE

® INTERACTIVE USAGE

1 USING MULTICS INTERACTIVELY VIA A TERMINAL

I USER'S PROCESS INTERACTS WITH THE USER

® ABSENTEE USAGE

| USING MULTICS WHILE ABSENT FROM A TERMINAL
[USER'S PROCESS "INTERACTS" WITH AN INTERACTIVE SCRIPT

I AN ABSENTEE JOB IS A "PLANNED"™ INTERACTIVE TERMINAL SESSION

17=2 FO1

WHAT IS ABSENTEE USAGE

ABSENTEE MECHANISM

USER CREATES AN ABSENTEE INPUT SEGMENT CONTAINING COMMANDS TO
BE EXECUTED A

THE ABSENTEE INPUT SEGMENT
I MUST HAVE SUFFIX OF absin

] CONTAINS A PLANNED INTERACTIVE SCRIPT, INCLUDING PRESET
ANSWERS TO ANTICIPATED QUESTIONS

I HAS THE SAME SYNTAX AS EXEC_COM SEGMENTS

USER REQUESTS THE EXECUTION OF THE ABSENTEE INPUT SEGMENT VIA
THE enter_abs_request COMMAND

EXECUTION MAY BE DEFERRED UNTIL A SPECIFIED DATE AND TIME

THE ABSENTEE REQUEST IS QUEUED AND RUN AS BACKGROUND TO THE
NORMAL INTERACTIVE WORKLOAD

ALL OUTPUT NORMALLY DIRECTED TO THE TERMINAL IS REDIRECTED TO A

SEGMENT HAVING THE SAME NAME AS THE ABSENTEE INPUT SEGMENT
EXCEPT THE SUFFIX IS absout

17-3 FO1

WHAT IS ABSENTEE USAGE

INTERACTIVE USAGE

USER'S < COMMANDS
PROCESS RESPONSES
USER‘S
v TERMINAL
| THLE 1/0
DATA
.
ABSENTEE USAGE
A.absin
: COMMANDS T et
USER'S — ;‘:._.:.:.1“
PROCESS RESPONSES <0
A.absout

1F|LE 1/0

DATA
FILE

17-4 FO1

WHAT IS ABSENTEE USAGE

e THE ABSENTEE PROCESS WHICH RUNS THE JOB:

I LOGS INTO THE SYSTEM AS DOES ANY USER (EXCEPT FOR PASSWORD
AUTHENTICATION)

I EXECUTES THE ABSENT USER'S start_up.ec
[BEGINS WORKING IN THE ABSENT USER'S HOME DIRECTORY ‘
[TAKES ITS COMMANDS FROM THE ABSENTEE INPUT SEGMENT

I APPEARS (AND IS) ANOTHER USER HAVING THE ABSENT USER'S User_id

® COMMAND LINE FLOW

ABSENTEE INPUT

v

{ABBREV PROCESSOR}

v

COMMAND PROCESSOR

v
EXECUTION

17-5 : FO1

WHAT IS ABSENTEE USAGE

® NOTES ON ABSENTEE USAGE

I start up.ec SHOULD BE MODIFIED TO RESPOND DIFFERENTLY TO AN
ABSENTEE LOG IN

!
I THE SYSTEM EXECUTES A USER'S start_up.ec WITH ONE OF THE
FOLLOWING COMMAND LINES:

ec start_up.ec login interactive
ec start_up.ec 1login absentee
ec start_up.ec new_proc interactive
ec start_up.ec new_proc absentee

I THE USER MAY QUERY THE ARGUMENTS USING exec_com LINES
SIMILAR TO THE FOLLOWING:

&if [equal &1 login] &then ...
&if [equal &2 absentee] &then ...

i THE ABSENTEE INPUT SEGMENT MUST CONTAIN change wdir COMMAND IF
WORKING DIRECTORY IS TO BE OTHER THAN HOME DIRECTORY

I THE ABSENTEE INPUT SEGMENT OFTEN (BUT NEED NOT) HAS logout AS
FINAL COMMAND

I &attach HAS NO SIGNIFICANCE IN AN ABSENTEE INPUT SEGMENT SINCE
ALL USER INPUT IS ATTACHED TO absin FILE

I IF THE ABSENTEE JOB CANNOT BE RUN, OR IF IT TERMINATES

ABNORMALLY, THE SUBMITTER WILL RECEIVE A MESSAGE FROM THE
SYSTEM

17-6 FO1

ABSENTEE COMMANDS

enter abs_request, ear (BATCH NEVER LOOKED LIKE THIS!)

I QUEUES A REQUEST FOR THE CREATION OF AN ABSENTEE PROCESS

I

USAGE:

enter_abs_request path {-control_args}
ear weird.absin

ear weird.absin -restart

ear trans.absin -time "Friday 9pm"

ear trans.absin -queue 1 ~-arguments add sum

list_abs_request, lar

0

PRINTS INFORMATION ABOUT ABSENTEE REQUESTS

USAGE:

list_abs_request {-control_args}
lar

lar -q 1

lar -all

17-7

FO1

ABSENTEE COMMANDS

cancel_abs_request, car

0 CANCELS AN ABSENTEE REQUEST WHICH IS STILL QUEUED

I USAGE: cancel

_abs_request request_id {-control_args}

car weird.absin

car trans.absin -q 1

car -id 202008

answer

0 PROVIDES PRESET ANSWER(S) TO QUESTION(S) ASKED BY A COMMAND

I PRIMARILY FOR USE IN ABSENTEE INPUT SEGMENTS

I THE ANSWER 1IS
LIMITED BY THE

I UNUSED ANSWERS

1 USAGE: answer
answer
answer
answer

answer

PROVIDED AN UNLIMITED NUHBER OF TIMES UNLESS
-times CONTROL

ARE IGNORED

ans {-control_args} command_line
yes delete_dir Dir_&

yes -times 2 help send message
rest help trace

no answer yes -times 2 help trace

17-8 ' ' FO1

AREAS FOR ADDITIONAL STUDY

@ ADDITIONAL DOCUMENTATION
I MPM COMMANDS AND ACTIVE FUNCTIONS (AG92)

I help enter_abs_request

® STUDY TOPICS

I CONTROL ARGUMENTS

[-output_file, -limit, ~brief -

I ABORTING OF AN ACTIVE ABSENTEE PROCESS (THERE IS NO "GRACEFUL"
WAY)

0 DELETE ACCESS TO &HE absin SEGMENT
I DELETE ACCESS TO THE absout SEGMENT

I CALL OPERATOR

] SELF PERPETUATING ABSENTEE PROCESSES

17-9 FO1

This page has intentionally
been left blank

17-10

SOFTWARE CONVENTIONS

TOPIC XVIII

Command Language Special Symbols

Segment Name Suffixes
Suffix Convention .

Canonical Form
set_tty Command

18-1

Page

18-1
18-7
18-9
18--10
18-12

FO1

This page has intentionally

been left blank.

18~1i

COMMAND LANGUAGE SPECIAL SYMBOLS

& . (PERIOD)

I SEPARATES COMPONENTS OF AN ENTRYNAME, STAR NAME, OR ACCESS
IDENTIFIER ' '

A_test.alpha.cobol
.;pll
Student_O4.F01.m

® _ (UNDERSCORE)

SIMULATES A SPACE FOR READABILITY IN ENTRYNAMES

ran_num_gen.basic

I IS NOT AN ABBREV BREAK CHARACTER

I ALL SYSTEM SUBROUTINES END IN _

e > (GREATER-THAN)

I DENOTES HIERARCHY LEVEL (TOP DOWN)

I SEPARATES THE ENTRYNAMES IN A PATHNAME

>udd>F01>Student_01>tools>my_editor.pll

18-1 FO1

COMMAND LANGUAGE SPECIAL SYMBOLS

< (LESS-THAN)
I INDICATES ONE LEVEL BACK‘QE'IN THE HIERARCHY

I EXAMPLES ASSUMING WORKING DIRECTORY IS >udd>FED>LJones>tools

cwd < v
cwd dudd>FED>LJones

cwd <<
cwd >udd>FED

pr <start up.ec :
pr >udd>FED>LJones>start_up.ec

pr <<TSmith>tools>random
pr >udd>FED>TSmith>tools>random

% (STAR OR ASTERISK)

] MATCHES ANY COMPONENT OF AN ENTRYNAME OR ACCESS IDENTIFIER
(STAR CONVENTION) ' :

list seg_1.%.%
list seg_1.%%

sa % ,#% r LJones.¥%,.a

18-2 FO1

COMMAND LANGUAGE SPECIAL SYMBOLS

& ? (QUESTION MARK)

I MATCHES ANY LETTER OF A COMPONENT OF AN ENTRYNAME (STAR
CONVENTION) '

list s???.0l1ld.pl1
list s?77.%%

(EQUAL)

I IS REPLACED BY THE CORRESPONDING COMPONENT OF AN ENTRYNAME
(EQUAL CONVENTION)

I * (STAR) AND = (EQUAL) ARE SYMMETRICAL IN MEANING
rename random.gen.pll ordered.=.=
rename random.gen.pll ordered.gen.plt

rename random.data.base =.=
rename random.data.base random.data

rename beta my =.o0ld
rename beta my_beta.old

rename *.new.pli =.0ld.=
rename beta.new.pll beta.old.pl?

add_name ¥¥* ec ==.absin
add_name pll _pr.ec pli1_pr.absin

18-3 - FO1

COMMAND LANGUAGE SPECIAL SYMBOLS

% (PERCENT)

I IS REPLACED BY THE CORRESPONDING CHARACTER OF A COMPONENT NAME
(EQUAL CONVENTION)

0 ? (QUESTION MARK) AND % (PERCENT) ARE SYMMETRICAL IN MEANING

rename my old_ed.pll #%%newf%%.=
rename my old _ed.pll! my new_ed.plt

rename ???77?%.data %2%%.=
rename alpha 2.data alp.data

; (SEMI-COLON)

I USED TO SEPARATE MULTIPLE COMMANDS IN A COMMAND LINE

cwd dir_a; list; cwd dir_b;ls

- (MINUS SIGN)

I IDENTIFIES CONTROL ARGUMENTS

list -directory

dprint -he TSmith -ds MS106

18-4 : A FO1

P
COMMAND LANGUAGE SPECIAL SYMBOLS

@ () (PARENTHESES)

[CAUSES COMMAND ITERATION

print (A B add).pl1

print A.pl1
print B.pl1
print add.pl1

sm Student _0(1 3 5).FO1 Return to the classroom.

sm Student_01.F01 Return to the classroom.
sm Student_03.F01 Return to the classroom.
sm Student_05.F01 Return to the classroom.

rename (A B add).pll (a b Add).pl1

rename A.pl1 a.pli
rename B.pl1l b.pl1
rename add.pl1 Add.pl1

create_dir (new>(first second) old>third)
create_dir new>first

create_dir new>second
create_dir old>third

18-5 FO1

COMMAND LANGUAGE SPECIAL SYMBOLS

@ [] (BRACKETS)

I DELIMITS ACTIVE STRINGS. (EVALUATED BY ACTIVE FUNCTIONS)

sm [last_message_sender] Thanks!

® $ (DOLLAR SIGN)

I SEPARATES THE ENTRYNAME OF AN OBJECT SEGMENT FROM THE ENTRY
POINT NAME WITHIN THE OBJECT SEGMENT

I DEFAULT ENTRY POINT NAME IS THE ENTRYNAME

add
add$ add

add$max
add$max

& " (QUOTES)

I SUPPRESSES THE SPECIAL MEANING OF COMMAND LANGUAGE SPECIAL

SYMBOLS
rename ";" foo (segment name is: ;)
delete "A B" (segment name is: A B)
delete "A""B" (segment name is: A"B)
delete A""B (segment name is: AB)

18-6 FO1

absin

absout

acs

alm

apl
archive
basic
bind
breaks

cmdb

cmdsm

cobol
code
compin
compout

dict

dsm

ec
fortran
gcos
info

iodt

SEGMENT NAME SUFFIXES

ABSENTEE INPUT SEGMENT FOR THE enter_ abs _request COMMAND

ABSENTEE OUTPUT SEGMENT CREATED VIA THE
COMMAND

. enter_abs_request
ACCESS CONTROL SEGMENT USEFUL TO THE IO DAEMON

ALM SOURCE SEGMENT

APL WORKSPACE SEGMENT

SEGMENT MANIPULATED BY THE archive COMMAND

BASIC SOURCE SEGMENT

BINDFILE FOR THE bind COMMAND

BREAK SEGMENT USED BY THE debug COMMAND

MRDS DATA MODEL SOURCE
COMMAND

SEGMENT FOR THE create_mrds_db

\

MRDS DATA SUB-MODEL SOURCE SEGMENT FOR THE create _mrds_dsm
COMMAND

COBOL SOURCE SEGMENT

ENCIPHERED SEGMENT CREATED BY THE encode COMMAND
INPUT SEGMENT TO THE compose COMMAND

OUTPUT SEGMENT CREATED BY THE compose COMMAND

WORDPRO DICTIONARY SEGMENT CREATED BY.THE

add_dict_ words
COMMAND

MRDS DATA SUB-MODEL SEGMENT CREATED BY THE create mrds_dsm
COMMAND

COMMAND FILE FOR THE exec_com COMMAND
FORTRAN SOURCE SEGMENT
SEGMENT IN GCOS STANDARD SYSTEM FORMAT FOR THE gcos COMMAND

SEGMENT FORMATTED FOR USE BY THE help COMMAND
I1/0 DEVICE TABLE

18-7 FO1

linus
list
lister
listform
listin
mbx

memo

motd

mrpg

ms
pli
profile
gedx

symbols

wl

SEGMENT NAME SUFFIXES

LINUS MACRO SEGMENT FOR THE LINUS invoke REQUEST

LISTING SEGMENT CREATED BY A LANGUAGE PROCESSOR

LISTER DATA FILE (STRUCTURED) FOR THE process_list COMMAND
LISTER FORMS DESCRIPTOR SEGMENT FOR THE process_list COMMAND
LISTER DATA FILE (ASCII) FOR THE create_list COMMA“D

MAILBOX SEGMENT FOR THE mail COMMAND

DATA SEGMENT FOR THE memb COMMAND

DATA SEGMENT FdR THE print_motd COMMAND

SOURCE SEGMENT FOR THE MULTICS REPORT PROGRAM GENERATOR'S
mrpg COMMAND

MESSAGE SEGMENTS FOR RJE
PL/1 SOURCE SEGMENT
DICTIONARY SEGMENT FOR THE ABBREV PROCESSOR

MACRO SEGMENT FOR THE qedx TEXT EDITOR

SPEEDTYPE SYMBOL
COMMAND

DICTIONARY CREATED BY THE add_symbol

WORDPRO WORDLIST SEGMENT CREATED BY THE

create_wordlist
COMMAND

18-8 FO1

SUFFIX CONVENTION

& ALL COMMANDS WHICH ONLY WORK ON SEGMENTS HAVING A GIVEN SUFFIX
WILL APPEND THAT SUFFIX TO ENTRYNAMES TYPED WITHOUT THE SUFFIX

archive a Field_work summary_report
archive a Field work.archive summary report

basic ran_num_gen -list
basic ran_num gen.basic -list

cancel_ abs request weird
cancel abs request weird.absin

cobol A_alpha
cobol A alpha.cobol

enter_abs_request weird -tm 6pm
enter_abs_request weird.absin -tm 6pm

exec_com A create add sum
exec_com A create.ec add sum

fortran array_dot
fortran array dot.fortran

indent add
indent add.pl1

pl1l add -optimize
pl1 add.pll -optimize

18-9 |) FO1

CANONICAL FORM

@ MOTIVATION

B,jW

HOW WAS THE FOLLOWING LINE TYPED?

The only one!

The onlyBBBB one!

- Oor =

he _Bo Bn_Bl By one!

//;;?;;he oB_nB 1B yB one!
<t;j}Mi P - or - |
4 {;//f’ T

COMPARISON OF TWO INTERNAL LINES SHOULD BE BASED ON RESULTIN(
PRINTED IMAGE

THEREFORE, ALL INPUT SHOULD BE CONVERTED TO A STANDARD
(CANONICAL) FORM

MULTICS AUTOMATICALLY TRANSLATES ALL TERMINAL INPUT TO
CANONICAL FORM (UNLESS THE USER REQUESTS OTHERWISE)

SHOULD THE USER NOTICE THAT SOME TEXT IS NOT STORED IN THE SAME
SEQUENCE AS IT WAS TYPED, CANONICALIZATION SHOULD BE EXPECTED
(FOR EXAMPLE, DURING CERTAIN TEXT EDITING OPERATIONS)

18-10 | FO1

CANONICAL FORM

& CANONICAL FORM

OVERSTRIKES ARE STORED IN ASCENDING ASCII ORDER, SEPARATED BY
THE BACKSPACE CHARACTER

I EXAMPLES: (B = BACKSPACE, C = CARRIAGE RETURN, N = NEWLINE)
TYPIST: >B<B_ _B
TYPED LINE: X X
CANONICAL FORM: B_ B_
TYPIST: The onlyBBBB
TYPED LINE:

The only

CANONICAL FORM: The _Bo Bn Bl By

TYPIST: We see no prob BlemC_ N
TYPED LINE: We see no problem
CANONICAL FORM:

WB__Be see no problem

18-11 FO1

SET _TTY COMMAND

@ TERMINAL TYPES
I MULTICS ATTEMPTS TO RECOGNIZE TERMINAL TYPE AT DIAL-UP TIME
I EACH TERMINAL TYPE HAS A SET OF DEFAULT I/0 MODES

I TERMINAL I/0 MODES AFFECT CHARACTER CONVERSION, bELAY TIMES,
AND COMMUNICATION LINE CONTROL

® set_tty,//stty

0 H?DIFIES TERMINAL TYPE AND/OR MODES ASSOCIATED WITH TERMINAL
1/0

| USAGE: set_tty -control_args
stty -terminal_type TN300

stty -ttp ARDS
y -ttp 4,

stty -ttp tiT45 MM

stty -ttp roi§ﬂ,/» ‘

stty -modes lfecho,fulldpx ;zﬁCZN*«Q
sttgﬂbpriﬁﬁf\u/ blinac)E;;ZAA'Z/

stty -reset

stt del 1,0,0, 0 0. 4}“’#”1; éyc t%—AQmew«”
y a¥M»%“m~mﬂ_El// / 7§;?

stty -edit AB!

— Ml &
L“ jm 2""‘";’”{: 4//5*%‘ .

18-12 ~ FO

SET TTY COMMAND

- (4 ’
P \ y ‘/W
® TERMINAL I/O MODES /ﬁ o

%\/.

¢¢ /
/\/ A g7
o ¢

I can, “can

I PERFORMS STANDARD CANONICALIZATION

I capo, “capo

e

Il OUTPUTS ALL LOWERCASE LETTERS IN UPPERCASE EFAULT IS OFEY

I ECHOES AND INSERTS A LINE FEED IN-FHE - USER'S INPUT STREAM
WHEN A CARRIAGE RETURN IS TYPED((DEFAULT IS OFF)’

[crecho, “crecho

I ECHOES A CARRIAGE RETURN WHEN A LINE FEED IS TYPED((DEFAULT

ISTOFED
I fulldpx, “fulldpx

0 ALLOWS TERMINAL TO RECEIVE AND TRANSMIT SIMULTANEOUSLY
OFF I

[echoplex, “echoplex

I ECHOES ALL CHARACTERS TYPED ON THE TERMINAL (DEFAULT IS OFE)

18-13 ' FO1

SET TTY COMMAND

| edited, “edited

I SUPPRES PRINTING OF UNPRINTABLE CHARACTERS - LIKE \0O14

DEFAULT IS OFF)

T

'l(;fjéi “tab Q;ZfiL___—i§7'7; da&,/)

o e

I INSERTS TABS IN OUTPUT IN PLACE OF SPACES WHEN APPROPRIATE
(DEFAULT IS OFF)

I tabecho, “tabecho

i ECHOES THE APPH IATE NUMBER OF SPACES WHEN A HORIZONTAL
TAB IS TYPED ((DEFAULT IS OFF)

polite,) “polite
J DOES NOT SEND OUTPUT TO MINAL UNTIL THE CARRIAGE IS
AT THE LEFT MARGIN EFAULT IS OFF)

I replay, “replay

I REPRINTS INPUT LINE THAT IS INTERRUPTED BY
OUTPUT. ((DEFAULT IS OFF)) -

YOU ARE NOW RE:gY FOR WORKSHOP

18-14 FO1

Access to the System

ADDITIONAL COMMANDS

TOPIC XIX

Storage System, Segment Contents
Storage System, Manipulation
Formatted Output Facilities .

Performance Monitoring
Debugging .

Command Level Environment

Accounting . .
Absentee Computations
Miscellaneous Tools .

L] .
.

19-1

Page

19-1

19-5

19-10
19-13
19-14
19-15
19-16
19-18
19-19
19-21

FO1

This page has intentionally

FO1

19-ii

ACCESS TO THE SYSTEM

dial, d

\
§ CONNECTS AN ADDITIONAL TERMINAL TO AN EXISTING PROCESS

I ANSWERING SERVICE SEARCHES FOR A LOGGED IN PROCESS HAVING THE
SPECIFIED Person_id AND Project_id THAT IS ACCEPTING DIAL-UPS

I SEE THE dial_manager_ SUBROUTINE DESCRIPTION (AK92) FOR MORE
INFORMATION

I USAGE: dial dial_id Person_id.Project_id
d 411 TransProc.HSD

enter, e
enterp, ep

I CONNECTS AN ANONYMOUS USER TO THE SYSTEM

I THE enter REQUEST DOES NOT ASK FOR A PASSWORD WHEREAS enterp
DOES

USAGE: enter {anonymous name} Project_id
enterp {anonymous_name} Project id
e JDoe FED
ep JDoe FED

19-1 FO1

ACCESS TO THE SYSTEM

® login, 1
i USED TO GAIN ACCESS TO THE SYSTEM

I USAGE: 1login Person_id {Project_id} {control_args}
login TSmith
login TSmith FO1 -cpw -ns -modes 1lfecho
login TSmith FO1 -gpw -cdp -ring 5
login TSmith -force ~hd >udd>FED>Kerr

~

0 TERMINATES A USER SESSION
i USAGE: 1logout {-control_args}

IOSOUt«-‘ -bf
logout -hold

19-2

FO1

ACCESS TO THE SYSTEM

<Ei:E;;;9

TELLS MULTICS THAT THE TERMINAL IS AN UPPERCASE-ONLY TERMINAL

ALL INPUT IS MAPPED TO LOWERCASE EXCEPT FOR CHARACTERS PRECEDED
BY A \ (BACKSLASH)

MUST BE INVOKED BEFORE THE ACCESS REQUEST (e.g., login)
(PREACCESS ONLY) ,
1

USAGE: MAP

e/ 029 AND 963 >

e nmiina

] TELLS MULTICS THAT THE TERMINAL IS AN EBCDIC OR IBM 2741
‘ =

Z@? MUST BE INVOKED BEFORE THE ACCESS REQUEST (e.g., login)

I USAGE: 029 -OR- 963

19-3 FO1

ACCESS'TO THE SYSTEM

i —

(e
& hello

j&7cnusss THE GREETING MESSAGE TO BE REPEATED
j57MUST BE INVOKED BEFORE THE ACCESS REQUEST (e.g. login)

SEFUL IF THE GREETING WAS GARBLED (AS WOULD OCCUR WITH AN
* EBCDIC TERMINAL OR BECAUSE OF LINE NOISE)

J¥ USAGE: hello

19-4 Fo1

STORAGE SYSTEM, SEGMENT CONTENTS

® edm - MMW%/ZJ%
0 INVOKES A SIMPLE, INEXPENSIVE TEXT EDITOR (A SUBSYSTEM)

] USAGE: edm {path}
| edm

edm add.pl1

I INVOKES A SOPHISTICATED TEXT EDITOR (A SUBSYSTEM) HAVING MACRO

CAPABILITIES
] USAGE 1: qedx
(MANUAL EDITING)
qx
I USAGE 2: gedx path {optional args}

(MACRO EDITING)
qx conv_ft.qedx Random.fortran

19-5 FO1

STORAGE SYSTEM, SEGMENT CONTENTS

T

o . /L;\
® archive, ac ‘

’za('COMBINES AN ARBITRARY NUMBER OF SEPARATE SEGMENTS INTO ONE

(LIKE SARDINES)

SEGMENT (THE ARCHIVE SEGMENT)

I A MEANS OF ORGANIZING SEGMENTS (IDENTITY OF EACH SEGMENT IS
PRESERVED)

ﬁ SAVES PHYSICAL SPACE BY COMPACTING SEGMENTS TOGETHER
] THE ARCHIVE SEGMENT MUST HAVE A SUFFIX OF archive

0 CONSTITUENT SEGMENTS ARE CALLED COMPONENTS OF THE ARCHIVF
SEGMENT

I THE COMMAND IS ALSO USED TO EXTRACT COMPONENTS FROM THE ARCHIVE
AND RETURN THEM TO INDIVIDUAL STORAGE SYSTEM SEGMENTS

N 1 2 3 T
<§g§§§:j;— USAGE: archive key path componegff///)

ac r bound_pl1_prgms.s add.pll sub.plt

ac rd bound_pl1 _prgms.s [segs ##.pl1]
ac x bound_plil_prgms.s.archive sub.pl1
ac t bound_pli_prgms.s

ac d bound_pl1_prgms.s add.pl1

19-6 _ FO1

STORAGE SYSTEM, SEGMENT CONTENTS

KEY

I TABLE OF CONTENTS OPERATTON (t, tl1, tb, tlb)

0 APPEND OPERATION (a, ad, adf, ca, cad, cadf)

I REPLACE OPERATION (r, rd, rdf, ecr, crd, crdf)

0 UPDATE OPERATION (u, ud, udf, ¢u, cud, cudf)

I DELETE OPERATION (d, cd)

] EXTRACT OPERATION (x, xf)

7

/J»«» T /’7/”76
- Wj W o W

olle -

acaXACB

19-7 FO1

STORAGE SYSTEM, SEGMENT CONTENTS

(i:;::j;ind, bd A... AND THEY SHALL BECOME AS ONE)
- W_______/

I PRODUCES A SINGLE BOUND (PRE-LINKED) OBJECT SEGMENT FROM ONE OR
MORE UNBOUND OBJECT SEGMENTS '

I THE OBJECT SEGMENTS TO BE BOUND MUST FIRST BE PLACED IN AN
ARCHIVE SEGMENT

I THE CONTENTS OF THE ARCHIVE SEGMENT ARE THEN "BOUND" TOGETHER

I USAGE: bind paths {-control_args}

bd editor_mods.archive

ég'«/é{’étﬁ‘ ""Wg""’é

bound__ABC.archive

bd bound_ABC

19-8 FO1

STORAGE SYSTEM, SEGMENT CONTENTS

@ compare_ascii, cpa

0 COMPARES TWO ASCII SEGMENTS AND PRINTS THE CHANGES MADE TO THE
CONTENTS OF PATH1 TO YIELD THE CONTENTS OF PATH2

] THE AMOUNT OF LOOK AHEAD FOR RE-SYNCHRONIZING IS DETERMINED BY
THE min_chars AND min_lines ARGUMENTS

I DEFAULT min_chars IS 50, DEFAULT min_lines IS 5

| USAGE: compare_ascii pathl path2 {min_chars} {min_lines}

cpa genum.old.pl1 genum.new.pll

| AN
° adjust”bit_counqg\itf/)

\ CORRECTS THE BIT COUNT OF A SEGMENT (AN ATTRIBUTE STORED IN THE
- CONTAINING DIRECTORY) TO REFLECT THE ACTUAL BIT COUNT OF THE
SEGMENT

I USEFUL ON FILES . LEFT IN AN INCONSISTENT STATE (BY AN ABORTING
PROGRAM, ETC)

] USAGE: adjust_bit_count path {-control_args}
abc temp

abc output_file -l1g

19-9 E FO1

STORAGE SYSTEM, MANIPULATION

link, 1k (DON'T CONFUSE WITH DYNAMIC LINKING)

I CREATES A LINK TO A SPECIFIED SEGMENT OR DIRECTORY
I THE LINK "LOOKS" LIKE THE REAL THING TO MOST COMMANDS

I USED TO SAVE PHYSICAL SPACE AND/OR REDIRECT STORAGE SYSTEM
ACCESSES

I FREQUENTLY USED BY A PERSON BELONGING TO SEVERAL PROJECTS TO
LINK HIMSELF TO A COMMON MAILBOX, start_up.ec, profile, etc.

| USAGE: link pathi {path2}
1k >udd>FEb>Kérr>dev>x_sort >udd>FED>Kerr>tools>sort
1k >udd>FED>Kerr>dev>x_sort sort |
lk >udd>FED>Kerr>dev>x_sort
1k [home_dirl]l>([segs(home_dir]>%*#])
unlink, ul

0 DELETES THE SPECIFIED LINK ENTRY

I USAGE: wunlink paths

ul sort

19-10 FO1

LL-61

Lod

LINKING EXAMPLE 1

I Fo1 1

H Student_04

Student_07

link >udd>F01>Student_07>add add_7
link >udd>F01>Student_07>seg.2

NOILVINAINYW ‘WILSAS IDVYHOIS

cl=61

FED

LINKING EXAMPLE 2

MMPP

-
[
l
I
i
|
-
<
g

|
1
. 1
]
l
]
|
Xvy2 Tom start up.ec Lyon .mbx Pat ' Y
|
| ! o N
1 t N - d
| ! '
| | L e e e e — -
i i
N U
| To TSmith's
—————— m——

home directory

link >udd>MMPP>Lyon>(start_up.ec Lyon.rbx)
link »udd>MMPP>Lyon Pat
link >udd>WOPS >TSmith TOI{'

NOILVINdINYW ‘WIISZS IODVHOLS

FORMATTED OUTPUT FACILITIES

. dump_segmentiggg::y

0 PRINTS A SEGMENT'S CONTENTS IN OCTAL, ASCII, OR BCD
=

] USAGE: dump_segment path {first} {n_words} {-control_args}
ds prince 400 20 |
ds add -bcd

T

SO
8 sort_seg, ss

:};

s

0 ORDERS THE CONTENTS OF A SEGMENT ACCORDING TO THE ASCII
COLLATING SEQUENCE -

| SEGMENT IS BROKEN DOWN INTO SEPARATE SORT UNITS DELIMITED BY
SPECIFIED DELIMITER STRING. SORT UNITS ARE THEN SORTED

] USAGE: sort_seg path {-control_args}
ss tel data.old

ss tel data.old -delimiter xx ~descending

ss tel_data.old -sm tel_data.new -unique

19-13 _ - FO1

L]

PERFORMANCE MONITORING

cumulative_page_trace, cpt

I ACCUMULATES PAGE TRACE DATA SO THAT THE TOTAL SET OF PAGES USED
FOR A COMMAND OR PROGRAM CAN BE DETERMINED

] USAGE: cumulative page_trace command_line {-control_args}
cpt add -reset
cpt -print

0 PRINTS INFORMATION ABOUT THE EXECUTION OF INDIVIDUAL STATEMENT!
WITHIN A PL/I, FORTRAN, OR COBOL PROGRAM

I PROGRAMS MUST HAVE BEEN COMPILED WITH THE -profile CONTROL
ARGUMENT

I USAGE: profile path {-control_arés}
profile add

profile add =-reset

19-14 N | FO1

DEBUGGING

® trace_stack, ts

] PRINTS THE USER'S STACK HISTORY - MOST RECENT FIRST

I USAGE: trace_stack {-control_args}
ts

ts -depth 5

o trace
0 MONITORS CALLS TO SPECIFIED PROCEDURES

I PROCEDURES MUST HAVE ORIGINATED FROM PL/I OR FORTRAN SOURCE

I USAGE: trace {-coﬁtrol_args} names

trace add

1 19-15 ' FO1

COMMAND LEVEL ENVIRONMENT

\,\

oy

0 SETS THE MAXIMUM LENGTH OF OUTPUT LINES

I WRAP-AROUND, IF IT OCCURS, IS PRECEDED BY "\c"

0] USAGE: 1line_length maxlength

11 118

ready off, rdf .

S

I TURNS OFF THE READY MESSAGE

I USAGE: ready_off

rdf

ready on, rdn

0 PRINTS A READY MESSAGE AFTER
PROCESSED (THE DEFAULT)

] USAGE: ready on

rdn

19-16

EACH COMMAND LINE HAS BEEN

FO1

COMMAND LEVEL ENVIRONMENT

““““

/

ge eral_rgégy, gr ‘f,//)
_

%LOUS USER TO FORMAT THE READY MESSAGE

] USAGE: general_ready {-control_arg}

gr -string "DONE MASTER" -set
gr -string * -call print;messages -set
gr -string READY -hour : -minute -inc_cost

gr -control * -set

19-17 ‘ FO1

ACCOUNTING

® get_quota, gq

I RETURNS INFORMATION ABOUT STORAGE QUOTA AND USAGE FOR A
" SPECIFIED DIRECTORY

I DOES NOT "get"™ THE USER ANY MORE QUOTA
I USAGE: get_quota {paths} {-control_args}

gq dir_A
gq -long

0 PRINTS A REPORT OF RESOURCE CONSUMPTION FOR THE CURRENT BILLING
PERIOD

I USAGE: resource_usage {-control_ args}
ru

ru -long

19-18 FO1

ABSENTEE COMPUTATIONS

fortran_abs(iggz>

- SUBMITS AN ABSENTEE REQUEST TO PERFORM FORTRAN COMPILATIONS AND
dprint COMPILER'S OUTPUT

I USAGE: fortran_abs paths {-ft_args} {-dp_args} {-abs_args}

fa array dot.fortran

fa array dot -map -copy 2

//\\
pl1*abw

| SUBMITS AN ABSENTEE REQUEST TO PERFORM PL/I COMPILATIONS AND
dprint COMPILER'S OUTPUT

USAGE: pl1_abs paths {-pl1_args} {-dp_args} {-abs_afgs}'
pa add.pl1

pa add -optimize -queue 1 -hold

19-19 FO1

ABSENTEE COMPUTATIONS

TN,
® runoff_abs, rfa /

N

I SUBMITS AN ABSENTEE REQUEST TO PROCESS TEXT SEGMENTS (USING THE
RUNOFF COMMAND) AND dprint THE OUTPUT

! USAGE: runoff_abs path {-rf_args} {-ear_args} {-dp_args} {-abs

rfa prince.runoff

rfa prince =-in 10 =-tm Spm -cp 3

@ cobol_abs

I SUBMITS AN ABSENTEE REQUEST TO PERFORM COBOL COMPILATIONS AND
dprint COMPILER'S OUTPUT

I USAGE: cobol_abs paths {cobol_args} {dp_srgs} {-abs_args}

ca add.cobol

ca add -optimize -queue 1 -hold

19-20 - FO1

MISCELLANEOUS TOOLS

& calc
ROVIDE THE USER WITH A CALCULATOR (A SUBSYSTEM)
I ACCEPTS FORTRAN-LIKE EXPRESSIONS
| pi AND e ARE BUILT-IN VARIABLES

[USAGE: calc
cale
xzpi * 3.4 ¥%¥
3.57 * 2%%(x * 10.7)/sin (35.7)
q

,//’fglzttr\\

ﬁ encode

0 ENCIPHERS A SEGMENT'S CONTENT ACCORDING TO A KEY SUPPLIED BY
THE USER

I encode ASKS TWO TIMES FOR THE ENCIPHER KEYWORD
I ENCIPHERED SEGMENT IS GIVEN A SUFFIX OF code
[USAGE: encode pathi {path?2}

encode blacklist

19-21 FO1

MISCELLANEOUS TOOLS

& decode

0 RECONSTRUCTS AN ORIGINAL SEGMENT FROM AN ENCIPHERED SEGHENT IF
PROPER KEY IS SUPPLIED

] decode ASKS FOR THE ENCIPHER KEYWORD
I USAGE: decode path1l {path2}

decode blacklist

@ new_proc
0 DESTROYS THE USER'S CURRENT PROCESS AND CREATES A NEW ONE
| EFFECTIVELY THE SAME AS LOGGING OUT AND LOGGING IN AGAIN

I ASSUMES THE SAME CONTROL ARGUMENTS THE USER GAVE AT LOG IN

I USAGE: new_proc {-control_arg}

new_proc

YOU ARE NOW READY FOR WORKSHOP
#9

19-22 FO1

The Operating System
System Security . .
Ring Mechanism
System Daemons .

SOFTWARE OVERVIEW

L]

TOPIC XX

. . e .

System Libraries and Directorles

Application Packages

.

20-i

» o @ ¢« o o

" e e L]

e ® o * o *

Page

. 20-1

» e e LI)

20-2
20-8
20-9

20-11-

20-16

FO1

This page has intentionally

20-11 FO1

THE OPERATING SYSTEM

MORE THAN 95% OF THE OBJECT CODE ORIGINATED FROM PL/[SOURCE
(1,132,000 LINES)

LESS THAN 5% OF THE OBJECT CODE ORIGINATED FROM ALM ASSEMBLY CODE
(226,000 LINES)

TOTAL OBJECT CODE OCCUPIES MORE THAN SIX MILLION WORDS OF STGR: .-

HIGHLY STRUCTURED (3300 MODULES)

CODE IS PURE, RECURSIVE AND RE-ENTRANT

ON-LINE INSTALLATION OF SYSTEM MODULES

EXTENSIVE ON-LINE METERING AND TUNING FACILITIES

20-1 . FO1

SYSTEM SECURITY

®@ ".,..Multics is properly characterized as the most secure
commercial operating system available."

Prof. Peter J. Denning

Computer Science Dept.

Purdue University

(Computing Europe, July 29, 1976)

® Multics security architecture is superior to any other
commercially available system (by 2 to 1 ratio).

Mitre Corporation Study for
U.S. Air Force - Sept., 1975
(USDC Order No: AD-A009221)

® SYSTEM ACCESS: USER AUTHENTICATION
I USER AUTHENTICATION REQUIRED TO LOG IN

I PASSWORD IS DETERMINED AND CHANGED BY USER, AT WILL (RANDOM
PASSWORD GENERATION IS AVAILABLE IF DESIRED)

I ONLY A NON-REVERSIBLE RESIDUE OF EACH PASSWORD IS STORED
I NOTIFICATION OF INCORRECT PASSWORD USAGE

I LAST LOG IN NOTIFICATION

20-2 o FO1

SYSTEM SECURITY

e VIRTUAL MEMORY
I INVISIBLE ABSOLUTE MEMORY ADDRESSES
I ADDRESS SPACE UNIQUE TO PROCESS

I RESIDUE CLEARED PRIOR TO PAGE ALLOCATION

@ FILE AND PROGRAM ACCESS: ACL (DISCRETIONARY)

I ACL MECHANISM SEPARATES AND PROTECTS USERS FROM OTHER USERS ON
THE BASIS OF Person_id AND Project_id

0 EVERY SEGMENT AND DIRECTORY HAS AN ASSOCIATED ACCESS CONTROL
LIST

I ACL DETERMINES WHO MAY ACCESS A SEGMENT OR DIRECTORY AND HOW
THEY MAY ACCESS IT

I AN ACL IS MANIPULATED AT THE DISCRETION OF THE SEGMENT'S OR
DIRECTORY'S OWNER

20-3 FO1

SYSTEM SECURITY

FILE AND PROGRAM ACCESS: AIM (NONDISCRETIONARY)

I AIM (ACCESS ISOLATION MECHANISM) MECHANISM SEPARATES AND

PROTECTS USERS FROM OTHER USERS ON THE BASIS OF SECURITY LEVEL
AND THE NEED TO KNOW

0 EVERY SEGMENT, DIRECTORY AND USER HAS AN ASSIGNED SENSITIVITY
(SECURITY) LEVEL AND CATEGORY SET

I AIM RESTRICTS SEGMENT AND DIRECTORY ACCESS TO USERS BELONGING
TO THE SAME CATEGORY SET AND HAVING THE SAME, OR HIGHER,
SENSITIVITY LEVEL

I SENSITIVITY LEVELS AND CATEGORY SETS ARE ASSIGNED BY THE SYSTEM
ADMINISTRATOR (UP TO 8 LEVELS AND 18 CATEGORIES)

I USERS CANNOT "GIVE AWAY" ACCESS OR WRITE DATA INTO A LOWER
SENSITIVITY LEVEL REGARDLESS OF ACL PERMISSIONS

AIM IS A SITE CONTROLLED OPTION

NATQ ClA AIR FORCE_ NAVY
TOP SECRET
SECRET
o wo——
UNCLASSIFIED
N

20-4 FO1

SYSTEM SECURITY

@ FILE AND PROGRAM ACCESS: RINGS (INTRAPROCESS)

[THE RING MECHANISM SEPARATES AND PROTECTS THE OPERATING SYSTEM
FROM THE USERS

I THE RING STRUCTURE IS AN 8 LEVEL (0 THRU 7)
. MASTER-MODE/SLAVE-MODE HIERARCHY

I 0 - CENTRAL SUPERVISOR (MOST PRIVILEGED)
0 1 - SYSTEM ROUTINES

I 4 - NORMAL USER RING '

I 7 - HIGHEST USER RING (LEAST PRIVILEGED)

20-5 ' FO1

SYSTEM SECURITY

PERSONNEL_FILE

20-6 ' FO1

SYSTEM SECURITY

EACH SEGMENT HAS AN ATTRIBUTE WHICH IS A SET OF INTEGERS KNOWN
AS RING BRACKETS

THE RING BRACKETS DEFINE FROM WHICH RING(S) A PROCESS MAY READ,
WRITE, CALL, OR EXECUTE THAT SEGMENT

"EACH PROCESS IS CREATED IN A GIVEN RING DETERMINED AT LOGIN

A PROCESS MAY TEMPORARILY CHANGE 1ITS RING OF EXECUTlQE BY
EXECUTING A PROGRAM CALLED A GATE ~

I EXAMPLE:

I A DATA BASE IN A LOWER RING THAN A USER CAN ONLY BE
ACCESSED BY THAT USER VIA AN OWNER WRITTEN "GATE"
'PROCEDURE - REGARDLESS OF AIM AND ACL PERMISSIONS

I HARDWARE ENFORCED AT EVERY ACCESS

20-7 FO1

-

RING MECHANISM

RING MECHANISM SUMMARY

WRITE

WRITE
BRACKET

|ﬁ\

READ

READ BRACKET

EXECUTE
BRACKET

]

EXECUTE

CALL BRACKET

* SUBJECT, OF COURSE, TO ACL AND AIM

20-8

M lfenresmemomreranssed
GATE
BRACKET

-

4

—

RING OF EXECUTION
— e— gr—— prm——
N
- o
AN Sl
S e

CORRESPONDING
PERMITTED ACTION:!

READ, WRITE,
EXECUTE (WITH RIN
CHANGE)

READ, WRITE, AND
EXECUTE

READ, EXECUTE

EXECUTE (IF A GATI
ONLY, AND WITH Rl
CHANGE)

FO1

SYSTEM DAEMONS

Daemon

I A SYSTEM SERVICE PROCESS THAT PERFORMS A SPECIFIC TASK SUCH AS
PROCESS CREATION, BACKUP, NETWORK CONTROL, PERIPHERAL I/0

I LOGGED IN BY THE OPERATOR AND CANNOT "TIME OUT" AS A USER MIGHT

Backup.SysDaemon

I A PROCESS DESIGNED TO PRODUCE BOTH INCREMENTAL AND CONSOLIDATED
BACKUP COPIES OF THE STORAGE SYSTEM

I BACKUP IS TO MAGNETIC TAPE

I SITE DETERMINES THE FREQUENCY OF THE BACKUPS

Card_Input.Daemon

I A PROCESS DESIGNED TO MANAGE THE SYSTEM CARD READER(S)

I0.SysDaemon

0 A PROCESS DESIGNED TO MANAGE THE SYSTEM'S LINE PRINTERS AND
CARD PUNCHES '

20-9 FO1

SYSTEM DAEMONS

Dumper .SysDaemon

0 A PROCESS DESIGNED TO PRODUCE A COMPLETE BACKUP OF THE STORAGE
SYSTEM

GCOS.SysDaemon

0 A PROCESS DESIGNED TO AID IN THE SIMULATION OF A GCOS
ENVIRONMENT ON MULTICS

I ALLOWS STANDARD GCOS JOBS TO BE SUBMITTED FROM EITHER PUNCHED
CARDS OR IMCV TAPES

Initializer.SysDaean

] THE SYSTEM'S PRIMARY PROCESS. PERFORMS THE FOLLOWING
FUNCTIONS:

ANSWERING SERVICE OPERATIONS (login, dial, logout, etc)
I OPERATOR COMMAND SERVICE

I OPERATOR TERMINAL MANAGEMENT AND MESSAGE ROUTING
I SYSTEM ACCOUNTING AND ADMINISTRATION

I USER REQUEST HANDLING (logout, new_proc, etc)

20-10 FO1

SYSTEM LIBRARIES AND DIRECTORIES

Loe

PLUS MISCELLANEOUS ACCOUNTING,
LOG, LINE USAGE, PASSWORD SEGMENTS
AND THE /0 RESQURCE CONTROL

ROOT
:I:::c . system_library _1 system_library _tools system control_1
auth_maint s tools
¢ COMMAND AND o HARDCORE OPERATING o COMMANDS AND SUBROUTIRES .
SUBROQUTINES OF SYSTEM PROCEDURES SUBROUTINES USED TO :
THE LOCAL ADMINISTER, MEASURE,
AUTHOR-MENTION o RELOADED EACH TIME AND MAINTAIN THE PACKAGES
LIBRARY THE SYSTEM IS SYSTEM
REINITIALIZED
® ted, lisp, pascal o PRIMARILY OF INTEREST
TO SYSTEM PROGRAMMERS
20-11

FO1

ROOT

process_dir__dir
pdd
N
o
A (NAME = PROCESSED)
n

system_library__standard

user_dir_dir v systom_Jibrary_unbundied

5888

SUBROUTINES PROVIDED
AS PART OF MULTICS

ONE
DIRECTORY
PER PROCESS

o PLUB OTHER TEMPORARY SEGMENTS CREATED
AS NEEDED

o4

P

- LINUS, MRDS, MRPG

ONE

{PROJECT NAME) DIRECTORY
: PER PROJECY

ONE
(USER NAME) DIRECTORY

i

o PERSONAL SEGMENT\S
AND DIRECTORIES
OF THIS USER

S3IYOLDIYIQ QNV SITUYHEIT WIALSKS

EL-0¢

Lod

ROOT

system__library_obsolete

dumps geos_dir_dir exp:;i'mental systam__library_network

o CONTAINS OBSOLETE
OBJECT SEGMENTS

o CONTAINS SYSTEM e CONTAINS SYSTEM ® CONTAINS SYSTEM o CONTAINS OBJECT SEGMENTS
DUMPS FOR SOFTWARE USEFUL SOFTWARE WHICH FOR NETWORK PROCESSING
CRASHES, ETC. FOR HANDLING THE IS BEING DEVELOPED

GCOS ENCAPSULATION
o CONTAINS PROCEDURES
BEING USED IN PLACE
OF SYSTEM PROCEDURES
WHICH ARE FAULTY

SIIYOLOIYIA QNY SHIUVHEIT WIALSKS

SYSTEM LIBRARIES AND DIRECTORIES

ROOT

firmware

0 O

e CONTAINS THE FIRMWARE
AEQUIRED BY VARIOUS
PERIPHERAL DEVICES
(i.e,, TAPE AND DISK

CONTROLLERS)

desmon_
dir_dir

e DIRECTORIES AND
SEGMENTS OF THE

BACKUP AND 1/0
DAEMON PROCESS

tibeary _dir_q
idd

© SEE NEXT P

info_segments

OO

e INFO SEGMENTS
FOR THE hslp
COMMAND

20-14

553

MAINTAINED
info SEGMENTS

P!

o OTHER USEFUL
DOCUMENTATION
DIRECTORIES ANT
SEGMENTS

FO1

library _dir_dir
idd

ONE FOR EACH OF THE
FOLLOWING:
: systam_library _network
system_library _obsolate
* unbundled

tools
* hardcore (si1 and 3¢} s ’ include . listings

* gommunication incl

object
ALL PL/1 INCLUDE

source lists
s) 0 |
] FILES
éé é) éé é 6& é ‘ o CONTAINS PL/1 LISTINGS
FOR SYSTEM PROGRAMS
\l,./ e — | '

GL-02

o LOCATED ON A SEPARATE
LOGICAL VOLUME WHICH
‘'MAY BE REMOVED

bound_full_cp_.archive o CONTAINS 9 DIRECTORIES:
. bos
bound_full _cp _.list languages
{bind listings) standard
tools

obsolete
comm
unbundied
network
hardcore

bound_ full_cp__s.archive

* THESE CONTAIN ADDITIONAL DIRECTORIES

Lod

SHIY0LO3¥IA ANV SIATYVHEIT WALSAS

APPLICATION PACKAGES

® MULTICS DATA BASE MANAGER (MDBM)

] MULTICS INTEGRATED DATA STORE (MIDS)

SUPPORTS NETWORK DATA BASES
A SUBSET OF IDS-II

PROCEDURAL INTERFACE (USER SPECIFIES HOW TO SEARCH)

I MULTICS RELATIONAL DATA STORE (MRDS)

SUPPORTS RELATIONAL DATA BASES
INDUSTRY'S FIRST COMMERCIALLY AVAILABLE RELATIONAL DBM

NON-PROCEDURAL INTERFACE USING ENGLISH-LIKE EXPRESSIONS
(USER SPECIFIES GOAL OF SEARCH)

SET OPERATIONS ON RELATIONS (I.E. ON FILES):
I UNION, INTERSECTION, DIFFERENCE

BOOLEAN OPERATIONS BETWEEN CONDITIONS FOR SELECTION:
I AND, OR, NOT

ALGEBRAIC COMPARISONS ON ATTRIBUTES (I.E. ON DATA FIELDS):
| EQUAL, GREATER THAN, LESS THAN, NOT

BUILT~IN FUNCTIONS

[abs, after, before, ceil, concat, floor, index, iod.
reverse, round, search, substr, verify

20-16 , FO1

APPLICATION PACKAGES

LOGICAL INQUIRY AND UPDATE SYSTEM (LINUS)

0

END USER FACILITY FOR ACCESSING RELATIONAL DATA BASES

ENGLISH-LIKE EXPRESSIONS

I FIND THE AVERAGE SALARY OF EMPLOYEES IN THE SHOE DEPARTMENT

avg {select salary
from employee table
where dept = "Shoe"}

BOOLEAN OPERATIONS BETWEEN CONDITIONS FOR SELECTION:

I AND, OR, NOT

ALGEBRAIC COMPARISONS ON ATTRIBUTES (I.E. ON DATA FIELDS):
I EQUAL, GREATER THAN, LESS THAN, NOT

I FIND THE NAMES OF EMPLOYEES WHO ARE EITHER IN THE ADMIN
DEPARTMENT OR WHOSE TOTAL INCOME EXCEEDS $10,000

select name ,
from employee_table _
where dept = "Admin"|salary+comm>10000

20-17 FO1

APPLICATION PACKAGES

I SET OPERATIONS ON RELATIONS (I.E. ON FILES):
] UNION, INTERSECTION, DIFFERENCE

I FIND THOSE ITEMS WHICH ARE SUPPLIED BY LEVI AND SOLD IN THE
MEN'S DEPARTMENT

select item

from supply

where supplier = "Levi"
inter

select item
from sales
where dept = "Men"

I BUILT-IN FUNCTIONS

] abs, after, before, ceil, concat, floor, index, mod, reverse, r«
search, substr, verify

§ wmax, min, sum, ave, count

0] PERMITS USER DEFINABlE FUNCTIONS (I.E., MACROS)

20-18 FO1

APPLICATION PACKAGES

e MULTICS REPORT PROGRAM GENERATOR

i A FACILITY FOR GENERATING FORMATTED REPORTS

MRPG
SOURCE
(USER WRITTEN)

INPUT
TO

MRPG

GENERATES

—

DATA
(USER
SUPPLIED)

INPUT

TO

REPORT
PROGRAM

CREATES

—

20-19

FORMATTED
REPORT

FO1

APPLICATION PACKAGES

® WORD PROCESSING (WORDPRO)

I A COLLECTION OF FACILITIES FOR ENHANCING THE ON-LINE PREPARATION
DISTRIBUTION, AND MAINTENANCE OF DOCUMENTS

I CONSISTS OF SUCH TOOLS AS:

[SPEEDTYPE COMMANDS

20-20 ' FO1

APPLICATION PACKAGES

compose FACILITY

.hla ! Tite Ii
Mfa !1:-%PageNo%-!
- ~
w2
.inl 10
St et \tmat—
B
P, SR S s

A.compin

[WORDLIST COMMANDS

] ELECTRONIC MAIL COMMANDS

I TEXT EDITOR

20-21

FO1

APPLICATION PACKAGES

I LIST PROCESSING COMMANDS

20-22 ’ FO1

APPLICATION PACKAGES

ONLINE DICTIONARIES

PAAN AN A
L
AN P e A A P e
A s et it
> unb > standard dict
P N NE— a acton
AN A e able .
e . acton ;
I SEERVI S
P N N, VI wordlist 2‘:“ trim_wordlist .
P \ iy - .
B * -
L S SR NS .
e T Y wher
DN, N Zoro
P OV e, SN
P e, S
A e N Smaeetn -
P S g N wher
P SR W — where
i Zoro
fred fred.wi fred.wi
(20,000 WORD {5,000 UNIQUE {100 POTENTIALLY
DOCUMENT) WORDS) MISSPELLED WORDS)
TEXT COMPARISON PROGRAMS
Inserted in B:
" B1 Dear Mom:
Today we Dear Mom: Preceding:
caught 20 Today we Al Today we
large fish, caught 20 .
Tomorrow we small fish. . A3 large fish
climb Mt, Tomorrow we compare_ascii___ Changed by B to:
Everest climb Mt. B4 small fish
Punk.
A6 Everest.
A 8 Change by B to:
B? Punk.
20-23

FO1

APPLICATION PACKAGES

® Multics GRAPHICS SYSTEM

I DEVICE INDEPENDENCE
I USER SEES ONLY "VIRTUAL GRAPHICS TERMINAL®" (VGT)

] EACH DEVICE HAS A "GRAPHIC DEVICE TABLE" (GDT)

I SIMPLE ITEMS (LIMES, POINTS) COMBINED TO CREATE MORE COMPLEX

I GRAPHIC OBJECTS MAY BE "SHARED® (EX. CREATE A WHEEL ONCE,
INCLUDE 4 TIMES IN AN AUTOMOBILE STRUCTURE)

I ALL ITEMS ARE THREE DIMENSIONAL
I OBJECTS MAY BE NAMED
| OBJECTS MAY BE PERMANENTLY STORED

I ANCILLARY INFORMATION STORED WITH OBJECT
| SCALING

} ROTATION
20-24 FO1

APPLICATION PACKAGES

§ EXTENT

§ INTENSIT

J COLOR

I DOTTEDNESS
I BLINKING

I SENSITIVITY TO LIGHT PENS, ETC.
EDITING FACILITIES
I MAY EDIT THE WORKING GRAPHIC SEGMENT (WGS)

I REAL TIME EDITING AT TERMINAL

I CONTROLLED BY Multics (ANIMATION, DYNAMIC GRAPHICS)
PERMANENT STORAGE OF GRAPHIC OBJECTS

TERMINALS SUPPORTED

I TEKTRONIX 4002
4012
4013
4014

4015
20-25

FO1

APPLICATION PACKAGES

I ARDS

I CALCOMP 915/1036 (PLOTTER)

20-26 FO1

TOPIC XXI

HARDWARE OVERVIEW

Page
Hardware Description ¢ o 21-1

System Requirements . . ' A B
Configuration Limits & Records B e P

21-1 ~ FO1

This page has intentionally

heen left blank.

21=-ii FO1

HARDWARE DESCRIPTION

LEVEL 68 CENTRAL PROCESSOR UNIT

I A MODIFIED LEVEL 66 CPU

i
HY

I 36-BIT WORD MACHINE (9 BITS/BYTE, 4 BYTES/WORD)

] VIRTUAL MEMORY HARDWARE
I DIVIDES MEMORY INTO SEGMENTS
I SEGMENTS CONSIST OF 0 TO_256 PAGES

I PAGE = 1024 WORDS (1K WORDS)
I RING PROTECTION HARDWARE
I ACCESS ENFORCING HARDWARE

I HIGH-SPEED CACHE MEMORY
I 2048 WORDS

I HIT RATIO GREATER THAN 85%

21-1

HARDWARE DESCRIPTION

I EXTENDED INSTRUCTION SET (EIS)

I BLOCK MOVE INSTRUCTION (ENTIRE SEGMENT)
I BOOLEAN OPERATION INSTRUCTIONS

I PICTURE EDITING INSTRUCTIONS

I 4, 6, OR 9-BIT ARITHMETIC INSTRUCTIONS

I POINTER MANIPULATION INSTRUCTIONS

I GCOS MODE (ONE SWITCH)

21=2 ' FO1

x>

SYSTEM REQUIREMENTS

SMALL MULTICS CONFIGURATION

68/60 CENTRAL PROCESSOR (CPU)
WORDS OF MEMORY (K = 1024)

SYSTEM CONTROL UNIT (SCU)

I/0 MULTIPLEXER (IOM)

FRONT-END NETWORK PROCESSOR (FNP)
MSUO400 2 MASS STORAGE UNITS (MSU)

MTUO400 MAGNETIC TAPE UNITS (MTU)

21-3

NUMBER

256K

FO1

SYSTEM REQUIREMENTS

LARGE MULTICS CONFIGURATION (1 TO 10 GROWTH CAPABILITY)

NUMBER RATIO
68780 CENTRAL PROCESSORS 6 (1:6)
WORDS OF MEMORY (M=1,048,576) 16M (1:64)
SYSTEM CONTROL UNITS 8 (1:8)
I1/0 MULTIPLEXER (# IOM'S + # CPU'S < 8) 2 (1:2)
FRONT-END NETWORK PROCESSORS 4 (1;4)
MSUO451 MASS STORE UNITS | 512 (1:256)
MTUO500 MAGNETIC TAPE UNITS 16 (1:8)

21-4 FO1

MEASURE

NUMBER
OF USERS

NUMBER
OF CPU's

- MAX1MUM
REAL MEMORY

MINIMUM
REAL MEMORY

VIRTUAL MEMORY
PER PROCESS

TOTAL VIRTUAL
MEMORY

CONFIGURATION LIMITS & RECORDS

RECORD SITE

457 HIS, PHOENIX
(JUNE '7T)

6 AFDSC,PENTAGON
(AUG '77)

M HIS, Phoenix
(SEPT '78)

192K HIS, CAMBRIDGE

(1971 - 1977)

- o - — -

KNOWN LIMIT

1632

(408 USERS * 4 DATANETS)

7
(PORT LIMITATION)

16M
(8 SCU's * 512K)

192K
(BOOT LIMITATION)

256M
(1024 SDW's * 256K)

19.4B
(512 MSU'S * 38,000K)

NUMBER OF 28 AFDSC,PENTAGON 512
DISK DRIVES (JAN '76) (CABLE LENGTH LIMIT)
K = 2%%10 = 1,024
M = 2%%20 = 1,048,576
B = 2%%30 = 1,0063,741,824
21-5

FO1

This page has intentionally

been left blank

21-6

APPENDIX A

MULTICS DOCUMENTATION

Multics Programmers' Manual (MPM) . e . A
Multics Pocket Guides . . . ¢« ¢ ¢« v ¢ ¢ ¢« 4 « ¢« o« s « o« o« A
Multics Administrators' Manuals (MAM) A-
Program Logic Manuals (PLM) A
Other Multics Manuals A
help Manuals « . « ¢« « + « & A

A-i FO1

This page has intentionally
been left blank.

A-ii FO1

MULTICS PROGRAMMERS' MANUAL (MPM)

Reference Guide Order No. AG91

The MPM Reference Guide contains general information about the
Multics command and programming environments. It also defines
items used throughout the rest of the MPM's and, in addition,
describes such objects as the command 1language, the storage
system, and the input/output system.

Commands and Active Functions Order No. AG92

The Commands MPM is organized into four sections. Section I
contains a list of the Multics command repertoire, arranged
functionally. Section II describes the active functions.
Section III contains descriptions of standard Multics commands,
including the calling sequence and usage of each command.
Section IV describes the requests wused to gain access to the
system.

Subroutines Order No. AG93

The Subroutines MPM is organized into three sections. Section I
contains a list of the subroutine repertoire, arranged
functionally. Section II contains descriptions of the standard
Multics subroutines, including the declare statement, the
calling sequence, and usage of each. Section III contains the
descriptions of the 1/0 modules.

Subsystem Writers' Guide Order No. AK92

The MPM Subsystem Writers' Guide is a reference of interest to
compiler writers and writers of sophisticated subsystems. It
documents user-accessible modules that allow the user to bypass
standard Multics facilities. The interfaces thus documented are

a level deeper into the system than those required by the
majority of users.

Peripheral Input/Output Order No. AX49

The MPM I/0 manual contains descriptions of commands and
subroutines wused to perform peripheral 1/0. Included in this
manual are commands and subroutines that manipulate tapes and
disks as I/0 devices. Special purpose communications I/0, such
as binary synchronous communication, is also included.

A-1 FO1

MULTICS POCKET GUIDES

Commands and Active Functions Order No. AW17

This pocket guide presents an abbreviated version of the

commands and active functions described in detail in the Multics
Programmers' Manual Commands and Active Functions
Order No. AG92

A-2 FO1

MULTICS ADMINISTRATORS' MANUALS (MAM)

Project Administrator Order No. AKS51

The Project MAM is a guide to the operation of programs in the
project- administration area. The information in this manual is
of interest not only to project administrators but also to
accounting administrators (who may function as project
administrators) and to system administrators (who may function
in any administrative capacity).

Registration and Accounting v
" Administrator _ Order No. AS68

The Accounting MAM 1is a guide to the operation of Multics
billing and accounting programs. It is necessary that both the
accounting and system administrators know how to perform the
Multies billing operations.

System Administrator Order No. AKS50

The System MAM is a guide to the overall administration of the
Multics system. This manual discusses the contents of
administrative directories and data bases and special user
identifies (such as the daemons), describes installation
parameters and system logs, explains the various tasks that are
the responsibility of the system administrator, and includes the
commands needed to carry out these responsibilities. Also, the

functions of the system security administrator are explained in
the MAM System.

A-3 FO1

PROGRAM LOGIC MANUALS (PLM)

NOTE: The Distribution of Program Logic Manuals is Restricted

ALM Assembler

Carry Facility

Hardware & Software Formats
Reconfiguration

Storage System

System Dump Analysis

System Initialization
System Metering

System Tools

User Ring I/0 System

A-4

Order

Order

Order

Order

Order

Order

Order

Order

Order

Order

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

AN69

ANT6

AN87

ANT1

AN61

ANS53

ANTO

ANS52

AN51

ANST

FO1

OTHER MULTICS MANUALS

- APL Users' Guide

BASIC

COBOL Reference Manual

COBOL Users' Guide

DFAST Subsystem Users' Guide
FAST Subsystem Users' Guide
FORTRAN Reference Manual
GCOS Environment Simulator
Graphics System

Hardware Diagnostic Aids
Logical Inquiry and Update System (LINUS)

Multics Integrated Data Store
Reference Manual

A-5

Order

Order

Order

Order

Order

Order

Order

Order

Order

Order

Order

Draft

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

AK95
AM82
As4Y
i3
AT59
AU25
ATSS8
ANOS
ASHO
AR9T7

AZ4g

FO1

OTHER MULTICS MANUALS

Multics Relational Data Store
Reference Manual

New Users' Guide

Online T&D Reference Manual

Operator's Handbook

PL/I Language Specification

PL/1I Reference Manual

Processor Manual

SORT/MERGE

Site Preparation Manual

System Summary Description

Virtual Memory

WORDPRO Reference Guide

A-6

Order

Order

Order

Order

Order

Order

Order

Order

Order

Order

Order

ORder

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

AWS3

ALY40O

AUTT

AM81

AG94

AM83

AL39

AW32

DCT79

AK15

AG95

AZ98

FO1

HELP MANUALS

THE MULTICS TECHNICAL MANUALS ARE LISTED BELOW. ALL
"MANUALS/UPDATES THAT SPECIFY A DATE IN THE DATE COLUMN CAN BE
ORDERED FROM THE DISTRIBUTION CENTER; FOR INFORMATION ABOUT HOW
TO ORDER MANUALS TYPE:

nelp order_manuals

IF THE "Date"™ COLUMN DOES NOT CONTAIN A DATE FOR A MANUAL, THAT
MANUAL IS "IN PROGRESS;"™ WHEN A DATE IS SPECIFIED, YOU CAN ORDER
IT.

PROGRAM LOGIC MANUALS (PLMS) ARE LISTED SEPARATELY, AFTER THE LIST
OF CUSTOMER MANUALS. MARKETING DOCUMENTS (E.G., BROCHURES,
PRODUCT BRIEFS, ETC.) ARE NOT INCLUDED.

THIS MANUAL LISTING WAS CURRENT AS OF JULY 23, 1979

Order Through
Number Rev. Add. HRelease Date Title

CUSTOMER MANUALS

+AG90 =01 ===

-——— 05/73 MPM - Introduction
AG91 -02 —-—— 7.0 03/79 MPM - Reference Guide
A 8.0 eomew
AG92 =02 —_—— 5.0 01/77 MPM - Commands and Active Functions
A 6.0 11/77
B 7.0 02/79
- C 7.08 <ea-a
D 8.0 —ee--
AG93 -02 - 6.0 02/78 MPM - Subroutines
A 7.0 12/78
B 8.0 —=m--
AGY9Y 02 --- 5.0 07/76 PL/I Language Specification
A 6.0 10/77
B 7.0 12/78
- C 8.0 —wmaa
+AG95 -00 --- —- 06/72 Virtual Memory

A-7 FO1

AK50

AK51

AK92
AK95
AL39

AL40
AM81

AMB2
AM83

ANO5
AN50

AN52
ANT6

AR9T
AS40
AS43

ASuy

AS68

AT58

-01

-02

-01
-02
-00

-01
-01
-02
-01

-02
-00
-00

-01
-01
=01
-02
-01
-01

-01
-00

-01
-01

-00

-01

eNoNololeNoleNololoNeNeNe)

PN FoIounmT

COO0COO0OO0OO0O0O0O0OODOOCOO0OCO0OOOODOOLOLOODOOOOOOOO

~NOVIOoONEFNI NV VTN II10O0~I10o~J&E =030

HELP MANUALS

MAM - System

MAM - Project

MPM - Subsystem Writers' Guide
APL Users' Guide

Processor Manual

Introductory Users' Guide

Programmer's Introduction to Multics
Operators' Handbook

BASIC
PL/I Reference Manual

GCOS Environment Simulator
Index to Multics Manuals

System Metering
Carry Facility

Hardware Diagnostic Aids
Graphics System
COBOL Users' Guide

COBOL Reference Manual

MAM - Registration and Accounting

FORTRAN

A-8 o1

HELP MANUALS

C 7.0 01/79
D 800 -----
AT59 ~-00 -_—— 3.1 03/76 DFAST Subsystem Users' Guide
AUZ25 -00 -— 3.1 03/76 FAST Subsystem Users' Guide
A 8.0 —-ee-
AUTT -01 - 6.0 10/77 Online Test and Diagnostics Reference Manual
-02 -— 7.0 ——ee-
AW1lT -00 —-—— 3.1 04/76 MPG - Commands and Active Functions
-01 -— 8.0 ——ewo
AW32 -00 - 4.0 07/76 SORT/MERGE
AWS53 -02 -——— 7.0 - 10/78 Relational Data Store (MRDS) Ref. Manual
AX49 -00 -— 5.0 06/77 MPM - Peripheral Input/Output
A 7.0 01/79
B 8.0 —mee-
AZ03 -00 ——— 5.0 08/77 System Programming Tools
-01 -—— 8.0 —=e--
AZ 49 -01 -——- 7.0 10/78 Logical Inquiry and Update System (LINUS)
AZ98 -01 -— 7.0 11/78 WORDPRO Reference Manual
A 800 -----
CC34 -01 ——— 7.0 03/79 Bulk Input/Output
" A 8.0 ——=--
CC69 -00 - 6.0 03/78 Report Program Generator (MRPG)
nCT70 ~-00 —_—— 7.0 01/79 FORTRAN Users' Guide
-01 _— 8.0 —-e--
oCTY4 -00 —-—— 7.0R 11/78 MAM - Resource Control Package (RCP)
A 8.0 ceee-
CCT5 =00 -_—— 7.0 11/78 MAM - Communications
A 8-0 -----
CcCg2 -00 -_—— 7.0 10/78 MPM - Communications 1/0
A 8.0 = ~—--- .
*
1 CC96 -01 -— 7.0TP 06/79 Transaction Processing
CG18 -00 _— 7.0 ——e-- Remote Batch Facility (Lev 68/Lev 6)(Prelim)
CG4o -00 -—— 7.0a —=e-- gedx User's Guide (Preliminary)
ey -00 -—— 8.0 wee-- compose User's Guide
CHZ3 -00 - 8.0 —-e-o Debugging User's Guide
CH24 -00 -—— 8.0 ——ee-- New User's Introduction to Multics - Part I
CH25 -00 -—— 8.0 ==e-a New User's Introduction to Multics - Part II
CH26 -00 -— 8.0 ——-w- Error Messages
CH27 ~-00 - 8.0 —e—-e- emacs User's Guide

A-9 FO1

PROGRAM

ANS1
ANS53
ANST
AN61

AN63
AN69
ANTO
ANT1
AN8O
AN85
AN8T7

NOTES:

-— %

MPM
MAM
MPG

HELP MANUALS

LOGIC MANUALS
-00 - -—- 02/75 System Tools
-00 —-——— -——— 06/75 System Dump Analysis
-00 —— —— 05/77 User Ring Input/Output System
=00 ——— 5.0 07/74 Storage System
A 6.0 09/78
=00 —— - 02/75 ALM Assembler :
-00 —— -——— 02/75 Message Segment Facility
-00 -—— - 02/75 System Initialization
-01 -—— -—— 04/77 Reconfiguration
-00 _—— ——e eme=- Library Maintenance
-01 -—— 7.08 —ce-- Communications System
-00 - - 07/76 Hardware & Software Formats

A line has been deleted since the last time this segment was updat
This line has been modified since the last time the segment was up
Some of the information in this manual is obsolete

Multics Programmers' Manual

Multics Administrators' Manuals

Multics Pocket Guide

A-10 FO1

APPENDIX B

MULTICS TECHNICAL BRIEFS

Level 68/Distributed Processing System .
Distributed Processing System: Multics Overview .
Multics Virtual Memory and Storage System .

Administration and Operating Features .

Interactive Programming Environment
Controlled Sharing and Securlty . .
Multies PL/I

Multics APL . . . e a e e e
Multics Data Base Manager .« e s e
LINUS
Word Proce551ng System WORDPRO ..
Multics Graphics System
Multics Electronic Mail Fa01llty .

.

Page

B-1
B-7

B-13
B-17
B-21
B-25
B-27
B-29
B-31
B-37
B-39
B-43
B-45

FO1

This page has intentionally
been left blank.

B-ii FO1

Honeywell

SERIES 60 (LEVEL 68/DPS)

Honeywell’s Level 68/Distributed Processing Sys-
tem (DPS), with the Multics operating system,
offers the user many powerful features, including
virtual merhory addressing, controlled access to
data, modular design, and advanced segmentation
concepts that simplify processing. The Level 68/
DPS possesses capabilities that enable large-scale
computer users to solve complex processing
problems quickly and easily.

The Level 68/Distributed Processing System con-
sists of a base system to which performance mod-
ules can be added in incremental steps, thus offer-
ing a choice of various levels of performance. This
easy expansion allows a user to configure the
exact system needed and helps protect equipment
investment.

VIRTUAL MEMORY

Level 68/DPS virtual memory efficiently and auto-
matically moves information between main memory
and secondary storage — independent of hardware

configuration and without programmer intervention.

Thus, programs are not constrained by main mem-
ory limitations and no overlays are required. Fur-
thermore, user I/O can be handled logically, without
concern for physical addresses. Integration of the
68/DPS storage (file) system with virtual memory
addressing forms a powerful data handling capabil-
ity, allowing programmers to directly access more
than 300 billion bytes of stores information.

SECURITY

Level 68/DPS hardware and software systems are
structured for maximum data security. With simple
commands, access to files can be granted to spe-
cific persons or groups. Different access rights
(e.g., read only, execute, write, or combinations of
these) can also be granted to different users of the
same file.

Within the central processor, a hardware mechanism
maintains the integrity of several levels, or rings, of
access controls. These rings of protection limit
access to sensitive data and permit the creation of
closed subsystems that are mutually exclusive and
mutually protected.

Level 68/ Distributed
Processing System

Since hardware enforces the basic 68/DPS

security mechanisms, very little system overhead
is introduced by access control enforcement. After
the initial access to a file and on every memory
access, hardware compares the attempted access
against the user’s permission. Thus, no additional
machine instructions are executed for security.

MODULARITY

The modular design of the Level 68/Distributed
Processing System has significant advantages for
processing flexibility and for system growth. The
optimum combination of processor, memory, and
input/output multiplexer modules can be selected
for each installation. Integrated Network Proc-
essors, mass storage subsystems, and peripherals
are additional modules that can be added to tailor
a configuration. A Level 68/DPS system supports
up to 16 million bytes of memory (four mitlion
words) and employs two or more processors for
maximum availability. Memory can be added in
increments of one million bytes up to four million
bytes. Beyond this level, memory may be added in
increments of two million bytes.

© 1978, Honeywell Information Systems inc.

B-1

Fite No.: 11,01

LEVEL 88/DPS BASE CENTRAL SYSTEM

T
cru g tPu
4
i 1
[] [
MEMORY
ol CONSOLE
INTEGRATED
MULTIPLEXER [NeTwoRk
PROCESSOR

IR

PERIPHERALS TERMINALS

This approach allows a site to purchase equipment
for today’s processing needs and add modules to
meet a growing data processing workload. Further-
more, each configuration can be given the proper
mix of processing, storage, and 1/0 capacity, and
modified as necessary to meet changing workload
characteristics. Regardless of the configuration
selected, the full functionality of Muitics is avail-
able. Any program that can run on the largest sys-
tem can also run on the smallest, and vice versa.

Another significant advantage of Level 68/DPS
modular architecture is the capability for con-
figuring fully fail-safe systems. This is accom-
plished by including additional system control
units. /O multiplexers, network processors, and
appropriate peripheral subsystems. Note that it is
not necessary to add processor modules since
Level 68/DPS always contains at least two.

PROCESSOR MODULE

The Level 68/DPS processor module executes pro-
grams and handles all computations. For example,
it performs instruction fetching, relative and abso-
lute address preparation, memory protection, data
fetching, and data storage. These functions are
overlapped for quick instruction execution.

Other features of the processor include:

¢ Hardware for handling segmentation and paging
in virtual memory .

o Hardware for interrupting a process in execution
at any point (including in mid-execution of an in-
struction), saving processor status, and restoring the
process later without loss of continuity

e lligh-speed cache memory for improved perform-
ance

e Hardware for enforcing several modes of memory
access

o Hardware for implementing data integrity and
security mechanisms

e Associative memory for fast hardware aceess to
virtual memory

o Program-addressable registers for preparing virtual
memory addresses

Processor Organization

The Multics processor module is organized around
functional units:

o Control Unit provides the interface between
the Operations Unit and the system controllers

o Operations Unlt - Contains the logic to exceute
binary arithmetic and logical functions

e Decimal Unit — includes an Extended Instruction
Set (EIS) within the processor’s basic repertoire of
instructions, including instructions for processing
character string, decimal data, and bit strings

o Appending Unit — implements segmentation and
paging of the virtual memory; provides 24-bit ad-
dressing; contains 16 segment descriptor words and
16 page table words on a most recently used basis;
and provides a descriptor segment base register,
eight segment pointer registers, and ring protection
hardware

o Cache Memory Unit — holds the most recently
used information from main memory and improves
system performance by reducing instruction and
data fetch time

Processor Modes of Operation

The processor operates in three modes: absolute,
privileged, and nonprivileged. All instructions are
available in the absolute mode. Privileged instruc-
tions, such as those that operate on the descriptor
base register and input/output devices, are avail-
able only in absolute and privileged modes. Most,
but not all, of the instructions are available in non-
privileged mode. General users are restricted to the
nonprivileged mode and thus are prevented from
executing any instructions that could interfere with
other programs or with the Multics system software.

The full segmentation and paging capability of the
processor is used in the privileged and nonprivileged
modes for fetching instructions and operands. Ad-
dressing in the absolute mode does riot use the seg-
mentation and paging capability and is not generally
available to user programs.

Segmentation

Segmentation divides the user’s address space into
many parts and assigns attributes (access control
and length, for example) to these parts based on
their logical use. Like a conventional file, a Multics
segment is a collection of instructions or data spee-
ified by the user. It has a symbolic name and aceess
control list and can vary in length. A segment cin
be addressed directly, as memory can, and does not
have to be read or written record-by-record as a
conventionai file wouid.

The segment is the basic unit of information shar-
ing. Different users can incorporate a single segment
into their programs merely by specifying the sep-
ment name. A program doesn’t need to copy a seg-
ment o use it, saving time and chiminating dupli-
cation in main memory. To control this sharing,

B-2

each segment has an access control list containing
the name and access privileges of each person who
can use the segment. The hardware checks these
access privileges on each reference to a segment by
any user.

Certain segments, containing only instructions

or constants, are especially easy to use and
efficient in occupying storage space. These “pure-
procedure” segments store their data and control
variables separately. Pure procedure segments do
not modify themselves; they are also totally re-
entrant. More than one user can use the same re-
entrant procedure simultaneously without having
to copy it. This enhances sharing and saves storage
space. The Multics operating system, compilers,
and application programs all utilize pure procedure.
The major benefits of segmentation are:

e Stored data and procedures can be referenced
easily and directly |

® Logical units such as programs and data are pro-
tected by hardware

e Users can directly share procedures and data
bases

Paging
Segments can be of different sizes, and their sizes
can change during the operation of a program. In

order to simplify allocation of main memory, each |

segment is divided automatically into fixed-size
storage units called pages. This division — and the
subsequent manipulation of the pages — is totally
transparent to the user and requires no action on
the user’s part. In addition, any access controls
established for a segment apply to the pages that
make up that segment,

The pages of a given segment need not be located

in contiguous storage blocks. They do not even have
to be in main memory all at once. As a page is
needed in main memory, it is retrieved automat-
ically from secondary storage and placed in any
available block in main memory. When main mem-
ory is filled and more pages are needed, some pages
have to be displaced. Pages not used recently will
_be moved (swapped) to secondary storage. (For
added system efficiency, pages that are part of a
pure-procedure segment or have never been written
into do not have to be swapped out, since a copy
still exists in secondary storage. These blocks of
memory can simply be cleared and overwritten
with other pages.)

Paging has distinct advantages:

® A user can write and operate a program without
planning for its storage allocation needs or for the
management of the segments.

o Paging provides a simplified technique for dy-
namic storage management and reduces operating
system overhead by allowing optimum loading of
main memory and avoiding compaction problems.

® Paging uses the system’s high-speed storage ef-
fectively by fetching only pages that are actually
referenced, rather than an entire program or file.

Ring Structure

The Level 68/DPS ring structure extends the con-
cept of a two-state machine (i.e., master-mode and
slave-mode) to a multi-state machine. Level 68/DPS
provides eight states of execution with adequate
tools to allow proper administration of access privi-
leges to the system users within them. This imple-
mentation allows segments to be grouped into rings.
The number of each ring (0-7) designates the level
of privilege assigned to procedure segments executed
in that ring. Ring O has the highest level of privilege.
Privileged ring segments, such as the supervisor and
special user subsystems, are protected from uncon-
trolled use by less privileged rings. These segments
can only be used by procedures in less privileged
rings if called via a special “gate” mechanism. The
access permission checking is still required as well.

The ring structure, with its obvious applications to
information protection and security, is an integral
part of the paging and segmentation hardware. The
ring structure offers users numerous benefits, for
example:

® Users can create protected programs and data
bases for controlied use by others -

® A supervisor program can be implemented in
layers with differing degrees of privilege

e A programmer can debug a program in an unpriv-
ileged environment and then move it to a privileged
environment with no recompilation or modification

SYSTEM CONTROL UNIT

The system control unit (SCU) is the principal inter-
face between all central system components. It pro-
vides complete system interrupt control which
regulates communication between components and
services all demands on memory under priority con-
trol. The system control unit handles the switching
of all control signals, addresses, and data into and
out of the memory units. Memory units are modular
and each connects directly to a system control unit.

Up to eight system control units may be configured
in a Level 68/DPS system, with each SCU capable
of controlling one megaword (four megabytes) of
memory. However, note that maximum memaory
size currently available is four megabyites.

Additionally, the SCU checks integrity on all data
and control paths to and from memory units as
well as the paths to and from the other system
components. It also provides memory configuration
switching.

The system clock within the SCU a5 2-bit binary
counter that increments at one-microsccond inter-
vals - is used as a calendar clock. The 142-yeur
capacity of the clock makes it possible for Multics
software to operate on 2 consistent time base.

MEMORY

The metal-oxide semiconductor (MOS) memory of
the Level 68/DPS Systems can range from 512K
words to four million words. Two words, plus Error
Detection and Correction (FDAC) bite, ate sccessed
i Bdch mempty eyrle

INPUT/OUTPUT MULTIPLEXER

The input/output multiplexer (IOM) interfaces the
system control units with the peripheral units and
integrated network processors. The IOM can operate
many different types of devices. It is controlled by
information stored in memory.

‘The TIOM can transfer data between 1/O devices and
memory while processors continue to run programs.
I/O transactions are controlled by lists of control
words prepared by the Multics operating system and
stored in memory. When an 1/O transaction is com-
plete, or when special conditions are detected, the
1OM causes a program interrupt.

The TIOM has attractive performance characteristics:

e Peak IOM transfer rate of more than four million
bytes per second

® Up to 56 simultaneously active data channels per

1 ¥ Y]
1wivi

& Peak channel transfer rates of more than one
million bytes per second

Scratchpad storage for control words

o Eight special channels for specific system functions

The 10M oifers complete memory protection for
all 1/O data transfers. Each data channel functions
independently, with its own memory assignment.
Parity is generated and checked on all information
sent to and from the system controllers and the
peripheral subsystems.

PERIPHERAL SUBSYSTEMS

The Level 68/DPS mass storage subsystem uses the
freestanding MSP0603 mass storage processor to
control up to 32 mass storage units. Multiple mass
storage subsystems can extend the virtual memory
size to a maximum of 512 mass storage units. Three
different devices are supported; the MSU0402

(78 megabytes), MSUO451 (157 megabytes), and
the MSUO500 (626 megabytes). These devices can
be intermixed on the same mass storage processor.

The MTPO601 Magnetic Tape Processor supports
the MTU0400, MTU0500, and MTUOQ600 tape
units. These devices range up to 200 inches per
second and 1600 bits per inch. Other peripherals
include the PRU1100/1200/1600 ASCII line
printers (1100, 1200, and 1600 lines per minute, |
respectively), 1050-card-per-minute readers, and
100- to 400-card-per-minute punches, all under the
control of the Unit Record Processor (URP). Up to
eight individual devices can be controlled by a
single URP.

NETWORK PROCESSOR

The Integrated Network Processor (INP) controls
all remote terminal interaction with Level 68/DPS
host system. Connected to the central system via

an 1OM, the Integrated Network Processor provides
the vatious interfaces teqiired by the elements and
piealeienfa b g et itfinted ayaieig aa well wa n Tacllity
1 dialog with the haet ayateii. By pertonmng the
tasks of message management and message handling,
the INP frees the host for other processing functions.
The resources of the central system are called upon
only when the message is submitted for information
processing. However, some networking functions
(e.g., a message switch) can be accommodated by
the INP without any involvement of the host
Processor.

TERMINALS SUPPORTED

Level 68/DPS systems can communicate with var-
ious types of terminals, including the following:

- Interactive Devices

Honeywell VIP 7105, 7205, 7705, and 7800
Teletype Models 33, 35, 37, 38, and 40

IBM3270

IBM2741 and 1050 (EBCDIC and Correspondence)

IBM 1050

iBM 2750

Trendata Models 1000 and 4000

Datel 30

Dura 1021

GE TermiNet 300 and 1200 (up to 1200 bps both
half or full duplex)

Execuport 310C and 320C

Texas Instruments Silent 700 Series

Adage Inc. Advanced Remote Display Station

IMLAC PDS-1D Graphic Display Computer

Tektronix (graphics devices to 9600 bps)

DIGI-Log Telecomputer Model 109

Data Products Portacom

Computer Devices Incorporated Teleterm 1030

(including ASCII/APL models) 1132, 1203

Teleray Model 3711

DEC GT40 Display Processor, DECwriter 11,
DECwriter LA36 (300 baud ASCID

DEC Graphics Models 12 and 15

Hazeltine 2000 (ASCII)

Delta Data Systems (Alphanumeric CRT up to
2400 bps)

Xerox 2700 (Diablo printer with plotting capability)

Anderson-Jacobson Models AJ630 (AS(1N, AJ832,

and AJ841]

Gen Com Systems GSI1300 (300 baud ASCIH and

GSC 300Q

Lear-Sicgler ADM-2 Display Terminal

ADDS Consul Model 980

DTC300 Series

Infoton Vistar/lI!

Bedford 575 (Selecterm)

BeeHive Super Bee

Remote Job Entry Devices

Absentee (batch) processing is supported at the
central site and at remote sites. Remote batch ter-
minals such as the Honeywell Model G115, Data
100/78 (using Honeywell Model G115), RNP702,
IBM 2780, Honeywell Level 6, and Mohawk 2400,
offer remote bulk 1/O capability and remote job
entry.

RECONFIGURATION

The memory modules, central processors, mass
storage devices, and terminals in a 68/DPS system
can be reconfigured dynamically, without inter-
rupting user service. This allows failing devices to
be removed from processing for maintenance and
recontigured automatically following repair. In
addition, failing memory pages are automatically
deallocated whenever a double-bit (uncorrectable)
error is discovercd. Large configurations can also
be split into smaller separate systems for block
time processing or testing without service shutdown.

SYSTEM CONFIGURATIONS

System configurations can be tailored to user
requirements. An entry-level configuration consists
of:

A Level 68/DPS System Control Unit with 512K
words of memory
An Input/Output Multiplexer

An Integrated Network Processor

An MTP0601 Magnetic Tape Processor with a mini-
mum of two MTUO500 tape units

An MSP0603 Mass Storage Processor with two
MSU0402 Mass Storage Units providing 156 mil-
lion bytes of storage

A printer

An operator console

A full selection of terminals

The system can be significantly expanded to a maxi-
mum compiement of equipment:

Level 68/DPS with power options to 4.3 times proc-
essing power of entry systems

8 System Control Units with a total of four million
words of memory

2 Input/Output Multiplexers

4 Integrated Network Processors

32 MSP0603 Mass Storage Processors and 512
MSUO0500 Mass Storage Units providing 300 bil-
lion bytes of storage

MTPO601 Magnetic Tape Processor and 16
MTUO0600 Magnetic Tape Units (per subsystem)

8 unit macro devices (per subsystem)

An opcrator console

A full selection of terminals

Specifications may change as design improvements are introduced.

MAXIMUM CONFIGURATION

DUAL PROCESSING

DUAL PROCESSING ADDITIONAL

UNIT UNIT PROCESSING UNIT
T R

cPU cPU : cPU cPU : cpPu CcPU
] i |

NN

8 SCUs, 16 MILLION BYTES MEMORY

10M IoM

P A

PERIPHERAL SUBSYSTEM:

4 NETWORK PROCESSORS (96 LINES FACH)
16 MTU0600 TAPE UNITS PER SUBSYSTEM
8 UNIT RECORD PERIPHERALS PER SUBSYSTEM

Honeywell

Honeywell Information Systems
Inthe U S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
InCanada: 2025 Sheppard Avenue East, Willowdaie, Ontario M2J 1WS
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

20994, 3678, P'rinted in U.S.A.

B-6

D63, Rev, |

Honeywell

SERIES 60 (LEVEL 68/DPS)

Multics. one ol the most powerlful and comprehen-
sive fargesscale systems in the world today |, provides
general purpose data processing service for users
dealing with challenging business and scientilic
problems. Based on the concept that the computer
is only as productive as it is accessible, Multics offers
a broad vange of features and capabilities within
a service-oriented environment and addresses the
reliability, availability | and system growth require-
ments ol distributed processing users.

PROCESSING CAPABILITIES

Multics is for large and small users ... experts and
novices. Its total online, interactive orientation is
ideally suited to a varicty of processing activies in-
cluding:

BATCH = Multics supports both local and remote
batch processing. Interactive users can submit

batch jobs Tor execution: batch jobs can also ini-
tiate other bateh jobs. Jobs written for batch exe-
cution can also be run interactively without change.

REMOTE JOB ENTRY Multics supports nuin-
crous devices tor remote job entry. These include:
Mohawk Data Sciences 2400, DATA 100 Model 78,
IBM 2780, Honcywell Model G-115, Honeywell
RNP702, and several Honeywell Level 6 models.
TIME SHARING Full time sharing capabilities
are available on native mode, interactive Multies.
In addition, two other environments, the Multics
FAST and DFAST subsystems, provide the user
with varving levels of time sharing power and proc-
essing performance.

TRANSACTION PROCESSING - Multics trans-
action processing offers tlexibility and scope un-
matched in other systems. Termmal ortented, the
system doesn’t require special executive programs
to monttor terminal inputl and then to process user
requests in batch Apphications can be writfen in
any language and directly accessed from any number
of termnals or batch jobs .. simultancouslty ... in

a completely shared environment. System facilitios
allow mtertaces to speciitized data bases as well as
concurrent aceess control, rournalization, recovery,
and online Torms genctation,

Distributed Processing
System: Multics Overview

WORD PROCESSING Multies” advanced word
processing lacilities include:

o Powerful text editors

o Document formatting capabilities

¢ lrrordetection tools

o SPEEDTYPE (shorthand Tor typists)

o Online dictionaries

e Artwork muacros

e Electronic mail

Together, these features enable the Multics user to
create and mamtain error-free documents and pro-
duce formatted output.

GRAPHIC PROCESSING - A general purpose inter-
face enables user and application programs to creale.
edit, store. display, and animate graphic material.
Multics’ graphic features include:

e Terminal independence

o Powecerful editing capabilitics

o Permanent storage capabilitics

o Sharing subohjects and structures

e Dynamic animation

o Local editing

Incremental picture updating

REAL TIME PROCESSING Multies can provide
real-time respounse to specified users or jobs (dead-
line job scheduling, for example). Thus. the system
is useful in operations control functions such as
process control monitoring.

USER ORIENTATION

Uniform User Interface

Key among Multies™ unparalleled accessibility
features is its uniform user interface. All the systent’s
processing functions from batch to time sharing to
graphics arc available via a single, consistent
interface. There are no format or execution differ-
ences between usage types. A program written in an
interactive caviromment will run in batehowithout
conversion or modification, and vice versa. Any
fernunal attached to the system can, unless specatli

1977, Honeywell Information Systetns ine.

B-7

File No.: 11 H1

cally restricted by the system’s administrators,
access any program or feature.

Also implicit in the Multics environment is the con-
cept of total compatibility. There are no restrictions
on languages used to access data bases or files, Pro-
grammers can develop COBOL applications, for
example, with certain modules written in other lan-
guages, and be assured of total compatibility and
equal processing efficiency. Morceover, data and pro-
grams associated with one processing dimension
(e.g., transaction processing) are totally accessible
from any other dimension.

Totai Oniine Orieniation

Multics’ architecture is oriented directly toward on-
line applications. Whereas other systems provide
online capabilities through executive packages,
Multics is completely interactive, and does not use
such packages. As a result, in high-volume trans-
action-oriented environments where there is sig-
nificant terminal activity, Multics provides unique
advantages over other architectures.

Total Sharing

Multics nermits the controlled sharing of operating

system software and libraries, language processors,
data bases, and user code and data. Even with mul-
tiple users simultaneously compiling COBOL jobs,
for example, only one copy of the COBOL compiler
is in use. And since all Multics language processors
generate reentrant code, even users’ programs can
be shared without special programming.

EASE OF USE

From its inception, Multics has incorporated features
and capabilities that make it one of the most acces-
sible and easy-to-use systems on the market today.

Interactive Orientation of All Facilities

Every aspect of Multics is online-oriented, including
the language processors, applications, data base man-
agement facilities, utilities, administrative tools, and
metering and tuning capabilities.

No Job Control Language

Unlike other systems — which require that the user
learn a job control language (JCL) prior to running
ajob - Multics provides control functions via a
standard command processor approach, thus elim-
inating complex JCL. System commands and rou-
tines supply the logical branching, conditional exc-
cution, file system, and 1/O control required to
direct a job through simple and complex execution
paths. Thus, the Multics user need not fearn a new

batch interface, or become a JCL expert to use the
system for problem solving.

Flexible Environment Shaping

Multics matches the computer’s processing environ-
ment with the user’s particular needs. Providing a
flexible interface, Multics enables users to continue
using the computer in the way they are accustomed
even though they are changing to a new systent.
The concept of shaping environments is particu-
larly beneficial for data processing organizations
that servicée many diverse user groups simultane-
ously. Each group can develop — using standard
administrative tools specialized interfaces to
satisfy unique operating requirements. Typical of
these tools is the special command processor with
which users can define their own abbreviations for
frequently-used command lines or sequences off
commands, as required.

EXEC-COM Facility

With this feature, users can write programs to ¢xe-
cute stacked command lines. The additional control
capabilities provided by the EXEC-COM facility
allow for logical branching, the maintenance of
variables, command-level 1/0O, and conditional cxe-
cution. Thus, it is possible to develop routines

for functions which typically require higher level
languages without having to actually use such
languages.

Help Files

Multics help files contain printed text which pro-
vides immediate, online assistance to users request-
ing data on various system topics, including the use
of Multics commands and subroutines. Tutorials on
each system feature are thus readily available. Sim-
ilarly, users can document their own programs and
routines, and avoid continuous referral to cumber-
some hard-copy documentation.

Memo Facility

The memo facility allows users to indicate when
specified events are to occur on the system. LEvents
to be scheduled can be inter-job signals, messages,
or program excecutions. Typical examples include
simple date reminders and the automatic sdudulmg
of an installation’s batch applications.

Intelligent Defaults

Multics — via its intelligent defaults lets users per-
form certain functions on the system without having
to consider concepts that do not pertain to their
particular application. In a typical situation where
the user wishes to archive data on tape, numerous
details such as tape density and blocking factors

must also be defined. For users to whom these de-
tails are not relevant, Multics standard defaults per-
mit the archive tape to be written via simplified
1/0 routines from command level.

VIRTUAL MEMORY

~The Mutties virtual memory mmplementation, totally
invisible to user programs, means that prograpimers
can concentriate on problem solving rather than be
concerned with real memory constraints and mem-
ory management (e.g., partitions and overlays).

Virtual memory is limited only by the amount of
available mass storage. So, programs written for the
largest contiguration can run on the smallest without
modification. No standard, fixed main memory-to-
mass storage ratio is required to ensure efficient
system operation. Regardless of the ratio, Multics
can be tuned to perform within its real memory
constraints.

Segmentation

Multics organizes information into segments

logical, named units containing data, programs, or
directories of other segments. The segments and
their directories form a uniform file system for all
users, the administrative and accounting system, and
the system software itself. Segments can increase
dynamically up to I megabyte in length, and files
can span nearly 1000 segments.

Paging

Multics designers devised the paging concept to
avoid the system performance limitations that re-
sult from swapping large liles (segments in the case
of Multics) in and out of main memory. In Multics,
scgments are subdivided into “pages™ (4096-byte
blocks). Address mapping at the hardware level
cnables the system to determine if the page of a
requested segment is in memory and if not, to
locate that page, transport it to memory, and
schedule it for exeeution by the waiting, process.
Demand paging climinates space allocation and
compaction problems and maximizes system per-
formance. Paging is completely transparent to the
user. And only those pages required for the execu-
tion ol a program ar¢ brought into memory at any
given time.

The actual movement ol information in and out of
nain memory is completely automatic and trans-
parent. Data required by the user. for computation
or nanipulation s retricved from peripheral storage
and inserted momain memory without the user ever
knowing the transicr 1eok place.

PROGRAM DEVELOPMENT

Multics ranks as one of the industry’s premicie solt-
ware development tools. It has powertul source code
manipulation techniquies for entering, editing, and
archiving code, and for automatically structuring
programs for casy reading and use. Its online debug-
ging tools facilitate checking out new code, and aid
in the fine tuning of programs, Multics tiso provides
options for dynamic linking or prelinking ol pro-
grams, and standard calling sequences for system
libraries and user programs.

Multics’ fully compatible language processors sig-
nificantly contribute to the system’s outstanding
program development capability. These processors
including PL/1, COBOL-74, FORTRAN, APL, ALM
(assembler), and BASIC can be tully shared. Be-
cause of their compatibility, programs written in
APL, for example, can call those written in PLJI

or FORTRAN. Compatibility is restricted only

by the data types supported by each language. And
since all Multics compilers generate reentrant code
by default, all user programs are shared; no special
coding procedures are required.

APPLICATIONS DEVELOPMENT

During applications development, the programmer
typically must address concerns such as terminal
control, diata base management, interfaces to system
functions, data sccurity and integrity, and 1/O inter-
faces. Multics provides a standard applications cnvi-
ronment that can be shaped to individual needs.
Thus, programmers can avoid these problems and
concentrate on programming, thereby significantly

shortening the development cycle.

DATA BASE MANAGEMENT

The Multics Data Base Manager (MDBM) ofters two
data base management interfaces: Multics Integrated
Data Store (MIDS), a subset of I-D-S/1E: and Multics
Relational Data Store (MRDS). MIDS supports
schema/subschiema data base definitions to provide
data and program independence. Data base struc-
tures which can be developed include sequential,
network, hicrarchical, or cyclical. MRDS provides
data and program independence via model/submode!
data base definitions and nonprocedural user retricval
and update mechanisms. Both interfaces allow inter-
active or batch usage, sharing, concurrent acceess, and
access via programs written in any language available
on Multics.

ADMINISTRATIVE CONTROL
A signiticant strength of Multies is its ability to pro-
vide service (o a wide variety of users simultancously

B-9

without the workload of any one group adversely
affecting that of another. Multics’ comprehensive
set of administrative controls make this high level

of processing service possible. These controls include:

e Decentralized control options

e Guaranteed resource allocations

o Priority scheduling with specified response char-
acteristics

¢. Deadline job scheduling

e Flexible service pricing

e Automatic or on-demand billing

e Automatic user or project cut-off when resources
are expended ;

e Online metering and tuning

o Standard cnvironment shaping

EASE OF OPERATION

The operational features in Multics make its utility-
© grade service readily available to a wide variety of
users. For example, there is no system or library
generation or edit. The operator can start the system
simply by typing one command at the console.
System software and libraries — delivered patch-
free - can all be updated online. A new compiler or
application can be added without shutting the sys-
tem down, and with only one command, new soft-
ware can be installed without affecting users working
with other existing packages.

Multics can run unattended. An automatic reboot
feature automatically restarts the system in the
event of a failure. The system’s online test and diag-
nostic capabilities permit the user to check out a
maltunctioning component online, remove it from
service if necessary, and dynamically reconfigure
the remaining system components ... all without
interrupting user service.

File integrity is fundamental in a service-oriented
environment. Multics offers automatic mechanisms
which optionally journalize recent file updates
within the system’s virtual memory. Should a fail-
ure cause temporary loss of data, these journals can
be reloaded to continue service. Duplicate file copies
are not necessary since Multics itself provides file
backup.

Additional ease-of-operation features include:

¢ Online administration and billing
o Operation from any terminal
e Dynamic control of the priority scheduler

COMPATIBILITY WITH LEVEL 66

Level 66 and Level 68/DPS systems share a high
degree of compatibility, In their respective hard-
ware conligurations, only the central processors

differ. The Multics central processor is a superset of
the Level 66 unit and has a switch which allows it
to run Level 66 GCOS, thus providing users of both
systems added flexibility and backup.

A special Multics subsystem called the GCOS En-
vironment, allows GCOS job decks or IMCVs to be
run without change. GCOS files can also be trans-

ferred between the two systems using standard
GCOS tapes,

Multics, through the GCOS Environment, also sup-
ports several languages that run under GCOS, includ-
ing JOVIAL, ALGOL, COBOL-68, GMAP, and
FORTRAN-Y.

DISTRIBUTED SYSTEMS ORIENTATION

Multics is ideally suited to the development of net-
works of distributed mainframe systems. With exist-
ing hardware and software, Multics can be intercon-
nected with a variety of other systems to form
networks, that address a broad range of user re-
quirements.

With this approach, users establish networks in which
files, programs, and data can be shared among the
various systems casily and with maximum sccurity.
For example, a programmer could log onto an

IBM 370/158, and then have required data trans-
mitted from a CDC-7600 to a Multics system for
processing, with the output going to the 370. Num-
erous variations of this approach are possible. In
fact, Multics can currently interface with systems
such as IBM 360/370s, Burroughs 4700 and 6700s.
CDC Cybers, and Univac 1100/90s.

SECURITY

Multics offers high levels of security unattainable
on other systems today. Several elements cooperate
to make this outstanding system, data, and program
protection possible. These elements are passwords,
access control lists, multistate ring protection mech-
anisms, and access isolation methods. No special
coding is required to make use of any of these ele-
ments; only standard system commands need be
executed.

Passwords

The Multics password mechanisms control access to
the system and verify users’ identities. Each user
has a system-maintained password which can be
changed at any log-on. Passwords are stored in en-
crypted form so that a user’s password will not be
revealed accidentally. When the user attempts to
log on the system, the typed in password is en-
crypted and verified by comparison against the one
stored in the system. Precautions are taken fo en-

B-10

sure that passwords are not exposed during the log-
on sequence.

Access Control Mechanisms

An Access Control List (ACL) is used to control
access to every segment in the storuge system.
Through the ACL users can grant specific access
vights {c.g., read, write, execute) to individuals or
groups of users. System hardwaire enforces access
control during the exccution of cach individual
machine instruction.

Ring Protection

A special hardware implementation, the Multics
ring structure is a multilevel approach to data and
program access control. The ring structure contains
eight levels of execution (rings 0 through 7; 0 being
most privileged, and 7 the least). Within this struc-
ture, users can access information only in those
segments at the same level or higher (less privi-
leged) than the current state in which they are
executing. The Multics operating system resides in
the most privileged ring (0) while users generally
execute in the less privileged rings.

Access Isolation Mechanism

The Access Isolation Mechanism (AIM) incorporates
administrative controls to grant or deny access to
information in the data base. AIM is a way of organ-
izing users into groups among which communication
can be restricted or denied. Like all other types of
Multics access control, AIM is initially verified by

Multics software and is hardwarc-enforced at every
reference thereafter. However, AIM also can prevent
users from granting — to other users access to
even their own information. AIM can be invoked or
disabled at the discretion of cach Multics site. In
addition to administrative controls, AIM provides
extensive security auditing controls to monitor user
activity.

GROWTH

Like other Honeywell systems, Multics™ hardware
architecture provides the benefits of modularity
and an easy, paced growth that does not require
swapouts to upgrade to higher performance levels.
This easy expansion allows a user to configure the
exact system needed and protects equipment
investment, It is not necessary to change the oper-
ating system, system libraries, or user codes in
order to move to a more powerful Multics system.

SAMPLE SYSTEM REQUIREMENTS

A typical entry-level Multics configuration consists
of the following components:

¢ Central System, with 512K words of memory
(2 million bytes)

o One System Control Unit

¢ One Input/Output Multiplexer

e One Integrated Network Processor

e Two MSU0402 Mass Storage Units

o A minimum of two MTUO0500 Magnetic Tape
Units

B-11

Honeywell

‘Honeywell Information Systems
Inthe U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1TW5
In Mexico: Avenida Nuevo Leon 250, Mexico 11,D.F.

19626, 11277, Printed in U.S.A.

B-12

DF51, Rev. 1

Honeywell

LEVEL 68

The Multics Storage System is a modular, hicrar-
chical file system augmented by a comprehensive
virtual memory. An integral component of the
Multics Operating System, the storage system is
just another reason why Honeywell believes Multics

to be the most advanced computer system available,

HIERARCHICAL STORAGE SYSTEM

In the Multics System, all information is grouped
into segments, collections of instructions andfor

data associated with a particolar name. All of the
sepments are stored 1 a treesstructured hicrarchy
(see ilustration), the beginning of which is called
the root. 'the branches emanating from the root

lcad to cither nondirectory or directory segments.

The Directory Concept

The sole function ol a directory segment is (o
catalog the segments residing below it in the tree.
Fach directory contains the names of the subor-
dinate segments and lists their attributes including
length, virtual memory address, date and time the
segment was created, list of users allowed to access
the segment and with what access mode (read,
write, execute, or nuil).

The directory concept is the key to several Multics
features, including storage structure, administrative
control, access control, search rules, and naming
conventions. For example, all users registered on
the system are grouped into projects. Each project
has a directory, and cach user in that project has
his own directory subordinate {o the project direc-
tory. A user may create additional subordinate
directories under his own directory or under direc-
tories to which he has been granted specific access.
He may also create “links™ in his directory to seg-
ments to which he has specific access. This capa-
bility is often used to share data and/or programs.

‘The Segmentation Concept

All information within the storage system is stored
in the form of segments. Provided the user has the
proper access rights, all information is directly
addressable. In addition, all of the information
within the storage system is placed within the
Multics Ring Structure ¢see “Controlied Aceess

Q’) 1973, 1974, Honeywell fotonsaion ysietoy foe

Multics Virtual Memory

and Storage System

\ A
s
y4

DIRECTORY SEGMENT
NONDIRECTORY SEGMENT

DIRECT CONNE CTION

i 100

LINKED CONNECTION

Hierarchical Storage System

to Segments”) a hardware-software feature that
provices maximum security over information
sharing.

Each segment is identified by a user-assigned sym-
bolic name (making use of the full ASCH character
set) as well as by a unique, system-assigned iden-
tification.

The Tully specified name ol any one segment is the
list of subnames that reflect that segment’s posi-
tion in the directory hicrarchy with respeet to the
root dircctory. This name, called a pathname,
shows the “path” from the root directory to the
specific segment and is the symbolic name by
which the user must reference the segment.

VIRTUAL MEMORY ENVIRONMENT

Segmentation

In the Multics System, all segments are directly
addressable by the hardware. With the addressing
schenme used in the Mualtics processor il relerences
to information are mapped through descriptors
{Segment Descriptor Words). These descriptors

B~-13

File No.: 111

are listed in a table (Descriptor Segment Table)
that identifies segment attributes and defines the
aceess a user can have to the segments. Most
importantly, segmentation encourages users to
view memory as a collection of independent linear
core memories, cach associated with a descriptor.
A user program can create a segment by issuing a
call to the system specilying as arguments the
symbolic name of the segment plus additional
intormation about who may or may not access this
segment. Then the system constructs a descriptor
according to the access information given by the
originator of the segment.

The originator has control over every segment in
his directory: he can grant or restrict access to
these segments in any way he chooses. In fact, he
can grant different access privileges (read, write,
execute, or null) to different users of the same
segment.

Once the segment is created, the user program can
address any item within the segment using name, i
where “name” is the symbolic name of the seg-
ment and “i” denotes the place of the desired item
within the segment, The maximum segment size is
256K words (1 048 576 bhytes)

Paging

With most computer systems, the limiting physical
resource is main memory. The amount of main
memory online is a major factor in determining the
performance of a system. The problems associated
with “swapping’ large files into and out of;main
memory severely limit system performance. Even if
files were not all large, there would still remain the
difficult problem of core management. Since the
Multics System allows users to create and/or
manipulate large segments, it is neither feasible nor
desirable to have an entire segment in main mem-
ory when in use.

Theretore, in the Multics System, segments are
automatically subdivided by hardware into “pages”
with a fixed size of 1024 words. Additional address
mapping at the hardware level allows the system to
determine whether or not a page of a referenced
segment is in main memory,

If the page is not in main memory, a missing page
exception occurs (called a “page fault™). The
software system intervenes at this point and proc-
esses the page fault by locating the desired page in
the storage system and translerving it into main
memory. During this phase, the process that gen-
crated the page Tault relinquishes control of the
processor and the system dispatehes the execution
of another process (process multiplexing). Once

the page does arrive in main memory, the system
notifies the “waited” process and schedules it for
continued execution.

By using this “demand paging™ technique with a
fixed page size, space allocation problems are sim-
plified, and the cost performance factor of the
system is significantly enhanced: only those seg-
ment pages that are currently needed are in
memory at any one time.

USER ACCESS

Direct Access to Files

With most large-scale computer systems, the pro-
grammer must interface with the file system
through complicated Job Control Language (JCL).
He also must know the specifications of the storage
device on which his files reside and must issue and
control (either explicitly or through macro specifi-
cation) his own 1/O requests.

The Multics System, with the aid of the virtual
memory, requires no JCL, nor are users concerned
with oreven aware of where and on what
devices their segments reside. Instead, users com-
municate with the storage system by asking the
system o make avaitabic to them a segineint within
their own virtual memory.

Controlled Access to Segments

Since all information is stored online in the Multics
System and data can be accessed directly, access
limits and controls are mandatory. The access con-
trol mechanism in the Multics System is a highly
sophisticated and reliable means for specilving the
usage attributes of directories and other segments,
There are two access control lists recognized by the
system: one for directory segments, one for non-
directory segments. These access control lists are
carried in directory segments.

Access modes for nondirectory segments are:

read (r)
write (w)
execute (e)

data in the segment can be read
data in the segment can be moditied
an executing process can transter to,
and execute istructions in, this
segment

null (n) access to segment is denied
Access modes for directory segments are:
status (s} the attributes of segments, diree-
tories, and links contained in the
directory can be obiained
modify (m) the atbributes ol existing segments,
directories, and hinks contained in
the directory can be changed or
deleted

B-14

append (a) new segments, directories, and links
can be created in the directory

null (n) access to directory is denied

Access validation is checked and enforced at the
hardware level on cach memory reference. IFor
example, if the originator of a data base decides to
grant access to some user, he can issue a Multics
command specifying “read’” access for that user.

If that user is currently attempting to reference the
data base, he is given access instantly.

As a further control to accessing segments, the
Multics System uses the Ring Structure. Logically,
the Ring Structure is cight concentrice rings, cach
representing a difterent level of virtual memory
aceess rights, The highest level of privilege is the
innermost ring, designated as ring zero; the outer-
most is ring 7. Each ring is protected against uncon-
trolled access by programs in any ring with a higher
number designation and thus a lower level of privi-
lege. The Multics ring-handling mechanism is
enforced at the hardware level,

USER INTERFACE

In using the Multics Storage System, the user has
two available interfaces. With the first, the “com-
mand level” interface, the user can create and/or
manipulate segments residing in various user direc-
tories. In many time-sharing operating systems, the
command level interface is supported by the
physical editing of the “command™ into various
system tables in thie operating system at system
generation time. With this technique, the problenis
cencountered while trying to expand the repertoire
of the command langaage can be extreme.

In the Multics System, however, there is no “‘com-
mand tanguage™: everything executed at Multics
command level is simply an object program from a
system directory. When a user types a command at
his termunal (e.g., create xyz), the system first
interrogates the user’s own directory to see il the
“create’ program exists. I so, that version is exe-
cuted. If not, the Multics System searches a set of
system/user-supplied directories (called Search
Directories) for the “create™ program. The user
also has the ability of expanding the detfault search
directories to inciude other directories (possibly
common to a specific project).

The second user interface is available via program
execution. Users’ object programs can issue call

B-15

statements to create and/or manipulate segments.
The call statements themselves are of the standard
PL/I form. Any program executed while at Multics
command level can be called and executed inter-
nally from within an object program.

FEATURES

Various features of both the Multics Virtual Mem-
ory and the Storage System are summarized helow.
o All information stored in the Multics Virtual
Memory is directly addressable provided the user
has proper aceess rights. .

e Lstablished protection rings allow users (o effec-
tively partition data within concentric ring struc-
tures.

o T'wo or more users can share a single copy of
data and/or programs in main memory.

o Users may create “links™ to other accessible
segments of virtual memory in order to share data
and/or programs.

o Luch user can specify various access rights (o his
own segments, even specilying different aceess to
different users of the same segment.

o Movement of data between main memory and
secondary storage and back is automatic, and is ol
no concern to the user.

o Tree-structured storage hicrarchy offers an
organized scheme of classification and facilitates
efficient scarch for a particular segment.,

o Usc of directories within the storage system
serves as a convenient place to look up addresses
and acceess rights of other segments,

o Access rights to a segment are checked by
Multics hardware on every reference to the seg-
ment.

e Multics has no Job Control Language: everything
executed at command level is merely a standard
object segment. Thus, the “command language™
can be dynamically developed, expanded, and
tailored to individual installation even individual
uscr - requirements,

SYSTEM CONFIGURATION

The tunctions herein described are applicible
to any Level 68 configuration,

Specifications nay change as design improvements are introduoced.

The Other Computer Company:
Honeywell

HONEYWELL INFORMATION SYSTEMS

8743
7.6774 In the U.S.A.: 200 Smith Street, MS 061, Waltham, Massachusetts 02154 .
Printed in US.A. in Canads: 20256 Sheppard Avenue East, Willowdale Ontario AKS7, Rav, |

B-16

Honeywell

SERIES 60
LEVEL 68/DPS

The Level 68/Distributed Processing System, with
its Multics operating system, is an advanced large-
scale computer system providing general purpose
data processing service for business and scientific
users.

Level 68/DPS administration and operating
features make its processing capabilities available
with simplicity and case. These features give the
Level 68/DPS user more efficient control over
online applications, unproved response to individual
user and group needs, and optimal utilization of all
processing-related resources.

INTERACTIVE ARCHITECTURE

Level 68/DPS architecture is specifically directed
toward interactive, online applications. It provides
“common interfaces for the implementation of these
applications and for their administration and control
as well. In addition, special online executives are
not required to take advantage of these interfaces.
Level 68/DPS employs standard, built-in tools for
controlling the use of all system resources.

MODULAR GROWTH

Because of the Level 68/DPS hardware modularity,
its users benefit from a long configuration life span,
free from disruptive programming or operational
changes. Level 68/DPS offers growth in small, cal-
culated steps, paced with the growth of the user’s
workload. Users can add more memory, new proc-
essors, or {ront-end networking facilities according
to specitic workloads. Level 68/DPS uniformity
and consistency make it possible to grow from the
smallest configuration to the largest without
changing the Multics operating system, libraries,
OF USeT Programs.

DECENTRALIZED ADMINISTRATION

Fundamental in the Level 08/DPS design is the
concept that productivity is tied directly to accessi-
bility. The system’s approach to administration is
consistent with that concept. Level 68/DPS admin-
istration is decentralized, so that specific resources
can be allocated to specific projects and accounted
for accordingly. The project administrator can in

Administration and
Operating Features

turn allocate these resources to individual users
within the project as necessary.

Allowing remote users and user groups autonomy
in their use of the system, and enabling them to
control their own resources, gives them the oppor-
tunity to more effectively deal with their day-to-day
problems and varying processing requirements.
Resource billing flexibility illustrates the advantage
of Level 68/DPS decentralized administration. This
billing can be automatic or on demand. Users on
individual projects can even do their own sub-billing,
substitute their own billing algorithms, use different
algorithms for different users, or install new
algorithms dynamically.

The Level 68/DPS administrator can establish up
to eight separate work shifts, with diffcrent rates
applied to each, encouraging use during slack -
periods. Users can also be restricted to working on
specified shifts, and these restrictions can be
changed dynamically. Results: more efficient foad
leveling and more ¢ffective use of resources.

RESOURCE UTILIZATION CONTROL

Resource control in Level 68/DPS involves three
primary areas: online storage utilization, physical
access to system communication lines, and user job
prioritization. Standard, built-in tools are used in
each area.

Online Storage Utilization

Level 68/DPS enables an administrator to control
the use of online storage on a “*per project™ basis.
To maximize the use of storage resources, the
administrator can allocate this storage to individual
users within a project.

Two techniques illustrate this control:

o A storage quota, which prohibits the allocation
of storage space when a specificd workload limit is
reached.

e An automatic data migration function, which
allows data to be transferred to anothier medium
when that data has not been aceessed for a cerlain
period of time.

1978, Honeywell Informations Systers, fa.

lile No.: #1111

Physical Access

Controlling the physical access to Level 68/DPS,
which includes restricting user groups to specified
communications lines, also means controlling the
workload mix on the system. The administrator
can establish the maximum work units that the
system will adequately support for the particular
site. Issuing load unit weighting factors for cach
user ensures that the system’s capacity cannot be
exceeded to the detriment of its users. Different
users can be issued different weighting factors to
reflect different processing requirements. To ensure
that specified privileged or high priority jobs will
always be cxecuted regardless of the total work-
load on the system, certain users can be given
guaranteed access status.

User Job Prioritization

Dynamic Scheduling

User and job prioritization is accomplished via
dynamic control of the priority scheduler. With
this capability it is possible, for example, to add
either more batch jobs or more interactive users to
a system without negatively affecting the produc-
tivity of timie sharing programmers or transaction

processing activities already in execution.

Workload Balancing

Level 68/DPS also incorporates a workclass concept
which further ensures that the workload of certain
users will not negatively affect the workload of
others. Users can be grouped into classes and allo-
cated percentages of processing capability. Regard-
less of the total system workload, each group of
users can be ensured a predetermined percentage
of available central processor time. “‘Free time,”
any tine not utilized by a given workclass, is made
available to other workclasses requiring more than
their allocated time, maximizing central processor
utilization.

Deadline Scheduling

This tfeature can be used for a limited number of
users or applications to ensure that a predefined
amount of processing time is available to these users
after an interaction or job submission. Deadline
scheduling ensures that batch jobs will finish within
a specified time period, and that interactive users
will receive a response within a predefined time
span alter a transaction, regardless of the overall
system workload.

Changes to allocated resources, response character-
istics, and batch job scheduling can be accomplished
dynamically. or scheduled to happen automatically
at o predetermined time. Forexample, a key appli-
cation can be deadline scheduled so that it is
ensured a four-second response time during prime

shift, but only an cight-second response time on
second shift.

ENVIRONMENT SHAPING

Level 68/DPS environment shaping tools let you
define interfaces to match users” application proc-
essing needs. These tools not only make it possible
for nonexperts to use 68/DPS for problem solving,
but also enable system administrators to succinctly
define and limit what users can do with the system
and what they must know to process their
applications.

The two major environment shaping tools are the
limited service subsystem and the closed subgystem.
e The limited service subsystem enables the project
administrator to define exactly those functions
which the user cannot perform: all other system
functions are available to that user by default.

e The closed subsystem lets the administrator

~ define all the functions which the usercan perform:

all other functions are unavailable by default.

The limited service and closed subsystems can also
be used for defining new command languages and
interfaces that convert “foreign™ system commands
into Multics operating system commands, This can
be useful to first-time Level 68/DPS users. In addi-
tion, these subsystems allow nontechnical users to
access the system via a highly simplified command
interface. The capabilitics aftorded by these struc-
tured interfaces do not have to be programmed:
they can be established via simple commands. The
administrator need only create a new file with the
new restrictions or guidelines in it, and it is immedi-
ately available to all authorized users.

SIMPLIFIED SYSTEM OPERATION

Level 68/DPS is surprisingly casy to operate, espe-
cially considering its size and power. This relative
case of use is due largely to its dynamic recontigura-
tion capability, simplificd system maintenance, and
responsive online metering and tuning capabilitics.

Dynamic Reconfiguration

The dynamic reconfiguration capability of Level
68/DPS is used to maintain continuity of processing
service in the event of a malfunction in a system
component. If a failure occurs in a processor, for
example, a single command automatically moves
jobs and data in that processor to another unit,
notifies the other system components of the mal-
function, removes the processor from service, and
reconfigures the remaining devices. Processors,
memory, and peripheral devices can be added to or
deleted from a configuration dynamically, via oper
ator command. Failed pages ol memory (4K-byte
units) are automatically reconfigured by the oper-
ating system whenever a double-bit error occurs.

B-18

This reconfiguration process can also assist in the
testing of certain components. Users can
dynamically remove certain devices from service,
submit them to test and diagnostic routines and
reconfigure them automatically, without inter-
rupting processing service. Alternatively, devices
can be dropped from service on one system, con-
figured as a separate system, used for testing of new
software, and then reconfigured in the original

system without shutting down service. \

Level 68/DPS can run unattended, providing proc-
essing service on holidays and weekends, without
the need for operators. During unattended opera-
tion, it can be run in the automatic reboot mode,
and, in the event of a system failure, the system
will automatically reinitialize itself so service can
continue. '
Level 68/DPS can be operated from terminals inside
or outside the computer room. Due largely to the
system’s extensive security, an administrator with
the proper authority can log into the system and
issue any command that could be issued from the
main operator’s console. This gives Level 68/DPS
greater operational flexibility, and frees it from
relying on a single device (which might fail) for
control functions.

Level 68/DPS provides batch job status and con-
trol capabilities as well as communication between
system users. Operations messages can be sent to
individual users; messages can be broadcast to the
entire user community or to those on a particular
project (or vice versa).

System Maintenance Features

For simplified maintenance, the Multics operating
system does not require system or library gener-
ation or edit. Multics software releases are also
delivered patch-free,

Users can easily install their own software or
add programs to the time sharing library. New
software can be installed without a system shut-
down or link-edit. New compilers, applications,
and procedures can be installed without inter-
rupting processing service, even while users are
using old versions.

Metering and Tuning System Performance

Level 68/DPS offers standard metering and tuning
tools that allow an administrator to monitor and
adjust system performance according to specific
needs and changing workloads. Using data that

is constantly being gathered by the system itself,
administrators can retunc the system, move users
from one processing class to another, or cven
change the percentage of processing power allo-
cated to a user, depending on any number of
variables and requirements. '

This control is possible because the administrator
can analyze all facets of system performiance from
this constant flow of metering data. Some of the
information supplied includes: ‘
e [/O and device activity data

e Application response, processor utilization,
communications, and 1/O queuing

o Average CPU time spent on certain functions,
or used by certain applications

e State and characteristics of the communications
lines attached to the system

e EDAC (Error Detection and Correction) data
associated with main memory hardware crrors.

PRE-SCHEDULED ADMINISTRATIVE
FUNCTIONS

A system fuacility called MEMO provides gener-
alized capabilitics for scheduling the initiation and
execution of any program or set of programs. This
allows the administrative or operational stafls

to pre-schedule the running of administrative
routines, such as billing. Scheduling can be self-
repeating, such as scheduling a program to be run
every Monday at 3 p.m. MEMO also allows cither
a precise definition of day/date/time (down to a
microsecond level) or more general, logical
definition (“‘on Tuesday”).

INTEGRITY MECHANISMS

To maintain file integrity in the event of a mal-
function, Level 68/DPS has powerlul file back-up
mechanisms.

e An automatic file archiver journalizes ail
changes to the file system and makes it possible
to “‘roll forward™ following a failure.

o Online file system integrity checks ensure a
consistent, reliable file system.

e Main memory flush-to-disk is an automatic
data protection mechanism invoked after a system
service interruption. All data in main memory
which has been modified is written out to mass
storage to reflect all changes made up to the CPU
cycles prior to the failure.

o Support of optional “shadow copy” logical
volumes within the storage system. Volumes
designated to have shadow copies automatically
have spare devices assigned with copies of cach
physical volume. When updates are made to any
of these devices, the copy is updated as well.

H a device Tails, the system automatically shifts
to the copy without user interrupt.

Specifications may chaige as design improvements are introduced

Honeywell

Honeywell Information Systems
Inthe U.S A 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada. 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5
InMexico. Avemida Nuevo Leon 250, Mexico 11, D.F.

22408, 1.51278, Printed in U.S.A.

B-20

DGO6, Rev. 2

Honeywell

SERILES 60 (LEVEL 68/DPS)

To the user, a computer system is only as produc-
tive as it is aceessible. Based on human engineering
design concepts, the Level 68/Distributed Process-
ing System (68/DPS) uses interactive, remote ter-
minal access -~ the most natural and convenient
mode for the user — as the primary mode for
programming.

With the advent of Level 68/DPS, the computer is
to be measured, not merely by hardware speeds,
but by how well it helps solve a problem - from
the very inception of that problem to its best solu-
tion. Rather than wait for computer availability in
a batch mode and submit many sequential jobs, a

1 evel 68/DPS user prepares, compiles, and checks
out programs in one continuous interactive terminal
session.

The Level 68/DPS interactive programming environ-
ment provides a complete range of facilities that
satisfies both the novice user and the professional
programmer. Both ¢njoy appropriate software tools
and both can work on the same system, protected
by advanced hardware/software security features.

The Level 68/DPS user interface provides an envi-
~ronment for a nearly unlimited scope of applica-
tions regardless of size, complexity, or storage
requirements. The multiprocessing, multiprogram-
ming capabilities of Level 68/DPS and its diversity
of languages and utility routines provide the user
with ‘all the support needed.

THE PROCESS, A UNIQUE CONCEPT

When first accessing (logging into) a Level 68/DPS
System, a user is allocated system resources in an
environment termed a “*process.” Specitically, the
© process is dynamically assigned space within the
virtual memory (address space) and other system
resources as required. As a result, each user views
his process as if it were the only one in the system.
In this cnvironment, the user’s address space dy-
namically grows and shrinks as program require-
ments expand and contract and the activity is
totally transparent to the user and under control
ol the shared operating system. The system creates
a process af log-in time and destroys it at log-out
time on behalf of cach user. The user executes his

Interactive Programming

Environment

program and system commands in coexistence with
the processes of all other logged-in users under the
multiprogramming control of the Multics operat-
ing system.

SYSTEM FEATURES

Some of the more important features of the
Level 68/DPS intcractive programming cnvi-
ronment include:

e Flexibility of environment shaping

e Information sharing in the Level 68/DPS
Virtual Memory and Storage System
Powerful language processors

Extensive support facilitics and tools
Powerful command processor

Protection (sccurity) ,
Special user interfaces

Flexibility of Environment Shaping

The ad‘ministmtion of a typical Level 68/DPS
system includes one system administrator and
multiple project administrators. Each project
administrator defines the working cnvironment
for users in that project. He may give o user maxi-
mum flexibility by allowing him complete control
in creating his own initial process, or he may limit
the user’s capabilities by restricting access to vari-
ous software functions.

The project administrator, then, defines the range
of access each user has to system software func-
tions. If the user has complete control of his own
process environment, he may change parts of that
environment and still be within the normal oper-
ating conventions of the system.

Information Sharing in the Level 68/DPS Virtual
Memory and Storage System

A Level 68/DPS system provides total sharing off
data between users. In addition to sharing the oper-
ating system’s modules, libraries, language proces-
sors, and applications, users can cven share user
code and data. This is possible because all Tevel
08/DPS compilers generate pure, reentrant code by
default.

© 1978, Honeywell nformation Systems Inc.

File No.: 1121

B-21

All procedures and data are contained within the
Level 68/DPS Storage System and its associated
virtual memory including facilities that provide the
user with extensive control over file manipulation
and file sharing. A user can specify which individ-
uals may access his files, and by which mode of
access. Access can be given to one user, to a group
of users (project), or to a particular class of users
(interactive or batch).

The Level 68/DPS Storage System is supported by
a powerful virtual memory, totally transparent and

available to the user as needed. Virtual memory dy-

namically expands and contracts according to user
Gu
mers no longer need to be concerned about over-
laying or partitioning program modules to satisfy
limited main memory resources. Instead, they can
concentrate on program synthesis and on develop-
ing the most efficient algorithm to solve their
particular problems.

iro
iy

o

re ant

v

Powerful Language Processors

s and system resources. Thus, program-

Level 68/DPS includes several fully compatible lan-

guage processors. Foremost is a functional PL/I

compiler that is used for both system programmers

and applications programmers. The present PL/I
compiler has undergone several major design iter-
ations to become perhaps the most stable and re-
liable PL/I compiler in existence. This is the same
PL/! compiler that is used to produce the Multics
operating system software itself, 95 percent of
which is written in the PL/I language.

Level 68/DPS supports COBOL-74. As with all
Level 68/DPS compilers, COBOL programs can
call programs written in any other language,

thereby offering developers optimal flexibility.

A complete FORTRAN compiler is available to
satisfy any FORTRAN requirement as well as to
facilitate the transfer of software from other com-
puter systems.

A BASIC compiler offers quick compilation and
execution. It can be used as an independent lan-
guage processor or in the simple time sharing sub-
system called FAST.

An APL language processor is also available.
This is an interactive interpreter with exten-
sive functionality.

For users who find it necessary to write portions
of their software in the anguage of the host com-

B-22

puter, Level 68/DPS includes the ALM (Assembly
Language for Multics) assembler. This assembler
supports all system requirements for interprogrinm
communication. :
A program written in any language available on
Level 68/DPS can also call programs written in
another language by merely following that lan-
guage’s calling conventions. For example. APL
functions can call PL/I procedures.

All compilers will automatically generate pure,
reentrant code for users, making all programs
immediately sharcable.

Extensive Suppert Facilities and Tools

Stable and reliable software components within
the Multics operating system provide numerous
utility and support functions. Foremost among
these are the text editors. These text editors have
undergone several design iterations 1o increase
their reliability and sensitivity to human
engineering requirements. Level 68/DPS text
editors range from a simple editor supporting
line-numbered files to advanced editors for expe-
ricneced uscers.

Several extensive interactive debugging packages
permit a user to analyze and correct a compiled
program at both the original source level and the
more specific machine-register level

Tools to measure performance permit the user to
analyze a program’s behavior and facilitate the
development of optimum applications software.

Inter-user communication factlitics, both immedi-
ate and deferred. permit online messages to be
transmitted among users. In addition, online docu-
mentation facilities provide the user with useful
word processing and document preparation tools.

Powerful Command Processor

The command processor, by which a user commu-
nicates his requirements to the system. aceepts
input from a console, interprets the user’s reqguest,
and invokes the software component to perform
the desired function. The software component can
be either system- or user-supplied: there is no dis-
tinction at the command level. The command
processor allows recursive, iterative commands
and the embedding of function calls in the com-
mand line.

The command processor is a shared. replaceable
module, written in PL/L Therefore, i the project

administrator desires, a user can be required to
interface with a special version of the command
processor (possibly user-created), thereby limiting
the software requests or commands available to
him. The command processor thus permits an ex-
tremely wide range of interfaces to all system fa-
cilities on cither a controlled or open-ended basis.
Tools are available to the user which allow the ab-
breviation of commands or character strings for the
development of personalized shorthand methods
tfor directing program execution or accessing files.
A facility also exists which allows users to program
in commands with logical branching, variable main-
tenance, file management, and 1/O control. This
allows the development of complex applications
without the involvement of language processors.

The commaand syntax has been designed to provide
as sophisticated and flexible a user interface as any
user might possibly require for both a commutative
and associative syntax form. However, simple
requests have a simple form.

SUMMARY

e The Level 68/DPS interactive programming envi-
ronment provides facilities tor both the novice and
advanced user, for a wide range of applications.

o The user’s virtual memory (address space)
dynamically changes as program and data
requirements change.

® A unique process environmient exists for cach
user, and this environment can be reshaped as
needed.

e Files are protected by user-speciliod aceess
controls. ’

o Level 68/DPS includes several language proces-
sors: COBOL-74, PL/1. FORTRAN, BASIC, APL
and ALM.

e The support facilities of Level 68/DPS include
text editors, program debugging aids. performance
measurement tools, inter-user communication
facilities, and online documentation aids.

e The Level 68/DPS command processor allows a
wide range of interfaces to all system tacilities
cither on a controlled or open-ended basis.

o Inicluded within Level 68/DPS are special user
interfaces that permit the development of other
operating systems, closed subsystems, or limited
service tacilities.

SYSTEM CONFIGURATION
The functions described herein are applicable to
any Level 68/DPS configuration.

Specifications may change as design improvements are introduaced.

Honeywell

Honeywell information Systems
Inthe U.S.A.. 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada. 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1W5
In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

20938, 2.5578, Printed in U.S.A.

B-24

AKbLS, Hev. 3

Honeywell

SERIES 60 (LEVEL 68/DPS)

In today’s data processing environment computer
security is a major concern. News stories tell of
millions of dollars being stolen; company proprie-
tary information being sold to competitors; and
valuable information being deliberately destroyed
or altered. In addition, there is growing concern
regarding the protection of individual rights - just
what type of data can be compiled on an individual
and how should such information be protected
from unauthorized disclosure. At this time, laws
protecting privacy carry both civil and criminal
penalties. So the processing of sensitive information
on an insecure system exposes companies to loss
and fraud and, potentiaily, to civil and criminal
proceedings. Secure computer systems have become
a vital concern to the data processing industry.

SECURITY MECHANISMS

Level 68/DPS is the most secure computer system
commercially available.’ Level 68/DPS and its
Multics operating system provide security by a
combination of methods unique in the industry.
These methods are designed into, and are an inte-
gral part of, the functioning of the system. Because
the security mechanisms are implemented in both
hardware and software and are applied universally
to all user and system functions, they are far more
difficult to subvert and security benefits are
achieved with insignificant system overhead.

Initial Access

Initial access to the Level 68/DPS system is con-
trolled by means of the user identification and
password.

The password mechanism is the first and most
important line of security since it controls access
to the system and verifies the user’s identity, upon
which turther access decisions are based. To ensure
that users treat passwords with the care the system
requires, Multics provides tacilities to allow users
to change passwords casily, to penmnit the System
Security Administrator to compel periodic pass-
word changes, and to require users to use system-
generated, pronounceable passwords.

When the system requests the entry of the pass-
word at log-in time, the print mechanism of the

Controlled Sharing
and Sccurity

user’s terminal is turned oft (if the terminal has
this feature) or a mask is printed. over which the
password is typed. Thus, a password is never dis-
played in readable form when it is entered.

Passwords are stored in encrypted form within the
system. When a user logs in, the typed password is
similarly encrypted and the scrambled values are
compared.

Multics audits the usage of cach password. 1t also
counts incorrect passwords and types a message at
log-in, telling the user how many times that pass-
word has been given incorrectly sinee its last cor-
rect entry. This alerts the user to the possibility that
someone has attempted to guess the password.

The System Security Administrator can also set an
entry in the system message table causing a message
to be sent whenever the user is logged in and some-
one else attempts to log-in with the same namwe.
project, and password.

Once verified and accepted by the system. the user
is screened for information sharing (i.c.. the kind
of access permitted to the file system and to user
and system software).

Information Sharing Controls

Beyond the password control (which screens every
person attempting to use the system). three addi-

tional controls regulate access rights to all data and

programs in terms of individual users and processes.
These information controls are access control lists,

access isolation mechanism, and the ring protection
mechanism.

ACCESS CONTROL LIST (ACL)

The access rights for cach segment are delined in its
access control list (ACL). Through the ACL, uscrs
can, at their own discretion, grant or deny access to
their segments and directories. The ACL specifices
the users who have been granted access to the seg-
ment and the mode of access alowed them. Users
who do not appear on the ACE have no aceess to
the segment. Read, write, exceute, and null? per-
missions may be speciticd for sepments (hoth data
and program): status, modily, and append accesses
may be specilied for file system directories. These

© 1978, Honeywell Information Systems toe.

B-25

File No.o 1101

permissions may be specified by user name, by
project, or by “instance” (whether a process is ab-
sentee or interactive), or by any combination
thereof. Classes of users can also be specified; for
instance, all the users in a project, specific users in
a project, or even all users in all projects. Access is
initially verified by Multics software and is enforced
by the hardware every time the segment is refer-
enced thereafter,

ACCESS ISOLATION MECHANISM

The Access Isolation Mechanism (AIM) allows
administrators of the system to define several
levels of privilege, which the system itself en-

“ forces rigidly. Enforcing the separation of these
levels is totally independent of other access
control or user action. This administrative mech-
anism overrides user discretion in granting access
and ensures privacy by preventirig inadvertent or
malicious disclosure of information between
these privilege levels, even by those who “‘own™
the information.

-AIM can be explained in simple terms. At log-in
time, each process is assigned a sensitivity level
and category (clearance) based upon the clearance
of the user, the terminal, and the project. Also,
every directory and segmient {object) within the
storage system has a sensitivity level and category
(classification) associated with it. If the clearance
of a process is equal to the classification of the
desired object, all access to the object (allowed by
other access control mechanisms) is permitted. If
the clearance of the process is greater than the
classification of the desired object, read. execute
or status permissions are allowed to the object
(within constraints imposed by the other access
control mechanisms). Finally, if the clearance of
a process is less than the classification of the de-
sired object, all access to the object is denied.

AIM supports 8 clearance and 18 “need-to-know”
categories within each level. Access is granted or

denied explicitly on the basis of the security classi-
fication of a file or program and the security clear-

ance of the user. This mechanism supplements the
access control lists. Like the ACL mechanism.
access is initially verified by Multics software and
thereafter enforced by hardwire at every reference.
AIM can be invoked or disabled at the discretion of
cach Multics site. AIM also provides extensive secur-
ity auditing controls to monitor user activity.

RING PROTECTION

The Level 68/DPS Security System uses a hardware-
implemented. multilevel ring structure to control its
users and to protect itself. The ring structure is a
generalization of the two-state capability of other
computer systems (master/slave mode, supervisor/
program state, etc.). With Multics, the structure has
been expanded to eight states or “‘rings of protec-
tion” numbered 0 (most privileged) through 7
(least privileged). The operating system resides in
the most privileged rings, O through 2, while users
generally operate in the less privileged rings, 3
through 7. The segments of the operating system
are in the most privileged rings to prevent uncon-
trolled access or modification by the users of essen-
tial system information.

The basic rule is that users can only reference
those segments in the same or less privileged
fevels than the ring in which ihey are cuirently
executing. Access to higher privileged rings is
only possible through a gate program. (This is
analogous to master mode entry, supervisor call,
etc.) The use of eight levels of protection rather
than two allows user programs to take advantage
of features for protection normally reserved for
operating system software.

'In 4 1975 study conducted for the Air FForce, the MITRE Corpora-
tion concluded that Multivs is the most secure operating system
available.

*Null access is implied by default; that is, if a user does not issue a
commund granting another user aceess 1o a sepment or directory,
that other user cannot access the data in any way. However, null
is useful in selecting u small number of individuals from a project
to whom it is desirable to deny uccess.

Specifications may change as design improvements are introduced.

Honeywell

il iInformation Systems
Inthe U S A 200 Smith Street, MS 486, Waitham Massarhusetts 02154
InCanada 2025 Sheppard Avenue East. Wilowdale, Ontarno M2J 1W5
inMexico Averda Nuevo Leon 250. Mexko 11. D F

20809, 1578, Printed in U.S.A.

B-26

DG74, Rev. O

Honeywell

LEVEL 68

Multics PL/I is a language processor designed for
commercial, scientific, and system programming
applications. It was developed on Honeywell equip-
ment in conjunction with the Massachusetts Insti-
tute of Technology. Multics PL/I is the language
defined by the American National Standards Insti-
tute’s PL/I standardization committee and is sched-
uled to become a standard.

The compiled code is extremely efficient. The
compiler was specifically designed for Multics and
has been used to compile itself and most Multics
software.

ADVANTAGES

Compilation and execution may be initiated
through absentee (Multics batch processing) or
interactive mode.

Programs written in PL/l ensure permanent com-
patibility and ease of maintenance.

Object modules are produced such that no relocat-
able edit is required. The normal mode of opera-
tion is to execute with dynamic linking and loading
so that unreferenced data and unused programs are
never loaded into main memory.

Relocatable object permits the binding of sepa-
rately compiled programs together into one seg-
ment which has fewer pages than its unbound com-
ponents.

A run-time symbol table may be created by the
compiler and used by the Multics debugger to
make symbolic references to the program data at
run time. There is no special checkout compiler
and therefore no recompilation necessary to debug
a prograni.

An optional optimizer performs extensive optimi-
zation of common expressions, conversions, and
accessing code throughout a procedure or begin
block. Register allocation is based on usage statis-
tics gathered by the optimizer resulting in intelli-
gent use of pointer registers by the object code.

CAPABILITIES

PL/Lis a block-structurcd language that allows
both internal and external names. This feature

Multics PL/I

facilitates the development and maintenance of
modular PL/I programs. All procedures are recur-
sive and sharable.

Multics PL/I has a comprehensive set of data lor-
mats. These include eight distinct types ol data:
arithmetic, string, locator, format, label, entry, file,
and arca data. These formats give PL/I considerable
descriptive power,

In addition to lixed-point and Hoating-point binary
arithmetic, Multics PL/I provides variable-precision
true fixed-point and floating-point decimal arith-
metic of up to 59 decimal digits directly supported
by hardware. Structure variables (similar to the
hierarchical descriptions of COBOL) enable the
programmer to explicitly define data structures as
any aggregate of elementary data formats.
Dynamic allocation for scalar variables and aggre-
gates is provided by the automatic, controlled. and
based storage classes.

PL/I has powerful bit string and character string
handling capabilities. Operations and functions are
performed on either fixed or variable length
strings. The extended instruction set of the central
processor is fully utilized to perform character- and
bit-string operations, picture editing, as well as
decimal arithmetic and arithmetic base con-
VErsions.

Arithmetic, string, or pointer variables declared
with the “unaligned™ attribute are packed into the
minimum number of bits, giving the programmer
complete control over the packing of structures
and arrays.

Through the use of pointer-valued Multics func-
tions and PL/I based variables, a user can casily
access any bit in the entire virtual memory.

Declaration of initialized arrays and data structures
is permitted. Components can be freely interspersed
in PL/I programs to aid in program documentation.

Multics PL/E utifizes the full ASCH character set
defined in American National Standards Institute
stundard X3.4-1968. Both uppercase and lowercase
letters can be used to form names up to 256 char-
acters long. This offers the user greater naming
flexibility.

© 1973, 1974, Honeywell Information Systems Inc.

B=27

File No.: (1.21

The % include macro provides for the inclusion of
program text without the use of a preprocessor.

Complete symbol listings show how each name was
declared, as well as its attributes, and its address
allocation.

The compiler diagnoses over 350 errors, giving
complete, readable diagnostics that include the
erroneous statement or name. Warning diagnostics
are given for common mistakes such as an
undeclared riame or implicit conversion of data
types.

PL/1 programs may call procedures written in other
languages or vice versa provided they observe the
interface conventions, as is the case with the other
compilers in the system.

Multics PL/I and FORTRAN compilers have simi-
lar options, program listings, and error messages,
and in fact share the same compiler code genera-
tion module phase and are, therefore, completely
compatible.

PL/1 input/output facilities provide a convenient
method of constructing and maintaining large files
within the virtual memory or on removable media.

The PL/1 “do” statement and *‘if”’ statement allow
the programmer to construct fiexibie program iogic
without the proliferation of statement labels.

The ““on” statement of PL/I permits the program-
mer to make arrangements to handle special condi-
tions which arise during execution. These condi-
tions can arise as the result of errors recognized by
the hardware or be signalled by the program itself.
Multics virtual memory. coupled with PL/I pointer
data, facilitates the programming of complex list
processing techniques.

OTHER MULTICS FEATURES

Muitics PL/1 is a powerful language on a powertul
system. One of the most advanced computer sys-
tems in the world, Multics offers extensive security
provisions, virtual memory, interactive prograni-
ming environment, hierarchical storage of data, and
highly functional administrative control features.
For more information on the Honeywell Multics
System, contact your Honeywell Marketing repre-
sentative, '

SYSTEM CONFIGURATION

The functions herein described are applicable to
any Level 68 Multics configuration,

Specifications may change as design improvements are introduced.

HONEYWELL INFORMATION SYSTEMS

9063
7.5774
Printed in U.S.A.

in the U.S.A.: 200 Smith Street, MS 061, Waltham, Massachusetts 02164
in Canads: 2025 Sheppard Avenue East, Witlowdale Ontario

AKGY, Rav. 1

B-28

Honeywell

SERIES 60 (LEVEL 68/DPS)

Multics APL is an advanced version of the APL
programming language - an interactive system for
use with Honeywell’s large-scale Level 68/DPS
computers. Multics APL is a general purpose lan-
guage that is both easy to learn and powerful to
use. It is interactive by design — problems can be
attacked swiftly, error messages are informative,
errors can be corrected quickly and easily — all’
within the APL environment.

APL brings the full scope of data processing to
business and technical problem solvers who may
have little programming experience.

It is particularly well suited for business and scien-
titic applications requiring the manipulation of
arrays of data. Typical business applications include
financial modeling, investment analysis, sales fore-
casting, and payroll and budget analysis. Scientific
applications include lincar programming, regression
analysis, and pipe stress networks.

BENEFITS

Multics APL offers substantial benefits:

¢ Provides powerful language statements for
easier problem solving

e Provides a set of tools for interactive develop-
ment, debugging, and execution of programs

e Offers data processing capabilities for any level
of programming expertise

e Reduces time for programmer system develop-
ment thereby increasing programmer productivity

FEATURES

The following features make Multics APL partic-
ularly attractive:

e File access capabilities

& Ability to store APL functions and programs
for later execution

e Ability to automatically start a function
executing when program is loaded

e Powerful execute operator which interprets a
character string operand and may produce a
character string result

e Ability to diagnose errors in a longer, more
explanatory format to assist new APL users

MULTICS APL

o Support of ASCII terminals and a variety of
APL terminals (especially graphics terminals)

e Several preprogrammed workspaces, including
a fully documented, tutorial course for user self-
instruction in Multics APL

e ASCII-compatible character set

e Accurate floating point computations

e Sizable arrays and unlimited workspace in
virtual memory _

o File system that does not require knowledge
of job control language

e Full security and integrity protect programs
and data from unauthorized use or modification
o Convenicent interface to other Multics pro-
gramming languages

e Software to convert from IBM to Multics
format)

e Ability to access Multics data bases via

PL/I subroutines

SYSTEM DESCRIPTION

System operation is straightforward. At a termi-
nal, the user simply calls Multics APL, and then
types an expression to be evaluated. The Multics
APL interpreter performs the caiculaticns, prints
the results, and awaits a new input line. The results
of an expression evaluation can also be assigned to
a variable and retained from line to line for use in
subsequent evaluations,

In addition, a sequence of calculations can be

stored as a function to be recalled by name and inter-
preted as a single entity. The result of the function
is processed as though the entire sequence of expres-
sions had just been entered at a terminal.