
Level &8

MULTICS CONCEPTS
AND UTILIZATION

Student Handbook
Course Code F01

·
• ••••••••••• III III ••••••••• ·
• •••••••••••••• 31 ••••••• · · · · ·
• ••••••••••••••••• a •••• ·
• ••••••••• a •••••••••••• · · · · · · · · · -...... . · · · · · ·
• ••••••••• 8 • I!!I

• ••••••••••••••••• I!I e ~ ••• · · · · · · · · · · · · · •• a ••• I1 ••••••• liIilli8 •• eeee · · · · · · · · · · · · · · ·
• 1I~iJiI ••••••••••••••••••• · · · · · ·•.................•..•.........•....•• · · · · · • ••••••••••••••••••• a •••

• ••••••••• a •••••••••••••
• ••••••••••••••••• a ••••• ·
• ••••••••••••••••••• e ••• · · · · · · ·
• •••••••••• e .••••••••••••

• •••••••••••• a a •••••••• · · · · · · · · · · · · · · · · · · · · · · · · · ·••••••• ~.~~ .
• ~r •• rT~T ••••••••••••• i · · · · · · · · · ·

• •••••••••••••••••• e •••• · · · · · · · · · · · · ·
-.-.!11!1.~.~.~.~.~.~.II!.~.I1! .•. ~ .•. ~ .•. ~.II!.!III!!I.II!.!III!!I.II!.!III!!I.II!.!III!!I.II!.!11!1.1I!.!II!I.IIII!!.!IIIII!!!I.IIII!!.[111!1 !I!I. ~.~ ••• :.: • :.:.:.:.:.:.:.:.:.:.:.:.:.:.~~

•••••• -= •••••• · · · · · · · · · · -.. · · · · ·
• ••••••••• a •• · · · · ·

• • • • • • • • • • • _. _. _. -;-:-.,~"".!!pl"'.!!pl~.!!pl~.="'I!!II!!!I!!="'I!!II!!;!!i;e:I!;!!;!!i;e:I!;!!F!;=;~!F!;=;.F;~::;: ..
• • :.: .:.:.:.:.:.:.: .:.:.:.:.: •••••••••••• a. a ••••••• a ••••••••••••••••••••••••••••••• a •••••••••••••••••••••••••••••••••• . --..•.................

• • • • • • • a ••••••••• .
• • • • • • • a •••• a ••••

• • • • • • • • • • a • a •••• .
• • • • • • • • • • • • a a •••

ISSUE DATE: June 27, 1977

REVISION: 4.1

REVISION DATE: October 1978

RECEIVED OCT t 7 197$1

Copyright (c) Honeywell Information Systems, Inc.
1977

COURSE DESCRIPTION

F01 Multics Concepts and Utilization

Duration: . Five Days

Intended For:

Course Synopsis:

Objectives:

Prerequisite:

Personnel requiring capability to use the Multics
system=

This course presents the basic information needed
to use the Multics system, including discussions
and examples of: the typing conventions used for
Multics terminals; a Multics text editor;
commands used to write, compile and execute
programs; utility command which provide of the
user environment, manipulation of files, and
inter-user communication; and the types of errors
which can occur, with procedures for. recovery. A
general overview of Mul tics hardware and sof~.V',:H'·e
facilities is also presented.

Interactive workshops are included to reinforce
the material presented.

Upon compl~tion of this course, the student should
be able to:

1. Login to and logout from the Multics system.

2. Create and edit files in the storage system
with the qedx text editor.

~ r--

3. Compile, run, and debug simple pr6grams, and
manipulate the run-time environment.

4. Use other system commands to manipUlate files,
tailor the user environment, and communicate
with other users.

Programming Logic and Flowcharting (G024) or
previous data processing experience.

i F01

F 0 1 TOP I C

DAY MORNING TOPICS

Welcome/Administration
- - - - - - - - - - - - - - - -

Multics Overview
1 - - - - - - - - - - - - - .. -

How to Access Multics -
- - - - - - - - - - - - - - -

Workshop 111

The Storage System
-

- - - - - - - - - - - - _. _. -
2 Storage System Commands -

- - - - - - - - - - - - - - - -
Workshop 113

~

Programming on Mul tics
3 -

- - - - .. - - - - - - - - - - -
Workshop #5

More Abbrev Processor
- - - - - - - - - - - - - - - -

Active Functions
4 - - - - - - - - - - - - - - -

More About Exec com's -- - - - - - - - - - - - - .. - -
Workshop 117

-
Additional Commands

5 -
- - - - - - - .. - - - - - - -

Workshop 119

ii

MAP

AFTERNOON TOPICS

qedx Basics
- - - - - - - - - - - - -

Workshop 112

- - - - - - - - - - - - -
More qedx

The Command Language
- - - - - - - - - - - - -

Exec com Basics -- - - - - - - - - - - - -
The Abbrev Processor

- - - - - - - - - - - - -

Workshop 114

Access Control
- - - - - - - - - - - - -

User Communication
- - - - - - - - - - - - -

Input/Output Facilities
- - - - - - - - - - - - -

Workshop 116

Absentee Usage
- - - - - - - - - - - - -

Software Conventions

- - - - - - - - - - - - -

Workshop 118

Software Overview
- - - - - - - - - - - - -

Hardware Overview

- - - - - - - - - - - - -
Questions

-

-

-

-
-

-
-
.-

-

-

-

-

F f"I1
VI

CONTENTS

Page

Topic I Multics Overview . · · · · · 1-1
Some Basic Terminology · 1-1
Development History · · · · · 1-5
Multics Design Goals and Results · 1-9
Administration · · · · · · · · 1-15

Topic II How to Access Mul tic s · · · · 2-1
Remote Terminal Access · · · · · · · 2-1
User Registration and Identification 2-2
Characteristics of Terminals · · 2-4
Access Sequence · · · · · · 2-5
login and logout Commands 2-6
Typing Conventions · · · · · 2-9
Some Simple Commands · · · · · · · · · 2-11

Topic III qedx Basics · · · · · · · · 3-1
What is qedx · · · · · · · · · · · · 3-1
qedx Concepts · · · 3-2
Basic qedx Requests · · · · · · · 3-5
Basic qedx Examples · · · · · 3-8

Topic IV More qedx . · · · · · · · · · 4-1
qedx Terminology · · · · · · · · · · 4-1
Special Symbols 4-2
Examples · · · · · · · · 4-6
Addressing · · · · · · · · 4-7
Additional Buffers · 4-9
Areas for Additional Study · 4-10

Topic V The Storage System · · · · · · · 5-1
Segments · · · · · · · · · · · 5-2
Directories · · · · 5-6
Storage System Control · · · · 5-8
Storage System Hiera.rchy · · · · 5-10
Pathname Conventions · · · · · 5-13

Topic VI Storage System Commands · · · · 6-1
Directory Manipulation Commands 6-1
Segment Manipulation Commands · · · 6-3
Storage System Examples · · · · · · · · · 6-14

iii F01

Topic VII

Topic VIII

Topic IX

Topic X

Topic XI

Topic XII

Topic XIII

Topic XIV

CONTENTS (cont)

Page

The Command Language 7-1
7-1
7-4
7-6
7-7
7-10

What is a Command
Command Arguments
Common Control Arguments
Star Convention
Subsystems

Exec com Basics

The

What is an Exec com
Exec com MechanIsm.
Start_up Exec_corns

Abbrev Processor . .
What is the Abbrev Processor .
Abbrev Mechanism .
Abbrev Requests
Abbrev Examples

P1'"I"\t:r1'"~mm;""t'T ("I"" .J",'''';".~
6 6 "I:) I "'"111'", "'1:) V II ,". \01 ... " ... ~ ..;I

What is Programming
Developing a Source Program
Compiling a Source Program .
Entrynam~s and Entry Point Names . .
Executing an Object Program
Debugging Tools . . .
Dynamic Searching

Access Control

8-1
8-1
8-2
8-4

9-1
9-1
9-2
9-4
9-~

1 r. 1
I u- I

· . 10-1
10-4

· . 10-7
· 10··11
· 10-13
· 10-18

· . 10 21

· . 11-1
11-1

· 11-2
What is Access Control
Access Control List (ACL) .
Access Manipulation Commands .
Default and Initial ACL Entries

· 11-9
..••. 11-11

Access Examples

User Communication
Message Facility .
Mail Facility
Memo Facility

Multics Input/Output Facilities
Multics Input/Output
System Input/Output Modules
Input/Output Switches
Input/Output Commands
Examples

· . 11-13

· 12-1
· . 12-1

· 12-4
· 12-6

13-1
· 13-1

13-2
· 13-4

13-10
13-15

More About the Abbrev Processor
The do Command
Areas for Additional Study .

• • • • 1 4 1
· 14-1
· 14··5

iv FOi

Topic xv

Topic XVI

Topic XVII

CONTENTS (cont)

Active Functions e e

What is an Active Function 0 • ~ • •

Active Function Mechanism •..
Active Function Examples ..
Areas for Additional Study

Page

· . . 15-1
· 15-1

· · · 15-3
· . . 15-4
· . . 15 7

More About Exec com's .•.
Review . . :

· 16-1
. . . . 16-1

Argument Substitution ..•.
Control Statements
Exec com Examples . . •
Areas for Additional Study .

· · · . 16-3
16-4

· 16··10
. . 16-13

Absentee Usage · 17-1
· . . 17 - 1

1 Y --7
What is Absentee Usage . . .
Absentee Commands
Areas for Additional Study · 17-9

Topic XVIII Software Conventions• 18-1
Command Language Special Symbols 18-1
Segment Name Suffixes 18-7
Suffix Convention 18-9
Canonical Form. 18-10
set_tty Command •.. . .. 18-12

Topic XIX Additional Commands 19-1
Access to the System 19-1
Storage System, Segment Contents . " .. 19-5
Storage System, Manipulation. . 19-10
Formatted Output Facilities" 19-13
Performance Monitoring 19-14
Debugging 19-15
Command Level Environment 19-16
Accounting 19-18
Absentee Computations 19-19
Miscellaneous Tools 19-21

Topic XX Software Overview 20-1

Topic XXI

The Operating System 20-1
System Security 20-2
Ring Mechanism 20-8
System Daemons 20-9
System Libraries and Directories. . 20-11
Application Packages 20-16

Hardware Overview
Hardware Description . . . • .
System Requirements
Configuration Limits & Records .

v

. . 21-1
· 21-1
· 21-3

. 21-5

F01

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix W

CONTENTS (cont)

Multics Documentation
Multics Programmers' Manual (MPM)
Multics Pocket Guides
Multics Administrators' Manuals (MAM)
Program Logic Manuals (PLM)
Other Multics Manuals
help Manuals

Page

A-1
A-1
A-2
A-3
A-4
A-5
A-7

Multics Technical Briefs B-1
Level 68/Distributed Processing System 8-1
Distributed Processing System: Multics

Overview 8-1
Multics Virtual Memory and Storage

System 8-1
Administration and Operating Features 8-1
Interactive Programming Environment B-1
Controlled Sharing and Security B-1
Multics PL/I B-1
U .. 1; ,...... "DT
'"' U .1. " .1. "",;:) nIL.. • • • • • • •

n 1
D-I

Multics Data Base Manager B-1
LINUS 8-1
Word Processing System WORDPRO . B-1
Multics Graphics System 8~1
Multics Electronic Mail Facility 8-1

Articles of Interest C-1
Multics: The First Seven Years C-1
Highlights of the Multics System ... C-l

Multics Courses

Commands/Manuals Cross-reference ..
Commands/Manuals Cross-reference .

Error Messages . . .

D-1

E-1
E-1

F-1

TYMNET Data Communications Network G-1
The TYMNET Network G-1
TYMNET Telephone Numbers G-6

Abbrev Examples
Abbrev Examples

Workshops
Workshop
Workshop
Workshop
Workshop
Workshop
Workshop
Workshop

One
Two
Three .
Four .. .
Five .. .
Six .
Seven .

vi

H-l
H-1

W-l
. . W-1

W-4
W-7
W-l0

. . . . W-13
W-18

• • • • W -21

F01

CONTENTS (cont)

Workshop Eight .
Workshop Nine

vii

Page

W-24
W-28

F01

This page has intentionally
been left blank.

viii F01

STUDENT BACKGROUND

Multics Concepts and Utilization (F01)

NAME: ________________________________ ~PHONE: __________________ __

TITLE: __ _

COMPANY ADDRESS: __ __

MANAGER: ____________________________ ~OFFICE PHONE: ____________ _

INSTRUCTOR'S NAME: ~IIY

1. Do you meet the prerequisite as stated in the "Course Description"
of the student text? If yes, check "a" or "b".
If no, check "c" or "d".

a [] Prerequisite satisfied by attending course indicated in
"Course Description".

b [] Meet prerequisite by equivalent experience (explain briefly)

c [] Elected or instructed to attend course anyway.

d [] Was not aware of prerequisite.

2. What related Honeywell courses have you attended? Furnish dates
and instructors if possible.

(PLEASE TURN OVER)

ix F01

STUDENT BACKGROUND

3. Check the boxes for which you have ~ related experience. (May
be other than Honeywell's)

[] PL1

[] JCL

[] COBOL

[] OPERATIONS

[] OTHER COMPUTER RELATED

[] FORTRAN

[] GCOS

4. Detail any Multics experience you have had:

[] ASSEMBLY

[] MULTICS

5. Objectives for attending this course (May check more than one).

[] Require information to provide support for a Multics system

[] To lJIaintain an awareness of this product

[] To evaluate or compare its potentials

[] Required to use or implement

[] Need update from a previous release

[] Require a refresher

[] Other:

x F01

TOPIC I

MULTICS OVERVIEW

Some Basic Terminology •
Development History
Multics Design Goals and Results ...
Administration •.•.•.• . . .

1-i

.

Page

1-1
1-5
1-9
1-15

F01

This page has intentionally

been left blank.

1-11 F01

SOME BASIC t£RMINOLOGY

• HARDWARE

n REFERS TO THE PHYSICAL COMPONENTS OF A COMPUTER; ESPECIALLY TO
THE ELECTRONIC CIRCUITRY

n MAJOR COMPONENTS: CENTRAL PROCESSOR UNIT (CPU), MAIN MEMORY,
DISK DRIVES, TAPE UNITS, PRINTER, CARD READER, CARD PUNCH

• SOFTWARE

n REFERS TO THE PROGRAMS, PROCEDURE, CODE, OR INSTRUCTIONS THAT
EXECUTE ON THE HARDWARE

n EXAMPLES: A FORTRAN PROGRAM, THE PL/I COMPILER, THE DATA BASE
MANAGER, THE OPERATING SYStEM

1· 1 F01

SOME BASIC TERMINOLOGY

• SYSTEM RESOURCES

n CENTRAL PROCESSOR / CPU (TIME OCCUPIED)

o . MAIN MEMORY / PRIMARY MEMORY / CORE (AMOUNT OCCUPIED * TIME
OCCUPIED)

D PERIPHERAL DEVICES

o DISK DRIVES (AMOUNT OF DATA TRANSFERRED)

n TAPE DRIVES (AMOUNT OF DATA TRANSFERRED)

n CARD PUNCH (AMOUNT OF DATA PUNCHED)

D PRINTER (AMOUNT OF DATA PRINTED)

n TERMINALS (CONNECT TIME & A~OUNT OF DATA TRANSFERRED)

D MEDIA

n DISK PACKS / SECONDARY MEMORY (AMOUNT OF DATA STORED)

o TAPES (NUMBER USED)

n CARDS (NUMBER PUNCHED)

n PRINTER PAPER (AMOUNT USED)

n SYSTEM AND SITE PROVIDED SOFTWARE (RENTAL)

1-2 F01

. SOME BASIC TERMINOLOGY

• BIT

n THE MOST FUNDAMENTAL UNIT OF INFORMATION

n A BIT IS EITHER ON OR OFF (1 OR 0)

• BYTE

II A SMALL UNIT FOR MEASURING THE AMOUNT OF MEMORY, THE SIZE OF A
PROGRAM OR FILE, OR THE SPACE ON A TAPE OR DISK PACK

D ON MOST LARGE SCALE HONEYWELL EQUIPMENT, A BYTE EQUALS 9 BITS

D ON MULTICS, ONE ASCII CHARACTER OCCUPIES ONE BYTE
...----

• WORD

n A LARGER UNIT FOR MEASURING THE AMOUNT OF MEMORY, THE SIZE OF A
PROGRAM OR FILE, OR THE SPACE ON A TAPE OR DISK PACK

n ON MOST LARGE SCALE HONEYWELL EQUIPMENT, A WORD EQUALS 4 BYTES
OR 36 BITS

1-3 F01

SOME BASIC TERMINOLOGY

• USER

n ONE WHO USES THE COMPUTER FACILITY
•

• PROJECT

D A SET OF USERS GROUPED TOGETHER FOR ACCOUNTING AND AC~GSS
PURPOSES

D A PROJECT IS OFTEN A GROUP OF USERS WORKING TOWARDS A COMMON
GOAL .

n USERS ON A PROJECT OFTEN ·WORK FOR THE SAME DEPARTMENT OR UNIT

1-4 F01

DEVELOPMENT HISTORY

• MULTICS

n MULTIPLEXED INFORMATION AND fOMPUTING §.ERVICE

• 1960-1963: crss DEVELOPMENT

n FIRST LARGE-SCALE TIME-SHARING SYSTEM

n EXPERIENCED GAINED WAS USED LATER IN THE MULTICS PROJECT

n eTSS WAS USED TO DEVELOP MULTlCS SOFTWARE

• 1964: INITIAL SPECIFICATIONS FOR MULTICS

1-5 F01

bEVELOPMENT HISTORY

• 1964-1965: INITIAL MULTICS DEVELOPMENT WAS A JOINT EFFORT BY:

n MASSACHUSETTS INSTITUTE OF TECHNOLOGY (PROJECT MAC)

n OVERALL PROJECT CO-ORDINATION

o OPERATING SYSTEM

n SELECTION AND DESIGN MODIFICATIONS OF THE HARDWARE (GE 63~:

o BELL TELEPHONE LABORATORIES

n COMPILERS AND ASSEMBLER

o FILE SYSTEM

n GENERAL ELECTRIC COMPUTER DIVISION (HONEYWELL)

o HARDWARE MODIFICATION

• 1965: FALL JOINT COMPUTER CONFERENCE

n PRIMARY TECHNICAL PAPERS PRESENTED

1-6 F01

DEVELOPMENT HISTORY

• 1961: GE 645 HARDWARE AVAILABLE (MODIFIED GE 635)

• 1961: SOFTWARE DEVELOPMENT UNDERWAY

• 1968: AVAILABLE TO SYSTEM PROGRAMMERS

• 1969: AVAILABLE FOR USE AT MIT

• 1911: PROJECT MAC FUNDING STOPPED. HIS ADOPTS.

• 1972: 6180 HARDWARE AVAILABLE

n BULK STORE REPLACED DRUM

n EXTENDED INSTRUCTION SET (EIS)

o RING MECHANISM MOVED TO HARDWARE

1-7 F01

DEVELOPMENT HISTORY

• 1973: ANNOUNCED AS A "STANDARD" HIS PRODUCT

• 1974: LEVEL 68 HARDWARE

n 68/60 MOS MEMORY

n 68/80 MOS MEMORY AND CACHE STORE

• 1915: COBOL-14

• 1975: SORT/MERGE

• 1976: MULTICS DATA BASE MANAGER (MDBM)

• 1911: WORD PROCESSING SYSTEM (WORDPRO)

1-8 F01

MULTles DESIGN GOALS AND RESULTS

• REMOTE TERMINAL ACCESS AS NORMAL USAGE MODE

n ALL SYSTEM RESOURCES AVAILABLE VIA TERMINALS

n USAGE OF CARDS IS MINIMAL

n INTERACTIVE AND BATCH ENVIRONMENTS ARE COMPATIBLE

n INTER-USER COMMUNICATION

• CONTINUOUS/UTILITY GRADE OPERATION

n EXTREMELY STABLE OPERATING SYSTEM

BMODULAR DESIGN

n WRITTEN IN PL/I

n ON LINE METERING, ACCOUNTING, BILLING AND SOFTWA~E INSTALLATION

n OPERATORS REQUIRED: ONE

n UNATTENDED OPERATION MODE

1-9 F01

MULTICS DESIGN GOALS AND RESULTS

• ABILITY TO GROW AND CONTRACT WITHOUT SYStEM OR USER REORGANIZATION

o SYSTEM SIZE - TRANSPARENT TO USERS, PROGRAMS, AND OPERATING
SYSTEM

o CHANGES TO SYSTEM SIZE ARE MADE WITHOUT REGENERATING THE
OPERATING SYSTEM OR USER PROGRAMS

o DYNAMIC RECONFIGURATION - TRANSPARENT TO USERS AND PROGRAr~~

• DECENTRALIZATION OF THE SYSTEM'S ADMINISTRATION'

D HIERARCHY OF ADMINISTRATORS:

n THE SYSTEM ADMINISTRATOR

o PROJECT ADMINISTRATORS

n USERS

1-10 F01

MULTICS DESIGN GOALS AND RESULTS

• DECENTRALIZATION OF THE SYSTEM'S LOGICAL FILE SPACE

n HIERARCHY OF DIRECTORIES:

B ROOT DIRECTORY

o SYSTEM DIRECTORIES

n PROJECT DIRECTORIES

n USER DIRECTORIES

• RELIABLE FILE SYSTEM

II INCREMENTAL BACKUP SYSTEM (Backup SysDaemon)

n AUTOMATED,RETRIEVAL

n SALVAGE SUBSYSTEM

1-11 F01

MULTlCS DESIGN GOALS AND RESULTS

• ACCESS CONTROLS THAT ALLOW SELECTIVE SHARING OF INFORMATION AND
SERVICES

n MULTICS IS THE MOST SECURE COMMERCIAL OPERATING SYSTEM
AVAILABLE

o USER AUTHENTICATION (BY PASSWORD)

o ~CCESS fONTROL hIST - ACL (BY NAME AND PROJECT)

n
KNOW)

n RING STRUCTURE (8 LEVEL MASTER/SLAVE HIERARCHY)

• SERVES BOTH LARGE AND SMALL USERS EFFICIENTLY

n RESOURCES ARE AUTOMATICALLY ALLOCATED ON DEMAND - WHEN NEEDED,
AND IN PROPORTION TO THE SIZE OF THE TASK

1-12 F01

MULilCS DESIGN GOALS AND RESULTS

• COMBINE SYSTEM FLEXIBILITY WITH EASE OF USE

n VIRTUAL MEMORY

DONLY ONE STORAGE SYSTEM FOR BOTH USERS AND OPERATING SYSTEM

n ASCII CHARACTER SET USED THROUGHOUT

n INTERACTIVE AND BATCH ENVIRONMENTS ARE COMPATIBLE

n EXEMPLARY COMMAND LANGUAGE (NO JCL!)

D COMMAND NAMES

n FULL NAME (DESCRIPTIVE)

n SHORT NAME (CONVENIENT)

n CONTROL ARGUMENTS WITH INTELLIGENT DEFAULTS

n ACTIVE FUNCTIONS

n STAR AND EQUAL CONVENTION

n COMMAND ITERATION

n ABBREV PROCESSOR

D EXEC COMS (COMMAND FILES)

1-13 F01

MULTICS DESIGN GOALS AND RESULTS

• DIFFERENT ENVIRONMENTS AND HUMAN INTERFACES WITHIN A SINGLE SYSTEM

D STANDARD SERVICE (FULL MULTICS)

o SUBSYSTEM (E.G. FAST, BASIC, APL)

D LIMITED SERVICE

n TAILORED ENVIRONMENT

• EVOLUTIONARY DESIGN ABLE TO INCORPORATE TECHNOLOGICAL IMPROVEMENTS
AND TO MEET GROWING USER EXPECTATIONS

D MODULAR DESIGN

D GENERAL (NOT SPECIFIC) SOLUTIONS

n COMPATIBLE EXPANSIONS

1-14 F01

ADMINISTRATION

• THE EFFECTIVE ADMINISTRATION OF A LARGE COMPUTER INSTALLATION CAN
BE A DIFFICULT JOB

• FOR MULTICS, A HIERARCHY OF ADMINISTRATORS HAS BEEN DEFINED IN
ORDER TO:

n DECENTRALIZE CONTROL OF SYSTEM RESOURCES BY DISTRIBUTING
AUTHORITY AND RESPONSIBILITY TO LOWER LEVELS

• THE MULTICS ADMINISTRATION HIERARCHY CONSIST OF THREE LEVELS:

n SYSTEM ADMINISTRATOR(1)

o PHYSICAL, ADMINISTRATIVE AND FINANCIAL CONCERNS OF THE
SYSTEM

n PROJECT ADMINISTRATOR(2)

n ADMINISTRATIVE AND FINANCIAL CONCERNS OF THE PROJECT

n USER

n CONTROL AND USAGE OF RESOURCES ALLOCATED TO HIM/HER

(1) Related Multics Course: System Administration (F60)

(2) Related Mult1cs Course: Project Administration (F61)

1-15 F01

USER
May

ProjA PROJECT
ADMINISTRATOR

USER
Kerr

USER
Abel

ADMINISTRATION

I
SYSTEM

ADMINISTRATOR

1-16

USER
S 01

F01 PROJECT
ADMINISTRATOR

USER
S 02

F01

ADMINISTRATION

• THE SYSTEM ADMINISTRATOR

n ESTABLISHES SYSTEM CONFIGURATION AND OPERATING PARAMETERS
(METERING AND TUNING)

o DEFINES, CREATES, AND ALLOCATES RESOURCES TO THE SYSTEM
PROJECTS

n ADMINISTERS THE SYSTEM'S SECURITY NEEDS

n REGISTERS USERS AND ASSIGNS INITIAL (AND NEW) PASSWORDS

n MAINTAINS RECORDS OF SYSTEM USAGE

n SETS RESOURCE USAGE PRICES AND DETERMINES BILLING CYCLE

n GENERATES STATEMENT OF CHARGES TO RECOVER THE COST OF SYSTEM
RESOURCES USED

n PERFORMS ALL OF THE ABOVE TASKS FROM A TERMINAL AND WITHOUT
INTERRUPTION OF SERVICE

1-17 F01

ADMINISTRATION

• THE PROJECT ADMINISTRATOR

n DISTRIBUTES RESOURCES AND ATTRIBUTES ALLOCATED TO PROJECT

o HAS ACCESS TO THE PROJECT'S RESOURCE USAGE AND ACCOUNTING DATA

D ADDS AND DELETES REGISTERED (AND ANONYMOUS) USERS TO PROJECT

n DEFINES THE ENVIRONMENT AND SETS RESOURCE LIMITS FOR USERS

o SETS ACCESS ON USERS' HOME DIRECTORY

• THE USER

n HAS CONTROL OVER RESOURCES ALLOCATED TO HIM

n HAS ACCESS TO HIS OWN RESOURCE USAGE AND ACCOUNTING DATA

n MAY SELECTIVELY SHARE HIS PROGRAMS AND DATA WITH OTHER USERS

n MAY CHANGE HIS PASSWORD

1-18 FOi

TOPIC II

HOW TO ACCESS MULTICS

Remote Terminal Access • . 0 • • • • •

User Registration and Identification
Characteristics of Terminals . . .
Access Sequence • • • . .
login and logout Commands • .
Typing Conventions . . • •
Some Simple Commands . . • •

..

Page

2-1
2-2
2-4
2-5
2-6
2-9
2-11

F01

This page has intentionally

been left blank.

2-1i F01

REMOTE TERMINAL ACCESS

• REMOTE TERMINAL ACCESS IS THE NORMAL MODE OF ACCESS

• ALL SYSTEM RESOURCES ARE ACCESSIBLE VIA REMOTE TERMINAL

• USES STANDARD TELEPHONE LINES

• "LOGGING IN" REFERS TO THE PROCESS OF:

n TELEPHONING THE MULTICS SYSTEM

II CONNECTING THE TELEPHONE TO THE TERMINAL

n WAITING FOR MULTles TO SEND YOU A GREETING

n IDENTIFYING YOURSELF TO THE SYSTEM

2-1 F01

USER REGISTRATION AND IDENTIFICATION

• NEW USERS ARE REGISTERED BY THE SITE SYSTEM ADMINISTRATOR

• ADMINISTRATOR
PASSWORD

ASSIGNS A

Person id's

TSmith
Greenberg
Student 04

Project id's

ProjA
ProjA
F01

Person id, AND

PASSWORD'S

ts
$$$!
atlanta

• A USER MAY BELONG TO MORE THAN ONE PROJECT - HOWEVER, ONE PROJECT
IS ALWAYS DESIGNATED AS THE USER'S "DEFAULT PROJECT"

• THE USER'S PASSWORD IS ASSOCIATED WITH HIS Person id ONLY

• User id

D REFERS TO THE Person_id.Project_id PAIR

TSmith.ProjA

SWebber.Doc 66

2-2 F01

USER REGISTRATION AND IDENTIFICATION

• THE USER'S PASSWORD IS REQUIRED IN ORDER TO AUTHENTICATE THE USE
OF THE USER'S Person id

• THE USER'S Person id AND Project id ARE THE KEYS THAT DETERMINE
WHAT INFORMATION IND SERVICES H! IS AUTHORIZED TO ACCESS AND
CONTROL

Password

AUTHORIZES
USE OF .

AUTHORIZES
USE OF

DESIGNATED FILES
AND SERVICES

2-3 F01

CHARACTERISTICS OF TERMINALS

• TERMINALS BEHAVE LIKE ELECTRIC TYPEWRITERS

• MANY HAVE SEPARATE "CARRIAGE RETURN" AND "LINE FEED" KEYS

• CONCEPTUALLY, THE "LINE FEED" KEY SENDS THE TYPED LINE

T~QMTMAT ~UTTrU~~ •
......... 11 " ·4I.t ..,,&1&......,.

DUPLEX:
CASE:
PARITY:

CI!.tt..
HAL~
LOWER
EVEN

• TERMINAL TO COMPUTER COUPLINGS:

MODE:
RATE:

LINE
30

n HARDWIRED (A PERMANENT WIRE CONNECTS TERMINAL TO COMPUTER)

o TELEPHONE-MODEM (TELEPHONE LINE CONNECTS TERMINAL TO COMPUTER)

n ACOUSTIC (PROXIMITY)

n DIRECT (PUSH A BUTTON)

2-4 F01

ACCESS SEQUENCE

• PLUG-IN AND TURN ON THE TERMINAL

• SET THE TERMINAL SWITCHES

• IF HARDWIRED TERMINAL

n IDENTIFY YOURSELF VIA THE login COMMAND

• IF TELEPHONE-MODEM TERMINAL

i

n DIAL THE APPROPRIATE NUMBER AND ~AIT FOR HIGH-PITCHED TONE

n CONNECT THE PHONE TO THE COUPLER DEVICE

n WAIT FOR MULTICS TO RESPOND WITH A MESSAGE SIMILAR TO:

Multics MR6.0: Honeywell LISD Phoenix, System M
Load = 51.0 out of 95.0 units: users = 51

9
n IDENTIFY YOURSELF VIA T

2-5 F01

LOGIN AND LOGOUT COMMANDS

• login, 1

D A COMMAND USED TO GAIN ACCESS TO MULTICS

n INITIATES A PROGRAM CALLED THE USER'S PROCESS

n USAGE: login Person_id {Project_id}

1 TSmith
1 TSmith FED
1 Student 07 F01

IF A Project id IS NOT SPECIFIED THE USER'S DEFAULT Project_id
IS ASSUMED -

n RESULTS: THE USER WILL BE ASKED TO SUPPLY THE PASSWORD
ASSOCIATED WITH HIS Person id

o A PASSWORD MASK WILL BE GENERATED -OR- PRINTING OF THE
PASSWORD WILL BE INHIBITED

o SUPPLYING THE CORRECT PASSWORD COMPLETES THE USER'S LOG IN
SEQUENCE

n THE Project id USED AT LOG IN DETERMINES WHO RECEIVES THE BILL
FOR THE CURRENT TERMINAL SESSION

n THE Person id AND Project id USED AT LOG IN DETERMINES WHERE IN
THE MULTIC~ VIRTUAL MEMORY THE USER "FINDS" HIMSELF

2-6 FOi

LOGIN AND LOGOUT COMMAHDS ----------

(DIAL TELEPHONE NUMBER>
<CONNECT TERMINAL/TELEPHONE>

1)/ <WAIT FOR LOGIN HERALD)

~~(~ .

W
OJi+ Hulties HR6.0: Honeywell LISD Phoenix, System M
d-.~~ Load = 51.0 out of 95.0 units: users = 51

," 1 TSmi th

! ! 1II11111111I (
' ., Password

\ J TSmith ProjA logged in 06/28/77 1553.2 mst Tue from terminal "243".
'v' Last login 06/28/77 1425.8 mst Tue from terminal "013"

A new PL/1 compiler was installed; type help new_pI1.
Type help sked for hours of operation FW31.
r 1553.5 1.314 1.332 30

• READY MESSAGE

8 A MESSAGE THAT IS PRINTED EACH TIME THE USER IS AT "COMMAND
LEVEL"

D THE READY MESSAGE REPORTS

o THE TIME OF DAY

o THE NUMBER OF CPU SECONDS USED SINCE THE LAST READY MESSAGE

o THE NUMBER OF MEMORY UNITS USED SINCE THE LAST READY MESSAGE

D THE NUMBER OF PAGES (1024 WORDS) BROUGHT INTO MEMORY FOR THE
USER SINCE THE LAST READY MESSAGE

2-7 F01

LOGIN AND LOGOUT COMMANDS ---- --- ----- -------

• logout

o INFORMS MULTICS THAT THE USER IS THROUGH WITH THE CURRENT
TERMINAL SESSION

D USAGE: logout

o RESULTS: THE USER WILL BE DISCONNECTED FROM MULTICS

logout
TSmith ProjA logged out 06/28/77 1749.4 mst Tue
CPU usage 17 sec, memory usage 103.1 units
hangup

o DESTROYS THE USER'S CURRENT PROCESS AND CREATES A NEW ONE

o EFFECTIVELY THE SAME AS LOGGING OUT AND LOGGING IN AGAIN

o OFTEN USED "WHEN ALL ELSE FAILS" OR TO RESET THE USER'S
ENVIRONMENT

o USAGE: new_proc

2-8 F01

TYPING CONVENTIONS

• n (NUMBER SIGN)

n USED TO "ERASE" THE PREVIOUS CHARACTER

login TSMlmith

login TSMithl###mith

logen"in TSmellth

logim Tllln TSmith

NOTE: WHITE SPACE IS COUNTED AS ONE CHARACTER WHEN USING. THE
ERASE CHARACTER

• @ (AT SIGN)

n USED TO "KILL" THE CURRENT LINE

login TSMith@login TSmith

logen@login TSme#ith

logenlHim#n TsmHISme@login TSmith

2-9 F01

TYPING CONVENTIONS

• \ (BACKSLASH)

n THE CHARACTER \ IS A FRONT-END PROCESSOR ESCAPE SEQUENCE THAT
CAUSES CERTAIN CHARACTER THAT FOLLOWS TO BE INTERPRETED AS A
LITERAL

o OFTEN USED TO SUPPRESS (ESCAPE) THE SPECIAL MEANING OF I, @,
linefeed AND OTHER SPECIAL CHARACTERS

sm TSmith.ProjA I need a \18 tin can.

sm TSmith.ProjA He's selling 3 \@ $4.50 each.

• COMMAND LINE FLOW

TYPED LINE (AT THE TERMINAL)

!
FRONT-END PROCESSOR (n AND @ EDITING AND LINE DISCIPLINE)

!
COMMAND PROCESSOR (INTERPRETS THE TYPED LINE)

!
EXECUTION

2-10 F01

. SOME SIMPLE COMMANDS

• who

n LISTS THE NAMES AND PROJECTS OF ALL USERS CURRENTLY LOGGED IN

n ·USAGE: who {args} {-control_args}

who ~'

*~~~ who -name ~ -~ who -long

who TSmith

who .ProjA

who May .F01 .ProjA

o TELLS HOW MANY USERS ARE CURRENTLY LOGG£D IN

D USAGE: how_Many_users {args} {-control_args}

hmu

hmu -long

hmu TSmith

hmu .ProjA

hmu May .F01 .ProjA

2-11

~P~

F01

SOME SIMPLE COMMANDS

• help (YA WANT IT, WE GOT IT)

D PROVIDES INFORMATION ABOUT THE MULTICS SYSTEM AND ITS COMMANDS

n USAGE: help {name}

help who

help sked

help help

n ANSWER: yes, nQ; rest; skip, section str, search sA s8

• list, Is (ROLL CALL)

B RETURNS INFORMATION ABOUT THE USERS SEGMENTS (FILES)

n USAGE: list

Is

2-12 F01

SOME S!MPLE COMMANDS

• acceot messages, am (I'M LISTENING) . -

n ENABLES THE USER TO RECEIVE MESSAGES AT HIS TERMINAL

n OTHERWISE, MESSAGES WILL GO TO THE USER'S MAILBOX (A SEGMENT
HAVING THE NAME Person_id.mbx)

D CREATES A PERMANENT MAILBOX FOR THE USER IF NONE EXISTS

I USAGE: accept_messages

am

• send_message, sm

n SENDS MESSAGES TO A GIVEN USER ON A GIVEN PROJECT

B MESSAGES ARE EITHER:

n PRINTED ON THE RECIPIENT'S TERMINAL, OR

n PLACED IN THE RECIPIENT'S MAILBOX

n USAGE: send_message Person_id.Project_id message

sm TSmith.ProjA When are you going to lunch?

sm Greenberg.FED May I have access to your file?

2-13 F01

SOME SIMPLE COMMANDS

• print_messages, pm

o PRINTS ALL MESSAGES STORED IN THE USER'S MAILBOX

o MESSAGES ARE DELETED FROM THE MAILBOX WHEN PRINT~D

o USAGE: print_messages

pm

• defer_messages, dm (I'M BUSY ... NO DISTRACTIONS WANTED)

o REDIRECTS ANY AND ALL INCOMING MESSAGES TO THE USER'S MAILBOX

D ELIMINATES UNWANTED INTERRUPTIONS

D THIS IS THE DEFAULT UPON LOGIN

n "UNDONE" BY THE accept_message COMMAND

n USAGE: defer_messages

dm

2-14 FOi

SOME SIMPLE COMMANDS

YOU ARE NOW READY FOR WORKSHOP
111

2-15 F01

This page has intentionally

been left blank.

2-i6 F01

What is qedx • • .
qedx Concepts • • . • •
Basic qedx Requests •
Basic qedx Examples •

TOPIC III

QEDX BASICS

.
.

·3-1

Page

3-1
3-2
3-5
3-8

F01

This page has intentionally

been left blank.

3-i1 F01

WHAT IS QEDX ...-.-....

• qedx, qx

D ONE OF SEVERAL TEXT EDITORS AVAILABLE ON MULTlCS USED TO

o MODIFY THE CONTENTS OF EXISTING ASCII SEGMENTS

n CREATE {INPUT) THE CONTENTS OF DESIRED ASCII SEGMENTS

n A SUBSYSTEM WHICH CAN ONLY BE ENTERED BY COMMAND, AND EXIT~D BY
REQUEST

COMMAND LINE FLOW

TYPED LINE

1
FRONT-END PROCESSOR

qedx SU!SYSTEM

EXEC!TION

3-1 F01

QEDX CONCEPTS

• USER INVOKES THE EDITOR BY TYPING qedx OR qx

• THERE ARE TWO PRINCIPAL MODES OF OPERATION WITHIN qedx

D EDIT MODE

n THE INITIAL (DEFAULT) MODE WHEN ENTERING qedx

n THE USER READS THE CONTENTS OF AN EXISTING SEGMENT INTO A
BUFFER (A SCRATCH PAD)

n THE USER THEN PERFORMS EDITING FUNCTIONS ON THE CONTENTS OF
THE BUFFER BY TYPING EDIT REQUESTS:

n LOCATING

n SUBSTITUTING

o DELETING

o PRINTING

n THE USER THEN WRITES (SAVES) THE EDITED VERSION OF THE
SEGMENT BACK TO THE SAME (OR A NEW) SEGMENT

n INPUT MODE

n THE USER ENTERS THE INPUT MODE (FROM THE EDIT MODE) BY
TYPING ONE OF THREE INPUT REQUESTS

n ALL SUBSEQUENT TEXT FROM THE TERMINAL (EXCEPT ESCAPE
SEQUENCES) IS APPENDED TO THE USER'S BUFFER (A SCRATCH PAD)

n "\fft IS AN ESCAPE SEQUENCE THAT RETURNS THE USER TO THE EDI1
MODE

3-2 F01

QEDX CONCEPTS

• ALL LINES IN A qedx BUFFER ARE GIVEN IMAGINARY LINE NUMBERS
STARTING WITH 1 (ONE)

• THERE EXISTS A CONCEPTUAL POINTER TO IND~CATE THE "CURRENT LINE"

• qedx REQUESTS MAY DO ONE OR MORE OF THE FOLLOWING

o MOVE THE CONCEPTUAL POINTER

n PERFORM OPERATIONS ON THE CURRENT LINE

n PERFORMS OPERATIONS ON A SET OF LINES WITH 1 (ONE)

• ALL LINES CAN BE ADDRESSED BY SUPPLYING THEIR LINE NUMBER.
NO LINE NUMBER IMPLIES "CURRENT LINE"

P

5p

(PRINT CURRENT LINE)

(PRINT THE FIFTH LINE)

(DELETE LINES 3 THROUGH 9)

F01

QEDX CONCEPTS

• THE ADDITION AND DELETION OF LINES AFFECT THE IMAGINARY LINE
NUMBERS IMMEDIATELY

• AFTER EACH qedx REQUEST, THE "CURRENT LINE" GENERALLY BECOMES THE
LAST LINE ADDRESSED

• FOR CONVENIENCE, THE LAST LINE CAN ALSO BE ADDRESSED BY US !~r'l . HE
SYMBOL $ (DOLLAR SIGN)

3-4 F01

EDIT REQUESTS

r path

p

=

d

/xxx/

s/existing/new/

w path

e command line

q

BASIC QEDX REQUESTS

DESCRIPTION

READ: READ CONTENTS OF THE SEGMENT
SPECIFIED BY path AND APPEND AFTER THE
SPECIFIED LINE ($ ASSUMED)

PRINT: PRINT THE SPECIFIED LINE(S) ON THE
TERMINAL

LINE NUMBER: PR.INT LINE NUMBER OF SPECIFIED
LINE

DELETE: DELETE SPECIFIED LINE(S) FROM THE
BUFFER

LOCATE: LOCATE AND PRINT THE NEXT LINE
CONTAINING THE xxx CHARACTER STRING. WRAP
AROUND IF NECESSARY

SUBSTITUTE: SUBSTITUTE EVERY OCCURRENCE OF
THE EXISTING STRING WITH THE NEW CHARACTER
STRING IN SPECIFIED LINE(S)

WRITE: WRITE THE SPECIFIED LINE(S) OF THE
BUFFER INTO SEGMENT HAVING THE NAME path
(ENTIRE BUFFER IS THE DEFAULT)

EXECUTE: PASS THE REMAINDER OF THE REQUEST
LINE TO THE MULTICS COMMAND PROCESSOR FOR
EXECUTION

QUIT: EXIT FROM THE EDITOR

3-5 F01 .

INPUT REQUESTS

a

1

c

BASIC QEDX REQUESTS

DESCRIPTION

APPEND: ENTER INPUT MODE AND APPEND THE
LINE(S) TYPED AT THE TERMINAL AFTER THE
SPECIFIED LIN.E

INSERT: ENTER INPUT MODE AND INSERT THE
LINE(S) TYPED AT THE TERMINAL BEFORE THE
SPECIFIED LINE

CHANGE: ENTER INPUT MODE AND REPLACE THE
SPECIFIED LINE(S) WITH THE LINE(S) TYPEr AT
THE TERMINAL

3-6 FO'

BASIC QEDX REQUEStS

n qedx REQUEST MAY TAKE ONE OF THREE GENERAL FORMS:

n <request> - GENERALLY APPLIED TO THE CURRENT LINE

r temp.p11 ~PENDS TO END OF BUFFER):=:>

p

s/old/new/

d

w add.pl1 ~ITES THE ENTlaE ~~~

D ADR<request> - APPLIED TO THE LINE ADDRESSED

6r >udd>FED>Kerr>temp.pl1

5p

7s/old/new/

9d

3wadd.pl1

n ADR,ADR<request> - APPLIED TO THE RANGE OF LINES ADDRESSED

H

1 ,$p

5,15s/o1d/new/

9,12d

1,20w add .pl1

~~~ 

3-7 F01 



! 
! 
! 
r 
! 
! 

I 
! 
! 

BASIC QEDX EXAMPLES 

qedx 
a 
"Now is hte time 
for a1 good 
~ir county 
(\f) A 

'-/itPt# 

1 ,$p 
"Now is hte time 
for al good 
their county 
21' 
for al good 
slallalll 
$s/ty/try. "I 
p 
their country." 
w Henry.quote 

Igoodl 
for all good 
a 
men to come 
to hte aid of 
1 ,$p 
\f 

3-8 

-+ 

-+ 

RESULTING BUFFER 

"Now is hte time 
for al good 
their county 

RESULTING BUFFER 

"Now is hte time 
for all good 
their country." 

RESULTING BUFFER 

"Now is hte time 
for all good 
men to come 
to hte aid of 

-+ 1,$p 
their country." 

1 
2 
3 

1 
2 
3 

1 
2 
3 
4 
5 
6 

F01 



! 
! 
! 
! 

! 
! 
I 
! 
! 
! 
! 
! 
! 

BASIC QEDX £XAMPLES 

P 
1 ,$p 
d 
1,$s/hte/thel 
w Henry.quote 

1 , $d 
a 

\f 
-Patrick Henry 

Ir Henry.quote 
p 
their country." 
a 

\f 
1i 
FAMOUS QUOTE: 

\f 
w Henry.quote 

RESULTING BUFFER 

"Now is the time 
for all good 
men to come 
to the aid of -+ their country." 

RESULTING BUFFER 

RESULTING BUFFER 

FAMOUS QUOTE: 

-+ "Now is the time 
for all good 
men to come 
to the aid of 
·their country." 

-Patrick Henry 

YOU ARE NOW READY FOR WORKSHOP 
112 

3-9 F01 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 



This page has intentionally 

been left blank. 

3-10 F01 



TOPIC IV 

MORE QEDX 

qedx Terminology • • • . 
Special Symbols . • . . . • • . 
Examples .... . . • . • . . •. . 
Addressing • . . • •• • . • 
Additional Buffers ••.••. 
Areas for Add1t1onai Study 

4-i 

Page 

4-1 
4··~2 
4-6 
4-7 
4-9 
4-10 

F01 



This page has intentionally 

been left blank. 

4-11 F01 



QEDX TERM1NOLOGY 

• REGULAR EXPRESSION·_ 

n ANY NUMBER OF CHARACTERS (INCLUDING NONE) DELIMITED BY A RIGHT 
SLANT AND OBEYING A CERTAIN SYNTAX 

label la.el 

loldl lold.*$1 

Icalendarl I"ealendarl 

• SEARCH EXPRESSION: 

D A REGULAR EXPRESSION IMMEDIATELY FOLLOWING A qedx REQUEST. 
(label IN THESE EXAMPLES) 

s/abc/xyzl 

. 1,25s/abc/1 

labcl 

• REPLACE EXPRESSION: 

n THE SECOND CHARACTER STRING IN A SUBSTITUTE REQUEST. (/abcl IN 
THESE EXAMPLES) 

s/old/abe/ 

1,5s/o1d/abel 

4-1 F01 



SPECIAL SYMBOLS 

/ (RIGHT 

n DELIMITS A REGULAR EXPRESSION 

label 

/Acharacterl 

Iters.*$1 

C (PER~ 
AS PART OF AN ADDRESS IN A qedx REQUEST 

o ADDRESSES THE CURRENT LINE 

1 , • d 

AS A CHARAGTER IN A SEARCH EXPRESSION 

n MATCHES ANY CHARACTER 

la.c/ MATCHES: aac 

4-2 

abc 
azc 
a c 
... etc 

F01 



SPECIAL SYMBOLS 

~ERISK0 
n HAS SPECIAL MEANING ONLY IN A SEARCH EXPRESSION 

n MEANS ANY NUMBER (INCLUDING NONE) OF THE PRECEDING CHARACTER 
-"".- --

lablel 

/ a,o *c/ 

C~ 

MATCHES: ae 
abc 
abbe 
abbbe 
o • 0 etc 

MATCHES: ac 
axe 
axyzc 
o •• etc 

( US~2J AS PART OF AN ADDRESS IN A qedx REQUEST 

n ADDRESSES THE LAST LINE OF THE USER'S BUFFER 

1 ,$p 
$d 

~ AS THE LAST CHARACTER OF A SEARCH EXPRESSION 

n MATCHES THE END OF A LINE (I.E., THE IMAGINARY CHARACTER 
FOLLOWING THE LAST CHARACTER OF A LINE) 

/calendar$/ MATCHES: calendar 

IF "calendar" ENDS A LINE 

4-3 F01 



SPECIAL SYMBOLS 

'" (CIRCUMFLEX) 

o HAS SPECIAL MEANING ONLY AS THE FIRST CHARACTER OF A SEARCH 
EXPRESSION 

o MATCHES THE BEGINNING OF A LINE (I.E. AN IMAGINARY CHARACTER 
PRECEDING THE FIRST CHARACTER ON A LINE) 

/"'calendar/ MATCHES: calendar 

IF "calendar" BEGINS A LINE 

G & (AM~ 
o HAS SPECIAL MEANING ONLY IN THE ·REPLACE EXPRESSION OF A 

SUBSTITUTE REQUEST 

n EACH & IS REPLAtED BY THE STRING WHICH MATCHED THE REGULAR 
EXPRESSION IN THE SEARCH EXPRESSION 

s/camp/&lng/ SAME AS: s/camp/camping/ 

s/ j unk/ .,&" / SAME AS: s/junk/"junk"/ 

s/ab/&&&/ SAME AS: s/ab/ababab/ 

s/a.c/&def/ SAME AS: s/aac/aacdef/ 
s/abc/abcdef/ 
s/azc/azcdetl 
s/a cIa cdef/ 
•.. etc 

4-4 FOl 



SPECIAL SYMBOLS 

II (DOUBLE RIGHT SLANT - OR - SLASH SLASH) 

AS THE REPLAC~ EXPRESSION OF A SUBSTITUTE REQUEST 

n THE REPLACE EXPRESSION IS THE NULL STRING (A MEANS OF 
DELETING EXISTING CHARACTER STRINGS) 

s/abcll 

~~SAG~AS A SEARCH EXPRESSION 

~ 

o qedx REMEMBERS THE LAST SEARCH EXPRESSION DEFINED BY THE 
USER 

o II STANDS FOR THE LAST SEARCH EXPR£SSION DEFINED 

la.cl 
sl/xyz/ 
II 

SAME AS: 
I a .cl 
s/a.c/xyzl 
/a.cl 

• \c (LEFT SLANT C -OR- BACKSLASH C) 

n THE SEQUENCE \c IS A qedx ESCAPE SEQUENCE THAT CAUSES THE 
CHARACTER THAT FOLLOWS TO BE INTERPRETED AS A LITERAL 

n SUPPRESSES (ESCAPES) THE SPECIAL MEANING OF qedx SPECIAL 
SYMBOLS 

/a\c.bl 

s/\c~echpplex/~echoplexl 

sf ab,:/\c&defl 

4-5 F01 



EXAMPI.,ES 

• INTERPRET THE FOLLOWING qedx REQUESTS: 

1,$s/a ••• bll 

1 j $ s / a ;; ;; ;; bl !: & I 

1,$s/a.*b/xyzl 

1 ,$s/a .. *b/xyzl 

1,$s/a.\c.*b/xyzl 

1,$s/a .. \c*b/xyzl 

1 ,$s/"'a •.• bll 

1 4!e'''',.. ""." ,,'I'WI ca ••• Utflll 

1,$s/./al 

1,$s/.I&&1 

1,$s/.*I&&1 

1,$s/"'a*b*c·d/abcdl 

1,$s/"'a.*b.*c.*d/abcdl 

1,$s/'" .11 

1,$s/'" *1 .&1 

1,$s/".$I&&&i 

4-6 -F01 



ADDRESSING 

• qedx REQUEST MAY TAKE ONE OF THREE GENERAL FORMS 

D <request> 

n ADR<request> 

o ADR,ADR<request> 

• ADDRESSES MAY TAKE ONE OF THREE GENERAL FORMS. 

n ABSOLUTE LINE NUMBERS 

5d 

. $p 

10,12s/abc/xyz/ 

3 

n RELATIVE LINE NUMBER~ (~ELATIVE TO "CURR~NT LINE") 

.+4d 

+4d 

-2, .p 

-2,+5s/abc/xyz/ 

$-4,$p 

-2 

4-7 FOl 



ADDRESSING 

n CONTEXTUAL ADDRESSING 

B AN ADDRESS MAY BE A REGULAR EXPRESSION 

n A LINE CAN BE ADDRESSED BY MATCHING REGULAR EXPRESSIONS TO 
STRINGS IN THE LINE 

/abc/d 

/abc/,25p 

/abc/+2,25p 

/abc/+2,+2Sp 

-4,/x.z/p 

/~ab.c/+2,/x.z/-3s/boat /bosting / 

4-8 F01 



• THE USER'S INITIAL BUFFER (SCRATCH PAD) HAS A RESERVED NAME OF 
b(O) 

• USERS MAY DEFINE AN ARBITRARY NUMBER OF ADDITIONAL BUFFERS BY 
SIMPLY REFERRING TO THEM BY SOME CHOSEN NAME 

BUFFER REQUESTS DESCRIPTION 

m(name) 

\b(name) 

b(name) 

x 

MOVE: MOVE THE SPECIFIED LINE OR LINES IN THE 
CURRENT BUFFER TO A BUFFER HAVING THE SPECIFIED 
NAME 

REPRESENTS THE CONTENTS OF THE SPECIFIED BUFFER 

BUFFER: CHANGE BUFFERS. 
BUFFER THE "CURRERT" BUFFER 

MAKE THE SPECIFIED 

STATUS: PRINT A SUMMARY OF THE STATUS OF ALL 
BUFFERS .... 

• CUT AND PASTE EXAMPLi . 
LINE 10 

MOVE LINES 14 THROUGH 17 IMMEDIATELY BELOW ,. 

14,17m(1) 
lOa 
\b(l)\f 

4-9 F01 



AREAS FOR ADDITIONAL STUDY 

• ADDITIONAL DOCUMENTATION OF qedx 

o MPH COMMANDS AND ACTIVE FUNCTIONS (AG92) 

n NEW USER'S GUIDE (AL40) 

n help qedx 

• STUDY TOPICS 

n MULTIPLE REQUEST ON A LINE 

dp 

s/abc/xyz/p 

s/abc/xyz/w file_13 

\fw 

4-10 F01 



AREAS FOR ADDITIONAL STUDY 

D ADDITIONAL qedx EDIT REQUESTS 

g (global) -==7 J 
gp/xyz/ 

1 ,10gd/xyzl 

10,20g=/xyzl 

v (exolude) 

vp/xyzl 

1,10vd/xyzl 

1, • v= Ixyzl 

n (nothing) 

Sn 

" (oomment) 

"This ,is a oomment in a macro 

4-11 F01 



AIEAS FOR ADDITIONAL STUDY 

ADDRESSING USING "j" INSTEAD OF 

ADRjADR(request> 

labc/;+5d 

o DELIMITERS OTHER THAN "I" 

" " , 

o RESERVED BUFFERS: b(O), b(exec), beargs) 

D qedx MACRO FACILITY 

n BY TYPING THE FOLLOWING COMMAND LINE: 

qedx my_macro.qedx add 

THE FOLLOWING MACRO IS INVOKED WITH BUFFER b(args) 
CONTAINING THE ARGUMENT add 

r \b(args).fortran 
1,$s/write.*)/printl 
w 
q 

4-12 F01 



TOPIC V 

THE STORAGE SYSTEM 

Segments . . . . . . . . • . . • . . . . 
Directories . . . • . . .. .••. 
Storage System Control ..• . • • 
Storage System Hierarohy . . . 
Pathname Conventions • • . . • • • . . . 

5-1 

Page 

5-2 
5-6 
5-8 
5-10 
5-13 

F01 



This page has intentionally 

been left blank. 

5-i1 F01 



• SYSTEM GOALS: 

n DECENTRALIZATION OF THE SYSTEM'S LOGICAL FILE SPACE 

D EASE OF USE 

• EFFECT ON STORAGE SYSTEM 

D HIERARCHY OF DIRECTORIES 

D PATHNAME CONVENTION 

>udd>FED>LJones>tools>my_editor 

D WORKING DIRECTORY CONCEPT 

change_wdir >udd>FED>LJones>tools 

5-1 F01 



SEGMENTS , 

.-/ I- ---~~) 
(fittF-~ t~-~ 

.. ;~~~~ 
• SEGMENT 

o THE BASIC UNIT OF INFORMATION STORAGE 

n SOMETIMES REFERRED TO AS A FILE 

n SEGMENTS RESIDE ON DISK PACKS (SECONDARY StORAGE) 

n SIZE IS INTEGER NUMBER OF RECORDS (1024 WORDS). 0,1,2,3 ... 

o MAXIMUM SIZE IS 256 RECORDS (256K WORDS) 

• ALL SEGMENTS HAVE AT LEAST ONE GIVEN NAME (ENTRYNAME) 

add.pl1 

5-2 F01 



SEGMENTS 

• MUST DISTINGUISH B~TWEEN THE CONTENTS OF A SEGMENT AND THE 
ATrRIBUTES OF A SEGMENT 

n THE CONTENTS OF A SEGMENT MAY BE: 

n DATA (EITHER RAW OR FORMATTED) 

n TEXT (USUALLY ASCII) 

n SOURCE OR OBJECT PROGRAM 

n EMPTY (ZERO LENGTH) 

n SOME ATTRIBUTES OF A SEGMENT ARE: 

n THE NAME(S) OF THE SEGMENT (CALLED ENTRYNAME(S» 

n THE SEGMENTS UNIQUE IDENTIFIER (A UNIQUE, 36 BIT, INTERNALLY 
USED NAME) 

D THE AUTHOR (I.E., THE user_id OF THE CREATOR) 

n THE LENGTH (IN BITS) OF THE SEGMENTS CONTENTS 

D THE BIT COUNT AUTHOR (I.E. THE user id OF THE LAST PERSON 
TO MODIFY THE CONTENTS) 

I THE ACCESS CONTROL LIST SPECIFYING WHO MAY ACCESS THE 
SEGMENT AND HOW THEY MAY ACCESS IT 

o THE AMOUNT OF DISK' SPACE (IN RECORDS) OCCUPIED BY THE 
SEGMENT 

5-3 F01 



SEGMENTS 

0, DATE AND TIME SEGMENT'S CONTENTS WERE LAST MODIFIED 

o DATE AND TIME THE SEGMENT'S ATTRIBUTES WERE LAST MODIFIED 

n DATE AND TIME SEGMENT!S CONTENTS WERE LAST DUMPED (I.E., 
COPIED TO TAPE BY THE MULTICS BACKUP PROCEDURES) 

o DATE AND TIME SEGMENT'S CONTENTS WERE LAST REFERENCED 

o THE STATE OF THE SEGMENT'S COpy SWITCH 

o THE STATE OF THE SEGMENT'S SAFETY SWITCH 

• THE CONTENTS OF A SEGMENT MAY BE READ BY USING THE print COMMAND 
OR qedx's "r" AND "pH REQUESTS 

• THE ATTRIBUTES OF A SEGMENT MAY BE OBTAINED BY USING THE list OR 
THE status COMMAND 

• THE ACCESSING OF A SEGMENT'S CONTENTS AND A SEGMENT1S ATTRIBUTES 
ARE INDEPENDENTLY CONTROLLED BY THE MULTICS ACCESS CONTROL 
MECHANISM 

5-4 F01 



CONTENTS 

The Multics System i 
s a general purpose 
computer system deve 
loped by the\012Mass 
achusetts Institute 

o 

of Technology and H 
oneywell Infor-\012 
mation Systems. Int 
roduced to commercia 1 
1 markets\012in Janu 
ary 1973, Multics w 
as then the result 0 
f more than 7 years 
of research.\012 

2 

SEGMENTS 

ATTRIBUTES 

names: 

author: 

access: 

bit oount: 

records used: 

date modified: 

date dumped: 

date used: 

ATTRIBUTE VALUE 

home_work_3,· hw3 

May.FED.a 

r w ·May.FED.* 
r w *.SysDaemon.* 

49698 

2 

03/21/77 1034.4 mst 

03/21/77 1051.0 mst 

09/07/77 0818.9 mst 

• MAY HAVE UP TO 19 MILLION SEGMENTS IN A SYSTEM (512 MSU * 38,000 
SEGMENTS) 

• CONTAIN THE NAMES, 
c::.:D ATTRIBUTES ./ 

-----------------------------n THESE SEGMENTS SERVE AS A CATALOG OF THE OTHER SEGMENTS 

o 

5-5 F01 



DIRECTORIES 

• DIRECTORY 

o A SEGMENT CONTAINING THE NAMES,ADDRESSES AND ATTRIBUTES OF 
OTHER SEGMENTS AND/OR OTHER STORAGE SYSTEM ENTITIES 

o A MEANS OF ORGANIZING (CATALOGING) SEGMENTS AND/OR OTHER 
STORAGE SYSTEM ENTITIES 

o SPECIFICALLY, A DIRECTORY MAY BE A CATALOG OF THE FOLLOWING 
STORAGE SYSTEM ENTITIES: 

n FILES 

D SEGMENTS (SINGLE SEGMENT FILES) 

o MULTISEGMENT FILES 

D OTHER DIRECTORIES 

D LINKS 

o MAY BE EMPTY 

• ALL DIRECTORIES HAVE AT LEAST ONE GIVEN NAME (ENTRYNAME) 

udd vf~ c:t~ c;~~ 
F01 

Dir A 

5-6 F01 



DIRECTORIES 

S t u·d e h t 0 1 

Prince hw dir add.pI1 

ATT'S ATT'S ATT'S ATT'S 

hw dir 

Stu den t 0 1 

hw dir 

5-7 F01 



STORAGE SYSTEM CONTROL 

• MAY HAVE UP"TO 19 MILLION SEGMENTS IN A SYSTEM, SOMEONE MUST 
CONTROL: 

D THE ALLOCATION OF DISK SPACE TO USERS (WHO GETS WHAT?) 

o THE CREATION AND USE OF SEGMENTS (I'VE GOT A SECRET!) 

o THE SHARING OF SEGMENTS (YOU MAY USE MINE TOO!) 

• HIERARCHY OF ADMINISTRATORS 

n THE SYSTEM ADMINISTRATOR 

n PROJECT ADMINISTRATORS 

n USERS 

5-8 F01 



USER 
May 

ProjA PROJECT 
ADMINISTRATOR 

USER 
Kerr 

STORAGE SYSTEM CONTROL 

USER 
Abel 

SYSTEM 
ADMINISTRATOR 

5-9 

USER 
S 01 

F01 PROJECT 
ADMINISTRATOR 

USER 
S 02 

USER 
S 04 

F01 



STORAGE SYSTEM HIERARCHY 

• NEED TO PARTITION THE FAMILIES OF DIRECTORIES AND SEGMENTS INTO 
MANAGEABLE COMMUNITIES 

• STORAGE SYSTEM IS MAPPED ONTO ADMINISTRATION HIERARCHY 

May 
OIR 

ROOT 
DIRECTORY 

USER DIRECTORY ~"Ij 
DIRECTORY 

ProjA F01 
OIRECTORY OIRECTORY 

Kerr 
OIR 

Abel 
OIR 

5-10 

S 01 
OrR 

S 02 
OIR 

S 03 
OrR 

S 04 
DIR 

F01 



STORAGE SYSTEM HIERARCHY 

• THE STORAGE HIERARCHY IS ANALOGOUS IN FORM TO AN INVERTED TREE 

• THE USER DIRECTORY DIRECTORY (udd) EMANATES FROM THE ROOT 
DIRECTORY 

• ALL PROJECT' DIRECTORIES EMANATE FROM THE USER DIRECTORY 
DIRECTORY (udd) 

• ALL USER DIRECTORIES EMANATE FROM THEIR RESPECTIVE PROJECT 
DIRECTORIES 

• USERS MAY ARBITRARILY CREATE DIRECTORIES SUBORDINATE TO THEIR OWN 
USER DIRECTORY - UP TO A MAXIMUM DIRECTORY DEPTH OF 1~ (TOP TO 
BOTTOM) 

• A SEGMENT WHOSE POSITION IS IMMEDIATELY BELOW A GIVEN DIRECTORY IS 
SAID TO BE: 

"In the directory" 

- OR -

"Under the directory" 

5-11 F01 



system library 
standard -

ProjA 

May Kerr 

STORAGE SYSTEM ~IERARCHY 

Abel 

> 

user d1r d1r 
(udd)-

S 01 

I 

(pr!nc~ 

5-12 

system library 
unbundled -

F01 

S 02 S 04 

hw dir add.p11 

F01 



PATHNAME CONVENTIONS 

• ABSOLUTE PATHNAME 

n A PATHNAME THAT UNIQUELY IDENTIFIES A SEGMENT (OR DIRECTORY) BY 
ITS ABSOLUTE POSITION IN THE DIRECTORY HIERARCHY 

n FORMED BY CONCATENATING A SEGMENT'S (OR DIRECTORY'S) ENTRYNAME 
WITH ALL SUPERIOR DIRECTORIES LEADING BACK TO THE ROOT 

>udd>F01>Student_01)add.pi1 

THE > (GREATER-THAN) CHARACTER IS 
ENTlfflfifMES IN A PATHNAME 

USED TO SEPARATE THE 

n AN ABSOLUTE PATHNAME ALWAYS BEGINS WITH > (GREATER-THAN) 

n DIRECTORY ABSOLUTE PATHNAMES 

>udd>ProjA 

>udd)F01>Student 01 

)udd>F01)Student 01)hw dir 

o SEGMENT ABSOLUTE PATHNAMES 

>udd>F01>Student_01>add.p11 

>udd>F01>Student 01>hw dir>lesson 2 - -
>udd>ProjA>Kerr>start_up.ec 

5-13 FO 1 



PATHNAME CONVENTIONS 

• NOTICE THAT AN ABSOLUTE PATHNAME SUCH AS 

>udd>ProjA>Kerr>start_up.ec 

IDENTIFIES: 

n THE ENTRYNAME OF THE·SEGMENT (start~up.ec) 

n THE Person id OF THE "OWNER" (Kerr) 

n 
u THE 

5-1,4 

Ift ....... .&A\ 
\f'TVJI'lJ 

F01 



PATHNAME CONVENTIONS 

• HOME DIRECTORY (WHERE THE HEART IS) 

n THE DIRECTORY IN WHICH THE USER "FINDS" HIMSELF IMMEDIATELY 
AFTER LOG IN 

n THE INITIAL WORKING. DIRECTORY 

B THE Person 1d AND Project_1d GIVEN AT LOG IN DETERMINE THE H~ME 
DIRECTORY -

o IS GENERALLY: >udd>Project_1d>Person_1d 

>udd>F01>Student 02 

>udd>ProjA)Abel 

• WORKING DIRECTORY (WHERE THE ACTION IS) 

o THE DIRECTORY· IN WHICH THE USER IS CURRENTLY WORKING (THE 
INITIAL WORKING DIRECTORY IS THE HOME DIRECTORY) 

o THE USER MAY CHANGE HIS WORKING DIRECTORY, AS DESIRED, TO ANY 
OTHER DIRECTORY IN THE STORAGE SYSTEM 

o COMMANDS SUCH AS list AND qedx's "r" and "w" WILL OPERATE ON 
THE SEGMENTS IN THE USER'S WORKING DIRECTORY 

5-15 F01 



PATHNAME CONV£NTIONS 

• RELATIVE PATHNAME 

o A PATHNAME THAT UNIQUELY IDENTIFIES A SEGMENT (OR "DIRECTORY) BY 
ITS POSITION RELATIVE TO THE USER'S WORKING DIRECTORY 

D NEVER BEGINS WITH ) (GREATER-THAN) 
~==========- ~ 
o DIRECTORY RELATIVE PATHNAM£ 

ProjA 
udd)ProjA 

Student 01 
F01)Student 01 

hw dir 
Student 01)hw dir 
F01)Student OT)hw dir 

o SEGMENT RELATIVE PATHNAMES 

add.pl1 
Student_01)add.pI1 

lesson 2 
hw dir>lesson 2 - -
start up.ec 
Kerr)start up.ec 
ProjA)Kerr>start_up.ec 

• THE WORKING DIRECTORY CONCEPT IS SIMPLY A CONVENIENCE THAT ALLOWS 
THE USER TO TYPE RELATIVE PATHNAMES INSTEAD OF THE LONGER ABSOLUTE 
PATHNAMES 

5-16 F01 



PATHNAME CONVENTIONS 

• ENTRYNAMES (PATHNAME MEMBER) 

01 TO 32 CHARACTERS LONG 

D SHOULD NOT INCLUDE > < • - ? S $ " ( ) SPACE OR TAB 
--- :::..= 

n (UNDERSCORE) 

o SIMULATES A SPACE FOR READABILITY 

D (PERIOD) 

U SEPARATES COMPONENTS OF AN ENTRYNAME 

ms tester.old.fortran 

o LAST COMPONENT OF AN ENTRYNAME IS CALLED THE SUFFIX 

D ENTRYNAMES MUST BE UNIQUE WITHIN A DIRECTORY 

n SEGMENTS AND DIRECTORIES MAY HAVE MORE THAN ONE ENTRYNAME· 

test. 14_may.new_compiler 

t.14m.nc 

may_comp 

5-17 

homework dir 

hw dir 

hw 

F01 



PATHNAME CONV£HTIONS 

• NOTICE THAT IN THE SIMPLEST· CASE (WHERE A USER LOGS IN, CREATES 
AND EDITS HIS HOME DIRECTORY FILES) NO KNOWLEDGE OF THE HIERARCHY 
IS REQUIRED 

5-18 F01 



TOPIC VI 

STORAGE SYSTEM COMMANDS 

Direotory Manipulation Commands 
Segment Manipulation Commands 
Storage System Examples . . . . . . 

6-i 

. . . . 
. . . . . . . 

Page 

6-1 
6-3 
6-14 

F01 



This page has intentionally 

been left blank. 

6-i1 F01 



DIRECTORY MANIPULATION' COMMANDS 

, 

.,/ ) 
• print_w~ir. ~ (~RE AM I?) 

\ -----,.,'// 

• 

~'-..."",_"""",..,..P~/.".? 

o PRINTS THE PATHNAME OF THE CURfttNT WORKING DIRECTORY 

o USAGE: 

/',.#, .. ,_., .... ,.,' 

Change_W{r'. ~ (MO/Y,E OUTI) 
\ --- ,,I" ",' "v "-~,.-".-..• ,,~ 

o CHANGES- TH-E USER'S WORKING DIRECTORY 

o USAGE: change_wdir {path} 

cwd dir A 

cwd >udd>F01)Student 08>dir A - -
cwd 

6-1 F01 



DIRECTORY MANIPULATION COMMANDS 

) 

• create d 1 r , cd ( U f /10 1 6D E E P ) _. ~-

----
o CREATES AN EMPTY DIRECTORY 

o DOES NOT CHANGE THE USER'S WORKING DIRECTORY 

o USAGE: create_dir paths {-control_args} 

cd dir A -
cd >udd>F01>Student_09>myd 

• delete di~, dd (DO YOU REALLY ••• ?) - '''''''''''~ 

\ 
\, 

o DELETES'{DESTROYS) SPECIFIED DIRECTORIES 
DIRECTORIES AND SEGMENTS) 

(AND ill SUBORDINATE 

o USAGE: delete_dir paths 

dd programs 

dd >udd>F01>Student_01>programs 

6-2 F01 



SEGMENT MANIPULATION COMMANDS 

• create, cr, (SELDOM NEEDED) 
----' 

n CREATtS" AN EMPTY SEGMENT 

n USAGE: create paths 

cr seg_1 

cr seg_' seg_2 A B 

cr >udd>F01>Student_07>add.p11 

• delete, dl 

o DELETES (DESTROYS) SPECIFIED SEGMENTS 

n USAGE: delete paths 

dl seg_1 add. pl1 

6-3 F01 



• copy, cp 
''"'7~ 

SEGMENT MANIPULATtON COMMANDS 

o COPIES A SPECIFIED SEGMENT TO A NEW POSITION IN THE HIERARCHY 

o DOES NOT COpy A SEGMENT'S "ADD NAMES" UNLESS REQUESTED 

n USAGE: 

........ , ... 

• move 

copy path1 {path2} {-control_args} 

cp >udd>FED>LJones>add >udd>FED>LJones>exp>add 

cp >udd>FED>LJones>add add.old 

cp >udd>FED>LJones>add 

cp >udd>FED>LJones>add -name 

o MOVES A SPECIFIED SEGMENT (TO INCLUDE ACL AND ADD NAMES) TO A 
NEW POSITION IN THE HIERARCHY 

D USAGE: move path1 {path2} {-control_args} 

move >udd>FED>Kerr>dev>x_sort >udd>FED>Kerr>tools>sort 

move >udd>FED>Kerr>dev>x sort sort 

move >udd>FED>Kerr>dev>x sort 

6-4 F01 



• 

• 

ad~~name, an 
~ 

SEGMENT MANIPULATION COMMAN~S .. ~ 

. I!J •. ~~ 
/~rJ fr- j1J.r 

(ALIAS) ~r 

n ADDS ALTERNATE NAME(S) TO A SEGMENT OR DIRECTORY 

o SUCH NAMES ARE CALLED "ADD NAMES" 

D USAGE: add_name path names 

an ~g-"'l_~J}~W- c[ijr @}!i) ~ 

an >udd>F01>Student_Ol>seg_'.new sln 

delete name, dn - ,,...,,.-.­""---...---.,,./" 

o DELETES NAME(S) FROM SEGMENTS AND DIRECTORIES 

n USAGE: delete_name paths 

dn seg_1.new sln 

6-5 F01 



SEGMENT MANIPULATION COMMANDS 

o REPLACES A' SEGMENT OR DIRECTORY NAME WITH ANOTHER 

D USAGE: rename pathl namel ..• pathQ namen 

rn s 1.n seg_1.new 

-\ 
! 

/ J 

• 1ist/, Is i (ROLL CALL) 
/ .-::;: I 
\ / 

D 

o 

'-----

RETURNS ATTRIBUTE INFORMATION ABOUT STORAGE SYSTEM ENTITIES 
(~J h~J ~'4£..~ 

BY DEFAULT ONLY SEGMENTS ARE 

USAGE: 

.. -
list {entrynames} 

Is 

Is add.p11 seS_1 

lS~ cb-,J~<~ 
Is -all -sort name 

list -date time contents modified - -

6-6 F01 



• 
/" 

/ 

SEGMENT MANIPULATION COMMANDS 

status/~ st (WHO, WHAT, WHERE, AND .WHEN) 
.::::::: 

.... _.,. 
D RETURNS STATUS IN~ORMATION ABOUT SEGMENTS AND DIRECTORIES, 

INCLUDING ---- .. __ 

n DATE AND TIME MODIFIED, USED AND DUMPED 

o User id OF AUTHOR AND User id OF LAST MODIFIER 

n SIZE, ACCESS CLASS, ACCESS MODES, RING BRACKETS 

n USAGE: - status paths {-control_args} 

- st seg_' 

-' st seg_1 -leng th 

~st seg_2 -author -date 

• print, pr t~ .. LET'S SEE WHAT YOU LOOK LIKE) ---- ,/ 

o PRINTS THE CONTENTS OF A SEGMENT 

n USAGE: print path {begin} {end} 

pr seg_1 

pr add.pl1 150 

pr prince 40 120 

pr >udd>F01>Student_08>add.p11 

6-7 F01 



SEGMENT MANIPULATION COMMANDS 

• compose, comp (PLASTIC SURGERY) 

o FORMATS TEXT SEGMENTS INTO MANUSCRIPT FORM 

D SEGMENTS MUST HAVE SUFFIX OF compin AND NORMALLY 
CONTROL STATEMENTS WHICH DRIVE THE FORMATTING 

CONTAIN 
! 

n IF OUTPUT IS DIRECTED TO A SEGMENT, THE ENTRYNAME IS GIVEN A 
SUFFIX OF compout 

o THIS COMMAND REPLACES THE runOII COMMAND, AND PROVIDES A 
SUPERSET OF THE runoff CAPABILITIES TO INCLUDE INLINE ARTWOR& 

o USAGE: compose paths {-control_args} 

comp thesis.compin 

comp thesis.compin -in 10 -of -dv dtc300s -pass 2 

6-8 F01 



SEGMENT MANIPULATION COMMANDS 

• dprint, dp (START THE PRESSES!) 

D QUEUES A REQUEST TO PRINT THE CONTENTS OF A SPECIFIED SEGMENT 
ON THE LINE PRINTER 

n THE USER MAY SPECIFY ONE OF THREE PRIORITY QUEUES (QUEUE "3" IS 
ASSUMED - LOWESt PRIORITY, LOWEST COST) 

o THE PRINTING IS DONE BY ONE OF THE SYSTEM DAEMONS (A SERVICE 
PROCESS) 

o USAGE: dprint {-control_args} {paths} 

dp seg_' 

dp -cp 4 -ds MD_'04 seg_' 

dp seg_' -cp 3 seg_2 -ds Bldg_4 seg_3 

dp -he "Tom Smith" -notify seg_' add.pl1 

dp -delete -q 1 Prince 

o DEFAULTS: -cp 1, -ds Project_id, -he Person_id, -q 3 

6-9 F01 



0'1 
I -a 

• 
• 
• 
• 
I • 
• 

I 

t 
( 

( 

( 

( 

c 
( 

( 

"t ,tOOlt 

...... --............ -... -----.--.----~------..... -.--.-... ----.. -.... --.-.... --.... --.-...... _---._----------_ ............ _-............................................... --

•••••••• •• •• 
•• •• • • ••• 
•• •• • • • • ....... •• • • • • 
•• •• • • •• 
•• •• • • • • 
•• •• • • •• 
•• •• •••••• 

--.. -_.-_ .. _-------.- .. --_ .... ----.. _--._----------_ ... _-._---.. ------.. ---.. ..... -~-..... ---------.• -------.-----.------.---------~-................. --.. -~-.... --'5""" '41'.6'lt RO" --_ ............ _-_._----------------_ .............. ---------_ ... _----....... ----_._-----.. -----_ ......... _----_ .. _-_ .. _-_ .. ----.---... _---.----... -:----.......... _-.......... . 
...... •• •• •• 

•• • •• . ' . ••• 
•• •• •• •• . ' . •• •• 
•••••• •••••• .. •• ........ • ••••• • • •••• •••••• . ' . •• .. •• •• •• .. • • .. •• •• • • •• .. .. •• 

•• •• •• •• • • •• ........ • • •• •• .,1 •• • • 
• •• •• •• •• •• •• •• •• •• •• . ' . •• •• ...... •• ....... . ...... •••••• •• • • • • .. ...... 

•••••••• 

,t.,. lCa' •• r.FOtw.a F01 ""19 
.............................................................................................. ~ .......................... .. 
• • 7 e."M.WU""_ ......... _.M".M."".M."M",,M" ... M= .. n.S ... "MMMM.&~ , 

.) 

} 

) 

) 

') 

) 

) 

,) 

'')1 
I 

') 

') 

I) 

I) 

0 

0 

to 
PI 
o 
3: 
PI . 
:z: 
t-i 

3: 
:s> 
:z 
H 
." 
C 
r-
=­~ 
H 
o 
:z 
o 
o 
x 
x » 
:z: 
t:1 
en 



c: .1 
••••• ',0029 >UClld>Ooc>t i b>c •• PO' •• ar t"or k. info "",. C • • ) 

• · • · C • .l ... .... ... .... ..... • •••• ...... • ... •••• 
• • • C • • . • . .... • • ... .... ..... . ... • .... .. • ) . . • • • • • • • •• • • • • .... ... • ... .... . .... • • • • ••• • • • • ( . • • ) 

• 
( 

• ) 

• CIJ 
( • ••••• ) Pl ..... • Cl • .. 3': 
( ) PI 

2: .. 
••••• ~ 

( SSSnSSISnSnnSSISSUSSS'SSSSSS"'"SS''S'SSISSUSSISS'''''S''' .. 
) , 

" • X· , I~Qu •• t.d OS/21171 1410.5 .at ... n , 
• , Output 05/211 11 1425.6 .u "Oft 

, ••••• >-e , S ): Z 
I I H 

0\ I print.r QU.U. 3 .. rta S • • ); ~ 
! ( S I • • • c: , 5 pa, •• , • • • t-

....a I , 
• • .. :.> 

( , 111 lin •• U SO.SO ... r 1000 lin •• , ••••• )1 t-i 
S , 

I H 
S ChUl. to eeai •• r.fOt".a 0.06 S 0 ( , S ... ) :z: 
ISSSSSS'S'SSS'SSSSSSSSS'SSSSS"sst"S'S,SIISSIS'S"SSSIISSSSSSSS • .. 

C'l 
( • • ). a 

••••• x 
) 

x e » 
•••• :z: 

tJ ( • ) til. 
• ...... 

( ) 

c .. 
• ) ....... 
• ( ) 

c • ) 

· . • · .. • c · . • ) 
110029 >udd>Doc>t ib>co.PO •••• rt"or •• info UOOl9 • 

"T] C ) 
0 



SEGMENT MANIPULAT!ON COMMANDS 

• dpunch, dpn (START THE PUNCHESI) 

• 

o QUEUES A REQUEST TO PUNCH THE CONTENTS OF A SPECIFIED SEGMENT 
ON THE CARD PUNCH 

o CONTROL ARGUMENTS AND DEFAULTS ARE THE SAME AS THE dprint 
COMMAND'S 

D USAGE: dpunch {-control_args} {paths} 

dpn -he Larry -ds "Room 21" prince 

) 
list_daemon_reques,It"S,!5!!-- / 

/ 
I 

~----" .. " .... 
o PRINTS INFORMATION ABOUT OUTSTANDING dprint AND dpunch REQUESTS 

IN A SPECIFIED QUEUE (DEFAULT IS -queue 3) 

o USAGE: list_daemon_requests {-control_args} 

Idr 

Idr -queue 1 

6-12 F01 



SEGMENT MANIPULATION COMMANDS 

~~-
• cancel daemon request, cdr - -. ~ 

\ , 
'.. ,,#' "",----

o CANCELS A dprint OR dpunch REQUEST IN THE QUEUE SPECIFIED 
(DEFAULT IS -queue 3) 

o USAGE: cancel_daeMon_request request_id {-control_args} 

cdr prince 

cdr -id 202008 

cdr -entry prince 

• walk_subtree, ws (AND DONtT COME BACK UNTIL YOU ARE THROUGH!) 

o EXECUTES ANY SUPPLIED COMMAND LINE IN A SPECIFIED DIRECTORY, 
AND ALL INFERIOR DIRECTORIES 

D A LIBRARY MANAGEMENT TOOL 

D USAGE: walk_subtree path "command line" {-control_args} 

ws )udd)F01 "list -all" 

ws -wd "sa ** r' •.•.• " 

ws ~.WcP "da LJones.· .• If -bottom_up 
"i 

, -+-, 1AJO~y/;JC:, {J/;26l//7J,e!' 
~a£.. vv 

6-13 F01 



STORAGE SYST£M EXAMPL~S 

NOTE: THE READY MESSAGE IS NOT SHOWN IN THE FOLLOWING TERMINAL 
SESSION 

pwd 
)udd>F01>Student_01 

! (Is 
).... -' 

.
. ~-:fg ~,/~/ l)irectory 
~~ 

empty. 

r I ! qx 
! a 
I add: proc 
! end add 
! \f 
I wadd.p11 
! q 

cr seg_1 Prince 

cd hw dir -

W DIR 

-\. Student_01 

6-14 

hw dir -

(print wdir) 
(output) 

(list) 
(output) 

(qedx) 
(append mode) 
(text) 
(text) 
(edt't mode) 
(write) 
(quit) 

(create) 

F01 



STORAGE SYSTEM EXAMPLES 

pwd 
>udd>F01>Student 01 

Is 

Segments = 3, Lengths = 1. 

r w 0 Prince 
r w 0 seg 1 
r w 1 add:p11 

Is -sort name -all 

Segments = 3, Lengths = 1 • 

r w 1 add.p11 
r w 0 seg 1 
r w 0 Prince 

Directories = 1. 

sma hw dir 

cr hw dir>lesson 1.math 

cwd hwidir 

pwd 
>udd>F01>Student 01>hw dir - -
cr lesson_12.eng 

6-15 

(print wdir) 
(output) 

(list) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 

(list) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 

(create) 

(change_wdir) 

(print wdir) 
(output) 

(create) 

F01 



STORAGE SYSTEM EXAMPLES 

student 01 

hw d1r -

lesson_12.eng lesson 1.math -

6-16 F01 



STORAGE SYSTEM EXAMPLES 

Is lesson_12.eng 
,JJ 

y1tf 
~ It: \--

Segments = 1, Lenaths = O. 

r w 0 lesson_12 • en, tf'/ 
1s -sort name -reverse~~ / 

Segments ~ 2, Lengths = O. 

09/13/77 0849.2 r w 
09/13/77 0849.1 r w 

cwd 

pwd 
>udd>F01>Student 01 

dp add.pl1 

o lesson 12.ens 
o lesson-1~math 

1 request signalled, 22 already in queue 3 
--- ..... ~ JA~ 

ws -wd "Is -,~rier" -~- - ~f~ 

>udd>F01>Student 01 

Segments = 3, Lengths = 1. 

Prince 
seg , 
add-:-pll 

>udd>F01>Student 01>hw dir 

Segments = 2, Lengths = o. 
lesson 12.eng 
lesson-' .math 

YOU ARE NOW READY FOR WORKSHOP 
13 

6-17 F01 

(list) 
(output) 
(output) 
(output) 
(output) 

(list) 
(output) 
(output) 
(output) 
(output) 
(output) 

(change_wdir) 

'(print wdir) 
(output) 

(dprint) 
(output) 

(walk subtree) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 
(output) 



This page has intentionally 

been left blank. 

6-18 F01 



TOPIC VII 

THE COMMAND LANGUAGE 

What is a Command . . . . 
Command Arguments • • . • 
Common Control Arguments 
Star Convention . . . • . 
Subsystems . • . • • • . 

7-1 

Page 

7-1 
7-4 
7-6 
7-7 
7-10 

FOl 



This page has intentionally 

been left blank. 

7-ii F01 



WHAT IS A COMMAND ----

• COMMAND PROCEDURE 

B A PROGRAM - USUALLY WRITTEN BY A SYSTEMS PROGRAMMER 

n RESIDES IN ONE OF THE SYSTEM'S LIBRARIES 

n EXECUTED BY TYPING ITS NAME 

n DESIGNED TO 

o PERFORM EXPECTED TASK 

n ACCEPT AN ARBITRARY NUMBER OF ARGUMENTS 

D REPORT TYPING ERRORS 

n HANDLE OTHER USER ERRORS 

7 -1 F01 



WHAT IS A COMMAND ------

• COMMAND 

D THE CHARACTER STRING TYPED AT THE TERMINAL TO INVOKE A SPECIFIC 
COMMAND PROCEDURE 

n EXAMPLES: 

n THE COMMAND PROCEDURE accept_messages IS INVOKED BY TYPING 
THE COMMANDS: 

accept_messages 

am 

n THE COMMAND PROCEDURE print IS INVOKED BY TYPING THE 
COMMANDS: 

print seg_' 

pr treasure hunt 

~. 

1-2 F01 



WHAT IS A COMMAND -- _. - ------

• COMMAND LINE 

n A LINE TYPED AT THE TERMINAL WHEN AT MULTICS COMMAND LEVEL 

n MAY BE ONE COMMAND 

accept_messages 

am 

n MAY BE A MISTYPED COMMAND 

primt seS_1 

n MAY BE MORE THAN ONE COMMAND SEPARATED BY SEMI-COLONS 

accept_messages; pr seg_1 

am; print start_up.ec; who 
\. 

o MAY BE NULL (I.E., JUST A LINEFEED) 
(fo~ /~Jj~) 

o FREE FORMAT ACCEPTED (EXTRA SPACES ARE IGNORED) 

list -all; sm LJones.FED TECO is ready! 

print add.pl1 

am;pm;who 

am ;pm; who , , 

7-3 F01 



COMMAND ARGUMENTS 

• ARGUMENTS 

n A SERIES OF CHARACTER STRINGS THAT FOLLOW A COMMAND 

• PATHNAME ARGUMENTS 

n THE NAMES OF SEGMENTS OR DIRECTORIES UPON WHICH THE COMMAND IS 
TO ACT 

cwd )udd)F01)Student 01 

• CONTROL ARGUMENTS 

n ARGUMENTS THAT MODIFY THE MANNER IN WHICH THE COMMAND PERFORMS 
ITS TASK 

o ALWAYS START WITH A - (MINUS) 

list -segment 

list -directory 

list -all 

7-4 F01 



COMMAND ARGUMENTS 

• ARGUMENTS OF CONTROL ARGUMENTS 

dprint -copy 2 -ds MS_102 .dd.p11 

d P - c p 2 - d s !" MS 1 02 " • d d . pI 1 

set_tty -modes crecho 

memo -time 8am WAKE UP! 

• OTHER ARGUMENTS 

sm Student_04.F01 Going to lunch? 

print seg_2 15 40 

login TSmith 

• NO ARGUMENTS 
"",'~"--------*-------- it- in t _ wd 1 r 

defer_messages 

• DEFAULT ARGUMENTS (HURRAH FOR DEFAULTS!) 
--..-"'-'. 

{Home Directory} 

{first last} 

7-5 F01 



LONG FORM 

-all 

-brief 

-copy n 

-directory 

-long 

-optimize 

-print 

-queue n 

-segment 

-table 

-time {dt} 

-totals 

COMMON CONTROL ARGUMENTS 

SHORT FORM 

-a 

-bf 

-cp n 

-dr 

-lg 

-ot 

-pr 

-q n 

-sm 

-tb 

USUAL MEANING 

OPERATE O~ ALL TYPES OR ALL ENTRIES 

SHORTEN THE VERBOSITY 
CONTENTS OF RESPONSE 

CREATE n COPIES 

OPERATE ON DIRECTORIES 

AND/OR 

INCREASE THE VERSOSITY AND/OR 
CONTENTS OF RESPONSE 

OPTIMIZE GENERATED CODE (FOR 
rnMDTt'C'D<:!\ """, •• ,.""w"lJl 

PRINT A STATUS OR SUMMARY REPORT 

USE PRIORITY QUEUE n 

OP£RATE ON SEGMENTS, OR SEND OUTPUT 
TO A SEGMENT 

GENERATE A SYMBOL TABLE 
COMPILERS) 

(FOR 

-tm {dt} DELAY UNTIL THE SPECIFIED TIME, OR 
GENERATE TIMING STATISTICS 

-tt PRINT TOTALS 

7-6 F01 



STAR CONVENTION 

• STAR CONVENTION 
.,~-.. 

------------.. .....------... 

n A SHORTHAND NOTATION ACCEPTED BY MANY COMMANDS USED TO SPECIFY 
A GROUP OF SEGMENTS OR DIRECTORIES 

n • MATCHES ANY SINGLE COMPONENT OF AN ENTRYNAME ..----

1I)w 
n •• MATCHES A~}1 GROUP OF ~PQNENTS IN AN ENTRYNAME "---
D ? MATCHES ANY CHARACTER IN A COMPONENT OF AN ENTRYNAME 

~---

• ASSUME SOME DIRECTORY CONTAINS THE FOLLOWING SEGMENTS: 

a.fortran 
ad.fortran 
add 
add.pl1 
new 
new.a.fortran 

seg 1.p11 
seg-'.new 
seg -, . new. cobol 
seg-'.old 
seg-l.old.p11 
seg=1.o1d.test.pll 

• EXAMPLES USING THE list COMMAND (THE list HEADER IS NOT SHOWN) 

list seg_'.pl' seg_1.new seg_'.old 

rw 1 seg '.p11 
rw 2 seg-'.new 
rw 1 seg=1.o1d 

1-1 F01 



list seg_'.-

rw , seg 1.pl' 
rw 2 seg-1.new 
rw 1 seg='.old 

list seg_' .•.• 

rw , seg '.~ew.cobol 
rw 2 seg='.old.pI1 

list new.'- / .. ,,~ 
~y/' 

rw , new 
rw 1 new.a.fortran 

lis,t - .p11 

rw , add.pl' 
rw 1 seg_'.pl' 

list '-.pl' 

rw 1 add.p11 
rw 1 seg 1.p11 
rw 2 seg-1.old.pl' 
rw , seg='.old.test.pl' 

list -.- - -

rw 1 seg_1.old.test.pI1 

..,~-""'""'''''''''''''''''~ ......... -

list a' ------
rw 1 add 

7-8 F01 



STAR CONVEN1'!ON - . 

list s* .. *.pI1 

rw 2 seg_1.old.pll 

list s*.**.p* 

rw 1 seg l.pll 
rw l 2 seg-1.old.pll 
rw i seg:l.old.test.pll 

list ??? ... 
rw 1 add 
rw 1 new 

list a?* 

rw 1 ad.fortran 

list a?*.* 

rw 1 ad.fortran 
rw 1 add.pI1 

list ad*.*. 

rw 1 add 
rw 1 add.pl1 
rw 1 ad.fortran 

list ** 
<all segments) 

7-9 F01 



SUBSYSTEMS 

• SUBSYSTEM 

o A COLLECTION OF PROGRAMS THAT PROVIDE A SPECIAL ENVIRONMENT FOR 
SOME PARTICULAR PURPOSE 

o EDITING 

edm 

qedx 

o CALCULATION 

D DEBUGGING 

probe 

debug 

o A USER ENTERS A SUBSYSTEM BY COMMAND AND EXITS THE SUBSYSTEM BY 
REQUEST 

o TYPED LINES ARE INTERPRETED BY THE SUBSYSTEM, NOT BY THE 
MULTICS COMMAND PROCESSOR; THEREFORE, THEY ARE NOT COMMAND 
LINES 

o THE SUBSYSTEM MAY PERFORM ITS OWN REQUEST PROCESSING, FILE 
HANDLING, AND ACCOUNTING 

7-10 F01 



SUBSYSTEMS 

• REQUEST LINE FLOW 

TYPED LINE 

! 
FRONT-ENl PROCESSOR 

SUBSYSTEM 

! 
EXECUTION 

• COMMAND LEVEL 

o THE PROCESS STATE IN WHICH TYPED LINES ARE INTERPRETED BY THE 
MULTICS COMMAND PROCESSOR 

n TYPED LINES ARE REFERRED TO AS COMMAND LINES 

• SUBSYSTEM LEVEL 

n THE PROCESS STATE IN WHICH TYPED LINES ARE INTERPRETED BY THE 
SUBSYSTEM 

n TYPED LINES ARE REFERRED TO AS REQUEST LINES 

7-11 F01 



This page has intentionally 

been left blank. 

7-12 F01 



What is an Exec com 
Exec com MechanIsm 

. Start_up Exec_coms 

TOPIC VIII 

. 
e • • • • • . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . 

8-1 

Page 

8-1 
8-2 
8-4 

F01 



This page has intentionally 

been left blank. 

8-ii F01 



WHAT IS AN EXEC COM -------

• EXEC COM 

n A SEGMENT THAT CONTAINS A SERIES OF COMMAND LINES 

o MAY BE CREATED USING A TEXT EDITOR 

SEGMENT NAME MUST HAVE A SUFFIX OF ec 

A.ec 

print.ec 

o THE COMMAND LINES ARE EXECUTED SEQUENTIALLY, AS A SET, BY USING 
THE exec com COMMAND 

8-1 FO 1 



• 

EXEC COM MECHANISM 

~~~ ~;_t'~~-

o EXECUTES THE COMMAND LINES CONTAINED IN AN EXEC COM SEGMENT

D COMMAND LINES ARE PRINTED ON THE USER'S TERMINAL AS THEY ARE
EXECUTED

D USAGE: exeo oom path

eo A.eo

eo print.eo

• EXEC COM LINE FLOW

EXEC COM LINES -!
COMMAND PROCESSOR

!
EXECUTION

8-2 F01

EXEC COM MECHANISM

• EXAMPLE: LET THE SEGMENT print.ec CONTAIN THE FOLLOWING TEXT:

print.ec

cwd >udd>F01>Student_07
ls
pr seg 1
logout -

n TYPING THE ONE COMMAND

ec print.ec

HAS THE SAME EFFECT AS TYPING THE FOUR COMMANDS ABOVE

8-3 F01

START UP EXEC COMS

• START UP EXEC COM

D HAS THE NAME start_up.ec

o LOCATED IN USER'S HOME DIRECTORY

~ THE COMMAND LINES CONTAINED WITHIN A~E AUTOMATICALLY EXECUTED
~- FOR THE USER AT LOGIN

o CAN ALSO BE INVOKED MANUALLY

• C~oN USAGE
........ ' ,--

~~ D SET-UP USER'S ENVIRONMENT
f I ,

D CHECK ON EVENTS SINCE LAST LOGIN

n PERFORM ANY DESIRED TASKS AT LOGIN

8-4 F01

START UP EXEC COMS

• EXAMPLE: LET THE SEGMENT start_up.ec CONTAIN THE FOLLOWING TEXT:

I ~:
o THESE TWO COMMANDS ARE AUTOMATICALLY EXECUTED FOR THE USER AT

LOGIN

• NOTE: THE PRESENCE OF A start up.ec. WILL SUPPRESS THE PRINTING OF
THE SYSTEM'S MESSAGE OF THE DAY AT LOG IN

8-5 F01

START UP EXEC COMS

• print_motd, pmotd

o PRINTS OUT THE MESSAGE OF THE DAY IF THE USER HASN'T SEEN IT

o CREATES AND USES A HQME DIRECTORY SEGMENT NAMED person_id.motd

o THIS COMMAND IS NORMALLY FOUND IN USER'S start_up.ec

o USAGE:

8-6 F01

TOPIC IX

THE ABBREV PROCESSOR

What is the Abbrev Prooessor .•..... . . .
Abbrev Mechanism • . • . • • . • .
Abbrev Requests . . . • . • •
Abbrev Examples • . • . • . . • • • • • . . •

9-1

Page

• • • . '9-1
9-2

· . . . 9-4
· . . . 9-8

FOl

This page has intentionally

been left blank.

9-11 F01

W"AT IS THt AaBREVPROCESSOR - - ----- --- ----

• ABBREV PROCESSOR

n A FACILITY ALLOWING USERS TO ABBREVIATE ·PARTS OF (OR WHOLE)
COMMAND LINES

D A SUBSYSTEM WHICH MUST BE EXPLICITLY INVOKED BY THE USER
(ABBREV MODE)

n FUNCTIONS

n RESPOND TO ABBREV REQUEST LINES

n EXPAND ABBREVIATIONS IMBEDDED IN COMMAND LINES

9-1 F01

ASBREV MECHANISM

o PLACES THE USER IN ABBREV MODE. (INVOKES THE ABBREV PROCESSOR)

o USAGE: abbrev

ab

• COMMAND LINE FLOW

TYPED LINE

! '. V
FRONT-END PROCESSOR ?~. ~

!
& __ ,;::V! -- .. ,

~./f~ .'" .:. q / '--- /, -
{ABBREV PROCESSOR} ~

!
COMMAND PROCESSOR

!
EXECUTION

9-2 F01

ABaREV MECHANISM

• ABBREV MECHANISM

n ABBREV PROCESSOR EXAMINES TYPED COMMAND LINES

n ABBREV REQUEST LINES

D BEGIN WITH "."

·0 DEFINE, DELETE, LIST ABBREVIATIONS

D CONTROL OTHER ABBREV OPERATIONS

o COMMAND LINES

n DO NOT BEGIN WITH " " .
o ANY AND ALL PREVIOUSLY DEFINED ABBREVIATIONS FOUND ARE

EXPANDED

D COMMAND LINE IS THEN PASSED ON TO THE COMMAND PROCESSOR

n ABBRE'lIAJ'JONS"
rPerson_id ~p-r"bfile

9-3

IN A HOME DIRECTORY SEGMENT NAMED

F01

ABBREVREQUESTS

ABBREVIATION TO THE USER'S PROFILE SEGMENT

D ABBREVIATIONS MUST BE 8 CHARACTERS OR LESS

D USAGE: .a abbrev ~eahing-of-abbreviation
\

. a F 1 > ud d > F 01

.a LARRY LJones.FED

~ ... ,.,
,"

(- J}=
''-c.,.,""".

o ADD AN ABBREVIATION WHICH IS VALID ONLY AT THE BEGINNING OF A
COMMAND

n USAGE: . ab abbrev meaning-of-abbreviation

.ab dp dprint -he T.Smith -ds Stat 14

.ab cata list

.ab GO ec run it.ec

9-4 F01

ABBREV REQUESTS

n DELETE SPECIFIED ABBREVIATION(S) FROM THE USER'S PROFIL~

D USAGE: . d abbrev 1 ••• abbrevn

.d LARRY

o LIST CURRENTLY DEFINED ABBREVIATIONS AND WHAT THEY STAND FOR

n USAGE: .1 {abbrevl ••• abbrev!!.}

.1

.1 F1 dp

• .1a ._ . .-

o LIST ABBREVIATIONS THAT BEGIN WITH THE SPECIFIED LETTER(S)

n USAGE: .la letterl ..• 1etter!!,

.la m

.la m d

9-5 F01

ABBREV REQUESTS

~ 0 QUIT USING THE ABBREV PROCESSOR

/'

D USAGE: . q

• .s

u EXPAND AND SHOW THE COMMAND LINE WITHOUT .EXECUTING IT

D USAGE: .s text

.s cwd F1; dp add.pl1.

9-6 F01

ABBREV REQUESTS

n EXECUTE THE COMMAND LINE WITHOUT EXPANDING IT

n USAGE 1:
(DON'T EXPAND)

o USAGE 2:
(ACKNOWLEDGE)

. text

. print A.lunch.cb

n ACKNOWLEDGE THAT THE USER IS IN ABBREV MODE (ABBREV RESPONDS
WITH "ab")

n OFTEN USED TO AFFIRM COMMAND LEVEL WHEN "MULTING" WITH THE
READY MESSAGE OFF

9-7 F01

ABBREV EXAMPLES

• LET TSmith's PROFILE SEGMENT CONTAIN THE FOLLOWING ABBREVIATIONS

ft
cb
LARRY
home
F1
lunch

b dp

fortran
cobol
LJones.FED
)udd)ProjA)TSmith
)udd)F01
sm LJones.FED Lunch time!
dprint -he TSMITH -ds Stat 14

• EXAMPLES OF COMMAND LINE EXPANSION (IF IN ABBREV MODE)

print array dot.ft
print array=dot.fortran

sm LARRY Where's your dims program?
sm LJones.FED Where's your dims program?

cwd F1)Student 01
cwd)udd)F01)Student 01

dp add.pl1
dprint -he TSmith -ds Stat 14 add.pl1

list dp.ft
list dp.fortran

lunch
sm LJones.FED Lunch time!

9-8 F01

ABBREV EXAMPLES

print A.lunch.cb
print A.sm LJones.FED Lunch timet.cobol

. print A.lunch.cb
print A.lunch.cb

. print A.lunch.cobol
print A.lunch.cobo~

print clunch.cb
print clunch.cobol

print A lunch.pl1
print A=lunch.p11

• CANDIDATES FOR EXPANSION MUST BE

n PART OF COMMAND LINE (MAY BE THE ENTIRE COMMAND LINE)

n CHARACTER STRING, 8 CHARACTERS OR LESS, THAT ARE

n BOUNDED BY BREAK CHARACTERS

I
newline
space
"
$

. , ,
I

(
)

<
>
[
]
{
}

NOTE: AND ? ARE NOT A BREAK CHARACTERS!

9-9 F01

ABBREV EXAMPLES

YOU ARE NOW READY FOR WORKSHOP
114

9-10 F01

TOPIC X

PROGRAMMING ON MULTICS

Page

What is Programming • • • . • . . • . . .
Developing a Source Program
Compiling a Source Program . . • .
Entrynames and Entry Point Names

10-1
. . 10-4

Executing an Object Program . . •
Debugging Tools .• •• ...•......•.
Dynamic Searching . . • . ••.

10-i

10-7
· 10-11
• 10-13
· 10-18
· 10-21

F01

This page has intentionally

been left blank.

10-11 F01

WHAT IS PROGRAMMING ---

• PROGRAM

n A LOGICAL SEQUENCE OF OPERATIONS TO BE PERFORMED BY A COMPUTER

n SOURCE PROGRAM

n WRITTEN IN AN ENGLISH-LIKE PROGRAMMING LANGUAGE

n CREATED BY A USER VIA A TEXT EDITOR

n KEPT IN A SEGMENT CALLED THE SOURCE SEGMENT

n CANNOT BE EXECUTED

D OBJECT PROGRAM

n WRITTEN IN BINARY MACHINE LANGUAGE

n CREATED BY A COMPILER (WHICH IS ALSO AN OBJECT PROGRAM) FROM
THE SOURCE PROGRAM

D. KEPT IN A SEGMENT CALLED THE OBJECT SEGMENT

n EXECUTED BY TYPING ITS NAME

10-1 F01

WHAT IS PROGRAMMING --

• P R OG R A MM I !i!L_~LA!.!..!N~G~U'-&&A..=.;GE~S~S:..=U:..:...P-=-PO:::..:R:.:..:T:.:E:.:D:......=.B.:.Y ..,;M.:.,:U:.::L:..::.T..::.I.::.:C S=-{!...:1~)

~11f PL/l (VERSATILE, BLOCK STRUCTURE, DYNAMIC ALLOCATION,
y~--- RECURSIVE, MANY DATA TYPES)

n FORTRAN
".::

(SCIENTIFIC COMPUTATIONS) '77 I

n COBOL (BUSINESS APPLICATIONS, VERBOSE, WIDELY USED)

D BASIC (COMPUTATIONS, EASY TO LEARN, LIMITED DATA TYPES)

o APL (DATA MANIPULATION, CRYPTIC BUT POWERFUL)

n ALM (MULTICS ASSEMBLER LANGUAGE - YES! WE HAVE AN ASSEMBLER)

• THERE EXISTS A SYSTEM PROGRAM, CALLED A COMPILER, FOR EACH
PROGRAMMING LANGUAGE SUPPORTED. COMPILERS ARE DESIGNED TO
TRANSLATE A PARTICULAR PROGRAMMING LANGUAGE INTO MACHINE LANGUAGE

(1) RELATED MULTICS COURSES: APL (G11 & F11), BASIC (F127), COBOL-74
(F13), FORTRAN (F14), PL/I (F15, F15C, F15D).

10-2 F01

WHAT IS PROGRAMMING --

• PROG.RAMMING

n DEVELOPING THE SOURCE PROGRAM IN THE PROGRAMMING LANGUAGE OF
CHOICE

n COMPILING (TRANSLATING) THE SOURCE PROGRAM (SOURCE SEGMENT)
INTO AN OBJECT PROGRAM (OBJECT SEGMENT)

n EXECUTING THE OBJECT PROGRAM USING TEST DATA

n DEBUGGING THE SOURCE PROGRAM TO CORRECT ALL OBSERVED PROBLEMS

n MAKING THE OBJECT PROGRAM AVAILABLE'

n SYSTEM PROGRAMS MUST BE "INSTALLED" IN ONE OF THE SYSTEM
LIBRARIES

D USER PROGRAMS NEED NO FURTHER ACTION EXCEPT THE SETTING OF
ACCESS TO ALLOW USE BY OTHER USERS

10-3 F01

DEVELOPING A SOURCE PROGRAM

• DESIGNING (OUTLINING) A SOURCE PROGRAM

n TOP-DOWN DESIGN

o MODULAR DESIGN

o FLOWCHARTING

B EXTERNAL DOCUMENTATION (PURPOSE, GENERAL DESIGN, HOW TO USE)

o INTERNAL DOCUMENTATION (STEP BY STEP DESCRIPTION OF THE
PROGRAM)

D "SELF-DOCUMENTING" LANGUAGES

• WRITING (CODING) THE SOURCE PROGRAM· (USUALLY ON PAPER) IN SOME
PROGRAMMING LANGUAGE

o "GO-TO-LESS" PROGRAMMING

o MNEMONIC VARIABLE NAMES

10-4 FO 1

DEVELOPING A SOURCE PROGRAM

n ERROR DETECTION AND HANDLING

• INPUTTING THE SOURCE PROGR~M, VIA A TEXT EDITOR, TO A SOURCE
SEGMENT

A SOURCE SEGMENT MAY BE GIVEN ANY DESIRED NAME, HOWEVER, THE
SUFFIX MUST BE THE ENTRYNAME OF THE PROGRAMMING LANGUAGE USED

add.pl1

A_alpha.cobol

array_dot.fortran

page_fault.alm

~OPTIONALLY FORMATTING THE SOURCE PROGRAM (COSMETICS)

n SEVERAL COMMANDS EXIST FOR THE PURPOSE OF FORMATTING SOURCE
PROGRAMS

n DONE TO IMPROVE THE READABILITY OF A SOURCE PROGRAM

n THE COMMANDS DETECT AND REPORT CERTAIN TYPES OF SYNTAX ERRORS,
AND ARE OFTEN USED AS A PRE-COMPILE EXAMINATION

10-5 FO 1

DEVELOPING A SOURCE PROGRAM

n indent, ind

n IMPROVES THE READABILITY OF A PL/1 SOURCE SEGMENT

n USAGE: indent path1 {path2} {control_arg}

ind add.pl1 add.ind.pI1

ind add.pl1

ind >udd>F01>Student_09>add.pI1 -indent 3

n CONVERTS FREE-FORM COBOL SOURCE PROGRAMS TO FIXED-FORMAT

o USAGE: format_cobol_source path1 path2

fes A_alpha.cobol A_alpha.fes.cobol

10-6 F01

COMPILING A SOURCE PROGRAM

• COMPILER:

n A SYSTEM PROGRAM DESIGNED TO TRANSLATE A PARTICULAR PROGRAMMING
LANGUAGE (ENGLISH-LIKE) INTO MACHINE LANGUAGE (BINARY) .

~ ~C_O_M_P_IL_E~C_O_M_M_AN_D_S~(_C_R_EA_T_E~O_B_J_E_CT~P_R_O_G_RA_M AND OBJECT SEGMENT!)

o USAGE: language_name path {-control_args}

p11 add.p11

p11 >udd>F01>Student_09>add.p11

cobol A_alpha.cobol

fortran array_dot.fortran

aIm page_fault.alm

• OBJECT PROGRAMS

n ALL OBJECT PROGRAMS PRODUCED BY MULTICS COMPILERS ARE:

D PURE (DO NOT MODIFY THEIR OWN CODE)
'_~""T.'"'''''''''''-''''''''''''' ~ .-

n RE-ENTRANT (MORE TH~N .ONE USER MAY EXECUTE THE SAME CODE)
--... -~ c:tJt .,A...o..-e.-~ ~

o RECURSIVE (A PROGRAM CAN CALL ITSELF).

o IN STANDARD FORMAT (OBJECTS GENERATED FROM DIFrERENT
LANGUAGES MAY CALL EACH OTHER EASILY)

10-7 FO 1

COMPILING A SOURCE PROGRAM

THE OBJECT PROGRAM IS PLACED IN A SEGMENT
SEGMENT) IN THE USER'S WORKING DIRECTORY

(CALLED THE OBJECT

THE OBJECT SEGMENT IS GIVEN THE CORRESPONDING SOURCE SEGMENT'S
ENTRYNAME WITH THE SUFFIX REMOVED

add

A_alpha

array_dot

e COMPILER LISTINGS

n SOME CONTROL ARGUMENTS WILL CAUSE A COMPILER TO PRODUCE A
COMPILER LISTING OPTIONALLY CONSISTING OF A LINE-NUMBERED
SOURCE LISTING, A SYMBOL TABLE, AN OBJECT CODE MAP, ERROR
MESSAGES, ETC.

o THE COMPILER LISTING IS PLACED IN A SEGMENT (CALLED THE LIST
SEGMENT) IN THE USER'S WORKING DIRECTORY

o THE LIST SEGMENT IS GIVEN THE CORRESPONDING SOURCE SEGMENT'S
NAME WITH THE ORIGINAL SUFFIX REPLACED BY THE SUFFIX list

add.list

A_alpha.list

array_dot.list

10-8

page_fault. list

F01

COMPILING A SOURCE PROGRAM

• DIAGNOSTICS

n COMPILERS WILL COMPLAIN ABOUT:

D SYNTAX ERRORS

D MISSPELLINGS

o UNDEFINED REFERENCES

n ERROR MESSAGES ARE PRINTED AT THE USER'S TERMINAL

o SEVERE ERRORS WILL SUPPRESS THE FORMATION OF THE OBJECT PROGRAM
AND OBJECT SEGMENT

n THE FORMAT OF ERROR MESSAGES IS COMPILER-DEPENDENT. THE
FOLLOWING IS A PL/I ERROR MESSAGE:

ERROR 158, SEVERITY 2 ON LINE 30
A constant immediately follows the identifier "zilch"
SOURCE: a = zilch 4;

10-9 FO 1

OBJECT
PROGRAM

WRITT
(BY C
INTO

••
OBJECT
SEGMENT

(add)

COMPILING ! SOURCE PROGRAM

4 PRODUCES

EN
OMPILER)

I
-~EA(.
/ ,
I DEVELOPED 1 INTO

SOURCE
PROGRAM

...

WRITTEN
(VIA EDITOR)
INTO

INPUT TO .. i
SOURCE __ iliiilill. _ •• FORMATTING
SEGMENT 4 FORMATS PROGRAM

(add.pI1)

...
INPUT
TO

OPTIONALLY
COMPILER PRODUCES t

(A PROGRAM)

10-10

WR
(BY COMP

SOURCE
LISTING

ITTEN
ILER)

INTO
'II~

LIST
SEGMENT

-(add.list)

F01

ENTRYNAMES AND ENTRY POINT NAMES

I'

ENTRYNAME (

n A NAME GIVEN TO AN ITEM CONTAINED IN A ~ ~~~~

ENTRY POINT NAME

n THE NAME ASSOCIATED WITH AN ENTRY POINT IN AN OBJECT SEGMENT

• UNLESS OTHERWISE SPECIFIED, MULTICS ASSUMES THE ENTRY POINT NAME
IS THE SAME AS THE ENTRYNAME

)"p
(!1A1J/-)

10-11 F01

:Jrl-$.,!DOLLAR SIGN),

o SEPARATES THE ENTRYNAME OF AN OBJECT SEGMENT FROM THE ENTRY
POINT NAME WITHIN THE OBJECT SEGMENT

n EXAMPLE USING AN OBJECT SEGMENT add HAVING ENTRY POINTS add
max

~~.~,--- INVOKED INTERPRETED ENTRY
add AS AS POINT

/".". add:

~- add add$add add

add$max add$max

'~t:.J
max

max max$max ?

EXAMPLE AS ABOVE WITH ALIAS NAME max ADDED TO THE SEGMENT

max:

INVOKED
AS

add

add$max

max

INTERPRETED
AS

add$add

add$max

max$max

10-12

ENTRY
POINT

add

max

max

AND

F01

EXECUTlNQ AN OBJECT PROGRAM

• AN OBJECT PROGRAM (OBJECT SEGMENT) IS EXECUTED BY TYPING ITS NAME
AT A TERMINAL

add

page_fault

>udd>F01>Student_09>add

• POSSIBLE RESULTS OF EXECUTING A PROGRAM

n PROGRAM RUNS TO NORMAL TERMINATION & USER RECEIVES READY
MESSAGE

D PROGRAM PAUSES FOR INPUT FROM THE USER'S TERMINAL

n PROGRAM HALTS BECAUSE OF A USER-IMPLANTED BREAKPOINT (A
DEBUGGING TOOL)

n ~ROGRAM HALTS BECAUSE OF A FATAL EXECUTION ERROR ----------
n OVERFLOW UNDERFLOW, DATA CONVERSION ERROR,. UNDEFINED

REFERENCE

n HALTS (INTERRUPTS) THE EXECUTION OF A PROGRAM OR COMMAND.
(FROZEN IN MID-AIR)

o RESPONDS WITH A READY MESSAGE CONTAINING A level CLAUSE

10-13 FO 1

EXECUTING AN OBJECT PROGRAM

~j~
.~'

o PROGRAM HAlTS SEC~YSE US~SSUED A QUIT SIG~
... ,.,.,--

o TERMINAL KEY LABELED ATTN, BRK, INTRPT, INTERRUPT, ...

D HALTS (INTERRUPTS) THE EXECUTION OF A PROGRAM OR COMMAND.
(FROZEN IN MID-AIR)

o RESPONDS WITH A READY MESSAGE CONTAINING A level CLAUSE

r 1038.5 0.185 0.012 27 level 2,11

10-14 F01

EXECUTING AN OBJECT PROGRAM

• THE USER'S STACK (A HISTORY OF CURRENT EVENTS)

1

....
--

.. se
user.init.admin _$ u.er_init_ldmin_ I ..

U r logs in .

Given default overseer .

2 process _ overseer _ $ proClIS_overs • .,_
.. _Receives ready message .

User types "add".
3 listen _ $ Ii.t.n_ Itvel 1,3 .. ---Abbrev processor called .

4 abbrev _ $ abbrev_

5 command _proce.sor _$ command _processor _I l Command line

6 command_processor -$ rtld_lilt
7 add $ add

is interpreted.

Program "add"
...... ~-- begins execution .

I
" "add requestsm

terminal read I I 8 tty _$ tty _get_line
and then waits. ,
User hits "break'H" I ... -----------------.......

9 ipc_$ block quit

~::~::s 1§B10 return_to_ring_O_$ return_to_ring_O_
from "Break". y I 11 deflult-lrror_handler_S win

User receives I I 12 get_to_cl_$ unclaimed_signal
level 2, 14 •
ready message.

13 Iisten_S release_stack level 2, 13

l~ __ ~1

10-15 F01

EXECUTING AN OBJECT PROGRAM

• POSSIBLE USER ACTIONS AFTER A QUIT SIGNAL OR FATAL ERROR

o IGNORE THE OLD LEVEL(S) AND PROCEED (EXPENSIVEJ

o OBSERVE WHAT WAS HAPPENING USING DEBUGGING TOOLS

value k

D CHANGE VALUES OF VARIABLES USING DEBUGGING TOOLS

let k=4

n start, sr _

o RESTARTS THE PROGRAM OF THE IMMEDIATELY PREVIOUS LEVEL AT
THE INTERRUPT POINT

D USAGE: start
,,"' ... ,. ... ,.

// sr /
L .. .-~.

n EXAMPLE: WHILE IN qedx, THE USER SIGNALS QUIT WHILE DOING A
1,$p. AFTER RECEIVING A READY MESSAGE THE USER TYPES start,
AND THE 1,$p CONTINUES

10-16 FO 1

EXECUTING AN OBJECT PROGRAM

D program_interrupt, pi

o RESTARTS THE PROGRAM AT A PROGRAMMER DETERMINED POINT

o PROGRAM MUST HAVE BEEN WRITTEN WITH A program_interrupt
HANDLER

n USAGE: program_interrupt

pi

o EXAMPLE: WHILE IN qedx, TIE USER SIGNALS QUIT WHILE DOING A
1,$p. AFTER RECEIVING A READY MESSAGE THE USER TYPES pi,
AND FINDS HIMSELF BACK IN THE EDITOR AT REQUEST LEVEL

release, rl

D RELEASES THE IMMEDIATELY PREVIOUS LEVEL(S) (ONE OR ALL)

o USAGE: release {-control_arl}

rl

rl -all

10'-17 F01

DEBUGGING TOOLS

• DEBUGGING TOOLS

n SUBSYSTEMS WHICH ARE USEFUL IN LOCATING, EXAMINING, AND
CORRECTING UNEXPECTED OCCURRENCES OR CONDITIONS WITHIN OBJECT
PROGRAMS

n SUCH TOOLS MINIMIZE THE NEED FOR MEMORY DUMPS

• debug, db

o INVOKES AN INTERACTIVE DEBUGGING AID

o HARDWARE LEVEL, SYMBOLIC, CRYPTIC

o PROCEDURES MAY HAVE ORIGINATED FROM ANY LANGUAGE. (SYMBOLIC
CAPABILITY ONLY AVAILABLE FOR PL/I AND FORTRAN)

o IN ORDER TO UTILIZE SYMBOLIC CAPABILITIES, THE SOURCE PROGRAM
MUST HAVE BEEN COMPILED WITH THE -table CONTROL ARGUMENT

o USES A HOME DIRECTORY SEGMENT NAMED Person id.breaks

o USAGE: debug

db

10-18 F01

DEBUGGING TOOLS

• probe, pb

D INVOKES AN INTERACTIVE DEBUGG1NG AID

n SYMBOLIC, SOURCE LEVEL

D PROCEDURES MUST HAVE ORIGINATED FROM PLII, FORTRAN, OR COBOL
SOURCE

n IN ORDER TO UTILIZE SYMBOLIC CAPABILITIES, THE SOURCE PROGRAM
MUST HAVE BEEN COMPILED WITH THE -table CONTROL ARGUMENT

n USAGE 1: probe path
(SETTING)

D USAGE 2: probe
(EXAMINING)

D A THOROUGH DISCUSSION OF THE probe COMMAND MAY BE FOUND IN THE
COMMANDS AND ACTIVE FUNCTIONS MANUAL AG92

10-19 F01

DEBUGGING TOOLS

DEBUG
CAPABILITIES

EXAMINE DATA, SOURCE AND OBJECT

MODIFY DATA AND OBJECT

EXECUTE COMMANDS

CONDITIONAL BREAK POINTS

EXAMINE MACHINE CONDITIONS

EXAMINE REGISTERS

DUMP DATA IN VARIOUS FORMATS

10-20

PROBE
CAPABILITIES

EXAMINE DATA AND SOURCE

MODIFY DATA

EXECUTE COMMANDS

CONDITIONAL BREAK POINTS
AND/OR OPERATIONS

F01

• RECALL:

n COMMAND PROCEDURE

o A PROGRAM INVOKED BY TYPING ITS NAME

n OBJECT PROGRAM

n EXECUTED BY TYPING ITS NAME

• COMMAND LINE INTERPRETATION

D THE FIRST WORD OF EVERY COMMAND IS ASSUMED TO BE THE NAME OF AN
OBJECT PROGRAM

list -all

Is

send_message Student_05.F01 Where are you?

add

o MULTICS SEARCHES THROUGH VARIOUS (PREDETERMINED) DIRECTORIES TO
FIND AN OBJECT SEGMENT HAVING THE SPECIFIED NAME

n IF THE SEARCHING IS SUCCESSFUL, LINKING OCCURS ("THE LINK IS
SNAPPED") AND EXECUTION COMMENCES

10-21 F01

DYNAMIC SEARCHING

• ALL COMMANDS (SYSTEM PROGRAMS), USER-WRITTEN PROGRAMS, AND
SUBROUTINE MUST BE "FOUND" BEFORE THEY CAN BE EXECUTED

'\ ('
" t; .. lV' '"
, if i rFvC/ [P V

"-. ... ,
• SEARCH RULES (WHERE, O'WHERE)

'-~-.. \.. ..

D A LIST SPECIFYING THE NAMES AND THE ORDER OF DIRECTORIES TO BE
SEARCHED

o SEARCH RULES ONLY HAVE SIGNIFICANCE FOR THE EXECUTION OF OBJECT
PROGRAMS. COMMANDS SUCH AS list AND print DO NOT SEARCH FOR
THEIR nTARGETS;;

, <r7
iJ / ~D DEFAULT SEARCH RULES

'. ~(~ ,,-.~
~ .

v\ \ -I . I

7;) {i/ i,v;t ~-'
/~ .. _ft.f:<<:;-f~ ~"-"- -;. ini tiated segments
- ___ - . referencing directory

. working directory
~. I >system library ~tandard

,,/J j/..jl>'.v):';1/ >system -library-un bundled
Ctl} .. I~. <' >system -library-1

>system-library-tools
>system=library=auth_maint

,.~--------------------------

10-22 FO 1

call R;
"""'"'

SEARCH RULES EXAMPLE FOR USER JONES

......... I--_working
directory

call T; call R; -...
o
--< :z:
> :r
H

o n
~ .. ~... ~
W >

Jones" TERMINAL INPUT

COMMAND LINE TYPI:D SEGMENTS FOUND

login Jones (login RELATED)A 'J.,J'u·
password SEGMENTS ,~ , (
pwd > sss > pwd
S > uda> ... >-Jones > S

> udd > ... > Jones >T
> udd > ... > Smith> XYZ > udd > ... > Smith> XYZ

> udd > ... > Smith> R "

XYZ > udd> ... > Smith > XYZ
>udd > ... > Smith> R

ABC > udd> ... >Jones >ABC
> udd > ... > Smith> R

pr > udd > ... > Smith> R.pl1 > sss > pr
pr R.pl1 > sss> pr

--

Jones' INITIATED SEGMENT LIST

REFERENCE
NAME SEGMENT INITIATED

) (login RELATED)
SEGMENTS

pwd > sss > pwd
S > udd:> ... >Jones >S
T "--. > udd:> ..• :> Jones > T
XYZ >udd> ... :> Smith> XYZ
R >iudd> ... > Smith> R
ABC > udd > ... > Jones > ABC
pr > sss :> pr

-

:::0
n
:z:
H
:c-
o

DYNAMIC SEARCHING

print_search_rules, psr
...

o PRINTS THE USER'S CURRENT SEARCH RULES

psr

D ADDS A DIRECTORY TO THE USER'S SEARCH RULES

n USAGE: add search rules path1 {-control_arg path2}

asr)udd)F01)Student 01)tools -after working_dir

initiated segments
referencing directory
working directory
)udd)F01)Student 01)tools
)system library standard
>system-library-unbundled
>system-library-'
>system-library-tools
)system=library=auth_maint

10-24 FO 1

DYNAMIC SEARCHING

D DELETES ONE OR MORE DIRECTORI. FROM THE USER'S SEARCH RULES

D USAGE: delete_search_rules paths

dsr >udd>F01 >Student_O.6>tools

• initiate, in

o ENABLES USERS TO INITIATE (MAKE KNOWN) SEGMENTS DIRECTLY

o THE SEGMENTS REFERENCE' NAME AND ITS ABSOLUT~ PATHNAME ARE
PLACED IN THE USER'S LIST OF 'INITIATED SEGMENTS

D USAGE: initiate path {ref_names} {-control_args}

in >udd>FED>Kerr>tools>editor

in >udd>FED>Kerr>tools>editor qx

.. ~.

10-25 F01

•

DYNAMIC SEARCHING

o LISTS THE REFERENCE NAME, PATHNAME AND SEGMENT NUMBER OF
SEGMENTS KNOWN TO THE USER'S PROCESS (I.E. INITIATED SEGMENTS)

o USAGE: 11st_ref_names {paths} {-control_args)

lrn

lrn >udd>F01>Student_01>add

• terminate ref name, tmr
~;.- --

o ALLOWS THE USER TO REMOVE A SEGMENT FROM THE LIST OF SEGMENTS
KNOWN TO HIS PROCESS (I.E. INITIATED SEGMENTS)

o USAGE: terminate_ref_name ref names

tmr add who

10-26 FO 1

~

DYNAMIC SEARCHING

• where, wh (... HOW I WONDER WHERE YOU ARE!)

n USES CURRENT SEARCH RULES TO LOCATE AND PRINT THE ABSOLUTE
PATHNAME OF A SEGMENT

n ONLY THE PRIMARY NAME OF THE LOCATED SEGMENT IS PRINTED

n MAY BE USED TO CHECK IF A NAME IS "SAFE" TO USE FOR A SEGMENT

n USAGE: where ref name {-control_arg}

wh qx

wh sort

wh wh -all

wh >udd>F01>Student_06>add.p11

• NOTE THAT IN THE SIMPLEST CASE (WHERE A USER LOGS IN, CREATES AND
EXECUTES PROGRAMS IN HIS HOME DIRECTORY), NO KNOWLEDGE OF SEARCH
RULES OR INITIATED SEGMENTS IS REQUIRED

YOU ARE NOW READY FOR WORKSHOP
#5

10-27 F01

This page has intentionally

been left blank.

10-28 F01

TOPIC XI

ACCESS CONTROL

What is Access Control .• • .
Access Control List (ACL) ...
Acces~ Manipulation Commands .
Default and Initial ACL Entries .
Access Examples . • . . • •

11-i

. .
.

Page

• 11-1
• 11-2
• 11-9
• 11-11
• 11-13

"

F01

This page has intentionally

been left blank.

11-ii F01

WHAT IS ACCESS CONTROL

• ACCESS CONTROL

n A FACILITY FOR CONTROLLING (IN A SELECTIVE MANNER): .

o ACCESS TO THE CONTENTS OF SEGMENTS

o ACCESS TO THE ATTRIBUTES OF SEGMENTS

o ABILITY TO CREATE SEGMENTS

o ABILITY TO DELETE SEGMENTS

.
n A FACILITY ALLOWING USERS TO SELECTIVELY SHARE THEIR PROGRAMS

AND DATA WITH OTHER USERS

n USER MUST EXPLICITLY GRANT (SET) ACCESS IF SHARING IS DESIRED

o set_acl, delete acl & list acl COMMANDS

B SELECTIVE SHARING

n BY Person id

n BY ACCESS MODE (READ, WRITE •..)

11-1 F01

ACCESS CONTROL LIST (ACL)

• ACCESS CONTROL LIST (ACL)

n EVERY SEGMENT AND DIRECTORY HAS ITS OWN ACCESS CONTROL LIST
(ACL)

n AN ACL IS A LIST OF User ids-LIKE ENTRIES CALLED ACCESS
IDENTIFIERS, AND ASSOCIATED ACCESS MODES

r TSmith.ProjA.*

rw Student 04.FOi.*

r *.FED.*

o IN ORDER FOR A USER TO ACCESS A SEGMENT (OR DIRECTORY):

o THE USER'S User id MUST "MATCH" AN ENTRY ON THE ACL

o FURTHERMORE, THE USER IS RESTRICTED TO THE ACCESS MODE(S)
SPECIFIED BY THAT PARTICULAR ACL ENTRY

n BY DEFAULT, USERS ARE GIVEN COMPLETE ACCESS TO THE SEGMENTS AND
DIRECTORIES THEY CREATE

n USERS MAY ADD AND DELETE ENTRIES FROM THE ACL'S OF THEIR
SEGMENTS AND DIRECTORIES VIA THE set acl AND delete acl
COMMANDS

11-2 FOi

ACCESS CONTROL LIST (ACL)

o AN ACL IS CONSIDERED AN ATTRIBUTE OF A SEGMENT OR DIRECTORY.
IN ORDER TO set ael OR delete ael, THE USER MUST HAVE THE
APPROPRIATE PERMISSION TO DO SO - .

n ACCESS VIOLATIONS ARE TRAPPED BY THE SYSTEM AND THE VIOLATOR IS
INFORMED

n ACCESS CHANGES OCCUR INSTANTANEOUSLY SINCE ACCESS RIGHTS ARE
CHECKED BY HARDWARE WITH EVERY ACCESS

11-3 F01

ACCESS CONTROL LIST (ACL)

~ ACCESS MODES FOR SEGMENTS (rew n)

•.•.. ;:;;."'=~

READ (r)

n CONTENTS OF THE SEGMENT CAN BE READ BY THE DESIGNATED
USER (S)

n print, copy, move, qedx's "r" request

----:::===.:'~

EXECUTE (e) \c:~ .~'~. & ___ .IZ.i?~

D CONTENTS OF THE SEGMENT CAN BE EXECUTED BY THE DESIGNATED
USER(S). (MEANINGFUL ONLY FOR OBJECT SEGMENTS) - ,~,~ .

o DEPENDING ON THE OBJECT PROGRAM, READ MAY ALSO BE REQUIRED!
FOR EXECUTION

D add, >udd>F01>Student_01>add

D CONTENTS OF THE SEGMENT CAN BE MODIFIED (OVER WRITTEN) BY
THE DESIGNATED USER(S)

A ~ 0 qedx' s "wIt request

?C--~·--NULL (n)~ ~ cP~~·
'l\V .. "-... ,. -~.,.-~.~---
~ DALL ACCESS TO THE CONTENTS OF THE SEGMENT IS EXPLICITLY

DENIED FOR THE DESIGNATED OSER(S)

11-4 F 0 i

.''1

ACCESS CONTROL LIST (ACL)

.!..CCZSS MODES FOR DIRECTORIES -- (sma n) ---DO NOT INFLUENCE ACCESS ON
INFERIOR DIRECTORIES

D ATTRIBUTES OF EXISTING ENTRIES IN THE DIRECTORY CAN BE
OBTAINED BY THE DESIGNATED USER(S)

n status, list

MODIFY (m)

D ATTRIBUTES OF EXISTING ENTRIES IN THE DIRECTORY CAN BE
MODIFIED BY THE DESIGNATED USER(S).

o ENTRIES CAN ALSO BE DELETED BY THE DESIGNATED USER(S)

n add_name, rename, delete, set_acl, delete acl

o NEW SEGMENTS, DIRECTORIES, AND LINKS CAN BE CREATED IN (OR
MOVED TO) THE DIRECTORY BY THE DESIGNATED USER(S)

n create, create_dir, link, copy, move

1;~N~~:~(:»)
o ALL ACCESS TO THE ATTRIBUTES OF EXISTING ENTRIES IN THE

DIRECTORY IS EXPLICITLY DENIED FOR THE DESIGNATED USER(S)
-AND- THE CREATION OF ENTRIES IN THE DIRECTORY IS EXPLICITLY
DENIED FOR THE DESIGNATED USER(S)

11-5 FO 1

ACCESS CONTROL LIST (ACL)

• ACCESS IDENTIFIERS

o THREE-COMPONENT CHARACTER STRING

o TAG IDENTIFIES THE TYPE OF PROCESS

D a - AN INTERACTIVE PROCESS (A REAL USER)

o m - AN ABSENTEE PROCESS (AN "ABSENT" USER)

D z - A SYSTEM PROCESS (A DAEMON) LOGGED IN BY THE OPERATOR

o MULTICS ASSIGNS EVERY USER AN ACCESS IDENTIFIER AT LOG IN -
o WHEN USED IN AN ACCESS CONTROL LIST, ACCESS IDENTIFIERS ARE

OFTEN CALLED "ACL ENTRIES"

o1E= A COMPONENT OF AN ACI ENTRY IS A STAR (ASTERISK), THE STAR
~ I~RP~i~~~ AS MATCHING ANY Person_id, ANt Project_id, OR

ANY tag, DING ON ITS POSITION IN TH~ ACCESS IDENTIFIER

·.F01.a

Student_09.·.·

·.·.m

• • •

MATCHES ALL INTERACTIVE F01 USERS

MATCHES Student 09 REGARDLESS OF
HOW HE LOGS IN -

MATCHES ALL ABSENTEE USERS

MATCHES EVERYONE

11-6 FO 1

ACCESS CONTROL LIST (ACL)

,~ ENTRIES IN A SEGMENT '.$ ACI. A BE ~[1Ii ~FIC IDENTIFIERS FIRST
AUTOMATICALLY . ORDERED - MOST

Frommer.F01.a

Frommer.F01.·

Frommer.·.a

Frommer.·.·

·.F01.a

•. F01 .•

·.·.a
• • •

• MATCHING User id WITH ENTRIES ON AN ACL

D PROCEEDS FROM TOP TO BOTTOM

D FIRST MATCH DETERMINES ACCESS MODE(S)

D NO MATCH IMPLIES NO ACCESS

11-7 F01

ACCESS CONTROL LIST (ACL)

• EXAMPLE: LET seg_1 HAVE THE FOLLOWING ACCESS CONTROL LIST

seg_1 's ACL

rew LJones.FED.a
rw Student 07.F01 .•
r TSmith.ProjA .•
rew White .•.•
rw ·.ProjA.·
n ·.FED.·
rw ·.SysDaemon.*
n •.•. m

r • • •

USER USER'S ACCESS

LJones.FED.a

LJones.FED.m

TSmith.ProjA.a

TSmith.FED.a

Green.ProjA.a

White.ProjA.a

White.FED.a

LJones.F01.m

LJones.FED.m

Kerr.MAC.a

11-8

rew

n

r

n

F01

o MANIPULATES THE ACL'S OF SEGMENTS AND DIRECTORIES
C~

D USAGE: ~ ~o~;~ser=ldl._~~_1!!Q.d.e:tfuser=id!!')
sa add.pl1 rw Student_04.F01.·

sa add.pl1 r •. F01 •• rw •. FED .•

sa •• pI1 r LJones .•.•

sa dir A sma LJones.FED .•

~
• delete_acl, da

o REMOVES ENTRIES FROM ACL'S OF SEGMENTS AND DIRECTORIES

D USAGE: delete acl {path {User~ids}}

da add.pl1 •. F01.-

da add.pl1 Student 04.F01.* •. FED.*

da dir A LJones.FED.*

11-9 F01

ACCESS MANIPULATION COMMANDS

o LISTS THE ACL'S OF SEGMENTS AND DIRECTORIES

D IF path OMITTED THEN NO User id POSSIBLE

n USAGE: list_acl {path {User_ids}}

la add.p11

la add.p11 LJones.FED.*

1a

11-10 F01

DEFAULT AND INITIAL ACL ENTRIES

• WHEN SEGMENTS AND DIRECTORIES ARE CREATED, AN ACL IS AUTOMATICALLY
PROVIDED BY MULTICS CONTAINING DEFAULT ACL ENTRIES

D FOR MOST SEGMENTS:

rw Person id.Project id.'
rw *.SysDaemon.* -

n FOR DIRECTORIES:

sma Person id.Project id.'
sma *.SysDaemon.*·-

• NORMAL ACCESS GIVEN TO SYSTEM DIRECTORIES:

n A USER IS GIVEN "sma" ON HIS HOME DIRECTORY

o A USER IS GIVEN "s" ON HIS PROJECT DIRECTORY

D A PROJECT ADMINISTRATOR IS GIVEN "sma" ON THE PROJECT DIRECTORY

D THE SYSTEM'S ADMINISTRATOR HAS "sma" ON >udd

11-11 F01

DEFAULT AND INITIAL ACL ENTRIES ------ ----

• INITIAL ACCESS CONTROL LIST

n A FACILITY FOR DEFINING ADDITIONAL DEFAULT ACL ENTRIES TO BE
INCLUDED IN THE ACL OF SEGMENTS AND DIRECTORIES WHEN CREATED

n DEFINABLE AT THE DIRECTORY LEVEL

n REFER TO THE DESCRIPTION OF THE FOLLOWING COMMANDS IN THE
. MULTICS COMMANDS MANUAL

set=iac1~seg, sis set_iacl_dir, sid

11st_1ac1_seg, lis list_iacl_dir, lid

delete_1acl_seg, dis delete_iacl_dir, did

11-12 F01

ACCESS EXAMPLES

ACCESS EXAMPLE FOR STUDENT _02

s

s

Student_01 Student_02

sa r n sma rw n

r n re w re n rw r

11-13 F01

ACCESS EXAMPLES

• IN WHICH DIRECTORIES CAN Student 02 SUCCESSFULLY EXECUTE THE list
COMMAND?

• IN WHICH DIRECTORIES CAN Student 02 CREATE A SEGMENT?

• SUPPOSE Student 02 CREATES A SEGMENT IN DIRECTORY Dir 1 BY TYPING

create)udd)F01)Student 01>D1r l>Z - -

CAN Student 02 DELETE THIS SEGMENT? ~ ~ ~ J'Vc ~
.,--~ ~.d(j ,

CAN Student 02 rename THIS SEGMENT? ;~ (I

CAN Student 02 READ AND WRITE THE CONTENTS OF THIS SEGMENT? ~

• IN WHICH DIRECTORIES CAN Student 02 SUCCESSFULLY EXECUTE THE
rename COMMAND? "~1 _,~ eXt;2 g rJ/~. 3

• IN WHICH DIRECTORY CAN Student 02 SUCCESSFULLY EXECUTE THE set acl
COMMAND?

11-14 FOi

ACCESS EXAMPLES

• TO WHICH SEGMENTS CAN Student 02 WRITE?

f}~Y?
I I)

• TO WHICH SEGMENTS COULD Student 02 EVENTUALLY WRITE BY SETTING THE
APPROPRIATE ACC, ES~?, L -'" '

t~~~ 5rv~

• SUPPOSE Student 02 CREATES A DIRECTORY UNDER Dir 1 BY TYPING: - -

create dir)udd)F01)Student 01)Dir 1)Dir 5 - - -

WHAT PERMISSIONS WILL Student 02 HAVE ON THIS DIRECTORY? ~I1Jr

WHAT PERMISSIONS WILL Student 01 HAVE ON THIS DIRECTORY? n
CAN Student 01 GIVE HIMSELF PERMISSIONS ON Dir 51

11-15 F01

This page has intentionally

been left blank.

11-16 F01

Message Facility
Mail Facility .
Memo Facility ..

TOPIC XII

USER COMMUNICATION

12·· i

Page

• 12- 1
• 12--4
• 12--6

F01

This page has intentionally

been left blank.

12-ii F01

MESSAGE FACILITY

n TEXT WHICH IS COMMUNICATED BETWEEN USERS VIA THE send_message
COMMAND

D A SEGMENT IN THE DIRECTORY >udd>Project_id>Person_id HAVING THE
NAME Person id.mbx

accept_messpges ,- (I\M LISTENING)

n ALLOWS ANY AND ALL INCOMING MESSAGES TO BE PRINTED ON THE
USER'S TERMINAL

D OTHERWISE, MESSAGE WILL GO TO THE USER'S MAILBOX

n ALSO CREATES A MAILBOX IF NONE EXISTS

n USAGE: accept_messages {-control_args}

am

am -print

am -brief

12-1 F01

MESSAGE FACILITY

o SENDS A MESSAGE TO A SPECIFIED USER ON A SPECIFIED PROJECT

D SMALL MESSAGES (ONE LINE)

n MESSAGES ARE EITHER

n PRINTED ON THE RECIPIENTS TERMINAL, OR

n PLACED IN THE RECIPIENTS MAILBOX

n USAGE 1: send_message Person_id.Project_id message

sm TSmith.Project_id When are you going to lunch?

sm Greenberg.FED May I have access to your file?

n USAGE 2: send message Person id.Project
(DIALOGUE MODE) -

sm TSmith.FED
Inputz
When are you going to lunch?
From TSmith.FED 11/10/78 1546.3 mst Fri: 12:00
Mary wants to go with us.
=:Fine, bring her along.
Meet you in the lobby.

12-2 F01

MESSAGE FACILITY

~
defer_meSSage~(I'M BUSY ... NO DISTRACTIONS WANTED)

o REDIRECTS ANY AND ALL INCOMING MESSAGES TO THE USER'S MAILBOX

o ELIMINATES UNWANTED INTERRUPTIONS

D USAGE: defer_messages

dm

o PRINTS ALL MESSAGES STORED IN THE USER'S MAILBOX

o MESSAGES ARE DELETED FROM THE MAILBOX WHEN PRINTED

D USAGE: print_messages {-control_arg}

pm

pm -last

12-3 F01

MAIL FACILITY

• MAIL

~~~~~~~ COMMUNICATED BETWEEN USERS VIA THE mail COMMAND 
A ~ /J ~ / J _ --r-:A 
~ 'y.~--,C'~ ~~ 

~ PRINTS ANY AND ALL MAIL (OR MESSAGES) IN A USER'S MAILBOX, OR 

~ S~NDS THE CONT~NTS OF A SEGMENT TO ANOTHER USER .f-u w w 

n WHEN SENDING, HAIL IS PLACED IN THE RECIPIENT'S MAILBOX 

n USAGE 1: mail {path} {-control_arg} 
(PRINTING) 

ml 

ml -bf 

ml )udd)F01)Student 04)Student 04.mbx 

B ALSO CREATES A RING-PROTECTED MAILBOX IF NONE EXISTS 

~., L USAGE 2: mail 0 User_ids {-control_arg} ~u (SENDING ) ~ 
mail fw16.report LJones.FED 

mail letter Student_05.F01 -ack 

mail S letter~runout TSmith.ProjA Boyd.ProjA 

12-4 F01 



MAIL FACILITY 

~USAGE 3: mail~USer_idS r.T! (SENDING) 

mail * LJones.FED TSmith.ProjA 
Input: 
The finance committee will begin meeting 
on Tuesdays at 3:30 starting 

Coffee will be provided. 

• RELATED COMMANDS 

mbx_create, mbcr 

mbx_delete, mbdl 

mbx_add_name, mban 

mbx_delete_name, mbdn 

mbx_rename, mbrn 

mbx_set_acl, mbsa 

mbx_delete_acl, mbda 

mbx_list_acl, mbla 

mbx_set_max_length, mbsml 

F01 



MEMO FACILITY 

• MEMO FACILITY 

n AN INTERACTIVE NOTEBOOK AND REMINDER LIST 

n N A HOME DIRECTORY SEGMENT NAMED 

• MEMO 

o A MESSAGE DELIVERED TO THE USER AT A PREDETERMINED DATE AND 
TIME, OR 

n A COMMAND EXECUTED BY THE SYSTEM AT A PREDETERMINED DATE AND 
TIME 

o MATURE MEMOS MAY BE ACTIVATED 

n EXPLICITLY (VIA THE memo COMMAND), OR 

n AUTOMATICALLY (WHILE USER IS LOGGED IN) 

n MEMOS OPERATE INDEPENDENT OF THE accept_messages/defer_messages 
COMMANDS 

12-6 FO' 



o 

,. 

MEMO FACILITY 

CREATES AND MAINTAINS AN INTERACTIVE NOTEBOOK AND REMINDER LIST 

USAGE 1: memo 
(EXECUTING) 

memo 

o USAGE 2: memo -list {optional_args} 
(LISTING) 

memo -list 

memo -list -match Birthday 

0 USAGE 3: memo {optional_args} memo text 
(SETTING) 

memo Good job Tom!!! Keep up the good work! 

memo -time "Friday 8am est" 10am meeting with Olson 

memo -date 5/6/78 -repeat 1year Jan's Birthday:May 9 

memo -call -tm Friday 8m May ProjA Report due today. 

memo -alarm -repeat 1day -time noon Lunch time! 

D USAGE 4: memo -delete optional_args 
(DELETING) 

memo -delete -match Birthday 

memo -delete -call 

12-7 F01 



This page has intentionally 

been left blank. 

12-8 F01 



TOPIC XIII 

MULTICS INPUT/OUTPUT FACILITIES 

Multics Input/Output . . . . .. 
System Input/Output Modules . . . . .. ... 
Input/Output Switches ••.........• 
Input/Output Commands • . • . . . . •. ...... . 
Examples • . . . . • . . • . . . . . . . • . 

13-1 

Page 

· 13 ··1 
· 13-2 
· 13-4 
• 13-10 
· 13-15 

F01 



This page has intentionally 

been left blank. 

13-ii FO' 



MULTICS INPUT/OUTPUT 

• LOGICAL 1/0 

• DEVICE INDEPENDENT 

• SYSTEM 1/0 MODULES CONTROL THE PHYSICAL DEVICES 

• 1/0 "SWITCHES" CHANNEL THE FLOW OF DATA BETWEEN PROGRAM ACCESSIBLE 
STORAGE AND DEVICES, FILES, ETC 

13-1 F01 



SYSTEM INPUT/OUTPUT MODULES 

• SYSTEM INPUT/OUTPUT MODULES 

D THE Multics SYSTEM CONTAINS THE FOLLOWING I/O MODULES: 

D discard 

IS A SINK FOR UNWANTED OUTPUT 

n rdisk 

SUPPORTS I/O FROM/TO REMOVABLE DISK PACKS 

n record_stream_ 

PROVIDES A MECHANISM FOR DOING RECORD I/O ON AN UNSTRUCTURED 
FILE, OR VICE VERSA 

D syn_ 

ESTABLISHES ONE SWITCH AS A SYNONYM FOR ANOTHER 

SUPPORTS I/O FROM/TO MAGNETIC TAPE FILES ACCORDING TO 
STANDARDS PROPOSED BY THE AMERICAN NATIONAL STANDARDS 
INSTITUTE (ANSI) 

o tape_ibm_ 

SUPPORTS I/O FROM/TO MAGNETIC TAPE FILES ACCORDING TO 
STANDARDS ESTABLISHED BY IBM 

n tape_mult_ 

SUPPORTS I/O FROM/TO MAGNETIC TAPE FILES IN Multics STANDARD 
TAPE FORMAT 

13-2 F01 



SYSTEM INPUT/OUTPUT MODULES 

n tty_ 

SUPPORTS I/O FROM/TO TERMINALS 

n vfile 

SUPPORTS I/O FROM/TO FILES IN THE STORAGE SYSTEM 

n THESE MODULES ARE DESCRIBED IN SECTION III OF THE MPM 
SUBROUTINES AND IN THE MPM PERIPHERAL INPUT/OUTPUT 

o THE USER MAY CONSTRUCT HIS OWN IIO SYSTEM INTERFACE MODULES. 
SEE "WRITING AN IIO MODULE" IN SECTION IV OF THE MPM SUBSYSTEM 
WRITERS' GUIDE 

13-3 F01 



INPUT lOUT PUT SWITCHES 

• SOFTWARE CONSTRUCT WHICH MAKES 1/0 DEVICE INDEPENDENT 

• CONNECTS THE SOURCE OF A READ OR WRITE TO THE TARGET (FILE, TAPE, 
ETC.) THROUGH A SYSTEM 1/0 MODULE 

f PROGRAM 

I/O SWITCH 

00 

13,,·4 F01 



INPUT/OUTPUT SWITCHES 

• TO PERFORM IIO, THE FOLLOWING FIVE STEPS MUST BE CARRIED OUT 
(EITHER EXPLICITLY OR IMPLICITLY): 

1} ATTACH AN I/O SWITCH. THIS STEP SPECIFIES THE SEGMENT 
PATHNAME, TAPE VOLUME NAME, ETC. FROM/TO WHICH THE 
INPUT/OUTPUT OPERATION IS MADE AND THE I/O MODULE WHICH 
PERFORMS THE OPERATION (vfile_, tape_ansi_, etc.) 

2) OPEN THE I/O SWITCH. THIS STEP PREPARES THE SWITCH FOR A 
PARTICULAR MODE OF PROCESSING (E.G. READING RECORDS 
SEQUENTIALLY) USING THE ALREADY ESTABLISHED ATTACHMENT 

3} PERFORM THE REQUIRED DATA TRANSFER WORKING THROUGH THE SWITCH 

4) CLOSE THE I/O SWITCH 

5) DETACH THE I/O SWITCH 

• SWITCHES MAY BE ATTACHED BY 

n io call COMMAND 

D SUBROUTINE CALL TO iox_$attach_ioname 

u LANGUAGE OPEN STATEMENT (IF NOT PREVIOUSLY ATTACHED) 

n DEFAULT WHEN RUNNING FORTRAN, PL/1, AND COBOL 

13-5 F01 



INPUT/OUTPUT SWITCHES 

• SWITCHES MAY BE OPENED BY 

n io call COMMAND 

D SUBROUTINE CALL TO iox_$open LANGUAGE 

D LANGUAGE OPEN STATEMENTS 

B DEFAULT WHEN RUNNING FORTRAN, PL/1, AND COBOL 

• DATA TRANSFER MAY BE PERFORMED BY: 

D io call COMMAND 

o SUBROUTINE CALL TO iox , ioa 

D get, put, read, write, etc. in PL/1 

D read, write, etc. in FORTRAN 

D read, write, etc. in COBOL 

D I/O STATEMENTS IN OTHER LANGUAGES 

13-6 F01 



INPUT/OUTPUT SWITCHES 

• THE 1/0 SWITCH MAY BE CLOSED BY: 

D 10 call COMMAND 

D LANGUAGE close STATEMENT 
LANGUAGE OPEN STATEMENT 

(IF THE SWITCH WAS OPENED BY A 
\ 

D close file COMMAND 

• THE I/O SWITCH MAY BE DETACHED BY: 

D io call COMMAND 

D SUBROUTINE CALL TO iox_$detach_iocb 

o LANGUAGE close STATEMENT (IF THE SWITCH WERE ATTACHED BY THE 
LANGUAGE open STATEMENT) 

13-7 F01 



INPUT/OUTPUT SWITCHES 

• FOUR SWITCHES ATTACHED DURING PROCESS CREATION (login, new_proc) 

o user i/o 

o user_input 

o user_output 

o error_output 

• user i/o IS ATTACHED TO THE USER'S TERMINAL THROUGH tty_ AN~ 
OPENED FOR STREAM INPUT AND OUTPUT 

• user input, user output, . and error output ARE ATTACHED TO 
user-i/o THROUGH syn_ AND ARE OPENED FOR INPUT, OUTPUT, AND OUTPUT 
RESPECTIVELY 

13-8 F01 



INPUT/OUTPUT SWITCHES 

PROCESS 

user_input error_output 

user_i/o 

1 * r TERMINAL 

STANDARD ATTACHMENTS 

13 .. ·9 F01 



INPUT/OUTPUT COMMANDS 

o PERFORMS AN OPERATION ON A DESIGNATED I/O SWITCH 

D USAGE: io_call opname switchname {.args} 

io attach payroll tape tape ansi payrol 
-cr -nm employeerec - -
-nb 1 -retain alI 

io attach poem vfile_ >udd>F01>Student_02>The._Ravin 

io open poem stream_input 

;" l'I'e.+- 101 __ ----
• .., t:)'IOO" _.a..a." ~ }lV~llJ 

io close poem 

io detach poem 

• close_file, cf 

o CLOSES SPECIFIED FORTRAN AND PL/1 FILES 

D USAGE: close file {-control_arg} filenames 

close file poem fileOB 

close file 7all 

13-10 F01 



INPUT/OUTPUT COMMANDS 

O' PRINTS INFORMATION ON THE USER'S TERMINAL ABOUT I/O SWITCH 
ATTACHMENTS 

D USAGE: print_attach_table {-control_args} {switch_names} 

pat 

pat poem 

• file_output, fo 

, 0 DIRECTS ALL SUBSEQUENT USER'S OUTPUT (TERMI~AL OUTPUT) TO A 
SEGMENT UNTIL THE revert_output COMMAND IS ENCOUNTERED 

D ATTACHES user_output TO A SPECIFIED OUTPUT FILE 

D ERROR MESSAGES (IF THEY OCCUR) STILL APPEAR ON THE USER'S 
TERMINAL 

D USAGE: file_output {path} 

fo who save 

fo 

13-11 F01 



INPUT/OUTPUT COMMANDS 

• revert_output, ro 

o RESTORES USER'S OUTPUt (TERMINAL OUTPUT) TO THE TERMINAL 

o USAGE: revert_output 

ro 

13-12 F01 



INPUT/OUTPUT COMMANDS 

PROCESS 

user_input error_output user _ outpu t 

user_i/o 

I TERMINAL I 

13-13 F01 



INPUT/OUTPUT COMMANDS 

• copy_file, cpf 

o COPIES RECORDS FROM A STRUCTURED INPUT FILE TO AN OUTPUT FILE 

o USAGE: copy_file in_ctrl_arg out_ctrl_arg {-control_args} 

cpf -input description "vfile )udd)F01)Student 01)funky" 
-output_switch funky_sw -

cpf -isw funky_sw -ods "tape_ansi foo -nm first_file -nb 1" 

cpf -ct 13 -ids "tape ansi 887677 -nm TEST21 -ret all" 
-ods "record_i~reaiii_ user_output" 

cpf -isw in ~osw out =from 43 =to 18 

o COPIES SPECIFIED CARD IMAGE SEGMENTS FROM THE SYSTEM POOL 
STORAGE INTO A USER'S DIRECTORY 

o THE SEGMENTS TO BE COPIED MUST HAVE BEEN CREATED USING THE 
Multics CARD IMAGE FACILITY 

n USAGE: copy_cards deck name {pathname} 

copy_cards card deck 

copy_cards card deck my_file 

13-14 F01 



EXAMPLES 

• EXAMPLE 1 

n READ RECORDS FROM A TAPE WITH A VOLUME NAME OF payrol AND A 
FILE NAME OF emp 

o READ THESE RECORDS ONE AT A TIME FROM COMMAND LEVEL 

io attach pt tape ansi payrol -name emp -nb 1 -ret all 
io open payroll tape sequential input 
pat pt - - . 
pt tape_ansi_ payrol -name emp -nb 1 -ret all sequential_input 

io read pt 85 
io call: 85 characters returned. 15093Robert Redford 5534 W.Yucca 

io read pt 85 
io call: End of information reached. 
io-close pt 

No data returned by pt. 

pat pt 
pt tape_ansi_ payrol -name emp -number 1 -retain all 

(not open) 
io detach pt 

o NOTE: THE TAPE RESOURCES WERE ALLOCATED PRIOR TO THE ATTACH. 
OTHERWISE, A MESSAGE WHICH WOULD INDICATE THE TAPE WAS BEING 
MOUNTED WOULD HAVE BEEN RETURNED AFTER THE io attach 

13-15 F01 



EXAMPLES 

• EXAMPLE 2 

D READ DATA FROM A FILE AND WRITE TO ANOTHER 

o USING THE SAME PROGRAM, READ FROM A FILE AND WRITE TO THE 
TERMINAL. (USE 10 call AND ATTACH THE OUTPUT SWITCH EXTERNAL 
TO THE PROGRAM) 

o THE PROGRAM: 

example 2: proc; 
dcl payroll 1n file, -_ .. _-,,-......... ~.;,.,.. 

va1Iv~~ V~~ ~~~~, 

sysprint file, 
1 emp record, 
2 pay-no char (5), 
2 emp-;-
3 name char (20), 
3 address char (20), 
(endfile, record, transmit) condition; 

on endfile (payroll in) go to fini; 
on record (payroll In) ; 
on transmit (payroll 1n) begin; 

put skip list -
("TRANSMIT ERROR. LAST RECORD READ WAS:", emp_record); 
go to fini; 

end; 

open file (payroll in) 
title ("vfile payroll file") input; 
open file (payroll out) 
title ("vf1le_ payroll_file_2") output; 

do while ("1"b); 
get file (payroll in) list (emp record); 
put file (payroll:out) skip list (emp_record)·; 

end; 

fini: close file (payroll in), file (payroll_out); 
put skip list ("doni"); 

end example_2; 

13-16 F01 



EXAMPLES 

n INPUT FILE, payroll_file: 

"12002", "Barbara Striesand", "4040 N. 30th lane" 
"15093", "Robert Redford", "5534 W. Yucca" 
"15666", "Julie Christie", "3322 W. Milky Way" 

o SEQUENCE OF EXECUTION 

example_2 

done 
pr payroll_file_2 

11/09/78 1710.8 mst Thu 

"12002" "Barbara Striesand 
"15093" "Robert Redford 
"15666" "Julie Christie 

pat 

" "4040 N. 30th Lane 
" "5534 W. Yucca 
" "3322 W. Milky Way 

user i/o 
user-input 
user-output 
error output 
sysprInt 

tty_ tty724 
syn_ user i/o 
syn_ user-i/o 
syn_ user-i/o 
syn_ user=output 

io attach. payroll out syn user output 
pat payroll out - - -
payroll out- syn_ user_output 
example=2 

~12002" "Barbara Striesand 
"15093" "Robert Redford 
"15666" "Julie Christie 
done 

" "4040 N. 30th Lane 
It "5534 W. Yucca 
" "3322 W. Milky Way 

pat payroll_out 
payroll_out syn_ user_output 

13-17 

" 
" 
" 

" 
" 
" 

F01 



EXAMPLES 

YOU ARE NOW READY FOR WORKSHOP 
16 

13-18 F01 



EXAMPLES 

• EXAMPLE 3 

n READ A DECK OF CARDS INTO THE SYSTEM AND CREATE A SEGMENT IN 
YOUR WORKING DIRECTORY CONTAINING THE CARD IMAGES 

n STEP 1: YOU MUST BE REGISTERED BY THE SYSTEM ADMINISTRATOR FOR 
CARD INPUT. YOU WILL RECEIVE A PASSWORD FOR YOUR CARD DECKS 

n STEP 2: CREATE A SEGMENT IN YOUR HOME DIRECTORY CALLED 
card input.acs 

o STEP 3: SET ACL ON THE SEGMENT TO "r" FOR (STATION ID>.*.* ANi 
FOR C~rd_Input.Daemon.* 

U STEP 4: PREPARE THE CARD DECK 

++DATA DECK NAME PERSON ID PROJECT ID 
++PASSWORD xXX 
++FORMAT MCC LOWERCASE 
++INPUT 

o STEP 5: SUBMIT THIS DECK TO THE OPERATOR. A MESSAGE WILL BE ' 
SENT TO YOU WHEN IT HAS BEEN READ 

D STEP 6: EXECUTE THE COPY CARDS COMMAND 

copy_cards deck name 

13-18, F01 



TOPIC XIV 

MORE ABOUT THE ABBREV PROCESSOR 

The do Command • • • • • . . . • 
Areas for Additional study . • . • . 

14-1 

. . . . 
Page 

. 14-1 
14-5 

F01 



This page has intentionally 

been left blank. 

14-1i F01 



TijE DO COMMAND 

• MOTIVATION: 

o WOULD LIKE TO BE ABLE TO DO THE FOLLOWING: 

.ab PL1 ind; p11 

PL1 add.p11 

D WHICH EXPANDS TO: 

ind; pl1 add.p11 

D BUT WANT: 

ind add.p11; p11 add.p11 

• do 

o SUBSTITUTES SUPPLIED ARGUMENTS INTO A COMMAND LINE 

D PRIMARILY INTENDED FOR USE IN ABBREVIATIONS 

D USAGE: do "command line" args 

do "ind 

~r' ><~ "" do "ind &1; ind &2; ind &3" add.pl1 sub.pI1 muIt.pl1 

F01 



THE .QQ COMMAND 

• COMMAND LINE FLOW 

TYPED LINE 

! 
FRONT-END PROCESSOR 

1------------
{ABBREV PROCESSOR} 

! 
COMMAND PROCESSOR-+ do COMMAND PROCEDURE 

1 
"I' 

EXECUTION 

14-2 F01 



THE DO COMMAND ------

• EXAMPLES USING THE FOLLOWING ABBREVS: 

do Hind &1;.pl1 &1" 

do "PL1 &1; dp &1" 

PLl 

PL1 DP 

PL 1 EX do tlind &1.pl1; p11 &1.pl1; &1" 

n EXAMPLE 1: 

do "ind &1; pl1 &1"' add.pl1 

ind add.pI1; pI1 add.pl1 

o EXAMPLE 2: 

14-3 

(AS TYPED) 

(ABBREV PROCESSOR) 

(DO COMMAND) 

(AS TYPED) 

(ABBREV PROCESSOR) 

(DO COMMAND) 

F01 



THE DO COMMAND 

o EXAMPLE 3: 

PL 1 DP
1 

add. pIl 
I -. i 
do "PL1 &1; dp &1" add.pl1 

PL1, add.plli dp add.p11 
I i 
do wind &1; pl1 &," add.pl'; dp add.pI1 

1nd add.pl'i pI1 add.pI'i dp add.pI' 

14-4 

(AS TYPED) 

(ABBREV PROCESSOR) 

(DO COMMAND) 

(ABBREV PROCESSOR) 

(DO COMMAND) 

FO' 



AREAS FOR ADDITIONAL STUDY 

• ADDITIONAL DOCUMENTATION 

D MPM COMMANDS AND ACTIVE FUNCTIONS (AG92) 

D help abbrev 

• STUDY TOPICS 

0 ADDITIONAL abbrev REQUESTS 

0 .U (USE ANOTHER PROFILE) 

n .p (PRINT THE PATHNAME OF THE PROFILE BEING 
USED) 

0 .af (FORCE REDEFINE) 

n .abC (FORCE REDEFINE) 

0 .r (REMEMBER MODE) 

D .f (FORGET MODE - THE DEFAULT) 

D .s (SHOW LAST LINE) 

14-5 F01 



This page has intentionally 

been lett blank. 

14-6 F01 



TOPIC XV 

ACTIVE FUNCTIONS 

What is an Active Function 5. • 

Active Function Mechanism • • 
Active Function Examples ••• 
Areas for Additional Study • . . 

15-1 

. . . . 

Page 

• • . . 15-1 
.•.•.•• • 15--3 
• • • • • • • . 15 4 

. . ... . . 15-7 

F01 



This page has intentionally 

been left blank. 

15-ii F01 



WHAT IS AN ACTIVE FUNCTION 

• ACTIVE STRING 

n A SUB-STRING (A PART) OF A COMMAND LINE DELIMITED (SET OFF) BY 
SQUARE BRACKETS 

I INTENDED TO BE REPLACED BY A CORRESPONDING VALUE 

n EXAMPLES: 

sm [last message sender] Thank you! 
sm LJones.ProjA Thank you! 

delete [oldest segment] 
delete seg_1 -

n LIKE A DYNAMIC (OR VARIABLE) ABBREVIATION 

n FREQUENTLY USED WITHIN ABBREVIATIONS 

n THERE ARE MORE THAN 10 ACTIVE STRINGS DEFINED BY MULTICS 

15-1 F01 



WHAT IS AN ACTIVE FUNCTION ----

• ACTIVE FUNCTION 

o A PROGRAM EXPLICITLY DESIGNED TO EVALUATE AND RETURN THE VALUE 
OF AN ACTIVE STRING 

D USERS MAY DEFINE THEIR OWN ACTIVE STRINGS AND WRITE THEIR OWN 
CORRESPONDING ACTIVE FUNCTIONS 

n MANY ACTIVE FUNCTIONS MAY ALSO BE INVOKED AS COMMANDS 

15-2 F01 



ACTIVE FUNCTION MECHAN!SM 

• ACTIVE FUNCTION MECHANISM 

D ACTIVE STRINGS ARE IMMEDIATELY EVALUATED (EXECUTED) 

D THE RESULTING VALUE IS SUBSTITUTED FOR THE ACTIVE STRING IN THE 
COMMAND LINE 

D THE COMMAND LINE IS THEN RETURNED TO THE COMMAND PROCESSOR 

• COMMAND LINE FLOW 

TYPED-LINE 

! 
FRONT-END PROCESSOR 

! 
{ABBREV pr.~C_E_SS_O_R_} ____ """1 

PROCESSOR -+ ACTIVE FUNCTION COMMAND 

! 
EXECUTION 

F01 



ACTIVE FUNCTION EXAMPLES 

o RETURNS THE User 1d OF THE SENDER WHO SENT THE LAST MESSAGE 
RECEIVED 

o USAGE 1: last_message_sender 

lms 
LJones.FED 

o USAGE 2: [last_message_sender] 

Sm [lms] tHANK YQUi 
sm LJones.FED.THANK YOUI 

who elms] 
who LJones.FED 

• wd 

o RETURNS THE PATHNAME OF THE USERS WORKING DIRECTORY 

D USAGE 1: wd 

wd 
>udd>FED>May 

o USAGE 2: [wd] 

sm Kerr.FED THE pathname 1s [wd]>add.p11 
sm Kerr.FED THE pathname 1s >udd>FED>May>add.p11 

15-4 F01 



ACTIVE FUNCTION EXAMPLES 

• date 

o RETURNS THE DATE IN mm/dd/yy FORM 

D USAGE 1: date {dt} 

date 
11/01/77 

date "12 June" 
06/12/78-

D USAGE 2: [date {dt}] 

• home dir 

create alpha.version [date].p11 
create alpha.version=11/01/77.p11 

o RETURNS THE PATH NAME OF THE USERS HOME DIRECTORY 

D USAGE 1: home dir 

home dir 
>udd>F01>Student_07 

D USAGE 2: [home_dir] 

pr [home dir])add.p11 
pr >udd>F01>Student_07)add.p11 

15-5 F01 



ACTIVE FUNCTION EXAMPLES 

• segments, segs 

o RETURNS THE ENTRYNAMES (SEPARATED BY A BLANK) OF ALL SEGMENTS 
MATCHING A GIVEN STARNAM£ 

D USAGE: [segments starname] 

dprint [segs **.pll] 
dprint add.pl1 seg_1.pI1 

e contents 

o RETURNS THE CONTENTS OF A SPECIFIED ASCII SEGMENT SEPARATED B" 
BLANKS 

o USAGE: [contents path] 

sm TSmith.FED Their names are: [contents Names] 
sm TSmith.FED Their names are: LJones.FED Kerr.MED 

mail letter.2 [contents Names] 
mail letter.2 LJones.FED Kerr.MED 

15-6 F01 



AREAS FOR ADDITIONAL STUDY 
--- ! 

• ADDITIONAL DOCUMENTATION 

o MPM COMMANDS AND ACTIVE FUNCTIONS (AG92) 

o help <active function name> 

• STUDY TOPICS 

D ARITHMETIC ACTIVE FUNCT!ONS 

n 'ceil, divide, floor, max, min, minus, mod, plus, quotient, 
times, trunc 

o CHARACTER STRING ACTIVE FUNCTIONS 

n default, format line, index, index set, length, search, 
string, substr, underline, unique, verify 

o DATE AND TIME ACTIVE FUNCTIONS 

o date, date time, day, day name, hour, long_date, minute, 
month, month=name, time, year 

D LOGICAL ACTIVE FUNCTIONS 

D and, equal, exists, greater, less, nequal, ngreater, nIess, 
not, or 

15-7 F01 



AREAS FOR ADDITIONAL STUDY 

n PATHNAME MANIPULATION ACTIVE FUNCTIONS 

n directory, entry, 
suffix 

equal_name, path, 

o QUESTION ASKING ACTIVE FUNCTIONS 

o query, response 

o STORAGE SYSTEM ATTRIBUTES ACTIVE FUNCTIONS 

o lv_attached, ~tatus 

o STORAGE SYSTEM NAMES ACTIVE FUNCTIONS 

strip, strip_entry, 

o directories, files, get pathname, home dir, links, 
nondirectories, nonlinks, nonsegments, pd, segments, wd 

D USER PARAMETER ACTIVE FUNCTIONS 

n have mail, last message sender, 
last=message, system~ user -

15-8 F01 



TOPIC XVI 

MOij.E ABOUT EXEC COM'S 

.Page 

Review . • . • . • • . • • • . .. .•. .... 16-1 
A~gument Substitution • 
Control Statements . • . 
Exec com Examples • . • 
Areai for Additional Study 

. . . . . • . • . .. .. 16··3 
. . . . . . . . . . . . . . . . 16-4 

• . • . . • . •. . ... 16 .. ·10 
• • . . ..... 16-13 

16-i F01 



This page has intentionally 

been 

16-11 F01 



REVIEW 

• EXEC COM 

n A SEGMENT CONTAINING A SERIES OF COMMAND LINES . 

o CREATED USING A TEXT EDITOR 

n NAME MUST HAVE SUFFIX OF ec 

o THE COMMAND LINES ARE EXECUTED SEQUENTIALLY, AS ! SET, WHENEVER 
INVOKED BY THE USER 

D ABBREVIATIONS ARE EXPANDED IN THE NORMAL MANNER 

n MAY BE RECURSIVELY INVOKED 

o EXECUTES THE COMMAND LINES CONTAINED IN AN EXEC COM SEGMENT 

D USAGE: exec com 

ec A.ec 

ec weird.ec flower tree add 

16 --, F01 



REVIEW 

• EXEC COM LINE FLOW 

EXEC COM LINES -1 
{ABBREV lROCESSORJ 

COMMAND PROCESSOR 

1 
EXECUTION 

16-2 F01 



ARGUMENT SUBSTITUTION 

• ARGUMENT SUBSTITUTION 

n CERTAIN CHARACTER STRINGS ARE REPLACED BY A CORRESPONDING VALUE 
BEFORE THE EXEC COM IS EXECUTED 

o EXAMPLES USING EITHER OF THE FOLLOWING COMMAND LINES 

ec weird.ec flower tree add 
ec >udd>F01>Student_05>weird.ec flower tree add 

o &<number> 

o REPLACED BY THE 
(POSITIONAL) 

&1 +-flower 

&3 +-add 

&5 +- <nothing> 

o &n 

CORRESPONDING OPTIONAL 

o REPLACED BY THE NUMBER OF ARGUMENTS SUPPLIED 

&n +-3 

n &ec name 

ARGUMENT 

o REPLACED BY THE ENTRYNAME PORTION OF THE EXEC COM'S 
PATHNAME WITHOUT THE ec SUFFIX 

&ec name 

o &ec dir 

o REPLACED BY THE DIRECTORY NAME PORTION OF THE EXEC COM 
PATHNAME 

&ec dir +- )udd>F01 >Student_05 

. 16-3 F01 



CONTROL STATEMENTS 

• CONTROL STATEMENTS 

D EXEC COM LINES THAT BEGIN WITH SPECIAL KEY WORDS 

o ALL KEY WORDS BEGIN· WITH & (AMPERSAND) 

o PROVIDE VARIETY AND CONTROL DURING EXECUTION 

• &command line off 

o SUPPRESSES THE PRINTING OF SUBSEQUENT COMMAND LINES 

o USAGE: &command line off 

• &command line on 

o CAUSES SUBSEQUENT COMMAND LINES TO BE PRINTED. (THE DEFAULT) 

o USAGE: &command line on 

16-4 F01 



CONTROL STAtEMENTS 

• &print text 

D CAUSES THE TEXT FOLLOWING &print TO BE PRINTED ON THE USER'S 
TERMINAL 

D USAGE: &print text 

&print BEGINNING COMPILE PHASE 

o IDENTIFIES A PLACE TO WHICH AN &goto TRANSFERS CONTROL 

n USAGE: &label label name 

&goto 

&label Arg_Check 

&label &1 

----

o CAUSE CONTROL TO BE TRANSFERRED TO 

D USAGE: &goto label name 

&goto Arg_Check 

&goto &1 

16-5 

PLACE SPECIFIED 

F01 



• 

o USED WITH LOGICAL ACTIVE FUNCTIONS (WHICH RETURN "true" OR 
"fal se") 

o USAGE 1: &if [ACTIVE FUNCTION {atgs}] 
&then EXEC COM STATEMENT 

&if [exists seg add.pIl] 
&then pll add.pll;add 

o USAGE 2: &if [ACTIVE FUNCTION {args}] 
&then EXEC COM STATEMENT 
&else EXEC-COM STATEMENT 

&1f [equal [wd] [home dir]] 
&then &goto OK -
&else &print Assuming working_dir is correct 

• & 

o USED TO INDICATE A COMMENT LINE 

n USAGE: & text 

& THIS EXEC COM DETERMINES THE USER'S Project id 
& AND THE rIME OF DAY IN ORDER TO ...... -

16-6 F01 



CONTROL STATEMENTS 

o CAUSES EXECUTION OF THE EXEC COM TO HALT (DEFAULT AT END OF 
SEGMENT) 

o USAGE: &qu1t 

~--.-~ 

• &attach 

it, CAUSES SUBSEQUENT COMMANDS WHICH NORMALLY TAKE THEIR INPUT FROM 
THE TERMINAL TO TAKE THEIR INPUT FROM THE EXEC COM SEGMENT 

J -

D USAGE: &attach 

o EXAMPLES: 

qedx REQUESTS ARE 
READ FROM TERMINAL 

&command line off 
cwd >udd>FED>May 
qedx 
cwd >udd>FED>Kerr 

16-7 

qedx REQUESTS ARE 
READ FROM EXEC COM 

&command line off 
&attach -
cwd >udd>FED>May 
qedx 
r seg 1 
1 t ~ Inn" e I .. 1..1; "0 I '-' . ,;.- .... " .. ,..., , """''-'~/" 
q 
cwd >udd>FED>Kerr 

F01 



CONTROL STATEMENTS 

6~-
~USED TO REVERT &attach 

o CAUSES SUBSEQUENT COMMAND WHICH "NORMALLY TAKE THEIR INPUT FROM 
THE TERMINAL TO CONTINUE TO TAKE THEIR INPUT FROM THE TERMINAL 

D USAGE: &detach 

• &input_line off 

o SUPPRESSES THE PRINTING OF SUBSEQUENT INPUT LINES {SUCH AS 
REQUEST LINES} 

D USAGE: &input_line off 

r. &input_l~:-~0 
o CAUSE SUBSEQUENT INPUT LINES TO BE PRINTED~ 

16-8 FOl 



CONTROL STATEMENTS 

Y CAUSES THE INVOCATION OF THE USER'S READY PROCEDURE AFTER THE 
~ EXECUTION OF EACH COMMAND LINE WITHIN THE EXEC COM 

o CAUSES THE USER'S READY PROCEDURE NOT TO BE INVOK"~~~";.0 
WITHIN THE EXEC_COM ~.~ ~ 

exec com DEFAULTS: 

&command line on 

&input_line on 

&ready off 

&detach 

16-9 F01 



• EXAMPLE 1: 

EXEC COM EXAMPLES 

LET pl1_pr.ec CONTAIN: 

pl1_pr . ec 

lind &1.p11 I 
pil &i.pli -map 
dp &l.list 

ind &2.pll 
pl1 &2.pll -map 
dp &2.1ist 

o LET THE COMMAND LINE BE: ec pl1_pr.ec add sub 

o LET THE COMMAND LINE BE: ec pl1_pr.ec sub 

• EXAMPLE 2: LET pll_pr.~c CONTAIN: 

pll_pr.ec 

~dE!: :::m~~:::i~~ ~jf &then &quit 
.~ pll &l.pll -map 

,//~~!~f &lE;~~!l'\&n 1] &then &qui t 
~-:-- .. \,; ind &2.pll 

pl1 &2.pll -map 
.dp &2!!11st 
&quit 

16-10 F01 



EXEC COM EXAMPLES 

• EXAMPLE 3: LET pll_pr.ec HAVE AN ADD NAME" OF pll_pr_.ec AND 
CONTAIN: 

&goto &ec name 
&label pIT pr 
&command lIne off 

pI1 pr.ec 
pll_pr_.ec 

&print Beginning &ec name exec com 
&if [ngreater &n 0] ithen &goto pI1 pr 
&print Usage 1s: ec &ec_name.ec paths­
&quit 

&Iabel pIl pr 
dl &1 -brief­
ind &1.pI1 
pI1 &1.pI1 -map 
& CHECK FOR A SUCCESSFUL COMPILE. (WAS OBJECT CREATED). 
&if [exists segment &1] &then dp &1.list 

&if [ngreater &n 1] &then ec &ec_dir>pIl_pr_.ec &2 &3 &4 
&quit 

16-11 F01 



EXEC COM EXAMPLES 

ADDITIONAL EXAMPLES OF EXEC COM CONTROL STATEMENTS: 

&if [equal [day_name] Monday] &then ....• 

&if [query "Do you really • __ . ?"] &then_ ..••..•. 

&if [equal all [response "How many do you want?"] ] &then ....• 

&if [equal TSmith.FED [last_message_sender] ]~&then .••.•.• 

&if [equal S [substr [user name] 1 1] ] &then •.•..•.. 

&if [equal 0 [min &1 &2 &3 &4] ] &then ..••.••• 

& if [or [equal. . . • . ••. ] [less. . . . . • __ .] ] &then 

&if [nless 0 [index "&1 &2 &3 &4" -all] ] &then ...... . 

&if [equal 0 [mod &n 2] ] &then ...... . 

16-12 F01 



AREAS FOR ADDITIONAL StUDY 

• ADDITIONAL DOCUMENTATION OF exec com FACILITIES: 

D MPH COMMANDS AND ACTIVE FUNCTIONS (AG92) 

o help exec_com 

• STUDY TOPICS 

o ARGUMENT SUBSTITUTION 

n &q.!, &ri (QUOTING AND REQUOTING OF ARGUMENTS) 

o &f1 (THE ARGUMENT STRING STARTING WITH THE 1TH ARGUMENT) 

D &qf!, &rfi (QUOTING AND REQUOTING OF ARGUMENT STRINGS) 

o CONTROL STATEMENTS 

D &print CONTROL STRINGS: " -, 

YOU ARE NOW READY FOR WORKSHOP 
17 

16-13 F01 



This page has intentionally 

been left blank. 

16-14 F01 



TOPIC XVII 

ABSENTEE USAGE 

Wh~t 1s Absentee Usage ••• • • • • • 
Absentee Commands • • • • • • • • • ~ • 
Areas for Additional Study • • • • • • • 

11-1 

. . . . . . . . . . . 

Page 

· 17-1 
· 17-7 
• 17-9 

F01 



This page has intentionally 

been left blank. 

17-ii F01 



WHAT IS ABSENTeE USAGE 

• ABSENTEE FACILITY 

n A FACILITY FOR RUNNING BACKGROUND JOBS (i.e. BATCH JOBS) 

D GIVES USERS THE ABILITY TO EXECUTE LARGE JOBS WITHOUT WAITING 
AT THE TERMINAL WHILE THE JOB IS IN PROGRESS 

D CHARGES FOR ABSENTEE USAGE IS USUALLY LOWER THAN CHARGES F0r. 
INTERACTIVE USAGE 

o A·USER MAY RUN MANY ABSENTEE JOBS AT ONCE, BUT IS SUBJECT T~. 
THE CURRENT SYSTEM LIMIT ON THE NUMBER OF ABSENTEE JOBS 

B LANGUAGE FOR ABSENTEE USAGE IS IDENTICAL TO THE INTERACTIVE 
COMMAND LANGUAGE 

• PROCESS 

o A PROGRAM CREATED FOR THE USER AT LOG IN, AND DESTROYED AT LOG 
OUT 

o AN ACTIVE AGENT WHICH DOES WORK FOR THE USER 

o LIKE A PRIVATE COMPUTER, WORKING IN ITS OWN MEMORY UNDER THE 
CONTROL OF THE USER 

17-1 FOl 



WHAT IS ABSENTEE USAGE ---------

• INTERACTIVE USAGE 

DUSING MULTICS INTERACTIVELY VIA A TERMINAL 

o USER'S PROCESS INTE~ACTS WITH THE USER 

• ABSENTEE USAGE 

I USING MULTICS WHILE ABSENT FROM A TERMINAL 

o USER'S PROCESS "INTERACTS" WITH AN INTERACTIVE SCRIPT 

o AN ABSENTEE JOB IS A "PLANNED" INTERACTIVE TERMINAL SESSION 

17-2 F01 



WHAT IS ABSENTEE USAGE 

• ABSENTEE MECHANISM 

n USER CREATES AN ABSENTEE INPUT SEGMENT CONTAINING 'COMMANDS TO 
BE EXECUTED 

D THE ABSENTEE INPUT SEGMENT 

n MUST HAVE SUFFIX OF absin 

n CONTAINS A PLANNED INTERACTIVE SCRIPT, 
ANSWERS TO ANTICIPATED QUESTIONS 

n HAS THE SAME SYNTAX AS EXEC COM SEGMENTS 

INCLUDING PRESET 

n USER REQUESTS THE EXECUTION OF THE ABSENTEE INPUT SEGMENT VIA 
THE enter_abs_request COMMAND 

D EXECUTION MAY BE DEFERRED UNTIL A SPECIFIED DATE AND TIME 

D THE ABSENTEE REQUEST IS QUEUED AND RUN AS BACKGROUND TO THE 
NORMAL INTERACTIVE WORKLOAD 

n ALL OUTPUT NORMALLY DIRECTED TO THE TERMINAL IS REDIRECTED TO A 
SEGMENT HAVING THE SAME NAME AS THE ABSENTEE INPUT SEGMENT 
EXCEPT THE SUFFIX IS absout 

11-3 F01 



WHAT IS ABSENTEE USAGE 

INTERACTIVE USAGE 

USER'S 
PROCESS 

.. COMMANDS 

RESPONSES r J 
-----... ..,~ USER'S 

t FILE I/O 

t I 
~ 
~. 

ABSENTEE USAGE 

COMMANDS 

TERMINAL 

A.absin 

.......... 
USER'S 
PROCESS 

.......... 11--------1 ... ~ .... 

DATA 
FILE 

RESPONSES 
. _, ---- .... eo. • 

A.absout 

, .. , ~ ... . -.--.. 
~---.... ::.:.~:::-: .. 

17-4 

.. , ~ ..... ......... . 

F01 



WHAT IS ABSENTEE USAGE 

• THE ABSENTEE PROCESS WHICH RUNS THE JOB: 

D LOGS INTO THE SYSTEM AS DOES ANY USER· (EXCEPT FOR PASSWORD 
AUTHENTICATION) 

o EXECUTES THE ABSENT USER'S start_up.ec 

o BEGINS WORKING IN THE ABSENT USER'S HOME DIRECTORY 

o TAKES ITS COMMANDS FROM THE ABSENTEE INPUT SEGMENT 

D APPEARS (AND IS) ANOTHER USER HAVING THE ABSENT USER'S User id 

• COMMAND LINE FLOW 

ABSENTEE INPUT 

! 
{ABBREV PROCESSOR} 

! 
COMMAND PROCESSOR 

! 
EXECUTION 

11-5 F01 



WHAT IS ABSENTEE USAGE --

• NOTES ON ABSENTEE USAGE 

o start up.ec SHOULD BE MODIFIED TO RESPOND DIFFERENTLY TO AN 
ABSENTEE LOG IN 

\ 

I THE SYSTEM EXECUTES A USER'S start up.eo WITH ONE OF THE 
FOLLOWING COMMAND LINES: -

ec start up.ec 
ec start-up.ec 
ec start-up.ec 
ec start:up.ec 

login 
login 
new_proc 
new_proc 

interactive 
absentee 
interactive 
absentee 

o THE USER MAY QUERY THE ARGUMENTS USING exec com LINES 
SIMILAR TO THE FOLLOWING: 

&if [equal &1 10~ln) &then •.. 

&if [equal &2 absentee] &then ..• 

o THE ABSENTEE INPUT SEGMENT MUST CONTAIN change wdir COMMAND IF 
WORKING DIRECTORY IS TO BE OTHER THAN HOME DIRECTORY 

B THE ABSENTEE INPUT SEGMENT OFTEN (SUT NEED NOT) HAS logout AS 
FINAL COMMAND 

o &attach HAS NO SIGNIFICANCE IN AN ABSENTEE "INPUT SEGMENT SINCE 
ALL USER INPUT IS ATTACHED TO absin FILE 

o IF THE ABSENTEE JOB CANNOT BE RUN, OR IF IT TERMINATES 
ABNORMALLY, THE SUBMITTER WILL RECEIVE A MESSAGE FROM THE 
SYSTEM 

17-6 FOl 



ABSENTEE COMMANDS 

• enter_abs_request, ear (BATCH NEVER LOOKED LIKE THIS!) 

n QUEUES! REQUEST FOR THE CREATION OF AN ABSENTEE PROCESS 

n USAGE: enter_abs_request path {-control~args} 

ear weird.absin 

ear weird.absin -restart 

ear transeabsin -time "Friday 9pm" 

ear trans.absin -queue 1 -arguments add sum 

o PRINTS INFORMATION ABOUT ABSENTEE REQUESTS 

o USAGE: list_abs_request {-control_args} 

lar 

lar -q 1 

lar -all 

17-7 F01 



ABSENTEE COMMANDS 

o CANCELS AN ABSENTEE REQUEST WHICH IS STILL QUEUED 

o USAGE: cancel_abs_request request_id {-control_args} 

car we1rd.absin 

car trans.absin -q 1 

car -id 202008 

• answer 

o PROVIDES PRESET ANSWER(S) TO QUESTION(S) ASKED BY A COMMAND 

D PRIMARILY FOR USE IN ABSENTEE INPUT SEGMENTS 

D THE ANSWER IS PROVIDED AN UNLIMITED NUMBER OF TIMES UNLESS 
LIMITED BY THE -tim$s CONTROL ARGUMENT 

D UNUSED ANSWERS ARE IGNORED 

0 USAGE: answer ans {-control_args} command_line 

answer yes delete d1r Dir A - -
answer yes -times 2 help send_message 

answer rest help trace 

answer no answer yes -times 2 help trace 

F01 



AREAS FOR ADDITIONAL STUDY 

• ADDITIONAL DOCUMENTATIpN 

n MPM COMMANDS AND ACTIVE FUNCTIONS (AG92) 

• STUDY TOPICS 

n CONTROL ARGUMENTS 

n -output_file, -limit, -brief 

o ABORTING OF AN ACTIVE ABSENTEE PROCESS (THERE IS NO "GRACEFUL" 
WAY) 

o DELETE ACCESS TO THE absin SEGMENT 

D DELETE ACCESS TO THE absout SEGMENT 

n CALL OPERATOR 

n SELF PERPETUATING ABSENTEE PROCESS;S 

17-9 F01 



This page has intentionally 

been left blank 

17-10 



TOPIC XVIII 

SOFTWARE CONVENTIONS 

Command Language Special Symbols 
Segment Name Suffixes . 
Suffix Convention . . . • . . . . 
Canonical Form . . . . . • . 
set_tty Command . . . 

18-i 

Page 

· 18-1 
. • 18-1 

· 18-9 
. . . • . . 18· .. 10 

• 18-12 

F01 



This page has intentionally 

been left blank. 

18-ii F01 



COMMAND LANGUAGE SPECIAL SYMBOLS 

• . (PERIOD) 

n SEPARATES COMPONENTS OF AN ENTRYNAME, STAR NAME, OR ACCESS 
IDENTIFIER 

A_test.aIpha.cobol 

1.I.p11 

Student 04.F01.m 

• (UNDERSCORE) 

n SIMULATES A SPACE FOR READABILITY IN ENTRYNAMES 

IT IS NOT AN ABBREV BREAK CHARACTER 

n ALL SYSTEM SUBROUTINES END IN 

• > (GREATER-THAN) 

n DENOTES HIERARCHY LEVEL (TOP DOWN) 

n SEPARATES THE ENTRYNAMES IN A PATHNAME 

>udd>F01>Student_Ol>tools>my_editor.p11 

18-1 F01 



COMMAND LANGUAGE SPECIAL SYMBOLS 

• < (LESS-THAN) 

o INDICATES ONE LEVEL BACK UP IN THE HIERARCHY 

D EXAMPLES ASSUMING WORKING DIRECTORY IS )udd)FED)LJones)tools 

cwd < 
cwd >udd>FED>LJones 

cwd « 
cwd >udd>FED 

pr <start up.ec 
pr )udd>F!D>LJones>start_up.ec 

pr «TSmith>tools>random 
pr >udd>FED>TSmith>tools>random 

• • (STAR OR ASTERISK) 

o MATCHES ANY COMPONENT OF AN ENTRYNAME OR ACCESS IDENTIFIER 
(STAR CONVENTION) 

list seg_' .•.• 

list seg_' .• • 

sa * * r LJones.*.a 

18-2 F01 



COMMAND LANGUAGE SPECIAL SYMBOLS 

• ? (QUESTION MARK) 

n MATCHES ANY 
CONVENTION) 

LETTER OF A COMPONENT OF'AN ENTRYNAME (STAR 

• : (EQUAL) 

list s1??old.pI1 
list s1?** 

n IS REPLACED BY THE CORRESPONDING COMPONENT OF AN ENTRYNAME 
(EQUAL CONVENTION) 

n * (STAR) AND : (EQUAL) ARE SYMMETRICAL IN MEANING 

rename 
rename 

rename 
rename 

random.gen.pI1 
random.gen.pI1 

random.data.base 
random.data.base 

ordered.:.: 
ordered.gen.pI1 

random.data 

rename beta my :.old 
rename beta my=beta.old 

rename 
rename 

add name 
add-name 

*.new.pI1 
beta.new.pI1 

**.ec 
pI1_pr.ec 

18-3 

:.old.: 
beta.old.pI1 

==.absin 

F01 



COMMAND LANGUAGE SPECIAL SYMBOLS 

• S (PERCENT) 

o IS REPLACED BY THE CORRESPONDING CHARACTER OF A COMPONENT NAME 
(EQUAL CONVENTION) 

o ? (QUESTION MARK) AND S (PERCENT) ARE SYMMETRICAL IN MEANING 

rename myoId ed.pl1 
rename my=old=ed.pl1 

rename ????*.data 
rename alpha_2.data 

• {SEMI-COLON} 

SSSnewSSS.= 
my_new_ed.p11 

SSS.= 
alp.data 

D USED TO SEPARATE MULTIPLE COMMANDS· IN A COMMAND LINE 

cwd dir_aj list; 

• - (MINUS SIGN) 

o IDENTIFIES CONTROL ARGUMENTS 

list -directory 

dprint -he TSmith -ds MS106 

18-4 FO' 



\ 
COMMA~D LANGUAGE SPECIAL SYMBOLS 

• () (PARENTHESES) 

n CAUSES COMMAND'ITERATION 

print (A B add).pI1 

print A.p11 
print B.p11 
print add.pl1 

sm Student_O{l 3 5).F01 Return to the classroom. 

sm Student 01.F01 Return to the classroom. 
sm Student-03.FOl Return to the classroom. 
sm Student-05.F01 Return to the classroom. 

rename (A B add).pI1 (a b Add).pI1 

rename A.p11 a.pl1 
rename B.p11 b.pl1 
rename add.pl1 Add.pl1 

create dir (new>(first second) old>third) 

create dir new>first 
create-dir new>second 
create-dir old>third 

18-5 F01 



COMMAND LANGUAGE SPECIAL SYMBOLS 

• [] (BRACKETS) 

o DELIMITS ACTIVE STRINGS. (EVALUATED BY ACTIVE FUNCTIONS) 

sm [last_message_sender] Thanks! 

• $ (DOLLAR SIGN) 

D SEPARATES THE ENTRYNAME OF AN OBJECT SEGMENT FROM THE ENTRY 
POINT NAME WITHIN THE OBJECT SEGMENT 

o DEFAULT ENTRY POINT NAME IS THE ENTRYNAME 

• "( QUOTES) 

n SUPPRESSES 
SYMBOLS 

add 
add$add 

add$max 
add$max 

THE SPECIAL 

rename ";" foo 

delete "A B" 

delete "A""B" 

delete A'''' B 

MEANING OF COMMAND 

(segment name 

(segment name 

(segment name 

(segment name 

18-6 

LANGUAGE SPECIAL 

is: ; ) 

is: A B) 

is: AltB) 

is: AB) 

F01 



SEGMENT NAME SUFFIXES 

absin 

absout 

ABSENTEE INPUT SEGMENT FOR THE enter_abs_request COMMAND 

ABSENTEE OUTPUT SEGMENT CREATED VIA THE " enter_abs_request 
COMMAND 

acs ACCESS CONTROL SEGMENT USEFUL TO THE 10 DAEMON 

aIm ALM SOURCE SEGMENT 

apl APL WORKSPACE SEGMENT 

archive SEGMENT MANIPULATED BY THE archive COMMAND 

basic BASIC SOURCE SEGMENT 

bind BINDFILE FOR THE bind COMMAND 

breaks BREAK SEGMENT USED BY THE debug COMMAND 

cmdb MRDS DATA MODEL SOURCE 
COMMAND 

SEGMENT FOR THE create mrds db - -

cmdsm MRDS DATA 
COMMAND 

SUB-MODEL SOURCE SEGMENT FOR THE create mrds dsm - -

cobol COBOL SOURCE SEGMENT 

code ENCIPHERED SEGMENT CREATED BY THE encode COMMAND 

compin INPUT SEGMENT TO THE compose COMMAND 

compout OUTPUT SEGMENT CREATED BY THE compose COMMAND 

diet WORDPRO DICTIONARY SEGMENT CREATED BY. THE add diet words - -COMMAND 

dsm MRDS DATA SUB-MODEL SEGMENT CREATED BY THE create" mrds dsm 
COMMAND - -

ec COMMAND FILE FOR THE exec com COMMAND 

fortran FORTRAN SOURCE SEGMENT 

gcos SEGMENT IN GCOS STANDARD SYSTEM FORMAT FOR THE geos COMMAND 

info SEGMENT FORMATTED FOR USE BY THE help COMMAND 

iodt 1/0 DEVICE TABLE 

18-7 F01 



SEGMENT NAME SUFFIXES 

linus LINUS MACRO SEGMENT FOR THE LINUS invoke REQUEST 

list LISTING SEGMENT CREATED BY A LANGUAGE PROCESSOR 

lister LISTER DATA FILE (STRUCTURED) FOR THE process_list COMMAND 

listform LISTER FORMS DESCRIPTOR SEGMENT FOR THE process_list COMMAND 

listin LISTER DATA FILE (ASCII) FOR THE create list COMMAND 

mbx MAILBOX SEGMENT FOR THE mail COMMAND 

memo DATA SEGMENT FOR THE memo COMMAND 

motd DATA SEGMENT FOR THE print_motd COMMAND 

mrpg SOURCE SEGMENT FOR THE MULTICS REPORT PROGRAM GENERATOR'S 
mrpg COMMAND 

ms MESSAGE SEGMENTS FOR RJE 

pl1 PL/1 SOURCE SEGMENT 

profile DICTIONARY SEGMENT FOR THE ABBREV PROCESSOR 

qedx MACRO SEGMENT FOR THE qedx TEXT EDITOR 

symbols SPEEDTYPE SYMBOL DICTIONARY CREATED BY THE add_symbol 
COMMAND 

wI WORDPRO WORDLIST SEGMENT CREATED BY THE create wordlist 
COMMAND 

18-8 F01 



SUFFIX CONVENTION 

• ALL COMMANDS WHICH ONLY WORK ON SEGMENTS HAVING A GIVEN SUFFIX 
WILL APPEND THAT SUFFIX TO ENTRYNAMES TYPED WITHOUT THE SUFFIX 

archive a Field work summary report 
archive a Field:work.archive-summary_report 

basic ran num gen -list 
basic ran=num=gen.basic -list 

cancel abs request weird 
cancel=abs=request weird.absin 

cobol A alpha 
cobol A=alpha.cobol 

enter abs request weird -tm 6pm 
enter=abs=request weird.absin -tm 6pm 

exec com A create add sum 
exec com A-create.ec add sum 

fortran array dot 
fortran array=dot.fortran 

indent add 
indent add.pl1 

pl1 add -optimize 
pl1 add.pl1 -optimize 

18-9 F01 



CANONICAL FORM 

• MOTIVATION 

o HOW WAS THE FOLLOWING LINE TYPED? 

The only onel 

B /"~ The onlyBBBB __ onel 

- or -

o COMPARISON OF TWO INTERNAL LINES SHOULD BE BASED ON RESULTINl 
PRINTED IMAGE 

B THEREFORE, ALL INPUT SHOULD BE CONVERTED TO A STANDARD 
(CANONICAL) FORM 

n MULTICS AUTOMATICALLY TRANSLATES ALL TERMINAL INPUT TO 
CANONICAL FORM (UNLESS THE USER REQUESTS OTHERWISE) 

o SHOULD THE USER NOTICE THAT SOME TEXT IS NOT STORED IN THE SAME 
SEQUENCE AS IT WAS TYPED, CANONICALIZATION SHOULD BE EXPECTED­
(FOR EXAMPLE, DURING CERTAIN TEXT EDITING OPERATIONS) 

18-10 F01 



CANONICAL FORM 

• CANONICAL FORM 

n OVERSTRIKES ARE STORED IN ASCENDING ASCII ORDER, SEPARATED BY 
THE BACKSPACE CHARACTER 

n EXAMPLES: (B = BACKSPACE, C = CARRIAGE RETURN, N = NEWLINE) 

TYPIST: 
TYPED LINE: 
CANONICAL FORM: 

TYPIST: 
TYPED LINE: 
CANONICAL FORM: 

TYPIST: 
TYPED LINE: 
CANONICAL FORM: 

>B(B 
l( 

<8>8 

8(B> 
i 
<B>8 

We see no prob BlemC N 
We see no problem -­
WB 8e see no problem 

18-11 F01 



SET TTY COMMAND 

• TERMINAL TYPES 

• 

I HULTIes ATTEMPTS TO RECOGNIZE TERMINAL TYPE AT DIAL-UP TIME 

I EACH TERMINAL TYPE HAS A SET OF DEFAULT 1/0 MODES 

• TERMINAL I/O MODES AFFECT CHARACTER CONVERSION, DELAY TIMES, 
AND COMMUNICATION LINE CONTROL 

D MODIFIES TERMINAL TYPE AND/OR MODES ASSOCIATED WITH TERMINAL 
I/O 

18-12 F01 



SET TTY COMMAND 

• TERMINAL I/O MODES 

o can, Acan 

n PERFORMS STANDARD CANONICALIZATION~LT IS~ 

o capo, A capo 

o OUTPUTS ALL LOWERCASE LETTERS IN UPPERCASE~AULT I~ 

o ECHOES AND INSERTS A LINE FEED .N- TWE "US£:R~~-=---INPijT S-TREAM 
WHEN A CARRIAGE RETURN IS TYPED (DEFAULT IS OFF)' 

o crecho, Acrecho 

n ECHOES A CARRIAGE RETURN WHEN A.LINE FEED IS TYPED~F~~T 
~ 

o fulldpx, Afulldpx 

o ALLOWS TERMINAL TO RECEIVE AND TRANSMIT SIMULTANEOUSLY 
(1DEFAULT IS~ 

o echoplex, Aechoplex 

n ECHOES ALL CHARACTERS TYPED ON THE TERMINAL €EF"Aui.i"rs-00 

18-13 F01 



· SET TTY COMMAND 

I edited, Aed1ted 

a ~£SSES ~TING OF UNPRINTABLE CHARACTERS - LIKE \014 
DEF~ULT IS ~FF 

18 "tab 

I IN PLACE OF SPACES WHEN APPROPRIATE 

D tabecbo, Atabecho 

j ECHOES THE Ar-- - -- - -U-····-XUHBER OF SPACES WHEN A HORIZONTAL 
TAB IS TYPED (DEFAULT IS OFFr 

el1~ "poUte 

.1 DOES NOT SEND OUT PUT~~a.-H-6ir~iLIl UNTIL THE CARRIAGE IS 
AT THE LEFT MARGIN 

I replay, Areplay 

I REPRINTS~ fARTIAL INPUT LINE THAT IS INTERRUPTED BY 
OUTPUT. (DEFAULT IS OFF!) 

YOU ARE· NOW READY FOR WORKSHOP 
18 

18-14 F01 



TOPIC XIX 

ADDITIONAL COMMANDS 

Access to the System . . . . . • . 
Storage System, Segment Contents 
Storage System, Manipulation 
Formatted Output Facilities . 
Performance Monitoring . ... 
DebugginS_e e ...•...•••.. 
Command Level Environment . 
Accounting .•.... 

Page 

. . 19-1 
19-5 

..•.••• 19-10 
• •••••. 19-13 

. . . . . 19-14 
. .... 19-15 

19-16 

Absentee Computations . .......... . 
.. 19-18 
. 19-19 

. . 19-21 Miscellaneous Tools . . . . . . . . . . . . 

19-i F01 



This page has intentionally 

19-11 F01 



ACCESS TO THE SYSTEM 
~-...;...-----

• dial, d 

\ 

D CONNECTS AN ADDITIONAL TERMINAL TO AN EXISTING PROCESS 

o ANSWERING SERVICE SEARCHES FOR A LOGGED IN PROCESS HAVING THE 
SPECIFIED Person_id AND Project_id THAT IS ACCEPTING DIAL-UPS 

n SEE THE dial manager SUBROUTINE DESCRIPTION (AK92) FOR MORE 
INFORMATION - -

n USAGE: dial dial_id Person_id.Project_id 

d 411 TransProc.HSD 

• enter, e 
enterp, ep 

D CONNECTS AN ANONYMOUS USER TO THE SYSTEM 

o THE enter REQUEST DOES NOT ASK FOR A PASSWORD WHEREAS enterp 
DOES 

u USAGE: enter {anonymous_name} Project_id 

enterp {anonymous_name} Project_id 

e JDoe FED 

ep JDoe FED 

19-1 F01 



ACCESS TO THE SYSTEM 

o USED TO GAIN ACCESS TO THE SYSTEM 

8 USAGE: login Person 1d {Project_1d} {co~trol_args} 

10g1n TSmith 

10g1n TSmith F01 -cpw -ns -modes Ifecho 

10g1n TSm1th F01 -gpw -cdp -ring 5 

login TSmith -force -hd )udd)FED)Kerr 

o TERMINATES A USER SESSION 

B USAGE: logout {-control_args} 

logout,- -bf 
'-.. .. ,., , 

logout -hold 

19-2 F01 



ACCESS TO THE SYSTEM -----

G 
~ TELLS HULTIes THAT THE TERMINAL IS AN UPPERCASE-ONLY TERMINAL 

.~. . . MUST BE INVOKED BEFORE THE ACCESS REQUEST 
~ (PREACCESS ONLY) 

(e.g., login) 

ALL INPUT IS MAPPED TO LOWERCASE EXCEPT FOR CHARACTERS PRECEDED 
BY A , (BACKSLASH) 

o USAGE: MAP 

D TELLS HULTICS THAT THE TERMINAL IS AN EBCDIC OR IBM 2741 
====-:: ~~. 

~ MUST BE INVOKED BEFORE THE ACCESS REQUEST (e.g., login) 

DUSAGE: 029 -OR- 963 

19-3 F01 



ACCESS/TO THE SYSTEM 

---~ 
hello 

f CAUSES THE GREETING MESSAGE TO BE REPEATED 

. A 

, MUST BE INVOKED BEFORE THE ACCESS REQUEST (e.g. login) 

~SEFUL IF THE GREETING WAS GARBLED (AS WOULD OCCUR WITH AN 
~EBCDIC TERMINAL OR BECAUSE OF LINE NOISE) 

~ USAGE: hello 

19-4 F01 



STORAGE SYSTEM, SEGMENT CONTENTS 

• edm 

o INVOKES A SIMPLE, INEXPENSIVE TEXT EDITOR (A SUBSYSTEM) 

o USAGE: edm {path} 

edm 

edm add.pl1 

o INVOKES A SOPHISTICATED TEXT EDITOR (A SUBSYSTEM) HAVING MACRO 
CAPABILITIES 

o USAGE 1: qedx 
(MANUAL EDITING) 

qx 

o USAGE 2: 
(MACRO EDITING) 

qedx path {optional_args} 

qx conv_ft.qedx Random.fortran 

19-5 F01 



STORAGE SYSTEM, SEGMENT CONTENTS 

~. COMBINES AN ARBITRARY NUMBER OF SEPARATE SEGMENTS INTO ONE 
~ SEGMENT (THE ARCHIVE SEGMENT) . 

o A MEANS OF ORGANIZING SEGMENTS (IDENTITY OF EACH SEGMENT IS 
PRESERVED) 

"SAVES PHYSICAL SPACE BY COMPACTING SEGMENTS TOGETHER 

D THE ARCHIVE SEGMENT MUST HAVE A SUFFIX OF archive 

o CONSTITUENT SEGMENTS ARE CALLED COMPONENTS OF THE ARCHIVF 
SEGMENT 

I THE COMMAND IS ALSO USED TO EXTRACT COMPONENTS FROM THE ARCHIVE 
AND RETURN THEM TO INDIVIDUAL STORAGE SYSTEM SEGMENTS 

~f} USAGE: 
t 2. 3 .. I --......... 

\ archive key path componen~ 

ae r bound_pll_prgms.s add.pll sub.pIl 

ae rd bound_pI1_prgms.s [segs ••. pIl] 

ac x bound_pll_prgms.s.archive sub.pIl 

ae t bound_pll_prgms.s 

ae d bound_pl1_prgms.s add.pl1 

19-6 FOl 



STORAGE SYSTEM t SEGMENT CONTENTS 

B TABLE OF CONTENTS OPERATIOH-(t, tI, tb, tlb) 

D APPEND OPERATION (~ , ad, ad f, ca, cad ,cad f) 

o REPLACE OPERATION (r, rd, rdf, cr, crd, crdf) 

o UPDATE OPERATION (u, ud, udf, ~u, cud, cudf) 

o DELETE OPERATION (d, cd) 

o EXTRACT OPERATION (x, xf) 

C B A X.archive 

8C8XACB 

19-7 F01 



STORAGE SYSTEM, SEGMENT CONTENTS 

~ • •• AND THEY SHALL BECOME AS ONE) 

o PRODUCES A SINGLE BOUND (PRE-LINKED) OBJECT SEGMENT FROM ONE OR 
MORE UNBOUND OBJECT SEGMENTS 

o THE OBJECT SEGMENTS TO BE BOUND MUST FIRST BE PLACED IN AN 
ARCHIVE SEGMENT 

o THE CONTENTS OF THE ARCHIVE SEGMENT ARE THEN "BOUND" TOGETHER 

n USAGE: bind paths {-control_args} 

bd editor mods.archive 

bind 

bound_ABC.archive 

19-8 F01 



STORAGE SYSTEM, S£GM£NT CONTENTS 

• compare_ascii, cpa 

• 

o COMPARES TWO ASCII SEGMENTS AND PRINTS THE CHANGES MADE TO THE 
CONTENTS OF PATH1 TO YIELD THE CONTENTS OF PATH2 

o THE AMOUNT OF LOOK AHEAD FOR RE-SYNCHRONIZING IS DETERMINED BY 
THE min_chars AND min_lines ARGUMENT~ 

o DEFAULT min chars IS 50, DEFAULT min lines IS 5 

o USAGE: compare_ascii path1 path2 {min_chars} {min lines} 

cpa lenum.old.p11 genum.new.p11 

. ~ 

adjUst_bit_coun~ 

ff·· CORRECTS THE BIT COUNT OF A SEGMENT (AN ATTRIBUTE STORED IN THE 
. CONTAINING DIRECTORY) TO REFLECT THE ACTUAL BIT COUNT OF THE 

SEGMENT 

D USEFUL ON FILES. LEFT IN AN INCONSISTENT STATE {BY AN ABORTING 
PROGRAM, ETC) 

o USAGE: adjust_bit_count path {-control_args} 

abc temp 

abc output_tile -lg 

19-9 F01 



STORAGE SYSTEM, MANIPULATION 

• link, lk (DON'T CONFUSE WITH DYNAMIC LINKING) 

o CREATES A LINK TO A SPECIFIED SEGMENT OR DIRECTORY 

o THE LINK "LOOKS" LIKE THE REAL THING TO MOST COMMANDS 

D USED TO SAVE PHYSICAL SPACE AND/OR . REDIRECT STORAGE SYSTEM 
ACCESSES 

o FREQUENTLY USED BY A PERSON BELONGING TO SEVERAL PROJECTS TO 
LINK HIMSELF TO A COMMON MAILBOX, start_up.ec, profile, etc. 

o USAGE: link path, {path2} 

• unlink, ul 

lk >udd>FED>Kerr>dev>x_sort >udd>FED>Kerr>tools>sort 

lk >udd>FED>Kerr>dev>x sort sort 

lk >udd>FED>Kerr>dev>x sort 

lk [home_dir]>([segs[home_dir]>**]) 

o DELETES THE SPECIFIED LINK ENTRY 

D USAGE: unlink paths 

ul sort 

19-10 F01 



..... 
\0 
I ..... 

..... 

LINKING EXAMPLE 1 

f01 

I 

~--------------~ 

link >udd>F01>Student.07>add add_7 
link >udd>F01>Student.07>5eg.2 



-\0 

• -I\) 
Lyon 

Tom start Up.8C 

I 
I 
I 
I 
I 

'I L -
l!'!..!~i~'s __ _ 

home directory 
... 

LINKING EXAMPLE 2 

Lyon .mbx 

I 

L _'_ 

r---'--
I 

I 
I 
I 
I 

Pat I 
I 
I 

L __ .J 

__ ..J 

link :>udd~MMPP~Lyon~(start_up.ec Lyon.rnbx) 
link )udd~MMPP JJ>Lyon Pat 
link )udd>WOPS )TSmith TOf 

Lyon 



FORMATTED" OUTPUT FACILITIES 

~ 

• dUmp_SegmentV 

o PRINTS A SEGMENT'S CONTENTS IN OCTAL~ ASCII, OR BCD 
-~ 

n USAGE: dump_segment path {first} {n words} {-control_args} 

ds prince 400 20 

ds add -bed 

./ 
' ....... _--"' .. /',,/' 

o ORDERS THE CONTENTS OF A SEGMENT ACCORDING TO THE ASCII 
COLLATING stQUENCE 

o SEGMENT IS BROKEN DOWN INTO SEPARATE SORT UNITS DELIMITED BY 
SPECIFIED DELIMITER STRING. SORT UNITS ARE THEN SORTED 

n USAGE: sort_seg path {-eontrol_args} 

ss tel data.old 

ss tel data.old -delimiter xx -descending 

ss tel data.old -sm tel data.new -unique 

19-13 F01 



PERFORMANCE MONITORING 

o ACCUMULATES PAGE TRACE DATA SO THAT THE TOTAL SET OF PAGES USED 
FOR· A COMMAND OR PROGRAM CAN BE DETERMINED 

o USAGE: cumulative_p~ge_trace command line {-contr~l_args} 

cpt add -reset 

opt -print 

• profile 

o PRINTS INFORMATION ABOUT THE EXECUTION OF INDIVIDUAL STATEHENT~ 
WITHIN A PL/I, FORTRAN, OR COBOL PROGRAM 

• PROGRAMS MUST HAVE BEEN COMPILED WITH THE -profile CONTROL 
ARGUMENT 

o USAGE: profile path {-control_arls} 

profile add 

profile add -reset 

19-14 F01 



DEBUGGING 

• trace_stack, ts 

D PRINTS THE USER'S SrACK HISTORY ~ MOST RECENT FIRST 

o USAGE: trace stack {-control_args} 

ts 

ts -depth 5 

• trace 

o MONITORS CALLS TO SPECIFIED PROCEDURES 

o PROCEDURES MUST HAVE ORIGINATED FROM PL/I OR FORTRAN SOURCE 

U USAGE: trace {-control_args} names 

trace add 

19-15 F01 



COMMAND LEVEL ENVIRONMENT 

o SETS THE MAXIMUM LENGTH OF OUTPUT LINES 

o WRAP-AROUND, IF IT OCCURS, IS PRECEDED BY "\e" 

o USAGE: line_length maxlength 

11 118 

o TURNS OFF THE READY MESSAGE 

I USAGE: ready_off 

rdf 

o PRINTS A READY MESSAGE AFTER EACH COMMAND LINE HAS BEEN 
PROCESSED (THE DEFAULT) 

D USAGE: ready_on 

rdn 

19-16 F01 



• 

COMMAND LEVEL ENVIRONMENT 

THE READY MESSAGE 

o USAGE: general_ready {-contro~_arg} 

gr -string "DONE MASTER" -set 

gr -string * -call print_messages -set 

gr -string READY -hour : -minute -inc cost 

gr -control * -set 

19-17 FOl 



• 

ACCOUNTING 

o RETURNS INFORMATION ABOUT STORAGE QUOTA AND USAGE FOR A 
SPECIFIED DIRECTORY 

I DOES NOT "get" THE USER ANY MORE QUOTA 

I USAGE·: set_quota {paths} {-control_args} 

gq dir_A 

Sq -lons 

o PRINTS A REPORT. OF RESOURCE CONSUMPTION FOR THE CURRENT BILLING 
PERIOD 

D USAGE: resource_usage {-control_args} 

ru 

ru -long 

19-18 F01 



• 

• 

ABSENTEE COMPUTATIONS 

fortran _ abs Q 
D~ SUBMITS AN ABSENTEE REQUEST TO PE~FORM FORTRAN COMPILATIONS AND 

dprint COMPILER'S OUTPUT 

fa array_dot.fortran 

fa array_dot -map -copy 2 

,/.~\ \ 

p11 abs,/pa- /) .- G/ 

o SUBMITS AN ABSENTEE REQUEST TO PERFORM PL/I COMPILATIONS AND 
dpr1nt .COMPILER '5 OUTPUT 

D 
USAGE: pl1_abs paths {-pI1_args} {-dp_args} {-abs_args} 

pa add.pl1 

pa add -optimize -queue 1 -hold 

19-19 FOl 



ABSENT!E COMPUTATIONS 

/ /' ,.-"-, "~\'i 
• runoff_abar; rfa / 

"--. ____ ,A'/ 

o SUBMITS AN ABSENTEE REQUEST TO PROCESS TEXT SEGMENTS (USING THE 
RUNOFF COMMAND) AND dprlnt THE OUTPUT 

B USAGE: runoff_abs path {-rf_aras} {-ear_ar,a} {-dp_args} {-ab~ 

rCa prince.runoff 

rta prince -in 10 -tm 8pm -cp 3 

• cobol_abs 

o SUBMITS AN ABSEITEE REtUEST TO PERFORM COBOL COMPILATIONS AND 
dpr1nt COMPILER'S OUTPUT 

I USAGE: cobol_lbe paths {co~ol_arla} {dp_arls} (-aba_args) 

oa add.cobol 

oa add -optimize -4ueue 1 -hold 

19-20 FOl 



MISCELLANEOUS TOOLS 

~ROVIDE THE USER WITH A CALCULATOR (A SUBSYSTEM) 

o ACCEPTS FORTRAN-LIKE EXPRESSIONS 

n pi AND e ARE BUILT-IN VARIABLES 

o USAGE: calc 

--~ 

~) ~ 

calc 
x=pi I 3.4 *1 2 
3.51 * 2**(x * 10.7)/sin (35.7) 
q 

o ENCIPHERS A SEGMENT'S CONTENT ACCORDING TO A KEY SUPPLIED BY 
THF. USER 

o enoode ASKS TWO TIMES FOR THE ENCIPHER KEYWORD 

n ENCIPHERED SEGMENT IS GIVEN A SUFFIX OF code 

o USAGE: encode pathl {path2} 

encode blacklist 

19-21 FOl 



MISCELLANEOUS TOOLS 

• decode 

o RECONSTRUCTS AN ORIGINAL SEGMENT FROM AN ENCIPHEREn SEGMENT IF 
PROPER KEY IS SUPPLIED 

o decode ASKS FOR THE ENCIPHER KEYWORD 

B USAGE: decode path1 {path2} 

decode blacklist 

o DESTROYS THE USER'S CURRENT PROCESS AND CREATES A NEW ONE 

o EFFECTIVELY THE SAME AS LOGGING OUT AND LOGGING IN AGAIN 

o ASSUMES THE SAME CONTROL ARGUMENTS THE USER GAVE AT LOG IN 

YOU ARE NOW READY FOR WORKSHOP 
19 

19-22 F01 



TOPIC XX 

SOFTWARE OVERVIEW 

The Operating System 
System Security • . . . •. 
Ring Mechanism . . . . • • • . 

Page 

· . . . . . . 20-1 
• . • . • . . 20-2 
· . . . . . . 20-8 

System Daemons • . . . . . • • • . • •. • 20-9 
System Libraries and Directories ••• 
A~plication Packag~s . • • • . • • • • • 

20-i 

• •.••• 20-11· 
• • • . • • • • 20-16 

F01 



This page has intentionally 

been left blank. 

20-11 F01 



THE OPERATING SYSTEM 

• MORE THAN 95S. OF THE OBJECT CODE ORIGINATED FROM PL/[ SdUHCE 
(1,132,000 LINES) 

• LESS THAN 5~ OF THE OBJECT CODE ORIGINATED FROM ALM ASSEMBLY CODE 
(226,000 LINES) 

• TOTAL OBJECT CODE OCCUPIES MORE THAN SIX MILLION WORDS OF STOR ',,': 

• HIGHLY STRUCTURED (3300 MODULES) 

• CODE IS PURE, RECURSIVE AND RE-ENTRANT 

• ON-LINE INSTALLATION OF SYSTEM MODULES 

• EXTENSIVE ON-LINE METERING AND TUNING FACILITIES 

20-1 FOl 



SYSTEM SECURITY 

• " ••• Hult1cs 1s properly characterized as the most secure 
commercial operating system available." 

Prof. Peter J. Denning 
Computer Science Dept. 
Purdue University 
(Computl~g Europe, July 29, 1976) 

• Multlcs security architecture is superior to any other 
commercially available system (by 2 to 1 ratio). 

Mitre Corporation Study for 
U.S. Air Force - Sept., 1975 
(USDC Order No: AO-A009221). 

• SYSTEM ACCESS: USER AUTHENTICATION 

o USER AUTHENTICATION REQUIRED TO LOG IN 

B PASSWORD IS DETERMINED AND CHANGED BY USER, . AT WILL (RANDOM 
PASSWORD GENERATION IS AVAILABLE IF DESIRED) 

o ONLY A NON-REVERSIBLE RESIDUE OF EACH PASSWORD IS STORED 

D NOTIFICATION OF INCORRECT PASSWORD USAGE 

D LAST LOG IN NOTIFICATION 

20-2 F01 



SYSTEM SECURITY 

• VIRTUAL MEMORY 

o INVISIBLE ABSOLUTE MEMORY ADDRESSES 

n ADDRESS SPACE UNIQUE TO PROCESS 

n RESIDUE CLEARED PRIOR TO PAGE ALLOCATION 

• FILE AND PROGRAM ACCESS: ACL (DISCRETIONARY) 

o ACL MECHANISM SEPARATES AND PROTECTS USERS FROM OTHER USERS ON 
THE BASIS OF Person_id AND Project_id 

D EVERY SEGMENT AND DIRECTORY HAS AN ASSOCIATED ACCESS CONTROL 
LIST 

n ACL DETERMINES WHO MAY ACCESS A SEGMENT OR DIRECTORY AND HOW 
THEY MAY ACCESS rr-

n AN ACL IS MANIPULATED AT THE DISCRETION OF THE SEGMENT~S OR 
DIRECTORY'S OWNER 

20-3 FOl 



SYSTEM SECURITY 

• FILE AND PROGRAM ACCESS: AIM (NONDISCRETIONARY) 

L 

E 

V 

E 

L 

o AIM (ACCESS ISOLATION MECHANISM) MECHANISM SEPARATES AND 
PROTECTS USERS FROM OTHER USERS ON THE BASIS OF SECURITY LEVEL 
AND THE NEED TO KNOW 

o EVERY SEGMENT, DIRECTORY AND USER HAS AN ASSIGNED SENSITIVITY 
(SECURITY) LEVEL AND CATEGORY SET 

o AIM RESTRICTS SEGMENT AND DIRECTORY ACCESS TO USERS BELONGING 
TO THE SAME CATEGORY SET AND HAVING THE SAME,OR HIGHER, 
SENSITIVITY LEVEL 

D SENSITIVITY LEVELS AND CATEGORY SETS ARE ASSIGNED BY THE SYSTEM 
ADMINISTRATOR (UP TO 8 LEVELS AND 18 CATEGORIES) 

o USERS CANNOT "GIVE AWAY" ACCESS OR WRITE DATA INTO A LOWER 
SENSITIVITY LEVEL REGARDLESS OF ACL PERMISSIONS 

g AIM IS A SITE CONTROLLED OPTION 

C A T E G 0 R Y 

TOP SECRET 

SECRET 

UNCLASSIFIED 

20-4 F01 



SYSTEM SECURITY 

• FILE AND PROGRAM ACCESS: RINGS (INTRAPROCESS) 

o THE RING MECHANISM SEPARATES AND PROTECTS THE OPERATING SYSTEM 
FROM THE USERS 

0 THE RING STRUCTURE IS AN 8 LEVEL (0 THRU 7) 
MASTER-MODE/SLAVE-MODE HIERARCHY 

0 0 - CENTRAL SUPERVISOR (MOST PRIVILEGED) 

0 - SYSTEM ROUTINES 

0 4 - NORMAL USER RING 

n 7 - HIGHEST USER RING (LEAST PRIVILEGED) 

20-5 F01 



SYSTEM SECURITY 

20-6 F01 



SYSTEM SECURITY 

n EACH SEGMENT HAS AN ATTRIBUTE WHICH IS A SET OF INTEGERS KNOWN 
AS RING BRACKETS 

o THE RING BRACKETS DEFINE FROM WHICH RING(S) A PROCESS MAY READ, 
WRITE,CALL, OR EXECUTE THAT SEGMENT 

n EACH P~OCESS IS CREATED IN A GIVEN RING DETERMINED AT LOGIN 

o A PROCESS MAY TEMPORARILY CHANGE ITS RING OF EXECUTION BY 
EXECUTING A PROGRAM CALLED A GATE 

o EXAMPLE: 

D A DATA BASE IN A LOWER RING THAN A USER CAN ONLY BE 
ACCESSED BY THAT USER VIA AN OWNER WRITTEN f!GATE" 
PROCEDURg - REGARDLESS OF AIM AND ACL PERMISSIONS 

o HARDWARE ENFORCED AT EVERY ACCESS 

20-7 FOl 



RING MECHANISM - ---...;~...;;...;.~ 

RING MECHANISM SUMMARY 

o WRITE READ EXECUTE 7 
~ - n n .. 

WRITE 
BRACKET 

READ BRACKET 

-
EXECUTE 
BRACKET 

.- ..... 
CALL BRACKET 

I I u u u· GATE t:J .. • BRACKET~· u 
RING OF EXECUTION 

CORRESPONDING 
PERMITTED ACTION 

READ, WRITE, 
EXECUTE CWITH RIN 

CHANGE. 

READ, WRITE, AND 
EXECUTE 

READ, EXECUTE 

EXECUTE (IF A GATI 
ONLY, AND WITH RII 
CHANGE) 

..... --........ NONE 

• SUBJECT, OF COURSE, TO ACL AND AIM 

20-8 FOl 



SYSTEM DAEMONS 

• Daemon 

o A SYSTEM SERVICE PROCESS THAT PERFORMS A SPECIFIC TASK SUCH AS 
PROCESS CREATION, BACKUP, NETWORK CONTROL, PERIPHERAL I/O 

D LOGGED IN BY THE OPERATOR AND CANNOT "TIME OUT" AS A USER MIGHT 

• Backup.SysDaemon 

D A PROCESS DESIGNED TO PRODUCE BOTH INCREMENTAL AND CONSOLIDATED 
BACKUP COPIES OF THE STORAGE SYSTEM 

D BACKUP IS TO MAGNETIC TAPE 

o SITE DETERMINES THE FREQUENCY OF THE BACKUPS 

• Card_Input.Daemon 

o A PROCESS DESIGNED TO MANAGE THE SYSTEM CARD READER{S) 

• IO.SysDaemon 

o A PROCESS DESIGNED TO MANAGE THE SYSTEM'S LINE PRINTERS AND 
CARD PUNCHES 

20-9 F01 



SYSTEM DAEMONS 

• Dumper.SysDaemon 

o A PROCESS DESIGNED TO PRODUCE A COMPLETE BACKUP OF THE STORAGE 
SYSTEM 

• GCOS~SY5Daemon 

o A PROCESS DESIGNED TO AID IN THE SIMULATION OF A GCOS 
ENVIRONMENT ON MULTICS 

I ALLOWS STANDARD GCOS JOBS TO BE SUBMITTED FROM EITHER PUNCHED 
CARDS OR IHCV TAPES 

• Inltiallzer.SysDaemon 

o THE SYSTEM'S PRIMARY PROCESS. PERFORMS THE FOLLOWING 
FUNCTIONS: 

. 
U ANSWERING SERVICE OPERATIONS (logln, dial, logout, etc) 

a OPERATOR COMMAND SERVICE 

D OPERATOR TERMINAL MANAGEMENT AND MESSAGE ROUTING 

I SYSTEM ACCOUNTING AND ADMINISTRATION 

I USER REQUEST HANDLING (logout, new_proa, etc) 

20-10 F01 



system._ 
library_ 
auth_mlint 

• COMMAND AND 
SUBROUTINES OF 
THE LOCAL 
AUTHOR·MENTION 
LIBRARY 

• ted, lisp. pascal 

SYSTEM LIBRARIES AND DIRECTOR!ES 

system_'ibrary _1 
511 

• HARDCORE OPERATING 
SYSTEM PROCEDURES 

• RELOADED EACH TIME 
THE SYSTEM IS 
REINITlALIZED 

ROOT 

system _'ibrary _ tools 
tools 

6 
• COMMANDS AND SUBROUTINES 

SUSROUTINES USED TO 
ADMINISTER, MEASURE, 
AND MAINTAIN THE 
SYSTEM 

• PRIMARILY OF INTEREST 
TO SYSTEM PROGRAMMERS 

20-11 

system contro'_ 1 
scl 

• PLUS MISCELLANEOUS ACCOUNTING • 
LOG, LINE USAGE. PASSWORD SEGMENTS 
AND THE i/O RESOURCE CONTROL 
PACKAGES 

F01 



N 
0 

• -N 

ROOT 

piI'OC.a_dir _dir system_tibrary _~ [ UIIIr_dil_dir 
pdd - udd 

• ALL COMMANDS AND 
SUBROUTINES PROVIDED 
AS PART OF MULTtCS 

) ONE 
CNAME • PROCESSED) DIRECTORY 

PER PROCESS 

c5 e 
• PLUI OTHER TEWORARY SEGMENTS CREATED 

AS NEEDED 

[ (PROJECT NAME) 

r 'USER NAMEJ 

, 
• PERSONAL SEGMENTS 

AND DIAECTOAtES 
OF THIS USER 

~~un_ (Jl 
to< 
til 
e-f, 
Pl' 
X 

r-
H 
txJ· 

4. LINUS, MRDS, MRPG :::0 
> 
::0' 
H 

} ONE 
rq 
CIl 

DIRECTORY 
PER PROJECT ,>' Z 

tj' 

tl ..... 
'::G 
PI 
0, .... 
0 
:0-

} ONE ...... 
PI DIRECTORY en 

PER USER 



!'\) 
o 
! 
~ 

LV 

'T] 
o 
~ 

system_library _obsolete 

• CONTAINS OBSOLETE 
OBJECT SEGMENTS 

dumps 

• CONTAINS SYSTEM 
DUMPS FOR 
CRASHES, ETC. 

ROOT 

gcos_dir _dir 

• CONTAINS SYSTEM 
SOFTWARE USEFUL 
FOR HANDLING THE 
GCOS ENCAPSULATION 

experimental system_library _network 
ex' 

• CONTAINS SYSTEM • CONTAINS OBJECT SEGMENTS 
SOFTWARE WHICH FOR NETWORK PROCESSING 
IS BEING DEVELOPED 

• CONTAINS PROCEDURES 
BEING USED IN PLACE 
OF SYSTEM PROCEDURES 
WHICH ARE FAULTY 



• CONTAINS THE FIRMWARE 
REQUIRED BY VARIOUS 
PERIPHERAL DEVICES 
(i •••• TAPE AND OISK 
CONTROLLERS) 

SYSTEM LIBRARIES AND DIRECTORIES 

• DIRECTORIES AND 
SEGMENTS OF THE 
BACKUP AND 1/0 
DAEMON PROCESS 

• INFO SEGMENTS 
FOR THE help 
COMMAND 

ROOT 
I 

20-14 

__ ",10 __ _ 

• INSf ALLA TtON 
MAINTAINED 
info SEGMENTS 

tibr., _" di, _ t 
Idd 

• SEE NEXT P 

.OTHE"R USEFUL 
OOCt.*ENTATION 
DIRECTORIES ANI 
SEGMENTS 

F01 



I\) 
o 

~ 
o -

ONE FOR EACH OF THE 
FOLLOWING: 

Ivsu.m_ tibfary _ network 
system_library _ob$Ql8te 

• unbundled 

• hardcore btl end Ie' I 
• communication 

tools (I 
• bos I ... · ---.,..-----' 

• longu. 

) 
'--.....-.1 '---.,,---l 

I 
bound _ full_cp_.s.archive I 

bound_fulI_cp_.archive 

bound_ full_cp _.Iist 
(bind listings) 

• THESE CONTAIN ADDITIONAL DIRECTORIES 

• ALL. PL/1 INCLUDE 
FILES 

• CONTAINS PL/1 LISTINGS 
FOR SYSTEM PROGRAMS 

• LOCATED ON A SEPARATE 
LOGICAL VOLUME WHICH 
'MAY BE REMOVED 

• CONTAINS 9 DIRECTORIES: 

bas 
languages 
standard 
tools 
obsolete 
comm 
unbundled 
netwot1c 
harcicol'e 



APPLICATION PACKAGES 

• MULTICS DATA BASE MANAGER (MDBM) 

D MULTICS INTEGRATED DATA STORE (MIDS) 

D SUPPORTS NE~~ORK DATA BASES 

o A SUBSET OF IDS-II 

D PROCEDURAL INTERFACE (USER SPECIFIES HOW TO SEARCH) 

o MULTICS RELATIONAL DATA STORE (MRDS) 

D SUPPORTS RELATIONAL DATA BASES 

I INDUSTRY'S FIRST COMMERCIALLY AVAILABLE RELATIOIAL DBM 

o NON-PROCEDURAL INTERFACE USING ENGLISH-LIIE EXPRESSIONS 
(USER SPECIFIES GOAL OF SEARCH) 

o SET OPERATIONS ON RELATIONS (I.E. ON FILES): 

o UNION, INTERSECTION, DIFFERENCE 

o BOOLEAN OPERATIONS BETWEEN CONDITIONS FOR SELECTION: 

a AND, OR, NOT 

D ALGEBRAIC COMPARISONS ON ATTRIBUTES (I.E. 01 DATA FIELDS): 

D EQUAL, GREATER THAN, LESS THAN, NOT 

D BUILT-IN FUNCTIONS 

o aba, arter, betore, ceil, concat. floor, index, .od, 
reverse, round, search, lubltr, ~.rlt, 

F01 



APPLICATION PACKAGES 

• LOGICAL INQUIRY AND UPDATE SYSTEM (LINUS) 

o END USER FACILITY FOR ACCESSING RELATIONAL DATA BASES 

n ENGLISH-LIKE EXPRESSIONS 

n FIND THE AVERAGE SALARY OF EMPLOYEES IN THE SHOE DEPARTMENT 

avg {select salary 
from employee table 
where dept = "!hoe"} 

o BOOLEAN OPERATIONS BETWEEN CONDITIONS FOR SELECTION: 

o AND, OR, NOT 

o ALGEBRAIC COMPARISONS ON ATTRIBUTES (I.E. ON DATA FIELDS): 

D EQUAL, GREATER THAN, LESS THAN, NOT 

B FIND THE NAMES OF EMPLOYEES WHO ARE EITHER IN THE ADMIN 
DEPARTMENT OR WHOSE TOTAL INCOME EXCEEDS $10,000 

select name 
from employee table 
where dept = "Admin" I salary+comm) 10000 

20-17 FOl 



APPLICATION PACKAGES 

D SET ,OPERATIONS ON RELATIONS (I.E. ON FILES): 

o UNION, INTERSECTION, DIFFERENCE 

o FIND THOSE ITEMS WHICH ARE SUPPLIED BY LEVI AND SOLD IN THE 
MEN'S DEPARTMENT 

select item 
from supply 
where supplier = "Levi" 

inter 
select item 
from sales 
where dept = "Men" 

D BUILT-IN FUNCTIONS 

Dabs, after, before, ceil, concat, floor, index, mod, reverse, rc 
search, substr, verify 

o max, min, sum, ave, count 

~ 

o PERMITS USER DEFINABtE FUNCTIONS (I.E., MACROS) 

20-18 F01 



APPLICATION PACKAGES 

• MULTICS REPORT PROGRJ\.H GK,HERATOR 

D A FACILITY FOR GENERATING FORMATTED REPORTS 

MRPG 
SOURCE 

(USER WRITTEN) 

INPUT 
TO 

M R P G 
GENERATES .. 

D A T A 
(USER 

SUPPLIED) 

" 

INPUT 
TO 

REPORT 
PROGRAM 

20-19 

CREATES 

.. 
FORMATTED 

REPORT 

FOl 



APPLICATION PACKAGES 

• WORD PROCESSING (WORDPRO) 

o 

o 

A COLLECTION OF FACILITIES FOR ENHANCIIG THE ON-LIIE PREPARATION 
DISTRIBUTION, AND MAINTENANCE OF DOCUMENTS 

CONSISTS OF SUCH TOOLS AS: 

D SPEEDTYPE COMMANDS 

"'" ~ ..... t 
to: ~ -

~ ~ .. ~ ----. .... -.. ~ ...,.. r ~ ~ ..... ,., 

E .... ~ ...... _ .. b. .. .. - ~ -~ "' !i§;;@;;Lifl"' - ~ .... 
~ _E ... ----- .... ..... ~ 

~ _ htll _ft "'-... - ~.~ 
~,_A.... .... - • I ENGINEERING 
~- ~ 

20-20 F01 



APPLICATION PACKAGES 

D compose FACILITY 

.hI. UTi. I: 

.fta u:·"'~~: -"'.....-_---".,..-
compose ~. .",2 

.inl10 --------...... : ~-

~ ~ 

~. 

A.compin A.compout 

o WORDLIST COMMANDS 

o ELECTRONIC MAIL COMMANDS 

o TEXT EDITOR 

20-21 

-1-

F01 



APPLICATION PACKAGES 

I LIST PROCESSING COMMANDS 

I I 

• • ....... 1IIy -.-• ........... 
• _'7 

20-22 

I 

F01 



APPLICATION PACKAGES 

ONLINE DICTIONARIES 

~ 

~ 

~ 

~ 
~ 

~ 

~ 
~ /"--_ ............ -

a 
able 
acton 
add 

___ word __ lis_t __ -I ....... After 

frld 
(20,000 WORD 
DOCUMENTt 

wher 
where 
Zoro 

fred.wI 
(5,000 UNIQUE 

WORDS) 

TEXT COMPARISON PROGRAMS 

Dear Mom: 

~ 
.. 
,..,.".., 

~ 
> unb> standard.diet 

I ~oo 
trim_wordlist .. 

wher 
Zoro 

fred.wI 
(100 POTENTIALLY 
MISSPELLED WORDS) 

Inserted in 8: 
81 Dear Mom: 
Preceding: 
Al Today we 

A3 large fish 

Today we 
caught 20 
large fish. 
Tomorrow we 
climb Mt. 
Everest 

Today we 
caught 20 
small fish. 
Tomorrow we 
dimbMt. 
Punk. 

compare ascii... Changed by 8 to: 
B4 small fish 

A 8 

20-23 

AS Everest. 
Change by 8 to: 
87 Punk. 

F01 



APPLICATION PACKAGES 

• Multlca GRAPHICS SYSTEM 

I DEVICE I.DlPE.DEICE 

D USER SEES ON~Y "VIRTUAL GRAPHICS TERMINAL" (VGT) 

D EACH DEVICE HAS A "GRAPHIC DEVICE TABLE" (GOT) 

B STRUCTURED GRAPHIC OBJECTS 

I SIMPLE ITEMS (LIlES, POINTS) COMBINED TO CREATE MORE COMPLE~ I 

I GRAPHIC OBJECTS MAY BE "SHARED" (EX. CREATE A WHEEL ONCE, 
INCLUDE - TIMES IN AI AUTOMOBILE STRUCTURE) 

D ALL ITEMS ARE THREE DIMENSIONAL 

I OBJECTS MAY BE NAMED 

I OBJECTS MAr 8E PERMAIEITLY STORED 

I ANCILLAR' IIFORMATIOI STORED WITH OBJECT 

I SCALIIO 

I ROTATIOI 

20-2_ F01 



APPLICATION PACKAGES 

n EXTENT 

n INTENSITY 

0 COLOR 

D DOTTEDNESS 

0 BLINKING 

0 SENSITIVITY TO LIGHT PENS, ETC. 

o EDITING FACILITIES 

n MAY EDIT THE WORKING GRAPHIC SEGMENT (WGS) 

U REAL TIME EDITING AT TERMINAL 

n CONTROLLED BY Multics (ANIMATION, DYNAMIC GRAPHICS) 

o PERMANENT STORAGE OF GRAPHIC OBJECTS 

o TERMINALS SUPPORTED 

o TEKTHONIX 4002 
4012 
4013 
4014 
4015 

20-25 F01 



APPLICATION PACKAGES 

lARDS 

I CALCOMP 915/1036 (PLOTTER) 

20-26 



TOPIC XXI 

HARDWARE OVERVIEW 

Hardware Description .. . . • • . 
System Requirements . . . . . . . . • 
Configuration Limits & Records • • • 

21-i 

Page 

· 21-1 
· 21-3 
· 21-5 

FOl 



This page has intentionally 

been 

21-i1 FOl 



HARDWARE DESCRIPTION 

• LEVEL 68 CENTRAL PROCESSOR UNIT 

II A MODIFIED LEVEL 66 CPU 

n 36-BIT WORD MACHINE (9 BItS/BYTE, 4 BYTES/WORD) 

o VIRTUAL MEMORY HARDWARE 

n DIVIDES MEMORY INTO SEGMENTS 

n SEGMENTS CONSIST OF 0 TO 256 PAGES 

n PAGE = 1024 WORDS (1K WORDS) 

o RING PROTECTION HARDWARE 

o ACCESS ENFORCING HARDWARE 

II HIGH-SPEED CACHE MEMORY 

n 2048 WORDS 

II HIT RATIO GREATER THAN 85% 

21-1 FOl 



HARDWARE DESCRIPTION 

D EXTENDED INSTRUCTION SET (EIS) 

D BLOCK MOVE INSTRUCTION (ENTIRE SEGMENT) 

o BOOLEAN OPERATION INSTRUCTIONS 

o PICTURE EDITING INSTRUCTIONS 

n 4, 6, OR 9-BIT ARITHMETIC INSTRUCTIONS 

D POINTER MANIPULATION INSTRUCTIONS 

n GCOS MODE (ONE SWITCH) 

21-2 F01 



SYSTEM REQUIREMENTS 

• A SMALL HULTICS CONFIGURATION 

NUMBER 

n 68/60 CENTRAL PROCESSOR (CPU) 

o WORDS OF MEMORY (K = 1024) 256K 

n SYSTEM CONTROL UNIT (SCU) 1 

n I/O MULTIPLEXER (10M) 1 . 

n FRONT-END NETWORK PROCESSOR (FNP) 1 

n MSU0400 2 MASS STORAGE UNITS (MSU) 2 

o MTU0400 MAGNETIC TAPE UNITS (MTU) 2 

21-3 F01 



SYSTEM REQUIREMENTS 

• A LARGE MULTICS CONFIGURATION (1 TO 10 GROWTH CAPABILITY) 

NUMBER RATIO 

o 68/80 CENTRAL PROCESSORS 6 ( 1 : 6) 

D WORDS OF MEMORY (M~1,048,516) 16M ( 1 : 64 ) 

D SYSTEM CONTROL UNITS 8 (1:8) 

o I/O MULTIPLEXER (110M'S + , CPU'S < 8) 2 (1:2) 

o FRONT-END NETWORK PROCESSORS 4 ( 1 : 4) 

o MSU0451 MASS STORE UNITS 512 (1 :256) 

n MTU0500 MAGNETIC TAPE UNITS 16 ( 1 : 8) 

21-4 F01 



MEASURE 

NUMBER 
OF USERS 

NUMBER 
OF CPU's 

. MAXIMUM 
REAL MEMORY 

MINIMUM 
REAL MEMORY 

VIRTUAL MEMORY 
PER PROCESS 

TOTAL VIRTUAL 
MEMORY 

NUMBER OF 
DISK DRIVES 

CONFIGURATION LIMITS & RECORDS 

RECORD SITE KNOWN LIMIT 

451 HIS, PHOENIX 1632 
(JUNE '11) (408 USERS * 4 DATANETS) 

6 AFDSC,PENTAGON 1 
(AUG '17) (PORT LIMITATION) 

4M HIS, Phoenix 16M 
(SEPT '18) (8 SCU's * 512K) 

192K HIS, CAMBRIDGE 192K 
(1971 - 1911) (BOOT LIMITATION) 

256M 
(1024 SDW's * 256K) 

19.4B 
(512 MSU'S * 38,000K) 

28 AFDSC,PENTAGON 512 
(JAN '76) (CABLE LENGTH LIMIT) 

K = 2**10 = 
M = 2**20 = 
B = 2**30 = 

1 ,024 
1,048,5'76 

1 , 063, 741 ,824 

21-5 FOl 



This page has intentionally 

been left blank 

21-6 



APPENDIX A 

MULTICS DOCUMENTATION 

Multics Programmers' Manual (MPM) ... . 
Multics Pocket Guides ........ . 
Multics Administrators' Manuals (MAM) .. 
Program Logic Manuals (PLM) 
Other Multics Manuals .....•. 
help Manuals .. . . . . . 

A-i 

Page 

A-1 
A-2 
A-3 
A-it 
A-5 
A-7 

F01 



This page has intentionally 

been ieft blank~ 

A-ii F01 



MULTICS PROGRAMMERS' MANUAL (MPM) -----

Reference Guide Order No. AG91 

The MPM Reference Guide contains general information about the 
Multics command and programming environments. It also defines 
items used throughout the rest of the MPM's and, in addition, 
describes such objects as the command language, the storage 
system, and the input/output system. 

Commands and Active Functions Order No. AG92 

The Commands MPM is organized into four sections. Section I 
contains a list of the Multics command repertoire, arranged 
functionally. Section II describes the active functions. 
Section III contains descriptions of standard Multics commands, 
including the calling sequence and usage of each command. 
Section IV describes the requests used to gain access to the 
system. 

Subroutines Order No. AG93 

The Subroutines MPM is organized into three sections. Section I 
contains a list of the subroutine repertoire, arranged 
functionally. Section II contains descriptions of the standard 
Multics subroutines, including the declare statement, the 
calling sequence, and usage of each. Section III contains the 
descriptions of the I/O modules. 

Subsystem Writers' Guide Order No. AK92 

The MPM Subsystem Writers' Guide is a reference of interest to 
compiler writers and writers of sophisticated subsystems. It 
documents user-accessible modules that allow the user to bypass 
standard Multics facilities. The interfaces thus documented are 
a level deeper into the system than those required by the 
majority of users. 

Peripheral Input/Output Order No. AX49 

The MPM 1/0 manual contains descriptions of commands and 
subroutines used to perform peripheral I/O. Included in this 
manual are commands and subroutines that manipulate tapes and 
disks as I/O devices. Special purpose communications I/O, such 
as binary synchronous communication, is also included. 

A-1 F01 



MULTICS POCKET GUIDES 

Commands and Active Functions Order No. AW17 

This pocket guide presents an abbreviated version of the 
commands and active functions described in detail in the Multics 
Programmers' Manual Commands and Active Functions 
Order No. AG92 

A-2 FOl 



MULTICS ADMINISTRATORS' MANUALS (MAM) 

Project Administrator Order No. AK51 

The Project MAM is a guide to the operation of programs in the 
project- administration area. The information in this manual is 
of interest not onlY to project administrators but also to 
accounting" administrators (who may function as project 
administrators) and to system administrators (who may function 
in any administrative capacity). 

Registration and Accounting 
Administrator Order No. AS68 

The Accounting MAM is a guide to the operation of Multics 
billing and accounting programs. It is necessary that both the 
accounting and system administrators know how to perform the 
Multics billing operations. 

System Administrator Order No. AK50 

The System HAM is a guide to the overall administration of the 
Multies system. This manual discusses the ~ontents of 
administrative directories and data bases and special user 
identifies (such as the daemons), describes installation 
parameters and system logs, explains the various tasks that are 
the responsibility of the system administrator, and includes the 
commands needed to carry out these responsibilities. Also, the 
functions of the system security administrator are explained in 
the HAM System. 

A-3 )0'01 



PROGRAM LOGIC MANUALS (PLM) 

NOTE: The Distribution of Program Logic Manuals is Restricted 

ALM Assembler Order No. AN69 

Carry Facility Order No. AN16 

Hardware & Software Formats Order No. AN81 

Reconfiguration Order No. AN11 

Storage System Order No. AN61 

System Dump Analysis Order No. AN53 

System Initialization Order No. AN10 

System Metering Order No. AN52 

System Tools Order No. AN51 

User Ring I/O System Order ·No. AN51 

A-4 FO 1 



OTHER MULTICS MANUALS 

APL Users' Guide 

BASIC 

COBOL Reference Manual 

COBOL Users' Guide 

DFAST Subsystem Users' Guide 

FAST Subsystem Users' Guide 

FORTRAN Reference Manual 

GCOS Environment Simulator 

Graphics System 

Hardware Diagnostic Aids 

Logical Inquiry and Update System (LINUS) 

Multics Integrated Data Store 
Reference Manual 

A-5 

Order No. AK95 

Order No. AM82 

Order No. AS~4 

Order No. AS43 

Order No. AT59 

Order No. AU25 

Order No. AT58 

Order No. AN05 

Order No. AS40 

Order No. AR97 

Order No. AZ49 

Draft 

F01 



OTHER MULTICS MANUALS 

Multics Relational Data Store 
Reference Manual 

New Users' Guide 

Online T&D Reference Manual 

Operator's Handbook 

PL/I Language Specification 

PL/I Reference Manual 

Processor Manual 

SORT/MERGE 

Site Preparation Manual 

System Summary Description 

Virtual Memory 

WORDPRO Reference Guide 

A-6 

Order No. AW53 

Order No. AL40 

Order No. AU77 

Order No. AM81 

Order No. AG94 

Order No. AM83 

Order No. AL39 

Order No. AW32 

Order No. DC79 

Order No. AK15 

Order No. AG95 

OHder No .. J\Z98 

F01 



HELP MANUALS 

• THE MULTICS TECHNICAL MANUALS ARE LISTED BELOW. ALL 
. MANUALS/UPDATES THAT SPECIFY A DATE IN THE DATE COLUMN CAN BE 

ORDERED FROM THE DISTRIBUTION CENTER; FOR INFORMATION ABOUT HOW 
TO ORDER MANUALS TYPE: 

help order_manuals 

• IF THE "Date" COLUMN DOES NOT CONTAIN A DA TE FOR A MANUAL, THAT 
MANUAL IS "IN PROGRESS;" WHEN A DATE IS SPECIFIED, YOU CAN ORDEH 
IT. 

• PROGRAM LOGIC MANUALS (PLMS) ARE LISTED SEPARATELY, AFTER THE LIST 
OF CUSTOMER MANUALS. MARKETING DOCUMENTS (E.G., BROCHURES, 
PRODUCT BRIEFS, ETC.) ARE NOT INCLUDED. 

THIS MANUAL LISTING WAS CURRENT AS OF JULY 23, 1919 

Order Through 
Number Rev. Add. Release Date Title 

CUSTOMER MANUALS 

05/73 MPM - Introduction +AG90 -01· 
AG91 -02 7.0 03/79 MPM - Reference Guide 

A 8.0 -----
AG92 -02 5.0 01/77 MPM - Comm and sand Active 

A 6.0 11/77 
B 7.0 02/19 
C 7.0a -----
D 8.0 --~--

AG93 -02 6.0 02/78 MPM - Subroutines 
A 7.0 12/78 
B 8.0 ------

Func tions 

AG94 -02 5.0 07/16 PL/I Language Specification 
A 6.0 10/77 
B 7.0 12/78 
c 8.0 .. -----

+AG95 -00 06/12 Virtual Memor y 

A-7 F01 



AK50 -01 

AK51 -01 

AK92 -02 

AK95 -01 
-02 

AL39 -00 

AL40 

AM81 

AM82 
AM83 

AN05 
AN50 

AN52 
AN76 

AR91 

AS40 

AS43 

AS44 

AS68 

AT58 

-01 
-01 
-02 
-01 

-02 
-00 
-00 

-01 
-01 
-01 
-02 
-01 
-01 

-01 

-00 
-01 
-01 

-01 

-00 

-01 

A 
B 
C 
o 

A 
B 
C 

A 

A 

1\ n 

B 

A 

A 

A 

A 
B 
C 

A 
B 
C 
D 

A 
B 

A 
B 

5.0 
5.0 
6.0 
7.0 
8.0 
4.0 
6.0 
7.0 
8.0 
7.0 
8.0 
7.0 
8.0 

6.0 
8.0 
6.0 
t:. " v.v 
1.0 
8.0 
1 • 0 
4.0 
1.0 
8.0 
1.0 
1.0 
8.0 
1.0 
1.0 
7.0 
6.0 
6.0 
6.0 
8.0 
5.0 
6.0 
1.0 
1.0b 
5.0 
6.0 
1.0 
1.0 
1.0b 
4.0 
7.0 
8.0 
5.0 
6.0 
7.0 

HELP MANUALS 

10/76 HAM - System 
03111 
03/78 
10118 

08116 MAM - Project 
04118 
()?/70 
,,--, I ~ 

03119 MPH - Subsystem Writers' Guide 

03119 APL Users' Guide 

04/76 Processor Manual 
09116 

01111 Introductory Users' Guide 
----- Programmer's Introduction to Multics 
10111 Operators' Handbook 
"1 ,,., 0 
V 1/ 10 

02119 

02114 BASIC 
06116 PLII Reference Manual 
09118 
-----
10118 GCOS Environment Simulator 
03119 Index to Mul tic s Man ual s 
--.---
02119 System Metering 
11/78 Carry Facility 
12118 
07118 Hard ware Di agno st ic Aid s 
11118 
10117 Graphics System 

12116 COBOL Users' Guide 
04118 
02119 

12/76 COBOL Reference Manual 
10111 
01119 
05119 

11116 MAM - Registration and Accounting 
01/79 

02117 FORTRAN 
11117 
06/78 

A-8 F01 



* 

AT59 
AU25 

AU77 

AWl7 

AW32 
AW53 
AX49 

Al03 

Al49 
Al98 

CC34 

CC69 
r.C70 

vC74 

CC75 

CC92 

: CC96 
CG18 
CG40 
CG41 
CH23 
CH24 
CH25 
CH26 
CH27 

-00 
-00 

-01 
-02 
-00 
-01 
-00 
-02 
-00 

-00 
-01 
-01 
-01 

-01 

-00 
-00 
-01 
-00 

-00 

-00 

-01 
-00 
-00 
-00 
-00 
-00 
-00 
-00 
-00 

C 
D 

A 

A 
B 

A 

'A 

A 

A 

A 

7.0 
8.0 
3. 1 
3. 1 
8.0 
6.0 
7.0 
3. 1 
8.0 
4.0 
7.0 
5.0 
7.0 
8.0 
5.0 
8.0 
7.0 
7.0 
8.0 
7.0 
8.0 
6.0 
7.0 
8.0 
7. OR 
8.0 
7.0 
8.0 
7.0 
8.0 

7.0TP 
7.0 
7.0a 
8.0 
8.0 
8.0 
8.0 
8.0 
8.0 

HELP MANUALS 

01/79 

03/76 
03/76 

10/77 

04/76 

07/76 
10/78 
06/77 
01/79 

08/77 

10/78 
11/78 

03/79 

03/78 
01/79 

11/78 

11/78 

10/78 

06/79 

DFAST Subsystem Users' Guide 
FAST Subsystem Users' Guide 

Online Test and Diagnostics Reference Manual 

MPG - Commands and Active Functions 

SORT/MERGE 
Relational Data Store (MRDS) Ref. Manual 
MPM - Peripheral Input/Output 

System Programming Tools 

Logical Inquiry and Update System (LINUS) 
WORDPRO Reference Manual 

Bulk Input/Output 

Report Program Generator (MRPG) 
FORTRAN Users' Guide 

MAM - Resource Control Package (Rep) 

MAM - Communications 

MPM - Communications 1/0 

Transaction Processing 
Remote Batch Facility (Lev 68/Lev 6)(Preiim) 
qedx User's Guide (Preliminary) 
compose User's Guide 
Debugging User's Guide 
New User's In trod uc tion to Mul tic s - Par t I 
New User's Introduction to Multics - Part II 
Error Messages 
emacs User's Guide 

A-9 F01 



PROGRAM LOGIC MANUALS 

AN51 
AN53 
AN51 
AN61 

AN63 
AN69 
AN10 
AN11 
AN80 
AN85 
AN81 

NOTES: 

-00 
-00 
-00 
-00 

A 
-00 
-00 
-00 
-01 
-00 
-01 
-00 

5.0 
6.0 

7.0a 

HELP MANUALS 

02/15 
06/15 
05/11 
01/14 
09/18 
02/15 
02/15 
02/75 
04/17 

07116 

System Tool s 
System Dump Analysis 
User Ring Input/Output System 
Storage System 

ALM Assembler 
Message Segment Facility 
System Initialization 
Reconfig ur ation 
Library Maintenance 
Communications System 
Hardware & Software Formats 

* A line has been deleted since the last time this segment was updat 
: This line has been modified since the last time the segment was up 
+ Some of the information in this manual is obsolete 

MPM Multics Programmers' Manual 
MAM Multics Administrators' Manuals 
M PG M u 1 tic s Po c ke t Gu ide 

A-10 F01 



APPENDIX B 

MULTles TECHNICAL BRIEFS 

Level 68/Distributed Processing System . • . . . 
Distributed Processing System: Multics Overview. 
Multics Virtual Memory and Storage System . 
Administration and Operating Features • . . 
Interactive Programming Environment • . • . 
Controlled Sharing and Security . 
Multics PL/I .........•• 
Multics APL . . . . . . . . • . • . . . 
Multics Data Base Manager •.•.•. 
LINUS . . . . . . . . • .. • • • . 
Word Processing System WORDPRO 
Multics Graphics System ..••. 
Multics Electronic Mail Facility 

B-i 

Page 

B-1 
B-7 
B-13 
B-17 
B-21 
8-25 
B-2'" 
B-29 
B-31 
B-31 
B-39 
B-43 
B-45 

F01 



This page has intentionally 

been left blank. 

B-i1 F01 



HoneyWell 

SERIES 60 (LEVEL 68/DPS) 

Honeywell's Level 68/Distributed Processing Sys­
tem (DPS), with the MuItics operating system, 
offers the user many powerful features, including 
virtual memory addressing, controlled access to 
data, modular design, and advanced segmentation 
concepts that simplify processing. The Level 68/ 
DPS possesses capabilities that enable large-scale 
computer users to solve complex processing 
problems quickly and easily. 

The Level 68/Distributed Processing System con­
sists of a base system to which performance mod­
ules can be added in incremental steps, thus offer­
ing a choice of various levels of performance. This 
easy expansion allows a user to configure the 
exact system needed and helps protect equipment 
investment. 

VIRTUAL MEMORY 

Level 68/DPS virtual memory efficiently and auto­
matically moves information between main memory 
and secondary storage - independent of hardware 
configuration and without programmer intervention. 
Thus, programs are not constrained by main mem­
ory limitations and no overlays are required. Fur­
thermore, user I/O can be handled logically, without 
concern for physical addresses. Integration of the 
68/DPS storage (file) system with virtual memory 
addressing forms a powerful data handling capabil­
ity, allowing programmers to directly access more 
than 300 billion bytes of stores information. 

SECURITY 

Level 68/DPS hardware and software systems are 
structured for maximum data security. With simple 
commands, access to files can be granted to spe­
cific persons or groups. Different access rights 
(e.g., read only; execute, write, or combinations of 
these) can also be granted to different users of the 
same file. 

Within the central processor~ a hardware mechanism 
maintains the integrity of several levels, or rings~ of 
access controls. These rings of protection limit 
access to sensitive data and permit the creation of 
closed subsystems that are mutually exclusive and 
mutually protected. 

tC 1978, HoneyweU Information Systems Inc. 

Level 68/ Distributed 
Processing System 

\ 
__ 1 

Since hardware enforces the basic 68/DPS 
security mechanisms, very little systenl overhead 
is introduced by access control enforcement. After 
the initial access to a file and on every memory 
access, hardware compares the attempted access 
against the user's permission. Thus, no' additional 
machine instru~tions are executed for security . 

MODULARITY 
The modular design of the Level 68/Distributed 
Processing System has significant advantages for 
processing flexibility and for system growth. The 
optimum combination of processor, memory, and 
input/output multiplexer modules can be seleded 
for each installation. integrated Network Proc­
essors, mass storage subsystems, and peripherals 
are additional modules that can be added to tailor 
a configuration. A Level 68jDPS system supports 
up to t 6 million bytes of memory (four million 
words) and employs two or morc processors for 
maximum availability. Memory can he added ill 
increments of one million bytes up to four million 
bytes. Beyond this level, memory may be added in 
increments of two million bytes. 

B-1 File Nu.: I to I 



LEVEL IIIOPS lASE CENTRAL SYSTN 

PERIPHERALS TERMINALS 

This approach allows a site to purchase equipment 
for today·s processing needs and add modules to 
meet a arowing data processing workload. Further­
more. each configuration can be liven the proper 
mix of processing, storage, and I/O capacity, and 
modified as necessary to meet changing workload 
characteristics. Regardless of the configuration 
selected, the full functionality of Multics is avail­
able. Any program that can run on the largest sys­
tem can also run on the smallest, and vice versa. 

A.~'1other significant adv8..1'ltage of L-evel 68!DPS 
modular architecture is the capability for con­
fi&uring fully fail-safe systems. This is accom­
plished by including additional system control 
units. I/O multiplexers, network processors, and 
appropriate peripheral subsystems. Note that it is 
not necessary to add processor modules since 
Level 68/DPS always contains at least two. 

PROCESSOR MODULE 
The Level 68/DPS processor module executes pro­
grams and handles all computations. For example, 
it perfonns instruction fetching, relative and abso­
lute address preparation, memory protection, data 
fetching, and data storage. These functions are 
overlapped for quick instruction execution. 

Other features of the processor include: 

• Hardware for handling segmentation and paging 
in virtual memory 
• Hardware for interrupting a process in execution 
at any point (including'in mid-execution of an in­
struction), saving processor status. and restoring the 
proccs.~ lakr without loss of continuity 
• Iligh-spl'l'd l'ul:he Illl'mory for improvl'd perform­
ance 
• Hardware for enforcing several modes of memory 
access 
• Hardware for implementing data integrity and 
security mechanisms 
• Assod:.tivl' mcmory for fast h~lnlwaH' a~l:l'SS 10 
virtual memory 
• Program-addrcssahlc. rcgisters for prl'paring virtual 
Illl'lllory addrl'sscs 

Processor Organization 
The Multics processor module is organized around 
functional units: 

• CI)nlrl}/ Unit provide" the interface bclwt:cn 
the ()pcriHora tJuH iHHl tht ,y,tC!m ,ontrollcr .. 
• Operation, Unit· Contains the togk to CXl'(uh," 

binary arithmetic and logical functions 
• Decimal Unit -- includes an Extended Instnlction 
Set (EIS) within the processor's basic repertoirl' of 
instructions, including instructions for processing 
character string, decimal data, and bit strings 
• Appending Unit - implements segmentation and 
paging of the virtual memory; provides 24-bit ad­
dressing; contains 16 segment descriptor words and 
16 page table words on a most recently used basis~ 
and provides a descriptor segment base register, 
eight segment pointer registers, and ring protection 
hardware 
• Cache Memory Unit .- holds the most recently 
used information from maiilmemory and improves 
system performance by reducing instruction and 
data fetch time 

Processor Modes of Operation 

The processor operates in three modes: absolute. 
privileged, and nonprivileged. All instructions are 
available in the absolute mode. Privileged instnll:­
tions, such as those that operate on the descriptor 
base register and input/output devices. are avail­
able only in absolute and privileged modes. Most. 
but not all, of the instructions are availabll' in non­
privileged mode. General users are restricted to the 
nonprivileged mode and thus are prevented from 
executing any instructions that could interfere with 
other programs or with the Multics system software. 

The full segmentation and paging capability of the 
processor is used in the privileged and non privileged 
modes for fetching instructions and operands. Ad­
dressing in the absolute mode does not lise the seg­
mentation and paging capability and is not generally 
available to user programs. 

Segmentation 
Segmentation divides the user's address space into 
many parts and assigns attributes (access control 
and length, for example) to these parts based on 
their logical use. Like a conventional file. a Multics 
segment is a collection of instruct ions or chla SIlt.'l'­
itied by the lISt"r. It has a symholic n<lnll' and arn'ss 
l:ontrollist and (all vary in kngth. A sl'gllll'nt ran 
he addressed directly, asmcmory can, and dOL'S not 
have to be read or written record-by-record as a 
conventional file would. 

The segment is the basic unit of information shar­
ing. Different lIsers can incorporate a singh.' sl'gllll'nt 
into thdr programs ll1l'rl'iy hy SIll'dfyinJ,! the Sl'J,!­
Illent ml ml'. A progra 111 dOl'SIl" Ill'cd (0 ropy a Sl'J,!­
mcnt to lISl' it. saving til11l' and L'iimimlting dupli­
Gllion ill main Illl'lllory. Tn l.'untrol this sharing, 

B-2 



each segment has an access control list containing 
the name and access privileges of each person ·who 
can use the segment. The hardware checks these 
access privileges on each reference to a segment by 
any user. 

Certain segments, containing only instructions 
or constants, are especially easy to use and 
efficient in occupying storage space. These "pure­
procedure" segments store their data and control 
variables separately. Pure procedure segments do 
not modify themselves; they are also totally re­
entrant. More than one user can use the same re­
entrant procedure simultaneously without having 
to copy it. This enhances sharing and saves storage 
space. The Multics operating system, compilers, 
and application programs all utilize pure procedure. 
The major benefits of segmentation are: 

• Stored data and procedures can be referenced 
easily and directly \ 
• Logical units such as programs and data are pro­
tected by hardware 
• Users can directly share procedures and data 
bases 

Paging 

Segments can be of different sizes, and their sizes 
can change during the operation of a program. In 
order to simplify allocation of main memory, each 
segment is divided automatically into fixed-size 
storage units called pages. This division - and the 
subsequent manipulation of the pages - is totally 
transparent to the user and requires no ac'tion on 
the user's part. In addition, any access controls 
established for a segment apply to the pages that 
make up that segment. 

The pages of a given segment need not be located 
in contiguous storage blocks. They do not even have 
to be in main memory all at once. As a page is 
needed in main memory, it is retrieved automat­
ically from secondary storage and placed in any 
available block in main memory. When main mem­
ory is filled and more pages are needed, some pages 
have to be displaced. Pages not used recently will 

· be moved (swapped) to secondary storage. (For 
added system efficiency, pages that are part of a 
pure-procedure segment or have never been written 
into do not have to be swapped out, since a copy 
stiH exists in secondary storage. These blocks of 
memory can simply be cleared and overwritten 
with other pages.) 

P-dging has distinct advantages: 

• A user can write and operate a program without 
planning for its storage allocation needs or for the 
managt!mcnt of the segments. 
• Paging provides a simplified technique for dy­
namic storage management and reduces operating 
system overhead by allowing optimum loading of 
main memory and avoiding compaction problems. 

B-3 

• Paging uses the system's high-speed storage ef­
fectively by fetching only pages that are actually 
referenced, rather than an entire program or file. 

Ring Structure 
The Level 68/DPS ring structure extends the con­
cept of a two-state machine (Le., master-mode and 
slave-mode) to a multi·state machine. Level 68/DPS 
provides eight states of execution with adequate 
tools to allow proper administration of access privi­
leges to the system users within them. This imple­
mentation allows segments to be grouped into rings. 
The number of each ring (0-7) designates the level 
of privilege assigned to procedure segments executed 
in that ring. Ring 0 has the highest level of privilege. 
Privileged ring segments, such as the supervisor and 
special user subsystems, are protected from uncon­
trolled use by less privileged rings. These segmen ts 
can only be used by procedures in less privileged 
rings if called via a special "gate" mechanism. The 
access permission checking is stiU required as weI{. 

The ring structure, with its obvious applications to 
information protection and security, is an integral 
part of the paging and segmentation hard ware. The 
ring structure offers users numerous benefits for 
example: . ' 

• Users can create protected programs and data 
bases for controned use by others . 
• A supervisor program can be implemented in 
layers with differing degrees of privilege 
• A pro~ammer can debug a program in an unpriv­
ileged environment and then move it to a privileged 
environment with no recompilation or modification 

SYSTEM CONTROL UNIT 

The system control unit (SC'U) i~ the principal inter,. 
face between all central system components. It pro­
vides complete system interrupt con trol which 
regulates communication between components and 
services all demands on memory under priority con­
trol. The system control unit handles the switching 
of all control signals, addresses, and data into and 
out of the memory units. Memory units are modular 
and each connects directly to a system control unit. 

Up to eight system control units may be configured 
in a Level 68/DPS system, with each SC'U capable 
of controlling one megaword (four megabytes) of 
memory. However, note that maximum memory 
size currently available is four megabytes. 

Additionally. the SCU dU:l:ks integrity on alld~,t" 
and control paths to and from memory units as 
well as th~ paths to "nd from the other systl-m 
components. It also provid~s memory I:onfiguration 
switching. 

l1le system dock within the SCU a S 2·hil hinary 
counter that increments at one·micrOlC~()1U.1 inkr­
vaJs- is used as a calendar dock. The 142..ycar 
capacity of the dock makes it possible for ~uhic~ 
softwan~ to operate on a consistent time ba!')c. 



MEMORY 
The metal-oxide' semiconductor (MOS) memory of 
the Level 68/0PS System~ can range from) 12K 
words to fout mHiion word~, Two word~. phl~ Error 
Ottrrtion "n" Cottfction f F IlA('. hi tfl. tltr Itl·t~4M~(l 
'" I'""tll ttJrtttm, t,vdr 

INPUT/OUTPUT MULTIPll:XI::R 
The input/outpu t multiplexer (10M) in terraces the 
system control units with the peripheral units and 
inteJUated network processors. The 10M can ,operate 
many different types of devices. It is controlled by 
information stored in memory. 

·The 10M can transfer data between I/O devices and 
memory while processors continue to run programs. 
I/O transactions are controlled by lists of control 
words prepared by the Multics operating system and 
stored in memory. When an I/O traIlS:3ction is com­
plete, or when special conditions are detected, the 
19M causes a program interrupt. 

The 10M has attractive performance characteristics: 

• Peak 10M transfer rate or more than four million 
bytes per second 
• Up to 56 simultaneously active data channels per 
tAl.' 
IVIYl 

• Peak channel transfer rates of more thon one 
million bytes per second 
• Scratchpad storage for control words 
• Eight special channels for specific system functions 

The 10M offers complete memory protection for 
all 1/0 data transfers. Each data channel functions 
independently. with its own memory assignment. 
P-drity is generated and checked on all information 
sent to and from the system controllers and the 
peripheral subsystems. 

PERIPHERAL SUBSYSTEMS 

The Level 68/DPS mass storage subsystem uses the 
freestanding MSP0603 mass storage processor to 
control up to 3'2 mass storage units. Multiple mass 
storage subsystems can extend the virtual memory 
size to a maximum of 512 mass storage units. Three 
different devices are supported~ the MSU0402 
(78 megabytes), MSU045I (157 megabytes), and 
the MSU0500 (626 megabytes), These devkes can, 
be intermixed on the same mass storage processor. 

Tht' MTP0601 Magnetic Tape Processor supports 
the MTlr0400, MTU0500, and MTU0600 tape 
units. These devices range up to 200 inches per 
second and 1600 bits per inch. Other peripherals 
include the PRU 11 00/1200/ 1600 ASCII line 
printers (1100, 1200, and 1600 lines per minute. 
respectively), 1050-card-per-minute readers, and 
100- to 400-card-per-miilUte punches, all under the 
contiol of the Unit Record Processor (URP). Up to 
eight individual devices can be controlled by a 
single URP. 

B-4 

NETWORK PROCESSOR 
The Integrated Network Processor (lNP) controls 
all remote terminal interaction with Level 6R/OPS 
host system. Connected to the central sy!\tclll via 
nn 10M. the Integrated Network Proces.~()r provides 
th., VlttlNUIit t"tetfMt~" tt'fluttf'd hy th~ ttt"ttwulq ftfltl 
Ij"l~m'H'" ttl .. ,U •• nh ...... t ~~_t .. m .. ~ w~iI Het ~t ttHlllh 
hu lHqtuII wHit 'hu tHJ_' 1)~_I~'H· Jb ll~'·'U ... Hill! JtlL! 
lalikb of mtssagt management and me~agc ham.Jling, 
the INP frees the host for other processing fuuctions. 
The resources of the central system are called upon 
only when the message is submitted for information 
processing. However, some networking functions 
(e.g., a message switch) can be accommodated hy 
the INP without any involvement of the host 
processor. 

TERMINALS SUPPORTED 
Level 68/DPS systems can communicate with var­
ious types of terminal's, including the following: 

. Interactive Devices 
Honeywell VIP 7105, 7205, 7705, and 7800 
Teletype Models 33, 35, 37, 38, and 40 

IBM3270 
18M2741 and 1050 (EBCDIC and Corn:spond~IKl') 
IBM 1050 
IBM 17XO 
Trcndata Models 1000 and 4000 
Dutd 30 
Dura 1021 
GE TermiNet 300 and 1200 (up to 1200 bps both 

half or full duplex) 
Execuport 3 t Q(' and 320C 
Texas Instruments Silent 700 Series 
Adage Inc. Advanc~d Remote Display Station 
1M LAC PDS-l D Graphic Display Computer 
Tektronix (graphics devices to 9600 bps) 
DIGI-Log Telecomputer Model 109 
Data Products Portacom 
Computer Devices Incorporated Teleterm 1030 
(including ASCII/ APL models) 1132. 1203 
Teleray Model 371 1 ' 
DEC GT40 Display Processor, DECwrikr II. 
DECwriter LA36 (300 baitd ASCII ) 

DEC Graphics Models I 2 and 15 
Hazeltine 2000 (ASCII) 
Delta Data Systems (Alphanumeric CRT lip to 

2400 bps) 
Xerox 2700 (Diahlo printl'f with piottill),! capability) 
Anderson-Jacobson Moocls AJ630 (ASCII), AJS32. 
and AJ841 
Gen Com Systems GSI300 (300 baud ASCI!) and 
GSC 300Q 
Lear-Siegler ADM-2 Display Terminal 
ADDS Consul Model 980 
DTC300 Series 
Infoton Vistar/II 
Bedford 575 (Setecterm) 
BeeHive Super Bee 



Remote Job Entry Devices 
Absentee (batch) processing is supported at the 
central site and at remote sites. Remote batch ter­
minals such as the Honeywell Model G 115. Data 
100/78 (using Honeywell Model G 115), RNP702, 
113M 27~O, Honeywell Level 6, and Mohawk 2400, 
offer remote bulk I/O capability and remote job 
entry . 

RECONFIGURATION 
The memory modules, central processors, mass 
storage devices, and terminals in a 68/DPS system 
can be reconfigured dynamically, without inter­
rupting user service. This allows failing devices to 
be removed from processing for maintenance and 
reCOH figured automatically following repair. In 
addition, failing memory pages are automatically 
deallocated whenever a double-bit (uncorrectable) 
error is discovered. Large configurations can also 
be split into smaller separate systems for block 
time processing or testing without service shutdown. 

SYSTEM CONFIGURATIONS 

System configurations can be tailored to user 
requirements. An entry-level configuration consists 
of: 

A Level 68/DPS System Control Unit with SI2K 
words of memory 
An Input/Output Multiplexer 

An Integrated Network Processor 
An MTP0601 Magnetic Tape Processor with a mini­
mum of two MTUOSOO tape units 
An MSP0603 Mass Storage Processor with two 
MSU0402 Mass Storage Units providing 156 mil­
lion bytes of storage 
A printer 
An operator console 
A full selection of terminals 

The system can be significantly expanded to a maxi­
mum complement of equipment: 

Level 68/DPS wIth power options to 4.3 times proc­
essing power of entry systems 
8 System Control Units with a total of four million 
words of memory 
2 Input/Output Multiplexers 
4 Integrated Net work Processors 
32 MSP0603 Mass Storage Processors a Ill! 51 2 
MSU0500 Mass Storage Units providing 300 hil­
lion bytes of storage 
MTP060 1 Magnetic Tape Processor and 1 () 
MTU0600 Magnetic Tape Units (per suhsystem) 
8 unit macro devices (per subsystem) 
An operator console 
A full se1ection of terminals 

Specifications may change as design improvements are introduced. 

MAXIMUM CONFIGURATION 

CPU 

DUAL PROCESSI NG 
UNIT 

CPU I CPU I 

DUAL PROCESSING ADDITIONAL 
UNIT PROCESSI NG UN IT 

CPU ; CPU CPU 

8 SCUs, 16 MILLION BYTES MEMORY 

PERIPHERAL SUBSYSTEM: 4 NETWORK PROCESSORS (96 LINES FACHl 
16 MTU0600 TAPE UNITS PER SUBSYSTEM 
8 UNIT RECORD PERIPHERALS PER SUBSYSTEM 



Honeywell 
Honeywell Information Syatems 

In Ihe U SA: 200 Smllh Street, MS 486, WaHham, Massachusens 02154 
In Canada. 2025 Sheppard Avenue East, Willowdale, OntarIO M2J 1 W5 

In MexIco: Avenlda Nuevo Leon 250. Mexico 11, D.F. 

20994, 3678, Printed in U.S.A. 

B-6 

1)(; 31. I(ev. 1 



Hone)'"'ell 

SERIES 60 (LEVEL 6S/DPS) 

Distributed Processing 
System: Multics Overview 

Mllitics, tHll' of till' llIost powerful <lIld comprehen­
sive la rge-sl'ak sysll'IllS ill t hl' world t od ay, provilks 
gClll'I;t! pllrposl' data prol'l'ssillg sl'Ivicl' for users 
de;dillg willi challellging bllSilll'ss and scicntific 
prnhkllls, B;lsl'd 011 tIl\.' conn'pl Ihat till' cOlllplItl'r 
is ollly as prod lid ivl' as it is an'l'ssihle, M lilt irs oIlers 
a hrt);lll rallge or katurcs ;tlld cap;lhililies within 
a sl'rvil'l'-oril'llkd l'nVirOnllll'llt ;llld ;1<.1<.1 rl'SSCS llll' 
rl'li~lbility, availahility, alld system grnwth rl~<Juire­
IIll'llts of dislrihulL'd processing USl'rs. 

PROCESSING CAPABILITIES 

Multics is for large and small lIsers .,. experts i.lI1d 
novices, Its total online, interactive orientation is 
ideally suited to a variety of processing activies in­
cluding: 

BATCH Multics supports both ]ocal and remote 
batch processing. I n Inactive lIsers can submit 
batch jobs for exectltion: hatdl johs can also ini­
tiak nthn hatdl johs . .Iohs \,vritkl1 for batch exe­
cution LIII also he rlln illln;ll'Iivl'ly without changl'. 

RFM(YIT JOB I':NTR Y M LIlt ics supports Illllll-
lTOlIS dl'vicl's ror l'eJlloil' job l'lI t ry. These illcludl': 
Mohawk Ibla SCil'lllTS 2400, DATA 100 Model 78, 
IBM 2780, IlolIl'ywl'1I Mt)(kl G-I 15, HOlleywell 
RNP702, and several HOIll'ywl'1I Level () modl'ls. 

TIM!.' SflARINC Full time sll;lrillg capabilities 
are available 011 native IIIOth', inkradivl' MuItics. 
In addition, two otlll'r l'llvirOIlIlll'llts, thL' MulLics 
FAST and DF AST subsystl'ms, provide the user 
with varying levels of time sharing powcr and proc­
l' ss i ng pI.' rI'o rm a n Cl' . 

TRANSACTION PROCFSSING Multics trans­
~lL'tiO/l prol'l'ssing ofl'ns fkxihilily and scope lIn­

ll1atdlt'd ill other sYSII,.'lllS. Tl'rll1inal orll'lltt'd. the 
syskm d th.'SIl '{ rl'q ltirL' spl'l'i;1I L'xl'clIl ive progra illS 

to IlInl1itor ll'nllin;i1 illplil alld tlIell to pron'ss user 
I'l'qlll'sls ill b:ill'Il. ApplIL'atiPlls .. :;111 be writtl'n ill 
;Iny LllI~II,I~!.I' ;llld dirl'l'l!y ;il',--'~'-;st'd ,'rulIl allY 11111llher 
or Il'rlllirl:I1s t)1' h:Ill'1I johs .,. silllllHalleollsly ... in 
a l'Olllph'kh sll;llt'd l'1l\IHHlllIl'll:. S~"klll Lll'iJiliL'S 
allo\\ illll:rLll'l'S In Slh'ci;I1i/nl d;d~1 h;ls,,~; as well as 
L'PlIl'Ullt'lIl :h'l\'SS UHllr!)1, jPIIIIUli;:llinll, rccovery, 
;lIld ()Illill~' !"\lrlnS gl'lll'r;1I iUIi. 

.,) 1977, 1IIllll'YWt'II Inforlllali"l1 S:'1>I"IW. ;1\1 . 

WORD PROCLSSiN(; Multics' advallccd word 
procl'ssi II!!, Llcil it ies i Ilcill<.k: 

• Powerful text l'dilors 
• DoculIlent /'ortnattin!!, c;lp~lbilities 

• Frror dckl'lioll tools 
• SPFFlrrYPI': (short lIa 11(\ for I y pists) 

• Onlilll'dictiol1:lries 

• Artwork manos 
• Fkdrollil' 1ll;lil 

Together, tl1l'Sl' katllrl'S l'llahk till' Multics IISl'r to 
creak and maintain l'ITOr-f'rlT dOL'llllll'llls alld pro­
duce formatted output. 

GRAPHIC PROCESSING A gl'lleral purpose illkr­
face el1ables user and application programs to creale, 
edit, store. display, alld animate graphic Illall'rial. 
Multics' graphir it'aillres inchttk: 

• Terminal indcpl'l1liclll'l' 

• Powerfllll'ditillg capahilities 
• Pl'r/ll~II11'llt stor:lge capahilities 
• Sharillg sllho\Jjl'c\s ~lI1d strllct ures 
• DYl1amic animalioll 
• Local ed iti IIg 

• Inc re me 11 t a I pi ct tI re u pd a till g 

RFALTIMI' PROCrSSINC Mliltics Gill provide 
rl'al-tilllc respollse to slWciril'd lIsers or johs (dl':ld­
lille job scht.'dliling, for example), 'I lIus, till' sysklll 
is useful in opnaliol1s control fUll l't iOlls sucll as 
process control monitoring. 

USER ORIENTATION 

Uniform User Interface 

Key among M ultics' lin paralleled ;\CCl'ssib i Ii t Y 
kalllrl's is ils lIlJi/'ol'ln lISl'r inkrf'acl', All till..' sysll'l1l'S 
processing functions from hatch to tillll' sharing to 
graphics ;IIT ;lv;lil .. lbk via ;1 sin!!,/l', cOllsisll'1l1 
intl'rfacl'. TIll'rt.' ;Irt.' 110 format or l'Xl'ClIlioll dillcr­
elln's hl'tWl'l'1l usage types, A progr;lIl1 writll'lI ill ;111 
illkr;ll'Iivl' l'IIVirOllllll'lIl will rllll ill hakllll'il/tulil 
C()IIJ'crsi()/I (J/' l1I()di/inlliol/. ;111<1 Vil\' Vt'IS;1. AllY 
kr-lJlin;I1 :11I;ll'IH'd to I Ill' SYSIl'IlI CIII, 1I11less spn'ifi 

B-7 Hit- No.: II1I 



cally restricted by the system's administrators, 
access any program or feature. 

Also implicit in the M ultics environment is the con­
cept of total compatibility. There arc no restrictions 
on languages used to access data bases or files. Pro­
grammers can develop COBOL applications, for 
example, with certain modules written in other lan­
guagcs, and he assured of total compatibility and 
cq lIal proccssing efficiency. Moreover, data and pro­
grams associated with one processing dimension 
t l'.g., t ransae! ion processing) are totally accessible 
from any other dimension. 

Totai Online Orientation 

Multics' architecture is oriented directly toward on­
line applications. Whereas other systems provide 
online capabilities through executive packages, 
Multics is completely interactive, and does not usc 
such packages. As a result, in high-volume trans­
action-oricnted cllvironml'nts when.' thl~re is sig­
nificant terminal activity, Multics provides unique 
advantages over other architectures. 

Total Sharing 

Multics permits t1w controlled sharing of operating 
system software and libraries, language processors, 
data bases, and user code and data. Even with mul­
tiple users simultaneously compiling COBOL jobs, 
for example, only one copy of the COBO L compiler 
is in use. And since all MuItics language processors 
generate reentrant code, even users' programs can 
be shared without special programming. 

EASE OF USE 

From its inception, Multics has incorporated features 
and capabilities that make it one of the most acces­
sible and easy-to-use systems on the market today. 

Intt'ractive Orienta tion of All Facilities 

Every aspect of Multics is online-oriented, induding 
the language processors, applications, data base man­
agement facilities, utilities, administrative tools, and 
ll1ekring and tuning capabili ties. 

No Job Control Language 

Unlike other systems -- which require that the user 
learn a job control language (JCL) prior to running 
a job -- Multics provides control functions via a 
standard command processor approach, thus elim­
inating complex JCL. Systl'm commands and rou­
tines supply the logical branching, conditional exe­
cution, file system, and I/O control required to 
dirl'ct a joh through simple and complex execution 
paths. Thus, the Multics llser I1l'l'd not karn a new 

batch interface, or become a JCL expl'tt to lISl' thl' 
system for problem solving. 

Flexible Environment Shaping 

Multics matches the computer's processing l'llViroll­
ment with the uSl'r's particular needs. Provid ing a 
tlexible interface, Multics l'nabks lISl'rs to continue 
using the computer in the way they arl' aCl·ustollH.'d 
even though they arc changing to a new systl'm. 
The concept of shaping environment"i is part icu­
larly beneficial for data processing organizations 
that service many diverse user groups simultane­
ously. Each group can develop -- using standard 
administ~ative tools specialized interfaces to 
satisfy uniq,ue operating requirements. Typical of 
these tools is the special command processor with 
which users can define their own abbreviations for 
frequently-usl'd command lines or sequl'nn's of 
commands, as required. 

EXEC-COM Facility 

With this feature, users can write programs to l'Xl'­
cute stacked command lines. The add it ional cont roJ 
capabilities provided hy the EXEC·(,OM facility 
allow for logical branching, the maintenance of 
variables, command-level I/O, and conditional exe­
cution. Thus, it is possihle to develop routines 
for functions which typically require higher level 
languages without having to actually lISC such 
languages. 

Help Files 

Multics help files contain printed text which pro­
vides immediate, online assistance to users requl'st­
ing data on various system topics, induding the lise 
of Multics commands and subroutines. Tutorials 011 

each system feature are thus readily availabk. Sim­
ilarly, users can document their own programs and 
routines, and avoid continuous referral to Clllnbl'r­
some hard-copy documentation. 

Memo Facility 

The memo facility allows users to indicate when 
specified events arc to occur on the system. EVl'nts 
to be scheduled can be inter-job signals, IlH'ssagl's, 
or program executions. Typical examples include 
simple date reminders and the automatic scheduling 
of an installation's batch applications. 

I 

Intelligent Defaults 

Multics --- via its intl'lIigcnt til'faults Ids lISl'rs pl'''-
form certain functions on the system without having 
to considl'r concepts that do not pl'rtain tot hl'ir 
particular application. In a typical situation where 
the lIser wishes to archive data on tap\,', I1Uilll'l'OlIS 

details slich as tape liL'nsity and blockillg fal·tors 

B-8 



must also be defined. For users to whom thesl' de­
tails are not relevant, Multics standal"d defaults per­
mit the archive tape to be written via simplified 
I/O routines from command Il'vel. 

VIRTUAL MEMORY 

The Muitics virtllalllll'lllory illlph.'llIl'llltiIIOIl, totally 
illvi')ihk If) IlSt" pro!-!r:IIIl\. 11)(';111\ Illal plo~raml1ll'rs 
can conn'nt r;i1l' Oil prohklll solvil1l'. 1:11 lit'! (/tall he 
t'OIICl'rIll'd With real 1lll'1lI0fV l'ollstlaints and mem­
ory management (e,g., partitions and overJays). 

Virlllallllt'IlHHY is lill1ikd ollly hy thl' amount of 
avail:thk mass storagc. So, programs written for the 
largest l'onfigufation call rlln Oil till' smallest without 
modi ficat iOIl. No stand art!, fixed llIui 11 memory-to­
mass storagl' ratio is requirl'd to ensure efficient 
system operation. Regardll'ss or the ratio, Multics 
can be tUlled to perform within its real memory 
call st ra in ts. 

St"'glll~ntation 

Mllilics organi!.l's information illto segments 
logical, n:llllL'd units containing data, programs, or 
diredories of ot her segments. Thl' segJill'11 ts and 
their dircdories form a uniforlll file syskm for all 
lIsers, the administrat iVl' and ~lcc()lIl1ting system, and 
tht' system software itself. Segments can increase 
dynarnicaliy up to I megabyte ill length, and files 
can span Ill'arly 1000 scgments. 

Paging 

Mult ics designers devised t he paging concept to 
avoid thl~ system performance limitations that re­
sult from swapping large riles (segments in the case 
of MlIltics) in and out of main memory. In MlIHics, 
segments are subdivided into "pages" (4096-byte 
hlol'ks). Address mapping at till' hardware Il'vel 
l'llabks till' syslt'm tp dl'termillt' if till.' page of a 
requl'sit'd sl'gllll'llt is ill IlIl'lllOry and if not, to 
IOl'atl..' that p;q.!,I.', transport it IOlllclllory, alld 
Sdll'dllk it for l' \crlll ion by I he wai t illg process. 
Dellland p~lging dilllill;IlL'S spacl' allocJlion and 
l.'olllpal'l iOIl probkms ;J nd lila \ jill i/,l's systelll per­
forlllance. Paging is cOlllple(·:ly transparcnt to the 
lIsn. A!!d only those pages required for the execll­
tio)} 01':1 program arc brought illto memory at any 
give)} tilllt'. 

The al'lllallllOVl'Il1l'1l1 or inforlllatioll ill and out or 
main Illl'llHHy is compktL'ly ;Iutolllatic and Irans­
parl'1l1. Ihla rl'quil'L'd by till' lISt'r, 1'01' l'olllplIlalioll 
or 1ll:IIlIPlIlatioll, is rl'l,iL'Vl'd 1"10111 pniplln;d storagl' 
:Illd illsl.'rtn' ill !1l:lill I1H:11HH) wllllOlit till' lISl'r ever 
kIlPWIII!! till..' 1),lllsk: !i~()k pLIL'l'. 

PROGRAM DEVELOPMENT 

Multics ranks as one of the industry's prl'llliL'rl' soft­
ware developmcnt tanis, It has powl'rflll source COdl' 
manipulation tech niques for l'n kring, eli i t i Ilg, alld 
archiving code, and for automatically strudllring 
programs for easy reading and lise. Its onlilll' debllg­
ging tools facilita1L' checking out nl'W l'()(k, and aid 
ill tlie rim' IUlllllg or pr()gr:lllls. Milltks .lbo prpvidl'S 
optiol1s rOl dYIl;lIl1il' linking n!" prl'lillkil1~ df' 1111)­
grams, and standard l'alling scquellcl'S for sysh.'1ll 
libraries and LIseI' programs. 

Multics' fully compatihle language processors sig­
nificantly contribute to the system's outstandillg 
program development capability. These processors 
induding PL/I, COBOL-74, FORTRAN, APL, ALM 
(assembkr), alld BASIC can he fully sharl'd. Be-
cause of thl'ir compatibility, programs wrilll'1l ill 
APL, for example, can call those written in PL/I 
or FORTRAN. Compatibility is restricted only 
by the data types supported by each language. And 
since aJl Multics compilcrs generate reentrant code 
hy default, all lIser programs are shared; no special 
coding procedllres are rl'quirl'd. 

APPLICATIONS DEVELOPMENT 

During applicat ion s dt'vL'iopllll'n t, t hl' progr~lll1mlT 
typically Illust address concerns such as terminal 
control, data basl' Illall~lgell1ent, interfaces to system 
functions, data sccurity (lnd inkgrity, and I/O inkr­
faccs. M ult ics provides a standard applica t ions cnvi­
ronment that can be shaped to individual Ill'eds. 
Thus, programlllers can avoid these probkms alld 
cOllcen t rall' on prograllllll ing, tlll'l"l'by sign i fic:ln t Iy 
shortening the (kvl'lopment cycle. 

DATA BASE MANAGEMENT 

The MuItics Data Base Manager (MDBM) ofkrs two 
data base lIl;magcl1len1 interfaces: Mllitics Inkgrall'd 
Data Ston.' (MIDS)' a subset of I-D-S/II: and MlIltics 
RL'lat ional ()" ta Store (M R DS). M I DS supports 
schl'ma/sllbsclll'J1l~1 data hasl' definitiol1s to provilk 
di.lta and program independellce. Data hasL' struc­
tures whit'll canlw dcveloped include seqllelltial. 
nl'1work, hierarchical, or cyclical. MRDS providL's 
data and program indl'pl'ndence vi;) modd/submodc! 
data hase definitions and nonprocedural user rl'triL'val 
and update Illcchanisms. Both interfaces allow inkr­
active or batch lIsage, sharing, COI1Cllrl"l'nt ;ICCl'SS, and 
access via programs writtell ill allY Iallgll:lgC avaibhk 
on Mllitics. 

ADMINISTRATIVE CONTROL 

A significal1l strl'llgth or Mllitirs is its ahility 10 pro­
vide servke to ;1 widL' variety of lISl'rS silllllll:IIH:PlIsly 

B-9 



without the workload of anyone group adversely 
affeding that of another. Multics' comprehensive 
set of administrative controls make this high level 
of processing service possible. These controls include: 

• Decentralized control options 
• Guaranteed resource allocations 
• Priority sched uling with specified response char­
acteristics 
• Deadline job sched uling 
• Flexible service pricing 
• Automatic or on-demand billing 
• Automatic user or project cut-off when resources 
arc ex.pended 
• Onlil1l' IllL'h.'ring and tuning 
• Standard t'llvironmcnt shaping 

EASE OF OPERATION 

Tht' opt"rationul fl~atures in Multics make its utility­
grade servin' readily available to a wide variety of 
llSt'rs. For t'xalllplc, thert' is no system or library 
gellt'ration or edit. The operator can start the system 
simply by typing one command at the console. 
System software and libraries _. delivered patch-
free .- Cl!!1 al! be l!pdated onlirle. ~A. .. ne\\' compiler or 
application can be added without shutting the sys­
tem down, and with only one command. new soft­
ware can be installed without affecting users working 
with other existing packages. 

Multics can run unattended. An automatic reboot 
feature automatically restarts the system in the 
event of a failure. The system's online test and diag­
nostiL' capabilit it's permit the user to check out a 
malfunctioning component online, remove it frolll 
st"rvicc if ncct"ssary, and dynamically reconfigure 
thl' rl'maining sysll'm components ... all without 
in klTtlp t ing USl'r sl'rvice. 

hit- inll'grily is i'ulldanH.'ntai in a service-oriented 
environment. Multics offt'rs ~llltomatic mechanisms 
which optionally journalize recent file updates 
within thl' syskm's virtual memory. Should a fail­
url~ cause temporary loss of data, these journals can 
he rdoaded to continue service. Ouplh.:ate file copies 
are not necessary since Multics itself provides file 
backup. 

Additionc;tl ease-of-operation features include: 

• Online administration and billing 
• Operation from any terminal 
• Dynamic control of the priority scheduler 

COMPATIBILITY WITH LEVEL 66 

Ll'Vl'I (l6 and Ll'vel 68/DPS systems slla rc a high 
lk'grl'l' of compatihility. In tlll'ir n.'spl'ctivL' hard­
wart' configurations, only the ct'ntral prOCl'ssors 

differ. The Multics central processor is a SlIPl'rsl't of 
the Level 66 unit and has a switch which allows it 
to run Level 66 GCOS, thus providing users of hoth 
systems added flexibility and backup. 

A special Multics subsystem called the GC'OS En­
vironment, allows GCOS job decks or IMCVs to he 
run without change. GC'OS files can also be trans­
ferred between the two systems using standard 
GeOS tapes. 

Multics, through the GCOS Environml'nt. also sup­
ports several languages that rlln under GC'OS. includ­
ing JOVIAL; ALGOL, COBOL-68, GMAP. and 
FORTRAN-Y. 

DISTRIBUTED SYSTEMS ORIENTATION 

Multics is ideally suited to the development of nl'f­
works of distributed mainframe systems. With l'xist­
ing hardware and software, Multics can be inkrcon­
nected with a variety of other systems to form 
networks, that add ress a broad range of user rl'­
quiremcnts. 

With this approach, users establish networks in which 
files, programs, and data can be shared among the 
various systems easily and with maximum security. 
For example, a programmer could log onto an 
IBM 370/158, and then have required data trans­
mitted from a CDC-7600 to a M ultics systl'm for 
processing, with the output going to the 370. Num­
erous variations of this approach are possible. In 
fact, Multics can currently interface with syskms 
such as IBM 360/370s, Burroughs 4700 lJlld 6700s. 
CDC Cybers, and Univac 11 DO/90s. 

SECURITY 

Multics offers high levels of security unattainable 
on other systems today. Severalekments cooperak 
to make this outstlJnding syskm, data. and program 
protection possihk. These elements are passwords, 
access control lists, multistate ring protection IllL'ch­
anisms, and access isolation methods. No special 
coding is required to make use of any of these l'k­
mcnts; only standard system commands need be 
executed, 

Passwords 

The Multics password mechanisms control access to 
the system and verify users' identities. Each USl'r 
has a system-maintained password which can he 
changed at any log-on. Passwords arc stored in cn~ 
cryptcd form so that a user's password will not Iw 
rl'vl'ak'd accidentally. WI1l'n the lISl'r attempts to 
log on the SYStl'l11, till' tYPl'd in password is l'lI­

crypl\.'d and veril'il'd hy comparison agaills( (I.ll' OIH' 

stored in thl' syskm. Prl'ciliiions an.' iakl'll to l.'I1-

B-I0 



sure that passwords are not exposed during the log­
on seq uenee. 

Access Control Mechanisms 

An AL'Cl'SS Control List (ACL) is lIsed to control 
aCl:l'SS to every sl'gml'l1t in the storage system. 
Throu~h the At L USl~rs can ~rant specifll': acc{~ss 
lighh (c.g., H.-ad, writt:, l'xcclltl'i to individuals or 
groups of lIsers. System hardware cnforccs access 
control during the execution of each individual 
machine instruction. 

Ring Protection 

A special hardware implementation, the Multics 
ring stnlcture is a multilevel approach to data and 
program access control. The ring structure contains 
eight levels of execution (rings 0 through 7; 0 being 
most privileged, and 7 the least). Within this struc­
ture, users can access information only in those 
segments at the same level or higher (Jess privi­
leged) than the current state in which they are 
l'xecuting. Thl' MuItics opl'rating system resides in 
thl' most privileged ring (0) while lIsers generally 
e xeCll te in the less privileged ri 11gS. 

Access Isolation Mechanism 

The Access Isolation Mechanism (AIM) incorporates 
administrative controls to grant or deny access to 
information in the data base. AIM is a way of organ­
izing users into groups among which communication 
can be restricted or denied. Like all other types of 
Multics access control, AIM is initially verified by 

Multics software and is hardwarl'-l'l1forcl'd at \..'Vl'I'Y 
reference thereafter. However, AIM also call prL'v\..'nt 
users from granting - to other lIsers aCCl'SS to 
even their own information. AIM can he invoki.'d or 
disabled at thl' discretion of I.:ach Muitics sitl'. 111 
add itioll to ad minist rative cont rois, A 1M providl's 
extensive sl'curity auditing controls to monitor LIseI' 
activity. 

GROWTII 

Like other lloneywel1 systems, MlIltics' hardware 
architecture provides the benefits of modularity 
and an easy, paced growth that does not require 
swapouts to upgrade to higher performance levds. 
This easy expansion allows a user to configure thl' 
exact system needed and protects eq lIipment 
investment. It is not necessary to change the oper­
ating system, system libraries, or user codes in 
order to move to a more powerful Multics system. 

SAMPLE SYSTEM REQUIREMENTS 

A typical entry-level MuItics configuration consists 
of the following components: 

• Central System, with SI2K words of memory 
(2 million bytes) 
• One System Control Unit 
• One Input/Output Multiplexer 
• One Integrated Network Processor 

• Two MSU0402 Mass Storage Units 
• A minimum of two MTU0500 Magnetic Talk' 
Units 

B-II 



Honeywell 
'Honeywell Information Systems 

In the U.S.A.: 200 Smith Street. MS 486, Waltham, Massachusetts 02154 
In Canada: 2025 Sheppard Avenue East, WiUowdale, Ontario M2J 1W5 

In Mexico: AvenidaNuevo Leon 250, Mexico 11, D.F. 

19626, '1277, Printed in U.S.A. 

B-12 

DF51, Rev. 1 



Honeywell 

LEVEL 6S 

Multics Virtual Memory 
and Storage System 

The MlIltks Storagl' Sysll'lll is a modular, hierar­
chical rile sysll'lIl :llIgllll'nll'd hy a comprl.,'hensive 
virlll~d 1lIl'IlHny. I\n inkgral compollent of the 
Multics Operating System, the storage system is 
just another reason why Iloneywcll believes Multics 
to he the most advanced computer system available. 

HIERARCHICAL STORAGE SYSTEM 

In the Mliltics System, all information is grouped 
into Sl'gllll' Ilt s, colll'ct ions of inst ruel ions and/or 
(1:11 a assori:lkd willl:J I)arlicl!lar lIallle. ;\11 of 1 Ill' 
sq!.llll'lllsart.' stored ill a Irel'strurlurl'd liierarchy 
(set' illtlslralioll), I Ill' heginning or wllidl is railed 
I Ill' 1'001. Till' hranches CIIl;Jnat ing frolll I he root 
lead 10 l'ithn Ilolldirl'clory or directory segments. 

The Direcf ory ('Ollccpt 

The sole fllnction of a directory seglllcnl is 10 

catalog the segments residing helow it inthe tree. 
Fach directory contains the names of the slIoor­
dinate segments and lists their attributes including 
length, virtual memory address, date and time the 
segment was created, list of users allowed to access 
the segment and with what access mode (read, 
write, execute, or null). 

The directory concept is the key to several Multics 
features, induding storage structure, administrative 
control, access control. search rules, and naming 
l'OIl Vl' 11 I ions, hn example, all users registered 011 

llll' syslL'lII are groulwd illl\) projects, Facll project 
has ~t directory, and l'adl {lser ill tllal projerl has 
his own din.'dory slIhordinall' 10 Ihe project direc­
tory, /\ IIser llIay l'rt'ak additional suhordinate 
dirl'doril's undl'r his own din.x-tory or Linder direc­
tnrit's to which Ill' has heen granlcd specific access. 
IlL- !IIay also creak "Iiilks" ill his direrlory to seg-
1llt'1I1s 10 which Ill' has specific acct'ss. This capa­
bility is ortl'll lIsed to sharl' data and/or programs. 

The Segmenta'ion Concept 
All information within tht.' storage syskm is stored 
in the form or segments. Providcd the lIser has the 
proper an-ess rights, all informalioll is dir"l'ctly 
address;Jbk. In addition, all or 1111..' information 
within thl' stor:lge systl'1ll is pl;lL'l.'d within the 
MlIllirs Rill!! Slrll((II:'l' (Sl't' "CollI rolled An-ess 

o 
o 

/ 
/ 

\ 
\ 
\ 

" \ 
, I 

OIRfCrORY Sf (JMfNl " 

NONDIIH CTOIIY SlGME NT 

OIHlCI CONNI ClION 

LINKED CONNf.CTlON 

Hierarchical Storage System 

to Segments") i.I hardware-software feature that 
provices maximum security over information 
sharing. 

Each segmen t is idcll t ifil'd hy a lIser-assigned SYIll­

bolic name (making lise or till' full /\S( 'II charadeI' 
sl'l) as well as by a unique, systl'llhlssiglled iliell-
t i ri cat i 011. 

The fully spl'\.'ifil'd 1l;lllle of ;IIlY olle sq!1I1l'lIl is the 
list orslIhnarncs III;t( reflect that sl'gmenl's posi­
(ion in the directory hierarchy with respect 10 the 
root directory. This name, called a pathnallll', 
shows the "path" from the root din.'ctory to the 
specific segment and is the symbolic name hy 
wi! ich ihe user must r.eference the seglllen t. 

VIRTUAL MEMORY ENVIRONMENT 

Segmenfal ion 

In the Multics System, ;111 Sl'gllll'lIts are din'elly 
:Iddn.'ssahk by Ihl' h;mlw;II'l'. Willi tilt' ;J(ldn'ssirl)'. 
Sclll'lJll' lIsl'd ill till' MlIltil'S prOl"l'SSOI, allll'll'Il'lIrrs 
to informatiol1 ;11\' lIIaPIH'd through (h.'sniptors 
(Sl'1!,l1Il'lIt Iksniplor Words). Thl'Sl' descriptors 

13-13 fila No.: II 11 



are listed in a table (Descriptor Segment Table) 
that identifies segment attributes and defines the 
access a user can have to the segmen ts. Most 
importantly, segmentation encourages users to 
view memory as a collection of independent linear 
core IllL'lllories, each associated with a descriptor. 

;\ IIser program can create a segmcnt by issuing a 
elll 10 I hI..' syskm specifying as arguments the 
symbolic name of the segment plus additional 
information ahout who mayor may not access this 
segment. Then the system construds a descriptor 
according to the access information given by the 
originator of the segment. 

The originator has control over every segment in 
his directory: he can grant or restrict access to 
these segments in any way he chooses. In fact, he 
can grant different access privileges (read, write, 
execute, or null) to different users or the same 
scgnll'nt. 

Once the segment is created, the user program can 
address any item within the segment using name, i 
where ""name" is the symholic name or the seg­
ment and Hi" denotes the place of the desired item 
within the segment. Thl~ maximum segment si/.e is 
2S(lJ..~ words ( ! ,04X,S7(, byh.'s)_ 

Paging 

With most computer systems, the limiting physical 
resource is main memory. The amount of main 
memory online is a major factor in determining the 
performance of a system. The problems associated 
with "swapping" large files into and out o(main 
memory severely limit system performance. Even if 
files were not all large, there would still remain the 
difficult problem of core management. Since the 
Multics System allows users to create and/or 
manipulate large segments, it is neither feasible nor 
desirahle to have an entire segment in main mem­
ory when in use. 

ThL'reforl', ill the Multics System, segments arc 
automatically subdivided hy hardware illio "pages" 
with a fixed size of 1024 words. Additional address 
mapping at the hardware level allows the system to 
ddcrmine whether or not a page of a referenced 
sq~ment is in main memory. 

I f the page is not in main memory, a missing page 
exception occurs (called a "page fault"). The 
software sysklll intervenes at this point and proc­
I..'SSl'S the pagl' Llult hy locating till..' dl'sirL't\ pagL' in 
till' sloragt' sy sklli lind t ra nskrring it i Ii to main 
Ilh_'lllory_ During this phasl', thl' pnK'L'SS tllat ~ell­
l'r~lkd till' pagl' Lllllt rdinquisill's control of the 
prOl'l'ssor amI I Ill' system disp~lkl1l's t hl.' l'XL'cut ion 
or ~lIlotlln pnh'l'SS (pron:ss Illullipkxing). OnCl' 

the page docs arrive in main memory, the sysll'm 
notifies the "waited" process and sc\lL'duks it ror 
continued execution. 

By using this "demand paging" technique with a 
fixed page size, space allocation prohlems arL' sim­
plified, and the cost performance factor of t hL' 
system is significantly enhanced: only thosl' seg­
ment pages that are currently needed are in 
memory at anyone time. 

USER ACCESS 

Direct Access to Files 
With most large-scale computer systems, t he pro­
grammer must interface with the file system 
through complicated Job Control Languagl' (.ICL). 
He also must know the specifications of thl' storagL' 
device on which h is files reside and must iSSlIl' and 
control (either explicitly or through lllaLTO specifi­
cation) his own I/O requests. 

The Multics System, wit h t he aid or t hI..' virt lIal 
memory, requires no .Jet, nor arc lIsers cOlln;rtll'd 
wit h or even aware of whel"L' and 011 what 
devicl's their segments rl'side. Instl'ad, lISL'rS 1..'0111-

municate with thl' storagL' system hy askillg I Ill' 
sysil'm to maKL' avaiiahk io ilil'jjj a sq!.iih_'ill withiil 
t heir own virt lIa I Ille III 0 ry . 

Contr()lIed At'cess to Segments 
Since all information is stored online ill till' Multin; 
System and data can he accessed direct Iy, an:l'SS 
limits and controls are mandatory. TIll' accl'SS con­
trol mechanism in the Multics Systl'1ll is ~I highly 
sophisticated and reliahle means for spl'cifying till' 
usage attributl's of dirL'ctorks and 01 Ill..'r sI..'gllll'tlh_ 
There arc two access control lists recognilL'd hy till' 
system: one for directory segllll'nls, oth.' for 1101l­

directory segments. These access control lists arl' 
carried in directory segments. 

Access modes for nond irertory sl'gnll'nls are: 

read (r) data in till' sl'gllll'llt call 111..' n.'ad 

wrilL' (w) data in thL' SL'gllll'llt canlK' lIlodifil'd 
executL' (l') alll'xL'clIting pnlL"l'SS Gill transi"L-r 10, 

and L'XL'cuk instructions in, this 
segmcnt 

null (n) access to segmcnt is dL'lliL'd 

Access modes for directory sl'gml'nts arL': 

status (S) till' attrihull's or sl'~lllents. dirl..'l"­
toril..'s, and links ~:olltailll'd in IllI..' 
dircdury l':111 h ... , pbtailll'd 

modify (Ill) I Ill..' aUrihllll..'s or l',isl ing sq~llll'llts, 

B-14 

dirL'l'turil..'s, and links conlailh'd III 

I Ill' dil"l'L'lory I..·all hI..' dl;Jllgl'd or 
dl'ldl'd 



append (a) new segments, directories, and links 
can be created in the directory 

null (n) access to directory is denied 

Access validation is clll'cked <Ind enforced at the 
hardwarc level Oil cach Illcmory rcfercllce, For 
example, if the originator of a data hase decides to 
grant access to some user, he can issue a Multics 
command specifying "read" access for that user. 
if that user is currently attempting to reference the 
data base, he is given access instantly. 

As a further control to accessing segmcnts, the 
Mt'lltics Syslt' III uses the Ring Structure. Logically, 
the I{illg Sirudlln: i~ I..'ight concl'l1trir rings, each 
represel1ting a diffl-rcllt level of virtual memory 
access righ Is. Till' highest Il'vl'1 of privilege is the 
innermost ring, (ksigllakd as rillg I.l'ro; the ollter­
most is ring 7. J':ach ring is proll'rlL'd against uncoll­
trolled acl'l'SS by prograllls ill any ring with a higher 
Ilumber designation and thus a lower level or plivi­
lege. The Multics ring-handling mechanism is 
enforced at the hardwan' levcl. 

USER INTERFACE 
In using the Multics Stor,lge System, the user has 
two available interfaces. With the first, the "com­
mand level" interface, the liser can create and/or 
manipUlate segments residing in vario~ls user direc­
toril'~, In many timl'-stlaring opnating systems, thl' 
L'(Hl1l11:lIld kvl'l illkrf:ll'c is slipporkd by the 
pltysil';d l'diling nf thl..' "nHIlIll;JII(/" into various 
systeIll lahll's ill till' opnat illg syslL'lll at systL'1ll 
gt'lh,'ratioll lillie, Witl! this kchniqllL', till' problellls 
CllCOlJlllL'l'l'd wltik trying to l'XP:IIHI the rl'lll'rtoire 
of till' l'OIllIll;llld language C:ill Ill' l'xlrCIlH.', 

In the Multics System, however, there is no "COl11-

mand langllage": evcrything l'xL'clIkd at Multics 
command levl'l is simply an object program from a 
system directory. Whcn ;1 IISt'r types a command at 
his terminal (l'.g., creak xyz), the system first 
interrogaks the lIser's own directory to sec if the 
"create" program exists. If so. that version is exe­
cuted. If not, the Multics System searches a sl't or 
syslL'm/user-supplied directories (called Search 
Dirl'dories) for the "create" program. The user 
also has tilt' ability of expanding the default search 
dirl'ctoriL's tll indud(, ot her directories (possibly 
common to a spl'cific projl'd)' 

ThL' seClHld lISt'r illkrfaL'l' is available via program 
l'Xl'clItioll. Users' object programs can issue call 

B-I5 

statements to crl'ak and/or manipulalL' Sl'gl11l..'llts, 
The call statements themselves are of the standard 
PL/I form. Any program executed wllile at Mullirs 
command level can be called and eXl'l'ulL'd inkr­
nally from within an object program. 

FEATURES 
Va riotls rea t 1I res of hot It till' M tilt irs Vi 1'1 u;iI ~kll1-
ory and the Storage System arc Slllllll1~lrill'd hL'/o\\', 

• All informatioll stored in the Mtlltics Virlual 
Memory is direct Iy addressahle provided tile IIsn 
lias propn access rights, 
• Fst:lhlisllL'd prolL'L'lioll rings allow t1Sl'l~ to l'llcl..'­
lively partitioll dal;l wilhin conn'nlrir ring strllc­
lurl'S, 
• Two or more lIsns ran share a singlL' copy or 
data and/or programs in main IllL'lllory. 
• Users may creak "links" to othl'r :Iccl'ssihle 
segments of virtllallllelllory in order to shalT <1;11 a 
and/or progra illS. 

• Each user can slwcify variolls aCCl'SS rights to his 
own segments, evcn spccifying difkrl'nt acL'l'SS 10 
different users or till' SlIlII(, segment. 

• Moveml'nt 01" data betwL'l'n main melllory and 
secondary storage and back is automatic. :llld is or 
110 coltccrn to thl' lIser. 
• Trce-structurl'd storagl' hicrarchy oilers all 
orga n ized sclle Ille 0 f dassi fica t iOIl a n<.l fad lit a It's 
l'ITicicllt sL'arch for a part iClllar segmcllt. 

• USl' of directories within the storage Sysh'11I 
servl'S as a COIlVl'lliL'nt placl' to look lip :lddn'sses 
and access righ t s of ot her Sl'gllll'1l Is. 

• Access rights to a segmL'nt are checkl'd hy 
Multics hardware 011 every refelTllcl' to the seg­
me 11 t. 
• Multics has 110 Job Control Language: l'verythilll! 
executed at command Il'vel is Illcrl:ly a sl~lIld~lrd 
object segment. Thlls, the "command languagl'" 
call be dynamically tiL'veloped, expanded. ,IIHI 
tailored to individual installation l'Vl'Jl individual 
usc r ret) 1I i rl'llle n t s. 

SYSTEM CONFIGURATION 

The functions here in dcscril1L'd arc a pp I iC;1 hk 
to any Level 68 configllraiion, 

SIH'cifil'aliClIIS Illay CIi;lIll!l' ;IS dl'sil!lI illlprClVl'lIIl'lIls all' illlrodll\'l'\L 



8743 
7.5774 
Printed in U.S.A. 

The Other Computer Company: 

Honeywell 

HONEYWEll INFORMATION SYSTEMS 

In tho U.S.A.: 200 Smith Street. MS 061, Waltham, M .... achu .. tts 02164 
In Caneda: 2026 Sheppard Avenue ea.-t. V\llliowdalo Ontario 

B-16 

AK5l. Rtlv. I 



Honeywell 

SERIES 60 
LEVEL 68/DPS 

The Level 68/Distributed Processing SysJem, with 
its Multics operating system, is an advanced large­
scale computer system providing genera] purpose 
data processing service for business and scientific 
users. 

Ll'vd 68/DPS administration and operating 
features make its processing capabilities available 
with simplicity and east'. These features give the 
Level 68/DPS user more efficient control over 
online applications, improved response to individual 
user and group needs, and optimal utilization of all 
processing-related resources. 

INTERACTIVE ARCHITECTURE 

Level 68/DPS architecture is specifically directed 
toward interactive, online applications. It provides 

. cOlllmon interfaces for the implementation of these 
applications and for their administration and control 
as well. In addition, special online executives are 
not required to take advantage of these interfaces. 
Level 68/DPS employs standard, built-in tools for 
controlling the usc of all system resources. 

MODULAR GROWTH 

Because of the Level 68/DPS hardware modularity, 
its users benefit from a long configuration life span, 
free from disruptive programming or operational 
changes. Level 68/DPS offers growth in small, cal­
cliluted steps, paced with the growth of the user's 
workload. Users can add more memory, new proc­
essors, or front-end networking facilities according 
to specific workloads. Level 68/DPS uniformity 
and consistency muke it possible to grow from the 
smallest configuration to the largest without 
changing the Mliltics operating system, libraries, 
or user programs. 

DECENTRALIZED ADMINISTRATION 

FUlldallll'n t al in thl' Level Cl8/DPS design is the 
conccpt that prodlll'livity is tkd directly to accessi­
hili ty. The systl'm's approach to administration is 
l'onsistl'nt with that concept. Level 68/DPS admin­
istratioll is dl'centrulizcd, so lhat spedfic resources 
can he allocated to sped tic projects and accounted 
for accordingly. The project administrator can in 

---------_._----_. 

l') 197 H, IIClltl"ywdl I"forlllal iolts SYSft'IiIS. !:u . 

Administration and 
Operating Features 

turn allocate these resources to individual users 
within the project as necessary. 

Allowing remote users and user groups autonomy 
in their use of the system, and enabling them to 
control their own resources, gives them the oppor­
tunity to more effcctively deal with theirday-to-day 
problems and varying processing requircmell ts. 

Resource billing flexibility ilIustra tes the advan tage 
of Level 68/DPS decentralized administration. This 
billing can he automatic or on demand. Users 011 

individual projects can even do their own suh-hilling, 
substitute their own bilIingalgorithms, usc different 
algorithms for different users, or install new 
algorithms dynamically. 

The Level 68/DPS administrator can establish up 
to eight separatc work shifts, with differcnt rates 
applied to each, encouraging use during slack . 
periods. Users can also he restricted to work illg 011 

specified shifts, and thesc rl'stril'tiolls can be 
changed dynamically. Results: more l'ITiciL'Il1 load 
leveling and more effective lISC of resources. 

RESOURCE UTILIZATION CONTROL 

Resource control in Level 68/DPS involves threl' 
primary areas: online storage utilization, physical 
access to system communication lines, and llscr job 
prioritization. Standard, built-in tools ure used in 
each area; 

Online Storage Utilization 

Level 68/DPS enables an administrator to control 
the use of online storage on a "per project" basis. 
To maximize the use of storage resources, the 
administrator can allocate this storage to individual 
users within a project. 

Two techniques illustrate this con trol: 
• A storage quota, which prohibits till' allocation 
of storage space when a specified workload lilllit is 
rcached. 
• An automatic data migration function, which 
allows data to be l ransfclTed to anothl'r IHl'dilllll 

when that data has not ht'l'l1 aCCl'ssl't.! for a n'rlai" 
pcriod of timt'. 

hk No.: II II 



Ph ysical Access 

Controlling the physical access to Level 68/DPS, 
which includes restricting user groups to specified 
communications lines, also means controlling the 
workload mix on the system. The administrator 
can estahlish the maximum work units that the 
system will adequately support ror the particular 
site. Issuing load unit weighting factors for each 
user enslI res lha t the system's capacity cannot he 
exceeded to the detriment of its users. Different 
users can he issued different weighting factors to 
renect different processing requirements. To ensure 
that specified privileged or high priority jobs will 
always be executed regardless of the total work­
load on the system, certain users can be given 
guaranteed access status. 

User Job Prioritization 

DYllamic Scheduling 

User and job prioritization is accomplished via 
dynamic control of tlw priority scheduler. With 
this capability it is possible, for example, to add 
either more batch jobs or more in teractive users to 
a system without negatively affecting the produc­
tivity of time sharing programmers or transaction 
processing activities already in execution. 

Workload Balancing 

Level 68/DPS also incorporates a workclass concept 
which further ensures that the workload of certain 
users will not negatively affect the workload of 
others. Users can be grouped into classes and allo­
cated percentages of processing capability. Regard­
less of the total system workload, each group of 
users can be cnsured a pn:ddcrmined perccntage 
of availablc central proc~ssor timc. "Free time," 
any time not utilized by a given workdass, is made 
availabk~ to other workc1ass~s requiring more than 
their allocatcd timc, maximizing central processor 
utilization. 

Deadlille Scheduling 

This feature can be used for a limited number of 
users or applications to ensure that a predefined 
amount of processing time is available to these users 
after an interaction or job submission. Deadline 
scheduling ensures that batch jobs will finish within 
a specitied time period, and that interactive lIsers 
will rl'l'l'ive a response within a predefined time 
spall a fll'r a t ransadioll. rl'gard kss of thl' ov\.'rall 
sysh.'1ll workload. 

('hallg\.'s to allol.'atl'd n.'SOlln:es, fl'SPOIlS\.' character­
ist il's. and hakh job Sdll'duiillg can be aCl'omplisill'd 
dyn:tmicllIy. or schedull'd to happ,,'n all tomatically 
:It :1 pl'l'l.kh:l'iiilill'd tim\.'. For l'xampll', a key appli­
cation l'an he lkadlil1l' sciJeduled so that it is 
l'IlSllrl.'d a fOllr-sl'colul response time during prime 

shift, but only an eight-slicond rl'sponsl' time 011 

second shift. 

ENVIRONMENT SHAPING 

Level 68/DPS enVirOIlIlll'llt shaping tools h.'1 YOll 

define interfacc~ to match lIsl'rs' applkatioll pnK'­
essing needs. These tools 110t only make it possihle 
for nonexperts to lise 68/DPS for prohll'm solving. 
but also enable systcm administrators to sllccinctly 
define and limit what lIsers can do with the systl'm 
and what they must know to process their 
applications. 

The two major environment shaping tools arc thl' 
iimited sel~vice subsystem and the dosed sllbsyst,,-~m. 

• The limited servicc subsystem enablcs the projed 
administrator to define cxactly those functions 
which the user cannot pcrform: all other systl'm 
functions arc availablc to that uscr hy lkfallit. 
• The dosed subsystem Ids the administrator 

, define all the functions which the llser can Iwrrorm: 
all other fundions an.' unavailable by lll-fauit. 

The limi tcd scrvicc and dosed subsystl'ms can also 
bc used for defining n~w command lan~lIav.l's and 
interfaces that COllvert "foreign" systcm cOlllmands 
into Multks operating system commands. This call 
be lIseful to tirst-timc Level ()X/DPS lISl'rs. In addi­
tion, these subsystems allow nontechnical users to 
access the system via a highly simplified command 
interface. The capabilities afforded by these struc­
tured interfaces do not have to be programml'd: 
they can be established via simple cOlllmands. Thl..' 
administrator need only create a new filL' with till' 
new restrictions or guidelines in it. and it is imml'lli­
ately available to all authorized lIsers. 

SIMPLIFIED SYSTEM OPERATION 

Level 68/DPS is surprisingly easy to operate, esp"'­
cially considering its size and power. This rl'lativl..' 
ease of use is d lIC la rgely to its dy namic recoil fi~lI ra­
tion capability, simplificd system maintl'nancl', and 
responsive online metering and tuning capahilit il'S. 

Dy namic Reconfigu fa tion 

The dynamic reconfiguration capability of Levl'l 
68/DPS is used to maintain continuity ofprol'l'ssillg 
service in the event of a malfundion in a systl'm 
component. If a failure occurs in a prOCl'ssor. ror 
example, a single command automatically moves 
jobs and data in that processor to anotllL'r unit. 
notin~s the othl..'r sysh.'tll l'ompOlll..'nts of till' mal­
fund ion, rl'IllOVI..'S 1 hl' prOl'l'ssor from sl..'rvin.'. alld 
recontigures thl' 1"I..'\11aining lil'vin's. Prol..'l,'ssors, 
memory, and periphl'rallkvil'l's Clll hl' :lthkd to or 
deleted frolll a configuration dynamically, via opl'r· 
ator (ommand. hlikd pagl's or I1l1..'lIlory (·n':.-hy li.' 
units) arc automatically 1"L'l'onriglll'l'd hy thl..' O\W\," 

ating systcm whl'\1l'vl'r a dOllhk'-bit l'ITor UL'l'lIJ'S. 

B-18 



This n:configuration process can also assist in the 
testing of certain components. Users can 
dynamically remove certain devices from service, 
submit them to test and diagnostic routines and 
reconfigure them automatically, without inter­
rupting processing service. Alternatively, devices 
can be dropped from service on one system, con­
figured as a separate system, used for testing of new 
software, and then reconfigured in the original 
system without shutting down service. , 

Level 68jDPS can run unattended, providing proc­
essing service on holidays and weekends, without 
the need for operators. During unattended opera­
tion, it can be run in the automatic reboot mode, 
and, in the event of a system failure, the system 
will automaticalJy reinitialize itself so service can 
con ti n lIl'. 

LeveI68/DPS can be operated from tenninals inside 
or outside the computer room. Due largely to the 
system's ex tensive security, an administrator with 
the proper authority can log into the system and 
issue any c:ommand that could be issued from the 
main operator's console. This gives Level 68/DPS 
greater operational flexibility, and frees it from 
relying on a single device (which might fail) for 
con trol functions. 

Level 68{DPS provides batch job status and con­
trol capabilities as well as communication between 
system users. Operations messages can be sent to 
individual users; messages can be broadcast to the 
entire user community or to those on a particular 
project (or vice versa). 

System Maintenance Features 

For simplified maintenance, the Multics operating 
system docs not require system or library gener­
ation or edit. Multics software releases are also 
delivered patch-free. 

Users can easily install their own software or 
add programs to the time sharing library. New 
software can be installed without a system shut­
down or link-edit. New compilers, applications, 
and procedures can be installed without .inter­
rupting processing service, even while users are 
using old versions. 

Metering and Tuning System Performance 

Level 68/DPS offers standard metering and tuning 
tools that allow an administrator to monitor and 
adjust sysh.'m performuncl' according to sp~ci fic 
IlL'l'ds and changing workloads. Using data that 
is constantly being gathered by the system itself, 
administrators can retune t h~ system, move lIsers 
from olle processing class to another, or even 
change thl' p~rc:cntage of processing power allo­
catcd to a lIser, depending on allY number of 
variables and requiremcnts. 

This control is possible because the administrator 
·can analyze aU facets of system pcrformancl' from 
this constant flow of metering data. SOl11e of till' 
information supplied includes: . 

• I/O and devic~ activity data 
• Application response, processor utilizatioll, 
communications, and I/O qu~uing 
• Average CPU timc spent on certain functions. 
or used by certain applications 
• State and characteristics of thl' COlllllllllliratiolls 
lines attached to the system 
• EDAC (Error Detection and Correction) data 
associated with main memory Iwrdware errors. 

PRE-SCHEDULED ADMINISTRATIVE 
FUNCTIONS 

A system facility called MEMO provides g{.'llI.'r­
alized capabilities for scheduling till' inilialioll alHI 
execution of allY program or sd or prograllls. This 
allows the admi Ilist rativc or Opl'rat iOl1<l I sla ITs 
to pre-schedule the running of administ ral ivl' 
routines, such as hilling. Sched uling can he sd f­
repeating, slIch as scheduling a program to he rtlll 

every Monday at 3 p.m. MEMO also allows ~it her 
a precise definition of day/date/time (down to a 
microsecond level) or more general. logical 
definition ("on Tuesday"). 

INTEGRITY MECHANISMS 

To maintain file integrity in thl' l'Vl'l1t or a mal­
function, Level 6XjDPS has 1')()Wl'rful rik hack-up 
mechanisms. 

• An automatic file an:hivl'r jOlirna lil.l's all 
chailg~s to th~ fill' systl'm and Illakl's it possihk 
to "roll forward" following a failure. 
• Online fill' system integrity checks l'I1SllJ\' a 
consistcnt, reliablL- til~ sysH.'lll. 
• Main memory flush-to-disk is an automatic 
data protection mechanism invoked after a sysh'lIl 
service intcrruption. All data in main 111~lllory 
which has been modified is writtcn out to mass 
storage to reflect alJ changes madr up to the CPU 
cycles prior to the failure. 
• Support of optional "shadow copy" Jo!!ical 
volumes within the storage system. Volllllles 
designated to have shadow copies automat irally 
have spare devices assign~d with copiL's of {.':Jch 
physical volume. Wh~1l updates <Ill' madc 10 allY 
of thrsl' devin's. I Ill' copy is lIpdakd as well. 
I r a dl'vicl' rails, t h{.' syskm automat ica lIy shi rt s 
to the copy without lIscr il1krrllpl. 

Spcc . .'ilkaliolls lIIay Ch:lligl' as desigll lallllfllVl'lIIl'lIls arl' illlilllllll"l'" 



Honeywell 
Honeywell Information Systems 

In the US A 200 Smith Street, MS 486, Waltham, Massachusetts 02154 
In Cllnada. 2025 Sheppard AvenuE' East, Willowdale, Ontario M2J 1W5 

In Me)(lco. Avenrda Nuevo Leon 250, Me)(lco 11, D.F. 

22405, 1.51278, Printed in U.S.A, 

B-20 

DG06, Hev. 2 



Honeywell 

SERIES 60 (LEVEL 68jl)PS) 

Interactive Programming 
Environment 

To the IIser, a computer system is only as produc­
tivl' as it is al'cessible. Based 011 human engjneering 
desig.1l l"OIlL'l'P Is, t Ill' Level ()S / iJist ri hu ted Process­
ing System «)X/DPS) lISl'S interactive, remote ter­
minal access .- the most natura1 and convenient 
mode for the user - as the primary mode for 
programming. 

With the advent of Level 68/DPS, the computer is 
to be measured, not merely by hardware speeds, 
but by how well it helps solve a problem - from 
the very inception of that problem to its best solu­
tion. Rather than wait for computer avail,ability in 
a batch modc and submit many sequentia'l jobs, a 
1,l'Vcl 68/DPS user prepares. compiles, and checks 
out programs ill Olll' continuolls interactive terminal 
session. 

The Level 68/DPS interactive programming environ­
IIll'nt providl's a complete range of facilities that 
satisfil'S both the novice user and the professional 
programmer. Both enjoy appropriate software tools 
and both can work on the same system, protected 
by advanced hardware/software security features. 

The Level 68jDPS user interface provides an envi­
ronment for a nearly unlimited scope of applica­
tions regardless of size, complexity, or storage 
requirements. The multiprocessing, multiprogram­
ming capabilities of Level 68jDPS and its diversity 
of languages and utility routines provide the user 
with 'all the support needed. 

THE PROCESS, A UNIQUE CONCEPT 

When first accessing (logging into) a Level 68/DPS 
System, a lIser is allocated system resources in an 
l'llvirOllment terllll'd a "process." Specifically, the 
prnn.'ss is dynamically assigned space within the 
virtual memory (address space) and other system 
reSOllrces as required. As a result, each user views 
his process as if it were the only one in the system. 
In this l'llVironllll'nt. the lIser's address space dy­
namically grows and shrinks as program requin.'­
nll'llts l'xpalld and contract ilnd the al'tivity is 
totally transparent to lit\.' lIsn alllilimil'r l'ontrol 
of till' shared opl'rating sysll'lll. Thl' syslL'1ll creaks 
a proL'l'ss at log-in t illll' and dl'sl rnys it at log-out 
tillll' llll lwhalf of l'arh lISl'r. Thl' lISl'r l'Xl'l'utl'S his 

~) I t}7X. JIIIIll'~'wdl JllfOlJllalio/l Sysll'llIS hII'. 

program and system commands in (ol'XisteIlCl' with 
the processes of al! other logged-in lis\.'rs 1I ndl'r the 
multiprogramming control of till' MlIJtics opl'ral­
ing system. 

, 

SYSTEM FEATURES 

Some of the more important features of the 
Level 68jDPS interactive programming l'nvi­
ronment include: 

• Flexibility of envirolllllent shaping 
• Information sh<Jring in the Level 68/DPS 
Virtual Memory and Storage System 
• Powerful language processors 
• Extensive support facilities and tools 
• Powerful command processor 
• Protection (security) 
• Special lIser interfaces 

Flexibility of Environment Shaping 

The administration of a typical Levl'l ()X/DPS 
systenl includes olle system administ r;ltOI" and 
Illultipit' project administrators. 1':acl1 projcd 
administrator defines the working l'llvirol1l1l1..'lIl 
for users in that project. He may giVl' a lIser Ill:l\i­
mum flexibility by allowing him com plet e cont 1'01 

in creating his own initial process. or he may limit 
the user's capabilities by restricting access to vari­
OliS software functions. 

The project administrator, thell. defines the rallge 
of access each user has to system softwarl' fUllc­
tions. If the user has complete control of his own 
process environment. he may change parts of that 
environment and still be within the normal oper­
ating conventions of the system. 

Information Sharing in the Level 68/DPS Virtual 
Memory and Storage System 

A Ll'vcl 68/DPS system provides total sharing or 
data bl'tween lIsers. In addition to sharing till' oper­
ating sysll'm's Illoduil's. lihraries, lallgllagl' pron's­
SOl'S, and applications. lISl'rS r:tl1l'Vl'll share lIser 
code and data. This is possihle hcralls!..' all I.cvl'l 
68/DPS compikrs gellerate purl" rl'l'lltrallt rOth' hy 
defaul t. 

hh' Nil.: II.!I 

B-21 



All procedurcs and data are containcd within the 
Level 68/DPS Storagc Systcm and its associatcd 
virtuaIIlH.'mory induding facilities that providL' the 
uscr with cxtcnsive control over fill' manipulation 
and file sharing. A user can spccify which individ­
uals may access his files, and by which mode of 
access. Access can be given to one user, to a group 
of users (project), or to a particular dass of users 
(interactive or batch). 

The Level 68/DPS Storage System is supported by 
a powerful virtual memory, totally transparent and 
available to the user as needed. Virtual memory dy­
namically \.'xpands and contracts according to user 
requirements and system resources. Thus, program­
mers no longer need to be concerned about over­
laying or partitioning program modules to satisfy 
limitl'd main memory resources. Instead, they can 
conccntratl' on program synthesis and on develop­
ing the most efficient algorithm to solve thcir 
particular probll'ms. 

Powerful Language Processors 

Level 68/DPS indudcs scveral fully compatible lan­
guage processors. Foremost is a functional PL/l 
compiler that is llsed for both systcm progra!~lt~ers 
and applications programmers. The presen t PL/ I 
compilL'r has undergone several major design iter­
ations to become perhaps the most stable and re­
liable PL/I compiler in existence. This is the same 
PL/I L'ompiiL'r that is uscd to produce the Multics 
operating system software itself, 95 percent of 
which is written in thc PL/Ilanguage. 

Level 68/DPS supports COBOL-74" As with all 
Level 68/DPS compilers. COBOL programs can 
call programs written in any other language, 
thereby offering developers optimal flexibility. 

A complete FORTRAN compiler is available to 
satisfy any FORTRAN requirement as weB as to 
facilitate th\.' transf\.'r of software from other com­
puter systems. 

A BASIC compiler offers quick compilation and 
execution. It can be used as an independent lan­
guage proccssor or in the simple time sharing sub­
system called FAST. 

An APL language processor is also available. 
This is an interactive interpreter with ex ten­
sive functionality. 

ror lISl'rS who find it n\.'I,."\.'ssary to writL' portions 
(.)1' th\.'it" soft war\.' ill thl' languagL' of the host l'Oi\)-

puter, Level 68/DPS includes thl' ALM (AsSl'mhly 
Language for Multil"s) assemblt'r. This assl'mhkr 
supports all system rL'quirements for intcrproJ!,ralll 
communication. 

A program written in any languagl' availahk 011 

Level 68/DPS can also call programs writ 11,'11 ill 
another language by l11erdy following t ha I lan­
guage's calling conventions. For l'xampk. API. 
functions can call PL/I procedures. 

All compilers will automatically gl'lll'ra ll' I'll rl'" 
reentrant code for llsers, making all programs 
immediately shareable. 

Extensive Support Facilities 3!ld Tools 

Stable and reliable software compoll\.'llts within 
the Multics operating system provilk 1l1lll1l'rOliS 
utility and support functions. Forelllost amollg 
these are the text editors. These text editors havl' 
undergone several lil'sign iterations to illcrease 
their reliability and sensitivity to human 
enginecring requirements. Levl'l 6R/DPS ll'xt 
editors range from a simplL' l'ditor supporting 
line-numbered files to advanced editors for l'X\)\,.'­
rienced uscrs. 
Severall'xknsive intl'ractivl' ddHlgging packages 
permit a lIser to analyze and COHL'd a compikd 
progr~m at both thL' original sourCl' kvd and till' 
more speci tic Ilwchinl'-register kvel. 

Tools to measure performance permit till' lIS\.' .. to 
analyzc a program's behavior and facilitak 1 Ill' 
dcvelopment of optimulll applk"ations soflwan ... 

Inter-user communication t~Il'ilitks. both illlllll'di­
ate and deferred. pL'rmit onlillL' llleSSi.!!!l'S to Ill' 
transmitted among lISl'rs. In addition. Oillilll' dlK\I­

mcntation facilities provide the lIser with lIsl'ful 
word processing and docllment prl'paratioll tools. 

Powerful Command Processor 

B-22 

The command processor, by which a lISl'r comlllu­
nicates his rcquirL'mellts to the' system. lIcn'pls 
input from a consolL', intl'rprets thl' user's l'I.'qUl'St. 
and invokes thc softwarL' component to \wrt'orm 
the desircd function. Thl' softwarl' compolll'nt Gill 
be either system- or user-supplied: therl' is no d is­
tinction at the command level. The command 
processor allows recursive, iterativl' commands 
and the embedding of function calls in the rom­
mand line. 

The command proccs.sor is a shar\.'ll. rl'plaL'l'abk 
moduk. writtL'ii in PL/I. Tht'rl'rOr~'. if th~' proiL-l't 



administrator desires, a user can be required to 
interface with a special version of the com mand 
processor (possibly user-created), thereby limiting 
the software requests or commands available to 
him. The command processor thus permits an ex­
tremely wide range of in.terfaces to all system fa­
cilities on either a controlled or open-ended basis. 

Tools arc avaiJable to the user which allow the ab­
breviation of commands or character strin.gs for the 
dcvelopment of personalized shorthand methods 
for directing program l'xeclltion or accessing files. 

A fal'ility also exists which allows lIsers to program 
in commands with logical branching, variable main­
knancc, till' managclllent, and I/O control. This 
allows the development of complex applications 
without the involvement of IUllguagl' prOl:essors. 

Thc command syntax has bCl'll dcsignl'd to provi(il' 
as sophistil:ated and flexible a lISl'r interfal:e as any 
llser might possibly require for both a com mutative 
and associative syntax form. However, simple 
requests have a simple form. 

SUMMARY 

• Thl' Level 68/DPS interactive programming envi­
ronmt'nt provides facilities for both the novice and 
advanccd lISl'f, for a WiUl' range of applications . 
• The user's virtual memory (address space) 
dynamically changes as program and data 
requirements change. 

• A unique prOl:ess environment exists ror l'arh 
llser, and this environment can be rl'sh~qK'd as 
needed. 
• Files arc protected by lIsl'r-spl'cilkd al'n'ss 
controls. 
• Level 68/DPS indudt'S several lall!!lI;!!!1..' prnl'l'S­
sors: (,OBOL-74. PL/1. FORTRAN. BASIC. API. 
and ALM. 
• The support facilities of Levl'l (lX/DPS illdlldl' 
text editors, program debugging aids. pnr()rl1l~llln' 
measurement tools, inter-liser com 1l111ll ira t ion 
facilities, an(,i online documentation aids. 
• The Level 68/DPS command pron'ssor allows :I 

wide range of interfaces to all system fari I it il.'S 
either on a controlkd or opell-l'IHkd hasis. 
• Included within Ll'vd ()R/DPS arl' speci;!! lISl.'l' 
inkrt'aces that pcrmit the dl.'vl'\oPlIIl'llt or olher 
operi.Jting systems. dosed slIhsysll'llls. or lilllikti 
servicl' t'acilit ies. 

SYSTEM CONFIGURATION 

The functions <.il'scribed hel'l'in art' applicahk to 
any Level 68/0PS configuration. 

Spl'dlicatiollS may chanJ,tc as dcsiJ,t1l illlproVl'lIll'llh ;m' illlrndlll'l't1. 



Honeywell 
Honeywell Information Systems 

In the U.S.A .. 200 Smith Street. MS 486. Wahham. Massachusetts 02154 
In Canada, 2025 Sheppard Avenue East. Willowdale. Ontario M2J 1 W5 

In Mexico: Avenida Nuevo leon 250. Mexico 11. D.F. 

20936, 2.5578, Printed in U.S.A. 

B-24 

I\K!.>B, Hnv. ~~ 



Honeywell 

SERIES 60 (LEVEL 68/DPS) 

In today's data processing environment computer 
securi ty is a major concern. News stories tell of 
millions of dollars being stolen; company proprie­
tary information being sold to competitors; and 
valuabl .... in formation being deliberately destroyed 
or altered. In addition, there is growing concern 
regarding the protection of individual rights --. just 
what type of data can be compiled on an individual 
and how should such information be protected 
from unauthorized disclosure. At this time, laws 
protecting privacy carry both civil and criminal 
penalties. So the processing of sensitive in formation 
on an insecure system e~poses companies to loss 
and fraud and, potentially, to civil and criminal 
proceedings. Secure computer systems have become 
a vital concern to the data processing industry. 

SEClJRITY MECHANISMS 

Levrl 68jDPS is tht:' most secun.' computer system 
cOllllllercially available. I Level 68/DPS and its 
MuJtics operating system provide security by a 
combination of methods unique in the industry. 
Thesl' methods are designed into, and are an inte­
gral part of. the functioning of the system. Because 
the security mechanisms are implemented in both 
hardware and software and are applied universally 
to all lIser and system functions, they are far more 
difficult to subvert and security benefits are 
achieved with insignificant system oVl'rhead. 

Initial Access 

Initial access to the Level 68/DPS system is con­
trolled by means of the user identification and 
password. 

Thl' password mechanism is the first and most 
important lilll' of security since it controls access 
to till' systl'1Il and vl'rifil's the user's identity, upon 
whic.:h further ac.:cl'SS decisions are based. To ensure 
that users treat passwords with the carl' the system 
rl'qllin's, Multics provides facilities to allow lIsers 
to change passwords l'asily, to pel mit the System 
Security Administrator to rompl" pl'fiodic pass­
word l'hangl's, and to n.'q uin' lIsers to use syslt'lll­
gl'lll'ratl'd, pronollnn'ahll' passwords. 

Whcll till' systl'lll l't'qllests thl' cutry of the pass· 
word at IOJ.!-ill tillll', till' prillt lIlt'chanism of till' 

(.) I tJ7X. IIl11ll'ywdl I II for ilia I iUIi SY:->Il'IlIS 11Il'. 

Controlled Sharing 
and Sccuri ty 

user's terminal is turned off (if till' terminal has 
this feature) or a mask is printed. ()Vl'r whidl the 
password is typed. Thus, a password is Ill''ll'r dis­
played in readable form when it is enkred. 

Passwords are stored in encryptl'd form within till' 
system. When a lIser logs in, the tYPl'd password is 
similarly encrypted and the scram hiL'd valUl'S a !"l' 
c.:ompared. 

Multic.:s audits thl' lIsagl' of l'ach password. It also 
counts incorrect passwords and tYlll'S a Illl'ssage al 
log-in, telling the lISl'r how many tillll'S that p~ISS­
word has been given incorrectly sinn' its last n)r­
reet entry. This alt'rts thl' lIser to tllL'possihility Ih~11 
someone has attempted to glless tl1l' password. 

The System Security Administrator call also set all 
entry in the system message tahll' causillg a Il11'SS;lgl' 
to bt' sent wlll'llever the lIser is loggl'd ill ;IIHI SOllh'­

one else attempts to log-in wi th thl' S~HlH' name. 
project, and password. 

Oncl~ verified and accepko by tl1l' syskm. thl' IISI . .'r 
is screened for information sharing (i.t' .. the kind 
of access permitted to the file system and to lIser 
and system softwClre). 

Information Sharing Controls 

Beyond the password control (which Snl'l'~lS l'very 
person attempting to liSt' tl1l' systl'I1l). three addi­
tional controls rl'gulall' arn'ss rights to all d;lta alld 
progrmlls ill terms of in<.iividuaillsers alld prOl"l'SSl'S. 
These in formation controls are acl'l'SS COil t rol I ish. 
acc.:ess isolation mechanism. and thl' ring protectioll 
mechanism. 

ACCESS CONTROL LIST (ACL) 

The acc.:ess rights for each segment are tkrinl~'d in its 
access control list (ACL). Through the ACL, USl'rs 
can, at tht'ir own discretion. grant or deny an'l'SS ttl 
their segments and directories. The ACt. slWcifil's 
the lIsers who have been granll'd <lCl'l'SS 10 till' Sl'g­
Illl.'nt <lnd the mode of arn'ss allowed I hCIlI. t ISl'rs 
who do lIot appear Oil till' A( 'I. havl' 110 acn'ss 14' 
the segn1l'nt. Read, wrik. l'\l.'l·II1l'. ;IIHIIIIIII" pn· 
missions may Ill' SIll'rifil'd for Sl'gllll'lIls (hoI II d;I/;1 

and progra III ): s t a' liS, lIIod i i"y , a IllI ~I PIll' lid ;ll·lTSSCS 
Illay Iw spl'ciril'd for rill' sysklll din'dories. Tlll'Sl' 

B-25 I·ik No.: 11111 



permiSSIOns may be specified by user name. by 
project, or by "instance" (whether a process is ab­
sentee or intCI'3Ciivt:), or by any combination 
thereof. C1assl.~ of users can also be specified~ for 
instance, all tht! USt!rs in a project, specific user~ in 
a project. or even all users in all projects. Act.:css is 
initially venfied by Multic\ loftware and is enfon.:cd 
by the hardware t'Very time the segment i, rcftr­
enud thereafter. 

ACCESS ISOLATION MECHANISM 

The Access Isolation Mechanism (AIM) allows 
administrators of the system to define several 
levels of privilege, whkh the system itself en-

. forces rigidiy. Enforcing the separation of these 
levels is totally independent of other access 
control or user action. This administrative mech­
anism overrides· user discretion in granting access 
and ensures privacy by preventing inadvertent or 
malicious disclosure of infonnation between 
these privilege levels, even by those who "own" 
the infonnation. 

. AIM can be explained in simple tenns. At log-in 
time, each process is assigned a sensitivity level 
and category (clearance) based upon the clearam;e 
of the user, the terminal, and the project. Also, 
every diredory and segment (object) within the 
storage system has a sensitivity level and category 
(classification) associated with it. If the clearance 
of a process is equal to the classification of the 
desired object, all access to the object (allowed by 
<'ther access control mechanisms) is permitted. If 
the clearance of the process is greater than the 
classification of the desired object, read. execute 
or status permissions are allowed to the object 
(within constraints imposed by the other access 
control mechanisms). Finally, if the clearance of 
a process is less than the classification of the de­
sired object, all access to the object is denied. 

AIM supports 8 clearance and 18 "need-to-know" 
categories within each level. Access is granted or 
denied explicitly on the basis of the security classi­
fication of a file or program and the security clear-

ance of the us-:r. This mechanism supplements the 
aCl:t..~~ control lists. Like the ACL mechanism, 
access is initially verified by Multic..-s software and 
thereafter enforced by hardware at every rl'krl'nl:l'. 
AIM l:an be invoked or disabled at the dis..:rdion of 
cOJl:h Multies site. AIM alw provides extcnsiw secur­
ity auditing controls to monitor user adivity. 

RI NG PROTECTION 
The Level 68/DPS Security System lIses a hardware­
implemented. multilevel ring structure to control its 
users and to protect itself. The ring structurl' is a 
generalization of the two-state capability of other 
computer systems (master/slave mode, supervisor/ 
program state, etc.). With Muitics, the strudure has 
been expanded to eight states or '"rings of protec­
tion" numbered 0 (most privileged) through 7 
(least privileged). The operating system resides in 
the most privileged rings, 0 through 2, while users 
generally operate in the less privileged rings, 3 
through 7. The segmen·ts of the operating systl'm 
are in the most privileged rings to prevent uncoll­
trolled access or modification by the lIsers of essen­
tial system information. 

The basic rule is that llsers can only reference 
those segments in the same or less privilegl.'d 
ieveis than thc ring in whkh they arc Clifi'tiitly 

executing. Access to higher privileged rings is 
only possible through a gate program. (This is 
analogous to master mode entry, supervisor call, 
etc.) The use of eight levels of protection mther 
than two allows user programs to take advantage 
of features for protection normally reserved for 
operatirtg system software. 

lIn a 1975 study conducted for the Air (:oree, the MITRI: ('orpm,,' 
tion I.:onduded that Multks is the most secure opcratinl! .• ystcll1 
availitble. 

2 Null accesS is implied by default; that is, if a user dOl'S not issue- a 
I.:Ommand ~ranlin~ another user access to a ~'gmcnt or dirl·dury. 
that other user cannot aCCI!s.~ thedat:! in any way. HOWl'YCt. n,,11 
is useful in selecting a small number of individuals from a projCl" 
to whom it is desirable to deny al'CClIS. 

~pccificatinn~ may chari~c as dc!>ign improvements arc inlrodlll·Cll. 

Honeywell 
HoneYWell Information Syaterna 

In the USA 200 Smith Street. M~ 486. Wanham. Massar;husens 02 t 54 
In Canada 2025 Sheppard Avenoo E a a!. W,lIowd .... Onlarl() M2J , W5 

In MexICO Aventda Nuevo Leon ?50. MexICO 11. 0 F 

20909, 1578. Printed in U.S.A. 

B-26 

DG74. HOII, 0 



Hone)'"'ell 

LEVEL 68 

Multics PL/I is a language processor designed for 
commercial. scientific, and system programming 
applications. It was developed on Honeywell equip­
ment in conjunction with the Massachusetts Insti­
tll tl' of Technology. Multics PL/I is the language 
defined by the American National Standards Insti­
tute's Pl./I standardization committee and is sched­
uled to become a standard. 

The compiled code is extremely efficient. The 
compiler was specifically designed for Mliltics and 
has been used to compile itself and most Mliitics 
software. 

ADVANTAGES 

Compilation and execution may be initiated 
through absentl'l' (Multics batch processing) or 
intcradivc moue. 

Programs written in PL/I ensure permanent com­
patibility and ease of maintenance. 

Object modules are produced such that no relocat­
able edit is required. The normal mode of opera­
tion is to execute with dynamic linking and loading 
so that unreferenced data and unused programs are 
never loaded into main memory. 

Relocatablc object permits the binding of sepa­
rately compiled programs together into one seg­
ment which has fewer pages than its unbound com­
ponents. 

A run-time symbol table may be created by the 
compiler and used by the Multics debugger to 
make symbolic references to the program data at 
run time. There is no special checkout compiler 
and therefore no recompilation necessary to debug 
a program; 

An optional optimizer perfonns ex tensive optimi­
zation of common expressions, conversions, and 
accessing code throughout a procedure or begin 
hlock. Rq~ister allocation is based on usage statis­
til's gathl'rl'd by thl' optimizer n.'sulting in intdli­
gl'nt lISl' or pointl'l' I'l'giskrs hy thl' ohjl'd l'odl'. 

CAPABI LITIES 

PL./I is a hh>l'k-strlldllr~d languagl' that allows 
both internal anu external names. 'Ibis feature 

© 197.1, I tl74,IIom'ywcllinfurIlIatillll Syslems 11l1'. 

Multics PL/I 

facilitates the development and maintenance of 
modular PL/I programs. All procedures are recur­
sive and sharable. 

Multics PL/I has a comprehensive set or data for­
mats. These include eight distinct typ~s oj" data: 
arithmetic, string. locator, rormut.lahl'l. l'lltry. fill'. 
and arca data. These formats givl' PL/I cOllsidl'rahk 
descriptive power. 

In addition to l'ixl'd-point and f1oating-poillt hill:lry 
arithmetic, Mliitics PL/I provides variahk-prl'cisiolJ 
trllc fixed-poin t and tloating-poin t dl'cimal ari I 11-
metic of up to 59 decimal digits directly slipporll'd 
by hardware. Stmdllrc variables (similar to thl' 
hierarchical descriptions of COBO L) cnahle the 
programmer to explicitly define data structures as 
any aggregate of elementary data formats. 

Dynamic allocation for scalar variables and aggre­
gates is provided by the automatic. l'olltrolkd, and 
based storage classes. 

PL/I has powerful bit string and charadeI' string 
handling capabilities. Operations and functiolls arl' 
performed on either fixed or variable kngth 
strings. The extended instruction sl't of Ihl' celltral 
proce~sor is fully utilizl'd to perform I'har~ll'kr- :ll1d 
bit-string opt:ratiolls. picture l,uitillg. as wl'll as 
decimal arithml'tic and arithmrtic basl' COI1-

versions. 

Arithmt:tic, string. or pointl'r variabks derlarl'd 
with the "'unaligned" attribute arc packed into Ihl' 
minimum number of hi ts. giving the progralllllll'r 
complete control over tht: packing of structures 
and arrays. 

Through the use of pointer-valued Multics fUllc­
tions and PL/I based variables, a user call l'asily 
access any bit in the en tire virtual memory. 

Declaration of initializt'd arrays and data strllcturl'S 
is permitted. Componl'nts can bt: freely intl'rsperSl'd 
in PL/I programs to aid in program docullll'ntalioll. 

Multks PLjlutilizl's tltl' full ASCII charactl' I' sd 
de fi Ill'd inA Illl'rir all Na t i 0 na I S ta 11 da I'd s Illst it u fl' 
standard X3.4-llJClX. Both 1I ppl'rClse and lowl'n:~lsl' 
kt tl' rs (~111 hl' u sl'd to form n allles 1I p to 25() l'Il:1 r-­
al'tl'rs long. This offl'rs till' liSt'!' grl'all'r llalllil1!!, 
tlcxibili ty. 

B-27 Fih' Nil.: lUI 



The % include macro provides for the inclusion of 
program text without the use of a preprocessor. 
Complete symbol listings show how each name was 
dedared, as well as its attributes, and its address 
allocation. 

The compiler diagnoses over 350 errors, giving 
complete, readable diagnostics that include the 
erroneous statement or name. Warning diagnostics 
are given for common mistakes such as an 
undeclared name or implicit conversion of data 
types. 

PL/t programs may call procedures written in other 
languiles or vice versa provided they observc the 
interface conventions, as is the case with the other 
compilers in the system. 

Multics Pl/I and FORTRAN compilers have simi­
lar options, program listings, and error messages, 
and in fact share the. same compiler code genera­
tion module phase and are, thereforc, completely 
compatible. 

PL/I input/output facilities provide a <;onvenient 
method of constructing and main taining large files 
within the virtual memory or on removable media. 

The PL/I "do" statement and uir' statement allow 
the programmer to construct flexibie program iogic 
without the proliferation of statement labels. 

The "on" statement of PL/I permits the program­
mer to make arrangements to handle spedal condi­
tions which arise during execution. These condi­
tions can arise as the result of errors recognized by 
the hardware or be signalled by the program itsel f. 

Multics virtual memory. coupled with PL/I pointer 
data, facilitates the programming of complex list 
processing techniques. 

OTHER MULTICS FEATURES 

Multics PL/I is a powerful language on a powl'rful 
system. One of the most advanced l.'omputt.'r sys­
tems in the world. Multks offers ex tensive SCl'Ufity 
provisions. virtuai memory. interadive program­
ming environment. hierarchical storage of data, and 
highly functional administrative control featufl's. 
For more infor~nation on the Honeywell Multil's 
System, contact your Honeywell Markl'ting fl'PI'l'­

sentative. 

SYSTEM CONFIGURA liON 

The functions herein described arc appliL'abk to 
any Level 68 Multics configuration. 

Spedfications may chan~e as del>i~n improvements arc itltrmhu:cd. 

HONEYWELL INFORMATION SYSTEMS 

9063 
7.6774 
Printed In U.S.A. 

I n the U.S .A.: 200 Smith Street. MS 081, Walth.", M ... chuMU. 02164 
In Canllde: 202ti Shepp.,d Avenue E.,t, Willowdele Ontario 

B-28 

I\K(iU. Htlv. 1 



Honeywell 

SERIES 60 (LEVEL 68/DPS) 

Multics APL is an advanced version of the APL 
programming language -- an interactive system for 
USl' with Iioneywcil's largc-s<.:aic Lcvei 68/DPS 
l:omputers. Multics APL is a general purpose lan­
guage that is both easy to learn and powerful to 
usc. It is interactive by design - problems can be 
attacked swiftly, error messages are informative, 
errors can be corrected quickly and easily - all 
within the APL environment. 

APL brings the full scope of data processing to 
business and technical problem solvers who may 
have little programming expcrience. 

It is particularly well suited for business and scien­
tific applications requiring the manipulation of 
arrays of data. Typkal business applications include 
financial modeling, investment analysis, sales fore­
casting, and payroll and budget analysis. Scientific 
applications include linear programming, regression 
analysis, and pipe stress networks. 

BENEFITS 
Multics APL offers substantial benefits: 

• Provides powerful language statements for 
easier problem solving 
• Provides a set of tools for interactive develop­
ment, debugging, and execution of programs 
• Offers data processing capabilities for any level 
of programming expertise 

• Rl'duccs time for programmcr system develop­
Illl'nt thereby increasing programmer produdivity 

FEATURES 

The following featurcs make Multics APL partic­
ularly attractive: 
• File aCl'CSS <.:apabilitics 

• Ability to store APL functions and programs 
for later execution 
• Ahility to automatically start a function 
executing when program is loaded 
• Powcrful execute operator which intcrprcts a 
character string operand and may produce a 
character string result 
• Ability to diagnose errors in a longer, more 
explanatory format to assist new APL users 

<!.J 197K, I IOIll'ywc/l 'nforllllltioll Sysh'l1Is IIll'. 

MULTICS APL 

• Support of ASCII terminals and a variety of 
APL terminals (especially graphks tcrminals) 
• Several prcprogrammcd workspal:cs, incluJing 
a fully documentcd, tutorial course for lIscr sclf­
instruction in Multics APL 
• ASCII-compatible character set 
• Accurate floating point computations 
• Sizable arrays and unlimited workspace in 
virtual memory 
• File system that does not req uirc knowledge 
of job control language 
• Full security and integrity protect programs 
and data from unauthorized lise or lllodifil';ltioll 
• Convenicnt intl'rface to other Multics pro­
gramming languagcs 
• Softwarc to convert from IBM to Muitics 
format 
• Ability to access Multics data bases via 
PL/I subroutines 

SYSTEM DESCRIPTION 
System operation is straightforward. At a tL'f111i­
nal, the user simply calls Multics APL, and then 
types an expression to be evaluated. Thr Multirs 
APL interpreter pcrforms the caiculati(1ns. prints 
the results, and awaits a new input Iinc. The results 
of an expression evaluation <.:an also be assigned to 
a variable and retained from line to line for lise in 
subsequent evaluations. 

In addition, a scq ucnce of calcula tions ca 11 be 
stored as a fUllction to bc recalled by nallle alld inkr-· 
preted as a single entity. Thc rl'sult of till' function 
is proccsscd as though the entire Sl'qUCIlL'l' of l'xpres­
sions had just been enkred at a tl'rminal. Results 
from any form of cxpression evaluation may bc 
printed at the terminal, presented in graphic form 
(on a suitable terminal), formatted into a tabular 
report, or stored in a file for subseq uen t retricval 
and processing by Multics APL, or other program­
ming languages. Thc entire state of any MuItics APL 
session may be savcd for suhsl'quent liS\.'. illdlldill~ 
all variable namcs, tIwir current valul's. and shll"l'd 
program functions. 

The APL language employs a special character set 
(normally requiring a spcdal APL terminal) in 

hit-Nil.: 11.21 

B-29 



which most operations are represented by a sjn~~-'" 
character. Besides the more common operations • 
(add. multiply, etc.), Multics APL provides single­
character operations for more complex functions, 
such as sorting, random number generation. and 
matrix inversion. Some of these funellons are 
suited particularly to the manipUlation of large or 
complicated data arrays. 

Access toa special APt terminal is not required; 
Multics APL can be used from an ASCII terminal 
through a special set of over-strike conventions. 
Unlike similar conventions in any other APL, this 
convention preserves the visual ~ppearance of APL 
programs. It is as easy to read Multics APL pro­
grams on an ASCII terminal as it is on an APL 
terminal. Multics APL supports all APL terminals -
including EBCDIC, Corresponde~ce, APL/ ASCII 
bit-paired, and APLI ASCII typewriter-paired. 
The Multics APL character set is a compatible 
superset of ASCII; hence, character data can be 
easily and efficiently shared between APL and 
other Multics programming languages. 

By using powerful APL language elements, the 
user can devote full attention to solving the prob­
lem at hand. Multics APL helps the user avoid the 
complexities of the individual programming steps 

required and the interrelationships of the system 
operation. For example. inversion of a matrix. 
which would involve many program stakllll'nts 
with nested loops and indexing in other pro­
gramming languages, is accomplished with a 
single-character operation in Multics APL. 

Multics APL can call APL functions written in 
PL/I, which, in tum. can call programs written 
in BASIC, COBOL, or FORTRAN. The PL/I 
coded function can be niladic, monadic. or 
dyadic, and can optionally return a result. It l:all 
diagnose the same errors any APL operator can 
diagnose and can call out to any other Multics 
subroutine or system interface. 

Thus, this facility enables the APL user to get at 
allY system interface or application program hy 
writing a short PL/I program to transform the call. 
This means the Multics APL lIser can easily inter­
face to the Multics Graphics System, the Multks 
Relationai Data Base Manager, and other packa~l's. 

SYSTEM REQUIREMENTS 
Multics APL runs under the control of thl' Multics 
Operating System on all models of Level Cl8/DPS. 

SpcciOcalions may chan)tc as dClii~n if11provl'l~lenls arl' inlrodlln'd. 

Honeywell 
HoMywet"ntormatton SYlteml 

In tho USA 200 Smith S" .. t MS 486. Walth.lm. Ma.achusons U21!l4 
In Canada 2025 Sheppard Avenue East. WllIowdale. OnlarlO M2J 1 W5 

In Me.lCo Avent~ Nuevo leon 250. MeIUCO 11. 0 F 

20883, 1678, Printed in U.S.A. 

B-30 

0(';77, Hov. 0 



Hone)'lNell 
SERIES 60 
LEVELS 68 & 68/DPS 

Honeywell's Multics Data Base Manager (MDBM) 
provides Level 68/DPS users with a powerful, 
versatile, efficient, and easy-to-use data base man­
agement capability. MDBM functions as a subsystem 
of the Multics operating software, and makes use of 
the Level 68/DPS virtual memory and file manage­
ment subsystems. It is designed to support concur­
rent access to up to 64 data bases of up to 180 
billion characters each. 

Much of the versatility of M OBM derives from the 
fact that it offers the user a choice of two different 
methods for structuring and manipulating a given 
data base: a relational approach and a procedural, 
CODASYL-standard (Conference on Data System 
Languages) approach. While all data is stored in a 
relational format, two differing interfaces are 
visible to the user. 

The relational technique greatly simplifies the job 
of programmers and end-users, as a detailed knowl­
edge of the logical structure of the data base is not 
required to use it. MDBM performs the retrieval 
function automatically. For example,. a person 
seeking data writes a statement that defines the 
nature of the data required; he does not provide 
specific instructions as to where and how the data 
is to be retrieved. 

At the same time, the procedural approach is 
available to those programmers who are familiar 
with and prefer rODASYL data base techniques. 

MDBM is the industry's first fully implemented 
relational data base manager commercially available 
from a computer manufacturer. It is also the only 
data base manager to offer both relational and 
CODASYL capabilities in the same system. 

MDBM BENEFITS 

The Multics Data Base Manager provides the follow­
ing hL'l1l'fits: 

• IlIIprol'('d pr()grtll11l11('r,Jro(/lI('lil'il.l' Prograll1-
Illl'J'S can accomplish data hasl' tasks with much 
k-ss errort whl'Ill'lllploying MDBM's rdational 
l'apahilitks. 
• New l'1Il1-tls('I' flex ibi/it)' IlL'cause or the sim-
plicity of relational techniques, end-users can indc-

© 1978, Honeywell Information SYlltCntS Inc. 

Multics 
Data Base Manager 

pendently retrieve data base information without 
support from the programming staff. 

• Ease of maintenance - The tasks of entering and 
changing data are greatly simplified. 
• Data storage efficiency···· One data base systcm 
can meet the needs of an entire organization without 
redundant files and effort. 

• Improved data accuracy The elimination of 
redundancy ensures consistent information with 
fewer chances of error. 

• Ensures data integrity and security _. Inherent 
Level 68/DPS integrity/security features are avail­
able to the MOBM lIser. 

MDBM FEATURES 

The Multics Data Base Manager includes thl.' follow­
ing signiticant system design features: 

Relational interlace - Multics Relational Data Store 
(MRDS), a component of the data base manager. 
represents data relationships by means of formal 
uigebraiL: entities. A user strudurl's and aCCl'SSl'S 
data files without concern for how or whl'rL' illl' 
duta is actuul1y stored. As a result, thl' lISl'r's task 
is greatly simpli fied. 
Procedural illterface -- Multics Integrated Data 
Store (MIDS) provides an interface with the data 
base manager following CODASYL standards. 
MIDS is a subset of Honeywell's I-D-S/Ii data hasl' 
management system. This capability is highly tkx­
ible, allowing the building of network, hil'rarchical, 
sequential, or cyclical structures. 
Language independence - Any Level 68/D(>S 
supported language may be used to access MDBM 
facilities, induding COBOL-74, PLjI, FORTRAN. 
APL, BASIC, and Assembler. WelJ-defined CALL 
statements are employed. 

III dCI Jl 'II dl'Il(,(' uI/JI'()('(',\'siIlK /Jl()dl'S M DBM sup-
ports all processing J110dl'S sllch as transact ion proc­
essing, timl' sharil1~. halch, rCllloll' joh cntry allll 
dirl'ct acccss. All or thl'Sl' lllo<.iL's call Ill' sLlpporkd 
simultanL'ollsly. 

COlltrolled sltllrillg All us!.' I' data (as well as opcr­
ating system softwarl.', libraries, and lIser codd is 

''"i'I' No,: ".11 



pOtentIallY snareaOle at the discretion of its owner. 
Since all Level 68/DPS language processors generate 
only pure reentrant code, no copies or reloads are 
required. 
Data definition and program independence -" Data 
definition is an independent function. In most cases, 
changes to the data base will not req uire repro­
gramming of user app~ications. 
Query capability - A special MDBM query language, 
terme~ LINUS (Logical INquiry and Update System), 
provides comprehensive query capabilities. 
Online access and update - Records may be easily 
added, modified, or deleted online. Multiple users 
may access the same data base concurrently. MDBM 
can be invoked by as many users as are allowed on 
the system. 
cuncurrent access and update cuntrols - Update 
privileges can be assigned to individual users or 
classes of users. To ensure integrity, users may 
specify exclusive use of the data bas€1 when it is 
opened; or, if sharing a data base, users may tem­
porarily reserve a record type and associated sets 
during critical update operations. It is possible for 
privileged users to specify exclusive update, which 
locks out all other processes attempting to access 
the data base; and it is also possibit! to specify ex­
clusive retrieval, which locks out all updaters from 
the data base. 

Report generation - The Level 68/DPS Report 
Generation Language (RGL) facilitates the produc­
tion of reports, in conjunction with either the 
LINUS query language or ASCII files. 
Automatic data recovery and restart - MDBM uses 
Level 68/DPS backup/retrieval mechanisms. They 
provide recovery of a data base after system failure 
or when a disk has been damaged. 
Monitoring -- Tools exist to monitor data base usage 
from various aspects. 
Dynamic luning - A system administrator can view 
current monitoring data from a terminal and dynam­
ically alter parameters to affect performance. 
Data integrity and security - Level 68/DPS is the 
only system where all data integrity/security fea­
tures are implemented in both software and hard­
ware. MDBM derives its superior integrity /security 
characteristics not from provisions within the data 
base manager, but rather from design features of 
the Multks operating system and Levl'l 68/DPS 
hardware. 

TERMS DEFINED 

The relational and (,ODASY L ~Ipproadll's havl.' 
developed sl'parately, so that tl'rms lIsl'd in dl'­
sl'ribing one approadl diffl~r suhstantially from 
those USl'd for thl' other. Tabk I is provided to 
bridgl' this terminology gap. 

TABLE 1 - TERMS 

Traditional Honeywell MDBM 

Data Processing Relational CODASYL 
Terminology Approach Approach 

Record type. class or physical rc\:ord physic:ll record 
format (physical) 

Record type, class or rela tion rCl"onl type 
format (1ogicaJ) 

Record occurrence tuplc renH<J Ol"l"UrrCTll'C 

Field/element attribute data elcmcllt/l1c1d 

Range of values (the domain largely ignored 
set of all values associ-
ated with 3 field type) 

Total data base defi- data model sl"hcma 
nition 

Program view of data data submodcl suhsdlCl1la 
base 

DATA BASE DEFINITION PROCESS 

Figure 1 illustrates the MDBM data base definition 
process. Users may create and access a data basl' 
using either the MRDS or MIDS interfaces with till' 
following restrictions: 

• A data base created using the MIDS facility may 
be accessed only with MIDS programs. 
• A data base created llsing the MROS facility may 
be accessed only with M RDS programs. 

The definition of a data base in MDBM is an:olll­
plished by the user or data base administrator tk­
fining either: 

• A datu lIlodd for a relational data basl'. 
• A schema for a CODASYL data basl'. 

The data descriptions are not directly rl'krl'IlCl'd 
by user application programs, and each application 
program may have a different view of the data basl'. 
The definition of that portion of the total data hasl' 
affecting a particular program is accomplislll'd hy 
defining either: 

• A data submodel. 
• A subschema. 

Partial views (data Sli hmodl'ls or subschemas) Illust 
bl' propl'r suhsl'ts of t Ill' total data hase dl'nnit ion. 

I n till' case of a rdat iOllal (M RDS) data hasl'. I Ill' 
data Ill(l(kl definition fill' contains till' l'ompil'k 
(kscription of thl' difrl'H.'nt data l'knll'nts to he 
fOllnd in thl' data hasl'. This is till' data hasl' admill­
istrator's vil'w of the data hase. Till' data sUhlllodl'l 
definition fiil' contains thl' liL'finitions of thosl' n,'­

lations and attributes of interest to a spl'ririe pro­
gram. This is the uSl'r's or progralllllll'r's Vil'W or I Ill' 
data basl'. The data suhmodd is defilll'd indl'llI.'lld­
l'ntly of the data modl'l and no hindill}.!, is dOlle 
until application program l'Xl'cutiOIl OPl'l1-t illll'. 

B-32 



Data types for data submodel attributes are not . 
defined within the data submodel; they are defined 
within the application program. They may differ 
from the data types defined in the data model for 
the corresponding attribute name. Allowable data 
types (in PL/I terms) are real and complex fixed 
binary, real and complex floating binary, real and 
complex decimal, varying and nonvarying bit string, 
and varying and nonvarying character strings. 
Binary data types may be single or double precision. 

When a data base administrator defines an MIDS 
data base, both a schema and a data model defini­
tion file arc automatically created (Figure 1). The 
schema definition file contains only information 
associated with a CODASYL data base relevant to 
the data structure/organization of that data b~se. 
Schema entries contain data and network structure 
information while data model entries contain de­
scriptions of the dahl elements in the data base. 

Again, data descriptions in the schema definition 
file are not directly referenced by user application 
programs. The user or data base administrator de­
fines that portion of a total data base of interest 
to a particular program by use of a subschema. A 
subschema definition contains only the ap.plication 
program view of the data base and is the MIDS 
counterpart of the data submodel in MRDS Oust 
as the schema is the MIDS counterpart- of the data 
model). 

In practice, MIDS controls structural definitions, 
whereas MRDS controls data definitions. 

MIDS 

NETWORK ~ 
ADMINISTRATION L.I' 

MADS 

RELATIONAL ~ 
ADMINISTRATION l. ,/ 

Mlns 
SCHEMA 

PROCESSOR 

MIlliS 
IlAIAMOIJII 
1'1111\ ~I SSlIII 

Figure 1. MDBM Data Base Definition 

THE RELATIONAL DATA STORE 
The Multics Relational Data Store (MRDS) pro­
vides an integrated set of functions to support till' 
description and processing of a wide variety of data 
base structures. Data independence is ach ieved 
through the use of data model/submodl'l concepts. 

The MRDS user defines a data model using a tech­
nique known as "normalization" or ~'fl'duct ion 
to third normal form." The process of normalizing 
a data base consists of a subjective process per­
formed by the data base administrator whl'reby 
complex relations are reduced or transformed into 
simpler relations without loss of information or 
dependencies. The rationale for using the third 
normal form relational model derives from certain 
anomalies which can otherwise occur in a rl'lational 
data base. 

The data model or data base definition is defincd. 
accessed, and maintained by the data base admin­
istrator. The administrator, working ill conjunction 
with appJication users, defines a valid data sub­
model to be referenced by each application pro­
gram. Under certain user-controlled cin':lItnstaIlCl's. 
a user may act as his/her own administrator and 
deal directly with the data model. Thl' data sub­
model provides each application program with its 
view of a data base and must be a proper subset of 
the data model. 

The definition of a data submodcl may di ffer from 
the data model in several ways: 

• Attribute names may differ. 

• Attributes may be omitted from a data model 
relation. 

• Attributes may be ordered differently within a 
relation. 

• Relations may be omitted. 

A data submodel definition may be lTl'a1l'd Sl'pa­
rately or in conjunction with an applicat iOIl program. 
Several data submodcls may be associated with till' 
same data model. Several data submodds may hl' 
referenced by the same application program. Data 
submodel definitions may inteiSCCt. 

When defining a relation in a data model or sub­
model, it is necessary to specify which at t rihllks or 
fields ar.e to be used as components or the primary 
key (i.e., key attrihuks). I':ach (lIpk or n'ford 
occurrence mllst bc idelltifiahk hy SOllll' 11011-111111 

primary key valuL' which lIlust hL' uniqlll'. Till' l'X­
pression for defining a rdation and its aU rihuh's 
resl'mblcs the formut lIsed in most rda( ional 
literature. ' 

The "open" proCl'dure is called wlll'1l thl' MRI>S USl'r 
wishes to access the data hasl'. At this t inH' till' da(;1 

model and submodd are rl'solvl'd. Figllrl' 2 illus­
trates access activity. 



MIDI 

NlTWO"K UIE" [) 

MRDS 

MULTICS 
SYSTEM 

MIDS 
APPLICA TION 

PFIOQAAM 

MRDS 
APPlICATION 

PROGRAM 

MIOI 
LANGUAGE 

PAOCEliOA 

MRDS 
LANGUAGE 

PROCESSOR 

MULTICS 
INPUT/OUTPUT 

SYSTEM 

Figure 2. MDBM Data Base Access 

The M RDS Language Processor provides the user 
with the following capabilities: 

• Open and close a data base defined by a specified 
data submodel. 
• Retrieve data based on a flexible selection capa­
bility. 
• Modify and delete items within a data base. 
• Enter new information into the data base. 
• Perform the above while allowing for the maxi­
mum possible concurrent access capability. 

The data manipulation capability provided is rela­
tionally complete. That is, it possesses the full 
power of the relational calculus. Any query expres­
sible in first-order predicate calculus is expressible 
in an MRDS selection mechanism. 

THE MULTICS INTEGRATED DATA STORE 
The Multics Integrated Data Store (MIDS) provides 
a CODASYL language interface to the functions re­
quired to support the description and access to 
CODASYL datu base organizations, induding hier­
arl'ilil's and Ill'tworks. i>ut" illth.'rK'nc.ll'lll'l' hctWl'l'll 
till' physil':tl d:,ta haSt' ami apI'Ih:atioll pn\~rams is 
al'hil'Vl'd lhroll~h lISl.' or sl'lll.'ma und suhsdll.'ma l'OIl­

n'pls ;IS S,ll'l'ifil'd hy CODASYL. 

TIll' Sdll'llla th.'sl'rihl's lhl.' tot,,' data basc and is 
defined and maintained by the data base adminis­
trator. The udministrator, working with prospective 
users, (h.~tincs vulid subschenHis to b~ referenced hy 
individual applkat ion pro~rams. 

The subschema must be a proper subset of the 
schema. The subschema contains only the infor­
mation necessary to define the data required hy thl' 
application program. 

MIDS relies primarily on access control lists rathef 
than privacy locks Of passwords to providl' sl'curity 
at the level of the record and set. Concurn .. 'nt updah' 
protection is provided at the record type and sd 
name level. 

The following specific CODASYL schema defini­
tion functions are supported by MIDS: 

• A data base, records, fidds, and sets may hl' givl'n 
names. 
• Record location mode may be specified as CALC 
or VIA SET. (All records in MIDS must be given a 
unique control key field even if the location moth' 
is VIA SET.) 
• Field types may be BINARY, DECIMAL 
SIGNED, or CHARACTER. 
• Sets may be defined. 
• ORDER of set insertion is defined as PERMA­
NENT INSERTION and OlJPLICATES NOT 
ALLOWED for SORTFD ORDER, 

• Sd 1\ll'mhl'rs may hl' onll'rl'd as FIRST. Nl;\,l'. 
LAST, PRIOR, or SORTED BY DEFINI·;n KFYS. 
• Set mcmbership is dl'lilll'd as MANDATORY and 
AUTOMATIC. 
• Set seledion may be THRU OWNER IDENTi­
FIED BY CALC-KEY or BY APPLICATION. 

B-34 



A subschema may describe only that portion of the 
entire data base (i.e., schema) which is of particular 
interest to the application program. (A schema may 
be shared by a number of subschemas.) A subschema 
may differ from the schema in the following ways: 

• Field names may be renamed or omitted from a 
subschema record. 
• Field names may be ordered differently within 
records. 
• Field types may differ from the corresponding 
schema field type (although field types are not de­
fined in the subschema, per se). 
• Records may be renamed or omitted. 
• Sets may be renamed or omitted. 

Several subschemas may be referenced by an appli­
cation program and subschema definitions may 
intersect. Subschema record, field, and set names 
must be associated explicitly with schema record, 
field, and set names. Field types are defined in the 
using application program. 

At execution time the validity of the subschema is 
verified and the views of the data base represenkd 
by the schema and subschema are resolvt.'d. 

The followirtg basic functionality is provided hy 
MIDS Data ManipUlation Language (DM L): 

• READY 
• STORE 
• ERASE 
• FIND 
• GET 
• MODIFY 
• FINISH 
• KEEPX 
• FREEX 
It is possible to READY multiple subschemas within 
one process. 

Specifications may change as design improvements are introduced. 



Honeywell 
Honeywell Information Syatema 

In the U,~ A" 200 Smith Street. MS 486, Wanham, Massachusetts 02154 
In Canada: 2025 Sheppard Avenue East, Willowdale, OntarIO M2J 1 W5 

In Me)(ico Avenlda Nuevo Leon 250, Mexico 11, D.F 

21622,2878, Printed In U.S.A. 

B-36 

Df (j;l, Hw. 1 



Hone~ell 

SERIES 60 (LEVEL 68jDPS) 

LINUS (Logical Inquiry and Update System) is a 
powerful and easy-to-use facility for accessing 
data bases from a remote terminal. It provides 
complete data base management capabilities, 
including both retrieval and update operations. 
LINUS functions as a subsystem of the Multics 
operating software and uses Multics Relational 
Data Store (MRDS) for data base accessi: LINl!S 
is used by a variety of business professionals, 
including inventory control personnel, budget 
planners, geologists, and school administrators. 

LINUS uses a high level, nonprocedural data 
selection language called LILA (LInus LAnguage). 
LI LA allows people, who are not trained program­
mers, to solve problems by working with data bases. 
The user views the data base as a simple set of 
tables, consisting of rows and columns; LILA 
provides an easy way to "look up" information 
contained in those tables. 

System operation is straightforward. At a terminal, 
the user simply calls LINUS and types a request 
for LINUS to open the desired data base. If the 
user is unsure of how to proceed, he types "help" 
for assistance. After the data base is opened, the 
user may call LILA and type a selection expression 
specifying the data to be accessed. LILA then proc­
esses the selection expression, retaining it in a form 
suita ble for reference by subseq uent LINUS 
requests. 

After selecting the data, the user may type a LINUS 
request to manipulate it. Among the actions which 
can be performed are display the data on a terminal, 
write a formatted report, place the data into a 
Multics file for later usc, and update the data base. 
The data may be acted upon by several manipulation 
requests, and new data may be specified at any time 
by typing a new LILA seicction expression. 

BENEFITS 

LINUS is easy to lISC. With three short words eVl'Jl 
an illl'xperiellCl'd complltl~r lIser can get information 
from a data base using LINUS. These words arc 
"select," "from" and uwhere." For example, a 
telephone directory can be thought of as being a 
table with three columns of information: name, 

(~) 197X, I/oncywcllinformalinll Sysh:lJls, Inc. 

LINUS 

address, and phone number. To find the phone 
number of John Smith, the user scans the name 
column for "Smith John" and reads the value from 
the phone number column in the same row. With 
LINUS, using LILA, this operation is described as: 

select number 
from phone book 
where name = "Smith John" 

Studies and experience have shown that inex­
perienced users can attain substantial competenCl' 
in LINUS within a matter of hours. 

Other benefits include: 

• Direct End-Uscr Access -- Using LINUS. the 
user can independently retrieve and update data 
base information without support from thl' 
programming staff. 
• Support of UnforcscC'1/ RequirelllC'nts Thl' 
LINUS user can 1m mediately respond to ullexpl'ded 
information requirements hy interactively sl'iecting 
the desired data via a terminal, without writ ing a 
program. 
• ComplctC' Selcctioll Capahilit.\' LINUS is 
powerful and "complete" in the sense t ha t t hl' user 
can select any information contained within thl' 
data base using LILA, subject to security constraints. 

FEATURES 

• Complete Data Base Functionality - LINUS 
provides facilities enabling the user to add and 
delete rows from a data base table. to modify 
column values in a table, to define temporary tables 
for personal use, and to retrieve informat ion from 
one or more specified tables. 
• Macro Facility--· A parameterized macro facility 
allows the user to invoke previously savl'd sequl'nCl'S 
of LiNUS req uests. This allows the tailori Ilg or an 
environment to an individual user. 
• LILA Linc Hditor A BASIC-like linl' editor 
built into LI LA simplifies construct ion or data 
sdedion expressions. 
• Illlill-ill and {/s('r-dc'.f/n('(/ Flil/Cliolls Buill ill 
functions allow till' lIser to dl'h'rlllilll' SlIIIlS. aVl'rav,l'S, 
and counts, of data as wl'lI as to search 011 slIch 
items as partial character string valul's, and rOllnded 
or truncated numeric values. In addition, t1wrl' is 

hll- No .. 11.11 
B-37 



a weJJ detmed method for dynamically adding 
functions required by local users. 

• Internal Variables - The LINUS user can assign 
retrieved data values to internal variables, allowing 
subsequent data selections to be dependent upon 
previously retrieved data. 
• Help Facility - A help request available within 
LINUS provides information on how to use its many 
facilities. The user need only type "linus" to invoke 
the subsystem, and "help" in order to begin using 
LINUS. 
• Table of Contents - The contents (tables and 
columns) of the data base may be displayed 
allowing a person unfamiliar with the structure and 
content of the data base to use LINUS. 
• Report Writing Capability _. Formatted reports 
from retrievcd data ~an be created lIsing either 
the MuItics RcportProgram Generator (MRPG) 
or the WORDPRO facility, Lister. Either facility 
can be invoked with a simple LINUS request. 
• Multics-- Any Multics capability can be invoked 

LINUS 

MRDS 

USER 

from within the LINUS subsystem. Some possible 
uses of this fcature arc sorting retrieved data via 
the Multics sort facility, or editing retrievl'd da ta 
with one of the Multics tex t edhors. 
• Data Base Creatio1l The L1ser can create a 
private data base via easy-to-use MRDS comnwnds. 
Special documentation oriented to the LI N US lIser 
makes this process especially simple. The da ta baSl' 
can then be maintained and accessed using LINUS. 
• Data Sharing, Integrity, alld Security -- LINUS 
fully utilizes MRDS and M uItics facilities for con­
current usage control, data base security, and data 
base backup and recovery. 

SYSTEM REQUIREMENTS 

LINUS operates under Multics on any Series 60, 
Level 68/DPS configuration. The availability or 
MRDS is a prerequisite for LINUS oper<ttioll. 

Specifications may chanv,c <IS dcsi~n improvcments 'IrC inlrodlln'd. 

LISTER MRPG 

LINUS (LOGICAL INQUIRY AND UPDATE SYSTEM) 

Honeywell 
Honeywell Information Syatema 

In Ihe USA 200 Smith Street, MS 486. Wenham, MassachuseHs 021 f>4 
In Canada 2025 Sheppard Avenue East. Willowdale, Ontario M2J I W5 

In Melnco. Avenlda Nuevo Leon 250, MeXICO 11. OF. 

21 4 22,1878, Printed in U,S.A. DHG!:l, Rail, 0 



Honeywell 

SERIES 60 (LEVEL 68/DPS) 

Word Processing System 
(WORDPRO) 

WORDPRO, another dimension of Honeywell's 
powerful Level 68/Distributed Processing System -
Multics - provides a comprehensive set of software 
tools for developing a wide range of documents 
online. And because WORDPRO is integrated 
within the Multics operating software, its users can 
develop and maintain documents ranging from sim­
ple form letters to complex technical presentations 
simultaneously with other data processing activities. 
The end result can be rapid turnaround time, im­
proved productivity, and optimal quality in docu­
ment preparation. 

WORDPRO BENEFITS 

Since WORDPRO is an integral part of Level 68/ 
DPS, it offers advantages unavailable with other less 
comprehensive word processing systems: 

• Ease of Use - People with little or no knowledge 
of Level 68/DPS or word processing can easily use 
WORDPRO for numerous text processing tasks. 
Merely by following WORDPRO-generated instruc­
tions, even inexperienced users can readily perform 
functions such as text entry and simple editing. 
• Security - The security provided by WORDPRO 
is the same security provided for all information 
stored in the Multics virtual memory. Because 
WORDPRO-prepared documents reside in the vir­
tual memory, they receive the same high degree of 
security afforded any other job, file, or program. 
• Document Management Tools - WORDPRO docu­
ment management tools make it easy to maintain 
documents online or offline in a standard fonnat. 
These tools can be used for document file manipu­
lation, archiving, document linkage, etc. The same 
tools which control 68/DPS storage also control 
WORDPRO documentation. 
• TaHored Environments - Level 68/DPS lets the 
WORDPRO user define exactly how text process­
ing is to occur. Unlike other systems, WORDPRO 
lISl'rS specify thl' types of terminals to be llsed 
and I hl' variolls dOl'lIllll'llt formats to hl' i.ll'l.'l.'ptl.'lt. 
Inh'rfal'l's to tlll.'Sl' lil.'Vil:l'S l.'an hr changl'd at ~lIlY 
Ii Illl'. 
• Sl'll'dahk Administration The WORDPRO 
lIser is not bound by u restrictive administrative 
approach. Each site can define what the individuals 

~) 197H,lloneywl'lll·nformuli(l1l Sysll'lI1!1 Inc. 

using the system (terminal operators and document 
administrators) need to know. The roles of these 
individuals can be large or small depending on how 
a user's document processing activities are estab­
lished. 
• Maximum Equipment Utilization-- WORDPRO 
can help users muke muximum usc of slack COI11-

puter time. Rather than have the system sit idle 
when not processing data, WORDPRO call lise 
this extra time efficiently for text procrssing 
thus ma'ximizing equipnwnt utilization. 
• Total Integration with Data Processing -- Within 
Level 68/DPS, word processing and data processing 
are fully integrated. Data and text files created and 
maintained by WORDPRO can be accessed and 
used by data processing applications. Conversely. 
files created and maintained by data processing 
applications are available to WORDPRO users. all 
without special programming or conversions. 

DEVICE FLEXIBILITY 

Any terminal accepted by Level 68/DPS call hl' 
used for word processing. Users need not purchasl' 
special equipment or dedicate terminals for 
WORDPRO applications. [f onr. sd of ll'rminals 
is used for input and update. othrr devin's can he 
used for output. Text entered from Olle terminal 
can be modified by another without regard to 
terminal characteristics. 

TEXT ENTRY TOOLS 

Several tools are provided with WORDPRO for 
the entry of new text. With these tools, an indi .. 
vidual with little or no prior word procrssing 
experience can easily power type r~w text into 
the system for later update or incorporation into 
a document. 

The DOCUM/:.:NT routine is a simplified inkrfacr 
to all the WORDPRO tools. It lets the lIscr prc­
lit'finl' document formats. and automati(ally 
gl.'l1l'rutrs thr final doclIlllrnt with paragraph and 
pagl.' 11lIlllbrrs, footnoks, tahll' of conll'nts 
(optional), dc. Paragraph editing is provided to 
allow paragraph audition, modification, and de­
letion with automatic renllmb~ring. WhoII..' para-

B-39 Hit' Nil.: 11.-'1 



graphs may be inserted from a prepared list of 
paragraphs. Speed typing, hyphenation, and all of 
the quality control and document management 
tools are also provided within the DOCUMENT 
interface. Once processed through DOCUMENT, 
the text can be printed at a terminal or high­
speed printer. 

SPh'HJ)TY PH .-. similar to typing shorthand -
allows users to specify abbreviations for input of 
charackr sequcnccs. When a document is printed, 
tht'se abbrt'viations arc automatically expanded 
to their predefined strings. The result is fewer 
key strokes typed, higher document quality, and 
reduced storage requirements. 

TEXT EDITING 

Input text can be modified llsing either of the 
WORDPRO editors: cursor or string. Using a CRT 
device and the cursor editor, terminal users can 
simply type over portions of a document which 
are to be changed. 

String editing, which is more comprehensive than 
cursor, enables the user to manipulate strings of 
characters in a text for editing or updating pur­
poses. String editing functions range from simple, 
line-oriented editing to context-oriented searching 
and n.'placement. 

Together, the WORDPRO cursor and string editors 
give the user the freedom to select the desired 
mix of simplicity and comprehensiveness. 

DOCUMENT FORMATTING AND HYPHENATION 

The WORDPRO formatter provides document for­
mat control. In addition to margin and page length 
control, the formatter handles automatic page and 
paragraph numbering, widow processing, table of 
contents and index generation, font and forms 
control, artwork placements, and automatic hy­
phenation. Further, the formatter can control: 

• Headers/Footers - Up to 20 headers and footers 
can be specified. These can be page numbers, copy­
rights. logos, or the current date. These need only 
be specified once~ they will be inserted automat­
ically thereafter. 
• Footnotes -- They are automatically generated, 
numbered, inserted, and maintained with the 
proper page. If footnotes are added or deleted, 
the remaining ones are automatically renumbered. 
• Pagination .- Pages can be automatically num­
befell in Arabic or Roman numerals, in upper- or 
lowl'l"t'asl'. or alphabetically. 

QUALITY CONTROL 
WORDPRO incorporates an extensive sd of qual­
ity control tools for dekcting and removing typo­
graphical errors from dOcuitlents. First. SPFED­
TYPE can be used to correct typos at entry tillle. 
For example, common typing errors stich as "htc" 
instead of "the" can be corrected by predefining 
the former string as an abbreviation to be ex­
panded to the latter. Or, long difficult-to-spell 
words can be abbreviated, thus eliminating fre­
quent misspellings. 

Online dictionaries can also be used to detect 
misspelled words within a document. WORDPRO 
offers a dictionary containing over 50,000 l:Oi­

rectly spelled English words. The content of a doc­
UI,ncnt is compared with the dictionary's entries. 
and any words not found are entered in an error 
file or printed at the user's terminal. Multiple 
dictionaries can also be developed. For example. 
a dictionary of technical jargon or frequently lIsed 
non-English words could be established so that 
these types of words would not be considered 
misspelled. Dictionaries can be shared. if desired. 
or used as private versions. Dictionaries can also he 
added to or deleted from as desired. 

Change bars can be generated on documents lIlllkr­

going review. A complete list of changl's (Iiul'-hy­
line) can also be generated in a separate fik oj" 

notes. Additionally, text comparison programs 
allow review of new documents against ol,kr 
versions. 

LIST PROCESSING 

The generation of personalized form letters and 
billing statements can be accomplished using 
WORDPRO's list processing capabilities. Lists of 
mailing addresses can be used concurrently by 
multiple terminal operators to create these types 
of documents with key pieces of information in­
serted at various points. These list processing tools 
can also be used in conjunction with other 6X/DPS 
facilities (such as the data base manager) to supply 
cllrrent IIp-to-date account information for monthly 
statements, billings, etc. Mailing labels or prl'­
addressed envelopes can also be generated. 

ARTWORK 

WORDPRO can he lIsed to gl'lleratc diagrams. 
organization and flow charts, and logos. TIll's(" 
figures can be included as part or Illi: filial, prilikd 
L'Opy of a dOClIllll'llt. 

B-40 



OUTPUT CONTROL 

Numerous devices can be used to print review cop­
ies or final documents. A terminal operator may 
request that a segment of text be output on a 
local or remote printer, thereby freeing the input 
terminal for other work. Line printers, plotting 
terminals, and CRT devices can all be used for 
output. 

High-speed offline printers, such as the Honey­
well Page Printing System, can be used in con­
junction with WORDPRO to generate multiple 
copies in multiple colors with preprinted forms. 
Special forms control capabilities for line printers 
and plotting terminals permit documents to be 
printed on multipart, tear-away, or peel-off forms. 

Computer output microfilm/microfiche interfaces 
are available for generating, distributing, or archiv­
ing documents on micro media. Documen ts can 
also be stored in files online, or maintained off­
line on tape, cards, etc. 

PHOTOCOMPOSITION 

The WORDPRO design incorporates a photocom­
position interface to allow the generation of con­
trol information for automatic typesetting devices. 
This photocompositio.n facility is table-driven so 
that a variety of devices can be easily supported 
by simply modifying control tables. 

ELECTRONIC MAIL 

WORDPRO provides its users with a compre­
hensive, secure electronic mail facility. This 

facility allows message-switching networks to be 
established. Users can send and receive mail rang­
ing from short, immediate messages to lengthy 
memos or documents, over these networks. Secur­
ity is provided via a personal or shared mailbox 
area which is subject to extensive access contrOl 
checking. Electronic mail can be the basis for the 
automation of a business's entire in-house mail 
operation, eliminating the need for couriers. 

ACCESSIBILITY OF OTHER F ACI LITIES 

Because WORDPRO is an integrated part of 
Level 68/DPS, its users can access other facil­
ities. For example. financial data stored in a 
68/DPS data base can be selectively ins~rted into 
a WORDPRO-generated document to produce an 
up-to-date monthly or quarterly statement. The 
68/DPS Interactive Graphics pHckage can be lIsed 
to generate artwork for WORDPRO documcnts, 
and the Multics file management and nwnipula­
tion tools can be used with online WORDPRO 
files. 

ADMINISTRATIVE TOOLS 

Implemented on a project-oriented basis, 
WORDPRO can easily control the lise or proc­
essing resources, access to docllments and tools, 
billing for usage, etc. Users can be restrict ed to 
certain functions, or allowed access to full capa­
bilities of WORDPRO. All the administrative 
controls provided by Level 68/DPS are applicable 
to WORDPRO administration. 

Specifications may change as design improvements arc introduced. 



Honeywell 
Honeywell Information Systems 

In the U.S.A.. 200 Smith Street. MS 486. Waltham. Mas&achuseMs 02154 
In Canada: 2025 Sheppard Avenue East. Willowdale. Onlarlo M2J 1 W5 

In Mexico: Avenlda Nuevo Leon 250. MexIco 11. D.F 

20633, 2578, Printed in U,S.A, 

B-42 

, I! II: I, "ltV. I 



Honeywell 

LEVEL 68 

The Multics Graphics System provides a general 
purpose interface through which user or applica­
tion programs can crea te, edit, store, display, and 
animate graphic material. 

FEATURES 

• High degree of terminal independence 
• Ability to define graphic objects that may be 
llsed repeatedly in higher-level objects 
• Powerful editing facilities for graphic objects 
• Ability to store graphic objects permanently 

TERMINAL INDEPENDENCE 

The Multics Graphics System is organized into two 
distinct parts: the terminal-independent portion 
and the tl'rminaJ interfaces. 

User and applications programs communicate 
exclusively with the terminal-independent portion 
of the system. This ensures that: 

• User programs and applications routines are not 
restricted to one particular terminal type, but can 
lise whatever graphic terminal is available. 
• Users arc not isolated from each other because 
of the types of terminals they use, but may freely 
liSt' each others' programs on their own terminals. 
• Graphic applications Illay easily be transferred as 
new and improved terminals become available. 

The M ultics Graphics System can accept new types 
of graphic terminals with a minimum of coding. In 
most cases, the user need only specify the special 
characteristics of his terminal in a table and con­
struct a program to perform any code conversion 
necessary. No speciai I/O programming is required. 
He may then lise any existing program or graphic 
file and obtain comparable results on his own 
lit-vicl'. 

STRUCTURED GRAPHIC OBJECTS 

Rather than trcat ~raph.ic data as all lIns(rlll'lllrl~d 

co/ll'dioll of graphic clcmcn ts (mllch as a skdch 
could be considered an unstructured collection of 
lines and points), the Multics Graphics System 
tkals wit h structured descriptions of objects. 

Multics Graphics 
System 

Sample Graphic Displays 



ThIS organIzation has three advantages: 

• Natural representation of most objects can be 
made in terms of their own inherent organization. 
For example, a piston, a complex object in its own 
right, may be treated as an elemental object within 
a graphic description of an engine. 
• Subpictures can be shared, thereby eliminating 
redundancy. 
• Powerful global picture editing capabilities are 
possible. 

PERMANENT GRAPHIC STORAGE 

Facilities are provided so that the user can attach a 
name to any graphic object and store it in a Multics 
segment. Such objects may be used at any time by 
any user authorized to access the segment. 

TERMINAL-INDEPENDENT GRAPHIC 
TRANSMISSION 

Graphic information is transmitted in a well­
defined terminal-independent code. This code may 
be interpreted by a Multics program and converted 
to the appropriate codes to drive a graphic 
terminal; or it may be transmitted directly to an 
intelligent graphic device that performs its own 
interpretation, with a corresponding increase in 
efficiency. It may also be directed to a Multics file 
and "played back" on any graphic device to form 
background scenes or standard "canned" pictures. 

Graphic input sent to a Multics system is converted 
from its original format into this code before being 
forwarded to the terminal-independent portion of 
the system. 

SYSTEM COMPATIBILITY 

Programs originally written on other computers 
that make use of the most widely used sct of 
graphic subroutines may, with minimal cOllversion, 
interface in the same way with the Multics 
Graphics with System. Interfaces to mimic other 
popular graphics systems are easily constructed. 

DYNAMIC AND INTERACTIVE GRAPHICS 

When used with a terminal of sufficient intel­
ligence, the Multics Graphics System can perform 
real-time graphic operations, such as dynamic 
animation, incremental picture update, local pk­
ture editing under control of the terminal, and 
sophisticated graphic input. 

SYSTEM REQUIREMENTS 

The Multics Graphics System is applicahle to allY 
Level 68 MuItics configuration. 

Specifications may change as design improvements arc introduced. 

Honeywell 
HoneyweUlnformatlon Syeteml 

In the U.S A. 200 Smith Stre91. MS 486. Waltham, MllllachuM"8 021 ~4 
In Canada. 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5 

In MeXICO: Avenlda Nuevo Leon 250, Mexico 11, D.F. 

i 5602. 3476, Printed in U.S.A. 

B-44 

AWi9. Hov. 0 



rloneywell 

SERIES 60 ( LEVEL 68/DPS) 

lllC Level 68/DPS (Mliltics) electronic mail facility 
offers its users direct, online, person-to-person 
distribution of tt-xt. It handlt's mail ranging from 
bricf memos to multivolume do<.:uments and deliv­
l'rs that mail imml'diately to data terminals or on­
linemailboxes.ltis one of the many produdive 
personaicompliting features of the L~vel (l8/DPS. 

Honeywell's electronic mail fa<.:ility operates in 
conjunction with WORDPRO, the Level 68/DPS 
word processing system, and automates the crea­
tion, distribution. and updating of text information. 
Ell·etronk mail can signifkantly reduce the volume 
of paperwork generated in a typical large organiza­
tion, dramatically reduce the cost of disseminating 
documents. and avoid the delays normally associ­
atcd with physically generating and transporting 
documents. 

TIle Level 68/DPS eledronic mail facility offers 
definite advantages: 

• Each user can create a private "mailbox" -
a special storage segment for mail delivery, or 
mailboxes may be shared for group use. 

• Any terminal recognized by the Level 68/DPS 
can send or re<.:eive electronic mail - no special 
devices arc required. 

• A lIser call a<.:ccss his mailbox from any Lt.'vel 68/ 
DPS rccognized terminal at any location. 

Electronic mail provides sueh distinctive functions 
as: 

• Ill1nll'diate or defern.'d dt.-livery of messages, h,'xt. 
and other mail 

• Broadcast delivery to groups of users 

• Selective delivery only to persons with a "need 
to know" 

• A secure mailbox facility, protected by the full 
range of stringent security controls in Multics sys­
kill softwarl' and hardware, to guard mail from 
lInauthorizl'd UCCl'SS 
• Simpk cOlllmands to prescribe the mailbox 
al'l'l'SS and mail fUlld ions allowl'd for spl'd f'il'd 
lIsers 
• MallY dOl'Ullll'llt 1l1~lIlagl'llll'nt tools for text 
manipulation and slora!!.l' 

Multics Electronic 
Mail Facility 

VARIETY OF USES 

TIle Level 68/DPS electronic mail facility has a 
myriad of business lISCS. For instance. a large 
organization typically functions from a numher 
of widely separated locations corporate head­
quart,l'rs, research and engineering facilities. mallu­
facturing plants, saiL'S and sL'rvicL' branches, and 
test facilitil's. Becallse of thL'se widdy sl'parakd 
facilities. the slow dl'livery of vital dOClIllll'l1ts hy 
eonve'ntional mail ofkll rl'suits ill COllllllllll kat ion 
probkms. Also. thl' cost of document rl'pro<.illl'lioll 
and delivery can he considL'rahlL'. rk .... t ron ic llIail 
can help solve these communication prohlL'ms ill 
the following ways. 

• After creation, editing. and formatting via 
WORDPRO, text is distributed instantly to rl'cip­
ients at many locations, thereby reducing distribu­
tion delays 'and costs. 
• Online. two-way I1H,'ssages can be l'xclla n!!l'd 
betwe~n Level 68/DPS users. 

• Mail <.:an be delivered for immcdiate display at a 
redpient's terminal or stored in his mailbox, WiJl'll 
the redpient's terminal is occupied with all tlrgl'llt 
task or not logged on to the syslcm. 

• Automatic acknowledgment-of-mail I'l'cl.'ipt can 
be requl'sted by the sender. 

• A singk. online copy of a largL' dOl'lIml'nt l'an 
bL' maintained for relllotl' perusal. avoiding thL' 
problems of reproducing and distrihuting prinlL'd 
copies. 

In addition. managt'l11ent of messages ~lI1d docu­
ments is aided through i.I varkty of tools in Multirs. 
Indexed. ordered archives of past messagL'S can be 
created, searched. updated, apPL'nded. or dL'lL'fl'd as 
desired. TIle archives can be searched for key Sl'l1-
tences or phrases, extra copies can be printl'd. and 
old messages and mail can be periodically and auto­
matically deleted whell no IOl1gn Ill'l'lkd. 

Text can be l'xi.ll11illed alld lIpdatl'd frolll sL'veral 
locations at OIlL'l'. 1-'01' l'X;III1Pil'. d"rin",;1 l'Cllllr;I\'1 
Ilcgolialioll. a lIlasll'J' ropy of till' l'ClIlllad call Il\' 
l1laintainl'd onlinl' via WORI>PI{(). ;\11 illkn'sll'd 
partil's .. - till' custolller. along willi markl'1 illg. l'lIgi, 
tll'ering. legal, fini.llll'l', l'k. (all silll\III;II11'('tlsl~' 

~, I IJ7H, IIllncywl'lllnformalion Systems Inc. B-45 hk N(l .. II ,11 



review and comment via electronic mail without 
the delays involved in the conventional mailing of 
con tract review copies. 

SECURE MAILBOX 

The Level 68/DPS electronic mail facility utilizes a 
secure online mailbox approach. Each user can have 
a private mailbox under his home directory, Of a 
group of users can share a common mailbox to 
receive mail. TIle contents of each user's mailbox 
and archive is protected by the extensive security 
controls of the Multics virtual memory and file 

t' ' \"t '1"" HC'Q .. 'C management lundiOiiS .• ulen rnal! arnves In (& ... ..,~ • .., 

mailbox, the recipient is immediately notified, if 
his terminal is online to the Level 68/DPS system. 
1lle user can then selectively display the mail with 
simple commands, save it in mail archive files, or 
delete it. 

TYPES OF ACCESS 

Any combination of six different types of mailbox 
access can be prescribed for a single user or a group 
of users: 

• add - allows the addition of new messages to a 
mailbox. An users are usually given add permission 
so they can send mail. 
• delelc -. allows the deletion of any message in a 
mailbox ~ usually retained for USl' only by the mail­
box owner. 
• rcad -- allows the user to selcct c.ll1d read any mes­
sages in a mailbox; usually retained for use only by 
the mailbox owner. 
• own - allows the sender to read, modify, or delete 
messages he originally sent to a mailbox, but doesn't 
allow access to other messages in the mailbox. 
• sla(lIs - allows a mailbox owner to check on the 
number of his messages, their sender, length, date, 
t'te., in his mailbox, without actually reading them. 
• wakeup - allows a message to be sent to a mail­
box for immediate display, when the mailbox owner 
is accepting messages. Users can be given this permis­
sion to allow direct, user-to-user communication. 

SIMPLE COMMANDS 

TIle electronic mail facility utilizcs standard 
u'vel 68/DPS system commands to send messages 
and to deliver and receive mall. Other standard file 

manipulation tools allow mainknancl' of on Ii Ill' 
message and mail files. These comnumds can til' 
issued either in full or abbreviated format. Rl'prl'­
sentativc Multics commands include: 

• mail (Ill/) - sends mail to another syslL'm lISl'r 01' 

prints the mail intheowncr.sl11uilbox. A usn's 
mailbox is created autolllutil'ally lIndt.'r thl..' hOIllI..' 
directory the first tillle this cOIllt11and is invnkl..'d. 
Optional arguments allow selective display or lkk­
tion of mail. 
• ac('('pt.)1l('s.mge (am) ... restorcs the immcdiatl' 
display of messages us received: ca ncels till' lkfl'r 
message command. 
• inlfnedia(~m('ssage - requests immediate display 
of any messages in an owner's mailbox or of any 
messages received while the oWlll'r's terminal is on­
line, unless the' defer messuge is iil cffed. 
• deJ<'t;..l11essagc (dm) .. prevl'l1ts any 1l1l'Ssagl's 
received while a·ltser's terminal is onlinl' from 
immediate display and stores tlll'lll ill llll' lISl'r'S 
mailbox. 
• I"ill t 11lessage (pm) _. displays a ny ll1~ssug.t'S 
received in a user's mailbox during a prriod whl..'l1 
messages arr not being accepted. 

• selld /I1cs,mgc (S/I1) Sl'lldS;t Illl'SSal!l' whil'h IS 

designalL'd by thr pl'rson and prnjl'I..'t idcntitil..'s 
that follow the I.:otnmand. 

• S('I/(LI1I('sslIgU1c k 110 wledge s~'nds it III l':-'S;l !:!.\' In 

thc system lIsrr(s). designall'd by persall alld proi­
l;:):t identifiers that follow till' command. Wlll'll till' 
I;lessage is displayed at thc n'cipicnt's tl..'rlJ1inal.;I1I 
acknowledgment is returned to till' sender. 

SYSTEM REQUIREMENTS 

l1H? electronic mail facility is integrated with till' 
other facilities of the Level ()X/DPS. inl"iuding data 
base management, text entry and editing. dO(lIllll'1l1 

formatting, list processing. artwork gcneration, 
photocomposition, output control. an:hivc storage 
tools, and administrative tools. Elect rolliemail rUlh:­

tions on all performanct' levels of thl..' Levl'l hR/DPS 
system. 

Spedfications may c1wtlgc as design improvcnlC'nts arc illlroliun'll, 

Honeywell 
Honeywell Information Sy.tema 

In the \' S A 200 Smilh Streel. MS 4R6. Wallham. Massachusens O~l54 
In Canadlt 20~r; Sheppard Avellutl f .... 1, Willowdale, Onl800 M2J 1 W5 

In MeXICO. Avenlda Nuevo leon ;''''0. MeXICO 1" 0 F 

20363,3318, Primed in U.S.A. 

B-46 

r II ; ~ill. 1\"11. (j 



APPENDIX C 

ARTICLES OF INTEREST 

Multics: The First Seven Years ... 
Highlights of the Multics System 

C-1 

Page 

C-1 
C-1 

t;'()1 



This page has intentionally 

been left blank. 

C-ii F01 



In 1964 planning began on the development of a proto­
type of a computer utility. The aspirations for this system, 
named Multics (for Multiplexed Information and Comput­
ing Service), were described in papers presented at the 
1965 fall Joint Computer Conference. Implicit in those 
papers was the expectation of a later examination of the 
development effort. from the present vantage point, how­
ever, it is clear that a definitive examination is beyond 
possibility in a single paper; only some of the possible top­
ics can be discussed. first we will review the goals, history 
and current status of the appearance of the Multics system 
to its various classes of users. finally we will describe some 
of the insights which have come out of the development 
activities. 

MULT1CS: 
The first seven years 
f. /. Corbat6 
Massachusetts Institute of Technology 
Cambridge, MA 

c. r Clingen 
Honeywell Information Systems Inc. 
Cambridge, MA 

/. H. Saltzer 
Massachusetts Institute of Technology 
Cambridge, MA 

C-l 

FROM THE EDITOR 

This overview and history of Multics will be of pxcep­
tional interest because it fills most of tht' requirements 
for being used as a "software factory", a term thrll I 
coined in 1968. It is in fact used for that purpqsp within 
Honeywell Information Systems -- in the construction of 
software systems. 

It is particularly pleasing to note that the punch cc1rd 
has disappeared from the view of Multin progrdmm('r ... , 
although not from everywhere else. As Dr. J. Rabinow 
(of Optical Chdrdcter Recognition fame) has obsprvpd, 
if it does it will bl> tht' first product h(' hc1s sppn dip whil(' 
on an upward curve of usage! 

This article appeared in the Proceedings of the 1972 AFIPS 
Spring Joint Computer Conference, and is republished (not 
reprinted) here with the permission of AFIPS and the au­
thors. The work reported herein was sponsored in pdrt by 
Project MAC, an M.I.T. research program sponsorl'd by thp 
Advanced Research Projects Agency, Depart I nt.>/l I of Ik­
fense, under Office of Naval Research Conlrdct Number 
N00014-70-A-0362-0001. Reproduction is pl\rlllittt'd for 
any purpose of the Unitl'd States Governml'nt. 

HONEYWELL COMPUTER JOURNAL 3 



INTRODUCTION 

In 1964, following implementation of the Compatible Time­
sharing System (CTSS) [1,2] serious planning began on the 
development of a new computer system specifically orga­
nizpd as a prototype of a computer utility. The plans and 
a~pirations for this system, called Multics (for Multiplexed 
Information and Computing Service), were described in a 
set of six papers presented at the 1965 Fall loint Computer 
Confert.'nce [3-81. The developmpnt of tht' system was un­
dertaken as a cooperativt' pffort involving the Bell Telephone 
Laboratories (from 1965 to 1969), the Computer Depart­
ment of the General Electric Company (subsequently ac­
quired by Honeywell Information Systems Inc.), and Project 
MAC of M.I.T. 

Implicit in the 1965 papers was the expectation that there 
should be a later examination of the development effort. 
From the present vantage point, however, it is clear that a 
definitive examination cannot be presented in a single paper. 
As .1 rt.'sult, the pr('sent paper discuss('s only somt' of the 
m.lIlY possible topics. First we ft.'view tht' goals, history tmd 
curr('nt status of tht.' Muhic~ projt.'CI. This rpview is followt.'d 
by .1 brit.-'f description of the appecHdnn' of lhe Multics sys­
Ipm to it ... vtHiou ... dtt ...... p, of user.,. Finally severtll lopics are 
given which represent some of the rese(Hch insights which 
h.\V(' COlnt' out of the development activities. This organiza­
tion hds been chosen in order to emphasize those aspects of 
software systems having the goals of a computer utility 
which we feel to be of special interest. We do not attempt 
detailed discussion of the org.lnization of Multics; that is the 
purpose of specialized technical books and papers (for ex­
ample, the essential mechanisms for much of the Muhics 
system are given in books by Organick [9] and Watson (1 OJ). 

GOALS 

The goals of the computer utility, although stated at length 
in the 1965 papers, deserve a brief review. Bya computer 
ulility it W,lS ml'ant that one had J community computer 
(.Kility with: 

• Convenient remote terminal .lcn'ss as the normcll 
rnodt> of system Ue,dgP. 

• A vi('w of continuous operation analogous to that of 
ttll' electric power Jnd telephone companips. 

• A wide range of capacity to allow growth or con­
traction without either system or user reorganization. 

• An intt'rn.ll file ,,),stpm so rt'li.lbl(' th'll usprs trust tht'ir 
only copy of program'> and d,lt,l to bt> storpd in it. 

• Sufficipnt control of ,H.n' ..... to .llIow ..,plpciivp shMing 
of inform.ltion. 

4 HONEYWELL COMPUTER JOURNAL 

C-2 

• The ability to structure hit>rarchitally both Ih(' logi( .11 
storage of information as well as the administr,ltion of 
the system. 

• The capability of serving large and smdll usprs without 
inefficiency to (>ither. 

• The ability to support different progr.unming l'llviron· 
ments and human interfaces within ,I singh' wsl('1ll 

• The flexibility and generality of .,y'>tem org.mildtion 
required for evolution through sun. ('ssiv{' W.W('" of 
technological improvements and tht.> inpvitdhl(' 
growth of uspr l'xpectdtions. 

In an absolute sense the above goals are l'xtf(\Illl'ly diffi( lilt 
to achieve. Nevertheless, it is our belief thtlt Multi( s, .," II 
now exists, has madp substantial progress toW,If(j., .I(hieving 
each of the nine goals (to the best of our knowh.'dgp, tl1l' only 
other attempt to comprehensively Jttdd .111 of th(, ... t· go,ll ... 
simultaneously is the TSS/30 project at IBM 111,12, I ~ p. 
Most importantly, none of these goals hdd to lw compro· 
mised in any import,)I1t way. 

HISTORY OF THE DEVELOPMENT 

A':o previously mt'ntionl'd, the Multics proj('lt gol llllUNW,lY 
in the Ftlll of 1964. The computer equipmpnt to lw IN'd w,," 
a modified Generdl Electric 635 which W.IS l.lll'f n,lI11l'd the 
645. Thl' mo.,t .,ignifictlllt changes madl' w('rp in thl' pro· 

cessor addressing and access rontrollogic wlll'rt· p,lging ,md 
segmentation were introduced. A complett.'ly !lPW (;PIll'f.ll 
ized Input Output Controller WdS designf;'d clnd impit'lllpntt'd 
to accommodd\(.' thp varied needs of devin's such .1 ... di ... b, 
tapes and tell'typ<.'writt'rs without prpsl'nting .Hl ('xu'':o ... iv(' 
intl'rrupt burdt'll to thp pron'ssors. To h,lIldll' Ih(' ('XPl'l h·d 
J)Jging traffic, tl 4-million word Dh-bit) high-perform,IIKt' 
drum system with h,udw.H(' qUl'ut.'ing w.\s d(·v(,lop(·d. TIl(' 
design sppcifiC,\lion., for thesp it('ms wt'rl' (ornpl('\('d by 1,111 
1965, and thp equipmpnt bt'cclmp .1Vdil,lble for .... oflv ... lr(· 

development In PJrly 1967. 
SoftwarE..' prpparJtion underwent sev(,fdl ph .. sp .... TIll' fir'" 

ph.lse W,lS the dl'vdopment Jnd blocking out of fncljor id('.l", 
followed by tht.' writing of detailed progr,lIn nlodul" "'P('( ifi 
c.ltione,. ThE.' n:·sulting 3,000 tYPl'wriltl'n IMg(· ... (ofITwd tl)(' 
Multics Sy'>tem ProgrJmmt.'r's M.tnu.l1 ,Ind s('rv('d .1" th(' 
starting point for .III programming. Furlh('rmort.', tlw ... of\w,trl' 
designers Wl're expt.'Cl('d to impll'ment tht'ir own dt.' ... igns. A ... 
,1 general policy PLII was uSt'd .IS tlw systl'm progr,lmming 
Idngudge wherever possible to mdximizp lucidity ,lIlel 1ll,lin­
tainability of the systpm 114,151. This policy .llso innE.',l"l'd 
the pffectiveness of system progrdmmers by ,lllowing ('.It h 
om.' to kpt'p mort' of the systl'm within hi., gr.ISp. 

Tht' s{'( one! 1ll.1 jor ph.1St' of soflw,lrI.\ dpvp!npnH 'nl, 'Nt ,II 
undprwdY by l'tuly 1967, W.1S th,lt of Illodult' illlp!t'I1WIlI.I 
lion clnd unit chl'ckout followpd by llH'rging inlo 1,IIgl'f .lg 
grl'g.lIp .. for inll'grclll'd It'sling. Up 10 Ihl'lllll()'>1 '-,ollw.lrt' ,lIul 
h.H<lw,lf(' diffi( ulli('" hold i>t'1'1l ,lI1li( il',III'<I 1111 1111' h,I"I" Cli 



pn:'vious experience. But what gr,ldually became apparent 
as the module integration continued was that there were 
gross discrepancies between actual and expected perfor­
mance of the various logical execution paths throughout the 
software. The result was that an unanticipated phase of de­
sign iterations was necessary. These design iterations did not 
m("ln that major portions of the system were scrapp{'d with­
out being used. On the contrary, until their repl.Icements 
could bE.' implemented, often months latpr, they were nu­
tidily n{'c(,!'>!'>drY 10 allow the testing dnd ('valu.Ition of the 
other portions of the system. The cause of the required 
redesigns was rdrely "bad coding", as most of the system 
programmers were well above .Iverage ability. Moreover the 
redesigns did not mean that the goals of the project were 
compromised. Rather three recurrent phenomena were ob­
st'rvpd: 1) Iypically, specifications representing less-impor­
tant fpaturps WE.'re found to be introducing much of the 
tomplt'xity, 2) tht' initidl choice of modularily and interfac­
ing bl'lwl'('n l1)odult's WdS sornetimt's dwkwcHd, and 3) it 
w,ts rt:'discov<.'red thaI the most impofl.lnl propprty of dl­
gorilhmc.; is simplicilY rdthN th,lI) spt'cial mt'ch(lI1isms for 
unusudl CdS('!'>. ("In dnything ell all, perfection is finally at­
t,lir1l'd not whl'n Ihpre is no longpr (lnything to add, but whl'n 
thpn' is no longt'r ,lilY thing to tclkt' dW.IY ... " -- Antoint, de 
Saint-Exupery, Wind Sand and Stars, Quoted with perniis­
sion of HcHcourt Brace Jovanovich, Inc.) 

Thp rlW.,on for bringing out in dt'tclil the abovE:' d('sign 
ilpr,ltion t'xp('fit'nu' is th'll frl'quE>nlly th(' pl,lI1ning of l.ugp 
softw,H{' proj('cts still dOl'S not proPl·rly tJkE.' th(' nped for 
continuing itercltion into .Iccount. And y(>t we believe thtlt 
dt'sign iterdtions Jrp a required activity on any large scalp 
syst{'m which dttempts tobredk new concpptual ground 
such that individual programmers Cclnnot comprehend the 
entire system in detail. For when new ground is broken, it is 
usually impossible to deduce the consequent system behav­
ior except by experimental operation. Simulation is not par­
ticul.uly t'ffective when the system concepts and user 
b('hdvior are npw. Unfortundtely one does not understand 
th€.' systl'1l1 wl'll enough to simplify it correctly dnd thereby 
obtain J manageable model which requires less effort to 
impl€.'llwnl than the systt'm itself. Inst(,Jd one must develop 
,1 difft.'fent view: 

• Thp initi'll proW,lIn vl'rsion of a mooul(' should btl 
vit.'w('d only ,IS the fir!'>t cornplpt(' spl'cific.ltion of th(> 
rnodlll(' .lI1d ... hould b(· sllbjpct to dp!'>ign Hlvipw before' 
ht'ing dt'huggt'd or chp(kpd out. 

• Modult' dt'sign ,lnd irnplprnentation should b{l bast'd 
upon elll dssurnption of periodic eVdlu,llion, rt'dt'sign, 
(lnd l'volution. 

In r(·trospt'cl, thl' design itpr<ltion p(fpct WdS dPPdrent eVl'n 
in til(' dt'vt'lopment of 111{" eMliN Comp.ltibl(' Timt'sharing 
Sy ... I('1l) (CTSS), wlwn .l s('cond filt, systpm with rn~lI1Y func­
tionell improv{'ments turned out to have poor perform(ln(,(' 
whpn inititllly installed. A hasty design iteration succet'dpd 
in rt:'(tifying tht· matter but the episodt' Jt thp timt' was 
vi('wpo as tln ,lnomJly pprhaps duE' to inddl'qutlt(' tpchnicClI 
fnit'\\' of inoividU,ll progr,Hnming ('Horl .... 

r"_ ') 

CURRENT STATUS 

In spite of the unexpected design iteration phase, the Multics 
system became sufficiently effective by late 1968 to allow 
system programmers to use the system while still developing 
it. By 1969 October, the system was made c1vail.lblE.' for 
general use on a "cost-recovery" charging btlsis similar to 
that used for other major computation facilities .It M.I.T. 
Multics is now the most widely used timesharing system elt 
M.I.T., supporting a user community of somp 500 register('d 
subscribers. The system is currently oper dted for llSl'r!'> 22 
hours per day, 7 days per week. For at ledst eight hf)ufs l'tl(h 
day the system operates with two processors dnd thn'e 
memory modules containing a total of 384 K (K==1024) 36-
bit words. This configuration currently is rated at a capdcity 
of about 55 fairly demanding users such that most trivial 
requests obtain response in one to five seconds. (Future 
design iterations are expected to increase the capdcity rat­
ing.) Several times a day during the off-pedk uSclge hour<; thE:' 
system is dynamically reconfigured into two systpms: ,I rf'­
duced capacity service syst('m and an ind('Jwndpnt dC'vPlop· 
ment syst('m. Thp developmpnt syst('m i!'> u!,>pd for t(' ... ling 
thos(' hardwdre and softwdrl' ch.mgl's which (,1I1110t ht' 
dont' under normdl servin' OPl'f,ltion. 

The reliability of the round-thp-clock systl'lll oppr,lIl(>n 
dpscribed abovE:' h.1S b(,pn tl mdl\Pf of grl'<ll conu'rn, for in 
any onlim' r('cll-timp systt'm th(' imp,tet of rnish,lpS i!'> lI"lI,llly 
f.lf more sev('rt' th(ln in b,ltch pron'ssing <;y<;I(,Ill'-. III .m 
onlin(' system ('sp('(idlly import,tnt considl'r,ltions .tn': 

• the time required bt'foH' tht1 sys.lt'rn i~ u..,tlhJp d~.ttn 
following a mishJp 

• thE.' extra pr('cdutions requirpd for rl'storing pos<;ihly 
lost files 

• the psychological stress of breaking the intpr,Ktive 
dialogue with users who were counting on sys\('m 
aVdilability 

Because of the importance of these considerations, cdrdul 
logs are k('pt of all Multics "crdshes" (i.p., syst('rn sprvin' 
disruption for all active us('fs) at M .I.T. in ord('r that (mclly ... is 
c,m rE.'vedl th('ir CclUS{,S. Th('s(' ,In.llysp<; indic,l\(' ClrH(,l1tly ,In 
tlVPf.lgP of l)('tw('('n orH.' ,wd two u,lshps p{'r 24 hour <I,IY: 
Th('s(' <:rd.,hps hdvP no singl(' t.lU!'>l'. Somt.' tlH' duc to h,tr<I· 
Wdr(, {dilufl· ... , oth('rs 10 oppr,lIor prror .lnd ... till ollwr" 10 

softw~lr(-> bugs introdll«'d during Ih(' (OUrSl' of dt'vl'loPIlH'I1t. 
At thp two oth('r silt's whf.'rp Multirs is opl'rtltl'd, but Whl'fl' 
,KtrVt' system dt'veiopllwnt dot'S not telkt.l pl.1U', thl'r(' h,IV(, 
bt'pn ,lImos! no s'y'st<:>m f.lili.ifPS iftin:·d io soflw,lr('. 

Currt'ntly the Multics system, including (ompilt'rs, COI11-

mclnds, and subroutine librarit's, consists of about 1500 
modules, clverdging roughly 200 linl's of PLII .lpipcp. Tlll'''P 
rompilp to producp somE.' 1,000,000 words of procpourp 
('ode. Another system m(,c1SUfl' i!-; th(' siz(' of IIll' rp"id{'nl 
supervisor which is dbout 30 K words of pron·duH' ,mel, for 
d 155 USl'r 10dd, about ]6 K word ... of d.II.1 .md buff{'r .m·.I .... 

Bl'causp thE.' sy!'>tpm is so I.lrgt', thp rnost powprfullll.linh'· 
n.m("(' tool ,lV,lil,lblp W.1S (hospn--tht' ... y ... t(,1ll ihf'lf. With .tli 

HONEYWELL COMPUTER JOURNAL 5 



of the system modules stored online, it is easy to manipulate 
the many components of different versions of the system. 
Thus it has been possible to maintain steadily for the last year 
or so a pace of installing 5 or 10 new or modified system , 
modules a day. Some three-quarters of these changes can be 
installed while the system is in operation. The remainder, 
pertaining to the central supervisor, are installed in batches 
once or twice a week. This online maintenance capability 
has proven indispensible to the rapid development and 
maintenance of Multics since it permits constant upgrading 
of the user interface without interrupting the·service. We are 
just beginning to see instances of user-written applications 
which require this same capability so that the application 
users need not be interrupted while the software they are 
using is being modified. 

The software effort which has bE."en spent on Multics is 
difficult to estimate. Approximately 150 man-yE."ars were 
applied directly to design and system programming during 
the "development-only" period of Table I. Since then we 
E."stimate that another 50 man-years have been devoted to 
improving and extending the systl>m. But the actual cost of 
a single successful system is misleading, for if one starts 
afresh to build a similar system, one must compensate for the 
non-zero probability of failure. 

THE APPEARANCE OF MUL TICS 
.. _ .... .,. •• rrftlt' 
I U 113 V31:1\;) 

Having reviewed the background of the project, we may 
now ask who are the users of the Multics system and what 
do the facilities that Multics provides mean to these users. 
Before answering, .it is worth describing the generic user as 
"viewed" by Multics. Although from the system's point o( 
view all users have the same general characteristics and 
interface with it uniformly, no Single human interface repre­
sents the Multics machine. That machine is determined by 
each user's initial procedure coupled with those functions 
accessible to him. Thus there exists the potential to present 
each Multics user with a unique external interfan.·. 

Howevt'r, Multics does provide a native intt'rnal program 
environmE.'nt consisting of a stack-oriented, pure-prOl:edure, 
collection of PL/t procedures imbedded in J st'smented vir­
tual memory containing all procedures and data stored on­
line. The l'xtent to which some, clll, or none of thi'> intt'rn.ll 
environment is visible to the various users is an cldmini!'>tr.l­
live choin·. 

Development Only 

CTSS 1960-1963 

Multics 1964-1969 

The implications of thest> two vi('w,,--hoth till' (',\Il'm.ll 
interfacE." and the inlt'rn.ll proRr.unming ('nvironnWIlI· -.lfl' 

disrussed in Iprms of thp following (,ltpgorip" of IN'r,,: 

• System and u~er application progr.lmmN" rp"pon"i­
bit> for writing system and uspr soffw,lr('. 

• Administrative personn{>1 responsiblp for tht' Illcln,lgt'­
ment of system resources <lOd privilp~ws. 

• The ultimate users of .lpplktltion svstpms. 

• Operations and hardware mainten.mcp Pt'f'-(H1f1('\ n'­

sponsible, respectively, for running thp m.l('hill(' 
room and maintaining the hardw.1fp. 

Multics as Viewed by System and 
Subsystem Programmers 

Thl' m<Khim' pH'''l'nh.'d to both tht' Multil" "y"h'lll progr.lIll 
ml'r ,md thl' .lppli("ltioll sy..,tPIll progr.HllIlH'f i" tIlt' ClIlt' with 
which w(' h.w(' thl' mosl l'xp<'rit'nu'; it i" tl1(' f.IW Ill.lh'li.11 
from which OIl(' (om,tru(t.., othl'r (,IlVirollllH'llh. II i" worlh 
re-t'mph".,iling th.lIlhl' oilly diffpr('nti.lIioll 1)('lw{,I'" MlIhi( " 
systt'm progr.llllllll'r ... ,1Ild u"pr progr .11111111 '(" i" I'milodil'd ill 
th(' .len.'s!'> control Ilwl'h,mi"lll whilh d('Il'rIllillt,,,, wh.11 Oil 

lint> inforlTld!ion em lw r(,ft'n'm pd; t~1Pr('fon_', wh.11 .!fI' .Ip 
part>ntly two group!'> of U"'l'r.., ('an b(' dis(u""pd .1'" (>11('. 

Major interf.lCes pn.'sl'nh . .>d to progr.lInrnl'r.., on tl)(' Muhi< ., 
system can be classified dS the program prplJ.lf.ltiol1 ,lilt! 
documentation faciliti(ls and the program (lx('(uliOIl .lIld 
debugging environment. They will be toucht'd upon bridlv. 
in the order used for progr.lIn prepdrdtion. 

• Program Preparation and Documentation 

Th(' fclcilitips for progr,lm pr('p.\f,ltion Oil Multil'" .Iff' typi( .11 
of those found on olhpr timl'shtlfing .,y"ll'I1l." wil h "'Olllt· 

shift~ in l'lnphdSis. (Sl'l' thl' Apl>Pndix.) lor (',\.\lllplp, pro 

gr.Hnmt'r., (on"jdl'r Ill(' filp "y.,tPIn .,uffi( iPFllly invlI!rwr.lhl .. 
to phy"ic.llioss th.lt it is uSl'd ("Nhilly .\l1d (Ollltlwi)' 10 .... IVI' 

<111 inform.ltion. Thus, th(' punchl'd ( .ml h.l ... v.lIli ... lwd hom 
tht' work routilw of Multit" progr,lInllll'('" .111(/ .\( C t' ... ., III 
OIW'" progr.II11" ,md Itl<' .Ibility 10 work Oil tht'lll .\ll' pi ovidI'd 
by lIlt' do"p<,l ll'rlnin.11. 

Development + Use Use Only 

1963-1965 1965-present 

1969-present 

l"blt'1. A comparison of the ~ystt'm development and use periods of CTSS and Multies. The Multics development period is not signific.lOtly IllJl8l'r th,m 

INI for CTSS despite the development of .. bout 10 times as much code for Multics as for CTSS and a geographically distributt.>d st.lff. Althuugh rl'.NlIl~ 
for this similarity in time !;pall include the use of ol higher-level programmin8 lan8uage and a somewh.ltIJrKl>r stolff, the USl' of CTSS .IS ,I dl'Vl'lopnll'll\\oul 
for Multi,s W,JS of pivotoll importoln(e. 

• HONEYWELL COMPUTER JOURNAL 

C-4 



"" .l.nolhpr example, the full ASCII character set is em­
ploypd in prl'paring program", data, and documentation, 
tht'H'by ('Iiminating the need for multiple text editors, several 
vJri('li('" of text formcltting and comparison programs, and 
multiple facilities for printing information both online and 
offline. This generalization of user interfaces facilitates the 
learning and subsequent use of the system by reducing the 
number of conventions which must be mastered. 

Finally, because the PUt compiler is a large set of pro­
grams, considerable attention was given to shielding the user 
from the size of the compiler and to aiding him in mastering 
the complexities of the language. As in many other timeshar­
ing systems, the compiler is invoked by issuing a simple 
command line from a terminal exactly as for the less ambi­
tious comm,Hlds. No knowledge is required of the user re­
g.uding thp various phases of compilation, temporary files 
rt'quired, and optional capabilitiE.ls for the specialist; explana­
tory "sermons" diagnosing syntactic errors are delivered to 
Iht, IPrrninal to efft'ct a self-teaching session during each 
(ompilation. To the programmer, the PLII compiler is just 
another command. 

• Program Execution Environment 

Another set of interfaces is embodied in thE.> implementation 
environment seen by Pl/ I programmers. This environmpnt 
consists of a directly addressable virtual memory containing 
the entire hierarchy of online information, a dynamic linking 
facility which searches this hierarchy to bind procpdure rpf­

erences, a device-independent input/output 1161 system 
(the Michigan T ermiriat System 1171 has a similar device­
independent input / output system) and program debugging 
and metering facilities. These facilities enjoy a symbiotic 
relationship with the PL/I procedure environment used both 
to implement them and to implement user facilities co-exist­
ing with them. Of major significance is that the natural inter­
nal environment provided and required by the system is 
t'xcKtly that pnvironment expected by PL/I procedures. For 
example, Pl/ I pointer variables, call and return statements, 
conditions, and static and automatic storage all correspond 
directly to mechanisms provided in the internal environ­
m('nl. Conspquently, the system supports Pl/l code as a 
mtltter of course. 

Tilt' Ill.lin pifl'ct of the combination of Itw'i(' fp,llurps is 10 

permil the irnplt'menh1r to spend his tinw (onn'ntrdting on 
the logic of his problem; for the most part he is frped from 
th(;\ usual mechanical problems of storage management and 
OVt'rldYS, input/output device quirks, and machine-depend­
ent features. 

• Some Implementation Experience 

Tht> Multics team began to be much more productivl' oncE' 
tht· Multics systt'lll bpcdnw usdul for sofrwMt' d('vt'lopm(,llt. 
A ft'w (.)St'S .1ft' worth citing 10 illustrate th(' ('fft'cliv('n('ss of 
thl' irnplenWnl,)lion environment. A good ('xclrnpl(' is thp 
(urrt-'nl Pl/I compiler, which is thp third ont' to bE' implp­
Jl)pnted for thp projt'c(' and which consisl" of ~Ofl1(' 250 

C-5 

procedures and about 125 K words of object code. Four 
people implemented this compiler in two years, from start to 
first general use. The first version of the Multics program 
debugging sy.stem, composed of over 3,000 lines of source 
code, was usable after one person spent some six months of 
nights and weekends "bootlegging" its implementation. As 
a last example, a facility consisting of 50 procedures with ,) 
total of nearly 4,000 Pl/l statements permitting eXt'cution of 
Honeyweli 635 programs under Multics becalm' oJ)t'ftltion,)1 
after one person spent eight months learning ,tbollt tht' 
GCOS operating system for the 635 PL/I, and Mu/ticS, ,md 
then implemented the environment. In l'tlch of thesE' ('Xdm­
pies the implementation was accomplished from rE'motp tpr­
minals using Pl/I. 

Multics users have discovered that it is possible to .. wt thpir 
programs running very quickly in this environmpnt. Thpy 
frequently prepare "rough drafts" of progrJm~, ('X{,( ut{' 
them, and then improve their overall design dnd opE.'r,lIing 
strategy using the results of expE:\rience obtained during .1(­

tual operation. As an example, again drawn from th(' implE.'­
mentation of Muitics, the early designs and impl('mentations 
of the programs supporting the virtual memory 1181 Illddt' 
over-optimistic use of variable-sized storage allo(",Hion Ipch­
niques. The result was a functionally com'ct but in,Hip­
quately performing set of programs. Nl'v(:,rthel('ss, t/)(',,(, 
modules were used as th{' foundation for subs('qll('nl work 
for many months. When they Wt'H.' finally rppl,I(('d wilh 
modules using simplified fiXf'd-sizp stordgp techniques, per­
formance improvpments of ovt'r an ordpr of Ill.lgnilud(' wert' 
realized. This technique emphasizes two points: first. il is 
frequently possible to providt:> d Pfd<.·tK\tt, m,lbh.' f,Kitity (011-

taining temporary versions of progrdms; second, oftt'n tIl{' 
insight required to significantly improve the beh,lVior of ,I 
program comes only after it is studied in operation. A~ im­
plied in the earlier discussion of design iteration, our ('xpl'ri­
ence has been that structural and strategic chan~ws r.ltlwr 
than "polishing" (or recoding in assembly language) produ((' 
the most significant performance improvements. 

In general, we have noticed a significant II amplifier" or 
"leverage" effect with the use of an effective online environ­
ment as a system programming facility. Major impl(,flwnt,l­
tion projects on the Multics system seldom involvl' morE' 
than a few programmers, thereby l'asing th(' m.m,lgpm('nt 
and communications problNlls usually ('nldilpel by (ornpl('x 
syst('m impl('mpnt.lIiom. A" would b(' ('xp('cl('d, the .1I11pllfi­
cation ('{feet is mosl appdH'nt with thp bl'~t proj('("1 p('r~()n­
npl. 

Administration of. Multics 
Facilities and Resources 

Thp problem of m,1I1tlging th(· (.lp.lbilili('~ of .I (olllpult'r 
utility with gl'ographiccllly dispprspd suhsniiJ('r" I('.HI'> 10 .I 

requirement of decentralizpd tldministrdtion. AI Ihe "pex of 
eln administrativl' pyramid n.'sid('s d system .l(iminislr,llor 
with thE.' ability 10 r('gistpr rww uspr", ("onfPr r('..,Ollf(!' quol.I~, 

HONEYWELL COMPUTER JOURNAL 7 



and generate periodic bills for services nmdered. The system 
administrator deals with user groups called projects. Each 
group can in turn designate a project administrator who is 
delegated the authority to manage a budget of system re­
sources on behalf of the project. The project administrator 
is then free to deal directly with project members without 
further intervention from the system administrator, thereby 
greatly reducing the bottlenecks inherent in a completely 
cpntralized ddministrative structure. 

• Environment Shaping 

In dddition to having immediate control of such resources as 
secondary storage, port access, and rate of proCeSSOi usage, 
the project administrator is also abl(' to define or shape the 
environment seen by the members of his project wh<.>n they 
log into the system. He does this by defining thost> proce­
dures that can be accessed by mt'mbers of his project and 
by specifying the initial procedure ex('(uted by PJch mem­
ber of his project when he logs in. This pnvironment shaping 
facility has led to the notion of a private project subsysh.'m 
on Multics. It combines the administr.ttive and programming 
facilities of Multics so that a project administrator and a few 
project implementers can build, maintain, and evolve envi­
ronments entirely on their own. Thus, some subsystems bear 
no internal resemblance to the stand.ud Multics procedure 
E'nvironmpnt. 

For t>xample,· the Dartmouth BASIC 11 q I compiler exe­
cult' ... in .1 dost'd subsystt'1ll implt'ml'nlpd by .ln M.I.T. stu­
dl'nt group for use by undergr.ldu.lI(' students. Th<.' compii<.>r, 
it" obj<,'ct codp, (md .111 support roulil1l's ('Xt'lutl' in d simuld­
lion of tht' IMtivl' t'nvironmt'nt providt'd .It Ddftlllouth. Tht.' 
ust'rs of this subsyslt"m l1l>ed littlt', if any, knowll'dge of 
Multics and .1ft' dblt' to bl'hcwe as if loggl'd into thl' OcHt­
mouth system proper. Other examples of controllE.'d envi­
ronmenuubsystems include one to permit many programs 
which normally run under the GCOS operating system to 
also run unmodified in Multin. Finally, an APll201 subsys­
tem allows the user to behave for the most part as if he were 
logged into an APl machinE.'. The significance of th<.'se sub­
systems is that their implementers did not nel'd to intl'r.lct 
with the system administrator or to modify already existing 
Multics capabilities. The administrativE:' facilities permit each 
such subsystem to be offered by its supporters .lS a private 
service with its own group of users, each effectively having 
its own private computer system. 

Other Multics Users 

Fin,llly, w(' obS('rvr that tht' rol('s of the ,lpplic.ltion user, the 
... ystl'rn opPfators and thp hardwclrC' rnaintdinE.~rs as seen by 
tht' "y ... tl'll) M(, simply thos(' of ordinary Multics uspr~ with 
SPl'( i,lli/pd ,1U.l'S" 10 thp onlim' pron'duH's ,lIld d,ll.l. Thp 
l'flpcl of Ihi" uniformilY of Ift'<llnwnt i" to rl'dlJ(p gn'.lliy tnt' 
1ll.linh'lI.ltKP hurdl'n oj tlw "v ... tt'1ll control "OilW.lH'. ()'ll' 

l'X,II11pll', 01 gfl'.lt pr.Klir.11 illlporl.lIKl', h"" b('l'n th(' l'.I"P 

with which w"'h'm IWriOflll.UKl' IlH'.'''lIfl'llll'nl 1001" h.IVI' 

hl'PIl pn'p,Hl'd for uo.,(' by Iht' opt'r.l!ing ... 1.lff. 

• HONeYWEll COMPUTER JOURNAL 

C-6 

INSIGHTS 

So far, we have discussed the status and appear.lnu' of tht' 
Muhics system. A further question is what has bpen It'tlrnpd 
in the construction of Multics which is of llSP to tht.' dl'"i~n('r ... 
of otht>r systl'tm. Having .1 bright kIt'.' whirr (:I ..... ,;"ly solvl's 
a problem is not sufficient cause to claim a contribution if the 
idea is to be p,ut of a complex system. In order to ('st.lulish 
the real feasibility of an idea, all of its implications dnd ('on,,('­
quences must be followed out. Much of the work on Multic<., 
since 1965 has involved following out implications dnd con­
sequences of the many ideas then proposed for Ihl' proto­
type computer utility. That following out is an essenli.11 part 
of proof of ideas is attested by the difficulties which havE.' 
been encountered in other engineering efforts such as the 
development of nuclear fusion power plants and tht' ('Ipctrie 
automobile. Not all proposals work out; for eX.1mplt', px­
tended attempts to t'ngineer an atomic pow<.'rpd .lirpl.lnp 
suggest infeasibility. 

Perhdps Multics' most signific.mt singll' contribution to the 
state of the art of computer systt>m construction is th(' dem­
onstration of ., large set of fully implempntl'd id('.l'" in ,1 

working system. Further, most of these ide.ls h.wl' b('pn 
integrated without straining the overall dt'sign; most .lddi­
tional proposals would not topple the structurl'. Ideas such 
as virtual memory acct'ss to online storage, parallel pron's" 
organization, routine but controlled information sharing, dy­
namic linking of piOcedUie5, and high-level language impk'­
mentation have proven remarkably compatible and 
complementary. 

To illustrate some of thedfeas of progress in undt'rsl.mdin~ 
of system organilation and construction which h.wp bl'pn 
achieved in Multics, w{' considpr hc're tht' followin~ fiv(' 
topics: 

• Modular division of responsibility 
• Dynamic rpconfigur ation 
• Autom.ltically managl'd multilevt.'1 memory· 
• Protection of programs and dat.l 
• System progr dmming languagt> 

Modular Division of Responsibility 

Early in the design of Multics a decision h.ld to bp tndlk 

whether or not to treat the segmented virtu.ll Ilwmory dS a 
separately usable "feature", independent of d tr.lditionally 
organized read/write type file system. The alternative, to use 
the segmented virtual memory as the file system itself, pro­
viding the illusion of direct "in-core" access to .111 onlim> 
storage, was certainly the less conservdtivp approach (Fig. 
1), The second approach, which was the one chosen, led to 
a strong test of the dbility of a computing system to support 
an apparent one-level memory for an arbitrarily Idrge infor­
mation base. It is interesting that tht' resulting almost totdl 
dp(oupling bl'lw(,pn physic.ll slor,,~(' diloc,llion .lIlel d,ll.l 
movl'llwnl on till' OI1l' h.lnd ,lIld dirl'ctory structurt', n,uninlJ" 
,Ind fill' orlJ,.lnil.ltiOIl on thl' otlwr It'd lo.l H'I1l,lfk.lbly ... irnplt' 
.\1)(1 fUIlt'lion.llly modlll.lr slrlirtur(' for th.!1 PMt of Ihl' ... y ... tPIll 
11 HI (fig. 2). 



System 
library 

directory 

Root 
directory 

User 1 User 2 
directory directory 

USNS' 

addrpss maps 

Virtual Virtual 
processor 
for user 1 

processor 
for user 2 

figure 1. The pnlire slnr.IRe hierarchy may bp m.lPPt'd inlo individu.ll USt'r 
pron's'i .Iddrt'ss sp.u,:ps (see .mows) as if conl.lint'd in .1 primJry memory. 
l"u~tr,llt'd .m' IIll' sh.lring of .1 slIpNvisor st'grnt'nl by Iwo ust'r~ .mel f.lriv.II(· 
.Ket· .... 10 wgnl('nh ,I ,Ind h. Tht, O('U,'SSolrY primtlrY ,tor,IHt' is .. imul.llt·d by 
,I cit'm.md paging It'chniqut' which movt'., inform.llion b(,tw('{'n Ih{' rt',11 

prim.uy . Olt'mory .md second.uy sIOI'Jg{'. 

I User programs and comm<md/subroutine libr<uyl 

GE'neral 
user 
interface 

I _ 
I 
I II 

I Directory 

I address space 
management 

• 

User I/O device 
control and 

buffering 

Virtu.ll 

I 
I- I --! I 

/ I I 
I memory 

multipro 
intNfacp 

cess ~ 
I 

+ I 
Drum, disk, corp 

d(,>mclnd paging 
controliN 

/ , 

Proc(>ssor multi-
plpxing ,.lnd process 

synchr.oniltltion 

fiRurf.l 2. M.lior linl'" of fl)udul.lr divi .. ioll in Multil .. , Solid lil1('s incik,lh' 
(,III, for 'l'rvi( t''', I )ollt·d lillC" indi( .11t· irnplit il 110,{' of lilt' virtu.11 1111'mory, 

C-7 

Another' area of Multics in which a high degree of func­
tional modularity was achieved was in scheduling, multipro­
gramming, and processor management. Because harnessing 
of multiple processors was an objective from the beginning, 
a careful and ml,thodicclI approclCh to multiplt>xing pro­
cessors, handling interrupts, and providing interproC('ss syn­
chronizing primitives was developed. The resulting dl'sign, 
known as the Multics traffic controller, absorbed into d sin­
gle, simple module a set of responsibilities often diffusl>d 
among a scheduling algorithm, the input / output controlling 
system, the online file management system, and special pur­
pose inter-user communication mechanisms [21 J. 

Finally, with processor management and online storage 
management uncoupled into well-isolated modules, the 
Multics input/output system was left with the similarly isola­
table function of managing streams of data flowing from ,md 
to source and sink type devicps 1161. Thus, thi .. s('(lion of Ih(' 
systt'm concentr,ltl's only on switching of thl' stn'.lIn .... , .11/0, 

c.Ition of data buff('ring drPtlS, ,md d('viu' control .... lr.llt'giC' ... 
Each of the divisions of Idbm dl'scrilwd "bov(' H'pn'wl1h 

an interesting result primarily becausE.' it is so difficult to 
discover appropriate divisions of cornplt'x systE.'ms. (5pl' 
Dijkstra [22] for a further discussion of this point). EstJblish­
ing that a certain proposed division results in simplicity, 
creates an uncluttered interface, and does not interft'rt' with 
performance, is generally cause for a minor celebrdtion. 

Dynamic Reconfiguration 

If the computer utility is ever to become .1.'. much .1 n'.llity 
as the electric power utility or the telephone communic.llion 
service, its continued operation must not be dl'pendl'lllupon 
any single physical component, since individual componpnts 
will eventually require maintenance. This observation Il'<ld .. 
an electric power utility to provide procedures whl'rd>y .ltl 

idle generator may bE' dynamically addl'd to Ihl' utility'.., 
generating ('apdcity, whilp anothN is rt'movpd for l11.1in\(', 
nance, all without (my disruption of s('rvin' to cu .... lollwr ..... A 
similar scenario hdS long bpl'n propos('d for Illultipr()( (' ........ or, 
multi memory computer syst("rns, in which om' would 
dynamically switch processors and memory box('s in tllld 
out of the operating configuration as needed. Unfortun,ltply, 
though there have been demonstrated a few "special pur­
pose" designs (an outstanding example is the American Air­
lines SABRE system [23]) it has not been apparent how to 
provide for such operations in a general purpose system. A 
recent thesis [24J proposed a general model for the dyndmic 
binding and unbinding of computation and memory struc­
tures to and from ongoing computations. Using this rnodl'l 
as a basis, the thesis also proposed a specific implE'mpntdiion 
for a typical multiprocessor, multimernory computing sy~­
tem. One of the results of this work was the addition to th(' 
operating Multics system of thE' capdbility of dyn,llnic.(llIy 
adding and removing central processors ,md I1Wlllory 
modules as in Figure .1. ThE.' uspfulness of tht:' id(,(1 m.lY lw 
gaugE'd by observing thdt tlt M.I.T. fivp to tl'n such r('(ollfigu­
rations Ml' p("rforlm'd in ,I typic(11 24-hour oJH'r.lting <I.IY, 
Most of the n:'configurdtions .lrl' lIs('d to provid(' ,1 '>('(ond,IrY 
sysll'rn for Multics dl'Vl'loplTwnt. 

HONEYWELLCOMPUTERJOURNAL 9 



I I 
I I 

L ____ ~('~m~ 

(Offlill~r - - I I - -I 
IH,lintt'n.H)(l' I 
I (('!llr,)1 I I (:('ntr.ll I 
I pron'ssor 

L L 
I l 

I I 
L __ _ ___ St>rvin., sy~ J 
Figure 3. Dyn.lmit rt'wnfigur.ltion pl'rrnil ...... willhin~ .lfll()n~ tht· Ilm'l' 
tYI)it.ll opt·r.lIing (onfigur.llion ... shown hprt" wilhout ulrrl'ntly logloll'd·in 

u"pr'" l)('ill!o\ .IW.Ut' 111.11 .1 lh.lll!o\t· h.I' I,lh'n pl.H.t·. 

Automatically Managed Multilevel Memory 

By now it has become Jccepted lore in the computer system 
fipld th.lt thp USl' of dutomatic managt'llwnt algorilhms for 
memory systl'ms constructed of spv('rallevpls with rlifferent 
access times can provide c1 significanl reduction of USt'r pro­
grelmmin~ pffort. EXdmplps of such (wlornatic tnanagf.~mt>nt 
... Ir.ltpgip ... inr!udt> Ih«.' buffer mpmori('s of th(' IBM systt'm 
.PO rnod('ls 155, 1 (,5, ,md 195 12.1 I.md th(' d(~m(lnd p.lging 
virtu,llnwrnori(.>s of Multics, IBM .. CP.h712bl ,md Ih(' Michi. 
g.\I) T t'nnin'll Sysll'fll \1 71. Unforhll1.lIl'ly, b('hind Ilw m" .. k 
of ,l((t'pl.lfl{l' hidps tl worrisonw I.Kk of kllowlpdg<' .tbolll 
how 10 t'nginet:'r a multilt'vt,1 mt'mory syslt'm with "ppropri­
,\Il' str,ltt'gy 'llgorithms which art' m,l(chl'd 10 thl' load .md 
h,mlwtHt' ChoH,H.Wristics. ()f)(' of thp go.lls of th(' Multics 
proj('(! h.I'" bl't'n to inslrullwnt ,\!ld l'xpl'rim('nl wilh Ilw 
1ll1lltilt'vplnwlllory .. yslplll of Multir ... , in ord(lr 10 \P.HI) bl'lll'r 

how 10 pH,di< I in .ldv.IIK(, Ihl' p<,r(Orlll.lI\(P of prop(ht'd 
IWW .1lI101ll.lli< .llly Illtlll.lgl'd lllullill,\(,1 I"lll'illory .. y,>ll'i'l'" 

St'vt'r,ll SPl'( ifit .lspP<.h of Ihi .. go,ll h,lVl' \)l'l'n ('xplrH('d: 

10 HONEYWEll COMPUTER JOLlflNAL 

C-8 

• A strategy to treat core memory, drum, and di~k as d 
three-level system has been proposed, including a "Ie.lst­
recently-used" algorithm for moving information from 
drum to disk. Such an algorithm has been used for some 
time to determine which pages should be removt'd from 
core memory [271. The dynamics of interaction dmong 
two such algorithms operatirlg at dif:erent levels ar(' 
weakly understood, and some experimental work should 
provide much insight. The proposed strategy will be im­
plemented, and then compared with the simpler present 
strategy which never moves things from drum to disk, 
but instead makes educated "guesses" as to which de­
vice is most appropriate for the permanent residence of 
a given page. If the automatic algorithm is at least as good 
as the older, static one, it would represent an improve­
ment in overall design by itself, since it would automati­
cally track changes in user behavior, while the static 
algorithm requires attention to the validity of its guesses. 

• A scheme to permit experimentation with predictive 
paging algorithms was devised. The scheme provides for 
each process a list of pages to be preloaded whenever 
the process is run, and a second list to be immediately 
purged whenever the process stops. The upddling of 
these lists is controlled by a decision table ex('rcist'd 
every time the process stops running. As l'vl'ry 'Mgt' of 
the Multics virtual memory is potentially shdred, thl> U(" 
cision table represents a set of h('uristics dl~signE.>d 10 
separate out those which are probably not bl.'ing shJrl'd 
at the moment. 

• A series of measurements was made to estdblish thl' 
effectiveness of a small hardware associative rnl'mory 
used to hold recently accessed page descriptors Tht'w 
measurements established a profile of hit ratio (prob.t­
blity of finding a page descriptOf in the associativl' mpm­
ory) versus associative memory size which should be 
useful to the designer of virtual memory systems 1281· 

• A set of models, both analytic and simulation, was con­
structed to try to understand program behavior in a vir­
tual memory. So far, two results helVe been obtained. 
One is the finding that a single program characteristic 
(the mean execution time before encountering a "miss­
ing" page in the virutal memory as a function of memory 
size) suffices to provide a quite accurate prl'diction of 
paging and idle overhead times. The second is tl direct 
calculation of the distribution of response times under 
multiprogramming. Having available the entire rl'SponSl' 
time distribution, rather than just JVer.lges, pprrnits esti­
mation of the variance and 90-percpntill' points of th(' 
distribution, which may be more meaningful th.m just thl' 
average. A doctoral thesis is in progress on this topic. 

Although the immediate effect of each of Ihl's(' invl'sli~.l­
tions is to improve the understanding or pf.'rform.mcl' of ttw 
current ver~ion of Muilics, thl' l()n~·r,lIlgl' p.l)/off in rndhodi· 
cal engineering using bl't\l'r undl'rstood Ilwmory ·.trw IUrl''; 

is also evident. 



Protection of Programs and Data 

A long-standing objective of the public computer utility has 
been to provide facilities for the protection of executing 
programs from one another, so that users may with confi­
dence place appropriate control on the release of their pri­
vate information. In 1967, a mechanism was proposed [29] 
tlnd implemented in software which generalized the usual 
supervisor-user protection relationship. This mechanism, 
named "rings of protection", provides user-written subsys­
tems with the same protection from other users that the 
supervisor has, yet does not require that the user-written 
subsystem be incorporated into the supervisor. Recently, 
this approach was brought under intense review, with two 
results: 

• A hardware architecture which implements the 
mechanism was proposed 130]. One of the chief fea­
turps of the proposed architecture is that subroutine 
calls from one protection ring to another use exactly 
the same mechanisms as do subroutine calls among 
procedures within a protection area. The proposal 
appears sufficiently promising that it is included in the 
specifications for the next generation of hardware to 
be used for Multics. 

• As an experiment in the feasibility of a multilayered 
supervisor, several supervisor procedures which re­
quired protection, but not all supervisor privilegt's, 
were moved into a ring of protection intermediate 
between the users and the main supervisor. The suc­
cess of this experiment established that such layering 
is a practical way to reduce the quantity of supervisor 
code which must be given all privileges. 

Both of these results are viewed as steps toward first, a more 
complete exploitation and understanding of rings of protec­
tion, and later, a less constrained organization of the type 
suggested by Evans and LeClerc [31] and by Lampson [32]. 
But more importantly, rings of protection appear applicable 
to dny computer system using a segmented virtual memory. 
Two doctoral theses ilre underway in this area. 

System Programming Language 

Anotlwr techniqu{' of system engineering methodology be­
ing (>xploft·d within the Multics project is that of higher level 
progrcllllrning language for system implenwntation. Th(l ini­
ti.ll step in this dirt'ction (which proved to be a very big step) 
W.h Ihe choiet' of the PL/llanguage for the implementation 
of Multics. By now, Mullics offers an extensive case study 
in tlw viability of Ihis strategy. Not only has the cost of using 
d higher !t.>vellanguage been acceptable, but increased main­
I.lin.lbilily of Iht' c.,o(tWtH(, h.lc., IH'rrnillt'd Illort' r.lpid ('volll­
lion of Ih(' Wc.,tt'lll in r('c.,ponc.,{' 10 d('v('loplll('nl idt'.lc., .1" We'll 
.1 ... uwr 11('('d~. Thrt'(' "'Pl'l ifi( ,lspl'(ls of Ihis ('xp('ri('nn' h,lVl' 
no\-\ h('('11 lOl1lpl('(('d: 

C-9 

• The transition from an early PLII subwt (ompilpr 114/ 
to a newer compiler which handlE:'s dlmosl thl' entin' 
language was completpd. This tr.lnsition WdS ("lrripd 
out with performance improvemf.'nt in pr.Ktic.llly ('v­
ery module converted in spitE.' of Iht' Iclr~('r I.mgll.lgp 
involved. ThE.' signific(lnce of tht, tr.1f1siliOI1 i ... Ill(' 
demonstration that it is not nen'ssclrY 10 I1,Urow Olll' .... 

sights to a "simple" subset languagp for ~y~tprn pro­
gramming. If the language is thoroughly under~lood, 
even a language as complex as the full PL/ I e,ln bt.' 
effectively used. As a result, the same langudge <Hld 

compiler provided for users can also be used for 
system implementation, thereby minimizing maintp­
nance, confusion, and specialization. 

• Notwithstanding the observation just madp, thp timp 
required to implement a full Pl/I compilpr is still too 
great for many situdtions in which thp compilpr im­
plementation Cdnnot bp startt'd far enough in .ld­
vance of system coding. For this f('.lS0n, th('rp i ... 
considerabl(, intt'rest in ddining .1 ~m.lll('r I.mgll.lg(' 
which is lW:iily compilclbk" Yl't rl't.lins til(' (('.Hurl' ... 

most import.lnt for system impll'IHPI1I.ltiol1. ()n Ill(' 
bdsis of thp l'xperiE.'nn' of progr.Hllllling Multic ... in .1 

~ubset of PUI, such d langudg<, was dpfirwd but not 
implemented, since it WdS not n(,pdpd In /. 

• A census of Multics system modul('s H'Vl'.II ... how 
much of the systpm WdS dctudlly codpd in PL/ I, .md 
reasons for use of other Iclnguagps. Roughly, of th(' 
1500 sysh.'m modules, dbout 250wt'f't'wrttlt'fl tn 
machine languclge. Most of thl' mclchinp 1.ll1gU.lgl' 
modules represent data bdSE.'S or smdll subroulirw" 
which expcute d single privilpgpd instruction. (No ,11-

tempt was made to providE.' either a ddt.l b,IS(, com­

piler or PL/I built-in functions for SP('Ci,llil('ci 
hardware needs,) Significantly, only cl half dozpn 
areas (primarily in the traffic controller, Ihl' ('('ntrdl 
Pdge fault path, and interrupt handlers) whi.ch w('rp 
originally written in PL/I have bpf.>n rpcod('d in m.l­
chine I,lnguagp for r{~dS()nS of squP('zing oul Ih(' ul­
most in perform.lncE.'. Sev('rdl progr.lIllS, origin.llly ill 
m.lchim' l,tngUdgl', h.lVl' bppn rt.'codE.'d in PI /1 10 in­
cr('dSt' Iheir rn.lintain.lbility. 

As with th(' t'drlipr topics, thE.' irnplic.ltions of Ihi ... work wilh 
Pl/ I should bl' fplt f.u bpyond thp Multi,,, W ... Il'Ill. Most 
implementers, wh('n f,Ked with th<.' economic lHl( ('rt.linlil''' 
of .1 higher-lpvl'1 langu,lgt', h.lvP chosen m.Khim' 1.H1gll.lgt' 
for their c('ntrdl oppr,lling syst('ms. Th(, ('xp<:'ril'nu' of lI ... ing 
PL/I for Multic:" whpn .Idd('d io inl' l'xp,mding coiil'clioll or 
pxperienC(' l'lsl'whl'H' /341, ~hould hplp r('du((.' thl' un(('r­
t(linty. 

In a rl'sPdrch project dS larg<', long, .1Ild cornplt'x ,IS Muf­
tirs, any p,lfwr such ,IS this musl np('('ss.uily omit ITl,HIy 

pqudlly ~ignific.HlI id('.!'.;, .mel touch only .1 f('w whic h 1ll,ly 

h.II'I'I'/l 10 1I.lvc' wielc' c tlrI'I'lIl illll'I(''''1. II i ... IIic' I'lIIpO .... 01 

ilHllviciu.d ,lIJeI d"lelilc,d I('c IIIIIC .11 pell'c·r ... 10 c""I,'"llhc'",' ,llId 
ollwr idl'.l" IIIOf'(' fully. III(' bihlioW.lphy lOll/HI ill wlC'I/'IlC I' 
I ~ S I (0111.1il1'" (lV('1 IW('/llv ... ueh It'( IlI1i(.l1 1'.lp<'I .... 

HONEYWELL COMPUTER JOURNAL 11 



IMMEDIATE FUTURE PLANS 

The Multics software is continuing to evolve in response to 
user needs and improved understanding of its organization. 
In 1972 a new hardware base for Multics will be installed by 
the Information Processing Center at M.I.T. for use by the 
M.I.T. computing community. This program compatible 
hardware base contains small but significant architectural 
extensions to the current hardware. The circuit technology 
used will be that of the Honeywell 6080 computer. The 
substantial changes include: 

• Repl.lct'ment of the paging drum initially with bulk 
core and, when available, LSI memory. 

• Implementation of rings of protection as part of the 
paging and segmentation hardware. 

Wherever possible the strategy of using off-the-shelf stan­
dard equipment rather tha.n specially engineered units for 
Multics has been followed. This strategy is intended to sim­
plify maintenance. 

CONCLUSIONS 

There are many conclusions which could possibly be drawn 
from the eXp€ii€nCe of the ~v1ult;cs piOject. Of these, V'v'C 
consider four to be major and worthy of note. First, we feel 
it is clear that it is possible to achieve the goals of a prototype 
computer utility. The current implementation of Multics pro­
vides a measure of the mechanisms required. Moreover, the 
specific implementation of the system, because it has been 
written in Pl/ I, forms a model for other system designers to 
draw upon when constructing similar systems. 

Second, the question of whether or not the specific soft­
ware features and mechanisms which were postulated for 
effective computer utility operation are desirable has now 
been tested with specific user experience. Although the spe­
cific mechanisms implemented subsequently may be super­
seded by better ones, it is certainly clear that the 
improvement of the user environment which was wanted 
has been achieved. 

Third, systems of the computer utility class must evolvl~ 
indefinitely since the cost of starling over is usually prohibi­
tive and the many-year lead time required may be equally 
unacceptable. The requirement of evolvability places strin­
gent demands on design, maintainability, and implementa­
tion techniques. 

Fourth and finally, the very act of creating a system which 
solves many of the problems posed in 1965 has opened up 
many new directions of research and development. It would 
appear almost a certainty that increased user aspirations will 
conti nut.' to rt.'quire intensive work in the areas of computer 
"Yst('m principles .lnd tl'rhniqut's. 

In dosing, perh.lps we should tclkl' nott' Ihtll in th<.' s('v('n 
yt'JrS since Multin WdS propoSE:'d, it Rreat many other ~ys­
!PlnS havt.~ also been proposed and construc\('d; many of 
thl'se hd'vt.' developed simildr icieds. Some examp!t's which 
hdve not ,tln.'.ldy been mentiolwd include: 

12 HONEVWELL COMPUTER JOURNAL 

C-IO 

• the TENEX system of Bolt, Beranek .lOd N('wm,lIl 
• the VENUS system of Mitre Corp. 
• the MUS at Manchester University 
• RC-4000 of Regnecentralen 
• 5020 TSS of Hitachi Corp. 
• DIPS-l of Nippon Telephone 
• the Japanese National Computer ProjPct 
• the PDP-1 0/50 TSS of Digit,ll Equiprnpnt Corp. 
• the CBB-500 of Bl'rk('ll'Y Computl'r Corp. 
• I.T.S. of the M.I.T. Artificial Intelli~<.'nn.' L.lhor.ltory 

• Exec-8 of Univac 
• System 3 and 7 and the SPECTRA .70/4h of I{CA 
• Star-l00 of CDC 
• UTS of Xerox Data Systems 
• the 6700 system of Burroughs 
• the Dartmouth Timpsh.uinR Systpm 

In most cases, their dl'signers have developl'd <.'ffl'( tiv(' i,l11-
plementations which are directed to a differpnt int('rpret.l­
tion of the goals, or to a smaller set of Roals them th()l;(' 
required for the complete computer utility. This div('rsity is 
valuable, and probably necessary, to accomplish tl thorough 
exploration of many individually complex id(w;, and th('f('by 
to meet a future which holds incrl'dsing df.'m.lnn for systPllls 
which embrace the totality of c:omputpr utility rpquin·Il1Pllts. 

It is impossibl(' to ,Kknowlpdg(' .Kcur.ltply tht' contrihution ... 
of (III the individudls or ('vpn tht> S<"Vl'f.ll org,lIlil.ltioll'" whi( h 
have given various forms of support to th(' dpvt'lopllU'1l1 of 

Multics over the past seven Yl'drS. As would lw PXPl'( It·d 01 

any multiorganization project spanning s('v('r.ll yl'c\rS. Ihl'rl' 
has been a turnover in the pt'r ... onnl'l involvl'd. A ... thl' IIldi 
vidual contributors now number in the hundrt'd." prop<'r 
recognition cannot be'Riven hen:'. Instpad, sinn' tht' dt'v('l­
opment of significant featurt.'s and designs of Multi( s h.l .. 
occurred in specific areas and dis(~iplines such as input/out­
put, virtual memory design, languages, and resour«' multi­
plexing, a more JGcurate delineation of (lChil'vC'tnt'nls .. hould 
bl' made in specialized papers. So in tht' (~nd w(' fllU-.t d(·fpr 
to the authors of individual papers, past (md (ullin', to .H -

knowledge the effort ... of som(' of th(' 11),IIlY contributors who 
heW(' made the evolution of Multic ... pm.,ibl('. 

APPENDIX: A CHECKLIST OF 
MUL TICS FEATURES 

Following is ,1 ch{'cklist of cUrf('ntly ,\V(lil.lbl(' {t'.lIur('" .lIld 
f,Kilitil'c., of Mullin. Although m,lIlY of tilt' {('.ltUft'''' .111' dc' 
scribed in cryptic .md untr.msl.IIl'd 1m .11 j.lrgoll, OIlC' ( .lIl .11 

least obtain c\ f('('1 for th(' r,lngp of f.lCiliti(' ... now provldt'd 
Further inform.ltion on most of th('.,p f(',ltuft· ... Ill.ly hI' found 
in the Multics Progr,lmnH'rc.,' M,lnu.l1 ! JS I, 



CHECKLIST OF MUL TICS FEATURES 

Interactive Time-Sharing Facilities 

• file editors 
• file manipulation (rename/move/delete) 
• personal command abbreviations 
• recursive command language 
• source language debugging with breakpoints 
• subroutine call tracer 
• can stop any running command or program 

Programming Languages 

• PLII 
• FORTRAN 
• BASIC (The BASIC system and the Dartmouth envi­

ronment were developed at Dartmouth College. 
Used at M.I.T. by permission of Dartmouth College,) 

• APL 
• LISP 
• BCPL 
• ALM (assembly language/Multics) 

Information Storage System 
• configuration independent 
• accessed through virtual memory (segments) 
• access control lists by user and project 
• links to segments of other users 
• hierarchical directory (catalog) arrangements 
• public library facilities 
• sharing at all levels 
• multiple segment names (synonyms) 
• separate. control of read, write, and execute 

Programming Environment 

• segmented virtual memory 
• dynamic linking of procedures and data, or prelinking 
• interprocess communication 
• independent of configuration 
• uniform error handling mechanism 
• user definable protection rings 
• microsecond calendar clock with interrupt 
• program interrupt signal from console 

Input and Output 
• standard typewriter interface for device indepen-

dence 
• ASCII character set used throu'ghout 
• input characters converted to canonical form 
• t'rllSl' dnd kill editing on typed input 
• 110 stre.uns switchable during pxecution 
• Ill.lgnetic tdpe, printer, cMd punch, card reader 
• typl~writer terminals (IBM 2741, 1050; Teletype 37, 

33, 35; Dura; Datel; EXl'cuport; Terminet-300l 
• graphic support librcuy (dpvin's: ARDS, IMLAC, DEC 

]]8) 

• A~PA nl'twork 
• intl'rfatl's dt three Il·vl'ls (formatted dc:ltd c()version; 

bit stream control; full device control) 

Management racilitles 
• passwords required for login 
• project may interpose authentication procedurl' 
• decentralized projects 
• accounting, billing, and quotas 
• online probing and account adjustment 
• operator or system initiated logout of users 
• unlisted and anonymous users 
• limited service system 
• dynamic reconfiguration of memories dnd pron'ssors 
• system performance metering for parameter adjust­

ment 
• project-imposed starting procedure 

Communication Facilities 

• interuser mail 
• help command, help files 
• message of the day 
• online error reporting and consultation sprvin' 
• online user graffiti board 
• operations message broadcast to loggpd-in u .. ('r .. 

Absentee Facilities 
• priority! defer queues for printer, card punch 
• queued translator facility 
• general absentee job facility 

Reliability Measures 
• weekly file copies onto tape 
• daily disk/drum copy onto tape 
• incremental file copies onto tape, 1 /2 hour l)('hind 

use 
• salvager to dean up files after systl'm crash 
• emergency shutdown entry to system 

Maintenance Features 
• online library change, no disruption of currl'nt ll .. pr., 
• entire system source online, maintenancl' tool .. 
• system checkout on small hardware configlrration 
• online performance monitoring of multiprogrdmming 

(paging traffic; drum/disk usage; typewriter tr.lfficl 
• user performance feedback (cpu time dnd pdging 

load on each command; page trace always opNdling; 
subroutine call counters) 

Private Project Subsystems 
• project-providable command intE'rfacl' 
• Dartmouth environment (The BASIC systl'rn .1Ild th(l 

Dartmouth environment were dE'vl'lopl'd at D.ut­
mouth College. Used at M.I.T. by pE'rrnis .. ion) 

• student environment 

MiscE'lIdneous Fdcilitil's 

C-ll 

• desk calculators 
• sort comm.H1d 
• ml'morandum formc111ing .lnd typing sub"y"(('111 
• uspr-providpd list of proW.lI11 .. to h(' .llItOIll.lli( .llIy 

l'xl'clltl'd whl'n LJSl'r logs in 

• GeOS environnll'nt 

HONEYWELL COMPUTER .JOURNAL 13 



1. F,J.Corbat6, M.M.Daggett and R.C.Daley, "An Experimental 
Timesharing System", AFlPS Con! Proc. 21, Spartan Books, 
Washington, DC, 1962, pp. 335-344. 

2. P.A.Crisman, "The Compatible Timesharing System: A Pro­
grammer's Guide", 2nd Ed., M.LT. Pr., Cambridge, MA, 1965. 

3. F,J.Corbat6, and V.A.vyssotsky, "Introduction and Overview 
of the Multics System", Proc. AFlPS fall/oint Comput. Con! 
21, Spartan Books, Washington, DC, 1965, pp. 185-196. 

4. E.l.Glaser, et ai, "System Design of a Computer for Timeshar­
ing Application", Proc. AFlPS Fall/oint Comput. Con!, 21, 
Spartan Books, Washington, DC 1965, pp. 197-202 

5. V.A.Vyssotsky, et ai, "Structure of the Multics Supervisor", 
Proc. AFlPS Fall joint Comput. Can! 21, Spartan Books, 
Washington, DC, 1965, pp. 203-212. 

6. R.C.Oaley and P.G.Neumann, "A General-Purpose File Sys­
tem for Secondary Storage", Proc. AFlPS Fall joint Comput. 
ConI. 21, Spartan Books, Washington, DC, 1965, pp. 213-
229. 

7. J.F.Ossanna, et ai, "Communication and Input/Output Switch­
ing in a Multiplex Computing System", Proc. AFlPS fall Joint 
Compul. Con! 21, Spartan Books, Washington, lX, 1965, 
pp. 230-242. 

8. E.E.David, Jr. and R.M.Fano, "Some Thoughts About the Social 
Implications of Accessible Computing", Proc. AFlPS Fall joint 
Compul. Con! 27, Spartan Books, Washington, DC, 1965, 
pp. 243-247. 

9. E.I.Organkk, The Multics System: An Examination of its 
Structure, M.I.T. Pr., Cambridge, MA and London, England. 

10. R.W.Watson, Timesharing System Design Concepts, 
McGraw, NY, 1970. 

11. W.T.Comfort, "A Computing System Design for User Ser­
vice", Proc. AFIPS Fall Joint Comput. Con! 27, Spartan 
Books, Washington, DC, 1965, pp. 619-626. 

12. A.S.Lett and W.L.Konigsford, "TSS/360: A Timeshare Operat­
ing System", Proc. AFlPS Fall Joint Comput. Can! 33, 
Thompson Books, 1968, pp. 14-28. 

13. R.E.Schwemm, "Experience Gained in the Development and 
Use of TSS/360", Proc. AFlPS Spring/oint Compul. ConI. 40, 
AFIPS Pr., Montvale, NJ. (972), 

14. F.J.Corbat6, "PL/I as a Tool for System Programming", Data­
mation 15, No.6, 68-76 (1969), 

15. R.A.Freiburghouse, "The Multics Pl/l Compiler", Proc. AFIPS 
Fall/oint Comput. ConI. 35, AFIPS Pr., 1969, pp. 187-199. 

16. R.J.Feiertag and E.LOrganick, "The Multics Input-Output Sys­
tem", ACM Third Symp. on Operating Syst. Principles., 
35-41 (1971). 

14 HONEYWELL COMPUTER JOURNAL 

IYI.I.nl~"QIIU~I, V'KdnlLdliOn ana realUres OJ tne MlCnlgan 
Ter~inal System", Proc. AFIPS Sprin8/oint Compul. ConI. 
40, AFIPS Pr., Montvale, NJ. (1972) 

18. A.Bensoussah, C.T.Clingen and R.C.Deley, "Tht, MultI<. .. Vir· 
tuaIMemory", ACMSecondSymp. onOp('rJlifl8S~(. Prm(l' 
pIes, Princeton Univ., 30-42 (1969). 

19. BASIC, 5th Ed., Kiewit Computation Center, Dartmouth Col· 
lege (970), 

20. APL/360 User's Manual, IBM form GH20·0683·1 (1970). 

21. J.H.Salzer, "Traffic Control in a Multiplexed Computt>r Sy~· 
tem", St.D. Thesis, M.I.T. Dept. of Electrical Engineering, 
(1966). Also available as Proj. MAC Tech. Report TR·30. 

22. E.W.Dijkstro, "The Stiucluie of ihe 'THE' Muitiprogramming 
System", Commun. ACM 11, No.5, 341-346 (19681. 

23. R.W.Parker, "The Sabre System", Datamation 11, No.9, 
49-52 (1965). 

24. R.R.Schell, "Dynamic Reconfiguration in a Modular Computer 
System", Ph.D. Thesis, M.LT. Department of Electrical Engi· 
neering (1971). Available as Proj. MAC Tech. Report TR-86. 

25. CJ.Conti, "Concepts for Buffer Storage", IEEE Comput. Croup 
News., 9-13 (1969), 

26. R.A.Meyer and l.H.5eawright, "A Virtual Machim' Tim(lshcu, 
ing Systpm"i IBM SY5t. /. 9, No.3, 199.2180(70), 

27. F.1.Corbat6, "A Paging Experimt'nt with the Mullin ~y .. tt'm", 
In Honor of P.M.Morse, M.LT. Pr., Cambridge, MA, I <)b9, PI'· 
217-228. 

28. M.D.Schroeder, "Performance of the GE-645 Ass(xi.ltiVl' 
Memory While Multics is in Operatiof)", ACM Workshop on 
Syst. Performance Evaluation, 227-245 (1971). 

29. R.M.Graham, "Protection in an Information Pro(:e .. sinK Util· 
ity", Commun. ACM 11, No.5, 365-369 (1968). 

30. M.D.Schroeder and J.H.Saltzer, "A Hardware Architecture for 
Implementing Protection Rings", ACM Third Symp. on Oper· 
ating Syst. Principles, 42-54 (1971>. 

31. D.CEvans and J.Y.LeClerc, "Address Mapping and the Control 
of Access in an Interactive Computer", Proc AFIPS Sprin8 
joint Compul. Con! 30, Thompson Books, 1967, pp. 23-30 

32. B.W.Lampson, "An Overview of the CAL Timeshdring Sys­
tem", Computer Or., Univ. of Calif., Berkeley, CA, (I 969l. 

33. D.D.Clark, R.M.Graham, J.H.Saltzl'r cmd M.n'sduol'tjt'r, 
"Classroom Information and Computing Servin''', Proj('ct 
MAC Tech. RepOrt TR80 (1971). 

34. J.E.Sammet, "Brief Survey of Languages Used for Syst('rns Im­
plementation", SICPlAN Nolic('J 6, No.9, (1971). 

35. The Multiplexed /nformJlion clf/d C()mputinx S('rvi((': Pro· 
grammers'Manual, M.I.T. Proi. MAC, Rev. 10 (1972l. AV.lil· 
able from the M.I.T. Information Proc. ('ntN. 

C-12 



HICHLICHTS OJ" 

~ 
It 

MUlTICS S~STEM 

FROM THE ED!TOR 

This is the information that a new Multics programmer 
receives when he becomes a user at M.I.T. (or else­
where). This should be of interest in view of impending 
upgrading of the system. 

The next issue of the Honeywell Computer Journal 
will carry a special microfiche devoted to a historical 
potpourri of the major papers on Multics. 

18 HONEYWELL COMPUTER JOURNAL 

C-13 

Introduction 

Multics (from Multiplexed Information and Computing 
Service) is the name of a new, general-purpose computer 
system developed by the Computer System Research group 
at M.I.T. Project MAC, in cooperation with Honeyw('lIlnfor­
mation Systems (formerly the General Electric Comp.lnY 
Computer Department) and the Bell Telephon(.> Labor.llo­
ries. This system is designed to be a "computer utility", 
extending the basic concepts and philosophy of th(' rOmPdl­
ible Timesharing System ((TSS, operating now onthl' IBM 
7094 computer) in m,lnY directions. Multics is impl('mpnted 
initially on the Honeywell 645 computpr systl'm, .In pn­
hanced relative of the Hont'ywell 635 computpr. 

One of the over-all design goals of Multics is to nt.'.ltp .1 

computing system which is capable of meeting .llmosl .111 of 
the present and near future requirements of a Iclrge computer 
utility. Such systems must run continuously and relic1bly 7 
days a week, 24 hours a day, in a way similar to telephone 
or power systems, and must be capabte of meeting wide 
service demands: from multiple man-machine interaction to 
the sequential processing of absentee user jobs; from the use 
of the system with dedicated languages and subsystems to 
the programming of the system itself; and from centrdlilt.'d 
bulk card, tape, and printer facilities to remotely located 
terminals. Such information processing'and communication 
systems are believed to be essential for the future growth of 
computer use in business, in industry, in government .Ind in 
scientific laboratories, as well as stimulating applic.lIions 
which would otherwise be untried. 

Because the system must ultimately be comprt'hpn ... ivl' 
and able to adapt to unknown future requirempnts, it'i fr,lIm'­
work must be .. wneral, .Ind c.lJ)dble of ('volving wilh linlt', A ... 
brought out in thp S('qu{>I, this nped for .In ('voluIIOI1,uy 
framework influt'nu.'s and (ontributes to much of th(, "Y'ih'lll 
design and is a major reason why most of the pro~r.Hllll1ing 
of the system has been donE.' in a subset of the PL 111.Ingu.lgl'. 
Because the PL/ I language is largely machine-independent 
(e.g., data descriptions refer to logical items, not physical 
words), the system should also be. Specifically, it is hoped 
that future hardware improvements will not make system 
and user programs obsolete and that implementation of the 
entire system on other suitable computers will rpquirl' only 
a moderate amount of additional progrdmming. 

As COlllputl'rs h.w(' Illtltur('d during tht' 1.1SI two d('(.uh'" 
from cliriositit's 10 ('.lklll.ltil1~ Ill.Khi,ll''' to inform.ltion pro 
("{'"sors, .1('«('S'i to thl'1ll by lIst'rs h.1S 110\ ill1prm'l'd .. lIld. in 
till' c.\Sl' of 1110"t I.ugl' Ill,Khirll's, h.I'i rl'trogn''''it'd PnrH I 



pally for economic reasons, batch processing of computer 
jobs has been developed and is currently practiced by most 
large computer installations, and the concomitant isolation 
of the user from elementary cause-and-effect relationships 
has been either reluctantly endured or rationalized. For sev­
eral years a solution has been proposed to the access prob­
lem. This solution, usually called timesharing, is basically the 
rapid time-division multiplexing of a central processor unit 
among the jobs of several users, each online at a typewriter­
like terminal. The rapid switching of the processor unit 
among user programs is, of course, nothing but a particular 
form of multiprogramming. 

The impetus for timesharing first arose from professional 
programmers because of their constant frustration in debug­
ging programs at batch processing installations. Thus, the 
original goal was to timeshare computers to aUo\A/ simu!ta­
neous access by several persons while giving to each of them 
the illusion of having the whole machine at his disposal. This 
goal led to the development of the Compatible Timesharing 
System (CTSS) at M.I.T. Project MAC. However, at Project 
MAC it has turned out that simultaneous access to the ma­
chine, while obviously necessary to the objective, has not 
been the major ensuing benefit. Rather, it is the availability 
at one's fingertips of facilities for editing, compiling, debug­
ging, and running programs in one continuous interactive 
session that has had the greatest effect on programming. 
Professional programmers are encouraged to be more imagi­
native in their work and to investigate new programming 
techniques dod rleW problem appiodches because of the 
much smaller penalty for failure. But, the most significant 
effect that CTSS has had on the M.I.T. community is seen in 
the achievements of persons for whom computers are lools 
for other objectives. The availability of CTSS not only has 
changed the way problems are attacked, but has caused 
important research to be undertaken that otherwise would 
not have been done. As a consequence, the objective of the 
current and future ·development of timesharing extends 
beyond the improvement of computational facilities with 
respect to traditional computer applications. Rather, it is the 
online use of computers for new purposes and in new fields 
which provides the challenge and the motivation to the sys­
tem designer. In other words, the major goal is to provide 
suitable tools for what is currently being called machine­
aided cognition. 

More specifically, the importance of a multiple-access 
!>y~lem Opt'rated as a computt>r utility i ... that it allows a vast 
(·nl.ugement of the scope of computer-baSl'd activitit·~, 

which can, in turn, stimulate a corresponding enrichment of 
many areas of our society. Over six years of experience 
indicates that continuous operation in d utility-like manner, 
with flexible remote access, encourages users to view the 
syst£>m as a thinking tool in their daily intellectual work. 
Mechanistically, the qualitative change from the past results 
from the drastic improvement in access time and conve­
nience. Objectively, the change lies in the user's ability to 
control and affect interartively the tourse of a protl'SS 
wht,tht'r it involvl-'s numNiccll (omput.ltion or m,\nipul,ltion 
of symbols. Thus, par,mwtl"r ~tudies Me mon."' intt'lIigt'ntly 
Ruided; new problem-orit'nted lanRuagl'~ dnd subsystPf11S 
Me developt'd to expioit the inter,Ktive Ctlptlbility; rn,lny 

complex analytical problems, as in magnetohydrodyn,lmics, 
which have been too cumbersome to b{' tcldlt'd in thl' p.1St. 
are now being successfully pursued; even more, new, imtlgi­
native approaches to basic research have been developed, 
as in the decoding of protein structures. These are examples 
taken from an academic environment; the effect of multiple­
access systems on business and industrial organization"> (dn 
be equally dramatic. It is with such new dpplications in mind 
that the Multics system has been developed. Not thclt thl1 

traditional uses of computers are being disregdrded: r.lther. 
these traditional needs are viewed as a subset of the brodder, 
more demanding, new requirements. 

To meet the above objectives, issues such as re ... ponsl' 
time, convenience of manipulating data and programs, edS{, 
of controlling processes during execution, and, abovt> dll, 
protection of private information and i'iol.;ltion of indepen­
dent processes, become of critical importdnn'. Thl'~(, i"slIt's 
demand departures from tradition.ll computl'r ... ysll'rn... 
While these departures are deemed to be dpsir.,bl{' with 
respect to traditional computer applications, they .lH' (' .. s('n­
tial for rapid man-machine interaction. 

System Requirements 

In the early days of computer design, there W.lS tht' conn'pl 
of d single program on which a singll' proCessor ("ompull'd 
for long period!> of time with almost no intl'raction wilh thp 

The effective boundaries of dn informdtion pron· ...... inH ~y .. -
tem extend beyond the processor, beyond tht· (,(Ird rt'ddpr 
and printer, and even beyond tht· typing of input ,md th(' 
printing of output. In fact, they encompass tht> HO.lI .. of rn,m~ 
people. To better understand the eff~ct of this hro.HiPm'd 
design scope, it is helpful to examine st'v~r,11 pht'nonwn,1 
characteristic of large, service-orientpd computl'f 1Il"{,III.I­

tions. 
First, there are incentives for dny org,miz.ltion to hdV(' tht' 

biggest possible computer systl'm th.lt it elm clHord. It i .. 
usually only on the biggest computer ... th'lt Ihl'rt.' .m' pl.lbo· 
rate programming systems, compiit>rs, ,md f(\lllIH'" whi(h 
make a computer "powerful". This rpsult .. pdftly IW(,llISt' it 
is more difficult to prepdre systt'm progr,Hlh for "11l.1l1pf (Olll­
putt>rs when limitl'd by speed or mprnory Sill', .lfld p,utly 
because large systpms involvl' morl' I)('rsol)", .md, IWI){ (" 

permit more attpntion to bl' given to .. y.,tl'1l1 progr,Hll'>. 
Moreover, by combining r('sourc('s in a .. inHIt' (omputpr 
system rdlher th.ln in st·veral, bulk ('( onomi('" ,md IhPf('fof(' 
lower compuling cosls can be dchit'vt'd. Fincl"y, .1'0.1 pr,l( ti­
cal matter, con~ider,ltions of floor SPdCl', m.lnclJ.WIl1(,1l1 pHi­
ciency, and operating personnel provide cl .. trong im('ntiv(' 
for centralizing computer facilities in cl singlt' IMg(' in"'I,III.I· 
tion. 

Second, the cdpclCity of tl contempm.uy cOll1pull'r in~t.ll­
lation, regardless of the sector of .lppliccltions il st'rvl'''. Illusl 
be capabl~ of growing to ml'et continuously innl'clsing ot'­
m,md. A doubling of demand E'VE'ry two yPclf~ is not uncom­
mon. Multiplp-,KcPss cornputpr., promi.,l' to .K(l'Il'r,lh' th, .. 
growth lurthpr sinn' th('y ,lllow " rn,Hl-tn,\( hill(' ill\('r.H tion 
r,itl' which i~ f.lstpr by <li le,lst two or<1l'r .. oj 11l,lgllitudl' th.m 

HON[YWrLL COMrliTrn ,lotJnNAI 89 

C-14 



other types of computing systems. Present indications are 
that multiple-access systems for only a few hundred users 
can generate a demand for computation exceeding the ca­
pacity of the fastest existing single processor system. Since 
the speed of light, the physical sizes of computer compo­
nents, and the speeds of memories are intrinsic limitations on 
the speed of any single processor, it is clear that systems with 
multiple processors and multiple memory units are needed 
to provide greater capacity. This is not to say that fast pro­
cessor units are undesirable, but that extreme system com­
plexity to enhance this single parameter among many 
appears neither wise nor economic. 

Third, computers are no longer a luxury used when and 
if available, but are primary working tools in business, gov­
ernment, and research laboratories. The more reliable com­
puters become, the more their availability is depended upon. 
A system structure including pools of functionally identical 
units (processors, memory modules, input/output contro"­
ers, etc.) can provide continuous service without significant 
interruption for equipment maintenance, as well as provide 
growth capability through the addition of appropriate units. 

Fourth, user programs, especially in a timesharing system, 
interact frequently with secondary storage devices and ter­
minals. This communication traffic produces a need for mul­
tiprogr.lInrning to avoid wasting main processor time while 
.m input/output request is being completed. It is important 
to note that an individual user is ordinarily not is a position 
to do an adequate job of multiprogramming since his pro­
gram lacks proper balance, and he probably lacks the neces­
'>Jry dynamic information, ingenuity, or patience. 

Fina"y, as noted earlier, the value of a timesharing system 
lies not only in providing, in effect, a private computer to a 
number of people simultaneously, but, above all, in the ser­
vices that the system places at the fingertips of the users. 
Moreover, the effectiveness of a system increases as user­
developed facilities are shared by other users. This increased 
effectiveness because of sharing is due not only to the re­
duced demands for core and secondary memory, but also 
to the cross-fertilization of user ideas. Thus, a major goal of 
the present effort is to provide multiple access to a growing 
and potentially vast structure of shared data and shared 
program procedures. In fact, the achievement of multiple 
access to the computer processors should be viewed as but 
a necessary subgoal of this broader objective. Thus, the 
prim.uy clnd spcondary memories where programs reside 
pl.ty tl Ct'ntr.ll role in the hardware organization, and the 
prt''\enCl' of independent communication paths between 
mpmories, processors, and terminals is of critical impor­
tance. 

From tht' dbove it can be seen that the system require­
ments of a computer installation are not for a single program 
on tl single computer, but rather for a large system of many 
components serving a community of users. Moreover, each 
user of the system asynchronously initiates jobs of arbitrary 
and indetermin.lte duration which subdivide into sequences 
of proc('s~or Jnd input/output tasks. It is out of this seem­
ingly Ch.lOlic, r.lndom el1vironml'nt th.lt onl' ,uriv('s .It tl 

utility-likp vi('w of ,I computing systpm. For in~\(.'.l(f of Ch(lO~, 
one can average over the different u~er rpqut'sts to .lChi('v(' 
high utilization of all resourcE's. The task of multiprogram-

90 HONEYWELL COMPUTER JOURNAL 

required to do this need only be organized onn' in tl cpntr.tl 
supervisor program. Each user thus enjoys thl' bt'nl'fil of 
efficiency without having to average the demands of his own 
particular program. 

With the above view of computer use, where tasks start 
and stop every few milliseconds, and where the mpmory 
requirements of tasks grow and shrink, it is apPdrl'nt th(lt om' 
of the major jobs of the supervisor program (i.l'., monitor, 
executive, etc.) is the allocation and scheduling of computt'r 
resources. The general strategy is clear. Each uspr's job is 
subdivided into tasks, usually as the job procC'eds, l'<Kh of 
which is placed iri an appropriate queue (i.e., for d prot p,,"or 
or an input/output controlierl. Processors or input/output 
controllers are, in turn, assigned new tasks as th<'y ('it her 
complete or are removed from old tasks. All procps~or., are 
treated equivalently in an anonymous pool (lnd arp .ls'\igm'd 
to tasks as needed. In particular, the supervisor (1m''> not 
have a special processor. Further, processors Cdn bl' (\(ldpd 
or deleted without significant change in eith('r th(' u,>('r or 
system programs. Similarly, input/output controllers drP di~ 
rected from queues independently of any particul.lr pro­
cessor. Again, as with the processors, one can add or dpl('t(' 
input/output capacity according to system load without '\ig­
nificant reprogramming required. 

The Multics System 

Tht~ over-all dt'sign gOdl of th(' Mullics ,>ystPIll i'\ to ( rt'.ltl' .1 

computing systl'm which is l.lp.lblp of cOlllprplwn.,iv('ly 
meeting almost .111 of thl' prt.'s('nl ,1Ild !W,lr futllrt, fl'quir(' 
ments of a large computt'r sl'rvicl' insttl",llion. II i., not l'X· 

pected that the initidl systpm, tllthough us('ful, will rt'.I( h tIl(' 
objt'ctive; rather, tht' systl'm will ('volv(' with limp in ,I g('I1· 
eral framework which pl'rmits continutll growth to IIlt'('1 
unknown future requirt'ments. Th(, usp of th(' PLiI 1.lIlgudg(' 
will allow major system software chang(>'\ to l>l' d('vplopt'd 
on a schedule separate from that of hardware ch.1I1gp,\. Simp 
most organizations can no longer afford to OVl'rldP old .lOd 
new equipment during changes, and since softwdrp dpvPiop­
ment is at best difficult to schedule, this reldtivl~ mdchirll'­
independence should be a major asset. 

It is expected that the Multics system will be publishpd .lOd 
will therefore be available for implementation on any pquip­
ment with suitable characteristics. Such publication i~ dp.,ir­
able for two re.lsons: first, thE.' systE.'m should with.,t.\f1d 
public scrutiny .lOd criticism; s('cond, in dn dg(' of incH'.I',ing 
complexity, thprp is .m obligation to pn>sl'nl ,md fullln' .,y., 
tern designers to Illdkt.' thE.' inrll'r opl'rdting sy~tl'1ll .1" lu( id ,I" 
possible so as to rE.'veal thl' basic systPIl1 i~SlJ('''. 

An ability to share data contdined within thl' fr,H1H'work 
of a general-purpose timesharing systPIll is .1 uniqll(, fl'.llurl' 
of Multics, and is dirpctly dpplic.lbll' to .ldminislr.1tivl' proh­
lems, research requiring .1 lllulti-u,\E.'r dcn's~iblp <I.II.lh.I"P, 
dnd gpnerJI applic.llion of thl' cornpu\(.'r 10 vpry cOlllplil .It('d 
rl'sPdrch problprn,>. Thp .llIpntion l>.lid 10 m('(h.lIli.,lll<, 10 
providp .md conlrol priv.l< y i., of din'(1 inlprt·'" lor "C'vl'r.d 
of 111(' ~cH1l(' .Ippli( ,It ion., .1., WP" .1", for C'x.lIllplt" IlIt·e/it . .I 
dell.1. Multin (.111 thu., h ... 1 v.llu.lhl(' tool whit h ",ovulC''. 
opportunities for irnport,lI1t npw n',>p.lrth in 11\('., .. .In'.I.,. 



I ne MarClware ~ystem 

The Honeywell 645 computer system is a large-scale infor­
mation processing system with most of the features currently 
found in such systems. If one attempted to classify systems, 
it would fall in the same general category of size as the 
Honeywell 635, the Univac 1108, and the IBM Systems 
360/65 and 67. 

The configuration at M.I.T., shown in Figure 1, currently 
contains 384 K (K = 1024) 36-bit words of core memory (1 
microsecond access to 36 bits or 1.3 microseconds access 

System 
Clock 

645 
Processor 

Core 
Memory 

128K words 

Character 
Channel 

(5) 

202c6 
DdtclSl't 

~ 

645 
Processor 

Core 
Memory 

128K words 

Generai 1-0 Controiil'r 

Tape 
Control 

to 72 bits), two central processors (330,000 instructions p('r 
second when running Multics), a high-performJnn' pclging 
drum (it moves 1024 words in 2 millist>conds, 1 () mil­
liseconds average latency with a queue-driven ch(lnnt'l U)I)­

troller), 78 million words of disk storage, and a Gt'npr(IIiIPd 
I/O Controller which handles magnetic tapes, (Md PQuip-
ment, and high-speed full ASCII printers, dS well .1 ... ,III \('1('-
communication channels. The central processor i ... built on 

the Honeywell 635 instruction set with dugmenttltion to Iwr­

mit control of paging and segmentation hardw.Hl'. 

Ipa2in2 Drum 
4 ; 106 words 

Core 
Memory 

128K words 

Disk 

Disk 
Control 

36 x 106 words 

Disk ~ 
37 x 106 words 

Opertltion 
Console 

Printt'r 
1200lpm 

T plpt Ylle 
Ch(lnnpls 

(88) 

Td('lyp(' 

Channels 
(88) 

~ 

Com! 
Rpdcit'r 

Cmf 

88 lim's 10 D,II.1 

Switch for 1()C,0/274', 
M33, 35, &P Tt'lplyp(' 5 lines to Ddtd 

Switch for 
ARDS use 6 - 120 kc 

Magnetic Tape 
Drives 

Figure 1. 
IloIH'VW\,11 (,·1. 11,Jr(twd'\' (1IIIfigw"fioll "I M.I I 

ItONEvwru. COMl'tlfI f1 ,/(lIIIlNAI III 

C-16 



Overview of Multics Capabilities 

Multics offers a number of capabilities which go well beyond 
those provided by many other systems. Those which are 
most significant fr()m the user's point of view are d,escribed 
here. Perhaps the most interesting aspect of all is that a single 
system encompasses all of these capabilities simultaneously. 

• The ability to be a small user of Multics. 

An underlying consideration throughout the Multics de­
sign has been that the simple user should not pay a 
noticeab!e extra price for a system which also accommo­
dates the sophisticated user. For example, a student can 
be handed a limited set of tools, can do limited work 
(perhaps debugging and running small FORTRAN pro­
grams), clnd expect to receive a bill for resource usage 
which is pquivalent to the limited work done. If all users 
,m' smdll, tht'n of course the number of users can be 
incrlw;('d in proportion to tht'ir smallness. As .. m adminis­
lrdtivl' .lid, f.lcilities are provided so that one ctln restrict 
,lilY p,lrlicular user to a specific set of tools and thereby 
limit his dbilily to use up rt'sourcps. 

• The ability to control sharing of information. 

There are a variety of applications for a computer system 
which involve building up a base of information which 
is 10 be shared among several individuals. Multics pro­
vides facilities in two directions. 

Sharing: 

Links to other users' programs and data. 

Ability to move one's base of operation into another user's 
dirl'ctory (with his permission). 

Dir('( I .lcn'.,s with uniform convpntions to any information 
.,tort>d in th{' ~y .. tt'm. 

Abilily for Iwo or mort' uwr., to .,1l.lH' .1 .. illglt' (Opy of ,I 

progr.lI11 or d,lI.l in UHl' rnprnory. 

Control: 

Ability to "pt'cify prNi<;t'ly 10 wholll, ,md with whdl .l(ct'ss 
mod(' (p,g., rt'ad, wrile, dlUj t'Xl'Cutt-' permis.,ion., cHt' .. eprl­
r,ltt' .1Ilt! pt'r-usPr) " pit'u' of d,\lJ or thl..' entirt' contents of 
,I "ubdirt'Llory Jrl:' ,lV,lil.lblt'. 

Ability 10 revoke dlCl'S" .11 any liml', 

Ability, u<;ing the Multics protection ring structure, to force 
,I( n>~<, 10 J drlldbase to be only via d program supplied by 
Iht' d.lt,lb"<'t' owm'r, This facility m.ly bt' USt'd to allow 
,Ill P"" 10 .Iggrt'gtltt' inform.llion, "lIch .1<' .lVt'r.lg('s or counts, 
or .,pt'citit'd d.II,1 l'ntries, without ~irnult,\l1l'ously giving ac­
t t''''' Itl tht' t'IltiH' jilt' (If r.1W d,II,I, w!li( h IlMY Ill' (onfidt'n-
1I,1i. I ht'H' .Hl' .1 1.lrgl' IllIl11ht'r 01 pott'llti.ll .llhnini .. tr,ltivl' 
.IJlPIi( .llion" oj this It'.ltllrt' .• 1Ilt! ,I" 1.11 .1" i .. known, Mliltic., 
I" till' ollly gl'Ill'r.ll-plIq)(N' .,y"lt'lll whit h provide>, it. 

92 HONEYWELL COMPUTER JOURNAL 

• The virtual memory approach 

In the opposite direction of the little uspr is lhl' ~wr"on 
with a difficult research problem requirin~ ..l vl'ry I.H~w 
addressable memory. The Mullics storag{' systt'lll, with 
the aid of a high-performance paging drum, provid('" thi" 
facility in what is often called a virtual memory of .. 111 

extent limited only by the total of secondary o;lor.1gp 
devices (drums, disks, etc.) attached to the sys(pm, A.n 
interesting property of the Multics implementation is Ih,lt 
a procedure may be written to operate in .1 vpry I,uge 
virtual memory, but core resources are used only for 
those parts of the virtual memory actually touched by thl' 
program on that execution, and disk and drum resourcps 
are used only for those parts of the memory which dclu­
ally contain data. Another very useful property frolll d 

programmer's point of view is that inforlll.ltion stored in 
the storage system is directly accessiblp to hi" progr,lI11 
by a virtual mpmory tlddress. This propprty plilllin.ltp<, 
thl' n(,l'd for ('xplicitly progr,lInrm'd OVPr!.IY", ( h.lin link<" 
or cort' IO .. lds, ,lI1d ,11,,0 rl'dun'" tht, nllllli>('r of t'Xpli( illy 
progr .. Hnmpd input ,md output op('r,ltioll". lhl' Multi(" 
storagl' system lakt's onlht, r('sponsibility for ".li'<'k('l'ping 
of all information pl.H,pd thpn' by th(' lls('r. It tlwrdon' 
automatically maintains tape copies of .111 inforrTl.ltion 
which has rernained in the system for morl' Ih,\I1 ,\11 hour. 
These tapes can be uSl'd to reload .. 1I1Y'uspr inforn1.llion 
lost or damaged as d result of hardwdrl' or "oftw,H(' 
failures, and may also be used to retrieve individu.ll itt'ln-. 
damaged by a user's own blunder. 

Each user has an administratively spl quo!.l of "P.lU· 
which limits the amount of storage he can US(', ,llthough 
he may purchase as I<ugl' an amount of Sp.Kl' ,Ie.; hE:' 
would like. Additional disk storagl' (' .. 111 bE:' ,lddpo 10 th(' 
645 computer in large quantities if npcl'''S,UY. 

• The option of dynamic linking. 

C-17 

In constructing a program or "yslprn of progr.lfll", IIi" 
frl'qul'ntly ('onvenipnt to In'gin 1('"ling (I'rt.lin i('.lllIn'" (It 
onl' progr.lfl1 bl'for(' h,\ving writ1('n .lnotIH'1 plogl.llll 
which i" 11('(,<1('11 for "OflH' (.1<'('''. I )yn.lI11i( linking .IIIow" 

Iht' ('x('('ution of tIlt' fir"t progr,lfll 10 !'('gin, .111<1 .I W.lf( II 
for th(' second progr,lfll ie.; undl'rt.lkl'n only if .me! wlwn 
it is dctll..llly (,llIpd by Illl' fir"l Olle, I hi" ft'.Itllrt' .11,,0 
allows d ust'r to fr('ely indud(' in hi" progr.lI11 .I (ol1<1i· 
lion.1l t:c111 oul to d I<lr),w ..lnu <,ophi"ti<'.I1l'd ('rror di,lgrH)"­
tic progr .. un, s{'curt' in th('knowll'dg(' Ih,ll in ,III Iho"(' 
executions of his progr,HTl whi(h do not ('nUHmt('r tlw 
prror, he will not pay tht' co..,t of loc.lIing, linking, .In<l 
m.1pping tht' error diagnosis p .. Kk..lg(' inlo hi" virtu,11 
memory. It .llso ,lllows d llst'r who i" borrowing .1 pro­
gram to provide tl substitute for .my subroutim' (.III('eI by 
that program when h(' uses it, sinn' h(' h,I" control ()v('r 
wherl' thE.' system looks 10 find missing "lIbroulillt''', In 
those cases when' subroutirH.' A (.ll1s subroutilll' B ('v('ry 
tinl(', thprp is, of COUN', no 11('('d to lN' dyn.lIlli( linking 
(,lIld 11ll' implil'd libr,lry .. l'.uchl. ,111(1 "0 I.I( illti('" .lIt' 
llll'rdort' providl'd to bind A .1I1d B togt'llwr prior to 
pxP(ution. 



• Configuration Flexibility. 

An important aspect of the Multics design is that it is 
a<:tually difficult for a user to write a program which will 
stop working correctly if the hardware configuration is 
changed. In response to changing system-wide needs, 

the amount of core memory, the number of central pro­
cessors, the amount and nature of secondary storage 
(disks, drums, etc.), and the type of interactive typewriter 
terminals may change with time over a range of 2 or 3 
to 1, but users do not normally need to change their 
programs to keep up with the hardware. The system itself 
ddapts to changes in the number of processor or memory 
boxes dynami<:ally, that is, while users are logged in. 
Most other configuration changes (e.g., the addition of 
disk storage units) require that the system be reinitialized, 
an operation which takes a few minutes. 

• The human interface. 

Experience has proven that ease of use of a timesharing 
system is considerably more sensitive to human engi­

neering than is a batch processing system. The Multics 
command language has been designed with this in mind. 
Features such as universal use of a cha.:acter set with 

both upper and lower case letters in it, and allowing 
names of files to be 32 characters long, are examples of 
the little things which allow the nonspecialist to feel that 

he does not have to discover a secret in order to be an 
effective user of the system. In a similar vein, a hierar­
chial file system provides a very useful organization and 
bookkeeping aid, so that a user need keep immediately 
at hand only those things he is working with at the mo­
ment. Such a f.Kility is of great assistance when attacking 
complicClted or intricately structured problems. 

Languages 

Multics provides two primary user languages: FORTRAN IV 
<lnd Pl/l. The FORTRAN compHer is fairly standard. It is 
supported by tht' usuallibrclfY of math routines and formtlt­
ted input / uutput fdcilities. Its primary use is for translation of 
Jlready written programs which hav(' been imported from 
other computer systems. 

The Multics Pl/ I compiler is quite interesting because it 
offers a very full selection of language facilities, over 300 
helpful error diagnostics, and the ability to get at the ad­
vanced features of Multics, all at a reasonable cost. On a 
"seconds to translate a source language page" basis, the 
PL/ I compiler currently takes about twice as long as does the 
FORTRAN compiler; on the other hand, a page of Pl/I 
program e,ln pxpress considerably more than a page of FOR­
TRAN program. For these reasons, as well as the anticipated 
widt' ,lvJil.lbility of Pl! I on othpr compulN syst('ms, it ic.; thE.' 
H't omnwndpd I.lngu.lg(' for l,uhwl,t('tP irnplprTl l'nl('p., dnd 

gl'IH'I.11 rt'''('.lrch lI"l'r" npl'ding ,l" pxpn, .. "ivp I,lngll,lgl'. 

(>lIlt'l 1.1I1gU.Igl'" .\TP: 

BASIC A translator and editor subsystem for th(' BASIC 
language, developed at Dartmouth Coliege. A lim­
ited Multics service is available which restricts the 
user to just this subsystem, if desired. The BASIC 
subsystem is also available to regular Multin users. 

APL A powerful and popular interpretive I,mgu.lge devel­
oped by Kenneth IV(:'fS(ln. 

LISP list Processing language, version 1.5. Both .In intl'r­
preter and a compiler for this popular language for 
"artificial intelligence" problems are available. An 
i'nteresting feature of the Multics implementation is 
the very large structure space providE.'d by thp vir­
tual memory. 

ALM A machine language assembler for thE.' HOn('ywpll 
645 computer. (It is not recornmpndpd for gpnPr.11 

use; it is slow and the languagl' is VE:'ry diffi( lIlt.l 

QEDX A programmable E.'ditor whi<:h qU<llifi('s .1., .1 minor 
interpr(:>tive I.mguage. 

All of the above langu.lges translatE.' a sourn' progr.lIn which 
has been previously pl.Kl'd in the stortlgp sY"\(,Ill. Input .md 
editing of source t('xt is done with onE:' of thl' dv.lil.lbl(' t('xt 
editors, EDM or QEDX. Although inter<Ktiv(', lirw-hy-lil1l' 
syntax checking languagl's are easily impiE.'m(·ntpd in ttl(' 
Multics environment, none ilre yet availablE:'. 

A source langu.lge debugging system, nampd DEBUC, 
provides the ability to inspect variables and spt breakpoint ... 
in terms of the PL/I program being debugged. It .1lso htt" .1 

variety of features to allow inspection of (III a~pt>cts of thp 
Multics execution environment. 

Reliability and Performance 

An initial vt>rsion of Multics b('g.ln opt'r CIting on tI <;dwdlllpd 

daily basis for system progr.mllning u"p in I <)h8 Sppt('rnbt'f. 
It has been schpduled to run on d 24-hour-,I-d.IY 1>.1"" sin( (' 
1969 May 1. Sinn' thJt tim(', almost thrpp Y('<lr" of oppr.I· 

tional expt·rienn.· h,IS bp(·n obtclinpd. During lili" lil1lt" fel,­
ability, funclioncll c(lp.lbilitit''', .md pl'rform,mu' h.wl' h('('11 

brought to the point that, .tS of 1972 l,lnll.HY 1, .1 two pro­
cessor system serv('s 55 sirnult"nl'ou" IN.'r ... , WIth ~()od ill­
teractive responsE.'. 

The full configurdtion of Figure 1 is us('d rpgul.trly, .md 
should ultimately hdndle about 90 dv('rdge Pl/ I progr.lI11-
mers. Both smaller and larger users are also runn.tble on the 

system, in increased and reduced numbers, respt'ctivl'ly. 
As an offering of the M.I.T. Information Processing C('ntpr, 

Multics has attracted a community of about bOO regi<;tpr('d 

users, and an equal number of unregister('d "tudcml u"pr<;. 
These users .lre organized dround dpproxirn.ltply Ion 
projects, thus making Multics the primary "ourn' of tirm'­
shcHing services at M.I.T. (As with all I.P.c. romplItl'r W"-

11'111'-, thl' II"'" of Multi( ... i ... (h.HgC'd 10 it.. "'-1'1 ... ,II 1.111", 

,Idju ... t('d to rplurn full h,tr<lw.lrt, elllI! rlllllling (lI"t., WIIl'II IIII' 

w.,km j" opt'r,lling .11 ,Ihout two-third ... l .II}.I( itv) 

HONEYWEll COMf'UTrR .JOURNAL 93 

C-18 



A MUL TICS BIBLIOGRAPHY 

Manuals that are Generally Available 

1. Multin Programmers' Manual. An updateable refer­
ence manual giving calling sequences and reference 
information for all user-callable subroutines and com­
mands. Includes an introduction to the Multics pro­
gramming environment and a guide to typical ways of 
using the system. Approximately 800 pages. 

2. The Multics System: An Examination of Its Structure, 
by E. I. Organick. A hard cover book describing in some 
detail how Multics works. The dpscription is from the 
point of view of a programmer developing a large pro­
gram or subsystem, who wishes to gain the extra insight 
to help him intelligently choose among available alter­
natives of his implementation. M.I.T. Press, Cambridge, 
MA, and London, England. 392 pp. (1972), 

3. A User's Guide to the Multics FORTRAN Implementa­
tion, by R.A. Freiburghouse. A document which pro­
vides the prospective Multics FORTRAN user with 
sufficient information to enable him to create and exe­
cute FORTRAN programs on Multics. It contains a com­
plete definition of the Multics FORTRAN language as 
well dS a description of the FORTRAN command and 
error messages. It also describes how to communicate 
with non-FORTRAN programs, tInd discusses some of 
the fundamental characteristics of Multics which affect 
the FORTRAN user. 68 pages. 

4. Multics PL/llcJngudge Sp('cification. A reference rnan­
u.11 which specifies precisely thp subset of th(' PLII lon­
gUdgt' lIsed un Multics. 174 pelges. 

S. USN'\' Cuid{' to th(l Multics PL/llmplementalion, by 
R.AFrt'iburghouse, et al. Provides detailed information 
about how the PUI language is embedded in the Mul­
tics programming environment. 53 pages. 

b. Crdphic Uwrs' SupplC'ml'nt to the' Mullic.'i Progrdm­
mers' Al(lIwal. In the s(lmt' fornltlt tiS the Multics Pro­
gr.ll1l111t'r'>' M.1I1l1.11, thi'i SlIPpl('lllt'nl glltl1l'rs in on(' 
pl.H t' dl· ... l ,-jption., of Ilw Multi( '> Cr.lphit., Sy.,h·1ll .1I1d 
11ll' COllllll.lI1ds .md slibroulinl''> IH.'('d('d 10 U'i(' it. Ap­
pro\illl.lll·ly SS ~Mges, illuslr.lll'<l. 

94 HONEYWELL COMPUTER JOURNAL 

Manuals that may be examined in the 
Project MAC or I. P. C. Document Rooms 

1. Multics System Prop,rclmnH'rs' M,1f1ual. In principl(', ,I 

complptp rE'fprl'ncp m,mu,ll dl'scribing how Ill(' ,>y'>It'1ll 

works inside. In fdct, Ihis donJllwnt conl,lins 1ll.lI1Y '>Pt -
tions which (ue inconsist€.'nt, in,Kcllr,ltp, or ob.,ol('l('; it 
is in need of much upgrtlding. How('vl'r, it.. ov('rvi('w 
sections arE:' generally .lccurate and vclludbl(' if in'iight 
into the internal organization is desired. Approxirn.llPly 
3,500 pdg('S. 

2. System Pmp,ramm('rs' Suppl('m('nt 10 the Mullin Pm­
Wc1mmers'Mdnual. This updatpablp rpf('rt'nu' m,mu.ll, 
in the Sdrnp form,}t .1S the Multirs Progr.Hllllwrs' M.lIl­
~~1, pruvidps caUing S€QUt'fKt'S of t'v('ry sy"tpm 
module. Approximately 850 Pdges. 

3. EPlBSA Prof!,fammN:'i R('{('r('nc(' Il.lndbook by 

D.J,Riesenberg. A manual describing thl' ,\.,wmbly (rn.l­
chine) languagp for the HonpywPlI b45 COlllputl'r. TIl(' 
l,lnguag(' hds bH~n rE.'nanwd ALM sinn' 111(' puhlic.lliol1 
of this manutll. (NE.'edpd only by progr.lIllfllPr ... wilh 
some spE:'cial rpclson to liSt' £>45 rn,Khirw 1.1Ilgll.lg(·.l HS 
pagps. 

4. f/on('yw('1/ 645 Processor Manual. A h.mlw.\r(' d(>. 
scriplion, including OPCOdl""I, ,Iddn's'iing Illodifipr." ('Ie. 

Of interest only to dt.'dic.ltl'd Il1lKhirw 1,1I1gU.lgl' pro­
gr,Hnmt'rs. 175 pdgl'S. 

S. Subsystem Writ('{\' Supplement to (hI' Mulli( \ Pro­
gr.u17mNs'M.lnu.11. A rn,Inu.ll giving (.llIing ,>«'qUI'1ll P'" 

of intprndl interf,l('('s of thp 'iY'ilpll1 which .lrt' U'>N­
clCcl'ssiblp. r-or thl' sophisticllt<,d sul,.,ysh'lll wrill'r who 
feels thell it is irnport,mi to bYPll.,S SOI1W '>t,lIld,lrd MlIl­
tics facility, this manual providt's SOI1lt.' Iwlp in u"ing 
interfaces one level dl'eper into thl' systprn. This 1ll,1I1l1.11 
is definitely not for thE:' casual user. Approxirn,lt('lv SO 
pdg<'S. 

C-19 



Technical Papers about Multics 
1. F,J.Corbat6 and V.A.vyssotsky, "Introduction and Overview 

of the Multics System", AFIPS ConI. Proc., FallJoint Comput. 
ConI. 27, Spartan Books, Washington, DC, 1965, pp. 185-
196. 

2. E.l.Glaser, et aI., "System Design of a Computer for Timeshar­
ing Application", AFIPS Can! Proc., FallJoint Comput. ConI. 
27,' Spartan Books, Washington, DC, 1965, pp. 197-202. 

3. V.A.Vyssotski, et aI., "Structure of the Multics Supervisor", 
AFIPS ConI. Proc., Fall Joint Comput. ConI. 27, Spartan 
Books, Washington, DC, 1965, 203-212. 

4. R.C.Daley and P.G.Newmann, "A General-Purpose File Sys­
tem for Secondary Storage", AFIPS ConI. Proc., Fall Joint 
Comput. Con! 27: Spartan Books, Washington, OC, 1965, 
pp. 213-229. 

5. l.f.Ossanna, et aI., "Communication and Input/Output 
Switching in a Multiplex Computing System", AFIPS ConI. 
Proc., FallJoint Comput. ConI. 27, Spartan Books, Washing­
ton, DC, 1965, pp. 231-241. 

6. E.E.David, Ir. and R.M.Fano, "Some Thoughts About the Social 
Implications of Accessible Computing", AFIPS ConI. Proc., 
FallJoint Comput. ConI. 27, Spartan Books, Washington, DC, 
1965, pp. 243-247. 

7. A.Bensoussan, C.T.Clingen and R.C.Daley, "The Multics Vir­
tual Memory", ACM Second Symp. on Operating Syst. Princi­
ples, Princeton University, 30-42 (1969). 

8. C.T.Clingen, "Program Naming Problems in a Shared Tree­
Structured Hierarchy", NA TO SO: Committee ConI. on Tech­
niques in Software Engg. 1, Rome, Italy (1969). 

9. R.M.Graham, "Protection in an Information Processing Util­
ity", Commun. ACM 11, No.5, 306-312 (1968). 

10. F.J.Corbat6 and I.H.Saltzer, "Some Considerations of Supervi­
sor Program Design for Multiplexed Computer Systems", IFIP 
ConI. Proc., Invited Papers, 66-72 (1968). 

11. R.C.Daley and J.B.Dennis, "Virtual Memory, Processors, clOd 
Sharing in MULTICS", Commun. ACM 11, No.5, 365-369 
(1968). 

12. F.J.Corbat6, "Pl/I as a Tool for System Programming", Data­
mation 15, No.6, 68-76 (1969). 

13. f.J.Corbat6, "A Paging Experiment with the Muhics System", 
In Honoro! P.M. Morse, M.I.T. Pr., Cambridge, MA, 217-228 
(1969). 

14. I.H.Saltzer and J.W.Gintell, "The Instrumentation of Muhics", 
ACM Second Symp. on Operating Syst. Principles, Princeton 
University, 167-174 (1969)' also in Commun. ACM 13, No. 
8, 495-500 (1970>. 

1 S. M.I.Spier .md E.I.Organick, "The Multin Inter-Procl"ss Com­
munication Facihty", ACM Second Symp. on OpNating Syst. 
Princip/t>s, Princeton University, 83-91 (1969), 

16. R.A.Freiburghouse, "The Muhin Pl/l Compiler", AFIPS ConI. 
Pmc 35, AFIPS Pr., 167·199 (1969l. 

C-20 

17. J.M.Grochow, "Real-Time Graphic Display of Timesharing 
System Operating Characteristics", AFlPS ConI Proc. FilII 
Joint Comput. ConI. 35, AFIPS Pr., 379-385 (1969). 

18. I.H.Saltzer and I.F.Ossanna, "Remote Terminal Ch.uc1cter 
Stream Processing in Multics", AFlPS ConI. Proc., Spring/oint 
Comput. Conf 36, AFIPS Pr., 621-627 (1970>. 

19. J.F.Ossanna and J.H.5altzer, "Technical and Human Engineer­
ing Problems in Connecting Terminals to a Timesharing Sys­
tem", AFIPS ConI. Proc., FallJoint Comput. ConI. 37, AFlPS 
Pr., 355-362 0970>. 

20. D.D.Clark, R.M.Graham, J.H.Saltzer and M.D.Schroeder, 
"Classroom Information and Computing Service", M.1.T. 
Project MAC Technical Report TR-80, (1971). 

21. M.D.Schroeder, "Performance of the GE-b45 Associ,ltiv(> 
Memory While Multics is in Operation", ACM Workshop on 
Syst. Performance EVilluation, 227-245 (1971). 

22. M.D.Schroeder and J.H.Saltzer, "A Hardware Archill"<.:lurt· for 
Implementing Protection Rings", ACM Third Symp. on Oper­
ating Syst. Principles, Palo Alto, CA, (1971). 

23. R.J.Reiertag and E.I.Organick, "The Multics Input/Output Sys­
tem", ACM Third Symp. on Operating Syst. Principles, Palo 
Alto, CA, (1971). 

M.I.T. Theses related to Multics 

1. J.H.Saltzer, "Traffic Control in a Multiplexed Computl"r Sys­
tem", Sc.D., MAC-TR-30, (1966), 

2. R.Rappaport, "Implementing Multi-Process Primitives in II 
Multiplexed Compuler System", S.M., MAC-TR-55, (lqb81. 

3. H.Deitel, "Absenlt>e Computations in.1 Multiple·An ....... Com­
puter System", S.M., MAC-TR-52, (19&8). 

4. I.Greenbaum,"A Simulator of Multipll' Inl..r.Kliw U .. (,p, to 
Drive a Timt'Shared Computer Systl'm", S.M., MAC-TR-'i8, 
(1968), 

5. J.M.Grochow, liThe Graphic Display as an Aid in tht' Monitor­
ing of a Timeshared Computer System", S.M., MAC- TR-54, 
(1968). 

6. R.I.Ancona," A Compiler for MAD-Based languc1gt> on Mul· 
tics", S.M., (1968), 

7. D.Clark, "A Rt'<iuction Analysis System for Pc1r .. ing PLlI", 
S.M., (1968), 

8. M.D.Schroeder, "Classroom Model of an Inform,lIion ,lOci 
Computing Service", S.M., (1909), 

9. C.M.Vogt, "Suspension of Process('s' in ,I Multipron' ..... ing 
Computer Sy .. ll'm", S.M., (l970l. 

10. R.Frankston, "A limilpo Sl'rvin' Sy .. tt'm Oil Mullir .... , S.B .. 
(1970>. 

11. R.R.Scht·lI, "Oynamic R('configur.lIion in II Modul,Ir CornplIlt'l 

Sysll'm", Ph.D., (1971), 

HONEYWELL COMPUTER JOURNAL 95 



APPENDIX D 

MULTICS COURSES 

D-1 F'Ol 



This page has intentionally 

been left blank. 

0-11 FO 



General 
F01 
F02 

Languages 
G 11 

+F 11 
+F12 

F13 
F14 
F15 
F15C 
F15D 

F19 

Data Base 
F32 
F31 
F30 

5-Days 
1-Day 

3-Days 
2-Days 
2-Days 
5-Days 
3-Days 
5-Days 
3-Days 
5-Days 

2-Days 

3-Days 
5-Days 
2-Days 

Word Processing 
. *F41 1-Day 

*F42 3-Days 
F43 5-Days 

LEVEL 68 CURRICULUM 
HONEYWELL MARKETING EDUCATION 

Multics Concepts and Utilization 
Multics Features, Functions, and 

Benefits 

APL 
APL Specifics 
BASIC Specifics 
COBOL-74 Specifics 
FORTRAN Specifics 
Multics PL/I Programming 
Advanced PL/I Programming 
Application Subsystem Programming 

Techniques 
Advanced Program Debugging Techniques 

LINUS Utilization 
MRDS Utilization 
MRPG Utilization 

WORDPRO Basic Utilization 
WORDPRO Advanced Utilization 
WORDPRO for Document Administrators 

Administration and Operation 
F60 5-Days 
F617 6-8 Hour VAL 
F68 5-Days 

Applications 
+F70 5-Days 

Operating Supervisor 
F80 5-Days 

+F81 5-Days 
+F86 5-Days 

Miscellaneous 
+F90 3-Days 

System Administration 
Project Administration 
Operator Training 

Graphics Programming 

• 
Mul tics Process Management Analysis. 
Multics Failure Analysis and Recovery 
MCS Concepts and Implementation 

GCOS Environment Simulator 
Utilization 

+ Not currently available (December, 78) 
• Conducted on-site by special request only 

D-1 F01 



LANGUAGES 

RECOMMENDED 

COURSE SELECTION GUIDE 

SUPPLEMENTAL/OPTIONAL 

MULTICS CONCEPTS AND UTILIZATION 
FOI CLASSROOM S-DAYS 

2-DAYS 

SCIENTIFIC PL/I PROGRAMMING 
FlSB CLASSROOM 3-DAYS 

~~VA.~CED PROGR~~ DEBUGGING TECH. 
F19 CLASSROOM 2-DAYS 

APPLICATION SUBSYSTEM PROG. 
FlSD CLASSROOM 5-DAYS 

COBOL PROGRAMMING 
SI 30-36 HRS 

FORTRAN IV LANGUAGE 
VAL 30-34 HRS 

FORTRAN SPECIFTCS 
CLASSROOM 3-DAYS 

·~-"---I","",---_-----J 

D-2 

I FUNDAMENTALS OF EDP 1 
G014 I, SI I 6-8 HRS 

& FLOWCHARTING 
36-44 HRS 

I G527 
DECISION TABLES llU{] 

VAL 112-16 HRS 

MULTICS FEATURES, . J--
FUNCTIONS & BENEFITS 

F027 VAL 6-8 HR~ 

I G334 
COBOL CONCEPTS .~ 

51 112-15 UR][j 

(PROGRAMMING LANGUAGE)_] 
VAL 12-16 HRS] 

BASIC SPECIFICS --~ 
VAL 12-16 l(fuLJ 

PROGRAMMING LAN~_Uf\~~l'~[=~ ~ •. ~-l 
CLASSROOM 3-Df\YS 

~~-L.. ___ -..,-__ --' __ . ___ ._. __ .. _ .. _ .-

F APL StECtFICS -----.-~] 
.I,.....:....;F1;;;..,;1:..--______ C_LA_S_· 5_ROOM I 2 - DAY s] 



DATA BASE 

COURSE SELECTION GUIDE 

RECOMMENDED 

&. REPORT GEN. 
CLASSROOM 

COBQ1-:-] 4 SPEC IF IC S 
CLASSROOM 

MRDS UTILIZATION WITHIN 
APPLIC. PROG. 

F31 CLASSROOM 5-DAYS 

SUPPLEMENTAL/OPTIONAL 

MULTICS FEATURES, .. ;] 
FUNCTIONS & BENEFITS 

I DATA BASE CONCEPTS . '---~J ' 
G078 I IBR L {-JI~·-J 



RECOMMENDED 

ADMINISTRATION AND OPERATION 

COURSE SELECTION GUIDE 

SUPPLEMENTAL/OPTIONAL 

I FUNDAMENtALS OF EDP..--J 
9014 I SI 16-8 H~ 

~----------------------------MULTICS FEATURES, 
FUNCTIONS & BENEFITS 

F027 I VAL 16-8 HRS 

OPERATOR TRAINING 
CLASSROOM 

D-4 



RECOMMENDED 

CLASSROOM 

OPERATING SUPERVISOR 

COURSE SELECTION GUIDE 

SUPPLEMENTAL/OPTIONAL 

C . FUNDAMENTALS OF EDP 1 
I G014 i SI I 6-8 IJR~] 

I G527 I 
DECISION TABLES j 

VAL J 12-16 HRS 

MULTlCS FEATURES, 
FUNCTIONS & BENEFITS 

F0271 VALJ 6-8 HRS 



RECOMMENDED 

COMMUNICATIONS 

COURSE SELECTION GUIDE 

D-6 

SUPPLEMENTAL/OPTIONAL 

I FUNDAMENTALS OF EDP 1 
G014 I SI I 6-8 HRS 1 

(BASIC) 
6-8 HRS 

SYS. ANALYSIS & DESIGN 
CLASSROOM S-DAYS 

MULTICS FEATURES, FUNCTIONS, 
& BENEFITS 

F027 I VAL I 6-8 HRS 



RECOMMENDED 

APPLICATIONS AND MISCELLANEOUS 

COURSE SELECTION GUIDE 

':" 

SUPPLEMENTAL/OPTIONAL 

~-------------------------. MULTles FEATURES, J 
FUNCTIONS & BENEFITS 

I--FO-2....:7~~~~.....;V=.;:AL=-.:..:::..:::....=..~--,.--6-8 HRS· 



This page has intentionally 

been left blank 

D-8 



APPENDIX E 

COMMANDS/MANUALS CROSS~REFERENCE 

Commands/Manuals Cross-reference 

E-i 

Page 

£-1 

t"('11 



This page has intentionally 

been left blank 

E·· ii F01 



AG92/r2 
AG92/r2 
AR97/aA 
AR97/aA 
AK92/aB 
AG92/r2 
AG92/r2 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AG92/r2 
AG931 aD 

. AG92/r2 
AG92/r2 
AN52/rO 
l\.K92/aB 
AS68/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AG93/aD 
AK50/rO 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 

AN52/rO 
AK92/aB 
AK92/aB 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG 92 Ir2 
AG92/r2 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/dB 
AK51/rl 
AK92/aB 
AK92/aB 
AZ03/rO 
AZ03/rO 

COMMANDS/MANUALS CROSS REFERENCE 

029and963 
MAP 
TEST (BOS) 
TSTCHN (BOS) 
aa 
ab 
abbrev 
abbrev 
abbrev-$abbrev 
abbrev-$expanded line 
abbrev-$set cp 
abc - -

.. 
absolute_pathname_ 
ac 
accept_messages 
acm 
active fnc err 
add anon 
add-name 
add-search rules 
adjust bit-count 
adjust-bit-count 
admin util- -
aim check 
aim-check-$equal 
aim-check-$greater 
aim-check-$ 

greater-or equal 
alarm clock meters 
aIm 
aIm abs 
alv-
am 
an 
and (AF) 
ans 
answer 
apl 
ar 
archive 
archive sort 
area info 
area-status 
as 
as who 
ascii to ebcdic 
ascii-to-ebcdic-$table 
ask - -
ask-$ask 

AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AG92/r2 
AK92/aB 
AG92/r2 
AG92/r2 
AG92lr2 
AG92/r2 
AS68/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
JiG92/r2 
JiG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AS68/rO 
AS68/rO 
AS68/rO 
l\G92/r2 
AG92/r2 
AZ03/rO 
AN52/rO 
AG92/r2 
AG93/aD 
AS68/rO 
AK50/rO 
AS68/rO 
AK50/rO 
AG92/r2 

E-1 

ask $ask c 
ask-$ask-cflo 
ask-$ask cint 
ask-$ask-cline 
ask-$ask-clr 
ask-$ask-flo 
ask-$ask-int 
ask-$ask-line 
ask-$ask-n 
ask-$ask-nflo 
ask-$ask-nint 
ask-$ask-nline 
ask-$ask-prompt 
ask-$ask-setline 
asr 
assign_ 
assign resource 
attach-Iv 
basic 
bd 
bill 
bind 
branches (AF) 
calc 
cancel abs request 
cancel-cobol program 
cancel=daemon_request 
car 
ccp 
cd 
cdr 
cdwd 
ceil (AF) 
cern 
cf 
chaddr 
chalias 
change 
change default wdir 
change-error mode 
change-kst attributes 
change-tunIng por~metcrs 
change -wd i r --
change=wdir 
charge 
charge disk 
chdf proj 
check dir 
check-iacl 

F l) 1 



AG92/r2 
AS68/rO 
AZ03/rO 
AK5U/rO 
AZOJ/rO 
AN53/rU 
AK92/aI.3 
AK92/aB 
AK92/a8 
AS68/rO 
AS68/rO 
AS68/rO 
AG92/r2 
AZ03/rO 
AK50/rO 
AZ03/rO 
AK50/rO 
AK50/rO 
AK50/rO 
AG93/aD 
AG92/r2 
AG92/r2 
AK50/rO 
AZ03/rO 
AG92/r2 
AG93/aD 
AG931aD 
AG93/aO 
AG93/aO 
AK50/rO 
AZ03/rO 
AG92/r2 
AG92/r2 
AK50/rO 
AZ03/rO 
AK50/rO 
AlOj/rO 
AK~O/rO 
AK92/a8 
AG92/r2 
AKy2/aB 
AK92/a8 
AG93/aD 
AG93/aD 

AGY3/aD 

AG~3/aD 

COMMANDS/MANUALS CROSS··REFERENCE 

check info segs 
check-log -
check-mdcs 
check-mst 
check-mst 
check-sst 
check-star name 
check-star narne-$entry 
check-star-name-$path 
chnarne - -
chpass 
chprog 
cis 
cka 
ckm 
ckm 
clean card pool 
clear projfile 
clear-reqfile 
clock-
close-file 
co 
cob 
cob 
cobol 
com err 
com err 
com-err-$suppress name 
command-query -
comp dfF info-
comp=dir=info 
compare 
compare_ascii 
compare mst 
compare-mst 
compare-object 
compare object 
compute-bill 
condition interpreter 
console output 
continue to signal 
convert aim-attributes 
convert-authorization 
convert-authorization-$ 

decode -
convert authorization $ 

encode -
convert authorization $ 

from_string -

AG93/aD 

AG93/aD 

t\G93/aD 

AG93/aD 
AG93/aD 

AK92/a8 
AK92/a8 
AG92/r2 
AG92/r2 
AK50/rO 
A.G92/r2 
A.N53/rO 
AN53/rO 
I\Mh'J! .... ('\ 
nl1.J,J'IV 

AN53/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AZ03/rO 
AK92/a8 
AN53/rO 
AK50/rO 
AN53/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AZ03/rO 
AG92/r2 
AG93/aD 
A.G92/r2 
AG92/r2 
AK92/a8 
AK50/rO 
AK50/rO 
AG92/r2 
AZ03/rO 
AS68/rO 
AK50/rO 
A.Z03/rO 
AK50/rO 
AZ03/rO 
AN52/rO 
A.S68/rO 
AG93/aD 

E-2 

convert authorization $ 
minimum 

convert authorization $ 
to string -

conv~rt authorization $ 
to string short -

convert date to b:i.n!lry 
con v e r t _0- d <:I t e = t 0 ~ bin;) r y __ °0 $ 

relative 
convert dial mess~lge 

convert-status code 
- --copy 

copy acl 
copy-as meters 
copy-cards 
copy-dump 
copy-dump$set [dump num 
copy dump$sfdn 
copy-dump seg 
copy-file-
copy-iacl dir 
copy-iacl-seg 
copy=mst 
copy names 
copy-out 
copy-pnt 
copy=:salvager output 
cp 
cpa 
cpf 
cpm 
cpt 
cpu time anu paginG 
cr 
create 
create area 
create cmf 
create-daemon queues 
create dir 
create-ips mask 
credit-
cref. 
cref 
cross reference 
cross reference 
ctp 
cu 
cu 

FOl 



AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AG93/aD 
AK92/aB 
AG93/aD 
AK92/aB 
AK92/aB 
AG93/aD 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 

AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 

AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AG92/r2 
AK92/aB 
AK92/aB 
AK92/aB 
AK50/rO 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK51/rl 
AK92/aB 
AG92ir2 
AG92/r2 
AG 92/ r2 
AK50/rO 
AK~O/rO 

AK50/r'0 
ARl)'{ / aA 
AG92/r2 
AZ03/rO 
AG92/r2 
AG93/aD 

COMMANDS/MANUALS CROSS-REFERENCE 

cu 
cu $Clf arg count 
cu-$af-arg-ptr 
cu-$af-return arg 
cu-$arg count 
cu-$arg-list ptr 
cu-$arg-ptr -
cu-$arg-ptr reI 
cu-Scl 
cu-Scp 
cu-$decode entry value 
cu-Sgenerate call 
cu-$get cl i~termediary 
cu-$ -

get command processor 
cu $get ready-mode 
cu-$get-ready-procedure 
cu-$level get­
cu-Slevel-set 
cu-$ready-proc 
cu-$set c1 intermediary 
cu-$ --

set command processor 
cu $set ready-mode 
cu-$set-ready-procedure 
cu-$stack frame ptr 
cu-$stack-frame-size 
cumulative_page=trace 
cv bin 
cv-bin-$dec 
cv-bin-$oct 
cv -cmf-
cv-entry 
cv-hex -
cv-oct-
cv-oct-check 
cv - pmf-
cv-ptr 
cwd 
d 
da 
daily log process 
daily-summary 
daily-syserr process 
daily-syserr-process 
date -(AF) 
date deleter 
date-time (AF) 
date-time 

AG93/aD 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 

AZ03/rO 
AZ03/rO 

AZ03/rO 

AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AS68/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AK92/aB 
AG92/r2 
AG92/r2 
AZ03/rO 
AG92/r2 
A.G92/r2 
AG93/aD 
AZ03/rO 
AZ03/rO 
AZ03/rO 
l\K92/aB 
AG92/r2 
AG92/r2 
A.K92/aB 
AS68/rO 
AG92/r2 
AG93/aD 
AG93/aD 
AG93/aD 
AG92/r2 
AG92/r2 
AK92/aB 

AG92/r2 
AG92/r2 

E-3 

date time $fstime 
datebin 
datebin-$clockathr 
datebin-$datebin 
datebin-$datofirst 
datebin-$dayr elk 
datebin-$dayr-mc 
datebin-$ 

following midnight 
datebin $la~t midnight 
datebin-$ 

~ext shift change 
datebin $ 

preceaing midnight 
datebin $revert 
datebin $revertabs 
datebin-$shift 
datebin-$this midnight 
datebin-$time­
datebin-$wkday 
day -
day (AF) 
day name (AF) 
db -
dcn 
dcr 
dd 
deactivate see 
debug 
decode 
decode clock value 
decode definItion 
decode-definition-$full 
decode - defini t ion--$ ini t 
decod e - desc r i ptor-­
default (AF) 
defer messages 
define area 
delegate 
delete 
delete 
delete-$path 
delete-$ptr 
delete --ael 
delete-dir 
delete-external 

variables 
delete force 
delete-iacl dir 

F01 



AG92/r2 
AG92/r2 
AG92/r2 
AKLjO/rO 
AG92/r2 
AG92/ r2 
AN52/rO 
AR9'l/aA 
AG92/r2 
AG92/r2 
AK92/aB 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG93/aD 
AN52/rO 
AS68/rO 
AK50/rO 
AK51/r1 
AK50/rO 
AK50/rO 
AZ03/rO 
AG92/r2 
AK92/aB 
AZ03/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AS68/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AS68/rO 
AG92/r2 
AG92/r2 
AK92/aB 
AS68/rO 
AG92/r2 
AN:;t2/rO 
AG92/r2 
AK50/rO 
AG92/r2 
AK50/rO 
AR9'71 aA 

COMMANDS/MANUALS CROSS-REFERENCE 

delete iacl seg 
delete-message 
delete-name 
delete-proj 
delete-search rules 
detach-Iv 
device meters 
device-meters 
df 
dial 
dial manager 
did -
directories (AF) 
director y (AF) 
dir s (AF) . 
dis 
discard 
disk_queue 
disk report 
disk-stat print 
disk-stat-print 
disk-usage stat 
disk low -
display branch 
display-cobol run unit 
display-component-name 
display-kst entry­
display-pl1Io err 
divide -(AF) -
dl 
dlv 
dm 
dmisc 
dn 
do 
dp 
dpe 
dpmf 
dpn 
dprint 
dprint 
dproj 
dpunch 
dq 
ds 
dsp 
dsr 
dump edt 
dump=:firmware 

AR91/aA 
AN53/rO 
AG92/r2 
AN52/rO 
AG92/r2 
AG92/r2 
AK92/aB 
AK92/aB 
AG92/r2 
AK50/rO 
AK50/rO 
AK50/rO 
AS68/rO 
AK50/rO 
AG92/r2 
AK50/rO 
AG92/r2 
AG93/aD 
AG92lr2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AK50/rO 
AG92/r2 
AG92/r2 
AK50/rO 
A.K92/aB 
AR91/aA 
AK92/aB 
AZ03/rO 
AG92/r2 
AG92/r2 
A'103/rO 
AG93/aD 
AG93/aD 
AN53/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AN52/rO 
AG92/r2 
AK92/aB 
A.Z03/rO 
AZ03/rO 

A.Z03/rO 

E-4 

dump mpc 
dump-pdmap 
dump-segment 
dvm -
e 
ear 
ebcdic to ascii 
ebcdic-to-ascii-$t~ble - - .. -
ec 
ed installation parms 
ed-mgt --
edIt proj 
edit-proj 
edit-proj$change all 
edm - -
edur f 
encode 
encode clock value 
enm (AF) 
enter 
enter abs request 
enterp -
entry (AF) 
ep 
epro 
equal (AF) 
equal name (AF) 
erf 
error table compiler 
et -
etc 
excerpt_mst 
exec com 
exists (AF) 
expand 
expand path 
expand pathname 
extract 
fa 
fast 
fcs 
file output 
file-system meters 
files (AF) 
find condition info 
find-include fIle 
find-include-flle $ 

geI search-rulei 
find Include-file $ 

inItiate count -

FO 



AZ03/rO 

AG92/r2 
AG92/r2 
AN52/rO 
AG92/r2 
AN53/rO 
AN53/rO 

AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AN52/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AK50/rO 
AZ03/rO 
AN53/rO 
AG93/aD 
AZ03/rO 
AG92/r2 
AK92/aB 
AK92/aB 
AK51/r1 
AN53/rO 
AK92/aB 
AK92/aB 
AG93/aD 
AG 93 / aD 
AZ031rO 
AZ03/rO 
AG93/aD 
AG93/aD 
AG92/r2 
AG93/aD 
AK92/aB 
AG93/aD 
AG92/r2 
AK92/uB 
AK92/~B 
AG92/r2 
AG93/aD 
AK50/rO 

COMMANDS/MANUALS CROSS-REFERENCE 

find include file $ 
set search-rule,s 

11 (AF) 
floor (AF) 
flush 
fo 
format 355 dump line 
format-355-dump-line-$ 

line- - - -
format cobol source 
format-line -(AF) 
fortran 
fortran abs 
fs chname 
fsm 
ft 
gc 
gcl 
gcos 
general ready 
generate mst 
generate-mst 
get ast name 
get-authorization 
get-bound seg info 
get-com lIne - -
get-default wdir 
get-definitIon -
get-dir quota 
get-dump ptrs 
get-entry name 
get-equal-name­
get-group-id -
get-group-id-$tag star 
get-initial ring -
get-library-segment 
get-line length 
get-max iuthoriiation 
get-pathname (AF) -
get-pdir 
get-privIleges 
get-process id 
get-quota 
get-ring 
get-system free area 
get-systern-search rules 
get-temp s~gments­
get:=uid_with_Iastname 

AG93/aD 
AZ03/rO 
AK50/rO 
L\.Z03/rO 
AG92/r2 
A.G92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG93/aD 
AG93/aD 

AK92/aB 

A.K92/aB 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AK92/aB 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 

AK92/aB 

AK92/aB 

.AG93/aD 
AG93/aD 

, AG93/aD 
AG93/aD 
AG93/aD 
AG93iaD 
AG93/aD 
AG93/aD 

A.K92/aB 
I\K92/aB 
AK92/aB 

I\K92/aB 
AK92/aB 
AZ03/rO 

£-5 

get_wdir 
gl s 
gm 
gm 
gpn (AF) 
gq 
gr 
greater (AF) 
gssr 
have mail (AF) 
hcs fadd acl entries 
hcs $ -

a~d dir acl entries 
hcs $ - -

a~d dir inacl entries 
hcs $add Inacl entries 
hcs-$append branch 
hcs-$append-branchx 
hcs-$append-link 
hcs-$chname-file 
hcs-$chname-seg 
hcs-$create-brunch 
hcs $del dir tree 
hcs-$delentry file 
hcs-$delentry-seg 
hcs-$delete a~l entries 
hcs-$ -

d~lete dir acl entries 
hcs $ --

delete dir 
inacI entries 

hcs $ 
delete inacl entries 

hcs $fs get mode 
hcs-$fs-get-path name 
hcs $fs-get-ref ~ame 
hcs-$fs-get-seg-ptr 
hcs-$fs-mov~ fiTe 
hcs-$fs-move-seg 
hcs $gel aec~ss class 
hcs -$ --

g~t access class seg 
hcs $get author 
hes -$get --be author' 
hcs-$ -

g~t dir ring brackets 
hcs $get max len~th 
hcs-$get max-length seg 
h c s:= $ get - p age _ t rae e ---

F01 



AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 

AG93/aD 
AG93/aD 
AK92/aB 

AG93/aD 
AG93/aD 
AK92/aB 
AK92/aB 
AG93/aD 
AG93/aD 
AG93/aD 
IItrf'"\~/_n 
ti1\.~£:/clD 

AK92/aB 
AG93/aD 
AG93/aD 
AK92/aB 
AK92/aB 
AG93/aD 
AG93/aD 
AK92/aB 

AK92/aB 
AK92/aB 

AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AG93/aD 
AG931 aD 
AG93/aD 
AG93/CJD 
Ali93/uD 
AG93/aD 
AG93/aU 
AG93/aD 
AGY3/aD 
Ali93/aD 

COMMA~DS/MANUALS CROSS-REFERENCE 

hcs $get ring brackets 
hcs-$get-safety sw 
hcs-$get-safety-sw seg 
hcs-$get-search-rules 
hcs-$ - -

get system 
search rules 

hcs $initiate 
hcs-$initiate count 
hcs-$ -

initiate search rules 
hcs $list acl 
hcs-$list-dir acl 
hcs-$list-dir-inacl 
hcs-$list-inacl 
hcs-$make-entry 
hcs-$make-ptr 
hcs-$make-seg 
hcs-$quuta move 
hcs-$quota-read 
hcs-$replace acl 
hcs-$replace-dir acl 
hcs-$replace-dir-inacl 
hcs-$replace-inacl 
hcs-$set bc -
hcs-$set-bc seg 
hcs-$ 

set dir ring brackets 
hcs $set entry-bound 
hcs-$ - -

set entry bound seg 
hcs $set max length 
hcs-$set-max-length seg 
hcs-$set-ring brackets 
hcs-$set-safety sw 
hcs-$set-safety-sw seg 
hcs-$star -
hcs-$star dir list 
hcs $star-list 
hcs-$status 
hcs $status long 
hcs-$status-minf 
hcs-$stutus-mins 
hcs-$terminite file 
hc s'-$ terminate-name 
hcs-$terminate-noname 
hcs-$terminate-seg 
hcs-$truncate file 
hcs=$truncate-seg 

\ 

AK92/aB 
AR9" faA 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
L\G92/r2 
AK50/rO 
AK50/rO 
AK50/rO 
AN71/rl 
AN71/r1 
AN71/rl 
AN71/rl 
AN71/rl 
AN71/rl 
AN71/rl 
AN71/c-'1 

AN71/rl 
AN71/rl 
AK50/rO 
AK50/rO 
L\K50/rO 
AZ03/rO 
AK50/rO 
AZ03/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AK50/rO 
AZ03/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AK50/rO 
AK51/rl 
AS68/rO 
AN52/rO 
AN52/rO 
L\G92/r2 
AG92/r2 
AR97/aA 
AG93/aD 
AG93/aD 

E-6 

hcs $wakeup 
heals report 
hello-
help 
hmu 
home dir (AF) 
hour (AF) 
how many users 
hp delete acl 
hp-set acT 
hpda -
hphcs $add cpu 
hphcs-$add-main 
hphcs-$add-mem 
hphcs-$add-pd records 
hphcs-$del-cpu 
hphcs-$del-main 
hphcs=$del=mem 
hphcs $ 

delete pd records 
hphcs $rc f~rce unlock 
hphcs-$re~onfig-info 
hpsa - -
hpset ring brnckels 
hpsrb- -
hunt 
icref 
icref 
if 
irn 
immediate messages 
in 
include cross reference 
inc 1 ude--cross - reference 
ind -
indent 
index (AF) 
index set (AF) 
initi'ate 
install 
install 
install 
instr speed 
interrupt_meters 
ia 
io call 
io error summary 
ioa 
ioa 

FO 



AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AK92/aB 
AKY2/aB 

AK92/aB 
AK50/rO 
AG93/aD 
AK92/aB 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AK92/aB 
AG93/aD 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AG93/aD 
AK92/aB 
AG93/aD 
AG93/aD 
AK92/aB 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AK92/aB 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AG9~/dD 
l'h~ I.) _, / ,111 

Ali93/iJD 
AK92/a8 
AKY2/aB 
AK92/aB 
AK92/aB 

COMMANDS/MANUALS CROSS-REFERENCE 

ioa $general rs 
ioa-$ioa stream 
ioa-$ioa-stream nnl 
ioa-$ioa-switch-
ioa-$ioa-switch nnl 
ioa-$nnl- -
ioa-$rs 
ioa-$rsnnl 
ioa-$rsnp 
ioa-$rsnpnnl 
iod-info 
iod-info-$ 

driver-access name 
iod info-$generIc type 
iod-tables_compiler 
iox 
iox 
iox-$attach iocb 
iox $attach-ioname 
iox-$close -
iox-$control 
iox-$delete record 
iox-$destroy iocb 
iox-$detach locb 
iox-$err no-operation 
iox-$err-not attached 
iox-$err-not-closed 
iox-$err-not-open 
iox-$find iocb 
iox-$find-iocb n 
iox-$get chars­
iox-$get-line 
iox-$look iocb 
iox-$modes 
iox-$move attach 
iox-$open-
iox-$position 
iox-$propagate 
iox-$put chars 
iox-$read key 
iox-$read-Iength 
iox-$read-record 
iox-$rewrlte record 
i\)x-$seek key 
i0x=$writ~_record 
ipc 
ipc-$block 
ipc-$create ev chn 
ipc=$cutoff- -

AK92/aB 

AK92/aB 
AK92/aB 
A~92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/a8 
l\K50/rO 
AK50/rO 
AS68/rO 
AG92/r2 
AG92/r2 
AG92/r2 
l\G92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AZ03/rO 
AZ03/rO 
AZ03/rO 

l\Z03/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AN52/rO 
AZ03/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AK50/rO 
AZ03/rO 
AZ03/rO 
AK92/aB 
AK50/rO 
AG92/r2 
l\G92/r2 
AK51/r1 

E-1 

ipc $ 
del event call chiJnnel 

ipc $decl ev wait clIn 
ipc-$delete ev chn 
i p c -$ d r a inc h n-­
ipc-$mask ev calls 
ipc -$ read-ev--chn 
ipc-$reconnect 
ipc-$set call prior 
ipc-$set-wait-prior 
ipc--$unmask ev c;) 11 s 
is Tie user 
is-legal_proj 
ison 
1 
la 
lac 
lar 
last message (AF) 
last-message sender (AF) 
last-message-time (AF) 
Idr -
length (AF) 
less (AF) 
lex error 
lex-string 
lex-string-$ 

(nit lex-del ims 
lex string-$lex 
lid -
line length 
link 
link meters 
link-unsnap 
links (AF)­
lis 
list 
list abs requests 
list accessible 
list-acl 
list daemon requests 
list-delegated projects 
list-dir info -
list-dir--info 
1 i s t - ext ~ rna 1 - v l) r i () tJ 1 e ::; 
list-extr(J personid~:; 
list-i3cl dir 
list-iacl-seg 
list-mdir 

F01 



AZ03/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AK92/aB 
AG92/r2 
AN52/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AK51/r1 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AN69/rO 
AN69/rO 

AN69/rO 
AN69/rO 
AN69/rO 
AN 69 /rO 
AN69/rO 
AN69/rO 

AN69/rO 
AN 69 IrO 

AN69/rO 
AN69/rO 

AN69/rO 
AN69/rO 

AN69/rO 
AK92/a8 
AG92/r2 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 

COMMANDS/MANUALS CROSS-REFERENCE 

list mst 
list-not accessible 
list-ref-names 
Jist-resources 
list-temp segments 
lk - -
lkm 
11 
1m (AF) 
lms (AF) 
lmt (AF) 
lnac 
load ctl status 
login 
logout 
long date (AF) 
lr -
lrn 
Is 
Iv attached (AF) 
maTI 
mailbox $add index 
mailbox-$ 

check-salv bit index 
mailbox $chname 
mailbox-$close 
mailbox-$create 
mailbox-$delete 
mailbox-$delete index 
mailbox=$ 

get message 
count index 

mailbox $get mode index 
mailbox-$ - -

increiental read ind~~ 
mailbox $open 
mailbox-$ 

own incremental 
read index 

mailbox $own read index 
mailbox-$ - -

read delete index 
mailbox $read-index 
match star name 
max TAF)-
mban 
mbcr 
mbda 
mbdl 

AK92/aB 
AK92/a8 
AK92/aB 
AK92/aB 
AK92/eB 
AN69/rO 
AN69/rO 
AN69/rO 
AN69/rO 
AK92/a8 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK921aB 
AK92/aB 
AK92/a8 
AK92/aB 
f\ 7 {'\~ I_{'\ 
I1.L.V~/(V 

AG92/r2 
AG92/r2 
AZ03/rO 
AN69/rO 

AN69/rO 

AN69/rO 

AN69/rO 

AN69/rO 

AN69/rO 
AN69/rO 
AN69/rO 
AN69/rO 

AN69/rO 

AN69/rO 

AN69/rO 

AN69/rO 

AN69/rO 

AN69/rO 

E-8 

mbdn 
mbla 
mbrn 
mbsa 
mbsml 
mbx ael add 
mbx-acl-delete 
mbx·-acl-list 
mbx-ael-replace 
mbx-add-name 
mbx-ereate 
mbx-delete 
mbx-delete ael 
mbx-delete-name 
mbx-list ael 
mbx-rename 
mbx-set acl 
mbx set-max length 
me s vet'S ion 
memo 
merge 
merge mst 
message segment $ 

8dd fIle 
message segment $ 

add index -
message segment $ 

check-salv bit file 
message-segment $ 

~heck-salv bit index 
message-segment $ 

chname file -
message segment $close 
message-segment-$create 
message-segment-$delete 
message-segment-$ 

delete fi Ie -­
message iegment $ 

delete index -
message segment $ 

get message count file 
message segment __ $ 

get message 
count index 

message segment $ 
get mode f11c-

messaie segment $ 
get mode indeX" 

messa~e segment $ 
inerement~1 fIle index 

FOl 

/ 



AN 69 IrO 

AN 69 IrO 

AN69/ro 

AN 69 IrO 

AN69/rO 

AN 69 IrO 

AN69/rO 

AN69/rO 

AN69/rO 

AN69/rO 

AN 69 IrO 

AN69/rO 

AN 69 IrO 

AN69/rO 

AN 69 IrO 

AN 69 IrO 

AN52/rO 
AN52/rO 
AN52/rO 
AN52/rO 
AN 52 IrO 
AN52/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AS68/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 

COMMANDS/MANUALS CROSS-REFERENCE 

message segment $ 
incremental read index 

message segment $ 
ms acT add -

message segment $ 
ms acT delete-

message segment $ 
ms acT list -

message segment $ 
ms acT replace 

message_segment_$ 
open 

message segment $ 
own incremental 

read file 
message segment $ 

own incremental 
read index 

message segment $ 
own read fi Ie­

message segment $ 
own read i'ndex 

message segment $ 
read delete fIle 

message segment $ 
read delete index 

message segment $ 
read file -

message segment $ 
read Index -

message segment $ 
update message file 

message segment $ 
update message index 

meter fim -
meter-gate 
meter-gate 
meter-signal 
meter-util 
mg 
min (AF) 
min us (AF) 
minute (AF) 
misc 
ml 
mod (AF) 
month (AF) 
month name (AF) 

"AG92/r2 
AK51/r1 
AK92/aB 
AG92/r2 
L\G92/r2 
AK50/rO 
AN69/rO 
AK50/rO 
AN69/rO 
AK50/rO 
AN69/rO 
4K50/rO 
AN69/rO 
AK50/rO 
AN69/rO 
AK50/rO 
AN69/rO 
AK50/rO 
AN69/rO 
AN69/rO 
AN69/rO 
AK50/rO 
AN69/rO 
4K50/rO 
AK50/rO 
AN69/rO 
AK50/rO 
AN69/rO 
AK50/rO 
AN69/rO 
AK50/rO 
AN69/rO 
AK50/rO 
AN69/rO 
AN69/rO 
AN69/rO 
4N69/rO 
AN69/rO 
A.N69/rO 
AN69/rO 
AN69/rO 
AN69/rO 
AN69/rO 
AK92/a8 
4K92/aB 
AK92/a8 
AK92/a8 
AK92/aB 

E-9 

move 
move_dir_quota 
move names 
move_quota 
mq 
ms add name 
ms-add-name 
ms-create 
ms-create 
ms-delete 
ms delete 
ms-delete acl 
ms-delete-acl 
ms-delete-name 
ms-delete-name 
ms-list acl 
ms-list-acl 
ms rename 
ms rename 
ms-salv uti1 vN 
ms-salva-ger vN 
ms-set acl -
ms-set-acl 
ms=set=max length 
msan 
msan 
mscr 
mscr 
msda 
msda 
msdl 
msdl 
msdn 
msdn 
mseg_ 
mseg access 
mseg=add_ 
mseg convert 
m<:!OIT - ria+- .... 
" .......... 5 "" va 

mseg-index 
mseg own 
mseg-utiI 
mseg-util vN 
msf manager 
msf-manager-$acl add 
msf-manager -$ ac 1-"-de lete 
msf-manager-$acl-list 
msf-rnanager-$ 

acl replace 

F01 



AK92/aB 
AK92/aB 
AK92/aB 
AK9~/aB 
AK50/rO 
AN69/rO 
AK50/rO 
AN 69 frO 
AK50/rO 
AN69/rO 
AK50/rO 
AN69/rO 
AG92/r2 
J\G92/r2 
AG92/r2 
AS6o/rO 
AS68/rO 
AK50/rO 
AK50irO 
AK50/rO 
AK50/rO 
AK50/rO 
AK50/rO 
AK50/rO 
AK50/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG 92 /r2 
AG92/r2 
AG92/r2 
AZ03/rO 
AZOj/rO 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/a8 
AN53/rO 
AN53/rO 
AN53/rO 
AN~3/rO 

AN53/rO 
AN'j3Ir'O 
AN~J/rO 

AN5J/rO 
AN531rO 
f\N''>3IrO 

COMMANDS/MANUALS CROSS-REFERENCE 

msf manager $adjust 
msf-manager-$close 
msf-manager-$get ptr 
msf-manager-$open 
msla -
msla 
msrn 
msrn 
mssa 
mssa 
mssml 
msu 
nequal (AF) 
new fortran 
new_proc 
new proj 
new-smf 
new user 
new user$cg 
new-user$cga 
new-user$change 
new-user$install \ 
new-user$new user 
new-user$nu -
new-user$nua 
ngreater (AF) 
nless (AF) 
nondirectories (AF) 
non d irs ( AF ) 
nonlinks (AF) 
nonsegments (AF) 
nonsegs (AF) 
not (AF) 
nothing 
nt 
object info 
object-info-$brief 
object-info-$display 
object-info-$long 
od 355- -
od-cleanup 
od-print 
od-print-$op finish 
od-print-$op-fmt line 
od-print-$op-init 
od-print-$op-new page 
oJ-print-$op-new-seg 
od-stack- - -
0(= dump 

AG92/r2 
AN53/rO 
AN53/rO 
AN53/rO 
AG92/r2 
AG92/r2 
1\ fl., c:: ') I ... () 
11.11IJL/jV 

AG92/r2 
AG9;?/r2 
AZ03/rO 
l\Z03/rO 

AZ03/rO 

AZ 03/rO 

AZ03/rO 

AZ03/rO 

A.Z03/rO 

AZ03/rO 

AZ03/rO 

AK50/rO 
l\G92/r2 
AR97/aA 
AN53/rO 
AG92/r2 
AZ03/rO 
AG92/r2 
AK9~/~B 
AR97/aA 
AZ03/rO 
AG92/r2 
AK50/rO 
l\G92/r2 
A.ZOJ/rO 
Al03/rO 
A.Z03/rO 
AZ03/rO 
AG92/r2 
AG92/r2 
A.G92/r2 
A.G92/r2 
AG92/r2 
l\K92/aB 

E-l0 

old fortran 
onlIne 355 dump 
online-dump -
online-dump 355 
or (AF) -
pa 
p age m u 1 til eve 1 me 1.., (~ r s 
page:=trace 
pan 
parse file 
parse-file-$ 

p8r~e file 
parse fIle $ 

parse fiTe cur line 
parse fIle $--

. parse file init n;lme 
parse fIle $ 

parse_file_init_ptr 
parse file $ 

parse file line no 
parse fIle $- -

parse fiTe ptr 
parse fIle $ 

parse file set break 
parse fIle $ 

parse file uns~t bre~k 
pass_utIl - --
pat 
patch firmware 
patch-ring zero 
path -(AF)-
pause 
pb 
pbm 
pcd 
pcd 
pd ( AF) 
pdt copy 
pdwd 
pel 
pem 
peo 
peol 
pg 
pgt 
pi 
p11 
pl1 abs 
pli 

F () 1 



AK92/aB 
AG92/r2 
AG92/r2 
AS68/rO 
AS68/rO 
AN52/rO 
AG92/r2 
AR911aA 
AG92/r2 
AN52/rO 
AG92/r2 
AZ03/rO 
AK92/aB 
AK92/aB 

AK92/aB 

AK92/aB 
AZ03/rO 
AG92/r2 
AN53/rO 
AN53/rO 
AG92/r2 
AG92/r2 
AK92/aB 
AG93/aD 
AG93/aD 

AR91/aA 
AZ03/rO 
AG92/r2 
AKSO/rO 
AK50/rO 
AN53/rO 
AN53/rO 

AN53/rO 

ANC;</r() ..... J..J # .. ..., 

AZ03/rO 
AN52/rO 
AR97/aA 
AK50/rO 
AK92/aB 
AK92/aB 
AK50/rO 
AG92/r2 
AK50/rO 
AG 92 /r2 

COMMANDS/MANUALS CROSS-REFERENCE 

plu 
pI us (AF) 
pm 
pmf 
pmise 
pmlm 
pmotd 
poll_mos_memory 
ppa 
pph 
pr 
prelink 
prepare me restart 
prepare-me-restart-$ 

replace -
prepare mc restart $ 

retry- - -
prepare_mc_restart_$tra 
pri 
print 
print apt entry 
print-aste ptp 
print-attach table 
print-auth names 
print-bind-map 
print-cobol error 
print-cobol-error-$ 

switch - -
print configuration deck 
print-configuration-deck 
print-default wdir -
print-devices­
print-disk 
print-dump seg name 
print-dump-seg-name-$ 

get-ptr - - -
print-dump seg name $ 

hard - -
print dump tape 
print-error message 
print-gen info 
print-heals message 
print-iod tables 
print-link info 
print-linkage usage 
print-log -
print-messages 
print-meters 
print=motd 

AN52/rO 
AK51/r1 
AK50/rO 
AG92/r2 
AK50/rO 
AZ03/rO 
AK50/rO 
AG92/r2 
AK50/rO 
AG92/r2 
4K50/rO 
AR9'( faA 
AG92/r2 

AN52/rO 
AK50/rO 
AG92/r2 
AK50/rO 
AZ03/rO 
AG92/r2 
AG92lr2 
L\G92/r2 
AG92/r2 
AS68/rO 
AK51/r1 
AG92/r2 
AG92/r2 
AN52/rO 
AG92/r2 
AG92/r2 
AG92/r2 
L\G92/r2 
AG92/r2 
AG92/r2 
AG93/aD 
L\G93/aD 
L\G93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
L\G93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
L\G93/aD 
AG93/aD 
AG92/r2 
AZ03/rO 

E--11 

print paging histogram 
pr i nt pd t 
print-pnt 
print-proc auth 
print-projfile 
print-relocation info 
print-reqfile 
print-request types 
print-sat -
print-search rules 
print-syserr-log 
print-syserr-log 
print translator 

search rules 
print tu~ing parameters 
print urf -
print-wdir 
priv move quota 
privIleged prelink 
probe 
profi Ie 
program_interrupt 
progress 
proj mtd 
proj-usage report 
prt -
psr 
ptp 
ptsr 
pwd 
qedx 
quer y (AF) 
quotient (AF) 
qx 
random 
random-$exponentlal 
'random-$exponenti~l seq 
random-$get seed 
random-$normal 
random-$normal ant 
random-$normal-ant seq 
random -$ norma 1--seq 
random-$set seed 
random-$uni[orm 
random-$uniform ant 
random-$unlform--ant seq 
random-$uniform=seq 
rc 
rdc 

F01 



AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AK92/a8 
AK92/a8 
AG92/r2 
AG92/r2 
AG92/r2 
AK50/rO 
AZOJ/rO 
AK50/rO 
AK50/rO 
AK50/rO 
AG93/aD 
AS68/rO 
AZ03/rO 
AS68/rO 
AK50/rO 
AG92/r2 
AK92/a8 
AG93/aD 
AK50/rO 
AK50/rO 
AK50/rO 
AG92/r2 
AS68/rO 
AK92/a8 
AZ03/rO 
AG92/r2 
AG92/r2 
AK50/rO 
AK50/rO 
AK92/a8 
AK50/rO 
AZ03/rO 
AK50/rO 
AK50/ru 
AZ03/rO 
AG92/r2 
AG92/r2 
AK50/ru 
AG92/r2 
AG92/r2 
AZ03/rO 
AZOj/rO 
AZOJ/rO 

AZ03/rO 

COMMANDS/MANUALS CROSS-REFERENCE 

rdf 
rdn 
rdy 
re 
read allowed 
read-write allowed 
ready 
ready off 
ready-on 
rebuild dir 
rebuild-dir 
reclassIfy dir 
reclassify-seg 
reclassify-sys seg 
record stream -
recov 
reduction compiler 
register 
regist.er mdir 
release 
release area 
release=temp_segments_ 
remove user 
remove-user$persnt 
remove=user$urf 
rename 
rename proj 
reorder archive 
repeat Tine 
repeat-query 
reprint error 
reset cdt meters 
reset-disk meters 
reset-external variables 
reset-soos 
reset-tpd 
reset-usage 
reset-use totals 
resetcopysw 
resource usage 
response- (AF) 
restore pdt access 
rf --
rfa 
ringO get 
ringO-get-$definition 
ringO-get-$ 

defInitIon given sIt 
ringO_get_$nime -

A.Z03/rO 
AZ03/rO 
AN69/rO 
AN53/rO 
AG92/r2 
AG92/r2 
AZ03/rO 
AS'58/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AK50/rO 
AG92/r2 
AG92/r2 
AK50/rO 
A.Z03IrO 
flr..O?/,.,.? 
.n.'-'J'-I''-

AG92/r2 
AG92,{r2 
AG92/r2 
AG92/r2 
AG92/r2 
AK50/rO 
AG93/aD 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AK50/rO 
A.G92/r2 
AG92/r2 
AG93/aD 
AG93/aD 
AG93/aD 
AK92/a8 
AK51/rl 
AK51/rl 
AK51/rl 
A.R97/aA 
A.K50/rO 
A.K~O/rO 
AK50/rO 
l\R97/aA 

E-12 

ringO get $names 
ringO-get-$segptr 
ring T lock 
ring-zero dump 
rl -
rn 
rpl 
rqm 
ru 
run cobol 
runoff 
runoff abs 
sa 
sac 
safety sw off 
safety-sw-on 
save dlr Info 
save-dir infQ 

scI 
scr 

- -

search (AF) 
segments (AF) 
segs (AF) 
send admin command 
send-mail 
send-message 
send-message CJcknowledgc 
send-message express 
send-message-silent 
set acl 
set-bit count 
set cc 
set-com line 
set-dir-quota 
set-iacI dir 
set-iacl-seg 
set-lock­
set-Iock-$lock 
sct-Iock-$unlock 
set-max length 
set - md i"F accoun t 
set-mdir-owner 
set-mdir-quota 
set-mos ~olling time 
set-pnt-audit 
set-pnt-auth 
set-pnt-gpw 
set=pro~_required 

FU1 



AK92/aB 
AK50/rO 
AK50/rO 
AG92/r2 
AK50/rO 
AK50/rO 
AK50/aA 
AK92/aB 
AZ03/rO 
AZ03/rO 
AK50/rO 
AG92/r2 

AG92/r2 
AK92/aB 
AK51/r1 
AZ03/rO 
AS68/rO 
AS68/rO 
AG92/r2 
AK92/aB 
AG92/r2 
AG92/r2 
AN52/rO 
AG92/r2 
AG92/r2 
AK92/aB 
AG92/r2 
AG92/r2 
AG92/r2 
AZ03/rO 
AZ03/rO 
AZ03/rO 
AZOJ/rO 
AZ03/rO 
AZ03/rO 

AZOj/rO 
AZ03/rO 

AZOJ/rO 

AZ03/rO 

AZ031rO 

Al03/rO 

Al03/rO 

COMMANDS/MANUALS CROSS-REFERENCE 

set ring brackets 
set-sat audit 
set-sat-auth 
set-search rules 
set-sons volume 
set-system priv 
set-system-search rules 
set-system-storage 
set-timax -
set-tpd 
set-tpp 
set-translator 

-search rules 
set tty 
set-user storage 
set-volume quota 
setcopysw -
setcrank 
setdisk 
sid 
signal_ 
sis 
slave 
slm 
sm 
sma 
sml 
sms 
smx 
sort 
sort items 
sort-items-$bit 
sort-items-$fixed bin 
sort-items-$float-bin 
sort-items-$general 
sort-items-$ 

varying char 
sort items indirect 
sort-items-indirect-$ 

ad} char- -
sort Items indirect $ 

bit - -
sort items indirect $ 

fixed bin -
sort it~ms indirect $ 

float bin 
sort items indirect $ 

general -
sort items indirect $ 

varying-char 

A.K50/rO 
AK50/rO 
AG92ir2 
AG92/r2 
A.N52/rO 
AN52/:rO 
AN52/rO 
A.R97/aA 
AG92/r2 
AK92/aB 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AZ03/rO 
AG92/r2 
AK50/rO 
AG92/r2 
AG92/r2 
A.G92/r2 
AG92/r2 
AG92/r2 
AK92/aB 
A.K92/aB 

AK92/aB 
AK92/aB 
A.K92/aB 

AK92/aB 

AK92/aB 
A.K92/aB 
AK92/aB 
AK92/aB 

AK92/aB 
AK92/aB 

AK92/aB 

A.K92/aB 
AK92/a8 
AK92/a8 
AK92/a8 

fO.:-13 

sort projfile 
sort-reqfile 
sort-seg 
spe (AF) 
spg 
spg ring 0 info 
spg=util- -
sprq 
sr 
srb 
ss 
ssf 
ssn 
ssr 
st 
start 
status 
stm 
stop cobol run 
stpp-
string (AF) 
strip (AF) 
strip entry (AF) 
stsr 
stty 
stu 
stu-$ 

rl~~ode runtime value 
stu $find block -
stu-$find header 
stu-$ 

fInd runtime symlh)l 
stu $ -

g~t implicit qualifier 
stu $get line 
stu-$get-line no 
stu-$get-location 
stu-$ -

g~t runtime address 
stu $get runtime block 
stu -$ - --

get runtime line no 
stu $~ --

g~t runtime location 
stu $get statement map 
stu-$offset to pointer 
stu-$pointer to offset 
stu-$remote Iormat 

FOl 



AK92/aB 
AG92/r2 
AG92/r2 
AK50/rO 
AK?l/rl 
AZ03/rO 
AG93/aD 
AK50/rO 
AK92/aB 
AG92/r2 
AK50/rO 
AK92/aB 
AK92/aB 
AK92/aB 

AK92/aB 

AK92/aB 

AK92/a8 

AK92/aB 

AK92/a8 

AK92/aB 

AK92/aB 

AK92/aB 

AK92/aB 

AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AN52/rO 
AK50/rO 
AN52/rO 
AK50/rO 
AG92/r2 
AN52/rO 
AN52/rO 
AZ03/rO 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/ aD 

COMMANDS/MANUALS CROSS-REFERENCE 

sub err 
3ubstr (AF) 
suffix (AF) 
sweep 
sweep 
sweep_disk 
syn 
sy s - full report 
sys-info-
system (AF) 
system daily report 
system-info -
system-info-$abs prices 
system-info-$ -

access ceIling 
system info $ 

category names 
system_info_$ 

device prices 
system i"nfo $ 

installatIon id 
system_info_$ 

io prices 
system info $ 

last-shutdown 
system-info $ 

level names 
system Info $ 

next-shutdown 
system:=info_$ 

prices 
system info $ 

shift table 
system Info $sysid 
system-info-$timeup 
system-info-$titles 
system-info-$users 
system-link-meters 
system-montnly report 
system-performance graph 
system-total -
tc -
tcm 
tcq 
teco 
term 
term-$refname 
term-$seg ptr 
term=$single_refname 

AG93/aD 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92ir2 
AG92/r2 
AR97/aA 
l\R97/aA 
AG92/r2 
AK92/a8 
AK92/aB 

A.K92/a8 

AK92/a8 

AK92/aB 

AK92/a8 

AK92/aB 

AK92/aB 

AK92/aB 

AK92/aB 

AK92/aB 

AK92/aB 

AG92/r2 
AN52/rO 
l\G92/r2 
AG92/r:2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
A.G92/r2 
AN5~/rO 
l\G92/r2 
AG92/r2 
ANS2/rO 
AN52/rO 
AZ03/rO 

E-14 

term $unsnap 
termInate 
terminate refname 
terminate-refname 
terminate-segno 
terminate=segno 
terminate single refname 
terminate-single-refname 
test cpu -
test-tape 
time- (AF) 
timer manager 
timer - manager--$ 

818rm call "-
timer manager $ 

alarm call Inhibit 
timer manager $ 

alarm wakeup 
timer manager $ 

cpu-call -
timer-manager $ 

~plj-call inhibit 
timer-manager $ 

~pu-wakeup 
timer-manager $ 

reset alarm-call 
timer manager-$ 

res~t alarm-wakeup 
timer manager-$ 

reset cpu call 
timer manag"er $ 

reset cpu wakeup 
timer_manager_$ 

sleep 
times (AF) 
tln 
tm 
tmr 
tmr 
tms 
tms 
tmsr 
tmsr 
total time meters 
trace 
trace stack 
traffIc control mett~rs 
traffic-control=queue 
translator info 

FOl 



AZ03/rO 

AK50/rO 
AG92/r2 
AG92/r2 
AR9'r / aA 
AG92/r2 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AK92/aB 
AN52/rO 
AG93/aD 
AK92/aB 
AK50/rO 
AN52/rO 
AN52/rO 
AN52/rO 
AG92/r2 
AG92/r2 
AS68/rO 
AG92/r2 
AG92/r2 
AG93/aD 
AG93/aD 
AG92/r2 
AK92/aB 
AK50/rO 
AR97/aA 
AS68/rO 
AG92/r2 
AK50/rO 
AK50/aA' 
AK50/rO 
AG92/r2 
AG93/aD 
J\G93/aD 
AG93/aD 

A.G93/aD 
AG93/aD 
J\G93/aD 
AG93/aD 
A.G93/aD 
AG93/aD 

COMMANDS/MANUALS CROSS-REFERENCE 

translator info $ 
get source info 

trim syserr Tog 
trunc (AF)-
truncate 
truncate heals log 
ts - -
tssi 
tssi-$clean up file 
tssi-$clean-up-segment 
tssi-$finish fIle 
tssi-$finish-segment 
tssi-$get fiTe 
tssi-$get-segment 
ttm - -
tty 
tty­
tty-lines 
tty-lines 
tty-meters 
ttym 
ul 
unassign resource 
undelegate 
underline (AF) 
unique (AF) 
unique bits 
unique-chars 
unlil)k- -
unwinder 
up ctr 
update heals log 
upmf - -
ur 
urfp 
usage and revenue 
usage-total 
user -(AF) 
user in fo 
user-info­
user-info-$ 

absentee queue 
user info $absin 
user-info-$absout 
user-info-$attributes 
user-info-$homedir 
user-info-$limits 
user-info-$ 

load ctI info 

AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
AG93/aD 
4K50/rO 
AS68/rO 
AS68/rO 
AS68/rO 
AK50/rO 
AG92/r2 
AG92/r2 
AG93/aD 
AK92/aB 
AG92/r2 
AG92/r2 
AG93/aD 
4G92/r2 
AG93/aD 
AZ03/rO 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AG92/r2 
AS68/rO 
AZ03/rO 
AK51/r1 
AK50/rO 
AK92/aB 
AK50/rO 
AZ03/rO 
AK50/rO 
AG92/r2 
AG92/r2 

E-15 

user info $login data 
user-info-$logout data 
user-info-$outer module 
user-info-$responder 
user-info-$tty data 
user-info-$usage data 
user-info-$whoamT 
value -
value 
value$dump 
value$set 
value$set seg 
verify (AF) 
vfa 
vfile 
vfile-
vfile-adjust 
vfile-status 
vfile-status 
vfs 
virtual cpu time 
vtoc pa~hna~e -
walk-subtree 
wd "[AF) 
wh 
where 
who 
who delg 
whotab (data base) 
work class meters 
write acct-bill 
write-allowed 
write-billing-summary 
write-mst -
write=user usage_report 
ws 
year (AF) 

F () 1 _ 



This page has intentionally 

been left blank 

E-16 



APPENDIX F 

ERROR MESSAGES 

Page 

Introduction . . • • • • • • • • . . .. ...... 
How to Read this Document • • • • • 
The Programming Environment • . • . 
Conventions . . • . • • • • • • 

. . . . . . . . 

Command Processor Errors ••• • •• .•• 
Segment NNNN Not Found ••• • • • • . • . . . • . 
Entry Point EEEE Not Found in Segment . . . . . . 
Expanded Command Line is Too Long • • . • . 
Improper Syntax in Command Name • • . . . . • • • • 
Bad Syntax in Pathname • • . • • . • • 
Parentheses Do Not Balance • • • • . • . . • • • . • . 
Brackets Do Not Balance • • •• ••• ••. 
Quotes Do Not Balance • • • . • • . . . . • . • • • 

Command Errors • • . . • . • • • • • • . . . . 
Bad Syntax in Pathname • • • • • • • • • . • • • . 
Incorrect Access on Entry • • • • •• ••...•. 
Incorrect Access to Directory Containing Entry 
Some Directory in Path Specified Does Not Exist . . 
Entry Not Found • . • • • •• ...... .. . 
Insufficient Access to Return Any Information . • • . . 
Illegal Entryname . • . •• .....•... 

Execution Errors .• • . • • • . . . • . . • . 
Record Quota Overflow . .•••.•.. 
Linkage Error • • . . . • . •• ..••. 

Segment Not Found • . . • •. ... 
External Symbol Not Found •...•....•. 
Linkage Section Not Found . • • . • • • . • . • 
There is No Room to Make Requested Allocation . . . 

Segment Fault ••••••.••••••... 
No Execute Permission . • . • . . • . . . 
No Read/Write Permission •••••.• 
Not in Read/Execute/Write/Call Bracket .... 
Fault Tag 1/Fault Tag 3 . . • • . . . •.... 
Illegal Modifier •.•. . • • • • ••.••• 
Attempt to Reference Through a Null Pointer . . . . . . 
Simfault NNNNNN . . . • . . . • . . .. . •.... 
Illegal ~achine Operation •. ••......... 
Storage Condition. • • . . • • • .. • •..... 

F-i 

1-1 
1-1 
1-2 
1-8 

2-1 
2-1 
2-2 
2-3 
2-4 
2-4 
2-4 
2~5 

2-5 

3-1 
3-1 
3-2 
3-3 
3-~ 
3-4 
3-5 
3-5 

4-1 
4-5 
4-8 
4-8 
4-12 
4-13 
4-i4 
4-16 
4-19 
4-20 
4-20 
4-20 
4-21 
4-21 
4-22 
4-22 
4-23 

F01 



CONTENTS (cont) 

Page 

Out of Bounds Fault • . . . . . . . . . 
Illegal Procedure • • • • • 
Conversion • . . • • . • • • 
Si ze •. • • • • . • • . • . • • . • . • . • . 
Error Condition ••.•• . . 
Subscriptrange •••••• . • • 
Stringrange .. .••..••.••.. 
Fixedoverflow, Overflow, Underflow • . . . . • 
Program Interrupt • . . • . . • • . . . . . . • 

Fatal Process Errors . . . . . 

F-ii 

. . . . 

4-25 
4-26 
4-27 
4-27 
If-2B 
4-29 
4-30 
4-31 
4-32 

5-1 

'F01 



SECTION I 

INTRODUCTION 

The purpose of this document is to aid the user in understanding 
errors that may occur during use of Multics. The standard Multics 
error reporting mechanism 1s introduced, and the meaning of error 
messages is explained. Possible causes of many errors are discussed, 
and when applicable, methods for recovering from, or circumventing an 
error are presented. 

HOW TO READ THIS DOCUMENT 

This document is intended for use by novice users or applications 
programmers unfamiliar with the Multics programming environment. As a 
result, the kinds of errors covered and the examples given have been 
tailored to this audience. 

The discussion of error conditions is divided into four sections. The 
first explains command processor errors. This includes all errors 
that arise in the interpretation of commands, and the formation of 
command names and command arguments. The second section, entitled 
"Command Errors", deals with errors that are detected by commands 
themselves. For example, an editor will report an error when a 
request is issued to read a nonexistant file. The third section 
discusses execution errors: hardware (simulated) conditions that 
arise during the execution of programs. Examples of this class of 
errors include zero divide, subscript range, and segment fault. Such 
errors may occur in user or system programs and generally indicate the 
presence of a program bug. As a result, this section is of the 
greatest use to programmers creating and debugging a new program. The 
fourth section covers fatal process errors. These are similar in 
origin to execution errors, but cause the user's process to be 
aborted. Language-specific errors such as input/output, BASIC run 
time errors, etc. are not covered by this memo. 

Each section describes the most commonly occurring errors of the 
particular class. Console scripts, along with descriptiv~ 
commentaries, are used to present typical examples of the error, the 
methods used to determine the actual cause of the error, and means for 
recovering from the error. The memo is partially tutorial; however, 

, 1-1 



for complex explanations, the user will be referred to the MPM. 

This document may be used as a reference for individual errors. 
However, it is felt that the reader would benefit by at least one 
reading from cover to cover. This should provide experience with 
errors that otherwise could only only be obtained by a long period of 
actual use. Furthermore, many errors have related causes and 
consequently related methods for analysis, and since, in general, a 
topic is explained in full detail only once, a thorough reading will 
help the user see how ~ specific techoique or error falls into the 
overall scheme~ Finally: the reader 'should find a number of 
worthwhile hints that enable him or her to avoid problems in the first 
place. 

User feedback is solicited concerning errors in this document, awkward 
or incomprehensible explanations, common problems that have been left 
out, etc. 

THE PROGRAMMING ENVIRONMENT 

To obtain a good understanding of errors and their causes, it is 
helpful to understand the environment in which programs run. (Often, 
too, it is simply a misunderstanding that is the cause of the error.) 
Below is a brief and simplified discussion of the basic features and 
terminology of the Multics programming environment. Refer to the MPM 
Reference Guide (Order No. AG91) for more 'detailed information. 

A process is a computation or execution activity much like a job on 
other computer systems. The term refers, collectively, to the program 
or group of programs in execution, the current value of program 
variables, the address space (the temporary and permanent segments of 
memory that have been referenced), the files and other input/output 
devices (e.g., console, tape volumes) in use, and various 
system-maintained data bases. What is important to the programmer is 
the duration of the process, since it maintains the programming 
environment. When the user first logs in(1) a new process is 
created. At this time, all per process information is put into a 
consistent initial state. There are no files or devices attached 
besides the terminal; all program variables are (in effect) set to 
their initial values; and so forth. A process is terminated when the 
user logs out, gives the new_proc command, or a fatal error occurs. 

On Multics, programs and their data reside in a virtual memory or 
address space. This consists ~f (potentially) a large number of 
disjoint se~ments of storage. Each such segment may contain up to 
255K (K = 10 4) words of storage, and has a name by which it may be 
accessed. An address (pointer) designating a specific location in the 

(1) Or equivalently an absentee job is logged 1n at the user's request 
by the system, in which case, the console is replaced by the absentee 
input segment. 

1-2 



virtual address space is a pair of numbers: a segment number and an 
offset within the segment. When a segment is to be used, it is 
initiated forming a mapping between the name and a segm~nt number. 
This mapping remains valid for the duration of a process, or until the 
segment is explicitly terminated. Use of an invalid segment number, 
in particular a segment number generated in another process, is a 
common source of errors. (See the description oi the segment fault 
error.) An offset within a segment, on the other hand, remains valid 
as long as the contents of the 'segment are not modified. This means, 
for example, that it is possible to save the offset part of an address 
across processes and reuse the offset with a segment number generated 
in the new process. (1) Errors occur in the use of offsets if the 
value of the offset is out or range: negative or greater than 255K. 
(A lower limit can be set by explicit programmer action, if desired.) 
See the discussion of out of bounds errors. 

A segment may be designated by one of two naming conventions: 
pathnames and reference names. In general, a segment is specified by 
pathname when accessed by commands, and by reference name when 
accessed from a program as an external symbol (e.g., the name of an 
external subroutine). 

A pathname designates an unique segment within the Multics file 
system. Every segment has one or more entrynames by which it is 
cataloged in a directory. Within a single directory, the entrynames 
of all entries are unique; entrynames of entries in different 
directories need not be distinct. In addition to segments, a 
directory may contain other subdirectories. The Multics file system 
is organized as a tree with a root directory that contains all other 
directories as subdirectories, subsubdirectories, etc. 

(1) PL/I programmers may realize the similarity between this and the 
restrictions on the use of based areas and offsets on other systems. 
Programs are not allowed to save pointers to d~ta allocated within the 
area from job to job because while the area may retain its integrity, 
the actual address may change. The same reasoning applies to segment 
numbers and offsets, and to areas on Multics saved from process to 
process. 

1-3 



root 

7 \ 
/ \ 

/ \ 
/ \ 

/ \ 
/ \ 

d1 d2 

/ \ / \ 
/ \ / \ 

/ \ / \ 
\ / \ 

\ c / \ d / 
(a) \ / a \ / 

\/ \/ 
/ \ 

/ \ 
i \ 

/ \ 

(a) ( f) 

A pathn.me, then, is an ordered list of entrynames designating the 
directories containing the entry and the entry itself. It gives the 
path from the root to the segment. In the diagram above, squares 
represent directories and diamonds represent segments. The following 
are all valid pathnames within that hierarchy: 

>d1>a 
>d2>a 
>d2>a>a 

In addition to segments and dit',~ctories, a directory may also contain 
links. A link is a pathname pOinting to another entry (usually in 
another directory); it allows that entry to be accessed as if it were 
cataloged in the directory containing the link with the name(s) of the 
link. In the diagram above, links are presented by triangles with 
dotted lines leading to the target of the link. 

and 
>d1>c 
>d1>c)f 

and 
end 

>d2>a, 
>d2>d 

refer to the same directory and segment respectively_ If a link 
points to another link, then the entry pointed to by the second link 
becomes the ultimate target. 

There are two forms of pathnames. An absolute pathname contains the 
entrynames of all the containing directories; that is, it fully 

1-4 



specifies the position of something (i.e., segment, directory, link) 
within the directory hierarchy. A relative pathname, on the other 
hand, gives the position of an entry relative to the working 
directory. A relative pathname is expanded into an absolute pathname 
by logically concatenating the pathname of the working directory to 
the relative pathname given. For example, if the working directory 
were >d2>a from the the diagram above, the relative pathname "r" would 
be the same as the absolutepathname >d2>a>f. It is possible to move 
upwards in the hierachy by using "<us in a relative pathname. Thus 
with the same working directory as above, <d would be the same as 
>d2>d.· The working directory is initially the userts home directory, 
normally >udd>Project ID>Person ID; it may be changed by· the user 
with the change wdir (cwd) command. Absolute pathnames are 
distinquished from ~elative ones by a leading ">". 

The term segment is often confused with the term file. Strictly 
speaking, a file is storage accessed through expli~input/output 
operations. In principle, there are no limitations on the size of a 
file; it may get as large as is necessary, far exceeding the 255K 
word limit of a segment. Those files smaller than 255K are placed in 
a single segment. Unstructured files of character data are the same 
as text segments. That is, they may be created or modified in an 
editor, printed, or sorted. Structured files (those containing 
nonprintable "binary" data) should not be acessed exeept through 1/0 
facilities. Those files larger than 255K are implemented as 
muitisegment files. The data is stored in several segments which 
should only be accessed by I/O mechanisms. Even if the file contains 
only printable text, there are currently no mechanisms for editing it 
and guaranteeing the authenticity of the file. A multisegment file is 
cataloged in a directory like any other entry. In this memo, the 
distinction between file and segment will be strictly adhered to. 

A reference name is the name by which a segment is referenced (e.g., 
called) during the execution of a program. It consists of the 
entryname of the segment; the absolute pathname of a particular 
segment is determined by applying the search rules in effect for the 
process. They are as follows. 

1. A list of reference names already known within the process is 
checked; if the entryname being searched for is found, the 
associated segment is used. A name becomes known when the 
search rules are first used to reference a segment with that 
entryname or when a specific segment is initiated and a 
reference name (which need not be an entryname of the segment) 
is specified for the segment. 

2. The directory containing th~ program making the reference is 
checked for a segment with the entryname. If found, the 

"segment found becomes known by the reference name. 

3. Each of an ordered list of directories is checked for a 
segment with the correct entryname. If found, the segm~nt 
becomes known by the reference name. Initially, this I.ist 

1-5 



starts with the user's working directory and is followed by 
the list of system libraries. Alterations may be made to this 
list of directories by using the add search rules command. 
For example, the working directory- (which is logically 
specified as "working dir" and whose meaning changes as the 
working directory is changed) may be moved to follow the 
system libraries, or a specific user directory may be added to 
the search rules. 

Once a reference name is associated with a particular segment, it 
remains in effect (rule 1) until the process is terminated or until 
the seiment'is terminated by using the terminate command. This can 
cause unexpected results for the unsuspecting user. In the sample 
hierarchy given above, if the user's current working directory is >d1 
and he or she executes the procedure a in that directory, it will 
become known by the reference name a. If later, he changes to a new 
working directory, >d2>a, and executes the procedure f which calls a 
subroutine a, then the segment with reference name a found by the 
search rules will not be the segment >d2>a>a, but rather the 'segment 
previously known by that reference name, )d1)a. 

For each process, the system creates a process directory. This 
A" _,.,,,, ........... u ,..,." ... + ~-C ... C! .. .a.ml"\",,"~,,"" d ... ~t::! C!.AomAn+- C!. !:lnli ~ nArd ~ 1 C!.comcnt C!. ; n 
U..LI C'\".,\"IVI 1 "'""' •• ...,g .... I.... "' ......... ..,""'~.,J - -- .., ..... O·U""I • ..,~ ........... ...,t''''",....,. ........... ...,""'0· ........ ·,.""'.., ..... 

which program data and system control information are stored. The 
stack is one such segment and contains records of current procedure 
activations and the automatic storage used by these procedures. The 
combined linkage segment contains the linkage sections of procedures 
which hold the internal static data used by a program. The identity 
of these segments can be important in determining the cause of an 
error. When an error occurs, the segment containing the data being 
referenced will be given when appropriate. If the segment is the 
stack, it is a strong clue that the operation causing the error was 
making use of a datum of automatic storage. Similarly if the segment 
is the combined linked segment (combined linkage r.nn), it is likely 
that static data is involved. Often such -a clue can be used to 
isolate the cause of an error in the absence of other debugging 
information such as the line on which the error occurred. 

1-6 



The list of procedure calls contained in the stack is an extremely 
useful source of debugging information. Consider the following 
example. Assume that a procedu~e A is executing. It then calls 
procedure B. B in turn calls C. When C has finished executing, it 
returns and B continues from the point at which it called C. B 
eventually returns, and A then calls the procedure C. At each step, 
it is possible to construct an ordered list of the procedure 
invocations indicating which program called which other program and 
the location in a program at which it called out. Graphically, this 
list may be represented as follows: 

B 
A 

A calls B 

C 
B 
A 

B calls C 

B 
A 

C returns 

A 

B returns 

C 
A 

A calls C 

In the figure above, the most recently called procedure is on top. 
Such a stack trace is particularly useful to understand the sequence 
of calls that lead up to an error. The probe and trace stack commands 
may be used to obtain a stack trace. Examples of the use of the probe 
command are given in later sections. A block is activated when a 
procedure or subroutine is called or a begin ~ock is entered. 
Activation causes dynamic allocation of storage for a program's 
automatic variables. The area allocated is placed at the end (top) of 
the process's stack and is called a stack frame. When the procedure 
returns, the stack frame is freed. This means that variables of the 
automatic storage class (1' only have storage assigned to them (and 
hence a legitimate address and value) when the block in which they are 
declared is active (i.e., its execution is ongoing or suspended as the 
result of an error condition, a quit signal, a call, or a debugger 
breakpoint). When a procedure is called recursively, it has frames on 
the stack for each activation. Each instance of the procedure on the 
stack is considered a separate and distinquishable activation of the 
procedure. The values of automatic variables and parameters can be 
(and usually are) different in different activations of the same 
procedure. 

Within a process, PL/I static variables and Fortran variables have a 
continuity of value. That is, the value of such a variable is 
initialized only once during a process, when a program in which the 
variable is defined is first invoked; subSeqUent modifications to the 
value of the variable will remain 1n effect, even through new 
activations of the procedure, until the process is terminated. (2) 

(,) PL/I variables, by default, belong to the automatic class. 
FORTRAN variables appearing in an automatic statement (a nonstandard 
Multics feature) are also of this class. 

(2) PL/I internal static variables or Fortran variables that are not 
in common may be reinitialized by terminating the segment. External 

1-7 



CONVENTIONS 

The examples in this document fol19w certain conventions. All lines 
typed by the user are prefixed by an exclamation point (). A quit 
signal issued by the user by pressing the QUIT, ATTN, or BREAK keys on 
the terminal is indicated by "(quit)" appearing to the left of the 
normal text of the example. When a line of output is too long to be 
placed on a single line, it is broken at an arbitrary pOint. This 
should not affect the user's understanding of the example. In ready 
messages output by the system on the completion of a command line, a 
dot (.) replaces information. such as the time of dav. irrelevant to - , - - "" - - - - - - --

the example being presented. Finally,"many lines of input or output 
whose content should I be "obvious from the example is replaced by 
ellipsis ( ••• ). In all other respects, an attempt has been made to 
produce examples which are accurate. Most are simply modifications of 
the output from test error situations. 

and commonea varIables may be relnitialized only by using the new_pro~ 
command to obtain a new prooess. 

1-8 



SECTION II 

COMMAND PROCESSOR ERRORS 

These are errors that are detected by the command processor When this 
kind of error is detected, a message is printed on.the console, (along 
with a ready message), and then the system waits for the user to type 
another command. Once the cause of the problem has been determined, 
the user may.retry the (corrected) command. 

These errors may often be caused by a garbled telephone connection 
between the user's terminal and the computer. If there is no apparent 
cause for an error, reenter the same command line again. 

SEGMENT NNNN NOT FOUND 

This means that reference name NNNN did not match any reference or 
entryname within the user's search rules. The most common cause of 
the error is incorrectly specifying (through mistyping or a 
misconception) the command name. 

For example, suppose that a user had a program called colour, but 
mistakenly typed "color" when calling it: 

color 
Segment color not found. 
r •••• 

list 

Segments = 3, Length = 3. 

re 1 colour 
r w 1 colour.pl1 
rew 1 PJApple.mbx 

r •••• 

colour 

2-1 



Here the user gets the error, then uses the list command to see if 
there was something wrOng with the name. Finding the mistake, the -
command line is retyped with the corrected name. 

This error is virtually identical to the "segment not found" case of 
linkage errors. See that discussion below for additional examples. 

ENTRY pbINT EEEE NOT FOUND IN SEGMENT 

ihis indicates that a segment matching the reference namp NNNN was 
found in the user's search rules, but it did not contain the entry 
point called EEEE. To determine what entry pOints are actually 
present in a program (or other type of object segments) the 
print_link_info ~ommand may be used. 

colour 
Entry point colour not found in segment colour. 
r •••• 

pli colour -entry 

colour .... - ..... ,. • .,1: .""1'\ II __ lo. ~I... •• 
U~/U'jlfO I?&fV."'t c~" .lIlU 

3 Definitions: 

segname: 
symb:O 
text:17 

r •••• 

colour$color . , , 

colour 
symbol table 
colour- Entry: textl17 

In the above example, a segment matching the reference name colour 
(see previous example) was found but it did not contain an entry point 
"colour". The pli command gives the "segname" or the name by which 
the program was known when it was compiled; the only "entry" defined 
is one called "color", The user corrects the line by giving a command 
name that contains both the reference name and entry point" name 
separated by a "$". Another way to correct the error would be to 
rename the program (~ the source ~ the object segments ): 

rename colour." color.:: 
r •••• 

color 
r ••• , 

In this way, the segment now has the same entryname and entry poin' 
name and can therefore be called as a command by giving only it~ 

2-2 



entryname. (1) 

The problem illustrated here occurs quite often when the program 
contains a procedure with a different name than that given to the 
segment containing the text of the program. 

edm colour.pl1 
Input. 
color: procedure; 

end color; 

Edit. 
w 
q 
r •••• 

There are a number of other causes for this error. The entrypoint may 
have been deleted by binding. 

This error is virtually identical in cause to the "external definition 
not found" case of linkage errors. See that discussion below for 
additional examples. If the meaning of reference names versus 
entrynames and entry point names is confusing, see the MPM Reference 
Guide, Section III, Constructing and Interpreting Names. 

EXPANDED COMMAND LINE IS TOO LONG 

This error arises when an active string has been used, and the string 
returned overflows the currently allocated size for the command line. 
The user may recover by using the set com line command to set the 
command line length to some arbitrarily-la'·rge value (e.g., 3000) and 
reissuing the command line. Below, the active string segs is invoked 
to return a string containing the names of all PLII and Fortran source 
segments; this string overflows the command ,line length. 

archive ad saved programs [segs • .p11 ' •• fortran] 
command_processQr_: Expanded command line is too long. 
I •••• 

set_corn_line 3000 
r •••• 

archive ad saved_programs [segs •• pI1 •• fortran] 
r •••• 

(1) For an explanation of the star and equals convention, see the MPM 
Reference Guide, Section III, Constructing and Interpreting Names. 

2-3 



IMPROPER SYNTAX IN COMMAND NAME 

This error is issued when the user has specified a command name which 
is not in the standard form of a reference name, optionally followed 
by the special character "$" and an entry point name. Examples of 
correctly formed command names are: 

ref name 

Examples of incorrectly formatted names are: 

name$ $name 

More detailed information may be found in Section III of the MPM 
Reference Guide. 

BAD SYNTAX IN PATHNAME 

This means that the p~ogram to be invoked was specified by an 
incorrectly formed absolute or relative pathname. See the discussion 
of the error in the Command Errors section. 

PARENTHESES DO NOT BALANCE 

This means simply that a parenthesis beginning an iteration set wa~ 
unbalanced. For example: 

create )udd)Serpent)PJApple)(output1 output2 
comm8nd_processor~: Parentheses do not balance. 
r •••• 

What was intended was "(output, output2)" 
This error is handled by reentering a 
balancing parenthesis. 

to create two segments~ 
command line containing a 

The problem may arise when iteration of a command is not intended. 
For instance, the "send message" command which transmits its arguments 
to another party. -

send message BDLucifer Serpent delete the files (1n PJApple>old 
command_processor_: Parentheses do not balance. 
r •••• 

Here the intent 
thought. If the 
parenthesis, two 
would receive ---

is to send a 
command line 

messages would 

message containing a parenthetical 
were reentered with a trailing 

be sent. That is, the user named 

from PJApple.Serpent: delete the files in 

=: delete the files PJApple)old 

2-4 



Notice that the first message contains the first string in the 
iteration set "(in PJApple)old)", and the second message, the second 
string. This problem may be avoided by enclosing the entire message 
in quotes. 

send_message BDLucifer Serpent "delete the files (in PJApple)old)" 
r •••• 

It is advisable to always enclose messages in quotes to avoid 
unintentio~~lly sending someone repeated messages. 

BRACKETS DO NOT-BALANCE 

An invocation of an ac\ive function (a procedure returning a string to 
be inserted into the command line) 1s enclosed in square brackets. 
This error simply means that the command line had an unbalanced left 
or right bracket. 

list -pathname [pd 
command_processor_: Brackets do not balance. 
r •••• 

The correct command line would have contained "[pdJ" to return the 
name of the user's process directory. The error may be handled by 
entering a corrected command line. 

In a manner similar to that described for the case of unbalanced 
parentheses, an unintentionally balanced active function invocation in 
a "send message" command line will transmit a message containing the 
value of-the active function. The problem may be avoided by enclosing 
the message in quotes. 

QUOTES DO NOT BALANCE 

Quotation marks may be used in a command line to delimit a single 
string argument that contains special characters such as "(", "]", or 
space. The error means that the command line contained an unbalanced 
quote. The error may be remedied by reentering the corrected command 
line. 

2-5 





SECTION III 

COMMAND ERRORS 

These are errors detected in the processing of a command. They 
reflect not hardware conditions, but rather software conditions 
concerning, for example, the file system. Command errors are not 
restartable. A message is printed, and the system resumes what it was 
doing (e.g., listening for commands). The cause of the error may be 
fixed, and the command reissued. 

BAD SYNTAX IN PATHNAME 

This means that a pathname (the ordered list of entrynames identifying 
a segment in the storage system) has been formed incorrectly. The 
causes of this errc'· are typing mistakes and an incomplete 
understanding of what a pathname is. (In the latter case, see the MPM 
Reference Guide, Section III, Constructing and Interpreting Names.) 

print )udd)Serpent»PJApple)a.basic 
print: Bad syntax in pathname. )udd)Serpent»PJApple)a.basic 
r •••• 

print )udd)Serpent)PJApple)a.basic . . . 
Here the user gave a pathname with two ")"s next to each other. As 
this is incorrect syntax, an error message was printed. The user 
recovered by typing the correct pathname. This error will also occur 
if a "(" appears out of place in a relative pathname, that is, at any 
place other than the beginning of the pathname. For example: 

«Student<Green>old.runoff 

3-1 



INCORRECT ACCESS ON ENTRY 

This means that the user, when logged in under the current project, 
does not have the correct access to a segment to perform a certain 
operation. This errOr can be dealt with by using the command 
"list acl" (la) to determine why the user has no access, who can give 
him or her access, and if the user can do it him/herself, use the 
set acl command to set the appropriate access to the segment. 

The error may arise ·when trying to ~~ad a s~gment or ~i~e. For 
example, when reading a segment with an editor (edm or qedx), when 
printing a file (using print or dprint), or when trying to compile a 
source program. In this case, the user does not have "read" access to 
the segment. For example, the following dialogue might occur for user 
Green logged in under the Serpent project. 

edm color.p11 
edm: Incorrect access on entry. )udd)Serpent)PJApple)color.basic 
r •••• 

list acl color.pll 
r w - BDLucifer.Seroent.* 
r w *.SysDaemon.*-
r •••• 

set acl color.p11 r 
r •••• 

edm color.pll 

Here the user has attempted to edit segment color.pll. The edm 
command detects that he does not have read access to the segment, and 
reports an error. By using the "list acl" command, he finds that only 
one other user on the Serpent project-(BDLucifer.Serpent) has access 
to the file. The "set acl" command is used to give Green.Serpent 
access to the file, and he-retries the command over again. The error 
may also occur when writing out a segment that is being edited. In 
this case, the user does not have "write" access to the ·segment. 

edm color.pll 
Edit. 

w 
edm: Incorrect access on entry. )udd)Serpent)PJApple)color.p11 
E set acl color.pI1 rw 
Edit. 
w 
q 
r •••• 

3-2 



Here the user tries to save a program that he has been editing, but 
cannot do so because he does not have write access to the segment. He 
is faced with the problem of setting the access on the segment without 
losing the editing that he had done. The edm HE" requests allows him 
to execute a Multic5 command line, so this feature is used to let him 
invoke the set acl command to recover from the error. After the 
access is changed, the edm write request may be reissued. If the user 
had been unable to change the access, he could at least save what was 
done by wri ting it out into a.nother segment as shown below: 

E set acl color.pl1 rw 
set ael: Incorrect access to directory containing entry. 
Edit. 
w colorl.pl1 
q 

INCORRECT ACCESS TO DIRECTORY CONTAINING ENTRY 

This error means that the user on his or her currertt project does not 
have enough access on the directory in which a segment is (to be) 
cataloged to perform some operation on it. Again, thi~ error can be 
dealt with by using the list ael and set ael commands. 

This error most commonly occurs while trying to delete a segment (the 
user lacks modify access), while trying to set the access on a segment 
(lacks modify) while trying to move, create, or copy a segment (lacks 
modify and/or append), or while trying to find out information about 
the segment (lacks status permission). 

status <BDLucifer>souls.list 
status: Incorrect access to directory containing entry. 

>udd>Serpent>BDLucifer>souls.list 
r •••• 

list acl )udd)Serpent>BDLucifer 
sma - BDLucifer.*.* 
sma *.SysDaemon.* 
r •••• 

list acl )udd>Serpent 
sma *.Serpent.* 
sma *.SysDaemon.* 

r ••.• 

set acl <BDLucifer s 
r •••• 

status <BDLucifer>souls.list ... 

3-3 



Here the user attempts to find out information about the segment. The 
status command requires at least "s" access to the containing 
directory, and not having it, an error message is issued. The user 
then checks the fact, and looks at her access to the parent of the 
directory containing the segment to see if she can set the app~opriate 
access herself. She then gives herself the necessary access, and 
reissues the command. 

SOME DIRECTORY IN PATH SPECIFIED DOES NOT EXIST 

This means that a directory specified in the pathname of a segment 
does not actually exist. 

The way to determine what directory is missing and/or the entryname of 
the directory actually intended is to use the list command. 

print )udd)Serpent)~Apple)color.pl1 
print: Some directory in path specified does not exist. 

)udd)Serpent)PApple)color.pI1 
r •.•• 

list -pn )udd)Serpent ~dr 

Directories = 2. 

PJApple 
sma BDLucifer 

r •••• 

print )udd)Serpent)PJApple)color.pl1 ... 

ENTRY NOT FOUND 

This means that a segment specifed was not found in the directory. 
(All the containing directories do exist.) 

This error may be dealt with by using the list command to see if the 
segment exists under some other entryname. The rename or addname 
commands can be used as desired to change the segment's entryname or 
give it an additional entryname. 

A common cause of this error in the case of novice users is misnaming 
the segment. For example, a Fortran source program must have the 
suffix ".fortran". Thus if the segment "main" had been created 
containing the program, an error would ensue: 

3-4 



edm main 
Input. 

w 
q 
r 

fortran main 
Fortran 
fortran: Entry not found. main.fortran 
r •••• 

rename main main.fortran 
r •••• 

fortran main . . . 
If the name identifies a link, then another possible cause of the 
error is that the segment pointed to by the link does not exist. This 
possibility can be checked by listing the link and checking whether 
the target exists. (Note!that the link target may be another link, in 
which case the process must be repeated.) 

INSUFFICIENT ACCESS TO RETURN ANY INFORMATION 

This error arises in the cases described for the above four errors 
when the user does not even have enough access to determine why the 
operation cannot be performed. The problem is that the user does not 
have status permission on the directory containing a segment or, in 
the second case, to the directory containing· the directory containing 
the segment. 

This error can be dealt with as described above by first setting 
access on the containing directory. Usually, a user who receives this 
error will not have access to set the required access, and will have 
to contact the user who controls the directory in question. 

ILLEGAL ENTRYNAME 

This message is generated by an editor when the user tries to write 
from an editor buffer into a segment with a malformed name. A 
malformed name is one which contains special characters such as blank, 
tab, "I", etc., or which contains missing components. Generally, this 
is a name which would make it difficult to access the segment because 
of system conventions. Examples of illegal names are: 

3-5 



alb 
ho/whose/ 
c •• d 
prog. 

This almost always occurs when the user has given an accidental write 
request. For example: \ 

edm second.fortran 
Edit. 

w = alb 
edm: Illegal entryname. = alb ... 

If it is desired to have a segment with a name containing such special 
characters, the segment can be written with a normal name, and renamed 
to the entryname containing special characters. 

3-6 



SECTION IV 

EXECUTION ERRORS 

This class of errors includes all hardware and software detected 
faults and conditions. When an error of this sort occurs, a condition 
is signalled. The condition may be handled by a user-supplied 
condition handler (PL/I on unit), or if no on unit is found (as is 
normally the case), the system's on unit. The system's on unit prints 
an error message and invokes a new command level, suspending the 
execution of the program causing the error. This new command level is 
indicated by a ready message with a level number greater than one: 

r 1204 2.039 39.200 347 level 2,16 

After an error has occurred, and a new command level entered, the user 
should eventually do one of three things: 

1. Issue a release command to flush execution of the suspended 
program. For example, a quit signal (sent by striking the ATTN, 
BREAK, or QUIT key on the terminal) may be used to stop a run away 
program, or excessive printing. 

looper 
(quit) 

QUIT 
r •••• level 3,. 

release 
r •••• 

The release command need not be used immediately after the error 
occurs. If the cause of the error is not obvious, system supplied 
tools (e.g., probe), may be invoked at the new. command level to 
determine the cause. Whether or not this is possible, the release 
command should be issued before doing any additional work (e.g., 
changing and recompiling the program) to avoid more serious and 
incomprehensible errors. 

1.1-1 



2. The start command 'may be used to restart the program that was 
interrupted. This is possible if the problem is correctable, or in 
the case of an erroneous computation where the system's on unit 
performs some specified action to correct the condition upon 
restart. Such a correction might be to set the result of the 
computation. 2 ** -1000, to 0 after an underflow condition has 
occurred. The actions taken by the system on unit are often 
specified in the error message; if not, the user may consult the 
MPM Reference Guide if he or she desires. 

Another common practice is to "quit" out of a program that appears 
to be looping, check the CPU time that it has used by inspecting 
the ready message, and if it is looping, releasing the suspended 
program (after debugging the cause of the loop); otherwise, 
resuming the execution with "start". (Note: quit/starting in this 
way may lose output directed to the terminal. However, under 
certain circumstances, this may be desirable.) 

count 
1 
2 

(quit) 
QUIT 
r · ... level 2 , •. 

start 
6 
1 

(quit) 
QUIT 
r · ... level 3, · 

release -all 
r · ... 

Here a program named count has been invoked. It was then stopped 
by a quit signal and restarted by the start command; as a result, 
a few lines of output were lost. The program was then stopped 0 

second time by a quit signal and aborted by the release command~ 
Notice how the level numbers are effected by this sequence. 

3. Issue the new proc command to get a new process. This will 
reinitialize -all static variables, common blocks, I/O attachments, 
files, etc. The use of this command is· recommended when 
inexplicable (1) errors occur. Once a new_proc i.s finished, it is 

(1) Errors for which you can see no apparent reason •. For exampl e, YOll 

followed a memo verbatim; exactly the same thing worked before; an 
so forth. In general, a new proc should be tried if you have not seen­
the error before and cannot lind a ready explanatio~. 

4-2 



advisable (1) to retry the program with which there is a problem. 
Often the problem will disappear. If it doesn't, it is likely that 
a program bug exists, and you should continue to look for some 
other cause. The thing to remember is that an erroneous program 
can cause other programs including system program~ to go awry. 

The error messages produced for most of this class of runtime errors 
are in a common format. For example: 

Error: Attempt to divide by zero at >udd>Serpent)PJApple>prog:13 (line 
system handler for error returns to ~ommand level 

The first line gives the type of error "Attempt to divide by zero" the 
pathname of the object segment causing ~he error (>udd> •.• >prog), the 
offset in the program object segment of the instruction at which the 
error occurred (13 octal), and, if the program were compiled with the 
"-table" option, the source line number. The second line gives 
additional information about the error. Here it states that a new 
command level will be created. 

In general, an error which occurs in a system program can be traced to 
a user error. (2) In the case of an error .in a system program, the 
user should verify that he has called it properly: that the correct 
number of arguments have been passed, that all documented requirements 
and restrictions have been met, and that all values passed as input to 
the system program have reasonable values. 

When an error occurs in a system program, the location in the user 
program where the system program was called is not given in the error 
message. This location can be determined using the probe command. 

(1) If the cost of program execution prior to occurrence of the error 
is acceptable. 

. , 
(2) This is not to say that there are not bugs in system programs, 
however it is more likely that the user did something wrong. 

~-3 



prog 

Error while processing in ring 0: 
Segment-fault error by bound_system_faults:24330 
referencing 1777:0 
There was an attempt to use an invalid segment number. 
Entry into lower ring was by 
change wdir$get wdir :476 
(>syst~m librarj sta~dard>bound fscom1 ) 
referencIng hcs lfs search get ~di~ -
r •.•• level 2,: - --

probe 
Condition seg_fault_error raised at get_wdir_:163 44 . 
stack 

11 command processor 
10 release-stack -
9 unclaimed signal 
8 default error handler 
7 real sdh 
6 get_wdir= seg_fault_error 
5 prog 
4 command_processor_ 
3 listen 
2 process overseer 
1 user inIt admin -

use prog 
source 

this -> wdir = get_wdir_ (); 
where source 
Current line is line 9 of prog. 

The error message may be interpreted as follows. The error was a 
segment fault error. The message "Error while processing in ring 0" 
indicates that the error occurred in a supervisor program. The 
supervisor program was called from the user ring by the proeram 
change wdir$get wdir (which is located in a bound segment in a system 
library). (1) - The-error message does not indicate what user program 
called these programs. This is determined by invoking probe, and 
issuing special requests to it. The stack request lists the procedure 
activations currently on the user stack (the called procedures). f!ere 
"get wdir" has been called by the user program "prog". The use 
requ~st tells probe to examine "prog", and the source request then 
gives the text of the line at which the error occurs; "where" 
retrieves the line number of that line. Note that these (and most 
other) probe requests can only be used as shown when the program in 
question has been compiled with the -table option. 

(1) The other information is largely irrelevant for the purposes of­
the casual user. 

4-4 



RECORD QUOTA OVERFLOW 

This means that the disk storage quota for a directory has been 
exceeded. The problem can be dealt with only by finding or reclaiming 
additional disk quota. Usually, it is possible to have the storage 
quota on a directory increased by the project administrator. (1) 
Quota can also be temporarily reclaimed by deleting unneeded segments, 
or if possible moving a segment to a directory with unused quota. 

This error will occur when a segment is being written into. There are 
three common contexts in which this will occur. Writing out an editor 
buffer, compiling a program to produce an object segment, and 
outputting a file from a user program using language 1/0 facilities. 
The following is an example of a record quota overflow occurring while 
writing an editor buffer. This is a particularly dangerous problem 
for if it can not be corrected, the changes made to the text or source 
file will be lost. 

edm prog.pl1 
Edit • 

. . . 
w 

Error while processing in ring 0: 
record quota overflow condition by bound file system:3627 
referencing >udd>Serpent>PJApple>prog.plT:30oij6 

Entry into lower ring was by 
>system library standard>edmlS047 
referencing hcs-$truncate seg 
r •••• level 2,: -

get quota -wd 
quota = 2; used = 2 
r .••• level 2,. 

list 

Segments = 3, Lengths = 2. 

re 1 xxxx 
r w 0 prog.p11 
r w 1 xxxx.p11 

r .••• level 2,. 

(1) This is normally the person or group through which funding has 
been arranged. For most users, this will be the User Accounts Office. 
Students in courses should contact their instructor. Users on the 
Student project, should contact the SIPS. 

~-5 



delete xxxx 
r .... level 2,. 

get quota -wd 
quota = 2; used = " 
r •••• level 2,. 

start 
q 
r •••• 

When the user tries to save his changes to the file "prog.p11", the 
error occurs. The error message indicates that the error occurred in 
a supervisor routine called from the editor program. 

The get quota command gives the current value of the quota and the 
number -of records currently charged against it. The list command 
gives the lengths (see below) of the files in the directory as well as 
their names. The user then deletes the object segment "xxxx" to make 
room to write the file in the editor. (Note that information is not 
being lost here~ as the source file "xxxx.pI1" can be recompiled to 
create the object segment once sufficient quota has been obtained.) 
The get quota command shows that a single record of storage has been 
freed up, and the start request causes the editor write operation to 
be restarted. Since he is finished editing, the user quits out of the 
editor. 

If the user then tried to compile the program, another record quota 
overflow would occur because with the file "prog.pI1" successfully 
written, the number of records used is once again two. 

pI' prog -table 
PL/I 

Error: record quota overflow condition" by compile_entryl621 
(>system library standard)bound cg ) 
referencIng )udd>~erpent)PJApple)prog:O 

r •••• level 2,. 

In this particular case, the user can do nothing to gain additional 
storage, except delete the source file xxxx.pI1. If the file were of 
no use, the choice of deleting it would be acceptable; and the user 
could restart the compilation with the "start" command. If it were 
unacceptable, the user could only wait for additional storage. The 
problem would not be as critical as in the case above, as no 
information would be lost by logging out. 

The third context in wh~ch a record quota overflow ~ight occur is in r 
user program that writes output to a file. 

4-6 



filewriter 

Error: record quota overflow conditiop by open uns file$put chars un 
()system library standard)bound vfile ) - - --
referencIng >udd>Serpent>PJApple>output file:O 
r •••• level 2,. -

Note: The list command normally will give the "length" of the 
segments listed. This is the apparent size of the segment as computed 
from the bit count. However, bit count can be incohsistent with the 
number of records used by the segment if the segment contains zero 
page(s) (see above), or if the bit count has never been set (which can 
occur for a file which was never closed or a data structure or common 
block overlaid on a segment). Continuing with the example above: 

get quota -wd 
quo~a = 3; records = 3. 
r •••• 

list 

Segments = 2, Lengths = ~. 

re 3 test 
r w 1 test. fortran 

r •••• 

The get quota command shows· 3 records now in u~e (an addition~l record 
filled I~by completing the compilation); but the list command shows 
lengths totaling four records. If the "-records" option is supplied 
to the list command, the actual records used by the segment will be 
given. 

list -records 

Segments = 2, Records = 3. 

2 test 
1 test.fortran 

r 

This is consistent with the results given by get quota. The point is 
that when looking for segments to delete or move ~henreclaiming disk 
quota, the "-records" option should be used to obtain the correct disk 
usage for the segment. In addition, It cannot be assumed that a file 
1s empty because its length is zero. Rather, it is empty only when 
its records used is zero. 

~-7 



LINKAGE ERROR 

This error will occur when a program tries to reference an external 
symbol, for example, an external program or PL/I external data, and 
the specified symbol is not found. If the source of the error can be 
determined, and the problem fixed, the program can be restarted. Note 
that it is possible to "fix" a linkage error in such a way as to cause 
another flavor of the same error to occur when the program is 
restarted. A little thought will prevent this from happening however. 

There are four subclasses of linkage e~rors: 

Segment Not Found 

It means that a segment with the specified reference name was not 
found anywhere in the user's search rules. For example, assume that 
procedure "prog" calls another program, "zzzz$aaaa", which for some 
reason cannot be found. 

prog 

Error: Linkage error by >udd>Serpent>pjApple>progl20 (line 34) 
Referencing zzzz:aaaa. 
Segment not found. 
r •.•• level 2,. 

The basic approach for dealing with this error is to list the 
directories within which the program or data segment was thought to be 
in order to determine which of the following four cases apply. 

- the segment referenced really did not exist 

the segment referenced exists, but its 
incorrectly (e.g., misspelled)~ 

name was given 

- an entry (segment or link) of the correct name exists within the 
search rules, but was ignored 

the referenced segment exists in a directory not in the se~rch 
rules. 

The typical user who is working alone, (i.e., not using programs in 
some "private" library) and is only using his own programs, standard 
system commands and subroutines will usually only have to consider the 
first two cases. Below is a further description of each case. 

a. The 
created. 
program. 

segment may not exist. For example, it may have never been 
A common problem for new users is forgetting to compile the 
Continuing with the above example: 

~-8 



list 

Segments: 3, Lengths: 3. 

re 1 prog 
r w 1 zzzz.fortran 
r w 1 prog • pl1 , 

r •••• level 2,. 

Notice that there are source and object segments for prog, but only a 
source segment for zzzz (zzzz.fortran). The cause of the problem 
then, is that there is no object segment named "zzzz" to.be found. 
Compiling the program (as shown below) will create such a segment; 
restarting execution will cause the search for the segment to be 
repeated, and this time found. 

fortran zzzz 
fortran 
r •••• level 2,. 

list 

Segments: 4, Lengths: 4. 

re 1 zzzz 
re 1 prog 
r w 1 zzzz.fortran 
r w 1 prog.pl1 

r level 2,. 

start 

b. No segment of the designated name may exist. This can happen if 
the user is confused about the name of the segment. For example, if 
a PL/I program is called "subr" (i.e., subr is the label on ·the 
procedure statement) but the program resides in a segment of another 
name (e.g., subroutine), calling "subr" from another program will 
cause this error. This problem can be fixed by renaming (with the 
rename command) the segment (and the source segment) containin~ 
"subr". 

rename subroutine. 11 subr.:: 
r •••• level 2,. 

c. If the search rules have been stated as the user desires" and 
there is in fact a segment of the correct name in one of the 
directories in the search rules, then the most likely cause of the 
error is that the user has no access to the segment. For example, a 
"list" might show 

4-9 



list -pn )udd)Serpent)PJApple 

Segments = 3, Lengths = 4 

re 1 prog 
2 zzzz 

r w 1 prog.pl1 

r level 2,. 

Notice that there is no access ("re"t "rw", etc=) 
segment zzzz. This problem should be corrected with as 
Section IIIB (Incorrect Access On Entry, etc.). 

listed for the 
described in 

The second cause of this problem is a link of the correct name which 
points to a non existent segment or a segment to which the user has no 
access. A non-existent segment can be caused by the segment having 
been moved or deleted or the target pathname being incorrect. This 
might appear in a listing of the directory as follows: 

list -pn )udd)Serpent)PJApple 
Segs=0;Msfs=0;Dirs=0;Links=1. 
r •••• level 2,. 

list -pn )udd)Serpent)PJApple -link 

Links = 1. 

zzzz )udd)Serpent)BDLucifer)zzzz 

r •••• level 2,. 

initiate )udd)Serpent)PJApple)zzzz 
initiate: Entry not found. zzzz 
r •••• level 2,. 

The first list command (listing segments) shows that there are no 
segments in the directory, but that ~here is one link. The second 
list command shows the link to a segment in another directory. The 
initiate command is used to determine the reason why the segm~nt 
pointed to by the link was ignored in the search. Here it does not 
exist. If the target pathname is incorrect in that a directory is 
named incorrectly, the command error "Some directory in path specified 
does not exist." would be reported. If the problem is no access, the 
error would be "Incorrect access on entry." 

d. While a segment of the correct name may be known to exist, the 
directory containing it is not in the search rules. The current 
search rules may be listed with the "print_search_fules" command. 

print search rules 
initiated segments 
referencing_dir 

4-10 



working dir 
>system-library standard 
>system-library-unbundled 
>system-llbrary-' 
>system-library-tools 
>system-library-auth maint 
r •••• level 2,: -

list -pn >udd>Serpent>PJApple ... 
Note that this is a common problem to users of packages such as BMD, 
IMSL, SSP, or the M.I.T. Calcomp subroutines. These programs are kept 
in directories outside of the normal search rules. (1) 

In general} when it has been determined that a segment to be 
referenced is outside of the search rules, one of three things can be 
done. The search rules can be adjusted to include the directory 
containing the segment; the segment may be initiated; or a link to 
the segment can be created. For example, assume that the segment in 
question is the IMSL subroutine eigrf. The search rules can be 
corrected with the "add search rules" command. (2) The problem could 
be resolved by: 

add search rules >libraries>imsl -after >system_library_unbundled 
r • :- •• 1 e vel 2,. 

print search rules 
initiated segments 
referencing dir 
working dir­
>system-library standard 
>·s y stem -1 i bra r y - u n bun dIed 
>librarIes>ims1-.... 
r •••• level 2,. 

Here, the print search rule command has been used to show the 
corrected search- rules: This approach is useful when the missing 
segment is one of a collection of programs in the same directory 
(like a program library) whose other members are also likely to be 
used. 

(1) The documentation for such program libraries will usually specify 
how to make use of those routines. This advice should be followed. 

(2) In the example below, the new search rule is added after 
>system library unbundled rather than after working dir to avoid 
searching >libraries>IMSL every time a command or -subroutine is 
referenced for the first time in the process. 

It-l1 



The segment may also be initiated. 
one program needed, and' it is 
current process. 

This is useful when there is only 
likely ,to be used only within the 

initiate >libraries>imsl>eigrf 
r •••• level 2,. 

A link to the program may also be created. This need only be done 
once, and will enable the program to be referenced without issuing 
additional commands at any time in the future provid~d that the 
directory containing the link remains within the search rules. The 
simplest way to ensure this is to place the link in the directory 
containing the calling program itself. 

link >libraries>imsl>eigrr 
r •••• level 2,. 

where eigrf 
)libraries)IMSL)eigrf 
r •••• level 2,. 

The "where" command gives the pathname or the segment whose reference 
name is given. That is the segment that will be invoked if a program 
of the name given is called. It has been used here to verify that the 
link was successful. 

External Symbol Not Found 

This means that a segment matching the reference name specified was 
found, but that the (perhaps implicitly) specified entry point was 
not. 

prog 
Error: Linkage error by )udd)Serpent)PJApple>prog:34 (line 38) 
referencing xxxx:aaaa 
Extern~l symbol not found. 
r .••• level 2,. 

This means that the segment xxxx was found, but the external entry 
point (symbol) "aaaa" was not found in the segment. In addi tion to 
trivial naming and typing mistakes, one of the more frequent causes 
for the error is that the program resides in a segment with a n~me 
different from the one used on the procedure statement of the program. 
The program is then called using the segment name. 

4-12 



edm test.pl1 
-Segment not found. 
Input. 
tester: procedure (a); 

dol a float binary(27); 
a = a ** 2; 

end; 

Edit. 
w 
q 
r •••• 

pl1 test -table 
PL/I 
r .••• 

test 
Error: Linkage error by )udd)Serpent)PJApple)call testl54 (line 2~) 
referencing test:test -
External symbol not found. 
r •••• level 2,. 

This problem can be eliminated only by changing the name on the 
procedure statement from tester to test and recompiling the program. 

Linkage Section Not Found 

This means that a segment of the specified name was found, 
the segment did not have a linkage section (i.e., it is not 
segment). 

prog 
Error: Linkage error by )udd)Serpent)PJApple)prog:43 
referencing xxxx:aaaa 
Linkage section not found. 
r •••• level 2,. 

but that 
an object 

(line 42) 

This may occur if the name of a data or test segment was specified 
instead of the name of an actual compiled program. For example, ~ 
common problem is a source segment which is given the name of its 
object segment. 

4-13 



list 

Segments = 4 , Lengths = 4. 

r w 1 xxxx 
xxxx.p11 

re 1 prog 
r w 1 prog.p11 

r level 2,. 

The list command shows the two names on the source file "xxxx.pll". 
When "xxxx" was referenced from the program, it was this segment that 
was found, but it was not a valid object segment. 

To recover from this particular error, the name must be deleted from 
the segment, and the text compiled into the object program to be 
called. The program can then be restarted. 

delete name xxxx 
r •••• -1 eve 1 2,. 

p11 xxxx 
PL/I 
r •••• level 2,. 

start 

There is No Room to Make Requested Allocation 

This means that the size of a named external data area exceeded the 
system limit of 255K words. Examples of such areas are named common 
blocks in FORTRAN and external symbols given reference names (names 
containing a "$") in PL/I. For example 

nospace: procedure; 
declare bigarea$ (300000) external fixed 'binary; . . . 
bigarea$ (1) = ... ; . . . 

end; 

Executing the above program would produced the following error: 

nospace 

Error: Linkage error by )udd)Serpent)PJApple)nospace:l1 (line Q 
referencing bigarea! ' 
(with a create-if-not-found link) 
There is no room to make requested allocation. 
r •••• level 2,. 

Q-14 



When such an error occurs in a PL/I program, the user should examine 
the declaration of the external symbol and calculate the size. If it 
is a structure containing elements each smaller than the limit, the 
structure oan be broken up. For example 

declare 

1 extstruc$ external, 
2 a (100000) fixed bin, 
2 b (100000) float bin, 
2 c (100000) float bin(63); 

would occupy a total of 400,000 words of storage. ·Member a uses one 
word per element; b, a single precision real value, uses one word per 
element; and c, a double precision real value, uses two words per 
element •. It can be broken up into two or three small structures: 

declare 

1 extstruc1$ external, 
2 a (100000) fIxed binary, 

1 extstruc2$ external, 
2 b (100000) float binary, 

1 extstruc3$ external, 
2 c (100000) fixed binary; 

If the symbol being created is one large array, then the programmer 
should attempt to reduce the size of the array needed. If such a 
reduction is not possible, it may be possible to simulate the array as 
an array of pointers to cross sections of the original array. 

declare 
array$ (3,100000) external fixed binary; 

would cause the error described here. This could be replaced by 

declare 
array (100000) fixed binary based, 
arrp (3) pointer initial 

(addr (array1 $) , . addr (array2$), addr (array3$»,· 
(array1$, array2$, array3$) (100000) external fixed binary; 

with the program edited to replace all references to 

array (x, y) by arrp (x) -> ~rray (y) . 

Similar problems occur in FORTRAN when very large common blodks are 
used. As in PL/I, there are two cases: when there are many small 
members of the common block, and when there is one very big member. 
In the first case, the problem can again be dealt with.by splitting up 
the common block. 

4-15 



becomes 

common /data/ a(100000), b{100000), c(100000) 

common /data1/ a(100000), b{100000) 
common idata2/ c (100000) 

In the second case, that of one very large member, there is no method 
to get around the problem that i~ particularly efficient. The best 
that can be done is to write a function that references cross sections 
of the array defined in different common blocks. 

common array (3,100000) 

becomes 

function array (x, y) 
common /data1/ array' (100000) 
common /data2/ array2 (100000) 
common /data3/ array3 (100000) 

go to (1, 2, 3) x 
1 return (array' (y» 
2 return (array2 (y» 
3 return (array3 (y» 
end 

SEGMENT FAULT 

This error means that the program has addressed a non-existent 
segment. What has happened is that an address value (pointer, entry, 
or label) contains an invalid segment number. There are two general 
causes: using an uninitialized address datum, and using an address 
value designating a segment after that segment has been deleted. 

A deleted segment may be referenced under the following 
circumstances. If the program was, at the time of being deleted, 
still active (its execution suspended by a quit signal or error 
condition). 

prog 

Error: Attempt to divide by zero at >udd>Serpent>PJApple>prog:2 L 
(line 12). 

System handler for error returns to command level. 
r •••• level 2,. 

delete prog 
r •••• level 2,. 

~-16 



releas~ 

Error: ,Segment-fault error by unwind stack: 120 
(>system library 1>bound sss active )- -
(while in pl1 operator cp csi) -
referencing 36712 -
There was an attempt to use an invalid segment number. 
r .•• • level 2,. 

Or if the segment is an input or output file that was not closed prior 
to deleting the segment. 

(quit) 
prog 

QUIT 
r · ... level 2 , • 

delete output file 
r · ... level '2,. 

release 
r · .... 
prog 

Error: Segment-fault error by open uns file$put chars uns file:l036 
(>system library standard>bound vfiIe )- - --
referencIng 3~5:0 . -
There was an attempt to use an invalid s~gm~nt number. 
r •••• level 2,. 

An uninitialized address value is usually caused by forgetting to 
initialize the corresponding variable. (1) 

prog 

Error: Segment-fault error by >udd>Serpent>PJApple>prog:321 
(line ~3) referencing 2349127 
There was an attempt to use an invalid segment number. 
r •••• level 2,. 

probe 
Condition segfault raised at line ~3 of prog. 

(1) This can also cause any of the other bad address problems 
described under other errors. An uninitialized pOinter may cause a 
worthless value to be displayed for a variable Qualified by the 
pointer or for the pointer itself. (Most uninitialized automatic 
pointers point into the stack). ~ 

4-17 



source 

value p 
23119127 

P -> data = 3; 

In FORTRAN, address data problems may occur as well. One cause is 
passing an array argument to a FORTRAN subroutine whose corresponding 
parameter is not dimensi6ned. When the, program references this 
parameter with s~bscripts, FORTRAN treats the parameter as an entry 
value. For example, executing a program of the following form 

subroutine mattran (arrin, arrout) 
dimension arrout(1I,1I) ... 
arrout (i,j) = arr1n (j,i) ... 

end 

could cause an error of the form 

mattran test 

Error: Segment-fault error by >udd>Serpent>PJApple>mattran:143 
(line 12) referencing 327:756 
There has been an attempt to use an invalid segment number. 
r •••• level 2,. 

probe 
Condition segfault raised at line 12 of mattran. 
source 

arrout (i,j) = arrin (j,i) 
val u e i; val ue' j 

1 , 
value arrin (i,j) 

Error: Segment-fault error by print reference:2373 
(>system library standard>bound probe :14517) 
referencIng 327:'56 -,-
There has been an attempt to use an invalid segment number. 
r •••• level 3 t • 

pi 
symbol arrin 
entry variable parameter 

Here, the subroutine mattran has been called from mattran test. A 
segment fault error occurs on line 12, and probe is invoked to look 
for the cause of the problem. The "source" request gives the text 0 
the statement in which the error occurred; "value" requests enable 
the user to determine with what variable the program is having 

4-18 



difficulty. The error reoccurs when the value of "arrin (i, j)" is 
displayed, indicating that "arrin" is th, problem. The 
program_interrupt (pi) command is used to probe, and the "symbol" 
requests used to display the attributes of the variable. The output 
sho~s that it is an entry variable and not an array at all. 

Another cause would be passing too few arguments to a subroutine. In 
this case, referencing a parameter for which therE is no corresponding 
argument may cause a segfault or other addressing error. 

NO EXECUTE PERMISSION 

This means that the user's process is attempting to execute a segment 
to which it does not have execute access. Upon getting this error, 
the user should attempt to set access (or have the access set for him 
by the owner of the segment) to read and execute, (1) and if· 
successful, restart the program. 

prog 

Error: no execute permission condition by command_processor_:S22 
(>system lTbrary 1>bound command loop ) 
referencIng >udd)Serpent)PJApple)progT3 
r .••• level 2,. 

set acl prog re 
r .: •• level 2,. 

start 

This can occur if the access has been set incorrectly on the segment. 
For instance, if a "set acl ** rw" command has been issued in the 
directory, or if the- user had created the object segment before 
compiling by using the create command. 

The error can also occur when an uninitialized label or entry variable 
is referenced. This particular case can be distinguished from the 
others by the identity of the segment being referenced. If it is one 
which could be expected to be called (e.g., in the example above, 
"prog" is being called), then the problem is probably a simple access 
error; on the other hand, if the segment, is a data or text segment, 
etc., then the problem is probably an uninitialized address datum. 

(1) At least "re" access is necessary for an object segment; "e" 
alone will not suffice. Write access is not advisable. 

LJ-19 



NO READ/WRITE PERMISSION 

These mean that the process lacks the access required 
write the segment mentioned in the error message. 

prog 

to read or 

Error: no write permission condition by prog:412 (line 101) 
referencing >udd>Serpent)PJApple)data seg;2 
r •••• level 2,. -

The simplest cause is having failed to set or obtain the necessary 
access. As with a no execute permission error above, the user may 
attempt to set the required access, and then restart the program~ 

This problem may also be caused by bad address data. This case may be 
distinguished from a simple access error as also given above. 

NOT IN READ/EXECUTE/WRITE/CALL BRACKET 

This means that an attempt has been made to reference an inner ~ing 
segment. The cause is almost always bad address data. 

prog3 

Error: not in write bracket condition by progl26 (line 5) 
referencing-dseg:O 

r •••• level 2,. 

The identity of the segment being referenced can often give a clue to 
the variable whose value is bad. A reference to dseg, as occurred 
here, usually indicates that a packed pointer (8 pointer value 
declared unaligned) is uninitialized. A reference to the stack or 
linkage section, is strong evidence that an automatic or static, 
respectively, aligned pointer, label or entry value has not been 
assigned a value. 

FAULT TAG 1/FAULT TAG 3 

This means that an addressing modification fault has occurred while 
attempting to indirect through a pointer. Since these modifiers never 
appear in PL/I pointer datums, the problem is usually uninitialized 
address data. 

prog 

Error: fault tag 1 by )udd)Serpent)PJApple>prog:14 (line 8) 
referencing stack-413320 (in process dir) 
Ascii data where pOinter expected. 
r .••• level 2,. 

4-20 



The fact that the program was referencing some data in stack 4 at the 
time ·of the ~rror indicates that the bad pointer was an iutomatic 
value. If the program had been referencing "combined linkage section 
4.00, the bad pointer would be a static value. The address modifier 
may also be encountered when trying to execute data. In such a case, 
the error message will indicate that the segment causing the error is 
a data segment such as the stack or the combined linkage section. 

The error fault tag 1 is often caused by an uninitialized pointer 
occupying space previously filled with ASCII data (hence the second 
part of the error message). 

ILLEGAL MODIFIER 

This means that an illegal address modifier has been used. 
appear in a pointer value or in data being executed as 
instructions. 

prog 

It may 
regular 

Error: illegal modifier condition by )udd)Serpent)PJApple>prog:44 
(Line 18) referencing stack 4:0 (in process dir) 
Possible illegal modifier i~ indirect chain or uninitialized pointer. 
r •••• level 2,. 

The causes of this error are identical to those of a fault tag 1/3 
error. It is also not restartable. The problem must be corrected 
before the program can be run again. 

ATTEMPT TO REFERENCE THROUGH A NULL POINTER 

This means that a null pointer has been used as a locator value 
qualifying a reference to a based variable. It usually indicates a 
logical bug in the program. 

prog 

Error: Attempt by )udd)Serpent)PJApple)prog:57 (line 23) 
to reference through null pointer 
r •••• level 2,. 

The programmer should carefully examine his or her program to 
determine how the locator (pointer or offset) value could have a null 
value at the location in which the error occurred. The variable may 
not be referenced with an explicit qualifier 

data instead of pl -) data 

In this case, the default qualifier e.g., based, (E) 
its value should be checked. 

4-21 

is used, and 



probe 
Condition simfau1t 000001 raised at line 23 of prog. 
source 

result = based num + 4; 
symbol based num 
fixed binaryT17) aligned based (p) 
Declared in prog. 
value p 

null . . . 
This error may also occur for controlled as well as based data, if a 
controlled variable is referenced before it is allocated. 

SIMFAULT NNNNNN 

This means that the programmer has attempted to use a pointer with a 
segment number of -1 and an octal offset of NNNNNN. The cause is use 
of uninitia1ized address data. 

Note: a Dointer with segment number -1 and offset 000001 is a null 
pointer. - In such a case, the error message reads "Attempt to 
reference through a null pointer" as described above. The condition 
simfault 000001 is signalled explicitly only when the pointer value is 
not entIrely a valid null pointer (for example, it has a non-zero bit 
offset). 

ILLEGAL MACHINE OPERATION 

This means that there has been an attempt to, execute an undefined 
machine instruction. 

prog 

Error: Illegal machine operation by prog:4 
Current instruction is: 

000004 000000000000 
r •••• level 2,. 

.... a 

The two most common causes of this error are: branching to a 
nonexistent element of a constant label array, or using an 
uninitialized label or entry value. The segment in which the error 
occurs may be used to distinguish the two cases. In the former, the 
segment will be one of those in use (in the example above prog); in 
the later, it will be a data segment (stack or linkage section) or 
some other unexpected segment. 

4-22 



STORAGE CONDITION 

There are two causes of this error. First, the user has attempted to 
allocate more based or controlled storage than is available in the 
system area. This will be acompanied by the message that system 
storage is full. 

prog 

Error: storage condition by )udd)Serpent)PJApple)prog:154 (line 52) 
System storage for based and controlled variables is full. 
system handler for error returns to command level 
r •••• level 2,. 

The programmer should inspect the declaration of the variable being 
allocated. The system cannot allocate more than 262,144 words of 
storage for anyone variable. If the variable being allocated has an 
expression for a string length or array bound, the value of those 
expressions should be checked. Often they may involve undefined 
values. If all allocations are relatively small (e.g., hundreds or 
low thousands of words), the problem may be that the allocation is 
being repeated too many times. A check should be made for an infinite 
loop involving the allocation. 

Second, and most common, is that the stack has overflowed. This error 
will be accompanied by the message that the stack has been extended. 

prog 

Error: storage condition by )udd)Serpent)PJApple)prog:166 (line 58) 
Attempt to reference beyond end of stack. Stack has been extended. 
system handler for error returns to command level 
r •••• level 2,. 

This error will first occur when more than 64K words of stack space 
are required, or when a reference is made past the first 64K of stack. 
The stack is extended to the next 48K boundary. Depending on the 
cause for extending the stack, it may be permissible to restart the 
program with the start command. Subsequent storage conditions may 
occur if additional storage is required/referenced, and the stack will 
be extended in 48K increments up to a maximum length of 208K. Any 
attempt to use more than that will cause a fatal process error (see 
below). 

One cause of this error is that the program is recursing too deeply 
(or infinitely). This case can be verified by examining the frame 
number, the second of the two numbers in the in ready message level 
information: 

r ••.. level ., 137 

4-23 



A value in the hundreds is a certain ,sign of trouble. (1) The 
cummulative automatic storage requirements for a moderately recursive 
program (or set of programs) may also be too great. The required 
storage can be determined from a compilation Ilisting produced with the 
"-map" option (under the heading "storage requirements for the 
program"). If the storage requirements will :not exceed the maximum of 
208K, it is safe to restart the program. : . 

\ 

An excessively large stack frame size may also arise if there ~rc 
automatic variables declared with expressionllength or array bounds, 
and the expressions reference uninitialized ,values. A common m~stake 
is to make use of another automatic variable in such an ~xpression 
whether or not that variable has an initial value specified. For 
example. a program containing the declaration 

declare 
array (array dim) fixed binary, 
array_dim fixed binary automatic; 

could cause the error message appearing above. 
might continue as follows: 

A debugging session 

probe 
Condition storage raised at line 58 of prog. 
source 

call subr ( ••• ); 

Here probe has been used to determine where the error occurred. The 
source request shows that the error occurred while trying to call 
another subroutine. The reason that the error occurs at this point is 
that until the subroutine is called (creating a new frame for the 
subroutine) the stack is not actually extended. So the programmer 
examines the program for abnormally sized variables: 

symbol array 
fixed binary(17,0) aligned automatic dimension(71902) 
Declared in prog. 

The symbol request gives the evaluated dimensions for the array, 
showing it to be extremely large. (The error could appear in the S8me 
fashion if the large bounds were intended.) 

Another cause is subscripting an automatic array with a value far out 
of bounds. This can be detected in PL/I programs by putting a 
subscriptrange prefix on the procedure statement. 1 

(subscriptrange): 
prog: procedure; 

(1) In fact, a value in excess of 
generally be regarded as a sign of 

30 to ~O 
....... "'h'o ... ro tJ I v.., .. \:0 IU..,;) • 

is uncommon, (=)nd can --



end; 

In Fortran this can be accomplished by compiling the program with the 
"-subscriptrange" control argument. 

fort~an zzzz -table -subscriptrange 

A similar cause is. a string range error; that is, the use of the 
substr builtin function with out-of-range arguments. In general, this 
is an initial position (the second argument) which is negative or far 
past the end of the' string, or a length (the third or assumed 
argument) that is negative or far greater that the actual length of 
the rest of the string. This error can be trapped by recompiling the 
program with a "stringrange" prefix on the procedure statement. 

A final cause is the invocation of a function that returns a value 
with star (expression) extents. If the bounds of an array developed 
as the return argument are bad, or if a bad substr expression or 
uninitialized character varying string is returned, a storage 
condition can be raised after the called function has returned, but 
before the calling program has resumed execution. This is indicated 
by a storage condition occurring in a system segment. If this is the 
case, there will be no other information as to what user program was 
executing at the time of the error. 

OUT OF BOUNDS FAULT 

This means that a non-existent portion of a segment has been 
referenced by the program. A storage condition due. to a stack 
overflow is really an out of bounds fault on the stack; as a result, 
the causes and recovery methods are similar. The most common causes 
include an out-of-range array subscript or substring reference. The 
error is particularly common when the data in question is a normal 
Fortran variabl~, commoned (occurring in a segment in the process 
directory), or uncommoned (occurring in the linkage section), or a 
PL/I internal static variable (occurring in·the linkage section), or 
an external static variable (occurring in a segment in th~ process 
directory). If the segment is the program itself, it is likely that 
the program is referencing outside of the bounds of a label array or 
an internal static array that has an initial value specified but has 
never been modified. 

4-25 



ILLEGAL PROCEDURE 

This occurs when the hardware is requested to perform an illegal 
operation. The most usual cause is uninitialized decimal data. 

baddec 

Error: illegal procedure condition by >udd)Serpent)PJApple>baddec 
(line 5) referencing stack_4:3320 (in process dir) 

f ••• level 2,. 

probe 
Condition illegal_procedure raised at line 5 of baddec. 
source 

dv = dv + 1; 
symbol dv 
fixed decimal(7,O) aligned automatic 
Declared in baddec. 
value dv 

Error: illegal procedure condition by arithmetic to ascii :112 
(>system library~standard>bound trace ) 
referencIng pl'_operators_:10 - -

r •••• level 3,. 

release -all 
r .••. 

Here probe has been used to show the source of the line at which the 
error occurred. It contains a reference to a decimal variable. This 
is sufficient evidence to believe that the problem is uninitialized 
decimal data. Displaying the value of the variable will cause the 
same error again, confirming the diagnosis of the problem. (The 
release command, with the -all option, is used to flush execution of 
probe, suspended by the second occurrence of the error, and baddec, 
suspended by the first.) 

Other, less likely, causes of the same error are: transfering to an 
element of a label array outside of the bounds of the label array, and 
referencing uninitialized label or entry variables. In the former 
case, the location of the error will often be listed as the first line 
of the program; the line from which the coridition is signalled will 
not be available. In the latter case, the location of the error will 
usua 11 y be in some unex pec'ted segment. 

4-26 



CONVERSION 

This means that an error has occurred in the conversion of a character 
string to some other data type. This condition will occur in 
conversion to an arithmetic value if the string is not a correctly 
formed number~ It will occur in conversion to a bit string if the 
source character string contains characters other that "1" or "0". 

badconv 

Error: conversion condition by )udd)Serpent)PJApple)badconv:22 
(line 6 onsource= "one", onchar = "0" 
Illegal character follows a numeric field. 
system handler for error returns to command level 
r •••• level 2,. 

The error message gives, in addition to the location at which the 
error occurred, the values of the PL/I builtin functions, onsource and 
onchar. Onsource represents the character string being converted; 
onchar is the (first) character in the string which is invalid for the 
conversion. 

This error may arise during implicit or explicit conversions among 
variables (or the results of expressions) in the program, or during 
execution of a get statement when the input is converted to an 
arithmetic or bit value. 

SIZE 

This condition has three causes. It will occur when the value 
assigned to a fixed point datum exceeds the precision of the target -­
for example, assigning the value 9999 to a fixed binary(3) datum. The 
error will occur in this way only only if size checking was enabled 
for the statement in which the assignment was performed by a size 
prefix on the statement or the procedure statement. Second, it will 
occur during picture controlled conversion, if the target field is too 
small to hold the value being converted. Again size checking must be 
enabled. Third, it will occur during a put list or put data 
statement, when the value stored exceeds the precision declared for 
the variable, or during a put edit statement, if the output field 
cannot hold the value being output. Size checking is always enabled 
for put statements. 

size err 

Error: size condition by )udd)Serpent)PJApple)size err:136 (line 14) 
Precision of target is insufficient for number of integral 
digits assigned to it. 
System handler for error returns to command level 
r •••• level 2,. 

4-27 



The user should be aware of a side effect of a size, condition raised 
while executing a put statement. A common debugging technique is to 
include an error on unit within the program that dumps all the 
variables: 

on error begin; 
put data; 

end; 

If a size condition occurred, invoking the on unit, the put data 
statement within the on unit will cause another size condition to be 
signalled when formating the variable for which the condition was 
originally signalled. The on unit will be invoked a second time, and 
the size condition signalled yet another time, and so on, ad 
infinitum, eventually leading to a storage condition or fatal process 
error. 

ERROR CONDITION 

An error condition will be reported when an erron~ous state arises in 
the programj and there Isno specific condition for that state. For 
example, this includes use of mathematical builtin functions with 
arguments that are out of rang~. 

The following program is used to illustrate a typical situation in 
which the error condition will be raised. 

bigexp: procedure; 
dcl sysprint file; 
put list (exp (2345»; put skip; 

end; 

Executing the program will cause the condition to be signaled. The 
system on unit gives the reaton for the specific cause of the problem, 
and states a f1xup to be taken if the prpgram is restarted. 

bigexp 

Error: error condition by >udd>Serpent>PJApple>bigexp:53 (line 3 
exp(x), x > 88.028, not allowed 

Type ""start"" to set result = .17014118e+39 
r •.•• level 2,. 

start 
1.701e+038 

r •••• 

After receiving the error, the programmer may decide that the standard 
fixup is acceptable, and restart the program as has been shown abov~. 
Notice that the program proqeeds normally to output the result as set 
by the action of the system on unit. 

4-28 



SUBSCRIPTRANGE 

This means that a subscript specified 1n an array reference is outside 
of the bounds of the array. The cond1tion is normally raised only 
when the programmer has specified that subscript range checking be 
performed (by placing a subscriptrange condition prefix on a PL/I 
procedure statement, or compiling a Fortran program with the 
-subscriptrange control argument). Such checking is useful when there 
are unexplainable storage, out of bounds, or fatal process errors. 

subrange 

Error: subscriptrange condition by >udd>Serpent>PJApple>subrange:17 
(line 7). 
A subscript value has exceeded array bounds~ 
system handler for error returns to command level 
r •••• level 2,. 

probe 
Condition subscriptrange raised at line 7 of subrange. 
source 

array (1) = i; 
value i 

5 
symbol array 
fixed binary(17,O) aligned automatic dimension(~) 
Declared in subrange. 

Above is an example of a subscriptrange condition. Upon receiving the 
error, the programmer enters probe to determ1ne the cause of the 
problem. The source request gives the text of the line on which the 
error occurred (line 7). He then displays the value of i and compares 
it with the dimensions for the array as given by the symbol request. 
Here the subscript, i, is only a little bit out of range. This 
indicates a logical bug, specifically, that the program is not 
constraining the value of the subscript properly. Alternatively, if 
the value of the subscript were grossly out of range (for example, 
-72301292), this would be an indication that the problem was that the 
subscript was uninitialized or assigned the value of some (function of 
an) uninitialized variable. 

This condition may also arise when 
dimension (*) array is used, and the 
not match the bounds of the array to 
example, assume that data has dimension 
an array with dimension (5). Then 

data = array_fun ( ••• ); 

a function which returns a 
bounds of the array returned do 

which it is assigned. For 
(4) and that array_fun returns 

will cause a subscriptrange condition to be signalled. 

4-29 



STRINGRANGE 

This means that a substring of a character or bit string value as 
specified by the substr builtin function is not completely contained 
within the string value. Given the reference 

substr (s, i, j) 

the error implies that one of two conditions is true: that i, 
specifying the starting position of the substring, is less than one or 
greater than the current length of the string, or that j, specifying 
the length of the substring, is less than zero or greater than the 

, number of positions included in that portion of the string from 
position i to the end. 

The stringrange condition will only be raised if the programmer has 
compiled the program with' a stringrange condition prefix on the 
procedure statement or on the statement which uses the substr built-in 
function. 

stringrange 

Error: stringrange condition by >udd)Serpent)PJApple)stringrange 
(line 7). A substring specified by substr is not completely 
contained in the first argument. System handler for condition 
returns to command level. 
r •••• level 2,. 

probe 
Condition stringrange raised at line 7 of stringrange. 
source 

value i 
-1 

• • • 

substr (str, 1, i) = "a"; 

4-30 



FIXEDOVERFLOW, OVERFLOW, UNDERFLOW 

These errors indicate that the result of a computation has exceeded 
the precision of the machine. Fixedoverflow applies to fixed point 
computations and indicates that the result is too large. It should 
not be restarted. 

folf 

Fixed point overflow by >udd>Serpent>PJApple>folf:143 (line 27) 
System handler for error returns to command level 
r •••• level 2,. 

Overflow applies to floating point computations, and indicates that 
the result is too large. It should not be restarted. 

olf 

Error: Exponent overflow by >udd>Serpent>PJApple>olf:160 (line 33) 
System handler for condition returns to command level 
r •••• level 2,. 

Underflow applys to floating point computations, and indicates that 
the result is too small. The program is automatically restarted with 
the result of the computation set to O. 

unfl 

Error: Exponent underflow by >udd>Serpent>PJApple>unfl:167 (line 39) 
r •••• 

Notice that after an underflow condition the system does not enter a 
new command level, but instead continues with the program. Here .it 
has terminated normally, returning to command level 1. 

4-31 



PROGRAM INTERRUPT 

The program interrupt command is used to reenter a command subsystem 
such as edm 'Or probe after an error condition or quit signal. The 
command signals the program interrupt condition which is trapped by 
the subsystem. If the user mIstakenly issues a program interrupt 
command to reenter a subsystem that does not handle the condition, or 
when there is no subsystem active, the condition will be reported as 
an error at command level. 

program_interrupt 

Error: program interrupt condition by program interrupt:71 
()system librarj standard)bound command env ) - , - - - --
r •••• level 2,. 

If there is no subsystem active, the user should issue a release 
command to flush the program interrupt cond1tion. If the user is 
trying to reenter a substem that does not handle program interrupt, he 
should issue a release command to flush the program interrupt and then 
a start command to reenter the subsystem. (Normally, however, a 
subsystem may be reentered by a start command only if it was suspended 
by a quit s1gnal.) 

4-32 



SECTION V 

FATAL PROCESS ERRORS 

In general, a fatal process error occurs when the system detects a 
condition such that the process is not able to continue running. (In 
particular, the system default on unit cannot be exec~ted to interpret 
the cause of the error.) The action taken in this case is to 
terminate the process in which the error occurred and to create a new 
process for the user. Because it is a new process, there is no 
information available about the programs that were running when the 
error occurred, the value of program variables, etc. The only clue as 
to the cause of the error is the error message. 

The single'most common form of a fatal process error is an out of 
bounds error on the stack. The causes are the same as for a storage 
condition (see above) arising on the stack. The message that is 
generated by the system designates that a fatal error has occurred, 
and then gives a error message indicating a more specific problem. 

Fatal error. Process has terminated. Out of bounds fault on user's 
stack. New process created. 

In the event of this kind of fatal process error, it is advisable for 
the user to recompile his program with subscriptrange and stringrange 
checking enabled and try the program again. If a stringrange or 
subscriptrange condition then occurs instead of the fatal process 
error, then it is likely that new error is the source of the problems. 

If the fatal process error recurs despite the checks enabled, then the 
cause of the problem can be just about anything. It is recommended 
that the user check his access to all programs and files that he is 
using to insure proper access. He should also check for the possib]~ 
causes of a segment fault error. Finally, calls to system· programs 
should be checked to see if they conform to all documented 
conventions. Should these checks fail to turn up a clue. He should 
use the probe command to set breakpoints at various strategi~ points 
in his program to isolate the point at which the fatal process error 
is occurring. Often the process will have to be repeated with 
additional breaks set until the location is narrowed down to a single 
statement. 

5-1 



There are ·several other kinds of fatal process errors that 
may see. They include: 

No unclaimed signal handler specified for this process. 

the user 

This means that ~no default on unit could be found. The 
possible causes include subscript and stringrange errors, and 
the use of unin1tialized address data. (See above and the 
previous section.) 

Fault in signaller by user's process. 
This indicates the presence of a very complex error condition 
and probably involves more than one cause. The user should 
apply the methods of described for the other errors and hope 
for the best. 

Unable to perform critical 1/0. 
This means that the user's process was unable to perform an 
input or output operation at a crucial point. For example, 
writing out an error message. This indicates that the I/O 
attachments for the user input, user output, error output and 
user ilo I/O switches -are in an untenable state. The user 
should consider the kinds of operations that he performed 
prior to the fatal error, and determine if they conformed to 
documentation. 

Process terminated because of system defined error condition. 
This is a catch all message. Again, the user should t~y the-­
methods described above. 

The reader should recall the comments about errors that vanish after a 
new process is created made in the introductory remarks to section 
IV. They apply to a fatal process error as well. 

5-2 



APPENDIX G 

TYMNET DATA COMMUNICATIONS NETWORK 

Tiie TYMNET Network 
TYMNET Telephone Numbers 

G-i 

Page 

G-1 
G-6 

F01 



This page has intentionally 

been left blank. 

G-ii F01 



THE TYMNET NETWORK 
i 

Assignment of TYMNET user id's and pass~ords contact: 

Lacy Johnson 
Honeywell LISD 
Multics Computer Center 
Box 6000 Mail Station K40 
Phoenix, AZ 85005 

Phone: (602) 249-7303 HVN 341-7J03 

LUCAL LINES 

D·) a "help TYMNET lines" to obtain a list of TYMNET dial-up lines 
i 1 the major citiis serviced by TYMNET. 

CuST 

Tl'MNET charges $7.50 per connect hour which will' be passed on to 
tIle appropriate cost center~ 

G-1 FO 1 



THf TYMNET NETWORK 

• SUPPORTED TERMINAL 

o TYMNET supports a wide variety of terminal types. Each terminal 
type has an identifying character which must be sent to TYMNET 
when you first log in to establi~ the transmission 
characteristics of the terminal. 

IDENTIFIER TERMINAL REMARKS 

Speed Baud Type 
(cps rate 

b 15 150 TermiNet-300 Full Duplex, 

I TTY-31 odd parity 
U~'70'+-{I"IO 
l,g £,.'\...o....L ..., ,.1.10" 

Exect;port 

d 10 110 TTY 33/35 Full Duplex 
TermiNet-300 

a 30 300 TermiNet-300 For thermal printer 
(RECOMMENDED) Execuport terminals, a delay 

Texas Inst. of N+6 or 1 
CSC character times 
Hazeltine CRT is used. 

carrigae 15 134.5 Date1 Multics only accepts 
return IBM ;)141 EBCDIC terminals 

through TYMNET. 

• Only 3D!) and 134.5 baud lines are available on Multics for access 
through the TYMNET network. 

G-2 F01 



THE TYMNET NE7WORK 

LOGG:NG INTO TYMNET 

1. Turn on the terminal and coupler. 

2. If the terminal has adjustable data transmission speeds, set 
the terminal to 30 cps. This is to handle TYMNET's initial 
message. Lower settings give n garbled message during login. 

3. If you are using a terminal that has an Auto Linefeed swi tch 
(such as the TermiNet 300), turn it off during the initial 
login procedure with TYMNET. Once you have made cOI1tact with 
Multics you may turn it back bn. 

4. Dial the TYMNET phone number and wait for the high-pitched 
tone. (If the tone sounds weak or raspy, hang up and re-dial 
to obtain a better line). 

5. Place the telephone handset in the coupler or depress the 
"DATA" button if using a 103A or 113A dataset. 

6. The following message will be sent to your terminal at 10 
cps: PL~ASE TYPE YOUR TERMINAL IDENTIFIER 

7. Set your terminal to the desired speed (if necessary), and 
type the appropriate letter or CR (carriage return). 

8. TYMNET will then send: .-XXXX-YY-- PLEASE LOG IN: where: 
XXXX is the remote access node number, and YY is the port on 
the node to which your terminal is connected. 

(OPTIONAL) You may check for the presence 
supervisor (which controls the Tymsat you 
typing a single CR. If the supervisor is 
following prompt will appear: USER NAME: 

G-3 

of the network 
have ·~alled) by 
in control, the 

F01 



THE TYMNET NETWORK 

10. You may need the following control characters before entering 
your user name: 

a) control-H 

b) control-X 

c) control-Po 

notifies TYMNET not to echo characters 

to be used if you plan to input data from 
paper tape, cassette tape, or any other 
non-keYboard device. TYMNET must be able to 
start and stop data entry.For this, 
control-Q starts the device and control-S 
stops the device. 

to be used if your terminal can only accept 
even parity. 

11. After receiving "PLEASE LOG IN:" or "USER NAME:" enter your 
TYMNET user id (preceded by control characters if necessary). 
followed by a CR. (user id may be in upper OR lower case). 

12. TYMNET will then prompt you for your password: PASSWORD: 

13 . Respond by typing your 
followed by a CR. NOTE: 
"PASSWORD:", enter your 
the password followed 
NON-ASCII TERMINALS) 

password(in upper or lower case), 
If you want to eliminate the prompt 

TYMNET user id, a semi-colon(;), and 
by a CR. (THIS MAY NOT WORK FOR 

14. You should then receive either a semi-colon(;) or the 
following: P nn (which indicates the port number of the 
TYCOM connected to Multics) HOST IS ONLINE 

15. From here on, the login procedure is exactly as if you were 
dialing directly into Multics. 

16. When you logout from Multics, TYMNET will respond: 

CP DISCONNECTS DROPPED BY dOST SYSTEM 
PLEASE LOGIN: (at this point you may hang up the phone) 

G-4 F01 



THE TYMNET NETWORK 

• TYMNET PROBLEM RESPONSES 

1. ALL PORTS BUSY All available Multics TYMNET ports are in use 
at the transmission speed you have requested. 
Try again later or try another transmission 
speed. 

2. BUSY TONE If received when dialing the TYMNET network, 
wait a few minutes and try again. If the busy 
tone persists, call the local telephone repair 
service to check if the local lines are truly 
busy or out of service. If lines are continously 
busy, but not out of service, notify the Multics 
Computer Center. 

3. HOST DOWN Indicates the Multics system is not in operation. 
Wait and try later or contact the Multics 
Computer Center. 

4. ERROR ON PORTn System is operationa: but a specific port 
or channel is not answering. Notify the Multics 
Computer Center. 

• To report trouble call the Multics Computer Center - (602)249-77 
or HVN 341-7567 

G-5 F01 



TYMNET TELEPHONE NUMI3ERS 

ALABAMA 
Birmingham 

ARIZONA 
Phoenix 

ARKANSAS 
Little Rock 

CALIFORNIA 
A.lhambra 
El Segundo 
Los Angles 
Los Angles 
Mountain View 
Mountain View 
Newport Beach 
Oakland 
Oxnard 
Palo Alto 
Riverside 
Sacramento 
San Clemente 
:::>an Diego 
San Francisco 
San JOS(' 

Santa B~. rbara 
Santa RC/sa 
Van NUy~i 

COLORADO 

602/249-9261 

r 1"\" I""'I'-P'" r'"7 (') 1"\ 
JUl/jl~-JIOU 

213/512-0999 
213/640-1510 
213/629-1561 
213/683-0451 
415/961-1910 
415/941-8450 
114/540-9560 
415/465-·1000 
805/481-0482 
4i5i326-7015 
114/825-9312 
916/441-6550 
114i498-3130 
714/291-8700 
415/391-9325 
408/984-5500 
805/966-3184 
101/526-2180 
213/986-9503 

Colorado Springs303/471-9815 
Denver 303/458-7921 

CONNECTICLT 
Bridgeport 
Danbury 
Darien 
Hartford 
New Haven 
Waterbury 

DELAWARE 
Wilmington 

203/579-7820 
203/792-3060 
203/655-8931 
203/568-2610 
203 / '( 87 - 5 9 r{ 4 
203/157 --2537 

302/658-5261 

DISTRICT OF COLUMBIA 
Washington 703/341-0200 
WashlngtJn 703/841-9560 

FLORIDA 
Fort Lauderdale 
Jacksonville 
Miami 
Orlando 
Pensacola 
Tampa 
t""'L. n_L. __ 1.. .• __ _ 

.~ I.,. r e l, t:: ~ U U r- ~ 
W.Palrn Beach 

GEORGIA 
Atlanta 

HAWAII 
Honolulu 

IDAHO 
Boise 

ILLINOI:.) 
r,hica~o 

Chicago 
Freeport 

Freeport 

Rockfnrd 

INDIANA 
Fort ~layne 

Indianapolis 
Marion 
Southbend 

IOWA 
Cedar Rapids 
Des Moines 
Iowa city 

KANSAS 
l'opeka 
Wi.chita 

KENTUCKY 
Louisville 

LOUISIA tIA 
Baton Rouge 
Lafayette 

G-6 

305/467··7550 
904/121-8100 
305/374-7120 
305/841-6850 
904/434·-5514 
813/229-0981 
n ...... I~""'It:. '"70", .... 
Olj/JjU-'O~j 

305/622-2871 

404/659-6670 

808/521-7481 

208/343 -4851 

312/346-4961 
312/368-4607 
815/232-2181 

(30 cps) 
815/233-2186 

(10 cps) 
815/398-·6090 

219/424-5162 
317/257-3461 
317/662-0091 
219/259-9941 

319/364-3311 
515/280-9600 
319/351-4046 

913/233-1612 
316/265·1241 

502/361-3881 

f)04/927 ··6400 
318/235-5202 

F01 



TYMNET TELEPHONE NUMBERS 

New Orleans 

1ARYLAND 
Annapolis 
Baltimore 

1ASSACHUSETTS 
Boston 
Boston 
Cambridge 

tICHIGAN 
Ann Arbor 
Detroit 
Jackson 
Kalamazoo 
Southfield 
St. Joseph 

INNESOTA 
Minneapolis 

ISSOURI 
Kansas City 
St. Louis 

EBRASKA 
Omaha 

EVADA 
Carson City 
Las Vegas 

EVi HAMPSHIRE 
Nashua 

EW JERSEY 

504/586-1071 

301/268-9290 
301/547-8100 

617/964-3925 
617/964-3900 
617/491-547,6 

313/665-2627 
313/963-3388 
517/784-8522 
616/385-3150 
313/355-2950 
616/429-2568 

612/854-6659 

816/753,·6620 
314/421-5110 

402/329-2970 

702/882-7810 
702/386-1899 

603/888-3354 

Englewood Cliffs201/894-8250 
Moorestown 609/235-3761 
Piscataway ?11/981-0370 
Princeton 609/452-8228 
Wayne 201/785-4480 
Union 201/964-6300 

~w YORK 
Albany 
Buffalo 
Corning 

518/463-3111 
716/856-1400 
607/962-5071 

Huntington, L.I.516/673-5780 
New York City 212/350-9100 
New York City 212/551-9322 
New York City 212/344-7445 
Niagra Falls 716/285-9354 
Rochester 716/546-1410 
Syracuse 315/437-7111 
White Plains. 914/761-8449 

NORTH CAROLINA 
Charl<)tte 
Durham 

OHIO 
Akron 

Cincinnati 
Cleveland 
Columbus 
Dayton 
Toledo 

OKLAHOMA 
Oklahoma City 
Tulsa 
TIJ1sa 
Tulsa 

OREGON 
Portl;lnd 

PENNSYLVANIA 
Allen l,~own 
Erie 
F.:rie 
H~rri.;burg 

Philadelphia 
Pittsburgh 
Valley Forge 
York 

RHODE ISLAND 
Providence 

SOUTH C/\ROLINA 
Greenville 

TENNESSEE 
Memphis 

G-7 

704/376-0320 
919/549··0441 

216/535-1861 
(30 cps) 

513/242-7040 
216/781-7050 
614/421-7270 
513/223-3847 
419/243-3144 

405/947-0561 
918/492-5306 
918/492-1687 
918/663-2220 

503/224-0750 

215/433-6131 
814/725··8671 
814/454-6467 
717/236-1190 
215/561-6120 
412/765-1320 
215/666-9190 
717/846-4802 

401/351-2920 

803/271-2418 

901/345-1111 

F01 



TYMNET TELEPHONE NUMBERS 

TEXAS 
Austin 
Baytown 
Beaumont 
Dallas 
E1 Paso 
Ft. Worth 
Houston 
Houston 
Houston 
Longview 
Lubbock 
Midland 
Odessa 
San Antoni( 

UTAH 
Salt Lake City 

VIRGINIA 
Norfolk 
Richmond 

WASHINGTON 
Seattle 

WISCONSIN 
Madison 
Milwaukee 
Oshkosh 

BELGIUM 
Brussels 

512/444-3280 
113/42'7-1123 
113/832-2589 
214/638-5800 
915/544 ··9590 
214/263-2341 
113/185-4420 
113/185·4411 
113/180-1390 
2141158-0801 
806/162-2402 
915/683-5645 
915/563-0213 
512/734-7381 

801/582-8912 

804/622-0435 
804/649-3050 

206/622-1930 

608/221-4211 
414/251-3482 
414/235-4594 

Contact I.. Godhaird 
233-3700 

CANADA 
Calgary 

Calgary 

Calgary 

Edmonton 
Montreal 

403/263-1301 
(30 cps) 

403/263-2006 
(14.8 cps) 

403/263··2072 
(10 cps) 

403/423-4888 
514/818-0584 

Montri~al 

Ottaw~ 

Toronto 
Vancouver 

Vancouver 

Vancouver 

(30 cps) 
515/818-0589 

(14.8 cps) 
514/818-0588 

(10 cos) 
613/563:'9841 

(30 cps) 
416/863-6202 
604/688-9811 

(30 cps) 
604/688-4838 

(14.8 cps) 
604/688-4338 

(10 cps) 

ENGLAND 
Conta(~t Allen Jenkins at 
01-606-4611 or 01-432-5513 
for further details to use 
the Data Base Se~vice of the 
British Post Office. 

FRANCE 
PARIS 

Contact Mr. Feuvrier 
DTRI 
246 RUE DE BERCY 
PARIS CEDEX 12 15584 
(All France is "Toll Free" 

to TYMNET Nodes) 
346-12-55 EXT. 4331 
TELEX: 610312 

GERMANY 
fRANKFURT 

Contact Mr. Helmuth Wolf 
(611) .211.33.20 

HOLLAND 
AMSTE ;<OAM 

Contact Mr. V. Moorsel 
010-153652 

MEXICO 

G-8 F01 



TYMNET TELEPHONE NUMBERS 

MEXICO CITY 
Contact Mr.Rafael Rivera 
of CONACYT 
905/524-'7365 

~ETHERLANDS 
The Hague 

)UERTO RICO 
SAN JUAN 

46-97-61 

Can tac t :-1r. Ed Lukas 
724-3989 

;PAIN 
MADRID 

Contact Mr. Jaime Carvana 
248-8531 

~WITZERLAND 

BERNE 
Contact Mr. Urs Loosli 
022-28-7 117 
(All Swit.zerland is 
"Toll Frc~e" to TYMNET Nodes 

G-9 F01 



This page has intentionally 

been left blank 

G-10 



APPENDIX H 

ABBREV EXAMPLES 

Abbrev Examples . . . . . . . . . • . 

H-i 

Pag(~ 

H-1 

F01 



This page has intentionally 

been left blank. 

H-ii F01 



II 

eRF 

b :pwl 

;wLa ad 

Dirs 

Segs 

GRT 

ccns 

FOREDW 

FORDAK 

FOHRRR 

-dtm 

-dtu 

-master 

bob 

E 

JUNK 

ME 

-wd 

=ac x 

am 

DEFl::R 

no 

rest 

yes 

ABBREV EXAMPLES 

fI-ds CRF cabinet" 

"ewl &1; twl &1; pwl &1; dl &1.wl" 

"tape ansi 1 -create -name sample -number 1 -format db 
-exp.i.res 12131/99 -densi ty 800 -ring" 

([dirs **]) 

([ se'~s **]) 

-ctl "pAa AaAa v".3f r"'.3f m".3f 'bAd dAd $A.2f"/" -date 
-hour -min -vt -rt -mut -pgt -$t 

~dev user ilo -dim syn 

-ds "FOR Wallman" -he "AT PCO" 

-ds "KAYDEN: CISL" -he "Cambridge MA" 

-ds "STA-D DVP" -he "RON RIEDESEL" 

-dtcn -sort dtcm 

-dtu -sort dtu 

-in i5 -dv dtc300s -hyph 

Alvarado 

[home dir]>exl 

[pdJ>junk_ 

[user name] 

[wd J 

ac x ([segs **.ar~hive]) 

accept_messages; memo -on 

am -hold -call "do ""ee >udd>m>lls>ec>me3s handler 
defer &f1""";gr -set -call "print_messages" 

an S W t 'r no -- br i e f 

anSWt'r rest 

answer yes -brief 

H-1 F01 



b xp11 

:ale 

b sysup 

b ivt 

b unmask 

athvn 

b cl 

b cispn 

ro 

mnth 

b rtape 

b wtape 

b cpa 

u 

b LSOLD 

b return 

ABBREV EXAMPLES 

asr >exl>o -before >sss 

asr >udd>Demo>dbm test>linus>executable .~ after 
workLng_dir 

calc "(page_fault histogram:pfh.last pf time)­
(disk_~raffic_ditaT2,d)/6000000" 

calc "(tc data:400+apte.virtual~cpu_time)/60000000" 

call h cs _ $ set _ ips _ mas k _. 0 - 2 - r - 0 0 

can be reached at 703-790-3213, hvn 231 

cf -a; rl-a 

check info segs -pn 
>doc>Tnfo>¥*.info -pn 
>exl>info>**Ainfo 

ro; am -pr -bf; rdy 

>doc>iml info>**.info 
>udd>m>lib>info>**.info 

-pn 
,·pn 

comp monthly ··in 10 ·of 
[month_name] -pass 2 

[month_name] .report .. ·pm 

copy file ids [string tape ibm [response "tape 
name:"] -nb [response "file number on tape:"] -bk 
[response "block length:"] ··rec [response "rec 
length:"] -fmt fb ·-mode [response "ascii or ebcdic:"] 
-den [response "densi ty:"] -no labels ~retain all] ~·ods 
[string record stream -target vfile [response 
"segment name:"JT 

copy file ·ods [string tape ibm [response "tape 
name:"] -nb [response "file -number on tape:"] -bk 
[response "block length."] -rec [response "rec 
length:"] -fmt fb -ring -cr -mode [response "ascLi or 
ebcdic:"] -den 1600 -no labels -retain all] -ids 
[string record stream =target vfile [response 
"segment nume:"]] 

cpa -minlines minchars 2 

cwd < 

cwd >udd>m>tac>s;in ls;tmr ls;dn Ls In It;an working_Is 
Is In It 

cwd [value old dir]; pwd 

H -2 F01 



b cwdd 

b tapelist 

b h 

b /status 

b :dd 

b dm 

J NUGAMES 

) DIE 

later 

) mftx 

, inf 

crf 

,pf 

: rm 

vip 

do· 

please 

cpmsl' 

finde 

ABBREV EXAMPLES 

cwd; cwd 

cwd;fo tape_list;tapac tl cdt;ro;dp -dl tape_list 

cwd;pwd 

date time; ioa [str i ng "USER 1D " [user name] 
[user project]l;ioa $nn1 "TERMINAL NUMBER ";user 
device channel;ioa Tstring [system n users] USERS ON 
SYSTEM] -

dd -force 

defer_messages'; memo -off 

df p>new games -bf;fo p>new gamesjdo "ioa &l;lsd &1 -a 
-sort" T[contents p>game1Ist]);ro;cpn ~>master games 
p>new games;d1 p>master games;rn p>new=games 
master games -

d 1 [pd ] > s t a c k _ 4 

dmja' -hold -c,:l11 do ""sms [lms] Messages Deferred.""" 

do "answer yes -bf move test>&1.runout save>==" 

do "comp &l.info -of &1.1nfo -gl;an 
&l.info.compout &1.info; dn &1.info.compout" 

do "ioa &1;cpa save>&1 test>&1 5 1" ([segs 
test>**J) 

do " answer no -bf cr &1.p; tc &1.p; fo &1.p; profile 
&1; ron 

do " rdnj gr -control """/Yes Master??"/"" -set -call 
pm" 

do " set tty -ttp vip7200 -modes 
e c hop 1 ex, 1180 , .... c t 1_ c h a r , pol i t e , rep 1 a y , & f 1 " 

do "&1 ([segs &2])" 

do "&1 [directory &2J>([files &2J) &f3" 

do "&qf1" 

do n(cd cwd) [entry &1 ];cp -acl &1>** ==;cwd <jsbc 
[entry &1] &2" 

do fl. call hcs $make ptr -1: 1 &1 &2 -r -1: 1 -r -0 0" 

F01 



b 1st 

b cr 

b rf 

b pcd 

b macabs1 

b find 

b sval 

b valu 

b gf :1 

b listprog 

b IPSstaff 

b rUl 

b : def 

b : 4 

b : 2 

b WEEKLY 

b PLI 

b COMP 

b :cLspn 

ABBREV EXAMPLES 

do I! call lib sort tree $by primary_name -p &1 -p &2 
-p &3 -p &4" -

do fl. create &1; if arg &2 -then ""addname &f1 """ 

do It dm;rf &f1;ioa "3/Done.;am -short -print" 

do" i far g & 1 - the n "". pc d (~ f 1 "" - e 1 s e ''''. pc d me m 
cpu page""" 

do ". if argeq true [exists sefment &1.absoutJ -then 
" II t run cat e & 1 . a b so u t " " ; ear &1 ..,. r t - q 1 - ag [s p e & 1 J 
[suffix &1]" 

do ". in &1; lrn &1" 

do ". ioa """a: '''a' changed to '''a'ft'' &1 [string 
[value &1]} &r2; value$set &1 &r2" 

do n. ioa [string [value &1]J" 

do ". ioa "'a [gpn ""&1"" &2J" 

do II list -nm -all -bf -sort nm &1.**" 

do ". memo -al -time ''''1245. &1"" &2 [substr [day_name 
& 1 J 1 3] 'ff' 1 3 0 0: IPS S t a f f ME e tin g " II II 

do ". on cleanup im --brief ""dm; runoff &rf1; im; 
ioa $nnl """ 

do ".abf :rd do "":r &1""" 

do ".af ::comp &1" 

do ". a f :: p 1 1 & 1 n 

do ".l";ioa "':jWS >udd>m>lls HIs -all -sort dtu 
- mo d E' - 1 eng t h - n a m e - d t em - J t u " ; do" i 0 a " : ; p r 
>udd>m>11s>ec>&1" ([segs >udd>m>lls>ec>**J) 

do ":2 [spe &1 p11];LK &1 list p11;UL &1 p11;p11 &1 
-map &f2;:3 [spe &1 p11].listjSEVERITY p11 &1" 

do ":4 [spe &1 compin];LK &1 compout compin;comp &f1 
-of; : 3 [spe & 1 campi n] . compaut" 

do n:lf 4; ws &1 ""cis -pn [wdJ>** -dt [default [value 
doc changes date] &2] &3 &4 &5 &6 &7 &8 &9 """ 

11-4 F01 



t) : dOLl d 

b zap 

b ABS 

UHAT 

b MORE 

b HEPLY 

b CPW 

b pushname 

b sm 

ckm 

b no 

=pr cal -
iJ CD 

l) : crnpsr 

) : cmpmsf 

) cpi t 

=cd 

typos 

ABBREV EXAMPLES 

do t':par &1 jear [home dirJ>&1 -tm. [response ""What 
time?""] -ag do lwd] &fr2" 

do u>udd>m>ab>value$set dir [wd] -cm ''''Set by the zap 
abbrev"";l1ew_proc" 

do "ABSUT1 &1 &r3;ear ME>&l -rt -q [default "2" &4J 
pooldir>&1.absout -bf -ag &1 &2 [fl ,,"Aa"" &5 
&r3jlar -position -q [default "2" 
[>udd>m>rab>new>abs date] [wd] 

do" I: [s y s n ] / [ s y s m] " 

do "HEY ::sm &rfl" 

do "HEY Elms] &rf1" 

-of 
&&] 

&4J" 

do "ac xf &1 [pd]>[entry &2];if is [pd]>[entry &2] 
-then ""compare [pd]>[entry &2] &2 &3 &4;dl [pdJ>[entry 
&2 J It '''I 
do "add name &1 &!; delete name [directory &1J>{[name 
&1 2])~ ~ename [directoiy &l]>[name &1 1 1J &2; 
add name ~~ di rector y & 1 J > &2 [name & 1 ] ; delete name 
[directory &1J>&!" 

do "urn -print;send_message &f1" 

do "answer no mail >udd>&2>&1>&1" 

do "answer no -bf &f1" 

do "calendar &1/01 -fw holidays tirthdays" 

do "cd &l;SIS &1;SID &1" 

do "comp psr.[substr &1 13] &f2 -pm ""&1, 1978"" 
[month_name [response "Month No? (1-12)"]/1J 

II 

do "compare &2>&1 &3>&1" ([index set 0 [response "Last 
comp no?"]]) 

do "cpa &1 «old new»==" 

do "create dir &1;(sis sid) &1 Crew sma) [user 
name]; (sis sid) &1 (re s) *;da &1 [user name]. [user 
projectJ;sa &1 (sma s) ([user name].[user project] *)" 

d) "create wordllst &1;trim_wordlist &l.wl; 
p r i n t _ wo r d 1 is t & 1 . wI" 

F01 



b yet, 

b cig, 

b setre 

=dla 

b REFRESH 

b qxab 

b comp 

b : r fd tm 

b fllexist 

b : dpnt 

b dofa 

b ADDTIME 

b fout 

=dsrc 

b " log 

b CALENDAR 

ABBRt:V EXAMPLES 

do "cwdjif [less [value Time] [time]] -then ""ioa 
YES!!"" -else ""ioa No."'x[value Time]""jcwd &1" [wd~ 

do "cwd;value$set Time [time 30 min];cwd &1" [wd] 

do "Ija &1 .. jsa &1 re *.*.*; da &1 *.SysDaemon.*" 

do "dl &l.(absin absout)" 

do "dl [pd]>[entry &1] -bf;mv &1 [pd]>[entry &1] ;mv 
[ pd] ) [ en t t' Y & 1] & 1 " 

do" "dl [pd]>abr -bf;fo [pd]>abr;if arg &2 -then tt!'do 
"""".u &?"""""";do "It.l &q1"";do "".u"";rojif iS1Zf 
[pd] >abr -then ""qxr [pd]>abr 1s/"/e.al s/"'e.ab*/&~f/ 
lp"" , 

do "1m; C(lmpOSe &f1 jam" 

do "dm; mEmo -off;rf &1 -pm [string [year] [month name] 
[day; at [time]] &f2;imjmerno -on" -

do" r j 0 "" i f [ ex i s t sse g men t & & 1 ~! - the n - e I s e """" i 0 a 
&&1"""""" ([contents &1])" 

do 'dp -ds 
[ upp·~ r cas e 

""MAY, CABINET"" -he [string [default 
[entry &1]] &r2]] -q [default 3 &3] -ned 

&f4 ~"ii 

do "r"a' &1 &2 ""push wdir [if [ngreater [index [status 
-tp (1] directory] 0] -then &1 -else [directory &1]]; 
&3 &:'f4; pop_wdir""" 

do " '0 &1. listjioa ,.: "31;pl1$times;ro" 

do " 0 &1; La detach error_output;io attach error output 
syn_ user_output" 

do "i'O =cp>+src.&1.1istjds [=gtt>aft *src] -ch;rojioa_ 
''''+sr c .&1. list Created. '''''' 

do "t'o >udd>m> ejw> [month name] .log_ time; 
[datI' time]; ro" -

do "fo CPS>calendarjcalendar [date] -fw 
HDS>I >holiJaysjdo ""calendar tt"""&&1 month"""" -fw 
H D S > 1 > hal i :i a y s ,It, ( [ i n d ex set 1 2 ] ) ; r 0 ; D P D L CPS> c a len dar 
& f 1 " 

H-6 F01 



b ec 

b usage 

b rl 

b check 

b fini 

b ansrvxxx 

b TALK 

b ARDIND 

b :indip 

b deo 

) reo 

) syn 

) e 

) GONE 

asd 

~ 1 sw 

I first 

I prmail 

ABBREV EXAMPLES 

do" i f [a n d [ not [ ex i s t oS s e g men t & 1 . e c ] ] [ ex i s t s 
s e g men t & 1 • a b sin]] - the n '"' an & 1 • a b sin & 1 • e c ; ex e c _ com 
&f1"" -else ""exec com &f1""" 

do "if [equal &n 0] -then ""ps usage: Usage is: 
usage"" -else "lipS usage: Wrong number of arguments 
supplied. For usage insttuctions, type 
""""usage""""""" 

do "if [exists argument &1] -then ""release ··all"" 
-else ""release""" 

do "if [greater [status & 1 . pll -dtcm] [status & 1 
- d t em]] - the n '''' p s & 1 has bee n mod i fie d " " " 

do "if [have mail] -then ""mail &rf1 "" -else ""do 
>udd>m>vv>basement>saY;logout &rf1""" 

do uif [or [equal [format line a 
[las t _ me~;sage _ sender] ] [user name] ] [equal [ :3tri ng 
[sutstr Ilast message] 1 10J] Acknowledg]J -then -else 
""sn s -[last message sender] """"(Ans-4ering 
service): n" n II & f lit tI II -

do "am;sm &1 &2;dm" 

do "ind tc1 -1m 3 -in 2 &f2" 

dO" in d & 1 . inc 1; i f [ que r y Bad?] - the n " It dol' " fI " : r 
[ pd ] > & 1 . 0:. n c 1 . in d " " " " " " " 

do trio attach junk dIscard io open junk s6;io detach 
error_output;io attach error output syn_ junk;deomess" 

do n io !lose junk; io deta,!h (junk error output); io 
attach el~ror_output syn_ use'~_i/o;reomess" -

do "io call attach &1 syn_ &;~" 

do" i 0 a " " NOT TED""; do 'til & f 1 & r f 2 II " " 

do "ioa ,,,. I WILL BE AWAY '_~ IL & 1 - LOG ME OUT IF YOU 
NEED THE TERMINAL'''' " 

do "iink (&f1) [home dir]>hh)==" 

do "list [where &1] &rf2" 

do "Is -nhe -first [default I &1J" 

do "mail >udd>&2>&1>&1 &f3" 

H-7 F01 



b bday 

b :pl1 

b :10 

b p 

b pr f 

b : dpx 

b :pxa 

b =exc 

b vip 

b reply 

b w 

b ddl 

Jpl 

b lv 

b RDN 

b linus? 

b lOCO 

b speak 

=ed 1 

= er L'o3 

ABBREV EXAMPLES 

do "memo -alarm -repeat 12months ~·date tI"&f3"" &1 &2' s 
birthday!" 

co "p11 &1 -table -symbols &f2;ioa_ Done." 

co "pmotd; if [have mail] -then .It'if [query MAIL?] 
- the n '"1111' m ail " '''I " '"' ; -10 e 0 u t & 1 & 2 " 

do "pr &1 1 9" 

dt) "print &1.runout 1 " 

do "px &1 -sm :cp>[entry &1].px; dp -ds ""MAY, 
CAB I NET"" - he [ s t ri n g [ de f a u 1 t [ up per cas e [ en try 
&l].px] &r2]] -q [default 3 &3] -ned -dl &14 :cp>[entry 
&1].px" 

do" p x & 1 ! * * .- sm : c p> [ en try & 1 ] . arc hi ve . p x & f 2 It 

do "rn &1 !!!!;rn &2 &1;rn !!!! &2" 

do "set tty -ttp 
echoplex,1180~polite,replay,&f1" 

vip7200 -modes 

do "sm [nmf last sender] &fl" - -

downlog memo -al -tm [minus [system next_down_time] .1J 
-call LOGOUTII 

dp -dl 

dp -dl [segs ** .li~;t] 
general_re?dy -control .... a .... / -level; 

gr -string [substr [string [system installation idJ] 1 
1] -date_time -level -set -call pm;dm;memo -on;rdn 

help -pn >udd>Demo>dbmt>x>doc>{linus linus_pre_release) 

io (close detach) 

io (close detach) 
syn_ user i/o 

user_output;io attach user_output 

io attach ero discard ;io detach error_output;io 
attach error_output syn_ ero 

io (all attach error_output vfile 

H-8 F01 



b : open 

b mark 

b =us 

b down? 

:) lkcl 

) WAIT 

newu 

Dear 

) mail? 

I ti 745 

I tn300 

R03Y 

di.3blo 

whoa 

vpj? 

liz? 

PUBl..IC 

PRIVATE 

ABBREV EXAMPLES 

io call open fileO(3 4 5 9) ; io call position fileO(3 4 
5 9) bof 

ioa " ° 2 3 4 

" 6 7 8 9 oJ 

0" 

ioa "(users .... a:"a) (units .... a:Aa)" [system n users] 
[system max user:;] [system n units] [system max units] 

ioa "Schedu·:.ed shutdown: a a " [system 
next_down date] I system next_down time] 

ioa " .... 5/From:"-Aa."a .... /To:A-Whom It May Concern .... /" 
[user name] [user project]; Ikc -time 60 -gr 3 -spw 
[value pass] 

lkc -gr 5 -nol 

logout -hold 

mail * 

mail -brief 

stty -delay 0,0,0,0,0,0 

stty -modes tabs,11118,replay,polite;tab_set 

stty -ttp rosy -modes Aechoplex,11130 

stty -ttp tn300 -modes 
0,.18,0,0,0,59 

tabs, 1113 1), vertsp -delay 

who -absentee 

who . V P I 1 . V P I 2 • V P I 3 . V P I 3 . V P I l! • V PI 5 

who LMullen 

ws [hd] "sa ([segs *]) re *.*.*;sa ([segs *.*.**]) r 
*.*.*;sa ([dirs **]) s *.*.*;sid [wd] s *.*.*;sis [wd] 
re *.*.*" 

ws [wd] "da ([segs **] [dlrs **]) *.*.*;did ([dirs **]) 
*.*.*;dis ([dirs **]) * * *If 

H-9 F01 



This page has intentionally 

been left blank 

H-10 



Workshol' 
Wor'kshol' 
WorkshoI' 
Workshol 
Workshol' 
Workshol 
WorkshoI' 
Workshof 
Workshol' 

One 
Two 
Three 
Four . 
Fi v e • • • 
Six 
Seven 
Eight 
Nine . . 

APPENDIX W 

WORKSHOPS 

W ·i 

Page 

W-1 
W-4 
W-7 
W-10 
W-13 
W-18 
W-21 
W-24 
W-28 

F01 



This page has intentionally 

been left blank. 

W-ii F01 



WORK~)HOP ONE 

NOTE: BecCJuse these worksllopS build upon one-another, you should 
follow the instructiot's precisely, using the names indicated. 

Throughout these W01~ ksho ps , the Per son id 11 Student 1?" is 
intended to mean your own Person ide 

1. Refer to the section "Access Sequence" in topic 2, and log in to 
Multics. 

2. Exercise 
symbols. 

hmu 

the delete character (II) and the delete line (@) 
For example, type the following how_many_user commands: 

hnullilmu 

jmu@hmj TIIIIII u TSmi th 

3. Type the following commands and observe the results. Supply the 
answer "yes", "no", or "rest" when asked. 

help hmu 

help sked 

help help 

4. Enter the accept messates mode by typing "am". Note that the 
accept messages command created a mailbox for you. This mailbox 
is now-a permanent part of your file space. You can now receive 
messages. 

List the names of 311 ~;egments (files) that belong to you (Is). 
Note that your mailbox js the only segment you have. 

W-1 F01 



WORKSHOP' ONE 

5 . Type the following sequence of who commands and observe the 
results of each form. 

who 

who .F01 

who . FO 1 -long 

who Student 04 

These are the names and projects of users who are currently 
. logged in. Note your own "name". 

6. Select two or three F01 users who are currently logged in and 
send them messages. For example, the following commands will 
send messages to Student 04 and Student 09: 

sm Student 04.F01 Does this really work? 

sm Student 09.F01 Great class, isn't it? 

1. Send yourself a message. 

8 . 

sm Student ??F01 From me to you! 

Enter the 
message. 
before. 
until you 
(pm) . 

defer messages mode (dm) and again send yourself a 
Note that you did not receive the message as you did 
The message is in your mailbox and will remain there 

print_messages. Print the message(s) in your mailbox 

9. Again, send yourse~.f a message. As before the message was placed 
in your mailbox beeause you are still in the defer messages mode. 
Return to the accept messages mode (am). You wIll now receive 
messages immedialel~, as they are sent. Note that the 
accept messages command did not print messages currently in your 
mailboi. Print the message(s) in your mailbox. 

W-2 F01 



WORKSHO~P ONE 

10. Determine the current system configuration by typing the 
following print configuration deck commands: 

pcd cpu mem 

pcd 

11. Type the following sequence of commands: 

date 

date time 

long_date 

time 

minute 

hour 

day 

month 

month name 

year 

While available in thIs form, these commands will take on m·)re 
;;ignificance when the topic of "Activf' Functions" is discussed. 

i2. Generate your resource usage report for this billing period by 
typing the resource_usage command (ru). 

Note: Your current login session may not be reflected, however, 
if other FOl classes have been conducted this month, you 
may see considerable usage . 

.3 • Log 0 u t (10 f. 0 u t) and ret urn tot he c 1 Cl s s roo m • 

W-3 FOl 



This page has intentionally 

been left blank. 

W-4 FOi 



1 • 

') . 

'- . 

WORKSHOP TWO 

l.og into Mul tics. AccE pt messages (am) and pr int messages (pm) 
If desired. List the rJames of all segments (files) that belong 
to you (Is). Note that you still have only one segment, your 
mailbox. 

Invoke the qedx text editor (qx). Do not expect a ready_message 
as you are now in the qedx subsystem. 

You lre in the edit mode of qedx and have an empty buffer (a 
scratch-pad). Ent\~r the append mode (a) c.nd type the following 
thre~ lines ~xactly as you see them: 

In anything att all, perfection es attained 
when there is no longer anything to take away. 
1 ,2p 

4. Return ·to the edit mode (\f) and print the contents of your 
buffer (1,$p). 

5. Correct the intentional typing errors, as well as any you may 
have made. For example, to change "es" in the first line to 
"is", type the sequence: 

1p 
sl es/ i;;/ 
p 

(positions you to the first line and prints it) 
(substitutes all "es" strings for "is") 
(prints the current line) 

To remove the last line, type the following: 

$p 
d 

(positions you to the last line and prints it) 
(deletes the current line) 

6. After correcting all of the errors, write the ~ontents of your 
buffer to a segment by the name of seg_1 (w seg 1). 

rf • Qui t the e d ito r (q ) and not e the rea d y me s s cl g e . You are now b a c k 
at command level. Your qedx buffer has been destroyed. (Don't 
confuse your qedx buffer with the permanent st~rage system 
segment seg_l) 

o. List the names of all segments that belong to you (Is). Note 
that seg_1 was created for you by qedx's "w" request. 

W-5 F01 



WORKSHOP TWO 

9. Invoke qedx. You again have an empty buffer. (Confirm this by 
printing the contents of your buffer.) Read the contents of 
seg 1 into your buffer (r seg 1) and again print the buffer's 
contents. 

10. Append the following text between the first and second line of 
your buffer by typing the following requests: 

I 1 • 

12. 

13. 

1p 
a 
not when there is no lon_g.~r (,J.n~thing to add, but 

"",..,--- .,. 
(' BP'-ft? '/ 

Return to the ed i t mocte--<·-~ and pr int the contents 0 f your 
buffer. Correct any typing errors. 

Write the contents of your buffer to seg 1 again. This write 
will replace' the oli contents of seg_' witE the contents of your 
buffer. 

Print the contents (If your buffer. Note that the, above write did 
not affect the buffer's contents. Write the contents of your 
buffer to seg 2 (ju~,t for fun). The contents of seg_1 and seg_2 
are now identIcal. 

WORKSIOP 2 CONTINUED ON NEXT 
PAGE 

W-6 F01 



IJORKSHOP TWO 

14. Type the following sequence of qedx requests in exactly the 
order as shown: 

I ,$51 fJlzzzit.1 
/,$p 
e sm Student ??F01 Can I do this within qedx? 
1,$s/zzzll -

" 1 ,$p 
w (To which segment did you write?) 
lisl 
lisl 
lisl 
lisl (Notice the wrap-around) 
1 ,$d 
1,$p (Why is your buffer empty?) 
r seg 
r seg-' (Remember the default address here?) 
w seg-' 
r" seg-2 
, , $p -
w (Why has qedx forgotten the pathname?) 

15 • 

5,$d 
'r seg (We're forcing the read address) 
, ,$p -

Quit the editor. 
though you had 
(Hsssssss!). 

Note that qedx allowed you to quit even 
not written out your modified buffer 

'6. Print seg_' (pI' seg_.'). It's contents should be: 

seg , 

In anything at all, perfection is attained 
not when there is no longer anything to add, but 
when there is no longer anything to take away. 
In anything at all, perfection is attained 
not when there is no longer anything to add, but 
when there is no longer anything to take away. 

17 . Lis't the names of your segments and log out. 

W-'l FO' 



WORKSHOP THREE 

1. Log in. Accept and print messages if desired. Execute the 
print wdir command (pwd). This is your home directory and is 
currently your working directory. 

2. List the names of the segments in your working directory. 

3. Print. the contents of your seg 1 segment (pr seg 1). 

4. Create a segment by the name of Pr ince (cr Pr ince). List again 
the Ilame~~. of the segments in your working directot~y. Note that 
Prin<!e has a length of zero records (i.e.: it is empty) 

5. List names of all entries in your working directory (Is -all). 

6. 

Note that you have no subordinate directories. 

Create a ::;ubordinate directory by the name of Programs 
(cd Programs). List again the names of all entries in your 
working directory. 

1. Chan~e your working directory to Programs (cwd Programs). Verify 
the change by printing your working directory. 

8. List the names of the segments in your working directory. Note, 
of course, that your Programs directory is empty. 

9. Without changing your working directory, print the contents of 
your seg 1 segment located in your home directory 
(pr >udd>FOT>Student ??>seg 'I). What would (pr seg_l) have done? 
Try it. 

10. Returll to your home directory (cwd). 
for the cwd command in this case? 
your home directory. ' 

Why is no pathname required 
Verify that you are back in 

11. Change your working directory to Student 01 's home directory 
(cwd >udd>F01)Student_01) and verify this change by printing your 
working directory. What would the command "cwd Student 01" have 
done? If you're not sure, return to your home directory and try 
it, but remember te· change back to ~tudent 01' s home directory 
before continuing the workshop. 

W-8 F01 



WORKSHOP THREE 

12. List the names of the segments in your working directory. 
Understand th3t this is Student 01 's home directory. You are 
able to list the names of his segments only because he has 
granted you access to do so. Note that you have rec:d permissions 
on many of Student01's segments. 

1 .3 • Print the con t (~n t SJ f Student 0 1 ' s treasure h u ,It s eLm e n t and obey 
~ll instructiollS -specified. -You are able to print the contents 
of this segment only because Student 01 has grilnted you access to 
do so. 

14. Change your \t..orking directory to the syster!l'S root directory 
(cwd ». Verify by printing your working d: rectory. List all 
directories under the root (Is -d). These al'e the system level 
directories. Note that they are primarily system libraries. 
Feel free to explore -- time permitting. 

15. Return to your home dir!ctory and execute the ~ollowing commands: 

cr X 
Is X 
dl X 
Is X 
d 1 > u d d > F 0 1 > S t 1.1 den, . 0 1 > t rea sur e hun t 

(create) 
(list) 
(delete) 
(list) 
(delete) 

Why were you unable to delet= Student 01 's treasure hunt segment? 

cd X 
Is X 

Recall that by default, the 
segments. 

Is X -d 
dd X 

(create dir) 
(list) 

list command only deals with 

(list) 
(delete di}') 

16. Add the names s 1, s1 and s1.compin to your seg_1 segment 
(an seg 1 s 1 s1 sl.compin). List the contents of your working 
directory. Notice how the alternate names ,Ire listed. 

W-9 F01 



WORKSHOP THREE 

17. Prirlt the contents of seg 1 using one of the al ternate names 
(pr s1). Get the status of seg 1 using another alternate name 
(st s 1). Compose the contents- of seg 1 one using the name 
s1.compin (comp s1.compin). Note the full-page formatting done 
by the compose command. 

18. Del\lte the segment seg 2 (dl seg 2). List the contents of your 
working dire(;tory.- Notice the change in the segment count. 
Attempt to print seg 2. 

19. Delete the names seg 1, s 1, s1.compin (dn seg_1 s 1 s1.compin). 
List the contents of your working directory. Notice that the 
segment count is unchanged. 

20. Renume the segment s 1 to seg 1 (rn s 1 seg 1). List the segment 
seg_1 (Is seg_1) and observe the add names. 

21. Rename seg 1 to Prince (rn seg 1 Prince). Answer "yes" to delete 
the original Prince segment. -(Recall that it is empty and is of 
no practical use to you.) 

22. Attempt to delete the name Prince (dn Prince). Since this is the 
only name on the segment, the command will inform you that 
deleting the o~ly name on a segment is not allowed. 

23. Copy the segment )udd)F01>Student 01>alphabet into your working 
directory (copy )udd)F01)Student OT)alphabet). List the contents 
of your workint~ directory and print the contents of this copied 
segment. 

Why does your I~opy al so have the name alphabet? What would the 
copy command look like if alphabet was to be copied and called 
my_alphabet? 

W-10 F01 



1 • 

WORKSHOP FOUR 

Log in. Accept and print messages if d~sired. 

working directory. 
Print your 

2. Change your working directory to )udd)F01)Student 01. Execute 
the following commands: 

~ ,YS seg 1 alphabet 
~* -

lIS s*.* 
~ s, *.** 
1"s * * 
~*:* -exclude s*.* ,. 

3. ~e~n to your home directory and execute the following sequence 
9( commands: (Note: If the printer queues are near empty, you 

~-

5 . 

/m~ not be able to cancel some of your dprint requests) 

ldr 
dp Prince 
dp -q 4 Prince 
ldr 
ldr -all 
cdr -q 4 Prince 
Idr -all 
cdr Prince' 
ldr 

(list daemon requests) 
(dprint) 
(dprint) 
(list daemon requests) 
(list-daemon-requests) 
(cancel daemon request) 
(list deamon requests) 
(cancel daemon request) 
(list_daemon_requests) 

Note how some of these commands reported the total number of 
requests (system wide) as well as your total number, but only for 
the specified queue. 

-++-~~re is an on-line printer accessible to you, dprint (for 
k er/s) the contents of your Prince segment (dp Prince). Do you 
re all what the default heading and destination banners will be? 
R~ mber to pick up this output sometime before class tomorrow 

'

""" rn\g. 

Enter the abbrev mode Cab) and type some command, such as pwd. 
Note that a profile segment was created for you. List the 
contents of your home directory and note this new segment. 

W-11 F01 



WORKSHOP FOUR 

6. Type a period (.). The reply is from the abbrev processor 
confirming the fact that you are in abbrev mode. Quit the abbrev 
mode (.q) and again type a period the see what the comman~ 
processor will do with it. Re-enter the abbrev mode. 

'(. Create an abbreviation for your User id by typing a command line 
similar to the following: 

.a ME Student ??FOl 

8. Check your abbrevia~ion via the show request (.s ME). Recall the 
abbrev break characters and observe how they function by typing 
the following lines: 

· s Who is ME? 
· s Who is ME. 
· s ~vho is MEAN? 
.s Who is ME~the great? -
· s Who is ME the great? - -

9. Use your abbreviation to send yourself a message. For example: 

sm ME Does this work? 

10. Define abbreviations for those users with whom you frequently 
communicate. For example: 

.a S9 Student 09.FOl 

.a S4 Student-04.FOl 

11. Lis~ all of your abbreviations (.1). List one of your 
abbreviations (.1 ME). List all of your abbreviations that start 
wit 11 "S" (. 1 as) . 

12. Enter the qedx text editor and write the following text to a 
segment by the name "start up.ec". 

accept messages 
print messages 
abbrev 

W-12 FOl 



WORKSHOP FOUR 

3. Quit the text editor and typ~ the following command and observe 
the results: 

ec start_up.ec 

If you received any error messages, invoke the qedx editor, read 
the segment start up.ec, correct your typing errors, rewrite your 
corrected copy, and try again. 

Remember: From now on this start up.ec will be invoked for you 
(automatically) whenever you log in. 

4. Using qedx, create another segment named A.ec containing the 
following lines: 

5. 

f... v • 

A.ec 

ec start up.ec 
time -
ec start_up.ec 

Quit the text editor and type the following command and observe 
the results: 

ec A.ec 

Execute the print motd command (pmotd). Note that a 
Person id.motd segment was created for you (in your home 
directory). It is through this segment that the system knows 
what messages you have already seen. 

Again, execute the print motd command. Since you have already 
seen the message of the day, the command will suppress additional 
printings. 

1. Using the qedx text editor, add the print_motd command to your 
start_up.ec. 

W-13 F01 



WORKSHOP FIVE 

1. Using the qedx editor, input the following PL/1 source and write 
it to the segment "add.pI1": 

add.pl1 

add: proc; 
1* Written by Student_?? *1 

dcl (sysin, sysprint) file; 
dcl (I, Sum) fixed bin init (0); 

do while (I >= 0); 

g'ut skip, list ("value? "); 
get list (I); . 

um = Sum +1; 
put skip list ("Sum is:", Sum); 
end; 
put skip list ("Fin"i"); 
put skip; .1 
end add; . 

2. Indent the PL/1 source (ind add.pI1). Correct any errors found 
by tIle indent command and try again. Print the PL/1 source and 
note the indentation that's been done for you. 

3. Compi Ie add. pl1 (p11 add. pl1 ) . Correct any errors found by the 
pI1 command and try again. 

4. List the cont~nts of your working directory. Note the segment 
add .p11 (created by the text editor) and add (created by the PL/1 
compiler). add.pl1 is the source segment, and add is the object 
segment. 

j. Print the contents of the object segment add. This will take a 
few minutes as the "unprintable" binary code is printed as an 
octal dump. Each \nnn represents three octal characters, which 
is 9 bits, which is one byte. 

6. Execute the PL/1 object program add which is in the object 
segment add (add -or- add$add). Supply positive integer values 
between 0 and 9999 when prompted and observe the results. 

W-14 F01 



WORKSHOP FIVE 

7. Hit the break key and note the level number in the ready message. 
You are back at the command level -- free to do as you please. 
Execute some command such as pwd. 

8. Type the start command (sr). The program add has been re-starte~ 
at 'exactly the same point it was at when you hit the break key. 
In other words, the program add is again waiting on you to su~ply 
integer values. Key in a value and see if the Sum returned is 
consistent with the previous Sums. 

9. 

10. 

Key in a negative valve to stop the program add. Add has 
terminated normally. Note the level number in your ready 
message. (No level number denotes level one.) 

Again compile your add.p11 source, but use the 
argument (p11 add.p11 -table). This will 
symbolically "probe" the object program. 

-table control 
allow you to 

11. Again execute your pr9gram add and supply several positive 
integers as before. Hit the break key. After receiving the 
ready message type the following command: 

probe 

You are now inside the probe debugging subsystem. Note that 
probe printed a small status report 3bout the current state of 
your process. Now type the following sequence of probe requests: 

stack 

This request traces your stack beginning with the most recent 
frame. Note the frame number of add's stack frame. Who called 
add, and who did add call? Probe's "current" stack frame is the 
one in which the unexpected event occurred (i.e., frame 10 if 
you're in abbrev mode). Any request that you issue will be 
relative stack frame .. 

use add 

This request instr'ucts probe to make add's frame (i. e., frame 1 
if you're in ~lbbrev mode) your "current" stack frame. 

W-15 F01 



where 
source 
value I 
value Sum 
let Sum = 500+Sum 
value Sum 
quit 

WORKSHOP FIVE 

(Where are you, probe?) 
(Print the "current" source line) 
(What's the value of I?) 
(What's the value of Sum?) 
(Change the value of Sum) 
(What's the new value of Sum?) 
(Quit probe) 

12. You are back at command level. Note that your level number is 
unchanged. Type "start" and supply another positive integer for 
add. Does the new Sum reflect the change you made while in 
probe? Key in a negative value to stop the program add. 

13. Enter qedx and read the segment >udd>F01>Student 01>long. 
Commence printing of the entire segment and then hit the break 
key. After receiving the ready message, type the start command 
and observe the results. 

While the printing continues, again hit the break key. After 
recelvlng the ready message, type the program_interrupt command 
(pi). You are again in qedx, but at request level. Verify by 
typing 1,5p. Quit the editor. 

14. Print your current search rules (psr). These are the default 
search rules given to users at login. 

15. Note: The following exercise will work properly only if you have 
not executed the wh(l command during this login session. If you 
have executed the wr,o command, type the command: "tmr who" .. 

Add the name who to your object segment add (an add who). 
Attempt to list the users currently logged in (who). Suffice it 
to say: Do not indiscriminately use command names for your 
program names. 

Remove this extra name from add (dn who), and check to see if who 
command works as usual. If it doesn't work - why doesn't it? 
(For a hint, type: where who) 

16. Terminate (delete) the name who from your initiated segments (tmr 
who) and again attempt to execute the who command. 

W-16 F01 



17. 

WORKSHOP FIVE 

Chan6e your search rules to include the directory 
)udd>F01)Student 01)tools after your working directory (asr 
)udd>F01)Student-01)tools -after working_dir). Print your 
current search rules. 

18. Note: The following exercise will work properly only if you have 
not executed the hmu command during this login session. If you 
have executed the hmu command, type the command: "tmr hmu". 

Attempt to list the number of users currently logged in (hmu). 
Suffice it to say: Do not indiscriminately add unfamiliar 
dire~tories to your search rules. 

i9. Log out. When you next log in, you will again be given the 
normal default search rules. 

W-17 F01 



This page has intentionally 

been left blank. 

W-18 F01 



WORKSHOP SIX 

1. Log in and type the mail command. Recall that the mail command 
will extract messages and mail. Use this command if and when you 
receive notification that you have mail. 

2. If you have not received a message requesting partnership, choose 
an F01 user who is currently logged in and send him/her a message 
similar to the following: 

3 • 

5. 

sm Student 01.F01 May I be your partner? 

Send your partner 
following example. 

messages in the dialogue mode, 
Wait for a reply between lines. 

sm. Student 01.F01 
How are yo~ doing today? 
That's good. I'm not doing too bad myself. 
See you later. 

as in the 

, Mail your partner the contents of your add.pl1 segment. For 
example: 

mail add.pl1 Student 01.F01 

List the ACL of your add.pl1 segment (la add.pI1). 
ACL was given automatically by the system when 
add.pI1. 

Note: This 
you created 

6. When your partner requests access to your add.p11 segment (and he 
will), do the following: give your partner read access, verify 
by listing the ACL of your add.pl1 segment, and send a reply to 
your partner. For example: 

sa add.p11 r Student 01.*.* 
la add.pl1 -
sm Student_07~F01 You now have access to add.pI1. 

1. Attempt to print your partner's add.pl1 segment. For example: 

pr >udd>F01>Student_01>add.p11 

Request read ~lccess to your partner's add.p11 segment and attempt 
to print the segment again. (Keep trying until it works) 

W-19 F01 



WORKSHOP SIX 

9. Note: Do not proceed until your partner has requested (and has 
been given) access to your add.p11 segment. 

10. 

Remove your partner's name from your add.p11 ACL. For example: 

Verify the change by again listing the ACL for add.p11 

List the ACL on your home directory (la). 
Attempt to set access for yourself on 
(sa -wd sma Student ??*.*). Why can't you 
~ home directory?-

Who are these users? 
your home directory 
set access on your 

11~ Execute the following commands: 

Is -d 
la Programs 
copy alphabet Programs)A 
Is Programs)** . 

Note your access on segment A. 

pr Programs)A 
da Programs Student_ ?? .F01 . * 
la Programs (What permissions are needed?) 
cr Progr~lms)B (What permissions are needed?) 
Is Progr,lms) ** (What permissions are needed?) 
dl ProgrCJms)A (What permissions are needed?) 
pr Programs)A (What permissions are needed?) 

Note that you can do nothing except print the contents of the 
segll1ent A. 

12. Type the following command sequence. (If necessary, include your 
time zone in the -time request. For example: -time "4pm est") 

memo 
memo Happiness is Multing the day away. 
memo -time 4pm -alarm It's almost time to go home. 
memo -list 
memo 

13. Modify your start_up.ec to include the mail and memo commands. 

W-20 F01 



WORKSHOP SIX 

14. Type the following command sequence. 

pat 
fo 
pat 
ro 
pr output_file 

(print attach table) 
(file_output output_file) 

(revert_output) 

Notice the difference in the 1/0 switch attachments. 

15. Before logging out, check your mailbox. 

W~21 F01 



WORKSHOP SEVEN 

1. Send yourself the following messages: 

sm ME My working dir is [wd]. 

sm ME Last message sender was Elms] 

sm ME The time is [time]. 

sm ME The date is [date] which is the same as [long_date]. 

sm ME [user name].[user project] login at [user login_time]. 

sm ME Current user load is [system n_users]. 

sm ME Multics: [system installation idle 

sm ME Multics: [system company]. 

sm ME The absolute pathname is [path add]. 

sm ME My one-component segments are [segs *]. 

2. Create the following abbreviation: 

.ab reply sm [last_message_sender] 

List all of your abbreviations. 

3. Execute the following command lines: 

.s reply Who are you? 
reply Who are you? 

Who in fact was the last_Message_sender? 

W-22 F01 



4. Create two segments 
following lines: 

Names A 

A10 
A20 
A30 

WORKSHOP SEVEN 

"Names A" and "Names B" containing the 

Names B 

B10 
B20 
B30 

Now execute the following command lines and observe the results: 

sm ME [contents Names A] 

create [contents Names A] [contents Names B] 

list A* B* 

list [contents Names A] 

dl [contents Names A] 

list A* B* 

i. Create an exec com segment containing the following text: 

query.ec 

&command line off 
cwd [res~onse "Working" directory desired?"] 
&print Your working directory is: 
pwd 
sm ME [response "What would you like to say to yourself?"] 

The fir'st line of the above exec com wil] inhibit the printing 
(echoing) of the command lines when-the exec com is executed. 

Now invoke this exec com and provide legitimate answers to the 
questions asked. Invoke the exec com again, but this time respond 
to the first question by simply hItting the line feed key. Do you 
understand why you are now back at your home directory? 

W-23 F01 



WORKSHOP SEVEN 

6. Use qedx to create the following exec com: 

recur.ec 

&command line off 
&print ENTRY: &n arguments, first argument is &1 
&if [ngreater &n 0] &then &goto START 
&quit 

&label START 
&print Executing exec com command 
ec recur.ec &2 &3 &4 &5 &6 &7 &8 
&print EXIT: &n arguments, first argument is &1 
&quit 

Invoke the exec com and observe the results by typing: 

ec recur.ec ABC D E F G H 

Change your working directory to your Programs directory and 
again invoke this exec_com by typing: 

ec >udd>F01>Student ??>recur.ec ABC 

Why does the exec com fail now? 
Try to correct the-problem. 

Can you correct the problem? 

7. Return to your home directory and execute the following sequence 
of commands 

.ab pl1 ex do "pr &1.p11;p11 &1.p11; [entry &1]; logout" 

.a F1 >udd>F01 

. 1 
p11_ex F1>Student_01>nothing 

The entry 
pathname. 
necessary? 

active function returns the entryname of the supplied 
Why was the entry active function used? Was it 
Why were you logged out? 

W-24 F01 



t-iORKSHOP EIGHT 

I. Use command line iteration to send yourself several messages. 
For example, if you are Student_06 type the following line: 

sm Student 0(6 6 6 6).F01 This is number (1 2 3 4)! 

Recall the contents of your segments Names A and Names Band 
execute the following command lines: 

sm ME [contents Names B] 

sm ME ([contents Names B]) 

list [contents Names_B] 

rename ([contents Names B]) ([contents Names A]) 

list A* B* 

create ([contents Names A]).[date].[user name] 

list A*.** 

rename A*.** 

list A*.** 

W-25 F01 



3. 

WORKSHOP EIGHT 

The print command only allows one pathname argument such as 
"print add.p11". Use command line iteration to print the 
segments Prince and alphabet as follows: 

print (Prince alphabet) 

Now execute the following command lines to create and test an 
abbreviation for the print command that allows it to accept up to 
five pathnames as arguments . 

. ab :pr do "print (&1 &2 &3 &4 &5)" 
:pr Prince alphabet >udd>F01>Student_Ol>nothing.pll 

What would happen if the abbrev had been defined as follows: 

.ab print do "print (&1 &2 &3 &4 &5)" 

Try it! When you get the error message, notice the level clause 
of your ready message. Go into probe and execute the "stack" 
request. D6 you understand why the stack overflowed? (You will 
probably want to "break" inorder to stop the output from the 
stack request.) Recursion is one reason why command names are 
normally not used for abbreviations. 

Now generalize the print command abbreviation to accept star 
name3 and test it by typing the following command lines: 

.ab :pr do "print ([segs &1])" 
:pr s*.* 
:pr alphabet 

4. Modify your start up.ec to include the three new lines as 
indicated below: 

&command line off 

{previous contents} 

&print Start_up complete. 
&quit 

W-26 FOl 



WORKSHOP EIGHT 

Execute your start up.ec to 
Execute the new proc command 
take a minute or-so). 

verify its proper functioning. 
and observe the results (this may 

5. Cre~te the following exec com and name it weird.ec. 

) . 

weird.ec 

&print Beginning &ec name exec com 
&if [nequal &n 2] &then &goto LOGOUT 

pwd 
Is 
ind &l.pll 
pll &l.pll 
pr &l.pll 
&quit 

&label LOGOUT 
&print Bye Bye 
logout 
&quit 

Execute your weird 
(you will receive 
exist) : 

exec_com using the following comnand lines 
some error messages since sub.p11 does not 

ec weird.ec add 
ec weird.ec sub 

Add the name weird.absin to your weird.ec segment (an weird.ec 
weird.absin). Verify by executing the following list commands: 

Is weird.ec 
Is weird.absin 
Is weird .• * 
Is w*.** 
Is **.ec . 

W-21 FOl 



WORKSHOP EIGHT 

B. Submit an absentee request using your weird.absin segment as the 
absin segment. (ear weird.absin -ag add). Attempt to observe 
the absentee process by repeatedly typing: 

who Student ?? 

Hopefully you will notice yourself listed twice, for example: 

Student 08.F01 
Student-OB.F01· 

9. After the absentee job has completed, you will find a 
weird.absout segment in the same directory as the weird.absin 
segment. Print and observe its contents. In particular, note 
the login and logout times, and the fact that the absentee 
process used your start_up.ec (which is potentially undesirable). 

4~ 

IU. Modify 
login. 

your start up.ec to recognlze and respond 
Add the &if control line as indicated. 

&command line off 
abbrev 
&if [equal &2 absentee] &then &quit 

to an absentee 

11. Submit again an absentee request for weird.absin. This time, 
however, schedule the absentee job for 8 am local time tomorrow 
morning (use your time zone if necessary) . Fo.' example: 

ear weird.absin -time "Friday Bam est" -ag add 

12. Execute your weird exec com using two arguments. For example: 

ec weird.ec add mad 

Why were you logged out? 

W-28 F01 



WORKSHOP NINE 

Log in to the system and see if your absentee request from 
yesterday ran as expected. 

Log out using the -hold control argument (logout -hold). Log 
back in. 

Type the following sequence of change wdir commands. Verify your 
working directory after each line via-the print_wdir command. 

cwd < 
cwd < 
cwd 
cwd « 
cwd 
cwd <Student 01 
cwd 

Type the following sequence of commands. (You will receive some 
error messages.) 

cr A.ec 
Is ** .ec 
an ** .ec 
Is ** .eo 
rn (A B 
Is ** .ec 
cr "X Y" 
Is * 
rn a.ec 
rn a.ec 
Is • 

B.ec C.ec 

==.absin 

C).ec (a 

"An"B" 

;hmu 
";hmu" 

b c).ec 

(create) 
(list) 
(add name) 
(list) 
(rename) 
(list) 
(create) 
(list) 
(rename) 
(rename) 
(list) 

Type the following sequence of commands: (Note: 
receive some "Segment not found" error messages) 

wh pwd 
pwd 
wh funny 
funny 
in >udd)F01)Student 01)funny 
wh funny -
funny 

W-29 

(where) 
(print wdir) 
(where) 
( funny) 
(initiate) 
(where) 
(funn y) 

You.will 

F01 



6. 

7 . 

8 . 

WORKSHO~ NINE 

Type the following sequence of commands: (Note: 
receive some "Segment not found" error messages) 

Type 

Type 

ls.-lk 
Is sad 
sad 
lk )udd)F01)Student 01)sad 
Is -lk 
Is sad 
wh sad 
sad 

the following sequence of 

copy Prince Pl 
list p* 
cpa Prince P1 
ac rd A.archive Prince P1 
ac t A.archive 
list p* 
ac x A.archive 
list pi 
ss P1 
pr P1 
cpa Prince P1 

the following sequence of 

wh list 
Is [wh list] 

commands: 

commands: 

(list) 
(list) 
(sad) 
(link) 
1'~rt4-' \.&..J.o;:)vl 

(list) 
(where) 
(sad) 

(copy) 
(list) 
(compare_ascii) 
(archive) 
(archive) 
(list) 
(archive) 
(list) 
(sort seg) 
(print) 
(compare_ascii) 

(where) 
(list) 

You will 

Note the permissions you have on the list command procedure (this 
is the object program). Note also (from the add names) that the 
list command procedure is "bound" (see the bind command) with 
other operating system (~ommand procedures. 

9. Type the following sequence of commands. (You will not receive 
any terminal output for the first four commands.) 

fa t file 
pwd 
ls -all 
who .F01 
ro 
pwd 
pr t file 

W-30 

(file output) 
(print wdir) 
(list)-
(who) 
(revert output) 
(print wdir) 
(print') 

F01 



WORKSHOP NINE 

O. Type the following sequence of commands: 

pr Prince (print) 
11 35 (line length) 
pr Prince (print) 
11 80 (line length) 

1 • Type the following sequence of commands: 

gr -string "Done Master!" -set (general ready) 
pwd (print wdir) 
time (time)-
ru (resource usage) 
gr -revert (general ready) 
date (date) -

2. Turn off the ready message (ready off). Most experienced users 
prefer this mode because they can interact faster. Type the 
following sequence of commands just to get the feel of having no 
ready message: I 

{. .} 
V 

gq 
gq < 
cwd 
11 79 
an P1 P2 
>udd>F01>Student 01>reassure 
ready 
dn P2 
cr seg_3 

ready on 
Is seg 3 
logout-

(get quota) 
(get-quota) 
(change wdir) 
(line length) 
(add name) 
(reassure) 
(ready) 
(delete name) 
(create> 
(period) 
(ready on) 
(list)­
(logout) 

Happiness is Mult'ing the day away! 

W-31 F01 



been left blank. 

W-32 F01 


	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-001
	01-002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	02-001
	02-002
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	03-001
	03-002
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-001
	04-002
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-001
	05-002
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-001
	06-002
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	07-001
	07-002
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	08-001
	08-002
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-001
	09-002
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-001
	10-002
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	11-001
	11-002
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	12-001
	12-002
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	13-001
	13-002
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-18a
	14-001
	14-002
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	15-001
	15-002
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	16-001
	16-002
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	17-001
	17-002
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	18-001
	18-002
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	19-001
	19-002
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	20-001
	20-002
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	20-18
	20-19
	20-20
	20-21
	20-22
	20-23
	20-24
	20-25
	20-26
	21-001
	21-002
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	A-001
	A-002
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-001
	B-002
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	B-39
	B-40
	B-41
	B-42
	B-43
	B-44
	B-45
	B-46
	C-001
	C-002
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	D-001
	D-002
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-001
	E-002
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	F-001
	F-002
	F-1-01
	F-1-02
	F-1-03
	F-1-04
	F-1-05
	F-1-06
	F-1-07
	F-1-08
	F-2-01
	F-2-02
	F-2-03
	F-2-04
	F-2-05
	F-2-06
	F-3-01
	F-3-02
	F-3-03
	F-3-04
	F-3-05
	F-3-06
	F-4-01
	F-4-02
	F-4-03
	F-4-04
	F-4-05
	F-4-06
	F-4-07
	F-4-08
	F-4-09
	F-4-10
	F-4-11
	F-4-12
	F-4-13
	F-4-14
	F-4-15
	F-4-16
	F-4-17
	F-4-18
	F-4-19
	F-4-20
	F-4-21
	F-4-22
	F-4-23
	F-4-24
	F-4-25
	F-4-26
	F-4-27
	F-4-28
	F-4-29
	F-4-30
	F-4-31
	F-4-32
	F-5-01
	F-5-02
	G-001
	G-002
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	H-001
	H-002
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	W-001
	W-002
	W-01
	W-02
	W-03
	W-04
	W-05
	W-06
	W-07
	W-08
	W-09
	W-10
	W-11
	W-12
	W-13
	W-14
	W-15
	W-16
	W-17
	W-18
	W-19
	W-20
	W-21
	W-22
	W-23
	W-24
	W-25
	W-26
	W-27
	W-28
	W-29
	W-30
	W-31
	W-32

