Mass Storage Unit

GENERAL DESCRIPTION OPERATION THEORY OF OPERATION

THIS DOCUMENT AND THE INFORMATION CONTAINED THEREIN IS CONFIDENTIAL AND PROPRIETARY TO AND THE EXCLUSIVE PROPERTY OF HONEYWELL INFORMATION SYSTEMS INC. IT IS MADE AVAILABLE ONLY TO HONEYWELL FIELD ENGINEERING DIVISION PERSONNEL FOR THEIR USE SOLELY IN THE MAINTENANCE AND OPERATION OF HONEYWELL PRODUCTS. THIS DOCUMENT AND INFORMATION MUST BE MAINTAINED IN STRICTEST CONFIDENCE; IT MUST NOT BE REPRODUCED, IN WHOLE OR IN PART; AND IT SHALL NOT BE DISCLOSED TO ANY OTHER PARTY WITHOUT THE PRIOR WRITTEN CONSENT OF HONEYWELL.

Honeywell

MAGNETIC PERIPHERALS ${ }^{\oplus}$ DISK STORAGE UNIT BR3C9
 BR3E4
 BR3E5

GENERAL DESCRIPTION OPERATION
 THEORY OF OPERATION

REVISION RECORD	
REVISION	DESCRIPTION
A	- Manual Released
(10-1-75)	
B	Manual updated with technical and editorial changes.
(2-16-76)	
c	Revised to document models BR3E4, BR3E5 with Engineering Change Order 39617 plus
(9-30-76)	up dates with technical and editorial changes.
D	Revised to incorporate technical and editorial changes.
(6-20-78)	
E	Incorporate ECO 39882C changing CSAV to JSAV and add Power Sequence feature.
(9-25-80)	
	.

Address comments concerning this
manual to:
Revision letters I, O, Q, and X are not used.
Magnetic Peripherals Incorporated
Technical Publications De:artient
7801 Computer Avenue
Minneapolis, Mm 55435
© 1975, 1976, 1978, 1980
By Magnetic Peripherals Incorporated
Printed in the United States of America

LIST OF EFFECTIVE PAGES

Sheet_1 of 2
New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the margins or by a dat near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE	REV
3-36	A
3-37	D
3-38	A
3-39	A
3-40	A
3-41	A
3-42	A
3-43	c
3-44	A
3-45	D
3-46	D
3-47	A
3-48	A
3-49	E
3-50	E
3-51	E
3-52	E
3-53	A
3-54	A
3-55	D
3-56	c
3-57	D
3-58	A
3-59	C

PAGE	REV
3-60	A
3-61	A
3-62	A
3-63	C
3-64	A
3-65	A
3-66	A
3-67	A
3-68	C
3-69	A
3-70	A
3-71	A
3-72	A
3-73	A
3-74	A
3-75	A
3-76	A
3-77	A
3-78	A
3-79	A
3-80	A
3-81	A
3-82	A
3-83	A

LIST OF EFFECTIVE PAGES

Sheet_2 of 2
Now features, as well as changes, deletions, and additions to information in this manual are indieated by bars in the margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

Page	REV
3-84	A
3-85	A
3-86	A
3-87	A
3-88	A
3-89	A
3-90	A
3-91	A
3-92	A
3-93	A
3-94	A
3-95	A
3-96	A
3-97	A
3-98	A
3-99	A
3-100	A
3-101	A
3-102	A
3-103	A
3-104	D
3-105	A
3-106	A
3-107	A

PAGE	REV

PAGE	REV

PAGE	REV

PREFACE

```
This manual contains reference information
applicable to the BR3C9/BR3E4/BR3E5 disk
storage unit. It has been prepared for cus-
tomer engineers and other technical personnel
directly involved with maintaining this equip-
ment.
Information in this manual is applicable to
the BR3C9 models A/B/C/D/J/K and BR3E4/BR3E5
A/B/E.
Reference information is divided into three
sections. These sections and a brief descrip-
tion of their contents are listed below.
Section I - General Description: Describes
    equipment functions, specifica-
    tions and equipment number
    identification.
Section 2 - Operation: Describes and illus-
    trates the location and use of
    all controls and indicators,
    fower on sequencing, and disk
    pack installation and removal.
This manual contains reference information applicable to the BR3C9/BR3E4/BR3E5 disk tomer engineers and other technical personnel directly involved with maintaining this equipment.
Information in this manual is applicable to the BR3C9 models \(A / B / C / D / J / K\) and BR3E4/BR3E5 A/B/E.
Reference information is divided into three sections. These sections and a brief descrip-
Section 1 - General Description: Describes equipment functions, specificaidentification.
Section 2 - Operation: Describes and illustrates the location and use of power on sequencing, and disk pack installation and removal.
```


CONTENTS

1. GENERAL DESCRIPTION		Power Off Sequence	3-11
General	1-1	Logic Chassis Assembly	3-11
Assembly Location	1-1	Deck Assembly	3-11
Introduction	1-1	General	3-11
Top Cover Assembly	1-4	Drive Motor	3-11
Deck Assembly	1-4	Hysteresis Brake	3-11
AC Power Supply	1-4	Spindle Assembly	3-13
Logic Chassis.	1-4	Actuator	3-13
Equipment Identification	1-5	Transducers	3-17
2. OPERATION		First Seek Interlock	3-17
		Blower System	3-17
Introduction	2-1	Disk Pack	3-19
Operating Instructions	2-4.1		
Power Application	2-4.1	3B. LOGIC FUNCTIONS	
Power Down	2-6	Introduction	3-20
Disk Pack Handling	2-6	Device Level Interface	3-20
Disk Pack Installation	2-6	Commands	3-20
Disk Pack Removal	2-7	Command Execution	3-20
Head Alignment Card	2-7	Seek Operations	3-41
Off Line Tester		General	3-41
Preparation for Use	2-7	Servo Circuit Operation	3-43
Operating Procedures	2-11	Basic Seek Operations	3-45
Error Detection	2-11	Introduction	3-45
Seek Operations	2-11	Accelerate Phase	3-45
Head Selection	2-13	Coast Phase	3-48
Read Operations	2-13	Decelerate Phase	3-48
Write Operations	2-14	Stop Phase	3-48
3. THEORY OF OPERATION Introduction		Short Seeks	3-49
		Types of Seeks	3-49
		Introduction	3-49
3A. ELECTROMECHANICAL FUNCTIONS		First Seek (Load)	3-49
Introduction	3-1	Direct (forward/reverse)Seek	3-52
Power Supply	3-4	Return to Zero Seek	3-59
General	3-4	End of Travel Detection	3-59
AC/DC Distribution	3-4	Seek Status and Error Conditions	3-63
Local/Remote Control	3-4	General	3-63
		Normal Status Conditions	3-63
General	3-4	Device Level Interface Errors	3-63
Local Control	3-4.1	Device Fault Conditions	3-64
Remote Control	3-4.1	Track Servo Circuit	3-64
Power On Sequence	3-4.1	General	3-64
Emergency Retract and Data Protection	3-8	Dibit Gating	3-66
Loss of AC Power	3-9	Track Servo Signal Generation	3-56
Control Interlock Opening	3-9	Cylinder Pulse Generation	3-68
Loss of Speed	3-9	Machine Clock Circuits	3-68
Loss of DC Power	3-9	General	3-68

	Clock Generation	3-68
	Write Clock	3-71
Index	Detection Circuit	3-72
Sector	r Circuit	3-72
Read/	/Write Operations	3-72
	eneral	3-72
	Head Selection	3-72
	Basic Read/Write Principles	3-76
	General	3-76
	Track Format	3-76
	Principles of MFM Recording	3-78
	Disk Surface Recording	3-79
	Write Operations	3-79
	General	3-79
	Basic Write Sequence	3-79
	Serdes Serializer	3-82
		Fl
1-1	Assembly Locations	1-1
2-1	Controls and Indicators	2-5
2-2	Off Line Tester	2-8
3-1	Simplified Logic Symbology	3-2
3-1.1	Local/Remote Power Sequencing Control Circuits	3-4.2
3-1. 2	Remote Mode Power Sequencing	3-4.2
3-2	Power Distribution	3-5
3-3	Power Sequencing	3-6
3-4	Power Interlocks	3-7
3-5	Power Off Timing	3-10
3-6	Deck Assembly	3-12
3-7	Spindle Assembly	3-13
3-8	Actuator Assembly Elements	3-14
3-9	Head Loading	3-15
3-10	Head/Arm Assembly Motion	3-16
3-11	Speed Detection	3-17
3-12	Velocity Detection	3-18
3-13	Blower System	3-18
3-14	Drive Block Diagram	3-21
3-15	Device Level Interface Lines	3-22
3-16	Command Decode and Abbreviations	3-23
3-17	Command Decoding Logic	3-24
3-18	SRI Timing	3-42
3-19	Servo Circuits Simplified Schematic	3-46
3-20	Servo Circuit Simplified Signals	3-47
3-21	First Seek Flow Chart	3-50

FIGURES

3-22	First Seek Timing	$3-51$
$3-23$	Direct Seek Flow Chart	$3-53$
$3-24$	Direct Seek Timing	$3-55$
$3-25$	RCB Flow Chart	$3-60$
$3-26$	RCB Timing	$3-61$
$3-27$	Track Servo Circuit Simplified	
	Schematic	$3-62$
$3-28$	Disk Surface Layout	$3-65$
$3-29$	Track Servo Circuit Simplified	
	Signals	$3-69$
$3-30$	Dibits Detect	$3-69$
$3-31$	Cylinder Puises Generation	$-3-70$
$3-32$	Machine Clock Circuit	$3-71$
$3-33$	Index Detection Circuit	$3-73$
$3-34$	Sector Circuit	$3-74$
$3-35$	Read/Write Circuits Block Diagram	$3-75$
$3-36$	Head Selection Circuit	$3-77$
$3-37$	MFM Recording	$3-78$
$3-38$	Magnetic Recoding	$3-80$
$3-39$	Read Current	$3-80$
$3-40$	Write Circuits	$3-81$
$3-41$	Write Timing	$3-83$
$3-42$	Write Irregularity	$3-35$
$3-43$	Read Shift	$3-86$

3-44	Write Compensation Circuit	$3-87$	$3-51$	Phase Lock Oscillator Circuit	3-97
3-45	Write Driver Circuits Timing	$3-89$	$3-52$	Data Separator Circuit	$3-98$
3-46	Read Circuits	$3-91$	$3-53$	Serdes Read Circuit	$3-101$
3-47	AGC Amplifier Stage	$3-92$	$3-54$	Read Timing	$3-102$
3-48	Level Detection Circuit	$3-94$	$3-55$	Device Fault Logic	$3-106$
3-49	Time Constant Control Circuit	$3-95$	$3-56$	DLI Fault Logic	$3-107$
3-50	Data Latch Circuit	$3-96$	$3-57$	Diagnostic Mode Logic	$3-108$

tABLES

1-1	Electrical Specifications	$1-2$	$3-2$	Signal Lines	$3-25$
$2-1$	Controls and Indicators	$2-1$	$3-3$	Commands	$3-26.1$
2-2 Off Line Tester Switch Functions	$2-8$	$3-4$	Servo Circuit Functions	$3-43$	
3-1 Abbreviations	$3-3$				

SECTION 1

GENERAL DESCRIPTION
-?

INTRODUCTION

The BR3C9 is a high speed, random access, data storage device that records and recovers data using portable disk packs.

The equipment specifications for this unit are listed in Table 1-1.

ASSEMBLY LOCATIONS

General

Figure l-l illustrates the major drive assemblies. Detailed information on the construction and function of these assemblies is provided in section 2 of this manual.

Figure 1-1. Assembly Locations
table 1-1. EQUIPMENT SPECIFICATION

Specification	Value
Size Height Width (Front) Depth	$\begin{aligned} & 39.25 \text { in }(997 \mathrm{~mm}) \\ & 22 \text { in (559 } \mathrm{mm}) \\ & 44.5 \text { in }(1130 \mathrm{~mm}) \end{aligned}$
Weight	680 lbs (309 kg)
Temperature Operating Gradient Non-Operating Gradient	$\begin{aligned} & 60^{\circ} \mathrm{F}\left(15.5^{\circ} \mathrm{C}\right) \text { to } 90^{\circ} \mathrm{F}\left(32^{\circ} \mathrm{C}\right) \\ & 12^{\circ} \mathrm{F}\left(6.6^{\circ} \mathrm{C}\right) \text { per hour } \\ & -30^{\circ} \mathrm{F}\left(-34^{\circ} \mathrm{C}\right) \text { to }+150^{\circ} \mathrm{F}\left(66^{\circ} \mathrm{C}\right) \\ & 36^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right) \text { per hour } \end{aligned}$
Humidity Operating Non-Operating	```20% to 80% (providing there is no condensation) 5% to 90%```
Altitude Operating Non-Operating	$\begin{aligned} & -1000 \mathrm{ft}(305 \mathrm{~m}) \text { to }+7000 \mathrm{ft}(2134 \mathrm{~m}) \\ & -1000 \mathrm{ft}(305 \mathrm{~m}) \text { to }+16000 \mathrm{ft}(4877 \mathrm{~m}) \end{aligned}$
Input Voltage RR3C9A,B BR3C9C,D BR3E4,A BR3E4,B BR3E5,A BR3E5BB	$208 \mathrm{v}(+10 \%,-15 \%), 60$ ($\pm 1 \%) \mathrm{Hz}$ $220 \mathrm{v}(+10 \%,-15 \%), 50(\pm 1 \%) \mathrm{Hz}$ $208 \mathrm{v}(+10 \%,-15 \%), 60$ ($\pm 1 \%$) Hz $220 \mathrm{v}(+10 \%,-15 \%), 50(\pm 1 \%) \mathrm{Hz}$ $208 \mathrm{v}(+10 \%,-15 \%), 50(\pm 1 \%) \mathrm{Hz}$ $220 \mathrm{v}(+10 \%,-15 \%), 50$ ($\pm 1 \%$) Hz
Power Consumption	Standby Accessing
Current True Power Power Factor Heat Dissipation Starting Current	

TABLE 1-1. EQUIPMENT SPECIFICATION (CONT'D)

TABLE 1-1. EQUIPMENT SPECIFICATION (CONT'D)

TOP COVER ASSEMBLY

The top cover assembly protects the drive assemblies during customer operations.

The pack cover is opened by means of a latch under the cover. An electrical switch senses the cover is opened, and disables spindle motor power.

DECK ASSEMBLY
The deck assembly has the following major subassemblies:

- A spindle assembly to mount the disk pack. Its associated drive motor runs continuously whenever a pack is installed, the pack cover is closed, the START switch is on, and sequence power (either from the controller or with the LOCAL/REMOTE switch on the power supply in the LOCAL position) are available.
- An actuator assembly that mounts the read/write heads for processing data. The actuator contains a voice coil positioner controlled by a closedioop, continuous-feedback servo system
- A shroud to surround the disk pack. The shroud: protects the pack, aids in directing air from the blower to the pack; and prevents the operator from damaging the read/write heads with the pack.
- A read/write chassis to mount logic cards that contain logic directly affecting head selection and operation.
- A first seek interlock assembly to provide a heads load command delay.

AC POWER SUPPIY

The ac power supply provides ac power required by the drive. The ac voltages generated are distributed to the dc power supply located in the logic chassis assembly.

The line filter filters the ac power input to the power supply.

LOGIC CHASSIS

The logic chassis serves as the mounting point for the main complement of the logic cards and de power supply. The chassis is hinge-mounted for easy access to the cards (which plug in at the inner side of the chassis) or to the backpanel terminals (at the outer side). The backpanel terminals provide ready access to all signals entering and leaving each card. In addition, the cards have test points for monitoring critical signals within the cards.

The logic chassis also contains a test point panel that provides a location for status monitoring of the dc voltages generated by the dc power panel.

Located in the lower half of the logic chassis is the dc power panel. The dc power panel provides de power required by the drive. It also contains relays and solid state logic used for power sequencing.

EQUIPMENT IDENTIFICATION

An equipment number is assigned to each drive to identify its configuration. This provides a systematic method of identifying, accounting, and controlling changes that affect drive logic and mechanical components.

The equipment configuration is identified by a nameplate attached to the frame at the back of the drive. The nameplate is visible with the logic chassis open. The Equipment Identification Number will be similar to the following:

The Equipment Identifier indicates the basic function of the unit. This number will be BR3C9 on all units for which this series of manuals have been prepared.

The Type Identifier indicates a non-interchangeable difference in equipments that affects the interface. The term "Mod" is sometimes used interchangeably with "Type Identifier".

The Series Code Changes with each non-interchangeable change within the equipment.

Drives with different series codes are fully interchangeable at the system level; however, not all of their electrical or mechanical components may be interchangeable. Series codes are changed by Engineering Change Order (ECO) only at the factory.

Other changes are accomplished by Field Change Order (FCO). These changes may be installed either at the factory or by field personnel. FCO changes are indicated by an entry on the FCO Log that accompanies each machine. It is important that this log be kept current by the person installing each FCO.

Unless otherwise specified, all theory, procedures, and diagrams in these manuals apply to all units. Exceptions are noted where applicable.

Manuals accompanying unit shipments from the manufacturer match the configuration of those units. Subsequent manual changes are controlled by the Revision Record sheet behind the title page of every manual. This sheet identifies the Series Code and FCO effectivity of manual changes. If maintenance will be performed using a manual other than the manual supplied with each drive, verify that the manual and drive configurations match.

SECTION 2

OPERATION

INTR ODUCTION

The drive contains several panels and indicators.

Figure 2-1 locates the panels and indicators on a cabinet. Table 2-1 describes the various panel controls and indicators.

TABLE 2-1. CONTROLS AND INDICATORS

Control or Indicator	Function
Operator Panel	
START/STOP Switch/indicator	Controls power on and off sequences. If the indicator is not lighted (indicating drive is in a power down condition) depressing the switch does the following: - Eights the indicator - Energizes the spindle drive motor - Initiates the first seek sequence This happens only if the disk pack is in place with canister removed, the pack cover is closed, and the circuit breakers are on. If the indicator is lighted (indicating the unit is powered up) depressing the switch extinguishes the indicator and causes a power off sequence.
READY indicator	Lights when the heads are loaded and the unit is ready to accept commands.
$\begin{aligned} & \text { PROTECT } \\ & \text { switch/indicator } \end{aligned}$	Depressing this switch lights the indicator and inhibits the drive from writing on the pack.
OFFLINE indicator	Lights when the drive has experienced any of the following conditions: - Controller issued a Set Local State command - ONLINE switch on maintenance panel set to an offline position.
Logic Plug	Determines the device number of the drive. Each plug has a fixed number which is changed by replacing the present plug with one having a different number. The controller determines the device number via a Device Number Request command (Tag 26).

TABLE 2-1. CONTROLS AND INDICATORS (CONT'D)

Control or Indicator	Function
Operator Panel (Cont'd)	
CHECK switch/indicator	Lights when one or more of the following fault conditions оссия. - -Read or Write is commanded without an On Cylinder signal. - Low voltage ($\pm 5 \mathrm{v}, \pm 20 \mathrm{v}$, or $-\mathbf{1 6 v}$) condition - Read and Write commanded at the same time - Servo dibits lost for more than 200 ms - More than one head selected - Air flow has decreased below an acceptable limit - Head register contains number exceeding 18 (no head select) - Write command without write current - Write Current without Write command
Logic Chassis Maintenance Panel	
	NOTE The POSITIONER OFFSET and READ CLOCK switches are designed for use during a maintenance situation. Functions of the two switches are enabled only when the ONLINE switch is set to either OFF IINE position.
POSITIONER OFFSET switch	NORMAL position allows servo logic to position positioner to the nominal center of the disk pack servo recording track. OUT position injects a fixed bias so that positioner is positioned 400 microinches off nominal center of servo track in the direction away from the spindle. IN position injects a fixed bias so that carriage is positioned 400 microinches off nominal center of servo track in the direction toward the spindle.
READ CLOCK switch	NORMAL position allows read data strobe to occur in the nominal center of the allowable margin of the data window (time period in which a recovered data "I" must appear in order to be recognized as a "I"). ADV position causes data strobe to be moved to the advanced (early) margin position of the data window. (Data strobe occurs about 8 nanoseconds earlier than nominal). RET position causes data strobe to be moved to the retarded (late) margin position of the data window. (Data strobe occurs about 8 nanoseconds later than nominal:)

TABLE 2-1. CONTROLS AND INDICATORS (CONT'D)

Control or Indicator	Function
Logic Chassis Maintenance Panel (Cont'd)	
ONLINE/NORMAL/ WRITE PROTECT switch (Cont'd)	OFFLINE-WRITE PROTECT position causes same occurrences as for OFFLINE-NORMAL position and additionally disables the write circuits. Switching from OFFLINE to ONLINE causes an internal General Reset (equivalent to DIN).
CHECK switch/indicator	Indicator lights in response to one or more of the same conditions as listed for the operator panel CHECK switch/indicator. Pressing the logic chassis maintenance panel CHECK switch clears the Pack Unsafe FF and all bits of DSB1, DSB2, and DSB3.
$+5,-5,+20,-20,$ and GND test jacks	Provide a point at which dc voltages in logic chassis can be measured. They must not be used as a power source.
Bidirectional Data Line bit indicators	Display information is selected by DISPLAY SELECT switch when in Offline mode. Indicator lights if selected signal is true.
DISPLAY SELECT switch	Ten position rotary switch that allows selection and display of machine status and register contents. Switch positions function as follows: 1. ADDRESS VERIFY is used only in conjunction with off Line Tester. Tester operation stops if it detects difference between cylinder byte read from disk and contents of Cylinder Address register. Indicators display address read from disk. Error may be verified by setting switch to DSB4. Bit 26 (Tester Address Error) will be on.
$\begin{aligned} & \text { ONLINE/NORMAL/ } \\ & \text { WRITE PROTECT switch } \end{aligned}$	ONLINE position places unit under control of control unit. OFFLINE - NORMAL position causes the following: 1. Prevents control unit from initiating a seek or read/write operation. 2. Enables control of drive functions by Off Line Tester. 3. Lights LOCAL indicator. 4. Clears reserved status of drive, inhibiting gating of status signals (including OPI to controller.

TABLE 2-1. CONTROLS AND INDICATORS (CONT'D)

Control or Indicator	Function
Logic Chassis Maintenance Panel (Cont'd)	
DISPLAY SELECT switch (Cont'd)	2. CYIINDER causes contents of Cylinder Address register to be displayed. 3. DIFFERENCE causes contents of Difference Counter to be displayed. This value is complement of number tracks to go. 4. HEAD causes contents of Head Register to be displayed. 5. SUMMARY STATUS causes Sumary Status (SSR) byte to be displayed. Refer to Table 2-2 for bit significance. 6. DSB2-DSB7 causes applicable Detailed Status byte to be displayed. Refer tó Table 2-2 for bit significance. The meanings of the Sumary Status and Detailed Status bytes are explained in Section 4.
AC Power Supply	
Elapsed Time Meter DRIVE MOTOR circuit breaker +20Y Fuses	Indicates cumulative hours that logic de power is on. Controls application of ac voltage to spindle drive motor. Protects 20 volt power supply transformer used to derive +20y sequence and lamp voltages.
DC Power Supply	
+20y indicator $\pm 46, \pm 20$, and ± 10 volt circuit breakers Local/Remote Switch (Applies only to drives with Power Sequence feature)	Lights to indicate presence of $+20 Y$ voltage used by lamps and power up sequence circuit. Control application of related dc voltages throughout drive. Determines whether the power on sequences of the drives in a particular string are controlled independent of one another by the START switches or by the START switches working in conjunction with a power sequence signal received from either the controller or the first drive in the string. In the local mode, the power on sequences are controlled independently, However, in the remote mode, pressing the START switch starts a power on only if the drive is receiving the Pick signal. In remote, the drive receives the Pick signal only if all previous drives in the strinf have completed their power on, are in local, or are completely deenerigized (all circuit breakers off). The purpose of remote mode is to allow a sequential power up of all drives in the string. A sequential power up is accomplished by: 1. Closing all circuit breakers and setting the LOCAL/REMOTD switch of each drive to the REMOTE position. 2. pressing the START switches to light the indicators of each drive except the first in the string. 3. Press the START switch to light the indicator of the first drive. The drives will now power up sequentially (see Local/Remote Control discussion for more information
	Main Breaker Box
UNIT Power circuit breaker	Controls application of main ac power.

- POSITIONER OFFSET switch to NORMAL.
- READ CLOCK switch to NORMAL
- ON LINE switch to ON LINE

5. Close all dc power supply circuit breakers. The $+20 y$ indicator (on the dc power supply) lights.
6. Close cabinet logic chassis gate.
7. Press operator panel START/STOP switch/ indicator. This lights the indicator, starts the spindle drive motor and initiates the first seek sequence.
8. Completion of the first seek operation lights the operator panel READY indicator. The heads are now positioned at track 000 and the unit is ready to receive a command.

LOGIC CHASSIS MAINTENANCE PANEL

Figure 2-1. Controls and Indicators

POWER DOWN

The following procedure powers down the drive.

1. Stop the spindle motor and unload heads by either issuing a Set Standby State (Tag 13) from the controller or pressing the START/STOP indicator/switch on the operator panel.

WARNING

If pressing the START/STOP switch does not cause the heads to unload and the spindle motor to stop the following procedures must be followed to avoid personal injury or damage to the heads and. disk pack.

1. Manually retract heads as follows:
a. Open top cover from rear
b. Disconnect yellow lead from voice coil
c. Manually retract heads following precaution given in Section 5 of this manual under Maintenance Preliminary conditions
2. Remove main ac power from drive by opening UNIT POWER circuit breaker.
3. Determine cause of failure (normally an open lead to voice coil.
4. Remove main ac power to drive by opening UNIT POWER circuit breaker.

DISK PACK HANDLING

To ensure maximum disk pack life and reliability, observe the following precautions:

1. Store disk packs in a machine-room atmosphere (600 F to $900 \mathrm{~F}, 10 \%$ to 80% relative humidity).
2. If a disk pack must be stored in a different environment, allow two hours for adjustment to the computer environment before use.
3. Never store a disk pack in sunlight, in a dirty environment, or on top of another disk pack.
4. Store the disk packs flat, not on edge.
5. Always be sure that both the top and bottom plastic cannister covers are on a disk pack whenever is is not actually installed in a drive.
6. When marking packs, use a pen or felttip marker that does not produce a loose residue. Never use a lead pencil. Nrite on the label before it is applied to the disk pack cannister.
7. Always close the disk drive pack access cover after loading or removing the disk pack. This will allow the disk drives positive air pressure system to keep the pack area free of any foreign particles.
8. Do not attach any label to the disk pack itself. Labels will not remain attached when the pack is spinning and catastrophic head crashes may result. All labels should be placed on the pack cannister if required.

DISK PACX INSTALLATION

Make certain that the disk pack to be installed has been properly maintained.

1. Raise drive front cover.
2. Lift the disk pack by the plastic canister handle.
3. Disengage the bottom dust cover from the disk pack by squeezing the levers of the releasing mechanism in the center of the cover and lifting the cover off. Set the cover aside to an uncontaminated storage area.

CAUTION

Make certain the heads are fully retracted.
4. Place the disk pack onto the spindle NOTE

A spindle lock mechanism (ratchet brake) is actuated when the disk pack canister cover is on the spindle. A "click" may be heard as the lock mechanism engages. The machanism holds the spindle stationary while loading or unloading a disk pack.
5. Twist the canister handle clockwise until pack is locked in place.
6. Lift the canister clear of the disk pack and set it aside to an uncontaminated storage area.
7. Close the front cover immediately to prevent the entry of dust and the contamination of the disk surfaces.

DISK PACK REMOVAL

1. Press (to extinguish) to operator panel START switch.
2. Check that disk pack rotation has stopped completely.
3. Raise the front cover.

CAUTION

During maintenance procedures the read/write heads are sometimes manually positioned. Make certain that the heads are fully retracted.
4. Place the plastic canister over the mounted disk pack so that the post protruding from the center of the disk pack is received into the canister handle.
5. Twist the canister handle counterclockwise until the disk pack is free of the spindle.

CAUTION

Avoid abusive contact between the disk pack and the spindle assembly
6. Lift the canister and the disk pack clear of the spindle.
7. Close the front cover.
8. Place the bottom dust cover in position on the disk pack and tighten it.
9. Store the disk pack in a clean cabinet or on a clean shelf.

HEAD ALIGNMENT CARD (DSFV)

Four LED indicators are provided as monitors to ensure accurate alignment data is taken. Their functions are:

Power	When lighted indicates power is applied to card (card is fully inserted in card slot).
Input	When lighted idnciates amplitude of alignment signal is below minimum threshold required to allow alignment card to operate.
Bad Track -	When lighted indicates short duration loss of alignment signal. Indicator lights when polarity (SI) is operated. A one-shot maintains light for four seconds.

Mode

- When lighted indicates switches S2 (servo-R/W select) or S3 (meter sensitivity) are not in correct position to measure data head alignment error.

NOTE

Measurement of data head alignment error can be taken only when the power indicator is on and the other indicators are off.

Three toggle switches are provided on the card edge which perform the following functions:

Sl - Switch changes the polarity of the alignment signal and is used in taking measurements of both servo and data heads as follows:
a) note null meter reading in P (normal) position
b) note null meter reading in N (reverse) position
then $\mathrm{P}-\mathrm{N}=$ alignment position, i.e., $\mathrm{P}=+30 \mathrm{mv}, \mathrm{N}=-40 \mathrm{mv}(+30)-(-40)=+70 \mathrm{mv}$ alignment error.

S2 - Switch selects the servo head (S) as an input to the card on the data head (R / W) as an input to the card. When switch is in S position, mode indicator will light.

S3 - Switch changes the sensitivity of the meter circuit (TPX and TPY). In Xl position, meter readings are multiplied by 1 , in X. 1 multiply meter readings by 10. With switch in X1 position, mode indicator lights.

Test points TP-X and TP-Z are connected to the null meter. TP-Y is connected to an oscilloscope to observe the dibit pattern.

OFF LINE TESTER

The off Line Tester PN 86073404 permits full control of the drive seek and read/write logic without computer intervention.

The tester front panel is illustrated in Figure 2-2. Switch functions are defined in Table 2-2.

PREPARATION FOR USE

1. Verify that the CPU operating system permits the drive to be removed from computer control.
2. Open cabinet rear door.

NOTES: I. DATA SYNC JACK IS ON REAR PANEL OF TESTER.

TABLE 2-2. OFF LINE TESTER SWITCE FUNCTIONS

Switch/Indicator	Mode Select Switch Position	Function
Bits Used		
INPUT AII	$\begin{aligned} & \text { DIRECT } \\ & \text { CONT } \end{aligned}$	Loads destination cylinder of seek.
$\begin{aligned} & \text { AII } \\ & \text { AII } \end{aligned}$	$\begin{aligned} & \text { SEQ FWD } \\ & \text { SEQ REV } \end{aligned}$	Loads length of each forward or reverse incremental seek.
1-16	EEAD	Loads head to be selected for read/write operations.
1-16	SECTOR	Loads sector to be selected for read operations.
1-32	UPPER	Loads upper six bits of data pattern to be written.
1-32	LOWER	Loads lower six bits of data pattern to be written.
PATTERN Lamps	--	Indicates l2-bit data pattern that has been loaded into tester for write operations.
Mode Select	--	Controls tester mode of operation.
	HEAD ADV	N/A
	LOWER	Loads write data pattern selected by INPUT switches 32 through 1 when LOAD switch is actuated. Pattern is displayed by LOWER PATTERN indicators.

TABLE 2-2. OFF LINE TESTER SWITCH FUNCTIONS (CONT'D)

Switch/Indicator	Mode'Select Switch Position	Function
Mode Select (Cont'd)	UPPER	Loads data pattern selected by INPUT swit ches 32 through 1 when LOAD switch is actuated. Pattern is displayed by UPPER PATHERN indicators.
	SECTOR	N/A
	HEAD	Selects head to be used for read/write operations (determined by INPUT switches 16 through 1) when LOAD switch is actuated. NOTE The following switch positions, except DIRECT, are under further control of REPEAT/SINGLE switch. For sequential forward or reverse seeks, do not exceed lengths greater than 255 tracks.
	SEQ REV	Drive seeks in reverse until it reaches cylinder 000; operation then stops. Decrement length selected by INPUT switches.
	SEQ FWD	Drive seeks forward until it reaches cylinder 822 (or address is generated that would exceed 822), then performs direct seek to cylinder 000. Sequence repeats. Increment length selected by INPUT switches.
	RANDOM	Drive continuously seeks forward or reverse to random cylinder. INPUT switches have no effect.
	CONT	Drive continuously seeks from starting cylinder to cylinder selected by INPUT switches.
	DIRECT	Drive seeks once to cylinder selected by INPUT switches.
LOAD/SEQ HEADS SWITCH	LOAD	Data selected by INPUT switches is loaded in tester. When mode select switch is in UPPER or LOWER position. Data selected by INPUT switches is loaded into drive when mode select switch is in HEAD position. Data selected by INPUT switches is loaded into drive.
	NEUTRAL SEQ HEADS	No data loaded. N / A
READ/ACCESS/WRITE SWITCH	READ	Drive reads selected track with selected head after each seek. Cylinder address read from disk is displayed on logic chassis maintenance panel if its DISPLAY SELECT switch is in ADDRESS VERIFY position. If error occurs on compare between address read from disk and current cylinder address, accessing stops. This may be verified by setting DISPLAY SELECT to DSB4: if Bit 8 is lit, (Address Error Fault) has been detected by tester.
	ACCESS (NEUTRAL)	Reading and writing inhibited. Only seeks are enabled.

TABLE 2-2. OFF LINE TESTER SWITCE FUNCTIONS (CONT'D)

Switch/Indicator	Mode Select Switch Position	Function
READ/ACCESS/WRITE SWITCH (Cont'd)	WRITE	NOTE Do not perform write operation with drive's tag IINE SELECT switch in ADDRESS VERIFY position. Write operation begins at Index and ends at next Index. Drive writes following pattern: 1. Delay of 630 usec after leading edge of index mark, before Address Segment of track is written. 2. Bit pattern that was leaded into PATPERN display from end of Address Segment to leading edge of index.
R/W ONLY/RESET SWITCE	R/W ONLY NEUTRAL RESET	Seeks are inhibited. Refer to REPEAT/SINGLE switch for further information. Seeks enabled. Refer to READ/WRITE. Resets starting address of single-access continuous seeks (SINGLE and CONT).
REPEAT/SINGLE SWITCH	SINGLE REPEAT	One operation will take palce each time START/STOP switch is actuated to START. If writing, one seek/write operation is performed. If reading, one seek/read operation is performed. In R / W ONLY mode the following occurs: 1. While reading, selected track is read once per START/STOP switch actuation. 2. While writing, one track is written per START/STOP switch actuation. Operation continues until START/STOP switch is actuated to STOP (except, DIRECT mode has only one operation). In READ or WRITE mode, one read or write operation is performed per each seek. In R / W ONLY mode the following occurs: 1. While reading, select track address is continuously read and compared. 2. While writing, track is continuously rewritten.
RTZ Switch	RT2	Drive performs a return to zero seek operation when RTZ switeh is actuated.
$\begin{aligned} & \text { START/STOP } \\ & \text { SWITCH } \end{aligned}$	START STOPS	Initiates selected operation. If in SINGLE mode, switch must be actuated for each execution. Stops operation.

TABLE 2-2. OFF LINE TESTER SWITCH FUNCTIONS (CONT'D)

Switch/Indicator	Mode Select Switch Position	Function
DATA SYNC JACK (Rear of Tester)		Provides scope sync point during read operations. Signal is positive-going at beginning of data pattern (which follows cylinder byte) and drops at end of data field. Because of timing variations and propagation delays between tester, drive, and scope, the first bit of the data pattern may not actuaally be displayed.

3. Set ON LINE/NORMAL/WRITE DISABLE switch to OFF LINE (normal). Tester will not work in ON LINE mode. If operated in WRITE PROTECT mode, accessing and reading are normal, but data cannot be written.
4. Open tester bottom panel and remove cable assembly. If tester has not been used, verify that 12.88 MHz crystal is installed. The 13.60 MHz crystal should be in the dumy jack. Replace cover.

NOTE

DC power supply voltage must be removed when tester is being installed or removed.
5. Connect cable assembly between connectors on rear of tester and $C 27$ on logic rack. Tester receives power from drive. Set START/STOP switch to STOP.
6. Apply DC power.

OPERATING PROCEDURES

Error Detection

The DISPLAY SELECT switch on the logic rack maintenance panel is a valuable accessory in using the tester. A thorough knowledge of this switch and its functions will assist greatly in isolating malfunctions. Functions of each switch position are specified in Table 2-1.

When the DISPLAY SELECT switch is set to ADDRESS VERIFY position, the ADDRESS \& CONTROL BUS indicators display the cylinder address read from the disk. This function is enabled only during tester read operations. If any error occurs, all accessing stops and the last address read will be displayed. Proceed as follows:

1. Set DISPLAY SELECT switch to following posiiton to verify the type of error. DSB4, Bit 2^{6} displayed indicates that the tester detected an address error: DSB3, Bit 2^{7} indicates a seek error; etc. (refer to Table 3-3).
2. Set switch to CYLINDER position to determine the address that the drive should be at.
3. Set switch to DIFFERENCE position to check the contents of the difference counter. When the seek is completed, all bits should be on (which is the complement of zero).
4. If the cylinder and difference are correct, but an address error is indicated, proceed as follows:
a. Press FAULT switch. Address Error DSB4 2^{6} is stored in drive's Fault register. FAULT switch must be pressed to clear that bit.
b. Select R / W ONLY.
c. Reread cylinder address.
d. If ADDRESS VERIFY display matches CYIINDER display, the error is not a positioning error; a read error caused the previous "address error".
5. If CYLINDER and ADDRESS VERIFY cannot be matched, cause of the address error was a positioning error.

While performing sequential forward seeks, and with the DISPLAY SELECT switch set to CYIINDER, the display will increment with ezch seek.

Seek Operations

The tester is capable of performing the following seek operations:

- Single seek to any cylinder
- Repeated seek between any two cylinders
- Sequential seeks at selectable seek lengths

NOTE
Do not exceed seek lengths greatar than 255 ,tracks.

- Random cylinder seeks

Single Seek

This procedure causes a single direct access to desired cylinder. Precondition tester by setting START/STOP switch to STOP and actuating RTZ switch.

1. Set INPOT switches to desired cylinder number.
2. Set LOAD/SEQ HEADS switch to neutral position.
3. Set mode select switch to DIRECT.
4. Set READ/ACCESS/WRITE switch to ACCESS.
5. Set R/W ONLY/RESET switch to neutral position.
6. Set REPEAT/SINGLE switch to SINGLE.
7. Set START/STOP switch to START.
8. When move is complete, return START/ STOP switch to STOP.

Repeated Seek Between Two Cylinders

This procedure causes drive to access between two cylinders. precondition tester by setting START/STOP switch to STOP and actuating RTZ switch.

1. Perform single seek procedure to desired first cylinder if it is other than track 000.
2. Set INPUT switches to new desired cylinder.
3. Set LOAD/SEQ HEADS switch to neutral.
4. Set mode select switch to CONT.
5. Set READ/ACCESS/WRITE switch to ACCESS.
6. Set R/w ONLY/RESET switch to neutral position.
7. Set REPEAT/SINGLE switch to REPEAT.
8. Set START/STOP switch to START.
9. To stop repeated seeking, place START/ STOP switch to STOP.

Sequential Seeks

This procedure causes drive to access sequentially forward, or reverse. The direction is determined by the Mode Select switch, and the incremental cylinder seek length is determined by the setting of the INPUT switches. precondition tester by setting STOP/START switch to STOP and actuating RTZ switch. If actuator is not at cylinder 000 and a seqential forward seek is initiated, the actuator seeks forward one seek length at a time from current cylinder position until reaching last cylinder or an illegal address. It then
returns to cylinder 000 in one movement and continues forward sequential seeks starting at track 000 and at the seek length set by the INPUT switches.

If a sequential reverse seek is initiated, actuator seeks in reverse at the cylinder increment selected by INPOT switches until reaching track 000. The operation is then stopped. A direct seek to a cylinder other than 000 must precede a sequential reverse seek.

For sequential forward or reverse seeks, do not exceed seek lengths greater than 255 tracks. Otherwise seek lengths different from that desired will be obtained. For example, if a seek of 256 is comanded, actuator will seek to: 0, 256, 1, 257, 2, 258, 3, 259, and so on.

If CONP and SINGLE are both selected, actuate RESET if the starting seek address is to be changed. This permits the tester to gate internally the new address selected by INPUT switches. Otherwise, tester will command a return seek to original starting cylinder (stored when operation first started).

Procedure for Sequential Forward Seek:

1. Perform single seek procedure if desired starting position is other than track 000 .
2. Set INPUT switches to desired seek length.
3. Set LOAD/SEQ HEADS switch to neutral.
4. Set mode select switch to SEQ FWD.
5. Set READ/ACCESS/WRITE switch to ACCESS.
6. Set R / W ONLY/RESET switch to neutral.
7. Set REPEAT/SINGLE switch to desired mode.
8. Set START/STOP switch to START.
9. If REPEAT/SINGLE switch is set to SINGLE, one seek is made for each START/STOP switch actuation. Return START/STOP switch to STOP when move is complete. If REPEAT/SINGLE switch is set to REPEAT, selected seek operation is continuous until START/STOP is set to STOP.

Procedure for Sequential Reverse Seek:

1. Perform single seek to desired starting track.
2. Set INPUT switches to desired seek length.
3. Set LOAD/SEQ HEADS switch to neutral.
4. Set mode select switch to SEQ REV.
5. Set READ/ACCESS/WRITE switch to ACCESS.
6. Set R/W ONLY RESET switch to neutral.
7. Set REPEAT/SINGLE switch to desired mode.
8. Set START/STOP switch to START.
9. If REPEAT/SINGLE switch is set to SINGLE, one seek is made for each START/STOP switch actuation. Return START/STOP switch to STOP when move is completed. If REPEAT/SINGLE switch is set to REPEAT, actuator will sequentially move to cylinder 000 and stop.
10. Set START/STOP switch to STOP.

Head Selection

1. Select a specific head as follows:
a. Set mode select switch to HEAD.
b. Set INPUT switches (16 through 1) to desired head number.
c. Actuate LOAD/SEQ HEADS switch to LOAD and let return to neutral position. The selected head will be used for all operations.

NOTE

Head register will be cleared automatically after a RTZ step.

Read Operations

Read operations are primarily addressoriented. The tester compares the cylinder address read from the disk with the current cylinder address. If an error occurs, execution stops. Read Gate stays up for the remainder of the track. When comparing cylinder addresses set DISPLAY SELECT switch on maintenance panel to ADDRESS VERIFY.

Panel indicators then display cylinder address read by tester. If performing a repeat read without accessing (R / W ONLY) indicators may appear to be blank. This is because the lamp drivers cannot react fast enough to display data inputs. Display may be obtained by setting START/STOP switch to STOP or performing a single access/read operation.

The data pattern read from the disk is NOT compared with the loaded pattern in the tester. Pattern read errors will therefore not be detected by the tester. If it is necessary to observe read waveforms within drive, connect oscilloscope vertical inputs to desired test points. Sync positive on DATA SYNC jack on tester rear panel. Display is initiated at leading edge of first data bit. Because of timing variations and propagation delays, first bit may be missed so that display starts at second bit.

A read operation can be performed in conjunction with a seek operation or separately. If performed with a seek operation, the seek is completed first, then the track is read.

Read One Track

To read one track perform the following steps:

1. Set READ/ACCESS/WRITE switch to READ.
2. Set REPEAT/SINGLE switch to SINGLE.
3. Set R/W ONLY/RESET switch to NEUTRAL.
4. Select desired head as described in Head Selection procedure.
5. Access to desired track as described in Seek Operations.
6. To read track again, actuate START/STOP switch. Repeat START/STOP step for each read operation.

To select new head on same track without accessing perform the following steps:
7. Set R/W ONLY /RESET switch to R/W ONLY.
8. Select desired head as described in Head Selection procedure.
9. Set START/STOP switch to START. To read that track again, actuate START/STOP switch. Repeat START/STOP step for each read operation.

To read continuous with one head without accessing perform the following steps:
10. Set REPEAT/SINGLE switch to REPEAT.
11. Set START/STOP switch to START. Track will be continuously read until START/ STOP switch is set to STOP.

Read More Than One Track
To read more than one track perform the following steps:
I. Set READ/ACCESS/WRITE switch to READ.
2. Set REPEAT/SINGLE switch to REPEAT.
3. Set R/W ONLY/RESET switch to NEUTRAL.
4. Select desired head as described in Head Selection procedure.
5. Select desired seek as described in Seek Operations.
6. Tracks will be continuously read until START/STOP switch is set to STOP.

Read All Cylinders With All Heads

To read all cylinders with all heads use the following procedure:

1. Set READ/ACCESS/WRIME switch to READ.
2. Set REPEAT/SINGIE switch to REPEAT.
3. Set R/W ONLY/RESET switch to NEUTRAL.
4. Select head 00 as described in Head Selection procedure.
5. Set Mode Select switch to SEQ FWD.
6. Set INPUY switches for one track seek.
7. Set START/STOP switch to START. Address will be read on track 000 by head 00 , etc. When last track is read switch START/STOP switch to STOP. Repeat test selecting next higher order head and read all tracks. Continue until all heads have read all tracks.

Write Operations

A write operation can be performed in conjunction with a seek operation or separately. If performed with a seek operation, the seek is completed first, then the track is written. The write operation begins at Index and ends at the next Index. The bit pattern loaded into the PATPERN display is written on the track (after a delay of 630 usec from the leading edge of Index.

Write One Track

To write one track perform the following steps:

1. Set READ/ACCESS/WRITE switch to write.
2. Set REPEAT/SINGIE switch to SINGLE.
3. Set R / W ONLY/RESET switch to NEUTRAL.
4. Load bit pattern as follows:
a. Set Mode Select switch to UPPER.
b. Set INPUT switches (32 through 1) to upper six bits of bit pattern.
c. Actuate LOAD/SEQ HEADS switch to LOAD and let switch return to neutral. Verify that pattern is displayed by LOWER PATTERN indicators.
d. Set Mode Select switch to LCWER.
e. Set INPUT switches (32 through 1) to lower six bits or bit pattern.
f. Actuate LOAD/SEQ HEADS switch to IOAD and let switch return to neutral Verify that pattern is displayed by LOWER PATHERN indicators.
5. Select desired head as described in Head Selection procedure.
6. Access to desired track as described in Seek Operations.
7. To write track again, actuate START/STOP switch. Repeat START/STOP step for each write operation.

To select new head on same track without accessing perform the following steps:
8. Set R/W ONLY/RESET switch to R/W ONIY.
9. Select desired head as described in Head Selection procedure.
10. Set START/STOP switch to START. To write that track again, actuate START/ STOP switch. Repeat START/STOR step for each write operation.

To wite continuous with one head without accessing perform the following steps:
11. Set REPEAT/SINGIE switch to REPEAT.
12. Set START/STOP switch to START Track will be continuously written until START/STOP switch is set to STOP.

Write More Than One Track

To write more than one track perform the following steps:

1. Set READ/ACCESS/WRITE switch to write.
2. Set REPEAT/SINGLE switch to REPEAT.
3. Set R/W ONLY/RESET swi-ch to NEUTRAL.
4. Load bit pattern as follows:
a. Set Mode Select switch to UPPER.
b. Set INPUT switches (32 through 1) to upper six bits of bit pattern.
c. Actuate LOAD/SEQ HEADS switch to LOAD and let switch return to neutral. Verify that pattern is displayed by UPPER PATTERN indicators.
d. Set Mode Select switch to LOWER.
e. Set INPUT switches (32 through 1) to lower six bits of bit pattern.
f. Actuate LOAD/SEQ HEADS switch to LOAD and let switch return to neutral. Verify that pattern is displayed by LOWER PATTERN indicators.
5. Select desired head as described in Head Selection procedure.
6. Select desired Seek as described in Seek Operations.
7. Tracks will be continuously written until START/STOP switch is set to STOP.

Write All Cylinders With All Heads

To write all cylinders with all heads use the following procedure:

1. Set READ/ACCESS/WRITE switch to write.
2. Set REPEAT/SINGLE switch to REPEAT.
3. Set R/W ONLY/RESET switch to NEUTRAL.
4. Load bit pattern as follows:
a. Set Mode Select switch to UPPER.
b. Set INPUT switch (32 through 1) to upper six bits of bit pattern.
c. Actuate LOAD SEQ HEADS switch to LOAD and let switch return to neutral. Verify that pattern is displayed by UPPER PATTERN indicators.
d. Set Mode Select switch to LOWER.
e. Set INPUT switches (32 through 1) to lower six bits of bit pattern.
f. Actuate LOAD/SEQ HEADS switch to LOAD and let switch return to neutral. Verify that pattern is displayed by LOWER PATTERN indicators.
5. Select head 00 as described in Head Selection procedure.
6. Set Mode Select switch to SEO FWD.
7. Set INPUT switches for one track seek.
8. Set START/STOP switch to START. Pattern will be written on track 000 by head 00 , then track 001 is written by head 00 , etc. When last track is written switch START/STOP switch to STOP. Repeat test selecting next higher order head and write all tracks. Continue until all heads have written all tracks.

SECTION 3

THEORY OF OPERATION

INTRODUCTION

The theory of operation is organized into the following 2 parts.

- Subsection 1A - Describes the operation of the power supply and major mechanical assemblies.
- Subsection 1B - Describes the logical functions and the signals exchanged within the Controller.

Functional descriptions are frequently accompanied by simplified logic diagrams. These diagrams are useful both for instructional purposes and as an aid in troubleshooting. Figure 3-1 illustrates the logic symbology used by the illuatrations in this manual. The diagrams have been simplified to illustrate the principles of operation; therefore, other elements may be omitted. The
logic diagrams in the Maintenance manual should take precedence over the diagrams in this section whenever there is a conflict between the two types of diagrams.

The descriptions are limited to drive operations only. In addition, they explain typical operations and do not list variations or unusual conditions resulting from unique system hardware or software environments. Personnel using this manual should already be familiar with principles of operation of the computer system, the controller, programming considerations (including the correct sequencing of I/O commands and signals), and track format (i.e., data records and field organization).

The text will make liberal use of system and drive abbreviations. These abbreviations are listed in Table 3-1.

GENERAL INFORMATION
 OPERATIOMS. WEFER TO THE COMPLETE LOGK DIAGRAMS FOR WHEM THE FUMCTIOM TO EH ACCOMPLISHED REQUEES A LOEGM 1 , REGARDLESS of ACTUAL SIGMAL VOLTAGE LEVEL.

SYMBOLS

a mone fmaw one lit. onty one eit is swown roe clanity

SIMPLEIEO symeos.
Punction

mugetren
B.a

PF OUTPUTS ARE COMPLEMENTARY UNLESS SOM IMPUTS RECEIVE SIMALTANEOUS EMABLES. IF So gotw outputs ane men (":)
 DUAL AMO/OA $(A+B)=\{(C+0)=C$

- FLIP-PLOP

WRED PLIP-FLOP ANDED SET IMMUTS
ORED CLEAN IMPUT:

JK FLIP - FLOP
JK PF 15 EMARLED (TO EMAMEE STATE) AT
oYmamic toacle. If cincle is'swowm at
TOBELE, GIREUIT IS ENABLEO OT MEGAVE-GOME TOSELE $\left.i^{\prime \prime} \rightarrow O^{\prime \prime}\right)$. PRESETS ANO PRELLEARS 00 NOT MEOUIRE TO\&ELE TO GANBE STATE. ORED CLEAN Imput

mecteance or*in

TABLE 3-1. ABBREVIATIONS

Abbreviation	Full Name	Abbreviation	Full Name
API	Angular Position In	MSD	Mass Storage Device
ARC	Advance Read Clock	OPI	Operational In
CA	Control Adapter (Controller)	OPO	Operational Out
CIL	Cylinder Address In (Lower)	RCB	Recalibrate
CIU	Cylinder Address In (Upper)	RDH	Read Header
COL	Cylinder Address Out (Lower)	RDM	Reset Diagnostic Mode
COU	Cylinder Address Out (Upper)	RDX	Read
*CYL	Cylinder	*REV	Reverse
DC-	Command Code Lines (0-5,P)	RLS	Release
DCS	Device Command Strobe	RPS	Rotational Position Sensing (error)
DEN	Device Event Notification	RRC	Retard Read Clock
*DIFF	Difference		
DIN	Device Initialize	RTC	Return to Track Centerline
D1-	Bidirectional Data Lines	*RT2S	Return to zero Seek
	(D10-17,DIP)	SDE	Set Diagnostic Escape
DII	Device Level Interface	SDM	Set Diagnostic Mode
DMI	Data Modifier Line	SFL	Seek Forward (Lower)
DNR	Device Number Request	SFU	Seek Forward (Upper)
DSB	Detailed Status Byte (Bytes DSI-DS8)	SLS	Set Local State
DTR	Device Type Request	SPI	Shift Position In
*EOT	End of Travel	SPO	Shift Position Out
*FF	Flip-Flop	SRI	Serial Read In
FLT	Fault	SRL	Seek Reverse (Lower)
*FWD	Forward	SRU	Seek Reverse (Upper)
HIL	Head Address In (Lower)	SSR	Summary Status Request
HIU		Sss	Set Standby State
HIO	ad Adaress in (upper)	swo	Serial Write Out
HOL	Head Address Out (Lower)		
HOU	Head Address Out (Upper)	SZE	Seize Device
		*T	Track
IDX	Index Mark	*VEL	Velocity
MB	Megabyte	WPT	
*MP	Maintenance Panel		
*OP	Operator (Control) Panel		
*NOTE:	ese are abbreviations for dev I/O.	nctions.	ey are not applicable to

INTRODUCTION

This subsection provides physical and function descriptions of the power supply and the major mechanical assemblies. It is divided into the following major areas:

- Power Supply
- Logic Chassis Assembly
- Deck Assemblies
- Blower System
- Disk Pack

POWER SUPPLY

General

Each drive cabinet has a self-contained power supply accessible by swinging open the logic chassis. The power supply is contained in two locations. The ac portion of the supply, consisting of transformers, rectifiers, triacs, and line filters, is mounted in the lower rear of the drive cabinet. The dc portion of the supply, consisting of rectifiers and filters and the relays for power sequencing, is mounted in the lower portion of the logic chassis. Power supply cooling is accomplished by room air for the ac portion; for the dc portion, cooling air is blown over the chassis from a blower at the front of the drive cabinet.

The power supply has the following onputs:

1. $+20 Y$ for power sequencing control.
2. ± 20 vdc used by the logic.
3. ± 9.7 vac which, in turn, is regulated to ± 5 vdc at the logic chassis.
4. ± 46 vdc for use by the voice coil positioner.
5. -16 vac used to retract the carriage under emergency conditions.

Power distribution and sequencing control are illustrated in Figures 3-2 through 3-4.

AC/DC DISTRIBUTION

Input power is made available to the power supply via the closed contacts of the UNIT POWER circuit breaker. With this breaker closed, the blower motor operates. AC power is available to the remainder of the circuit breakers.

The remalnaer of the ac distribution occurs when the input voltage is applied to transformer AlT3. An ac voltage of about 24 volts is picked off the secondary and applied to the first seek interlock motor, but application of the voltage to the motor does not occur until the spindle motor is started. Another $T 3$ output is rectified to $+20 Y$ volts, which is used as a control voltage within the power system.

With $+20 Y$ volts available, AlQ1 is enabled. Solid state switches AlQl through AlQ4 effectively operate as relays.

The input applied to pin 1 of these devices is transferred to output pin 2 only if pin 3 has +20 volts on it while pin 4 is grounded. These enables are described in detail in the Power Up Sequence discussion.

With AlQl enabled, ac is applied to transformers AlTl and T2. In the case of T2, four distributative voltages developed across the secondary windings are applied to receiver/ filter circuits. The four circuits. $(+9.7$, $-9.7,+20$, and -20 vdc) are not adjustable and incorporate no switching device other than circuit breakers for circuit protection. Both polarities of the 9.7 v circuit are voltage level regulated and made adjustable to ± 5 vac at the logic chassis.

The voltages developed across AlTl are applied to rectifier and filter circuits. None of the voltages are adjustable. The actuator power ($\pm 46 \mathrm{vdc}$) incorporates no switching devices other than circuit breakers for protection. The emergency retract power. (-16 vac) uses retract relay k 5 to connect or disconnect the emergency retract capacitor to the voice coil. This function is explained further in the Emergency Retract discussion.

LOCAL/REMOTE CONTROL
This zpplies only to units with power sequence feature.

General

The power on and off sequence of drives having the power sequence feature can be controlled either locally or remotely depending on the setting of the drive LOCAL/REMOTE switch. When this switch is set to LOCAL, the sequences are inititated at each drive. When the switch is set to REMOTE, the sequences are initiated only at the first drive in the power sequence cable daisy chain. This daisy chain consists of I/O cables (in addition to the A and B cables) that sequentially route the pick and Hold power sequence signals to each drive in the subsystem.

The LOCAL/REMOTE switch is located on the power supply control panel and controls the mode of operation by determining how the drive remote start relay (Ki) is energized and deenergized. This relay works in conjunction with the drive START switch to control the power on and off sequences.

Figure 3-1.1 shows the LOCAL/REMOTE power sequencing control circuits. The operation of these circuits in both local and remote modes is explained in the following paragraphs.

Local Control

When the drive is in local mode, the remote start relay (Kl) energizes whenever +20 volts is available. In this mode, the power on sequence (see figure 3-1.2) begins when the START switch is pressed to light the indicator (providing all circuit breakers and interlocks are closed). The power off sequence is initiated by pressing the START switch to turn off the indicator.

Remote Control

In the remote mode, the start of the power on sequence is controlled by the Sequence Power (K5) and Remote Start relays as well as the START switch. Here, even of the START switch is pressed (to light the indicator), the sequence does not begin until both relays are energized. The Sequence power relay (K5) energizes when all circuit breakers are closed. With K5 energized, the Remote Start relay (K1) energizes to start the power on whenever the Pick signal goes low (see figure 3-1.1).

Therefore, if the START switch is on and the circuit breakers are closed, the Pick signal determines when the power on sequence begins. In a system where the Pick lines are connected in a daisy chain, the drives power up sequentially, starting with the first drive. A sequential power up occurs because each drive waits until its spindle is up to speed (K2 energizes) before passing the pick signal to the next drive in the chain.

Only the drives in the remote mode with their START switches on (lighted) are involved in the power up. Drives in local or with their START switches off (not lighted) are not involved in the power up. A drive that is not involved passes the Pick signal to the next drive without delay providing its circuit breakers are open thus deenergizing K 5.

The Pick signal originates either at the controller or a plug connecting to the I/O panel of the first drive in the daisy chain. (the plug keeps the Pick signal permanently low) with the pick signal low, the first drive begins ite power up sequence whenever its START switch is pressed) providing all
breakers and interlocks are closed). When the spindle of the first drive gets up to speed and the speed relay (K2) energizes, the Pick signlas go to the next drive. This sequence is repeated until all drives in the remore mode with their START switches on are powered up.

Once the Remote Start relay (K1) has been energized, the Hold signal keeps it energized even if the Pick signal goes inactive, (Hold like Pick, may orginiate wither at the controller or the first drive). This allows powering down drives in the chain without affecting other drives.

POWER ON SEQUENCE

Power application to the unit is sequenced by logic and by relays within the power supply. Refer to Figures 3-2 through 3-4.

When the circuit breakers are closed, ac and dc power is enabled. As the +5 V power comes up, Power Up Blanking acts as a master clear to the logic. Controller issuance of an SSR command will result in a Device in Standby and Positioner Busy status response. OPI is available if Online mode is selected by the switch on the maintenance panel.

With a pack installed and all interlocks closed, the unit may be powered up. (on units with power sequence feature $K 1$ must also be energized) pressing the START switch on the control panel has the following effects:

Pigure 3-1.1 Local/Remote Power Sequencing Control Circuits

Figure 3-3. Power Sequencing

1. The Stop FF (Figure 3-3) is cleared. It was set previously by dc power up,a Set Standby state comand, or by a previous pressing (to extinguish) to STMRT switch/indicator.
2. The logic provides an enable (Figure 3-3) to energize Motor relay K3.
3. The closed contacts of K 3 cause the following:
a. +20 volts enables solid state switches A102, A1Q3, and Q1Q4. These switches can now conduct ac power to the spindie motor.
b. Because the motor is stopped, the centrifugal switch inside the motor is closed. This provides a ground enable to AlQ4 to connect the start winding and capacitor to ac power. At 2000 rpm the switch transfers to open, disconnecting the start winding and enabling the run winding.
c. Apply GND to the first seek interlock motor. The first seek interlock switch transfers to the not complete (in progress) position.
d. Removes power from the hysteresis brake.
4. When the logic determines that the spindie speed exceeds 3000 rpm and the first seek interlock delay is complete, relay K2 energizes.
5. With relay K2 closed
a. $\mathbf{+ 2 0}$ vdc distributed to the read/write logic
b. Retract relay K 5 energized (Figure 3-4).
6. The transferring contacts of K 5 cause the following:
a. Disconnects the emergency retract capacitor from the voice coil while connecting it to the -16 v power supply to allow it to charge to -16 volts.
b. Connects the power amplifier A2Al to the positioner so that the logic may control the positioner.
7. The first seek interlock switch mechanically transfers to the complete position upon completion of the interlock motor revolution (15 seconds for first seek delay). This removes the remaining ground to the interlock motor to disable it. It also signals load heads to the logic.
8. Completion of the first seek delay allows the start of the First Seek (load heads) function. The logic commands the positioner to move the carriage forward. Refer to the First Seek discussion for further information.
9. When the heads move into the pack, the heads loaded switch closes. This causes the following:
a. Provides a control signal to the logic for further loading/unloading sequencing.
b. Maintains a motor relay K 3 enable so that the motor continues to operate if the control interlock opens. This prevents the motor from being shut down until the heads are unloaded.
c. Energizes relay K 6 . If any condition occurs where Retract relay $\mathrm{K5}$ opens, K6 continues to apply -16 v retract voltage to the voice coil until the heads unload.
d. Enables the $-16 v$ Sense circuit. If the -16v power becomes insufficient (loss of power), fault is set and Retract relay KS opens. Relay K 5 connects the retract voltage to the voice coil while removing logic control of the voice coil.

Emergency retract and data protection

Certain emergency conditions could occur which require immediate disabling of the write circuits and full retraction of the heads. These conditions are:

1. Loss of ac power, either site power Or UNIT POWER circuit breaker.
2. Opening of any of the control interlocks (Figure 3-4).
3. Overheating of spindle motor, If this occurs, the spindle motor thermostat (Figure 3-3) opens: this applies ac across the DRIVE MOTOR circuit breaker coil to open the contacts. Loss of speed (step 4) occurs.
4. Loss of spindle motor speed.
5. Loss of any of the following ac voltages: $+20 Y$, ± 9.7, or -16.

If any of these conditions occur, the read/ write logic is disabled and the heads are unloaded. Refer to Figure 3-5 for timing of these conditions.

LOSS OF AC POWER

The following events occur upon catastrophic loss of the ac power or opening of either 5v circuit breaker.

1. All dc power supplies drop their outputs to zero and the logic is disabled.
2. All relays open.
3. With K5 open, the normally-closed contacts of K5 (Figure 3-4) provide a path from the emergency retract capacitor A2C2 to the voice coil. This negative voltage pulls the carriage back to its retracted stop.
4. With K 2 open, +20 vdc is removed from the read/write logic.

When power is restored, drives without the power sequence feature and drives with this feature and in local mode are restarted by pressing the START switch. Drives with the power sequence feature and in remote mode, automatically restart when power is restored.

CONTROL INTERLOCK OPENING

If the control interlock (Figure 3-4) opens, the heads unload normally as explained in Power Off Sequence. Pressing START to extinguish the indicator opens the interlock to initiate the normal unload heads sequence. There are certain special emergency sensing conditions:

1. If either the +10 or -10 circuit breaker opens, AlQ1 (Figure 3-2) is disabled. The effect is the same as if all ac power were lost. All ac power input to the dc power supplies is opened except to $+20 Y$.
2. Opening a 20 v circuit breaker generates an undervoltage condition to light the CHECK indicator.
3. Opening of any other circuit breaker or interlock breaks the control interlock.

All of these conditions extinguish the START indicator and unload the heads. Any undervoltage condition ($\pm 20 \mathrm{v}$ or $\pm 5 \mathrm{v}$) sets the Pack Unsafe FF and lights the CHECK indicator.

LOSS OF SPEED

If the spindle motor speed drops below 2700 rpm, the following events occur:

1. The speed detection circuit in the logic detects the speed loss and opens speed relay K 2 . As a backup circuit, when the speed is less than about 2000 rpm , the motor centrifugal switch closes. This breaks the gate in the -16 v sense circuit (Figure 3-4) to open K5 and energizes $K 4$ to start a new first seek interlock time delay.
2. With K2 open:
a. K5 opens to apply -16v retract voltage to the voice coil.
b. +20 vdc power is removed from the read/write logic.
3. Relay K 3 is de-energized when speed drops below 2700 rpm.
4. Relay K6 remains energized to continue to apply $-16 v$ retract voltage until the heads retract sufficiently to open the heads loaded switch.

LOSS OF DC POWER

If $+20 Y$ power is lost, all relays open and the ac input to the dc power supplies is opened. The effect is the same as if all. ac power were lost.

If +9.7 v is insufficient, the following occur:

1. Relays K 2 and K 3 are opened by the $+5 v$ Sense circuit.
2. With K2 open:
a. K5 opens to apply -16v retract power.
b. $+20 v$ power removed from read/write chassis. With the heads still loaded, the write circuit generates a Current Fault.
3. With K3 open:
a. The spindle motor is disabled.
b. The hysteresis brake is energized.
4. In addition the undervoltage condition will light the CHECK indicator and raise DSB2 bit 2°. The condition must be cleared to load heads again.

If $-16 v$ power is lost, the following occur:

1. The $-16 v$ Sense circuit opens K 5 . It also generates an undervoltage fault condition to set the PACK UNSAFE FF and open One Start Interlock (Figure 3-3).
2. With K5 open, retract power is applied to the voice coil. since the undervoltage fault has disabled the read/write logic, the circuit is disabled prior to carriage retraction.
3. Relay K 5 remains energized, so the drive motor continues to run. Heads cannot load until the CHECK indicator is cleared.

POWER OFF SEQUENCE

The normal power off sequence begins when the controller issues an SSS command, the START switch is pressed, or in units with the power sequence feature of the Pick and Hold signals go inactive. Sequencing is then as follows (see Figures 3-3 and 3-5):

1. The Stop FF sets. This raises an Unload Heads command within the logic. This sets the RIZ Iatch which, in turn, canses the carriage to retract at 7 ips.
2. When the heads unload:
a. Relay R 3 de-energizes.
b. The speed detection circuit is disabled to de-energize relay K2.

Figure 3-5. Power Off Timing

LOGIC CHASSIS ASSEMBLY

The logic chassis assembly consists of a wire wrap board, logic cards, Maintenance panel, air plenum and dc power supply. The entire assembly forms the rear door to the cabinet. Flexible tubing from the blower assembly connects to the air plenum and provides air to cool the logic cards and the dc power supply.

The logic cards are installed on the protruding pins of one side of the wire wrap board. Wiring between cards and to and from the logic chassis occurs at the protruding pins on the opposite side of the wire wrap board. Access to this wiring is gained by releasing two $1 / 4$-turn fasteners at the top of the door and removing the outer surface of the rear door.

The logic card section contains the bulk of the logic cards used in the cabinet (five cards are located on the deck assembly). The vertically mounted cards are installed in four rows (A top row and D bottom row) at numerically identified locations.

Some cards span two rows and are referred to as full-size cards. Others span a single row and are called half-size cards. Refer to the Diagrams section of the Maintenance manual for a description of the logical functions performed by the cards. The Logic Card manual provides a physical description of the cards. The Wire Lists section of the Maintenance manual contains a tabulation of the wire wrap connections made in the chassis.

The test point panel at the top of the logic chassis provides a convenient point to measure the dc voltages. At the bottom of the logic chassis assembly, and on the front panel of the dc voltage section of the power supply, are located the LOCAL/REMOTE switch, the indicator for $+20 y$ power and the circuit breakers for $\pm 46 \mathrm{v}, \pm 20 \mathrm{v}$, and $\pm 10 \mathrm{v}$. Specific information on each control or indicator on the test point and dc power panel is provided in the Operation section of this manual.

ME Maintenance panel contains a set of test point jacks, switches and indicators that relate to the operational status of the drive. These components function primarily in the maintenance mode as a troubleshooting aid. Specific information on each control or indicator is provided in Section 2 of this manual.

DECK ASSEMBLY

GENERAL

The deck assembly mechanism (Figure 3-6) drives the disk pack and loads and poditions the read/write and servo heads. The deck assembly consists of a arive motor, hysteresis brake, spindle, actuator, two transducers, and a first seek interlock assembly.

DRIVE MOTOR

The drive motor drives the spindle assembly. The motor is a $3 / 4-\mathrm{hp}$ unit of the induction type. The motor is secured to a mounting plate. The motor mounting plate is secured to the underside of the deck plate in such a manner as to allow control of belt tension. Power is transferred to the spindle via a flat, smooth-surfaced belt that threads over the pulleys of the spindle and drive motor. Two idler springs maintain a constant tension on the motor mounting plate to keep the belt tight.

A second pulley on the drive motor shaft links the motor (via a v-belt) to the hysteresis brake.

The temperature of the drive motor is monitored by an internal thermostat. If the motor overheats, the thermostat opens. This applies ac across the DRIVE MOTOR circuit breaker coil to open the contacts. The result is a speed loss (refer to Power Supplies). The DRIVE MOTOR circuit breaker must be reset to ON to restore operation.

HYSTERESIS BRAKE

The hysteresis brake decelerates the drive motor during a Power-Off sequence (refer to Power-Off sequence paragraph). The brake is energized whenever Motor relay K3 is deenergized. The brake mounts on a plate which, in turn, is mounted on the motor mounting plate. The brake and motor shafts are linked via a v-belt and a pulley on each shaft.

The brake consists of two concentric permeable bodies. These cylinders are assembled, one inside the other, with a uniform gap separating the outer diameter of one from the inner diameter of the other. These adjacent surfaces are machined to contain a series of pole faces. A permanent magnet, in the shape of a cup, fits in the gap to separate the cylinders. This cup is connected to the brake shaft. As long as spindle motor power is applied, brake power is not available and the cup is driven at the speed of the motor. When spindle motor power is removed, braking power is applied.

A flux field is created between the inner and outer cylinder pole faces as braking voltage (+20 volts) is applied to the inner cylinder. The flux field sets up what is in effect magnetic friction between the inner cylinder and the cup, causing the cup (and brake shaft) to decelerate. Brake deceleration in turn causes spindle motor deceleration.

Figure 3-6. Deck Assembly

SPINDLE ASSEMBLY

The spindle assembly is the physical interface between a drive and a disk pack. The surface of the pack mounting plate (Figure 3-7) mates directly with the center of the disk pack.

A vertically free-floating lockshaft runs through the center of the spindle assembly. The upper end of the lockshaft contains internal threads that engage the external threads of a stud projecting from the disk pack. When the disk pack canister cover handle is rotated clockwise, the springloaded lockshaft is pulled upward and the disk pack is pulled down. As a result, the mating surfaces of the disk pack and spindle are engaged by a force of approximately 325 pounds. When the disk pack is fully engaged, a release mechanism in the canister handle frees the canister from the disk pack.

The spindle is locked by the pack canister when installing or removing a disk pack. This makes it easier to install or remove a disk pack by preventing spindle rotation.

The pack on switch and ground spring (Figure 3-7) are mounted at the lower end of the spindle assembly. The ground spring is mounted so that it is always in contact with the lockshaft to bleed off any accumulation of static electricity on the spindle to the deck through a ground strap. The pack on switch contacts transfer in response to the

vertical movement of the lockshaft. When the shaft is up (disk pack mounted), the contacts are closed. When a pack is not installed, the shaft moves downward to deflect the switch actuator and transfer the contacts. The switch is part of the interlock that inhibits spindle motor power to an improperly configured unit.

ACTUATOR

The actuator consists of the carriage, actuator housing, and magnet assembly. The actuator (Figure 3-8) is the device that supports and moves the read/write and track servo heads. The forward and reverse moves of the carriage on the carriage track are controlled by a servo signal. The basic signal is developed in the logic section and processed by a power amplifying stage in the power supply. The power amplifier output is applied to the voice coil positioner (part of carriage). The signal causes a magnetic field about the voice coil positioner. This magnetic field reacts with the permanent magnetic field existing around the magnet assembly. The reaction either draws the voice coil into the permanent magnet field or forces it away. Signal polarity determines the direction of motion, while signal amplitude controls the acceleration of the motion.

The voice coil positioner is a bobbin-wound coil that is free to slide in and out of the forward face of the magnet assembly. Fastened to the positioner is a head/arm receiver which holds the 19 read/write heads and the single track servo head. The head/arm receiver mounts on the carriage and bearing assembly that moves along the carriage track on eight bearing type rollers. Movement of the positioner in or out of the magnet causes the same motion to be imparted to the entire carriage assembly. This linear motion is the basis for positioning the read/write and track servo heads to a particular track of data on the disk pack. (Refer to Head Loading paragraph for detailed information on read/write head loading and unloading.)

The positioning signal is derived in the logic chassis and power supply. The signal is applied to the voice coil positioner via two flexible, insulated, metal straps, the ends of which are secured to the cam mount and the carriage and bearing assembly.

During any Seek operation, the logic must be informed of the current location and velocity of the carriage. This information is provided by the velocity transducer in the magnet assembly and the lone track servo head installed on the head/arm receiver. The transducer is a two-piece device, one piece stationary and the other movable. Refer to the Transducers paragraph for a complete description.

Figure 3-8. Actuator Assembly Elements

The actuator contains a stop mechanism to limit extremes in forward and reverse movement. The stop assembly is a rubber cylinder sandwiched between two metal plates. If the carriage moves too far toward the disk pack, the stop rod heads contact the plate on the magnet-side of the rubber cylinder. If the carriage is retracted far enough away from the disk pack, the rear of the head, arm receiver contacts the stop assembly stud protruding through the stop plate.

Head Loading

The read/write heads must be loaded to the disk surfaces before exchanging data with the controller. The heads must be removed (unloaded) from this position and driven clear of the disk pack either when power is removed from the unit or when the disk pack velocity falls below about 2700 rpm. The
actuator components involved in these operations are identified in Figure 3-9.

Head loading amounts to allowing spring pressure of the floating arm (part of head/ arm assembly) to move the aerodynamically shaped head face toward the related disk surface. When the cushion of air that exists on the surface of the spinning disk is encountered, it resists any further approach by the head. Spring pressure is designed to just equal the opposing cushion pressure (function of disk pack rpm) at the required height. As a result, the head flies. However, if the spring pressure exceeds the cushion pressure (as would happen if the disk pack lost enough speed), the head stops flying and contacts the disk surface. This could cause damage to the head as well as the disk surface.

To prevent damage to the heads and/or the disk pack during automatic operation, loading occurs only after the disk pack is up to speed and the heads are over the disk surfaces. For the same reason, the heads unload automatically and are retracted if the disk pack rpm drops out of tolerance. During manual operations, heads should never be loaded on a disk pack that is not rotating. Head loading is part of the Power On/First Seek function. As power to the deck is sequenced up, the drive motor starts. This initiates disk pack rotation and a first seek interlock delay. Actual delay is approximately 15 seconds.

When the disk pack rpm reaches 3000 , the power supply speed relay energizes to establish the ability to continue the operation. Upon completion of the first seek interlock delay, the logic specifies a forward seek and the carriage moves forward toward track 0 . Head loading occurs during this forward motion. The carriage continues toward the spindle until the servo detects track 0.

The floating arm (Figure 3-9) is designed to maintain a constant loading force. While the heads are retracted, head cams on the actuator housing bear against the floating arm cam surfaces. The cams support the loading force and hold the heads in unloaded position. As the carriage moves forward, the
floating arm cam surface rides off the head cam just after the read/write heads move out over the disk surface. The loading force moves the head face toward the air layer on the surface of the spinning disk until the opposing forces balance.

The heads loaded switch status reflects the state of the read/write heads (loaded or unloaded). This status is used in the logic chassis and power supply. The switch mounts on the carriage track and is transferred by carriage motion. Whenever the carriage is fully retracted, the switch state reflects the unloaded status of the heads. As the carriage moves forward during a Power On/ First Seek, the switch transfers at a point within about 0.1 to 0.2 inch forward of the retracted stop. This switch status remains unchanged until the carriage is retracted to the same position and, as such, does not precisely indicate the loaded/unloaded status of the heads. Precise status is determined by the logic when the servo track head senses dibits.

Head unloading occurs whenever power to the unit is removed or disk pack rpm drops below tolerance. Either event drops a speed enable signal to the logic. This causes the voice coil to drive the carriage in reverse from its current location toward the retracted
stop. (Either normal or emergency methods can be used. Refer to Power Off Sequence paragraph for additional information.) As the carriage retracts, the cam surfaces encounter the head arms and each head rides vertically away from the related disk surface. The carriage continues back to the retracted position and stops.

Head/Arm Assemblies

Twenty head/arm assemblies are mounted on the carriage. A read/write head/arm assembly consists of a read/write head assembly mounted at the end of a supporting arm structure. A track servo head/arm assembly consists of a read coil head assembly mounted at the end of a supporting arm structure.

The head assembly (Figure 3-10), which includes a cable and plug, is mounted on a gimbal ring which, in turn, is mounted on a floating arm. This method of mounting allows the head assembly to pivot (independent of the arm) tangentially and radially relative to a data track on the disk surface. Such
motion is required to compensate for possible irregularities in the disk surface.

The arm structure consists of a floating arm secured to a heavier fixed arm. The end of the fixed arm opposite the head mounts in the carriage receiver. The floating arm is the mounting point for the head and is necessarily flexible so that it can flex during load and unload motions, onto and off of the cam surfaces.

Freedom and mobility of the head are necessary elements to being able to function with interchangeable disk packs. During head loading, each floating arm is driven off the related cam and unflexes to force a head toward the air cushion on the spinning disk surface. The force applied by the floating arm causes the heads to fly or float on the air cushion. Vertical motion by a disk surface (due to warpage or imperfection) is countered by a move in the opposite direction by the gimballed head and/or floating arm. As a result, flight height remains nearly constant.

TRANSDUCERS

The deck assembly contains two transducers: speed sensing transducer and velocity transducer. These transducers provide signals that are used by the logic chassis and the controller to generally control the progression of most machine operations.

Speed Sensing Transducer

The speed sensor (Figure 3-6 and 3-11) generates a voltage output whenever a ferrous material (steel pin set in spindle pulley) enters the magnetic field surrounding the pole piece at the pickup end of the transducer. The logic then shapes this signal into a 55 microsecond pulse. As long as the speed exceeds 3000 rpm , one of these pulses will be sensed at least once each 20 ms . A sensing circuit within the logic monitors the pulse repetition rate and provides an enable to Speed relay K 2 .

If speed is insufficient, the pulse repetition rate is reduced accordingly. This has either of two effects:

1. If the heads are not loaded, K2 cannot energize and the logic will not initiate the load sequence.
2. If the heads are already loaded, K2 opens, thereby opening the coil of Retract relay k5. The voice coil is disconnected from the logic power amplifier and connected to the -16 v emergency retract capacitor. The heads immediately are unloaded to the retracted stop.

Figure 3-11. Speed Detection

Velocity Transducer

The velocity transducer (Figure 3-12) is a two-piece device consisting of a stationary tubular coil/housing and a movable magnetic core.

The magnetic core is connected via the extension rod to the rear surface of the head/ arm receiver. All motion of the carriage is therefore duplicated by the magnetic core. As the core moves, an emf is induced in the coil. The amplitude of this emf is directly related to the velocity of the core (and carriage). The polarity of the emf is an indication of the direction of movement by the core (and carriage). The transducer output drives an operational amplifier located in the logic chassis. This signal is used by the servo logic to control acceleration/deceleration of the carriage during Seek operations.

FIRST SEEK INTERLOCK ASSEMBLY

The First Seek Interlock assembly provides a fixed time delay from the completion of the Start interlocks until heads can be loaded during the Power On/First Seek sequence.

The assembly consists of a motor, reset switch, cam linkage, and a mounting base. The base mounts on the deck assembly. The motor is energized during the Power on sequence and starts a 15-second (approximate) first seek interlock delay cycle. The cam revolves until the reset switch is encountered. The switch then transfers and removes power to the motor and signals completion of the delay cycle to the logic.

If power is lost or dropped during the cycle, the cam completes the initial cycle upon reapplication of power. At this time, a new cycle is initiated if Speed relay $K 2$ has not been energized. Refer to Power on paragraph for a complete description of conditions that apply power to the first seek interlock motor.

BLOWER SYSTEM

The blower system (Figure 3-13) provides positive pressure in the pack area. The presence of this elevated pressure results in an outward dispersion of air preventing ingestion of contaminated air. This air flow greatly reduces possible contamination and resulting damage to the disk surfaces and the read/write heads.

Power to the blower drive motor is available whenever the UNIT POWER circuit breaker is on.

Figure 3-12. Velocity Detection

Figure 3-13. Blower System

DISK PACK

The disk pack is the recording medium for the drive. The disk pack consists of 12 14-inch dis's, center-mounted on a hub. The recording surface of each disk is coated with a layer of magnetic iron oxide and related binders and adhesives. The top and bottom disks are protective non-recording disks.

```
There are 19 recording surfaces and one
track servo surface. The servo disk con-
tains pre-recorded information that is used
by the servo logic to position the heads to
the desired track.
The recording tracks are grouped in a 2 inch
band near the outer edge of the disk. The
```

disk has 823 tracks. The diameter of the outer track (823) is approximately 13 inches, while track 0 is about 3 inches. The tracks are spaced about 0.0026 inches apart.

The disk pack has a two-piece container. The bottom cover can be removed simply by grasping and rotating the center hub. The top cover is designed so that it can be removed only by installing the disk pack on the spindle. The disk pack can be removed from the spindle only by using the top cover (see Operation section). This design protects the disk pack from physical damage and greatly reduces the possibility of contamination of the disk pack recording surfaces.

INTRODUCTION

This subsection describes the logic functions performed by the drive and divides them into the following areas.

- Device Level Interface - Describes the signal lines connecting the drive to controller.
- Comands - Defines the commands issued to the drive and the drive responses to them.
- Command Execution - Describes how the drive logic processes commands received from the controller.
- Scek Efer:tions - Explains how the drive logic read/write heads on the disk pack.
- Track Servo Circuit - Describes how this circuit derives, from the disk pack, timing pulses used by the Servo and Machine Clock circuits.
- Machine Clock Circuit - Explains how the Machine Clock generates the timing signals used by the index, sector and read/write circuits.
- Index Detection - Describes how the drive detects the index pattern which indicates the logical beginning of each track.
- Sector ietection - Explains how the drive derives the Sectur pulses which are used to determine the angular position, with respect to Index of the read/ write heads.
- Read/Write Operation - Explains how the drive processes the data that it reads from and writes on the disk pack.
- Sense Operations - Describes the drive logic used to monitor the status of the drive.
- Diagnostic Operations - Explains how the controller checks certain areas of drive operations by use of diagnostic commands.
Figure 3-14 is a block diagram illustrating basic signals within the drive. The functions of these signals are described in the applicable description of logic functions.
llost operations require the transfer of data between the controller and drive. Descriptions of these signal interchanges will emficasize drive functions. Controller functions are described only where necessary to clarify drive operations. Unless otherwise specified. controller signal timing is for illustrative purposes onily. Refer to the applicable controller manual for details of controller operations and actual $1 / O$ timing.

DEVICE LEVEL INTERFACE

Signals are exchanged between the controller and drive by means of a set of signal conductors known as the Device Level Interface (DLI). The functions of these signals are de.cribed in Table 3-2 and shown on Figure 3-15.

The basic unit of information is the byte. A byte consists of eight information bits (iogical 1 or 0) plus a parity bit. Data is transferred between the drive and controller one byte at a time. This information is transmitted in parallel: eight data lines plus one parity line to make odd parity.

COMMANDS

Commands may be classified as follows:

- Control Comands - Cause the drive to execute the instruction without any data transfer via the bidirectional data lines.
- Input Information Transfer Commands Cause the drive to transfer data to the controller via the bidirectional data lines.
- Output Information Transfer Commands These transfer data to the drive via the bidirectional data lines.
- Test and Diagnostic Commands - Controls drive operations for test purposes.

Table 3-3 describes the commands and classifies them according to the above categories. Figure 3-16 is a quick reference table showing all command abbreviations and hex deodes.

COMMAND EXECUTION

Before the drive will execute any commands, certain prior conditions must be met: the Controller must have Operational out up and the drive must be online. Otherwise, comands are not recognized.

Figure 3-14. Drive Block Diagram

Figure 3-17 illustrates the logic used to decode commands from Channel I. With the exception of Seize and Sumary Status Request the controller must first have successfully seized the drive. Regular commands without a prior Seize will cause a Select Fault; this raises FLT and sets bit 23 of the Summary

Status Register. A subsequent Sumary Status Request or Fault Reset (Device or Initialize power up) is required to reset the FLT. (For single channel drives, Seize will be accepted, but need not precede any other valid command. The CHI Reserved FF is held in the continuous set state.)

Figure 3-15. Device Level Interface Lines

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
00	(1) 00	(1) 0	$\begin{array}{\|c\|} \hline 02 \\ \mathrm{SFU} \end{array}$	$\begin{array}{r} 03 \\ \mathrm{SFL} \end{array}$	$\begin{array}{r} 04 \\ \mathrm{SRU} \end{array}$	$\begin{array}{r} 05 \\ \text { SRL } \end{array}$	$\begin{array}{r} 06 \\ \operatorname{cou} \end{array}$	$\begin{array}{r} 07 \\ \mathrm{COL} \end{array}$	$\begin{array}{r} 08 \\ \text { HOU } \end{array}$	$\begin{array}{r} 09 \\ \text { HOL } \end{array}$	(1) OA	(1) OB	(1) OC	(1) OD	OE	$\begin{array}{r} \text { OF } \\ \text { WRT } \end{array}$
01	$\begin{array}{r} 10 \\ \text { SZE } \end{array}$	$\begin{array}{r} 11 \\ \mathrm{RLS} \end{array}$	$\begin{array}{r} 12 \\ \text { RCB } \end{array}$	$\begin{array}{r} 13 \\ \text { sss } \end{array}$	14 SLS	$\begin{array}{r} 15 \\ \text { RDM } \end{array}$	16	$\begin{gathered} 17 \\ \Delta \end{gathered}$	$\begin{array}{r} 18 \\ \text { SPO } \end{array}$	$\begin{array}{r} 19 \\ \text { SPI } \end{array}$	$\begin{array}{r} 1 \mathrm{~A} \\ \text { ARC } \end{array}$	$\begin{array}{r} 18 \\ \text { RRC } \end{array}$	$\begin{aligned} & 1 \mathrm{C} \\ & \Delta \end{aligned}$	10	$\begin{array}{r} 1 \mathrm{E} \\ \mathrm{SDM} \end{array}$	$\begin{array}{r} 1 F \\ S D E \end{array}$
10	$\begin{array}{r} 20 \\ \text { HIU } \end{array}$	$\begin{array}{r} 21 \\ \text { HIL } \end{array}$	$\begin{array}{r} 22 \\ \mathrm{CIU} \end{array}$	$\begin{array}{r} 23 \\ \text { CIL } \end{array}$	$\begin{array}{r} 24 \\ \mathrm{API} \end{array}$	$\begin{array}{r} 25 \\ \mathrm{RDX} \end{array}$		27 DTR	$\begin{array}{\|c\|} \hline 28 \\ \text { SSR } \end{array}$	$\begin{array}{r} 29 \\ \text { DS1 } \end{array}$	$\begin{array}{r} 2 \mathrm{~A} \\ \mathrm{DS} 2 \end{array}$	$\begin{array}{r} 2 \mathrm{~B} \\ \mathrm{DS} 3 \end{array}$	2C	$\begin{array}{r} \text { 2D } \\ \text { DS5 } \end{array}$	$\begin{array}{r} 2 \mathrm{E} \\ \mathrm{DS} 6 \end{array}$	$\begin{array}{r} 2 F \\ \text { DS7 } \end{array}$
11	$\begin{array}{\|l\|} \hline(2) 30 \\ \text { RD } \\ \text { DIFF } \\ \text { UPPER } \end{array}$	$\begin{array}{\|l\|} \hline(2) \\ \mathrm{RD} \\ \mathrm{DIFF} \\ \text { LOWER } \\ \hline \end{array}$	$\begin{aligned} & \text { (2) } 32 \\ & \mathrm{NO}-\mathrm{OP} \end{aligned}$	$\begin{array}{\|l\|} \hline(2) 33 \\ \text { INCR } \\ \text { SECTOR } \\ \text { CNIR } \\ \hline \end{array}$	(2)34 no-OP	(2) 35 no-OP	$\begin{aligned} & \text { (2) } 36 \\ & \mathrm{NO}-\mathrm{OP} \end{aligned}$	(2) 37 NO-OP	$\begin{aligned} & (2) 38 \\ & \text { WRT } \\ & \text { TEST } \\ & \text { CHECK } \end{aligned}$	(1) 39	$\begin{aligned} & (2) 3 \mathrm{~A} \\ & \mathrm{WRT} \\ & \text { TEST } \end{aligned}$	$\begin{array}{\|l\|} \hline(2) 3 B \\ \text { INC } \\ \text { DIFF } \\ \text { CNIR } \\ \hline \end{array}$	(1)3C	3D RaC	3 E RDH	[$\begin{array}{r}3 F \\ \text { DS8 }\end{array}$

Output Info Xfer
SFU - Seek Forward-Upper
SFL - Seek Forward-Lower
SRU - Seek Reverse-Upper
SRL - Seek Reverse-Lower
COU - Cy1. Out-Upper
COL - Cyl. Out-Lower
HOU - Hd Addr Out-Upper
HOL - Hd Addr Out-Lower
WRT - Write

OTES :
(1) Invalid commands.
(2) Valid only during set diagnostic
escape mode

Control

SZE - Seize Device
RLS - Release Device
RCB - Recalibrate
SSS - Set Standby State
SLS - Set Local State
RDM - Reset Diag. Mode
RTC - Return to Track Centerline
SPO - Shift Posit. Out
SPI - Shift Posit. In
ARC - Adv. Read Clock
RRC - Ret. Read Clock
SDM - Set Diagnostic Mode
SDE - Set Diagnostic Escape

Input Info Xfer
HIU - Hd Addr-Upper
HIL - Hd Addr-Lower
CIU - Cyl. Addr In-Upper
CIL - CyI. Addr In-Lower
API - Ang. Pos. In
RDX - Read
DNR - Device Number Request
DTR - Device Type Request
SSR - Sum. Stat. Req.
DSI - Det. Stat. Req.-Byte 1
DS2 - Det. Stat. Req.-Byte 2
DS3 - Det. Stat. Req.-Byte 3
DS4 - Det. Stat. Req.-Byte 4
DS5 - Det. Stat. Req.-Byte 5
DS6 - Det. Stat. Req.-Byte 6
DS7 - Det. Stat. Req.-Byte 7
DS8 - Det. Stat. Req.-Byte 8
RDH - Read Header

Figure 3-16. Command Decodes \& Abbreviations

Figure 3-17. Command Decoding Logic
table 3-2. SIGNAL LINES

Line	Function
Lines From Controller To Drive	
Command Code DCO-5 Device Command Strobe (DCS) Operational Out (OPO) Device Initialize (DIN) Data Modifier (CM1) Serial Write Out (SWO)	Six lines plus parity which carry encoded commands from controller to drive. Indicates that the Command Decode lines are valid and the command may be decoded. When true it indicates the controller is operational. Unless this line is true the drive will ignore all signals from the controller. Acts as a general reset to the drive: All drive status and control functions are reset and the positioner returns to cylinder 000. Before the drive will react to this signal the following conditions must be met. - Controller issuing command must have Operational Out true. - Controller issuing command must have seized the drive. This signal releases the seized status. - Drive must be On Line Used during a write operation it causes the drive to ignore the data on the bidirectional data lines thereby creating an address mark. Signal from Controller to drive that is used in conjunction with Serial Write In (SRI) to syncronize transfer of data on the bidirectional data lines.
	Lines From Drive To Controller
Device Event Notification (DEN) Fault Serial Read In (SRI)	This line indicates that an event has occurred which is reflected in the Sumary Status byte. The controller obtains this byte via Summary Status Request (Tag 28). Indicates the drive has detected an error. The controller can determine the specific error by examining the Detailed Status bytes via the Detailed Status Request Commands (Tags 29 through 3D). All fault conditions, except pack unsafe, are cleared when the Detailed Status byte identifying the fault is requested or by a Device Initialize signal. Pack unsafe must be cleared by pushing the CHECK switch/indicator on the maintenance panel. The pack unsafe signal is caused by any of the following: - Low DC Voltage - No Servo Tracks Detected - Write Current Fault - Read or Write and Not On Cylinder Signal from drive to controller that is used in conjunction with Serial Write Out to syncronize transfer of data on the bidirectional data lines.

TABLE 3-2. SIGNAI LINES (CONT'D)

Line	Function
Lines From Drive To Controller	
Index Mark (IDX) Operational In (OPI)	A 2ms pulse indicating the drive has sensed the beginning of a logical track and occurs once each revolution of the disk pack. The leading edge defines the beginning of the track. When true it indicates the drive is powered up, on line and capable of commuicating with the controlier.
Bidirectional Data Lines	
	Nine lines carrying data, address, control and status information between the controller and drive. The specific information transferred depends on the command being executed.
	Power Sequence Lines (used only on units with Power sequence feature)
Pick In Hold Pick Out	Used for power sequencing. A low on this line powers up drive if LOCAL/REMOTE switch is in REMOTE and START indicator if lighted. The drive receives the signal either from the controller or the previous drive in the string. Depending on the system, this signal may originate either at the controller or a jumper plug attached to the $1 / 0$ panel of the first drive in the string. With the jumper plug, the signal is held low at the input to the first drive. See Local/Remote Control discussion for more information. Used for power sequencing. This line must be low for drive to remain in a power up condition after completing a remote power up. Like Rick In, this signal may originate either at the controller or the first drive in the string. Goes to next drive in string as Pick In. If this drive is in local, the signal is low thereby allowing the next drive to power up. If LOCAL/REMOTE switch is in REMOTE, the signalqoes low when the drive completes its power on sequence.

tABLE 3-3. COMMANDS

Command	Definition/Function
Seek Forward Upper (SFU) Tag 02	1. An output information tag. 2. Loads Upper 2 bits of seek difference information (512,256) into temporary storage for gating into the Difference Counter during a subsequent Seek Forward Lower (Tag 03). The data is received via the bidirectional data lines. 3. This tag must precede the Seek Forward Lower Command. 4. Bidirectional data lines are decoded as follows:
Seek Forward Lower (SFL) Tag 03	1. An output information tag. 2. Loads lower 8 bits of seek difference information (tracks to go) from bidirectional data lines into the Difference counter. 3. This tag must be preceded by a Seek Forward Upper (Tag 03) or the fault line is raised along with Bit 2^{4} of the Detailed Status Byte. 4. This command causes the drive to seek forward the number of cylinders indicated by the difference count. 5. The Bidirectional data lines decode as follows:

TABLE 3-3. COMMANDS (CONT'D)

Command	Definition/Function
Seek Reverse Upper (SRU) Tag 04	Same as Seek Forward Upper except that seek is in reverse direction.
Seek Reverse Lower (SRL) Tag 05	Same as Seek Forward Lower except that seek is in reverse direction.
Cylinder Out Upper (COU) Tag 06	1. An output information tag. 2. Cause the drive to set the high order bits (512 and 256) in the Cylinder Address register (CAR) according to the information on the bidirectional data lines. 3. This command must precede the Cylinder Out Lower (Tag 07) comand. 4. The bidirectional data lines send the following information to the drive.
Cylinder Out Lower (COL) Tag 07	1. An output information tag. 2. Causes the drive to load the 8 low order bits of the new cylinder address into the Cylinder Address Register (CAR). 3. The bidirectional data lines are decoded as follows:
Head Address Out Upper (HOU) Tag 08	Has no effect in the drive.
Head Address Out Lower (HOL) Tag 09	1. An output information tag. 2. Transfers head address information to the drive via the bidirectional data lines. The drive stores the data in the Head Address Register (HAR). The drive will now read and write data using the head identified by this head address.

TABLE 3-3. COMMANDS (CONT'D)

Command	Definition/Function
(HOL) (Cont'd)	3. The bidirectional data lines decode as follows:
Tags OA-OE	Invalid commands
$\begin{aligned} & \text { Write (WRT) } \\ & \text { Tag OF } \end{aligned}$	1. An output information command. 2. This command causes the drive to Write data on the disk pack. See the discussion on Write operations for more information.
$\begin{aligned} & \text { Recalibrate } \\ & \text { (RCB) Tag } 12 \end{aligned}$	1. A control command. 2. Causes the Head register and Cylinder Address register to be set to zero and the heads to return to track 000 (RTZ).
Set Standby State (SSS) Tag 13	1. A control command. 2. Causes the drive to turn off the pack motor, unload the heads and extinguish the START indicator. 3. To return to the ready state the operator must push the START button.
Set Local State (SLS) Tag 14	1. A control command. 2. Removes drive from on line status. It breaks I/O communication between drive and controller and lights the LOCAL indicator. 3. Drive is returned to On Line status by moving the ON LINE/OFF LINE switch from ON LINE to OFF LINE and then back to ON LINE.
Seize Device (SZE) Tag 10	1. A control command. 2. When 2 controllers are connected to a drive (dual channel) this signal is used to seize (select) the drive. For dual channel operation the drive must be seized before it will respond to other instructions (other than Sumary Status Byte Request). However the seize is not required for single channel operation. 3. The drive responds to the command only if it has not been previously seized by the other controller.
Release Device (RLS) Tag 11	1. A control command. 2. Issued by the controller having the drive seized, it releases the drive from the seized condition thus making it available to both controllers. 3. The drive sends a Device Event Notification (DEN) to the other controller telling it the drive is now available.

Command	Definition/Function
```Reset Diagnostic Mode (RDM) Tag 15```	1. A control comand.   2. Resets diagnostic operations (Tags $1 E$ or $1 F$ ) and places drive in normal mode.   3. The drive performs an RTZS (refer to Recalibrate Tag 12).
Tag 16. 17	These tags are recognized and acknowledged by the drive but initiate no operations.
Shift Positioner Out (SPO) Tag 18	1. A control command.   2. This is used for data retry and error recovery.   3. It causes the positioner to move the read/write heads 400 in away from the spindle unless Shift Positioner In (Tag 19) was active in which case it would cause the heads to return to the track centerline. In either case the drive generates a 10 ms Positioner Busy signal.   4. The Offset condition is reset and the positioner returned to the track centerline by any of the following:   - Device Initialize Signal (DIN)   - Return to Centerline (Tag 30)   - Shift Positioner In (Tag 19)   - Any Seek Command (however the seek is not performed)   - Loss of On Cylinder
Shift Positioner In (SPI) Tag 19	1. A control command.   2. Same as Shift positioner out (Tag 20) except that the heaas are offset 400 pin towards the spindle and Shift Position Out replaces Shift Position In as a reset condition.
Advance Read Clock (ARC) Tag 1A	1. A control command.   2. Used during data recovery it moves the Read Data strobe to the early position of the data window (about 8 ns earlier than nomal).   3. The function is reset by a Recalibrate (Tag 12) or Retard Read Clock (Tag 1B).
Retard Read Clock RRC Tag 1B	1. A control command.   2. The same as Advance Read Clock (Tag 1A) except that it retards the Read Data strobe by about 8 ns .   3. Reset by a Recalibrate (Tag 12) or an Advance Read Clock (Tag 1A).
```Set Diagnostic Mode (SDM) Tag 1E```	1. A control command.   2. Places drive in diagnostic mode and sets bit 7 (Device in Diagnostic Mode) of Sumary Status Byte.   3. This command initiates no function in drive unless Set Diagnostic Escape (Tag 1F) is also received.   4. Drive returned to normal operation by a Reset Diagnostic Mode (Tag 15) or by the Device Initialize line going true.

TABIE 3-3. COMMANDS (CONT'D)

Command	Definition/Function
Set Diagnostic Escape (SDE) Tag $1 F$	1. A control command. 2. Enables the drive logic to perform special diagnostic functions by disabling the normal command repertoire (except for Tag 15) and conditioning the logic to receive to test and diagnostic commands. (Tags 30 through 37). 3. This command inhibits the Sector Counter and sets Bit 7 (Device in Diagnostic Mode) of the Sumary Status byte. 4. Drive is returned to normal operation by a Reset Diagnostic Mode (Tag 15) or by the Devica Initialize line going true.
Head Address In Opper (HIV) Tag 20	1. An input information command. 2. Causes the drive to return a byte of zeros on the bidirectional data lines.
Head Address In Lower (HIL) Tag 21	1. An input information comand. 2. Drive transfers its current head address to the controller via the bidirectional data lines. 3. The bidirectional data lines decode as follows:
Cylinder Address In Upper (CIU) Tag 22	1. An input information comand. 2. Causes drive to place high order bits of current positioner location on bidirectional data lines. 3. Bidirectional data lines are decoded as follows:
Cylinder Address In Lower (CIL) Tag 23	1. An input information comand. 2. Causes drive to place 8 low order bits of current positioner location on bidirectional data lines.

TABLE 3-3. COMMANDS (CONT'D)

Command	Definition/Function
CIL (Cont'd)	3. Bidirectional data lines are decoded as follows:
Angular Position In (API) Tag 24	1. An input information command. 2. Gates current angular position (sector to the controller. This is the value the Sector Counter was at when the API Tag was received. 3. Bidirectional data lines decode as follows:
$\begin{aligned} & \text { Read (RDX) } \\ & \text { Tag } 25 \end{aligned}$	1. An input information tag. 2. Enables the drive to read data from the disk pack. See discussion on read operations for more information.
Device Number Request (DNR) Tag 26	1. An input information command. 2. Causes the drive to place the 8 bit physical identifier number on the bidirectional data lines.

TABLE 3-3. COMMANDS (CONT'D)

Command	Definition/Function
DNR (Cont'a)	3. Bidirectional data lines decode as follows:
Device Type Request (DTR) Tag 27	1. An input information command. 2. Causes drive to return prewired type identifier code on bidirectional data lines. 3. Bidirectional data lines are decoded as follows:
Summary Status Request (SSR) Tag 28	1. An input information command. 2. Causes the drive to transfer 8 bits of summary status information to the controller via the bidirectional data lines. The unit need not be seized or have a pack installed (refer to Sense Operations for more information). 3. The bidirectional data lines are interpreted as follows:

TABLE 3-3. COMMANDS (CONT'D)

table 3-3. COMMANDS (CONT'D)

Command	Definition/Function
SSR (Cont'd)	Positioner Busy (Cont'd) 2^{5} Device in Standby 2^{6} Device Seized 2^{7} Device Reserved Meaning 2. Stop with heads loaded (typically a power off sequence). 3. Zero-length Seek Forward Lower or Seek Reverse Lower command. 4. Seek in progress (not On Cylinder). 5. Up for 10 milliseconds following receipt of Start Positioner In or Start positioner Out or, if one of these is already set, Return to Centerline or Recliabrate. When the Positioner Busy status drops, DEN is returned to the controller. Drive is in Standby Mode, that is, Unit Ready (First Seek to On Cylinder) is not available yet. Status is cleared by Stop (Set Standby State or press START to extinguish indicator). Drive has accepted a Seize command and is reserved to controller issuing the Sumary Status Request. If drive is single-port device, this signal is always available without requiring a Seize command. Drive has already been seized by the other channel.
Detailed Status Byte I (DSB1) Tag 29	1. This is an input information comand. 2. This comand causes the drive to present a byte of data concerning various drive error conditions. These conditions are identified on the bidirectional data lines. 3. The FF's corresponding to the status bits are reset by the Detailed Status Byte 1 command, a Device Initialize signal or by pushing the CHECX indicator/switch on the maintenance panel. 4. All errors identified in Detailed Status Byte 1 set Sumary Status Byte Bit 23 (DLI error). 5. The bidirectional data lines are interpreted as follows: Meaning On Output Information Transfer Commands (DCO,DC1 = 00), parity was not odd during time that Swo is down while SRI is up.

TABLE 3-3. COMMANDS (CONT'D)

table 3-3. COMmANDS (CONT'D)

Command	Definition/Function
DSBl (Cont'd)	
Detailed Status Byte 2 (DSB2) Tag 2A	1. An input information command. 2. This command causes the same function as DSBI except for the following: - All errors in this status byte set Sumary Status Byte bit 21. - All errors in this status byte are reset by the DSB2 command, the Device Initialize signal or the CHECK switch/ indicator. - The bidirectional data line decode is different. 3. The bidirectional data line decode is as follows: $\frac{\text { Bit }}{2^{0}}$ Name 2^{0} Loss of Voltage Meaning Any one of the following dc voltage errors occurred: 1. $+5 v$ less than $+4.825 v$. 2. $-5 v$ more positive than -4.825v. 3. +20 v less than +18 v . 4. -20 v more positive than -18v. 5. $-16 v$ more positive than -12 v . Any of these errors will set Pack Unsafe FF and light indicator. In addition, insufficient -16v power will cause automatic emergency retract of positioner. Not Used 2^{2} Loss Spindle speed dropped below 2700 rpm after heads were loaded. Heads unload.

TABLE 3-3. COMMANDS (CONT'D)

Command	Definition/Function
DSB2 (Cont'd)	
Detailed Status Byte 3 (DSB 3) Tag 2B	1. An input information command. 2. Sends a byte of status to the controller concerning the error condition identified on the bidirectional data lines. 3. The error conditions are reset by any of the following: - Device Initialize (DIN) signal. - Pushing CHECR switch/indicator - BY the DSB 3 command 4. The bidirectional data lines are interpreted as follows: While not in Set Diagnostic Escape Mode, sector counter did not reach a count of 127 before Index was sensed. Also sets Device Failure (SSR bit 21). Positioner went forward past cylinder 822 (Forward EOT) or reverse past cylinder 000 (Reverse EOT) if not performing an RTZS. Also sets DLI Error (SSR bit 23).

TABLE 3-3. COMMANDS (CONT'D)

Command	Definition/Function
DSE 3 (Cont'd)	
Detailed Status Byte 4 (DSB4)	1. An input information comand. 2. This command causes the drive to present a byte of data concerning the status of the drive at the time the comand was received. 3. The bidirectional data lines are interpreted as follows: Meaning Status bit indicating that Seek Reverse Lower was last seek command. Not affected by Recalibrate or Reset Diagnostic Mode. Status bit indicating that SFL was last seek command. Not affected by Recalibrate or Reset Diagnostic Mode. Cooling air was of inadequate volume. CHECX indicator lights. Status bit indicating that First Seek Interlock motor is operating. Not used while Online. When Offline, Off Line Tester has detected a difference between the current cylinder address and the address byte read from the pack. Device Failure (SSR 21) is set, but not returned to controller since drive is Cffline. In addition, error may be displayed by setting DISPLAY SELECT switch on maintenance panel to DSB4. Bit 26 indicator will be on. Error is cleared by pressing CHECK or by returning unit to Online mode. Fine FF is set: less than onehalf cylinder remains of seek, positioner is On Cylinder, or positioner is in LOAD or RTZ sequence.

TABLE 3-3. COMMANDS (CONT'D)

Command	Definition/Function
Detailed Status Byte 5 (DSB5) Tag 2D	1. An input information comand. 2. This command causes the drive to present a byte of data that, except for bit 2; concerns the status of the drive at the time the command was executed. The status is returned on the bidirectional data lines. 3. The bidirectional data lines are interpreted as follows: Both Write Enable and Read Enable were up simultaneously. This sets Pack Unsafe FF to light the CHECK indicator and to set Device Failure (SSR bit 21). Status bit indicating that read circuit is under influence of ARC or RCC command. Status bit indicating that positioner is under influence of a Shift Positioner Out or In command. Status bit indicating that heads are unloaded as sensed by heads loaded switch. $2^{4}-2^{7}$ Not Used
```Detailed Status Bytes 6,7 (DSB6,7) Tags 2E,2F```	These tags are recognized and acknowledged by the drive but initiate no drive functions.
Read Difference Counter Upper Tag 30	1. A test and diagnostic command requiring prior acceptance of a Tag 1F.   2. Causes the drive to gate bits $2^{8}$ and $2^{9}$ of Difference Counter onto bits 20 and $2^{1}$ of bidirectional data lines.
Read Difference Counter Lower Tag 31	1. A test and diagnostic command requiring prior acceptance of a Tag $1 F$.   2. Causes the drive to gate bits $2^{0}$ through $2^{7}$ of Difference counter onto bidirectional data lines.
Tag 32	This tag is recognized and replied to by the drive but initiates no drive operations.
Increment Sector Counter Tag 33	1. A test and diagnostic command requiring prior acceptance of a Tag 1F.   2. Causes the drive to increment its Sector counter by 1. The counter and its register are reset by Set Diagnostic Escape (Tag 1F). With Tag 1F up the index and dibits input to the counter is disabled. The counter value is read by an Angular Position In Command (Tag 24).


Command	Definition/Function
$\underset{37}{\text { Tags } 34,35,36, ~}$	These tags are recognized and replied to by the drive but initiate no drive operations.
Write Test Check Tag 38	1. A test and diagnostic command requiring prior acceptance of a Tag iF.   2. Issued after Write Test (Tag 3A). If NRZ fault occurred (error condition), bit 20 of bidirectional data lines will be true. If Current fault occurred (normal condition Write Test), bit 21 will be true. Error conditions are cleared when command drops.
Write Test (Tag 3A)	1. A test and diagnostic command requiring prior acceptance of a Tag $1 F$ 。   2. Causes drive to write special pattern transferred via bidirectional data lines. It then checks the following:   - Toggling of NRZ data as it leaves the Serdes Shift Register. If toggles are absent for more than 800 nsec NRZ fault sets (refer to Write Test Check Tag 38).   - The AC Write Fault Detector is checked when the controller raises the Data modifier line causing a period without byte transitions. This should set Write Test Current Fault.
Tag 3B	This tag is recognized and replied to by the drive but initiates no drive operation.
Tag 3C	Invalid command.
Return To Track Center-   line (RTC)   Tag 3D	1. A control command.   2. Causes positioner to return to track centerline by resetting either Shaft Positioner Out (Tag 18) or Shift Positioner In (Tag 19).   3. This causes a 10 ms Positioner Busy status followed by Device Event Notification (DEN).
Read Header   (RDH) Tag 3E	1. An input information command.   2. Some function as Read (Tag 25) except that the drive searches for and must find the address mark before any data transfer can occur (see discussion on read operations).
Detailed status Byte 8 (DSB8) Tag 3F	This command is recognized and replied to by the drive but initiates no drive functions.

Note that the drive may be in the standby state and still execute commands not involving seeks, reads, or writes. To complete a Sumary Status Request for example, the drive must be powered up but need not even have a pack installed.

As an example of execution sequence assume that the unit is seized and that a cylinder Out Lower (COL) command has been issued. See Figure 3-18. Sequencing is then as follows:

1. Controller places the command byte on the Command Code Lines.
2. Drive decodes the command (000 111) as Cylinder Out Lower. Since $\mathrm{DCO}=0$, Enable Serial Read In is generated internally.
3. Controller raises Device Command Strobe. The following occur if the command byte plus parity is not odd:
a. Comand Parity Error is generated.
b. Bit $2^{7}$ of DSl sets.
c. DLI Fault comes up.
d. FLT returned to controller.
4. Controller raises Serial Write Out.
5. SRI Out $F F$ (Figure $3-18$ ) sets to raise Serial Read In.
6. Controller drops Serial Write Out.
7. With Serial Write Out down, single-shot DCøl triggers and remains up for one microsecond. This raises CH I Sample, causing the following:
a. Logic verifies that Cylinder Out Upper preceded Cylinder Out Lower. If not, Invalia Command Sequence (bit 24 of DSI) and DLI Fault are set.
b. Data on bidirectional lines loaded into Cylinder Address Register. See Figure 3-17. (In the case of Cylinder Out Lower, bit 28 was stored by a flip-flop during the preceding Cylinder out Upper and is also gated in at this time.)
8. After one microsecond, DCØl returns to its untriggered state to trigger DCø2 for one microsecond. This causes the following:
a. Data parity is checked. If not odd, bit 20 of DSI is set along with DLI Fault.
b. Seek Enable comes up. If the command is a seek (SFL, SRI, or RCB), it is executed at this time.
c. SRI Out FF clears to drop SRI.

On an input command (Cylinder In Lower in Figure 3-18), Serial Write Out is raised in response to Serial Read In, Execution sequence is as follows:

1. Command byte raised by controller.
2. Drive decodes command as Cylinder In Lower ( 100 011). This gates the contents of the Cylinder Address Register (Figure 3-17) onto the multiplexer.
3. Device Command Strobe is raised by the controller, triggering single-shot DCø3 for 500 nanoseconds. The multiplexer data is loaded into the Data Buffer which serves both channels.
4. The data is immediately applied to the I/O transmitters (and also to the receivers).
5. If both DCO and DCI are not down, the drive will add a parity bit (DIP) if required. Correct parity is not, however, checked.
6. After DCø3 times out, it triggers sin-gle-shot DCø4 for 500 nanoseconds. When it times out, SRI In FF sets to raise Serial Read In to the controller.
7. When the controller raises Serial Write Out, Serial Read In, SRI drops.
8. When the controller drops Device Command Strobe, the Data Buffer is reset.

Read or Write operations have a similar, but not identical, Serial Read In/Serial Write Out exchange. Refer to the applicable theory. discussion for further information.

For commands where data is not exchanged (Control Commands), the bidirectional data lines are not sampled for data or parity.

## SEEK OPERATIONS

## GENERAL

Seek operations are those drive functions that cause a repositioning of the read/write heads. The heads are attached to the actuator which in turn, is moved in a voice coil positioner. The mechanical elements involved in the mechanism are described in the assembly portion of subsection lA.

Figure 3-18. SRI Timing

The discussion on Seek operations is divided into the following areas:

- Servo Circuit Operation - Describes the Servo circuit, which controls the voice coil positioner.
- Basic Seek Operation - Provides a general description of how the drive functions during a seek operation.
- Types of Seeks - Describes the different types of seeks performed by the drive.
- End of Travel Detection - Describes what happens when the drive positions the heads beyond the normal area of travel.
- Seek Status and Error Conditions - Defines certain error conditions related to seek operations.


## SERVO CIRCUIT OPERATION

The servo circuit is a closed loop servomechanism used to position the read/write heads. Figure 3-19 is a simplified schematic of the servo circuit. Functions of the major elements of the system are explained in Table 3-4.

A servo loop sums all of the error voltages imposed on it. The loop always attempts to maintain itself at a null. If not nulled, the loop will adjust the correctable device (in this case, the voice coil positioner) to achieve this null. Signals applied to the loop are called error voltages. Two major error voltages are used.

1. A position error: this is the departure

## of the positioner from the desired position.

2. A feedback signal to modify (or oppose) the position error to cause a smooth motion of the positioner.

The position error signal is provided by the position converter and its allied elements. The amplitude of the signal is proportional to the distance from the present position to the desired position (tracks-to-go). The major feedback signal is the output of the velocity transducer. The amplitude of this signal is proportional to the velocity of the positioner while the phase indicates the direction of motion, forward or reverse.

The loop applies its position and feedback signals to one summing point, the summing amplifier. If the sumation of these signals is not equal to zero, the summing amplifier outputs a signal proportional to the amplitude of the error voltage (which signifies the amount of displacement from the desired position) and the phase of the error voltage (which indicates the direction of displacement).
The error output from the sumning amplifier is applied to the actuator assembly. The actuator contains a voice coil positioner that supports and moves the read/write heads. In turn, the voice coil is located within a powerful magnet. Whenever a current passes through the voice coil windings, the interaction of the induced emf and the magnet's flux field cause the positioner to move. The acceleration of the motion is proportional to the polarity and amplitude of the voice coil current.

TABLE 3-4. SERVO CIRCUIT FUNCTIONS

Circuit Element	Function
Difference Counter	Holds the complement of the number of tracks yet to be crossed before reaching the desired track or cylinder. When on Cylinder the counter indicates 1023 or 511 for BR3E4/3ES. An associated decoding network provides outputs representative of the current general content of the counter.
Digital To Analog Converter	Monitors the 7 lowest order bits of Difference counter to provide an analog indication of position error the amplitude of which is proportional to the number of tracks to go. The amplitude decreases in discrete steps as last 127 tracks of a seek are crossed.
Desired Velocity   Function Generator	Processes Position Error signal at gain levels that vary as position Error decreases. The resulting output is the analog representation of the desired velocity curve to achieve maximum control of deceleration. The parallel non-linear feedback circuit maintains tight loop control by increasing gain as the Position Error signal approaches zero. This gain control prevents loss of control during the critical deceleration portion of the seek and is essential to minimize overshoot and settle out problems.

table 3-4. SERVO CIRCUIT FUNCTIONS (CONT'D)

Circuit Element	Function
Position Converter	Uses the output of the digital to analog converter to develop the coarse position error signal.
Sumaing Amplifier	Generates a control signal to drive the power amplifier. Control signal based on algebraic sumsation of Position Error and Velocity Amplifier signal causes power amplifier to accelerate carriage. When Velocity signal exceeds position Error, carriage decelerates.
Load Gate	Provides a constant positive input to the summing amplifier. This causes forward velocity of 7 ips.
RTZ Gate	Provides a constant negative input to the sumaing amplifier. This causes reverse velocity of 7 ips.
Power Amplifier	Responds to summing amplifier derived control signal to drive carriage mounted voice coil positioner. Current feedback is used to stabilize the gain of the power amplifier.
Velocity Amplifier	Amplifies signal of carriage mounted linear velocity transducer to provide an indication of velocity to the servo circuit. The associated amplifier disable forces amplifier gain to zero during a Power Off sequence (unload heads). This is required so that coupling between the positioner field and the velocity transducer does not cause oscillation during movement of the retracted position.
Velocity Integrator	Provides an integrated representation of velocity between each of the last 127 track pulses of a seek. Integrator is clamped off to gain of zero at all other times. Integrator output is a sawtooth waveform applied to input of desired velocity function generator between each track pulse to fill in or smooth out the stepped signal of the $D / A$ converter (received via the position converter).
Fine Enable and Fine $F F$	Fine enable monitors integrated velocity. When difference counter is 1022 and fine enable (Velocity inteqrator output) exceeds l.28v, it indicates that there is one-half track to go. Fine $E F$ sets to enable fine gate and clear coarse gate. This switches position Error input to summing amplifier from desired velocity (coarse gate) to fine servo (fine gate). Fine also has the following effects:
	a. Turn on integrator clamp to switch off velocity integrator.   b. Enables on cylinder detection.   During load or RTZ sequences, both the fine and coarse latches are cleared. This disables both the fine and coarse gates so that motion is under control of load gate or RTZ gate.
Bit 0 Address Register and FF Slope	Used to select proper track servo signal phase for use as Eine Servo signal (signal controlling servo loop as last track is approached and carriage is stopped). If bit 0 is not set, the seek destination is an even numbered track and the track servo signal will be inverted for use in stopping the carriage. If bit 0 is set, an odd track is identified and track servo is not inverted. Register bit content is placed in Slope FF which performs actual gating.


Circuit Element	Function
Fine Servo Amplifier	Provides the Fine Servo signal to the On Cylinder Detector.
	This signal amplitude is proportional to distance that heads
	are displaced from track centerline. Scale factor is one millivolt per microinch displacement.
	If heads drift off slightly after seek is completed, track servo signal is no longer null. This becomes fine servo signal to drive heads back into position.
	Provides the Position Error signal, via the fine gate, to the summing amplifier during the last one-half track of the seek. Amplitude of this signal is proportional to distance-to-go. Phase is selected by Slope FF to be opposite in phase to velocity signal. The combination of the position error and velocity signals controls voice coil current to bring positioner into On Cylinder position.
On Cylinder Detector	Monitors fine servo signal when $T<1$. When signal is less than about $0.3 v$, heads are close enough to track centerline to be assumed to be on cylinder. After 1.75 ms delay, On Cylinder is generated. If heads overshoot at end of seek so that voltage exceeds 0.7 v , delay is reinitiated. Delay permits carriage to settle out before controller may attempt any read/write operations. The On Cylinder Detector is inhibited from triggering for 4.75 ms from the initiation of a Seek Start.

## BASIC SEEK OPERATION

## Introdùction

Seek operations are initiated by a series of control signals from the controller or by internally-generated signals within the drive during power up conditions. Most long seeks may be divided into four phases (see Figure 3-20):

1. Accelerate Phase: the voice coil receives full current to move the positioner from the current cylinder towards the new cylinder.
2. Coast Phase: velocity is at its maximum and the positioner velocity is constant.
3. Deceleration Phase: the positioner is approaching the desired cylinder. Its velocity must be reduced by braking action to prevent overshoot.
4. Stop Phase: the positioner is almost at the desired cylinder. It must be stopped at the precise centerline of the new data cylinder. The logic is in Fine mode to stop and hold the positioner at the new cylinder.

## Accelerate Phase

This phase is controlled largely by the position error signal. The controller loads the difference counter with the complement of the seek length. For example, if the heads are presently on cylinder 10 and must go to cylinder 160 , the seek length is 150 cylinders. In binary representation, decimal 150 is 0010010110 . The complement of this number is 110110 1001, or decimal 873. At each cylinder pulse, the counter is incremented; therefore, the greater the number in the difference counter, the fewer tracks-to-go. The counter is at its maximum value when tracks to go equal zero. This maximum value is lo23 (11 li! 1111) anत 511 ( 01 1111 1111) for the BR3E4/3E5.

The 7 low-order bits of the difference counter are applied to the Digital to Analog (D/A) converter. The value of these bits indicates the position error (or tracks-togo) from 0 to 128 . That is, the amplitude of the $D / A$ converter output is directly proportional to the number of tracks remaininf in the seek. If the remaining seek length is greater than 128 , the $D / A$ converter output is at its maximum value.

Refer to the various seek descriptions for detailed information on the exact seek sequencing.



The output of the D/A converter is applied to the position converter which used it to develop one coarse position error signal. This signal is directly proportional to the D/A converter output and serves as the input to the summing amplifier.

At the beginning of this seek the coarse position signal is maximum so the input to the summing amplifier is a large signal. Since there is no velocity yet, the current through the voice coil is maximum, causing maximum acceleration. As the positioner accelerates, a velocity signal is generated by the velocity transducer. This signal opposes the position error signal. Its amplitude, however, is less and acceleration continues.

## Coast Phase

Eventually, the amplitude of the position error signal and the velocity feedback signal are equal. The net error signal in the loop drops to zero. The summing amplifier output follows, so current is cut off. Velocity is constant. Friction losses will tend to slow the positioner but, as it does. the velocity signal decreases. This allows the position error signal to call for more current.

## Decelerate Phase

Braking action starts as the positioner approaches its selected cylinder.

The track servo circuit (refer to Track Servo Circuit description) has been generating cylinder pulses as each cylinder is passed. These pulses are used to increment the difference counter. When $T=64$, the position error signal, from the desired velocity function generator is reduced. This causes the velocity signal to dominate and, since it is opposite in phase to the position error, the summing amplifier output switches polarity. Opposing current passes through the voice coil. The carriage decelerates. Both the desired velocity and velocity signals are decreasing simultaneousiy. Voice coil current decreases proportionately.

The loop maintains speed along an ideal velocity curve. This curve is the analog version of the number of tracks-to-go. The velocity curve is generated by the desired velocity function generator. Its output is compared with velocity to achieve maximum deceleration under all conditions without overshoot. The position signal is the sum of the following:

1. The position error signal from the position converter. Its output is a signal whose amplitude is proportional to the number of tracks-to-go.
2. Integrated velocity from the velocity integrator. Integrating a velocity signal provides a signal proportional to distance. This signal is a sawtooth waveform: it is pulled back to zero by each cylinder pulse and increases in proportion to velocity and time (distance). The combination of the step-ping-down output from the position converter with the ramp integrated velocity signal results in a smooth curve of constantly-decreasing magnitude.
3. The function provided by the nonlinear feedback around the desired velocity function generator.

## Stop Phase

Stop Phase begins when the difference counter indicates that there is one track-to-go. When $T=1$, the velocity integrator signal is pulled back to zero by the cylinder pulse. Its output, indicating distance, increases. When its amplitude indicates approximately one-half track remains, Fine Enable sets the Fine FF. Desired velocity is disabled since the coarse gate is opened by Fine being set.

The last half-track of motion is controlled by the fine servo signal. There is a slight increase in position error gain in switching from coarse to fine. Fine servo and velocity are applied to the summing amplifier through the fine gate. The summation of these two signals controls the braking current.

At the start of the seek, the Slope FF is set if the seek is to an odd-numbered cylinder. The slope signal controls the phase of the track servo signal applied to the fine position amplifier. This adjustment is required since track servo signal phasing is a function of the servo head position: the signal is negative when over negative dibits and positive when over positive dibits. Therefore, on forward seeks, the signal is decreasing from a negative value toward zero when approaching a data track with an odd number; it it increasing from a positive value toward zero when approaching a data track with an even number. The opposite is true during a reverse seek.

Phasing of the track servo signal is selected so that the fine servo signal opposes the velocity signal during the last half-track of the seek. Both signals are decreasing. If
either is greater, the sumaing amplifier makes minor braking current adjustments. When the heads are on cylinder, both signals are zero and current is zero.

When the fine position signal is less than about 0.3 volt, the positioner is, for all practical purposes, positioned over the data track. This initiates the On Cylinder delay. After 1.75 milliseconds, On Cylinder is generated.

The fine servo signal remains active even though on Cylinder is up. This is the track following or position error operation. Since the positioner is not mechanically locked in place, it can drift off cylinder. As long as it is precisely positioned, the dibits read from the adjacent dibit tracks are equal and opposite. Should the carriage move, one dibit signal will increase in amplitude. This results in a slight track servo signal which is translated into the fine servo signal. The summing amplifier, in turn, senses this off-null condition and drives the positioner back on cylinder.

If the positioner goes off cylinder sufficiently to cause the fine position signal greater than 0.7 volt for more than 800 microseconds, the on Eylinder signal is lost. This sets Seek Incomplete, Fault, and deselects the heads. If the unit is reading or writing at the time, Pack Unsafe is also set.

The loop also permits positioner offset if the program requires it for error recovery. Shift Position In (Tag 19) command will provide a positive bias input to the fine position amplifier. This is now an error signal to the summing amplifier to cause a motion forward of 400 microinches. The motion stops when the bias voltage and track servo voltage cancel. Shift Position Out (Tag 18) causes a 400-microinch reverse offset. Either offset may also be provided by switches on the maintenance panel. Positioner Busy status is up for 100 milliseconds following receipt of Shift Position Out or Shift Position In. DEN is then generated.

## Short Seeks

The preceding explanation of the basic seek operation presumed long seeks that permitted the positioner to attain maximum velocity.

Maximum velocity of about 66 ips requires 70 tracks acceleration time. During short seeks, gating is identical although relative phasing of the error signals will vary. During seeks less than 128 tracks certain signals are available immediately: integrated velocity, non-linear
feedback to the desired velocity function generator, and a position converter output not clamped at its maximum value. These signals generate a position error voltage to accelerate the positioner.

The voice coil saturates for a shorter time but the primary function remains unchanged: acceleration occurs when the position error signal exceeds the velocity signal; braking occurs when the velocity signal exceeds the position error signal.

## TYPES Of SEEKS

## Introduction

The drive performs 3 basic types of seeks:

- First Seek - Initiated by pressing the START switch, it causes the heads to load and position themselves at cylinder 000.
- Direct (Forward/Reverse) Seek - Performed when the controller commands the drive to move the heads from one location to another.
- Return to zero Seek - Initiated by the controller it causes the drive to position the heads at cylinder 000.


## First Seek(Load)

This function, also known as the Load sequence, involves the activities that a unit must perform before it can effectively respond to a Read, Write, or Seek command from the controller. This function consists mainly of power supply relay sequencing and status checking by the unit's logic. As a result, no actual selection of the unit is required and very little drive/controller signal exchange occurs. Successful progression of the function assumes that all circuit breakers are on, disk pack is installed on spindle of unit, and the interlocks are closed. Successful completion of a First Seek is signified by the occurrence of DEN and the lighting of the Unit Number indicator. Standby status (SSR bit ${ }^{25}$ ) drops.

Initiation of the function occurs when the START switch is pressed (Figures 3-21 and 3-22). Refer to the power supply discussion in this section for additional sequencing information. Positioner Busy status is available. The logic enables motor relay K3. This causes release of the hysteresis brake and starts the spindle motor. At the same time, the First Seek Interlock is energized to initiate a First Seek Interlock Delay. In S/C 33 and above, the first seek interlock is replaced by circuitry located on the -SAV card.


notes:
(1) retract melay ks picked when xz picks.
(2) LOAD FF CAUSES LOAD GATE (A2903) TO APPLY + (SEEK FWOS VOLTAGE TO VOICE COIL SUMMING AMPL. coarse amo fine gates inhibited. cylinder register set to zero amo difference counter set to maximum (io23).
(3) MOTIOM TO 7 IPS PROVIDED OY LOAO GATE UNTK ODD OI BITS SET REVERSE EOT FF. MOTIOM CONTROL THEN PROVIDED aY FINE POSITION SIGNAL.
(4) OI BITS MUST DE DETECTED WITHIM 200 MS OR PACK UNSAFE is set. heado unload. select lock must be cleared before ANOTHER LOAD ATTEMPT CAN BE MADE.
(5) in SIC 33 and above, interlock motor is replaced by circuit on _sav caro

Figure 3-22. First Seek Timing Diagram

When the disk pack speed reaches $3,000 \mathrm{rpm}$ the power supply relay $K 2$ energizes to apply $+20 v$ power to the read/write logic and to energize retract relay $\mathrm{K5}$ (the heads are unloaded) to connect the positioner voice coil to the power amplifier driven by the servo logic.

At the end of the 15 second (approximately) First Seek Interlock Cycle the First Seek Interlock switch transfers and activates the first seek operation by setting the Load latch. In S/C 33 and above, first seek delay circuit on the -SAV card provides the signalthat sets the Load latch. The Load latch drives the Load gate; this bias voltage forces an average forward 7 ips access that mechanically loads the heads. The carriage continues forward with the servo head searching for the prerecorded positive dibits signals on the track servo or positive, dibits) is sensed, the Ioad latch is cleared and the Fine gate is enabled. The carriage now servoes into cylinder 000 under control of the fine servo signal.
When the positioner reaches cylinder 000 , On Cylinder is generated. This causes the following sequence of events:

1. Unit Ready comes up within the drive.
2. Standby status drops.
3. Positioner Busy'status drops.
4. DEN is returned to the controller.
5. With EOT down, Index is available.
6. The drive may respond to any operational command if preceded by a normal seize sequence. However, Seize and Sumary Status Request (Tag 28) do not require a prior Unit Ready.

If, for any reason, the dibit signals are not detected by the track servo logic within 200 milliseconds after the Load Latch is set, the RTZ latch will be set. The positioner will retract to the heads unloaded position. In this case, a Pack Unsafe (Device Fault and CHECK indicator on) condition exists to prevent reloading until the CHECK is cleared. The same conditions exist if the dibits are lost for 200 milliseconds after Unit Ready is available. Refer to Seek Status and Error Conditions for other First Seek Errors.

## Direct (Forward/Reverse) Seek

## Introduction

The Direct Seek function involves those operations that must be performed to move the read/write heads from their present track or cylinder location to the one specified by the controller. This function must be preceded by a Seize command unless the unit is already seized or if it is a single channel device.

The basic principles of the seek operation are explained in the Servo Circuit discussion. -

## 1/0 Sequencing

Controller/drive signal interchanges during a seek function from cylinder 10 to cylinder 160 would be as follows (see Figures $3-23$ and 3-24):

## NOTE

Except as specified below, the actual sequence may be varied without affecting drive operations. This is a typical sequence.

1. Controller raises Cylinder Address in Upper (Tag 22) command.
a. Drive decodes command.
b. Bit $2^{8}$ and $2^{9}$ of Cylinder Address Register is placed on bit 20 and 21 of bidirectional data lines. This bit is on if the positioner is currently at cylinder 256 or above. Since the current address is 10 , bit 20 and 21 are zero.
C. Drive raises Serial Read In one microsecond after rise of Device Command Strobe. Delays DCD3 and DCD4 must time out before Serial Read In is raised. It drops in response to Serial Write Out from the controller.
2. Controller raises Cylincer in Lower (Tag 23) command.
a. Drive decodes command.
b. Bits $2^{7}$ through $2^{0}$ of Cylinder Address Register are placed on bidirectional data lines. With current address equal to decimal 10 , this byte is 00001010.
C. Drive raises Serial Read In. It drops in response to Serial Write Out.
3. Controller places bit $2^{8}$ and $2^{9}$ of new address on bit $2^{0}$ and $2^{1}$ of bidirectional data lines. Since new address (160) is less than 256, this bit is zero. Controller also raises Cylinder Out Upper (Tag 06) and Serial Write Out.
a. Drive decodes command.
b. Drive raises Serial Read In.


7M86-1


Figure 3-23. Direct Seek Flow Chart (Sheet 2 of 2)


741014

NOTES:
(1) DCS/SWO/SRI timing not shown. Command loaded at sample time.
(2) Decimal values shown. \&indicates drive to controller $\rightarrow$ indicates controller to drive.
(3) Difference counter is loaded with complement of seek length. complement of 150 is 873 it increments with each gated cylinder pulse.
(4) Positioner moves forward under control of position converter. This signal is maximum until number of tracks to go is less than 128. At this point it is stepped down under control of the $D / A$ converter. When approximately $1 / 2$ track remains the Fine $F F$ sets and the position is guided On Cylinder by the Fine Servo signal.
(5) $10 \mu \mathrm{~s}$ cylinder pulse generated with each track crossing. First pulse cannot start sooner than .7 ms from seek start.
(6) On Cylinder drops when Fine FF is cleared.
(7) On Cylinder Delay starts when fine position becomes less than 0.3 v (assuming that 4.75 ms delay has timed out).

Figure 3-24. Direct Seek timing
c. Data is entered into the Cyl 256 FF and Cyl 512 FF* when controller drops Serial Write out (Sample time DC\&1).
d. FF K1200 is set. Refer to step 4 for this function.
e. Drive drops Serial Read In two microseconds after fall of Serial Write out.
4. Controller places bits $2^{7}$ through $2^{0}$ of new address on bidirectional data lines. Since new address is decimal 160 , this byte is 10100000 . Controller also raises Cylinder Out Lower (Tag 07) and Serial Write Out.
a. Drive decodes command.
b. Drive raises Serial Read In.
C. FF Kl200 clears when controller drops swo. If Cylinder Out Lower had preceded Cylinder Out Upper or if Cylinder out Upper were never issued, this FF would set Invalid Command Sequence (bit 24 of Detailed Status Byte 1 (Tag 29) and raise DLI Fault. Refer to Seek Status and Error Condditions for additional information.
d. At the same time (DCDI), contents of bidirectional data lines plus the Cyl 256 FF and Cyl 512 FF * are loaded into drive's Cylinder Address Register. This register is automatically reset to zero by an RTZS function (Recalibrate or Device Initialize) or First Seek.
e. Drive drops Serial Read In two microseconds after fall of Serial Write out.
5. Controller raises Head Address In Upper (Tag 20) command.
a. Drive decodes command. However, for HIU, the output of the comand decoder has no output. Therefore, no data is placed on bidirectional data lines except for parity.
b. Drive raises Serial Read In. It drops in response to Serial Write Out.
6. Controller raises Head Address In Lower (Tag 21) command.
a. Drive decodes command.
b. Bits $2^{4}$ through $2^{0}$ of Head Register are placed on bidirectional data lines. Bits $2^{7}$ through $2^{5}$ are automatically zero.

* Not applicable to BR3E4/3ES.
c. Drive raises Serial Read In. It drops in response to Serial Write Out.
d. There are no restrictions on Head Address In Upper/Head Address In Lower: they may be in any sequence or omitted.

7. Controller raises Head Address Out Upper (Tag 08) command and raises Serial Write out.
a. Drive decodes command. However, for Head Address Out Upper the output of the command decoder has no output. Therefore, no data is accepted from bidirectional data lines.
b. Drive raises Serial Read In then drops it two microseconds after controller drops Serial Write out.
8. Controller places new head address on bidirectional data lines and raises Head Address Out Lower and Serial Write Out.
a. Drive decodes command.
b. Drive raises Serial Read In.
c. When controller drops Serial Write Out (Sample time), drive performs steps d and e.
d. Bits $2^{4}$ through $2^{0}$ of bidirectional data lines are loaded into Head Register. High-order bits, if any, are ignored. Head Register is automatically reset to zero by either an RTZS or First Seek function.
f. Drive drops Serial Read In two microseconds after fall of Serial Write out.
9. Controller computes difference between current address (obtained from Tag 22 and 23) and new address. On a seek from cylinder 10 to 160 , the difference (tracks-to-go) is 150. Controller also determines if seek should be forward or reverse.
10. If difference is 256 or more cylinders controller turns on bit 20 of bidirectional data lines and will also turn on bit 21 if difference is $512^{*}$ or more cylinders. In this case, the bit is zero. Controller also raises Seek Forward Upper (Tag 02) and Serial Write Out.
a. Drive decodes command.
b. Drive raises Serial Read In.
c. Data bit is entered into the Diff 256 FF and Diff 512 FF*when controller drops Serial Write Out. (Sample time).
d. FF K1200 is set. It functions in this command as it did during steps 3 and 4 to ensure correct command sequencing.
e. Drive drops Serial Read In two microseconds after fall of Serial Write Out.
11. Controller places difference byte on bidirectional data lines. Since the difference is 150 , the byte is 1001 0110. Controller also raises Seek Forward Lower (Tag 03) and Serial Write Out.
a. Drive decodes command.
b. Drive raises Serial Read In.
c. Data from bidirectional data lines, Diff 256 FF and Diff 512 FF*is applied to inputs of Difference Counter. It is not gated in until step d. These inputs are complemented by inverting the inputs to the counter. Including bit $2^{8}$ and $2^{9}$, decimal 150 ( 1001 0110) becomes 873 (11 0110 1001). The Difference Counter increments with each cylinder pulse during the seek; seek length is zero ( $T=0$ ) when counter is at its maximum count of 1023 or 511 for BR3E4/3E5.
d. When controller drops Serial Write Out Sample time (DCD1) is up for one microsecond. FF K1200 checks command sequencing and, at the same time, the Difference Counter common enable line gates 873 into the counter.
e. When $D C \not \subset 1$ times out, $D C \not \subset 2$ is up for one microsecond. This is Seek Enable time. The remaining events occur in sequence.
f. Seek Initiate is generated. As long as there is not a Pack Unsafe condition and Unit Ready is up, the Forward FF sets.
g. If the seek length is not zero, the Seek FF sets. On the other hand, with a zero-length seek, Seek FF does not set; Positioner Busy is up for $D C \emptyset 2$ time, followed by DEN.
h. When DCD2 times out, drive drops Serial Read In. No further controller/drive communications are needed to complete the seek.
*Not applicable to BR3E4/3E5.
12. The following drive events occur with the Seek FF set:
a. The output of the position converter is gated to the desired velocity function generator to generate the Position Error signal. This initiates voice coil amplifier current.
b. A 1.2 microsecond Seek Start pulse is generated.
13. Seek Start initiates the following events:
a. A 500 millisecond delay is triggered. If on Cylinder is not obtained before the delay times out, Seek Incomplete (bit 27 of DS3), Device Fault, and FLT are generated.
b. Bit $2^{0}$ of Cylinder Address Register is gated to Slope FF. If this bit is up, seek is to an odd-numbered cylinder. The FF will then be set. The track servo signal is, therefore, inverted before becoming the fine servo signal (position error signal when $T<1$ ) during even seeks.
c. Fine $F F$ is cleared. The position error signal is obtained via the coarse gate.
14. The positioner starts its seek. Refer to Positioner Motion.
15. As the positioner begins to move, the track servo signal increases. This signal functions as the fine position signal in the servo circuit. When it exceeds about 0.7 volt, On Cylinder Enable drops. The following events occur:
a. If On Cylinder Enable is down for more than 800 microseconds, the On Cylinder $F F$ clears. This causes steps $b$ and $c$.
b. Positioner Busy status is raised.
c. The heads are deselected.
d. The Schmitt triggers driving on Cylinder Enable have hysteresis. Fine position must exceed 0.7 volt to initiate Not On Cylinder while it must be less than 0.3 volt to enable the on Cylinder delay.
16. When the seek is completed and on Cylinder is generated, Positioner Busy status drops. This raises DEN to the controller.

## Positioner Motion

The Forward Latch (I156 and II60) ANDed with the Seek Latch (II64, II66) gates the inverted output of the D/A converter (position error signal) into the desired velocity function generator. (A Reverse FF enable would have gated an uninverted position error signal.) Since the seek length is greater than 127 tracks, the D/A converter output is held at a fixed level by the $\mathrm{T} \boldsymbol{1 2 8}$ signal from the Difference counter. Receipt of the Seek Start signal also caused a Start Seek signal to occur. Start Seek clears the Fine FF, so the output of the desired velocity function generator is gated through the coarse gate to the sumaing amplifier. Since the carriage is stationary, no velocity sigm nal exists to balance the position error, and forward motion of the positioner begins.

With the position error signal clamped at maximum, the power amplifier output (and voice coil positioner current) will be maximum and the positioner will continue to accelerate. As the positioner moves forward, outputs from the track servo head are processed to derive a cylinder pulse as each cylinder is crossed. Each pulse increases the content of the difference counter by one. As accelaration continues, the velocity signal opposes the position error signal by an increasing amount. The input to the summing amplifier drops off, finally becoming zero when these opposing signals are equal. With a nulled input to the summing amplifier, voice coil current is zero. During this phase, the positioner coasts along the 60 ips plateau with the power amplifier providing only enough output voltage to compensate for the back emf of the moving voice coil positioner.

When the tracks remaining in the seek become less than 128 tracks to go, the D/A clamp is disabled for the remainder of the seek (except the last track). As each track is crossed, the D/A converter output steps down by a precise and Iinear amount. So that the position error provided at the desired velocity function generator input is not also stepped, the integrator clamp gates the velocity integrator on between each cylinder pulse. The resulting integrator sawtooth output is added to the $D / A$ converter output. This removes the step and provides a nearly smooth curve. As the position error decreases, the summing amplifier control signal decelerates the positioner to keep the velocity signal/position error signal difference to zero.

When the counter indicates one track to go to the desired destination counter $=1023$, the integrated velocity signal is reset by the regular cylinder pulse. The integrated
velocity, which indicates distance, brings up fine enable when about one-half track of travel remains. This sets the Fine FF which, in turn, clears the Coarse FF.

Desired velocity no longer has an effect; the position error is supplied by the fine servo signal. This sianal is the track servo signal from the track servo circuit. The amplitude of the signal is proportional to the distance between the present head position and the desired cylinder.

Since the desired destination is track 160 , bit 20 of the Cylinder Address register is "O". This caused the Slope FF to be cleared at the start of the seek. As a result, the track servo signal is inverted to form the fine servo signal. In all seeks, the fine servo signal is phased to be opposite to the velocity signal. Since, for forward seeks, the velocity signal'is positive-going from a negative value toward zero, fine servo must be negative-going toward zero so that these two signals can oppose each other.

The dibit pattern causes a track servo signal to have a positive slope while approaching an even-numbered cylinder. Therefore, the track servo signal must be inverted tó serve as a usable fine servo (position error) signal. If the seek had been to an odd cylinder, the Slope FF would have been set and the track servo signal would not have been inverted. As the positioner approaches track 160, the fine servo signal approaches 0 v . The sumaing amplifier responds to this decrease in amplitude by decelerating the positioner so that the sum of the velocity and position error equal zero and all motion stops with the servo circuit at null.

With the Fine $F F$ set, the On Cylinder detection circuit is enabled. It receives the analog signal from the fine servo amplifier. When fine servo is less than about $0.3 v$, the read/write heads are about 0.0003-inch from nominal data track centerline and on Cylinder Enable comes up. If the 4.75 ms delay initiated at the start of the seek has timed out, the 1.75 ms On Cylinder delay is triggered. When it times out, the On Cylinder FF sets and the heads are selected again to permit Read/Write operations. This causes Positioner Busy to drop, which in turn, forces a DEN to the controller.

Since the positioner is not locked by a mechanical mechanism, the servo circuit continues to be enabled following the seek. If the positioner should drift slightly, the track servo signal decreases. This signal (fine servo), becomes a position error input to the summing amplifier. This drives the positioner back into place.

Reverse seeks function in an identical mannner, except that all phases and polarities are reversed. Total seek times for forward and reverse seeks are identical for seeks of equivalent lengths.

## Return to Zero Seek (RTZS)

The RTZS function is a Seek where the heads are repositioned to cylinder 000. This function is commanded when the controller issues Recalibrate (Tag 12), Reset Diagnostic Mode (Tag 15), or a DIN. One of these commands is required to clear a Seek Incomplete condition (DS3, bit 27). This bit is set if On Cylinder is not generated within 500 milliseconds from the start of the seek, or if On Cylinder is lost. It is also required to clear Positioner Overtravel (Detailed Status Byte 3, bit 26). However, the error is cleared only by DIN if a Pack Unsafe (CHECK indicator lighted) condition exists. See Figures 3-25 and 3-26 for Recalibrate (RCB) timing.

The Recalibrate pulse sets the RTZ latch and clears the EOT Seek Error Latch. This enables the RTZ gate; this bias voltage forces an average 7 ips reverse motion of the positioner.

When the positioner passes cylinder 000, no more even dibits are detected. This is the Reverse EOT area. The lack of even dibits inhibits cylinder pulses, allowing the velocity integrator in the track servo circuit to reach a negative output in excess of 1.28 volts. This sets the Reverse EOT FF. The integrator is reset, but reverse motion continues unimpeded.

After an additional reverse motion of about two to four tracks, the velocity integrator output again exceeds 1.28 volts. The RTZ latch is cleared while the Load latch sets. The logic now functions in a manner equivalent to the First Seek sequence.

With the Load latch set, the Load gate supplies a voltage to command a 7 ips forward motion. The velocity integrator, this time indicating forward distance, clears the Load latch to permit continued motion under control of the fine servo signal. The positioner then servoes into cylinder 000 .

On Cylinder is available 1.75 milliseconds after the RTZS is completed. The sequence must be completed within 500 milliseconds after RTZS initiation, or else Seek Error is set. On Cyiinder drops Positioner Busy. This raises DEN.

The RTZS function is also used during normal power off sequencing. If the controller issues a Set Standby State (Tag 13) command, or if the START switch is pressed by the
operator, the control interlock opens. This raises the Unload Heads signal in the drive logic. The RTZ latch sets to initiate a 7 ips reverse seek.

This time, however, the EOT Enable circuit is disabled so that the velocity integrator signal has no effect. In turn, the Load latch is disabled. Reverse motion continues until the heads unload.

The RTZS function occurs automatically to the heads unloaded condition if dibits are lost for more than 200 milliseconds. The Pack Unsafe FF is set to prevent another First Seek until the CHECK indicator hasbeen cleared.

## END OF TRAVEL DETECTION

The End of Travel (EOT) circuit determines when the heads are positioned outside of the normal data cylinders. This function is used during Load and RTZ sequences and to indicate an error condition during a seek.

Forward EOT indicates that the heads are within the inner guard band. Assume that the controller has commanded a forward seek to an illegal cylinder past cylinder 822 or 410 for BR3E4/3ES. Sequencing is a follows (See Figure 3-27).

1. As the heads move forward, the velocity integrator output produces a signal proportional to velocity (the input to the integrator) and time (provided by the integrator capacitor). The output, which is a positive-going ramp during forward seeks, represents distance travelled. It is pulled back to ground by cylinder pulses. As long as cylinder pulses are generated, the output cannot reach an effective value.
2. After track 822 or 410 for BR3E4/3E5 is passed, no more odd dibit tracks are detected, resulting in no more cylinder pulses to reset the velocity integrator. When the output exceeds approximately 1.25 volts (4-8 tracks) Forward EOT Enable comes up. This signal, in conjunction with the even dibits picked off of the inner guard band, sets the Forward EOT FF.
3. With the Forward EOT FF set:
a. Seek FF (set the start of the seek) is cleared. This stops the seek function. The output of the position converter in the servo circuit is blocked to indicate a zero position error.
b. The difference counter is set to $1023(T=0)$, or 511 for BR3E4/3E5.



Figure 3-26. RCB Timing Diagram


Figure 3-27. Track Servo Circuit simplified Schamatic
C. Fine Enable is raised within the servo circuit.
d. Because of $b$ and $c$, the Fine gate in the servo circuit is enabled.
e. The Slope FF is cleared to indicate a seek to an even-numbered cylinder.
f. Index counter is reset to zero and held there until the Forward EOT FF is cleared.
g. EOT Seek Error FF sets. This results in steps $h$ through $k$.
h. Read and Write Gates are disabled.
i. DS3 bit $2^{6}$ (Positioner Overtravel) is set.
j. DLI Fault is generated. Note that Device Fault is not generated.
K. FLT is returned to the controller.
4. The track servo, functioning as the fine servo signal in the servo circuit, is gated to the servo summing amplifier via the Fine Gate. The signal is at a maximum amplitude because only even dibits are being sensed. This error voltage causes the positioner to drift in reverse until the servo signal drops to zero: the heads are then positioned at cylinder 822 or 410 for BR3E4/3E5. The EOT FF is cleared by the odd dibits.
5. The positioner has 500 milliseconds to generate On Cylinder at cylinder 822 or 410, for BR3E4/3E5, for the time that the Forward EOT FF set. If not, Seek Incomplete (DS3 bit 27) and Device Fault are also generated.
6. When On Cylinder is generated, Positioner Busy status drops and DEN is returned to the controller.
7. To clear the fault, the controller must issue a Recalibrate or Device Initialize. Status clearing requires a DS3 command.

Reverse EOT indicates that the heads are positioned over the outer guard band. If this condition occurs during regular reverse seeks, the Reverse EOT FF sets. This initiates an automatic Load sequence to return the actuator to cylinder 000 . The same error condition exists, however, as if a forward EOT occurred.

## SEEK STATUS AND ERROR CONDITIONS

## General

Many of the status bits available for the Summary Status Request (SSR) or Detailed Status (DS) commands are related to the seek
functions. These conditions are listed in the following paragraphs. For further information on their effects, refer to Sense Operations.

## Normal Status Conditions

The following status conditions are not, in themselves, considered as erroe conditions. They may, however, shake up the system if there is an element of surprise in them.

Positioner Busy (SSR bit $2^{4}$ ) is up under any one or more of the following conditions:

1. Unit is not Ready but Stop is down (generally a First Seek sequence).
2. Stop up with heads still loaded (generally a shutdown sequence).
3. Zero length seek in Seek Forward or Seek Reverse Lower.
4. Not On Cylinder.
5. Shift Positioner Out. Shift Positioner In or Return to Centerline command: status i.s up for 10 milliseconds. Device Event Notification is generated when Position Busy drops.

Device in Standby (SSR, bit $2^{5}$ ) means that Unit Ready is not up (First Seek completed to On Cylinder) and that stop (SSS or press START switch to turn it off) is up. Unit Ready is not affected by error conditions. This $F F$ remains set until the heads unload.
Forward FF Set (DS4, bit $2^{1}$ ) is up following and Seek Forward Lower. It remains up until an Seek Reverse Lower is issued. Note that the FF remains up and is not cleared by Recalibrate or other commands. Reverse FF Set (DS4, bit 20) is actually the output of the reset side of the Forward FF.
Fine Servo Status (DS4, bit $2^{7}$ ) indicates that the Fine $F F$ is set. This indicates that the heads are within one-half track of on Cylinder (or already there) or that the unit is in a First Seek or RTZS sequence. Status drops at Start Seek.
Positioner offset (DS5, bit $2^{2}$ ) indicates that the unit is still under the influence of Shift Positioner Out or Shift Positioner In.

## Device Lavel Interface Errors (DLI)

The following conditions are considered as DLI Faults (SSR, bit 23). FLT is also generated.
Invalid Command Sequence (DSI, bit $2^{4}$ ) is the result of Seek Forward Lower preceding Seek

Forward Upper, Seek Reverse Lower preceding Seek Reverse Upper or Cylinder Out Lower preceding Cylinder Out Upper.

State Violation (DSI, bit $2^{3}$ ) results from any of the following:

1. WRT or WRT TEST while not On Cylinder.
2. Set Diagnostic Escape with Positioner Busy.
3. Positioner Busy and any one of several commands (seeks, WRT, etc.)
4. Standby mode (Not Unit Ready) and any one of several commands.
5. Positioner overtravel (DS3, bit $2^{6}$ ) occurs if the positioner moved into the forward or reverse End of Travel area. This may be considered as a DLI Fault since this most likely occurs if the Seek Forward Lower or Seek Reverse Lower command called for an excessive seek length.

## Device Fault Conditions

The following conditions are considered as Device Failures (SSR, bit 21). FLT is also generated.
Loss of Voltage (DS2, bit $2^{\circ}$ ) can occur if -16 volt emergency retract voltage is insufficient with the heads loaded. This also causes retract relay $K 5$ to open, retracting the positioner to unload the heads. The Pack Unsafe FF sets; the CHECX Indicator Lights.
Spindle Speed Loss (DS2, bit $2^{2}$ ) indicates that speed dropped below 3000 rpm with the heads loaded. This opens speed relay K2 which, in turn, opens retract relay K 5 to retract the heads. If speed recovers, the heads relead. Insufficient speed prior to heads loading prevents $K 2$ from setting: First Seek Interlock cycles are continuous and the heads never load.

If no head is selected (Head Address Register contains head 19 or greater), Current Fault is generated. This causes the following:

1. Pack Unsafe $F F$ sets the light the CHECK indicator. Heads do not unload.
2. No or Multiple Head Selection (DS2, bit $2^{4}$ ) is on.

Read or Write Gate up while not On Cylinder sets the Pack Unsafe FF and lights the CHECK indicator.

Seek Incomplete (DS3, bit $2^{0}$ ) sets if on Cylinder is not obtained within $500 \mathrm{milli}-$ seconds after the initiation of a seek or BTY function. It also sets if On Cylinder is lost without seek initiation.

If dibits are not sensed within 200 milliseconds after the Load latch sets, or if they are lost for 200 milliseconds after the heads are loaded, the No Servo Track FF sets. This causes the following:

1. Pack Unsafe FF sets to light the CHECX indicator.
2. RTZ latch sets to start an RT2S.
3. With the Pack Unsafe condition, the Load latch cannot set. (It normally sets during an RTZ in the reverse EOT area, causing a seek forward to cylinder 000). Therefore, the heads just keep going at 7 ips until they unload.

With a Pack Unsafe condition, the drive will not initiate a First Seek condition (pressing START). Nor will it accept a Seek Forward Lower, Seek Reverse Lower, Recalibrate or Reset Diagnostic comand. The unsafe must be cleared by pressing the CHECX indicator or by a Device Initialize. Note that a Pack Unsafe unloads the heads only if dibits are lost or if -16 volt emergency retract power becomes insufficient. All other CHECK conditions will effectively freeze the positioner and lock out any further reads or writes.

## TRACK SERVO CIRCUIT

## GENERAL

The track servo circuit (Figure 3-27) provides head positioning information. The signals generated by this circuit:

1. Generate a track servo signal that indicates the displacement-of the heads from their nominal track centerline.
2. Generate indications that the heads are positioned outside of the normal data cylinders.
3. Generate cylinder pulses during seeks to indicate each cylinder crossing.
4. Provides signals used as the basic 806 kHz clock.

Information for this circuit is derived from the track servo head (Figure 3-28). This head is physically similar to the read/write heads, except that it does not write. The

$7 \mathrm{Ma7}$

Figure 3-28. Disk Surface Layout
head reads information from the servo track surface of the disk pack. This information is known as dibits: dibit is a shortened term for dipole bit. Dibits are prerecorded on the servo surface during manufacture of the disk pack. Do not confuse the servo surface with the other 19 disk pack recording surfaces.

Dibits are the result of the manner in which flux reversals are recorded on the servo tracks. One type of track, known as the Even track, contains negative dibits. The other track, the Odd track, contains positive dibits.

At the outer edge of the servo surface is a band of positive dibit tracks. This area is the Reverse End of Travel (EOT) or outer guard band. Then, there are servo tracks alternately recorded with negative and positive dibits. Finally, toward the inner edge of the pack, there are tracks containing only negative dibits. This is the Forward EOT or inner guard band.

When the read/write heads are located at the centerline of a data track, the track servo head is actually centered between two of the prerecorded servo tracks and is reading an edge of each. The detected signal is a mixture of the two adjacent dibit signals. The amplitude of each dibit component is proportional to the read coil overlap of the recorded servo tracks. With the head centered, the amplitudes of the two types of dibits are equal. As the head moves away from its centered position, the amplitude of one dibit component increases while the other decreases. This error voltage is the track servo signal.

The basic elements of the track servo circuit are illustrated in Figure 3-27. Table 3-5 explains the track servo circuit functions.

## DIBIT GATING

After being differentially amplified, the servo signal is applied to gates that separate the dibit signals by sensing the positive and negative flux reversals (Figure 3-29). A positive dibit consists of a posi-tive-going waveform immediately followed by a negative-going waveform. On the other hand, a negative dibit consists of a negativegoing waveform followed immediately by a positive-going waveform.

The dibits are analyzed by the positive and negative gates. Each gate output switches to the low state when it senses its respective dibit. The negative-going pulses control single-shots and JK FF's to generate the odd/even dibits.

The even/odd dibits are used to enable the EOT detection circuit and to generate the basic machine clock signal.

## track servo signal generation

The servo signal is generated by peak detectors that monitor their respective dibits. The positive peak detector (Figure 3-29) provides an output proportional to the amplitude of the positive dibits. It senses only the positive waveform of positive dibits: Gate 1 low inhibits it from reacting to either the negative waveform of positive dibits or the entire negative dibit. An RC network integrates the peak detector output to provide a smooth output. The resulting signal output is greatest, therefore, when the servo head is centered over an odd dibit track.

The negative gate works in a similar manner.
The servo signal is provided by a summing amplifier. It receives inputs from the peak detectors. (The positive peak detector output is first inverted.) Therefore, the output represents the difference between the two peak detector outputs.

The track servo signal is at its maximum negative value when the servo head is positioned over the outer guard band or over one of the odd dibit tracks. It is at its maximum positive value when the servo head is positioned over the inner guard band or over one of the even dibit tracks.

The track servo signal is applied to the servo circuit and to the cylinder detect circuit In the servo circuit, it is used to generate the fine servo signal that controls movement during the last one-half track of a seek or during a Load sequence. The cylinder detect circuit generates cylinder pulses as the track servo signal approaches a null.

Circuit gain control is achieved by applying the outputs from the peak detector buffers to the AGC summing amplifier. Its output is negative in proportion to signal strength: the stronger the signal, the less negative the AGC voltage. This signal is fed back to the AGC amplifier to control the resistance of a FET within the amplifier. The FET is connected across the differential inputs to the amplifier. The less negative the AGC, the less the resistance; therefore, more of the signal from the track servo head is shunted by the FET to reduce circuit gain.

The Dibits Detect One Shots (A336 and A337) prevent the circuit from being turned on by random noise spikes while the heads are unloaded or being loaded. When the preamp

Circuit Element	Function
Track Servo Head	Reads dibit information from the disk servo tracks. This head cannot write.
Track Servo   Preamplifier	Amplifies the signal read by the track servo head.
Positive and Negative Gates	Separate dibit waveforms into positive and negative components. Positive gate triggers during first half-cycle of positive dibits (read from odd dibit track) and second half-cycle of negative dibits (read from even dibit track). Negative gate triggers in the reverse condition.
Positive and Negative Delays	Function as synchronizing gates to control dibit pulses generation. Positive delay fires at leading edge of positive gate. If negative gate output is available before positive delay times out, it indicates that positive dibit has been sensed. This triggers the Odd Dibit FF. The positive gate also serves as an inhibit to the positive peak detector during the negative portion of the positive dibit and the entire negative dibit. The negative delay functions in the reverse condition.
Even Dibits and Odd Dibits Flips-Flops	Provides 600 -nsec pulses indicating dibits. Frequency of each one-shot is 403 kHz .
Dibits Peak Detectors	Provide peak detection of dibit signals. Outputs are proportional to dibits amplifiers: the greater the amplitude, the more negative the output. When head is centered between dibit tracks, outputs of + and - peak detector are equal. As head moves from center position, output from one peak detector increases negatively while output from the other peak detector becomes less negative. The difference between these two outputs is proportional to servo head displacement from centered (on cylinder) position.
AGC Circuit	AGC voltage is proportiol to sum of dibit signals. As signal strength increases, voltage goes less negative to reduce circuit gain.
Track Servo Amplifier	Provides signal proportional to sum of + and - dibit peak detectors. Output is null when head is centered between dibit tracks (on cylinder): negative when over odd track or outer guard band; positive when over even track or inner guard band.
Cylinder Pulse Detection	Provides cylinder pulses to difference counter and other logic elements as track servo signal approaches null. One pulse is generated per track crossed (even/odd transition or odd/even transition).
Velocity   Integrator	Provides ramp signal proportional to distance travelled (velocity integrated with time). Output is positive-going during forward seek; negative-going during reverse seek. Output is pulled back to zero to re-initiate integrator function by each cylinder pulse, or during certain conditions of RTZ or Load sequences.

TABLE 3-4. TRACK SERVO CIRCUIT FUNCTIONS (CONT'D)

Circuit Element	Function
Dibits Detect	50 usec and 3 ms delays used to prevent the track servo circuit from being turned on by random noise spikes during a heads unloaded condition or a load heads operation.
End of Travel (EOT)	Monitors integrated velocity to enable EOT circuit. When velocity integrator output exceeds about 1.2 v , heads have moved a distance of approximately two tracks without sensing any cylinder pulses.
Reverse EOT FF	Indicates that heads are positioned over outer guard band. Refer to First Seek and RTZS discussions for further details.
Forward EOT FF	Indicates that heads are positioned over inner guard band. This is an error condition.

output is zero, as in a heads unloaded condition, A336 is not triggered and its output is high. This holds A337 at a logic zero. The positive and negative gates and cylinder detect circuits are now inhibited.

When the heads are loaded and dibits are outputed from the preamp, A336 is triggered and retriggered, keeping its output at a logic zero. This releases the timing components of A.337 and after 3 ms its output goes to one turning on the Track Servo circuit. If dibits are lost for more than 50 usec. A336 times out and resets A337 to a logic zero. disabling the Track Servo circuit (See Figure 3-30).

## CYLINDER PULSE GENERATION

```
As the servo head crosses the interface of
the even/odd dibit tracks (Figure 3-31),
the servo signal decreases toward null. Two
operational amplifiers connected as Schmitt
triggers switch state. The hysteresis de-
signed into the circuit causes both triggers
to be up only while the servo signal is be-
tween }O\textrm{v}\mathrm{ and 0.4v. These signals are applied
to two level shifters (A364/A365). Their
outputs are ANDed together to provide a }1
microsecond cylinder pulse. Each cylinder
pulse:
1. Increments the difference counter.
2. Switches the two velocity integrators
 (one each in the servo circuit and track
 servo circuit) to ground.
It is possible that the last cylinder pulse may not be generated when the seek is completed, causing the difference counter to hang up at 1022 or 510 for BR3E4/3ES. The On Cylinder signal provides a pulse to increase the difference counter to 1023 or 51: Eor BR3E4/3E5. With the difference
```

counter at 1023 or 511 for BR3E4/3E5 tracks to go equal zero and On Cylinder is available so positioner Busy status drops.

The track servo circuit remains active following completion of a seek. If the servo head drifts off of its centered position, the track servo signal will no longer be at null. The signal, functioning as the fine servo signal within the servo circuit, will act as a position error signal to drive the positioner back into position.

## MACHINE CLOCK CIRCUIT

## GENERAL

The machine clock circuit uses dibits generated by the track servo circuit to generate the basic 806 kHz clock signal. This signal is applied to the following circuits:

1. Index detection
2. Write clock generator

## 3. Sector counter

## Clock generation

The circuits (Figure 3-32) most important portion is a phase locked loop (PLL). The loop compares the frequency of input data (dibits) with feedback data. A comparator circuit generates a square wave input to a GJK circuit in the voltage controlled oscillator. (Refer to Section 6 for an explanation of the GJK circuit.) The GJK generates a voltage proportional to the difference in frequency between input data and feedback data. The output of the GJK is applied to the voltage controlled oscillator to control its frequency. The PLL is satisfied when the input and feedback frequencies are identical. Note that data and feedback are 90 degrees out of phase.


Figure 3-29. Track Servo and Dibits Detect Circuit Simplified Signals


Figure 3-30. Dibits Detect

notes: (1) track servo signal (azsoz)IS $180^{\circ}$ OUT-OF-phase with this waveform.
(2) CYL pulse does not affect difference counter at track o for first seek.

Figure 3-31. Cylinder Pulses Generation


Figure 3-32. Machine Clock Circuit

There are three inputs to the comparator. One is the normal input from dibits delayed approximately $1 / 4$ cell and shaped to 30 nsec (approximate) pulses. The second input is a dub-in input. This is a 30 nsec pulse coming up at the same time as the normal input but from the clock output. The third input is the reset pulse. It is the normal and the reset input which provide the basis for normal comparator operation.

During normal operation, a look-ahead pulse blocks the dub-in input to the comparator. This insures that the comparator and therefore the clock, tracks with the real input data from dibits. However, if dibits are missing, as they are during the index mark (for two cells) or during a seek (every other cell), there must be a pseudo-dibit or dub-in pulse to keep the clock in phase. Therefore, the circuit is self-ringing when data is not present at the input.

A problem with the self-ringing feature of the circuit is that, if the first input to the comparator is not data but a dub-in pulse, the circuit may not be in synchronization with real data when it is received. It would then take some time before synchronization could be attained. The 5 ms dub-in inhibit pulse fires to block dub-in pulses in three situations: 1) when the latch is cleared by reverse EOT at the end of a first
seek, or 2) and 3) when On Cylinder is received after a forward or reverse seek error.

After the heads are loaded, even/odd dibits are available. Their nominal frequency is 806 kHz . The actual frequency is a function of spindle motor speed. The PLL quickly synchronizes itself to the actual dibit rate. This permits the clock to react to variations in spindle speed between drives. Signals derived from this circuit, such as sectors, are a function of actual spindle speed rather than functions of an absolute time base.

FF K351 is connected as a divide-by-two circuit. This circuit arrangement permits the PLL feedback to be a function of nega-tive-going edges of the PLL output. Therefore, PLL unsymetrical outputs are ignored and the basic frequency is the controlling factor. The PLL output frequency is nominally 1.612 MHz .

## WRITE CLOCK

Write clock is derived directly from the basic 806 kHz clock. Three phase lock oscillators and a divide by two flip-flop generate the basic 6.44 MHz clock signal to the write circuitry. The frequency is gradually increased to permit the generation of stable pulses.

## INDEX DETECTION CIRCUIT

The Index detection circuit (Figure 3-33) generates a 2-microsecond pulse at the start of each new logical track. This signal is returned to the controller as Index Mark and also resets the sector counter to zero.

Prior to reaching the Index area, both even and odd dibits are available. Dibits Present FF (K705) is held in the preset state. Gate I707 is held at a continuous low state: this causes the counter to be continually loaded with zero with each clock pulse from A708.

The Index pattern is the special pattern of missing dibits illustrated in Figure 3-33. Flip-fiop K705 clears, allowing the counter to increment with each 806 kHz pulse via A708. The counter can continue to increment only if the precise pattern continues to be sensed. Any other combination of missing dibits (such as when tracks are crossed during seeks) will cause the counter to be reset to zero.

When the counter reaches a decoded value of 5, two of the three input gates to Index Set FF K706 are available. The next even dibit triggers A708 to set the FF. In turn, A707 provides a 2-microsecond Index pulse.

Note that Index is inhibited while the heads are over either a forward or reverse EOT area.

## SECTOR CIRCUIT

The sector circuit (Figure 3-34) permits the controller to determine the current angular position (sector) of the read/write heads with respect to Index. The number may be obtained by an Angular position In (Tag 24) command. This command is one of the few commands that may be issued during either diagnostic or regular operations. Note that this command cannot be used to generate an interrupt when a select sector is reached; it can only determine the sector available at the time that Angular Position In is issued. The count transmitted on the DLI remains frozen until Angular Position In drops.

Each track may be considered as subdivided into 128 segments of equal size. They are numbered from 000 to 127. Sector 000 is the first sector following Index.

The 806 kHz clock signal is used to generate the sector count. Each positive-going clock pulse increments a divide by 104 counter. When the counter reaches 104, the sector counter is incremented by one. The divide by 104 counter restarts from zero; the process continues so that every 104 odd/even
dibits increases the sector counter by one.
When the sector counter equals 127, the divide by 104 counter can no longer increment the sector counter. Index should occur at this time to reset both counters.

If Index occurs before the sector counter reaches 127, the counter is malfunctioning. This sets Rotational Position Sensing (RPS) Error, which is bit $2^{3}$ of DS3.

The sector register is unaffected during sector counter operations. The contents of the sector counter are gated into the sector register when API is issued. Angular Position In (Tag 24). The register remains at the same value until the next Angular Positian In. The sector counter continues to operate normally.

During diagnostic operations (Set Diagnostic Escape Latch set), the sector counter continues to operate but it cannot be gated into the sector register. The register is reset by Set Diagnostic Escape (Tag Lr) and incremented by an Incr Sector Counter command (Tag 33). Its value may then be determined by Angular Position In.

## READ/WRITE OPERATIONS

General
The drive processes the read/write data transferred between the disk pack and controller.

The controller and disk pack each handle different types of data. The controller transmits and receives only 8 bit parallel bytes of NRZ data. The disk pack requires serial MFM data. Therefore the drive must convert the data to the proper format before transferring it between the two.

During Write operations the drive receives parallel data from the controller, converts it to serial data (serialization) and writes it on the disk pack. During read operations it reads serial data from the disk pack, converts it to parallel (deserialization) and transmits it to the controller.

The read/write circuits (Figure 3-35) perform this conversion and the heart of these circuits is the serializer/deserializer (SERDES). It is used during both read and write operations to make the proper data conversions. The remainder of this section describes SERDES along with the other circuits involved in processing read/write data.

HEAD SELECTION
The head select circuit must select the desired head before a read or write operation

notes :
(1) $X$ indicates leading edge of single shot atob.
(2) mext leading edge required to set ff because of PROPAGATION TIME THRU ATOS/ATO6.


Figure 3-33. Index Detection Circuit

Figure 3-34. Sector Circuit

can be performed. See Figure 3-36 for the head 02 circuit.

The Head Address Register is set by a Head Address Out Lower (Tag 09) command from the controller. It is automatically reset to zero by any RIzS function. Bit 20 of the register is examined to determine if the head will have an odd or even number. Since (in this example) bit 20 is off, the even head decoder is enabled. The head is enabled by applying a ground to the read/write head center tap.

Note that all heads are automatically deselected while not on Cylinder or for 6 microseconds following a Head Address Out Lower command.

Two head select errors may occur at any time:

1. No Head Select is generated if the register is set to 19 or greater. Since these head numbers are nonexistent. there has been an equipment malfunction.
2. Multiple Head Select is sensed by the SCE/SCD circuit. If only one ground (or no ground) is sensed, the SCD voltage comparator output is +5 volts (no error). Two or more grounds puts more resistors in parallel, causing the voltage comparator to indicate a Multiple Head Select error.

As Figure 3-36 illustrates, any one of four head select or write errors can generate a current fault. With the Current Fault FF set:

1. Pack Unsafe FF sets.
a. CHECK indicator lights.
b. Read and Write Gates are disabled.
c. Seek Forward Lower, Seek Reverse Lower or Recalibrate comands are not executed.
d. This error status can be cleared only by pressing the CHECK switch or by a DIN from the controller.
2. Bits $2^{4}$ through $2^{7}$ of DS2 are enabled. Refer to Sense Operations.

The Current Fault fF cannot set to indicate an error while Data Modifier Line is up. Since there are no flux transitions while writing the address mark, AC Write Fault will occur. This is not an error condition at this time.

## BASIC READ/WRITE PRINCIPLES

## General

Read/write data is transferred between the controller and drive in bytes. Each byte consists of eight bits. The parity bit is not written on the pack.

Information is recorded on, and read from, the disk by means of 19 read/write heads. Data is written by injecting a large current through a coil within the selected head. This generates a flux field that magnetizes the iron oxide particles bound to the disk pack surface. Each particle is then the equivalent of a miniature bar magnet with a North and South pole. The writing process orients the poles to permanently store the direction of the flux field as the oxide passes under the head. In turn, the direction of the flux fiela is a function of write current polarity while its amplitude depends on the: amount of current: the greater the current, the more oxide particles that are affected.

Reading is an equivalent process. As the oxide particles pass beneath the head, the stored flux field intersects the coil within the head. This induces a current which, when amplified and analyzed, defines the written data.

In order to define the binary digits stored on the pack, the frequency of the flux reversale must be carefully controlled. Several recording methods are available; each has its advantages and disadvantages. The drive uses the Modified Frequency Modulation (MFM) recording technique. Refer to Principles of MFM Recording. The main advantage of MFM is that it permits higher recording densities without increasing the number of recorded flux reversals per inch.

The length of time required to define one bit of information is the cell. Each cell is nominally 155 nsec in width. Since there are eight bits per byte, each byte requires 1.24 usec to write or read. Although data is transferred in parallel (by byte), it is written or read serially (by bit).

## Track Format

Each track has Incex as its starting point. Information is then recorded in groups of related data in the form of records. In turn, records may be subdivided into fields. A gap of zeros separates each field within each record and, in addition, another gap

separates records. These gaps are used to permit the read circuit to synchronize itself so that it can reliably define logical ones and zeros. Gap length is variable in accorcance with the nature of the following field or record.

Track format, gap lengths, and record format are a function of the operating system. Refer to the applicable controller manual for further information. Because of the drive logic operations, however, the following rules apply.

- Each gap (field-to-field) or record-torecord) has variations in the number of zeros. The last two bytes of each gap contain hexadecimal 19. The first byte is called the Sync Byte; the second. the ID Byte. Read data cannot be returned to the controller until these bytes are found.
- For all records following Record zero (or its equivalent), an address mark
is written between the zeros gap and the hex 19 bytes. An address mark (AM) contains bytes without any flux transitions ("O" or "1") whatsoever. Although the address mark is typically three bytes of missing flux reversals, the actual AM length is determined by Data Modifier Line. As long as Data Modifier Line is up -- one byte or sixty bytes -a all writing is inhibited. Twelve bytes of zeros typically separated the AM bytes from the Sync Byte.


## Principles of MFM Recording

This unit uses the MFM recording technique. This system defines a "1" by a positive transition occurring at the half-cell time (Figure 3-37). A ${ }^{\prime \prime} 0^{\circ}$ is defined by a positive transition occurring at the start of the cell time, except when preceded by a "1". In this case, no transition occurs during the cell time for a ${ }^{n \prime \prime}$.

notes:
A. TMung RELATIVE TO DPive AT $1 / 0$ commector.
8. SIGMAL AS IT WOULD APPEAR AT HEAD COK.

75168

The rules for MFM recording may be sumarized as follows:

1. There is a flux transition for each "l" bit at the time of the "I".
2. There is a flux transition between each pair of "o" bits.
3. There is no flux transition between the bits of $a^{" 10 "}$ or "01" combination.

Sorting data is accomplished by synchronizing an oscillator with the read data during the first continuous gap of zeros after read is enabled. The analog data can be decoded to binary "1's" and "0's" once the oscillator is synchronized.

A write function is similar to a read, except the incoming binary " $1^{\prime \prime} s^{\prime \prime}$ and "O's" are changed to the proper write current levels and then written on the disks.

The advantages and disadvantages of MFM recording are listed as follows:

1. Fewer flux reversals are needed to represent a given binary number because there are no flux reversals at the cell boundaries. This achieves higher recording densities of data without increasing the number of flux reversals per inch.
2. Signal-to-noise ratio, amplitude resolution, read chain operation, and operation of the heads are improved by the lower recording frequency achieved because of fewer flux reversals required for a given binary number.
3. Pulse polarity has no relation to the value of a bit without defining the cell time along with cell polarity. This requires additional read/write logic and high quality recording media to be accomplished.

Erase before writing is not required when using MFM recording. The data being written is recorded over any data which may already be on the disk (this technique is referred to as a hard write).

## Disk Surface Recording

Surface recording involves the magnetization of minute areas on the surface of a highly retentive magnet material. In order to reproduce the recorded information, the magnetic state of the material is read back by using the retained or residual flux to induce voltages in the Read circuits.

The relationship of a fixed recording head with a magnetic recording surface is shown in Figure 3-38. Also shown is one cycle of alternating current and the resulting current flow through the coil and the flux changes on the disk surface. The current flow through the coil reverses with a change from a positive to a negative direction, causing the polarity of the recorded flux to also reverse. Data is written by this flux reversal that is, it is the change in flux that will be read back as data. This reversal generates a readback pulse. Constant current (no flux reversals) does not generate a pulse; therefore, it does not represent meaningful data. This constant current state occurs while Data Modifier Line is up.

Figure 3-39 shows the phase difference between the induced magnetic force (flux) and the resulting current while reading data off the disk.

## WRITE OPERATIONS

## General

The controller sends the Write data to the drive via the bidirectional data lines. The data passes through the receivers and is input to SERDES. SERDES converts the parallel data into the necessary serial format. Next the data goes to the Write Compensation circuits which adjusts for problems caused by variations in read data frequency. The Write Driver circuits then process the data and send it to the head for writing on the disk. Figure 3-40 shows the Write circuits

## Basic Write Sequence

The basic write operation sequencing is as follows :

1. Controller places command on the Command Code Lines and raises Device Command Strobe and Serial Write Out.
2. The drive decodes the command and verifies that it is safe to write (not Pack Unsafe and heads are On Cylinder). If it is safe, the write logic is enabled.
3. The drive raises Serial Read In. The controller drops Serial Write Out, but data must remain stable on the bidirectional data lines until the drive drops Serial Read In.
4. Data is loaded from the bidirectional data lines into SERDES.

mote: relative head to surface motion, recording (write operation)

Figure 3-38. Magnetic Recording


Figure 3-39. Read Current

5. The track servo circuit is generating the 806 kHz machine clock. This clock is generated by dibits read from the servo track; therefore, variations in spindle motor speeds do not affect recording density. This basic clock is used to form the 6.44 MRz write clock.
6. The write clock controls a counter which, in turn, controls the shift register function of SERDES. Data is shifted out of SERDes (deserialized) with each write clock so that the information on Bidirectional Data Line 27 is written first and 20 written last.
7. Data shifted from SERDES, which is NRZ (Non-Return to zero), is converted to MFM. Actual phasing to compensate for peak shifting during subsequent read operations is controlled by a write compensation circuit.
8. If the controller has raised the Data Modifier Line, SERDES is ignored and all writing is inhibited.
9. The MFM pulses are sent to the write driver circuits which supply the necessary current to the write coil.
10. When a byte has been written, 8 Bits Processed comes up to load the next byte from the bidirectional data lines and to drop Serial Read In.

The Serial Write Out/Serial Read In sequencing continues for each byte written. Device Command Strobe and the command must remain up until the write operation is to be terminated.

## Serdes Serializer

In order to understand the operation of this circuit, assume that the drive is in the process of writing byte "N". Serial Read In is up, Serial Write Out is down, and data for byte " $\mathrm{N}+1$ " is on the bidirectional data lines. See Figure 3-41. Sequencing is then as follows:

- Data is shifted from SERDES to the write compensation circuit with the leading edge of each write clock. Refer to Write Compensation for information on the NR2/MFM conversion process.
- As data is shifted, the bit counter is also incrementing with write clock. It normally begins counting from a count of one; however, it starts from zero when Write is first enabled (writing the zeros gap).
- The bit counter contains a value of 8 as the last bit from byte "N" (originating from Dl7 of the bidirectional data lines) is being shifted out.
- If SRI had already dropped, or if Serial Write Out was still up, Transfer Timing Error (bit 21 of DS1) raises FLT to the controller.
- At the trailing edge of the next write clock:
a. Data for byte " $\mathrm{N}+1$ " is loaded into SERDES from the bidirectional data lines.
b. The Write SRI-B PF toggles to the cleared state. Two flip-flops, Write SRI-A and Write SRI-B, are connected to an exclusive-OR gate. They raise Serial Read In whenever they are in opposite states. As each byte is processed, toggiing SRI-A raise Serial Read In while toggling SRI-B drops Serial Read In. In this case, with Write SRI-A and Write SRI-B both down, Serial Read In is dropped to the controller. This signifies to the controller that it may remove data from the bidirectional datalines.
c. The bit counter is reset to one.
- The data in SERDES is shifted out, one at a time, with each clock.
- While byte " $\mathrm{N}+1$ " is being written, the controller places data for byte " $\mathrm{N}+2$ " on the bidirectional data lines. It then raises Serial Write Out.
- With Serial write Out up, Write SRI-A FF toggles to the set state. The requirements of the exclusive-OR gate are again met to raise Serial Read In. If Serial Write Out is late ( 8 Bits Processed generated before the controller gets around to raising Serial Write Out. Transfer Timing Error is generated.
- The controller drops Serial Write Out in response to the rise of Serial Read In. Parity of the data on the bidirectional data lines is checked at this time. If parity is not odd, Data Parity Error (bit 20 of DSI) is generated to raise FLT to the controller. This error does not directly stop the writing process. The drive logic will continue to write garbage until the controller drops Device Command Strobe. Parity bits, although checked by the I/O, are not written on the pack.


Figure 3-41. Write Timing

- The writing process continues uninterrupted until the controller drops Device Comand Strobe to terminate the operation. This drops Write Enable within the drive to prevent the write driver chain from writing flux transitions on the pack. SERDES and the bit counter are forcibly reset to zero.


## Write Compensation

## General

The write compensation circuit converts the NRI data from SERDES into MFM data while compensating for a read condition known as peak shift.

## Peak Shift

Peak shift is an effect that degrades read accuracy by distorting the waveform. This condition exists because no electromechanical device can be perfect.

In an ideal world, the flux reversal comand by the write toggle would be instantaneous as shown in the Ideal Recording portion of Figure 3-42. Current would immediately switch from one polarity to the other. As a result, the distance required to complete the magnetic flux reversal on the disk would be so narrow as to be insignificant; the readback pulse would then also be extremely narrow. To carry the principle one step further, the heads would be an infinitesimal distance from the disk surface. Therefore, the head gap itself could be made very small for two reasons:

- The magnetic field strength increases as the head moves closer to the disk.
- The head gap must be wide enough to intersect sufficient lines of force from the magnetic flux field to generate a signal. The weaker the signal, the wider the gap must be. With the substantial flux amplitude gained by having the head very close to the disk surface, a very small head gap can generate a reliable readback voltage.

But in the real world, it takes time for the current to reverse; the flux change is not instantaneous. Furthermore, heads must fly a finite distance from the disk. The greater the distance between the head and the oxide, the wider the head gap must be. The resulting readback voltage is more or less sinusoidal with peaks less easily defined in time or amplitude.

With modern high frequency recording techniques, adjacent ciock/data pulses are close enough to interact with each other. This is
shown in Figure 3-43. Peak shift is the result of the interaction of the pulses. Because two pulses tend to have a portion of their individual signals superimpose themselves on each other, the actual readback voltage is the algebraic sumation of the pulses.

When all "I's" or all "O's" are being recorded, the data frequency is constant: pulses are spaced apart by one cell (155 nanoseconds). As a result, the pulse spacing causes the overlap errors to be equal and opposite. The negative-going and posi-tive-going errors cancel each other. This is the "zero peak shift" condition of the "...lll..." pattern in Figure 3-43.

Peak shift occurs when there is a change in frequency. A "011" pattern represents a frequency increase since there is a delay of about 1.5 cell between the 01 m and only 1.0 cell between the " 11 ". As a result, the squeezing of the cells causes the mathematical average (the actual readback voltage) to shift the apparent peak to the left. This is early peak shift.

On the other hand, a " 10 " pattern represents a frequency decrease since a pulse is not written at all in the second cell. In addition, a "001" pattern is also a frequency decrease since there is a 1.0 cell interval between the first two bits and 1.5 cell between the last two bits.

The examples listed above examined only two or three bits without regard to the preceding or subsequent data pattern. The actual combinations are somewhat more complex. The drive logic examines and defines the following patterns:

Pattern	Frequency Chang
	Increasing
1000	
10	Increasing
001	Decreasing
	Decreasing

Any data pattern will have considerable overlapping of the data pattern frequency changes. Consider the overlap of these eight bits:



READBACK VOLTAGE


Figure 3-42. Write Irregularity

Any of these peak shift conditions can cause errors during subsequent read operations. The drive compensates for these known errors by intentionally writing a pulse earlier or later than nominal. This function is accomplished by the write compensation circuit.

## Write Compensation Circuit

The write compensation circuit (Figure 3-44) converts NRZ data into MFM data while intentionally shifting the pulses in the data cell to compensate for peak shift.

Data from SERDES enters a decode shift register (R756 through K750) in NR2 format. It is shifted through the register by a two-phase clock signal consisting of Write Clock and its inversion, Not Write Clock. As the data shifts through the register, the register contents are examined by a series of gates to analyze the bit pattern. These gates determine if the incoming data frequency is constant (00000 or 1illil), increasing (011 or 1000), or decreasing (10 or 001). The timing of the write data pulses applied to the Write Driver Circuits (Figure 3-40) are adjusted to compensate for the frequency shift:

- If frequency is constant, there will be no peak shift. An MFM Clock pulse (pulse at beginning of a cell) is generated while Write Clock is down; MFM Datapulse (pulse at middle of a cell) is generated while Write Clock is up. The pulse, clock or data, is intentionally delayed by 10 nanoseconds and is applied to the On Time Gate. This pulse is the write data pulse applied to the write toggle.
- If frequency is decreasing, the apparent readback peak (Figure 3-43) would occur later than nomal. To compensate for this, the data is written earlier than nominal. Early Gate is enabled. This causes clock/data to be written concurrently with Write Clock or Not Write clock; the 10 nanosecond delay is bypassed.
- If frequency is increasing, apparent readback peak would occur earlier than normal. Therefore, data is intentionally written later than nominal. Late Gate is enabled. This causes the write data to be written 20 nanoseconds after the beginning of the cell.


Figure 3-43. Peak Shift


[^0]Figure 3-44. Write Compensation Circuit

As Figure 3-44 indicates, MFM Clock is written whenever there is a decode of 00 along with Not Write Clock. The clock is advanced or retarded if there is a simultaneous early or late decode (1000, etc.). The MFM Data signal is written whenever there is a decode of "I" along with Write clock being trua. Data may also be on time, advanced, or re tarded.

## Write Driver Circuits

The compensated Write data is sent to the Write Drive Circuits where it is applied to a differential receiver. The receiver is enabled by the Write Enable signal which is true only when the drive logic indicates a safe write condition. If this signal is true the data passes through the receiver to the Write Toggle FF.

The output of the Write Toggle FF is processed by a symetry restore circuit. This discrete circuit (QEL) restores symetry that may have been lost when the data was transmitted from the Write Compensation circuits (located in the logic chassis) to the driver circuits (located on the check). Refer to section 5 of this manual (Discrete Circuits) for a description of this circuit.

The magnitude of the Write current flowing in the heads is controlled as a function of cylinder address (this is referred to as Write Current Zoning). These zones are as follows:

- 0-127
- 128-255
- 256-511
- 512-1022

Write current amplitude is reduced at each zone boundary from outer to inner tracks.

Figure 3-45 shows the Write Driver circuits and its associated timing.

## Writing Address Marks

The drive writes an address mark (AM) while Data Modifier Line is up. This prevents the output of the write compensation circuit (Figure 3-44) from being applied to the write driver chain (Figure 3-40). Current cartinues to flow through the write coil but, since there is no current reversal, no flux transitions occur. Therefore, the read circuit cannot recognize the constant flux as usable information.

The controller raises Data Modifier Line while the drive is writing the zeros gap. At the next 8 Bits processed (a byte has just been written):

1. Not Address Mark Enable FF Clears (Figure 3-44). All MFM clock/data pulses are unconditionally inhibited.
2. Fault Enable A FF sets, inhibiting Enable Fault (Figure 3-36). During normal write operations, a lack of write driver transitions will set Current fault. This condition is occurring during Data Modifier line but it is normal. The fault detection must, therefore, be disabled.

Data continues to be inhibited as long as Data Modifier Line remains up. The Serial Read In/Serial Write Out dialog continues, data is "accepted" into SERDES, but it is not gated to the write driver.

After the first AM byte is written, 8 Bits processed sets Fault Inhibit B FF. Then, Fault Inhibit A FF clears at the next 8 Bits Processed; Not Address Mark Enable FF sets to again permit data to be written. Fault Inhibit B FF waits for one more byte; therefore, a Current Fault cannot be generated during the first byte (zeros) following the AM bytes. Current Fault is generated if Data Modifier Line is up for more than three bytes.

## Write Fault Detection

Extensive monitoring circuits warn the controller of data transfer errors or hardware failures. Either condition will raise FLT to the controller. Hardware failures will set the Pack Unsafe FF: the CHECX indicator lights and writing is terminated.

Refer to Table 3-3 (Commands) for an explanation of these error conditions. Events that can be considered as related to write errors are:

Byte	$\frac{\text { Bit }}{c}$	Name
DS1	$2^{0}$	Data Parity Error
DS1	$2^{1}$	Transfer Timing Error
DS1	$2^{2}$	Protect Violation
DS1	$2^{4}$	State Violation
DS1	$2^{7}$	Command Parity Error
DS2	$2^{4}$	No or Multiple Head   Selection
DS2	$2^{5}$	Loss of AC Write Current
DS2	$2^{6}$	Write Current Without   Write Command
DS2	$2^{7}$	Write Command Without   Write Current
DS5	$2^{0}$	Write and Read



Figure 3-45. Write Driver Circuits Block Diagram \& Timing

## read operations

## General

The read mode of operation is initiated when the drive receives a read command and the desired head is selected. The head then detects any flux transitions on the pack and converts them into an analog voltage. This analog signal (representing written data on the pack) is amplified and applied to the AGC amplifier. This output is applied to the Data Latch where it is converted to MFM data. It is then sent to the Phase Lock Oscillator which syncronizes itself to the data frequency and provides sync information to the Data Seperator. The Data seperator converts the data pulses from the Data latch into clock and data signals. The Serdes assembles the serial (bit) information into parallel (byte) information for transfer to the controller. A maximum of 30 ms is required from the application of read data for the read circuits (Figure 3-46) to stabilize to a steady state condition.

## Basic Read Sequence

The basic read operation for a Read command is as follows:

1. Controller places command on the Command Code Lines and raises Device Command Strobe.
2. The drive decodes the command and verifies that it is safe to read (not Pack Unsafe and heads are on Cylinder). If it is safe, the read logic is enabled.
3. Analog data read by the head is amplified and shaped. The signal is then analyzed by the read detection data latch to find flux transitions. Each transition generates a data pulse. In this context, however, data pulse means only that there was a transition: whether it is a data ("1") or clock pulse is not yet defined.
4. A phase lock oscillator synchronizes itself with the data pulses frequency and phase. During the first 5 microseconds following the rise of Read Gate, a signal called Fast Start acts as a booster pulse to help the oscillator to quickly attain synchronization.
5. The data separator receives inputs from the phase lock oscillator and the data pulses. It separates the clock "data" pulses from the true data "data" pulses. The clock pulses are used as the internal read clock. The data pulses are applied to SERDES.
6. Data is loaded into SERDES and shifted through SERDES by the read clock. The bit counter is disabled and no data is transferred to the controller. When SERDES Contains hex 19 (0001 1001) of the sync Byte, Data Good is generated. This means that a valid field is approaching. The bit counter starts counting. Data Good cannot come up during Fast Start.
7. With Data Good up, the bit counter starts counting.
8. When the bit counter equals 8, SERDES contains the hex 19 of the ID Byte. This byte is loaded into the Byte Register and the drive raises Serial Read In. The Byte Register acts as a buffer to hold the assembled byte for the controller since the first bits of the next byte are already entering SERDES. The output of the Byte Register is applied to the multiplexer for transmission to the controller via the bidirectional data lines.
9. Serial Read In drops when the controller raises Serial Write Out.

The Serial Read In/Serial Write Out sequencing continues for each byte read. Device Command Strobe and the command must remain up until the read operation is.terminated.

The Read Header functions identically to Read except that hex 19 cannot set Data Good prior to the sensing of an address mark. Moststeps of the basic Read function apply; however. Fast Start does not rise with Read Gate (step 4). In addition, replace step 6 with the following:

1. Data is loaded into SERDES and shifted through SERDES by the read clock. The bit counter is disabled and no data is transferred to the controller.
2. When at least 2.5 microseconds of missing flux transitions have passed (this will occur only during the AM bytes of missing clock/data), and when the first pulse of the "O" bit is sensed (this is the first bit of the 12 bytes of zeros separating the AM bytes from the Sync Byte), a 5-usec Fast Start timeout is initiated. Data Good cannot come up during Fast Start.
3. After Fast Start times out, the read logic begins looking for hex 19 in SERDES. When the Sync Byte is detected, Data Good comes up.
4. The remaining Read steps apply without change.


Figure 3-46. Read Circuit

## Read Circuits

## General

The read circuits (Figure 3-46) process the read data and are described in the following discussion.

## Preamplifier

A read preamplifier provides preliminary amplification of the voltage induced in the read coil. This voltage is induced in the read head by the magnetic field stored in the disk oxide. The frequency of the analog voltage is proportional to the magnetic field flux transitions generated while writing. The preamplifier is enabled whenever the positioner is On Cylinder (applicable head is selected) and the unit is not writing. Note that a Read or Read Header command is not needed at this point.

AGC Amplitude Stage
The analog read data is applied to a low pass filter in the AGC amplifier stage (Fig-
ure 3-47). This filter attenuates the high unwanted frequencies (noise) in the read data signal and provides a linear phase response over the read data frequencies.

The output of the filter is applied to the AGC amplifier (A851). The AGC amplifier provides a relatively constant output from a wide amplifier range on the input. This is accomplished by the AGC Control circuit which varies the gain of the AGC amplifier as the output varies.

The output of the AGC amplifier is amplified and differentiated and then applied to the Data Latch and Level Detection circuits.

Level Detector and Time Constant Control
The Level Detector and Time Constant Control circuit contains an Amplitude Enable pulse generator, a data detector to detect the address mark gap, and a circuit to control the time constants of the ACC amplifier and level detector.


The output of the differentiator (Figure 3-48), is applied to a filter (A878) which attenuates the third harmonic of the low frequency Read signal. This effectively lowers the resolution of the signal.

The output of the filter is amplified and then rectified. A capacitor is charged to the average dc level of the rectified signal. This voltage is then applied to the reference input of a comparator (A886) and the rectified signal to the other input. When the rectified signal becomes more positive than the reference signal, the comparator switches. This produces a squarewave output that is used as an Amplitude Enable signal to reject noise and spurious pulses in the address gap area. The only time this output is used is during a Search Address Mark operation.

The Data Detector consists of a comparator (A883) and a retriggerable single shot delay (x884). The reference voltage on the comparator is a fixed dc voltage of about -0.46 v . Each time the single voltage crosses the reference, the single shot is retriggered. The single shot will not time out as long as data above the fixed reference is being read. When a gap is reached, the single shot is retriggered by the last bit preceding the gap, times out for 670 nsec , then changes state to indicate an absence of data (Figure 3-48). The single shot is retriggered by the first data bit following the gap and by each succeeding bit, indicating that data is again present.

The Time Constant Control circuit switches the time constants of the AGC Amplifier and Level Detection circuits. Switching from a short time constant to a long time constant avoids responding to the loss of amplitude in the address mark gap area. Figure 3-49 shows block and timing diagrams of the Time Constant Control circuit with the address mark gap in three different positions.

The Level Detector circuit is normally in a short time constant of 5 usec in order to rapidly respond to changes in signal amplitude to maintain adequate margin in the amplitude enable function. The 5 usec time is long enough so that the level detector does not respond to drop outs caused by disk surface bad spots. During the address mark gap, the level detector is switched to a time constant of $100 \mu \mathrm{sec}$. This prevents a shift in the comparator reference level so noise in the gap area does not produce false enable pulses.

The AGC amplifier is allowed 25 usec to stabilize from the Head Select and Read Gate transients. A head may be selected and Read Gate can come up any time during a revolution of the disk, so it is possible that the address mark gap could occur during the 25 usec stabilizing period. The AGC time con-
stant is held in the short condition for the first 10 usec following Read Gate. If a gap occurs between 10 and $25 \mu s e c$, the AGC amplifier is switched to a long time constant of 200 usec to maintain a relatively constant gain level through the gap area.

## Data Latch Circuit

The Data Latch circuit (Figure 3-50) consists of a low pass filter for the low resolution channel and zero-cross detectors and pulse generators for both the high and low resolution channels.

The Read Data from the differentiator is applied directly to the zero-cross detector in the high resolution channel and through the low pass filter to the zero-cross detector in the low resolution channel. As mentioned before, the filter lowers the resolution of the Read signal by attenuating the third harmonic of the signal.

The pulse generators (N882 and N877) produce pulses for each zero-crossing of the data. By appropriate delays, the low channel pulse (IN882) enables the $K$ input to the output FF (K873) in time for the high channel puise (N877) to clear it. A 50 nsec output pulse is formed when the delayed feedback resets the FF. The leading edge of the output pulse retains the timing of the high resolution channel. Note that the propagation time of the various gates must be considered to enable the $K$ input at the proper time. Whenever the frequency of the read back data is decreasing, there is a camels hump in the differentiated output. (See Figure 3-48). With sufficient frequency change and high resolution heads, the differentiated signal may actually pass through zero. The high resolution channel can react to these extraneous zero-crossing pulses; the low cannot because of the low pass filter. Therefore, they are ignored by the output FF because it cannot be cleared unless the low channel $K$ enable is present.

The rejection of spurious pulses in the address mark gap is accomplished by ANDing the high channel pulses with an enable pulse. During the search mode, the Amplitude Enable pulses are passed through and AnDed with the high channel zero crossover pulses. When a zero crossover puise corresponds to an enable pulse, it is passed through to reset the Output FF. There are noise created zero-crossover pulses in the address mark gap area. However, there are no enable pulses, so the reset input to the Output $F F$ is disabled. Noise pulses in the low resolution channel are present at the set input of the FF, but are ignored because the FF is not reset during the gap period.


Figure 3-48. Level Detection Circuit


Figure 3-49. Time Constant Control Circuit


Figure 3-50. Data Latch Circuit

The Search Address Mark signal drops at the end of the gap. This applies a constant enable to the high resolution channel and all zero-cross pulses get through to the FF. This terminates the Amplitude Enable function and removes the Level Detector as a possible source of error during the actual reading of data.

## Phase Lock Oscillator Circuit

The phase lock oscillator (PLO) circuit (Figure 3-51) provides a clock signal to the data separator so that it may determine if the data pulses from the data latch are MFM Clock or MFM Data. To do this, the PLO must synchronize its frequency to the frequency of the data coming from the disk.

PLO frequency is controlled by the Comparator FF. Basically, the FF is set by data and cleared by the oscillator pulses. Therefore, if the oscillator is too slow, the FF will be set more than it is cleared because data frequency exceeds oscillator frequency. Frequency synchronization is attained when data and oscillator frequencies are identical. The FF is then set $50 \%$ of the time. The nominal data frequency is 6.44 MHz with the oscillator running at twice the data frequency ( 12.88 MHz ).

The $F F$ is set by one of three signals:

1. DS, which is Early Data.
2. $X$, which is delayed DS.
3. Y Enable, which is used when data will not be available in time to set the Comparator FF.

The oscillator output is divided into four 1/4-cell phases: P1, P2, P3, and P4. The $X$ or DS pulses can set the FF only if they occur in the P1, P2, or P3 periods. Except in cases of abnormal peak shift, the Comparator FF is set during P1 or P2. The FF is unconditionally cleared at P4 time.

In a pattern of all "1's", DS sets the FF. An all "0's" pattern causes it to be set by X pulses. Synchronization shifts between $D S$ and $X$ pulses depending upon the data pattern being read. During a data pattern in which DS or X will not occur during P1 or P2 time (for example, in a " 10 " pattern) $Y$ Enable acts as a fake data pulse to set the FF to maintain reasonable, frequency control.

The Comparator FF output is integrated and used as a control voltage to the voltagecontrolled oscillator in the pio. With the FF set, the oscillator tends to speed up; with the FF cleared, it slows down. The multivibrator output is, therefore, not completely symmetrical. A divide-by-two
flip-flop ( $\theta / 2$ ) provides the required symmetrical output by triggering off of the neg-ative-going edge of the pLO output.

Note that the PLO functions as long as the data latch is operational. Only the Read Enable signal need be up.

## Fast Start

Fast start increases loop gain to assist in rapid frequency synchronization. This function is enabled by a Read command. Note that Read Header does not directly provide Fast Start. With delay y806 timing out for 5 microseconds, the following events occur:

1. Greater current is provided to a circuit internal to the control voltage generator. The control voltage to the multivibrator, which is normally 0.65 v peak-to-peak, is doubled.
2. DS and $Y$ Enable pulses are inhibited. Only X pulses are presented to the Comparator FF. This ensures correct phase synchronization. Fast Start must be enabled only during a sync pattern of zeros.
3. P4 pulses are narrowed to about 1/8-cell time to permit incoming data to dominate the Comparator FF.
4. Fast Start is applied to SERDES control to control Data Good.

Delay $Y 808$ is used for address mark operations. With Read Enable up, this single-shot remains in the continuously-triggered condition. A Read command cannot generate a Resync Pulse to initiate Fast Start. As explained in the SERDES discussion, data cannot be recognized until the trailing edge of Fast Start. However, no flux transitions occur during the address mark gap; therefore, there are no $X$ or DS pulses. Y808 times out if about two bytes (each byte equals about 1.24 microseconds) occur without $X$ or DS pulses. The first "O" of the first zeros byte retriggers Y808; Y806 fires to initiate Fast Start.

## Data Separator Circuit

The Data Separator circuit (Figure 3-52) separates the data "1's" from the clock. The circuit-consists of the Data Window FF, Data Sense FF, Data and Clock register FFs, the Data Strobe circuit, and various delays and gates.

The data window, Shift pulses, and Reset pulses are derived from the $\theta / 2$ output of the Phase Lock Oscillator circuit. The data window width is adjustable for maximum data discrimination by means of a tapped delay


83318200 A

line. The Data Strobe pulses are used to toggle the Data Sense FF. The nominal strobe is a delayed data pulse. The strobe's relative position with respect to the data window is adjusted for maximum data recovery. A " 1 " is reoognized-if strbbe occurs while the Data Window $F F$ is set. Early or late strobes may be varied from the nominal strobe time by a command from the controller (Advance or Retard Read Check) or the setting of a switch on the logic chassis maintenance panel. This feature allows recovery of data which may be out of position on the disk relative to the average data position.

The shift pulses are narrow pulses which occur once each cell time. These pulses initialize the Data Sense $F F$ and shift the contents of the Data Sense FF into the Data Register FF. The Shift pulses also initialize the Clock register FF.

The Reset pulses also occur once per cell period. They initialize the Data Register FF and toggle the Clock Register FF. As shown in Figure 3-52), the Shift and Reset pulses control the timing of the output waveforms of the data separator circuit. Note that the window is delayed beyond the Shift pulse so that the Data Sense FF is always ready to accept a Data Strobe pulse.

The Data Sense $F F$ is toggled whenever a Data Strobe occurs during the data window time (Data window FF set) of a cell period. The next Shift pulse would then transfer the data "1" from the Data Sense FF to the Data register FF. Note in Figure 3-52 that the data " 1 " is actually transmitted to SERDES almost one cell time after it is detected.

## SERDES Deserializer

SERDES (figure 3-53) is used during Read operations to convert serial information read from the disk into parallel (byte) information for transmission to the controller.

## Serdes During Read (RDX)

In order to understand the operation of this circuit, assume that Read Enable is up (On Cylinder and Not Write) and that the drive/ controller interface is not yet communicating. The earlier stages of the read circuit are operational: data pulses are available from the data latch circuit and the pLo is providing read clock. SERDES itself is inhibited because Read Gate is down. The bit counter contains a count of zero.

The heads are sensing the bytes of zeros in the inter-record gap and the controller raises Read and Device Command Strobe Sequencing is then as follows:

1. Read Gate is generated.
2. The rise of Device Command Strobe drops the bit counter reset. The bit counter counts to one. Then, because of Count Inhibit, it is frozen.
3. Data from the data separator circuit triggers single shot A625. Data is loaded into SERDES at the trailing edge of each read clock from the data separator circuit.

NOTE
The remaining steps cannot occur for at least 5 microseconds following the rise of Read. This is the Fast Start timeout to allow full frequency/phase synchronization.
4. After 5 microseconds, Fast Start drops and the Data Good Enable FF sets. Note that Search Address Mark is NOT enabled.
5. The zeros pattern continues to be loaded into SERDES.
6. Eventually, the sync byte of hexadecimal 19 (0001 1001) begins to enter SERDES. See Figure 3-54 for timing.
7. When the sync byte is fully loaded, the Hex 19 Detect FF sets.
8. The Data Good FF sets. Count Inhibit drops.
9. The bit counter starts counting from one as the sync byte is shifted out of SERDES. This byte cannot enter the byte register. The ID byte (also hex 19) begins to enter SERDES.
10. When the counter reaches a count of eight, and at the trailing edge of read clock:
a. The ID byte is transferred from Serons to the byte register.
b. The first bit of the first data byte is loaded into SERDES. (This does not affect the byte transferred to the byte register because SERDES contains edge-triggered devices. The ID byte is transferred out before the next incoming data bit can be reflected in the SERDES 2 output.)
c. The bit counter is reset to one.
d. The output of the byte register is applied to the bidirectional data lines via the multiplexer as long as Read Gate is up. The data on these lines has no validity with Serial



Figure 3-54. Read Timing

Read. In down. Whenever the byte register contains an even number of " 1 " data bits, a parity generator automatically turns on DIP. Odd parity is, therefore, checked. Parity is not checked at the drive to ensure that there is not a Data Parity Error.
e. The 8 Bits Processed FF sets. This sets the Read SRI FF.
f. Serial Read In is raised to the controller to indicate that data (ID byte) on the bidirectional data lines is valid.
11. When the controller accepts the information, it raises Serial Write Out.
12. The drive drops Serial Read In until the next 8 Bits Processed.
13. The Serial Read In/Serial Write Out dialog continues without interruption until the controller drops DCS.

Note that the first byte, the sync byte, is recognized by SERDES but does not generate SRI. Only the ID byte and all subsequent data bytes are transferred.

If the controller is late in raising Serial Write Out another data byte could be loaded into the byte register before the resident byte is accepted. If this happens, Transfer Timing Error (bit 21 of DSI) is generated to raise FLT. This FLT does not, in itself, terminate the read operation.

Serdes During A Read Header (RDH)
A Read Header (RDH) command is identical to Read, except that data cannot be returned to the controller until an address mark is detected prior to the sync byte.

Except as specified herein, SERDES works in the identical manner for both Read and Read Header.

Assume that the read head is reading the in-ter-record gap of zeros. The controller raises Read Header and Device Command Strobe. Sequencing is as follows:

1. Because Read Header does not generate the Resync Pulse used to initiate Fast Start (Figure 3-51) that signal is not available. (It timed out following the last Read Enable).
2. The Data Good Enable FF remains reset since there is no Not Fast Start edge to toggle the FF. Data Good cannot set if the controller inadvertently raised RDH preceding a record field without an address mark.
3. With both the Data Good FF and Data Good Enable FF cleared. Search Address Mark is raised to the level Time Constant Control circuit (Figure 3-49).
4. Nothing of further consequence happens until the address mark gap (transitionless area) is sensed. Delay Y808 (Figure 3-51) can then time out.
5. When the first MFM Clock of the sync field is sensed, the resulting $X$ pulse retriggers Y808 which, in turn, triggers Fast Start single shot Y806. Fast Start is up for 5 microseconds.
6. With Fast Start up, Search Address Mark is disabled.
7. After about 4 bytes of the 12 byte sync field (all zeros), Fast Start drops.
8. The Data Good Enable FF sets to permit the Data Good FF to set when the hex 19 of the sync byte is loaded into SERDES.

The remaining operation of Read Header is identical to the Read operation already explained.

## SENSE OPERATIONS

## GENERAL

Sense operations permit the controller to determine drive status.

## SUMMING STATUS REQUEST (SSR)

The SSR command causes the transfer of one byte of data from the drive to the controller. This command does not require a previous Seize command. It is decoded directly off of the command lines without passing through the normal command decode logic. The only requirement is that the drive be online. The meanings of each bit in the SSR dialog are explained in Table 3-4 (Commands).

Two separate Summary Status Registers are provided within the drive: one for each controller. Current status is loaded from the logic into the applicable register when the SSR command is decoded. The register is gated to the DLI transmitters followed by a Serial Read In to indicate that the data is valid.

SSR status may also be determined during maintenance by setting the DISPLAY SELECT switch on the maintenance panel to SSR. This gates the status information (while bypassing the Summary Status Register) to the display indicators. Bit $2^{8}$ (not used), bit $2^{7}$ (Device Reserved), and bit 26 (Device Seized) indicators are always off. Data placed on the bidirectional data lines is applied to
the maintenance panel indicators and is theoretically available. However, except during maintenance, the signals are not up long enough for the LED indicators to react.

## fault detection

The drive contains extensive logic to monitor its internal operations and the DLI dialog. If any critical component or functions operate outside of their required parameters,: the malfunction is defined as a fault. This raises the FLT line to the controller.

There are two types of fault. Device Fault (SSR bit 2 ${ }^{\text {I }}$ ) indicates an internal hardware failure. A simplified illustration of circuits used to generate this fault is provided by Figure 3-55. Refer to the applicable detailed operation theory (seeks, etc.) for further information. DLI Error (SSR bit 23) indicates that the normal controller/ drive data transfer is erroneous. See Figure 3-56 for the simplified logic; refer to Comand Operations for additional information.

## Detailed Status Bytes (DSB)

Up to five bytes of additional status information may be obtained by means of the DSI through DS5 commands (tags 29 through 20). These bytes further define status to indicate the cause of a fault or other status data. These commands require a successful Seize sequence. Status bytes and their bit meanings are defined in Table 3-4.

When an error occurs, the corresponding DSB flip-flop is set to raise FLT and to store the information. Even through the cause of the fault may be removed, the status will continue to be stored until it is cleared by either the specific DS- command or by a Device Initialize signal.

Certain errors require that the cause of the error be removed. For example, Seek Incomplete (DS3 bit 2 ) requires a DS3 command to drop the status. However, the internal malfunction must be cleared by prior Recalibrate command. In this case, DS3 will not fully reset the DS3 status bit: it is immediately set again by Seek Incomplete if there has not been a Recalibrate or its equivalent comand.

DSB bits specified as status, (Heads Retracted, etc.), do not set DSB flip-flops. Current status is examined only while the command is being executed. The status itself remains unaffected.

## DIAGNOSTIC OPERATIONS

## GENERAL

Diagnostic operations permit the controller to check certain elements of the seek, angular position, and write circuits. See Figure 3-57.

## DIAGNOSTIC COMMANDS

The drive enters the diagnostic mode when it is Online, seized, and has received a Set Diagnostic Mode (SDM) or Set Diagnostic Escape (SDE) command. Either command sets bit 20 of the Sumary Status Register, SDM itself has no further effect on drive operations. The SDE comand conditions the drive so that it can accept an additional command set not available during normal operations. SDM need not precede SDE. For further information on diagnostic operations, refer to the following discussions earlier in this section.

- Comuand functions are listed in Table 3-3.
- A list of Test and Diagnostic Commands is provided in the Device Level Interface portion.
- Angular Position In and Increment Sector Counter comands are in the Sector Circuit explanation.
- Fault conditions generated by invalid commands are explained in Sense Operations.
- Write Operations portion provides theory on the write driver logic.
The drive is released from the diagnostic mode if the controller issues a Reset Diagnostic Mode (RDM) or Device Initialize (DIN). Either command also initiates an automatic RTZS sequence.


## WRITE TEST DIAGNOSTICS

The write test diagnostics (Write Test and Write Test Check) check the write portion of SERDES and the write toggle. A typical sequence of operations would be as follows:

## NOTE

Sequencing is for reference only. Actual sequencing or data patterns may differ from this explanation.

1. Controller issues Set Diagnostic Escape.
2. Controller issues Write Test command. This enables the normal write circuitry. The normal Serial Read In/Serial Write Out dialog explained in Write Operations begins.
3. Controller writes a selected number of bytes with a 10101010 pattern.
a. Data is processed by SERDES as it does during a normal Write command. As the NRZ data leaves SERDES, the bit toggling is checked by one-shot A676. It must receive a "1" at least once each 800 nanoseconds. Since the data pattern (10101010) normally creates toggles, SERDES is malfunctioning if the one-shot times out. This sets Not NRZ Toggle FF which, in turn, sets the NRZ Fault FF. See step 5.
4. Controller raises Data Modifier Line inhibit MFM clock/data writing.
a. Fault Inhibit A and Fault Inhibit B flip-flops set. They inhibit Current Fault FF (DS2 bit 25) as they do during regular address mark operations.
b. Lack of write driver transitions generates a Current Fault. Although the Current Fault FF is inhibited, the fault is still indicated internally. If the fault is not generated (hardware error), Write Test Current Fault FF sets.
5. Controller drops Write Test and raises Write Test Check.
a. If NRZ Fault (error condition) occurred in step 5, bit 20 of the bidirectional data lines is true.
b. If a Current Fault did not occur in step 4, bit 21 of the bidirectional data lines is true.

Figure 3-55. Device Fault Logic


Figure 3-56. DLI Fault Logic


Figure 3-57. Diagnostic Mode Logic
.
.

# Mass Storage Unit 

$$
\overline{=}
$$

MAGNETIC
PERIPHERALS, INC.

# MAGNETIC PERIPHERALS ${ }^{\circledR}$ <br> DISK STORAGE UNIT <br> BR3C9 <br> BR3E4 <br> BR3E5 

## PARTS DATA

Volume 2 of 2

## REVISION RECORD

REVISION DESCRIPTION

A	Manual released. Engineering Change orders incorporated in manual: PE35322B,
(8-22-75)	PE35745B, PE35674A, PE35871, PE39278B, PE39306, PE39309, PE39312, PE39319, PE39324,
	PE39339, PE39351, PE39354, PE39358, PE39365C, PE39367, PE39368, PE39369, PE39406A.
B	Manual updated to incorporate Enqineering Change Orders: 35816A, 35856C, 39336,
(11-4-75)	39411, 39412, 39436; Field Change orders: 39411, 39436. This edition obsoletes
	all previous editions.
c	Manual updated to incorporate Engineering Change Orders: 35970, 35981, 39504.
(2-16-76)	Technical and editorial changes. This edition obsoletes all previous editions.
D	Incorporate Engineering Change Orders 39588, 47029. Document Br3E4/BR3E5.
(8-30-76)	Editorial changes.
E	Opdated to incorporate technical and editorial changes.
(1-14-77)	
F	Yanual revised to incorporate technical and editorial changes.
(5-24-77)	
G	Manual revised to incorporate technical and editorial changes.
(10-17-77)	-
E	Manual revised to incorporate Engineering Change 474128 and editorial changes..
(12-2-77)	
J	Manual revised to incorporate technical and editorial changes. This edition
(6-20-78)	obsoletes all previous editions.
K	Manual updated to incorporate Engineering Change Orders: 475090, 47624, 39875,
(1-29-79)	39869A, 39836. Technical and editorial changes. This edition obsoletes all
	previous editions.
$\Sigma$	Manual revised to incorporate Engineering Change Orders: 39860D, 39882D, 39948A,
(11-29-79)	39949, 47785A, 47782A. Technical and editorial changes. This edition obsoletes
	all previous editions.
M	Incorporate Enqineering Change Orders pe39955, PE39957, Pr47830,
(9-2-80)	PE47855, PE47859, PE47897, PE47898 and Technical changes.
N	Incorporate Engineering Change Orders PE47857, PE47956, PE47985, PE63002 and
(4-29-81)	Technical Changes.
P	Incorporate Engineering Change orders PE63134, DH01043, DH01060 and Technical
(12-7-81)	Changes.

Revision letters $I, 0, Q$ and $X$ are not used.
© 1975, 1976, 1977, 1978, 1979, 1980, 1981
Magnetic Peripherals, Inc.
Printed in the United States of America

Address comments concerning this manual to:

Magnetic Peripherals Incorporated
Technical Publications Dept.
7801 Computer Avenue
Minneapolis, Mn 55435

## MANUAL TO EQUIPMENT LEVEL CORRELATION

This manual reflects the equipment configurations listed below.

EXPLANATION: Locate the equipment type and series number, as shown on the equipment FCO log, in the list below. Immediately to the right of the series number is an FCO number. If that number and all of the numbers underneath it match all of the numbers on the equipment FCO log, then this manual accurately reflects the equipment.
This correlation sheet also applies to the following related manuals:

Publication No. 83318100	Rev. L

Publication No. $\qquad$ Rev. $\qquad$
Publication No. $\qquad$ Rev. $\qquad$


## LIST OF EFFECTIVE PAGES

Sheet_1_ of 1
Now features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

Page	REV
Cover	-
Blank	-
Title P	-
ii	P
iii	P
Blank	-
$v$	P
Blank	-
vii	$\pm$
Blank	-
ix	L
Blank	-
1	D
2	$\underline{L}$
3	1
Blank	$\stackrel{\square}{M}$
	M
6	P
7	P
Blank	-
	P
10	P
11	P
12	P
13	P
14	$\pm$
15	L
16	L
17	L
18	L
19	M
20	L
21	L
22	L
23	M
24	P
25	N
Blank	
27	P
28	N
29	M
30	L


PAGE	REV
31	M
32	M
33	P
34	1
35	I
36	$\pm$
37	M
38	L.
39	L
40	L
41	$\pm$
42	$\pm$
43	$L$
44	N
45	N
46	L
47	M
Blank	-
49	L
50	N
51	$\underline{L}$
Blank	-
53 54	N
55	${ }_{P}^{M}$
Blank	-
57	$\pm$
58	L
59	L
60	L
61	$\underline{L}$
62	I
63	I
64	$\pm$
65	L
Blank	-
67	P
Blank	-
Rtn Env	-
Blank Cover	-



PAGE	REV


PAGE	REV

1.1

## PREFACE

This manual contains illustrations and part number information. It has been prepared for customer engineers and other technical personnel directly involved with maintaining the disk storage unit (drive).

Information in this manual is applicable to all BR3C9 and BR3E4/5 disk storage units. For further information concerning the above units refer to the following manuals:

## Publication NO. <br> Title

83318100 Hardware Maintenance manual, Volume 1: Installation and Checkout, Preventive Mainte-

## Publication NO.

nance, Corrective Maintenance, Diagrams, Wire Lists.

83318200 Hardware Reference Manual General Description, Operation. Theory of Operation.

Logic Cards Manual: Key to Iogic, Integrated Circuits, Discrete Circuits, Unique Card Schematics, Card Component Layout Diagrams.

## CONTENTS

Figure	Title	Page	Figure	Title	Page
	Introduction	1	11	Actuator Assembly	36
1	Final Assembly	2	12	Pack Sensor Assembly	40
2	Main Frame Assembly	12	13	Aif Supply Assembly	44
3	I/O Panel Assenbly	14	14	Power Supply Assembly	46
4	Circuit Breaker Box Assembly	18	15	Logic Chassis Assembly	50
5	Top Cover Assembly	20	16	Component Assembly, Type 3zCN	58
6	Control Panel Assembly	22	17	Plus Voltage Regulator Assembly	60
7	Main Deck Assembly	24	18	Minus Voltage Regulator Assembly	62
8	Pack Access Cover Assembly	30	19	Sensing Board Assembly	64
9	Drive Motor and Brake Assembly	32		Card Complement	67
10	Read/Write Pin and Guide Assembly	34			

## INTRODUCTION

This manual provides the information needed to order field replaceable parts for BR3C9, BR3E4, BR3E5 Disk Storage Unit (DSU).

Information within this manual is provided by representative illustrations and their companion parts lists. The parts shown on the illustrations are assigned index numbers. These numbers cross reference the illustrations to the associated parts lists. The first illustration in the manual shows the complete DSU. Subsequent illustrations progressively break the unit down into its component parts and assemblies.

The parts lists associated with each illustration are organized in four columns:

- The Index Number column cross references the applicable entry to the associated illustration. When more than one entry is given for a particular index number, the use of the particular part is defined in the Notes column.
- The Part Number column provides the eight digit number by which a part may be ordered. In some cases the last two digits (referred to as Tab numbers) may be shown as "xx". This situation exists when an assembly (which is not normally
considered field replaceable) changes tab numbers rapidly in the course of normal factory build. If if is necessary to order an assembly which is catalogued in this manner, the actual part number can usually be found on the part number label attached to the assembly. If the actual part number cannot be determined, be sure to include on the order the series code of the machine, and a listing of all the change orders installed.
- The Description column provides the part nomenclature. This column also provides information on the relationship of parts and assemblies. This is accomplished by means of indentation within the column. An indented item is part of a previous assembly which is indented to a lesser degree.

The Notes column is used to show differences in configuration when more than one configuration of a machine is covered in the manual. This is shown by identifying a Model Level (Mod A). by identifying a machine series code and change order number (S/C 10 with PE35537), or by identifying the last two digits of the eight digit assembly part number to which the particular part applies (Tab 17).





FIGURE 1. FINAL ASSEMBLY (SEEET 2)






$\left\lvert\, \begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}\right.$	PART   NUMBER	PART DESCRIPTION	NOTES
2-	750968xx	MAIN FRAME ASSEMBLY	
1	75029300	BRACKET, FRONT PANEL	
2	10125062	SCREW, MACHINE, HEX HEAD, 10-32 x 1/2	
3	10126403	WASEER, LOCK, EXTERNAL TOOTH, 10	
4	10127142	SCREN, MACEITNE, PAN EIEAD, EHITITPS, $10-32 \times 3 / 8$	
5	10125607	WASEER, FLAT, 10	
6	40029500	BRACKET, STUD	
7	93571002	GROMYET	
8	93572001	RING, SNAP	
9	75031800	PLATE, NUT, SIDE PANEL	
10	93592240	SCREN, HEX HEAD, PNL, $10-24 \times 1 / 2$	
11	75030200	PLATE, NUT, FRONT PANEL	
12	76507400	PLATE, FRONT PANEL	
13	10126501	SCREN, MACHINE, HEX HEAD, PLATN, 1/4-20 x 5/8	
14	10125608	WASHER, FLAT, 1/4	
15	10125806	WASHER, LOCR, SPRING, 1/4	
16	75007300	BRACKET, REAR PANEL	
17	75029301	BRACKET, FRONT PANEL	
18	94303500	RECEPTACLE, CLIP-IN	
19	75007400	BRACKET, SIDE RANEL	
20	93573017	STUD ASSEMIBLY	
21	94245302	ISOLATOR, VIBRATION	
22	10127143	SCREN, MACHINE, PAN HESD, FEITKIPS, $10-32 \times 1 / 2$	
23	10126105	KASAER, LOCR, INTERANAL TOOTH, 10	
24	75040600	BRACKET, YOUNTIMG, SPRING	
25	94274140	TERYINAL, QUICR CONNECT	
26	47181700	ANGLE, CABLE CLANP	
27	94359401	HOSE, AIR, FIEXIBLE	
28	94275213	CLAMP, BOSE	
29	93573018	STUD ASSEMBLY	
30		AIR SUPRLY ASSEMBLY (SEE FIGURE 13)	
31	10126513	SCREN, MACHINE, HEX HEAD, PLATN, 5/16-18 $\times 1 / 2$	
32	10125609	WASHER, PLAIN, 5/16	
33	10126405	WASEER, LOCX, EXTERNAL TOOTH, 5/16	
34	93602322	NUP, HEX, 1/4-20	
35	75007000	SUPPORT, AIR HOSE	-
36	10127123	SCREN, MACHINE, PAN GEAD, PHITHIPS, $8-32 \times 1 / 2$	
37	10125106	NUT, HEX, 8-32	
38	10126402	WASHER, LOCR, EXTERNAL TOOTE, 8	
39 40	$760258 \times x$	FRAME, MAIN	
42	10125108	NUT, HEXAGON, 10-32	W/ CABLE GROUND - S/C 44 W/ $63134 \&$ ABOVE





FIGURE 3. I/O PANET ASSEMBLY (SHEET 2)
BR3C9J/K AND BR3E4/5E





4-506C

FIGURE 5. TOP COVER ASSEMBLY





FIGURE 7. MAIN DECK ASSEMBLY (SHEET 1 OF 2)


$\begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}$	PART NUMBER	PART DESCRIPTION	NOTES
		MAIN DECK ASSEMBLY (SHEET 1 OF 2 CONTD)	
43	10126105	WASHER, LOCK, INTERNAL TOOTH, 10	
44		R/W PIN AND GUIDE ASSEMBLY (SEE FIGURE 10)	
45	10127113	SCREW, MACHINE, PAN HEAD, PHILLIPS, 6-22 x 3/8	
46	47280100	SWITCH ASSEMBLY	
	73489400	BRACKET, MOUNTING, SWITCH	
	93786005 10127106	SCREW, MACHINE, PAN HEAD, 4-40	
	10125603	WASHERS, PLAIN, 4 .	
	10125801	WASEIERS, SPRING LOCR, 4	
47	94001126	TAPE, FOAM, GRAY BLACR, $3 / 8 \times 1 / 2$	
48	94001149	TAPE, FOAM, GRAY BLACR, $1 \times 1$	
49	76043100	TIMING MOTOR ASSEMBLY	BR3C9 MOD A,B; BR3E4/5 MOD A; S/C 32 \& BLW ONLY
49	76043101	TIMING MOTOR ASSEMBLY	BR3C9 MOD C, D; BR3E4/5
	73488504	BRUSH MOTOR ASSEMBLY	MOD B; S/C 32 \& BLW ONLY BR3C9 MOD A,B; BR3E4/5
			MOD A
	73488505	MOTOR ASSEMBLY	BR3C9 MOD C,D; BR3E4/5 MOD B
	36159808	SWITCH, PIVOT LEVER, INTEGRAL	
50 51	93592200	SCREW, HEX HEAD, 8-32 $\times 3 / 8$	
52	10126103	WASEER, LOCK, INTEERNAL TOOTH, 6	
53	94047033	WASHER, SPECIAL	
54	10126256	SCREW, MACHETE, HEX SOCKSFr, CAP HEAD, $1 / 4-20 \times 3 / 4$	
55	10125806	WASHER, LOCK, INTERANAL TOOTH, $1 / 4$	
56	10126260	SCREW, MPCHENE, HEX SOCKET, CAP HEAD, 5/16-18 $\times$ 5/8	
57	77382900	DECK HARNESS ASSEMBLY	
58	73618900	TRANSDUCER AND CONNECTOR ASSEMBLY	
59	70729304	ROD, EXTENSION	
60	72835800	STOP, SHIM	
61	94047048	WASHER, SPECIAL	
62		NOT USED	
63		NOT USED	
64 65	10125605	WASHER, FLAT, 6 ,	
65	10126505	SCREN, MACBINE, HEX HEAD, $1 / 4-20 \times 1-1 / 4$	
67	10126401	WASEER, LOCK, EXTERNAI TOOTH, 6	
68	94356902	CATCH, SPRING	
69	93660045	SCREW, PHILLIPS, 6-32 $\times 1 / 2$	
70	10125105	NUT, HEX, MACHINE, 6-32	
71	47266100	BOOT, AIR INLET	S/C $43 \&$ BELOW
71	83640800	ADAPTER, HOSE	S/C 44 \& ABOVE
72	75023500	PLATE, BOOT SUPPORT	S/C $43 \&$ BELOW
72 73	$94311604$	HOSE, FLEXIBLE	S/C $44 \&$ ABOVE
73	94275216 94592106	CLAMP, HOSE	S/C   S/C   S/   $14 \%$ ABOVE
74	76579106	GASKET, SEAL	S/C $44 \&$ ABOVE
75	$\begin{aligned} & 75211300 \\ & 70590600 \end{aligned}$	HEAD ARM COMPLEMENT (IN-LINE) HEAD ARM ASSEMBLY	
	70590601   70590602   70590603   76466200	HEAD ARM ASSEMBLY   HEAD ARM ASSEMBLY HEAD ARM ASSEMBLY PLATE, CLAMP, CABLE	$\begin{aligned} & 17,18 \\ & \text { HEAD NOS: } 0,1,4,5,8,11,12 \text {, } \\ & \text { 15,16 } \\ & \text { SERVO HEAD } \\ & \text { HEAD NO: } 10 \end{aligned}$



FIGURE 7. MAIN DECK ASSEMBLY (SHEET 2)



FIGURE 8. PACK ACCESS COVER ASSEMBLY



FIGURE 9. DRIVE MOTOR AND BRAKE ASSEMBLY



FIGURE 10. R/W PIN AND GUIDE ASSEMBLY



4-1206(1)B

FIGURE 11. ACTUATOR ASSEMBLY (SHEET 1 OF 2)



4-1203(2)B

FIGURE 11. ACTUATOR ASSEMBIY (SHEET 2)









4-1611F

$\left\lvert\, \begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}\right.$	PART NUMBER	PART DESCRIPTION	NOTES
14-	773850xx	POWER SUPPLY ASSEMBLY	
	77385200	A.C. harness assembly (not illustrated)	
1	76034500	BASE, POWER SUPPLY	
2	94246002	FILTER, RFI	S/C 29 \& BELOW
2	94355401	FILTER, RFI	S/C 30 thru 40
${ }_{-2}^{2}-$	$\begin{array}{r} 94355403 \\ 47376400 \end{array}$	FILTER, RFI TRANSFORMER	S/C 40 W/47859 \& ABV   BR3C9 MOD A,B BR3E4/5 MOD A
3	47376500	TRANSFORMER	BR3C9 MOD A,B BR3E4/5 MOD A BR3C9 MOD C,D BR3E4/5 MOD B
4	47396100	TRANSEORMER	Br3C9 MOD A, B BR3E4/5 MOD A
4 5	47396200 47317900	TRANSFORMER	BR3C9 MOD C, D BR3E4/5 MOD B
6	95599101	CAPACITOR, 660 VAC	
7	95686701	CLAMP, CAPACITOR	
8	94313808	METER, HOUR	
8	94313809 94310102	METER, HOUR	BR3C9 MOD C,D BR3E4/5 MOD B
9	94310102	EXTRACTOR, FUSE	
10	75092500 94245215	COVER, COMPONENT MOUNTING	
12	94245215 73628200	CIRCUIT BREAKER, LONG DELAY	
13	95582001	BLOCK, RECTIFIER	
14	95583504	BLOCK, RECTIFIER	
15	95583505	BLOCK, RECTIFIER	
16	95654205	RECTIFIER, SILICON, 40 AMP	
17	95642602	RECTIFIER, SILICON, 12 AMP	
18	95655200	NUT, PUSH ON	
19	76026500	PANEL, SIDE, POWER SUPPLY	
20	94371301	SWITCH, SOLID STATE, 15 AMPS	
21	94371302	SWITCH, SOLID STATE, 30 AMPS	
23	73632900	COVER, POWER SUPPLY	
24	10125608	WASHER, FLAT, $1 / 4$	
25		NOT USED	
27	10125105	NUT, HEXAGON, 6-32	
27	94305530	BUSEING, SNAP	
28	10127130	SCREW, MACHINE, PAN HEAD, PRITSIPS, $10-24 \times 5 / 16$	
30	10126403 10127155	WASHER, LOCK, EXTERNAL TOOTH, 10	
31	10125806	WASHER, LOCK, SPRING, 1/4	
32	10127127	SCREW, MACHINE, PAN HEAD, PHITITPS, 8-32 $\times 1$	
33	10127105	SCREN, MACHINE, PAN HIEAD, PGITIIIPS, $4-40 \times 1 / 2$	
34	10126101	WASHER, LOCK, INTERNAL TOOTH, 4	
35	10125103	NUT, HEXAGON, 4-40	
36 37	17901516	SCREN, MACHINE, PAN HEAD, PHTITIPS, STP, 8-32 $\times$ 3/8	
38	10125606	WASHER, FLAT, 8 8 ${ }^{\text {SCREW, }}$,	
39	10126401	WASHER, LOCK, EXTERNAL TOOTH, 6 , 6 -32 $5 / 16$	
40	95655530	SCREW, SHEET METAL, 8-18 $\times 1 / 2$	
41	17901512	SCREW, SELF TPG, 6-32 $\times 3 / 4$	
42	93592158	SCREW, MACHINE, HEX HEAD, PLAIN, 6-32 $\times 1 / 4$	
43	10127124	SCREW, MACHINE, PAN HEAD, PHITITPS, $8-32 \times 5 / 8$	
44	95582501	BOOT, DOUBLE ENTRANCE	
45	$\begin{aligned} & 93419314 \\ & 94376500 \end{aligned}$	FUSE, SLOW-BLOW, 3/8 AMP, 250 VOLT	
47	94376500	SWITCH, SOLID STATE   WASHER, LOCK, EXTERNAL TOOTH, 8	
48	92801001	CLAMP, CABLE	
49	75032200	COVER, CABLE	




$\left\lvert\, \begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}\right.$	PART NUMBER	PART DESCRIPTION	NOTES
15-	778117xx	LOGIC CHASSIS ASSEMBLY (SHEET 1 OF 2)	S/C 25 \& BELOW
15-	472559xx	LOGIC CHASSIS ASSEMBLY	S/C 26-29
15-	472895xX	LOGIC CHASSIS ASSEMBLY	s/C 30-32
15-	$473477 \times x$	LOGIC CHASSIS ASSEMBLY	S/C $33 \&$ ABOVE
1	77383000	FRAME, LOGIC CHASSIS	
2	75024600	HINGE, LOGIC CHASSIS, UPPER	S/C 32 \& BELOW
3	82379000	HINGE, LOGIC CHASSIS, UPPER	S/C 33 \& ABOVE
3	752147XX	LOGIC WIRE \& BOARD ASSEMBLY (WIRE WRAP PANEL)	S/C 17 \& BELOW
3	471674xx	LOGIC WIRE \& BOARD ASSEMBLY (WIRE WRAP PANEL)	S/C 18 \& ABOVE
4	75028901	INSULATOR, BACK PANEL	
	75028900	INSULATOR, BACK PANEL	
6	76465100	PANEL, D.C. BACK ${ }_{\text {COMPONENT ASSEMBLY, TYPE 32CN (SEE FIGURE } 17}$	
8	94277404	STRAP, CABLE TIE	
	75024700	HINGE, LOGIC CHASSIS, LOWER	S/C 32 - BELOW
9	82378900	HINGE, LOGIC CHASSIS, LOWER	S/C 33 \& ABOVE
10	75025900	CATCH, BOTYOM	
11	94274440	MARKER STRIP	1
12	94272341	BLOCK, TERMINAL, SINGLE SCREW	
13	94274446	MARKER STRIP	
14	$\begin{aligned} & 75032700 \\ & 75027800 \\ & 76411800 \\ & 93994003 \end{aligned}$	LATCH AND SPRING ASSEMBLY CATCH, latch   SPRING, LATCH, FLAT RIVET, POP	S/C 25 \& BELOW ONLY
15	75027400	BLOCR, PIVOT, LATCH	S/C $25 \&$ BELOW ONLY
16	75027600 9435603	PLATE, BACKUP	S/C 25 \& BELOW ONLY
17	94355603	FASTENER, QUARTER TURN	S/C 25 \& BELOW ONLY
18	94355602	FASTENER, QUARTER TURN	S/C $25 \&$ BELOW ONLY
19	75026100	PLATE, NUT BRACKET, FASTENER MOUNTING	S/C $25 \&$ BELOW ONLY
21	94274116	TERMINAL, QUICK CONNECT	S/C $25 \times$ BLLON ONL
22	94274110	TERMINAL, QUICK CONNECT	
23	94274113	TERMINAL, QUICK CONNECT	
24	93047002	JUMPER, BARRIER STRIP	
25	94272335	BLOCK, TERMINAL, SINGLE SCREW	
26	94237703	TRIM, SAFETY, BLACK	
27	17901517	SCREW, MACHINE, PAN GEAD, PHITSIPS, SIP, 8-32 $\times 1 / 2$	
28	93592196	SCREW, MACHINE, HEX HEAD, STP, 8-32 $\times 1 / 4$	
29 29	10125746	SCREW, MACHINE, FIAT HEAD, PHITJIPS, $10-32 \times 3 / 8$	S/C 32 \& BELOW
29	94375833	SCREW, PAN HEAD, THREAD FORMING, 10-14 $\times 1 / 2$	S/C $33 \&$ Above
		-	





$\left\lvert\, \begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}\right.$	PART NUMBER	PART DESCRIPTION	NOTES
15-		LOGIC CHASSIS ASSEMBLY (SHEET 2 CONT'D)	
56	94039102	LIGHT, INDICATOR, 24 VOLT	
57		SENSING BOARD ASSEMBLY (SEE FIGURE 19)	
58	95583503	BLOCK, RECTIFIER, 15 AMP	
59 60	93590162 94317708	SCREW, PAN HEAD, PHILLIPS, TPG, 6-32 $\times 3 / 8$ FASTENER, OVAL, FLUSH STUD	
61	94317900	RETAINER, SPIIT RING	
62	94294106	RELAY, TELEPHONE, 4 PDT	
63	94294104	REIAY, COVER, TELEPHONE, 16 PIN	
64	$\begin{aligned} & 73483200 \\ & 73645103 \end{aligned}$	COMPONENT ASSEMBLY; RELAY COMPONENT ASSEMBLY RELAY	ATL EXCEPT BR3C9J/K, BR3E4/5E
	93114214	STANDOFF, TAPPED POST	
	94245801	SOCKET, RELAY, TELEPHONE	
	93935000	RECTIFIER, SILICON	
	92512150	RESISTOR, FIXED, 1/4 W. 47 OHM	
	92496239	CAPACITOR, 100 VOLT, 0.01 UF	
	10127333	SCREW, MACHINE, PAN HEAD, SLOTWED, 6-32 $\times 5 / 16$	
65	94309900	SUPPORT, FALL	
66	75025000	BRACKET, FALL STOP MOUNTING	
67	75025300	CLAMP, CAPACITOR	
68	95645600	CAPACITOR, 40 VOLT, 55 UF	
69	95661308	CAPACITOR, 15 VOLT	
70	95642401	CAPACITOR, 25 VOLT	
71	94317800	RECEPTACLE, CLIP-ON	
72	94281474	CABLE, GROUND	
73	94208500	LABEL	
74	94281435	CABLE, GROUND	
75	10126105	WASEERR, LOCK, INTERNAL TOOTH, 10	
76	47316301	BAR, BUS, 3 TERM	
77	47316501	BAR, BUS, 3 TERM	
78	75041700	BAR, BUS, 2 TERM	
79	$774733 \times \mathrm{X}$	LOGIC HARNESS ASSEMBLY	
80	10125804	WASHER, SPRING LOCK, 8	
81	93592196	SCREN, MACHINE, HEX HEAD, STP, 8-32 $\times 1 / 4$	
82 83	10127122	SCHEN, PAN HEAD, MACHINE, $8-32 \times 3 / 8$	
83	10127141	SCREW, MACHINE, PAN HEAD, PHILLIPS, $10-32 \times 5 / 16$	
84	10127142	SCREW, MACHINE, PAN HEAD, PHILLIPS, $10-32 \times 3 / 8$	
85	10127144	SCREW, MACHINE, PAN HEAD, PHILLIPS, $10-32 \times 5 / 8$	
86	93109238	SPACER, STANDOFF	
87	10127146	SCREW, MACHINE, PAN HEAD, SLOTTED $10-32 \times 7 / 8$	
88	93109240	SPACER, STANDOEF	
89	10126403	WASHER, LOCK, EXTERNAL TOOTH, 10	
90	92318027	INSULATOR, FISH PAPER	
91	77531500	ARC SUPPRESSION ASSEMBLY	S/C 11 \& BLW
914	77539300	ARC SUPPRESSION ASSEMBLY	S/C 12 \& ABV
92	94375865	SCREW, THD ROLL, PAN HEAD, 8-18 $\times 1 / 2$	
93	77409013	FOAM, PANEL	$\text { S/C } 29 \& B L W$
93	77409014	FOAM, PANEL	S/C $30 \& \mathrm{ABV}$
94	10125704	SCREW, MACHINE, FLAT HEAD, PHITTIPS, 4-40 $\times 3 / 8$	
95	10127105	SCREW, MACHINE, FLAT HPAD, PEITTITPS, 4-40 $\times 1 / 2$	
96	10126101	WASEER, LOCK, INTERNAL TOOTH, 4	
97	93749158	SCREN, MACHINE, FLAT HEAD, PHILLLIPS, (SEM),	
98	82366200	CLAMP, BASE, CAPACITOR	S/C 30 \& ABV
99 100	00861303	NUT, SELF-LOCKING, CAP	
101	10127126	SCREH, MACHINE, DAN HEAD, $8-32 \times 7 / 9$	
102	94393702	RELAY	BR3C9J/K, BR3E4/5E ONLY
103	94393705	RELAY, SPRING	BR3C9J/K, BR3E4/5E ONLY
104	93749158	SCREW, MACHINE, PAN HEAD, 6-32 $\times 1 / 4$	BR3C9J/K, BR3E4/5E ONLY









CARD COMPLEMENT

$\cdot$


[^0]:    mares:
    (1) pemigo of oecreasing fnequenct. causing late peak smitt.
    -ecmod of incmeasimg facouencit. Causing eame pean smift.
    gates ane simplifieo.
    oura that is sent to meite daiven cmicuits

