HONEYWELL SERIES 200

Models 200/1200/ 2200
PROGRAMMERS’ REFERENCE MANUAL

[‘
@@oo Eoo

LI | [11

mﬁl —

ELECTRONIC DATA PROCESSING

g

. |

Copyright 1965
Honeywell Inc.
Electronic Data Processing Division
Wellesley Hills, Massachusetts 02181

113.0005.0000.00.00
Printed in U.S.A. 10965

WP-8593 51265

HONEYWELL SERIES 200
' Models 200/1200/ 2200
PROGRAMMERS’' REFERENCE MANUAL

R B - R
00 06 00 0%)
1T i S
|
18 T T Ty

FIRST EDITION
First Printing September, 1965
Second Printing December, 1965

Honeywell

ELECTRONIC DATA PROCESSING

Questions and comments regarding this manual should be addressed to:

Honeywell Electronic Data Processing
Information Services

60 Walnut Street

Wellesley Hills, Massachusetts 02181

PREFACE

The purpose of this text is to provide a detailed
reference source containing:

1. a functional description of the Honeywell
Series 200 Models 200, 1200, and 2200
and their components.

2. a definition of the Series 200 Assembly
System (Easycoder).

3. a detailed explanation of machine opera-
tion codes.
The only prerequisite for a thorough understanding of the
information presented in this manual is a familiarity with
basic data processing terminology. No previous knowledge

of the Series 200 is assumed.

The equipment characteristics reported herein re-
main subject to change in order to allow the introduction

of design improvements.

The following publications are hereby superseded:

Honeywell 200 Programmers' Reference Manual (DSI-214),
Honeywell 2200 Programmers' Reference Manual (DSI-304),
Easycoder 8K Assembly Language (DSI-409), and
Easycoder 12K Assembly Language (DSI-313).

ii

TABLE OF
CONTENTS

Page

Section 1 Series 200 Componentsoveeveuererannn crecrasans
Central Processor oveeeeeeeeeetonoseaerossonneans
Standard Processing Modevvviiioenrennrronnnnns
Interrupt Processing Mode.......... seesenss ceeenr s .
Processing PowWer. o eeivrtereeenroncnesoesssncsnss .
Peripheral Equipment .. .v vttt titnnetsereraroernosesas .
Peripheral Control.v.eiiererriretnrnernrnoeroensnnnos
Punched Card Equipment ... ceeiveriirerinrinrerases
High-Speed Printers.cccecosecosssososssssosoosecocas
Magnetic Tape Units ceoeeencvrvernrioennooroneossnnns
Mass Memory File ..ot erireriorrssnsassossssnsans
Random Access Drum File.....vviiivrnnernnnsenennns
Paper Tape Equipment. .. c.vvveritiineieeetntsrseroens
Data Communication Equipment «...ce.veeiirienennns
Peripheral Data Transfer Operat1on S
Input/ Output Trunk.. fe e et e
Read/Wr1teChannel..w.................. 1-13
Optional FeatuUres s vveseerissstoroesoosassssssrosnseossons 1-15
Advanced Programming «.seeeseeeeeiveconooasssonoens 1-15
Program Interrupt cevveeenierirnteinsrecnsrvenssocs 1-16
Edit Instruction ... ieeeiinerensenniniorstosrsencsonss 1-16
Additional Input/Output Trunks and Read/Write
Channels s e aesesseteesansserasaresesns 1-17
Scientific Unit oo vvvvivtnenn e ereenonnsnnsns 1-17
Storage ProtecCt.se. e veertnerteeosneinonenseneensanens . 1-17

T T Ty Sy
1 [I D R |
== O 000~ ~JOO0HRWWH —

o

p—

—
1

—
w

Section 2 The Central Processor «vueeveesssntsseesvsnosnsnens e .o
Main MemMoOTYe e ot oot ariervionnsornsssssnosososesssosassns

Control Memory v vveveeteisonssossserossssosssesassnsns

Address Registers vviveevuinevecneeass

Read/ Write COUNLErS . ve vorvssoorarosensonsssonnnass

Arithmetic Unit...oveveriinnenencnensas et e

Control Unit........ Cecessersssesesasscas st an et

Input/ Output Traffic Control

Memory Cycle Distribution ceessesenn P

Auxiliary Read/Write Channels

¥
= O 00 00~ ~ O

Section 3 Data Format ettt te et ser et
Variable Field Length e e e e ettt a e e e

Instruction Format..... F N ch e e he st
Operation Code vvvvvvernrneesns i et

A and B Addresses . .ceveeeasoeecasennns C e .

Variant Characteres s vt e e oo et oseeoroeasonsooecnsnnos

Organization of Data in Main Memory «v.o.veeviuereevnnnns .

WWWWwww DD NN
i]
DWW NN - -

iii

Section 3 (cont)

Section 4

Section 5

TABLE OF CONTENTS (cont)

Fields .. e et et e Ceee e
Items....... et e e ceene
Records +...cevvennnnn . . Ceeea e
SUMMAT Y. v e v toovoeosoeanonons ce et et saaes .o .
Magnetic Tape Data Format........v.0.. Ceeerseiseanans .o
Punched Card Formatoviviiirinnann. e e st e e eees
Addressing........ ettt et s e cereerees
Basic Concepts...................... et
Registers Used in Addressing +veveseess Ceesasens
Sequence Register (SR) vvvvivinneteionenneencannas .
Change Sequence Register (CSR) s ernveeoneoennnn oo
External Interrupt Register (EIR) v .veivr e nnnasss
Internal Interrupt Register (IIR) . ceetreeaaniae .
A-Address Register (AAR).....cv... e PN
B-Address Register (BAR) .ot veeiieeeeeoannnns e e

Summary.....e..

Addressing Modes .vvviviiinrnniinnnennsnonsnansas
Two-Character Addressing Modecovvvvnn.. e
Three-Character Addressing Mode............. teseeae
Four-Character Addressing Mode ceesea

Address Modification...... e e e i e i e .
Three-Character Address Seceresacnennes

Indirect Addressingc0e0vvu.. B
Indexed Addressing «v.eviereeeennnnennn Gieacsens
Four-~Character Addressing Modecccvvvivnnnnn.

Indirect Addressingveviiiviiinerenennane
Indexed Addressing000. et rtier e
Explicit Addressing, Implicit Addressmg, and Chammg
Easycoder Programming «.. ..o eteesttettereatorneeesoeennnns
Introduction « oo v v v ei i in, cetbeaenan cer e
Fasycoder Symbolic Language...e...... e et ens

Easycoder Assembly Programeseciesssessoseseosssasesoncses

Coding Form

Card Number (Card Columns 1-5) ...

Type (Card Column 6) «vvvvvnuunns
Mark (Card Column 7).
Location (Card Columns 8-14).....

LR R R A A A

L I N I N R R Y .

D R R N I I R Y

Operation Code (Card Columns 15-20)..civeeeennncanns

Operands (Card Columns 21-62) .
Additional Coding Rules +ecvvees..
Address Codes

D I I R I R R A A A NN Y

Absolute «..... s h et C et et
SymboliCeios et ieennn, cheieaa ettt
Self Reference s o o vt ioteineersanenns f et .
Relative e e e et et e e . P see e
Blank «.:iveerteernns et aa ettt e
Literals «uveiveeveriesoseeeenn Ch e e e C e e

iv

Page

1 1
1N

1 I
® ~3 o0~

[T T A A e A A
O O O 000U DR W W W W R

Y

i
—
(3]

kli'IU'IWU‘IU'lU'l
1

Ul
[|
H OO OO 000U R WD

Ul 01 01 O O
| I R B |

U U1 O
1

TABLE OF CONTENTS (cont)

Page

Section 5 (cont) Decimal Literals «cvovuntvvrtornserssoseoscsssessesses ba=l2
Binary Literals.....veeesoeternriecsnsnnrosssesnssesss 5213

Octal Literals..veeeeetenssesessssesessssssssnassnse B5B=l3

Alphanumeric Literals «cvvetiierriiererieseereeceess B-l14

Area Defining Literals «vviveeessreesenrernssssnsenss 5214

Address Literals «ovvevenennn - T 1

Variant Character ... veeereoeorsesoocosans cececescesaes bHbalb

Input/ Output Control Characters «...ooueun. - 5 1)

Address Modification Codes e eveeserorssressessessssssenees B5alb

Indexed et i e st taaea s e e e s e s a0t annncs

g >
[
—
o o~

INndirecCt o v ottt s ettt oesaaresessssssessssssssasnneees

Section 6 Data Formatting Statements ..o vov et eesaonnsssssensnnns
Introduction v v vv v vennnn c b st a et e e ettt
Define Constant with Word Mark-DCW...................

Numeric Constants s e v e e s s ssases st s s e bt ases s e s
Decimal Constants 0.
Binary Constantsevvenenenun. et e
Octal Constants «.eceveeeeeseenss

Alphanumeric Constants...vcoeea.. Bttt c i eeann

Blank Constants......... ettt ettt e e e

Define Constant — DC....... ittt ettt e
Reserve Area — RESV ittt ittt oetereosossocesssnenssns
Define Symbolic Address — DSA .. .v.iiiiiitirrroeranoonns
Define Area — DA cet et e C e ee e

Section 7 Assembly Control Statements «v.vvvveeeneneans Ceesresnsesenes
Introductiono B
ProgramI—Ieader—PROG................................

Easycoder A...iiiiiiiiiiiiniiieitiseensssiosessnsons
Easycoder Boioeeeriieireneieennrseentostossesnssosnsns
Easycoder Cuo.iiineininerinioeenrotoenteeriesesossoesnss
Segment Header — SEG .ttt virtttnnnisassosonsessssonsns
Easycoder Coirertirtiinnerenrtneesonnecnosssesonessnnss

Execute — EX it itittittreeoarsosetttersioesssosssosssneesasns

Easycoder A...vitiiieiiriieitneesotsssosssesassosossas
Easycoder B...oiieiiii ittt ittt ineeneronsosnnens
Easycoder C..........c0vu.
Origin — ORG ..ttt trentetsosionnensnssssansaass
Easycoder A.. .ottt iieineieneinenses ettt e
Easycoder B..oioriiierintiniierioreoetoresnssnsnonaens
Easycoder C....cvvvvenn ettt it ettt ee e reran
Modular Origin = MORG vvvennn. et
Easycoder A, B, and C..... C et e e et et e e
Literal Origin — LITORG ...t tvvreveeeenn. et e
Easycoder B......ivietieieiniinnnn, cevsen et et eeeee .
Easycoder C.....covvv... e et e e s ecseee et aeas e ns
Set Address Mode—ADMODE............................
Fasycoder Aand Bvuveioiuinnnerrrransosonnnonnns

]
VWV OVXXONNNNOOCUUTD B BRWWWINNEHEER OCOUTULN B WWNNDN +— —

NNNNANANNANNANNANNANNANNANNNAANAd OO0 OO 0N O O 08
1

v

Section 7 (cont)

Section 8

Instructions ..« .voveee.n e Ci e C et P

TABLE OF CONTENTS (cont)

Page

Easycoder C..viivreererororosoesonenencanas ceerenses 7=10
Equals — EQU t.iiiittirirtirnroeersroronnnnnns cersasess T1-10
Easycoder Aand B....vvvveveneneenns veesesrassessess 1=10
Easycoder C..vivienerrosarssesasnsecosssssssansssanes =11
Control Equals — CEQU..... ittt reriorteorsaorsnssenss . 7-11
Easycoder Aand B¢vtireiitiinsnnceacnenssnes 7-11
Easycoder C.ivuevirerirronsnooesorsoasenaasnns N e ¥/
Memory Dump — HSM ...t iieeinencenenrecenanns N Y ¥
Easycoder A.....c.vovvunn. i e e e eo T-12
Skip = SKIP. ...t ttv ittt nneransses et cereee. 713
Easycoder Cuieervrennnrenncosossassnns Y S <
SUffix = SFX .ttt eieeonerooncanssannnns B o X
Easycoder C..vviereennrentnrnonnssnnsos e . 7-14
Repeat — REP....ccieiiiirerinnenececesns P Y £
Easycoder C.vviirennerrnnerosonsnsssssenss tieeeseese T-14
Generate — GEN et B R &
Easycoder C.......... cesasescuneene ceseceseiensenone . 7-15
Clear = CLEAR .. .ttt veeessacnnsnsnass Cetecereeraaes T-15
Easycoder A....... Ceeeeee e e .o 7-16
Easycoder B........ e et e e . 7-16
Easycoder C...... crescesessaes e e ceseee 1=17
End — END......... et e N B Y
Easycoder A ...ttt eneeenneinssorsasesenss e 7-17
Easycoder B...........c0o00e I
Easycoder C..iiviiin i itiieieitioenrersantescsseaenasss

~
11
[—
O ©

INtrodUCtion v v v v et e e nsooestasecssnsonsssssos e
Arithmetic Operations.......coovevuevencan. e ceeene
Binary Additioneiviiiiiini i e .
Binary Subtraction «...... 000 et e et e e
Decimal Addition.....c.vvvvvvieen. s e ch et
True Add ... i i vt vt ittt ttersessosassensassnsssssos 8-
Complement Add et e cheea . 8-
Decimal Subtractionvvii et nnanaosonnnees 8-10
Indicators ««vevveenens N . 8-11
Multiplication. .voe vt in ittt 8-11
DIViSIOM e v v v v vttt ettt e s sesaasoeeseionsnestnsanses 8-13

Q 0 0 0o
1

o
1]
(e BN BN I o) o o

Binary Add — BA...... et et e e e e ... 8-20
Binary Subtract — BS ...ttt ceee.. 8221
Zeroand Add — ZA ... ittt i it i i e e seee. 8223
Zeroand Subtract — ZS ¢ttt ittt it i i e et e e e .. 8-24
Multiply = M ..oiiiinn e, et ettt e . 8-26
Divide == D vt ittt ittt ettt e e e 8-29
Logice ieenvenenn.n. e e e ceeecart e enes 8-33
Extract — EXT......ccviin.. ettt s 8-34

vi

Section 8 (cont)

Appendix A

Appendix B
Appendix C
Appendix D

TABLE OF CONTENTS (cont)

Half Add — HA ... ittt iiinennnnes

Substitute — SST ..

Control voveeeennnn

Set Item Mark -— SI

Clear Item Mark ——
Halt = H o0

Compare = C teieieeeottnncensensnsns
Branch == Biteeertterveesosrsesnnesssass
Branch on Condition Test — BCT.......
Branch on Character Condition — BCC..
Branch if Character Equal — BCE......
Branch on Bit Equal ~~ BBE

0 e s 000000000006 000 e

Set Word Mark — SW

e o s 00 0 e

L A N I I A B R S

Clear Word Mark — CW....

Cl.....

D A I R R A

..

o0 00 o000

D I S Y

No Operation = NOP..veveeeeernronens

Move Characters to Word Mark — MCW
Load Characters to A-Field Word Mark

Store Control Registers — SCR «..iv.us

Load Control Registers — LCR scvevvo.n.

Change Addressing Mode — CAM.......

Change Sequencing Mode -- CSM .
Extended Move — EXM....

LI N A R]

Move and Translate — MAT tveeveeonens
Move Item and Translate «— MIT «coooos
Load Index/Barricade Indicator — LIB..
Store Index/Barricade Indicator — SIB..
Interrupt Control «eeveeerteoescocneoses
Store Variant and Indicators — SVI.....
Restore Variant and Indicators — RVI ..
Monitor Call = MC sttt ettt vssreconsse
Resume Normal Mode — RNM sevevennn

Editinge e seeeeeeaen

Move Characters and Edit — MCE......
Input/Output s eeveerserecnnersoenanns
Peripheral Data Transfer — PDT
Peripheral Data Transfer — PDT
Peripheral Control and Branch — PCB..
Peripheral Control and Branch — PCB..

Octal Notation eseesseeevsseosassss

s e 0000000
s e s e s 00

DICEC IR NS
s s e e s e

....... s et aeeeseeenans
Octal-Decimal Conversion Procedure «eeevseeesas e een
Miscellaneous TablesS .. oes ot eessssssssossrsasssssssscnsocsne

Instruction Summary ...

Interrupt Processing ..

External Interrupt ..

Internal Interrupt ..

s e 0 0 00 s

e e 0 s s 0060000000

Interrupt Programmingeceeeeoeeeneeons

vii

DR]

A N A A

s o0 e 00 s 00

1]
— —

UUU'U O o »»

[}
W N = =

TABLE OF CONTENTS (cont)

Page

1
—_

Appendix E Storage Protect FeatUre «coieeeerisottsrorrsosoerocnsroncose
Internal Interrupt oottt nnitneesoiioerorseeoneensanns
Violations of Storage Protectionc.vveveierennnen.
Proceed Indicator...ieeevriniierienerneesineeeennnons

[
W NV -

Appendix F Scientific Unit for Models 1200 and 2200 ¢« vvevervesnonecnsas

R R R R B SRl ol

-1
Data Format sveveerereetsstesteencroesssosensnssanss 1
Floating-Point Registers esesesesssnasansansnns -1
Floating-Point Indicators «.c..viieiiieieinrennrensonss -2
Automatic Formatting In Arithmetic Operations -2
SYIMbOlOgY eoteeeetssasnsosssoesvonssenssannsossosnsas . -2
Timing Notes . ve it ireneeeerenoeeeontnasesoesonanoans -3

viii

LIST OF
ILLUSTRATIONS

Page
Figure 1-1. Type 1201 Control Panel ¢ v vvvit it terioreetoetasossesoensnoses 12
Figure 1-2. Type 2201 COnSO0les st verveeeestsersssossosososscsssssscssasosass 1=3
Figure 1-3. Type 220-2 CONSO0Lle tivvevvrvevensoossossssssassossssesosanssesee 1=3
Figure 1-4. Main Memory SiZe ceveeveevenenns S P
Figure 1-5. Main Memory Speed v vvetrereerentoeetstseeanncosnssssseneonsess 125
Figure 1-6. Peripheral Simultaneity...... P P
Figure 1-7. Customer Inquiry Handling via Typical Communications Network 1-12
Figure 1-8. Basic Input/Output Data Path c.vvevsvrvecerriossssesesssssssensass 1213
Figure 1-9. Data Path During Card Read Operation «..eeeeeieneeencieecasans .. 1-14
Figure 1-10. Data Path Components of Series 200 Processors ...scececesescesss 1-14
Figure 2-1. Logical Division of Series 200 Central Processor....ceeeeeeceseseas 2=1
Figure 2-2. Main Memory Functions.: . ceeeeeeeeeetotecencocosssososansosassas 2-2
Figure 2-3. Main Memory Core Plane c.oecuieioeetniiesrestsrtsccssosassseasnss 2-2
Figure 2-4. One Memory Position..ceiveeeiieencenesan et eierirsecesrenes . 2-3
Figure 2-5. Representation of Characters in Magnetic Core Storage .+...cec0c0e. 2=3
Figure 2-6. Typical Control Register Functionceiveeeeeeerasess ceeares 2-4
Figure 2-7. Data Flow Between Main Memory and Arithmetic Unit.........000ee 2=7
Figure 2-8. Control Unit Activities v tvveerertererrortoiostoseesosossasacnnsse 2=8
Figure 2-9. Input/Output Traffic Control Activities «.vevveeviireeresennurnaees 2=9
Figure 2-10. Data Transfer Intervals During One Peripheral Operationv0000 2-9
Figure 2-11. Symbolic Representation of Input/Output Traffic Control........ .0, 2=11
Figure 3-1. Conversion of Symbolic Tags to Absolute Memory Addresses «..oees 3-2
Figure 3-2. Series 200 Instruction Formats «vcveveectotetetoeensasosssaonsosase 3=3
Figure 3-3. Symbolic Representation of Series 200 Instructionsccvveeeeenn. 3-4
Figure 3-4. Consecutive Storage Locations in Main Memory «...covveveeceesees 3-4
Figure 3-5. Data Field Format in Main Memory +.vevesetserersentrrsrcesssase 3=5
Figure 3-6. Two Item Formats in Main Memory «eeeeesveesssssssnsssenesessss 3-5
Figure 3-7. Record Format in Main MemoOTy «« vt veverrereeeseesosseescsesoss 3=6
Figure 3-8. Summary of Internal Data Formats......cc.o... D Y)
Figure 3-9. Character Representation on Magnetic Tape.......... Ceterereeenes 3=7
Figure 3-10. Data Format on Magnetic Tape «..ocvvtivvetieieiisierieeacea-nss 3-8
Figure 3-11. Punched Card Codes et e Ceiereri et eeesses 329
Figure 4-1. Typical Add Instructionovvveuveevean. et a e e 4-1
Figure 4-2. Extraction of Data Fields in Typical Add Instruction «........ ..o 4-2
Figure 4-3. Extraction of Three-Character Indirect Address.............o... .. 4-10
Figure 4-4. Extraction of Indexed Address in Three-Character Mode 4-12
Figure 4-5. Extraction of Indirect and Indexed Four-Character Addresses....... 4-15
Figure 4-6. Series 200 Instruction Format 1........ et et veseees 4215
Figure 4-7. Series 200 Instruction Format 2...ccveveertitocoroecaaas Y T Y
Figure 4-8. Series 200 Instruction Format 3............... e B T
Figure 5-1. Relationship of Source, Assembly, and Object Programs «...cccaees 522
Figure 5-2. Two-Character Address Assembly «v.cvveeveeeninenann cereeaceaa. 523
Figure 5-3. Three-Character Address Assembly ..ottt 5-3
Figure 5-4. Easycoder Coding Form «...co.... e e e .. 5-4

LIST OF ILLUSTRATIONS (cont)

Assembly of Indexed Address in Three-Character Addressing Mode. .
Assembly of Indexed Address in Four-Character Addressing Mode...
Assembly of Indirect Address in Three-Character Addressing Mode. .

Assembly of Indirect Address in Four-Character Addressing Mode ..
True Add Examples. ..o vuvevinnnneennns e e e
Complement Add Examples et ettt
A and B Fields in Multiply Operationceveituersrtvsssoseaooass
Factor Locations in Divide Operation ... eveeeiveronsroeornoossenn
Changing Addressing Modes via CAM Instructionouoeoeaus.an
MAT Operation PN
MIT Operation «vvvun.s et e Sttt ettt e

Sample Coding for External Interrupt Routineovvviurenenaann

Sample Coding for Internal Interrupt Routine e e

Page

5-17
5-18
5-18
5-19
8-9
8-10
8-12
8-14
8-71
8-79
8-84
D-3
D-4

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

| I S|
o« e

[I N D U N SN B |

1
huhaxomxlo\mpbwl\)l—-t—-i—-l\):—-..p

—
N = O "

1 1 1 1
. .

00 00 00 00 00 00 0O O 0 00 W 3O UT T A A i IR DNVNDNVNDN == = ==
1

o]
1

8-13.
8-14.
8-15.
8-16.
8-17.
8-18.
8-19.
8-20.
8-21.
8-22.
8-23.

LIST OF
TABLES

Page
Series 200 Punched Card Equipment......ccoetiereerovoaosscense . 1-7
Series 200 High-Speed Printers ... c.ivoeeeistsacssoressncasans vees 1-8
Series 200 Magnetic Tape Units..vvvveeervveoresescacssssssossses 1-8
Series 200 Mass Memory File Units.veueeeveeresnesseoossoesssenss 1-9
Series 200 Magnetic Drum File UnitS ¢vvvevreevseoeeaasvosssssssss 1-9
Series 200 Paper Tape Equipment....oeeevereeansns ceeseeesnes 1-10
Series 200 Data Communication Equipment........ teeserseecrneses 1=10
Series 200 Optional Features «..oveenevooerrocens tereseasessssess 115
Model 200 Advanced Programming Featureveveeieieeceenaaes 116
Size of Control Memory Registersc0c0ven e “es 2-5
Control Memory Registers S 2-5
Summary of Central Processor Characteristics ... ovvvueeeeens 2-12
Number of Index Registers Available to Series 200 Processors...... 4-10
Index Register Addresses in Three-Character Addressing Mode..... 4-11
Index Register Addresses in Four-Character Addressing Mode...... 4-13
Active Address Bits in Series 200 Processors........ Cer e esees 4-14
Set I Punctuation Indicators «..eeveueeeervrtonsrosssvssensssnsssnsss 5=b
Set II Punctuation Indicators (Easycoder Only)...ccveveen.n e e 5-6
Data Formatting Statements ..ot erenrineeronrensoseenanssssas 60-1
Assembly Control Statementsc.uoveeviasonssctrorsssasesaossas 7-2
Symbology Used in Series 200 Instruction Descriptions 8-2
Series 200 Add and Subtract Operations....ccovvveeecneceserans o 8-6
Binary Addition Table ...cccevveun. Cerecseascessasensas ceeerees. B8-6
Algebraic Signs in Decimal Addition....eeveeeiiriiiierieenscannas 8-9
Decimal Arithmetic Sign Conventions.......... B - 2 8
Multiply Sign Conventions «.eeooeeecen. et cerreseseses 8-12
Divide Sign Conventions....ceovvveieeseioenes I T 1
SENSE Switch Conditions for BCT Instructionco0v.u.. ceee.. B8-42
Indicator Test Conditions for BCT Instruction «+v..covevne.. cieeese. 8-43
Basic Test Conditions for BCC Instruction +..veovecoeeeerroenoess 8-46
BCC Test Conditions with Advanced Programming Feature +oevvv... 8-47
Control Register Contents Stored by SCR Instruction «..ocvvvveenes. 8-65
Control Registers Stored by SCR Instruction «ovcvevaeeneen.n. ceee. B8-66
Control Register Contents Loaded by LCR Instruction ...c..oevvvrese 867
Modes Specified by Variant Character in CAM Instruction ++v...00ves 8-69
Extended Move Conditions .« oo eecreneeecenns D T vee. B8-74
Size of Information Units in MIT Operation.c.ccceeveveorsessseesass 8-80
Leftmost Boundaries of Protected Memory......cce0v... ceieeescess 8-85
Information Stored by SVI Instruction............ I - o)
Information Restored by RVI Instruction «v.vivvvvercneervnnencenes 8-94
Special Characters in MCE Instruction «..vovveeveressensooeenesss 8-103
Description of PDT I1/O Control Characters Cl and C2 8-109
Summary of PDT I/O Control Characters e e e e .o 8-112

xi

Table 8-24.

Table
Table
Table
Table

Table
Table
Table

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Fable

]

ok 00 1 ON 0T R W =N

1 i
« o

HOoODWEETwEwWw > >

LIST OF TABLES (cont)

C3 Coding for Type 209 Paper Tape Reader.v..ceveueeneeennns
C3 Coding for Type 210 Paper Tape Punch vovveveereeeerennas
C3 Coding for Types 206 and 222 PrintersS.eeeseeeseennneneas

C3 Coding for Type 270 Random Access Drum «veeeeeneseess
Summary of PDT I/O Control Characters for Type 286 Multi-
Channel Communication Control +...sererseerseesooesonne

Type 286 Line Control Instructions eveeeees.. D P

Summary of PCB I/O Control Characters eeeeeeeeeeeseeesns
Summary of PCB I/O Control Characters for Type 286 Multi-

Channel Communication Control o .eeeeeeeeeesoooeosoeeenss

Binary Octal Equivalents .seeeessescscocananss
Decimal Octal Conversion Table +o.seereeesonnnenns
Control Register Designations seeseessssereneeenesonneannns

Extended Move (EXM) ConditionS e e eeeeeeeessoseeesenns ceee
Branch on Condition Test (BCT) SENSE Switch Conditions.....
Branch on Condition Test (BCT) Indicator Conditions «eevveo..
Branch on Character Condition (BCC) Conditions «eeeeoeocsss

Series 200 Character Codes v.veeurursscennnessenans
Binary, Octal, and Decimal Equivalents «ceeeeveeeereassss .
Powers of 2.0, et e ettt ee s et e
Instruction Summary........ ettt et e

Summary of Scientific Instructions e..vveviiviveonesann vesnos

Page

8-114
8-114
8-114
8-115

8-116
8-117
8-119

[¢9)
1

—
w
S

'TjOijUJl‘lel:DUJUdtU:>3>
B 0000 U W =N -

SERIES 200
COMPONENTS

Honeywell's Series 200 Data Processing System is a set of modularly designed, compatible
models, three of which — the Models 200, 1200, and 2200 — are the subject of this manual.
Each model consists of two basic elements: a central processor, and an array of peripheral
devices connected to that processor. The peripheral equipment in the system can be attached to
any processor, and the number of connectable devices is limited only by the number of trunks

available with any one processor,

The initial member of Series 200 was the Model 200. The capabilities of the Model 200
processor have twice been extended since its introduction. Thus, five central processors are
described herein: the three processors of Model 200 (Types 201, 201-1, and 201-2); the Type
1201; and the Type 2201. The processing power of any one of these types can be increased at
any time by the addition of peripheral devices and/or optional hardware features. This section
describes: (1) the two basic elements of a Series 200 model (processor and peripheral devices);
(2) the manner in which these elements communicate with one another; and (3) the expansion of

processing power that is possible through the addition of optionalhardware featurestoaprocessor.

CENTRAL PROCESSOR

The central processor is the computing and
control center of a Series 200 model; instruc-
tions processed within the central processor
control the operations of the entire computer.

A Series 200 processor is functionally divided
into three units: storage, control, and arithme-
tic. The storage unit provides magnetic core
storage for both the program instructions and

the data to be processed according to these in-

structions; it is also used to contain the resultant

1-1

SECTION 1. SERIES 200 COMPONENTS

data. The control unit directs the operation of the entire computer by selecting, interpreting,
and controlling the execution of all program instructions. It controls not only the flow of infor-
mation within the central processor but also the flow of data between the central processor and
all peripheral equipment. The arithmetic unit performs such operations as addition, subtraction,

multiplication, division, and comparison, as directed by the control unit.

Included as a part of the central processor is a control panel (see Figure 1-1) which pro-
vides for easy communication between an operator and the computer. By using various control
switches, the operator can start and stop the machine and can load and interrogate memory lo-
cations. The control panel also includes from four to eight SENSE switches which may be used
in conjunction with programmed instructions to stop processing or to select predetermined pro-

gram paths. The use of these switches increases the flexibility of a program, allowing it to be

used in several different applications.

RECORD.
ITEM _WORD 4 2

Rl SYSTEM
AC ONAC OFF DC ONDC OFF STOP INITIALIZE BOOTSTRAP CLEAR INSTRUCT RUN INTERRUPT ~ ADDRESS ODE

%@@@@B CINDDE.

Figure 1-1. Type 1201 Control Panel

Another communication medium between the operator and the central processor is the
Type 220 console, of which three versions are available. The Type 220-1 console (Figure 1-2)
contains a typewriter which may be used as a peripheral device, operating under program control,
or as a logging typewriter by which the operator can make essential notes about the program in
progress. The central processor control panel remains situated on the processor cabinetry and

is used for the functions described above.

In the Type 220-2 and Type 220-3 consoles (Figure 1-3), most of the control panel functions,
including that of direct access to the processor, are performed by means of the console type-
writer. In addition, the typewriter can perform the peripheral and logging functions described
for the Type 220-1. The central processor control panel is replaced by a smaller control panel

containing only the main power switches, the SENSE switches, and certain check condition

1-2

CENTRAL PROCESSOR

indicators which are located in the bottom row of the control panel shown in Figure 1-1. The
Type 220-3 control panel contains additional indicators used with the Storage Protect Feature

(see page 1- 17)and the additional SENSE switches used with the larger Series 200 processors.

Figure 1-2. Type 220-1 Console Figure 1-3. Type 220-2 Console

STANDARD PROCESSING MODE

The central processor performs arithmetic and logical operations as directed by the in-
structions of an internally stored program. These instructions are read into memory from an
input medium such as punched cards, magnetic tape, or punched paper tape. Control circuitry
within the processor then selects, interprets, and executes these instructions. Normally, the
instructions are executed sequentially. Branch instructions are provided, however, which make

it possible to skip over a group of instructions or otherwise change the sequence of the program.

INTERRUPT PROCESSING MODE

Sequential instruction execution is changed temporarily when the processor is interrupted.
Any one of four sources (see below) can '"demand'' access to the central processor by generating
an interrupt signal; this signal turns on a central processor interrupt indicator. An automatic
hardware response is made to this condition: information concerning the current status of the
processor is stored, and a branch is made to a stored routine which identifies and services the
demand. Thus, programmed tests need not be made to detect the presence of an interrupt con-
dition — the entire process of detecting and responding to an interruption is automatic. When
the stored service routine has been executed, control is returned to the main program at the

point where the interruption occurred.

SECTION 1. SERIES 200 COMPONENTS

The four sources of processor interruption are:

1. Peripheral Control — The control connected to any Series 200 peripheral
device can generate an interrupt signal under program control (peripheral
controls are described on page 1-6). For instance, a data communication
control which services one or a number of communication lines and de-
vices may generate a real time demand on central processor time to handle
a customer inquiry from a remote terminal, The current operations of the
processor are temporarily interrupted so that the inquiry may be serviced.
A routine to read the inquiry and to answer the question from a stored
customer file is automatically executed, and a response is sent back to
the terminal.

2. Operator's Control Panel or Console — The operator can interrupt the
central processor by pressing the INTERRUPT button on the control panel
or console.~ The source of such ''on-site'" interruptions is made available
to the program by the execution of a single instruction at the beginning of
the interrupt service routine.

3. Program Instruction — One instruction in the Series 200 repertoire, the
Monitor Call instruction, is used to generate an interrupt condition,
For programming convenience, the activation (or '"calling'') of the monitor
program can be accomplished by means of this instruction.

4. Storage Protect Violation —— The above-mentioned sources cause an ex-
ternal interrupt condition. When a processor contains the Storage Protect
Feature (Types 1201 and 2201 only), an internal interrupt condition, caused
by certain ''violations'' to storage protection, can also occur. Internal
interruptions are of lower priority than external interruptions, so that a
processor executing an external interrupt service routine cannot be
interrupted by an internal interruption until the routine is completed. The
nature of storage protect violations is described in Appendix E.

PROCESSING POWER

The power of any processor within Series 200 can be defined as the sum of its main
memory size, its internal speed, its degree of peripheral simultaneity, and the number of

optional features which may be added to it.

Main memory size within the Models 200/1200/2200 ranges from a minimum of 2, 048
character locations (Types 201 and 201-1) to 262, 144 locations (Type 2201). Figure 1-4 shows

the modular main memory structures of the five processor types.

The internal speed of a processor is measured in terms of a memory cycle (i.e., the time
required to read and restore the contents of a single character location). These speeds range

from two microseconds to one microsecond for the five processors (see Figure 1-5).

1
The Types 201 and 201-1 processors cannot be interrupted by sources 2. and 3. above.

1-4

CENTRAL PROCESSOR

Peripheral simultaneity is a key feature of Series 200 processors. Among the processors
described in this manual, from three (Model 200 processors) to eight (Type 2201 processor)
simultaneous input/output operations can be performed concurrently with internal computing (see

Figure 1-6).

A number of optional features can be included in the Series 200 processors to provide

complete flexibility in specializing any one processor to a user's particular application. Since
some of these features refer to the peripheral capabilities of a processor, they are summarized

at the conclusion of this section.

201 201-1 201-2 1201 2201

262

Figure 1-5. Main Memory Speed

2201 1s
1201

201-2

201-1

. BAs/IC
201
OPTIONAL
Figure 1-4. Main Memory Size Figure 1-6. Peripheral Simultaneity

1-5

SECTION 1. SERIES 200 COMPONENTS

PERIPHERAL EQUIPMENT

The array of peripheral devices available
with Series 200 processors includes over 40
units: punched card equipment, high-speed
printers, magnetic tape units, paper tape equip-
ment, magnetic tape strip mass memory units,
random access drum units, and various data
communication equipment. Also included are

computer-to-computer adapters, an interval

timer, a time of day clock, MICR reader/sorter
controls, and magnetic tape switching units which provide extremely flexible Series 200 configu-

rations.

Information is transferred between any one of these devices and the central processor by
means of a single stored-program instruction — the Peripheral Data Transfer instruction de-
scribed in Section 8. By coding various control characters in this instruction, the programmer
specifies the direction of data transfer (into or out of the processor), the specific device involved
in the transfer, the data path over which information is to be transferred, and any other infor-
mation necessary to define the input/output operation (e.g., the number of lines to be spaced
during printer operations). The actual communication with the central processor is not made by

the particular peripheral device but by the peripheral control connected to that device.

PERIPHERAL CONTROL

A peripheral control regulates the transfer of data between a processor and a peripheral
device. The control compensates for the difference in the data transfer rates of the processor
and the peripheral device by temporarily storing each character of transmitted information until
either the processor or the device is ready to receive the character. The control also converts
each character into the code used by the intended recipient (e. g., the card reader control con-
verts a character from Hollerith code to the internal six-bit code of the central processor). As
each character is transferred to the control, it is also checked for accuracy by the control. One
particularly significant feature of the peripheral control is that it operates independently of the
central processor and requires access to the main memory only when information transfers are
performed. In particular, all of the previously mentioned activities of the control — temporarily
storing, converting, and checking the information — do not involve the central processor in any
way. When each character of information is transferred, one main memory cycle is allocated

for the transfer.

1-6

PERIPHERAL EQUIPMENT

Some peripheral devices require one peripheral control per device (e.g., a card reader).
Other devices can be connected in multiple fashion to a single peripheral control (e.g., up to
eight 1/2-inch magnetic tape units can be directed by a single control), The number of Series

200 devices connectable to a peripheral control is shown in the following tables.

PUNCHED CARD EQUIPMENT

Series 200 includes a wide variety of peripheral devices not only of different kinds but also
on several performance levels for the same kind. For instance, six different punched card units
are offered: a card reader, a card punch, and four reader/punches. Table 1-1 lists the card
devices available within Series 200. Note that a card device requires either one or two "I/O
trunks, ' depending on the number of functions the device performs. The significance of the

I/ O trunk is explained on page 1-13.

Table 1-1. Series 200 Punched Card Equipment

' ~ INo. Devices | No,-I/0O Trunks
e e e . |Per Control Required by
Type | Data Transfer Rate | Control
223 Card Reader 800 cards/minute 1 1
214-1 Card Punch 100-400 cards/minute 1 1
224-1 Card Reader/Punch [Read: 300 cards/minute 1 2
Punch: 50-270 cards/minute
224-2 Card Reader/Punch [Read: 400 cards/minute 1 2
Punch: 90-360 cards/minute
214-2 Card Reader/Punch [Read: 400 cards/minute 1 2
Punch: 100-400 cards/minute
227 Card Reader/Punch [Read: 800 cards/minute 1 2
Punch: 250 cards/minute

HIGH-SPEED PRINTERS

Five types of printers (see Table 1-2) produce printed reports, listings, etc., at speeds
which vary from 450 to 1, 300 lines per minute. Processed information is printed from any pro-
grammer-assigned area in memory. A single program instruction — the Move Characters and
Edit instruction — allows the programmer to punctuate the output data, suppress zeros, and in-

sert identifying symbols in the data prior to printing.

SECTION]. SERIES 200 COMPONENTS

Table 1-2. Series 200 High-Speed Printers

222-1 (96 print positions) 650-1, 300 lines/minute 1 1
222-2 (108 print positions) 650-1, 300 lines/minute 1 1
222-3 (120 or 132 print positions)|650-1, 300 lines/minute 1 1
222-4 (120 or 132 print positions)|950-1, 266 lines/minute 1 1
222-5 (120 print positions) 450 lines/minute 1 1

MAGNETIC TAPE UNITS

Magnetic tape is a compact and highly versatile medium for the storage of programs and
data files. Two complete families of industry-acclaimed tape units are available with Series 200
processors (see Table 1-3): 1/2-inch tape units (10 types) transfer data at speeds ranging from
7,200 to 83,300 characters per second; three types of 3/4-inch tape units read/write from

32,000 to 88, 800 characters per second.

Table 1-3. Series 200 Magnetic Tape Units

204B-1 7,200/20, 000 characters/second 1-8 2

204B-2

204B-3 16, 000/44, 400 characters/second 1-8 2

204B -4

204B-5 24,000/66, 700 characters/second 1-8 2

204B-6 30, 000/83, 300 characters/second 1-8 2

204B-7 7,200/20,000/28, 800 characters/ 1-8 2
second

204B-8 16,000/44,400/64, 000 characters/ 1-8 2
second

204B-11 13,300 characters/second 1-4 2

204B-12

204A-1 32, 000 characters/second 1-4 2

204A-2 64, 000 characters/second 1-4 2

204A-3 88, 800 characters/second 1-4 2

1-8

PERIPHERAL EQUIPMENT

MASS MEMORY FILE

Honeywell's reputation for reliable magnetic tape control is inherited by the new member
of Series 200, the Mass Memory File., Three types of transports, varying in access time and
capacity, use magnetic tape strips to store programs and data files and thereby complement the
main memory storage capacities of the central processor (see Table 1-4). A single control can
provide access to over two billion characters of stored information. Data transfer rate is

100, 000 characters per second, and average access times are as low as 95 milliseconds.

Table 1-4, Series 200 Mass Memory File Units

Magnetic Tape Strip Transport |100, 000 characters/second

(15 million characters)

252 | Magnetic Tape Strip Transport |100, 000 characters/second 1-8 2
(60 million characters)

253 | Magnetic Tape Strip Transport |100, 000 characters/second 1-8 2
(300 million characters)

RANDOM ACCESS DRUM FILE

The Series 200 drum file features a control unit which can direct from one to eight mag-

netic drums, each capable of storing over two million characters of information (see Table 1-5).
Thus, a single drum file subsystem can have a total capacity of over 20 million characters. Any
record stored on the drum can be accessed in 27,5 milliseconds (average) and can be transferred

at the rate of 102, 000 characters per second.

Table 1-5. Series 200 Magnetic Drum File Units

270-1 Magnetic Drum (2.6 | 102, 000 characters/second 1-8 2
through | million characters)
270-8

PAPER TAPE EQUIPMENT

Paper tape is an ideal medium for recording data which originates at locations distant
from a central Series 200 installation and, as such, becomes particularly significant in data
communication networks., A variety of standard commercial codes may be used with this rela-

tively inexpensive medium, Two paper tape devices are offered in Series 200 (see Table 1-6).

1-9

SECTION 1. SERIES 200 COMPONENTS

Table 1-6. Series 200 Paper Tape Equipment

Device ‘_ { No. Devices | No, I/O Trunks
A — | Per Control | Required by
Type | - Function Data Transfer Rate | | Control
209 Paper Tape Reader 600 characters/second 1 1
210 Paper Tape Punch 120 characters/second 1 1

DATA COMMUNICATION EQUIPMENT

The immediate and automatic response to an external interrupt source by the Series 200
processor was described previously (page 1-3). A common source of external interruption is
the communication control, of which two different types are available in Series 200. These
controls allow the Series 200 processor to communicate with distant locations (e.g., branch
offices, warehouses, etc.) by receiving and transmitting data over toll and leased lines. Both
single-channel and multi-channel data communication controls are offered; these controls adapt
themselves to a broad selection of lines, speeds, and terminal devices. One such terminal

device is Honeywell's Data Station (see Table 1-7).

Table 1-7. Series 200 Data Communication Equipment

Devi Nm Devices No, 1/0 Tr\mk_
Aevice Shinh | : ! :

~ Data Transfer Rate
e - : Communicaxicm Cmﬁ:!:rois 1
Single-Channel Control | Up to 5, 100 characters/second 1 line 2

281
286 Multi-Channel Control | Up to 300 characters/second/ 1-63 lines 2

288-1 Data Station Central 120 characters/second n/a n/a

Control

288-2 Data Station Central 120 characters/second n/a n/a
Control & Keyboard

289-2 Data Station Page 10 characters/second n/a n/a
Printer & Keyboard

289-2A | Keyboard 10 characters/second n/a n/a

289-3 Data Station Page 40 characters/second n/a n/a
Printer & Keyboard

289-4 Data Station Paper Tape| 120 characters/second n/a n/a
Reader

289-5 Data Station Paper Tape| 120 characters/second n/a n/a
Punch

PERIPHERAL EQUIPMENT

Table 1-7 (cont). Series 200 Data Communication Equipment

__ Data Transfer Rate

 Remote Terminal Device -

289-7 Data Station Card 120 characters/second n/a n/a
Reader
289-8 Data Station Optical 50 characters/second n/a n/a

Bar Code Reader

A major requirement of many communication networks (e.g., inquiry handling or message
switching applications) is fast access to a stored file. Files may sometimes be stored in main
memory, but for large files main memory storage is economically unfeasible. File storage
units (i.e., the Mass Memory File, magnetic tape units, or drum file units) provide the answer

to such mass storage applications.

A typical data communication network is shown in Figure 1-7. The pertinent components
of this system are: (1) a Type 201-2 processor; (2) a Type 251 Mass Memory File transport;
(3) a Type 281 communication control; (4) two DATA-PHONE data setsl; and (5) a Honeywell
Data Station, the remote terminal device. Two particular devices connected to the Data Station
are used in this example: a keyboard by which the inquiry is transmitted to the central proc-

essor, and a page printer which prints the answer to the inquiry in readable form.

PERIPHERAL DATA TRANSFER OPERATION

One of the major features of Series 200 is the degree of peripheral simultaneity that can
be achieved by the various processors. The Model 200 processors (Types 201, 201-1, and
201-2) and the Type 1201 processor can perform up to four peripheral operations simultaneously;
the Type 2201 processor performs as many as eight simultaneous peripheral operations. While
all these operations are being executed, the central processor continues its internal processing.
The ability to perform simultaneous peripheral operations derives from an internal unit of the
central processor, the input/output traffic control, which guarantees a peripheral control access
to main memory when data is to be transferred. The manner in which the traffic control does
this is explained in Section 2. The data path used by the traffic control to transfer data is de-

scribed below; Figure 1-8 illustrates the basic elements which form this data path,

1A data set is required to convert the data signals used by the communication control to signals

acceptable for transmission over communication lines.

1-11

SECTION 1. SERIES 200 COMPONENTS

KEYBOARD T

TYPE 288-2

DATA STATION 1. Customer inquiry is typed on keyboard in
CENTRAL CONTROL form of a coded message.
PRINTER T
DATA-PHONE
DATASET 2. Message signals are converted to a form
acceptable for transmission line.
3. Message is transmitted over transmission
line.
DATA-PHONE 4. Message signals are reconverted.
DATASET
l 5. Control generates interrupt signal and trans-
TYPE 28! fers incoming message to pre-assigned
gg%’gﬂ”" memory location as directed by interrupt
CONTROL service routine.
TYPE 201-2 PROCESSOR
6. Stored interrupt service routine interprets
O)o O X OO N O O} O
i et message and issues instructions to read and
T u update the customer's record in a file stored
| - in Type 251 Mass Memory File transport.
;Z?SES 250 7. Type 250 control directs the execution of the
MEMORY instructions issued by the stored interrupt
FILE
CONTROL program.
8. Customer's record is read and updated ac=-
cording to instructions. Record is read into
TYAF’;'; 25E' pre-assigned location in interrupt routine
M MEMORY FILE . . .
TRANSPORT (in central processor memory), #rom which
the answer to the inquiry is sent back to the
Data Station. (Answer to inquiry is printed
by page printer.)
Figure 1-7. Customer Inquiry Handling via Typical Communications Network

1-12

PERIPHERAL EQUIPMENT

CENTRAL PROCESSOR

1/0
MAIN TRAFFIC |-
MEMORY CONTROL | |

\—— arum—
PERIPHERAL
INTERFACE

Figure 1-8. Basic Input/Output Data Path

Input/Output Trunk

An input/output trunk permanently connects a peripheral control (and its associated device)
to the peripheral interface. The trunk transfers data either to or from the central processor
and is therefore either an input or an output trunk, depending on the type of device it connects to
the peripheral interface. For example, the I/O trunk connecting the card reader and its associ-
ated control is an input trunk, while the I/O trunk connecting the printer and its control is an
output trunk. A peripheral control which performs both input and output functions (e.g., a mag-

netic tape control) requires two I/O trunks: onefor input operations, andone for output operations.

The maximum number of peripheral controls that can be connected to a Series 200 processor
is determined by the number of I/O trunks associated with that processor. For example, the
Type 2201 can contain up to 32 I/O trunks, which means that as many as 32 peripheral controls

can be attached to the processor at one time (see Figure 1-10).

Read/Write Channel

Notice that the data path shown in Figure 1-8 is incomplete: there is no connection across
the peripheral interface. This final link in the data path, known as a ''read/write channel, " is
inserted when the instruction is executed. Unlike an I/O trunk, which is permanently connected

to a peripheral control, the read/write channel is assigned by the programmer to specialize the

data path between a peripheral control and the processor.

SECTION 1. SERIES 200 COMPONENTS

When the programmer codes a Peripheral Data Transfer instruction, he specifies among
other things the peripheral control that is to send or receive the data (and therefore the I/0
trunk connected to that control) and the read/write channel over which the data transfer is to take
place. When the instruction is executed, the specified read/write channel is automatically in-
serted in the peripheral interface. For example, Figure 1-9 shows the data path formed during
the execution of a Peripheral Data Transfer instruction in which the programmer specifies that
the card reader control is to transfer data over read/write channel 2 (RWC2). The specified
channel remains in the interface only for the duration of the card read operation. When the data

transfer terminates, RWC2 is automatically removed from the interface and is available for

reassignment by another instruction.

CENTRAL PROCESSOR

1/0
MAIN - TRAFFIC
MEMORY “.-=§ CONTROL

Figure 1-9. Data Path During Card Read Operation

Read/write channels are the key to the achievable simultaneity in a Series 200 maodel: the
number of read/write channels associated with a particular processor indicates the number of

peripheral operations that can be performed simultaneously by that processor (see Figure 1-10).

READ/WRITE CHANNELS INPUT/OUTPUT TRUNKS
MODEL (NUMBER OF SIMULTANEOUS (NUMBER OF PERIPHERAL

OPERATIONS POSSIBLE) CONTROLS POSSIBLE)
2201 16 o {32
1201 16
201-2
201-1
201 8 16

OPTIONAL

BASIC

Figure 1-10. Data Path Components of Series 200 Processors

1-14

OPTIONAL FEATURES

OPTIONAL FEATURES
Table 1-8 lists the various features that can be added to the Series 200 processors de-
scribed in this manual. This table illustrates the realistic design principle of Series 200: a
Series 200 model can be specialized to meet the individual user's application; the application

is not compromised to meet the design of the model.

Certain features optional with some processors are standard with other larger types.
This is also part of the realistic approach to system development. Particularly significant is
the fact that specialization of a Series 200 model can occur at any time (not just at installation

time) to meet any increased workload or applications shift that might occur.

A summary description of the optional features is given below.

Table 1- 8. Series 200 Optional Features

FEATURE 201 | 201-1 | 201-2 | 1201 | 2201
010 | ADVANCED PROGRAMMING n/a | n/a | OPT :
011 | ADVANCED PROGRAMMING OPT| OPT | n/a |n/a |n/a
012 | PROGRAM INTERRUPT et B , "

013 | EDIT INSTRUCTION oPT| OPT | OPT
015 | 8 ADDITIONAL I/O TRUNKS OPT | OPT | OPT
016 | AUXILIARY READ/WRITE CHANNEL OPT | O r | opT -

1100 | SCIENTIFIC UNIT n/a OPT | OPT

1115| 16 ADDITIONAL I/O TRUNKS & 4 ADDITIONAL RWC'S|n/a |n/a |n/a | n/a | OPT

1114| STORAGE PROTECT n/a |n/a |n/a %QPT/ |a/a
1117| STORAGE PROTECT n/a |n/a |n/a |n/a |OPT

STANDARD -t OPTIONAL

ADVANCED PROGRAMMING

Two Advanced Programming Features increase the basic instruction repertoire of the
Model 200 processors. Feature 011 is available with the Types 201 and 201-1 processors, and
feature 010 can be added to the Type 201-2 processor. Each feature includes the following
capabilities (see Table 1-9):

1. Additional program instructions.

2. The ability to modify instruction addresses via indexed or indirect ad-
dressing (described in Section 4).

3. A '"read reverse' capability with magnetic tape units.

1-15

SECTION 1. SERIES 200 COMPONENTS

Table 1-9. Model 200 Advanced Programming Feature

FEATURE 010 {Type 201-2) FEATURE 011 (Types 201 and 201~1)

Program Instructions Program Instructions

Zero and Add

Zero and Subtract

Branch if Character Equal
Change Sequencing Mode
Change Addressing Model
Extended Move

Zero and Add

Zero and Subtract

Branch if Character Equal
Change Sequencing Mode
Extended Move

Move and Translate
Branch on Character Condition (expanded Move and Translate

version) Branch on Character Condition (ex-
8. Branch on Bit Equal2 panded version)

N oMU N
W 3O U Wiy

9. Load Control Registers?
Address Modification Address Modification
1. Indexed addressing via 6 or 15 index 1. Indexed addressing via 6 or 15 index
registers3 registers
2. Indirect addressing 2. Indirect addressing
Read Reverse Read Reverse

Any Model 200 processor can read 1/2-inch magnetic tapes in a reverse direction and transfer
the information to the main memory in the normal (forward) direction.

1The Change Addressing Mode instruction is available in Type 201 or 201-1 processors which
include either the Advanced Programming Feature or a main memory capacity greater than
4,096 characters. It is included in the standard instruction repertoire of the Type 201-2
processor.

2'I‘he Branch on Bit Equal instruction is optionally available only with the Type 201-2 processor.
The Load Control Registers instruction, optional with the Types 201 and 201-1 processors, is
included in the standard instruction repertoire of the Type 201-2 processor.

3The Types 201-1 and 201-2 processors with the Advanced Programming Feature contain 6 in-
dex registers in the three-character addressing mode and 15 index registers in the four-char-
acter mode. The Type 201 processor with the Advanced Programming Feature contains six
index registers, regardless of addressing mode.

PROGRAM INTERRUPT

This feature, whose basic functions are described on page 1-3, is an optional feature for
the Type 201 processor and is standard for all other processors described herein. A detailed
description of program interruption, including conditions which must be present for an interrupt
to occur, processor activities which are automatically performed when the interrupt takes place,

and the programming of interrupt service routines, is given in Appendix D.

EDIT INSTRUCTION

A comprehensive instruction — Move Characters and Edit — is optionally available with

the Model 200 processors and is a standard feature with the Types 1201 and 2201 processors.

OPTIONAL FEATURES

Processed information is edited before being converted to an output medium (e.g., a printed
document) by the suppression of unwanted characters and symbols and the insertion of identi-
fying symbols such as the dollar sign, decimal point, and asterisk. The Move Characters and

Edit instruction is described on page 8-102.

ADDITIONAL INPUT/OUTPUT TRUNKS AND READ/WRITE CHANNELS

Any information transferred between the central processor and a peripheral device is
transmitted over a '"data path' formed by a read/write channel and an input/output trunk. (The
significance of these two elements is described on page 1-13.) The degree of peripheral simul-
taneity achievable by a processor and the number of peripheral devices connectable to that
processor depends on the number of read/write channels and input/output trunks available,
respectively. Three optional features allow a user to increase his processor's peripheral
flexibility by adding the following elements:

1. Feature 015 — Eight additional input/output trunks for a Model 200
processor.

2. Feature 016 — One additional (auxiliary) read/write channel for a Model
200 processor,

3. Feature 1115 — Four additional read/write channels and 16 additional
input/output trunks for the Type 2201 processor.
The input/output trunks of Feature 1115 can be used
only in conjunction with the read/write channels of
this feature.

SCIENTIFIC UNIT

The scientific unit, which is physically contained in a separate unit of Series 200 cabinetry,
adds 14 scientifically oriented instructions to the Series 200 repertoire. Available with the
Types 1201 and 2201 processors, it is summarized in Appendix F and described in detail in the

Honeywell Information Bulletin entitled Scientific Unit for Model 1200 and 2200 {Feature 1100).

STORAGE PROTECT

Two Storage Protect Features, identical in nature, are offered to the Type 1201 and 2201
processors as Features 1114 and 1117, respectively. These features allow a programmer-
specified portion of the main memory (and the contents thereof) to be shielded from accidental
alteration by programs running concurrently in the memory. Any attempt to violate the pro-
tection of this area results in an "internal' processor interruption. The program or programs
running in the protected memory area have 15 additional index registers at their disposal; these
registers can also be used by programs in the unprotected (or ""open'') memory area if desired.

The Storage Protect Feature is described in Appendix E.

THE CENTRAL
PROCESSOR

A Series 200 central processor is logically divided into five basic units (see Figure 2-1):

a main memory, a control memory, an arithmetic unit, a control unit, and an input/output

traffic control.

MAIN MEMORY

| conTrROL MEMORY | § 1/0
] TRAFFIC
| coNTROL

" ARITHMETIC UNIT

Figure 2-1. Logical Division of Series 200 Central Processor

MAIN MEMORY

The main memory contains from 2, 048 to 262, 144 character locations of magnetic core

storage which are used to store program instructions and data during a program run (see

Figure 2-2).

Nine planes of cores (see Figure 2-3) are placed on top of one another to form a memory

"'stack'’; nine cores aligned vertically form a character position in memory.

position is identified by a unique numeric address.

Every character

This means that an instruction can designate

the exact storage locations that contain the data neededfor a particular operation.

2-1

SECTION 2. THE CENTRAL PROCESSOR

MAIN MEMORY

STORED;
PROGRAM

| AND/OR DATA [XINPUT DEVICE

Figure 2-2. Main Memory Functions

68
A

Figure 2-3. A Main Memory Core Plane

Figure 2-4 shows one character position of memory with the name of each core shown to the
right. Each core can be individually magnetized to represent either a one or a zero, depending
upon its polarity. Moving from bottom to top in Figure 2-4, the first six cores are used for data
storage, the seventh and eighth cores are used to define the limits of storage areas (these two
cores are frequently referred to as 'punctuation' bits), and the ninth core is used for parity

checking.

Figure 2-5 shows how typical numeric, alphabetic, and special characters are stored inthe

main memory. Shaded circles represent cores containing 1-bits. Bits 1, 2, 4, and 8 in each

MAIN MEMORY

character position can be combined to represent the decimal values zero through nine. This
four-bit representation of decimal numbers is known as binary coded decimal (BCD). Alphabetic
and special characters are represented by a combination of numeric (1, 2, 4, and 8) and the A
and B cores. The A and B cores correspond to card zone punches: the A bit represents a 12-
punch, the B bit represents an ll-punch, a combination of the A and B bits represent a 0-punch.

A listing of the main memory formats for all valid Series 200 characters appears in Appendix B.

CORE FUNCTION ¢ 4 9 CHARBACTE: (F
©) PARITY BIT (P) P O . O O
o ITEM MARK BIT (M) }PUNCTUATION BITS ? ™ O O O O O O O O
@) WORD MARK BIT (WM) Z w OO0 |0|0|0|0]0O
o BB'T}ZONE Birs g 8 |O|O |00 O
o | nem i |»]OlO]Olo|o|o|o|o
© 8 BIT E s OO O 10 O
o | esr rl+«|O|lo|0]lO|olo|o]|0
O | 2o vz OO0 O O
O | ter OO OO OO

Figure 2-4. One Memory Position Figure 2-5. Representation of Characters

in Magnetic Core Storage

The word-mark bit (WM) is used to define storage fields in the memory. Information is
rarely stored in the memory as single, independent characters; instead, adjacent character
positions are usually grouped to form storage fields. As described in Section 3, the word-mark

bit is instrumental in defining the size of such fields.

Consecutive storage fields are frequently grouped together to form a unit of information
called an item. As its name implies, the item-mark bit (IM) is used to define the size of an item

in the main memory (see Section 3).

A unit of information that is to be transferred between the main memory and a peripheral
device is called a record. A record can be of any length, from one character up to virtually the
maximum number of characters in the memory. Both the word-mark and item-mark bits are

used in defining the size of a record (see Section 3).

The parity bit (P) is used in conjunction with an automatic error-detection technique known

as parity checking. Every character must be represented in the central processor by an odd

SECTION 2. THE CENTRAL PROCESSOR

number of one-bits. Whenever a character is moved from one location to another it is automati-
cally checked to determine if an odd number of bits has been moved. In Figure 2-5, the charac-
ters 0, 9, B, M, and (are represented by an even number of information bits. Circuitry within
the central processor automatically adds a one in the parity bit positions of these characters to

provide the required odd bit count.

CONTROL MEMORY

The control memory is a magnetic core storage unit consisting of up to 37 individually
addressable control registers. 1" (The number of registers actually available depends on the
system configuration.) Normally, control registers contain the addresses of instructions and of
the data being processed during a program run. One such register, called the A-address
register, is illustrated in Figure 2-6. In this example, the A-address register contains an
address (206) designating a main memory location, which in turn contains a unit of information

(the decimal digit 7) to be added in the arithmetic unit.

REGISTER CONTENTS OF
A-AD|DRESS REGISTER

~ MAIN MEMORY CONTROL MEMORY |
- - A-ADD. REG.

ADDRESS —=— i 206 -

CONTENTS OF |} [
LOCATION 206 :

Figure 2-6. Typical Control Register Function

When the Scientific Unit (Feature 1100) is included in a Series 200 processor, each control
register is three characters (18 bits) in length, When the Scientific Unit is not present, each
control register is only as large as it need be to contain the largest (or "highest') main memory
address in a user's processor. (The binary addressing technique used by Series 200processors

is described in Section 4.) Thus, a processor whose main memory capacity is 8, 192 characters

l1When the Series 200 model is equipped with the Scientific Unit (see Appendix F), 12 control
memory locations form four floating-point accumulators; these registers should only be ad-
dressed by the scientific instructions included in that feature.

CONTROL MEMORY

contains control memory registers which are each 13 bits long (13 bits allow 8, 192 addresses),
while the control registers of a processor containing 131,072 characters of main memory storage

are each 17 bits long (see Table 2-1).

Table 2-1, Size of Control Memory Registers

4,096 8,192 16, 384 32,768 65, 536 131,072 262, 144

12 13 14 15 16 17 18

Control registers can be addressed either by programmed instruction or from the oper-
ator's control panel or console. For instance, an instruction can change the course of a pro-
gram by manipulating the contents of the control register that governs program sequence; the
operator can interrogate a control register to determine the exact location at which the program
has halted, etc. When a register is addressed by programmed instruction, it is specified by
means of a variant character in the instruction. A register is addressed from the control panel
or console by using the register's octal address. The functional name of each register and the

variant character which specifies the register are listed in Table 2-2.

Table 2-2. Control Memory Registers

= | vaArianT
' DE | CHARACTER
1. AAR A-Address Register 67v
2. BAR B-Address Register 70
3. SR Sequence Register 77
4. CLCl1 Read/Write Channel 1 ~ Current Location Counter 01
5. CLC2 Read/Write Channel 2 — Current Location Counter 02
6. CLC3 Read/Write Channel 3 — Current Location Counter 03
7. SLCI1 Read/Write Channel 1 — Starting Location Counter 11
8. SLC2 Read/Write Channel 2 — Starting Location Counter 12
9. SLC3 Read/Write Channel 3 — Starting Location Counter 13
10. WR1 Work Register 11 75
11. WR2 Work Register 2! 74
12. WR3 Work Register 31 60

SECTION 2.

THE CENTRAL PROCESSOR

Table 2-2 (cont).

Control Memory Registers

. MNEMONIC | VARIANT

 DESIGNATION | FUNCTION CHARACTER
_ FEATURE 012 ,
14. EIR External Interrupt Register 66

| FEATURE 016 S |

15. CLCl' Read/Write Channel 1' — Current Location Counter 05
16. SLC1' Read/Write Channel 1' — Starting Location Counter 15

| . FEATURE 1115 | o
17. CLC4 Read/Write Channel 4 — Current Location Counter 21
18. CLC5 Read/Write Channel 5 — Current Location Counter 22
19. CLC6 Read/Write Channel 6 — Current Location Counter 23
20. CLC4! Read/Write Channel 4'— Current Location Counter 25
21. SL.C4 Read/Write Channel 4 — Starting Location Counter 31
22. SLC5 Read/Write Channel 5 — Starting Location Counter 32
23. SLC6 Read/Write Channel 6 — Starting Location Counter 33
24, SLC4' Read/Write Channel 4'- Starting Location Counter

|l FEATURE 1100 " ;
25.
26. ACO Floating-Point Accumulator 0 42
27. 43
28. 45
29. ACl1 Floating-Point Accumulator 1 46
30. 47
31. 51
32. AC2 Floating-Point Accumulator 2 52
33. 53
34. 55
35, AC3 Floating-Point Accumulator 3 56
36. 57
37. IIR Internal Interrupt Register 76
INot accessible to the program.

ADDRESS REGISTERS

The A- and B-address registers, the two sequence registers, and the interrupt registers

are used to address main memory during the loading and execution of instructions. A detailed

description of these registers is presented in Section 4, '"Addressing."

2-6

ARITHMETIC UNIT

READ/WRITE COUNTERS

Data is transferred between the main memory and a peripheral device via a read/write

channel (described in Section 1). Associated with a read/write channel are two locationcounters:
a starting location counter and a current location counter. When a peripheral transfer is to be
performed, the address atwhich the transfer is to begin is stored in both counters. Then, as
each successive character is transferred, the contents of the current location counter are in-
cremented by one so that when the transfer is completed, the address of the character position

immediately following the last character transferred is stored in the current location counter.

The availability of the starting and current addresses associated with an input/output area

greatly simplifies the manipulation of variable-length records.

ARITHMETIC UNIT

Arithmetic and logical operations are performed by a configuration of components commonly
referred to as the arithmetic unit. Basically, this unit is composed of an adder, capable of per-
forming both binary and decimal arithmetic, and two operand storage registers, 1 cach capable of
storing 2 single six-bit character. In general terms, an arithmetic or logic operation is per-
formed as follows (see Figure 2-7):

1. An instruction in the storedprogram specifies the type of operation tobe per-
formed and the main memory storage locations of the data to be operated upon.

2. The operands are transferred to the operand storage registers a character
at a time, beginning with the rightmost character in each operand.

3. Each pair of characters that enters the storage registers is combined by
the adder and the result is stored in the main memory as specified by the
stored program instruction. If a carry is generated, it is stored in the
adder and combined with the next higher-order pair of characters.

B | FERaw '
STORAGE ADDER
m REGISTERS

Figure 2-7. Data Flow Between Main Memory and Arithmetic Unit

TThe contents of these registers are not accessible to the programmer.

2-7

SECTION 2. THE CENTRAL PROCESSOR

CONTROL UNIT

The control unit is the hub of central processor activities (see Figure 2-8)., Its major
function is to select, interpret, and execute all of the instructions in the stored program. In
carrying out these instructions, the control unit coordinates the various activities of receiving
data from input devices, transferring data within the central processor, and transferringproc-
essed data to the output units. The main memory addresses used by the control unit in perform-

ing these tasks are stored in the registers of the control memory.

MAIN MEMORY CONTROL MEMORY | § 1/0
TRAFFIC —_—
CONTROL

ARITHMETIC UNIT

Figure 2-8. Control Unit Activities

INPUT/OUTPUT TRAFFIC CONTROL

The input/output traffic control is, as its name implies, the control unit which regulates
the flow (or '"traffic') of data transferred during input/output activities. It works in conjunction
with the central processor control unit to allocate central processor time to input/output oper-
ations and to identify the peripheral controls which are to use that time to transfer data (see

Figure 2-9).

The I/0 traffic control enables from three (Model 200 minimum) to eight (Model 2200
maximum) simultaneous input/output operations to occur concurrently with the internal compu-
tations of the processor. This simultaneity is achieved by the traffic control's allocation of

consecutive memory cycles to either peripheral controls or the central processor.

2-8

INPUT/OUTPUT TRAFFIC CONTROL

INPUT DEVICE

1/0
TRAFFIC | |
CONTROL |-

QUTPUT DEVICE

Figure 2-9. Input/Output Traffic Control Activities

MEMORY CYCLE DISTRIBUTION

When peripheral operations are in progress, a variety of mechanical activities may be
taking place — paper advancing in a printer, a tape reel backspacing, a magnetic tape strip being
selected, etc. During peripheral operations, only a fraction of actual central processor time
is required to transfer information to and from the main memory; most of the time is taken up
by the peripheral mechanical activities. The periods in which the central processor is actually
interrupted for data transfer are spaced over the duration of the peripheral operation (see

Figure 2-10).

TIME REQUIRED TO COMPLETE PERIPHERAL OPERATION

CENTRAL PROCESSOR TIME REQUIRED FOR DATA TRANSFER

Figure 2-10. Data Transfer Intervals During One Peripheral Operation

When a peripheral operation is in progress but is not using main memory (the gray areas
in Figure 2-10), another peripheral control may gain access to the main memory. This second
memory access can in turn give way to a third access by another control before the original

operation requires access to the memory again, etc. In other words, peripheral operations can

2-9

SECTION 2. THE CENTRAL PROCESSOR

occur simultaneously with one another. The periods of time in which peripheral controls do not

require main memory access to transfer data are given to the central processor for its internal
activities. It is the function of the I/O traffic control to direct the sharing of main memory

cycles by the various peripheral devices and the central processor,

The rate at which each peripheral control transfers data over a programmer-assigned
read/write channel depends on the mechanical characteristics of the device connected to the
control. 1 Thus, the transfer intervals shown in Figure 2-10 are spaced according to the device
being used. For instance, the transfer rate for the mass memory file is considerably faster than
that for the card punch; therefore, the mass memory file will require access tothe main memory
more frequently than the card punch. The I/O traffic control monitors the requests for access
to the main memory and insures that all requests are honored within the prescribed time interval
for each unit. The manner in which this is done is illustrated in Figure 2-11. Essentially,
the traffic control decides how each memory cycle should be used — by a read/write channel or

by the central processor — as described below.

The traffic control offers consecutive memory cycles to read/write channels, one memory
cycle per channel. If there is a demand on a particular channel when the cycle is offered, the
channel is granted access to the main memory for one cycle. If the channel does not require
the memory cycle (i.e., if there is no information to be transferred through the channel at that

time), the memory cycle is given to the central processor for internal data processing.

Each basic read/write channel associated with a processor is granted a memory cycle
access to the memory every six microseconds. Thus, the Model 200 processors grant a two-
microsecond access to each one of the three basic read/write channels every six microseconds;
the Type 2201 processor gives a one-microsecond memory access to each one of six basic
channels every six microseconds. The Type 1201 processor also offers a memory cycle (1.5
microseconds) to each of the three basic channels every six microseconds but in a slightly
different manner. There are four l.5-microsecond memory cycles in every six-microsecond
interval. Thus, RWCI1, RWC2, and RWC3 are each granted a 1. 5-microsecond access to the
memory, and 1.5 microseconds is still available before the next six-microsecond interval

begins. This "residual'' memory cycle is always given to the Type 1201 processor for internal

computation.

AUXILIARY READ/WRITE CHANNELS

RWC1' and RWC4' are called auxiliary read/write channels because of the manner inwhich

they are granted access to the main memory by the input/output traffic control. RWCI and

1Read/write channels are described in Section 1.

2-10

INPUT/OUTPUT TRAFFIC CONTROL

IF DEMAND ON RWCH,
SERVICE RWCI.
OTHERWISE,
SERVICE CENTRAL
PROCESSOR.

IF DEMAND ON RWC',
SERVICE RWCI .
OTHERWISE,
SERVICE CENTRAL
PROCESSOR.

IF. DEMAND ON RWC2,
SERVICE RWC2.

: —] OTHERWISE,
CONTROL SERVICE CENTRAL
PROCESSOR.

200 OR 1200 CYCLE(S)*

NOTE: GRAY AREAS
INDICATE OPERATIONS
PERFORMED ONLY BY THE
TYPE 220! PROCESSOR.

NOTE : Al AND A4 SWITCH
EVERY SIX MICROSECONDS
UNLESS INHIBITED BY
PROGRAMMED INSTRUCTION.

IF DEMAND ON RWC3,
SERVICE RWC3,
OTHERWISE,
SERVICE CENTRAL
PROCESSOR.

* THIS INTERVAL COMPRISES TWO MEMORY CYCLES IN THE TYPE 1201 PROCESSOR;,
THE FIRST CYCLE IS GIVEN TO RWC3 (AS SHOWN), THE SECOND CYCLE IS GIVEN
TO THE PROCESSOR.

Figure 2-11. Symbolic Representation of Input/Output Traffic Control

2-11

SECTION 2. THE CENTRAL PROCESSOR

RWCI1' are connected to an alternator; RWC4 and RWC4' are also connected to an alternator.
Every six microseconds, either or both alternators (depending on the number of channels asso-
ciated with a processor) switch to allow one of the attached read/write channels access to the
By providing alternate access between RWC's 1 and 1' and between RWC's 4 and

main memory.

4', each auxiliary RWC can gain access to the main memory once every 12 microseconds.

1t should be noted that program control of the alternators is required because the data
transfer characteristics of certain peripheral devices require that main memory be accessed at
intervals less than 12 microseconds. This means that when such devices are linked to the main
memory via RWC1 and/or RWC4, the action of the appropriate alternator must be inhibited.
Under no conditions should such devices be assigned to transmit data over RWCI1' or RWC4'. As
discussed in Section 8, input/output instructions can be specified to inhibit the action of the

alternator(s), thereby guaranteeing RWC1 and/or RWC4 access to the main memory every six

microseconds by denying memory access to the corresponding RWC(s).

Table 2-3. Summary of Central Processor Characteristics

fo »zm'“

Six-bit character. Groups of consecutive characters form instruc-
tions and data fields. Fields are defined by word mark punctuation
(see Section 3).

PROCESSING UNIT

INSTRUCTION FORMAT | Variable. Typical configuration: and

variant character.

op code, two addresses,

ADDRESSING MODES Two-, three-, and four-character addressing. Three- and four-

character addresses can specify indexed and indirect addressing.

MEMORY CAPACITY 2,048- 2,048- 4, 096 - 16, 384- 16,384~
(Characters) 32,768 65,536 65, 536 131,072 262,144
MEMORY CYCLE 2 2 2 1.5 1
(Microseconds)

0-15 15-30

INDEX REGISTERS

0-6

MEMORY CAPACITY
(Control Registers)

MEMORY CYCLE

13-16 13-16

0.50 microseconds

Decimal arithmetic, binary arithmetic, logical operations.

OPERATIONS

TYPICAL 5-Digit
OPERATING| Decimal 5
48 48 48 36 .4

SPEEDS (3- | Add me He Ms Hs “RHS
Character (A+B—+B)
address 5-Digit
mode) Compare 38us 38us 38us 30pus Z21lps

(A:B)

INPUT/OUTPUT TRAFFIC CONTROL

Table 2-3 (cont). Summary of Central Processor Characteristics

CHECKING One parity bit with each character.

PROGRAM CONTROL Sequential selection, interpretation, and execution of all stored-
program instructions.

READ/WRITE
CHANNELS

3-4 3-4 3-4 4 4-8

INPUT/OUTPUT
TRUNKS

SIMULTANEOUS
OPERATIONS 3-4 3-4 3-4 4 4-8
POSSIBLE

8-16 8-16 8-16 16 16-32

DATA FORMAT

VARIABLE FIELD LENGTH

Information is stored in the main memory in groups of characters, which are called fields.
A field is, by definition, any group of characters that is treated as a unit. Series 200 models
permit fields of any length, from one character up to the maximum number of characters in the
memory. This means that an instruction or data field occupies only that number of core storage

locations actually needed.

The use of variable-length fields requires that there be a method of indicating the actual
length of instruction fields and data fields. This requirement is fulfilled by the word-mark bit
mentioned in Section 2. The word-mark bit performs the following functions:

1. It terminates the retrieval of an instruction.

2. It terminates the execution of an instruction.

3. It defines the size of a data field.

Throughout this manual, the presence of a word mark will be indicated by a circle around
the character with which it is associated. The following points should be noted regarding the
use of word marks:

1. Word marks can be set and cleared by programmed instructions.

2. Word marks are set by the same routine that loads a program and data into
the main memory. Usually, word-mark assignments will remain unchanged
throughout the execution of a program.

3. An instruction is terminated by a word mark in the storage position immediately
following its last (rightmost) character.

4. A data field is terminated by a word mark associated with its high-order
(leftmost) character.

SECTION 3. DATA FORMAT

INSTRUCTION FORMAT

An instruction is a coded statement which orders the computer to perform a fundamental
operation. A set of instructions suitably combined to perform a specific task is called a program

or routine.

As will be shown in Section 5, the task of coding the instructions in a program is greatly
simplified by the Easycoder symbolic programming system. The Easycoder Assembly Program
converts the symbolic coding written by the programmer into a machine language which is ac-

ceptable to the internal logic of the machine.

OPERATION CODE

Basic to all instructions is an operation code, usually referred to as an op code, that de-
fines the fundamental operation to be performed. The programmer specifies an op code by using
a predefined mnemonic configuration; e.g., BA is the op code that specifies a binary add opera-
tion, MCW is the op code that specifies a move characters to word mark operation. The Easy-
coder Assembly Program automatically converts a mnemonic op code into a single-character,
machine-language op code and sets the word-mark bit in the character position in which it is

stored.

A AND B ADDRESSES

Most instructions also have two address portions, designated as the A address and the
B address. The address portions indicate the starting locations of the operand fields in the
main memory. Using the Easycoder language, the programmer can specify memory locations by

means of symbolic addresses or 'tags'' (see Section 5).

The Easycoder Assembly Program automatically assigns absolute memory addresses to
the symbolic addresses appearing in a program (see Figure 3-1). Thus, the programmer can

manipulate operands without regard to their actual storage locations in memory.

ADDRESS

SYMBOLIC ADDR.
(TAG)

| ABSOLUTE MEMORY

Figure 3-1. Conversion of Symbolic Tags to Absolute Memory Addresses

3-2

INSTRUCTION FORMAT

Because of the modular design of Series 200 models, the programmer has the facility to
specify whether a two-, three-, or four-character absolute address will be assigned to each
symbolic address used in the program. In any case, the absolute addresses assigned by the

assembly program are interpreted as pure binary numbers (see Section 4).

VARIANT CHARACTER

The variant character is used to modify the op code of an instruction. For example, the

op code of a Branch on Condition Test instruction (BCT) specifies the fundamental operation —
branch if a tested condition is met. The condition or restriction which must be met before the
branch can occur is specified by the variant character. A table of valid variant characters is

presented in Appendix B.

Figure 3-2 shows the six basic formats in which machine-language instructions may appear.
Since the maximum number of characters in an instruction depends upon whether two-, three-,
or four-character addressing is being used, shaded boxes in the illustration indicate the format
of an instruction without specifying the number of characters in each part. These formats are
representative of all instructions except those associated with input/output operations. The for-
mat of an input/output instruction (shown in Section 8 under the heading '"Input/Output Instruc-
tions') is a modification of format 3 shown below. Specifically, the variant characters of the
instruction are replaced by a field of one or more control characters which define the input/output

operation in terms of data path, direction of data flow, control unit designation, etc.

Figure 3-2. Series 200 Instruction Formats

For the sake of direct comparison, Figure 3-3 illustrates each of the formats defined in

Figure 3-2 as a symbolic entry on the programmer's coding form.

3-3

SECTION 3. DATA FORMAT

EASYCODER

CODING FORM
PROBLEM PRO 1ER DATE PAGE oF ___
v Erg) LocaTion | OPurIoN OPERANDS
\ 2]3 alsie][7]s | alis, 20[21 | | L) | R | o eeles .. 8O
g l BCE . [P6,LABEL @G ...\ [FORMAT 1, . .,
2 | 1 1 1 L 1 i 1 1 1 | - FI VI T S R P '}
3 I 1 A lTEM\I -roTAL 1 L i ! 1 | - FonRIMAnTn |21 n]
4 1 | 1 1 n A,,A‘ATI L 1 1 1 1 1 1 L PR | L
IR ... [BCT . |BZRO, #3 ., . A ‘ J . . [FORMAT 3 .
s J | i 1 1 1 1 A L 1 P 1 1 | PR | 1
’ ; : 1 Sw L WDKK L 1 1 L L b L 1 o FoanMnAATI |4I L
8 | 4 1 1 L P 4 1 1 1 1 1] L I B 1 1
9 l !’ 1 QAM 6¢ 1 1L 1 L 1 1 L | - FonRIMAT .5| L
0]! i 1 1 1 L 1 Il 1 o L L 1 - Ll 1
" L. L 5 L 1 L L 1 . 1 L FO.R.M.A."" .61 1
2 l | i 1 1 1 I I, | 1 P 1 1 1 1 1
3 : | 1 1 1 1 1 1 1 o 1 1 I 1 1
' l | L 1 i L 1 1 L 1 e L I 1 1 1 L
s | ! L L L 1 1 aad L i 1 ! L 1 1
Figure 3-3. Symbolic Representation of Series 200 Instructions
ORGANIZATION OF DATA IN MAIN MEMORY
Data may be stored in the main memory in any of the following variable-length formats:
e FIELD
e ITEM
¢ RECORD
FIELDS

Consider the eight consecutive storage locations shown in Figure 3-4. To indicate to the
machine that these eight characters are to be treated as a field, their left and right boundaries
must be defined. The left boundary is defined by setting a word mark in position 990. The right
boundary is defined by specifying storage address 997 in the instruction that will manipulate the

field. The eight-character group shown in Figure 3-5 is properly defined as a field.

STORAGE ADDRESS —»
CONTENTS —»

Figure 3-4. Consecutive Storage Locations in Main Memory

ORGANIZATION OF DATA IN MAIN MEMORY

EASYCODER

CODING FORM
PROBLEM PRO ER DATE PAGE —_OF.____

CARD
NUMBER

1213 a5

L A $5812,997.. . e ‘ . ‘ .
LADDRESS PORTION OF INSTRUCTION

| LOCATION °"i‘2‘?,2°” OPERANDS

& [Pro<|
3

8 L 1415, 20021 e Lo | L L e2[e3 | L Ly, 8

STORAGE ADDRESS
CONTENTS

@] 3] o 51 2] 9
WORD
MARK

DATA FIELD

Figure 3-5, Data Field Format in Main Memory

ITEMS
An item consists of one or more consecutive storage locations whose boundaries can be

defined in either of two ways:

1. The leftmost character position canbe defined inthe instructionthat will operate
on the item andthe rightmost character positiondefinedbyanitem mark; or

2. The rightmost character position canbe defined in the instruction thatwill oper-
ate on the item andthe leftmost character position defined by an item mark.

NOTE: An item mark is illustrated in this manual by underlining the character with
which it is associated. Fields within an item are defined by word marks.

Two items, each containing three datafields, are shown in Figure 3-6.

ADDRESS PORTION
OF INSTRUCTION

STORAGE ADDRESS

CONTENTS = (3) ITEM

MARK

PDATA FIELD’I‘—DATA FIELD-—.J4-DATA FIELD—»

- ITEM gl

ADDRESS PORTION
OF INSTRUCTION

STORAGE ADDRESS

CONTENTS
ITEM MARK DATA «PATA _, l «DATA _| ‘
FIELD FIELD FIELD
- ITEM

Figure 3-6. Two Item Formats in Main Memory

3-5

SECTION 3. DATA FORMAT

RECORDS

A record is any unit of information that is to be transferred between the main memory and

1

a peripheral device.' A record can be of any length, from one character up to the maximum

number of characters in the memory. It can contain any number of items and fields. The right-
most limit of a record is defined by a record mark in the character position following the last
character in the record (see Figure 3-7).

NOTE: A record mark is illustrated by combining the word-mark and item-mark
symbols. The address of the leftmost character in a record is specified
in the instruction that operates on the record.,

ADDRESS PORTION OF INSTRUCTION
|

STORAGE ADDRESS —»} 246
CONTENTS—»{ 4 5

RECORD
MARK

RECORD >

Figure 3-7. Record Format in Main Memory

SUMMARY

The foregoing data formats are summarized in Figure 3-8.

'BOUNDARY DEFINITION

| LEFTMOST CHARACTER | RIGHTMOST CHAR
FIELD Word Mark ® Address portion of in- Set Word Mark
struction
Address portion of in- Item mark K
ITEM struction Set Item Mark
Item Mark X Address portion of in-
struction
. . . BOTH Set
RECORD iidz;et::?s portion of in- Record mark ® Word Mark
struction and Set Item
(in character position Mark
following last character
of record)1

Figure 3-8. Summary of Internal Data Formats

1 A record can also be moved internally (i.e., from one main memory area to another) by means
of the Extended Move instruction (see Section 8). In this case, the character containing the
record mark is considered as part of the record.

3-6

MAGNETIC TAPE DATA FORMAT

MAGNETIC TAPE DATA FORMAT

In many applications, a major input and output medium for a Series 200 model is magnetic
tape. The standard Series 200 magnetic tape system uses 1/2-inch tape as the recording medi-

um. A tape system using 3/4-inch tape is also available.

Information is stored on 1/2-inch magnetic tape in variable-length group of characters
called records. The tape is divided lengthwise into seven recording channels. A line of bit posi-
tions across the tape, one position for each channel, is called a frame. The seven bits in a
frame correspond to the six information bits and one parity bit found in a character position in
the main memory. Notice that no channels are provided for the storage of punctuation bits on
tape. Unlike main memory records, which are delimited by record-mark punctuation, tape rec-
ords are separated from each other by a band of blank tape, which is called an interrecord

gap. The representation of a memory character position on magnetic tape is shown in Figure 3-9.

<«+—|NTERRECORD GAP

MAIN
MEMORY
CHARACTER
POSITION

MAGNETIC
TAPE

Figure 3-9. Character RepresentationonMagnetic Tape

Characters recorded on magnetic tape are transferred from the main memory without
parity bits. At tl.e time of recording, the magnetic tape control generates parity bits as
required. The programmer may specify either odd or even-parity recording: in the odd-parity

mode the bit count in each frame is odd; in the even-parity mode the bit count is even.

In addition to parity bits, which are used for frame checking, the magnetic tape control
also generates a longitudinal check frame which is used for channel checking purposes. A check

frame is automatically appended at the end of each record stored on tape.

Recall that a record stored in memory is delimited by a record mark in the character

position following the last character in the record. When a record is transferred to tape, the

SECTION 3. DATA FORMAT

contents of the character position containing the record mark are not included as part of the re-
cord. On the other hand, if a record mark is sensed in memory when information is being read
in from tape, the record mark will terminate the record and the character position containing
the record mark will receive a character from the tape. Although data transfer from the tape
is terminated by the record mark, tape motion continues until an interrecord gap is sensed.

No punctuation marks are altered in any way as a result of tape read/write operations.

LONGITUDINAL
CHECK FRAME INTERRECORD
GAP

|

VARIABLE- LENGTH FRAME
RECORDS

Figure 3-10. Data Format on Magnetic Tape

PUNCHED CARD FORMAT

Punched cards provide a convenient means of entering data into the machine. The cards
used for this purpose are either standard 12-row, 80-column cards or 51-column cards. FEach
card column may contain a decimal digit, an alphabetic character, or a special symbol such as

a slash or an asterisk (see Figure 3-11).

0123456789 ABCDEFGHI JKLMNOPQR STUVWXYZ B.H-SK/ 1 %70
ZONE / THARNOER 1
PUNCHES (L L] 111}
(00000000000000000000000000060600000000000c00000cMENNENINoocooooooo0oofANoooo000000
IlJlli7l!W\!lZ\JMI&IEHll|520."221)111525112!2830]I]11114]5}6'"]11940‘\l?l\ulil&“&ﬁ""ésaﬂS?ﬁ]MSSSﬁSI&!iSWNEZE]Elovﬁﬁifﬁiiﬂm“72717‘7575717!7530
RRRREEEE] FREERERERRRERERES ARRRRRRERl IRRRRRRRAR R AR R RN AR AR RRRRERR] IRRRRRRRRRRE]
22222222220222222222222222202222222220222222220222222222222222222222222222222222
3333333333303332333323333333330333333333033333333033333333333333033033030333333333
NUMERIC 9 sa4444a4das4aBas4aaaasaasasasallasaassaaalasssssaalasdassasassssaslaalaalalaasdssay
PUNCHES 5555555555555055555555555555550555555555056555555B555555555555555555555555555555
66666666666666M6666c5666666666606666h6666066666666M66666666666666666666666666666
RERRERRRRRERRR] RERARA R R RAI RARRARERRI RRRRRREAL RRRRARRRRRRRRRARRARERRRAREERE]
ssoosneasssscsnclocssssassossassslssosssansleasnocssMesesscagolBelNcHERNaccsssss
so coomv__—_L. nipitnnnuhinnnninstnnnnuisntianna i

Figure 3-11. Punched Card Codes

3-8

PUNCHED CARD FORMAT

Numeric information is represented using the card punch positions labeled zero through
nine. Alphabetic information is represented by a combination of numeric punches and zone
punches. There are three zone punch positions: the 12 zone at the top edge of the card, the 11
zone just below the 12-zone position, and the zero zone labeled as row zero on the card. The 11

and 12 zones are not labeled because the top edge of the card is reserved for printed headings.

In addition to Hollerith code, cards may be punched or read in the direct transcription
mode as an optional feature. Each punch position on the card is individually significant in this

mode, a punch representing a one bit and the absence of a punch representing a zero bit.

The data formats of the media most commonly associated with peripheral devices (viz.,
magnetic tape and punched cards) have been described. However, other media (e.g., paper tape,
magnetic tape strips, etc.) also contain unique data formats which are converted to central
processor format by their respective peripheral controls. These formats are described in the

individual Series 200 publications which define such devices.

3-9

ADDRESSING

BASIC CONCEPTS

The main memory storage locations that contain the instructions and data of a program are
identified to the machine by their particular main memory addresses. Every character storage

location in the main memory is directly addressable.

An instruction is stored in a field of from one to 12 characters, depending on the format of
the instruction and the mode of address assembly (two-, three-, or four-character). Figure 4-1
illustrates how a typical Add instruction appears when stored in the main memory. (Recall that

a character enclosed in a circle indicates that a word mark is associated with it,)

An instruction is addressed by specifying the op code (leftmost) location of the instruction.
For instance, the address of the Add instruction in Figure 4-1 is storage location 524, The

machine reads an instruction from left to right until it senses a word mark. For example, the

extraction of the Add instruction (Figure 4-1) is stopped by the word mark associated with the

op code of the next instruction in sequence.

STORAGE ADDRESS—» 524 [525 [526 | 527 | 528 | 529 | 530 | 531

CONTENTS—= @ 1776 1492 X ﬁ
A A

5
OP A ADDRESS B ADDRESS OP CODE OF
CODE NEXT INSTR.

MACHINE READS INSTRUCTION
FROM LEFT TO RIGHT ‘

Figure 4-1. Typical Add Instruction

4-1

SECTION 4. ADDRESSING

As mentioned in Section 3, a data field is defined in the following manner: the leftmost
location in the field is indicated by a word mark; the rightmost location is specified in the A or
B address of an instruction. The machine reads a data field from right to left until it senses the
word mark associated with the leftmost character in the field. For example, the A and B ad-

dresses in the instruction shown in Figure 4-1 could specify the data fields shown in Figure 4-2.1

oP
‘CODEI A ADDRESS B ADDRESS
INSTRUCTION—] @ | 1776 | 1492 |

: b 4
ADDRESS——»{ 1771 | 1772 | 1773 | 1774 | 1775 [1776

DATA——»f 4 ® 7 2 0 4

A FIELD

ADDRESS—»f 1485 | 1486 | 1487 | 1488 | 1489 | 1490

DATA— (© 3 7 7 7 3

B FIELD

MACHINE READS DATA FIELD
-
FROM RIGHT TO LEFT

Figure 4-2. Extraction of Data Fields in Typical Add Instruction

An item is addressed by specifying either its leftmost or its rightmost character location
in an address portion of an instruction (a variant character in the instruction specifies which
character is being addressed). If the address of the leftmost character is specified, the ma-
chine reads the item from left to right; if the address of the rightmost character is specified,
the machine reads the item from right to left. In either case, the operation terminates when an

item mark is sensed.

A record is addressed by specifying its leftmost character location in an address portion
of an instruction. The machine reads a record from left to right until it senses a record mark.
Note that the contents of the character position containing a record mark are not considered as

part of the record.

1
NOTE: All examples and illustrations in this section are presented in decimal notation. A table
of decimal and octal equivalents appears in Appendix A.

4-2

REGISTERS USED IN ADDRESSING

The direction in which the machine reads any of the above-mentioned groups is compatible
with the manner in which the contents of the group are manipulated, For instance, a field is
read from right to left becuase arithmetic operations combine fields character by character,
starting with the low-order or '"units' position in each field. Similarly, an instruction is read
from left to right because the machine must interpret the op code before it can manipulate the

operand(s).

REGISTERS USED IN ADDRESSING

The processing of a stored-program instruction consists of two phases: the retrieval (or
"extraction'') of the instruction from main memory storage, and the execution of the instruction.
Six control memory registers are used to address the main memory during instruction proc-
essing. Four registers — SR, CSR, EIR, and IIR — are related to the sequential selection of
instructions in a program; the other two registers — AAR and BAR — control the transfer of
information from one storage location to another by containing the address portions of an in-

struction.

SEQUENCE REGISTER (SR)

SR contains the address of the next sequential instruction character to be extracted from
the memory during a program run. The contents of SR are incremented by one as each instruc-
tion character is extracted, so that SR contains the address of the next instruction's op code

when one instruction has been completely extracted.

CHANGE SEQUENCE REGISTER (CSR)

The address of an op code can be stored in CSR.! A Change Sequencing Mode instruction
(see page 8- 72) will interchange the contents of SR and CSR and thereby cause the program to
branch to the instruction whose op code address was stored in CSR. At this point in the program
CSR will contain the address of the op code following the Change Sequencing Mode instruction.
In order to return to this op code (i.e., to the initial sequence of instructions), another Change

Sequencing Mode instruction can be issued.

EXTERNAL INTERRUPT REGISTER (EIR)

EIR, like CSR, can be used to store the address of an op code (see footnote below. This
address and the contents of SR willbe interchanged automatically when an external interrupt

signal is received. (Recall that an external interrupt signal can be generated by a peripheral

lA Load Control Registers instruction can be used to store the desired op code address (see
page 8-67).

SECTION 4. ADDRESSING

control, by the control panel or console, or by the Monitor Call instruction. In order to re-
turn to the normal sequence of instructions that was interrupted, a Resume Normal mode in-

struction (see page 8-97) can be issued.

INTERNAL INTERRUPT REGISTER (IIR)

The address of anop code canalso be storedinIIR.l Whenthe Type 1201 or 2201 processoris
equipped with the Storage Protect Feature, certain operations are considered as ''violations'' of
storage protection (e.g., the attempt to transfer data from a peripheral control to the protected
memory area). An internal interrupt signal is generated when such a violation occurs, and the
contents of IIR and SR are automatically interchanged. The Resume Normal Mode instruction is

used to return to the interrupted program.

A-ADDRESS REGISTER (AAR)

AAR normally contains the A-address portion of an instruction (i.e., the storage address
of the rightmost character in the A-operand field). This address is loaded into AAR during the
extraction phase of processing. In the execution of instructions whose operands are fields, the
contents of AAR are decremented by one as each character in the A field is manipulated. The
contents of AAR are incremented by one as each character in a record or leftmost-addressed

item is executed.

B-ADDRESS REGISTER (BAR)

Normally the B-address portion of an instruction is loaded into BAR during the extraction
phase. During the execution of most instructions, the contents of BAR are decremented by one
as each character in the B field is executed. If the B operand is a record or a leftmost-ad-

dressed item, the contents of BAR are incremented by one as each character is executed.

SUMMARY
The foregoing information can be summarized as four easily remembered rules:

1. An instruction is read from left to right. As each character in the instruc-
tion is read, the contents of the sequence register are incremented by one.

2. A field is read from right to left, As each character in a field is read,
the contents of the corresponding address register are decremented by one.

3. A record is read from left to right. 2 As each character in a record is read,
the contents of the corresponding current location counter are incremented
by one.

lA Load Control Registers instruction can be used to store the desired op code address (see
page 8- 67).

2
A record also can be moved internally from right to left by means of the Extended Move in-
struction (see Section 8).

ADDRESSING MODES

4. An item can be read either from left to right or from right to left. As
each character in an item is read, the contents of the corresponding ad-
dress register are incremented by one if reading from left to right, or
decremented by one if reading from right to left,

Recall that a control memory register is only as large as it need be to contain the largest
main memory address in a user's processor (see Table 2-1), so that the size of the user's
control registers ranges from 12 to 18 bits in length. The programmer should keep this fact in

mind while reading the following description of addressing modes.

ADDRESSING MODES

As stated at the beginning of this section, an instruction is stored in a field of from 1 to 12
characters, depending on the instruction's format and the programmed addressing mode. The
op code is stored as a single, six-bit character. Variant characters or I/O control characters,
if any, are each stored as single characters. The number of character locations in which each
address portion is stored depends on the addressing mode selected by the programmer. This
selection is made by means of a Change Addressing Mode instruction (see page 8-69), by which
the programmer specifies the two-, three-, or four-character addressing mode, A significant

feature of the Series 200 addressing technique is that the entire memory is directly addressable.

TWO-CHARACTER ADDRESSING MODE

An operand address written in the two-character addressing mode is stored in two con-
secutive character locations in memory. The stored address (a continuous 12-bit binary num-

ber) represents the address of a main memory location in the range 0 - 4, 09510.

Two-Character Address =lx X XXX X].X XXXXX

12-Bit Address

During the extraction phase of instruction processing, the two-character address is placed
in the rightmost 12-bit positions of the address register (AAR or BAR). Any bits in the register
to the left of the two-character address are called '"bank bits.' Previous values in the bank bit

positions of the register are not disturbed during instruction extraction. !

1
The entire contents of an address register (bank bits + two-character address bits) are affected
during the extraction of an instruction whose extraction path ''duplicates A' (described on page
4-16), Extraction of all other two-character addresses affects only the rightmost 12 bits.

SECTION 4. ADDRESSING

Two-Character Address X XX }CXXI X X X X X }—q

(12 Bits)

Address Register
(12 - 18 Bits)

Bank Bits
(not disturbed
during

extraction)

When the instruction is executed, the entire contents of the address register are inter-

preted as the operand address. Previous values in the bank bit positions, not disturbed during
the extraction phase, are used to form the address of the operand during the execution phase.
Thus, the bank bit values are a base address to which the 12-bit address is added to form the
actual operand address. If the bank bit values are all zeros, the 12-bit address is the actual

operand address.

For example, a two-character A address specifying location 4, 000 is extracted and
placed in AAR. The second bank bit in AAR (bit position 14) contains a residual value of "1'",
forming a base address of 8, 19210. When the instruction is executed, the entire contents of

AAR (8, 192,, t 4,000)) specify the address of the A operand — location 12,192 .

As the contents of the address register are incremented or decremented during '"internal"
execution, bank bits are not disturbed.l If the 12-bit address in the rightmost positions of the
register becomes zero, a borrow from the first bank bit does not occur. Thus, the portion of
memory which is addressable by a two-character address is the 4, 096 -character '"bank' speci-

fied by the base address.

Indexed and indirect addressing (see below) cannot be performed in the two-character ad-

dressing mode.

THREE-CHARACTER ADDRESSING MODE

An operand address written in the three-character addressing mode is stored in three
consecutive character locations of the memory. The rightmost 15 bits of the stored address

represent the address of a main memory location in the range 0 - 32, 76710. The leftmost three

1”Interna.l execution' is defined as the incrementing or decrementing of address register con-
tents during memory cycles allocated to the central processor. When peripheral transfer oper-
ations are performed, using memory cycles allocated to read/write channels, incrementing and
decrementing of address register contents affect all bits of the register. Thus, addressing
during peripheral transfer operations is continuous throughout the memory.

4-6

ADDRESSING MODES

bits, referred to as the '"address modifier, ' specify whether the address is direct, indirect, or

indexed (see '"Address Modification, "' page 4-8).

Three-Character Address

e—, /

3-Bit 15-Bit Address
Address
Modifier

During the extraction phase, the 15-bit address is placed in the rightmost bit positions of
the operand address register. Any bits in the register to the left of these bit positions are called
""'sector bits.! Previous values in the sector bit positions of the register are not disturbed during

instruction extraction. !

Three-Character Address
(15 Address Bits)

Y

Address Register
(15-18 Bits)

Sector Bits
(not disturbed
during
extraction)

When the instruction is executed, the entire contents of the address register are interpre-

ted as the operand address. Previous values in the sector bit positions, not disturbed during the
extraction phase, are used to form the address of the operand during the execution phase. Thus,
the sector bit values are a base address to which the 15-bit address is added to form the actual

operand address, If the sector bit values are all zeros, the 15-bit address is the operand address.

For example, a three-character A address specifying location 12, 00010 is extracted and
placed in AAR. The first sector bit in AAR (bit position 16) contains the value ''1", forming a
base address of 32, 76810. When the instruction is executed, the entire contents of AAR

(32,7687 + 12,000, 4) specify the address of the A operand — location 44, 768;(.
10 10/ specilty 10

As the contents of the address registers are incremented or decremented during '"'internal"
execution, sector bits are not disturbed. If the 15-bit address in the rightmost locations of the

address register becomes zero, a borrow from the first sector bit does not occur. Thus, the

lThe entire contents of an address register (sector bits + 15-bit address) are affected during the
extraction of an instruction whose extraction path '""duplicates A' (described on page 4-16). Ex-
traction of all other three-character addresses affects only the rightmost 15 bits in the register.

4-7

SECTION 4. ADDRESSING

portion of memory which is addressable by a three-character address is the 32, 768-character

"sector' specified by the base address.

Addressing is continuous throughout the entire memory when a peripheral transfer oper-

ation is performed, as in the two-character mode.

FOUR-CHARACTER ADDRESSING MODE

An operand address written in the four-character addressing mode is stored in four con-
secutive character locations. The rightmost 18 bits represent a main memory address in the
range 0 - 262, 14410.1 The leftmost five bits — the '"address modifier'" — specify whether the

address is direct, indirect, or indexed (see '""Address Modification, " below).

Four-Character Address———

5-Bit 18-Bit Address
Address
Modifier

The 18-bit address is placed in the address register during the extraction phase. Thus,
the entire contents of the address register are affected during the extraction of a four-character

address.

Four-Character Address
(18 Address Bits)

Address Register
(Up to 18 Bits)

The entire contents of the register are interpreted as the operand address when the instruc-
tion is executed. As the contents of the operand address registers (AAR and BAR) are incre-
mented or decremented during execution, all bits in the register are affected. Thus, addressing
is continuous throughout the entire range of available memory (up to 262, 144 locations) in the

four-character addressing mode.

ADDRESS MODIFICATION

Indirect and indexed addressing can be used to modify three- or four-character addresses

in any Series 200 processor containing the Advanced Programming Feature (Feature 010 or 01 1).

The nineteenth bit of a four-character address is reserved for possible memory expansion.
This bit is always zero in Series 200 processors with a main memory capacity of 262, 144
characters or less,

4-8

ADDRESS MODIFICATION

These addressing forms are represented by the configuration of the "address modifier' as

described below and are interpreted by the processor during the extraction phase.

THREE-CHARACTER ADDRESS

The address modifier of a three-character address (i.e., the leftmost three bits of the
stored address) specifies whether the address is direct (000), indirect (111), or indexed (00l
through 110).

Indirect Addressing

In previous examples and illustrations in this section, an address portion of an instruction
always specifies the address of a data field in the main memory. This manner of addressing an
operand is commonly referred to as direct, or '"first-level,' addressing. In some instances,
instead of specifying the location of a data field directly, it is more useful to be able to specify
the storage location of another address, which in turn specifies the location of the desired data
field. This manner of locating an operand is referred to as indirect, or '"second-level, "

addressing.

A three-character indirect address is specified by an address modifier of all one bits and
refers to the leftmost storage location of another main memory address. The referenced address
can itself be direct, indirect, or indexed as specified by its address modifier. Thus, an indirect
address can specify another indirect address, and so on through any number of levels, or it can

specify an indexed address, The method of coding an indirect address is illustrated in Section 5.

Figure 4-3 shows the extraction of an Add instruction in which indirect addressing is
specified in the A address and direct addressing is specified in the B address. Note that the A
address (indirect) references the leftmost location of another main memory address., This ad-
dress, in turn, specifies the location of the rightmost character in the A field. Note further
that if the address modifier of location 1027 were not '""000'", the remainder of the stored address

would be interpreted as an indexed or indirect address.

Indexed Addressing

A Series 200 processor can contain up to 30 index registers, depending on the type of proc-
essor and the optional features included in that processor. Table 4~1 summarizes the manner

in which a processor acquires index registers.

Indexing operations in the three-character addressing mode use index registers 1 through
6. These registers are located in the first 25 locations (locations 0 through 24) of the 32, 768-

character sector in which the instruction is stored (see Table 4—2).1

1These registers are always located in the first 25 locations (locations 0-24) of memory in a
Type 201 or 201-1 processor.

4-9

SECTION 4. ADDRESSING

OoP
CODE

A ADDRESS I

B ADDRESS '

INSTRUCTION—] ® [111}

1027 [000]

415

|

indicates
indirect
address

ADDRESS —»

_llozﬂ.wza [1029

CONTENTS—000! 1620
{

indicates
direct
address

ADDRESS—s11617 | 1618

1619

CONTENTS @ 3

7 2

A FIELD

ADDRESS—®410| 411 | 41

2 1413 1414

CONTENTS— D | 9 | 3

1 7 6

B

FIELD

Figure 4-3. Extraction of Three-Character Indirect Address

Table 4-1. Number of Index Registers Available to Series 200 Processors

[Type Basic L Features : Minimum Maximum
' . -Processor | - Advanced Storage Protect :
. Programming (Feature 1114
: (Feature or 1117)
010 or 011)

201 0 6 n/a 0 6
201-1 0 15 n/a 0 15
201-2 0 15 n/a 0 15
1201 15 n/al 15 15 30
2201 15 n/al 15 15 30

lAdvanced Programming is a standard feature on the Type 1201 and 2201 processors.

4-10

ADDRESS MODIFICATION

Table 4-2. Index Register Addresses in Three-Character Addressing Mode

1 001 2 - 4 (+n) 4 (4+n)
2 ol10 6 - 8 (+n) 8 (4n)
3 011 10 - 12 (+n) 12 (+n)
4 100 14 - 16 (4n) 16 (+n)
5 101 18 - 20 (+n) 20 (+n)
6 110 22 - 24 (+n) 24 (+n)
n = first location of the 32, 768-character sector in which the instruction is
stored.

When indexed addressing is performed in the three-character mode, the rightmost 15-bit
contents of an index register are automatically added to the 15-bit address field in an instruction.
Three variables must be defined in any indexing operation: (1) the index register to be used, (2)
the address to be modified, and (3) the factor (referred to as an augment) to be added to the ad-
dress. The index register to be used is specified in the address modifier of an address field.
The address to be modified can be stored in the same address field or it can be stored in the
designated index register. If the address to be modified is stored in an address field, the aug-

ment is stored in the designated index register and vice versa.

The modification of an address occurs in its respective address register. For instance
if the B-address portion of an instruction is indexed, the modification is performed in BAR.
This means that neither the original instruction stored in the main memory nor the contents of

the index register is altered in any way.

Normal programming, such as a load or a move operation, can be used to store a value
in an index register. Similarly, the contents of an index register can be changed by using an
instruction such as Binary Add or Binary Subtract. Note that since the index registers are lo-
cated in the main memory, they can be used as normal storage locations when they are not

being used for indexing operations.

Figure 4-4 illustrates how the Add instruction on page 4-10 would be extracted if indexed
addressing were specified in the A-address portion of the instruction. The method of coding an

indexed address is illustrated in Section 5.

SECTION 4. ADDRESSING

oP
'CODEI A ADDRESS B ADDRESS
INSTRUCTION—»] @& ot 1027 [ooo; 415 |
[1
indicates indicates
index direct
register 3 address

INDEX REGISTER 3

1027 A-ADDRESS

REGISTER
CONTENTS xxxi - +2000
|

address type
indicator is
ignored

ADDRESS 3
CONTENTS ——»

ADDRESS
CONTENTS~—»

B FIELD

Figure 4-4. Extraction of Indexed Address in Three-Character Mode

FOUR-CHARACTER ADDRESSING MODE

The address modifier in a four-character address consists of the leftmost five bits of the

address (see page 4-8). The configuration of these bits specifies whether the address is direct

(00000), indirect (10000), or indexed (00001 through 11111, skipping over 10000).

Indirect Addres sing

Indirect addressing in the four-character addressing mode is performed similarly to that in
the three-character mode, except that:

1. a five-bit address modifier whose configuration is 10000 specifies indirect
addressing; and
2. a four-character address is extracted.

The method of coding a four-character indirect address in Easycoder assembly language is

identical to that used for a three-character indirect address (see Section 5).

ADDRESS MODIFICATION

Indexed Addres sing

Four-character indexed addresses to be modified by index registers 1 through 15 are
specified by an address modifier whose configuration is 00001 through 01111, respectively. Index
registers 16 through 30, when present, Lare specified by the configurations 10001 through 11111
(see Table 4-3).

Table 4-3. Index Register Addresses in Four-Character Addressing Mode

1 00001 2-4 4
2 00010 6-8 8
3 00011 10-12 12
4 00100 14-16 16
5 00101 18-20 20
6 00110 22-24 24
7 00111 26-28 28
8 01000 30-32 32
9 01001 34-36 36
10 01010 38-40 40
11 01011 42-44 44
12 01100 46-48 48
13 01101 50-52 52
14 01110 54-56 56
15 01111 58-60 60
16 10001
17 10010

18 10011

19 10100
20 10101 Same as above, only
;; igi}(l) relative to the 4, 096 -
23 11000 character memory bank
;: iig(l)(l) designated by the Load
26 11011 Index/Barricade Register
;; ii;g? instruction (see page 8-84).
29 11110

30 11111

Index registers 1 through 15 are located in the first 61 locations of the main memory (lo-
cations 0 - 6010), each register occupying three storage locations. The situation of these reg-
isters is independent of the location of the instruction whose address(es) is indexed. Index reg-
isters 16 through 30 are locatedin thefirst 61 locations of the ""protected'" memoryarea in the Type

1201 or 2201 processor. (Recallthatthe mainmemoryofthe Type 1201 or 2201 canbe logicallydivided

1 .
Index registers 16 through 30 are the registers included in the Storage Protect Feature.

4-13

SECTION 4. ADDRESSING

at any 4, 096-character bank into an ''open" area and a ''protected" area. The specific bank at

which the division takes place is specified by the Load Index/Barricade Register instruction

described in Section 8.)

When indexed addressing is performed in the four-character mode, the contents of the
specified index register are added to the address field of the instruction. However, only the
number of active address bits of the index register and the address field are combined (i.e.,
only the number of bits which are required to address the entire memory of the user's proc-

essor). The number of active address bits corresponds to the size of a control memory reg-

ister (see Table 4-4).

Table 4-4, Active Address Bits in Series 200 Processors

'Main Memory || 32,768 65, 536 131,072 262, 144
| Capacity (Chars.)
| Number of Active | 15 16 17 18

- Address Bits

If the main memory capacity of a user's system lies somewhere between any two figures
in the top row of Table 4-4, the larger number of active address bits is used. For instance, if a
processor contains 49, 152 characters, there are 16 active address bits in an index register (and

in a control register).

The extraction of a Subtract instruction written in the four-character addressing mode is
shown in Figure 4-5. Indirect addressing is specified in the A address, and indexed addressing

(via index register 13) is specified in the B address.

EXPLICIT ADDRESSING, IMPLICIT ADDRESSING, AND CHAINING

Consider the three instruction formats illustrated below.

OP CODE A ADDRESS B_ADDRESS
FORMAT &] [] []
FORMAT 2,] []

FORMAT 3.]

Format 1 corresponds to the instructions used in the preceding illustrations. The signifi-

cant feature of this format is that the addresses of both the A and the B data fields are explicitly

4-14

EXPLICIT ADDRESSING, IMPLICIT ADDRESSING, AND CHAINING

specified in the instruction, For this reason the data fields are said to be "explicitly addressed. "
In general, whenever the programmer writes the address of a data field on his coding sheet, he

is explicitly addressing that data field (see Figure 4-6).

OoP
'CODE ’ A ADDRESS (B ADDRESS)

INSTRUCTION®] (® [100001 42800 01101 55055 |
]

indicates
indirect
address

indicates
index

register 13

ADDRESS
CONTENTS—»

00000

indicates
direct
address

ADDRESS
CONTENTS

ADDRESS

CONTENTS B-ADDRESS

REGISTER

CONTENTS

Figure 4-5. Extraction of Indirect and Indexed Four-Character Addresses

EXPLICIT ADODRESS FORMAT /

} 1

OP CODE A ADDRESS 8 ADDRESS

The addresses of both data fields are explicitly specified in
the instruction.

Figure 4-6. Series 200 Instruction Format 1

4-15

SECTION 4. ADDRESSING

Format 2 has two possible interpretations (see Figure 4-7):

1. Ten Series 200 instructions coded in format 2 cause the A address to be
loaded into both AAR and BAR. 1 Thus, although the B-address portion of
the instruction is omitted, the B field is explicitly addressed by the A-
address portion. The extraction path of these instructions is said to
""duplicate A" (see Appendix C), since the contents of AAR are duplicated
in BAR.

2. The A address of 18 instructions is loaded into AAR only, leaving BAR
undisturbed. An omitted B address in any of these instructions implies
that the previous contents of BAR will be used as the address of the B
field. For this reason the B field is said to be "implicitly addressed, "
and the extraction path of these instructions ''preserves B'' (see Appendix C).

EXPLICIT ADORESS FORMAT 2a.

OP CODE A ADDRESS 8 ADDRESS

H -

In ten instructions, the address of both data fields is explicitly
specified in the instruction.

IMPLICIT ADDRESS FORMAT 2b.
EXPLICIT ADDRESS —j
OP CODE A ADDRESS B ADDRESS previous contents

H e

In 18 instructions, the previous contents of BAR are
implied as the address of the B field. The address
of the A field is explicitly specified in the instruction.

Figure 4-7. Series 200 Instruction Format 2

In format 3, both data fields are implicitly addressed. The previous contents of AAR are

used as the address of the A field, and the previous contents of BAR are used as the address of

the B field (see Figure 4-8).

Implicit addressing is extremely useful in situations where it is desired to perform a

series of operations on data fields that are in consecutive storage locations. The use of implicit

1
The entire contents of AAR are loaded into BAR during extraction, so that all bit positions in

BAR are identical to those in AAR.

4-16

EXPLICIT ADDRESSING, IMPLICIT ADDRESSING, AND CHAINING

addressing reduces both the time required to perform the operations and the number of memory

locations required to store the instructions.

IMPLICIT ADDRESS FORMAT 3

e

OP CODE A ADDRESS 8 ADDRESS
(] CZ”3 CZ-3
| I | |
previous contenfs previous contents
of AAR of BAR

The addresses of both data fields are implied in
the instruction.

Figure 4-8. Series 200 Instruction Format 3

As an example, assumethatthree 10-character fields stored in sequence are to be added
to three other sequential fields. First, examine how this operation would be performed using
explicit addressing. Upon completion of the first instruction, AAR contains 890 and BAR con-

tains 690.

@ 900 700
@ 890 690
@ 880 680

These are the same values that appear in the A- and B-address portions of the second instruc-
tion. Similarly, upon completion of the second instruction, AAR and BAR contain 880 and 680
— the A and B addresses of the third instruction. Since in each case AAR and BAR contain the
addresses used in the next instruction, it is unnecessary to write these addresses in the instruc-
tion. In other words, this operation could be performed using implicit addressing in the second

and third instructions.

900 700

GO®

SECTION 4. ADDRESSING

Connecting instructions together so that the contents of AAR, BAR, and the variant reg-
ister (see below) at the conclusion of one instruction satisfy the requirements of the next instruc-
tion is called "chaining.' Using explicit addressing in the three-character addressing mode, 21
storage locations are required to store the instructions above and the operation takes 117 micro-
seconds to complete on a Type 2201 processor. If the instructions were ""chained, '" nine storage

locations would be used and 105 microseconds would be required to complete the operation.

Instructions which require a variant character can also be chained by using the previous
contents of the variant register. (The variant register is a single-character, internal register
into which the variant character of an instruction is loaded during extraction.) The extent of
chaining variant characters (i.e., the number of acceptable instruction formats in which the

previous contents of the variant register can be used) varies with the processor being used.

In the Types 201-2, 1201, and 2201 processors, variant characters can be chained by an
instruction coded in any format (i.e., format 1, 2, or 3 shown on page 4-14). The previous
contents of the variant register are not disturbed by the processing of an instruction which does

not contain a variant character.

In the Types 201 and 201-1 processors, the previous contents of the variant register are
destroyed by the processing of an instruction which contains an address portion. Thus, the only
instructions which can chain variant characters in these processors are those instructions coded

without address portions (i.e., format 3 on page 4-14).

Chaining is not limited to sequential operations having the same op code. The only con-
dition that must be met is that an instruction must leave the contents of AAR, BAR, and, if
required, the variant register such that they satisfy the addressing requirements of the next

instruction in sequence.

To enablethe programmer to chain instructions wherever possible, the description of each
instruction (see Section 8) includes a table showing the contents of the address registers after the
instruction has been executed. Also, Appendix C denotes whether each instruction in the machine

complement can or cannot be chained.

EASYCODER
PROGRAMMING

INTRODUCTION

The preparation of Series 200 programs is greatly simplified by Easycoder — a concise,
easy-to-use programming system. Specifically, Easycoder relieves the programmer of many
time-consuming duties associated with writing a program in actual machine language. It makes
it unnecessary, for example, to maintain a careful record of the storage address assigned to each
instruction. In addition, it allows the programmer to employ meaningful symbolic tags (e.g.,
TAX, FICA, and TOTAL) to specify data, rather than using absolute memory addresses. In
situations where a stored program must be relocated or modified, Easycoder can be used to

perform the required alterations automatically.

The Easycoder system consists of two basic elements: the Easycoder symbolic language
and the Easycoder Assembly Program. The Easycoder language is used to write the symbolic

program (the source program), while the Assembly Program translates the source program into

the actual machine-language program (the object program).

To prepare a program in Easycoder language, the programmer uses an Easycoder Coding
Form (see Figure 5-4) and enters each symbolic instruction or definition on a separate line. As
a general rule, the instructions are written in the order in which they are to be executed. After
the symbolic program has been written, each line of symbolic coding is punched into a separate
source program card. These cards are the input data which will be processed by the Easycoder

Assembly Program.

The Assembly Program accepts the source program cards and automatically produces a
corresponding machine-language object program. It converts mnemonic operation codes into
machine-language codes, assigns absolute storage addresses to instructions and symbolic oper-
and references, and completely assembles the final program, storing it on punched cards or
magnetic tape. A secondary output of the Assembly Program is a complete printed summary of

the symbolic source program and the corresponding machine-language entries,

5-1

SECTION 5.

EASYCODER PROGRAMMING

If the

programmer finds it necessary to alter the object program after it has been as-

sembled, he can isolate the affected areas in the source program, enter the required changes,

and then use the Assembly Program to reassemble a corrected version of the object program.

Figure 5-1

illustrates the relationship of the source program, the Assembly Program, and the

object program.

SOURCE PROGRAM OBJECT PROGRAM
SYMBOLIC CODING
PUNCHED INTO CARDS
EASYCODER MACHINE-L ANGUAGE PROGRAM
J STORED ON CARDS OR TAPE

CODING FORM ’ (: u
ASSEMBLY PROGRAM -

(TRANSLATES SYM-

BOLIC LANGUAGE INTO
MACHINE LANGUAGE) '

PROGRAM
LISTING

Figure 5-1. Relationship of Source, Assembly, and Object Programs

EASYCODER SYMBOLIC LANGUAGE

The symbolic language is composed of a set of mnemonic operation codes and a set of rules

for defining

memory areas, addressing operands, and entering constants. The mnemonic opera-

tion codes are predefined abbreviations for machine-language operation codes and, in general,

provide an easily remembered description of each instruction. For example, SI is the Easycoder

mnemonic for the Set Item Mark instruction, and BCC is the mnemonic for the Branch on Charac-

ter Condition instruction. The set of rules includes special mnemonics for defining work areas

in the main

memory and for defining programmer-specified constants.

The statements used in writing an Easycoder program can be classified into three groups:

1.

Data formatting statements make it possible to reserve areas and store
constants without regard to their actual locations in memory. Data format-
ting statements are completely described in Section 6.

Assembly control statements are used by the programmer to control the as-
sembly of his program. A complete description of assembly control state-
ments can be found in Section 7.

Data processing statements are the actual machine instructions to be exe-
cuted in the object program. Section 8 contains a description of the data
processing statements employed by the Models 200, 1200, and 2200.

5-2

EASYCODER ASSEMBLY PROGRAM

EASYCODER ASSEMBLY PROGRAM

The Easycoder Assembly Program translates the symbolic source program (written on the
Easycoder Coding Form and subsequently punchedinto a source program carddeck)into machine-
language entries, placing the resultantobject program on either punched cards or magnetic tape.
In addition to the object program output, the Assembly Program also produces a printed listing con-

taining the symbolic source program andthe corresponding object program entries. (See Figures5-2

and 5-3.)
OPERATION
SYMBoLIC z 15 CODE »0l2 OPERANDS }
PROGRAM
INSTRUCTION 2 A AMT,TOTAL
ASSEMBLY
PROGRAM
CHARACTER — / | 5
o8JECT i
PROGRAM 3 6 | 4 0 2 3 1.4 2
INSTRUCTION 1
oP CODE A ADDRESS 8 ADDRESS
gf;‘j,;’;”,,f,-’{aﬁj"si’,g’”w,d (Octal Rspresentation of 800) (Octal Representotion of 1250)
mark in this location)

Figure 5-2. Two-Character Address Assembly

OPERATION
srmaoLIC (5 CODE po|2 OPERANDS 5
PROGRAM
INSTRUCTION 2 A AMT,TOTAL+X4 2
\/w-’

ASSEMBLY
PROGRAM

CHARACTER =— / 1 4 5 | 6 7
oByECT 1 T i
PROGRAM 3 6 4 + 4 O 410 : 2 3 4 2
INSTRUCTION L]
0P COOE \ A ADDRESS \ B ADDRESS
02 ‘,'j,f,f;’,’}f’a",,f’ff,’:”’ INDICATES INDICATES
: DIRECT INDEX
,‘;Z;‘}'N’,'},",’ * In this ADDRESS REGISTER 4

Figure 5-3. Three-Character Address Assembly

5-3

SECTION 5. EASYCODER PROGRAMMING

Figure 5-2 illustrates how the Assembly Program assembles an object program instruc-
tion using two-character address assembly. Assume that the tag AMT is assigned to memory
location 800 and that the tag TOTAL is assigned to memory location 1250, Figure 5-3 shows
how the Assembly Program assembles an object program instruction using three-character ad-

dress assembly. Assume that the tags are assigned the same values as in Figure 5-2.

CODING FORM
Programs are written on the Easycoder Coding Form (Figure 5-4). This form is composed
of fixed-format fields for coding such entries as card number, location, and operation code, and
a variable-format field for operand addresses and comments. The numbers associated with each
subdivision, or field, on the coding form indicate the card columns into which the characters

written by the programmer as to be punched.

EASYCODER

CODING FORM
PROBLEM DATE PAGE __OF

CARD]| operaTION |

e I OPERANDS

B3 EXEI I RN o ; " ; ; ; ; : P o . . =
T

: : —

L L L L L n L L L n

|

|

|

|

T

I .
! "
|

1

1

3 6 @ v @ u > w 0N -

2 3 &5 a 3

- FrFRRERLEE

I S O I A Y

Figure 5-4. Easycoder Coding Form

CARD NUMBER (Card Columns 1-5)

This five-character field is divided into three parts: the first two characters are used for
page numbering, the next two for line numbering, and the last character for insertions. The page
entry provides the proper sequencing of coding forms. The line number entry is used for the
sequential numbering of instructions on each coding form. The single-character insertion entry
permits one or more lines of coding to be inserted between existing lines. For example, to

insert a line of coding between lines 16 and 17 of page 8, the following coding could be used.

5-4

CODING FORM

CARD NUMBER
PAGE | LINE | INS
) 2,3 4.5

mou<~

é

!
)
)
=

g, 8 |
2,8
¢ 8l

1,6
1,6
LT

TYPE (Card Column 6)

The programmer can enter lines of descriptive information, called remarks lines, anywhere
in the source program. Such a line, containing only descriptive data within columns 8 through 80,
is identified by an asterisk in column 6. Information inserted in this manner appears in the pro-

gram listing but does not appear as an entry in the object program.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF
cARD [T OPERATION
NUMBER Eg LOCATION CODE OPERANDS
1+ 2[3 4l5[s]7]8 | 1alis, 20[21 | \ ol a1l) L | | eeles e L. L. L. 80
|
| | ¥ [SPEC) FYICONTROL CONSTANTS N

MARK (Card Column 7)

This field, used in conjunction with data formatting operations (described in Section 6),
serves to set up required punctuation. Two sets of punctuation indicators are available: setlI
may be employed with all Easycoder Assembly Systems; set I, however, may only be used with

the Easycoder C Assembly System. 1 Both punctuation sets are described below.

Set I, consisting of a blank, an L., and an R, establishes the position of the item mark when
defining an item (see Table 5-1). Word marking for this first set depends upon the class of in-
struction, as determined by the contents of the op code field.

NOTE: When an L is used and the leftmost (high-order) character is auto-

matically word marked, a record mark will result.

Table 5-1. Set I Punctuation Indicators

R A Item Mark

Set II, designed for use with the Easycoder C Assembly System, can be employed in situa-
tions which warrant unusual punctuation requirements., With this set (listed in Table 5-2), any
one punctuation indicator controls the complete punctuation setting for the particular instruction
or constant, However, there is no implicit word mark setting as in the first set. In other words,

this second set of punctuation is not dependeént upon the class of instructions.

See Section 7 for definitions of the various Easycoder Assembly Systems.

5-5

SECTION 5. EASYCODER PROGRAMMING

Table 5-2. Set II Punctuation Indicators
(Easycoder C Only)

- “C_csl’%‘l mn
Contents Left, Q'st_*(Highj order) ¢
A Word Mark
B Item Mark A
C Record Mark A
D JAY Word Mark
E A Item Mark
F A Record Mark
G Item Mark Item Mark
H Item Mark Word Mark
I Item Mark Record Mark
J Word Mark Itemn Mark
K Word Mark Word Mark
M Word Mark Record Mark
N A A
P Record Mark Word Mark
S Record Mark Item Mark
T Record Mark Record Mark

LOCATION (Card Columns 8-14)

The location field can contain a symbolic tag or an absolute memory address, or it can be
left blank. Symbolic tags provide meaningful symbolic references for storage locations, con-
stants, and instructions that are referenced elsewhere in the program. All symbolic tags written
in the location field are assigned absolute addresses during assembly. When an entry is assigned
a symbolic tag, the contents of the entry can then be referred to by that tag. This means that the
programmer can refer to data via a symbolic tag and need not be concerned with its actual main

memory address.

A symbolic tag is composed of from one to six characters which can be alphabetic (A to Z)

or numeric (0 to 9); the first character of the tag must be alphabetic. Location field entries are

normally left-justified; that is, the first character is written in column 8. If a symbolic tag is
assigned to an instruction, the address assigned to the tag by the Assembly Program will be the
address of the operation code (the leftmost character in the instruction). If a tag is assigned to
a constant or a reserved area, the address assigned to the tag will be that of the rightmost

character in the field. (These address assignment conventions can be reversed by leaving column

5-6

CODING FORM

8 blank and entering the first character of the tag in column 9. In this case, a tag assigned to an
instruction will refer to the rightmost character of the instruction, and a tag assigned to a con-

stant or reserved area will refer to the leftmost character in the field.)

The programmer may also write an absolute memory address (expressed as a decimal
number) in the location field. This address will be assigned to the operation code of an instruc-
tion, or to the rightmost character of a constant or a reserved area. (If the address is written

starting in column 9, the address assignment conventions are reversed as described above.)

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF ___
NOMBER Erg LocaTion | OPERATION OPERANDS
\ 2]3 4l5]e]7]e | 14]15, 20| | 1 1 L1 . L. . L . .| 8283 |] L. Ll 80|
D T BEGIN Mew . [ELCAZTAX ot
N LB BEGIN, . Y P
L. | ||||pATE . pcw . REe/PB/65@ T I I S B

The first instruction shown above moves the contents of the field tagged FICA to the field
tagged TAX. This instruction can be referred to in the operands field of another symbolic pro-
gram entry via the tag BEGIN. For instance, the second instruction causes the program to
branch to the MCW instruction by referring to it via its symbolic tag (BEGIN). In other words,
the address of the operation code of the MCW instruction is inserted in an object program instruc-
tion wherever the tag BEGIN appears as an operand in a symbolic program entry. The third in-
struction defines an alphanumeric constant which can be referred to in the operand field of an-
other symbolic program entry via the tag DATE. In this case, the tag refers to the address of

the rightmost character in the constant.

OPERATION CODE (Card Columns 15-20)

This six-character field can contain a mnemonic operation code for a machine instruction,
an assembly program directive, or a data formatting code (see entries below). These entries
must be left-justified. Machine-language operation codes (in octal notation) may be used instead
of mnemonic codes. These octal codes are written in columns 19 and 20 of the operation code

field, and columns 15 to 18 are left blank.

& | (
Y, oalis, 20[21 4
/. ISCR._, .
. ORG)
N o/
L_—’—__A—J

SECTION 5. EASYCODER PROGRAMMING

OPERANDS (Card Columns 21-62)

The operands field is a variable-format field which can contain a series of entries separated
by commas and terminated by the first blank following any character other than a comma or a
blank. Column 62 also terminates the operands field. Any punches appearing in columns 63-80
of any line other than a remarks line (see page 5-5) are ignored and do not even appear in the

object program listing. 1

In general, the operands field contains such entries as the addresses (either symbolic or
absolute) of the data to be operated upon by a command in the operation code field, literals, ad-
dress constants, or input/output information. As explained in the following paragraphs, relative,

indexed, and indirect addressing can be used in conjunction with absolute or symbolic addresses.
The first sample instruction causes the contents of the field whose rightmost character is
stored in memory location 50 to be added algebraically to the contents of the field designated by

the tag TOTAL.

The second instruction tests the indicator specified by variant character 3 and branches to

the address tagged EQUAL if the indicator is on.

EASYCODER

CODING FORM
PROBLEM PRO R DATE PAGE ____OF _
Nomaer [p[g| LocATION | PETON OPERANDS
1 2]3 als[e]7[s | 14[15, 20[21 | | T L, . | | e2les . . L .., 80
g . A .. [58,TOTAL. ., . e e . . . ,
2 k 1 1 1 1 1 e Lo n) 1 n 1 1 1 PR | P T B | Lo
3 2| . BCT EQUAL,42 . .) T S e e .
4 4 | 1 1 1 1 1 L 1. PO 1 PR i 1 n i | I 1
sl 13 . ZA TOTAL,TMP+X3 . . e . e
& ! | 1 1 1 1 1 1 1 1 i L 1 1 1
Ik ... MCW __ TOTAL-7+X6,6ROSS.
e l b 1 L i 1 1 1 1 1 1 L 1 1 i
° ! 5! il A AMT'\ (|SUM'2.) 1 L 1 I i L L L L .

The third line of coding above shows an instruction in which the B address is indexed. The
instruction causes the contents of field tagged TOTAL to be placed in the field designated by the
tag TMP as modified by the contents of index register 3.

IThe Easycoder C Assembly Program (see Section 7) interprets punches in columns 63-80 as
comments and prints these comments in the program listing.

5-8

ADDRESS CODES

The fourth line of coding shows relative addressing and indexing being performed on the A
address. The instruction causes the address seven before that tagged TOTAL to be modified by
the contents of index register 6. The resultant address specifies a field whose contents are then
placed in the field tagged GROSS. Assuming that TOTAL corresponds tomemory location 540 and

index register 6 contains a value of 80, the resultant A address of this instruction would be 613.
The last line of coding above illustrates an instruction with indirect addressing on the B
address. The contents of the field tagged AMT are added algebraically to the contents of the

field whose address is stored in the field tagged SUM-2.

ADDITIONAL CODING RULES

1. Comments and remarks can appear on any line following the last entry on that
line and separated from it by a blank space. These notes will be printed on
the program listing but will not be assembled as object program entries. As
mentioned previously, any line of coding containing only comments must be
designated by an asterisk (*) in column 6.

2. Any number of blank spaces may be used between the comma which terminates
the A operand and the first character of the B operand. Similarly, any number
of spaces may be used between the comma that terminates the B operand and a
variant character.

ADDRESS CODES

Several types of address codes are valid in the operands field of an Easycoder statement.

These codes are defined and illustrated below.

ABSOLUTE

The actual address of a character position in the main memory can be represented as a
decimal number; leading zeros can be omitted. The sample instruction causes the contents of
the field whose rightmost character location is 32 to be moved to the field whose rightmost

character location is 4000.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF ____
CARD [¥ OPERATION
NUMBER [E|g| LOCATION CODE OPERANDS
1.2]3.4l5/6)718 | I4|5I 202 1 1 y i] PR TR 1 n i ||6263 Ll n PR DY . ‘80
1

! ! J 1 NCW . 32)4‘|¢L| ! L . I L . Ll 1 L L1 L1
SYMBOLIC

A symbolic address, or tag, can be used in the operands field only if it appears in the lo-
cation field elsewhere in the symbolic program. In effect, a tag must be defined (by writing it

in the location field of a symbolic entry) in order for it to be used as an operand address.

5-9

SECTION 5. EASYCODER PROGRAMMING

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE —_OF ___
N%ﬁgm EQ rocation | *gone " OPERANDS
¢ 2|3 al5]|s]7]8 | 1a]15, 20[21, L L L L 1 |, 62|63 | L L 80
L [roTaAL FICA,TOTAX T S

The instruction shown above can be referred to elsewhere in the program via its tag
(TOTAL). It should be noted, however, that this instruction is a valid statement only if the
symbolic addresses FICA and TOTAX have been defined in the location field elsewhere in the

source program.

SELF REFERENCE

It is sometimes convenient for an instruction to refer to itself. A self reference is indicated
by an asterisk in the operands field of a source program instruction. The Assembly Program
automatically replaces the asterisk with the address of the leftmost character of the instruction

in which it appears. Address modification and relative addressing can be performed on asterisk

operands.
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF
carD |7|% OPERATION)
NUMBER Eﬁ LOCATION CODE OPERANDS
|z|34;5579 | 1alis, 20[21 | | o el L o oeeles L . .. B0
! 1 ! 1 MICW n *+4"WIOR|’< 1 L i | Y Lo Ly 1 1 I Y P 'Y

|

1 1 CW__ %9, WORK ., . . T P .
|

I

|

L 1 L L PR | S - 1o U L T T N S I

1 1 L PRSI L L L " L Ll Ll Ll Lo - L

In the first sample entry above, the notation *+4 addresses the rightmost character of the
instruction in which it appears (assuming that two-character address assembly has been speci-
fied). Since the function of this instruction is to move the field specified by the A address to that

specified by the B address, the instruction itself will be moved to the field tagged WORK.

In the second entry, the notation *+9 refers to the rightmost character of the instruction
stored immediately to the right of the MCW instruction (assuming that two-character address
assembly has been specified). The instruction following the MCW instruction will be moved to

the field tagged WORK when the MCW instruction is executed.

RELATIVE

Relative addressing, or address arithmetic as it is frequently called, can be used with all

5-10

ADDRESS CODES

absolute addresses, symbolic addresses, and the self-reference symbol (*) (these three types of
address codes are referred to as addressing '"elements'). By using relative addressing, the
programmer can refer to a source program entry that is stored a specified number of locations
away from a particular address. A relative address ig specified by appending one or more ad-
dress modifiers, each consisting of a sign and an addressing element, to another addressing ele-
ment. The address modifier designates a memory location relative to the location specified by
the basic addressing element. For example, the instruction below causes the contents of the field
100 characters beyond the field tagged INT to be added algebraically to the contents of the field

10 characters before the sum of the addresses defined by the tags AMTPD and ERROR.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ___
CARD [} OPERATION
NUMBER g LOCATION CODE OPERANDS
123 als[e[7]e L 1415, 20(a1 | . L T - - S _— %
! . A INT+188,AMTPD+ERROR-10 ., .]

The number of symbolic tags required to write a program can be greatly reduced by the
use of relative addressing. The programmer decides how many and which fields in a program

to tag and which to reference by relative addressing.

A certain amount of caution is required in the use of relative addressing. First of all,
relative addresses are not automatically corrected as a result of subsequent insertions or dele-
tions in the source program. The programmer must remember to adjust manually the address
modifiers affected by such changes. Secondly, if relative addressing is used to refer to an
operand address in another instruction, care must be taken to insure that the address is refer-
enced by its rightmost character. For example, the A address of the instruction shown below
could be referred to elsewhere in the program as INST+2, INST+3, or INST+4, depending on

whether two-, three-, or four-character address assembly were specified.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF___
NUMBER ?%{ECAT'ON S OPERANDS 7
1,2]3 als]6][7[a | 1a)is, 20f2i | | Lo el I R L, ., 80
L T[ENsT A SUBT,TOTAL,, . . .]
BLANK
There are two conditions for which a blank operand field is valid:
1. The instruction does not require an operand (e. g., the Halt and No Operation
instructions).
2, The operands are implicitly addressed: the A operand is specified by the

contents of the A-address register (AAR); the B operand is specified by the
contents of the B-address register (BAR).

5-11

SECTION 5. EASYCODER PROGRAMMING

If either or both operand addresses are to be supplied by other instructions (as illustrated
below in the description of address literals), the affected operands should be represented by

zeros; they should not be left blank.

LITERALS!

The purpose of a literal is to allow the programmer to write in the operands field of a
symbolic program statement the actual data (as opposed to the address of the field containing
the data) to be operated on by an instruction. All literals, except binary literals, can be coded
with a maximum length of 40 characters. A binary literal can be coded with a maximum length

of six characters.

_ The Assembly Program automatically assigns a storage field for each literal and inserts
its address (i.e., the address of its rightmost character) in the operands field of the instruction
in which it appears. In effect, for every literal appearing in the source program, the Assembly
Program generates a constant containing the value of the literal, with a word mark in the left-

most character position.

NOTE: If the constant generated from a literal occupies from one to five storage
locations, it is assigned a storage address only once in the program,
regardless of the number of times the literal appears in the source pro-
gram. A constant that exceeds five characters is assigned a storage ad-
dress each time the corresponding literal appears in the source program.
The latter condition can be avoided by using a DCW statement (see page
6-2) whenever a long literal is to be used more than once in the source
program.

Decimal Literals

Decimal literals are specified by writing a plus or minus sign followed by the value of the
literal. When the literal is assigned to a storage field, the Assembly Program places the sign
in the zone bits of the units position of the resulting constant. Unsigned decimal values can be

coded as alphanumeric literals.

EASYCODER

CODING FORM
PROBLEM e ———— PROGRAMMER pATE . PAGE ____OF
CARD |v|% OPERATION
NUMBER E LOCATION [poel OPERANDS
1,23 415[8]7]8 1 1415, 20[21 J | | L L R L L. 1 8e[83 . | . - .
|
! E | l l__ 1 §. |+Z4' ccyV W,MHQ#_WWMM_H_I

The statement above illustrates the use of a decimal literal. The instruction causes the

value 24 to be subtracted from the contents of the field tagged ACCUM.

lavailable only with Easycoder B and C.

ADDRESS CODES

Binary Literals

A binary literal is represented as a decimal entry in the operands field of a symbolic in-
struction. The Assembly Program automatically converts the decimal entry into a binary value
and stores it (right-justified) in the storage field. The programmer must specify the number

of six-bit characters (not to exceed six) used to store this value.

A binary literal is coded by writing a # sign, followed by a number from 1 to 6 which
specifies how many six-bit characters should be used to store the resulting binary value,
followed by the letter B, followed by the decimal representation of the desired binary literal.

NOTE: If the decimal representation of the binary literal is preceded by a minus

sign, the Assembly Program will store the binary literal in twos-comple-
ment form.

The first instruction below causes the binary equivalent of 50 (expressed as a continuous
12-bit binary value) to be added to the contents of the field tagged BEGIN+2. The second in-
struction has been included to illustrate how a binary literal can be used in address modification.
In effect, the first instruction modifies the A address of the second instruction by a value of +50.
The third instruction causes the binary equivalent of 2688 (expressed as an 18-bit binary value)

to be moved to the field tagged IND7.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE __OF ___
T
N R Eg LOCATION | OPERATION OPERANDS
| 2[3 4:5 6|78 [14115, 20[2(1 L 1 L L T L L i L 6283 | . L. Loy, 80
! ; | L aA A #2BS¢|,BEG‘N+2 Lt L - [— A L s 1 P 1.
2 ||| [BEGAN , MCW . TTEMA,TOTAL . e b R N s
3 l i 1 1 A 1 n 1 s 1 1 | I SV | PR 1 | PR | 1
- I . MCW,_ . ®3B26,88,INDT7. e T I
3 | | 1 L ! Lo 1 L I . L 1 b N} P B L

Octal Literals

Octal literals are coded in octal notation (see Appendix A). The programmer must specify

the number of six-bit characters (not to exceed 20) required to store an octal literal.

NOTE: Since every octal digit can be represented as three bits, each six-bit
character used to store an octal literal contains two octal digits. For
example, an octal literal composed of eight octal digits can be stored
in a four-character field.

An octal literal is coded in the same format as a binary literal except that the letter B used
in the binary literal is replaced by the letter C. The constant stored by the Assembly Program

is always left-justified in the storage field.

SECTION 5. EASYCODER PROGRAMMING
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF ___
NUMBER E"é Location | *Gpe™ OPERANDS
1+ 2]3 als]e[7 L 1415, 20021 L L L L L e2les) L. o1, 89
! ! i L HA N 1[*3AC77|7.7.;MASK a b R el 1 Lo ol el) ! 1

The A operand in the above statement is a four-digit octal literal.

will store it left-justified in a three-character field, as 777700.

Alphanumeric Literals

The Assembly Program

An alphanumeric literal can contain blanks, decimal, alphabetic, and special characters

(excluding the @ symbol).

the literal.

It is specified by writing the @ symbol before and after the value of

If the ® symbol is required within a literal, a DCW statement (see page 6-2) should

be used.
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ___
v Erg Location | OFETION OPERANDS
1 2[3 als]e|7 | 1415, 20(21 R | LT . | | 6263 | L. .., 80
L ... IMCW . . |PACCOUNTS PAYABLE,8/10/656,PRINT, .

The statement above illustrates the use of an alphanumeric literal. The instruction causes
the information contained within the @ symbols to be moved to the field tagged PRINT.

Area Defining Literals

An area defining literal may be used to define and reserve a working area in memory with-
out using a separate data formatting instruction. The address which defines the area is written
as a symbolic tag. The size of the area to which the literal address refers is specified as a

decimal value following the literal address and separated from it by a # symbol.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE . OF.__
CAR ¥
NUMgER E g| LOCATION e OPERANDS
1.2]3 als]e[7[e | afis, . 2021 T R R N P Loy . 89

L MCW . MWAGE,TEMPH5. T N

f
}! I ¢ il { U SR S S SO T SRR | 1 - P I SR I R L

In the instruction above, the entry TEMP#5 causes the Assembly Program to reserve a
blank five-character area with a word mark set in the leftmost character position. The address
of the rightmost character in this area is assigned to the tag TEMP. Therefore, TEMP can be
used as a symbolic address elsewhere in the source program, because both the tag and size of
the area to which it refers are defined. The sample instruction causes the contents of the field

tagged WAGE to be moved to the field tagged TEMP.

5-14

ADDRESS CODES

Address Literals

An address literal enables the programmer to specify a symbolic address in the operands
field of an instruction such that the Assembly Program will use the address as an operand. A
symbolic address can be used as an address literal only if it is defined elsewhere in the symbolic

program. The tag used as an address literal must be preceded by a plus or a minus sign.

An address literal (+AMT) is used in the first sample entry below. Assume that AMT has
been defined elsewhere in the program and has been assigned an absolute address of 800. The
absolute address of AMT, as opposed to the contents of the field tagged AMT, replaces the ad-
dress literal. The first instruction below causes the value 800 (the absolute address assigned
to AMT) to be moved to an address two greater than the location tagged MODIF. The second
entry shows how an operand address can be supplied by another instruction. Specifically, the
absolute address assigned to the tag AMT is supplied as the A address of the instruction tagged
MODIF. This instruction causes the contents of the field tagged AMT (i. e., the field whose
rightmost character is stored in location 800) to be added algebraically to the contents of the

field tagged TOTAL.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF ___
N E 5| Locarion | OTION OPERANDS
23 alsle]7]e \ 14(15, 2021 | | T | | | |, 62]63) | L .., 80
o C .. MCW. *AMT MODIF+2 . ., . . ., . . . J . . .
2|y ||| MODIF. . A B, TOTAL, . . . 1 . . 1 1

VARIANT CHARACTER

A variant character can be expressed as one alphanumeric character, as two octal digits,
or as a symbolic tag. 1 1t is written following the operand entries and separated from the last

entry by a comma. Octal representation of valid variant characters are listed in Appendix B.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE __OF___
CARD [] OPERATION '
NUMBER EQ LOCATION CODE OPERANDS
1 2]3 alsle]7]s | 1415, 20{21

! : L BCTL OFLOW’»i:QA_LA 1 .xl::‘|II‘
| . BCC . . NEG,SuUM,@6 . .

t)

N symbolictag, composed of at least two characters, may be used to represent (1) a variant
character, or (2) a group of input/output control characters. The number of I/ O control
characters that may be represented varies from one to six (using either the Easycoder A or
B Assembly System) or from one to four (using the Easycoder C Assembly System). The
symbolic tag must be defined before it is used in the input/output instruction; the Control
Equals statement (CEQU) is generally used for this purpose (see page 7-11).

5-15

SECTION 5. EASYCODER PROGRAMMING

The first instruction above tests an indicator specified by the variant character. If the
indicator is on, the instruction causes the program to branch to the address tagged OF LOW,
As might be expected, the octal digits 50 represent the overflow indicator. The second instruc-
tion causes the single character at the location tagged SUM to be examined for a particular bit
configuration as specified by the variant. In this case the variant 06 specifies that the charac-
ter should be examined for a negative sign. If the desired bit configuration is present, the pro-

gram branches to the address tagged NEG.

INPUT/OUTPUT CONTROL CHARACTERS

Input/ output control characters can be used only in conjunction with input/output instruc-
tions (see Section 8). One or more of these characters may be written following the A-address
entry in an input/output instruction, each preceded by a comma. Input/output control characters

may be coded as single aplhanumeric characters, as pairs of octal digits, or as symbolic tags. 1

ADDRESS MODIFICATION CODES

In a system equipped with the Advanced Programming Instructions (Feature 010 or 011),
two address modification codes are valid in the operands field of a source program statement:
indexed and indirect. These codes allow the modification of operand addresses without altering
the instructions in which the addresses appear. This is in direct contrast to the permanent
alteration of an instruction that results from using a binary arithmetic instruction to modify

either or both operand addresses.

INDEXED

Indexed addressing is performed by appending to the address being modified a code to
indicate which of the index registers is to be used. The code consists of a plus sign followed
by an X and the decimal number of the desired index register (see Tables 4-2 and 4-3, pages

4-11 and 4-13, respectively).

If an index register is to be specified in the operands field of an instruction for other than
indexing purposes, it is referred to by its absolute address rather than its symbolic address.

For instance, absolute address 24 is used instead of the corresponding symbolic address X6.

1o symbolic tag, composed of at least two characters, may be used to represent (1) a variant
character, or (2) a group of input/ output control characters. The number of I/O control
characters that may be represented varies from one to six (using either the Easycoder A or
B Assembly System) or from one to four (using the Easycoder C Assembly System). The
symbolic tag must be defined before it is used in the input/output instruction; the Control
Equals statement (CEQU) is generally used for this purpose (see page 7-11).

5-16

ADDRESS MODIFICATION CODES

However, the programmer may use the symbolic address if he equates it to the absolute address

using an EQU statement (see page 7-10).

EASYCODER

CODING FORM

PROBLEM PROGRAMMER =~ DATE___ . __ PAGE__OF____

D Eg Location | OFERATION OPERANDS

1 2[3 4ls]e[7]e | 1a]i5, 20[21 L ! L L T G L el 80
! ! ; L C| DATA 1-|X.6 LY POIS { 4 Loaaa Lo ST VRSV S U NS RO S S SR SRS S SR S S S T DS T R VR |
2 ' ! 1 1 1 1 1 1 1 1 TR 1 P L I 1 IS IS T S | PRI L S
I A |STORE, 12, . T P
N i I L i 1 1 L - L L Ll P TP R T
5 | L MCW ¢'6+x:1=BUFxF+X3 1 fad P U TP B N Lot e

The first instruction above causes the contents of the field designated by the tag DATA as
modified by the contents of index register 6 to be compared to the contents of the field tagged
POS. The second instruction causes the contents of the field tagged STORE to be added (in
binary) to the contents of index register 12. The use of the symbolic designation X12 implies
that an EQU statement was used to equate it to the absolute address of index register 12. The
third instruction illustrates how an indexed address can be coded to generate an effective ad-
dress which is less than the value stored in the specified index register. The zero is used be-
cause an operand address cannot be introduced with a plus or a minus sign. Thus, the effective
A address of the MCW instruction will be a value six less than that stored in index register one

(i. e. , if index register one contains 126, the effective A address is 120).

Three-~ or four-character address assembly must be specified (see ADMODE, page 7-9)
whenever indexed addressing is to be performed. When the Assembly Program translates an
indexed address into a machine-language entry (see Figures 5-5 and 5-6), the translated index

register designator is automatically inserted into the address modifier bits of the assembled

address.
INDEX 15-BIT REPRESENTATION
REGISTER OF ADDRESS ASSIGNED
DESIGNATOR TO THE TAG AMNT
2l OPERANDS |

ASSEMBLY
ProGRAV |

B ADDRESS OF
ASSEMBLED INSTRUCTION

Figure 5-5. Assembly of Indexed Address in Three-Character Addressing Mode

5-17

SECTION 5. EASYCODER PROGRAMMING

ALWAYS ZERO(SEE PAGE 4-8)

INDEX 18- BIT REPRESENTATION
REGISTER OF ADDRESS ASSIGNED
DESIGNATOR TO THE TAG AMNT

o OPERANDS \ l

oo

01100 101X X XXX X X X XXXXX XXX XX

ASSEMBLY
e —

B ADDRESS OF
ASSEMBLED INSTRUCTION

Figure 5-6. Assembly of Indexed Address in Four-Character Addressing Mode

INDIRECT

An indirect address is specified by enclosing the address (either symbolic or absolute) in
parentheses. For example, in the sample instruction below, the parentheses around the tag
DATA indicate to the Assembly Program that DATA refers to the leftmost character of a field
containing another address. This second address may be a direct, an indexed, or another in-

direct address.

EASYCODER

CODING FORM
PROBLEM . PROGRAMMER DATE PAGE ___OF____
T
oanber [EE] Lockrion | o oPERANDS
1 2]3 als]e[7]e s 1alis, 202 ! T T el —

| |

| L MCWL (DATA) ::VJORK L L . L . . i) 1 " T L L L L

If it is direct or indexed, it specifies the rightmost character of a data field. If it is indirect,

it specifies the leftmost character of a field containing another address.

Three- or four-character address assembly must be specified whenever indirect addressing
is to be used. When the Assembly Program translates an indirect address into a machine-
language entry (see Figures 5-7 and 5-8), an octal value of 7 (three-character mode) or 20 (four-

character mode) is automatically inserted into the address modifiér bits of the assembled address.

INDICATES
INDIRECT]
ADDRESS

n

15-BIT REPRESENTATION
OF ADDRESS ASSIGNED
TO THE TAG TEMP

o OPERANDS\

ASSEMBLY
PROGRAM

B ADDRESS OF
ASSEMBLED INSTRUCTION

Figure 5-7. Assembly of Indirect Address in Three-Character Addressing Mode

5-18

ADDRESS MODIFICATION CODES

ALWAYS ZERO (SEE PAGE 4-8)

INDICATES 18-BIT REPRESENTATION
INDIRECT OF ADDRESS ASSIGNED
ADDRESS TO THE TAG TEMP

!

Y

OPERANDS\

ASSEMBLY
PROGRAM

-

B ADDRESS OF
ASSEMBLED INSTRUCTION

Figure 5-8. Assembly of Indirect Address in Four-Character Addressing Mode

DATA
FORMATTING
STATEMENTS

INTRODUCTION

A value or quantity which must remain fixed or which must be used repeatedly in a program

is called a constant. A work area is an area in memory which is reserved for input data, cu-
mulative processing, or output data. By employing data formatting statements, constants can
be stored and work areas can be reserved without regard to their actual locations in memory.
For instance, the programmer can use a data formatting statement to reserve an 80-character
card input area and assign it a symbolic address such as CARDIN, without knowing the actual
address of the field. Similarly, a data formatting statement makes it possible to store a con-
stant, such as 2000, and to refer to it by a symbolic tag, such as CON3, without regard to the
address at which the constant is stored. Table 6-1 lists the five data formatting statements used

with Easycoder symbolic language.

Table 6-1. Data Formatting Statements

Define Constant with Word Mark

DC Define Constant without Word Mark
RESV Reserve Area

DSA Define Symbol Address

DA Define Area™

*NOTE: The Define Area statement may be employed only
with the Easycoder B and C Assembly Systems
(see page 7-1).

Although data formatting statements are coded in the same format as most symbolic ma-
chine instructions (data processing statements), they are not treated as instructions by the As-

sembly Program. Instead they are treated as definitions which cause the Assembly Program to

6-1

SECTION 6. DATA FORMATTING STATEMENTS

perform certain activities but which are not executed during a program run. Since data format-

ting statements are not executed during a program run, they should not be written in the body

of the symbolic program.

Define Constant with Word Mark - DCW

By use of the DCW statement, a constant can be automatically stored in a field reserved
by the Assembly Program. In storing the constant, the Assembly Program automatically sets
a word mark in the leftmost character position of the storage field. Item marking may be
specified as in Table 5-1 (page 5-5). An L in column 7 thus results in a record mark with a
DCW statement.

NOTE: If the Easycoder C Assembly System is being used and if unusual high-
and low-order punctuation is required, the programmer may use a set
II punctuation indicator as shown in Table 5-2 (page 5-6).

The constant can be assigned a tag. If the tag is left-justified in the location field, it is
assigned to the address of the rightmost character of the constant. If the tag is indented one

column, it is assigned to the address of the leftmost character of the constant.

NUMERIC CONSTANTS

Numeric constants may take any one of three forms: binary, octal, or decimal. Octal
and decimal constants can be coded with a maximum length of 40 characters, while the coding

associated with a binary constant is limited to 2 maximum of six characters.

Decimal Constants

Signed decimal constants are specified by writing a plus or a minus sign in column 21
followed by the value of the constant. When the constant is assigned to a storage field, the As-
sembly Program places the sign in the zone bits of the rightmost character of the constant. 1

Unsigned decimal constants are written in the operands field beginning at column 21.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE . OF ___
CARD | OPERATION
NOMBER [E[g| LOGATION Pl OPERANDS
| 2]3.415]6/7]8 L 14 I5I 202! 1 1 1 1ol L PR 't L n | L1 162 63, 1 I 1 1 Il 180

L1 | IDEC, DCwW ., . 22, . . s
||| 1HAL, DCW .. 45 . -

i]
|
1
1

The first statement above shows the decimal value of +22 defined as a decimal constant.

The second statement defines the unsigned decimal value 45 as a constant which can be referred

to via the tag HAL.

lSee the description of sign codes beginning on page 8-9.

6-2

DEFINE CONSTANT WITH WORD MARK - DCW

Binary Constants

A binary constant is actually written as a decimal entry which is then automatically con-
verted to a binary value by the Assembly Program. The binary value is stored (right-justified)
in the constant field.

To code a binary constant the programmer writes the following: (1) a # sign (in column
21); (2) a number from 1 to 6 which designates the number of six-bit characters needed to store
the resulting binary value; (3) the letter B; (4) the decimal representation of the desired binary
constant.

Note that if the decimal representation of the binary constant is preceded by a minus

sign, the Assembly Program stores the binary constant in twos-complement form.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ____
N Eg rocation | OO OPERANDS
1 213 als]e|7]8 , 1alis, 20[a1 N L L |) N 6263 L, 89|
L 1 1]/CON3 _ lbew . . #2B5@ , e
2 J: | 1 L L 1 L 1 L 1 wlox n

The statement above shows the binary equivalent of 50 defined as a binary constant to be

stored in two consecutive character locations.

Octal Constants

Octal constants are coded in octal notation (see Appendix A). To code an octal constant

the programmer writes the following: (1) a # sign (in column 21); (2) 2 number (not to exceed 20)

which specifies the number of six-bit characters required to store the octal constant;! (3) the

letter C; (4) the constant value. Note that the value stored by the Assembly Program is always

left-justified in the storage field,

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE PAGE __OF ___

CARD

NUMBER

LOCATION

OPERATION
CODE

OPERANDS

+ 2]3 als

& |rro~

~ <oz

8 L

s, 20

21

oCcT7

DCW

H2C 7777

In the statement above, the octal value of 7777 is shown defined as an octal constant to be

stored in two consecutive character locations.

1
Recall that an octal digit can be represented as three bits; thus each six-bit character used to

store an octal constant contains two octal digits.

six octal digits can be stored in a three-character field.

6-3

For example, an octal constant composed of

SECTION 6. DATA FORMATTING STATEMENTS

ALPHANUMERIC CONSTANTS

Alphanumeric constants may be coded in one of three ways:

. Constants (including special symbols and blanks) may be written with the
constant value enclosed in @ symbols (see the first entry below).

2. If the @ symbol is required in the constant, this constant is enclosed in
any unused character other than blank, +, -, #, or the digits 0 through 9

(see the second entry below).

3. A number sign (#) is followed by a number from 1 through 40 which speci-
fies the number of alphanumeric characters contained in the constant;
this number is, in turn, followed by the letter A and the alphanumeric

constant (see the third entry below). L

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF ____
NomeeR [E[g| LocaTion | Sreon OPERANDS
1 2|3 4|567B 1 14115 20|21 1 el 1 L [P [1 | 6263 | 1 ' .80
W LilllcosT Dew @42,128.60@
2
‘ 1 " i 1 1 | i 1 4L 1 I 1 1 it
3 L || |RATE . |DCW P@S| X,DOLLARS /HR% ,
4 { J 1 " i 1 1 1 1 i 1] 1 I 1
ol 1 | ||IDATE _ DCW .. #4M1965

BLANK CONSTANTS

The DCW statement may be used to reserve a field of blanks with a word mark in the left-

most character position of the field.

The programmer writes a # symbol (in column 21) followed

by a decimal value (from 1 to 40) which indicates the number of blank storage positions desired.

PROBLEM

EASYCODER

CODING FORM
PROGRAMMER

DATE

PAGE __OF.___

CARD
NUMBER

o [mro~<—|
D:

LOCATION

OPERATION
CODE

OPERANDS

1 23 als

4lis,

20[21 L ! il

| !

BLANK

DCW |

L]
-

The DCW statement above defines a 21-character blank field.

The address assigned to this

field by the Assembly Program will be inserted in an object program instruction whenever the

tag BLANK appears in another symbolic program entry.

1This third method of coding alphanumeric constants is applicable only when using the Easycoder
C Assembly System (see page 7-1).

DEFINE CONSTANT - DC; RESERVE AREA - RESV

Define Constant - DC

The DC statement is functionally the same as the DCW statement, the only exception being
the absence of automatic word marking. This statement may thus be used in place of the DCW
statement if a constant is to be stored without a word mark in its leftmost character position.
The programmer, however, may still specify item marking as shown in Table 5-1 (page 5-5).

NOTE: If the Easycoder C Assembly System is being used and if unusual high-
and low-order punctuation is required, the programmer may use a set
II punctuation indicator as shown in Table 5-2 (page 5-6).

Reserve Area - RESV

Use of the RESV statement enables the programmer to reserve an area of memory. Un-
like the DC and DCW statements (which cause data to be loaded into an area reserved by the
Assembly Program), the RESV statement does not alter the contents of the area defined when
used with the Easycoder A or B Assembly System. Rather, it simply sets aside a storage area
to which the programmer can refer by a symbolic tag. If it is desired to clear the reserved
area to zeros in either of the above systems, the CLEAR statement must be employed (see
page 7-15). Thenumber of characters in the reserved area must be specified in the operands

field of the RESV statement. A previously defined tag may be written in the location field.

When used with the Easycoder C Assembly System, the RESV statement can not only
reserve a specified area but can also load that area with a particular character. The character
to be loaded into each location of the reserved area is coded in column 20 immediately following
a comma and the mnemonic code. If the mnemonic RESV is followed only by a comma, the
reserved area is cleared to blanks.

NOTE: There is no automatic word marking for the reserved area. However,
a punctuation indicator from set I may be placed in column 7 (see page
5-5). In addition, if the Easycoder C Assembly System is being used
and if unusual high- and low-order punctuation is required, the pro-
grammer may use a set II punctuation indicator as shown in Table 5-2

(page 5-6).
CODING FORM

PROBLEM PROGRAMMER DATE PAGE __OF

caro M . |oeeramon | ooceannme]]

NUMBER EE rocarion | *7gore" OPERANDS

1 .2]3 als]e[7]e ! 14115, 20[21 | | T P B M| | 82063 . L s Loy, 89
| /|]lsTORE RESV. 30 N
2 { I’ CARD RIESVQ¢8¢ 1 1 n) IR § ISR SO RS TS | o d e w 1o FURET IS SRS ST S B A4
3 I 1

The first statement above reserves 30 consecutive character positions that can be addressed

via the tag STORE. Note that by referring to the reserved area via a symbolic tag, the

6-5

SECTION 6. DATA FORMATTING STATEMENTS

programmer need not know its actual location in memory. The second RESV statement, as-
sembled by Easycoder C, reserves 80 consecutive locations and clears the reserved area

to zeros.

Define Symbol Address - DSA

The DSA statement can be used to store one or two addresses, or two addresses and a
variant character, as a constant. Any valid address can be stored as a constant; the length of
each address is determined by the current addressing mode (each address will be two, three,

or four characters long).

An item mark may be specified as shown in punctuation set I, page 5-5. In addition, the
DSA statement automatically places a word mark in the leftmost character position of the con-
stant (thus an L in column 7 results in a record mark in this position).

NOTE: If the Easycoder C Assembly System is being used and if unusual high-
and low-order punctuation is required, the programmer may use a set
II punctuation indicator as shown in Table 5-2 (page 5-6).

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ____
carp [T OPERATION
NUMBER [p[g| LocATION ool OPERANDS
1 2]3 4l5]6]7 alis, " zolal | | P EN | |

TSRO ST R | SIS TP T S ST |

[TTlkobe. . IbSA . ATEM-B. . . - .

L - ! T T RSP N N | et

STAR PSR ARG, ¥, A ..

The first statement above permits the address of the field five characters before the field

tagged ITEM to be referred to in the program by the tag CODE.

The second statement allows the stored constant consisting of the address assigned to ARG,
the address assigned to the self-reference indicator *, and the variant character A (i.e., octal

21) to be referred to by the tag STAR.

Define Area - DAL

A specified area within the main memory can be defined and reserved by using the DA
statement. In addition to defining an area, the DA statement can also define fields and subfields

within the reserved area. This statement can also define two or more contiguous areas if these

lThe Define Area statement may be employed only withthe Easycoder B or C Assembly System.

6-6

DEFINE AREA - DA

areas are identical in format. In other words, the programmer uses a DA statement to provide
the Assembly Program with the following basic information:
1. The number (n) and size (s) of the reserved area(s).

2. The index register (Xm) to be associated with each reference to a field or
subfield within the reserved area(s) (optional).

3. The character R which will place a record mark one position to the right
of the rightmost reserved area (optional).

A DA statement consists of a heading line which defines an area(s), plus one or more sub-
sequent lines of coding which defines the fields and subfields within the area(s). The heading
line can contain a symbolic tag in the location field. If this tag begins in column 8, it refers to
the rightmost location of the entire area, exclusive of the record mark (if present); if the tag

starts in column 9, it refers to the leftmost location of the entire area.
The operands field in the heading line has the following format:

. orf

nxs, Xm,R 2
W\MM}

If a single 80-character arca is to be defined, the value of the nxs is 1x80. If four identical 80-

character areas are to be defined, the value of nxs is 4x80.

The DA statement can be indexed by writing an index register designator (from Xl through
X15)1 following the area definition. All references to the fields and subfields defined in the DA
statement will be automatically indexed by the specified index register, but references to the
tag assigned to the entire area will not be indexed. For example, the statement on the next page
indicates that all references to the fields and subfields in the 113-character area tagged BUFFER

will be indexed by the index register X2; references to the tag BUFFER, however, will not be

indexed.

Note that the area definition nxs does not include an allowance for the character position
containing the record mark, although this position (if any) is also reserved. For example 4x80
will cause 320 character positions to be reserved. If a record mark is placed one position to

the right of the last area, a total of 321 character positions is reserved,

-

1Index registers | through 6 are used with Easycoder B, while index registers 1 through 15 can
be used with Easycoder C.

6-7

SECTION 6. DATA FORMATTING STATEMENTS

The index register applied to a field or subfield can be changed from that specified in the
DA statement by designating a different register in the operands field of an instruction which
references the field or subfield. The effect of indexing on a field or subfield can be cancelled by

writing X0 as the index register designator in the references in which indexing is not wanted.

As stated above, the heading line may be followed by one or more lines of coding which
define fields and subfields within the reserved area(s). As many of these lines as necessary
may be used, and these fields and subfields may be defined in any order desired. Positions
within each reserved area are numbered sequentially from left to right, starting with one. The
coding lines which define fields and subfields must have blank op code fields; each such line

may contain a symbolic tag in the location field, if desired.

Fields and subfields are specified as follows:

Fields: The lowest and highest positions of the field are written in that order
in the operands field, separated by a comma. (If a one-character
field is desired, its position number must be written twice in the
operands field, separated by a comma.) A word mark is automati-
cally placed in the leftmost position of the field in memory. Item
marks may be specified as shown in Table 5-1 (page 5-5).

Subfields: For a subfield, only the rightmost position is specified. Word
marks are not set; however, item marks may be specified as
shown in Table 5-1 (page 5-5).

NOTE: The list of punctuation indicators specified in set II (page 5-6) may not
be used with DA statements.

The Assembly Program does not normally clear the defined area. However, the program-
mer has the option of clearing the area to a specified character by placing a comma and the
desired character after the mnemonic code DA in the op code field. The presence of only a
comma after the op code implies that the area will be cleared to blanks. When the defined area

is cleared, all punctuation is also cleared before setting the 'field" punctuation.

The sample coding below illustrates what a DA statement might look like.

EASYCODER

CODING FORM

PROBLEM PRO! R DATE PAGE ___OF__

N Eg tocation | O RN OPERANDS

{ 2[3.al5]6[7]8 . 1415, 2021 . L e L) N ! T
'¢1! 1 BUFFERQA P 47x428;1x2.1R [-1 L 1 RN S 1 1 1] 1
02, | || INAME . 1,20, . . e A 1 N
lpa | || IpATE |, p3, 28, . . . e . e .
4 ¢l4'| | ALGEI - 1 21 LY 221 1 ul e 1 L L 1 1 1 1 1
° @5: I YEAR L 28 Il 1 L L 1 1 1 | Lt L 1
N 6:L { MOMTH A 1 26 1 . ol weaas Lo decac ek s b 1 1 L 1
’ | L L 1 | - L I E— PR PR L i 1 1
A o

6-8

DEFINE AREA - DA

The heading line specifies the following information:

1. Four consecutive, identical areas, each 28 characters long, will be
reserved.
2. The tags NAME, DATE, AGE, YEAR, and MONTH, when referred to

in symbolic instructions, will be indexed by index register two.

3. A record mark will be set in the rightmost character position of the
entire 113-character reserved area.

4. The entire 113-character area can be referred to via the tag BUFFER.
(This tag refers to the leftmost position of the area because it is in-
dented. It is not automatically indexed by index register two.)

Lines two, three, and four define fields. Word marks will be set in positions 1, 21, and 23 in
each of the four identical areas. Lines five and six define subfields: position 28 indicates the

year within the date, while position 26 indicates the month within the date,

6-9

ASSEMBLY
CONTROL
STATEMENTS

INTRODUCTION

Assembly control statements provide programmer control over the as sembly of the source
program. These statements resemble data formatting statements in that they are treated as
definitions. They control such functions as the addressing mode to be used in assembling speci-
fied instructions, the assignment of absolute locations to symbolic tags, etc. Used only during
the assembly process, assembly control statements are never executed as instructions in the
object program. The precise function of each assembly control statement depends upon the as-

sembly system employed.

A number of assembly systems are available to the Series 200 user. These systems

include:

EASYCODER A: Part of the SERIES 200/BASIC PROGRAMMING SYSTEM.
Easycoder A operates in a system having a minimum main
memory size of 4,096 characters. (Additional memory,
however, may be used to advantage.)

NOTE: A counterpart of Easycoder A — Easycoder A (P) -
— is available for use in a paper tape environ-
ment. The main memory requirements are
identical to those of Easycoder A.

EASYCODER B: Also part of the SERIES 200/BASIC PROGRAMMING
SYSTEM. Easycoder B operates in a system having a
minimum main memory size of 8,192 characters. (Addi-
tional memory may be used to advantage, however.)

EASYCODER C: Part of the SERIES 200/OPERATING SYSTEM — MOD 1.
Easycoder C operates in a system having a minimum of
12, 288 characters of main memory. (Additional memory,
however, may be used to advantage.)

A summary of the assembly control statements available with the Easycoder A, B, and C
Assembly Systems, together with the page where each statement is defined, may be found in
Table 7-1. In addition, the heading of each statement in this section includes a table which indi-

cates (by shading) the -assembly systems that may use that particular statement.

7-1

SECTION 7. ASSEMBLY CONTROL STATEMENTS

Table 7-1. Assembly Control Statements

Easycoder A Easycoder B Easycoder C
Assembly Control | Page Assembly Control | Page Assembly Control | Page
Statements Ref, Statements Ref, Statements Ref.
Program Header | 7-3 Program Header | 7-3 Program Header | 7-3
Segment Header 7-3
Execute 7-4 Execute 7-5 Execute 7-5
Origin 7-6 Origin 7-7 Origin 7-7
Modular Origin 7-7 Modular Origin 7-7 Modular Origin 7-7
Literal Origin 7-8 Literal Origin 7-9
Admode 7-9 Admode 7-9 Admode 7-10
Equals 7-10 Equals 7-10 Equals 7-11
Control Equals 7-11 Control Equals 7-11 Control Equals 7-12
Memory Dump 7-12
Skip 7-13
Suffix 7-13
Repeat 7-14
Generate 7-14
Clear 7-15 Clear 7-16 Clear 7-17
End 7-17 End 7-18 End 7-19

Program Header

PROG

The program header must be the first entry in a symbolic program. This statement is

coded as follows for the various assembly systems.

EASYCODER A

The letters PROG must be written in the op code field, and the operands field must contain
a name which identifies the program. (This name will appear in the program listing.,) Optionally,
an "'S'" can be placed in column 6; this action specifies that a check is to be made on the card

number sequence of the input deck.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF___
CARD [} OPERATION
NUMBER [B[R LOCATION CODE OPERANDS
1.213.4l5/6/7]8 L 14115, 20[21 L L ! el — [! L 5283 N Lo 80
|
s 1 PROG . |SERIES e e

-
2 I 1

SECTION 7. ASSEMBLY CONTROL STATEMENTS

In the sample above, SERIES is specified as the program name, while the letter S in

column 6 designates that a sequence check is desired.

EASYCODER B

The letters PROG must be written in the op code field, and the operands field must contain
a name which identifies the program. (This name will appear in the program listing.) Optionally,
an "S" can be placed in column 6; this action specifies that a check is to be made on the card

number sequence of the input deck.

In addition, the desired object program format is specified by the entries in columns 61
and 62. Blanks in these two columns specify that the machine-language output is to appear in
the condensed-card self-loading format. Placing the letters BR in these columns specifies that

the machine -language program is to appear on punched cards in BRT format. (See Easycoder

8K Operating Procedures, DSI-406.)

NOTE: When BRT format is specified, a segment number of 01 is generated by the
Assembly Program for the first segment (memory load) following the pro-
gram header. If Execute statements (see page 7-4) appear in the symbolic

program, subsequent segment names are generated by incrementing the
previous segment number by one.

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE PAGE __OF___

CARD OPERATION
NUMBER LOCATION CODE OPERANDS

1 23 als 8 \ 14]15, 20[21 | \ Loe 01 L. L | R | L .
! !1 1 PIROG SER\EIS 1 PRSI 1 g | I D AN BT P - IBRIIAIKAIII i

|
2 f |
) } | 1 1 L L 1 L R L L L - L Lot

~ [RDp

N o Jmo<|

The statement above designates SERIES as the program name and specifies that a sequence

check is to be performed. As columns 61 and 62 contain the letters BR, the output will appear

on punched cards in BRT format.

EASYCODER C

As used in the Easycoder C Assembly System, the program header provides program
identification; in addition, however, this statement serves as the all-important "action director"
statement. For this reason, the programmer should refer to the Honeywell publication Easycoder

Assembly C Operating Procedures (DSI-315A) for a detailed description.

Segment Header A
SEG

Programs written for Easycoder C assembly may be divided into two or more segments,

7-3

SECTION 7. ASSEMBLY CONTROL STATEMENTS

each of which is loaded into memory and executed as a unit. It is the function of the SEG state-
ment to define the beginning of each segment (memory load). Use of the SEG statement is op-
tional, however. If used, a SEG statement must follow the program header and each Execute
statement. If it is desired to omit this statement, it must be omitted from the entire program;

in this case the assembly program generates segment identifications (starting with 01),

EASYCODER C

The letters SEG must be placed in the op code field, while the operands field must contain
a two-character segment identification. This segment identification becomes appended to the

program name to form a unique search code.

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE PAGE ___OF___

NOMEER LocaTiON | OPERATION OPERANDS

! 2]34 S 8 L 14)15, n 20121 1 P 1 ! L L PR B Lot L | 52[63 a1 n 1 L

! ;; 1 SEGI AA 1 1 1 1 P | . Y L 1 PP BRSPS L

~ xmg

@ [mro~<-|

N 80|

)

In the example above, AA could represent the first segment of a program, in which case

this entry would follow the program header.

Execute A B | C
EX

The end of a memory load is indicated by an EX statement. When the coding inserted by
the assembly program for the EX statement is encountered during the loading process, a branch
to the location specified in the operands field results. This operation enables portions of the
program to be executed before the entire program has been loaded. The coding to be executed

must appear prior to the EX statement.

EASYCODER A

The letters EX must be written in the op code field; the operands field contains a direct
address, either absolute or symbolic. (If an EX statement is written with a blank operands
field, the machine will halt when it encounters the corresponding coding during the loading

operation.)

To resume the loading operation, the last instruction in the portion of the program executed
must be a Branch instruction which provides re-entry to the load routine. In addition, the first
instruction of the executed routine should be an SCR (Store Control Registers) instruction which

stores the contents of the B-address register in the A address of the return Branch instruction.

7-4

SECTION 7. ASSEMBLY CONTROL STATEMENTS

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ___

CARD
NUMBER
1 203 als[s|7]8 | alis, 20[21 L. , . . . K

|
!] (EX SECS - L I L L - L . I L

s I

néﬂ LocaTion | OPERATION OPERANDS

@ Mo~

The sample statement above illustrates an EX statement with a symbolic address in the
operands field. When the corresponding coding is encountered during the loading operation, pro-
gram loading is temporarily halted and the portion of the program beginning at the location tagged

SEG3 is executed.

EASYCODER B

The letters EX must be written in the op code field; the operands field contains a direct
address, either absolute or symbolic. (If an EX statement is written with a blank operands field,

the machine will halt when it encounters the corresponding coding during the loading operation.)

To resume the loading operation, the last instruction in the portion of the program executed
must be a Branch instruction which provides re-entry to the load routine. In addition, the first
instruction of the executed routine should be an SCR (Store Control Registers) instruction which

stores the contents of the B-address register in the A address of the return Branch instruction.

Besides causing a branch to the programmer's coding, use of the EX statement causes any
literals used in the memory load to be loaded and the literal table to be cleared. If a LITORG
statement (see below) does not precede the EX statement, literals are allocated immediately

following the in-line coding for the memory load.
NOTE: Following an EX statement, a new segment number is generated as explained
above in the description of the program header.

See the sample statement given above for Easycoder A.

EASYCODER C

The letters EX must be written in the op code field; the operands field must contain a
direct address, either absolute or symbolic. When used with this assembly system, the EX
statement enables a program to be loaded and executed one segment at a time. Each segment

except the last must end with this statement.

Note that it is the responsibility of the programmer to provide re-entry to the load routine.

The methods of returning to the applicable loader are described in the pertinent Honeywell

7-5

SECTION 7. ASSEMBLY CONTROL STATEMENTS

publication (e.g., the PLUS — Card Loader-Monitor bulletin, DSI-349, or the PLUS — Tape

Loader-Monitor bulletin, DSI-327).

See the sample statement given above for Easycoder A.

Origin . Al B|C
ORG :

The ORG statement is used to modify the normal memory allocation process of assembly.
This statement can be inserted anywhere in the source program to indicate to the Assembly Pro-
gram that all subsequent coding (instructions, constants, work areas, etc.) should be assigned
sequential memory locations starting with the location whose address is specified in the operands

field.
A program is normally allocated memory space beginning at location 0. If it is desired to
assign memory space starting at some location other than location 0, an ORG statement must be

inserted into the program immediately following the program header.

EASYCODER A

The letters ORG are written in the op code field, and an address (either absolute or sym-
bolic) is written in the operands field. (If the address is symbolic, the tag must appear in the
location field of a previous source program entry.) The address specified in the operands field

is assigned the tag (if any) in the location field; if this tag appears, it must not be indented.

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE PAGE ___OF ____

NOMGER Erg LoCATION | OPERATION OPERANDS

1 2]3 alslel7]s N 1415, 2021 1 | Lo | K N B | s2les et T
! : ; L O.RG . 75@. .) L 1 R R L L 1 1 1
2 ! I L 1 1 1 1 L 1 n L 1 1 1 i 1
: ! . ORG . . ORTAG L . b . b .
a

The first statement above indicates to the Assembly Program that all subsequent entries
should be assigned sequential addresses beginning with location 750. The second statement
directs the Assembly Program to assign to all subsequent entries sequential addresses begin-
ning with the address that is assigned to the tag ORTAG. (ORTAG must appear in the location

field of a previous source program entry.)

SECTION 7. ASSEMBLY CONTROL STATEMENTS

EASYCODER B

The letters ORG are written in the op code field, and an address (either absolute or sym-
bolic) is written in the operands field. (If the address is symbolic, the tag must appear in the
location field of a previous source program entry.) The address specified in the operands field
is assigned the tag (if any) in the location field; if this tag appears, it must not be indented.

NOTE: When the BRT punched-card format is specified, an ORG statement must

be included immediately following the PROG statement with an address of
1, 000 (decimal) or above.

See the sample statements given above for Easycoder A.

EASYCODER C

The letters ORG are written in the op code field, and an address (either absolute or sym-

bolic) is written in the operands field. — If the address is symbolic, the tag must appear in the
location field of another — not necessarily previous — séurce program entry. — The address
specified in the operands field is assigned the tag (if any) in the location field; if this tag ap-
pears, it must not be indented.
NOTE: Care must be taken so that the address in the operands field is a decimal
number of 1,000 or above if Card Loader-Monitor B is used to load the

object program. If Tape Loader-Monitor C or Drum Bootstrap-Loader C
is used, this decimal number must be 1, 340 or above.

See the sample statements given above for Easycoder A.

Modular Origin
MORG

The modular origin statement is similar to the ORG statement described above. The
MORG statement indicates to the Assembly Program that all subsequent entries should be as-
signed sequential addresses starting with the next available location whose address is a multiple
of the number written in the operands field of the MORG statement. The entry in the operands

field must represent a power of two (e.g., 2, 4, 8, 16, 32, «vvea. 4,096, etc.).

EASYCODER A, B, and C

The letters MORG are written in the op code field, and a number (a power of two) is placed

in the operands field.

SECTION 7. ASSEMBLY CONTROL STATEMENTS

EASYCODER

CODING FORM
PROBLEM . .. N . _PROGRAMMER __ __ _____paTe FAGE _OF___
@RBDER Eg LocaTion | OFERATION OPERANDS
! 2]3 als 6(7|8 Il 14[15, 20{21 i 1 1 | Loy o L N 1 | 52|63 | ! N el I . 80
J ... MORG_ 32", , \ . DT
z ,_A7+ ! F IR | 1 1 ——r | B P Y Aoa g Lowaen o b v ALy o [T T T S i
T

The statement above indicates to the assembly program that all subsequent entries should
be assigned sequential addresses beginning with the next available location whose address is a

multiple of 32.

Literal Origin A{B |C

LITORG

The literal origin statement is similar to the ORG and MORG statements described above.
The LITORG statement specifies to the Assembly Program that all previously used literals should
be assigned sequential memory locations starting with the location specified in the operands field.
In the absence of a LITORG statement, all of the generated coding associated with a memory load

is allocated immediately following the in-line coding.
Care must be taken to ensure that literals can be referenced by the instructions which use
them; e.g., a literal stored in one 4K bank may not be addressed in the two-character mode

from another bank.

EASYCODER B

The op code field must contain the letters LITORG, while the operands field contains an
address (either absolute or symbolic); this address is assigned the tag, if any, in the location
field. If a symbolic tag is used, it must have appeared in the location field of a previous entry.
Like the EX statement, the LITORG statement causes the literal table to be cleared. Also, lo-
cations below 1, 000 {decimal) must not be used when BRT punched-card output is specified in the

PROG statement.

EASYCODER

CODING FORM
PROBLEM __ N . ; PROGRAMMER _ . - DATE __ PAGE ___OF ____
CARD EF I OPERATION - y
NUMBER |E[§| LOCATION el OPERANDS
2]3 4Tslel7]s — 18115, 20[2t 1 P || 1 L I | 52083 | L R | L 80
I
! ,‘._:L I LLIL L TO&G 1550 S Y (U OO0 N EE R | R [— 1 et P BN T
2_._1;,l ! S - 1 ﬁ p L VAR NPV B BRI R S R T L SR S s B L TN ES S TS RIS S N TN S
A I

In the LITORG statement above, the Assembly Program is directed to assign sequential

7-8

SECTION 7. ASSEMBLY CONTROL STATEMENTS

addresses — starting with location 1550 — to all previously encountered literals. This instruc-

tion is also tagged LIT. (Note that the tag begins in column 8; it must not be indented.

EASYCODER C

The op code field must contain the letters LITORG, while the operands field contains an
address (either absolute or symbolic); this address is assigned the tag, if any, in the location
field. If a symbolic tag is used, it must have appeared in the location field of a previous entry.
Like the EX statement, the LITORG statement causes the literal table to be cleared. Also, lo-

cations below 1, 340 (decimal) must not be used.

See the sample statement given above for Easycoder B.

Set Address Mode A B| C

ADMODE

This statement specifies the addressing mode into which all subsequent instructions are to
be assembled (i.e., two-, three-, or four-character). (All machine instructions, as well as the
DSA data formatting statement, are affected by the address mode.) The mode of address as-
sembly specified in this statement remains in effect until another ADMODE statement, specifying

a different mode of assembly, is encountered.

Because the ADMODE statement concerns itself only with the source program, it should be

used in conjunction with the CAM (Change Addressing Mode) instruction (see page 8-69). The
CAM instruction specifies the addressing mode in which the machine is directed to interpret the

address portions of all subsequent object program instructions.

EASYCODER A and B

The letters ADMODE are placed in the op code field. The operands field contains either
a 2 or a 3 to denote whether all subsequent instructions are to be assembled in the two-character
or the three-character addressing mode. If an ADMODE statement is not included at the begin-
ning of the source program, assembly begins in the two-character addressing mode. (It should

be a general rule, however, to include an ADMODE statement at the outset of every program.)

EASYCODER

.CODING FORM
PROBLEM . PROGRAMMER DATE PAGE ___OF ____
CARD [V OPERATION
NUMBER [p|R] LOCATION GODE OPERANDS
1 2]3,als]sl7]s L 14115} 2021 i 1 Lown ool NN S L 1 L. 1 82083, | Ll L1 80
| SN ad
! ‘i | I ADMO.DE- 2. 1 I 1 L L) L [N | lowoaea b oo La as
z ! 1 I PR [L s L 1 1L 1 1 L 1 1 SRR R P G
3 | 1 ADMODE3 1 L 1 1 1 Loaa aado - 1 Loaa. s
B |

SECTION 7. ASSEMBLY CONTROL STATEMENTS

The Assembly Program, upon encountering the first statement above, will assemble the
address portions of all subsequent instructions as two-character addresses. The second state-
ment, if encountered later in the same source program, will cause the Assembly Program to

change to three-character address assembly.

EASYCODER C

The letters ADMODE are placed in the op code field. The operands field contains a 2, 3,
or 4 to denote whether all subsequent instructions are to be assembled in the two-, three-, or
four-character addressing mode. If an ADMODE statement is not included at the beginning of
the source program, three-character addressing is assumed by assembly. (It should be a

general rule, however, to include an ADMODE statement at the outset of every program.)

See the sample statements given for Easycoder A and B,

Equals
EQU

The EQU statement assigns the symbolic tag written in the location field to the address
(absolute or symbolic) written in the operands field. This statement thus makes it possible to
use different symbolic tags in different parts of the source program to refer to the same memory

location.

EASYCODER A and B

The location field contains a symbolic tag, while the op code field contains the letters EQU.
The operands field contains the address to which the symbolic tag in the location field is to be
assigned. (Each symbolic tag written in the operands field must appear in the location field of

a previous source program entry.)

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF___
CARD [OPERATION
NUMBER |E|g LOCATION CODE OPERANDS
1 2[3al5[el7]8 | 14]15, 2021 | | L) \ | N E | L. .. 89
!
] TATLE . EQU . INAME , . . . (e : B e
I

QUAN _ EQU _ AMT-20 " . .

|
|
|
I

R .

The first EQU statement above causes the Assembly Program to as sign the tag TITLE

the same location assigned the tag NAME. Thus, the programmer can use either of these two

7-10

SECTION 7. ASSEMBLY CONTROL STATEMENTS

tags to refer to the contents of this location. The second statement employs relative addressing.
The Assembly Program will assign the tag QUAN to the location specified by address arithmetic
as AMT-20.

EASYCODER C

The location field contains a symbolic tag, while the op code field contains the letters EQU.
The operands field contains the address to which the symbolic tag is to be assigned. (A symbolic
tag written in the operands field must appear in the location field of another — not necessarily

previous — source program entry).

See the sample statement given above for Easycoder A and B.

Control Equals AlB | C
CEQU i

The CEQU statement assigns the symbolic tag written in the location field to the octal value
written in the operands field. It is frequently used to assign a tag (containing a minimum of two

characters) to a variant character or to a group of input/output control characters.

The octal value written in the operands field (although coded as an octal constant) is still

treated as an assembly definition. Consequently, it does not appear as an object program entry.

EASYCODER A and B

The location field contains a symbolic tag, while the op code field contains the letters
CEQU. The operands field contains the octal value; this entry is coded as an octal constant and

may contain up to 12 octal digits. The symbolic tag in the location field is assigned to this entry.

NOTE: A description of octal constants may be found under the heading ''Define
Constant with Word Mark — DCW' (see page 6-2).

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF
R gg Location | OFETEON OPERANDS
1 2]3 4ls]e|7]s | 14]i5, 20[2! | | L L | N R, 8o
L 1] loFLow . [CEQU. . #1C50, e]
S . _..|BCT _ IsuB2,0OFLOW T T IO .
3 1 1

The sample coding above illustrates how a symbolic tag can be used in place of a variant

character. The CEQU statement directs the Assembly Program to equate the tag OFLOW to the

7-11

SECTION 7. ASSEMBLY CONTROL STATEMENTS

octal value 50. The second line of coding contains a branch instruction which specifies that a
program should branch to the location tagged SUB2 if the condition specified by the variant

character tagged OF LOW is present.

EASYCODER C

The location field contains a symbolic tag, while the op code field contains the letters
CEQU. The operands field contains the octal value; this entry is coded as an octal constant
and may contain up to eight octal digits. The symbolic tag in the location field is assigned to
this entry.

NOTE: A description of octal constants may be found under the heading "Define
Constant with Word Mark — DCW" (see page 6-2).

See the sample statement given above for Easycoder A and B.

Memory Dump Al BJ|C
HSM ”

The HSM statement may be used with Easycoder A to produce a punched card deck con-
taining the Memory Dump routine. This card deck can be loaded into memory to obtain a printed
listing of the contents of any portion of main memory. This statement must be coded immediately

preceding the CLEAR and END statements in the source program (see below).

EASYCODER A

If the punched card deck (containing the Memory Dump routine) is to be loaded into a spe-
cific memory area, the start of this area can be specified by a tag in the location field of the
HSM statement. A blank location field causes the Memory Dump routine to be loaded into the
area following the location assigned to the last character in the object program. The letters
HSM must be written in the op code field. The operands field contains the addresses of the first
(low) and last (high) locations in the memory area whose contents are to be listed by the Memory

Dump routine.

EASYCODER

CODING FORM
PROBLEM

CARD
NUMBER

L2]3 4Ts 8 1 ihd(CH 20[2! Lo oo o N T S [... - , L Loy, (89

Lo . HSM . . |START,STOP+3 . e . . . L. .

N .
f t

— - PRO MMER DATE PAGE .__OF ___

OPERATION
g| LOCATION CODE OPERANDS

o [Mmo~<—|
~

~

The HSM statement above specifies that the area whose contents are to be listed begins

at the location tagged START and ends three locations beyond the location tagged STOP. As the

7-12

SECTION 7. ASSEMBLY CONTROL STATEMENTS

location field is blank, the Memory Dump routine will be stored in the area following the location

assigned to the last character in the object program.

Skip
SKIP

The Assembly Program normally single-spaces an assembly listing and skips to the head
of the next form when a page becomes filled. The SKIP statement enables the programmer to

control the vertical spacing of the assembly listing by causing as many as 15 lines to be skipped.

EASYCODER C

The letters SKIP are placed in the op code field. The operands field contains either a
number from 1 to 15 (to indicate the total number of lines to be skipped) or the letter H (which

causes the printer to skip to the head of the next form).

NOTE: The Assembly Program automatically skips to the head of the form for
each new segment.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE . OF __

caro |V|W]

NUMBER
IR EXIE 8 1 1405, , 20 I i [P - Ll L 18283 I

T K9 SR e

Location | 7o OPERANDS

o |rro~<—|

~ ==z

In the sample coding above, the Assembly Program is directed to skip 9 lines on the program

listing.

Suffix
SFX

The SFX statement directs the Assembly Program to append the single-character suffixin
the operands fieldto eachtag of five characters or less contained in the following coding. This
technique enables the programmer to assign unique tags for each segment of a program and thus
guard against double definition of a tag betweendistinct segments of a program. When inter-

segment referencing within a program is required, six-character tags may be assigned.

This operation continues until the occurrence of another SFX statement with a blank

operands field, or until the END statement is encountered.

SECTION 7. ASSEMBLY CONTROL STATEMENTS

EASYCODER C

The letters SFX are placed in the op code field. A single-character suffix is written in

the operands field.

EASYCODER

CODING FORM
PROBLEM I e oo PROGRAMMER DATE PAGE___OF ___
caro [JTN OPERATION
NUMBER [E[R LOCATION CODE OPERANDS
! 213 4|567E 1 14115, 2021 1 1 1 4. 1 PRI 1o i | 62163 P i P R l L 80
I
! 4: | L SIFK E L - L L L - L . L N 1 1 Lo a1y L
2 || |TOTAL . A FICA+TOTAX-29 ., . e A L
3] 1 1 1 L] 1 1 1 1.1 P Lo 1 | PR ' 1
4 1

In the above example, the Assembly Program interprets the Add instruction following the

SFX statement as: TOTALE A FICAE+TOTAXE-20.

Repeat Al B

REP

This statement, used with the constant-defining statements DC and DCW, directs the
Assembly Program to repeat the following statement the number of times specified in the
operands field. The number of times a statement is repeated includes the original statement and

may not exceed 63. The Assembly Program repeats the statement without variation.

EASYCODER C

The letters REP are written in the op code field. The operands field designates the number

of times the following statement is to be repeated (including the original statement).

EASYCODER

CODING FORM
PROBLEM N R - PROGRAMMER DATE . PAGE ___OF
carp V|| OPERATION
NUMBER [£[5| LocATION | T OPERANDS
! 213 “IS 6[7[8 L I4|5‘ n 202! L L | 1 L PRI | P L n L | 62|63 Ll L 4 4 Ly 80|
|
! : | L REP 6 I L 1 L s L L - I - P - I
z ! OCT.56 QCW 'FZCG 1 L 1 R L I L 1 L -) 1
3 I 1 1 1 1 L 1 1 1 sy 1 TR 1 P PR | 1
A |

In the sample statement above, REP is employed to define six identical constants of octal

value 6000.

Generate Al B C
GEN

SECTION 7. ASSEMBLY CONTROL STATEMENTS

This statement directs the Assembly Program to generate the instruction which follows a
specified number of times, incrementing or decrementing the operands of the instruction as
specified by the operands field of the GEN statement. The GEN statement can apply to machine
instructions with formats containing a single address, both addresses, a single address and one
variant character, or both addresses and one variant character (only one variant character is

allowed).

EASYCODER C

The letters GEN are written in the op code field. The operands field contains the parameter
specifying the number of times the statement (which follows) is to be generated, including the
original statement. This number is followed by a modifier for each operand in the model state-
ment. These modifiers specify the increment (from 0 to +63) or decrement (from -63 to 0) to be
applied to each of the operands each time the statement is generated. There must be a modifier
for each operand in the model statement (including the variant character, if any), and the
modifiers must appear in the same order as the operands. If no modification is desired, 0 is

entered as the modifier.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE —_OF
T
Nowaer [bfg| LocaTion | R OPERANDS
1213 als[e]7]e L 1415, 2002, , I I Loy ol A S - L | 82(63 4 . I L, 80
[

! ‘;, ! L G’lEN 1¢ ’ t44’.t§‘;;¢1_.;,. ol i 1 1 i 1 1 ad . T T AR L
L[ISWC BCE SEL, TABLE,3 . I s SRS SRS I
3 \ l 1 1 1 i n 1 1 1 n L1 PR EPI W S | Lol PRSI A
o L[| | .TABLE [RESV . 16 T e

In the example above, the GEN statement generates a series of 10 instructions that will
branch to a location SEL, SEL+4, SEL+8, or SEL+36, provided that an 8 is present
in the first character of the corresponding item in a table containing 10 six-character items.
The tag SWC is assigned to the leftmost character of the first generated instruction. The GEN
statement itself must not be tagged.

NOTE: The second BCE instruction generated by the example is BCE/SEL+4,

TABLE+6, 8; the third instruction generated is BCE/SEL+8, TABLE+12, 8;
and so on. The tenth instruction generatedis BCE/SEL+36, TABLE+54, 8.

Clear A B C

CLEAR

The CLEAR statement enables the programmer to specify an area of memory which is to

be cleared of punctuation before the object program is loaded. The memory area is also

7-15

SECTION 7. ASSEMBLY CONTROL STATEMENTS

cleared to zeros or to a given character. It is not necessary to clear areas which will be used

to store the object program.

EASYCODER A

The op code field contains the letters CLEAR, while the operands field contains the ad-
dresses (either absolute or symbolic) of the first (low) and last (high) locations in an area to be
cleared. If a comma is written immediately following the second address, the character written
in the column after the comma is loaded into all locations in the cleared area. If two addresses
are written in the operands field and are not followed by a comma and a character, the specified

area is cleared to zeros.

A number of CLEAR statements may be written in sequence, immediately preceding the

END statement, provided that the total number of HSM, CLEAR, and END statements does not

exceed 10.

NOTE: The 80-character loading area specified in the END statement must
never be cleared.

EASYCODER

CODING FORM
PROBLEM . ___ PROGRAMMER —DATE PAGE __OF ___

CARD

-
NUMBER E Location | OPEEON OPERANDS
6

~ [xXDpz]

8 L L] LTI 20021 [IR E | 5283 , L L, 80

—__|CLEAR [CAMT,EANT. , l L e

A W oN -

5

! ! L L . 1 T L ' P

l L CILE.AK 334’.' 31 9; J L . i i P L P P L | PRI
' L 1 1 I} Lo L 1 L - | t | i 1 1
T

The first CLEAR statement above specifies that the area beginning at the location tagged
CAMT and ending at the location tagged EAMT is to be cleared to zeros. The second CLEAR

statement clears the area beginning at location 334 and ending at 379 to 46 J's.

EASYCODER B
The op code field contains the letters CLEAR, while the operands field contains the ad-

dresses (either absolute or symbolic) of the first (low) and last (high) locations in an area to be

cleared. If a comma is written immediately following the second address, the character written
in the column after the comma is loaded into all locations in the cleared area. If two addresses
are written in the operands field and are not followed by a comma and a character, the specified

area is cleared to zeros.

A maximum of nine CLEAR statements may be included in a program. In addition, no

coding may appear bétween the last symbolic CLEAR statement and the END statement.

SECTION 7. ASSEMBLY CONTROL STATEMENTS

NOTE: The loading area specified in the END statement must never be cleared.

See the sample statements given above for Easycoder A.

EASYCODER C

The op code field contains the letters CLEAR, while the operands field contains the ad-
dresses (either absolute or symbolic) of the first (low) and last (high) locations in an area to be
cleared. If a comma is written immediately following the second address, the character written
in the column after the comma is loaded into all locations in the cleared area. If twoaddresses
are written in the operands field and are not followed by a comma and a character, the specified
area is cleared to zeros. As many CLEAR statements as necessary can be included in a pro-
gram.

NOTE: The programmer must exercise caution in the physical placement of the

CLEAR statement, as the clearing is performed by the Loader at the
time the CLEAR statement is encountered.

See the sample statements given above for Easycoder A.

End A | B} C
END

The last source program instruction must be the END statement, which indicates to the

Assembly Program that the end of the source program has been reached.

EASYCODER A

The location field may contain an address (either absolute or symbolic) which specifies the
initial location in an 80-character loading area. If the location field is left blank, the Assembly
Program automatically reserves an 80-character loading area following the location assigned

to the last character in the object program.

The op code field contains the letters END. If it is desired to execute the object program
immediately after loading, the operands field must contain the address (either absolute or
symbolic) at which the object program is to begin. If the operands field is blank, the machine

halts after the load operation has been completed.

EASYCODER

CODING FORM
PROBLEM PRO R DATE PAGE OF
™
cArD V¥ OPERATION
NUMBERJE f| LOCATION CODE OPERANDS
| 2]3 4l5]|6]7

8 | 14]15, N 20(21 | | L | PRI B

] ENDoevECT. L T T

P

SECTION 7. ASSEMBLY CONTROL STATEMENTS

The END statement above specifies that the object program (beginning at the address
tagged OBJECT) is to be executed immediately after loading. Since the location field is blank,
the Assembly Program will reserve an 80-character loading area following the location as signed

to the last character in the object program.

EASYCODER B

The method of coding this statement depends on which output format has been specified in
the program header statement.

1. Output in self-loading format: The location field may contain an address
(either absolute or symbolic) which specifies the initial location in an 80-
character loading area. If the location field is left blank, the assembly
program automatically assigns an 80-character loading area following
the location assigned to the last character in the object program.

The op code field contains the letters END, while the operands field
contains the address (either absolute or symbolic) to which the Loader
branches when loading has been completed. If the operands field is blank,
the machine halts after the load operation has been completed.

NOTES: a. The programmer should ensure that the loading
area does not span two 4K memory banks.

b. During the loading process, the object program
must not use the loading area. However, the
area may be used following program loading.

c. When literals are used, the programmer must
specify a loading area that does not coincide
with the memory area occupied by literals.

2. Output in BRT format: The op code field contains the letters END, while
the operands field contains the address (either absolute or symbolic) to
which the Loader branches when loading has been completed. If the
operands field is blank, the machine halts after the load operation has been
completed. When BRT format is specified, all other fields of the END in-
struction are ignored by the Assembly Program.

NOTE: The loading area is automatically assigned by the Loader.

EASYCODER

CODING FORM

PROBLEM . — e .. PROGR, ER DATE PAGE ____OF ___

CARD OPERATION

NUMBER LOCATION CODE OPERANDS

1 2]3 als 8) [02, L K . , K
| [[|MAL____[END ., OBUECT e e P

[
T
L ! 1 1 - 1 L ' 1 PP DI T B S| Ly
|
|

~ [x|

& [rro~<|

. END . lOBUECT T N

|
|
1
|
I

& w N -

The first example above illustrates the coding which may be used for self-loading format

output; the coding for BRT-format output is shown in the second example.

SECTION 7. ASSEMBLY CONTROL STATEMENTS

EASYCODER C
The op code field contains the letters END. An address must appear in the operands field;

the Loader will branch to that address (which should be the starting location of the last segment

of the program).

NOTE: The loading area is automatically assigned by the Loader.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF ___
cARD 7Y OPERATION
NUMBER |8 LOCATION CODE OPERANDS
1 ,2]3,4Ts]e7(8 L Ui TR 20[2| I 1 [P RO | . L . 182183) - T
1
t | 1 END n STARTlLA L L L . L Lo - L 1 Lots ! —

The sample END statement above indicates to the Assembly Program that the end of the

source program has been reached. This statement is replaced by coding which specifies to the

Loader that the last (or only) segment begins at symbolic address STARTL.

INSTRUCTIONS

INTRODUCTION

A Series 200 computer operates under the direction of instructions in the stored program.
For descriptive purposes, these instructions are classified into six functional categories: (1)

Arithmetic; (2) Logic; (3) Control; (4) Interrupt Control; (5) Editing; and (6) Input/Output.

All instructions are described in the following standard format:

Title: The title describes the instruction. It appears in the lefthand
margin of a page, along with the mnemonic operation code used
in the Easycoder symbolic programming language.

If an instruction is included in an optional feature, that feature
number accompanies the title.

Format: This is a tabular representation of the formats which may be
used when coding the instruction.

Function: The function of the instruction is described in terms of the
format in which it is coded.

Word Marks: The effect of word marks with regard to data fields is specified.

Timing: The formulas to be used in calculating the timing of the instruc-
tion (in memory cycles) are presented. These formulas are
for instructions using direct addressing. If address modification
is to be used, the formulas should be modified as follows:

1. Indirect Addressing — Add one memory cycle for
each character extracted as a result of indirect
addressing.

2. Indexed Addressing — Add three memory cycles
for each indexed address.

Address The contents of the address registers are indicated for each of

Registers the instruction's formats.

after

Operation:

Notes: This is additional information pertaining to the operation.

Examples: Practical applications of the instruction in its various formats

are described and illustrated as symbolic program entries.

8-1

SECTION VIII. INSTRUCTIONS

Table 8-1 lists the abbreviations and symbols used in the description of the instructions.
Those symbols used only with specific instructions are preceded by the title of the instruction

to which they pertain.

Table 8-1. Symbology Used in Series 200 Instruction Descriptions

SYMBOL MEANING

A A address of the instruction

B B address of the instruction

N Number of characters in the instruction

N, Number of characters in the A field

Nb Number of characters in the B field

Ny Number of characters in the A or B field, whichever is smaller

NXT Address of next sequential instruction

JI Address of next instruction if a branch occurs

Ap The previous setting of the A-address register (AAR)

Bp The previous setting of the B-address register (BAR)

Multiply

Zia Number of trailing zeros (i.e., consecutive low-order zeros) in the
A field

N r Number of digits in the multiplier

mr Number of zeros in the multiplier

s Sum of all multiplier digits

SUM The sum of the upwards-rounded values of all multiplier digits
divided by 2 (see note)
' Divide

Zy, Number of leading zeros in the A field

Z 0 if Z15=0; 1if Z1,# 0

Z14 Number of leading zeros in the dividend

Nag Number of digits in the dividend

Nq Number of digits in the quotient (=Ny4-Z; -N_+Zy,+1)

P .. Move and Translate
N.¢ Number of characters translated
Move Item and Translate

Nut Number of information units translated

CSRy, Previous contents of the change sequence register (CSR)

NA, Number of six-bit character locations occupied by each A-item
information unit (1 or 2)

NB, Number of six-bit character locations occupied by each B-item

information unit (1 or 2)

INTRODUCTION

Table 8-1 (cont). Symbology Used in Series 200 Instruction Descriptions

L SYMBOL | MEANING |
' Move Gharacters and Edit
Z Number of characters scanned during zero suppression
$ Number of characters scanned during dollar sign insertion
Store Variant and Indicators
Ng Number of characters stored
Nj Number of character locations bypassed to reach the next
sequential op code
» Restore Variant and Indicators |
Nr Number of characters referenced
Input/Output Instructions
N, Number of control characters in the instruction
Nen Number of control characters following control character 3 (C3)
NOTE: The value of SUM is derived in the following manner:
1. Divide each multiplier digit by 2.
2 Round off each result to the nearest (upwards) whole digit.
3. Add together the results arrived at in 2. for each multiplier digit.
4. The resultant sum = SUM.

s ADD

¢SUBTRACT

¢ BINARY ADD

¢ BINARY SUBTRACT

¢ ZERO AND ADD

¢ ZERO AND SUBTRACT
e MULTIPLY

¢ DIVIDE

SECTION 8. INSTRUCTIONS

ARITHMETIC OPERATIONS

Series 200 add operations (binary addition, decimal addition) treat the A operand as the
augend and the B operand as the addend. The subtract operations (binary subtraction, decimal
subtraction) treat the A operand as the subtrahend and the B operand as the minuend. The
result of each operation is stored in the B field. These elements are summarized in Table 3-2,

where a character enclosed in parentheses indicates the contents of that field.

Table 8-2. Series 200 Add and Subtract Operations

(B) (B)

BINARY ADDITION

The Binary Add instruction combines the corresponding bits of the augend and addend and
produces a binary sum which is stored in the B field. This process can be most readily analyzed
on a column-by-column basis. For any column in the addition, three variables are significant
to the sum: the augend digit, the addend digit, and the carry from the next lower-order column,
For any column, the result is fully expressed by a sum digit (1 or 0) and either a carry OTr no
carry to the next higher-order column. Table 8-3 lists all the possible combinations of these

variables.

Table 8-3. Binary Addition Table

0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1
0 0 1 1 1 1 0 0
0 1 0 0 0 1 1 1

BINARY SUBTRACTION

.1
The Binary Subtract instruction performs, in effect, twos-complement arithmetic. When
this instruction is executed, each six-bit character of the subtrahend is converted to its ones

2
complement and added to the corresponding character in the minuend, adding from right to left.

The twos complement of a binary number is formed by subtracting the number from a field of
all one bits and adding one to the low-order digit of the difference.

The ones complement of a binary number is formed by subtracting the number from a field of
all one bits.

8-6

ARITHMETIC

In the first addition (the addition of the low-order characters of the subtrahend and the minuend)
a simulated carry is added to the result. All subsequent characters are added with or without a

carry, depending upon the result of the previous addition.

The word mark associated with the B field terminates the operation. If the length of the A
field equals that of the B field, the binary subtraction process continues until the high-order B-
field character has been combined with the high-order A-field character. If the length of the A
field exceeds that of the B field, the effect is as if there were a word mark in the A-field loca-
tion corresponding to the high-order B-field location (i.e., the process still terminates at the
B-field word mark). If the length of the A field is less than that of the B field, zeros are insert-
ed where the A field terminates until the last B-field character is processed. Each zero is con-

verted to its ones complement as above and then added to the corresponding B-field character.

In the following example, locations 294 and 205 contain the value 73,4 in 12-bit binary form,
while locations 299 and 300 contain the binary equivalent of 87,,.

Note: Locations 294 and 299 contain word marks; the length of the A field therefore
equals that of the B field in this example.

EASYCODER

CODING FORM
T PAGE ___OF ___
PROBLEM PROGRAMMER DATE »
cArD || OPERATION OPERANDS
NUMBER ||g| LOCATION CODE _
1 2]3 al5]e[7[8 L 1415, 20J21 | | i L.l P TP I IR B L) | . PN borota 59
L . Bs 295, BBB | e e el

LOCATION -»

CONTENTS 000001 001001 001101 011011 011110 000001 010111
(binary)

The six-bit character in location 295 is converted to its ones complement and added to the
six-bit character in location 300 (see illustration below)., Prior to this operation, a simulated
carry is generated in the adder (see page 2-7). The result of the first addition is the binary
equivalent of 14 plus a carry. This carry remains in the adder and is added to the sum of the
contents of locations 294 and 299, resulting in a binary zero plus another carry. This final carry
remains in the adder and the operation terminates. An overflow condition does not exist since
the carry remaining at the end of the operation is suppressed; consequently the next memory lo-
cation (location 298) is not disturbed. The result of the entire Binary Subtract instruction is
therefore 1410, the true difference between 87 and 73.

Table 8-3, indicates how the bits in each column of the ones-complement subtrahend and

the minuend are combined.

SECTION 8. INSTRUCTIONS

LOCATION -»

CONTENTS » 000001 001001 001101 011011 011110 000001 010111

converted to
ones complement

|
| 110110 010111

Simulated Carry
in Adder

ADDER

RESULT = 001110

(plus a carry)

First Addition

000001 001001 001101 011011 011110 000001 001110

converted to N

ones complement

y
111110 000001
(] ! Loooon: |

Previous
Carry

ADDER 1

RESULT = 000000
(plus a carry which
is suppressed)

Second Addition

The result of the operation (1410) is stored in the B field as shown below.

7310 1410

000001 001001 001101 011011 011110 000000 001110

ARITHMETIC

DECIMAL ADDITION

The Add instruction performs either a truc add or a complement add, depending upon the
algebraic signs of the operands. The sign of an operand is determined by the combination of
zone bits in the units position of that field. The four possible zone bit configurations and the

signs they represent are shown in Table 8-4.

Table 8-4. Algebraic Signs in Decimal Addition

True Add

A true add is performed if the signs of the A and B fields are alike. The result of the
addition is stored in the B field with the same zone bit configuration that was originally in the B
field {see Figure 8-1). Zone bits in all B-field locations (except for the units position) are set to

zeros. A-field zone bits (except for the units position) are ignored.

+R

1l

(+A) + (+B)

A OPERAND B OPERAND

+170

+244

+414 = RESULT

+244

(-A) + (-B) =-R
A OPERAND B OPERAND

-444
-077 -077
J -521 = RESULT

Figure 8-1. True Add Examples

Complement Add

If the operand signs are not alike, the instruction performs a complement add: the A
operand is converted to its tens cornplernent1 and added to the B operand. The machine automa-

tically initiates a test to determine whether a carry was generated by the high-order addition.

1The tens complement of a decimal number is formed by subtracting the number from all nines
and adding one to the low-order digit of the difference.

8-9

SECTION 8. INSTRUCTIONS

The presence of a carry indicates that the result in the B field is a true answer, and the opera-
tion is terminated with the normalized sign of the B field as the sign of the result (see Figure

8-2). 1 B_field zone bits (except for the units position) are set to zeros.

The absence of a carry indicates that the A operand was algebraically larger than the B
operand and that the result is stored in its tens-complement form. A recomplement cycle is
performed automatically to convert the result to its true form. The sign of the result is changed
during this recomplement cycle. Figure 8-2 illustrates complement add operations with without

recomplementation.

(+A) + (-B) = -R

A OPERAND B OPERAND
convert to -0090

+0078

tens complement . 9922

carry indicates true sum } 1 -0012 = RESULT
(recomplementing is A
unnecessary) sign of B operand

(+A) + (-B) = +R

A OPERAND B OPERAND
convert to -0090

+0178

tens complement > 9822

no carry indicates sum is stored ’ 0 -9912
in its tens-complement form; :
recomplementing is necessary

recomplement
and change sign

+0088 = TRUE RESULT

Figure 8-2. Complement Add Examples

DECIMAL SUBTRACTION

The Subtract instruction is analogous to the Add instruction with the exception that before
the operands are combined, the sign of the A operand is changed. Thus, if the initial sign of the
A operand is equal to that of the B operand, the operands are combined by a complement add. If,

on the other hand, the initial sign of the A operand is not equal to that of the B operand, the

operands are combined by a true add.

A summary of decimal arithmetic operations is presented in Table 8-5.

1
Normalized signs are expressed bythe following zone bit configurations: plus = 01, minus = 10.

8-10

ARITHMETIC

Table 8-5. Decimal Arithmetic 5ign Conventions

+ True + (Bit configuration of B)

+
- Complement

ADD ‘lj;lzlzailiieﬁosiin_og lg)reater

+ Complement T

) - True -
- True -

* + Complement

ompiemen Normalized sign of the
SUBTRACT greater value (- = 10, + = 01)

- Complement

B + True + (Bit configuration of B)

INDICATORS

Two indicators are set at the completion of every decimal add and subtract operation: the
overflow indicator and the zero balance indicator. If a carry is generated beyond the limit of the
B field, the overflow indicator is turned on; if such a carry is not generated, the indicator is
unchanged. 1 The zero balance indicator signifies either a zero or a non-zero sum. When a
decimal operation produces a result equal to zero (regardless of sign), the zero balance indi-

cator is turned on; when the result of the operation doesnot equal zero, the indicator isturned off.

These indicators are also set by decimal multiply and divide operations. The overflow
indicator is turned on when a Decimal Divide instruction is performed in which the divisor is
equal to zero. The zero balance indicator is turned on if the product of a decimal multiply

operation is equal to zero.

The settings of these indicators can be tested by a Branch on Condition Test instruction
(see page 8-41). This instruction automatically resets the overflow indicator; the zero balance
indicator is not affected by the branch instruction used to test it but is reset only by the next

decimal arithmetic instruction.

MULTIPLICATION

The Multiply instruction causes the signed decimal integer in the A field (the multiplicand)

1Only a 'true add' operation can turn the overflow indicator on (see Table 8-5).

8-11

SECTION 8. INSTRUCTIONS

to be multiplied by the signed decimal integer (the multiplier) which is stored in the leftmost lo-

cations of the B field. The signed product is stored right-justified, in the B field.

The B field must be large enough to insure an adequate number of locations for the develop-
ment and storage of the product. Its length is thereforc defined as the number of locations in

the multiplier, plus the number of locations in the multiplicand, plus one (see Figure 8-3).

OPERATION:
aaaa
&_ bbb
A FIELD ———#» -B FIELD (4+3+1 = 8 locations)—m
A ADDRES‘S B ADDRESF
LLOCATION -» |JA-3|A-2]A-1]TA B-7[B-6|B-5|B-4[B-3|{B-2|B-1] B
CONTENTS + | (3)| a | a |a @ b | b
MULTIPLICAND MULTIPLIER
(4 locations) (3 locations)

Figure 8-3. A and B Fields in Multiply Operation

Word marks are required in the leftmost locations of the multiplicand and the multiplier.
All other locations in the B field must not contain word marks. As shown in Figure 8-3, the
rightmost location of the multiplier is defined as B - N, - 1, where B is the B address and N,

is the number of locations in the A field.

The zone bits in the units positions of the multiplier and the multiplicand indicate the signs
of the operands. The signs of these factors indicate the sign of the product according to the

algebraic sign conventions shown in Table 8-6. The sign of the product is expressed in its

normalized form (minus = 10, plus = 01).

Table 8-6. Multiply Sign Conventions

Sign of Multiplicand + - + -
Sign of Multiplier + - - +
Sign of Product + + - -

ARITHMETIC

Consider the following Decimal Multiply instruction,

PROBLEM

EASYCODER

CODING FORM
PROGRAMMER DATE PAGE ___OF _____

CARD

M OPERATION
NUMBER |B
6

LOCATION ODE

~ [x2pZ]

OPERANDS

1 2[3 4ls 8 | 1alis, 20

21, 1 | L P U B Lo L8R8 v e b (89

| LM

SQgLL.’TJQQ L ~1 Lt e b Lo P I TSP G

Location 500 is the rightmost location of a four-character field. Location 700 is the right-

most location of an eight-character field., Location 695 (i.e., 700 - 4 - 1) is the rightmost loca-

tion of the multiplier.,

LOCATION —

CONTENTS — |(3)

A ADDRESS B ADDRESS
v v

e T ———
MULTIPLICAND MULTIPLIER

The data in the A field is multiplied by the data in the field whose rightmost location is

695, and the product is stored, right-justified, in the B field. All B-field zone bits are cleared

to zeros (except in the units position, which contains the sign of the product). At the end of the

operation, the multiplier is no longer present in the leftrmost positions of the B field, since all

B-field locations to the left of the most significant digit of the product are set to zeros. Thus,

the multiplier should be preserved in another storage field if it is to be used more than once.

The result of the multiply

operation is shown below.

A FIELD IS PRODUCT IS STORED IN B FIELD, RIGHT-
NOT DISTURBED JUSTIFIED. ALL INSIGNIFICANT HIGH-

LOCATION ——p
CONTENTS —| (3)

ORDER CHARACTERS ARE SET TO ZEROS

PRODUCT

DIVISION

The Divide instruction causes the signed decimal integer in the A field (the divisor) to be

divided into the signed decimal integer whose leftmost location is the B address of the instruc-

tion (the dividend). The quotient is developed and stored in the leftmost locations of the B field,

8§-13

SECTION 8. INSTRUCTIONS

and the remainder is stored in the rightmost locations of the B field.l To insure an adequate
number of storage locations for the development of the quotient, the length of the B field is
determined by adding 1 to the sum of the number of character locations in the divisor and

dividend (see Figure 8-4).

OPERATION:
XX]YYYY

BEFORE EXECUTION

@« A FIELD » l@——— B FIELD (3+4+1=8 locations)—m
A ADDRESS B ADDRESS
LOCATION-»f A-2| A-1| A B-4|B-3|B-2|B-1|B B+3
CONTENTS -+ ® X | x 0 0 0 0|y y
DIVISOR DIVIDEND
(3 locations) (4 locations)

AFTER EXECUTION

B-N,+Ng-2
B'Na+Ndd
LOCATION-»f A-2] A-1] A B-4|B-3|B-2|B-1|B|B+L
CONTENTS -+ (X x | x q q q q |0 r r T
QUOTIENT REMAINDER

Figure 8-4. Factor Locations in Divide Operation

The leftmost location of the dividend is defined by the B address of the Divide instruction.
The rightmost location (i.e., the units position) is the first character location to the right of the
B address to have one of its zone bits not equal to zero. As shown in Figure 8-4, all B-field

locations to the left of the dividend must contain zeros prior tothe divide operation.

A word mark is required in the leftmost location of the divisor. The dividend may or may

not contain a word mark.

Note that the B ''field" in a divide operation does not define the B operand but is a group of
storage locations within which the B operand (the dividend) is contained.

8-14

ARITHMETIC

The signs of the operands are indicated by the zone bits in the units positions of the divisor
and dividend. Algebraic sign control is used to determine the sign of the quotient (see Table
8-7). The sign of the quotient is expressed in its normalized form (minus = 10, plus = 01). The
sign of the remainder is always the same as that of the dividend (in value if not in bit configu-

ration); its form is normalized if the sign of the dividend is normalized.

Table 8-7. Divide Sign Conventions

I ‘ ,'Siﬂgii.‘-ofv‘fl;ﬁiwsor, i " - -
 Signof Dividend | 4 : " :
, S . Qi Remam&er + ' * _
i S1gn Oleﬁéﬁéﬁf" o J + - +

Since the presence of a signed digit in the dividend specifies its rightmost location, the
units position of the dividend must contain a normalized sign and the zone bits of all other

dividend characters must be zero.

When division is completed, signed decimal quotient is stored in the leftmost locations of
the B field; the units position of the quotient is in location B - Na + Ndd - 2, where Na is the
number of locations in the A field and Nd is the number of locations in the dividend. The signed

i i in 1 ti + - - . th ti - .
decimal remainder appears in locations B Ndd 1, B+Ndd 2, etc rough location B Na+Ndd

The character location separating the quotient and the remainder is clearedtozero (see Figure 8-4).

In the following example, the divisor is a two-character field whose rightmost location is

location 450 and the dividend is a four-character integer whose leftmost location is location 950.

EASYCODER

CODING FORM
PROBLEM R PROGRAMMER DATE PAGE . OF ___
cArRD V[OPERATION
numser |B|R LOCATION CODE OPERANDS
1 2[3 al5(6l7]s L 151 (CTEN—. 20124 1 1 L Lt L S L . L 8283, . L I 80
|
! “ ! I u 4'5¢~.9|5.¢) L S L ¢ L Ly - 1 - P]
2 I ! 1 " 1 1 1 L 1 L] L L F U S S S S S S S | U U UUY DU DU T | L. L1
3 l‘ l 1 I8 L 1 n . 1 L P 1o Lo PR 1 L R S B R S T i [P

The contents (+23) of the A field are divided into the contents of the field (+7347) whose
leftmost location is 950, The rightmost boundary of the dividend is determined by the first
character location (location 953) to the right of location B whose zone bits are non-zero. This

units position of the dividend therefore contains the sign of the dividend.

SECTION 8. INSTRUCTIONS

| B FIELD = 14244 = 7
—h —
4 FIELD CHARACTER LOCATIONS
A ADDRESS B ADDRESS
@ | 3 oo | o] 7|3 4%
—T N —— e——T T T ——
DIVISOR = DIVIDEND = 4
2 CHARACTER CHARACTER LOCATIONS
LOCATIONS

The quotient (+319) is stored in the leftmost character locations of the B field. The units
position of the quotient (location 950) is equal to B—Na+Ndd-2, or 950-244-2. The remainder
is stored in the rightmost locations of the B field; its leftmost location (location 952) is equal to
B-N_ +N, or 950-2+4; its rightmost location (location 953) is equal to B+N-1, or 950+4-1. The

result of the operation is shown below.

A—ADDRESvS B ADDRESS

QUOTIENT REMAINDER
LA | ADD]
w OP CODE A ADDRESS B ADDRESS

C.

o

FUNCTION

format a: The signed decimal data in the A field is added algebraically to the signed decimal
data in the B field. The result is stored in the B field.

Format b: The signed decimal data in the A field is added to itself. The result is stored in the
A field.

Format ¢c: The signed decimal data specified by the contents of the A-address register (AAR) is
added algebraically to the signed decimal data specified by the contents of the B-ad-
dress register (BAR). The result is stored in the B field.

ARITHMETIC

WORD MARKS

Format a:

Format b:

Format c:

TIMING

Format a:

Format b:

Format c:

The B operand must have a defining word mark. It is this word mark thatterminates
the operation. The A operand must have a word mark only if it is shorter than the B
operand. In this case, transmission of data from the A operand stops after the A-
operand word mark is sensed. If the A field is longer than the B field, the high-
order characters of the A field that exceed the field length defined by the B-operand
word mark are not processed.

The A operand must have a defining word mark.

The B operand must have a defining word mark. The A operand must have a word
mark only if it is shorter than the B operand.

= Nj+2+Ny+2Np memory cycles if no recomplement cycle is required.

N-1+2+NW+4Nb memory cycles if a recomplement cycle is required.

= N;+2+3N, memory cycles.

3+Nw+2Ny, memory cycles if no recomplement cycle is required.

H 3 3 =3 H

34N, +4Ny, memory cycles if a recomplement cycle is required.

ADDRESS REGISTERS AFTER OPERATION

Format a:
Format b:

Format c:

NOTES
1.

SR AAR BAR
NXT A-N, B-Ny,
NXT A-N, A-N,
NXT Ap-Ng, By,-Ny

The algebraic sign control for the add operation is shown below.

A-FIELD SIGN + — + —
‘B-FIELD SIGN + —_ — +
TYPE OF ADD True True Comp Comp

. Normalized sign of A or B
SIGN OF RESULT Sign of B field field, whichever is greater
: (- =10, + = 01)

All zone bits in the result field are set to zeros except for the units position
(i.e., the sign of the result).

This instruction treats both operands as signed decimal data. It will pro-
duce ambiguous results if used to manipulate non-decimal data. Particularly,
if the four numeric bits of any character have a binary numeric value of 12

or more (octal 14, 15, 16, and 17), the character is treated as if it were

a zero. The two remaining cases (octal 12 and 13) are unspecified.

The overflow and zero balance indicators are set by an add operation.

SECTION 8. INSTRUCTIONS

EXAMPLE
Add Bond Deductions to Total Deductions.

Description Tag
Bond Deductions BDED
Total Deductions TDED

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ___
T
v Eg Location | OTOM OPERANDS
1 2]3 alsle]7]s | 14115, 20]at | ‘ 1) Lo L) eeles o 80|
I , A . |BDPED.TDED i
L, S SUBTRACT]
FORMAT
OP CODE A ADDRESS B ADDRESS

o

FUNCTION

Format a: The signed decimal data in the A field is subtracted algebraically from the signed
decimal data in the B field. The result is stored in the B field.

Format b: The signed decimal data in the A field is subtracted from itself. The result is
stored in the A field. If the A-field sign is minus, the result is a minus zero. If
the A-field sign is plus, the result is a plus zero (with normalized sign).

Format c: The signed decimal data specified by the contents of the A-address register (AAR)
is subtracted algebraically from the signed decimal data specified by the contents
of the B-address register (BAR). The result is stored in the B field.

WORD MARKS

Format a: The B operand must have a defining word mark., The A operand must have a word
mark only if it is shorter than the B operand. In this case, transmission of data
from the A operand stops after the A-operand word mark is sensed. If the A field
is longer than the B field, the high-order characters of the A field that exceed the
field length defined by the B-operand word mark are not processed.

Format b: The A operand must have a defining word mark.

Format c: The B operand must have a defining word mark. The A operand must have a word
mark only if it is shorter than the B operand.

8-18

ARITHMETIC

TIMING

Format a: T = Ni+2+NW+2Nb memory cycles if no recomplement cycle is required,
T = Ni+2+Nw+4Nb memory cycles if a recomplement cycle is required.
Format b: T = N;+2+3N, memory cycles.
Format c: T = 34Ny +2Ny, memory cycles if no recomplement cycle is required.
T = 3+Ny 14Ny, memory cycles if a recomplement cycle is required.
ADDRESS REGISTERS AFTER OPERATION
SR AAR BAR
Format a: NXT A-Ng, B-Ny,
Format b: NXT A-Ny A-N,
Format c: NXT AP-NW Bp—Nb
NOTES
1. Algebraic sign control for the subtract operation is summarized below.
| A-FIELD SIGN + —_ + —
 B-FIELD SIGN -+ — — +
| TYPEOF ADD - | Comp Comp True True
el G | Normalized sign of Sign of B field
i i N A B field, which-
SIGN OF RESULT or B field, which
et L) ever is greater
: (- =10, +=01)
2. All zone bits in the result field are set to zeros except for the units position
(i.e., the sign of the result),
3. This instruction treats both operands as signed decimal data. It will pro-
duce ambiguous results if used to manipulate non-decimal data. Partic-
ularly, if the four numeric bits of any character have a binary numeric
value of 12 or more (octal 14, 15, 16, and 17), the character is treated
as if it were a zero. The two remaihing cases (octal 12 and 13) are
unspecified.
4, The overflow and zero balance indicators are set by a subtract operation.
EXAMPLE
Subtract the contents of the five-character fields starting at location 940, 945, 950,
and 955 from the contents of the eight-character fields starting at locations 648,
656, 664, and 672,
PROBLEM PROGRAMMER DATE PAGE ____OF____
NOMBER §§ rocation | “GHe" OPERANDS
1 2]3 4als]s]7]s | [T R T . | | LRl \ . &
! ! ; L S| " 955)6[7.2. s 4w L 1 1 L t 1 1 o 1
2 ;, L L sl 1 i n - 1 n L I T oo v s b a0 F I N U0 SRS S S G PR S
3 l | L 5{ L 1 SRR T A SV S S T UGS SNY DI SO SO S G S J 1 1 L 1
N l| l L L Sl 1 L] 1 il 1 I L L L 1]

SECTION 8, INSTRUCTIONS

BA | BINARY ADD

FORMAT

OP CODE A ADDRESS B ADDRESS

o

FUNCTION

Format a: The data in the A field is added in binary fashion, character by character, to the
data in the B field. The result is stored in the B field.

Format b: The data in the A field is added character by character, to itself. The result is
stored in the A field,

Format c: The data specified by the contents of the A-address register (AAR) is added char-
acter by character, to the data specified by the contents of the B-address register
(BAR). The result is stored in the B field.

WORD MARKS

Format a: The B operand must have a defining word mark. It is this word mark that termi-
nates the operation. The A operand must have a word mark only if it is shorter
than the B operand. In this case the transmission of data from the A field stops
after the A-operand word mark is sensed. If the A field is longer than the B field,
the high-order characters of the A field that exceed the field length defined by the
B-operand word mark are not processed.

Format b: The A operand must have a defining word mark.

Format c: The B operand must have a defining word mark, The A operand must have a word
mark only if it is shorter than the B operand.

TIMING

Format a: T = N;+1+N_, +2Ny, memory cycles. 1

Format b: T = N;+143N, memory cycles. 1

2+Nw+2Nb memory cycles. 1

1]

Formatc: T

1Add one memory cycle to each of these times if the instruction is being executed in a Type 2201
processor.

8-20

ARITHMETIC

ADDRESS REGISTERS AFTER OPERATION

Format a:
Format b:

Format c:

SR AAR BAR

NXT A-Ny B-Ny
NXT A-N, A-N
NXT Ay-Ny, B_-Ny

Format a:

Format b:

NOTES
1. The overflow and zero balance indicators are not set by a binary add
operation.
2. Format b of the BA instruction has the effect of doubling the value stored
in the A field; i.e., it shifts the contents of the A field one bit position
to the left.
EXAMPLE
Modify the B address of the instruction tagged B7 by the value stored in the location
tagged TEN (assuming the use of the two-character addressing mode).
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE . OF ___.
Nemwoer [H3| Location | TN OPERANDS
" 2]3 als|e|7]s R 1415, 20[2! | | L T S TR B0 .- WS WA ST TP TSR |
ol . BA . (BT TEN ot ot L e e
BS BINARY SUBTRACT
FORMAT
OP CODE A ADDRESS B ADDRESS
o [I
b. [I
‘ -
FUNCTION

Each six-bit character in the A field is converted to its ones complement and added,
in binary fashion, character by character, to the data in the B field (see page 8-6).
A simulated carry is added with the characters in the units position. The result

is stored in the B field.

Each six-bit character in the A field is converted to its ones complement and added
character by character, to itself. A simulated carry is added with the characters

8-21

SECTION 8.

INSTRUCTIONS

Format c:

in the units position. In effect, this format of the binary subtract instruction re-
places the contents of the A field with zeros.

Each six-bit character specified by the contents of the A-address register (AAR)
is converted to its ones complement and added, character by character, to the data
specified by the contents of the B-address register (BAR). A simulated carry is
added with the characters in the units position. The result is stored in the B field.

WORD MARKS

Format a:

Format b:

Format c:

TIMING
Format a:
Format b:

Format c:

The word mark associated with the B operand terminates the operation, The A
operand must have a word mark only if it is shorter than the B operand. In this
case, transmission of data from the A field stops after the A operand word mark
is sensed. If the A operand is longer than the B operand, the characters of the A
operand that exceed the field length defined by the B operand word mark are not
processed.

The A operand must have a defining word mark.

The B operand must have a defining word mark. The A operand must have a word

mark only if it is shorter than the B operand.

T = Ni+1+Nw+2Nb memory cycles.l
T 1

N;+1+3N, memory cycles.

T = 2+N_ +2Ny, memory cycles. 1

ADDRESS REGISTERS AFTER OPERATION

Format a:

Format b:

Format c:

SR AAR BAR
NXT A-N_ B-N,
NXT A-N_ A-N_
NXT AN, B,-N,

EXAMPLE

The overflow and zero balance indicators are not set by a binary subtract
operation.

Formats a and ¢ can produce negative results. A negative result is stored
in the B field in its twos-complement form. In this case, the absolute
numerical value of the result can be obtained by recomplementing the result
stored in the B field.

Zero the field starting at location TOTAL.

1Add one memory cycle to each of these times if the instruction is being executed in a Type

2201 proce

sSSsor.

ARITHMETIC

PROBLEM

EASYCODER

CODING FORM

PROGRAMMER DATE PAGE ___OF ___

CARD
NUMBER

Rl

& [rro<—

LocaTioN | OPFRATION OPERANDS

| 2[3 4[5 8

| s, 20]21, , 1 Lw ool P PR NSRRI B L1 2183 T Loaa 0.8

| I
|

~Es __ ToTAL .. . o

NOTE: Information bits as well as zone bits are cleared to zero by
this operation.

| zA|zE

RO AND ADD’ IFEATURES 010 & 011

FORMAT

OP CODE A ADDRESS B ADDRESS

FUNCTION

Format a:

Format b:

Format c:

The data in the A field is transferred, character by character, right to left, to the
B field. Zone bits in the B field are set to zero in all positions except the units
position. The sign of the result field is based on the sign of the A field (see note).
If the high-order character of the A field is transferred before the operation
terminates, the remaining B-field characters are cleared to zeros.

The data in the A field is converted to an all~-numeric format; i.e., the zone bits
of all positions in the field except the units position are set to zero. The result
remains in the A field. The sign of the A field is not changed by the operation (see
note 1).

The data specified by the contents of the A-address register (AAR) is transferred
to the field specified by the contents of the B-address register (BAR). Zone bits
in the B field are set to zero in all positions except the units position. The sign
of the result field is based on the sign of the sign of the A field (see note 1). If
the high-order character of the A field is transferred before the operation termi-
nates, the remaining B-field characters are cleared to zeros.

WORD MARKS

Format a:

Format b:

The B operand must have a defining word mark. The A operand must have a word
mark only if it is shorter than the B operand. In this case, transfer of data from
the A operand stops after the A-operand word mark is sensed. If the A field is
longer than the B field, the high-order characters of the A field that exceed the
field length defined by the B-~operand word mark are not processed.

The A operand must have a defining word mark.

8-23

SECTION 8. INSTRUCTIONS

Format c: The B operand must have a defining word mark. The A operand must have a word
mark only if it is shorter than the B operand.

TIMING

Formats a, b, and c:

T = Ni+l+Nw+Nb memory cycles. 1

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-N B-Ny
ilnletuiiohdiiha W
Format b: NXT A-Ny A—Na
Format c: NXT Ap—NW Bp-Nb
NOTES
1. A plus sign in the units position of the result field is always expressed in
its normalized form (01).
2. B-field punctuation is not changed by this operation.
EXAMPLE
Transfer the contents of the field tagged ORATE to the field tagged NRATE, setting
all zone bits in NRATE (except in the units position} to zeros.
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF___
R E'g LocaTion | OPFeon OPERANDS
1 2[3 als5(6l7]8 | alis, 20[21 e e | L. 1 e2es o L., 80

] T ZA . IORATE,NRATE . .\

4
T

ZS | ZERO AND SUBTRACT| |FEATURES 010 & 011

FORMAT

OP CODE A ADDRESS B ADDRESS

o

1
Add one memory cycle to this formula if the instruction is being executed in a Type 2201
processor.

8-24

ARITHMETIC

FUNCTION

Format a:

Format b:

Format c:

The data in the A field is transferred to the B field with the opposite sign. Zone
bits in the B field are set to zeros in all positions except the units position. If the
high-order character of the A field is transferred before the operation terminates,
the remaining B-field characters are cleared to zeros.

The data in the A field is converted to an all-numeric format; i.e., the zone bits
of all positions in the field except the units position are set to zero. The result re-
mains in the A field with its sign reversed.

The data specified by the contents of the A-address register (AAR) is transferred
with the opposite sign to the field specified by the contents of the B-address register
(BAR). Zone bits in the B field are set to zero in all positions except the units
position. If the high-order character of the A field is transferred before the oper-
ation terminates, the remaining B-field characters are cleared to zeros.

WORD MARKS

Format a:

Format b:

Format c:

TIMING

Formats a,

The B operand must have a defining word mark. The A operand must have a word
mark only if it is shorter than the B operand. In this case, transfer of data from
the A operand stops after the A-operand word mark is sensed. If the A field is
longer than the B field, the high-order characters of the A field that exceed the
field length defined by the B-operand word mark are not processed.

The A operand must have a defining word mark.

The B operand must have a defining word mark. The A operand must have a word
mark only if it is shorter than the B operand.

b, and c:

T = Ni+1+NW+Nb memory cycles. 1

ADDRESS REGISTERS AFTER OPERATION

Format a:

Format b:

Format c:

SR AAR BAR
NXT A-N, B-N,
NXT A-N, A-N,
NXT Ay-Ng, B, -N,

NOTES

A plus sign in the units position of the result field is always expressed in its
normalized form (01).

B -field punctuation is not changed by this operation.

1
Add one memory cycle to this formula if the instruction is being executed in a Type 2201
processor.

SECTION 8.

INSTRUCTIONS

EXAMPLE

Change the sign of the data in the field tagged PROFIT.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF.___
T
v E[g| ocamon OPERITION OPERANDS
i 2[3 als]6[7]e | alis, 20[21 | 1 L . | , geles " 80
!
' :; L 2.5 PROFLT P L L P R | L L (PR Ly
| M| muLTIPLY
FORMAT
OP CODE A ADDRESS B ADDRESS
a. L I
] I ..
- -
FUNCTION

Format a:

Format b:

Format c:

The signed decimal integer in the A field is multiplied by the signed decimal integer
in the leftmost locations of the Bfield. The product is stored, right-justified, in
the B field.

The signed decimal integer in the A field is multiplied by the signed decimal integer
in the leftmost locations of the field specified by the contents of the B-address reg-
ister (BAR). The product is stored, right-justified, in the B field.

The signed decimal integer in the field specified by the contents of the A-address
register (AAR) is multiplied by the signed decimal integer in the leftmost locations
of the field specified by the contents of BAR. The product is stored, right-justified,
in the B field.

WORD MARKS

Formats a,

b, and c:

TIMING

Formats a,

Word marks are required in the high-order locations of both the A and B fields.
All other B-field locations must not contain word marks.

b, and c:

Types 201-1, 201-2, and 1201 processors:

ARITHMETIC

T = Nj+54+2N,+2Z1 +5N -2 48 (N - Z g)+2(Np -Z4 5)(N, . -Z . ..) memory cycles.

TYPE 2201 PROCESSOR:

T = Ni+8+2Na+ZZta+5Nmr‘Zmr+SUM(Na'Zta)+3(Na‘Zta)(Nmr'Zmr) memory cycles.,

Representative times for the Types 201-1, 201-2, 1201, and 2201 processors are
given in note 7.

ADDRESS REGISTERS AFTER OPERATION

Format a:
Format b:

Format c:

NOTES

SR AAR BAR
NXT A-N, B-Ny,
NXT A-Ng Bp-Np,
NXT A,-N, B,-Np

The A address of a Decimal Multiply instruction specifies the units position
of the multiplicand. The B address specifies a location which is Naz+1 lo-
cations to the right of the multiplier, since the B field must contain the
multiplier plus enough additional locations (to the right of the multiplier) to
provide for the development of the product. Thus, the total number of
character locations in the B field must be one greater than the sum of the
number of characters in the multiplicand and the multiplier. For example,
in a multiplication operation involving a 3-character multiplier and a 5-
character multiplicand, 9 positions (5+3+1) must be provided in the B field.

Algebraic sign control for the multiply operation is shown below. The sign
of the product is expressed in its normalized form (-=10, +=01).

The product is stored (right-justified) in the entire B field, with the unused
high-order positions of the B field cleared to zeros. As a result of the
operation, the multiplier (initially stored in the B field) is destroyed.
Therefore, if the multiplier is to be used more than once, it should be
preserved in another storage field.

The zero balance indicator is turned ON if the product of the multiply oper-
ation is equal to zero; otherwise, the indicator is turned OFF by the operation.

This instruction treats both operands as signed decimal data. It will pro-
duce ambiguous results if used to manipulate non-decimal data. Particularly,
if the four numeric bits of a character have a binary numeric value of 12 or
more (octal 14, 15, 16, or 17), the character is treated as if it were a

zero, The two remaining cases (octal 12 and 13) are unspecified.

This instruction is a standard feature on all processors but the Type 201,
on which it is not available.

Listed below are representative multiply times (in microseconds) for the
Type 201-1, 201-2, 1201, and 2201 processors. It is assumed that the

8-27

SECTION 8. INSTRUCTIONS

three-character addressing mode is used and that each multiplier digit
has the median value of 4. 5.

1

1 51 68 85 102 119
| 2 74 104 134 164 194
3 97 140 183 226 269
4 120 176 232 288 344
|5 143 212 281 350 419

01 MULTIPLY TIMES (MICROSECO

RS IN MULTIPLICAND

1 2 3 4 5
39.8 52.5 65.3 78 90.8
57 79.5 102 124.5 147
74.3 106.5 138.8 171 203.3
91.5 133.5 175.5 217.5 259.5
108.8 160.5 212.3 264 315.8

NUMEER oF |1 28 36 44 52 60
| CHARAGCTERS | 2 39 53 67 81 95
o 50 70 90 110 130
| 4 61 87 113 139 165

5 72 104 136 168 200

EXAMPLE

Multiply the five-character field tagged CAND by the three-character field whose
rightmost character location is six (5+1) less than the location tagged PROD.
Store the result, right-justified, in PROD.

CODING FORM
PROBLEM o - _...... PROGRAMMER DATE PAGE __OF___
T
D & £ g LocaTion | OFFRATION OPERANDS
! 2‘3 4:5678 | 14115, 202‘. RPN BT TR Y S L P 1 H n 1 L el ;52631 | L L | L1 leo
"L : l L M CANDj:PRoD L 1 L 1 n L L 1 PP B W Ly

ARITHMETIC

| D | pvipe

FORMAT

OP CODE A ADDRESS B ADDRESS

o

FUNCTION

Format a: The signed decimal integer in the field whose leftmost location is B is divided by
the signed decimal integer in the A field. The quotient is stored in the leftmost
locations of the B field; the remainder is stored in the rightmost locations of the B
field (see page 8-13).

Format b: The signed decimal integer in the field whose leftmost location is specified by the
contents of the B-address register (BAR) is divided by the signed decimal integer
in the A field. The quotient is stored in the leftmost locations of the B field; the
remainder is stored in the rightmost locations of the B field (see page 8-13).

Format ¢: The signed decimal integer in the field whose leftmost location is specified by the
contents of the B-address register (BAR) is divided by the signed decimal integer
in the field specified by the contents of the A-~address register (AAR). The quotient
is stored in the leftmost locations of the B field; the remainder is stored in the
rightmost locations of the B field (see page 8-13).

WORD MARKS

Formats a, b, and c:

The A operand (the divisor) must contain a word mark. The B field may contain
a word mark,

TIMING

Formats a, b, and c:

TYPES 201-1, 201-2, AND 1201 PROCESSORS:

T = Ni+4+2Na memory cycles if divisor = 0.

T = N;+17.5+4.5N_+15.5Z ,+12. 5Ndd+15Na(Ndd-Na+Zla) memory cycles if
(Na-Z1a){(Ngqd) and divisor#0.

T = N;+7+4N, memory cycles if (Na-Z],) > (Nggq)-

TYPE 2201 PROCESSOR:
T

1}

N;+7+2N, memory cycles if divisor = 0.

T

Ni+9+ZZ+5Na+BZld+Nq(1SNa—ZZIa+18. 25) memory cycles if
(Ny-Z1a)s (Ngg-Zgq) and divisor#0.

8-29

SECTION 8. INSTRUCTIONS

T = N;+9+2N,+2N44 memory cycles if Ng>Ngg and (Ny-Z1,)> (Ngg-Z;4)-
T

Representative divide times for the Type 201-1, 201-2, 1201, and 2201 processors
are given in note 10.

I

N;j+10+Ny+3Nggq memory cycles if N3> Ngg and (N3-Z,) > (Ngg-2Z214)-

ADDRESS REGISTERS AFTER OPERATION (WHEN DIVISOR IS NOT EQUAL TO ZERO)

SR AAR BAR
Format a: NXT A-Ny B-N_+tNgg-3
= Tens position of quotient field
Format b: NXT A-N, Bp‘Na+Ndd‘3
Format c: NXT Ap—Na Bp-Na+Ndd-3

When the divisor is equal to zero, the contents of the address registers are un-
specified (see note 1).

NOTES

1. If the divisor is equal to plus or minus zero, the overflow indicator is turned
ON, division is not performed, and no memory locations are changed.

2. The length of the B field is determined by adding 1 to the sum of the number
of character locations in the divisor and the dividend (B-field length = 1+
length of divisor + length of dividend).

3. The A field (divisor) can be signed or unsigned; if it is unsigned, the divisor
is assumed to be positive.

4. The dividend must contain a normalized sign (- = 10, + = 01) in the units
position. The sign bits of all other characters in the dividend must be zeros.
The proper signing of the dividend is therefore insured if the dividend is
moved into the B field by a Zero and Add instruction (see page 8-23).

5. All high-order locations of the B field which are not occupied by the dividend
must contain zeros when division begins. These zeros can be automatically
inserted if the Zero and Add instruction is used to move the dividend into
the B field as mentioned above.

6. The sign of the quotient follows algebraic sign rules as shown below. The
sign of the remainder is the original sign of the dividend.

++ | +| +
1
+
1

- Sign of quotient

7. This instruction treats both operands as signed decimal data. It will pro-
duce ambiguous results if used to manipulate non-decimal data. Particularly,
if the four numeric bits of a character have a binary numeric value of 12
or more (octal 14, 15, 16, or 17), the character is treated as if it were a
zero. The two remaining cases (octal 12 and 13) are unspecified.

8. This instruction is a standard feature on all processors but the Type 201,
on which it is not available.

ARITHMETIC

Listed below are representative divide times (in microseconds) for the
Type 201-1, 201-2, 1201, and 2201 processors.
processor is in the three-character addressing mode in all cases.

It is assumed that the

~ NUMBER OF CHARACTERS IN DIV

IDEND
1 2 3 4 5
83 138 193 248 303
44 117 202 287 372
52 52 151 266 381
60 60 60 185 330
68 68 68 219

EXAMPLE

Divide the four-character integer whose leftrmost location is location 1000 by the
three-character field whose rightmost location is location 500. Store the quotient
in the leftmost locations of the field at 1000, and store the remainder in the right-

most locations of this field.

N, (number of characters in divisor) = 3

Nggq (number of characters in dividend) = 4

B (B address) = 1000

Units position of quotient (B-N_+Ny4-2) = 1000-3+4-2 = location 999

Units position of remainder (B+Ndd-l) = 1000+4-1 = location 1003

8-31

LOGIC

e EXTRACT

e IIALF ADD

¢ SUBSTITUTE

e COMPARE

s BRANCH

¢« BRANCH ON CONDITION TEST

e BRANCH ON CHARACTER CONDITION
¢ BRANCH IF CHARACTER EQUAL

¢ BRANCH ON BIT EQUAL

SECTION 8. INSTRUCTIONS

EXTRACT
EXT (Logical Product)

FORMAT

OP CODE A ADDRESS B ADDRESS

o

FUNCTION

Format a: The data in the A field is combined bit-by-bit with the data in the B field, according
to the following rules. The result is stored in the B field.

1 0 0
0 1 0
0 0 0

Format b: The data in the A field is combined bit-by-bit with the data specified by the con-
tents of the B-address register (BAR), according to the rules stated above. The
result is stored in the B field.

Format c: The data specified by the contents of the A-address register (AAR) is combined
bit-by-bit with the data specified by the contents of BAR, according to the rules
stated above. The result is stored in the B field.

WORD MARKS

Formats a, b, and c:

A word mark is required for the shorter of the two operands. The operation
terminates when this word mark is sensed.

TIMING

Formats a, b, and c:

T = Ni+l+3Nw memory cycles. 1

lAdd one memory cycle to this formula if the Extract instruction is being executed in a Type
2201 processor.

8-34

LOGIC

ADDRESS REGISTERS AFTER OPERATION

Format a:
Format b:

Format c:

SR AAR BAR

NXT A-N, B-N,,
NXT A-N,, B -N,
NXT AN, B,-N,

EXAMPLE

Remove all zone bits in the field tagged BASE by combining the contents of BASE
with the contents of the field tagged CON. Each character in CON must have the
following format:

Bit position B A 84 21
Contents 001111
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ____
NUMBER E"%] LocaTioN | *Gope" OPERANDS
| 23 als]6[7]8 | 1alis, 20[21 | | | | | 62[63
A ... [EXT . |CON,BASE.
HALF ADD
HA (Exclusive Or)
FORMAT
OP CODE A ADDRESS B ADDRESS
o L I
. -
: -
FUNCTION

Format a:

The data in the A field is combined bit-by-bit with the data in the B field, accord-
The result is stored in the B field.

ing to the following rules.

1 1
1 0
0 1
0 0

SECTION 8. INSTRUCTIONS

Format b: The data in the A field is combined bit-by-bit with the data specified by the con-
tents of the B-address register (BAR), according to the rules stated above. The
result is stored in the B field.

Format c: The data specified by the contents of the A-address register (AAR) is combined
bit-by-bit with the data specified by the contents of BAR, according to the rules
stated above. The result is stored in the B field.

WORD MARKS

Formats a, b, and c:

A word mark is required for the shorter of the two operands. The operation
terminates when this word mark is sensed.

TIMING

Formats a, b, and c:

T = Ni+l+3NW memory cycles. L

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-NW B-Nw
Format b: NXT A-N B _-N
2o et B W P W
Format c: NXT AyNy By Ny

EXAMPLE

Clear all the data bits in the field tagged SEVEN to zeros by combining the con-
tents of SEVEN with the contents of the field tagged TOO. Do not change the zone
bits in SEVEN. (The data contents of SEVEN and TOO are identical.)

EASYCODER

CODING FORM
PROBLEM - - ... PROGRAMMER DATE PAGE __OF ___

CARD
NUMBER

121345 8 L 1415, " 20[2} L PP S 1 PR A R 1

L HA . . |[TOO, SEVEN_, e . N

LocaTIoN | OPFRaeN OPERANDS

& o<
~[=opE|

1Add one memory cycle to this formula if the Half Add instruction is being executed in a Type
2201 processor.

LOGIC

| SST | susstiTUTE|

FORMAT

OP CODE A ADDRESS B ADDRESS VARIANT

FUNCTION

Format a:

Format b:

Format c:

Format d:

The single character specified by the A addressis compared bit-by-bit with the
variant character and is moved to the location specified by the B address, accord-
ing to the following rules:

1. The A-character bit is transferred to the B address if the corresponding
variant bit = 1.

2. The B-character bit is preserved if the corresponding variant bit = 0.

The single character specified by the A address is compared bit-by-bit with the
variant character specified in a previous instruction and is moved to the lo-
cation specified by the B address, according to the rules stated above.

The single character specified by the A address is compared bit-by-bit with the
variant character specified in a previous instruction and is moved to the location
specified by the contents of the B-address register (BAR), according to the rules
stated above.

The single character specified by the contents of the A-address register (AAR)

is compared bit-by-bit with the variant character specified in a previous instruc-
tion and is moved to the location specified by the contents of BAR, according to
the rules stated above.

WORD MARKS

Formats a,

b, ¢, and d:

TIMING

Formats a,

Word marks are not required in either field.

b, ¢, and d:

- 1
T = N;+4 memory cycles.

1
Add one memory cycle to this formula if the Substitute instruction is being executed in a

Type 2201

processor.

8-37

SECTION 8. INSTRUCTIONS

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-1 B-1
Format b: NXT A-1 B-1
Format ¢c: NXT A-1 Bp-l
Format d: NXT Ap-l Bp-l

NOTE

This instruction can be coded only in formats a. and d. when programming for
the Type 201 or 201-1 processor,

EXAMPLES

1. Move the zone bits from the location tagged STET to the location tagged
STET +20. A variant character of octal 60 provides the required variant

bit configuration (i.e., 110 000).

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF
T
v E@ LocaTion | OFERSHON OPERANDS
1 2]3 4ls[s]7]s | 1418, 20[21 | L L L L | geles L., .. 8o
T
! : | L SST STET\IS.TET+IZ¢,.6¢I L L - - . Lot A 1 PRV B P - Ly
2. Move the numeric portion of the character at location 256 to location 656.
A variant of octal 17 provides the required variant bit configuration
(i.e., 001 111).
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF ____
M
v Eg LocaTIoN | OPERATION OPERANDS
1 2[3 alsfe[7]s | 1ais, 20[21 N L Lo b Lo o | see3 K L L L., 80
T
! : | L SQT 256\6|5.‘3\ |7| L I - T 1 L ! L T Ll
C | compare
FORMAT
OP CODE A ADDRESS B ADDRESS

o

LOGIC

FUNCTION

Format a: The data in the B field is compared bit-by-bit to the data in the A field. The com-
parison turns on indicators that can be interrogated by subsequent Branch instruc-
tions. The indicators are reset by the next Compare instruction.

Format b: The data specified by the contents of the B-address register (BAR) is compared
bit-by-bit with the data in the A field. This operation turns on indicators which
can be tested by subsequent Branch instructions. The indicators are reset by the
next Compare instruction.

Format ¢: The data specified by the contents of BAR is compared bit-by-bit to the data in
the field specified by the contents of the A-address register (AAR). The com-
parison turns on indicators that can be interrogated by subsequent Branch instruc-
tions. Theindicators are reset by the next Compare instruction.

WORD MARKS

Formats a, b, and c:

The word mark associated with the B operand terminates the operation. The A
operand must have a word mark only if it is shorter than the B operand. In this
case, transmission of data from the A field stops after the A-operand word mark
is sensed, and the remaining characters of the B operand are compared to zeros.
If the A operand is longer than the B operand, the characters of the A operand that
exceed the field length defined by the B-operand word mark are not processed.

TIMING

Formats a, b, and c:

T = N;+2+N, +Ny memory cycles.1

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-Ng B-Ny
Format b: NXT A-N B_-N
rormat o)) W v p b
Format c: NXT AP-NW -Bp-Nb
NOTES
1. All characters that can appear in storage can be compared. The ascending
order of characters is listed in Appendix B.
2. Both fields must have exactly the same bit configurations to be equal. For
example, plus zero is not equal to minus zero.
3. Comparison results and associated branch conditions are listed on page 8-40.

lAdd two memorycyclesto this formula if the instruction is executed in a Type 2201 processor.

8-39

SECTION 8. INSTRUCTIONS

B<A Low Compare

B=A Equal Compare

B=<A Low or Equal Compare
B>A High Compare

B#A Unequal Compare

Bz2A High or Equal Compare

EXAMPLE
Compare Item Number to 4000. If Item Number equals 4000, continue the program
in sequence; otherwise, branch to location NITEM.
Description Tag
Item Number ITEM
4000 CON4
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF ___
W Eg LocaTion | OFERATION OPERANDS
« 2]3 als[e]7]s | 1415, 20[21 | | T L | L eles L. L., 80
L . C.. ... |CONA,ITEM , . e e e
I . BCY. . |NLTEM,45 D D—— L
| B | BrancH
FORMAT
OP CODE A ADDRESS B ADDRESS VARIANT
FUNCTION

The Branch instruction causes the program to branch to the location specified
by the A address and to store the contents of the sequence register (SR) in the B-
address register (BAR). It is used to interrupt normal program sequence and
to continue the program at any desired point, without testing for specific con-
ditions. Thus, this instruction is frequently referred to as an "unconditional
branch,"

WORD MARKS

Word marks are not affected by this instruction.

TIMING

T = N;+2 memory cycles. 1

1
Add one memory cycleto thisformulaif the Branchinstruction is being executed in a Type 2201
processor,

LOGIC

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR

NOTE

EXAMPLE

JI (A) A NXT

The address bits of the A address are placed in AAR during the extraction of this
When the instruction is executed, the entire contents of AAR specify
Also, the entire contents of SR are

instruction.
the address to which the program branches.
stored in BAR during the execution phase,

Select the next instruction from the location tagged SUBS6.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE __OF ___
Y gﬁ LOCATION | OPERATION OPERANDS
|2|341567B 1 14115, 20{21 { L I L | L Il L, | 62|63 T 1 ! I‘_io
I . B, SUB6, e e . . .]
BCT [BRANCH ON CONDITION TEST
FORMAT
OP CODE A ADDRESS B ADDRESS VARIANT
o, [I [
b L
FUNCTION

Format a:

Format b:

The variant character specifies a condition indicator or a SENSE switch to be
tested. If the condition being tested is present, the program branches to the lo-
cation specified by the A address and the contents of the sequence register (SR)
are stored in the B-address register (BAR). If the condition specified by the
variant character is not present, the prograrm continues in sequence. Tables 8-8
and 8-9 list the valid variant characters and the conditions they test.

If the condition specified by the previous variant character is present, the pro-
gram branches to the location specified by the contents of the A-address register
(AAR) and the contents of SR are stored in BAR. If the condition being tested is
not present, the program continues in sequence. Tables 8-8 and 8-9 list the valid
variant characters and the conditions they test.

8-41

SECTION 8. INSTRUCTIONS

Table 8-8. SENSE Switch Test Conditions for BCT Instruction

00 Unconditional

01 SENSE Switch 1 On

02 SENSE Switch 2 On

03 SENSE Switches 1 and 2 On

04 SENSE Switch 3 On

05 SENSE Switches 1 and 3 On

06 SENSE Switches 2 and 3 On

07 SENSE Switches 1, 2, m 3 On

10 SENSE Switch 4 On

11 SENSE Switches 1 and 4 On

12 SENSE Switches 2 and 4 On

13 SENSE Switches 1, 2, and 4 On

14 SENSE Switches 3 and 4 On

15 SENSE Switches 1, 3, and 4 On

16 SENSE Switches 2, 3, and 4 On

17 SENSE Switches 1, 2, 3, and 4 On

20 Unconditional

21 SENSE Switch 5 On

22 SENSE Switch 6 On

23 SENSE Switches 5 and 6 On

24 SENSE Switch 7 On

25 SENSE Switches 5 and 7 On

26 SENSE Switches 6 and 7 On

27 SENSE Switches 5, 6, and 7 On

30 SENSE Switch 8 On

31 SENSE Switches 5 and 8 On

32 SENSE Switches 6 and 8 On

33 SENSE Switches 5, 6, and 8 On

34 SENSE Switches 7 and 8 On

35 SENSE Switches 5, 7, and 8 On

36 SENSE Switches 6, 7, and 8 On

37 SENSE Switches 5, 6, 7, and 8 On
NOTE: When testing for a multiple SENSE switch condition, a branch occurs only

if all of the specified conditions are met.

8-42

LOGIC

Table 8-9. Indicator Test Conditions for BCT Instruction

41 B<A (Low Compare)
42 B=A (Equal Compare)
43 . BsA (Low or Equal Compare)
44 B>A (High Compare)
45 B#A (Unequal Compare)
46 B2 A (High or Equal Compare)
47 Unconditional
50 Overflow
51 Overflow or B<A
52 Overflow or B=A
53 Overflow or BSA
54 Overflow or B>A
55 Overflow or B#A
56 Overflow or BZA
57 Unconditional
60 Zero Balance
61 Zero Balance or B<A
62 Zero Balance or B=A
63 Zero Balance or BSA
64 Zero Balance or B>A
65 Zero Balance or B#A
66 Zero Balance or B2 A
67 Unconditional
70 Overflow or Zero Balance
71 Overflow or Zero Balance or B<A
72 Overflow or Zero Balance or B=A
73 Overflow or Zero Balance or BSA
74 Overflow or Zero Balance or B>A
75 Overflow or Zero Balance or B#A
76 Overflow or Zero Balance or BZA
77 Unconditional
NOTE: When testing for a multiple indicator condition, a branch occurs if any one
of the specified conditions is met,

8-43

SECTION 8. INSTRUCTIONS

WORD MARKS

Formats a and b:

Word marks are not affected by this instruction.

TIMING

Formats a and b:

T = N;+2 memory cycles.1

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: JI (A) A NXT BRANCH
NXT A Bp NO BRANCH
Format b: JI (Ap) Ap NXT BRANCH
NXT Ap Bp NO BRANCH
NOTES
1. If the overflow indicator is tested and an overflow condition exists, the
indicator is automatically reset as a result of being tested. In all other
cases, the indicator tested is not reset as a result of the test,
2. The comparison indicators are:
a. set by the Compare instruction;
b. stored (and cleared) by the Store Variant and Indicators
instruction;
c. restored by the Restore Variant and Indicators instruction;
d. restored by the Resume Normal Mode instruction; and
e. stored when an external interrupt occurs.

3. The address bits of the A address (if any) are placed in AAR during the ex-
traction of this instruction. If the instruction causes a branch (i.e., if the
condition being tested is present), the entire contents of AAR specify the
address to which the program branches when the instruction is executed.
Also, the entire contents of SR are stored in BAR during the execution
phase of the instruction.

4. Consider the variant character in its six-bit form VeV5V4V3 VoV, The
following chart may be used to determine the variant character to be used
in a BCT instruction.

1
Add two memory cycles to this formula if the instruction is executed in a Type 2201 processor.

8-44

LOGIC

00 = Test SENSE SENSE SENSE SENSE SENSE
Switches 1 Switch 4 Switch 3 Switch 2 Switch 1
through 4
01 = Test SENSE SENSE SENSE SENSE SENSE
Switches 5 Switch 8 Switch 7 Switch 6 Switch 5
through 8

1 = Test

Zero Zero Overflow High Equal Low

Balance, Balance Compare Compare Compare

Overflow,

or Compare

5. SENSE switches 5 through 8 are included as a standard feature with the Type

2201 processor and are not available with the Model 200 or 1200 processors,

6. This instruction can be coded only in format a. when programming for the
Type 201 or 201-1 processor.

EXAMPLE

Subtract CREDIT from TOTAL and test for a zero balance. If this condition exists
branch to BZRO; otherwise continue the program in sequence.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE __OF ___
NUMBER Eg LocaTION | OPERITION OPERANDS
| 2]3 als5(s|7]e X 14]15, 20[21 | L Lo L \ | | 62]e3 | | L .., 80
o , S, .. |CREDIT,TOTAL . e I \ . , . e]
g L. BCT . [BZROLE8 1 . e

[BCC | BRANCH ON CHARACTER CONDITION

FORMAT

A ADDRESS B ADDRESS VARIANT

o
(o]
o
O
(@]
o
m

FUNCTION

Format a: The single character specified by the B address is examined for the condition
specified by the variant character. If the condition is present, the program branches

8-45

SECTION 8.

INSTRUCTIONS

Format b:

Format c:

Format d:

to the location specified by the A address, and the contents of the sequence reg-
ister (SR) are stored in the B-address register (BAR). If the condition is not
present, the program continues in sequence. The valid variant characters and the
condition each represents are listed in Tables 8-10 and 8-11.

The single character specified by the B address is examined for the condition
specified by the variant character of a previous instruction. If the condition is
present, the program branches to the location specified by the A address, and the
contents of SR are stored in BAR. If the condition is not present, the program
continues in sequence. The valid variant characters and the condition each rep-
resents are listed in Tables 8-10 and 8-11.

The single character specified by the contents of BAR is examined for a condition
specified by the variant character of a previous instruction. If the condition is
present, the program branches to the location specified by the A address, and the
contents of SR are stored in BAR. If the condition is not present, the program
continues in sequence. The valid variant characters and the condition each re-
presents are listed in Tables 8-10 and 8-11.

The single character specified by the contents of BAR is examined for a condition
specified by the variant character of a previous instruction. If the condition is
present, the program branches to the location specified by the contents of the A-
address register (AAR), and the contents of SR are stored in BAR. If the condition
is not present, the program continues in sequence. The valid variant characters
and the condition each represents are listed in Tables 8-10 and 8-11.

Table 8-10. Basic Test Conditions for BCC Instruction

00 Unconditional
02 The B bit of the character at B is 1.
06 The character at B contains a negative sign (the

B and A bits are 10).

10 The character at B contains either a word mark
or a record mark (the word-mark bit is 1).

12 The B bit is 1 and the word-mark bit is 1.

16 The character at B contains a negative sign and
the word-mark bit is 1.

20 The character at B contains either an item mark
or a record mark (the item-mark bit is 1).

22 The B bit is 1 and the item-mark bit is 1.

26 The character at B contains a negative sign and
the item-mark bit is 1.

30 The character at B contains a record mark (the
word-mark and item-mark bits are 11).

32 The character at B contains a record mark and
the B bit is 1.

36 The character at B contains a record mark and a
negative sign.

LOGIC

Series 200 processors which are equipped with Feature 010 or 011 (see Figure 1-5)
can interpret any bit configuration of the variant character, ranging from octal 00
to octal 77. The valid variant characters which can be interpreted with this option
are shown in Table 8-11 and expanded in Appendix B.

Table 8-11. BCC Test Conditions with Advanced Programming Feature

X0 No condition.

X1 The A bit of the character at B is 1.

X2 The B bit of the character at B is 1.

X3 The B and A bits of the character at B are 11.
X4 The B and A bits of the character at B are 00.
X5 The character at B contains a positive sign (the

B and A bits are 01).

X6 The character at B contains a negative sign (the
B and A bits are 10).

X7 The B and A bits of the character at B are 11
(same as X3 above).

0X No condition.

1X The word-mark bit of the character at B is 1
(either a word mark or a record mark is present).

2X The item-mark bit of the character at B is 1
(either an item mark or a record mark is present).

3X The character at B contains a record mark.

4X The character at B contains no punctuation mark.

5X The character at B contains a word mark.

6X The character at B contains an item mark.

X This is a special case; see note 2.

NOTES: 1. AnXrepresentsanyoctaldigit. Ifboth octal digits specify ''no
condition' (i.e., 00), the branchoccurs unconditionally. Ifonly
one digitis 0, the branch occurs if the condition specified by the
other digitis met. Ifbothoctaldigits specify conditions, the branch
occurs ifboth conditions aremet. The variantcharacter 7Xisan
exception to these rules, as described innote 2.

2. The Type 201 and 201-1processors interpreta 7X variantas ifit
were a 3X (i.e., branchtothe Aaddress if the character atB
contains a record markand the condition specified by Xis met).

All other processors interpret the 7X variant as follows:
a. If Xis 0, the branch is an unconditional branch.

b. If X is any digit other than 0, the branch occurs if
either the condition specified by the rightmost digit is
met or the character at B contains a word mark,

SECTION 8. INSTRUCTIONS

WORD MARKS

Formats a, b, ¢, and d:

Word marks are not affected by this instruction.

TIMING

Formats a, b, ¢, and d:

T = N;+4 memory cycles. 1

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: JI (A) A NXT BRANCH
NXT A B-1 NO BRANCH
Format b: JI (A) A NXT BRANCH
NXT A B-1 NO BRANCH
Format c: JI (A) A NXT BRANCH
NXT A Bp-l NO BRANCH
Format d: JI (Ap) Ap NXT BRANCH
NXT Ap Bp-l NO BRANCH
NOTES

1. If the octal configuration of the variant character is 00, or 70, the branch
is unconditional.

2. The address bits of the A address (if any) are placed in AAR during the
extraction of the BCC instruction. If the instruction causes a branch (i.e.,
if the condition being tested is present), the entire contents of AAR specify
the address to which the program branches when the instruction is executed.
Also, the entire contents of SR are placed in BAR during the execution phase.

3. This instruction can be coded only in formats a. and d. When program-
ming for the Types 201 or 201-1 processor.

EXAMPLE
If the location tagged END contains a negative sign, branch to the location tagged
MFIELD. Otherwise, continue the program in sequence.
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE.__OF____
v gp LocaTion | OPERATION OPERANDS

1 23 4ls is, 2021 Vv bt L L T NN L

<
©
3

L

80

L |
I , BCC, . NFIELD END, @6 ., e . N e

1Add one memory cycle to this formula if the instruction is being executed in a Type 2201
processor.

LOGIC

BCE | BRANCH IF CHARACTER EQUAL | |[FEATURES 010 & 011

FORMAT

OP CODE A ADDRESS B ADDRESS VARIANT

FUNCTION

Format a:

Format b:

Format c:

Format d:

The single character specified by the B address is compared to the variant charac-
ter. If the bit configurations of the two characters are equal, the program branches
to the location specified by the A address, and the contents of the sequence register
(SR) are stored in tbe B-address register (BAR). If the bit configurations are
unequal, the program continues in sequence.

The single character specified by the B address is compared to the variant charac-
ter specified in a previous instruction. If the bit configurations of the two charac-
ters are equal, the program branches to the location specified by the A address,
and the contents of SR are stored in BAR. If the bit configurations are unequal,
the program continues in sequence.

The single character specified by the contents of BAR is compared to the variant
character specified in a previous instruction. If the bit configurations of the two
characters are equal, the program branches to the location specified by the A ad-
dress, and the contents of SR are stored in BAR. If the bit configurations are
unequal, the program continues in sequence.

The single character specified by the contents of BAR is compared to the variant
character specified in a previous instruction, If the bit configurations of the two
characters are equal, the program branches to the location specified by the con-
tents of the A-address register (AAR), and the contents of SR are stored in BAR.
If the bit configurations are unequal, the program continues in sequence.

WORD MARKS

Formats a,

b, ¢, and d:

TIMING

Formats a,

A word mark in the location tested has no effect on the instruction.

b, ¢, and d:

T = N;+4 memory cycles. 1

lAdd one memory cycle to this formula if the instruction is being executed in a Type 2201

processor.

8-49

SECTION 8. INSTRUCTIONS

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: JI (A) A NXT BRANCH
NXT A B-1 NO BRANCH
Format b: JI (A) A NXT BRANCH
NXT A B-1 NO BRANCH
Format c: JI (A) A NXT BRANCH
NXT A Bp-l NO BRANCH
Format d: JI (Ap) Ap NXT BRANCH
NXT Ap Bp-1 NO BRANCH
NOTES
1. This instruction can be coded only in formats a. and d. when programming
for the Type 201 or 201-1 processor.
2. The address bits of the A address (if any) are placed in AAR during the ex-
traction of the BCE instruction. If the instruction causes a branch (i.e.,
if the condition being tested is present), the entire contents of AAR specify
the address to which the program branches when the instruction is executed.
Also, the entire contents of SR are placed in BAR during the execution phase.
EXAMPLES

1. Determine if the character stored in the location tagged LABEL+3 is equal
to 6. If so, branch to the location tagged P6; otherwise continue the pro-
gram in sequence.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF ___
cAarD [T[W OPERATION
NUMBER [E[g| LOCATION CODE OPERANDS
1 2]3 alse|7[s L 1415, 2021 | L L L L | e2les TS
N . BCE, . . [P6,LABEL¥3,6 .. (. . ..\... .. T
2. Determine if any character position in the seven-character field tagged

PART contains the letter Q. If so, branch to the location tagged RETRO;
otherwise continue the program in sequence.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF ___

CARD
NUMBER

i 2[3 45 [P | R — L

1 s |
L . BCE. . . [RETRO,PART 3@ ., oo ouvtninn

Location | OPERATION OPERANDS

o [rro~<|
~N | XDPE

8 \ 1a)1s, 20[21

{

|

1 . B.CE

| L &CE 1 PR Y 1 1 1L
!

|

|

1 i Lo " Lo

1
i
L BICE S0 JEUPUSENUPUS NSNS TP SRR YRS S [S S S S T T R Y Lo
L
1

1 BICE 1
1 ECE SR

PR S B " s PR i L

~ o a b w N -
S
3

L BCE 1 i PR SN SR | P 1 1
1

P B L I - Lot Loeeau v Ao

LOGIC

BBE | BRANCH ON BIT EQUAL FEATURE 010

FORMAT

A ADDRESS B ADDRESS VARIANT

o
O
o
O
(@]
o
m

FUNCTION

Format a: The single character specified by the B address is combined bit-by-bit with the
variant character, according to the rules shown below. If the result (the logical
product) is not equal to zero, the program branches to the location specified by
the A address, and the contents of the sequence register (SR) are stored in the B-
address register (BAR). If the result is equal to zero, the program continues in

sequence.

1 1 1
1 0 0
0 1 0
0 0 0

Format b: The single character specified by the B address is combined bit-by-bit with the
variant character specified in a previous instruction, according to the rules shown
above. If the result is not equal to zero, the program branches to the location
specified by the A address, and the contents of SR are stored in BAR. If the result
is equal to zero, the program continues in sequence.

Format c: The single character specified by the contents of BAR is combined bit-by-bit with
the variant character specified in a previous instruction, according to the rules
shown above. If the result is not equal to zero, the program branches to the lo-
cation specified by the A address, and the contents of SR are stored in BAR, If
the result is equal to zero, the program continues in sequence.

Format d: The single character specified by the contents of BAR is combined bit-by-bit with
the variant character specified in a previous instruction, according to the rules
shown above. If the result is not equal to zero, the program branches to the lo-
cation specified by the contents of the A-address register (AAR), and the contents
of SR1 are stored in BAR. If the result is equal to zero, the program continues in
sequence.

SECTION 8. INSTRUCTIONS

WORD MARKS

Formats a, b, ¢, and d:

Word marks are not tested by this instruction and have no effect on the operation.

TIMING

Formats a, b, c, and d:

T = N;+4 memory cycles. 1

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: JI (A) A NXT BRANCH
NXT A B-1 NO BRANCH
Format b: JI (A) A NXT BRANCH
NXT A B-1 NO BRANCH
Format c: JI (A) A NXT BRANCH
NXT A Bp-1 NO BRANCH
Format d: JI (Ap) Ap NXT BRANCH
NXT Ap Bp-l NO BRANCH
NOTES
L. The logical product formed by this instruction is tested but is not stored.
Main memory locations are not-disturbed by this operation.
2. The address bits of the A address (if present) are placed in AAR during
the extraction of the instruction. If the instruction causes a branch (i.e.,
if the logical product does not equal zero), the entire contents of AAR
specify the address to which the program branches when the instruction is
executed. Also, the entire contents of SR are placed in BAR during the
execution phase,
EXAMPLE

Branch to the location tagged BBIT if the character at the location tagged MAR

contains a "'1" in the B-bit position.

PROBLEM

EASYCODER

CODING FORM
PROGRAMMER

DATE

Otherwise, continue the program in sequence.

PAGE ___OF ____

CARD

M OPERATION
NUMBER E
6

LOCATION ODE

S [FopE|

OPERANDS

1 2]3 4ls 8 | 1415, 20[21

SRR | b bt L

T) ;
) . [BBE . BBIT,MAR,48

J—

P B Il L t

1
Add one memory cycle to this formula if the instruction is being executed in a Type 2201

processor.

eSET WORD MARK

*SET ITEM MARK

¢ CLEAR WORD MARK

*CLEAR ITEM MARK

sHALT

*NO OPERATION

e MOVE CHARACTERS TO WORD MARK
¢ LOAD CHARACTERS TO A-FIELD WORD MARK
¢STORE CONTROL REGISTERS

*LLOAD CONTROL REGISTERS

e CHANGE ADDRESSING MODE

¢ CHANGE SEQUENCING MODE

e EXTENDED MOVE

e MOVE AND TRANSLATE

e MOVE ITEM AND TRANSLATE

* LOAD INDEX/BARRICADE INDICATOR
*STORE INDEX/BARRICADE INDICATOR

SECTION 8. INSTRUCTIONS

SW | SET WORD MARK

FORMAT

OP CODE A ADDRESS B ADDRESS

o

FUNCTION

Format a: A word mark is set at the location specified by each address. The data and item-
mark bits at each location are undisturbed.

Format b: A word mark is set at the location specified by the A address. The data and item-
mark bits at this location are undisturbed.

Format c: Word marks are set at the locations specified by the contents of the A- and B-ad-
dress registers (AAR and BAR). The data and item-mark bits at each location
are undisturbed.

WORD MARKS

Formats a, b, and c:

Word marks are set as described above.

TIMING

Formats a, b, and c:

T = N;+3 memory cycles. 1

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-1 B-1
Format b: NXT A-1 A-1
Format ¢: NXT Ap—l Bp-l

1
Add one memory cycle to this formula if the instruction is being executed in a Type 2201 proc-
essor. Subtract one memory cycle from this formula if the instruction is being executed in a
Type 1201 processor in format a.

8-54

CONTROL

NOTE

The extraction of this instruction when coded in format a. automatically terminates
when the last character of the B address is loaded into BAR. Therefore, a word
mark is not required in the location following the B address.

EXAMPLE

Set a word mark in location 435.

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE PAGE __OF___

cARD |7 OPERATION
NUMBER |E|§| LOCATION CODE OPERANDS

123 als]e]7]s) 1415, 20[2

[L BW. s

SI | SET ITEM MARK

FORMAT

OP CODE A ADDRESS B ADDRESS

o

FUNCTION

Format a: An item mark is set at the location specified by each address. The data and
word-mark bits at each location are undisturbed.

Format b: An item mark is set at the location specified by the A address. The data and word-
mark bits at this location are undisturbed.

Format c: Item marks are set at the locations specified by the contents of the A~ and B-ad-

dress registers (AAR and BAR). The data and word-mark bits at each location
are undisturbed.

WORD MARKS

Formats a, b, and c:

Word marks are not affected by this instruction.

SECTION 8, INSTRUCTIONS

TIMING

Formats.a, b, and c:

T = N;+3 memory cycles. 1

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-1 B-1
Format b: NXT A-1 A-1
Format c: NXT Ap-l Bp-l
NOTE
The extraction of this instruction when coded in format a, automatically terminates
when the last character of the B address is loaded into BAR. Therefore, a word
mark is not required in the location following the B address.
EXAMPLE
Set item marks in the locations tagged ENT and ENT+80
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ___
v Eg LocATION | OFERATION OPERANDS
1 2]3 als]s[7]e | 14]is, 202! | | Loao ol L L | 62|63 s N Loy, 80
! {{ . ST .. ENLT-;E.MT."‘BQA,.Lll.,A.,l...¢| R R L A T
CW | CLEAR WORD MARK
FORMAT
OP CODE A ADDRESS B ADDRESS

o

Add one memory cycle to this formula if the instruction is being executed in a Type 2201 proc-
essor. Subtract one memory cycle from this formula if the instruction is being executed in a
Type 1201 processor in format a.

8-56

CONTROL

FUNCTION

Format a: The locations specified by the A and B addresses are cleared of word marks. The
data and item-mark bits at these locations are undisturbed.

Format b: The word mark at the location specified by the A address is cleared. The data and
item-mark bits at this location are undisturbed.

Format c: Word marks are cleared at the locations specified by the contents of the A- and
B-address registers (AAR and BAR). The data and item-mark bits at these lo-

cations are undisturbed.

WORD MARKS

Formats a, b, and c:

Word marks are cleared as defined above.

TIMING

Formats a, b, and c:

T = N;j+3 memory cycles. 1

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-1 B-1
Format b: NXT A-1 A-1
Format c: NXT Ap—l Bp—l

EXAMPLE

Clear the word marks at locations 400 and 435,

EASYCODER

CODING FORM
PROBLEM PRO ER DATE PAGE __OF____

CARD
NUMBER

1,2]3.4Ts 8 L 14115} 20421 I L) T TP L 62063, L L)

! : L Clw n 4¢¢14I35. 1 1 Il P 1 Lo § IS S WS L I RN S i f| -

Location | OPZETEO OPERANDS

o [TO =~
~ [=op2|

1
Add one memory cycle to this formula if the instruction is being executed in a Type 2201
processor.

8-57

SECTION 8. INSTRUCTIONS

CI | CLEAR ITEM MARK

FORMAT

OP CODE A ADDRESS B ADDRESS

o

FUNCTION

Format a: Item marks are cleared from the locations specified in the A and B addresses.
The data and word-mark bits at these locations are undisturbed.

Format b: The item mark at the location specified by the A address is cleared. The data
and word-mark bits at this location are undisturbed.

Format c: Item marks are cleared at the locations specified by the contents of the A- and
B-address registers (AAR and BAR). The data and word-mark bits at these lo-
cations are undisturbed.

WORD MARKS

Formats a, b, and c:

Word marks are not affected by this instruction.

TIMING

Formats a, b, and c:

T = N;j+3 memory cycles. 1

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-1 B-1
Format b: NXT A-1 A-1
Format c: NXT Ap-l Bp-l

EXAMPLE

Clear the item mark in location REC.

1
Add one memory cycle to this formula if the instruction is being executed in a Type 2201
processor.

CONTROL

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE —_OF ____
T
v ’ég Location | OFERSTION OPERANDS
23 al5]6[7]8 | 1415, 20[21 L. . | L | | | n | 62|63 .. el
I
' : ! I CI s REC L L I L L SR L L I L L
2 |
H | HALT
FORMAT
OP CODE A ADDRESS B ADDRESS VARIANT

o

FUNCTION

Format a:

This instruction causes the machine to stop.

Pressing the RUN button causes the

program to resume with the next instruction in sequence.

Format b:

The contents of the sequence register (SR) are stored in the B-address register

(BAR); the A address of the instruction is transferred to SR; then the machine

stops.

tion specified in the A address.

and branch' instruction.

Format c:

This instruction causes the machine to stop.
program to resume with the next instruction in sequence.

Pressing the RUN button causes the program to resume with the instruc-
This format is usually referred to as a "halt

Pressing the RUN button causes the
The address portions

can be used to indicate control information such as a halt identification number

(see note 2).

Format d:

This instruction causes the machine to stop.
program to resume with the next instruction in sequence.

Pressing the RUN button causes the
The address portions

and the variant character can be used to indicate control information such as halt
identification number (see note 2).

WORD MARKS

Formats a, b, ¢, and d:

Word marks are not affected by this instruction.

TIMING

Formats a, b, ¢, and d:

SECTION 8. INSTRUCTIONS

T = N;+2 memory cycles. |

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A B
—_— P P
Format b: JI (A) A NXT
Format c: NXT A B
Format d: NXT A B
NOTES
1. If a Halt instruction (in any format) is executed during a peripheral
transfer, the transfer continues until it is completed.
2. Formats ¢c. and d. are useful when a program contains a number of
halts. By assigning a number or symbol in the A and B addresses to
each halt, the programmer can later identify a particular halt by dis-
playing the contents of AAR and/or BAR. Although the contents of the
variant register cannot be displayed through the console or control
panel, format d. can be used to store a variant character which can sub-
sequently be used by the program.
3. The Halt op code is a "privileged" op code that has special significance
when the Type 1201 or 2201 central processor is equipped with the Storage
Feature (see Appendix E).
4, This instruction can be coded only in formats a., b., and c. when pro-
gramming for the Type 201 or 201-1 processor.
EXAMPLES
1. Stop the machine and specify that when the RUN button is pressed, the
next instruction will be selected from the location tagged RES.
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE —__OF ___
R Eﬁé_’ LocaTion | OPERATION OPERANDS
'2]34|5578 A 14115, 20[21 A L PR WG VT SRS SO0 ST FAUS T S HU S B GO S S N R .| y—Y | B i L 89
Ll ... H D D
2. Identify the halt at the end of a job as follows:
A address =9
B address =9
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF
NUMBER Eg LocaTion | *pe™ OPERANDS
{ 2'3 alsle[7]s { 14]15 20f21 Lowon o s L R T Lovis l 1 6263 | | . I 1 s 80|
' J!i 1 H 9;9 - L P L [T R Lo 1 P PR

1
Add two memory cycles to this formula if the instruction is being executed in a Type 2201

processor.

8-60

CONTROL

NOP | NO OPERATION

FORMAT
OP CODE A ADDRESS B ADDRESS
FUNCTION

This instruction performs no operation. This op code can be substituted for the
op code of any instruction to make that instruction ineffective.

WORD MARKS

Program operation resumes at the next op code identified by a word mark.

TIMING

T = 3 memory cycles.l

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
NXT A B
p p
NOTES
1. This instruction is commonly used in program modification to cause the
machine to skip over specific instructions.
2. Information appearing in an address portion of an instruction for which
the NOP instruction is substituted is not loaded into the associated operand
address register.
EXAMPLE
Reserve one storage location for an operation code such as Branch (B). When the
op code B is inserted, the NOP instruction will be modified to branch to location
SWX.
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF __
megen 'Erg LocaTioN | OPERATION . OPERANDS
 2]3 al5]el7]s R 1415, 2021 | 1 o . . . | 62|63 | . L L. 8o
I L INOP. .. |SWX .

1Ad.d one memory cycle to this formula if the instruction is being executed in a Type 2201 proc-
essor. Subtract one cycle from the formula if the instruction is executed in a Type 1201
processor,

8-61

SECTION 8. INSTRUCTIONS

MOVE CHARACTERS TO
MCW| WORD MARK
FORMAT
0P CODE A ADDRESS B ADDRESS

o

FUNCTION
Format a: The data and item-mark bits in the A field are moved to the B field.

Format b: The data and item-mark bits in the A field are moved to the field specified by the
contents of the B-address register (BAR).

Format c: The data and item-mark bits in the field specified by the contents of the A-address
register (AAR) are moved to the field specified by the contents of BAR.

WORD MARKS

Formats a, b, and c:

A word mark is required in the shorter of the two fields. The operation terminates
when this word mark is sensed.

TIMING

Formats a, b, and c:

T = N;+1+2N,,, memory cycles. 1

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-Ng, B-Ng
Format b: NXT A-Ng, Bp-NW
Format c: NXT Ap'NW Bp—NW

NOTE

Item marks initially stored in B-field locations will be cleared if the corresponding
A-field characters do not include item marks.

Add one memory cycle to this formula if the instruction is being executed in a Type 2201
processor,

8-62

CONTROL

o

FUNCTION

Format a: The data and punctuation bits in the A field are transferred to the B field.

EXAMPLE
Move the following A fields and store them in sequential B fields as shown.
Description A field B field
Unit Number 150-155 800-805
Rack Number 160-168 806-814
Part Number 173-180 815-822
Pin Number 185-187 823-825
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF
Nemnaen L] LocATION | OPoN OPERANDS
1 2]3 4}5678 1' 1a]15, 20[21 | | L ;) . s ; %
! : | i MCW N 187 3812‘5. i L L L L i L I L
: | L McW . 18p 1 l
3 | ' MCW 168, . . ; s , ' J :
M i : 1 Mcw 155 1 i 1 1 1 i | 1 1 1
5
| P L) I L I L I 1 1 1 Il
ICA LOAD CHARACTERS TO
A-FIELD WORD MARK
FORMAT
OP CODE A ADDRESS B ADDRESS

Format b: The data and punctuation bits in the A field are transferred to the field specified by
the contents of the B-address register (BAR).

Format ¢: The data and punctuation bits in the field specified by the contents of the A-address
register (AAR) are transferred to the field specified by the contents of BAR.,

WORD MARKS

Formats a, b, and c:

The A operand must have a defining word mark.

this word mark is transferred to the B field.

8-63

The operation terminates when

SECTION 8. INSTRUCTIONS

TIMING

Formats a, b, and c:

T = Nj+1+2N, memory cycles.1

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR
Format a: NXT A-Ny B-N,
Format b: NXT A-N, Bp-Na
Format ¢: NXT Ap'Na Bp'Na
NOTES
1. This instruction (in any format) is the only instruction that always moves
both a field and its defining punctuation mark.
2. A record mark appearing in the A field terminates the operation.
3. All punctuation (word marks, item marks, and record marks) initially
stored in B-field locations will be cleared if the corresponding A-field
characters do not include identical punctuation.
4. The B address must never fall within the A field. The A address may fall
within the B field, however, if desired.
EXAMPLE
Move both the data bits and the defining word mark of the field tagged TWX to the
field tagged RATE.
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ___
N(l;JI;l’I?ER gg vocarion | “TGERE™ OPERANDS
1,2]3 4ls]e]7]e It 14015, " ,20)21 P LF,A__.V.,,L,!,‘,,,AJ,A P PR B Lo 1 oL 52083 | . N 1, 89
! } 1 LCA 1. 1 1 1 1 L 1 1 1 1

[

i
! | L 1 I VP B T PP S S SR IRV S T R

1
Add one memory cycle to this formula if the instruction is executed in a Type 2201 processor.

8-64

CONTROL

| SCR | STORE CONTROL REGISTERS

FORMAT

OP CODE A ADDRESS B ADDRESS VARIANT

o

FUNCTION

Format a: The contents of the control memory register specified by the variant character
are stored in the field whose units position is defined by the A address of this
instruction. The method of storing these contents depends on the addressing mode
being used, as shown in Table 8-12.

Table 8-12. Control Register Contents Stored by SCR Instruction

Two-Character Low-order two characters (12 bits).

Three-Character Low-order 15 bits; the high-order three
bits of the field specified by the A address
are cleared to zeros.

Four-Character The entire 18 bits (three characters) of
the control register.

NOTE: All bit positions not required to address the largest memory
address in a user's system are set to zeros in the A field.

The valid variant characters and the control register each character represents
are listed in Table 8-13.

Format b: The contents of the control memory register specified by the variant character in
a previous instruction are stored in the field whose units position is defined by
the A address of this instruction. The number of bits stored depends on the ad-
dressing mode being used, as shown in Table 8-12. The valid variant characters
and the control register each character represents are listed in Table 8-13.

Format ¢: The contents of the control memory register specified by the variant character in
a previous instruction are stored in the field whose units position is defined by
the contents of the A-address register (AAR). The number of bits stored depends
on the addressing mode being used, as shown in Table 8-12. The valid variant
characters and the control register each character represents are listed in
Table 8-13,

8-65

SECTION 8. INSTRUCTIONS

Table 8-13. Control Registers Stored by SCR Instruction

giste: s Gan‘ér‘oif”
.~‘§ .

01 CLCl1 21 CLC4
02 CLC2 22 CLC5
03 CLC3 23 CLCb6
05 CLC1! 25 CLC4!
11 S1L.C1 31 SL.C4
12 SL.C2 32 S1.C5
13 SLC3 33 SLC6
15 SLC1' 35 S1.C4'
64 CSR 70 BAR
66 EIR 76 IIR
67 (seenote 2) AAR 77 SR

WORD MARKS

Formats a, b, and c:

A-operand punctuation neither affects nor is affected by this instruction.

TIMING

Formats a, b, and c:

T = N;+5 memory cycles. 1

ADDRESS REGISTERS AFTER OPERATION

Formats a, b, and c:

SR AAR BAR
NXT A B

NOTES

1. If AAR is specified by the variant character (octal 67), the previous address
in AAR (not the A address retrieved from this instruction) is stored in the
location specified by the A address.

2. The control memory register actually designated by the variant character
67g is a work register (not AAR). During the extraction of an SCR or LCR
instruction (see below), AAR is used to reference the main memory.

Prior to this, the previous contents of AAR are stored in the work reg-
ister; at the end of the instruction, the contents of the work register are
restored in AAR.

3. This instruction can be coded only in format a. when programming for the
Type 201 or 201-1 processor.

1
Add two memory cycles to this formula if the instruction is executed in a Type 2201 processor.

8-66

CONTROL

EXAMPLE

Store the contents of BAR in the A address of the Branch instruction tagged EXIT.
(The processor is assumed to be in the three-character addressing mode.)

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF ___
NOMBER E 5| Location | O"EEON OPERANDS
| 2|3 415(6/7(8 | 14)15, N 2021 [L 1 o 1 N OO L L. | 8283 S L.y . 80
! ! 1 1 " SR SR T S S| PSRN [T W S I (S T S S NI Tt) P | L L 1 1
o+ 1]]lsuB SCR . IENNTH3IB e . »
3 ‘ 1 Il / 1 L n L I 1 1 1 1 1 1 1 1
4 i \ L 1 1 L L § —— Il L L I " L L 1 L PR .
s l I 1](‘ 1 1 1 1 L 1 | 1 1 1 P 1
s ! } 1 l, / 1 1 " L PR - Loy | IR 1 1 i | T |
7 i I Ex‘l’r B Q 1 1 1 1 1 L i o PN G PSR RN WU WA DU ST S S T |

| LCR | LOAD CONTROL REGISTERS| |FEATURE 011

FORMAT

OP CODE A ADDRESS B ADDRESS VARIANT

o

FUNCTION

Format a: The contents of the field specified by the A address are loaded into the control
register specified by the variant character., The contents of the A field is another
main memory address. The method of loading this address into the specified
control register depends on the addressing mode being used, as shown in Table 8-14.

Table 8-14. Control Register Contents Loaded by LCR Instruction

Two-Character Two-character (12-bit) address is loaded
into the low-order two character locations
of the register. All other bits in the reg-
ister (if any) are not disturbed (i.e., the
bank bits are protected).

Three-Character 15-bit address is loaded into the low-order
15-bit locations of the register. All other
bits in the register (if any)are not dis-
turbed (i.e., the sector bits are protected).

Four-Character 18-bit address is loaded into the register.

8-67

SECTION 8.

INSTRUCTIONS

Format b:

Format c:

Variant characters and their associated control registers are the same as those
specified for the Store Control Registers instruction (see Table 8-13).

The contents of the field specified by the A address are loaded into the control
register specified by the variant character in a previous instruction. The method
of loading the contents of this field (another main memory address) depends on the
addressing mode being used, as shown in Table 8-14. Variant characters and
their associated control registers are the same as those specified for the Store
Control Registers instruction.

The main memory address specified by the contents of the A-address register
(AAR) is loaded into the control register specified in a previous instruction. The
method of loading this address into the specified register depends on the addressing
mode being used, as shown in Table 8-14. Variant characters and their associated
control registers are the same as those specified for the Store Control Registers
instruction.

WORD MARKS

Formats a,

b, and c:

TIMING

Formats a,

A-operand punctuation neither affects or is affected by this instruction.

b, and c:

T = Nj+5 memory cycles.l

ADDRESS REGISTERS AFTER OPERATION

Formats a,

NOTES

b, and c:

SR AAR BAR

NXT A Bp VARIANT = 674
NXT Ap A VARIANT = 70g
A Ap Bp VARIANT = 778
NXT Ap Bp ALL OTHERS

If SR is specified by the variant character (77g), the next instruction is
selected from the location specified by the A address of the Load Control
Registers instruction. In all other cases, the program continues in sequence.

This instruction can be coded only in format a. when programming for
the Type 201 or 201-1 processor.

lAdd two memory cycles to this formula if the instruction is being executed in a Type 2201

processor

8-68

CONTROL

3. The LCR op code is a "privileged'" op code which has special significance
when used with a Type 1201 or 2201 processor equipped with the Storage
Protect Feature (see Appendix 2.)
EXAMPLE
Load the address stored in the location tagged SUBI into the change sequence
register (CSR).
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ___
NUMBER Eg Location | PEEEON OPERANDS
|2!3¢:567e R 14]1s, | 20[21 | | | L | L L, | | 8263 "N L., 80
! ! } 1 LC& SUBI 3164 L1 L L Lo vty 1 L T TSI RS R

| CAM | CHANGE ADDRESSING MODE| [FEATURE o011]

FORMAT

OP CODE A ADDRESS B ADDRESS VARIANT

FUNCTION

Format a:

Format b:

The Change Addressing Mode instruction is used to specify the following conditions,
as designated by the variant character:

1. The addressing mode (two-, three-, or four-character) in which the
processor is to interpret the address portions of all subsequent
instructions (see note 1).

2. The processing mode (standard mode or ''trap'' mode) in which all
subsequent instructions are to be processed. (See note 3 for a
description of the trap mode.)

The variant characters and the mode(s) each character represents are listed in
Table 8-15,

The variant character in a previous instruction specifies the addressing mode and
processing mode in which all subsequent instructions are to be processed. The
variant characters and the mode(s) each character represents are listed in Table 8-15.

Table 8-15. Modes Specified by Variant Character in CAM Instruction

20 Two-character, standard mode
00 or 40 Three-character, standard mode
60 Four-character, standard mode
24 Two-character, trap mode

04 or 44 Three-character, trap mode

64 Four-character, trap mode

8-69

SECTION 8.

INSTRUCTIONS

WORD MARKS

Formats a and b:

TIMING

Word marks are not affected by this instruction.

Formats a and b:

- 1
T = N;+2 memory cycles.

ADDRESS REGISTERS AFTER OPERATION

Formats a and b:

SR AAR BAR

NOTES

NXT A B

The CAM instruction is used in conjunction with the ADMODE assembly
control statement to specify addressing mode. (See page 7-9 for a
description of the ADMODE statement.) The ADMODE statement directs
the Assembly Program to assemble the address portions of all subsequent
source program instructions as two-, three-, or four-character addresses.
The CAM instruction directs the processor to interpret the address portions
of all subsequent object program instructions as two-, three-, or four-
character addresses. Thus, an address assembled in the three-character
addressing mode (via an ADMODE statement) must be processed during

a program run as a three-character address for proper execution; the
processor is placed in the three-character addressing mode during object
program execution by the CAM instruction.

The ability to change addressing modes within a program makes it possible
to save both time and memory space and provides greater programming
flexibility. Extraction and execution time is saved when a smaller ad-
dressing mode is used, due to the elimination of the extra memory cycles
necessary for a larger address (in characters). Memory space may be
conserved by storing frequently used subroutines in the two-character ad-
dressing mode (see example 1).

The larger addresses are necessary to address larger continuous portions
of memory. For instance, a two-character address can address only
memory locations within a 4, 096 character bank of main memory. A
three-character address can refer to any location in a 32, 768-character
sector. A four-character address can directly address any location in the
entire memory (from location 0]¢ to location 262, 144 ().

When the processor is in the 'trap' mode of instruction execution, any in-
struction whose op code contains an item mark (or record mark) is both
extracted and executed as if it were a Change Sequencing Mode instruction

1
Subtract one memory cycle if the instruction is being executed in a Type 1201 processor.

one cycle if the instruction is executed in a Type 2201 processor.

8-70

Add

CONTROL

EXAMPLE

(see page 8- 72), regardless of the op code that is actually present.
The A address, B address, and variant character (if any) of the
instruction are delivered to AAR, BAR, and the variant register,
respectively. The "trapped'" op code is not executed; a Change
Sequencing Mode instruction (CSM) is executed in its place. The
CSM instruction causes a branch to the location stored in the change
sequence register (CSR); this location is the beginning of a routine to
interpret and execute the instruction whose op code was trapped.

The trap mode is used effectively by the Liberator conversion pro-
grams (Bridge and Easytran) to replace the seldom used instruc-
tions of competitive systems when converting the programs of these
systems to Series 200 language. Such instructions are replaced by
routines when the trapped op code is executed as a CSM op code.

This instruction can be coded only in format a. when programming
for the Type 201 or 201-1 processor,

Figure 8-5 shows the coding which provides entry to and exit from a subroutine to
be executed in the two-character addressing mode. Both an ADMODE statement
and a CAM instruction must be coded (in either order) at the beginning and end of
the subroutine. However, only the CAM instructions are stored in the main
memory. (Since CAM instructions have no address portions, the manner in which
they are stored is not affected by an ADMODE statement.)

MAIN PROGRAM Location | OPEON
(4-CHARACTER
ADDRESSING MODE)

1 1

SU B|4' C A 2¢ 1 1

, ADMODE |2 . .

SUBROUTINE ' : : .
(2-CHARACTER ! ' - i .
ADDRESSING MODE)
) ADMODE |4 \ 1

. CAM) . .

ExiT B . MAIN | .

1415, 20[21 | L
... SUB4 . .
A ARKK XAXX,

—

~N N BN~
r

Figure 8-5. Changing Addressing Modes via CAM Instruction

8-71

SECTION 8.

INSTRUCTIONS

NOTE:

The branch from the main program to SUB4 in Figure 8-5 could have
been caused by an item-marked op code (if the processor were in the
trap mode) instead of by the Branch instruction. In this case, the
memory location tagged SUB4 would be stored in CSR, so that when
the item-marked op code was encountered, the contents of SR and CSR
would be interchanged. The program would automatically branch to
SUB4 in this case.

| CSM | CHANGE SEQUENCING MODE| [FEATURES 010 & 01]]

FORMAT

OP CODE A ADDRESS B ADDRESS VARIANT

FUNCTION

Format a: The contents of the sequence register (SR) and the change sequence register (CSR)
are interchanged, and the program branches to the address which was previously
stored in CSR.

Format b: The contents of SR and CSR are interchanged, and the program branches to the ad-
dress which was previously stored in CSR. The A address is loaded into the A-
address register (AAR).

Format c: The contents of SR and CSR are interchanged, and the program branches to the ad-
dress which was previously stored in CSR. The A and B addresses are loaded into
AAR and BAR, respectively.

Format d: The contents of SR and CSR are interchanged, and the program branches to the ad-
dress which was previously stored in CSR. The A and B addresses and the variant
character are loaded into AAR, BAR, and the variant register, respectively.

WORD MARKS

Formats a, b, ¢, and d:

Word marks are not affected by this instruction.

TIMING

Formats a, b, ¢, and d:

T = N;+3 memory cycles.

1

1 -
Subtract one memory cycle from this formula if the instruction is being executed in a Type 1201

processor.

Add one cycle if the instruction is executed in a Type 2201 processor.

8-72

CONTROL

ADDRESS REGISTERS AFTER OPERATION

SR CSR AAR BAR
Format a: JI (contents NXT Ap Bp
of CSR)
Format b: JI (contents NXT A Bp
of CSR)
Format c: JI (contents NXT A B
of CSR)
Format d: JI (contents NXT A B
of CSR)
NOTES
1. The Load Control Registers instruction (see page 8-67) can be used to
specify the contents of CSR.
2. When the "trap'' mode of instruction execution is specified by the Change
Addressing Mode instruction (see page 8-69), any subsequent instruction
whose op code contains an item mark or a record mark is retrieved and
executed as if it were a Change Sequencing Mode instruction.
3. This instruction can be coded only in formats a., b., and c¢. when pro-
gramming for the Type 201 or 201-1 processor.
EXAMPLE
Store the absolute address tagged CHANGE in CSR via a Load Control Registers in-
struction. Later, alter the program sequence by branching to the instruction tagged
CHANGE. Provide for the ultimate return to normal programming sequence by
storing the contents of SR in CSR.
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF ___
N R Eﬁ Location | OPERATION OPERANDS
» 2]37als]6l|7]8 | 1415, 20[21 | | | | | | | 62|63, | . L | L. 80
e . LCR. . . [CHANGE,, 64, . . . , . L . , . 1
2 f)
! 1 1 (1 1 1 1 1 1 1 1 TR | L
3 l 1 L \ 1 1 1 L 1 - 1 i 1 L 1
4 I I l |) L 1 1 I L 1 1 L 1 1 1
® { { L 1 / L 1 1 1 1 l 1 1 1 L L
¢ ! | -l 1 (1 1 L 1 1 1 1 1 1 a 1 1 1
7 ;] 1 1 \ i 1 1 1 L L 1 1] il L
8 | l 1 1 } | 1 | 1 1 1 1 1 1 1 L
° l l| 1 CISM L 1 1 1 1 L 1 il 1 1 1
0 -I! i L 1 1 1 L 1 1 1 | 1 1 1 1
"] 1 1 L 1 I 1] 1 I L 1 L 1
2 l | 1] 1 i 1 | 1 1 1 1 1 il 1 P
'3 ! | 1 1 L 1 1 L i 1 L 1 L 1
a1
IL 1 1 L 1 1 n 1 1 1 1 ! 1 1 1
's] ‘! L 1 1 1 1 1 1 1 ! 1 1 1 1

SECTION 8. INSTRUCTIONS

| EXM IEXTENDED MOVEI ET‘EATURES 010 & 015

FORMAT

OP CODE A ADDRESS B ADDRESS VARIANT

FUNCTION

Format a:

Format b:

Format c:

Format d:

The contents of the A field are moved to the B field in the manner specified by the
variant character (see Table 8-16). The programmer specified how the move
operation is to be performed by selecting the desired conditions from the table
and encoding the resulting two octal digits as the variant character of the instruc-
tion.

The contents of the A field are moved to the B field in the manner specified by the
variant character of a previous instruction (see Table 8-16).

The contents of the A field are moved to the field specified by the contents of the
B-address register (BAR) in the manner specified by the variant character of a
previous instruction (see Table 8-16).

The contents of the field specified by the contents of the A-address register (AAR)
are moved to the field specified by the contents of BAR in the manner specified by
the variant character of a previous instruction (see Table 8-16).

Table 8-16. Extended Move Conditions

X1 Move A-field data bits to corresponding bit posi-
tion in B field.

X2 Move A-field word-mark bits to corresponding bit
positions in B field.

X3 Move A-field data and word-mark bits to corre-
sponding bit positions in B field.

X4 Move A-field item-mark bits to corresponding
bit positions in B field.

X5 Move A-field data and item-mark bits to corre-
sponding bit positions in B field.

X6 Move A-field word-mark and item-mark bits to
corresponding bit positions in B field.

8-74

CONTROL

Table 8-16 (cont). Extended Move Conditions

X7 Move A-field data, word-mark and item-mark
bits to corresponding bit positions in B field.

0X Move one character from A to B. The A- and B-
address registers are decremented by one.

1X Move one character from A to B. The A- and B-
address registers are incremented by one.

2X Move characters from right to left (A and B ad-

dresses specify rightmost characters in operand
fields). Terminate the operation when the first

A-field word mark is sensed.

3X Move characters from left to right (A and B ad-
dresses specify leftmost characters in operand
fields). Terminate the operation when the first
A-field word mark is sensed.

4X Move characters from right to left. Terminate
the operation when the first A-field item mark
is sensed.

5X Move characters from left to right. Terminate

the operation when the first A-field item mark
is sensed.

6X Move characters from right to left. Terminate
the operation when the first A-field record mark
is sensed.

X Move characters from left to right., Terminate
the operation when the first A-field record mark
is sensed.

PUNCTUATION MARKS

Formats a, b, ¢, and d:

The A field must have a defining punctuation mark, except when the variant char-
acter specifies a one-character transfer.

TIMING

Formats a, b, ¢, and d:

T = N;j+1+2N,; memory cycles. 1

1Add one memory cycle to this formula if the instruction is being executed in a Type 2201
processor.

8-75

SECTION 8. INSTRUCTIONS

ADDRESS REGISTERS AF TER OPERATION

SR AAR BAR
Format a: NXT A-Ny B-Ng VARIANT = (0, 2, 4, or 6)X
NXT A+N, B+N, VARIANT = (1, 3, 5, or 7)X
Format b: NXT A-N, B-N, VARIANT = (0, 2, 4, or 6)X
NXT A+N, B+Ny VARIANT = (1, 3, 5, or 7)X
Format c: NXT A-N, Bp-Na VARIANT = (0, 2, 4, or 6)X
NXT A+N, Bp"'Na VARIANT = (1, 3, 5, or 7)X
Format d: NXT Ap'Na Bp-Na VARIANT = (0, 2, 4, or 6)X
NXT Ap-I-Na Bp+Na VARIANT = (1, 3, 5, or 7)X
NOTES
1. This instruction can be coded only in formats a. and d. when program-
ming for the Type 201 or 201-1 processor.
2. Here is an example of a typical variant bit configuration: V =110011.
This configuration, encoded in octal notation as 63, specifies that A-field
data and word-mark bits are to be moved to the B field from right to left
until the first record mark is sensed in the A field.
3. Consider the variant character in its six-bit form, V6V5V4V3V2V1. If
V; = 0, A-operand data bits are not transferred and data bits in the B
field remain unchanged.
4. If Vo = 0, A-operand word-mark bits are not transferred and B-operand
word-mark bits remain unchanged.
5. If V3 = 0, A-operand item-mark bits are not transferred and B-operand
item-marks remain unchanged.
6. The character containing the terminating punctuation is moved in the same
manner as the rest of the field.
EXAMPLES
1. Move the data bits of the single character in the location 26 beyond that tagged
TEMP to the location tagged WORK.
EASYCODER
CODING FORM
PROBLEM N S PRO 1ER DATE PAGE —__OF ___
e Eg wocation | o™ OPERANDS
1 2]3 als]el7 K 1alis, 20[21 L Ll T BN JI— - I TR N R .
. , EXM . [TEMP+26 WORK, @1 . . . i e
2. Move only the data bits in the field tagged RESV to the field tagged WORK.

Move the data from right to left, and terminate the operation when the
first item mark in the A field is sensed.

CONTROL

PROBLEM

EASYCODER

CODING FORM
PROGRAMMER DATE PAGE __OF ___

cArRD [
NUMBER |E[R

LocaTion | OPERATION OPERANDS

1 213 als5f6l7]e

| DTN 20[21

1 [
M

|
o

1 E;XM RESV’NORK;|41.‘| ,I .ll‘:. ::‘ ! 1 ‘ljj::l;‘ A.I

L t 1 1 L TR | L b 1 P R R S -

| MAT | MOVE AND TRANSLATE| |[FEATURES 010 & 011

FORMAT

OP CODE A ADDRESS B ADDRESS VARIANT | VARIANT 2

FUNCTION

The MAT instruction translates characters from one six-bit configuration to another
by means of a stored ''translation table.'" The instruction can be used to translate
any number of consecutive characters in the memory.

The A address specifies the location of the rightmost character to be translated.
The B address specifies the location into which the translated equivalent of the
rightmost A-field character will be moved.

The operation normally terminates when an A-field word mark is sensed. The
operation is also terminated if a character is transferred from a word-marked lo-
cation within the translation table.

The address within the translation table which contains the translated equivalent of
an A-field character is formed by combining the A-field character with the two
variant characters. The method of combining these three characters depends on
the addressing mode being used, as described below.

The leftmost, or base, address of the translation table is formed by combining
variants 1, 2, and a zero character as shown below. If the processor is in the two-
or three-character addressing mode, the leftmost three bits of variant 1 are

ignored and the corresponding bit positions (i.e., the sector bits) in the base ad-
dress (bits 16, 17, and 18) are taken from the contents of the A-address register
(AAR). If the processor is in the four-character addressing mode (see next page),
the entire six-bit contents of variant 1 form the leftmost six bits of the base address.

Two- or Three-Character Addressing Mode

VARIANT 1 VARIANT 2

000 (E= BASE ADDRESS OF TABLE

SECTION 8., INSTRUCTIONS

Four-Character Addressing Mode

VARIANT 1 VARIANT 2

= BASE ADDRESS OF TABLE

A character in the A field is translated when it is appended to the variant characters
(in place of the zero character) to form a complete, 18-bit address. This com-

plete address contains the translated equivalent of the appended A-field character
character (see below).

A-FIELD CHAR.

|4COMPLETE, 3-CHAR. ADDRESS
TRANSL. EQUIV. OF A-FIELD CHAR. |{§CONTENTS

Note that because of the positions of variant 1 and variant 2 in the total three-
character address, the base address of the table will always be a multiple of 64.
This is compatible with translation requirements since each A-field character
can have any of 64 bit configurations (see note 6).

It is a simple task to store the desired equivalent values in a translation table.
For instance, assume that a character set which is to be translated into Honeywell
code represents the letter A by the bit configuration 110001. Since this bit con-
figuration represents a binary value of 49, the desired Honeywell equivalent (i.e.,
010001) should be stored 49 locations beyond the base address of the translation
table.

WORD MARKS

The A field must have a defining word mark. It is this word mark that normally
stops the operation. The operation will also be terminated if a character is trans-
ferred from a word-marked location within the translation table.

TIMING

T = N;+3N,; memory cycles. L

ADDRESS REGISTERS AFTER OPERATION

SR AAR BAR

NXT A-Ng¢ B-Ng

1
Add four memory cycles to this formula if the instruction is being executed in a Type 2201
processor.

8§-78

CONTROL

This instruction cannot be chained.

The contents of the variant register following a move and translate oper-
ation are unspecified. Therefore, an instruction requiring a variant
character must not be chained after an MAT instruction.

Item-mark bits as well as data bits are transferred from the trans-
lation table to the B field.

Word marks initially stored in the B field remain unchanged. They
do not affect the execution of this instruction.

The programmer can use a symbolic tag in place of the variant characters
of this instruction by previously equating the variant characters to the
tag via a CEQU assembly control statement (see page 7-11).

The base address of the translation table must always be a multiple of
64, The Easycoder Assembly Program automatically stores the table
in this manner when directed by a MORG assembly control statement
(see page 7-7) containing an operand of 64,

EXAMPLE

PROBLEM

Figure 8-6 shows how A-field data is moved to the B field via a translation table.

Translate the contents of the field tagged EXCODE using the stored translation table
whose base address is 2561 (=400). Store the translated equivalent in the field

tagged EQUIV.

A Address: EXCODE (absolute value = location 630)
B Address: EQUIV (absolute value = location 900)
Variant 1: 00 =

Variant 2: 04 = base address of table (location 256)

EASYCODER

CODING FORM
PROGRAMMER DATE PAGE ___OF ___

CARD
NUMBER

LocaTion | OPERATION OPERANDS

o |Mro~<-i|

1 2]3 415 7|8

L als; 202! 1 A Lo o | 82183,

[
| [
.

1 1 i -
L MAT L EXCOD;E ’EQU:'V }¢¢|,¢4 1 — Loy L 1 L L s 1 TS S ST S B SR

BASE ADDRESS
(000400)

WORD MARK
STOPS OPERATION

y| * ADDRESS
<« A FIELD

<% TABLE ADDRESS
<% ENTRY

Figure 8-6. MAT Operation

8-79

SECTION 8.

INSTRUCTIONS

| MIT | MOVE ITEM AND TRANSLATE]

FORMAT

OP CODE A ADDRESS B ADDRESS VARIANT | VARIANT 2 VARIANT 3

FUNCTION

The Move Item and Translate instruction is used to translate any information unit
(up to 12-bit code) to another information unit of up to 12 bits (e.g., to Series 200
six-bit character code) by the use of a stored translation table. Any number of
consecutive information units stored in the memory can be translated.

The A address is the leftmost address of the item to be translated. The B address
is the leftmost address of the item into which the translated equivalent of the A
item will be moved. The MIT instruction translates the data contents in the A
item and moves the translated results, left to right, to the B item.

The operation normally terminates when an item mark is sensed in the A item.
The operation will also be terminated if a word-marked character is encountered
in the translated table.

An information unit up to six bits in length is stored in one six-bit character lo-
cation in the memory. Any information unit greater than six bits (7 through 12
bits) is stored in two successive six-bit character locations. Thus, an information
unit consisting of up to six bits is considered as a six-bit character, and a unit of
from 7 to 12 bits is considered as a '"12-bit character."

The sizes of the information units involved in the operation are specified by variant
3, as shown in Table 8-17.

Table 8-17. Size of Information Units in MIT Operation

00 Translate each six-bit character in the A
item. Move the translated equivalent to a
six-bit character location in the B item.

01 Translate each 12-bit character in the A
item. Move the translated equivalent to
a six-bit character location in the B item.

02 Translate each six-bit character in the A
item. Move the translated equivalent to
two character locations (12 bits) in the

B item.

03 Translate each 12-bit character in the A
item. Move the translated equivalent to
two character locations (12 bits) in the
B item.

CONTROL

The desired equivalent of an A-item information unit is taken from the stored
translation table and moved to the B item. Thus, if the desired equivalent is a six-
bit character, each table entry occupies one six-bit character location in the table.
If the desired equivalent is a 12-bit character, each table entry occupies two con-
secutive six-bit character locations in the table., Consequently, variant 3 implicitly
specifies the size of each table entry when it explicitly specifies the size of the B-
item information unit,

The leftmost, or base, address of the translation table is formed by combining
variants 1, 2, and a zero character as shown below. If the processor is in the
two- or three-character addressing mode, the leftmost three bits of v