HONEYWELL EDP SOFTWARE MANUAL
SERIES 200

FORTRAN COMPILER D

GENERAL SYSTEM: SERIES 200/OPERATING SYSTEM - MOD 1

SUBJECT: The Honeywell Fortran Compiler D and its
associated software, Also considered in this
manual are the Fortran language elements
used by the compiler and the modes of proc-
essing possible with Fortran Compiler D, in-
cluding programming techniques and operating

~— procedures,

SPECIAL INSTRUCTIONS: This publication supersedes the Fortran
Compiler D Reference Manual, File No,
123.1305.001D. 1-027.

3
) DATE: June 15, 1966 FILE NO. 123.1305.001D.2-027
v
8768
S 5666 *When ordering this publication please specify

Printed in U, S. A, Title and Underscored portion of File Number.

Copyright 1966
Honeywell Inc.
Electronic Data Processing Division
Wellesley Hills, Massachusetts 02181

ii

N’

e S

(14

£

FOREWORD

This manual describes the Honeywell Series 200 Fortran Compiler D and its associated

software, the Diagnostic Preprocessor and the Screen conversion routine.

Hardware characteristics of the Series 200 are described in the Models 200/1200/2200

Programmers' Reference Manual, Order No. 139, and the Model 120 Programmers' Reference

Manual, Order No. 141. Series 200 computers use a six-bit alphanumeric character as the

basic data unit. Fortran D uses a minimum memory of 16,384 characters to compile and exe-
cute. The compiler can use up to 32,768 characters, and execution can use up to 262, 144
characters. Fortran D can be run on any Series 200 computer having the required minimum
configuration for the compiler. On a basic Model 120 (i.e., using the integrated peripheral
control), there is a restriction that card reading and punching by the object program should not

be interspersed, since a peripheral error may not be detected if these operations are interspersed.

Hardware requirements for Fortran D include advanced programming instructions, editing
instructions, and six peripheral devices consisting of four Type 204B magnetic tape units, a
card reader or an additional tape unit, and a printer or an additional tape unit, The Type 214
or 223 card reader or the Type 227 card reader/punch may be used. Any printer with at least
120 print positions may be used. Up to nine optional peripheral devices may be added to the
configuration. These include extra tape units and a card punch. Where extra tape units are

available, one may be used to create a stack of compiled user programs.
Either three- or four-character addressing can be specified for use with Fortran D.

The first six sections of this manual give a detailed outline of the Fortran language used
by the compiler. Programmers familiar with Fortran will recognize that the compil‘er language
incorporates many of the features of the proposed Fortran standard specified by the American
Standards Association and published March 10, 1965, by the X3. 4/3 Committee. For those who
wish only to review the differences, Appendix B contains a comparison of the languages and a
language summary. Programmers who are relatively unfamiliar with Fortran will wish to re-

view the language sectiops.

Sections VII and VIII contain system information for programmers. Section VII describes

the control cards used in job input decks, while Section VIII is a system summary of the compiler,

iii

the diagnostic preprocessor, and the Screen conversion routine. The compiler is designed to
operate primarily in a load-and-go mode in which a job of one or several programs is loaded,
compiled, and executed, then the next job is processed, etc. Section VIII explains this concept
and other possible modes of processing, in which compilation is bypassed in a given program
or job, or in which a series of jobs can be written onto a run tape and the multijob tape can be
executed at a later run {go-later mode); Also described are the use of the diagnostic pre-
processor to check source program errors before compilation and the use of Screen to facilitate

conversion of source programs written in Fortran II to the language of this compiler.

Section IX covers operating instructions for setting up and running the system. Also in-
cluded is information on initial conversion of the Honeywell-supplied symbolic program tape

of the system to a run tape.

Section X is a collection of helpful programming tips and techniques., The section contains
information on language and system limitations, memory restrictions, and time- and space-
saving techniques, and summarizes ways in which the Fortran Compiler D system and language
may differ from the system and language used previously. The programmer, as he becomes

familiar with the compiler, may add to this section from his experience.
Section XI describes three- and four-character addressing modes. ~
The appendixes contain information which supplements that contained in the various

sections of the manual. Of primary importance is Appendix G which contains all error print-

outs -- from the diagnostic preprocessor, from the compiler and the run tape generator, from

object time execution, and from Screen,

iv

TABLE OF CONTENTS

Page

Section I Source Program Summaryesesccssscesccsssscssssscssscscssssonce
Program Definitions cceeesesesscssssssacsccssssscescssscnnsas

Source Program Formatling cecececsccscerccsscscscasssccnsas

Fortran Character Set.ceeeeescesssccscsscsccsscscssnsnne

Honeywell Character Set.eseseccecovscscossssssscasssssccnse

Blank CharactersS cececveccecscsesscssesansscsossssscscscsns

Statements cecesevevscsscncsscesssscssssssscscscsssscsnne

Formatting Fortran Statements .cocceceececcccsscccces

Statement CharacteristiCSessescesssscacsscssccsscesens

Labeling Statements cccceeeesoscesestscssncsscssssanncs

Sy‘ntax....-......................-........-..............

OperatorSeeescecescscsscosssssnscssccnorscansscsanosccsccoss

Delimiters 0008 0000800000000 000000000000RGIIRISBOCEOIOGEOITDLE

NameSeeeesessaseecosssssscssosssscsscsscssasnscsssnssssos

Data NameSeeeeceeseecsesrscecsscssacssssssssnscssssscssscacncss

CoNStantsS ceeesocsesssescescsascscscosronnsnsssassssssses

VariableS ceeeeescesscsscccecossssancssnsoscsscsscsoscsnscsos

Arrays, Array Elements, and Subscripting ceecececeessscsces

T e i e I I R e S N i e e i e
1)
== OO 00 WO NN WWNNDNN =

Data TypeSeecsescesvsecssecsossescessosasnscssossosvsossscass
Integer Data.ceeessscsccssesscssosssrsssscnscesscsensssnss 1-12
Real Data ceececeoccssscocscosscssescsscccssvensesssscnes 1-13
Logical Dataccsecesccnssossscscsocsssssssconsscacsssssnes 1=14
Hollerith, Octal and Alphabetic Datd cesecescecssesscacees 1-14

Hollerith Datacscesscecosscesssccsccosssesosssssscses 1-14
Octal Datacesescessosssossosssossasssosscsscsscocsssse 1-15
Alphabetic Data coeesososscvssscossscssscsscscscnssess 1=15

Section II Arithmetic and Logical Expressions and StatementS..cececescsscss
Arithmetic EXpressions cecessesssscessccosccscsssscsossassse

Definition and Evaluation.esececesceccesssccsssccscsssccs

Hierarchy of Arithmetic OperationS.cceseecscccesscacsces

Arithmetic Statements.secesececsescssssscsssscsscssosssnss

Logical EXpressionsS cceseceesescssssscscctscssccsccssnscsscans

Definition ceesesesessccscssvesnsscnssssnssscssnesassscse
Logical OperatorsSicssccesssesccacsessccccsscascscossscssane
Relational Operators cssesvsesecoscescssocccscsssscnccssoce
Hierarchy of Logical OperationS.secscssceccsscscscsosccsscs
Logical StatementScseeesscsesscsssseccscccsscccnccsssosnas

))
(e XN =N o N I - N N

Section III Control Statements cceeescesosscsscscssssscnssccssssssssscsass
Unconditional GO TOcseesessscssccosccesssssossosssssscssse
Computed GO TOeeosesssvsesvsssssocssscsnccsasssosssssansssse
Assigned Go To and Assign StatementSeececsssscocecsconsosses
Arithmetic IF Statement.eccsccecscecsscssssssccscsscnscsnsssssss
Jogical IF Statement.ceeecesceccecenscrcecnscocconcncecesnss
DO Statementeeecsccsessoscsosssscscssassssssescscscssossacssa
Call Statementeeececssecesssesssosassoscscsascscssossssssrsenascs
Return Statement cceceecsesoncscscscsscccssasascscssnsasssecs
Call Chain Statement ccoeceseeescsesccsccssosacescacssssasses

W WWwWwWLWwWwWwWwWwoww DN NNNDNDNNDNDDND NN
]

!
0 W~ b WWN N~

Section III (cont)

Section IV

Section

v

TABLE OF CONTENTS (cont)

Continue Statement s oeeeesscecvssscssassescscscosscsaccnsses
Pause Statement. . coseeeseecessesssssosescssscvesossssnsss
Stop Statement . oueesecrescsccsssscssssssscsscssssnsssncns
End Statement, s veseescescencessessssssosscscscasscnasanes

Specification Statements ..cveeecssssssesrcsssccsosccsssscscas
Dimension Statement. sevecseesscscesssossosscsscsssssscannas
Common Statement s sveseseescesassscsscsossssssssnsoncces
Equivalence Statement cseeeesecscsscsossssscscssssscssvoce
Data-~Type Statements,.eeeeesssssssssscsoscscsnassssacances
External Statement ccceeseesssecscascossssssccsssscsssssacs
Title Statement. ceeeesesoscsecsscsccscssscccsscssscssssnnas
Data Initialization Statement.ceeescecscecccsscescessssssnss

Additional List PairS.cceeceseecsescesssosscssccascassans
Implied DO LoODPScevoscovsosossossssssssssssssssssasssas
Nested Pairs of Implied DO LoOPS.eescasesassescscsscsnnse

Input /Output Statements. s eesssescssssasesssssscsctssensssssasa
Read Statement.vcveeeecccccccosscccssssssssncssesassssans
Write Statement.ccecscscccessssscsscsscccssssassasssssone
Input /Output LisStSeseussssesssssscsascssscssccccscesssosossses

Simple ListS ceseceesesssssssessssssssscossssssssonncss
Short-List Notation for Input/Output of Entire Arrays..scs..
Lists with Implied DO LiOOpPSeecsscccssscsscesssscnssssnse
I1/O Lists Used with Binary Tape Input or Output +seeeceeses
FORMAT Statement:ieeceeccecsseesescssssssssssesoscscssss
General Form of the FORMAT Statement.eeceesscescecsscns
Contents of the Field Specification.seecescceessssscscscscee
Conversion CodeSceessessessccsacssscscnsasssssssncnoss
Conversion Field Widtheseeeeessossessssensccssncesssnas
Decimal Position IndicatoTeeesesecsccscsccsccccsscscnces
Basic Field Specification for Integer Conversion csseessess
Input. ceveeveonevecccscevscccaccssosscasnsonsscnssanse
OUtPUL coceesesssocscsecscesosscsccsssnssasscscssscnsnse
Input for Conversion of All Real Data seevsscescesscsscces
Output Conversion to Fixed-Point Decimals (Fw.ed)seesssss
Output Conversion to Explicit Exponent (Ew.d)ceeeescossos
Generalized Field Specification, Gw.d cecseesssccscsssess
Basic Field Specification for Octal Conversion.seceeccecee.
Inpute seeecsoscesccresossoscscosssccsssscsscesancsnsss
OUtPUL ceoeneseccesscsccsssssssssssnssconsasancsssscs
Basic Field Specification for Logical Conversion.secsesese
INpute coeeecsoccccesscssscccsscscnssassccsccssssossns
Output cesecescccesccescsossascsssscscoccsassncsnnns

¢« Basic Field Specification for Alphabetic Conversion «seesss
Inputesscsceeeseacssecececesnceccncoscsscncncssccncns

Output 0600000000000 000000000s0s0ssessRec00s0s00ROGOE

Field Specification for Hollerith Data ceesececssassscaccse

vi

g
W
(4]}
()

A e
N =

—

-

OO UO OGO R R R D B B DB R R WWwWwWw
1
e A N UTUT W = b O 000~ UTIN - = OO 0 ®

]
—
—

5-15
5-16
5-16
5-18
5-18
5-18
5-19
5-21
5-24
5-25
5-27
5-28
5-28
5-29
5-29
5-29
5-30
5-31
5-31
5-31
5-31

Section V (cont)

Section VI

Section VII

TABLE OF CONTENTS (cont)

OULPUL vt esnvvosassnccsosscnsocssccasossacsssnsssass
INPUL tevecnvecsocccsssocscacnassssnssonasensssnconass
Field Specification for Blank Conversion «e.ceeesevsocssccs
INDUL cveecescsveccocsscssocscssscasssssccnsssscssae
OutPut ceosssesvsessssessessssssssesssesscsssnsansocs
Carriage Control for Printer Output eecveeceesccascncsvans
Field — Repetition Constant ceeeeeceessecssrssccscccsens
Repetition of Groups of Field Specifications seeeecescceses
Scale FactOr cvceeessseccossssesccsscsencsascscosssscssse
INPUL tveseenoncrccsscacescascscasccscssosncscesscsncss
OUtPUL s coeosesssccsccssesccnossssccsscscsssscssssscnss
Multiple-Record FOIrms ceececscscsscsscsssssscscssossscs
Reading in FORMAT at Object Time sveeeeovececncsssceccss
Alternate Creation of Variable FormatS..ceeessessscscsoss
End File Statement . secececesesocccscsccccsssoscscsssconcs
Rewind Statement cvescesvssccscscosscscccssccssscsssssnsss
Backspace Statement ceeocceesscscssvsesccscscessescsscscosss

Procedures.icesccesscesscssesssccssssscssscccssscsasscsssnces
Categories of Procedures ccceseeeceocssecsoscssscscsccannes
SUDPIrOgrams ccesescesceecsssccnccsssccssosssscsssssasnsons
Naming and Typing Procedures vvesecscesscasosssssscnsses
FUnctions ececececesscsvenssoscsccsossscssssosscsssccvesssssas

Statement Functions eseeececcecsccsascscscascsssscscssssasesns
Function Subprograms seeecscescssscscosssseccssessanes
Library FUncCtionS ceeceseevssscesocccsacssscsccssasscssssscs
SubroutinesS.eessssececsscsssssccosccsosssscsscscsscssssssscss
Special SUbTroUtineS.ceeeeesesssccccsocccsesncssscssscssossns
Test Subroutines for Simulated Hardware and Hardware
Features ccoececessscccccccsssosccsscsssssccssncsasnss
1/0O Condition Test Subroutines cveeeesscescscsscscevssnssns
I1/0 Subroutine REREAD ...ceesseccsssssssccssssssssencacs
Dynamic Dumping Subroutines cecececooscsscsssssccscscsnsecs
Exit-to-Monitor Subroutine..ccsceeescececscscosncsscsscancs

Systermn Control Cards cseesesecesscccscascssssscsscscssncsscns
Run-Level and Job-Level Control Cards seeessesscccscscccscs
Control Cards for Standard Operation ceeeccecesssssscssoccs
Non-Standard Operation and OptionS.eeseesssscessssosscscscs
#JOBID Cardecesscessossascssescoscsnccsosscsocssssssascsse

Job Name Option ¢cececececvsossecssecscscscossscsnsscaccs
MemoTry SiZecceesesssscsescssosscssssssssssccsnssssssons
Floating~Point Precision seeececesoscecsccsssssccsscnnces
Integer PreciSion sseececscsocccsssscccscssscccsasoasosns
¢ Peripheral Device Assignments seeeececencecessesenssons
SAVE Option cceeeceocsevencscsscsssccsscscsssccssoscnsons
PUNCH Option c.ceescesccsscesccsscccasscscscssccsnsssss
Listing Options..

vii

Page

5-33
5-35
5-36
5-36
5-37
5-37
5-39
5-40
5-4]
5-42
5-42
5-45
5-51
5-53
5-55
5-56
5-56

oo O0NO0N O O
[}
=0 =1 R NN e e e

6-12

6-13

6-13
6-14
6-14

UL Y S R |

BURP IR I IR RS JC TP I R R R
]

1
Or N O D W WIN N ==

TABLE OF CONTENTS (cont)

Page

~
1

1
= OO0 0 0~ N0 R RN e e e e e e 0 00 OO

o]

1
—
-~ O O O

Section VII(COnt) Tape Input--o-ooo--u.-o-a.ooo.--o-ooooo-.ooo-uoooooo-o-
Sample >k.].OBI]) CardWith OPtiOnS..o--oo-a-o.oooooogo..-o
*SCREEN Card eecececsccsccsscssscsccsssscscscsscssscossoscsse

*DIAG Cardoo.....o.o.oo.o..c......-oocn-.o.ccoouo..oo‘o.

#¥GET Cardececsececsssssssseccscsassersssssscsssssasscssss
*BINARY and END CardsS ceecescsscacsscscecssssscsescssscsccasnscs
¥CHAIN Cardeseccesessscsccsesssscsocssscscsssssssssscasses
FALTER Card ceeecsesssscscsscsssccsssssesscccscssssosscassse
*DATA Card and l1EOFA Cardeeececscasssssssccsncssscancas
¥ENDATA Card.iceescccscscecscsosssscsscnsssnssscssasssssccsss
FDUMP Card .cesessoocscscsscscesasscsnasscscsssssssscsscsss
Comment CardSieseecsssesssscscccscssssssssscssssscsssscscscs

Card-Image Tape Input. ceeescecscsvsccsssesscssasssascacs

Section VIII System Description sveseseessscescscscesscescsssssscsscncescsna
System SUMMATY ceeeeessrsssscscsesscosssssssascscsssacsss

System ModuleS.ceeessasesccvsescsssossscocscsssssssssassse

Run OptionS.ceeesceesssssssssesscsascscsssscssnssssssscsssnse

Standard Fortran Processing - Load-and-Go Operation.ececees.

Chaining a Load-and=Go JOb.sesssesssossosscsoseassensnsee

Go-Later — Batched Job Processing cesecesssccsccescosccces

Writing a Go-Later TapCesecssscsseccssscsscccesssccsccscs

Executing a Go-Later Tap€essccescescsesesscsccccsccscns

System OptioNnS e ceesescaccecscssessscsscsccsssossssnsssccnss

Stack Tape cosecessssceccscccsscscsssossccscssssscsssscss
Punch Option cessscessssssscscssscssscsscscsssssssssoss
Jobs Containing *GET and *BINARY Program UnitS.eecesecee
Common Input DeviCe.escescescosssssssscessvecsssccsnns
Common Output and Common Punch Device Options cveceees
Bypassing Execution.cecsesececcsasscsssscscssccccssenss
Diagram of System OptionS.ececscseccssccscscasessccsasces
Debugging AidS cesececssccsssssccscessccasscossccsesscsosse
Source-Program Listing ccescessssscecncscccccscscsccnces
Relocatable Memory Mapeessscsssssecsssscssscssccscannse
Object Memory Map sseecsocescssesscosssessassncccsnnes
Machine-Code (Pseudo-Easycoder) Listingeeceoesesessccees 8-12
Error DiagnostiCSseeesesessessscsssscscssssccssscascassss 8-15
MemoOTY DUMPS seeeeesscsscsescssasssassccassssssssssss 3=16
Diagnostic Preprocessingeessesescessssecossssssscscscascss 8-16
Preprocess-Only Option — *DIAG.ceecscecsesscsssscssssss 3-16
Preprocessing to Tape — ¥DIAG, T ccocececesscscscscssces 8=17
DiagnostiCSeeceesssscssccssscccscssossssssssensscsscssccss 3~18
Screen CONversSiOn cseescessccssnscccscssssssssssasscscsssss 5-19

00 00 Q0 0O 00 00 00 00 00 00 00 0 Q 00 00 W 0 O W =1~ ~ 1 =~ ~J ~3 =3~~~
]

[0)
]

Section IX Operating ProceduresS.ccecessccessosocsssscascccscssosssssssosse 9
Fortran Run OptionS.cseseseccssscscessccscsssscsssscsscssae 9=
Standard Console Call cecssecsscccssssscsscssccsssoscncscncs J
Equipment RequirementScececescccesssccccosecssssscsscassecsss I

viii

L

Section IX (cont)

Section X

Section XI
Appendix A
Appendix B

Appendix C

TABLE OF CONTENTS (cont)

Tape Loader-MonitOrS.seseseescecsccsscesssccacccssccccse
Starting Procedure..ceseeescsssssccesossssssscssssccscssses
Terminating @ RUN csveeeescsersncssssssccscsssccsssssssosne
Console Call OptionsS csssseesessssscssasssssssssssssnssnss
Coded Halts During Fortran RUDS..ceoeccsccsssccssssssssss
Unprogrammed Halts and LoOpPiNng.seeeeseescescccsssesse
Load~and-Go RUN s cesessscssesscvessssssscscsssnssssscssne
Load-and-Go Equipment,scecsesccccsssesscsrsscessscsssce
Stack Tape (TF).eecssscscrescsscesoscsncssscssosssssnres
Allocation of Work TapeS.eeseesscccccsccsccssssossscsosssne
Input Tape (T5)cesceoescsccsenoscessssccsosssssescssasss
Output t0 TAPE sessesssossessssasscsscsccccsssssscsssscsse
Screen RUN.eceeecsessssoscssassossssssscsssncssosscssesse
Writing a Go-Later Tap€ececccssssocscscvresesscasovsssscncsne
Starting and Terminating a Write Go-Later Tape Run......
Emergency Restart Optioneceeececcescccosccscsssscscses
Card and Tape Input Option.cceceeccccccccccccccsccncsnncs
Executing a Go-Later Tap€issescocesccscaccccccscsccscscnsse
Starting a Go-Later Execution RUN cccccecsscsnssossccess
Creating a Compiler System Tape (CST)ieessacerscssssonsss

General Programming Considerations...ceeecescesssssccssccen
Language Limitations.eescesscessscsccoscsssscsssscsssccnce
Source Program Size LimitationS.eeceeccercscsscscsscnssses

Source Tableiccuesescesocecsscsssocssssssssssssssssscsos
Token Table coveetesscecsssoscsssscsscssoscsscssasnssass
JEF'N Tableseessessssesescesocscsscscassrsasssssssossnns
FORMAT Table ccoessvosscescecsssosssoscscssssossnancnn
Size of Program String cceeececevoccsccceccccscssssscscsss
Compiler Characteristics and Limitations ceecescsccscecscsse
Tips for Saving Space and TimeEscsesesesescscesssscsssssscs
Chalning seeescecsveecsscscsccecsccsscscscconnssasncsscasss
I/O Programming TipPS ececeecscassecssasscascassnssnsssaases
Conversion TechniQues ccecececccccccsscccsncsscscscncssces

Three-Character and Four-Character Address ModeS cesecsssses
Octal-Decimal Conversion Procedure.cccecsssscssssscscsssscces

Language SUMMmMAary cevessocccasscesascscaccsossssscassssessse
Comparison with ASA Proposed FOrtran.sccesesesssscscssses
Additional StatementS.cecesescsssessccscssssoscassccssssse
Terminologyscecscesssscscsvscsscsccascscossassoscsnsasonsse
Additional Language FeatureScesesescesesssccscsscsscssse
Restrictions cveeecessvcscssescccsssscccsssscocssnscnns
Change in Parameter cseeecsescssccssscscsscsscscsssanes

Glossary...........-..-.-...............................

Internal Representa.tion OfNumbers...-.........-.......-.....
Bit Representa.tion.......................................

ix

Page

" 1 1 11
o

§
= = \0 O 00 00 OO WiV

]
—
O OO

O O O O O O OO OO0 OO
1

9-12
9-12
9-12
9-12
9-13
9-14

10-1
10-1
10-2
10-2
10-2
10-3
10-3
10-3
10-3
10-4
10-5
10-7
10-8

e

—
]

funy

QO mwwquwwmw »>
L S I S T T

Appendix C
(cont)

Appendix D

Appendix E

Appendix F

TABLE OF CONTENTS (cont)

Fixed-Point Numbers:cveeeescsessossestsasecsccccscsssssans
Floating-Point Numbers co.ceeetscescssccsoscsscnssesccaans
Storage of Other Data@.cceceesesscsscscccoccossssscanscascsas
Accuracy of Calculations..seesececesccceesssscscacscsccnns
Formats of Data in Memory at Object Time.ceseessccsecceans
Real Data,.veeessscecoceecscsocscnnsasocesnsosanansoscscnas
Integer Data cveeeeceesseccossscocscscsesssncscssroscnss
Octal Data.seeeessceacssesossscsesccccsssccccnsscssasns
Hollerith and Alphabetic Data@.ceessesscscsccsnsssssssans
Logical Dat@.eesessessesnsscasssossssossssosssassnsense
ConstantS,.eceevsoesssssssesescsscssesssvsascssnsascnns

VariableS..ceeeecessacescssssacsncscasssoscsscsanossscsonse

Procedures and Routines Supplied with the Compiler.,ccecessase
Library Function Errors at Execution Time..cecseseescscsens
Floating~Point PackagesS..cceeeeacsccscsssssevescssscscssccs
Object I/O ModUlES. sosesnsassossssscssssssssssnsscssannsns
Library FunctionsS.seeseceescesscesscncsscercsssescsssocanse

SIN ¢ ieueeveeeccssstscosossosssoessascsascsatsssssssscanss
COS i ieeevresssssvcassesscscccssossscsnssscscsscnsnssss
G P
SQRT cocecentcectsessssoesscssseasscnsssssssssssssasssens
TANH. .. cceooosssessscssocssocatsscstssscssscssssssscss
ALOG . citeeeseesoscesssscccsacsscasssssttssosssannnoe
ALOGI10.eeeessecsssoscsssascscsssscscsssossasacsossss
ATAN . it nsesssesecsscasscssccssscosssssansassse

AT AN . i iveereessoecsosacssssescsosscsensssasnssssnsscns

Easycoder Symbolic Program UnitS.c.eesesecsresescecssnssans
Regionalization cceeoecessosssssosscscescssscnsossososscnsns
Region-Defining DSA Statements cceeeecceccesssasconssnas
System ProcessSing.cecescesccecsoscsecossscsesssssesssscnoss
Region 3 Address Interpretation.ceeceececccscscscccsssocsens
Relocation of Address Fields cveseccesscaccossscsncssnons
Relocation of Fortran Program UnitS..escecoseccoscscecs
Programming Procedures.ccesssscssesscscesssccosscssonsocs
Calling SeqUENCES v essseossssssnsssscassocnssenssnsssses
Use of Common StOrage.ceesssccasscsscsssscscasssssnns
Use of Communication cseeeecessescsssessscscascscscsses
Restrictions cceeevesvsecsecverescsoscscscscocsossscssssssses
Sample Program cecscesessscscccscssccsscsossscssssvsessscs
Notes on the Four-Character Address Mode.secesscecsccssnes

Tape and Memory LayoutSceecoeeveccssoscoscsscsossssessssnss
Symbolic Program Tape s eececcsccssescsssescsscsssscscscss
Compiler System Tapeicesecesscccsscsscssscssscssccsasssne
Binary Run TapeSececeesescassscscscsosssscssssscsssoscsces
Object Tapes cveeoeseosssccssscscsssssscssacscssscsssscssss

BCD Tapes coeecsscccccsossssossssscsossscassasssssssasss

Y,
1 o
— 0
o

[I Y B |
LU WD N

1

[S R B R | -1 1 1 1] ¥]] [|
bt et bt et et O N~ T WD DN~ [l B R R T o < JEE N Mo AN @ AT § S T N S]

HEERLE g EEEEEEE UU?UUUUUUUUUUU aaaoaaaoaaaaaqn

L ¥

Appendix F
(cont)

Appendix G

Appendix H

Figure
Figure 4-2,
Figure 4-3,
Figure 4-4.

TABLE OF CONTENTS (cont)

Binary Tapes seceeessccscesssrecscsssssscsccsscscasssons
Binary Program Tapes eeeesesscscscsossscsssccsssssssssse
Stack TapPe.iceeessosesasesasossasscassssnsssassnnsnssscs
Common Input Tape.eeesescsssscsssssccsscsssssscssssons
Common Output Tape ccveeesocscssccososcsssssssccssonss
Memory Map (Compilation Time) ceeeeecssscoscsescsccossss
Memory Map (Execution Time) ssssecessesscssssscscesscnsss

Error MessagesS.ceesecsssecesssctscstssscscsoscsscccsosnsanass
Preprocessor Error MesSSages ceeescosccscsocssssccsccassce
Errors in Specification Statements cccececsesescccsscscss
Errors in Arithmetic and Logical ExpressionsS.sseessecsses
Errors in Construction and Use of SubscriptSiecesscesecess
Statement Label ErrorsScicecscscccesssscscssosscscsscscs
FORMAT Statement Errors.ceescesescssccescscssscesssonsns
Errors in Construction of Program Constants ceecessocces
Control and I/O Statement ErrorsS.csecescscssscscssosesscs
Errors in IF or CALL Statements or the Use of Functions
Or SubroutineS.cceesscscessscscssscsccssvesssecccssnce
Keypunch and Other Miscellaneous Errors cecssesscescsssse
Compiler Error MeSSages coessvescsssssssessssssscsscsses
Compiler Monitor Error MesSsSages csseescecssssssssssscsss
Run-Tape Generator Error MeSSages ceeesscesoscessscscsscs
Execution-Time Error MeSSages ccecessssesccsssscscssssas
Library Function Error MessageS.ssceesssssscsccsscssss
Input/Output Error MesSageS.ssesssssssessscnsscnssccns
Screen Error MessagesSiceesssssssocssstcssccasccsssccnnas

Series 200 Character CodeS.vevsecsesocssscssscsssssssssssnsss

LIST OF ILLUSTRATIONS

The Fortran Coding FOrm seeseccceccsscessssscscssnscssscscaes
Sequence of Program Statements ceoescesescccosccssssssssssee
One-Dimensional Array, Storage Sequence of Elements.cecescse
Two-Dimensional Array, Storage Sequence of Elements.cececessss
The DO Statement and Its Range.cecseecssocssscssscccsssecscns
Legal and Illegal Nesting of DO LOOPSsscesseccsssscscssscssces
Legal Transfers of Control seveecesesscsessssscscscscccscosens
Illegal Transfers of Controliceessssccsosescsessereosscccscsone
COMMON Statement for Three Labeled BlockScecssosessessssans
Communication Via Positional Correspondenceccecsesscessscccsse
Use of Dummy Array to Space Over Common AT€a ceseescssssss
Illegal Extension of Common Region c«ccseesecseacssscssscasces

xi

;Y
1 o
—~
o

L L
NNV NN

Q0000 QQQ0QQQQQ0 HHmmm -k

L I I | 1
o o

BB B W W W W
| B |
Sl UL D SN S0 U e 0N W

Figure

4-5.

Figure 4-6.

Figure

Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

5-1.

5-13,
5-14,
5-15.
5-16.
5-17,
5-18,
5-19.

8-16.
8-17,
8-18,
8-19,
8-20,
8-~21,
8-22,

LIST OF ILLUSTRATIONS (cont)

Legal Extension of Common RegioN.seeesoeccosssoscsasscosssccs
Right-Hand Portion of Array to be Initialized vseeessescessacee
Example Highlighting Different Components of FORMAT

StAtemMENt, s ueeessssecessvsssososcssssnsesconsccssossnscnssas
Data Fields and Field WidthS,..eeseeesesoescscoosscssensasnnse
Input of Integer Data .coesesecesoscscssceccsscccossssccsscnss
Output of Integer Data.sseecsssaccsssscacascsassccasssascccss
Twenty-One Equivalent Ways of Keypunching an Exponent of

Plus TWO .eeseasesssososcoseessscssasssossosssscsssssscnss
Input of Real Data seeeceevossssssccascsssssacssscccsasscecnss
Output of Real Data in Exponential Format.ceseeesescecsssscses
Input of Octal Datum v eseseeeseescsssssssnsssssscssssssssssss
Input of Logical Data.ssescessessssscccaossssosscsscssssscncsnos
Input of Alphabetic Data sueesseeccesssecenssssessssssssnsssos
Example of Output of Hollerith Data.secesecessssscssssasscssens
Use of Continuation Line with Hollerith Specification.ceeseascsse
Sample Input Card s eeeecesssccascsscsssccsssacscssassssssnses
Carriage Control in Single-Record FORMAT Statements ceesecees
Carriage Control in Multiple-Record FORMAT Statements «oseses
Definition of a Unit Record.iesssscesesosscsecssscssscssnssssaccses
Parenthesis Levels in a FORMAT Statement csesseooscssssscasss
Rescanning a FORMAT Statement. ceecescssceescsssescoacnsses
Handling Variations in Format at Object Time ceeesocsesosssoss
Categories of ProceduresS.sccessssscecsscscscsssssnssssssssoenss
Input Deck for Standard Operation cceseeessesacsoscscosscscses
Standard Load-and-Go Flow Diagram seeceesccscecossscsccacs
Input Deck for Load-and-GoO.seecessececesesscanscsssssscssans
Job Divided into Two Chains of Program UnitS.eeseescesscssces
Sample Input Deck to Write Go-Later Tape voceseosscsassesccscs
Flow Diagram to Write Go-Later Multijob Tape .ecessscescsssses
Sample Input Deck to Execute Go~Later Tape coeeocesccssssssscs
Flow Diagram to Execute Go-Later Tape.secsssssccsscscsscccsss
Job Containing Previously Compiled Program UnitS ccssesccsncs
Load~-and-Go Run With System OptionS.ecsescesscevsccssssccses
Source~Program Listingeesecsceseecssscsscsscsaecscsscsssssccnce
Relocatable MemoTy Map.ssoesossscosssccsscscassssscssossssse
Object MemoOTry Map.esesssesssossoseccsccessscscnscsssssssssnse
Pseudo-Easycoder Listingeeseeessocescssstcscscsssscesccsoces
Input Deck for Diagnostic Preprocessing ceeeseescesessscsesnes
Flow Diagram for Diagnostic Preprocessing — Preprocess-

Only Option..eecesesccssoscecsesssossscsssosscssscsnssscsnes
Diagnostic Preprocessor Flow Diagram — Tape Option cesessees
Diagnostic Preprocessor Listing cecececeescccsctcscccccssossnes
Input Deck for SCreen vsesescssessecsvecsssesscesssnscssonses
System Flow Of SCreen secsececesscssccssscsscsccssosscssccsnss
Screen Conversion of I/O StatementSceeeceecesesccsacssosssacesse
Screen Conversion of Library Function NameS.ceeesessssscsssss
Listing of Card Input to ScreeN.cecsssvsoccssrseccsssssosssassnne

xii

Page

4-7
4-13

5-14
5-17
5-19
5-20

5-21
5-23
5-26
5-29
5-30
5-32
5-34
5-35
5-36
5-39
5-40
5-46
5-48
5-49

1 1] 1 1]
&,
kS

00 00 Q0 Q0 00 Q0 00 00 0O 00 00 ~J O U
t
— O OO WW R~

o
'
—
N

8-13
8-17

8-17
8-18
8-19
8-20
8-20
8-21
8-21
8-23

Figure 8-23,
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4,
Figure 10-1.
Figure E-1,
Figure F-1.
Figure F-2.
Figure F-3.
Figure F-4.
Figure F-5.
Figure F-6.

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

1-1
1-2
1-3
1-4
1-5
2-1
2-2
2-3
2-4
3-1
4-1
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
6-1
6-2

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

6-3.
8-1,
9-1.
9-2.
9-3.

LIST OF ILLUSTRATIONS (cont)

Output Listing from Screen....eeeceeceessccccescstcccccscsnsccs
Operator Action in Unprogrammed Halt or LoopPing cessesecesces
Minimum Equipment Configuration for Load-and-Go Operation...
Screen Equipment Configuration ¢ ceesscesessscscsccscssscacsss
Minimum Equipment Configuration for Go-Later Execution ..se..

Page

8-24
9-7
9-8
9-11
9-13

Example of Chaining....-.....---....-......-......o--......-10-6

Sample Regionalized Easycoder Program Unitisecsscssesscssssse
Compiler System Tape Organization.csesescsssccscscscscsscsesse
Organization of the Binary Run Tape cveeseceesscessscsscsessss
Organization of BCD TapeS.seesscsscssssccacssssscassscsssscs
Organization of Binary Tapes.cecescsessscscssssssecscrossance
Memory Map (Compilation Time).seseoseososccescscsscssssansna
Memory Map (Execution Time) ceeessscocscccsccsssssssssccssne

LIST OF TABLES

Source Program Coding Format csesseeseescscasccsssccscarsocs
Fortran Statement Categories s veeeesessessesssscsscasssssnssne
Relational Operators Defining Logical RelationS.eeeeeessssscoss
Logical OperatOrs.ccscecccscecssscscscssossccsssssosnncasanncss
Examples of ConstantS.ecescescecsesccsscscsccsscsccsrssssscacss
Arithmetic Operation SYmbolsS.ceeessssessssscoscssosscssasssse
Examples of Arithmetic EXpressionsS.ceececceesssosssscscsccssse
Logical Evaluation Using Logical OperatorS.iesesessesscsssccsse
Relational Operators ccesecscesoscssccssescessessccssssccsssss
Control StatementS.csecssssecsscesessscscsscsssoncsosssssencs
Specification Statements «veveeosssssscessssnsssssssssscscnses
I/O StatementsS.sesesssesssssscssssssesssssscsessassssssescscss
FORMAT Statement SUMMATY seeseeesesrsssssssssssasssscsssses
Contents of the Field Specification sceesesscesssccssssacscceancs
Field Specification FormatsS.ceeeceesacosscssscssoscssscossnce
Conversion CodeS.csesesessssssssssssssssssssssssssssosescsss
Scale Factor Shifting of Decimal Pointeeesecssesvrescvcsssssescses
Effects of Scale Factor on Input Values (F Conversion)ssssesececes
Effects of Scale Factor on Output Values (F Conversion)ieeeseessce
Effects of Scale Factor on Output Values (E Conversion)esssessse
Characteristics of Functions .ceeessscesessccssssccsssnscscnnss
Library FunctionS.seeeceseesceseesoccssscacscsassossasssasesse
Characteristics of the Subroutine SUbprogram.cccscecssesscsessas
System ModulesS.eseeeesssssssassssssnssecsssssssssscsssssasne
Console Call OptionS ceeseesescssssceosscsssscscssssassssacaces
Possible Halts During a Fortran RUN.cessesccsscccscsssosscsnss
Equipment for Load-and~-Go Operation.eccessssescscssesosssscssccs

xiii

NS
""\O\IL)O\Nm

NV WWOOOOULUTUTLMMUTOUOITO U RE WNDNNIDNR - R
[S Y D S AR SN BEN DN SR R |
OO D ml N R B R e e e b e O GT Y N0~] U1 D
Ll G PR VLR (U e RS IS B \N

LIST OF TABLES (cont)

Page
Table 9-4. Equipment for Screen.icecsccessssessesoccccsccoscssssssssssass 9=11
Table 9-5. Equipment to Execute Go-Later JObS ceeecsecscccccscscscsssssss 9-13
Table 10-1, Language LimitationS.sseeceeecscscscsssssncesasssscsccssseee 10-1
Table A-1. Octal-Decimal Conversion Table:ccesssoescscossscscssssssass A=l
Table B-1. Fortran Statement Summary..cceceeeseescsassscccsssssssssssss B=3
Table D-1. Procedures and Execution Routines on the Compiler System
TapPCeseesocscsosssssssasccsssascossassenassessssssnssasnscssses D=1
Table D-2, Library Error Conditions csseeeseescscesscescsssscssscscsssas D-4
Table E-1, Determination of Address Lengths in Region 3.ceeeeeesesssesee E-4

xiv

SECTION I
SOURCE PROGRAM SUMMARY

The purposes of this section are (1) to define program terms for Fortran Compiler D and
to describe source program formatting, and (2) to define and describe the elements of syntax

used to write the source programs.

PROGRAM DEFINITIONS

A main program is a sequence of properly formatted statements terminating with an END

statement. It may optionally begin with a TITLE statement. A main program can be compiled

independently, or it can be compiled in a chain of programs.
Subprograms are either functions or subroutines and begin with FUNCTION or SUB-
ROUTINE statements, A subprogram is called by a main program or by another subprogram

and must terminate with an END statement. A subprogram can be compiled independently.

Program (or program unit) is a general term that can refer to either a main program or

a subprogram.

Fortran Compiler D uses an overlay technique called chaining to maximize the memory
efficiency of object programs. Since every program in a job does not necessarily communicate
with every other program, the entire job need not fit in memory at the same time. In fact, the
job may be divided into independent segments which can each occupy all of memory at different
times. Such a group of programs within a job is called a chain., Each chain is a separate
memory load and is overlaid by the subsequent chain. A chain can call any other chain at any
time., The common area of memory provides the necessary data communication between chains.
A special control card, the Chain card, signals the beginning of the second and subsequent chains

in the input deck. The name of a chain may be any digit or letter,

Chaining is the basic overlay technique used in Fortran Compiler D. A chain begins with
a Chain card (*CHAIN, x), where x designates the particular chain. A chain is called with a
CALIL CHAINx statement, described in Section III. A chain terminates when either another

Chain card or any control card that defines the end of the current job is encountered.
‘

An executable program is a collection of statements, comment lines, and END statements

that completely (except for input data values and their effects) describe a computing procedure.

1-1

SECTION I. SOURCE PROGRAM SUMMARY

A job is:
1. Compilation of one or more program units —
2. Execution of an executable program
3. A combination of 1. and 2.
A job begins with a Job Identification card (*JOBID) and terminates when either another *JOBID
or an *ENDRUN card is encountered.
A run consists of one or more consecutive jobs requiring no operator action. A run begins
with a Console Call card and terminates with an *ENDRUN card.
SOURCE PROGRAM FORMATTING
Fortran Character Set
The characters used in Fortran statements are as follows:
Letters A through Z
Numbers 0 through 9
Ten special symbols:
= Equals { Left parenthesis
+ Plus) Right parenthesis
- Minus R Comma
~
* Asterisk . Decimal point
/ Slash A Blank
Honeywell Character Set
The Honeywell character set consists of the Fortran character set and the following 17
special symbols, shown as they appear on the printer:
! Apostrophe Cr Credit Sign
: Colon ¢ Cents Sign
> Greater Than a Box
& Ampersand a Filled Box
: Semicolon £ Not Equal
? Question Mark % Percent Sign
Number Sign ! Exclamation Point
" Quotation Mark
< Less Than
@ At Sign
All characters of the Honeywell character set can be used in Hollerith constants. Appendix H
shows the keypunching an'd machine codes for all Honeywell characters.
Blank Characters -
~

Blank characters are used to improve the appearance and legibility of program statements,

1.2

SECTION I. SOURCE PROGRAM SUMMARY

Blanks are significant only in the following cases:

1. A blank in column 6 of a statement card indicates that the card contains
the first line of the statement not a continuation line.

2. In Hollerith or alphabetic data, all blanks are literally reproduced.

Statements
FORMATTING FORTRAN STATEMENTS

The fundamental units of the Fortran program are statements, Statements are constructed
from the basic syntactic elements of the Fortran language using the character set shown above.
The basic Fortran syntactic elements - operators, delimiters, and names - are described later

in Section I.

Statements are divided into lines, each line corresponding to a single punched card. The
first line of a statement is called the initial line; any subsequent lines are called continuation
lines. Each line consists of a string of 72 characters from the Honeywell character set. The
character positions in a line correspond to the columns of a punched card and are numbered
sequentially 1, 2, ..., 72 from left to right. Each statement begins on a new line and a new

punched card; each initial line of a statement can be followed with up to nine continuation lines.

Shown in Figure 1-1 is the Fortran Coding Form indicating the coding fields, The body of
the statement is written anywhere in columns 7 through 72. Column 7 of a continuation line thus
follows column 72 of the preceding line. Columns 1 through 5 are reserved for a statement label
when the programmer requires the label for cross-referencing with the program, Only the
initial line of a statement can have a statement label. The label is a number, unique for the
statement, that can be placed anywhere in columns 1 through 5. The terms statement label and

statement number are used interchangeably throughout this manual.

FORTRAN PROGRAMMING FORM

TITLELI I I I l ‘t l ‘PROGRAMMER Checked By Date Page .. of
Statement g
Number [N
- T FORTRAN STATEMENT REMARKS
had N
1 5|617 10 15 20 25 30 35 40 45 50 55 60 65 70 72 80
! L1 TN T IO O T S DR (A S A S A T T O MU0 0 W A Y VOO W AV A A A AN SN SN AN AN AR AN AR B AR AR ORI A I AN A A
2 L1 TN S WO T U T A NV AN TSI N DO A RO SN A AN IR SN O AN U R I AN SR N A AN N AT A IR ST AR N I NI I I A
3 L1 ceeb e et b b e b by e v e b e b g b b a b v by b e
M — - 7\
STATEMENT ! ST;\TEM(E_,NT_', 28())DY R EMAI(?KS o8)
NUMBER CONTINUATION FIELD (7- FIELD(73-
FIELD (1-5) INDICATOR

FIELD (6)

Figure 1-1. The Fortran Coding Form

1-.3

SECTION 1. SOURCE PROGRAM SUMMARY

The initial line of each statement must contain either a zero or 2 blank in column 6. Con-
tinuation lines of the statement can have any legal Fortran character other than zero or blank in
column 6 to designate them as continuation cards. For example, continuation lines could be

numbered 1 through 9.

The letter''C'" in column 1 designates a line as a comment line. Comment lines are liter-
ally reproduced in the source program listing, but do not affect execution in any way; they are
available solely for the convenience of the programmer in documenting the program. The body
of the comment may appear anywhere in columns 2 through 80 of the comment card. Since
columns 73 through 80 are ignored by the compiler but reproduced in the source program
listing, these columns can be used for comments. When a comment requires more than one line,
additional comment cards punched with a "C" in column 1 are used. (This is the only permissible
method of indicating continuations of comments.) Comment lines may appear between lines of a

statement.

The contents of a line of the source program are summarized in Table 1-1, below.

Table 1-1. Source Program Coding Format

Coding
Sheet
Column Contents Use

1-5 Statement Label Used only with the initial line of a
statement. A statement label is
assigned by the programmer when the
statement is cross-referenced in the
program.

1 C Used only to designate comment lines.

2-80 Comment Comments are included for purposes
of programmer documentation. They
are nonexecutable,

6 Continuation field Indicates continuation of a statement.
indicator (a Fortran The initial line of a statement has a
character other than zero or blank in column 6. All subse-
0 or blank) quent lines of the statement must be in-
dicated in column 6. Any Fortran
character other than 0 or blank may be
used.

7-72 Statement Body of the statement, either exe-
cutable or nonexecutable, and one of
five general categories of statements.
v Statements are described in detail in
sections following.

1-4

®»

SECTION I, SOURCE PROGRAM SUMMARY

STATEMENT CHARACTERISTICS
Statements are divided into five categories according to their purpose and are characterized
as either executable or nonexecutable. Table 1-2 identifies the five statement categories and

indicates the section in this manual in which each statement is described.

Table 1-2. Fortran Statement Categories

Type of Statement Purpose Section Possible Statements

Arithmetic or Logical Specifies a numerical or a II a=b
logical computation.

Control Governs the flow of program 111 ASSIGN

execution: iteration, sequencing CALL

changes, etc. CALL CHAIN

CONTINUE

DO

END

GO TO (Unconditional,)
Computed, or
Assigned)

IF (Arithmetic or
Logical)

PAUSE

RETURN

STOP

Procedure Enables the programmer to define Vi FUNCTION
and use subprograms. SUBROUTINE
Statement Functions

Input/Output Transfers data from or to a \ BACKSPACE
peripheral device; manipulates a END FILE
peripheral device. FORMAT
READ
REWIND
WRITE

Specification Indicates necessary or desired v COMMON
information about the object DATA (Initialization)
program: memory requirements, Data-Type
data typing, etc. REAL
INTEGER
LOGICAL
DIMENSION
EQUIVALENCE
EXTERNAL
TITLE

Executable statements are those to which control may be transferred during the course of

a program. The following are executable statements:

1. All arithmetic and logical statements.
2. All input/output statements except FORMAT,
3. All control statements.

SECTION I. SOURCE PROGRAM SUMMARY

All other statements are nonexecutable. In a source program, statements are sequenced so

that nonexecutable statements, except FORMAT statements, precede the executable statements.

Figure 1-2 shows the sequence of source program input statements.

(END
e

r MAIN BODY OF EXECUTA-

BLE STATEMENTS AND
FORMAT STATEMENTS
L INTERMIXED.

STATEMENT
FUNCTIONS

e

DATA INITIALIZATION
STATEMENTS

P

SPECIFICATION
STATEMENTS

ATITLE OR
FUNCTION OR
SUBROUTINE

Figure 1-2. Sequence of Program Statements

Statement operators are listed in capital letters under '"Possible Statements' in Table 1-2.

Statement operators begin all Fortran statements except arithmetic and logical statements and

statement functions, The latter three types of statements are often called assignment state-

ments. Statement operators cannot be divided between lines of a Fortran coding sheet.

LABELING STATEMENTS

The programmer labels with a number the initial lines of statements that he wishes to

cross-reference in the program. A programmer has the option to label some statements;

however, certain statements must be labeled and others cannot be labeled.

Every statement referenced by another statement must have a statement label. This in-

cludes all FORMAT statements and the last executable statement in the range of a DO loop. The

first and last statements of a program cannot have statement numbers. This includes all TITLE,

END, FUNCTION, and SUBROUTINE statements.

Nonexecutable statements may have state-

ment labels, but these will be ignored by the compiler in all cases except FORMAT statements.
v

Only the initial line of a statement can be labeled.

The statement label assigned must be unique within that program and must be composed of

1-6

L1

SECTION I. SOURCE PROGRAM SUMMARY

numeric characters only. The numeric label can be placed anywhere in columns 1 through 5

of the coding form. However, to insure that no two labels in a program are the same, the pro-
grammer should remember that leading, embedded, and trailing blanks are ignored, Leading
zeros are also ignored; embedded and trailing zeros are significant, Statement numbers can
be assigned in any order, since their values do not imply sequencing. The permissible range

of statement labels is 1 through 99999.

SYNTAX

Thebasic elements of the syntaxof Fortran statements are operators, delimiters, and names.

Operators

Operators consist of statement operators, logical operators, and relational operators.

Operators specify action to be taken on named elements.

Statement operators begin all statements except arithmetic and logical assignment state-
ments and statement functions. Statement operators are listed under the column titled '"Possible

Statements, ' in capital letters in Table 1-2,

Relational and logical operators are written between named elements. The six relational

and three logical operators are given in Tables 1-3 and 1-4.

Table 1-3. Relational Operators Defining Logical Relations

Equivalent
Relational Mathematical
Operator Notation Definition
.EQ. = Equal to
.GE. 2 Greater than or equal to
.GT. > Greater than
. LE. < Less than or equal to
.LT. < Less than
. NE. # Not equal to

The value of a logical relation is . TRUE. if satisfied, . FALSE. if not satisfied.

Table 1-4. Logical Operators

Logical Equivalent
Operator Logical Notation Definition
.NOT. ~ (Overscore) Logical negation
. AND. n Logical AND

. OR. ! v Inclusive OR

The value of a logical expression resulting from use of a logical operator is either . TRUE.
or . FALSE. Determination of the evaluation of logical expressions is given in Table 2-3.

1.7

SECTION I. SOURCE PROGRAM SUMMARY

Delimiters
Delimiters are used to separate other statement elements and consist of the following eight
symbolic Fortran characters:

+)'/)(=*

Names

Names identify or reference data or procedures. A data name identifies a constant,
variable, array, or array element. These data categories are defined and illustrated later in
Section I. A procedure name identifies a function or subroutine; procedure categories are de-

fined and illustrated in Section VI.

A name is said to reference a datum if the current value of the datum will be made available
during the execution of the statement containing the reference. A name may identify without
referencing a datum. A name is said to reference a procedure if the actions specified by the

procedure will be made available during execution of the statement containing the reference.

Data names can be connected by certain delimiters to form arithmetic expressions or by
logical or relational operators to form logical expressions. Rules for forming logical and

arithmetic expressions are given in Section II.

Associated with data and certain procedure names are data types. For Fortran Compiler D

the allowable data types are integer, real, and logical. Data types are defined and illustrated

later in Section I.

Certain names are predefined as names of procedures supplied by Honeywell with the
compiler. The predefined procedures are library functions and are described in detail in

Section VI.

The names of statement operators are reserved in this compiler. Statement operators

can be used as variable or procedure names only in accordance with the rules given in Section X.

DATA NAMES

Names are used to identify or reference data that are classified as one of the following:

1. constants;

2. variables;

3. arrays; or)
4. array elements,

1-8

SECTION I. SOURCE PROGRAM SUMMARY

Constants

A constant is a specific numerical value or a string of literal characters. It cannot vary
during the computing process. A numerical constant can be signed or unsigned. The name of
the constant is the same as the value of the constant. Thus in Table 1-5 below, the constant
named 23 has a numerical value of 23. Additional examples of constants are given in the table.

A data type is shown associated with each constant; data types are discussed later in Section I.

Table 1-5. Examples of Constants

Constant Data Type

23 Integer (fixed point)

0
-456
+1275

-71.42 Real (floating point)
8.06
12,
12.0E2
12.0E-2
3.E5

. TRUE. Logical (only two possi-
 FALSE. ble values as shown)

Variables

A variable, as defined in Fortran Compiler D, identifies a datum that can be altered during
the computing process and is not subscripted. Subscripted variables are called arrayelements
in this manual and are discussed below in the paragraph on ""Arrays, Array Elements, and Sub-

scripting.'’

A variable must consist of 1 to 6 alphanumeric characters, the first of which must be

alphabetic.

In the statement
X=12.7
X is a variable and12.7 is a constant. It is possible that X may never be defined as anything
but 12.7, but it is still a variable because it identifies a datum that could be altered during exe-

cution of the object proggzam.

Data types are associated with variables. These data types and the rules governing them

are discussed later in Section I with additional examples of variables.

1-9

SECTION I. SOURCE PROGRAM SUMMARY

Arrays, Array Elements, and Subscripting

An array is an ordered set of data of either one or two dimensions which may be referenced

and/or altered during the

computing process. A one-dimensional array corresponds to a vector

(see Figure 1-3), and a two-dimensional array corresponds to a matrix (see Figure 1-4). Each

member of an array is called an array element. A name is assigned to each of the elements, as

well as to the entire array, Therefore, any single element may be referenced by name, or the

entire ordered set may be referenced through use of the array name. An array name must con-

sist of 1 to 6 alphanumeric characters, the first of which must be alphabetic,

AQ)

FOUR-ELEMENT ARRAY NAMED A

A(2) AQ) A4)

Figure 1-3.

One-Dimensional Array, Storage Sequence of Elements

Al,D 0

NOTE'

THREE-8BY-FOUR ARRAY NAMED A

/ ARRAY ELEMENT

ARROWS AND CIRCLED NUMBERS INDICATE STORAGE SEQUENCE

Figure 1-4,

Two-Dimensional Array, Storage Sequence of Elements

The name of an element is formed by appending a qualifier, called a subscript, to the

array name. The subsc'ript indicates which element in an array is being referenced. When this

array element notation is

used, the number of subscripts must equal the dimension of the array.

When an array is two-dimensional the two subscript expressions of each array element are

separated by a comma.

For example, in Figure 1-4, the element in the second row and

1-10

~

SECTION I. SOURCE PROGRAM SUMMARY

third column of array A has the name A(2,3). Array elements of two-dimensional arrays are
stored sequentially in memory by columns as shown in Figure 1-4. Thus the first (leftmost)
subscript expression of a two-dimensional array varies most rapidly and its last subscript ex-
pression varies least rapidly. An array element of a two-dimensional array can be identified
not only by its double-subscripted name but also by its storage sequence. For example, in

Figure 1-4, the element in the third row and third column can be called either A(3, 3) or A(9).

Within a subscript, each subscript expression may be in one of the following formats:

Format Example

k 2

v I

v+k I+2
v-k I-2

c*v 2%1
c¥*v+tk 2%I+1
cHv-k 2%I-1

Where: c and k are unsigned integer constants;
v is an integer variable; and
+

- are arithmetic expression delimiters for plus, minus, and
* multiply (See Section II)

In arithmetic statements, the array name can be used to reference the first element of the

array -~ for example, A for A(1l).

The data type associated with every array element subscript and with each subscript
expression is integer (fixed point), as described below. Arrays and array elements may have

integer, real, or logical data types associated with them.

DATA TYPES
Associated with data names and certain procedure names are their characteristic data
types. The data types for Fortran Compiler D are integer, real, and logical; they can be as-

sociated with constants, variables, arrays, array elements, and functions.

The name of a constant indicates its type. Data types associated with variables, arrays,
and array elements and with functions can be indicated in one of two ways:
1. The programmer can explicitly supply the data type by using a data-type
statement, described in Section IV. A data-type statement begins with
REAL, INTEGER, or LOGICAL and assigns the specified data type to

the variables, arrays, or functions that follow. All logical variables,
arrays, and functions must be declared in data-type statements.

1-11

SECTION I. SOURCE PROGRAM SUMMARY

2, Real or integer types of data can be implied in the name. Any name
that begins with one of the characters I, J, K, L, M, or N is an
integer unless otherwise specified in a data-type statement. A
variable that begins with any other character is real unless otherwise
specified in a data-type statement.

Each of the data types is defined and illustrated in the paragraphs following.

Integer Data

An integer is an exact whole number which can be positive, negative, or zero. Unsigned
numbers are presumed to be positive, No decimal point is expressed; therefore, integer data
are often referred to as fixed-point. Any fractions resulting from operations on integer data
are truncated without rounding before additional operations are performed (see the last example

of truncation below).

Precision of the integer data can be specified by the programmer on the *JOBID card in
the source program input deck. The range of precision is from 3 to 12 characters, but because
integer data is stored internally in binary, the number of decimal digits that can be stored is
from 5 to 20. When the programmer does not specify precision on the *JOBID card, a three-
character (five-digit) precision is used. Appendix C gives a detailed summary of precision

and internal storage of data.

Examples of integer constants are:
0 42 4157 +12428 17592186414
-0 -42 -4157 -12428 -17592186414

Examples of the results of truncation of fractions are:
3/4 is equal to 0;
5/2 is equal to 2;
(8/3) + (9/2) is equal to 6

An integer variable is normally implied in the data name. Any variable beginning with I,
J, K, L, M, or N, unless otherwise specified in a data-type statement, is assumed to be an in-

teger variable.

Examples of integer variables are:

v
INTEG K22 NUMBER

J L65A9 IVALUE

«

SECTION I. SOURCE PROGRAM SUMMARY

Note that the name of a variable is prefixed by one of the integer characters when an integer

variable is desired. Honeywell-supplied functions are prefixed in this manner. For example,
ABS and LABS

represent the function for determining absolute value, the first for real arguments and the

second for integer arguments. See Section VI for other functions.

Real Data
A real datum is a real, rational value that need not be a whole number. A real constant is
written with a decimal point or a decimal exponent or both. Realdataare also known as floating-

point data.

Real data may have values that are positive, negative, or zero and are stored, in memory
as decimal fractions (mantissas) and decimal exponents. If a sign is not given, the number is
assumed to be positive. When writing a real constant with an exponent, the letter E precedes
the exponent and identifies it. The mantissa can be written with a precision between 2 and 20
decimal digits. The programmer can specify mantissa precision on the *JOBID card in the
card input deck. If not specified there, precision is given to seven digits. The number of digits
specified in a constant is truncated, or trailing zeros are supplied to store the precision speci-
fied by the mantissa parameter. The range of the exponent is fixed at two decimal digits, i.e.,

-99< e £1+99. See Appendix C for detailed examples of storage of numbers.

Examples of real constants are:

12. 12.0 E2 (12.0 x 102 or 1200.)
.127 12.0 E-2 (12.0 x 10”2 or 0.12)
235,7450 3.E70

12544761, 1234 2E1

123456789. 01234567890

When the character following the letter E is zero, the next digit (if there is one) is con-
sidered to be the exponent, e.g.,

12.0 E02 is equivalent to: 12.0 E2 or 12.0 x 102
A zero exponent is permissible, but a blank character appearing in an exponent is suppressed

and ignored.

Unless otherwise specified in a data-type statement, any variable beginning with a charac-
ter other than I, J, K, L, M, or N is real.
Examples of real va’.riables are:
VARIBL Al26
FTRAN4 X

SECTION I. SOURCE PROGRAM SUMMARY

Logical Data

A logical datum can assume a truth value of either true or false. Logical constants are

either . TRUE. or . FALSE.

Hollerith, Octal and Alphabetic Data

Three kinds of data can be manipulated in Series 200 Fortran but cannot be defined in a

data-type statement. These are alphabetic, Hollerith, and ocatal data.

Alphabetic and octal data can be manipulated as variables associated with certain can-
version elements in input/output lists. This is discussed in Section V under "FORMAT state-

ment." An alphabetic datum can be placed in memory only through an input operation.

Hollerith and octal constants can be assigned to variables at loading time by use of a
DATA statement. This process is described under "DATA Initialization Statement'' on page

4-9.

Hollerith, octal, and alphabetic data are handled internally as fixed-point data and must

be associated with integer data types.

HOLLERITH DATA

A Hollerith datum is a constant that carries symbolic information rather than a value that
is available for mathematical computation. Any character of the Honeywell character set may
appear in a Hollerith datum, including letters, digits, and special symbols. Blanks are valid

and significant; they are not suppressed. A Hollerith datum is stored in an integer data field.

A Hollerith constant is written as follows:
nHxxxxxx
where: n is the number of characters (including blanks) in the constant
H indicates Hollerith
each x represents a Hollerith character
Examples of Hollerith constants follow:
4HDATA

71HTHIS ENTIRE SENTENCE IS A HOLLERITH CONSTANT, CONTAINING 71
CHARACTERS.

40HCAN SPECIAL SYMBOLS BE USED? DIGITS TOO?
30HYES, E.G., * (& :) # % , ETC.

3H429 !

27HB L. AN K S ARE SIGNIFICANT

SECTION I. SOURCE PROGRAM SUMMARY

A Hollerith constant can be indicated as the initial value of a variable or array element
through use of the DATA statement (see page 4-9). The datum can then be employed in algebraic

comparisons or as arguments of functions and subroutines.

Hollerith data can be manipulated by use of the conversion specification wH of the FORMAT

statement. See Section V for discussion of the field specification wH.

OCTAL DATA

An octal datum consists of any combination of numbers 0 through 7. For programmers not
familiar with octal numbering, a decimal-octal conversion table is included as Appendix A. An
octal datum is associated with an integer data item.

An octal constant is written as follows:

nOxXxXxXxxX

where: n is the number of x characters in the constant
Oindicates octal
each x represents an octal digit.

Some examples of octal constants are:

403777
1004567012345
700123456

An octal constant can be indicated as the initial value of a variable through use of the DATA
statement (see page 4-9), The datum can then be employed in comparisons or as arguments of
functions and subroutines. All comparisons, including octal, are made algebraically, not bit-
by-bit. For example, in the octal constants compared below

770000 < 000001

because 770000 is interpreted as a negative, twos-complement number.

ALPHABETIC DATA

Since data cannot be declared as Hollerith in a specification statement, there are no
variable character strings as such. As indicated in the discussion of Hollerith constants, how-
ever, a DATA initialization statement can be used to assign a Hollerith constant to an integer
variable, which can then be employed in comparisons or as an argument of a function or sub-

routine.

Character strings can be placed in memory through input operations and stored in integer
variable fields. When a e¢haracter string is stored in this manner, it is called alphabetic data
and can be manipulated as variables. An Aw field specification in a FORMAT statement is
associated with an integer variable in an I/O list to read an alphabetic variable into or out of

memory, as described in Section V.

SECTION II
ARITHMETIC AND LOGICAL EXPRESSIONS AND STATEMENTS

ARITHMETIC EXPRESSIONS

Definition and Evaluation

Arithmetic expressions consist of combinations of constants, variables, array elements,

and/or function references, separated by the arithmetic operation symbols listed in Table 2-1.

Table 2-1. Arithmetic Operation Symbols

Operation Symbol Meaning
+ Addition
- Subtraction
* Multiplication
/ Division
ol Exponentiation

Arithmetic expressions are evaluated during execution of the object program. Evaluation
consists of performing arithmetic on the constants, variables, array elements and/or functions
in the expression. The single numeric value which results may be different each time the ex-

pression is evaluated since the value of any named element, ,except constants, may change between

evaluations.

During evaluation, all values are invariant., The value of a variable or array element is the
value last assigned before evaluation. The value of an array element is, of course, determined
after evaluation of the subscript. The value of a function in an expression depends on the values
of the constants, variables, and/or array elements that are its arguments, since the function is
computed after evaluation of its arguments. Precedence rules for evaluation of arithmetic ex-

pressions are given later in this section.

The following rules govern arithmetic expressions:

1. An arithmetic expression must not contain logical data.

2. An arithmetic expression must not contain mixed data types, except that:
a. A real datum can be raised to an integer exponent,
b. In general, functions may have arguments of any type. (This does

not holfd for library functions. See Section VI.)

3. One arithmetic operation symbol cannot immediately follow another
arithmetic operation symbol.

SECTION II. ARITHMETIC AND LOGICAL EXPRESSIONS AND STATEMENTS

4. Parentheses may enclose any arithmetic expression.
5. A plus or minus sign may precede any arithmetic expression.
6. A negative mantissa cannot be raised to a real exponent.

Examples of Fortran arithmetic expressions are given in Table 2-1 with their mathematical

representation and data names and types.

Table 2-2. Examples of Arithmetic Expressions

Fortran Expression Mathematical Expression Data Name and Type
2+3 2+3 Integer constants
I1-7J I-7 Integer variables
A/ B % or A -+ B Real variables
2. *X 2X or 2(X) or 2-X Real variable
X %k 2 X2 Real variable
Y(1) + Y(2) - Y(3) Y, +Y, - Y, Real array elements
B#k2 - 4, * A% C . B2 - 4AC Real variables
2. E4 % A % B %% (44K) 20, 000AB4+tK Real variables
RFUN (X) RFUN (x) Real function reference

Hierarchy of Arithmetic Operations

During evaluation of an expression, arithmetic operations are performed one at a time,

according to the following rules, and as described at the beginning of this section.

RULE 1. In the absence of parentheses specifying the exact order of evaluation,

the priority of operations is:

1. Exponentiation;

2. Multiplication and division; and

3. Addition and subtraction.

Examples:

1. The expression A - B * C is evaluated as though it were written:

A - (B Q)

That is, the product of B * C is evaluated first, then subtracted from A
(because multiplication is at a higher level in the hierarchy of operations
than subtraction).

2. The expression A + B/C*%2 is evaluated as though it were written:
‘ A+—2
C

That is, C%%*2 is computed first; this valueis divided into B, and the
resulting quotient is added to A. (Exponentiation, followed by division,
followed by addition.)

SECTION II. ARITHMETIC AND LOGICAL EXPRESSIONS AND STATEMENTS

RULE 2. Where precedence is not otherwise indicated, evaluation of the ex-
pression proceeds from left to right.

Example:

In the following example, both division and multiplication are at the same level
in the hierarchy of operations, and precedence is not otherwise indicated; therefore,
evaluation proceeds from left to right:

A / B * C is interpreted as% . C, not BéC .
RULE 3. Parentheses may be used to alter the hierarchy of operations, since ex-
pressions in parentheses are always evaluated separately (regardless of the
evaluation sequence otherwise implied by the hiérarchy of operations),

Examples:

B—% . Without the parentheses, the
interpretation would be as shown in the preceding example.

1. A / (B * C) is interpreted as

2. In the expression (A + B) * C, the use of parentheses overrides the normal
hierarchy of operations. Therefore, the addition is performed before the -
multiplication, even though multiplication is at a higher level in the hierarchy
of operations.

RULE 4. In a nest of parentheses (i.e., one pair of parentheses within another),
the expression within the innermost pair of parentheses is evaluated first, then
the one within the next innermost pair, etc. The expression within the outermost
pair is evaluated last,
Examples:
1. In the expression:
A*(B-(C/(D+E))

the sequence of evaluation is:

a. D + E is computed.

b. = The sum of D + E is divided into C.

c. The quotient of C/(D + E) is subtracted from B.

d. The result is multiplied by A.

2., The expression 5, %(3, ¥xAPW+SQRT(A%*%2))/4, *(B**ABS(X)) is evaluated in
the following sequence:

a. A%kx2

b. SQRT(A#*%2)

c. 3. ¥*%APW

d. 3. #*APW+SQRT (A*%2)

e. ABS (X)

f. B#*ABS(X)

g. 5, %(3. **APW+SQRT (A*%2))

h. . (3. *FAPW+SQRT (A%%2)) /4.

i. 5. %(3, **APW+SQRT(A%*%2))/4. *B**ABS(X)
2-3

SECTION II. ARITHMETIC AND LOGICAL EXPRESSIONS AND STATEMENTS

ARITHMETIC STATEMENTS

An arithmetic statement has the form:

~
Where: a is a variable or array element of the real or integer type;
= means 'is assigned the value'; and
b is a real or integer arithmetic expression.
The variable to the left of the equals sign determines the form of the result. If the variable on
the left is integer and the expression on the right is real, the result is computed as a real value,
truncated, and converted to an integer value. If the variable on the left is real and the expression
on the right is integer, the result is computed as an integer value and converted to a real value.
Following are examples of arithmetic statements:
A=B Store the value of B in A.
I=8B Truncate B to an integer and store
in I.
A=1 Convert I to a realvalue and store in A.
A=1.0 Store 1.0 in A,
JINDEX(1) = 2 Store 2 in integer array element JINDEX(1).)
JINDEX = A Convert real variable A to an integer value —
by truncating and store in JINDEX.
X=12. %Y+ (Z2-2.)%%2 Using real arithmetic, subtract 2. from Z;
square the result and add it to the product
of 12. times Y; then store the final result
in X,
N = N/M Using integer arithmetic, divide N by M,
and store the result of the division (i.e.,
quotient) in N,
LOGICAL EXPRESSIONS
Definition)
When evaluated, a logical expression produces the value . TRUE. or . FALSE.. A logical
expression may take any of the forms listed below:
1. A logical expression may be one of the following single named elements:)
A logical constant (i.e., . TRUE. or . FALSE.); or
b. A logical variable; or s
v
c. A logical array element; or
d. A reference to a logical function (i.e., a function that delivers)
a logical result).
"

SECTION II. ARITHMETIC AND LOGICAL EXPRESSIONS AND STATEMENTS

2. A logical expression may be composed of any sequence of logical constants,
logical variables, logical array elements, and/or references to logical
functions, provided that each named element is separated from another by
one of the logical operators defined below.

3. A logical expression may be composed of pairs of arithmetic expressions
separated from one another by one of the relational operators defined below,
provided that the type of the expression on each side of the relational operator

is the same.

other logical expression described above.

Logical Operators

Logical operators are defined as follows:

In combining the logical operators . NOT., .AND., and .OR.

sulting logical expressions have values of either . TRUE. or

Each pair is a logical expression that may be combined as any

Operator Definition
.NOT. Logical negation.
. AND. Logical AND.

.OR. Inclusive OR.

Letters a and b represent logical expressions.

with logical expressions, the re-

.FALSE. as defined in Table 2-3.

Table 2-3. Logical Evaluation Using Logical Operators

'Logical Expression Value of a Value of b Value of Resulting Expression

.NOT.a . TRUE, --- .FALSE.
.FALSE. --- . TRUE.

a.AND.b . TRUE. . TRUE. . TRUE.
. TRUE. .FALSE, .FALSE.

.FALSE. . TRUE. .FALSE.

.FALSE. .FALSE, .FALSE.

a.OR.b . TRUE. . TRUE. . TRUE.
. TRUE, .FALSE. . TRUE,

.FALSE. . TRUE. . TRUE.

.FALSE. .FALSE, .FALSE.

In using logical operators the following rules must be observed:

1.

operator is . NOT..

Two logical operators must not be adjacent to each other unless the second

A period, as Shown, is includedat the beginning and end of each logical operator.

If the logical operator . NOT. is to apply to an expression following it that

includes more than one named element, the required expression must be

enclosed in parentheses.

If the expression is not enclosed within pa-
rentheses, the . NOT. applies only to the first element of the expression.

2-5

SECTION II. ARITHMETIC AND LOGICAL EXPRESSIONS AND STATEMENTS

Relational Operators

Logical relations are defined by using the relational operators given in Table 2-4.

Table 2-4. Relational Operators

Relational Equivalent Definition
Operator Mathematical
Notation
.EQ. = "Equal to
.GE. b Greater than or equal to

.GT. > Greater than

.LE, < Less than or equal to
.LT. < Less than

.NE. # Not equal to

The value of a logical relation is . TRUE. if satisfied, . FALSE.
if not satisfied.

Hierarchy of Logical Operations

All arithmetic expressions are evaluated before logical expressions. The complete hier-
archy of logical and arithmetic operations is as follows:
1. Arithmetic expressions are evaluated in the order given on page 2-2.

2. Any logical relations (. EQ.,.GE., .GT., .LE., .LT., or .NE.) are
evaluated from left to right in the expression.,

.NOT.
4. . AND.
5. .OR.

As with arithmetic expressions, parentheses may be used to specify the hierarchy of

logical expressions.

LOGICAL STATEMENTS

A logical statement has the form:

Where: a is a logical variable or logical array element;
4

= means ''is assigned the value''; and

b is a logical expression.

2-6

SECTION II.

ARITHMETIC AND LOGICAL EXPRESSIONS AND STATEMENTS

The logical expression is evaluated and the previous value of the logical variable or array

element on the left of the equals sign is assigned the truth value . TRUE. or . FALSE, For

example:

>
1

o
1l

Q
Il

A(l) = .NOT. (X. EQ. 50. / Y**2)

vs)
n

o
1l

Logical Statement

.FALSE.

X.LE. 5.

X.GT.5..0R.Y.LT.Z

X.AND..NOT.Y

X.GT. {(50.%Y + W/(X-2.))

Interpretation

Logical constant . FALSE. is stored
in A.

If X is less than or equal to 5., B has
the value . TRUE.; otherwise, Bhas
the value . FALSE.

Determine a value of . TRUE. or
.FALSE. for the relation X.GT.5..
(It is . TRUE. if X is greater than 5.,
.FALSE. otherwise.)

Determine a value of . TRUE. or
.FALSE. for the relation Y.LT. Z.
(It is . TRUE, if Y is less than Z,
.FALSE. otherwise.)

If the value of either relation is . TRUE,,
store . TRUE. in C; otherwise, store
.FALSE. in C.

If X equals 50. divided by Y2, store
the value . FALSE. in logical array
element A(l); otherwise, store the

value . TRUE. in A(l).

If Yis .FALSE. and X is . TRUE,,
store the value . TRUE., in B; other-
wise, store . FALSE. in B.

The arithmetic expression is evaluated
in the conventional manner (i.e., the
expression in the innermost parentheses
is evaluated first, then the expression
in the outermost pair).

If X is greater than the final result, the
value . TRUE, is stored in D; otherwise,
.FALSE. is stored in D.

The character '.'" may appear twice in succession in a logical statement under the following

conditions:

1.

When one period (or decimal point) is part of a constant and the other is part

of a logical or relational operator. See example 3 above.

When a first logical operator is followed by . NOT.. Refer to example 5 above.

-

*

SECTION III
CONTROL STATEMENTS

Fourteen control statements govern the flow of control during execution of the program.
Thus, control statements can be used to depart from the normal sequence of statements in
the program, making it possible to bring in new sets of data or to carry out an iterative process.

The fourteen control statements are listed in Table 3-1. All control statements are executable.

Table 3-1. Control Statements

Control Statement Pages Where Defined
ASSIGN 3-2
CALL 3-7
CALL CHAIN 3-8
CONTINUE 3.8
DO 3-4 to 3-7
END 3-9
GO TO (unconditional) 3-1
GO TO (computed) 3-2
GO TO (assigned) 3-2
IF (arithmetic) 3-3
IF (logical) 3-3
PAUSE 3-8
RETURN 3-8
STOP 3-9

UNCONDITIONAL GO TO

An unconditional GO TO statement has the form:

Where: n is the statement label of an executable statement in the same program
unit as the GO TO statement. The Unconditional GO TO statement
transfers control directly to the statement labeled n.

Example: GO TO 17

When the statement labeled 17 has been executed, control is trans-
ferred in the normal sequence to the next executable statement
following 17, unless the statement labeled 17 again changes the
control sequence.

SECTION III. CONTROL STATEMENTS

COMPUTED GO TO

A computed GO TO statement has the form:

GO TO (nl, n,,.. .,nm), i

Where: n, N,,...,n are labels of statements in the same program unit as the
GO TO statement, and i is the integer variable that must
take on values in the range: 1< i< 63. Therefore, the
maximum value of m is 63.

The computed GO TO statement transfers control to the statement whose label is ith from
the left parenthesis.
Example: GO TO (20, 50, 75, 1066), 1

Interpretations: If I=1, GO TO 20
If I=2, GO TO 50
If I=3, GO TO 75
If I=4, GO TO 1066

ASSIGNED GO TO AND ASSIGN STATEMENTS

An ASSIGN statement is used in conjunction with an assigned GO TO statement within the

same program body. The ASSIGN and assigned GO TO statements are of the form:

ASSIGNn TO i

s o e e o

GO TOi, (n,, n

1 2’-nt,n

m)

Where: n is a label of a statement in the same program unit as the

ASSIGN statement.
i is an integer variable (the same in both statements).

n,, n,,...,n_ are all of the possible statement labels which n may
assume. m>0.

The ASSIGN statement assigns a statement label to the integer variable i. This label isone

of the possible statement labels listed in the assigned GO TO statement.

The assigned GO TO statement then transfers control to the statement whose label has been
assigned to the variable i. The list of statement labels within parentheses in the assigned GO TO
statement should conta.in'all of the possible statement labels which can be assigned to integer
variable i. Commas are significant and must be punched before the opening parenthesis and

between statement labels within the parentheses. The integer variable should not be used for

computation until it is assigned a numerical value, thereby replacing the statement label value.

3-2

()

SECTION III. CONTROL STATEMENTS

Example of assigned GO TO statement:
ASSIGN 375 TO J

................

Same
Program

................

................

GO TO J, (210, 250, 375, 48, 56)
When the assigned GO TO statement is encountered, control is transferred to statement 375,

When using 4-character addressing, integer precision of 4 characters or more is required

to execute an assigned GO TO statement.

ARITHMETIC IF STATEMENT

An arithmetic IF statement has the form:

IF (e) n,,n

2’ "3

Where: e is an arithmetic expression of the integer or real type; ny, Ny, ng
are statement labels of executable statements in the same program

unit as the IF statement.

The arithmetic IF statement transfers control to one of the three statements listed, depend-

ing on whether the arithmetic expression e is evaluated to be negative, zero, or positive. If the

result of the evaluation is negative, control is transferred to the statement labeled nl; if zero to

nz; and if positive to n_. All three statement labels must be listed.
Example: IF (X*%3 - 27.) 210, 425, 215

3 3

Branch to statement 210 if X <27, i.e., (X - 27.) is negative;
3

Branch to statement 425 if X = 27, i.e., (X3 -27.) =0;

3 3
Branch to statement 215 if X > 27, i.e., (X - 27.) is positive.

LOGICAL IF STATEMENT

A logical IF statement has the form:

. IF (e) s

Where: e is a logical expression.
s is any executable statement, except a DO statement or another logical IF

statement.

Statement s is executed only if the value of the logical expression e is . TRUE. If the value

of e is . FALSE., the logical IF statement is executed as if it were a CONTINUE statement.

Examples of logical IF statement:

v
1. IF (A.LE.B) GO TO 43
If A is algebraically less than or equal to B, execute the statement labeled
43 next.

SECTION III. CONTROL STATEMENTS

2. IF (A .AND. B) CALL BOTH
If A is TRUE and if B is also TRUE, call subroutine BOTH.,

3. IF (L} X = SIN(X)
If the value of I.is TRUE, replace X by SIN(X).

DO STATEMENT

A DO statement has one of the following forms:

DOni-= ml, m,, m3
or: DOn1=m1, m,
Where: n is the statement label of the last statement in the sequence of

instructions to be executed repeatedly as a loop. That statement
must be executable.

i 1is an integer variable.

m_ is the initial value of i; it may be an unsigned integer or
integer variable.

m, is the terminal value of i; it may be an unsigned integer
or integer variable.

m, is the amount by which i is to be incremented at the end
of each pass through the loop; it may be an unsigned in-
teger or integer variable. If m, is not stated, it is under-
stood to be one.

A DO statement is placed at the beginning of a sequence of statements that are to be exe-
cuted repeatedly as a loop. It defines the starting point of each complete repetition of the loop,
the end point, and the number of times the loop is to be repeated. The starting point of the loop
is the first executable statement after the DO statement; the termination point is that statement
whose statement label (n) appears in the DO statement. All intervening instructions between
the DO statement and terminal statement n (including the terminal statement) are executed in se-
quence each time that control passes through the loop. The parameters (m;, m,, mj) of the
control variable (i) control the number of repetitions of the loop. Both the initial value (ml) of
the control variable and the terminal value (mz) are always specified in the DO statement. The
amount by which the control variable is to be incremented (m3) after each execution of the loop
may or may not be specified in the DO statement. If mg is not explicitly defined, it is assumed
to have a value of one. During execution of the DO statement, m;, m,, and mg must be greater

than zero.

The action of a DO'statement is as follows:

1. It initializes the control variable (i} with the value of the first (leftmost)
DO parameter (m).

2. It executes the set of statements up to and including the terminal statement n.

3-4

SECTION III. CONTROL STATEMENTS

3. After executing the terminal statement, it increments the control variable by
the third DO parameter (m3), or by a value of one if no third parameter is
specified.

4. It compares the incremented value of the control variable with the value of

‘the second DO parameter (mz). If the incremented value is less than or
equal to the terminal value, steps 2, 3, and 4 of this description are re-
peated; if the incremented value is greater than the terminal value, the

DO loop is said to be satisfied, and control is transferred to the nextstate-
ment in the program sequence following the terminal statement of the DO loop.

The range of a DO loop is the sequence of statements starting with the first executable
statement after the DO statement and continuing up to (and including) statement number n, the
terminal statement. The terminal statement must occur physically after the DO statement, not
just logically after it. Furthermore, the terminal statement may not be any type of GO TO
statement, or an arithmetic IF, DO, RETURN, or STOP statement. Figure 3-1 shows an

example of a DO statement . and its range.

Label of last Control Initial value Final value Amount by which
statement in variable of Control of Control Control variable is
range variable variable to be incremented
after each exe-
cution of loop
DO 50 I = 1, 3, 1
e ta e cereees cettsesaseassecsssses (Firstexecutable statement)
Range
of et e e s
DO T R R R cheee
Loop
SOV\CONTINUE (Terminal Statement)
Statement label n

Figure 3-1. The DO Statement and Its Range

Neither the control variable nor the DO parameters (m, mj, mg3) may be altered by pro-
gram statements during the execution of the loop. However, the value of the controlvariable is
available throughout the range of the DO statement for use in computations, e.g., in subscripted
expressions, and for referencing. Its value is that which was last assigned during execution of
the loop. The value remains constant throughout the range until incremented at the end of the
range. After the DO loop has been satisfied and control has been transferred out of the range of
the DO statement, the controlvariablei is still available for use in any operation. Unless
deliberately changed, it remains equal to the last incremented value, i.e., the value which ex-

ceeded m; and thus caused control to be transferred out of the DO loop.

One DO loop may contain within it one or more DO loops, provided that each inner DO loop

is completely contained within the range of the outer loop. The use of one DO loop within another

3-5

SECTION III. CONTROL STATEMENTS

is called nesting of DO loops. DO loops may be nested up to a depth of 10. Examples of per-
missible nesting are illustrated in Figure 3-2, using the bracket symbol to represent a DO loop.
Note that two loops may end on the same terminal statement (example C in Figure 3-2). The
ranges of two loops cannot overlap in the way shown in Figure 3-2 example E, i.e., the one that

starts last must be satisfied first. DO loops are said to be completely nested when there is only

one inner loop within the next outer loop. If two or more inner loops are within the same outer

loop, as in example B of Figure 3-2, the entire nest is noncompletely nested.

A. ONE DO LOOP B. TWO INNER C. TWO LOOPS D. SET OF COM- E. ILLEGAL
COMPLETELY LOOPS WITHIN TERMINATING ON PLETELY NESTED NESTING OF
WITHIN ANOTHER OUTER LOOP SAME STATEMENT LOOPS LOOPS

Figure 3-2. Legal and Illegal Nesting of DO Loops

The statements in the first DO loop of Figure 3-2 are executed in sequence starting with the
first executable statement and continuing up to the DO statement at the beginning of the inner loop.
At this time, control is transferred to the inner loop, and the statements in this loop are executed
repeatedly in sequence as many times as necessary until the loop is satisfied. Then control
returns to the outer loop (specifically, to the first executable statement after the terminal state-
ment of the inner DO loop). The balance of statements in the outer DO loop are executed until
one complete iteration of the outer loop has been performed. At this point, the whole cycle
repeats, exactly as described above until the outer DO loop is also satisfied. Then control is

transferred to the next executable statement following the terminal statement of the outer DO

loop.

It is permissible to transfer control freely within a DO loop; it is also permissible totrans-
fer control out of the range of a DO loop or to another DO statement. Examples of legal transfers
are shown graphically in Figure 3-3. It is not legal, however, to transfer into the range of a DO
loop from outside its range. Figure 3-4 shows illegal transfers of control. Control may be
transferred outside the rhnge of a DO loop by calling a subroutine, function subprogram, library
function, or statement function. Extended ranges whereby control can be passed out of and back

to a DO loop through arithmetic IF and GO TO statements are not permitted.

3-6

SECTION III. CONTROL STATEMENTS

< D . E S |IC
|) D_D)_EE

A. B. C. D. E. F. G. H.
_
Figure 3-3. Legal Transfers of Control
A B c

Figure 3-4. Illegal Transfers of Control

CALL STATEMENT

~ The CALL statement transfers control to a designated subroutine; it is the only mechanism
available for transferring control to a subroutine. When the subroutine returns control to the
calling program, the first executable statement following the CALL statement is the next state-
ment to be executed. If the CALL statement is the terminal statement of a DO loop and the DO
loop has not been satisfied, control returns to the first executable statement in the DO loop.
The CALL statement may be written with or without arguments.
The two general forms are:
1. CALL subnam (argl, arg,, ..., argn)
2, CALL subnam
) Where: subnam is the subroutine name.
(argy, arg,,...,argy) is the list of actual arguments which are to
replace the dummmy arguments in the SUBROUTINE
- statement at the time the subroutine is entered;
! i.e., these arguments are to be transmitted from
the calling program to the called subroutine.
The arguments must agree in number, type, and
— order with the SUBROUTINE statement arguments.

(See Section VI1.)

3-7

SECTION III. CONTROL STATEMENTS

RETURN STATEMENT
The RETURN statement has the form:

RETURN

The return statement causes control to be transferred from a function subprogram or
subroutine subprogram to the point in the using program at which it was relinquished. In the
case of a subroutine, control is returned to the first éxecutable statement following the CALL
statement that gave control to the subroutine. If the CALL statement is the terminal statement
of a DO loop and the DO loop has not been satisfied, control returns to the first executable state-
ment in the DO loop. In the case of a function subprogram, control returns to the statement in
which the function is imbedded. Since a RETURN marks the end of logical flow of the subpro-

gram, there may be more than one RETURN in a subprogram.

CALL CHAIN STATEMENT

A CALIL CHAIN statement has the form:

CALL CHAINx

Where: x is the character that identifies the chain. The programmer can use any
digit or letter as identifier.

The programmer divides the input deck into groups of related programs called chains. ~

Each chain is an independent memory load that includes all the routines (library and execution

. . . . *CHAIN, x . -
package) required by programs in the chain. In the input deck a card identifies

each chain. The programmer can then use the CALL CHAINx statement to call any chain at

any time. The called chain will overlay the chain currently in memory. Control is transferred
to the first main program of the chain called. See the discussion of the COMMON statement

(Section IV) for additional information on chaining.

CONTINUE STATEMENT

A CONTINUE statement has the form:

CONTINUE

This is 2 dummy statement which does not alter the sequence of program instructions. It

is usually assigned a statement label and used to reference a point in the program. An example

©

is the termination of a DO loop.
v

PAUSE STATEMENT

A PAUSE statement has the form:

3-8

SECTION III. CONTROL STATEMENTS

PAUSE

or

PAUSE n

Where: n is an identification constant of six or less octal digits, the first of which
must be less than or equal to 3 for a 16K machine.

The PAUSE statement causes a halt in the execution of the program. The statement is
usually included to allow time for operator action. The identification constant n, when included,
indicates the particular PAUSE statement which caused the halt. The identification constant, if
present, is stored in the machine's A- and B-address registers, which can be interrogated from
the console. (See Section IX for the console display of the identification constant.) The program

will continue execution with the next statement upon resumption of the run.

STOP STATEMENT

A STOP statement has the form:

STOP
or

STOP n

Where: n is an identification constant of six or less octal digits, the first of which
must be less than or equal to 3 for a 16K machine.

The STOP statement causes final termination of the object program. When no identification
constant is present, an automatic exit to the monitor occurs. The identification constant n, when
included, indicates the particular STOP statement which caused termination and is stored in the
machine's A- and B-address registers, which can be interrogated from the console. When a
STOP n is encountered, a halt occurs and n is displayed in the A- and B-address registers. (See
Section IX for console display of the identification constant.) Upon resumption of the program,

an exit to the monitor occurs.

END STATEMENT

An END statement has the form:

END

The END statemenpt must be the final statement of a main program or of a subprogram.
When control passes to an END statement in a main program, it is executed as a STOP. Ina
subprogram it is executed as a RETURN. The END statement may not have a statement label.

The statement operator, END, may appear anywhere in columns 7 through 72.

3-9

)

)

SECTION IV
SPECIFICATION STATEMENTS

The programmer uses specification statements to declare or specify certain information
about the object program that the compiler cannot obtain in any other way. There are nine

specification statements, listed in Table 4-1. Specification statements are nonexecutable.

Table 4-1. Specification Statements

Statement

COMMON

DATA Initialization
DIMENSION
EQUIVALENCE
EXTERNAL

INTEGER
LOGICAL Data-Type
REAL

TITLE

DIMENSION STATEMENT

The DIMENSION statement is used to specify to the compiler how much memory will be
required for arrays used in the program. A DIMENSION statement indicates the names of the

arrays, the number of dimensions of each array named, and the maximum size of eachdimension.

A DIMENSION statement has the form:

DIMENSION vy (111, 112), V2(121’ 122). "vn(lnl’ an)

Where: v, v

1 v_ are names of arrays.

IR o
is an unsigned integer constant (greater than zero),
representing the maximum number of rows in
array v_.

Y Vn

1nl

i 2 is an unsigned integer constant (greater than zero),
n ; . .
representing the maximum number of columns in

two-dimensional array v

(i_, is not written when the array is one-dimensional,
nor is the comma preceding it.)

4-1

SECTION 1IV. SPECIFICATION STATEMENTS

As indicated by the format, a DIMENSION statement can be used to declare all arrays in
a given program. Each array is separated from the previous array by a comma. The integer
constants following the name of the array give the maximum number of array elements in the
array dimension. The first dimension following the name applies to rows and the second
dimension, when present, represents columns. For example:
DIMENSION ARRAY (3,2), MATRIX (4,5), B (10)
indicates three arrays, the first of which has three rows and two columns; the second array

has four rows and five columns; and the third array is one-dimensional with 10 elements.

During execution of the object program, ifa reference toan array element contains a sub-
script which assumes a value larger than the maximum specified in the DIMENSION statement,

or if it assumes a zero or negative value, the computational results will be erroneous.

Although information about the names, sizes, and dimensions of arrays is most usually
given in DIMENSION statements, it is sometimes convenient to use COMMON and data-type

statements for this purpose.

COMMON STATEMENT

Use of the COMMON statement permits different programs to share common memory
areas that are never overlaid. The COMMON statement can be used to set up a nonexclusive

common block, called an unlabeled common block, or to set up exclusive, or labeled, common

blocks.

An unlabeled common block provides data storage that is common to all programs within a

job. The smallest amount of common storage used in any of the chains of the job is the amount

which is reserved for the job. For example, in a job consisting of three chains, where chain 1

specifies 100 memory cells in unlabeled common storage chain 2 specifies 200, and chain 3 speci-

fies 300, onlythe first100cells are preserved after execution of any one of the chains.

A labeled common block provides data storage common to programs within a chain only.

Labeled common storage is released after executing the chain,

A COMMON statement has the form:

COMMON v., Vv, vee, V
1 2 n

, .

COMMON /LBL1/ VsV

or

Rk

- vn/LBLZ/ ver, vzu, EERIA

()

"

SECTION IV. SPECIFICATION STATEMENTS

Where: LBL1, LBL2, etc. are names of common blocks within the common
region. Block names are enclosed between two
slashes. Block names may be one to six alpha-
betic or numeric characters, the first of which
must be alphabetic. When no block name is
given, the unlabeled common region is designated.

vl, v e vn are names of single variables or arrays that are
to be assigned in the order listed to the common
block named in the preceding label or to the un-

labeled common region when no label is given.

2)

If an array is named, it may be followed by its
dimensioning information in parentheses.

A single COMMON statement can be used to define any number of labeled common blocks
and a single unlabeled common block. Refer to Figure 4-1 for an example of the definitionofthree
labeled blocks. When defining an unlabeled common block in the same COMMON statement
with labeled common blocks, the programmer omits the label designation between the slashes.
The unlabeled common block can also be defined in a separate COMMON statement as shown

in the first format above.

For example, COMMON statement 1 below is the equivalent of COMMON statements 2
and 3.

1. COMMON /LABEL1/U, V(2,3), VARIBL/ /A, B, C, D(3,4), E

2. COMMON A, B, C, D(3,4), E

3. COMMON /LABEL1/U, V(2,3), VARIBL
In each case, an unlabeled common block is defined that contains variables A, B, C, and E,
and array D. A single labeled common block is defined that contains variables U and VARIBL

and array V.

Variables and arrays are stored in each common block in the order in which they appear
in the COMMON statement. Equivalent variables in different programs must have exact

positional correspondence in the COMMON statements.

For example, program A in Figure 4-2 has three variables X, Y, and Z, which are
equivalent to three variables in program B, CAT, RAT, and BAT, respectively. In the figure,
a labeled common block called LABELI is constructed to provide the required equivalence.
Since X is equivalent to CAT, the two variables are assigned corresponding positions in their
respective COMMON statements. Similarly, the remaining variables are equated by positional

correspondence.

SECTION IV.

SPECIFICATION STATEMENTS

Va riablevs and Ar-

BLOCK #1 BLOCK #2 BLOCK #3
LABEL LABEL LABEL
e N

COMMON /LABEL1/ A, B, C, D(3, 4) /LABEL2/ X, Y, Z /LABEL3 /U, V(2, 3),
/ / (3, 4/ /. / (2, 3)

VARIBL

()

Variables Variables and Array
ray in Block #1 in in Block #3
Block #2

Figure 4-1. COMMON Statement for Three Labeled Blocks

Program A: Memory 1 2 3
COMMON /LABEL1/X, Y, Z Assignment % Y 2
Program B: CAT RAT BAT

COMMON /LABELI1/CAT, RAT, BAT Common block "LABELI1"

Figure 4-2. Communication Via Positional Correspondence

The size of a common block in a program (or subprogram) is the sum of the storage loca-
tions required for all the elements declared (through COMMON and EQUIVALENCE statements)
to be in that block. The sizes of identically labeled common blocks must be the same in pro-
grams which are to be executed together; i.e., they must have the same total number of variables
and/or array elements. The sizes of unlabeled common blocks in programs which are to be

executed together need not be the same.

An array may be dimensioned in a COMMON statement by referencing the highest subscript
of the array. For example, the statement
COMMON A(3, 4)
dimensions array A as a three-by-four array and places it in the common region as shown

below:

Memory

. 1 2 3 4 5 6 7 8 9 10 11 i2
Assignment

A(l, 1)1A(2, 1)A(3, 1)|A(L, 2)|A(2, 2)|A(3, 2){A(L, 3){A(2, 3)|A(3, 3) [A(L, 4)|A(2, 4)]A(3, 4)

SECTION IV. SPECIFICATION STATEMENTS

There are two ways to equate common elements which have different positions within a

block. Consider the statement in program I:

COMMON A, B{(2, 2), C, D, E

If four variables in program 2 are equivalent to A, C, D, and E, program 1 may be
reconstructed to include labeled common blocks as follows:

COMMON /LABELA/A, C, D, E/ /B(2, 2)

Program 2 would contain the statement:

COMMON/LABELA/ALPHA, BETA, GAMMA, PSI

As an alternative to changing program 1 to include a labeled block, program 2 may

introduce a dummy array to ''space over'' the uninteresting portion of the common block. Spac-

ing over array B is illustrated in Figure 4-3.

Program 1:
COMMON A, B(2,2), C, D, E,

Program 2:

COMMON ALPHA, DUMMY (4), BETA, GAMMA, PSI

Memory
Assignment: 1 2 3 4 5 6 7 8

A B(l, 1) B(2, 1) B(1, 2) B(2, 2) C D E

ALPHA | DUMMY(1) | DUMMY(2) | DUMMY(3) | DUMMY(4) | BETA { GAMMA | PSI

Figure 4-3. Use of Dummy Array to Space Over Common Area

EQUIVALENCE STATEMENT

The EQUIVALENCE statement permits two or more variables or array elements to share

the same memory location. The statement makes it possible to conserve required memory

space or to establish two or more names for the same variable.

An EQUIVALENCE statement has the form:

I EQUIVALENCE (vla’ Vi Vie? e)y (vza, Vout Vac? e)y ca

SECTION 1V. SPECIFICATION STATEMENTS

Where:

<

v s V

b , +.. are the names of variables or array elements that are

lc .
to share the same memory location.

la

Voa' Vap' Vaor tcc are the names of variables or array elements that are
to share another memory location.

All of the variables enclosed within a set of parentheses are assigned to the same location;

hence, they are called an equivalence set. The maximum number of unrelated equivalence sets

is 64. There may be any number of variables within one set of parentheses, and any number of
sets of parentheses in a single EQUIVALENCE statement. Variable names must be separated by

commas, as must sets of parentheses.

An EQUIVALENCE statement may relate single variables to each other, entire arrays
to each other, elements of an array to single variables, or vice versa. Array elements may
appear in EQUIVALENCE statements. An element of a two-dimensional array may be expressed
in an EQUIVALENCE statement in either of two ways.

1. It may be expressed exactly as in a DIMENSION statement; i.e., when the
element is part of a two-dimensional array, it may be written (within pa-
rentheses) as two integer constants separated by a comma.

Example:

Element A (2, 3) of the two-dimensional array A (3, 3) may be equivalenced
to variable C(7) of the one-dimensional array C(10) as follows:

EQUIVALENCE (A(2, 3), C(7))

2. It may be expressed as the equivalent single-dimensioned subscript that
shows the order in which the element is stored. Refer to Figure 1-4.
The circled numbers indicate single-dimensioned subscripts of the two-
dimensional array shown.

Example:

Element A (2, 3) of the two-dimensional array A (3, 3) may be equiva-
lenced to variable C(7) of the one-dimensional array C(10) by single-
subscript method as follows:

EQUIVALENCE (A(8), C(7))

When one element of one array is equivalenced to an element of another array, the re-
mainder of the array elements are automatically equivalenced. The declared equivalence of
the two elements determines the positional correspondence of the rest of the elements.

Example:

DIMENSION A(7), B(3, 3)
EQUIVALENCE (A(3), B{(2, 1))

Memory
Assignment

A(l) | A(2) A(3) A(4) A(5) A(6) A(T)

B(1, 1) | B(2, 1) | B(3, 1) | B(1, 2)| B(2, 2) | B(3, 2) | B(1, 3)| B(2, 3} | B(3, 3)

4-6

»

SECTION IV. SPECIFICATION STATEMENTS

It is permissible for a variable or an element of an array to appear in both a COMMON
statement and an EQUIVALENCE statement, provided that the common region is not extended
in such a way that one of the following three rules is violated.

1, Identically labeled common blocks in programs that are to be run together
must be of the same size. (The unlabeled common region is excluded from
this restriction.)

2. The common region may be extended only in the direction away from the
origin (i. e., to the right in the diagrams shown in this manual). An illegal
extension of common region is shown in Figure 4-4. Figure 4-5 shows a
legal extension of the common region.

3. Elements in the common region may not be equivalenced to other elements
in the common region.

COMMON A, B, C, Memory 1 2 3
Assignment

DIMENSION D(3) B c

EQUIVALENCE (B, D(3)) D(3)

Figure 4-4. Illegal Extension of Common Region

COMMON A, B, C Memory
Assignment
DIMENSION D(3) 1 2 3
EQUIVALENCE (B, D(1)) A B c
D(1) D(2) D(3)

Figure 4-5. Legal Extension of Common Region

A variable or array element that is equivalenced to an element in the common region is

itself treated as though it were assigned to the common region, even if it does not appear in a

COMMON statement.

DATA-TYPE STATEMENTS

There are three statements used to declare explicitly the data types of variables, arrays,

or functions. These are of the form:

REAL vl, VZ, v3,
‘ INTEGER Vl, VZ’ v3,
LOGICAL vl, VZ, v3,

Where: vy VZ’ v3 ... are the names of variables, arrays, or functions.

4-7

SECTION 1V. SPECIFICATION STATEMENTS

As described in Section I, real and integer variables, arrays, and functions need not be explicit-
ly declared in a data-type statement. If the first letter of the variable name begins with I, J,

K, L, M, or N an integer type is implied; all other first letters imply real data. A data-type
statement may be used to override the implied data type and must be used to declare logical

type data.

Once declared, data types remain constant throughout the program and cannot be changed.
Therefore, it is illegal for the same name to appear in two different data-type statements.
Individual elements of an array assume the same data type that is associated with the array.
Arrays can be dimensioned in a data-type statement, exactly as in a DIMENSION or COMMON

statement.

EXTERNAL STATEMENT

Appearance of a name in an EXTERNAL statement indicates to the compiler that the name

is that of an external procedure (function or subroutine). An EXTERNAL statement has the form:

EXTERNAL a, b, c,......

Where: a, b, ¢, are the names of functions and/or subroutines that appear in the
call argument lists to function or subroutine subprograms.

An EXTERNAL statement is used for function or subroutine names when the name appears
in the argument list of a CALL statement or a function reference argument list and has not
previously been declared as an external procedure by its use in a CALL statement or function
call. Thus, any subroutine, A, to be used as a call argument, must appear in an EXTERNAL
statement if it does not appear in a CALL statement as:

CALL A (Refer to Section III).
Any function subprogram, B, to be used as a call argument, must appear in an EXTERNAL
statement if it does not appear in a function call in an arithmetic or logical expression such as:

D = B(E, F, G) ({(Refer to Section VI).

The name of a function or subroutine may appear in both an EXTERNAL statement and a
data-type statement. The name of a compiler-supplied function may not appear in an external

statement. ([Refer to Section VI for compiler-supplied functions.)

In the example below, the function subprogram FSUB is to be included in the argument
list to function subprogram ABLE. Thus, the name FSUB must be declared in an EXTERNAL
statement in the program'which calls subprogram ABLE to distinguish it from the names of

variables in the argument list, such as R and T.

SECTION IV. SPECIFICATION STATEMENTS

Excerpt from Main Program Function Subprograms ABLE and FSUB

EXTERNAL FSUB FUNCTION ABLE (XFUN, A, B)
20 ABLE = XFUN (A) + B**2

CRY

4 Y =R +ABLE (FSUB, R, T) RETURN
END
FUNCTION FSUB (X)

30 FSUB = X*%3 + 25,

« e

END
At statement 4 in the main program, subprogram ABLE is called. The real arguments
passed to ABLE are the subprogram name FSUB and the numeric values of R and T. These
real arguments are substituted for their respective dummy arguments, ZFUN, A, and B, When
execution of statement 20 begins, the dummy subprogram name, XFUN, is encountered. This
calls the real subprogram FSUB. FSUB is executed, and when the END statement is encountered,
control returns to statement 20 of subprogram ABLE. Execution of subprogram ABLE continues

until either the RETURN or the END statement is encountered, at which time control returns to

statement 4 of the main program.

TITLE STATEMENT

A TITLE statement has the form:
ATITLE prgnam

The TITLE statement is an optional statement for naming a main program. Column 1 is left
blank; the word TITLE appears in columns 2 through 6; and the program name is taken to be
the six characters that appear in columns 7 through 12. If no TITLE statement is used and

there is no FUNCTION or SUBROUTINE statement, the compiler automatically considers the

program to be a main program and assigns a name to it.

DATA INITIALIZATION STATEMENT

When an object program is loaded for execution, initial values can be assigned to variables
and/or array elements by means of a DATA initialization statement. The process of assigning
starting values is called initialization. No variable or array element can be initialized in a
DATA initialization state'rnent if it has been assigned to a common or labeled common block in a

COMMON statement.

4-9

SECTION IV. SPECIFICATION STATEMENTS

A DATA initialization statement has the form:

I DATA k;/dq/, kp/dp/ eeeeeenenenes ky/d)/

Where: Each k is a list containing names of variables and array elements which
are to be assigned initial values. No dummy variables are permitted.

Each d is a list of constants, signed or unsigned, The values of these
constants are assigned to the variables of the preceding variable list
when the program is loaded.

An unsigned integer constant, j, and an asterisk may precede any con-
stant in the constant list. That constant is then repeated j times.

The variable list and the constant list that follows must have a one-to-one correspondence, since
the value of the first constant will be assigned to the first variable, the value of the second
constant will be assigned to the second variable, etc. As long as this one-to-one correspondence

is maintained, the lists mayhave any over-all length up to the capacity of nine continuation lines.

Hollerith and octal constants, as well as integer constants, must have corresponding
integer variables, either beginning with I, J, K, L, M, or Nor previously typed in an INTEGER
statement. Variables corresponding to logical constants must have been previously defined in a

LOGICAL statement.

The constant list is bounded by slashes. Commas separate individual entries in each of
the lists. The DATA initialization statement must follow all other specification statements in

the source program and must precede the first executable statement as shown on page 1-6.

Example:
DATA A, I, J, K/, 29. 3, 5, 3H5KC, 403777/
Variables Constants

At loading time the following data assignments are made:

Constant Variable to Which Constant is Assigned
29.3 A
5 I
BKC J
3777 K

If a number of variables are to be initialized to the same value, the appropriate constant
in the list may be preceded by a repetition constantandanasterisk as shown in the example below.

Example:
v

DATA A, B, C/1.0, 1.0, 1.0/

may be written equivalently as: DATA A, B, C /.3 %.1.0/

Repetition Multiplication
Constant Symbol

4-10

)

SECTION IV. SPECIFICATION STATEMENTS

Additional List Pairs

The DATA initialization statement may be expanded to accommodate more than one pair of
lists, simply by adding a comma after the previous list of constants, then adding the next list

of variables, followed by its associated list of constants and a terminating slash.

Any number of paired lists may be added in this manner (up to the capacity of 9 continu-
ation cards). The effect is the same as if one pair of long lists were written. (This option is

convenient when adding variables and initialization values in a subsequent version of the program.)

Example:
DATA A, I, J/29.3, 5, 3HSKC/, X, Y/40.1,2.7/
N——— ——— p———
is equivalent to: \ /

DATA A, I, J, X, Y/29. 3, 5, 3H5KC, 40.1,2.7/

Implied DO Loops

The DATA list can include not only variables and names of array elements but also
implied DO loops. Implied DO loops are described in detail in relation to input/output statements
in Section V. Briefly, an implied DO loop provides a shortened notation, similar to a DO loop,
for describing repetitive variables. In the DATA statement it is particularly useful for initial-

izing all or some of the elements of an array.

The general form of the implied DO loop is:

(Vl’ Vo, ceey V i=m1, m,, m3)

n’

Where: Each v is a variable or array element.

i is an integer variable that controls the implied DO loop and can be
used as the subscript of array elements if present.

Each m is a parameter of the implied DO loop. They must be unsigned
integer constants.

m, is the initial value of i.
m, is the terminal value of i.
m, is the value by which i is incremented at each iteration. If not

explicitly stated, m, is understood to be 1.

Example 1: A one-dimensional array is named ARRAY. Each equivalent expression
represents the first 10 elements of ARRAY.
v
(ARRAY(I), I =1, 10)
is the implied DO loop equivalent of

ARRAY(1), ARRAY(2), ARRAY(3), ARRAY(4), ARRAY(5),
ARRAY(6), ARRAY(7), ARRAY(8), ARRAY(9), ARRAY(10)

4-11

SECTION IV. SPECIFICATION STATEMENTS

Example 2: A two-dimensional array is named B. Each equivalent expression repre-
sents six elements from alternate columns of the second row of
array B. —

(B(2,I), I=1, 11, 2)
is the implied DO loop equivalent of
B(2,1), B(2,3), B(2,5), B(2,7), B(2,9), B(2,11)

An example of the use of a single implied DO loop to initialize an entire array is shown

below. All 20 elements of the array named C are to be initialized with the value 0. 0. At the

L4

same time, variable A is to be assigned a value of 5.0, and variable B a value of 3.0,

DATA A, B, (c(), 1= 1,20) / 5.0, 3.0, 20 * 0.0 / »
\ / \ - /
Variables Implied Repetition Initialization
DO Loop Constant Value for
Multiplication Each Array
Symbol Element

When the list contains a single implied DO loop, as in the above example, the parameters
of the DO loop must be integer constants. When the list contains a nested set of implied DO
loops (refer to next paragraph), the parameters of the outermost loop must be integer constants, s
but the parameters of an inner loop may be: (1) integer constants and/or (2) integer variables N
which appear as control variables in an outer implied DO loop of the same nest. Only integer

variables may be used as subscripts of an implied DO loop appearing in a DATA statement.

When initializing an entire array, as above, it is also permissible to use an array name
alone in a DATA statement list to represent all elements of an array when the array has been
declared and dimensioned in a DIMENSION, COMMON, or data-type statement. The DATA

statement above could then have been written as:

DIMENSION C(20)
DATA A, B, C/ 5.0, 3.0, 20 % 0,0 /

Implied DO loops are thus most useful when applied only to a portion of an array.

Nested Pairs of Implied DO Loops :

Implied DO loops can be nested to a depth of two. The general form of a nested pair of

implied DO loops is shown below.

=

’

)

(

e’

SECTION IV. SPECIFICATION STATEMENTS

((Vl, Vz, .« e ey Vk, i=m1, mz, m3), j=n1, nz, n3)

—

inner loop

outer loop

Where: Vs Vor s Vi is a list of variables or array elements
i is the control variable of the inner DO loop

j is the control variable of the outer DO loop

are respectively the initial, terminal, and incremental
values of i.

m,;, m,, m

2 3

nj, ny, ng are respectively the initial, terminal, and incremental
values of j.

An example of a nested set of two implied DO loops is given below. It is desired toinitialize
with a value of 1.0 one-half of the elements of a 10 x 10 array named C. The following statement

will initialize the elements as shown in Figure 4-6.

Array Control Parameters Parameters
Name Variables of Inner Loop of Out?r Loop
J

DATA A, B ((C(I.J), Izl* lv), Jzt, 10) / 5.0, 3.0, 50%* 1.0/

7/

N

Inner Implied DO Loop

(N /
N

Outer Implied DO Loop

1,6 1,7 1,8 1,9 1,10
2,6 2,7 2,8 2,9 2,10
3,6 3,7 3,8 3,9 3,10
4,6 4,7 4,8 4,9 4,10
5,6 5,7 5,8 5,9 5,10
6,6 6,7 6,8 6,9 6,10
7,6 7,7 7,8 7,9 7,10
8,6 8,7 8,8 8,9 8,10
v 9,6 9,7 9,8 9,9 9,10
10,6 10,7 10,8 10,9 10,10

Figure 4-6. Right-hand Portion of Array to be Initialized

4-13

()

SECTION V
INPUT/OUTPUT STATEMENTS

Input/output (I/O) statements are the programmer's tools for directing the flow of in-
formation between peripheral devices and the central processor so that the data can be pre-
cisely understood by both man and machine. Fortran Compiler D accomplishes all actual data
transfer with a single input statement and a single output statement — READ and WRITE, re-
spectively. Associated with I/O statements are a FORMAT statement and three I/O device
manipulation stateménts. The FORMAT statement specifies the physical arrangement of data
on peripheral input or output media, indicates the type of input or output conversion required
between machine language and external data, and specifies editing information. The three I/O

device manipulation statements are BACKSPACE, END FILE, and REWIND.

Every READ statement involving transfer of data that is not in binary form and every
WRITE statement involving transfer of data that must be converted into other than binary form
must be accompanied by a FORMAT statement. The transfer of data in binary form means that
the data is passed and stored just as it appears in memory. No editing or conversion is applied.
FORMAT statements are nonexecutable but are interspersed with the executable program state-
ments. The FORMAT statement is discussed in detail beginning on page 5-11. All other I/O
statements are executable. Page references for I/O statements are given in Table 5-1. For

layouts of BCD and binary tapes, see Appendix F.

Table 5-1. I/O Statements

I/O Statement Page Reference
BACKSPACE 5-56
ENDFILE 5-55
FORMAT 5-11
READ 5-1
REWIND 5-55
WRITE 5-3

READ STATEMENT

The READ statement has the form:

7
READ (i, n) list

or: READ (i) list

SECTION V. INPUT/OUTPUT STATEMENTS

Where: n is either
1. the statement label of a FORMAT statement which -
describes how the incoming data are arranged and -/

the type of conversion required, or

2. the name of an array in which the necessary format
information is stored.

i is a code identifying the input device {a magnetic tape unit
or card reader). It may be written as either an unsigned
integer constant {1Si<15) or an integer variable.

list is a correctly sequenced list of the names of variables,
arrays, and/or array elements that are to receive input
values at execution time. Successive names must be
separated by a comma. Since the list sequence indicates the
order (from left to right) in which the names will receive
input values, the list sequence must correspond to that of the >
input data. The list may be empty.

Under the first form — READ (i,n) list — successive records of "formatted" information

{sometimes called binary-coded-decimal information) are read from the designated peripheral

unit under control of FORMAT statement n until the entire input list is satisfied. If the periph-
eral device is indicated by an integer variable, the value of the variable must be set to the ap-

propriate unit number prior to execution of the READ statement. The value of this variable may

be changed during execution of the program.

Examples: \/
READ (2, 20) A, B, C(l), ARRAY,
A\
Simple Input List

Peripheral Label of Governing
Device FORMAT Statement '
Indicator

~READ (IUNIT, FRMAT) A, B, C(l), ARRAY

Simple List

Symbolic Array
logical-Device Containing .
Address Format Information

(see page 5-5)

Inthe second form — READ (i) list —no FORMAT statement is designated because the input data
are automatically understood to be inbinary form whenever this version of the input statementis used.

All values read into memory by a single execution of the statement come from one logical record.

12

1For convenience throughout Section V, FORMAT statement label n has been set equal to 20 in

all examples. This number is purely arbitrary. Also throughout the section, the card reader

is assigned unit number 2, the printer is assigned unit number 3 and the card punch is assigned —
unit number 5. These assignments follow Honeywell conventional practice; customer installa-
tions may make other unit assignments.

5-2

SECTION V. INPUT/OUTPUT STATEMENTS

Example:

READ (2),4, B, C(1), ARRAY,

A4
Simple Input List

Peripheral Device Indicator

An input or output list may contain a simple list of names, an implied DO loop, or a combi-
nation of thetwo. Integer variables in an input/output list may be used in subscript expressions
elsewhere in the list, and the input value will be the value used in the subscript expression. If
an integer variable in the list is a parameter of an implied DO loop, it must appear prior to and

external to the range of the implied DO loop.

An error in a READ statement detected during execution of a job, such as an attempt to
read from the printer, will cause job termination and printout of an error message. (See

Appendix G.)

A WRITE or END FILE statement cannot be directly followed by a READ statement that

references the same device.

WRITE STATEMENT
A WRITE statement has the form:

WRITE (i, n) list, or
WRITE (i) list

Where: n is either

1. the statement label of a FORMAT statement which
describes how the outgoing data are to be arranged on
the output medium and the type of conversion required,
or

2. the name of an array in which the necessary format
information is stored.

i is a code identifying the output device. It may be written
as either an unsigned integer constant (1<i<15) or an
integer variable which must have a value at executiontime.

list is a correctly sequenced list of the names of variables,
arrays, and/or array elements which are to transmit their
associated values at execution time. Successive names must
be separated by a comma. The list sequence must corre-
spond to the desired sequence of the output data.

In the form—WRITE (i, n) list—the output device code, i, addresses a printer, card punch,
tape unit, or other output device. Each execution initiates printing of a new line, writing of a
new tape record of formatted information, or punching of a new card (as the case may be) and

causes a value to be transmitted from memory to the external medium for each named element in

5-3

SECTION V. INPUT/OUTPUT STATEMENTS

the list. Values are transmitted in the order given in the list, converted to external form (under
control of FORMAT statement n or an equivalent format array), and placed in sequential data
fields of the printed line, tape record, or punched card in the same order as they are transmitted.
The number of columns allotted to each value is specified in the FORMAT statement. Blank
spaces and titular information may be interspersed between values, when the FORMAT statement

so specifies.

Examples:

WRITE (3, 20),A, B, C(1), ARRAY,

Vv

Simple Output List

Peripheral

Device Label of Governing FORMAT Statement
Indicator

WRITE (IUNIT, FRMAT) A, B, C(l), ARRAY,

\4
Simple Output List

Peripheral
Device Name of Array Containing
Indicator Format Information

(see page 5-5)

In the WRITE (i)_}_is_g statement, no FORMAT statement is designated because it is auto-
matically understood that binary output is requested whenever this version of the WRITE state -
ment is used; no other format information is necessary. The entire string of physical records
written by a single execution of a WRITE (i) list statement is termed a logical record.

Example:

WRITE (3),A, B, C(1), ARRAY

Vv
Simple Output List

Peripheral
Device
Indicator

If the output list has not been satisfied by the end of one line, tape record, or card, itis
possible to print additional lines, write additional records, or punch additional cards by the
same single execution of the output statement, until a value has been transmitted for every item
in the list. In such cases, the programmer must include a record terminator (slash or right
parenthesis terminating the FORMAT) at the appropriate place in the FORMAT statement (see
page 5-45) to insure that no record exceeds the maximum size of 131 print positions, or 132
tape characters, or 80 pun;hed columns. If no record terminator is given where required in the
FORMAT statement and the field specifications call for more characters than the maximum

permitted in one record on the particular output device, the extra characters will be ignored.

SECTION V. INPUT/OUTPUT STATEMENTS

In either form of the WRITE statement, if the peripheral device is indicated by an integer
variable (as in Example 2 above), the value of the variable must be set to the appropriate unit
number prior to execution of the WRITE statement. The value of this variable may be changed
during execution of the program. When using a variable device designation, the programmer
must specify as a constant, somewhere in his job (possibly in a dummy input/output statement
which need not be executed), the peripheral device number of the particular input or output device
in question. Furthermore, this constant must appear in an input or output statement that is of
exactly the same type as the statement in which the variable unit designation appears. Ful-
fillment of these requirements enables the compiler to allocate the physical devices and the buffer

space for each physical device.

An error in a WRITE statement detected during execution of a job, such as an attempt to
write onto a card reader, will cause job termination and printout of an errér message. (See

Appendix G,)

INPUT/OUTPUT LISTS

All READ and WRITE statements make use of lists of variables, arrays, and/or array
elements to be transferred either to or from memory. The lists may be classified either as
simple lists or as lists containing implied DO loops and nested pairs of implied DO loops. These
lists are described in detail in this section. The lists apply equally to input (READ) and output
(WRITE) statements. One main difference between input and output operations should be noted,
however. An integer variable appearing as part of the control information for an implied DO
loop or in a subscript in an output list must be assigned a value prior to execution of the output '
statement. In an input operation, the integer variable may be assigned a value during execution
of the input statement by having the input data designate the value of the integer variable.
Assignment of values to integer variables during execution of an input statement is illustrated in

this section.

Simple Lists
A simple list is a series of names of variables, arrays, and/or array elements, with a
comma separating each two successive names, e. g.: A
A, B, C(l), ARRAY
Each name in the list is called a list item. Because the list is scanned from left to right, values
are assigned to (or transmitted from) the leftmost list item first, then to (or from) the next left-

most item, and so on. Thus the transfer sequence for the above example is:

1. A v
2. B

3. Cc(1)

4, ARRAY

SECTION V. INPUT/OUTPUT STATEMENTS

That is, for inputoperations, the firstincomingdata fieldisassigned to variable A (under control of

the firstfield specification of the associated FORMAT statément), the second incoming data field is

assigned to B (under control of the second field specification of the FORMAT statement), etc. Similar-

ly, for outputoperations, the value of variable A is the firstvalue to be transmitted from memoryto
the output device (under control of the first field specificationinthe associated FORMAT statement),

and so on.
A simple list may also be the name of a single variable, array, or array element.

Integer variables appearing in an input/output list may be used in subscript expressions
elsewhere in the list.

Example 1: READ (2, 20) I, C(I)

Example 2: READ (2, 20) C(I), I
Because of the left-to-right scan of the list, the results are not equivalent in the two examples
above. The following rule defines how the subscript expressions are evaluated at execution time
in both cases:

If the subscript expression appears later in the list than the integer variable which
it employs (as in Example 1 above), the subscript expression is evaluated using the
newly read-in value of the integer variable.

If the subscript expression appears earlier in the list than the integer variable
which it employs (as in Example 2 above), the subscript expression is evaluated
using the value last defined for the integer variable.

To illustrate: Assume that integer variable I was previously assigned a value of 3. During
execution of the READ statement, the previous value will be replaced with an incoming value of5.
Is C(I) evaluated as C(3) or C(5)? According to the rule given above, the answer is C(5) in the

first example and C(3) in the second example.

The reason for the rule is as follows. During execution of an input statement, each list
item receives the input value at the instant when the item is encountered in the sequence of
scanning the list. Subscript expressions in the list are also evaluated at the time when they are

actually encountered during the scan.

Thus, integer variable I receives its new value of 5 as soon as the scan encounters Iwhile
proceeding from left to right. In the first example, C(I) is evaluated as C(5) because I had just
previously assumed that new value of 5. Thus, it is arrayelement C(5) which receives the next
incoming value. In the second example, however, C(I) is encountered before the incoming value
of 5 is assigned to I. Thys, C(I)is evaluated with the value last assigned to I, which happens to
be 3. Consequently, it is array element C(3) which receives the first vé,lue of incoming data.

Then I assumes its new value of 5.

5-6

Yy

()

SECTION V. INPUT/OUTPUT STATEMENTS

The form shown in Example 1, wherein the integer variable precedes its use in a subscript
expression, is useful when it is desired to have the input data designate both the array element

and the value for that array element.

On output, the integer variable must be assigneda value prior to execution of the output state-

ment.

Short-List Notation for Input/Output of Entire Arrays

The inclusion of an array name without subscripts in an input/output list causes values to
be transmitted for all elements of the array (assuming that the array has already been declared
and dimensioned in a DIMENSION, COMMON, or data-type declaration statement). This usage

is called short-list notation. The sequence in which the array elements are transmitted is the

same as the storage sequence described on page 1-10. Only after all values of the complete array

have been transmitted is the next list itemn considered.

Lists with Implied DO Loops

Implied DO loops and nested pairs of implied DO loops were defined and described briefly
in relation to the lists of the DATA initialization statement. Because of the power of the implied
DO loop to save laborious and repetitious effort in writing lists, this section both repeats the

information contained on pages 4-11 through 4-13 and offers more detailed explanation and examples.

When several variables and array elements are to be transferred to or from memory, the
programmer may find it convenient to incorporate an implied DO loop into the input or output
list to reduce the writing and keypunching that would be necessary if each variable or array
element were to be written as an individual item of a simple list. The implied DO loop is
particularly useful when several‘elements of an array are to be transferred to or from memory
but not the entire array or if all the elements are to be transferred in a sequence different from
that obtained by using the short-list notation. 1 However, the implied DO loop is useful in any case

in which iterative transfer of variables to and from memory is required.

Though not literally a DO loop, the implied DO loop has the same effect of carrying out an
iterative process, causing a control variable to be incremented after each repetition.” The portion

of a list that contains an implied DO loop is called an implicit list.

The general form of the implied DO loop is:

(Vl, V2s +ee, Vs i¥my, mo, m3j)

1Al’chough animplied DO loop could be used totransfer all elements of an array inthe sequence inwhich
they are stored, the short-list notation methoddescribed previously is more convenientand faster.

5-7

SECTION V. INPUT/OUTPUT STATEMENTS

Where: Each v is a variable or array element.

i is an integer variable that controls the implied DO loop and can
be used as the subscript of array elements when present.

m. is the initial value of i.
m. is the terminal value of i.

m, is the value by which i is incremented at each iteration. It may
be an unsigned integer constant or integer variable. If not
explicitly stated, m, is understood to be 1.

Parentheses in a READ or WRITE statement that do not bound the peripheral device indi-
cator and FORMAT label are assumed to be the limits of an implied DO loop. Any variable or
array element within the bounds of the left parenthesis and the comma preceding the control
variable i is repeated during each iteration of the loop.

Example 1: WRITE (3, 20) (A, B, C(I), I =1, 3)

is equivalent to:
WRITE (3, 20) (A, B, C(1), A, B, C(2), A, B, C{(3)

Example 2: WRITE (3, 20) (A, B, C, D, I=1, 3)

is equivalent to:
WRITE (3, 20) A, B, C, D, A, B, C, D, A, B, C, D

Example 3: READ (2, 20) (B(1, 1), I =1, 5)

is equivalent to:
READ (2, 20) B (1, 1), B{1, 2), B(1, 3), B(l, 4), B(1, 5)

Example 4: READ (2, 20) (A(I), I =1, 8)

is equivalent to:
READ (2, 20) A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8)

Example 5; READ (2, 20) (C(I, I), I1=1, 6, 1)

is equivalent to:

READ (2, 20) C(1, 1), C(2, 2), C(3, 3), C(4, 4), C(5, 5), C(6, 6)

Like a simple list, a list containing an implied DO loop is scanned from left to right until
the implicit portion is encountered. Then the implied DO loop is fully evaluated before the scan
continues on to any remaining list items. The following example illustrates this.

READ (2, 20) A, B, (C{I), I=1, 5), D, E, F
is evaluated as:
READ (2, 20) A, B, C(1), C(2), C(3), C(4), C(5), D, E, F
Note that all items specified by the implied DO loop appear before items D, E, and F, which are
written later in the list than the implied DO loop.

5-8

SECTION V. INPUT/OUTPUT STATEMENTS

When a nested set of implied DO loops is encountered during the left-to-right scan, the
complete nest is evaluated before the scancontinues on to any remaining list items. (Nests of

implied DO loops and the order in which they are evaluated are discussed in detail below.)

The control variable, i, and any parameter (ml, mjy, or m3) that is written as an integer
variable may also appear elsewhere in the list, either as a single variable or in a subscript
expression (as part of an array element name), subject to the following restriction:

During input operations, none of the parameters of an implied DO loop may appear
ina simple list that is enclosed within the bounding parentheses of the same
implied DO loop.

This rule follows from the restriction governing conventional DO loops that none of the DO pa-

rameters may be altered within the range of the DO loop (see page 3-5).

Examples:

Valid: READ (2, 20) A, N, B(N), (C(), I=1, N)
Permissible

Invalid: READ (2, 20) A, (N, C(I), I=1, _N)

Illegal
Bounding Bounding
Parenthesis Parenthesis

In both examples above, N is a parameter of the implied DO loop, because it represents
the terminal value (m,)ofthe controlvariable. In the second example, N also appears in a simple
list enclosed within the bounding parentheses of the implied DO loop of which N is a parameter.
This condition is not permitted in an input list, because the parameters of an implied DO loop

may not be altered within the range of the implied DO loop.

When a parameter of an implied DO loop appears elsewhere in the list without violating the
above restriction, the value of the parameter at evaluation time depends upon which is en-
countered firstinthe left-to-right scan of the list, the other appearance(s) or the parameter. The
rules are exactly analogous to those given for integer variables used as subscripts elsewhere in
a list (pages 5-6 and 5-7). For the same reason, array element B(N) in the exampl-e above is
evaluated with the new value of N that is received during execution of the READ statement, not

the previous value. For the same reason, the value of parameter N in the above example is also

the newly received value of N.

Nested Pairs of Implieq DO Loops

Implied DO loops can be nested to a depth of two. Nested pairs of implied DO loops are
particularly useful in describing the elements of a two-dimensional array. The general form of

a nested pair of implied DO loops is shown below.

5-9

SECTION V., INPUT/OUTPUT STATEMENTS

((V].’ Vz, “ ey Vf, i=m1, m2, m3), ul, 112, a ey uk, j=n1, 1’12, n3)

N\ e’
~

inner loop

v
outer loop

Where: vy, Vo eee, VE is a list of variables or array elements,
Uy, Uy, ...,U) is a list of variables or array elements or may be empty.
i is the control variable of the inner DO loop.
j is the control variable of the outer DO loop.

m), m;, mj3 are respectively the initial, terminal, and incremental
values of i.

nj, n,, n3 are respectively the initial, terminal, and incremental
values of j.
Example 1: READ (2, 20) ((ARRAY(, J), J=1,4),1I=1, 9, 2)
is equivalent to:

READ (2, 20) ARRAY (1, 1), ARRAY (1, 2), ARRAY (1, 3), ARRAY (1, 4),

ARRAY (3, 1), ARRAY (3, 2), ARRAY (3, 3), ARRAY (3, 4},

ARRAY (5, 1), ARRAY (5, 2), ARRAY (5, 3), ARRAY (5, 4),
ARRAY (7, 1), ARRAY (7, 2), ARRAY (7, 3), ARRAY (7, 4),

ARRAY (9, 1), ARRAY (9, 2), ARRAY (9, 3), ARRAY (9, 4)

Interpreté.tion: Read in 20 values, storing them as follows:

1. Store the first four as the first four elements of the first row of ARRAY.
2 Store the second four as the first four elements of the third row.

3 Store the next four as the first four elements of the fifth row.

4. Store the next four as the first four elements of the seventh row.
5

Store the last four as the first four elements of the ninth row.

This statement may be thought of as being equivalent to the nest of DO loops:

DO10I=1, 9, 2
DO 103 =1, 4
10 READ (2, 20) ARRAY (I, J)

Note that the incrementing value of the inner implied DO loop (m3) is
automatically understood to be one, since it is not explicitly stated.

[
Example 2: READ (2, 20) ((ARRAY(L, J), I=1, 4), J=1, 9, 2)

is equivalent to:

']

()

SECTION V. INPUT/OUTPUT STATEMENTS

READ (2, 20) ARRAY (1, 1), ARRAY (2, 1), ARRAY (3, 1), ARRAY (4, 1),
ARRAY (1, 3), ARRAY (2, 3), ARRAY (3, 3), ARRAY (4, 3),
ARRAY (1, 5), ARRAY (2, 5), ARRAY (3, 5), ARRAY (4, 5),
ARRAY (1, 7), ARRAY (2, 7), ARRAY (3, 7), ARRAY (4, 7),

ARRAY (1, 9), ARRAY (2, 9), ARRAY (3, 9), ARRAY (4, 9)

Interpretation: Read in 20 values, storing them as follows:

1. Store the first four as the first four elements of the first column of ARRAY.
2. Store the second four as the first four elements of the third column.

3. Store the next four as the first four elements of the fifth column.

4. Store the next four as the first four elements of the seventh column.

5. Store the last four as the first four elements of the ninth column.

I1/0O Lists Used with Binary Tape Input or Output

When an unformatted record is read in or written out under an I/O statement of one of the
following forms:
READ (i) list
WRITE (i) list
care must be taken to see that the list variables match the data items in the record. If a list is
lo’nger than the number of data items in the record, the remainder of the list variables will be
read in or written out using the last value in the floating-point or integer accumulator as ap-

propriate. This practice is not recommended.

FORMAT STATEMENT

General Form of the FORMAT Statement

When incoming data is not already in binary format and when outgoing data requires format
other than binary code, a FORMAT statement must accompany the READ or WRITE statement.
The FORMAT statement describes the external arrangement and type of conversion of incoming
or outgoing data in terms of field specifications. Because a thorough knowledge of the FORMAT
statement is essential for Fortran programming and because of the many optional forms that
the statement and its specifications may have, this section contains considerable detail. A

guide to the contents of the section is given in Table 5-2.

SECTION V.,

INPUT/OUTPUT STATEMENTS

Table 5-2.

FORMAT Statement Surmmmary

Subject and Format

Explanation

Page Reference
(Definition pages
are in parentheses)

n FORMAT (81, Sp,...,Sy,) Simple FORMAT statement
B n = statement label (5-12-5-13)
each Si = one field specification.
FORMAT n FORMAT (1, Sp.-+ S /S']s 8'2, -+, S'm /8”1, $%,...,5"///) | Multiple-record form where a slash (/) | (s 131 5 45 10 551
statements marks the end of a unit record. TR e © 2=
n FORMAT (Sl’ SZ’ g(S3, S4, SS)' Sé, g’ (S7, g”(Ss, 59)). .. ,Sm) Group repetition form where each g
shows the number of times the following (5-14), 5-40 to 5-41
group of field specifications is repeated.
A (Aw or rAw) Alphabetic conversion. {5-31)
E (Ew.d, rEw.d, sPEw.d, sPrEw.d) Explicit exponent conversion. {5-21}) to 5-27
F {Fw.d, rEw.d, sPFw.d, sPrFw.d) Fixed-point decimal conversion. (5-21) to 5-25
Conversion G {Gw.d, rGw.d, sPGw.d, sPrGw.d) Generalized {F or E) conversion. {5-21) to 5-28
Codes and
e e H (wH) Hollerith conversion (includes Hollerith | (o o1 (s 330y o 3¢
s ificati characters: wHhh,...h) ’
pecifications 2 n
Applicable .
to Each 1 (Iw or riw) Integer conversion. (5-18) to 5-20
Code L {Lw or rLw) Logical conversion. {5-29) to 5-31
[o] {Ow or rOw) Octal conversion. {5~28) to 5-29
X wX Blank conversion. {5-36) to 5-37
w Field width (used in all field (5-16) to 5-18
specifications).
Oth
Cor:;onents d Decimal position indicator (used in all (5-18)
of the E, F, and G specifications).
Field r Field repetition constant {optional). {5-39) to 5-41
Specificati
pecitication sP Scale factor (optional). {5-41) to 5-45
Scanning Scanning and rescanning of FORMAT (5-47) to 5-51
Oth statements to satisfy I/O lists.
er
Subjects Carriage Control On printer output, lst character of
Covered 1st field specification of a unit record {5-37) to 5-39
in this controls carriage.
Section N N . : T .
Object-time Formatting Reading a format description into an

array at object time.

(5-51) to 5-55

The general form of the FORMAT statement is:

Where:

n FORMAT (S, Sp,c-....., S

m)

n is an identifying statement label (in columns 1-5),

(S1, S2,...., Syy) is a list of field specifications, and each S; is a field speci-
fication describing one of the data fields to be transmitted

by an input or output statement.

The order in which the

field specifications are written must correspond to the se-
quence in which the data fields exist {or will exist) in the
external medium.

Each field specification, S;, has one of the following forms:

Ew.d Fw.d Gw.d Aw

rEw.d rEw.d rGw.d rAw
sPrEw.d sPrFw.d sPrGw.d
sPEw.d sPFw.d sPGw.d

Iw
riw

Lw wX

rLw

Ow
rOw

wH

o

»

N

]

»

()

9

Nt

For

S’

SECTION V. INPUT/OUTPUT STATEMENTS

Where: Each capital letter E, ¥, G, A, I, L, O, H, and X is a conversion
code signifying a particular type of conversion from external to
internal representation (or vice versa). The codes are defined in
Table 5-5 and are discussed in detail on pages 5-16 through 5-37.

w is the field width of the data field.
d specifies the position of the decimal point (if any) in the data field.
s represents an optional scale factor followed by the letter P.

r represents an optional field-repetition constant.

Figure 5-1 illustrates some of the different components of the FORMAT statement. Shown
in the figure\is the following hypothetical FORMAT statement, describing 10 data fields, each
of which requires a different type of conversion:

20 FORMAT (1X, E7.0, F5.1, Gl15.5, A3, 15, L4, O10, 10HHOLLERITHA, EI10.2)

In Examples A, B, C, and D of the figure, different points of the same statement are highlighted:
A emphasizes field specifications, B the conversion codes, C the field widths, and D the decimal
positions. In E, a field-repetition constant precedes each field specification which may optionally
include one. In F, a scale factor precedes each field specification which may optionally con-

tain one.

There are two variations of the general FORMAT statement: the multiple-record formand
the group-repetition form. The multiple-record form punctuates field specifications with
slashes. A slash is a record terminator signifying the end of a unit record. A unit record is

defined as any of the following:

1. On a printer page, it is a single line of up to 131 characters,
2. On a tabulating card, it is the entire card of up to 80 characters.
3. On a magnetic tape, it is either of the following:
a. a formatted (i.e., binary-coded-decimal) record representing

a card image or printer-line image. Such a record may con-
tain up to 132 characters.

b. a logical record composed of any number of physical records
of data in the form of its internal representation.
Examples of the multiple-record form:
1. 20 FORMAT (416, F11.4/5F9.2/-3PF8.4, 0P2F7.2, F9.1/)
2. 20 FORMAT (416, F11.4//5F9.2///317, 4E6.3/)

Multiple records also result when a FORMAT statement contains fewer field specifications than
the number of variables'in its associated I/O list. When the right parenthesis is encountered,
the FORMAT specifications will be rescanned until the I/O list is satisfied. Multiple-record

forms and rescanning are described in detail on pages 5-45 through 5-51.

SECTION V. INPUT/OUTPUT STATEMENTS

20 FORMAT (

20 FORMAT (1}

20 FORMAT (

C. Field Width, w

A3,I1I5,L4, 010, 10HHOLLERITHA, E 10

20 FORMAT (1X, {o10 , 1 0 HHOLLERITHA, E10.2)

op| 2G15.5, A3,15, 010, 10HHOLLERITHA , E10.2)

20 FORMAT (1X, E7.0,

F, Scale Factor

Figure 5-1. Example Highlighting Different Components of FORMAT Statement

The second variation of the FORMAT statement is the group-repetition form. This form
permits repetition of one or more field specifications without rewriting each specification. A
repetition constant precedes the group of field specifications, which is set off by parentheses.
For example: 20 FORMAT (F11.2, 2(I8, F9.2))

is equivalent to
20 FORMAT (F11.2, 18, F9.2, I8, F9.2)

The group-repetition form is further described on pages 5-40 and 5-41.

Every FORMAT statement must be identified by a statement label, since it will be refer-
enced in an input or output statement (or perhaps both). The word FORMAT must be followed
by a left parenthesis. The last thing in the entire statement must be a right parenthesis.

Successive field specifications must be separated from each other by a field separator, i.e.,

a comma, slash(/), or consecutive slashes. However, the comma and slash do not have the
same meaning, since each slash also indicates the end of a unit record. If a right parenthesis
is followed by a comma, the comma is redundant; it may or may not be written. If it is not
written, the right parenthesis will serve as the field separator. A comma should not appear

before the last right parenthesis, but any number of consecutive slashes may appear there.

An error in a FORMAT statement detected during execution of a job will cause job termi-
nation and printout of the following error message:

ILLEGAL CHARACTER IN FORMAT STATEMENT. SEE END OF LINE BELOW.
(Next line contains the FORMAT statement up to the point of error.)

()

)

n

SECTION V. INPUT/OUTPUT STATEMENTS

Contents of the Field Specification

The field specification supplies the information shown in Table 5-3 concerning a data field.

Table 5-3. Contents of the Field Specification

Representation of the Information in the.

Field Width

Information Field Specification Description

Conversion | A single capital letter (A, E, F, G, H, | Designates the type of conversion re-

Code I, L, O, or X as given in Table 5-5.) quired to transform an incoming value
to binary or an outgoing value to the re-
quired external representation (Table
5-5).

W
Conversion | For E, F, G, I, and O conversions, Indicates the total number of columnsto

w < 32.
For A, H, and X conversions,
w < unit record length, u,
where: u = 80 for punched cards
132 for BCD tapes
131 for printer lines

be used as a data field for a single
conversion.

Decimal d (0<ds<3l) Indicates ‘the number of places after the
Position decimal point for conversions involving
Indicator decimals, i.e., E, G, and F.

Field- r {(0<r<63) Indicates the number of times that the
Repetition field specifications which follow are to
Constant be repeated.

Scale Factor

sP (s = a signedor unsignedinteger
is always followed by
the capital letter P)

Indicates that the decimal point of the
incoming and outgoing data is to be
shifted right or left.

Every field specification must indicate the type of conversioninvolved, using the appropriate

conversion code, and mustalso indicate the width ofthe field. In addition, all data represented

internally as floating-pointdecimal (i.e., E, F, and G codes) must indicate the decimal position.

Fieldrepetition constants and scale factors are optional information applicable only to certain con-

version codes.

Inall, there are three general forms offield specifications as indicated in Table 5-4.

Table 5-4. Field Specification Formats

E, F, or G Conversion

A, I, L, or O Conversion

Hor X Conversion

E w . d A w
F w . d I W
G w . d L w
. (0] w
e, A N S N— —N—
Conversion Field Decimal Decimal Conversion Field
Code Width Point Position Code Width
Indicator

Field Conversion
Width Code

Scale factor and/or field-repetition con-
constant may precede conversion code.

Field-repetition
constant may pre-
cede the conver-
sion code.

No options.

5-15

SECTION V.

INPUT/OUTPUT STATEMENTS

Field specifications written without scale factors or field-repetition constants are called

basic field specifications.

lowing paragraphs.

Conversion Codes

The contents of basic field specifications are described in the fol-

There are nine conversion codes used in Fortran D language, which are defined in Table

5-5.

in the table.

The general form of field specification applicable to each conversion code is also given

Table 5-5. Conversion Codes
Code Used External Internal General Forms
Data Type to in Field Representation Representa_tion of the Field
be Converted Specification of Data of Data Specification
Alphabetic A Characters of Fixed-point binary Aw
Fortran set equivalent of external _1_-_Alv
representation.
Explicit E Real Floating-point decimal Ew.d
exponent rEw.d
sPrEw.d
- SPEw.d
Fixed-point F Real, without Floating-point decimal Fw.d
decimal explicit exponent rFw.d
sPrFw.d
sPFw.d
Generalized G Real, with or Floating-point decimal Gw.d
without exponent rGw.d
sPrGw.d
sPGw. d
Hollerith H Characters of Fixed-point binary wH
Fortran set equivalent of external
representation.
Integer I Integer Fixed-point binary Iw
riw
Logical L "TH or "F" Fixed-point binary, Lw
using only the rightmost rLw
character of the field - —
Octal O Octal integer Fixed-point binary Ow
equivalent of external rOow
representation.
Blank or Skip X Not applicable Not applicable wX

Conversion Field

Width

The field width for a single conversion, w, represents the total number of columns or

positions assigned to a single datum. For all real conversions (E, F, and G) and for integer

5-16

——

~~
e’

SECTION V. INPUT/OUTPUT STATEMENTS

and octal conversions (I and O), the conversion field width cannot exceed 32. Hollerith, alpha-
betic, and blank conversions (H, A, and X) may be assigned a number of positions up to the

limit for the unit record of the external medium. The unit record limit for punched cards is 80,
for BCD tapes 132, and for printed lines 131. Every consecutive position of the external medium
from column 1 through the last column used must be considered as part of the data field, includ-

ing blanks.

Every distinct input value is said to occupy one data field of the input medium, regardless
of how many card columns the value requires. One or several data fields can occupy a single
punched card. Different values on the same card can be of different data types. In Figure 5-2,

six data fields are shown; two are integer and four are real.

//fv 592| 235.7450] 123456] 90,1234 2E1 53.

g WO, BRI W SR L

w:=6 w=ll w:=8 w:9 w=7 w=5

000000000 000000000000000000000000000000020000000000060000000000000000000
llW||llIJUI5lll1I.Iinllnﬂl‘ﬂlﬂnﬂﬂ)lﬂﬂ!‘JSIHIJ'GHI‘I‘.’(“““"“‘!SOSI5253MSGS‘NS'S’“HH““‘S“IT‘G.N“7!731‘757l"7l7l.
IHIHIIIIIIIHIIIIIIII'IIHIIHIIHIIHIIHIIllli”lllIIIIHIIIIIIIIIIH
222220222022222222220222222222202222220222222222222222222222222222222222222221222
333333333303833333333033333330330333333333380333333333333333323333333333333333333
44(444444-‘.4444.4444444.l444444044'4444444414444l44444444444‘44444444444‘44444444
555055555550 555855555550555555555555555[f55[555555555555655555555555555555555556535
6666666666666666666¢6666060666666666656656666666666666666666665666656666666666666
‘1717711777777.7777777777771777777777771777777l71717777777777771771777777777177IT
808888088888I8888838888588888.888!0BBBGB!BBBIBBSB!BGGESB888388888000830088830883
9999099999999999998999 99990399999999999998989598999599999909999999999999998999899
|IQI!57.!Il'lI|I1|1|0|5|i|)|I"2011221]2‘252‘271l2!”1lIlll'“l‘llJ13l”40‘|‘2‘1“45li01‘lﬂﬂlﬂSZ‘DSQSE“ST!IS!UI‘II““‘&SU“'!N".‘21]1‘7!15711!7'.
e~

Figure 5-2. Data Fields and Field Widths

-

The limits of conversion field width are, in general, set for a larger number of positions
than a single datum can occupy. When converting data to output format, only data converted
under H and X conversion codes can occupy the full conversion field width of up to unit-record
length. All other data are limited by the internal fixed-point or floating-point precision set by
the programmer for a job and described in detail in Appendix C. If the conversion field width
has additional positions, they will be filled with blanks. The representation of output is shown
for each conversion code on pages 5-19 to 5-31. If the conversion field width is less fhan that
required by the datum, an overflow condition will occur. Overflow conditions are also described

for each conversion code on pages 5-19 to 5-31.

The programmer can specify the precision of an internal, floating-point number as between
2 and 20 characters in tht'a mantissa, or he can permit automatic assignment of precision of seven
characters. The number of digits in the mantissa of a real number being converted to output
form under E, F, or G conversion can therefore be between 2 and 20, depending upon the floating -

point precision. On output, real data are right justified within their allotted conversionfield widths.

5-17

SECTION V. INPUT/OUTPUT STATEMENTS

A logical datum is stored internally only in the low-order six bits of a location and appears

on output as either T or F, right justified in the conversion field.

An octaldatumis stored internallyin a fixed-pointfield. From 6 to 24 octal digits canbe

stored infrom 3 to 12 characters. Octaldigits appear onoutputleft justifiedinthe conversion field.
An alphabetic datum is stored internally in a fixed-point field, which the programmer can
specify between 3 and 12 characters. If not specified by the programmer, a precision of three

characters is assigned. Alphabetic characters appear onoutputleft justified in the conversion field.

An integer datum is stored internally in binary in a fixed-point field. From 5 to 20 integer
digits can be stored internally in binary in from 3 to 12 characters. On output, integer digits

are right justified in the conversion field width.

Decimal Position Indicator

The number of places to the right of a decimal point is expressed by d, an unsigned decimal
number greater than or equal to 0 and less than or equal to 31. Decimal position indicators are
expressed for all E, F, and G conversions. Use of a decimal point in an incoming datum for E,
F, or G conversion is optional, since the decimal position indicator will specify its position.
However, if a decimal point is expressed in the datum, its position in the datum will determine
the value stored in memory. The decirﬁal position indicator in the FORMAT specification, if

different from the actual decimal point, will be ignored.

Basic Field Specification for Integer Conversion

The basic form of the Integer Conversion is:

Iw

INPUT
Used in conjunction with an input statement, an Iw field specification converts an incqming
integer to internal, fixed-point binary form. Precision of integer data is from 3 to 12 characters
(5 to 20 digits), as described in Appendix C. When a minus sign precedes an integer, a space
must be allotted in the field width for the sign. Use of a plus sign is optional and no space need
be allotted for the positive sign. When a sign is included, it may be followed immediately by the
integer or by any number of blanks, then by the integer. Any embedded or trailing blanks in the
incoming integer data field will be stored as zeros. Note that Honeywell uses an u‘pper case

delta (A) to denote a blank.

Examples:
Incoming Field Field Decimal Representation
Integer Width Specification of Value Stored Internally

12345 5 15 +12345

+12345 v 6 16 +12345

AA-12345 8 18 -12345

+A123A5 7 I7 +12305

12345678AAAA 12 112 +123456780000

a

SECTION V. INPUT/OUTPUT STATEMENTS

The five integers in the preceding examples can be read into memory and converted to
internal form by means of the READ and FORMAT statements shown in Figure 5-3.
N\
An illegal character in the incoming integer data will cause termination of the job. An
illegal character is any character not 0 through 9, a blank, or an initial plus or minus. An

illegal data character causes the following printout:

ILLEGAL CHARACTER IN INPUT DATA. BAD RECORD IS PRINTED BELOW.
(Next line shows the contents of the bad record.)

2345/+12345] -12345/+ 123 5/12345678

OO+ O+—D—

0000
4
1

00000000000000000000000000060000000000006000000

0
S8 78 91011121314151617 181920252223 24 25 28 27 28 29 30 31 32 33 34 35 36 37 3B 39 40 41 42 43 44 45 46 47 48 49 50,
1

il ERRRRERE IRRERET ERRR] IRRERRRRRERRARRRRRRRRRE

123

| BB
zI22222I2222222Izzzzzzlzzzzlzzzzzzz22222222zzzzzzQ;3>
33033333033333330333333033330333333333333333333333
444Baaasq0ea0asaalaaaada4aaala44444088280044404444

55550555550555555505555550554505555555555555555555

READ(2,20) I, J, K, L
20 FORMAT (15,16,18,17,112)

-

Figure 5-3. Input of Integer Data
OUTPUT
Used in conjunction with an output statement, an Iw field specification causes conversion
from internal, fixed-point binary form to an external integer. In the output data field, digits are
right justified on a background of blanks when the field width is wider than necessary to accom-
modate all the characters. If the value is negative, a minus sign immediately precedes the num-
ber. Positive integers appear without the plus sign. However, a space is allowed for the sign,

whether plus or minus, when determining the field width of the output data field.

Examples:
Integer Value Stored Field Presentation
Variable Internally Specification on Output Medium
I +12345 I7 AA12345
3 +12345 16 | A12345
K +12345 18 AAAL12345
L -12345 16 -12345

The values stored internally in I, J, K, and L in the preceding examples can be converted

to integer form and printed on the on-line printer by means of the WRITE and FORMAT

5-19

SECTION V. INPUT/OUTPUT STATEMENTS

statements shown in Figure 5-4. Note that the first field specification is 17 rather than 16. This

value allows a blank first character for carriage control when printing. Carriage control is

explained on pages 5-37 through 5-39. —
If an outgoing integer requires more columns of the output medium than the allocated field
width permits, truncation occurs at the low-order end of the integer. An asterisk is automati-
cally inserted as the first character of the output field to indicate that truncation has occurred;
the asterisk is followed by as many high-order digits as will fit in the remainder of the field
with a negative sign, if present.
Examples:
Values Stored Internally: +12g78 - 12@78
Minimum Field Width Required in Output Medium: w =28 w =9
Field Width Actually Allocated in FORMAT Statement: w =17 w =17
Presentation on Output Medium: *123456 %*.12345
s
o
O
A12345/A12345AANI12345(~12345 O
Z0320;=0=:0; o ‘
O
O
0]
@)
o) ;
O
b 131 -~ |O
PRINT POSITIONS ®)
@)
WRITE (3,20) I, J, K, L =
20 FORMAT (17,16,18, 16)
1
Figure 5-4. Output of Integer Data —_
S

PR

SECTION V. INPUT/OUTPUT STATEMENTS

Input for Conversion of All Real Data

There are three FORMAT field specifications for the conversion of incoming real data.

These are:

Fw.d

Ew.d

Gw. d

On input, all three conversions are performed in a similar manner. An Fw.d, Ew.d, or Gw.d
causes conversion to internal floating-decimal form of an incoming real constant. Page 1-13
defines and describes real constants. Note that such constants may appear with or without

exponents.

Use of a plus sign in incoming data is optional. Any blanks embedded in the mantissa of
the constant are considered to be zeros. When an incoming constant has an exponent, the exponent
is of the general form E#ee, where ee is the numeric exponent. However, several simplifications
are permitted for convenience in keypunching input data, and the figure below shows equivalent
ways of punching the exponent plus two. Blanks appearing in the exponent have no effect, since
they are suppressed. A positive exponent may have its plus sign omitted or replaced with a
blank. If the first digit of the exponent is zero, it may be omitted. If the exponent appears with
a sign, the E may be omitted (as in the last two rows of Figure 5-5). The exponent need not be

right justified in the input field.

I E+02 E+o02 E +02 E+ 02 E+0 2
E02 E02 E 02 E0 2
E+2 E+2 E +2 E+ 2
E2 E 2
+02 +02 + 02 +0 2
+2 + 2

Figure 5-5. Twenty-One Equivalent Ways of Keypunching an Exponent of Plus Two

The field width, w, is determined by counting the number of characters in the incoming
datum. The following formula indicates how w is determined:

w=a+pt+tnt+te+hb

Where: a = the number of digits in the mantissa. For F format this would
mean all digits in the datum.
p = lifa decimalpoint is present.
= Oifa decimal point is not present.
n = 1 if the sign of the mantissa is minus or is punched plus.

0 if the sign of the mantissa is positive but not punched.

5-21

SECTION V. INPUT/OUTPUT STATEMENTS

Where: e = 4 for any real datum with an exponent as follows:

1 character for E,
1 character for sign of the exponent,
2 characters for the exponent.

0 for any real datum without an exponent,

o'
1]

the number of leading or embedded blanks.

The decimal position indicator, d, represents the number of digits following the decimal
point in the incoming real datum. The decimal point need not be present in the incoming datum;
in this case, the d of the FORMAT specification will determine the position of the decimal point
of the value stored in memory. If a decimal point is present in the incoming datum, the decimal
position of the value stored in memory will be determined by the datum, not by the d of the

FORMAT specification.

Following are a number of examples of correctly formatted input data.

Examples:
Real Minimum Decimal Field Decimal Representation of
Input Value Field Width, w Position, d Specification Value Stored Internally

12345, 12345 11 5 Fl1.5 +12345. 12345
I—-w =11

ba=5
+234. 5 0 F5.0 +234.
AAAA-67.1234 12 4 Fl2.4 -67.1234
123A5.1A345 11 5 Fl1.5 +12305. 10345
+12. 34E02 9 2 E9.2 +1234.
-123456+02 10 4 E10.4 -1234.56
1234. 567E+02 12 3 Gl2.3 +123456.7

Note that any of the examples above could have an E, F, or G input specification. The following

example illustrates this.

Real Minimum Decimal Possible Field Decimal Representation of
Input Value Field Width, w Position, d Specifications Value Stored Internally
1234. 567TE+402 12 3 El2.30r +123456.7
Fl12.3or
Gl2.3

Thus, F, E, and Gconversions canbe used interchangeably on input, provided that sufficient field
v
widthis allowed. Note in the next-to-last example given above that the decimal positionindicator,

d, has determined the storage of the inputdatum in the absence ofa decimal point in the value.

()

SECTION V. INPUT/OUTPUT STATEMENTS

The compiler mantissa parameter, F, determines the precision or number of significant
digits which may be used on input. When a datum containing more than F significant digits is
encountered on input of real data, only the high-order F digits will be stored in the mantissa.
The remaining low-order digits will be ignored except in determining the proper exponent value
of the datum. The programmer may set the mantissa parameter F on the #JOBID card at
compile time within the range of 2 to 20 digits. If no parameter is specified, the compiler
assumes F = 7, When the mantissa contains fewer significant digits than F, the incoming real

datum is stored left justified with a fill of zeros.

Figure 5-6 repeats the incoming data card previously shown on page 5-17. Included in the
figure are an appropriate I/O statement and a FORMAT statement with correctly formulated field
specifications. All fields are real with decimal position indicators giving the decimal point where

appropriate.

/ 592] 235.7450| 123456] 90.1234 2E1| 53.

o WO, SN Sl WS, SRS LL

w=6 ws=tl w:=8 w:9 w=7 ws5
0000000000f0000000000000000000006008
1

1

SIWNRVUISIEITIBBON2ZANBBT2B2830I13233435363735394041 4243 44 454647 484950515253 54 55 56 57 5059 60 G162 6IBAoS 66T 6363 NN 2B UIS B TI T8 T8 80

;lIIIIIIIIIIIIIIIII|IIIIIIII|IIIIII1IIIIIIIIIIlII?Ilill]llilllllllllililI
222220222822222222220222222222202222228222
3333333333'3'33333333|3333331'33'3333333333'.33333333333333333333333333333333333
444444440344040444444aF40404444040448444400404404444444444040444844444440844484444
555055555550 555055555550555555555555555R5505555555555555555555555555555555555555
66566666666666666666666666666666666R666
TN TI T I III I IR I i I I It 111111111111711
8888 8808588|8888BG888BB88&ﬂBlB8888888888888'8888Bﬂ88888888833888888888888885888
9999
IREE)

-w
o~ oo

998 99999999999999999[399999999999999999999999999999599999909¢9999939989999
234 ' 2 %% n EEE Y] MG e 53 54 55 56 57 58 59 60 61 52 63 54 65 66 67 68 69 70 7 5 &

BATI2I314I516 2181920212220 0 DABNINNBUISKE N aeg 47 48 4950 51 52 57 Ll & 9 12N

e]

READ (2, 20)A, B, C, D, E, F
20 FORMAT (F6.0, E11.4, G8.3, F9.4, E7.0, G5.1)

Decimal Representation of Values Stored Internally:

+592., +235.7450, +123.456, +90.1234, +20., +53.7

Figure 5-6. Input of Real Data

An illegal character in incoming real data will cause termination of the job. An illegal
character is any character not 0 through 9, a blank, a plus or minus, a decimal point, or an E.
The following diagnostic’is printed out:

ILLEGAL CHARACTER IN INPUT DATA. BAD RECORD IS PRINTED BELOW.
(Next line shows the contents of the bad record.)

SECTION V. INPUT/OUTPUT STATEMENTS

Output Conversion to Fixed-Point Decimals (Fw.d)

Used in conjunction with an output statement, an Fw. d field specification causes conversion
from internal floating-decimal form to the form of a real constant expressed without an exponent

(i.e., fixed-point decimal form).

In the output field, the value is right justified on a background of blanks when the field width
is wider than necessary to accommodate all characters of the value. If the value is negative, a
minus sign immediately precedes the value. Positive values appear without a plus sign, but a
character position must be allowed for the sign. On Fw.d output conversion, the field width, w,
is determined by the following formula:
w 2a+d+2
Where: a = the number of digits before the decimal point,

d

the number of digits after the decimal point,

2 columns are allotted for decimal point and sign.

The following examples illustrate the rules for determining the minimum field width for

output under Fw.d field specifications.

Examples:
Decimal Representation of Minimum Field Width Field
Value Stored Internally for Output Specification

+12345. 12345 w =12 Fi12.5
(w=5+5+2)

-.123 w=5 F5.3
(w=0+3+2)

-23.1234 w =8 F8.4
(w=2+4+2)

+234. w =5 F5.0
(w=3+0+2)

To transmit these values from memory, the following output and FORMAT statements can
be used:
WRITE (3, 20) A, B, C, D
20 FORMAT (1X, Fl2.5, F5.3, F8.4, F5.0)

The line would be printed as follows, starting in column 1:
A12345.12345]|-.123]-23.1234| A 234.
)
If an outgoing value requires more columns of output medium than the allocated field width

permits, an asterisk is set in the first column of the output field. If the field width, w, was

5-24

(]

3

[

—~

SECTION V. INPUT/OUTPUT STATEMENTS

greater than or equal to 7, the output value will have the format E(w-1).(w-7). When such over-
flow occurs, the least significant field position is rounded. That is, if the digit to the immediate
right of the least significant position is five or more, one is added to the least significant position;
otherwise the number in that position remains the same. The following is an example of overflow

and rounding of a value having a field width of 7 or greater.

Value Stored Field Actual Field Presentation on
Internally Specification Specification Used Output Medium
-12345.12345 F11.5 El0.4 *-, 1235E+05

If the field width, w, is less than 7, blanks will follow the asterisk in the output field. For

example:
Value Stored Field Presentation on
Internally Specification Output Medium
+1.23 F3.2 *AA

The number of places that will appear ‘at the right of the decimal point is specified by d in
Fw.d. The following examples show the effect of varying d and w. The same real constant is

transmitted from memory using different Fw.d field specifications.

Examples:

Value Stored Output Field Presentation on
Internally Specification Output Medium

+2.53 F5.2 A2.53

+2.53 F8.5 A2.53000

+2.53 Fl0.5 AAA2.53000

+2.53 F4.1 A2.5

+2.53 F3.2 *AA

+2.53 F9.8 | *.253E401

+2.53 F10.9 A*,253E+01

Note that in the last three examples if the value stored internally had been +.253, the output field

specification would have been great enough to permit transmission of the value under F conversion.

QOutput Conversion to Explicit Exponent (Ew. d)

Used in conjunction with an output statement, an Ew. d field specification causes conversion
from internal floating-decimal form to the form of a real constant expressed with an exponent.
1
The output form is shown in Figure 5-7. It consists of a sign followed by the mantissa and

exponential part.

5-25

SECTION V. INPUT/OUTPUT STATEMENTS

;———— Exponent sign

-.123456789012E-02
\ V Ve S
No character Mantissa Exponent

for mantissa
sign if positive

Figure 5-7. Output of Real Data in Exponential Form

When an output value is in explicit exponent form, the mantissa is given as a decimal
fraction preceded by a decimal point and sign if negative. The number of significant digits in the
mantissa is specified between 2 and 20 by the mantissa parameter, ¥, on the *JOBID card. If

not specified, an output value can have up to 10 significant digits in the mantissa.

The exponential part consists of the letter E, followed by a sign, then by a two-digit

exponent representing the power of ten by which the mantissa is multiplied.

The formuia for determining the minimum field width for output is as follows:
w=m+6

Where: mis the number of digits in the mantissa, and >
6 spaces are allotted as follows

1 for mantissa sign

1 for decimal point

1 for the letter E

1 for the exponent sign
2 for the exponent

The value is right justified on a background of blanks when the field width is wider than necessary
to accommodate all characters of the value. Following are examples of some correctly formatted

output values using E conversion.

Examples:
Minimum
Value Stored Field Width Field Presentation on
Internally for Output Specification Output Medium
-6
-.1234x%10 10 E10.4 -.1234E-06
(4 digits indecimal
fraction + 6)
-.12345x% 10% 11 Ell.5 - .12345E + 04
(5 digits in decimal
d fraction +6)
12
+.123456789012x 10 18 £18.12 .123456789012E+ 12

(12 digits indecimal
fraction + 6)

5-26

»

"

()

SECTION V. INPUT/OUTPUT STATEMENTS

To transmit these values from memory, the following output and FORMAT statements can
be used:
WRITE (3, 20) A, B, C
20 FORMAT (1X, E10.4, E11.5, E18.12)
The line would be printed as follows starting in column 1:

-.1234E-06|-.12345E4+04|A . 123456789012E+12

. If the field width, w, is less than m + 6, an asterisk is set in the first column of the output
field. When such overflow occurs, the output consists of as many high-order digits as the field

width can accommodate. The digitin the least significant position is rounded. For example:

Value Stored Field Specification Presentation on
Internally Used Output Medium
-.3214892x106 El1.7 *-,3215E+06

A field specification of E13.7 would correct the difficulty.

Generalized Field Specification, Gw.d

Used with an output statement, a Gw.d field specification causes conversion from internal,
floating-decimal form to a real constant. The magnitude of the real constant will determine

whether the Gw.d is interpreted as an F or E conversion.

Comparison between the exponent of the stored value, e, and the number of decimal places,
d, of the specification determines the type of conversion the compiler will use as follows:
1, If e>d, E conversion is used.

2. If e<d, F conversion is used according tothe formula: F(w-4).(d-e), 4X
Four blanks (4X) are appended to the right of the value.

3. If the value to be represented is less than |.1 IV, E conversion is always used.

Following are some correctly formatted output values using G conversion, which will
indicate how the conversion formulae determine the output presentation.
Examples:

Given a field specification of G14. 6.

Value Stored Pre sentatibn on the
Internally Conversion Output Medium

.12345123 x 10° F AAA, 123451AAAA

.12345123 x 10% ¢ F AAAL234, 51AAAA
. 12345123 x 108 E AAA.123451E+08
. 12345123 x 1010 E AAA.123451E+10

5-27

SECTION V. INPUT/OUTPUT STATEMENTS

If the programmer does not allow sufficient field width, the rules for E output conversion
under overflow conditions will apply. The following examples illustrates these conditions.
Examples:

The programmer selected a specification of G12.8 for output of the values below. In each

case, w<m+6.

Value Stored Presentation on the
Internally Conversion Qutput Medium

-. 12345123 x 10° E %*-.12345E+08
-.12345678 x 10'° E %-.12346E+10

Basic Field Specification for Octal Conversion

Octal conversion has the basic form:

INPUT

Used in conjunction with an input statement, an Ow field specification causes conversion of
an incoming octal integer to internal, fixed-point binary representation. The incoming integer
consists of digits in the range 0 to 7. Any characters other than the digits 0 through 7 are illegal
and will cause termination of the object program at execution time. Embedded and trailing blanks
are considered to be zero; leading blanks are ignored. Internally, octal data appear not as a
value but as a string of octal characters, left-justified with a fill of zeros, since two octal char-

acters occupy one character of a fixed-point field.

Example:
Incoming Octal Integer: 1234510

Internal Representation:

00L 010 o1l 1 1
T 3 ¥ _gg lg_J 001 000 000 000 000 000 000 000 000
1 0

The value shown in the example can be read into memory and converted to internal form by
[

means of the READ and FORMAT statement shown in Figure 5-8. Note that octal input data
are identified as having an integer data type, since there is no way of declaring octal type in

a data-type statement.

5-28

18]

SECTION V. INPUT/OUTPUT STATEMENTS

12345878

READ (2, 20)L
| KRRRI IR
222222 20 FORMAT(0O7)

33033333

§4404448
5555055¢

Figure 5-8. Input of Octal Datum

OUTPUT
Used in conjunction with an output statement, an Ow field specification causes conversion
from internal representation to the form of an octal integer. Conversion takes place from left
to right and proceeds until w octal digits have been converted.
Example:
Internal Representation

001 010 o011 100 101 001 000 000 000 000 000 000 000 000
—— e v e e e Sy

1 2 3 4 5 1 0

Field specification for output: O7

Presentation on output medium: 1234510

Basic Field Specification for Logical Conversion

Logical conversion has the basic form:

Lw

INPUT

Used in conjunction with an input statement, an Lw specification causes an incoming truth
value (true or false) to be converted to binary representation (zeros for false and ones for true).
The first non-blank character in the input data field determines the resulting truth value. If the
first non-blank character is T, a value of true will be stored. Any other character will result

in a value of false being stored. It is recommended that the letter F be written as the first non-

blank character if a value of false is desired.

Examples:

Contents of Input Field Specification Truth Value Stored
Data Field for Input Internally
T L1 TRUE
TRUE L4 TRUE

SECTION V. INPUT/OUTPUT STATEMENTS

Examples (cont):

Contents of Input Field Specification Truth Value Stored
Data Field for Input Internally
AAMATRAA L7 TRUE
T123 L4 TRUE
F L1 FALSE
AFALSEAA L8 FALSE
1234567 L7 FALSE
AAAAAA L6 FALSE
. TRUE. L5 FALSE

The nine truth values of the preceding examples can be read into memory and converted

to internal form by means of the READ and FORMAT statements shown in Figure 5-9.

1234567

8 910 111213 141516 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

IRERRRY ARREREYE IRRARE IRRRRRRERRRRRRRERRRRERER!

BRoBooooBoooBooococoof0000000000000000000000000000
12234567
IRRRRRE]

2222222222222202222220222202222222222222222222222
B0333333033303303333033333303333333333333333333333
4440044446442404044444480444403402444484404444464424
555505555555555555555555555505555555555565555555

READ (2,20) I, J, K, L, M, N, II, JJ,KK
20 FORMAT (LI,L4,L7,L4,L],L8,L7,L6,L5)

Figure 5-9. Input of Logical Data

OUTPUT
Used in conjunction,with an output statement, an Lw field specification converts the binary
representation of a truth value to either the letter T (if TRUE) or F (if FALSE), right-justified

in the output data field.

SECTION V. INPUT/OUTPUT STATEMENTS

Examples:
Truth Value Stored Field Specification Presentation on
Internally for Output Output Medium
TRUE. L1 T
FALSE L3 AAF
TRUE 16 AAAAAT

Basic Field Specification for Alphabetic Conversion

Alphabetic conversion has the basic form:
I Aw

Used in conjunction with an input statement, an Aw field specification causes characters

INPUT

up to the number permitted by the size of the fixed-point field of incoming alphabetic data to be
stored internally; each character is stored as six bits. Valid input includes any character of the
Honeywell character set; blanks are significant. Since there is no alphabetic type declaration,
alphabetic data are identified as having an integer data type.

Example:

Assume that no fixed-point parameter has been specified and that it is desired to read

into memory the complete English sentence:

THERE IS NO ALPHABETIC TYPE DECLARATION,

Three variations on the method are shown in Figure 5-10. A declared integer
precision of 5 is assumed, and the sentence is divided into data fields of five alpha-
numeric characters. In methods 1 and 2, a separate variable is used to store the
contents of each data field. The contents of the variables after execution of the
READ statement are shown at the right of the illustration.

In method 3, the sentence is stored in an array. The array size is declaredin a
DIMENSION statement; an implied DO loop in the READ statement eliminates the need
of writing out the names of all eight array elements in a simple list; a repetition
constant is used in the FORMAT statement as a shortcut in writing the statement.

The contents of each array element after execution of the READ statement are shown
in the figure.

OUTPUT
Used in conjunction with an output statement, an Aw field specification causes alphabetic
data stored internally as six-bit characters to be converted to their equivalent forms in the

Honeywell character set and transmitted to the external medium.

Field Specification for Hollerith Data

The Hollerith field specification has the form:

WHh1h2h3. . .h:]
Where: wH are the field specification's field width and conversion code; and
each h is a Hollerith character.

SECTION V. INPUT/OUTPUT STATEMENTS

ERE[1S NO ALPHABETIC TYPE DECLARATION.

S 1011213141516 17 18192021 222324252627 2829303132 333435363730 3940 41 4242 44 4546 47 484950 515253 S4 5556 57 58 596061626164 656667606920 711 72704750617 78 T8 80

BocooooBooovoooooooMoocMMoooooooocoMoo00s000060000000000000000600000000000800508
;::;:;;;IlllllllllllllllllIlll!lllllllllllllIIIIIIIIlI|Illlllllllll!llllllllllll
22222220222222222022122222222222122211
B33333233333303333303 3333333 MMa3alsoala3333333333323333333333333333333333333333
BR800ttt aaadla it adaaaiddddtiadadiaaaaaeatiadsaadadaadsiagsnssy
5sMsMss55M555555555555555M55M55555555055555555555555555555555655555555555555555

5666666656M66666666666666666666666666M6666666656666666666566666666666566656566666

AR R R R AR Rl AR R R R R AR FR RN R R R R R R R R R RRRRRE RN
sl

sss2ssssasafocosasasMecoocsoscoscanlenosasnasssa8888868088308888888008B6688888
999999999999

9
7688870 N XT3 M SIS T I8 9 N0

[}
| EX] EEEEEREEREERE] FEEREEEERREE] LRI EREERREREEEE
45867129 4

WHIRZDMISBTBHNNRBABBIBBRNNRBUBENRBILNQBUGHT 0

Method 1: Eight variables are used for storage. Variable | Contents after
READ (2, 20)1, J, K, L1, L2, L3, M, N Execution
I THERE
T (A5, A5, A5, A5, A5, A5, A5, AS
20 FORMAT (A5, A5, A5, A5, A5, , A5,) T ALS AN
If the incoming contents of N were less than I]il }O-If\gléi
five alphabetic characters, the contents would L2 ICATY
be left justified. L3 PEADE
M CLARA
N TION.
Method 2: Same as method 1 except that a repetition
constant is used to simplify writing field
specifications (see page 5-39).
READ (2, 20)1, J, K, L1, 1.2, L3, M, N
20 FORMAT (8A5)
Method 3: A one-dimensional array, containing eight Array Contents after
array elements, is used for storage. Element Execution
WAL be 1t justitied if less than five, | IALPH(D) [THERE
J . IALPH (2) Al SAN
DIMENSION IALPH (8) IALPH (3) OAALP
IALPH (4) HABET
READ (2, 20 LPH(I), I=1, 8
(2, 20)@A @, , 8) IALPH (5) I CATY
20 FORMAT (8A5) IALPH (6) PEADE
IALPH (7) CLARA
IALPH (8) TI1ON.
v

Figure 5-10. Input of Alphabetic Data

5-32

P

"

SECTION V. INPUT/OUTPUT STATEMENTS

The Hollerith field specification, therefore, differs from discussed specifications in that the item
to be transmitted appears in the FORMAT statement itself, not on a data card. If only Hollerith
characters are to be transmitted, the appropriate I/O statement does not need a list. Hollerith

characters may be any of the Honeywell character set with blanks being significant.

OUTPUT

Used in conjunction with an output statement, this field specification provides the basic
means of supplying appropriate headings, titular information, and vertical line-spacing for out-
put reports. If the output device is a card punch, w should not exceed 80;if it is a magnetic

tape unit, w should not exceed 132; if it is a printer, w should not exceed 131.

To illustrate a basic use of the Hollerith field specification, assume that it is desired to
print the heading '""POWER CALCULATIONS". This could be done with the following WRITE and
FORMAT statements:

WRITE (3, 20)

20 FORMAT (19HA POWERACALCULATIONS)
At compilation time, the 19 characters composing the phrase A POWER ACALCULATIONS be-
come an integral part of the program and will be stored in memory. When the WRITE statement
is actually executed in the object program, the characters are transmitted to the on-line printer
and printed in the first 18 columns of a line. The initial blank in the Hollerith specification is

used for carriage control. (See pages 5-37 to 5-39.)

To center the heading on the page, the wX specification may be used to insert blanks before
the Hollerith field. Blanks may be inserted through the Hollerith specification itself, as shown
below, but this method is more cumbersome:

WRITE (3, 20)
20 FORMAT (26HAAAAAAAA POWER CALCULATIONS)

In effect, printing will start in column 8 instead of column 1, since seven blanks will precede the

phrase POWER CALCULATIONS.

Like all field specifications, Hollerith specifications may be interspersed with other speci-

fications in a FORMAT statement, as illustrated by the following example.

Example:

It is desired to print three values on the same line of an output report. The
first value represents a voltage, the second a current, and the third a power

calculation. rFor clarity, it is desired to label each calculation and to in-
dicate the units in which it is expressed.

The WRITE and FORMAT statements shown in Figure 5-11 illustrate how all
this information could be printed on the same line.

5-33

SECTION V. INPUT/OUTPUT STATEMENTS

FORTRAN PROGRAMMING FORM

TITLE| [| 1 ‘ l 1 | ! PROGRAMMER Checked B Date Page __of
y g
Statement g
Number |N
T FORTRAN STATEMENT REMARKS
C N
1| 56|7 10 15 20 25 30 35 40 45 50 55 60 65 70 72 80

! |1|WR\lTIEot(la,lZMLYMJ_MURNI;IJPQWERH1111111111|1111|x1|||i|||
z L le FORMAT, |(9|H| VOLTAGE:|, 15, 2AH NOLIS D.C.i3 1 CURRENT:),, 1F171-121'1l !
3 My e AMPSS leWEiRl:L’J !16!,(6K WATlrﬁt)x L

Ll pvv et v b e b b b br g ey

I S B I A e B A |

b e ve by b

[
L1 PN T A I T U U U W T U O SO TN OOV 100 T Y 0 A L Y M U A S AR L A S SR O A B A B S BB
|

L1 ARSI A T T SO S 0 O S TS T T U I O O N OO0 O O O O O O

Figure 5-11. Example of Output of Hollerith Data

The line would be printed as follows in columns 1 through 72:
VOLTAGE: 115 VOLTS D.C.; CURRENT: 13.04 AMPS; POWER: 1500 WATTS ...

The same line is shown below with the blank spaces marked and the
starting column of each data field indicated.

\{OLTAGE: $A1 15AVOLTSAD. C.;AAAA CURRENT:AA13. 04AAMPS; AAAA POWER:AlAl 500? WATTS
4 1 { 1
1 9 14 : 38 45 61 67 72

The preceding example illustrates the scannihg process that is discussed on pages 5-47
through 5-49 . The FORMAT statement is scanned from left to right. The first field specifi-
cation encountered is the Hollerith one, 9H VOLTAGE:. The first space is used for printer
carriage control and the eight literal characters following are transmitted from memory to the
output medium. Scanning resumes without any list item having been transmitted. Next, the I5
field specification is matched with the integer variable IVOLTS in the output list, andthe present
value of IVOLTS (assumed to be 115) is transmitted from memory to the output medium. Scanning
of the FORMAT statement continues. Now, the 24 characters specified in the next Hollerith
specification are transmitted, and scanning resumes without any additional list item having been
transmitted. Then, the F7.2 specification is matched with real variable ACURNT, and the

present value of this variable (assumed to be 13.04) is transmitted, and so on.

When Hollerith field specifications are written in FORMAT statements, it may often be
necessary to use one or more continuation lines to express the complete FORMAT statement, as
in the preceding example. It is permissible for a Hollerith field specification to be divided
between lines of a staten:ent, since column 7 of a continuation line follows immediately after

column 72 of the preceding line. Thus, the FORMAT statement of the preceding example could

be written as shown in Figure 5-12, with a Hollerith field specification split between lines.

]

b}

SECTION V. INPUT/OUTPUT STATEMENTS

FORTRAN PROGRAMMING FORM

~ TITLEu | ‘] T L] J PROGRAMMER Checked By Date Page __of
!STatementg
Number ([N
T FORTRAN STATEMENT REMARKS
C
1 52 7 10 15 20 25 30 35 40 45 50 55 60 65 70 72 80
! i ,2-9 FORMAT, ILIQMI IVQLT\-M S Y S u RjELNTﬁl,J |F|7\-|2a;l JOH AN
2 1 Pls;1||I1PIQWER:1;[LMHWATIFSI)II\lj_Lll_LllllllJilJllLllJ_lJJ_LllilILII U A AN
R oty vty v b e e b e e b b r by e b b e g by by ey b b v et
4] sl es bbb b b o b v b s b by b v g Lo di sy

Figure 5-12. Use of Continuation Line with Hollerith Specification

Note that in the original example, it does not matter where the continuation line starts, since no
Hollerith field specification is split between lines, and blanks are normally suppressed if they
are not part of a Hollerith field specification. In the second example, however, it is very
important that the continuation line begin in column 7 if the results are to be identical, since

blanks are significant when part of a Hollerith specification.

INPUT
When a FORMAT statement containing Hollerith data is referenced by an input statement,
the actual characters listed in the Hollerith field specification are replaced by whatever charac-

ters appear in the corresponding field of the input record. If the same FORMAT statement is

later used with an output statement, the replacement characters rather than the original Hollerith
data will be transferred to the output record. By this means, titling information, such as the
current date, may be conveniently changed from run to run, as shown in the following example.
Example:
Assume that a program contains the following FORMAT statement:
20 FORMAT (1X, 8SHMM/DD/YY)
At object time, the current date, expressed as 11/22/65 and punched
in columns 2-9 of an input card, is read into the memory area occupied
by MM/DD/YY by means of the statement:
READ (2, 20)
Now, if the statement!
WRITE (3, 20)
is executed, the current date, 11/22/65, will be printed in the first eight
print positions instead of MM/DD/YY.

It should be emphasized, however, that the Hollerith data replacing the original Hollerith
characters are still not'available to the programmer for use in any way other than for input or
output. (The Aw field specification may be used to enter alphabetic data which can then be ma-

~ nipulated by the program.)

SECTION V. INPUT/OUTPUT STATEMENTS

Another useful application of the Hollerith field specification is in controlling the vertical
spacing of lines of printing. For a complete discussion of carriage control and of the use of the

Hollerith specification for carriage control, see pages 5-37 to 5-39.

Field Specification for Blank Conversion

Blank conversion has the form:

w X

INPUT

On input, the field specification wX causes w columns of the input record to be bypassed.
Any information contained in the skipped columns is disregarded, never being transmitted to
memory. No associated name is required (or should be written) in the list of the READ statement
which references the FORMAT statement containing the wX, since this particular field speci-
fication is not matched with any corresponding list item.

Example:

Six numerical values are punched on each card of a deck of input data.
The six data fields per card have widths as shown in the sample card
of Figure 5-13.

/ 592] 235.7450] 123456] 90.1234 2E1] 53.7]

o PO SN B W, SR LT

w=6 wzll w:8 w:=9 W=7 wz=5

] g00000000fQ00000000000f000
4 '

1 1

FUNZUUBBTBRAAZAUBBTABBNZVNBERNRBOMQOUSEONQDNRIUSHIHABRNNROUSECRBNTINNAUBRTIBIN

0
1
1 (RRR R ARl RRRE AR AR ERY RN R R Rl ERR AR R AR AR R R R R R AR AR R R R R R R AR RARER R R]

g00000
234567
tiinn
222220222022222222220222222222202222228222
333333333393033333333033333330330333333333308033333333333333333333333333333333333
Q0444444450 00404404 00840404404 84004444 4044444480484 0404404442444400408000440044
555055555550 555055555550555555555555555055M55555556555555555555555555555555555655
666666666666666666666666M65666666666666666666666666666666666566666666666666666686
7111177171171I7777777777777777717777777117711.7177771117777777717711777117111711
8888888888 slseossssssaceaacalenssssssonaasslesssssassnssssnssossesssossnasagssss
9999§99999999999998999999990199999999999999999999960999999999999989998999999999999
5319 EEE: RRUBENRN nunsn

L]
t234 SRNINNUISRTIBANDI2NNBBNUD E VRBUEGENRUDIDVINSATRBVIQGUBSBPARDI 2B NININNR

Figure 5-13. Sample Input Card

Assume that this particular object program does not need to process
the data punched in field No. 2 (columns 7-17) or field No. 4 (columns
26-34) which have field widths of 11 and 9 columns, respectively. The
two fields may be skipped by using the wX field specification while
obtaining values for the other four fields in the manner:

READ (2, 20)1, J, A, B
20 FORMAT (16, 11X, I8, 9X, E7.0, F5.1)

5-36

N

()

/('

SECTION V. INPUT/OUTPUT STATEMENTS

OUTPUT

On output, wX causes w blanks to be inserted into the output record. No associated name
is required (or should be written) in the list of the output statement which references the
FORMAT statement containing wX, since this particular field specification is not matched with
any corresponding list item.

Example 1:

It is desired to print six blank columns before the phrase POWER
CALCULATIONS. This can be done by means of the following WRITE
and FORMAT statements:

WRITE (3, 20)
20 FORMAT (7X, 18HPOWER CALCULATIONS)
The line would be printed as follows in columns 1 through 24:
AAA AAAPOWERACALCULATIONS

Where A represents a blank space.

Example 2:

It is desired to print three headings on the same line, each separated
from the other by five blank spaces. The following WRITE and FORMAT
statements can be used:

WRITE (3, 20)
20 FORMAT (10HAHEADING 1, 5X, 9HHEADING 2, 5X, 9HHEADING 3)
The line would be printed as follows in columns 1 through 37:

HEADING 1 HEADING 2 HEADING 3

| | |
Col. 1 15 29

The blank field specification does not require a terminating comma or other field separator.
For example, the FORMAT statement of example 2 could be written:
20 FORMAT (10HAHEADING 1, 5X 9HHEADING 2, 5X 9HHEADING 3)

Carriage Control for Printer Output

It is important to remember that, in formatting output to the printer, the first field position
is a carriage control indicator. A blank in the first field position indicates single vertical spac-

ing. All carriage control indicators are listed below.

A Single space before printing current line.
g p P g
0 Double space before printing current line.
1 Space to head of form before printing current line (skip to next page).
2
3
4 v
5 Space the indicated number of lines. (The number of blank lines
6 will be one less than that given by the carriage control indicator.)
7
8
9

SECTION V. INPUT/OUTPUT STATEMENTS

Therefore, the first character of the first field following the FORMAT statement operator

and the first character of the first field following each unit record terminator (slash) is a

-
carriage control indicator and must not be used as part of the field to be printed. For example,
consider the following sequence of statements:
I=10
WRITE (3, 20) I
20 FORMAT (12)
No blank for single spacing has been left in the FORMAT field specification. The character 1 of
the value 10 is assumed to be the carriage control indicator. The printer will skip to head of
form and print; 0 in column 1. Any of the following FORMAT statements will correct the printer
output by causing the printer to single space and print 10 in columns 1 and 2: :
Example 1: 20 FORMAT (13)
Example 2: 20 FORMAT (1X, I2)
Example 3: 20 FORMAT (1HA, I2)
In Example 1, the value 10 is right justified in a three-character field, leaving the first character
blank. In Example 2, a blank field specification is used to indicate a blank for carriage control.
In Example 3, a Hollerith field specification indicates the blank. ')
~~
The restriction in this section is limited to printer output only. It does not affect input
formatting or output to tape or punched cards.
While several methods are available to indicate single spacing, the Hollerith field speci-
fication is commonly used to indicate other forms of carriage control. Examples of carriage
control are given in Figure 5-14.
When a FORMAT statement describes more than one unit record, a carriage control
indicator must be given for each unit record. See examples in Figure 5-15. For a complete
discussion of multiple-record forms, see pages 5-45 to 5-51. R
Since vertical spacing information applies only to printer output, when the output is to a =
punch or to a tape, the cdrriage control indicators are treated as characters.

5-38

SECTION V. INPUT/OUTPUT STATEMENTS

l Output for Examples: K = 250
WRITE (3, 20) K
Example 1: 20 FORMAT (1HA, I3, 26HA(EXAMPLEAOFASINGLEASPACE))
or: 20 FORMAT (14, 26HA (EXAMPLEA OFA SINGLEASPACE))
or: 20 FORMAT (1X, I3, 26HA (EXAMPLEA OFASINGLEASPACE))
1 O | PRECEDING LINE O
2 O | 250 (EXAMPLE OF SINGLE SPACE) o]
Example 2: 20 FORMAT (1HO, I3, 26HA(EXAMPLEAOFA DOUBLEASPACE))
or: 20 FORMAT (1H2, 13, 26HA(EXAMPLE AOFADOUBLEASPACE))
O | PRECEDING LINE (o)
O ®)
3 O | 250 (EXAMPLE OF DOUBLE SPACE) O
Example 3: 20 FORMAT (1H1, I3, 34HA(BEGINA PRINTINGAATA HEADA
OF A FORM))
' © PRECEDIN INE ©
P o R DING LIN o
§ 3 o) o)
& |4 o 0o
63§10 o
—O
o\ o 250 (BEGIN PRINTING AT HEAD OF FORM) o
?
o § 2 o ®)
G(3 |o 0
Example 4: 20 FORMAT (1H4, 13, 30HA(SPACEAFOURALINESAANDAPRINT))
1 O ! PRECEDING LINE 0]
2 o o
3 o O
4 o O
5 O| 250 (SPACE FOUR LINES AND PRINT) . o
e ——— =
s——

Figure 5-14. Carriage Control in Single-Record FORMAT Statements

Field-Repetition Constant

When successive data fields are described by identical field specifications, it is not neces-
sary to write each field specification separately. Instead, a field-repetition constant, r, in front
of the first field specification, indicates the number of times the field is to be repeated. This
abbreviated form may be used with any type of field specification except wH or wX. The constant,

r, may be any unsigned integer greater than zeroand less than or equal to 63.

5-39

SECTION V. INPUT/OUTPUT STATEMENTS

As an example of use of the fieldrepetition constant:

20 FORMAT (5F 9.2, 2A5)

is equivalent to:

20 FORMAT (F9.2, F9.2, F9.2, F9.2, ¥9.2, A5, A5)

Example 1:

20 FORMAT (18HOFIRSTA UNIT-RECORD/22HANEXTARECORDA
WITHADATA)

s

o MR W N
O O OO0 OO

——————— —— — o —— . — o~ — i ——

FIRST UNIT-RECORD

NEXT RECORD WITH DATA

o

Example

or:

20 FORMAT (18HAFIRSTA UNIT-RECORD/22HONEXTA RECORDA
WITHADATA)

20 FORMAT (18HAFIRST AUNIT-RECORD//22HANEXTARECORDA
WITHADATA)

—

o MR W N
O O 0O 0 0 ©

NEXT RECORD WITH DATA

Figure 5-15.

Carriage Control in Multiple-Record FORMAT Statements

Repetition of Groups of Field Specifications

As described briefly on page 5-14, an appropriate repetition constant can be used with

groups of field specifications to provide a shortened notation in writing a FORMAT statement.

For convenience, the group-repetition constant is designated g. While not a part of the field

specification as is r, the group-repetition constant is used in a similar way as described below.

When two different field specifications alternate repetitively in a FORMAT statement, a

group-repetition constant may be used in writing the FORMAT statement.
tion can also be used whe'n more than two field specifications recur repetitively in the same rela-
tive sequence. Apair of parentheses isplaced aroundthe pair or group of field specifications which
recur repetitively, and the appropriate repetition constant, g, is written before the opening paren-

thesis. The constant g may be any unsigned integer greater than zero and less than or equal to 6 3.

5-40

This same short nota-

SECTION V. INPUT/OUTPUT STATEMENTS

Example 1:
20 FORMAT (4(F9.2, 17))
may be used in place of:

20 FORMAT (F9.2, 17, ¥9.2, 17, ¥9.2, 17, F9.2, 17)

The group-repetition constant, g, is equal to 4. The example shows the shortened no-

tation used when repeating alternating pairs of field specifications.

Example 2:
20 FORMAT (4(F12.6, 317, F4.1, E6.3, 05))
may be more conveniently written and keypunched.than the equivalent:

20 FORMAT (

g = 4. The example shows repetitive groups of field specifications.

Example 3:
20 FORMAT (Ol1, 3(F9.2, 17), 5A5, 4(14, E6.3), F22.6)
is equivalent to:
20 FORMAT (O11, |¥9.2,
4, E6.3,] [14, B6.3,

In this example, single field specifications are interspersed with repetitive groups.

Scale Factor
In F, E, and G conversions the programmer has the option of using a scale factor as part
of the field specification. The scale factor precedes other components of the field specification

and is written:

sP

Where: s is a decimal value, positive, negative, or zero, indicating the
number of decimal places that the decimal point is to be shifted
(-31< s £+31).

P always follows s and identifies s as a scale factor.

On input, the scale factor affects the value of the datum only if there is no explicitexponent
in the data field. If the incoming datum is a decimal number without an expressed exponent, the
value stored will be changed by the power of ten expressedby the scale factor. On output, the
type of conversion, E, ¥, or G, determines the effect of the scale factor. For E-conversion
output operations, the scale factor changes the value by the power of ten indicated by s, but the

exponent is also modified so that the value remains the same although expressed differently.

5-41

SECTION V. INPUT/OUTPUT STATEMENTS

Finally, for G-conversion output operations, the scale factor does not apply to F-type conver-

P

sions. If E-type output conversion is used, the scale factor has the same effect as if E con-

version had been specified originally, i.e., the decimal point is shifted but the exponent is modi- d
fied so that the actual value remains the same. When an E, ¥, or G conversion has no given
scale factor, the scale factor is understood to be zero and no shift occurs.
The direction in which the decimal point of the value is to be shifted is determined by
whether the scale factor is positive or negative. By convention, the scale factor is said to be
Bositive if the decimal point is shifted to the left on input, and negative if it is shifted to the right.
For output, the convention is just the opposite: The scale factor is positive if the decimal point g
is shifted to the right and negative if it is shifted to the left. A positive scale factor may be
written with or without the plus sign; a negative scale factor is preceded by a minus sign. =
Omission of the sign automatically implies a positive scale factor. Table 5-6 shows shifting of
the decimal point by the scale factor in I/O operations.
Table 5-6. Scale Factor Shifting of Decimal Point
Sign of Scale Factor 1/O Operation Direction of Shift
s or +s Input — (left)
-s Input — (right) o
s or +s Output —— (right) ~
-s Output — (left)
INPUT
The effect of the scale factor on input values may be expressed by the general equation:
I=X.10"%
Where: I = Internal value.
X = External value.
s = Scale factor (a signed or unsigned integer in the range -31<%s $+31).
Thus, for a scale factor of 3 and an incoming value of 123. 4567,
123.4567 x 1073 = . 1234567 -
And for a scale factor of -3,
123. 4567 x 10~(~3) = 123.4567 x 10*3 = 123456.7
OUTPUT v
The effect of the scale factor on output values may be expressed by the general equation:
X=1.10° -~

SECTION V. INPUT/OUTPUT STATEMENTS

Where: X, I, andsare as definedabove (since the equationis the same one rearranged).

Thus, for an internal value of 0. 1234567 and a scale factor of 3, the external value is 123.4567:
X =.1234567 x 103 = 123. 4567

Table 5-7 shows the effects of use ofa scale factor on input values for F conversion, and
Table 5-8 gives the same information for output values. Table 5-9 shows the scale factor effect

on output values in E conversion.

Table 5-7. Effects of Scale Factor on Input Values (F Conversion)

ON INPUT, A POSITIVE SCALE FACTOR SHIFTS DECIMAL POINT TO LEFT BY s PLACES

‘e AN
Input Value FORMAT Scale Input Value
Before Scaling Specification Factor After Scaling
123.4567 F8.4 0 123.4567
123.4567 1PF8.4 1 12.34567
123.4567 2PF8.4 2 1.234567
123. 4567 3PF8.4 3 0.1234567
123.4567 4PF8.4 4 0.01234567

ON INPUT, A NEGATIVE SCALE FACTOR SHIFTS DECIMAL POINT TO RIGHT BY s PLACES

-s Input Value FORMW Scale Input Value
Before Scaling Specification Factor After Scaling
123.4567 F8.4 0 123.4567
123. 4567 -1PF8. 4 -1 1234.567
123. 4567 -2PF8.4 -2 12345.67
123.4567 -3PF8. 4 -3 123456.7
123.4567 -4PF8. 4 -4 1234567.

Table 5-8. Effects of Scale Factor on Output Values (F Conversion)

ON OUTPUT, A POSITIVE SCALE FACTOR SHIFTS DECIMAL POINT TO RIGHT BY s PLACE

+s AANS
Output Value FORMAT Scale Output Value Presentation on
Before Scaling Specification Factor After Scaling Qutput Medium
. 1234567) Fo.7 0 . 1234567 . 1234567
. 1234567 1PF10.7 1 1.234567 1.2345670
. 1234567 2PF11.7 2 12. 34567 12. 3456700
. 1234567 '3PF1 2.7 3 123.4567 123. 4567000
. 1234567 4PF13.7 4 ’ 1234.567 1234. 5670000

5-43

SECTION V.

INPUT/OUTPUT STATEMENTS

Table 5-8 (cont).

Effects of Scale Factor on Output Values (F Conversion)

L

-8

Output Value
Before Scaling

. 1234567
.1234567
. 1234567
. 1234567
. 1234567

FORMAT Scale

Specification Factor
F9.7 0
-1PF9.7 -1
-2PF9.7 -2
-3PF9.7 -3
-4PF9.7 -4

Output Value

After Scaling
. 1234567

. 01234567

. 001234567

. 0001234567
. 00001234567

ON OUTPUT, A NEGATIVE SCALE FACTOR SHIFTS DECIMAL POINT TO LEFT BY s PLACES
AAAN

Presentation on
Output Medium

. 1234567
. 0123457
. 0012346
. 0001235
.0000123

Examples of scale

General Form

sPFw.d
EPEW. d
sPGw.d
sPrFw.d
_s;PE-Ew. d
sPrGw.d

Table 5-

-

factors written in the field specification of the FORMAT statement are:

without
repetition
constant

with

repetition
constant

ExamEIe
3PF8.4

-3PE11l.4
+2PG14.3
3P2F8.4
-3P2E1l1.4
+2P3Gl4.3

9. Effects of Scale Factor on Output Values (E Conversions)

POSITIVE SCALE FACTOR SHIFTS DECIMAL POINT TO RIGHT
BY s PLACES AND DECREASES EXPONENT BY s

Output Value FORMAT Scale
Before Scaling Specification Factor
1234 x 100 E10.4 0
.1234x106 1PE1l. 4 1
1234 x 10® 2PE12.4 2
.1234x106 3PE13.4 3
.1234x]06 4PE14. 4 4

NEGATIVE SCALE FACTOR SHIFTS DECIMAL POINT TO LEFT
BY s PLACES AND INCREASES EXPONENT BY s

Output Value FORMAT Scale
Before Scaling Specification Factor
.1234 x‘lO6 E10.4 0
.1234x106 -1PE10.4 -1
1234 x 100 -3PE10. 4 -2
.1234 x 10° -3PE10. 4 -3
.1234 x 10° -4PE10.4 -4

Output Value
After Scaling

.1234 x 106

1.234 x 10°

12.34 x 10%

123.4 x 103

1234. x 102

Output Value
After Scaling

Presentation on
Output Medium

. 1234E+06
1.2340E+05
12. 3400E+04
123.4000E+03
1234.0000E+02

Presentation on
Output Medium

.1234 x 106
.01234 x 107
001234 x 10°

9

.0001234 x 10

.00001234 x 1010

. 1234E+06
.0123E+07
.0012E+08
.0001E+09
.0000E+10

)

u

()

SECTION V. INPUT/OUTPUT STATEMENT

At the instant when a FORMAT statement assumes control, a zero scale factor takes effect
and remains in effect until it is superseded by the appearance of a nonzero scale factor in an E,
G, or F field specification of the FORMAT statement. Once a new scale factor is established, it
applies to all following field specifications involving E, G, or F conversions within the same
FORMAT statement, including rescans, until it is superseded by another scale factor appearing

later in the same FORMAT statement.

The following example shows several points about the continuity of the scale factor:
20 FORMAT (F10.2, 3PF8.3, E8.1, 5A3, 07, ¥9.1, 0OPF8.2 Gl1.3)
is equivalent to:
20 FORMAT (F10.2‘, 3PF8.3, 3PES.1, 5A3, 07, 3PF9.1, 0PF8.2, 0PGl11. 3)
Note in the example above:

1. The first specification, F10.2, has an implied scale factor of 0 and is not
affected by scale factors in specifications that follow.

2. The first given scale factor, 3, governs all E, F, and G conversions that
follow until another scale factor is given. This includes the field specifi-
cation ¥9.1. Thus, the scale factor is not affected by intervening alphabetic,
octal, Hollerith, integer, and other conversions that do not use scale factors.

3. The scale factor is superseded when a new scale factor is given in the field
specification OPF8.2. This new scale factor then governs the scale
factor for the G conversion that follows.

4. If the FORMAT statement given in the example were used in conjunctionwith
an input statement, the scale factor would not affect the value of the
conversions given in specifications E8.1 and Gl1. 3.

A scale factor, once established in a FORMAT statement, remains in effect when the

FORMAT statement is rescanned as described in pages 5-47 through 5-49.

The established scale factor applies to all unit records of a multiple-record format.

Multiple-Record Forms

As described briefly on page 5-13,a multiple-record form is a variation of the general
FORMAT statement. The multiple-record form makes use of a slash (/) as a format field sepa-
rator for unit records, where a unit record is defined in terms of the I/O medium (see Figure

5-16).

If the I/O statement contains an item list that will require more than the allotted limit for a
unit record in the output medium, the programmer must provide record termination marks (/) at
the appropriate places in the FORMAT statement. In this way, a new printed line, a new card,

or a new tape record will begin before the maximum limit for the previous one has been exceeded.

5-45

SECTION V. INPUT/OUTPUT STATEMENTS

{a) A single line of up to 131 charac- i [

. |
ters on a printer page. f«———— 131 PRINT POSITIONS —

{(b) One tabulating card of up to 80
characters.

4—80 COLUMNS—»

(c) A formatted (BCD) record on
magnetic tape of up to 132 |<¢——— UP TO 132 CHARS. ———————

characters. II

gcD RECORD

ONE "FORMAT TED" RECORD = ONE UNIT RECORD

(d) A logical record composed of any l¢————— LOGICAL RECORD ————————

number of physical records of PHYSICAL
RECORD

data on magnetic tape in the form
of its internal representation.

mine the number of physical ONE LOGICAL RECORD = ONE UNIT RECORD
records in a logical record.)

pHYSICAL
RECORD

(See Section X, "I/O Programming
Tips,' for the formula to deter-

Figure 5-16. Definition of a Unit Record

Example 1:

It is desired to print 11 values, allotting 14 print positions to each value.
The following WRITE and FORMAT statements will cause nine values to be
printed on the first line and the remaining two on the next line:

WRITE (3, 20) (ARRAY(I), I=1,11)
20 FORMAT (1X, 9F14.3/1X, 2F14.3)

If no record-termination mark had been given at the appropriate place
and the FORMAT statement had been written as

20 FORMAT (1X, 11F14. 3)

part of the 10th value and the 11th value would be printed on the next
line. It is recommended that the programmer terminate records so
that values will not be divided between lines.

Example 2:

It is desired to punch 13 values, allotting 11 columns to each. The follow-
ing WRITE and FORMAT statements will cause seven values to be punched
on the first card and the remaining six on the next card:

WRITE (5, 20) (ARRAY(I), I=1, 13)
20 FORMAT (7F11.3/6F11.3)

5-46

)

3

()

SECTION V. INPUT/OUTPUT STATEMENTS

When the list of an input or output statement is used to transfer more than one unit record
and the different records have different formats, a slash (/) must be used to separate the format
specifications of each record. This use of the record termination statement necessitates rescan-

ning.

The FORMAT statement is scanned from left to right in conjunction with the list of an input
or output statement. If additional items in the input or output list remain to be transmitted after
the FORMAT statement has been completely scanned from left to right, the scan returns to the
last first-level left parenthesis (defined below) of the same FORMAT statement and resumes its
left-to-right cycle from that point, until the list is satisfied or until the end of the FORMAT
statement is again reached. Then, if the list is still not satisfied because items remain to be
transmitted, the scan once more returns to the same point as before (i.e., the last first-level
left parenthesis), and the cycle repeats again, continuing to repeat until the list is finally satis-
fied. If there is no first-level parenthesis in the FORMAT statement, the scan returns to the
beginning of the FORMAT statement and repeats from there until the list is satisfied. A group-
repetition constant preceding the last first-level left parenthesis is detected during rescanning

and has the desired effect. Each rescan starts with a new unit record.

As an example of the use of the multiple-record form with rescanning, consider the follow-

ing FORMAT statement:
20 FORMAT (16 / F10.6)

Ifthis statement is usedwith a READ statement, the firstdata cardis readunder control of the
16 field specification, and the next card is read under control of ¥10. 6. If the input list of
the READ statement is still not satisfied, the FORMAT statement is automatically rescanned,
and the third card is read under control of 16, the fourth under control of F10.6. Rescanning
continues in this manner with all odd-numbered cards being read under control of I6 and all even-

numbered cards under control of F10. 6 until the list is satisfied.

Similarly, when the above FORMAT statement is used with a WRITE statement designating
the printer, the first line is printed under control of I6, and the next line under control of
F10.6. If the output list of the WRITE statement is still not satisfied, rescanning occurs as
above, so that all odd-numbered lines are printed under control of 16, and all even-numbered

lines under control of F10. 6 until the list is satisfied.

Rescanning (or scgnning) of a FORMAT statement stops as soon as the input/output list is
satisfied, except for the following case. If the next field specification is a Hollerith (wH) field
specification, the Hollerith characters specified in the FORMAT statement are transmitted before

the input/output operation is considered concluded (see Example 6 on page 5-51). Any record-

5-47

SECTION V. INPUT/OUTPUT STATEMENTS

termination marks following the last-used field specification are also honored (see Example 5 on

page 5-50).

The action taken upon encountering n consecutive record-termination marks in a

FORMAT statement is defined on pages 5-48 to 5-51.

Parentheses in a FORMAT statement may be ''zero level, ' 'first level,' or ''second level, "

as defined and illustrated in Figure 5-17.. Figure 5-18 shows the rescan points for each of the

examples of Figure5-17.

Level Definition Examples
(Shaded areas show parenthesis
level being illustrated)
Zero The opening(left) and 20 FORMAT [J16, F9.3, E11.4, A5, F22.4, O6[}]
closing (right) parenthe- 'y
ses of the FORMAT. 20 FORMAT @16/(3F9. 3, E11.4, A5, F22.4, 06)
First A left parenthesis that is| 20 FORMAT (16/ }{| 3F9. 3, El1. 4, A5, F22.4, 06 [}])
either the second pa-
renthesis of a FORMAT | 20 FORMAT (16, 2 [(| 3F9. 3, 3(E1l. 4, 13) [[],F22.4)
statement or one that 20 FORMAT (16 || 3F9.3, 14 [}, 2 [{| E11. 4, (15, 13)], 18)
follows a first-level l E] '
right parenthesis. A
right parenthesis follow-
ing a first-level left pa-
renthesis or a right
parenthesis following a
second-level right
parenthesis.
Second | A left parenthesis that

is the next parenthesis
after a first-level,
left parenthesis.

A right parenthesis
following a second-level
left parenthesis.

20 FORMAT (16, 2(3F9. 3, 3E11.4, 13), F22.4)
20 FORMAT (16, (3F9. 3,14), 2 (E11. 4, 5,13), I8)

Figure 5-17. Parenthesis Levels in a FORMAT Statement

Consecutive slashes can be used in FORMAT statements. Their significance depends on

whether an input or output statement is being referenced. On input, n consecutive slashes in a

FORMAT statement cause n-1 unit records to be skipped {(i.e., bypassed). If the slashes appear

at the end of the FORMAT statement, an additional record will be skipped by the action of the

right parenthesis.

Example 1:
READ (2, 20) INTEGR, A
20 FORMAT (16 /// F10.6)

Interpretation: Readfirst card under control of 16 and store value in INTEGR;
skip next two cards; read fourth cardunder controlof F10.6 and store value in A.

5-48

1y

(!

SECTION V.

INPUT/OUTPUT STATEMENTS

Rescan Point

Example

When only zero-level parentheses
are present, the rescan begins at
the start of the FORMAT statement.

Direction of Scan

20 FORMAT (16, ¥9.3, El11.4, A5, F22.4, Q6)

ZResca.n

Point

If 1/0 list is not completed
when this point is reached,
return to rescan point.

When only zero- and first-level pa-
rentheses are present, the rescan

begins at the last (rightmost) first-
level left parenthesis. If a second
rescan is required, the new rescan
begins at this same point.

Direction of Scan

20 FORMAT (16 /(3F9.3, El1l1.4, A5, F22.4, (Lé))

~If 1/Olist is not completed
when this point is reached,
return to rescan point.

~Rescan
Point

When zero-, first-, and second-
level parentheses are present, the
rescan will still begin at the last
(rightmost) first-level left paren-
thesis.

Direction of Scan

20 FORMAT (16/ (3¥9.3, 2(Ell.4, 13)), F22,6)

Rescan
Point

If I/Olistis not completed
when this point is reached,
return to rescan point.

When a group repetition constant
precedes the last first-level left
parenthesis, rescans will include
group repetition.

Direction of Scan ———

20 FORMAT (16, (3F9.3, 14), 2(E1l.4, (I5, I3)), 18)

Rescan
Point

1f 1I/O list is not completed
when this point is reached,
return to rescan point.

Figure 5-18. Rescanning a FORMAT Statement

Example 2:

READ (2, 20) INTEGR, A, J, B

20 FORMAT (16, /// F10.6)

Interpretation: Same as above, but continuing as follows: Read fifth card under
control of 16 and store value in J; skip next two cards; read eighth card under
control of F10. 6 and store value in B.

Example 3:

READ (2, 20) INTEGR, A
20 FORMAT (16, F10.6 ///)

Interpretation: Read first card; store in INTEGR the integer value found in
columns 1-6; stoge in A the real value found in the next ten columns; skip
rest of card and next two cards as indicated by the slashes and an additional

card as indicated by the right parenthesis.

ment will read the fifth card.)

(The next execution of a READ state-

5-49

SECTION V. INPUT/OUTPUT STATEMENTS

-Example 4:
READ (2, 20) INTEGR, A, J, B
20 FORMAT (16, F10.6 ///)

Interpretation: Same as above, but continuing as follows: Read fourth card;
store in J the integer value found in columns 1-6; store in B the real value found
in the next ten columns; skip rest of card and next two cards. (The next exe-
cution of a READ statement will read the eighth card.)

On output, n consecutive slashes in a FORMAT statement cause n-1 blank lines to be writ-

ten, except when the slashes appear at the end of the FORMAT statement. In that case, and only

in that case, an additional blank line is written before rescanning occurs, as indicated by the
right parenthesis. Thus, n consecutive slashes written at the end of a FORMAT statement cause

n blank lines to be written.

Example 1:
WRITE (3, 20) INTEGR, A
20 FORMAT (16 /// F10.6)

Interpretation: On first line, print {under control of I6) the value stored in
INTEGR; write two blank lines; on fourth line, print (under control of F10.6)
the value stored in A.
Example 2:
WRITE (3, 20) INTEGR, A, J, B
20 FORMAT (16 /// F10.6)

Interpretation: Same as above, but continuing as follows, due to rescanning:
On fifth line, print (under control of I6) the value stored in J; write two blank
lines; on eighth line, print (under control of F10. 6) the value stored in B.
Example 3:
WRITE (3, 20) INTEGR, A
20 FORMAT (16, F10.6 ///)

Interpretation: On first line, print (under control of 16 and F10. 6, respectively)
the values stored in INTEGR and A; write three blank lines.
Example 4:
WRITE (3, 20) INTEGR, A, J, B
20 FORMAT (16, F10.6 ///)

Interpretation: Same as above, but continue as follows, due to rescanning: on
fifth line, print (under control of 16 and F10.6, respectively) the values stored in
J and B; write three blank lines.

Example 5: ‘
WRITE (3, 20) INTEGR, A, J
20 FORMAT (16 /// F10.6)

)

)

SECTION V. INPUT/OUTPUT STATEMENTS

Interpretation: Same as Example 1 above, but continuing as follows: On fifth
line, print (under control of I6) the value stored in J; write two blank lines.

Note that the scan stops as soon as the list is satisfied, but that the record-
termination marks are heeded when they follow the last used field specification.
Example 6:
WRITE (3, 20) INTEGR, A, 7J
20 FORMAT (16, 13HEND OF RECORD /// F10.6)

Interpretation: On first line, print (under control of 16) the value stored in
INTEGR; starting in column 7 of same line, print "END OF RECORD"; write
two blank lines; on fourth line, print (under control of F'10. 6) the value stored
in A; on fifth line, print (under control of I6) the value stored in J; starting
in column 7 of same line, print "END OF RECORD'"; write two blank lines.

Note that the scan stops as soon as the list is satisfied, but that Hollerith fields are
transmitted when they follow the last used field specification and that the record-
termination marks are also heeded.

In a multiple-record FORMAT statement, it is possible to specify that the first recordhave
one format and that all following records have another format. This is done by enclosing the last

record specification in a second set of parentheses.

Example: 20 FORMAT (1013 / (3F10. 3, G10.6))

When this statement is used with an output statement, the first record will be printed {or
recorded on tape) under control of the 1013 field specification, and every subsequent record will
be printed or recorded under control of the other two field specifications until the output list is

satisfied.

Reading in FORMAT at Object Time

Occasions may arise where the format of the input data to a program will differ from runto
run, or perhaps within the same run. In such cases, it would be advantageous if the format
specification could be supplied along with the input data, instead of being rigidly and irrevocably
prescribed in the program beforehand. To permit the changing or prescription of formats at
object time, the following technique is used. In the object program, the programmer allocates
adequate storage space for an array which will later be filled with the pertinent format infor-
mation at execution time. During execution of the object program, the format information is
read into the array before any input data are handled. Then, the input statement reading the input
data references the format array, instead of a FORMAT statement. Since the contents of the
array may be easily changed by reading in new format information when desired, the effect is
equivalent to having variable format statements. Once an array has been used as a FORMAT
statement, it may not appgar on the righthand side of an assignment statement, within an IF
clause, or in an output list until the array has been re-initialized. The array may only be usedas
a FORMAT until it has been re-initialized. If any change is desired in the formatted array once

it has been used, it must be re-initialized.

5-51

SECTION V. INPUT/OUTPUT STATEMENTS

To make use of object-time formatting, the programmer must:

1. Determine how large an array is required to handle the largest incoming
format specification. If array storage space is readily available, the
programmer can allow an arbitrary number of storage locations for the
array. However, if array storage is at a premium, the programmer can
compute the minimum array storage for the specification as shown later
in this section.

2. Allocate appropriate array storage by declaring and dimensioning the array
in a DIMENSION, COMMON, or data-type statement in the object program.

3. Include in the object program an input statement and a FORMAT statement
which will read the incoming format specification into array storage. An
alphabetic field specification {Aw) is used to read the actual format infor-
mation into the array. The number of characters specified for the fixed-
point field will determine the number of characters that can be read into
each array (i.e., 5 for unspecified fixed-point fields).

4. Reference the format array (instead of a FORMAT statement) in the READ
statement governing input of data.

5. Supply (at object time) the format information to be read into the array.

NOTE: The format information is written exactly as though it were a
FORMAT statement, except that the word FORMAT must be omitted and
there is no statement label. However, both the left and right parentheses
which bound the format specification list must be included. (See Figure 5-18.)

The following example illustrates the principle of reading in formats at object time:

Example:

A program has been written to accept three values from each card of
several large decks of input data. However, the input decks have not
been consistently punched, and the data fields do not start in the same
column in each deck, although the relative sequence of the data fields

is the same in all decks. To eliminate the problem caused by the incon-
sistent starting columns, the format specification of each card deck is
read into an array just before the deck is processed. Shown in Figure
5-19 are some of the variations in format which might be encountered

in the different input decks when the same three values are to be read.

The following statements in the object program will produce the desired

result:
/ (See Step 1 above.)

DIMENSION IRRAY (12) (See Step 2.)

3 READ (2, 20) (IRRAY (I), I=1, 10) (See Step 3.)

20 FORMAT (10A5) (See Step 3.)
READ (2, IRRAY) J, B, C (See Step 4.)

, .

GO TO 3

b

()

SECTION V. INPUT/OUTPUT STATEMENTS

Every time a new input deck is to be read, the READ (2, 20) statement
should be executed; this will cause the contents of the format speci-
fication card preceding the deck to be read into the array under control
of the 10A5 field specification. Then the input data can be read by means
of the READ (2, IRRAY) statement. J, B, and C are variables in which
the incoming values are to be stored.

The example is repeated later with minimum array storage, instead of the arbitrary 12

locations.

When array storage is at a premium, the programmer can determine the minimum size of
the format array by counting the number of characters in the largest expected incoming field
specification, beginning with the left parenthesis bounding the field specification and ending with

the right parenthesis terminating the field specification. All characters, including the parentheses

and embedded blanks, are significant.

For example, if the largest expected format specification at object time is:
(5F10.3, 3(4E10.2, 2F12.6), 4(15, E10.2, 3HABA))

and each fixed-point field has five characters, array storage in the object program could be

allocated by the following statement;
DIMENSION IRRAY (10)

The format specification has 48 characters and therefore the minimum array storage space that

can be allocated is 10 array storage locations.

Because of the modularity of the I/O execution package, array formatting will not of itself
bring in the proper conversion routines. The programmer must include a FORMAT statement
containing the conversion codes to be used in array formatting for each chain containing array

formatting. The FORMAT statement may be a dummy statement.

Alternate Creation of Variable Formats

It was shown in the preceding section how a forma} description can be read into an array
from cards at object time; then the format array, instead of a FORMAT statement, is refer-

enced by an input or output statemsent.

Variable formats can alternatively be created by transferring into an array the contents of
constants and/or variables having format data; then the array can be referenced by an input

or output statement, as in the previous section.

5-53

SECTION V. INPUT/OUTPUT STATEMENTS

INPUT DECK NO. I
SAMPLE FORMAT

FORMAT SPECIFICATION
CARD

INPUT DECK NO. 2
SAMPLE FORMAT

FORMAT SPECIFICATION
CARD

INPUT DECK NO. 3
SAMPLE FORMAT

FORMAT SPECIFICATION
CARD

234512345, 123451 234. 567E+02
1 1 n
Is [FIL.5 El2.3

000000060000000060'0006000000§0°0000000006060000000

1345678 91001 12134151617181920212223 242526 27 2829 30 31 32 31 34 35 36 37 38 39 40 41 42 41 44 45

[ARRRE RERRR] RRRE] ARRRRER RN RRRRRRRRRERRREE]

(IS F11.50 E12.3) 222222
P 11 111

333333

BOOROOCOOOPO0ODO00GO0G00000000000000C00000000
RSN
tiin

6 7B 3 I0 M 1213141596 147 1839 20 21 22 23 24 75 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 47 43 &4
1

| ARRRRY RRRRRER R AR RERRRERRRRERRRERE!

22222222222222%22222222222222222222222222229)

12345 12345.12345 1234. 56 7E+02)
] i
110 Fi6.5 EI7.3

oo0o0co000000000000000000000000000C00CB000O0OO0]0

103456 78 8$1011121314151617 1819202122 23 24 2525 27 26 25 30 3¢ 3233 24 35 36 37 38 39 40 41 42 43 44 &

[ARRRT RRARRRRRE] IRRER] ARRRRERERT RRRRRRRRERE
110y F16.5, EI17.3) 222027
1 11 111
333333

ROOPROOOOOOROOOO0ODDODO00O00000000000000000000 0,

$ 50456 7 8 S0 VIIZ13 04950517 181920212273 24 25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44 &

[R] RRRR! AR RRRE] FRR R R R R R R R R R R R R R R RERERR]

22122122

23459999, 9990911 2345. 12345] 2345. 67E+02
1 1 1 nn
10X FIL.S E12.3

000000000000000000000000000000000000]00008000

T2 45670 $HMI2MIS1EIT101920202223 24252627 2029 30 3 32 33 34 35 36 37 3B 39 40 41 42 43 4 45

IlllllllllIl|l!lllllllllllllllllllllllll|lllf;’

(IS 10X, F11.5, E12.3) 222222
| 11 111

900 1213141516 17 101920 212223 24 75 26 27 29 2930 31 32 33 M 3536 37 38 19 40 41 42 43 M &

J0oR0
103459
(RRRRT RRRRET | ERRNNY ERRRRRRRERRRRRRRRRRRRRRERE

BERO0O00OH000000000606000000000080000000
hH k]
1 1

1]
6
1
2

22222222222222222220222222222222222222222222

NOTE . SECOND DATA FIELD TO BE IGNORED.

Figure 5-19,

Handling Variations in Format at Object Time

5-54

\,

S

SECTION V. INPUT/OUTPUT STATEMENTS

Example:
The format description of Figure 5-19
(15, 10X, F1l1.5, E12.3)

is to be created by transferring the contents of constants and variables, rather than
by reading the format description from an input card at object time. The following
statements will accomplish the task:

DIMENSION IRRAY (5)
DATA IRRAY (1), IRRAY (2), IRRAY (3), IRRAY (4), IRRAY (5)/5H(I5,A, 5H10X, 4,

5HF11.5, 5H, AE12, 5H.3)AA/

READ (2, IRRAY) J, A, B

The minimum array size of five is computed by adding the number of characters
in the format specification. Appropriate array storage is then allocated in the
DIMENSION statement. Using a DATA initialization statement, each array
element is initialized with five Hollerith characters. The array can now be
referenced by the READ statement. Variables J, A, and B are used to store
the incoming values.

END FILE STATEMENT

The END FILE statement has the form:

END FILE i

Where: i represents the device code of a peripheral unit. It may be either an
unsigned integer in the range ! through 15 or an integer variable. If
it is an integer variable, it must be assigned a value prior to execution
of the statement. The value assigned to i must correspond to a physical
device in the equipment configuration available to the program.
Examples:
END FILE 1

END FILE IUNIT

When addressing a magnetic tape unit, the END FILE statement writes two end-of-file

records on the designated tape unit. The statement is ordinarily usedto indicate that there is no
more valid information on a tape, but it may also be used to separate groups of records into files
for any convenient purpose. If upon writing an output tape, it is desired to rewind the tape and

then read it, an END FILE statement should be executed before the REWIND statement to avoid

reading beyond the written information.

An attempt to write' end-of-file records on a card reader or punch will cause job termi-

nation and printout of the error message:

IMPROPER COMMAND TO THIS DEVICE.
(Subsequent line shows peripheral device number.)

5-55

SECTION V. INPUT/OUTPUT STATEMENTS

REWIND STATEMENT
The REWIND statement has the form:

REWIND i

Where: i represents the device code of magnetic tape unit in the equipment
configuration available to the program. i may be an unsignedinteger
in the range 1 through 15 or an integer variable. If it is an integer
variable, it must be assigned a value prior to execution of the statement.

This statement is used to rewind to the beginning of tape the reel mounted on logical tape
unit number i.
Examples:
REWIND 1
REWIND IUNIT

An attempt to rewind a device such as the printer or card reader will cause job termination

and printout of the error message:

1/O ERR followed by the peripheral device indicator.

BACKSPACE STATEMENT

The general form is:

BACKSPACE i

Where: i represents the device code of a magnetic tape unit in the equipment
configuration available to the program. i may be an unsignedinteger
in the range 1 through 15 or an integer variable. If it is an integer
variable, it must be assigned a value prior to execution of the statement.
Examples:

BACKSPACE 1
BACKSPACE IUNIT

The statement moves back by one logical record the tape mounted on magnetic tape unit i.
The statement may be used to backspace input or output tapes. In the case of binary tapes, one
logical record may correspond to several physical records (see page 5-46); in the case of

formatted tapes, a logical record is the same as a physical record.

An attempt to backsbace a device such as the printer or punch will cause job termination
and printout of the error message:

IMPROPER COMMAND TO THIS DEVICE.
(Subsequent line shows peripheral device number.)

5-56

be

SECTION VI
PROCEDURES

CATEGORIES OF PROCEDURES

There are two categories of procedures: functions and subroutines. Functions are further

subdivided into categories. Figure 6-1 shows the different categories of procedures.

PROCEDURES [—u
FUNCTIONS |[SUBROUTINES |

Statement External
Functions Functions

/

Library Function
Functions Subprograms

Figure 6-1. Categories of Procedures

All procedures except statement functions are external procedures. Functions that the proposed
ASA Fortran specification defines as intrinsic are supplied with this compiler as part of the

library functions.

SUBPROGRAMS

There are two categories of subprograms: function subprograms and subroutine subpro-
grams. All subroutines are by definition subroutine subprograms. Function subprograms are

headed by FUNCTION statements; subroutine subprograms are headed by SUBROUTINE state-

ments. All subprograms are external procedures.

NAMING AND TYPING PROCEDURES

Procedure names consist of one to six alphanumeric characters, the first of which must be
alphabetic. Subroutines do not have types. Functions, however, are typed in the same way as
data. Rules for typing functions are:

1. Typing Statement Functions - Logical statement function names must be declared
in a LOGICAL statement. Arithmetic statement function names can be typed
implicitly using the I, J, K, L, M, N convention, or they can be declared either
real or integer in a REAL or INTEGER statement.

2. Typing Function Subprograms - Arithmetic function subprograms can be typed
implicitly by using the I, J, K, L, M, Nnaming convention. However, they can
be explicitly declared, and logical function subprograms must be explicitly
declared. Prefixing the FUNCTION statement with the appropriate type
(REAL, INTEGER, or LOGICAL) explicitly types a function subprogram.

3. Library Functions - The types associated with library functions are predefined
within the compiler.

SECTION VI. PROCEDURES

FUNCTIONS

A function consists of a sequence of instructions to perform a mathematical or logical oper-
ation. Rather than writing such a sequence each time it is required during a program, the coding
is supplied previously either with the Fortran compiler or by the programmer. A function is
called when the function name is encountered in an executable statement. When evaluation of a
function is complete, control returns to the expression in which the name of the function was
embedded. These characteristics are true for all functions. They are listed in Table 6-1 below;

in addition, the characteristics that differ with the category of function are listed in the table.

Table 6-1. Characteristics of Functions -
Defining Characteristic _ Category of Function
Statement Function External Function -
Library Function -
Function Subprogram
Originating Source Programmer-defined. Honeywell-de- | Programmer-de-
fined. fined.
Relative Size One-statement definition. More than one statement and may
require a large number of state-
ments.
Number of Output Values || One. Usually one but may be more than
Returned one. -
Method of Compilation Code is compiled as an integral Code is compiled independently. ~
part of the using program, but it Code appears only once, no
appears only once regardless of matter how many times it isused.
the number of times it is used.
Method of Calling Called when the function name is encountered in an executable state-
ment.
Point to Which Control is || Expression in which the name of the function is embedded.
Returned after Evaluation

Statement Functions

Statement functions are single statements written by the programmer.

single statement of the form:

They consist of a

Funame (argl, arg,, ...y argn) = Expression
Where: Funame = Name of the function.

arg), argy,...,argy = The names of variables, which are
dummy arguments of the function. (1< n<é63)

Expression = Any arithmetic expression (if the data type
associated with the function name is not
LOGICAL), or:

Any logical expression (if the data type .
associated with the function name is

LOGICAL). et

6-2

SECTION VI. PROCEDURES

The expression portion of the definition may contain non-Hollerith constants, variable references,
and references to previously defined statement functions and external functions. It may not
reference arrays or array elements, except when these are actual arguments of the statement

function.

The name of a statement function may not appear in a COMMON, DIMENSION, EQUIVA-
LENCE, data-type, or EXTERNAL statement, nor as the name of a subroutine in a CALL state-

ment.

The dummy argument list (argl, arg,, ..., argn) is a list of variables that will be
replaced by the actual call arguments when the function is used. Any of the variables in the
expression may be written as dummy arguments of the function. There must be at least one
dummy argument enclosed within the parentheses and, if there is more than one, commas must
separate the arguments. The data type of each dummy argument must be declared prior to using
the argument in the definition of a statement function. If the type is not explicitly declared in a
data type statement, it is implied to be either integer or real, depending on the first letter of
the argument name. Although a dummy argument may have the same name as a variable

appearing elsewhere in the program, no two dummy arguments may have identical names.

To use a statement function once it is defined (i.e., to reference a statement function), the
programmer writes the statement function, followed by the actual arguments in parentheses, in
an arithmetic or logical expression. When the expression is executed, the statement function is
evaluated according to its definition, using the actual arguments in place of the dummmyargu-
ments. The output of a statement function is a single numerical or logical value that is returned
to the expression in which the statement function is embedded. Statement functions are defined
only for the programs in which they appear, and the object coding is inserted only once. State-
ment functions must appear directly after any DATA statements in the input deck and must

precede the first executable statement.

Because the actual arguments are to replace the corresponding dummy arguments in the
statement defining the function, they must agree in sequence, number, and data type with the
corresponding dummy arguments and must be separated by commas (if the list contains more than
one actual argument). An actual argument may be the name of any constant, variable, or array
element, or it may be any arithmetic or logical expression that is not the expression which uses

the function.
v

Example: The following statement function is written before the first executable
statement in the program:

ROOT (A, B, C) = (-B + SQRT (B*%2 - 4. %*A*C))/(2.*A)

6-3

SECTION V. PROCEDURES

Where: ROOT is the name of a real function.

A, B, and C are the dummy arguments that will be replaced by actual
arguments when the function is used, (Their data types are implied to
be real firom their names, in the absence of any overriding data-type
declaration.)

The right-hand side of the equals sign is the expression to be evaluated
when actual arguments replace the dummy arguments at the time the
function is called,

Assume that it is desired, later in the program, to evaluate the formula with A replaced by
DATA(6), B replaced by 12,8, and C replaced by the absolute value of X minus Y. The following
makes use of the previously defined statement function to obtain the result and to store it in a
location called VALUE:

VALUE = ROOT (DATA(6), 12.8, ABS(X-Y))

If it were further desired to perform other operations in the same statement (for example,
adding 73 to the result), this could be done as follows:
VALUE = ROOT (DATA(6), 12.8, ABS({X-Y)) + Z%%3
Since the result takes on the same data type as the function, the quantity stored in VALUE

would be a real number in both instances above.

The same statement function may be used in many other expressions in the same program

with different values replacing dummy arguments A, B, and C.

Function Subprograms

Function subprograms are programmer-written external functions. A function subprogram
can be written by the programmer to express a function that cannot be expressed in a single
statement, The function subprogram is then called into operation just as any other function,

simply by writing its name in a statement, together with the argument(s) to be employed.

The function subprogram can be compiled as an independent entity. It can consist of a-
number of statements and can contain any Fortran statement except those listed below under
restrictions. The function subprogram, like the statement function, delivers a single value to
the expression which called it, However, the function subprogram may deliver additional values
by altering the values of some of the variables and/or array elements in its argument list or by

addressing elements in the common region.

A function subprogram must begin with a FUNCTION statement and terminate with an END
statement. Control returfis to the calling program when a RETURN statement or the END state-
ment is encountered. Control will return to the point in the executable statement of the calling

program at which the function name occurred.

6-4

SECTION VI. PROCEDURES

The general form of the FUNCTION statement is:

type FUNCTION funame (argl, argy, ..., argn)

Where: type is one of the following or does not appear at all:

INTEGER, REAL, LOGICAL.
funame is the symbolic name of the function.

(argl, argoseeess arg,) is a list of dummy arguments (variables, arrays,
function subprograms, or dummy names of sub-
routines) which will be replaced by actual argu-
ments from the corresponding positions of the
statement calling the function into operation.
(I1<n<63).

The FUNCTION statementis followed by the subprogram body, withthe following restrictions:

1.

The symbolic name of the function must also appear as a variable name in
the defining subprogram. During every execution of the subprogram, this
variable must be defined and, once defined, may be referenced or redefined.
The value of the variable at the time of any return from this subprogram is
called the value of the function.

The function name must appear only as the symbolic name of that function in
the function subprogram and the calling program. It cannot appear as the
name of any other function or as an array name.

The function name cannot appear in the function subprogram in a COMMON,
DIMENSION, EQUIVALENCE, EXTERNAL, or data-type statement, nor as
the name of a subroutine in a CALL statement.

The function subprogram cannot contain TITLE or SUBROUTINE statements,
other FUNCTION statements, or any usage (either direct or indirect) of the
function being defined. Any other Fortran statements can be used in the
function subprogram,

The dummy argument names cannot appear in EQUIVALENCE, COMMON,
or DATA statements in the function subprogram.

Each of the dummy arguments should appear at least once in an executable
statement in the function subprogram. If the name of an array is to be used
as a dummy argument, a statement defining the array must appear in the
function subprogram prior to any reference to the array name. The
dimensions of the array should be the same as those of any corresponding
actual arguments, ’

If the function subprogram is to deliver additional values for dummy argu-
ments in the FUNCTION statement, the actual arguments corresponding to
those dummy arguments must be variable names, array elements, or
array names,

The last statement of the function subprogram must be an END statement.

L4

As indicated in the format for the FUNCTION statement, the data type can be declared in

the statement, If it is not explicitly declared, the type is implied from the function name to be

6-5

SECTION VI. PROCEDURES

either integer or real, depending on the first letter of the name. The data type of the result
delivered by the function subprogram is the same as the type declared in the FUNCTION state-
ment or, if no type is declared there, the result is implied by the function name to be either

integer or real.

To use a function subprogram, the programmer writes as a term in an arithmetic or logical
expression the name of the function followed by a set of parentheses containing the list of actual

arguments.

Because the actual arguments are to replace the corresponding dummy arguments in the
statement calling the function subprogram, they must agree in sequence, number, and data type
with the corresponding dummy arguments and must be separated by commas (if the list contains
more than one actual argument). An actual argument may be the name of any constant, variable,
or array element, any arithmetic or logical expression, any Hollerith constant, or the name ofany
other function subprogram or of any subroutine. However, when the name of a function or sub-
routine subprogram is used as an actual argument, the name must be declared. Hollerith con-
stants must replace integer dummy arguments.

Example: A real function subprogram named VAL is defined. VAL has two

dummy arguments, J and K. The example shows only the outline

of the function subprogram. Note that more than one return state-
ment can be used.

FUNCTION VAL(J, K)

RETURN

RETURN
END

Within the calling program, the function subprogram VAL may be
called by writing its name in an executable statement with actual
arguments. An outline of such a calling program is shown below.

A TITLE PROCES

QUAN = A * (B/VAL(LIN, NEX(5))

IF (VAL(NONE, NINE))20, 32, 15

In the example, the function VAL is referenced twice in a calling program with different actual

arguments in each case.

6-6

()

SECTION VI. PROCEDURES

Library Functions

Library functions are external functions supplied with the compiler. A list ofthese functions
and their characteristics is given in Table 6-2. The data type of the result delivered by a library

function must be the same as that indicated by the table.

Library functions include arithmetic, trigonometric, and Boolean functions. Arguments of
arithmetic and trigonometric library functions for which the result is not mathematically defined
are improper. For example, if the value of the second argument of AMOD, MOD, SIGN, or
ISIGN is zero, the result will be undefined.

Library functions are referenced by writing the name of the function in an executable state-

ment.

Library function names cannot be used to identify and reference a programmer-written
function. However, if thelibrary function does not appear in the job being compiled, the function

name may be used to identify a variable or an array.

Table 6-2. Library Functions

Number of Type of Function
Name Function Definition Arguments | Argument Function |[Used For
ATAN Arctangent arctan (Arg) 1 Real Real
ATAN2 arctan (Argl/Argz) 2
COs Trigonometric cos (Arg) 1 Real Real Trigo-
cosine nometric
SIN Trigonometric sin (Arg) 1 Real Real O?er-
i ations
sine
TANH Hyperbolic tanh (Arg) 1 Real Real
tangent
ABS Absolute value |Argl 1 Real Real
IABS Integer | Integer
AINT Truncation Sign of Arg times 1 Real Real
INT largest integer Real Integer
< 'Arg |
ALOG Natural logarithm | log, (Arg) 1 Real Real Arithme-
tic Oper-
ALOGIO Common log,g (Arg) 1 Real Real ations
logarithm
AMOD Remaindering Argl- [ArgI/ArgZ]Arg2 2 Real Real
MOD (see note below) Integer | Integer
AMAXO Choosing Max (Argq, Arg,,...) 22 Integer | Real
AMAX]1 largest value ‘ Real Real
MAXO Integer Integer
MAX1 , Real Integer

SECTION VI. PROCEDURES

Table 6-2 (cont). Library Functions

Q

Number of Type of Function
Function Definition Arguments | Argument Function | Used For
Choosing Min (Arg,, Argz,...) 22 Integer Real
smallest value Real Real
Integer | Integer
Real Integer
Exponential eArg 1 Real Real
Float Conversion from 1 Integer | Real Arithme-
integer to real tic Oper-
Fix Conversion from 1 Real Integer ations
. {cont)
real to integer
Transfer of sign | Sign of Arg2 2 Real Real)
times |Arg1| Integer | Integer
Positive Arg. - Min 2 Real Real
difference (Arg,, Arg,) Integer Integer
Square root {Arg) (1/2) 1 Real Real
Logical AND Jn K 2 Integer | Integer
Inclusive OR Ju K 2 Integer | Integer | Boolean
ICOMPL | Logical Comple- 1 Integer | Integer OI?er—
— ations
ment K
IEXCLR Exclusive OR JuK and {JnK) 2 Integer Integer
NOTES: 1. Trigonometric functions express angles in radians.
2. The ATAN2 function is a four-quadrant arctangent routine.
3. The bracketed quantity Argl/Arg2 represents the integral part of this
value.
Examples:
1. Take the absolute value of the square root of X3 -X. Divide the result by X.
Store result in Y.
Y = ABS(SQRT(X*%3-X))/X
2. Add integer I and real variable Y by converting I to floating-point form. Store

result in X.

X = Y + FLOAT(I)

3. Given two octal constants and a string of five alphabetic characters such
that:
I1 = 0077777700
12 = 7777000000
13 = BOOLE

The following Boolean operations are performed:

14 = IAN'D(IZ, 13)
15 = IOR (I1, I2)
16 = ICOMPL (I1)
17 = IEXCLR (11, 12)

{

SECTION VI. PROCEDURES

Then, I4 is set to BO00O
15 is set to 7777777700
16 is set to 7700000077
17 is set to 7700777700

For programmers who are unfamiliar with Boolean terminology, the Boolean operations are

defined below in terms of bit manipulation,

Form Definition Example
IAND (argl, arg2) In each bit position, the result is argl: 011001
""1" if and only if both bits of the arg2: 101011
arguments in the corresponding result: 001001

position are ''1'.

IOR (argl, arg2) In each bit position, the resultis argl: 011001
"1" if either or both bits are ""1" arg?2: 101011
and the result is "0'" only if both result: 111011
are '"0'".

ICOMPL (arg) In each bit position, the resultis arg: 11001
'1" if the corresponding bit in the result: 100110
argument is "0'" and the result is
"0'" if the corresponding bit in the
argument is "1'".

IEXCLR (argl, arg?2) In each bit position, the result is argl: 011001
"1'" if either bit in the corre- arg2: 101011
sponding position of the arguments result: 110010

is '""1" and the result is ""0" if the
corresponding bits are either both
"0" or both "1'.,

SUBROUTINES

A subroutine (or subroutine subprogram) is an independent entity which can be separately
compiled and whose variable names are independent of those in the main program or any other
subprogram. A subroutine begins with a SUBROUTINE statement and must be terminated by an
END statement. Control returns to the calling program at the first RETURN statement encoun-
tered or at the END statement. A CALL statement (Section III) is used to call a subroutine. No

data type is associated with the name of a subroutine.

The subroutine differs from the function subprogram, which normally delivers only a
single result to an expression. The subroutine subprogram may deliver any desired number
of output results (including none). The subroutine returns values, if any, either through its
arguments or by addre's sing elements in the common region. A value may be returned to any

variable or array element in the subroutine's argument list,

6-9

SECTION VI. PROCEDURES

The general form of the SUBROUTINE statement is:

SUBROUTINE subnam (argl, arg,,...,argy,)

Where: subnam is the subroutine subprogram's symbolic name.

(argy, argy, -y arg,) is a list of dummy arguments to be replaced by
actual arguments from the corresponding
positions of the statement calling the subroutine
into operation. The list may contain 1 to 63
arguments or be omitted.

The SUBROUTINE statement is followed by the subprogram body, with the following re-
strictions:
1. The name of the subroutine appears only in the SUBROUTINE statement.

2. Names of dummy arguments must not appear in EQUIVALENCE, COMMON,
or DATA statements in the subprogram.

3. The subprogram can contain any statement except FUNCTION, another
SUBROUTINE, or a statement referencing the subroutine being defined.

4. The subroutine subprogram can define or redefine one or more of its
arguments to return required additional values.

A CALL statement giving the subroutine name is written in the calling program at the point
at which the programmer wishes to enter the subroutine. When the CALL statement is encoun-
tered, control is transferred to the subroutine named. Statements of the subroutine are then
executed until a RETURN statement or the END statement is encountered. Control is then re-
turned to the first executable statement following the CALL in the calling program. If the sub=-
routine contains more than one RETURN statement (alternate coding branches), the first logically

encountered RETURN gives control back to the calling program,

A CALL statement can simply transfer control to the subroutine or it can supply a list of
actual arguments. The actual arguments, which constitute the argument list of the CALL state-
ment, must agree in order, number, and type with the corresponding dummy arguments in the
SUBROUTINE statement. Note that Hollerith constants must replace integer dummy arguments.
An actual argument used as a subroutine reference may be:

1. A Hollerith constant;

. A variable name;

Anarray element name;
An array name;?’

Any other expression; or

O\UI:#LA)N

The name of an external procedure.

6-10

SECTION VI. PROCEDURES

If an actual argument is an external function name, the corresponding dummy argument
must be used as an external function name. If the actual argument is a subroutine name, the

corresponding dummy argument must be used as a subroutine name.

If an actual argument corresponds to a dummy argument which is defined or redefined in
the referenced subprogram, the actual argument must be a variable name, an array element

name, Or an array name.

Execution of a subroutine reference results in substitution of actual arguments for dummy
arguments. The actual argument is specified by name, except in the case of an expression (5,
above). For such an expression, the association is by value rather than name. When actual
arguments are substituted for dummy arguments, the first executable statement of the defining

subprogram is executed.

If a dummy argument of a SUBROUTINE statement is an array name, the corresponding

actual argument must be an array name or array element name.

Unless it is a durnmy argument, a subroutine is also referenced by the appearance of its

symbolic name in an EXTERNAL statement.

The characteristics of a subroutine subprogram are summarized in Table 6-3.

Table 6-3. Characteristics of the Subroutine Subprogram

Subroutine
Characteristic Subprogram
Originating Programmer
source

Relative size

At programmer's option (minimum:
3 statements)

Method of
compilation

Compiled independently. Coding
appears only once, no matter how
many times called.

Number of out-
put values
returned

Any number, including zero.

Method of calling
into use

Entered when name is encountered in
a CALL statement in calling program.

Point to which
control is returned
after evaluation

First executable statement following
the CALL statement in the calling pro-
gram. (If the CALL statement is the
terminal statement of a DO loop,
control returns to the update portion of
the DO loop.)

6-11

SECTION Vi. PROCEDURES

Example: XSUB2 is defined and can be called by the calling program, AMAIN,
using actual arguments for the dummy arguments in the defining

program.

Defining Program Calling Program
SUBROUTINE XSUB2 (M, N) A TITLE AMAIN
RETURN CALL XSUB2(INTRST, IPRINL)
END 25 ...,

Actual arguments, INTRST and IPRINL, are substituted for M and
N respectively when XSUB2 is called. When evaluation of the sub-
routine is complete, control will return to the statement labeled 25
in the calling program if this is an executable statement.

SPECIAL SUBROUTINES

Supplied with the compiler are a group of special subroutines to assist users in the exe-

cution of Fortran programs.

Test Subroutines for Simulated Hardware and Hardware Features

A test can be made to determine whether one of the four SENSE switches is ON or OFF,

as follows:

Subroutine Call

CALL SSWTCH (n, j)

PurEo se

When the call is executed, integer expression n is
evaluated. Ifnis 1, 2, 3, or 4, the corresponding
SENSE switch is tested. Integer variable j is set
to 1 if the SENSE switch is ON and to 2 if it is
OFF.

Four tests of simulated hardware conditions are made as follows:

Subroutine Call
CALL DVCHK (j)

CALL OVERFL (j)

[4

Purpose

Integer variable j is set to 1 if a divide-check con-

dition is detected when the call is executed. Other-
wise, j is set to 2. The internal error condition is

reset.

Integer variable j is set to 1 if floating-point
exponential overflow occurs when the call is exe-
cuted. Otherwise, j is set to 2. Any internal over-
flow indication is reset.

)

W

SECTION VI. PROCEDURES

Subroutine Call Purpose

CALL SLITE (n) Integer expression n is evaluated. If n is zero, all
simulated sense lights are set to OFF. Ifnis 1, 2,
3, or 4, the corresponding sense light is set to ON.

CALL SLITET (n, j) Integer expression n is evaluated. Ifnis 1, 2, 3, or
4, the corresponding simulated sense light is tested,
then set to OFF. If the sense light is in the ON state
when tested, integer variable j is set to 1; other-
wise, j is set to 2.

I1/0O Condition Test Subroutines

The three I/O test subroutines test for end-of-file and end-of-tape indications and for bad
parity. The subroutines may be used in any combination. They must be called immediately after
the I/O operation to which the test condition applies. If the condition the subroutine is intended
to sense does occur and the subroutine has not been called, the program is automatically termi-

nated. The purpose of each subroutine is given below.

Subroutine Call Purpose

CALL PARITY (j) Integer variable j is set to 1 if the peripheral oper-
ation encountered an uncorrectable error. Other-
wise, j is set to 2.

CALL EOF (j) Integer variable j is set to 1 if an end-of-file
record is sensed. Otherwise, j is set to 2.

CALL EOT (j) Integer variable j is set to 1 if the peripheral oper-
ation encountered an end-of-tape indication. Other-
wise, j is set to 2.

I/0O Subroutine REREAD

Subroutine REREAD provides a means whereby the same data can be read twice. A call to
REREAD can be made between two READ statements. The subroutine causes the last record
read by the first READ statement to be the first record read by the second READ statement. The
subroutine call has the following form:

CALL REREAD (i)
Where: i is the code identifying the input device.
Example: READ (2, 15 A, B
CALL REREAD (2)
READ (2, 18)1, J
15 FORMAT (2F5.1)
18 FORMAT (2I5)

The subroutine will cause the data for A and B and the data for I and J to be read from the same

data card.

SECTION VI. PROCEDURES

Dynamic Dumping Subroutines

Three subroutines provide for dumping an area of memory at object time. The only dif-
ferences in the three subroutines are in the arguments used to delimit the area dumped and the
location to which the subroutine returns after the dump. The three calls to dump memory at

object time are as follows:

Subroutine Call Purpose
CALL PDUMP (v, v;) v; and v, are variable or array element names.

When PDUMP is called, the area between and
including v; and v, will be dumped. The address of
v does not need to be less than that of Vo, and Vi
can equal v, if the dump of a single variable is
desired.

After the dump, the subroutine returns control to
the next executable statement after the call in the
calling program.

CALL DUMP (vl, VZ) A call to DUMP will cause a dump to be taken in
exactly the same way as a call to PDUMP. How-
ever, after the dump is taken, the subroutine trans-
fers control to the job exit location.

CALL MDUMP (n,, nZ) n. and n_ are decimal addresses between 0 and

2&2, 144.” A callto MDUMP will cause a dump to be
taken between and including the contents of n} and
np. After the dump, the subroutine returns control
to the next executable statement after the call in the
calling program.

Examples: CALL PDUMP (A(l), A(10))
CALL DUMP (C, F(5,5))
CALL MDUMP (8192, 17037)

Exit-to-Monitor Subroutine

A call to EXIT is the equivalent of a STOP statement. The subroutine is called as

follows:

Subroutine Call Purpose

CALL EXIT When the call is encountered, an automatic exit to
the monitor occurs, causing final termination of
the job's object program.

L

SECTION VII
SYSTEM CONTROL CARDS

RUN-.LEVEL AND JOB-LEVEL CONTROL CARDS

The input deck for any run begins and terminates with run-level control cards. These
starting and terminating cards are a Console Call card and an *ENDRUN card, respectively.
They are described in Section IX, '""Operating Procedures.' The Console Call card has several
hardware options with which the programmer should become familiar, but these run-level cards

are primarily the operator's responsibility.
A Fortran run can consist of a number of jobs separated by appropriate control cards that
define each job. These control cards are the responsibility of the programmer. A job-level

control card must have an asterisk in column 1. The card designator always begins in column 2,

CONTROL CARDS FOR STANDARD OPERATION

Standard operation is considered to be load-and-go mode, in which a job is compiled, the
run tape is generated, and the job is executed. The next compilation, run-tape generation, and
execution follows, etc., until the end of the run is reached. For standard operation without
options, two cards are required: the *JOBID card in front of the source deck for the job, and
the *DATA card at the end of the source deck. If there are data cards, the *DATA card is
placed at the end of the source deck and ahead of any data cards. The deck appears as shown

in Figure 7-1.

*DATA
Deck
Source
*JOBID
Data Deck
*DATA
Deck
Source

] *JOBID

Figure 7-1. Input Deck for Standard Operation

7-1

SECTION VII. SYSTEM CONTROL CARDS

NON-STANDARD OPERATION AND OPTIONS

Besides load-and-go, Fortran run modes include writing jobs onto a go-later tape for
execution at a later time, execution of such batched go-later jobs, and processing Fortran II
source decks into source-language decks acceptable to Fortran Compiler D, Some of these

runs require control cards other than the standard load-and-go cards.

Within load-and-go runs, there are several options available to the programmer. Some
can be included on the *JOBID card, and some require separate control cards. For example,
diagnostic preprocessing of a source deck requires a separate control card, while punching a
relocatable program deck is an option on the *JOBID card. The remainder of this section

discusses each of the control cards and its options in detail.

*JOBID CARD

Every job must begin with a *JOBID card. ! By itself, the *JOBID card usually indicates
that the job following is to be compiled and then automatically executed (load-and-go mode).

However, this interpretation can be modified by control cards that follow or precede the *JOBID.

Some or all programs of the job may have been previously compiled onto a stack tape or
onto binary input decks. Presence of a *GET control card following a *JOBID indicates that the
named program is on a stack tape and does not need to be compiled. It will be copied onto a
binary program tape, generated onto the binary run tape in absolute form, and executed.
Presence of a *BINARY control card following the *JOBID indicates that the binary deck following
is to be copied onto the binary program tape, generated in absolute form, and executed. In both

cases, compilation of source programs in the same job will not be inhibited.

A *DIAG card immediately preceding the *JOBID will bring in the preprocessor to check
the job for source program errors. When a *SCREEN card precedes the *JOBID, that job and
any following jobs in the run are processed by the Screen routine from Fortran II to Fortran

Compiler D language format.

A *JOBID card has the form:

l *JOBID or I *JOBID, Option 1, Option 2, ..., Optionn

In the first form, no job options are included. #*JOBID appears in columns one through six. In

*JOBID cards are not required for Screen translation. However, if the programmer wishes

his output deck from Screen to be in proper order for compilation, he should include *JOBID
cards as required in the input deck as well as seeing that input programs are ordered according
to the requirements for Fortran Compiler D.

7-2

———

[3]

SECTION VII. SYSTEM CONTROL CARDS

the second form, *JOBID is followed by a comma in column 7. One or more options then fol-

low; each option is separated from the one following by a comma.

When there are many options, a number of consecutive *JOBID cards may be used and the
options divided among the cards. *JOBID must appear in columns one through six of each card.
Job options may appear in any order following column 7 of the job card. Options may not appear

beyond column 72 on any one card.

The options that may appear on the *JOBID card are the following:

Job name

Memory size for object program execution

Floating-point precision

Integer precision

Nonstandard assignment of card reader, printer, and punch
SAVE compiled programs by writing them onto a stack tape
PUNCH compiled programs into binary decks

Two listing options

Tape to be used as the common input device

Job Name Option

(>=<JVOBID » *jbnam

The use of an identifying name for each job is recommended., From one to six characters
may be used for the job name including embedded blanks. The first character of the job name
must be an asterisk. When a job name is included on a *JOBID card, the name will be printed
on the listing; the asterisk will be suppressed. If no job name is included on the *JOBID card,

the compiler assigns the tag *NONAM. A jobname isrequiredif a go-later tape is being generated.

Memory Size

I/" JOBID, Mdddddd

The letter M is followed by a 5- or 6-digit integer, representing the highest location in
memory to be used during execution. Any location within the limits of memory can be chosen,
Thus, a specification of M57344 means that all memory up to 57, 344 characters can be used

during execution.

The memory size o'ption on the *JOBID card is used when programs are executed on a
computer with a memory size different from that on which they were compiled. It can also be

used when a programmer wishes to retain a program or programs in upper memory.

7-3

SECTION VII. SYSTEM CONTROL CARDS

Floating-Point Precision

ﬁJOBID, Fdd

The letter F is followed by one or two digits dd, where 2 £ dd < 20. The digit (or digits)
specifies the maximum number of digits in the mantissa of a floating-point field. When not

specified by the programmer on the #*JOBID card, the maximum number of digits in the mantissa

will be seven.

Integer Precision

I *JOBID, Idd

The letter I is followed by one or two digitsdd, where 3 £ dd <€ 12. The number indicates

the maximum number of characters allotted to the integer field. When not specified, a standard
value of three characters is allotted. Since integers are stored internally in binary, the option
specified by the programmer is smaller than actual integer precision. See Appendix C for a
tabular comparison of integer precision with the number of characters specified by the

programmer,

Peripheral Device Assignments

EJOBID, IOiioopp

The input/output option permits specification of nonstandard assignments to the input,
output, and punch devices. If the option is not used, the card reader is assigned to logical 02,

the printer is assigned to logical 03, and the punch is assigned to logical 05.

When the I/O option is used, the letters IO are followed by the following information:
ii is a two-digit logical address for the card reader (01 < ii £ 15)

oo 1is a two-digit logical address for the printer (01 £ oo £ 15)

pp is a two-digit logical address for the punch (01 £ pp £ 15)
As an example, suppose that the user installation uses logical device 09 for the card reader and
logical device 02 for the printer. A nonstandard option must then be included on all *JOBID

cards as shown below:

FJOBID, 10090205

Note that even though a dtandard assignment is made to the card punch, all logical device ad-

dresses must be included if any one is changed,

SECTION VIL. SYSTEM CONTROL CARDS

SAVE tion

(*J’OBID, SAVE

The SAVE option is used to create or to add programs to a stack tape. This option re-
quires that a fifth tape be mounted on logical tape drive No. >4 during compilation. When the
SAVE option is encountered on the *JOBID card, an indicator is set in the communication region.
At the same time that the run tape is generated, this indicator will cause the programs of the job
to be written from the binary program tape (logical tape No. 3) to the end of the stack tape
(logical tape No. 4). Note that in using the SAVE option, no deletion of duplicate-name programs
on the stack tape will occur. The names of programs to be saved on a stack tape may not contain
embedded blanks. This applies to Easycoder program names and Fortran main program names,
which normally permit embedded blanks, Blanks in subroutine and function subprogram names

are automatically suppressed.

PUNCH Option

G‘J OBID, PUNCH

The PUNCH option is used to create a deck of programs punched in relocatable binary
form. This option requires that a card punch be initialized as part of the equipment for compila-
tion. When the PUNCH option is encountered on the *JOBID card, an indicator is set in the
communication region. At the same time that the run tape is generated, this indicator will cause
the programs of the job to be punched from the binary program tape. If the SAVE and PUNCH

options are requested for the same job, only the SAVE option will be performed.

Listing Options

There are three possible listings that can be produced by the system; an example of each
can be found in Section VIII, If a binary run tape is generated for a job (absolute format), a
memory map listing in absolute format is always printed out. The two options that can be
specified on the *JOBID card are concerned with listings in relocatable format; these can be

printed out even though a binary run tape is not generated.

The first listing option is as follows:

f

(*JOBID, NOLIST

7-5

SECTION VII. SYSTEM CONTROL CARDS

A NOLIST option will inhibit the printing of a relative memory map listing at compile time.
This listing is printed out unless a NOLIST option is encountered and contains the address, rela-
tive position, and the name of each variable and constant. The memory map is so divided as to
indicate whether the variable or constant being listed is contained in a common block, labeled

common block, or noncommon block.

The second listing option is as follows:

F‘J’OBID, LIST

A LIST option will cause the printing of a pseudo-Easycoder listing of the instruction string
generated by compilation. Each line of the listing is edited to resemble a line of an Easycoder
listing. The LIST option is most commonly used for program checkout and maintenance, but
users may occasionally find the pseudo-Easycoder listing useful for tracing subtle source pro-
gram errors. If the object program exceeds 8. 5K characters of memory, the LIST option will

be inhibited.

Tape Input

(*JOBID, TAPEIP

This option informs the compiler that the common input device for the rest of the run is a
card-image tape mounted on logical tape drive No., 5. When a TAPEIP option is encountered,
not just the job following but the remainder of the run must use tape input. Input jobs on cards
to be included in the same run must precede the jobs to be read in from tape. The tape on
logical tape drive 5 must not be rewound during a TAPEIP run. In addition, no diagnostic pre-
processing to tape can occur in the run after the TAPEIP option is encountered. (See the de-

scription of the *DIAG card with tape option below.)

Sample *JOBID Card with Options

(*JOBID, 17, F20, 10070305, *SAMPLE, PUNCH, LIST, M22527

Shown above is an example of a *JOBID card with several of the possible options. The name
of the job is SAMPLE. The job requires that the maximum floating-point accuracy (20 characters
in the mantissa) be used, together with integer specification of seven characters (or integer

precision up to 12 decimal digits). ILogical input/output devices are given by option, since the

7-6

()

&

SECTION ViIl. SYSTEM CONTROL CARDS

card reader is assigned as logical device 7. Programs within the job are to be punched into
relocatable binary decks at run-tape generation time. At the same time, a pseudo-Easycoder
listing is to be printed in addition to the usual memory map listings. At object-program time,

memory up to 22,527 characters is to be used.

*SCREEN CARD

When a user wishes to convert a source-program deck from Fortran II to Fortran Compiler
D format, use of Screen conversion will result in a new source-program deck with translated 1/0
statements and statements containing function names. A *SCREEN card in the input deck indi-
cates that all jobs following are to be translated. The compiler monitor will transfer control

to F2TOF4, the Screen conversion routine.

A *SCREEN card has one of the following forms

l *SCREEN or |*SCREEN x

*SCREEN appears in columns 1 through 7. Any nonblank character anywhere in columns 8

through 72 will cause sequential numbering of the lines of each job in the listing produced by
Screen and the cards of the new source-program deck. If columns 8 through 72 are blank, the

listing lines and card deck will be numbered in the same way as the input deck.

A Screen run is terminated by the *ENDRUN card that signals the end of the run. There-
fore, if a deck to be screened is included with compilation or preprocessor jobs, the Screen

deck must be the last deck in the run.

*DIAG CARD

When a user wishes to check a job for source-program errors without using compilation
time, he can use the diagnostic preprocessor. A *DIAG card in the input deck indicates that the
job following is to be processed for possible source-program errors. The compiler monitor will
transfer control to ACCPRA, the first segment of the diagnostic preprocessor routine. There

are two options in using the diagnostic preprocessor. In the first option, the *DIAG card has the

I *DIAG

#*DIAG appears in columns 1 through 5 of the control card. This brings in the diagnostic

form:

preprocessor, which will'examine source-program statements in the job following for possible
diagnostics and print out a listing of all programs (source programs and binary programs if
included) together with diagnostics for the source programs. An example of a source-program

listing with diagnostics is given in Section VIII.

7-7

SECTION VII. SYSTEM CONTROL CARDS

When the diagnostic preprocessor job has been completed, control returns to the compiler

monitor to determine how the next job should be processed.

In the second option, the #*DIAG card has the form:

l *DIAG, T

*DIAG appears in columns 1 through 5 of the control card. A comma appears in column 6. A T

anywhere in columns 7 through 72 indicates that preprocessing is to be to tape rather than to a

listing. For this option a tape is mounted on logical tape drive 5. As the preprocessor scans
the job for source-program errors, it writes all programs of the job (whether source programs

or binary programs) onto tape 5. When the end of the job is encountered, tape 5 is rewound and

a check for job fatality is made. Any error diagnosed by the preprocessor will cause job fatality.

If the job is fatal, it is copied from tape 5 onto a printed listing with source~program diagnostics.

Control is then transferred to the compiler monitor to process the next job.

If no errors were diagnosed in the job, control is passed to the compiler monitor, together

with parameters informing the monitor to process the next job using tape 5 as the input device.

Thus, by use of the tape option, a job can be preprocessed, compiled, and executed in one

operation.

Any *#*DIAG card containing punches other than *DIAG, T will cause diagnostic preprocessing

to a listing only.

*GET CARD
A *GET card specifies that the program named on the card is to be copied from the stack
tape (logical tape drive 4) onto the binary program tape. Use of a *GET card presumes that a

fifth (stack) tape is included in the compilation run. A *GET card has the form:

(*GET, program name

*GET, appears in columns 1 through 5. The program name can appear anywhere in columns 6
through 72 and must be punched exactly as it appears on the stack tape. When a *GET card is
encountered, the stack tape will be searched forward until the named program is found or until

an end of file is found. If an end of file is found first, the tape will be rewound and searched

until the named program is located, If, for any reason, two programs of the same name appear

on the stack tape, the first program located will be the one copied to the binary program tape.
v
If the named program cannot be found on the stack tape at the end of the second pass over the

tape, a '""job fatal' diagnostic is issued and processing continues with the next job.
P J g P g

\\/

()

SECTION Vil. SYSTEM CONTROL CARDS

*¥*BINARY AND END CARDS
A *BINARY card indicates to the monitor that the program deck following the card is in

relocatable binary form. The binary program deck will be copied onto the binary program tape.

I *BINARY

*BINARY appears in columns 1 through 7. If the binary deck is out of order, a '"job fatal'' diag-

A *BINARY card has the form:

nostic is issued and processing continues with the next job.

The programmer must terminate the binary deck with an END card to signal the end of

binary input. The characters END must appear in columns 7 to 9 of this card as shown below.

7

END

*CHAIN CARD

Chaining can be used when a job is too large to be treated as one memory load at object
time. Such a job is divided into groups of programs. Each group of programs is called a chain
and constitutes a separate memory load at object time. In the input deck each chain of programs

is preceded by a *CHAIN card. A maximum of 30 chains is permitted in a single job. A

I *CHAIN, x

*CHAIN, must appear in columns 1 through 7. The x shown in the card form represents a single

*CHAIN card has the form:

alphanumeric character that must appear somewhere in columns 8 through 72 to identify the pro-
gram chain that follows. If the first chain of a job is not called in by later chains, it need not

have a ¥*CHAIN card. However, all subsequent chains must have *CHAIN cards.

*ALTER CARD
An *ALTER card contains one or more of four options. The options are SAVE, PUNCH,

LIST, and NOLIST. The options are identical to those used on the *JOBID card. However,
*JOBID options determine options for all programs within the job. An *ALTER card determines
options only for the program that it precedes. Thus, an *ALTER card can be used to change

initially set job options for a single program within the job. An *ALTER card has the form:
v

(*ALTER, Option 1, ..., Option n

*ALTER, appears in columns]l through 7. One or more of the options may appear in any desired

7-9

SECTION VII. SYSTEM CONTROIL CARDS

order in columns 8 through 72; options must be separated by commas, If the SAVE and PUNCH

options are requested for the same program, only the SAVE option will be performed.

| *DATA

The *DATA card is placed at the end of all program decks for a given job whenever execu-

*DATA CARD AND 1EOFA CARD

tion of the job is desired. A *DATA must be present to trigger job execution. *DATA appears

in columns 1 through 5.

When a job includes data to be read under the control of the object program, all data cards
for the job must follow the *DATA card and will be read by the object program in the order in
which they follow the *DATA card.

The absence of a *DATA card following program decks for a given job will inhibit execution
of the job. The run tape generator will process the job, allocate memory, collect called library
functions and subroutines from the compiler system tape, and satisfy any SAVE or PUNCH

option., When compilation is complete, instead of attempting execution, the compiler passes

control to the monitor to process the next job. ~

If a job proves fatal, when a *DATA card is encountered, the data cards are bypassed and

the next job is initialized.

When a data deck follows a *DATA card, the programmer has the option of testing an end
of file following the data cards. An end-of-file card following the data cards will cause the end-

of-file record to be generated following the data deck. This card has the form:

(e

Columns 1 through 5 contain 1EOFA,

*ENDATA CARD

*ENDATA

‘
The *ENDATA card is used only when executing a go-later tape. In this run mode, a

series of jobs previously written onto tape in relocated form are to be executed. For each job

)

to be executed, the card reader must contain a console call card giving the name of the job on

7-10

SECTION VII. SYSTEM CONTROL CARDS

the go-later tape, followed by data for the job, and terminated by an *ENDATA card. The
*ENDATA card indicates the end of input data for that particular job. *ENDATA appears in

columns 1 through 7 of the card.

*DUMP CARD

I *DUMP

If the programmer wishes to take a terminal dump when a job is executed, a *DUMP card
must follow the #*JOBID card. When the *DUMP card is encountered, the compiler monitor sets
a dump indicator in the communication region. When the job is executed, an alphanumeric and

octal dump of all memory will be printed. *DUMP appears in columns 1 through 5 of the card.

COMMENT CARDS

Any card with an asterisk in column 1 that is not immediately followed by JOBID, SCREEN,
DIAG, DATA, ALTER, GET, BINARY, CHAIN, or ENDRUN will be treated as a comment card.
The contents of the card will be printed on the listing. Comments may appear anywhere in
columns 2 through 80 of such cards. (Note that these comment cards are not within an indi~

vidual program. For comments within a source program, see page 1-4,)

When the compiler monitor begins scanning cards after run initialization, it searches for
a *JOBID, *SCREEN, or *DIAG card., Any asterisk card, control or otherwise, encountered
before the compiler monitor locates a *JOBID, *SCREEN, or *DIAG card will be treated as a

comment card and will have no effect upon compilation and execution of the run.

Card-Image Tape Input

At installations not using a card reader, system control information and source programs
can be read in from a card-image tape mounted on logical tape drive No. 5. The initial console
call for the run is keyed in by the operator at the console. The console key-in takes the place
of a TAPEIP option on a *JOBID control card in a card reader to initiate a run using tape input.

See Sections VIII and IX for additional information.

()

SYSTEM SUMMARY

System Modules

SECTION VIII
SYSTEM DESCRIPTION

The system supplied to each installation consists of the software modules described in

Table 8-1. These modules are supplied on a CST (Compiler System Tape). A list of the com-

plete contents of this tape is found in Appendix F.

Table 8-1. System Modules

Module

Function

Compiler

Translates Fortran source-program units into relocatable machine
language and writes them on a BPT (binary program tape).

Run-Tape Generator

Accepts relocatable machine-language program units from several
sources (BPT, Fortran library, and stack tape in relocatable machine-
language format), and relocates them into loadable executable jobs on
a BRT (binary run tape).

There are two run-tape generators, one for the 3-character address
mode and one for the 4-character address mode.

Execution Package

Consists of loader-monitor, floating-point package, fixed-point pack-
age, object 1/O packages, etc., required for program execution. The
module is segmented so that only the required segments are in mem-
ory for any given job. Two loader-monitors are included, one for
loading programs in the 3-character address mode and one for loading
programs in the 4-character address mode.

Fortran Library

A library of Honeywell-supplied Fortran mathematical functions and
special subroutines in relocatable machine language suitable as input
to the run-tape generator.

Diagnostic
Preprocessor

Checks for source programming errors and issues diagnostics.

Screen Routine

Converts Fortran II I/O statements and function names to Fortran
Compiler D source program form.

Debugging Aids

Source-program listing, memory map of relocatable machine coding,
object memory map, generated pseudo-Easycoder listing, and dynamic
and terminal memory dumping facilities.

Punch Punches program units onto cards in relocatable machine language
suitable as input to the run-tape generator.
Stack Writes program units onto an optional tape in relocatable machine

language suitable as input to the run-tape generator.
guag R PES

Run Options

There are four run options for Fortran D. They are:

Load-and-Go Mode

SECTION VIII. SYSTEM DESCRIPTION

Writing a Go-Later Tape
Executing a Go-Later Tape

Screen Conversion

During load-and-go operation, jobs are serially compiled, relocated, and executed. The
load-and-go mode uses the system modules for compilation, run-tape generation, execution, and
debugging aids. Optionally, the Fortran library, punch, and stack can be used during load-and-
go operation. Diagnostic preprocessing jobs can be interspersed with load-and-go jobs and do

not require a separate run.

Writing a go-later tape consists of compiling and relocating a group of jobs without execut-
ing them. The tape on which the relocated jobs are written is saved for later execution. Writing
a go-later tape uses the system modules for compilation, run-tape generation, and debugging
aids. Optionally, the Fortran library, punch, and stack can be used during this run mode, and

diagnostic preprocessing jobs can be interspersed.

Executing the jobs batched in relocated code on a go-later tape represents another run

option. Only the execution routines are used in this run mode.

Conversion of Fortran II I/O statements and function names to Fortran D format uses only
the Screen routine and constitutes a run mode. Optionally, a Screen run can follow a load-and-
go run without operator intervention if the load-and-go input does not terminate with an *ENDRUN
card or card image. The presence of a ¥SCREEN card or card image terminates the load-and-

go processing.
Tape assignments for all runs are described in Section IX.

STANDARD FORTRAN PROCESSING — LOAD-AND-GO OPERATION

The standard mode of processing Fortran source programs is called load-and-go operation.
In the load-and-go mode, program units that make up a job are compiled into relocatable machine
language and written onto a work tape, which becomes the binary program tape (BPT). Then the
run-tape generator collects these program units on the BPT, together with any called functions
or subroutines from the Fortran library and any program units called from the stack tape, re-
locates them, and writes them onto the binary run tape (BRT). The job is then immediately
executed. Then the next job is compiled, relocated, and executed, etc., until the end of the run

v
is encountered.

()

SECTION VIII. SYSTEM DESCRIPTION

A minimum of six peripheral devices and a maximum of 15 can be used for load-and-go

operation, as well as other modes of execution. A simple flow diagram for the minimum system

el is shown in Figure 8-1.

CST
COMPILER
SYSTEM

TAPE T@

COMPILATION

BPT
(WRITTEN
INTO WORK
TAPE T3)

LISTINGS AND
DIAGNOSTICS
RUN- TAPE -
GENERATION /-

COMMON
OUTPUT (TAPE
OR PRINTER)

BRT
BINARY RUN
TAPE Tt

3 EXECUTION

Figure 8-1. Standard Load-and-Go Flow Diagram
The input deck for a load-and-go run is shown in Figure 8-2. The Console Call card and
*ENDRUN card begin and terminate the run, respectively, and are the responsibility of the op-
erator. A *JOBID card must begin each job deck, and a *DATA card must terminate the source
programs. If there are data cards, the *DATA card precedes them. These control cards are
the programmer's responsibility.
Pl
% DATA T GRasAM
- DATA
* JOBID \CARDS
CONSOLE ~~_PROGRAM
CALL CARD DECKS
g

Figure 8-2. Input Deck for Load-and-Go

8-3

SECTION VIII. SYSTEM DESCRIPTION

Chaining a Load-and-Go Job

When it is probable that a job will overflow memory at execution time, the job should be
divided into two or more memory loads. Each memory load (or chain) begins with a *CHAIN con-
trol card that names the chain. An example of chained input is shown in Figure 8-3. Program-

ming tips on chaining are given in Section X,

*DATA
DATA
DECK
“~_ PROGRAM .
*CHAIN, 2 DECKS
\PROGRAM
*CHAIN, { DECKS

*J08ID, *J0B1

Figure 8-3. Job Divided into Two Chains of Program Units

GO-IATER — BATCHED JOB PROCESSING

As an alternative to load-and-go processing, Fortran D System permits the programmer
to compile and relocate a series of jobs onto a BRT. The BRT is saved, and the jobs on it can

later be executed as a separate run.

Writing a Go-later Tape

Compiling and relocating jobs onto a go-later BRT is a run-level processing mode, speci-
fied by an option on the Console Call card. There are two options that trigger the run. One
indicates that a new go-later tape is to be created from a work tape, and the other specifies that
jobs are to be added to an already existing go-later tape. Further details on these options can

be found in Section IX, "Operating Procedures."

Every job to be written onto a go-later BRT must have its identifying job name specified
on the *JOBID card. The job name appears on the go-later tape as a six-character name, the
initial character of which must be an asterisk. If a job name longer than six characters is speci-

fied on the *JOBID card, the name will be truncated at the right-hand side as shown below:

#*JOBID Card with Job Name Job Name on Go-Later Tape
.
*JOBID *SAMPLE *SAMPL

()

SECTION VIII. SYSTEM DESCRIPTION

Figure 8-4 shows a sample input deck for writing a go-later tape. Figure 8-5 gives the

minimum system configuration for writing a go-later tape.

*ENDRUN

*J0BID, *JBNO3

T~PROGRAM
*JOBID, RIBNO2 DECKS
TT—PROGRAM
DECKS
*JOBID, %JBNO!
CONSOLE T~PROGRAM
CALL CARD DECKS

Figure 8-4. Sample Input Deck to Write Go-Later Tape

COMPILATION

LISTINGS
DIAGNOSTICS

BRT
GO-LATER

RUN-TAPE TAPE Ti

GENERATION

Figure 8-5. Flow Diagram to Write Go-Later Multi-job Tape

The console call, described in Section IX, provides three go-later options. One permits
jobs to be written onto a BRT that already contains go-later jobs. The second option permits a
new go-later tape to be created, and the third option is used to reposition the go-later tape to
the last good job if a run restart is necessary. There is, in addition, a SENSE switch option
that allows the use of card input for creating a go-later tape and using tape input for later execu-

tion. This option is described in Section IX.

SECTION VIII. SYSTEM DESCRIPTION

Executing a Go-later Tape

Executing batched jobs from a go-later BRT is a run-level processing mode, triggered by -
a console call that contains the name of the firstjob to be executed from the go-later tape. The
programmer canselect a jobor several jobs on the go-later tape that he wishes to run, since the

individual jobs each have identifying names.

The common input device for the run contains a series of console calls, giving the names of
jobs on the go-later tape. Each console call is followed by the data for the job. Data for each job
mustbe terminated by an *ENDATA card or card image. When the first *\ENDATA card is encoun-

o

tered, the system accepts the next console call from the common input device, searches the go-later .
tape for the specified job name, and executes the job. Execution of selected jobs continues until an
#*ENDRUN cardis encountered. Greater efficiency inexecuting a go-later tape is achieved if the

jobs are executed inthe order in which they appear on the tape, thus avoiding extra search time.

When a tape unit is used as the common input device, the first console call can be keyed
in at the console, but the remaining job-identifying console calls can appear as card images.

NOTE: If the off-line printing and/or punching options are used when gener-
ating a go-later tape, they must be indicated on the Console Call cards
used when running the go-later tape.

A sample input deck for executing a go-later tape and a flow diagram for go-later execu-

tion are shown in Figures 8-6 and 8-7. ~

" *ENDRUN
JoB 3
DATA_ *ENDATA

*JBNO3

JOB 2
BATASN *ENDATA

CONSOLE CALLS

*JBNOY *

Figure 8-6. Sample Input Deck to Execute Go-later Tape

BRT
0

EXECUTION

Figure 8-7. Flow Diagram to Execute Go-later Tape

8-6

SECTION VIII. SYSTEM DESCRIPTION

SYSTEM OPTIONS

Stack Tape

Compiled program units in relocatable form can be written onto a fifth tape, called the
stack tape, during the course of compilation and run-tape generation. The stack tape, on logical
tape drive 4, is saved. Writing the program units onto the stack tape does not inhibit their re-
location and execution during a load-and-go run or their relocation onto the go-later tape when
writing a go-later tape. Use of the SAVE option on the *JOBID card causes that job to be placed
on the stack tape. Use of the SAVE option on.the *ALTER card triggers the writing of the pro-

gram unit following onto the stack tape.

Program units previously saved can be called for relocation by use of a *GET card con-
taining the program unit name. The name of the program unit as it appears on the *GET card
must exactly match the program unit name as it appears on the stack tape. To insure uniformity
of names, the programmer must suppress all embedded blanks when writing the name of a pro-
gram unit to be saved on the stack tape. Use of the *GET option is permitted during load-and-go

operation and when writing a go-later tape.

The console call, described in Section IX, provides two stack tape options. One permits
a new stack tape to be created during a run, and the other permits jobs to be written onto an

already existing stack tape.

Punch Option

Compiled program units can be punched onto cards in relocatable format during the course
of a load-and-go run or while writing a go-later tape. Punching program units does not inhibit
their relocation by the run-tape generator or their execution if the run is load-and-go. The
PUNCH option on the *JOBID card causes punching of all program units in the job. The PUNCH
option on the *ALTER card causes the program unit that follows to be punched. If both the SAVE
and the PUNCH option appear on a ¥JOBID or *ALTER card, only the SAVE obtion is processed.

Use of a *BINARY card preceding a deck created by the PUNCH option causes the deck to
be relocated onto the BRT by the run-tape generator. Use of the *BINARY option is permitted

when writing a go-later tape or during a load-and-go run.

Jobs Containing *GET and *BINARY Program Units

A job can consist pyimarily of previously compiled programs in relocatable form if the
job contains at least one source program to be compiled. The source program is placed last in

the job and must allocate maximum common storage for the job and reference logical device

SECTION VIII. SYSTEM DESCRIPTION

numbers of any I/O devices used in the job. Figure 8-8 shows a job input deck containing previ-
ously compiled program units and terminating with a source program containing common and

1/O statements.

END
WRITE (3,9)
READ (2,25)
COMMON...
ATITLE
. END
+*BINARY
*GET, Z2Z DECK
*GET, XYX ‘
END
*BINARY
*J0BID DECK

Figure 8-8. Job Containing Previously Compiled Program Units

Common Input Device

The common input device can be a card reader or a tape unit. If a card reader is the

input device, the run begins with the Console Call card, as described in Section IX.

Tape drive No. 5 is used for common input from tape. This card-image tape can be
written off-line as a series of jobs by Simultaneous Media Conversion C. The console call is
keyed in by the operator at the console; or if a card reader is available, the Console Call card

can be read in from the card reader followed by a *JOBID card with a TAPEIP option.

A second method exists whereby jobs can be read from tape 5 following diagnostic preproc-
essing of a job onto the tape. If no source-program errors are found during diagnostic preproc-
essing and a tape option was specified, the diagnostic preprocessor will produce the job on tape
and load-and-go processing will automatically follow. This diagnostic preprocessing option is

described in detail later in this section.

Since the diagnostic preprocessor uses tape 5 as a work tape, the option for diagnostic

preprocessing to tape is not permitted when using tape 5 as the input device (TAPEIP).

v
Common Output and Common Punch Device Options

The common output device can be a printer or a tape unit. A punch or common punch tape

is optional for Fortran D execution as well as the previously described PUNCH option. Note that

8-8

SECTION VIII. SYSTEM DESCRIPTION

when the common output device is a tape unit, it can be used as the common punch tape as well,

with printed and punched output interspersed.

Bypassing Execution

During load-and-go operation, omission of a *DATA card following the source deck of a
job causes control to return to the compiler monitor after the job is written onto the binary run
tape. Processing of the next job then begins. This option is used to obtain debugging information

from compilation and run-tape generation.

Diagram of System Options

Figure 8-9 is a diagram of a load-and-go run with all system options shown.

CST
COMPILER
SYSTEM
TAPE T@

COMPILATION

BPT
BINARY

PROGRAM
TAPE T3

(” OPTIONAL |
PUNCH |

LISTINGS AND “CET N
DIAGNOSTICS RUN-TAPE | g TOET —/ OPTIONAL \
GENERATION [STACK
___SaE TAPE /
T4 y

Ne e

EXECUTION

Figure 8-9. Load-and-Go Run With System Options

8-9

SECTION VIII. SYSTEM DESCRIPTION

DEBUGGING AIDS

Source-Program Listing

During compilation, a listing of the source program is always generated. A sample source-

program listing is shown in Figure 8-10.

Relocatable Memory Map

During compilation, a memory map giving the address, relative position, and symbol name
of each variable or constant is printed. The relocatable memory map is printed unless the
NOLIST option is specified on the *JOBID card. A sample relocatable memory map is shown

in Figure 8-11.

The memory map indicates in a heading whether the data following is in noncommon, un-
labeled common, or labeled common blocks. Under this heading is a two-column listing with
the headings: ADDRESS, RELATIVE POSITION, and SYMBOL. Symbols are sorted in ascend-

ing order by address value.

For each labeled common block, the name, size, and base of the block are included in the
header information. Constants in the noncommon area are only those explicitly defined within

the source program. Constants generated by the compiler do not appear.

Logical constants for true and false are given as . TRUE. and . FALSE. Integer constants

are given as = value_ _ (for example, =9). Floating constants are given as . mantissa E * expo-

10
nent (for example, .7E-02). Hollerith and octal constants are given as = value in Hollerith or

octal (for example, =25KC).

No explicit information indicates whether a variable has been defined as a dummy variable
or a dimensioned variable. However, dummy variables appear as the first set of noncommon
variables with three characters allocated to each. Dimensioned variables can be identified by
the amount of storage allocated to each.

All addresses are given in relocatable form, relative to the base 10000_, and are not the

8
absolute addresses assigned in execution. The absolute addresses can be computed by adding
the address given under REL POS to the base address of the BASE LLOCN DATA on the object

memory map described in the next paragraph.

)

B

5

SECTION VIII. SYSTEM DESCRIPTION

FORTRAN 200 SOURCE LISTING AND DIAGNOSTICS PROGRAM: XSUB1

001 SUBROUTINE XSUBL (N)

002 COMMON /XSUBL1/1{10)
C WHEN N=1 LOADS I AND SINGLES MleM2,.
C WHEN N=2 CHECKS 1 AND SINGLES M1leM2e.

003 IF (N=1) 10041004200

004 100 WRITE (341) N

005 DO 110 KK=1410

006 I (K<) =KK

007 110 WRITE (3+2) KKol (<K)

0l0 2 FORMAT (34 I(I3s2H)= [5)

0l1 1 FORMAT (14H XSUB1 WITH N= I3)

012 Ml=-1

013 M2=~2

Ols . WRITE (3+43) MleM2

015 RETJRN

Oleé 200 WRITE (3+1) N

017 DO 210 KK=1+10

020 210 WRITE (342) KKol (LK)

021 WRITE (3+43) MleM2

022 3 FORMAT (4H Ml= [54+4H M2= [5)

023 RETJURN

024 END

Figure 8-10. Source-Program Listing

XsuBl MEMORY MAP

NON COMMON DATA

ADDRESS REL-POS SYMBOL ADDRESS REL=POS SYMBOL
10047 00030 N ' 10065 00046 =10
10054 00035 =1 10135 00116 M1
10057 00040 = 10140 00121 M2
10062 00043 KK 10143 00124 =2

LABELED COMMON BLOCK: XSUB1 BASE: 77704 SIZE: 00036
ADDRESS REL=-POS SYVBOL ADDRESS REL-POS SYMBOL
77706 00002 I

SUBPROGRAMS REFERENCED :
ACBFXpP ACB3IO

Figure 8-11. Relocatable Memory Map

Object Memory Map

Whenever a binary run tape (BRT)is generated, an object memory map is printed. This

listing is not optional. The object memory map gives base locations in absolute code for:

1. Data;
2. Program instructions of all chains in a job; and
3. Any I/0O devices that have nonstandard logical address assignments.

The object memory map is useful in debugging object coding. A sample object memory map is

shown in Figure 8-12.

8-11

SECTION VIII. SYSTEM DESCRIPTION

*DATA
OBJECT MEMORY MAP
PROGRAM/DATA AREAS BASE LOCN DATA BASE LOCN PROG
CHAIN Ol
UNLAB COM 04527
LABEL COM 04540
ACBFXP 04634 04634
ACBOIO 06064 06304
XMAINS 11356 11655
XMAINZ 12203 12260
xs5uB2 12367 12630
XSUB1 13725 14105
BCDCON 15062 15143
INTCON 20217 20217
I0DIAG 21302 21302
ACBFLO 21320 21320
IABS 21733 21750
ACBFPP 22060 22060
HIGHEST LOCAT]ON 24306

Figure 8-12. Object Memory Map

The object memory map has three columns. The first gives the name of the item concerned —
program, common or labeled common data area, or buffer device having a nonstandard assign-
ment. The second column contains the base location for data. In this column are the base
locations of program data, common, and labeled common areas. In addition, the base address
of any buffer device having a nonstandard address will appear in this column. The third column
is used only with programs and gives the base address of each program instruction string,

Information is printed in the following order:

1. Any nonstandard buffer devices;
2 Chain designation;

3 Unlabeled common area;

4. Labeled common area; and

5 Programs in the chain.

If there is insufficient memory to execute a given chain, the object memory map prints
at the end of the chain:

INSUFFICIENT MEMORY xxxxx CHARACTERS NEEDED.

Machine-Code (Pseudo-Easycoder) Listing

During compilation, a pseudo-Easycoder listing is printed if the LIST option is specified
on the *JOBID card. The compiler-generated instruction string is printed, using the program-
mer-defined variable namef whenever possible. The pseudo-Easycoder listing is usually used
in program checkout and maintenance,- but some users may occasionally find it useful for check-

ing source-program errors. A sample pseudo-Easycoder listing is shown in Figure 8-13.

-

SECTION VIII.

SYSTEM DESCRIPTION

8-13

XSuBl MACHINE CODE LISTING
BEGADD AL MACHINE CHARACTERS R LoC OPCODE OPERANDS AND VARIANTS
010177 R $BEGIN RESV 0
010177 W 2401022370 SCR $BEGIN+20+70
010204 W 65010224 B $BEGIN+21
010210 W 1001001700000257 EXM REGIONI+159X1=2457
010220 "« 65000000 B 0
010224 w 1071022101004757 EXM (IFN#004=62) sNo57
010234 W 2401022367 SCR $SBEGIN+20467
010241 W 1000000201001757 EXM X1-2+REGIONI+15457
010251 W 14710047004453 MCw (N) o $FXPTA+11
010260 W 35010054004453 BS =1e3FXPTA+11
010267 W 5401031700445102 BCC IFN#004+3FXPTA+94+02
010277 W 33004462004453 C SFXPTZ+$FXPTA+11
010306 W 6501031742 8 IFN#004 942
010313 W 65010664 B IFN#016
010317 R IFN#004¢ RESV 0
010317 W 14010057004455 MCw =3+$LODCH
010326 W 65004757 B ACBOIO
010332 W 01010620 I Dsa =10+17+20
010336 W 14710047004453 MCiW (N) oSFXPTA+11
010345 A 43 W CSM
010346 W 65004757 B ACBOIO
010352 W 01010677 I DSA =10+17477
010356 W 15010054010062 LCA =1 9KK
010365 W 14010062004453 MCw KKe3FXPTA+11
010374 W 65004756 B ACBF XP
010400 W 01017630 1 DsA =3+30
010404 w 14004453010172 MCw SFXPTA+11+$5+3
010413 W 65010426 B IFN#004+71
010417 w 34010176010172 BA =3+55+3
010426 W 14010172000010 MCw $5+34X2
010435 W 15010062277703 LCA KKeLABEL+62083+X2
010444 R IFN#007 RESV 0
010444 W 14010057004455 MCwW =3+3LODCH
010453 W 65004757 B ACBOIO
010457 W 01006620 1 DSA =10+1+20
010463 W 14010062004453 MCw KKeSFXPTA+11
010472 « 43 W CSM
010473 W 14010172000004 MCw $5+34X1
010502 W 14177703004453 MCwW LABEL+62083+X1+$FXPTA+11
010511 W 43 W CSM
010512 W 65004757 8 ACBOIO
010516 W 01006677 I DsA =10+1+77
010522 W 34010054010062 BA =1+KK
010531 W 33010065010062 C =109+KK
010540 W 6501041743 B IFN#004+64+43
010545 W 35004453 BS $SFXPTA+11
010551 W 35010054004453 BS =1e3FXPTA+11
010560 W 15004453010135 LCA SFXPTA+119M1
010567 WA 35004453 Bs $FXPTA+11
010573 W 35010143004453 BS =2+3FXPTA+11
010602 W 15004453010140 LCA $SFXPTA+11eM2
010611 W 14010057004455 MCw =3+5L0DCH
v
S -~ R D
Figure 8-13. Pseudo-Easycoder Listing

SECTION VIII. SYSTEM DESCRIPTION

Xxsusl MACHINE CODE LISTING
BEGADD AL MACHINE CHARACTERS R LocC OPCODE OPERANDS AND VARIANTS
010620 W 65004757 B ACBOIO
010624 W 01014420 I DSA =2+1420
010630 W 14010135004453 MCW Ml eSFXPTA+11
010637 W 43 W CSM
010640 W 14010140004453 MCwW M2 s SFXPTA+11
010647 W 43 W CSM
010650 W 65004757 8 ACBOIO
010654 W 01014477 1 DSA =2+1477
010660 W 65010210 B $BEGIN+9
010664 R IFN#016 RESV 0
010664 W 14010057004455 MCw =3+3%L0DCH
010673 W 65004757 B ACBOIO
010677 W 01010620 1 DSA =10+417420
010703 W 14710047004453 MCw (N) s $FXPTA+11
010712 W 43 W CSM ’
010713 W 65004757 B ACBOIO
010717 W 01010677 I DSA =10+17477
010723 W 15010054010062 LCA =1 9KK
010732 W 14010062004453 MCwW KKeSFXPTA+11
010741 W 65004756 B ACBFXP
010745 W 01017630 1 DSA =3+30
010751 W 14004453010172 MCwW SFXPTA+11+$5+3
010760 W 65010773 8 IFN#020
010764 W 34010176010172 BA =3¢35+3
010773 R~ IFN#020 RESV 0
010773 W 14010057004455 MCw =3+3LODCH
011002 W 65004757 B ACBOIO
011006 W 01006620 I DSA =10+1+20
011012 W 14010062004453 MCw KKeSFXPTA+11
011021 W 43 W CSM
011022 W 14010172000004 MCwW $S5+34X1
011031 W 14177703004453 MCwW LABEL+62083+X1+35FXPTA+11
011040 W 43] CSM
011041 W 65004757 B ACBOIO
011045 W 01006677 1 DSA =10+1+77
011051 W 34010054010062 BA =1 oKK
011060 W 33010065010062 C =109KK
011067 W 6501076443 B IFN¥016+64443
011074 WA 14010057004455 MCw =3+$LODCH
011103 A& 65004757 B ACBOIO
011107 W 01014420 | DSA =2+1+20
011113 W 14010135004453 MCw M1+3FXPTA+11
011122 W 43 W CSM
011123 W 14010140004453 MCwW M2+SFXPTA+11
011132 W 43 W CSM
011133 W 65004757 B ACBOIO
011137 & 01014477 1 DSA =2+1477
011143 W 65010210 B $BEGIN+9
011147 W 65010210 B $BEGIN+9
011153 w 40 W NOP

Figure 8-13 (cont).

8-14

Pseudo-Easycoder Listing

L

[}

]

()

g

SECTION VIII. SYSTEM DESCRIPTION

Each instruction is edited to resemble a line of an Easycoder listing. On the left side of
the page, the beginning address is given, followed by left punctuation, followed by machine code,

followed by right punctuation.

For each programmer-defined EFN (statement label) that is not associated with a Format
statement, a tag is generated that corresponds to the IFN (internal formula number). This tag

appears on a line with the command RESYV 0.

DSA, DCW, and DC statements, as well as all instructions, appear with mnemonic opera-
tion codes and with the one or two address fields edited symbolically. Variants appear in octal;

address arithmetic appears in decimal.

In array references, the symbolic tag does not always appear to be correct because of sub-
scripting. The address field of a variably subscripted array element contains the base address
incremented by the constant portions of the subscripts and decremented by an allocation constant.
This may cause the address value to appear within the range of another array and thus cause the

appearance of a wrong tag. Users must remember that this is not a compiler error.

Error Diagnostics

During compilation, run-tape generation, and execution, error messages can be issued by
several system modules: the compiler, compiler monitor, run-tape generator, object I/O rou-
tines, and Fortran library. Error messages issued by segments other than the compiler are in

English; they are listed in Appendix G. All are "job fatal."

Most compiler diagnostics are printed as error numbers, although a few diagnostics are
issued as English sentences. Where possible during the source-program listing, diagnostic
numbers for detected errors are printed next to the appropriate statements. These error print-
outs usually consist of up to three digits. If the error is fatal, the number is printed in columns
109 to 111 of the listing on the same line as the statement. If the error is not fatal, the number
is printed in columns 116 to 118. If the error number has less than three digits, it is right
justified in the appropriate columns. Errors detected after the source program has been listed
are printed beneath the source program with an IFN (internal formula number) to the left of the

error number so that the statement to which it applies can be located in the listing.

Compiler error nl.}mbers and their meanings are given in Appendix G. The magnitude of
the compiler error number indicates the system module that detected the error. Subheadings in

Appendix G show which module is responsible for detecting a given error.

SECTION VIII. SYSTEM DESCRIPTION

In general, the types of errors listed below are not detected by the compiler and could
lead to unspecified results if the program gets into execution:

FORMAT errors,

Punctuation errors,

Illegal characters,

Subscripting errors,

Mixed mode in arithmetic statements,

Errors in I/O statements, ‘

FORMAT I/O list mismatches.

However, some of the errors above can be detected by diagnostic preprocessing, described later.

Memory Dumps

Three Honeywell-supplied subroutines provide for dynamic memory dumps of all or part
of memory, as described in Section VI. A terminal dump of memory is taken if the *DUMP card

is part of the job deck.

DIAGNOSTIC PREPROCESSING

The diagnostic preprocessor checks source programs for errors without using compilation
time, and it can provide diagnostic information about the construction of the source program that

the compiler is unable to supply.

Diagnostic preprocessing is a job-level option; therefore, jobs submitted for diagnostic
preprocessing can be interspersed with jobs submitted for load-and-go operation or for writing
on a go-later tape. The presence of a *DIAG or #*DIAG, T card preceding a *JOBID card causes
transfer of control to the diagnostic preprocessor. A *DIAG card causes the preprocessor to
list all control cards and all programs of a job with appropriate diagnostic information. A
*DIAG, T card causes the diagnostic preprocessor to write a job onto logical tape 5 in card-
image form. The compiler is then called in, and compilation of the job on tape 5 is automatically
carried out, unless the job is fatal.

Preprocess-Only Option - *DIAG

When only preprocessing is requested, the diagnostic preprocessor lists on the common
output device the source program and any diagnostics. A sample input deck and a flow diagram
of a diagnostic preprocessor job of this type are shown in Figure 8-14 and 8-15. Note that the
work tapes shown in Figur'e 8-15 are not required for preprocessing. However, since compilation

would normally precede or follow diagnostic preprocessing, the tapes are shown mounted.

N’

SECTION VIII. SYSTEM DESCRIPTION

OATA DECKk

* DATA

SOURCE (
PROGRAM
DECKS

#*JOBID

*DIAG

Figure 8-14. Input Deck for Diagnostic Preprocessing

CsT
T¢ -

PROCESS SOURCE
PROGRAMS. WRITE
SOURCE PROGRAMS &
ANY DIAGNOSTICS ONTO

COMMON OUTPUT DEVICE.

Figure 8-15. Flow Diagram for Diagnostic Preprocessing — Preprocess-Only Option

When a *DIAG card is encountered, all programs, subprograms, control cards, and binary
decks following are listed until a *DATA card or other card indicating the end of that job is
encountered. Components other than source programs are listed without diagnostic action. Data

are not listed.

On the printer, each source program is listed on a separate page, together with diagnostic
messages if errors were detected. At the end of each program, a list of subprogram references

is printed. Following the program is the line: *END OF PROGRAM.

Preprocessing to Tape - *DIAG, T

A card-to-tape option is specified on the *DIAG control card by a comma in column 6 and
the character T somewhere in columns 7-72. When this option is specified, all program decks
of the job are preprocessed and written onto logical tape 5. When the preprocessor senses the
end of job (¥*DATA card or other end-of-job card), logical tape 5 is rewound and a check made

for job fatality. Any source-program error detected by the preprocessor will cause job fatality.
v

If the job is fatal, the complete job listing is copied from logical tape 5 onto the common
output device with the preprocessor source-program diagnostics. Control is then passed to the

compiler monitor to process the next job in the input deck.

8-17

SECTION VIII., SYSTEM DESCRIPTION

However, if no job-fatal error was detected when the tape is rewound, control is passed to
the compiler monitor with parameters informing the monitor to use tape 5 as input to load-and-go
processing or writing a go-later tape according to the run option. Thus’, by using the tape option,
a job can be preprocessed, compiled, relocated, and executed in one operation. Figure 8-16
shows a flow diagram of diagnostic preprocessing to tape. Note that work tapes are required for

this job, since compilation automatically follows preprocessing.

WRITE JOB TO TAPE.
REWIND AND CHECK
FOR JOB FATALITY.

COMPILER
SYSTEM
TAPE T@

*JOBID

CARD WORK
IMAGE TAPE 408 COMPILATION TAPES
(15) FATAL ? T, T2T3

SOURCE_PRO-
GRAM & DIAG-
NOSTIC LISTING

Figure 8-16. Diagnostic Preprocessor Flow Diagram - Tape Option

Diagnostics

The preprocessor writes diagnostic messages in English. On the printer, the diagnostic
begins in column 40 of the line directly beneath the statement in which the error occurs. In
diagnosing an error in an executable statement, the preprocessor often includes as part of the
diagnostic a portion of the source statement. This portion begins in column 70 of the line directly
beneath the statement in error and indicates the point in the source statement at which the error
occurred. For most FORMAT statement diagnostics, a column number is given instead of a
portion of the source statement. The column number indicates the position in the FORMAT
‘specification at which the error occurred. In indicating the column number, the diagno-stic
preprocessor does not count either the opening left parenthesis of the specification or embedded

blanks. A flag always follows the diagnostic message, indicating that the error is fatal.

In most instances, the preprocessor continues to analyze a statement already found to be
erroneous, sometimes pro;iucing a series of error diagnostics for a single statement. Since the
initial error may cause the introduction of spurious diagnostics in continued analysis, the pro-
grammer should take considerable care in correcting statements containing multiple errors; and

in many cases, he may wish to ignore all diagnostics after the first one issued.

8-18

p—g

SECTION VIII. SYSTEM DESCRIPTION

Limitations in the use of the diagnostic preprocessor are as follows:
1. Statement operators must not cross card boundaries.
2. EQUIVALENCE statements are bypassed by the preprocessor.

3. DATA initialization statements are bypassed by the preprocessor. (These
statements are diagnosed by the compiler.)

4. The preprocessor does not detect missing or duplicate chains or subprograms.

Appendix G lists diagnostics issued by the preprocessor. Figure 8-17 shows the output

from the preprocessor in the form of a printed listing.

PREPROCESSOR DIAGNOSTIC LISTING

*JOBID
TITLEDIAGBG
[
c
[+
c CHECK DIAGNOSTICS PROBLEMS
c
c
[CHECK RIGHT PARENS AS LAST CHARACTER ON CARD, NEXT IS CONTINUING
C
WRITE(3,12)
12 FORMAT (4HTEST,F13.9, F13.9, Fi3.9,)
THERE IS DATA AFTER THE TERMINATING RIGHT PARENTHESIS.
sansumsnta
11=8
o]
c CHECK DIAGNOSTIC ON IH FORMAT, SHOULD HAVE BEEN 14
c
WRITE(3,13)

13 FORMAT(2IH)

DUPLICATE FIELD SPECIFICATION OR MISSING COMMA,
COLUMN NUMBERO16 LLLILILL L]

CHECK DIAGNOSTIC ON MORE THAN 3 SETS OF PARENS

ona

WRITE (3, 14)
14 FORMAT (3 (2 (2 (4HSCAN, 1X) ,4HSCAN) , 4HSCAN))

MORE THAN THREE NESTED PARENTHESES.
COLUMN NUMBERO19 sEAsasEmEn

CHECK DIAGNOSTIC FOR MISSING SPECIFICATION

naa

WRITE (3, 16)
16 FORMAT(15,5.3)

EITHER A MEANINGLESS DECIMAL POINT OR MISSING FIELD SPECIFICATION.
COLUMN NUMBERO18 LLELLLALLL)
WRITE(3,17)
17 FORMAT(2HAF12.5)

EITHER A MEANINGLESS DECIMAL POINT OR MISSING FIELD SPECIFICATION.
COLUMN NUMBER020 assssusenn
WRITE(3,18)
18 FORMAT(6I)}

AN A, H, I, L, 0, OR X FIELD IS BLANK OR ZERO.
COLUMN NUMBERO16 LLIYTT)

STOP
END
END OF PROGRAM

*

Figure 8-17. Diagnostic Preprocessor Listing

SCREEN CONVERSION
[4
The Screen routine provides limited conversion of user source programs written in Fortran
II into source programs in Fortran D language. Screen replaces Fortran il I/O statements and

names of library functions with their equivalents in Fortran D, Screening is a run-level option.

8-19 :

SECTION VIII. SYSTEM DESCRIPTION

Presence of a #*SCREEN control card will cause all source programs to be translated until an

¥*ENDRUN card is encountered. Data decks should not be included in a Screen run.

As output, Screen punches a new source deck and produces a listing of the new source deck.
Output can be on line or off line as desired. If a character is punched anywhere in columns 8 to
72 of the ¥*SCREEN card, each card of each job is numbered sequentially, both in the new card
deck and in the listing. The sequential numbers appear in columns 75 to 77 and are three-digit
decimal numbers beginning with 001. When the routine encounters a *JOBID card in the input
deck, the numbering sequence is reinitialized., (*JOBID cards are not required for a Screen

run, but their use is recommended to separate job decks.)}

Screen processing can be performed as a separate run, or it can follow load-and-go proc-
essing. An input deck for Screen is shown in Figure 8-18 and the flow diagram is given in

Figure 8-19.

% ENDRUN

*JOBID

T~ FORTRANI
INPUT DECK

T~ FORTRAN I
#SCREEN * INPUT DECK

Figure 8-18. Input Deck for Screen

PROCESS INPUT DECK
FOR |/0 STATEMENT
AND FUNCTION NAME

INPUT ON

LTy
CARDS OR

CHANGES.
SYSTEM NEW
TAPE SOURCE
@ DECK ON
CARDS OR
TAP

Figure 8-19. System Flow of Screen

Figure 8-20 shows the changes made in input/output statements by Screen. In each case,
[}
i is the number identifying the I/O device, n is either a FORMAT statement label or the name of
an array, and List represents a correctly sequenced list of names of variables, array elements,

and arrays.

()

"

)

SECTION VIII. SYSTEM DESCRIPTION

Fortran II I:> Fortran D

READ INPUT TAPE i, n, List READ (i, n) List
READ TAPE i, List READ (i) List
READ n, List READ (i, n) List
WRITE OUTPUT TAPE i, n, List WRITE (i, n) List
WRITE TAPE i, List WRITE (i) List
PRINT n, List WRITE (i, n) List
PUNCH n, List WRITE (i, n) List

Figure 8-20. Screen Conversion of I/O Statements

Fortran II function names appearing anywhere in a source-program statement are con-

verted. Figure 8-21 shows the conversion of library function names.

Fortran II D Fortran D
ABSF ABS
XABSFEF IABS
INTF AINT
XINTF INT
MODF AMOD
XMODF MOD
SIGNF SIGN
XSIGNF ISIGN
MAXOF AMAXO
XMAXOF MAXO0
MAXI1F AMAXI1
XMAXIF MAX]1
MINOF AMINO
XMINOF MINO
MIN1IF ‘ AMIN]
XMINIF MIN1
FLOATF FLOAT
FIXF } .IFIX
XFIXF
DIMF DIM
XDIMF IDIM
LOGF ALOG
SINF SIN
COSF COS
EXPF EXP
SQRTF SQRT
ATANF ATAN
TANHF TANH

Figure 8-21. Screen Conversion of Library Function Names

8-21

SECTION VIII. SYSTEM DESCRIPTION

The format of statements processed by Screen is as follows:

1.

10.

11.

Statements that are not I/O statements and do not have function names are
reproduced without change. Statements already in converted format are
also reproduced without change.

A converted I/O statement starts in column 7. All blanks are suppressed
except those on each side of the parentheses enclosing the logical device
address and/or the FORMAT statement number.

Converted statements containing function names start in column 7. All
blanks are suppressed except those resulting from shortening of function
names in conversion.

When a converted statement is longer than the original, a continuation
card is generated if required. Continuation cards are numbered in
column 6.

If a2 Fortran Il statement required a continuation card but the converted
statement is 66 characters or less, the new statement appears on a single
card.

Occasionally, a Fortran Il statement may have continuation cards with
comment cards interspersed. When converted, the statement, with as
many continuation cards as needed, is generated first. Comment cards
are reproduced without change and follow the statement cards.

Two asterisks in columns 81 and 82 of the listing indicate that a change
has been made in the statement.

Columns 75-77 of the card deck and listing contain a three-digit number
when the sequential numbering option is used. Otherwise, columns 73-
80 are reproduced without change.

Screen will handle Fortran II statements with up to 19 continuation cards
if the number of nonblank characters does not exceed 800. In no case can
there be more than 24 cards between the first cards of two consecutive
statements. This includes continuation, comment, and control cards.

No data cards are permitted in a Screen run.

Figure 8-22 shows a page of input to Screen. Figure 8-23 shows the
Screen output for the same program. Note that the sequential numbering
option has been used.

There are two possible error printouts from Screen. These are listed
in Appendix G.

8-22

g

()

SECTION VIII. SYSTEM DESCRIPTION

9006

9001

32
33
9998
9997

10
9011

9000

#% [OPSHN = 1 FOQR A DUMP TRACEs OTHERWISE TOPSHN = 2 ##
READ 9006+ IMONTHeIDAYsIYEAR,IOPSHN
FORMAT (3(1241B)e11)
NPAGE=1
READ 9001+ NOXES
FORMAT (1B, 35H + 42By 12)
N5 = NOXES - 4
Tl = 1./FLOATF(NOXES = 1)
T = 1.0 /7 FLOATF (NOXES)
NOCRDS=FLOATF (NOXES) /64 04CONST
WRITE TAPE 64 ((RATIO(IeJ) e 1 = 1e3)y J = 145)
WRITE TAPE 64 ((DBLL(I)s DBL2(I)s TPLL(I) s TPL2(1)s TPL3(I))sl=1le5

1)

K=0
READ B000«(BUFFER(I)e12146)+IPROD+«NCRDNC
FORMAT (6F10,04 11Bs 1690 18, 12)
1F (BUFFER(1)=EOF) 34y 9999, 9999
IF (K) 324 314 32
LSTPRD = IPROD
LSTCRD = 0
GO TO 4
IF (LSTPRD = IPROD) 9998, 33, 9998
IF (NCRDNO = LSTCRD) 99984+ 9998+ 4
WRITE OUTPUT TAPE 5¢ 9997+ IPRODs NCRDNO
FORMAT (1B+33H CARDS ARE OUT OF ORDER, PRODUCT 4 17+6HCARD + 1I1)
GO 1O 9999
DO 5 I=146
K=Kel
X{K)=BUFFER(I)
LSTCRD = NCRDNO
IF (K = NOXES) 24646
SUMX=0
AVG19=0
DO 7 1 = N5, NOXES
AVG19=AVG19+X(])
AVG19 = ,2 * AVG19
DO 8 1 = 1y NOXES
SUMX=SUMXeX (1)
IF (SUMX=1,0} 9¢ 100, 100
#%#% NO DEMAND »#xn
IF (LINE=LINES) 11s 10 11
WRITE OUTPUT TAPE 5,9011
FORMAT (1HM1)
WRITE OUTPUT TAPE 5+5000¢ IMONTH,IDAYsIYEARyNPAGE
FORMAT (/ 1BoeI2+1H/+12¢1H/¢12945B214HALPHA ANALYZER+44B+4HPAGE14)
W?ITE OUTPUT TAPE 5 9001+ NOXES
LINE=0

0006511
0006611
0006711
0006811
0006911
0007011
0007111
0007211
0007311
0007411
0007511
0007611
0007711
0007811
0007911
0008011
0008111
0008211
0008311
0008411
0008511
0008611
0008711
0008811

- 0008911

0009011
0009111
0009211
0009311
0009411
0009511
0009611
0005711
0009811
0009911
0010011
0010111
0010211
0010311
0010411
0010511
0010611
0010711
0010811
0010911
0011011
0011111

Figure 8-22. Listing of Card Input to Screen

8-23

SECTION VIII. SYSTEM DESCRIPTION

#4 JOPSMN = 1 FOR A DUMP TRACEs OTHERWISE IOPSHN = 2 #e 001
READ (2+900U6) IMONTHoIDAY,1YEAR 1OPSHN 002 @@

9006 FORMAT (3(1241B)y11) 003

NPAGE=1 004
READ (2+900]1) NOXES 005 aa

9001 FORMAT (1Bs 35H v 42By 12) 006

N5 = NOXES = 4 007
T1=)e/ FLOAT(NOXESw]) 008 oe
T=2],0/7 FLOAT(NOXES) 009 #a
NOCRDS= FLUAT(NOXES)/6.04CONST 010 we
WRITE (6) ((RATIO(IeJ)slI=le3)sJd=1e5) 011 ee
WRITE (6) ((DBL1I(1)+DBL2(I)oTPLICI)IoTPL2C(I)9TPLI(1))91=145) 012 we

1 K=0 013
2 READ (2+8000) (BUFFER(I)el=1v6)+IPRODyNCRDONO 014 ®e

8000 FORMAT(6F10s0y 118y 16y 1By 12) 015

IF (BUFFER(1)»EOF) 3, 9999, 9999 016

3 IF (K) 32y 31, 32 017

31 LSTPRD = IPROD 018

LSTCRD = 0 019

GO TO 4 020

32 IF (LSTPRD = IPROD) 9998, 33, 9998 021

33 IF (NCRUNO = LSTCRD) 9998+ 9998, 4 022
9998 WRITL (599997) IPRODsNCRDNO 023 #e

9997 FORMAT(184334 CARDS ARE OUT OF ORDER, PROUUCT o I746HCARD » (1) 024

60 7O 9999 025

4 D0 5 [=1e6 026

KzKel 027

5 X(K)SBUFFER(]) 028

LSTCRD = NLRDNO 029

IF (K = NOXES) 24646 030

6 SUMx=0 031

AVG19s0 032

DO 7 1 = N9 NPXES 033

7 AVG19=AVG19+X(D) D34

AVG1S = .2 & AVG19 035

DO 8 1 = 19 NOXES 036

8 SUMXSSUMXeX(I) 037

IF (SUMX=140) 94 100, 100 n3s

[-.X-X-3 NO DEMAND -2 1] 039

9 IF (LINE=LINES) 114 10y 11 040
10 WRITE (5+9011) 041 we

9011 FORMAT (lH1) 042
WRITE (599000) IMONTH,1DAYsIYEAR NPAGE 043 o9

9000 FORMAT (/ LBol201H/e1291H/412,45By14HALPHA ANALYZERP144B,4HPAGEYI4) D044
WRITE (599U01) KOXES 045 @0

LINE=0 n46

7
‘—J

Figure 8-23. Output Listing from Screen -

8-24

v’

SECTION IX
OPERATING PROCEDURES

FORTRAN RUN OPTIONS

There are four possible run modes for Fortran D. These are:
Load-and-Go
Screen
Writing a Go-Later Tape
Executing a Go-Later Tape
Operating procedures for all run modes are very similar. Where setup and operating pro-
cedures vary, the differences are explained for each run mode. Otherwise, standard operating

procedures should be followed.

STANDARD CONSOLE CALL

For every run except execution of a go-later tape, a standard console call is used. The
run is initiated either by a Console Call card at the beginning of the card input or by a keyin at
the console. The console call can contain a number of options as shown in Table 9-1. How-

ever, when no options are indicated, the console call in card form appears as follows:

Col. Col. Col.
1 9 18
v A J A 4

(ACADRVOIO *

When the console call is keyed in, the operator follows the standard starting procedure,
given in the following paragraph, up to the second loader halt (B-address register = 17002).
He then keys in the console call. A minimum console call corresponding to the Console Call

card above is given below.

Octal Keyin Octal Location Equivalent Card Column
WMO1 100 9
WM21 104 1

23 105 2
21 106 3
24 107 4
51 110 5
65 111 6
WMO0O0 112 7
or ' 113 8
RM54 125 18

The indicated record and word marks are required.

9-1

SECTION IX. OPERATING PROCEDURES

The console call for executing a go-later tape is discussed in the paragraph entitled

"Executing a Go-Later Tape."

EQUIPMENT REQUIREMENTS

A minimum memory of 16, 384 characters is required for Fortran D. Minimum peripheral
requirements are six devices: four tape units, a standard input device (card reader or tape),
and a standard output device (printer or tape). Equipment setup and optional devices are shown

later for each run mode.

TAPE LOADER-MONITORS

Fortran D can be loaded by any of the Series 200 tape loader-monitors, either fixed or
floating. However, the Fortran D compiler system tape contains two loader-monitors. In the
absence of options, the Fortran D system brings in Tape Loader-Monitor C in the 3-character
addressing mode. At installations running in the 4-character mode, an option in the console call

and a console keyin to location 124_ will bring in Tape Loader-Monitor C in the 4-character

8
addressing mode.

STARTING PROCEDURE

Since Fortran D uses a Series 200 tape loader-monitor, starting procedures for the system
follow the standard starting procedures for the loader-monitor used. Given below is the starting
procedure for Tape Loader-Monitor C with a minimurmn system configuration of 4 tape units, card
reader, and printer. The run is presumed to be either load-and-go or one in which a go-later
tape is written. Variations on the standard starting procedure for Screen runs, go-later exe-
cution, and other options are contained in the six notes that follow the starting procedure.

1. Press the STOP button on the console.

2. If not already mounted, mount the compiler system tape on tape drive 0
in protect status.

3. Mount work tapes on tape drives 1, 2, and 3 in permit status. 2

4. Press INITIALIZE. 3

5. Place the card deck in card reader hopper, making sure that the first card
is the Console Call card. Cycle up the card reader and printer. 4

6 If the compiler system was on tape drive 0, make sure it is rewound.
7 Set the CONTENTS buttons to octal 40 (100000).

8. Press BOOTSTRAP.>

9 Set the CONTENTS buttons to octal 40.

0 Press BOOTS;I‘RAP.

11. Press RUN.

12. Display the contents of the B-address register. These contents should be
octal 17001.

9-2

SECTION IX. OPERATING PROCEDURES

13. Press RUN.

14. Display the contents of the B-address register. These contents should
be octal 17002. 6

15. Press RUN.

NOTES: 1. When executing a go-later tape (saved BRT), the go-
later tape is mounted on tape drive 0 in protect status
and no compiler system tape is used.

2. Work tapes are not required for Screen.

3. See the paragraph on writing a go-later tape. There
is an option in which the operator sets SENSE switch 1
ON after pressing INITIALIZE.

4. A punch or a punch tape is required for Screen.

5. When running in the 4-character address mode, key
in octal 20 to location 1248 after step 12 above.

6. The console call is keyed in immediately after the halt
at 17002 when not using a Console Call card.

TERMINATING A RUN

Runs terminate automatically when an *ENDRUN card or card image is encountered. It
is the operator's responsibility to place the *(ENDRUN card at the end of the deck. When per-
forming off-line conversion from cards to tape, the operator must place the *ENDRUN card at
the end of the deck, so that the card image will appear at the end of the input tape. The *ENDRUN

card is shown below:

Col. Col.
1 7
Y \

(*ENDRUN

There is one exception in which a run need not terminate with.an *ENDRUN card. If a
load-and-go run is immediately followed by a Screen run, presence of the *SCREEN card in
the input deck terminates the load-and-go run and brings the Screen routine in automatically.

However, the Screen run must itself be terminated by an *ENDRUN card.

CONSOLE CALL OPTIONS

The console call can contain options that indicate additional equipment or specify the way
in which equipment is to be used during the run. These options are indicated in columns 10 to
17 of the Console Call card or by the equivalent console keyin to octal locations 115 to 124.
The options specify the f'ollowing.

- Additional core memory above 16, 384 characters

+- Use of a stack tape on logical tape drive No. 4

9-3

SECTION IX. OPERATING PROCEDURES

- Punch Option
- Multiply/divide hardware
- Options used in writing a go-later tape
- Use of tape as the standard output device
- Use of four-character address mode
When there are no options, columns 10 through 17 of the Console Call card or their equivalent

keyin can be used for a date,

Table 9-1. Console Call Options

CARD CONSOLE

Card Octal Octal
Column Contents Location | Keyin How Used

10 * 115 WM54 | Flag to indicate that options follow in
columns 11-17. Required whenever there
is any option.

11 116 A designator for the amount of memoryover
16, 384 characters used for the run. A
blank or any character not specified in the
list will cause 16K memory to be used.
When more than 16K is used, the proper
option is required.

(Memory E-T 25-63 E (25) = 20, 480
Size Options) F (26) = 24,576
G (27) = 28,672
H (30) = 32,768
I (31) = 40,960
J (41) = 49,152
K (42) = 57, 344
L (43) = 65, 536

(44) = 81,920
(45) = 98, 304
(46) = 114, 688
(47) = 132,072
(50) = 163, 840
(51) = 196, 608
(62) = 229, 376
(63) = 262, 144

HOPDYWOZE

12 117 This location is used by installations having
a stack tape (logical tape address T4). A
tack T
(Stac ape blank or any character except A or G in
this location prevents any tape mounted on
T4 from being allocated as a work tape.

Options)

A 21 Allocate the tape on T4 as a work tapé dur-
ing execution. (T4 will be allocated after
T2 and T3.)

G 27 Initialize the tape on T4 as a stack tape. Do
not allocate it at object time. This option

is used when there are no programs already
stacked on T4.

13 ‘ 120 This location is used by installations having
(Punch a common punch device. A blank or any
character not specified indicates the absence

Opti
ptions) of a punch device.

)

SECTION IX. OPERATING PROCEDURES

Table 9-1 (cont).

Console Call Options

CARD

CONSOLE

Card
Column

Contents

Octal
Location

- Octal

Keyin

How Used

(Punch
Options)
(cont)

P

0-7

47

00-07

Common punch used.

Logical tape address (T0 to T7) of common
punch tape.

14
(Multiply/
Divide
Hardware)

121

24

A D must be stored in this location by those
installations having multiply/divide hardware.
A blank or any character except D in this lo-
cation indicates multiply/divide software.

15

(Write Go-later

Options)

122

22

43

25

This location is used only for a run mode in
which a go-later tape is written. A blank or
any character other than B, E, or L or their
equivalent keyins in this location indicates
that this is not a run in which a go-later
tape is written.

Logical tape drive Tlhasa BRT (go-later)
tape on it. The tape is positionedto the 1ERI
recordand jobs are added to the already ex-
isting tape.

Logical tape drive Tl has a work tape on it.
A go-later tape is to be generated by copy-
ing the loader onto the work tape and then
writing go-later jobs on the tape.

Required for emergency, restart of a go-
later run. The tape on T1 is repositioned
in a backward direction to the end of the last
good job before the run continues. The tape
on Tl must not be rewound.

16!

(Tape Used as
Output Device)

123

00~07

This location is used only when common out-
put is on tape. It contains the logical address
of the common output tape., A blank or any
character other than zero to seven in thislo-
cationindicates a printer as common output.
{Note that the same tape can be substituted
for printing and punching, i.e., card column
13 can be the same as card column 16 if
desired.)

17

(4-Character
address mode)

124

04

This location is used only at installations
having the 4-character address mode. A
blank or any character except 4 in the lo-
cation indicates the three-character address
mode.

Four-character address mode.

lIf these options are used when generating a go-later tape, they must be indicated on the Con-
sole Call cards used when running the go-later tape.

9-5

SECTION IX. OPERATING PROCEDURES

CODED HALTS DURING FORTRAN RUNS

In addition to tape loader-monitor halts, there are five other halts that the user can pro-

gram. They are described in Table 9-2.

Table 9-2. Possible Halts During a Fortran Run

Halt

General Display Pattern on the Console

A Address in Octal

B Address in Octal

Meaning

Tape Loader-
Monitor C Halts

Fortran Driver
Halts

Oppld

Opp2d

See Order No. 221 for Tape
Loader-Monitor C, No. 005
for Floating Tape Loader-
Monitor C.

pp = peripheral control unit
number

d = device number

1 = uncorrectable read

2 = uncorrectable write
Check tape for dirt and
damage. (See Equipment
Operators' Manual (Model
200), Order Number 040.)
Depress RUN to try to reread
or rewrite.

Fortran Compiler
Halt

Fortran PAUSE

0600t

04000

Physical tape t desired.

Change tape and depress RUN.

Perform operations indicated
on run request and depress
RUN.

Fortran PAUSE

B T S R Rl LS

STOP n1n2n3n4115n6

nn.n.n.n

17273745

0500n

Examine the A and B ad-
dresses for the STOP or
PAUSE number.

(nln n.n n_n Perform

27345 6): .
the operations indicated for

this number on the run re-
quest. Depress RUN.

Unprogrammed Halts and Looping

The following action shouldbe takenif the run should loop or come to some unspecified halt,

1. Stop the machine (if not already in the stop mode) by depressing the

CENTRAL CLEAR or STOP button.

Write down the contents of the

sequence counter, cosequence counter, A- and B-address registers,
Follow the installation's hang-up procedures for keeping this informa-
tion with the deck in error.

If the machine cannot be halted by the method explained above, depress

INITIALIZE button and proceed to step 4. Otherwise, proceed as follows.

2. Display the contents of location octal 32. If it contains an octal 42 with a
word mark, proceed as follows. Otherwise, proceed to step 4.

9-6

SECTION IX. OPERATING PROCEDURES

No Furthen
Action is

Yes

Required.

Set Sequence
Counter to -

Is
Computer
Stopped?

Write out the Contents

of: Sequence counter
Cosequence counter
A-address register
B-address register

!

Display

Contents

of Octal
Location 32.

Shows
Yes Octal 42 with

Octal 32. Press
RUN.

Dump of Job.
System Recycles to
Process Nex

Press
RUN
Again,

Word Mark?Z

Run Out Card Reader.
Place the Two Unread
Cards in Front of the
Unread Data.

Halt Location# 01

'

Rewind Logical Tape 0

1

Take Memory Dump
With Installation's
Dump Deck. Wait Until
Dump Has Been
Completed.

Halt Location = 01

'

Put ACADRYV Card in
Front of Unread Data.
Restart Using Standard
Starting Procedure.

Stop by pressing
CENTRAL
CLEAR or STOP.

Is
Computer
Stopped?

Press
INITIALIZE,

Figure 9-1.

Operator Action in Unprogrammed Halt or Looping

SECTION IX. OPERATING PROCEDURES

3. Set the sequence counter to octal 32 and depress the RUN button. This will
cause a memory dump to be taken, and the system will recycle automatically
to process the next job.

NOTE: If a no-locate halt {sequence counter = 1777) occurs, depress the
RUN button once more.

If for some reason the system does not recycle or the dump loops or halts
at some location other than 01, proceed to step 4. If the dump halts at lo-
cation 01, proceed to step 7.

4. Run out the card reader and place the two unread cards in front of the un-
read data.

5. Rewind logical tape 0.
6. Take a memory dump with the dump deck provided at the installation.

7. After the dump has terminated, place the Console Call card in front
of the unread data. Proceed with the standard starting and running pro-
cedure given on page 9-2.

If the run was a Screen run, a *SCREEN card must immediately follow the Console Call

card in front of the unread data. Then proceed with the standard starting and running procedure.

Figure 9-1 shows the operator action in case of an unprogrammed halt or a loop in flow-

chart format.

LOAD-AND-GO RUN

The standard mode of Fortran D operation is load-and-go, in which a job is compiled and
executed, then the next job is compiled and executed, etc., until the end of the run (*(ENDRUN or

*SCREEN) is encountered.

Load-and-Go Equipment

Table 9-3 show the equipment that is required and optional for load-and-go operation.

Figure 9-2 shows the minimum equipment configuration for such operation.

WORK
TAPES

T1,T2,T3

COMMON OUTPUT
ON PRINTER

COMMON INPUT

LOAD-AND-GO
ON CARDS OR

RUN

OR TAPE

Figure 9-2. Minimum Equipment Configuration for Load-and-Go Operation

9-8

()

)

SECTION IX. OPERATING PROCEDURES

Table 9-3. Equipment for Load-and-Go Operation

N~ Logical Tape Tape Other Peripheral Required or
Peripheral Device Drive Address Status Equipment Optional
Compiler System Tape 0 protect Required
Work Tape 1 permit Required
. Work Tape 2 permit Required
Work Tape 3 permit Required
Common Input Device One Device
On-Line — —_— Card Reader Required
Off-line 5 protect —
Common Output Device One Device
On-line —_ —_ Printer Required
Off-line Any tape address not | permit —
otherwise assigned
Stack Tape 4 permit Optional
Work Tapes 6, 7, then 0O to 7 on permit Optional
channel 3
Common Punch Device One Device
On-line — ’ —_ Punch Optional
(Punch tape
Off-line Any tape address not | permit — and Print
e otherwise assigned tape may be
' the same
tape.)

Stack Tape (T4)

Where more than the minimum four tape drives are available at an installation, logical
tape drive 4 can be used for a tape containing a library of user programs. By option in the con-
sole call, a tape on logical tape drive 4 can be used as a work tape and allocated during execution.
A second option permits a stack tape to be initially generated from a work tape mounted on drive
4. However, in the absence of options, the tape is treated as an already existing stack tape and

positioned to the end of the last good job at the beginning of a run.

Allocation of Work Tapes

Allocation of work tapes at execution time, in the absence of any options, proceeds as
follows: logical tapes 2 and 3; when available, logical tapes 5 and 6; when available, logical
tapes 0 to 7 of channel 3. When off-line input or output is used, tapes on these drives are not
allocated. A tape on logi'cal drive 4 (stack tape) is only allocated if the console call option per-

mits allocation. If the allocation option is used, tape 4 is allocated after tapes 2 and 3.

9-9

SECTION IX. OPERATING PROCEDURES

Input Tape (T5)

Logical tape address T5 is always used for tape input to a load-and-go run. This tape is

in protect status when programs have been previously placed upon the tape.

However, when a load-and-go run includes diagnostic preprocessing to tape, a work tape
in permit status is mounted as tape 5. The diagnostic preprocessor writes programs onto the
tape and these are then processed by the load-and-go run. This is the only load-and-go run for
which tape 5 is in permit status. The presence of one or more *DIAG, T cards in the input deck

causes diagnostic preprocessing to tape. These cards have the following form:

Col. Col.
1 6
) J . -
*DIAG, T

A T somewhere in columns 7 to 72 indicates preprocessing to tape. When the option to pre-

process to tape is used, input must be from cards.

Output to Tape

Any unassigned logical tape address except T5 can be used for a standard output device.
The tape address must be indicated by a console call option. The same tape may be used in place

of output to a printer and to a common punch during execution. -

SCREEN RUN

A Screen run converts certain statements written in Fortran II language to the language
of Fortran D, The standard console call is used for Screen., A punching option must be in-
dicated in the console call., The console call is followed by a *SCREEN control card or card

image on tape, which has the following format:

Col. Col.

1 7

4 i A
f*SCREEN X

When a Screen run immediately follows a load-and-go run (no setup or operating procedures
required), the initial console call serves for both runs and must contain the punching option.

A Screen run must be terminated by an *ENDRUN card or card image.

Required and optiondl equipment for a Screen run is listed in Table 9-4. Figure 9-3 shows

the minimum equipment setup for a Screen run.

P
~

SECTION IX. OPERATING PROCEDURES

Table 9-4. Equipment for Screen

Logical Tape Tape Other Peripheral Required or
Peripheral Address Drive Address Status Equipment Optional

Compiler System Tape 0 protect Required

Commeon Input Device One Device
On-line —_ - Card Reader Required
Off-line 5 permit —

Common Output Device One Device
On-line - —_ Printer Required
Off-line Any tape address not | permit -

otherwise assigned
Common Punch Device One Device
. Required
On-line —_ Punch (Punch tape
Off-line Any tape address not | permit — and Print
otherwise assigned tape may be
the same
tape.)

COMMON INPUT

PUNCHED OUTPUT

ON CARDS SCREEN

OR TAPE
TS5

ON CARDS

OR TAPE

Figure 9-3. Screen Equipment Configuration

WRITING A GO-LATER TAPE

In this run mode, one or more jobs are compiled, relocated, and written onto a binary run

tape but not executed. The binary run tape is then dismounted and saved for execution in another

run. Required and optional equipment is the same as for a load-and-go-run. See Table 9-3 for

equipment and Figure 9-2 for the minimum run configuration.

9-11

SECTION IX. OPERATING PROCEDURES

Starting and Terminating a Write Go-Later Tape Run

For card input the Console Call card must contain the appropriate go-later option in col- o
umn 15. If there is a binary run tape on tape drive 1, the programs already on the tape must be
protected by positioning the tape to the end of the last job on the BRT. The B option in column
15 is used to indicate a BRT on tape 1. However, if tape 1 is a work tape, a BRT must be gener-
ated by copying the loader onto the tape and then writing go-later jobs. An L option in column 15

causes the loader to be copied and a BRT to be generated onto the work tape.
It is essential that a run which writes a go-later tape be terminated with an *ENDRUN
card. If the card or card image is not present, the jobs written onto the go-later tape will be

destroyed.

Emergency Restart Option

Note that column 15 can contain an E option. This option is used only when a run restart
is necessary. The go-later tape (T1) must not be rewound., The operator follows the run pro-
cedures given in Figure 9-1 for unprogrammed halts or looping. A Console Call card with an
E in column 15 is placed in front of the next *JOBID card in the input deck. Then standard
starting procedures are followed. The presence of the E option causes the go-later tape to be
backspaced to the end of the last good job on the tape. A console call with an E must be used
or the BRT will be rewound and all jobs destroyed.

Card and Tape Input Option

If tape input is used to write a go-later tape, it is presumed that tape input will be used
to execute the tape. In the same way, if card input is used in writing a go-later tape, card

input is presumed for the data to execute the tape.

Some installations, however, may wish to use card input to write the go-later tape and
tape input for execution of the same tape. This is permitted if at the beginning of the run that
writes the go-later tape, the operator presses SENSE switch 1 on the console. The SENSE
switch is turned ON in this manner immediately after the operator presses the INITIALIZE

button, as indicated in the paragraph on starting procedures.

EXECUTING A GO-LATER TAPE

When a binary run tape has been written and saved as previously described, it can then
be used as input to the Execute Go-later run. In this run one or more jobs on a saved BRT
will be executed. Equipri‘xent requirements are shown in Table 9-5. The minimum run con-

figuration is shown in Figure 9-4. Work tapes for executing the go-later run were allocated

()

when the go-later tape was written.

SECTION IX. OPERATING PROCEDURES

Table 9-5. Equipment to Execute Go-ILater Jobs

Logical Tape Tape Other Peripheral Required or
Peripheral Device Drive Address Status Equipment Optional

Binary Run Tape 0 protect Required

Common Input Device One Device
On-line - — Card Reader Required
Off-line 5 protect -

Common Output Device One Device
On-line —_ — Printer Required
Off-line Any tape address not | permit —_—

otherwise assigned
Common Punch Device One Device
: Optional
On-line Punch (Punch tape
Off-line Any tape address not | permit — and Print
otherwise assigned tape may be
the same
tape.)
BRT
Tg

COMMON OUT-
PUT TO
GO- LATER PRINTER

EXECUTION

OR TAPE

COMMON INPUT
ON CARDS

OR TAPE

Figure 9-4. Minimum Equipment Configuration for Go-Later Execution

Starting a Go-Later Execution Run

The console calls for execution of a go-later tape contain the names of the jobs on the tape
to be executed. These are six-character names with an asterisk as the first character. The

console call in card form is as follows:

f Col. Col. Col.
1 9 18
/L h J J
*jbnamO010 *

9-13

SECTION IX. OPERATING PROCEDURES

The characters *jbnam represent the name of a job on the go-later tape. The only option that

may appear on the console call is the punch option.

The console call can be keyed in at the second loader halt. For example, if the name of
the first program on the tape to be run is ¥JOB25, the appropriate minimum console keyin would

be:

Octal Keyin Octal Location
WMO1 100
WM54 104

41 105
46 106
22 107
02 110
05 111
WMO00 112
01 113
RM54 125

Starting procedures other than the contents of the console call are the same as for other

runs. An*ENDRUN card must terminate the input deck.

CREATING A COMPILER SYSTEM TAPE (CST)

Distribution of the Fortran Compiler D System is in the form of a symbolic program tape
(SPT). To create a CST, the installation performs an assembly (actually, a dummy assembly)
of the SPT onto a transaction binary tape (TBT). Then the TBT is used as input to an update and
select run in which the compiler system tape is generated. Honeywell supplies card decks for

the dummy assembly and the update and select runs.

When the CST is created, the input SPT should be stored for possible later use if symbolic

updates are released to the field before the release of a new SPT.

For the assembly run, tapes are mounted as follows:

T0 FEasycoder Assembler Program Tape Protect
T1 Input SPT (supplied) Protect
T2 Work tape (becomes the TBT) Permit

For the update and select run, tapes are mounted as follows:

TO Update and Select Program Tape Protect
T2 Input TBT (leave tape mounted from assembly) Protect
T4 Work tape (becomes the CST) Permit

v
Card formats and operating procedures for Easycoder assembly and for update and select

are given in the software bulletin entitled Operating System - Mod 1 Operating Procedure

Summaries, Order No. 069.

9-14

)

}

(

SECTION X
GENERAL PROGRAMMING CONSIDERA TIONS

LANGUAGE LIMITATIONS

Table 10-1 describes the language limitations.

Table 10-1., Language Limitations

[Page
Limitation Maximum Reference

Programs and Specification Statements
Number of chains in a job 30 1-1
Continuation lines in a statement 9 1-3
Number of characters in a name 6 1-9
Highest label number assigned to a statement 99999 1-7
Dimensions of an array ' 2 1-10
Labeled common areas in a chain 15 4-2
Number of arguments in a function or subroutine subprogram 63 6-6, 6-9
Unrelated equivalence sets in a program 64 4-6
Number of programs in a job or chain of a job for 16K memory 26 -

Asgignment Statements

Number of nested parentheses in an assignment statement 63 -

Control Statements

Number of statement labels in a computed GO TO 63 3-2
Depth of DO loop nesting 10 3-6
Number of variables in subscript expressions within a DO

loop 20 -——-
Number of redefined variables in a DO loop 15 -

I1/0O Statements

Number of logical devices useable in the object program 15 5-2
Depth of implied DO loop nesting 2 . 5-10
Field width permissible in an E, F, G, I or O conversion 32 5-15
Field width permissible in an A, H, or X conversion 132 5-15
Number of times a specification field can be repeated 132 5-15
Depth of nested parentheses in a FORMAT 3 5-47
Record Width:

Printer (not jncluding printer control character) 131 5-46

Punch 80 5-46

BCD tape record 132 5-46
Total number of statement labels (Each FORMAT state- 157 10-2

ment label is counted twice for the total.)

10-1

SECTION X. GENERAL PROGRAMMING CONSIDERATIONS

SOURCE PROGRAM SIZE LIMITATIONS

Four tables that are built in memory during compilation restrict the size of source pro-

grams. These tables are:

Source Table,

Token Table,

IEFN Table,

FORMAT Table.
When memory available for compilation is restricted to 16K characters, the source and token
tables share a common block of memory. As the source table is built forward in memory, the
token table is built backward. The IEFN and FORMAT tables also share a common block of
memory when only 16K is available for compilation. When larger memory is available, more
space is allotted to the four tables, and the source and FORMAT tables have separate blocks of

memory, while the IEFN and token tables share a block.

Appendix F shows how memory is allocated to the tables at each memory size level. If

table overflow occurs, the compiler issues a diagnostic,

Source Table
For each source statement, the sourcetable has the following entries:

4 characters for IFN (Internal Formula Number), type of statement,
and terminator;

2 characters for each variable name;
2 characters for each reference to a statement label; and
1 character for each operator in an arithmetic statement.

Thus, A = B + C would result in 12 characters in the source table.

Token Table
Every unique variable or constant in the source program has a token table entry equal to
the number of characters in the variable or constant, plus five more characters of information.

Dimensioned variables have an additional three token table characters for each dimension.

Thus, A = B + C would result in 18 characters in the token table. Note that if each
variable in the example had a six-character tag, the number of characters in the token table

would have been 33.

The simple arithmetic statement, A = B + C, therefore occupies 30 characters out of a
maximum of 4096 in the source/token table block. When source programs overflow any table,

the job is diagnosed as fatal.

10-2

SECTION X. GENERAL PROGRAMMING CONSIDERATIONS

Note that there is only one entry in the token table for each variable or constant, while

each reference to a variable or constant has an entry in the source table.

IEFN Table
The IEFN table uses five characters for each EFN (statement label) and two characters
for each corresponding IFN (internal formula number). Thus, each statement label in the source

program requires seven characters of memory.

FORMAT Table
The FORMAT table uses seven characters of memory for each FORMAT statement in the

source program., Since every FORMAT statement is labeled, the combined storage cost of a

FORMAT statement for both the IEFN and FORMAT tables is 14 characters.

SIZE OF PROGRAM STRING

On a 16K computer, the maximum size of one program unit — main program or sub-
program - is about 8. 5K characters. Computers with greater memory can have a propor-
tionately larger program string up to a maximum of about 20K characters in three-character

address form.
Compilation is performed in three-character address form whether the three- or four-

character address mode is used. The coding generated by the compiler is expanded to four-

character address form by the run-tape generator when using the four-character address mode.

COMPILER CHARACTERISTICS AND LIMITATIONS

1. Statement operators cannot cross continuation cards.

2. When the data deck for a job contains more data than is actually read by the
job, the additional cards will be listed.

3. Any attempt to reference a variable that has not been previously defined will
probably cause part of memory to be wiped out. '"Previously defined' means
that the variable must have had information stored in it by appearing on the
left-hand side of an arithmetic statement, in a DATA statement, or in the
list of a READ statement.

Example: SUBROUTINE SUB

GO TO 5
N=1
5 J = N+l

Transfer of control has bypassed storing anything in the variable N, In
some compilers, N would have been initialized to zero before attempting
execution, so that no problem other than improper execution would result.
However, in the Fortran Compiler D, a large portion of memory would
probably be wiped out by lack of punctuation.

10-3

SECTION X. GENERAL PROGRAMMING CONSIDERATIONS

5.
6.
7.

8‘

Jobs containing binary decks or stack tape programs must include a
source program that references common storage and/or I/O devices

for ea

ch chain. The source program may only be a dummy program.

Statement labels are not permitted on continuation cards.

An END statement must be used to terminate programs.

Frequ
a job.

ently called subroutines should appear early in the source deck of

All statement operators are reserved words. The reserved words are:

ASSIGN DO GO TO RETURN
BACKSPACE END IF - REWIND
CALL END FILE INTEGER STOP
COMMON EQUIVALENCE LOGICAL SUBROUTINE
CONTINUE EXTERNAL PAUSE TITLE

DATA FORMAT READ WRITE
DIMENSION FUNCTION REAL

The following rules apply to reserved words:

e

b.

Ce

d.

h.

An IF followed by a left parenthesis at the beginning of a state-
ment is always considered to be a statement operator.

A DO immediately followed by a digit at the beginning of a state-
ment is always assumed to be a statement operator.

A FORMAT at the beginning of a statement is always assumed
to be a statement operator.

When any other reserved word begins a statement and the next
delimiter is not an equal sign, the reserved word is assumed
to be a statement operator.

When the words IF, DO, or FORMAT appear anywhere except
at the beginning of a statement, they are assumed to be user
names.

When any reserved word except IF, DO or FORMAT appears
under circumstances different from those described in rule
d., it is assumed to be a user name.

’Use of embedded blanks and continuation cards does not alter

rules a. through f.

The rules above set the minimum restrictions on use of reserved
words. The rules are intended primarily for users converting
programs used on other compilers who wish to make minimum
changes. When writing programs for the Fortran Compiler D,

it is best to observe the following rule:

Do not use a reserved word as a variable, array, or
function name.

)

TIPS FOR SAVING SPACE AND TIME

1.

Terminate DO loops with CONTINUE statements.

10-4

()

ry

SECTION X. GENERAL PROGRAMMING CONSIDERATIONS

2. Use labeled common storage instead of arguments when calling a subroutine.
3. Use statement labels only when required.

4., Chains that call each other frequently should be adjacent within a job.

5. Use integer exponents whenever possible:

A = Bx*2 takes less storage than A = B¥%2.0

6. When an exponential expression occurs only once in a program, use
multiplication instead of exponentiation. For example:

A * A takes less storage than A%*2,

7. When iterating an evaluation of an exponential expression:
](;z)A:?f;(B)IOO takes less DO 4 1=1, 100
4 A(I):EXP’((FLOAT(IH 5)¢C) storage than 4 A(I)=B**(FLOAT(I)+. 5)

In the statement sequence on the right, the natural logarithm of B must be
taken for each of the 100 iterations, whereas on the left the logarithm is
taken before the DO loop and the resultant value is used in each of the itera-
tions without recomputation.

8. Use the smallest integer and/or floating-point precision that will permit
accurate data manipulation without overflow.,

CHAINING

There are no set rules that can be given on the best method of chaining programs within
a job. Experience at chaining will help the programmer determine how jobs may best be
chained. A job should not be chained unless it is probable that it will not fit into memory as

a unit, since chains are brought in from tape, slowing down execution.

A number of factors affect whether or not a job requires chaining ~— memory size availa-
ble, length of the program string, data st