
1

HONEYWELL EDP

GENERAL SYSTEM:

SUBJECT:

SPECIAL INSTRUCTIONS:

DATE: June 15, 1966

8768
5666

Printed in U. S. A.

SOFTWARE MANUAL

SERIES 200

FORTRAN COMPILER D

SERIES 200/0PERATING SYSTEM - MOD 1

The Honeywell Fortran Compiler D and its
associated software. Also considered in this
manual are the Fortran language elements
used by the compiler and the modes of proc­
essing possible with Fortran Compiler D, in­
cluding prog:t:amming techniques and operating
procedures.

This publication supersedes the Fortran
Compiler D Reference Manual, File No.
123.1305. OOID. 1-027.

* FILE NO. 123.1305. OOlD. 2-027

*When ordering this publication please specify
Title and Underscored portion of File Number.

(

Copyright 1966
Honeywell Inc.

Electronic Data Processing Division
Wellesley Hills, Massachusetts 02181

ii

f

FOREWORD

This manual describes the Honeywell Series 200 Fortran Compiler D and its associated

software, the Diagnostic Preprocessor and the Screen conversion routine.

Hardware characteristics of the Series 200 are described in the Models 200/1200/2200

Programmers' Reference Manual, Order No. 139, and the Model 120 Programmers' Reference

Manual, Order No. 141. Series 200 computers use a six-bit alphanumeric character as the

basic data unit. Fortran D uses a minimum memory of 16,384 characters to compile and exe­

cute. The compiler can use up to 32,768 characters, and execution can use up to 262,144

characters. Fortran D can be run on any Series 200 computer having the required minimum

configuration for the compiler. On a basic Model 120 (i. e., using the integrated peripheral

control), there is a restriction that card reading and punching by the object program should not

be interspersed, since a peripheral error may not be detected if these operations are interspersed.

Hardware requirements for Fortran D include advanced programming instructions, editing

instructions, and six peripheral devices consisting of four Type 204B magnetic tape units, a

card reader or an additional tape unit, and a printer or an additional tape unit. The Type 214

or 223 card reader or the Type 227 card reader/punch may be used. Any printer with at least

120 print positions may be used. Up to nine optional peripheral devices may be added to the

configuration. These include extra tape units and a card punch. Where extra tape units are

available, one may be used to create a stack of compiled user programs.

Either three- or four-character addressing can be specified for use with Fortran D.

The first six sections of this manual give a detailed outline of the Fortran language used

by the compiler. Programmers familiar with Fortran will recognize that the compiler language

incorporates many of the features of the proposed Fortran standard specified by the American

Standards Association and published March 10, 1965, by the X3. 4/3 Committee. For those who

wish only to review the differences, Appendix B contains a comparison of the languages and a

language summary. Programmers who are relatively unfamiliar with Fortran will wish to re­

view the language sectiops.

Sections VII and VIII contain system information for programmers. Section VII describes

the control cards used in job input decks, while Section VIII is a system summary of the compiler,

iii

the diagnostic preprocessor, and the Screen conversion routine. The compiler is designed to

operate primarily in a load-and-go mode in which a job of one or several programs is loaded,

compiled, and executed, then the next job is processed, etc. Section Vln explains this concept

and other possible modes of processing, in which compilation is bypassed in a given program

or job, or in which a series of jobs can be written onto a run tape and the multijob tape can be

executed at a later run (go-later mode). Also described are the use of the diagnostic pre­

processor to check source program errors before compilation and the use of Screen to facilitate

conversion of source programs written in Fortran II to the language of this compiler.

Section IX covers operating instructions for setting up and running the system. Also in­

cluded is information on initial conversion of the Honeywell-supplied symbolic program tape

of the system to a run tape.

Section X is a collection of helpful programming tips and techniques. The section contains

information on language and system limitations, memory restrictions, and time- and space­

saving techniques, and summarizes ways in which'the Fortran Compiler D system and language

may differ from the system and language used previously. The programmer, as he becomes

familiar with the compiler, may add to this section from his experience.

Section XI describes three- and four-character addressing modes.

The appendixes contain information which supplements that contained in the various

sections of the manual. Of primary importance is Appendix G which contains all error print­

outs - from the diagnostic preprocessor, from the compiler and the run tape generator, from

object time execution, and from Screen.

iv

..

Section I

Section II

Section III

T ABLE OF CONTENTS

Page

Source Progratn SurnIllary. • • • • . • . • • •• 1-1
Program Definitions .•••...••.••.••••..•.•.•••••••••......
Source Prograrn Form.atting••...•.•...•••••••••.•••••.

Fortran Character Set .••..•••••.•.••.•••.••••••.••....•
Honeywell Character Set .•••...•••....••...••..••.......
Blank Characters•.....•••..•.••.•...•.••......•..
Statement s .•.••••••••••..•••••.••.•.•...•••••••.••••..

Formatting Fortran Statements •••••••••••••••••••••••
State:rn.ent Char acte ri stic s .••••.•••••••••••.••••••••..
Labeling Statement s ..••••.•••..••.••.••••••••••.•.••

Syn.tax••••.•.•••••••••••••••..••.•••.••••••••••••.••
Operators .••....••••••••••••....••...•.•.•.••••.•...•.
Delim.iters ...•.••.•.•••••••...••...•.••••••..•••••....
Nam.e s••••.•••.••.••......•...................•••.

Data N am.e s .••.•...................•..........•...•.....•
Constants
Variables ...
Arrays, Array Elements, and Subscripting •••••••••••••••

Data Type s .•..•.••..•..•..••.••.••••••...•..••••.••••....
Integer Data ...••••.••••••••••••.••••.•••••••••••••••••
Real Data ..•.••••••.••.••..••...•.........•.•..•••.•..

1 -1
1-2
1-2
1-2
1-2
1-3
1-3
1-5
1-6
1-7
1-7
1-8
1-8
1-8
1-9
1-9
1-10
1-11
1-12
1-13

Logical Data.. . • • • • • • . • • • • • • . . • • . • . . . • • • . • • • • . . • • • • . . • •. 1-14
Hollerith, Octal and Alphabetic Data.. • • • • • • • • • • • • • • • • • •• 1 -14

Hollerith Data. • . . • • • • • • • • • • • • • . . • • . • • . • . • • • • • • . • . • •. 1-14
Octal Data .••..••••••••••••••••....••••••••......•.. 1-15
Alphabetic Data. • . . • • • • • . • • • • . • • . . . • • • . • • • • . . • . . • . .. 1 -15

Arithmetic and Logical Expressions and Statements ••••••••••••• 2-1
Arithmetic Expressions .•.....•.........•..............•.• 2-1

Definition and Evaluation. • • • • . • . • . • . • . • • • • . . • • • • 2-1
Hierarchy of Arithmetic Operations •••••••••••••••••••••• 2-2

Arithmetic Statements .•••••••.••••..••...•.••.••...••..••. 2-4
Logical Expressions ..••••••.••..•••..••••••.•...••.•...•. 2-4

Definition .•.••••••.•..•••• II •• 2-4
Logical Operators .•.•••.•••••.••••..•••.••.••••••.•..•. 2-5
Relational Operators .•••••••.•••••.•••••.••••••••••••.• 2-6
Hierarchy of Logical Operations. •• 2-6

Logical Statem.ents .••••••••••••••••.•.•.•••••..••..••.••.• 2-6

Control Staternents .• . • • • . • • • • . • • . • . • • •. 3-1
Unconditional Go To. • . • • • • . . . • . . . • • . • • . • . . . • . . • . • • . • . . . • .. 3-1
Com.puted Go To ..•••••••..•..••••.•............••...•.... 3-2
Assigned Go To and Assign Statements •••••••••••••••••••••• 3-2
Arithm.etic IF Statement .•••.•••.••...........••..•.••.•..• 3-3

,Logical IF Statement .•••••••••••••••.•••.•.•..••..••.••...
DO Statem.ent .•.•••••••••••••••.•••.••..••..••.•.•.••••.•.
Call Statement ••••••••••••••••••••••...•.•.•••.•••..••....
Return Statenlent .•••••••••••.••.•.•••...••..•.•.••.•.••..

3-3
3-4
3-7
3-8

C all Chain Statenlent. • • • • • • • • • . • • • . . • • . . . • . • • . . . • • . • • . . • •. 3 - 8

v

Section III (cont)

Section IV

Section V

TABLE OF CONTENTS (cont)

Continue Statement •••••••••••••••
Pause StateInent ..•..••••••.••••••
Stop Statement .•...............•••...•.•.••..•••.••.•....
End Statement .•••.•••.•..•••••.•••.•......•.....•........

Page

3-8
3-8
3-9
3-9

Specification Statements. • • • • • • • • • • . . • • • • . . • • • . • • • . . • • • • • • • •• 4-1
Dimension Statement. • • . • . • • • • • . • . . . • • . • . • . • • • • • • • . • • • . . .• 4-1
Comm.on Statement .••••••••••••••••••.••••••••••••••••••.
Equivalence Statement
Data-Type Statements •

....................................
External Statem.ent .•••••••••••••••.••.•••••••.•••••••••..
Title Stateznent ..••.•••••••••••••.•••••.••.•••••••••••.•.•
Data Initialization Statement •••••••••••••••••••••••••••••••

Additional Li st Pair s .•••.••••••••••••••..••••..•.•....•

4-2
4-5
4-7
4-8
4-9
4-9
4-11

Implied DO Loops. • • • • • • • • • • • • • • • • . . . • • • • • • • • • . . • • . . • .. 4-11
Nested Pairs of Implied DO Loops ••••••••••••••••••••••• 4-12

Input/Output Statements. • • • • • • • • • • • • • . • • • • • • • • • • . • • • • • • • • • • •. 5-1
Read Statement .••••..••••••.•••••••••••.•••.•••••••••••••
W rite Statement .••••••••••••••••.••••••••••••••••••••••.•
Input/Output Lists .••.•••••••••••••••..••••.•••••••••••••.

Sirnple Li sts .••••••••••••••••••.•••••••••••••••.•••••.
Short-List Notation for Input/Output of Entire Arrays ••••••
Lists with Implied DO Loops ••••••••••••••••••••••••••••
I/O Lists Used with Binary Tape Input or Output ••••••••••

FORMAT Statement .•••••••••••••••••••••••.••••••••••••.•
General Form of the FORMAT Statement •••••••••••••••••
Contents of the Field Specification •••••••••••••••••••••••
Conversion Codes .•••••••••••••••.••••.••.••••••••••••.
Conversion Field Width .••••.••••••••.•••••.••••.••..•••
Decim.a1 Position Indicator .•..••••••.••••.•.•.•••.•••••.
Basic Field Specification for Integer Conversion ••••••••••

Input ...•.•••••.•••.•••.••••••••••.•••••.•••••••••••
Output .•.••••••.••••.••••••••••••••••••.•••••••••.•

Input for Conversion of All Real Data ••••••••••••••••••••
Output Conversion to Fixed-Point Decimals (Fw. d) ••••••••
Output Conversion to Explicit Exponent (Ew. d) ••••••••••••
Generalized Field Specification, Gw. d •••••••••••••••••••
Basic Field Specification for Octal Conversion ••••••••••••

Input ..•••.••.•••••••••••••.••.•.•..••••••.•••••••.•
Output ...••••...•••••...•••••••••••••••••••.••••••.

Basic Field Specification for Logical Conversion ••••••••••
Input ..••.••••••••••••••••.•••.•.••. , ••••.•••••••.••.
Output ..••.•••••••••••••••.•..•..••..•..••••••••.•.

5-1
5-3
5-5
5-5
5-7
5-7
5-11
5-11
5-11
5-15
5-16
5-16
5-18
5-18
5-18
5-19
5-21
5-24
5-25
5-27
5-28
5-28
5-29
5-29
5-29
5-30

f Basic Field Specification for Alphabetic Conversion ••••••• 5-31
Input .••••••.••...••.••.•••••....•.•.••.•.•.•••....• 5-31
Output... 5-31

Field Specification for Hollerith Data. •• ••••• • • •••• ••• ••• 5-31

vi

..

Section V (cont)

Section VI

Section VII

I

TABLE OF CONTENTS (cont)

Page

Output. • • • • . . . • . . • . • . • . . . • . • • • . • • • • • • 5 -33
Input.. 5-35

Field Specification for Blank. Conversion. • • • • • • • • • • • • • • •• 5-36
Input•••••...••••••••.•.••.....••..•...••••••• 5-36
Output •.••••••••••••••••••••••••••.••••••••••••.•.•

Carriage Control for Printer Output •••••••••••••••••••••
Field - Repetition Constant ...••.•..••.•••..•..•••.•...
Repetition of Groups of Field Specifications ••••••••••••••

5-37
5-37
5-39
5-40

Scale Factor. • • . • • . • • • • • • • • • • • . . . • . • . . • • . . • . • • • • • . . • .• 5 -41
Input .•••••••••••••••.•••••••••••.•••.••..•...•....
Output •••••••••••••••••••••••••••••••••••.•••••••.•

Multiple -Record Forms •••.••••••••.•..•••••••.•••.•...
Reading in FORMAT at Object Time •••••••••••••••••••••
Alternate Creation of Variable Formats ••••••••••••••••••

End File Statement .••.•••••••.••.••••..•.••.••.•.••••....
Rewind Statement .••.•••••••••••••••••.••••.••••••.••••..
Backspace Statement ..•.••••••••••••.••.•...•••.•••••••..

5-42
5-42
5-45
5-51
5-53
5-55
5-56
5-56

Procedure s. . • • • . • • . • . • • . . • • • • • • • • • . • • • . • • . . . • • • • . . • . • . • . . .• 6 -1
Categories of Procedures••••..•..••.•...••.••.•...•.. 6-1
Subprogr ams ...•.•.••....•.•......•....•••••••......•... 6 -1
Naming and Typing Procedure s •• 6-1
Functions .. 6 - 2

Statement Functions ••••••..••.•••••.•••.••••••••••.•.. 6 - 2
Function SubprograIlls .••...•.••••........••.•..•....•. 6-4
Library Functions. • • • • . . • • • • • • • . . . • • • • • • . • • . • . • • •• 6-7

Subroutine s . • . . • • • • • • . • . . • • • • • • . • • • • • • • . • • • . • • • • . • . • • • . .. 6 - 9
Special Subroutines•......•..•.•......••...•..•. 6-12

Test Subroutines for Simulated Hardware and Hardware
Features

I/O Condition Test Subroutines ••••••••••••••••••••••••••••
I/O Subroutine REREAD ...•••..•..••....•...•••..•....•..
Dynamic Dumping Subroutines ••..•.••••..••••..•....••.•..
Exit-to-Monitor Subroutine•.•...•...••..•.••..•.•

6-12
6-13
6-13
6-14
6~14

System. Control Cards .••••. • • • • • • • . • • • • • . • • • • • • • • • • • • . • • • . .. 7 -1
Run-Level and Job-Level Control Cards •••••••••••••••••••• 7-1
Control Cards for Standard Operation •••••••••••••••••••••• 7-1
Non-Standard Operation and Options. •• 7-2
):<JOBID Card... 7-2

Job Narne Option•...•••.•.•••.•.•...•..•..••...... 7-3
Memory Size. • • • . . • • . . • . • . . • . . . • . . • . • . . . • 7-3
Floating-Point Precision.. •. •••.. . .•• •. . .•••. • 7-4
Integer Precision ...•......•............•.......••.•.. 7-4
Peripheral Device Assignments ••••••••••••••••••••••••• 7-4
SAVE Option. . . • • • • • . • • • . . . • • . • • • . • • . • • • • . • • . • 7-5
PUNCH Option ..••••.•••...••••••••..•••.••.•..••••••• 7 - 5
Listing Options .•......•••...••••..•...•.•.•....••..... 7-5

vii

Section VII (cont)

Section vm

Section IX

TABLE OF CONTENTS (cont)

Page

Tape Input. • • • • • • • • • • • • • • • • • • • . • • • • • . • • • • • • • • • • • • • • • • •. 7-6
Sample *JOBID Card with Options •••••••••••••••••••••••• 7-6

:::CSCREEN Card ••• 7-7
:::~DIAG Card . •• 7 - 7
::!:GET Card ••• 7-8
~'BINARY and END Cards •••••••••••••••••••••••••••••••••• 7-9
*:CHAIN Card ••• 7-9
;~ALTER Card .••••••••••••.•••.•..•.•.••....•..•.••...••. 7-9
*DATA Card and lEOFa. Card •••••••••••••••••••••••••••••• 7-10
~cENDATA Card .••.•••••••••••••••••••.•••••••.•••••.••••• 7-10
:::cDUMP Card •••••••••••••••••••••••••.••••••••••••••••••• 7 -II
Comment Cards •••••••••.•••••••••••••••••••••••.•••••••.• 7 -11

Card-Image Tape Input •••••••••••••••••••••••••••••••••• 7 -11

System Description .•••••••••••••.••••••••••••••••••••••••••• 8-1
System Summary .••••••••••••••••.••••••••• • • • • • • • • . • • • •• 8-1

System Module s . •. 8-1
Run Options. • • • • • • • • • • • • • • • • • • • . •• 8-1

Standard Fortran Processing - Load-and-Go Operation ••••••• 8-2
Chaining a Load-and-Go Job ••••••••••••••••••••••••••••• 8-4

Go-Later - Batched Job Processing •••••••••••••••••••••••• 8-4
Writing a Go-Later Tape •••••••••••••••••••••••••••••••• 8-4
Executing a Go-Later Tape ••....•••...•••.•••.••.•.•.•.. 8-6

System Options. . • . • . • • • . . • • • . . • . • . . • . • • • • • • • . . •• 8-7
Stack Tape •••••.•.••••••••.•••.•.•.••..•.•••.•.••••••• 8-7
Punch Opti on ••.•••••••••••••••.•••••.••..•••••••••••.• 8 - 7
Jobs Containing *GET and *BINARY Program Units •••••••• 8-7
Common In.put Device .••••••••.•••••.••.••••••••••..••.• 8-8
Common Output and Common Punch Device Options •••••••• 8-8
Bypas sing Execution. • • • • • • • . • • • • • • • . • • . • . • • • • • • • • • • • • •• 8 - 9
Diagram of System Options • ••••••••••••••••••••••••••••• 8-9

Debugging Aids ••• 8-10
Source-Program Listing •••••••••••••••••••••••••••••••• 8-10
Reloc atable Memo ry Map. •• 8 -1 0
Object Memory Map .••••••••••••••••••••••..••••.••••.• 8 -11
Machine-Code (Pseudo-Easycoder) Listing .••••••••••••••• 8-12
Error Diagnostics .••••••••.••••••.•••••••.•••••.••••••• 8-15
Memory Dumps .•••••••.••.•••...•••••••.•.•.••••••..•• 8-16

Diagnostic Preprocessing •••••••.•••.•••••.••••••••.•.•.••. 8-16
Preprocess -Only Option - ':'DIAG •••••••••••••••••••••••• 8-16
Preprocessing to Tape - ':'DIAG, T •••••••••••••••••••••• 8-17
Diagnostics .••••••••••••••••.•.••••••••••••••••.•••••.• 8-18

Screen Conversion .•••••••••••••..•••••••••••••••••••••••• 8-19

Operating Procedures .•••••••••••.•••••••••••.••••••••••••••. 9-1
Fortran Run Options .••••.••••••.•••.•••••••••••••••••••••• 9-1
Standard Console Call •••••••••••••••••••••••••••.••••••••. 9-1
Equipment Requirements •••••.•••••••••••.•••••••.•.•••••.• 9-2

viii

Section IX (cont)

Section X

Section XI

Appendix A

Appendix B

Appendix C

TABLE OF CONTENTS (cont)

Tape Loader-Monitors .••.••.•.••••.•••.••••••••••••••••••
Starting Procedure •••••••••••••••••••••••••••••••••••••••
Te rIllinating a Run .••••••••••••••••••••.••.••••••••••••••
Console Call Options •••••••••••••••••••••••••••••••••••••
Coded Halts During Fortran Runs ••••••••••••••••••••••••••

Unprogrammed Halts and Looping •••••••••••••••••••••••
Load-and-Go Run ..•••••••••••••••••••••••••••••••••••••.

Load-and-Go Equipment ••••••••••••••••••••••••••••••••
Stack Tape (TF) .•••••••••••••••••••..•••••••••••••••••
Allocation of Work Tapes •••••••••••••••••••••••••••••••
Input Tape (T 5) .••.•••••••••••••.••.••••••••••••••••••.
Output to Tape .••••••••••••••.••••••..•••••••••.•••••.

Screen Run .••••••••••••••••••.•••••.•..••••••••••.••••••
Writing a Go-Later Tape .••••.•••.....•..••...••..••....•.

Starting and Terminating a Write Go-Later Tape Run ••••••
EIllergency Restart Option .••.•••.••••.••...•.••••.•.•••
Card and Tape Input Option .•.•...............•....•....

Executing a Go-Later Tape .•••••••••..•••••••.••••••••••••
Starting a Go-Later Execution Run ••••••••••••••••••••••

Creating a Compiler System Tape (CST)

Page

9-2
9-2
9-3
9-3
9-6
9-6
9-8
9-8
9-9
9-9
9-10
9-10
9-10
9-11
9-12
9-12
9-12
9-12
9-13
9-14

General Programming Considerations ••••••••••••••••••••••••• 10-1
Language Lim.itations........................ • • • • . • • • • • • •• 10-1
Source Program Size Limitations •••••••••••••••••••••••••• 10-2

Source Table. • . . • • • • • • • • • • • • • • • • . •• 10 - 2
Token Table .•.••••••••••••••••••..•••••.••••.•••••••. 10-2
IEFN Table .•••••••••••••••••.•..••••••.••••••.••.•••. 10-3
FORMAT Table .•..•••••••••••.••••••••••••••••••••••. 10-3

Size of Program. String •.•••••••••••••.••••••••••••••••••• 10-3
Compiler Characteristics and Limitations •••••••••••••••••• 10-3
Tips for Saving Space and Time •••••••••••••••••••••••••••• 10-4
Chaining . . • • • • • • • • • • • • • . • . • • • . • . . . • . • • . • . • • • • • . . • . • . . • •• 10 - 5
I/O Program.m.ing Tips ..•....•.•..••....•........•....•.. 10-7
Conversion Techniques ..•....•.•....••.•.•••••.•.•••••••• 10-8

Three-Character and Four-Character Address Modes •••••••••• 11-1

Octal-Decimal Conversion Procedure ••••••••••••••••••••• ~ ••• A-I

Language Sum.m.ary . • . • • . • • • • • • • • • • • . • • • . • . • • • . . • • • • • • • • • • •• B-1
Comparison with ASA Proposed Fortran •••••••••••••••••••• B-1

Additional Statements. •• B-1
Term.inology. • • . •• B-1
Additional Language Features............. ••••••••••• ••• B-1
Re strictions . •• B-2
Change in Param.eter .••••••••••••••••••••••••••••••••• B-2

Glossary •• B-12

Internal Representation of Numbers ••••••••••••••••••••••••••• C-l
Bit Repre s entation. • • • • • • • • • • • • • . • • • • . • • • • • • • • • • • • • • • . • •• C-l

ix

Appendix C
(cont)

Appendix D

Appendix E

Appendix F

TABLE OF CONTENTS (cont)

Fixed-Point Numbers •••••••••••••••••
Floating-Point Numbers ••••••••••••••

Page

C-I
C-I

Storage of Other Data•.••••..................•......• C-2
Accuracy of Calculations ••••••••••••
Formats of Data in Memory at Object

Real Data
TilTI.e •••••••••••••••••

Intege r Data ..•.•...••••••...••....•....•.••••.•••..•.
Octal Data .. .
Hollerith and Alphabetic Data •••••••••••••••••••••••••••
Logic al Data .•...•.............•..•...................

Constants ..•..••.....•••....•••..•.......•.........
Variable s•....•.......•

C-2
C-2
C-2
C-3
C-4
C-4
C-5
C-5
C-5

Procedures and Routines Supplied with the Compiler •••••••••••• D-I
Library Function Errors at Execution Time ••••••••••••••••• D-4
Floating - Point Package s•......................
Obj ect I/O Module s .•••..•.••••••••..•••••.•.•.•••••..•.•.
Library Functions•..••••...•..•.•••...•.••...........

SIN ••••
COS
EXP ...••••••••••.•••••••••••••••••••••••••••••••••••
SQR T ..••.••••••••••••••••••••••••.•••••••••••.•••••.
TANH ..•.•.••••••••••••••••••••••.•••.••••••••••••••.
ALOG•••.•••••••••••.•••...•••.•.••.•.••••.......
ALOGIO••..••••.•.•..•.•.•••......•••...•.••.•.•.
AT AN • ••••••••••••• ' ••••••••••••
AT AN2••.••....•........

Easycoder Symbolic Program Units .•••••••••••••••••••••
Regionalization•.•••••.•••.•••••.•.••...••...•.••.••

Region-Defining DSA Statements ••••••••••••••••••••••••
SysteIl'l Proce s sing .••.•.••••••.•.•••...•..••••.••••••••••

Region 3 Address Interpretation •••••••••••••••••••••••••
Relocation of Address Fields •••••••••••••••••••••••••••
Relocation of Fortran Program Units ••••••••••••••••••••

PrograrnIl'ling Procedure s ...••••••••••••.••••••••.•••.••..
Calling Sequence s ..•••••••••..•••••.••..•••.••••••••• ~
Use of ComIl1.'On Stor age .••••.•••••••••••••••••••••••.••
Use of Com.tll.unication .••.•..••••••••••••••••••••••••••

D-4
D-5
D-6
D-6
D-7
D-8
D-IO
D-12
D-13
D-15
D-15
D-18

E-I
E-I
E-2
E-2
E-3
E-4
E-5
E-5
E-5
E-6
E-6

Restrictions .•••.•.••••••.•.••.•••••••••••••••.••••••. E-7
Sample Program .•.•••••.•••••••••••••••••••••••••••.. E-7

Notes on the Four-Character Address Mode ••••••••••••••••• E':'9

Tape and Memory Layouts .••••••••••••..•.•••.•••••••••••••• F-I
S,mbolic Program Tape .•••••••.••.•••••••••••••••••••••. F-I
COlll.piler System. Tape. •• .•• .••••••• • •••••••••••••••••.••. F-I
Binary Run Tapes •••••••••••••••••.•••••••••••••••••••••• F-l
Object Tapes ...••••••••••••••••••••••••••••••••.•••••••• F-I

BCD Tapes .••••••••••••••••••••••••••••••••••••.••••• F-I

x

Appendix F
(cont)

Appendix G

Appendix H

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.

TABLE OF CONTENTS (cont)

Binary Tapes •..•••..••••••••..•••.•••..••.•••......•.
Binary Program Tapes •••••••••••

Stack Tape••.......•...
Cornrnon Input Tape ••••••••••••.•••••••••••••••••••••••
COtnIllOn Output Tape ..•••••••••••••••••••••••.•.••••••

Memory Map (Compilation Time) ••••••••••••••••••••••••••
Mernory Map (Execution Tirne) .••••.•••.•..••••••.•••••••.

Page

F-l
F-l
F-2
F-2
F-2
F-2
F-2

Error Messages .•••.•.•.... ,........ .. .•••.••.•••••.••.••... G-l
Preprocessor Error Messages•••.•.•..••••••••••.••.•

Errors in Specification Statements ••••••••••••••••••••••
Errors in Arithmetic and Logical Expressions ••••••••••••
Errors in Construction and Use of Subscripts •••••••••••••
Statement Label Errors .•••••.•.•..••.••.••••••••••••.•
FORMA T Statement Error s •••••••••••••••••••••••••••••
Errors in Construction of Program Constants ••••••••••••
Control and I/O Statement Error s •••••••••••••••••••••••
Errors in IF or CALL Statements or the Use of Functions

or Subroutines .•••••••••••••••.••....•.••••••••.•••••
Keypunch and Other Miscellaneous Errors •••••••••••••••

Compiler Error Me s sage s .••••••••••••••••.•••••••••••••.
Compiler Monitor Error Messages ••••••••••••••••••••••••
Run-Tape Generator Error Messages ••••••••••••••••••••••
Execution-Time Error Messages ••••••••••••••••••••••••••

Library Function Error Messages •••••••••••••••••••••••
Input/Output Error Messages •••••••••••••••••••••••••••

Screen Error Messages .••••••••..••.••......••••••••.....

G-l
G-l
G-2
G-2
G-3
G-3
G-4
G-5

G-5
G-6
G-7
G-12
G-13
G-13
G-13
G-14
G-14

Series 200 Character Codes. . • . • • . • • • • • • H-l

LIST OF ILLUSTRATIONS

The Fortran Coding ForITl•...•..••..•.•...•..••...•.
Sequence of Program Statements •••••••••••••••••••••••••••••
One-Dimensional Array, Storage Sequence of Elements •••••••
Two-Dimensional Array, Storage Sequence of Elements •••••••
The DO Statement and Its Range ••••••••••••••••••••••••••••
Legal and Illegal Nesting of DO Loops •••••••••••••••••••••••••
Legal Transfers of Control .••••••••••••••.•••••••••••..•••.•
Ill~gal Transfers of Control ••••••••••••••••••••••••••••••••••
COMMON Statement for Three Labeled Blocks •••••••••••••••••
Communication Via Positional Correspondence •••••••••••••••••
Use of Dummy Array to Space Over Common Area •••••••••••••
Illegal Extension of Common Region ••••••••••••••••••••••••••

xi

1-3
1-6
1-10
1-10
3-5
3-6
3-7
3-7
4-4
4-4
4-5
4-7

Figure 4-5.
Figure 4-6.
Figure 5-1.

Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.

Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.
Figure 5-10.
Figure 5 -11.
Figure 5-12.
Figure 5-13.
Figure 5 -14.
Figure 5-15.
Figure 5-16.
Figure 5-17.
Figure 5-18.
Figure 5-19.
Figure 6-1.
Figure 7-1.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 8-9.
Figure 8-10.
Figure 8-11.
Figure 8-12.
Figure 8-13.
Figure 8-14.
Figure 8-15.

Figure 8-16.
Figure 8-17.
Figure 8-18.
Figure 8-19.
Figure 8-20.
Figure 8-21.
Figure 8-22.

LIST OF ILLUSTRATIONS (cont)

Page

Legal Extension of Common Region. •••••••••••••••••••••••••• 4-7
Right-Hand Portion of Array to be Initialized •••••••••••••••••• 4-13
Example Highlighting Different Components of FORMAT

Statement. •• 5 -14
Data Fields and Field Widths ••••••••••••••••••••••••••••.•••••
Input of Integer Data .•..••••..•••••.•..••.•.•••.••.••••.•••.
Output of Integer Data .•••••••••••••••.....•.••..•...•.••.•..
Twenty-One Equivalent Ways of Keypunching an Exponent of

5-17
5-19
5-20

Plus Two... 5-21
Input of Re al Data •••••••••••.•••••••••••.•••••••••••.••.•.•
Output of Real Data in Exponential Format •••••••••••••••••••••
Input of Octal Datutn .••••..•••••••••.••..•••••..•••.••••••••
Input of Logical Data ...••••••••••••.•••.•••••.••••••••••.•••
Input of Alphabetic Data •••••••••••••••••••••••••••••••••••••
Example of Output of Hollerith Data •••••••••••••••••••••••••••
Use of Continuation Line with Hollerith Specification ••••••••••••
Satnple Input Card .••••••••••••.••••••••.••.•••.•••••••••.••
Carriage Control in Single-Record FORMAT Statements ••••••••
Carriage Control in Multiple-Record FORMAT Statements ••••••
Definition of a Unit Record .••••••••••••••••••.•••••.•.•••••••
Parenthesis Levels in a FORMAT Statement •••••••••••••••••••
Re scanning a FORMAT Statement •••••••••••••••••••••••••••••
Handling Variations in Format at Object Time •••••••••••••••••
Categories of Procedures .••••..•••••••...••••....•..•.•...•.
Input Deck for Standard Operation ••••••••••••••••••••••••••••
Standard Load-and-Go Flow Diagram •••••••••••••••••••••••••
Input Deck for Load-and-Go .•.••.•.•..•.•......•..•.....••...
Job Divided into Two Chains of Program Units· •••••••••••••••••
Sample Input Deck to Write Go-Later Tape ••••••••••••••••••••
Flow Diagram to Write Go-Later Multijob Tape ••••••••••••••••
Sample Input Deck to Execute Go-Later Tape ••••••••••••••••••
Flow Diagram to Execute Go-Later Tape ••••••••••••••••••••••
Job Containing Previously Compiled Program Units ••••••••••••
Load-and-Go Run With System Options ••••••••••••••••••••••••
Source-Program Listing .•••••••••.•.••.••••.•••.•••.••••.•••
Relocatable Memo ry Map .•••••••••••.•••••••..• . , •••••••••. -••
Object Memory Map .••.••••••••••.•.•.•••••••••.•.•••..•.•..
Pseudo-Easycoder Listing .•••••••••••••••••••.••..••.•••••••
Input Deck for Diagnostic Preprocessing ••••••••••• 1 •••••••••••

Flow Diagram for Diagnostic Preprocessing - Preprocess-

5-23
5-26
5-29
5-30
5-32
5-34
5-35
5-36
5-39
5-40
5-46
5-48
5-49
5-54
6-1
7-1
8-3
8-3
8-4
8-5
8-5
8-6
8-6
8-8
8-9
8-11
8-11
8-12
8-13
8-17

Only Option. . •.••••••••. ••••••••• •• •.. •••• •. •••• .••••••.•• 8-17
Diagnostic Preprocessor Flow Diagram - Tape Option •••••••••
Diagnostic Preprocessor Listing •••••••••••••••••••••••••••••
InPjlt Deck for Screen .•••••••••••••.•.•••••••.••••.••••.•••.
System Flow of Screen .•••••.••••••.••.••••••.•.•••••.••.••.
Screen Conversion of I/O Statements ••••••••••••••••••••••••••
Screen Conversion of Library Function Names •••••••••••••••••
Li sting of Card Input to Screen •••••••••••••••••••••••••••••••

xii

8-18
8-19
8-20
8-20
8-21
8-21
8-23

Figure 8-23.
Figure 9-1.
Figure 9-2.
Figure 9-3.

;. Figure 9-4.
Figure 10-1.
Figure E-l.

.. Figure F-l.
Figure F-2.
Figure F-3.
Figure F-4.
Figure F-5.
Figure F-6.

'--"~

Table 1-1.
Table 1-2.
Table 1-3.
Table 1-4.
Table 1-5.
Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 3-1.
Table 4-1.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.
Table 5-9.
Table 6-1.
Table 6-2.
Table 6-3.
Table 8-1.
Table 9-1.

~ Table 9-2.
Table 9-3.

•

LIST OF ILLUSTRATIONS (cont)

Output Li sting fronl Screen .•.••••••.•••.••••..••••.•.•.••••..
Operator Action in Unprogrammed Halt or Looping •••••••••••••
Minimum Equipment Configuration for Load-and-Go Operation •••
Screen Equipment Configuration ••••••••••••••••••••••••••••••
Minimum Equipment Configuration for Go-Later Execution ••••••
Example of Chaining .••••••.••••••••..•••••.•••••••••••••••..
Sample Regionalized Easycoder Program Unit ••••••••••••••••••
Compiler System Tape Organization •••••••••••••••••••••••••••
Organization of the Binary Run Tape ••••••••••••••••••••••••••
Organization of BCD Tapes .•••••••••.•••••.•••.••••••••••••••
Organization of Binary Tapes •••••••••••••••••••••••••••••••••
Memory Map (Compilation Time) ••••••••••••••••••••••••••••••
Memory Map (Execution TiIlle) •••••••••••...•••••••••••••••.•

LIST OF TABLES

Source Program Coding Format ••••••••••••••••••••••••••••••
Fortran Statement Categories .••..•.•....••...•••...••...•...
Relational Operators Defining Logical Relations ••••••••••••••••
Logical Operators•••..•.•••......•........••..••••..••.
Example s of Constants .•..•.••••••••••••••..••..•••.••.•••..•
Arithmetic Operation Symbols ••••••••••••••••••••••••••••••••
Examples of Arithmetic Expressions ••••••••••••••••••••••••••
Logical Evaluation Using Logical Operators ••••••••••••••••••••
Relational Ope r ator s .•••••••••••••••••••••••••••.••••••••••.
Control Statem.ents .•.•••••••••••..••••••.•••••.•••••••••••••
Specification Statetllents ..•••••••.••••••••••..•••.•••••.••.•.
I/O Statements ..••.••••••••••••••••••••••.••••••••••••••••••
FORMAT Statement Summary ••••••••••••••••••••••••••••••••
Contents of the Field Specification ••••••••••••••••••••••••••••
Field Specification Formats ••••••••••••••••••••••••••••••••••
Conversion Codes ..••.••••••••••••••••••••••••••••••••••••••
Scale Factor Shifting of Decimal Point •••••••••••••••••••••••••
Effects of Scale Factor on Input Values (F Conversion) ••••••••••
Effects of Scale Factor on Output Values (F Conversion) •••••••••
Effects of Scale Factor on Output Values (E Conversion) •••••••••
Characteristics of Functions •••••••••••••••••••••••••••••••••
Library Functions ..•••.••.•••••••.••••......•.•..•..••••••.•

(

Characteristic s of the Subroutine Subprogram ••••••••••••••••••
Syste:rn Module s ..••.•.•.•........••...........••••..••...•.•
Console Call Options ..•••..•..•..••••.•...•..•••.....•.•..••
Possible Halts During a Fortran Run ••••••••••••••••••••••••••
Equipment for Load-and-Go Operation •••••••••••••••••••••••••

xiii

Page

8-24
9-7
9-8
9-11
9-13

10-6
E-8
F-2
F-6
F-7
F-7
F-9
F-I0

1-4
1-5
1-7
1-7
1-9
2-1
2-2
2-5
2-6
3-1
4-1
5-1
5-12
5-15
5-15
5-16
5-42
5-43
5-43
5-44
6-2
6-7
6-11
8-1
9-4
9-6
9-9

Table 9-4.
Table 9-5.
Table 10-1.
Table A-I.
Table B-I.
Table D-I.

Table D-2.
Table E-l.

LIST OF TABLES (cont)

EquipIllent for Screen ...••••.•••••••.•...•••••••••.•••••.••.
Equipment to Execute Go-Later Jobs •••••••••••••••••••••••••
Language Limitations ...••.•.•..••......•........•..•••....•
Octal-Decimal Conversion Table •••••••••••••••••••••••••••
Fortran Staterrlent SU!ll.rn.ary •••••••••••••••••••••••••••••••
Procedures and Execution Routines on the Compiler System

Tape•••••.••..••••......•..•.•..•.......
Library Error Conditions .••••.•••••.••..••••..•..•••••...••
Determination of Address Lengths in Region 3 •••••••••••••••••

xiv

Page

9-11
9-13

10-1
A-I
B-3

,.

D-l
D-4
E-4

SECTION I

SOURCE PROGRAM SUMMARY

The purposes of this section are (1) to define program terms for Fortran Compiler D and

to describe source program formatting, and (2) to define and describe the elements of syntax

used to write the source programs.

PROGRAM DEFINITIONS

A main program is a sequence of properly formatted statements terminating with an END

statement. It may optionally begin with a TITLE statement. A main program can be compiled

independently, or it can 'be compiled in a chain of programs.

Subprograms are either functions or subroutines and begin with FUNCTION or SUB­

ROUTINE statements. A subprogram is called by a main program or by another subprogram

and must terminate with an END statement. A subprogram can be compiled independently.

Program (or program unit) is a general term that can refer to either a main program or

a subprogram.

Fortran Compiler D uses an overlay technique cailed chaining to maximize the memory

efficiency of object programs. Since every program in a job does not necessarily communicate

with every other program, the entire job need not fit in memory at the same time. In fact, the

job may be divided into independent segments which can each occupy all of memory at different

times. Such a group of programs within a job is called a chain. Each chain is a separate

memory load and is overlaid by the subsequent chain. A chain can call any other chain at any

time. The common area of memory provides the necessary data communication between chains.

A special control card, the Chain card, signals the beginning of the second and subsequent chains

in the input deck. The name of a chain may be any digit or letter.

Chaining is the basic overlay technique used in Fortran Compiler D. A chain begins with

a Chain card ('~CHAIN, x), where x designates the particular chain. A chain is called with a

CALL CHAINx statement, described in Section III. A chain terminates when either another

Chain card or any control card that defines the end of the current job is encountered. ,

An executable program is a collection of statements, comment lines, and END statements

that completely (except for input data values and their effects) describe a computing procedure.

1-1

SECTION I. SOURCE PROGRAM SUMMARY

A job is:

1. Compilation of one or more program units

2. Execution of an executable program

3. A combination of 1. and 2.

A job begins with a Job Identification card (*JOBID) and terminates when either another '~JOBID

or an '~ENDRUN card is encountered.

A run consists of one or more consecutive jobs requiring no operator action.

with a Console Call card and terminates with an *ENDRUN card.

SOURCE PROGRAM FORMATTING

Fortran Character Set

The characters used in Fortran statements are as follows:

Letters A through Z

Numbers 0 through 9

Ten special symbols:

Equals Left parenthesis

+ Plus Right parenthesis

Minus Comma

,~ Asterisk Decimal point

/ Slash t::. Blank

Honeywell Character Set

A run begins

The Honeywell character set consists of the Fortran character set and the following 17

special symbols, shown as they appear on the printer:

Apostrophe C Credit Sign
Colon t

r
Cents Sign

> Greater Than 0 Box
& Ampersand • Filled Box

Semicolon I Not Equal
? Question Mark % Percent Sign
Number Sign Exclamation Point

" Quotation Mark

< Less Than
@ At Sign

All characters of the Honeywell character set can be used in Hollerith constants. Appendix H

shows the keypunching and machine codes for all Honeywell characters.
f

Blank Character s

Blank characters are used to improve the appearance and legibility of program statements.

1-2

SECTION I. SOURCE PROGRAM SUMMARY

Blanks are significant only in the following cases:

1.

2.

Statements

A blank in column 6 of a statement card indicates that the card contains
the fir st line of the statement not a continuation line.

In Hollerith or alphabetic data, all blanks are literally reproduced.

FORMA TTING FORTRAN STATEMENTS

The fundamental units of the Fortran program are statements. Statements are constructed

from the basic syntactic elements of the Fortran language using the character set shown above.

The basic Fortran syntactic elements - operators, delimiters, and names - are described later

in Section I.

Statements are divided into lines, each line corresponding to a single punched card. The

first line of a statement is called the initial line; any subsequent lines are called continuation

lines. Each line consists of a string of 72 characters from the Honeywell character set. The

character positions in a line correspond to the columns of a punched card and are numbered

sequentially 1, 2, ••• , 72 from left to right. Each statement begins on a new line and a new

punched card; each initial line of a statement can be followed with up to nine continuation lines.

Shown in Figure 1-1 is the Fortran Coding Form indicating the coding fields. The body of

the statement is written anywhere in columns 7 through 72. Column 7 of a continuation line thus

follows column 72 of the preceding line. Columns 1 through 5 are reserved for a statement label

when the programmer requires the label for cross-referencing with the program. Only the

initial line of a statement can have a statement label. The label is a number, unique for the

statement, that can be placed anywhere in columns 1 through 5. The terms statement label and

statement number are used interchangeably throughout this manual.

FORTRAN PROGRAMMI NG FORM

TITLE <-I --L----'_"'---'-....L--'---'------.J PROGRAMMER _________ Checked By ______ Date ________ _ Page _of_

Statement g
Number N

T
I

£ N

I 56 7 10 15 20

I I I
I I I

I I I
~ " STATEME~ ,
NUMBER CONTINUATION
FIELD (1-5) INDICAlOR

FIELD (6)

25

I

I·

I

FORTRAN STATEMENT

30 35 40 45

1--L.L.l I I I

I I I I

-Lli I I I I I I I-LLL I I I I I I I I I

V

STATEMENT BODY
FIELD (7-72)

50 55

I I

I I

I I I I I I I I

Figure 1-1. The Fortran Coding Form

1-3

60 65

I I .

I I

I I I I

REMARKS

70 72 80

j ,

I

I
/.~

REMARKS
FIELD (73- 8!IJ)

•

SEC TION I. SOURCE PROGRAM SUMMARY

The initial line of each statement must contain either a zero or a blank in column 6. Con-

tinuation lines of the statement can have any legal Fortran character other than zero or blank in

column 6 to designate them as continuation cards. For example, continuation lines could be

numbered 1 through 9.

The letter"C" in column I designates a line as a comment line. Comment lines are liter­

ally reproduced in the source program listing, but do not affect execution in any way; they are

available solely for the convenience of the programmer in documenting the program. The body

of the comment may appear anywhere in columns 2 through 80 of the comment card. Since

columns 73 through 80 are ignored by the compiler but reproduced in the source program

listing, these columns can be used for comments. When a comment requires more than one line,

additional comment cards punched with a "C" in column 1 are used. (This is the only permissible

method of indicating continuations of comments.) Comment lines may appear between lines of a

statement.

The contents of a line of the source program are summarized in Table 1-1, below.

Table 1-1. Source Program Coding Format

Coding
Sheet

Column Contents Use

1-5 Statement Label Used only with the initial line of a
statement. A statement label is
assigned by the programmer when the
statement is cros s -referenced in the
program.

1 C Used only to designate comment lines.

2-80 Comment Comments are included for purposes
of programmer documentation. They
are nonexecutable.

6 Continuation field Indicates continuation of a statement.
indicator (a Fortran The initial line of a statement has a
character other than zero or blank in column 6. All subse-
o or blank) quent lines of the statement must be in-

dicated in column 6. Any Fortran
character other than 0 or blank may be
used.

7-72 Statement Body of the statement, either exe-
cutable or nonexecutable, and one of
five general categories of statements. , Statements are described in detail in
sections following.

1-4

SEC TION I. SOURCE PROGRAM SUMMARY

STATEMENT CHARACTERISTICS

StateIllents are divided into five categories according to their purpose and are characterized

as either executable or nonexecutable. Table 1-2 identifies the five stateIllent categories and

indicates the section in this Illanual in which each stateIllent is described.

Type of StateIllent

ArithIlletic or Logical

Control

Procedure

Input/Output

Specification

Table 1-2. Fortran StateIllent Categories

Purpose

Specifies a nUIllerical or a
logical cOIllputation.

Governs the flow of prograIll
execution: iteration, sequencing
changes, etc.

Enables the prograIllIller to define
and use subprograIlls.

Transfers data froIll or to a
peripheral device; Illanipulates a
peripheral device.

Indicates necessary or desired
inforIllation about the object
prograIll: IlleIllory requireIllents,
data typing, etc.

Section

II

III

VI

v

IV

Possible StateIllents

a = b

ASSIGN
CALL
CALL CHAIN
CONTINUE
DO
END
GO TO (Unconditional

COIllputed, or
Assigned)

IF (ArithIlletic or
Logical)

PAUSE
RETURN
STOP

FUNCTION
SUBROUTINE
StateIllent Functions

BACKSPACE
END FILE
FORMAT
READ
REWIND
WRITE

COMMON
DAT A (Initialization)
Data-Type

REAL
INTEGER
LOGICAL

DIMENSION
EQUIVALENCE
EXTERNAL
TITLE

Executable stateIllents are those to which control Illay be transferred during the course of

a prograIll. The followirrg are executable stateIllents:

1. All arithIlletic and logical stateIllents.

2. All input/output stateIllents except FORMAT.

3. All control stateIllents.

1-5

SECTION I. SOURCE PROGRAM SUMMARY

All other statements are nonexecutable. In a source program, statements are sequenced so

that nonexecutable statements, except FORMAT statements, precede the executable statements.

Figure 1-2 shows the sequence of source program input statements.

(END

~MAIN BODY OF EXECUTA-
BLE S"mTEMENTS AND
FORMAT STATEMENTS

./ ./ INTERMIXED .

(STATEMENT
FUNCTIONS

./ ./
./

(DATA INITIALIZATION
STATEMENTS

./ /' /'

(SPECIFICATION
STATEMENTS

f
~TITLE OR

./

FUNCTION OR
SUBROUTINE

Figure 1-2. Sequence of Program Statements

Statement operators are listed in capital letters under "Possible Statements" in Table 1-2.

Statement operators begin all Fortran statements except arithmetic and logical statements and

statement functions. The latter three types of statements are often called as signment state­

ments. Statement operators cannot be divided between lines of a Fortran coding sheet.

LABELING STATEMENTS

The programmer labels with a number the initial lines of statements that he wishes to

cross-reference in the program. A programmer has the option to label some statements;

however, certain statements must be labeled and other s cannot be labeled.

Every statement referenced by another statement must have a statement label. This in­

cludes all FORMAT statements and the last executable statement in the range of a DO loop. The

first and last statements of a program cannot have statement numbers. This includes all TITLE,

END, FUNCTION, and SUBROUTINE statements. Nonexecutable statements may have state­

ment labels, but these will be ignored by the compiler in all cases except FORMAT statements.
f

Only the initial line of a statement can be labeled.

The statement label assigned must be unique within that program and must be composed of

1-6

SECTION I. SOURCE PROGRAM SUMMARY

numeric characters only. The numeric label can be placed anywhere in columns 1 through 5

of the coding form. However, to insure that no two labels in a program are the same, the pro­

grammer should remember that leading, embedded, and trailing blanks are ignored. Leading

zeros are also ignored; embedded and trailing zeros are significant. Statement numbers can

be assigned in any order, since their values do not imply sequencing. The permissible range

of statement labels is 1 through 99999.

SYNTAX

The basic elements of the syntax of Fortran statements are operators, delimiters, and names.

Operators

Operators consist of statement operators, logical operators, and relational operators.

Operators specify action to be taken on named elements.

Statement operators begin all statements except arithmetic and logical assignment state­

ments and statement functions. Statement operators are listed under the column titled "Possible

Statements, " in capital letters in Table 1-2.

Relational and logical operators are written between named elements. The six relational

and three logical operators are given in Tables 1-3 and 1-4.

Table 1-3. Relational Operators Defining Logical Relations

Equivalent
Relational Mathematical
Operator Notation Definition

.EQ. = Equal to

.GE. ~ Greater than or equal to

.GT. > Greater than

.LE. ~ Less than or equal to

.LT. < Less than

.NE. # Not equal to

The value of a logical relation is • TRUE. if satisfied, • FALSE. if not satisfied.

Table 1-4. Logical Operators

Logical Equivalent
Operator Logical Notation Definition

-
. NOT. (Overscore) Logical negation

. AND. " Logical AND

.OR.
f

Inclusive OR U

The value of a logical expression resulting from use of a logical operator is either • TRUE.
or • FALSE. Determination of the evaluation of logical expressions is given in Table 2-3.

1-7

I

SECTION I. SOURCE PROGRAM SUMMARY

Delimiters

Delimiters are used to separate other statement elements and consist of the following eight

symbolic Fortran characters:

+) - / (= *

Names

Names identify or reference data or procedures. A data name identifies a constant,

variable, array, or array element. These data categories are defined and illustrated later in

Section I. A procedure name identifies a function or subroutine; procedure categories are de­

fined and illustrated in Section VI.

A name is said to reference a datum if the current value of the datum will be made available

during the execution of the statement containing the reference. A name may identify without

referencing a datum. A name is said to reference a procedure if the actions specified by the

procedure will be made available during execution of the statement containing the reference.

Data names can be connected by certain delimiters to form arithmetic expressions or by

logical or relational operators to form logical expressions. Rules for forming logical and

arithmetic expressions are given in Section II.

Associated with data and certain procedure names are data types. For Fortran Compiler D

the allowable data types are integer, real, and logical. Data types are defined and illustrated

later in Section I.

Certain names are predefined as names of procedures supplied by Honeywell with the

compiler. The predefined procedures are library functions and are described in detail in

Section VI.

The names of statement operators are reserved in this compiler. Statement operators

can be used as variable or procedure names only in accordance with the rules given in Section X.

DATA NAMES

Names are used to identify or reference data that are classified as one of the following:

1. cons tants;

2.

3.

variables;

arrays; or
f

4. array elements.

1-8

.. -

SECTION I. SOURCE PROGRAM SUMMARY

Constants

A constant is a specific numerical value or a string of literal characters. It cannot vary

during the computing process. A numerical constant can be signed or unsigned. The name of

the constant is the same as the value of the constant. Thus in Table 1-5 below, the constant

named 23 has a numerical value of 23. Additional examples of constants are given in the table.

A data type is shown associated with each constant; data types are discussed later in Section I.

Table 1-5. Examples of Constants

Constant Data Type

23 Integer (fixed point)

0

-456

+1275

-71. 42 Real (floating point)

8.06

12.

12.0E2

12.0E-2

3.E5

. TRUE. Logical (only two possi-

• FALSE.
ble values as shown)

Variables

A variable, as defined in Fortran Compiler D, identifies a datum that can be altered during

the computing process and is not subscripted. Subscripted variables are called array elements

in this manual and are discussed below in the paragraph on ItArrays, Array Elements, and Sub­

scripting. II

A variable must consist of 1 to 6 alphanumeric characters, the first of which must be

alphabetic .

In the statement

x = 12.7

X is a variable and 12.7 is a constant. It is possible that X may never be defined as anything

but 12.7, but it is still a variable because it identifies a datum that could be altered during exe­

cution of the object proglfam.

Data types are associated with variables. These data types and the rules governing them

are discussed later in Section I with additional examples of variables.

1-9

SECTION I. SOURCE PROGRAM SUMMARY

Arrays, Array Elements, and Subscripting

An array is an ordered set of data of either one or two dimensions which may be referenced

and/or altered during the computing process. A one-dimensional array corresponds to a vector

(see Figure 1-3), and a two-dimensional array corresponds to a matrix (see Figure 1-4). Each

member of an array is called an array element. A name is assigned to each of the elements, as

well as to the entire array. Therefore, any single element may be referenced by name, or the

entire ordered set may be referenced ~hrough use of the array name. An array name must con­

sist of 1 to 6 alphanumeric characters, the first of which must be alphabetic.

FOUR-ELEMENr ARRAY NAMED A

A(J) A(Z) A (3) A(4)

~---------------~ .. ~~r---------------~~~~r---------------~ .. ~~

Figure 1-3. One-Dimensional Array, Storage Sequence of Elements

THREE-BY-FOUR ARRAY NAMED A I ARRAY ELEMENr

AU,n

A(2,n

A(3,1)

NorE:
ARROWS AND CIRCLED NUMBERS INDICArE SrORAGE SEQUENCE

Figure 1-4. Two-Dimensional Array, Storage Sequence of Elements

The name of an element is formed by appending a qualifier, called a subscript, to the

array name. The subscript indicates which element in an array is being referenced. When this

array element notation is used, the number of subscripts must equal the dimension of the array.

When an array is two-dimensional the two subscript expressions of each array element are

separated by a comma. For example, in Figure 1-4,' the element in the second row and

1-10

.'

SECTION I. SOURCE PROGRAM SUMMARY

third column of array A has the name A(2, 3). Array elements of two-dimensional arrays are

stored sequentially in memory by columns as shown in Figure 1-4. Thus the first (leftmost)

subscript expression of a two-dimensional array varies most rapidly and its last subscript ex­

pression varies least rapidly. An array element of a two-dimensional array can be identified

not only by its double-subscripted name but also by its storage sequence. For example, in

Figure 1-4, the element in the third row and third column can be called either A(3, 3) or A(9).

Within a subscript, each subscript expression may be in one of the following formats:

Format Example

k 2

v I

v+k 1+2

v-k 1-2

c*v 2*1

c~'v+k 2*1+1

c*v-k 2*1-1

Where: c and k are unsigned integer constants;

is an integer variable; and v

are arithmetic expression delimiters for plus, minus, and
multiply (See Section II)

In arithmetic statements, the array name can be used to reference the first element of the

array - for example, A for A(l).

The data type associated with every array element subscript and with each subscript

expression is integer (fixed point), as described below. Arrays and array elements may have

integer, real, or logical data types associated with them.

DATA TYPES

Associated with data names and certain procedure names are their characteristic data

types. The data types for Fortran Compiler D are integer, real, and logical; they can be as­

sociated with constants, variables, arrays, array elements, and functions.

The name of a constant indicates its type. Data types associated with variables, arrays,

and array elements and with functions can be indicated in one of two ways:

1. The programmer can explicitly supply the data type by using a data-type
statement, dfescribed in Section IV. A data-type statement begins with
REAL, INTEGER, or LOGICAL and assigns the specified data type to
the variables, arrays, or functions that follow. All logical variables,
arrays, and functions must be declared in data-type statements.

1-11

SECTION I. SOURCE PROGRAM SUMMARY

2. Real or integer types of data can be implied in the name. Any name
that .begins with one of the characters I, J, K, L, M, or N is an
integer unless otherwise specified in a data-type statement. A
variable that begins with any other character is real unless otherwise
specified in a data-type statement.

Each of the data types is defined and illustrated in the paragraphs following.

Integer Data

An integer is an exact whole number which can be positive, negative, or zero. Unsigned

numbers are presumed to be positive. No decimal point is expressed; therefore, integer data

are often referred to as fixed-point. Any fractions resulting from operations on integer data

are truncated without rounding before additional operations are performed (see the last example

of truncation below).

Precision of the integer data can be specified by the programmer on the *JOBID card in

the source program input deck. The range of precision is from 3 to 12 characters, but because

integer data is stored internally in binary, the number of decimal digits that can be stored is

from 5 to 20. When the programmer does not specify precision on the ~'JOBID card, a three­

character (five-digit) precision is used. Appendix C gives a detailed summary of precision

and internal storage of data.

Examples of integer constants are:

o
-0

42

-42

4157

-4157

+12428

-12428

Examples of the results of trunc,ation of fractions are:

3/4 is equal to 0;

5/2 is equal to 2;

(8/3) + (9/2) is equal to 6

17592186414

-17592186414

An integer variable is normally implied in the data name, Any variable beginning with I,

J, K, L, M, or N, unless otherwise specified in a data-type statement, is assumed to be an in-

teger variable.

Examples of integer variables are:
(

INTEG

J

K22

L65A9

1-12

NUMBER

IVALUE

SECTION 1. SOURCE PROGRAM SUMMAR Y

Note that the name of a variable is prefixed by one of the integer characters when an integer

variable is desired. Honeywell-supplied functions are prefixed in this manner. For example,

ABS and LABS

represent the function for determining absolute value, the first for real arguments and the

second for integer arguments. See Section VI for other functions.

Real Data

A real datum is a real, rational value that need not be a whole number. A real constant is

written with a decimal point or a decimal exponent or both. Real data are also known as floating­

point data.

Real data may have values that are positive, negative, or zero and are stored, in memory

as decimal fractions (mantissas) and decimal exponents. If a sign is not given, the number is

assumed to be positive. When writing a real constant with an exponent, the letter E precedes

the exponent and identifies it. The mantissa can be written with a precision between 2 and 20

decimal digits. The programmer can specify mantissa precision on the *JOBID card in the

card input deck. If not specified there, precision is given to seven digits. The number of digits

specified in a constant is truncated, or trailing zeros are supplied to store the precision speci­

fied by the mantissa parameter. The range of the exponent is fixed at two decimal digits, i. e. ,

-99~ e ~+99. See Appendix C for detailed examples of storage of numbers.

Examples of real constants are:

12.

.127

235.7450

12544761.1234

123456789.01234567890

12.0 E2 (12.0 x 10 2 or 1200.)

12.0 E-2 (12.0 x 10-2 or 0.12)

3.E70

2El

When the character following the letter E is zero, the next digit (if there is one) is con­

siderec;l to be the exponent, e. g. ,
2

12.0 E02 is equivalent to: 12.0 E2 or 12.0 x 10

A zero exponent is permissible, but a blank character appearing in an exponent is suppressed

and ignored.

Unless otherwise specified in a data-type statement, any variable beginning with a charac­

ter other than I, J, K, L, M, or N is real.

Examples of real variables are:
f

VARIBL

FTRAN4

1-13

A126

X

SECTION 1. SOURCE PROGRAM SUMMARY

Logical Data

A logical datum can assume a truth value of either true or false. Logical constants are

either. TRUE. or . FALSE.

Hollerith, Octal and Alphabetic Data

Three kinds of data can be manipulated in Series 200 Fortran but cannot be defined in a

data-type statement. These are alphabetic, Hollerith, and ocatal data.

Alphabetic and octal data can be manipulated as variables associated with certain con­

version elements in input/output lists. This is discussed in Section V under "FORMAT state­

ment." An alphabetic datum can be placed in memory only through an input operation.

Hollerith and octal constants can be assigned to variables at loading time by use of a

DA TA statement. This process is described under "DATA Initialization Statement" on page

4-9.

Hollerith, octal, and alphabetic data are handled internally as fixed-point data and must

be associated with integer data types.

HOLLERITH DATA

A Hollerith datum is a constant that carries symbolic information rather than a value that .~

is available for mathematical computation. Any character of the Honeywell character set may

appear in a Hollerith datum, including letters, digits, and special symbols. Blanks are valid

and significant; they are not suppressed. A Hollerith datum is stored in an integer data field.

A Hollerith constant is written as follows:

nHxxxxxx

where: n is the number of characters (including blanks) in the constant

H indicates Hollerith

each x represents a Hollerith character

Examples of Hollerith constants follow:

4HDATA

71HTHIS ENTIRE SENTENCE IS A HOLLERITH CONSTANT, CONTAINING 71
CHARACTERS.

40HCAN SPECIAL SYMBOLS BE USED? DIGITS TOO?

30HYES, E.G., * (&. :) # 0/0, ETC.

3H429

27HB LAN K S ARE SIGNIFICANT

1-14

SECTION 1. SOURCE PROGRAM SUMMAR Y

A Hollerith constant can be indicated as the initial value of a variable or array ele:ment

through use of the DATA state:ment (see page 4-9). The datu:m can then be e:mployed in algebraic

co:mparisons or as argu:ments of functions and subroutines.

Hollerith data can be :manipulated by use of the conversion specification wH of the FORMAT

state:ment. See Section V for discussion of the field specification wHo

OCTAL DATA

An octal datu:m consists of any co:mbination of nu:mbers 0 through 7. For progra:m:mers not

fa:miliar with octal nu:mbering, a deci:mal-octal conversion table is included as Appendix A. An

octal datu:m is associated with an integer data ite:m.

An octal constant is written as follows:

nOxxxxxx

where: n is the nu:mber of x characters in the constant

o indicates octal

each x represents an octal digit.

So:me exa:mples of octal constants are:

403777
100456 70 12345

700123456

An octal constant can be indicated as the initial value of a variable through use of the DATA

state:ment (see page 4-9). The datu:m can then be e:mployed in co:mparisons or as argu:ments of

functions and subroutines. All co:mparisons, including octal, are :made algebraically, not bit­

by-bit. For exa:mple, in the octal constants co:mpared below

770000 < 000001

because 770000 is interpreted as a negative, twos -co:mple:ment nu:mber.

ALPHABETIC DA TA

Since data cannot be declared as Hollerith in a specification state:ment, there are no

variable character strings as such. As indicated in the discussion of Hollerith constants, how­

ever, a DATA initialization state:ment can be used to assign a Hollerith constant to an integer

variable, which can then be e:mployed in co:mparisons or as an argu:ment of a function or sub-

routine.

Character strings can be placed in :me:mory through input operations and stored in integer

variable fields. When a ~haracter string is stored in this :manner, it is called alphabetic data

and can be :manipulated as variables. An Aw field specification in a FORMAT state:ment is

associated with an integer variable in an I/O list to read an alphabetic variable into or out of

:me:mory, as described in Section V.

1-15

f

SECTION II

ARITHMETIC AND LOGICAL EXPRESSIONS AND STATEMENTS

ARITHMETIC EXPRESSIONS

Definition and Evaluation

Arithmetic expressions consist of combinations of constants, variables, array elements,

and/or function references, separated by the arithmetic operation symbols listed in Table 2-1.

Table 2-1. Arithmetic Operation Symbols

Operation Symbol Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

Arithmetic expressions are evaluated during execution of the object program. Evaluation

consists of performing arithmetic on the constants, variables, array elements and/or functions

in the expression. The single numeric value which results may be different each time the ex­

pression is evaluated since the value of any named element, ,except constants, may change between

evaluations.

During evaluation, all values are invariant. The value of a variable or array element is the

value last assigned before evaluation. The value of an array element is, of course, determined

after evaluation of the subscript. The value of a function in an expression depends on the values

of the constants, variables, and/or array elements that are its arguments, since the function is

computed after evaluation of its arguments. Precedence rules for evaluation of arithmetic ex­

pressions are given later in this section.

The following rules govern arithmetic expressions:

1. An arithmetic expression must not contain logical data.

2. An arithmetic expression must not contain mixed data types, except that:

a. A real datum can be raised to an integer exponent.

b. In general, functions may have arguments of any type. (This does
not hord for library functions. See Section VI.)

3. One arithmetic operation symbol cannot immediately follow another
arithmetic operation symbol.

2-1

r

SECTION II. ARITHMETIC AND LOGICAL EXPRESSIONS AND STATEMENTS

4. Parentheses may enclose any arithmetic expression.

5. A plus or minus sign may precede any arithmetic expression.

6. A negative mantissa cannot be raised to a real exponent.

Examples of Fortran arithmetic expressions are given in Table 2-1 with their mathematical

representation and data names and types.

Table 2-2. Examples of Arithmetic Expressions

Fortran Expression

2 + 3

I - J

AlB

2. * X

X ** 2

y cn + y (2) - Y (3)

B ** 2 - 4. * A * C

2. E4 * A * B ** (4+K)

RFUN (X)

Hierarchy of Arithmetic Operations

Mathematical Expression

2 + 3

I - J

~ or A + B

2X or 2(X) or 2· X

X2

Y I +Y2 -Y3
B2 - 4AC

20,OOOAB4+K

RFUN (x)

Data Name and Type

Integer constants

Integer variables

Real variable s

Real variable

Real variable

Real array elements

Real variables

Real variables

Real function reference

During evaluation of an expression, arithmetic operations are performed one at a time,

according to the following rules, and as described at the beginning of this section.

RULE 1. In the absence of parentheses specifying the exact order of evaluation,

the priority of operations is:

1. Exponentiation;

2. Multiplication and division; and

3. Addition and subtraction.

Examples:

1. The expression A - B * C is evaluated as though it were written:

2.

A - (B . C)

That is, the product of B * C is evaluated first, then subtracted from A
(because multiplication is at a higher level in the hierarchy of operations
than subtraction).

The expression A + B/C**2 is evaluated as though it were written:

B
A+--

C 2

That is, C**2 is computed first; this value is divided into B, and the
resulting quotient is added to A. (Exponentiation, followed by division,
followed by addition.)

2-2

SECTION II. ARITHMETIC AND LOGICAL EXPRESSIONS AND STATEMENTS

RULE 2. Where precedence is not otherwise indicated, evaluation of the ex­

pression proceeds fro:m left to right.

Exa:mple:

In the following exa:mple, both division and :multiplication are at the sa:me level
in the hierarchy of operations, and precedence is not otherwise indicated; therefore,
evaluation proceeds fro:m left to right:

A / B ':' C is interpreted as ~ • C, not B~ C •

RULE 3. Parentheses :may be used to alter the hierarchy of operations, since ex­

pressions in parentheses are always evaluated separately (regardless of the

evaluation sequence otherwise i:mplied by the hierarchy of operations).

Exa:mples:

1. A / (B ;" C) is ·interpreted as B ~ C • Without the parentheses, the

interpretation would be as shown in the preceding exa:mple.

2. In the expression (A + B) * C, the use of parentheses overrides the nor:mal
hierarchy of operations. Therefore, the addition is perfor:med before the
:multiplication, even though :multiplication is at a higher level in the hierarchy
of operations.

RULE 4. In a nest of parentheses (i. e., one pair of parentheses within another),

the expression within the inner:most pair of parentheses is evaluated first, then

the one within the next inner:most pair, etc. The expression within the outer:most

pair is evaluated last.

Exa:mples:

1. In the expre s sion:

A':' (B - (C / (D + E»)

the sequence of evaluation is:

a. D + E is co:mputed.

b. The su:m of D + E is divided into C.

c. The quotient of C/(D + E) is subtracted fro:m B.

d. The result is :multiplied by A.

2., The expression 5. ':'(3. ':<>:<APW+SQRT(A':":'2»/4. *(B':'*ABS(X» is evaluated in
the following sequence:

a. A ':":' 2

b. SQRT(A>:';"2)

c. 3. ;,<*APW

d. 3. ;,';,'APW+SQRT(A':';,'2)

e. ABS (X)

f. B ':';'<ABS(X)

5. ':'(3. ':';,'APW+SQRT(A;,":'2» g.

h. 5. ;"(3. ;,"~APW +SQRT(A*':'2»/4.

i. 5. *(3. *':'APW +SQRT(A**2»/4. ;"B;"*ABS(X)

2-3

SECTION n. ARITHMETIC AND LOGICAL EXPRESSIONS AND STATEMENTS

ARITHMETIC STATEMENTS

An arithmetic statement has the form:

a=b

Where: a is a variable or array element of the real or integer type;

= means "is assigned the value "; and

b is a real or integer arithmetic expression.

The variable to the left of the equals sign determines the form of the result. If the variable on

the left is integer and the expression on the right is real, the result is computed as a real value,

truncated, and converted to an integer value. If the variable on the left is real and the expression

on the right is integer, the result is computed as an integer value and converted to a real value.

Following are examples of arithmetic statements:

A=B

1= B

A = I

A = 1. 0

JINDEX(1) = 2

JINDEX = A

x = 12. * Y + (Z - 2.) ** 2

N = N/M

LOGICAL EXPRESSIONS

Definition

Store the value of B in A.

Truncate B to an integer and store
in I.

Convert I to a real value and store in A.

Store 1.0 in A.

Store 2 in integer array element JINDEX(l).

Convert real variable A to an integer value
by truncating and store in JINDEX.

Using real arithmetic, subtract 2. from Z;
square the re sult and add it to the product
of 12. times Y; then store the final result
in X.

Using integer arithmetic, divide N by M,
and store the re sult of the division (i. e. ,
quotient) in N.

When evaluated, a logical expression produces the value. TRUE. or • FALSE .• A logical

expression may take any of the forms listed below:

1. A logical expression may be one of the following single named elements:

a. A logical constant (i. e., . TRUE. or . FALSE.); or

b. A logical variable; or
(

c. A logical array element; or

d. A reference to a logical function (i. e., a function that delivers
a logical result).

2-4

.'

SECTIONll. ARITHMETIC AND LOGICAL EXPRESSIONS AND STATEMENTS

2. A logical expression may be composed of any sequence of logical constants,
logical variables, logical array elements, and/or references to logical
functions, provided that each named element is separated from another by
one of the logical operators defined below.

3. A logical expression may be composed of pairs of arithmetic expressions
separated from one another by one of the relational operators defined below,
provided that the type of the expression on each side of the relational operator
is the same. Each pair is a logical expression that may be combined as any
other logical expression described above.

Logical Operators

Logical operators are defined as follows:

Operator

• NOT.

. AND.

. OR.

Definition

Logical negation .

Logical AND •

Inclusive OR .

In combining the logical operators. NOT., • AND., and. OR. with logical expressions, the re­

sulting logical expressions have values of either. TRUE. or . FALSE. as defined in Table 2- 3.

Letters a and b represent logical expressions.

Table 2-3. Logical Evaluation Using Logical Operators

Logical Expression Value of a Value of b Value of Resulting Expression

. NOT.a . TRUE • --- . FALSE .

. FALSE. - -- . TRUE .

a.AND. b . TRUE. • TRUE • . TRUE •

. TRUE. . FALSE . . FALSE •

. FALSE. • TRUE. • FALSE •

. FALSE. . FALSE • • FALSE •

a.OR.b • TRUE. . TRUE. . TRUE .

• TRUE. . FALSE. • TRUE •

. FALSE. .TRUE • . TRUE •

. FALSE. . FALSE • ..FALSE.

In using logical operators the following rules must be observed:

1. Two logical operators must not be adjacent to each other unless the second
operator is . NOT ..

2. A period, as ,shown, is included at the beginning and end of each logical operator.

3. If the logical operator . NOT. is to apply to an expre s sion following it that
includes more than one named element, the required expression must be
enclosed in parentheses. If the expression is not enclosed within pa­
rentheses, the. NOT. applies only to the first element of the expression.

2-5

SECTION II. ARITHMETIC AND LOGICAL EXPRESSIONS AND STATEMENTS

Relational Operators

Logical relations are defined by using the relational operators given in Table 2-4.

Table 2-4. Relational Operators

Relational Equivalent Definition
Operator MatheInatic al

Notation

.EO. = Equal to

.GE. ~ Greater than or equal to

.GT. > Greater than

.LE. S Less than or equal to

.LT. < Less than

.NE. -I Not equal to

The value of a logical relation is . TRUE. if satisfied, . FALSE .
if not satisfied.

Hierarchy of Logical Operations

All arithInetic expressions are evaluated before logical expressions. The cOInplete hier­

archy of logical and arithInetic operations is as follows:

1. ArithInetic expressions are evaluated in the order given on page 2-2.

2. Any logical relations (. EQ., .GE., . GT., . LE., . LT., or . NE.) are
evaluated froIn left to right in the expression.

3. .NOT.

4. . AND.

5. .OR.

As with arithmetic expressions, parentheses may be used to specify the hierarchy of

logical expressions.

LOGICAL STATEMENTS

A logical stateInent has the forIn:

Where: a is a logical variable or logical array eleInent;
f

= Ineans "is assigned the value "; and

b is a logical expression.

2-6

~.

SECTION II. ARITHMETIC AND LOGICAL EXPRESSIONS AND STATEMENTS

The logical expression is evaluated and the previous value of the logical variable or array

element on the left of the equals sign is assigned the truth value. TRUE. or . FALSE. For

example:

Logical Statement

1. A = . FALSE.

2. B = X. LE. 5.

3. C = X.GT. 5 •. 0R. Y.LT.Z

4. A(l) = . NOT. (X. EQ. 50. /Y**2)

5. B = X.AND .. NOT. Y

6. D=X.GT. (50.'~Y+W/(X-2.))

Interpretation

Logical constant. FALSE. is stored
in A.

If X is less than or equal to 5., B has
the value .TRUE.; otherwise, Bhas
the value . FALSE.

Determine a value of . TRUE. or
· FALSE. for the relation X. GT. 5 ..
(It is . TRUE. if X is greater than 5. ,
· FALSE. otherwise.)

Determine a value of . TRUE. or
. FALSE. for the relation Y.LT.Z.
(It is • TRUE. if Y is less than Z,
· FALSE. otherwise.)

If the value of either relation is . TRUE. ,
store. TRUE. in C; otherwise, store
• FALSE. in C.

If X equals 50. divided by y2, store
the value. FALSE. in logical array
element A(l); otherwise, store the
value. TRUE. in A(l).

If Y is . FALSE. and X is . TRUE. ,
store the value. TRUE. in B; other­
wise, store. FALSE. in B.

The arithmetic expression is evaluated
in the conventional manne r (i. e., the
expression in the innermost parentheses
is evaluated first, then the expression
in the outermost pair).

If X is greater than the final result, the
value. TRUE. is stored in D; otherwise,
· FALSE. is stored in D.

The character ". II may appear twice in succession in a logical statement under the following

conditions:

1. When one period (or decimal point) is part of a constant and the other is part
of a logical or relational operator. See example 3 above.

2. When a first logical operator is followed by . NOT.. Refer to example 5 above.

2-7

(

SECTION III

CONTROL STATEMENTS

Fourteen control statements govern the flow of control during execution of the program.

Thus, control statements can be used to depart from the normal sequence of statements in

the program, making it possible to bring in new sets of data or to carry out an iterative process.

The fourteen control statements are listed in Table 3-1. All control statements are executable.

Table 3-1. Control Statements

Control Statement Pages Where Defined

ASSIGN 3-2

CALL 3-7

CALL CHAIN 3-8

CONTINUE 3-8

DO 3-4 to 3-7

END 3-9

GO TO (unconditional) 3-1

GO TO (computed) 3-2

GO TO (assigned) 3-2

IF (arithmetic) 3-3

IF (logical) 3-3

PAUSE 3-8

RETURN 3-8

STOP 3-9

UNCONDITIONAL GO TO

An unconditional GO TO statement has the form:

I GO TO n I

Where: n is the statement label of an executable statement in the same program
unit as the GO TO statement. The Unconditional GO TO statement
transfers control directly to the statement labeled n.

Example: GO TO;7

When the statement labeled 17 has been exe cuted, control is trans­
ferred in the normal sequence to the next executable statement
following 17, unless the statement labeled 17 again changes the
control sequence.

3-1

SECTION III. CONTROL STATEMENTS

COMPUTED GO TO

A computed GO TO statement has the form:

Where: n
l

,

I GO TO (n l , n 2 ,· .• ,nrd,il

n , ... , n are labels of statements in the same program unit as the
2 m GO TO statement, and i is the integer variable that must

take on values in the range: 1 ~ i ~ 63. Therefore, the
maximum value of m is 63.

The computed GO TO statement transfers control to the statement whose label is ith from

the It:ft parenthesis.

Example: GO TO (20, 50, 75, 1066), I

Interpretations: If 1=1, GO TO 20
If 1=2, GO TO 50
If 1=3, GO TO 75
If 1=4, GO TO 1066

ASSIGNED GO TO AND ASSIGN STATEMENTS

An ASSIGN statement is used in conjunction with an assigned GO TO statement within the

same program body. The ASSIGN and assigned GO TO statements are of the form:

Where:

ASSIGN n TO i

n is a label of a statement in the same program unit as the
ASSIGN statement.

i is an integer variable (the same in both statements).

are all of the possible statement labels which n may
assume. m>O.

The ASSIGN statement assigns a statement label to the integer variable i. This label is one

of the possible statement labels listed in the assigned GO TO statement.

The ass1gned GO TO statement then transfers control to the statement whose label has been

assigned to the variable i. The list of statement labels within parentheses in the assigned GO TO

statement should contain all of the possible statement labels which can be assigned to integer
f

variable i. Commas are significant and must be punched before the opening parenthesis and

between statement labels within the parentheses. The integer variable should not be used for

computation until it is assigned a numerical value, thereby replacing the statement label value.

3-2

SECTION III. CONTROL STATEMENTS

ExaIllple of assigned GO TO stateIllent:

SaIlle
PrograIll

When the assigned GO TO stateIllent is encountered, control is transferred to stateIllent 375.

When using 4-character addressing, integer precision of 4 characters or Illore is required

to execute an assigned GO TO stateIllent.

ARITHMETIC IF STATEMENT

An arithIlletic IF stateIllent has the forIll:
,r-IF-(e-)-n-

1

-,-n-
2
-, -n-

3

--'

Where: e is an arithIlletic expression of the integer or r~al type; n
1

, n
2

, n3
are stateIllent labels of executable stateIllents In the saIlle prograIll
unit as the IF stateIllent.

The arithIlletic IF stateIllent transfers control to one of the three stateIllents listed, depend-

ing on whether the arithIlletic expression e is evaluated to be negative, zero, or positive. If the

result of the evaluation is negative, control is transferred to the stateIllent labeled n
1

; if zero to

n° 2' and if positive to n
3

. All three stateIllent labels IllUSt be listed.

ExaIllple: IF (X*~'3 - 27.) 210, 425, 215

Branch to stateIllent 210 if X3 < 27,
3

Branch to stateIllent 425 if X = 27,
3

Branch to stateIllent 215 if X > 27,

i. e. ,

i. e. ,

i. e. ,

(X
3

27.)

(X
3

27.)

(X
3

27.)

is negative;

= 0;

is positive.

LOGICAL IF STATEMENT

A logical IF stateIllent has the forIll:

Ir"I-F-(-e-) -s--'

Where: e is a logical expression.

s is any executable stateIllent, except a DO stateIllent or another logical IF
s tateIllent.

StateIllent s is executed only if the value of the logical expression e is . TRUE. If the value

of e is . FALSE., the logical IF stateIllent is executed as if it were a CONTINUE stateIllent.

ExaIllples of logical IF stateIllent:

1.
f

IF (A. LE. B) GO TO 43

If A is algebraically less than or equal to B, execute the stateIllent labeled
43 next.

3-3

SECTION III. CONTROL STATEMENTS

2. IF (A .AND. B) CALL BOTH

If A is TRUE and if B is also TRUE, call subroutine BOTH.

3. IF (L} X = SIN(X)

If the value of L is TRUE, replace X by SIN(X).

DO STATEMENT

A DO statement has one of the following forms:

Where:

DO n i = m
I

, m 2, m3

or: DO n i = m
I

, m
2

n is the statement label of the last statement in the sequence of
instructions to be executed repeatedly as a loop. That statement
must be executable.

i is an integer variable.

is the initial value of i; it may be an unsigned integer or
integer variable.

is the terminal value of i; it may be an unsigned integer
or integer variable.

is the amount by which i is to be incremented at the end
of each pass through theloop; it may be an unsigned in­
teger or integer variable. If m3 is not stated, it is under­
stood to be one.

A DO statement is placed at the beginning of a sequence of statements that are to be exe­

cuted repeatedly as a loop. It defines the starting point of each complete repetition of the loop,

the end point, and the number of times the loop is to be repeated. The starting point of the loop

is the first executable statement after the DO statement; the termination point is that statement

whose statement label (n) appears in the DO statement. All intervening instructions between

the DO statement and terminal statement n (including the terminal statement) are executed in se­

quence each time that control passes through the loop. The parameters (ml' m2' m 3) of the

control variable (i) control the number of repetitions of the loop. Both the initial value (m l) of

the control variable and the terminal value (m2) are always specified in the DO statement. The

amount by which the control variable is to be incremented (m 3) after each execution of the loop

mayor may not be specified in the DO statement. If m3 is not explicitly defined, it is assumed

to have a value of one. During execution of the DO statement, m I , m 2 , and m3 must be greater

than zero.

The action of a DO'statement is as follows:

1. It initializes the control variable (i) with the value of the first (leftmost)
DO parameter (m 1).

2. It executes the set of statements up to and including the terminal statement n.

3-4

SECTION III. CONTROL STATEMENTS

3. After executing the terminal statement, it increments the control variable by
the third DO parameter (m3)' or by a value of one if no third parameter is
specified.

4. It compares the incremented value of the control variable with the value of
the second DO parameter (m2). If the incremented value is less than or
equal to the terminal value, steps 2, 3, and 4 of this description are re­
peated; if the incremented value is greater than the terminal value, the
DO loop is said to be satisfied, and control is transferred to the next state­
ment in the program sequence following the terminal statement of the DO loop.

The range of a DO loop is the sequence of statements starting with the first executable

statement after the DO statement and continuing up to (and including) statement number n, the

terminal statement. The terminal statement must occur physically after the DO statement, not

just logically after it. Furthermore, the terminal statement may not be any type of GO TO

statement, or an arithmetic IF, DO, RETURN, or STOP statement. Figure 3-1 shows an

example of a DO statement. and its range.

Label of last Control
statement in variable
range

Range
of
DO
Loop

~\
DO 50 I

50, CONTINUE

Initial value
of Control
variable

~
= 1,

"'-.. Statement label n

Final value
of Control

Amount by which
Control variable is

variable/ to be incremented

I after each exe­
cution of loop

3, 1
(First executable statement)

(Terminal Statement)

Figure 3-1. The DO Statement and Its Range

Neither the control variable nor the DO parameters (m l' mZ' m3) may be altered by pro­

gram statements during the execution of the loop. However, the value of the control variable is

available throughout the range of the DO statement for use in computations, e. g., in subscripted

expressions, and for referencing. Its value is that which was last assigned during execution of

the loop. The value remains constant throughout the range until incremented at the end of the

range. After the DO loop has been satisfied and control has been transferred out of the range of

the DO statement, the control variable i is still available for use in any operation. Unless

deliberately changed, it remains equal to the last incremented value, i. e., the value which ex­

ceeded mZ and thus caused control to be transferred out of the DO loop.

One DO loop may contain within it one or more DO loops, provided that each inner DO loop

is completely contained within the range of the outer loop. The use of one DO loop within another

3-5

SECTION III. CONTROL STATEMENTS

is called nesting of DO loops. DO loops tnay be nested up to a depth of 10. Exatnples of per­

tnissible nesting are illustrated in Figure 3-2, using the bracket sytnbol to represent a DO loop.

Note that two loops tnay end on the satne tertninal statetnent (exatnple C in Figure 3-2). The

ranges of two loops cannot overlap in the way shown in Figure 3-2 exatnple E, i. e., the one that

starts last tnust be satisfied first. DO loops are said to be cotnpletely nested when there is only

one inner loop within the next outer loop. If two or tnore inner loops are within the satne outer

loop, as in exatnple B of Figure 3-2, the entire nest is noncotnpletely nested.

-

[c= [[
-

C
A. ONE DO LOOP B. TWO INNER C. TWO LOOPS D. SET OF COM- E. ILLEGAL

COMPLETELY LOOPS WITHIN TERMINATING ON PLETELY NESTED NESTING OF
WITHIN ANOTHER OUTER LOOP SAME STATEMENT LOOPS LOOPS

Figure 3-2. Legal and Illegal Nesting of DO Loops

The statetnents in the first DO loop of Figure 3-2 are executed in sequence starting with the

first executable statetnent and continuing up to the DO statetnent at the beginning of the inner loop.

At this titne, control is transferred to the inner loop, and the statetnents in this loop are executed

repeatedly in sequence as tnany titnes as necessary until the loop is satisfied. Then control

returns to the outer loop (specifically, to the first executable statetnent after the tertninal state­

tnent of the inner DO loop). The balance of statetnents in the outer DO loop are executed until

one cotnplete iteration of the outer loop has been perfortned. At this point, the whole cycle

repeats, exactly as described above until the outer DO loop is also satisfied. Then control is

transferred to the next executable statetnent following the tertninal statetnent of the outer DO

loop.

It is pertnissible to transfer control freely within a DO loop; it is also pertnissible to trans­

fer control out of the range of a DO loop or to another DO statetnent. Exatnples of legal transfers

are shown graphically in Figure 3- 3. It is not legal, however, to transfer into the range of a DO

loop frotn outside its range. Figure 3-4 shows illegal transfers of control. Control tnay be

transferred outside the r!tnge of a DO loop by calling a subroutine, function subprogratn, library

function, or statetnent function. Extended ranges whereby control can be passed out of and back

to a DO loop through arithtnetic IF and GO TO statetnents are not pertnitted.

3-6

SECTION III. CONTROL STATEMENTS

) -) IT) b
A. B. C. D. E. F.

Figure 3-3. Legal Transfers of Control

c? I
~ I

A B

Figure 3-4. Illegal Transfers of Control

CALL STATEMENT

C

[)
[
G.

j

E)
H.

The CALL statement transfers control to a designated subroutine; it is the only mechanism

available for transferring control to a subroutine. When the subroutine returns control to the

calling program, the first executable statement following the CALL statement is the next state­

ment to be executed. If the CALL statement is the terminal statement of a DO loop and the DO

loop has not been satisfied, control returns to the first executable statement in the DO loop.

The CALL statement may be written with or without arguments.

The two general forms are:

Where:

1. CALL subnarn (arg l' argz,···, ar gn)

z. CALL subnarn

subnam is the subroutine name.

(argl' argz, ... , argn) is the list of actual arguments which are to
replace the dummy arguments in the SUBROUTINE
statement at the time the subroutine is entered;
i. e., these arguments are to be transmitted from
the calling program to the called subroutine.
The arguments must agree in number, type, and
order with the SUBROUTINE statement arguments.
(See Section VI.)

3-7

SECTION III. CONTROL STATEMENTS

RETURN STATEMENT

The RETURN statement has the form:

IRETURN I
The return statement causes control to be transferred from a function subprogram or

subroutine subprogram to the point in the using program at which it was relinquished. In the

case of a subroutine, control is returned to the first executable statement following the CALL

statement that gave control to the subroutine. If the CALL statement is the terminal statement

of a DO loop and the DO loop has not been satisfied, control returns to the first executable state-

ment in the DO loop. In the case of a function subprogram, control returns to the statement in

which the function is imbedded. Since a RETURN marks the end of logical flow of the subpro­

gram, there may be more than one RETURN in a subprogram.

CALL CHAIN STATEMENT

A CALL CHAIN statement has the form:

I CALL CHAINx

Where: x is the character that identifies the chain. The programmer can use any
digit or letter as identifier.

The programmer divides the input deck into groups of related programs called chains.

Each chain is an independent memory load that includes all the routines (library and execution

/*CHAIN, xl
package) required by programs in the chain. In the input deck a L card identifies

each chain. The program'TIer can then use the CALL CHAINx statement to call any chain at

any time. The called chain will overlay the chain currently in memory. Control is transferred

to the first main program of the chain called. See the discussion of the COMMON statement

(Section IV) for additional information on chaining.

CONTINUE STATEMENT

A CONTINUE statement has the form:

~ CONTINUE

This is a dummy statement which does not alter the sequence of program instructions. It

is usually assigned a statement label and used to reference a point in the program. An example

is the termination of a DO loop.
(

PAUSE STATEMENT

A PAUSE statement has the form:

3-8

..

"

SECTION III. CONTROL STATEMENTS

PAUSE

or

PAUSE n

Where: n is an identification constant of six or less octal digits, the first of which
must be less than or equal to 3 for a 16K machine.

The PAUSE statement causes a halt in the execution of the program. The statement is

usually included to allow time for operator action. The identification constant n, when included,

indicates the particular PAUSE statement which caused the halt. The identification constant, if

present, is stored in the machine's A- and B-address registers, which can be interrogated from

the console. (See Section IX for the console display of the identification constant.) The program

will continue execution with the next statement upon resumption of the run.

STOP STATEMENT

A STOP statement has the form:

STOP
or

STOP n

Where: n is an identification constant of six or less octal digits, the first of which
must be less than or equal to 3 for a 16K machine.

The STOP statement causes final termination of the object program. When no identification

constant is pre sent, an automatic exit to the monitor occurs. The identification constant n, when

included, indicates the particular STOP statement which caused termination and is stored in the

machine's A- and B-address registers, which can be interrogated from the console. When a

STOP n is encountered, a halt occurs and n is displayed in the A- and B-address registers. (See

Section IX for console display of the identification constant.) Upon resumption of the program,

an exit to the monitor occurs.

END STATEMENT

An END statement has the form:

END

The END statemeIft must be the final statement of a main program or of a subprogram.

When control passes to an END statement in a main program, it is executed as a STOP. In a

subprogram it is executed as a RETURN. The END statement may not have a statement label.

The statement operator, END, may appear anywhere in columns 7 through 72.

3-9

f

SECTION IV

SPECIFICATION STATEMENTS

The programmer uses specification statements to declare or specify certain information

about the object program that the compiler cannot obtain in any other way. There are nine

specification statements, listed in Table 4-1. Specification statements are nonexecutable.

DIMENSION STATEMENT

Table 4-1. Specification Statements

Statement

COMMON

DAT A Initialization

DIMENSION

EQUIVALENCE

EXTERNAL

INTEGER

LOGICAL

REAL

TITLE

} Data-Type

The DIMENSION statement is used to specify to the compiler how much memory will be

required for arrays used in the program. A DIMENSION statement indicates the names of the

arrays, the number of dimensions of each array named, and the maximum size of each dimension.

A DIMENSION statement has the form:

f

v are names of arrays.
n

inl is an unsigned integer constant (greater than zero),
representing the maximum number of rows in
array v

n
'

is an unsigned integer constant (greater than zero),
representing the maximum number of columns in
two-dimensional array v •

n

(in2 is not written when the array is one-dimensional,
nor is the comma preceding it.)

4-1

SECTION IV. SPECIFICATION STATEMENTS

As indicated by the forrnat, a DIMENSION statement can be used to declare all arrays in

a given program. Each array is separated from the previous array by a comma. The integer

constants following the name of the array give the maximum number of array elements in the

array dimension. The first dimension following the name applies to rows and the second

dimension, when present, represents columns. For example:

DIMENSION ARRAY (3, Z), MATRIX (4,5), B (10)

indicates three arrays, the first of which has three rows and two columns; the second array

has four rows and five columns; and the third array is one-dimensional with 10 elements.

During execution of the object program, if a reference to an array element contains a sub­

script which assumes a value larger than the maximum specified in the DIMENSION statement,

or if it assumes a zero or negative value, the computational results will be erroneous.

Although information about the names, sizes, and dimensions of arrays is most usually

given in DIMENSION statements, it is sometimes convenient to use COMMON and data-type

statements for this purpose.

COMMON STATEMENT

Use of the COMMON statement permits different programs to share common memory

areas that are never overlaid. The COMMON statement can be used to set up a nonexclusive

common block, called an unlabeled common block, or to set up exclusive, or labeled, common

blocks.

An unlabeled common block provides data storage that is common to all programs within a

job. The smallest amount of common storage used in any of the chains of the job is the amount

which is reserved for the job. For example, in a job consisting of three chains, where chain 1

specifies 100 memory cells in unlabeled common storage chain Z specifies ZOO, and chain 3 speci­

fies 300, only the first IOOcells are preserved after execution of anyone of the chains.

A labeled common block provides data storage common to programs within a chain only.

Labeled common storage is released after executing the chain.

A COMMON statement has the form:

COMMON vI' vz'

or f

... , v
n

4-Z

v ,
n

..

I

SECTION IV. SPECIFICATION STATEMENTS

Where: LBLl, LBL2, etc. are names of common blocks within the common
region. Block names are enclosed between two
slashes. Block names may be one to six alpha­
betic or numeric characters, the first of which
must be alphabetic. When no block name is
given, the unlabeled common region is designated.

are names of single variables or arrays that are
to be assigned in the order listed to the common
block named in the preceding label or to the un­
labeled common region when no label is given.

If an array is named, it may be followed by its
dimensioning information in parentheses .

A single COMMON statement can be used to define any number of labeled common blocks

and a single unlabeled common block. Refer to Figure 4-1 for an example of the definition ofthree

labeled blocks. When defining an unlabeled common block in the same COMMON statement

with labeled common blocks, the programmer omits the label designation between the slashes.

The unlabeled common block can also be defined in a separate COMMON statement as shown

in the first format above.

For example, COMMON statement 1 below is the equivalent of COMMON statements 2

and 3.

1. COMMON /LABEL1/U, V(2,3), VARIBL/ /A, B, C, D(3,4), E

2. COMMON A, B, C, D(3,4), E

3. COMMON I LABEL1/ U, V(2,3), VARIBL

In each case, an unlabeled common block is defined that contains variables A, B, C, and E,

and array D. A single labeled common block is defined that contains variables U and VARIBL

and array V.

Variables and arrays are stored in each common block in the order in which they appear

in the COMMON statement. Equivalent variables in different programs must have exact

positional correspondence in the COMMON statements.

For example, program A in Figure 4-2 has three variables X, Y, and Z, which are

equivalent to three variables in program B, CAT, RAT, and BAT, respectively. In the figure,

a labeled common block called LABELl is constructed to provide the required equivalence.

Since X is equivalent to CAT, the two variables are assigned corresponding positions in their

respective COMMON st'}tements. Similarly, the remaining variables are equated by positional

correspondence.

4-3

I

SECTION IV. SPECIFICATION STATEMENTS

BLOCK III BLOCK #2 BLOCK 113

~ I LAI},EL , ,LAI},EL ,

COMMON /LABELl/,A, B, C: D(3, 4), /LABEL2/~/LABEL3 ZU, V(2, 3), VARIBL

Variables and Ar- Variables Variables and Array
ray in Block III in in Block 113

Block 112

Figure 4-1. COMMON Statement for Three Labeled Blocks

Program A:

COMMON /LABELl/X, Y, Z

Program B:

COMMON /LABELI/CAT, RAT, BAT

Memory
Assignment

2 3

x Y Z

CAT RAT BAT

Common block "LABELl"

Figure 4-2. Communication Via Positional Correspondence

The size of a common block in a program (or subprogram) is the sum of the storage loca­

tions required for all the elements declared (through COMMON and EQUIVALENCE statements)

to be in that block. The sizes of identically labeled common blocks must be the same in pro­

grams which are to be executed together; i. e. , they must have the same total number of variables

and/or array elements. The sizes of unlabeled common blocks in programs which are to be

executed together need not be the same.

An array may be dimensioned in a COMMON statement by referencing the highest subscript

of the array. For example, the statement

COMMON A(3, 4)

dimensions array A as a three-by-four array and places it in the common region as shown

below:

Memory
Assignment.---~-.--~-.--~-'--~-'r-~-'r-~~r-~--r-~~~~~'-~~'-~~-r~~,

4-4

SECTION IV. SPECIFICATION STATEMENTS

There are two ways to equate common elements which have different positions within a

block. Consider the statement in program 1:

COMMON A, B(2, 2), C, D, E

If four variables in program 2 are equivalent to A, C, D, and E, program 1 may be

reconstructed to include labeled common blocks as follows:

COMMON / LABELA/ A, C, D, E/ / B(2, 2)

Program 2 would contain the statement:

COMMON/ LABELA/ ALPHA, BETA, GAMMA, PSI

As an alternative to changing program 1 to include a labeled block, program 2 may

introduce a dummy array to "space over" the uninteresting portion of the common block. Spac­

ing over array B is illustrated in Figure 4-3.

Program 1:

COMMON A, B(2, 2), C, D, E,

Program 2:

COMMON ALPHA, DUMMY (4), BETA, GAMMA, PSI

Memory
Assignment:

A

ALPHA

2

B(l, 1)

DUMMY(l)

3 4

B(2,1) B(l,2)

DUMMY(2) DUMMY(3)

5 6 7

B(2,2) C D

DUMMY(4) BETA GAMMA

Figure 4-3. Use of Dummy Array to Space Over Common Area

EQUIVALENCE STATEMENT

8

E

PSI

The EQUIVALENCE statement permits two or more variables or array elements to share

the same memory location. The statement makes it possible to conserve required memory

space or to establish two or more names for the same variable.

An EQUIVALENCE statement has the form:

EQUIVALENCE (vIa' v lb ' vIc' .•.), (v2a ' v 2b' v 2c ' ••.), •••

4-5

SECTION IV. SPECIFICATION STATEMENTS

Where: are the names of variables or array elements that are
to share the same memory location.

are the names of variables or array elements that are
to share another memory location.

All of the variables enclosed within a set of parentheses are assigned to the same location;

hence, they are called an equivalence set. The maximum number of unrelated equivalence sets

is 64. There may be any number of variables within one set of parentheses, and any number of

sets of parentheses in a single EQUIVALENCE statement. Variable names must be separated by

commas, as must sets of parentheses.

An EQUIVALENCE statement may relate single variables to each other, entire arrays

to each other, elements of an array to single variables, or vice versa. Array elements may

appear in EQUIVALENCE statements. An element of a two-dimensional array may be expressed

in an EQUIVALENCE statement in either of two ways.

1. It may be expressed exactly as in a DIMENSION statement; i. e. , when the
element is part of a two-dimensional array, it may be written (within pa­
rentheses) as two integer constants separated by a comma.

Example:

Element A (2, 3) of the two-dimensional array A (3, 3) may be equivalenced
to variable C(7) of the one-dimensional array C(lO) as follows:

EQUIVALENCE (A(2, 3), C(7))

2. It may be expressed as the equivalent single-dimensioned subscript that
shows the order in which the element is stored. Refer to Figure 1-4.
The circled numbers indicate single-dimensioned subscripts of the two­
dimensional array shown.

Example:

Element A (2, 3) of the two-dimensional array A (3, 3) may be equiva­
lenced to variable C(7) of the one-dimensional array C(10) by single­
subscript method as follows:

EQUIVALENCE (A(8), C(7))

When one element of one array is equivalenced to an element of another array, the re­

mainder of the array elements are automatically equivalenced. The declared equivalence of

the two elements determines the positional correspondence of the rest of the elements.

Example:

Memory
Assignment

DIMENSION A(7), B(3, 3)
EQUIVALENCE (A(3), B(2, 1))

1 f 2 3 4 5

A(l) A(2) A(3) A(4) A(5)

B(l, 1) B(2,1) B(3,1) B(I,2)

4-6

6 7 8 9 10

A(6) A(7)

B(2,2) B(3,2) B(I,3) B(2,3) B(3,3)

SECTION IV. SPECIFICATION STATEMENTS

It is permissible for a variable or an element of an array to appear in both a COMMON

statement and an EQUIVALENCE statement, provided that the common region is not extended

in such a way that one of the following three rules is violated.

1. Identically labeled common blocks in programs that are to be run together
must be of the same size. (The unlabeled common region is excluded from
this restriction.)

2. The common region may be extended only in the direction away from the
origin (i. e., to the right in the diagrams shown in this manual). An illegal
extension of common region is shown in Figure 4-4. Figure 4-5 shows a
legal extension of the common region.

3. El~ments in the common region may not be equivalenced to other elements
in the common region.

COMMON A, B, C,

DIMENSION D(3)

EQUIVALENCE (B, D(3»

Memory
Assignment 1

A

D(Z)

Z

B

D(3)

Figure 4-4. Illegal Extension of Common Region

COMMON A, B, C
Memory
Assignment

DIMENSION D(3)
Z 3

EQUIVALENCE (B, D(1»

I A B C
D(I} D(Z} D(3)

Figure 4-5. Legal Extension of Common Region

3

C

A variable or array element that is equivalenced to an element in the common region is

itself treated as though it were assigned to the common region, even if it does not appear in a

COMMON statement.

DATA-TYPE STATEMENTS

There are three statements used to declare explicitly the data types of variables, arrays,

or functions. These are of the form:

REAL

f
INTEGER

LOGICAL

Where: vI' vz, v3 .•. are the names of variables, arrays, or functions.

4-7

SECTION IV. SPECIFICATION STATEMENTS

As described in Section I, real and integer variables, arrays, and functions need not be explicit­

ly declared in a data-type statement. If the first letter of the variable name begins with I, J,

K, L, M, or N an integer type is implied; all other first letters imply real data. A data-type

statement may be used to override the implied data type and must be used to declare logical

type data.

Once declared, data types remain constant throughout the program and cannot be changed.

Therefore, it is illegal for the same name to appear in two different data-type statements.

Individual elements of an array assume the same data type that is associated with the array.

Arrays can be dimensioned in a data-type statement, exactly as in a DIMENSION or COMMON

statement.

EXTERNAL STATEMENT

Appearance of a name in an EXTERNAL statement indicates to the compiler that the name

is that of an external procedure (function or subroutine). An EXTERNAL statement has the form:

EXTERNAL a, b, c, .•..••

Where: a, b, c, are the names of functions and/ or subroutines that appear in the
call argument lists to function or subroutine subprogranls.

An EXTERNAL statement is used for function or subroutine names when the name appears ,-/,

in the argument list of a CALL statement or a function reference argument list and has not

previously been declared as an external procedure by its use in a CALL statement or function

call. Thus, any subroutine, A, to be used as a call argument, must appear in an EXTERNAL

statement if it does not appear in a CALL statement as:

CALL A (Refer to Section III).

Any function subprogram, B, to be used as a call argument, must appear in an EXTERNAL

statement if it does not appear in a function call in an arithmetic or logical expression such as:

D = B(E, F, G) (Refer to Section VI).

The name of a function or subroutine may appear in both an EXTERNAL statement and a

data-type statement. The name of a compiler-supplied function may not appear in an external

statement. (Refer to Section VI for compiler-supplied functions.)

In the example below, the function subprogram FSUB is to be included in the argument

list to function subprogram ABLE. Thus, the name FSUB must be declared in an EXTERNAL

statement in the programfwhich calls subprogram ABLE to distinguish it from the names of

variables in the argument list, such as Rand T.

4-8

SECTION IV. SPECIFICATION STATEMENTS

Excerpt from Main Program

EXTERNAL FSUB

4 Y = R + ABLE (FSUB, R, T)

Function Subprograms ABLE and FSUB

FUNCTION ABLE (XFUN, A, B)
20 ABLE = XFUN (A) + B*~'2

RETURN

END

FUNCTION FSUB (X)

30 FSUB = X~'*3 + 25.

END

At statement 4 in the main program, subprogram ABLE is called. The real arguments

passed to ABLE are the subprogram name FSUB and the numeric values of Rand T. These

real arguments are substituted for their respective dummy arguments, ZFUN, A, and B. When

execution of statement 20 begins, the dummy subprogram name, XFUN, is encountered. This

calls the real subprogram FSUB. FSUB is executed, and when the END statement is encountered,

control returns to statement 20 of subprogram ABLE. Execution of subprogram ABLE continues

until either the RETURN or the END statement is encountered, at which time control returns to

statement 4 of the main program.

TIT LE STATEMENT

A TITLE statement has the form:

I f). TIT LE pr gnam I
The TITLE statement is an optional statement for naming a main program. Column 1 is left

blank; the word TITLE appears in columns 2 through 6; and the program name is taken to be

the six characters that appear in columns 7 through 12. If no TITLE statement is used and

there is no FUNCTION or SUBROUTINE statement, the compiler automatically considers the

program to be a main program and assigns a name to it.

DATA INITIALIZATION STATEMENT

When an object program is loaded for execution, initial values can be assigned to variables

and/ or array elements by means of a DATA initialization statement. The process of assigning

starting values is called initialization. No variable or array element can be initialized in a
(

DATA initialization statement if it has been assigned to a common or labeled common block in a

COMMON statement.

4-9

SECTION IV. SPECIFICATION STATEMENTS

A DATA initialization statement has the form:

Where: Each k is a list containing names of variables and array elements which
are to be assigned initial values. No dummy variables are permitted.

Each d is a list of constants, signed or unsigned. The values of these
constants are assigned to the variables of the preceding variable list
when the program is loaded.

An unsigned integer constant, j, and an asterisk may precede any con­
stant in the constant list. That constant is then repeated j times.

The variable list and the constant list that follows must have a one-to-one correspondence, since

the value of the first constant will be assigned to the first variable, the value of the second

constant will be assigned to the second variable, etc. As long as this one-to-one correspondence

is maintained, the lists may have any over-all length up to the capacity of nine continuation lines.

Hollerith and octal constants, as well as integer constants, must have corresponding

integer variables, either beginning with I, J, K, L, M, or N or previously typed in an INTEGER

statement. Variables corresponding to logical constants must have been previously defined in a

LOGICAL statement.

The constant list is bounded by slashes. Commas separate individual entries in each of

the lists. The DATA initialization statement must follow all other specification statements in

the source program and must precede the first executable statement as shown on page 1-6.

Example:

DATA~ 29. 3, 5, 3H5KC, 403777! .,.

Variables Constants

At loading time the following data assignments are made:

Constant

29.3
5

5KC
3777

Variable to Which Constant is Assigned

A
I
J
K

If a number of variables are to be initialized to the same value, the appropriate constant

in the listmay be preceded by a repetition constant and an asterisk as shown in the example below.

Example:
f

may be written equivalently as:
DA T A A, B, C / 1 . 0, 1. 0, 1. 0/

DATA A, B, ~3 *~ 0/

Repetition Multiplication
Constant Symbol

4-10

SECTION IV. SPECIFICATION STATEMENTS

Additional List Pairs

The DATA initialization statement may be expanded to accommodate more than one pair of

lists, simply by adding a comma after the previous list of constants, then adding the next list

of variables, followed by its associated list of constants and a terminating slash.

Any number of paired lists may be added in this manner (up to the capacity of 9 continu­

ation cards). The effect is the same as if one pair of long lists were written. (This option is

convenient when adding variables and initialization values in a subsequent version of the program.)

Example:

DATA A, I, J / 29.3, 5, 3H5KC/

is equivalent to: .~
\

DATA A, I, J, X, Y/29.3, 5, 3H5KC, 40. I, 2.7/

Implied DO Loops

The DATA list can include not only variables and names of array elements but also

implied DO loops. Implied DO loops are described in detail in relation to input/ output statements

in Section V. Briefly, an implied DO loop provides a shortened notation, similar to a DO loop,

for describing repetitive variables. In the DATA statement it is particularly useful for initial­

izing all or some of the elements of an array.

The general form of the implied DO loop is:

Where: Each v is a variable or array element.

i is an integer variable that controls the implied DO loop and can be
used as the subscript of array elements if present.

Each m is a parameter of the implied DO loop. They must be unsigned
integer cons tants.

m
1

is the initial value of i.

m
2

is the terminal value of i.

m3 is the value by which i is incremented at each iteration. If not
explicitly stated, m3 is understood to be 1.

Example 1: A one-dimensional array is named ARRAY. Each equivalent expression
represents the first 10 elements of ARRAY.

(

(ARRAY(I), 1= 1, 10)

is the implied DO loop equivalent of

ARRAY(I), ARRA Y(2), ARRAY(3), ARRA Y(4), ARRA Y(5),
ARRA Y(6), ARRA Y(7), ARRA Y(8), ARRA Y(9), ARRA Y(lO)

4-11

SECTION IV. SPECIFICATION STATEMENTS

Example 2: A two-dimensional array is named B. Each equivalent expression repre­
sents six elements from alternate columns of the second row of
array B.

(B(2,I), I= 1,11,2)

is the implied DO loop equivalent of

B(2, 1), B(2,3), B(2,5), B(2,7), B(2,9). B(2,11)

An example of the use of a single implied DO loop to initialize an entire array is shown

below. All 20 elements of the array named C are to be initialized with the value 0. 0. At the

same time, variable A is to be assigned a value of 5.0, and variable B a value of 3.0.

DATA A, B,

'-v--'

Variables

(C(I), I = 1,20) /

Implied
DO Loop

/

5.0, 3.0, 20 *

Repetition J i
Constant

Multiplication
Symbol

0.0 /

" Initialization
Value for

Each Array
Element

When the list contains a single implied DO loop, as in the above example, the parameters

of the DO loop must be integer constants. When the list contains a nested set of implied DO

loops (refer to next paragraph), the parameters of the outermost loop must be integer constants,

but the parameters of an inner loop may be: (1) integer constants and/ or (2) integer variables

which appear as control variables in an outer implied DO loop of the same nest. Only integer

variables may be used as subscripts of an implied DO loop appearing in a DATA statement.

When initializing an entire array, as above, it is also permissible to use an array name

alone in a DATA statement list to represent all elements of an array when the array has been

declared and dimensioned in a DIMENSION, COMMON, or data-type statement. The DATA

statement above could then have been written as:

DIMENSION C(20)

DATA A, B, C /5.0,3.0, 20'~ 0.0 /

Implied DO loops are thus most useful when applied only to a portion of an array.

Nested Pairs of Implied DO Loops

Implied DO loops can be nested to a depth of two.

implied DO loops is shown below.

4-12

The general form of a nested pair of

'-/

SECTION IV. SPECIFICATION STA TEMENTS

inner loop

outer loop

Where: vI' v 2 ' ... , v k is a list of variables or array elements

i is the control variable of the inner DO loop

j is the control variable of the outer DO loop

m l' m
2

, m3 are respectively the initial, terminal, and incr,emental
values of i.

are respectively the initial, terminal, and incremental
values of j.

An example of a nested set of two implied DO loops is given below. It is desired to initialize

with a value of 1. 0 one-half of the elements of a 10 x 10 array named C. The following statement

will initialize the elements as shown in Figure 4-6.

Array
NalIle

I

DATA A,

Control ParalIleters ParalIleters varnes .o',Inne; l",..o_P ___ O_f_O_u_t-lJ r , Loop

((*(I,J), 1=1,10), J=f. t) / 5.0,3.0,50* 1.0/ B

Inner Implied DO Loop

Outer Implied DO Loop

1,6 1,7 1,8 1,9 1, 10

2,6 2,7 2,8 2,9 2, 10

3,6 3, 7 3,8 3,9 3, 10

4,6 4,7 4,8 4,9 4, 10

5,6 5, 7 5,8 5,9 5, 10

6,6 6, 7 6,8 6,9 6, 10

7,6 7,7 7,8 7,9 7, 10

8,6 8, 7 8,8 8, 9 8, 10

9,6 9,7 9,8 9,9 9, 10

10,6 10,7 10,8 10,9 10, 10

Figure 4-6. Right-hand Portion of Array to be Initialized

4-l3

..

SECTION V

INPUT /OUTPUT STATEMENTS

Input/output (I/O) statements are the programmer's tools for directing the flow of in­

formation between peripheral devices and the central processor so that the data can be pre­

cisely understood by both man and machine. Fortran Compiler D accomplishes all actual data

transfer with a single input statement and a single output statement - READ and WRITE, re­

spectively. Associated with I/O statements are a FORMAT statement and three I/O device

manipulation statements. The FORMAT statement specifies the physical arrangement of data

on peripheral input or output media, indicates the type of input or output conversion required

between machine language and external data, and specifies editing information. The three I/O

device manipulation statements are BACKSPACE, END FILE, and REWIND.

Every READ statement involving transfer of data that is not in binary form and every

WRITE statement involving transfer of data that must be converted into other than binary form

must be accompanied by a FORMAT statement. The transfer of data in binary form means that

the data is passed and stored just as it appears in memory. No editing or conversion is applied.

FORMAT statements are nonexecutable but are interspersed with the executable program state-

~ ments. The FORMAT statement is discussed in detail beginning on page 5-11. All other I/O

statements are executable. Page references for I/O statements are given in Table 5-1. For

layouts of BCD and binary tapes, see Appendix F.

Table 5 -1. I/O Statements

I/O Statement

BACKSPACE

ENDFILE

FORMAT

READ

REWIND

WRITE

READ STATEMENT

The READ statement has the form:

,
READ (i, n) list

or: READ (i) list

Page

5-1

Reference

5-56

5-55

5-11

5-1

5-55

5-3

Where:

SECTION V. INPUT/OUTPUT STATEMENTS

n is either

1. the statement label of a FORMAT statement which
describes how the incoming data are arranged and
the type of conversion required, or

2. the name of an array in which the necessary format
information is stored.

i is a code identifying the input device (a magnetic tape unit
or card reader). It may be written as either an unsigned
integer constant (I~ i ~ 15) or an integer variable.

list is a correctly sequenced list of the names of variables,
arrays, and/or array elements that are to receive input
values at execution time. Successive names must be
separated by a comma. Since the list sequence indicates the
order (from left to right) in which the names will receive
input values, the list sequence must correspond to that of the
input data. The list may be empty.

Under the first form - READ (i, n) list - successive records of "formatted" information

(sometimes called binary-coded-decimal information) are read from the designated peripheral

unit under control of FORMAT statement n until the entire input list is satisfied. 1 If the periph­

eral device is indicated by an integer variable, the value of the variable must be set to the ap­

propriate unit number prior to execution of the READ statement. The value of this variable may

be changed during execution of the program.

Examples:

7
EAD 2,

Peripheral
Device

Indicator

READ (!UNIT,

/
Symbolic

Logical-Device
Address

(see page 5-5)

20),A, B, C(l), ARRAY,

1 Simple 'input List

Label of Governing
FORMA T Statement

FRMAT),A, B, C(l), ARRAY,

~ Simpi'e List

Array
Containing

Forma t Information

In the second form - READ (i) list -no FORMAT statement is designated because the input data

are automatically understood to be in binary form whenever this version ofthe input statement is used.

All value s read into memory by a single execution of the statement come from one logical record.

IFor convenience throughout Section V, FORMAT statement label n has been set equal to 20 in
all examples. This number is purely arbitrary. Also throughout the section, the card reader
is assigned unit number 2, the printer is assigned unit number 3 and the card punch is assigned
unit number 5. These assignments follow Honeywell conventional practice; customer installa­
tions may make other unit assignments.

5-2

SECTION V. INPUT/OUTPUT STATEMENTS

ExaInple:

READ (2),A, B, C(l), ARRAY,

/ SiInple VInPut List

Peripheral Device Indicator

An input or output list Inay contain a siInple list of naInes, an iInplied DO loop, 01" a cotnbi-

nation of the two. Integer variables in an input/ output list Inay be used in subscript expressions

elsewhere in the list, and the input value will be the value used in the subscript expression. If

an integer variable in the list is a paraIneter of an iInplied DO loop, it Inust appear prior to and

external to the range of the iInplied DO loop.

An error in a READ stateInent detected during execution of a job, such as an atteInpt to

read froIn the printer, will cause job terInination and printout of an error Inessage. (See

Appendix G.)

A WRITE or END FILE stateInent cannot be directly followed by a READ stateInent that

references the saIne device.

WRITE STATEMENT

A WRITE stateInent has the forIn:

Where:

WRITE (i, n) list, or

WRITE (i) list

n is either

1. the s tateInent label of a FORMATs tateInent which
describes how the outgoing data are to be arranged on
the output InediuIn and the type of conversion required,
or

2. the naIne of an array in which the necessary forInat
inforInation is stored.

i is a code identifying the output device. It Inay be written
as either an unsigned integer constant (1 ~ i ~ 15) or an
integer variable which Inust have a value at execution tiIne.

list is a correctly sequenced list of the naInes of variables,
arrays, and/or array eleInents which are to transInit their
associated values at execution tiIne. Successive naInes Inust
be separated by a COInIna. The list sequence Inust corre­
spond to the desired sequence of the output data.

In the forIn- WRITE (i, n) list-the output device code, i, addresses a printer, card punch,

tape unit, or other output device. Each execution initiates printing of a new line, writing of a

new tape record of forInatted inforInation, or punching of a new card (as the case Inay be) and

causes a value to be transInitted frOIn IneInory to the external InediuIn for each naIned eleInent in

5-3

SECTION V. INPUT/OUTPUT STATEMENTS

the list. Values are transmitted in the order given in the list, converted to external form (under

control of FORMAT statement n or an equivalent format array), and placed in sequential data

fields of the printed line, tape record, or punched card in the same order as they are transmitted.

The number of columns allotted to each value is specified in the FORMAT statement. Blank

spaces and titular information may be interspersed between values, when the FORMAT statement

so specifies.

Examples:

WRITE (3,

/
Peripheral

Device
Indicator

20),A, B, C(l), ARRAY,

\ Simple ;:"'tput List

Label of Governing FORMAT Statement

WRITE (!UNIT, FRMAT),A, B, C(l), ARRAY, / I Simple ~utPut List

Peripheral
Device Name of Array Containing

Indicator Format Information
(see page 5-5)

In the WRITE (i) list statement, no FORMAT statement is designated because it is auto­

matically understood that binary output is requested whenever this version of the WRITE state­

ment is use¢ no other format information is necessary. The entire string of physical records

written by a single execution of a WRITE (i) list statement is termed a logical record.

Example:

WRITE (3),A, B, C(l), ARRAY,

/ Simple 6utput List

Peripheral
Device

Indicator

If the output list has not been satisfied by the end of one line, tape record, or card, it is

possible to print additional lines, write additional records, or punch additional cards by the

same single execution of the output statement, until a value has been transmitted for every item

in the list. In such cases, the programmer must include a record terminator (slash or right

parenthesis terminating the FORMAT) at the appropriate place in the FORMAT statement (see

page 5-45) to insure that no record exceeds the maximum size of 131 print positions, or 132

tape characters, or 80 punFhed columns. If no record terminator is given where required in the

FORMAT statement and the field specifications call for more characters than the maximum

permitted in one record on the particular output device, the extra characters will be ignored.

5-4

,--

SECTION V. INPUT/OUTPUT STATEMENTS

In either form of the WRITE statement, if the peripheral device is indicated by an integer

variable (as in Example 2 above), the value of the variable must be set to the appropriate unit

number prior to execution of the WRITE statement. The value of this variable may be changed

during execution of the program. When using a variable device designation, the programmer

• must specify as a constant, somewhere in his job (possibly in a dummy input/output statement

which need not be executed), the peripheral device number of the particular input or output device

in question. Furthermore, this constant must appear in an input or output statement that is of

exactly the same type as the statement in which the variable unit designation appears. Ful­

fillment of these requirements enables the compiler to allocate the physical devices and the buffer

space for each physical device.

An error in a WRITE statement detected during execution of a job, S'uch as an attempt to

write onto a card reader, will cause job termination and printout of an error message. (See

Appendix G.)

INPUT/OUTPUT LISTS

All READ and WRITE statements make use of lists of variables, arrays, and/or array

elements to be transferred either to or from memory. The lists may be classified either as

simple lists or as lists containing implied DO loops and nested pairs of implied DO loops. These

lists are described in detail in this section. The lists apply equally to input (READ) and output

",-",' (WRITE) statements. One main difference between input and output operations should be noted,

however. An integer variable appearing as part of the control information for an implied DO

loop or in a subscript in an output list must be assigned a value prior ~ execution of the output

statement. In an input operation, the integer variable may be assigned a value during execution

of the input statement by having the input data designate the value of the integer variable.

Assignment of values to integer variables during execution of an input statement is illustrated in

this section.

Simple Lists

. A simple list is a series of names of variables, arrays, and/or array elements, with a

comma separating each two successive names, e. g.:

A, B, C(l), ARRAY

Each name in the list is called a list item. Because the list is scanned from left to right, values

are assigned to (or transmitted from) the leftmost list item first, then to (or from) the next left­

most item, and so on. Thus the transfer sequence for the above example is:

1. A

2. B

3. C(l)

4. ARRAY

5-5

I

SECTION V. INPUT/OUTPUT STATEMENTS

That is, for input operations,. the first incoming data field is assigned to variable A (under control of

the fir st field specification of the as socia ted FORMAT statement), the second incoming data field is

assigned to B (under control ofthe second field specificationofthe FORMAT statement), etc. Similar­

ly, for output operations, the value of variable A is the first value to be transmitted from memory to

the output device (under control ofthe first field specification in the associated FORMAT statement),

and so on.

A simple list may also be the name of a single variable, array, or array element.

Integer variables appearing in an input/output list may be used in subscript expressions

elsewhere in the list.

Example I: READ (2, 20) I, C (I)

Example 2: READ (2, 20) C(I), I

Because of the left-to-right scan of the list, the results are not equivalent in the two examples

above. The following rule defines how the subscript expressions are evaluated at execution time

in both cases:

If the subscript expression appears later in the list than the integer variable which
it employs (as in Example I above), the subscript expression is evaluated using the
newly read-in value of the integer variable.

If the subscript expression appears earlier in the list than the integer variable
which it employs (as in Example 2 above), the subscript expreS'Sion is evaluated
using the value last defined for the integer variable.

To illustrate: Assume that integer variable I was previously assigned a value of 3. During

execution of the READ statement, the previous value will be replaced with an incoming value of S.

Is C(I) evaluated as C(3) or C(S)? According to the rule given above, the answer is C(S) in the

first example and C(3) in the second example.

The reason for the rule is as follows. During execution of an input statement, each list

item receives the input value at the instant when the item is encountered in the sequence of

scanning the list. Subscript expressions in the list are also evaluated at the time when they are

actually encountered during the scan.

Thus, integer variable I receives its new value of S as soon as the scan encounters Iwhile

proceeding from left to right. In the first example, C(I) is evaluated as C(S) because I had just

previously assumed that new value of S. Thus, it is array element C(S) which receives the next

incoming value. In the second example, however, C(I) is encountered before the incoming value

of S is assigned to 1. Thvs, C(I) is evaluated with the value last assigned to I, which happens to

be 3. Consequently, it is array element C(3) which receives the first value of incoming data.

Then I assumes its new value of S.

S-6

•

-'

..

SECTION V. INPUT/OUTPUT STATEMENTS

The form shown in Example 1, wherein the integer variable precedes its use in a subscript

expression, is useful when it is desired to have the input data designate both the array element

and the value for that array element.

On output, the integer variable must be assigneda value prior to execution of the output state-

ment.

Short-List Notation for Input/Output of Entire Arrays

The inclusion of an array name without subscripts in an input/ output list causes values to

be transmitted for all elements of the array (assuming that the array has already been declared

and dimensioned in a DIMENSION, COMMON, or data-type declaration statement). This usage

is called short-list notation. The sequence in which the array elements are transmitted is the

same as the storage sequence de scribed on page 1-10. Only after all values of the complete array

have been transmitted is the next list item considered.

Lists with Implied DO Loops

Implied DO loops and nested pairs of implied DO loops were defined and described briefly

in relation to the lists of the DATA initialization statement. Because of the power of the implied

DO loop to save laborious and repetitious effort in writing lists, this section both repeats the

information contained on pages 4-11 through 4-13 and offers ITlore detailed explanation and exaITlple s.

When several variables and array elements are to be transferred to or from memory, the

programmer may find it convenient to incorporate an implied DO loop into the input or output

list to reduce the writing and keypunching that would be necessary if each variable or array

element were to be written as an individual item of a simple list. The implied DO loop is

particularly useful when several elements of an array are to be transferred to or from memory

but not the entire array or if all the elements are to be transferred in a sequence different from

that obtained by using the short-list notation. 1 However, the implied DO loop is useful in any case

in which iterative transfer of variables to and from memory is required.

Though not literally a DO loop, the implied DO loop has the same effect of carrying out an

iterative process, causing a control variable to be incremented after each repetition.· The portion

of a list that contains an implied DO loop is called an implicit list.

The general form of the implied DO loop is:

f

1 Although an implied DO loop could be used to transfer all elements of an array in the sequence in which
they are stored, the short-list notation method de scribed previously is more convenient and faster.

5-7

•

Where:

SECTION V. INPUT/OUTPUT STATEMENTS

Each v is a variable or array element.

i is an integer variable that controls the implied DO loop and can
be used as the subscript of array elements when present.

m
l

is the initial value of i.

m
2

is the terminal value of i.

m3 is the value by which i is incremented at each iteration. It may
be an unsigned integer constant or integer variable. If not
explicitly stated, m3 is understood to be 1.

Parentheses in a READ or WRITE statement that do not bound the peripheral device indi­

cator and FORMAT label are assumed to be the limits of an implied DO loop. Any variable or

array element within the bounds of the left parenthesis and the comma preceding the control

variable i is repeated during each iteration of the loop.

Example 1: WRITE p, 20) (A, B, C(I), I = 1, 3)

is equivalent to:

WRITE (3, 20) (A, B, C(l), A, B, C(2). A. B. C(3)

Example 2: WRITE (3, 20) (A, B, C, D, 1= 1, 3)

is equivalent to:

WRITE (3, 20) A, B, C, D, A, B, C, D, A, B, C, D

Example 3: READ (2,20) (B(l, I), 1= 1,5)

is equivalent to:

READ (2, 20) B (1, 1), B(1, 2), B(1, 3), B(1, 4), B(1, 5)

Example 4: READ (2, 20) (A(I), I = 1, 8)

is equivalent to:

READ (2, 20) A(l), A(2). A(3), A(4), A(5), A(6), A(7), A(8)

Example 5: READ (2, 20) (C(I, I), 1= 1, 6, 1)

is equivalent to:

READ (2, 20) C(l, 1), C(2, 2), C(3, 3), C(4, 4), C(5, 5), C(6, 6)

Like a simple list, a list containing an implied DO loop is scanned from left to right until

the implicit portion is encountered. Then the implied DO loop is fully evaluated before the scan

continues on to any remaining list items. The following example illustrates this.

READ (2, 20) A, B, (C(I), 1= 1, 5), D, E, F

is evaluate d as:

READ (2, 20) A, B, C(1), C(2), C(3), C(4), C(5), D, E, F

Note that all items specified by the implied DO loop appear before items D, E, and F, which are

written later in the list tllj1n the implied DO loop.

5-8

,..

-

SECTION V. INPUT/OUTPUT STATEMENTS

When a nested set of implied DO loops is encountered during the left-to-right scan,' the

complete nest is evaluated before the scan continues on to any remaining list items. (Nests of

implied DO loops and the order in which they are evaluated are discussed in detail below.)

The control variable, i, and any parameter (mI' m2' or m3) that is written as an integer

variable may also appear elsewhere in the list, either as a single variable or in a subscript

expression (as part of an array element name), subject to the following restriction:

During input operations, none of the parameters of an implied DO loop may appear
ina simple list that is enclosed within the bounding parentheses of the same
implied DO loop.

This rule follows from the restriction governing conventional DO loops that none of the DO pa­

rameters may be altered within the range of the DO loop (see page 3-5).

Examples:

Valid: READ (2, 20)

Invalid: READ (2, 20)

A, N, B(N), (C(I), 1=1, N)

~~rmissibl/
A, (N, C(I), 1= 1, N)

1 'Illegal/ ~
Bounding Bounding

Parenthesis Parenthesis

In both examples above, N is a parameter of the implied DO loop, because it represents

the terminal value (m2) of the control variable. In the second example, N also appears in a simple

list enclosed within the bounding parentheses of the implied DO loop of which N is a parameter.

This condition is not permitted in an input list, because the parameters of an implied DO loop

may not be altered within the range of the implied DO loop.

When a parameter of an implied DO loop appears elsewhere in the list without violating the

above restriction, the value of the parameter at evaluation time depends upon which is en­

countered first in the left-to-right scan of the list, the other appearance(s) or the parameter. The

rules are exactly analogous to those given for integer variables used as subscripts elsewhere in

a list (pages 5-6 and 5-7). For the same reason, array element B(N) in the example above is

evaluated with the new value of N that is received during execution of the READ statement, not

the previous value. For the same reason, the value of parameter N in the above example is also

the newly received value of N.

Nested Pairs of Implie<! DO Loops

Implied DO loops can be nested to a depth of two. Nested pairs of implied DO loops are

particularly useful in describing the elements of a two-dimensional array. The general form of

a nested pair of implied DO loops is shown below.

5-9

•

SECTION V. INPUT/OUTPUT STATEMENTS

'~------------~v~--------------J/
inner loop

'~----------------------------~v~----------------------------~/
outer loop

Where: vI' v2"'" vf is a list of variables or array elements.

uI' u2"'" uk is a list of variables or array elements or may be empty.

i is the control variable of the inner DO loop.

j is the control variable of the outer DO loop.

m l' m2' m3 are respectively the initial, terminal, and incremental
values of i.

nl' n 2 , n3 are respectively the initial, terminal, and incremental
values of j.

Example 1: READ (2, 20) ((ARRAY (I, J), J = 1,4), I = 1, 9, 2)

is equivalent to:

READ (2, 20) ARRAY (1, 1), ARRAY (1, 2), ARRAY (1,3), ARRAY (I, 4),

ARRAY(3, 1), ARRAY (3, 2), ARRAY (3, 3), ARRAY (3, 4),

ARRAY (5, 1), ARRAY (5, 2), ARRAY (5, 3), ARRAY (5, 4),

ARRAY(7, 1), ARRAY (7, 2), ARRAY (7, 3), ARRAY (7, 4),

ARRAY (9, 1), ARRAY (9,2), ARRAY (9, 3), ARRAY (9,4)

Interpretation: Read in 20 values, storing them as follows:

1. Store the first four as the first four elements of the first row of ARRAY.

2. Store the second four as the first four elements of the third row.

3. Store the next four as the first four elements of the fifth row.

4. Store the next four as the first four elements of the seventh row.

5. Store the last four as the first four elements of the ninth row.

This statement may be thought of as "being equivalent to the nest of DO loops:

DO 1 0 I = 1, 9, 2
DO 10 J = 1, 4

10 READ (2, 20) ARRAY (I, J)

Note that the incrementing value of the inner implied DO loop (m3) is
automatically understood to be one, since it is not explicitly stated.

,
Example 2: READ (2, 20) ((ARRAY(I, J), I = 1, 4), J = 1, 9, 2)

is equivalent to:

5-10

--

SECTION V. INPUT/OUTPUT STATEMENTS

READ (2, 20) ARRAY (1, 1), ARRAY (2, 1), ARRAY (3, 1), ARRAY (4, 1),

ARRAY (1, 3), ARRAY (2, 3), ARRAY (3, 3), ARRAY (4, 3),

ARRAY (1, 5), ARRAY (2, 5), ARRAY (3, 5), ARRAY (4, 5),

ARRAY (1, 7), ARRAY (2, 7), ARRAY (3,7), ARRAY (4,7),

ARRAY (1,9), ARRAY (2, 9), ARRAY (3,9), ARRAY (4, 9)

Interpretation: Read in 20 values, storing them as follows:

1. Store the first four as the first four elements of the first column of ARRAY.

2. Store the second four as the first four elements of the third column.

3. Store the next four as the first four elements of the fifth column.

4. Store the next four as the first four elements of the seventh column.

5. Store the last four as the first four elements of the ninth column.

I/O Lists Used with Binary Tape Input or Output

When an unformatted record is read in or written out under an I/O statement of one of the

following forms:

READ (i) list

WRITE (i) list

care must be taken to see that the list variables match the data items in the record. If a list is

longer than the number of data items in the record, the remainder of the list variables will be

read in or written out using the last value in the floating-point or integer accumulator as ap­

propriate. This practice is not recommended.

FORMAT STATEMENT

General Form of the FORMAT Statement

When incoming data is not already in binary format and when outgoing data requires format

other than binary code, a FORMAT statement must accompany the READ or WRITE statement.

The FORMAT statement describes the external arrangement and type of conversion of incoming

or outgoing data in terms of field specifications. Because a thorough knowledge of the FORMAT

statement is essential for Fortran programming and because of the many optional forms that

the statement and its specifications may have, this section contains considerable detail. A

guide to the contents of tile section is given in Table 5-2.

5-11

SECTION V. INPUT/OUTPUT STATEMENTS

Table 5-2. FORMAT Statement Summary

Page Reference
(Definition pages

Subject and Format Explanation are in parentheses)

{
n FORMAT (51, 52: ... , s",) Simple FORMAT statement

n = statement label (5-12-5-13)
each Si = one field specification.

FORMAT
n FORMAT (51' 52'·· .,5m /5'I' 8 1

2"", Sim/S" I , 5"2'···' 5"m/ / /) Multiple-record form where a slash (/)
statements

marks the end of a unit record.
(5-13), 5-45 to 5-51

n FORMAT (51' 52' g(53 , 54' 55)' 56' g' (57' g!!{SS' 59))· .. ,'h,) Group repetition form where each g
shows the number of times the following (5-14), 5-40 to 5-41
group of field specifications is repeated.

A (Aw or rAw) Alphabetic conversion. (5- 31)

E (Ew.d, rEw.d, sPEw.d, sPrEw.d) Explicit exponent conversion. (5-21) to 5-27

F (Fw.d, rEw.d, sPFw.d, sPrFw.d) Fixed-point decimal conversion. (5-21) to 5-25

Conversion G (Gw.d, rGw.d, sPGw.d, sPrGw.d) Generalized (F or E) conversion. (5-21) to 5-28
Codes and

(wH) Hollerith conversion (includes Hollerith the Field H
(5-31), (5-33) to 5-36

Specifications characters: wHh l h 2··· h n)·

Applicable
I (Iw or rIw) Integer conversion. (5-18) to 5-20 to Each

Code L (Lw or rLw) Logical conversion. (5-29) to 5-31

0 (Ow or rOw) Octal conversion. (5-28) to 5-29

X wX Blank c onve r s ion. (5-36) to 5-37

{
w Field width {used in all field

(5-16) to 5-18
specifications}.

Other
Decimal position indicator (used in all (5-18) Components d

of the E, F, and G specifications).

Field r Field repetition constant (optional). (5-39) to 5-41
Specification

sP Scale factor (optional). (5-41) to 5-45

{
Scanning Scanning and rescanning of FORMAT

(5-47) to 5-51
Other

statements to satisfy I/O lists.

Subjects Carriage Control On printer output. 1 st character of
Covered 1st field specification of a unit record (5-37) to 5-39
in this controls carriage.
Section

Object-hme Formatting Reading a format description into an
array at object time.

(5-51) to 5-55

The general form of the FORMAT statement is:

Where: n is an identifying statement label (in columns 1-5).

(Sl, S2,.··., Sm) is a list of field specifications, and each Si is a field speci­
fication describing one of the data fields to be transmitted
by an input or output statement. The order in which the
field specifications are written must correspond to the se­
quence in which the data fields exist (or will exist) in the
external medium.

Each field specification, Si, has one of the following forms:

Ew.d Fw.d Gw.d Aw Iw Lw Ow wH wX

rEw.d rF,w. d rGw.d rAw rIw rLw rOw

sPrEw. d sPrFw.d sPrGw. d
sPEw. d sPFw.d sPGw.d

5-12

-;

'-

SECTION V. INPUT/OUTPUT STATEMENTS

Where: Each capital letter E, F, G, A, I, L, 0, H, and X is a conversion
code signifying a particular type of conversion from external to
internal representation (or vice versa). The codes are defined in
Table 5-5 and are discussed in detail on pages 5-16 through 5-37.

w is the field width of the data field.

d specifies the position of the decimal point (if any) in the data field.

s represents an. optional scale factor followed by the letter P.

r represents an optional field-repetition constant.

Figure 5-1 illustrates some of the different components of the FORMAT statement. Shown

in the figureis the following hypothetical FORMAT statement, describing 10 data fields, each

of which requires a different type of conversion:

20 FORMAT (IX, E7.0, F5. 1, GI5. 5, A3, 15, L4, 010, IOHHOLLERITH~, EIO.2)

In Examples A, B, C, and D of the figure, different points of the same statement are highlighted:

A emphasizes field specifications, B the conversion codes, C the field widths, and D the decimal

positions. In E, a field-repetition constant precedes each field specification which may optionally

include one. In F, a scale factor precedes each field specification which may optionally con-

tain one.

There are two variations of the general FORMAT statement: the multiple -record form and

the group-repetition form. The multiple -record form punctuates field specifications with

slashes. A slash is a record terminator signifying the end of a unit record. A unit record is

defined as any of the following:

1. On a printer page, it is a single line of up to 131 characters.

2. On a tabulating card, it is the entire card of up to 80 characters.

3. On a magnetic tape, it is either of the fo110 wiu,g:

a. a formatted (i. e., binary-coded-decimal) record representing
a card image or printer-line image. Such a record may con­
tain up to 132 characters.

b. a logical record composed of any number of physical records
of data in the form of its internal representation.

Example s of the multiple - record form:

1. 20 FORMAT (416, FI1. 4/5F9. 2/ -3PF8. 4, OP2F7.2, F9. II)

2. 20 FORMAT (416, FI1.4//5F9.2///317, 4E6.3/)

Multiple records also result when a FORMAT statement contains fewer field specifications than

the number of variables' in its associated I/O list. When the right parenthesis is encountered,

the FORMAT specifications will be rescanned until the I/O list is satisfied. Multiple -record

forms and rescanning are described in detail on pages 5- 45 through 5-51.

5-13

SECTION V. INPUT/OUTPUT STATEMENTS

20 FORMAT (U1, I&'~:£ i1 , I~r!~,kl ' [Gti~i! ,1,1 ' lXiJ ' [ijJ , [ldJ, 10 Uti , Is .0. HHO~a~I;:H41 ~)
A. Field Specification

20 FORMAT (111, ill 7 • a , [il 5. I , ~ 15 • 5 , ~3 , fj 5 , ~ i· 4, !iJ I a , I a riI HOLLERITHA , [iJ 10.2)

-
B. Conversion Code

lX, EI I· II I • Ii II IlPl (1.2) 20 FORMAT (a F I G 5 , A I L .. 0 HHOLLERITHA, E , , , , ,

C. Field Width, w

20 FORMAT (IX, E 7 • Il .. , F 5. 00 "", G15. I A 3, I 5 , L 4, o I a , I a HHOLLERITHA, E 10·1)

D. Decimal Position, d

20 FORMAT (IX, I E7. a , !ill F5 • I , III G15. 5, I A 3, I I 5 , I L 4, Ii 0 I a , I o HHOLLERITHA, EIO.2)
',/"

E. Field-Repetition Constant

20 FORMAT (lX, ill E7. 0, ~ ':'"'n' "," F5. I (il '<&I',,~
2GI5.5, A3 , I 5 , 0 1 0, 10HHOLLERITHA EIO.2)

F. Scale Factor

Figure 5-1. Example Highlighting Different Components of FORMAT Statement

The second variation of the FORMAT statement is the group-repetition form. This form

permits repetition of one or more field specifications without rewriting each specification. A

repetition constant precedes the group of field specifications, which is set off by parentheses.

For example: 20 FORMAT (Fll. 2, 2(18, F9.2»

is equivalent to

20 FORMAT (Fll.2, 18, F9.2, 18, F9.2)

The group-repetition form is further described on pages 5-40 and 5-41.

Every FORMAT statement must be identified by a statement label, since it will be refer­

enced in an input or output statement (or perhaps both). The word FORMAT must be followed

by a left parenthesis. The last thing in the entire statement must be a right parenthesis.

Successive field specifications must be separated from each other by a field separator, i. e. ,

a comma, slash (I), or consecutive slashes. However, the comma and slash do not have the

same meaning, since each slash also indicates the end of a unit record. If a right parenthesis

is followed by a comma, the comma is redundant; it mayor may not be written. If it is not

written, the right parenthesis will serve as the field separator. A comma should not appear

before the last right parenthesis, but any number of consecutive slashes may appear there.

An error in a FORMAT statement detected during execution of a job will cause job termi-

nation and printout of the following error message: -'1

ILLEGAL CHARACTER IN FORMAT STATEMENT. SEE END OF LINE BELOW.
(Next line contains the FORMAT statement up to the point of error.)

5-14

-.

SECTION V. INPUT/OUTPUT STATEMENTS

Contents of the Field Specification

The field specification supplies the information shown in Table 5-3 concerning a data field.

Table 5- 3. Contents of the Field Specification

Representation of the Information in the
Information Field Specification De scription

Conversion A single capital letter (A, E, F, G, H, Designates the type of conversion re-
Code I, L, 0, or X as given in Table 5-5.) quired to transform an incoming value

to binary or an outgoing value to the re-
quired external representation (Table
5-5).

w
Conversion For E, F, G, I, and 0 conversions, Indicates the total number of columns to
Field Width w < 32. be used as a data field for a single

For A, H, and X conversions, conversion.
w $ unit record length, lli

where: u = 80 for punched cards
132 for BCD tapes
131 for printe r line s

Decimal d (0~d$31) Indicates the num.ber of places after the

Position decimal point for conversions involving

Indicator decimals, i. e. , E, G, and F.

Field- r (O~ r~ 63) Indicates the num.ber of times that the

Repetition field specifications which follow are to
Constant be repeated.

Scale Factor sP (s = a signed or unsigned integer Indicates that the decimal point of the
is always followed by incoming and outgoing data is to be
the capital letter P) shifted right or left.

Every field specification mus t indicate the type of conver s ion involved, us ing the appropriate

conversion code, and must also indicate the width of the field. In addition, all data represented

internally as floating-point decimal (i. e. , E, F, and G codes) must indicate the decimal position.

Field-repetition constants and scale factors are optional information applicable only to certain con­

version codes. In all, there are three general forms of field specifications as indicated in Table 5 -4.

Table 5-4. Field Specification Formats

E, F, or G Conversion A, I, L, or o Conversion Hor X Conversion

E w . d A w w H
F w d I w
G w . d L w w X

0 w

~,.-/'-..~~ ~r-I'-.. ~~
Conversion Field Decimal Decimal Conversion Field Field Conversion

Code Width Point Position Code Width Width Code
Indicator .

Scale factor and/ or field-repetition con- Field-repetition No options.
constant may precede conversion code. constant may pre-

cede the conver-
sion code.

5-15

SECTION V. INPUT/OUTPUT STATEMENTS

Field specifications written without scale factors or field-repetition constants are called

basic field specifications. The contents of basic field specifications are described in the fol­

lowing paragraphs.

Conversion Codes

There are nine conversion codes used in Fortran D language, which are defined in Table

5-5. The general form of field specification applicable to each conversion code is also given

in the table.

Table 5-5. Conversion Codes

Code Used External Internal General Fo·rms
Data Type to in Field Representation Repre s entation of the Field
be Converted Spe cifica tion of Data of Data Specification

Alphabetic A Characters of Fixed-point binary Aw
Fortran set equivalent of external rAw - -

representation.

Explicit E Real Floating -point decimal Ew.d
exponent rEw.d

sP;Ew.d -
sPEw.d - - - -

Fixed-point F Real, without Floating-point decimal Fw.d - -
decimal explicit exponent rFw.d

sPrFw.d -
sPFw.d - - -

Generalized G Real, with or Floating-point decimal Gw.d
without exponent rGw.d

sPrGw.d - - - -
sPGw. d - -

Hollerith H Characters of Fixed-point binary wH -
Fortran set equivalent of external

representation.

Integer I Integer Fixed-point binary Iw
rIw

Logical L "T" or "F" Fixed-point binary, Lw
using only the rightmost -

rLw
charar:ter of thE' fiplrl - -

Octal 0 Octal integer Fixed-point binary Ow -equivalent of external rOw - -
representation.

Blank or Skip X Not applicable Not applicable wX -

f

Conversion Field Width

The field width for a single conversion, '.!!, represents the total number of columns or

positions assigned to a single datum. For all real conversions (E, F, and G) and for integer

5-16

SECTION V. INPUT/OUTPUT STATEMENTS

and octal conversions (I and 0), the conversion field width cannot exceed 32. Hollerith, alpha­

betic, and blank conversions (H, A, and X) may be assigned a number of positions up to the

limit for the unit record of the external medium. The unit record limit for punched cards is 80,

for BCD tapes 132, and for printed lines 131. Every consecutive position of the external medium

from column 1 through the last column used must be considered as part of the data field, includ­

ing blanks.

Every distinct input value is said to occupy one data field of the input medium, regardless

of how many card columns the value requires. One or several data fields can occupy a single

punched card. Different values on the same card can be of different data types. In Figure 5-2,

six data fields are shown; two are integer and four are real.

W=6 W=II W=8 W=9 W=7 W=5
00000000000000001000000000001000
12341'7"~lltlU141Idl1nda~nn~~.va~»~n»~».n.D~4IU4~"U.~~~~~~~~"~~N"Y~U~M~.~A.Nl'nnHn~nDn.

Illllll111

222221222122222222221222222222212222221222

33~3333333131333333331333333~133133333333331133333333333333333333333333333333333

444444444444441444444414444444444144

5551555555515551555555515555555555555551551555555555555555555555555555SS55555555

666666666666666666666666166666666666ij666

'111111111111111111111111 J 111111111111717 71111111117111 J 1111111111111111111111111

88888888888818888888888888888188888888888888188888888888888888888888888888888888

99991999999999999999991999919919
12345;71110111213'41~K1JI'1'NVnn~~NVU~»lIUUW~~D.~~~U""~~~qU~~UU~"~~~9U~U~"~.~Mnm71~nM~~nnD.

Figure 5-2. Data Fields and Field Widths

The limits of conversion field width are, in general, set for a larger number of positions

than a single datum can occupy. When converting data to output format, only data converted

under H and X conversion codes can occupy the full conversion field width of up to unit-record

length. All other data are limited by the internal fixed-point or floating-point precision set by

the programmer for a job and described in detail in Appendix C. If the conversion field width

has additional positions, they will be filled with blanks. The representation of output is shown

for each conversion code on pages 5-19 to 5-31. If the conversion field width is less than that

required by the datum, an overflow condition will occur. Overflow conditions are also described

for each conversion code on pages 5-19 to 5-31.

The programmer can specify the precision of an internal, floating-point number as between

2 and 20 characters in the mantissa, or he can permit automatic assignment of precision of seven
f

characters. The number of digits in the mantissa of a real number being converted to output

form under E, F, or G conversion can therefore be between 2 and 20, depending upon ~he floating­

point precision. On output, real data are right justified within their allotted conversion field widths.

5-17

SECTION V. INPUT/OUTPUT STATEMENTS

A logical datum is stored internally only in the low-order six bits of a location and appears

on output as either T or F, right justified in the conversion field.

An octal datum is stored internally in a fixed-point field. From 6 to 24 octal digits can be

stored in from 3 to 12 characters. Octal digits appear on output left jus tified in the conversion field.

An alphabetic datum is stored internally in a fixed-point field, which the programmer can

specify between 3 and 12 characters. If not specified by the programmer, a precision of three

characters is assigned. Alphabetic characters appear on output left justified in the conversion field.

An integer datum is stored internally in binary in a fixed-point field. From 5 to 20 integer

digits can be stored internally in binary in from 3 to 12 characters. On output, integer digits

are right justified in the conversion field width.

Decimal Position Indicator

The number of places to the right of a decimal point is expressed by d, an unsigned decimal

number greater than or equal to 0 and less than or equal to 31. Decimal position indicators are

expressed for all E, F, and G conversions. Use of a decimal point in an incoming datum for E,

F, or G conversion is optional, since the decimal position indicator will specify its position.

However, if a decimal point is expressed in the datum, its position in the datum will determine

the value stored in memory. The decimal position indicator in the FORMAT specification, if

different from the actual decimal point, will be ignored.

Basic Field Specification for Integer Conversion

The basic form of the Integer Conversion is:

INPUT

Used in conjunction with an input statement, an Iw field specification converts an incoming

integer to internal, fixed-point binary form. Precision of integer data is from 3 to 12 characters

(5 to 20 digits), as described in Appendix C. When a minus sign precedes an integer, a space

must be allotted in the field width for the sign. Use of a plus sign is optional and no space need

be allotted for the positive sign. When a sign is included, it may be followed immediately by the

integer or by any number of blanks, then by the integer. Any embedded or trailing blanks in the

incoming integer data field will be stored as zeros. Note that Honeywell uses an upper case

delta (.~) to denote a blank.

Examples:

Incoming
Inteser

12345

+12345 f

6.6. -12345

+6.1236.5

123456786.6.6.6.

Field
Width

5

6

8

7

12

Field
Specification

15

16

18

17

Il2

5-18

Decimal Representation
of Value Stored Internally

+12345

+12345

-12345

+12305

+123456780000

-..

--

SECTION V. INPUT/OUTPUT STATEMENTS

The five integers in the preceding examples can be read into memory and converted to

internal form by means of the READ and FORMAT statements shown in Figure 5- 3.

An illegal character in the incoming integer data will cause termination of the job. An

illegal character is any character not 0 through 9, a blank, or an initial plus or minus. An

illegal data character causes the following printout:

ILLEGAL CHARACTER IN INPUT DATA. BAD RECORD IS PRINTED BELOW.
(Next line shows the contents of the bad record.)

OUTPUT

00
1 2 3 • 5 i 7 8 9 10 11 12 13 ,. 15 16 11 18 '9 2fI 21 22 23 24 25 26 27 28 29 30 31 32 J3 34 3S 36 31 38 J'l 40 41 42 43 44 4~ 46 41 48 49 50

11111 1111111 1 llll lIlt 1111 111 11 I 1 I 11 11 111 1 1 1 11 1 111 1

212222212222222122222212222122222222222222222222

33133333133333331333333133331333333333333333333333

44414444414444444144444444444144444444444444444444

5555155555155555551555555155 515555555555555555555

READ(2,20)I, J,K,L,M
20 FORMAT (15.16.18.17,112)

Figure 5- 3. Input of Integer Data

Used in conjunction with an output statement, an Iw field specification causes conversion

from internal, fixed-point binary form to an external integer. In the output data field, digits are

right justified on a background of blanks when the field width is wider than necessary to accom­

modate all the characters. If the value is negative, a minus sign immediately precedes the num­

ber. Positive integers appear without the plus sign. However, a space is allowed for the sign,

whether plus or minus, when determining the field width of the output data field.

Examples:

Integer
Variable

I

J

K

L

Value Stored
Internally

+12345

+12345

+12345

-12345

Field

Spe cification

17

16

18

16

Presentation
on Output Medium

.6..6.12345

.6.12345

.6..6..6. 1 2 3 45

-12345

The values stored internally in I, J, K, and L in the preceding examples can be converted

to integer form and printed on the on-line printer by means of the WRITE and FORMAT

5-19

SECTION V. INPUT/OUTPUT STATEMENTS

statements shown in Figure 5-4. Note that the first field specification is 17 rather than 16. This

value allows a blank first character for carriage control when printing. Carriage control is

explained on pages 5-37 through 5-39.

If an outgoing integer requires more columns of the output medium than the allocated field

width permits, truncation occurs at the low-order end of the integer. An asterisk is automati­

cally inserted as the first character of the output field to indicate that truncation has occurred;

the asterisk is followed by as many high-order digits as will fit in the remainder of the field

with a negative sign, if present.

Examples:

8 8
Values Stored Internally: +12345678 -12345678

Minimum Field Width Required in Output Medium: w= 8 w= 9

Field Width Actually Allocated in FORMAT Statement: w= 7 w= 7

Presentation on Output Medium: *123456 *-12345

0 0
0 0

0 ~12345 ~12345 M~12345 -12345 0

0 .-{6)-K6} -{8}---(6} 0

0 0

0 0

0 0

0 0

0 0

0 0

0 I· 131 '1 0

0 PRINT POSITIONS 0
0 0

WRITE (3. 20) 1, J, K, L
20 FORMAT (17,16,18,16)

Figure 5-4. Output of Integer Data

5-20

~

SECTION V. INPUT/OUTPUT STATEMENTS

Input for Conversion of All Real Data

There are three FORMAT field specifications for the conversion of incoming real data.

These are:
Fw.d

Ew.d

I Gw.d

On input, all three conversions are performed in a similar manner. An Fw. d, Ew. d, or Gw. d

causes conversion to internal floating-decimal form of an incoming real constant. Page 1-13

defines and describes real constants. Note that such constants may appear with or without

exponents.

Use of a plus sign in incoming data is optional. Any blanks embedded in the mantissa of

the constant are considered to be zeros. When an incoming constant has an exponent, the exponent

is of the general form E:l:ee, where ee is the numeric exponent. However, several simplifications

are permitted for convenience in keypunching input data, and the figure below shows equivalent

ways of punching the exponent plus two. Blanks appearing in the exponent have no effect, since

they are suppressed. A positive exponent may have its plus sign omitted or replaced with a

blank. If the first digit of the exponent is zero, it may be omitted. If the exponent appears with

a sign, the E may be omitted (as in the last two rows of Figure 5-5). The exponent need not be

right justified in the input field.

E+02

E02

E+2

E2

+02

E+02

E02

E+2

E2

+ 0 2

+2 + 2

E +02

E 02

E +2

+ 02

E+ 02

EO 2

E+ 2

+0 2

E+O 2

Figure 5-5. Twenty-One Equivalent Ways of Keypunching an Exponent of Plus Two

The field width, w, is determined by counting the number of characters in the incoming

datum. The following formula indicates how w is determined:

w= a+p+n+e+b

Where: a = the number of digits in the mantissa. For F format this would
meaIJ all digits in the datum.

p = 1 ifa decimal point is present.
= 0 if a decimal point is not present.

n = 1 if the sign of the mantissa is minus or is punched plus.
= 0 if the sign of the mantissa is positive but not punched.

5-21

I

SECTION V. INPUT/OUTPUT STATEMENTS

Where: e = 4 for any real datum with an exponent as follows:

1 character for E,
1 character for sign of the exponent,
2 characters for the exponent.

= 0 for any real datum without an exponent.

b = the number of leading or embedded blanks.

The decimal position indicator, d, represents the number of digits following the decimal

point in the incoming real datum. The decimal point need not be present in the incoming datum;

in this case, the d of the FORMAT specification will determine the position of the decimal point

of the value stored in memory. If a decimal point is present in the incoming datum, the decimal

position of the value stored in memory will be determined by the datum, not by the d of the

FORMAT specification.

Following are a number of examples of correctly formatted input data.

Examples:

Real Minimum Decimal Field Decimal Representation of
Input Value Field Width, w Position, d Specification Value Stored Internally

12345. 12345 11 5 Fll.5 +12345. 12345

r-w = 11 ~
~d=5

+234. 5 0 F5.0 +234.

l:!. l:!. l:!. l:!. - 6 7. 1234 12 4 F12.4 -67. 1234

123l:!.5. lLU45 11 5 Fll. 5 +12305. 10345

+12. 34E02 9 2 E9.2 +1234.

-123456+02 10 4 ElO.4 -1234.56

1234. 567E+02 12 3 G12.3 +123456.7

Note that any of the examples above could have an E, F, or G input specification. The following

example illustrates this.

Real
Input Value

1234. 567E+02

Minimum
Field Width, w

12

Decimal
Position, d

3

Possible Field Decimal Representation of
Specifications Value Stored Internally

E12.30r
F12.30r
G12.3

+123456.7

Thus, F, E, and G conversions can be used interchangeably on input, provided that sufficient field
f

width is allowed. Note in the next-to-last example given above that the decimal position indicator,

d, has determined the storage of the input datum in the absence of a decimal point in the value.

5-22

'-

SECTION V. INPUT/OUTPUT STATEMENTS

The compiler mantissa parameter, F, determines the precision or number of significant

digits which may be used on input. When a datum containing more than F significant digits is

~' encountered on input of real data, only the high-order F digits will be stored in the mantissa.

The remaining low-order digits will be ignored except in determining the proper exponent value

of the datum. The programmer may set the mantissa parameter F on the *JOBID card at

compile time within the range of 2 to 20 digits. If no parameter is specified, the compiler

assumes F = 7. When the mantissa contains fewer significant digits than F, the incoming real

datum is stored left justified with a fill of zeros.

Figure 5-6 repeats the incoming data card previously shown on page 5-17. Included in the

figure are an appropriate I/O statement and a FORMAT statement with correctly formulated field

specifications. All fields are real with decimal position indicators giving the decimal point where

appropriate.

W=6 W=II W=8 W=9 W=7 W=5
00000000000000001000000000001000
1234S6JIB1011U13"151117111'm~nn~~an3N»~un~~~~~~~41~41~~~V~~~51~~~"~~~"~~U~~~"~~urol'nnunn71nn.

111111111111 111111111 11111111111111111111111111111111111 ; 11111111111111111111111

222221222122222222221222222222212222221222

33333333331313333333313333333133133333333331133333333333333333333333333333333333

444444444444441444444414444444444144

55515555555155515555555155555555555555515515555555555555555555555555555~55555555

6666666666666666666c6666166666666666~666

'111111111171111117111777 J 7777 J 7 71 7 7 7 7 717111711777777117777711711117717 J 111111111

8888888888881888888888888888818888888888888818888888888888888888888888888888i888

999919999999999999999999999199q9
113453J8910'11213141SI6111819~21n~N~N21~~~l'n~~~~ll~~~~U.JM~~"q~~~~U~~~~~".6'U~M~"~Y"ml1~nU~~11nn.

READ (2, 20) A, B, C, D, E, F

20 FORMAT (F6.0, EI1.4, G8.3, F9.4, E7.0, G5.1)

Decimal Representation of Values Stored Internally:

+592., +235.7450, +123.456, +90.1234, +20., +53.7

Figure 5-6. Input of Real Data

An illegal character in incoming real data will cause termination of the job. An illegal

character is any character not 0 through 9, a blank, a plus or minus, a decimal point, or an E.

The following diagnosticf is printed out:

ILLEGAL CHARACTER IN INPUT DATA. BAD RECORD IS PRINTED BELOW.
(Next line shows the contents of the bad record.)

5-23

•

SECTION V. INPUT/OUTPUT STATEMENTS

Output Conversion to Fixed-Point Decimals (Fw. d)

Used in conjunction with an output statement, an Fw. d field specification causes conversion

from internal floating-decimal form to the form of a real constant expressed without an exponent

(i. e., fixed-point decimal form).

In the output field, the value is right justified on a background of blanks when the field width

is wider than necessary to accommodate all characters of the value. If the value is negative, a

minus sign immediately precedes the value. Positive values appear without a plus sign, but a

character position must be allowed for the sign. On Fw. d output conversion, the field width, w,

is determined by the following formula: ~~

w ~a+d+2

Where: a = the number of digits before the decimal point,

d = the number of digits after the decimal point,

2 columns are allotted for decimal point and sign.

The following examples illustrate the rules for determining the minimum field width for

output under Fw. d field specifications.

Examples:

Decimal Representation of
Value Stored Internally

+12345. 12345

-.123

-23.1234

+234.

Minimum Field Width
for Output

w = 12
(w = 5 + 5 + 2)

w = 5
(w = 0 + 3 + 2)

w = B
(w = 2 + 4 + 2)

w = 5
(w = 3 + 0 + 2)

Field
Spe cification

F12.5

F5.3

FB.4

F5.0

To transmit these values from memory, the following output and FORMAT statements can

be used:

WRITE (3, 20) A, B, C, D

20 FORMAT (IX, F12.5, F5.3, FB.4, F5.0)

The line would be printed as follows, starting in column 1:

612345. 123451-. 1231-23. 123416234.

If an outgoing value requires more columns of output medium than the allocated field width

permits, an asterisk is set in the first column of the output field. If the field width, w, was

5-24

--

--

SECTION V. INPUT/OUTPUT STATEMENTS

greater than or equal to 7, the output value will have the format E(w-l). (w-7). When such over­

flow occurs, the least significant field position is rounded. That is, if the digit to the immediate

~ right of the least significant position is five or more, one is added to the least significant position;

otherwise the number in that position remains the same. The following is an example of overflow

and rounding of a value having a field width of 7 or greater.

"---

Value Stored
Internally

-12345.12345

Field
Specification

FI1. 5

Actual Field
Specification Used

ElO.4

Presentation on
Output Medium

*-. l235E+05

If the field width, w, is less than 7, blanks will follow the asterisk in the output field. For

example:

Value Stored
Internally

+1. 23

Field
Spe cific a tion

F3.2

Presentation on
Output Medium

The number of places that will appear at the right of the decimal point is specified by ~ in

Fw. d. The following examples show the effect of varying ~ and~. The same real constant is

transmitted from memory using different Fw. d field specifications.

Examples:

Value Stored Output Field Pre sentation on
Internally Spe cifica tion Output Medium

+2.53 F5.2 Ll2.53

+2.53 FB.5 Ll2.53000

+2.53 FlO.5 LlLl Ll2. 53000

+2.53 F4.l Ll2.5

+2.53 F3.2 *LlLl

+2.53 F9.B *.253E+Ol

+2.53 FIO.9 Ll *.253E+Ol

Note that in the last three examples if the value stored internally had been +.253, the output field

specification would have been great enough to permit transmission of the value under F conversion.

Output Conversion to Explicit Exponent (Ew. d)

Used in conjunction with an output statement, an Ew. d field specification causes conversion

from internal floating-decimal form to the form of a real constant expressed with an exponent.
f

The output form is shown in Figure 5-7. It consists of a sign followed by the mantissa and

exponential part.

5-25

SECTION V. INPUT/OUTPUT STATEMENTS

,r-------Exponent sign

r------- -.123456789012E-02

No character
for mantissa
sign if positive

''----.V~--.J/~

Mantissa Exponent

Figure 5-7. Output" of Real Data in Exponential Form

When an output value is in explicit exponent form, the mantissa is given as a decimal

fraction preceded by a decimal point and sign if negative. The number of significant digits in the

mantissa is specified between 2 and 20 by the mantissa parameter, F, on the *JOBID card. If

not specified, an output value can have up to 10 significant digits in the mantissa.

The exponential part consists of the letter E, followed by a sign, then by a two-digit

exponent representing the power of ten by which the mantissa is multiplied.

The formula for determining the minimum field width for output is as follows:

w = m + 6

Where: m is the number of digits in the mantissa, and

6 spaces are allotted as follows

I for mantis sa sign
1 for decimal point
1 for the lette r E
1 for the exponent sign
2 for the exponent

The value is right justified on a background of blanks when the field width is wider than necessary

to accommodate all characters of the value. Following are examples of some correctly formatted

output values using E conversion.

Examples:

Value Stored
Internally

-. 1234x 10
-6

-. 12345x 104

+. 123456789012x 10
12

Minimum
Field Width
for Output

10

(4 digits in decimal
fraction + 6)

11
(5 digits in decimal

fraction + 6)

18
(12 digits in decimal

fraction + 6)

5-26

Field
Spe cification

ElO.4

Ell. 5

E18.12

Presentation on
Output Medium

- . 1234E-06

-.12345E+04

.123456789012E+12 -.

•

SECTION V. INPUT/OUTPUT STATEMENTS

To transmit these values from memory, the following output and FORMAT statements can

be used:

WRITE (3, 20) A, B, C

20 FORMAT (IX, EI0.4, Ell. 5, E18.12)

The line would be printed as follows starting in column 1:

-. l234E-061-. l2345E+041~. l234567890l2E+12

If the field width, w, is less than m + 6, an asterisk is set in the first column of the output

field. When such overflow occurs, the output consists of as many high-order digits as the field

width can accommodate. The digit in the least significant position is rounded. For example:

Value Stored
Internally

-.3214892xl0
6

Field Specification
Used

Ell. 7

A field specification of E13. 7 would correct the difficulty.

Generalized Field Specification, Gw. d

Presentation on
Output Medium

*-. 32l5E+06

Used with an output statement, a Gw. d field specification causes conversion from internal,

floating-decimal form to a real constant. The magnitude of the real constant will determine

whether the Gw. d is interpreted as an For E conversion.

Comparison between the exponent of the stored value, e, and the number of decimal places,

d, of the specification determines the type of conversion the compiler will use as follows:

1. If e > d, E conversion is used.

2. If e ~ d, F conversion is used according to the formula: F(w-4). (d-e), 4X
Four blanks (4X) are appended to the right of the value.

3. If the value to be represented is less than 1.1 I, E conversion is always used.

Following are some correctly formatted output values using G conversion, which will

indicate how the conversion formulae determine the output presentation.

Examples:

Given a field specification of G14. 6.

Value Stored
Internally

• 12345123 x 100

. 12345123 x 104

.12345123 x 108

.12345123 x 10 10

Conversion

F

F

E

E

5-27

Pre sentation on the
Output Medium

~~~.123451~~~~ 

~~~1234. 51~~~~ 

~~~.123451E+08 

~~~.123451E+I0 


SECTION V. INPUT/OUTPUT STATEMENTS

If the programmer does not allow sufficient field width, the rules for E output conversion

under overflow conditions will apply. The following examples illustrates these conditions.

Examples:

The programmer selected a specification of G12. 8 for output of the values below. In each

case, w<m+6.

Value Stored
Internally

-.12345123 x 108

-.12345678 x lOla

Conversion

E

E

Basic Field Specification for Octal Conversion

Octal conversion has the basic form:

lOw

INPUT

Presentation on the
Output Medium

*-. 12345E+08

*-.12346EtlO

Used in conjunction with an input statement, an Ow field specification causes conversion of

an incoming octal integer to internal, fixed-point binary representation. The incoming integer

consists of digits in the range a to 7. Any characters other than the digits a through 7 are illegal

and will cause termination of the object program at execution time. Embedded and trailing blanks

are considered to be zero; leading blanks are ignored. Internally, octal data appear not as a

value but as a string of octal characters, left-justified with a fill of zeros, since two octal char­

acters occupy one character of a fixed-point field.

Example:

Incoming Octal Integer: 1234510

Internal Representation:

001
'-v-'

1

010
'-v-'

2

all
'-v-'

3

100
'-v-'

4

101
'-v-'

5

001
'-v-'

1

000
'-v-'
a

000 000 000 000 000 000 000

The value shown in the example can be read into memory and converted to internal form by
f

means of the READ and FORMAT statement shown in Figure 5-8. Note that octal input data

are identified as having an integer data type, since there is no way of declaring octal type in

a data-type statement.

5-28

f'

•

SECTION V. INPUT/OUTPUT STATEMENTS

OUTPUT

~
00000010
12345 S 7 B

11111111

21222222

33133333

44414444

5555155~

READ (2, 20)L

20 FORMAT (07)

Figure 5-8. Input of Octal Datum

Used in conjunction with an output state:ment, an Ow field specification causes conversion

fro:m internal representation to the for:m of an octal integer. Conversion takes place fro:m left

to right and proceeds until w octal digits have been converted.

Exa:mple:

Internal Representation

001
'-t--'

1

010
'-t--'

2

all
'-t--'

3

100
'-t--'

4

101
'-t--'

5

001
'-t--'

1

000
'-t--'

a
000

Field specification for output: 07

Presentation on output :medium: 1234510

Basic Field Specification for Logical Conversion

Logical conversion has the basic for:m:

INPUT

000 000 000 000 000 000

Used in conjunction with an input state:ment, an Lw specification causes an inco:ming truth

value (true or false) to be converted to binary representation (zeros for false and ones for true).

The first non-blank character in the input data field deter:mines the resulting truth value. If the

first non-blank character is T, a value of true will be stored. Any other character will result

in a value of false being stored. It is reco:m:mended that the letter F be written as the first non­

blank character if a value of false is desired.

Exa:mples:

Contents of Input f

Data Field

T

TRUE

Field Specification
for Input

Ll

L4

5-29

Truth Value Stored
Internally

TRUE

TRUE

SECTION V. INPUT/OUTPUT STATEMENTS

Examples (cont):

Contents of Input Field Specification Truth Value Stored
Data Field for Input Internally

888TR88 L7 TRUE

Tl23 L4 TRUE

F Ll FALSE

8FALSEM L8 FALSE

1234567 L7 FALSE

88888A L6 FALSE

.TRUE. L5 FALSE

The nine truth values of the preceding examples can be read into memory and converted

to internal form by means of the READ and FORMAT statements shown in Figure 5-9.

OUTPUT

11010000100010000000010000000000000000000000000000
123456189W111213141516171819~21nn~~~nn~~3132JJ~»~J7~~W4IUU«4~%41~~

111111111111111111111111111111 I I 11111 I 1 II I I I I 1111 1

2222222222222212222221222212222222222222222222222

113 3 3 3 3 313 3313 313 3 3 313 3 3 3 3 313

4441444444444444444444444444144444444444444444444

555515555555555555 555155555515555555555 5 ~ 5 5 55555

READ (2,20)
20 FORMAT

I. J. K. L. M. N. II.JJ.KK
(LI • L 4, L 7, L 4, L I , La. L 7. L6, L 5)

Figure 5-9. Input of Logical Data

Used in conjunctionfwith an output statement, an Lw field specification converts the binary

representation of a truth value to either the letter T (if TRUE) or F (if FALSE), right-justified

in the output data field.

5-30

-../

~

;.

_.

Examples:

Truth Value Stored
Internally

TRUE.

FALSE

TRUE

SECTION V. INPUT/OUTPUT STATEMENTS

Field Specification
for Output

Ll

L3

L6

Basic Field Specification for Alphabetic Conversion

Alphabetic conversion has the basic form:

INPUT

Presentation on
Output Medium

Used in conjunction with an input statement, an Aw field specification causes characters

up to the number permitted by the size of the fixed-point field of incoming alphabetic data to be

stored internally; each character is stored as six bits. Valid input includes any character of the

Honeywell character set; blanks are significant. Since there is no alphabetic type declaration,

alphabetic data are identified as having an integer data type.

Example:

Assume that no fixed-point parameter has been specified and that it is desired to read

into memory the complete English sentence:

THERE IS NO ALPHABETIC TYPE DECLARATION.

Three variations on the method are shown in Figure 5-10. A declared integer
precision of 5 is assumed, and the sentence is divided into data fields of five alpha­
numeric characters. In methods 1 and 2, a separate variable is used to store the
contents of each data field. The contents of the variables after execution of the
READ statement are shown at the right of the illustration.

In method 3, the sentence is stored in an array. The array size is declared in a
DIMENSION statement; an implied DO loop in the READ statement eliminates the need
of writing out the names of all eight array elements in a simple list; a repetition
constant is used in the FORMAT statement as a shortcut in writing the statement.
The contents of each array element after execution of the READ statement are shown
in the figure.

OUTPUT

Used in conjunction with an output statement, an Aw field specification causes alphabetic

data stored internally as six-bit characters to be converted to the.ir equivalent forms in the

Honeywell character set and transmitted to the external medium.

Field Specification for Hollerith Data

The Hollerith field specification has the form:

I wHh l h 2h 3· .• h n I
Where: wH are the field specification's field width and conversion code; and

each h is a Hollerith character.

5-31

SECTION V. INPUT/OUTPUT STATEMENTS

o 0 0 II 0 0 0 0 0 0 0 0 0 010 a 0 o. 0 U 0 0 D
I 134561'!~11121JI4151&ll111!m~nn~25N2J~~~31~u~n~31~~~41U~~~~UQU~51Un~~~~Y900~~~MH"v."ronnnu~nJlnH.

I I 11 11 111111111111 111111 1 I 1 1 I 1 1111111111111 1 111111 1 11 11 1 1111111 1 11 I 11 I 1 111111111

11112211112211221111112122122222221112222222122222222 2 2 2 2112 2 2 2 2 2 2 2 2 2 2 2 2 2 2 222222

1333333333333133333131313 n 3 3 3113 3 313 3 313 3 3 3 3 3 3333333333333333333333333333333333

44444444444444444444444444441444 4 ~ 4 4 4 4 4 4 4 4 4 4 4 44444444444444444444444444444444444

551515555155555555155555551551555555551555

~ 6 6 6 6 6 6 6 6 616 616 6 6 6 6 6 6 6 § 6 6 6 6 6 6 6 6 6 6 6 6 6 66666666666666666666

//11111111111111171111111111117717111111111) 7 1 7 111 7 111111 7 111111 1717117777 7 7 7 111

818888888888888188888888188888883888888188

99919919999999999.9919999999999991991999
I 23456189~11121J14151&171819M21nn~~~vun~31~U~~~VMn~~u~~~.QU~~51~n~~~~~"~~~UM~~~N~ro71~n~~Nl1nHm

Method I: Eight variables are used for storage.

READ (2, 20) I, J, K, Ll, L2, L3, M, N

20 FORMAT (AS, AS, AS, AS, AS, AS, AS, AS)

If the incoming contents of N were less than

five alphabetic characters, the contents would
be left jus tified.

Method 2: Same as method I except that a repetition
constant is used to simplify writing field
specifications (see page 5-39).

READ (2, 20) I, J, K, Ll, L2, L3, M, N

20 FORMAT (BAS)

Method 3: A one-dimensional array, containing eight
array elements, is used for storage.
Incoming characters of the last array element
will be left justified if less than five.

DIMENSION IALPH (8)

READ (2, 20) (IALPH(I). I = 1, 8)

20 FORMAT (BAS)

Variable

I
J
K
Ll
L2
L3
M
N

Array
Element

IALPH (I)
IALPH (2)
IALPH (3)
IALPH (4)
IALPH (5)
IALPH (6)
IALPH (7)
IALPH (8)

Figure 5-10. Input of Alphabetic Data

5-32

Contents after
Execution

THERE

lJ.1 S lJ.N
OlJ.ALP

HABET
IClJ.TY
PElJ. DE
CLARA
TION.

Contents after
Execution

THERE
lJ.ISlJ.N

OlJ.ALP

HA BET
I ClJ.TY

PElJ.DE
CLARA
T ION.

SECTION V. INPUT/OUTPUT STATEMENTS

The Hollerith field specification, therefore, differs from discussed specifications in that the item.

to be transmitted appears in the FORMAT statement itself, not on a data card. If only Hollerith

\.....-" characters are to be transmitted, the appropriate I/O statement does not need a list. Hollerith

characters may be any of the Honeywell character set with blanks being significant.

.. '-"'"

OUTPUT

Used in conjunction with an output statement, this field specification provides the basic

means of supplying appropriate headings, titular information, and vertical line-spacing for out­

put reports. If the output device is a card punch, w should not exceed 80; if it is a magnetic

tape unit, w should not exceed 132; if it is a printer, w should not exceed 131.

To illustrate a basic use of the Hollerith field specification, assume that it is desired to

print the heading "POWER CALCULATIONS ". This could be done with the following WRITE and

FORMA T statements:

WRITE (3, 20)

20 FORMAT (19HLlPOWERLlCALCULATIONS)

At compilation time, the 19 characters composing the phrase Ll POWER LlCALCULA TIONS be­

come an integral part of the program and will be stored in memory. When the WRITE statement

is actually executed in the object program, the characters are transmitted to the on-line printer

and printed in the first 18 columns of a line. The initial blank in the Hollerith specification is

used for carriage control. (See pages 5-37 to 5-39.)

To center the heading on the page, the wX specification may be used to insert blanks before

the Hollerith field. Blanks may be inserted through the Hollerith specification itself, as shown

below, but this method is more cumbersome:

WRITE (3, 20)

20 FORMAT (26HLlLl LlLlLlLlLl Ll POWER CALCULATIONS)

In effect, printing will start in column 8 instead of column 1, since seven blanks will precede the

phrase POWER CALCULATIONS.

Like all field specifications, Hollerith specifications may be interspersed with other speci­

fications in a FORMAT statement, as illustrated by the following example.

Example:

It is desired to print three values on the same line of an output report. The
first value represents a voltage, the second a current, and the third a power
calculation. ,For clarity, it is desired to label each calculation and to in­
dicate the units in which it is expressed.

The WRITE and FORMAT statements shown in Figure 5-11 illustrate how all
this information could be printed on the same line.

5-33

4

SECTION V. INPUT/OUTPUT STATEMENTS

TITLE I PROGRAMMER __ L-L-L-L-L-L-~

Statement g
Number N

h------jT
C

1

I
N

56 7 \0 15 20 25

FORTRAN PROGRAMMI NG FORM

______ Checked By ______ Date

FORTRAN STATEMENT

30 35 40 45 50 55

1-l-~Y4-l~~tl!.L--Jl.l:tIDL..JYj.,~~~lll· ~,' 1 ZA,H, WDL'\" ,Si ,D. C .•

REMARKS

60 65 70 72 80

1-+--'--'---'-+'4-L--'-.L--'-.L--'-.L--'-'-"~-'--'="--'=+J---'--JLiRQ,Yl/EtRI: ,,, !16" J~-,-I--'-'---'-'---'-'-~--1-LJ~LLLLLLLl_4-..L.L--'-.L--'-.L--LJ
I-+--"-.JLL++-'--LL..L.L ~~~~~I~~LL~-L~~LL~-L4-~LL~-'--L1

1-+--LJL.L++-'--LL...Ll-'--LL-LJLLL.L-l_ILLI -"-I ~I -,1--,-, LLL1-l_L-LLLLLLLLLL I 1 1 1 ' 1 i I I I 1 Ll.--L..LL . .L.l-'--LL...LlLL~-'--L.L+-'-'--.L..L...LlLL.-J

_J....l.LLLLLLU-L_LLLLLl-l-l I I 1 1 1 I 1 I-LJILLL.L-'--LL...Ll-'--LL--yLLL.L-'--LL-Lj

Figure 5-11. Example of Output of Hollerith Data

The line would be printed as follows in columns 1 through 72:

VOLTAGE: l1S VOLTS D. C.; CURRENT: 13.04 AMPS; POWER: lSOO WATTS ...

The same line is shown below with the blank spaces marked and the
starting column of each data field indicated.

VOLTAGE: 6.6.llS6.VOLTSb,D. C. ;6.6.6.6. CURRENT: 6.6.1 3. 046.AMPS;6.6.6.6.POWER:6.6.1Sooil WATTS
~ •. +. , t t
1 9 14 38 4S 61 67 72

The preceding example illustrates the scanning process that is discussed on pages S-47

through S-49. The FORMAT statement is scanned from left to right. The first field specifi­

cation encountered is the Hollerith one, 9H VOLTAGE:. The first space is used for printer

carriage control and the eight literal characters following are transmitted from memory to the

output medium. Scanning resumes without any list item having been transmitted. Next, the IS

field specification is matched with the integer variable IVOLTS in the output list, and the present

value of IVOLTS (assumed to be lIS) is transmitted from memory to the output medium. Scanning

of the FORMAT statement continues. Now, the 24 characters specified in the next Hollerith

specification are transmitted, and scanning resumes without any additional list item having been

transmitted. Then, the F7. 2 specification is matched with real variable ACURNT, and the

present value of this variable (assumed to be 13.04) is transmitted, and so on.

When Hollerith field specifications are written in FORMAT statements, it may often be

necessary to use one or more continuation lines to express the complete FORMAT statement, as

in the preceding example. It is permissible for a Hollerith field specification to be divided

between lines of a statement, since column 7 of a continuation line follows immediately after
f

column 72 of the preceding line. Thus, the FORMAT statement of the preceding example could

be written as shown in Figure 5-12, with a Hollerith field specification split between lines.

5-34

SECTION V. INPUT/OUTPUT STATEMENTS

FORTRAN PROGRAMMI NG FORM

TITLE Ll ---'----'_"-----'----'-----'--'-.-J PROGRAMMER ________ Checked By ______ Date ________ Page _of_

Statement g
Number N

\-r----IT
~ ~

56 7 10 15 20 25 30

FORTRAN STATEMENT REMARKS

35 40 45 50 55 60 65 70 72 80

I I I ' J LLLL1 __ LLLL~LLL,L I I , I I I 1_LLUJ....LLL-Ll--'-.LL-'---LL-Ll--'--"-+--'--JLL.L.l--'--y

Figure 5-12. Use of Continuation Line with Hollerith Specification

Note that in the original example, it does not matter where the continuation line starts, since no

Hollerith field specification is split between lines, and blanks are normally suppressed if they

are not part of a Hollerith field specification. In the second example, however, it is very

important that the continuation line begin in column 7 if the results are to be identical, since

blanks are significant when part of a Hollerith specification.

INPUT

When a FORMAT statement containing Hollerith data is referenced by an input statement,

the actual characters listed in the Hollerith field specification are replaced by whatever charac-­

ters appear in the corresponding field of the input record. If the same FORMAT statement is

later used with an output statement, the replacement characters rather than the original Hollerith

data will be transferred to the output record. By this means, titling information, such as the

current date, may be conveniently changed from run to run, as shown in the following example.

Example:

Assume that a program contains the following FORMAT statement:

20 FORMAT (lX, 8HMM/DD/YY)

At object time, the current date, expressed as 11/22/65 and punched
in columns 2-9 of an input card, is read into the memory area occupied
by MM/DD/YY by means of the statement:

READ (2, 20)

Now, if the statement!

WRITE (3, 20)

is executed, the current date, 11/22/65, will be printed in the first eight
print positions instead of MM/DD/YY.

It should be emphasized, however, that the Hollerith data replacing the original Hollerith ,
characters are still not available to the programmer for use in any way other than for input or

output. (The Aw field specification may be used to enter alphabetic data which can then be ma-

'--' nipulated by the program.)

5--35

4

SECTION V. INPUT/OUTPUT STATEMENTS

Another useful application of the Hollerith field specification is in controlling the vertical

spacing of lines of printing. For a complete discussion of carriage control and of the use of the

Hollerith specification for carriage control, see pages 5-37 to 5-39.

Field Specification for Blank Conversion

Blank conversion has the form:

I wX

INPUT

On input, the field specification wX causes w columns of the input. record to be bypassed.

Any information contained in the skipped columns is disregarded, never being transmitted to

memory. No associated name is required (or should be written) in the list of the READ statement

which references the FORMAT statement containing the wX, since this particular field speci­

fication is not matched with any corresponding list item.

Example:

Six numerical values are punched on each card of a deck of input data.
The six data fields per card have widths as shown in the sample card
of Figure 5-13.

W=6 W=II w=e W=9 W=7 W=5
800000000000000010000000000010009000
1234S'JI'.11UUU"q»ll~a~nn~aanaa»~»~~»5n.~.4'UU~~.U~U~~R~MKM~gH.~a~M~.~A.~nnnun~nn~.

I HI 111 I 11111 1111 1 1111 11111 11 11111 111111111111 1 I 1 11 11 I 1 1 11 1 111 1 I 1 111 111 1 I 11 1111 I

222221222122222222221222222222212222221222

33~33333331313333333313333333133133333333331'33333333333333333333333333333333333

444444444444441444444414444444444144

55515555555155515555555155555555555555515515555555555555555555555555555~55555555

6666666666666666666&6666166666666666~666

"17 71111111111117111111711 J 711111111111 711111111 7 J 11111 7 1111111111111117 711111111

88888888888818888888888888888188888888888888188888888888888888888888888888888888

999919999999999999999999999199~9
1234sal"IOII12UI415K1JlllIM~nn~~anua»~U~~~5n ••• uu~~u.UqU~~U~~~S»U9.~U~~M8~.n~1InnU~Nnan.

Figure 5-13. Sample Input Card

Assume that this particular object program does not need to process
the data punched in field No. 2 (columns 7-17) or field No.4 (columns
26-34) which have field widths of 11 and 9 columns, respectively. The
two fields maw be skipped by using the wX field specification while
obtaining values for the other four fields in the manner:

READ (2, 20) I, J, A, B

20 FORMAT (16, llX, 18, 9X, E7.0, F5.l)

5-36

•

SECTION V. INPUT/OUTPUT STATEMENTS

OUTPUT

On output, wX causes w blanks to be inserted into the output record. No associated name

.~ is required (or should be written) in the list of the output statement which references the

FORMA T statement containing wX, since this particular field specification is not matched with

any corresponding list item.

'"-',.

Example 1:

It is desired to print six blank columns before the phrase POWER
CALCULATIONS. This can be done by means of the following WRITE
and FORMAT statements:

WRITE (3, 20)

20 FORMAT (7X, l8HPOWER CALCULATIONS)

The line would be printed as follows in columns 1 through 24:

666666POWER6CALCULATIONS

Where 6 represents a blank space.

Example 2:

It is desired to print three headings on the same line, each separated
from the other by five blank spaces. The following WRITE and FORMAT
statements can be used:

WRITE (3, 20)

20 FORMAT (10H6HEADING 1, 5X. 9HHEADING 2, 5X, 9HHEADING 3)

The line would be printed as follows in columns 1 through 37:

HEADING 1 ,
Col. 1

HEADING 2 ,
15

HEADING 3 ,
29

The blank field specification does not require a terminating comma or other field separator.

For example, the FORMAT statement of example 2 could be written:

20 FORMAT (lOH6HEADING 1, 5X 9HHEADING 2, 5X 9HHEADING 3)

Carriage Control for Printer Output

It is important to remember that, in formatting output to the printer, the first field position

is a carriage control indicator. A blank in the first field position indicates single vertical spac­

ing. All carriage control indicators are listed below.

6

0

I

2
3
4
5
6
7
8
9

Single space -before printing current line.

Double space before printing current line.

Space to head of form before printing current line (skip to next page).

f Space the indicated number of lines. (The number of blank lines
will be one less than that given by the carriage control indicator.)

5-37

SECTION V. INPUT/OUTPUT STATEMENTS

Therefore, the first character of the first field following the FORMAT statement operator

and the first character of the first field following each unit record terminator (slash) is a

carriage control indicator and must not be used as part of the field to be printed. For example,

consider the following sequence of statements:

I = 10

WRITE (3, 20) I

20 FORMAT (12)

No blank for single spacing has been left in the FORMAT field specification. The character 1 of

the value 10 is assumed to be the carriage control indicator. The printer will skip to head of

form and print 0 in column 1. Any of the following FORMAT statements will correct the printer

output by causing the printer to single space and print 10 in columns 1 and 2:

Example 1: 20 FORMAT (13)

Example 2: 20 FORMAT (IX, 12)

Example 3: 20 FORMAT (lH~, 12)

In Example 1, the value 10 is right justified in a three-character field, leaving the first character

blank. In Example 2, a blank field specification is used to indicate a blank for carriage control.

In Example 3, a Hollerith field specification indicates the blank.

The restriction in this section is limited to printer output only. It does not affect input

formatting or output to tape or punched cards.

While several methods are available to indicate single spacing, the Hollerith field speci­

fication is commonly used to indicate other forms of carriage control. Examples of carriage

control are given in Figure 5-14.

When a FORMAT statement describes more than one unit record, a carriage control

indicator must be given for each unit record. See examples in Figure 5-15. For a complete

discussion of multiple-record forms, see pages 5-45 to 5-51.

Since vertical spacing information applies only to printer output, when the output is to a

punch or to a tape, the cc!rriage control indicators are treated as characters.

5-38

•

SECTION V. INPUT/OUTPUT STATEMENTS

Output for Example s: K = 250
WRITE (3, 20) K

Example 1: 20 FORMAT (lH~, 13, 26H~(EXAMPLE~OF~SINGLE~SPACE))
or: 20 FORMAT (14, 26H~ (EXAMPLE~ OF~ SINGLE~SPACE))
or: 20 FORMAT (lX, 13, 26H~ (EXAMPLE~OF~SINGLE~SPACE))

I 0 PRECEDING LINE 0

2 0 250 (EXAMPLE OF SINGLE SPACE) 0

Example 2: 20 FORMAT (IHO, 13, 26H~ (EXAMPLE~ OF ~ DOUBLE~ SPACE))
or: 20 FORMAT (1H2, 13, 26H~ (EXAMPLE~OF ~DOUBLE~SPACE))

I 0 PRECEDING LINE 0

2 0 0

3 0 250 (EXAMPLE OF DOUBLE SPACE) 0

Example 3: 20 FORMAT (lHI, 13, 34H~ (BEGIN ~ PRINTING ~ A T ~ HEADt.
OFt. FORM))

1 1 0 0
PRECEDING LINE

0 2 0
.... 3 0 0 Q)
Q)

..c: 4 0 0 00

I 63 0 0

1-0 -U-

NI 1 0
250 (BEGIN PRINTING AT HEAD OF FORM)

0
0 Q) 2 0

Q)

..c:
3 0 0 001

Example 4: 20 FORMAT (lH4, 13, 30H~(SPACEt.FOUR~LINES~AND~PRINT))

1 0 PRECEDING LINE 0

2 0 0

3 0 0

4 0 0

5 0 250 (SPACE FOUR LINES AND PRINT) 0

Figure 5-14. Carriage Control in Single-Record FORMAT Statements

Field-Repetition Constant

When successive data fields are described by identical field specifications, it is not neces­

sary to write each field 'specification separately. Instead, a field-repetition constant, r, in front

of the .first field specification, indicates the number of times the field is to be repeated. This

abbreviated form may be used with any type 'of field specification except wH or wX. The constant,

r, may be any unsigned integer greater than zero and less than or equal to 63.

5-39

SECTION V. INPUT/OUTPUT STATEMENTS

As an example of use of the field-repetition constant:

20 FORMAT (5F9. 2, 2A5)

is equivalent to:

20 FORMAT (F9:2, F9.2, F9.2, F9.2, F9.2, AS, AS)

Example 1:

1

2

3

4

5

6

Example 2:

1

2

3

4

5

6

o
o

o
o
o
o

or:

o

o
o
o
o
o

20 FORMAT (18HOFIRST6 UNIT-RECORD/22H6NEXT6RECORD6
WITH6DATA)

PRECEDING LINE

FIRST UNIT-RECORD

NEXT RECORD WITH DATA

20 FORMAT (18H6FIRST6 UNIT-RECORD/22HONEXT!lRECORD6
WITH6DATA)

20 FORMAT (18H6FIRST 6 UNIT-RECORD//22HllNEXT!lRECORD6
WITH6DATA)

PRECEDING LINE

FIRST UNIT-RECORD

NEXT RECORD WITH DATA

Figure 5-15. Carriage Control in Multiple-Record FORMAT Statements

Repetition of Groups of Field Specifications

As described briefly on page 5-14, an appropriate repetition constant can be used with

groups of field specifications to provide a shortened notation in writing a FORMAT statement.

For convenience, the group-repetition constant is designated g. While not a part of the field

specification as is r, the group-repetition constant is used in a similar way as described below.

When two different field specifications alternate repetitively in a FORMAT statement, a

group-repetition constant may be used in writing the FORMAT statement. This same short nota­

tion can also be used when more than two field specifications recur repetitively in the same rela-
f

tive sequence. A pair of parentheses is placed around the pair or group of field specifications which

recur repetitively, and the appropriate repetition constant, g, is written before the opening paren­

thesis. The constant g may be any unsigned integer greater than zero and less than or equal to 63.

5-40

SECTION V. INPUT/OUTPUT STATEMENTS

Example 1:

20 FORMAT (4(F9. 2, 17»

may be used in place of:

20 FORMAT (F9.2, 17, F9.2, 17, F9.2, 17, F9.2, 17)

The group-repetition constant, g, is equal to 4. The example shows the shortened no­

tation used when repeating alternating pairs of field specifications.

Example 2:

20 FORMAT (4(F12. 6, 317, F4. I, E6.3, 05»

20 FORMAT (

g = 4. The example shows repetitive groups of field specifications.

Example 3:

20 FORMA.T (011, 3(F9.2, 17), 5A5, 4(14, E6.3), F22.6)

is equivalent to:

20 FORMAT (OIl, (1'9.%",11.1 1F9.i. fl_1 (1"9.%, 17.1 5A5,

111;$'" •• 3.,1 t .~ ":S~~'~II r'3;;.~.D$*1 114;·£6, 3, I F 22. 6)

In this example, single field specifications are interspersed with repetitive groups.

Scale Factor

In F, E, and G conversions the programmer has the option of using a scale factor as part

of the field specification. The scale factor precedes other components of the field specification

and is written:

I sP

Where: s is a decimal value, positive, negative, or zero, indicating the
number of decimal places that the decimal point is to be shifted
(-31~ s ~+3l).

P always follows s and identifies s as a scale factor.

On input, the scale factor affects the value of the datum only if there is no explicit exponent

in the data field. If the incoming datum is a decimal number without an expressed exponent, the

value stored will be changed by the power of ten expressed by the scale factor. On output, the

type of conversion, E, F, or G, determines the effect of the scale factor. For E-conversion

output operations, the scale factor changes the value by the power of ten indicated by s, but the

exponent is also modified so that the value remains the same although expressed differently.

5-41

•

SECTION V. INPUT/OUTPUT STATEMENTS

Finally, for G-conversion output operations, the scale factor does not apply to F-type conver­

sions. If E-type output conversion is used, the scale factor has the same effect as if E con­

version had been specified originally, i. e., the decimal point is shifted but the exponent is modi­

fied so that the actual value remains the same. When an E, F, or G conversion has no given

scale factor, the scale factor is understood to be zero and no shift occurs.

The direction in which the decimal point of the value is to be shifted is determined by

whether the scale factor is positive or negative. By convention, the scale factor is said to be

positive if the decimal point is shifted to the left on input, and negative if it is shifted to the right.

For output, the convention is just the opposite: The scale factor is positive if the decimal point

is shifted to the right and negative if it is shifted to the left. A positive scale factor may be

written with or without the plus sign; a negative scale factor is preceded by a minus sign.

Omission of the sign automatically implies a positive scale factor. Table 5-6 shows shifting of

the decimal point by the scale factor in I/O operations.

Table 5-6. Scale Factor Shifting of Decimal Point

Sign of Scale Factor I/O Operation Direction of Shift

s or +s Input - (left)

-s Input - (right)

s or +s Output - (right)

-s Output - (left)

INPUT

The effect of the scale factor on input values may be expressed by the general equation:

I=X·I0- s

Where: I = Internal value.

x = External value.

s = Scale factor (a signed or unsigned integer in the range -31:5 s :5+31).

Thus, for a scale factor of 3 and an incoming value of 123.4567,

123.4567 x 10- 3 = .1234567

And for a scale factor of - 3,

123.4567 x 10-(-3) = 123.4567 x 10+ 3 123456.7

OUTPUT
f

The effect of the scale factor on output values may be expressed by the general equation:

5-42

SECTION V. INPUT/OUTPUT STATEMENTS

Where: X, I, and s are as definedabove (since the equation is the same one rearranged).

Thus, for an internal value of O. 1234567 and a scale factor of 3, the external value is 123.4567:

y X = . 1234567 x 10 3 = 123.4567

Table 5-7 shows the effects of use ofa scale factor on input values for Fconversion, and

Table 5-B gives the same information for output values. Table 5-9 shows the scale factor effect

on output values in E conversion.

Table 5-7. Effects of Scale Factor on Input Values (F Conversion)

ON INPUT, A POSITIVE SCALE FACTOR SIDFTS DECIMAL POINT TO LEFT BY s PLACES

+s ~

Input Value FORMAT Scale Input Value
Before Scalin~ SEecification Factor After Scaling

123.4567 FB.4 0 123.4567

123.4567 1PFB.4 1 12.34567

123.4567 2PFB.4 2 1.234567

123.4567 3PFB.4 3 0.1234567

123.4567 4PFB.4 4 0.01234567

ON INPUT, A NEGATIVE SCALE FACTOR SHIFTS DECIMAL POINT TO RIGHT BY s PLACES

-s
Input Value

Before Scaling

123.4567

123.4567

123.4567

123.4567

123.4567

~
FORMAT

SEe cification

FB.4

-1PFB.4

-2PFB.4

-3PFB.4

-4PFB.4

Scale
Factor

0

-1

-2

-3

-4

Input Value
After Scaling

123.4567

1234.567

12345.67

123456.7

1234567.

Table 5- B. Effects of Scale Factor on Output Values (F Conversion)

ON OUTPUT, A POSITIVE SCALE FACTOR SIDFTS DECIMAL POINT TO RIGHT BY ~ PLACE

+s ~

Output Value FORMAT Scale Output Value Presentation on
Before Scaling SEe cifica tion Factor After Scaling OutEut Medium

.1234567 F9.7 0 .1234567 . 1234567

.1234567 IPFlO.7 1 1.234567 1. 2345670

.1234567 2PFll. 7 2 12.34567 12.3456700
f

.1234567 3PF12.7 3 123.4567 123.4567000

.1234567 4PF13.7 4 1234.567 1234. 5670000

5-43

SECTION V. INPUT/OUTPUT STATEMENTS

Table 5-8 (cont). Effects of Scale Factor on Output Values (F Conversion)

ON OUTPUT, A NEGATIVE SCALE FACTOR SHIFTS DECIMAL POINT TO LEFT BY s PLACES

-s ~
Output Value FORMAT Scale Output Value Presentation on

Before Scaling SEe cification Factor After Scaling OutEut Medium

.1234567 F9.7 0 .1234567 • 1234567

.1234567 -lPF9.7 -1 .01234567 .0123457

.1234567 -2PF9.7 -2 .001234567 .0012346

.1234567 -3PF9.7 -3 • 0001234567 .0001235

.1234567 -4PF9.7 -4 .00001234567 .0000123

Examples of scale factors written in the field specification of the FORMAT statement are:

General Form Example

sPFw.d }
sPEw.d

sPGw.d

without { 3PF8.4

repetition -3PEl1.4
constant +2PG14.3

sPrFw.d }
sPrEw.d

sPrGw. d

with {
3P2F8.4

repetition -3P2Ell. 4
constant +2P3G14.3

Table 5-9. Effects of Scale Factor on Output Values (E Conversions)

POSITIVE SCALE FACTOR SHIFTS DECIMAL POINT TO RIGHT
BY s PLACES AND DECREASES EXPONENT BY s

Output Value FORMAT Scale Output Value Presentation on
Before Scaling SEecification Factor After Scalin~ OutEut Medium

.1234 x 106 EI0.4 0 .1234 x 106 .1234E+06

.1234 x 106 5 1. 2340E+05 IPEll.4 1.234 x 10

.1234 x 106 4 12. 3400E+04 2PE12.4 2 12.34 x 10

.1234 x 106
3PE13.4 3 123.4xl0

3
123.4000E+03

.1234xl06
4PE14.4 4 1234. x 102 1234.0000E+02

NEGATIVE SCALE FACTOR SHIFTS DECIMAL POINT TO LEFT
BY s PLACES AND INCREASES EXPONENT BY s

Output Value FORMAT Scale Output Value Presentation on
Before Scaling SEecification Factor After Scaling OutEut Medium

.1234 xl 0 6 E10.4 0 .1234 x 106 .1234E+06

.1234 x 10 6 -lPE10.4 -1 .01234xl07 .0123E+07

.1234 x 106 -!PE10.4 -2 .001234xl0
8

.0012E+08

.1234xl06 -3PE10.4 -3 .0001234 x 109 .0001E+09

.1234 x 106 -4PE10.4 -4 .00001234 x 1010 .0000E+10

5-44

:;

.,.

SECTION V. INPUT/OUTPUT STATEMENT

At the instant when a FORMAT statement assumes control, a zero scale factor takes effect

and remains in effect until it is superseded by the appearance of a nonzero scale factor in an E,

G, or F field specification of the FORMAT statement. Once a new scale factor is established, it

applies to all following field specifications involving E, G, or F conversions within the same

FORMA T statement, including rescans, until it is superseded by another scale factor appearing

later in the same FORMAT statement.

Th~ following example shows several points about the continuity of the scale factor:

20 FORMAT (FlO. 2, 3PF8.3, E8.1, 5A3,07, F9.1, OPF8.2 GIL 3)

is equivalent to:

20 FORMAT (FlO. 2, 3PFS.3, 3PES.l, 5A3,07, 3PF9.I, OPFS.2, OPGII. 3)

Note in the example above:

1. The first specification, FIO.2, has an implied scale factor of 0 and is not
affected by scale factors in specifications that follow.

2. The first given scale factor, 3, governs all E, F, and G conversions that
follow until another scale factor is given. This includes the field specifi­
catioI} F9. 1. Thus, the scale factor is not affected by intervening alphabetic,
octal, Hollerith, integer, and other conversions that do not use scale factors.

3. The scale factor is superseded when a new scale factor is given in the field
specification OPFS. 2. This new scale factor then governs the scale

4.

factor for the G conversion that follows.

If the FORMAT statement given in the example were used in conjunction with
an input statement, the scale factor would not affect the value of the
conversions given in specifications ES. 1 and GIl. 3.

A scale factor, once established in a FORMAT statement, remains in effect when the

FORMAT statement is rescanned as described in pages 5-47 through 5-49.

The established scale factor applies to all unit records of a multiple-record format.

Multiple-Record Forms

As described briefly on page 5-13, a multiple-record form is a variation of the general

FORMAT statement. The multiple-record form makes use of a slash (/) as a 'format field sepa­

rator for unit records, where a unit record is defined in terms of the I/O medium (see Figure

5-16).

If the I/O statement contains an item list that will require more than the allotted limit for a

unit record in the output medium. the programmer must provide record termination marks (/) at

the appropriate places iri the FORMAT statement. In this way, a new printed line, a new card,

or a new tape record will begin before the maximum limit for the previous one has been exceeded.

5-45

•

SECTION V. INPUT/OUTPUT STATEMENTS

(a) A single line of up to 131 charac­
ters on a printer page.

(b) One tabulating card of up to 80
characters.

(c) A formatted (BCD) record on
magnetic tape of up to 132
characters.

:,...._-- 131 PRINT POSITIONS --~_"I

r=--.O COLUMNS:::]

I~

l:J::- 1\ }

ONE 'FORMATTED" RECORD = ONE UNIT RECORD

(d) A logical record composed of any
number of physical records of
data on magnetic tape in the form
of its internal repre sentation.

... 1-...----- LOGICAL RECORD -I

(See Section X, 111/0 Programming
Tips," for the formula to deter­
mine the number of physical
records in a logical record.)

ONE LOGICAL RECORD = ONE UNIT RECORD

Figure 5-16. Definition of a Unit Record

Example 1:

It is desired to print 11 values, allotting 14 print positions to each value.
The following WRITE and FORMAT statements will cause nin"e values to be
printed on the first line and the remaining two on the next line:

WRITE (3, 20) (ARRAY(I), 1= 1, 11)

20 FORMAT (lX, 9F14. 3/ IX, 2F14.3)

If no record-termination mark had been given at the appropriate place
and the FORMAT statement had been written as

20 FORMAT (lX, IlF14.3)

part of the 10th value and the 11th value would be printed on the next
line. It is recommended that the programmer terminate records so
that values will not be divided between lines.

Example 2:

It is desired to punch 13 values, allotting 11 columns to each. The follow­
ing WRITE anti FORMAT statements will cause seven values to be punched
on the first card and the remaining six on the next card:

WRITE (5, 20) (ARRAY(I), 1= 1, 13)

20 FORMAT (7FIl. 3 / 6FIl. 3)

5-46

SECTION V. INPUT/OUTPUT STATEMENTS

When the list of an input or output statement is used to transfer more than one unit record

and the different records have different formats, a slash (/) must be used to separate the format

specifications of each record. This use of the record termination statement necessitates rescan­

ning.

The FORMAT statement is scanned from left to right in conjunction with the list of an input

or output statement. If additional items in the input or output list remain to be transmitted after

the FORMAT statement has been completely scanned from left to right, the scan returns to the

last first-level left parenthesis (defined below) of the same FORMAT statement and resumes its

left-to-right cycle from that point, until the list is satisfied or until the end of the FORMAT

statement is again reached. Then, if the list is still not satisfied because items remain to be

transmitted, the scan once more returns to the same point as before (i. e., the last first-level

left parenthesis), and the cycle repeats again, continuing to repeat until the list is finally satis­

fied. If there is no first-level parenthesis in the FORMAT statement, the scan returns to the

beginning of the FORMAT statement and repeats from there until the list is satisfied. A group­

repetition constant preceding the last first-level left parenthesis is detected during rescanning

and has the desired effect. Each rescan starts with a new unit record.

As an example of the use of the multiple-record form with rescanning, consider the follow­

ing FORMAT statement:

20 FORMAT (16/ FlO. 6)

If this statement is used with a READ statement, the first data card is read under controlofthe

16 field specification, and the next card is read under control of FlO. 6. If the input lis t of

the READ statement is still not satisfied, the FORMAT statement is automatically rescanned,

and the third card is read under control of 16, the fourth under control of FlO. 6. Rescanning

continues in this manner with all odd-numbered cards being read under control of 16 and all even­

numbered cards under control of FlO. 6 until the list is satisfied.

Similarly, when the above FORMAT statement is used with a WRITE statement designating

the printer, the first line is printed under control of 16, and the next line under control of

F10.6. If the output list of the WRITE statement is still not satisfied, rescanning occurs as

above, so that all odd-numbered lines are printed under control of 16, and all even-numbered

lines under control of FlO. 6 until the list is satisfied.

Rescanning (or sCifnning) of a FORMAT statement stops as soon as the input/output list is

satisfied, except for the following case. If the next field specification is a Hollerith (wH) field

specification, the Hollerith characters specified in the FORMAT statement are transmitted before
"-.../'

the input/output operation is considered concluded (see Example 6 on page 5-51). Any record-

5-47

SECTION V. INPUT/OUTPUT STATEMENTS

termination marks following the last-used field specification are also honored (see Example S on

page 5-S0). The action taken upon encountering n consecutive record-termination marks in a

FORMAT statement is defined on pages 5-48 to S-S1.

Parentheses in a FORMAT statement may be "zero level," "first level, " or "second level, "

as defined and illustrated in Figure 5-17. Figure S-18 shows the rescan points for each of the

example s of Figure 5 -17 .

Level Definition Examples

Zero

First

The opening(left) and
closing (right) parenthe­
ses of the FORMAT.

A left parenthesis that is
either the second pa­
renthesis of a FORMAT
statement or one that
follows a first-level
right parenthesis. A
right parenthesis follow­
ing a first-level left pa­
renthesis or a right
parenthesis following a
second-level right
parenthesis.

(Shaded areas show parenthesis
level being illustrated)

20 FORMAT

20 FORMAT

20 FORMAT

20 FORMAT

20 FORMAT

1]16, F9.3, Ell.4, AS, F22.4, 061lJ

/DI6/(3F9.3, El1.4, AS, F22.4, 06) m

(16/ H)3F9. 3, Ell. 4, AS, F22.4, 06 ~)

(16, 2 [J 3F9. 3, 3(Ell. 4, 13) [J,F22. 4)

(16 fj] 3F9. 3, 14 ill, 2 m Ell. 4, (IS, 13) Ill. 18)

Second A left parenthesis that
is the next parenthesis
after a first-level,

20 FORMAT (16, 2(3F9.3, 3 m Ell. 4, 13 ill), F22.4)

20 FORMAT (16, (3F9. 3, 14), 2 (Ell. 4, [!JIS, 13 [B).18)

left parenthe sis.

A right parenthesis
following a second-level
left parenthesis.

Figure S-17. Parenthesis Levels in a FORMAT Statement

Consecutive slashes can be used in FORMAT statements. Their significance depends on

whether an input or output statement is being referenced. On input, n consecutive slashes in a

FORMAT statement cause n-l unit re cords to be skipped (i. e., bypas sed). If the slashe s appear

at the end of the FORMAT statement, an additional record will be skipped by the action of the

right parenthesis.

Example 1:

READ (2, 2(1) INTEGR, A

20 FORMAT (16 / / / FlO.6)

Interpretation: Readfirst card under control of 16 and store value in INTEGR;
skip next two cards; read fourth card under control of FlO. 6 and store value in A.

S-48

"

•

SECTION V. INPUT/OUTPUT STATEMENTS

Re s can Point Exatnple

When only zero-level parentheses Direction of Scan .
are present, the rescan begins at
the start of the FORMAT statetnent. 20 FORM~(I6, F9.3, Ell. 4, AS, F22.4, g!»

Rescan If I/O list is not cotnpleted
Point when this point is reached,

return to rescan point.

When only zero- and first-level pa- Dire ction of Scan .
rentheses are present, the rescan
begins at the last (rightmost) first- 20 FORMAT (16 I. (3F9. 3, Ell. 4, A5, F22.4, 06))
level left parenthesis. If a second ~n

...
<:::::OIf I/Olist is not cotnpleted rescan is required, the new rescan

begins at this satne point.
Point when this point is reached,

return to rescan point.

When zero-, first-, and second- Direction of Scan .
level parentheses are present, the
re scan will still begin at the last 20 FORMAT (16/ (3F9. 3, 2(El1.4, 13», F22 .. 6)
(righttnost) first-level left paren- ~n <::::OIf 110 list is not cotnpleted thesis.

Point when this point is reached,
return to rescan point.

When a group repetition constant Direction of Scan .
precedes the last first-level left
parenthesis, rescans will include 20 FORMAT (16, (3F9.3, 14), 2(Ell. 4, (IS, 13», IS)
group repetition.

Rescan ~f I/O list is not cor:pleted
Point when this point is reached,

return to rescan point.

Figure 5-1S. Rescanning a FORMAT Statetnent

Exatnple 2:

READ (2, 20) INTEGR, A, J, B

20 FORMAT (16, / / / FIO.6)

Interpretation: Satne as above, but continuing as follows: Read fifth card under
control of 16 and store value in J; skip next two cards; read eighth card under
control of FlO. 6 and store value in B.

Exatnple 3:

READ (2, 20) INTEGR, A

20 FORMAT (16, FIO.6 / / /)

Interpretation: Read first card; store in INTEGR the integer value found in
colUtnns 1-6; stolje in A the real value found in the next ten colutnns; skip
rest of card and next two cards as indicated by the slashes and an additional

card as indicated by the right parenthesis. (The next execution of a READ state­
tnent will read the fifth card.)

5-49

SECTION V. INPUT/OUTPUT STATEMENTS

·Example 4:

READ (2, 20) INTEGR, A, J, B

20 FORMAT (16, FIO.6 / / /)

Interpretation: Same as above, but continuing as follows: Read fourth card;
store in J the integer value found in columns 1-6; store in B the real value found
in the next ten columns; skip rest of card and next two cards. (The next exe­
cution of a READ statement will read the eighth card.)

On output, n consecutive slashes in a FORMAT statement cause n-l blank lines to be writ­

ten, except when the slashes appear at the end of the FORMAT statement. In that case, and only

in that case, an additional blank line is written before rescanning occurs, as indicated by the

right parenthesis. Thus, n consecutive slashes written at the end of a FORMAT statement cause

n blank lines to be written.

Example 1:

WRITE (3, 20) INTEGR, A

20 FORMAT (16 / / / Fla. 6)

Interpretation: On first line, print (under control of 16) the value stored in
INTEGR; write two blank lines; on fourth line, print (under control of FlO. 6)
the value stored in A.

Example 2:

WRITE (3, 20) INTEGR, A, J, B

20 FORMAT (16 / / / FIO.6)

Interpretation: Same as above, but continuing as follows, due to rescanning:
On fifth line, print (under control of 16) the value stored in J; write two blank
lines; on eighth line, print (under control of Fla. 6) the value stored in B.

Example 3:

WRITE (3, 20) INTEGR, A

20 FORMAT (16, FIO.6 / / /)

Interpretation: On first line, print (under control of 16 and Fla. 6, respectively)
the values stored in INTEGR and A; write three blank lines.

Example 4:

WRITE (3, 20) INTEGR, A, J, B

20 FORMAT (16, FIO.6 / / /)

Interpretation: Same as above, but continue as follows, due to rescanning: on
fifth line, print (under control of 16 and Fla. 6, respectively) the values stored in
J and B; write three blank lines.

Example 5:

WRITE (3, 20) INTEGR, A, J

20 FORMAT (16 / / / Fla. 6)

5-50

SECTION V. INPUT/OUTPUT STATEMENTS

Interpretation: Same as Example I above, but continuing as follows: On fifth
line, print (under control of 16) the value stored in J; write two blank lines.

Note that the scan stops as soon as the list is satisfied, but that the record­
termination marks are heeded when they follow the last used field specification.

Example 6:

WRITE (3, 20) INTEGR, A, J

20 FORMAT (16, 13HEND OF RECORD II / FlO. 6)

Interpretation: On first line, print (under control of 16) the value stored in
INTEGR; starting in column 7 of same line, print "END OF RECORD"; write
two blank lines; on fourth line, print (under control of FlO. 6) the value stored
in A; on fifth line, print (under control of 16) the value stored in J; starting
in column 7 of same line, print "END OF RECORD"; write two blank lines.

Note that the scan stops as soon as the list is satisfied, but that Hollerith fields are
transmitted when they follow the last used field specification and that the record­
termination marks are also heeded.

In a multiple-record FORMAT statement, it is possible to specify that the first record have

one format and that all following records have another format. This is done by enclosing the last

record specification in a second set of parentheses.

Example: 20 FORMAT (1013 / (3FIO. 3, GIO.6)

When this statement is used with an output statement, the first record will be printed (or

recorded on tape) under control of the 1013 field specification, and every subsequent record will

be printed or recorded under control of the other two field specifications until the output list is

satisfied.

Reading in FORMAT at Object Time

Occasions may arise where the format of the input data to a program will differ from run to

run, or perhaps within the same run. In such cases, it would be advantageous if the format

specification could be supplied along with the input data, instead of being rigidly and irrevocably

prescribed in the program beforehand. To permit the changing or prescription of formats at

object time, the following technique is used. In the object program, the programmer allocates

adequate storage space for an array which will later be filled with the pertinent format infor­

mation at execution time. During execution of the object program, the format information is

read into the array before any input data are handled. Then, the input statement reading the input

data references the format array, instead of a FORMAT statement. Since the contents of the

array may be easily changed by reading in new format information when desired, the effect is

equivalent to having variable format statements. Once an array has been used as a FORMAT

statement, it may not app~ar on the righthand side of an assignment statement, within an IF

clause, or in an output list until the array has been re-initialized. The array may only be usedas

a FORMAT until it has been re-initialized. If any change is desired in the formatted array once

it has been used, it must be re-initialized.

5-51

SECTION V. INPUT/OUTPUT STATEMENTS

To make use of object-time formatting, the programmer must:

1. Determine how large an array is required to handle the largest incoming
format specification. If array storage space is readily available, the
programmer can allow an arbitrary number of storage locations for the
array. However, if array storage is at a premium, the programmer can
compute the minimum array storage for the specification as shown later
in this section.

2. Allocate appropriate array storage by declaring and dimensioning the array
in a DIMENSION, COMMON, or data-type statement in the object program.

3. Include in the object program an input statement and a FORMAT statement
which will read the incoming format specification into array storage. An
alphabetic field specification (Aw) is used to read the actual format infor­
mation into the array. The number of characters specified for the fixed­
point field will determine the number of characters that can be read into
each array (i. e., 5 for unspecified fixed-point fields).

4. Reference the format array (instead of a FORMAT statement) in the READ
statement governing input of data.

5. Supply (at object time) the format information to be read into the array.

NOTE: The format information is written exactly as though it were a
FORMAT statement, except that the word FORMAT must be omitted and
there is no statement label. However, both the left and right parentheses
which bound the format specification list must be included. (See Figure 5-18.)

The following example illustrates the principle of reading in formats at object time:

Example:

A program has been written to accept three value s from each card of
several large decks of input data. However, the input decks have not
been consistently punched, and the data fields do not start in the same
column in each deck, although the relative sequence of the data fields
is the same in all decks. To eliminate the problem caused by the incon­
sistent starting columns, the format specification of each card deck is
read into an array just before the' deck is processed. Shown in Figure
5 -1 9 are some of the variations in format which might be encounte red
in the different input decks when the same three values are to be read.

The following statements in the object program will produce the desired
result:

/r------(See Step 1 above.)

DIMENSION IRRAY (12) (See Step 2.)

3 READ (2, 20) (IRRAY (I), 1= 1, 10) (See Step 3.)

20 FORMAT (lOA5) (See Step 3.)

READ (2, IRRA Y) J, B, C (See Step 4.)

f

GO TO 3

5-52

SECTION V. INPUT/OUTPUT STATEMENTS

Every time a new input deck is to be read, the READ (2, 20) statement
should be executed; this will cause the contents of the format speci­
fication card preceding the deck to be read into the array under control
of the IOA5 field specification. Then the input data can be read by means
o~ the READ (2, IRRAY) statement. J, B, and C are variables in which
the incoming values are to be stored.

The example is repeated later with minimum array storage, instead of the arbitrary 12

locations.

When array storage is at a premium, the programmer can determine the minimum size of

the format array by counting the number of characters in the largest expected incoming field

specification, beginning with the left parenthesis bounding the field specification and ending with

the right parenthesis terminating the field specification. All characters, inc.1uding the parentheses

and embedded blanks, are significant.

For example, if the largest expected format specification at object time is:

(5FIO.3, 3(4EIO.2, 2FI2.6), 4(15, EIO.2, 3H6B6))

and each fixed-point field has five characters, array storage in the object program could be

allocated by the following statement:

DIMENSION IRRAY (10)

The format specification has 48 characters and therefore the minimum array storage space that

can be allocated is 10 array storage locations.

Because of the modularity of the II 0 execution package, array formatting will not of itself

bring in the proper conversion routines. The programmer must include a FORMAT statement

containing the conversion codes to be used in array formatting for each chain containing array

formatting. The FORMAT statement may be a dummy statement.

Alternate Creation of Variable Formats

It was shown in the preceding section how a formaJ description can be read into' an array

from cards at object time; then the format array, instead of a FORMAT statement, is refer­

enced by an input or output statement.

Variable formats can alternatively be created by transferring into an array the contents of

constants and/or variabltes having forn;at data; then the array can be referenced by an input

or output statement, as in the previous section.

5-53

SECTION V. INPUT/OUTPUT STATEMENTS

INPUT DECK NO. I
SAMPLE FORMAT

FORMAT SPECIFICATION
CARD

INPUT DECK NO.2
SAMPLE FORMAT

FORMAT SPECI FICATION
CARD

INPUT DECK NO. 3
SAMPLE FORMAT

FORMAT SPECIFICATION
CARD

f

2345 2345.12345 234. 567E+02 , , II
15 FI1.5 E 12.3

0000000000000000000000000010~0000000000000000
I: J4 ~6 18 91011111JI.151&'11819Wl1nn~~~27n~MJlnUH~~U~~~41424J«~

'1111'11111'1111'1111111111111111111111111111

(IS. FII. 5. EI2.3) 222222 , , , , , ,
333333
,..-

'00'000000'000000000000000000000000000000000

; ; ; ; ; ; Ii;;';';' ;'.';';';' ;.;';';';';';'~~;';.;';';';';';' ;s~;,;.;,;,;, ;';';~~
2 2 2 2 2 2 2 2 2 2 2 2 2 2'j2 2' 2

V

12345 12345.12345 ,
110 F16.5

1234. 567E+02
, II

E17.3

000'0
1 ;2. 56 11 9101112131"51.111'19~21nnN~n21n~MJlnDHD~31~H~41'Z43«4

11111'111111111'11111'111111111'111111111111

ItO. FI6.5. EI7.3) , " , "
,00,,000000,000000000000000000000000000000000
I; 3455 JI 9ml"21l1"5~111'19W21nnN~n2'n~~JlnDH~~JJ~H~"Q~«4

11'1111'1111111111111111111111111111111111111

22

, 2345 19999.99909 2345.12345 2345. 67E+02 , , I , II
IS lOX FI1.5 E12.3

0000 0000000000000000000 00 0 0 0 0 0 0 0 0 0 0'0 000000

I; ; ; ; ; ; ; ;;';';';';' ;'i;';' ;'~;'I;';';'~I;'~~;' ;';'7;s~;,;,;,~;, ;';'~;>
1{~5' tOX. Fll.5. E12.3) 222222 , , , , ,

333333 -J 0 0' 0 0'11 0 0 0 0 0 0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 000000 00 0 000
1:J'56J"'011U1J"'5'611all~21nnN~~21n~M31nU~~~»~H~'I'20«4

11111'111111111 1 11'11111111111111111111111111

2222222222222222222'2222222122222222222222221~

NOTE: SECOND DATA FIELD TO BE IGNORED.

Figure 5~ 19. Handling Variations in Format at Object Time

5-54

SECTION V. INPUT/OUTPUT STATEMENTS

Example:

The format description of Figure 5-19

(15, lOX, Fll. 5, E 12. 3)

is to be created by transferring the contents of constants and variables, rather than
by reading the format description from an input card at object time. The following
statements will accomplish the task:

DIMENSION IRRAY (5)

DATA IRRAY (1), IRRAY (2), IRRAY (3), IRRAY (4), IRRAY (5)/5H(IS,b., SHIOX,b.,
SHFll. S, 5H, b. E12, SH. 3)b.b. /

READ (2, IRRAY) J, A, B

The minimum array size of five is computed by adding the number of characters
i~ the format specification. Appropriate array storage is then allocated in the
DIMENSION statement. Using a DATA initialization statement, each array
element is initialized with five Hollerith characters. The array can now be
referenced by the READ statement. Variables J, A, and B are used to store
the incoming values.

END FILE STATEMENT

The END FILE statement has the form:

I END FILE i

Where: i represents the device code of a peripheral unit. It may be either an
unsigned integer in the range 1 through 15 or an integer variable. If

Examples:

it is an integer variable, it must be assigned a value prior to execution
of the statement. The value assigned to i must correspond to a physical
device in the equipment configuration available to the program.

END FILE I

END FILE IUNIT

When addressing a magnetic tape unit, the END FILE statement writes two end-of-file

records on the designated tape unit. The statement is ordinarily used to indicate that there is no

more valid information on a tape, but it may also be used to separate groups of recor'ds into files

for any convenient purpose. If upon writing an output tape, it is desired to rewind the tape and

then read it, an END FILE statement should be executed before the REWIND statement to avoid

reading beyond the written information.

An attempt to write end-of-file records on a card reader or punch will cause job termi­
f

nation and printout of the error message:

IMPROPER COMMAND TO THIS DEVICE.
(Subsequent line shows peripheral device number.)

5-55

SECTION V. INPUT/OUTPUT STATEMENTS

REWIND STATEMENT

The REWIND statement has the form:

I REWIND i

Where: i represents the device code of magnetic tape unit in the equipment
configuration available to the program. i may be an unsigned integer
in the range 1 through 15 or an integer variable. If it is an integer
variable, it must be assigned a value prior to execution of the statement.

This statement is used to rewind to the beginning of tape the reel mounted on logical tape

unit number i.

Examples:

REWIND I

REWIND IUNIT

An attempt to rewind a device such as the printer or card reader will cause job termination

and printout of the error message:

I/O ERR followed by the peripheral device indicator.

BACKSPACE STATEMENT

The general form is:

I BACKSPACE i

Where: i represents the device code of a magnetic tape unit in the equipment
configuration available to the program. i may be an unsigned integer
in the range 1 through 15 or an integer variable. If it is an integer
variable, it must be assigned a value prior to execution of the statement.

Examples:

BACKSPACE 1

BACKSPACE IUNIT

The statement moves back by one logical record the tape mounted on magnetic tape unit i.

The statement may be used to backspace input or output tapes. In the case of binary tapes, one

logical record may correspond to several physical records (see page 5-46); in the case of

formatted tapes, a logical record is the same as a physical record.

An attempt to backs~ace a device such as the printer or punch will cause job termination

and printout of the error message:

IMPROPER COMMAND TO THIS DEVICE.
(Subsequent line shows peripheral device number.)

5-56

•

CATEGORIES OF PROCEDURES

SECTION VI

PROCEDUR:e;S

There are two categories of procedures: functions and subroutines. Functions are further

subdivided into categories. Figure 6-1 shows the different categories of procedures.

PROCEDURES

SUBROUTINES

Figure 6-1. Categories of Procedures

All procedures except statement functions are external procedures. Functions that the proposed

ASA Fortran specification defines as intrinsic are supplied with this compiler as part of the

library functions.

SUBPROGRAMS

There are two categories of subprograms: function subprograms and subroutine subpro­

grams. All subroutines are by definition subroutine subprograms. Function subprograms are

headed by FUNCTION statements; subroutine subprograms are headed by SUBROUTINE state-

mentS. All subprograms are external procedures.

NAMING AND TYPING PROCEDURES

Procedure names consist of one to six alphanumeric characters, the first of which must be

alphabetic. Subroutines do not have types. Functions, however, are typed in the same way as

da tao Rule s for typing functions are:

1. Typing Statement Functions - Logical statement function names must be declared
in a LOGICAL statement. Arithmetic statement function names can be typed
implicitly using the I, J, K, L, M, N convention, or they can be declared either
real or integer in a REAL or INTEGER statement.

2. Typing Function Subprograms - Arithmetic function subprograms can be typed
implicitly by using the I, J, K, L, M, Nnaming convention. However, they can
be explicitly,declared, and logical function subprograms must be explicitly
declared. Prefixing the FUNCTION statement with the appropriate type
(REAL, INTEGER, or LOGICAL) explicitly types a function subprogram.

3. Library Functions - The types associated with library functions are predefined
within the compiler.

6-1

SECTION VI. PROCEDURES

FUNCTIONS

A function consists of a sequence of instructions to perform a mathematical or logical oper­

ation. Rather than writing such a sequence each time it is required during a program, the coding

is supplied previously either with the Fortran compiler or by the programmer. A function is

called when the function name is encountered in an executable statement. When evaluation of a

~unction is complete, control returns to the expression in which the name of the function was

embedded. These characteristics are true for all functions. They are listed in Table 6-1 below;

in addition, the characteristics that differ with the category of function are listed in the table.

Table 6 -1. Characteristics of Functions

Defining Characteristic Category of Function

Statement Function External Function

Library Function
Function Subprogram

Originating Source Programmer-defined. Honeywell-de - Programmer-de-
fined. fined.

Relative Size One - statement definition. More than one statement and may
require a large number of state-
ments.

Number of Output Values One. Usually one but may be more than
Returned one.

Method of Compilation Code is compiled as an integral Code is compiled independently.
part of the using program, but it Code appears only once, no
appears only once regardless of matter how many times it is used
the number of times it is used.

Method of Calling Called when the function name is encountered in an executable state-
ment.

Point to Which Control is Expression in which the name of the function is embedded.
Returned after Evaluation

Statement Functions

Statement functions are single statements written by the programmer. They consist of a

single statement of the form:

Where:

Funame (arg , arg , .•. , arg) = Expression
1 2 n-

Funame = Name of the function.

arg 1, arg
2

, ..• , argn = The names of variables, which are
dummy arguments of the function. (1 ~ n ~ 63)

Expression = Any arithmetic expression (if the data type
associated with the function name is not
LOGICAL), or:

Any logical expression (if the data type
associated with the function name is
LOGICAL).

6-2

SECTION VI. PROCEDURES

The expression portion of the definition may contain non-Hollerith constants, variable references,

and references to previously defined statement functions and external functions. It may not

reference arrays or array elements, except when these are actual arguments of the statement

function.

The name of a statement function may not appear in a COMMON, DIMENSION, EQUIVA­

LENCE, data-type, or EXTERNAL statement, nor as the name of a subroutine in a CALL state-

ment.

The dum.my argum.ent list (arg
1

, argz, , arg
n

) is a list of variables that will be

replaced by the actual call argum.ents when the function is used. Any of the variables in the

expression may be written as dum.my argum.ents of the function. There must be at least one

dum.my argum.ent enclosed within the parentheses and, if there is more than one, COIIlInas must

separate the argum.ents. The data type of each dum.my argum.ent must be declared prior to using

the argum.ent in the definition of a statement function. If the type is not explicitly declared in a

data type statement, it is implied to be either integer or real, depending on the first letter of

the argum.ent name. Although a dum.my argum.ent may have the same name as a variable

appearing elsewhere in the program, no two dummy arguments may have identical names.

To use a statement function once it is defined (i. e., to reference a statement function), the

programmer writes the statement function, followed by the actual argum.ents in parentheses, in

an arithmetic or logical expression. When the expression is executed, the statement function is

evaluated according to its definition, using the actual argum.ents in place of the dum.myargu­

ments. The output of a statement function is a single num.erical or logical value that is returned

to the expression in which the statement function is embedded. Statement functions are defined

only for the programs in which they appear, and the object coding is inserted only once. State­

ment functions must appear directly after any DATA statements in the input deck and must

precede the first executable statement.

Because the actual arguments are to replace the corresponding dum.my argum.ents in the

statemep.t defining the function, they must agree in sequence, num.ber, and data type with the

corresponding dum.my argum.ents and must be separated by commas (if the list contains more than

one actual argum.ent). An actual argum.ent may be the name of any constant, variable, or array

element, or it may be any arithmetic or logical expression that is not the expression which uses

the function.

Example: The following statement function is written before the first executable
statement in the program:

ROOT (A, B, C) = (-B + SQRT (B**Z - 4. *A*C))/(Z. *A)

6-3

I

SECTION VI. PROCEDURES

Where: ROOT is the name of a real function.

A, B, and C are the dummy arguments that will be replaced by actual
arguments when the function is used. (Their data types are implied to
be real from their names, in the absence of any overriding data-type
declaration.)

The right-hand side of the equals sign is the expression to be evaluated
when actual arguments replace the dummy arguments at the time the
function is called.

Assume that it is desired, later in the program, to evaluate the formula with A replaced by

DATA(6), B replaced by 12.8, and C replaced by the absolute value of X minus Y. The following

makes use of the previously defined statement function to obtain the result and to store it in a

location called VALUE:

VALUE ROOT (DATA(6), 12.8, ABS(X-Y»

If it were further desired to perform other operations in the same statement (for example,

adding Z3 to the result), this could be done as follows:

VALUE = ROOT (DATA(6), 12.8, ABS(X- Y)) + Z~"!<3
Since the result takes on the same data type as the function, the quantity stored in VALUE

would be a real number in both instances above.

The same statement function may be used in many other expressions in the same program

with different values replacing dummy arguments A, B, and C.

Function Subprograms

Function subprograms are programmer-written external functions. A function subprogram

can be written by the programmer to express a function that cannot be expressed in a single

statement. The function subprogram is then called into operation just as any other function,

simply by writing its name in a statement, together with the argument(s) to be employed.

The function subprogram can be compiled as an independent entity. It can consist of a

number of statements and can contain any Fortran statement except those listed below under

restrictions. The function subprogram, like the statement function, delivers a single value to

the expression which called it. However, the function subprogram may deliver additional values

by altering the values of some of the variables and/or array elements in its argument list or by

addressing elements in the common region.

A function subprogram must begin with a FUNCTION statement and terminate with an END

statement. Control returAs to the calling program when a RETURN statement or the END state­

ment is encountered. Control will return to the point in the executable statement of the calling

program at which the function name occurred.

6-4

--

SECTION VI. PROCEDURES

The general form of the FUNCTION statement is:

~ FUNCTION funame (argl' arg2' ••• ' argn)

Where: type is one of the following or does not appear at all:

INTEGER. REAL. LOGICAL.

funame is the symbolic name of the function.

(argl' arg 2, •••• , argn) is a list of dummy arguments (variables, arrays,
function subprograms. or dummy names of sub­
routines) which will be replaced by actual argu­
ments from the corresponding positions of the
statement calling the function into operation.
(l$nS63).

The FUNCTION statement is followed by the subprogram body, with the following restrictions:

1. The symbolic name of the function must also appear as a variable name in
the defining subprogram. During every execution of the subprogram. this
variable must be defined and, once defined, may be referenced or redefined.
The value of the variable at the time of any return from this subprogram is
called the value of the function.

2. The function name must appear only as the symbolic name of that function in
the function subprogram and the calling program. It cannot appear as the
name of any other function or as an array name.

3. The function name cannot appear in the function subprogram in a COMMON,
DIMENSION. EQUIVALENCE. EXTERNAL, or data-type statement, nor as
the name of a subroutine in a CALL statement.

4. The function subprogram cannot contain TITLE or SUBROUTINE statements,
other FUNCTION statements, or any usage (either direct or indirect) of the
function being defined. Any other Fortran statements can be used in the
function subprogram.

5. The dummy argument names cannot appear in EQUIVALENCE. COMMON,
or DATA statements in the function subprogram.

6. Each of the dummy arguments should appear at least once in an executable
statement in the function subprogram. If the name of an array is to be used
as a dummy argument, a statement defining the array must appear in the
function subprogram prior to any reference to the array name. The
dimensions of the array should be the same as those of any corresponding
actual arguments.

7. If the function subprogram is to deliver additional value s for dummy argu­
ments in the FUNCTION statement, the actual arguments corresponding to
those dummy arguments must be variable names, array elements, or
array names.

8. The last statement of the function subprogram must be an END statement.

f

As indicated in the format for the FUNCTION statement, the data type can be declared in

the statement. If it is not explicitly declared, the type is implied from the function name to be

6-5

I

SECTION VI. PROCEDURES

either integer or real, depending on the first letter of the name. The data type of the result

delivered by the function subprogram is the sam.e as the type declared in the FUNCTION state­

m.ent or, if no type is declared there, the result is im.plied by the function name to be either

integer or real.

To use a function subprogram, the program.m.er writes as a term in an arithm.etic or logical

expression the nam.e of the function followed by a set of parentheses containing the list of actual

argUInents.

Because the actual argUInents are to replace the corresponding dUInm.y argUInents in the

statem.ent calling the function subprogram., they m.ust agree in sequence, nUInber, and data type

with the corresponding dUInm.y argUIIlents and m.ust be separated by com.m.as (if the list contains

m.ore than one actual argUIIlent). An actual argUIIlent m.ay be the name of any constant, variable,

or array elem.ent, any arithmetic or logical expression, any Hollerith constant, or the name of any

other function subprogram. or of any subroutine. However, when the name of a function or sub­

routine subprogram. is used as an actual argum.ent, the nam.e must be declared. Hollerith con­

stants m.ust replace integer dum.m.y argum.ents.

Example: A real function subprogram named VAL is defined. VAL has two
dummy arguments, J and K. The example shows only the outline
of the function subprogram. Note that more than one return state­
ment can be used.

FUNCTION VAL(J, K)

RETURN

RETURN
END

Within the calling program, the function subprogram VAL m.ay be
called by writing its name in an executable statement with actual
arguments. An outline of such a calling program is shown below.

lJ. TITLE PROCES

QUAN = A ,~ (B/VAL(LIN, NEX(5»

IF (VAL(NONE, NINE»20, 32, 15

In the example, the function VAL is referenced twice in a calling program with different actual

arguments in each case.

6-6

SECTION VI. PROCEDURES

Library Functions

Library functions are external functions supplied with the compiler. A list ofthese functions

and their characteristics is given in Table 6-2. The data type of the result delivered by a library

function must be the same as that indicated by the table.

Library functions include arithmetic, trigonometric, and Boolean functions. Arguments of

arithmetic and trigonometric library functions for which the result is not mathematically defined

are improper. For example, if the value of the second argument of AMOD, MOD, SIGN, or

ISIGN is zero, the result will be undefined.

Library functions are referenced by writing the name of the function in an executable state-

ment.

Library function names cannot be used to identify and reference a programmer-written

function. However, if the library function does not appear in the job being compiled, the function

name may be used to identify a variable or an array.

Table 6-2. Library Functions

Number of Type of Function
Name Function Definition Arguments Argument Function Used For

ATAN Arctangent arctan (Arg) 1 Real Real
ATAN2 arctan (Argl/ Arg

2
) 2

COS Trigonometric cos (Arg) I Real Real Trigo-
cosine nometric

SIN Trigonometric sin (Arg) 1 Real Real
Oper-

sine
ations

TANH Hyperbolic tanh (Arg) 1 Real Real
tangent

ABS Absolute value IArgl 1 Real Real
lABS Integer Integer

AINT Truncation Sign of Arg times 1 Real Real
INT largest integer Real Integer

~ IArg I

ALOG Natural logarithm loge (Arg) I Real Real Arithme-
tic Oper-

ALOGIO Common loglO (Arg) I Real Real ations
logarithm

AMOD Remaindering Arg([ArglArg2]Arg2 2 Real Real

MOD (see note below) Integer Integer

AMAXO Choosing
f Max (Arg I' Arg2' ...) ~ 2 Integer Real

AMAXI largest value Real Real
MAXO Integer Integer
MAXI Real Integer

6-7

SECTION VI. PROCEDURES

Table 6-Z (cont). Library Functions

Number of Type of Function
Name Function Definition Arguments Argument Function Used For

AMINO Choosing Min (Argl' Argz, ...) ~ Z Integer Real
AMINI smallest value Real Real
MINO Integer Integer
MINI Real Integer

EXP Exponential eArg 1 Real Real

FLOAT Float Conversion from 1 Integer Real Arithme-
integer to real tic Oper-

IFIX Fix Conversion from 1 Real Integer
ations

real to integer
(cont)

SIGN Transfer of sign Sign of Argz Z Real Real
ISIGN times IArg 11 Integer Integer

DIM Positive Arg
1

- Min Z Real Real
IDIM difference (Arg 1, ArgZ) Integer Integer

SQRT Square root (Arg) (lIZ) 1 Real Real

lAND Logical AND J n K Z Integer Integer

lOR Inclusive OR J U K Z Integer Integer Boolean

ICOMPL Logical Corn pie - 1 Integer Integer
Oper-

- ations
ment K

IEXCLR Exclusive OR JuK and (JnK) Z Integer Integer

NOTES: 1. Trigonometric functions express angles in radians.

Z. The ATANZ function is a four-quadrant arctangent routine.

3. The bracketed quantity Arg 1/ Argz represents the integral part of this
value.

Examples:

1. Take the absolute value of the square root of X3 -X. Divide the result by X.
Store result in Y.

Y = ABS(SQRT(X**3-X»/X

Z. Add integer I and real variable Y by converting I to floating-point form. Store
result in X.

X = Y + FLOAT(I)

3. Given two octal constants and a string of five alphabetic characters such
that:

Il = 0077777700
IZ = 7777000000
13 = BOOLE

The following Boolean operations are performed:
f

14 = IAND(IZ, 13)
IS = lOR (Il, IZ)
16 = ICOMPL (II)
17 = IEXCLR (Il, IZ)

6-8

-

I

SECTION VI. PROCEDURES

Then, 14 is set to BOOOO
15 is set to 7777777700
16 is set to 7700000077
17 is set to 7700777700

For programmers who are unfamiliar with Boolean terminology, the Boolean operations are

defined below in terms of bit manipulation.

Form

lAND (arg1, arg2)

lOR (arg1, arg2)

ICOMPL (arg)

IEXCLR (arg1, arg2)

SUBROUTINES

Definition

In each bit position, the result is
"1" if and only if both bits of the
arguments in the corresponding
position are "1".

In each bit position, the result is
"1" if either or both bits are "1"
and the result is "0" only if both
are "0".

In each bit position, the result is
"1" if the corresponding bit in the
argument is "0" and the result is
"0" if the corresponding bit in the
argument is "1".

In each bit position, the result is
"1" if either bit in the corre­
sponding position of the arguments
is "1" and the result is "0" if the
corresponding bits are either both
"0" or both "1 ".

Example

arg1 :
arg2:
result:

arg1:
arg2:
result:

arg:
re sult:

argl:
arg2:
result:

o 1 1 0 0 1
1 0 1 0 1
o 0 100 1

o 1 1 0 0 1
0 1 0

1 1 1 0 1 1

011001
100110

011001
101011
1 100 1 0

A subroutine (or subroutine subprogram) is an independent entity which can be separately

compiled and whose variable names are independent of those in the main program or any other

subprogram. A subroutine begins with a SUBROUTINE statement and must be terminated by an

END statement. Control returns to the calling program at the first RETURN statement encoun­

tered or at the END statement. A CALL statement (Section III) is used to call a subroutine. No

data type is associated with the name of a subroutine.

The subroutine differs from the function subprogram, which normally delivers only a

single result to an expression. The subroutine subprogram may deliver any desired number

of output results (including none). The subroutine returns values, if any, either through its

arguments or by addressing elements in the common region. A value may be returned to any
(

variable or array element in the subroutine's argument list.

6-9

SECTION VI. PROCEDURES

The general form of the SUBROUTINE statement is:

Where:

SUBROUTINE subnam (arg
l

, arg
2

, ••• , argn)

subnam is the subroutine subprogram's symbolic name.

(argl' arg2"'" argn) is a list of dummy arguments to be replaced by
actual arguments from the corresponding
positions of the statement calling the subroutine
into operation. The list may contain I to 63
arguments or be omitted.

The SUBROUTINE statement is followed by the subprogram body, with the following re-

strictions:

1. The name of the subroutine appears only in the SUBROUTINE statement.

2. Names of dummy arguments must not appear in EQUIVALENCE, COMMON,
or DATA statements in the subprogram.

3. The subprogram can contain any statement except FUNCTION, another
SUBROUTINE. or a statement referencing the subroutine being defined.

4. The subroutine subprogram can define or redefine one or more of its
arguments to return required additional values.

A CALL statement giving the subroutine name is written in the calling program at the point

at which the programmer wishes to enter the subroutine. When the CALL statement is encoun­

tered, control is transferred to the subroutine named. Statements of the subroutine are then

executed until a RETURN statement or the END statement is encountered. Control is then re­

turned to the first executable statement following the CALL in the calling program. If the sub­

routine contains more than one RETURN statement (alternate coding branches), the first logically

encountered RETURN gives control back to the calling program.

A CALL statement can simply transfer control to the subroutine or it can supply a list of

actual arguments. The actual argumen+s, which constitute the argument list of the CALL state­

ment, must agree in order, number, and type with the corresponding dummy arguments in the

SUBROUTINE statement. Note that Hollerith constants must replace integer dummy arguments.

An actual argument used as a subroutine reference may be:

1. A Hollerith constant;

2. Avariable name;

3. An array element name;

4. An array name;'

5. Any other expression; or

6. The name of an external procedure.

6-10

SECTION VI. PROCEDURES

If an actual argument is an external function name, the corresponding dummy argument

must be used as an external function name. If the actual argument is a subroutine name, the

corresponding dummy argument must be used as a subroutine name.

If an actual argument corresponds to a dummy argument which is defined or redefined in

the referenced subprogram, the actual argument must be a variable name, an array element

name, or an array name.

Execution of a subroutine reference results in substitution of actual arguments for dummy

arguments. The actual argument is specified by name, except in the case of an expression (5,

above). For such an expression, the association is by value rather t~an name. When actual

arguments are substituted for dummy arguments, the first executable statement of the defining

subprogram is executed.

If a dummy argument of a SUBROUTINE statement is an array name, the corresponding

actual argument must be an array name or array element name.

Unless it is a dummy argument, a subroutine is also referenced by the appearance of its

symbolic name in an EXTERNAL statement.

The characteristics of a subroutine subprogram are summarized in Table 6 - 3.

Table 6-3. Characteristics of the Subroutine Subprogram

Subroutine
Characteristic Subprogram

Originating Programmer
source

Relative size At programmer's option (minimum:
3 statements)

Method of Compiled independently. Coding
com pila tion appears only once, no matter how

many times called.

Number of out- Any num be r , including zero.
put values
returned

Method of calling Entered when name is encountered in
into use a CALL statement in calling program.

Point to which First executable statement following
control is returned the CALL statement in the calling pro-
after eJaluation gram. (If the CALL statement is the

terminal statement of a DO loop,
control returns to the update portion of
the DO loop.)

6-11

SECTION VI. PROCEDURES

Example: XSUB2 is defined and can be called by the calling program, AMAIN,
using actual arguments for the dummy arguments in the defining
program.

Defining Program Calling Program

SUBROUTINE XSUB2 (M, N) l:J. TITLE AMAIN

RETURN

END 25

CALL XSUB2(INTRST, IPRINL)

Actual arguments, INTRST and IPRINL, are substituted for M and
N respectively when XSUB2 is called. When evaluation of the sub­
routine is complete, control will return to the statement labeled 25
in the calling program if this is an executable statement.

SPECIAL SUBROUTINES

Supplied with the compiler are a group of special subroutines to assist users in the exe­

cution of Fortran programs.

Test Subroutines for Simulated Hardware and Hardware Features

A test can be made to determine whether one of the four SENSE switches is ON or OFF,

as follows:

Subroutine Call

CALL SSWTCH (n, j)

Purpose

When the call is executed, integer expression n is
evaluated. If n is 1, 2, 3, or 4, the corresponding
SENSE switch is tested. Integer variable j is set
to 1 if the SENSE switch is ON and to 2 if it is
OFF.

Four tests of simulated hardware conditions are made as follows:

Subroutine Call

CALL DVCHK (j)

CALL OVERFL (j)

(

Purpose

Integer variable j is set to 1 if a divide-check con­
dition is detected when the call is executed. Other­
wise, j is set to 2. The internal error condition is
reset.

Integer variable j is set to 1 if floating-point
exponential overflow occurs when the call is exe­
cuted. Otherwise, j is set to 2. Any internal over­
flow indication is re set.

6-12

..

--'

SECTION VI. PROCEDURES

Subroutine Call Purpose

CALL SLITE (n)

CALL SLITET (n, j)

I/O Condition Test Subroutines

Integer expression n is evaluated. If n is zero, all
simulated sense lights are set to OFF. If n is 1, 2,
3, or 4, the corresponding sense light is set to ON.

Integer expression n is evaluated. If n is 1, 2, 3, or
4, the corresponding siInulated sense light is tested,
then set to OFF. If the sense light is in the ON state
when tested, integer variable j is set to 1; other­
wise, j is set to 2.

The three I/O test subroutines test for end-of-file and end-of-tape indications and for bad

parity. The subroutines may be used in any combination. They must be called immediately after

the I/O operation to which the test condition applies. If the condition the subroutine is intended

to sense does occur and the subroutine has not been calied, the program is automatically termi­

nated. The purpose of each subroutine is given below.

Subroutine Call Purpose

CALL PARITY (j) Integer variable j is set to 1 if the peripheral oper­
ation encountered an uncorrectable error. Other­
wise, j is set to 2.

CALL EOF (j)

CALL EOT (j)

I/O Subroutine REREAD

Integer variable j is set to 1 if an end-of-file
record is sensed. Otherwise, j is set to 2.

Integer variable j is set to 1 if the peripheral
ation encountered an end-of-tape indication.
wise, j is set to 2.

oper­
Other-

Subroutine REREAD provides a means whereby the same data can be read twice. A call to

REREAD can be made between two READ statements. The subroutine causes the last record

read by the first READ statement to be the first record read by the second READ statement. The

subroutine call has the following form:

CALL REREAD (i)

Where: i is the code identifying the input device.

Example: READ (2, IS) A, B

CALL REREAD (2)

READ (2, 18) I, J

IS FORMAT (2FS. 1)

18 FOI}MA T (2IS)

The subroutine will cause the data for A and B and the data for I and J to be read from the same

data card.

6-13

I

SECTION VI. PROCEDURES

Dynamic Dumping Subroutines

Three subroutines provide for dumping an area of memory at object time. The only dif­

ferences in the three subroutines are in the arguments used to delimit the area dumped and the

location to which the subroutine returns after the dump. The three calls to dump memory at

object time are as follows:

Subroutine Call

CALL PDUMP (VI' vz)

CALL DUMP (VI' v Z)

CALL MDUMP (nl' nZ)

Purpose

vI and Vz are variable or array element names.
When PDUMP is called, the area between and
including vI and Vz will be dumped. The address of
vI does not need to be less than that of vz' and vI
can equal Vz if the dump of a single variable is
desired.

After the dump, the subroutine returns control to
the next executable statement after the call in the
calling program.

A call to DUMP will cause a dump to be taken in
exactly the same way as a call to PDUMP. How­
ever, after the dump is taken, the subroutine trans­
fers control to the job exit location.

nand n are decimal addresses between 0 and
Z6Z,144.

Z
A call to MDUMPwill cause a dump to be

taken between and including the contents of n 1 and
nZ. After the dump, the subroutine returns control
to the next executable statement after the call in the
calling program.

Examples: CALL PDUMP (A(l), A(lO»

CALL DUMP (C, F(5,5»

CALL MDUMP (8l9Z, 17037)

Exit-to -Monitor Subroutine

A call to EXIT is the equivalent of a STOP statement. The subroutine is called as

follows:

Subroutine Call

CALL EXIT

Purpose

When the call is encountered, an automatic exit to
the monitor occurs, causing final termination of
the job's object program.

6-14

3

•

SECTION VII

SYSTEM CONTROL CARDS

RUN- LEVEL AND JOB- LEVEL CONTROL CARDS

The input deck for any run begins and terminates with run-level control cards. These

starting and terminating cards are a Console Call card and an '~ENDRUN card, respectively.

They are described in Section IX, "Operating Procedures." The Console Call card has several

hardware options with which the programmer should become familiar, but these run-level cards

are primarily the operator's responsibility.

A Fortran run can consist of a number of jobs separated by appropriate control cards that

define each job. These control cards are the responsibility of the programmer. A job-level

control card must have an asterisk in column 1. The card designator always begins in column 2.

CONTROL CARDS FOR STANDARD OPERATION

Standard operation is considered to be load-and-go mode, in which a job is compiled, the

run tape is generated, and the job is executed. The next compilation, run-tape generation, and

execution follows, etc., until the end of the run is reached. For standard operation without

options, two cards are required: the *JOBID card in front of the source deck for the job, and

the *DAT A card at the end of the source deck. If there are data cards, the '~DATA card is

placed at the end of the source deck and ahead of any data cards. The deck appears as shown

in Figure 7-1.

Figure 7-1. Input Deck for Standard Operation

7-1

SECTION VII. SYSTEM CONTROL CARDS

NON- ST ANDARD OPERATION AND OPTIONS

Besides load-and-go, Fortran run modes include writing jobs onto a go-later tape for

execution at a later time, execution of such batched go-later jobs, and processing Fortran II

source decks into source-language decks acceptable to Fortran Compiler D. Some of these

runs require control cards other than the standard load-and-go cards.

Within load-and-go runs, there are several options available to the programmer. Some

can be included on the '~JOBID card, and some require separate control cards. For example,

diagnostic preprocessing of a source deck requires a separate control card, while punching a

relocatable program deck is an option on the '~JOBID card. The remainder of this section

discusses each of the control cards and its options in detail.

*JOBID CARD

Every job must begin with a ':'JQBID card. 1 By itself, the '~JOBID card usually indicates

that the job following is to be compiled and then automatically executed (load-and-go mode).

However, this interpretation can be modified by control cards that follow or precede the ':'JOBID.

Some or all programs of the job may have been previously compiled onto a stack tape or

onto binary input decks. Presence of a *GET control card following a *JOBID indicates that the

named program is on a stack tape and does not need to be compiled. It will be copied onto a

binary program tape, generated onto the binary run tape in absolute form, and executed.

Presence of a *BINARY control card following the '~JOBID indicates that the binary deck following

is to be copied onto the binary program tape, generated in absolute form, and executed. In both

cases, compilation of source programs in the same job will not be inhibited.

A *DIAG card immediately preceding the '~JOBID will bring in the preprocessor to check

the job for source program errors. When a ':'SCREEN card precedes the ':'JOBID, that job and

any following jobs in the run are processed by the Screen routine from Fortran II to Fortran

Compiler D language format.

A *JOBID card has the form:

(*JOBID or (*JOBID, Option 1, Option 2, •.. , Option n

In the first form, no job options are included. *JOBID appears in columns one through six. In

1 '
'~JOBID cards are not required for Screen translation. However, if the programmer wishes
his output deck from Screen to be in proper order for compilation, he should include ':'JOBID
cards as required in the input deck as well as seeing that input programs are ordered according -..,,/
to the requirements for Fortran Compiler D.

7-2

I

SECTION VII. SYSTEM CONTROL CARDS

the second form, '~JOBID is followed by a comma in column 7. One or more options then fol­

low; each option is separated from the one following by a comma.

When there are many options, a number of consecutive '~JOBID cards may be used and the

options divided among the cards. '~JOBID must appear in columns one through six of each card.

Job options may appear in any order following column 7 of the job card. Options may not appear

beyond column 72 on anyone card.

The options that may appear on the *JOBID card are the following:

Job name
Memory size for object program execution
Floating-point precision
Integer precision
Nonstandard as signment of card reader, printer, and punch
SAVE compiled programs by writing them onto a stack tape
PUNCH compiled programs into binary decks
Two listing options
Tape to be used as the common input device

Job Name Option

(*JOBID. * jbnam

The use of an identifying name for each job is recommended. From one to six characters

may be used for the job name including embedded blanks. The first character of the job name

must be an asterisk. When a job name is included on a ':'JOBID card, the name will be printed

on the listing; the asterisk will be suppressed. If no job name is included on the *JOBID card,

the compiler assigns the tag '~NONAM. A job name is required if a go-later tape is being generated.

Memory Size

t JOBID, Mdddddd

The letter M is followed by a 5- or 6-digit integer, representing the highest location in

memory to be used during execution. Any location within the limits of memory can be chosen.

Thus, a specification of M57344 means that all memory up to 57,344 characters can be used

during execution.

The memory size o'ption on the '~JOBID card is used when programs are executed on a

computer with a memory size different from that on which they were compiled. It can also be

__ ' used when a programmer wishes to retain a program or programs in upper memory.

7-3

SECTION VII. SYSTEM CONTROL CARDS

Floating-Point Precision

(*JOBID, Fdd

The letter F is followed by one or two digits dd, where 2 ~ dd ~ 20. The digit (or digits)

specifies the maximum number of digits in the mantissa of a floating-point field. When not

specified by the programmer on the *JOBID card, the maximum number of digits in the mantissa

will be seven.

Integer Precision

(*JOBID, Idd

The letter I is followed by one or two digits dd, where 3 ~ dd ~ 12. The number indicates

the maximum number of characters allotted to the integer field. When not specified, a standard

value of three characters is allotted. Since integers are stored internally in binary, the option

specified by the programmer is smaller than actual integer precision. See Appendix C for a

tabular comparison of integer precision with the number of characters specified by the

programmer.

Peripheral Device Assignments

fJOBID, IOiioopp

The input/ output option permits specification of nonstandard assignments to the input,

output, and punch devices. H the option is not used, the card reader is assigned to logical 02,

the printer is assigned to logical 03, and the punch is assigned to logical 05.

When the I/O option is used, the letters 10 are followed by the following inform:ation:

ii is a two-digit logical address for the card reader (01 :s; ii :s; 15)

00 is a two-digit logical address for the printer (01 :s; 00 ~ 15)

pp is a two-digit logical address for the punch (01 :s; pp :s; 15)

As an example, suppose that the user installation uSes logical device 09 for the card reader and

logical device 02 for the printer. A nonstandard option must then be included on all ~~JOBID

cards as shown below:

fJOBID, 10090205

Note that even though a !ftandard assignment is made to the card punch, all logical device ad­

dresses must be included if anyone is changed.

7-4

•

SECTION VII. SYSTEM CONTROL CARDS

SAVE Option

(*JOBID, SAVE

The SAVE option is used to create or to add program.s to a stack tape. This option re­

quires that a fifth tape be m.ounted on logical tape drive No. 4 during com.pilation. When the

SA VE option is encountered on the '~JOBID card, an indicator is set in the com.m.unication region.

At the sam.e tim.e that the run tape is generated, this indicator will cause the program.s of the job

to be written from. the binary program. tape (logical tape No.3) to the end of the stack tape

(logical tape No.4). Note that in using the SAVE option, no deletion of duplicate-nam.e program.s

on the stack tape will occur. The nam.es of program.s to be saved on a stack tape m.ay not contain

em.bedded blanks. This applies to Easycoder program. nam.es and Fortran m.ain program. nam.es,

which norm.ally perm.it em.bedded blanks. Blanks in subroutine and function subprogram. nam.es

are autom.atically suppressed.

PUNCH Option

form..

tion.

fJOBID, PUNCH

The PUNCH option is used to create a deck of program.s punched in relocatable binary

This option requires that a card punch be initialized as part of the equipm.ent for com.pila­

When the PUNCH option is encountered on the *JOBID card, an indicator is set in the

com.m.unication region. At the sam.e tim.e that the run tape is generated, this indicator will cause

the program.s of the job to be punched from. the binary program. tape. If the SAVE and PUNCH

options are requested for the sam.e job, only the SAVE option will be perform.ed.

Listing Options

There are three possible listings that can be produced by the system.; an exam.ple of each

can be found in Section VIII. If a binary run tape is generated for a job (absolute form.at), a

m.em.ory m.ap listing in absolute form.at is always printed out. The two options that can be

specified on the '~JOBID card are concerned with listings in relocatable form.at; these can be

printed out even though a binary run tape is not generated.

The first listing option is as follows:

(*JOBID, NOLIST

7-5

SECTION VII. SYSTEM CONTROL CARDS

A NOLIST option will inhibit the printing of a relative memory map listing at compile time.

This listing is printed out unless a NOLIST option is encountered and contains the address, rela­

tive position, and the name of each variable and constant. The memory map is so divided as to

indicate whether the variable or constant being listed is contained in a common block, labeled

common block, or noncommon block.

The second listing option is as follows:

tJOBID, LIST

A LIST option will cause the printing of a pseudo-Easycoder listing of the instruction string

generated by compilation. Each line of the listing is edited to resemble a line of an Easycoder

listing. The LIST option is most commonly used for program checkout and maintenance, but

users may occasionally find the pseudo-Easycoder listing useful for tracing subtle source pro­

gram errors. If the object program exceeds 8. 5K characters of memory, the LIST option will

be inhibited.

Tape Input

(*JOBID, TAPEIP

This option informs the compiler that the common input device for the rest of the run is a

card-image tape mounted on logical tape drive No.5. When a TAPEIP option is encountered,

not just the job following but the remainder of the run must use tape input. Input jobs on cards

to be included in the same run must precede the jobs to be read in from tape. The tape on

logical tape drive 5 must not be rewound during a T APEIP run. In addition, no diagnostic pre­

processing to tape can occur in the run after the TAPEIP option is encountered. (See the de­

scription of the '~DIAG card with tape option below.)

Sample "~JOBID Card with Options

*JOBID, 17, F20, 10070305, *SAMPLE, PUNCH, LIST, M22527

Shown above is an example of a ':'JOBID card with several of the possible options. The name

of the job is SAMPLE. Tl¥ job requires that the maximum floating-point accuracy (20 characters

in the mantissa) be used, together with integer specification of seven characters (or integer

precision up to 12 decimal digits). Logical input/ output devices are given by option, since the

7-6

..

..

•

SECTION VII. SYSTEM CONTROL CARDS

card reader is assigned as logical device 7. Programs within the job are to be punched into

relocatable binary decks at run-tape generation time. At the same time, a pseudo-Easycoder

listing is to be printed in addition to the usual memory map listings. At object-program time,

memory up to 22,527 characters is to be used.

'~SCREEN CARD

When a user wishes to convert a source-program deck from Fortran II to Fortran Compiler

D format, use of Screen conversion will result in a new source-program deck with translated I/O

statements and statements containing function names. A *SCREEN card in the input deck indi­

cates that all jobs followiIlg are to be translated. The compiler monitor will transfer control

to F2 TOF4, the Screen conver sion routine.

A *SCREEN card has one of the following forms

(*SCREEN I or (*SCREEN x

*SCREEN appears in columns 1 through 7. Any nonblank character anywhere in columns 8

through 72 will cause sequential numbering of the lines of each job in the listing produced by

Screen and the cards of the new source-program deck. If columns 8 through 72 are blank, the

listing lines and card deck will be numbered in the same way as the input deck.

A Screen :run is terminated by the *ENDRUN card that signals the end of the run. There­

fore, if a deck to be screened is included with compilation or preprocessor jobs, the Screen

deck must be the last deck in the run.

'!<DIAG CARD

When a user wishes to check a job for source-program errors without using compilation

time, he can use the diagnostic preprocessor. A *DIAG card in the input deck indicates that the

job following is to be processed for possible source-program errors. The compiler monitor will

transfer control to ACCPRA, the first segment of the diagnostic preprocessor routine. There

are two options in using the diagnostic preprocessor. In the first option, the *DIAG card ,has the

form:

(*DIAG

*DIAG appears in columns 1 through 5 of the control card. This brings in the diagnostic

preprocessor, which will,examine source-program statements in the job following for possible

diagnostics and print out a listing of all programs (source programs and binary programs if

included) together with diagnostics for the source programs. An example of a source-program

listing with diagnostics is given in Section VIII.

7-7

SECTION VII. SYSTEM CONTROL CARDS

When the diagnostic preprocessor job has been completed, control returns to the compiler

monitor to determine how the next job should be processed.

In the second option, the *DIAG card has the form:

(*DIAG, T I
*DIAG appears in columns 1 through 5 of the control card. A comma appears in column 6. A T

anywhere in columns 7 through 72 indicates that preprocessing is to be to tape rather than to a

listing. For this option a tape is mounted on logical tape drive 5. As the preprocessor scans

the job for source-program errors, it writes all programs of the job (whether source programs

or binary programs) onto tape 5.

a check for job fatality is made.

When the end of the job is encountered, tape 5 is rewound and

Any error diagnosed by the preprocessor will cause job fatality.

If the job is fatal, it is copied from tape 5 onto a printed listing with source-program diagnostics.

Gontrol is then transferred to the compiler monitor to process the next job.

If no errors were diagnosed in the job, control is passed to the compiler monitor l together

with parameters informing the monitor to process the next job using tape 5 as the input device.

Thus, by use of the tape option, a job can be preprocessed, compiled, and executed in one

operation.

"

Any *DIAG card containing punche s other than *DIAG, T will cause diagnostic preprocessing '-./

to a listing only.

*GET CARD

A *GET card specifies that the program named on the card is to be copied from the stack

tape (logical tape drive 4) onto the binary program tape. Use of a *GET card presumes that a

fifth (stack) tape is included in the compilation run. A *GET card has the form:

(*GET, program name I

*GET, appears in columns 1 through 5. The program name can appear anywhere in columns 6

through 72 and must be punched exactly as it appears on the stack tape. When a '~GET card is

encountered, the stack tape will be searched forward until the named program is found or until

an end of file is found. If an end of file is found first, the tape will be rewound and searched

until the named program is located. If, for any reason, two programs of the same name appear

on the stack tape, the first program located will be the one copied to the binary program tape.
r

If the named program cannot be found on the stack tape at the end of the second pass over the

tape, a "job fatal" diagnostic is issued and processing continues with the next job.

7-8

•

SECTION VII. SYSTEM CONTROL CARDS

*BINAR Y AND END CARDS

A *BINARY card indicates to the monitor that the program deck following the card is in

relocatable binary form. The binary program deck will be copied onto the binary program tape.

A *BINARY card has the form:

(*BINARY

'~BINARY appears in columns 1 through 7. If the binary deck is out of order. a "job fatal" diag­

nostic is issued and processing continues with the next job.

The programmer must terminate the binary deck with an END card to signal the end of

binary input. The characters END must appear in columns 7 to 9 of this c~rd as shown below.

*CHAIN CARD

Chaining can be used when a job is too large to be treated as one memory load at object

time. Such a job is divided into groups of programs. Each group of programs is called a chain

and constitutes a separate memory load at object time. In the input deck each chain of programs

is preceded by a '~CHAIN card. A maximum of 30 chains is permitted in a single job. A

*CHAIN card has the form:

(*CHAIN. xl

*CHAIN. must appear in columns 1 through 7. The x shown in the card form represent s a single

alphanumeric character that must appear somewhere in columns 8 through 72 to identify the pro­

gram chain that follows. If the first chain of a job is not called in by later chains. it need not

have a *CHAIN card. However. all subsequent chains must have *CHAIN cards.

*ALTER CARD

An *ALTER card contains one or more of four options. The options are SAVE, PUNCH,

LIST, and NOLIST. The options are identical to tho se used on the *JOBID card. However.

*JOBID options determine options for all programs within the job. An *ALTER card determines

options only for the program that it precedes. Thus. an *ALTER card can be used to change

initially set job options for a single program within the job. An ~~ALTER card has the form:

(*ALTER. Option 1 •...• Option n I
*ALTER, appears in columns 1 through 7. One or more of the options may appear in any desired

7-9

•

SECTION VII. SYSTEM CONTROL CARDS

order in columns 8 through 72; options must be separated by commas. If the SAVE and PUNCH

options are requested for the same program, only the SAVE option will be performed.

*DATA CARD AND IEOFA CARD

(*DATA

The '~DATA card is placed at the end of all program decks for a given job whenever execu­

tion of the job is desired. A '~DATA must be present to trigger job execution. *DATA appears

in columns I through 5.

When a job includes data to be read under the control of the object program, all data cards

for the job must follow the *DATA card and will be read by the object program in the order in

which they follow the ':'DAT A card.

The absence of a '~DATA card following program decks for a given job will inhibit execution

of the job. The run tape generator will process the job, allocate memory, collect called library

functions and subroutines from the compiler system tape, and satisfy any SAVE or PUNCH

option. When compilation is complete, instead of attempting execution, the compiler passes

control to the monitor to process the next job.

If a job proves fatal, when a '~DATA card is encountered, the data cards are bypassed and

the next job is initialized.

When a data deck follows a *DATA card, the programmer has the option of testing an end

of file following the data cards. An end-of-file card following the data cards will cause the end­

of-file record to be generated following the data deck. This card has the form:

(lEOF6

Columns I through 5 contain IEOFA.

*ENDATA CARD

(*ENDATA

,
The *ENDATA card is used only when executing a go-later tape. In this run mode, a

series of jobs previously written onto tape in relocated form are to be executed. For each job

to be executed, the card reader must contain a console call card giving the name of the job on

7-10

•

SECTION VII. SYSTEM CONTROL CARDS

the go-later tape, followed by data for the job, and terminated by an ':'ENDATA card. The

*ENDATA card indicates the end of input data for that particular job. '~ENDATA appears in

columns 1 through 7 of the card.

*DUMP CARD

(*DUMP

If the programmer wishes to take a terminal dump when a job is executed, a *DUMP card

must follow the '~JOBID card. When the '~DUMP card is encountered, the compiler monitor sets

a dump indicator in the communication region. When the job is executed, an alphanumeric and

octal dump of all memory will be printed. *DUMP appears in columns 1 through 5 of the card.

COMMENT CARDS

Any card with an asterisk in column 1 that is not immediately followed by JOBID, SCREEN,

DIAG, DATA, ALTER, GET, BINARY, CHAIN, or ENDRUN will be treated as a comment card.

The contents of the card will be printed on the listing. Comments may appear anywhere in

columns 2 through 80 of such cards. (Note that these comment cards are not within an indi­

vidual program. For comments within a source program, see page 1-4.)

When the compiler monitor begins scanning cards after run initialization, it searches for

a '~JOBID, *SCREEN, or '~DIAG card. Any asterisk card, control or otherwise, encountered

before the compiler monitor locates a '~JOBID, '~SCREEN, or '~DIAG card will be treated as a

comment card and will have no effect upon compilation and execution of the run.

Card-Image Tape Input

At installations not using a card reader, system control information and source programs

can be read in from a card-image tape mounted on logical tape drive No.5. The initial console

call for the run is keyed in by the operator at the console. The console key-in takes the place

of a TAPEIP option on a '~JOBID control card in a card reader to initiate a run using tape input.

See Sections VIII and IX for additional information.

f

7-11

•

SYSTEM SUMMARY

Systezn Modules

SECTION VIII

SYSTEM DESCRIPTION

The systezn supplied to each installation consists of the software znodules described in

Table 8-1. These znodules are supplied on a CST (Coznpiler Systezn Tape). A list of the cozn­

plete contents of this tape is found in Appendix F.

Table 8-1. Systezn Modules

Module Function

Coznpiler Translates Fortran source-prograzn units into relocatable znachine
language and writes thezn on a BPT (binary prograzn tape).

Run- Tape Generator Accepts relocatable znachine-Ianguage prograzn units frozn several
sources (BPT, Fortran library, and stack tape in relocatable znachine-
language forznat), and relocates thezn into loadable executable jobs on
a BRT (binary run tape).

There are two run-tape generators, one for the 3-character address
znode and one for the 4-character address znode.

Execution Package Consists of loader-znonitor, floating-point package, fixed-point pack-
age, object I/O packages, etc. , required for prograzn execution. The
znodule is segznented so that only the required segznents are in znezn-
ory for any given job. Two loader -znonitors are included, one for
loading prograzns in the 3-character address znode and one for loading
prograzns in the 4-character address znode.

Fortran Library A library of Honeywell-supplied Fortran znatheznatical functions and
special subroutines in relocatable znachine language suitable as input
to the run-tape generator.

Diagnostic Checks for source prograznzning errors and issues diagnostics.
Preprocessor

Screen ,Routine Converts Fortran II I/O stateznents and function naznes to Fortran
Coznpiler D source prograzn form.

Debugging Aids Source -prograzn listing, zneznory znap of relocatable znachine coding,
object zneznory znap, generated pseudo-Easycoder listing, and dynaznic
and terzninal zneznory duznping facilities.

Punch Punches prograzn units onto cards in relocatable znachine language
suitable as input to the run-tape generator.

Stack Writes prograzn units onto an optional tape in relocatable znachine
language suitable as input to the run-tape generator.

Run Options

There are four run options for Fortran D. They are:

Load-and-Go Mode

8-1

•

SECTION VIII. SYSTEM DESCRIPTION

Writing a Go -Later Tape

Executing a Go-Later Tape

Screen Conversion

During load-and-go operation, jobs are serially cOITlpiled, relocated, and executed. The

load-and-go ITlode uses the systeITl ITlodules for cOITlpilation, run-tape generation, execution, and

debugging aids. Optionally, the Fortran library, punch, and stack can be used during load-and­

go operation. Diagnostic preprocessing jobs can be interspersed with load-and-go jobs and do

not require a separate run.

Writing a go-later tape consists of cOITlpiling and relocating a group of jobs without execut­

ing theITl. The tape on which the relocated jobs are written is saved for later execution. Writing

a go-later tape uses the systeITl ITlodules for cOITlpilation, run-tape generation, and debugging

aids. Optionally, the Fortran library, punch, and stack can be used during this run ITlode, and

diagnostic preprocessing jobs can be interspersed.

Executing the jobs batched in relocated code on a go -later tape represents another run

option. Only the execution routines are used in this run ITlode.

Conversion of Fortran II I/O stateITlents and function naITles to Fortran D forITlat uses only

the Screen routine and constitutes a run ITlode. Optionally, a Screen run can follow a load-and­

go run without operator intervention if the load-and-go input does not terITlinate with an *ENDRUN

card or card iITlage. The presence of a *SCREEN card or card iITlage terITlinates the load-and­

go processing.

Tape assignITlents for all runs are described in Section IX.

STANDARD FORTRAN PROCESSING - LOAD-AND-GO OPERATION

The standard ITlode of processing Fortran source prograITls is called load-and-go operation.

In the load-and-go ITlode, prograITl units that ITlake up a job are cOITlpiled into relocatable ITlachine

language and written onto a work tape, which becoITles the binary prograITl tape (BPT). Then the

run-tape generator collects these prograITl units on the BPT, together with any called functions

or subroutines froITl the Fortran library and any prograITl units called froITl the stack tape,· re­

locates theITl, and writes theITl onto the binary run tape (BR T). The job is then iITlITlediately

executed. Then the next job is cOITlpiled, relocated, and executed, etc., until the end of the run
f

is encountered.

8-2

SECTION VIII. SYSTEM DESCRIPTION

A :mini:mu:m of six peripheral devices and a :maxi:mu:m of 15 can be used for load-and-go

operation, as well as other :modes of execution. A si:mple flow diagra:m for the :mini:mu:m syste:m

is shown in Figure 8-1.

RUN-TAPE
GENERATION

COMPILATION

EXECUTION

Figure 8-1. Standard Load-and-Go Flow Diagra:m

The input deck for a load-and-go run is shown in Figure 8-2. The Console Call card and

*ENDRUN card begin and ter:minate the run, respectively, and are the responsibility of the op­

erator. A *JOBID card :must begin each job deck, and a *DATA card :must ter:minate the source

progra:ms. If there are data cards, the ~'DATA card precedes the:m. These control cards are

the progra:m:mer's responsibility.

Figure 8-2. Input Deck for Load-and-Go

8-3

SECTION VIII. SYSTEM DESCRIPTION

Chaining a Load-and-Go Job

When it is probable that a job will overflow memory at execution time, the job should be

divided into two or more memory loads. Each memory load (or chain) begins with a *CHAIN con­

trol card that names the chain. An example of chained input is shown in Figure 8-3. Program­

ming tips on chaining are given in Section X.

___ PROGRAM

DECKS

___ PROGRAM
DECKS

Figure 8-3. Job Divided into Two Chains of Program Units

GO-LATER - BATCHED JOB PROCESSING

As an alternative to load-and-go processing, Fortran D System permits the programmer

to compile and relocate a series of jobs onto a BRT. The BR T is saved, and the jobs on it can

later be executed as a separate run.

Writing a Go -later Tape

Compiling and relocating jobs onto a go -later BR T is a run-level processing mode, speci­

fied by an option on the Console Call card. There are two options that trigger the run. One

indicates that a new go-later tape is to be created from a work tape, and the other specifies that

jobs are to be added to an already existing go -later tape. Further details on these options can

be found in Section IX, "Operating Procedures. "

Every job to be written onto a go -later BR T must have its identifying job name specified

on the *JOBID card. The job name appears on the go-later tape as a six-character name, the

initial character of which must be an asterisk. If a job name longer than six characters is speci­

fied on the *JOBID card, the name will be truncated at the right-hand side as shown jJelow:

*JOBID Card wIth Job Name Job Name on Go-Later Tape

*SAMPL

8-4

SECTION VIII. SYSTEM DESCRIPTION

Figure 8-4 shows a sample input deck for writing a go -later tape. Figure 8-5 gives the

minimum system configuration for writing a go-later tape •

..... -~ --PROGRAM
DECKS

",---"--"/71. __ 1.-- ---PROGRAM

DECKS

~--~ ---PROGRAM
DECKS

Figure 8-4. Sample Input Deck to Write Go-Later Tape

RUN-TAPE
GENERATION

LISTINGS
DIAGNOSTICS

Figure 8-5. Flow Diagram to Write Go-Later Multi-job Tape

The console call, described in Section IX, provides three go-later options. One permits

jobs to be written onto a BRT that already contains go-later jobs. The second option permits a

new go-later tape to be cr~ated, and the third option is used to reposition the go-later tape to

the last good job if a run restart is necessary. There is, in addition, a SENSE switch option

that allows the use of card input for creating a go-later tape and using tape input for later execu­

tion. This option is described in Section IX.

8-5

I

SECTION VIII. SYSTEM DESCRIPTION

Executing a Go-later Tape

Executing batchedjobs from a go-later BRT is a run-level processing mode, triggered by

a console call that contains the name of the first job to be executed from the go-later tape. The

programmer can select a job or several jobs on the go-later tape that he wishes to run, since the

individual jobs each have identifying names.

The common input device for the run contains a series of console calls, giving the names of

jobs on the go-later tape. Each console call is followed by the data for the job. Data for each job

mustbe terminated by an~'ENDATAcard or card image. When thefirst~'ENDATAcard is encoun­

tered, the system accepts the next console call from the common input device, searches the go-later

tape for the specified job name, and executes the job. Execution of selected jobs continues until an

*ENDRUNcardis encountered. Greater efficiency in executing a go-later tape is achieved if the

jobs are executed in the order in which they appear on the tape, thus avoiding extra search time.

When a tape unit is used as the common input device, the first console call can be keyed

in at the console, but the remaining job-identifying console calls can appear as card images.

NOTE: If the off-line printing and/ or punching options are used when gener­
ating a go-later tape, they must be indicated on the Console Call cards
used when running the go-later tape.

A sample input deck for executing a go-later tape and a flow diagram for go-later execu­

tion are shown in Figure s 8 - 6 and 8 - 7 .

JOB 1
DATA'~ __ L-~~

*JBN01 *

Figure 8-6. Sample Input Deck to Execute Go-later Tape

EXECUTION

Figure 8 -7. Flow Diagram to Execute Go -later Tape

8-6

"

•

SECTION VIII. SYSTEM DESCRIPTION

SYSTEM OPTIONS

Stack Tape

Compiled program units in relocatable form can be written onto a fifth tape, called the

stack tape, during the course of compilation and run-tape generation. The stack tape, on logical

tape drive 4, is saved. Writing the program units onto the stack tape does not inhibit their re­

location and execution during a load-and-go run or their relocation onto the go-later tape when

writing a go-later tape. Use of the SAVE option on the *JOBID card causes that job to be placed

on the stack tape. Use of the SAVE option on. the *ALTER card triggers the writing of the pro­

gram unit following onto the stack tape.

Program units previously saved can be called for relocation by use of a *GET card con­

taining the program unit name. The name of the program unit as it appears on the ~'GET card

must exactly match the program unit name as it appears on the stack tape. To insure uniformity

of names, the programmer must suppress all embedded blanks when writing the name of a pro­

gram unit to be saved on the stack tape. Use of the *GET option is permitted during load-and-go

operation and when writing a go-later tape.

The console call, described in Section IX, provides two stack tape options. One permits

a new stack tape to be created during a run, and the other permits jobs to be written onto an

"-'~ already existing stack tape.

Punch Option

Compiled program units can be punched onto cards in relocatable format during the course

of a load-and-go run or while writing a go-later tape. Punching program units does not inhibit

their relocation by the run-tape generator or their execution if the run is load-and-go. The

PUNCH option on the *JOBID card causes punching of all program units in the job. The PUNCH

option on the *ALTER card causes the program unit that follows to be punched. If both the SAVE

and the PUNCH option appear on a ~'JOBID or *ALTER card, only the SAVE option is processed.

Use of a *BINARY card preceding a deck created by the PUNCH option causes the deck to

be relocated onto the BR T by the run-tape generator. Use of the *BINARY option is permitted

when writing a go-later tape or during a load-and-go run.

Jobs Containing ~'GET and *BINARY Program Units

A job can consist Plimarily of previously compiled programs in relocatable form if the

job contains at least one source program to be compiled. The source program is placed last in

the job and must allocate maximum common storage for the job and reference logical device

8-7

I

SECTION VIII. SYSTEM DESCRIPTION

numbers of any I/O devices used in the job. Figure 8-8 shows a job input deck containing previ­

ously compiled program units and terminating with a source program containing common and

I/O statements.

Figure 8-8. Job Containing Previously Compiled Program Units

Common Input Device

The common input device can be a card reader or a tape unit. If a card reader is the

input device, the run begins with the Console Call card, as described in Section IX.

Tape drive No. 5 is used for common input from tape. This card-image tape can be

written off-line as a series of jobs by Simultaneous Media Conversion C. The console call is

keyed in by the operator at the console; or if a card reader is available, the Console Call card

can be read in from the card reader followed by a ~'JOBID card with a TAPEIP option.

A second method exists whereby jobs can be read from tape 5 following diagnostic preproc­

essing of a job onto the tape. If no source -program errors are found during diagnostic preproc­

essing and a tape option was specified, the diagnostic preprocessor will produce the job on tape

and load-and-go processing will automatically follow. This diagnostic preprocessing option is

described in detail later in this section.

Since the diagnostic preprocessor uses tape 5 as a work tape, the option for diagnostic

preprocessing to tape is not permitted when using tape 5 as the input device (TAPEIP).

(

Common Output and Common Punch Device Options

The common output device can be a printer or a tape unit. A punch or common punch tape

is optional for Fortran D execution as well as the previously described PUNCH option. Note that

8-8

.-....../.

SECTION VIII. SYSTEM DESCRIPTION

when the common output device is a tape unit, it can be used as the common punch tape as well,

with printed and punched output interspersed.

Bypassing Execution

During load-and-go operation, omission of a *DATA card following the source deck of a

job causes control to return to the compiler monitor after the job is written onto the binary run

tape. Processing of the next job then begins. This option is used to obtain debugging information

from compilation and run-tape generation.

Diagram of System Options

Figure 8-9 is a diagram of a load-and-go run with all system options shown.

COMPILATION

EXECUTION

f

II BINARY (r"MCHEO--1

1 -----, DECK
'- __ .-__ -.J

(r" OPTI6"NAl---:
PUNCH I

~UNC~_~_-_-r--J /_

*GET / "-
-----------~~TlOO~,

SAVE (fr~~K \
----------~ T4 /

p.~::::" r- "
I ADDITlOOAL '\ \,)
I WORK TAPES) ,,I
\ ?--",,--­-.........::.--

"--L_

Figure 8-9. Load-and-Go Run With System Options

8-9

SECTION VIII. SYSTEM DESCRIPTION

DEBUGGING AIDS

Source-Program Listing

During compilation, a listing of the source program is always generated.

program listing is shown in Figure 8-10.

Relocatable Memory Map

A sample source-

During compilation, a memory map giving the address, relative position, and symbol name

of each variable or constant is printed. The relocatable memory map is printed unless the

NOLIST option is specified on the *JOBID card. A sample relocatable memory map is shown

in Figure 8-11.

The memory map indicates in a heading whether the data following is in noncommon, un­

labeled common, or labeled common blocks. Under this heading is a two-column listing with

the headings: ADDRESS, RELATIVE POSITION, and SYMBOL. Symbols are sorted in ascend­

ing order by address value.

For each labeled common block, the name, size, and base of the block are included in the

header information. Constants in the noncommon area are only those explicitly defined within

the source program. Constants generated by the compiler do not appear.

Logical constants for true and false are given as . TRUE. and. FALSE. Integer constants

are given as = value 1 0 (for example, =9). Floating constants are given as . mantissa E ± expo­

nent (for example, .7E-02). Hollerith and octal constants are given as = value in Hollerith or

octal (for example, =25KC).

No explicit information indicates whether a variable has been defined as a dummy variable

or a dimensioned variable. However, dummy variables appear as the first set of noncommon

variables with three characters allocated to each. Dimensioned variables can be identified by

the amount of storage allocated to each.

All addresses are given in relocatable form, relative to the base 10000
8

, and are not the

absolute addresses assigned in execution. The absolute addresses can be computed by adding

the address given under REL POS to the base address of the BASE LOCN DATA on the object

memory map described in the next paragraph.

(

8-10

,-"",

\...,..

FORnAN

001
002

C
C

003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024

XSUB1

ADDRESS

10047
10054
10057
10062

SECTION VIII. SYSTEM DESCRIPTION

200 SOURCE LISTING AND DIAGNOSTICS

SUB~OUTINE XSU81(~)
COM~ON IXSUBI/I(10)
wHE~ N=1 LOADS I AND SINGLES Ml.M2.
wHE~ N=2 CHECKS I AND SINGLES Ml.M2.
IF (N-1I 100.100.200

100 wR1TE (3.11 N
DO '110 KK=I.10
I(t(O=KK

110 wRITE (3.2) KK,I«K)
2 FOR'1AT (3'"i I (I3.2H)= 15)
1 FOR'1AT (14H XSUBI WITH N= 13)

~1=-1
M2=-2
wRITE (3.3) Ml.M2
RET JRN

200 wRITE (3.11 N
DO 210 KK=1,10

210 wRITE (3.2) KK.I «K)
wRITE (3.3) Ml.M2

3 FOR'1Al (4H M1= 15.4H '12= 15)
RETJRN
END

Figure 8-10. Source-Program Listing

MEMORY MAP

NON COMMON DATA

REL-POS SYMBOL

00030 N
00035 =1
00040 =3
00043 KK

ADDRESS

10065
10135
10140
10143

PROGRAM: XSUBI

REL-POS SYMBOL

00046 =10
00116 Ml
00121 M2
00124 =2

LABELED OMMON BLOCK: XSUB1 BASE: 71704 SIZE: 00036

ADDRESS REL-POS SY'1BOL ADDRESS REL-POS SYMBOL

77106 00002

SUBPROGRAMS REFERENCED :
ACBFXP ACBDIO

Figure 8-11. Relocatable Memory Map

Object Memory Map

Whenever a binary run tape (BRT) is generated, an object memory map is printed. This

listing is not optional. The object memory map gives base locations in absolute code for:

1. Data;

2. Program insl"fructions of all chains in a job; and

3. Any I/O devices that have nonstandard logical address assignments.

The object memory map is useful in debugging object coding. A sample object memory map is

shown in Figure 8-12.

8-11

SECTION VIII. SYSTEM DESCRIPTION

*DAT~
OBJECT MEMORY MAP

PROGRAM/DATA AREAS BASE LOCN DATA BASE LOCN PRO<:i

CHAIN 01
JNLAB COM 04527
LABEL COM 04540

ACBFXP 04634 04634
ACBDIO 06064 06304
XMAINS 11356 11655
XMAIN2 12203 12260
XSUB2 12367 12630
XSUB1 13725 14105
BCDCON 15062 15143
INTCON 20217 20217
IODIAG 21302 21302
ACBFLO 21320 21320
lABS 21733 21750
ACBFPP 22060 22060

HIGHEST LOCATION 24306

Figure 8-12. Object Memory Map

The object memory map has three columns. The first gives the name of the item concerned -

program, common or labeled common data area, or buffer device having a nonstandard assign­

ment. The second column contains the base location for data. In this column are the base

locations of program data, common, and labeled common areas. In addition, the base address

of any buffer device having a nonstandard address will appear in this column. The third column

is used only with programs and gives the base address of each program instruction string.

Information is printed in the following order:

1. Any nonstandard buffer devices;

2. Chain designation;

3. Unlabeled common area;

4. Labeled common area; and

5. Programs in the chain.

If there is insufficient memory to execute a given chain, the object memory map prints

at the end of the chain:

INSUFFICIENT MEMORY xxxxx CHARACTERS NEEDED.

Machine-Code (Pseudo-Easycoder) Listing

During compilation, a pseudo-Easycoder listing is printed if the LIST option is specified

on the *JOBID card. The compiler-generated instruction string is printed, using the program­

mer-defined variable names whenever possible. The pseudo-Easycoder listing is usually used
f

in program checkout and maintenance, but some users may occasionally find it useful for check-

ing source-program errors. A sample pseudo-Easycoder listing is shown in Figure 8-13.

8-12

.-J

-

-

SECTION VIII. SYSTEM DESCRIPTION

XSUB1 ~ACHINE CODE LISTING

BEGADD AL MACrlINE CHARACTE><s R LOC OPCODE OPERANDS AND VARIANTS

010117 R S8EGIN RESV 0
010177 'IJ 2401022370 SCR SBEGIN+20.70
010204 Ii 65010224 B SBEGIN+21
010210 Ii 1001001700000257 EXM REGIONI+15.Xl-2.57
010220 Ii 65000000 B 0
010224 if 1071022101004757 EXM (IFN,004-62).N.57
010234 tV 2401022367 SCR SBEGIN+20.b7
010241 Ii 1000000201001757 EXM X1-2.REGIONI+15.57
010251 tV 14710047004453 MCw (N).SFXPTA+l1
010260 Ii 35010054004453 Bs =1.SFXPTA+11
010267 Ii 5401031700445102 BCC IFNI004.SFXPTA+9.02
010217 W 33004462004453 C SFXPTZ.SFXPTA+l1
01030(> Ii 6501031742 B IFN#004.42
010313 if 65010664 B IFNI016
010317 ~ IFNI004 RESV 0
010317 if 14010057004455 MCw =3.$LODCH
016326 if 65004757 B ACBOIO
010332 tV 01010620 I DSA =10+17.20
010336 Ii 14710047004453 MCw (N) .$FXPTA+ 11
010345 N 43 w CSM
010346 Ii 65004757 B ACBOIO
010352 Ii 01010677 I DSA =10+17.77
010356 '1/ 150100540100b2 LCA =1.KK
010365 if· 14010062004453 MCw KK.$fXPTA+ll
010374 Ii 65004756 B ACBFXP
010400 Ii 01017630 I DSA =3.30
010404 if 14004453010172 MCw SFXPTA+11.Ss+3
010413 Ii 65010426 B IFNI004+71
010417 Ii 34010176010172 BA =3.$5+3
010426 Ii 14010172000010 MCw $s+3.X2
010435 w 15010062277703 LCA KK.LABEL+62083+X2
010444 R IFNI007 RESV 0
010444 if 14010057004455 MCW =3.SLODCH
010453 Ii 65004757 B ACBOIO
010457 Ii 01006620 I DSA =10+1.20
010463 tV 14010062004453 MCW KK.$FXPTA+11
010472 Ii 43 W CsM
010473 tV 14010172000004 MCW Ss+3.Xl
010502 '1/ 14177703004453 MCW LABEL+62083+X1.SFXPTA+11
010511 Ii 43 W CSM
010512 '1/ 65004757 B ACBDID
010516 W 01006677 I DSA =10+1.77
010522 tV 340100540100b2 BA =1.KK
010531 '1/ 330100650100b2 C =10.KK
010540 Ii 6501041743 B IFNI004+64.43
010545 Ii 35004453 Bs $FXPTA+ 11
010551 Ii 35010054004453 BS =1.SFXPTA+11
010560 Ii 15004453010135 LCA $FXPTA+1ltM1
010567 N 35004453 Bs $FXPTA+11
010573 Ii 35010143004453 BS =2.$FXPTA+11
010602 N 15004453010140 LCA $FXPTA+11.M2
010611 N 14010057004455 MCw =3.$LODCH

f

Figure 8-13. Pseudo-Easycoder Listing

8-13

•

SECTION VIII. SYSTEM DESCRIPTION

X5UBl MACHINE CODE LISTING

BE.GADD AL MACHINE CHARACTE~S R LOC OPCODE OPERANDS AND VARIANTS

010620 ;J 65004151 B ACBOIO
010624 ;J 01014420 I DSA =2+1,20
010630 ;J 14010135004453 MCw MltSFXPTA+ 11
010637 ;J 43 w C5M
010640 II 14010140004453 MCw M2 .'SFXPTA+ 11
010647 II 43 w CSM
010650 fi 65004157 B ACaOIO
010654 w 01014417 I DSA =2+1.77
010660 Ii 65010210 a SBEGIN+9
010664 R IFNI016 RE5V 0
010664 Ii 14010057004455 MCw =3,SLODCH
010673 ;J 65004757 a AcaOIO
010617 fi 01010620 1 DSA =10+17,20
010703 tI 14710047004453 MCw (N) ,SFXPTA+ 11
010112 fi 43 w CSM
010713 N 6500415-' a AcaOIO
010717 II 01010677 I DSA =10+11,17
010723 tI 15010054010062 LCA =1.KK
010732 ;J 14010062004453 MCw KK .SFXPTA+ 11
010741 W 65004156 B ACBFXP
010745 Ii 01017630 1 D5A =3.30
010751 tI 14004453010172 MOl SFXPTA+ll,SS+3
010760 W 65010113 B IFNI020
010764 tI 34010116010172 BA =3,S5+3
010173 R ' IFNI020 RESV 0
010773 II 14010057004455 MCw =3,SLODCH
011002 fi 65004157 a AcaOIO
011006 1/ 01006620 I DSA =10+1.20
011012 ;J 14010062004453 MCw KK,SFXPTA+11
011021 fi 43 Vol CSM
011022 tI 14010172000004 MCW SS+3,Xl
011031 tI 14171703004453 MCW LAaEL+62083+Xl,SFXPTA+ll
011040 1/ 43 w CSM
011041 tI 65004757 B ACBOIO
011045 tI 01006617 1 DSA =10+1.11
011051 II 34010054010062 BA =ltKK
011060 tI 33010065010062 C =10.KK
011067 1/ 6501016443 B IFNI016+64.43
011074 1/ 14010057004455 MCW =3,SLODCH
011103 N 65004157 B AcaOIO
011107 w 01014420 I DSA =2+1.20
011113 W 14010135004453 MCw MltSFXPTA+11
011122 fi 43 W CSM
011123 W 14010140004453 MCw M2.SFXPTA+11
011132 N 43 w CSM
011133 tI 65004151 B ACBOIO
011137 iJ 01014417 I DSA =2+ 1. 77
011143 tI 65010210 B SBEGIN+9
011147 tI 65010210 B SBEGIN+9
011153 N 40 w NOP

f

.-
Figure 8-13 (cont). Pseudo-Easycoder Listing

8-14

•

SECTION VIII. SYSTEM DESCRIPTION

Each instruction is edited to resemble a line of an Easycoder listing. On the left side of

the page, the beginning address is given, followed by left punctuation, followed by machine code,

followed by right punctuation.

For each programmer-defined EFN (statement label) that is not associated with a Format

statement, a tag is generated that corresponds to the IFN (internal formula number). This tag

appears on a line with the command RESV O.

DSA, DCW, and DC statements, as well as all instructions, appear with mnemonic opera­

tion codes and with the one or two address fields edited symbolically. Variants appear in octal;

addres s arithmetic appears in decimal.

In array references, the symbolic tag does not always appear to be correct because of sub­

scripting. The address field of a variably subscripted array element contains the base address

incremented by the constant portions of the subscripts and decremented by an allocation constant.

This may cause the address value to appear within the range of another array and thus cause the

appearance of a wrong tag. Users must remember that this is not a compiler error.

Error Diagnostics

During compilation, run-tape generation, and execution, error messages can be issued by

several system modules: the compiler, compiler monitor, run-tape generator, object I/O rou­

tines, and Fortran library. Error messages issued by segments other than the compiler are in

English; they are listed in Appendix G. All are "job fatal. "

Most compiler diagnostics are printed as error numbers, although a few diagnostics are

issued as English sentences. Where possible during the source-program listing, diagnostic

numbers for detected errors are printed next to the appropriate statements. These error print­

outs usually consist of up to three digits. If the error is fatal, the number is printed in columns

109 to III of the listing on the same line as the statement. If the error is not fatal, the number

is printed in columns 116 to 118. If the error number has les s than three digits, it is right

justified in the appropriate columns. Errors detected after the source program has been listed

are printed beneath the source program with an IFN (internal formula number) to the left of the

error number so that the statement to which it applies can be located in the listing.

Compiler error numbers and their meanings are given in Appendix G. The magnitude of
(

the compiler error number indicates the system module that detected the error. Subheadings in

Appendix G show which module is responsible for detecting a given error.

8-15

SECTION VIII. SYSTEM DESCRIPTION

In general, the types of errors listed below are not detected by the compiler and could

lead to unspecified results if the program gets into execution:

FORMA Terrors,

Punctuation errors,

Illegal characters,

Subscripting errors,

Mixed mode in arithmetic statements,

Errors in I/O statements,

FORMA T I/O list mismatches.

However, some of the errors above can be detected by diagnostic preprocessing, described later.

Memory Dumps

Three Honeywell-supplied subroutines provide for dynamic memory dumps of all or part

of memory, as described in Section VI. A terminal dump of memory is taken if the *DUMP card

is part of the job deck.

DIAGNOSTIC PREPROCESSING

The diagnostic preprocessor checks source programs for errors without using compilation

time, and it can provide diagnostic information about the construction of the source program that

the compiler is unable to supply.

Diagnostic preprocessing is a job-level option; therefore, jobs submitted for diagnostic

preprocessing can be interspersed with jobs submitted for load-and-go operation or for writing

on a go-later tape. The presence of a *DIAG or ~'DIAG, T card preceding a ~'JOBID card causes

transfer of control to the diagnostic preprocessor. A *DIAG card causes the preprocessor to

list all control cards and all programs of a job with appropriate diagnostic information. A

*DIAG, T card causes the diagnostic preprocessor to write a job onto logical tape 5 in card­

image form. The compiler is then called in, and compilation of the job on tape 5 is automatically

carried out, unless the job is fatal.

Preprocess-Only Option - ~'DIAG

When only preprocessing is requested, the diagnostic preprocessor lists on the common

output device the source program and any diagnostics. A sample input deck and a flow diagram

of a diagnostic preprocessor job of this type are shown in Figure 8-14 and 8-15. Note that the

work tapes shown in Figure 8-15 are not required for preprocessing. However, since compilation
(

would normally precede or follow diagnostic preprocessing, the tapes are shown mounted.

8-16

I

SECTION VIII. SYSTEM DESCRIPTION

Figure 8-14. Input Deck for Diagnostic Preprocessing

~--------------~ ~ESSSO~CE
PROGRAMS. WRITE
SOURCE PROGRAMS a
ANY DIAGNOSTICS ONTO
COMMa\! OUTPUT DEVICE.

Figure 8-15. Flow Diagram for Diagnostic Preprocessing - Preprocess-Only Option

When a ~'DIAG card is encountered, all programs, subprograms, control cards, and binary

decks following are listed until a ~'DA TA card or other card indicating the end of that job is

encountered. Components other than source programs are listed without diagnostic action. Data

are not listed.

On the printer, each source program is listed on a separate page, together with diagnostic

messages if errors were detected. At the end of each program, a list of subprogram references

is printed. Following the program is the line: *END OF PROGRAM.

Preprocessing to Tape - *DIAG, T

A card-to -tape option is specified on the *DIAG control card by a comma in column 6 and

the character T somewhere in columns 7-72. When this option is specified, all program decks

of the job are preprocessed and written onto logical tape 5. When the preprocessor senses the

end of job (*DATA card or other end-of-job card), logical tape 5 is rewound and a check made

for job fatality. Any source-program error detected by the preprocessor will cause job fatality.

If the job is fatal, the complete job listing is copied from logical tape 5 onto the common

output device with the preprocessor source-program diagnostics. Control is then passed to the

compiler monitor to proces s the next job in the input deck.

8-17

I

SECTION VIII. SYSTEM DESCRIPTION

However, if no job-fatal error was detected when the tape is rewound, control is passed to

the compiler monitor with parameters informing the monitor to use tape 5 as input to load-and-go

processing or writing a go-later tape according to the run option. Thus, by using the tape option,

a job can be preprocessed, compiled, relocated, and executed in one operation. Figure 8-16

shows a flow diagram of diagnosti.c preprocessing to tape. Note that work tapes are required for

this job, since compilation automatically follows preprocessing.

D~A _____ ~~ ______ ~
DECK

SOURCE
DECKS,,-.,-a----"

WRITE JOB TO TAPE.
REWIND AND CHECK
FOR JOB FATALITY.

YES

SOURCE PRO­
GRAM a DIAG­
NOSTIC LISTING

COMPILATION

Figure 8-16. Diagnostic Preprocessor Flow Diagram - Tape Option

Diagnostics

The preprocessor writes diagnostic messages in English. On the printer, the diagnostic

begins in column 40 of the line directly beneath the statement in which the error occurs. In

diagnosing an error in an executable statement, the preprocessor often includes as part of the

diagnostic a portion of the source statement. This portion begins in column 70 of the line directly

beneath the statement in error and indicates the point in the source statement at which the error

occurred. For most FORMAT statement diagnostics, a column number is given instead of a

portion of the source statement. The column number indicates the position in the FORMAT

specification at which the error occurred. In indicating the column number, the diagnostic

preprocessor does not count either the opening left parenthesis of the specification or embedded

blanks. A flag always follows the diagnostic message, indicating that the error is fatal.

In most instances, the preprocessor continues to analyze a statement already found to be

erroneous, sometimes producing a series of error diagnostics for a single statement. Since the ,
initial error may cause the introduction of spurious diagnostics in continued analysis, the pro-

grammer should take considerable care in correcting statements containing multiple errors; and

in many cases, he may wish to ignore all diagnostics after the first one issued.

8-18

..

•

SECTION VIII. SYSTEM DESCRIPTION

Li:mitations in the use of the diagnostic preprocessor are as follows:

1. State:ment operators :must not cross card boundaries.

2. EQUIVALENCE state:ments are bypassed by the preprocessor.

3. DATA initialization state:ments are bypassed by the preprocessor. (These
state:ments are diagnosed by the co:mpiler.)

4. The preprocessor does not detect :missing or duplicate chains or subprogra:ms.

Appendix G lists diagnostics issued by the preprocessor. Figure 8-17 shows the output

fro:m the preprocessor in the for:m of a printed listing .

PREPROCESSOR DIAGNOSTIC LISTING

*JOBID
TITLEDIAGBG

C

CHECK DIAGNOSTICS PROBLEMS

CHECK RIGHT PARENS AS LAST CHARACTER ON CARD, NEXT IS CONTINUING

WRITE(3,12)
12 FORMAT (4HTEST, F13 .9, F13.9, F13.9,

THERE IS DATA AFTER THE TERMINATING RIGHT PARENTHESIS.

11=8

CHECK DIAGNOSTIC ON IH FORMAT. SHOULD HAVE BEEN 14

WRITE(3,13)
13 FORMAT(2IH)

DUPLICATE FIELD SPECIFICATION OR MISSING COMMA.
COLUMN NUMBER016

CHECK DIAGNOSTIC ON MORE THAN 3 SETS OF PARENS

WRITE(3,14)
14 FORMAT (3 (2 (2 (4HSCAN, IX) • 4HSCAN) ,4HSCAN»

MORE THAN THREE NESTED PARENTHESES.
COLUMN NUMBER019

CHECK DIAGNOSTIC FOR MISSING SPECIFICATION

WRITE(3,16)
16 FORMAT(lS,S.3)

WRITE (3, 17)
17 FORMAT(2HAF12.5)

WRITE (3, 18)
18 FORMAT (6I)

STOP
END

EITHER A MEANINGLESS DECIMAL POINT OR MISSING FIELD SPECIFICATION.
COLUMN NUMBERO 18

EITHER A MEANINGLESS DECIMAL POINT OR MISSING FIELD SPECIFICATION.
COLUMN NUMBER020

AN A, H, I, L, 0, OR X FIELD IS BLANK OR ZERO.
COLUMN NUMBER016

* END OF PROGRAM

Figure 8-17. Diagnostic Preprocessor Listing

SCREEN CONVERSION
f

The Screen routine provides li:mited conversion of user source progra:ms written in Fortran

II into source progra:ms in Fortran D language. Screen replaces Fortran Ii I/O state:ments and

na:mes of library functions with their equivalents in Fortran D. Screening is a run-level option.

8-19

•

SECTION VIII. SYSTEM DESCRIPTION

Presence of a *SCREEN control card will cause all source programs to be translated until an

~'ENDRUN card is encountered. Data decks should not be included in a Screen run.

As output, Screen punches a new source deck and produces a listing of the new source deck.

Output can be on line or off line as desired. If a character is punched anywhere in columns 8 to

72 of the ~'SCREEN card, each card of each job is numbered sequentially, both in the new card

deck and in the listing. The sequential numbers appear in columns 75 to 77 and are three-digit

decimal numbers beginning with 001. When the routine encounters a *JOBID card in the input

deck, the numbering sequence is reinitialized. (*JOBID cards are not required for a Screen

run, but their use is recommended to separate job decks.)

Screen processing can be performed as a separate run, or it can follow load-and-go proc­

essing. An input deck for Screen is shown in Figure 8-18 and the flow diagram is given in

Figure 8-19.

I----~--- FORTRANlr

*SCREEN *

Figure 8 -18. Input Deck for Screen

"1"'--)------------.. PROCESS INPUT DECK
.... FOR I/O STATEMENT

AND FUNCTION NAME
CHANGES.

Figure 8-19. System Flow of Screen

INPUT DECK

Figure 8-20 shows the changes made in input/output statements by Screen. In each case, ,
i is the number identifying the I/O device, n is either a FORMAT statement label or the name of

an array, and List represents a correctly sequenced list of names of variables, array elements,

and arrays.

8-20

SECTION VIII. SYSTEM DESCRIPTION

Fortran II

READ INPUT TAPE i, n, List

READ TAPE i, List

READ n, List

WRITE OUTPUT TAPE i, n, List

WRITE TAPE i, List

PRINT n, Li st

PUNCH n, List

o Fortran D

READ (i, n) List

READ (i) Li st

READ (i, n) List

WRITE (i, n) List

WRITE (i) List

WRITE (i, n) List

WRITE (i, n) List

Figure 8-20. Screen Conversion of I/O Statements

Fortran II function names appearing anywhere in a source-program statement are con­

verted. Figure 8-21 shows the conversion of library function names.

Fortran II [) Fortran D

ABSF ABS
XABSF lABS

INTF AINT
XINTF INT

MODF AMOD
XMODF MOD

SIGNF SIGN
XSIGNF ISIGN

MAXOF AMAXO
XMAXOF MAXO

MAXIF AMAXI
XMAXIF MAXI

MINOF AMINO
XMINOF MINO

MINIF AMINI
XMINIF MINI

FLOATF FLOAT

FIXF}
XFIXF

IFIX

DIMF DIM
XDIMF !DIM

LOGF ALOG

SINF SIN

COSF COS

EXPF EXP

SQRTF SQRT

ATANF ATAN

TANHF TANH

Figure 8-21. Screen Conversion of Library Function Names

8-21

SECTION VIII. SYSTEM DESCRIPTION

The for:mat of state:ments processed by Screen is as follows:

I. State:ments that are not I/O state:ments and do not have function na:mes are
reproduced without change. State:ments already in converted for:mat are
also reproduced without change.

2. A converted I/O state:ment starts in colu:mn 7. All blanks are suppressed
except those on each side of the parentheses enclosing the logical device
address and/or the FORMAT state:ment nu:mber.

3. Converted state:ments containing function na:mes start in colu:mn 7. All
blanks are suppressed except those resulting fro:m shortening of function
na:mes in conversion.

4. When a converted state:ment is
card is generated if required.
colu:mn 6.

longer than the original, a continuation
Continuation cards are nu:mbered in

5. If a Fortran II state:ment required a continuation card but the converted
state:ment is 66 characters or less, the new state:ment appears on a single
card.

6. Occasionally, a Fortran II state:ment :may have continuation cards with
co:m:mentcards interspersed. When converted, the state:ment, with as
:many continuation cards as needed, is generated first. Co:m:ment cards
are reproduced without change and follow the state:ment cards.

7. Two asterisks in colu:mns 81 and 82 of the listing indicate that a change
has been :made in the state:ment.

8. Colu:mns 75-77 of the card deck and listing contain a three-digit nu:mber
when the sequential nu:mbering option is used. Otherwise, colu:mns 73-
80 are reproduced without change.

9. Screen will handle Fortran II state:ments with up to 19 continuation cards
if the nu:mber of nonblank characters does not exceed 800. In no case can
there be :more than 24 cards between the first cards of two consecutive
state:ments. This includes continuation, co:m:ment, and control cards.
No data cards are per:mitted in a Screen run.

10. Figure 8-22 shows a page of input to Screen. Figure 8-23 shows the
Screen output for the sa:me progra:m. Note that the sequential nu:mbering
option has been used.

II. There are two possible error printouts fro:m Screen. These are listed
in Appendix G.

f

8-22

C

C

•

SECTION VIII. SYSTEM DESCRIPTION

** IOPSHN • 1 FOR A DUMP TRACE, OTHERWISE yOpSHN a 2 **
READ 9006, IMONTH,IDAV,IVEAR,IOPSHN

9006 FORMAT (3(12.1B).Il)
NPAGE=l
READ 9001, NOXES

9001 FORMAT (lB. 351-1 • 428, 12)
N5 = NOXES .. 4
T1 = 1./FLOATF(NOXES - 1)
T = 1.0 I FLOATF(NOXES)
NOCRDS=FLOATF (NOXES) 16.0+CONST
WRITE TAPE 6, «RATIO(I.J). I • 1.3). J = 1.5)
WRITE TAPE 6. «DBLl(ll, DBl2(ll. TPLlCIl, TPL2(Il. TPL3<I»,I=lt5

1>
1 K=O
2 READ 8000.(BUFFERCI),I.l,6).IPROD.NCRDNO

8000 FORMAT(6F10.0. 11B, 16. lB. 12)
IF (BUFFER(l)~EOF) 3, 9999, 9999

3 IF (K) 32. 31. 32
31 L5TPRD = IPROD

L5TCRD = 0
GO TO 4

32 IF (LSTPRD ~ IPROD) 9998, 33. 9998
33 IF (NCRONO ~ LSTCRD) 9998, 9998. 4

9998 WRITE OUTPUT TAPE 5. 9997. IPROD. NCRONO
9997 FORMAT(lB.33H CARDS ARE OUT OF ORDER. PRODUCT • 11.6HCARD • 11)

GO TO 9999
4 00 5 1=1.6

K=K+1
5 X (K) =BUFFER (Il

LSTCRD = NeRONO
IF (K ~ NOXES) 2.6.6

6 SUMX=O
AVG19=0
DO 7 I = N5, NOXE5

7 AVG19=AVG19+X(I)
AVG19 •• 2 * AVG19
00 8 I = 1. NOXES

8 SUMX=SUr.,X+X (I)
IF (SUMX-1.0) 9' 100. 100

*** NO DEMAND ***
9 IF (LINE-LINES) U. 10. 11 -

10 WRITE OUTPUT TAPE 5,9011
9011 FORMAT (lH1)

WRITE OUTPUT TAPE 5,9000, IMONTH,IOAV,IVEAR.NPAGE
9000 FORMAT (I lB.I2.1H/.I2.1H/.I2.45B.14HALPHA ANALYZER.44B,4HPAGE.14)

WRITE OUTPUT TAPE 5. 9001, NOXES
LINEaO

f

Figure 8- 22. Listing of Card Input to Screen

8-23

0006511
0006611
0006111
0006811
0006911
0001011
0007111
0001211
0001311
0007411
0001511
0001611
0007711
0001811
0001911
0008011
0008111
0008211
0008311
0008411
0008511
0008611
0008111
0008811
0008911
0009011
0009111
0009211
0009311
0009411
0009511
0009611
0009111
0009811
0009911
0010011
0010111
0010211
0010311
0010411
0010511
0010611
0010111
0010811
0010911
0011011
0011111

SECTION VIII. SYSTEM DESCRIPTION

c ~~ lOp~HN = 1 FOR A DUMp TRACE, OTHERWISE IOPSHN = 2 ~~ 001
READ IZ,90U6) IMONTt-IdDAY,IYEARtIOPSHN 002 00

9006 FORMAT (JIIZ.lB)dl> 003
NPAGE=l 004
READ (Z,9001) NOXES 005

9001 FORMAT IHlt 3;1-1 , 428, I~) 006
N~ = NOXtS • 4 007
Tl=1'1 fLOATINOXES-1) 008
T=1.01 fLOATINOXES) 009
NOCRDS= FLUATINOXES)/6.0+CONST 010
WRITE (6) I(RATIOII,J),I=1,3),J=1,5) 011
WRITE (6) I(DBLIClltDBLZ(I),TPLlCIltTPLZ(l),TPLJII)ltI=1,5) 012

1 K=O 013
2 READ (2,60UO) CCUFrERIIld=1.6),IPROD,NCRDNO 014 ~o

8000 fORMATI6flU.0, lIB, 16. 1B, J2) 01'
IF (BUHfRIl)"EOF') 3, 9999, 9999 016

3 If II<.) 32, 31, 32 017
31 LSTPRO = IPROD 018

LSTCRD = 0 01 9
GO TO 4 020

32 If (LSTPRD .. IPRODI 9998, 33. 9998 021
33 If I~CRlJNO .. LSTCRD) 9998. 9998, 4 022

9998 WRITt. 1;.9997) IPROD,NCRDNO 023
9997 FORMATI1~,j3H CARDS ARE OUT OF ORDER. PROUUCT • I7.6HCARD ,11) 024

GO TO 9999 02'
4 nO 5 1=1,6 026

K=I<.+1 027
5 XIK)=9UfFERIII 028

LSTCRD = N~RnNO 029
IF (I<. .. NOllES) 2.6.6 030

6 SUMX=O 031
AVG19=U 032
DO 7 1 = N~, N~XES 033

7 AVG19=AVG19+XII) 034
AVG19 = .Z 0 AVG19 03'
DO 8 I = 1. NOXES 036

8 SUMX=SUMX+XII) 037
IF" (SUMX"l.O) 9, 100. 100 1'138

C 000 NO DEt-1ANO 000 039
') IF (LINE"UNESI 11. 10, 11 040

10 WRITE 1,.9Ull) 041 00

9011 fORMAT Ill'll) 042
WRITt 1,,9UOO) IMONTH.JDAY.IYEA~.NPAGE 043

9000 fORMAT (I 1~.I2.1H/'I2,lH/,I2,458.14HALPHA ANALYZE~.44B.4HPAGE'I41 044
WRITE 1~,9U01) Ijoxrs 04!5
LINE=O 1'146

(

Figure 8-23. Output Listing froIn Screen

8-24

_.

FORTRAN RUN OPTIONS

SECTION IX

OPERATING PROCEDURES

There are four possible run modes for Fortran D. These are:

Load-and-Go

Screen

Writing a Go-Later Tape

Executing a Go-Later Tape

Operating procedures for all run modes are very similar. Where setup and operating pro­

cedures vary, the differences are explained for each run mode. Otherwise, standard operating

procedures should be followed.

ST ANDARD CONSOLE CALL

For every run except execution of a go-later tape, a standard console call is used. The

run is initiated either by a Console Call card at the beginning of the card input or by a keyin at

the console. The console call can contain a number of options as shown in Table 9-1. How­

ever, when no options are indicated, the console call in card form appears as follows:

Col. Col. Col.
1 9 18 , , ,

(ACADRVOIO * I
When the console call is keyed in, the operator follows the standard starting procedure,

given in the following paragraph, up to the second loader halt (B-address register = 17002).

He then keys in the console call. A minimum console call corresponding to the Console Call

card above is given below.

Octal Keyin

WMOI
WM21

23
21
24
51
65

WMOO
01

RM54

Octal Location

100
104
105
106
107
110
111
112
113
125

The indicated record and word marks are required.

9-1

Eg,uivalent Card Column

9
1
2
3
4
5
6
7
8

18

•

SECTION IX. OPERATING PROCEDURES

The console call for executing a go-later tape is discussed in the paragraph entitled

"Executing a Go-Later Tape. "

EQUIPMENT REQUIREMENTS

A minimum memory of 16,384 characters is required for Fortran D. Minimum peripheral

requirements are six devices: four tape units, a standard input device (card reader or tape),

and a standard output device (printer or tape). Equipment setup and optional devices are shown

later for each run mode.

TAPE LOADER-MONITORS

Fortran D can be loaded by any of the Series 200 tape loader-monitors, either fixed or

floating. However, the Fortran D compiler system tape contains two loader-monitors. In the

absence of options, the Fortran D system brings in Tape Loader-Monitor C in the 3-character

addressing mode. At installations running in the 4-character mode, an option in the console call

and a console keyin to location 1248 will bring in Tape Loader-Monitor C in the 4-character

addressing mode.

ST AR TING PROCEDURE

Since Fortran D uses a Series 200 tape loader-monitor, starting procedures for the system

follow the standard starting procedures for the loader-monitor used. Given below is the starting

procedure for Tape Loader-Monitor C with a minimum system configuration of 4 tape units, card

reader, and printer. The run is presumed to be either load-and-go or one in which a go-later

tape is written. Variations on the standard starting procedure for Screen runs, go-later exe­

cution, and other options are contained in the six notes that follow the starting procedure.

1. Press the STOP button on the console.

2. If not already mounted, mount the compiler system tape on tape drive 0
in protect status. 1

3. Mount work tapes on tape drives 1, 2, and 3 in permit status. 2

4. Press INITIALIZE. 3

5. Place the card deck in card reader hopper, making sure that the first card
is the Console Call card. Cycle up the card reader and printer. 4

6. If the compiler system was on tape drive 0, make sure it is rewound.

7. Set the CONTENTS buttons to octal 40 (100000).

8. Press BOOTSTRAP. 5

9. Set the CONTENTS buttons to octal 40.

10. Press BOOTSTRAP.
(

11. Press RUN.

12. Display the contents of the B-address register. These contents should be
octal 17001.

9-2

.-

•

SECTION IX. OPERATING PROCEDURES

13. Press RUN.

14. Display the contents of the B-address register. These contents should
be octal 17002. 6

15. Press RUN.

NOTES: 1. When executing a go-later tape (saved BRT), the go­
later tape is mounted on tape drive 0 in protect status
and no compiler system tape is used.

2. Work tapes are not required for Screen.

3. See the paragraph on writing a go-later tape. There
is an option in which the operator sets SENSE switch 1
ON after pressing INITIALIZE.

4. A punch or a punch tape is required for Screen.

5. When running in the 4-character address mode, key
in octal 20 to location 124 after step 12 above.

8
6. The console call is keyed in immediately after the halt

at 17002 when not using a Console Call card.

TERMINATING A RUN

Runs terminate automatically when an *ENDRUN card or card image is encountered. It

is the operator's responsibility to place the '~ENDRUN card at the end of the deck. When per­

forming off-line conversion from cards to tape, the operator must place the *ENDRUN card at

the end of the deck, so that the card image will appear at the end of the input tape. The *ENDR UN

card is shown below:

Col. Col.
1 7 , ,

(*ENDRUN

There is one exception in which a run need not terminate with. an *ENDRUN card. If a

load-and-go run is immediately followed by a Screen run, presence of the *SCREEN card in

the input deck terminates the load-and-go run and brings the Screen routine in automatically.

However, the Screen run must itself be terminated by an *ENDRUN card.

CONSOLE CALL OPTIONS

The console call can contain options that indicate additional equipment or specify the way

in which equipment is to be used during the run. These options are indicated in columns 10 to

17 of the Console Call card or by the equivalent console keyin to octal locations 115 to 124.
f

The options spe cify the following .

. Additional core memory above 16, 384 characters

. Use of a stack tape on logical tape drive No. 4

9-3

SECTION IX. OPERATING PROCEDURES

· Punch Option

· Multiply/divide hardware

· Options used in writing a go-later tape

· Use of tape as the standard output device

· Use of four-character address mode

When there are no options, columns 10 through 17 of the Console Call card or their equivalent

keyin can be used for a date.

Table 9-1. Console Call Options

CARD CONSOLE

Card Octal Octal
Column Contents Location Keyin How Used

10 :::.: 115 WM54 Flag to indicate that options follow in
columns 11-17. Required whenever there
is any option.

11 116 A designator for the amount of memory over
16,384 characters used for the run. A
blank or any character not specified in the
list will cause 16K memory to be used.
When more than 16K is used, the proper
option is required.

(Memory E-T 25-63 E (25) = 20,480 M (44) = 81,920
Size Options) F (26) = 24,576 N (45) = 98,304

G (27) = 28,672 0 (46) = 114,688
H (30) = 32,768 P (47) = 132,072
I (31) = 40,960 Q (50) = 163,840
J (41) = 49, 152 R (51) = 196,608
K (42) = 57, 344 S (62) = 229,376
L (43) = 65,536 T (63) = 262, 144

12 117 This location is used by installations having

(Stack Tape
a stack tape (logical tape address T4). A

Options)
blank or any character except A or G in
this location prevents any tape mounted on
T4 from being allocated as a work tape.

A 21 Allocate the tape on T4 as a work tape dur-
ing execution. (T4 will be allocated after
T2 and T3.)

G 27 Initialize the tape on T4 as a stack tape. Do
not allocate it at object time. This option
is used when there are no programs already
stacked on T4.

13
1

f 120 This location is used by installations having

(Punch
a common punch device. A blank or any

Options)
character not specified indicates the absence
of a punch device.

9-4

Card
Column

(Punch
Options)
(cont)

14

(Multiply/
Divide
Hardware)

15

CARD

(Write Go-later
Options)

(Tape Used as
Output Device)

17

(4-Character
address mode)

SECTION IX. OPERATING PROCEDURES

Contents

P

0-7

D

B

L

E

0-7

4

Table 9-1 (cont). Console Call Options

CONSOLE

Octal
Location

121

122

123

124

- Octal
Keyin

47

00-07

24

22

43

25

00-07

04

How Used

Common punch used.

Logical tape address (TO to T7) of common
punch tape.

A D must be stored in this location by those
installations having multiply / divide hardware.
A blank or any character except D in this lo­
cation indicates multiply/divide software.

This location is used only for a run mode in
which a go-later tape is written. A blank or
any character other than B, E, or L or their
equivalent keyins in this location indicates
that this is not a run in which a go-later
tape is written.

Logical tape drive Tl has a BRT (go-later)
tape on it. The tape is positioned to the lERI
record and jobs are added to the a'lready ex­
isting tape.

Logical tape drive Tl has a work tape on it.
A go-later tape is to be generated by copy­
ing the loader onto the work tape and then
writing go-later jobs on the tape.

Required for emergency, restart of a go­
later run. The tape on Tl is repositioned
in a backward direction to the end of the last
good job before the run continues. The tape
on T 1 must not be rewound.

This location is used only when common out­
put is on tape. It contains the logical address
of the common output tape. A blank or any
character other than zero to seven in this lo­
cation indicates a printer as common output.
(Note that the same tape can be substituted
for printing and punching, i. e., card column
13 can be the same as card column 16 if
desired.)

This location is used only at installations
having the 4-character address mode. A
blank or any character except 4 in the lo­
cation indicates the three-character address
mode.

Four-character address mode.

'-'" 1 If these options are used when generating a go-later tape, they must be indicated on the Con-
sole Call cards used when running the go-later tape.

9-5

SECTION IX. OPERATING PROCEDURES
»

CODED HALTS DURING FORTRAN RUNS

In addition to tape loader-monitor halts, there are five other halts that the user can pro- -../

gram. They are described in Table 9-2.

Table 9-2. Possible Halts During a Fortran Run

Halt

Tape Loader­
Monitor C Halts

Fortran Driver
Halts

Fortran Compiler
Halt

Fortran PAUSE

Fortran PAUSE

nln2n3n4n5n6

General Display Pattern on the Console

A Address in Octal B Address in Octal

o p P I d

Opp2d

o 6 0 0 t

04000

Unprogrammed Halts and Looping

Meaning

See Order No. 221 for Tape
Loader-Monitor C, No.005
fo r Floating Tape Loade r -
Monitor C.

pp := peripheral control unit
number

d := device number
1 := uncorrectable read
2 := uncorrectable write

Check tape for dirt and
damage. (See Equipment
Operators' Manual (Model
200), Order Number 040.)
Depress RUN to try to reread
or rewrite.

Physical tape t desired.
Change tape and depre s s RUN.

Perform operations indicated
on run request and depress
RUN.

Examine the A and B ad­
dresses for the STOP or
PAUSE number.

(n l n2n3n4n5n6). Perform
the operations indicated for
this number on the run re­
quest. Depress RUN.

The following action should be taken if the run should loop or come to some unspecified halt.

1. Stop the machine (if not already in the stop mode) by depressing the
CENTRAL CLEAR or STOP button. Write down the contents of the
sequence counter, cosequence counter, A- and B-address registers.
Follow the installation's hang-up procedures for keeping this informa­
tion with the deck in error.

2.

If the machint:r cannot be halted by the method explained above, depress
INITIALIZE button and proceed to step 4. Otherwise, proceed as follows.

Display the contents of location octal 32. If it contains an octal 42 with a
word mark, proceed as follows. Otherwise, proceed to step 4.

9-6

•

No Furthe
Action is
Required.

SECTION IX. OPERATING PROCEDURES
1

Is Stop by pressing
~Nl.!.L __ '" CENTRAL

Set Sequence
Counter to
Octal 32. Press
RUN.

Press
RUN

Again.

Write- out the Contents
of: Sequence counter

Cosequence counter
A-address register
B-addre s s register

Display
Contents
of Octal

Location 32.

Run Out Card Reader.
Place the Two Unread
Cards in Front of the
Unread Data.

Take Memory Dump
With Installation IS

Dump Deck. Wait Until
Dump Has Been
Completed.

Halt Location;' 01 .r-------.:L-------,
Put ACADR V Card in
Front of Unread Data.

01 Restart Using Standard
~----------~~Starting Procedure.

f

CLEAR or STOP.

Yes

Press

INITIALIZE.

Figure 9-1. Operator Action in Unprogrammed Halt or Looping

9-7

I

3.

SECTION IX. OPERATING PROCEDURES

Set the sequence counter to octal 32 and depress the RUN button. This will
cause a memory dump to be taken, and the system will recycle automatically
to proce s s the next job.

NOTE: If a no-locate halt (sequence counter = 1777) occurs, depress the
R UN button once more.

If for some reason the system does not recycle or the dump loops or halts
at some location other than 0 I, proceed to step 4. If the dump halts at lo­
cation 0 I, proceed to step 7.

4. Run out the card reader and place the two unread cards in front of the un­
read data.

5. Rewind logical tape o.
6. Take a memory dump with the dump deck provided at the installation.

7. After the dump has terminated, place the Console Call card in front
of the unread data. Proceed with the standard starting and running pro­
cedure given on page 9-2.

If the run was a Screen run, a *SCREEN card must immediately follow the Console Call

card in front of the unread data. Then proceed with the standard starting and running procedure.

Figure 9-1 shows the operator action in case of an unprogrammed halt or a loop in flow­

chart format.

LOAD-AND- GO RUN

The standard mode of Fortran D operation is load-and-go, in which a job is compiled and

executed, then the next job is compiled and executed, etc., until the end of the run (*ENDR UN or

*SCREEN) is encountered.

Load-and-Go Equipment

Table 9-3 show the equipment that is required and optional for load-and-go operation.

Figure 9-2 shows the minimum equipment configuration for such operation.

LOAD-AND-GO
RUN

Figure 9-2. Minimum Equipment Configuration for Load-and-Go Operation

9-8

•

SECTION IX. OPERATING PROCEDURES

Table 9-3. Equipment for Load-and-Go Operation

Logical Tape Tape Other Peripheral Required or
Peripheral Device Drive Address Status Equipment Optional

Compiler System Tape 0 protect Required

Work Tape 1 permit Required

Work Tape 2 permit Required

Work Tape 3 permit Required

Common Input Device One Device

On-Line - - Card Reader
Required

Off-line 5 protect -
Common Output Device One Device

On-line - - Printer
Required

Off-line Any tape address not permit -
otherwise assigned

Stack Tape 4 permit Optional

Work Tapes 6, 7, then 0 to 7 on permit Optional
channel 3

Common Punch Device One Device

On-line - - Punch
Optional
(Punch tape

Off-line Any tape address not permit - and Print
otherwise assigned tape may be

the same
tape.)

Stack Tape (T4)

Where more than the minimum four tape drives are available at an installation, logical

tape drive 4 can be used for a tape containing a library of user programs. By option in the con­

sole call, a tape on logical tape drive 4 can be used as a work tape and allocated during execution.

A second option permits a stack tape to be initially generated from a work tape mounted on drive

4. However, in the absence of options, the tape is treated as an already existing stack tape and

positioned to the end of the last good job at the beginning of a run.

Allocation of Work Tapes

Allocation of work tapes at execution time, in the absence of any options, proceeds as

follows: logical tapes 2 and 3; when available, logical tapes 5 and 6; when available, logical

tapes 0 to 7 of channel 3. When off-line input or output is used, tapes on these drives are not
f

allocated. A tape on logical drive 4 (stack tape) is only allocated if the console call option per-

mits allocation. If the allocation option is used, tape 4 is allocated after tapes 2 and 3.

9-9

•

SECTION IX. OPERATING PROCEDURES

Input Tape (TS)

Logical tape address TS is always used for tape input to a load-and-go run. This tape is

in protect status when programs have been previously placed upon the tape.

However, when a load-and-go run includes diagnostic preprocessing to tape, a work tape

iIi permit status is mounted as tape S. The diagnostic preprocessor writes programs onto the

tape and these are then processed by the load-and-go run. This is the only load-and-go run for

which tape S is in permit status. The presence of one or more *DIAG, T cards in the input deck

causes diagnostic preprocessing to tape.

Col.
1

These cards have the following form:

Col.
6

• •
fDIAG, T

A T somewhere in columns 7 to 72 indicates preprocessing to tape. When the option to pre­

process to tape is used, input must be from cards.

Output to Tape

Any unassigned logical tape address except TS can be used for a standard output device.

The tape address must be indicated by a console call option. The same tape may be used in place

of output to a printer and to a common punch during execution. --.../

SCREEN RUN

A Screen run converts certain statements written in Fortran II language to the language

of Fortran D. The standard console call is used for Screen. A punching option must be in­

dicated in the console call. The console call is followed by a '~SCREEN control card or card

image on tape, which has the following format:

Col. Col.
1 7
, ,

(*SCREEN X

When a Screen run immediately follows a load-and-go run (no setup or operating procedures

required), the initial console call serves for both runs and must contain the punching option.

A Screen run must be terminated by an '~ENDRUN card or card image.

Required and optional equipment for a Screen run is listed in Table 9-4.

the minimum equipment setup for a Screen run.

9-10

Figure 9 - 3 shows

Peripheral Address

Compiler System Tape

Common Input Device

On-line

Off-line

Common Output Device

On-line

Off-line

Common Punch Device

On-line

Off-line

COMMON INPUT
ON CARDS

SECTION IX. OPERATING PROCEDURES

Table 9-4. Equipment for Screen

Logical Tape Tape Other Peripheral
Drive Address Status Equipment

0 protect

- - Card Reader

5 permit -

- - Printer

Any tape addre s s not permit -
otherwise assigned

- - Punch

Any tape address not permit -
otherwise assigned

SCRE.EN

Figure 9-3. Screen Equipment Configuration

WRITING A GO-LATER TAPE

Required or
Optional

Required

One Device
Required

One Device
Required

One Device
Required
(Punch tape
and Print
tape may be
the same
tape.)

In this run mode, one or more jobs are compiled, relocated, and written onto a binary run

tape but not executed. Tile binary run tape is then dismounted and saved for execution in another

run. Required and optional equipment is the same as for a load-and-go-run. See Table 9-3 for

equipment and Figure 9-2 for the minimum run configuration.

9-11

SECTION IX. OPERATING PROCEDURES

Starting and Terminating a Write Go-Later Tape Run

For card input the Console Call card must contain the appropriate go-later option in col­

umn 15. If there is a binary run tape on tape drive 1. the programs already on the tape must be

protected by positioning the tape to the end of the last job on the BRT. The B option in column

15 is used to indicate a BRT on tape 1. However, if tape 1 is a work tape, a BRT must be gener­

ated by copying the loader onto the tape and then writing go-later jobs. An L option in column 15

causes the loader to be copied and a BRT to be generated onto the work tape.

It is essential that a run which writes a go-later tape be terminated with an *ENDRUN

card. If the card or card image is not present, the jobs written onto the go-later tape will be

destroyed.

Emergency Restart Option

Note that column 15 can contain an E option. This option is used only when a run restart

is necessary. The go-later tape (Tl) must not be rewound. The operator follows the run pro­

cedures given in Figure 9-1 for unprogrammed halts or looping. A Console Call card with an

E in column 15 is placed in front of the next ~'JOBID card in the input deck. Then standard

starting procedures are followed. The presence of the E option causes the go-later tape to be

backspaced to the end of the last good job on the tape. A console call with an E must be used

or the BRT will be rewound and all jobs destroyed.

Card and Tape Input Option

If tape input is used to write a go-later tape, it is presumed that tape input will be used

to execute the tape. In the same way, if card input is used in writing a go-later tape, card

input is presumed for the data to execute the tape.

Some installations, however, may wish to use card input to write the go-later tape and

tape input for execution of the same tape. This is permitted if at the beginning of the run that

writes the go-later tape, the operator presses SENSE switch 1 on the console. The SENSE

switch is turned ON in this manner immediately after the operator presses the INITIALIZE

button, as indicated in the paragraph on starting procedures.

EXECUTING A GO-LATER TAPE

When a binary run tape has been written and saved as previously described, it can then

be used as input to the Execute Go-later run. In this run one or more jobs on a saved BRT

will be executed. Equipzrient requirements are shown in Table 9-5. The minimum run con­

figuration is shown in Figure 9-4. Work tapes for executing the go-later run were allocated

when the go-later tape was written.

9-12

•

Peripheral Device

Binary Run Tape

Common Input Device

On-line

Off-line

Common Output Device

On-line

Off-line

Common Punch Device

On-line

Off-line

COMMON INPUT

SECTION IX. OPERATING PROCEDURES

Table 9-5. Equipment to Execute Go-Later Jobs

Logical Tape Tape
Drive Address Status

0 protect

- -
5 protect

- -
Any tape address not permit
otherwise assigned

- -
Any tape address not permit
otherwise assigned

GO- LATER
EXECUTION

Other Peripheral
Equipment

Card Reader

-

Printer

-

Punch

-

Required or
Optional

Required

One Device
Required

One Device
Required

One Device
Optional
(Punch tape
and Print
tape may be
the same
tape.)

Figure 9-4. Minimum Equipment Configuration for Go-Later Execution

Starting a Go-Later Execution Run

The console calls for execution of a go-later tape contain the names of the jobs on the tape

to be executed. These are six-character names with an asterisk as the first character. The

console call in card form is as follows:
f Col. Col.

1 9 , ,
f'jbnamOl0

9-1"3

Col.
18 ,
*

SECTION IX. OPERATING PROCEDURES

The characters *jbnam represent the name of a job on the go-later tape.

may appear on the console call is the punch option.

The only option that

The console call can be keyed in at the second loader halt. For example, if the name of

the first program on the tape to be run is *JOB25, the appropriate minimum console keyin would

be:

Octal Ke~in Octal Location

WMOI 100
WM54 104

41 105
46 106
22 107
02 110
05 111

WMOO 112
01 113

RM54 125

Starting procedures other than the contents of the console call are the same as for other

runs. An':'ENDRUN card m.ust term.inate the input deck.

CREATING A COMPILER SYSTEM TAPE (CST)

Distribution of the Fortran Compiler D System is in the form of a symbolic program tape

(SPT). To create a CST, the installation performs an assembly (actually, a dummy assembly) ----/

of the SPT onto a transaction binary tape (TBT). Then the TBT is used as input to an update and

select run in which the compiler system tape is generated. Honeywell supplies card decks for

the dummy assembly and the update and select runs.

When the CST is created, the input SPT should be stored for possible later use if symbolic

updates are released to the field before the release of a new SPT.

For the as sem bly run, tape s are mounted as follows:

TO

Tl

T2

Easycoder Assembler Program Tape

Input SPT (supplied)

Work tape (becomes the TBT)

For the update and select run, tapes are mounted as follows:

TO

T2

T4

Update and Select Program Tape

Input TBT (leave tape mounted from assembly)

Work tape (becomes the CST)

f

Protect

Protect

Permit

Protect

Protect

Permit

Card formats and operating procedures for Easycoder assembly and for update and select

are given in the software bulletin entitled Operating System - Mod 1 Operating Procedure

Summaries, Order No. 069.

9-14

•

SECTION X

GENERAL PROGRAMMING CONSIDERATIONS

LANGUAGE LIMITATIONS

Table 10-1 describes the language limitations.

Table 10-1. Language Limitations

Limitation

Programs and Specification Statements

Number of chains in a job

Continuation lines in a statement

Number of characters in a name

Highest label number assigned to a statement

Dimensions of an array

Labeled common areas in a chain

Number of arguments in a function or subroutine subprogram

Unrelated equivalence sets in a program

Number of programs in a job or chain of a job for 16K memory

Assignment Statements

Number of nested parentheses in an assignment statement

Control Statements

Number of statement labels in a computed GO TO

Depth of DO loop nesting

Number of variables in subscript expressions within a DO
loop

Number of redefined variables in a DO loop

I/O Statements

Number of logical devices useable in the object program

Depth of implied DO loop nesting

Field width permissible in an E, F, G, I or 0 conversion

Field width permissible in an A, H, or X conversion

Number of times a specification field can be repeated

Depth of nested parentheses in a FORMAT

Record Width:
Printer (not ~ncluding printer control character)
Punch
BCD tape record

Total number of statement labels (Each FORMAT state­
ment label is counted twice for the total.)

10-1

_.
Page

Maximum Reference

30 1-1

9 1- 3

6 1-9

99999 1-7

2 1-10

15 4-2

63 6-6, 6-9

64 4-6

26 -- -

63 ---

63 3-2

10 3-6

20 - --
15 ---

15 5-2

2 5-10

32 5-15

132 5-15

132 5-15

3 5-47

131 5-46
80 5-46

132 5-46

157 10-2

SECTION X. GENERAL PROGRAMMING CONSIDERATIONS

SOURCE PROGRAM SIZE LIMIT A TIONS

Four tables that are built in memory during compilation restrict the size of source pro­

grams. These tables are:

Source Table,

Token Table,

IEFN Table,

FORMA T Table.

When memory available for compilation is restricted to 16K characters, the source and token

tables share a common block of memory. As the source table is built forward in memory, the

token table is built backward. The IEFN and FORMAT tables also share a common block of

memory when only 16K is available for compilation. When larger memory is available, more

space is allotted to the four tables, and the source and FORMA T tables have separate blocks of

memory, while the IEFN and token tables share a block.

Appendix F shows how memory is allocated to the tables at each memory size level. If

table overflow occurs, the compiler issues a diagnostic.

Source Table

For each source statement, the source table has the following entries:

4 characters for IFN (Internal Formula Number), type of statement,

and terminator;

2 characters for each variable name;

2 characters for each reference to a statement label; and

1 character for each operator in an arithmetic statement.

Thus, A = B + C would result in 12 characters in the source table.

Token Table

Every unique variable or constant in the source program has a token table entry equal to

the number of characters in the variable or constant, plus five more characters of information.

Dimensioned variables have an additional three token table characters for each dimension.

Thus, A = B + C would result in 18 characters in the token table. Note that if each

variable in the example had a six-character tag, the number of characters in the token table

would have been 33.

The simple arithmetl.c statement, A = B + C, therefore occupies 30 characters out of a

maximum of 4096 in the source/token table block. When source programs overflow any table,

the job is diagnosed as fatal.

10-2

SECTION X. GENERAL PROGRAMMING CONSIDERATIONS

Note that there is only one entry in the token table for each variable or constant, while

each reference to a variable or constant has an entry in the source table.

IEFN Table

The IEFN table uses five characters for each EFN (stateIllent label) and two characters

for each corresponding IFN (internal forIllula nUIllber). Thus, each stateIllent label in the source

prograIll requires seven characters of IlleIllory.

FORMA T Table

The FORMAT table uses seven characters of IlleIllory for each FORMAT stateIllent in the

source prograIll. Since every FORMAT stateIllent is labeled, the cOIllbined storage cost of a

FORMAT stateIllent for both the IEFN and FORMAT tables is 14 characters.

SIZE OF PROGRAM STRING

On a 16K cOIllputer, the IllaxiIlluIll size of one prograIll unit - Illain prograIll or sub­

prograIll - is about 8. 5K characters. COIllputers with greater IlleIllory can have a propor­

tionately larger prograIll string up to a IllaxiIllUIll of about 20K characters in three-character

address forIll.

COIllpilation is perforIlled in three-character address forIll whether the three- or four­

character address Illode is used. The coding generated by the cOIllpiler is expanded to four­

character address forIll by the run-tape generator when using the four-character address Illode.

COMPILER CHARACTERISTICS AND LIMITATIONS

1. StateIllent operators cannot cross continuation cards.

2. When the data deck for a job contains Illore data than is actually read by the
job, the additional cards will be listed.

3. Any atteIllpt to reference a variable that has not been previously defined will
probably cause part of IlleIllory to be wiped out. "Previously defined" Illeans
that the variable IllUSt have had inforIllation stored in it by appearing on the
left-hand side of an arithIlletic stateIllent, in a DATA stateIllent, or in the
list of a READ stateIllent.

ExaIllple: SUBROUTINE SUB
GO TO 5
N = 1

5 J = N+l

Transfer of control has bypassed storing anything in the variable N. In
SOIlle cOIllpilers, N would have been initialized to zero before atteIllpting

(

execution, so that no probleIll other than iIllproper execution would result.
However, in the Fortran COIllpiler D, a large portion of IlleIllory would
probably be wiped out by lack of punctuation.

10-3

4.

SECTION X. GENERAL PROGRAMMING CONSIDERATIONS

Jobs containing binary decks or stack tape programs must include a
source program that references common storage andlor 110 devices
for each chain. The source program may only be a dummy program.

5. Statement labels are not permitted on continuation cards.

6. An END statement must be used to terminate programs.

7. Frequently called subroutines should appear early in the source deck of
a job.

8. All statement operators are reserved words. The reserved words are:

ASSIGN DO GO TO RETURN

BACKSPACE END IF REWIND

CALL END FILE INTEGER STOP

COMMON EQUIVALENCE LOGICAL SUBROUTINE

CONTINUE EXTERNAL PAUSE TITLE

DATA FORMAT READ WRITE

DIMENSION FUNCTION REAL

The following rules apply to reserved words:

a. An IF followed by a left parenthesis at the beginning of a state­
ment is always considered to be a statement operator.

b. A DO immediately followed by a digit at the beginning of a state­
ment is always assumed to be a statement operator.

c. A FORMAT at the beginning of a statement is always assumed
to be a statement operator.

d. When any other reserved word begins a statement and the next
delimiter is not an equal sign, the reserved word is assumed
to be a statement operator.

e. When the words IF, DO, or FORMAT appear anywhere except
at the beginning of a statement, they are assumed to be user
names.

f. When any reserved word except IF, DO or FORMAT appears
under circumstances different from those described in rule
d., it is assumed to be a user name.

g. Use of embedded blanks and continuation cards does not alter
rules a. through f.

h. The rules above set the minimum restrictions on use of reserved
words. The rules are intended primarily for users converting
programs used on other compilers who wish to make minimum
changes. When writing programs for the Fortran Compiler 0,
it is best to observe the following rule:

Do not use a reserved word as a variable, array, or
function name.

TIPS FOR SAVING SPACE AND TIME

1. Terminate DO loops with CONTINUE statements.

10-4

c

0---,0

•

SECTION X. GENERAL PROGRAMMING CONSIDERATIONS

2. Use labeled common storage instead of arguments when calling a subroutine.

3. Use statement labels only when required.

4. Chains that call each other frequently should be adjacent within a job.

5. Use integer exponents whenever possible:

A = B':'*2 takes less storage than A = B**2.0

6. When an exponential expression occurs only once in a program, use
multiplication instead of exponentiation. For example:

A * A takes less storage than A**2.

7. When iterating an evaluation of an exponential expression:

4

C=ALOG(B) }
DO 4 1= 1, 100
A(I)=EXP((FLOAT(I)+.5)*C)

takes less
storage than {

D04 1=1,100
4 A(I)",B**(FLOAT(I)+. 5)

In the statement sequence on the right, the natural logarithm of B must be
taken for each of the 100 iterations, whereas on the left the logarithm is
taken before the DO loop and the resultant value is used in each of the itera­
tions without recomputation.

8. Use the smallest integer andlor floating-point precision that will permit
accurate data manipulation without overflow.

CHAINING

There are no set rules that can be given on the best method of chaining programs within

a job. Experience at chaining will help the programmer determine how jobs may best be

chained. A job should not be chained unless it is probable that it will not fit into memory as

a unit, since chains are brought in from tape, slowing down execution.

A number of factors affect whether or not a job requires chaining - memory size availa­

ble, length of the program string, data storage required, and the number and size of the execu­

tion packages used.

One method of dividing alar ge job into chains is to put all 110 operations in one chain, all

internal computations in another chain, and library function computations in still another chain

as follows:

Chain 1 - Input/ Output operations;

Chain 2 - Internal computations; and

Chain 3 - Computations using library functions.

Figure 10-1 shows a simple example of chaining, using three chains. These are:
f

Chain 1 - Input operations;

Chain 2 - Internal computations; and

Chain 3 - Output operations.

10-5

SECTION X. GENERAL PROGRAMMING CONSIDERATIONS

Note that this is only an example and that a minimum deck configuration is used. Remember the

following in determining how to divide a job into chains:

1. A chain may include up to 26 program units (main programs and subprograms)
if they will fit into a 16K memory. Larger memory configurations can have
more programs in a chain.

2. A chain may be called by other chains as many times as required during a
job.

3. The first chain of the job does not need a chain identifier ('~CHAIN, x card).
However, if it has no identifier, it cannot be called by later chains.

4. The ordering of chains should be suited to the job. In Figure 10-1, for
example, it might be more advantageous to use two chains: the first for
computations and the second for all I/O. By setting switches in common
storage, the job could switch back and forth between the two chains to read,
compute, write, read, compute, write, etc.

5. All communication between chains is carried on through common storage.
Variables in unlabeled common storage are stored on a job basis. Variables
in labeled common storage are stored on a chain basis.

Once a chain is entered, the programmer may wish to branch immediately to another part

of the chain. To do so, set a variable in unlabeled common storage to 1, 2, 3, etc. Then use

the variable in a computed GO TO statement at the beginning of the chain. This technique is

particularly useful in dividing large existing programs into chains for Fortran Compiler D.

Figure 10-1. Example of Chaining

10-6

•

SECTION X. GENERAL PROGRAMMING CONSIDERATIONS

I/O PROGRAMMING TIPS

Following is a list of tips on using the I/O routines. Some of these tips are found else­

where in this manual and are repeated here as a reminder to the programmer.

1. E, F, and G conversions must be used with floating-point variables.

2. E, F, G, I or 0 conversions have a maximum field width of 32.

3. A, I, and 0 conversions must be used with integer variables.

4. L conversions must be used with logical variables.

5. Every field specification should be followed by a field separator - , or /
or).

6. The terminal right parenthesis in a FORMAT statement causes a new
record to be read or written if the I/O list is not satisfied.

7. It is illegal to read on a device when the previous instruction to that
device was either a WRITE or an END FILE statement.

8. REWIND statements are issued to rewind all tapes before use.

9. A WRITE statement after a REWIND on binary tapes causes a Fortran header
to be written.

10. If it is desired to print six lines with five values on each line:

This sequence causes incorrect results: FORMAT (6(l~, 5E20. 10))

Use this sequence: FORMAT (l~, 5E20.l0)

11. Allocation of devices at execution time:

All runs except go-later. No "A" punch in column 14 of Console Call card:

Card reader, printer and punch to 2, 3, and 5 (or to iioopp of
*JOBID I/O option). Remaining logical devices to T2, T3,
T5, T6, T7; then channel 3: TO, Tl, ••• , T7

All runs except go-later. "A" punch in column 14 of Console Call card:

Card reader, printer, and punch to 2, 3, and 5 (or to iioopp of
'~JOBID I/O option). Remaining logical devices to T2, T3, T4,
T5, T6, T7; then channel 3: TO, Tl, ••• , T7.

Go-later runs.

Card reader, printer, and punch to 2, 3, and 5 (or to iioopp of
*JOBID I/O option). Remaining logical devices to Tl, T2, T3, T4,
T5, T6, T7; then channel 3: TO, Tl, ••• , T7.

12. Vertical spacing (carriage control) of the printer is specified by the first
character in a data record. If the character is 0 or I, ASA Fortran
conventions for single- spacing or spacing to the head of form are followed.
If the character is between 2 and 9, that number of lines will be spaced
before printing. If the character is nonnumeric, the compiler takes the
low-order 4 bits and interprets them as a number. For example, an E
(octal 25) will cause 5 lines to be spaced before printing.

13. An asterisk ,~ cannot be the first character in a BCD data record being read.
It will cauJe job fatality and result in a diagnostic.

14. Each nonstandard device allocation causes buffers to be allotted. The cost
in characters for nonstandard allocation is as follows:

10-7

•

SECTION X. GENERAL PROGRAMMING CONSIDERATIONS

Punch - 168 characters
BCD Tape - 272 characters
Binary Tape - 272 characters

IS. Easycoder subroutines should normalize any floating-point data they generate
or work with if this data is to be operated on by Fortran-generated code.

16. The following statements are illegal if unit device i is a card reader, printer,
or punch:

REWIND i BACKSPACE i END FILE i

17. To determine the number of physical records in a logical binary record,
compute:

18.

Where: n
f

n.
1

number of floating-point numbers in the record.

number of integer numbers in the record.

Pf :: floating-point precision.

p. integer -precision.
1

n :: number of logical numbers in the record.
L

Then, the smallest integer greater than or equal to CI 124 is the number of
physical records in the logical binary record.

Object 110 coding is segmented into a series of modules. Only the modules
required for execution of a given job are loaded at object time, thus making
additional space available for the program string. See Appendix D for a list of
the object 110 modules, when each is brought into memory, and the approximate
number of characters required for the module.

19. Appendix F shows the layouts of binary and BCD tapes. Use of 110 state­
ments to write header and trailer records on these tapes and to perform
other binary and BCD tape operations is explained in that appendix.

CONVERSION TECHNIQUES

Programs written in Fortran II should be checked for consistency with Fortran D language

before attempting to use the compiler. The following procedure is recommended:

I. Screen the Fortran II program to convert 1/0 statements and names of
library functions.

2. Check the Screen listing for other Fortran II statements that are handled
by subroutines in Fortran D, such as IF SENSE SWITCH, IF END OF
FILE, etc. Replace these with subroutine calls. (See Section VI.)

3. Check for illegal statements peculiar to a given compiler, such as SPACE,
SKIP, EXECUTE PROCEDURE, etc. Replace these with Fortran D state­
ments appropriate to the operation.

4. Preprocess the deck for diagnostics. Make any corrections required.
(Note that if illegal statements remain in the screened deck, spurious
diagnostics ma~ be issued. Check any spurious diagnostic to determine
if an illegal statement is still in the program.)

S. If corrections required were extensive, preprocess and correct again.

6. Compile.

10-8

/""""--

-.

..

•

SECTION X. GENERAL PROGRAMMING CONSIDERATIONS

Programs written in Automath 800/1800 should be checked for consistency with Fortran

D and for memory size required. The following procedure is recommended.

1. Check the length of the program against the general rules for maximum length
given in this section under "Chaining. "

2. Check for illegal statements, such as BLOCK DATA or ABNORMAL.

3. Check for carriage control discrepancies. In Fortran Compiler D, the first
character of a data record is used for carriage control. (See I/O program­
ming tip No. 14 in this section.) In Automath, the first character is used
for carriage control only when a IH field specification appears in the
FORMAT statement. -

4. Use chaining techniques and replace illegal statements with appropriate
Fortran D statements.

5. Preprocess the deck for diagnostics. Make any corrections required. (As
in Fortran II decks, spurious diagnostics may indicate illegal statements that
have not yet been replaced.)

6. If corrections are extensive, preprocess again.

7. Compile •

10-9

f

I

•

\

SECTION XI

THREE-CHARACTER AND FOUR-CHARACTER ADDRESS MODES

The Fortran D System can be run in either the three-character or the four-character

addressing mode. Installations having central processors with 32,768 or more characters of

memory have the option of running programs in the four-character mode. Installations with

less than 32,768 characters of memory, which is the limit that can be accessed by three­

character addressing, must run in the three-character mode.

Program units are always compiled in the three-character mode. The run-tape generator

converts the compiler-generated code to the four-character mode when four-character addressing

is specified. This mode is specified by a console call option - a 4 in column 17 of the Console

Call card or an 04 keyed into location 1248 by the operator if the console call is keyed in. The

string of object coding produced during conversion to four-character addressing is about 1.285

times as long as in three-character addressing. Three- to four-character interfaces are used

to provide communication between the four-character object string and the execution routines.

Object programs are run in the three-character address mode unless the four-character

mode is specified. The four-character loader is brought in by the operator by keying an octal

20 into location 1248 during bootstrapping.

When a go-later tape is executed, each job requires a separate console call; therefore,

three- and four-character address mode jobs can be interspersed. All other types of Fortran

D runs require that only one address mode be used for a given run.

The four-character addressing mode allows programs to access memory above location

32,768 at execution time. However, execution in the four-character mode is necessarily some­

what slower than in the three-character mode, and some memory space is required for four-

character interfacing. If a job can be executed in 32K characters of memory, it is recommended

that three-character addressing be used.

The choice of the three- or four-character addressing mode affects the conditions for the

use of regionalized Easycoder programs in Fortran jobs. See Appendix E for a description of
f

how Easycoder programs are coded for Fortran jobs using both the three- and four-character

addressing modes.

11-1

•

..

•

APPENDIX A

OCTAL-DECIMAL CONVERSION PROCEDURE

Table A-I. Octal-Decimal Conversion Table

DECIMAL INCREMENT
o::!::
... " 0-
0:: 0
0-'

o 000 008 016 OZ4 032 040 048 056 064- 012
1 001 009 017 025 033 041 049 057 065 073

080
.8t

D ••
019
090
09t
09'
093
090
09'

0,6 104 liZ 120 lZB
097 105 113 12.1 129
098 106 114 IZZ 130
099 101 115 In 131
100 loa 116 124 132
101 109 117 125 133
102 110 118 126 134
103 111 119 IZl 135

136 144 lSZ
137 145 153
138 H6 154
139 147 155
140 148 156
141 149

160 168 176 184 192 0
161 169 177 185 193 1

0.­
<">0
"':IE

~~ ou
-'0

ci
z
UJ

'" <
III

-' <
::IE
u ...
o

Z ·OOZ 010 018 026 034 042 050 058 066 074
J 003 OIl 019 027 035 043 051 059 067 075
.. 004 012 020 028 036 044 052 060 068 076

••• 0.3
162 170 178 186 1.94 Z

>.

5 005 013 021 029 037 045 053 Obi 069 077
•• 0

D.' D."
0.7

163 171 179 187 195 3
164 112 180 188 196 ..

165 173 181 189 197 rp'
i'.-ii.-r.Z-"T90-19i
U;;-ifr-rn--m'"-m-

'-0
0'"
- 0
c)'"

6 006 014 OZZ 030 038 046 054 062 070 078

~:~ ~:~-m
=<'"

7 007 015 023 031 039 047 055 063 071 079

0000
0200
0400
ObOO
0800

o t
31 32
62 63

113 114
144 145

Z 3 0
33 34 35
64 65 66

liS 116 117
146 147 ISO

, "
36 37
67 70

lZO 121
151 152

7 10 11 12 13 14 IS 16 11 20 21
40 41 42 43 44 45 46 47 50 51 52
71 72 73 74 75 76 77 100 101 102 103

122 123 124 125 126 127 130 131 132 133 134
153 154 155 156 157 160 161 162 163 164 165

22 23 24 25
53 54 55 56

104 lOS 106 107
135 136 137 140
166 167 170 171

26 27 30
57 60 61

110 III 112
141 142 143
172 113 174

0000
0200
0400
0600
0800

1000 175 176 177 200 201 202 203 204 205 206 201 210 211 212 213 214 215 216 217 220 221 222 223 224 225 1000
1200 226 227 230 231 232 233 234 235 236 231 240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 1200
1400 257 2M 261 262 263 264 265 2bb 2~7 270 271 212 273 214 275 216 277 300 301 302 303 304 305 306 307 1400
1600 310 311 31Z 313 314 315 316 317 320 32:1 32:2: 32:3 324 325 32b 327 330 331 332 333 334 335 336 337 340 1600
1800 341 342 343 344 345 346 347 350 351 352 353 354 355 356 351 360 361 362 363 364 365 366 367 370 371 1800

2000 372 373 374 375 376 377 400 401 402 403 404 405 406 407 410 411 412 413 414 415 416 417 420 421 422 2000
=~_~ ____ ~~~~ill~~~ ___ ~ __ ~~~~=

2:400 454 455 456 457 460 4bl 462 463 464 465 466 467 470 471 472 473 474 4?! 476 417 500 501 502 503 504 2400
Z600 505 506 507 510 511 512 513 514 515 516 511 520 521 522 5.23 524 52:5 526 527 530 531 532 533 534 535 2600
2800 536 537 540 541 542 543 544 545 546 547 550 551 552 553 554 555 556 557 560 561 562 563 564 565 566 2800

3000 567 570 571 572 573 574 575 576 577 600 601. 602 603 604 605 606 607 610 611 612 613 614 615 616 617 3000
3200 620 621 622 623 624 625 626 627 630 631 632 633 634 635 636 637 640 641 642 643 644 64-5 646 647 650 3200
3400 651 652 653 654 655 656 657 660 661 662 663 664 665 666 6b7 670 671 672 673 674 675 676 617 700 701 3400
3600 702 703 704 705 706 707 710 711 712 713 714 715 716 711 720 721 722 72-3 724 725 726 727 730 731 732 3600
3800 733 134 735 736 737 740 741 742 743 744 745 746 747 ?SO 751 752 753 754 755 756 757 760 761 762 763 3800

4000 764 765 766 767 170 771 772 773 774 775 776 177 1000 1001 1002 1003 1004 1005 1006 1007 1010 1011 1012 1013 1014 4000
4200 1015 1016 1011 10ZO 1021 1022 1023 1024 1025 1026 102' 1030 1031 1032 1033 1034 1035 1036 1037 1040 1041 1042 1043 1044 1045 4200
4400 1046 1047 1050 1051 1052 1053 1054 1055 1056 1057 1060 1061 1062 1063 1064 1065 1066 1067 1070 1071 1072 1073 1074 1075 1076 4400
4600 1077 1100 1101 1102 1103 1104 1105 1106 1107 1110 1111 1I12 1113 1114 IllS 1116 1117 llZ0 lIZI 1I2Z Il23 1124 1125 IlZ6 1127 4600
4800 1130 1131 1132 1133 1134 1135 1136 1137 1140 1141 1142 1143 1144 1145 1146 1147 1150 1151 IIS2 1153 1154 1155 1156 liS? 1160 4800

5000 1161 1162 1163 1164 1165 1166 1167 1),..70 1171 1172 1113 1174 1175 1176 1177 1200 1201 120Z 1203 1204 1205 IZ06 1207 1210 12ll 5000
5200 121Z 1213 1214 12lS 1216 1217 IZZO 1221 1222 12Z3 1224 1225 IZ26 lZ27 1230 1231 1232 1233 1234 1235 1236 1237 1240 1241 1242 5200
HOO 1243 1244 1245 1246 1247 1250 1251 1252 1253 US4 1255 1256 1257 1260 1261 1262 1263 1264 1265 1266 1267 1270 1271 U7Z 1273 5400
5600 1274 1275 1276 1277 1300 1301 1302 1303 1304 1305 1306 1307 1310 1311 131Z 1313 1314 1315 1316 1317 1320 1321 1322 1323 1324 5600
5800 1325 1326 1327 1330 1331 1332 1333 1334 1335 1336 1337 1340 1341 1342 1343 1344 1345 1346 1347 1350 1351 1352 1353 1354 1355 5800

6000 1356 1357 1360 1361 1362 1363 1364 1365 1366 1367 1370 1371 1372 1373 1374 1375 1376 1377 1400 1401 1402 1403 1404 1405 1406 6000
6200 1407 1410 1411 1412 1413 1414 1415 1416 1417 1420 1411 1422 1423 1424 1425 1426 1427 1430 1431 1432 1433 1434 1435 1436 1437 6200
6400 1440 144. 1442 1443 1444 1445 1446 1447 1450 1451 1452 1453 1454 1455 1456 1457 1460 1461 1462 1463 1464 1465 1466 1467 1470 6400
6600 1471 1472 1473 1474 1475 1476 1477 1500 1501 150Z 1503 1504 1505 1506 1507 1510 1511 1512 1513 1514 1515 1516 1517 15Z0 1521 6600
6800 152Z 1523 1524 1525 1526 1527 1530 1531 1532 1533 1534 1535 1536 1537 1540 1541 1542 1543 1544 1545 1546 1547 1550 1551 1552 6800

7000 1553 1554 1555 1556 1557 1560 1561 156Z. 1563 1564 156.5 1566. 1567 1510 1571 1572 1573 1574 1575 1576 1577 1600 1601 1602 1603 7000
7200 1604 1605 1606 1607 1610 1611 1612 1613 1614 1615 1616 1611 1620 16Z1 1622 1623 1624 16Z5 1626 1627 1630 1631 1632 1633 1634 7200
7400 1635 1636 1637 1640 1641 1642 1643 1644 1645 1646 1647 1650 1651 1652 1653 1654 1655 1656 1657 1660 1661 1662 1663 1664 1665 7400
7600 1666 1667 1670 1671 1672 1673 1674 1675 1676 1677 1700 1701 1702 1703 1704 1705 1706 1707 17-1Q 1711 1712 1713 1714 1715 1116 7600
7800 1717 1720 1721 In2 1723 1724 17Z5 1726 1727 1730 1731 1732 1733 1734 1735 1736 1737 1740 1741 1742 1743 1744 1745 1746 1747 7800

8000 1750 1751 1752 1753 1754 1755 1756 1757 1760 1761 1762 1763 1764 1765)766 1767 1770 1711 1772 1773 1774 1775 1776 1777 2000 8000
8200 2001 2002 2003 2004 2005 2006 2007 2010 2011 2012 2013 2014 2015 2016 2017 2020 2021 2022 2023 2024 2025 Z026 2027 2030 Z031 8200
8400 2032 2033 2034 2035 2036 2037 2040 2041 204Z 2043 2044 2045 2046 2047 2050 2051 2052 205) 2054 2055 2056 2057 2060 2061 2062 8400
8600 206320642065206620672070 Z071 20n 2073 2074 2075 2076 2077 2100 2101 2102 210.a 2104 Z105 2106 2107 2110 2111 21lZ 2II3 8600
8800 2114 2115 2116 2117 2120 21Z1 2122 ZI23 2124 2125 2126 2127 2130 2131 2132 2133 2134 2135 ZI36 2137 Z140 2141 ZU2 2143 2144 8800

9000 2145 2146 2147 2150 2151 2152 2153 2154 2155 2156 2157 2160 2161 2162 2163 2164 2165 2166 ZI67 2170 2171 2172 2173 2174 2175
9200 Z176 2177 2200 2201 2202 2203 2204 2205 2206 2207 2210 2211 22122213221422152216 2Zi1 2220 222t 22ZZ 2223 2224 2225 22Z6
9400 2227 2230 2231 2232 22n 2234 2Z35 2236 2237 2Z40 2241 2242 2243 2244 2U5 2246 2247 22S0 2251 2252 2Z53 2254 2255 2256 2257
9600 2260 2261 2262 2263 2264 2265 Z266 2267 2Z70 2271 2272 Z273 Z274 2275 Z276 2277 2300 2301 2302 2303 2304 2305 2306 2307 2310
9800 2311 2312 2313 2314 2315 2316 2317 2320 2321 2322 23232324232523262327 2330 2331 2HZ 2333 Z334 2335 2336 23'37 Z340 2341

10,000 2342 2343 2344 2345 2346 2347 2350 2351 2352 2353 2354 2355 2356 2357 2360 2361 2362 2363 2364 2365 2366 2367 2370 2371 2372
10,200 2373 2374 Z375 2376 2317 2400 2401 2402 2403 2404 2405 2406 2407 2410 2411 2412 2413 2414 2415 2416 2417 Z4Z0 24Z1 242Z Z42]
10,400 2424 24Z5 2426 2427 2430 2431 2432 2433 Z434 2435 2436 2437 2440 2441 2442 2443 2444 2445 2446 2447 2450 2451 2452 2453 2454
10,600 245524562457 Z460 2461 2462 2463 2464 2465 2466 2467 2470 2471 2472 2473 2474 2475 2476 2477 2500 Z501 2502 2503 2504 2505
10,800 25062507 2510 2511 251Z 2513 2514 2515 2516 2517 2520 2521 2522 25Z3 2524 2525 2526 2527 2530 2531 25322533 2534 2535 2536

II,OOO 2537 ZS40 2541 254225432544254525462547 25S0 ZS51 2552 2553 2554 2555 2556 2557 2560 2561 25622563256425652566 2567
ll,200 25702571 2572 2573 2574 2515 2576 2577 26002601 26022603260426052606 2607 2610 2611 2612 2613 2614 Z615 2616 2617 2620
11,400 2621 2U2 2623 2624 Z625 2626 2627 2630 2631 263226332634263526362637 2640 2641 2642 2643 2644 2645 2646 2647 2650 2651
11,600 2652 2653 2654 2655 2656 2657 2660 2661 2662 2663 2664 2665 z666 2667 2670 2671 2672 2673 2674 2675 2676 2677 2700 2701 2702
11,800 2703270427052706270727102711 271227132114271527162717 2720 Z721 2722 Z723 27.Z4 2725 2726 2127 2730 2731 2732 Z733

12,000 213427352736273127402741 2742 2743 2744 2145 2746 2747 2750 2751 a752 2753 2754 2755 2756 2757 2760 2761 27bZ 2763 2764
12,200 27652766 2767 2770 2771 27722773 2774 2775 2776 2777 3000 3001 3002 3003 3004 3005 3006 3007 3010 3011 30123013 3014 3015
12,400 3016 3017 3020 3021 3022 3023 3024 3025 3026 3027 lOlO 3031 3032 3033 3034 3035 3036 3037 3040 3041 3042 3043 3044 l045 3046
12,600 3047 3050 3051 3052 3053 3054 3055 3056 3057 3060 3061 3062 3063 3064 3065 3066 3067 3070 3071 3072 3073 3074 3075 3076 3077
12,800 3100 3101 3102 3103 3104 3105 3106 3107 31103111 3lI2 3Il3 3114 3115 3116 3117 3120 31213122312331243125312631273130

13,000 3131 3132 3133 3134 3135 3136 3137 3140 3141 3142 3143 3144 3145 3146 3141 3150 31S1 3152 3153 3154 3155 3156 3157 3160 3161
13,200 3162316331643165316631673170317131723173317431753176 3177 3200 3201 32023203320432053206320732103211 3212
13,400 3213 3214 3215 lZ16 3217 3220 32Z1 3222 3223 3224 3225 3226 32:Z7 3230 3231 323Z 3233 32.34 3235 3236 3237 3240 3241 3242 3243
13,600 3244 3245 3246 3247 3250 3251 3252 3253 3254 3255 3256 3257 3260 3261 3262 3263 3264 32.65 3266 3267 3270 3271 3212 3273 3274
13,800 32753276 3277 3300 3301 33023303 3304 3305 3306 3307 3310 3311 33123313 3314 3315 3316 3317 3320 3321 3322 3323 3324 3325

14,000 3326 3327 3330 3331 3332 3333 3334 3335 3336 3337 3l4O 3341 3342 3343 3344 3345 3346 3347 3350 3351 P52 3353 3354 3355 3356
14.200 3357 3360 3361 3362 3363 33b4 3365 3366 3367 3370 3371 337Z 3373 3374 3375 3376 3377 34;00 3401 3402 3403 3404 3405 3406 3401
14,400 3410 3411 3412 3413 3414 3415 3416 3417 3420 3421 3422 3423 3424 3425 3426 3427 3430 3431 3432 3433 3434 3435 3436 3437 3440
14.600 3441 3442 3443 3444 3445 3446 3447 3450 3451 3452 3453 3454 3455 3456 3457 3460 3461 3462 3463 3464 3465 3466 3467 34703471
14,800 3472 3473 3474 3475 3476 3477 3500 3501 3502 3503 3504 3505 3506 3501 3510 3511 3512 3S13 3514 3515 3516 3517 3520 3521 3522

9000
9200
9400
9600
9800

10,000
10,200
10,400
10,600
10,800

11,000
11.200
11,400
11,600
II,800

12,000
12,200
12,400
12,600
12,800

13,000
13,200
13,400
13,600
13,800

14,000
14,200
14,400
14,600
14,800

15,000 3523 3524 3525 3526 3527 3530 3531 3532 3533 3534 3535 3536 3537 3540 3541 354Z 3543 3544 3545 3546 3547 3550 3551 3552 3553 15,000
15,200 3554355535563551356035613562356335643565 3566 3567 3570 3571 3572 35733574357535763577 3600 3MI 3602 3603 3604 15,200
15,400 3605 3606 36071'610 3611 3612 3613 3614 3615 3616 3617 3620 3621 3622 3623 3624 3625 3626 3627 3630 3631 3632 3633 3634 3635 15.400
15,600 3636 3637 3640 3641 3642 36.3 3644 3645 3646 3647 3650 3651 3652 3653 3654 365~ 3656 3657 3660 3661 3662 3663 3664 3665 3666 1S,600
15,800 3667 3670 3671 3672 3673 3674 3675 3676 3677 3700 3701 37023703370437053706 3707 3710 3711 3712 3713 3714 3715 3716 3717 15,800

16, 000 3120 3721 37Z2 3723 3124 3725 3126 3127 3730 3731 3132 3733 3734 3735 3736 3737 3740 3741 3H2 3743 3744 3745 3746 3741 3750 16,000
16,200 3751 3752 3753 3754 3755 3156 3757 3760,3161 3762 37.3 3764 3765 3766 3767 3770 3771 3772 3773 3774 3775 3716 3777 4000 4001 16.200
16,400 4002 4003 4004 4005 4006 4007 4010 4011 4012 4013 4014 4015 4016 4017 4020 4021 4022 4023 4024 4025 4026 40Z7 4030 4031 4032 16,400

HIGH·ORDER OCTAL DIGITS

A-I

o

'" ~
lC
> .-
ID
>
VI

'" Z
o

APPENDIX A. OCTAL-DECIMAL CONVERSION PROCEDURE

Consider the decimal number to be converted as a base and an increment. Locate the base

(the next lower number which is evenly divisible by 200) in the margin of the lower chart and the

increment in the body of the upper chart. The intersection of the row and column thus defined -..../

contains the high-order digits of the octal equivalent. The low-order digit appears in the mar-

gins of the upper chart opposite the increment. For example, to convert 7958 to octal, the base

is 7800 and the increment is 158. Locate 158 in the upper chart and read down this column to

the 7800 row below. The high-order octal result is 1742. Then read out to the margin of the

upper chart to obtain the low-order digit of 6. Append (do not add) this digit to 1742 for an octal

equivalent of 17,426.

To convert an octal number to decimal, locate the high-order digits in the body of the

lower chart and the low-order digit in the margin of the upper chart. Then perform the converse

of the above operation.

(

A-2

APPENDIX B

LANGUAGE SUMMARY

This appendix summarizes language features described in this manual. The appendix has

three parts. The first part compares the differences between the language of Fortran Compiler D

and the ASA proposed Fortran as of March, 1965. The second part is a tabular summary of the

Fortran statements used in Fortran Compiler D with a brief explanation of their purpose and an

example of how they are used in the source program. The third part defines some of the language

terms used in the handbook.

COMPARISON WITH ASA PROPOSED FOR TRAN

Additional Statements

TITLE

END

- a nonexecutable statement followed by a main program
name. This statement can be used optionally to name a
main program. (See page 4-9).

- the END line of ASA proposed Fortran is replaced by
an END statement of the same form. This statement must
be used to terminate a main program or subprogram.
(See page 3-9).

CALL CHAINx - Chaining is the overlay technique used by the compiler.

Terminology

Within a job, a group of programs that occupies a sepa­
rate memory load is called a chain. The CALL CHAINx
statement causes transfer of control to the chain of pro­
grams named x. (See pages 1-1 and 3-8).

Honeywell uses the term job. A job is an executable unit that can consist of (1) a
single program, (2) a group of programs, or (3) up to 30 chains, each chain
consisting of either (1) or (2). A chain is a single memory load within a job. (See
page 1-1).

Honeywell uses the term library functions for functions that are called intrinsic -
functions and basic external functions in the ASA proposed specification. (See page 6-1),

Unless otherwise specified in the text, the term variable refers to a non-subscripted
variable. Array element is used in place of subscripted variable. (See pages 1-10
and 1-11).

Additional Language Feat~res

DAT A Initialization

B-1

Implied DO loops and short-list array
notation are permitted in DATA
initialization statements. (See page 4- 9).

APPENDIX B. LANGUAGE SUMMARY

Formatting in an Array

Boolean Functions

Special Dump Subroutines

Hardware Test Subroutine

A Hollerith field descriptor is per­
mitted to be part of a FORMAT speci­
fication in an array. (See page 5-51).

Four Boolean functions are supplied
with the compiler - Logical AND,
Inclusive OR, Logical Complement,
and Exclusive OR. (See pages 6 -8 and 6-9).

Three subroutines (MDUMP, DUMP,
and PDUMP) are supplied with the
compiler to provide dynamic dumping
facilities. (See page 6-14).

One test subroutine for SENSE switches
(SSWTCH) is supplied with the
compiler). (See page 6-12).

Test Subroutines for Simulated Indicators - Four test subroutines, supplied with
the compiler, test simulated indicators
mVCHK, OVERFL, SUTE, and
SLITET). (See page 6-12).

I/O Condition Test Subroutines Three subroutines (PARITY, EOF, and
EOT) are supplied with the compiler to
test I/O conditions. (See page 6-13),

Special I/O Subroutine Subroutine REREAD is supplied with the
compiler to provide a facility for re­
reading data. (See page 6-13).

Octal Data Input and output of octal data using an
octal conversion specification in a
FORMA T statement is permitted. Octal
data may also be initialized in a DATA
initialization statement. (See pages 1-14,
5-28, 4-9).

Re s trictions

Array Dimensioning

Data Types

Specification Subprograms

Extended Range DO

Change in Parameter

Only one- or two-dimensioned arrays are
permitted. (See page 1-10).

No complex or double-precision data are
permitted. (See page 1- 11).

No BLOCK DATA subprograms are
permitted. (See Section IV).

No extended range s are permitted in
DO nests. (See pages 3-4 to 3-7).

The compiler permits up to six octal digits to follow a PAUSE or STOP statement as an

identifier, in contrast tOfthe five specified by the ASA proposed Fortran. (See pages 3-8 and

3-9).

B-2

11

•

tl:1
I

v.>

(
~

((

Table B-1. Fortran Statement Summary

Statement and Page Reference

DIMENSION al(il' iZ), aZ(il' iZ)'···' an(il, iZ)

Page 4-1

Unlabeled Common:

COMMON aI' aZ' a3' ... , an

Labeled Common:

COMMON!N:r/al' . .• ,GnlN z/al'·· .• an/Nn/a 1'·· .,an

Page 4-Z

Specification Statements

Explanation Example

A DIMENSION statement declares I DIMENSION A(ZO), T(3, 4), J(7, 7)
the arrays to be used in a pro-
gram and gives the number of di-
mensions and the size of each ar-
ray dimension. Each a represents
an array name. Each i l indicates
the number of rows and each i Z
indicates the number of columns in
the array. i Z is presentonlyifthe
array is two dimensional.

Each a is a single variable or I COMMON A, B(5, 6), K, M(4, 4)
array name assigned to the com-
mon area in the order in which
it appears in the COMMON state­
ment. Unlabeled common storage
is accessible to all programs
within a single job.

Each list of names of variables
or arrays (al to an) is assigned
to the common block named
within the slashes preceding the
list. Labeled common blocks
are accessible to all programs in
a chain.

A single statement can be used
for unlabeled or labeled common
storage. The area between
slashes is left blank for unlabeled
common storage. Only one un­
labeled common block is permit­
ted.

COMMON/BLKl/C(3,3),D,V/BLKZ/E,F(Z,5)

COMMON/BLKl/C(3,3),D,V/BLKZ/E,F(Z,5)//A,
B(5,6), K, M(4,4)

>
'tl
'tl
t>:I
Z
t:J
H

~

tl:1

~
Z
Cl
c:::
>
Cl
t>:I
Ul
c:::
~

~
::0
><:

tJ:j ,
o!>-

Table B-1 (cont). Fortran Statement Summary

Statement and Page Reference

EQUIVALENCE (vl'.··,vn), (VI',··., vn'), ...

..

Page 4-5

Type Statements:

INTEGER VI' v 2 '···, vn

LOGICAL VI' v2,···, vn

REAL VI, v2'···' vn

Page 4-7

EXTERNAL f I , f 2,···, fn

Page 4-8

DATA VI'··· ,vn/c l '···, c n /

P~e 4-9

(
" "

Specification Statements (cont)

Explanation

An EQUIVALENCE statement
either renames variables or
array elements or permits two
or more variables or array
elements to share a single
memory location. Each set of
parentheses encloses variables
and array elements assigned to
the same location. Up to 64
unrelated equivalenced sets
are permitted.

Type statements explicitly de­
clare types of arithmetic and
logical variables, arrays, or
functions. Logical quantities
must be explicitly declared.
Real or integer values are de­
clared to override implicit
typing.

Each f is the name of a function
or subroutine that appears in
the argument list of a function or
subroutine subprogram and is not
otherwise previously declared in
a CALL statement (for sub­
routine s) or an arithmetic /logical
expression (for functions).

A DATA statement assigns an
initial constant c to the
corresponding variable vat
object time. Types of corre­
sponding constants and variables
must match.

(

Example

EQUIVALENCE (A(2),B(3, 1»,(V,C(2,4), S)

Related and Unrelated Sets

EQUIVALENCE (A, B), (A, C), (D, E)

The example above is counted as two
unrelated equivalenced sets. Since A is
a variable in two of the sets, those two
sets are counted as related.

LOGICAL A, B(3, 3), C(4), D

REAL M(5, 4), INT, MORTG

FUNCTION PHI(DUMMYI,
PHI = DUMMYI(X)/Y
RETURN

X, Y) l J function

END

EXTERNAL PHI

CALL X(PHI, B) }

part of
calling
pro­
gram

DATAG,H,I,J,K/8. 75,1. O,35,3HRPM,2037/

(Note that in Fortran D, octal and Holler­
ith values are typed as integer data.)

(
v ii,

>
't:1
't:1
M
Z
tJ
><
tJ:j

~
Z
Cl
c::
>
Cl
M
(Jl

c::
~

~
~
0-<

tJj
I

\.11

.>

(

Statement and Page Reference

Arithmetic Statement:

a=b

Page 2-4

Logical Statement:

a=b

Page 2-6

Statement Function:

Funame (a 1, a2,"" an) = b

Page 6-2

GO TOn

Page 3-1

((

Table B-1 (cont). Fortran Statement Summary

Assignment Statements

Explanation Example

The value of the arithmetic " .
expression b replaces the real I = I + 1
or integer variable a. A = I

X = A*12. /(Z-2.)

The value of the logical LOGICAL C, Z
expression b replaces the
logical variable a. Logical
variables must be explicitly C = X. GT. 2. 5.AND. NOT. 2
declared.

Statement Function

The statement function assigns CALC(X, Y, Z)=X**2. *SIN(Y)+(Z-15.)
an arithmetic or logical
expression b containing dummy
arguments a 1 to an to a function D=BAL + CALC(A, B, C)
name. A list of the dummy
arguments appears following the
function name. The statement IF (CALC(E, F, G) - 24.) 2, 3, 4
function pe rmits writing an
expression only once for a pro-
gram in which it will be used
repetitively with different
actual arguments. A statement
function is called by writing its
name and actual arguments in an
executable statement.

Control Statements

Unconditional GO TO. n is the
statement label of an executable GO TO 75
statement to which control is
transferred.

75 A=25. ,~X
..............

>
'1:l
'1:l
M
Z
t:l .;<
tJj

~
Z o
c::
> o
M
UJ
c::
~

~
l:O
><:

-

Statement and Page Reference

GO TO (nl' nZ,··· ,n m), i

...

Page 3-Z

ASSIGN n TO i

t:xf ,
'" GO TO i, (nI' n Z,···, nm)

Page 3-Z

IF(e) nl' nZ' n3

Page 3-3

F (e) S

Page 3- 3

(J
" ..

Table B-1 (cont). Fortran Statement Summary

Control Statements (cont)

Explanation

A computed GO TO statement.
The n' s are statement labels.
m cannot exceed 63. 1 IS an
integer variable. The value
of i is from 1 through m; it
indicates to which n control
is transferred.

An assigned GO TO and an
ASSIGN statement are used to­
gether. All n's are statement
labels. i is an integer variable
that is the same for the
ASSIGN and its matching GO
TO statement. Control is trans­
ferred to the statement given
in the ASSIGN when the GO TO
is encountered.

e is an integer or real arith­
metic expression and the n's are
labels of executable statements.
The n to which control is trans­
ferred depends on whether the
expression is evaluated as
negative,O, or positive.

e is a logical expression and S
if any executable statement
except a DO or another logical
IF. S is executed only if e is
true.

(':

5
J=O
J=J+l

Example

GO TO (lO, ZO, 30), J

10 A=B+C
GO TO 5

ZO D=B-C
GO TO 5

30 E=A-C

ASSIGN 90 TO K

GO TO K (66, 90, 34, 8Z)

When the GO TO statement is encountered,
transfer is made to statement 90.

IF(X**4-l6.) 7, lZ, lZ

If X is Ie s s than Z., control goe s to
statement 7. If X is equal to or greater
than Z., control goes to statement lZ.

IF (D. OR. E) GO TO 38

If either D or E is true, control transfers
to statement 38; othe rwise the next state­
in order is executed.

(
" "

>
't:J
't:J
M
Z
tJ
><
t:xf

~
Z
C1
c::
>
C1
M
(Jl

c::
~

~
:::0
r-<

tJj
I

-..J

(

Statement and Page Reference

DO n i = m l' m 2, m 3

or

DO n i = ml, m2
...

Page 3-4

CALL subname

or

CALL subname (aI' a2'··· ,an)

Page 3-7

RETURN

Page 3-8

(

Table B-1 (cont). Fortran Statement Summary

Control Statements (cont)

Explanation

The DO statement permits a
sequence of statements follow­
ing to be executed repetitively.
n is the last statement of the
sequence. i is an integer
variable. ml is the initial value
and m 2 is the final value of i.
m3 is the increment of i; when
m 3 is absent, the increment is 1.

Used to transfer control to a
procedure subroutine. The sub-

Example

G=O
DO 25 1=1, 10, 2
G=G+l

25 A(I) = B(I)-G*C(I)

(

The following computations would result:
A(l) = B(l)
A(3) = B(3)
A(5) = B(5)
A(7) = B(7)
A(9) = B(9)

- l*C(l)
2*C(3)
3*C(5)
4*C(7)
5*C(9)

routine name may be followed 25
CALL TEST (A, B, REMo)}main

or
by actual arguments (a I to an
where n::563) to be substituted for
dummy arguments given in the
SUBROUTINE statement that
begins the subroutine subpro-
gram.

A RETURN statement transfers
control from a function or sub­
routine subprogram back to the
calling program. Control
returns to the first executable
statement after the CALL for
a subroutine and to the statement
in which the function is embedded
for a function.

calling
pro-

END gram

SUBROUTINE TEST (X, Y, Z n sub-

RETURN
END

routine

>

X, Y, and Z are dummy arguments of sub­
routine subprogram TEST. A,B, and
REMO are the actual arguments substituted
when TEST is called. At the RETURN
statement, control is transferred to state
ment 25.

>
ItJ
ItJ
M
Z
t::l
X
tJj

~
Z
C)
c::
>
C)
M
C/l
c::
~

~
::0
K!

-

Statement and Page Reference

CONTINUE

Page 3-g..

CALL CHAIN x

Page 3-8

END • to
I I Page 3-9 00

PAUSE

or

PAUSE n

Page 3-8

STOP

or

STOP n

Page 3-9

(I
"

Table B-1 (cont). Fortran Statement Summary

Control Statements (cont)

Explanation

CONTINUE is used to terminate
DO loops that would otherwise
be illegally terminated by a GO
TO, DO, arithmetic IF,
RETURN, or STOP statement.

The CALL CHAIN statement
transfers control to the named
chain of programs within a job.
The x is a character (letter or
digit) identifying the chain.

An END statement is always
required to terminate a program
or subprogram.

A PAUSE halts execution of a
program so that the operator
can take some action designated
by the programmer. An n can
be up to 6 octal digits displayed
in the A- and B-address registers.
The n indicates which of several
numbered actions should be taken
at this pause.

A STOP without the identification
constant n causes termination of
execution and exit to process the
next job. A STOP with an identi­
fication constant n causes a halt
as does the PAUSE statement.
When the operator has taken the
action indicated and resumes
processing, an exit to the monitor
occurs to process the next job.

(

50

"

Example

DO 50 I = 1, 10, 2

IF (A{I) - B{I» 4, 5, 6
CONTINUE

CALL CHAIN 3

END

PAUSE 33

STOP 217
END

41

(

>
't1
't1
M
Z
t:I :x:
to

~
Z o
C
> o
M
en
C
~

~
::c
0<:

•

b::l
I

~

(.'

Statement and Page Reference

READ (i, n) list

or

READ (i) list ...

Page 5-1

WRITE (i, n) list

or

WRITE (i) list

Page 5-3

lEND FILE i

Page 5-55

(

Table B-1 (cont). Fortran Statement Summary

Input/Output Statements

Explanation

The statement indicates that
the list of names of variables,
arrays, and array elements
given is to be read from the
device numbered i into
memory in accordance with
the input format shown in
the FORMAT statement
numbered n. When no n is
present, the input list is
unformatted.

The list for both READ and
WRITE statements may be a
sequenced group of names
separated by commas or
can take the form of an
implied DO loop enclosed in
parentheses. Single list
items can precede an
implied DO loop.

The WRITE statement is
identical to the READ state­
ment, except that the device
i is an output device and the
format referenced is the
output format.

i is a peripheral device code.
The effect of the END FILE
statement depends upon the
device being addressed. Two
end-of-file records are
written on a magnetic tape.
Do not END FILE the punch,
printer, or card reader. This
causes termination of the run.

Example

READ (2, 17) A(2), B, J, P

READ (2, 30) (D(I), 1=1, 5)

READ (2,47) A(2), J, (D(I) 1=1, 5)

(

The final READ example reads the list into
memory in the following order:
A(2), J, DO), D(2), D(3), D(4), D(5)

WRITE (3, 9) (A(2), J, D(I), 1=1,5)

The WRITE example would list on the out­
put device the following:
A(2), J, DO), A(2), J, D(2), A(2), J,
D(3), A(2), J, D(4), A(2), J, D(5)

END FILE 3

>
'tl
'tl
ttl
Z
tl
H

X
b::l

~
Z
C)
c::
>
C)
ttl
(J)

c::
~

~
::0
....::

IJj
I

......
o

Statement and Page Reference

REWIND i

Page 5-56

BACKSPACE i

Page 5-56

n FORMAT (s l' sz' ... sn)

Section V

(
,I .,

Table B-1 (cont). Fortran Statement Summary

Input/Output Statements (cont)

Explanation

The tape mounted on logical
tape unit i will be rewound
to the beginning of tape.

The tape mounted on logical
tape unit i will be backspaced
one logical record.

Each s is a specification for
formatting output or
indicating incoming format
for the corresponding list
item in the WRITE or READ
statement that references n,
the FORMAT statement
number.

Each specification s indicates
the type of conversion (A, E,
F, G, H, I, L, 0, or X) and the
width of the field on the
external medium. Floating­
point conversions (E, F, and
G) include the position of the
decimal point and may include
a scale factor. All conver­
sions except Hollerith (H) and
blank (X) must have corre­
sponding list items in a READ
or WRITE statement. All
conversions except Hollerith
and blank may have repetition
constants.

Example

REWIND 5

BACKSPACE 4

10

READ (Z, 10) A, B, C, I, J, K, LGL

FORMAT (5X, F4. 1, E6. 1, GS. 2, 13,
04, A6, 12, 15H6FORMAT6
EXAMPLE)

Appearance of data to be read in:

!M666-Z. 765. 3EZ~ 765.S5Cl256777MLPHA6T

((1
" 41

>
"'Cl
"'Cl
l'1
Z
t:I
><:
IJj

~
Z
C)

~
C)
l'1
rn
c:
E:
~
::tl
><:

•

b:I
I

(
~

~)

('

Table B-1 (cont). Fortran Statement Summary

Statement and Page Reference

l::. TITLE name

Page 4-9 ..

type FUNCTION name (aI' aZ, ... , an)

or

FUNCTION name (aI' a Z'···' an)

Page 6-4

SUBROUTINE name (aI' a Z"" an)

Page 6-9

Program Header Statements

Explanation

The TITLE statement is an
optional first .tatement in a
main program. It permits
the programme r to name a
main program.

A FUNCTION statementnames
a function subprogram and
lists the dummy arguments
(OS anS 63) of the subprogram.
The function subprogram can
be explicitly typed as REAL,
INTEGER, or LOGICAL, or
it may follow implicit typing
name conventions. The
FUNCTION statement pre­
cede s the function subprogram
statements. A function sub­
program is called by writing
its name in an executable
statement together with its
actual arguments.

A SUBROUTINE statement
names a subroutine subpro­
gram and lists the dummy
arguments (OS a S 63) of the

n
subprogram. A subroutine
subprogram is not typed. The
SUBROUTINE statement pre­
cedes the subroutine subpro­
gram statements. A sub­
routine subprogram is called
by a CALL statement giving
its name and any actual
arguments.

"j ,t'

Example

l::. TITLE SUR VEY

END I

(

main body of
program

REAL FUNCTION INTRST (X, Y, Z)

RETURN
END

SUBROUTINE EVALU (D, I, C, J)

RETURN

END

~
"d
"d
1:'1
Z
t:I
X
b:I

~
Z
C)
c::
~
C)
1:'1
Ul
c::
E::

~
::0
><:

APPENDIX B. LANGUAGE SUMMARY
•

GLOSSARY

Some of the language terms used in this manual which have not previously been defined or

which have similar or partly similar meanings to other terms are here defined.

Fortran Syntax: This comprises the rules governing the structure of the Fortran language.

Fortran Language Elements: The Fortran language elements are operators, delimiters, and

names.

Delimiters: Delimiters separate (delimit) elements of a Fortran statement and are:

+(-)=,*/

Operators: Operators indicate action to be taken upon another element of Fortran and are:

Arithmetic operators

Logical operators

Relational operators

Statement operators

Arithmetic Operators: Four delimiters are used to indicate five arithmetic operations as follows: ,.-

+ addition

- subtraction

* multiplication

/ division

,~,~ exponentiation

Logical Operators: Logical operators combine with a logical constant, logical variable, logical

array element, and/or reference to a logical function to produce a truth value (. TR UE. or

. FALSE.). The logical operators are:

· NOT. logical negation

• AND. logical conjunction

· OR. inclusive disjunction

Relational Operators: Relational operators define a relationship between arithmetic expressions

such that if the logical relation is satisfied, the truth value is . TR UE. and if the logical relation

is not satisfied, the truth value is . FALSE. The relational operators are:

• EQ. equal tof

· GE. greater than or equal to

• GT. greater than

B-12

.-

•

APPENDIX B. LANGUAGE SUMMARY

• LE. less than or equal to

· LT. less than

· NE. not equal to

Statement Operators: Statement operators are reserved words used to begin Fortran statements

and indicate the action to be taken. The statement operators are:

ASSIGN END FILE PAUSE
BACKSPACE EQUIVALENCE READ
CALL EXTERNAL REAL
CALL CHAIN FORMAT RETURN
COMMON FUNCTION REWIND
CONTINUE GO TO STOP
DATA IF SUBROUTINE
DIMENSION INTEGER TITLE
DO LOGICAL WRITE
END

Names: Names are assigned to all constants, variables, array elements, arrays, functions, and

subroutines according to the Fortran conventions described in Section I.

Operand: An operand is a general term for a Fortran element that is neither an operator nor a

delimiter. It may be a constant, variable, array element, array, function reference, or the

result of previous evaluation of an expression.

Expression: An expression is a sequence of Fortran language elements that can be evaluated as

a unit. Expressions are arithmetic or logical. Complete rules for defining either expression

are given in Section II.

f

B-13

•

APPENDIX C

INTERNAL REPRESENTATION OF NUMBERS

BIT REPRESENTATION

Each decimal character specified by the programmer on the *JOBID card as the precision

option represents six bits of storage. Of the allocated bits, the leftmost represents the sign

for integer data.

FIXED-POINT NUMBERS

Fixed-point (integer) numbers are stored in binary. In considering requirements of pre­

cision, overflow conditions, etc., the programmer must therefore think, not in terms of the

conventional character representation, but in terms of bits available. For example, a minimum

allocation of three characters permits representation of an integer in up to 17 bits.

Length - From 3 to 12 characters can be specified by parameter card at the
beginning of program compilation. If not specified, a length of
three characters is assumed. Let N equal the number of characters
specified.

Magnitude - For any fixed-point number i, the magnitude is restricted to:

0< i S 2 (6N-I) - I

Precision - Precision can be determined from the table following.

Parameter Specified Integer Precision Parameter Specified Integer Precision
by Programmer in Digits by Programmer in Digits

3

4

5

6

7

Format

5 8 14

6 9 15

8 10 17

10 II 19

12 12 20

- The number is stored in binary in a group of N characters. If the
number is negative, it will have a value equal to the twos comple­
ment of the positive number of equal magnitude. Note that this
assures that a negative number has a high-order bit of I.

FLOATING-POINT NUMBERS

A mantissa of 2 to,ZO characters can be specified by control card at the beginning of pro­

gram compilation. Two additional characters to the right of the mantissa represent the ex­

ponent. If not specified, a mantissa of seven characters, plus two characters for the exponent.

C-I

..

•

APPENDIX C. INTERNAL REPRESENTATION OF NUMBERS

is asswned. Both the mantissa and exponent are signed. Since real numbers are stored in ,
floating-point decimal, the mantissa size specified by the programmer (in characters) represents

the nwnber of decimal digits that can be stored.

STORAGE OF OTHER DATA

Alphabetic, Hollerith, octal, and logical data are stored as fixed-point data. Examples

illustrating storage of these data, together with examples of storage of fixed- and floating-point

numbers, are given in this appendix .

ACCURACY OF CALCULATIONS

The degree of precision specified for values in a Fortran program will not necessarily

be reflected in the results of calculations. For example, if floating-point precision is 10 places,

the two values 88888. a and 6666666. a can be read into memory without overflow. However, if

these values are multiplied, the result will exceed specified precision and prove accurate only

to nine places. Results of further calculations with the result of this multiplication may reflect

greater decreases in precision. In selecting fixed- and floating-point precision, therefore, it is

important to determine the degree of precision required in calculations, not the precision

required to read in initial value s.

FORMATS OF DATA IN MEMORY AT OBJECT TIME

Variables are stored in memory with sign information. Real constants always have a

positive mantissa and a signed (plus or minus) exponent. Integer constants are always positive.

Real Data

Real data are stored in memory in decimal. After a real number assignment or input,

storage is as shown:

W W

I MIMIMIMIMlolEIE
, V '

F

Where: F = 4 to 22 characters (mantissa precision from 2 to 20 plus 2 for
exponent)

each M = 1 digit in the mantis sa
each E = 1 digit in the exponent

W= word mark

The mantissa is normalized and stored left-justified with a zero fill at the right. It the mantissa

is negative, the B and A 9its in the low-order character of the mantissa are set to 10; all other

settings of these two bits indicate a positive mantissa. A negative exponent is indicated when

the B and A bits of the low- order character of the exponent are set to 10.

C-2

APPENDIX C. INTERNAL REPRESENTATION OF NUMBERS

Examples:

1. This example has fa precision of two decimal digits and shows the resultant
data bits of the four characters. A= -9. 3E - 29 gives the following in mem­
ory for the variable A:

MANTISSA EXPONENT

WORD MARK WORD MARK

B A 8 4 2 1 B A 8 4 2 1 B A 8 4 2 1 B A 8 4 2 1

0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0

The following shows how the constant (9. 3E - 29) is stored in memory:

MANTISSA EXPONENT

WORD MARK WORD MARK

B A 8 4 2 1 B A 8 4 2 1 B A 8 4 2 1 B A 8 4 2 1

0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0

2. With a specified precision of 20 decimal digits, B = 97425. 7761834581975E + 78
gives the following in memory for the variable and constant:

W W

9 7 500 8 3

Integer Data

Integer storage in memory is in binary. After fixed-point input:

W

loooxxxi
~

I

I

W

= 3 to 12 characters
(5 to 20 digits)

= word mark

XXX = data stored

Data are stored right-justified with zero fill on the left. For a negative number the twos comple­

ment of the binary equivalent of the number is stored in the variable location, instead of the

binary equivalent itself.

Examples:

1. With a precision of four characters, 1= 3947 gives the following in the
constant and variable locations:

•
W

f

I 0 i 0 I 0 I 0 I 7 ! 5 I 5 i 3 , /

V
shown in octal

C-3

"

,-

..

•

APPENDIX C. INTERNAL REPRESENTATION OF NUMBERS

2. With a precision of three characters, I::: -2997 gives the following in
the variable location for I:

Octal Data

W

bl 7 J 2 1l 11i 3 1
, shown i~ octal '

The same datum gives the following in the constant location since constants
are always positive:

W

I 0 ! 0 I 5 6 6 5
,

shownv in octal

Octal data are stored in integer form. Integer precision between 3 and 12 characters

permits between 6 and 24 octal digits to be stored, as shown below.

W

Ixxxoool

==y---'
I ::: 6 to 24 octal digits

Data are stored left-justified with zero fill on the right.

Example:

With a precision of four characters, 701234567 gives the following in the
variable and constant locations:

W

11!2134151617io/
, f

shown i~ octal

Hollerith and Alphabetic Data

The data in a Hollerith or alphabetic input are stored in integer form. Integer precision

between 3 and 12 characters permits between 3 and 12 alphabetic or Hollerith characters to be

stored as shown below.

W

I xxxtlM\
L:::::::;;:!!!!

I ::: 3 to 12 Hollerith or alphabetic characters

I

Data are stored left-justified on a field of blanks.

With a precision of l(} characters,
variable and constant locations:

W

I ElxlAIMla LIEI~I~I~I
, V I

shown in alphanumeric
characters

7HEXAMPLE gives the following in the

C-4

APPENDIX C. INTERNAL REPRESENTATION OF NUMBERS

When overflow occurs,Hollerith and alphabetic data are truncated. With
a precision of five characters, 7HEXAMPLE gives

W

IEIXIAIMlpl
\ v /

shown in alphanumeric
characters

Logical Data

CONSTANTS

Example:

Logical constants are assigned one character of memory space as follows:

W

Ixxi XX are two octal digits where

W

77 = . TRUE.
00 = . FALSE.

LOG = • TRUE. gives (lZJ in memory for the constant. TRUE ..

VARIABLES

Examples:

Logical variables are stored in integer fields with only the right-hand
character specifying the value, as shown below.

W

I UNSPECIFIED I XX

i
I = 3 to 12 characters

XX = two octal digits
77 (for. TRUE.) or 00 (for. FALSE.)

When a field is read into memory with a READ statement, the result will be
. TRUE. only if the first nonblank character encountered is a "T".

1. With "I" having a precision of five characters:

W

I = . FALSE. gives I 100 I
UNSPECIFIED

2. With a precision of six characters

READ (2, 12) LL

12 FORMAT (L6)

in memory for the variable "I".

• TRUE.

Data Card

The above input gives the following in memory for the variable LL, because
the first character of the field is not a "T":

W

I 1001
UNSPECIFIED

C-5

..

•

APPENDIX D

PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

Table D-I lists all library functions, subroutines, and execution routines supplied on the

compiler system tape, together with the memory they require, how they are called, and the

direct and indirect calls made by the routines to other routines. This information is of particular

importance in determining execution time memory limits and when jobs must be chained.

Memory requirements for some routines are given by formula. To determine the number

of characters required for each such routine, substitute the floating-point mantissa precision

specified on the ~'JOBID card for the variable, mant., in the appropriate formula. The memory

requirements for default precision are also listed for each variable formula.

The routines of the standard execution package - I/O modules and floating- and fixed-point

packages - are described in this appendix. Described in detail also are the library functions

SIN, COS, EXP, ALOG, ALOGIO, ATAN, ATAN2, SQRT, and TANH.

Routine Name
and Section
Reference

ABS

ACADGN

ACBCCH

ACBFIX

ACBFLO

ACBFPH

ACBFPP

VI

D

D

D

D

D

D

ACBFPR D

ACBFPS D

ACBFXP D

Table D-l. Procedures and Execution Routines on the
Compiler System Tape

Octal Locations of Memory
Calls by Routine Reauired

Function of Routine and How Called

Programmer calls ABS to take absolute value of real datum.

Execution package error routine called by system when an error
occurs in a library function. Issues appropriate diagnostic.

This chain-calling routine is brought in by the system when a job
is divided into chains. Presence of CALL CHAIN statements
causes the system to call ACBCCH.

An execution routine brought in by the system when real-to-integer
conversion is required, i. e., I = A. A programtner call to IFIX
will also bring in ACBFIX. .

An execution routine brought in by the system when integer-to­
real conversion is required, i. e., A == I. A programmer call to
FLOA T will also bring in ACBFLO.

Floating-point execution package for users with multiply/divide
hardware, furnished with all central processors except Type 201.
Brought in by the system when a floating-point arithm.etic expres­
sion is encountered.

Calling routine for either ACBFPH or ACBFPS.

Floating-point relational routine of execution package. Brought
in by system whenever floating-point values in an IF or an assign­
ment statem.ent are used with. LT. , . LEo, . GT., 0 GEo , . NE., or
.EO.

Floating-poiJt execution package for users with multiply/divide
software. Brought in by the system when a floating-point arith­
metic expression is encountered.

Fixed-point execution package using simulated hardware. Brought
in by system whenever fixed-point values are multiplied or divided
and whenever a subscript containing a variable is encountered.

D-I

Direct Indirect 3-Character 4-Character

ACBFPH
or

ACBFPS

ACBFPP ACBFPH
or

ACBFPS

71

73

472

413

1715

263

2455
+

6 manto

1230

106

110

611

516

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

Routine Name
and Section
Reference

ACBFXR D

ACBIIE D

ACBMEM D

ACBOIO and its
modules:

BACKSP D

BCDCON D

BINARY D

EFGCNV D

ENDFIL D

EOFPAR D

INTCON D

IODlAG D

LOGOCT D

VFORMT D

ACBRIE D

ACBRRE D

AINT VI

ALOG VI

ALOGIO

AMAXO

AMAXI

AMINO

AMINI

AMOD

ATAN

ATAN2

COS

DIM

DUMP

DVCHK

EOF

EOT

VI

VI

VI

VI

VI

VI

VI, D

VI, D

VI, D

VI

VI

VI

VI

VI

Table D-I (cont). Procedures and Execution Routines on the
Compiler System Tape

Function of Routine and How Called

Fixed-point relational routine. Brought in by system whenever
fixed-point values in an IF or assignment statement are used
with .LT., .LE .•. CT., .GE ••. NE., or .EQ ••

An execution package routine brought in by system whenever
integer-ta-integer exponentiation is encountered (I**J).

An execution memory dump routine brought in whenever a call
to MDUMP. PDUMP. or DUMP is encountered.

Execution internal I/O calling routine brought in if any I/O is
used. The routine calls whatever modules of internal I/O are
required.

I/O module brought in whenever BACKSPACE statements are
used.

I/O module brought in whenever a formatted READ or format­
ted WRITE statement is used.

I/O module brought in whenever an unformatted READ or unfor­
matted WRITE statement is used.

I/O module brought in whenever a real conversion is used (E,
F. or G conversion code).

I/O module brought in whenever an END FILE statement is used.

I/O module brought in whenever a call to EOF or PARITY is
encountered.

I/O module brought in whenever integer conversion is used (1
conversion code).

I/O diagnostic module brought in if all I/O modules are not loaded.
If an liD module not in memory is referenced, IODIAG causes an
appropriate diagnostic.

I/O module brought in whenever a logical or octal conversion is
used (L or a conversion codes).

I/O module brought in whenever arrays are used for formatting.

An execution routine brought in by the system whenever real-to­
integer exponentiation is encountered (A**I).

An execution routine brought in by the system whenever real-to­
real exponentiation is encountered (A**B).

A truncation library function called by the programmer.

Library function for natural logarithm, called by programmer.

Library function for base-IO logarithm, called by programmer.

Library function to select largest value, called by programmer.

Library function to select largest value, called by programmer.

Library function to select smallest value. called by programmer.

Library function to select smallest value, called by programmer.

Library function for remaindering, called by programmer.

Library function for obtaining arctangent in two quadrants, called
by programmer.

Library function for obtaining arctangent in four quadrants, called
by programmer.

Library function for cosine, called by programmer.

Library function for positive difference, called by programmer.
f

Special subroutine to call memory dump routine, ACBMEM.

Special subroutine to check for illegal division.

Special subroutine to check for end of file.

Special subroutine to check for end of tape.

D-2

Calls by Routine
Direct

ACBFXP

ACBFXP

as
required

as
required

ACBFIX

ALOG,
EXP,
ACBFPP

ACBFPP

Indirect

ACBFPH
or

ACBFPS

ACBFPH
or

ACBFPS

ALOG, ACBFPH
ACBFPP or

ACBFPS

ACBFXR, ACBFXP,
ACBFLO lABS

ACBFPR ACBFPP

ACBFXR, ACBFXP,
ACBFLO lABS

ACBFPR ACBFPP

AINT, ACBFPH
ACBFPP or

ACBFPS

ACBFPP ACBFPH
or

ACBFPS

ATAN, ACBFPH
ACBFPP or

ACBFPS

SIN, ACBFPH
ACBFPP or

ACBFPS

ACBFPP ACBFPH
or

ACBFPS

ACBMEM

EOFPAR

petal Locations of Memory
Required

f3-Character 4-Character

252

620

1465

3254

521

3135

1562

3140

236

177

1063

16

1066

354

777

325

373

1330
+

26 manto

71
+

1 manto

222

220

222

220

237

2365
+

65 manto

337
+

4 manto

114
+

2 manto

120

143

64

64

63

756

2006

1162

400

473

1562
+

26 manto

105

27 I

266

271

266

302

2702
+

65 manto

416

+
4 manto

140
+

2 manto

143

175

100

101

100

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

Routine Name
and Section
Reference

EXP VI, D'

FLOAT VI

IABS VI

IAND VI

ICOMPLE VI

lDIM

IEXC1..R

IFIX

INT

lOR

I04CHI

ISIGN

MAXO

MAXI

MDUMP

MINO

MINI

MOD

OVERFL

PARITY

PDUMP

PP4CHI

PR4CHI

REREAD

SIGN

SIN

SLITE

SLITET

SSWTCH

SORT

TANH

XP4CHI

XR4CHI

VI

VI

VI

VI

VI

D

VI

VI

VI

VI

VI

VI

VI

VI

VI

VI

D

D

VI

VI

VI, D

VI

VI

VI

VI, D

VI, D

D

D

Table D-l (cont). Pt"ocedures and Execution Routines on the
Compiler System Tape

Function of Routine and How Called

Exponential library function, called by programmer.

Library function that can be specifically called by the program­
mer or is called by the system for assigning an integer value to a
real variable (A=I).

Library function for obtaining absolute value, called by program­
mer.

Library function for logical conjunction, called by programmer.

Library function for logical complement, called by programmer.

Library function for obtaining positive difference, called by
programmer.

Library function for exclusive OR, called by programmer.

Library function that can be specifically called by the program­
mer or is called by the system for assigning a real value to an
integer variable (I=A).

Library function for truncation, called by programmer.

Library function for inclusive OR, called by programmer.

Execution, 4-character interface routine, called by system when­
ever interface with ACBOIO is required.

Library function for transfer of sign, called by programmer.

Library function to select largest value, called by programmer.

Library function to select largest value, called by programmer.

Special subroutine to call memory dump routine.

Library function to select smallest value, called by programmer.

Library function to select smallest value, called by programmer.

Library function for remaindering. called by programmer.

Special subroutine to test for overflow.

Special subroutine to test for correct parity.

Special subroutine to call memory dump routine.

Execution, 4 .. character interface routine, called by system when­
ever interface with ACBFPP is required.

Execution, 4-character interface routine, called by system when­
ever interface with ACBFPR is required.

Special subroutine to reread data.

Library function for transfer of sign, called by program.m.er.

Library function for sine, called by programmer.

Special subroutine for sense light test.

Special subroutine for sense light test.

Special subroutine for SENSE switch test.

Library function to compute square root. called by programmer.

Library function to compute hyperbolic tangent, called by pro­
grammer. f

Execution, 4-character interface routine, called by system when­
ever interface with ACBFXP is required.

Execution, 4-character interface routine, called by system when­
ever interface with ACBFXR is required.

D-3

Calls by Routine
Direct Indirect

ACBFPP ACBFPH
or

ACBFPS

ACBFLO IABS

ACBFIX

ACBFIX

ACBOIO

ACBFXR

ACBFIX,
ACBFPR

ACBMEM

ACBFXR

as
required

ACBFXP

ACBFPP,
ACBFPH

or
ACBFPS

ACBFXP

ACBFPR, ACBFPP
ACBFIX

ACBFXP

EOFPAR

ACBMEM

ACBFPP

ACBFPR

ACBFPP

ACBFPH
or

ACBFPS

ACBFPP

ACBFPH
or

ACBFPS

ACBFPP ACBFPH
or

ACBFPS

ACBFPP ACBFPH

ACBFXP

or
ACBFPS

ACBFXR ACBFXP

Octal Locations of Memory
Required

3-Character 4-Character

740
+

22 manto

57

125

56

67

116

56

57

57

103

247

215

223

152

215

223

164

64

53

140

130

130

122

134

1205

+
17 manto

145

216

154

520

+
11 manto

326
+

3 manto

115

140

1100

+
22 manto

73

153

72

102

142

72

73

73

125

671 to 2634
dependent on
the type of
formatting

323

263

272

206

263

272

217

100

66

171

147

163

1441

+
17 manto

175

263

207

650
+

11 manto

405
+

3 manto

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

LIBRAR Y FUNCTION ERRORS.A T EXECUTION TIME

During execution of a job under the conditions described in the table, the routines listed

in Table D-2 will set a value in a cOllununication cell indicating a library error condition and

the routine in which the error occurred. At job tertnination, co:mpiler seg:ment ACADGN is

always brought in to test the value of this cell. If a library error occurred, the value found by

ACADGN will cause the seg:ment to print out an execution-ti:me error :message indicating the

routine involved and the nature of the error. A list of library error :messages is given in Ap-

pendix G.

Table D-2. Library Error Conditions

Routine Condition Reason

AMOD Arg
2

= 0 An atte:mpt to divide by zero.
MOD
SIGN
ISIGN

SIN IArgl > 2017' An attempt to perform calculations -
COS outside the stated li:mit for the li-

EXP IArgl ~ 230
brary function causes undefined
results.

, SQRT Arg < 0

ALOG Arg < 0
ALOGIO

ACBRRE Base 0 An attempt to raise a negative base
and to a real exponent causes unde-

Exponent f. 0 fined results.

FLOA TING-POINT PACKAGES

There are two floating-point packages supplied with the co:mpiler. The package selected

to perform floating-point operations depends upon the equip:ment configuration of the Series 200

computer at a given installation.

When an installation has a Series 200 computer with :multiply/divide hardware, the Con­

sole Call card ACADRV :must indicate the presence of this hardware by a D in column 14. This

hardware option of the Console Call card is described in Section IX. Presence of a D in column

14 of the Console Call card triggers a call to floating-point routine ACBFPH whenever an arith-

:metic expression involving real addition, subtraction, multiplication, or division is encountered.

ACBFPH uses the Series 200 hardware to perfor:m multiplication and division, while simulating

floating-point hardware for other arith:metic operations.
f

Ti:ming of ACBFPH is:

Addition or Subtraction - T AS = 2(492 +19. SP + 49L)

D-4

•

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

Multiplication

Division

T M = 2(299 + 20P + 5p2)

T D = 2(333 + 22P + 7p2)

Where: P = characters of mantissa precision,
L = number of leading zeros in the result.

When an installation does not have multiply/divide hardware, column 14 of the Console Call

card is left blank. Absence of the option causes floating-point routine ACBFPS to be brought in

whenever an arithmetic expression involving real addition, subtraction, multiplication, or divi-

sion is encountered. ACBFPS simulates floating-point hardware to perform all arithmetic op­

erations.

Timing of ACBFPS is:

Addition or Subtraction T
AS = 2(492 + 19.5P + 49L)

Multiplication T = 2(400 + 223P + 10p2)
M

Division TD = 2(558 + 271P + 22P2)

Where: P = characters of mantissa precision,
L = number of leading zeros in the result.

Error conditions cause the following results:

1. An attempt to divide by zero yields a result of all 9' s in the accumulator
(approximation to infinity) and causes a switch to be set for DVCHK.

2. Exponential overflow stores a resulting value of all 9's and causes a switch
to be set for OVERFL.

3. Exponential underflow stores a resulting value of zero. No indicator is set.

OBJECT I/O MODULES

Object I/O coding in Fortran D is modularized so that only those routines required for the

object program are loaded, thus saving object memory space. Modules are loaded as they are

needed on a chain basis.

When any I/O statement is included in the program, ACBOIO is brought in. ACBOIO con­

tains the main logic for object I/O, including calls to the driver and rewind capability, and is

the calling routine for all other object I/O modules.

ACBOIO makes direct calls to EOFPAR, BINARY, BCDCON, BACKSP, and ENDFIL.
f

BCDCON, the I/O module brought in whenever a formatted READ or WRITE statement is en-

countered, can in turn call VFORMT, EFGCON, INTCON, or LOGOCT. If a required I/O module

D-5

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

is not loaded, the error diagnostic routine 10DIAG is called in.

I/O modules are given in Table D-1 under ACBOIO.

Sizes for each of the various

There is a restriction in the use of variable formats. In a chain when variable formats

are used, each conversion code in the variable format must also appear in a FORMAT statement

in the same chain. If desired, the FORMAT statement may be a dummy statement.

LIBRARY FUNCTIONS

The library functions described here are:

Title

SIN
COS
EXP
ALOG
ALOGIO
ATAN
ATAN2
SQRT
TANH

~of Function

Sine
Cosine
Exponential
Natural Logarithm
Common Logarithm
Arctangent (arctan (Arg))
Arctangent (arctan (Arg

1
/ Arg

2
))

Square Root
Hyperbolic Tangent

The arguments for each of these functions must be in floating decimal format. The length of the

mantissa, K, is variable and may range from 2 to 20 digits. Evaluation of each function, followed

by a flowchart showing linkage, is presented in this Appendix.

SIN

PURPOSE: To evalua'te, in floating decimal, sine x for an argument of the form:

x = M. 10P radians

METHOD: The routine normalizes the argument until:

-I/4rr < x~I/4rr

and evaluates the series:

2

n

~

i = I
2i-I

C. Y
1

where: C. = (-1) i-I (2rr) 2i-1

1 (2i-1)!

and y = x, sin x = 2 if I x I ~ 1/ I2rr

or y = 1/ 3 x, sin x = 32-42
3

if 1/ I2rr < I x I ~ 1/ 4rr

The number of terms, n, in the series evaluation, depends on the
precision, K/ which is specified as follows:

D-6

•

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

K n

2, 3, 4 3
5, 6, 7 4
8, 9 5
10, 11, 12 6
13, 14, 15 7
16, 17, 18 8
19, 20 9

ACCURACY: I E r I <

LIMIT:

where: E r = f (x) - g (x)

1 + I g(x) I
and f(xl = exact value of function

g(xl = computed value of function

I xl <2071"

LINKAGE:

FROM IN­
LINE COOING

SUBROUTINE:

COS

PURPOSE:

METHOD:

SINE

AJ2

CALCULATE

SAVE SC.
STORE AOORESSES OF
ARGUMENT eo RESULT.
SAVE SIGN OF ARGU­
MENT IN SGXSN.

A~SN ARGSN

MOVE THE BRANCH IN­
STRUCTION TO LOCA­
TION ABCSN

AJ3

CALCULATE

• 4}-3%_~

SINE +14

TGC

CALCULATE
n 2'-1

~=~~j(ARGSNl

TGt

NORMAUZE THE
ARGUMENT ARGSN
SUCH THAT
IARGSNls-f

ABCSN

TGE

MOVE llNTO
RESULT
LOCATION

TG2

SET NO
OPERATION AT
LOCATION
ABCSN

To evaluate, in floating decimal, cosine x for an argument of the form:

x = M· lOP radians

71" 71"
Cos x = 'sin (2 - x). Sin (2 - x) is evaluated using the method described
in SIN.

D-7

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

ACCURACY:

LIMIT:

LINKAGE:

I f1 r 1< 2xIO-(K-I)

whe re: f1 r = f(x) - g(x)
I + I g(x) I

and f(x) = exact value of function

g(x) = computed value of function

Ixl < 207T

FROM IN­
LINE COOING

BCOS,
RESULT,
ARGUMENT

R£TURN TO IN­
LlN£ COOING

SUBROUTINE:
COSINE

SAVE SC
STORE ADDRESSES OF

}-_~ ARGUMENT AND
RESULT
MOVE ARGUMENT TO
AGCS

COSINE • 7

71' r--""2 -AGCS-AGCS 1---'-'

COSINE' 17
COSINE' 13

A \--... SINE (AGCS)+AGCSI---..
MOVE AGCS INlO
LOCATION OF
RESULT

EXP

PURPOSE~

METHOD:

x
To evaluate, in floating decimal, e for an argument of the form:

x = M· lOP

The routine first calculates:

X
IOge lO

and separates the integer, I, and the fraction, F. It then determines:

e F loge lO = (eZ) 16

where: Z = F logelO

16

by evaluating the se rie s:
n

e
Z = L

i = 1
f

where: Ci = I
i!

C. zi
1

D-8

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

The parameter, n, in the series evaluation, is dependent upon the
precision, K, being used.

K n
2, 3, 4 3
5 4
6, 7 5
8 6
9, 10 7
11 8
12, 13 9
14, 15 10
16, 17 11
18 12
19, 20 13

ACCURACY: IErl< 2xl0-(K-2)

where: lOr = f (x) - 2 (x)
1 + I g(x) I

LIMIT:

and f (x) = actual value of function

g (x) = computed value of function

-230~ x~ 227

LINKAGE:

FROM IN­
UNECODING

SUBROUTINE:

B EXP'
RESULT,
ARGUMENT

EXP

SAVE SC

EXP~

SEPARATE
AGEX, 1+ F
LOG,IO

STORE ARGUMENT AND
RESULT ADDRESSES
MOVE ARGUMENT
INTO AGEX

WHERE~ IS ON INTEGER
OSF<I

TAEX TAEX+5

ETEX+3

CALCULATE
CALCULATE

n

RETURN TO IN­
UNE CODING

EXP+18

Z = L Cl Zi
18

LOG,IO e (eZ) __ Z
Z: --'F

16

I
RS= 10' Z

-1
RS:IO'Z

i:O

TREX

MOVE RS INTO
THE RESULT
LOCATION

D-9

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

SQRT

PURPOSE: To compute, in floating decimal, the square root of a positive floating
decimal number X.

METHOD: Given a normalized floating-point argument of the form:

P
X = M ·10

where: the mantissa M consists of digits m
l

.•• m
lO

'
define pI and M' as follows:

pI = P if P is even

P+l if P is odd

r mlO~
if P is even

MI

= 0 m
l

10 zeros

mlO~ if P is odd

9 zeros

-m 1m I m I - I 2· • • 20

pI J': r. Pl/2
Then X = M' ·10- and vX = VMI ·10

To find.j.M' , regard MI as a 20-digit integer field consisting of 10 segments, Sl .•• SIO '

such that Si contains 2i digits. To get the first digit of JM' , n
l

, let Sl = m
l

I m21 • Subtract

as many consecutive odd integers from SI as possible without getting a negative result. The

number of successful subtractions is n
l

.

The amount subtracted from Sl is (n
l

)2

Sl I = Sl - I - 3 - ••• - (2n
l

-

2
and m I m I < (nl+l) •

I 2

This gives the new segment

S2 is formed by adding the next two digits m3 1 m41 to the right of Sl I. Hence,

2
S2 = m I I ••• m 4 I - (nlO)

To get the (i+l)st digit, ni+l' of JM', subtract 2(n
l

.•• niO)+l , 2(n
l

••• n
i
O)+3 •••

from the (i+l)st segment, Si+l until one more subtraction would give a negative result. The

number of successful subtractions is ni+l and 2(n
1

••• niO) (ni+l) + (ni+I)2 is subtracted. Hence

the new segment is: f

D-IO

..

•

APPENDIX Do PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

Si+l = Si+l - (2(n l 000 niO)+l) - ... - (2(n l ... niO) + (2ni+l- l »

= Sl" + 1 2 (0) () (2 - n l 0 •• n i ni+l - ni+l)

2 2
= Si+l - (n l ••• n i ni+l) + (n l ••• niO)

= (m l' •• 0 m 2i + 2) - (n 1 .•. ni+ 1)
2

and (m l ' '0' m Zi+2) < (n
l

000 (ni+
l
+l»2.

S"+2 is formed by adding m 2' "+3 m 2' " to the right of S!
1 1 1+4 1+1

Thus,

S - (' ') ()2 i+2 - m l . 0 0 m 2i+4 - n l ••• ni+l 0

At each step, (n l 00. n
i
)2 ~ (m

l
'. o. m'2i) < (n

l
••• (n

i
+l»2 and therefore:

N = n l o. onlO~ JM' .

ACCURACY:

LIMIT:

LINKAGE:

-K
1€1<2xlO

r

where: €r=f(x)-g(x)
1 + I g (x) I

and f (x) = exact value of function

g (x) = computed value of function

X < 0.

FROM IN-
LINE CODING;:.---....

B SQRT, RESULT,
ARGUMENT }-_ .. RETURN TO IN­

LINE CODING

SUBROUTINE:

SORT 2 SORT 2+5

STORE SC EXPONENT OF
STORE ARGUMENT AND AR13UMENT- EXP

)--... RESULT ADDRESSES ~-... MANTISSA OF
CLEAR WORK AREAS ARGUMENT-CYI
AB=i)

D-ll

•

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

LP2

SET COUNT= f/l
(AB) + I-AB

MAN +2

COMPUTE EXP -EXP
2 .--_____ ..

SET 1=2
J = 1

LPI

(CYi)-(AB)

- CYI

YES

CT I

COUNT +1-
COUNT
(AB)+2-AB

CYj = Ith DIGIT OF CY FROM THE LEFT

RESULTj = jthDIGIT OF RESULT FROM THE LEFT

TANH

NO

MOV

MAN + If/l

SHIFT MANTISSA
RIGHT ONE
PLACE AND ADJUST
EXPONENT

COUNT -RESULTj

/+1-)

CT2

(CY,)+(AB~)-(CYi)

i+2-i
2l/J.(AB)- AB

B

MOV+3

DELIVER RESULT,
EXP TO RESULT
LOCATION

PURPOSE: To evaluate, in floating deciInal, tanh x for an argument of the form:

x = M· lOP

METHOD: If x < -23, then tanh x = -1. 0

If x > +23, then tanh x = +1. 0

For all other values of x, the routine calculates:

tanhx=e2x _l

e 2x +1

e 2x is calculated using the method described in EXP.

ACCURACY: I € rl < 3 x 10 -(k-2)

where: € r = f(x) - g(x)
1 + I g(x) I

LIMIT:

and f (x) = exact value of function

g(x) = computed value of function

None

D-12

"

•

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

SUBROUTINE:

TANH

SAVE SC
STORE ADDRESSES
OF ARGUMENT, X,
AND RESULT.
MOVE X --.ARGE

ALOG

TAG 6 TAG 8

1·l'_ARGE 2X
e'I--KEEP

IF X>I/l,
+ I-RESULT

IF X<O,
-I-RESULT

TG II TGI3

PURPOSE: To evaluate, in floating decimal, log x for an argument of the form:
e

METHOD:

ACCURACY:

X = M· lOP

The routine calculates logex by evaluating the series:

n

L
i=l

C· 1

.2i-l
Y

where: x = M·I0P , 0.1 $ M < 1 andy = M-l
M+l

The munber of terms in the series, n, depends on the precision, K,
to be used.

K

2, 3, 4, 5
6, 7
8
9, 10
11
12, 13
14
15, 16
17
18, 19, 20

- (K-l) 1£ rl < I x 10

where: £ r' = f (x) - g(x}
1 + 1 g (x) 1

n

2
3
4
5
6
7
8
9

10
11

and f (x) = exact value of function

g (x) = computed value of function

D-13

e -I
-mNHX=~

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

LIMIT: X> 0

LINKAGE:

SUBROUTINE:

LOG +12

C

B LOG, RESULT,
ARGUMENT

SAVE SC
STORE ARGUMENT
AND RESULT
ADDRESSES

CALCULATE P LOGe 10
STORE IN X3RS

ADI

SET Yi. y,

CAL

CALCULATE
M-I

Y = M+i STORE IN X3AG

CALCULATE y~ STORE IN
X3EP

LOG +5

NORMALIZE THE
ARGUMENT X= MolOP

AND STORE THE
EXPONENT PIN X3AG
THE MANTISSA M
IN X3MG

MOVE THE FIRST DIGIT
OF MANTISSA+X3LDX

LP

CALCULATE

2(fco y2i -')

i=1 '

RETURN TO IN­
LINE CODING

STORE • X3EP

\--.. X3EP- LOGe 2 -'X3EP 1-----1 ..

CRS

X3RS' X3EP

J---II ... X3EP- LOGe 3---.X3EPt---.... 1---.... ;;ttx~~~ INTO

RESULT LOCATION

r--... X3EP-LOGe 7 ---+ X3EP 1-__ '"

D-14

LOG +43

SET Yj = Y5

7M---'M

'-

",-"",

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

ALOGIO

PURPOSE: To evaluate, in floating decim.al, log 1 OX for an argum.ent of the form.:

X = M. lOP

METHOD: Log
lO

x = log X . loglOe. The routine calculates logex according to
the m.ethod d~scribed in ALOG. LoglOe is stored as a constant and
m.ultiplied by logex to obtain the desired result.

ACCURACY: IErl < 1 x 10 -(K-l)

where: E r = f (x) - g (x)
1 + I g (x) I

and f (x) ;;; exact value of function

LIMIT:

SUBROUTINE:

g (x) ;;; com.puted value of function
X > 0

SAVE SC
STORE ARGUMENT
X6AND RETURN
A DRESSES

ALOG

-1

XXTAG-I

COMPUTE
LOGloe • LOGe X

_RESULT LOG

ATAN

PURPOSE: To evaluate, in floating decim.al, tan x for an argum.ent of the form.

METHOD:

x = M· lOP obtaining a positive angle in the first quadrant or a negative
angle in the fourth quadrant m.easured in radians.

The routine evaluates the series:
-1

tan y;;;
n
I Ci y2i-I
i;;;l

C.=(_l)i-l
where: 1 2i-l

and y ;;; x-a
l+ax

tan-Ix = tan-ly + tan-la

The constant, a, is selected from. the following table.

Range of x Value of a Range of x

11. 0 < x ~ 1098 11. 0 .77 < x ~. 92

5.5< x ~ 11. 0 5.5 .64 < x ~. 77

3.7< x ~ 5. 5 3.7 .52 < x ~. 64

2.8< x ~ 3.7 2.8 .41 < x ~. 52

2.2< x ~ 2.8 2.2 .3l<x~.4l

1.8< x ~ 2.2 1.8 .22 < x ~ .31

1.5< x ~ 1. 8 1.5 .13 < x ~. 22
f

1.3< x ~ 1.5 1.3 .09 < x ~. 13

1.1< x ~ 1.3 1.1 .00 < x ~. 09

.92 < x ~ 1.1 .92 ------

D-I5

Value of a

.77

.64

.52

.41

.31

.22

• 13

.09

.00

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

The number of terms, n, in the series, depends on the specified precision, K, as follows:

ACCURACY:

SUBROUTINE:

K n

2, 3 1
4, 5 2
6, 7 3
8, 9, 10 4
11, 12 5
13, 14 6
15, 16 7
17, 18 8
19, 20 9

IE 1-< 2 x lO-k r

where: Er=f(x)-g(x)

1 + I g {x)i

and f (x) = exact value of function

g (x) = computed value of function

ATAN+6

STORE RETURN POINT,
ADDRESS OF ARGUMENT,

7--___ .. AND STORAGE LOCATION 1---_-'-
FOR RESULT.
STORE ARGUMENT IN X

ATAN+7 ATAN+8

CLEAR SIGN BITS
>---........ IN X - 2 AND

"SIGN"

CLEAR SIGN BITS

CLR

CLEAR SIGN
BITS IN X

C +2

>--__.,. 0-'EAFP, AFP

(

IN X-Fe AND SET 1----.,
"sIGN TO MINUS

MAI8

AIS---+ A
B18---+ B

MAI9

AI9~A
BI9~B

NOTE: THE NUMBER THAT MODIFIES AN ADDRESS (I.E., C!8'2) IS ONLY AN AID IN FOLLOWING THEFWW CHARr THIS
NUMBER REFERS TO THE NUMBER OF COOING LINES AFTER THE TAG, NOT THE NUMBER OF CHARACTERS.

D-16

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

MAI8

~ AIS---+-A
81S-.8

A2-+A >----.. 82-+8 t------------.
MAl

~ _________ ~ _________________ ~AI~A
81----.8

AI7----'A
817--+8

AI6~A
816~8

CVl"2

MA5

A5-+A
85--+-8

>

A4---+A
84--.8

>

CIX+2

r>-----........ AI2-+A
812---+-8

AI5-+A
815-+8

'----"'cxn+4

D-17

A2----.A
82-+8

CIVtS

AIO---+A
810-'8

A"~A
811---+- 8

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

ATAN2

PURPOSE:

METHOD:

ACCURACY:

LIMIT:

CV"4

> > A6---+A
r----tl~ 86--.+ 8

A9---+A
89---..B

> AS--'+A
8S---.s

DUMY

COMPUTE

y= (x-A)/ltAx)

MA7

A7--.A
'-----, 87----+8

-, 2 2 2
TAN (y) = y(C1+y (C2+y (C

3
+C

4
Y »)

TAN1(x) = TAN-1(y) + B

OUT OUT

MOVE ACCUMULATOR
TO SlORAGE LOCATION
FOR RESUL T ~--... o(

-1
To evaluate, in floating decimal, tan AlB for arguments of A and B
of the form:

A = M·I0P

B = M'. lOP'

The result is a positive angle between 0 and 27r, measured in radians.

The routine evaluates tan-lA/B by the method described in ATAN,
obtaining a positive angle in the first quadrant or a negative angle in
the fourth quadrant. It then examines the signs of A and Band
computes an angle in the proper quadrant.

I € rl < 5 x lO-K

where: € r = f(x) - g(x)
I + I g(x) I

and f(x) = exact value of function.

g(x) = computed value of function.

AlB ~ ,10
97

D-18

APPENDIX D. PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER

SUBROUTINE:

T2EXIT

ATAN2

SAVE SC
STORE ADDRESSES
OF ARGUMENTS AND
RESULT LOCATIONS

lDAD A TAN AlB
INTO RESULT
LOCATION

(

T2TAGI+I

1-7T-.RESULT

LOCATION

D-19

T2TAGI+S

COMPUTE
A/B---.X

t 7T-.RESUL:

LOCATION

COMPUTE

TAW· X + 7T

COMPUTE

TAN-·X+21T"

APPENDIX E

EASYCODER SYMBOLIC PROGRAM UNITS

Program units which are written in Easycoder language 1 and assembled onto a BRT can

be combined into Fortran D jobs. The program units are fetched by name, as directed by

*GET statements during compilation. Alternatively, binary decks of assembled code can be

called using *BINARY control cards. Refer to Section VII for the formats of these directors.

The Easycoder program unit must be organized into code regions in a manner similar to

compiled program units. Certain addressing conventions must be used to allow proper re­

location and intercommunication between the Easycoder program unit and other program units

in the Fortran job. Regionalization and code conventions are discussed below.

REGIONALIZATION

The program origin of the Easycoder program unit must be 4096
10

, Five DSA statements

at this origin define six coding region boundaries. Each region must be contiguous and con­

secutive in memory, and each contains specific data types to which a corresponding relocation

factor applies.

Region 1 contains constants, data storage areas, and argument DSA statements. This

region may be empty. All information and punctuation is reproduced when this region is re­

located.

Region 2 contains the names of all other program units which are "called" by the present

Easycoder program unit. Each name appears left justified in a six-character field. A word

mark on the leftmost character is the only punctuation. Region 2 may be empty; it is deleted

during relocation.

Region 3 is the instruction string and must contain at least one instruction. The first

character in this region is the "turn-on point" to which control will be transferred when the

Easycoder program unit is called. There must be a word mark on the leftmost character of each

instruction; no other word marks are permitted. All address fields in this region are relocated.

Calls to other program units are indicated by branches to the addresses of the left-justified

names in region 2. These addresses will be replaced by the relocated turn-on points of the

called subprograms when this region is processed.

1
Refer to Models 200/1200/2200 Programmers' Reference Manual, Order No. 139, or Model
120 Programmers' Reference Manual, Order No. 141.

E-1

"

'-""

APPENDIX E. EASYCODER SYMBOLIC PROGRAM UNITS

Region 4 contains DSA statements that are relocated in the same manner as address fields

within instructions in region 3. This region may be empty.

Region 5 contains constants, data storage areas, or argument DSA statements. Thus, it

serves as an auxiliary storage region which can be conveniently adjusted by initialization code

(see below). This region may be empty.

Region 6 contains initialization coding. This code is executed before the Easycoder pro­

gram unit is relocated. The A address of the Easycoder END card defines the turn-on point of

the initialization code. Job parameters such as integer or mantissa precision, memory size,

etc., can be interrogated by the initialization code and the other regions, usually region 5,

adjusted accordingly. If the region dimensions are altered by such initialization, the region­

defining DSA statements must also be adjusted. This region is deleted when the Easycoder

program is relocated. At the conclusion of initialization, region 6 branches indirectly to lo­

cation $CMNEX which is defined below.

Region-Defining DSA Statements

Location DSA Contents Notes

4096 1 Points to the first Normally the first
4097 location not in location in Region --4098 Region 1 2.

4099 2 Turn-on point When Region 2 is
4100 empty, DSA 1 is
4101 the same as DSA 2.

4102 3 Points to the last If Region 4 is empty,
4103 opcode in Region 3 DSA 3 should be re--4104 peated as DSA 4.

4105 4 Points to the last If Region 4 is empty,
4106 location in Region 4 DSA 3 should be re-
4107 peated as DSA 4.

4108 5 Point to the first DSA 5 should initially
4109 character not in point to the first 10-
4110 Region 5. cation in Region 6.-

Note that the above DSA statements serve only to define regions. They are deleted when

the Easycoder program unit is relocated.

SYSTEM PROCESSING
f

The Easycoder program unit can be placed upon the object run tape by the following sequence

of system events:

E-2

APPENDIX E. EASYCODER SYMBOLIC PROGRAM UNITS

1. A *GET or *BINARY control card is encountered; the associated Easycoder
program unit is transferred directly onto the compilation output tape (BPT).

2. When all contents of a job are transferred (or compiled) onto the BPT, the
object run tape generation process begins. The BPT is rewound and the
tape loader-monitor is instructed to load each program unit on the tape,
one by one.

3. According to its sequence on the BPT, the Easycoder program is loaded.

4. After loading, the tape loader-monitor transfers control to the location
specified by the END card of the Easycoder program unit. This location
is the fir st instruction of initialization coding in re gion 6.

5.

6.

When region 6 has performed any necessary specialization of the other
regions, control is passed back to the Fortran D system by executing:

B ($CMNEX)

The Easycoder regions are now processed according to content:

a. Region 1 contains data literals and reserve areas. These
contents are not modified, but are sent directly to the object
run tape.

b. Region 2 defines external references to other program units
in the job. This region is not needed during execution and
therefore will not be placed on the object run tape.

c. Region 3 contains the instruction string. All address fields
must be interpreted and relocated before this region is sent
to the object run tape.

d. Region 4 contains DSA statements. These are relocated in
the same manner as address fields in region 3 before this region
is sent to the object run tape.

e. Region 5 is processed in the same manner as Region 1.

7. After the above processing, the system requests the tape loader-monitor
to load the next program unit from the BPT. Fortran-compiled program
units are processed in the same manner as Easycoder program units with
the following exceptions:

a. Region 4 and region 5 are always empty in Fortran programs.

b. Initialization is bypassed. After loading Fortran program units,
the tape loader-monitor transfers control immediately back to
the Fortran D system.

Region 3 Address Interpretation

Each instruction in region 3 begins with a word-marked character and continues through to

the location preceding the next word mark. Address fields within instructions are determined by

an instruction length algorithm summarized by Table E-l.

(

E-3

.--

•

•

APPENDIX E. EASYCODER SYMBOLIC PROGRAM UNITS

Table E-l. Determination of Address Lengths in Region 3

Character
Instruction No of Positions

Length Secondary Address of
(Characters) Characte ris tic Fields Addresses Example

1 · 0 . . NOP

2 · · · 0 . . . CAM 00

3 · · · 1 123 DSA addr

No item mark on last 234 BS addr
character

Item mark on last 234 B addr
4 character. Branch 1

Instruction

Item mark on last 123 DSA addr, V
character. Not a
Branch Instruction

5 or 6 · · · 1 234 SCR addr, V

7ormore PDT or PCB instruction 1 234 PDT addr, V, V, V

7ormore Not a PDT or PCB 2 234 567 MCW addr, addr
instruction

Relocation of Address Fields

Punctuation of a direct or indirect address field indicates whether it is to be relocated and

which relocation delta should be used. The item marks to control relocation can be set by

initialization coding. Indexed addresses are not relocated in Easycoder routines.

Punctuation

Item mark on first character

Item mark on middle character

Item marks on first and middle characters

No item marks on first and middle characters

Type of Address

Absolute address - no relocation

Unlabeled common address

Labeled common address

Not a common address; use ap­
propriate regional delta as given
in the paragraphs following

If there are no item marks on the first and middle characters of the address and the pro­

gram is an Easycoder program, the relocation delta appropriate to the ;region is chosen by con­

sidering the address according to the following table.

o .:S ADDR < 4096 10

4096 ::;ADDR < DSA 1

DSA 1 ::; ADDR <]!)SA 2

DSA 2 ~ ADDR < DSA 5

DSA 5 ::;ADDR < 32, 76710

E-4

do not relocate

add delta of region 1

replace by address of first in­
struction of program

add delta of region 3

do not relocate

I

APPENDIX E. EASYCODER SYMBOLIC PROGRAM UNITS

Note that the same relocation delta is used for regions 3, 4 and 5, while that for region 1 is

unique. This results from the fact that region 2 is not relocated but is deleted, so that blocks

are moved as shown below.

REGION 1 r--
REGION 2 ~ REGION 1

REGION 3)-REGION 4

REGION 5 '-1
REGION 3

REGION 4

REGION 5

DELTA II

Relocation of Fortran Program Units

When there are no item marks on characters land 2 and the program unit is a Fortran

program unit, the following rules govern relocation:

1. The delta is chosen in the same way as for Easycoder program units when
the address is either direct or indirect.

2. The delta for region 1 is always used if the address is indexed.

Note that if the op code of an instruction is 00, the op code is replaced by 40 (NOP) and the

index bits of the A address are replaced by zero bits.

PROGRAMMING PROCEDURES

Calling Sequences

Any Easycoder program unit that expects to call a Fortran program unit or be called by a

Fortran program unit must employ the Fortran compiler calling sequences given below. (The

same calling sequences can be used when an Easycoder program unit calls another Easycoder

program unit within a Fortran job.)

TYPE 1 TYPE 2 TYPE 3

B SUBROUTINE B SUBROUTINE ® B SUBROUTINE

DSA ARG1 DSA ARG1

· · · ·
· ·

DSA ARGn

® DSA ARGn ® DC 1Cnn

Note that in each type there is an item mark right on the last character of the calling se­
f

quence. The only exceptions occur when the calling sequence is a B ($CCHEN) or B ($CMNEX).

$CCHEN and $CMNEX are explained below under "Use of Communication. "

E-5

..

-J

•

APPENDIX E. EASY CODER SYMBOLIC PROGRAM UNITS

The address, SUBROUTINE, generally refers to region 2, in which the name of the pro­

gram unit is located.

If the subroutine called is a Fortran subroutine, each DSA statement must use either

direct or indirect addressing. Indexed addressing must not be used. If the subroutine refers

to an argument as an array, direct addressing must be used. If the subroutine called is an

Easycoder program unit, any type of addressing, including indexed, can be used.

If the calling program unit is a Fortran program unit, it expects return to be made to the

location immediately following the item mark.

Each subroutine should save and restore any index registers that it uses.

If the subprogram is used as a function subprogram, the first DSA statement is that of the

result location.

Use of Common Storage

Since common storage is relocated, Easycoder program units that reference common

storage must follow the procedures below.

1. Each address referencing common storage must have the proper item-mark
bits set in it.

2. There must be Fortran source programs in the chain that name the appropri­
ate common blocks, which in turn must have the correct size.

3. The address of the base of unlabeled common storage is 100008 , and it runs
forward in memory.

4. Allocation of labeled common storage begins with the first appearance of a
label name. The last location of the first block of labeled common storage
is 777778. Remaining locations for the first block are allocated forward in
memory. Blocks of labeled common storage appear sequentially in memory,
so that the last location of each additional block will be the one immediately
before the first location of the block previously defined.

Use of Communication

A number of registers in the communication region are usable by the object programs.

At run-tape generation time, the following registers are usable.

$CMNEX

$INTEG

$RUNMD

contains a DSA statement of the monitor exit.

contains the number of characters specified for
integer size.

03: 3-character address mode of execution.
04: 4-character address mode of execution.

E-6

$FLOAT

$FLTPA+22

$FXPTA+ll

$SUBPR

APPENDIX E. EASYCODER SYMBOLIC PROGRAM UNITS

contains the number of characters specified for the
floating-point mantissa.

is the rightmost character of the floating accumulator.

is the rightmost character of the fixed accumulator.

contains relevant flags to the run-tape generator. This
location is reset to zero before each program is loaded.
If this location is loaded, it is interpreted as follows:

B and A bits both zero

B and A not both zero

1 bit 1

4 bit 1

Easycoder program unit

Fortran program unit

Save this program unit

Punch this program unit

At object time, the following registers are usable in addition to the above:

$FLOAT

$SUBPR

$LOGSW

$FPO

$DBZ

Re strictions

contains the floating-point size, including exponent.

has no meaning.

is the logical accumulator, used during logical input/ output.

is exponential overflow indicator.

is the divide-by-zero indicator.

All addresses must be in the three-character mode.

MORG statements (and MAT instructions that rely on correct interpretation of MORG

statements) are ignored, since the program is relocated modulo 1.

Halt instructions must be avoided unless absolutely necessary. In case they are used, halts

should conform to Series 200 Fortran conventions.

Any constants coded outside the specified regions will not be loaded at object time.

PDT and PCB instructions should be used only when absolutely necessary. Easycoder pro­

gram units should, instead, refer to object I/O routines either by using the correct calling se­

quence or via the common peripheral driver.

Easycoder programs should normalize any floating-point data that they generate or work

with if this data is to be ope rated on by Fortran- generated code.
(

Sample Program

Figure E-l shows a sample regionalized Easycoder program unit.

E-7

,.

•

APPENDIX E. EASYCODER SYMBOLIC PROGRAM UNITS

XAMPLE 01 001 PAGE 001 SPT NO. 00031 REV NO. 007

ERRORS CRD. 8EGADD AL MACHINE CHARACTERS

00010 00002474 L
00020 00002505 ~
00030 00002506 L
00040 00004405 L
00050 00004440 ~
00060 00004461 L
00070 00004501 L
00080 00004502 ~
00090 00004503 L
00100
00110
00120
00130
00140
00150 00010000
00160
00170
00180 00010000 RW 010117
00190 00010003 RW 010133
00200 00010006 RW 010224
00210 00010011 RW 010224
00220 00010014 RW 010701
00230
00240
00250 00010017 RW 606060
00260 00010022 RW 606060
00270 00010025 RW 606060
00280 00010030 RW 01
00290 00010031 RW 636646
00300 00010034 RW 03
00310 00010035 R
00320
00330
00340 00010117 R
00350 00010117 LW 626422011515
00360 00010125 LW 626422021515
00370
00380

R T M Lot S OPCODE OPERANDS, VARIANTS AND CONTROL CHARACTERS

•
•

S'MNEX
sINTEG
snOAT
sf~TPA
sfXPTA
SLOGSW
sf PO
sDBZ
sSUBPR

THE ABOVE

ORG
ORG
ORG
ORG
ORG
ORG
ORG
ORG
ORG
ARE

1340 (3) SYSTEM EXIT POINT
1349 (1) INTEGER PRECISION
1350 Cl) MANTISSA PRECISION
2309 (23) fLOATING ACCUMULATOR
2331> Cl2) INTEGER ACCUMULATOR
2353 (1) LOGICAL ACCUMULATOR
2369 (1) OVERfLOW INDICATOR
2370 (1) ZERO DIVISION INDICATOR
2372 Cl) PROGRAM fEATURES

COMMUNICATIONS ADDRESS~S (LEFT JUST)

• THIS IS AN EASYCODER SUBROUTINE WITH 3 ARGUMENTS,.,
• •

VIZ. CALL XAMPLE(X,y,Z)

• HERE ARE
DSAI
DSAlI
DSAIII
IlSAIV
DSAV

•
• REGION

X

•

Y
Z
ONE
TWO
THREE
AREA

ORG 4096
ADMODE 3

THE REGION DEfiNING
DSA REJUN2
DSA TURNON
DSA LASTOP
DSA LASTIV
DSA INISHL

COMMENCES HERE.
IlCw =3C606060
DeW =3e606060
DeW =3C606060
Dew =ICOI
DCW :TwOI
Dew 131
RESV,O 50

• REGION II COMMENCES HERE.
REJUN2 RESV 0

SUBI DCW ISUBI
SUB2 DCW ;SU82

SKIP H

NOTE REGION IV IS EMPTY

ARGUMENT 1 DSA
ARGUMENT 2 DSA
ARGUMENT 3 DSA

.CLEAR ALL RESERVES.

NOTE INDENTED TAG
NOTE INDENTED TAG

XA'IPLE 01 001 PAGE 002 SPT NO. 00031 REV NO, 001

ERRORS CRD. BEGADD AL MACHINE CHARACTERS

00390
00400
00410 00010133 L~ 2401022370
00420
00430 00010140 W 1071022101001751
00440 00010150 Lw 2401022367
00450
00460 00010155 W 65010117
00470
00480 00010161 Lw 14010024010210
00490 00010170 w 20010210
00500 00010174 W 65010125
00510 00010200 RW 010116
00520 00010203 RW 010033
00530 00010206 Rw 000000
00540
00S50 00010211 W 34710017710025
00560 00010220 Lw 65010220
00570 00010224 ~w 40
00580
00590 00010224 ~
00600 00010225 R
00610
00620
00630 00010701 Lw 40
00640 00010702 W 65102414
00650 00010106 W 40
00660
00610 00010701

00000 ERRORS HASH TOTAL

R T M LOC S OPCODE OPERANDS, VARIANTS AND CONTROL CHARACTERS

• REGION III COMMENCES HERE,
TURNON SCR RETURN.3,70 OBJECT TURN ON

* BRING IN ARGUMENT OSA'S FROM CALLING PROGRAM
EXM (RETURN.l),X-2,51

STORET SCR RETURN.3,67 STORE RETURN POINT
D CALL SUBl WITH NO ARGUMENTS.

R B SUBI
• RETURN FROM SUBI. NOW CALL SUB2

SETUP3 MCW Y,ARG3

ARGI
ARG2
ARG3

D RETURN

SI ARG3
B SUB2
DSA AREA
DSA TWO
DSA 0

FROM SUB2 ••• FOLLOWS ITEM
BA (X-2),(Z-2)

POINTS TO LEFT SIDE
WITH 3 ARGUMENTS

TRANSfER Y'S ADDRESS
RE-PUNCTUATE
POINTS TO LEfT SIDE
ARRAY
LX TERAL
STORED BY MCw

MARK ON ARG3
Z=Z+X

RETURN
LAS TOP

B ..
NOP

RETURN STORED AT STORET
LAST OPCODE IN III

• REGION IV
LASTIV
ARRAYS

IS EMPTY, REGION V
EQU LASTOP
RESV.O 300

CONTAINS ANOTHER ARRAY

"CLEAR ALL RESERVESD

• INITIALIZATION CODEf •• REGION VI.
INISHL NOP START INITIALIZATION

B (SeMNEX) RETURN TO SYSTEM
NOP

END INISHL
464510

ON8

Figure E-l. Sample Regionalized Easycoder Program Unit

E-8

APPENDIX E. EASY CODER SYMBOLIC PROGRAM UNITS

NOTES ON THE FOUR-CHARACTER ADDRESS MODE

In addition to the system processes outlined above, the Easycoder program unit is trans­

formed from the three-character to the four-character mode when the 4-character execution run

option is set. For these instances, the following coding precautions should be observed:

1. Fields in region 1 or 5 which are used to store addresses during execution
must be coded in argument DSA form.

2. Address modification, by adding constants, will produce incorrect results
unless the constants are specialized during initialization in accordance
with the address mode of execution.

3. All CAM instructions will be specialized to CAM 60 unless the op code is
item marked.

E-9

•

APPENDIX F

TAPE AND MEMORY LAYOUTS

SYMBOLIC PROGRAM TAPE

The systetn is distributed in the fortn of a sytnbolic progratn tape, frotn which the COtn­

piler systetn tape is generated in accordance with the operating procedures described in Section

IX.

COMPILER SYSTEM TAPE

The cotnpiler systetn tape is a binary run tape that contains all segtnents of the cotnpiler,

the diagnostic preprocessor, the translation routine Screen, the Fortran functions, and Honeywell­

supplied subroutines. The organization of the cotnpiler systetn tape is shown in Figure F-l.

BINAR Y RUN TAPES

Binary run tapes are produced by the run-tape generator and contain jobs in executable

fortn. This tape, together with data cards, is the input to object-progratn execution. The

organization of a binary run tape for a single job is shown in Figure F-Z.

OBJECT TAPES

Object tapes are always rewound by a REWIND statetnent before use.

BCD Tapes

Fortnatted data records of up to 132 characters per unit record tnay be generated onto a

BCD tape. The BCD tape begins with an 80-character header record and tertninates with two

end-of-file records. The organization of the BCD tape is shown in Figure F-3.

Binary Tapes

A binary tape is produced by an unfortnatted WRITE statetnent. Each WRITE statetnent

produces one logical record consisting of as tnany physical records as required to contain every

itetn on the list. The first record is an 80-character 1HDR~ header record and the last two

records are end-of-file records. The organization of binary tapes is shown in Figure F-4.

BINAR Y PROGRAM TAPES

Binary progratn tapes contain progratn units cotnpiled by Fortran Cotnpiler D or assetnbled
(

by Easycoder Assetnbler C. Binary progratn tapes are used as input to the run-tape generator.

The progratn units on the BPT are relocatable tnodulo 1 (i. e., the run-tape generator can re­

locate the instruction sequence starting at any available address).

F-1

APPENDIX F. TAPE AND MEMORY LAYOUTS

Stack Tape

The stack tape is in binary program tape format.

Common Input Tape

The common input tape contains records in card-image format.

Common Output Tape

The common output tape contains records in printer -image format, punched card format,

or both.

MEMOR Y MAP (COMPILATION TIME)

Figure F-5 shows the communication and tabular information held in memory during com­

pilation. Refer to Section X for a discussion of the contents of the FORMAT /IEFN and source/

token tables.

MEMORY MAP (EXECUTION TIME)

Figure F-6 shows memory allocations at execution time for system communication, object

programs, library functions, the execution package of Fortran routines and tabular information.

Segment Name

AAAMON

AAAMON

ACADRV

ACASKP

ACCPRA

ACCPRB

ACCPRC

ACASTP

ACAIIO

ACAVIS

ACAMNA

ACACMP

ACASPA

ACADAR

ACAFIL

ACADAT

ACAEDT
f

Function

Tape Loader-Monitor C (Three-Character)

Tape Loader-Monitor C (Four-Character)

Common Peripheral Driver

Diagnostic Preprocessor Bypass Routine

Diagnostic Preprocessor - Segment A

Diagnostic Preprocessor - Segment B

Diagnostic Preprocessor - Segment C

Compiler Header for Preprocessor Bypass

Compiler Internal I/O Package

Visibility Selection Routine

Compiler Monitor - Segment A

BR T Compiler Header Record

Specification Analyzer

Data Allocation Routine

Filter

Data Initialization Routine

Edit Routine and Executable Statement Analyzer

Figure F-l. Compiler System Tape Organization

F-2

; ... -

..

APPENDIX F. TAPE AND MEMORY LAYOUTS

Segment Name Function

ACASSA

ACASSB

ACASSC

ACACIA

ACACIB

ACAARA

ACAARB

ACAGNA

ACAGNB

ACAGNC

ACALSA

ACALSB

ACALSC

ACALSD

ACAMNB

ACARTG

ACARIV

ACAERR

ACAMEM

ACADGM

ACADGN

ACAMNC

ACABOO

ACBBLB

ACBFPR

ACBFXR

ACBFPP

ACBFPH

ACBFPS

ACBFXP

ACBOIO

BCDCON

EFGCNV

INTCON

BINARY

Subscript Analyzer - Segment A

Subscript Analyzer - Segment B

Subscript Analyzer - Segment C

Control and I/O Processor - Segment A

Control and I/O Processor - Segment B

Arithmetic Statement Processor - Segment A

Arithmetic Statement Processor - Segment B

Generator - Segment A

Generator - Segment B

Generator - Segment C

Listing Options - Segment A

Listing Options - Segment B

Listing Options - Segment C

Listing Options - Segment D

Compiler Monitor - Segment B

Run-Tape Generator

Four-Character Run-Tape Generator

Dump Calling and Loading Routine

Memory Dump with Duplicate Line Suppression

Bypasses ACADGN if compilation or collection fails

Post-Execution Diagnostic Package

Compiler Monitor - Segment C

Four-Character Chain Allocator

Three-Character Chain Allocator

Floating-Point Relational Routine

Fixed-Point Relational Routine

Calling Routine for Floating -Point Package

Floating-Point Package for Hardware Multiply/Divide

Floating-Point Package for Software Multiply/Divide

Fixed-Point Package

Object I/O Control Routine

Object I/O Routine for formatted READ and WRITE Statements

Object I/O Routine for E, F, and G Conversions

f Object I/O Routine for I Conversions

Object I/O Routine for unformatted READ and WRITE Statements

Figure F-l (cont). Compiler System Tape Organization

F-3

APPENDIX F. TAPE AND MEMORY LAYOUTS

Segment Name Function

LOGOCT Object I/O Routine for L and 0 Conversions

BACKSP Object I/O Routine for BACKSPACE statements

ENDFIL Object I/O Routine for END FILE statements

EOFPAR Object I/O Routine for EOF and PARITY subroutines

IODIAG Object I/O Routine which issues a diagnostic if a required Object
I/O Routine is not loaded

VFORMT Object I/O Routine for formatting in an array

I04CHI 4-Character Address Mode Interface for I/O

PR4CHI 4-Character Address Mode Interface for Floating-Point Relational
Routine

XR4CHI 4-Character Address Mode Interface for Fixed-Point Relational
Routine

PP4CHI 4-Character Address Mode Interface for Floating-Point Package

XP4CHI 4-Character Address Mode Interface for Fixed-Point Package

IFIX Real-to-Integer Function

INT Truncation

FLOAT Integer-to-Real Function

ACBRRE Real-to-Real Exponentiation

ACBIIE Integer-to-Integer Exponentiation

ACBRIE Real-to-Integer Exponentiation

TANH Hyperbolic Tangent

ATAN2 Two -Argument Arctangent

ATAN Arctangent

COS Cosine

EXP Exponential

ALOGIO Base-IO Logarithm

ALOG Natural Logarithm

SIN Sine

SQRT Square Root

ABS Absolute Value

AMAXI

MAXI

MAXO J Largest Value Functions

AMAXO

Figctre F-I (cont). Compiler System Tape Organization

F-4

APPENDIX F. TAPE AND MEMORY LAYOUTS

Segment Name Function

AMINI

MINI

MINO
Smallest Value Functions

AMINO

AMOD Remaindering

ACBFLO Integer-to-Real Conversion

lABS Absolute Value

ACBFIX Real-to-Integer Conversion

AINT Truncation

lOR Inclusive "OR"

ICOMPL Logical Complement

IEXCLR Exclusive "OR"

lAND Logical AND

PARITY

DVCHK

OVERFL

EOT

EOF
Special Subroutine s

SSWTCH

SLITET

SLITE

SIGN } Sign Transfer Functions
ISIGN

MOD Remaindering

IDIM } DIM
Positive Difference Functions

DUMP

} PDUMP Dump-Call Subroutines

MDUMP

REREAD Reread Subroutine

ACBMEM Dynamic Memory Dumper

ACBCCH Call Chain Routine

ACBFPR Floating-Point Relational Routine

ACBFXR Fixed-Point Relational Routine
f

ACBFPP Floating-Point Package Calling Routine

Figure F-I (cont). Compiler System Tape Organization

F-5

APPENDIX F. TAPE AND MEMORY LAYOUTS

Seg:ment Na:me Function

ACBFPH

ACBFPS

ACBFXP

ACBELB

Floating-Point Package for Hardware Multiply/Divide

Floating-Point Package for Software Multiply/Divide

Fixed-Point Package

Execution Initializer

ACAERR

ACAMEM

ACADGM

Du:mp Calling and Loading Routine

Me:mory Du:mp with Duplicate Line Suppression

Bypasses ACADGN if co:mpilation or collection fails

Post-Execution Diagnostic Package ACADGN

ACAMNC

ACAMND

ACAMNE

ACAMNF

F2TOF4

Co:mpiler Monitor - Seg:ment C

Co:mpiler Monitor - Seg:ment D

Co:mpiler Monitor - Seg:ment E

Co:mpiler Monitor - Seg:ment F

Screen Routine

Figure F-l (cont). Co:mpiler Syste:m Tape Organization

IHDR

Set of Loader Monitors
Included only when go-later

ACADRV option is requested

(Dwnmy Segment)

User-5pecified Driver
(Job name)

ACDCLR
(Clear Job Header)

ACDCOM
(Communication Area)

ACDCHI

)
(Header of 1st Chain)

Programs, Subroutines, Each chain preceded by chain

Packages, Functions, etc .• header and terminated by end-

making up Chain 1. chain record

ACDCEI
(End Chain I)

These segments
ACDCH2 constitute a sin-

gle job and are (Header of Second Chain)

repeated for each SECOND AND OTHER CHAINS
job on a multi - job (If Any)
go-later tape.

ACDCEn
(End Chain n) ,

ACAERR
(Dump Calling and Loading
Routine)

ACAMEM
(Memory Dump Routine)

ACADGN
(Post-execution diagnostic
package)

ACAMNC

f
(Compiler Monitor - Segment C)

IEOF

IEOF

Figure F-2. Organization of the Binary Run Tape

F-6

1 HDR

DATA

DATA

DATA

lEOF

lERI

lERI

Physical
Records

A B

}

APPENDIX F. TAPE AND MEMORY LAYOUTS

80 characters

Each record is 132 characters long with information on a background
of blanks.

80 characters

I 80 characters each

Figure F -3. Organization of BCD Tapes

80 characters

t:::::::::::: }
The first record is IHDR, written by
the first WRITE statement.

------------- }
{============= ~

Logical data records consisting of as

many physical records as required.

Each physical record is 132 characters

long.

{ }
{------------- }

80 characters}

80 characters}

80 characters

One lEOF record.

Two 1ERI records.

LA YOUT OF PHYSICAL RECORDS ON BINAR Y TAPES

B I B I C I C I 07 I DATA FIELDS

1. A - First character tells where this record is in the logical record by one
of the following value s:

a. 50 - First physical record.

b. 41 - A physical record between the first and the last record.

c. 44 Last physical record.

d. 54 - This is the only physical record in this logical record.

2. BBB - The number of information characters in this record from A to and
including the(77 •

3.

4.

CC

07

Sequence number of tlie physical record in the logical record.

The seventh character is always an octal 07.

Figure F -4. Organization of Binary Tapes

F-7

APPENDIX F. TAPE AND MEMORY LAYOUTS

5. Data Fields:

a. INTEGER:

v
;

K I

K - control characters: x - the high-order bit is always 1
for an integer. Y - These five bits tell how many characters
there are in the fixed-point number I.

b.

I - This is the fixed-point number in binary as it appears in
memory (see Appendix C).

REAL: I X I Y I
~

K
v
M

K - control character: X - the high-order bit is always 0 for a
real datum. Y - The number of characters in M and E.

M - The mantissa in decimal and normalized as it appears in
memory (see Appendix C).

E - The exponent in decimal as it appears in memory (see
Appendix C).

c. LOGICAL:

I 61 I L

61 means one character of logical data follows:

L - 00 = • FALSE.

XX = any other number is . TRUE.

6. 77 - Termination character for this physical record.

;~

E

7. If a record contains 131 or fewer characters, it is filled out to the required
132 characters by the use of space fillers such as octal IS's.

Figure F-4 (cant). Organization of Binary Tapes

f

F-8

"

APPENDIX F. TAPE AND MEMORY LAYOUTS

Tape Loader -Monitor Tape Loader-Monitor Tape Loader-Monitor
2473

8

Communication Corr.munication Communica tion
5258

8

IEFN Table
Format Table Format Table

Format Table
7400

8

Compiler Internal Compiler Internal Compiler Internal
I/O Package I/O Package I/O Package

10000
8

Source Table IEFN Table IEFN Table

Token Table Token Table Token Table
17631

8

Compiler Overlay Compiler Overlay
Area (Includes IR Area (Includes IR Compiler Overlay
Stack for Subscript Stack for Subscript Area
Analyzer) Analyzer)

37777 8

(l6K) Source Table Source Table

47777 8

(20K)
57777 8 IR Stack

(24K and Greater)

Figure F-5. Memory Map (Compilation Time)

F-9

APPENDIX F. TAPE AND MEMOR Y LAYOUTS

Octal Address
Index Registers

Dump Routine Calling Sequence
32

Tape Loader-Monitor C
100

Compiler Communication
2474

Unit-to-Buffer Correspondence (UBC) Table
4227

Object Tape Buffers

Floating-Point Relational Package
These segments and

Fixed-Point Relational Package their respective

Floating-Point Package
four-character in-
terfaces are allo-

Fixed-Point Package cated only when

Object I/O Control Routine
using the four-char-
acter addressing
mode.

Start of ! Unlabeled Common
overlay

Labeled Common
area during
chaining Fortran Routines Called Directly by the Chain

Source programs Noncommon
in the order in --------------------
which they were

Program String ---compiled. The --noncommon area - ---contains:

Noncommon data,
Noncommon

constants, f--------------------
formats, and Program String
temporaries

,
Library Functions

Fortran Routines Called Indirectly

Unused Memory (If Any)
(37777~ A ~ 77777)

-

Figure F-6. Memory Map (Execution Time)

..

F-IO

"

•

APPENDIX G

ERROR MESSAGES

PREPROCESSOR ERROR MESSAGES

Errors in Specification Statements

DATA APPEARS AFTER THE TERMINATING RIGHT PARENTHESIS.

ILLEGAL CHARACTER - TREATED AS BLANK.

YOU MAY NOT BEGIN A STATEMENT WITH A ----
THIS CARD IS OUT OF ORDER AND WILL BE IGNORED ENTIRELY.

THIS CHARACTER IS ERRONEOUS. ----
VARIABLES MAY NOT HAVE MORE THAN TWO DIMENSIONS.

DIMENSION MUST BE EXPRESSED NUMERICALLY - ZERO HAS BEEN SUBSTITUTED.

____ APPEARS MORE THAN ONCE IN A COMMON STATEMENT.

____ HAS BEEN DIMENSIONED MORE THAN ONCE - ACCEPTING FIRST.

YOU HAVE OVERFLOWED THE VARIABLE TABLE.

HAS BEEN DEFINED IN MORE THAN ONE MODE STATEMENT -----ACCEPTING FIRST.

CONTINUATION CARDS MAY NOT HAVE STATEMENT NUMBERS - NUMBER IS
BEING IGNORED.

NO TERMINATING RIGHT PARENTHESIS, OR BAD PUNCTUATION CAUSED
IT TO BE IGNORED.

FUNCTION NAME MUST BE FOLLOWED BY ARGUMENT LIST.

TAG HAS MORE THAN 6 CHARACTERS.

A VARIABLE MAY NOT BEGIN WITH A NUMBER.

THIS STATEMENT IS NOT ALLOWED.

TOO MANY CONTINUATION CARDS.

MISSING COMMA.

VARIABLE NOT FOLLOWED BY LEFT PAREN •

. THIS STATEMENT IS NOT COMPLETE BUT APPEARS TO HAVE NO CONTINUATION
CARD.

f

BAD PUNCTUATION.

BLANKS ARE NOT ACCEPT ABLE AS DIMENSIONS.

G-I

APPENDIX G. ERROR MESSAGES

PREPROCESSOR ERROR MESSAGES (cont)

Errors In Arithmetic and Logical Expressions

FIRST ELEMENT OF STATEMENT IS NOT A VARIABLE.

THE SINGLE VARIABLE ON THE LEFT-HAND SIDE OF THE STATEMENT IS NOT
FOLLOWED BY AN EQUAL SIGN.

THE ARGUMENT LIST OF THIS STATEMENT FUNCTION IS IN ERROR.

THE SUBROUTINE NAME IS NOT FOLLOWED BY A LEFT PARENTHESES.

THE OPERAND IS ILLEGAL IN THIS POSITION.

TOO MANY RIGHT PARENTHESES.

AN OPERATOR HAS OPERANDS OF DIFFERENT TYPES WHERE THIS IS ILLEGAL.

THE OPERATOR .NOT. IS FOLLOWED BY A NON-LOGICAL EXPRESSION.

A CALL STATEMENT HAS CHARACTERS FOLLOWING THE RIGHT PARENTHESIS.

TOO MANY LEFT PARENTHESES.

STATEMENT CAUSED TABLE OVERFLOW. (unevaluated-expression stack overflow)

A SOURCE ELEMENT APPEARS IN AN ILLEGAL RELATION TO PREVIOUS
ELEMENTS. (syntactic error)

PARENTHESES ARE NESTED TO A DEPTH GREATER THAN 63.

THE EXPRESSION PRECEDING OR FOLLOWING AN • AND. OR • OR. OPERATOR
IS NOT LOGICAL.

BOTH SIDES OF THIS EXPRESSION ARE NOT LOGICAL.

A LOGICAL, HOLLERITH, OR OCTAL EXPRESSION FOLLOWS A + OR -.

AN ARITHMETIC OPERATOR-- lOR * OR ** --IS NOT PRECEDED BY AN OPERAND.

ONE OR BOTH OPERANDS OF AN EXPONENTIAL EXPRESSION IS OF LOGICAL,
OCTAL OR HOLLERITH TYPE.

FUNCTION OR SUBROUTINE CALL NOT TERMINATED BY A RIGHT PARENTHESIS.

A LOGICAL, OCTAL, OR HOLLERITH EXPRESSION FOLLOWS A * OR A I OR A
RELATIONAL OPERATOR.

Errors in Construction and Use of Subscripts

THIS APPEARS TO BE AN ERRONEOUS SUBSCRIPT.

A NON-INTEGER NUMBER OCCURS IN THE SUBSCRIPT EXPRESSION.

NON-INTEGER VARIABLE IN A SUBSCRIPT.

G-2

..

APPENDIX G. ERROR MESSAGES

PREPROCESSOR ERROR MESSAGES (cont)

Errors in Construction and Use of Subscripts (cont)

A NON-NUMERIC FOLLOWS A + OR - IN THE SUBSCRIPT.

SUBSCRIPT EXPRESSION IS NOT FOLLOWED BY A COMMA OR RIGHT PARENTHESIS.

SUBSCRIPT EXPRESSION IS TERMINATED BY END OF STATEMENT. (NO COMMA
OR RIGHT PARENTHESIS).

SUBSCRIPT CONTAINS MORE EXPRESSIONS THAN THE NUMBER OF DIMENSIONS
IN THE ASSOCIATED ARRAY.

SUBSCRIPT CONTAINS FEWER EXPRESSIONS THAN THE NUMBER OF DIMENSIONS
IN THE ASSOCIATED ARRAY.

A SUBSCRIPT CANNOT APPEAR IN A STATEMENT FUNCTION DEFINITION.

Statement Label Errors

CONTINUATION CARDS MAY NOT HAVE STATEMENT NUMBERS.

DUPLICATE STATEMENT NUMBER.

ZERO STATEMENT NUMBER NOT ALLOWED.

STATEMENT NUMBERS MAY NOT CONTAIN ALPHABETICS - NUMBER IS BEING
IGNORED.

EFN TABLE OVERFLOW.

THIS STATEMENT NUMBER WAS PREVIOUSLY USED IN A FORMAT CONTEXT.

STATEMENT NUMBER WAS PREVIOUSLY USED IN AN EXECUTABLE STATEMENT
CONTEXT.

FORMAT STATEMENTS MUST HAVE STATEMENT NUMBERS.

DO LOOPS ARE IMPROPERLY NESTED.

A DO LOOP HAS NOT BEEN TERMINATED.

AN UNDEFINED STATEMENT NUMBER HAS BEEN REFERENCED.

STATEMENT NUMBER CANNOT HAVE MORE THAN FIVE DIGITS.

FORMAT Statement Errors

MISSING DECIMAL POINT.
,

AN A, I, 0, L, OR X FIELD IS TOO LARGE.

MEANINGLESS NUMERIC.

G-3

APPENDIX G. ERROR MESSAGES

PREPROCESSOR ERROR MESSAGES (cont)

FORMAT Statement Errors (cont)

DUPLICATE FIELD SPECIFICATION OR MISSING COMMA.

EITHER A MEANINGLESS DECIMAL POINT OR MISSING FIELD SPECIFICATION.

NUMBER BEFORE THE DECIMAL POINT EXCEEDS 32.

THE NUMBER BEFORE THE DECIMAL POINT IS ZERO OR BLANK.

THE NUMBER AFTER THE DECIMAL POINT IS TOO LARGE.

MORE THAN THREE NESTED PARENTHESES.

HOLLERITH FIELD CANNOT EXCEED 132.

NO BEGINNING LEFT PARENTHESIS.

AN.E, F, OR G FIELD IS NOT COMPLETE.

AN A, I, L, 0, X, OR H FIELD IS BLANK OR ZERO.

THERE IS DATA AFTER THE TERMINATING RIGHT PARENTHESIS.

SCALE FACTOR LEGAL ONLY WITH E, F, OR G FIELD SPECIFICATIONS.

+ OR - LEGAL ONLY WITH SCALE FACTOR.

ZERO REPEAT IS TREATED LIKE A ONE.

THIS STATEMENT CONTAINS NO INFORMATION.

MISSING CONTINUATION CARD.

Errors in Construction of Program Constants

AN OCTAL OR HOLLERITH VARIABLE SPECIFICATION CONTAINS MORE THAN
THREE DECIMAL DIGITS.

AN OCTAL OR HOLLERITH VARIABLE SPECIFICATION IS ZERO.

STATEMENT ENDED BEFORE SATISFYING THE OCTAL OR HOLLERITH VARIABLE
SPE CIFICATION.

DECIMAL POINT IS FIRST CHARACTER OF OPERAND OR OPERATOR BUT IS
FOLLOWED BY ANOTHER OPERATOR.

THE DECIMAL POINT APPEARS TO BEGIN A LOGICAL OR RELATIONAL OPERATOR
OR A LOGICAL CONSTANT.

f

INCORRECT EXPONENT.

THIS REAL CONSTANT APPEARS TO CONTAIN TWO DECIMAL POINTS.

G-4

Q

\.

APPENDIX G. ERROR MESSAGES

PREPROCESSOR ERROR MESSAGES (cont)

Control and I/O Statement Errors

DO STATEMENTS MAY NOT HAVE PARAMETERS OF ZERO.

TOO MANY RIGHT PARENTHESES.

AN INTEGER VARIABLE NAME REQUIRED HERE.

SOME ERROR IN STATEMENT CONSTRUCTION.

THE WORD TO IS NOT FOUND.

INVALID CHAIN DETECTOR FOUND.

ILLEGAL CHARACTER PRESENT.

INTEGER HAS INCORRECT CONSTRUCTION.

MORE THAN: TEN NESTED DO LOOPS.

ARRA Y NAME REQUIRED HERE.

ARRA Y IS NOT ONE DIMENSIONAL.

ARRA Y IS NOT TWO DIMENSIONAL.

RIGHT PARENTHESIS MISSING.

THE INDEXED VARIABLE USED IN AN IMPLIED DO LIST IS NOT THE CONTROL
VARIABLE OF THAT LIST.

THIS INTEGER IS LIMITED TO 63.

A MAIN PROGRAM MAY NOT CONTAIN A RETURN STATEMENT.

ONLY SIX OCTAL CHARACTERS ARE ACCEPTED IN A STOP OR PAUSE STATEMENT.

ONLY OCTAL CHARACTERS ARE ACCEPTED IN A STOP OR PAUSE STATEMENT.

THE STATEMENT NUMBER CONTAINS A NON-NUMERIC CHARACTER.

THIS STATEMENT APPEARS TO CONTAIN NO INFORMATION.

A DO STATEMENT MAY NOT FOLLOW A LOGICAL IF.

Errors in IF or CALL Statements or the Use of Functions or Subroutines

THE STATEMENT FUNCTION HAS BEEN DEFINED OR USED PREVIOUSLY.

THE SUBPROGRAM NAME HAS BEEN USED AS BOTH FUNCTION AND SUBROUTINE.

STATEMENT FUNCTION DEFINITION OUT OF PLACE.

G-5

I

APPENDIX G. ERROR MESSAGES

PREPROCESSOR ERROR MESSAGES (cont)

Errors in IF or CALL Statements or the Use of Functions or Subroutines (cont)

THIS APPEARS TO BE AN IF STATEMENT BUT HAS NO LEFT PARENTHESIS AFTER
IF.

THIS APPEARS TO BE A CALL STATEMENT BUT NO SUBROUTINE NAME FOLLOWS
CALL.

CALL IS FOLLOWED BY A NAME THAT PREVIOUSLY APPEARED IN A DIMENSION
STATEMENT.

THE CHARACTER AFTER THE RIGHT PARENTHESIS IS NEITHER A DIGIT NOR A
LETTER.

A LOGICAL IF WITH A NON-LOGICAL EXPRESSION. OR AN ARITHMETIC IF WITH
A LOGICAL EXPRESSION.

TOO MANY FUNCTION/SUBROUTINE NAMES HAVE BEEN ENTERED IN THE FUNCTION/
SUBROUTINE TABLE.

LOGICAL IF FOLLOWING LOGICAL IF.

Keypunch and Other Miscellaneous Errors

THIS STATEMENT APPEARS TO BE INCOMPLETE.

AN OTHERWISE VALID STATEMENT IS IMPROPERLY TERMINATED.

TAG HAS MORE THAN SIX CHARACTERS.

A VARIABLE BEGINS WITH A NUMBER.

A SPECIFICATION STATEMENT IS OUT OF ORDER.

THIS STATEMENT IS NOT ALLOWED.

MORE THAN NINE CONTINUATION CARDS.

MISSING COMMA.

THIS STATEMENT IS TOO GARBLED TO ANALYZE.

MISSING LEFT PARENTHESIS.

ILLEGAL CHARACTER.

ST ATEMENT MAY NOT BEGIN WITH A DELIMITER - DELIMITER IS BEING IGNORED.

THERE SHOULD BE A CONTINUATION CARD.

f
BAD PUNCTUATION.

THIS CHARACTER IS ERRONEOUS.

G-6

~

.........

APPENDIX G. ERROR MESSAGES

COMPILER ERROR MESSAGES

All compiler error messages are fatal unless otherwise specified.

Error
Nwnber

1

2.

3
I

4

5

6

7

8

9

10

l3

14

15

Meaning

Errors Detected by the Arithmetic Processor

First element of a statement is a constant or it is a function name not followed by a
left parenthesis.

The variable on the lefthand side is not followed by either an equals sign or a sub­
script expression.

The variable on the lefthand side (including statement function argwnent list or
subscript expression) is not followed by an equals sign.

An arithmetic expression begins with an operator on the lefthand side.

The lefthand side has a constant followed by a left parenthesis.

In a statement function definition, the dwnmy argument list must consist only of
operands separated by commas.

The dwnmy argwnent list of a statement function definition must consist only of
operands separated by commas.

The dwnmy argwnent list of a statement function definition must consist only of
operands separated by commas.

The first operand of two or more on the righthand side is an octal or Hollerith
constant •

The delimiter, relational operator, logical operator, or period following an equals
sign, comma, left parenthesis, logical operator, or relational operator is illegal.

A function or subroutine name is neither the last element of a source program nor
it followed by a left parenthesis.

An array name is followed by another operand.

An arithmetic delimiter (+ - * / **) is not followed by an operand or left
parenthe sis.

G-7

I

Error
Number

APPENDIX G. ERROR MESSAGES

COMPILER ERROR MESSAGES
Meaning

Errors Detected by the Arithmetic Processor (cont)

16 An operand or right parenthesis is followed by an operand.

17 An operand or right parenthesis (including subscript expression or argument list)
is followed by a left parenthesis.

18 Too many right parentheses.

19 An integer is being raised to a real power.

21 Previous processing by the arithmetic statement processor is now detected as
erroneous. Dump for Software Support at the occurrence of this error.

22 The operator. NOT. is followed by an arithmetic (non-logical) expression.
(The error occurs only when the arithmetic expression is in a pseudo­
accumulator at the same time that the • NOT. should be compiled.)

23 A right parenthesis or operand is followed by a • NOT.

24 Previous processing by the arithmetic statement processor is now detected as
erroneous. Dump for Software Support at the occurrence of this error.

25 A CALL statement has characters following the terminating right parenthesis
of the argument list. Check for too many right parentheses.

26 Too many left parentheses.

27 Table overflow - the statement is too long.

Errors Detected by the Edit

50 A statement number (EFN) is used on a continuation card.

51 The I-EFN/format table has overflowed. The number of EFN or FORMAT state­
ments must be reduced.

52 An unequal number of parentheses occurred in the statement.

54 A syntactical error has occurred in the statement.

55 Duplicate statement numbers.

56 More than 63 EFN's in a computed GO TO statement were detected.

57 A PRINT or PUNCH statement appears in the source program.

58 A unit number greater than 15 was detected in an I/O statement.

59 Incomplete Hollerith constant at the end of a line was not completed on the
continuation line.

60 A FORMAT statement was completed at the end of the last line but a continuation
line appears to be part of the same statement.

PRINT­
OUT

PRINT­
OUT

SORCE TBL OVFLOW (Source or token table has overflowed.)

XXX EFN UNDEFINED

E:trors Detected by the Control and I/O Processor

150 No format statement with the referenced statement label can be found.

151 The I/O list has an illegal delimiter, logical or relational operator, or period.

G-8

..

Error
Nwnber

152

APPENDIX G. ERROR MESSAGES

COMPILER ERROR MESSAGES·
Meaning

Errors Detected by the Control and I/O Processor (cont)

hnplied DO loops may not be nested to a depth greater than two.

153 An implied DO loop is not terminated. (Probably a missing right parenthesis.)

154

155

156

SUPVL

SNDVTL

SDVTL

SPACK

SFTL

SCONTB

SLHST

SDOTAB

DO loops may not be nested to a depth greater than ten.

This DO loop is incorrectly nested.

No executable statement with this statement label can be found.

Errors Detected by the Subscript Processor

A single printout indicates that one of nine tables has overflowed.
The printout and the possible .tables are given below.

THE SUBSCRIPT ANALYZER HAS COMPILED THIS JOB WITH
FATAL ERRORS BECAUSE THE TABLE HAS OVER-
FLOWED.

A list of variables that are redefined in any statement within a DO loop and that
have previously been used in subscript expressions in the loop. Variables that
are said to be redefined are variables on the lefthand side of arithmetic state­
ments, function/subroutine call argwnents, all Common variables if a function
or subroutine call is present, READ statement variables, and control variables
of implied DO loops. The SUPVL table can contain up to 30 variables.

A list of the variable parts of subscript expressions computed within a block. 1
Each list entry consists of a variable name and its constant multiplier. No DO
control variables are included. The SNDVTL table can contain up to 40 entries.

A list of DO control variables identical in form to the SNDVTL list. The SDVTL
table can contain up to 20 entries.

Previous processing by the subscript processor is now detected as being in error.
This printout is normally accompanied by one of the other table overflow printouts.
Dump for Software Support if this table, and no other table, overflows.

A list of temporary locations that have been released for reuse. Overflow of
SFTL should be accompanied by overflow of either SNDVTL or SDVTL.

A list of constants needed at object time by subscript-generated code. The
SCONTB table can contain up to 52 entries.

A list of lefthand-side variables in a block. The SLHST table can contain up to
60 entries.

This table overflows if DO loops are nested to a depth greater than 10.

1 A block is defined as a set of physically sequential source program statements. Blocks may be
subdivided into smaller blocks for processing. The possible blocks are listed below.

An innermost DO loop (cannot be further subdivided).
A DO loop. f

A group of statements, the first of which has a statement label and the last of which precedes
the next labeled statement.
A group of statements begining with the first executable and ending with the last executable
statement of a program or subprogram.

G-9

Error
Number

SIRSTK

APPENDIX G. ERROR MESSAGES

COMPILER ERROR MESSAGES
Meaning

Errors Detected by the Subscript Processor (cont)

A list of intermediate representation (IR) items necessary for sorting. It is
emptied at the end of each block. Overflow indicates that the block is too large.
This usually means that there is too much subscripting in a DO loop.

Errors Detected by the Filter

200 A variable name has more than six characters.

201 Either the source or the token table has overflowed. The program must be
modified or segmented in order to compile.

202 A subroutine name appears in a Data-Type statement.

203 A name in an EXTERNAL statement also appears on the lefthand side of an
arithmetic statement.

204 An illegal constant of one of the following kinds:

1. Illegal character embedded in a real or integer constant

2. Two decimal points

3. Two E's

4. An E not followed by a digit, a plus, or a minus sign

5. Two many signs in the exponent

6. Too many digits in the exponent

7. A decimal point followed by an 0 or H

8. An E followed by an 0 or H

Errors Detected by the Specification Processor

(Error Nos. 300 to 311 are analyzer errors. As with most compiler­
detected errors, processing resumes with the next statement. Error
Nos. 320 and 321 are allocator errors. Error 320 causes immediate
termination of allocation. If error 321 occurs, an attempt is made to
continue allocation.)

300 More than six characters in a COMMON block label.

301 More than 15 COMMON block labels.

302 illegal delimiter in the statement.

303 Statement is incomplete. Probably no right parenthesis in a DIMENSION statement.

304 Too many digits in a DIMENSION size.

305 Too many DIMENSION sizes. A maximum of two dimensions is allowed in an array.

306 More than six characters in a name.

307 Illegally embedded FUNCTION or SUBROUTINE statement.

308 Name of a function is not followed by a left parenthesis.

309 Too many un~elated EQUIVALENCE sets. (Maximum is 64.)

310

311

Too many digits in an EQUIVALENCE subscript. (Maximum is five.)

An array name appearing in an EQUIVALENCE statement with two dimensions has
only one dimension in the DIMENSION statement.

G-lO

-

..

'-'

-ji

I

Error
Nutnber

320

321

400 }
Not Fatal

401

402

403

404

405

406

407

APPENDIX G. ERROR MESSAGES

COMPILER ERROR MESSAGES
Meaning

Errors Detected by the Specification Processor (cont) ,

The token table has overflowed.

The preceding COMMON block label has been used tnore than once in the chain
but the sizes specified for the block are not identical.

Errors Detected by the DATA Initialization Statetnent Processor

A statetnent nutnber (EFN) is not pertnitted ina DATA statetnent and will be ignored.

Statetnent contains a character not in the Fortran character set.

References to labeled or unlabeled cotntnon storage are not pertnitted in DATA
statetnents.

External (function or subroutine natne) references are not pertnitted in DATA
statetnents.

Dutntny variables are not pertnitted in DATA statetnents.

A faulty delitniter in the variable list of a DATA statetnent.

Garbled string of characters in a variable list. (Probably a leading nutneric.)

DATA statetnent lacks a constant list.

408

409

410
Not Fatal

Garbled string of characters in constant list. (Probably a leading alphabetic.)

Illegal character string in constant list. (Probably an etnbedded illegal character.)

} The subscript exceeds the range of the array.

411 Illegal subscript in the variable list.

412 Type of variable and its corresponding constant do not agree.

413 Progratn deck contains an etnbedded control card.

414 Continuation card seetns to have garbage in colutnns 1 to 5.

415 An illegal delitniter follows a logical TRUE or FALSE in constant list.

416 Repetition factor in constant list is not in unsigned integer fortn.

417 Constant list appears to contain a garbled Hollerith constant.

418 Variable natne in DATA list exceeds six characters.

419 Illegal delitniter in constant list.

420 }
Not Fatal

Constant list exceeds the variable list.
tnaining constants will be ignored.

421 Variable list exceeds the constant list.

When the variable list is satisfied, re-

422 Constant list should be tertninated by a slash.
Not Fatal}

423 Nutnber of characters in Hollerith constant exceeds tnaxitnutn integer size.

424 Illegal delitniter follows a Hollerith constant.

425 Incotnplete Hollerith constant appears at end of statetnent.

426 Faulty itnplied DO fortnat in variable list.

427 Faulty subscript in the variable list.

G-ll

Error
Number

APPENDIX G. ERROR MESSAGES

COMPILER ERROR MESSAGES
Meaning

Errors Detected by the DATA Initialization Statement Processor (cont)

428 Illegal delimiter in subscript of implied DO list.

429 Faulty specification in implied DO list.

430 Implied DO subscript is not of integer type.

431 A constant list element contains an embedded sign.

432 DATA statement operator not followed by a variable or constant list.

Errors Detected by the Run Tape Generator

INSUFFICIENT MEMORY

INCOMPLETE PROGRAM CANNOT FIND (followed by a list of all missing
subprograms.)

UNDEFINED CHAIN CALL (chain named in call not found in job.)

TABLE OVERFLOW (Unresolved call table has overflowed. Re-arrange source
deck so that frequently called subroutines appear early in the job.)

Errors Detected by the Generator

550 Either the subscript packet or forward reference table has overflowed.

551 An illegal IR item has been detected.

552 A call has been made to a nonfunction or nonsubroutine (i. e., variable, array,
or constant).

PRINTOUT TOTAL PROGRAM SIZE IS XXXXX (8) WHICH IS TOO LARGE FOR THIS SYSTEM.

Diagnostic Issued by the Pseudo-Easycoder LIST Processor

PRINTOUT THIS PROGRAM IS TOO LARGE TO BE LISTED.

COMPILER MONITOR ERROR MESSAGES

THE PROGRAM XXXXXX CANNOT BE FOUND ON THE STACK TAPE.

(This printout occurs when the program named on a *GET card cannot be located
on the stack tape. This error causes job fatality.)

THE BINARY DECK BEING PROCESSED APPEARS TO BE OUT OF SEQUENCE.

(A binary deck which is out of sequence causes job fatality.)

THE *DIAG CARD IS NOT DIRECTLY FOLLOWED BY A *JOBID CARD. THIS.
JOB IS FATAL.

THIS JOB IS FATAL.

(This printout occurs at .the end of compilation if the job fatality indicator has been
set by a previous diagnostic.)

SYSTEM MEMOR Y SIZE IS TOO LARGE - 32K SYSTEM SIZE WILL BE USED.

(This printout results when running in the 3-character mode if the memory specified
in the console call fis greater than 32K.)

AMOUNT OF MEMORY SPECIFIED IS NOT SUFFICIENT FOR FOUR-CHARACTER
MODE.

G-12

,.r-.

...

"

APPENDIX G. ERROR MESSAGES

OBJECT MEMORY SIZE IS TOO LARGE - SYSTEM MEMORY SIZE WILL BE
SUBSTITUTED.

(This printout occurs when running in the 3-character mode with a '~JOBID card
specifying more than 3ZK.)

RUN-TAPE GENERATOR ERROR MESSAGES

INCOMPLETE PROGRAM CANNOT FIND (followed by a list of all missing
subprograms)

UNDEFINED CHAIN CALL

INSUFFICIENT MEMORY. xxxxx CHARACTERS NEEDED.

TABLE OVERFLOW.

(This printout occurs when the unresolved call table overflows. If the diagnostic
is issued, the programmer should attempt to rearrange the source deck so that
frequently called subroutines appear early in the job.)

PUNCH REQUEST IGNORED FOR FLOATING LOADER ABOVE 3ZK.

INSUFFICIENT PRECISION FOR ASSIGNED GO TO.

EXECUTION-TIME ERROR MESSAGES

Errors in input/ output routines or in library functions that are detected during job execution

will result in English-language error printouts of either two or three lines each, followed by job

exit. There are 19 possible input/ output or library function error messages. In every case the

-" first line of the error message is:

ERROR CONDITION TERMINATED EXECUTION OF THIS JOB. SEE BELOW.

Library Function Error Messages

When a library function causes an error, the subsequent line or lines are as follows:

Library
Function
In Error

AMOD

MOD

SIGN

ISIGN

ALOG or
ALOGIO

SIN or
COS

SQRT

Message

AMOD WAS CALLED WITH ARGZ=O. THIS IS AN ILLEGAL ARGUMENT.

MOD WAS CALLED WITH ARGZ=O. THIS IS AN ILLEGAL ARGUMENT.

SIGN ROUTINE WAS CALLED WITH ARGZ=O. ILLEGAL ARGUMENT.

ISIGN WAS CALLED WITH ARGZ=O. ILLEGAL ARGUMENT.

ALOG OR ALOGIO CALLED WITH A ZERO OR MINUS ARGUMENT - ILLEGAL.
(Subsequent line shows the value of the illegal argument in E-conversion format.)

SIN OR COS CALLED WITH ARGUMENT. GT. ZO. *PI (6Z. 83185307). (Subsequent
line shows value of illegal argument in E-conversion format.)

SQRT WAS C~LLED WITH A NEGATIVE ARGUMENT - ILLEGAL ARGUMENT.
(Subsequent line shows value of illegal argument in E-conversion format.)

G-13

I

APPENDIX G. ERROR MESSAGES

Library
LIBRAR Y FUNCTION ERROR MESSAGES Function

In Error Message

ACBRRE A NEGATIVE REAL NUMBER CANNOT BE RAISED TO A REAL EXPONENT.
(Subsequent line shows the value of the illegal exponentiated nu:mber in E-conver-
sion for:mat.)

EXP EXP CALLED WITH ARGUMENT EXCEEDING PLUS OR -227.95592420699.
(Subsequent line shows value of illegal argu:ment in E-conversion for:mat.)

Input/Output Error Messages

Two types of input/ output errors are detected. The first type involves i:mproper use of

a peripheral device. The second type occurs when an illegal character is detected in a FORMAT

state:ment or in data input. The first line of the error :message is the sa:me as for library

function errors. The subsequent lines are shown below:

IMPROPER COMMAND TO THIS DEVICE.
(Subsequent line shows peripheral device nu:mber.)

THIS DEVICE IS NOT ALLOCATED AT OBJECT TIME.
(Subsequent line shows peripheral device nu:mber.)

READ MAY NOT FOLLOW WRITE OR ENDFILE.
(Subsequent line shows peripheral device nu:mber.)

LIST FOR BINARY READ ON THIS DEVICE EXCEEDS DATA IN RECORD.
(Subsequent line shows peripheral device nu:mber.)

END-FILE MARKER ENCOUNTERED.
(Subsequent line shows peripheral device nu:mber.)

END OF TAPE ENCOUNTERED.
(Subsequent line shows peripheral device nu:mber.)

UNCORRECTABLE READ ERROR.
(Subsequent line shows peripheral device nu:mber.)

ASTERISK (*) IN COL. 1 OF INCOMING DATA TERMINATED THE JOB.
(Subsequent line shows peripheral device nu:mber.)

ILLEGAL CHARACTER IN FORMAT STATEMENT. SEE END OF LINE BELOW.
(Subsequent line shows FORMAT state:ment up to point of error.)

ILLEGAL CHARACTER IN INPUT DATA. BAD RECORD IS PRINTED BELOW.
(Subsequent line shows contents of bad record containing illegal character.)

CALLING II 0 SEGMENT WHICH ISN'T LOADED.
(Printout occurs when variable for:matting is used in the source progra:m without
a du:m:my FORMAT state:ment containing the required specifications.)

SCREEN ERROR MESSAGES

***'~FATAL**'\<'~MORE THAN 16 COMMENT AND/OR CONTROL APPEAR IN
SEQUENCE.

f

'~'\<**FATAL*'~**THERE ARE MORE THAN 24 CARD$ BETWEEN 2 INITIAL
ST A TEMENT CARDS.

G-14

•

--

APPENDIX H

SERIES 200 CHARACTER CODES

Central High Central High
Key Card Processor Speed Key Card Processor Speed
Punch Code Code Octal Printer Punch Code Code Octal Printer

0 0 000000 00 0 o or - X, o or X(l) 100000 40 -
1 1 000001 01 1 J X,l 100001 41 J
2 2 000010 02 2 K X,2 100010 42 K
3 3 000011 03 3 L X,3 100011 43 L
4 4 000100 04 4 M X,4 100100 44 M
5 5 000101 05 5 N X,5 100101 45 N
6 6 000110 06 6 0 X,6 100110 46 0
7 7 000 III 07 7 P X,7 100 III 47 P
8 8 001000 10 8 Q X,8 101000 50 Q
9 9 001001 11 9 R X,9 101001 51 R

8,2 001010 12 I X,8,2 101010 52 #
8,3 001011 l3 = $ X,8,3 101011 53 $

@ 8,4 001100 14 : * X,8,4 101100 54 *
Space Blank 001101 15 Blank X,8,5 101101 55 "

8,6 001110 16 > (2) X,8,6 101110 56 /: (2)

&: 8,7 001111 17 &: - or 0 X or X,O(l) 101111 57 1/2 or ! (2)
o or &: R,Oor R(l) 010000 20 + 8,5* 110000 60 < (2)

A R,l 010001 21 A I 0,1 110001 61 I
B R,2 010010 22 B S 0,2 110010 62 S
C R,3 010011 23 C T 0,3 110011 63 T
D R,4 010100 24 D U 0,4 110100 64 U
E R,5 010101 25 E V 0,5 110101 65 V
F R,6 010110 26 F W 0,6 110110 66 W
G R,7 010111 27 G X 0,7 110111 67 X
H R,8 011000 30 H Y 0,8 111000 70 Y
I R,9 011001 31 I Z 0,9 111001 71 Z

R,8,2 011010 32 ; 0,8,2 111010 72 (II
R,8,3 011011 33 , 0,8,3 111011 73 ,

0 R,8,4 011100 34) % 0,8,4 111100 74 (
R,8,5 011101 35 % 0,8,5 111101 75 CR
R,8,6 011110 36 • 0,8,6 111110 76 0 (2)

&: R or R,o(1) 011111 37 ? (2) 0,8,7 111111 77 ¢ (2) &: or 0

(1) Special Code. This card code-central processor code equivalency is effective when control
character 26 is coded in a card read or punch PCB instruction.

(2)Indicates symbol which will be printed by a printer which has a 63-character drum (Types 122 and222
printers).

H-1

COMPUTER-GENERATED INDEX

ACCURACY OF CALCULATIONS. C-2
ACTION

OPERATOR ACTION IN UNPROGRAMMED HALT OR LOOPING. 9~7
ADDITIONAL

• LANGUAGE FEATURES. B-1
• LIST PAIRS. 4-11
• STATEMENTS. B-1

ADDRESS

AIDS

• FIELDS.
RELOCATION OF ADDRESS FIELDS. E-4

• LENGTHS.
DETERMINATION OF ADDRESS LENGTHS IN REGION 3.

E-4
• MODE.

NOTES ON THE FOUR-CHARACTER ADDRESS MODE. E-9
THREE-CHARACTER AND FOUR-CHARACTER ADDRESS

MODES. 11-1
REGION 3 ADDRESS INTERPRETATION. E~3

DEBUGGING AIDS. 8-10
ALLOCATION OF WORK TAPES. 9-9
ALOG. D-13
ALOG10. 0-15
ALPHABETIC

• CONVERSION.
BASIC FIELD SPECIFICATION FOR ALPHABETIC

CONVERSION. 5-31
• DATA. 1-15

HOLLERITH AND ALPHABETIC DATA. C-4
HOLLERITH. OCTAL AND ALPHABETIC DATA. 1-14
INPUT OF ALPHABETIC DATA. 5-32

ALTER CARD
.ALTER CARD. 7-9

ALTERNATE CREATION OF VARIABLE FORMATS. 5-53
AREA

COMMON AREA.
USE OF DUMMY ARRAY TO SPACE OVER COMMON AREA.

4-5
ARITHMETIC

• AND LOGICAL EXPRESSIONS AND STATEMENTS. 2-1
ERRORS IN ARITHMETIC AND LOGICAL EXPRESSIONS. G-2

• EXPRESSIONS. 2-1
EXAMPLES OF ARITHMETIC tXPRESSIONS. 2-2

• IF STATEMENT. 3-3
• OPERATION SYMBOLS. 2-1
• OPERATIONS.

HIERARCHY OF ARITHMETIC OPERATIONS. 2-2
• STATEMENTS. 2-4

ARRAY
ARRAYS. ARRAY ELEMENTS. AND SUBSCRIPTING. 1-10
DUMMY ARRA Y.

USE OF DUMMY ARRAY TO SPACE OVER COMMON AREA.
4-5

• ELEMENTS.
ARRAYS. ARRAY ELEMENTS. AND SUBSCRIPTING. 1-10

ONE-DIMENSIONAL ARRAY. STORAGE SEQUENCE OF ELEMENTS.
1-10

RIGHT-HAND PORTION OF ARRAY TO BE INITIALIZED. 4-13
SHORT-LIST NOTATION FOR INPUT/OUTPUT OF ENTIRE

ARRAYS. 5-7
TWO-DIMENSIONAL ARRAY. STORAGE SEQUENCE OF ELEMENTS.

1-10
ASA PROPOSED FORTRAN

COMPARISON WITH ASA PROPOSED FORTRAN. 8-1
ASSIGN STATEMENTS

ASSIGNED GO TO AND ASSIGN STATEMENTS. 3-2
ASSIGNED GO TO AND ASSIGN STATEMENTS. 3-2
ASSIGNMENTS

PERIPHERAL DEVICE ASSIGNMENTS. 7-4
ATAN. 0-15
ATAN2. 0-18
BACKSPACE STATEMENT. '-56
BASIC FIELD SPECIFICATION

• FOR ALPHABETIC CONVERSION. 5-31
• FOR INTEGER CONVERSION. 5-18
• FOR LOGICAL CONVERSION. 5-29
• FOR OCTAL CONVERSION. 5-Z8

BATCHED JOB PROCESSING
GO-LATER - BATCHED JOB PROCESSING. e-4

BCD TAPES. F-l
ORGANIZATION 0' BCD TAPES. F-7

BINARY
.BINARY AND END CARDS. 7-9

• PROGRAM TAPES. F-l
• PROGRAM UNITS.

(

JOBS CONTAINING .GET AND .BINARy PROGRAM UNITS.
8-7

(CONT,)

BINARy (CONT,)
• RUN TAPE.

BINARY RUN TAPES. F-l
ORGANIZATION OF THE BINARy RUN TAPE. F-6

• TAPE INPUT.
I/O LISTS USED WITH BINARy TAPE INPUT OR OUTPUT, ~

5-11
• TAPES. F-l

ORGANIZATION OF BINARY TAPES. F~7
BIT REPRESENTATION. C-l
BLANK

• CHARACTERS. 1-2
" CONVERSION.

FIELD SPECIFICATION FOR BLANK CONVERSION. 5-36
BLOCKS

LABELED BLOCKS.
COMMON STATEMENT FOR THREE LABELED BLOCKS. 4-4

BYPASSING EXECUTION. 8-9
CALCULATIONS

CALL
ACCURACY OF CALCULATIONS. C-Z

• CHAIN STATEMENT. 3-8
• OPTIONS.

CONSOLE CALL OPTIONS. 9-3. 9-4
STANDARD CONSOLE CALL. 9-1

" STATEMENT. 3-7
ERRORS IN Ir OR CALL STATEMENTS OR THE USE OF

FUNCTIONS OR SUBROUTINES. G-5
CALLING SEQUENCES. E-5
CARD

°ALTER CARD. 7-9
°CHAIN CARD. 7-9
.DIAG CARD. 7-7
·DUMP CARD. 7-11
.ENDATA CARD. 7-10
.GET CARD. 7-8
.JOBID CARD~ 7-2
.SCREEN CARD. 7~7

• AND TAPE INPUT OPTION. 9-1Z
COMMENT CARDS, 7-11
CONTROL CARDS FOR STANDARD OPERATION. 7-1
END CARDS.

.BINARY AND END CARDS. 7-9
" INPUT.

LISTING OF CARD INPUT TO SCREEN. 8-23
JOB-LEVEL CONTROL CARDS.

RUN-LEVEL AND JOB-LEVEL CONTROL CARDS. 7-1
SAMPLE 0JOBID CARD WITH OPTIONS. 7-6
SAMPLE INPUT CARD. 5-36
SYSTEM CONTROL CARDS. 7-1
lEOF CARD.

0DATA CARD AND lEOF CARD. 7~10
CARD-IMAGE TAPE INPUT. 7-11
CARRIAGE CONTROL

" FOR PRINTER OUTPUT. 5-37
" IN MULTIPLE-RECORD FORMAT STATEMENTS. 5~40
" IN SINGLE-RECORD FORMAT STATEMENTS. 5-39

CATEGORIES
FORTRAN STATEMENT CATEGORIES. 1-5

• OF PROCEDURES. 6~1
CHAIN

" CARD.
oCHAIN CARD. 7-9

• STA TEMENT.
CALL CHAIN STATEMENT. 3-8

CHAINING. 10-5
" A LOAD-A NO-GO JOB. 8-4

EXAMPLE OF CHAINING. 10-6
CHAINS

JOB DIVIDED INTO TWO CHAINS OF PROGRAM UNITS. 8-4
CHANGE IN PARAMETER. B-Z
CHARACTER

• CODES.
SERIES ZOO CHARACTER CODES. H-l

• SET.
FORTRAN CMARACTER SET. l-Z
HONEYWELL CHARACTER SET. 1-2

CHARACTERISTICS
COMPILER CHARACTERISTICS ~ND LIMITATIONS. 10-3

• OF FUNCTIONS. 6-Z
• OF THE SUBROUTINE SUBPROGRAM. 6-11

STATEMENT CHARACTERISTICS, 1-5
CHARACTERS

BLANK CHARACTERS. l-Z
CODED HALTS DURING FORTRAN RUNS. 9-6
CODES

CONVERSION CODES. 5-16
(CONT.)

•

I

COMPUTER-GENERATED INDEX

CODES (CONT.)
SERIES 200 CHARACTER CODES, H-l

CODING
• FORM,

fORTRAN CODING FORM, 1-3
• FORMAT,

SOURCE PROGRAM CODING FORMAT, 1-4
COMMENT CARDS, 7-11
COMMON

• AREA,
USE Of DUMMY ARRAY TO SPACE OYER COMMON AREA.

4-5
• INPUT DEY ICE. 8-8
• INPUT TAPE, F-2
• OUTPUT AND COMMON PUNCH DEVICE OPTIONS, 8-8
• OUTPUT TAPE, f-2
• PUNCH DEVICE OPTIONS,

COMMON OUTPUT AND COMMON PUNCH DEVICE OPTIONS,
8-8

• REGION,
ILLEGAL EXTENSION OF COMMON REGION, 4-7
LEGAL EXTENSION Of COMMON REGION, 4-7

• STATEMENT, 4-2
COMMON STATEMENT fOR THREE LABELED BLOCKS, 4-4

• STORAGE,
USE OF COMMON STORAGE, E-6

COMMUNICATION
USE OF COMMUNICATION, E-6

• VIA POSITIONAL CORRESPONDENCE, 4-4
COMPARISON WITH ASA PROPOSED FORTRAN. B-1
COMPILATION TIME

MEMORY MAP (COMPILATION TIME), f-2, F-9
COMPILED PROGRAM UNITS

JOB CONTAINING PREVIOUSLY COMPILED pROGRAM UNITS,
8-8

COMPILER
" CHARACTERISTICS AND LIMITATIONS, 10.3
• ERROR MESSAGES, G-1
• MONITOR ERROR MESSAGES, G-12

PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER,
D-l

• SYSTEM TAPE, F-l
CREATING A COMPILER SYSTEM TAPE (CST). 9-14
PROCEDURES AND EXECUTION ROUTINES ON THE

COMPILER SYSTEM TAPE, D-l
• SYSTEM TAPE ORGANIZATION, F-2

COMPONENTS
EXAMPLE HIGHLIGHTING DIFFERENT COMPONENTS OF fORMAT

STATEMENT, '-14
COMPUTED GO TO, 3-2
CONDITION TEST SUBROUTINES

1/0 CONDITION TEST SUBROUTINES, 6-13
CONDITIONS

LIBRARY ERROR CONDITIONS, D-4
CONFIGURATION

MINIMUM EQUIPME~T CONFIGURATION FOR GO-LATER
EXECUTION, 9-13

MINIMUM EQUIPMENT CONfiGURATION FOR LOAD-AND-GO
OPERATION, 9-8

CONSIDERATIONS
GENERAL PROGRAMMING CONSIDERATIONS. 10-1

CONSOLE CALL
• OPTIONS, 9-3, 9-4

STANDARD CONSOLE CALL, 9-1
CONSTANT

CONSTANTS, C-5, 1-9
EXAMPLES OF CONSTANTS. 1-9
FIELD - REPETITION CONSTANT, 5-39
PROGRAM CONSTANTS,

ERRORS IN CONSTRUCTION OF PROGRAM CONSTANTS, G-4
CONSTRUCTION

ERRORS IN CONSTRUCTION AND USE OF SUBSCRIPTS, G-2
ERAORS IN CONSTRUCTION OF PROGRAM CONSTANTS, G-4

CONTENTS
• OF TME fiELD SPECifiCATION, 5-15

CONTINUATION LINE
USE Of CONTINUATION LINE WITH HOLLERITH

SPECifiCATION, 5-35
CONTINUE STATEMENT. 3-8
CONTROL

" AND 1/0 STATEMENT ERRORS, G-5
• CARDS,

CONTROL CARDS FOR STA~DARD O~ERATION, 1-1
RUN-LEVEL AND JOB-LEVtL CONTROL CARDS, 7-1
SYSTEM CONTROL CARDS. 7-1

CARRIAGE CONTROL FOR PRINTER OUTPUT, 5-37
CARRIAGE CONTROL IN MULTIPLE-RECORD fORMAT

(CONT .)

CONTROL (cONT.)
STATEMENTS, 5-40

CARRIAGE CONTROL IN SINGLE-RECORD FORMAT STATEMENTS,
5-39

ILLEGAL TRANSFERS OF CONTROL, 3-7
LEGAL TRANSfERS Of CONTROL, 3-7

• STATEMENTS, 3-1
CONVERSION

ALPHABETIC CONVERSION,
BASIC fIELD SPECIFICATION FOR ALPHABETIC

CONVERSION, 5-31
BLANK CONVERSION,

FIELD SPECifICATION FOR BLANK CONVERSION, 5-36
• CODES, 5-16

EFFECTS OF SCALE fACTOR ON INPUT VALUES (F
CONVERSION), 5-43

EFFECTS OF SCALE FACTOR ON OUTPUT VALUES (E
CONVERSION), 5-44

EFFECTS OF SCALE FACTOR ON OUTPUT VALUES (F
CONVERSION), 5-43

• FIELD WIDTH, 5-16
INPUT FOR CONVERSION OF ALL REAL DATA, 5-21
INTEGER CONVERSION,

BASIC FIELD SPECIFICATION FOR INTEGER
CONVERSION, 5-18

LOGICAL CONYERSION.
BASIC FIELD SPECIFICATION FOR LOGICAL

CONVERSION, 5-29
OCTAL CONVERSION,

BASIC fIELD SPECIFICATION FOR OCTAL CONVERSION,
5-28

OUTPUT CONVERSION TO EXPLICIT EXPO~ENT (EW.D), 5-25
OUTPUT CONVERSION TO FIXED-POINT DECIMALS (FW.D).

5-24
• PROCEDURE,

OCTAL-DECIMAL CONVERSION PROCEDURE, A-I
SCREEN CONVERSION, 8-19
SCREEN CONYERS ION OF 1/0 STATEMENTS, 8-21
SCREEN CONVERSION OF LIBRARY FUNCTION NAMES. 8-21

" TABLE,
OCTAL-DECIMAL CONVERSION TABLE, A-I

" TECHNIQUES, ID-8
COS, D-1
CREATING A COMPILER SYSTEM TAPE (CST), 9-14
CREATION

CST

DATA

ALTERNATE CREATION OF VARIABLE FORMATS, 5-53

CREATING A COMPILER SYSTEM TAPE (CST), 9-14

ALPHABETIC DATA, 1-15
HOLLERITH AND ALPHABETIC DATA, C-4
HOLLERITH, OCTAL AND ALPHABETIC DATA. 1-14
INP~T OF ALPHABETIC DATA, 5-32

• CARD,
-DATA CARD AND lEOF CARD, 7-10

" fiELDS AND FIELD WIDTHS, 5-17
FORMATS OF DATA IN MEMORY AT OBJECT TIME, C-2
HOLLERITH DATA, 1-14

EXAMPLE OF OUTPUT OF HOLLERITH DATA, 5-34
FIELD SPECIFICATION FOR HOLLERITH DATA, 5-31

• INITIALIZATION STATEMENT,4-9
INTEGER DATA, C-3, 1-12

INPUT OF INTEGER DATA, 5-19
OUTPUT OF INTEGER DATA, 5-20

LOGICAL DATA, C-5, 1-14
INPUT OF LOGICAL DATA, 5-30

• NAMES, 1-8
OCTAL DATA, C-4, 1-15
OCTAL DATUM,

INPUT OF OCTAL DATUM, 5-29
READ DATA, 1-13
REAL DATA, C-2

INPUT FOR CONVERSION OF ALL REAL DATA, 5-21
INPUT OF REAL DATA, 5-23
OUTPUT OF REAL DATA IN EXPONENTIAL FORMAT, 5-26

STORAGE OF OTHER DATA. C-2
• TYPES. 1-11

DATA-TYPE STATEMENTS, 4-7
DEBUGGING AIDS, 8-10
DEC IMAL

• POINT,
SCALE FACTOR SHIFTING OF DECIMAL POINT, 5-42

• POSITION INDICATOR, 5-18
DECIMALS

FIXED-POINT DECIMALS,
OUTPUT CONVERSION TO fiXED-POINT DECIMALS

(FW,D), 5-24
DECK ceON T.)

COMPUTER-GENERATED INDEX

DECK
INPUT DECK FOR DIAGNOSTIC PREPROCESSING. e-17
INPUT DECK FOR LOAD-AND-GO. e-3
INPUT DECK FOR SCREEN, 8-Z0
INPUT DECK FOR STANDARD OPERATION, 7-1
SAMPLE INPUT DECK TO EXECUTE GO-LATER TAPE. 8-6
SAMPLE INPUT DECK TO WRITE GO-LATER TAPE. e-5

DEFINING LOGICAL RELATIONS
RELATIONAL OPERATORS DEFINING LOGICAL RELATIONS, 1-7

DEFINITION, Z-.
• AND EVALUATION. Z-l

PROGRAM DEFINITIONS. I-I
DELIMITERS. 1-8
DESCRIPTION

SYSTEM DESCRIPTION. 8-1
DEvICE

• ASSIGNMENTS.
PERIPHERAL DEVICE ASSIGNMENTS. 7-.

COMMON INPUT DEVICE, 8-8
• OPTIONS,

COMMON OUTPUT AND COMMON PUNCH DEVICE OPTIONS,
8-8

DIAG
• CARD,

*DIAG CARD. 7-7
PREPROCESS-ONLY OPTION - *DIAG. 8-16
PREPROCESSING TO TAPE - *DIAG. T. 8-17

DIAGNOSTIC
• PREPROCESSING. a-16

FLOW DIAGRAM FOR DIAGNOSTIC PREPROCESSING _
PREPROCESS-ONLY OPTION, 8-17

INPUT DECK FOR DIAGNOSTIC PREPROCESSING. a-17
• PREPROCESSOR FLOW DIAGRAM - TAPE OPTION. a-18
• PREPROCESSOR LISTING. a-19

DIAGNOSTICS, 8-1a
ERROR DIAGNOSTICS. a-15

DIAGRAM
DIAGNOSTIC PREPROCESSOR FLOw DIAGRA~ - TAPE OPTION.

a-18
FLOW DIAGRAM FOR DIAGNOSTIC PREPROCESSING -

PREPROCESS-ONLY OPTION. 8-17
FLOW DIAGRAM TO EXECUTE GO-LATER TAPE. 8-6
FLOW DIAGRAM TO WRITE GO-LATER MULTIJOB TAPE. a-5

• OF SYSTEM OPTIONS. a-9
STANDARD LDAD-AND-GO FLOW DIAGRAM, 8-3

DIFFERENT COMPONENTS
EXAMPLE HIGHLIGHTING DIFFERENT COMPONENTS OF FORMAT

STATEMENT. 5-14
DIMENSION STATEMENT •• -1
DIVIDED

DO
JOB DIVIDED INTO TWO CHAINS OF PROGRAM UNITS. 8-4

• LOOPS.
IMPLIED DO LOOPS. 4-11
LEGAL AND ILLEGAL NESTING OF DO LOOPS. 3-6
LISTS WITH IMPLIED DO LOOPS. 5-7
NESTED PAIRS OF IMPLIED DO LOOPS. 4-lZ

• STATEMENT. 3-"
DO STATEMENT AND ITS RANGE. 3-5

DSA STATEMENTS
REGION-DEFINING DSA STATEMENTS. E-Z

DUMMy ARRAY
USE OF DUMMY ARRAY TO SPACE OVER COMMON AREA. 4-5

DUMP CARD
*DUMP CARD. 7-11

DUMPING SUBROUTINES
DYNAMIC DUMPING SUBROUTINES. 6-14

DUMPS
MEMORY DUMPS. a-16

DYNAMIC DUMPING SUBROUTINES. 6-14
EASYCODER SYMBOLIC PROGRAM UNITS. E-1
EFFECTS

• OF SCALE FACTOR ON INPUT VALUES (F CONVERSION). 5-43
• OF SCALE FACTOR ON OUTPUT VALUES (E CONVERSION).

5-44
• OF SCALE FACTOR ON OUTPUT VALUES IF CONVERSION).

5-43
EL EME,.TS

ARRAYS, ARRAY ELEMENTS. AND SUBSCRIPTING. 1-10
ONE-DIMENSIONAL ARRAY. STORAGE SEQUENCE OF ELEMENTS.

1-10
TWO-DIMENSIONAL ARRAY. STORAGE SEQUENCE OF ELEMENTS.

1-10
EMERGENCY RESTART OPTION. 9-1Z f
END

• CARDS.
*BINARY AND END CARDS. 7-9
(CONT.)

END ceONT.)
• FILE STATEMENT. 5-55
• STATEMENT. 3-9

ENDATA CARD
*ENDATA CARD. 7-10

EQUIPMENT
• COt4FIGURATION.

MINIMUM EQUIPMENT CONFIGURATION FOR GO-LATER
EXECUTION. 9-13

MINIMUM EQUIPMENT CONFIGURATION FOR LOAD-AND-GO
OPERAT ION. 9-8

• FOR LOAD-AND-GO OPERATING. 9-9
• FOR SCREEN. 9-11

LOAD-ANP-GO EQUIPMENT. 9-8
• REQUIREMENTS. 9-2
• CONFIGURATION.

SCREEN EQUIPMENT CONFIGURATION. 9-11
• TO EXECUTE GO-LATER JOBS. 9-13

EQUIVALENCE STATEMENT. 4-5
EQUIValENT

TWENTY-ONE EQUIVALENT WAYS OF KEYPUNCHING AN
EXPONENT OF PLUS TWO. 5-Z1

ERROR
• CONDITIONS.

LIBRARY ERROR CONDITIONS. 0-4
• DIAGNOSTICS. 8-15
• MESSAGES. G-l

COMPILER ERROR MESSAGES. G-7
COMPILER MONITOR ERROR MESSAGES. G-12
EXECUTION-TIME ERROR MESSAGES. G-13
INPUTIOUTPUT ERROR MESSAGES. G-14
LIBRARY FUNCTION ERROR MESSAGES. G-13
PREPROCESSOR ERROR MESSAGES. G-l
RUN-TAPE GENERATOR ERROR MESSAGES. G-13
SCREEN ERROR MESSAGES. G-14

ERRORS
rORMAT STATEMENT ERRORS, G-3
1/0 STATEMENT ERRORS.

CONTROL AND 1/0 STATEMENT ERRORS. G-5
• IN ARITHMETIC AND LOGICAL EXPRESSiONS. G-2
• IN CONSTRUCTION AND USE OF SUBSCRIPTS. G-2
• IN CONSTRUCTIQN or PROGRAM CONSTANTS. G-4
• IN IF OR CALL STATEMENTS OR THE USE OF FUNCTIONS OR

SUBROUTINES. G-5
• IN SPEClrlCATION STATEMENTS. G-l

KEYPUNCH AND OTHER MISCELLANEOUS ERRORS. G-6
LIBRARY FUNCTION ERRORS AT EXECUTION TIME. D-4
STATEMENT LABEL ERRORS. G-3

EASYCODER PROGRAM UNIT
SAMPLE REGIONALIZED EASYCODER PROGRAM UNIT. E-8

EVALUATION
DEFINITION AND EVALUATION. 2-1
LOGICAL EVALUATION USING LOGICAL OPERATORS. 2-5

EW.D
OUTPUT CONVERSION TO EXPLICIT EXPONENT (EW.D). 5-25

EXAMPLE
EXAMPLES OF ARITHMETIC EXPREssiONS. 2-2
EXAMPLES OF CONSTANTS. 1-9

• HIGHLIGHTING DIFrERENT COMPONENTS OF FORMAT
STATEMENT. 5-14

• OF CHAINING. 10-6
• OF OUTPUT OF HOLLERITH DATA. 5-34

EXECUTE GO-LATER
• JOBS.

EQUIPMENT TO EXECUTE GO-LATER JOBS. 9-13
• TAPE.

EXECUTING

FLOW DIAGRAM TO EXECUTE GO-LATER TAPE. 8-6
SAMPLE INPUT DECK TO EXECUTE GO-LATER TAPE. 8-6

• A GO-LATER TAPE. 8-6. 9-12
EXECUTION

ByPASSING EXECUTION. 8-9
GO-LATER EXECUTION.

MINIMUM EQUIPMENT CONFIGURATION FOR GO-LATER
EXECUTION. 9-13

• ROUTINES.

• RUN.

PROCEDURES AND EXECUTION ROUTINES ON THE
COMPILER SYSTEM TAPE. D-1

STARTING A GO-LATER EXECUTION RUN. 9-13
• TIME.

LIBRARy FUNCTION ERRORS AT EXECUTION TIME. 0-4
MEMORY MAP (EXECUTION TIME). F-2. F-I0

EXECUTION-TIME ERROR MESSAGES. G-13
EXIT-TO-MONITOR SUBROUTINE. 6-14
EXP. D-8
EXPLICIT EXPONENT

(CONT.)

-

COMPUTER-GENERATED INDEX

EXPLICIT EXPONENT (CONT.)
OUTPUT CONVERSION TO EXPLICIT EXPONENT (EW.D), 5-25

EXPONENT
EXPLICIT EXPONENT,

OUTPUT CONVERSION TO EXPLICIT EXPONENT IEW.D),
5-25

TWENTY-ONE EQUIVALENT WAYS Of KEYPUNCHING AN
EXPONENT Of PLUS TWO, 5-21

EXPONENTIAL fORMAT
OUTPUT Of REAL DATA IN EXPONENTIAL fORMAT, 5-26

EXPRESSIONS
ARITHMETIC EXPRESSIONS, 2.1 .

EXAMPLES OF ARITHMETIC EXPRESSIONS, 2-2
LOGICAL EXPRESSIONS, 2-4

ARITHMETIC AND LOGICAL EXPRESSIONS AND
STATEMENTS, 2-1

ERRORS IN ARITHMETIC AND LOGICAL EXPRESSIONS,
G-2

EXTENSION
ILLEGAL EXTENSION OF COMMON REGION, 4-1
LEGAL EXTENSION Of COMMON REGION, 4-7

EXTERNAL STATEMENT, 4-8
FACTOR

SCALE fACTOR, 5-41
EFfECTS Of SCALE FACTOR ON INPUT VALUES IF

CONVERSION), '-43
EFFECTS OF SCALE FACTOR ON OUTPUT VALUES IE

CONVERSION), 5-44
EFFECTS OF SCALE FACTOR ON OUTPUT VALUES IF

CONVERSION), 5-43
• SHIFTING,

SCALE FACTOR SHIFTING OF DECIMAL POINT, '-42
FEATURES

ADDITIONAL lANGUAGE FEATURES, B-1
HARDWARE FEATURES,

TEST SUBROUTINES FOR SIMULATED HARDWARE AND
HARDWARE FEATURES, 6-12

FIELD
• - REPETITION CONSTANT, '-39

ADDRESS FIELDS,
RELOCATION OF ADDRESS FIELDS, E-4

DATA FIELDS AND FIELD WIDTHS, '-17
• SPECIFICATION,

BASIC FIELD SPECIFICATION FOR ALPHABETIC
CONVERSION, 5-31

BASIC FIELD SPECIFICATION FOR INTEGER
CONVERSION, 5-18

BASIC FIELD SPECIFICATION FOR lOGICAL
CONVERSION, '-29

BASIC FIELD SPECIFICATION FOR OCTAL CONVERSION,
5-28

CONTENTS OF THE FIELD SPECIFICATION, 5-15
FIELD SPECIFICATION FOR BLANK CONVERSION, 5-36
FIELD SPECIFICATION FOR HOLLERITH DATA, 5-31
GENERALIZED FIELD SPECIFICATION, GW,D, 5-27
REPETITION OF GROUPS OF FIELD SPECIFICATIONS,

5-40
• SPECIFICATION FORMATS, 5-15
• WIDTH,

CONVERSION FIELD WIDTH, 5-16
DATA FIELDS AND FIELD WIDTHS, 5-17

filE STATEMENT
END FILE STATEMENT, 5-55

fiXED-POINT
• DECIMALS,

OUTPUT CONVERSION TO FiXED-POINT DECIMALS
IfW,D), 5-24

• NUMBERS, C-1
flO A TI NG-PO I NT

FLOW

• NUMBERS, C-l
• PACKAGES, D-4
• PRECISION, 7-4

• DIAGRAM,
DIAGNOSTIC PREPROCESSOR FLOW DIAGRAM - TAPE

OPTION, 8-18
FLOW DIAGRAM fOR DIAGNOSTIC PREPROCESSING _

PREPROCESS-ONLY OPTION, 8-17
flOW DIAGRAM TO EXECUTE GO-LATER TAPE, 8-6
FLOW DIAGRAM TO WRITE GO-LATER MULTIJOB TAPE,

8-5
STANDARD LOAD-AND-GO FLOW DIAGRAM, S-3

SYSTEM FLOW Of SCREEN, 8-20
FORM f

FORTRAN CODING FORM, 1-3
GENERAL FORM OF THE FORMAT STATEMENT, 5-11
MULTIPLE-RECORD FORMS, 5-45

fORMAT (CONT,)

fORMAT
EXPONENTIAL FORMAT,

OUTPUT OF REAL DATA IN EXPONENTIAL fORMAT, 5-26
FIELD SPECIFICATION fORMATS, 5-15
FORMATS Of DATA IN MEMORY AT OBJECT TIME, C-2
HANDLING VARIATIONS IN fORMAT AT OeJECT TIME, 5-54
READING IN FORMAT AT OBJECT TIME, 5-51
SOURCE PROGRAM CODING FORMAT, 1-4

• STATEMENT, 5-11
CARRIAGE CONTROL IN MULTIPLE-RECORD fORMAT

STATEMENTS, '-40
CARRIAGE CONTROL IN SINGLE-RECORD FORMAT

STATEMENTS, 5.39
EXAMPLE HIGHLIGHTING DIFFERENT COMPONENTS Of

fORMAT STATEMENT, 5-14
GENERAL FORM OF THE FORMAT STATEMENT, 5-11
PARENTHESIS LEVELS IN A FORMAT STATEMENT, 5-48
RESCANNING A fORMAT STATEMENT, 5-49

• STATEMENT ERRORS, G-3
" STATEMENT SUMMARY, 5-12
• TABLE, 10-3

VARIABLE fORMATS,
ALTERNATE CREATION OF VARIABLE FORMATS, 5-53

FORMATT I NG
• fORTRAN STATEMENTS, 1-3

SOURCE PROGRAM fORMATTING, 1-2
FORTRAN

ASA PROPOSED FORTRAN,
COMPARISON WITH ASA PROPOSED FORTRAN, B-1

• CHARACTER SET, 1-2
• CODING FORM, 1-3
• PROCESSING,

STANDARD FORTRAN PROCESSING - LOAD-AND-GO
OPERATION, 8-2

• PROGRAM UNITS,
RELOCATION Of FORTRAN PROGRAM UNITS. E-5

• RUN,
CODED HALTS DURING FORTRAN RUNS, 9-6
POSSIBLE HALTS DURING A FORTRAN RUN, 9-6

• RUN OPTIONS, 9-1
• STATEMENT CATEGORIES, 1-5
• STATEMENT SUMMARY, B-3
" STATEMENTS,

fORMATTING FORTRAN STATEMENTS, 1-3
FOUR-CHARACTER ADDRESS MODE

NOTES ON THE fOUR-CHARACTER ADDRESS MODE, E-9
THREE-CHARACTER AND fOUR-CHARACTER ADDRESS MODES.

11-1
FUNCTION

• ERROR MESSAGES,
LIBRARY FUNCTION ERROR MESSAGES, G-13

• ERRORS,
liBRARY fUNCTION ERRORS AT EXECUTION TIME, D-4

• NAMES,
SCREEN CONVERSION Of liBRARY fUNCTION NAMES,

S-21
• SUBPROGRAMS, 6-4

FUNCTIONS, 6-2

fW·11

CHARACTERISTICS OF fUNCTIONS, 6-2
ERRORS IN If OR CALL STATEMENTS OR THE USE Of

FUNCTIONS OR SUBROUTINES, G-5
LIBRARY fUNCTIONS, D-6, 6-7
STATEMENT fUNCTIONS, 6-2

OUTPUT CONVERSION TO FIXED-POINT DECIMALS (fW,D).
5-24

GENERAL
• FORM Of THE FORMAT STATEMENT, 5-11
" PROGRAMMING CONSIDERATIONS, 10-1

GENERALIZED fiELD SPECifiCATION, GW.D, 5-27
GENERATOR ERROR MESSAGES

RUN-TAPE GENERATOR ERROR MESSAGES, G-13
GET

• CARD,
0GET CARD, 7-8

JOBS CONUINING °GET AND 0BINARY PROGRAM UNITS. 8-7
GLOSSARY, B-12
GO

ASSIGNED GO TO AND ASSIGN STATEMENTS, 3-2
COMPUTED GO TO, 3-2
UNCONDITIONAL GO TO, 3-1

GO-LATER
• - HATCHED JOB PROCESSING, 8.4
• EXECUTION,

MINIMUM EQUIPMENT CONFIGURATION fOR GO-LATER
EXECUTION, 9-13

• EXECUTION RUN,
(CONT .)

COMPUTER-GENERATED INDEX

GO-LATER (CONT.)
STARTING A GO-LATER EXECUTION RUN. 9-13

• JOBS.
EQUIPMENT TO EXECUTE GO-LATER JOBS. 9-13

" MULTIJOB TAPE.
fLOW DIAGRAM TO WRITE GO-LATER MULTIJOB TAPE.

8-'
• TAPE.

EXECUTING A GO-LATER TAPE. 8-6. 9-12
fLOW DIAGRAM TO EXECUTE GO-LATER TAPE. 8-6
SAMPLE INPUT DECK TO EXECUTE GO-LATER TAPE. 8-6
SAMPLE INPUT DECK TO WRITE GO-LATER TAPE. 8-'
WRITING A GO-LATER TAPE. 8-4. 9-11

• TAPE RUN.
STARTING AND TERMINATING A WRITE GO-LATER TAPE

RUN. 9-12
GROUPS

GW.D

HALT

REPETITION Of GROUPS or fiELD SPECifiCATIONS. '-40

GENERALIZED rlELD SPECifiCATION. GW,D. '-27

CODED HALTS DURING fORTRAN RUNS. 9-6
POSSIBLE HALTS DURING A fORTRAN RUN, 9-6
UNPROGRAMMED HALT,

OPERATOR ACTION IN UNPROGRAMMED HALT OR LOOPING.
9-7

UNPROGRAMMED HALTS AND LOOPING. 9-6
HANDLING VARIATIONS IN FORMAT AT OBJECT TIME. 5-54
HARDwARE

" rEATURES.
TEST SUBROUTINES rOR SIMULATED HARDWARE AND

HARDWARE FEATURES. 6-12
SIMULATED HARDWARE.

TEST SUBROUTINES FOR SIMULATED HARDWARE AND
HARDWARE rEATURES. 6-12

HIERARCHY
• Of ARITHMETIC OPERATIONS. 2-2
• Of LOGICAL OPERATIONS. 2-6

HIGHLIGHTING DlrFERENT COMPONENTS
EXAMPLE HIGHLIGHTING DlfrERENT COMPONENTS or fORMAT

STATEMENT. '-14
HOLLERITH

1/0

• OCTAL AND ALPHABETIC DATA. 1-14
• AND ALPHABETIC DATA. C-4
• DATA. 1-14

EXAMPLE or OUTPUT Of HOLLERITH DATA. '-34
FIELD SPEClrlCATION fOR HOLLERITH DATA. '-31

• SPECifiCATION.
USE or CONTINUATION LINE WITH HOLLERITH

SPECIFICATION. 5-3'

• CONDITION TEST SUBROUTINES. 6-13
• LISTS USED WITH BINARY TAPE INPUT OR OUTPUT. '-II
• MODULES.

OBJECT 1/0 MODULES. D-'
• PROGRAMMING TIPS. 10-7
• STATEMENT ERRORS.

CONTROL AND 1/0 STATEMENT ERRORS, G-'
• STATEMENTS. '-I

SCREEN CONVERSION or 1/0 STATEMENTS. e-21
• SUBROUTINE REREAD, 6-13

IErN TABLE. 10-3
ILLEGAL

• EXTENSION or COMMON REGION, 4-7
• NESTING,

LEGAL AND ILLEGAL NESTING OF DO LOOPS, 3-6
• TRANSFERS or CONTROL. 3-7

IMPLIED DO LOOPS. 4-11
LISTS WITH IMPLIED DO LOOPS, ,-7
NESTED PAIRS Of IMPLIED DO LOOPS. 4-12

INDICATOR
DECIMAL POSITION INDICATOR, '-Ie

INITIALIZATION STATEMENT
DATA INITIALIZATION STATEMENT. 4-9

INITIALIZED
RIGHT-HA~D PORTION OF ARRAY TO BE INITIALIZED, 4-13

INPUT. '-18. ,-28. ,-29. 5-31. 5-35, '-36, '-42
BINARY TAPE INPUT,

1/0 LISTS USED WITH BINARy TAPE INPUT OR OUTPUT.
'-11

• CARD.
SAMPLE INPUT CARD. 5-36

CARD INPUT.
LISTING or CARD INPUT 10 SCREEN, 8-23

CARD-IMAGE TAPE INPUT. 7-11
• DECK.

INPUT DECK FOR DIAGNOSTIC PREPROCESSING. 8-17
(CONT.)

INPUT (CONT.)
INPUT DECK FOR LOAD-AND-GO. 8-3
INPUT DECK fOR SCREEN, 8-20
INPUT DECK FOR STANDARD OPERATION, 7-1
SAMPLE INPUT DECK TO EXECUTE GO-LATER TAPE. 8-6
SAMPLE INPUT DECK TO WRITE GO-LATER TAPE, e-5

• DEVICE.
COMMON INPUT DEVICE. 8-8

• FOR CONVERSION or ALL REAL DATA, 5-21
" Of ALPHABETIC DATA, ,-32
• OF INTEGER DATA. 5-19
• or LOGICAL DATA, '-30
• or OCTAL DATUM. 5-29
• Of REAL DATA, '-23
• OPTION,

CARD AND TAPE INPuT OPTION. 9-12
• TAPE.

COMMON INPUT TAPE. f-2
INPUT TAPE IT5). 9-10

TAPE INPUT. 7-6
• VALUES.

ErfECTS or SCALE rACTOR ON INPUT VALUEs (r
CONVERSIO~). '-43

INPUTIOUTPUT
• ERROR MESSAGES. G-14
• LISTS, 5-5

SHORT-LIST NOTATION rOR INPUTIOUTPUT Of ENTIRE
ARRAYS, 5-7

• STATEMENTS, 5-1
INTEGER

• CONVERSION,
8ASIC fiELD SPECifiCATION fOR INTEGER

CONVERSION. 5-18
• DATA. C-3, 1-12

OUTPUT or INTEGER DATA. 5-20
• PRECISION. 7-4

INTERNAL REPRESENTATION or NUM8ERS, C-l
JOB

• CONTAINING PREVIOUSLY COMPILED PROGRAM UNITS. 8-8
• DIVIDED INTO TwO CHAINS or PROGRAM UNITS. 8-4

EXECUTE GO-LATER JOBS.
EQUIPMENT TO EXECUTE GO-LATER J08S. 9-13

JOBS CONTAINING oGET AND oBINARY PROGRAM UNITS. 8-7
LOAD-AND-GO J08.

CHAINING A LOAD-AND-GO JOB. 8-4
• NAME OPTION. 7-3
• PROCESSING.

GO-LATER - 8ATCHED JOB PROCESSING. 8-4
JOB-LEVEL CONTROL CARDS

RUN-LEVEL AND JOB-LEVEL CONTROL CARDS. 7-1
JOBID CARD

oJ081D CARD, 7-2
SAMPLE °JOBID CARD WITH OPTIONS. 7-6

KEYPUNCH AND OTHER MISCELLANEOUS ERRORS. G-6
KEYPUNCHING

TWENTY-ONE EQUIVALENT WAYS Of KEYPUNCMING AN
EXPONENT or PLUS TWO. 5-21

LABEL ERRORS
STATEMENT LA8EL ERRORS. G-3

LA8ELED 8LOCKS
COMMON STATEMENT rOR THREE LABELED BLOCKS. 4-4

LABELING STATEMENTS, 1-6
LANGUAGE

" rEATURES,
ADDITIONAL LANGUAGE fEATURES, 8-1

• LIMITATIONS, 10-1
• SUMMARY. B-1

LAYOUTS
MEMORy LAYOUTS.

TAPE AND MEMORY LAYOUTS, r-l
LEGAL

" AND ILLEGAL NESTING or DO LOOPS. 3-6
• EXTENSION or COMMON REGION. 4-7
• TRANSfERS or CONTROL. 3-7

LENGTHS
ADDRESS LENGTHS,

DETERMINATION or ADDRESS LENGTHS IN REGION 3.
E-4

LEVELS
PARENTHESIS LEVELS IN A fORMAT STATEMENT. 5-48

L18RARY
• ERROR CONDITIONS. 0-4
• fUNCTION ERROR MESSAGES, G-13
• fUNCTION ERRORS AT EXECUTION TIME. D-4
• rUNCTION NAMES.

SCREEN CONVERSION Of LIBRARY rUNCTION NAMES.
8-21

(CONT .)

COMPUTER-GENERATED INDEX

LIBRARY (CONT.)
• rUNCTIONS, D-6, 6-7

LIMITATIONS

LINE

COMPILER CMARACTERISTICS AND LIMITATIONS, 10-3
LANGUAGE LIMITATIONS. 10-1
SOURCE PROGRAM SIZE LIMITATIONS, 10-2

CONTINUATION LINE.
USE or CONTINUATION LINE WITH HOLLERITH

SPEClrlCATION, 5-35
LIST PAIRS

ADDITIONAL LIST PAIRS, 4-11
LISTING

DIAGNOSTIC PREPROCESSOR LISTING, e-19
MACHINE-CODE (PSEUDO-EASYCODER) LISTING, e-12

" or CARD INPUT TO SCREEN, 8-23
• OPTIONS, 7-5

LISTS

OUTPUT LISTING FROM SCREEN, 8-24
PSEUDO-EASYCODER LISTING, 8-13
SOURCE-PROGRAM LISTING, 8-10, 8-11

1/0 LISTS USED WITH BINARy TAPE INPuT OR OUTPUT,
5-11

INPUTIOUTPUT LISTS, 5-5
SIMPLE LISTS, 5-5

• WITH IMPLIED DO LOOPS, 5-7
LOAD-AND-GO

• EQUIPMENT, 9-8
• f'LOW DIAGRAM,

STANDARD LOAD-AND-GO rLOW DIAGRAM, 8-3
INPUT DECK rOR LOAD-AND-GO, 8-3

• JOB,
CHAINING A LOAD-AND-GO JOB, 8-4

• OPERATING,
EQUIPMENT rOR LOAD-AND-GO OPERATING, 9-9

• OPERATION,
MINIMUM EQUIPMENT CONrlGURATION rOR LOAD-AND-GO

OPERA TI ON, 9-8
STANDARD FORTRAN PROCESSING - LOAD-AND-GO

OPERATION, 8-2
• RUN,

LOAD-AND-GO RUN, 9-e
LOAD-AND-GO RUN WITH SYSTEM OPTIONS, 8-9

LOADER-HONITORS
TAPE LOADER-MONITORS. 9-2

LOGICAL
• CONVERSION,

BASIC rlELD SPEClrlCATION FOR LOGICAL
CONVERSION. 5-29

• DATA, C-5, 1-14
INPUT or LOGICAL DATA, 5-30

• EVALUATION USING LOGICAL OPERATORS, 2-5
• EXPRESSIONS, 2-4

ARITHMETIC AND LOGICAL EXPRESSIONS AND
STA TEMENTS, 2-1

ERRORS IN ARITHMETIC AND LOGICAL EXPRESSIONS,
G-2

• IF STATEMENT, 3-3
• OPERATIONS,

HIERARCHY or LOGICAL OPERATIONS, 2-6
• OPERATORS, 1-7, 2-5

LOGICAL EVALUATION USING LOGICAL OPERATORS, 2-5
• RELATIONS,

RELATIONAL OPERATORS DEFINING LOGICAL RELATIONS,
1-7

• STATEMENTS, 2-6
LOOPING

LOOPS

OPERATOR ACTION IN UNPROGRAMMED HALT OR LOOPING, 9-7
UNPROGRAMHED HALTS AND LOOPING, 9-6

DO LOOPS,
LEGAL AND ILLEGAL NESTING or DO LOOPS, 3-6

IMPLIED DO LOOPS, 4-11
LISTS WITH IMPLIED DO LOOPS, 5-7
NESTED PAIRS OF IMPLIED DO LOOPS, 4-12

MACHINE-CODE (PSEUDO-EASYCODER) LISTING, 8-12
MAP

MEMORY

MEMORY MAP (COMPILATION TIME). r-2, F-9
MEMORY MAP (EXECUTION TIME), F-2, F-10
OBJECT MEMORY MAP, e-11, 8-12
RELOCATABLE MEMORY MAP, e-l1

• DUMPS, 8-16
rORMATS OF DATA IN MEMORY' AT OBJECT TIME, C-2

• LAYOUTS,
TAPE AND MEMORY LAYOUTS, r-l

• MAP,
(CONT.)

MEMORY (CONT.)
MEMORY MAP (COMPILATION TIME), F-2, r-9
MEMORY MAP (EXECUTION TIME), F-2. F-IO
OBJECT MEMORY MAP, 8-11, 8-12
RELOCATABLE MEMORy MAP, 8-11

" SIZE, 7-3
MESSAGES

COMPILER ERROR MESSAGES, G-7
COMPILER MONITOR ERROR MESSAGES, G-12
ERROR MESSAGES, G-l
EXECUTION-TIME ERROR MESSAGES, G-13
INPUT/OUTPUT ERROR MESSAGES, G-14
LIBRARY FUNCTION ERROR MESSAGES, G-13
PREPROCESSOR ERROR MESSAGES, G-1
RUN-TAPE GENERATOR ERROR MESSAGES, G-13
SCREEN ERROR MESSAGES, G-14

MINIMUM EQUIPMENT CONFIGURATION

MODE

" rOR GO-LATER EXECUTION, 9-13
• FOR LOAD-AND-GO OPERATION, 9-8

FOUR-CHARACTER ADDRESS MODE,
NOTES ON THE FOUR-CHARACTER ADDRESS MODE. E-9

FOUR-CHARACTER ADDRESS MODES,
THREE-CHARACTER AND rOUR-CHARACTER ADDRESS

MODES, 11-1
MODULES

OBJECT 1/0 MODULES, D-5
SYSTEM MODULES, 8-1

MONITOR ERROR MESSAGES
COMPILER MONITOR ERROR MESSAGES, G-12

MUL TlJOB TAPE
FLOW DIAGRAM TO WRITE GO-LATER MULTIJOB TAPE. a-~

IIUL TlPLE-RECORD
• FORMAT STATEMENTS,

CARRIAGE CONTROL IN MULTIPLE-RECORD FORMAT
STATEMENTS, 5-40

" FORMS, 5-45
NAME OPTION

JOB NAME OPTION, 7-3
NAMES, 1-e

DATA NAMES, 1-8
LIBRARY rUNCTION NAMES,

SCREEN CONVERSION OF LIBRARy rUNCTION NAMES.
e-21

NAMING AND TYPING PROCEDURES, 6-1
NESTED PAIRS OF IMPLIED DO LOOPS, 4-12
NESTING

ILLEGAL NESTING,
LEGAL AND ILLEGAL NESTING or DO LOOPS, 3-6

NON-STANDARD OPERATION AND OPTIONS, 7-2
NOTATION

SHORT-LIST NOTATION FOR INPUTIOuTPUT or ENTIRE
ARRAYS, 5-7

NUMBERS

OeJECT

FIXED-POINT NUMBERS, C-l
FLOATING-POINT NUMBERS, C-l
INTERNAL REPRESENTATION OF NUMBERS. C-l

w 1/0 MODULES, 0-5
" MEMORY MAP, a-11, 8-12
" TAPES, F-l
• TIME,

OCTAL

rORMATS OF DATA IN MEMORY AT OBJECT TIME. C-2
HANDLING VARIATIONS IN FORMAT AT OBJECT TIME.

5-54
READING IN FORMAT AT OBJECT TillE. 5-51

" CONVERSION,
BASIC rlELD SPEClrlCATION FOR OCTAL CONvERSION.

5-28
• DATA, C-4, 1-15

HOLLERITH, OCTAL AND ALPHABETIC DATA. 1-14
OCTAL-DECIMAL CONVERSION

• PROCEDURE, A-I
" TABLE, A-I

ONE-DIMENSIONAL ARRAY. STORAGE SEQUENCE OF ELEMENTS. 1-10
OP!:RATING

LOAD-AND-GO OPERATING,
EQUIPMENT rOR LOAD-AND-GO OPERATING, 9-9

" PROCEDURES, 9-1
OPERATION

ARITHMETIC OPERATIONS,
HIERARCMY OF ARITHMETIC OPERATIONS. 2-2

LOAD-AND-GO OPERATION,
MINIMUM EQUIPMENT CONFIGURATION FOR LOAD-AND-GO

OPERATION, 9-8
LOGICAL OPERATIONS,

(CONT,)

COMPUTER-GENERATED INDEX

OPERATION (CONT.)
HIERARCHY OF LOGICAL OPERATIONS. 2-6

NON-STANDARD OPERATION AND OPTIONS, 7-2
STANDARD FORTRAN PROCESSING - LOAD-AND-GO OPERATION,

8-2
STANDARD OPERATION,

CONTROL CARDS FOR STANDARD OPERATION, 7-1
INPUT DECK FOR STANDARD OPERATION, 7-1

• SYM80LS,
ARITMMETIC OPERATION SYMBOLS, 2-1

OPERATOR ACTION IN UNPROGRAMMED HALT OR LOOPING, 9-7
OPERATORS, 1-7

• DEFINING LOGICAL RELATIONS,

OPTION

RELATIONAL OPERATORS DEFINING LOGICAL RELATIONS,
1-7

LOGICAL OPERATORS, 1-7, 2-5
LOGICAL EVALUATION USING LOGICAL OPERATORS, 2-5

RELATIONAL OPERATORS, 2-6

COMMON PUNCH DEY ICE OPTIONS,
COMMON OUTPUT AND COMMON PUNCH DEYICE OPTIONS,

8-8
CONSOLE CALL OPTIONS, 9-3, 9-4
DIAGNOSTIC PREPROCESSOR FLOW DIAGRAM - TAPE OPTION,

8-18
EMERGENCY RESTART OPTION, 9-12
FLOW DIAGRAM rOR DIAGNOSTIC PREPROCESSING -

PREPROCESS-ONLY OPTION, 8-17
FORTRAN RUN OPTIONS, 9-1
JOB NAME OPTION, 7-3
LISTING OPTIONS, 7-5
NON-STANDARD OPERATION AND OPTIONS, 7-2
PREPROCESS-ONLY OPTION - *DIAG, 8-16
PUNCH OPTION, 7-5, 8-7
RUN OPTIONS, 8-1
SAMPLE *JOBID CARD WITH OPTIONS. 7-6
SAYE OPTION, 7-5
SYSTEM OPTIONS, 8-7

DIAGRAM OF SYSTEM OPTIONS, 8-9
LOAD-AND-GO RUN WITH SYSTEM OPTIONS. 8-9

TAPE INPUT OPTION,
CARD AND TAPE INPUT OPTION. 9-12

ORGANIZATION
COMPILER SYSTEM TAPE ORGANIZATION. F-2

• OF BCD TAPES, F-7
• OF BINARY TAPES. F-7
• OF THE BINARY RUN TAPE, F-6

OUTPUT, 5-19, 5-29, 5-30, 5-31, 5-33, '-37. '-42
COMMON OUTPUT AND COMMON PUNCH DEVICE OPTIONS, 8-8

• CONVERSION,
OUTPUT CONVERSION TO EXPLiCiT EXPONENT (EW.D).

5-25
OUTPUT CONVERSION TO FIXED-POINT DECIMALS

IFW.D), 5-24
EXAMPLE OF OUTPUT OF HOLLERITH DATA, '-34
1/0 LISTS USED WITH 81NARY TAPE INPUT OR OUTPUT,

'-II
• LISTING FROM SCREEN, 8-24
• OF INTEGER DATA, 5-Z0
• OF REAL DATA IN EXPONENTIAL FORMAT, 5-26

PRINTER OUTPUT,
CARRIAGE CONTROL FOR PRINTER OUTPUT, 5-37

• TAPE,
COMMON OUTPUT TAPE. F-2

• TO TAPE. 9-10
• YALUES.

EFFECTS OF SCALE FACTOR ON OUTPUT VALUES (E
CONVERSION),5-44

EFFECTS OF SCALE FACTOR ON OUTPUT VALUES IF
CONVERSION), 5-43

PACKAGES
FLOATING-POINT PACKAGES, D-4

PAIRS
ADDITIONAL LIST PAIRS, 4-11
NESTED PAIRS OF IMPLIED DO LOOPS, 4-12

PARAMETER
CHANGE IN PARAMETER, B-2

PARENTHESIS LEVELS IN A FORMAT STATEMENT, '-48
PAUSE STATEMENT, 3-8
PERIPHERAL DEVICE ASSIGNMENTS, 7-4
PLUS

POINT

TWENTY-ONE EQUIVALENT WAYS OF KEYPUNCHING AN
EXPONENT OF PLUS TWO, '-21

f
DECIMAL POINT,

SCALE FACTOR SHIFTING Of DECIMAL POINT, 5-42
PORTION

(CONT,)

PORTION (CONT.)
RIGHT-HAND PORTION Of ARRAY TO BE INITIALIZED. 4-13

POSITION INDICATOR ~
DECIMAL POSITION INDICATOR, 5-18

POSITIONAL ~
COMMUNICATION VIA POSITIONAL CORRESPONDENCE, 4-4

PRECISIO~
fLOATING-POINT PRECISION, 7-4
INTEGER PRECISION, 7-4

PREPROCESS-ONLY OPTION
• - *DIAG, 8-16

FLOW DIAGRAM fOR DIAGNOSTIC PREPROCESSING _
PREPROCESS-ONLY OPTION, 8-17

PREPROCESSING
DIAGNOSTIC PREPROCESSING, 8-16

FLOW DIAGRAM fOR DIAGNOSTIC PREPROCESSING _
PREPROCESS-ONLY OPTION, 8-17

INPUT DECK FOR DIAGNOSTIC PREPROCESSING. 8-17
• TO TAPE - *DIAG, T, 8-17

PREPROCESSOR
• ERROR MESSAGES, 6-1
• fLOW DIAGRAM,

DIAGNOSTIC PREPROCESSOR fLOW DIAGRAM - TAPE
OPTION. 8-18

• LISTING.
DIAGNOSTIC PREPROCESSOR LISTING. 8-19

PRINTER OUTPUT
CARRIAGE CONTROL FOR PRINTER OUTPUT. '-37

PROCEDURE
CATEGORIES OF PROCEDURES, 6-1
OCTAL-DECIMAL CONVERSION PROCEDURE. A-I
OPERATING PROCEDURES. 9-1
PROCEDURES. 6-1
PROCEDURES AND EXECUTION ROUTINES ON THE COMPILER

SYSTEM TAPE. D-l
PROCEDURES AND ROUTINES SUPPLIED WITH THE COMPILER.

D-1
PROGRAMMING PROCEDURES. E-'
STARTING PROCEDURE, 9-2
TYPING PROCEDURES.

NAMING AND TYPING PROCEDURES. 6-1
PROCESSING

GO-LATER - BATCHED JOB PROCESSING, 8-4
STANDARD FORTRAN PROCESSING - LOAD-AND-GO OPERATION,

8-2
SYSTEM PROCESSING, E-2

PROGRAM
• CODING FORMAT.

SOURCE PROGRAM CODING FORMAT. 1-4
• CONSTANTS,

ERRORS IN CONSTRUCTION OF PROGRAM CONSTANTS. G-4
• DEFINITIONS. 1-1
• FORMATTING.

SOURCE PROGRAM FORMATTING. 1-2
SAMPLE PROGRAM. E-7

• SIZE LIMITATIONS.
SOURCE PROGRAM SIZE LIMITATIONS, 10-2

• STATEMENTS,
SEQUENCE OF PROGRAM STATEMENTS, 1-6

• STRING.
SIZE OF PROGRAM STRING, 10-3

• SUMMARY.
SOURCE PROGRAM SUMMARY. I-I

• TAPE.
BINARY PROGRAM TAPES. F-1
SyMBOLIC PROGRAM TAPE, F-1

W UNIT.
EASYCODER SYMBOLIC PROGRAM UNITS. E-1
JOB CONTAINING PREVIOUSLY COMPILED PROGRAM

UNITS, 8-8
JOB DIVIDED INTO TWO

8-4
JOBS CONTAINING -GET

8-7

CHAINS OF PROGRAM UNITS.
/

AND -BINARY PROGRAM UNITS.

RELOCATION OF FORTRAN PROGRAM UNITS, E-5
SAMPLE REGIONALIZED EASYCODER PROGRAM UNIT. E-8

PROGRAMMING
• CONSIDERATIONS.

GENERAL PROGRAMMING CONSIDERATIONS. 10-1
• PROCEDURES, E-5
• TIPS.

1/0 PROGRAMMING TIPS, 10-7
PROPOSED FORTRAN

COMPARISON NITH ASA PROPOSED fORTRAN. B-1
PSEUDO-EASYCODER

• LISTING, 8-13
MACHINE-CODE (PSEUDO-EASYCODER) LISTING, 8-12

PUNCH (CONT.) -~

COMPUTER-GENERATED INDEX

PUNCH
" DEVICE OPTIONS,

COMMON OUTPUT AND COMMON PUNCH DEVICE OPTIONS,
B-B

• OPTION, 7-5, e-7
RANGE

READ
DO STATEMENT AND ITS RANGE, 3-5

• DATA, 1-13
" STATEMENT, 5-1

READING IN fORMAT AT 08JECT TIME, 5-51
REAL DATA, c-z

INPUT fOR CONVERSION Of ALL REAL DATA, 5-Z1
INPUT Of REAL DATA, 5-23
OUTPUT Of REAL DATA IN EXPONENTIAL fORMAT, 5-26

RECORD
UN IT RECORD,

DEfINITION Of A UNIT RECORD, 5-46
REGION

COMMON REGION,
ILLEGAL EXTENSION Of COMMON REGION, 4-7
LEGAL EXTENSION Of COMMON REGION, 4-7

DETERMINATION Of ADDRESS LENGTHS IN REGION 3, E-4
" 3 ADDRESS INTERPRETATION, E-3

REGION-DEFINING DSA STATEMENTS, E-2
REGIONALIZATION, E-l
REGIONALIZED EASYCODER PROGRAM UNIT

SAMPLE REGIONALIZED ESAYCODER PROGRAM UNIT, E-8
RELATIONAL OPERATORS, 2-6

• DEfINING LOGICAL RELATIONS, 1-7
RELATIONS

RELATIONAL OPERATORS DEfINING LOGICAL RELATIONS, 1-7
RELOCATA8LE MEMORY MAP, 8-10, B-ll
RELOCATION

• Of ADDRESS fIELDS, E-4
" Of FORTRAN PROGRAM UNITS, E-5

REPETITION
• CONSTANT,

FIELD - REPETITION CONSTANT, 5-39
• OF GROUPS OF FIELD SPECIFICATIONS, 5-40

REPRESENTATION
81T REPRESENTATION, C-l
INTERNAL REPRESENTATION OF NUM8ERS, C-l

REQUIREMENTS
EQUIPMENT REQUIREMENTS, 9-2

REREAD
1/0 SUBROUTINE REREAD, 6-13

RESCANNING A FORMAT STATEMENT, 5-49
RESTART OPTION

EMERGENCY RESTART OPTION, 9-12
RESTRICTIONS, 8-2, E-7
RETURN STATEMENT, 3-8
REWIND STATEMENT, 5-56
RIGHT-HAND PORTION OF ARRAY TO 8E INITIALIZED, 4-13
ROUTINES

RUN

EXECUTION ROUTINES,
PROCEDURES AND EXECUTION ROUTINES ON THE

COMPILER SYSTEM TAPE, D-l
• SUPPLIED,

PROCEDURES AND ROUTINES SUPPLIED WITH THE
COMPILER, 0-1

fORTRAN RUN,
POSSI8LE HALTS DURING A fORTRAN RUN, 9-6

fORTRAN RUNS,
CODED HALTS DURING FORTRAN RUNS, 9-6

GO-LATER EXECUTION RUN,
STARTING A GO-LATER EXECUTION RUN, 9-13

LOAD-AND-GO RUN, 9-8
LOAD-AND-GO RUN WITH SYSTEM OPTIONS, B-9

• OPTIONS, e-l
FORTRAN RUN OPTIONS, 9-1

SCREEN RUN, 9-10
• TAPE,

BINARY RUN TAPES, f-l
ORGANIZATION Of THE 81NARy RUN TAPE, F-6

TERMINATING A RUN, 9-3
WRITE GO-LATER TAPE RUN,

STARTING AND TERMINATING A WRITE GO-LATER TAPE
RUN, 9-12

RUN-LEVEL AND J08-LEVEL CONTROL CARDS, 7-1
RUN-TAPE GENERATOR ERROR MESSAGES, G-13
SAMPLE

" JOIlID CARD,
SAMPLE -J081D CARD WlfH OPTIONS, 7-6

• PROGRAM, E-7
• REGIONALIZED EASYCODER PROGRAM UNIT, E-8

SAMPLE INPUT (CONT.)

SAMPLE INPUT
• CARD, 5-36
• DECK,

SAMPLE INPUT DECK TO EXECUTE GO-LATER TAPE. 8-6
SAMPLE INPUT DECK TO WRITE GO-LATER TAPE. 8-5

SAVE OPTION, 7-5
SAVING SPACE

TIPS fOR SAVING SPACE AND TIME, 10-.
SCALE fACTOR, 5-41

EFFECTS OF SCALE fACTOR ON INPUT VALUES (F
CONVERSION), 5-43

EFfECTS Of SCALE FACTOR ON OUTPUT VALUES (f
CONVERSION), 5-44

EfFECTS OF SCALE FACTOR ON OUTPUT VALUES (F
CONVERSION), 5-43

• SHifTING Of DECIMAL POINT, 5-42
SCREEN

• CARD,
-SCREEN CARD, 7-7

" CONVERSION, 8-19
SCREEN CONVERSION OF 1/0 STATEMENTS, 8-21
SCREEN CONVERSION OF LI8RARy fUNCTION NAMES.

8-21
EQUIPMENT FOR SCREEN, 9-11

• EQUIPMENT CONfiGURATION, 9-11
• ERROR MESSAGES, G-14

INPUT DECK FOR SCREEN, 8-20
LISTING OF CARD INPUT TO SCREEN, 8-23
OUTPUT LISTING fROM SCREEN, 8-24

• RUN, 9-10
SYSTEM FLOW OF SCREEN, 8-20

SEQUENCE
CALLING SEQUENCES, E-5

" OF PROGRAM STATEMENTS. 1-6
ONE-DIMENSIONAL ARRAY, STORAGE SEQUENCE Of ELEMFNTS,

1-10
TWO-DIMENSIONAL ARRAY, STORAGE SEQUENCE OF ELEMENTS.

1-10
SERIES 200 CHARACTER CODES, H-1
SET

CHARACTER SET,
HONEYWELL CHARACTER SET, 1-2

rORTRAN CHARACTER SET, 1-2
SHIFTING

SCALE fACTOR SHIrTING OF DECIMAL POINT, 5-42
SHORT-LIST NOTATION FOR INPUTIOUTPUT OF ENTIRE ARRAyS. 5-7
SIMPLE LISTS, 5-5
SIMULATED HARDWARE

TEST SU8ROUTINES rOR SIMULATED HARDWARE AND HARDWARE
fEATURES, 6-12

SIN, 0-6
SINGLE-RECORD FORMAT STATEMENTS

SIZE

CARRIAGE CONTROL IN SINGLE-RECORD fORMAT STATEM£NTS.
5-39

" LIMITATIONS,
SOURCE PROGRAM SIZE LIMITATIONS. 10-2

MEMORY SIZE, 7-3
" or PROGRAM STRING, 10-3

SONflGURATION
SCREEN EQUIPMENT CONFIGURATION, 9-11

SORT, 0-10
SOURCE PROGRAM

• CODING fORMAT, 1-.
" fORMATTING, 1-2
" SIZE LIMITATIONS, 10-2
• SUMMARY, 1-1

SOURCE TABLE, 10-2
SOURCE-PROGRAM LISTING, 8-10, 8-11
SPACE

SAVING SPACE,
TIPS FOR SAVING SPACE AND TIME.)0-4

USE OF DUMMY ARRAY TO SPACE OVER COMMON AREA. 4-~
SPECIAL SU8ROUTINES, 6-12
SPECIF'ICATION

8ASIC fiELD SPECIFICATION FOR ALPHABETIC CONVERSION.
5-31

IlASIC fiELD SPECIFICATION fOR INTEGER CONVFRSION.
5-18

BASIC fiELD SPECIFICATION FOR LOGICAL CONVERSION.
5-29

8ASIC FIELD SPECIFICATION FOR OCTAL CONVERSION. ~-28
fiELD SPECIFICATION,

CONTENTS OF TME FIELD SPECIFICATION, 5-15
FIELD SPECIFICATION fOR BLANK CONVERSION, 5-36
FIELD SPECIFICATION FOR HOLLERITH DATA, 5-31
fiELD SPECIFICATIONS,

(CONT.)

COMPUTER-GENERATED INDEX

SPECifiCATION (CONT.)
REPETITION Of GROUPS Of fiELD SPECIFICATIONS,

5-40
• fORMATS,

FIELD SPECifiCATION fORMATS, 5-15
GENERALIZED fiELD SPECifiCATION, GW.D, 5-27
HOLLERITH SPECifiCATION,

USE Of CONTINUATION LINE WITH HOLLERITH
SPECifiCATION, 5-35

" STATEMENTS, 4-1
ERRORS IN SPECifiCATION STATEMENTS, G-1

STACK TAPE, f-2, 8-7
" «H), 9-9

STANDARD
• CONSOLE CALL, 9-1
" fORTRAN PROCESSING - LOAD-AND-GO OPERATION, 8-2
• LOAD-AND-GO fLOW DIAGRAM, e-3
• OPERATION,

STARTING

CONTROL CARDS fOR STANDARD OPERATION, 7-1
INPUT DECK fOR STANDARD OPERATION, 7-1

" A GO-LATER EXECUTION RUN, 9-13
• AND TERMINATING A WRITE GO-LATER TAPE RUN, 9-12
" PROCEDURE, 9-2

STATEMENT
ADDITIONAL STATEMENTS. B-1
ARITHMETIC AND LOGICAL EXPRESSIONS AND STATEMENTS,

2-1
ARITHMETIC If STATEMENT, 3-3
ARITHMETIC STATEMENTS, 2-4
ASSIGN STATEMENTS,

ASSIGNED GO TO AND ASSIGN STATEMENTS, 3-2
BACKSPACE STATEMENT, 5-56
CALL CHAIN STATEMENT, 3-e
CALL STATEMENT, 3-7
CALL STATEMENTS,

ERRORS IN If OR CALL STATEMENTS OR THE USE Of
fUNCTIONS OR SUBROUTINES, G-5

• CATEGORIES,
fORTRAN STATEMENT CATEGORIES, 1-5

• CHARACTERISTICS, 1-5
COMMON STATEMENT, 4-2
COMMON STATEMENT fOR THREE LABELED BLOCKS, 4-4
CONTINUE STATEMENT, 3-8
CONTROL STATEMENTS, 3-1
DATA INITIALIZATION STATEMENT, 4-9
DATA-TYPE STATEMENTS, 4-7
DIMENSION STATEMENT, 4-1
DO STATEMENT, 3-4
DO STATEMENT AND ITS RANGE, 3-5
END fiLE STATEMENT, 5-55
END STATEMENT, 3-9
EQUIVALENCE STATEMENT, 4-5

• ERRORS,
CONTROL AND 1/0 STATEMENT ERRORS, G-5
fORMAT STATEMENT ERRORS, G-3

EXTERNAL STATEMENT, 4-8
fORMAT STATEMENT. 5-11

EXAMPLE HIGHLIGHTING DIffERENT COMPONENTS Of
fORMAT STATEMENT, 5-14

GENERAL fORM Of THE fORMAT STATEMENT, 5-11
PARENTHESIS LEVELS IN A fORMAT STATEMENT, 5-4e
RESCANNING A fORMAT STATEMENT, 5-49

fORMATTING FORTRAN STATEMENTS, 1-3
• fUNCTIONS, 6-2

1/0 STATEMENTS, 5-1
SCREEN CONVERSION Of 1/0 STATEMENTS, e-21

INPUTIOUTPUT STATEMENTS, 5-1
" LABEL ERRORS, G-3

LABELING STATEMENTS, 1-6
LOGICAL If STATEMENT, 3-3
LOGICAL STATEMENTS. 2-6
MULTIPLE-RECORD fORMAT STATEMENTS,

CARRIA6E CONTROL IN MULTIPLE-RECORD fORMAT
STATEMENTS, 5-40

PAUSE STATEMENT, 3-8
PR06RAM STATEMENTS,

SEQUENCE Of PROGRAM STATEMENTS, 1-6
READ STATEMENT. 5-1
REGION-DEfiNING DSA STATEMENTs, E-2
RETURN STATEMENT, 3-8
REWI~D STATEMENT, 5-56
SINGLE-RECORD fORMAT STATEMENTS,

CARRIA6E CONTROL IN ~INGLE-RECORD fORMAT
STATEMENTS. 5-39

SPECifiCATION STATEMENTS, 4-1
ERRORS IN SPECIFICATION STATEMENTS, G-1
«CONT.)

STATEMENT «CONT,)
STATEMENTS. 1-3
STOP STATEMENT, 3-9

" SUMMARY,
fORMAT STATEMENT SUMMARy. 5-12
fORTRAN STATEMENT SUMMARY, 8-3

TITLE STATEMENT, 4-9
WRITE STATEMENT. 5-3

STOP STATEMENT, 3-9
STORAGE

COMMON STORAGE,
USE Of COMMON STORAGE. E-6

• OF OTHER DATA, C-2
• SEQUENCE,

STRIN6

ONE-DIMENSIONAL ARRAY, STORAGE SEQUENCE Of
ELEMENTS, 1-10

TWO-DIMENSIONAL ARRAY, STORAGE SEQUENCF Of
ELEMENTS. 1-10

PROGRAM STRING.
SIZE Of PROGRAM STRING, 10-3

SUBPR06RAM
fUNCTION SUBPROGRAMS, 6-4
SUBPROGRAMS, 6-1
SUBROUTINE SUBPROGRAM,

CHARACTERISTICS OF THE SUBROUTINE SUBPROGRAM.
6-11

SUBROUT! NE
DYNAMIC DUMPING SUBROUTINES. 6-14
ERRORS IN If OR CALL STATEMENTS OR THE USE Of

fUNCTIONS OR SUBROUTINES, G-5
EXIT-TO-MONITOR SUBROUTINE. 6-14
1/0 CONDITION TEST SU8ROUTINES. 6-13

• REREAD,
1/0 SUBROUTINE REREAD, 6-13

SPECIAL SUBROUTINES, 6-12
• SUBPROGRAM,

CHARACTERISTICS Of THE SUBROUTINE SUBPROGRAM.
6-11

SUBROUTINES, 6-9
TEST SUBROUTINES fOR SIMULATED HARDWARE ANn HARDWARE

FEATURES, 6-12
SUBSCRIPTING

ARRAYS, ARRAY ELEMENTS. AND SUBSCRIPTING, 1-10
SUBSCRIPTS

ERRORS IN CONSTRUCTION AND USE OF SU8SCRIPTS, G-2
SUMMARY

fORMAT STATEMENT SUMMARY, 5-12
fORTRAN STATEMENT SUMMARY, B-3
LANGUA6E SUMMARY, B-1
SOURCE PROGRAM SUMMARY. 1-1
SYSTEM SUMMARY, 8-1

SUPPL lED
ROUTINES SUPPLIED,

PROCEDURES AND ROUTINES SUPPLIED wiTH THE
COMPILER. 0-1

SYMBOLIC PROGRAM
• TAPE, f-1
• UNITS,

EASYCODER SYMBOLIC PROGRAM UNITS. E-l
SYMBOLS

ARITHMETIC OPERATION SYMBOLS, 2-1
SYNTAX, 1-7
SYSTEM

" CONTROL CARDS, 7-1
• DESCRIPTION, 8-1
" fLOW Of SCREEN, 8-20
• MODULES, e-l
• OPTIONS, e-7

DIAGRAM Of SYSTEM OPTIONS, e-9
LOAD-AND-GO RUN WITH SYSTEM OPTIONS, 8-9

• PROCESSING, E-2
• SUMMARY, 8-1
• TAPE,

COMPILER SYSTEM TAPE, F-l
CREATING A COMPILER SySTEM TAPE (CST), 9-14
PROCEDURES AND EXECUTION ROUTINES ON THE

COMPILER SYSTEM TAPE, D-I
• TAPE ORGANIZATION,

TABLE
COMPILER SYSTEM TAPE ORGANIZATION, f-2

fORMAT TABLE. 10-3
IEFN TABLE, 10-3
OCTAL-DECIMAL CONVERSION TABLE, A-1
SOURCE TABLE. 10-2
TOKEN TABLE, 10-2

TANH, 0-12
TAPE «CONT.)

COMPUTER-GENERATED INDEX

TAPE
" AND MEMORY LAYOUTS. F-l

BCD TAPES. F-l
ORGANIZATION OF BCD TAPES. F-7

BINARY PROGRAM TAP[S. F-l
BINARY RUN TAPE.

ORGANIZATION OF THE BINARy RUN TAPE. F-6
BINARY RUN TAPES. F-l
BINARY TAPES. F-l

ORGANIZATION OF BINARy TAPES. F-7
COMMON INPUT TAPE. F-Z
COMMON OUTPUT TAPE. F-Z
COMPILER SYSTEM TAPE. F-l

CREATING A COMPILER SYSTEM TAPE (CST). 9-14
PROCEDURES AND EXECUTION ROUTINES ON THE

COMPILER SYSTEM TAPE. D-l
EXECUTE GO-LATER TAPE.

FLOW DIAGRAM TO EXECUTE GO-LATER TAPE. 8-6
SAMPLE INPUT DECK TO EXECUTE GO-LATER TAPE. 8-6

GO-LATER TAPE,
EXECUTING A GO-LATER TAPE. 8-6, 9-12
WRITING A GO-LATER TAPE. 8-4. 9-11

" INPUT. 7-6
CARD-IMAGE TAPE INPUT. 7-11
1/0 LISTS USED WITH BINARY TAPE INPUT OR OUTPUT.

5-11
" INPUT OPTION.

CARD AND TAPE INPUT OPTION. 9-12
INPUT TAPE (T5). 9-10

• LOADER-MONITORS. 9-Z
OBJECT TAPES. f-l

• OPTION.
DIAGNOSTIC PREPROCESSOR FLOW DIAGRAM - TAPE

OPTION. 8-18
• ORGANIZATION.

COMPILER SYSTEM TAPE ORGANIZATION. f-2
OUTPUT TO TAPE. 9-10
PREPROCESSING TO TAPE - *DIAG. T. 8-17

• RUN.
STARTING AND TERMINATING A WRITE GO-LATER TAPE

RUN. 9-12
STACK TAPE. F-Z. 8-7
STACK TAPE (H). 9-9
SYMBOLIC PROGRAM TAPE. f-l
WORK TAPES,

ALLOCATION OF WORK TAPES. 9-9
WRITE GO-LATER MULTIJOB TAPE.

FLOW DIAGRAM TO WRITE GO-LATER MULTIJOB TAPE.
8-5

WRITE GO-LATER TAPE.
SAMPLE INPUT DECK TO WRITE GO-LATER TAPE. 8-5

TECHNIQUES
CONVERSION TECHNIQUES. 10-8

TERMINATING
• A RUN. 9-3

STARTING AND TERMINATING A WRITE GO-LATER TAPE RUN.
9-12

TERMINOLOGY. B-1
TEST SUBROUTINES

TF

• FOR SIMULATED HARDWARE AND HARDWARE FEATURES. 6-lZ
1/0 CONDITION TEST SUBROUTINES. 6-13

STACK TAPE ITf). 9-9
THREE-CHARACTER AND FOUR-CHARACTER ADDRESS MODES. 11-1
TIHE

EXECUTION TIME.
LIBRARy FUNCTION ERRORS AT EXECUTION TIME. D-4

MEMORY MAP (COMPILATION TIME). F-Z. f-9
MEMORY MAP (EXECUTION TIME). F-Z. F-I0
OBJECT TIME.

FORMATS OF DATA IN MEMORY AT OBJECT TIME. C-2
HANDLING VARIATIONS IN FORMAT AT OBJECT TIME.

5-54
READING IN FORMAT AT OBJECT TIME. 5-51

(

TIPS FOR SAVING SPACE AND TIME. 10-4
TIPS

• FOR SAVING SPACE AND TIME. 10-4
1/0 PROGRAMMING TIPS. 10-7

TITLE STATEMENT, 4-9
TOKEN TABLE. 10-Z
TRANSFERS

ILLEGAL TRANSFERS OF CONTROL. 3-7
LEGAL TRANSFERS Of CONTROL. 3-7

TWENTY-ONE EQUIVALENT WAYS Of KEYPUNCHING AN EXPONENT
OF PLUS TWO. 5-21

TWO-DIMENSIONAL ARRAY. STORAGE SEQUENCE Of ELEMENTS. 1-10
TYPES

DATA TYPES. 1-11
TyPING PROCEDURES

NAMING AND TYPING PROCEDURES. 6-1
T5

INPUT TAPE IT5), 9-10
UNCONDITIONAL GO TO. 3-1
UNIT

BINARY PROGRAM UNITS.
JOBS CONTAINING *GET AND *BINARY PROGRAM UNITS.

8-7
COMPILED PROGRAM UNITS.

JOB CONTAINING PREVIOUSLY COMPILED PROGRAM
UNITS. 8-8

EASYCODER SYMBOLIC PROGRAM UNITS. E-1
FORTRAN PROGRAM UNITS,

RELOCATION Of FORTRAN PROGRAM UNITS. E-5
PROGRAM UN ITS.

JOB DIVIDED INTO TWO CHAINS OF PROGRAM UNITS.
8-4

• RECORD,
DEFINITION OF A UNIT RECORD. 5-46

SAMPLE REGIONALIZED EASYCODER PROGRAM UNIT. E-8
UNPROGRAMMED HALT

VALUES

OPERATOR ACTION IN UNPROGRAMMED HALT OR LOOPING. 9-7
UNPROGRAMMED HALTS AND LOOPING. 9-6

INPUT VALUES.
EfFECTS OF SCALE fACTOR ON INPUT VALUES (F

CONVERSION). 5-43
OUTPUT VALUES.

EFFECTS OF SCALE FACTOR ON OUTPUT VALUES (E
CONVERSION). 5-44

EFFECTS OF SCALE FACTOR ON OUTPUT VALUES (F
CONVERSION). 5-43

VARIABLE FORMATS
ALTERNATE CREATION OF VARIABLE fORMATS, 5-53

VARIABLES. C-5. 1-9
VAR lATIONS

WIDTH
HANDLING VARIATIONS IN FORMAT AT OBJECT TIME. 5-~4

CONVERSION FIELD WIDTH. 5-16
FIELD WIDTHS.

DATA FIELDS AND FIELD WIDTHS, 5-17
WORK TAPES

ALLOCATION Of WORK TAPES. 9-9
WRITE GO-LATER

• MULTlJ08 TAPE.
FLOW DIAGRAM TO WRITE GO-LATER MULTIJOB TAPE.

8-5
• TAPE.

SAMPLE INPUT DECK TO WRITE GO-LATER TAPE. 8-5
• TAPE RUN,

STARTING AND TERMINATING A WRITE GO-LATER TAPE
RUN. 9-lZ

WRITE STATEMENT. 5-3
WRITING

• A GO-LATER TAPE. 8-4. 9-11
lEOF CARD

*DATA CARD AND lEOf CARD. 7-10
200 CHARACTER CODES

SERIES ZOO CHARACTER CODES. H-l

,.-

l'

f

I

1
1
1
1

HONEYWELL EDP TECHNICAL PUBLICATIONS
USERS' REMARKS FORM

1--
1
1

. ,
'-t

1
1

TITLE: SERIES 200 FOR TRAN COMPILER D
SOFTWARE MANUAL

DATED: JUNE, 1966

FILE NO: 123. 1305.001 D. 2-027

1--
1
1
1
1
1
1

" 1

l·
~--

,- 1
/ 1

. 1

"--1
1
1
1
1
1
1
I

ERRORS NOTED:

Fold

SUGGESTIONS FOR IMPROVEMENT:

Fold

FROM: NAME __________________________________ _ . DATE ---------
COMPANY ________________________________ __

TIT-1.E __________________________________ _

ADDRESS ________________________________ _

f

• I
I

I
I
I
I ,
I-J
I
I
I
I
I
I

I
I ."
r'
I
l

--I,
/ .', t ~: '.,

ATT'N: TECHNICAL COMMUNICATIONS DEPARTMENT

f _Honey~ell
ELECTRONIC DATA PROCESSING

---:,-.

PERMIT NO. 39531

WELLESLEY HILLS
MASS.

o c
:.-

~ ...
1·--./
I~
I CD

I
I

I
.J..
I
I
I
1./
I
I '
I
I
I
1--

~
I
I

~ I
I
I
I

