HONEYWELL EDP

SUBJECT:

SPECIAL
INSTRUCTIONS:

DATE: September 30, 1965

A4 8454

5965
Printed in U. S. A.

HARDWARE BULLETIN

SERIES 200

SCIENTIFIC UNIT

(FEATURE 1100)

FOR MODELS 1200 AND 2200

Data Format and Programming Procedures for
the Scientific Instructions Provided by Feature
1100.

This hardware bulletin augments the Honeywell
Series 200 Programmers' Reference Manual,
Models 200/1200/2200 for users of Model 1200
or 2200 computers equipped with the Scientific
Unit (Feature 1100). The reader is assumed to
be familiar with the contents of the reference
manual, which has the file control number
113.0005.0000, 00.00. For added convenience,
the information presented herein is summarized
in Appendix F of the manual.

FILE NO.: 112,0005.1539,00. 00

Questions and comments regarding this manual should be addressed to:

Honeywell Electronic Data Processing
Information Services

60 Walnut Street

Wellesley Hills, Massachusetts 02181

Section I

Section II

Section III

Section IV

Section V

Section VI

TABLE OF CONTENTS

Introductiono v ittt i i s i e e e e
Floating-point Data Formatiiietiiiiiiiietnriinenonnnsn
Floating-point Numerical Representation
Floating-point Registers0t inaneenn
Scientific Unit Indicators i,
Automatic Formatting in Arithmetic Operations

Prenormalization.......co.iiiiiiiiinnieire i inesneneannonas
Equalizationuiiiiiiiiiiiiiiot ittt nones
Postnormalizationottt i i e
Instruction Formats, ...t i it it
Programming Considerations ittt ennn.
B 3o o ¥ oY X e -
Timing Notes ettt te e e ey e

Data Moving Instructionsciitiveeevennns Cheec et
Store Floating Accumulator i iininennnn
Load Floating Accumulator it iienneearnns
Store Low-Order Resultttt ennnns
Load Low Order Resultot iniiiienenns et

Floating-point Arithmetic Instructions e rteiseraeanean
Floating Add e re i
Floating Subtract.....vveeeu.u. e .
Floating Multiply ...ttt ittt ittt it et snennss
Floating Divide. . ..ot v ittt i it i it s it iananas

Data Conversion Instructions..........iiiii it iiiiiiienans
Decimal to Binary Conversion
Binary to Decimal Conversionu.. ettt

Control Instructions
Floating Test and Branch on Accumulator Condition
Floating Test and Branch on Indicator
Binary Mantissa Shift

..............
..........................

..

Binary Integer Arithmetic Instruction ittt nanns
Binary Integer Multiply ... c. i i it it iaeaas .

Copyright 1965
Honeywell Inc.
Electronic Data Processing Division
Wellesley Hills, Massachusetts 02181

ii

—
]]

| I I 1 | I |
[« IS BN B T I B NS I A O

— b e b b e e e e
|

i

LIST OF ILLUSTRATIONS

Page
Figure 1-1 Main Memory Floating-point Data Format N 1-1
Figure 1-2 ® Floating-point Accumulator Data Format,.............. ... 1-2
LIST OF TABLES
Table 1-1 Floating-point Numerical Representation of Mantissas e 1-3
Table 1-2 Floating-point Numerical Representation of Exponents 1-3

iii

SECTION I
INTRODUCTION

The scientific unit (Feature 1100) may be attached to the Type 1201 or 2201 processor. The

following types of scientific instructions are provided:

1. Floating-point load and store, .
2. Floating-point arithmetic.

3. Decimal-to-binary and binary-to-decimal conversion.

4, Floating-point test and branch.

5. Binary integer arithmetic,

6. Mantissa shift,

FLOATING-POINT DATA FORMAT

A floating-point number is represented by a fixed-length, 48-bit word. The high-order
36 bits contain a fraction, the mantissa. The low-order 12 bits contain an exponent of base 2.
The value of a floating-point number is the product of the mantissa and 2 raised to the indicated
exponent. As explained below, a Series 200 floating-point word is capable of expressing numbers
in the range % 2-2048 to £ 2+2047, or approximately % 10i616. In main memory, a floating-point

word occupies a field of eight consecutive character positions, as shown in Figure 1-1.

CHARACTER A-7 A-6 A-5 A-4 A-3 A-2 A-i A

BIT 8 AB42! B | B 1 B I B | B | B t B |

MANTISSA EXPONENT

Figure 1-1. Main Memory Floating-point Data Format

Four floating-point accumulators are reserved in control memory to contain operands and
results of floating-point operations. The accumulators are explicitly addressed in the floating-
point instructions by the octal digits 0, 1, 2, and 3. Each accumulator is composed of three
specific, 18-bit, control memory registers, as explained below. Only the low-order 12 bits of
the rightmost register are used to express the exponent. Figure 1-2 illustrates the floating -

point accumulator data format.

1-1

i
H

3
|+

BIT 18 | 18 I 18 12 |

—— "
MANTISSA EXPONENT

Figure 1-2. Floating-point Accumulator Data Format

FLOATING-POINT NUMERICAL REPRESENTATION

The Series 200 floating-point word is expressed in twos-complement binary notation.
That is, the mantissa is a binary fraction, the exponent is a binary integer, and negative man-

tissas and exponents are expressed as the twos complements of the positive values.

The twos complement of a binary number is formed by:

1. Subtracting each bit position from 1 (equivalent to changingall 1's to 0's
and vice versa); then

2. Adding 1 to the low-order (units) bit position.
For example, to find the twos complement of 011, change 1's to 0's and 0's to 1's, giving 100.
Then add a binary 1 to give 10l. Now to determine the original number, simply recomplement
the twos-complement number formed above.

10— 010

1 @ 1

11

Using twos-complement notation to represent negative numbers facilitates floating-point
arithmetic operations. In a subtraction operation, the twos complement of the subtrahend is

added to the minuend. Since multiplication and division are actually successive addition or sub-

traction operations, all twos-complement arithmetic is accomplished by one or more additions.

g

Table 1-1 below specifies the numerical representation of mantissas. In twos-complement
E notation, only the low-order 35 bits are used to represent positive mantissas; the high-order bit
l is always zero. Negative mantissa values are expressed as the twos complement of the corre-
sponding positive values, always forcing the high-order bit to 1. Consequently, the high-order
bit in twos-complement notation is a sign bit — 0 for positive and 1 for negative. As mentioned

above, the absolute value of a negative number is found by recomplementation. Note that the

mantissa is a fraction. There is an implied binary point to the right of the sign bit.

Numerical representation of exponents is shown in Table 1-2. A positive exponent is a
12-bit binary integer whose high-order bit is 0. A negative exponent is a 12-bit binary twos-

* complement integer whose high-order bit, by definition, is 1.

Table 1-1.

Floating-point Numerical Representation of Mantissas

Sign
Bit Position: 36
Bit Value: 20

implied binary point

Mantissa Value

0 -1 1 +1/2-z'35
0 O--mmmmmmemmmeaa -0 1 +2'35

() Qe-mmmmmmmmmmmmeooo -0 0 +0

1 e -1 1 -2'35

1 Qemmmmmmemmceemaea -0 0 -1/2

35? -

-(1/242"

Table 1-2. Floating-point Numerical Representation of Exponents
Sign)

Bit Position 12 11 10----ccmmmcem e eee e 2 1 Exponent Value
Bit Value: 211 210 29 21 20

0 1 T T T rrps 1 1 +2047

0 0 O-cmmmmm e e e m e 0 1 +1

0 0 O---mmmmmm e 0 0 +0

i 1 R L L LR 1 1 -1

1 1 R e L PP 1 0 -2

1 0 0---nn--un- B et 0 0 -2048

1-3

Ko

Floating-point arithmetic instructions deliver results with normalized mantissas. For
positive numbers, a normalized mantissa has a 1 immediately following the implied binary point
(i.e., the high-order two bits are 0l). For negative numbers, a normalized mantissa has a 0
immediately following the implied binary point {i.e., the high-order two bits are 10). In Table
1-1, normalized mantissas are shaded. A normal zero is defined as a floating-point word whose

mantissa and exponent are both +0.

FLOATING-POINT REGISTERS

The four addressable floating-point accumulators occupy the following locations in control

memory:
Accumulator Control Memory Location (Operator's Control Panel Only)
Address High-Order Mantissa Low-Order Mantissa Exponent
0 43 42 41
1 47 46 45
2 53 52 51
3 57 56 55

NOTE: In program instructions, the floating-point accumulators may be addressed
only via the octal digits 0, 1, 2, and 3 in the floating-point instructions.
The instructions LCR and SCR must not be used to address these accumu-
lators. At the control panel, the operator may address these locations
with the addresses in the above table.

A '"pseudo accumulator' is provided, which always contains a normal zero. The pseudo
accumulator is addressed by the octal digit 7. Any floating-point number may be normalized
by adding it to the normal zero in accumulator 7. Note that the pseudo accumulator should not

be specified as the result location in any floating-point instruction, because the result data will

be lost.

The scientific unit also includes a low-order result register (LOR). The LOR may con-
tain a low-order sum, difference, or product, or the remainder of a division operation. In
effect, the LOR provides an additional 36 bits of mantissa precision. The LOR is not addressed
explicitly in the floating-point arithmetic instructions, as are the accumulators. However, in-

structions are provided to load and store the contents of the LOR.

SCIENTIFIC UNIT INDICATORS

Three indicators are present in the scientific unit. The exponent overflow indicator is

activated when a base-2 exponent exceeds +2047. The actual result delivered to the result

1-4

accumulator when the exponent overflow condition is present contains a correct mantissa and an
exponent which is 4096 less than the correct exponent.

NOTE: When an exponent becomes less than -2048, a normal zero is
delivered and no indication is given.

The divide check indicator is activated when a divisor is equal to zero. When the divide
check condition is present, the division operation is not executed. The multiply overflow indica-
tor is activated when the product of a Binary Integer Multiply instruction exceeds 24 bits in
length. When the multiply overflow condition is present, the low-order 24 bits are delivered as
the result, and the high-order bits are lost. The above indicators may be tested by the Floating

Test and Branch on Indicator instruction described in Section V.

AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS

Floating -point arithmetic instructions accept either normalized or unnormalized operands.
The scientific unit automatically shifts operands in order to perform arithmetic operations, and
automatically normalizes results of arithmetic operations. The three types of automatic format-

ting are described below.

Prenormalization

In a floating divide cperation, an unnormalized divisor is prenormalized. The mantissa is

left-shifted until normalized, and the exponent is decreased by one for each bit position shifted.

Equalization

In floating add and subtract operations, equalization occurs after prenormalization. The
)mantissa of the operand with the smaller exponent is right-shifted, and the exponent is increased
by one for each bit position shifted, until the exponents of the two operands are equal. Bits are

shifted from the low-order mantissa position of the accumulator (bit 13) into the high-order man-

tissa position of the LOR (bit 47), as shown below,

- R |
+ mantissa + exp + mantissa + exp
48 ACCUMULATOR 12 1 48 LOR 12 1

Postnormalization

The results of floating add, subtract, multiply, and divide operations are normalized. If
the tentative result is unnormalized, the mantissa is left-shifted until normalized, and the ex-
ponent is decreased by one for each bit position shifted. For results in which mantissa over-
flow occurred, the mantissa is right-shifted one bit position and the exponent is increased by one.

Note that postnormalization may restore bits which were shifted into the LOR by equalization.

1-5

H
E
H

INSTRUCTION FORMATS

Only four operation codes are associated with the 14 scientific instructions. The Binary

Mantissa Shift instruction has the mnemonic BMS (octal code 04). The Binary Integer Multiply
instruction has the mnemonic BIM (octal code 05). All the remaining floating-point instructions

use one or both of the following op codes:

Name Mnemonic Octal Code
Floating Memory to Accumulator FMA 07
Floating Accumulator to Accumulator FAA 06

The full formats of the floating-point instructions are given below:

OP CODE A ADDRESS B ADDRESS VARIANT | VARIANT 2

FMA:] T || [
FAA: I [| .

The first six-bit instruction variant usually addresses the floating-point accumulators used in

an operation. In subsequent instruction descriptions, this variant is abbreviated

:
where octal digits X and Y are the accumulator addresses given on page 1-4. The accumulator
X addressed in the high-order three variant bits is usually the source of a floating-point operand.
The accumulator Y addressed in the low-order three variant bits is usually the destination of a
floating -point result. The second instruction variant is a six-bit octal character which defines

the particular floating-point instruction (e.g., Floating Multiply).

The memory-to-accumulator format is used in those instructions which require a main
memory address in addition to floating-point accumulator references. In instruction descrip-
tions, the A address of an instruction is abbreviated by the letter A. The A address may define
the main memory location of an 8-character, floating-point operand, or it may specify a branch
address. The accumulator-to-accumulator format is used in those instructions which require

only floating-point accumulator references.

In addition to the full instruction formats described above, each form of a floating-point
instruction using the FMA or FAA format is assigned a unique assembly language mnemonic,
which also generates the 06 or 07 octal op code. When an instruction is coded using its unique
mnemonic, the second variant is automatically generated and is not written in the operands field
by the programmer. In summary, the floating-point instructions may be coded in two equivalent

forms:

1-6

1. The full form which contains an FMA or FAA mnemonic op code, an A address e
if appropriate, and two variants. w

2. The unique form, which contains a unique mnemonic op code, an A address
if appropriate, and one variant.

Both forms are described for each instruction in the following sections.

PROGRAMMING CONSIDERATIONS

For instructions in the FMA format, the A address is processed by the central processor

in the usual manner, using the A-address register (AAR). The description of each instruction i
gives the address register settings after the operation. During instruction extraction, the two
variants of FMA and FAA instruc‘tions are transmitted directly to the scientific unit. The variant \
register in the central processor is unaffected by these instructions. In the extraction or res-

toration of operands in memory, the scientific unit neither recognizes nor alters punctuation bits,

SYMBOLOGY
A: A address of the instruction.
B: B address of the instruction.
X: Floating-point accumulator addressed in the high-order three bits
of an instruction variant (usually the source of an operand).
Y: Floating -point accumulator addressed in the low-order three bits
of an instruction variant (usually the destination of a result).
X-: In the first variant of an instruction, only the high-order three
bits specifying accumulator X are significant.
-Y: In the first variant of an instruction, only the low-order three

bits specifying accumulator Y are significant.

(X) or (Y): Floating-point word contained in accumulator X or Y.

LOR: Low-order result register.
{(LOR): Floating-point word contained in LOR.
AAR: A-address register. 1
BAR: B-address register. :
SR: Sequence register.
Ap: Previous setting of A-address register. A
Bp: Previous setting of B-address register.
JI: Address of next instruction if branch occurs.
NXT: Next sequential instruction.
Nn: Number of automatic formatting shifts in an operation.
N1: Number of binary ones in a multiplier.
1-7

Ns: Number of shifts.
[] ""smallest integer greater than'
Ni: Number of characters in an instruction.

TIMING NOTES

All timings shown are for Model 2200 and are based on the use of direct addressing. Three

memory cycles should be added for each indexed address and one memory cycle should be added

for each character extracted as a result of indirect addressing.

1-8

SECTION II w
DATA MOVING INSTRUCTIONS

| STORE FLOATING ACCUMULATOR |

FORMAT l
FMA/A, X-, 00 or TAM/A, X-

FUNCTION %

(X) is stored in memory locations A through A-7.
(X) is unaltered.

TIMING1
Ni + 10 cycles.

REGISTERS AFTER OPERATION

AAR BAR f‘
A-8 B @ N
p 3
EXAMPLE

Store the contents of floating accumulator 1 in the main memory field whose
rightmost character is tagged RESULT.

EASYCODER L
CODING FORM »
PROBLEM PROGRAMMER DATE PAGE ___OF ____ ‘t
N ;ﬁ LocaTioN | OFERATION OPERANDS l
) 213 alslef7le K \ais, 2021 R | T L L | | 52/63 | N T I L 80 E
I 1 FMA _ RESULY 19,06 ., OR e . . e . |
2 + ! 1 TIAM RESULIT',1¢ i ! 1 1 A R 1 1 N 1 i
3 I 1 i 1 1 1 — i 1 1o I3 i 1 1
M L | 1 1 L L i 1 1 i M| 1) —_ 1 1 . B
i
LOAD FLOATING ACCUMULATOR
FORMAT
FMA: FMA/A, -Y,02 or TMA/A, -Y
FAA: FAA/XY,02 or TAA/XY

I'This and subsequent timings pertain to Model 2200.

2-1

FUNCTION

FMA: The floating-point word in memory locations A through A-7
is loaded into accumulator Y.
FAA: (X) is loaded into accumulator Y.
TIMING
FMA: Ni + 11 cycles
FAA: 8 cycles

REGISTERS AFTER OPERATION

AAR BAR
FMA: A-8 B
p
FAA: A B
p P
NOTES
1. No normalization occurs.
EXAMPLES

1. Load the floating-point word stored in memory locations DELTA-7
through DELTA into floating accumulator 0.

EASYCODER
CODING FORM
PROBLEM PRO DATE PAGE ___OF ___
R Eﬁ wocation | OPERETON OPERANDS
\ 2]3 als]e[7]a | 1ais, 20{21 | | L. . N 6263 | 80|
A . [FMA __[DELIA,00,02 OR . . .
2 1 L L hMA DEL"A9¢¢ 1 t N i L 1 L
2. Load the contents of accumulator 3 into accumulator 0.
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___OF____
CARD [OPERATION
NUMBER [pif| LOCATION CODE OPERANDS
 2[3 als[e{rle R 14]15, 2021) L |) | | 62[63 L =
1N . FAA _ B6,02 OR . . . l
J I . YT ,
STORE LOW-ORDER RESULT
FORMAT
FMA: FMA/A, 00,07 or TLM/A
FAA: FAA/-Y,07 or TLA/-Y
FUNCTION
FMA: (LOR) is stored in memory locations A through A-7.
FAA: (LLOR) is stored in accumulator Y.

2-2

TIMING
FMA: Ni + 9 cycles
FAA; 6 cycles

REGISTERS AFTER OPERATION

AAR BAR
FMA: A-8 B
p
FAA: A B
p p
NOTE
1. No normalization occurs.
EXAMPLES
1. Store the contents of the LOR in the main memory field whose rightmost
character is tagged RESULT.
PROBLEM PROGRAMMER DATE PAGE ____OF
NoMeER [F[g| LocaTIoN | T OPERANDS
1 2]3 alsej7]s . \alis, 2021 | | L L) | e2le3 K R | 80|
! ! I FMA " RESUlan¢¢g.a7 1 og 1 i L " L L J | I |
3 .. [TIM . REsuLY ‘ ‘ s \ \ , . .
2. Store the contents of the LOR in accumulator 2.
PROBLEM PROGRAMMER DATE PAGE ___ OF
CARD |V OPERATION
NUMBER]E ﬂ LOCATION CObE OPERANDS
IZISQISSES | 14[15, 202t | | L T o | , e20e3 . X L 80|
' ! 1 1 FAA 2l¢7l m 1 1 A 1o e | Il 1 i i
2 :l l L TIL.A f z 1 i 1 " X, A 1 —_— 1] 1 Il S |
LOAD LOW-ORDER RESULT
FORMAT
FMA: FMA/A, 00,01 or TML/A
FAA: FAA/X-,01 or TAL/X-
FUNCTION
FMA: The floating-point word in memory locations A through A-7
is loaded into the LOR.
FAA: (X) is loaded into the LOR.
TIMING
FMA: Ni + 9 cycles
FAA: 6 cycles

iuuyw\»nn i

REGISTERS AFTER OPERATION

AAR BAR
FMA: A-8 Bp
FAA A B
P P
NOTE
1. No normalization occurs.
EXAMPLES

1. Load the floating-point word stored in memory locations STORE-7
through STORE into the LOR.

PROBLEM PROGRAMMER DATE PAGE ___OF ___
carp ¥ OPERATION
NUMBER | §| LocATION CODE OPERANDS
1 2(3 als]ef7ie 1415, 20{21 | | 1 I 6263 s . 80|
=T
! % 1 a1 FMA STOQE\¢¢! ¢1‘ QR L 1 Lo N B L
2 4._!“! U T!!!L sTogE: l L 1 1 1 i -1
2. Load the contents of accumulator 2 into the LOR.
PROBLEM PROGRAMMER DATE PAGE ___OF___
CARD OPERATION
NUMBER gﬁ LOCATION SODE OPERANDS
1 213 alslelzls 1a(is, 20[21 \ | | | | e2je3 1 80|
T
! : g i FAA. Zg_i¢‘: ,OR e f R . S L ol
ol . TAL R . e e ‘

2-4

FLOATING ADD

FLOATING-POINT ARITHMETIC INSTRUCTIONS

SECTION III "

FORMAT
FMA: FMA/A,XY,10 or AMA/A, XY ~l
FAA: FAA/XY, 10 or AAA/XY ,l,
FUNCTION
FMA: The floating-point word in memory locations A through A-7
is added to (X), and the sum is stored in accumulator Y.
The low-order sum is stored in LOR.
FAA: (X) is added to (Y), and the sum is stored in accumulator Y.
The low-order sum is stored in LOR.
TIMING
FMA: Ni +13 + [Nn/4] cycles fI
FAA:

REGISTERS AFTER OPERATION

11 + [Nn/4] cycles

AAR BAR LOR
FMA: A-8 BP The low-order result of the addition. The
sign bit of LOR = 0. The exponent of LOR =
the exponent of the high-order result minus 35,)
FAA: A B same as above 1
P P
NOTES
1. Equalization, and postnormalization occur if required.
2. X and Y may specify the same accumulator.
An exponent overflow indication may be given.
4, A result with a zero mantissa is returned as a normal zero.

EXAMPLE

Add the three floating-point numbers stored in sequential fields beginning in location
DATA. Store the sum in the eight-character field whose rightmost character is

tagged SUM.
Ry EE LOCATION | OPERATION OPERANDS
' 2]3 als]ef7]s | 1a]1s, 20(21) A L . L T . o L.
1 . FMA PATAH,QJZ . lead first no. mto_accomddatorl/ . .
ol Lo A FMA _ DATAMIS 11,108 ogdgsecond no. |..,
. 1 . _FMA DATA+23, 11,18 , add wird o ., .. |, e
. ! . FMA___SUuM,10,6¢ L Store sum | .

FLOATING SUBTRACT

FORMAT

FMA:

FAA:

FUNCTION
FMA:

FAA:

TIMING

FMA:

FAA:

FMA/A,XY,11 or SMA/A,XY
FAA/XY, 11 or SAA/XY

The floating-point word in memory locations A through A-7 is subtracted
from (X); i.e., its twos complement is added to (X). The result is
stored in accumulator Y. The low-order result is stored in the LOR.

(Y) is subtracted from (X). The result is stored in accumulator Y,
and the low-order result is stored in the LOR.

N, +13 + [N /4] cycles
1 n

11 + [Nn/4] cycles

REGISTERS AFTER OPERATION

FMA:

FAA:

NOTES

B W

AAR BAR LOR

A-8 B Low-order difference. Sign bit = 0. Exponent =
P high-order exponent minus 35.

Ap Bp same as above.

Equalization, and postnormalization occur if required.
X and Y may specify the same accumulator.
An exponent overflow indication may be given.

A result with a zero mantissa is returned as a normal zero.

EXAMPLE

1. Subtract the floating-point word in locations DATA-7 through DATA from
the contents of accumulator 3 and store the result in accumulator 1.

CARD [v
NUMBER |B|B

LOCATION

OPERATION
CODE

OPERANDS

1 213 4ls]el7[s

14015, 2021

DATA 31 5 11,

R

L IR PRV Y L dmedanaad. J -
1
1

SMA

DATA 3]

1 1 L Lo o 4 o1

| FLOATING MULTIPLY |

FORMAT
FMA:
FAA:

FUNCTION
FMA:

FAA:

TIMING

FMA:

FAA:

REGISTERS AFTER OPERATION

FMA/A, XY, 13 or MAM/A, XY

FAA/XY,13

or MAA/XY

(X) is multiplied by the floating-point word in memory locations A

through A-7.
The low-order product is stored in LOR.

(X) is multiplied by (Y).

The high-order product is stored in accumulator Y.

The high-order product is stored in

accumulator Y. The low-order product is stored in LOR.

N, + 21 +[N /2] + [N /4] cycles
i 1 n

19 +[N1/2] + [Nn/4] cycles

FMA:

FAA:

NOTES

oW

Low-order product. Sign bit = 0. Exponent =

AAR BAR LOR
A-8 B
P high-order exponent minus 35.
A B Same as above.
p P

X and Y may specify the same accumulator.

Postnormalization occurs if required.

An exponent overflow indication may be given.

If either operand is equal to zero, the results in both accumulator
and LOR are normal zeros.

EXAMPLE

b 1. Multiply the floating-point word in accumulator 2 by the floating-point word
in accumulator 0, and store the product in accumulator 0.

CARD OPERATION
NUMBER [BIR LOCATION CODE OPERANDS
1 213, 4/5]6[718) 1415) 20121 i u b R R L L5283 [L
1
! ![‘l i AA z¢;'34_A N L mL L [L I 1 I N PR L
] L AA 2¢ 1 e A FEOIPEIS S [P 1 AT | i

FLOATING DIVIDE

FORMAT
FMA:
FAA:

FUNCTION
FMA:

TIMING
FMA:
FAA:

FMA/A,XY,12 or DMA/A,XY
FAA/XY, 12 or DAA/XY

The floating-point word in locations A through A-7 is divided by
(X). The quotient is stored in accumulator Y. The remainder is
stored in LLOR.

(Y) is divided by (X). The quotient is stored in accumulator
Y. The remainder is stored in LOR.

N, +40 + [N /4] cycles

n
38 + [Nn/4] cycles

REGISTERS AFTER OPERATION

AAR BAR LOR
FMA: A-8 B Contains the remainder. The absolute value of
p the remainder mantissa is less than the absolute
value of the mantissa of the normalized divisor.
The sign of the remainder is equal to the sign of
the dividend. The exponent of the remainder is
equal to the exponent of the dividend minus 35,
and plus one if the absolute value of the dividend
mantissa is greater than the absolute value of
the mantissa of the normalized divisor.
FAA: A B same as above.
P P
NOTES
W 1. Prenormalization of the divisor and postnormalization of the quotient occur

if required,

2. X and Y may specify the same accumulator.

3. The quotient or remainder may cause an exponent overflow indication
to be given.

4. If the divisor is zero, a divide check indication is given. The division

is not executed, and accumulator Y is unaltered.

5. If the dividend is zero, the quotient and remainder are normal zeros.
EXAMPLES
1. Divide the floating-point word stored in the memory field whose rightmost

character is tagged DATA by the floating-point word in accumulator 0.
Store the quotient in accumulator 0.

D R Ergr wcation | *FRTEOM OPERANDS
L 23 4lsfe{7[s | 1a]15, 20[21 | ' | L . L, | 62(63 | | . L
L .. FMA __DATA,PQ,12, R __, e . i
i .. PMA _ DATA,0¢ . . . e U N
2. Divide the floating-point word in accumulator 2 by the floating-point word

in accumulator 3 and store the quotient in accumulator 2.

T
N?J‘:;‘:ER]EQ rocation | e OPERANDS
213 als]e{7[s | 14]1s, 2021 | |) L L, |) 62(63 |
I
! % } 1 FAH 32 2 '2. |m i ! L ! N L 1 1 1 . L
I .. bAA B2 . . . s . . e

3-5

. SECTION IV
DATA CONVERSION INSTRUCTIONS

DECIMAL TO BINARY CONVERSION

FORMAT
FMA/A, -Y,03 or DTB/A, -Y

FUNCTION

The 11-character main memory field whose low-order character position is A is
treated as a signed decimal integer. That is, each character represents a decimal
digit. The sign of the integer is given by the zone bits of the units position (charac-
ter A), as follows: 10 = negative; anything else = positive. The decimal integer is
converted to a 36-bit binary integer and stored in the mantissa portion of (Y); the
exponent of (Y) is set to +35.

TIMING
Ni + 24 cycles

"

REGISTERS AFTER OPERATION *
AAR BAR LOR
A-11 B Low-order result of conversion (see note 2

below). Sign bit = 0. Exponent = high-order
exponent minus 35,

NOTES
1. The zone bits of the 10 high-order decimal characters are ignored. If the
* middle two data bits of any character are 11, that character is interpreted
as a zero.
2. Because an 11-digit decimal number has a range of £ 99, 999,999,999 and a

36 -bit binary twos-complement number has a range of approximately *

34, 359, 738, 368, mantissa overflow of up to two bits is possible, If man-
tissa overflow occurs, the low-order one or two bits are shifted into LOR.
Accumulator Y then contains the high-order result of conversion, with an
exponent of 36 or 37. Note that when a low-order result is shifted into LOR,
the high-order result is automatically normalized.

EXAMPLE

Convert 899,473 to a binary integer in the mantissa portion of accumulator 0.

EA

SYCODER

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF ___
ngsa E; wocation | *Eoe™ OPERANDS
1 23 als]e]7]e | 14[15, 20[21 X | | | | | \ 62j63 L 80
L [PEC OCW . dd900899473 . . , . . . L
ol . F DEC, 00,03 . . . l . 1

BINARY TO DECIMAL CONVERSION

FORMAT

FMA/A,X-,06 or BTD/A, X-

FUNCTION

The mantissa portion of (X) is converted from a twos-complement binary integer

to a signed decimal integer.

TIMING

N1 + 23 cycles

REGISTERS AFTER OPERATION

The decimal integer is stored in the ll-character
main memory field whose low-order character is location A.

AAR BAR
A-11 B
p
NOTES
1. If the binary integer is negative, the zone bits of the units character
(location A) are set to 10. If the binary integer is positive, the zone
bits of the units character are set to 0l. The zone bits of the other
10 characters are set to 00,
2. The exponent in accumulator X is ignored and unaltered.
EXAMPLE
1. Convert the mantissa portion of the floating-point word in accumulator 3 to a

signed decimal integer.

whose rightmost character is tagged DEC.

Store the decimal integer in the main memory field

MR lﬂg Location | “PTpe® OPERANDS

| 2]3 4Ts]sf7{s N 18615, 20[21 | | | | . . . 62[63 L 80
N ____BID _ DEC.39 , . e . L
:l ., 1 [|IDEC _ DDCW #I|COPdbbAsepddpisobdsedns . . .

4-2

SECTION V
CONTROL INSTRUCTIONS

FLOATING TEST AND BRANCH ON ACCUMULATOR CONDITION

FORMAT
FMA/A,XC,04 or FBA/A,XC

FUNCTION

The mantissa portion of (X) is tested for the condition specified by C, the
low-order octal digit of variant 1:

CcC=0 no branch

C=1 (X)y = 0

Cc=2 Xy <0

c=3 (X) £ 0

cC=4 xXy >0

C=5 X)) 20

C=6 (X) = 0

CcC =17 unconditional branch

If the condition specified by C is satisfied, program control branches to
location A.

TIMING
Ni + 4 cycles NO BRANCH
Ni + 6 cycles BRANCH

REGISTERS AFTER OPERATION

AAR BAR SR
A Bp NXT NO BRANCH
A NXT JI(A) BRANCH
NOTE
1. (X) must be normalized.

EXAMPLE

Subtract the floating-point word in accumulator 1 from the floating-point word in
accumulator 0. If the difference is less than or equal to zero, branch to location

LESS.
CODING FORM
PROBLEM PROGRAMMER DATE PAGE __OF ___
NMSER El? LocaTion | OFERATION OPERANDS
1 2[3 alsfsl7]e i 1415, 20{21 L 1 Ao L L I | | 62163 O R L i . 80|
Y L SAA @I , Floating subtrect b e
o . FBA LESS,\3 , festard branch, O

FLOATING TEST AND BRANCH ON INDICATOR

FORMAT
FMA/A, 0D, 05 or FBI/A, 0D

FUNCTION

The indicator(s) specified by D, the low-order octal digit of variant 1, are
tested. If any of the indicators is set, control branches to location A.

=0 no branch

=1 multiply overflow

exponent overflow

exponent and multiply overflow
divide check

divide check and multiply overflow

divide check and exponent overflow

O b U U o o uvuuo
1l
~4 o0 o W N

divide check and exponent overflow, and multiply overflow

TIMING
Ni + 2 cycles NO BRANCH
Ni + 4 cycles BRANCH

REGISTERS AFTER OPERATION

AAR BAR SR
A Bp NXT NO BRANCH
A NXT JI(A) BRANCH
NOTE
1. All indicators tested are reset.

L&

EXAMPLE

Multiply the floating-point word in accumulator 1 by the floating-point word in
accumulator 2. If exponent overflow occurs, store the contents of the sequence
register and accumulator 2, replace the contents of accumulator 2 with the largest
positive floating-point number, and continue.

EASYCODER

¢ @ N o & w N -

3

CODING FORM
PROBLEM PROGRAMMER DATE PAGE ____OF ___
i Eﬁ LocaTion | OPERATION OPERANDS
s 2]3 als]e]7]e X 14]15, 2020 | | | Ly | 263 . Ly |
L . FAA 12,13, . —Toating el s 1 .
' | ||/vesT . [FBL . lovER,02 test for exponent overflow | . . .
| AV Y 3 ! L L L \ . i PP R RN L
i | (l 1 (s L 1 L 1 I 1 P 1 1 1 s
{ ! (1 1 (‘ i 1 1 1 1 i - 1 " 1 1 1 1
|]| JOVER . ISCR . |SEQREG,T7 , Jrore segquence req/ster , , . 1
P .. [FMA _ ACC.20,0¢ Store_accomalator e . .
] , FMA . MAX, 82,02 ,m¢3«wulm with max- valve__ . .
L . B TesT+1 . . retorn ((n foor-char. made) | .) ,
| ||| SEQREG DCW #4CPdddodds . — . R .
! ! ACC1 QCW # Cg da a] « ! L 1 S 1 1
L[] mAx DCW __ #8¢3777771717213777, . ., e ol .

~

BINARY MANTISSA SHIFT

FORMAT

BMS/XM, V

FUNCTION

In a single-precision shift, the mantissa portion of (X) is shifted by the number
of bit positions specified by variant 2 (0 £ V £63). In a double-precision shift,
the mantissa portions of (X) and (LOR) are treated as a single register and
shifted the number of bit positions specified by variant 2. The exponent portions
of (X) and (LOR) are never shifted. A shift operation may be of either the rotate
or the arithmetic type, in the left or right direction. In a rotate shift, bits
shifted off the end of a ''register' (mantissa of X or mantissas of X and LOR)

are moved end-around to the opposite end of the register. That is, no bits are
lost in a rotate shift. In an arithmetic shift, bits shifted off the end of a register
are lost. Note that in an arithmetic shift, the sign positions of accumulator X and
LOR are protected; i.e., bits are shifted around these positions. In a right
arithmetic shift, the sign bit is duplicated in the vacated bit positions. In a left
arithmetic shift, vacated bit positions are filled with zeros.

M, the low-order octal digit of variant 1, specifies the mode of shifting, as
illustrated below.

M=@ . LEFT, ROTATE, SINGLE-PRECISION SHIFT

ACCUMULATOR X

MANTISSA EXPONENT

M=1:LEFT, ARITHMETIC, SINGLE-PRECISION SHIFT

ACCUMULATOR X

BITS yyp— ZEROS
DISCARDED g

I+

eeny =

SIGN
PROTECTED T9 +% 2
MANTISSA EXPONENT

M=2: LEFT, ROTATE, DOUBLE-PRECISION SHIFT

ACCUMULATOR X LOR

MANTISSA EXPONENT MANTISSA EXPONENT 7 7

M=3:LEFT, ARITHMETIC, DOUBLE-PRECISION SHIFT

ACCUMULATOR X LOR
_BITS
DISCARDED

SIGN MANTISSA EXPONENT MANTISSA EXPONENT d

S|
PROTECTED PROTECTED

5-4

M=4. RIGHT, ROTATE , SINGLE -PRECISION SHIFT

ACCUMUL ATOR X

n
MANTISSA ~ EXPONENT

M=5; RIGHT, ARITHMETIC, SINGLE-PRECISION SHIFT

ACCUMULATOR X

SIGN
B N ad” f——FBITS D}SCARDED

IT
DUPLICATED

1+

g5¥oetny

MANTISSA EXPONENT

M=6: RIGHT, ROTATE , DOUBLE-PRECISION SHIFT

LOR

ACCUMULATOR X

+
[T
MANTISSA EXPONENT MANTISSA EXPONENT
M=7.: RIGHT, ARITHMETIC, DOUBLE-PRECISION SHIFT
SIGN ACCUMUL ATOR X LOR

BIT
DUPLICATED BITS DISCARDED

I+
14

2589 ety

MANTISSA EXPONENT

te2oemy SIGN '
ee PROTECTED

MANTISSA EXPONENT

TIMING
9 + NS/4 cycles

REGISTERS AFTER OPERATION

AAR BAR
A B
p p
NOTES
1. At the end of a shift operation, the exponents of (X) and (LOR)
are zero.
2. In a single-precision shift, the mantissa portion of the previous
contents of LOR is unaltered.
EXAMPLE

Perform a left, arithmetic, single-precision shift on accumulator 1.
Shift by 12 bit positions.

EASYCODER

CODING FORM
PROBLEM PRO ER DATE PAGE __OF
CARD [J OPERATION
NUMBER [p[g] LOCATION copE OPERANDS
y 2]3 al5]e[7]e | 1415, 2021 N | | L | | L | 52|83 L e L 80|

NN s 12 .

5-6

SECTION V1
BINARY INTEGER ARITHMETIC INSTRUCTION

BINARY INTEGER MULTIPLY

FORMAT
BIM/A, B

FUNCTION

The four-character fields in main memory whose low-order characters
are A and B are treated as 24-bit, twos-complement binary integers. The
integers are multiplied together, and the product is stored in the field
specified by the B address.

TIMING
Ni +20 + N1/2 cycles

REGISTERS AFTER OPERATION

AAR BAR LOR
A-4 B-4 unspecified
NOTES
1. If the product exceeds 24 bits, a multiply overflow indication is
given and the low-order 24 bits are delivered to the field specified
by the B address. Any high-order bits are lost.
2. The product is not shifted in any way.
EXAMPLE
Multiply the binary equivalent of 735lo by the binary equivalent of
89910.
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE ___ OF
NMBER ‘Térg Location | OPERSTION OPERANDS
1 213 alsfe[7]e | 14]15, 20{21 | | Loy L . L | | se2[63 L | 80
U [ANT . DKW #4B735 l e . e
[Nz DCw w4869 . .
L L] . BIM _ INT!,INTZ product 1s delivered ve INTZ N s

COMPUTER-GENERATED INDEX

ACCUMULATCR
" CONDITION,
FLOATING TEST AND BRANCH ON ACCUMULATOR
CONDITIONs 5-1
" DATA FORMAT,
FLOATING=POINT ACCUMULATOR DATA FORMATs 1=-2
LOAD FLCATING ACCUMULATOR,y 2=1
STORE FLOATING ACCUMULATOR, 2-1
ADD
FLOATING ADDs 3-1
ARITHMETIC
" INSTRUCTION,
BINARY [NTEGER ARITHMETIC INSTRUCTIONs 6-1
FLOATING=POINT ARITHMETIC INSTRUCTIONS, 3-]
" OPERATIONS,
AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS.
1=5>
AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONSs 1-5
BINARY
" CONVERSION.
DECIMAL TO BINARY CONVERSIONs 4-1
" INTEGER ARITHMETIC INSTRUCTIONs 6-1
" INTEGER MULTIPLYs 6-1
" MANTISSA SHIFTes 5-3
" TO DECIMAL CONVERSIONs 4-2
BRANCH
FLOATING TEST AND BRANCH ON ACCUMULATOR CONDITION.
5=1
FLOATING TEST AND BRANCH ON INDICATORs 5=2
CONDITION
FLOATING TEST AND BRANCH ON ACCUMULATOR CONDITION.
5-1
CONSIDERATIONS
PROGRAMMING CONSIDERATIONSs 1l=7
CONTROL INSTRUCTIONSs 5<l
CONVERSION
BINARY TO DECIMAL CONVERSION, 4=2
DECIMAL TO BINARY CONVERSIONs 4-1
" INSTRUCTIONS»
DATA CONVERSION INSTRUCTIONS, 4-1
DATA
" CONVERSION INSTRUCTIONS, 4-]
" FORMAT,
FLOATING=POINT ACCUMULATOR DATA FORMAT. 1-2
FLOATING=POINT DATA FORMATy 1=l
MAIN MEMORY FLOATING=-POINYT DATA FORMAT, l~l
" MOVING INSTRUCTIONS, 2=}
DECIMAL
" CONVERSION,
BINARY TO DECIMAL CONVERSIONs 4«2
" 70 BINARY CONVERSIONs 4=]
DIVIDE
FLOATING DIVIDEs 3-4
EQUALIZATIONs 1-5
EXPONENTS
FLOATING-POINT NUMERICAL REPRESENTATION OF
EXPONENTSs 1=3
FLOATING
" ACCUMULATOR.
LOAD FLOATING ACCUMULATOR, 2-1
STORE FLOATING ACCUMULATORs 2=1
" ADDe 3=1
" DIVIDE, 3=4
" MULTIPLYs 3=3
" SUBTRACT, 3~2
" TEST AND BRANCH ON ACCUMULATOR CONDITIONs 5=l
FLOATING TEST AND BRANCH ON INDICATOR» 5=2
FLOATING=POINT
" ACCUMULATOR DATA FORMAT, 1=2
" ARITHMETIC INSTRUCTIONS, 3=-]
" DATA FORMAT, 1=l
MAIN MEMORY FLOATING=POINT DATA FORMATs 1=l
" NUMERICAL REPRESENTATIONs 1~2
FLOATING=POINT NUMERICAL REPRESENTATION OF
EXPONENTSs 1=3
FLOATING=POINT NUMERICAL REPRESENTATION OF
MANTISSASs 1-3
" REGISTERSy 1-4
FORMAT
FLOATING=POINT ACCUMULATOR DATA FORMAT, 1~2
FLOATING=POINT DATA FORMAT, 1~1

INSTRUCTION FORMATS, 1=6 -
MAIN MEMORY FLOATING-POINT DATA FORMAT, 1-1
FORMATTING
AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS, 1-5
INDICATOR
FLOATING TEST AND BRANCH ON INDICATORs 5-2
SCIENTIFIC UNIT INDICATORSs l=4
INSTRUCT ION
BINARY INTEGER ARITHMETIC INSTRUCTION, 6-1
CONTROL INSTRUCTIONS, S=1
DATA CONVERSION INSTRUCTIONSs 4-1
DATA MOVING INSTRUCTIONS, 2=1
FLOATING=POINT ARITHMETIC INSTRUCTIONS, 3=1
" FORMATSs 1-6
INTEGER
" ARITHMETIC INSTRUCTION,
BINARY INTEGER ARITHMETIC INSTRUCTIONs 6-1
" MULTIPLYs
BINARY INTEGER MULTIPLY, 6-1
INTRODUCTIONs 1-1
LOAD
" FLOATING ACCUMULATORs 2=1
" LOW ORDER RESULT, 2-3
LOW ORDER RESULT
LOAD LOW ORDER RESULT, 2-3
LOW-ORDER RESULT
STORE LOW=ORDER RESULT. 2-2
MAIN MEMORY FLOATING=POINT DATA FORMATs l=1
MANTISSA SHIFT
BINARY MANTISSA SHIFT, 5-3
MANTISSAS
FLOATING=POINT NUMERICAL REPRESENTATION OF
MANTISSAS, 1=3
MEMORY FLOATING=POINT DATA FORMAT
MAIN MEMORY FLOATING=POINT DATA FORMAT, 1=l
MOVING INSTRUCTIONS
DATA MOVING INSTRUCTIONS, 2-1
MULTIPLY i}
BINARY INTEGER MULTIPLYs 6-1 A
FLOATING MULTIPLY, 3-3 a
NUMERICAL REPRESENTATION
FLOATING=POINT NUMERICAL REPRESENTATION, 1=2
FLOATING=POINT NUMERICAL REPRESENTATION OF
EXPONENTSs 1=3
FLOATING=POINT NUMERICAL REPRESENTATION OF
MANTISSASs 1-3
OPERATIONS
AUTOMATIC FORMATTING IN ARITHMETIC OPERATIONS, 1=5 -
ORDER RESULT
LOAD LOW ORDER RESULTs 2-3
POSTNORMALIZATION, 1-5
PRENORMAL I1ZATIONy 1-5
PROGRAMMING CONSIDERATIONS+ 1=7
REGISTERS
FLOATING=POINT REGISTERSs 1=4
REPRESENTATION
FLOATING=POINT NUMERICAL REPRESENTATION, 1-2
FLOATING=POINT NUMERICAL REPRESENTATION OF
EXPONENTS, 1-3
FLOATING=POINT NUMERICAL REPRESENTATION OF
MANTISSASs 1=3
RESULT
LOAD LOW ORDER RESULTs 2-3
STORE LOW-ORDER RESULT, 2-2
SCIENTIFIC UNIT INDICATORSs 1-=4
SHIFT
BINARY MANTISSA SHIFT, 5-3
STORE
" FLOATING ACCUMULATORs 2-1
" LOW=ORDER RESULT.: 2-2
SUBTRACT
FLOATING SUBTRACT, 3-2
SYMBOLOGYs 1=7

TEST
FLOATING TEST AND BRANCH ON ACCUMULATOR CONDITIONS
5-1
FLOATING TEST AND BRANCH ON INDICATORs 5+2
TIMING NOTESe 1=8
UNIT INDICATORS a

SCIENTIFIC UNIT INDICATORSy 1l=4

HONEYWELL
ELECTRONIC
DATA

PROCESSING

WELLESLEY HILLS,
MASSACHUSETTS 02181

CRP J

