HONEYWELL EDP § '~ SOFTWARE MANUAL
SERIES 200

SERIES 200/OPERATING SYSTEM
MOD 1 (MASS STORAGE RESIDENT)

GENERAL SYSTEM: SERIES 200/OPERATING SYSTEM - MOD 1
(MASS STORAGE RESIDENT)

SUBJECT: Functional Description of and Programming
Procedures for the Components of the Mod 1
Mass Storage Resident Operating System.

SPECIAL This interim manual supersedes the bulletin

INSTRUCTIONS: entitled Preliminary Description of Series 200/
’ ' Operating System - Mod 1 (Mass Storage Resi-
N dent), Order No. 427, dated June 20, 1966.

More complete and definitive information will

be made available in a forthcoming series of
manuals fully describing the Mod 1 Mass Storage
Resident Operating System.

SPECIFICATIONS OF SOFTWARE COMPONENTS DESCRIBED HEREIN REMAIN SUBJECT
TO CHANGE IN ORDER TO ALLOW THE INTRODUCTION OF DESIGN IMPROVEMENTS.

e
- R

l DATE: December 1, 1966 FILE NO.: 123.0005.131C.0-427
N 9375
~ 41266

Printed in U.S. A. *Underscoring denotes File Number.

PREFACE

This interim manual contains functional descriptions of systern components and program-
ming information for the Series 200/Operating System - Mod 1 (Mass Storage Resident). More
complete information is forthcoming in a series of manuals (which will supersede this document)
that fully describe the programming and operating considerations for the Mass Storage Operating

System.

Section I introduces the Mass Storage Operating System and includes descriptions of certain
features which are not yet available. These features are described herein to indicate the scope
of the operating system and to place them in their proper perspective. Subsequent sections con-
tain descriptions of system components, as well as programmer's preparation information.
Section II describes the Supervisor, Section III describes the Data Management Subsystem,
Section IV describes the Program Development Subsystem, and, finally, Section V describes the
Utility Routines. A series of appendices provides additional information peculiar to the Mass

Storage Operating System.

Copyright 1966

Honeywell Inc.
Electronic Data Processing Division
Wellesley Hills, Massachusetts 02181

ii

“

-V

[

Section I

Section IT

TABLE OF CONTENTS

Introduction . « « ¢« ¢ & & & ¢« « o &
Operating System Objectives . . .
Functional Description

SUPErvisor « « ¢« ¢ ¢ ¢ ¢ o o o o
Job Control « ¢« &« « &
Program Loading . . « « « « «
Multi-Program Control

Data Management
Data Management Concepts . . .

File Organizations
Sequential Files
Indexed Sequential Flles .
Direct Access Files . . .
Access Modes+« . . .
Sequential Access
Direct Access . « « « « =

Mass Storage I/O Control Routines

Control Macro . « « o« o« « =«
Communications Macros . . .
Action Macros . . « « o « =«
File Support
Allocate/Deallocate Routlne
Load/Unload Routine

Map Routine
Program Development . .
Language Translators .
Easycoder Assembly .
COBOL . & 4 ¢ o o o o o o
Fortran . . . ¢ ¢ ¢« &« « « =«
Library Maintenance Routines .
Service Routines « « .+ .
Volume Preparation « « « « «
Sort ¢ ¢ ¢ ¢ ¢ 4 6 e e e e e .
EAit & & ¢ ¢ ¢ ¢ ¢ ¢ o o o o
Basic Equipment Requirements . .
Peripheral Devices

Supervisor 4 s o« .
Job Control ¢« & & ¢« 4
Program Loading . . + + & « + +
Functions of the Supervisor . . .

Executing a Job or Program . . .
Loading a Program Segment . . .
Exiting From a Program
Structure of the Supervisor . . .
Communication Area . . « « « « &
Floating Area . . o o
Executable Program Flle e o o
Directory .« o o« o « o o o« o o &
Program Segments
Communicating With Supervisor
EXECUTE Statement
Loading a Program Segment . . .
Detailed Description of Supervisor
Searching
Program Name (Locatlons 68 73)

iii

o
1]
Q
4]

| S O T I T |
NN OIO e B

i
BPHEHOOWYWWOYWOOOOIII

o

o

1
e e
PR OOO

MR R R R RR B RERERRERRRERRPRERPRRRERRRERRRP B
1

1-11
1-11

=
11
—

>

| S T T O I I |

I\)NNMNNNMN%\)NNNNNNNNN
OO R WWWWNDONRE R

TABLE OF CONTENTS (Cont).

Section II Segment Name (Locations 74-75) . . « e s e
(Cont) Visibility Mask (Locations 113- 118) « . ..
Loading . ¢« o « ¢ « « & . e e e e e

Relocation Augment (Locatlons 107- 109) . . .
Halt Name (Locations 77-84) . . « . « « « .
Exit to Owncoding . ¢ « « o + « o o« o = o
Owncode Return Points
Owncode Return Before Distribution
Owncode Return After Distribution
Starting e s e e e e e e
Starting Mode (Locatlon ll2)
Special Start Location (Locations 119- 121) .
Trapping Mode (Location 147)
Returning to the Supervisor . « . « ¢« « « +« &
Program Return for Segment Loading (Location
Program Exit Location (Location 139)
Other Features . . « « « o &« o ¢ o o o « « &
Fixed Starts e e e e e
Revision Number (Locatlons 65 67) o e e .
Current Date (Locations 142-146)
Upper Limit of Available Memory (Loc$tions

189 . .

Relocation Bank Indicator « . .
Program Calls for Segment Loading
Examples of Segment Loading . . <« « « « « &
Programmer's Preparation Information
Equipment Requirements . .« « « ¢« ¢ o o« ¢ ¢ « o o
Additional Usable Equipment . « « « ¢ o o o o«

Section III Data Management . . . ¢ ¢ ¢ ¢ ¢ 4 « o o o o « &+
Data Management Conventions . . « o « o o o o o
Data Conventions . . « ¢ 4 ¢ ¢ « o =« o ¢ o o«
Units of DPata . &« ¢ & ¢ o ¢ ¢ o o o« o o o
Item o ¢ 6 4 6 6 6t e e e e e e e e e e
Record o v v v ¢ ¢ 4 4 4 o 4 o o o o o o
Block ¢ v @ ¢ 4 v 4 ¢ e 4 4 e 4 4 e e e
File . v ¢ ¢ ¢ ¢« o « o o & e e e e e e
Relationships Between Units of Data
Record-to-Track . . . ¢ ¢« ¢« ¢ o ¢ o o o« &
Record-to-Block . . . ¢ ¢ ¢ o ¢ o « o o @
Item-to-Block . . . & ¢« v ¢« v ¢ 4 4 o 4 .
Block-to-Track . « « ¢ « ¢« o« « s « o « o«
Allocation Conventions . . « v v ¢ ¢ « « o o+ &
Volume Conventions . . . e 6 s e o o & o o o
Formatting and Volume Preparatlon e e e e
Bootstrap Records . . o« « o o o « o« « o « =
Volume Label ¢ & & 4 ¢« o« o o « o «
Volume Directory . « . ¢ ¢ v 4 ¢ ¢« o« o o « &
File Organization . . ¢ ¢ ¢ ¢ ¢ ¢ o« ¢« o « o &
Factors Governing Organization of Files . .
System Considerations
Storage Layout Considerations
Overall Efficiency « « .
Sequential File Organization . .
Direct Access File Organization .
Data Area .« o o o « o« s o o « o s o o« o

iv

Page

2-13
2-14
2-14
2-15
2-15
2-15
2-16
2-16
2-16
2-16
2-16
2-17
2-17
2-18
2-18
2-18
2-19
2-19
2-19
2-19

2-20
2-20
2-20
2-21

NN
U

DN
W w N

i
HFHOOODARWWWNONNNNNDNDN P

|
=
U W W

WWWWwWwWwWwwwwwwwwwwwwwwwwww
|

3-16
3-17
3-17

s

£

[

/<)

Section III
(Cont)

TABLE OF CONTENTS (Cont).

Cylinder Overflow Area . .
General Overflow Area . .
Overflow Options

- . - . . - . - - -

Relationships Between Direct Access Organization

Actual Key . « ¢ o« ¢ & +
Relative Key
Ttem Key « & ¢« o ¢ o ¢« o &

and Keys . . .

Relationship Between Direct Access File Processing

Null Ttems « o« o« ¢ « o o o o

Input/Output Control
File Processing Modes . . .

Input/Output Processing Mode
Input Only Processing Mode .
Output Only Processing Mode

and Keys . . .

General Usage of Processing Modes+ .+ .

Input/Output Macros . . .

Mass Storage Input/Output Control Macro - MIOC .- .

MIOC Format
MIOC Description
Mass Storage Communication
MCA Format« .
MCA Description
Action Macros

Area Macro - MCA , . . .

Action Macro Functions Related to All Sequential

Open Function
Close Function . . « .
Get Function
Replace Function . . .
Put Function

Files

- - . . - - .) . - . . .
. - - - . . .
.) . . - - . .

Action Macro Functions Related Only to Partitioned

Set Member Function .
End Member Function .
Alter Member Function
Release Function . . .

Sequential Files .

Action Macro Functions Related to All Direct

Open Function
Close Function
Get Function . « « . .
Replace Function . . .
Insert Function . . .
Delete Function . . .
MSOPEN . . &« ¢ o o o o o«
MCLOS e e o o o & & s @
MSGET .+ &« ¢ ¢ o o o s @
MSREP . . & ¢« o « o o o«
MSPUT . & ¢ « o « o o =
SETM ¢ ¢ ¢ « ¢ o o o o &
ENDM . ¢ & ¢ ¢« o o ¢ o @
MALTER o &« 4 o « o o o «
MSREL . . & o« o « o o @
MSINS . & ¢ « o o o o «

Access Files , .

Page

3-18
3-18
3-18

3-19
3-19
3-19
3-20

3-20
3-20
3-22
3-22
3-22
3-23
3-23
3-23
3-24
3-28
3-29
3-29
3-41
3-41
3-41
3-52

3-52
3-52
3-55
3-56
3-57
3-58

3-59
3-59
3-61
3-62
3-62

3-63
3-63
3-64
3-65

3-67

3-67
3-68
3-69
3-71
3-72
3-74
3-75
3-76
3-78
3-79
3-81
3-82

TABLE OF CONTENTS (Cont).

Section III MSDEL ., . . . e o o o e e s e e ° o & o =
(Cont) Writing a Macro Call « e .
Continuation Lines . . .
Omission of Parameters . .
Writing a Macro Routine .
Parameter Designators . . .
Selective Omission of-Coding
Conditional Statements
Tag Prefixes
Adding a Macro Routine to lerary Flle .« .
I/0 Control Programmer's Preparation Information
Program Organization . . . + « . .
MIOC Segmentation
Supervisor Restrictions
Card Loading and Segmentation .
MIOC - Physical I/O Relationships
MCA -~ Physical I/0 Relationships
a

.
e o & s
s * o o o
s & & o o & o o
e o .
. . .
. . .
* @ s & a
e ¢ & o & s o
*® & & @ & s a2 =
" o - .

Read/Write Channel Utilization
Address Mode . . +. &« « « « &
Index Registers &
Direct Access Addressing . .
Direct Access Item Key Speci
Exits and Halts . . .
File Support . + « ¢« « « &
Allocate Function . . .
Description
Allocate Function Job C
Format . « « « o « « &
Description
Function Statement .

File Statement . . .

ficati

Ooo'o

Size Statement . .

Units Statement .
Member Statement ¢« . . ¢ ¢ o ¢ o .
Allocate Function Job Control Language Example
Deallocate FUunction . ¢« « ¢ « « « o o o « o s o

Description o« e e
Deallocate Functlon Job Control Statement .« e
Format « . « & e e o e o e o

Description
Function Statement .
Volume Statement . .
File Statement . . .
Day Statement . .

Deallocate Function Job Control Language Example

Load/Unload Function « . .
Description . . e e s e e e e e o
Load/Unload Functlon Job Control Statement . .

Format « . . .

Description

Function Statement e o s e o o a2 o e o s @
File Statements . « « ¢ o ¢ o o ¢ o o o &«
Member Statement . « ¢« o« « o« ¢ o o o « o o
Exits Statement . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o« o .
Load/Unload Function Job Control Language

Example . . .

vi

Page

3-84
3-85
3-85
3-85
3-88
3-88
3-89
3-89
3-91
3-91
3-92
3-92
3-92
3-95
3-95
3-97
3-97
3-97
3-98
3-98
3-98
3-99
3-100
3-107
3-108
3-108
3-109
3-109
3-109
3-109
3-110
3-111
3-113
3-114
3-114
3-118
3-118
3-118
3-118
3-118
3-118
3-118
3-119
3-120
3-120
3-120
3-120
3-122
3-122
3-122
3-123
3-123
3-126
3-126

3-130

RS

i

()

TABLE OF CONTENTS (Cont).

Section III Map FUnction . o« o« ¢ o o o o o o o o « o s o o o o
(Cont) Description . . . e o o o s o o o o o o o o
Description of a File . . ¢« « « « + =«
Expired Files . . ¢ ¢ & ¢ ¢ o o « « «
Unused Are€as . + « o s o o o o o o =
Map Function Job Control Statement . .
Format « « ¢ « o o« o & & & &
Description«
Function Statement
Volume Statement
File Statement
Day Statement
Map Function Job Control Language Examples
File Support Programmer's Preparation Information
Considerations for Direct Access Files . .
Loading a Direct Access File

s e e o o o
.
.

e o *» & s o o

.
o]

Unloading a Direct Access File . . .

Considerations for Sequential Files . . .
Considerations for Partitioned Sequential Fil
Unloading a Partitioned Sequential File .
Loading a Partitioned Sequential File . .

Loading by File . . e o e e o e o

Loading Selected Members « o e e e e e e
Processing by Member Names . . . « « ¢ ¢ o & « &
Own-Coding . + . . e e o a2 & 2 e 4 o & o e e« @
Structure of Own—Codlng . . .
Own-Code Communication Wlth Load/Unload Functlon
Deletion of Items . . ¢« & ¢ o ¢ o o ¢ o o o &
Invalid Bucket AQAresses . « . « &« +« « o « & o
Insufficient Space . . « o ¢ o« ¢ o o o o« « o @

onoomc'oc

Section IV Program Development Subsystem . . . o o . e
Features of the Program Development Subsystem
Independent Operation for Each Programmer
Unbatched Operation « . « . &

Automatic Operation « . o . .
Elements of the Program Development Subsystem
Language Translators . « « « « « &
Program Library File Maintenance .
Library of Macro Routines . .,
Executable Program File . . .
Program Test Facilities
Easycoder Source Language Analysi
Easycoder Assembly . + « « + « « -«
General Description
Easycoder Assembly Functions . .

e ¢ s o e & & e s o
o ¢ & & & &8 ¢ s o 8 o+ o

Easycoder Assembly Language .

Easycoder Assembly Statements

Easycoder Assembly Function Job Control State

Format
Description . . .

Function Statement

MACRO Parameter

LIST Parameter .

GO Parameter . .

Date Statement . .

H e o ¢ s s 2 o & o s s 0 o

t
N e o

e o o s ¢ o s o s ¢ s s s o ¢ 0

1}

tat

s
o}

o 8 s o e s »
e s o 8 & & o
e o o o o
s o & & o s o
e & s o & o
e & & e+ & o
e« o o o o
s s s e »
¢« & o s s
.
e & @ o e &
s & o o e o
o« & 8 e o o
@ & e 8 & ¢ 8 e & & s e 2 e+ & s s s

vii

#hh&hh##hhfhkhh#hhhh
HEREOOOANRRRRWWONDNESREH

TABLE OF CONTENST (Cont).

Section IV Easycoder Assembly Function Job Control Language

(Cont) Examples . .
Library File Update . . . ¢ o ¢ ¢ o ¢ o ¢ o o o o o &
General Description . . ¢ & ¢ ¢ ¢« ¢ ¢ ¢ ¢« o ¢ o o &
Library File Update Functions . . « « « « « « o « &
Library File Input and Output Files
Library File Update Function Job Control Statements
Format « . ¢ o ¢ o v ¢ ¢ o ¢ ¢ o o o 4 o o e e o o
Description .« « ¢ ¢ o o o ¢ o « o o o o o o o o
Function Statement ¢ . . .
ACTION Parameter« . . o e e a4 .
New Program Name (NEWPROG) Parameter e e e e
Program Name (PROG) Parameter
LIST Parameter . « « o« o o « o o o o o o o o =
Date Statement « ¢« &« ¢ ¢ o o o . .

Library File Update Function Job Control Language
Examples .
Executable Program File Update « « ¢« « .« .

General Description . . . e s e e o 4 o e o o
Executable Program File Update Functions
Visibility e e e e 4 e e e s o

Executable Program Flle Update Function Job Control
Statement .

FOrmat . o« ¢ o o o o o o o o o o o o s o o o o o =
Description .« ¢ v ¢ ¢ o ¢ o & +o « o o o o o o o
Function Statement ¢« . « . ¢ . o . .
ACTION Parameter« ¢ « o o o o o o o« o &«

GO Parameter e e o s e s s e s e
Update Unit Key Parameters e e 4 s e e e e
New Update Unit Key Parameters . . .

Executable Program File Update Functlon Job Control
Language Examples . .
Program Development Programmer's Preparation

Information

Allocation of Files to Use Program Development . . .

System Residence File ¢ ¢ ¢ o« o o o o o &

GO File . & v ¢ v v v @ v v v o o o o 4 4 4 e 4 o

Library File . o . & v ¢ @« ¢« 4« o o o o « o o o o &

Assembly Work File 1 . . & ¢ v o ¢ ¢ ¢« o o & « & &
Assembly Work File 2

Section V Service Routines . ¢« v & ¢« & 4 ¢« ¢ ¢ o ¢ e s o s 8 e
Volume Preparation . . . ¢ ¢« ¢« ¢« 4 ¢ ¢ o « o ¢ o « o &
Functional Description . . « ¢« ¢ « ¢ ¢« ¢ ¢« o o o o &

Functions .« o v ¢ o o o ¢ o o o o o o o s o o o o
Track FOrmat . o o o ¢« ¢ o o o o o o o o« o o o« o o
Bad Surface Areas . . « « o+ o+ & e e e e e .

Volume Preparation Function Job Control Statements .
Format ¢ o o ¢ o o o ¢ o o o« o o o o o
Description . o & o ¢ o« o « ¢ o o o o o » o o o

Volume Statement . « .« ¢ & ¢ o ¢ 4 ¢ o o o o o
NAME Parameter . « « « o o o o o o o o o o o«
Maximum Number of Files Parameter
Device Address Parameter . . . « « « « o o o o«

Day Statement . . . ¢ ¢ ¢ ¢ o o « « o o o o o

Volume Preparation Function Job Control Language

Example . .

viii

Page

4-12
4-14
4-14
4-14
4-16
4-17
4-17
4-17
4-17
4-17
4-18
4-18
4-18
4-18

4-18
4-21
4-21
4-21
4-25

4-26
4-26
4-27
4-27
4-27
4-27
4-27
4-28

4-28

4-31
4-31
4-31
4-32
4-33

L L L

| I T I B I}
WwwWwwwwdhmhoNdNDRPEFRREE

[(LEGEG RO NG RO RGEO RO NS RGNS N R

I
K-S

~—
Section V
(Cont)
N’
k-2
—~.
N

TABLE OF CONTENTS (Cont).

Mass Storage SOort . ¢ « &+ ¢ o ¢ o o o o s e o o s

Functional Description « ¢« « ¢« ¢ & o « « .
Glossary of Terms . . « o o « o o o o o o o o o
Use of Mass Storage Sort . « v o o o o o o« =« o »
Summary of Capabilities «
Function by Program . . « « ¢« « ¢ o o o « o o @
Functions by Segment . ¢ ¢« ¢« « ¢ « & ¢ o ¢ o o

Presort e s s e o a4 s s e e & s
Merge One- Cyllnder e 4 s 6 s s e s e o e o o
Merge Multi-Cylinder« + « « + « « &

The Fetch MAacro . .« « o o o « o o o « o o o o«
Fetch Exits . . . e s 4 & o o o s e o o
Specialization of Fetch e o e e e e e e e s
Initiation of Fetch ¢« ¢« ¢ « ¢ « « .
Summary of Fetch Exits . . ¢« ¢« ¢ ¢« ¢ &« & « &

Fetch MaGCro .« o o o « « o o o s o o o o o o o
FOrmat . o o o o o o o o o o o o o s o « o o =
Description e e e o o e
Sort Function Job Control Statements e e s s+ =

Format o o o & ¢ 4 o ¢ ¢ o o o o o s o o o o o

Description . « o+ ¢ &+ o ¢ &+ o o « o o o s s o
Sort Statement . . e o o e o e &

High Memory Address (HMA) “parameter . . .
Sequence (SEQ) Parameter « « « .« .
Item Address (ITADD) Parameter
File Statements « + « « « « + .
Input File Statement « « «
Work Files Statements« .
Information File Statement
Fields Statement « . . .« « .
KEYS Parameter e e e 4 e o o o
Extract (EXTR) Fields Parameter o e 4 e
Select (SEL) Parameter . . . « « « « « .« .
Delete (DEL) Parameter o« o« o o o« &
Exits Statement e e e e e
Presort Open (PSOPEN) Parameter e e e e e
Presort Item (PSITEM) Parameter
MERGE Parameter & . ¢ « o « &
Program (PROG) Parameter
Vigibility (VIS) Parameter
Sort Function Job Control Language Examples . .

Sort Function Programmer's Preparation Information

Work Files . &« ¢ 4 v v o ¢ ¢ o o o o« o o o o «
Units of Allocation
Relationships Between Unlts of Allocatlon and

Sort Efficiency .

Calculation of Sort-Item Block Size

Calculation of Highest Memory Location
Available to Presort .
No Own-Coding Present . . ¢« ¢« « « o o o o«

Own-Coding Present e e s e e o
Own-Coding Outside Sort Area e o o e e =
Own-Coding Within Sort Area . . .« .

Highest Memory Location Available to Merge .« .
No Merge Own-Coding Present
Merge Own-Coding Present . . .« « ¢ ¢« « « + &

ix

o
v}
Q
(0]

|
HEHOONII~I0O0W0 &N

|
pd et et
NN OOO

mmwmmmmmklnmmmmmwmmw

5-14

(6]
i
[

s

5-14
5-14
5-15
5-15
5-15
5-16
5-16
5-16
5-17
5-18
5-18
5-18
5-19
5-20
5-20
5-20
5-20
5-21
5-21
5-21
5-21
5-23
5-23
5-23

5-24
5-24

5-25
5-25
5-25
5-25
5-26
5-26
5-26
5-26

TABLE OF CONTENTS (Cont).

Section V Own-Coding Outside Sort Area .,

(Cont) Own-Coding Within Sort Area
Calculation of Sort-Item Size

Calculation of Space Available to Merge .
Maximum Sort-Item Size Acceptable

Single and Double Buffering .

. - -

Calculation of Sort-Item Block Size for Slngle
Buffer Mode . .

Calculation of Sort-Item Block Size for Double
Buffer Mode . .

Calculation of Sort Work Area Required
Parameters Resident in Memory
Merge Own-Coding Program
Sort Key Fields .
Extract Fields . .
Select Option . .

« o o ®
« & o s e

e & & ¢ & &
. 8 e a2 e 0
e & o o o 8
" s 2 s o o

Delete Option . . o« .
Summary of Sort Parameters Resident in Main
Memory

Own-Coding . «
Presort Open
Presort Item—by—Item .

Definition
Processing an Item .
Adding an Item
Deleting an Item . .
Terminating Own- Codlng .
Merge Own-Code

Considerations for Using Fetch

Examine Sort-Item Only . . .
Single Buffering
Double Buffering

Examine Source-Item Only .

° e & & o
.
.
.
.
.
O N)
. e
. .
s e o &
.

« & o @
s e o 2 »
s 8 & s s+ e o e o
.
« & s o .
* e & o o
. .
. .
® o & o s s & & @
o« & o o .

Single Buffering . . .
Double Buffering . . .
Both Source-Item and Sort- Item
Initiation of Fetch
Use of Physical IO

H-¢ o o o o
Hh

- 0

1]

Qs

[xje o

»

[.
ot

me o
The o o o
o,
MDe o o o
o]

Mass Storage Edit
Functional Description . .
Functions of Mass Storage Edlt
Features of Mass Storage Edit
Header Line
Header Line Record . .

LR T T)
« & s e o &
* e e o o+ e
" o & e s o o
¢ s+ e

Data Portion Line ., « . .
End of Job Line . . e o
Edit Function Job Control Stateme
Format . . . ¢« ¢ o ¢ ¢« ¢ « &
Description
Volume Statement
From and To Parameters .
Device Address Parameter
File Statement « « . . .
Form Parameter . . ¢« ¢« ¢ o « o « + .
Device Address Parameter

-
« o
.
.

Page

5-26
5-26
5-27
5-27
5-27
5-27

5-28

5-29
5-30
5-32
5-32
5-32
5-33
5-33
5-33

5-33
5-39
5-39
5-39
5-39
5-40
5-41
5-43
5-43
5-43
5~-45
5-45
5-45
5-45
5-45
5-45
5-46
5-46
5-46
5-47
5-47
5-47
5-47
5-47
5-47
5-48
5--48
5-48
5-49
5-49
5-49
5-49
5-49
5-50
5-50
5-50
5-50

'yl

TN

TABLE OF CONTENTS (Cont).

Appendix A File Reassignment ¢ ¢ &+ o ¢ ¢ ¢ o o o o o o «
Introduction e o o o o o s s & o o o °
General Description of Flle Reassignment Job Control

Language . .

FOrmat « o o o o s o o o o o s o o o o o o o o o «
Description .+ v ¢ o o ¢ o ¢ o o o o o o s o o o & «
File Statement « + ¢ « ¢ ¢ ¢ v 0 . e . .
Other System File Parameter
File Name Parameter « « ¢« o« .« &
Device Type Parameter . . . « . o ¢ ¢ o « & o o o
Device Address Parameter . . . e e e s e o
File Reassignment Job Control Statements e e e e e e
File Statements for Program Development « . .
Library Update . . ¢ & ¢ ¢ ¢ v o ¢ 4 o o o o o o o &
Format . . ¢ ¢ & o ¢ ¢ o o o o o o o o ¢ = o o @
Description . . ¢ ¢ ¢ & ¢« ¢ o o « o o o o o o
Executable Program File Update . «. ¢« ¢« & 4« ¢ ¢ o o o« =
Format . . ¢ ¢ ¢« ¢ o ¢« ¢ ¢ o o o s « o
Description . « ¢ ¢ ¢ ¢ ¢« ¢ ¢ o o « &
Easycoder Assembly . . « « o « ¢ o o o &
Format « o ¢ ¢« o ¢ ¢« ¢ o ¢ o o »
Description . ¢« o« o « o o ¢ o« o o« o =
File Statement for Mass Storage Sort
Format . . « ¢« & ¢« ¢ ¢ o ¢ o 4 o o & »
Form Parameter . . .« o« o ¢ « o « o « o o =
Device Address Parameter . . « « « « o o o« « &

Appendix B Physical Input/Output Control . . ¢ . & ¢ ¢ o o« o « o &«
Introduction e e e
Mass Storage Phy51cal I/O Control (MPIOC) Macro o o o

MPIOC Format
MPIOC Description . .
Type Field
Location Field . . .
Operation Code Field . . . o « =« &4 o ¢ o o & o o o
Operands Code€ . o &2 « 4 o « © o s o o o o o« o o =
Mass Storage Physical Communications Area (MPCA) Macro
MPCA Format . . ¢ ¢ ¢ o o o o o o o o o s o s o o
MPCA Description ¢ o o o ¢ o o ¢ o o o o o s o o o @
Type Field . . ¢« ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o o o o o
Location Field . ¢ « ¢ & ¢ ¢ o o o o =« o o o o o
Operation Code Field . . . « ¢ ¢ ¢ ¢ ¢ « « o o o o

Operands Code e e s o 4 e o & o o .

Mass Storage Physical I/0 Actlon Macros . . . « .« .« &
READ Action MB3CIO .+ ¢ o ¢ o o« o o o o o o o o o o o
READ Action Macro Format . . . « 4 s « o o o o » o
READ Action Macro Description . .+ « « ¢ o« o « o »
Type Field . . o ¢ 4 o« ¢ ¢ o o o o o o o s o o o
Location Field . . e e o o o & o & ° o o @« o @
Operations Code Fleld c e o e 4 e e e e e e e
Operands Field . . « . ¢ & &« ¢ v ¢ ¢ o ¢ o o o »
WRITE Action Macro . . . e s & e o e s e e e v e
WRITE Action Macro Format e o o e & e e o = e o @
WRITE Action Macro Description ¢« ¢« + « « &
WAIT Action Macro . . . e o o o o e & o s & o o
WAIT Action Macro Format e o o e s s e e s o o o o

xi

Page

A-1
A-1

A-3
A-3
A-4
A-4
A-4
A-4
A-4
A-4
A-5
A-5
A-5
A-5
A-6
A-6

¥
©

Pl
ORBRABRBBRBRNNNDNONN R

mwmwmmwwmwmmww?wwmmmmmwmmmmwm

1
WVOOOONNNIIINO

Appendix B

TABLE OF CONTENTS (Cont).

WAIT Action Macro Format Description
Type Field e s e e s s e e e e e e e .
Operation Code Fleld e e e o e o e e e o s e o
Operands Field« . ¢« ¢ ¢ ¢ o o o« « « &

RESTORE Action Macro . . ¢ « o ¢ o « o« o« v o o « o« &
RESTORE Action Macro Format « ¢« « ¢« « o &
RESTORE Action Macro Description . « « « « « o« + &

VERIFY Action Macro . . . e e o s 4 s o e o e o o
VERIFY Action Macro Format e o e & s e e o o o e @
VERIFY Action Macro Description

Mass Storage Physical I/0 Programmer's Preparation
Information . .

General Information ¢ & ¢ ¢« ¢ ¢ ¢ ¢ o o .

Address Mode . . o &+ « & o « . e e e e e e

Special Considerations for Spec1fy1ng Parameters .
Use of Index Registers . . . « o o o o o o
Specifying a Variable PCU Number e e e e s e e

Considerations for MPIOC Parameter Specification . .

Suffix Character ¢ ¢ ¢« ¢ ¢« ¢« o ¢ o« o s
PCU Assignment . . . e s e e s e e e e o
Read/Write Channel Deflnltlon e e e e e e e e e .
Considerations for MPCA 4 ¢ ¢ &« o « o o « =«

File Prefix . . . e e o o o s e o a4 e o o
Suffix of Related MPIOC e e e s o s e e e s o o @
Buffer Address (AAD) . . & v v ¢ « ¢ o o o o o« o
User's Uncorrectable Error Routine Entrance (EAD)
Type of Read or Write (TRW) « ¢« « « o« .
Control Unit Current Address and Status
Considerations for Action Macros . .« .« o « o o o o «
READ Action Macro . . « o e o o o o o o o o o o =
WRITE Action MACIrO . v 4 o v o o o o o o o o o o
VERIFY Action Macro . . « & ¢ ¢ o &4 &« o o o o o o«
WAIT Action MAacro. . . « « ¢« o s « o o o « o &
RESTORE Action Macro « e e e o o o
Considerations for User's Uncorrectable Error
Routine . .
Re-Execution of Correction Procedure . . .". . . .
Bypass Error Condition
Issuing New Macro Call « & ¢ o « « & o o &

I/0 Communications Area Service Macros . .« « « « « « .« .

Appendix C

Introduction . .« v ¢ ¢ ¢ ¢ &« ¢ 4 o o o o e s e e o
MLCA MACIO v o o o o o o o o o o s o o o o o o o o
MLCA Macro Format . ¢ o o o o o o o o o o o &
MLCA Macro Description + + « ¢« ¢ &« ¢« « .
Type Field . . ¢ ¢ ¢ v ¢« ¢ o o o o« o o o o o o o
Location Field ¢ ¢ ¢ ¢ ¢ v = & ¢ o « « o =«
Operation Code Field & ¢ « « &« o & « o &
Operands Field ¢ ¢ ¢« ¢ ¢ v v v o o o o o
MUCA Macro . . . e o & e s o e e e o s e o e
MUCA Macro Format e e e e s o e e e s s+ e e s+ = o
MUCA Macro Description « ¢« ¢ ¢« v v ¢« o « .
Type Field . . ¢ v ¢ ¢« ¢ 4 ¢ 4 o o o o s o s o o
Location Field . . ¢ o v & & ¢ o o o o o o o « o &
Operation Code Field «
Operands Field « ¢« ¢« ¢« « ¢« « .

xii

el
o]
Q
(]

[L P R R L)
= = = O OO OO0

wowowowwow

QOO0 O00000000N
GO BB RBRONNNNR

1

TABLE OF CONTENTS (Cont).

N

Appendix C Programmer's Preparation Information . . . e o o .

{Cont) General Description of MLCA and MUCA Macros « o .

MLCA MAGCrO o« o o o o o o s o o o o o s o o o o »

MUCA MACrO .« & o o o o o s s o o o o o o o o o =

3 MLCA and MUCA Parameters . . . e s e e e e
Error Type Indicator (ERI) Mnemonlc Designator .

Address Register Contents at Time of Error Exit
v Appendix D Tape and Card Formats Used in File Support Load/Unload
Function .

Introduction o« « o o « ¢ o o ¢ s o o o o o o o o o e

One-Half Inch Tape Formats . . « « « o ¢ « &+ o o « =«

Header Label . . . ¢ ¢ ¢ ¢ ¢ ¢« o ¢ o o o o o« o o @

Data RECOrdS « v o o« o o « o o o o o o o o o o o =

Trailer Lables . + ¢ + o o o o o o o o o o o o o

Tape MAarks . o« o ¢ o o s o o o o o o o o o o o o &

Card File Formats .« o« o o o o o o o o o « o o o o =

Header Label+ ¢ ¢ ¢ ¢ ¢ o« v o o o o o o o =

Data RECOrdS . . « ¢ o o o « o o = o s o s o o o

Trailer Labels . « ¢ o o o o o o o o o o o « o o

Appendix E Partitioning . o+ ¢ ¢ & o ¢ o ¢ o o« s o o o o « o s o @
Introduction . + v ¢ 4 « o o o o o o o « o o o o o o

Member IndeX . . « o o« ¢ o o o o o o o o o s o« o o «

— Appendix F Mass Storage File Protection « . ¢« « ¢ o« .

File Protection .« o o « o o o ¢ o o o o o o o o «
Write Protection . « ¢« & ¢« ¢ o o « o o &
Pagssword Protection . ¢ ¢ « ¢ o o ¢ o o ¢ o o ¢ o =«

Appendix G Space Allocation for Sequential Files . . + ¢ o « o« &

Appendix H Allocation and Addressing for Direct Access Files . .
Space Allocation . . . ¢« ¢ ¢ ¢ 4 4 4 4 4 e e e e
Allocation Procedures . . . « « « o+ o

Appendix I Randomizing Techniques
Randomizing Addressing « « « o ¢« o « o o « « o« &

Prime Number Division . . + ¢ &« ¢« ¢ ¢ & « o« &

Square Enfold and Extract . . . ¢ ¢ ¢« ¢ o s o o

Radix Conversion « + « « . .

Example of Compression . . . ¢« + & « ¢ & &« « « &

Now Numeric Item Keys . . « + ¢« & ¢« + o o & o+ &

. Multi-Field Keys . +.
Frequency Analysis . « . . « & ¢« v 4 ¢ ¢ « o « =

xiii

Page

0(1()9(3(30
(s JEN IEN IEN N e e)]

Uopoouu
1 UL

U(j$10tjd

|
BB DR W N

t'jtl"-:ltlj
e

ey
W=

1 |
[y

E!?:n ()
W

HHHHHMHHKH
i
P O30 RN

Figure 1-1.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6,
Figure 5-1.
Figure 5-2,
Figure 5-3.
Figure B-1.
Figure E-1,
Figure E-2.
Table 1-1.
Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.
Table 3-10.
Table 3-11.
Table 3-12,
Table 3-13.
Table 3-14.
Table 3-15.
Table 3-16.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 5-1,
Table 5-2.
Table A-l.
Table B-1.
Table B-2.
Table C-1.
Table C-2.
Table G-1.
Table H-1.
Table I-1.

LIST OF ILLUSTRATIONS

Components of the Mass Storage Operating System . .
Illustration of Unit of Allocation
Acceptable Allocation of a File
Unacceptable Allocation of a File ., . . .
Overall Concept of a Cylinder
Data Path for Overflow Options in Direct Access File
Program Segment Loading . . e o e & e e o o o o o
Illustrations of Input Item Punctuatlon .« o o o o
Contents of Item Address That May be Appended to
Sort-Item
Punctuation and Format of Sort Item When Made Available
to Merge Own-Code Program .
MPCA Ten-Character Field e e e e .
Member Index for Partitioned Sequentlal Flle . e e o e
Sequential File Using Partitioning Option

« s e e

LIST OF TABLES

Devices for System Files . . ¢ o v ¢« o« o o o o o o o o
Supervisor Communication Area
Summary of Supervisor Parameters . . .

Search Mode (Location 111) Designators . « « o « « o « «
Relocation Banks . . ¢« &« ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o & o .
Volume Label Description ¢ « o« o « o o o o ¢ o o & . .
Volume Directory Description ¢ « « « o« &
Single Cylinder in Direct Access File Organization

Input/Output Macros . . . «
MIOC Parameters . . « « « &

MCA Parameters
Action Macro Calls e e e e e .
MCA Parameter 4@ - Volume Directory Exit .
MCA Parameter 41 - Index Exit . . .
MCA Parameter 42 - Every Index Entry Ex1t
MCA Parameter 42 - Data Exit
MCA Parameter 44 - Device Exit
Allocate Function Job Control Statements .
Deallocate Function Job Control Statements
Load/Unload Function Job Control Statements
Map Function Job Control Statements« .
Easycoder Assembly Statements . . . o o e e
Easycoder Assembly Function Job Control Statements
Library File Update Job Control Statements
Executable Program File Update Function Job Control
Statements
Disk Table . . ¢ ¢ ¢ &v & o o ¢ o o s o o o o o o s o o
Sort Parameters Resident in Main Memory
Function and Definition of System Files
MPIOC Parameters . . « « o o o o o o o s o s s s o
MPCA Parameters e e o & 4 s e e a4 s e ¢ o o

MLCA Mnemonic Designators for MLCA and MUCA . . .
Additional Mnemonic Designators for MUCA , . .
Optimum Record Size « ¢« &« & & o &
Overflow Probabilities . . . « . « . « . .
Prime Numbers . . . ¢ ¢ o« ¢ ¢ ¢ o o o o« «

e & & o o e
.
.

" ¢ e o s 0
.

" &

xiv

ao)
o))
Q
o

(6} U'lw(A)(erwWI—‘
OR300 EeN

I
>
)

mru?cn
INEVIE S
o

[t

)

SECTION I

INTRODUCTION

The Series 200 Operating System Mod 1 (Mass Storage Resident) is an
integrated software data processing system. It includes the sophisticated
software necessary for simplified programming and efficient operations, and
brings the advantages of mass storage to users of the Series 200 Computer
Systems. The operating system runs with all Series 200 systems that have at

least 12K characters of main memory and a mass storage device.

In the operating system, data is handled by macro statements used with
the Easycoder assembly language, and by the mass storage language elements
incorporated into the COBOL and FORTRAN Compilers. The user controls the
operating system by instructions to a monitor program. The monitor program
runs the jobs, supervises multi-programming, and calls other system programs

as they are required.

OPERATING SYSTEM OBJECTIVES

The operating system, Whose components are shown in Figure 1-1, is
designed to achieve four major objectives: provide assistance to the uyser,
increase system throughput, reduce response time, and provide for flexibility

and orderly growth of the computing system.

Assisting the user is accomplished by providing data and program
management facilities, providing easily understood programming languages and
translators that convert these languages into executable programs, providing
standard modes of operation so that the programmer is not normally required
to prepare large amounts of control information, and by providing facilities
for operator communication with the system through specific, clear instruc-

tions.

JOB CONTROL

DATA CONTROL

SUPERVISOR FILE SUPPORT
L o N T Tee S LA
| % \ =/ o~/ |
B N Sy |25/ 59 |
| =) \ Zz% =</ 90O / |
! ” N 58/ &8/ & 5!
{ (o‘q \\ (o) O:,' / dib// é\ @e« ! -
L % N\ ° ST/g/ &/ & 13
'~Q (oY \ "LI.II&\/ /N «v //I -
NG \ WYY '/ S 7o
' ~ \ I/ 2 - | !
: \\\ Vo //\:E N | S
My S g3 oN 178
| éZ’%GR | USERS' DATA | ogsG“‘ff\/”} =
| NTRo M FILES AND | poTouTPuT |
l LIBRARY \ UTINES |
OF l
L4 |
1 N
pREPp‘RA //// \\\\ T/ON :
Ve < ~ |
i / // \ D N !
Pid / / A A o I
-7 // Q. / \\ @ ,(\06\ \\\ |
/// // v.,\0 // > o \\ ‘741/)/< &4 4[
L~ / Q& / zﬂ \ é\ 6\ @ |
Q« / Q’ / > O \ % | w
& /7 Q? / ‘:L% N 4’0 | o
’ o / Mk \ & (= 2
A v N~ »Z Al
7 <§? / qQ \\ Len &
/ Al / G [> 1Y)
7/ (%) \ | n =
// 6\ // ——————————— }A —————— 4 m %
i PROGRAM DEVELOPMENT—@ | =
Q
UTILITIES PROGRAM PREPARATION——<ZI

FIGURE 1-1. Components of the Mass Storage Operating System

1-2

a

SECTION I. INTRODUCTION

Throughput, the total amount of work performed by the system over a

period of time, is increased in the following ways:

1.

The operating system can process a continuous stream of jobs without
delays via the automatic transition from one job to the next. Delays
(due to operator mounting and demounting of input/output volumes) are
reduced because all system programs and libraries of user's programs

can be resident on the same on-line mass storage volume and may use

work areas on the same volume.

The operating system uses the direct access abilities inherent in
the mass storage device to locate programs and files without time

consuming searches.

The operator system efficiently uses the physical resources of the
computer system. It can overlap central processor operations with

input/output operations.

It can control the allocation of central processor time, switching
from one program to another while awaiting the cbmpletion of an

input/output operation. (This process is termed multi-programming.)

Response time (turn-around time) is the interval between the time a job

is submitted for processing and the time that a result is available. Response

time is reduced in the following ways:

1.

Operations are unbatched; i.e., initiated, performed, and completed
on a single job at a time. This provides output to the user without
time consuming delays caused by waiting for other jobs to be complet-

ed (as in batched operations).

In an integrated system, input/output opsrations can be performed
concurrently with normal processing. This eliminates the delays

caused by the transition from operation to operation and by human

1-3

SECTION I. INTRODUCTION

activity involved in performing such operations on an off-line

peripheral system.

Flexibility and orderly growth of the computing system are provided
for through a variety of programming facilities. The open-end design of the
operating system allows the user's programs and data files to be incorporated
easily into the system. Because the system is made up of independent modules,

the facilities of the system can be combined in a variety of ways.

FUNCTIONAL DESCRIPTION

The operating system provides supervisory, data managing, program
development, and service functions. ‘Each of the four major functions is
performed by a subsystem of the operating system. These subsystems are
named for the function they perform. That is, the subsystem that performs
supervisory functions is the Supervisor, the subsystem that performs data
managing functions is the Data Management subsystem, etc. The basic functions ~
of the Supervisor are controlling the sequence of jobs and finding and load-
ing the programs to perform a job. The primary function of the Data Manage-
ment subsystem is the creation, maintenance, and input/output processing of
all files. The Program Development subsystem's primary functions are the
creation and maintenance of libraries of programs, and the source language
translation to machine language. The Service subsystem performs functions

such as sorting and editing generally required in any EDP installation.

&

Supervisor

All processing done by the operating system is done under the general
control of the Supervisor. The Supervisor controls processing by performing

its functions of Job Control, Program Loading, and Multi-program Control.

SECTION T. INTRODUCTION

JOB CONTROL

Job Control is, simply, the automatic sequencing from one job to the
next. The Supervisor performs this function based on information read from
the Job Control File. The Job Control File is the input stream of control
information identifying a job and defining its reguirements. The Supervisor
reads the Job Control File and then activates the appropriate element of the
system to complete the job. When the job is completed, the activated element
informs the Supervisor, which then reads the input from the Job Control File
again. This sequence of events goes on until there is no more input in the

Job Control File.

PROGRAM LOADING

Program Loading consists of locating the appropriate system program or
user program in the machine language program file on the mass storage device,
loading it into core memory, and starting its execution. The Supervisor
determines which program to load by reading the Job Control File. Several
options are provided to control the searching, loading, and starting sequence
so that the programmer has complete freedom to set up exactly the sequence of

functions he desires.

MULTI~-PROGRAM CONTROL

Multi-program Control consists of controlling the simultaneous
execution of two programs. The Supervisor controls the sharing of central
processor time between the two programs by automatically switching execution
from one program to the other, and performing the necessary housekeéping
operations. This type of multi-programming is called foreground/background
operation. The foreground program user the peripheral interrupt feature and,
to run effectively in the multi-program environment, should be peripheral
bound. An example of a foreground (peripheral) program is one that would
perform a communications job such as on-line inquiry or real-time updating.

The background program does not use the peripheral interrupt feature, such
1-5

SECTION I. INTRODUCTION

as most of the systems programs of the operating system. The background
program is processed durihg the data transfer time of the foreground program.
This facility for Multi-program Control is similar to that offered by

Interrupt Control D of the Operating System - Mod 1 (Tape Resident).

Data Management

The Input/Output routines and the File Support routines make up the
Data Management subsystem. Mass Storage I/O routines of the Data Management
subsystem are a set of macros that enable the programmer to control the I/O
operations for the mass storage device performed by a given program. The
File Support routines are used to create and reorganize the files stored
on the mass storage device. This includes structuring the data into one of

the Honeywell standard file organizations.

DATA MANAGEMENT CONCEPTS

The fundamental concept of data management is that all data in a system ~
is organized according to established rules. These rules govern the organiza-
tion of data into files. The type of file organization governs the access

modes that can be used on that file.

File Organizations

The operating system provides individual sets of rules for organizing

three types of files; Sequential, Indexed Sequential, and Direct Access Files.

SEQUENTIAL FILES: The operating system accepts files in which data are

organized sequentially. In a sequential file, items are arranged in any -
logical succession perscribed by the user and are accessed in logical and

physical order. The user may, optionally, establish several collections of
sequentially arranged items in one sequential file. This option is called
partitioning and, when used, each individual collection of items is known

as a member of the file., Access to the beginning of a sequential file and
1-6

€l

SECTION I. INTRODUCTION

to the beginning of a member of a partitioned sequential file is direct.

INDEXED SEQUENTIAL FILES: The operating system also accepts files in which
the data are organized in sequence and includes indexes of item keys and
addresses. The sequence of items in an indexed sequential file is by item
key fields. The indexes are a series of item keys and addresses that enable
the user to access items either sequentially or directly by item keys. The
user does not process or maintain these indexes. One of the benefits of this
type of file organization is that items can be inserted in sequence and

deleted without copying the entire file.

DIRECT ACCESS FILES: In the direct access type of file organization, the
file is created by the user supplying a mass storage address indicating

where the item is to be loaded.

Access Modes

The types of file organizations available with the operating system

enable two access modes to be used; Sequential and Direct Access.

SEQUENTIAL ACCESS: Sequential access refers to obtaining or placing items
sequentially (in succession). This method of accessing items can be used
with either the Sequential file organization, with the Direct Access file

organization, or with the Indexed Sequential file organization.

DIRECT ACCESS: Direct Access refers to obtaining or placing items individually
or directly. This method can be used with the Indexed Sequential files and

with the Direct Access files.

MASS STORAGE I/0 CONTROL ROUTINES

The I/0 Control routines are a set of macros that enable the programmer

to control the I/0 operations for a mass storage device. These macros are

1-7

SECTION I. INTRODUCTION

named according to their functions as Control Macros, Communication Macros,

and Action Macros.

Control Macro

The Control Macro is that portion of the I/O that performs the actual
I/0 processing. This macro is specialized when assembled to reduce the
amount of coding required in main memory and eliminate or include coding as
directed by the programmer. The elimination of coding from main memory
frees up space for the execution of programs and the inclusion of.only the
required coding assures the programmer that certain operations will not be

performed inadvertently.

Communications Macros

The Communications Macros enable the user to communicate with the I/0
routines. For instance, when the system is instructed to open a file for
processing and the specified file cannot be found, an exit as specified in
the communications area is made to a user supplied routine that determines

whether or not the search should continue.

Action Macros

The Action Macros perform such functions as opening and closing files
and getting and putting items. This saves the programmer the time and
trouble of coding these subroutines himself, and by judicuous specialization
via the Control macro, saves main memory locations. For instance, thg
coding to open a file contains instructions for opening both sequential and
direct access files. If only sequential files are to be processed, the

instructions that apply only to opening a direct access file can be eliminated.

SECTION I. INTRODUCTION

FILE SUPPORT

The File Support routines are used for the creation and maintenance of

all files. These routines are named for the functions they perform.

Allocate/Deallocate Routine

The Allocate/Deallocate routine allocates space for a file and automati-
cally formats that space to accommodate the file, and deallocates files, thus

making space available for new files.

Load/Unload Routine

The Load/Unlocad routine loads and unloads files onto and off of a mass
storage device to or from magnetic tape, punched cards, another mass storage

device, or the printer.

Map Routine

The Map routine maps the mass storage volumes to provide a tool for

determining where on a volume a new file can be written.

Program Development

The Program Development subsystem is an integrated set of routines that
assist the user in the process of program creation, translation, modification,
and testing. The user makes one request for a connected series of operations
on a single program or library routine and the Program Development element
automatically controls the sequencing of the various operations in the job.
For example, one request might perform the following: updating a program
in a source language library, COBOL compilation, storing the output in an
executable program library, and execution of the program for testing. To
accomplish its functions, the Program Development element is made up of

language translators and library maintenance routines.

SECTION I. INTRODUCTION

LANGUAGE TRANSLATORS

The operating system provides languages that enable the programmer to
express procedures in forms that can be easily learned and readily used, and
translators that convert such programs into a machine-executable format. All
language translators in the operating system produce the same format of
machine-executable code and can store their outputs on a common file. The
Easycoder Assembly, COBOL and FORTRAN language translators are provided for

use with the operating system.

Easycoder Assembly

Easycoder Assembly is a symbolic, machine-oriented assembly language
with facilities for inclusion and specialization of macro routines. The
language level is comparable with Easycoder D of the Operating System - Mod 1

(Tape Resident).

COBOL

COBOL is a business data processing language that is close to normal
English language usage. The language level is comparable to COBOL B of the

Basic Programming System.

FORTRAN

FORTRAN is a scientific language similar to usual mathmetical notation.
The language level is comparable to FORTRAN D of the Operating System - Mod 1

(Tape Resident).

LIBRARY MAINTENANCE ROUTINES

The Program Development element has two library maintenance routines:
one to maintain libraries of source language programs, and one to maintain
libraries of machine-executable programs. The source language library

update routine can add, delete, and replace routines and can correct individual

1-10

(¥}

€

SECTION I. INTRODUCTION

statements in a source language program. The machine-executable program
library update routine can add, delete, or replace routines in this library.

This library is created from the output of the language translators.

Service Routines

The operating system provides service routines to perform commnon data
processing functions. Routines are provided to perform volume preparation,

sort, and mass storage edit functions.

VOLUME PREPARATION

The volume preparation routine prepares the mass storage volume for use
under the Data Management conventions. Volume preparation must be performed
once for every mass storage volume at the time the volume is entered into

the operating system.

SORT

The sort routine involves ordering the sort key and the address of
the associated items. Additional data fields may be extracted, if desired,

or the original source item in the sort ordered sequence may be accessed.

EDIT

The editing and printing of selected areas of a mass storage volume

is accomplished by the edit routine.

BASIC EQUIPMENT REQUIREMENTS

The basic equipment required to use the operating system is listed

below. Some elements require more than the basic configuration.

SECTION I. INTRODUCTION

Series 200 Central Processor1 (any model) with control panel.
Advanced Programming Instructions (Feature 010, 011, or 1011).
12,288 characters of main memory, of which about 1,500 are required
for the Supervisor.

1 mass storage control unit, (Type 255, 257 or 257a).

1 mass storage device for system residence, (Type 256, 258, 259 or

259Aa).

The Honeywell Series 200/Operating System-Mod 1 (Mass Storage Resident)
is designed to operate ultimately with several different mass storage
devices. Each control unit for each device allows as many as eight mass

storage devices to be connected to the Series 200 computer.

The equipment in the preceding list is the minimum equipment require-

ment., The systems files can be contained on this equipment.
The required configuration offers the following capabilities:

1. Supervisor -- Seqgiential job control from card reader, program
segment loading from mass storage, and communication via the

control panel.

2. Input/Output Routines -- All supported file organizations. The
main memory required is assigned to the user's program so that
if more memory is available, additional functions can be performed

in the user's program.
3. File Support Routines -- All file support routines.

4. Program Development Subsystem -- Assembly and executable and

source language program file maintenance.
5. Volume Preparation.
6. Mass Storage Sort.

7. Mass Storage Edit.

1This includes the Type 201-g and 201-1 Central Processors.
1-12

Devices For System Files

FILE

EQUIPMENT

System Residence
Job Control

Operation Control

Operator Information

Input

List

GO

Library

mass storage

o

card reader

console Type

printer, or
console Type

N

device

control panel, or

220

220

1 card reader (may be same as

Job Control)

1 printer (may

be same as

Operator Information) or

1 mass storage

device (may

be same as System Residence)

1 card punch, or

1 mass storage
same as System

1 mass storage
same as System

device (may be
Residence)

device (may be
Residence)

Work Files 1 mass storage device (may be

same as System Residence)

NOTE: A standard mass storage volume may be used to run all system
programs in the Mass Storage Operating System. This volume is
formatted for all the permanent and work files required for the

system.

The equipment required for major capabilities not included in the

preceding paragraph is listed below.

1. Supervisor Options - Additional main memory is required for use
of each of the following options:
Multi-Program Control.
Communication via console keyboard/typewriter.

Program segment loading above location 32,767.

2. COBOL - 12,288 characters of main memory. Edit Instructions

(Feature 013 or 1013).
1-13

SECTION I. INTRODUCTION

3. FORTRAN - 20,480 characters of main memory. Edit Instructions

(Feature 013 or 1013).

Peripheral Devices

The Mass Storage Operating System supports certain peripheral
devices by providing input/output routines to perform necessary operations
on files stored on or accessed through those devices. These routines may

be requested and used in Easycoder, COBOL, and FORTRAN language programs.

Equipment supported includes:

Mass Storage (Types 256, 258, 259, or 259A)
Magnetic Tape (Type 204B)

Card Reader

Card Punch

Printer

SECTION II

SUPERVISOR

All operations in the Mass Storage Overating System are performed
under the general control of the Supervisor. The Supervisor performs three
main functions: job control, loading and starting execution of program
segments, and multi-program control. (Multi-program control is not part
of the first release of the Mass Storage Operating System, and is not

described in this edition of the manual.)

JOB_CONTROL

Job Control is the automatic sequencing from one job to the next. The
Supervisor performs this function based on information read from the Job
Control File. The Job Control File is the input stream of control infor-
mation identifying a job and defining its requirements. The Supervisor
reads a statement from the Job Control File and then activates the appro-
priate element of the system to complete the job. When the job is completed,
the activated element informs the Supervisor which then reads from the Job
Control File again. This sequence of events continues until the input in

the Job Control File is exhausted.

PROGRAM LOADING

Program Loading consists of locating the appropriate system program or
user program in the machine languagekprogram file on the mass storage
device, loading it into core memory, and starting its execution. The
Supervisor determines which program to load by reading the Job Control File.
Several options are provided to control the searching, loading, and starting
sequence so that the programmer has complete freedom to set up exactly the

sequence of functions he desires.

SECTION II. SUPERVISOR

FUNCTIONS OF THE SUPERVISOR

The Supervisor is initially bootstrapped into main memory from mass
storage. This operation is performed once; the Supervisor can then

function continuously without being reloaded.

Once in memory, the Supervisor is ready to perform its functions of
job control and program segment loading. The Supervisor is controlled by
the user in one of two ways: (1) Job and program sequencing are controlled
by job control statements. (2) Segment loading within a program is con-

trolled by programmed calls to the Supervisor.

Executing a Job Or Program

The Supervisor starts by reading the Job Control File, which is
normally on punched cards and is read into memory via the card reader.
The Supervisor searches for an Execute statement. The Execute statement

directs the Supervisor to locate, load, and start a named program segment.

Alternatively, the operator may enter job control statements through
the control panel. (A later extension will provide the ability to enter

job control statements through a Type 220 Consocle keyboard).

Loading a Program Segment

When the current segment of the program has completed operation, it
transfers control to the Supervisor to load another segment. To do this,
the program executes a macro calll to the Supervisor. The 3upervisor
then searches the directory for the mass storage address of the specified
segment, loads this program segment into the locations specified by

assembly or compilation, and starts execution of the program segment.

L

1Macro calls will be defined at a later date.

2-2

SECTION II. SUPERVISOR

Exiting From a Program

When a program has completed operation and does not wish to load
and execute another segment, it issues a macro c¢all to the Supervisor. The
Supervisor then reads the job control file for a new Execute statement and

starts the new job or new program.

STRUCTURE OF THE SUPERVISOR

The Supervisor is a segmented program, part of which is permanently
resident in main memory. Other segments are called in from mass storage-
as they are required. The Supervisor occupies two areas in main memory:

the communication area and the floating area.

Communication Area

The communication area is an area fixed in lower memory that includes
location @ and locations 61 through 189. The index registers, locations
1 through 60, are available to the user. The communication area contains
the necessary information for the Supervisor to perform its searching,
loading, and starting functions. The content of the communication area is

shown in Table 2-1.

Floating Area

The floating area is an area in upper memory whose size depends on the
selection of Supervisor features made at system generation time. This
portion of the Supervisor can be "floated" to the upper memory locations
in two ways: (1) At execution time, when the Supervisor can relocaté
itself to the highest bank (unit of 4,096 characters) of memory. (2) At
sYstem generation time, when the Supervisor can be specialized and assembled

to reside permanently in the highest bank of memory.

SECTION II. SUPERVISOR

The advantage of "floating" the Supervisor is that it is possible to
provide a common origin for all programs that operate within the system.
The highest address used by the communication area is location 189
(decimal) . Programs may be assembled above this area. On the other hand,
if the remainder of the Supervisor were to be placed immediately behind
the communication area, the origin of operated programs would vary because

the size of the Supervisor varies.

Although the "floating" portion of the Supervisor does vary in size,
the "high memory address" field in the communication area (locations 187
to 189, see Table 2-1 below), always contains the highest memory location
available to operating programs. Thus, the user always knows the lowest

and highest memory addresses available to operating programs.

Part of the floating area contains resident routines that are always
in memory. A second part is an overlay area where less frequently required

routines of the Supervisor are brought in as they are needed.

EXECUTABLE PROGRAM FILE

Programs to be operated under control of the Supervisor are stored in
the executable program file on mass storage. An executable program file
is a partitioned sequential file, composed of two areas, a directory area,

and a program data area containing the program segments themselves.

Directory

The directory is a table (the member index) giving the name and mass
storage location for every program segment in the file. Each item in the

directory refers to one program segment.

The capacity of the directory, which determines the number of program
segments that may be contained in the file, is specified by the user when

the executable program file is created through a file support allocation run.

2-4

SECTION II. SUPERVISOR

I

Program Segments

The data area of the executable program file contains the program

segments or "loading units."

A loading unit is the portion of code

located and loaded as the result of one programmed call to the Supervisor.

The area allocated to the data portion of the executable program file

determines the total amount of code that can be stored in the file.

COMMUNICATING WITH SUPERVISOR

The following paragraphs discuss the two methods by which the user

communicates with the Supervisor. (1) Job and program sequence control

by means of job control statements, and (2) segment loading within a

program and exiting by means of programmed macro calls to the Supervisor.

EXECUTE Statement

The execution of a job or of a program is requested by an Execute

Statement in the job control file. The Execute statement directs the

Supervisor to locate, load, and start a named program segment. The format

of the Execute Statement is:

PROBLEM

EASYCODER

CODING FORM
PROGRAMMER ___ = DATE . . __ ___ _PAGE____OF____

CARD
NUMBER

LOCATION

OPERATION
CODE

OPERANDS

v 213 als

o [Mro—<—|
~ XD

1alis, 20121 |

62,63 |

J vzl | ke, | L

[

L 1

1

L i . L t

f

i 1

I

1 L L " L

|
|
|
!

I i

l_s A A "
EX Droa&E.g.n.lm&r_@ALﬁpmsegname ey . et -
J
vl s

i

L i Il PUN S

Where:

progsegname =

haltprogsegname

The program and segment name of the program
segment to be executed.

The Supervisor halts after the program and

segment name are loaded. The brackets[.]

indicate that this parameter is optional.

SECTION II. SUPERVISOR

The program segment name consists of eight (8) characters; the first
six (6) are the program name and the last two (2) are the segment name.
The characters must be chosen from the letters A through Z and the digits

0 through 9; no other characters may appear.

Program segment names for system programs supplied by Honeywell for
the Mass Storage Orerating System always begin with an asterisk (*) to

prevent any duplication with user program names.

Loading a Program Segment

When the calling program is ready to load the next segment, it executes
a macro call. This macro sets parameters in the communication area and
branches to the Supervisor. The branch is to the Normal Call entrance

{location 130 of the Communication Area).

The parameters associated with a Normal Call depend on the current
contents of the communication area. These parameters are discussed below
in detail starting on page 2~ 7, under the paragraph headings "Searching,"

"Loading," and "Starting."

Macro routines will eventually be supplied to communicate with the
Supervisor. Until these macros are properly defined, the user may
communicate with the Supervisor by means of coded program calls, Some
examples of such calls are given on page 2-21 under the heading entitled

"Program Calls for Segment Loading."

DETAILED DESCRIPTION OF SUPERVISOR

The following information is needed only if the programmer writes his
own instructions for communicating with the Supervisor, instead of using
the macros that are provided for loading the next segment or returning to

job control.

it

SECTION II. SUPERVISOR

The Communication area for Supervisor occupies locations 0 and 61-189
(decimal). The programmer, through the communication area, supplies the
necessary parameters to the Supervisor so that the functions of searching,
loading, and starting execution can be performed. Table 2-1 is a summary
of the communication area with its permissible values and the reset
conditions. Table 2-2 is a summary of Supervisor parameters according
to function. The expression "Initial Values" in Tables 2-1 and 2-2 refers
to the contents of the corresponding field at the time when the Supervisor
is first brought into memory. "Reset" refers to a value entered by the

Supervisor into the field just before control is returned to the program.

Punctuation marks within the communication area must not be altered.
Each field is originally loaded with a word mark at its high-order or left-

most end.

Later sections define the Supervisor parameters, their locations, their
initial and permissible values, the conditions under which they are reset,

and the resulting loader actions. A parameter summary is given in Table 2-2,.

Searching

Normally, the Supervisor searches the executable program file directory
for the mass storage address of the called program segment. The record at
this address is then read and checked to see if it is a segment header
record., If there is no directory entry for the called program segment, or

if the first record is not a segment header record, the Supervisor halts.

If the Supervisor was directed to load from a specified mass storage
address (i.e., search mode 07, see Table 2-3 for this and other Search

Mode Designations) the directory search routine is not executed,

SECTION II. SUPERVISOR

Table 2-1. Supervisor Communications Area
LOCATIONS : AT RETURN
FUNCTION AND INITIAL TO JOB AFTER
Decimal Octal POSSIBLE VALUES VALUE CONTROL LOADING
64 100 Job Control Device
@ - Card Reader
1 - Control Panel
65-67 101-103 Revision Number of ZS
Unit Last Loaded
68-73 104-111 Program Name A
74-75 112-113 Segment Name Zﬁ
77-84 115-124 | Halt Name JAN
85 125 ID Character From Zk
Console Call Card (*)
86-89 126-131 Fixed Start @ -
Entrance to Job ESGZESiggr
Control Function p
102-105 146-151 Exit to Owncode Branch to Branch to Branch to
Routine Supervisor | Supervisor | Supervisor
107-109 153-155 Relocation Augment o]0] [1)0]4] 223
111 157 Search Mode - 28 23

20 - Search and
Load by pro-
gram and
Segment Name

60 - Search and
Load by pro-
gram and
Segment Name
by visibi-
lity.

22 - Search by
program and
segment name,
do not load;
supply mass
storage address
to calling unit.

62 Search by pro-
gram and seg-
ment name and
by visibility,
do not load,
supply mass
storage address
to calling
unit.

07 - Do not search;
load by known
mass storage
address.

2-8

SECTION II.

SUPERVISOR

Table 2-1 (contd).

Supervisor Communications Area

LOCATIONS AT RETURN
FUNCTION AND INITIAL TO JOB AFTER
Decimal Octal POSSIBLE VALUES VALUE CONTROL LOADING
112 160 Start Mode N N
N - Normal
R ~ Return to Calling
Program.
S -~ Special
113-18 161-166 | Visibility Mask -P3833
(visibi-
lity A)
119-121 167-171 | Special Starting J.J017]
Location
122-125 172-175 | Owncod= Return Branch to
Before Distri- Supervisor
bution Distribu-
tion
Routine
126-129 176-201 | Owncode Return Branch to
After Distri- Supervisor
bution Starting
Routine
130-138 202-212 | Program Return Store Bc
for Segment Loading Register
(3-character and Branch
mode) to Super-
visor
Search
Routine
139-141 213-215 | Program Return Fixed
to Job Control Start g
Function (3-
character mode)
142-146 216-222 | Current Date AN
147 223 Trapping Mode]
g4 ON - @@ OFF
187-189 273-275 { Highest Memory
Location Avail-
able to User
Programs

SECTION 1II.

SUPERVISOR

Table 2-1 (contd). Supervisor Communications Area
LOCATIONS AT RETURN
FUNCTION AND INITIAL TO JOB AFTER
Decimal Octal POSSIBLE VALUES VALUE CONTROL LOADING
61-63 75-77 Reserved for use of
76 114 the Operating System.
These locations are
90-93 132-135 | not available to the
94-97 136-141 | US€T-
98-101 142-145
106 152
110 156
148-186 224-272

SECTION II.

SUPERVISOR

Table 2-2. Summary of Supervisor Parameters
RESET AT |RESET
DEC. LOC{OCT. Loc. INITIAL |[CONSOLE |AFTER
PARAMETER FROM| TO |FROM|TO VALUES NAME CALL LOADING
SEARCH MODE 111 157 20-Program and
segment name.
g 60-Program and
A segment name
R and visibi-
c lity.
[} 22-Program and 24 29
I segment name;
N do not load.
G 62-Program and
segment name
and visibi-
lity. Do not
load.
07-Load by known
mass storage
address.
PROGRAM NAME 68| 73| 124111
SEGMENT NAME 741 75| 112|113
VISIBILITY 113118 | 161|166 Ag 0@ pa
28 g8 p9
DEVICE 76 114 g
RELOCATION
g AUGMENT 187 |L@9 | 153|155] @ ']
¥ | BALT NAME 77 | 84 | 115 [124
START MODE 112 l6g N=Normal N N
S S=Special
T R=Return
A
R | SPECIAL START
T LOCATION 119 |121 | 167|171 /]
I
N | TRAPPING MODE | 147 223 BP=Oof £ 29
H #4=0n

2-11

SECTION II. SUPERVISOR

Table 2-3. Search Mode (Location 111) Designators

CONTENTS

FUNCTION

20

Search for and load the program segment with the specified

program and segment name.

22

Search the executable program file directory for the specified
program and segment name and supply the calling program with
the mass storage address of the called program segment. This
address is conveyed through the Program Name parameter loca-
tions 68 to 73 of the communications area in the format CCTTRR

(cylinder, track, record).

60

Search for and load the program segment with the specified

program name, segment name, and visibility.

62

Search the directory for the specified program name, segment
name, and visibility and supply the calling program with the
mass storage address of the called program segment (as in

search mode 22).

07

Load a program segment at the mass storage address specified
in locations 68 to 73 of the communication area. This address

has the same format shown above under search mode 22.

The use of search mode 07 implies that search mode 22 or 62 had

been previously used to supply the calling program with mass

storage address of the called program segment.

The initial value of the Search Mode is 2@. It is reset to 2@ when

return is made to job control.

NOTE:

Three search modes used by the Tape Resident Operating System-
Mod 1 (Tape Loader-Monitor C) are not applicable to the Mass

Storage Supervisor. They are:

2-12

e’

SECTION II. SUPERVISOR

00 - Search for and load the segment with the specified segment

name within the current program.

40 - Search for and load the segment with the specified segment

name and visibility within the current program.
01 - Search and load the nth segment of specified visibility.

The Supervisor treats these codes as follows:

00 - Converted to search mode 20.
40 - Converted to search mode 60.
01 - Converted to search mode 20.

PROGRAM NAME (LOCATIONS 68-73)

This field contains the program name to be used as a search key in
search modes 20, 22, 60, and 62. The program name of the called program
segment is inserted in these locations by the Execute Statement in the job
control file, or by a programmed call to the Supervisor. When a program
segment is loaded, its program name is placed in this field by the Supér—
visor. If the search mode is 22 or 62 (so that no loading occurs) and after
locating the program segment, the Supervisor places in this field the mass

storage address of the first record of the requested program segment.

SEGMENT NAME (LOCATIONS 74-75)

This field contains the segment name to be used as a search key in
search modes 20, 22, 60, and 62, The segment name of the called program
segment is inserted in these locations by an Execute Statement in the job
control file, or by a macro call to the Supervisor. When a program segment

is loaded, its segment name is placed in this field by the Supervisor.

SECTION II. SUPERVISOR

VISIBILITY MASK (LOCATIONS 113-118)

This field contains the visibility mask to be used in search modes 60
and 62, A visibility match is obtained if there is at least one bit posi-
tion containing a "1" in both the visibility mask and the visibility key
of the requested program segment. The initial value is visibility A

(40 00 00 00 00 00 octal).

Loading

If the search is successful, the Supervisor proceeds to load the called
program segment into memory. Loading consists of reading and then distribu-
ting and punctuating each successive record of the program segment. Each
record is read into a buffer. From there, the instructions and constants
are distributed to specific memory locations and punctuated as specified by

control characters in the record.

Between the reading and distributing phases of loading, it is possible
to execute own-coding routines, After reading a record into the buffer, the
Supervisor always branches to the own-code location. An own-code routine
may then do one of two things: (1) return to use the Supervisor's own
distribution routine (Own-code return before distribution), or (2) it may
do its‘own distribution and return to the read routine of the Supervisor

(Own-code after distribution).

A program segment may be loaded into an area higher than that for which
it was translated (assembled or compiled) by using the relocation augment.
However, the Supervisor does not perform address adjustment; the program

segment is loaded into the new area exactly as it was translated.

At loading time, the program and segment names of the program segment
loaded are placed in locations 68 through 75. After a program segment has
been loaded, the Supervisor resets the Relocation Augment to @ and the

Owncode Exit to assume no own-coding.

2-14

SECTION II. SUPERVISOR

RELOCATION AUGUMENT (LOCATIONS 1Q7-109)

The relocation augment field contains a value to be added to the
address at which all the code of the called program segment is to be loaded.
This augment is applied to instructions, constants, the addresses of areas
to be cleared, and the normal start location of the program segment. Note
that the code itself is not altered; the program segment is merely loaded
into a new area. The initial value is @. It is reset to @ after a program

segment has been loaded and when a program exits.,

HALT NAME (LOCATIONS 77-84)

The halt name field provides space for a program name (locations 77-~82)
and segment name (locations 83-84). After the program segment with this
name has been loaded, the Supervisor halts. When the RUN button is pressed,
the Supervisor continues as directed by the starting parameters. "Halt
Name" is checked against the name of the program segment just loaded. If
it is equal, the Supervisor halts. "Halt Name" is a single field. The

only word mark is at location 77.

EXIT TO OWNCODING

A calling program may execute own-coding during the loading of a
called program segment by setting up an appropriate branch in the communi-
cation area. The starting address of the own-code routine must be placed
in locations 103-105. This is the A address of a branch instruction. No
punctuation is present at these locations, and no punctuation may be placed
there by a calling program. The branch is made immediately after reading
each record. Before the branch, the monitor sets index register X5 to the
address in main memory of the first character in the record. This Exit is
initially set to assume that there is no own-coding. It is reset to this

same value whenever a program completes execution and exits.

SECTION II. SUPERVISOR

OWNCODE RETURN POINTS

The owncode routine must return to the Supervisor with a branch to one

of the two own-code return points in the communication area (see below).
Owncode Return Before Distribution

If the return is made to location 122, the Supervisor performs record
distribution in the normal way. Under this option the settings of X5 and

X6 must not be altered by the owncode routine,
Owncode Return After Distribution

If the return is made to location 126, the Supervisor bypasses normal
record distribution and reads the next record. Under this option, the
owncode routine must recognize the last record of the called program segment
and must not return to location 126 éfter obtaining it. Instead, X5 must
be set to the address of a location containing the character 61, followed
by the three-character starting address of the program segment just loaded.

Then return is made to location 122.

Starting

After loading a called program segment, the supervisor may return to
the calling program segment or branch to a normal or a special location in
the called program segment. The branch is always made in 3-character address
mode. Before executing the branch, the Supervisor uses the rightmost four
bits of the Trapping Mode Indicator (location 147 decimal) to set up and
execute a CAM instruction that sets the trapping mode indicator of the.

central processor.
STARTING MODE (LOCATION 112)

The Start Mode parameter specifies which of the three alternative
locations the Supervisor will transfer control to after loading. It must

contain one of the three following values:

2-16

©

SECTION II. SUPERVISOR

N - Branch to the location specified as the normal starting
location in the called program segment. The relocation augment is

added before the branch is made.

S - Branch to the address given by the parameter '"special start
location" (119-121). The relocation augment is not added to this

address.

R - Branch to the location immediately following the one from
which the call to the loader was made. The relocation augment is not
added to the address.

The initial value is N. It is reset to N when a program exits.

SPECIAL START LOCATION (LOCATIONS 119-121)

This field, which is used only with start mode "S," specifies the
address to which control is to be transfered by the Supervisor after loading.
This may be any memory location up to 32,768. The initial value is 0. It

is never reset by the Supervisor.

TRAPPING MODE (LOCATION 147)

This field contains a character whose low order four bits are substi-
tuted into the variant character of a CAM instruction. This instruction is
executed immediately before the Supervisor starts the called program, to
establish the trapping mode that will be in effect when the called program
segment is started. The field should contain one of the following two
values:

00 —- No Item Mark Trapping
04 -- Item Mark Trapping

The initial value is 00,

If the trapping mode is specified, the operation code of any instruction

which contains an item or record mark is both extracted and executed as if

2-17

SECTION II. SUPERVISOR

it were a Change Sequencing Mode (CSM) instruction, regardless of the
operation code present., . The CAM and CSM instructions and the trapping mode

are described in detail in the Honeywell Series 200 Programmers Reference

Manual (Models 200/1200/2200/4200), Order No. 139. This facility provides for

automatic changes in program sequence without executing programmed instruc-

tions to initiate such changes.

The programmer is urged not to use the trapping mode in his programs
because the program test facility uses the item mark trapping feature to
initiate dumps. A program using item mark trapping will not be able to use

certain dump facilities.

Returning to the Supervisor

PROGRAM RETURN FOR SEGMENT LOADING (LOCATION 130)

The Program Return for Segment Loading is used to load the next segment
of a program or job automatically without returning to the job control
routine. The program segment making the call changes the appropriate para-
meter values in the communication area and then branches to location 130.
When this return is used, the supervisor does not reset any parameter values;

any changes must be made by the program before it branches to 130.1

PROGRAM EXIT LOCATION (LOCATION 139)

The Program Exit Location is the location to which a program branches
(indirectly) after having completed its processing. The program, without
changing values in the communication area, may branch indirectly to location
139, The Supervisor then resets the Start Mode parameter to N, the Search
Mode to 20, the Relocation Augment to 0, and Exit to Own-coding to assume

no own-coding and then reads the next statement in the Job Control File,

1Note that the Relocation Augment was reset when the calling segment
was loaded (see Table 2-1).

i

1)

9

SECTION II. SUPERVISOR

Locations 139 through 14i normally contain the address of the control
routine in the Supervisor. But when a series of prograhs are to be executed
as a system, with a user-written control program, the user control program
may change the contents to the address of some routine within itself. 1In
this case, all of the program segments in the series should terminate with
an indirect branch to location 139, This has the effect of returning control
to the system's control program, allowing it to determine which program
segment it wants to be loaded next and to make the appropriate call. After
a systems run, the control program should restore the contents of locations

139 through 141 to the initial value.

OTHER FEATURES
Fixed Starts

The communication area contains four branch instructions that are used
for console starts. The first instruction, Fixed Start 0, (Locations 86-89),
is a branch to the job control routine of the supervisor. It is equivalent
to a program exit. Job Control resets the Start Mode parameter to N,
Search Mode to 20, Relocation Augment to 0, and Exit to Owncoding to assume

no owncoding; and then reads the next statement in the job control file.
Revision Number (Locations 65-67)

Before starting to load a program segment, the Supervisor moves the
programs revision number into this field. This is provided for use or

reference by other programs or by the operator.
Current Date (Locations 142-146)

The operator may enter the current date into locations 142 through
1465, for reference by other programs. Locations 142 and 143 specify the
year (00 to 99), and locations 144 through 146 specify the day of the year

(001 to 366). The initial value of this field is 00000.

2-19

SECTION II. SUPERVISOR

Upper Limit of Available Memory (Locations 187-189)

This field contains the address of the highest memory location that may
be used by any program. The floating portion of the Supervisor resides
above this address. Any program computing the amount of memory available

must take account of this value.
Relocation Bank Indicator

The Supervisor preserves the relocation bank indicator in location 76.
(Table 2-4 shows the acceptable relocation bank indicators.) The indicator
was used when this version of the Supervisor was first brought into memory

and shows the bank in which the Supervisor resides.

Table 2-4. Relocation Banks

. LAST ADDRESS USED
INDICATOR BANK BY SUPERVISOR (OCTAL)
a2 12K F27777
@3 16K #37777
ga 20K 347777
@5 24K 257777
g6 28K #67777
g7 32K @77777

Program Calls for Segment Loading

Once the first segment of a program has been loaded and started, sub-
sequent segments may be loaded and started, using program calls performed
by instructions in the program segment currently running. The program
segment making the call first moves the desired parameter values into the

communication area and then transfers control to the Supervisor. The return

branch to the supervisor is made to location 130 (Return for Segment Loading).

This loads the requested program segment without returning to the job control
routine: there is no reset of parameter values or reference to statements

in the job control file.

9

SECTION II.

SUPERVISOR

EXAMPLES OF SEGMENT LOADING

Example 1:

- Loading a specified Program Segment

Call the program segment named PROCES AA and start PROCES AA at

its normal starting location (see coding example below). Note

that the coding does not include entries for Loading Device,

Search Mode, or §tart Mode, since the desired values for these

parameters are the initial values established by the Supervisor.

EASYCODER
prosLEM __ EXAMPLE T PROGRAMMER DATE ___ . PAGE ___OF ___
o g g LocaTion | OPFnioM OPERANDS

| 2]3 ‘lﬁ 61718 | |‘V5l 20|21 1 { | N i L L i N | 6263 i 1 1 N 80
! : 1 1 i i 1 i i i 1 1 1 I3 i A

L . MCW . BGNAME 75, l . , . 1 , . l et

! ; MCW \ L . it 1 A —

i l L 6 1 5 ¢ i i 1 1 1 A 1 i i i1 1 A

Ll PRNAME DCW . . @PROCESE . | A . ; . .
| 1]]| BGNAME DWW, . . RAMNS | R . . s . .

Example 2:

- Loading a Specified Program Segment by Visibility

Call the program segment named INITPR NN that also is identified

by either visibility C or visibility D and start the specified

segment at its normal starting location (see coding example below) .

CODING FORM
prosLem _EXAMPLE 1T PROGRAMMER DATE ___. PAGE .___OF ___
T

R F|g| vocarion OPeERARON OPERANDS

1203 ‘§55] i 18115 2024 i ! 1 L) i i 15282, L ! L 80
! L . i 1 L i s i L I 1 i L 1
7 -

| . Mcw 56 75, e . : . .

f ; L Mew . \ A . . N 1 1 ! . s
oot L MICW S.Q.CH .'1111 1 1 L 1 i i an 1 ! ! i .
- : MCW V1918, 118, A . ; .
IL } L Bl 1 5¢ ' s i L L 1) i I 1 1 .
l I 1 1 1 i i A1 1 1 i e | 2 1
BN DO ‘ :
+ i 1 i i L 1 1 1 i 1 1
Lo PR DCW . PINITPR@ ! ! . . . l 1 ; .
! ! 06, . DCW ONNS. | I 1 i TR L L L L . L
L ||| BRCH bew | #1ced s . . . ; \ . . NN L
! I VISHR . [DCW G C 141¢ﬁ@,¢¥51¢¢6¢¢1 .. i t T | | I)

SECTION II. SUPERVISOR

© @ N & o » @ N -

Example 3: - Relocation, Special Start

Call the program unit named AAAMEM S1, relocate the program unit
2500 octal locations higher, and start AAAMEM S1 at octal location
2510 (see coding example below). (DSA's and the operand addresses

of instructions are not altered by the Relocation Augment.)

EASYCODER -

CODING FORM

PROBLEM __ EXAMOLE TITJ PROGRAMMER DATE __ . PAGE ___.OF ___
o gg LocaTioN | OPERATION OPERANDS
v 2[3 als5{s[7]8 X 14115, 2021 | | | 1 | L | 62/63 R N L

P

i i i 1 - i 1 4 1 bt 2 1 e 1 i 1 P | 1 4

i MW BNws U B A

i : L MICW 1 1 1) i 4 s PV Bt . J 1 . 1

[A MCW RELDC¥1®9) A = - e) . L A

] { . CW_. . ISTMODE 112, . . . e : ; . :

} ")CN SPST ‘(1 ?.1 It 1 L L I 1 i " i 1 1

J T 1 BI 1 3¢ i 1 1 1 i i 1 A) Y b It

l r i J e i 1 1 1 A

:1 ; 1 4 L L 1 . 1 1 1 1 [1 . 1

! l PN, | xCW @A AAMLEN@ I ! 1 1 \ 1 1 L 4o L

| 1 SN 1 LCW @S‘]@ i 1 i 1 1 3 1 o | L a i 1

| ||| bTMODE DCW . PS@ , . 1 . . 1 1 e

Ll leeLoc oW . B3Cop2508 1 . AR

L [SE@L_.__QLQW_ .. [‘_'4’:3,(:‘6¢|2'51.o B PR L L [M R SO

PROGRAMMER 'S PREPARATION INFORMATION

1.

Since the Supervisor resides in high memory and has a variable starting
location, some care must be taken to ensure that no program overlaps

the Supervisor. In particular, programs which operate with a variable
amount of memory must take into account the address stored in locations

187-189 when computing the memory available,

A Supervisor assembled in address mode 3 can only load programs into the

first 32K of memory and always starts programs in address mode 3.

The Supervisor uses, and does not restore, index registers X5 and X6.
These registers have word marks at their high order locations after

loading, but the user is cautioned that the address mode used by the

2-22

SECTION II. SUPERVISOR

Supervisor does not necessarily correspond to that used by the loaded
program segment, and the word marks may not be where the loaded program

segment desires.

X6 contains the address at which the last character of the called unit
was loaded. X5 contains the address of the control character in the
buffer that terminated the loading operation. The three characters at
the locations immediately following the address specified by X5 will

contain the normal starting address of the unit just loaded.

4. Owncode routines must not destroy the contents of index registers X5

and X6.

5. The Supervisor does not use nor disturb any locations below 6110 with

the exception of index registers X5 and X6 and location 0.

EQUIPMENT REQUIREMENTS

Series 200 Central Processor with Control Panel

Advanced Programming Instructions (Feature 010, 011, or 1011)

The number of storage locations used is dependent upon the system
generation process. The smallest version (3 character, single buffer,
without typewriter options) will require 1,350 locations. In addition,
130 locations are used for the communication area (@ and 61-189).

1 Mass Storage Control Unit (Type 255, 257, or 257A)

1 Mass Storage Device (Type 256, 258, 259, or 259A)

Index registers X5 and X6

Additional Usable Equipment

1 Card Reader

SECTION III

DATA MANAGEMENT

Data Management is the element of the Mass Storage Operating
System that provides the necessary input/output routines associated
with data files, and routines for their creation and maintenance. More
than this, however, the Data Management element provides a specific set of
rules, or conventions, governing data management concepts and file organiza-
tion. All elements of the operating system follow these conventions.
This section describes in detail these features of the Data Management

element.

DATA MANAGEMENT CONVENTIONS

The Data Management conventions include the general concepts
relating to data and volume conventions, which lead directly to
the more specific rules of file organization. The data conventions
define the basic units of data and the relationships between them.
These relationships lead directly into the conventions established
for the allocation of space to store a data file on a volume. The
volume conventions are concerned with the preparation of volumes

that includes labeling and establishing directories.

Data Conventions

This paragraph defines the units of data and explains the
relationships between them and between certain units of data and

the physical capabilities of the storage device.
-

SECTION III. DATA MANAGEMENT

UNITS OF DATA
Item

An item is the basic unit of logically related information for a
data processing program. In this sense, an item can possibly be a
single policy in an insurance policy file, or perhaps, an individual's

account in a master payroll file.
Record

A record is that data physically located between two gaps on

the track of a mass storage device.

Block

A block is the sum of physical records transferred to or from
main memory by a single data transfer instruction. For convenience,

the term block can be considered as synonymous with a buffer.
File

A file is a collection of logically related items. This is
the largest single unit of data that can be stored and retrieved by

the operating system.

RELATIONSHIPS BETWEEN UNITS OF DATA
Record-To-Track
All records on a track must be the same size.

Record-To-Block -

A block may be one or more records long.

N

SECTION III. DATA MANAGEMENT

Item-To-Block

There may be any number of items in a block. When the number
of items per block leaves unused character spaces in the block, these

are filled with 778.
Block-To-Track

A block may be entirely within one track or it may start on

one track and end on the next track.

Allocation Conventions

The unit of allocation is the basic element in the designation
of the area of mass storage assigned to a data file. The description

of a unit of allocation is of the form:

C1T1CoT,

Where: Cy is the first cylinder of the unit of allocation.
Ty is the first track used on all cylinders from
C1 to Cy inclusive.
C, is the last cylinder of the unit of allocation.
T, is the last track used on all cylinders from C1 to

C2 inclusive.

If a unit of allocation for a file were @6-@g1-11-@5, it could be

shown graphically as in figure 3-1.

SECTION ITI. DATA MANAGEMENT

CYLINDER

g% 91 @2 03 U4 95 96 97 98 99 1g 11 12 13 14 15 16 ...
. E—
ol __ ! [

g2
a3 FILE
24
TRACK @5
a6
27
@8
@9

Figure 3-1. Illustration of Unit of Allocation

A single data file may have more than one unit of allocation.
When this is the case, the number of tracks per cylinder in each unit
of allocation for that file must be the same. An acceptably allocated

file is shown in figure 3-2 and an unacceptable allocation of a file

is shown in figure 3-3,

SECTION III. DATA MANAGEMENT

CYLINDER
gg g1 @2 @3 @4 @5 @6 @7 @8 @9 1g 11 12 13 14 ...
o9
71
g2 g
[FILE A
g3 i
b a UNIT 2
TRACK @4 g s
- FILE A < || #8-g2-13-9g6
¢5 — 1]
> g
Ei UNIT 1 8
713 ©w Y
G g3-g4 3
a7 o 0
B 26-98
28 0
29
Figure 3-2, Acceptable Allocation 0Of A File
CYLINDER
14 ...

29
g1
g2
@3
TRACK @4
#5
26
27
a8
29

g9 91 @2 @3 g4 @5 g6 @7 g8 @9 1 11 12 13

FILE U g
9
UNIT 1 £
3 g
91-91-95-97 & i FILE U
N -~
o N UNIT 2
o N
~ -@3-14-
5 @ 19-93-14-g8
6]
~ ©
O
B
O

Figure 3-3. Unacceptable Allocation Of A File

SECTION III. DATA MANAGEMENT

The status of the units of allocation for a given mass storage
device is maintained by the operating system in such a way that it
will not allocate space for a new file whenever the new file's units
of allocation are in conflict with those of any other file previously

stored on the device.

In the preceding illustrations, a cylinder was shown as if it
had been rolled out flat. Figure 3-4 shows an overall view of a

cylinder in an exploded view of a disk.

The method of determining the required unit of allocation for
any file is described in the appendices. Space allocation for
Sequential File Organization is described in Appendix G and for
Direct Access file organization in Appendix H. 1In general, it is
recommended for the disk that 18 tracks per cylinder be allocated

to each file.

Volume Conventions

The volume conventions are concerned with formatting and
volume preparation, bootstrap records, volume labels, and volume
directories. Each of these are discussed individually in:the

following paragraphs.

FORMATTING AND VOLUME PREPARATION

All mass storage volumes used in the Series 200 must be
formatted before data can be stored on them. Formatting establishes
the size of each record on a track. All records on a given track
are equal in size. Whenever the size of the records on a track is
to be changed, the track must be reformatted. The facility for
automatically reformatting tracks is a feature of the operating

system.

203 CYLINDERS

100 CYLINDERS 7

-——

H-256
H-258

N CYLINDER @gg
ll
TRACK @gg A
TRACK g1 —*

TRACK @2 -

TRACK @3 -»

TRACK @4 e
TRACK g5 -= /-
TRACK @6 7

TRACK @7 =

L
TRACK @8 —/

TRACK g0 —»

Figure 3-4. Overall Concept of a Cylinder

SECTION III. DATA MANAGEMENT

Initially, however, each volume is formatted with 250 character
records on all tracks. This size record is used for all Honeywell
system files (such as machine language, source language, and work
files). User's data files in which the records are other than 250
characters requires that the volume be reformatted. This is

accomplished automatically by the File Support routines.

BOOTSTRAP RECORDS

The bootstrap records are recorded on the first track (Track @)
of each volume. This track is not available to the user for storage

of data.

VOLUME LABEL

The volume label is the unique identification of the volume.
This record is 250 characters long and is recorded as the first
record (Record @) on the second track (Track 1) of each volume.

The volume label is described in detail in table 3-1.

Table 3-1. Volume Label Description

FIELD POSITION NAME AND LENGTH DESCRIPTION
1 1-5 Identification 1VOL A
5 Characters
2 6-11 Volume Serial This field contains the unique
Number identification of the volume.

6 Characters
3 12 ' Device Type llg Disk with 100 cylinders
1 Character 13g Disk with 203 cylinders

4 13-200 Reserved Reserved for use of the
188 Characters operating system.

SECTION III. DATA MANAGEMENT

VOLUME DIRECTORY

The volume directory is a list of all files that are stored in
whole or in part on the volume. Table 3-2 contains a complete descrip-

tion of the volume directory. Three sequential files make up the list:

1. File Name Index (*VOLNAMES?*)
2. File Description Index (*VOLDESCRY*)

3. File Allocation Index (*VOLALLOC¥*)

The first file (*VOLNAMES*) is an index of file names and references
the other two files for additional information. This index contains the
names of all files allocated on this magazine and the addresses of the
associated entries in the File Description Index and the File Allocation
Index. The item size of the File Name Index is 30 characters. Its

format is shown in Table 3-2.

The second file (*VOLDESCR*) is a complete description of each
file, including general information, labeling information, and infor-
matidn pertinent to the particular organization and structure of the
file. The item size of the File Description Index is 100 characters.

Its format is shown in Table 3-2.

The third file (*VOLALLOC*) is a list of the mass storage areas
allocated to each file stored on the volume, i.e., the units of allo-
cation. Each unit is one item. Since a data file may consist of many
units, the allocation item (unit) referenced by the File Name Index
may itself reference another allocation item, etc. The sire of an item
is 20 characters. The format of the File Allocation Index is shown

in Table 3-2.

SECTION III. DATA MANAGEMENT

Table 3-2.

Volume Directory Description

l FIELD | POSITION |

NAME AND LENGTH

DESCRIPTION

FILE NAME INDEX (*VOLNAME*)

8 characters

1 1-10
10 characters The unigque name assigned to the
file.
2 11-14 RESERVED Reserved for future use.
4 characters
3 15-22 FILE DESCRIPTION Address of the entry in the File
ADDRESS Description Index describing
8 characters Index the file named in (1).
In the format CCTTRRII.
4 23-30 ALLOCATION Address of the first entry in
ADDRESS the Allocation Index for the

file named in (1). In the

format CCTTRRII.

FILE DESCRIPTION INDEX (*VOLDESCRY)

8 characters

1 1 FILE TYPE Identifies the file organization
1 character 0l = Sequential
11 = Partitioned Sequential
02 = Direct Access
03 = Indexed Sequential
2 2-3 ITEM SIZE Number of characters per item,
2 characters in binary.
3 4-5 RECORD SIZE Number of characters per record,
2 characters in binary.
4 6-7 BLOCKING FACTOR Number of items per block, in
2 characters binary.
5 8-9 RECORDS PER BLOCK Number of physical records per
2 characters block, in binary.
6 10-11 RECORD PER TRACK Number of physical records per
2 characters track, in binary (does not
include TLR).
7 12 CYLINDER OVERFLOW Number of tracks per cylinder
1 character assigned for overflow.
8 13 GENERAL OVERFLOW General overflow indicator
1 character 00 = No general overflow
77 = The last cylinder of each
unit of allocation is used
for general overflow.
9 14-21 RESERVED Reserved for future use

SECTION III. DATA MANAGEMENT

Table 3-2 (cont). Volume Directory Description

FIELD POSITION l NAME AND LENGTH DESCRIPTION

Labeling Information

10 22-26 CREATION DATE Date file was last created in
5 characters the form YYDDD
11 27-29 CREATION NO. The number of times this file
3 characters has been reorganized in decimal.
12 30-34 MODIFICATION DATE Date this file was last modified
5 characters (i.e. opened for O/P or I1I/0).
In the form YYDDD.
13 35-37 MODIF ICATION NO. Number of times this creation
3 characters of the file has been modified in
decimal.
14 38-42 EXPIRATION DATE The date on which this file may
5 characters be deleted, in the form YYDDD.
15 43-50 RESERVED
(Unavailable to
User)

8 characters

16 51-53 ITEM COUNT Total number of active items in
3 characters the file, in binary.
17 54-63 RESERVED Reserved for future use.

10 characters

File Definition Information - Sequential Organization

18 64-65 INDEX LENGTH Number of blocks set aside for
2 characters the number index, in binary.

19 66-68 BLOCKS IN FILE Total number of data blocks avail-
3 characters able to this file, in binary.

20 69-100 RESERVED Reserved for future use.

32 characters

File Definition Information - Direct Access Organization

18 64-65 KEY LENGTH Number of characters in .the
2 characters key, in binary.

19 66-68 KEY DISPLACEMENT Number of positions from the LHE
3 characters of the item of LHE character of

key, in binary. If the key is
the first field in the item,
field 19 = @ggd.

SECTION III.

DATA MANAGEMENT

Table 3-2 (cont).

Volume Directory Description

30 characters

Fﬁ FIELD POSITION NAME AND LENGTH DESCRIPTION
20 69-70 BLOCKS /BUCKET Binary number of blocks in a
2 characters bucket.
21 71-100 RESERVED Reserved for future use.

FILE ALLOCATION INDEX (*VOLALLOCY)

8 characters

1 1 STATUS Status indication for this item
1 character 77g = unused
40g = last unit for this file
60g = more units follow on this
volume
20g = more units follow on
another volume
2 2-4 RESERVED Reserved for future use.
3 characters
3 5-12 ALLOCATION UNIT Boundaries of this unit of
8 characters allocation, in the binary form
| CCTTCCTT .
4 12-20 NEXT UNIT ADDRESS If field 1 = 6@, field 4 =

23088088 where the next unit
of allocation is the next
physical item in this index.
Otherwise, field 4 is the
address of the item in this
file containing the next unit
of allocation (in the form
CCTTRRII).

SECTION III. DATA MANGEMENT

File Organization

A file is a collection of one or more logically related items.

Files may be organized in different ways to satisfy different requirements.
An application with a high degree of serial processing requires a file
organization different from an application that requires direct access

to any item in the file. Three types of file organizations are offered

by the operating system: Sequential Organization, Indexed Sequential
Organization and Direct Access Organization. The Sequential and Direct
Access file organizations are described in succeeding paragraphs. The

Indexed Sequential Organization will be described in a later publication.

FACTORS GOVERNING THE ORGANIZATION OF FILES

Mass Storage processing has great advantages to offer for the storage
of large volumes of data and for fast accessing of any item of data. But,
in order to use these advantages, the files must be effectively organized.
File organization is the systematic arrangement of data records on a
storage medium in a way that will make the effective use of storage
capacity and, at the same time, permit easy and efficient retrieval of

data for processing.

There are three major systems objectives which will determine

the best type of file organization for a particular application:

1. Maximum use of storage space.
2. Minimize the time required for accessing items.
3. Minimize processing time required for creating and

maintaining files.

SECTION III. DATA MANAGEMENT

System Considerations

Efficient file organization is based on thorough system planning

for the particular application and on complete and accurate definition

of the data to be stored. In particular, this depends on:

10.

11.

12.

13.

The volume of data involved.

The frequency and size of the peak volumes.

The frequency of access of data in the file and how this
varies, both between items and between particular fields

within items.

The type of processing arnd addressing techniques used to

access the various files.

Whether mass storage is the sole storage medium or whether

some data will be stored on magnetic tape or on punched cards.

Whether the existing item keys are useable, or, if not, what

the cost of conversion or modification would be.
How much expansion or modification of the files is forseen.

The inquiry requirements.
The total reporting requirements and the desired sequence

for reports.

Whether the associated records will be referrenced individually,

or whether they will be consolidated.

The extent and complexity of file maintenance requirements.
Whether a particular file will be processed in more than one

processing mode.

Whether total systems approach is envisioned, or whether each

application will be processed individually.

SECTION III. DATA MANGEMENT

The overriding consideration of efficient file organization is
to keep techniques as simple and as standard as possible within the

limitations imposed by the particular application.

Storage Layout Considerations

The specific considerations that must be looked into before

organizing a file include:

1. The precise data_ layout, which in the first instgnce should
merely include all data required. From this rough draft should
be prepared the final layout, which will have fields arranged
in order of access frequency and degree of essential reference,
with associative fields grouped together where possible. This
final re-organization is designed primarily to minimize

accessing and processing time.

2. The record length to be employed. This is a factor of the data

length but also of the storage medium since the ideal record
length for processing efficiency will be one that fits in con-
veniently with track length. Cases that require special
consideration are those in which records are either under or
over one track in length. Ideally, the length chosen should

be sufficient to cover all records, but where there is consi-
derable variation, then an optimum size must be chosen to reduce
unused storage to a reasonable minimum. For records which
exceed this limit, either by variation in field length or in

the multiples of fixed length fields, continuation records must

be linked or chained in the form of trailer records.

3. The blocking factor to be employed. Ideally, each physical

record should occupy one track, which may contain several items.

This makes maximum use of storage by eliminating inter-record gaps,

3-15

SECTION III. DATA MANAGEMENT

which reduce file storage efficiency. But large single track
records require larger buffers and allow less time for pre-
update processing within normal latency time. A multi-record
track layout makes less efficient use of storage and requires

a separate access to each record. But, less memory is required
by the smaller buffers and more latency time is available for

update processing.

OVERALL EFF ICIENCY

Processing efficiency will be a factor, first of the agreed system
objectives, and secondly, of the system layout considerations previously
outlined. Since efficinecy depends on so many inter-related factors,
it will be the result of a compromise. For example, it may be necessary
to sacrifice some storage utilization to improve the speed of access
and maintenance, or vice versa. Overall efficiency is the prime objective.
To achieve this, every factor must be carefully examined both individually —

and in relation to the other factors.

SEQUENTIAL FILE ORGANIZATION

The Sequential file is organized for items to be accessed in a
logical sequence. This type of file organization is intended primarily
for an application in which most of the items are processed each time the
file is used. The data is one physically continuous stream of items.
Processing is in logical sequence which conforms to physical sequence. -
The end of data is signified'by an item starting with [IEOD¢ (7625462477g).
All tracks allocated to the file are used for data. Items are fixed *

length and all characters in an item are data.

There is an option available to break the file into a number of
smaller files. This option is called partitioning and is described

in detail in Appendix E of this manual. S~

3-16

SECTION III. DATA MANAGEMENT

DIRECT ACCESS FILE ORGANIZATION

A Direct Access file provides fast access to items that are not to
be retrieved sequentially. Its organiration is flexible and a user may
tailor it to his specific needs. The organization of a Direct Access
file is principally in terms of user defined areas called buckets. A
bucket is defined in terms of blocks. It may be composed of any number
of blocks ranging from one to a maximum number of blocks per cylinder.
A bucket cannot cross cylinders. A small bucket may provide faster
access but it also increases the possibility of overflow. Conversly,

a large buck=zt may increase the access time to a given item but it
decreases the possibility of overflow. There is no ordering of items
within a bucket and access to a bucket is made through a user supplied

address.

Data Area

The data area for a cylinder used in a Direct Access file is the
number of tracks on the cylinder within the unit of allocation minus
those tracks specified for the cylinder overflow. Within the data area,
a file is divided into buckets. The sizre of the buckets is used defined
in terms of blocks. A bucket may be one or more blocks in size but

cannot exceed the total number of blocks in the cylinder data area.

The bucket address is the address of the first record in the first
block of the bucket. When a bucket contains more than one item, there
need be no logical relationship between the items except through some
means (randomization or otherwise) the address of that bucket was speci-

fied as belonging to that item.

SECTION III. DATA MANAGEMENT

Because a block may cross tracks, buckets can cross tracks. Buckets
cannot cross cylinders, however, because a given bucket is processed as ~
though it flows from the data area into the cylinder overflow area and

then into the general overflow area.

Cylinder Overflow Area -

The cylinder overflow area is a user specified number of tracks set
aside at the end of the unit of allocation of each cylinder in the file.
This area is used to store the overflow of data from the bucket or buckets

that comprise the data area.

General Overflow Area

The general overflow area is an optional area set aside to store the
overflow from the cylinder overflow area. This optional feature is
included to avoid costly termination in the middle of a run. When the
operating system is forced to use the general overflow area, suitable
notice is provided. Frequent use of the general overflow area not on the
same cylinder as the bucket would be very costly in terms of time. For
this reason, the general overflow area is not recommended for normal use.
The general overflow area, when used, will always be the last cylinder

of each unit of allocation.

Overflow Options

It is not necessary to use all overflow areas. If any are not used

the path taken to store overflow items would vary as shown in figure 3-5.
1. If no overflow areas are used, any overflow causes an exit
to the user.

2. If only cylinder overflow is specified, overflow goes first

to the cylinder overflow area and then to the user.

3-18

SECTION III. DATA MANAGEMENT

3. If only general overflow is specified, overflow goes first to

the general overflow area and then to the user.

4., If both cylinder and general overflow are specified, overflow
goes first to the cylinder overflow area, then to the general

overflow area, then to the user. .

LOG I/0 LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4
PATH TO BUCKET CYLINDER GENERAL USER DATA EXIT
OVERFLOW OVERFLOW PARAMETER 42 OF
LOGICAL I/O MCA
ITEM YES (1) NO NO YES (4)
ITEM YES (1) YES (2) NO YES (4)
ITEM YES (1) NO YES (3) YES (4)
ITEM YES (1) YES (2) YES (3) YES (4)

Figure 3-5.

Data Path For Overflow Options In Direct Access Files

RELATIONSHIPS BETWEEN DIRECT ACCESS ORGANIZATION AND KEYS

The word "key" can be used in association with other words such as
"acual key", "relative key" and "item key". Because of this, these terms

are defined as follows.

Actual Key

The actual, physical address of the bucket in terms of cylinder,

track and record and expressed as CCTTRR.

Relative Key

The number of a bucket relative to the beginning of the file. The

first bucket in a file is numbered gg@d.

3-19

SECTION III. DATA MANAGEMENT

Item Key

The identification field of an item. This field must be continguous
characters but its length and location within the item is specified by the

user.

RELATIONSHIP BETWEEN DIRECT ACCESS FILE PROCESSING AND KEYS

Directly processing an item normally involves the operating system's
use of a bucket address and an item key field provided by the user. The
bucket address may be direct, using an actual key or it may be relative,
using a key relative to the bucket's numeric position within a file.

Using either an actual or a relative key, the beginning of the bucket is
located and then the bucket is searched for the item containing the speci-
fied item key. When the search of the bucket does not produce the desired
item, the search continues through the cylinder overflow area and the

general overflow area if available.

NULL ITEMS

Because it is frequently necessary to insert or delete items in a
Direct Access file, it is important to be able to distinguish between
an item and an "empty hole". To accomplish this, a status character is
appended to every item in the file. This character indicates whether
or not an item is null (inactive), or whether it is active or deleted.
When a Direct Access file is allocated and before data is recorded in
the file, all items have their status character set to indicate null

items.

NOTE: When allocating a Direct Access file, it should be remembered
that the status character must be included in the item size

parameter.

"

SECTION III. DATA MANAGEMENT

Table 3-3 shows a single cylinder of a Direct Access file organization.
The buckets are numbered as though this cylinder were the first cylinder
us=ed in a particular file, and the numbers representing items in the file
are intended to show that there is no necessary relationship between

actual key and item key.

Table 3-3. Single Cylinder In Direct Access File Organization

CYLINDER
1 1
BUCKET gg 1084 : 293 ! NULL | NULL
|
Blocks gg--ga | NULL : NULL | NULL | NULL
NULL | NULL 196 | 593 BUCKET @1
] |
126 I 315 | 124 | 516 Blocks @#5--g9
3150] 41 | 612 | 214
T
BUCKET #2 505 I NULL | 611 : NULL
NULL : L | nuLL | NULL
Blocks 1f--14 NULL | NULL prs | 111
]
312 | 46 | 411 : NULL BUCKET #3
NULL | NUIL | NULL | NULL Blocks 15-19
H
I T
333 | P12 { @57 | 664
BUCKET @4 | | l
NULL | NULL | NULL : NULL
|
Blocks 2@--24 NULL | NULL ag2 | ags BUCKET £5
; |
T
117 | 224 | NULL : NULL Blocks 25--29
NULL : NULL | NULL | NULL
* i
BUCKET g£6 g2 : 414 : 415 | dge7
295 | 123 | 518 : 689
- |
Blocks 3§--34 199 | 299 NULL | NULL CYLINDER
NULL I NULL | NULL : NULL OVERF LOW
NULL | NULL | NULL | NULL AREA
i l

SECTION III. DATA MANAGEMENT

INPUT/OUTPUT CONTROL

The input/output control (I/0 control) facilities provided by the
operating system reduce to a minimum the amount of coding the programmer
must write to process his files. Using the I/0 macros, a programmer
can control the entire I/0 process, communicate with thé system to alter
the process, and specify the processing modes and actions required by

the particular application.

Every macro function available to the user is fully identified and
the method for writing each macro call is specified in this section of
the manual. This section also identifies and defines the processing
modes available to the user and relates them to the applicable file
organizations. Because some of the functions performed by certain action
macros depend on the processing mode chosen for a particular type of file
organization, a table is included that identifies each action macro
available for each type of file processing mode and type of file

organization.

File Processing Modes

There are three distinct processing modes availables input/output

processing, input only processing and output only processing.

INPUT/OUTPUT PROCESSING MODE

The input/output processing mode can be used with the Sequential
and Direct Access file organizations. In the input/output processing mode,
the user can both read data items from the file (input) and write data

items to the file (output).

SECTION III. DATA MANAGEMENT

INPUT ONLY PROCESSING MODE

The input only processing mode also can be used with all the available
types of file organizations. 1In this processing mode, the file can only
supply data items to main memory (input) and cannot receive data items
from main memory. Because of this, certain action macros normally avail-
able for use with a particular type of file organization become

inapplicable.

OUTPUT ONLY PROCESSING MODE

The output only processing mode can be used only with the Sequential
file organization. In this type of file processing, the file can only
accept data items from main memory (output) and cannot supply data items
to main memory. As in the input only processing mode, the output only
processing mode renders certain action macros normally available for use

with a Sequential file inapplicable.

GENERAL USAGE OF THE PROCESSING MODES

The processing modes refer to the direction of data flow with respect
to main memory. In the input/output mode, data is transfered into and
out of main memory to and from mass storage. In the input only mode, data
is transfered into main memory from mass storage. In the output only mode,
data is transfered from main memory to mass storage. Speciélization of
the processing mode by user specified parameters if assembly time allows
excess coding to be deleted from the program being assembled. For
example, if a master file was being created on mass storage, the output
only processing mode could be used. This would enable the transfer of data
from main memory to mass storage and the coding required for input/output

or output only processing would not be assembled into the program creating

SECTION III. DATA MANAGEMENT

the file. As another example, the contents of a file can be protected
from accidental destruction by opening the file in the input only mode.
This would prohibit an accidental transfer of data from main memory to
mass storage. Also, in the file processing program, the coding required
to perform the input/output and output only functions would not be
reguired. As a last example, if a file update were being performed,

the input/output mode could be used and the program would not require
the coding for output only processing.

Input/Output Macros

The input/output macros are summarized in Table 3-4. This table
contains a comprehensive list of all macro calls and the general
function performed by each macro. In addition, each macro is identified
as control, communication or action and the applicable file organization

and processing modes are shown.

SZ-¢

(

Table 3-4. Input/Output Mac os

FILE
MACRO MACRO TYPE COF PROCESSING GENERAL FUNCTION PERFORMED
TYPE CALL ‘FILE PROCESSED MODE
INPUT/OUTPUT
SEQUENTIAL ggiggTogggy Provides general control of the
CONTROL MIOC entire input/output process.
DIRECT INPUT/OUTPUT
ACCESS INPUT ONLY
INPUT/OUTPUT Sets up a communication area in which
SEQUENTIAL INPUT ONLY all values necessary to describe a
COMMUNICATION MCA OUTPUT ONLY file angd the processlng'optlons are
stored. Pertinent portions of this
DIRECT INPUT/OUTPUT information are available to the
ACCESS INPUT ONLY user and can be altered by him.
SEQUENTIAL
MLCA Used to alter any applicable field of
DIRECT information in the communication area.
ACCESS
SEQUENTIAL
MUCA Used to interrogate any applicable
DIRECT field of information in the communi-
ACCESS cation area.
INPUT/OUTPUT
SEQUENTIAL INPUT ONLY
ACTION MSOPEN OUTPUT ONLY Opens a file for processing.

INPUT/OUTPUT
INPUT ONLY

"IIT NOILD3S

LNHWIDYNYIN YV IVA

9Z-¢

Table 3-4 (cont).

Input/Output Macros

FILE
MACRO MACRO TYPE OF PROCESS ING GENERAL FUNCTION PERFORMED
TYPE CALL FILE PROCESSED MODE
INPUT/OUTPUT
MSCLOS SEQUENTIAL INPUT ONLY
OUTPUT ONLY Closes a f£ile after processing.
DIRECT INPUT/OUTPUT
ACCESS INPUT ONLY
=4
SEQUENTIAL %gi,gg/ ot
MSGET Retrieves the next sequential
DIRECT INPUT/OUTPUT item in a file.
ACCESS INPUT ONLY
MSPUT SEQUENTIAL OUTPUT ONLY De}lvers items sequentially from
main memory to mass storage.
ACTION
-
(continued) MSREP Replaces the last item retrieved.
DIRECT INPUT/OUTPUT
ACCESS INPUT ONLY
PARTITIONED INPUT/QUTPUT Begins processing of a specified
SETM SEQUENTIAL INPUT ONLY member in the desired mode
OUTPUT ONLY *
PARTITIONED INPUT/OUTPUT Stops processing of the current
ENDM SEQUENTIAL INPUT ONLY member
OUTPUT ONLY)
MALTER PARTITIONED igggg/ggE$UT Changes the specified member of a
SEQUENTIAL file as directed.

QUTPUT ONLY

“III NOILOAS

LNHFNIOVNVIN V.IVA

LZ-¢

Table 3-4 (cont).

Input/Output Macros

MACRO MACRO TYPE OF FILE
TYPE CALL FILE PROCESSED PROCESS ING GENERAL FUNCTION PERFORMED
MODE
MS INS DIRECT INPUT/OUTPUT Inserts an item into a Direct
ACCESS Access file.
ACTION
MSDEL DIRECT INPUT/OUTPUT Delgtes the last item retrieved from
(continued) ACCESS a Direct Access file.
MSREL PARTITIONED igggg/gggiUT Used to free up the area occupied
SEQUENTIAL by a Partitioned Sequential file.

OUTPUT ONLY

“IIT NOILDAS

LNIWEOVYNVIW YVIYd

SECTION III. DATA MANAGEMENT

Mass Storage Input/Output Control Macro -~ MIOC

The I/0 control macro, MIOC, provides genefal control of the entire
I/0 process. More specifically, MIOC is a segmentable series of sub-
routines that are specialized at assembly time. Assembly time speciali-
zation causes the inclusion of all mass storage I/0 functions required
by the program and eliminates all those functions not required. The
coding to perform the functions required by the program is further
specialized when the macro call that initiates a given function is
written. The macro call that causes the assembly of the control
macro functions is MIOC. The specific function of MIOC is the perform-

ance of interface functions between the action macros and mass storage.

One MIOC macro call is required for each user written program
that uses the mass storage I/0 control facilities. The MIOC macro call
contains the parameters necessary for specifying options or functions

to be included in the program.

When more than one MIOC is to be included in a given program, each
MIOC must originate at the same memory location. Different file
requirements can thus be handled by various specializations of MIOC.
Only one MIOC can be in memory at any given time. The method of
achieving tag uniqueness between the various MIOC routines is explained

in the description of parameter @1 of MIOC.

SECTION III. DATA MANAGEMENT

MIOC FORMAT

EASYCODER

CODING FORM

PROGLEM PROGRAMMER OATE . PAGE ___OF___

T H'

CARD 17 1) - | oPerATION

NUMBER ”{g' LOCATION | ™ ¢opz OPERANDS

1 213 4i5is17i8 . 14315, 20121 62163
[

| L‘ 'B.Nud:aa MI' 0oC umtwwmw_w_l__ n&_.

|]
i)
T
!
}

— L 09

1

}A.._Al 1A Loa e aoa) i I PUPIN SN O SR S SN 5.4 P W A s

Lcontaun a_C
i

MIOC DESCRIPTION

The Type Field must contain a C in all lines of coding of the MIOC
call except the last line. The last line of the MIOC call must contain
an L in the Type Field. Note that it is possible to have a one line

MIOC call, in which case the Type Field must contain an L.

The Location Field is considered as parameter g of the MIOC call

and can contain any acceptable assembly tag.
The Operation Code Field contains the MIOC call.

The Operands Field contains the parameters required for MIOC.
Note that the function of most MIOC parameters is to insert into or
delete from MIOC certain subroutines. Thus, a particular specializa-
tion of MIOC is as small as possible. A list of the MIOC parameters

and an accompanying description follow.

PARAMETER 1: Unique Character. This parameter specifies a single
character that will prefix each tag used by MIOC. The single

character can be any one of the following:

Keypunched As Printed As
+,8,5 %
+,8,6 a
$ $
-,8,5 " (quotation mark)
/ /
g,8,5 CR

SECTION III. DATA MANAGEMENT

NOTE: That the character that prints as % (percent) is not the
same as the character (0,8,4) which is the keypunch

percent but which prints as a left parenthesis, (.

PARAMETER 2: Sequential File Functions. This parameter indicates
whether or not Sequential Fil es will be processed by this

program, and what processing mode (if applicable) will be used.

NOTE: By specifying the file functions, the user tells MIOC
what subroutines to include in the program. Only
coding applicable to the specified file type or
processing mode is included in MIOC, For example,
when only sequential files are specified, or when the
input only processing mode is specified for direct
access files, no coding relevant to the Insert function
will be included in MIOC. A list of all applicable
action macros for each file type and processing mode

is given above in table 3-4.

PARAMETER 3: Sequential File Options. This parameter specifies
whether or not the sequential files to be processed by this
program are partitioned. . If parameter 2 specifies that se-
quential files will not be processed by this program, para-

meter 3 is inapplicable.

PARAMETER 4: Direct Access Functions. This parameter specifies
whether or not direct access files will be processed by this
program, and what processing mode (if applicable) will be

used. See NOTE 1.

PARAMETERS 5 THROUGH 9: Parameters 5 through 9 are reserved

for the use of the operating system.

Fr]

SECTION III. DATA MANAGEMENT

PARAMETER 10: Segmentation. This parémeter specifies whether
or not all MIOC coding is to reside in memory concurrently,
or whether the MIOC coding is to be segmented. Exercising
the segmentation option enables the user to save main memory
locations. When specified, infrequently used functions are
called into a common area of memory when required for execution.
For example, each file to be processed requires the coding
necessary to open it and to close it. These actions, however,
are normally performed only once for a given file during a
run. Therefore, the coding for these routines can reside
on mass storage and be brought into main memory only when
needed. When the sagmentation option is exercised, the
following coding will reside in main memory: MIOC, which
includes the coding for the Get, Replace, Delete, and Put
functions, and the MCA macro. The coding for the MSOPEN, MSCLOS
ENDM, SETM, and MALTER macros will reside on mass storage
until required for execution when the segmentation option is
exercised. If there is no insert coding required when
processing direct access files, this can be indicated and
the coding required for this function will not be assembled
into the program. When this is the case, the MSINS action

macro call becomes invalid.

PARAMETER 11: Insert Coding Residence. 'This parameter is used
to specify whether or not the Insert function coding is
reqﬁired for direct access file processing, and (if appliéable)
whether or not the coding i1s to be resident in main memory

or on mass storage.

PARAMETER 12: SETM-ENDM Overlay Structure. Parameter 12 is
used only when parameter 10 specified that the MIOC coding

is to be segmented. Parameter 12 specifies whether or not

3-31

SECTION III. DATA MANAGEMENT

the coding for the SETM and ENDM functions is to be segmented
so that each routine is a separate overlay, or whether the
SETM and ENDM function routines are to be brought into the

common overlay area together.

PARAMETER 13. Direct Access Bucket Addressing. Parameter 13
specifies whether the direct access bucket addresses are
relative, actual, or both. This parameter can only be used
when parameter 4 specified that direct access files are to

be processed by this program.

PARAMETER 14: Multiple MIOC Indicator. This parameter is used
to specify whether or not the program contains one or more

MIOC macros.

PARAMETERS 15 THROUGH 31: Parameters 15 through 31 are reserved

for the use of the operating system.

PARAMETER 32: Buffer Modes. This parameter specifies whether
the buffering mode to be used with this program is single

buffering, double buffering, or both modes.

PARAMETER 333 Item Handling Modes. This parameter specifies
the methods of delivering items to the user in this program.
The user has the option of specifying a locate item handling
mode, a move item handling mode, or both modes. In the
locate mode, the item is located and its address is supplied
to the user's coding. In the move mode, the item is located

and moved to the address specified by the user's coding.

PARAMETERS 34 THROUGH 49: Parameters 34 through 49 are reserved

for the use of the operating system.

SECTION III. DATA MANAGEMENT

PARAMETER 50: Physical I/0O Requirements. This parameter is
used to specify whether or not the user has called the
Physical I/O control macro (MPIOC). Normally, the MIOC
will call MPIOC for specialization on the basis of parameters
51 through 55 of MIOC. The MPIOC macro is described in

detail in Appendix B of this manual.

PARAMETER 51: Suffix. This parameter is used to specify a
single character from the list of characters given in para-
meter 1. This character can be the same as was specified

in parameter 1.

PARAMETER 52: Peripheral Control Unit Address. This parameter
gives the peripheral control unit address to which the Type

250 control unit is attached.

PARAMETER 53: Write Verificat on. This parameter is used to
specify whether or not an automatic write verification will

be performed for any MCA macro in the program.

PARAMETER 54: Control of More than One PCU, This parameter

specifies how the PCU number is to be specialized.

PARAMETER 55: RWC Definition. This parameter specifies how

the RWC is to be specialized.

Table 3-5 contains a summary of the MIOC parameters.

ye-¢€

Table 3-5. MIOC Parameters

PARAMETER
NUMBER

NAME

VALUE

DESCRIPTION

REQUIREMENTS

29

BASE

ANYTAG

The user may specify any assembly tag
in this field. When MIOC is specia-

lized, this tag will be equated with

the lowest memory location that MIOC

occupies.

Optional.

71

UNIQUE
CHARACTER

(+,8,5)

(+.8,6) O
(-.8,3) %
(-,8,5)
(0,1) /

(0,8,5) Cg

This is a single character that is to
be contained in each tag used by this
MIOC. Note that the character that
prints as % is not the same as the
character (0,8,4), which is the key
punch % but which prints as a left
parenthesis, (.

Must be specified.

a2

A

Sequential files will not be pro-
cessed by this program so all coding
pertaining only to sequential files
can be eliminated.

Optional.

Input/Output, or Input Only and
Input/Output processing of sequen-
tial files will be done by this
program.

SEQUENTIAL
FILE
FUNCTIONS

Output Only processing of sequen-
tial files will be done by the
program.

Input Only processing of sequen-
tial files will be done by this
program.

Input/Output and Output Only, or
all three types of processing of
sequential files will be done by
this program.

Input Only and Output Only pro-
cessing of sequential files will
be done by this program.

When sequential
files are to be
processed, one
of these five
options must be
specified.

“III NOILDHES

LNEWI OUNYIW VILVA

GE-¢E

Table 3-5 (cont).

(.

MIOC Parameters

PARAMETER
NUMBER NAME VALUE DESCRIPTION REQUIREMENTS
None of the sequential files to be When parameter @2
A processed by this program are contains any digit
partitioned. between 1 and 5 and
SBQUENTIAL at least one of the
Z3 FILE sequential files to
OPTIONS PARTITIO At least one of the sequential files be proce§sed by.thls
N : . program is parti-
to be processed by this program is i
partitioned. tioned PARTITIQN
must be specified.
Otherwise, this para-
meter has no
significance.
Direct access f£iles must not be ,
A processed by this program. Optional.
Input/Output, or Input Only and When direct access
1 Input/Output processing of direct files are to be pro-
DIRECT access files will be done by cessed by this
@4 ACCESS this program. program one of these
FUEE;EONS Input Only processing of direct :;:ciggégns must be
e 2 access files will be done by :
this program.
Parameters @5 through @9 are re-
a5 served for the use of the
THROUGH N.A. N.A. operating system and are not N.A.

29

available for use by the programmer.

"ITT NOILOHS

INHEWIOYNVIN ¥YIVA

9¢-¢

Table 3-5 (cont).

MIOC Parameters

PARAMETER
NUMBER NAME VALUE DESCRIPTION REQUIREMENTS
All coding for this specialization of
MIOC will reside in memory concur-
FAN rently. BSee I/0 Control Programmer's
Preparation Information, Page 3- ,
19 SEGMENTATION for a full discussion of segmentation. Optional.
Any letter of the alphabet here
indicates that this MIOC is to be
x segmented. This letter is used as the
first character of each segment genera-
ted by this MIOC.
The INSERT function is not used by Must be specified
FAN this program in processing direct when parameter
INSERT access files. g4 is A\ or 2.
11 CODING The INSERT function is used in the If the INSERT
RESIDENCE direct access files processed by this function is to be
program and the coding for the INSERT used by this pro-
ESIDENT function is to be resident. For a gram, RESIDENT
full discusiion of resident coding must be specified.
see I/0 Control Programmer's Pre-
paration Information, Page 3-92, of
this section.
Wnen parameter 1@ is assigned a letter
A and this parameter is A, the coding Optional, Note,
for the SETM and ENDM functions is however, that if
SETM-ENDM segmented so that each function is parameter 3 is JAN
12 OVERLAY a separate overlay. this paréme§ey
STRUCTURE When parameter 1P is assigned a letter | D@5 NO significance.

COMB INE

and this parameter is COMBINE, the
coding for the SETM and ENDM functions

is brought into the common overlay
area together as a single segment.

"ITI NOILDJAS

LNIFWIOUNVH YIVA

Le-¢g

Table 3-5 (cont).

(

MIOC Parameters

PARAMETER
NUMBER NAME VALUE DESCRIPTION REQUIREMENTS
The direct access bucket addresses
A used in this program are relative
DIRECT only, and are supplied in binary. For Obtional Note
ACCESS OR a full discussion of direct access hgaever .that ié
13 BUCKET RELATIVE | bucket addressing see I/O Control Pro- parame+ér g4 is A
ADDRESS ING grammer % ngpiﬁzl‘s’gcg’igrmatlon' this parameter
ge °- ° has no significance.
The direct access bucket addresses
ACTUAL used in this program are actual only.
and are supplied in binary only.
The direct access bucket addresses
used in this program are both re-
BOTH lative and actual, depending on the
direct access file being processed
by this program.
MULTIPLE yAN Only one MIOC is included in this When more than one
14 MIOC program. MIOC is in the
- program, this
INDICATOR MULTIMIOCS ﬁ?ég program uses more than one parameter must be
* MULTIMIOCS.
15 Parameters 15 through 31 are re-
THROUGH N.A N.A served for the use of the operating N.A
31 e e system and are not available for use e
by the programmer.
JAN
OR This program uses double buffering.
BUFFER DOUBLE
32 MODES
SINGLE This program uses single buffering, Optional.
p
BOTH This program uses both double and

single buffering.

"III NOILOHES

INTIWEOYNYIN YIVA

8E-¢

Table 3-5 (cont).

MIOC Parameters

PARAMETER
NUMBER NAME VALUE DESCRIPT ION REQUIREMENTS
AN . The items are to remain in the I/0
OR buffers and their addresses are to
LOCATE be supplied to this program.
33 HAéggﬁﬁG The items are to be moved from the
MODES MOVE I/0 buffers to a work area for pro- Optional
cessing by this program.
This program requires that some items
BOTH only be located and that some be
moved into the work area for pro-
cessing.
34 Parameters 34 through 49 are reserved
THROUGH N.A N.A for the use of the operating system N.A
49 te i and are not available for use by the o
programmer.,
A This program will use the automatic An MPIOC must be
OR Physical I/0 Control facilities and in the program.
wants them specialized according to When this parameter
[
5 iﬁg”ICAL CALL parameters 51 through 55. is 25 or CALL it
REQUIREMENTS This program contains its own MPIOC will bellncluded
and the specialization of the MPIOC automatically.
PRESENT Otherwise, PRESENT

is as indicated by parameters 51
through 55.

must be specified
and a separate MPIOC
MPIOC must be
written for this
program.

*III NOILDIS

LNHWNAOVYNVW VIVA

6t-¢

1)

Table 3-5 (cont).

MIOC Parameters

PARAMETER
NUMBER NAME VALUE DESCRIPTION REQUIREMENTS
This single character, which must be
. the same as parameter @l of this Must be specified.
S1* SUFF IX x MPIOC, is appended as a suffix to all o
tags in MPIOC.
5o * PCU This is the Honeywell recommended If @4g is not
ADDRESS JAN address for the mass storage control acceptable, the
unit, f@4g. user must specify
a PCU address.
The address of the mass storage
XX :
8 control unit.
A Write verification is not required
by this program unless otherwise
53% WRITE specified. Must be specified.
VERIF ICATION v The automatic write verification
is to be used by this program.
CONTROL The PCU number is to be specialized Must be specified.
54% OR MORE THAN M at execution time from the MCA. When B is speci-
ONE PCU The PCU number is to be specialized fied, the PCU

at assembly time.

number cannot be
changed without
re-assembly.

“ITT NOILDHES

LNEFWIOUYNVHN YIVA

o¥-¢

Table 3-5 (cont). MIOC Parameters

PARAMETER
NUMBER

NAME

VALUE

DESCRIPTION

REQUIREMENTS

55%

RWC
DEF INITION

The RWC will automatically be specia-
lized depending on parameter 52. When
parameter 52 is less than or equal to
27, a 56 is generated. When parameter
52 is greater than @7, a 76 is genera-
ted. This ensures that channels for
the appropriate I/O Sector are used.

XXg

RWC to be used for all data transfers.
Cannot be changed without re-assembly
and must correspond to sector of PCU
assignment.

VAR

The RWC will be specialized from the
communication area for each action
macro call.

Must be specified.

*Parameters 51 through 55 are the Physical I/0O parameter set.

The user must specify here the

values of parameters 51 through 55 that he used in his MPIOC call if he specified parameter

58 of this MIOC as PRESENT.

If the programmer specified parameter 54 of this MIOC as A or

CALL, he must specify in parameters 51 through 55 how he wants the automatic MPIOC specia-
lized. Parameters 51 through 55 of MIOC are identical to parameters 1 through 5 of MPIOC.

A detailed description of MPIOC is contained in Appendix B of this manual.

*IIT NOILOJAS

INFWAODYNVW YIVd

SECTION III. DATA MANAGEMENT

Mass Storage Communication Area Macro - MCA

The general function of the communication area macro is to set up
a communications area. The MCA macro provides the interface functions
between the programmer and the Data Management element of the operating
system. The macro call to set up the communication area is MCA. There
must be one MCA macro for each file to be processed by a given program.
The MCA macro sets up a table (the communication area) in which all
the necessary information to identify the file and all the desired
processing options are placed. The macros to interrogate and alter
the communication area are MUCA and MLCA respectively. Neither of these
macros are required to be included in the program. These macros are

described in detail in Appendix C of this manual.

The MCA macro automatically generates a Physical I/O Communications
Area (MPCA). This area has the same file prefix as specified by the
user for MCA in parameter @. The Physical I/O Communication Area macro,

MPCA, is described in Appendix B of this manual.

MCA FORMAT
CODING FORM

PROBLEM PROGRAMMER DATE . PAGE . OF ___
vy gg LocaTioN | OPERATION OPERANDS
1 2]3 als]e]7{s N 1afis, 2021 | | . K | . 6263 . L L . .. 80

T TLrAG — MCA . JPARAMETERf e - PARMAETERAA, . ., . TheType Field con

: | 1 L i f L oas " aa PR L L onYau @, C .

I

MCA DESCRIPTION

The requirements for the MCA Type field are the same as described
previously for the MIOC Type field on page 3-29, The Location field is
considered as parameter @ of the MCA call. This field establishes the
1-, 2-, or 3-character prefix to all tags using the communications

area set up by the MCA, All action macros using this MCA communications

SECTION III. DATA MANAGEMENT

area incorporate the prefix as parameter 1. The Operation Code field

contains the MCA call, and the Operands field contains the parameters

required by MCA., A list of the MCA parameters and an accompanying

description follow.

PARAMETER 1: Unique MIOC Character. This parameter is used to
specify a single character that is identical to the character
specified in parameter 1 of MIOC. The allowable characters
are given in the description of MIOC Parameter 1 on page 3-29

of this section.

PARAMETER 2: Volume Address. This parameter is used to specify
the address of a user supplied table containing the device
address of the volume containing the file to be processed.
The address specified must be a direct address of the left-
most character of the table. The table should contain as
many entries as there are devices associated with the file.
Each entry should be three characters long and be word marked
at its left-most character. There must be a record mark
one character to the right of the last entry. The format
of each entry is: PPDDxx (octal), where PP = the peripheral
control unit number, DD = the device number, and xx = the

actual location of the left-most character.

PARAMETERS 3 THROUGH 9: Parameters 3 through 9 are reserved

for the use of the operating system.

PARAMETER 183 I/0 Buffer Address. This is the direct address
of the left-most character of the data transfer buffer provid-
ed by the user. There must be three record marked characters
to the right of the buffer, which must be as long as one data

block. There must be no item marks in the buffer when

SECTION III. DATA MANAGEMENT

Logical I/O is entered and a word mark may not be on the right-
most data character in the buffer. When processing direct
access files, word marks cannot be in the item key. The

key field may, however, be word marked at its left-most

location.

PARAMETER 11: Alternate Buffer, This is the actual address of
the left-most character of the second data transfer buffer
provided by the user. When this parameter is specified by
TAG, double buffering will be used. The format of the
alternate buffer is the same as described for the buffer
of parameter 1@. When this parameter is left blank, single

buffering is used.

PARAMETER 12: Item-Delivery Mode. Parameter 12 gives the desired
item delivery mode. It is used to specify whether an item
is to be moved from the data transfer buffer to a user
supplied work area (move mode) or whether the address of an
item in the data transfer buffer is to be delivered to the

user (locate mode).

PARAMETER 13: Item Linkage. This parameter is used to specify
the right end direct address of a user-supplied address
storage area (index register or DSA). This is used in the
move item delivery mode to contain the address of a user
provided work area to or from which the item is to be moved,
and in the locate item delivery mode to locate for the user
the left-most character of the item in the buffer. The
address storage area must be the length of one item and

cannot contain item marks at the time the I/0 is entered.

SECTION III. DATA MANAGEMENT

PARAMETER 14: Insert Item Linkage. Parameter 14 specifies
the right end direct address of a user supplied address
storage area (index register or DSA) in which is contained
the address of a user provided work area that contains an
item to be inserted into a direct access file. The address
work area must be the length of one item and cannot contain
item marks when the I/0 is entered. The item to be insert-
ed must be placed in the work area by the user. In direct
access file processing, the value of parameter 14 may be

the same as parameter 13.

PARAMETERS 15 AND 16: Parameters 15 and 16 are reserved for

the use of the operating system.

PARAMETER 17: Units of Allocation. This parameter specifies
the actual address of a user provided table into which the
Units of Allocation for the file referenced by this MCA will

be placed when the file is opened for processing.

When the file to be processed has more than one unit of
allocation, the user must provide a table in which all the
units of allocation for the file will be listed at the time
the file is opened for processing. The units of allocation
parameter (parameter 17) is the address of this table.

When the file has only one unit of allocation, this
parameter can be left blank and the system will generate
the table and properly load it when the file is opened. The
table provided by the user must be large enough to contain
all the units of allocation applicable to the file. Each
entry in the table must be 8 characters long to accommodate

a unit of allocation (C1CjT;T;C,C,T,T2) and must contain

SECTION III. DATA MANAGEMENT

a word mark in the left-most location of each entry.
There must be a record mark in the location immediately
to the right of the last entry. A units of allocation

table for a file with four units of allocation would look

like:
©lc|T|T|c|c|T|T
©fc|t|r{c|c|T|r
©fcfr|r|c|c|r|T
©fc|T|r|c|c|T|T
0

PARAMETER 18: Direct-~Access Bucket Addressing. This parameter
is used to specify whether the buckets of a direct access

file are addressed using relative keys or actual keys.

PARAMETER 19: Parameter 19 is reserved for the use of the

operating system.

PARAMETER 20: File Name. This parameter is used to specify
the name of the file to be processed. This name must be
exactly the same as that assigned to the file and stored in
the volume directory. It cannot be more than 1@ characters

long.

PARAMETER 21: Password. This parameter is used as a file
security measure that ensures that only those persons
who have knowledge of the exact password assigned to the
file can process (read or write) the file. The password
parameter specifies the right end address of a user
supplied field (word mark on the left-most location) in
which he must place the password for the file. The pass-

word placed in this field must be exactly the same as

3-45

SECTION III. DATA MANAGEMENT

stored in the volume directory.

PARAMETERS 22 THROUGH 29: Parameters 22 through 29 are reserved

for the use of the operating system.

PARAMETER 301 Physical I/0 Suffix. Thls parameter is used
to specify a suffix to all tags written for the MIOC to which
this MCA applies. The spffix specified in this parameter
must be exactly the same as that specified in the parameter

51 of the MIOC macro call.

PARAMETER 31: Protection. This parameter is used to specify
the type of physical protection desired for the file. This
parameter is written as a two digit octal number. The physical

protection afforded to a file by this parameter is as follows:

OCTAL
NUMBER PROTECTION
29 Enables No Writing
g2 Enables Data Write
a6 Enables A-File Write
12 Enables B-File Write
16 Enables A~ and B-File Write

In order for this parameter to be effective, the corres-
ponding switches on the Type 250 Control Unit must be in the
PERMIT position. For a comprehensive explanation of the
various types of write permits (enables), refer to

Appendix F,.

PARAMETER 32: Verification Requirements. This parameter is
used to specify whether or not data transfers are to be
verified. When the verify option is exercised, all the
data transfers from main memory to mass storage automatically
will be verified. This ensures that each data transfer in
this direction has been read back without errors. When such
a read cannot be completed after several automatic correction

attempts, appropriate notice is given to the user.

3-46

SECTION III. DATA MANAGEMENT

PARAMETERS 33 THROUGH 39: Parameters 33 through 39 are reserved

for the use of the operating system.

PARAMETERS 40 THROUGH 44: Exits. Parameters 40 through 44

enable the user to exercise direct control over the operation
of the I/0. For example, the user may desire to insert
specific information into certain fields of *VOLDESCR* which
have been set aside for the user. Another example is,

when the I/0 is unable to locate a file in *VOLNAMES* the
programmer might want to inform the operator of the situation
in a manner that is not within the capabilities of the

I/0 (for instance, through a teletypewriter).

To achieve direct control, the user is provided with several
exits., Each exit deals with a particular portion of the
I/0. For example, a single exit exists for all situations

involving the Volume Directory.

Exits, therefore, to the user are multi-purpose. On the
basis of an exit code, the user can take some action
through his own coding. When the exit code is of no inter-
est to the user, he: can return control to the I/0, re-
questing that the I/O perform a predefined action. When
more than one option is allowed upon return from the user's
exit routines, the user sets up another code indicating

his desired action or solution. For a further explanation
of the exits, see I/O control Programmer's Preparation
Irformation, page 3-100 of this section. The exits avail-

able are the following:

VOLUME DIRECTOR EXIT: This exit 1s taken whenever the

information to be conveyed is pertinent to the

SECTION III. DATA MANAGEMENT

Volume Directory. For example, the user wants to
look at *VOLDESCR*, or the Open macro is unable to

locate the file in a volume.

INDEX EXIT: This exit is taken whenever information is
pertinent to a particular file's member index. For
example, the user specified SETM input/output and

the SETM macro 1is unable to locate the member.

DATA EXIT: This exit is taken whenever the information to
be conveyed is pertinent to this file's data. For
example, when the item is an end of data item on an
input file, or when there is no more room on an
output file this exit will be taken. This exit must
be specified whenever the user expects to process

the end of an input file.

DEVICE EXIT: This exit is taken when the information to
be conveyed is pertinent to a device currently being
used for this file. For example, when a READ or a
WRITE error occurs, or when the device is inoperative

this exit is taken.

- A summary of the MCA parameter is contained in Table 3-6.

6v—¢

Table 3-6. MCA Parameters

PARAMETER
NUMBER NAME VALUE DESCRIPTION REQUIREMENTS
= |
a9 1.2 or 3 These characters prefix all MCA tags.
FILE et Action macros that are to use the e
PREF IX CHigigggRS communications area set up by this Must be specified.
MCA must include this prefix.
UNIQUE MIOC This character must be the same as e s
g1 CHARACTER 4 specified in parameter @1 of MIOC. Must be specified.
VOLUME See preceding description of MCA ces
@2 ADDRESS TAG parameter £2. Must be specified.
a3 Parameters @3 through @9 are re-
THROUGH N.A N.A served for the use of the operating N.A
79 e e system and are not available for use "t
to the user.
INPUT/OUTPUT . . .
1g BUFFER TAG See.Preceding description of MCA Must be specified.
ADDRESS parameter 1d.
11 ALTERNATE TAG See preceding description of MCA
‘BUFFER parameter 11.
: Optional.
JAN This file is single buffered.
Items are to be moved to or from
ITEM MOVE the I/0 buffer from or to the
12 DELIVERY work area. Optional.
MODE VAN The address of the item in the I/0
OR buffer is to be delivered to this Optional
LOCATE program.
13 ITEM TAG Sece preceding description of MCA
.LINKAGE parameter 13, Must be specified.

_

*III NOILDES

LNIWIOTNVIW YINd

0Ss-¢

Table 3-6.(cont).

MCA Parameters

PARAMETER
NUMBER NAME VALUE DESCRIPTION REQUIREMENTS
INSERT See preceding description of MCA Optional.
ITEM TAG parameter 14. Note that MIOC para-
LINKAGE meter @4 must be
14 The Direct Access file this program specified as either
A is processing does not require the 1 or 2.
insert function coding.
15 Parameters 15 and 16 are reserved
AND N.A. N.A. for the use of the operating N.A
18 system and are not available for use e
by the programmer.
TAG See preceding description of MCA
UNITS parameter 17.
17 or Optional.
ALLOCATION Because this file was only one unit
A of allocation, no tag is necessary.
DIRECT é% Buckets are relatively addressed in
18 ACCESS RELATIVE binary for this file. optional.
BUCKET
ADDRESS ING ACTUAL The actual key, in binary, is given
for buckets in this field.
Parameter 19 is reserved for the use
19 N.A. N.A. of the operating system and is not N.A.
available for use by the programmer.
This is the name of the file, as it
FILE 19 is in the volume directory, for which e
20 NAME CHARACTERS |this MCA is building the communica- Must be specified.
tions area.
TAG Seiagricid;?g description of MCA Must be specified.
pa ece : when file is pro-
21 PASSWORD The password in the volume directory tected by a password.
’ FAN is blank, therefore this file is not

protected by a password.

“ITYI NOILDES

INTIWIOYNYW VIVA

19-¢

(:

Table 3-6.{(cont.) MCA Parameters

PARAMETER
NUMBER NAME VALUE DESCRIPTION REQUIREMENTS
22 Parameters 22 through 29 are reserved
THROUGH N.A N.A for the use of the opesrating system N.A
29 e T and are not available for use by the e
programmer.
PHYSICAL This character must be the same as e
34 I/0 4 specified in parameter 51 as MIOC. Must be specified.
SUFF IX
See preceding description of MCA para-
44g meter 31 and Appendix F of this
31 | PROTECTION manual. Optional.
The value for this parameter will be
VAY #Pg. Thus, no writing is permitted.
A Data transfers to this file will not
32 VERIFICATION be verified. Optional
REQUIREMENTS All data transfers to this file
VERIFY (writes) are to automatically be
verified.
33 Parameters 33 through 39 are re-
served for the use of the opera-
TH?SUGH N.A. N.A. ting system and are not available N.A.
for use to the programmer.
VOLUME See I/0 control programmer's pre-
49 DIRECTORY TAG paration information regarding Optional.
EXIT exits on page 3-100 of this section.
Also see preceding description of
41 INDEX TAG MCA parameters 4@ through 44. Optional.
EXIT
EVERY INDEX ;
42 ENTRY EXIT TAG or D Optional.
DATA - ot i
43 EXIT TAG Optional.
DEVICE
EXIT TAG Optional.

*IITI NOILOAS

LNEIWIOUNVIN ¥INVd

SECTION III. DATA MANAGEMENT

Action Macros

The mass storage Action macros are summarized in Table 3-7. The
following paragraphs describe the functions performed by these macros.
The function performed by each macro varies according to the type of
file being processed and the mode in which the processing takes place.
In the following discussions, the term "Exit" is used as described

previously in this section.
ACTION MACRO FUNCTIONS RELATED TO ALL SEQUENTIAL FILES

Open Function

The open function is used to open a file for processing. When
the file is not partitioned, it is opened in the processing mode
specified in the MIOC macro call. When the file is partitioned,
however, the processing mode for the member is not specified until
the set member function is executed. The following sequence of events

occurs when the open function is executed.

1. The appropriate file description is located in the volume
description. If the file name cannot be located in
VOLNAMES, an exit to the user is made. A return to
the open function after this exit indicates that a new
volume has been loaded and a new open attempt is to be

made.

2, If password checking is specified in the MCA macro, a
comparison of the password given by the user in the MCA
macro call and that stored for the file is made. When
password checking was not specified in the MCA macro, the
password field for the file is checked to see that it
contains all blanks, i.e., no password. If either of these

checks produce a discrepancy, an exit to the user is made.

&

SECTION III. DATA MANAGEMENT

Table 3-7. Action Macro Calls

S— SEQUENTIAL PARTITIONED SEQUENTIAL | DIRECT ACCESS
cnss FILE ORGANIZATION FILE ORGANIZATION FILE ORGANIZATION
ACTION MACRO CALLS ACTION MACRO CALLS | ACTION MACRO CALLS
MSOPEN MSOPEN MSOPEN
MSCLOS MSCLOS MSCLOS
MSGET MSGET MSGET
INPUT/OUTBUT MSRED MSREP MSREP
MODE SETM
ENDM
MALTER
MSREL MSINS
MSDEL
MSOPEN MSOPEN MSOPEN
MSCLOS MSCLOS MSCLOS
INPUT ONLY MSGET MSGET MSGET
MODE SETM
ENDM
MSOPEN MSOPEN
MSCLOS MSCLOS
OUTPUT ONLY MSPUT g:ggT NOT
MODE e APPLICABLE
MALTER
MSREL

SECTION III. DATA MANAGEMENT

At this point, processing will halt until the user either
clears the password field for the file or includes the
proper password for the file in the MCA macro call. After

this, the user can again request that the file be opened.

When steps 1 and 2 are successfully completed, exit is made
to the user's coding so that he can, if he desires, examine
the file description, *VOLDESCR*, A return form the user's
coding at this point indicates either that the open
function is to continue for this file or that, after
examination of *VOLDESCR*, the user rejected the file and

a new file is to be opened. (In the latter case, steps 1
and 2 will be repeated.) If the open function for the
original file is to continue, and that file is to be
processed in the input/output or output only mode,
VOLDESCR is written back to mass storage. The same holds
true in the case in which a new file is to be opened after

the successful completion of steps 1 and 2 for the new file.,

All information included in *VOLDESCR* that is required by
other I/0 functions is moved to the file's communication
area. Generally, this is information that was not speci-

fied when the MCA for the file was specialized.

When the file is being opened in the output only mode and
the item delivery mode in the MCA macro is specified as
LOCATE, the address of the left-hand end of the first item .
location in the current buffer is moved to the field
specified by the user in parameter 18 of the MCA macro.

Note that this step does not apply if the file is parti-

tioned.

SECTION III. DATA MANAGEMENT

An indicator is set in the communication area, showing the
appropriate processing mode. Note that this indicator is
not set by the open function when the file is partitioned.
When this is the case, the SETM function sets this
indicator because the processing mode for the member is

not given until the SETM function is executed.

Close Function

The close function is used to close a file after processing.

The following sequence of events occurs when the close function is

executed.

1.

When the file that was being processed was not partitioned
and the processing mode used for this file was output only,
the close function ensures that all buffers have been
written back to the device and that the item following the
last item written back is truly an end-of-data item. An
end-of-data item is signified by [JEOD¢ in its first five

character positions.

When the file that was processed was partitioned and the
processing mode used was input/output, the close function
ensures that the current buffers have been written back to
the device if a replace function was executed for any item

in those buffers.

An exit to the user's coding is made at this time so that

he can, if he wishes, examine *VOLDESCR¥,

A normal return to the close function from the user's exit
routine causes the close function to write back *VOLDESCR*
to the device, when the processing mode for the file was

either output only or input/output.

SECTION III. DATA MANAGEMENT

Get Function

The get function is used to deliver the next sequential item in

the file to the user. This function can only be executed in the input/

output and input only modes of processing. Note that "buffer priming"

is accomplished with the first get function that is executed. When

the get

1‘

function is executed, the following sequence of events occurs.

When the next sequential item is in the current buffer, it
is examined to see whether or not it is an end-of-data item.
When it is an end-of-data item an exit to the user's coding
is made indicating that the end-of-data has been encountered.
There should be no return from the exit, a close function

or an end member processing function if the file is parti-

tioned should be the next action issued for the file.

When the next sequential item is not in the current buffer,
the get function determines whether or not the current buffer
is to be written back to the device. This determination is
based on whether or not a replace function has been issued
for any item in the buffer. When this is the case, the
current buffer is written back to the device. Note that

this step has no significance when processing is in the input

only mode.

Depending on the buffering mode being used, the get function
causes the current buffer to be loaded with the next

sequential block from the device.

Step 1 is now repeated. If the next item is not an end-of-data
item, it is delivered to the user established work area when
move item handling mode was specified. When the locate item

handling mode was specified, the address of the left-most

3-56

SECTION III. DATA MANAGEMENT

character of the next item in the buffer is delivered to

the user established address field.

5. When step 4 is completed, the get function returns to the
user's main line coding after ensuring that the address of
the item just retrieved is available to the user in the
communication area in the following format:
DMCCTTRRTITIwhere D = the device number, M = the
magazine number (always zero), CCTTRR = a mass storage
record address and II = the relative item within the block.
(When II = @9 the current item is the first item in the
block.)

NOTE: The mass storage address, CCTTRR, can be presented
to Physical I/0 with an extended search and read
instruction to cause the block containing the item
to be re-accessed. (Physical I/O is described in
Appendix B of this manual.) This record is either
the first record of the block containing the item,
a track linking record that points to the first
record of the block containing the item or it is
the first record of a partial block, which is the
last portion of the cylinder previous to the block
containing the item. A partial block does not

contain valid data.

Replace Function

The replace function is used to replace the item in the file that
was retrieved by the last get function. This function, replace, can
only be executed in the input/output processing mode. When a replace

function is executed the following sequence of events occurs.

SECTION III. DATA MANAGEMENT

1. The replace function sets an indicator in the communication
area showing that a replace function has been issued for
the item to which the last get function referred. This ensures
that the current buffer is written back to the device after

it is used but before it is overlaid with a new block.

2. When processing in the move item handling mode, the item in
the current buffer is overlaid with the item in the user's 3

work area before the buffer is written back to the device.

Put Function

The put function is used to deliver items sequentially from main
memory to the mass storage device. Recall that when processing in the
locate item handling mode, either the open or the set member processing
function places an initial item delivery address in the user's address
field. The put function can only be executed in the output only process-

ing mode and when executed either of the two following actions occurs.

1. When operation is in the move item handling mode, the put
function moves the user's item to the current buffer. To
do this, the put function first must determine if there is
room in the current buffer for another item or if there is
not. When no room is available for another item in the
current buffer, the put function next determines whether
or not there is room in the file for another block of data.
When there is no room in the current buffer for another
item but the file can accept another block, the put function
writes the current block back to the device, sets an indicator
pointing to the new current buffer and returns to the user.
When the file has no room for another block an exit to the
user's coding is made. There can be no return from this

exit and the next action issued for the file must be either

SECTION III. DATA MANAGEMENT

a close function or an end member processing function

(if the file is partitioned). When either of these is the
case, the next action issued for the file will overlay with
an end-of-data item the last item for which the put function
was issued. This item, however, will remain in the user's

work area.

2. When operating in the locate item handling mode, the address
of the left-most character location of the next available
item is moved to the user's address field by the put function.
When this is done, the put function returns to the user's

coding.

ACTION MACRO FUNCTIONS RELATED ONLY TO PARTITIONED SEQUENTIAL FILES

Set Member Function

The set member function is used to start processing at the
beginning of the specified member in the specified processing mode.
The user has the option of requesting an exit after each member index
entry is located by the set member function that shows an undeleted
member. If this option is exercized, the name portion of the index
entry is never interrogated by the set member function. Rather, the
set member function supplies the user with the address of the left-
most ctharacter location of the index entry. It is then up to the
user to interrogate this member index entry and decide whether or not
this is the member he desires. A return from the user's coding will
cause either the continuation of the search of the member index or
it will cause the opening of the member. Opening the member, in this
case, depends on a valid member status, i.e., that the member is avail-

able for processing.

When the option is not exercized, the set member function execution

SECTION III. DATA MANAGEMENT

causes the following sequence of events to occur when processing is

to be in the input only mode.

1. The member index entry for an undeleted member whose name
is the same as that specified is located. When the name of
the desired member cannot be found, an exit to the user is

made. (This would be a good time to re-issue the set member

7

function macro call and exercize the option just discussed.)

2. When the name of the desired member is located, the address
of the member's first item is set into the communications

area for the file.

3. When this is accomplished, the processing mode indicator is

set to show input only processing in the communications area.

A normal execution of the set member function in the input/output
processing mode is the same as described for the input only mode
except that the processing mode indicator in the communications area

is set to show input/output processing.

A normal execution of the set member function in the output only

mode of processing will cause the following sequence of events to occur.

1. A search of the member index is made for an undeleted member
whose name is the same as that specified. When this member
is found, a check is made to ensure that the member is avail-
able for output only processing. When the member is not
available for output only processing, an exit to the user's
coding is made. At this point a new set member or close -

function can be initiated.

2. When the search of the member index reveals that no member

exists with the specified name, verification of the fact

3-60

SECTION III. DATA MANAGEMENT

that there is room in the member index for another entry is
made. If there is no verification of this, an exit to the

user's coding is made anda new action must be specified.

3. When verification of the room is made, an indicator is

set showing that a new member is being created.

4, With this accomplished, the address of the first item of the
unused area is set into the communications area for the file
and the processing mode indicator in the communications

area is set to show output only processing.

End Member Function

The end member function is used to close a member of a partitioned
sequential file after processing. When the member is a new member, i.e.,
created by the previous set member function, and was created in the
output only processing mode, the end member function generates a_ member
index entry for the new member. When the member index entry is generated,
the end member function also appropriately decreases the length of the
uhused area recorded in the member index. In connection with this,
it is sometimes necessary for the end member function to create a

new end-of-index entry for the member index.

When the processed member is not a new member, and was processed
in either the input/output or the input only mode, the end member
function ensures that all the buffers have been written back to the
device. When the member was processed in the output only mode, the
end member function also ensures that an end-of-data item has been

generated for the member.

The final operation of the end member function is the setting of
an indicator in the file's communications area showing that no member is

open.

SECTION III. DATA MANAGEMENT

Alter Member Function

The alter member function is used to change the specified member
according to the values of the various parameters in the macro call.
The user has the same option with the alter member function described
for the set member function. In the normal execution of the alter

member function, the following sequence of events occurs.

1. The member index entry for the specified member is located

and one of the following operations is performed:

a. The member's status is changed to "available for output
only processing."”

b. The member's status is changed to "unavailable for output
only processing."

c. After verifying that the member is available for output
only processing, the member's status is changed to

. "deleted." When the member's status is not "available
for output only processing”, exit to the user's coding
is made.

d. The member's current name is overlaid with a new name.

2. When the member index entry for the specified member cannot

be lccated, an exit to the user's coding is made.

Release Function

The release function is used to release the partitioned sequential
file specified in the macro call so that no members exist and the complete
data area is available for re-~use. To do this, however, the file must
be opened first. Note that whenever the release function is issued
by the programmer, verification of the "availability for processing"
status of the active member is not made by the release function. When

executed, the release function moves the end-of-index entry in the

SECTION III. DATA MANAGEMENT

member index to the second position in the index and the unused area
entry (the first entry in the index) is set to point to the first

data block in the file.

The release function eliminates the need for deleting all the
members of a file and re-~allocating another partitioned sequential file.
This can be very beneficial if the members of the file are used for
the storage of temporary data or as work areas. The major drawback
to this is that the original file has to be large enough initially to

accommodate any subsequent member.
ACTION MACRO FUNCTIONS RELATED TO ALL DIRECT ACCESS FILES

Open Function

The open function is used to open the file specified in the macro
call, in the specified processing mode. Direct access files cannot
be processed in the output only mode, consequently, either the input/
output mode or the input only mode must be specified. When the open

function is executed, the following sequence of events occurs.

1. The appropriate file description is located in the volume
directory. If the file name cannot be located in *VOLNAMES*,
an exit to the user is made.

A return to the open function after this exit indicates that

a new volume has been loaded and a new attempt is to be made.,

2, If password checking is specified in the MCA macro, a
comparison of the password given by the user in the MCA
macro call and that stored for the file is made. When
password checking was not specified in the MCA macro,
the password field for the file is checked to see that it

contains all blanks, i.e., no password. If either of these

SECTION III. DATA MANAGEMENT

checks produces a discrepancy, an exit to the user is made. At
this point, processing will halt until the user either clears
the password field for the file or includes the proper pass-
word for the file in the MCA macro call. After this, the

user can again request that the file be opened.

3. When steps 1 and 2 are successfully completed, exit is made
to the user's coding so that he can, if he desires, examine
the file description, *VOLDESCR*, A return from the user's
coding at this point indicates that the open function is to
continue for the file or that, after examination of *VOLDESCR¥*,
the user rejected the file and a new file is to be opened.

(In the latter case steps 1 and 2 will be repeated.)

4. All information included in *VOLDESCR* that is required by
other I/0 functions is moved to the file's communications
area. Generally, this is information that was not specified

when the MCA macro was specialized.

5. After the appropriate information is moved into the communi-
cations area, an indicator is set showing that the file has
been opened. A second indicator is set that shows in which

processing mode the file was opened.

6. The actual key of the file's first item is set into the files
communications area so that the first processing action is

not required to specify a bucket address.

Close Function
The close function is used to close a file when processing has
been completed. When the close function is executed, the following

sequence of events occurs.

SECTION III. DATA MANAGEMENT

1. The close function writes the buffers back to the device
when a replace function or a delete function was issued for
an item in the buffers, only if the file was processed in

the input/output mode.

2. The item count for the file is updated in *VOLDESCR*,

3. An exit to the user is made so that he can examine *VOLDESCR¥*,
only if the processing mode was input/output. A normal return
from the user at this point causes *VOLDESCR* to be written

back to the device.

4. An indicator is set in the file's communications area showing

that the file is closed.

Get Function

The get function is used to get an item as specified in the macro
call., Because getting an item can be done by specifying an item key,
a bucket address, both or neither, the operations performed when the

get function is executed vary.

When the get function macro call specifies a bucket address and
an itfem key, the get function begins searching the specified bucket
for an undeleted item with the specified key. When the item is
located it is delivered to the user in either the locate or move item
handling mode, depending on which was specified in the macro call,

If the desired item is not located in the specified bucket, the
cylinder overflow area is searched. When this is done an indicator -
in the file's communications area is set to show this., If the item is
not in the cylinder overflow area, the general overflow area (if any)
is searched and an indicator is set in the communications area showing

this. If, at the end of the general overflow area (or at the end of

SECTION ITI. DATA MANAGEMENT

the cylinder overflow area when there is no general overflow area),
the desired item is not located or an inactive item is encountered,

an exit to the user is made indicating that the item is not in the fila.

When only the item key is given in the macro call, the current
bucket is searched for the desired item. This search commences with
the next sequential item in the current bucket and continues in the

same segquence of area searching as just described,

When only the bucket is given in the macro call, the specified
bucket is sequentially searched from its beginning for an undeleted
item. No significance is placed on this item's key. When located,
the item is delivered to the user in either the locate or move item
handling mode, as specified. When there is not an undeleted item on
the cylinder (from the beginning of the search), the cylinder overflow
area is sequentially searched.‘ If there is not an undeleted item in
this area, the next subsequent cylinder in the unit of allocation for
the file is sequentially Searched, in the manner just described. This
method 6f searching continues until either the end of the general
overflow area (if any) is reached or until an inactive item is
encountered. In either of these cases, an exit to the user is made

indicating that there are no undeleted items in the file.

If neither an item key nor a bucket address is given in the macro
call, the current bucket, i.e., the bucket to which the last action
referred, is sequentially searched, starting with the next sequential
item. The sequence of events here is the same as that described

for searching when only the bucket address is specified.

3-66

L)

SECTION III. DATA MANAGEMENT

Replace Function

The replace function is used to replace in the file the item
retrieved by the last get function when processing the file in the
input/output mode. This function cannot be used when processing

in the input only mode.

When the replace function is executed, an indicator is set in the
file's communications area indicating that a replace has been issued
for an item in the current block. Next, the replace function verifies
that the item to replace the original item is in the current buffer.
With this done, tke biock is written back to the device before it is

overlaid.

Insert Function

The insert function is used to insert items into the file as speci-
fied by the parameters of the macro call when processing the file in
the input/output mode. Like the replace function, the insert function

cannot be executed in the input only mode.

When the insert function is executed and the bucket address is
given in the macro call parameter, a search for the next available
item position is made from the beginning of the specified bucket.
Recali that a previous get for an undeleted item sets an indicator in
the file's communications area showing the location of available space
in a bucket. The insert function interrogates tﬁe communications
area to determine if the specified bucket has room for another item.
If it does have room, the item is placed in the bucket. If, however,
the communications area shows that the bucket does not have room, the
cylinder overflow area is searched for space to insert the item. This
saves a redundant search of the bucket by the insert function. When

the cylinder overflow area is entered, an indicator is set in the

SECTION III. DATA MANAGEMENT

file's communications area showing this. When there is no room in this
area, the general overflow area (if any) is entered. Also, when this
area is entered, an indicator is set. When room for the item is located,
the item is moved from the user's item work area, established for
inserting items, into the current buffer and this is then written back
to the device. This is done regardless of the item handling mode.

When there is no room in the file for the item, the item is not moved
from the item work area and an exit to the user is made indicating

that there is no room for the item in the file.

When the bucket address i1s not given in the macro call and the
insert function is executed, searching begins at the current position
in the current buffer. The sequence of events from this point onward

is the same as just described.

NOTE: Duplicateitem key checking is not incorporated into the
insert function since the programmer may check for duplicates

simply by issuing a get before each insert.

Delete Function

The delete function is used to delete the current item. To do
this, the delete function sets the item's status character to deleted
and sets an indicator that ensures that the current block is written

back to the device.

SECTION IITI. DATA MANAGEMENT

v > w N -

MSOPEN Opens a file for processing.

FILE ORGANIZATION: Sequential and Direct Access.

PROCESSING MODES: Sequential Files; all modes.
Direct Access Files; all modes except the Output

Only mode.
EASYCODER
FORMAT CODING FOGRM
PROBLEM PROGRAMMER __~ DATE._ . _PAGE___OF __
CARD 1Y "“"i OPERATION T
NUMBER |2!3] LOCATION I cooE | OPERANDS |
" 273 alsi6i7te . 1a'i5, 2021 f . "R NN N | | 62i63 L. L 80
L Anyteg MSOPENFile-tag, JINJOUTY .\ . W o0 o
_._i_._L_ PO B . "l b xIAMI F PP E TSP P S . TR NP B I L
! ! L L e LOUT L PRI RSP | i A i L
L e . DPRATE(o oo et et et
| : i i ! i 1 J BL”NAK I L N 4 i o Al L
DESCRIPTION:

Location Field

This tag references the first instruction in the generated coding.
It can be any acceptable assembly tag; but it is not required and can

be omitted if desired.

Operands Field

File-tag: the file-tag is the 1, 2, or 3 character prefix speci-

fied in parameter @ of the appropriate MCA.

IN/OUT: This parameter specifies that the processing mode is to

be Input/Output.

IN: this parameter specifies that the processing mode is to be

Input Only.

OUT: This parameterbspecifies that the processing mode is to be

Output Only. This cannot be specified for Direct Access files.

UPDATE: this must be specified when the file being opened is a

SECTION III. DATA MANAGEMENT

Partitioned Sequential file that is to be processed in the INPUT/QUTPUT
or OUTPUT ONLY mode. When the file being opened is a Partitioned
Sequential file that is to be processed in the INPUT ONLY mode, this
parameter can be left blank. This parameter cannot be used with Non-—

partitioned Sequential or Direct Access files.

EXAMPLES:
The following coding will cause File-~l (FL1) to be opened for

processing in the INPUT/OUTPUT mode.

cASYCOBER

CODING FORM
PRCBLEM PROGRAMMER DATE oo e PAGE.___OF ___
[N%/:fgﬁﬂ E‘;! LOCATION :I e :l OPERANDS |
PR3 ,‘T,‘_f:!,?“ . 14535 20°21 1 L 1 L N N f | 62?83 Ll N L Y N 80|
- j;wf , KM&Q%LLIMDWL R
i 355: s Y NN L Lt a sy P SEPRUV RS WP SN ST SN A '
P —— e —

The following coding will cause the Partitioned Sequential file

FLX to be opened for OUTPUT ONLY processing and be tagged MYFILE.

cASYCODER

CODING FORM
PRCBLEM PROGRAMMER . . OATE . _PAGE____OF ___
TTIAT T

(Cngen [0 ocamon | 7" openavos |

t 23 4i5i61718 14:i9, 2021 1 " L R { 1 | | 62163 N L 1 N 80
'k+4l”JmJLﬂﬁuzm1xuman . N el i -
zl" I: i Il " A 1 PUE IR Y F RS S | PPN BV S S | " S O SRt
3!;1‘1 ™1 i — I —— T ——)

The following coding will cause the Partitioned Sequential file
FLM to be opened for INPUT CNLY processing and be tagged INONLY.
c i
EASYCODER
CODING FORM
PROBLEM PROGRAMMER . .. DATE . __ . . PAGE._OF __
RECH
D Ei',%! Location | FERITION OPERANDS
| 2i3 ai5 ;-vle 14775 20'21 1 | L | N N | | 62163 | . . L N 80
i)
! ! 'I L' { 0 F.L”l T i 1 N 1 PN L0 s i at e d PO PN Y i
20 T i i ” L
:!’[i L :1 = i ‘ hoe o Aetes s a1 s [P N SRR NN .

M e : ——— — pas——— =

SECTION III. DATA MANAGEMENT

MSCLOS Closes a file after processing.

FILE ORGANIZATION: Sequential and Direct Access Files.

PROCESSING MODES: The mode in which a file was processed is not signi-

ficant to the MSCLOS macro.

FORMAT
/ =
EASYCODER
CODING FORM
PROBLEM PROGRAMMER — _________ DATE . . PAGE __OF __
ST
Novaer (33| LocaTioN | PPN OPERANDS
1 2i3 4lsi6i7ie | 141i5. 20121 | L | L s N | | oy 62163 ., I i | 60
‘Ll L Anyteg MSCLOSFile-tag., . . s . . . X .
: ; ! i 4, I 1 ' . 1 A letta i i . 1] A ad PR | -
3 P—— e
DESCRIPTION:

Operands Field

File-tag: the File-tag is the 1, 2, or 3 character prefix speci-

fied in pafameter B of the appropriate MCA.

EXAMPLE :

The following coding will cause the payroll file FLP, tagged

PAYROL, to be closed when processing has been completed.

= [y
EASYCODE!
CODING FORM _
PRCBLEM PROGRAMMER —___ DATE.___ .. PAGE _OF __
CcARD |v|W OPLRATION
NUMBER (2| LOCATION cooE OPERANDS
1213 aTsfsi7is . 1405 202 L i [P | i ke g g2les | . . bt 80,
| I
! ! } ﬂYJML QFLDSLPI i L e L . PP y N N ai Ak N P |
2 : x 'y 1 e Iy i A Iy P A A i ni Aot PRI U GRS NIT SO T 8 P — iA_a A,
3 — — } — e — —

NOTE: When the file being processed is a Partitioned Sequential file,

the MSCLOS macro must be preceded by the ENDM macro.

3-71

SECTION III.

DATA MANAGEMENT

MSGET

Retrieves the next sequential item in a file.

FILE ORGANIZATION:

PROCESSING MODES:

Sequential and Direct Access files.

Sequential Files; INPUT/OUTPUT and INPUT ONLY modes.
Direct Access Files; INPUT/OUTPUT and INPUT ONLY modes.

FORMAT
cASYCGCDER
CODING FORM
PROBLEM PROGRAMMER DATE PAGE . _OF
CARD Wi';‘l LOCATH OPERATION .
NUMBER 1218 ON cooE OPERANDS
\ 203 415161718 . 1ais 20'2 | . TR . PTIE) - — ; 50
L AnyTeg MSGET File-tag..[Bucket-teg Key-Tag, A . N
2 ; ! ; N - L NEXT. .) L L —a . i
3 - ! ! L 1 N i \ ST Y i 5 |
e DI] — p—
DESCRIPTION:
Operands Field
File-tag: the File-tag is the 1, 2, or 3 character prefix speci-

fied in parameter g of the appropriate MCA.

Bucket-tag:

field.

Key-tag:

Item Key is located.

Files.

NEXT:

this parameter is specified when neither the bucket or key

the Bucket-tag points to a user defined bucket address

is specified for Direct Access Files.

with Sequential Files.

EXAMPLES:

This parameter cannot be used with Sequential Files.

the Key-tag points to a user defined field where the

This parameter cannot be used with Sequential

This parameter cannot be used

The following coding will cause the retrieval of the next sequential

SECTION III. DATA MANAGEMENT

item in the sequentially organized accounts receivable file ACC, tagged

INCOME.
EASYCODER
CODING FORM
PROBLEM PROGRAMMER ___ DATE.___.___ . PAGE ___OF ___
T 1
Ngﬂgéa‘ggil9CA“°N e OPERANDS
EERICIAED . 140, 20121 N \ L N i | | 62163 : N L s . 80
: i %L.MC;OME MSGET HCCI 1 L i L i a— L " RPN i . PR i
! | 1 ! n L i i L 1 PO L el L RSN e
7 ~t - J—
The following coding will cause the retrieval of the next item in
a Direct Access File DAF, tagged INVTRY. (inventory).
EASYCODER
. CODING FORM
PROBLEM . . PROGRAMMER =~ pATE . PAGE___OF___
Jﬁﬂgﬂléginncanom | orenamion OPERANDS
AEWIEI g ; a1y, T 202] ; he b L —— 1 LnE2I83 \)
;51¥LMAT/?Y SCET. DAF, NEXT,, . . e . N A
.lll L 1 L i i I F P S SR BV I aa b o 4o PUE U SU WO W | P
The following coding will cause the retrieval of the next item in
a Direct Access File FL8, tagged MYFILE. The bucket address is contained
in the field tagged BUCKET and the Item Key is contained in the field
tagged ITMKEY.
cASYCODER
CODING FORM
PROBLEM PROGRAMMER = DOATE.. ... PAGE_OF____
| o gg Location | OPEraTon | OPERANDS |
| 203 415161718 ‘ 1415, Sola | | g | s | s2les ! L, 80
| WL MYFILE MSGET FLE JRUCKET , ITMKEY\ o\ oo o oo oot i
i 7 L4 7 .
.ll A i 1 1 P F AP ISP U ST U W R B Y 1. ILJI_.I. PURN R Y VS S S R | I
=

SECTION IIT.

DATA MANAGEMENT

MSREP

Replaces the last item retrieved.

FILE ORGANIZATION:

PROCESSING MODES:

Sequential and Direct Access Files.

Sequential Files; INPUT/OUTPUT mode.
Direct Access Files; INPUT/OUTPUT mode.

FORMAT
oy v 1y
EASYCODE!
* CODING FORM
PRCBLEM PROGRAMMER DATE . PAGE ____OF ___
e T
Nuwoca |515| LocaTion | OO OPERANDS
V213 ainhieaTin X 14 15 20°21 | : |] (N | | 62163 | | \ RO
L IL 'ﬁnv.'fdd H.ﬂiﬁp. !.i./ &".’fgﬂ) P . i ' L i i & PO el —
B [ERA 4 4 i J7
L L . " H i i A L 1 L and Al i . J, s
 — | ——— — — i
DESCRIPTION:

Operands Field

File-tag:

the File-tag is the 1,

field in parameter @ of the appropriate MCA,

2, or 3 character prefix speci-

EXAMPLE
The following coding will cause the last item retrieved to be
replaced in File 1, FLI1.
. CODING FORM
PROSLEM PROGRAMMER [DATE .. PAGE __OF
Nﬁ‘:fgm ﬂg wocation | o™ OPERANDS
| 203 a15/6]718 1415, 2021) s | | | N MG L) 0]
l: E 1 SREP L .l’l i i 1 . 1 1 i o i A, 1
! ! it 1. | A A " A AL " - At " e, 1 i
. | R JR— ————

»

&

SECTION III.

DATA MANAGEMENT

MSPUT

Delivers items sequentially from main memory to mass storage.

FILE ORGANIZATION:

PROCESSING MODES:

Sequential Files.

OUTPUT ONLY mode.

FORMAT
EASYCCDER
CODING FORM
PROBLEM PROGRAMMER DATE ____ . PAGE ____OF ___
NUMBER §§| LOCATION TOPE:C)‘:)TEWN OPERANDS
\ 2]3 al5fsl7is) 1alis 20121 , | R o ., 62(63 | | | 80
g y1eg MSPUT File-Tag., . e 1 e .
2 L l i 1 i i 1 s la s .2 P W - 1 H W . i 1
3 y e g
DESCRIPTION:
Operands Field
File-tag: the File-tag is the 1, 2, or 3 character prefix speci-
fied in parameter @ of the appropriate MCA,
EXAMPLE ;
The following coding will cause the next sequential item to be
delivered from main memory to File $ (FLS$) at the location indicated
by the tag ACCREC (accounts receivable).
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE ____. PAGE . OF ___
R g:é‘ LOCATION | OPERATION OPERANDS
| 213 4isici7le , ialis, 2021 | | | | | | | |, 62163 | R L 60!
; } .CCR.E j .P.UT .L,\,g.’l i IPEE | 1 It i i 1 1 L PR | 1

i i

SECTION III. DATA MANAGEMENT

SETM Begins processing of a specified member in the desired mode.

FILE ORGANIZATION: Partitioned Sequential Files.

PROCESSING MODES: All modes.

FORMAT
EASYCODER
CODING FORM
PROBLEM PROGRAMMER .~ DATE . . . PAGE_OF.__
Ry é‘[? Location | OFERATION OPERANDS
M Ts e . 14115, 20'24 | L RN L | | 62163 L . 80
L AnyTag SETM . File-ted, Member-name-1ag, [INJOOT) .. . 0 | .\ @ . 0.1
{ (- ; i v L VN i s L KIA[L >, 1 N 1 ol I
: ! ; I + 't A4 L A A ALDUT IS T & s - 1 i b A
; ‘ i A { . e n A 4 i " - [Y . 1 P |) s
e pir— i ——— ' ot)
DESCRIPTION:

Operands Field
File-tag: the File-tag is the 1, 2, or 3 character prefix speci-

fied in parameter @ of the appropriate MCA.

Member-name-tag: the Member-name-tag points to the address of a
user defined field that contains the name of the member desired. This
parameter does not have to be specified if parameter 42 of the appro-

priate MCA was specified.
IN/OUT: +this parameter specifies the processing mode as INPUT/OUTPUT.
IN: this parameter specifies the processing mode as INPUT ONLY.

OUT: this parameter specifies the processing mode as OUTPUT ONLY.

EXAMPLES:

The following coding will cause the beginning of processing of

Member G (MEMG) of File W (FLW) in the OUTPUT ONLY mode.

3-76

SECTION III. DATA MANAGEMENT

EASYCODER

CODING FORM
PROBLEM PROGRAMMER . = DATE____.__ . PAGE __OF
i CarD v H% | OPeRATION | ; i
| nUmper ol LOCATION | PP OPERANDS i !
i (E: |
;1213 al5:6i718 . 14135, 20'2) | . s2ley R) eo?

L SETH FLWMEMEOUT,
SR N ! . .

PRSP T T ISP R WY i g d - .

T
p— e S s

The following coding will cause the beginning of processing of
ACCREC (accounts receivable) of File 1 (FL1), tagged BILING (billing)

in the INPUT/OUTPUT mode.

EASYCODER

CODING FORM
PRCBLEM PROGRAMMER oATE . PAGE __OF ..
CARD 1% | OPERATION | j }
NUMGER Pl LOCATION | P icene” OPERANDS] i
i]
| ?i) c;siuvv 8 , 14115 :0:2| [| | L N | . [| g2063 L L nd
1
+ : l- 811-1”6 ISETM FL.jJ‘HIC.Cﬂ-ECIII IA//DjUTI " . MY 1 M i i s I i
! i i

i
J i
i ! i i 1 i P Y

{ + + 1 A P PN} s i I S il A " "

NOTE: The SETM macro must be preceded by a MSOPEN macro.

SECTION III. DATA MANAGEMENT

Stops processing of the current member of a Partitioned
Sequential File.

ENDM

FILE ORGANIZATION: Partitioned Sequential File,

PROCESSING MODES:

The processing mode is not significant to the ENDM macro.

FORMAT
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE e . PAGE __OF ____
N33%2n§g§ELDCA“°N ooy OPERANDS
T 2T aisiel7ie) 1455, 2021 | | . |) | 2163 L 60!
| L Anyteg FNOH File-Ted, R .
'I{: o) P Lonet a4 ad s nd. I a1 au i P
Z ; - N 1 L L L —
DESCRIPTION:
Operands Field
File-tag; the File-tag is the 1, 2, or 3 character prefix speci-
fied in parameter @ of the appropriate MCA.
EXAMPLE:
The following coding will cause processing of the current member
of File D (FLD), tagged OHBOY, to stop.
EASYCODER
COOING FORM
PROBLEM PROGRAMMER DATE . PAGE ____OF ___
A gg: LocaTion | OPERATION OPERANDS
123 alsiglr'g N 14115, 2021 1 { | N) N I Lo e . , 62'63 i | 80!
! l[LL OHB‘Oy \ELA/DM._kI .@ i i 1 i 1 1 P | I S — sk L
: [‘17 A 1 i 1. i A 1 1 1 e i 4’ I i 1 .
3 - . ™ v’
NOTE: The ENDM macro must precede an MSCLOS macro to close the file.

SECTION III. DATA MANAGEMENT

o & w N -

MAITER Changes the specified member of a file as directed.

FILE ORGANIZATION: Partitioned Sequential Files.

PROCESSING MODES: The processing mode is not significant to the MALTER macro.

FORMAT
EASYCODER
CODING FORM

PROBLEM PROGRAMMER DATE PAGE —_OF
NUMBER E'&' rocation | *"gee*™ |[OPERANDS
EERARGGN | 1all5, 20p1 | | L NN N , 6206y

| Wnyteg MALTERE!)e-teg, Nember:-name-tag, (AVATL . \New-name-tag, . ..

L A . . e SUNAVAILYZY . |,

(| ol ;) I | P | I .,DELET.E l.l P [ad M |

T . : ‘ < = .

i 1 'I: bud | . lv . L bobtmta } 2 PO PR G " S——

DESCRIPTION:

Operands Field
File-tag: the File-~tag is the 1, 2, or 3 character prefix speci-

fied in parameter @ of the appropriate MCA.

Member-name-tag: the Member-name-tag points to the address of a

user supplied field that contains the name of the desired member.

AVAIL: this parameter changes the member's status to AVAILABLE

for OUTPUT ONLY processing.

UNAVAIL: this parameter changes the member's status to UNAVAILABLE
for OUTPUT ONLY processing.

DELETE: this parameter changes the member's status to DELETED if

the member was available for OUTPUT ONLY processing.

New-name-tag: this tag points to the address of a user supplied

field that contains the new name for the member.

NOTE: Either one of the status changing parameters AVAIL, UNAVAIL, or

3-79

SECTION III. DATA MANAGEMENT

DELETE or the New-name-tag parameter must be specified.

parameter along with one of the status changing parameters also may

be specified.

EXAMPLES :

The New-name-tag

The following coding will cause the member tagged PDQ of File ABC,

tagged FILEl, to become available for output only processing.

EASYCODER

CODING FORM
PROGRAMMER DATE . PAGE ___OF
PROBLEM
CARD lvitd OPEAATION OPERANDS
NUMBER ;;31 LOCATION l €O0E Bl : i
\ 213 ais6ir18 | ais; 20121 | | L L, A | | |
U I FTLEL WMBLTERABL PDR, AVBIL,. s 1
e, il s s - . . .
3 . ‘ . - ———" ——

The following coding will cause the member tagged 0.K of File DIP,
tagged BEGIN, to have its name changed to RUN.
EASYCODE
CODING FORM

PROBLEM PROGRAMMER DATE _ __. PAGE ____OF ___
o ggl wocarion | OFERANION OPERANDS

i 273 alslelrie | 1al1s, 20,2t : | | L | | 5263 L L 80|

| L IBEGIN MALTERDIP, 0. Ky RUN,. 1 : -
[! ’ i 4 2 1 Il F—" A s b, a
t __Jlr— ' = : - x A‘ " S)

The following coding will cause the member tagged XYZ of File 1

(FL1) to become unavailable for output only processing and have its

name changed to HERO.

EASYCODER

CODING FORM
PROBLEM PROGRAMMER DATE ____. PAGE ___OF ___
CARD 14[%¥ OPERATION
NUMBER é,‘i LOCATION ConE OPERANDS
1 213 ais5i6l718 | 1415, 20121 | | Lo | R | 62163 5 80|
)
A ; ALTERFLL,XYZ, UNAVAIL, HERD, : : . : . :
= 7 .
2 4 l: -1 I 1 1 I A 4 L4 a4 1 " e A V- I d k.
3 P — — ~

SECTION III. DATA MANAGEMENT

MSREL Used to free up the area occupied by a Partitioned
Sequential File.

FILE ORGANIZATION: Partitioned Sequential File.

PROCESSING MODES: The mode in which the file is processed is not
significant to the MSREL macro.

FORMAT
— \ =
EASYCODER
CODING FORM
PROBLEM PROGRAMMER _________DATE ___ . PAGE__ OF ____
CARD Tyl ERATION
HJMEER Zm‘ LOCATION P";mg OPERANDS
| 203 alslclrla . 1aits, oni71 | | N | . . L ey R | 80
WL U Anyteq YSREL P le-tag,. . . . e ; N .
* . ; . . R N
DESCRIPTION:

Operands Field

File-~-tag: the File-tag is the 1, 2, or 3 character prefix speci-

.

fied in parameter @ of the appropriate MCA.

EXAMPLE:

The following coding will cause the release of the Partitioned

Sequential File (FL6) so that no members exist and the complete data
area of this file becomes available for use.

EASYCODER

CODING FORM

PROBLEM PROGRAMMER _ =~ DATE___ ______ _ _PAGE . OF __

CARD
NUMBER

[ERERIE

LOCATION

ODE OPERANDS

[) | 1415, 20121 |

S . ISREL. Fl b, . .

I

1 | a L L % {
t+

OPERATION ‘

@ [mu=<]
~[x2rZ

|
i

PP LS8y

SECTION III. DATA MANAGEMENT

MSINS

Inserts an item into a Direct Access File.

FILE ORGANIZATION: Direct Access File.

PROCESSING MODES: INPUT/OUTPUT mode.

FORMAT
CODING FORM
PROGLEM PROGRAMMER . DATE . o PAGE ___OF ___
Nﬂﬁg@;igéglpcnnou OPERATION OPERANDS
O ERIEICIE . 1415, 20021 | | PN T N . | 62163 J ' 80
| 1 L ﬁ,VxTﬂa HSJMS i /P’.TEQ;B.V['/(C'*.'T[I?;, L I 1 2 ke L i
: } :7 i L J 2 5 i P SR S P PN T W i
DESCRIPTION:

Operands Field

File-tag: the File~tag is the 1, 2, or 3 character prefix speci-

fied in parameter @ of the appropriate MCA.

Bucket-tag: the Bucket-tag points to a user defined bucket address

field. This parameter is optional and can be omitted if desired.

~

SECTION III. DATA MANAGEMENT

EXAMPLES :

The following coding will cause an item to be inserted into an
inventory file (INV), tagged ATOPRT (automobile parts). The bucket

address for this item is contained in the field tagged WHEELS.

EASYCODER

COOING FORM
PROBLEM PROGRAMMER _____~~ DATE___ = PAGE __OF _._
CARD V1% OPERATION '
NUMBER E’i&‘ LOCATION CODE OPERANDS
\ 213 415|6j7in . 1aiis, zol2y - | | . L | 626y \) 00/
‘ A
‘! } L TOIPRT MSINS IMV,I MHEEL,arl i ettt 1 1 1 N 1 L

} ‘r 1 ‘l 1 i N bk, i 1 N X 1 i I i
e T — = pa——

g - R

The following coding will cause an item to be inserted into File

X (FLX), tagged ACCREC (accounts receivable).

EASYCODER

CODING FORM
PROBLEM PROGRAMMER _______ DATE. . _PAGE___OF___
CARD V1N OPERATION
NUMBER |l3 LOCATION CODE OPERANDS
1 2]y alsisirle X 14115, z0121 | \ | T R N N | 6263 . | N 80
1B
L L BCCREC MSINS LY, . . ‘ . e . , . s .
1] i 1 A i i. A 1 1 - 1 A i ' 1 W ST | doa A
i T — —— o |
. ;

SECTION ITI. DATA MANAGEMENT

MSDEL Deletes the last item retrieved from a Direct Access File.

FILE ORGANIZATION: Direct Access File.

PROCESSING MODES: INPUT/OUTPUT mode.

FORMAT
EASYCODER
CODING FORM
PROBLEM PROGRAMMER . DATE ____ . PAGE . OF __
i gi%‘ LocaTION | OPERATION OPERANDS
1213 a5 "i' L L Jans, 20:¢ I 1 ettt T X i S s I 20
L Ul Anytag MSDEL File-teg,o oo T 1 , A
2]
s —:7 : ’ i ‘rl L i 1 i vln L I 1 A 1 A i 1l 1
DESCRIPTION:
Operands Field
File-tag: the File-tag is the 1, 2, or 3 character prefix speci-
fied in parameter @ of the appropriate MCA,
EXAMPLE:
The following coding will cause the last item retrieved to be deleted
from the Direct Access File MON,
EASYCODER
CODING FORM
PROBLEM PROGRAMMER _____ DATE ..__. PAGE . oF
NUMBER gZ«' wocation | o I— OPERANDS
INERERIEI O L a5, 2011 . i [SPU R U S i a) 82088 xA_; 1 80
' :5L . SDEL IZV/,. . . i e .) L .
2
| I 1 i i A A i 1l 1 ") Y i A Adot A
3 e — ——

SECTION III. DATA MANAGEMENT

Writing A Macro Call

The programmer writes a macro call at the point in his program
where a macro routine is to be incorporated. The Type Field contains
a C when all the parameter values for a particular macro routine do
not fit on one line and require continuation lines to follow; otherwise,
the Type Field contains an L. The Location Field may contain a symbolic
tag which, when written, is always interpreted as the value of parameter
#. The Operation Code Field contains the name of the desired macro
routine (whidh is also the name on the PROG line of the routine). The
Operands Field contains the parameter values, written in order of

parameter number, starting with the value of parameter 1.

CONTINUATION LINES

A continuation line is used where a macro call cannot contain all
the parameters for a particular macro routine on a single line.
Although the first line of a multiple-line call is not a continuation
line, it indicates, with a C in the Type Field, that a continuation
line follows. The last continuation line contains an L in the Type

Field. -

OMISSION OF PARAMETERS

A parameter value may contain any character except the comma.
The comma is used to follow each parameter value, including the last.
The comma also serves as a method of omitting a parameter value from
the macro call. Each missing parameter value is indicated by its
comma. However, any number of values may be omitted without their
terminating commas if no further values are needed. For example, if
a macro routine has 10 parameters (1 - 10) and the programmer wishes

the omit values 3, 5, 6, and 8 -~ 10, he may code the call as follows:

3-85

SECTION III.

DATA MANAGEMENT

~

EASYCODER

CODING FORM

PROBLEM PROGRAMMER DATE .__ . PAGE ____OF ___

CARD VN OPERATION

NUMBER |27 LOCATION CODE OPERANDS

1213 alslel7ia | 14115, 20101 | | L N A 62163 . 40

I
;74 L THG\. ‘HME VHLJ,..VHLﬁ “VHL4/“’)/JVHL‘7II PPN s 1 i
) 1 1) 2 1) - A) s
- — e s S ——

An alternative method of omitting parameter values is convenient

for omitting several consecutive values when more values are to follow.

Write the number of the next parameter not to be omitted in columns
15 and 16 of the next continuation line.

of this parameter in the Operands Field and continue as usual.

To

omit the first n values, do not write any values in the macro call

line,

and write the number of the first parameter whose value is not

to be omitted in columns 15 and 16 of the first continuation line.

example,

are to be omitted, the programmer may write the following:

cASYCODE!

Then write the actual value

For

if a macro routine has parameters 1 - 10 and values 2 and 6 - 9

3-86

CODING FORM
PROBLEM - PROGRAMMER DATE ___. PAGE __OF ___
CARD V1Y OPERATION I ,
NUMBER !E il tocation CODE OPERANDS
1 213 alslelris . 1415 20!2i | | L L N £2'63 L 80
[i
L TAHG IAME VALL,VAL3, VAL4, VALE,, ‘
i . 4 4
] 49 WAL, . . . L s .
77 ——
To omit values 1 - 4, 6, 7 and 10, the programmer may write the
following:
\ =
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE ____. " PAGE . OF
CARD [V (%
NUMBER :"Q wocation | 7" OPERANDS
i 273 alsle]rls | 1alis, 20121 | | RN | | 6263 L 80
: A — .
; } C T&é IH.HE L i i " " i i
ial L @5 VALS,, . . . ‘ . 1 -
|[| L L ¢i VHLI] V”.L. an 1 i i : 1
it i 1 i A 1 i 1 1 1. A
B S ! —p— A“_

SECTION III. DATA MANAGEMENT

The following example summarizes the complete relationship of the .
macro call, the generalized macro routine, and the macro routine after
it has been specialized and incorporated into the main program. The

macro routine is shown first in its generalized form.

EASYCODER
CODING FORM
PROBLEM PROGRAMMER . DATE _.__ . . PAGE.___OF___
Nownaer [b| Losarion | "N OPERANDS
I __ PROG_ PROB. .. T D
I . SEIP . e e
U 1ds ek bgszEx+3,74 . . , ‘ ‘ i
I 524D 14 0oL Y082, (094 . e l . . A .
2 | i " CA /W'@ZIM i L i i i J | .
¢ l I i BICT M5ZCNI45 1 i A " 4 i 1 i i 1
N ¢57EY 18 . , RSN .
s : QSKN MCW /@¢4)ll @d3*15 1 A 1 | i i). i
o A P
" ; :) 1 ,1 1 4 i L i i 1 L BP 1
1z ; I 1 i i i i i I i i A Lo i 1
3 I I @ﬁ‘glz'zﬂ mu/ @¢é A Il ' i i 1 1 L 1 ad 1
14 ll | 4 ND i i i i n i i 1 s 1 i
'8 ‘l I i Il L i i L L i 1 I L L At
16 bt — T R
EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE ____. PAGE ___OF __.
NUMBER é};‘g LOCATION °Pﬁcﬂofz‘°" OPERANDS
v 23 alsisl7le . als olai | | | . R L N | | 62063 | . | N
oot MAIN PROERPM . . . ‘ A . . ‘ .
I A o | o
s ; N ‘ . l ‘ 1. i’ PR i ' A 1
. { ; ‘ l i ' " N —a etk L Il i
s 1 l[T l 1 4 ' i i 1_ i 1 Rt 1
[T TAGER PROB UG 4, PRINT,SUMHL, +z¢¢ T Vacro Call.
LI THGER | BCR 1ZEX$3, 70, Spfc‘)d/l?tf’.z[versipn of the same.
jm— 4ZAD . A, RUGH Ay (SUM). . . rodtine. This is linscried directly.
o . , (SUM) MUZIM . after the mecro, . j 7
b ; { i T H1KN1145 i il l .D.r‘ﬂdvtced o, I i i L
" ! } 1ZIEX g 1 1 i 1 n’ 1 1 1 i P i
e | L[MIZEX. MCW (SUM), PRINT 415, . ‘)
sl L e o . . e , . ; . e
e ; t Q i \. l(‘ A i A i —_ i i 1 1 A i
'8 [I 1\ i \ 1 o 1 i i A, 4 1
e I l .L 1 1 i i ‘ l)
"] i A i 1 i 1 i i 1 A
o TTTHIZIN pow . Bigg, e
s - iy i [— i i L ol 1 wd 1 Lvo i i
20 : : HHI.N leoEFﬁ /ﬂn-f'/ / xﬂfﬂ [2// ‘l-) i ol 1 i 1 i i
2 1 i / 1 ok i i " i i ;AI 1 1 L 1 i
22 ' ! . 1/ i ./ { { L. ' | i . .

SECTION III. DATA MANAGEMENT

Y W oN -

Writing A Macro Routine

Some routines are Honeywell supplied (e.g. Input/Output Control
routines) while others may be written by the user. This section
explains how the user should write a generalized macro routine for

inclusion in the Library File.

PARAMETER DESIGNATORS

Parameter designators have the form pxy, where p is any alpha-
numeric character chosen by the programmer, and x and y form the decimal
parameter number from @@ to 63. Although there is no restriction on
the characters that are assigned to p, it is the responsibility of the
programmer to ensure that the resulting parameter designators do not
duplicate the form of any other language element, such as a symbolic
tag. A control instruction, Set Parameter Designator (SETP), is used
to assign a value to p. SETP is written in the Operation Code Field,
and the desired value for p is written in column 21. The value of p
may be changed at any time by writing another SETP instruction. If
the SETP instruction is not used, the value of p is assumed to be
octal 35, which prints as %. The following example illustrates
possible assignment of p.

EASYCODER

COOING FORM

PROBLEM PROGRAMMER DATE . PAGE ___OF
MOER E:%ri Locarion | OPERATION I OPERANDS
1 zls 415 Gfria | 14115 2021 | | . N L L 62163 . ., 8O
: + i ETR @ il 'Y 1 P— I — 1 N L e PRl i i FIUIPI S S S i
] . ETP__ ¥ . . R e e —
L 1 s z s A) N SNV S 1os N R | M
S —— I e

Parameters are indicated by writing the currently assigned value
of p, followed by a parameter number (xy) which the programmer assigns
consecutively. When the routine is specialized, the parameter designator
is replaced by the explicit value supplied in the macro call. For

example, assume that parameter @3 is an index register number. An

3-88

8}

SECTION III. DATA MANAGEMENT

indexed address using that register with an augment of 1 would appear
within the macro routine as 1+Xp@3. When the routine is specialized,
the parameter value (e.g. 5) replaces the designator p@3, creating
the address 1+X5. Parameter @@ is always used to indicate the tag,

if any, written in the Location Field of the macro call.

SELECTIVE OMISSION OF CODING

The programmer may desire that certain lines of coding be omitted
from the macro routine. The zone portion of y in the parameter
designator may be overpunched with R (+) or with X (-). 2An R (+4)
overpunch indicates that if the value for parameter xy is blank or
omitted in the macro call, this line of coding is omitted from the
routine. An X (-) overpunch indicates that if the parameter value is
included in the macro call, this line of coding is omitted from the

routine.

Suppose, for example, that a macro routine computes a hash total
of a particular field on an optional basis. The field to be totaled
is parameter @1, and the field to contain the total is parameter g2.
The instruction in the routine to update the total would be coded

as follows:

\Y{ e =
EASYCODER
CODING FORM
PROBLEM PROGRAMMER _____ DATE. . PAGE___OF.___
CARD v |¥ OPERATION
NUMBER [£13] LOCATION e OPERANDS
1 2!3 ‘!5 6718 i “'51 2021 1 1 o b | SR EY I A i U S | 1 52:63 - s 1 4 I 80
T
i } 1 {pdépdﬁ L 1 i L i i L i al L
} I i 1 l 1 i i 1. 1 A 1 - 1) Iy
S m— - e — — ——]

Note that B is the result of overpunching 2 with R (+).

Conditional Statements

Conditional (COND) control statements may also be used to omit
lines of coding from the macro routine. The conditional statement may

have the following formats:

SECTION III.

DATA MANAGEMENT

> > “ N -

EASYCODER
CODING FORM
PROBLEM PROGRAMMER OATE . PAGE __OF ___
R g,:,’; Location | OPREON OPERANDS |
21y als clrta 1415, 2020 | 7 . o 6263 L w{
P . COND__ nnnnn. pxy.,.Y, C 1 ‘
‘!’ ! i 1 aR l/ ! ” ’A " A, 4 i /| Fa—— J. Aeds
} 1 L COND *ﬁﬁfﬁ-ﬁﬂﬁ/ ?Yny } V) CI L L L 1
|
: i 1 A 1 1 i 1 al Foe J i
nnnnn — card number of the next statement not to be omitted
when the condition is true.
fEfefffrff -~ the Location Field of the next statement not to be
omitted when the condition is true.
The condition is coded as follows:
] Condition
g Never true.
1 True if value of pxy > v.
2 True if value of pxy = v.
3 True if value of pxy = v.
4 True if value of pxy «£ v.
5 True if value of pxy # v.
6 True if value of pxy < v.
7 Always true.
The condition is tested by a binary compare of the value of
parameter xy (A address) against v (B address), followed by a branch
on condition test with a variant character of 4c (where ¢ is interpreted
as shown in the preceding list). If c is true, all statements of the
macro routine (including additional COND and SETP statements, if any)
from this point up to but not including, the designated card number
or Location Field are omitted. All rules of the compare instruction
apply to the condition function, A void parameter produces an equal
result when compared to a field with up to 40 blanks.
EASYCODER
CODING FORM
PROBLEM PROGRAMMER oATE . PAGE ___OF__
CARD (v, OPERATION
NUMBER |p|§] LOCATION coot OPERANDS
| 2‘3 alsiei?is | 14115, 201 A ; ; ~ ; — CE -) - X 50
LU COND . (3di4, PIR KRAM, L, . ‘ . ‘
i . . ; ,

&

SECTION III. DATA MANAGEMENT

When the conditional control statement in the preceding example
is processed, the value assigned to parameter @2 is compared with the

literal value KRAM. If the parameter value is greater than KRAM

(since ¢ 1), the following statements are omitted from the routine,

up to statement @@@l4, which is included in the routine. If the

parameter value is less than or equal to KRAM, no statements are omitted

from the routine at this point.

Had the conditional statement been coded as follows, statements

up to but not including the statement whose Location Field is JUMPAAA

are omitted when parameter g2 is greater than KRaM,

EASYCODER

CODING FORM

PROBLEM PROGR, ER DATE ..

PAGE ... OF ___

CARD
NUMBER

OPERATION

e OPERANDS

LOCATION

@ o~
~ x|

1 213 415 5 \ 1315, 20[21 | | N R | |

L .. COND . |JUMPAAD, PRZ KRAM; L . .

|
I
%{ L L L s I ' T BN I P P

Py Jiwwo noy — o

TAG PREFIXES
Duplication of tags between the calling program and any of the
macro routines called for (or between two of the macro routines
called) must be avoided. To avoid duplication, it is recommended
that each macro routine be assigned a particular prefix and that
each of its tags be preceded by this prefix. The length of the tag
and its prefix must never exceed 6.characters. If the same macro
routine is to be called more than once by a single main program, the
tag prefix should be designated by means of a parameter to avoid
duplication.

of the routine.

ADDING A MACRO ROUTINE TO THE LIBRARY FILE
A generalized macro routine is prepared in the same manner as

any other program, except for the presence of parameter designators

3-91

Thus, the tag prefix will be different for each insertion

SECTION III. DATA MANAGEMENT

to indicate the massing values. It is submitted to the Library File
Update program complete with its own PROG and END statements, for addition
to the Library File. The Library File Update is described in detail

in Section 4 of this manual.

I/0 CONTROL PROGRAMMER'S PREPARATION INFORMATION

Program Organization

The routines making up the I/O Control facilities are designed
to take a minimum amount of memory locations in any given situation.
This is accomplished first by generating only the required coding for
processing a given program's files, and secondly by segmenting the
coding for those functions that are required on an infrequent basis
during program execution. Thus, vhile the coding to open or close a
file is required in any program, this coding is loaded into memory
only when the programmer issues an action call for one of these functions.
A multi-phase program further reduces the I/O memory requirements by
specializing separate MIOC macros with different processing capabilities
for each phase. In multi-phase programs, tag uniqueness is insured
because a unique character for all tags of each MIOC can be specified
by the user. The unique tag capability allows any other macro in the
operating system to be specialized into the same program. Each MIOC
called into a given program must originate at the same memory location.
This is the only restriction when multi-phase programs are being

executed.

MIOC SEGMENTATION

In certain cases, the user may wish to have MIOC assembled into
his program as a single segment. In most case, however, the user
will take advantage of the option to segment seldom used functions.
This is accomplished by assigning any letter from A to Z as parameter

14 of the MIOC macro call.

3-92

SECTION ITI. DATA MANAGEMENT

When segmentation is desired, the program using the I/O Control
facilities must specify segment names to assembly. Then, during
assembly of the segment that contains the MIOC macro call, the I/O takes
control of assembly segmentation until all the coding for the requested
resident and non-resident functions has been generated. The coding
for the resident functions is generated in the same segment of the
program that contains the MIOC macro call. The coding for each non-
resident function requested is generated in an individual segment. Of
this non-resident coding, the first segment is xA, where x is equal to
the letter assigned as parameter 1@ of the MIOC macro call. The second
segment is xB, the third xC and so forth until all the non-resident
function coding is generated. The last segment generated, always xZ,
consists of any user coding that followed the call for MIOC in the
segment that contained MIOC. Segment xZ will appear regardless of
whether or not user coding followed the MIOC macro call in its
respective segment. This means that if the segment containing the MIOC
macro call contains coding after the MIOC call, this coding will be

assembled in a segment different than the original.

When the call to the Supervisor to load the segment containing
the MIOC macro call is made in the Normal Start mode, loading proceeds
to the end of the resident MIOC coding. At the end of the resident
MIOC coding, MIOC will generate an Execute Statement at assembly time.
This statement causes the Supervisor to load the last MIOC segment,
xZ, without altering any Supervisor Communications Area fields other
than the Segment Name field. When the Supervisor completes this
loading, control is returned to the location specified in the user's
Execute or END Statement in the segment containing the MIOC macro call.
In this case, the user cannot assume that his original segment name
(i.e., the name of the segment containing the MIOC call) will be

preserved in the Supervisor Communications Area.

3-93

SECTION III. DATA MANAGEMENT

When the call to Supervisor to load the segment containing the
MIOC macro call is made in the Return or Special Start mode, coding
following the MIOC call is not loaded. When Coding does follow the
MIOC call in the segment containing the MIOC call, it is the users
responsiblity to load that coding. This is accomplished by a request

to load Segment xZ.

For a description of the Supervisor's Normal, Return and Special

Start modes, see Section 2 of this manual.

Figure 3-6 illustrates the principles of program segment loading
by the Supervisor. 1In the Normal Start mode, Segment F1 would be
loaded, followed by Segment BZ. In the Special or Return Start mode,
only Segment g1 would be loaded. Note that B is assumed to be the
value assigned to parameter 18 of MIOC and that the user supplied

segment containing the MIOC macro call is defined as Segment g1.

USER DEFINED SEGMENT
RESIDENT CODING)

21
OPEN SEGMENT

BA

INSERT SEGMENT

BB

}an-resident segments.

CLOSE SEGMENT
Bn

REMAINDER OF USER
SEGMENT #£1

BZ

(INCLUDING MIOC Parameter 1@ of MIOC = B.

Figure 3-6. Program Segment Loading

3-94

SECTION ITII. DATA MANAGEMENT

SUPERVISOR RESTRICTIONS
To accomplish segment loading, MIOC must utilize certain fields
of the Supervisor Communications Area and make certain assumptions

about other fields.

- The following fields of the Superyisor Communications Area are
altered during the loading of non-resident functions. These fields
are restored to their original values, however, as soon as a particular

loading sequence is completed.

1. Locations 74 and 75 (decimal) are altered to contain the

segment name of the currently needed segment.

2. Location 186 (decimal) is altered to ensure that searching
for non-resident functions is in the most efficient direction.
This is done to ensure compatibility with the Series 200

Operating System — Mod 1 (Tape Resident).
3. Location 112 (decimal) is altered to Return Start mode.

4. When the program's search mode includes visibility, the
I/0 will always search by program and segment name and
visibility. When visibility is not included, the I/O will
always search program and segment name. This is accomplished
by preserving the left-most bit of Location 111 (decimal)

and altering the five right-hand bits to indicate 2fg.

Any time a non-resident function is requested, it is assumed by
the I/0 that Locations 68 through 73 (decimal) of the Supervisor
Communications Area contains the program name that contains the current

MIOC macro call.
CARD LOADING AND SEGMENTATION
When programs are being loaded from cards, those programs utiliz-

3-95

SECTION III. DATA MANAGEMENT

ing segmentation must observe certain segmentation limitations. To
facilitate segmented program loading from cards, non-resident functions

are placed on binary run files in the following sequence:

1. MSOPEN (When parameter 15 of MIOC is set to COMBINE, the
MSOPEN coding is one segment, otherwise, it is as many seg-

ments as are necessary to achieve maximum memory usage.)

2, SETM (When parameter 12 of MIOC is set to COMBINE, SETM and

ENDM coding becomes one segment.)
3. MSINS (When parameter 11 of MIOC is set to SEGMENT.)
4. ENDM (When parameter 12 of MIOC is A .)
5. MALTER
6. MSREL
7. MSCLOS

Note that the segment containing MIOC (or segments containing MIOCs
in a multi-phase program) must be loaded by the Card Loader Monitor
in the Return or Special Start mode. This is because, in the Normal
Start mode, MIOC searches through the non-resident coding segments

for segment xZ, the last MIOC segment.

Also note that in the segment containing the MIOC macro call, cod-

ing cannot be written after this call.

To summarize, when loading segmented programs from cards, each
non-resident function can be called into the common overlay area only
once. Therefore, all action macros utilizing that function must be
executed before another non-resident segment is requested. Because

of this, functions must be requested in the order listed previously.

3-96

SECTION III. DATA MANAGEMENT

MIOC -~ PHYSICAL I/O RELATIONSHIPS

MIOC does not issue PDT or PCB instructions. MIOC does, however,
interface with the mass storage Physical I/0 (described in Appendix B
of this manual) which does issue such instructions. Normally, the
user requests that MIOC call and utilize Physical I/0 Control (MPIOC).
This request is made through parameters 58 through 55 of the MIOC
macro call. In some cases, however, the user may want to call MPIOC
himself. This is done by assigning the value PRESENT to parameter

58 of the MIOC macro call.

MCA - PHYSICAL I/O RELATIONSHIPS

The user is required to have one MCA for every file he intends
to process in a given program. Each MCA macro automatically generates
a Physical I/O Communication Area (MPCA). The user may desire to
interrogate some of the fields in the MPCA and does this by writing
a MUCA macro call (described in Appendix C of this manual). Because
the MCA macro uses the MPCA exclusively, the user should never attempt

to alter the contents of any of its fields.

Read/Write Channel Utilization

There are two data transfer rates applicable to the mass storage
devices. Data transfer rates for the Type 258 and 259 Devices can only-
be accomplished by interlocking one and one-~half channels (such as 1 A
and 3 or 4A and 6). For the Type 259A Device, any single interlocked
channel is sufficient. When parameter 55 of MIOC is not specified,
channels 2 and 3 or 5 and 6 (depending on the I/0 sector of the cont;ol
unit specified - or implied - in parameter 52 of MIOC) is used for
mass storage operations. Current location counters in control

memory are not referenced.

When the user needs a slower data transfer rate, he must specify

a different read/write channel combination to MIOC, and, when applicable,

3-97

SECTION III. DATA MANAGEMENT

to MPIOC. This is done through parameter 55 of MIOC and parameter @5

of MPIOC.

Address Mode

The address mode for all Logical I/O macros must be the same.
Also, each time the user enters the I/0 through a macro call or the -
I/0 returns to the user (normally or through an exit) from a macro

routine, the address mode must be the same as that of the macro call. .

Index Registers

MIOC, together with Physical I/0, uses and restores index registers
X3, X4, X5 and X6. These registers are restored to their initial values
whenever a return from the I/O is made to the users coding. It does
not matter whether the coding is in the main line of the program or
in an exit routine. Index registers X3 and X4 are restored at the last
possible moment before the return is made. Hence, they should not be
used as a linkage parameter to MCA. Index registers X5 and X6,
however, may be used as linkage parameters, since they are restored

earlier.

Index resisters are saved and restored with MCW's., The MCW's are
from or to each respective register to or from DSA fields in MIOC., The
length of the DSA fields is consistent with the current addressing mode.
MIOC sets its own index register values with the LCA instructions,
Because of this, the user should always punctuate the registers in the
normal manner. Namely, word marks should be placed in locations 18,

14, 18 and 22 in the three character addressing mode and at 1ocations‘
9, 13, 17 and 21 in the four character addressing mode. The permanence

of any other punctuation is not guaranteed.

Direct Access Addressing .

Direct Access bucket addresses can be relative or actual. A

relative bucket address is one in which the bucket's address is the

3-98

SECTION III. DATA MANAGEMENT

same as its numeric position from the beginning of the file. In this
case, the first bucket in the file is number @@@ and each bucket follow-
ing increments this number by one. An actual bucket address is one that
is the exact mass storage address of the beginning of the bucket. When
a bucket address is not included in an Action Macro call, the address

of the bucket which the last Action Macro call used is used again.

The user must generate a field in which bucket addresses are stored.
Bucket addresses then are delivered to the I/0 from this field, whose
right-most location is specified by parameter @82 of the Action Macro

call. This field can have either of the following octal formats.

1. Relative Address Field. This field must have four character
positions and the left-most of these must be word marked.
This field will contain the exact sequence number of the
bucket within the file. The sequence number of the bucket

will be in binary.

2. Actual Address Field. This field must have eight character
positions and the left-most of these must be word marked.
This field will contain the address of the first record
in the desired bucket. The record address is in the form
DMCCTTRR; where D = device number, M = magazine number
(88g), CC = cylinder number, TT = track number and RR =

record number.

Direct Access Item Key Specification

For a GET macro to retrieve an item in direct access processing,
the item must contain an identifying key. This key is specified by
the user. The length and location within the item are specified when
the Direct Access file is allocated. This information is placed in
the file description portion, *VOLDESCR*, of the Volume Directory.
When a GET action is issued, the I/O retrieves these fields from

VOLDESCR,
3-99

SECTION III.

DATA MANAGEMENT

The address of the right-most location of a field that contains

the desired key value is specified by parameter @3 of the GET Action

Macro. When items are to be retrieved by searching for the correct

item key, parameter @3 of the GET Action Macro must be specified. The

field that contains the key value is set up by the user and must con-

tain a word mark in its left-most location.

within the item need not contain a word mark, but,

The corresponding field

if desired, the

left-most character of the item key field may contain a word mark.

The word mark set up by the user in the key value field terminates

the operation when the key value field and the item key field are

compared.

Exits And Halts

There are five exits associated with MCA.

a specific area of I/O processing.

Each exit pertains to

These exits are specified in

parameters 48 through 44 of MCA (see Tables 3-8 through 3-12) and

are as follows:

1.

5.

Parameter

Parameter

Parameter

Parameter

Parameter

The exit codes

reason for the 1I/0 taking the exit.

lists following this description.

48

41

42

43

44

Volume Directory Exit (see Table 3-8).

Index Exit (see Table 3-9).

Every Index Entry Exit (see Table 3-10).

Data Exit (see Table 3-11).

Device Exit (see Table 3-12).

associated with each type of exit identify the

These are contained in individual

Whenever any of the MCA parameters

48 through 44 are specified, the user must provide coding by which

he can interrogate the exit code.

normally is tagged with the name of the exit type, i.e.,

3-100

The coding provided by the user

if parameter

SECTION III. DATA MANAGEMENT

0 @ ~ O u A& w N -

43 is specified the coding would be tagged DATEX for Data Exit.

This

coding must be preceded by a DCW in the location immediately before

it.

specified parameter is taken.

into this DCW when the user has completed the interrogation.

For example,

The exit code is moved into this DCW whenever an exit for the

Also the return code must be moved

(parameter 44 of MCA) only to re-attempt to correct read and write

errors.

error 1¢ (this is an unsuccessful write verify).

one of three return codes to the I/0.

the I/0 is to automatically re-attempt to correct the error.

The exit code for the read error is @6 and for the write

A 21 return code means that

A 52

return code means that the I/O is to ignore the error and continue

processing if possible and a 7@ return code means halt.

coding illustrates this example.

suppose that a user wants to specify a Device Exit

The user can specify

The following

EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE . PAGE ____OF ___
R L,m LOCATION I P oe OPERANDS
! 2|145r,ir‘8 | LEN 20'21 | N | L ' s N | 62163 N i 80
| B CALL TO MCA e . e ‘
1 CFLY ICH_. . PO1, PP PR3, e v il s
! i " 1 144' DEXITA J 1 1 1 1 " i a A i 1 1
! l L i, :’ i] R AL n - 1 4 1 Po—.) i e
L i USER FYIT ROUTINE ___, . . e . . , 1 .
! | i " i n i L 1 L ia £ 1 " L i N L
L ¥ WHEN TWIS ROVTINE IS ENTERED) THE FOLLOWING ICW_ WILL CONTAIN THE . ..
i % * ﬁX.IT ,C DE‘ i 1 P | 1 MR i f 1 1 ia 1
W WAEN RETURN To_THE Z]b. IS HADE,THE SAHE DCW WILL CONTAIN B LODE .
] SPECIFNING THE USER'S DRESIRER BCTION. A A
[; i 1 i A A 1 1 L i Il 1 1 i
! CT W I08 . . s ; . .
||| | DEXIT SCR .. MYRET, T0, SAVE RETURN .. ., e L .
i E) [‘E ﬁ.DFR hDCIl d/l IHE.”D |ERROR| 1 | 1 | i i
| ; CE_ WTER)XCI) 1Y . WAITE EAROR. e . .
Ll MCW . #ICTEDCT HAVE)0 HALT . . . , ,
(o I MYRET. 0 . . AETURN_ T0. Z/0. . AP ; i
| : R.D.Eg EIOU X’ 1 i SO i i i
L TER .. MCW . #1C21,DCI . ﬁf@ugs-r RE-AIIEFPT . . .
P 1 MYRET-LH | LA Is. TRE LENGTH OF JN BDDRESS. , .
! ! !A * 1 10 P) -t | 1 1 1 1 i J aa_a t 1 "
N i i J—-vl i - I 3 i " — A " il — nv 1 PR § -

Zo1-¢

Table 3-8. MCA Parameter 48 - Volume Directory Exit

EXIT RETURN
CODE REASON FOR EXIT CODE RETURN CODE MEANING
The Volume Directory description, *VOLDESCR*, for the 10 Continue processing.
file has been read into memory and can now be inter-
71 rogated by the use of a MUCA macro. An ADP points to
the left end of the entry. For a description of ADP 20 Re-open the file.
and the MUCA macro, see Appendix C of this manual.
At the end of file processing - after MSCLOS reads
VOLDESCR in memory and before writing it back to
11 mass storage, *VOLDESCR* can be interrogated by the . .
use of a MUCA macro. An ADP points to the end of 14 Continue processing.
the entry. For a description of the MUCA macro and
an ADP, se2 Appendix C of this manual.
The file name specified in the MSOPEN macro cannot 49 Halt.
23 be located in *VOLDESCR¥*.
21 Re-open the file.
The units of allocation table set up by the user is A0 Halt.
ga not large enough to hold all the units of allocation
for this file. 21 Rz-open the file.
When this file was allocated, a password was placed 49 Halt.
14 in the Volume Directory. The password in this MCA
is present but not correct. 21 Re-open the file.
When this file was allocated, a password was placed 49 Halt.
24 in the Volume Directory and there is no password
in this MCA. 21 Re-open the file
A Jdiscrepancy exists between the units of allocation 49 Halt.
25 specified in the MCA and that recorded in *VOLALLOC¥*
for this file. 21 Re-open the file.

°IITI NOILOES

LNEIWIOUYNVHW VIVd

€01-¢

Table 3-9,.

MCA Parameter 41 - Index EXit

EXIT RETURN
CODE REASON FOR EXIT CODE RETURN CODE MEANING
The SETM macro cannot locate the specified member 49 Halt.
@3 in the Member Index
ZX Issue a new action
to continue processing.
a4 Halt.
13 The MALTER macro cannot locate the specified member
in this file. A Issue a new action
to continue processing.
49 Halt.
N The SETM macro has been requested to create a new
member but there is no room in the Member Index for Issue a new action
another entry. ZX to continue processing.
The SETM macro has been requested to set the proces- 49 Halt.
14 sing mode of an existing member to the Output Only
mode but the status of that member makes it unavail- Issue a new action
able for Output Only processing. Z& to continue processing.
The MALTER macro has been requested to delete a member 49 Halt.
24 whose status makes it unavailable for Output Only

processing.

Issue a new
to continue

action
processing.

*IIT NOIIDIS

LNIWIOUNYIN VIVA

y0T1-¢

Table 3-10. MCA Parameter 42 - Every Index Entry Exit
EXIT RETURN
.CODE REASON FOR EXIT CODE RETURN CODE MEANING
The SETM macro will
control the inter-
3g rogation and either
The SETM action is the current function and a member :ﬁgzpznzi reject
index entry is available for interrogation by using Y-
g1 a MUCA macro. An ADP points to the left end of the This member associated
entry. For a description of the MUCA macro and an with this entry should
ADP, see Appendix C of this manual. 11 not be processed and
another entry should
be delivered.
The member associated
52 with this entry should

be processed.

*III NOTLOHES

INEFWADYNVYW YLVA

S0T-¢

Table 3-11. MCA Parameter. 42 - Data Exitl

EXIT RETURN
CODE REASON FOR EXIT CODE RETURN CODE MEANING
g1 The GET macro has been issued and the end-of-~data item 40 Halt.
has been detected. A Issue a new action to
continue processing.
11 The PUT macro has besn issued and there is no more 49 Halt.
room for more data in the file. Issue a new action to
Z& continue processing.
The SETM macro has been requested to create a new 49 Halt.
34 member and there is no more room in the f£ile for a Issue a new action to
new member. A continue processing.
49 Halt.
@3 The GET macro cannot locate the specified direct
access item key. A Issue a new action to
continue processing.
49 Halt
13 The INSERT macro cannot locate an available item
position in the Direct Access file. Issue a new action to
ZX continue processing.
4 .
34 An invalid bucket address has been specified to the g Halt

current direct access tunction.

Issue a new action to
continue processing.

an end-of -data situation.

- NOTE: 1. This exit must be specified whenever the I/0 will never reach

*IITI NOILOJS

INIWHOUNYW VIVA

90T1-¢

Table 3-12. MCA Parameters 44 - Device

Exitl

EXIT : RETURN
CODE REASON FOR EXIT CODE RETURN CODE MEANING
21 Device inoperable
a2 Protection violation.
|
23 Device error (after five attempts to position
the device).
B4 Formatting error.
@5 The addressed record cannot be located (after
| five attempts).
@6 Uncorrectable read error. The data, howevar, has
been transferred after 1@ attempts.
Uncorrectable read error. The data, however, has
g1 not been transferred after 1F attempts. (The
Header may contain a read ecror.)
10 Uncorrectable write error. The last write could
not be verified after 1@ attempts.
11 A track linking record has been read into memory.
12 The attempt to track link to the next track in this
file has not been completed after 14 tries.

21 Re-attempt the obera-
tion that caused this
error.

52 Ignore the error and
continue processing
if possible.

79 Halt.

NOTE: l. When one of these exits ig taken, a device error exists. Any

Return Codes listed are applicable to all device error exits.

"III NOILOHES

LNIWNIOUYNYN YIVd

SECTION III. DATA MANAGEMENT

FILE SUPPORT

File Support consists of a set of routines to perform frequently
desired functions on files stored on mass storage. These functions
are allocate/deallocate, load/unload, and map. The allocate function
is used to assign areas of the volume to files as requested by the
user and to update the Volume Directory accordingly. This routine
also causes formatting and initialization of newly allocated files.
The deallocate function removes from the Volume Directory all entries
for a named file, This makes available for future allocation all areas
used by this file. The load function is used to load files from
cards, tape, or another mass storage volume. The unload function
unloads files from a mass storage volume onto cards, tape, printer,
or another mass storage volume., The map function is used to obtain

a printed listing of the contents of the Volume Directory.

All the File Support routines specialize themselves at execution
time based on parameters supplied by the user in the job control state-
ments. It is not necessary to perform an assembly operation to

specialize these routines to perform operations on a particular file.

Because of the structure of the system, a single File Support
run can proceed from file allocation through file loading without
operator intervention. This single run may perform operations on many
files., File support also includes the capability of execution time
inclusion of user's own coding routines for such purposes as randomiz-
ing of keys and end-of-file exits. These routines must reside in the

same file as the file support routines; namely, the System File.

For one or more file support functions to be executed, job
control statements must be input from the card reader for each
desired function. These statements must be punched according to the

general format of the job control statements described later in

3-107

SECTION III. DATA MANAGEMENT

this section. The user may request one function or many functions
within one execution of File Support. Within any function one opera-
tion or many operations may be performed. For example, a single
execution of File Support might include the following functions;
Deallocate, Allocate, Load, and Map. Within the Deallocate function
there might be four File Statements indicating four files to be
deleted. Functions will be performed in the order of the requests.
Thus a request for Allocation of a given file should always precede

a request to load that file. Also, a request to load File-A, File-B,
and File-~C will load them precisely in that order. There must be one
indication of end of job control statements per execution of File
Support. This indication must be either on or following the last
job control statement of the last File Support function requested.

End of job control statements are indicated by an E in column 7.

Allocate Function

DESCRIPTION

The allocate function is used to assign space to a file on mass
storage. Every file on mass storage must be allocated before it can
be loaded. The allocate function checks the areas specified for the
file, to ensure that no other file occupies any of the area, and

updates the Volume Directory to reflect the new file.

The user must supply the name of the file, the file organization,
and the units of allocation for the file. A maximum of six units of

allocation per file per volume can be specified.

The allocate function is requested by a Function Statement whose
first parameter is ALLOCATE. This statement may be followed by FILE,

SIZE, UNITS and MEMBER Statements. These can appear in any order after

3-108

SECTION III. DATA MANAGEMENT

the Function Statement. More than one file may be allocated by a single
Allocate Function Statement. This Function Statement is followed by
as many sets of File, Size, Units, and Member Statements as there are

files to be allocated.

ALLOCATE FUNCTION JOB CONTROL STATEMENT

¢ ® + & o » w N -

Format
EASYCODER
CODING FORM

PROBLEM N PROGRAMMER DATE ____. PAGE ——OF __

NUMBER ég rocaTion 1 *gooe”" OPERANDS

, 213 als]el7ie J 14115, 20/21 | \ | | L | | 6263 | .)
L FUNCT ALLOCATE,. . . s . : e
] . ZLE WHME-Lile-name,, e
Lo A . RG=[SEQ). . . . e e e .
! ! i L JIPHRT&’ Il i n i L i L PUNS PR VPP P i
L . . LozR_J, : 1 et
L l . ENOV.= JNB.)\ .) . . . Dptiondl
L . . C\YES(7 . e . e . 1
L . . £EY= ploSJj‘an/c.naj'}) 1L s . . Optional. . .
il . . W=password, 0ptional .
E jI ! 1)(p YleJC) i 1 [N 1 L 01?7’/0’14/ e,
! ! : TR LT— &,] i 1 " Lasa el i - 0#7’.’/0”&[n
IR ; JB L , , . . e e
l I 1 1 IS E?7| A J L i 1 1) IO P WY i
;. l 1 1 1 1 PR 1 I} i ek 1 1 1 L P a 1 Py
L ‘ I7E | ITEM-=iten- thy o L . L [The Size State- ..
i L i .EC'I":GC”J‘"J; /ﬂ”ﬂhl i i i L ba))
; i " LOCH [.t ﬂ!s,ﬂ&n‘blﬂCkI - P i 1 Loaa . F——
} + 1 i N NDEJ(bloc:ks. /”1 /”dBYI J I i 4 1 PR Y 1 1
| ! i /’)ILOM Mbcr' 01£ rf'a.CxKS‘I 1 1 1 Jn N T [i
L . NITS WAME velyme-name,. . . s
§ ‘I L L DEVHD;D [DC.Ul.dr'hV&)l L " ; L i 0'/'.IAI1L/ edo
E i el L R.aM’:Cl 1—/ L L L 5 L L i TN 1 L
b L I 10= C,.‘f': N s i . L TR S L L L
; ! . i .I?OM"CI Tl i 1 L [N | I ['l)'ﬁllﬂl)L/; i
i }[L { 70 "CI 1T1 i ol 1 L 3 A Og‘ﬁl-o na /I L
L1 . HEER. HHErm:abc.r-ﬂ.me/ . , , , A ; s
: TI e ENGTHEnumber-o.f- b/o.cks e ‘
L " — i i . { vx L " T 1v4 —a i i
Description

FUNCTION STATEMENT: The Function Statement contains the Operation Code

FUNCT and the Operand ALLOCATE which specifies

function to perform.

3-109

to the system what

SECTION III. DATA MANAGEMENT

FILE STATEMENT: The file to be allocated is identified by the File
Statement, whose first parameter is NAME., The File Statement is

required.

Name Parameter: The Name Parameter (NAME) gives the name of the
file to be allocated. This is a required parameter and can
be up to 1f characters long. When it is less than 18 char-
acters long, trailing spaces are automatically added. File
and member names cannot begin with a character whose octal
value is 28 (+), 48 (=), 68 (N or D), or 77 (N\ or ¢).
All numeric values in the parameters, following the key-

words, are in decimal format.

Organization Parameter: The Organization Parameter (ORG) .
specifies the organization of the file to be allocated
as sequential (SEQ), Partitioned Sequential (PART),

or as Direct Access (DIR). This is a required parameter.

General Overflow Parameter: The General Overflow Parameter
(GENOV) applies only to Direct Access Files. It specifies
whether the file is to contain a general overflow area or
not. The assumed condition, when this parameter is not

specified, is that there will be a general overflow area.

Key Parameter: The Key Parameter (KEY) is required for Direct
Access Files and cannot be used with Sequential Files. This
parameter specifies both the position and length of the Key
Field. The position part of the parameter indicates the posi-
tion in each item of the high order end of the Key Field.

The first character of the item is character g@ggl. The
length part of the parameter indicates the length in char-~

acters of the Key Field.

3-110

SECTION III. DATA MANAGEMENT

Password Parameter: The Password Parameter (PW) specifies the

password to be placed in the Volume Directory entry for the
file. The password can be up to 8 characters long. However,
when it is less than 8 characters, trailing spaces auto-
matically are added. When the password parameter is omitted,
(it is not a required parameter) the password field in the
Volume Directory entry is set to spaces and no password

checking is performed.

Expired Parameter: The Expired Parameter (EXP) specifies the

year and day that the file being allocated expires. The yy
portion of the parameter gives the tens and units digits of
the year of expiration. The ddd portion of the parameter
gives the day of expiration. The day of expiration is
determined by counting from January 1 as day @@l. When

this parameter is not specified, the assumed value is @Ggggg.

Protection Parameter: The Protection Parameter (PROT) gives

the type of write protection to be assigned to the file.

The significance of the values of the parameter is as

follows:
A The file is to be assigned A-File write protection.
B The file is to be assigned B-file write protection.
AB The file is to be assigned both A- and B-File
write protection.
NO No write protection is to be assigned to the file.

For a discussion of the types of write protection available
in the operating system, refer to Appendix F. When this
parameter is not specified no write protection will be

assigned to the file.

SIZE STATEMENT: The Size Statement specifies parameters related to

the size of the various units of the file. When the Size Statement

is omitted (it is not a required statement), all its parameters are

3-111

SECTION III. DATA MANAGEMENT

assigned their standard values. The standard values are as follows:
Item 258 characters
Record 258 characters
Block When item size is greater than the record size, 1 item/
block.
When item size is less than the record size, X items/
block (where X = as many items as in a record).
Item Parameter: The Item Parameter (ITEM) specifies the number of
characters in each item. When not specified, the standard

size will be 258 characters. When allocating Direct Access

Files, the status character must be included in this parameter.

Record Parameter: The Record Parameter (REC) specifies the number
of characters in each record. When not specified, the standard

size will be 258 characters per record.

Block Parameter: The Block Parameter (BLOCK) specifies the number
of items per block. When not specified, the standard number

will be 1 item per block.

Bucket Parameter: The Bucket Parameter (BUCKET) applies only to
Direct Access Files and specifies the number of blocks per
bucket. When notspecified, the assumed value of 1 block

per bucket is used.

Index Parameter: The Index Parameter (INDEX) specifies the
number of blocks in the Member Index for a Partitioned
Sequential File. When not specified, the assumed value is

1 block for the Member Index.

Cylinder Overflow Parameter: The Cylinder Overflow Parameter
(CYLOV) specifies the number of tracks in the cylinder
overflow area for a Direct Access File. When not specified,
the allocate function does not access any cylinder overflow

area.

3-112

SECTION III. DATA MANAGEMENT

UNITS STATEMENT: The Units Statement specifies the units of allocation

for the file. There must be only one Units Statement and this statement

must include at least one pair of From and To parameters.

Name

Parameter: The Name Parameter (NAME) specifies the volume
serial number of the volume to be used for this set of units
of allocation. The name is 6 characters long. This parameter

is not required.

Device Address Parameter: The Device Address Parameter (DEVADD)

From

specifies the peripheral control unit number and the drive
nuqber of the device containing the volume for this Units
Statement. The peripheral control unit number is written

as two octal digits and all bits except the I/0 bit must be
specified. The drive number is written as one octal digit.
When this parameter is not specified, the assumed values of
@4 for the peripheral control unit and @ for the drive number

are used.

Parameter: The From Parameter (FROM) gives the low cylinder
and track address of a single unit of allocafion. This must
be followed immediately by a To Parameter which specifies the
high cylinder and track address of the same unit of allocation.
The cylinder address of the From Parameter must be less than
or equal to the cylinder address of the corresponding To

Parameter. The same is true for the track address.

To Parameter: The To Parameter (TO) specifies the high cylinder

and track address of a single unit of allocation. It is

paired with the immediately preceding From Parameter. Note
that if a file consists of more than one unit of allocation,
the number of tracks assigned per cylinder must be constant

for all units of allocation.

3-113

SECTION III. DATA MANAGEMENT

& o & w N -

MEMBER STATEMENT: The Member Statement enables the user to reserve space

PROR
CARD

for members of a Partitioned Sequential File. This statement is required
only when it is desired to reserve space for a specified member by the
allocation process. There must be one Member Statement for each member
which is being reserved. The parameters of the Member Statement are

described in the following paragraphs.

Name Parameter: The Name Parameter (NAME) gives the name of the

member, which can be up to 14 characters long.

Length Parameter: The Length Parameter (LENGTH) specifies the
number of blocks to be reserved for this member. Fi}e and member
names cannot begin with a character whose octal value is 28 (+4),
48 (=), 68 (A ora), 77 (a or ¢). All numeric values in

the parameters, following the keywords, are in decimal format.

ALLOCATE FUNCTION JOB CONTROL LANGUAGE EXAMPLE

The following job control statements request the allocation of a
Sequential File named FILE-A. This file has an item length of 1@@ char-
acters and is to have 5 items per block. Two units of allocation are
requested, the first from cylinder 5 track @ to cylinder 9 track 9;
and the second from cylinder 2@ track @ to cylinder 24 track 9. The
standard assumptions are no password checking, no expiration date checking,
the record size is 25@ characters, the device address is pcu @4 drive @,
and no write protection.

EASYCODER

CODING FORM

LEM PROGRAMMER ______________ DATE .. PAGE___OF __
TN

! ocaTion | OPERATION OPERANDS

T
1
i

121

¥
f
NUMBER E
5

“
R
S
7

3.l 8 L s 2012 1 | et TEN — L AL LA T Los L A 20

!

! L Al/ﬂc.-r L/ {)CHTE/ 1. L i . " ad i i P i

. FILE ﬂHE'FILE-ﬁ;OﬁQ SEZ%. s - ! o A .

. T2E [TTEM=100,

I
i
1
\
|
1
|
|

I

! " A

: 1 i LOC/(51 1 A N ia L L 1 " 1 i -
|

. UNITS |FROM=(5,4),T0= =3, Q)L. e .
-E: 1 1 ROM /Z@ d) TO [£|4 q\),l 4 oY 1l.a i i L ¥ A

Table 3-13 contains a summary of the allocate function job control

statements.

3-114

S11-¢

Table 3-13.

Allocate Function Job Control Statements

JOB CONTROL PARAMETER
STATEMENT PARAMETER VALUE DESCRIPTION REQUIREMENTS
FUNCTION ALLOCATE ALLOCATE Specified the file support function | Required.
STATEMENT to be performed.
NAME File-name Names the file to be allocated. Required.
Specifies the organization of the
ORG SEQ file to be allocated as seguen-
tial.
Specifieg the organization of the .
PART file to be allocated as partitioned Required.
sequential.
Specifies the organization of the
DIR file to be allocated as direct
access sequential.
NO The direct access file being allo- Optional. Note
cated does not require a general that this para-
FILE overflow area. meter only applies
GENOV -
to direct access
The direct access file being allo- files.
YES cated requires a general overflow
STATEMENT area.
Indicates the position in the item \
o : 4 Optional. Note
Position ggeige high order end of the key that this para-
KEY . meter only applies
Lenath Indicates the length in character E?l:;rect access
engr of the key field. .
Specifies the password to bhe
PW Password placed in the volume directory Optional
entry for this file.
EXP yyddd Specifies the year and day the Optional

file being allocated expires.

91T1-¢t

Table 3-13 (cont.)

Allocate Function Job Control Statements

fied no cylinder overflow area is
generated.

JOB CONTROL PARAMETER
STATEMENT PARAMETER VALUE DESCRIPTION REQUIREMENTS
The file being allocated is to
A be assigned A-file write
protection.
FILE The file being allocated is to
B be assigned B.-file write
protection.
PROT The file being allocated is to Optional.
STATEMENT AB be assigned both A- and B-file
write protection.
No Write protection is to be
NO assigned to the file being
allocated.
Specifies the number of charac- The size statement
ITEM Item- ters in each item. When not is optional. Note,
length specified each item will have however, that when
250 characters. allocating direct
access files and
Specifies the number of charac- cylinder overflow
REC Record- ters in each record. When not is desired. The
SIZE length specified each record will have size statement
25¢ characters. with the CyYLov
parameter must be
Items/ Specifies the number of items in included.
BLOCK Blocks each block. When not specified
STATEMENT each block will contain one item.
Specifies the number of blocks set
» Blocks/ acside for the member index of, a
INDEX Index partitioned sequential file. When
not specifies one block will be
allocated to the member index.
’ Number— Specifigs the number of tracks in
CYLOV of — the cylinder ovgrflow area for a '
tracks direct access file. When not speci-

LTT—E

Table 3-13 (cont.)

Allocate Function Job Control Statements

JOB CONTROL PARAMETER
STATEMENT PARAMETER VALUE DESCRIPTION REQUIREMENTS
AME Volume- Specifies the volume serial .
N name number. Required.
PCU Specifies the PCU number in two
octal digits.
DEVADD Optional.
. Specified the drive number in one
UNITS Drive octal digit.
c Specifies the low cylinder address
of the unit of allocation.
FROM Required.
STATEMENT € Specifies the low track address of
the unit of allocation.
c Specifies the high cylinder
address of the unit of allocation.
TO Required.
£ Specifies the high track address
of the unit of allocation.
NAME Member- Specifies the name of the member One per member
MEMBER name for which space is being allocated. | being allocated
is required for
STATEMENT Number- Specifies the number of blocks to partitioned se-
LENGTH of - be reserved for this member. quential files.

blocks

SECTION III. DATA MANAGEMENT

“ o~

v & ~ o o »

Deallocate Function

DESCRIPTION

The Deallocate Function is used to delete files from mass storage.
File deallocation is the only means by which space may be freed for other
files. Before a file is deallocated, checks are made on the file's
expiration date and on its password to ensure that a protected file is

not removed inadvertently.

DEALLOCATE FUNCTION JOB CONTROL STATEMENT

The Deallocate Function is requested by a Function Statement whose
first parameter is DEALLOCATE. This statement may be followed by a
Volume Statement and must be followed by at least one File Statement.

The File and Volume Statements can appear in any order.

FUNCTION STATEMENT: The Function Statement contains the Operation Code
FUNCT and the Operand DEALLOCATE, which specifies to the system what -

function to perform.

VOLUME STATEMENT: The Volume Statement specifies parameters pertaining
to the volume containing the file to be deallocated. There may be only
one Volume Statement per Deallocate Function. This statement is not

required and when not specified the parameters assume the standard values.

3-118

Format EASYCODER
CODING FORM
PROBLEM PROGRAMM. ER DATE . PAGE ____OF
uﬁﬁ&a g:‘é“l LOCATION OPEcRo‘:zION OPERANDS
L 213 als (78 R 15 2002 L . | 62063 e i .. 60
b ‘ FUNCT. DEHLLOCF]TE,) \)) ,) IR L ,
L . VOLUMENBME=vol ume-name, . . \ i Wolume statement. .
| ‘ A EVROD=(pcu, drive),. . A . ey S 0pTional..
L] . ILE WNAME=£ile-name,, e , i L e
ol , . YP=LNO A, , . e . . Optional, ‘ :
T T g}sfff T
i ! : I A 0[l I 1 — n 1 - ﬂ lI 1 J
RRRN-2 AY__. yyddd) . . , . ‘ o pTional, s
}——? :LL J 1 . A, 1 1 1 - I L Lot . 7 . i etk
Description

SECTION III. DATA MANAGEMENT

The parameters and standard values for the Volume Statement are described

~ in the following paragraphs.

Name Parameter: The Name Parameter (NAME) specifies the serial
number of the volume containing the file to be deallocated.

Device Address Parameter: The Device Address Parameter (DEVADD)
specifies the physical device address of the mass storage
volume., Specifically, it gives the peripheral control unit
number written as two octal digits in which all bits except
the I/0 bit must be specified. Also, it specifies in one
octal digit the drive number. When the parameter is not
specified, the assumed values of g4 and @ for the pcu and

drive respectively are used.

FILE STATEMENT: BEach file to be deallocated is specified by a File

Statement whose first parameter is NAME. This is a required statement.

To deallocate more than one file with a single Function Statement, there
~ must be a File Statement for each file. The parameters of the File State-

ment are described in the following paragraphs.

Name Parameter: The Name Parameter (NAME) gives the name of the file
to be deallocated. It must be exactly as the name appears in

the Volume Directory.

Expiration Parameter: The Expiration Parameter (EXP) specifies
whether or not the expiration date of the file to be deallocated
is to be checked. When this parameter is not specified, the

expiration date automatically is checked.

~ Password Parameter: The Password Parameter (PW) gives the password
of the file to be checked against the Password Field in the
Volume Directory. The Password Parameter may be omitted only

if the file being deallocated is not protected by a password.

3-119

SECTION III. DATA MANAGEMENT

T Y

When the Password Field in the Volume Directory is not all spaces
(as it is when no password is assigned) and the password check

is made without this parameter being specified, the result is that

the file is not deallocated.

DAY STATEMENT: The Day Statement specifies the day against which the
expiration date of the file is checked. If no Day Statement is submi tted,

the Supervisor Current Date Field is used.

DEALLOCATE FUNCTION JOB CONTROL LANGUAGE EXAMPLE

The following job control statements cause the deallocation of two
files on the volume whose serial number is A@G@IFF. The first file to be
deallocated is FILE-E and its expiration date is checked (automatically)
and its password is DEPT.1@@. The second file to be deallocated is FILE-C.
Its expiration date is not checked and the password is not checked (it

is assumed that this file was not protected by a password).

EASYCODER

CODING FORM

PROBLEM PROGRAMMER __ = DATE . ___ . PAGE____OF

CARD
NUMBER

A

OPEAATION

LOCATION piel OPERANDS

<
~T=Zy

i 273 als [

. 148, 20,21 i) PP | T s 1 LaS2I83 il

1) FJMCT Eﬁ.LLngT.EI N 1 " n . 1) ad i i A n
. VOLUMENAME=REISEd, . e o

; ‘ ILE WAME-FILE-E,pW=DEPT- 1¢d, : . T D .
! { L .ILE MHME-‘FILF" C/) N N N a a1 i N
i i 1 XP'MO’I 1 1 1 L i i i

Takle 3-14 contains a summary of the deallocate function job control

statements.

Load/Unload Function

DESCRIPTION

The Mass Storage File Support Subsystem has the facility to load
data from and unload data to one-half inch magnetic tape or punched cards.
All standard fixed length formats are allowed. Appendix D of this manual
summarizes these formats and points out any features that are extensions

of previous Honeywell Series 200 Software.

3-120

T21-¢

Table 3-14. Deallocate Function Job Control Statements
JOB CONTROL PARAMETER
STATEMENT PARAMETER VALUE DESCRIPTION REQUIREMENTS
FUNCTION i Specifies what file support .
STATEMENT DEALLOCATE DEALLOCATE function to perform. Required.
NAME VOLUME Specifies the serial number of
NAME the volume being allocated.
VOLUME
Specifies the PCU number of the .
STATEMENT PCU . . N Optional.
DEVADD device in two octal digits.
Drive Specifies the drive number of
the device in one octal digit.
AME File Specifies the name of the file .
N name to be deallocated. Required.
FILE Specifies that the expiration
NO date of the file to be deallo-
EXP cated should not be checked. Optional.
STATEMENT Specifies that the expiration
YES date of the file to be de-
allocated should be checked.
This is the password to be
) checked against the password .
PW Password field in the volume directory Optional.
entry for this file.
This is the year and day
DAY against which the expiration :
STATEMENT yyddd yyddd date of the file being de- Optional.
allocated is to be checked.

*IITI NOILCHES

INIWIOVNYW WIvd

SECTION III. DATA MANAGEMENT

© @ N @& & b w N -

LOAD/UNLOAD FUNCTION JOB CONTROL STATEMENT

Format
EASYCODER
CODING FORM
PROBLEM PROGRAMMER — ____ __ DATE. _ . PAGE__OF—__
o gg[LocaTion | OPERATION OPERANDS
1 23 aTs]si7ie R 3N 20(21 | ' | R | , 62(63 L L 80
Ii : i IUNCT [LOHD \ x 1 1 . i i A e A " " i doa o 1 1
o . . UNLOADC . . I D .
I l 1 lILE IN\I) i I. 1 i i A Y 1 Aot i a i a1 i
!]i i 1 \ﬂUTﬂ n 1 A i N 1 U i i N 1 —a k-
Lo . . BHE=Lil e-name . . . ‘ Oeptionel . A
|| , A VIVPE=device-types Optional .
;) . VARDR=(pcuydeive),.. QDpTional, .
' . . TEM=item-lenath., A DTanaLJ, ,
e . L EC=record- Ieng.—fh Optional, .
; _% 1 i ”_N rVES I } N 1 L ! 1 L .ﬂTI On.@[N X
lr l | i J No i &,l i i 1 s " I L PN] "
L] . . lbamrerl . . . , , . .
: [1 1 ”.D MJA /ﬂlal 1 . 1 1 1 1 1, pTxI.Oﬂﬂ./ 1
: [1 1 .”R anD \ — i 1 i . L 1 ‘p:_TL'Dna.I . e
| g , . AEVENS, , . N \ . e
} ; . X &DEifSPEC‘\/ X A Oﬁt/anaL .
1. { 1 1 w lsTﬁMDf 1 1 2l 1 1 1 ,Ll P |y i
e . . cpassword; s . . Optional, L
L ! . UCKET=JRELN, Lo Optional, . '
{ ! 1 1 i \pﬁf It 1 1 1 i i l. . 1 . 1 e
et ‘ ! ROT=(A).,) . : . v OpTional, —
! ll L 1 Ja L] 1 i i 1 1 1 i A4 1 i
! | A i .\ﬂgr? P} i L ol 1 1 1 At deos X
{ I 1 1 i i 0 I 1 1 1 I VPR W 1
e A HMBERNAME=member-name, /)77_4/15-/ Srg,tgmgz_"
Lo . EXITS \PROG=pro0 m-rame; ; A . X Ts STRTEMENT 15
: t E . MAZ0w-memory - addrass). 2pT o0l .
: I 1 . i e i [A — A i " el i e i
Description

A Load or an Unload Function is requested by a Function Statement
whose first parameter is either LOAD or UNLOAD. The File Statements
specify whether the operation is to or from mass storage. The Function
Statement is followed by two File Statements, one for the input file and
one for the output file. Each File Statement may be followed by an
associated Member Statement. The Member Statement associated with the
first File Statement must appear after that File Statement and before

any subsequent File Statment. There may also be one Exits Statement.

3-122

SECTION III. DATA MANAGEMENT

FUNCTION STATEMENT: The Function Statement contains the Operation Code
FUNCT and the Operand LOAD or the Operand UNLOAD. This specifies to the

system what function to perform.

FILE STATEMENTS: Both the Input and the Output File Statements are described
here since they are essentially equivalent in form. The input file for a
Load/Unload Function is identified by a File Statement whose first para-
meter is IN. The Output file is identified by a File Statement whose first

parameter is OUT.

In/Out Parameter: The In/Out Parameter (IN) or (OUT) specifies
whether the File Statement applies to the input file or to

the output file.

Name Parameter: The Name P;rameter (NAME) must be specified when
the file is a mass storage file. With other device types (cards
or tape), the Name Parameter may be omitted. When this is the
case, label checking is not done. When specified, the Nam€

Parameter must be identical to that appearing on the data file.

Device Type Parameter: The Device Type Parameter (DEVTYPE) specifies
the storage medium used for the file as well as the type of
peripheral device used to access the file. The type number of
the device used to access the file is given and this number may

be any one of the following:

227 Card Reader - Card Punch
224-1 Card Reader/Punch

223 Card Reader
224-2 Card Reader/Punch
214-1 Card Punch

214-2 Card Reader/Punch
204B One-half Inch Magnetic Tape
222 Printer
206 Printer
When this parameter is not specified, the standard assumption is

that the device type is mass storage.

3-123

SECTION III. DATA MANAGEMENT

Device Address Parameter: The Device Address Parameter (DEVADD)
allows changes to be made to the standard assignment of the
peripheral device used to access the file. The peripheral
control unit number is given as two octal digits and all bits
must be specified. The drive number is given as one octal digit.
When this parameter is not specified, the standard values used

are as follows:

Punched Card Input pcu 41
Punched Card Output pcu g1
Magnetic Tape Input pcu 44 drive 1
Magnetic Tape Output pcu g4 drive 1
Mass Storage Input pcu 44 drive g
Mass Storage Output pcu g4 drive @
Printer Output pcu @2

Item Parameter: The Item Parameter (ITEM) gives the length in char-
acters of each item in the file. When the file is on mass
storage this parameter must be omitted as the item length is
obtained from the Volume Directory entry for the file. When
the file is not on mass storage, this parameter may be omitted
and the item length will be equal to the item length in the

mass storage file.

Record Length Parameter: The Record Length Parameter (REC) gives
the number of characters in each record of the file. When the
file is stored on mass storage this parameter must be omitted as the
record length will be obtained from the Volume Directory entry
for the file. When the file is not stored on mass storage, this
parameter may be omitted and the record length will be assumed to

be equal to the block length in the mass storage file.

Banner Character Parameter: The Banner Character Parameter (BAN)
only applies to a magnetic tape file and gives the banner char-
acter of each data record in two octal digits. When omitted the

file is assumed to be unbannered. When the value of the parameter

3-124

W

SECTION III. DATA MANAGEMENT

equals YES for an output tape, a standard banner character of 418
is used. On an input tape, YES indicates the presence of a
banner but its value is not checked. When the value of the

parameter equals NO, the file is assumed to be unbannered.

Padding Character Parameter: The Padding Character Parameter (PAD)
only applies to a magnetic tape file and gives the padding
charécter for the file in two octal digits., When omitted, and
the file is using odd parity, the standard value is 77g. When
omitted, and the file is using even parity, the standard value

is 1llg.

Parity Parameter: The Parity Parameter (PAR) only applies to a
magnetic tape file and gives the parity of the recording as odd

or even. When omitted, the standard value is odd parity.

Mode Parameter: The Mode Parameter (MODE) applies only to a punched
card file and specifies the reading or punching mode as standard
(STAND) or special (SPEC). When not specified, the standard
assumption for this parameter is that the special mode is to be

used.

Password Parameter: The Password Parameter (PW) applies only to a
mass storage file and gives the password to be checked against
the Password Field of the Volume Directory entry for this file.
When the Password Field of the Volume Directory entry for the
file is not all spaces, the password check is made regardless of

whether or not this parameter has been omitted.

Bucket Parameter: The Bucket Parameter (BUCKET) applies only to
a Direct Access File stored on mass storage. It gives the type
of bucket addressing as relative (REL) or as absolute (ABS).

When not specified, the standard assumption for this parameter

3-125

SECTION III. DATA MANAGEMENT

is that the absolute bucket addressing mode is to be used.

Protection Parameter: The Protection Parameter (PROT) indicates the
write protection that was assigned to the file when the file was
allocated. The significance of the values of this parameter is

as follows:

A The file was allocated with A-File write protection
B The file was allocated with B-File write protection
AB The file was allocated with A~ and B-File write
protection
NO The file was allocated with no write protection
assigned.

When this parameter is omitted, the standard assumption is that no
write protection was assigned to the file when it was allocated.
When a file has been allocated with a Protection Parameter other
than NO, the same value that was used during allocation must be

used when describing the file for the Load/Unload Function,
This parameter is specified only for an Output mass storage file.

MEMBER STATEMENT: The File Statement may be followed by one or more Member
Statements. These statements specify that one or more members of a Partitioned
Sequential File are to be processed. When the entire file is to be processed,
these statements are omitted. The Member Statement has only one parameter,

the Name Parameter (NAME). The Name Parameter specifies the name of the
member to be processed. It can be up to 14 characters long, and when it is

less trailing spaces automatically are added.

EXITS STATEMENT: The Exits Statement enables the exit to a user supplied
routine just after accessing an input item and just before writing an

output item. The Exits Statement is required for Direct Access mass storage
output files to compute the bucket address for the output items. The Exits

Statement describes the user supplied routine.

Program Name Parameter: The Program Name Parameter (PROG) gives the

program name of the user's routine. This routine is entered at

3-126

LTT-E

Table 3-15.

Load/Unload Function Job Control Statements

of characters.

JOB CONTROL PARAMETER
STATEMENT PARAMETER VALUE DESCRIPTION REQUIREMENTS
Specifies whether the file
FUNCTION LOAD LOAD support function is load or not.
Required.
STATEMENT UNLOAD UNLOAD Specifies whether or not the
file support function is unload.
IN IN Specifies that this file state- One input and one
ment applies to the input file. output file state-
ment is required
oUT oUT Specifies that this file state- for either
ment applied to the output file. function.
NAME File Specifies the name of the file Optional when file
FILE name being loaded or unloaded. is not a mass
storage file.
Specifies the storage medium
Device used for the file as well as .
STATEME DEVIYPE type the type of device used to access Optional.
' NT the file.
Specifies the PCU number in two
PCU L s
octal digits.
DEVADD Optional.
Drive Specifies the.drlve number in
one octal digit.
Ttem Specifies the length of the
ITEM items in the file in number of Optional.
length
characters.
Record Specifies the length of the
REC Ianth records in the file in number Optional.

8Z1-¢

Table 3-15 (cont).

Load/Unload Job Control Statements

JOB CONTROL PARAMETER
STATEMENT PARAMETER VALUE DESCRIPTION REQUIREMENTS
YES Specifies the banner character
for an output tape file as 4lg.
Optional.
Specifies that the tape file is Applies only
BAN NO i
unbannered. to magnetic
: tape files.
Specifies the banner for an out-
Banner put tape file in two octal digits.
FILE
Specifies the padding character
PAD Padding for a magnetic tape file in two Optional.
octal digits.
STATEMENT Specifies the parity of the re-
ODD cording as odd for magnetic
tape files.
PAR Optional.
(cont) Specifies the parity of the re-
EVEN cording as even for magnetic
tape files.
Specifies the reading or punching
SPEC mode for a card file as special
MODE € pecia-. Optional.
STAND Specifies the reading or punching
mode for a card file as standard.
This is the password to be Optional.
checked against the password Applies only to
PW Password field of the volume directory mass storage
entry for this file. files.
Specifies the type of bucket
REL addressing for a direct access
file as relative.
BUCKET Optional.
Specifies the type of bucket
ABS addressing for a direct access

file as absolute.

6C1-¢

Table 3-15 (cont).

Load/Unload Job Control Statements

JOB CONTROL

STATEMENT PARAMETER VALUE DESCRIPTION REQUIREMENTS
Specifies that this file was
FILE A allocated with A-file write
protection.
STATEMENT
Specifies that this file was
(cont) B allocated with B-file write
protection.
PROT Optional.
Specifies that this file was
AB allocated with both A- and B-
file write protection.
Specifies that this file was
NO allocated without write
protection.
MEMBER Al Member Specifies the name of the .
STATEMENTS N name member to be processed. Optional.
PROG Prgg;:m igzg}ileiotzzmname of the Optional.
EXITS . program.
STATEMENT Low Specifies the lowest memory
LMA memory address used by the user's Must be specified.
address program.

SECTION III. DATA MANAGEMENT

e v o o » w m -

the location specified by the Easycoder END Statement and is the
starting address of the routine. The return to the Load/Unload
Function from the user's routine is made by branching to the
address that was in the B Address Register (BAR) at the time the

routine was entered.

Low Memory Address Parameter: The Low Memory Address Parameter (LMA)
gives the lowest memory address used by the user's routine and

must be specified. This parameter is given in decimal,

LOAD/UNLOAD FUNCTION JOB CONTROL LANGUAGE EXAMPLE

The following job control statements request a magnetic tape file to
be loaded into mass storage. The input magnetic tape file is named FILE-X,
Its item length is 125 characters and its record length is 5@1 characters.
This file is bannered. Standard value assumptions are that parity is odd
and padding is 77g. The output mass storage file is named FILE-X also and
has an item length of 125 characters. The record size of this file has the
standard size record, 258 characters. Also, the output file is not protected

by a password or by write protection.

EASYCODER
CODING FORM
PROBLEM PROGRAMMER .. DATE ____ . — PAGE _OF ___
R o agriikarmu OPERATION OPERANDS |
1273 4]s e;re N 1alis 20721 R N L L RN | 626} . 3
N . UNCT (08D, \ . . s \ el A
; i . EILE’iIN/ L . . et NN S . .
| l) i) HH.E:JF.IL E’.X) L 1 _ N Y i l ad 2 s
% i Il L EVTV:PE:M4B,I i i, —_—t s T . i i Ak ® —_
L . . ITEM=125,REC=50L, e
o geNeYES,
BN B FILE . OUT,. e N " " .
LB . AME=FILE-Xs . . .) . s . .

Table 3-15 contains a summary of the load/unload function job control

statements.

Map Function

DESCRIPTION

The Map function produces selected information about a mass storage

3-130

SECTION III. DATA MANAGEMENT

o @ N O v P W N -

)

volume from the Volume Directory. This routine has three separate actions:
production of description of a file, mapping expired files and mapping

unused areas of the volume.

Description Of A File

The description of the structure and other information about mass
storage files can be listed. One or several files may be listed, or all
files on the volume may be listed. The information listed is taken from

the contents of the Volume Directory.

Expired Files
A listing of all files that have expired, as indicated by their expira-

tion dates, can be produced. The user can request that all files whose

expiration date is less than a specified date be listed.

Unused Areas
A listing of all unused areas on a mass storage volume can be produced.
The installation can use this listing to determine units of allocation for

new files.

MAP FUNCTION JOB CONTROL STATEMENTS

Format EASYCODER
CODING FORM
PROBLEM PROGRAMMER DATE ____. PAGE . OF ___
ngsn ER weation | OFETON OPERANDS
1 2]3 als]e]7(8 X 1415, 20120 | | | | NN R ; 62]63 | | PN 80
L . UNCT. MAP [DESCR .) ., . . . , e .
‘o . . SEXPIREDS. . . e . e .
L] . ‘ lwavsen |7 e e
! ' . V0L UMENAME=ys |ymé-name,. . A 1 The Volume State-.
L1 : , VADD= [pau,erVe)/l . e] [.
| . FILE_ NAME=Ljle-name.,) . , . . , .
Pl . ILE WRME=L]]e-name) , . , ‘ ptional. ,
; . 4y yyddd, , o . ‘
i | 1 —— L 1 1 1 ',I I 1 1 ‘;_‘_‘
Description

The Map Function is requested by a Function Statement whose first

parameter is MAP.

The second parameter of the Function Statement gives

3-131

SECTION III. DATA MANAGEMENT

the type of mapping desired. The Function Statement may be followed by
a Volume Statement, one or more File Statements, and a Day Statement in

any order.

FUNCTION STATEMENT: The Function Statement contains the Operation Code
FUNCT and either the operand MAP,DESCR - MAP,EXPIRED - or MAP, UNUSED. This

statement specifies to the system what function to perform.

Map Volume Description Parameter: The Map Volume Description Parameter
(MAP,DESCR) requests a printed listing of the contents of the
Volume Directory for the files specified in the File Statements,
or of the entire Volume Directory when no File Statements whose

first parameter is NAME is specified.

Map Expired Parameter: The Map Expired Parameter (MAP, EXPIRED)
requests a listing of all files whose expiration date is less

than the date specified.

Map Unused Parameter: The Map Unused Parameter (MAP,UNUSED) requests

a listing of all unused space on the mass storage volume,

VOLUME STATEMENT: The Volume Statement contains parameters that pertain to
the volume to be mapped. This statement is not required, and when omitted

its parameters are assigned standard values.

Name Parameter: The Name Parameter (NAME) gives the serial number

of the volume to be mapped.

Device Address Parameter: The Device Address Parameter (DEVADD) gives
the device address of the volume to be mapped. The peripheral
control unit number is given in 2 octal digits. All bits except
the I/0 bit must be specified. The device drive number is given
in 1 octal digit. When this parameter is not specified, the pcu

address is @4 and the drive number is @.

3-132

SECTION III. DATA MANAGEMENT

~

FILE STATEMENT: When a listing of Volume Directory information for a
selected file is desired, a File Statement whose first parameter is NAME
is required. For each file for which a description is desired, a single
File Statement is required. When the Volume Directory information for all
files on the volume is desired, the File Statement may be omitted. The
File Statement is not relevant to the listing of obsolete files or of
unused areas, The Name Parameter of the File Statement names the file

whose Volume Directory information is to be listed.

DAY STATEMENT: The Day Statement contains a date against which file expiration
dates are to be checked when a listing of expired files is being produced.

When no Day Statement is given, the Current Date Field of the Supervisor

is used. The parameter of the Day Statement is yyddd. The year is specified

by yy and the day of the year by ddd (counting from January 1 as day @g@1).

MAP FUNCTION JOB CONTROL LANGUAGE EXAMPLES
The following Map Function job control statements requests a listing

of the unused areas of a volume mounted on drive 1 of peripheral control

unit g4.
CODING FORM
PROBLEM PROGRAMMER _________~ DATE____ . ____ PAGE___ OF___
CARD ¥
NUMBER Eg Location | OPEEEON OPERANDS
) zlﬁ a{s elrjs | alis, 20(21 . | R L N | , ey NN 5., 80
— i L ﬂNCT HP+MNUSE/ ' L | N e i ! P P 1
! . V.0LI/ﬂE EV”DID= {M}J); Lo A s " L ! NP SN B L
1 .
) \ 1 L 1 1 1 1 N 1 i P 1 a) | TP

These Map Function job control statements request a listing of the
Volume Directory information for files named FILE-F and FILE-G. The
standard conditions are that the volume containing these files is at device

address pcu @4, drive J.

EASYCODER
PROBLEM PROGRAMMER == DOATE___ . _ = PAGE___OF___
NOVOER T% LocaTion | OPERATION OPERANDS
1 23 aTse]7(s X 1405, 20(2: J N " N RN N | 62063 . L NG
]l’ ; A FIUMT Wﬂ.p}DEsCK,Ll 1 L U | ' " 1 1 " 1 ad s 1
T.._,L " F._ZLE ﬂ’4£=AFILE:|EJ L N L S S FUPED VPO SN U SRV L
!4_1 1 JLE n.’iE'-JFILF-AGII N L L T R SN T S PN T s o

Table 3-16 cont%ins a summary of the map function job control
statements.

3-133

ye1-¢

Table 3-16.

Map Function Job Control Statements

JOB CONTROL PARAMETER
STATEMENT PARAMETER VALUE DESCRIPTION REQUIREMENTS
Specifies that a printed listing
DESCR of the contents of Fhe volumg '
FUNCTION directory for the files specified
in the file statement be produced.
Required
Specifies that a printed listing
. of all files whose expiration
MAP Expired date is less than the date speci-
fied be produced.
STATEMENT
Specifies that a printed listing
Unused of all unused space in the volume
be produced.
NAME Volume Specifies the serial number of
name the volume to be mapped.
VOLUME
PCU Specifies the PCU number of the
STATEMENT volume in two octal digits.
DEVADD Optional.
Drive Specifies the drive number of the
volume in one octal digit.
FILE File Specifies the names of the files Required fgr)
STATEMENTS NAME Name whose volume directory contents map, description
is to be listed. function
DAY This is the date against which Required_for
STATEMENT yyddd yyddad file expiration dates are to be map, expired

checked.

function.

L

SECTION III. DATA MANAGEMENT

FILE SUPPORT PROGRAMMER'S PREPARATION INFORMATION

Considerations for Direct Access Files

When specifying a Direct Access file, the item length as contained in
the Volume Directory is interpreted as including the status character (right-
most character) of the item. The value of this character is set to "inactive"
for all items of the file during file allocation. For any item loaded, the
value is set to "active" during the load process. The possible values of

this character are as follows:

LAST BLOCK ALL OTHER

OF FILE BLOCKS MEANING
76 77 Inactive item.
29 a1 Active item.

LOADING A DIRECT ACCESS FILE
When loading a Direct Accessfile on mass storage, the EXITS statement
must always be specified since the user must supply the bucket address

(in binary) for each item in the file via an own code routine.

UNLOADING A DIRECT ACCESS FILE

Direct Access files are unloaded in a sequential manner in the physical
order in which the active items are encountered on the file. Only active
items are unloaded. The user is never requested to supply a bucket address
but he may, however, specify an own-code routine to modify, delete or

examine the items being processed.

Considerations For Sequential Files

A Sequential file is always loaded and unloaded in a sequential\manner.
An own-code routine may be used as described for unloading a Direct Access

file.

Considerations For Partitioned Seguential Files

Each member of this file type is processed individually. Within

each member, the items are processed in a sequential manner in the physical

3-135

SECTION IIT. DATA MANAGEMENT

order in which they are encountered.

UNLOADING &2 PARTITIONED SEQUENTIAL FILE

To unload a Partitioned Sequential file, no member names are specified
in the Job Control File; only the file name is specified. All active members
of the partitioned file are unloaded in the order that their names appear

in the Member Index for that file.

To unload selected members of a partitioned sequential file the
desired member names are specified in the Job Control File. These are

unloaded in the order in which the names appear in the Job Control File.
LOADING A PARTITIONED SEQUENTIAIL FILE

Loading By File
The user may load an entire Partitioned Sequential File by either of

the following means:

1. Specify no member names in the Job Control File. In this case

the member names are taken from the Input File.

2. Specify in the Job Control File the member names of all members

which comprise the output mass storage file.

Loading Selected Members
The user may load selected members of an output mass storage Partitioned

Sequential file by specifying the desired member names in the Job Comtrol

File.

Proéessing By Member Names
When loading an output mass storage file the Load function takes the
output member names from the Job Control File, if specified, or, when not

specified, from the Input File,

Whether loading by file or member name, if the name under which the

3-136

SECTION III. DATA MANAGEMENT

member is to be loaded already exists in the Member Index of the output
mass storage file, and if the member can be processed in the Output Only
mode, the input data will replace that members data on the output mass
storage file. If the member name does not already exist, the input
member and its data will be added as a new member to the output mass

storage file.

When member names are specified, ana if the output member names in the
Job Control File are exhausted before all indicated input members have been
processed, loading is terminated and control transferred to the next routine.
Member names are specified only for a file which is on mass storage; not

for card or tape files.

Own Coding

During a load or unload function the user may executefan own—coding
routine for further item processing. In the case of Direct Access files
which are being loaded onto mass storage, an own-code routine is required.
In all other cases this own-coding routine is optional. The user may
examine, modify or delete items at this time. File Support branches to

own-coding once for each active item.

STRUCTURE OF OWN-CODING

The own-coding routine must be written and assembled as a single
segment program. This program should originate where it occupies the
memory area immediately below the floating portion of the Supervisor.
The File Support program will load the own-coding only from the same
storage medium (and, if stored on mass storage, the same Executable Program

File) as the File Support program itself.

OWN-CODE COMMUNICATION WITH THE LOAD/UNLOAD FUNCTION
In the EXITS Statement of the Load/Unload function the user is
required to specify the lowest memory address of the own-coding. One

character should be reseérved at that address (LMA) for communication with

3-137

SECTION III. DATA MANAGEMENT

the File Support program. When File Support gives a new item to the user,
the communication character is set to zero. More detailed use of this
character is given in subsequent paragraphs. The branch to own-coding

will occur at the next character location (LMA+1).
Address communication is made through Index Registers 1 and 5.

Index Register 1: This register is set by File Support to the left-

most character of the current item.

Index Register 5: This register is set by the own-code routine to
the right-most character of a user supplied field into which the
user will place his bucket address when loading a Direct Access file.
The field is four characters if relative bucket addressing was
specified ipd eight characters (in the form DMCCTTRR) if actual
bucket addressing was specified. The left-most character of the

field must contain a word mark.

Return to File Support is made via the B address register setting,

stored at the time own-coding was entered.

Deletion Of Items

As mentioned previously, the communication character is set to
zero (g9) when the item is given to the user. If the item is to be written
out to the output file, the communication character remains zero. If the
user desired to delete the item, the communication character would be

set to one (f1) prior to return to File Support.

Invalid Bucket Addresses
If the branch to own~coding shows a one in the communication character,
then the last bucket address supplied to File Support was an invalid

addreés. When this is the case, the user may do either of the following:

1. Return to File Support with a communication character of zero to

have that item bypassed.

3-138

SECTION III. DATA MANAGEMENT

2, Return to File Support with a communication character of one to
terminate the loading of this file. 1In this case, processing

will proceed to the next File Support function.

Insufficient Space

If the branch to own-coding shows two (£2)in the communication character,
there was no room left in the bucket or overflow area(s) for the last item
given to the load function. 1In this case the user may do either of the

following:

1. Return to File Support with a communication character of zero to

have the item bypassed.

2, Return to File Support with a communication character of one to
terminate the loading. In this case, processing will proceed

to the next File Support function.

NOTE: A complete description of the card and tape files processed by File

Support is contained in Appendix D of this manual.

3-139

SECTION IV

PROGRAM DEVELOPMENT SUBSYSTEM

The Program Development Subsystem enables the user to translate
source language programs, establish and maintain libraries of programs,
and test programs. The Program Development Subsystem has several
features of importance to the user. These features are discussed

in the following paragraphs.

FEATURES OF THE PROGRAM DEVELOPMENT SUBSYSTEM

Some of the more important features of the Program Development
Subsystem, such as the independent operation for each programmer,
unbatched operation, and automatic operation, are discussed in the

following paragraphs.

Independent Operation For Each Programmer

The Program Development Subsystem is designed so that the
programmer makes independenf requests for a related series of opera-
tions on his one program or library routine. He does this independ-
ently of other programmers, who are operating with programs that may
be completely unrelated to this program, All information necessary
to the operations for the programmer is submitted by the programmer;
he is not required to submit any information that is not related to
his operations and his program. For example, he does not have to
worry about batching his program with other, unrelated programs; he
does not concern himself with the names of the system programs to be
run; he is not concerned with the equipment assignments because the

system uses the standard values defined for each installation.

Unbatched Operation

The operations of the Program Development Subsystem are performed

on one program or library routine at a time. The programmer submits

4-1

SECTION IV. PROGRAM DEVELOPMENT SUBSYSTEM

a separate request for each routine. This type of operation is called
"unbatched" and provides a shorter turn-around time because the
programmer does not have to wait for the completion of operations

on other unrelated programs that have been batched with his,

Automatic Operation T

The Program Development Subsystem automatically controls the
sequencing of the several processing routines required to perform .
the operations requested by the programmer. All the functions of

the Program Development Subsystem are performed under this control.

ELEMENTS OF THE PROGRAM DEVELOPMENT SUBSYSTEM

There are four basic elements to the‘Program Development Subsystem.
These are language translators, program library file maintenance,
program test facilities, and Easycoder source language analysis.

Program test facilities and Easycoder source language analysis are
not included in the first software release. Each of these is discussed
briefly in this paragraph. Fully detailed discussions of the Easycoder
Assembly, Libra