K. crane

1 P 7 Do(g

TRANSITION

TO EASYCODER

A Programmed Text

ELECTRONIC DATA PROCESSING

Printed in U.S.A.
NP-2939

DSI-319
3964

TRANSITION
TO
EASYCODER

A Programmed Text

By
John E. Harrah
and
Harris J. Hulburt
Programmed Instruction Development

Honeywell

ELECTRONIC DATA PROCESSING

PRICE $4.50

Questions and comments regarding this manual should be addressed to:

Honeywell Electronic Data Processing
Programmed Instruction Development
60 Walnut Street

Wellesley Hills, Massachusetts 02181

HONEYWELL

\.

UNREVISED FIRST EDITION
First Printing, September, 1964

Copyright 1964
Honeywell Inc.

Electronic Data Processing Division
Wellesley Hills, Massachusetts 02181

FOREWORD

This manual is specifically written for the reader whose prior programming experience
included a 1401 system. The intent of this manual is to introduce Easycoder language,

provide familiarization with Honeywell 200 computer capabilities, describe programming

procedures, and define Honeywell termineclogy.

This manual is designed to be used as a general introduction and/or a classroom text.

The basic organization of lessons is outlined below:

Lesson I: Introdultion to Easycoder
Lessons Il and III: H-200 Hardware
Lesson IV: Numbering Systems

and

Honeywell Alphanumeric Code

Lesson V: Storage, Retrieval, and Execution

Lessons VI, VII, and VIII: Easycoder Programming

NOTE: Lesson IV is presented in two parts. Part I - Numbering Systems and Part II -
Honeywell Alphanumeric Code. Selective utilization of portions or all of Part I may be

made at the discretion of the reader as determined by subject matter familiarity.

Kl L

Lessons VI, VII, and VIII concern assembly control statements, data formatting state-
ments and data processing statements. Descriptions and reference tables for these state-

ments are also included in the Honeywell H-200 Programmers' Reference Manual (DSI-214).

g,

iii

iv

Lesson I

Lesson II

Lesson III

Lesson IV

Lesson V

Lesson VI

Lesson VII

TABLE OF CONTENTS

Foreword .

Introduction.

Introduction to Easycoder Language .

Transition to Easycoder - Programmed Text

Basic and Extended Easycoder
Assembly Control Statements
Data Formatting Statements
Data Processing Statements

H-200 Hardware

System Similarities

H-200 Configurator

Simultaneity

Magnetic Tape Unit Characteriestics

H-200 Central Processor.
Characteristics

Memory Structure

Parity and Punctuation
Data Formatting

Numbering Systems and Alphanumeric Code. . .

Part I. Numbering Systems .

Binary Arithmetic

Binary - Octal - Decimal Conversion
Part II. Honeywell Alphanumeric Code .
Punched Card Code

Alphanumeric Code

Storage, Retrieval and Execution
Control Memory Registers
Instruction Retrieval and Execution
Operators Control Panel

Easycoder Programming.
Assembly System

Easycoder Coding Form

Assembly Control Statements

Data Formatting Statements

Easycoder Programming.

Instructions

B Branch .

SCR Store Control Reglsters
LCR Load Control Registers

C Confrol

LY

Frame

11
13
16

iii

vi

17

33

45
45

77

85

129

193

209
217
221
197

Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure
Figure
Figure
Figure
',1 Figure

Figure

Figure

Figure

Figure

Figure

Lesson VIII

W N O~ b WD

[e e B o B e e sl
EN I S N N = o)

TABLE OF CONTENTS (cont.)

Lesson VII (cont.) BCT Branch on Condition Test .

SW Set Word Mark. . .

Cw Clear Word Mark .

SI Set Item Mark .

CIl Clear Item Mark, - .
BCC Branch on Character Cond1t1on .
BCE Branch if Character Equal

L.CA Load Characters to A-Field Word Mark .

MCW Move Characters to Word Mark.
MCE Move Characters and Edit.

Easycoder Programming .
Instructions

BA Binary Add.

BS Binary Subtract .

HA Half Add .

SST Substitute

EXT Extract. .

EXM Extended Move e e e e
MAT Move and Translate . .
CSM Change Sequence Mode
RNM Resume Normal Mode.

PDT/PCB Input/Output Operations.

LIST OF ILLUSTRATIONS

General Language Comparison.

H-200 Configurator . .
H-200 Environments
H-200 Environments

Basic Input/Output Data Path.

Symbolic Representation of Input/Output Traffic Control .

Magnetic Tape Unit Characteristics

Data Transfer to Half Inch Tape Segment

Logical Division of the Central Processor. .

Summary of Central Processor Characteristics.

Binary Representation .
Hollerith Punched Card Code. . . .

Alphanumeric Representation.,

Easycoder Assembly . .

Coding Forms. .

Two and Three Character Addressing . .

Program Listing Format .

19
30
31
34
36
43
53

59

22
34
42
51
61
67

203
225
197
203
207
221
212
220
224
228

231

237
237
261
239
257
239
251
272
273
274

23
24
26
28
28
30
30
35
36
46
78
78
131
132
187
191

INTRODUCTION

As a programmer, you will soon be working with a new but not entirely unfamiliar computer
system. Due to similarities with your previous system, the Honeywell 200's basic orientation
provides an initial foundation for understanding. The purpose of this programmed text is to
assist you in gaining insight to the extended scope and advanced periormance capabilities of the

H-200 system.

A programmed text is designed to encourage your active interaction and participation with the
information being presented. In the remainder of this book, you will be given questions to
answer and statements to complete concerning the reading material. While you should feel free

to make any desired notes, it is important to the success of this teaching method that you:

. Follow instructions.

Write responses as required.

1

2

3. Check answers.

4. Correctly re-write any wrong responses.
5.

Take your time.
With this book you will be in the interesting position of being both the teacher and the student.

The diagram below illustrates page format and how you are to proceed from page to page rather

than down a page. Exceptions to this format will be stated.

‘ P R S
s Lo e LT
/;RAME3 _’

Amz FRAME 25)____ I_ - _'l_/_g___ __:
{
/?RAME 2 [ANSWERZA /eFRAMEW /'___ _‘_l{O_ — _JI

/:wzu | | Prane e “’A‘&swzn«J/gmusﬂ)____}

/:nmz | | ahswines | Praue 46 FiRewer 7o /:RAMESB
/

""y 2 L2 Lo

i /RAME 23 [answeraz}” Frame 76 [answersz

/:RAME P A /:Rm: 92

v
3 / /:RAME so | answER 91
v ,

/:RAME 91

LESSONI
INTRODUCTION TO EASYCODER LANGUAGE

LESSON I. INTRODUCTION TO EASYCODER LANGUAGE

EASYCODER IT

AUTOCODER
FREE FORM OPERAND
FREE FORM OPERAND FIELD CODING
FIELD CODING

TAPE ASSEMBLY
TAPE ASSEMBLY

MACRO INSTRUCTIONS

MACRO INSTRUCTIONS LITERALS
LITERALS
SPS IT

FIXED OPERAND
FIELD CODING EASYCODER I
MINIMUM 4K MEMORY FREE FORM OPERAND <
FOR ASSEMBLY FIELD CODING ;
CARD ASSEMBLY MINIMUM 2K MEMORY

FOR ASSEMBLY

CARD ASSEMBLY
SPS I

FIXED OPERAND
FIELD CODING

MINIMUM 14K MEMORY
FOR ASSEMBLY

CARD ASSEMBLY

Figure 1. General Language Comparison

LESSON I. INTRODUCTION TO EASYCODER LANGUAGE

|

L. TRANSITION TO EASYCODER - PROGRAMMED TEXT

Being synonymous with "book, " the word Te AT in the title above should not

require further explanation.

CHECK THE WORD YOU WROTE IN THE BLANK BY TURNING THE PAGE.

S

LESSON I. INTRODUCTION TO EASYCODER LANGUAGE

1. . TEXT

This first '"frame' demonstrates how you are to use this book. Write your responses in
the blanks, then check them by turning the page to see the answer.

Continue to frame 2 on the next page.

Im'tawwa||nl|!lmwpr;'l!|m|mmt|n|I||um»um|mmmmmm1ﬂmM"v i

N

LESSON I. INTRODUCTION TO EASYCODER LANGUAGE

2. While "text" is easily understood to mean '"book, " a programmed text is a special kind of
book. As demonstrated by the first frame, a blank in a sentence allows you to write a
REE?"NSE . These responses are then checked by TR M Iné the page.
8. The use of Basic or Extended Easycoder depends on whether the assembly program is on
punched cards or magnetic tape.
The assembly program for AAsSic Easycoder is on PuMC HED (_ﬁRD , the
assembly program for EXTeNve0 Easycoder is on MACNET!E “TAPs .
14. ASSEMBLY CONTROL STATEMENTS are 1i§ted-=below in mnemonic form. Copy them on
the notepaper just titled.
PROG EQU
ORG CEQU
MORG HSM
ADMODE CLEAR
EX END
On the notepaper, write the complete word beside each mnemonic you recognize from
your previous SPS or AUTOCODER experience.
“20. The H-200 has two outstanding arithmetic capabilities not found in your previous equip-
ment. '
These are: Binary Addition, whose mnemonic is _B_A_
Binary Subtraction, whose mnemonic is _&_S_
By listing the mnemonics above with the arithmetic mnemonics used with SPS or
AUTOCODER, your notes will show the full Easycoder arithmetic instructions.
26. Three of the five types of Data Processing Statements have been introduced. They are:

(1) Api{d@psilc INSTRUCTIONS
(2). Lo&ic INSTRUCTIONS
(3). _EMPvT /_OuiPvl _ INSTRUCTIONS
The remaining two types of Easycoder Data Processing Statements deal with:
(4). Editing
(5). Control (Setting WORD MARKS etc.)

LESSON I. INTRODUCTION TO EASYCODER LANGUAGE

2. RESPONSE (ANSWER)
TURNING

Several equivalent responses may be possible. Occasionally, alternate responses will be
given in parentheses following the preferred response. Use reasonable judgement in decid-
ing whether your response agrees with the printed answer. If it does not agree, return and
correct your response.

CONTINUE TO FRAME 3

8.
BASIC - PUNCHED CARDS
EXTENDED - MAGNETIC TAPE
14. PROGRAM-Operand field entry titles program listing.
*ORIGIN-Tells assembly program beginning assignment of sequential addresses.
MODULAR QORIGIN-Similar to above. Multiple of assigned address.
ADDRESS MODE- Addresses to be assembled as 2 or 3 characters.
*EXECUTE-Partial program execution during loading.

EQUALS-Tag for specified address.

CONTROL EQUALS-Tag for specified characters.

HIGH SPEED MEMORY-Obtains printed listing of memory.

CLEAR-Removes punctuation.

*END-Shows end of source program.

With SPS or AUTOCODER experience, you probably recognized those mnemonics marked
with an *. Complete any remaining Assembly Control Statements. Utilization of these
Basic Easycoder and additional Extended Easycoder staternents are subjects of a laterlesson.

20.
BA - BINARY ADDITION
BS - BINARY SUBTRACTION
A - ADDITION
S - SUBTRACTION
ZA - ZERO AND ADD
ZS - ZERO AND SUBTRACT
e M- MULTIPLY
e D - DIVIDE
e Pertains to an optional instruction.
26.
ARITHMETIC
LOGIC
INPUT/OUTPUT

Mt

T

-

Y

e

LESSON I. INTRODUCTION TO EASYCODER LANGUAGE

3. A programmed text is NOT designed to be a test that causes you to write answers in
"frames.' A programmed text DOES present information in easily understood steps called

ERAMey that require written KG%?«M&E"; to help you remember the infor-

mation presented.

9. The illustration below shows that many elements of & pSic Easycoder language are

also found in B A Tiow) Bty ERSY copede L AN CuwdT

ASSEMBLY STATEMENTS

BASIC OPERATION CODES - EXTENDED

EASYCODER PROCESSING STATEMENTS E:\SYCODER
NGUA

LANGUAGE FORMATTING STATEMENTS LANGUAGE

ASSEMBLY
PROGRAM ASSEMBLY
PROGRAM
15. In addition to Assembly Control Statements, Easycoder also uses DATA FORMATTING

STATEMENTS and DATA PROCESSING STATEMENTS.

Reserving a work area in memory or storing a constant are examples of DA TA

FokmaTTinte ST ATEMN TS

2l. The second group of instructions under Data Processing Statements pertain to logic
functions such as branching and comparing.
Properly title this section of your notes, copy the mnemonics below and write the full

word for each that you recognize.

EXT B
HA BCC
C BCT
SST BCE
27. As can be seen on the notes, space is provided for one Editing Instruction mnemonic.

Since editing is a dual process ofMove _C_haracters and Edit, the mnemonic is fl‘:lf .
This instruction is used to insert identifying symbols, punctuation, and to suppress

unwanted zeros in a data field.

LESSON I, INTRODUCTION TO EASYCODER LANGUAGE

3. FRAMES
RESPONSE
As you know from previous experience, something you write is easier to remember than
something you have simply read. In addition, a programmed text lets you check responses
immediately. If you ever happen to write a wrong response, you should correct it immedi-
ately.
9.
BASIC
EXTENDED EASYCODER LANGUAGE
15,
DATA FORMATTING STATEMENTS
21. EXTRACT BRANCH
HALF ADD BRANCH ON CHARACTER CONDITION
COMPARE BRANCH ON CONDITION TEST
SUBSTITUTE e BRANCH IF CHARACTER EQUAL
e Pertains to an optional instruction.
27.
MCE
8

LESSON I. INTRODUCTION TO EASYCODER LANGUAGE

One more frame about a programmed text before discussing the title TRANSITION TO

4.

EASYCODER. You should be able to write correct responses because you already know
them, or because the words are presented in the same frame, or because the words have
been presented in a ?&E g ovs Fém -

10. The general difference then between Basic and Extended Easycoder language is whether
the assembly program is on PunNcHen cCALD or MmAtus Tic “TAPE
Consequently many of the additional instructions simply provide extended control of the

633@/““\,\' program due to its more versatile storage media.
16. For instance a programmer can reserve an 80 character card input area and assign it
The

a symbolic address (such as CARDIN) without knowing the actual address of the field.
FoRrmaT TA/& statement to accomplish

Easycoder mnemonic RESV is the DATA
this example. The full word for RESV of course is K{se@\/e

As you know from SPS or AUTOCODER, a "d character' modifies and extends basic in-

22.
Example: (BASIC INSTRUCTION) B xxx blank

structions.

(MODIFIED WITH ''d character" Z) as B xxx Z
becomes a BAV-Branch on Arithmetic Overflow.

Easycoder considers modifications of this sort as providing a VARIANT of a basic in-

struction. Consequently, Easycoder modifying characters are referred to as

v ARTAJT characters.

28. The fifth entry under Data Processing Statements on the notes refers to instructions
As such, they should be titled C,)éNTKoo INSTRUCTIONS.

which control the H-200.

LESSON I. INTRODUCTION TO EASYCODER LANGUAGE

4. PREVIOUS FRAME
(PRECEDING)
(PRIOR, ETC.)

You will decide how rapidly to progress through the frames. If a blank appears difficult
to fill in, perhaps you need to pause and consider what you have learned, or reread the frame,
or possibly review a few previous frames. In any case, the pace of proceeding through the
text is up to you.

10.
PUNCHED CARDS
MAGNETIC TAPE
ASSEMBLY
16.
DATA FORMATTING
RESERVE
22.
VARIANT
28.
CONTROL

10

LESSON I. INTRODUCTION TO EASYCODER LANGUAGE

5. Now, about TRANSITION TO EASYCODER!

Your previous computer system consisted of hardware and its software in either SPS or
AUTOCODER symbolic language. Since you are now progressing to Honeywell 200 hardware,
it is necessary to learn about its _SofENARE written in EASYcud € symbolic

LAt vake .

11. EASYCODER language is classified into three categories:

1. ASSEMBLY CONTROL STATEMENTS
2. DATA FORMATTING STATEMENTS
3. DATA PROCESSING STATEMENTS
In your previous systems terms, '"Processor Control Operations'" correspond with
EASYCODER ﬁSSMLV CowTR vl- statements. Similarly,
(SPS) Area Definition
or are like ‘DMﬂ_ FoRkm F\‘rfINC‘ statements.
(AUTO) Declarative Operations
(SPS) Instructions
or are like DATA PRocesS Tl statements.
(AUTO) Imperative Operations
17. The Easycoder mnemonics below are to be added to your notepaper under the second
title =peeTer e naT T STATEMENTS.
DCW
DC
RESV
DSA
DA

Due to your SPS or AUTOCODER background you should probably be able to write the
full word for each mnemonic on your notes.

23. An advantage of the Easycoder variant character is that one or more can modify and
further specify the operation to be performed. In this manner, a single Easycoder instruc-
tion may have none, one, or as many _ N B&RY < C HARACTER) as required.

29. Many of the control mnemonics refer to H-200 features not found in your previous equip-

‘ment. For this reason, the complete words for several of the mnemonics have been

entered on the notes. Write the complete words for the remaining mnemonics you recog-

nize.

11

LESSON 1. INTRODUCTION TO EASYCODER LANGUAGE

SOFTWARE
EASYCODER
LANGUAGE
11.
SPS or AUTOCODER EASYCODER
Processor Control Operations ASSEMBLY CONTROL STATEMENTS

or
(AUTO) Declarative Operations

(SPS) Instructions }

(SPS) Area Definition
DATA FORMATTING STATEMENTS

or
(AUTO) Imperative Operations

DATA PROCESSING STATEMENTS

17.
DATA FORMATTING

DCW-DEFINE CONSTANT WITH WORD MARK
DC-DEFINE CONSTANT WITHOUT WORD MARK
RESV-RESERVE
DSA-DEFINE SYMBOL ADDRESS

« DA-DEFINE AREA

o =Extended Easycoder

23.

VARIANT CHARACTERS

29. SW-SET WORD MARK

CW-CLEAR WORD MARK

H-HALT

NOP-NO OPERATION

MCW-MOVE CHARACTERS TO WORD MARK
LCA-LOAD CHARACTERS TO A FIELD WORD MARK

While much remains to be presented concerning how the statements on your notes are
used, the following two frames show what has been taught in this section of the programmed
text. .

12

LESSON I. INTRODUCTION TO EASYCODER LANGUAGE

6. The term EASYCODER was chosen for H-200 symbolic programming language for two
reasons:
1. The H-200 uses an E fficient A ssembly SY stem.
2. The mnemonic code used by the programmer is not difficult, therefore

itis an gASY copPg to learn and use.

12. Each of the three classifications of Easycoder is discussed in following frames.

Those Easycoder statements which control the assembly program are known as
ASSQ'Y\QUI ConTReL~ STATEMENTS.

18. As stated earlier, Easycoder language is classified as three kinds of statements:

l. W MM statements.
2. M QM statements.

J .
And those statemernts for processing data, simply called M ‘%(/Mw
statements. ﬂ

24. Easycoder's use of as many variant characters as required in a single instruction greatly
reduces the number of basic INPUT/OUTPUT INSTRUCTIONS.

Where more than ten SPS System Control Instructions
or
more than fifty AUTOCODER 1I/O Commands are used,

Easycoder only needs two _ENPuY _/ %)’V?\)‘Y INSTRUCTIONS and their appropriate
4

variants.
30. Sometimes the terms EASYCODER I and EASYCODER II may be used for brevity.
EASYCODER I refers to (3 ST c EASY CceDER and Easycoder II refers to
ELTeEWDe D RS € enc il . The word EASYCODER by itself usually implies
both B#S1c and & XTewpee EASYCODER language.
The assembly program for EASYCODER I is on Ry ¢ Hen CARDS
The assembly program for EASYCODER Il is on WMA G ne !¢ -—T"A—vpc/

13

LESSON I. INTRODUCTION TO EASYCODER LANGUAGE

EASY CODE.

12.

ASSEMBLY CONTROL STATEMENTS

18.

ASSEMBLY CONTROL
DATA FORMATTING
DATA PROCESSING

24.

INPUT/OUTPUT INSTRUCTIONS

30.

BASIC EASYCODER
EXTENDED EASYCODER
BASIC (1)

EXTENDED (1I)
PUNCHED CARDS
MAGNETIC TAPE

14

LESSON I. INTRODUCTION TO EASYCODER LANGUAGE

H-200 symbolic programming language is of two types. A basic computer system (assem-

bly program on punched cards) uses BASIC EASYCODER symbolic programming language.
Similarly, an extended computer system (assembly program on magnetic tape) employs

EXTENDED EASY C oo gl

symbolic programming language.

13.

Assembly Program Control Statements can be compared to "PROCESSOR CONTROL

OPERATIONS"used with your previous system. Examples are mnemonics such as:

ORG OR\L 1w
END EWD
EX gxecuté

Write the complete word for each mnemonic above._ '
.

19.

Complete the third title on your notepaper.
Rather than adding all the Easycoder mnemonics under this last title, it is better at this
time to separate them into five groups according to function.
Since the first group deals with arithmetic, the first entry in your notes should be simply
AR TH MeTic INSTRUCTIONS.

Only two INPUT/OUTPUT mnemonics are required with Easycoder.
Peripheral Data Transfer
and
Peripheral Control and Branch
The mnemonics are: PD1 and PCRH.
Add them to the notes.

EASYCODER consists of three kinds of statements, they are:

1. f’}‘ Clevnibuf ¢ ¢nviRkec STATEMENTS.
2. oay Ecp ol i STATEMENTS.
3. _3pe FReoe ¢ osTl STATEMENTS.
The five types of instructions are: a. ¢ %> .« . ¢
b. po b1 c .
C. T uwr/ivies
d. _gorriwsé
€. CONT L N
In EASYCODER, a 4 RS AN Cilpep el corresponds to a ''d character"

except that «viige T8RN OIne VARIAWT crivie

e OF 7xe

¢ AP HeT L

TN STRUET

Vee To rpbp i N/

R B VEVD

15

LESSON I. INTRODUCTION TO EASYCODER LANGUAGE

7.
EXTENDED EASYCODER
(Return to page 5, frame 8.)
13.
ORIGIN
END
EXECUTE
At this time you will begin a set of notes to construct an overview of Easycoder language.
Remove the perforated sheet of paper at the right and complete the first title (statements
that control the assembly program).
(Return to page 5, frame 14.)
19.
ARITHMETIC
{Return to page 5, frame 20.)
25.
PDT
PCB

D

31. 1. ASSEMBLY CONTROL STATEMENTS
2. DATA FORMATTING STATEMENTS
3. DATA PROCESSING STATEMENTS

(INSTRUCTIONS)

a. ARITHMETIC

b. LOGIC

c. INPUT/OUTPUT

d. EDITING

e. CONTROL
VARIANT CHARACTER

MORE THAN ONE VARIANT CHARACTER MAY BE USED TO MODIFY OR FURTHER
SPECIFY AN INSTRUCTION. (Or equivalent answer.)

(Return to page 5, frame 26.)

(Continue to page 17.) -

16

EASYCODER NOTES

1 (pﬂmgnm) . Co MTKN:{ . v'SvTATE Emoac)

r ?ﬂo& ovenm Fua-bom/ 0RE- .;u,:”#s_sm : ﬂ!. , " LTI o ﬂ'bm:pe- Kase:s o e; “lssen-m
TITLES PRoL . Lls.’fﬂ' Bl auwivt RS5zdmavT o -mlké_nssu-v@lm’a As ,\/ﬂ_gomcfm

YarLy m’ﬂ{ ZWM EQuAs) Ta Eor-specie ol THe Fek SPEElF 1 Hsm - GBTAINS PRIurc0 LISTAL oF
cowTion, Dl - cE e lr sy (A SPED merrary) Mmernows/ -

Bl E ¢y- Avoness viRe, \ CHARACTERS
EXeTUTe \C1 7=y)

Ci EA @ Kwa?umm- Q;\ID =S D SUuRSE g%c el
2. “ ... omt@ Pa&m v’f?‘ffl" r . ST

) HRITHMeTIc INSTRUCTIONS (2) _Lﬁé’fc. INSTRUCTIONS

BA Zh EXE-eXTRAT _ _B - BRAvcY

85 Z3S HA - A= ADD BC C - ek MW CHAHTER Comds i

4 1i] . _C - comenre Bc. gAncy dv Compzrtw TN

S ;) SST-SvdsTITVTE _BCE. €RANeH TF CHARATREi
TIybet | eyTvT INSTRUCTIONS (4) EDITING INSTRUCTION

P - Prratond” P oG- e mee

(5) ceNTRoL INSTRUCTIONS

i

SW - _Se1 WerdD MARK «CAM - CHANGE ADDRESS MODE

SI - SET ITEM MARK ¢« RNM - RESUME NORMAL MODE

CW - CLEEE. Y ae®D MARK MCW - [neveE CHARPCTER Ty WIRYD HA®

CI - CLEAR ITEM MARK ¢« EXM - EXTENDED MOVE

H - ﬁ—ﬂ—(/’[e« MAT - MOVE AND TRANSLATE

NOP - No gpE Ry TIoN/ LCA - L. 0¥ CcHnree TARS To # FYA D WORD mARK
e CSM - CHANGE SEQUENCING MODE SCR - STORE CONTROL REGISTERS

¢« LCR - LOAD CONTROL REGISTERS
e = ADVANCED PROGRAMMING OPTION

This page is intended to provide only an introduction or overview of the elements in
Easycoder language. Detailed discussion of those statements that appear unfamiliar or different
will be found in later lessons. Retain this page for future reference to the material above as

well as for information on the reverse side.

16a

NUMERIC ONLY 12 ZONE & NUMERIC | 11 ZONE & NUMERIC 0 ZONE & NUMERIC
GROUP "0" GROUP "I " GROUP 2" GROUP ''3"
BA 8421 BA 8421 BA 8421 B A 8421
0= 0 0 0000 | A= 01 0001 J= 1.0 0001 S= 1.1 0010
T- 0 0 0001 B= 01 0010 K= 1 0 0010 T= T 1 0011
2= 0 0 0010 | C= 01 0011 L= T 0 0011 U= T_1 0100
3= 0 0 0011 D= 01 0100 M= 1 0 0100 V= 1 1 0101
4= 0 0 0100 E= 01 0101 N= 1 0 0101 W= 1 1 0101
5= 00 0101 F= 01 0110 0= T 0 0110 X= T 1 0111
&= 00 0110 | G= 01 01i1 BP= T 0 0111 Y= T 1 1000
1= 0 0 0111 H= 01 1000 Q= 1 0 1000 Z= 1 1 1001
8= 00 1000 1= 0 1 1001 R= 1 0 1001
9= 0 0 TO0O01
HONEYWELL ALPHANUMERIC CODE
OCTAIL-BINARY CROSS REFERENCE
EXAMPLE: Decode BINARY 101 011
or OCTAL 5 3
Locate first three digits in the left vertical column.
Locate second three digits in top horizontal column.
SECOND THREE BITS
@ —| 0 1 2 3 4 5 6
o“ 7
?}'g“ - ‘Q:‘:."
%-30 000 001 010 | 011 1 100 101 110 111
0 000 0 1 4 5 6 7
Eu_)“
E 1 001 8 9 blank > &
4
; 2 | o0 | + A D | E F G
o
=
B 3 011 H I ; .) % u ?
0
-
= , .
4 100 - J K ol M N O P
s 1wl o | R | # $ 1 ok o - :
6 110 < / S T U v w X
7 111 Y z @ . (CR [] ¢

16b

LESSON II
H-200 HARDWARE

17

LESSON II. H-200 HARDWARE

H-200 Hardware

Section I provided an overview of Easycoder language and served to introduce some of the
"differences' encountered when programming for the H-200. Certain statements, recognized as
"new' or unfamiliar, actually reflect features not found in your previous equipment. Examples

are: BA, EXT, HA, ADMODE, CAM, CSM, SI, etc.

While it is realized that your primary interest is with the language of the computer, know-
ledge of the computer itself serves as a foundation for programming skills. Section II of this
programmed text is devoted to comparing the H-200 to your previous equipment. Machine fea-
tures that provide greater flexibility of programming and simultaneous performance of peripheral

operations are introduced in this section.

MAIN MEMORY CENTRAL PROCESSOR--The minimum 2048
MODULES

- 13./2"2M°gneﬁc character positions can be expanded as needed
i i > it . ., . .
ﬁ::,hme"c | Tape Units in modular increments. The first added incre-
64 ment is a 2048-character module. Additional
-’ - L .
I/2" Magnetic modules of 4096 characters each can be added
2 -+ Tope Units
for a total of 32,768 character positions.
Input/Output| — | =)
Traffic | | » 1-64 (Double the storage capacity of the 1401.)
Control Drum
3 -+ Storage Units
. CONTROL MEMORY--Unlike most small com-
|+ |-8 Disc puters, the Honeywell 200 contains a control
4 - Storage Units

memory which complements the main memory.

There are up to 16 storage registers available,

Yle 1-8 Card ; :
5 ‘é - Reader - Card each capable of storing one main memory char-
' L :’ § Punches acter address.
Control Unit 1 =
6 - Ed 1-8 Printers INPUT/OUTPUT TRAFFIC CONTROL--This
» central processor element directs simultaneous
computing and multiple peripheral operations.
7 Vb - 1-8 Paper
. Tape Readers The Honeywell 200 is equipped with three read-
Control
Mem:)ry READ - write channels which feed data to, and accept
WRITE .
8 1-8 Paper data from, input-output trunks connected to the
CHANNE] hat Tape Punches P P

peripheral equipment. With these three chan-

nels and the minimum eight bi-directional trunks,

9 - Communication) .
| o Controls three peripheral operations can be performed
o] simultaneously with central processor com-
CENTRAL PROCESSOR INPUT/OUTPUT UNITS

putation. Optional: eight more input-output

trunks plus an auxiliary read-write channel.

19

LESSON II. H-200 HARDWARE

(Refer to the chart below to complete and check statements on page 21.)

SYSTEM SIMILARITIES

FEATURE

HONEYWELL 200

IBM 1401

BASIC ORGANIZATION
DATA

INSTRUCTIONS
FIELDS

RECORDS

Character oriented

Variable Length Fields
Variable Length

Word Mark Defines Field
Record Mark Defines Records

>

Character Oriented

Variable Length Fields
Variable Length

Word Mark Defines Field
Record Mark Defines Records

INFORMATION UNITS

Character: 6 Data, 1 Parity,

and 2 Punctuation Bits.

Character: 6 Data, 1 Parity,

and 1 Punctuation Bit.

FIELD LIMIT

Word Mark

Word Mark

ITEM LIMIT

Item Mark

---{Record Mark?)

RECORD LIMIT

Record Mark

---(Group Mark?)

INSTRUCTION FORMAT

OPERATION CODE

One Character

One Character

A-ADDRESS

2 or 3 Characters

3 Characters

B-ADDRESS

2 or 3 Characters

3 Characters

VARIANT

1 or More Characters

1 "d" Character

NOTE:

Check answers by referring to charts or illustrations.

20

In this lesson (LESSON II H-200 Hardware) complete an entire page before proceeding.

?

LESSON II. H-200 HARDWARE

(Refer to the chart on page 20 to complete and check these statements.)

The first entry shows that both machines are 'character oriented.'" In simplest terms, this

means that a single memory location can be accessed and one memory location stores one six

bit u Hﬁ@AC’lEG .

The next two entries show that both machines store data and instructions of _ VAR T BRL &
LEN Q;’(u . The number of memory locations require to store data or an instruction there-

fore equals the number of characters it contains.

Another similarity between the two machines is that the limit of a field in memory is de-

fined with a !!!‘iff k) MeRY -

An important difference exists between the two machines in regard to defining a '""Record"

with a2 R e oqtd w &K - The 1401 uses an additional character whereas the H-200

generates this punctuation as a part of the memory logation storing a data character. There-

fore the H-200 uses one less memory location than the 1401 each time a "Record' is defined.

The entry concerning units of information points out the difference mentioned above. How

many bits (cores) are contained in a 1401 memory location? _ ¢ . How many are there
in an H-200 memory location? ﬂ .

In designating the limit of a field, both machines use a ¢)oay) K - However, the

H-200 has one more Rand & €y 14 bit per memory location than the 1401, so fur-
ther grouping of data as an _J-fgm is possible. It should be noted that the Honeywell Item
Marks and Record Marks do not have a direct correspondence with 1401 Record and Group

Marks.

Concerning instruction formats, the H-200 utilizes an efficient addressing system which
permits designation of an address up to #4095 in only two characters (two memory locations).
Determine the number of memory locations required for the H-200 and the 1401 to store the
instruction shown below. 1401= l H-200= .{

OP. CODE "A" ADDRESS "B'" ADDRESS
A 2411 1124

The final point of comparison in the chart at the left was pointed out earlier as it pertained
to peripheral instructions. The H-200 only requires two peripheral instructions (PCB and

PDT) because they may be further specified as required by appending one or more

U RE 1Rt Cowpdnesed

21

LESSON II. H-200 HARDWARE

Your EASYCODER notes and the preceding chart have shown several program;'ner oriented
H-200 features that are similar to your previous system. Concurrently, a few H-200 features
were introduced which enable more efficient and more effective operation. What has not been
indicated is the extent of H-200 superiority when both design and performance of the two systems
are compared. The table below makes this comparison and it should also suggest some areas

that invite your further study to take full advantage of H-200 capability.

INTERNAL SPEED H-200 1401
Cycle Time (microsec.) 2 11.5
A & B—B (5 char.) 44 230.0
Compare A:B (5 char.) 34 207.0
Instructions/Second 25,000 4,600

CONTROL MEMORY

Access Time 250 nanoseconds (billionths)

MAIN MEMORY

Minimum ‘ 2000 characters 1400
Maximum 32,000 characters + 16, 000
Expandable YES NO
Addressing Binary Decimal
Indirect Addressing YES NO
Arithmetic Decimal and Binary Decimal
Sequence Counter 3: Sequence, Cosequence, 1
Interrupt Counter
External Interrupt YES NO
Index Registers 6 3
PERIPHERAL SIMULTANEITY Multiple Read- Write- Compute. Essentially serial.
Up to four peripheral transfer Either Read or Write
operations together with com- or Compute.
puting.
1/0O DEVICES Up to 16 input or output controls Maximum: One card
together with their devices. May reader, one card
be attached in any combination punch, one printer,
e.g. up to 64 magnetic tapes etc. six magnetic tapes.

Page 23 illustrates many possible configurations in which the H-200 may operate. The follow=
ing pages show a simplified H-200 Environments illustration on which you will draw lines as con-

necting wiring and also refer to the illustration to answer questions.

22

€Z

B TR

I ———

;- A

MAGNETIC TAPE EQUIPMENT

TAPE UNIT CONTROL UNIT

3/8" RIGH-SPEED TAPE

G 89,000 CHARACTERS PER SECOND
MAXIMUM 4 DRIVES PER CONTROL UNIT
3/4” HIGH-SPEED TAPE
64,000 CHARACTERS PER SECONO
MAXIMUM 4 DRIVES PER CONTROL UNIT
374" TAPE

O 203A-1 32,000 CHARACTERS PER SECOND
MAXIMUM 4 DRIVES PER CONTROL UNIT

172" TAPE
20,000 CHARACTERS PER SECOND
MAXIMUM 8 DRIVES PER CONTROL UNIT

2048-1 Primary
2048-2 Second-

1/2" TAPE
44,500 CHARACTERS PER SECOND
MAXIMUM 8 DRIVES FER CONTROL UNIT

2048-3 Primary
2048-4 Second
ory

1/2" HIGK SPEED TAPE

1/2" HIGH SPEED TAPE
83400 CHARACTERS PER SECOND
MAXIMUM 8 DRIVES PER CONTROL UNIT

2048-6

O “ /2" HIGH DENSITY YAPE
28,800 CHARACTERS PER SECOND
MAXIMUM 8 DRIVES PER CONTROLUNIT
NOTE: ON CONTROL UNIT 203B-1 A PRIMARY DRIVE 1S ESSENTIAL,
FOLLOWED BY UP TO SEVEN SECONDARY DRIVES.

EACH CONTROL UNIT OCCUPIES TWO INPUT-OR ~OUTPUT TRUNKS ON THE
CENTRAL PROCESSOR, GIVING A THEORETICAL MAXIMUM OF
&4 TAPE DRIVES.

COMMUNICATIONS CONTROL EQUIPMENT

SINGLE CHANNEL

MULTIPLE CHANNEL

281-3
VOICE GRADE LINES

281-4
VOICE GRADE LINES

| T
PARITY CHECKING

| MAXIMUM 63 LINES

66,700 CHARACTERS PER SECONO /
WAXIMUM 8 DRIVES PER CONTROL UNIT

284-1
MAXIMUM 15 LINES
284-2
MAXIMUN 31 LINES
284-3
MAXIMUM 47 LINES

HONEYWELL 200 CONFIGURATOR

CENTRAL PROCESSOR There ore 8 standord inpul-or-output trunks, with an aptional
€xtra 8. There are 3 reod-write channels with an optional 4t
The Trunks are eoch permanently attached to one control unit,
The Read-Write Chonnels ore assigned by progrom fo the nexi
ely flooting cnannats. Through

r

CHARACTERS: 6 8IT

DATA & INSTRUCTION FORMAT: VARIABLE LENGTH.

INTERNAL OPERATIONS: DECIMAL B BINARY Central Processor is grantad fo

MEMORY CYCLE TIME: 2 MICROSECONDS 2 microseconds inevery & if required. When option OI6

CONTROL MEMORY: (6 REGISTERS WITH 250 NANO- | iNCluded two chomwels give occess every 6 microsaconds,
SECOND ACCESS ;:a the other two B |zI mn:'vot:eoﬁd'l ores on::;cml‘n:’

e maximum na. of control unifs of any yDe is limited on
PARITY BIT CHECKING. the number of avarlabie irunks. " i

201 - CENTRAL PROCESSOR
WITH 2048 CHARACTERS OF QUICK ACCESS MEMORY

OPTIONS
202-) ADOITIONAL 2048 CHARACTERS OF QUICK
ACCESS MEMORY (ONE UNIT ONLY)
202-2 ADDITIONAL 4096 CHARACTERS OF QUICK
ACCESS MEMORY, UP TO 32,768 CH. (TUNITS)

Q11 ADVANCED PROGRAMMING OPTION
012 PROGRAM INTERRUPT {FOR REAL-TIME &
COMMUNICATIONS SYSTEMS)

013 EDITING

014 MULTIPLY / DIVIDE

015 EXTRA 8 1/0 TRUNKS

016 AUXILIARY READ/WRITE CHANNEL

~
R
CENTRAL PROCESSOR

MAGNETIC INK CHARACTER
READER EQUIPMENT\ CONTROL EQUIPMENT

233-1 233-2 220-1
R T CONSOLE PROGRAM
WICR CONTROL MICR CONTROL TS
1419 8102 B103
MICR MICR
READER/ SORTER READER / SORTER

INPUT OR OUTPUT TRUNKS
SANAYL LNGLOO HO LNdNI

ONE ADAPTER 1§
REQUIRED PER UNE

F= "% — __:
(CLOCKING FOR 265-2 |

220-2
CONSOLE_PROGRAM B
MANUAL 1O 8 LOG

RANDOM ACCESS EQUIPMENT

UP TO 8 RANDOM ACCESS DRUMS

DRUM CONTROL TRANSF | 102,000 CHARACTERS PER SECOND
ON THE AVERAGE
CAPACITY 2,621,440 CHARACTERS PER DRUM
20,971,520 CHARACTERS PER CONTROL UNIT

1,2,3,4,5,6,12, 18 OR 24 DISCS PER CONTROL UNIT

CAPACITY UP TO 100.8 MILLION CHARACTERS IN INCREMENTS
OF 4.2 MILLION CHARACTERS
TRANSFER RATE 23,550 TO 64,300 CWARACTERS PER SECOND

PUNCHED CARD EQUIPMENT

READ AT 800 CARDS PER MINUTE
PUNCH AT 250 CARDS PER MINUTE

227 I
CARD READER /
PUNCH

040 A
| DiRgCT |
L _TRANSCRIPTION _)

C™ %y — 77
| stacker sevecr |
L (READ OR PUNCH) _J

PRINTER EQUIPMENT

206 900-1200 LPM /120 OR 132 POSITIONS
222-1 850 LPM /96 POSITIONS

222-2 650 LPM /)08 POSITIONS

222-3 650 LPM/ 120 OR 132 POSITIONS
222-4 950 LPM/ 120 OR 132 POSITIONS

o3 — 71
| EXTENDED PRIN 1
FOR 208
532
| EXTENDED PRINT |
LFOR_222-3 & 222-4 ,

PAPER TAPE EQUIPMENT

600
CHAR./SEC,

209
PAPER TAPE READER
AND CONTROL

210
PAPER TAPE PUNCH
AND CONTROL

Figure 2. H-200 Configurator

‘II NOSSHAT

HYVMAYVH 002-H

144

MAGNETIC TAPE EQUIPMENT

TAPE UNIT CONTROL UNIT
203A OR 2038

UP TO 8 PER CONTROL UNIT

INPUT / QUTPUT
TRAFFIC CONTROL

| —

203A 2038
3/4" TAPE /2" TAPE

89,000 20,000

64,000 > CHAR. PER SEC. 44,500

321000 66700 CHAR.PER SEC.
83,400,

MAXIMUM 4 DRIVES MAXIMUM 8 DRIVES

PER CONTROL UNIT PER CONTROL UNIT

COMMUNICATIONS CONTROL EQUIPMENT

SINGLE CHANNEL

RANDOM ACCESS EQUIPMENT

MODEL 20!

CENTRAL PROCESSOR /B

UP TO 8 RANDOM ACCESS DRUMS
TRANSFER RATE 102,000 CHARACTERS
ORUM CONTROL ~ PER SECOND ON THE AVERAGE.

unIT

CAPACITY 2,621,440 CHARACTERS PER DRUM
20,974,520 CHARACTERS PER CONTROL UNIT

1,2,3,4,5,6,12,180R 24 DISCS
PER CONTROL UNIT

DISC CONTROL CAPACITY UP TO 100.8 MILLION CHARACTERS
YNIT. IN INCREMENTS OF 4.2 MILLION CHARACTERS

TRANSFER RATE 23,550 TO 64,300
CHARACTER PER SECOND

PUNCHED CARD EQUIPMENT

READ AT 800 CARDS PER MINUTE
PUNCH AT 250 CARDS PER MINUTE

227
CARD READER
PUNCH

CARD PUNCH CONTROL

PRINTER EQUIPMENT

206 900-1200 LPM/120 OR (32 POSITIONS
222-1 B850 LPM /96 POSITIONS

222-2 650 LPM/ 108 POSITIONS

222-3 650 LPM/ 120 OR 132 POSITIONS
222-4 950 LPM/120 OR 132 POSITIONS

MAGNETIC INK CHARACTER
READER EQUIPMENT

233,
MICR CONTROL
MICR
READER/SORTHR

MULTIPLE CHANNEL

284
15 — 63 LINES

TO ANY DESIRED

285 ADAPTER

{ONE ADAPTER IS
REQUIRED PER LINE)

e el
/20t 7 \ Y
OPTION CI5 INPUT OR OUTPUT TRUNKS OPTION 0I5
PR /A\ /A\ /A\ T S S PRl
TraTTTAT TRy
[1 | } |
[[[[[S] [[1
4 bd bd b L dbd b Fd b
VOICE GRADE LINES _ o) 1 1 2 _ 2 3 _ 3

PAPER TAPE EQUIPMENT

CENTRAL PROCESSOR
CONTROL EQUIPMENT

220
CONSOLE PROGRAM
1/0 AND LOG

209
PAPER TAPE READER
AND CONTROL

600
CHAR./ SEC.

210
PAPER TAPE READER
AND CONTROL

Figure 3. H-200 Environments

‘II NOSSHT

AIVMAIVH 002-H

X4

(Refer to Figure 3. to answer the following questions.)

An important H-200 feature provides simultaneous peripheral operations together with computing. . (Shown between the

central processor and input/output trunks.) This feature is known as IN?Q‘\’. /[0vTRux TRRTC\C trfuxg(/\,
7

The times illustrated denote that each Read/Write Channel (RWC) is granted é microseconds access to the central proc-

essor. Since there are three RWC's, each will have access to the central processor once out of every b microseconds.
If an input or output device is not sending or receiving information during a two microsecond RWC period, the time is
allotted to the central processor. For example, the mechanical operations of card reading, card punching, and printing a

line require: 75 milliseconds (Reading a card at the rate of 800 CPM)
240 milliseconds (Punching a card at the rate of 250 CPM)
67 milliseconds (Printing a line at the rate of 900 LPM)

However, for these three operations, transfer of information either to or from the central processor and devices only
requires a total of 19 milliseconds. Because of RWC Traffic Control computations are performed by the central proc-

essor during 73% of the time, even when maintaining full rated speeds of: 800 CPM Reading
250 CPM Punching
900 LPM Printing

Note that peripheral devices may be connected to either TuPux or 0y ?ys trunks. Rather than having devices

permanently connected to the central processor, they are alternately attached by a Read/Write Channel.
'J

While eight optional (015) input or output trunks are available, your present concern will be with the basic eight trunks

numbered ~¢ — @ - = - -2 -3 > in the figure above.

The number of a trunk should contain two digits. (The second digit identifies the trunks from O to 3 as in the figure.)

The first digit denotes whether the trunk is being used for T ?Q‘(or @ yT¥yx . Whether a trunk is input from a

device or output of the central processor to a device depends upon the type equipment attached. Assigning these first digits

to denote input or output for various devices is explained on the next page.

*II NOSSHT

HIVMTIEVH 002-H

9¢

MAGNETIC TAPE EQUIPMENT

TAPE UNIT CONTROL UNIT
ISR 2038

UP TO 8 PER CONTROL UNIT

2034 2038
3/4" TAPE /2" TaPE
89,000 20,000
64,000 } CHAR.PER SEC. | 44,500
32,000 66,700 [CHAR. PER SEC
83,400,
MAXIMUM 4 DRIVES MAXIMUM 8 DRIVES
PER CONTROL UNIT PER CONTROL UNIT

COMMUNICATIONS CONTROL EQUIPMENT

SINGLE CHANNEL

281
VOICE GRADE LINES

MULTIPLE CHANNEL

284
15 — 63 LINES

TO ANY DESIRED

285 ADAPTER

(ONE ADAPTER IS
REQUIRED PER LINE)

RANDOM ACCESS EQUIPMENT

MODEL 201
CENTRAL PROCESSOR

UP TO 8 RANDOM ACCESS DRUMS
TRANSFER RATE 102,000 CHARACTERS
DRUM CONTROL ~ PER SECOND ON THE AVERAGE.
UNIT CAPACITY 2,621,440 CHARACTERS PER DRUM
20,971,520 CHARACTERS PER CONTROL UNIT

1,2,3,4,5,6,12,18 OR 24 DISCS
PER CONTROL UNIT

DISC CONTROL cAPACITY UP TO 100.8 MILLION CHARACTERS
unIT IN INCREMENTS OF 4.2 MILLION CHARACTERS
TRANSFER RATE 23,550 TO 64,300
CHARACTER PER SECOND

PUNCHED CARD EQUIPMENT

READ AT 80C CARDS PER MINUTE
PUNCH AT 250 CARDS PER MINUTE

227
CARD READER
PUNCH

CARD READER CONTROL

208
CARD PUNCH CONTROL

PRINTER EQUIPMENT

206 900-1200 LPM/120 OR 132 POSITIONS

222-1 850 LPM /96 POSITIONS
222-2 650 LPM/ 108 POSITIONS

7 222-3 650 LPM/ 120 OR 132 POSITIONS
222-4 950 LPM/120 OR 132 POSITIONS

m——m—————— -
OPTION 0I5 INRUI#OR outpesf TRUN OPTION 015
N NN 7N /A\ P AN S o,
ST TR
[1 1
P [[[[(] [[
dbd b bd b dbd b4 b4 b
4o Qo ‘_'\.1 o) o2 _2 —3 —3

MAGNETIC INK _CHARACTER

PAPER TAPE EQUIPMENT

READER EQUIPMENT CENTRAL PROCESSOR

CONTROL. EQUIPMENT

209
PAPER TAPE READER
AND CONTROL

233 600
MICR CONTROL CHAR./ SEC.

MICR
READER/SORTER

220
CONSQLE FROGRAM
1/0 AND LOG

210
PAPER TAPE READER
AND CONTROL.

Figure4. H-200 Environments

‘II NOSSdT

HIVMAYVH 002-H

27

=
M ‘uorjonajsut Jexaydrrad ayjz ur 193d0BIRYD
W 1011U0d INVIUV A Ioyjroue Suisn Ajduits Aq pSI1SOp I8A3UdYM ONINVHS
- 3NLL
o4 $901A9P I9Yyjo 03 juswudisse Hpy o8ueyd ued rouwrwerSoxd ayg, YALNIEd 20 g
< — , A
o Yo NNUL O/I ¢ # OMY :uomOnIIsSUI IULLJ ' HOSS3ID0Hd
— ————)
S 1o SINQWL O/ | # DMY :UOHONIISU[yound pIed ¥30vay 5 g ' TVHINID
nm :J SINQYL O/1 m # OMY fuomdnaisuy pesy PIED
. ‘e zo3 suni} O/ PuB s, OMY SUIMO[0] 943 (SINVINVA LA WBA) s3ov3e ™ g
)
M Aj109ds prnom szswwerdoad e ‘uoryeandijuod sydures siyl uj R ¥
O
0
mw *UOTJRIISNI[I STY3 Ul souwrd oy} 239[dwo -xossadoxd [e1juad 2y3 £q pasn
| SANOJ3ISOUIIN ¢
9 a1®e 9104&> Surieys owI} 9y} Jo suoijrod parinbsiun ay3 ‘Azowdu 0} §53D20®E
035 &iom s T .oumo“..u_z 221nba1 jJou S0P HM Y SI0UW IO dUO JI °*SISBQ PUBWAP B UO ST S[OUUBRYD IITIM
—aonIn_ ' T 1 € I /peox Aq Axowoul utew jo SUlieys SWI], ‘USJILIM 9I® SUOTIIDNIISUL wexdoxd
0l S$S300V
> 2 oMy Texsydiaad uaym poysiidwodde axe sjuewuldisse DM Y PUB SUOTIBRUIISIP Yunij
! T avowaw ! L P
0i §§330V osoyL TANNVHO ILIMM QvAY e Sutudisse pue (233 ‘0% ‘00) Yunii jndino
r T —monan " | oMu | ° indut ue Jurdjroads yYjmm poaloaur st Jawrwreadord sayJ, ‘uIdDUOD UOTIEI[RISUTL
01 $$330v ue oI YONS S® pue SUIITM [BI1I}O9[d Juasa1dal 2A0Qe 7# UI UMBIDP SQUI] 9Y]J, ¢

‘oA0qe T4 Ul PaqlIdosap se s3181p 3511y ojeradoadde 2jeul1sop pue SOUI] MBIP U2Y] ‘situn
p210319s 01 syunij 3ySre oay3 uStsse A[duwurs ‘SBuniom oq ([Nok YOIYm YIia uoryean3diyuod gQz-H Y3l JO dI1eme jou 1€ nok 31
sndino 1o indur sjousp o3 J18Tp Nunij 1811y ayj o3eudrsep A1iedorg ‘ssoqe °f andr g ur syunij ndino ro jndur paydsras o3

sjtun [o1juod ajerxdoxdde syl worj (Sutitm Surloauuod sB) SAUI] MBIP ‘wdlsks 0p7-H INok Jo uonrINSFUod 2yl mowy nok I

20 1ojurrg paedg Y3ty
10 young ode] radeqg Io pae)d
1% Iapeay ade] iadeq io pae)
0¥ (3ndug)
00 (3ndingQ) ade] oreouldeny
:PaIISOP JT ‘UOTIRZIPIBPUERIS I0] POMOT[O] 2q LAew juswulisse yunij Sulmol[oy oYL i *

-indjno Surjousp ~ @ jo 181p 18113 ® yjmm suo pue jndui Surjousp H JO 313TP ISITJ

B UIIM SUO {SMUNI] OM] O} PIYDBIE 2q jsnwt ‘jrun [orjuod adej or3oudew © se yons ‘ed149p ndino ndur uy ,, g, ® 29 PI[noys
1181p 15117 oy ‘aojutad ® se yons ‘rossedoxd [erjusd ayj uroiy yndino saaredsi juswdinbs [ersydrred syl JjI ,, "Hy, B 99 PINOYS
uoryeudTsep yunij oY) Jo 1131p 1SI1 2y} ‘IopeSI PI®O ® SB ydns ‘g D oyl o3 jndur sapraocxd juswdinba 1exaydiaad ays J1 1

o i

LESSON II. H-200 HARDWARE

PERIPHERAL DEVICE

TRAFFIC
CONTROL
MAIN MEMORY PERIPHERAL

PERIPHERAL INTERFACE CONTROL

Figure 5. Basic Input/Output Data Path

ALLOW CENTRAL
PROCESSOR ACCESS
AW 7O MAIN MEMORY

CYCLE vES

ALLOW RWC /
ACCESS TO MAIN

MEMORY
ALLOW CENTRAL
PEMAND - ON NO PROCESSOR ACCESS
RWC 27 TO MAIN MEMORY
R
YES
CYCLE

ACCESS TO MAIN

ALLOW RWC 2
MEMORY

DEMAND TN NO ALLOW CENTRAL
e 3= PROCESSOR ACCESS
¢ TO MAIN MEMORY
CYCLE YES
\
ALLOW RWC 3
ACCESS TO MAIN
MEMORY

Each cycle is two microseconds in duration; therefore, a device connected to the main
memory via an RWC is guaranteed access to the memory once every six microseconds.

Figure 6. Symbolic Representation of Input/Qutput Traffic Control

AUXILIARY READ/WRITE CHANNEL

An auxiliary read/write channel (RWC 1') is available as an optional feature. In systems
equipped with this option, up to four peripheral data transfer operations can be performed simul-
téneously with computing. It is called an auxiliary channel because of the manner in which it is
granted access to the main memory by the traffic control. RWC 1' and RWC 1 are connected to
an alternator. Every six microseconds the alternator switches to allow one of these two channels
access to the main memory. By alternating between the two channels, each is allowed access to
the memory once every 12 microseconds. Note that RWC 2 and RWC 3 are still guaranteed

access to the memory once every six microseconds.

28

LESSON II. H-200 HARDWARE

MAGNETIC TAPE

Two complete series of magnetic tape equipment are offered for use with
the Honeywell 200: the 204B series units process one-half inch tape, while

the 204 A series units process three-quarter inch tape. Both 203B controls

sl

-~

for one-half inch tape units and 203 A controls for three-quarter inch tape
units can be included in the same system. The characteristics of the two
series of tape equipment are summarized below.

MAGNETIC TAPE SPECIFICATIONS

3/4 Inch 1/2 Inch
Tape Unit 1. 2. 3. 1. 2. 3. 4,
READ-WRITE SPEED 60 120 120 36 80 120 150
Inches per Second
RECORDING DENSITY 533 533 740 200 200 200 200
Characters per Inch 556 556 556 556
800
TRANSFER RATE 32,000 64,000 88,800 7,200 16,000 24,000 30,000
Character per . 20,000 44,400 66,700 83,300
Second 28, 800
REWIND SPEED 180 360 360 108 240 360 360
Inches per Second
INTER-RECORD GAP .67 .67 .67 . 45" .6 Al .75"
DATA FORMAT Honeywell variable
48 -bit word
CHECKING FEATURES frame and channel frame and channel parity
parity checks and checks for read; and
Orthotronic Control read after write

The Honeywell 200 uses two basic peripheral instructions for all input-output operations on
all devices. Using these instructions, the programmer may instruct the tape unit to read for-
ward, write, backspace and rewind. In addition, tape units may be read backward, a feature not
available in most other small computer systems. The utilization of 3/4—inch and 1/2-inch mag-

netic tape makes the Honeywell 200 compatible with a wide range of computers.

The ability to perform tape operations simultaneously is enhanced by the fact that the central

processor is involved in a tape read or write operation during only two microseconds per charac-

ter transferred. The proportion of available central processor time during a data transfer inter-
val shared with a tape read or write operation ranges from 82.2% to 98. 6%, depending upon the
data transfer rate of the tape unit being used. A typical tape processing interval is shown in the

illustration below.

PROCESSING INTERVAL SHARED WITH TAPE OPERATION

¢] ‘
0 ms 7.5 ms 132.5 ms
Begin Data Data transfer
crossing transfer ends
gap begins

DEVICE: Model 204B-3 magnetic tape unit.

OPERATION: Read or write a 2000-character record at a density
of 200 characters per inch.

CENTRAL PROCESSOR TIME REQUIRED: 4 mijlliseconds (3. 0%
of entire processing interval).

29

LESSON II. H-200 HARDWARE
CHARACTERISTICS MODEL 204B-1, 2 MODEL 204B-3, 4 MODEL 204B-5 MODEL 204B-6
TAPE UNITS TAPE UNTIS TAPE UNITS TAPE UNITS
CONTROL MODEL 203B-1 TAPE CONTROL MODEL 203B-2 TAPE CONTROL
TAPE Reels of approx. 2400 fit., of 1/2-in. Mylarl-base, oxide-coated tape.

DATA FORMAT

Variable-lenght records separated by short or 3/4-inch gap. Records consisting of 6-bit characters spaced
at 556 or 200 per inch can be read. Normally writes at 556 char/in., but can write at 200 char/in.

PROGRAMMED Read forward, write forward, backspace one record, rewind, rewind and release, and erase, optional
OPERATIONS read backward and capability to translate between card images in IBM even-parity tape code and H-200
machine code. :

TRANSPORT Pneumatic capstans and tape brakes.
CROSS GAP TIME

Short gap 0.45 in. - 12.5 ms 0.60 in. - 7.5 ms 0.70 in. - 5.8 ms n/a

3/4 inch gap 20.8 ms 9.4 ms 6.3 ms 5.0 ms
READ/WRITE SPEED 36" /sec. 80" /sec. 120" /sec. 150" /sec.

DATA TRANSFER RATE
(NOMINAL)
556 char/in.
200 char/in.

66, 700 char/sec. 83, 300 char/sec.

24,000 char/sec. 30,000 char/sec.

20, 000 char/sec. 44, 400 char/sec.

7,200 char/sec. 16,000 char/sec.

REWIND SPEED

108" /sec. 240" /sec. 360" /sec. 360" /sec.

SIMULTANEITY

Simultaneously compute and perform three tape operations: read or backspace-write-rewind-compute.
Reading or writing engages central processor for only 2 microseconds per character transferred. Central
processor is available for other operations during 83.3 to 98.6% of transfer interval shared with tape unit,
depending upon data transfer rate.

INPUT/OUTPUT AREA

Any main memory area.

DATA PROTECTION

Write/protect ring and manual protect switch prevent destruction by unintentional write., While writing,
TCU generates even or odd frame parity and even channel parity.
Checks: Writing -- Immediate read back and check of information written.

Reading -- Frame and channel parity checks.

Failure of any check automatically sets a program-accessible indicator.

TRUNKS

A tape control requires one input trunk and one output trunk.

MAX. NO, OF
UNITS PER SYSTEM

8 tape units per tape control; 8 tape controls per system.

lRegistered trademark of E.

I. du Pont de Nemours and Company (Inc.)

Figure 7. Half-Inch Magnetic Tape Unit Characteristics

(450 451 452 453 454 455)
{1:]2]:]"]¢° \
RECORD MARK TO STOP
TAPE UNIT TRANSFER WHEN DESIRED
PORTION OF RECORD HAS
ENTERED.
/3/2 s/a 0
%
CHANNEL 7 /// / ’/ y |
CHANNEL 6 |o|ojo|1]|o]|1 (0O
3z
CHANNEL 5 |o]o|ofof|1 o] 1| ER
"’§ 1 END OF
CHANNEL 4 |o|ofo|ojofo]O| >Z RECORD
69 1 oap
CHANNEL 3 ojojtLjo |t} oZ
2% —
CHANNEL 2 [l |1 jOofjO]JO1]|O]| =
CHANNEL | l1jot1|t]O0]0} 1
FRAME + 2 3 4 5 6 7 CK.

30

Figure 8. Data Transfer to Half-Inch Tape Segment

LESSON II. H-200 HARDWARE

Answer and check these questions by referring to the chart and illustration on page 30.

An H-200-1401 "difference" is shown in the chart concerning "Cross Gap Time.'" H-200

magnetic tape can conserve space by using a short end of record gap of .4% in., .60 in., or

./’0 in. depending on the type of tape unit. A switch on the tape control unit is engaged if

compatability with the .75 inch interrecord gap of your previous system is desired.

A VARIANT character, selected by the programmer and written as part of a peripheral
instruction, specifies whether frame parity (across the tape width) is to be odd or even. As

shown in the illustration, the desired parity bits are to be appended by the tape unit in

CHANNEL # l .

Totaling the bits in each channel with the CHECK frame bits at the end of the record

produces longitudinal channel parity. As jisted in the chart, channel parity is stated as being

oD D -PATY

One tape frame will contain a six bit character and the parity bit from the tape unit. It

should be apparent from the number of channels shown, that RWECe&®» M AR is not
¢ PueTVATo)

transferred from memory to tape.

The only manner in which punctuation could be considered as being transferred to tape is
that a _Recok]d mark in memory signals the tape unit to produce; a small void, then a
check frame, and then the END of fTcelk) &pe.

Your previous system employed a GROUP mark on tape to facilitate transfer of only part
of a tape record to memory. Similarly, an H-200 programmer may place a record mark in

a predetermined memory location. This record mark stops transfer from tape to memory

. when the desired portion of a record has been read in. Check the answer to the following

question by continuing to page 32.

Assume that the characters shown on tape in Figure 8. are to be read into memory starting

at location address #450. If a record mark is placed in #454, what characters will be trans-

ferred from the tape?

{450 451 452 453

454
HENEREREe

455 456 457

31

LESSON II. H-200 HARDWARE

(Answer to question #6 on the preceding page.)

‘ 450 | 451 452 | 453 | 454 | 455
3 2 5 J @ \
RECORD MARK TO STOP
TAPE UNIT TRANSFER WHEN DESIRED
PORTION OF RECORD HAS
ENTERED.
/3/2 5/.1)
/ 4
CHANNEL 7 /// A/ /
CHANNEL 6 olofof1|lof1]o
512 —
CHANNEL 5 ojofofo|i|ofi]| &P
wg — END OF
CHANNEL 4 ofojofloflo|o|o| 2 RECORD
52 [—1 cap
CHANNEL 3 ojo 1 (o] 1 I | 93
CHANNEL 2 i[i1]oflo]ofli]o] 8
CHANNEL | I{folitf{r]ofo]
FRAME | 2 3 4 5 6 7 cK

NOTE: When transferring from memory to tape, the character in the memory location with a

record mark is NOT written on the tape.

When transferring from tape to memory, a character WILL be sent into the memory

location containing record mark punctuation. This is shown in the illustration above.

32

LESSON III -
H-200 CENTRAL PROCESSOR

LESSON III. H-200 CENTRAL PROCESSOR

The H-200 Central Processor

The Model 201 Central Processor is the com-
puting and control center of the H-200 system.
It houses the circuitry for arithmetic and logical
operations, the high-speed magnetic core memo-

ry, the operator's control panel, and several

special-purpose control elements such as read/

write controls, etc. Functionally, the central
processor is divided into three units: arithme- X . .
tic, control, and storage. The arithmetic unit performs such operations as addition, sub-
traction, comparison, etc. The control unit directs the operation of the entire system: it
controls the fiow of information within the central procesasor; it controls the flow of information
between the central processor and all input/output devices; it monitors the time sharing of the
system to insure maximum operating efficiency; it selects, interprets, and controls the exe-
cution of all instructions; and it governs address selection within the high-speed memory. The
storage unit provides magnetic core storage for the instructions and operands which the central
processor uses in processing a particular program segment. It also provides storage for the

new data which results from the operations performed by the central processor.

INPUT /7 OUTPUT
TRAFFIC CONTROL

CONTROL UNIT

MAIN
MEMORY

il

ARITHMETIC UNIT

CONTROL
MEMORY

Figure 9. Logical Division of the Central Processor

35

LESSON III. H-200 CENTRAL PROCESSOR

} PARITY

WORDS
ITEMS PUNCTUATION
RECORDS

8 N

A

8 CHARACTER

4 STORAGE

2

1

A MAIN MEMORY LOCATION

BASIC MEMORY — 2, 048 character locations.

ADDITIONAL MEMORY — One 2, 048-character module and addi-
tional 4, 096 -character modules.

PROCESSING UNIT — Six-bit character. Variable-length groups
of consecutive characters form instruction and data fields.

INSTRUCTION FORMAT — Variable. Typical configuration:
operation code, two addresses, and variant character.

ADDRESSING MODES — Direct, indirect, indexed.

INDEX REGISTERS — Six, each capable of storing three six-bit
characters.

MEMORY CYCLE — Two microseconds to read and restore one
character.

CONTROL MEMORY

MEMORY CAPACITY — 16 control registers, each capable of
storing the address of a character position in the main memory.

CONTROL REGISTERS — Basic configuration: two operand-
address registers, two instruction address registers, and up to
eight read/write channel counters.

ACCESS TIME — 0.25 microseconds.
MEMORY CYCLE — 0.5 microseconds.

)

3 €353

ARITHMETIC UNIT

OPERATIONS — Decimal arithmetic, binary arithmetic, logical
operations.

TYPICAL OPERATING SPEEDS —
5-digit decimal add (A + B—»B) 44 microseconds.
5-digit compare (A:B) 34 microseconds.

CONTROL UNIT

PARITY CHECKING — One parity bit with each character stored
in memory.

PROGRAM CONTROL — Sequential selection, interpretation and
execution of all stored program instructions.

CONTROL PANEL — Control and display functions.

&

INPUT / QUTPUT
TRAFFIC CONTROL

READ/WRITE CHANNELS — Three channels standard; auxiliary
channel optional. I/O instructions designate channel connections.

INPUT/OUTPUT TRUNKS — Basic configuration of eight input or
output trunks; expandable by eight input or output trunks.

PERIPHERAL SIMULTANEITY — Up to four peripheral transfer
operations simultaneous with computing.

Figure 10.

Summary of Central Processor Characteristics

LESSON III. H-200 CENTRAL PROCESSOR

1. Figure 10. states that basic H-200 memory contains _ 9 4§ characters (memo-
ry locations). This number of memory locations can be expanded by a first module of

N oY characters then additional modules of Hody characters.

TURN THE PAGE TO CHECK YOUR ANSWERS.

5. Besides the six cores required to store a CHpyghc-gw - three additional cores are

incorporated in each H-200 memory location. You are already familiar with the single
core used for j?@j’f1j\‘3 checking. In H-200 terminology, the other two cores are re-

ferred to as Pyegyw—ied cores and are used for the separation of RAE oY

’

v oA ’ W o 9s

9. The H-200 assures accuracy of storage by checking for ODD parity each time a
character is read from memory. An error would be indicated if ""bad" parity (an E\]c-_.\/
total of character "1" bits plus parity bit) should even occur.

Does the memory location below contain good or bad parity?

PARITY M WM CHARACTER
0 0 1 1 00110
13. It is often convenient to transfer words pertaining to the same subject into adjacent

memory locations. They may then be treated as an ITEM. An T 7z{"\is defined as one

or more related Wg€o stored in f\"})yp‘ L et memory boc HT1 ol . Itis
represented in illustrations by HNDeER, L1 w3t the high order or low order

character as desired.

17. This mark, © | is a combination of word and item mark symbols and is known
as a SR LAY mark. This punctuation is formed by using both punctuation cores in

the first memory location following the RIGHTMOST character to be transferred to a pe-

ripheral device. Character by character transfer proceeds from | ¢ %1 to j:{]&%— T

until the L& cheo mark is sensed.

37

LESSON III. H-200 CENTRAL PROCESSOR

BASIC - 2048 MEMORY LOCATIONS
FIRST MODULE - 2048 MEMORY LOCATIONS

ADDITIONAL MODULES-4096 MEMORY LOCATIONS

CHARACTER

PARITY

PUNCTUATION
WORDS, ITEMS, RECORDS

EVEN

THE MEMORY LOCATION CONTAINED "GOOD'" PARITY BECAUSE THE TOTAL
OF CHARACTER "I'" BITS PLUS THE PARITY BIT WAS ODD. PUNCTUATION BITS
ARE NOT TOTALED IN A PARITY CHECK.

13.

ITEM

WORDS
ADJACENT
LOCATIONS
UNDERLINING

17.

38

QO RECORD

LEFT (HIGH ORDER) - RIGHT (LOW ORDER)
RECORD

LESSON III. H-200 CENTRAL PROCESSOR

Core memory units are composed of planes of cores stacked in sufficient number to
accommodate the 6 bit character format plus 2 word separation bits and | parity bit. The
basic H-200 has 9 planes of 32 x 64 cores. This configuration provides 2 ¢4 % memory

32 x 69)

locations 9 cores in depth.

The first six cores of a memory location are used for storage of any alphanumeric

% - eyt :l. . The next two cores are available as Tuss €1 81T o bits to

designate a word, item, or record. The ninth core represents the ‘@i ey bit used

S

to check accuracy of bit storage.

10.

A programmer or operator can check the contents of a memory location by observing

the CONTENTS lights buttons on the central processor control panel. An illuminated

button represents a '"'1' bit.

(O HID)
HONEYWELL 200

Which bit is not shown by a CONTENTS light button?

14.

A word mark is used with the H-200 in the same manner as in the 1401. It is placed
in the high order (leftmost) memory location of an instruction or data word where it:

1. Indicates the beginning of an instruction.

2. Defines length of a data word.

3. Stops instruction execution.

(This frame does not require a written answer,)

18.

i

A Receocy AT O is placed in the memory location following the

Kl TR o character to be transferred. Record transfer to a peripheral device

terminates when a f"-;; ., .; 1is sensed.
The following frame asks you to properly draw the punctuation above and also to

draw circles for marks andunderlines for < :_, marks.

39

LESSON III. H-200 CENTRAL PROCESSOR

2048

CHARACTER
PUNCTUATION
PARITY

10.

PARITY

14.

NO ANSWER REQUIRED

18.

® - RECORD MARK following RIGHTMOST character
® - WORD MARK
X - ITEM MARK

40

P

LESSON III. H-200 CENTRAL PROCESSOR

3. The basic H-200 core martrix provides 20'»)‘}' memory locations. To be capable
of storing one character plus two word separation bits and one parity bit, each location
must be g cores deep.

7. State the name or purpose of each core or group of cores in an H-200 memory
location. AR T {

PINCTI BT {
B
A
CUAAD Tl 8
4
2 .
!

11. H-200 punctuation is also different in the rather obvious respects that the 1401
cannot designate items and a 1401 '"record' requires a special character in an additional
memory location. In the H-200, setting a word mark makes the word mark core a "1'".
To set an item mark, the " -{e m ARV, core is made a ''1'. Making both cores
"1's" produces an H-200 KE‘ o) PR YA

15. Item marks are most commonly set in the low order (rightmost) memory location
of a data word. Consequently, items are usually retrieved or transferred character by
character from H 4 (¥ order to i o¢AJ order until the - _’_[ﬁ'—“)”\ marked character
has been retrieved.

19. WORD WORD WORD

Punctuate: — AB , w123 . 456 ,
JTEM ITEM,
RECORD
ADDRESS 1411 142 | 143 | 144 |145 | 146 | 147 | 148 | 149 | 150
CONTENTS [z [& B2 [D2z |3 [&H]5 & @]
What memory location would be addressed to:
1. Retrieve word 456? |}« 9 2. Transfer item 123 4562 [+

3, Transfer the record to peripheral device?)«
41

LESSON III.

H-200 CENTRAL PROCESSOR

2048

PARITY

PUNCTUATION

CHARACTER

N oS o PO

(ACCURACY CHECKING)
(SEPARATION OF WORDS, ITEMS, RECORDS)

(STORAGE)

11.

ITEM MARK
RECORD MARK

15.

NOTE: THE DIRECTION OF RETRIEVAL WOULD OF COURSE BE REVERSED

HIGH order to LOW order
ITEM

IF THE ITEM MARK WERE IN THE HIGH ORDER POSITION.

19.

42

141 | 142 | 143

144

145

146

147] 148 | 149

Z | @ | B

©)

fo~
I®| @

® 5

1. Address 149 to retrieve word 456.

2. Address 144 to transfer item 123 456.

3. Address 142 to transfer the entire record.

LESSON III. H-200 CENTRAL PROCESSOR

H-200 magnetic core memory provides high speed-one millionth of a second-random
access to a memory location. Your previous system gained access to a memory location
five times slower than the H-200. Additionally, a 1401 memory location only stores 8 bi~

nary digits because it contains 8 cores. The H-200 can store 9 £1npBry Nézﬁs

because it has 9 CoRey per memory location.

A 1401-H200 "difference' should be noted at this point concerning parity checking

and punctuation cores. The H-200 does NOT include punctuation bits in its parity check.

"Good'' parity is shown if the total of character ''1'' bits and the parity bit equals
an ODD number. When a character is written into memory, the parity core is magnetized

as a ''l" or '""0'" to produce an é“DD total with the character "'1" bits.

12.

With your previous sytem, a word mark was shown in illustrations by underlining
the proper character. H-200 illustrations use a circle around a character to represent
a word mark. An underlined H-200 character represents the punctuation unique to the

H-200 and therefore signifies an 1'{{\({\ S

16.

A word or item mark core is used when the character is at the limit of a word or

item. As shown below, mark cores are used in addresses and

The mark core is used in address

94 | 95| 96 | 97 | 98 | 99 100
B C D E ¥ G H

20.

The preceding frames can be summarized by completing the blanks below and by

drawing punctuation symbols for the X's.

RETRIEVAL
FORMAT SYMBOL LOCATION ADDRESS .
WORD) HIAHORDER _LeWORDER
_HW {{«CRDER _LvWRDER
ITEM 3(‘ or or
Low ORDER HI{ORDER
Low ORDER HSi+ORDER
RECORD @ fﬁuwngﬁ_&_}%f -
QRER POl TR ST

43

)

'LESSON III.

H-200 CENTRAL PROCESSOR

9 BINARY DIGITS
9 CORES

(Return to page 37, frame 5.)

ODD

(Return to page 37, frame 9.)

12.

ITEM MARK

(Return to page 37, frame 13.)

16.

WORD
94 97
ITEM
100

(Return to page 37, frame 13.)

20

FORMAT
WORD
ITEM

RECORD

SYMBOL

®

X

)

LOCATION
HIGH ORDER

HIGH ORDER
or
LLOW ORDER

FOLLOWING LAST

CHARACTER TRANSFERRED

RETRIEVAL ADDRESS
LOW ORDER

LOW ORDER
or
HIGH ORDER

HIGH ORDER

(Continue to page 45.)

.

LESSON IV

PART 1. NUMBERING SYSTEMS

PART 1II.

AND
HONEYWELL ALPHANUMERIC CODE

45

L)
i

RELAY

I-ll-llllll-ll-l
]|

] [}
CIOIO|OC|O

PUNCH CARD

VOLTAGE PULSE NO PULSE
BINARY, OCTAL, AND DECIMAL EQUIVALENTS POWERS OF 2
BN, | ocr. | pec. f mn.] ocr | pEC s] m
e 2 : By : e
1 1 1 10001 21 17 1 2
10 2 2 10010 22 18 2 4
11 3 3 10011 23 19 3 8
100 4 4 10100 24 20 4 16
101 5 5 10101 25 21 5 32
110 6 6 10110 26 22 6 64
111 7 7 10111 27 23 7 128
1000 10 8 11000 30 24 8 256
1001 11 9 11001 31 25 9 512
1010 12 10 11010 32 26 10 1 024
1011 13 11 11011 33 27 11 2 048
1100 14 12 11100 34 28 12 4 096
1101 15 13 11101 35 29 13 . 8 192
1110 16 14 11110 ‘ 36 30 14 16 384
1111 17 15 11111 37 31 15 32 768

Figure 11. Binary Representation

46

LESSON IV. PART I: NUMBERING SYSTEMS

Just as different languages can express the same meaning, different numbering
systems have the capability of expressing the same quantities. To aid in understanding
and using numbering systems adaptable to electronic computers, it is beneficial to first

review the familiar decimal system.

13.

If we represent the off state of the light bulb by the binary zero (0), it is readily
apparent the on state can be represented by the binary | . A string of lights in a

systematic on and off configuration could represent any Q 4 AR number.

25.

The most commonly used method of decimal to binary conversion is the remainder
method. The decimal number is divided by two and that quotient and all succeeding
quotients are in turn divided by two. The remainders of each division must be 1 or 0

and these make up the bits of the binary number with the final remainder the most sig-

nificant digit. Using the decimal 13, the remainder method is illustrated below.

6 3 1 0
(2/13R=1) (2/6 R=0) (2/3R=1) (2/TR=1) = 1101 binary

37.

Complement the subtrahend of the binary subtraction problems listed below.
101111 1110111
100101 ans. 0100010 ans.

49.

Using the powers of the base 8, convert the following octal numbers to their decimal

equivalent.

6540
llg

235g
178

H
n

47

LESSON IV. PART I. NUMBERING SYSTEMS

NO ANSWER REQUIRED

13.

1
BINARY

25.

NO ANSWER REQUIRED

37.

011010 1011101

LESSON IV. PART I: NUMBERING SYSTEMS

2. Peculiar to each numbering system is the base (or radix) and the number of digits
used in that system. The base or radix of the system indicates the number of digits
used. The decimal system, with a base of ten, uses 1Q different digits.

14. A binary number is represented by a series of I's and0's called "bits" (a contraction
of binary digits). Using light bulbs to represent the binary number 1101, which bulbs
would be on and which ones would be off?

dJ g 2\) gg'i = oid

26. In the previous example, decimal 13 was converted to binary 1101. To prove this

answer, convert binary 1101 to decimal by using powers of two.
S+ + 5 + ! =13
38. After complementing the subtrahend, the next step is adding the complemented
number to the minuend. Complement and add in the following problems.
101010 = 101010 111011 = 111011
-010101 —» -100011 —»
50. For decimal to octal conversion, the easiest approach is the remainder method ex-

plained in decimal to binary conversion. A division of 8 is used instead of 2. Remember,

the last remainder is the most significant digit of the total number.

Convert 77,4 to its octal equivalent.

ANS.

49

LESSONIV. PART I: NUMBERING SYSTEMS

2.
10
14.
vy vy vy
~ - ~ P ~ -~
| | 0 |
ON ON OFF ON
26.
(1 x2%) +(1x22)=(0x2l)+(1x20)=13
(1 x 8) (1 x 4) (0 x 2) (1 x1)
8 4 0 1
38.
ccc ccc
101010 111011
101010 011100

1010100 1010111

Ll

it gl

LLESSON IV. PART I: NUMBERING SYSTEMS

3. The numbers of the decimal system are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The
highest number represented by a single digit in a system will be one less than the g gic ol Ravi/

15. The computer, of course, does not employ light bulbs, but does operate on the same
on-off principle. Transistors are either conducting or non-conducting; magnetic tape,
discs, and drums are magnetized or not magnetized, and cores are magnetized in one of

two polarities. Punch cards are either Pydoyges or W o yrieHen)

27. Remember, the last remainder is the most significant digit in the binary number

when converting decimal to binary by the remainder method. To ease in applying this

rule, division can be solved thus:

9

2/1 R =1

2/3 R=1

2/7 R=1
2/15 R=1 ‘

2/ 30 R=0 What is the binary number? vy o
39. The previous problems were:

101010 101010 111011 111011
-010101 +101010 -100011 +011100
1010100 1010111

It is apparent these answers are not correct. In both cases, the answer contains

more digits than the minuend. One additional step is required.

51. Convert the following decimal numbers to their octal equivalent.
810 = 78610 =
8819 = 88819 =

51

LESSON IV. PART I: NUMBERING SYSTEMS

BASE (RADIX)

15.

PUNCHED
NOT PUNCHED

27.

11110

39.

NO ANSWER REQUIRED

v

£
3

LESSON IV. PART I: NUMBERING SYSTEMS

A peculiarity of a positional number system is the manner in which we record the

digits. The number 10 is quite different in value than 01 although the same digits are

used. The difference in value is determined by the Vot 111 ieN of the digits in the

whole number.

l16.

The bistable or two state devices listed in the previous statement are adaptable to

the € 1ng | numbering system. Since the position of the digits 0 and 1 determine

their value, this system, like the decimal system is also a ‘?/S I’(j/_j};,)ﬂ o
/ E

numbering system.

28.

Convert the following decimal numbers to binary numbers using the remainder
method.

11

51

358

40.

The last step is called ''end around carry."

101010 101010 111011 111011
-010101 101010 -100011 011100

010100 010111
1 1

10101 11000
Rule for end around carry: THE 1 IN THE HIGH ORDER POSITION (MOST SIG-

NIFICANT DIGIT) IS ADDED TO THE 2° POSITION (LEAST SIGNIFICANT DIGIT).
CONVERT THE PROBLEMS TO DECIMALS AND CHECK THESE ANSWERS.

4

52.

Explain briefly in your own words why 2 is not a valid binary number and 9 is not

a valid octal number.

53

LESSON IV. PART I. NUMBERING SYSTEMS

4.
POSITION
16.
BINARY
POSITIONAL
28. 11 = 1011 51 = 110011 358 = 101100110
0 0 0
2/_1_R:l 2/1_R=1 2/_1_R=1
2/£R=0 Z/ER'—'I Z/_Z_.R=O
2/5 R=1 2/6 R=0 2/5 R =1
2/11 R =1 2/1Z R=0 2/11 R =1
2/2_5_ R=1 2/-2_2 R=20
2/51 R=1 2/44 R=0
2/89 R =1
2/179 R =1
2/358 R =0
40. 101010 = 42 111011 = 59
-010101 = -21 -100011 = -35
10101 = 21 11000 = 24
52. The base or radix of a numbering system indicates the number of digits used in

that system, also the highest number represented by a single digit in any system is one
less than the base. Binary has a base of 2 and the highest single digit is 1. Two does

not exist in this system. Octal has a base of 8 and the highest single digit is 7. Nine

does not exist in the Octal system.

LESSON IV. PART I: NUMBERING SYSTEMS

Characteristic of a positional numbering system is that the value of each position
in a multidigit number represents a specific power of the base. In the decimal system,

the positions to the left or right of the decimal point increase or decrease by powers of

‘o .

17.

Since binary is a numbering system with a base of two, positional value of digits

increase or decrease by powers of TQ);Z .

29.

Elementary to converting binary to decimal would be the construction of a simple

graph of the powers of two.

512 256 128 64 32 16 8 4 2 1
1 0 1 1 0 1 1 0 0 1

With the binary number 101101 100 1 entered in the chart, we need only to add

the powers of two to arrive at the decimal equivalent. What is the decimal equivalent? -~ .

What is the largest decimal number that could be represented in this chart? [oa™S .

B -

Using the complementation and end around carry method solve this problem:.

SUBTRACT B FROM A, STEP #1 COMPLEMENT B
A, 101011 A. 101011
B. 011101 ‘:> ' B.

STEP #2 ADD A, AND B COMPLEMENT

A, 101011
B.
ANS. (STEP #3 NEXT FRAME)

53.

Define base or radix and positional numbering systems.

55

TTETETSLSLSLLSSSS————

LESSON IV. PART I: NUMBERING SYSTEMS

10

17.

TWO
29.
729
1023
THE LARGEST QUANTITY REPRESENTED BY A SERIES OF 1 BITS
WILL ALWAYS BE ONE LESS THAN THE NEXT HIGHER POWER OF 2.
41. STEP #1
101011
100010
STEP #2
101011
100010
1001101
53. BASE OR RADIX INDICATES THE NUMBER OF DIGITS IN THE SYSTEM. THE POWER

OF THE BASE IS DENOTED BY THE POSITION OF THE DIGIT.

56

LESSON IV. PART I: NUMBERING SYSTEMS

6. The powers of ten are: 100=1, 101=10, 102=100, 10321000, etc. We commonly
call these positions of the decimal system units, tens, hundreds, thousands, etc. Ex-
pressed as a power of ten, 10, 000 would be 1o “+

18. Powers of ten are 100, 101, 102, 103, etc., and represent values 1, 10, 100, 1000.

Using the powers of two, what are the decimal values of ZO, Zl, 22, 23, 249

20=) 21z 9 22=4 232 T 24- J(, .

30. The basic operation performed in the arithmetic unit of the central processor is

&AL cueh TeJ . Consequently, any numbering system compatible with electronic

data processing must have the quality to permit calculation.

42. Continuing with the previous problem 101011 minus 011101.
STEP #1 STEP #2 STEP #3
COMPLEMENTING ADD PERFORM END AROUND
CARRY AND ADD.
A. 101011 A. 101011 A. 101011 001101
B. -011101 B. 100010 B. 100010 1
1001101
Answer

Convert the original problem to decimal and check your answer.

54. It was mentioned that octal provides a shorthand method for dealing with binary
numbers. To illustrate, first represent each of the 8 octal numbers as three bit binary

numbers. If necessary, add zeroes to the left to make three bit binary numbers.

4.=
1 5.=
2.= 6.=
.= 7.5

57

,

| LESSON IV. PART I: NUMBERING SYSTEMS

6.
104
18.
20= 1 21l= 2 22= 4 23=8 24= 1%
30.
CALCULATION
42,
A. 101011 = 43
B. 011101 =29
14 = 1110
54,
0. =000 4. =100
1. =001 5. = 101
2. =010 6. =110
3. =011 7. =111
58
| §

y

LESSON IV. PART I. NUMBERING SYSTEMS

7. For clarity and comparison, a simple graph illustrating positional value in powers
of the base ten and the literal description may be useful.
thousands hundreds tens anits
103 0r 1000 | 1020r100 | 10lorio | 1000r1
I I 7
Record the decimgl numbers 5347 and 3000 in :he above grapi{, each digit in its
proper value position.
19. Illustrated in a simple graph as used with the decimal system, the powers of two
and positional values are easily determined.
Decimal Value Sixteen Eight Four Two Units
Power 24 | 23 | 22 I 21 I 20
T T U T e T
Record the binary numbers 1101 and 10001 in the graph and determine the decimal
equivalent. 1101 = 3 10001 = _[/])
31. Binary arithmetic follows the same general rules as decimal arithmetic except that
base two tables are used instead of base ten tables. The following are the four basic rules
of binary addition; 0+0=0, 0+1=1, 14+0=1, 1+1=0 plus a carry of 1.
EXAMPLE: Add 1011 + 1019
cc ("c¢' indicates a carry)
1011 =
1010 = Convert the binary numbers to decimal, add and check the result.
10101 =
43. For practice and understanding, solve the following subtraction using comple-
mentation and end around carry.
1101011 10110
-1011110 -01001
ANS. ' ANS.
55. Any binary number may be converted to octal by dividing it into groups of three

bits starting at the right-most bit and then coaverting each group into its octal equivalent
EXAMPLE: 100/111 = 474
To prove; convert the binary number 100111 and the octal number 47 to their decimal

equivalents
100111,= 47g =

59

LESSON 1IV. PARTIL

NUMBERING SYSTEMS

7. thousands hundreds tens units
103 or 1000 102 or 100 10l or 10 100 or 1
5 3 4 7
3 0 0 0
19. SIXTEEN EIGHT FOUR TWO UNITS
24 23 22 21 20
1 1 0 1
1 0 0 0 1
1101 = 8+4+0+1=13
10001 =16 +0+0+0+1=17
31.
1011 =11
1010 =10
10101 = 21
43.
1101011 10110
0100001 10110
0001100 01100
1 1
1101 1101
55. 32 16 8 4 2 1 64 8 1
1 0 0 1 11=32 4 7 =132
4 _T
2 3910
1
3910 4737390
100111 = 39;9

60

P

LESSON IV. PART I: NUMBERING SYSTEMS

wy

8. As with any positional numbering system, each digit of a multidigit number can be
expressed as that number times its power of the base. Example:
4,968 is (4 x 103) + (9 x 10%) + (6 x 101) + (8 x 109). The sum of these numbers is the
ori;inal mu}l\:\idigit number. Write the decimal nun'&ber 6521 using powers of the base.
\(aYio}J} + /;’Xuﬂ‘) + YREN. + (gx,q’

20. Each digit of a multidigit binary number can be expressed as that number times its
power of the base 2. Example: 1011 is (1 x 23) + (0 x 22) + (1 x Zl) + (1 x 20). The sum
of the individual digits is the decimal equivalent. Write the binary number 1111 using
powers of the base and determing the decimal value. A

AN / 2 \ ; a0t ~
(v %)+ _(1x2?) + (;:a'l + (\s X 2 > = S

32. As practice and to check accuracy, solve the following binary additions then convert
to decimal and verify results.

1111 1101 1011
1111 1110 11
o trowt 1ito

44. The complementing and end around carry steps work just as effectively with any
numbering system. Using the 9s complement, the decimal subtraction problems below .
illustrate this fact. Complete the end around carry and add.

7632 7632 9678 9678
-5246 COMPLEMENT > 4753 -8422 COMPLEMENT > 1577
12385 11255
56. Convert the following binary numbers to octal numbers and the resultant octal

numbers to their decimal equivalent.

OCTAL DECIMAL

101110
1001101
1111111111

61

LESSON IV. PART I. NUMBERING SYSTEMS

8.
(6 x 10%) + (5 x 102) + (2 x 101) + (1 x 100)
20.
(1x23)+(1x22)+(1x21)+(1x20):15
32.
1111 = 15 1101 = 13 1011 = 11
1111 = 15 1110 = 14 11= 3
11110 = 30 11011 = 27 1110 = 14
44,
7632 9678
4753 1577
(D<i5 1255
1 ——
2386 1256
56.
101/110 = 565 = 461,
1/001/101 = 115¢ =779
1/111/111/111 = 1777g = 10234

62

LESSON IV. PART I. NUMBERING SYSTEMS

9. One rule to be remembered which is applicable to any positional numbering system;

any base (or radix) to the zero power equals one (1).

i
{
21. Binary 0 is equal to decimal 0 and binary one by itself is equal to decimal 1. Since
' binary is a system using a base of two and only digits 0 and 1, any quantity over one (1)
requires a multidigit binary number. Decimal 2 written in binary is 10 .
(1 x 21+ {0x29)
t
¥
v
33. Whenever a column generates more than one carry, a ''c¢" is inserted in the next
column for each carry. Each "c¢'' is treated as a 1 in its column.
N c c
cccecec x
; i
' 10111=23 10110 1011
Example 10011=19 Solve: 1010 111
11010=26 111011 1011
1000100=68 tefid Vi
45. Often a binary number may contain so many bits it becomes unwieldy and extreme-
) ly difficult to communicate other than in the computer. Another positional numbering
'
system is used to permit communication of binary numbers without resorting to a series
7 of 1s and Os. This ""shorthand' system is the octal numbering system using the eight

digits 0, 1, 2, 3, 4, 5, 6, and 7.

57. Convert the following decimal numbers to binary using the remainder method and
then convert the binary results to octal numbers using the shorthand 3s method.

BINARY OCTAL

511
426
112

1

63

LESSON IV. PART I: NUMBERING SYSTEMS
9.
NO ANSWER REQUIRED
21.
10
33.
c
cccece cccc
10110 1011
1010 111
111011 1011 ,
1011011 11101
45,
NO ANSWER REQUIRED
57.

511 =111111111 = 7778
426 = 110101010 = ()528
112 = 1110000 = 1608

64

LESSON IV. PART I: NUMBERING SYSTEMS

10. Complexity of electronic circuitry necessary for utilizing the decimal system has
resulted in a simpler two digit system for computer use. This system, having a base of

two, must use the digits o and S .

22. Binary numbers may be converted to decimal numbers quite easily by the positional

notation method. Each position is assigned its value and the values are then added to-

2 1 0
gether. 1101 = (1 x 23) +(1x2)+(0x2")+(1x2)=13, 111011 is equal to:
1x2) = ‘
1 x 22 B 2
0x2, - 0
3 .
1 x2 j"
4
1x2_ = L
5 - . .
1x2 = S o‘ Decimal equivalent
34. To facilitate computer subtraction, a method involving COMPLEMENTATION

‘and END AROUND CARRY is used.

PROBLEM: Minuend 1101011
Subtrahend - 1011110

1101011 Minuend
+0100001 (Complemented Subtrahend)

0001100
1

0001101 =

Convert the problem to decimal, perform the subtraction and compare your answer
to the complementation and end around carry answer.

n

46. Each position within an octal number represents a specific power of the radix 8.

What are the specific values (decimal) of the following powers of 8°?
0 2 e

gl = ¢ 82 = S

[

58. The shorthand octal method of converting binary numbers is not by accident or
coincidence. In the graph below you can readily see the interrelationship of each higher
power of 8 to each third higher power of 2.

4 3 2
8 : 8 81 80

65

LESSON IV. PART I: NUMBERING SYSTEMS
10.
0 and 1

22.

1x 2? =1

1x 22 =2

0 x 23 =0

1 x 24 =8

1x 25 16

Ix2" =32

59 = Decimal equivalent
34.
1101011 = 107
- 1011110 = 94
13=1101
46.
8’ =1 8% = 64
81 =8 83 =512
58.
NO ANSWER REQUIRED

66

LESSON IV. PART I: NUMBERING SYSTEMS

11. Just as the decimal system can express any quantity with ten digits, the binary

system can express any quantity with the two digits £ and i .

23. Convert the following binary numbers to their decimal equivalents.

10101 = 2

110011 = N
101100110 = 75y ¢
—_—
35, The first rule in solving subtraction by addition -- THE COMPLEMENT OF A

DIGIT IS EQUAL TO ONE LESS THAN THE RADIX, MINUS THAT DIGIT. Following

this rule, the decimal system uses the 9s complement and binary uses the ls complement.
Both 9 and 1 are one less than the base 10 and 2 respectively.
Example: The 9s complement of 6 is: 9 minus 6, or 3.

The 1s complement of 0 is: 1 minus 0, or 1.

What is the 9s complement of 632? (Complement each digit) 2,7 .

What is the 1s complement of 11007? - .

47. Dealing with more than one numbering system can lead to confusion unless care is
exercised. As examples, 236 could be either a decimal or octal number and 101 could
be decimal, octal, or binary. If there is any room for doubt, a subscript must be ap-

pended to the number.

2368 isan _gca., number. 23610 is a LeeTmp L number.
1012 is an number.
59. As shown in your Easycoder notes, two arithmetic capabilities of the H-200 are:
(BA) @iyt Fo
(BS)_ %5 wav SyeTti et

When these operations are explained, you will see that the preceding 58 frames

have provided necessary background information about numbering systems.

67

LESSON 1V. PART I: NUMBERING SYSTEMS

11.

0 and 1

23.

10101 21

"

110011 51

101100110 = 358

35.

367
0011

47.

236, OCTAL
101 BINARY

236 10 DECIMAL

59.

68

BINARY ADDITION
BINARY SUBTRACTION

A numbering systems background aids understanding of several areas besides
arithmetic operations. Examples are: Deciphering control panel lights displaying
binary address and memory location contents. Decoding octal portions of printed

listings. Writing binary literals or constants on coding forms. Specifying six bit
VARIANT characters with two digit octal.

LESSON 1V. PART I: NUMBERING SYSTEMS

12.

This two value system using 0 and 1 and called the binary numbering system, lends

itself to computer circuitry. A common example used in explaining this two value concept

is the light bulb. The light bulb can only be in one of two states, /{N or %F' =
7

24,

As further practice in binary to decimal conversion, list the decimal equivalents

of the following:

1010 = 0100 =
1001 = 0001 =
0101 = 0011 =
0010 = 0110 =
0111 = 1000 =

36.

Complementing the subtrahend of a binary subtraction problem merely involves
changing all ones to zeros and all zeros to ones. The ones complement of 0011101 is
1100010,

Complement the following:

10010

00100

11111 = It is that simple.

48.

In octal to decimal conversion, as with binary to decimal, each position is assigned
its value of the power of the base and the values are added together. Thus, 3568 is equal

to: 3 x 82

1
5x 8 =
0
6x8 =
TOTAL = | /1

60.

Quite often addresses are changed by the programmer from binary to decimél or
from decimal to binary. These changes are most easily accomplished in the following
sequences:

(BINARY TO DECIMAL) Convert Binary to Octal, then Octal to Decimal

1111112 778, 778 6310

For DECIMAL TO BINARY, convert DECIMAL to - .. then o<~ v to

i L
Vi upiy . Example, 63,4 = , -

69

LESSON IV. PART I: NUMBERING SYSTEMS

12.
ON or OFF
(Return to page 47, frame 13.)
24. 1010 = L(l 0100 = 4
1001 =__‘Z 0001 =1
0101 = __Ei 0011 = 3
0010 = _2 0110 = 6
0111 = __7 1000 = 8
(Return to page 47, frame 25.)
36.
01101
11011
00000
{Return to page 47, frame 37.)
48, 3x 82 =192
5x 81 = 40
6 x 80 = 6
TOTAL= 23810
{Return to page 47, frame 49.)
60.

DECIMAL (to) OCTAL, (then) OCTAL (to) BINARY
6310=778’ 778=11111112
Binary to octal and octal to binary can be accomplished without much difficulty.
Decimal to octal and octal to decimal is simplified through use of the conversion
tables on the following pages. '

70

LESSON IV. PART 1I:

NUMBERING SYSTEMS

OCTAL - DECIMAL CONVERSION

71

LESSON IV. PART I: NUMBERING SYSTEMS

Notice in the table at the right, that OCTAL numbers are shown as white digits on a black
background. DECIMAL numbers compose the majority of the table as four digits and increase

in seven columns from left to right.

OCTAL 0000to 0777 DECIMAL 0000 to 0511
DECIMAL TO OCTAL CONVERSION: LOW ORDER OCTAL OIGIT

7
Locate decimal number 27 in the table (0027). -n nn“-
0006 0007
Read to the left for the octal number (0030). 0014 0015
0022 0023
Read up from the decimal to determine the low S 6 8833 883;
0046 0047
order octal digit (3). Answer: 27 .=33 0054 0055
10 8 0062 0063
Leading zeros may be omitted. 0070 0071
o8 5o
338=0110112 =1 NOOR

OCTAL TO DECIMAL CONVERSION:

Locate octal high and low order digits.

Example: octal 1054 (1050, 4) = 55610

The conversion tables on the following
few pages may be removed for future reference.

As practice in their use, convert the following:

(A) BINARY 101 011 (B) DECIMAL 4 0 9 5 (On the fourth table.)
OCTAL OCTAL
DECIMAL BINARY
(C) OCTAL 6573 (D) DECIMAL 2048
DECIMAL OCTAL
BINARY
Answers: (D) OGTAL 4000 (C) DECIMAL 3451
BINARY 100000000000
(B) OCTAL 7 7 7 7 (A) OCTAL 53
BINARY 111 111 111 111 DECIMAL 43

72

.

LESSON IV. PART 1:

NUMBERING SYSTEMS

@ OCTAL 0000to0777 DECIMAL 0000 to 0511

0003
0011
0019

0035
0043
0051
0059

0067
0075
0083
0091
0099
0107
0115
0123

0131
0139
0147
0155
0163
0171
0179
0187

0195
0203
0211
0219
0227
0235
0243
0251

0259
0267
0275
0283
0291
0299
0307
0315

0323
0331
0339
0347
0355
0363
0371
0379

0387
0395
0403
0411
0419
0427
0435
0443

0451
0459
0467
0475
0483
0491
0499
0507

0004 0005
0012 0013
0020 0021

0027: 0028 0029

0036 0037
0044 0045
0052 0053
0060 0061

0068 0069
0076 0077
0084 0085
0092 0093
0100 0101
0108 0109
0116 0117
0124 0125

0132 0133
0140 0141
0148 0149
0156 0157
0164 0165
0172 0173
0180 0181
0188 0189

0196 0197
0204 0205
0212 0213
0220 0221
0228 0229
0236 0237
0244 0245
0252 0253

0260 0261
0268 0269
0276 0277
0284 0285
0292 0293
0300 0301
0308 0309
0316 0317

0324 0325
0332 0333
0340 0341
0348 0349
0356 0357
0364 0365
0372 0373
0380 0381

0388 0389
0396 0397
0404 0405
0412 0413
0420 0421
0428 0429
0436 0437
0444 0445

0452 0453
0460 0461
0468 0469
0476 0477
0484 0485
0492 0493
0500 0501
0508 0509

0512
0520
0528
0536
0544
0552
0560
0568

0576
0584
0592
0600
0608
0616
0624
0632

0640
0648
0656
0664
0672
0680
0688
0696

0704
0712
0720
0728
0736
0744
0752
0760

0768
0776
0784
0792
0800
0808
0816
0824

0832
0840
0848
0856
0864
0872
0880
0888

0896
0904
0912
0920
0928
0936
0944
0952

0960
0968
0976
0984
0992
1000
1008
1016

0513
0521
0529
0537
0545
0553
0561
0569

0577
0585
0593
0601
0609
0617
0625
0633

0641
0649
0657
0665
0673
0681
0689
0697

0705
0713
0721
0729
0737
0745
0753
0761

0769
0777
0785
0793
0801
0809
0817
0825

0833
0841
0849
0857
0865
0873
0881
0889

0897
0305
0913
0921
0929
0937
0945
0953

0961
0969
0977
0985
0993
1001
1009
1017

0514
0522
0530
0538
0546
0554
0562
0570

0578
0586
0594
0602
0610
0618
0626
0634

0642
0650
0658
0666
0674
0682
0690
0698

0706
0714
0722
0730
0738
0746
0754
0762

0770
0778
0786
0794
0802
0810
0818
0826

0834
0842
0850
0858
0866
0874
0882
0890

0898
0906
0914
0922
0930

OCTAL 1000to 1777 DECIMAL 0512to 1023

0515
0523
0531
0539
0547
0555
0563
0571

0579
0587
0595
0603
0611
0619
0627
0635

0643
0651
0659
0667
0675
0683
0691
0699

0707
0715
0723
0731
0739
0747
0755
0763

0771
0779
0787
0795
0803
0811
0819
0827

0835
0843
0851
0859
0867
0875
0883
0891

0899
0907
0915
0923
0931
0939
0947
0955

0963
0971
0979
0987
0995
1003
1011
1019

0516
0524
0532
0540
0548
0556
0564
0572

0580
0588
0596
0604
0612
0620
0628
0636

0644
0652
0660
0668
0676
0684
0692
0700

0708
0716
0724
0732
0740
0748
0756
0764

0772
0780
0788
0796
0804
0812
0820
0828

0836
0844
0852
0860
0868
0876
0884
0892

0900
0908
0916
0924
0932
0940
0948
0956

0964
0972
0980
0988
0996
1004
1012
1020

0517
0525
0533
0541
0549
0557
0565
0573

0581
0589
0597
0605
0613
0621
0629
0637

0645
0653
0661
0669
0677
0685
0693
0701

0709
0717
0725
0733
0741
0749
0757
0765

0773
0781
0789
0797
0805
0813
0821
0829

0837
0845
0853
0861
0869
0877
0885
0893

0901
0909
0917
0925
0933
0941
0949
0957

0965
0973
0981
0989
0997
1005
1013
1021

0518
0526
0534
0542
0550
0558
0566
0574

0582
0590
0598
0606
0614
0622
0630
0638

0646
0654
0662
0670
0678
0686
0694
0702

0710
0718
0726
0734
0742
0750
0758
0766

0774

0782
0790
0798
0806
0814
0822
0830

0838
0846
0854
0862
0870
0878
0886
0894

0902
0910
0918
0926
0934
0942
0950
0958

0966
0974
0982
0990
0998
1006
1014
1022

o]zl e]ls]o]

0519
0527
0535
0543
0551
0559
0567
0575

0583
0591
0599
0607
0615
0623
0631
0639

0647
0655
0663
0671
0679
0687
0695
0703

0711
0719
0727
0735
0743
0751
0759
0767

0775
0783
0791
0799
0807
0815
0823
0831

0839
0847
0855
0863
0871
0879
0887
0895

0903
0911
0919
0927
0935
0943
0951
0959

0967
0975
0983
0991
0999
1007
1015
1023

Octal-Decimal Conversion Table

73

LESSON1V. PARTL

NUMBERING SYSTEMS

74

1024
1032
1040
1048
1056
1064
1072
1080

1088
1096
1104
1112
1120
1128
1136
1144

1152
1160
1168
1176
1184
1192
1200
1208

1216
1224
1232
1240
1248
1256
1264
1272

1280
1288
1296
1304
1312
1320
1328
1336

1344
1352
1360
1368
1376
1384
1392
1400

1408
1416
1424
1432
1440
1448
1456
1464

1472
1480
1488
1496
1504
1512
1520
1528

A PYEEVIILRGVINNEN DECIMAL 1024 to 1535 OCTAL 3000 to 3777 DECIMAL 1536 to 2047

1949 1950 1951
1957 1958 1959

1981 1982 1983

1989 1990 1991
1997 1998 1999
2005 2006 2007
2013 2014 2015
2021 2022 2023
2029 2030 2031
2037 2038 2039
2045 2046 2047

Octal-Decimal Conversion Table (cont)

LESSON IV. PART I:

NUMBERING SYSTEMS

OCTAL 4000to 4777 DECIMAL 2048 to 2559

2179
2187
2195
2203
2211
2219
2227
2235

2243
2251
2259
2267
2275
2283
2291
2299

2307
2315
2323
2331
2339
2347
2355
2363

2371
2379
2387
2395
2403
2411
2419
2427

2435
2443
2451
2459
2467
2475
2483
2491

2499
2507
2515
2523
2531
2539
2547
2555

2220 2221 2222
2228 2229 2230
2236 2237 2238

2244 2245 2246
2252 2253 2254
2260 2261 2262
2268 2269 2270
2276 2277 2278
2284 2285 2286
2292 2293 2294
2300 2301 2302

2308 2309 2310
2316 2317 2318
2324 2325 2326
2332 2333 2334
2340 2341 2342
2348 2349 2350
2356 2357 2358
2364 2365 2366

2372 2373 2374
2380 2381 2382
2388 2389 2390
2396 2397 2398
2404 2405 2406
2412 2413 2414
2420 2421 2422
2428 2429 2430

2436 2437 2438
2444 2445 2446
2452 2453 2454
2460 2461 2462
2468 2469 2470
2476 2477 2478
2484 2485 2486
2492 2493 2494

2500 2501 2502
2508 2509 2510
2516 2517 2518
2524 2525 2526
2532 2533 2534
2540 2541 2542
2548 2549 2550
2556 2557 2558

2303
2311

2335
2343
2351
2359
2367

2375
2383
2391
2399
2407
2415
2423
2431

2439
2447
2455
2463
2471
2479
2487
2495

2503
2511
2519
2527
2535
2543
2551
2559

2560
2568
2576
2584
2592
2600
2608
2616

2624
2632
2640
2648
2656
2664
2672
2680

2688
2696
2704
2712
2720
2728
2736
2744

2752
2760
2768
2776
2784
2792
2800
2808

2816
2824
2832
2840
2848
2856
2864
2872

2880
2888
2896
2904
2912
2920
2928
2936

2944
2952
2960
2968
2976
2984
2992
3000

3008
3016
3024
3032
3040
3048
3056
3064

2561
2569
2577
2585
2593
2601
2609
2617

2625
2633
2641
2649
2657
2665
2673
2681

2689
2697
2705
2713
2721
2729
2737
2745

2753
2761
2769
2777
2785
2793
2801
2809

2817
2825
2833
2841
2849
2857
2865
2873

2881
2889
2897
2905
2913
2921
2929
2937

2945
2953
2961
2969
2977
2985
2993
3001

3009
3017
3025
3033
3041
3049
3057
3065

2562
2570
2578
2586
2594
2602
2610
2618

2626
2634
2642
2650
2658
2666
2674
2682

2690
2698
2706
2714
2722
2730
2738
2746

2754
2762
2770
2778
2786
2794
2802
2810

2818
2826
2834
2842
2850
2858
2866
2874

2882
2890
2898
2906
2914
2922
2930
2938

2946
2954
2962
2970
2978
2986
2994
3002

3010
3018
3026
3034
3042
3050
3058
3066

OCTAL 5000 to 5777 DECIMAL 2560 to 3071

2563
2571
2579
2587
2595
2603
2611
2619

2627
2635
2643
2651
2659
2667
2675
2683

2691
2699
2707
2715
2723
2731
2739
2747

2755
2763
2771
2779
2787
2795
2803
2811

2819
2827
2835
2843
2851
2859
2867
2875

2883
2891
2899
2907
2915
2923
2931
2939

2947
2955
2963
2971
2979
2987
2995
3003

3011
3019
3027
3035
3043
3051
3059
3067

2564
2572
2580
2588
2596
2604
2612
2620

2628
2636
2644
2652
2660
2668
2676
2684

2692
2700
2708
2716
2724
2732
2740
2748

2756
2764
2772
2780
2788
2796
2804
2812

2820
2828
2836
2844
2852
2860
2868
2876

2884
2892
2900
2908
2916
2924
2932
2940

2948
2956
2964
2972
2980
2988
2996
3004

3012
3020
3028
3036
3044
3052
3060
3068

2565
2573
2581
2589
2597
2605
2613
2621

2629
2637
2645
2653
2661
2669
2677
2685

2693
2701
2709
2717
2725
2733
2741
2749

2757
2765
2773
2781
2789
2797
2805
2813

2821
2829
2837
2845
2853
2861
2869
2877

2885
2893
2901
2909
2917
2925
2933
2941

2949
2957

2965

2973
2981
2989
2997
3005

3013
3021
3029
3037
3045
3053
3061
3069

2566
2574
2582
2590
2598
2606
2614
2622

2630
2638
2646
2654
2662
2670
2678
2686

2694
2702
2710

KEERDEIE

2567
2575
2583
2591
2599
2607
2615
2623

2631
2639
2647
2655
2663
2671
2679
2687

2695
2703
2711
2719
2727
2735
2743
2751

2759
2767
2775
2783
2791
2799
2807
2815

2823
2831
2839
2847
2855
2863
2871
2879

2887
2895
2903
2911
2919
2927
2935
2943

2951
2959
2967
2975
2983
2991
2999
3007

3015
3023
3031
3039
3047
3055
3063
3071

Octal-Decimal Conversion Table (cont)

75

LESSON IV. PART I: NUMBERING SYSTEMS

OCTAL 6000t06777 DECIMAL 3072to 3583 AP\ OUDECN YNNI DECIMAL 3584 to 4095
HEBERREDE

3073 3074 3075 3076 3077 3078 3079
3081 3082 3083 3084 3085 3086 3087
3089 3090 3091 3092 3093 3094 3095
3097 3098 3099 3100 3101 3102 3103
3105 3106 3107 3108 3109 3110 3111
3113 3114 3115 3116 3117 3118 3119
3121 3122 3123 3124 3125 3126 3127
3129 3130 3131 3132 3133 3134 3135

3137 3138 3139 3140 3141 3142 3143
3145 3146 3147 3148 3149 3150 3151
3153 3154 3155 3156 3157 3158 3159
3161 3162 3163 3164 3165 3166 3167
3169 3170 3171 3172 3173 3174 3175
3177 3178 3179 3180 3181 3182 3183
3185 3186 3187 3188 3189 3190 3191
3193 3194 3195 3196 3197 3198 3199

3201 3202 3203 3204 3205 3206 3207
3209 3210 3211 3212 3213 3214 3215
3217 3218 3219 3220 3221 3222 3223
3225 3226 3227 3228 3229 3230 3231
3233 3234 3235 3236 3237 3238 3239
3241 3242 3243 3244 3245 3246 3247
3249 3250 3251 3252 3253 3254 3255
3257 3258 3259 3260 3261 3262 3263

3265 3266 3267 3268 3269 3270 3271
3273 3274 3275 3276 3277 3278 3279
3281 3282 3283 3284 3285 3286 3287
3289 3290 3291 3292 3293 3294 3295
3297 3298 3299 3300 3301 3302 3303
3305 3306 3307 3308 3309 3310 3311
3313 3314 3315 3316 3317 3318 3319
3321 3322 3323 3324 3325 3326 3327

3329 3330 3331 3332 3333 3334 3335
3337 3338 3339 3340 3341 3342 3343
3345 3346 3347 3348 3349 3350 3351
3353 3354 3355 3356 3357 3358 3359
3361 3362 3363 3364 3365 3366 3367
3369 3370 3371 3372 3373 3374 3375
3377 3378 3379 3380 3381 3382 3383
3385 3386 3387 3388 3389 3390 3391

3393 3394 3395 3396 3397 3398 3399
3401 3402 3403 3404 3405 3406 3407
3409 3410 3411 3412 3413 3414 3415
3417 3418 3419 3420 3421 3422 3423
3425 3426 3427 3428 3429 3430 3431
3433 3434 3435 3436 3437 3438 3439
3441 3442 3443 3444 3445 3446 3447
3449 3450 3451 3452 3453 3454 3455

3457 3458 3459 3460 3461 3462 3463
3465 3466 3467 3468 3469 3470 3471
3473 3474 3475 3476 3477 3478 3479
3481 3482 3483 3484 3485 3486 3487
3489 3490 3491 3492 3493 3494 3495
3497 3498 3499 3500 3501 3502 3503
3505 3506 3507 3508 3509 3510 3511
3513 3514 3515 3516 3517 3518 3519

3521 3522 3523 3524 3525 3526 3527
3529 3530 3531 3532 3533 3534 3535
3537 3538 3539 3540 3541 3542 3543
3545 3546 3547 3548 3549 3550 3551
3553 3554 3555 3556 3557 3558 3559
3561 3562 3563 3564 3565 3566 3567
3569 3570 3571 3572 3573 3574 3575
3577 3578 3579 3580 3581 3582 3583

3584 3585 3586 3587 3588 3589 3590 3591
3592 3593 3594 3595 3596 3597 3598 3599
3600 3601 3602 3603 3604 3605 3606 3607
3608 3609 3610 3611 3612 3613 3614 3615
3616 3617 3618 3619 3620 3621 3622 3623
3624 3625 3626 3627 3628 3629 3630 3631
3632 3633 3634 3635 3636 3637 3638 3639
3640 3641 3642 3643 3644 3645 3646 3647

3648 3649 3650 3651 3652 3653 3654 3655
3656 3657 3658 3659 3660 3661 3662 3663
3664 3665 3666 3667 3668 3669 3670 3671
3672 3673 3674 3675 3676 3677 3678 3679
3680 3681 3682 3683 3684 3685 3686 3687
3688 3689 3690 3691 3692 3693 3694 3695
3696 3697 3698 3699 3700 3701 3702 3703
3704 3705 3706 3707 3708 3709 3710 3711

3712 3713 3714 3715 3716 3717 3718 3719
3720 3721 3722 3723 3724 3725 3726 3727
3728 3729 3730 3731 3732 3733 3734 3735
3736 3737 3738 3739 3740 3741 3742 3743
3744 3745 3746 3747 3748 3749 3750 3751
3752 3753 3754 3755 3756 3757 3758 3759
3760 3761 3762 3763 3764 3765 3766 3767
3768 3769 3770 3771 3772 3773 3774 3775

3776 3777 3778 3779 3780 3781 3782 3783
3784 3785 3786 3787.3788 3789 3790 3791
3792 3793 3794 3795 3796 3797 3798 3799
3800 3801 3802 3803 3804 3805 3806 3807
3808 3809 3810 3811 3812 3813 3814 3815
3816 3817 3818 3819 3820 3821 3822 3823
3824 3825 3826 3827 3828 3829 3830 3831
3832 3833 3834 3835 3836 3837 3838 3839

3840 3841 3842 3843 3844 3845 3846 3847
3848 3849 3850 3851 3852 3853 3854 3855
3856 3857 3858 3859 3860 3861 3862 3863
3864 3865 3866 3867 3868 3869 3870 3871
3872 3873 3874 3875 3876 3877 3878 3879
3880 3881 3882 3883 3884 3885 3886 3887
3888 3889 3890 3891 3892 3893 3894 3895
3896 3897 3898 3899 3900 3901 3902 3903

3904 3905 3906 3907 3908 3909 3910 3911
3912 3913 3914 3915 3916 3917 3918 3919
3920 3921 3922 3923 3924 3925 3926 3927
3928 3929 3930 3931 3932 3933 3934 3935
3936 3937 3938 3939 3940 3941 3942 3943
3944 3945 3946 3947 3948 3949 3950 3951
3952 3953 3954 3955 3956 3957 3958 3959
3960 3961 3962 3963 3964 3965 3966 3967

3968 3969 3970 3971 3972 3973 3974 3975
3976 3977 3978 3979 3980 3981 3982 3983
3984 3985 3986 3987 3988 3989 3990 3991
3992 3993 3994 3995 3996 3997 3998 3999
4000 4001 4002 4003 4004 4005 4006 4007
4008 4009 4010 4011 4012 4013 4014 4015
4016 4017 4018 4019 4020 4021 4022 4023
4024 4025 4026 4027 4028 4029 4030 4031

4032 4033 4034 4035 4036 4037 4038 4039
4040 4041 4042 4043 4044 4045 4046 4047
4048 4049 4050 4051 4052 4053 4054 4055
4056 4057 4058 4059 4060 4061 4062 4063
4064 4065 4066 4067 4068 4069 4070 4071
4072 4073 4074 4075 4076 4077 4078 4079
4080 4081 4082 4083 4084 4085 4086 4087
4088 4089 4090 4091 4092 4093 4094 4095

Octal-Decimal Conversion Table (cont)

76

LESSON 1V

PART II. HONEYWELL ALPHANUMERIC CODE

o

77

o]

LESSON IV. PART IL

HONEYWELL ALPHANUMERIC CODE

01234567893 ABCDEFGHI JKLMNOPQR STUVWXYZ B X-5%/,%#3

12 r 1(
“Poncnes n 34
oAl

NUMERIC
PUNCHES

80 COLUMN
SCALE

00000000F000000000000000000000006006000600000000RINBNNIRo000000000000NAN0000000000
12345678 910D 2 1IMSI617181820212220 2435262728 2930 31 32 33 24 35 J6 317 38 33 40 45 42 41 44 §5 86 32 46 19 50 51 52 53 34 55 56 1 S8 5960 61 B2 6T 64 02 66 67 6569 10 TI J2TI M IS 7617 18 79 80
IRRRREERRY RRRERRERRRERRARY ERRRRERER] IRRRRRRNARRERRRRRRRRRRRRRRERERE IRRRRRRRRRRE!
22222222220222222222222222282222222220222222220222222222222222222222222222222222
333323333333033333333333333330333333333033333333033333333333333033033030333333333
s4a44aadassaladasanaaasasasdslaassaasaalasaasaaalassassscssssashaalealalasdanasy
555555555555505555555555555555055655555505555555505555555555555555555554555555555
66666666666666M6666c66666666666M666666666066666666M66666666666666666666666666666
IRRRRRERRRREREE] RRRRRRRERRERERRE] RERERERERE] RERAREEEI RERRERRERRRERRERERRRRREREENE
ssssssssssssssasloosnessssasessssalossosscsolossascsslacssesossMBolNeliNNessessss

9999999999999999909999939995999999H999959999099999599099999995999299999999599999

1234056 78 3011213041516 1181920212223 2425 25 27 28 78 33 31 12 41 W 35 36 1) 36 3 a0 41 424 o4 4 46 42434950 51 5153 54 55 56 5758 39 60 616253 54 65 66 67 64 69 70 71 57 71 1 15 % 1) 79 19 80

Figure 12.

Hollerith Punched Card Code

ALPHABETIC CHARACTERS

A 01 0001 J 10 0001 S 11 0010

B 01 0010 K10 0010 T 11 0011

C 01 0011 L10 0011 U1l 0100

D 01 0100 M10 0100 V1l 0101

E 01 0101 N 10 0101 W1l 0110

F 01 0110 010 0110 X 11 0111

G 01 0111 P10 0111 Y 11 1000

H 01 1000 Q10 1000 Z 11 1001

I 01 1001 R 10 1001

DECIMAL DIGITS

0 00 0000 5 00 0101

1 00 0001 6 00 0110

2 00 0010 7 00 0111

3 00 0011 8 00 1000

4 00 0100 9 00 1001

SPECIAL CHARACTERS

' 00 1010) 01 1100 mmmm 10 1111

- 00 1011 % 01 1101 mmmm 11 0000
00 1100 0 01 1110 / 11 0001

Blank 00 1101 BN 01 1111 @ 11 1010

mE 00 1110 - 10 0000 , 11 1011

& 00 1111 4 10 1010 (11 1100

+ 01 0000 $ 10 1011 Cp 11 1101

; 01 1010 : 10 1100 11 1110
01 1011 " 10 1101 mmw 11 1111

s 10 1110

I : Non standard symbol.

78

Figure 13.

Printed blank by standard printer.

Alphanumeric Representation

LESSON IV. PART II. HONEYWELL ALPHANUMERIC CODE

61. Punched card code is shown in Figure 12, (NOTE: This code should properly be
referred to by the name of its originator, Dr. Herman Hollerith. You may have been

accustomed to improperly calling it by a company name in your previous programming.)

To assure yourself that code is the same punched card code with

which you are familiar, notice the designation of digits and letters according to: no zone

punch, 12 zone punch, 11 zone punch, 0 zone punch.

64. The relationship between Hollerith groups, zone punches and the BA cores is shown
below:
ZONE
BA GROUP CONTAINS PUNCHED
00 0 0-9 NONE
01 1 A-1 12
10 2 J-R 11
11 3 S-Z 0

Write the binary digits to designate the group containing:

4 5 ©,E » \ , L\ A . W { {

i

67. Check the correctness of the chart constructed in frame 66 by referring to the chart

printed on the reverse side of the EASYCODER NOTES PAGE (from LESSON I),
B A

Each letter in GROUP "3" (1 1) is numerically designated by the 8421 cores as being

e sl than the position it occupies.

Wi ;.

70. The octal numbering system is simply a shorthand method of expressing six bits

by writing only two digits. It is called octal because it uses powers of 8 and is compatible

py 3
with the binary base 2 because the ’r 1 power of two (27)= & .

73. Use the cross reference chart to locate the following characters, then write both

the octal and binary designations.

H O N E Y w E L L
OCTAL

BINARY

79

LESSON IV. PART IL:

HONEYWELL ALPHANUMERIC CODE

61.
HOLLERITH
64. 12 Punch 11 Punch 0 Punch
AND AND AND
B A If only'a 1-A 1-7J 2-S
4 00 numeric 2-B 2-K 3-T
punch is 3-C 3-L 4-U
E 01 in any 4-D 4-M 5-V
L 10 column it 5-E 5-N 6-W
represents 6-F 6-0 7-X
W 11 whatever 7-G 7-P 8-Y
number is 8-H 8-Q 9-Z
punched out 9-1 9-R
Group '"0" Group "1" Group "2" Group ''3"
BA = 00 BA = 01 BA =10 BA =11 .
67.
ONE GREATER (MORE)
70.
THIRD power of two
23 =38
73.
H N E w E L L
30 45 25 66 25 44 44
011000 100110 100101 010101 111000 110110 010101 100100 100100

80

LESSON IV. PART II: HONEYWELL ALPHANUMERIC CODE

a 62. Hollerith code is divided into four groups referred to as Group '"0'" containing 0-9,
"1" with A-I, ""2'" with J-R, and designated by the absence or presence of 12, 11, O,

- Zone punches. Complete this chart.

GROUP CONTAINS ZONE PUNCHED
0 0-9 ‘
1 A-T
2 J-R]
3 S-Z)

65. The 8, 4, 2, 1 cores specify the numeric punch. This designates the position of
BA 21
the character within the group identified by the BA cores. Example: 01 3‘1101 is GROUP

1", FIFTH CHARACTER, which is E. Refer to the chart at the left as needed to decode:

BA 8421, BA 8421, BA 8421,
12 punch & 8, 00 0010, 00 0000, 00 0000,

2

12 punch & 3, 10 0110, 10 0100, 10 0111, 11 0100, 11 o011, O 10101, 1 O 1001

(1 ' - N .

68. Also on the back of the Basic EASYCODER NOTES page is a reference chart for
all the Honeywell alphanumeric letters, digits, and special symbols. The example shows

how to decode binary 101011. Similarly, you can encode by locating a character, read-

ing the column to the left to locate the g 1dsi 74 c¢ #,7195 and reading the
column at the top for the < «¢ /N D Tt Es {,': =
71. The relationship between base 2 and base 8 is shown by writing the decimal values

in this chart.

"]
s8]

BINARY 2

OCTAL 82 ! 0

DECIMAL ¢ ‘_-{ 7 \

o
x©

3

4. Octal designation of six bit binary numbers is a convenience that will become familiar

through practice. Simply remember that each octal digit is formed by a combination of

the 4, 2, and 1 bits. Encode:
? 101 010 000 111 011 110 110 111

-

81

LESSON IV. PART II: HONEYWELL ALPHANUMERIC CODE

62.
GROUP CONTAINS ZONE PUNCHED
0 0-9 NONE
1 A-1 12
2 J-R 11
3 S-Z 0
65.
H-200
COMPUTER
68.

FIRST THREE BITS
SECOND THREE BITS

71.

BINARY 2% 2? 2°
OCTAL - 8f 8! 8"
DECIMAL 64 8 1

LESSON IV. PART II: HONEYWELL ALPHANUMERIC CODE

63. Hollerith punched card code is the basis for Honeywell's alphanumeric code. The
character storage portion of a memory location (BA 8421 cores) designates both the
Hollerith group and the numeric punch as binary numbers. Letting the B and A cores

represent binary 1's or 0's, write the two bit binary number for each Hollerith group.

B A
GROUP "0" = g o
GROUP "1" = »
GROUP "2 =,

GROUP "3" =

- 66.
When a chart or table is available, Hollerith or Honeywell codes may be decoded
or encoded easily. However, if you were without a reference, it would not be too difficult
to construct your own chart. As an example, complete the chart on the reverse side of
’ this frame.
i
69. Notice on the chart example that two methods are shown for expressing digits. One
method is BINARY, the other method is called Z) < 74« and expresses the first three
0 p
bits with one digit and the second 7 ;. % -with T D oid 4
2. For practice in using octal to denote six bit binary, write the following binary
numbers as their octal equivalent.
¢
BINARY 010 101|010 001 jJ110 010|111 00O
OCTAL 6 2 | L J -7 o)
Now, use each group of two octal digits to locate the appropriate characters on the cross
j ‘ reference chart that is on the BASIC EASYCODER NOTES page. X
75. One specific difference between 1401 alphameric and Honeywell alphanumeric code
concerns zero and blank.
In 1401 code, 000 000 equals blank and 001 010 equals zero.
! However in Honeywell code, zero is logically and blank is a special %
symbol coded gul ey E
] 83

LESSON IV. PART II: HONEYWELL ALPHANUMERIC CODE

63.
B A
GROUP "0" = 0 O
GROUP "1" = 0 1
GROUP "2" = 1 0
GROUP "3" = 1 1
(Return to page H, frame 64.)
66. CHART: Hollerith Zone and Numeric or Honeywell Alphanumeric
NUMERIC ONLY 12 ZONE & NUMERIC 11 ZONE & NUMERIC 0 ZONE & NUMERIC
GROUP "0 GROUP 1" GROUP "2" GROUP "3"
B A 8421 B A 8421 B A 8421 B A 8421
0= 00 0000 A= J=_ S= 11 0010
1 = _ . _ = - _ = - _ = -
2 = - = _ = _= -
3 - _ - _ = — _ = - _ = [
4 = . - _ = - _ = - _ = -
5 = _ - _ = - _ = - _ = -
6 = o - _ = - . = - _ = —
7 = - _ = - . = o Z = e
8 = o 1= __ rR= _
9 =
(Return to page % frame 67.)
69. OCTAL
THREE BITS with ONE DIGIT
(Return to page '}% frame 70.)
72.
BINARY 010 1014010 001|110 010}111 00O
OCTAL 2 5 2 1 7 0
CHARACTERS: E A S Y
(Return to page 1‘[; frame 73.)
75.
HONEYWELL ZERO = 000 000
HONEYWELL BLANK = 001 101

(Continue to page 85.)

LESSON V
STORAGE, RETRIEVAL AND EXECUTION

85

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

STORAGE, RETRIEVAL AND EXECUTION

From a programmers' standpoint, there are two obvious H-200 superiorities apparent when

contrasted with 1401 operation:

H-200 ' 1401
MEMORY CYCLE 2 microseconds vs. 11.5 microseconds
SIMULTANEITY Multiple Operations vs. Serial Operations

Simultaneity and the ability to take advantage of fast memory cycle time are made possible

by the H-200's CONTROL MEMORY. Registers in control memory provide simultaneity of pe-

ripheral operations with computation and also contribute to memory cycle of less than one fifth

that of the 1401. Control memory cycle of the 16 available registers is 500 billionths of a second.

Consequently, control memory has four complete cycles in which operations may be accomplished

during a 2 microsecond main memory cycle.

Some of the control memory operations performed are to assist retrieval from main memory.
{Selecting addresses, interpreting addresses, directing retrieval, directing arithmetic functions,
etc.) The illustration below shows how control memory operations overlap a main memory cycle

enabling memory locations to be accessed and retrieved in only 2 microseconds.

MAIN MEMORY CYCLE RETRIEVAL OF FIRST CHARACTER
2 mi d According to the address contained in the
microseconds CONTROL MEMORY:

Instruction Address Register
(or) A Address Register
(or) B Address Register

7 2 Microseconds .

CONTROL MEMORY CYCLES : PREPARATION TO RETRIEVE NEXT
I
.5 microseconds I CHARACTER
]
{
f

| | |
| i !
—— 5 ——tt—— 5 —wg——5 ———v}d—.s —>:
1 | 1
I
| 1 1 ' i

Four complete control memory cycles occur during a main memory cycle. The control unit

selects the appropriate register, interprets an address, etc. This prepares for retrieval or
execution of the NEXT character while main memory is retrieving the previous character. A

1401 requires 230 microseconds to select, interpret, retrieve and execute typical Add instruction.

The fast memory cycle of the H-200, aided by its control memory, can accomplish the same

instruction in only 44 microseconds.

It should be remembered that while H-200 central processor operations are much faster than
the 1401, they are also SIMULTANEOUS WITH PERIPHERAL OPERATIONS. For example, the
H-200 can simultaneously: Read or write 4360 tape records of 500 characters each, punch 250
cards, read 800 cards, print 900 lines of 120 characters each, and execute 1,000, 000 instruc-

tions in one minute.

86

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

Prior to this lesson, reference has mostly been relative to main memory, i.e., the
2048 memory locations of a basic H-200. The control unit uses a small memory bank for

computer control descriptively named ¢ Q/NTP\/L/ ynem oy

The rule for punctuating an instruction is simpler than the several rules for
punctuating data. Instructions are stored in consecutive memory locations with a WORD
MARK in the leftmost (high order) memory location of each instruction. Therefore the

©?Y CODE of each instruction will contain a \\JgR D n AR

17.

After retrieval of the B address portion of the instruction, control memory will con-
tain the A address in the f FODRASS Lot s Tt and the B address in the
R AporeSs RedzsTet . It should be remembered that these addresses

are stored as 12 or 18 bits.

25.

The further specification or modification of an OP. CODE is the purpose of a

V AFRL AWUYT C AR ACTsi. . One or more of these '"modifiers' may be included

as the rightmost memory location of the three instruction formats illustrated in frame 23.

EXAMPLES: [OP. CODE VARIANT

OP. CODE A ADDRESS VARIANT VARIANT J

33.

Six registers in control memory operate as counters and are assigned to the three
read/write channels. All three pairs of read/write channel counters function identically.

Therefore, only those associated with Read/Write Channel 1 will be introduced.

87

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

CONTROL MEMORY

OP.
WORD MARK

17.

A ADDRESS REGISTER
B ADDRESS REGISTER

25.

VARIANT CHARACTER

33.

NO ANSWER REQUIRED

88

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

Control memory is a matrix of cores providing 16 memory locations 18 cores in

length. The 18 cores of each control memory location will store up to 3 six bit

CH R BCTeRS

The control unit starts retrieving an instruction at the leftmost memory location, the

OP. CODE. The computer is designed to ignore the first WORD MARK sensed during

Instruction Retrieval. Retrieval continues from left to right until the V\}AD mark in the

¢/p o o/p(.’ of the next instruction is sensed.

"Two character addressing mode'" (2 memory locations - 12 continuousbits)
is sufficient to address any H-200 memory location up to #4096.
Example: 000000001101, = Address #13;,
111111111111, = Address #4095,

The decimal address 757 can be stated as

Note: A two character address must contain 12 bits.

An OP. CODE register is part of the control unit and the purpose of a VARIANT
character is to modify or further specify an operation. Consequently, in addition to the

nine registers of control memory, the (ufgz,g/l, unit must contain a register for both

the /P b and \JRRI HNT characters.

,1
10.
3
I’II.
18.
®
26.
¢
34,

Read/write channel counters are control memory registers which store the starting

location and current location addresses of data being transferred. Descriptively named,

)
they are the STaR1I MC' ot ,}«f,,/v counter and the (y Wil BT

LofAT14 W counter.
7 7

89

LESSON V.

STORAGE, RETRIEVAL AND EXECUTION

CHARACTERS

10.

WORD
OP. CODE

18.

75 = 10111101012

710
TO CONTAIN 12 BITS WRITTEN AS 001011110101,

26.

CONTROL
OP. CODE
VARIANT

34.

STARTING LOCATION
CURRENT LOCATION

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

3. The 16 memory locations in ¢ ,wr gL n m/«_\{ are called control regis-
= 7 -_—

ters. These control registers store the main memory addresses of data and instructions to

be used by the control unit. The control unit sequentially performs the functions of se-

lection, interpretation, and execution of instructions.

11. As you remember, a data word is retrieved from right to left and terminates with the

leftmost memory location which contains a WORD MARK. Instruction retrieval is opposite

to that of data; that is, retrieval is from L EF1 to RifiH 1 andeffectively terminates

when the |4 MARK of the next instruction OP. CODE is sensed.

19. The A and B address registers will each contain at least 2 six bit characters (12 bits

1's and 0's) indicating the main memory address of the operands. Using the example S,
126, 141, the A address register would contain the binary equivalent of 126 and the B

address register would contain the binary equivalent of 141.

A address register contents

B address register contents

Note: Add binary zeros to the left to make complete 12 bit addresses.

27. Identify each part of the instruction formats described below.
&
: Modified Single Character Inst tion '
g r ruc — - _ . v
i Modified Single Operand Iastruction 2 i yilofd
\ T PO
| ‘7/15 'l
1
Modified Two Operand Instruction
{ 1
! ! VAU 240 -

4 : .

» 35. As each successive character is transferred, the current location counter is incre-
mented by one. Therefore, when transfer ceases, the address of the character position
immediately following the last character transferred will be found in the

C yRRew T — 0 H o 7 CgymMTEN~

3

91

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

CONTROL MEMORY

11.

LEFT
RIGHT

19.

126,,=000001111110

. 141,,=000010001101
27.

OP. CODE VARIANT
]
OP. CODE A ADqREss VARIANT
{ |
OP. CODE A ADIRESS B ADIRESS VARIANT

35.

CURRENT LOCATION COUNTER

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

~

L

4. Control memory contains 16 memory locations called Comwvp g\l Reb 1 crels

A basic H-200 uses the 9 listed below:
(1) Instruction Address Register
(1) A Address Register
(1) B Address Register
(6) Two registers for each of the 3 Read/Write Channels.

The remaining 7 registers are available for use with features such as Advanced Pro-

gramming etc.

12. The first character retrieved according to the address in the Instruction Address
Register is the OP. CODE. This single character is placed in a control unit register (NOT
one of the control memory registers). Named for the character it contains, it is simply
called an g9 Cobc register.

20. Memory beyond 4096 locations requires a change of addressing mode to "Three
character address.' This will involve - K cE memory locations - 18bits - for
an operand address.

28, What is the least number of memory locations for the shortest instruction? éNg .
How many memory locations are required for an instruction in "2 character addressing
mode' containing an A operand and two variant characters? <

36. The current location counter will contain the memory address of the next character

to be transferred. The main memory address from which or to which transfer began is

stored in the CTAKTING —CcC RByen Cooym TER

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

CONTROL REGISTERS

12.

OP. CODE

20.

THREE

28.

ONE
FIVE

36.

STARTING LOCATION COUNTER

94

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

5. Basic control memory uses nine C,foNTF/L{V registers., Since a computer must
rely on instructions and the location in memory of these instructions is a prerequisite to

their use, the first register to be considered is the TNSTRUE T T oW/

address register.

13. The OP. CODE character is interpreted by the control unit. Retrieval of the remain-
ing instruction characters then follows. A common instruction format such as S, 126, 141,

contains first the 4P cone , nextthe A ﬂwmss and finally the B _Pl‘l@_

This is the most common but only one of six possible formats.

21. As the operation code character was retrieved, the instruction address register

incremented by one. Since the operation code is only one character, the incremented

instruction address register would then contain the address of the first character of the

¥ Q ﬁ”D'DQCSZ

-

29. In summary of instruction retrieval: Retrieval of instruction characters is directed
: by the T NSTRY o/ B OORESS register in control memory, which is incre-
t mented by \ as each character is retrieved. The OP. CODE is stored in the ép

\ Cgby register of the control unit. Operand addresses are stored in the ﬂ and

e BuopRess KL {7 57c#5 of control memory. Variant characters (if present)

are stored in the VAR Tywt register of the control unit. Instruction execution

commences when the \A!z?\\) mark of the next instruction OP. CODE is sensed.

37. The computer operator or programmer can determine where data transfer begins
and where it ends by referring to the STuURT ITal L cchATTew counter and
¥ the CuUR R WS L—ccATron counter associated with each Rewp /

WRT1& channel. Besides resumption of data transfer at the proper location, these

counters can determine length of records, etc.

95

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

CONTROL
INSTRUCTION

13.

OP. CODE
ADDRESS
ADDRESS

21.

A ADDRESS

29.

INSTRUCTION ADDRESS
ONE

OP. CODE

A

B ADDRESS REGISTERS
VARIANT

WORD

37.

CURRENT LOCATION
PRESENT LOCATION
READ/WRITE

96

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

The programmer specifies the main memory address of the first instruction to be
selected, interpreted and executed by the control unit. The control unit is directed to the
proper main memory location by this QA ypype eSS placed in the TusTRUSTIAY

Avpecss Rettsia

An "A'" operand is retrieved from main memory by the control unit according to its
"A'" ADDRESS in the instruction. Consequently a basic H-200 operation involving both
"A" and "B" operands must contain }q and R A/M)RG“JS@JS

[} i
OP. CODE | X
3 [

A ADDRESS B ADDRESS

Each time the control unit selects or retrieves an instruction character, the instruc-
tion address register increments by one. As the last character of the B address is
retrieved, the instruction address register will contain the address of the é®

e of the next instruction.

To this point in the lesson, only three of the nine control registers of a basic H-200

control memory have been introduced. They are the T silec T7onS ADORESS

register, {\X & OPReSD register, and {3 gﬁ?(}ﬁ);\»*.; S5 register.

Read/Write Channel Time Sharing uses six registers, two for each channel.

R

List the nine control registers of the basic H-200.

1. D W e e .

. RSl foten 6 Ml H L TL ¢
. e
2. JA CResdo e I™0 Y f e o 7 4 S C b- (
S R R L. B . -

3. o S : 8. Lwe 4o b

; T oy o e ;
4. 4 20 LA T Ve Loge B g Codntia- 9. i ¢ ‘ -

¥
5 K L oe ! o ; ~ ~

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

ADDRESS
INSTRUCTION ADDRESS REGISTER

14.

A and B ADDRESSES

22.

OP. CODE

30.

INSTRUCTION ADDRESS
A ADDRESS
B ADDRESS

38.

INSTRUCTION ADDRESS REGISTER (IAR)
A ADDRESS REGISTER (AAR)
B ADDRESS REGISTER (BAR)

RWC#1 { STARTING LOCATION COUNTER
CURRENT LOCATION COUNTER

RWCH2 { STARTING LOCATION COUNTER
CURRENT LOCATION COUNTER

RWCH3 { STARTING LOCATION COUNTER
CURRENT LOCATION COUNTER

T T

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

7. An OP. CODE is always in the first (leftmost) memory location of an instruction.

This single character code may sometimes be a complete instruction. As such, it is

%E cgo\z ’

simply illustrated as one memory location block identified as an

15, An instruction will contain the 12 or 18 bit address of the ""A'" operand. Since 12

bits are required to express any address up to #4096, storage of an ""A'' address up to

#4096 will require YW ;Z memory locations. Identify parts of the instruction

shown below.

MEMORY LOCATIONS

1
OV Co |
1
A B
23, Three instruction formats have been discussed. Identify each part of these formats
according to the description given.
Single Character Instruction / J
& ge C o

Single Operand Instruction

Two Operand Instruction @ B oS S
1]
ap Vg | :
— T |
B oo s] P oIv Y
31. Time sharing permits a second peripheral device to use the central processor during

mechanical operations of the first device. This second input or output operation can in turn

share access to main memory with a third. Any of these data transfer operations are

\{@a o /

communicated through the

W RI17 channels.

39, During the execution phase, retrieval of data from memory and its transfer to the

arithmetic unit is illustrated in this 'diagram.

MAIN MEMORY ARITHMETIC_UNIT
sosese p—
o ‘0;.{"" *1 I
- : OPERAND
:‘,: “; CONTROL QPERANT L ADDER b
plrprisgpin unIT REGISTERS
e 0’(;# g N
The arithmetic unit basically consists of two ¢ Pra’ /P STeR s [‘(E'&.{;ZI“S 7 §

and an

“PPER.

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

OP. CODE

15.

TWO (2)

MEMORY LOCATIONS

OP. CODE |
]
A ADDRESS
23.
OP. CODE
}
OP. CODE :
A ADDRESS
1]
]
OP. CODE ! .
A ADDRESS B ADDRESS
31,
READ/WRITE

39.

100

OPERAND STORAGE REGISTERS
ADDER

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

8. The operation code (OP. CODE), a six bit character, is interpreted (decoded) by the
control unit. For example, HALT is coded as an alphanumeric N and stored in the first
(leftmost) memory location of an instruction.

PARITY
™
WM . . .
This block illustrates the first
! AODRESS memory location of an instruction
0 3 —- and therefore contains an I
o) ® 1000l | d therefore 4%
CODED AS N —_—ie
1
0
]
16. Just as the instruction address was stored in the instruction address register,
the A address is stored in the [A oo Res™ {<t1s79L . This address indicates
the main memory location of the A operand.
24.

Many of the H-200 OP. CODES may be further specified by including one or more

VARIANT characters at the end of the instruction. For example, '"Change Addressing

Mode' is an OP.CODE telling the computer basically what to do.

To further specify the change as 2 or 3 character addressing mode requires a

V ARSI ANMT character at the g W of the T NST/{ycTIecl

32. Data transfer between peripheral devices and the central processor is provided by
the Rewn !/ WARL1e ¢ HANNTLS . Assignment of a channel is determined
by a programmed instruction. After an operation is completed, the RWC can be reassigned
to another peripheral device.

40.

Following retrieval from memory, operands are transferred to the O PR AL

o R pid e registers one character at a time. Each pair of characters in the

registers (one character from each register) is then combined by the

B dpenn !

101

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

8.
OP. CODE

(Return to page 87, frame 9.)

16.
A ADDRESS REGISTER

(Return to page 87, frame 17.)
24.

VARIANT END INSTRUCTION

{(Return to page 87, frame 25.)
32.

READ/WRITE CHANNELS

{Return to page 87, frame 33.)

40.

OPERAND STORAGE
ADDER

(Continue to page 103.)

102

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

41. Three units of the Central Processor are symbolized below.

Identify each unit by writing its name in the blank at the top of the block.

Name each of the nine control registers.

Name the components in the unit at the bottom of the page.

CouThuL UNIT frsmewy UNIT

r CONTROL REGISTERS

Tus1Rue Tior dog - 0 i 2 3 a 5 }
A 90'&‘(;55 §’i<<£:gm(
‘ - ' 97 0o | 1o |
g‘ IJDJ)J‘{t_‘J') Yebisr 98 9 02 %
[
‘ > Lc
RWC | 137 | 138 | 139 | 140 141 | 142 S
C ¢ &
- /
-LC / v S 442 | 443 | @44 | 445 | 246 | aa7 }
RWC 2 |
CLcC g | \
STARTIM Locm‘ew/,
: Coym® i -
RWC 3 7
: cu,zucwn,“w.y
C oevre it

;| 2047
ETC. TO /

PYAY YW AY 4

ARTTEmeT7¢ UNIT

;]
Sy Lt £ 7,6 REGISTERS PDEW . :&

103

LESSON V.

STORAGE, RETRIEVAL AND EXECUTION

41]. The program of sequential instructions and the operands (data to be processed) are
stored in memory locations within the memory unit. With the exception of operand ad-
dresses in an instruction, the block diagrams on the following pages simplify memory
location contents by expressing them as alphabetic or decimal characters.

CONTROL UNIT MEMORY UNIT
= PDinnan0n00000 3200 .
INSTR.
ADDR.
REG. 0 I 2 3 a 5
A 100100010101 |100100|i00tio 101001 |111000
ADDR.
REG.
8 97 | 98 | 9 100 [101 | 102 7)
ADDR.
REG. 011110 J0000i0{00 1101 [000IIO |11 1110 fOMt1111
STARTING
LOCATION COUNTER
RWC | S
137 13 | 1
CURRENT 8 39 40 141 142
LOCATION COUNTER t1o111 [000001|000001|000010 [000I00 [110111 }
STARTING
LOCATION COUNTER 442 | 443 | 444 | 445 | aas | aa7
RWC 2
CURRENT 110111 [000010f000100{00000:[{00000I{1i0III
LOCATION COUNTER
STARTING :
LOCATION COUNTE(
RWC3 || _/;
i CURRENT /,
LOCATION CouUp,
19 f 2047
LS 2 ETC. TO
;ﬁ / 1ot
Pi . > Y
N
ARITHMETIC UNIT
OPERAND STORAGE REGISTERS ADDER :>

>

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

- 42. Control unit selection of an instruction is directed by the address in the Instruction

éddress _I_(_egister (IAR).

OP. CODE A ADDRESS B ADDRESS
1. Locate and punctuate the instruction.
2. Change the 12 bit A operand address to decimal, write it in the proper register.
3. Change the 12 bit B operand address to decimal, write it in the proper register.
CONTROL UNIT MEMORY UNIT
INSTR. || o7 £/
RE 1| o ! 2 3 4 5 }
A ’ / 100100{010101{100100f100110|101001[1 11000
ADDR. JH ! v
REG. :
8 | : | 97 [98 | 9 | 10
ADDR. | Hqil, ‘ 100 101 102 S
REG. |
- oooololooitol |oootto fritno
STARTING / . ® ®
: LOCATION COUNTER / g
RWC | | i ;
CURRENT 137 138 139 140 141 142 S
LOCATION COUNTER X ; \ 2 . , i
STARTING p :
: LOCATION COUNTER
Rwe 2 | 17] 442 | 443 | 444 | 445 | 446 | 447 }
CURRENT / X 2 4 J 1 X
LOCATION COUNTER
STARTING 1
g LOCATION COUNTE(.
RWC3 :
CURRENT /[y
LOCATION COUY,
3
§ ETC. TO
| A
>
N,
3
ARITHMETIC UNIT
€ !3’“)
S
OPERAND STORAGE REGISTERS ADDER :>
—
A goeddwy

WG

105

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

42. The OP. CODE is shown being retrieved for interpretation in the Control Unit Op.
Code Register. This register prepares the Arithmetic Unit to receive ‘operands. A and
B operand addresses are stored in their respective registers to control the character

transfer to the Arithmetic Unit.

CONTROL UNIT MEMORY UNIT
IN%TR. o7 /
reer || 0 | 2 3 4 s |}
A ' I (| [to0100(0tor01 |i00100[100110 101001 |1 11000 z
ADDR. | 41
REG. | T
B | - :
ADDR. | 446 ~ » » 97 98 99 100 101 102 17
REG'. » v \""‘é &) [|oocoiolooiioijooonoliiiie]| @®
STARTING] 141
LOCATION COUNTER ; — =21 438
RWC | | 1 f
CURRENT 137 138 139 140 14 142 S
LOCATION COUNTER x | | 2 . X i
STARTING y
Y/ OP. CODE
LOCATION COUNTER g
RWC 2 442 443 444 445 446 447 3
CURRENT X 2 4 1 1 X
LOCATION COUNTER
f) A A S S S I
STARTING :
: LOCATION COUNTEY}:
RWC3)
: CURRENT
LOCATION COUJY,
Zi 2047
ETC. TO Z
x

ARITHMETIC UNIT

B8 OPERAND

=

OPERAND

\\

N\

P72)%

STORAGE REGISTERS ADDER

A OPERAND

106

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

43, The IAR is incremented by one each time an instruction character is accessed.

Retrieval continues until the Word Mark of the next instruction Op. Code is sensed.
Assume that the instruction A, 141, 446 has been retrieved.

1. Appropriately increment the IAR.

2. Punctuate the operand words 1124 and 2411.

3. Complete the data flow lines to show transfer of the first character of each
operand to the Arithmetic Unit.

4. In the Operand Storage Registers, write the first character transferred from

each operand.

CONTROL UNIT MEMORY UNIT

T eI AT OSSN [Remese—m ™~
INSTR. |
pea” | L oA 1| o I 2 3 4 5 }
A .}E‘ 1000010 10101|{100100{10C0I10 |I0§001]|H11000 z
ADDR. 141 . ,
REG. |
1 A:DR | 446] o7 98) oo | 101 102
REG. : ', @ [oocotofoorior[oooriojiiiiio
‘ STARTING . ® §
- | LOCATION COUNTER / .
RWC I | ; 3
CORRENT ;; 137 138 | 139 140 141 142
| |LOCATION COUNTER - x @ , 2 R x
B .
STARTING //op. copE
RWC 2 LOCATION COUNTER] /7 REGISTER 442 | 443 | 444 | 445 | 446 | aa7 3
CURRENT X (9 4 ! 1 X \
LOCATION COUNTER J
] —| ey
STARTING . zZ
LOCATION COUNTEf: Z
RWC 3 7 Z
' CURRENT /, Z
LOCATION COU Z
’ Z
Z
Z
Z
Z
N Z
2 Z
L 2047 z
ETC. TO z
; / x Z
i z
z
z
Z
= z
”
' z
”
Z
A
’ -
Z
A4
ARITHMETIC UNIT g
Z
Eall A
B OPERAND g
N
Z
A
Z
SN z
QOPERAND STORAGE REGISTERS ADDER) P

g

A OPERAND

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

43. A pair of characters is combined in the Adder and the result is sent back to the B
address. As shown below, 1 and 4 are combined and written back into address #446 as
5. This procedure continues to the left until all characters have been added and written
into memory. Upon completion of this operation, the Control Unit refers to the incre-
mented IAR to begin retrieving the next instruction. The A Addr. Reg. and B Addr. Reg.
decrement by one as each operand character is retrieved. They will contain 137 and 442
at the completion of this operation.
CONTROL UNIT MEMORY UNIT
INSTR. 102
ADDR.
REG. | 0 [2 3 4 5 }
A b 100100010101 [100100 100118 |10100i|1110060
ADDR. } 140
REG. |
8 | | 97 | 98 | 9 [wo [o [w02 [)
ADDR. 445 | :
REG. : } @ 000010/001101[000I10}111 110 Cs)
STARTING =
LOCATION COUNTER |
RWC | j
137 ! |
CURRENT : 3 38 39 140 141 142
LOCATION COUNTER ; X ® | 2 s X i
STARTING /op £
LOCATION COUNTER ,,,ééc.§$%R 442 | 443
RWC 2
CURRENT // x)
LOCATION COUNTER /7
STARTING '
LOCATION COUNTEF

RWC3 ||

CURRENT //
LOCATION COUY,

{)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIlllllllllIIIIIIIIIIlllllllllIIlIlIlIIllllllllIlIIll/

LS
N\
ARITHMETIC UNIT
B8 OPERAND
> |
—I_.
OPERAND STORAGE REGISTERS ADDER S NN
——
q
4
A OPERAND

-

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

cLean

mecorD
ITEM _ WORD . 2 ' 4 z

" - ON DISPLAY ENTER

BDNTENW h) @) 5 || [ore| on on] [onjonore| | s]

CLEAR .« - 2 | + 2 (4 2 1) 2 ' 4 z ! U | u

ADD Eq;s O’ OFF|OFF|OFF] |ON |OFF| ON| [ON|OFF| ON| [ON|OFF| ON||ON|ON|ON ﬁ @u‘é e
CONTROL oo |

ACowAC O DC N O BrF

NITIALIZE

woorsrar “lian

EECE B e eeeee [T
HONEYWELL

acoaEss swat

200

CONTROL MEMORY
: REGISTERS

RWC #1 CURRENT LOCATION
RWC #2 CURRENT LOCATION
RWC #3 CURRENT LOCATION
IAR' (CO-SEQUENCE)

RWC #1'

INTERRUPT REGISTER

WORK REGISTER '

"B" ADDRESS REGISTER
RWC #1 STARTING LOCATION
RWC #2 STARTING LOCATION
RWC #3 STARTING LLOCATION
A" ADDRESS REGISTER

RWC #1'

WORK REGISTER

IAR (SEQUENCE)
UNASSIGNED

OCTAL
ADDRESS

01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
00

OPERATORS CONTROL PANEL

A desired CONTROL register is displayed by illuminated and
darkened light buttons. (ON=1, OFF=0)

Example: The operator depresses the four CENTROL light
(BINARY 1111, OCTAL 17.) The operator then de-
presses the DISPLAY button and IAR contents are shown by the
ADDRESS light buttons. The ADDRESS illustrated on the control

buttons.

panel above is:

i,

BINARY 000 101 101 111 111

OCTAL 0 5 5 7 7
DECIMAL 0 2 9 4 3

T6 view CONTENTS of memory location number 2943, the operator presses the upper DIS-

PLAY button.
an Add op. code.

In the illustration, CONTENTS are shown as a WORD MARK and binary digits of

If the operator wishes to see the following or preceding location, he presses
the DISPLAY + 1 or DISPLAY - 1 button.

CONTENTS or ADDRESS bits may be altered by de-

pressing the desired light buttons and then the appropriate ENTER button.

The table above lists all sixteen CONTROL MEMORY REGISTERS and their OCTAL AD-

DRESSES.

Octal addresses of the nine registers discussed to this point are shown below. Write
the name and state the purpose of each of these nine registers. (Answers on page 110.)
OCTAL ADDRESS NAME PURPOSE
01 Ao b tewiat Dpd s g fin
02 ﬁ Ny q S Vi
03 ﬂ WO v o
10 g /(/ﬁ{/m onils
11 ZV\/ C.) «ﬁ:ﬁl Dirid ¢ons
12 A) VT -
13 K ¢ 43 - v
14 P v s
17 T Hl((&cw.,//z,(
NOTE: The remaining seven regist@rs will be discussed in following frames.
109

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

01
02

03 -

10 ~

11 -
12 -
13 -

14 -
17 -

110

(Equivalent answers are acceptable.)

RWC #1-Current Location Counter
RWC #2-Current Location Counter
RWC #3-Current Location Counter

Used in conjunction with other counters for
simultaneity through read/write channel time
sharing. Provides the current address at
which transfer is to begin either to or from
a peripheral device during allotted 2 micro-

second period.

BAR-"B" Address Register - Provides main memory address of B operand character.

RWC #1-Starting Location Counter
RWC #2-Starting Location Counter
RWC #3-Starting Location Counter

Used with other counters. Contain the ad-
dress at which transfer began either to or
from a peripheral device. The numerical
difference between the address in SLC and
the address in CLC after transfer is com-
plete shows the number of characters trans-

ferred.

AAR-"A'" Address Register - Provides main memory address of A operand character.

IAR-Instruction Address Register-Provides address of next sequential instruction character

to be retrieved. (Sometimes called ""'sequence register.')

Registers to be discussed in the following frames:

04-IAR' - Instruction Address Register' (Sometimes called ""co-sequence register.'’)

05-RWC #1' - Current Location Counter' (Optional fourth read/write channel)

06-Interrupt Register
07-Work Register

15-RWC #1' - Starting IL.ocation Counter’ (‘Optional fourth read/write channel)

16-Work Register
00-Unassigned Register

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

44. Seven remaining control memory registers are available for special or optional use. These

registers are, the: Instruction Address Register' (IAR')
Interrupt Register
Starting Location Counter (RWC #1')
Current Location Counter (RWC #1')
Work Register
Work Register
Unassigned Register

Counting the registers previously discussed, control memory has a total of _/f regis-

ters available.

53. The Interrupt register contains the address of the routine's first instruction for the exter-
nal devices. This register's function is similar to that of the co-sequence register. Show

the contents of the registers below after an interrupt signal is received.

IAR INTERRUPT REGISTER
| PROGRAM SEQUENCE ADDRESS || ROUTINE ADDRESS |
INTERRUPT -] > o .
SIGNAL [RovTvpe Adnses TR eRrm Sewedte Appress |
62. Use of the control panel will be reviewed before discussing substituting of the Unassigned

register. Assume that CONTENTS of a series of memory locations are to be checked starting
with the ADDRESS in the CONTROL memory IAR. Mark the appropriate buttons ON (Binary 1)
to select the IAR (Octal 17).

AFTER 2nd CSM is the ad- shows the

RECORD
cLEaR ITEM __woRD . 2 ') 2 ¢

| CONTENTS 0 =], ==

CLEar -2 .) 2 ' . 2 ') 2 ' 2) .

ADDRESS o e 1
' Bk
CON u. : lO\y o L l(‘] o~ :

RESET CENTRAL ApoRess sense
ACON ACOFF DC ON DG. OFF S0P INITIALIZE BOOTSTRAS CLEAR INSTRUCT

OREOED B e eeeee |CTTT]
HUNEVWELL 200

71. Instead of using the letters IAR, it is simpler to designate the Instruction Address Regis-

ter with the single letter I. Similarl ,/.the letter and prime mark - I' - represent the alter-
ﬁg&;/w . . This register is often called

nate z/s» L ZC W(/w—f

the ¢gf- Se ¢sewe s register.

e

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

44,
16
53,
IAR INTERRUPT REGISTER
INTERRUPT
SIGNAL ROUTINE ADDRESS —l EROGRAM SEQUENCE ADDRESS
62.

cccccc
nnnnnnnnnnnnn

CONTENTS__[0) Tl

nnnnn

| I e g
(ADORESS [©] TITHTTIT I T I] e ;
CONTROL AEERALE |

ssssssssssssssss

AL ON AC OFF DC ON DL OFF STOP INITIALIZE BOOTSTRAP CLEAR INSTRUC! RUN MODE + 3 2 U
m D:] D @ @ E @ % NTERRUTT PARITY voumaoe pax <8 D:Dj
1

71.

INSTRUCTION ADDRESS REGISTER
CO-SEQUENCE

112

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

45,

IAR'-sometimes called the '"co-sequence' register - is an alternate instruction address

register. The purpose of this register is to provide an ﬂL/YERMﬁ’ré instruction

address for a frequently required routine.

54.

This allows the
THST e Trov

The address of the program sequence is preserved by transferring

Register contents are exchanged when an interrupt signal is received.
routine to be performed because its first instruction address is put into the

AD\DKQ_"-C)
it to the I NTERR] register.

register.

63.

With the IAR selected by pressing CONTROL buttons for octal 17, the next step is to dis-

play the address it contains. To accomplish this, the lower “P5 LAY button is de-

pressed. Then, the binary number contained within the IAR appears as illuminated

@(N0 Rey lights.
CONTENTS__[O — BLITTIT T
DRSS (o [O[T LT [t
CONTROL I

i M ¥

RESET
AT ON AC OFF DC O DC OFF sTor wiTia Lizg gootsTRAP

0 Olela])E D]

INTERRUPT PARITY VOLTAGE FAN CB

HONEYWELL 200

2.

The letter A or the letters ac, are abbreviations for the A Address Register.

Lc/))gi cally
Apiicye Nl LSTr=.

then, the letter B or the letters bc, are abbreviations for the [J

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

45,
ALTERNATE
54,
INSTRUCTION ADDRESS
INTERRUPT
63.
DISPLAY
ADDRESS

nnnnnn
ccccc

CONTENTS [o HEE I

ADDRESS o] TIIT e
CONTROL [on[on]on]on]

ssssssssssssssssssssss
STOP INITIALIZE BOOTSTRAP _CLEAR INSTRUCT _ RUN MODE

HUINEYWELL 200

72.

B ADDRESS REGISTER

114

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

46. When an alternate instruction routine (co-sequence of instructions) is required, the IAR
contents are exchanged with the address from the co-sequence register. This exchange of

addresses between registers accomplishes two purposes. The address of the program

sequence is preserved and the C¢ - Scqg VeEw address is placed in the IAR.

55. Upon completion of the interrupt routine, the registers are exchanged with a RESUME
NORMAL MODE (RNM) instruction. This returns the address to the IAR so that the program
can 2@5\)»{“(1 b YW NA . program sequence.

64. The ADDRESS contained in the IAR is shown below as binary 000 000 000 101 110, which

is octal 5 \ F or decimal 46.

/_,“/"7”7\
- / e o e e a0y
\ |- S en
| CONTENTS O NDaik

ED"RESS O of £ |oFFlorF] lorFlorrlorr| lorForF|orr| lonorr|on | [onion [oFF | 5o s asner e
C e EIED!
UN RUI. ON JON]ONIONL i

AvorEss seag

i OPERER B e |CITT
HUINF.YWELI. 200 l

Mark the button that must be pressed to display the contents of memory location #46.

73. I stands for the é] v “! i tsin _&M&_ /\M and I'
for the alternate instruction address register called the Q -
A . The A Address Register may be represented b either Z
The lje

r B or bc designates the B /4’?0%2 S5 Lé‘ﬂg/’//(.

115

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

46.
CO-SEQUENCE
55.
RESUME NORMAL
64.
OCTAL 56= DECIMAL 46
(CONTENTS IS THE OP. CODE A)
CONTENTS [0 E1 I SaE T e P
AD]RES;S OI TO?F OZFFO;’F]OFF (;FFO;:F O‘FFO;F]OT-'F (;NIOEFFIO‘N O‘NIOZNTO'FH ﬁ @Dsﬁ‘ EQ
CONTROL [oroonon] | e
HONEYWELL 200
l
73.

116

INSTRUCTION ADDRESS REGISTER
CO-SEQUENCE REGISTER

A - ac

B ADDRESS REGISTER

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

With the address of the first instruction of the co-sequence in the IAR, retrieval and

47.
execution of the desired instruction routine occurs.

Of course, in order to retrieve this desired instruction Rou TTug , its address needs
to have been in the C/~ Seadev g register before the exchange with the T pyS7¢c zom
AP)W\{%‘Q register. was accomplished.

56. As previously explained, the basic,H-200 has three read/write channels. Two control
memory registers (counters) are associated with each read/write channel. They are called
the S-TARTIN +—CC f T/pv counter and the C- VR enT Lot Tron
counter.

65. To view the following memory location (#47), the DISPLAY +1 button is depressed causing
the ADDRESS in the IAR to increment by one. With the address changed from #46 to #47,
pressing the upper DISPLAY button will show CONTENTS of memory location #47. In order
to view a preceding memory location, the DASPLAY —1{ button is depressed to decre-
ment the register.

CONTENTS [0 IE ——
ADDRESS B B T
== 91810
CONTROL NN
T OEEEER B 000 e |CITT
l |
74. The two registers in the control unit, but not part of control memory, are the OP. CODE

and VARIANT registers. Obviously, the abbreviation V is for the VAL R'f,ml(A register.
Designating the Function to be performed, the letter F stands for the ;{() C opC register.

117

LESSON V. STORAGE, RETRIEVAL AND EXECUTION
47.
ROUTINE
CO-SEQUENCE
INSTRUCTION ADDRESS
56.
STARTING LOCATION
CURRENT LOCATION
65.

DISPLAY -1

74.

118

VARIANT
OP CODE

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

48. A "Change Sequence Mode' (CSM) instruction initiates the exchange of IAR and IAR' ad-

dresses.
L ¥

IAR PROGRAM SEQUENCE CO-SEQUENCE ROUTINE IAR!
L) J

Thus, the address of the first co-sequence instruction directs the performance of the

routine and address of the program sequence is preserved. At the completion of the rou-

tine, another Cvbdyog NN {J ca Mop¢ instruction re-exchanges registers.
A - y
The address of the VRl ¢ g { gyeney is returned to the _/ # /(.
57. The inclusion of an optional fourth read/write channel requires two more control memory
registers. One of these registers serves as a > T/:HZTJN{ L. ¢c ATTor
{ o UN Tt the other as a __ C URLew? I LY Cooyns
66. A programmer/operator may want to "'step through' a portion of a program with DISPLAY

+ 1 or DISPLAY -1. However, this will increment or decrement a register. If the computer
were started after viewing several memory locations, the register would no longer contain

the first address. In a situation such as this, the octal 00 register may be substituted for

another register because it is Iy} 9951 p gy to a specific machine function.
75. The instruction format F/A/B/V means that the instruction contains an _g c el

_ﬂ HoPress | __é /ﬁLIJ///(b’C) i ,anda VKT AVIE. The registers involved

are the I register for retrieval, then the |~ '4 fg v registers for storage during

inte rpretatlon.

119

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

48.

CHANGE SEQUENCE MODE
PROGRAM SEQUENCE
IAR (INSTRUCTION ADDRESS REGISTER)

57.

STARTING LOCATION COUNTER
CURRENT LOCATION COUNTER

66.

UNASSIGNED
This control memory register can be used by the programmer/operator to simulate any
of the other fifteen registers. For example, an address from the IAR can be duplicated in
the Unassigned register. Then, the programmer/operator can manipulate instructions with

the control panel, through the Unassigned register, without actually changing IAR.

75.

OP. CODE
A ADDRESS
B ADDRESS
VARIANT
F,AB,V.

120

LESSON V., STORAGE, RETRIEVAL AND EXECUTION

49. Name the registers below and write the name of the address each contains.
Tl I

BEFOE;EMFIRST I PROGRAM SEQUENCE ADDRESS] I CO-SEQUENCE ADDRESS J
CSM EXECUTED | (- <quance ADDRESSJ [QL L Seguoves ADDRESSJ
DURING —— =

ROUTINE | _€e - _Sedsiwes ADDRESS | | __ (/¢ ¢ Ve < ADDRESS]
AFTER - v

J S TG - o g

2nd CSM [PELL Scq ADDRESS | [do - Tt¢ ADDRESS |

58. These counters keep track of where a read/write channel operation began and at which

memory location it halted when the 2 microsecond time sharing cycle moved to the next
read/write channel.
An H-200 with an optional read/write channel will use a total of Q control mem-

ory registers as starting location and current location counters.

67. To select the 00 Unassigned register, all that is required is to set all four (opiR4L
buttons to zero (OFF) and then press the display button. To load the Unassigned register
with the desired address, the correct HOYDress buttons are depressed and the ENTER

button is engaged.

RECORD
cLear ITEM__ wORD s 2 s 2

" - L - '
CONTENTS [o 3

ADDH 99 O| 7q 68 SAT pr THe |PrDS AMEHI/ o|p5H474,R | ' l]—Juuml
CONTROL ordforforto

RESET
D¢ OFF

i

;

CENTRAL AOORESS sEnse
AC ON AC.OFF 0C ON STOP INITALIZE BOOTSTRAP CLEAR INSTRUCT < 3 3 +

B DEEPER 8 00 - |CITT
HUINEYWELL 200

76. Some abbreviations used in timing formulas are shown below. Complete the entries in
the MEANING column.
ABBREVIATION MEANING

Ny The number of characters in the instruction.

Ny The number of characters in the A-fienld. .

N - o v g g/

Nw The number of characters in the sma'ller field.

NXT The address of Hez’i sequential instruction.

121

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

49, IAR IAR!
CSM EXECUTED [CO—SEQUENCE ADDRESS] PROGRAM SEQUENCE ADDRESS]
DURING ROUTINE [co-SEQUENCE ADDRESS J l PROGRAM SEQUENCE ADDRESS]
AFTER 2nd CSM [PROGRAM SEQUENCE ADDRESSJ LCO-SEQUENCE ADDRESS —|

58.

EIGHT

67.

CONTROL
ADDRESS
76.

Np- THE NUMBER OF CHARACTERS IN THE B FIELD.
NXT-NEXT

122

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

50.

The co-sequence routine's first instruction address enters the IAR to start retrieval.
While in the IAR, this address is incremented as each instruction character is retrieved.
Therefore, at the completion of the routine, the IAR no longer contains the address of the
first co-sequence instruction. Regeneration of the first co-sequence address is accom-
plished with a "Branch'" instruction at the end of the routine.

Example: Assume that the co-sequence routine starts at address #300.

IAR IAR!
The programmer writes the first CSM instruction
to exchange registers 2547

[2547]
This places address #300 into the IAR.

Continue to the back of this frame.

59.

Two registers are available for internal functions of control memory. For certain in-
structions, control memory can store a register's contents and transfer another address into
the emptied register. Because control memory uses these two registers while it is accom-

plishing work, they are know as Wogr¥{ registers.

After engaging the ENTER button, the number set up with the ADDRESS lights is the ad-

68.
dress contained in the Unassigned register. Pressing the upper DISPLAY button shows the
Coop 2™ of the memory location specified by the ADDRESS now in the Unassigned
register.
CONTENTS O 51» 57
Annﬁl:ss O OF F OFFIOFFj {OFF [OFFIOFF| [OFFIOFF [OFF| {ONJOFF (OFF| fON | ON [OFF ispLav p%m%}n ewren
CONTROL Jordfordoreore]
B DPECER 8 2 - |CITT
7. The remaining timing formula abbreviations are shown below. Complete the entries in the

MEANING column.

ABBREVIATION MEANING
JI Address of the next instruction if a branch occurs.
N Ap Previous A Address register setting.
BP v g - v
A A Address
B g v

123

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

MEMORY 299 | 300 | 300 | 302 | 302 | 3} Bo [340 | 341 | 342
50. LOCATIONS CO-SEQUENCE ROUTINE | { (to) # 299
Y o o e e L e e e e e e e

Co-sequence routine retrieval commences at address #300. IAR increments as each
character is retrieved. The BRANCH instruction puts address #299 into the IAR. Memory
location #299 precedes the first co-sequence address and contains a CSM. When this
second CSM instruction is retrieved to re-exchange registers, the IAR will increment to
#300. Therefore, when the registers are re-exchange, IAR' will contain the proper

address.
IAR
I 299 AR
CSM INCREMENTS TO
CSM RETRIEVED 2547
EXECUTED 2547
59.
WORK
68.
CONTENTS
77.

Bp-PREVIOUS B ADDRESS REGISTER SETTING.
B ADDRESS

124

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

¥
5, 51. This frame reviews CSM operation in six steps. General names are used for addresses
-
instead of specific numbers.
IAR IAR'
STEP 1 PROGRAMMER'S [L D T T T T T 3
: CSM EXECUTED [PROGRAM SEQUENCE ADDRESS l I CO-SEQUENCE ADDRESS |
__________________ (PRESERVED)
STEP 2. O SR QUENCE \RTS [Co-SEQUENCE ADDRESS] [PrOGRAM SEQUENCE ADDRESS |
STEP 3. R BT AL [INCREMENTED ADDRESS] [PROGRAM SEQUENCE ADDRESS |
STEP 4. BRANCH TO ADDRESS
PRECEDING lIst CO- l CO-SEQUENCE ADDRESS - 1 | I PROGRAM SEQUENCE ADDRESSJ
SEQUENCE ADDRESS
Show register contents during steps 5 and 6.
STEP 5. ?]\;ECTRRETA‘;:};:\I%;’SGC??R [0-F=§JEnCE apDRESS | [PrOGRAM sEQUENCE ADDRESS |
v Gl
STEP 6. EXECUTE Znd CSM [Q@Q&&m %L ADDRESS J 2T AopREss |

60. Control memory automatically uses its two work registers to preserve addresses in much
the same manner that a person "jots down' something to be remembered. In .5 micro-
seconds, control memory can empty a register to receive another address, while preserving
the original address by transferring it to a W 9K V\Cé‘is‘f@\

69. Once the Unassigned register is selected and supplied with the desired starting address,
DISPLAY +1 or DISPLAY -1 may be used to "step through' the program. This will incre-
ment or decrement the JMNASST tvP register but will not change any of the other
registers. Effectively, this register can substitute for the other registers.

78. Give the meaning of the following timing formula abbreviations.

N; _No. oé&mfu‘ wvb&/mm _QMW/MJMMV/ }% ’

N, e ;Jr l—%u?Ap Vaorverion b adiledl, N,'JA g’kﬁv
N, v vV " W B, — b oo
Nw “ - /;,/M-q,w LJ/ An 5)A)J . /’;vu/n
NXT MLW [AZLX'/ Scduaiie B 1 A/J&K/]ﬂ’/"'

§peTRVET™

125

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

51.

STEP 5.

STEP 6.

IAR

[CO-SEQUENCE ADDRESS j

IAR'!

[PROGRAM SEQUENCE ADDRES?I [CO-SEQUENCE ADDRESS

60.

WORK REGISTER

69.

UNASSIGNED

78.

126

ABBREVIATION MEANING
Ni The number of characters in the instruction
Na The number of characters in the A-field
NW The number of characters in the A~ or B-

field, whichever is smaller

- N, The number of characters in the B-field
NXT Address of the next sequential instruction
I Address of next instruction if a branch occurs
A, The previous setting of the A-address register
B, The previous setting of the B-address register
A 2 address
B B address

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

52. External devices such as communication equipment, send the central processor a demand
signal to indicate when a specialized routine needs to be performed. Interruption of the
program for a routine involves a register similar to the co-sequence register. Named for

its response to an interrupt, this control memory register is called the iNTE RRU®PT

register.

61. The sixteenth control memory register has an octal address of 00 and is "unassigned"

to any specific machine function.
Consequently, the 00 register is called the UM ASSTOED register. It is available

for use by a programmer or operator through buttons on the control panel.

70. Name and briefly state purposes of each of the seven additional control memory registers.

TAR '~ e Suvwrwviy # € o- SehuECE o orTInG ﬁpﬁa?ﬂs/fk <>
— v L’—LX "ﬂn/m DQ/) Lo Sty @ou‘r/r«{ v

T I'd ﬂ’f - {0 < —
s tn ~ T W fz\ /‘7’”"3"
v Wrﬂ D s LAY 7 A -
!
KW c -SLc

K\A/L/*(/l,o

,‘/V\)a\(\/\ ' %mré_ m&@jw

79. Determine the number of microseconds used for the H-200 to execute an Add Instruction.
5’
Formuyla: 2(Nj + 2 + N, + 2 Ny) Format F/A/B
Operands: Five characters each. {(Two Characters per address.)

n(s+2+ 54 'O\
Y /}’ru/(/‘vngx“

-

127

LESSON V. STORAGE, RETRIEVAL AND EXECUTION

52.

INTERRUPT

{Return to page 111, frame 53.)

61.

UNASSIGNED
This control memory register can be used by the programmer/operator to simulate any
of the other fifteen registers. For example, an address from the IAR can be duplicated in
the Unassigned register. Then, the programmer/operator can manipulate instructions with

the control panel, through the Unassigned register, without actually changing IAR.

(Return to page 111, frame 62.)

70.

IAR!' - To Supply a co-sequence routine address for CSM.

INTERRUPT -~ To supply an external device routine in response to an interrupt.

1
gwg zi, } Starting and current location counters for the optional fourth read/write channel.

WORK REGISTER Available for automatic control memory preservation of register
WORK REGISTER addresses.

UNASSIGNED REGISTER - To substitute for other registers when incrementing or decre-
menting with control panel DISPLAY + or -1.

(Equivalent answers are acceptable.)

{Return to page 111, frame 71.)

79.

44 microseconds.
F/A/B=5 characters. Ny=5. Np =5
2 (Ni + 2 + NW + 2Np)=2(5+ 2+ 5 + 10)=44

(Continue to page 129.)

128

LESSON VI
EASYCODER PROGRAMMING

129

LESSON VI. EASYCODER PROGRAMMING

EASYCODER ASSEMBLY

Basic Easycoder's assembly system uses two Honeywell - supplied card decks and one card
deck punched according to a programmer's entries on coding sheets. Assembly of these card
decks in two "runs" (Phase I and II) produces: a printed listing of the source program, a card
deck for a ""memory dump routine" - complete listing of memory contents -, and the object

program on punched cards or tape.

MEMORY DUMP —]
ROUTINE

PROGRAM
LISTING

ASSEMBLY
PROGRAM

4

MACHINE LANGUAGE PROGRAM

STORED ON CARDS OR TAPE
EASYCODER SYMBOLIC CODING

CODING FORM PUNCHED INTO CARDS

In the first assembly run, the Phase I and Source program decks

=
=

ASSEMBLY RUN NO. 1! are fed into the machine for partial conversion of the source pro-
SOURCE Il

RUN NO.{ —]

INTERMEDIATE n
DECK I

gram into an object program. The following steps are accomplished
during this run:

1. Mnemonic Op. Codes are translated.

. A tag table is generated.

. Sizes of operand fields are defined.

. Errors are detected and flagged.

2
3
4. Assembly control statements are processed.
5
6. An intermediate deck is punched.

Notice that the source program deck is segmented by an EX card.

This permits some processing before the remainder of the source

MEMORY DUMP
ROUTINE

program is entered.

PROGRAM
LISTING

ASSEMBLY RUN NO. 2

(s] (s |
|_PROGRAM _ |
==

] =a

DECK PROGRAM |

The following operations are accomplished during the second assembly run: Addresses of

RUN NO. 2

operands and constants are assigned from the tag table generated by Phase I. The memory
dump routine - a separate self-loading deck - is punched. The object program deck and its

loading routine are punched. A printed listing of the source to object program is produced.

130

LESSON VI. EASYCODER PROGRAMMING

AT A i

EASYCODER
CODING FORM

PHASE I
ASSEME.

BOOTSTRAP

ETC.

INTERMED. .

DECK

" INTERM EDIATE
DECK

INTERMED,
DECK

b

INTERMED. |
/ DECK ’
’PHASE IT I
ASSEMBLY

PHASET
ASSEMEB:

OBJECT
PROG.

PROGRAM
LISTING

HSM
ROUTINE

/ HSM
ROUTINE

Figure 14. Easycoder Assembly

131

LESSON VI.

EASYCODER PROGRAMMING

IBM INTERNATIONAL BUSINESS MACHINES CORPORATION
IBM 1401 SYMBOLIC PROGRAMMING SYSTEM
Program CODING SHEET Page No.L_._ I of
P d by Date Identification i
{4) OPERAND {B) OPERAND
LN fcount LABEL OPERATION| cHar. [cHaR. | g d COMMENTS
e IBM T
0,30 L . Progeam Identification oot .
. eo o Programmed by 1401/1410 AUTOCODER CODING SHEET w©
to.s.ol . N - Date Poge No.LLl of
o.e,0 NI . Line Lobel Operati QOPERAND
o vl | .| 49 a 52 .11 %0 '3 2
0,8,0 U R T 0.1 o —y P A
1,0,0 4 TR VO S S 1 0.3 4 Py
1o . |]) . PN R " -
t,2.0 PR 0.5 — n n L iy aaay g -
USSR e I
LN Ly . 0,7
VST B N o0 : EASYCODER
Ll.&.01 U S 0.9 " " CODING FORM
agriel ol 10 ol PROBLEM DATE PAGE ___OF
99 B ” wwern [] tocamon [G OPERANDS
s ool . T) s Tzl e s 2ol N — - - - — T — -
e " = LT . PRos fMPLE . e \ ‘ .
. R S mmes ey I IO o dere e T U N
e e R .. APMopElz ‘ . s ‘ > .
L n PRI . 18 A 4 [] C‘AM 20 .
o L2 . osd o T [T|coAREA RESY. . oo, . o . S B .
s R " L llpuAReA RESY ko .. SN B L
Le ’ PRAREA [RESV [120
| PRAREA R/ I . . ‘ . .
.0 N A INIT . |sw 798,72 L . ,
’ SR of 1 : Y) SERVE, 0 |,NlTIALlZING NSTRUST.LONS
2.2 - o ,j#‘ L A . WHICH WlLL. BE. OVERLAID, BY, MAIN, .|
3 : N R N f . PROGRAM AFTER, EXECUTION . | N . , \
() —aa | a N 2 - 1 '7 L i . L L L " " " 1
les AU I g | " B, BOOT, | . . , . , . e 1 . .
R SN Ex NV, . e
g ‘ L pRe Ty (R B ‘ .
il ' ‘T_,L s i " . . . ;
e piE ‘I " .(MAIN .PROGRAM
: ,
el . e . U B ‘ ‘
w0 i i . e e L I BTENE
N \ e
ol 0 'l : ~
23 1 L
i . . ‘ .
! P \ . . ‘ . . ‘ , :
sl N . b , , . . .
- L1 . . n :
& ‘ I —A#%%%W__A@Mg# 1 1 l
» 1 {[[leooy _feno] ‘ , . ‘ . e . . .
Coding Form Entries

Col. 1-2: Contain page number.

Col. 3-4: Contain line number.

Col. 5: Contains a number if statement is to be inserted between two lines.

Col. 6: Contains an aster1sk (*)) if strictly Remarks_statement.

Col. T: Contains an L if an vk is desired in the leftmost character position of
the statement. Contains an_ R1f an item mark is desired in the rightmost
character position.

Col. 8-14: If a tag, it must be no more than six characters long. First character of tag
must be alphabetic. ‘

Col. 15-20: Mnemonic op code must begin in col. 15. (Octal machine language-columns
19 and 20.)

Col. 21-62: Operands must begin in col. 21. A comma must follow all operands except
the last operand in the line. Comments and remarks must be separated from
operands by blank space.

Col. 63-80: Comments and remarks, not included in the object program coding.

Figure 15. Coding Forms

LESSON VI. EASYCODER PROGRAMMING

EASYCODER CODING FORM DIFFERENCES

(Answer the following questions by reference to Figure 15.)

1. A single line on the Easycoder coding form contains a total of (¢ columns.

Therefore, the complete contents of a punched card can be recorded on one line.

2. Logically, the first Easycoder column on a line is column number ! , and the
last column on a line is number 20 .
The first column of an SPS or Autocoder line is number 2 . The last column

of an SPS line is number 55, because further card entries cause incorrect processing.
Similarly, the last column in an Autocoder line is number 77 , because card columns

73 - 75 are required by the 1401 processor.

3. Punched card columns 1-5 are used for the same purposes in the 1401 and H-200 systems.
However, greater flexibility is afforded by an Easycoder coding form than with the other
forms. Line numbers are not pre-printed (but numbers are supplied for reference) on an
Easycoder form. Deletion of an SPS or Autocoder line by scratching it out causes a line
number to be "missing" in the final deck of cards.

Insertions may conveniently be written on any of the 30 Easycoder coding lines by no-

ticing the page and line number that the desired insertion is to follow. This page number is

then entered in columns { and 2 , followed by the line number in columns >
and , and the insertion number in column < .

As you recall, lines 26-30 on an SPS or Autocoder form were to be used for insertions.

4. Additional convenience is provided by columns 6 and 7 of the Easycoder form. Column

6 contains an asterisk if strictly a RempexXs statement is to be entered. Column 7

places the unique H-200 punctuation - the 1 -1z mark - in either the high or low order

position. (Extended use of column 7 is available in X TEWDED Easycoder.)

NOTE: The "COUNT" columns required in SPS are not needed by Easycoder.

5. In apparent purpose, the LOCATION columns on the Easycoder form are similar to the

L hgz L columns of SPS or Autocoder forms. Easycoder refinement in this area will

be pointed out in following frames.

6. The size of an SPS operand field is restricted and usually is referred to as 'fixed form'".
Operand sizes are not specified, hence they are '"free form'" on the AU te cona
coding sheet and "BV SY ¢ b coding form.

133

LESSON VI. EASYCODER PROGRAMMING

Entries in columns 1 - 5 may be accomplished in several fashions, depending upon pro-

grammer preference or established key punch procedure. For purposes of this book, in-

zero insertion, on the coding form segment below:

EASYCODER

dicate page 1, line 1,

CODING FORM

proLem _PAYROLL PROCEDURE procrammer _J- - H. oare 15/6/64 pace {_oF 4
CARD OPERATION

NUMBER Eﬁ LOCATION CODE OPERANDS

213 4l5]s[7]e \ 14]1s, 20[2i | |) | R . L | 62063 | | . | L. e

T
(4 I‘!O [!O L i L L 1) L - L L L 1 i I
15.

An Op. Code is always found as the leftmost character of an instruction. When a tag be-

A DD RESS
cove , which

gins in the leftmost Location column (# §) and refers to an instruction, the

assigned by assembly is that of the memory location containing the gp

is the Ler 1 1 character of the instruction.

29. The H-200 has larger memory than the 1401; consequently larger decimal numbers may be
used as addresses. However, your familiarity with what were called actual addresses will

let you to use those which Honeywell refers to as ﬂ VBoSev U & addresses without

further discussion. Similarly, what you already know about symbolics is consistent with

Honeywell SY M ™oy 1 e addresses.

43, If direct absolute addressing had been used instead of indexed or indirect addressing, the

coding form would have looked like this: OPERATION

15, 202

1 1 L PR

AI 3120,415: L L

Refer to frames 41 and 42, then show how the coding form would be completed to specify:

Indirect Addressing of the A Operand e
15, 20[21 | |) L
S D NI
OPERATION
Indexed Addressing of the A Operand CooE
E 20[2) | | L
using index register X2. | Loniay . U Lo)

57. The PROG assembly control statement was discussed at the start of this lesson. Briefly
explain its purpose and indicate when it is written on the coding form. A.//br\%u

/
i . o
WZQA JWW“) ﬂ//; .4/6 JZL At ,A,,.,{;i & 5/ =1 "c-z];ﬂm LD ,(;Z_

135

LESSON VI. EASYCODER PROGRAMMING

1. NOTE: Programmer's should complete at least the first five columns on the

first line of each coding form.

EASYCODER
CODING FORM
prosiem _PAYROLL PROCEDURE procrammer . E. H. pare 15/6/ 64 pace | _oF 4
NUMBER E’é Location | *gie" OPERANDS
1 2]3 aTsle]7]e | 1415, 20[21 i i [R B . I | 6263] R .
! ¢ '!¢ l‘la 1 1 1 .) 1 i " i i 1 1 1 | 1
15. #8
ADDRESS
OP. CODE
LEFTMOST
29. ABSOLUTE
SYMBOLIC
43.
5| LocaTioN OPEReoN
RECT 708 , 1ajis, 20]2t \ ! |
INDIREC s A (1.¢27),415 l
’g Location | OGN
7(8 | 14]15, 2021 ! \ |
INDEXED . A, 1$27+%2,,415 .
57.

PROG IS THE FIRST ENTRY IN THE PROGRAM. PROG CAUSES
ASSEMBLY TO TAKE UP TO SIX CHARACTERS WRITTEN IN THE
OPERANDS FIELD AS THE PROGRAM NAME.

(Or equivalent answer)

136

LESSON VI. EASYCODER PROGRAMMING

2. If prior agreement has been made with the key punch operator for duplication of the first
entries in columns 1, 2, and 5, a programmer may complete only the line number columns
for subsequent entries. The programmer's entries in columns 3 and 4 identify the tTn¢

o of the coding form.

Of course, a programmer would be correct if he decided to complete all five columns for

each of the 30 coding form lines.

16. Constants or characters in reserved areas are usually retrieved from the rightmost to the
leftmost character. Appropriately then, a tag which begins in column 8 and refers to a con-

stant or reserved area, will have an assembly assigned address of the YI&nqmsy
character.

30, What was called "address adjustment" in your previous system is termed '‘relative ad-

dressing' in Easycoder. These examples:

CARD |V OPERATION
NUMBER Eg LOCATION CoDE OPERANDS
123 als]e]7[e A S 20121 1 L i L | [L [16263 | s ol { s 80
g2'gid : A DATA+SIZE~| 40 24ITEM-3 ., .., ., j . L -
show that REL AT addressing may be used with either SN v iter t G or
RFdseL vy addresses.

44. Indexing and indirect addressing require three bits for identification by the address type
indicators. In two character addressing mode, all 12 bits are required to express addresses

up to # 4095, (1111111111112 = 409510) Since all twelve bits are used in two character addressing,

no bits are available for address type indicators. Consequently, when in two character ad-

dressing mode, neither BENLI S RIS nor T $F addressing are avail-
able.

58. In addition to the name written in the operands field, a PROG card will contain certain
. other information to direct the assembly process. This additional punched information re-
places the requirement for the "control" card that was needed with a 1401.

You are already familiar with the mnemonic written to originate addresses. It

causes assembly to assign subsequent addresses starting at other than location 0, and is the

mnemonic, £ Eé—

137

LESSON VI. EASYCODER PROGRAMMING

LINE NUMBERS

16.

RIGHTMOST

30.

RELATIVE
SYMBOLIC
ABSOLUTE

44.

INDEXING

INDIRECT
NOTE: Indexing and indirect addressing require an address mode greater
than two characters. The instruction to specify the ADMODE as two, three,
or four characters and the instruction to Change Addressing Mode - CAM -

are explained later in this lesson.

58.

138

ORG

LESSON VI. EASYCODER PROGRAMMING

The manner of line numbering (columns 3 and 4) is left to the programmer's discretion.

3.
Lines may be numbered sequentially and continue fsom one sheet to the next.
L Example: Alternatively, line numbers may begin again on
» T yg_ each page. In this case, line numbers could go
. o['129[¢i ’ INEEBETS E'; . from number : to number 3¢9 on each
. T
» /g 1388 1821319 page.
:|g232g
2ot 212204
. 17. A tag beginning in column 8 for an instruction is assigned the address of the AgyY < 4o
which is always the | ;= F1 Mes] character.
A tag beginning in column 8 for a constant or reserved area is assigned the address of
the Ridnrmes? C LA EC 7T .

31. An * may be used in the operands field to signify self reference. Assembly interprets the

* as the memory location of the Op. Code for the instruction in which the * appears.
S ~riZ,Tec address. Notice that

Since

the * is a symbol, its address is considered to be a
where an * signified the rightmost memory location in your 1401 programming, the H-200

uses an * to refer to the L ¢+ 1T most memory location of the instruction.
.

45. To this point, seventy-nine of the eighty coding form columns have been mentioned in var-

ious examples. What is the name and number of the column that has not been discussed so

far? Vs LA Column # 2

caro |J[H OPERATION
NUMBER [p|R LOCATION CODE OPERANDS
1 213.415/6]718 L 1405, 20121 A L U BV TP P | L 52088 L T ..
|
! ! | i L 1 1 I) .) i 1 I N N T s

59. ORG statements may be written at any point in the program causing assembly to assign

subsequent addresses starting with the location specified in the operands field.

Assembly will start assigning addresses with location O unless an __ #R ¢, statement is
7 J%/ﬂ b statement.

written immediately following the

139

LESSON VI. EASYCODER PROGRAMMING

3. 1-30
EXAMPLE:
T
P ¢I§I¢ NUMBER Eg
28¢'}291¢ 203 4;5679
(8113918 (B2g1g
262020
3l malntpint
17.
OP., CODE .
LEFTMOST
RIGHTMOST CHARACTER
31.
) SYMBOLIC
LEFT
45.
MARK

COLUMN # 7

LESSON VI. EASYCODER PROGRAMMING

4, An assembly control mnemonic Op. Code is always the first coding form entry. This Op.
Code causes assembly to name the PROGram, using up to six characters from the operands
field. Abbreviate the problem title below and make the proper entries on the coding form.

EASYCODER

CODING FORM

prosLem _PAYROLL PROCEDURE prROGRaMMER _J. E.H . DATE 15/6 / 64 pace_oFd
T
v Eg LocaTion | OFERATION OPERANDS
ﬁ[aa}ssvs | 14]1s, 20(21) | | 1 - |) | , e2les N) 80|
! ¢‘!¢‘I¢ 1 ?L&IJ& P p\/ K%L . t 1 1 N L W il 1 L . P L
18. Easycoder provides a versatility of tag address assignment that was not available in your

previous system. The left or rightmost address assignments discussed in the previous

frame may be reversed simply by starting a tag in column 9.

A tag beginning in column 9 for an instruction is assigned the address of the

SRR C A AT
A tag beginning in column 9 for a constant or reserved area is assigned the address of
the LV s] o BT PE TEN

32. The utilization of an * address and relative addressing is illustrated in the MCW instruc-

tion below:

cARD [
NUMBER Eg wocation | PN OPERANDS
1 2]3 als[s[7]s N 14[15, 2021 | | L . e sl | | | 80
1 - L { L
! 14 1 CW | %+ Q,W,_Q\K,K L L L . I L P VRN L N 1 NPT B P B
2 —_ | L ‘S| K TAX ’{PlAi 1 L " 1 - (ot L | N - P S S S| L L

The function of MCW ins

specified by the B address.
tion stored immediately to the right of the MCW instruction (assuming that two-character

address assembly has been specified). The instruction following the MCW instruction will

be moved to the field tagged WORK when the MCW instruction is executed.

tructions is to move the field specified by the A address to that

The notation ¥+9 refers to the rightmost character of the instruc-

46. This Mark Column (#7) brings up a point that should be noted. To this point in the lesson,

no distinction has been made between EASYCODER and EXTENDED EASYCODER. The sub-

Certain entries in column #7 apply equally

jects discussed were applicable to both systems.
to both systems, but Extended Easycoder - as its name implies - makes additional or

EATENDED use of the Mark Column.

60. Tags may be used with ORG;tatrer’rrlents but a fé.g must begin in Column 8 of the location

field if it is to be used as a symbolic address. A tag should be defined prior to being used

as a symbolic address with an ORG statement. This may be accomplished by writing the tag
beginning in Column 8 of the location columns either along with the ORG instruction or as a

preceding entry.
At which address will assembly start assigning addresses if an ORG statement is not

written ? S

LESSON VI. EASYCODER PROGRAMMING

4. NOTE: Any name of up to six characters may be used in the operands field.

EASYCODER

CODING FORM
proBLEM __PAYROLL PROCEDURE procrammer _ s B H. oare 15/6 /64 pace ! _oF 4
v Eﬁ LocaTioN | OPERATION OPERANDS
1 2]3 als(el7]s | 14115, 20{2) T R | | e20e3 L L, . 8o
gilgne , PROG. . |PAYROL. . ., . e ‘ . . e
18.
RIGHTMOST CHARACTER
LEFTMOST CHARACTER
32 The examples below indicate that a programmer must take the addressing
) mode into consideration when writing an * address.
TWO CHARACTER ADDRESSING
OP. oP.
Cobg, A ADDRESS. B ADDRESS Conp A ADDRESS B ADDRESS
i H g y T n
MEMORY g 1o : w1 4 .
LOCATIONS @ e ‘E+ 9 :W‘, X TAX o P.a:w
THREE CHARACTER ADDRESSING
OP. oP,
cobe 4 IADDRESS B lADDRIESS Cope A ADDRESS B ADDRESS
@‘4:\‘ 13 wio R K @ T
> A i 1
Four Character Addressing to access memory up to 65, 000 memory locations
will be discussed later in this lesson.
46.
EXTENDED
60.

Asgembly will start assigning addresses at memory location § unless

directed otherwise by a ORG statement.

LESSON VI. EASYCODER PROGRAMMING

5. The first mnemonic Op. Code will always be the assembly control statement, fgﬁ il .
This causes assembly to name the program. Up to SJY characters can be entered in the

0 RER P DS field to express the program name.

19. The address assignments for tags are summarized below:
A tag beginning in Col. 8 of an instruction refers to the | gF1mesT o KB e (/?c!/“%
A tag beginning in Col. 9 of an instruction refer s to the J_{LA/H"‘,V}(%T

A tag beginning in Col. 8 of a constant or reserved area refers to the Kicufmesy Y

A tag beginning in Col. 9 of a constant or reserved area refers to the Lgermesr v

33. Make the following comparisons between an H-200% and a 1401%:

1. The H-200% references the LEFT mos T memory location of the instruc-

tion in which it appears.

2. A programmer needs to take into account the number of characters being used to

express an (DOK g for the H-200.

47. In this and subsequent frames, subjects applicable to both Easycoder and Extended Easy-
coder will be presented. Any topics pertaining exclusively to Extended Easycoder will be
indentified with the titles, "EXTENDED EASYCODER!,

One of the purposes of Column 7 is to provide a convenient method of setting ITEM marks
without writing a SET ITEM MARK instruction. Obviously, if this column remains blank,
{\3?/ T i /iisae s, is set.

6l. The mnemonic MORG (for Modular Origin) is written when it is desired to have assembly
start assigning addresses at the first multiple of an address written in the operands field.
For example, if the last address assigned was location numkter 100, the MORG statement

below would cause assembly to start assigning subsequent addresses at location number /75,

5| LocaTion OPERATION OPERANDS

708 | 14015, 20[21 L | |

. MORG, . 164 L . ; .

3 143

LESSON VI. EASYCODER PROGRAMMING

5. PROG
SIX
OPERANDS
19.
OP. CODE -

RIGHTMOST CHARACTER
RIGHTMOST CHARACTER
LEFTMOST CHARACTER

33.
LEFT MOST
ADDRESS <
47.
NO ITEM MARK
61.

128

NOTE: The operands field entry for a MORG statement must be a power
of 2. Examples: 2,4,8,16,32,64,. . . . etc.

144

LESSON VI. EASYCODER PROGRAMMING

6. When more information needs to be conveyed than is afforded by the six character name,

subsequent lines may provide remarks (comments). An * is used to specify this type of

entry and as illustrated below, the * is placed in the TV PE column.
CODING FORM
proBLem _PAYROLL PROCEQURE procrammer __ J-E. H. oate 15/6 /64 pace . ! _oF 4
™

R gg LocaTion | OPRAmON OPERANDS

" 23 als|e|7]a | N 20[21 | | | L L L. ol .| o263 K L | . . 80
'¢”¢lm . PROG _ IPAYROL. . . ., e 1 i L e
drAl ¢21¢l* . ; PAYROLL EX, AMPLE. PREP.ARED FOR, EDUCATION RESEARCH TEXTBOOK 200

20. As previously stated, tags can contain up to six characters, but the first character must
be alphabetic.

If desired, absolute decimal addresses may be written in Location columns in place of
tags. Briefly state in your own words how assembly tells the difference between a tag or
an absolute address in the Location column. TJ#Ad- FIcor cHinpoat 4F /"LPH R TIC .

PBooiyre - £IRGT i@t Nkl f

34. Your previous system was limited to the use of only three index registers denoted as
+X1, +X2, and +X3. The H-200 makes six index registers available and they are specified
on the coding form in the manner to which you are accustomed. Write the designations for
each of the H-200 index registers: 4 X , i X2 , 4+ X3 , xS

S + X6 .

L

48. If an L (for Left) is written in column seven, an ITEM MARK will be placed in the leftmost

memory location of the field (or instruction).

An R in column 7 is the converse of the above. Briefly state the effect of an R in column 7.

ST / o 7 5 4
é N g e ‘Lni‘ e /J’{ \—’z,ﬂ— L ’/5”’" = '/!/%’ X B 20 ey s e

-~

ok f«i.z\,} i // (.[f%ﬁé’ s Mm.zaw ‘ /ﬁ

62. If several programmers are each writing portions of a program, different symbolic tags

may inadvertantly be used for the sarmne program element. Easycoder contains an assembly

control statement to correct this situation. It is named for the operation of making
different tags equal to one address, hence it is called an EQ(/AL' statement.

ssprmps

145

LESSON VI. EASYCODER PROGRAMMING

TYPE

20. TAGS BEGIN WITH AN ALPHABETIC CHARACTER. ABSOLUTE
ADDRESSES BEGIN WITH A DIGIT.

34.
+X1

+X2
+X3
+X4
+X5
+X6

48.

AN R IN COLUMN 7 PLACES AN ITEM MARK IN THE RIGHTMOST
MEMORY LOCATION OF THE FIELD OR INSTRUCTION.

62.

EQUAL
{(Mnemonic: EQU)

146

LESSON VI. EASYCODER PROGRAMMING

7. A remarks line may be written at any point in a program. Name clarification is simply

one example of the use of a Remprs line.

is written in the Ty Pe column (column # b).

When this type of line is required, an %

21. In the examples below, indicate whether the tags refer to the right or leftmost memory
location.
LocaTioN | OFERATION 1. L _most memory location.
o ais. 2ol — L 2. & most memory location.
L EXEMPTDLW, ., [BVE TTAX@ L t locati
2 [Nov.6s Ioe E“TH‘ M0@ most memory location.
3.] 1652 |pCw PARTA®) 4. L most memory location.
4. [GROSS, . A TAX o NET n 3
. t tion.
5. 2122 A Ldg., 2,00 . 5 L most memory location
6. | STOXOPIS, STOK GNET, | 6. R most memory location.
35. Index designators must all begin with a plus sign. However, it is not proper to introduce

an operand with either a + or - sign. When the contents of an index register are used in the
entire address, it should be preceded by a @ on the coding form. In the ADD instruction

below, write the A address as the address stored in index register six and the B address
as a location tagged WORK.

B

il OPERANDS

a5, 2021 |

LOCATION

~ =D

8 L

L) NP L 1.5

. 0‘?)(6;."{//1((. . e

49. Item Marks set through the use of column 7 conveniently replace the necessity of

writing a SET ITEM instruction. This convenience may b? utilized whenever Item Marks
/

are desired in either the &«;Z/M or
J

of an entry.

. memory location

The SET ITEM instruction (to be discussed later) is still required if the punctuation is

to be placed in locations other than the extremes.

63. EQU may be used in various situations other than the single example previously cited.
However, the basic purpose of EQU is to cause a symbolic tag to be EQUAL to
the Foneess written in the oV eRpwos field.

OPERATION
CODE

s, 2021

WTHL EQU 2848 .

LOCATION

J I

B

4 147

LESSON VI.

EASYCODER PROGRAMMING

REMARKS

TYPE
6

21.

LEFT
RIGHT
LEFT

LEFT
LEFT
RIGHT

35.

OPERATION
CODE OPERANDS

15, 20[21

L 1 A |)

|
A |#tX6,WORK ,

49.

LEFTMOST
RIGHTMOST

63.

EQUAL
ADDRESS
OPERANDS

LESSON VI. EASYCODER PROGRAMMING

8. It should be noted that the operands field begins with column # Z/ and ends with column

#_ b2 .

The portion of a remark that continues into columns # 63 to# (% will not appear

in the assembled object program printed listing. Write the following remark as it will

appear in an assembled object program printed listing.

EASYCODER

CODING FORM
PROBLEM PAY ROLL PROCEDURE PROGRAMMER ‘)' E‘ H' DATE \5]6 lé4 PAGELOFA;
NOMBER E'g Location | OPAnoN OPERANDS
v 2]3 als[e]7]s . 1415, 20]21 R | | . | L | . K | e2fes) L L 80
AEACC . PROG _PAYROL . | J e e ;
(g1, 8280 , , PAYROLL EXAMPLE, PREPARED FOR EDUCATION RESEARCH TEXTBOOK 200 E

22. There are two conditions in which a blank OPERAND field is valid: !
1. The instruction does not require an o0 Pewradd . (Such as H, NOP, etc.) ;

2. Operands are implicitly addressed as in chaining, where the address of the A

operand is supplied by the contents of the i Aavovees register, etc. E

= —;: 36. Instead of specifying the location of a data field directly, it is sometimes useful to

designate other memory locations, which in turn contain the address of the desired data.
Addressing accomplished through memory locations which contain the address of desired
data is not direct addressing. Consequently, this type of addressing is called

TrDEReC T addressing.

50. WORD MARKS are automatically placed with instructions. Example: The Op. Code
of any instruction is automatically word marked.
What would be the resultant punctuation when an L is written in Column 7 of an instruc-

tion? ‘(<_ & o gt A .

64. In order to assign the tags, X1, X2, X3, X4, X5, X6, to the actual addresses of the
index registers, ADDRESSES: 4, 8, 16, 20, 24, (the absolute addresses of the registers)
must be written in the operands field. Fill in the coding form to make the tag "X3' equal

to the index register occupying memory locations #10, 11, and 12.

OPERATION
LOCATION CODE OPERANDS
8 . 14[is, 20l | | Lo

H E’Ié‘/ ;L) - 1] 1 SR 1L 4 1 L 1 1

W)

149

LESSON VI. EASYCODER PROGRAMMING

8. 21
62
63 -80
PAYROLL EXAMPLE PREPARED FOR EDUCATION RES
22,
OPERAND
A ADDRESS
36.
INDIRECT
50.
RECORD MARK
NOTE: A record mark is a combination of word
and item mark. It may also be set by writing
SW and SI instructions.
64.
| Locarion OPERATION OPERANDS
8 | 14[t5, 20[2i | | (L 1 P Y | . |) 82
X3, EQU 12 e - - I

Refer to the following chart for frame #65.

X

X 2 010 6-8 8
X 3 011 10-12 12
X 4 100 14-16 16
X 5 101 18-20 20
X 6 110 22-24 24

150

LESSON VI. EASYCODER PROGRAMMING

9. If a printed listing of all 80 card columns is desired, tabulating equipment (an accounting
machine) or a source card print routine may be used. An * is placed in Column #6 when
onlya remark is written. As with the 1401, remarks may also be entered following the

last entry in the operand field. Easycoder requires one space between the last operand and

the first remark.

23, List the two conditions for which a blank operand field is valid.

1. No 0Vl pwD CGUiRew = M Ny /

2. cupowinh Sedcss Ty A Doveest Petaste [L pevicry ;}v@xcfs;ua/
i t ,
In all other situations, the operands field will contain addresses (symbolic, absolute,

indexed, indirect) octal variants or entries as remarks and constants.

37. Indirect addressing is an H-200 capability not found in your previous system. A pro-
grammer encloses the indirect address in parentheses, and the program then refers to that
address for the desired data address. Indirect addressing can be compared to additional
indexing in excess of the six available registers. Since an indirect address can specify an~
other indirect address, etc., through any desired number of levels, the capability of multi-
level indirect addressing is provided. Indirect addressing requires only that 1.) the indirect
address be enclosed by parentheses, and 2.) the program is in three or four character ad-

dressing. Example:

OPERATION
CODE

IS 20721 | Fa

i |
MCW. (DATA*2) WORK, |

51. The following minimum hardware configurations are required for H-200 systems using:
EASYCODER EXTENDED EASYCODER
CENTRAL PROCESSOR 2048-character core storage 8192 -character core storage
PERIPHERAL EQUIPMENT Card reader/ card punch Card reader/ card punch
Printer Printer
3 Magnetic tape units

65. Write the statements making tags XI through X6 refer to their correct address.

LocaTioN | OFERATION

8 . 1415, 20|21 i 1 1

e b Elu\U 4 A - .
X1, A ¢ , , A
X1,) Ly e
At / Lo l .
LV | 2.2 . . .
Koo 1Y y 1 .

151

LESSON VI. EASYCODER PROGRAMMING

9.
NO ANSWER REQUIRED
23.
1. OPERANDS NOT REQUIRED. EXAMPLES: H, NOP, ETC.
2. IMPLICIT ADDRESSING (CHAINING).
37.
NO ANSWER REQUIRED
51. EXTENDED EASYCODER

In addition to blank, L, and R, there is another set of punctuation indicators available
to Extended Easycoder. If any of the letters A through T (excluding L and R, O and Q) are
written in column 7, word marking is not automatically placed by instructions. Any punctuation

indicator from this second set, controls the complete punctuation.

65. OPERATION
LOCATION CODE
5 . 1alis, 202! 1))
X1 EQU 14 L \ -
X2 EQU 8 L) .
*3 EQU 12 .))
X4 EQU 16 . . RN
X5 | EQU 20) , |
X6, EQu 2 Y . .

152

LESSON VI. EASYCODER PROGRAMMING

10. SPS or AUTOCODER uses lines 26-30 for insertions; EASYCODER permits insertions to

be written for any line, on any line. Indicate that a line is to be inserted between lines 16 &17.

LA 1101
#3159
B3 o
231718
¢3;l 8ig
021/615

@

@

3

©

24. In certain cases, either or both operand addresses are written as zeros on the coding
form. Actual addresses will then be supplied by another instruction. For example, SCR -
whichkis similar to SAR or SBR of the 1401 - supplies operand addresses to a Resume Nor-
mal Mode instruction as part of an interrupt routine. The coding of this portion of an inter=-

rupt routine is illustrated on the answer side of this frame.

38. In preceding lessons, it was shown that a '"two character' address - 12 binary digits - can
express any address from 0 to 4095. "Two character' refers to the fact that the six charac-
ter bits from two adjacent memory locations form a continuous 12 bit address. When "three

character' addressing is required for addresses above 4095 or for INDEXED or INDIRECT

addressing, a total of iriked adjacent memory locations form a continuous 1§

bit address.

52. EXTENDED EASYCODER
Specifically, the punctuation indicators A through T (excluding L and R, O and Q) set

- whatever punctuation is required. Consequently, this second set of punctuation indicators

controls W N marks, T fem marks, and R.ce ¢1~%) marks, in any com-

bination of leftmost or rightmost memory locations (extremes).

66.

The EQU statement is often used to make other tags equal to index registers. In the pre-

vious discussion of indexing, you saw that the value stored as the contents of an index regis-

ter could be used to modify an address. For example, DATA +Xl, instructs the computer to

add the value stored in Xl to the address of the symbolic tag DATA. (Continue to the answer

side of this frame.)

153

LESSON VI. EASYCODER PROGRAMMING

10.

NOTE: Any digit in the insertion column is correct. However, it is a common practice
to number insertions with a central digit between 0 and 9. In this manner, insertions could then

be made between the original line and the first insertion.
M AR 4l

#3157
3168
31714
#3188
¢:s;|e.!5

el

>

3

©

24. Notice these zeros.

LocaTioN | OPFRATION /

8 L a)is, 2021 W i

»

Interrupt Routine Begins RESUME_|RNM 860,800, 8 .

at this point SCR RESUME+3,67 . Stores "A'" Address Register (67).

. SCR RESUME +6,7d . Stores '"B'' Address Register (70).

. S O ¢ ¢

, o W & ¢

1 Il ? %U 1 S (
2] A [

B, RESUME

v
m
Z
=
m
]

-
«
3

-~

38.

THREE (3)
18

52.
WORD

ITEM

RECORD

66.
Suppose that the tag DATA has been assigned to memory location #500 and that X2

contains a value of 5. Retrieval of the desired operand DATA +X2 is shown below:

¢ DATA PLUS THE VALUE IN X2~ —y~ —/L—{q
ADDRESS 498 | 499 | 500 | s01 | 502 | 503 | 504 | 505 506

The computer begins retrieving the operand at memory location #505. Because of

indexing, the effective operand address, DATA +X2, has been modified without actually chang-
ing the original address of DATA.

154

LESSON VI. EASYCODER PROGRAMMING

11. A programmer should complete at least Columns 1-5 on the first line of each coding form.
Columns 1 & 2 show Pad-e ,Jo/» , columns 3 & 4 show |_TuE N~ R
column 5 shows T e R TTons Ng. .

The first Op. Code of a program is PRgl- . This causes assembly to take up to {

characters written in the OV field as the M#nd of the Pe ¢ La s .
An 4 in the Ty e column indicates a line of l’{g,;»,i;< Py . Any extension
of this line beyond column # 5’,2 will not appear in an assembled object program listing.

25. The SCR instructions move three character addresses from each register in the frame 24
example. A correct number of memory locations must previously have been allocated during
assembly for storage of these addresses.

Briefly, then, what do the 0¢§, §#9, of the RNM instruction indicate to assembly?

?/7/}/,. {/(//Vé Al o, rf}'}' h U‘%ﬂ/ﬂo«‘c

Y « -
i / i . oo i N - —
|2 S S L =l - I R e

(Aiiocate S MemoRY L eadgiow

f/bﬂv‘ e wpmetiupetine)

39. The high order three bits of the 18 bits available in three character addressing are used to

indicate whether addressing is to be accomplished directly, indirectly, or by indexing. These

high order three bits are illustrated below. They are called the H DpXEss TV 0"

D paD doeyt 1N .

/15-8/T ADDRESS

18 8ITS =

53. EXTENDED EASYCODER
The punctuation indicators A, B, C, place a WM, IM, RM, respectively in the left mast
memory location.
The indicators D, E, F, place the same respective punctuation at the other extreme,

that is,

the letter sets a __ M in the 2 6t most location,
the letter - sets an __ 3 ¢ in the ? " most location,
the letter F sets a {{ W __ in the L most location.

L

67. The contents of an index register could also be the address of an operand. In this case,
it is written as @+X1, @§+X2,etc. It is important to remember that index designators such

as +X1 or P+X1 specify that the < onTEenvTS of a certain register is to be used to

locate another address in memory.

155

LESSON VI. EASYCODER PROGRAMMING

11. Columns 1 & 2 show PAGE NUMBER
Columns 3 & 4 show LINE NUMBER
Column 5 shows INSERTION NUMBER

PROG
SIX
OPERANDS
NAME
PROGRAM
* - TYPE - REMARKS - 62

25.
ALLOCATE SIX MEMORY LOCATIONS (¢¢¢, $¢¢) TO RECEIVE A AND
B ADDRESSES FROM OTHER INSTRUCTIONS.
NOTE: When a variant character is to be stored, the operands field
entry should be 000, §0¢, ¢.
39.
ADDRESS TYPE INDICATOR
53.
D sets a WM in the RIGHT most location,
E sets an IM in the RIGHT most location.
F sets a RM in the RIGHT most location.
67.

CONTENTS

LESSON VI. EASYCODER PROGRAMMING

12. A symbolic tag (label) is composed of from one to six characters, the first of which must
be alphabetic. Tags are written in the L/LH‘T{/N columns # § through # l"“ .
v EQ Location | OPERATION OPERANDS
) 2]3 alslel7]8 , 1alis, 20[a1 | L L L L | | s2[e3 | ; N 80|
11 g ... PROG [PAYROL ., . . 1 1 . 1 . l L
3 i 1 1 1 1 1 1 H 1 1 -l i i "
olgilizigl | [sTART Jsw 18,200 .) l L N]

26. The operands field may be blank if no operands are involved or chaining is being perform-

ed. However, if addresses are to be supplied by another instruction, the correct number of

,
l\\/Z/u\’U‘?; CHpripredcils should be written in the operands field. Assembly will then allocate the

Coaw pre Munpan of storage memory locations.

40. In two character addressing, the computer is not involved with any address type indicator.

In three character addressing, the high order three bits indicate either direct, indirect, or
indexed addressing. 000=DIRECT, 111=INDIRECT. Write the address type indicators as they

appear in binary, indicating the index registers 1 through 6.

ve ' =X1 i =X2 PR =X3
. Va0 X4 10\ =X5 iAo =X6
] 54, EXTENDED EASYCODER

The remaining punctuation indicators (G through T) place combinatiohs of punctuation at

both extremes.

COLUMN 7 LEFTMOST LOCATION RIGHTMOST LOCATION
. G M IM
: H M . WM
1 M RM
J WM : IM
K WM WM
M WM RM
N A A
P RM WM
S RM IM
T RM RM
In addition to L. and R, which two letters have been omitted? ¥ , § . Which

letter places no punctuation at either extreme? M .

68. EQU is used to assign a tag to index register designators in the example below:

This ADD instruction refers to the index register X3, which is the address of the data to
be added to NET.

Location | OPFRHON OPERANDS

8 . 14]15, 20[2!

) i L) N L 1 L 82

TAX EQU Ztx3_,
. A TAX,NET

1 1 s n L L 1 L

n X L i 1 - (L

157

LESSON VI. EASYCODER PROGRAMMING

12.
LOCATION
#8 - #14
26.
ZEROS
CORRECT NUMBER
40. Notice that the index registers occupy memory locations 2 through 24. This
chart will be presented again in this lesson and reference will be made to the
addresses (4, 8, 12, 16, 20, 24) of the index registers.
AppREsS TYpE | sTORAGE PIELD.
mplcATOR L]
54. EXTENDED EASYCODER
O, Q.
N
NOTE: The first set of punctuation indicators (blank, L, R,) is usually
sufficient. The second set of punctuation indicators may be used at the
programmei"s discretion.
68. CONTENTS

158

NOTE: A tag that has been made equal to an index register designator
of the type #+X3, may only be used to specify the contents of the register

and not the address of the register itself.

LESSON VI. EASYCODER PROGRAMMING

13. An Easycoder tag may begin in either the first Location column (#8) or the second Location

column (#9). The address assigned to a tag by assembly is determined by two variables:
1. Whether the tag begins in L featte column # ¢ or # 9

2. Whether the tag refers to an instruction or to constants and reserved areas.

27. Previous experience has made you familiar with the several types of addresses which may

be entered in the operands field.

For example, any unsigned decimal number from 0 up to the limit of memory constitutes

an absolute address. While you referred to this as an "actual' address in your previous

system, Easycoder terminology calls it an Be<c,, yiv address.

41. On the back of this frame (#41) and in frame #42 you will be shown how the computer re-

i trieves indirect or indexed addresses. You are to compare frame 41 with frame 42 and de-

cide which frame illustrates indirect addressing of the A address and which frame illustrates
; indexing of the A address.

55. You will recall that assembly language was divided into three types of statements at the

start of this text. These are:

1. A S, i Control Statements

Formatting Statements

e e Tl Statements.

The third type was separated further into five kinds of instructions.

69. Now, fill in this coding form to make tag FICA refer to the contents of index register X6.
Location | OPRATION OPERANDS
8 | 1435, 20|21 | | | |) | . | 62
x6 It EIQU 24 L 1 1 1 i 1 1 1 13
£1.¢H 6y . . o+ ¥z s . . s ‘ . .

159

LESSON VI. EASYCODER PROGRAMMING

13.
LOCATION
#8 or #9
27.
ABSOLUTE
41, lopcoasl A-ADDRES S l B8-ADDRESS
I T
INSTRUCTION —— @ ///! 1027 ooo{ 415
BINARY
BINARY 7 0I16ITS
oeirs [4 2o |
STORAGE ADDRESS ——— o /027]/02.9 l/ozs
CONTENTS 000l 3/20
STORAGE 40D, ———.i 316 | 3n7 | 318 | 3119 | 3120 i q11 | 412 | 913 | 414 | 415
CONTENTS ___.Z @ 9 5 6 / { 7 4 / 6 6
A-FIELD B-FIELD
This frame is an example of -, 5. .. addressing of the A address.
55.
=
ASSEMBLY
DATA
PROCESSING
69.
LocATION | OPERATION OPERANDS
8 L 14115, 2021 | | { ! L L | o 182
X6, EQU 24 -) . . s e .
FICA EQU B1X6. | \ . L L - : N

160

LESSON VI. EASYCODER PROGRAMMING

14. Consider first a tag that starts in column #8 and »efers to an instruction. Due to the
direction of instruction retrieval, the address assigned to the tag by assembly will be the

/
memory location containing an £ S,

28. Identify the types of addresses in the example below:

CARD |7 LOCATION OPERATION
The first line shows Pés oLt addresses. NUMBER (P |1 CODE
213 4l5]s[7]s | 1alis, 2021 \
The second line shows SN MB T addresses. ¢2!¢|'!¢ . A, 375,450
I . S, TAX 5 PAY
42.
0P CODE I A ADORESS | B ADODRESS
T T
INSTRUCTION ——— @ Io/ﬂl 1027 000: 415
BINARY /
o16ITS BINARY
DIGITS
STORAGE
aopess ——| ¢ |7 | ¢ A4 A-ADDRESS
CONTENTS —— Jrx! 2095 | _.._———"—-——'————-—“——J *2093 | REGISTER
h 320
address Iype
\. indicator is ignored
j;g:;g sue| 3117 | 3118| 3019)3/20 5 00 | 42 | 413 | 414 | 415
CONTENTS — o @ 9 5 5 ! ; @ < / 6 6
3 A FIELD 8 FIELD
This frame is an example of 2N D addressing of the A address.
56. List those of the ten Easycoder Assembly Control mnemonics you remember: cEQY
P NG pf'D YA DG {- fdid
£ HSm HUiIa\
g 4 N 7/ -
ﬁ ga L Mo (- £ qyu

70. Compare the two examples below, then briefly describe the different effects of the ADD

Instructions. Locarion | OFRATON OPERANDS
8 | (4415 20[2t 1 | { 1o 1 i 4 I | 82
X6, EQU 24 . . . e . ! L
Example #1 FiCA EQU Z+x6 | . L ‘ L L. L
. A FICAX6 ‘ . e
Location | OFEEoM OPERANDS '
8 | I4|5| 20|2) 1 1 S R 1 Lo ! . L - | 62
X6 | EQU . . |24 L) N . L . L)
Example #2 FICA . EQU . . |#¥X6 , . 1 - e .
. 1A FICALFICA | L . e .

161

"LESSON VI. EASYCODER PROGRAMMING

14.

OP. CODE

(RETURN TO FRAME 15, PAGE 135.)

ABSOLUTE
SYMBOLIC

(RETURN TO FRAME 29, PAGE 135) i

42,

FRAME 41 IS AN EXAMPLE OF INDIRECT ADDRESSING
FRAME 42 IS AN EXAMPLE OF INDEXED ADDRESSING

(RETURN TO FRAME 43, PAGE 135.)

56.
PROG ™~ MORG EX’ EQU HSM “
ORG _ ADMODE CLEAR. CEQU END

(RETURN TO FRAME 57, PAGE 135.)

70.

EXAMPLE #1. THE DATA STORED AT THE MEMORY ADDRESS IN-
DICATED BY THE CONTENTS OF X6 WILL BE ADDED TO MEMORY
LOCATION #24. SINCE THIS IS THE ADDRESS OF X6, THE CONTENTS
OF X6 WILL BE CHANGED.

EXAMPLE #2. THE DATA STORED AT THE MEMORY ADDRESS IN-
DICATED BY THE CONTENTS OF X6 WILL BE ADDED TO ITSELF.

THE MEMORY ADDRESS - FICA - REMAINS IN X6 AND IS NOT CHANGED.

{The diagram on page 163 illustrates how the computer executes Example #1)

LESSON VI. EASYCODER PROGRAMMING

1.
wocation | PN OPERANDS
8., alis, 202 L 1, L o —
ExAMPLE Nvo.1 (X6 . . [EQY 24, . . . e ,
FICA EQU Z+X 6., L e
- Al F‘ c A MXG 1 1 —_ 1 SR |
ASSEMBLY

N

| op cooe | a- aboress | B-aopRESs | wore: HiGH ORDER THREE BITS
; SHOWN IN BINARY
@ 10 | LOW ORDER FIFTEEN BITS
SHOWN IN DECIMAL

o

T
000 : 24

INSTRUCTION

8 ADDRESS

indicates REG/ISTER

index reg.6

MEMORY LOCATIONS 22,23,24

A ADDRESS
REGISTER

FICA
3117 | 31183119 3120 Lq
L 4
@ i I A OPERAND STORAGE REGISTER A00ER
B_OPERAND STORAGE REG/STET
[I-—--l:"'-l:"l —

7 " -

The A address is supplied to the A address register from index register X6. The B ad-
dress is supplied to the B address register from the address in the instruction. A char-
acter from each operand is sent to its respective operand storage register and is then com-
bined in the adder. This process continues and the result is sent back to the address in-

dicated by the B address register until the character with a word mark has been processed.

£ What will the total be at the completion of the ADD operation and where will it be stored?
Sug) 203 Ahd

163

LESSON VI. EASYCODER PROGRAMMING

71. The total stored in memory locations 22,23, 24, will be 3481. Since memory locations
22,23,24, constitute index register 6, subsequent use of this register will involve the value
348l. The example explained was a special case where it was desirable to change the con-
tents of X6.

The coding below illustrates the second example that was written A, FICA, FICA. Note,
however, that the appropriate format is written more efficiently as Op. Code, A Address.

This format simply duplicates the A Address in an Add instruction.

LocaTion | OFERETON OPERANDS
s . 1alis, 2021 ! | L) L
X6 EQU 24) . s .)
EXAMPLE NO.2 . -
F1CA EQU FARS A N s o
1 A| F ‘ c A 9, t 1 1 L
ASSEMBLY

/

OP CODE | A-ADDRESS

1
@ |woi
|
indicates
index reg.6

A-ADDRE.
REGISTER

B-ADDRESS
REGISTER

FICA

3117 3118 3119 | 3120

ADDER
A OPERAND STORAGE REGISTER | Characters are
——————————— 7 | B OPERAND STORAGE REGISTER[®| address indicated.
FICA Pl
F=T7=3" ™1 2

combined , then

returnad fo the L_-:
|
|
|
)
i
1
t
1

“t o]

If you are interested in another example of indexing, you may review frame #42 on page

161 before continuing to frame 72, page 165.

164

LESSON VI. EASYCODER PROGRAMMING

72. The examples just presented combined a review of indexing with the use of an EQU assem-

bly control statement. This does not mean that EQU is used only with index tags. EQU was

simply demonstrated in conjunction with indexing.

The purpose of EQU is to make a tag written in the location columns Cqult to the

A‘D\)Q@;‘j in the operands field. This address may be direct, indirect, or indexed.

83. EX (for EXecute) is similar to the EX statement with which you are familiar. Briefly
explain the purpose of an EX statement.

o
U A R ¥ SV AR
Lo dtl. T 7 '

94. The first direct address specifies the lowest memory location to be cleared of punctuation

and data bits. It is separated from the second direct address by a comma. If this "'highest"

(second) address is not also followed by a comma - the data bits in the ar

re
cleared to zeros. Indicate that the area from WORK to WORK + 10 is to be cleared to zeros.

ocation | OPRON OPERANDS

8 i

>

)5 202t L L) Ll L L L £2

|
. QLEAL, R, Wl R X410 .
: END

| L Ly 1 L PR B SO PR S

105. Alternatively, an alphanumeric constant may be written as follows:

Miielisg OPERANDS

) | alis,]

| i i L
. ! .. ®I2AUNITH6ES1..20

LOCATION

1 P B U E U | 152

L M IR S EEPE P 1

The ndtation #12 A is interpreted by agssembly as meaning the number ,(,#A)A,,‘?,f,,fnf’frlﬁf}’w,

locations (12) to store the alphanumeric (A) constant. Then, the constant to be stored is
-

specified as UNIT#6@$1. 20. Using this type of notation, indicate that TYPE 3 is to be

stored as a constant without a word mark.

e OPERANDS

8 R 14]i5, 20[21

LOCATION

I L PR T SR USRS R T B

L DiC " #SALY|P€3 L L s

LESSON Vi. EASYCODER PROGRAMMING

72.

EQUAL

ADDRESS

83. THE PURPOSE OF THE EX STATEMENT IS TO EXECUTE A PORTION OF
A PROGRAM BEFORE THE ENTIRE PROGRAM HAS BEEN LOADED BY A
LOADING ROUTINE.

A programmer writes mnemonic EX in the op code field. He then writes a
previously defined address in the operands field. This address is that which
appears in the location field of the first instruction of the segment to be ex-

ecuted.

94.

LocaTion | OPERAON OPERANDS

8 L
. CLEAR WORK WORKH*IZ . e T L
1 EIND 4 1 1 n i 1 I 1 i n 1

E

15 2012 i | | NP ERN [182

105.

Location | OPERATION OPERANDS

B | 14]1s, 20[21 i L R T £52

. OC . . . #SATYPE3 ., . R .

166

LESSON VI. EASYCODER PROGRAMMING

73. The EQU statement is not required as part of a specific sequence of assembly control
statements. As you remember, PROG is written first, and ORG follows PROG. The next
two statements that need to be written are ADMODE and CAM. ADMODE specifies the mode

of Avp RS (2, 3, or 4 characters) in which to start assembly. CAM actually

/“ to 2, 3, or 4 characters.

3 changes the AnoRess Giw it

84. Since the purpose of an EX statement is to execute portions of the program before the re-
mainder is loaded, more coding follows an EX statement.
At the END of program coding, the assembly control statement F_I\)D is written
in the Op. Code field of the final coding line.

95. A comma written following the second address indicates that the area is to be cleared with
the character written after the comma. Punctuation bits will always be cleared. Indicate !

that ten memory locations starting at address #150 are to be cleared with X characters.

LocaTion | OPERATION OPERANDS

8 | IOISL 2021 1 1 1 N L o .
. Cic, £l :;o,:,sto-no.)‘l . el e . .
1 E!ND i 1 1 1 1 —1 A i i 1 1

106. Decimal constants (signed or unsigned) are simply written beginning in column 21 of the

DC or DCW operands field. If a sign is specified, it will be denoted in memory by the zone

B NS

bits (B and A) of the rightmost character. Example:v DCW 212 * produces 10 0010 (Octal
N N 2021 N
42), while DCW 212

produces 01 0010 (Octal 22) as the rightmost character in memory.
The examples above demonstrate that a + sign is stored in the rightmost memory location

with the BA cores respectively 0 and | . A minus sign causes the BA cores of the

rightmost memory location to be | and ()

167

LESSON VI. EASYCODER PROGRAMMING

73.

ADDRESS

ADDRESS MODE

84.

END
The programmer:

1. Writes END in the op. code field.

2. May write a previously defined address (either absolute or symbolic)

in the location field, to indicate the location of the 80~ character
object program loading area. If the location field is left blank, an
80-character leading area is automatically reserved by the assembly

program immediately following the last assembled instruction.

95.

el OPERANDS

15, 20|21)

CLEAR. |1.58.,159.,%. . R .
END] s R

L I | PR Y

Il 1 1

106.

BA
+=01

in the rightmost memory location
-=10
NOTE: Each digit (0 - 9) in the preceding examples will be stored in memory
as a separate character, with the sign of the group shown by the rightmost
character.

+ 212 in memory as 00 0010 00 0001 01 0010

- 212 in memory as 00 0010 00 0001 10 0010

168

LESSON VI. EASYCODER PROGRAMMING

74. ADMODE is an assembly control mnemonic op. code. It indicates the mode of addressing

for assembly when either a 2, 3, or 4 is written in the operands field. Specify three

character addressing on the coding form below.

hielice OPERANDS N
i5 2021 N [Lo L N L) a1 B2
PROGA PAY RojL N o e NN L I 1
QLRG m_,_A_L 1 1 1 i n i n 1 S
she e , . _ . ; .

85. A programmer writes an EX statement to execute a portion of a program. He also needs

to have written a branch instruction as the last entry in the segment to be executed. This

branch instruction refers to the address in the location field (columns 8 - 14) of the END
statement.

At the completion of the segment being executed, the program will BRANCH to the
address written in the location field of the __ E WY statement.

96.

HSM (High Speed Memory) assembly control statement is used with EASYCODER but is not
required by EXTENDED EASYCODER. HSM is written to cause a card deck of memory con-

tents to be punched. This "memory dump' deck can then be used to print a listing of complete

memory contents when desired. If an HSM statement is written, it must immediately precede

CLEAR and END statements. A total of no more than 10 HSM, CLEAR and END statements
may be written for an EASYCODER system.

illustrated after this lesson.

HSM and a memory dump printed listing are

107. DC or DCW constants may also be written in decimal by the programmer, but they

can be specified to be interpreted by assembly as a binary value. For example, when a

two character (two memory locations) binary constant with a decimal value of 212.is de-

- - - . 1s, 2o .
sired, it will be written as follows: e ; 282\:2, ” The notation #2B means that the number

2
(#) of memory locations to be used is 2 and the constant is to be stored as a | inary

value equal to __2 ;1 in decimal.

169

LESSON VI. EASYCODER PROGRAMMING

74.

| OPERATION
CODE OPERANDS

5, 20[21 , 1 L)
PROG PAYROL .) -

oRe. _ igg . e
ADMODEZ .) |

85.
BRANCH
END
The programmer must write a branch instruction to the address in the location

field of END as the last instruction of the segment to be executed. Since the

location field of End contains the address of the object program loading area,

branch returns control to the loading routine.

96.
NO ANSWER REQUIRED

Data formatting statements are discussed beginning in frame 97.

107.
2
B
212
NOTE: As a result of the statement DC #2B212 this binary number with a value
of 212. . will occupy two memory 1ocatipns as:
000011010100

]
because, 27+26+24+22 = 128+ 64 +16 + 4 = 212

10

10

LESSON VI. EASYCODER PROGRAMMING

75. ADMODE is an assembly control statement, and it should always be followed by a CAM

(Change Addressing Mode) instruction.

Whereas ADMODE simply directs the assembly program, CAM is required to actually
.k ANGE the froores s Frd-

Mg of the computer.

86. The location field of the END statement provides the address of the object program loading

area. Consequently, after execution of a portion of a program, the branch instruction refers

to the location field of the END statement. This provides the address of object program

Lopy T, area. Loading then continues for the portion of the program that
follows EX.

97.

Constants and reserved areas are defined in Easycoder with one of four data formatting
statements. (RESV, DC, DCW, and DSA).

Obviously, the statement that causes assembly to set aside a specified number of memory

locations is R oV . A tag beginning in location column #8 of this type of statement

refers to the _ R T¢ v most memory location.

108. The preceding example assumed that the programmer knew the value to be 212 in decimal,

but wanted it stored in ''two characters' as the 12 bit number:
000011010100

However, if the situation were such that the programmer knew a binary number and wanted

to store it as a binary number, it would be more convenient to convert the binary to octal.

Then, octal notation would be preceded by #2C in the DC or DCW statement.

In this case,
the #2 signifies two memory locations and the C specifies that the following digits are octal.

This is illustrated on the answer side of this frame.

171

LESSON VI. EASYCODER PROGRAMMING

75.
CHANGE ADDRESSING MODE
Mnemonic: CAM
86. LOADING
Refer to the illustration below to complete the sentences in frame 87.
LocaTion | OPTTHON OPERANDS
8 | 14415 20|21 { Y [[P TP | N |4LGZ
LOAID EQL; 3“‘ 1 PR PR | 1 1 L 1 i i
1 01&6' 36[1 1 1 L | -t Ay I " 1 . Lo
STARY. . |sw 445,588 . e . S ST
i S cw bL’ l'ol(: 1 o 1 j .
1 % A 1 - 1 L . 1 i 1
1 a P LOAD i PR 1 1 i L 1 1
1 NIoP 1 U I 1 L L1 1 1 L
i Ex STARTI 1 i { 1 P 1 i | Y
. SW TAX 4 PAY) . G s \ -
Ll EA_L -t PR I 1 A L ! 1
LOAD END 1 1 | L N Ll [L
97.
RESYV
RIGHT
The programmer:
1. Writes the mnemonic code RESV in the op code field.
2. Writes the number of characters to be reserved in the operands field.
This may be written as a decimal or symbolic entry. If a symbolic
tag is written, it must be defined previously in the source program.
3. May write an actual or symbolic address in the location field. The
programmer can refer to the reserved location via this tag.
108.

Suppose the programmer knows the binary number. He could first
convert it to octal and then write octal constant as follows:

000 011 010 100
e e

08 38 28 48
L 14 3

2

Since 2 octal digits constitute two Characters, (two memory locations)
the DC or DCW is written: [5 oz

bC B2cg32a

LESSON VI. EASYCODER PROGRAMMING

76. CAM specifies whether the change should be to 0 , 3 , or oA

character addressing mode. The desired mode is indicated by the VARIANT character written
in the operands field.

Variant characters are written in octal so as to represent six binary digits. Therefore,
the operands field entry of a CAM instruction will contain a total of 2 octal digits and
is called a VB Lyt character.

87. The first OP., CODE in frame 86 equates address #30l to tag L oAD . Since this tag is
also the entry in columns 8 - 14 of END, the 80 character area beginning at address #301

will be used for object program | orpind . Assembly begins assigning sequential

addresses at # 323G due to the @K L statement. Assembly continues assigning addresses
until the ¢ statement is encountered. (NOP does not affect assembly. NOP provides
a word mark terminating retrieval of B.)
List the sequence of events from when assembly encounters EX until END is assembled.
EXECUTIo) oi PRoER M _eRom Lager START wwTin TThe INSTRve Tion B /TANCY
IS eXcovmmad FXecuieP BRANCY fErets To LoeATIA ETange Tae END T NSTRVCTH-

THIS Fiewd 1AL "Leay To QU TU Aooeess #30l. THE vempiat Rovgime et BSemeyy
THeW conTiwes wiil THE TnsTOeclons Forponiik EX

98. Assign the tag "DATA'" to refer to the LEFTMOST of 80 reserved memory locations.

Location | OPERATION OPERANDS

8 14)i5, 20]21)

DETA. . huesy

1 It 1 i Ly 1 Lo L L

<

109. In Lesson VIII you will write DC or DCW statements in octal for use as '"MASKS' in con-
junction with EXTRACT instructions. Write the statement defining a word marked constant
in octal to occupy three characters (memory locations) such that all bits are 1's. Tag this

statement as MASK 3, referring to the rightmost memory location.

OPERATION

LOCATION CODE OPERANDS

8 I

3

15, 20l21 |

MA$|I<1 chw i3C77l7A31/" L o L T

62

I -

173

LESSON VI. EASYCODER PROGRAMMING

76.

TWO, THREE, or FOUR Character Addressing
TWO Octal Digits
VARIANT Character.

87.
LOAD

LOADING
381
ORG
EX

When EX is encountered, execution begins with the portion of the program
tagged "START'". Execution continues until the "BRANCH'" instruction is ex-
ecuted. Branch refers to the location field of the END instruction. This field
tagged "LOAD" is EQU to address #30l. The loading routine for assembly
then continues with the instructions following EX,

98.

OPERATION
LOGATION CoDE OPERANDS

8) 14115 20[21 L I TP B P Ll

oAFh [RESV. (8¢ . .

1 L i L i 1 L Ly -

62

NOTE: A tag beginning in column 9 of a constant or reserved area

refers to the leftmost memory location.

109. 111 111 111 111 111 111
—— e S G S
7 7 7 7 7 7

Location | OPERTION OPERANDS

L] . 1805, 202 L | ettt N PR | 152
MASK3 DLW, #3C777777 . L . N ;
NOTE: A tagbeginning in column 8 of a constant or reserved area

refers to the rightmost location.
A tag beginning in column 9 of a constant or reserved area refers to
the leftmost memory location.

174

LESSON VI. EASYCODER PROGRAMMING

717. The CAM variants to specify two, three, or four character addressing are octal:

20, 00, 60, respectively.

Write the ADMODE assembly control statement for four character addressing, then

the CAM instruction and its appropriate octal variant.

Location | OFRTION OPERANDS

8 | 1415, 20|21
. Dagpe L
. Ol oo . e

88. It may be desirable to overlay the portion of a program that has been assembled and

executed, thereby, utilizing memory more efficiently. The executed portion will be
overlaid by subsequent instructions when an appropriate ORG statement is written following
the EX statement. The example on the answer side of this frame illustrates an ORG state-

ment causing the preceding executed portion to be overlaid.

99. The DSA (Define Symbol Address) data formatting statement is written to store one, or

two addresses as a constant. If desired, variant characters may also be written and stored.

The assembled length of each address written in the operands field is determined by the
current address mode.

Write the statement to store the A and B address ITEM -5, PAY +X6, as a constant.

Location | OPERARON OPERANDS

8)

4015, 2021 L sl N i | L.52

L DxSA ITGM-.{)PﬁYﬁf& I

L I L ! L

110. Write statements to accomplish the following:

p—
.

Reserve 80 memory locations, tag the rightmost as CARDIN,
Store the addresses ITEM - 5, PAY +X6 as a constant.

Y

Define 20 blank memory locations as a word marked constant.
Define TAX DEDUCTABLE as a constant without a word mark.
. Define UNIT #6@$1.20 as a word marked constant.

€ I IO N

rocaTion | OPROM OPERANDS

8) (4115, 2021

L] Lt N L I s
Caldin li;E’;\)A 7.4 : i) ; R ; - I
. DSA e 5 PAYYC . .
L (AR Hib . L ! " L e 1
! Dec <Y DEDUCTABLEE® [N S P
. dew . AYNITEEr-20 4 l R

1 L | L s 1 TP S R S |

175

LESSON VI. EASYCODER PROGRAMMING

77.
LocaTion | OPFRATION OPERANDS
8 | alis, 20021) | N L L T i
. ADMODE 14 e . e . .
1 JVQAM 6¢ 1 1 1 i 1 S L 1 1 i 4 7
88. Notice which coding will be overlaid by the remainder of the program, then
continue to frame 89.
NN Eg LOCATION | OPERATION OPERANDS
1 2]3 al5(s(7(8 . 145, 20l21 | | | N . | R f) e2le3 . L L 80
' ¢2}¢l}¢ LoAD _ lequ . 3t .. ., 1 e e .
2\ g2 g2 . ORG . 381 ., . l e N
3| 183 START, _ISW 485,580 . . . e Lo L
. !¢4: L. .. MCW BL,LoC . s e e , R =
s l¢sl 1 C 1 Il L l ' e [1 1 21 R I - 1
& %¢61! 1 5 1 1 1 i 1 i 1 1 1 i 1
7_4_*¢,1~ i Bl LOAD I Il (1 1 L - F— [1
8 JSIL 1 NOP 1 1L 1 1 1 1 1 N 1 | I 1
. ;¢7§ . JE.X START, 1 1 ol e
0 __._f_LQI (9RG 38 i 1 1) Py 1 I I ol 1 e
nl iy [TIsTART2 sW . [TAX,PAY. . , . L b
2 11.2]_ b | S PROGRAM CODING CONTINUES, L L : et I
sl lsl [S .. UP TO. LINE 30, , N
»[_3f || [opp _ [END _ [s71AR12 . J e N

99, LOCATION | OPERATION OPERANDS =
8 L 1815 20J2! 1 | | . L T T .
L D|SA ITEM-5,PAY +X6 I ! I I i L

NOTE: A word mark will be automatically placed at the leftmost
character of the field. If column #7 contains an R, an item mark will
be set at the rightmost character. If column #7 contains an L, a
record mark will result at the leftmost character. {(Word mark and

item mark = record mark.)

110.

Location | “Poopet OPERANDS

8 | 14]15, 20(21 | | [L | L 2

CARDIN [RESV, |sg . . .) N . . L
\ DSA ITEM-5, PAY X6, ., P S S SN
. DCwW #2g ! o \ . S SR
. ne @TAX DEDUCTABLE® e
, DCW_. . [=UNIT#6@$(,.20=, , s e :

NOTE: Numbers 4 and 5 could be written:
DC #14 A TAX DEDUCTABLE
DCW # 12 A UNIT # 6@or, number 5

could be written surrounded by any character except +, -, #, digits
- 9 or a character in the constant.

176

LESSON VI. EASYCODER PROGRAMMING

78. An octal CAM variant of 20 allows memory locations to be addressed up to #4095

(111111111111, = 409510).

A CAM variant of octal @@ provides three character addressing, in which memory loca-
tions up to #32767 may be addressed. Indexing and Indirect addressing are available when

addressing is in at least three characters. Identify the name or purpose of the high order
three bits shown

One Character One Character | One Character
tor | 111 1 111111 0 11iiin
N —/\ v
AovReng, Tyne v iarn = 32767

89. If the operands field of an END statement remains blank, the machine will halt after
completing the loading. A programmer may write an address (symbolic or absolute) in
the operands field of the END statement. When this address is written in the operands field,
it designates the point at which execution is to start at the completion of loading.
Refer to the overlaid example illustrated in frame 88, then write the appropriate address

designating the point where execution is to start after loading has been completed.

100. Using the self reference * as the B address (indicating the leftmost character of the
DSA) and NET as the A address, write the statement storing them as a constant. Indicate

that an item mark is to be placed at the rightmost character.

]g LocaTion | OPERATON OPERANDS

7.8 L 14115, 20j21 ! 1 Lo o) | 1 I T

A Dok NET . ‘ e . . Co
111. Write statements to accomplish the following:

1. Define decimal - 26 as a constant without word mark.

2. Define the decimal number 26 to be stored as a single Binary memory location
with a word mark.

3. Define binary 111111011000000000 as three characters in memory tagged
MASK 2 without a word mark.

OPERATION

g LOCATION CODE OPERANDS
7i8 i I‘H.‘:l 202t | L | L 1 N N . Y L ‘62
I WC N ~ g\(? L N L T L L " | el Lo
. Dlw LA A . R . ; . . L
fe S AL C IAAY RN T, . . , by]

177

LESSON VI. EASYCODER PROGRAMMING

78.
ADDRESS TYPE INDICATOR
INDICATES DIRECT, INDIRECT, OR INDEXED ADDRESSING.
89. START 2 in the END statements operand field causes execution
to begin with the instruction on line #11.
B lf ! QA S1AKRT L [1. L o Ll :
o g , oRG . [s®(. ., e .
" “ Ul STARY.Z ISW TAX, PAY. . . Ll b L
2l 2] s 1) PROGRAM .CODING CONTINUES, . . .,,
sL D3N] 3 L UP TO LINE 30.,.. . l \ \
w[138 [[[roap _ JeNp_ IsTARTZ _ , e . e
The rules regarding END and EX statements are reviewed in frame
90 and its answer space on the following page.
100,
. g Locamion | OPEEEON OPERANDS
7le 14]15, 20[21 | i | N PR PR L —l 52
R 1 qu ‘uﬁEAI;*I —_ I i PR - | Y) L 1
111.
5| LocATION OPERATION OPERANDS
7]a 14]15, 20]21 | L | L L 1 ol —l 82
1 C P ~26 TP T L) T A oL 1
1 Df-w &‘826| 2 1 I B ' 1 i L
MASK2 _[DC 3773808 . . A A s

LESSON VI. EASYCODER PROGRAMMING

79. Indexing and indirect addressing are also available in any system with sufficient memory
to make use of four character addressing. Four character addressing provides 24 bits, of
which the high order 3 bits serve as address type indicators. Only the low order 16 bits are

needed to address the locations up to #65535. 1111111111111111, = 65535

2 10

90. For an END statement, the programmer:
1. Writes END in the op code field.

2. May write a previously defined address (either absolute or symbolic)
in the location field, which specifies the location of the 80-character
object program loading area. If the location field is left blank, an
80-character loading area is automatically reserved by the assembly
program immediately following the last assembled instruction.

3. Writes an address in the operands field if it is desired to execute
the object program immediately after loading. This address desig-
nates the location of the first object program instruction to be executed.
The address may be either absolute or symbolic. If the operands field
is left blank, the machine will halt after the loading routine has been
completed.

101, Use of the data formatting statements DC (Define Constant without word mark) and DCW

(Dol e ConpZa A with - w. A) should be familiar
{

from your previous experience. As a convenience for the programmer, constants may be

written in DC and DCW operands fields specifying either alphanumeric, decimal, binary,

octal, or the number of memory locations to be set to blanks.

112. The answer side of this frame through frames and answer sides 115 illustrate Easycoder
card formats.
Page 187, Figure 16 shows two and three character addressing.
Page 188 may be used for future reference concerning the CAM instruction and its var-
iants.

You will not be required to answer any questions until page 189.

179

LESSON VI. EASYCODER PROGRAMMING

79. The capability of increasing memory size to 65000 + demonstrates the H-200's expan=-
sibility and versatility of binary addressing.
The appropriate octal variants for CAM instructions are : TWO CHARACTER 20,
THREE CHARACTER ¢@, FOUR CHARACTER 60.

An example of efficient utilization of two and three character addressing is illustrated
in Figure 16, page 187.

90. For an EX statement, the programmer:
1. Writes the mnemonic code EX in the op code field.

2. Writes a previously defined address in the operands field. This address
is that which appears in the location field of the first instruction of the
segment to be executed.

3. Must have written a Branch instruction to the address specified in the
location field of the End card as the last instruction of the segment to be
executed. Since the location field of the End card contains the address

of the object program loading area, this Branch instruction returns con-
trol to the loading routine. ’

101.

DEFINE CONSTANT with WORD MARK

2.
Bootstrap Card

/' 59 |60 79

INITIALIZES GCARD READER (CONDITIONS CARD READER !

70 READ IN “SPECIAL", HONEYWELL, MODE) PDT-READ A CARD

SETS PUNCTUATION IN 80- CHARACTER AREA pCB - TEST BUSY
8- BRANCH TO
LOCATION |

SETS RECORD MARK IN LOCATION 60

(This routine
BRANCHES TO LOCATION 60 remains in bootstrap

area during entire
loading process)

The Bootstrap Card is the first card in the object program. The Bootstrap Card sets
punctuation in the 80 - character area that will allow subsequent cards to be read. A
record mark protects the routine which the Bootstrap Card sets into the area beginning
at location 60. A read routine remains in this area during the entire loading process.

LESSON VI. EASYCODER PROGRAMMING

80. The assembly control statements discussed so far are: PROG, ORG, ADMODE, MORG,
and EQU. The remaining assembly control statements are CEQU (Control Equal), EX
(Execute) HSM. (High Speed Memory - printed listing of memory), CLEAR, and END.

CEQU is similar to EQU in that it is used to assign a symbolic _ 7] d:d_, to the entry

in the 8 T mri Dy field.

91. The END statement is always the last entry in a program. Immediately preceding the
END statement, CLEAR statements may be written. As implied by the name of this op.

code, its purpose is to . R _ the memory area designated in its operand field.

102. Constants are limited to a maximum of forty memory locations. When DC or DCW ig

used to define a constant as blanks, a number sign, #, is written in column 21 of the op-

erands field. # is followed by the number of blank memory locations desired. Indicate that

fifteen blank memory locations are to be treated as a constant without a word mark and

that twenty blank memory locations are to be a constant with a word mark.

Tg ocation | OPEREON OPERANDS
7(8 | 14115, 2012) 1 i L Lo | N Lo 1 | 62
1 ch n d \ r 1 1 1 1 1 L4 a4 1 | 1
1 DIc V\) ﬂ 1 d I 1 1 1.4 | IR Y 1 i1 1 L P
113.
/ 1 59[{60 ———+——= 79[80
. 2
‘ ; CLEAR ROUTINE — CLEARS MEMORY AREAS
e Clear Card SPECIFIED BY PROGRAMMER
BRANCHES TO LOCATION 60

/I 59 |60 79 |80

SETS PUNCTUATION FOR OBJECT PROGRAM
LOADING ROUTINE

w

CHANGES A ADDRESS OF BRANCH /NSTRUCTIDN

Load Card BRANCHES TO LOCATION 60

181

LESSON VI. EASYCODER PROGRAMMING

e —

80.
TAG
OPERANDS
91.
CLEAR
102,
rg1 LocaTion | OPERATION OPERANDS
7|8 | 1415, 20]2) { i | R L 1 L 52
I ch #15 1 L 1 1 Lo ¢ 1 A, ! |
. . jpew 20 . L e b
NOTE: Tags and L or R in column #7 may be used with
DC or DCW statements as desired.
113. A E

—Oo——©

[] |
@){xxxxxxxxxxxxxxxxs

®{XX

! OBJECT PROGRAM ENTRY (‘4: ("g) LOAD 59)€0 READ CARD 80
4 ROUTINE ROUTINE
ADMODE 3
ADMODE 2
RECORD MARK
WORD MARK sgc;r
SET 8y 1040
CARD L BOOTSTRAP
CARD

Bootstrap Area After Load Instruction

The object program card immediately following the Load Card is read into the first area,
and a word mark is assigned to the op code. The first data to be read on the present card is
the self-load routine (A).” Execution (B) of this routine loads the entry into the memory area
specified in this particular routine. Location 60 (C) contains a PDT instruction which allows
the read routine (i.e., PDT, PCB, and B) beginning at this location to be executed (D). The
following card is then read (E). Subsequent cards are self-loaded in this manner, until either

an End card or an EX card is encountered by the machine.

182

LESSON VI. EASYCODER PROGRAMMING

81. CEQU is used to assign a tag to an octal value written in the operands field. You re-
cently saw an octal value being appended to a CAM instruction where it specified the mode

of addressing. Tags are often assigned to octal values that are used as __ \J BRI anJT

characters. Since the purpose of this type of character is control, it is appropriate to use

a__ tedd statement when assigning a tag.

92. CLEAR is used to specify an area of memory to be cleared of punctuation and data bits
before loading of the program. Limits of the area to be cleared are specified in the oper-
" ands field as TWO direct (not indexed nor indirect) addresses. This first direct address
specifies the lowest memory location to be cleared. Consequently, the <ecc (/O
Drpee] Fovecss SPECVETES the HIEHEST
Yn e“r‘n?(,(N L./c e tobe . . =#rED .

103. Constants may also be specified as either alphanumeric, decimal, binary, or octal.

Alphanumeric constants may be written surrounded by @ symbols. A constant written

in this manner can contain any symbol (iq;%pding spagg) except the @ smbg_l. After the

example below, write a DCW with UNIT #6 as a constant.

OPERATION
Ig LOCATION CODE OPERANDS

7i8 | 1415, 20/2)
. DC. . . DEDUCTABL s ! L

1 1 1 J 1 L Lo ua . Ly 1
+

| L | I | PO IR TS U VPR BT S SR |

114 Instruction card

/ 48149
| Tl 44)as 59|60 80

INSTRUCTION OPERAND LOAD SYMBoLIC
ROUTINE CODING

BRANCHES
70
LOCATION

60

183

LESSON VI. EASYCODER PROGRAMMING

81.
VARIANT
CEQU
NOTE: Instructions may use variant characters sometimes synonymously
referred to as "control characters."
92.
SECOND DIRECT ADDRESS SPECIFIES
HIGHEST MEMORY LOCATION CLEARED
103.
Location | OPERATION OPERANDS
2 . s, 20021 [S R T BN B L L
. be TAX DEDUCYABLER U -
. DCW, UNIT#6@ | L T S |
114. Constants
48|49
| 44|45 5960 80
CONSTANT Loap SYMBOLIC
ROUTINE CODING
BRANCHES
ro
LOCATION
60

In a Define Constant without Word Mark statement, a Clear Word Mark instruction (CW)
is placed on the card by Assembly. This instruction clears the word mark set into the area
by the Load Card, since the DC statement specifies that this word mark is not desired.

184 .

LESSON VI. EASYCODER PROGRAMMING

82. Instructions which use a control field may require one variant character or a group of
control characters. As you saw previously, a single variant character is written as 2
octal digits. Consequently an instruction with a control field of three characters will
require a total of A octal digits. This is the maximum number of octal digits that
may be written in the operands field of a CEQU instruction. Refer to the illustration on

the answer side of this frame for a CEQU example.

93. Addresses in the operands field of a CLEAR instruction should not be indexed or

I 9 1Rec . However, they may be written as either absolute or symbolic addresses

because these are considered to be DT Kec /‘ addresses.

104, If the @ symbol is desired within the constant, for example UNIT # 6@ $1.20, another
character not in the constant.may be chosen to surround the constant. That is, any

character exceptblank -, +, #, or the digits 0 - 9. Define UNIT # 6@%$1.20 as a word

marked constant.

rg Location | OPETON OPERANDS
7

8 L 14115 20[2) L | L1 i & - 1 " | L 82

¢
I DICN A#é@SLa?\OA: L 1 R Lo i 1 1

115, 48 |49
i 44|45 59|60 ———74|7576|77-80)
BRANCH TO READ ROUTINE BRANCH To | SYMéoLic | Ex | nOT
LOCATION CODING useD
SPECIFIED
8Y THE
EXECUTED CARD PROGRAMMER
/ 48149 .
' 44|45 —=59|60 74lrs 79|80
ENDAA| 9
BRANCH TO
0BJECT
PROGRAM
orR
HALT
END CARD

185

"LESSON VI. EASYCODER PROGRAMMING

82. TWO (2)

SIX (6)
LocaTion | OFERATION OPERANDS

8 | 1a]i5, 2021 .)
OFLOW_ _ICEQU. F#FICgs : . - e i) L
L 3 SUB?-\loFLovvl L |

The coding above illustrates a symbolic tag used in place of a variant character.
CEQU directs assembly to equate the tag OFLOW of octal 05. The second line of
coding contains a branch instruction. This specifies that the program should branch
to location SUB2 if the condition indicated by the variant character (OFLOW) is
present. Variant character 05 specifies that an arithmetic overflow condition should
be tested. The coding (as an octal constant) will be explained when constants are

~ | =;

62|

i L ek e . 1 It " "

L a Lo I t

discussed.
(RETURN TO FRAME 83, PAGE 165.)
93.
INDIRECT
DIRECT
(RETURN TO FRAME 94, PAGE 165.)
104.

NOTE: Any character except blank, -, +, #, or the digits 0-9, and
not appearing in the constant, could have been chosen to surround the

constant.

ocation | OPERIION OPERANDS

~ [x:
@

1415, 20]2i |

. Dew aUNITH#6@4),.20= T .
(RETURN TO FRAME 105, PAGE 165.)

| B [L

115.

Page 187 illustrates an efficient utilization of two and three character addressing.
Page 188 is provided for future reference regarding CAM and its variants.

Continue to Page 189,

186

LESSON VI. EASYCODER PROGRAMMING

EXAMPLE:
The following illustration shows the coding which provides entry to and exit from
a subroutine to be executed in the two-character addressing mode. Both an
ADMODE statement and a CAM instruction must be coded at the be,gilv'xnin‘gv and
end of the subroutine. However, only the CAM instructions are stored in the main
memory. Since CAM instructions have no address portions, the rr@nper in which

they are stored is not affected by an ADMODE statement.

MEMORY
MAIN PROGRAM
(3 Chor oddressing — |———— —— N?JAMR:ER E{g LocaTioN | OPERATION OPERANDS
mode) 1 213 4ls]s[7]s N 185, 20[21 |) N
|e2lgig 1 B SUB. ., 1 . .
:|g2 @2l | [RETURN, |,
ol et e
Y"I' "if iy, | NINY. 214 1 1 1 1
Ig2i9¢] ADMODE |2, | ! L |
o|gelzgig | [sue, CAM |28 , Lt
SUBROUTINE N
(2 Char addressing
mode)
»|g324lg . .. |ADMODE3 . l 1 1
»|$3254 , CAM 8¢ . L
2|g3)2618 . . RETUR) l 1 1

Figure 16. Two and Three Character Addressing

187

LESSON VI. EASYCODER PROGRAMMING

CAM| CHANGE ADDRESSING MODE

FORMAT OP CODE A- ADDRESS B-ADDRESS VARIANT

FUNCTION

The Change Addressing Mode instruction is used in conjunction with the ADMODE
agsembly control statement.

The CAM instruction directs the machine to interpret the address portions of all
subsequent object program instructions as either two, three, or four-character
addresses. The addressing mode is specified in the variant character of this

instruction:
v = 20 for two-character addressing,
v = 00 for three-character addressing,
v = 60 for four-character addressing.

The ADMODE statement directs the Assembly Program to assemble the address
portions of all subsequent source program instructions as either two-character
addresses or three-character addresses.

WORD MARK: Word marks are not affected by this instruction.

TIMING: 8 microseconds.

ADDRESS REGISTERS AFTER OPERATION

I - Add. Reg. A - Add. Reg. B - Add. Reg.

NXT AP BP

NOTE:

1. The CAM instruction is included in the instruction repertoire of H-200 systems
with a memory capacity greater than 4, 096 characters or as part of an Advanced
Programming option. Programs written for such systems must be coded so that
the first instruction executed in the object program is a CAM instruction. As a
general rule, the number of CAM instructions and ADMODE assembly directives
in a program will be équal.

ASSURE THAT FRAMES 1 - 115 HAVE BEEN COMPLETED BEFORE

CONTINUING TO PAGE 189.

188 - .

LESSON VI. EASYCODER PROGRAMMING

If the H-200 system with which you will be working does not utilize EXTENDED EASY-
CODER, continue to page 190.

EXTENDED EASYCODER

Information from preceding pages applies to both Easycoder and Extended Easycoder. The
‘capabilities of Extended Easycoder are available with larger system configurations, thereby
providing utilization of literals, an additional data formatting statement, and six more assem-
bly control instructions.

DATA FORMATTING - DEFINE AREA - DA

A specialized area within the main memory can be defined and reserved by the DA state-
ment. The DA statement can define fields and subfields within the reserved area, and may
also define two or most contiguous areas if these areas are identical in format. The pro-
grammer uses a DA statement to provide: (1) The size and name of the reserved area, (2)
The number of identical areas (if more than one) which should be reserved, (3) The names,
lengths, and relative positions of the fields and subfields within the reserved area(s).

ASSEMBLY CONTROL STATEMENTS

Six additional assembly control statements are available with Extended Easycoder, Some
Easycoder statements have been expanded for Extended Easycoder. For example, PROG as
well as the SEG statement, can identify a segment within the program; an EX statement ter-
minates a program segment.

Segment Header - SEG ~ This statement defines the beginning of a por-
tion of a program loaded into memory and executed as a unit. If a pro-
grammer does not provide segment identification, Extended Easycoder
Assembly Program automatically generates SEG statements at the begin-
ning of the program and immediately following each EX statement.

Literal Origin - LITORG - Similar to the ORG statement, the LITORG
statement directs assembly to assign sequential locations to previously de-
fined literals.

Skip - SKIP - This statement controls vertical spacing of the assembly
printed program listing.

Suffix - SFX - This statement is used by the programmer principally
to identify all tags in a given program segment by appending a unique single
character suffix to each tag in the coding that follows.

Repeat - REP - This statement is used in conjuction with the constants
DC and DCW, and it directs the Assembly Program to repeat the following
constant the number of times specified in the operands field.

Generate - GEN - This statement directs assembly to repeat the follow-
ing instruction a specified number of times, incrementing or decrement-
ing operands as specified by the operands field of the GEN statement.

189

LESSON VI. EASYCODER PROGRAMMING

EASYCODER HIGH SPEED MEMORY DUMP ROUTINE

One of the statements which the programmer may use to direct the assembly of an Easycoder
program is the Memory Dump statement - HSM. It must be coded immediately preceding the
Clear and End statements in the source program. This statement directs the Assembly Program

to produce a punched card deck before the object program deck is punched.

THE PROGRAMMER:

1. Writes the mnemonic code (HSM) in the operation field of the coding form.

2. May write an address (which must have been previously defined) in the lo-
cation field. This address specifies the beginning location of a memory
area into which the memory dump routine will be loaded. If the location
field is left blank, the routine will be loaded into the area following the
location assigned to the last character in the object program.

3. Writes two addresses, separated by a comma, in the operands field.
These addresses specify the first and last locations of the memory area
whose contents are to be listed.

The printed listing which results from the execution of the memory dump routine (the
memory dump) should not be confused with the printed listing produced by the Assembly Program
as part of assembly (the program listing). The memory dump is a listing of the actual contents
of core memory. The program listing, on the other hand, is a listing of the object program as
it is punched on the object deck.

ALPHA OCTAL
00200 JOMN JOS EPH DOE 2396 NOR TH MADIS 4146304515414662 2547301524462515 0203110615454451 6330154421243142
1 1 1 1

00240 ON STR, PHILADEL PHIA 25 PENNSYLV A6A8156263513315 A730314321242543 4730312115020515 4725454562704368
1 2 1 2

00300 ANIA C S 03426« 1632 62 47,37 01 2145312115231562 1500030440020640 0106050213150602 0!01!303071!0031
a1 1 1 LIR R 1
L J1 I Jl - J L J | J L |
4 GROUPS OF 8 ALPHA CHARACTERS 4 GROUPS OF /6 OCTAL CHARACTERS

Format of a Memory Dump

Interpreting a Memory Dump - The H-200 memory dump routine edits and prints data and
punctuation bit contents of the specified memory area. The dumped output is printed, 32 memory
locations per line, in both its alphanumeric and octal representation. (Thirty-two memory
locations are represented by 32 alphanumeric characters plus 64 octal characters.) A code
number is printed directly beneath each location which contains a punctuation bit, designating
punctuation in the following manner: 1 = a word mark, 2 = an item mark, 3 = a record mark.

The leftmost four characters in each printed line represent the octal address of the first
memory location whose contents are printed on that line. This is followed by the 32 alpha
characters, divided into groups of eight, and then the octal representation of these 32 charac-
ters, in four groups of 16. The dump illustrated above begins at decimal location 0128 which,
in octal, is memory location 0200.

190

LESSON VI. EASYCODER PROGRAMMING

ASSEMBLY PROGRAM PRINTED LISTING

A printed listing of the assembled program contains symbolic source program statements,

assembled (machine-language) equivalents, and error codes. Headings are printed on the first

page of the listing. The four types of statements that may appear are symbolized below:

PRINT
POSITIONS
CONTROL Si
INSTRUCTIONS| SYMBOLIC CARD IMAGE CHARAGTERS E §
5
CONSTANTS SYMBOLIC CARD IMAGE ASSEMBLED CONSTANT g9
wo
52
ASSEMBLY SYMBOLIC CARD IMAGE €9
REMARKS SYMBOLIC CARD IMAGE
Figure 17. Program Listing Format
Instructions
1-62: The symbolic source program entry is printed within these print positions. Any
statements written in these positions on the coding form, are printed in this
area.
65-70: This area contains the actual memory address of the assembled instruction
(the octal address of the leftmost character).
73-74: The octal representation of the op code is printed in this area.
77-82: The octal representation of the A-operand is printed in this area.
85-90: The octal representation of the B-operand is printed in this area.
93-112: This area contains the octal representation of the control characters, if any, of
the instruction. Up to six control characters, separated by blanks, will be
: printed.
116-120: The error codes, consisting of a series of five zeros and/or numbers from

1to 9, are printed in this area. If an error exists, a zero will be replaced by
a number which denotes the following: :

Phase I error.
Phase II error.

1
2
3 = Tag table is filled; tag was not entered.

The position in which the number is printed among the five zeros also has particular signifi-

cance. If the number is printed in place of the:

First zero
Third zero

An example

= error in location field. Second zero = error in op code field.
= error in A-operand field. Fourth zero = error in B-operand field.
Fifth zero = error in control character

of this error coding is the following: 30100 This character that a location field

tag was not entered in the tag table. An error was detected during phase I in the A-operand field.

191

LESSON VII

EASYCODER PROGRAMMING

193

LESSON VII. EASYCODER PROGRAMMING

OP CODE DSI-214A

, FUNCTION TIMING PAGE N
Mnemonic (memory cycles) 0

Binary Add N+ 14Ny +2Np
BS Binary Subtract Ni++Ny+2N,
Nj+4 24Ny +2Np, (no recomplement)

A Decimal Add
ma Nij+ 2Ny + 4Ny (recomplement) 89
N{+2+Nw+2Np (no recomplement)
S Decimal Subtract { 91
Nj+ 24Ny +4Np (recomplement)
ZA oo Zero and Add Ni+ 14+Ny+Nyp

r4) ee Zero and Subtract Ni+1+Nw+Np
3l EXT Extract{ Logical Product) Nj + 1+ 3Ny 100

30 HA Half Add (Exclusive Or) Ni+ |+ 3Ny 101
33 C Compare Ni+ 24 Ny+Np 102
32 SST Substitute Ni+4 104
55 BCE ee Branch if Character Equal Ni+4 105
65 B Branch N;+2 107
65 BCT Branch on Condition Test Nj +2 108

BCC Branch on Character Condition Ni+ 4

_ . CONTROL INSTRUCTIONS
SwW Set Word Mark Ni+3
sl Set Item Mark Ni+3 17
cw Clear Word Mark Ni+3 e
cI Clear item Mark Ni+3 19
H Halt Ni+2 120
40 NOP No Operation N; +2 121
43 CSM ee Change Sequencing Mode Ni+3 122
42 CAM ee Change Addressing Mode Nj+2 123
4| RNM Resume Normal Mode N +3 125
14 MCW Move Character o Word Mark Ni + | + 2Nw 127
10 EXM | ee Extended Move Nj + I+ 2Ng 129
60 MAT se Move and Translate Nj+ 3Ny 131
15 LCA t;:;: ﬂ':::c'"s fo A-Field Ni+ 1+ 2Ng 133
Store Control Registers Ni+ 5 135

ee | oad Control Registers Nj+5 136
® Move Characters and Edit l

Ni+ | + Ng+2Np+2X+2Y

140

144

Ni+1 (no branch) 146

Ni+2 (branch)

Peripheral Control and Branch

* |ndividually optional instructions.
e Optional instructions contained in the Advanced Programming Instructions option. In addition to the instructions listed above, this
option contains the following capabilities:
I. Indexed addressing
2. Indirect addressing
3. The ability to test any variant character configuration with the Branch on Character Condition instruction
4, Read reverse capability on 204B half-inch magnetic tape units
NOTE: The Change Addressing Mode instruction (CAM) is available in systems which include either the Advanced Progromming Instructions
option or a memory capacity greater than 4096 characters

194

LESSON VII. EASYCODER PROGRAMMING

INTRODUCTION

This lesson presents instructions having some degree of similarity with your previous
systems instructions. For example, SCR - Store Control Register has the same general pur-
pose as SAR and SBR instructions. Of course, the H-200 may utilize or store any of its 16
control registers. This lesson also discusses the H-200 Branch instruction, and explains the

versatile use of variants and alternate formats.

The following lesson introduces instructions previously outside the limits of your exper-
ience or prior equipment ability. PDT - Peripheral Data Transfer is an example of the type
of instruction explained in Lesson VIII. A 1401 system performs operations serially and only
one at a time. Because the H-200 provides simultaneity of operations and has multiple read/
write channels, its peripheral instructions are more powerful than those to which you are
accustomed. Similarly, Binary Add and Binary Subtract instructions are beyond the capabilities

of a 1401 system: Consequently, they are also explained as part of Lesson VIII.

Page 194 provides an index of octal or mnemonic Op. Codes and corresponding memory
cycle timing formulas. The column titled "Programmers' Reference Manual' is included for

your future utilization of manual DSI 214A. The Honeywell 200 Programmers' Reference

Manual is not required in order to complete either Lessons VII or VIII. Those instructions
not included in Lessons VII or VIII (A, S, ZA, ZS, SW, CW, H, NOP) generally parallel

those to which you are accustomed.

DECIMAL ADDITION

Add instructions perform either a true add or a complement add, depending upon the alge-

braic signs of the factors as shown by the zone bits (B&A cores). The zone bits in the units

position of a field indicate the sign of the field.

DECIMAL SUBTRACTION

The Subtract instruction is analogous to the Add instruction with two exceptions:

Exception 1. Before the operands are combined, the sign of the A operand is changed.
Thus, if the initial sign of the A operand is equal to that of the B operand, the operands are
combined by the complement add. If, on the other hand, the initial sign of the A operand is
not equal to that of the B operand, the operands are combined by a true add.

Exception 2. If the sign of the A operand is negative and the sign of the B operand is
. positive, the sign of the result is stored in the B field with the same zero bit configuration

that was originally in the B field. Otherwise, the sign of the result is "normalized".

LESSON VII. EASYCODER PROGRAMMING

The result of any decimal arithmetic operation is stored with all zone bits, except those in
the units position, set to zero. The zone bits in the units position of a field indicate the sign of

the field according to the conventions shown in the table below:

A field 00 }

00

11 11

01 01
B field 00) _

11 10

01
Result Zone bit configu- 10 — — 10 —» —

ration of B field 01 — + 01 — -+
Type of | True True Complement Complement

Add

Sign Convention Table

(+A) + (-B) = -R

{A OPERAND) (B OPERAND)
+0078 AUGEND

-0090 ADDEND
convert to 9922 AUGEND
tens complement l-‘OO\IZ SUM

sign of
carry indicates true sum; B operand
recomplementing unnecessary

Complement Add With No Recomplementing

(+A) + (-B) = +R
(A OPERAND) (B OPERAND)

+0178 AUGEND -0090 ADDEND
convert to 9822 AUGEND
tens complement 0-9912 SUM
no carry indicates sum / N\

is stored in its tens- recomplement and
complement form; change sign
recomplementing is

necessary

+0088 TRUE SUM

Complement Add With Recomplementing

INDICATORS

Two indicators are set at the completion of every decimal arithmetic operation: the over-
flow indicator and the zero balance indicator. If a carry is generated beyond the limit of the
B field, the overflow indicator is set to "overflow'; if such a carry is not generated, the in-
dicator is unchanged. The zero balance indicator signifies either a zero or a non-zero sum.
When a decimal operation produces a result equal to zero (regardless of the sign), the zero
balance indicator is set to '"yes''; when the result of the operation does not equal zero, this
indicator is set to "no." A Branch instruction automatically resets the overflow indicator;
the zero balance indicator is not affected by the Branch instruction used to test it but is reset
only by the next decimal arithmetic instruction.

196

LESSON VII. EASYCODER PROGRAMMING

In a preceding lesson, it was pointed out that certain capital letters separated by /'s
provide a convenient method for expressing instruction formats. Remembering that the
letter F means "function' and therefore, symbolizes an op. code, express the following

format:
OP. CODE A ADDRESS B ADDRESS

F /B 8

0P CODE A ADDRESS B8 ADDRESS

Format o« [IS W
-
=

C COMPARE

Format

Format

It is important to remember that the data in the ;ﬁt: field is compared to an equal
number of characters in the ﬁ field. The B operand word mark terminates the opera-

tion unless A contains fewer characters. In this case, the 6 operand must have a

ANu &R AV, , because it is shorter than the Q? operand.

31 ClI CLEAR FFEM MARK OP CODE A ADDRESS B _ADDRESS
. WORY

CW Format a I

[| []
Format o g .
Format . e

Format a: The locations specified by the A and B addresses are cleared of word marks.
The data at these locations is undisturbed.

Format b: The word mark at the location specified by the A address is cleared. The data
at this location is undisturbed.

Format c: Word marks are cleared at the locations specified by the contents of the A-and
B-address registers. The data at these locations is undisturbed.

Clear the word mark at the location tagged ELEC 1.

OPERATION
rg LOCATION SObE OPERANDS

78 L a1y 20/21 . 1 | L | P T | 1

L C‘/\/ E‘;ECul. ! L 1 L . s 1 1

46. Now, take a closer look at the first three bits and answer the following questions.

1. When checking for a WM (108 = 0010002), a branch occurs if a WM is present. Would a
branch occur if a RM (IM & WM) were present?
(yes/no)
2. When checking for an IM (208 = 0100002), a branch occurs if an IM is present. Would a

(yes/no)

3. When checking for a RM (IM & WM) a branch occurs if a RM is present. Would a branch

(yes/no)

branch occur if a RM (IM & WM) were present?

occur if only an IM is present?

197

LESSON VII. EASYCODER PROGRAMMING

1.
F/A/B/
16.
B
A
A WORD MARK
B
31.
W OPERATION
R LOCATION CODE OPERANDS
7i8 A 14115, 20[21 | I Lot ind L PR i i 52
L W ELECY , L) . . ! |
46.
#1. YES
#2. YES
#3. NO

If any of your answers are incorrect, you can go back and find the reason some other
time. Now, CONTINUE TO FRAME 47.

198

LESSON VII. EASYCODER PROGRAMMING

2. Certain instruction formats also indicate that one or more Variant characters are requir-

ed. Express the following format with letters and /'s.

OP CODE A ADDRESS B ADDRESS VARIANT

- -

17. With a compare instruction, data characters from the B field are compared bit by bit to
the same number of characters of the A field. If the A operand is longer than the B operand,
the characters exceeding the word mark in B are not processed.

Three indicators may be turned on by the compare instruction. These are the:

LLOW COMPARE (B<A)

EQUAL COMPARE (B = A)

HIGH COMPARE (B>A)

These indicators may be tested by a special branch instruction. The next compare resets

the indicators.

32. In addition to the word mark, the H-200 provides for two more punctuation marks. They
are the 7 7sw mark and the record mark.

A group of consecutive characters, treated as a unit, is a word. An instruction address
and a word mark define the right and left boundaries respectively. An item, (one or more

consecutive words) is defined by an instruction address and an 17 %] mark.

47. The preceding questions may have been difficult to answer. It is sufficient to be able to
answer the following:
The high order bit (leftmost) is always a zero without Adv. Prog. Instructions option.
Consequently, only the bit indicated is tested and if a RM (both IM & WM) is present, a

will occur. In other words, if only one bit is to be tested, the presence of

the non-tested bit will not prevent a branch.

. 199

LESSON VII. EASYCODER PROGRAMMING

2.
F/A/B/V/
17. NO ANSWER REQUIRED
Both fields must have exactly the same bit configurations to be equal. For example,
plus zero is not equal to minus zero. (+'0'" 010000, -''0" 100000)
Comparison results and associated branch conditions are listed below:
| COMPARISON RESULT
B< A Low Compare
B=A Equal Compare
B< A Low or Equal Compare
B>A High Compare
B £A Unequal Compare
B> A High or Equal Compare
32.
ITEM
ITEM
47.
BRANCH

200

LESSON VII. EASYCODER PROGRAMMING

The format ¥/A/B/, (F/A/B/V/ when appropriate) is often referred to as, "format a."
or 'the complete format of an instruction'.
Instructions designated as '"format b." do not contain a B address.

Express format b.
for an instruction without a variant and an instruction with a variant. F /}}/ p//}/|//

18.

It was stated previously that arithmetic operations set two indicators (zero balance and
overflow).

These condition indicators are tested by a special branch instruction.

Obviously,
an unconditional branch instruction is not sufficient.

An instruction to Branch on the Con-
dition under TEST is required.

Appropriately, the mnemonic op. code for this instruction is BCT. The letters BCT stand
for (JRBncE on_ Cowys-ited 1EST

33.

Grouping words to form an item simplifies data transfer within main memory and reduces
the number of instructions needed to move consecutive words. Boundaries of the item to be
transferred are specified by the programmer using the

T &S 7R o Friey e Sy
and an | mark.

48.

The proper descriptions of the following BCC variants are
10 g = 001000 2

Branch if martrk or mark.
208 = 0100002 Branch if mark or mark.
308 = 0110002 Branch if mark.
0 = Test only | 1 = Test 1= Test
the bit(s) item word
indicated mark mark

201

LESSON VII. EASYCODER PROGRAMMING
3.
Formatb. F/A/
Formatb. F/A/V/
18.
BRANCH CONDITION TEST
33,

INSTRUCTION ADDRESS
ITEM .

48.
Without the Adv. Prog. option, a BCC may test for the three conditions above or any of

nine other conditions. Zones may be tested for signs or comginations of punctuation and
Without Adv. Prog. option, bits V6 and V1 must be zero. Conse-

zones may be tested.
quently, 778 = 1111112 (among fifty-four other variants) would not be valid.

Branch if WM or RM
Branch if IM or RM
Branch if RM

V=108 = 0010002
V=208=0100002
V=308 =0110002

202

LESSON VII. EASYCODER PROGRAMMING

4, Arithmetic instructions of the format F/A/ are said to ""duplicate A'". That is, the A op-

erand is arithmetically added to itself.

In other words, saying that the format F/A/ of an AR T meie instruction

" DgP- Lo e A'" means that the A operand is doubled.

19.

BCTJ BRANCH ON CONDITION TEST

QP CODE A ADDRESS B ADDRESS VARIANT

Format g -

The op. code states that a branch is to occur if the condition being tested is present.

Therefore, the A address specifies where the 2 v is to go, if the condition to

be tested by the \/ﬁ R T character is present.

OP CODE A ADDRESS B ADDRESS

Format a. Il I

Formatb. [l NN
Format c. |

34,

SET ITEM MARK

Format a: An item mark is set at the location specified by each address.

Format b: An item mark is set at the location specified by the A address.

Format c: Item marks are set at the location specified by the contents of the A and B
address registers. (Chaining A and B)

Set an item mark in locations PAY, and PAY + 80. Set an item mark in location ELEC 1.

5| LocaTioN o C . OPERANDS
78 4 MIEI N 2021 Y 1 L { N R | L 1 N | LSZ
. Z PRy e, | e 1 -
b B §
| RN 1-(" EL‘F—(A'K‘ 1 o - S P S GRS SRS | 1

49, With Advanced Programming Instructions option, a BCC variant is unrestricted. That is,

008 to 778 are valid. Use the chart below and construct any variants from 00 - 77. Describe

what each variant wilJ; /tgst.
EXAMPLE: 4] causes a branch if NO PUNCTUATION AND B BIT IS I.

causes a branch if

.causes a branch if .

—38

0 = Test only the 0 = Test only the
bit indicated Item Word bit indicated B bit A bit
mark mark
1 = Test both bits 1 = Test both bits

203

LESSON VII. EASYCODER PROGRAMMING

4.
ARITHMETIC
DUPLICATES
19.
BRANCH
VARIANT -
34,
g LocaTion | OPFRaTioN OPERANDS
7|8 | 14]15, 20[2) | | | L L | N L 82
! S|I PAY‘p,AY+8°| e s () P A
) ST ELECA,) e n - . : A
49,

ANY of sixty-four variants possible for a BCC are showh by the two tables on the front
and back of frame 50. Check whatever variants you constructed by referring to these tables.
NOTE 1. An X represents any octal digit. If X is 0, only the character condition de-
scribed will be tested; if X is a digit from 1 to 7, the condition described and the condition

indicated by the corresponding octal digit in the other table will be tested.
NOTE 2. WITHOUT ADVANCED PROGRAMMING INSTRUCTIONS OPTION - The valid
BCC variants are octal: 00, 02, 06, 10, 12, 16, 20, 22, 26, 30, 32, 36.

NOTE 3. The instructions constituting the Advanced Programming Instructions option

are identified on the index page 194.

LESSON VII. EASYCODER PROGRAMMING

5. In non arithmetic instructions, the format F/A/ may indicate "half chaining'. That is,
the operand at the A address will be involved with the B operand whose address is currently
in the B address register.

Consequently, the format F/ can indicate "full chaining''. As its name implies, the A
operand whose address is currently in the _fi_ DI 0D LASTER is in-

volved with the L ¢ PR N whose address is currently inthe B Abdr. =

20. Suppose that the octal variant 6@ is written with a BCT instruction. Convert octal 60 to
six bits and compare it to the variant table below.

OCTAL 6 ¢
BINARY 7~/
— e\ e

VARIANT BITS

1=Test
zero bal zZero overflow high equal low
or balance compare | compare | compare
overflow
or Y- S
compare TN
Which indicator will be tested ? \
35, Setting item marks does not disturb the data stored in that location. I;;[owever, if you set
an item mark __ in a location containing a word mark O , a \3\\‘.‘: Cdw ‘mark O

will result. Both SW and SI instructions are required to set a Q .

50.
0X Any punctuation bit configuration.
1X Word mark bit B character is 1 (either WM or RM present).
2X Item mark bit of B character is 1 (either IM or RM present)
3X The character at B contains a record mark.
4X The character at B contains no punctuation mark.
5X The character at B contains a word mark.
6X The character at B contains an item mark.
77X The character at B contains a record mark. (same as 3X).

205

LESSON VII. EASYCODER PROGRAMMING

5.
A ADDRESS REGISTER
B OPERAND
B ADDRESS REGISTER
20.

ZERO BALANCE indicator is tested by octal variant 6¢

VARIANT BITS 1 1 0 0 0 0

1=Test of
Zero bal.
or zero overflow high equal low
overflow balance compare | compare compare
or
compare

The first 1 shows that either zero balance or overflow or compare indicator is to be

tested. The second 1 shows that it is the zero balance indicator that is being tested.

35.
RECORD
50. r Condition
X0 Any zone bit configuration.
X1 The A bit of the character at B is 1.
X2 The B bit of the character at B is 1.
X3 The B and A bits of the character at B are 11.
X4 The B and A bits of the character at B are 00.
X5 The character at B contains a positive sign (the B and A
bits are 01.)
X6 The character at B contains a negative sign (the B and A
bits are 10).
X7 The B and A bits of the character at B are 1l (same as X3).

206

LESSON VII. EASYCODER PROGRAMMING

6. An unconditional branch instruction causes the program sequence to

% A NCE

point at which it is encountered to the single address written in the operands field.

from the

Express the format of an unconditional branch instruction and state why that is neither
"duplicating A" nor "half chaining". _F /5[

ke o Moa RECY IV, 7S . .

: H At CH’"“%”M“/}V’X\ vau\{ \\{ SEIIPAN ;{'é%- f-ﬂ\;,\Lt Erar] Q’,{/Q 7 f;/é,‘_e}. %

21, If the 1 bits show that the zero balance indicator is being tested, would this imply that a
zero balance has occurred?

Why? AR R RSN SO » 9 A W AR YW . o

36.

CIl | CLEARITEM MARK

CI uses the same three formats as CW. A Clinstruction will not disturb the data or
affect word marks in locations. Clear item marks from locations PAY and PAY + 80,

clear item mark from location ELEC 1.

Location | OPON OPERANDS

] | 14)15, 20[21 |

~ | X

)
ml"‘[q 1 - i N L 1 1

EL ¢ 1 L L e L L

T

~
1 i I
A

5. Use the format F/A/B/V/, where V:ZO8 (checking for an item or record mark) to write

an instruction as follows:

Branch to address 384 if the character at 402 has the variant specified condition.

wocaTion | OPERbION OPERANDS

207

LESSON

VII. EASYCODER PROGRAMMING

6.
BRANCH .
F/A/
UNCONDITIONAL BRANCH IS NOT AN ARITHMETIC INSTRUCTION, THEREFORE,
BRANCH F/A/ DOES NOT "DUPLICATE A",
"HALF CHAINING'" IS NOT IMPLIED BY BRANCH F/A/, BECAUSE THE ADDRESS
SPECIFIES THE ADDRESS FOR THE BRANCH.
(or equivalent answers.)
21,
NO
. i
THE VARIANT CHARACTER SPECIFIES WHICH CONDITION IS TO BE TESTED,
NOT THE RESULT OF THE TEST.
1=Test of
zero bal.
or zZero overflow high equal low
overflow balance compare compare compare
°r (>) (=) (<)
compare -
36.
g LocaTion | OPERON OPERANDS
718) walis, . 20l NN | L - L " T
. cI_ . PAY ,PAY¥80, . . e 1
1 |1 ELE c 1J_L 1 1 1 Lo 1 1 1
51.
LocaTion | OPERATION OPERANDS
) R 1405, 2021, 1 1 Loyt R Lo I | L 82
L BCQ 384’- 4—1%&@1 1 (— Loy il PR {

LESSON VII. EASYCODER PROGRAMMING

OP CODE A ADDRESS B ADDRESS VARIANT

The op. code of an unconditional branch is the mnemonic B. This type of branch is used

Word marks are not affected.
unN con 017

Format:

to interrupt program sequence and continue at another point.

Because no specifie condition is being tested, this type of branch is

Write a branch of this type to the location tagged SUB 6.

PES
Fg‘ LocaTion | OPERATION

748 1 alIS, 2024 L L L L PRI W L P L

1 ‘S S\}ﬁdl; ! 1 L . Lox 1. L 1 I 1

OPERANDS

22. Refer to the chart below, and note that three compare indicators may be tested by a pro-

perly constructed variant. For example, octal 4l is binary 100001. This will test the

et vaPYxm indicator. A branch occurs if B<A construct the octal variants
i to:
Branch if B is = or<A Yy 8 (100011'2)
N Branch if zero balance or B>A (o
1=Test of
zeto bal, | .
or Zero overflow high equal low
overflow balance compare compare - compare
or
compare - >) (=) <)
37. Recall that the 9 cores in a memory location are in the following order:
'~ ZONES
or
SIGNS
P IM WM P A 8 4 2 1
D—o——0—0—0—=0
—O—=D av),) W
A A ——— - -~ _/
PARITY PUNCTUATION CHARACTER
Considering only the punctuation and character cores, their corresponding bits would be

1000 0000 if an ungigned § digit was in a memory lccation with an ITEM MARK. Write
890 g0 Write the bits for an

the bits for an unsigned zero with a word mark @ ,)
unsigned zero with a record mark. j ! 00 QQi .

52. In your own words, briefly state the different uses of the instructions:
BRANCH, BRANCH ON CONDITION TEST, and BRANCH ON CHARACTER CONDITION.
& - wweerftin
b1~ A Mﬁm_w N Peroe A
poo ik e i I (A 4G

209

LESSON VII. EASYCODER PROGRAMMING

7.
UNCONDITIONAL
5| Locarion | OION OPERANDS
7{8 | 14[15, 20[2t | | | L L N ! I 1 82
. B SUB.S . . e .
22.
! LOW COMPARE - 41g - 100001, - B<A
435 B=or<A
é—4-8 Zero Balance or B>A
37.
WM @ =01 00 0000
RM@= 11 00 0000
52.

B-BRANCH is an unconditional change in program sequence frequently
used for subroutine linkage.

BCT - BRANCH ON CONDITION TEST is used to test the indicators or
sense switches.

BCC - BRANCH ON CHARACTER CONDITION is used to check punctua-~-
tion bits and zone bits.

210

LESSON VII. EASYCODER PROGRAMMING

Branches are executed within the H-200 in much less time but in a fashion similar to the
1401. The branch execution below uses the letters I, ac, bc, to identify the: Instruction, A,

B, Address Registers respectively. The branch instruction format F/A/ is retrieved, then-

I ac bc
1. | NEXT PROG. ADDRESS ||ADDRESs FOrR THE BrRaNCH]|| |
- _____-_--—-_T--————C ¥
.
ac is then moved into I TEMPORARILY STORED IN bc
2. | | [ADDRESS FOR THE BRANCH|| NEXT PROG. ADDRESS |
[) |
3. | ADDRESS FOR THF BRANCHI The new address in I then directs retrieval from

the location specified in the branch format F/A/.

3. Write an instruction to branch to the location tagged SUM if B<A.

wocation | OPgoeoN OPERANDS

~ =D

8 | a5, ., 20p2 | b) N N

. Féj Do dy e .

£ 38, Perhaps the most obvious use of SW, CW, SI, and CI concerns establishment of word,
item, and record limits. Another less obvious but sophisticated use of these instructions
is to activate and deactivate a locations' punctuation cores as a "four -way electronic switch'',
Assume a programmer wishes to set a ""'switch'" by program instructions instead of
manually pressing a sense switch. Perhaps he wishes to indicate a particular routine has
been executed or a certain condition has been encountered in the program. He may turn
on an "electronic switch" (punctuation bits in a selected location) with a SI or SW

instruction.

The final branch instruction to be discussed in this lesson is used to check for equal
characters. That is, a branch will occur to the A address if the single character at the B
address is the same as the variant character. The Branch if Character Equal instruction

- does not require construction of speciﬁé variant bits., The variant is simply a character
to be compared to the B address character.

Formats of this instruction are shown on the answer side of this frame.

211

LESSON VII. EASYCODER PROGRAMMING

8.
NO ANSWER REQUIRED
23. ! '
5| LocaTioN o OPERANDS
7|8 | 14]15, 20121 n t 1 L 1 N B I | | 62
1 BICT SUM. 4!) i3 1 1 Lo 1 R 1 1
38.
NO ANSWER REQUIRED
53.

Format a:

Format b:

OP CODE A ADDRESS B ADDRESS VARIANT

Format e [I -
Format b. B

The single character specified by the B address is compared to the variant
character. If the bit configurations of the two characters are equal, the
program branches to the location specified by the A address. If the bit con~
figurations are unequal, the program continues in sequence.

Format b of this instruction is an illegal format unless it is immediately pre-
ced by a BCE instruction which did not cause a branch. The single character
specified by the contents of the B-address register is compared to a variant

character specified in the previous BCE instruction, If the bit configurations

of both characters are equal, the program branches to the instruction specified
by the contents of the A-address register.

LESSON VII. EASYCODER PROGRAMMING

Suppose that the instruction B SUB 6 is stored in memory locations 150, 151, 152, and that
UB 6 refers to the routine beginning in memory location 500. Write the appropriate ad-

drésses in the registers below. The branch instruction format F/A/ is retrieved, then-

L

Refer to the chart in frame 22 as needed to write the following:

Compare Item Number to 4000, If Item Number is equal to 4000, branch to location

Description Tag
Item number ITEM

4000 CON4

OPERATION
LOCATION CODE OPERANDS

15 ¢ 20([2) 1 L JE

c TETRE 5 T

BT friok 4) .

An "electronic switch'" is simply the ®JdiuycTonTiow cores of a selected msmamv{

Locontiy . The switch may be "turned on" by a SM instructionora _ 5 T
instruction. Since it is '"turned on'" by these instructions, it may be 'turned off' by C\}U

and C instructions. Show the four possible binary conditions of an electronic switch.
%M iwm

: o 1 O).

A word mark in the location tested has no effect on this instruction.
Determine if the character stored in the location tagged LABEL + 3 is equal to 6. If so,

branch to the location tagged P6; otherwise continue the program in sequence.

wocation | POt OPERANDS

15, 20[2!

IS TS T P U S T '

i L n
{l’l(:‘: Pé‘ I ecerd, o, 1. T
~— +

LESSON VII. EASYCODER PROGRAMMING

9.
I ac bc
1 153] 500 j
S .
2 I 500 R 153 B}
—————————————— ke |
3 500 1 1 153]
I now contains the address to begin retrieval of SUB6 at location #500. The address to
which the program should return after completing SUB6 is temporarily stored in bc.
24.
5| vocamion | OTGH" OPERANDS
7le , 1415, 20[21 | L a1 NN [PV TR T
— 1 cl C°N4 “LAIIEM 1 1 1 . P P B | 1
. BLY NITEM 42 N e L
NOTE: 424 is 1000 102 Tests EQUAL
39. PUNCTUATION MEMORY LOCATION SW., SI Cw cCI'
IM wM _ .
0 0 = Both switches "off". ,
1 0 = IM "on", WM "off".
0 1 = IM "off'", WM "on'".
Record Mark 1 1 = IM "on", WM 'on',
These four conditions may be tested by a Branch on Character Condition instruction.
54.

,g LocaTioN | OPERATION . OPERANDS
7|8 | 1a]i5, 20[21 i 1 NN PN Lo sl 82
L B&E P6ALAAIAEAL+31§ 64 1 o L | A S S I 1 S

LESSON VII, EASYCODER PROGRAMMING

10. With a 1401 at the point illustrated in frame 9, it would be necessary to write an SBR
instruction at the start of the subroutine. This would store bc so that a branch could be
written at the end of the subroutine for returning to program sequence (153).

Similar instructions are written for the H-200. However, bc is an H-200 CONTROL
REGISTER. To accomplish what you know as SBR, an H-200 ST, R e ConTR IV

E&T s 1o instruction is written.

25. If the BCT octal variant has a @ as the first digit, (EXAMPLE §4), why will none of the

indicators be tested? 2 ol J,-\;(A /fr, V) 4

1 = Test of

zero bal. or

overflow or
compare

40, The initial designation or selection of an electronic switch is accomplished with a data

formatting statement and a ¢ in column 21.

Write a define constant instruction to reserve one memory location. Tag it ELECI].

c .

OPERATION

LOCATION ol OPERANDS -

|

8 | i5, 20]21 | Py i

Lecy P o e , e

>

55. Determine if any character position in the seven-character field tagged PART contains

the letter Q. If so, branch to the location tagged RETRO; otherwise continue the program
in sequence.

CARD |V OPERATION
NUMBER |p|8| LOCATION cooE OPERANDS

1 "2[3 als[e]7]e R 14115, 2021 | L N —_— .

| o fuei WerRo PAEL G . .

!) &C <) i 1
. be¢ . . 1
. he € . . . L
. e € . . \
. A . 1 . L ,
. A . . .

~ & o & w N -

}
|
|
|
I
|
|
1

-+

215

LESSON VII. EASYCODER PROGRAMMING

10.
STORE CONTROL REGISTER
An example of SCR coding is shown below:
5| Locarion OPERARON OPERANDS
7l8 | 1415, 2021 | § L [N R Lo L | 82
J 1 BI SUBG Lo i i L F— SR 4 P sl
. S, [TAX,PAY. . NEXT, INSTRUCTAOMN, 1
SUB6 CAM 28 . . L START, SUBROUTINE. . . v]
RETIURN SIQR 3¢¢ Q7I¢ A ol L 1 I Ju 1
P S OSSOSO S
LR 300 ., LEND OF, SUBROUT.IME . 1 . (..]
25,
THE FIRST BIT MUST BE 1, IF ZERO BALANCE OR OVERFLOW OR
COMPARE INDICATORS ARE TO BE TESTED g
Therefore, a BCT octal variant producing a first bit of 0 is meaningless
AS FAR AS INDICATORS ARE CONCERNED.
40,
g LocaTion | OFERATION OPERANDS
7|8 N 14)15 20|21) L | [T N B L1 82
ELECL PC @ ..., , NI
55.
NoMEER ‘Téﬁ LocATion | OPERATION OPERANDS
213 4als5]s[7]8 R 2021 | | L L L . 62
I l BCE . . [RETRO, PART,,Q . . . e
S BCE 1 . . e . e
3 l l . &CE 1l 1 1 1 1 1 1 FUE SRR SRR Y
4 JI_‘ | b o 5@; i 1 . - 1 " Lo P | N
s ‘l_‘;l) mE 1 1 i 1 — J . L i |
s L[| S BCE i 1 4 | - — | —_
7 JL 1{ 1 &cE 1 1 1 1 L] 1 U T W T T N

LESSON VII. EASYCODER PROGRAMMING

11 OP CODE A ADDRESS B8 ADDRESS VARIANT

Format NN NEEEE -

SCR stores the control register designated by the octal variant character at the address

written in the operands field.

In the example at the left (frame 10) evidently the variant character '] (@) de-

signates bc. This control register (containing the address of the return point after the

v subroutine) is to be stored in memory at address # So?) .

SCR STORE CONTROL REGISTERS

g 26. The testing of individual or combinations of SENSE SWITCHES occurs when a BCT octal

variant has a first digit that will produce a first bit zero. In other words, if the first bit

of a BCT variant character is not a 1, Sgw;]:ls? switches are t