HONEYWELL

DPS 6

GCOS 6 MOD 400
SYSTEM
PROGRAMMER'S
GUIDE — VOLUME 1

| ~ SOFTWARE

DPS 6
GCOS 6 MOD 400 SYSTEM
PROGRAMMER'’S GUIDE — VOLUME I

ADDENDUM A

SUBJECT
Additions and Changes to the Manual

SPECIAL INSTRUCTIONS

This is the first addéndum to CZ05-02, dated March 1986. Insert the attached
pages into the manual according to the collating instructions on the back of this

sheet. Change bars in the margin indicate new or changed information; asterisks
indicate deletions.

Note:

Insert this cover sheet behind the front cover to indicate the updating of the
document with Addendum A.

SOFTWARE SUPPORTED
This manual supports Release 4.0 of the MOD 400 Executive.

ORDER NUMBER

CZ05-02A September 1986

45987
0986
Printed in U.S.A.

Honeywell

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove

iii through xxvi

1-3 through 1-8
1-11 through 1-14
2-1,2-2

3-1 through 3-4
3-7,3-8

3-17 through 3-20

1 thmmeel A A
4-1 UITOUgn -2

4-11,4-12

5-5, 5-6

6-7, 6-8

7-1,7-2

7-5 through 7-8
8-1 through 8-4
8-9 through 8-12

8-13, 8-14
8-17, 8-18

8-23, 8-24
8-27, 8-28

8-55, 8-56

8-67, 8-68

8-71 through 8-84
C-23, C-24

D-3, D-4

Insert

iii, blank

v through xxii

1-3 through 1-8
1-11 through 1-14
2-1,2-2

3-1 through 3-4
3-7, 3-8

3-17 through 3-20
4-1 through 4-4
4-11, 4-12

5-5, 5-6

6-7,6-8

7-1,7-2

7-5 through 7-8
8-1 through 8-4
8-9 through 8-12
8-12.1, blank
8-13, 8-14

8-14.1, blank
8-17, 8-18

8-18.1, blank
8-23, 8-24

8-27, 8-28

8-28.1, blank v
8-55, 8-56

8-67, 8-68

8-71 through 8-84
C-23, C-24
D-3,D-4

bh-1, blank

USER COMMENTS FORMS are included at the back of this manual. These forms are to be used to record
any corrections, changes, or additions that will make this manual more useful.

Honeywell disclaims the implied warranties of merchantability and fitness for a particular
purpose and makes no express warranties except as may be stated in its written agreement

with and for its customer.

tial d:

In no event is Honeywell liable to anyone for any indirect, special or

The information and specifications in this document are subject to change without noace.
Consult your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1986

09/86

File No.: 1R23 CZ05-02A

DPS 6

GCOS 6 MOD 400

SYSTEM PROGRAMMER’S
GUIDE - VOLUME I

SUBJECT

System Software, Including Executive Routines, Drivers, and Line Protocol
Handlers, Accessible to Applications Written in Assembly Language

SPECIAL INSTRUCTIONS

This manual supersedes the DPS 6 GCOS 6 MOD 400 System Programmer’s Guide,
CZ05-01, dated July 1984. The manual has been extensively reorganized, change
bars in the margin indicate technical changes; asterisks indicate deletions.

SOFTWARE SUPPORTED
This manual supports Release 4.0 of the MOD 400 Executive.

ORDER NUMBER
CZ05-02 March 1986

Honeywell

PREFACE

This manual provides information useful to the Assembly
language programmer for designing applicaticns.

The manual describes system services available to the
programmer for:

® System control
e Input/output to peripheral devices
e Input/output to communications devices.

The system services described include:

® Executive routines that can be invoked by monitor calls or
macro calls

e Drivers servicing peripheral devices
® Line protocol handlers servicing communications devices.

Macro calls mentioned in this volume are described more fully
in the System Programmer's Guide, Volume II. Assembly language
is described in the Assembly Language Reference manual. Topics
related to program preparation, execution, and checkout are
described in the Application Developer's Guide.

USER COMMENTS FORMS are included at the back of this manual. These forms are to be used to record
any corrections, changes, or additions that will make this manual more useful.

Honeywell disclaims the implied warranties of merchantability and fitness for a particular
purpose and makes no express warranties except as may be stated in its written agreement
with and for its customer.

In no event is Honeywell liable to anyone for any indirect, special or consequential damages.
The information and specifications in this document are subject to change without notice.
Consult your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1986 File No.: 1R13, 1S13 CZ05-02

The following symbols are used in this manual to define the
format of command and directive lines:

Square brackets [] indicate an optional entry.

Braces { } enclose entries from which the user must make a
choice. '

Lowercase letters (e.g., id) indicate a symbolic variable
whose exact value must be supplied by the user.

The character Ao (delta) indicates one blank space.
Each section and appendix of this document is structured

according to the heading hierarchy shown below. Each heading
indicates the relative level of the text that follows it.

Level Heading Format
1 (Highest) ALL CAPITAL LETTERS, UNDERLINED
2 Initial Capital Letters, Underlined
3 ALL CAPITAL LETTERS, NOT UNDERLINED
4 (Lowest) Initial Capital Letters, Not Underlined

iii Cz05-02

CONTENTS
Page
SECTIONl INTRODUCTION.D....l'.ll....l.......o......i.l. 1—1

System SerVice MaCro Calls....Q..0.0l......l..'....l.‘...
Device Drivers and Line Protocol HandlerSe.eeceeosececoocsccss

I
LSO

SECTION 2 SYSTEM CONTROL FUNCTIONS.:.:cccoccsccosccsscccss

BatCh FUNCLiONS.:ceeceeoeocacccasosccscsscssccsosssocssascsss
CloCk FUNCLIiONS..eosoeescescsccscscsccssssssssssssssscscss
Communications FUNCtiONS.cceccccccsccooscsosassscsscasencascs
Date/Time FUNCtiONS..eeecesscscscscsscsscccsscsssscscsccass
External Switch FUNCtiONS.ccccececocscccscccscsonacoccssocacs
Identification and Information FunctionNSeecccececsccccccss
Intergroup Message Facility FunctionNS..cecececcccccscccsco
Memory Allocation FUNCLiONS.eecesccsccscoccoscccscsccscas
Message Reporter FUnNctioONS.ceseccoeccssccscsoconccscoscsscccsse
Operator Interface FunctionS..cccecocscoescscsoccccsscsccas
Overlay Handling FunctioONS..ccececscscocsosccccoscsccsscsccas
Physical I/O FUNCtiONS..cceecescccssssscsccccscsccscsssss
Request and Return FunctioNS.c.csecccsccscccoccsscsosccnsscs
Semaphore Handling FUnCtiONS...cceecescvoccocccssccscoccccss
Software RebOOt.cccocesescocossascscssccssssccosascasocscass
Standard System File I/0 FunctiONS..cesccsoccceccccsccccss
Task Control FuncCtionNS..ccececccccccscsscccccccoscassnsscs
Task Group Control FUNCtiONS..cccccccsscccscsscsccssscass
Terminal Control FUNCtiONS.:ceeccocccccscoccccocccsccscsssass
Trap Handling FUNCLiONS.ceccoscccscssscsccccscccssssosans
User Registration FUNCtiONS.cceccececconcecccescsccconocss

SECTION3 FILE SYSTEM FUNCTIONSO..................l.....

File Management FUNCLiONS..ceeeescsccscccsscosscosscscscnsas
Data Management FUNCLiCNS..seceescsccoscossscssccssassncscasca
Storage Management FUNCtiONS...ecccecescccccccscscaccncscsse
File Information BlOCK.:.eoeoeooecsscsaoscsoscscscssssscsss
File Information Block (FIB) for Data Management.......
Program View Entry in FIB for Data Management..ccoeeese
File Information Block (FIB) for Storage Management
ACCESScceoscocsssoscssconsosscssoscsssossscsscsscoscssssoscsssoscsoss
Program View Entry in FIB for Storage Management.......
Offsets DefinitionS.cceeceececsscesccscscsccasessccscosscss

www WWwwww w NNNNNNN[})NNNNNNNNNNNNN N Lol oot
OV L d HEEFHHEFEFOQOOSNSIOAOAULITULTERE DRDWWNDDND Lo

|
SR
IS XX

09/86
v Cz05-02A

CONTENTS

SECTION 4 COMMUNICATIONS PROCESSING FUNCTIONS...cceceese 4-1

Overview of Communications ProCesSSiNg.c.ceccecccscssccccocsece 4=1
Communications Processing Through the File SysteMieeeee.. 4-2
File System FUNCEiONS.:cceeeecceccccsesosocscscncssascsncs
File Management FUNCtiONS..cccceccececcososcsccsasanes
Data Management Functions. (..cceeeeccecccccccacas
Synchronous Input/OUtPUt.ceececccescscscccsscscscssassscs
Asynchronous Input/OUtPUt.eeecececcseccsccscassscscscnsccs
Using File System FUNCtiONS.ccceeccasesssccsscsccssnscae
Get File (SGTFIL) Macro Call GuidelineS....eecececsess
Open File ($SOPFIL) Macro Call GuidelineS...eeeecceses
Test File (STIFIL, STOFIL) Macro Call Guidelines.....
Wait File (SWIFIL, SWOFIL) Macro Call Guidelines.....
Macro Call SeqUENCEeS..ececsssssssssacscessssssssssascasnse
Macro Call Procedures for Data Entry TerminalS.eeeces.
Macro Call Procedures for Output-Only TerminalS......
Macro Calls for a Single Interactive Terminal....cceees
Macro Call Procedures for Multiple Interactive
TerMiNAlS.ceseceecseescessscosssssossassossacessasssassss
Changing a Terminal File's CharacteristiCS.ceeecececacses
Specification by —MODES Argument...cccecscecccccccans
Specification by DSW Bit SettingS..eceeccecesccconane
Communications Processing Through Physical I/0..cecceccas
PhySiCaAl I/Oceeeeeececsacsesscsascscascscssssasssssasans
Using Physical I/0.cececescscascscacascscsscsasascacanss
Data StrUCLUIrEeS . cceeececsccssocsocoscscsacssctssscssnsccsscscsnsss
Input/Output Request BlOCKS.:sessessesesssassscsasssccnns
IORB Software Status WOrd (I _ST).eeeeesccecoccacncans
Communications Function COdeS.eeeecescccessccccccscnsces
Write Function (Code 1) .eeeeeecscssssccacssascsansans
Read Function (Code€ 2).eeeeecccceccsscsasossscasancna
Define-Form Function (Code 5) .ccieeccscscccscscasnsssse
Read Break (Code 9) cieeeesscscscccssosssasscccoscancnes 4—-24
Connect Function (Code A).ceececccccncsscnssscsnnsaee 4-24
Disconnect Function (Code B).eeeesecscscscsccaccancoaas 424

LI TR T |

1
Hi=0 U GUOiU eSS WwWWwhN

I
et

[I I | |
=
Ul W

N N N o Rk R N h?kbh.&h&hhhd;h.&
el 1
SN SN SIS el ol o
WWWHJo o

SECTION 5 DATA STRUCTURE GENERATION. :¢:ceoesessscsacscass 5-1

System Control Data StruCtUreS..cesscscsesccvcsssessssssss D
Request BlOCKS.:ceoeeecseceoossosccssosccsascssansscsaes D
Request Block Offsets Macro CallS...ceeeceecescccccsase 5=
Parameter Block and Wait LiStS.ceeeecccscsccscsscssncss DO

09/86
vi Cz05-02A

CONTENTS

g
o
[te]
(1)

File System Data StructuUreS...ccececscccsccccscccascccsccs D
File Information BlOCK...eceeoooossacecosscosssssscscsas D
File Information Block Macro Call.cccceccececcsccsccce D
FIB Offset Macro CallS..ceececceccecsoscccccscocscssces D=
Macro Call Argument StrucCtuUre€S..cececceccecccscssssnssass DO

5

Size Tags'ou.Q-.-.'.to..o..no.o...-oloo..ooo.oo...o.o--

SECTION 6 DEVICE DRIVERS..........Q'I...'........'.O-...

Input/OutPut DIiVerS..ceceeccccscascscsossscscnscacscacsns
Device Driver Data StruUCtUILES.ceccecsccccsccoccscsccascs
Device Driver ConventioONS..ceceesessccccssscccccccsssssss
Driver Functions and Function CodeS...cececceccccccccasse

Connect Function (fC=A) cccccccccscscecccsccccssccanssss
Disconnect Function (fC=B).ccccoccececscccssccssscscsas
Wait Online Function (fc=0).cccceccccccccecsccsncasce
Write Function (£C=l)cccecccccccccsoscscccsccccconcscea
Read Function (fC=2) cceccecccscssccssccncscscccccccsss
Read Disabled Device Function (fC=E)cccccccccecccccaes
Write Tape Mark Function (fc=3).ccccccccccccsccccssccn
Position Block Function (£c=4).ccscscscccccccccccsscass
Format Write (£C=5) cccceccccccccoscosscssoscscccccocsse
Format Read (fC=6)c.ccecccocccccssscssccossccccccccsssse
Position Tape Mark Function (fc=6)..ccccceccceccocccs

Input/Output Request BlOoCKc:cccococsoecsossssosocosocsoccscssse

Caller Interface with Device Driver...cccecccececcocsscse

Device DrivVerScccceccccccsocscccosoosssssscsscsocccscscascos
Card Reader/Card Reader-Punch DrivVer..cccecececoceccosccsscs

ASCII MOACeeeeecescocccoccccccsscososcssssscccososssass
Verbatim MOAC..coescoccococsccssssossoscsssscscsssscccs
Card Reader/Card Reader-Punch Device-Specific IORB
FieldS.cecccccoooccssccssoscscsscsssscssscsssssnscssscsssse 0—16
Card Reader/Card Reader-Punch Hardware Status Code
MappPiNgeececeecocccccsocsososcsscosscsscssssoscssssssssscsscsses 0-16
Printer DrivVer..ceceesccececcscsoscscssossossscscsossssccscsases 0-18
Print Control Byt€..ecececceossccscsscossosscocscssccceces 0-18
Printer Device-Specific IORB FieldS.ceceosccescccceces ©6-18
Printer Hardware/Software Status Code MappinNg........ 6-18
DiSKk DriVer.eeeecocecceccscsscccscsccscssasscsscscccssnscsssses 60—19
Disk Driver Conventions for Diskette..eceeeecoccoccess 6=20
Disk Driver Conventions for Lark DiSK.s.ecosceeecsscecess 6-23
Disk Driver Conventions for Mass Storage Unit.c.cceec.. 6-25
Disk Driver Conventions for Cartridge Module Disk.... 6-28
Magnetic Tape DriVer.csccccesccsccsscscsssscsssscssocces 0-29

L I L O O O O O O AL I L D L e |
HFHEO NN ANANWWWWNINE [t (S, 16, J S, B S N
w

w

AN NANTAHA AN ANO [}
I |
—
w

I
fain
wm

09/86
vii Cz05-02A

CONTENTS
Page
SECTION 7 LINE PROTOCOL HANDLERS'.‘...........“....I'.. 7-1

Line Protocol Handler FUNCtioNS.:cccceccvcsscescsscscsacss
Main Memory-Resident LPH.:ceeeececcccssccccsscssccscces
MLC"ReSident LPH (CCP)c0-0--.-000-o---'c-oooooocooocooo

MLC Communications Handler....ceceesescccsasssccscnsnscns

Communications Subsystem Operation Example...ccececcccsce

Extended LRN SUPPOILTececsccocssccesccscsccssscsosscsccssnacss

8-Bit Data SUPPOIrt.cecececesccccssacssssssscsccscconcasssacsas

Modem SUPPOIt.icceescscscosasassasscssscasconsscsssccanssse

Auto Call Unit.cececececcscccocsoccssoscsncsascsossnsccncscss

Communications Subsystem Error and Correction Procedures.
Parity Error CheCKeeeeeoeoosecacsascscncosncosscnscssansnce
Block Error CheCK.uieeeeereeeceaseoccossocscsscnsssoccans

Longitudinal Redundancy Check (LRC).ececececcccaccsans
Cyclic Redundancy CheCK (CRC)eceseesccossscsssaccansse
BSC Block Check Character (BCC).iseeeecsacescocsacancscs
Timeout CheCK.ceeeeesosescsescscsossssosscscssassosccassans

~N
J LI I L |
WWOWOWOVWVWYWO~NIOAUTWWND N

\'JTITITIQ\IJ\I\]\I\D\I\I

SECTION 8 ATD LINE PROTOCOL HANDLER.'......... ® 0 ¢ 0 ° 0 000

I I
HHEJOAONUILMTEeRBRRWWWNDN Ll

|

ATD Modes....l..0...'...’...l.......l‘....IO.Q.....Q...-.

TTY Modeoooooloooocco.c.t.00..000....‘00...0.0..0.‘000.

Field MOA€.ceceeeesasocsascoccsossscssssscsssscssacasnnses
BlOCK MOQ€.cccceetocosossccacsossessssoasossssssnasccnsnsse
ASPI MOQ€..ceescesecesscasosssoscsssssossossssasssssnssnss
X-ON/X_OFF MOde..............-.........................
I/0 Functions Supported bY ATD.ceececsecscssscecccccnsnas
IORB PrOCEeSSiNgeececeescsescscscsscecssassccsoscssccsasasaccsscsne
IORB SiZ@ueesscescssosccssscsssossssosssssssssscscssnscsacs
Expanded LRN SUPPOILL.ceceecccscccscocsscsscsscsccsoacscncsscse
IORB Device-SpecificC WOrd.eeeeeesececeoscsccacscccocaccss
Processing Order Of IORBS..ccccecaccccacscccccscacancans
Purging Queued IORBS.ccceasscosscssssscssccssccncsscscsasns
IORB Error ProCeSSiNg.ceccccccscscssesscscsssscscccsccns
Return Of DeviCe ID.cecceeccsessesscscascsssssasacssccas
Supervisory Message ProCesSSiNg.ccccecscccccssccsccccsscsascs
Control Byte ProCesSSiNge.cccccccesccssscasccscccasascsnssnss
8-Bit Data SUPPOrt.ccecececscccsscesssssscscsscscsasssscsss
Connect ProCeSSiNg.cecssccescccssccsscsssccsssssossscassssscs
Self-Configuring TerminalS.eeeesescesccscascsscosacnsosscs
Buffered Printer Adapter (BPA) SUPPOILt.ccececscccccccccscos
Break Processing by ATD LPH:cecceosccsassoccscscassscsnsaces 8-15
Break Processing with Read Break RequesSt.ceececceccsccsaas
Break Processing with No Read Break RequeSt.ccceececceae
Print SCreeN...cscesscccsascccsssssssscsssoscssssssscsansssccss

TTY Mode..o.c'...‘.00.0'.0.00...000.00.-0...0....00'.00‘.

TTY Mode and Extended Character Set (8-Bit Data).cecee.. 8-17

RIS ER
e
WWN O

oooooooooooooooocoooooooo'ooooooooooooooooo [+ 2] ~N
| |

[y

- =

mm$m
R
N~ oaw

09/86
viii Cz205-02A

CONTENTS
Page

Connect Function (TTY MOd€)eececceccccccscccsossccscansee 8-18
Connect IORB (TTY MOAE) eceeeecccsccsocsccosccsncsncsacnsee 8—18
Disconnect Function (TTY MOA€) cceceeeescecccccsscscanass 8-19
Disconnect IORB (TTY MOd€).cececcccccccccccssscccccacsse 8—19
Read Function (TTY MOG€) .eeececcscosccccccccscscsccansccs 8—20
Operator FUNCtiONS..ceeeeccecescssssscsscssccssscsscsss 8-20
Operator Function KeyS.eseeeeoeessscasescssscscecssss 8-20
Character Delete and Line Cancel....cceeeccecssassss 8-21
Read TerminatioON..ceceecececcccccscccccscocccscsnass 8-23
Breakeccoccoceececoscaccsacoscscscsconcsscscssasscscscsncnsssasss 8-23
Hide FUNCtiON..iieeecescccecsccsccosssssacassocanssss 8=23
Read Order Functionality.ececeececescesccsccccsccsccsccsss 8-24
EChO.iceeceeeoceccccoscscssacscscsccsscscsscssoscsscccnssssse 8-24
Line Feed.ueeeecsoaoecoscescosscsscsssscsascsccsoansscs 824
Carriage RetUIN...ccecceccesccsscsccssossccssscscsccsse 8-24
Read IORB (TTY MOA€) ceceeecocccsosssncsccccaccnccccccs 824
Write Function (TTY MOd€)..cececcessccccccsscsssncnssass 8-25
Off Lin€.cecececcosssccoscacsoscascsssoscosscssscsscsasssacss 8-25
Control Byte ProcessSinNgecccccccccccccsccscscccscnscncace 8-25
Quit On Brea@k.cceecesoocscccscsocssscscsconsccsccassccs 8-25
Carriage RetUrIN.ceccsscosccesccscsccsssssssscsncccssscssss 8=25
Line Feed.ccescoccceoccocscscosscsccscosocoscossccsces 8=25
Write IORB (TTY Mode)ocooo.ocooooao.o.ooooo-oo.o-o-a.o. 8-25
Device Configuration (TTY MOG@)cceecceocscscsocescccces 8—26
Error ProcesSiNg.cccccccceccscscescccoosscososccssocccccees 8—26
TTY Mode Timeout ProcCesSinNgecceccccccescsccccscccccsccce 8=27
Field MOA€.cceccesecccocscsccsccacscscscsocccscssascccscccscs 8=27
Field Mode and Extended Character Set (8-Bit Data)cc... 8=27
Forms, Fields, and SubfieldS..cceecsccocscccccscsosscoss 8=27
Input ValidatioN..eeeseeeeococsocsccsscsccsosscccscsscocss 8—28
Auto-Insert CharacterS.cceccccccccsscsccscsscsscccscse 8-28
Separate Sign Field.:cceceocccoccccccsosssssscsccscssss 8—28.1
Must Release Field.cicoccecoscccccsoscccscsssccsscnsccss 8—29
Decimal Point and Decimal Point ProcesSinNg..ccsccececees 8-29
Field Descriptor and Define FOIMecceccocccccoscccacaes 8-30
Using the Integrated Field Attribute Descriptor...... 8-30
Using Define FOrMececescocosscssccscococscsscacsccccaass 8-30
Format of the Field Attribute DescriptOr..cceececececeese. 8-31
Supervisory Message ProcCesSing.cccecscccccccsccscsscsess 8-33
IORB Values...........-.............................- 8"33
Location of Message LiN€...ccecsccsoccoscscssscssocss 8-33
ProcessSing Ord€recccccceccccscscccccoccsccoccssscsscscsccses 8-34
Supervisory Message ConventiONS.ccococscccocesescossssecese 8-34
Calculator Key Pad SuppOrtc.cccescccescccccscccsscsccsss 8-35
Application Responsibilities in Processing Fields...... 8-35
Field Mode FuncCtionNS.cscccccoccccsccosoccscscscsscsscccese 8-36
Connect FUNCtiON..ceccocscscccaccsoncsccccssoscasscnces 8-36
AUtO callo--.ooco.o..oco.o.o..-ooo..o.o.oo.oo.oo.oo 8—36

09/86
ix Cz205-02A

CONTENTS
Page

Belloo.o.oo-..o.Q...0000Q..o...c.o.o.‘...'n.lc..l.. 8—36

Validation Field Notification (VFN).ceceececececcseaecs 8-36
Selectable Field Validation SetS.cceececcecsccccccess 8=37
Word Processing Mode (WPM) IndicatOr...eccecceceseces 8=37
Cursor Out Of Fieldieeeeeseoecscossccscccccasacnaess 8-37
Type Ah€ad..ccceccccacecececccssncssosccscscscscscse 8-37
VIP7200, VIP7207 Supervisory Message Lin€.......... 8-38

ma 'I fﬂxrne fMasrira TN Q_120
serminaa LY M \WCVALCT L/ esevecsecscsccecsoesoeoncsscccscoce T390

Connect IORB (Field Mode) ..eceeeecesccoenccscsocaeces 8-38
Disconnect Function (Field Mode) cceeeeececccccccccases 8-40
Abort Queued OrderS.cccccccceccscssssascsscccccsscsccese 8-40
HANg UPeececescesscssscsssssssssssccssssscsscassancss 8—40
Read Function (Field MOde) cececesceccscccscscncesannsas 8-41
Pre-QOrder Control...cc:cccescessscssssscssssssssasssascss 8-41
Termination of a Field Read..eeccccccccossssccncees 8—41

ATD Handling of Termination CodeS..cceeeescccsccses 8=42
Entry of Invalid CharacCterS.cececcecsscccssscsssceses 8-43
Residual Range and Relative Residual Rangd€......... 8-43

Use Of CUrSOr KeYS.eeeeeeeoeesassccsccsscnccscansses 8-44
StatisStiCSeeecececsceoseccscosccscossssscscsscossassenee 8=44
Read with Offset.eccccccececacscccccscssassscsssascss 8-44
Type—Ah€ad..ccecessescescnssssscascsscscsscsccssssscses 8-45
CUI'SOI' Out of Field'oooooonooonooooocooo-ooooooco.- 8'-45
Support of VIP7207 and VIP7307 TerminalS..c.secceesaes 8-45
Read IORB (Field MOAE) ceeeccescvcscccascccasccascoce 8—46
Values Returned by a Field Read Ordereeeececcecsceaeee 8=51
Write Function (FiEId MOde).......................... 8-51
Purge All SubfunctioN..cecceccccsccecsccscscccscacees 8=52
Quit on Break OptiON.i.csesccceceascecccecsccssssscneese 8-52
Pre-Order CONtrOl.eccececcccecscscseasacscsccccsccsscsscceas 8=52
Write IORB (Field MOAE) cceeeesscccccccnsasccsscenes 8=52
Field Mode Device ConfiguratiON..cceseecescccsccccsececs 8=53
Field Mode Return Status CodeS..cccccecssccscccescess 8-54
Invalid Argument Status (0104)..ccceeceecescccecsses 8-54
Inconsistent Request Status (010C).eeccececscecaces 8=54
Field Mode Error ProCesSSiNg.cscececcscccsccssccscsccsces 8=54
Field Mode Timeout ProCesSiNg.ccececccccsscscssccacss 8=55
BlOoCKk MOA€.ceeeeeeosccsccccosssaccsccsssssssssscscnssasscse 8=55
| Block Mode and Extended Character Set (8-Bit Data)..... 8=55
Connect FUNCEiON.ieeeeescoccscccesccessccnsscocncansecee 8-55
AutO Call...oco-cnoaoobonocooooooooooooooco-o.coo'-.o 8-56
COI‘ltIOl WOId... 8"56
Space SUPPreSSiON.ccccecccccscccscccscsscsacssscscsscese 8-56
NO ROlliceeeeeeceosossascssacscocsssososcscsccsssssssscscsnss 8=57
Connect IORB (BloCk MOd€) eeeceeecessccceasccsascosccoass 8=57
Disconnect Function (Block Mode) cceeeeeccccccccccsascee 8-58
Disconnect IORB (Block MOdE) ceveesscescccccscanscccncecee 8-58
Read Function (BloCk MOdE) teceeveceosesscscssccencssassee 8-59

09/86
X CZ05-02A

CONTENTS
Page

Operator FUNCtiONS.cccceccccccscccscccsssscnscsseassss 8-59
Application FUNCtiONS..cecceccccccccsccscscssssscssacas 8-59
AbOrt Read.ceececescccecssccsccsssscsccsscsnccssccseae 8-59
Supervisory MessageS.cccececccccscccscccccsccccccscsss 8=59
Line Feed and Carriage RetUIN...cccecccccccccsscccsss 8-59
Read IORB (BloCk MOA€).cceeeeccccscccccosscssscscsscsss 8-59
Write Function (Block Mod€)..cceceececcccccccaaccsacsess 8-60
Write Order ProCesSSiNgeccccesccccscccscsscccssscscssscece 8-60
Keyboard LOCK.eeecsceecoacecsccsacscsascscscscsssccsenseasses 8-60
Write Order OptiONS..ceeccescscccccssccssccscccscccccses 8-60
AbOrt WIit€.eseeeeocecsoscscscscsesscscosssosscscsscses 8-61
Preemptive Data Writ€..ceeccceccccecsccccoccoscncscsecsess 8-61
Control Byte ProcesSiNg..cecccescsccscsocscssccccscsss 861
ETX/ETB OptiONe.ccceccecscccscssscsscsssscsscesscses 8-61
Quit On BreaK.eeeeoeeoesscecsccscososcsccsonscssassese 8—61
Supervisory MeSSaAgeS..cceccccssossscscescssssssscsss 8-61
Supervisory Message Acknowledgement.....secececeeeeees 8-62
Line Feed and Carriage RetUrN..icccecceccsccssccccccccs 8-62
Write IORB (BIOCk MOde)..--............................ 8-62
Device Configuration (Block Mode€).eceececcsccscacccscsse 8-62
Return Status Codes (Block MOd@).ccseccosccscscccsocccos 8-62
Status Codes in I CTl.c.cocecocscscccsccssccscssncesses 8-62
Status COdes in I__ST.oooo--oo.ooooooooooo.o-oo-;oo;oo 8-63
Error Processing (Block Mode)..ccecsescscocccccccsccccss 8-63
Timeout Processing (Block Mode€)..cccoccccccccscscccccocs ©8-64
ROP MOde...............................-................. 8—64
ETX/ACK ProtOCOlccccecococsccsoscssccsoscscssoscssoscsscss 8—64
Basic ETX/ACK ProtoCOl..ccccocecosscssccscsssosscscsscse 8=65
Advanced ETX/ACK ProtoCOl.ccccccecscscccccscsosscassces 8=65
Connect FUunCtiON..cceccecccescsccccocossossosscscossccsocssssss 865
Connect IORB (ASPI MOdE)..................a............ 8—66
Disconnect FUNCtiON..ccccecsccosccoccocssccscsssssssssssss 8-66
Abort Queued OrderS.cccccescsccccsccsccscssssscsscccsss 866
Hang Up....O..IQI.I.Q.lo......‘......l.........0...00 8—66
Disconnect IORB (ASPI MOA€).cecececcsscssscescscsacssssee 866
Write Function (ASPI Mode)oooo.o-oooao..oo--on.o.o.o.-o 8_66
Control SeqUEeNCeS.cecceccssccscsescsscscscsssccossscssee 8-67
DC 4 Control SequUenCe..ccccecoscsssscccsssscsecsccccses 867
Other Sequences......................e-............ 8-67
Prohibited SequenceS...c.cceccooscoscescccscoscsscaces 8-67
write Options.Q...........D.....00...'.0..'0...‘00.“ 8-68
COl’ltIOl BytE.‘oo.oo-oc..oo.o.oooo;ooooooooooooooo.-o 8—68
Line Feed and Carriage RetUrN.cccscccoccscssscccsss 8-68
Write’ IORB (ASPI MOde).-............................... 8-68
Read Function (ASPI MOd€) .cececccscssccscosccscsccscsccascs 8-69
Normal Status Read..ccececcesscccccoccoscscccssscssecss 8-69
Attention Rea@d..ceceoccccscscsccccsscsoscscccscssscsscssse 8-69

09/86
xi Cz05-02A

CONTENTS

Page

Read IORB (ASPI MOde)o....................-............ 8_70
Status Codes Returned in I CT1 (ASPI Mode).cceesecoascs 8-70
Successful Completion (0000) ccecececccscccscsscsccacsecs 8=70
Invalid Argument Status (0104)..cceeccesccsccccccseceses 8-70
Device Not Ready Status (0105)..ccecceccsccccnscanceas 8-=71
Hardware Error Status (0107)ccececceccescsacccscacnassses 8=71

4 TwmE A ~ e
c“”»'&s .uu.v:.ﬂa\..l.uu -l-llIDJ..ooc‘ooa.oooc.oocooto..oooc-o o—=/41

Error PIOCGSSlng.ﬁaooo................................. 8-71
Timeout ProCesSSiNg.ccsccscecccsccscsssccssccscscscsssscsss 8-71
X=ON/X=OFF MOA@..ceeeeoscocscoscocscasosscsscsccsccsccscscsse 8=71
X=ON/X=OFF ProtOCOl.ccececcceccscseaccccssscsscsscccnssee 8=72
Supported IORB TYPE€S.ecccecssescsscsasscsssoscsnssacanss 8=73
Connect FUNCLiON. . cieecevsorsvosascccscsaccasccsnnncessse 8=73
AutO Call.cceeececcececoccsccscscacssasnccneascnscsesees 8-73
Process Reads AsSynchronouSlY.eeeececccesccssccsccseaece 8=73
AXD MOde.....-...........................--........;. 8-74
Solicit Initial TranSfer.ccceccecceceacsscescscsescscscnse 8-74
Require Initial X-ONCOCQCOOO.C.CO'...Q......IOQ....O. 8-74
Logical ConneCt.iceeececossescsescssescssssscsssscsncsassas 8—74
ConneCt IORB (AXD MOde)......-.....-................... 8'74
Disconnect FUNCtiON..cecececccecsasceccesssccnnsassaases 8-75
Abort Queued OFAEIS.ceeeeeccccecssoceccsscssesascassee 8=75
Hang Upoco'oooooo'---ooo-.ooooooaoo-.icoooocoooooo-.- 8_75
End-Of-File/DiSCOnneCt......-.-.........-............ 8_76
Disconnect IORB (AXD MOGE€) teeeeecasccccsccscsccsnsnccacse 8=76
Read Function.I...O..Q..000..0..0'..0.0......00.'0!'..- 8-76
Echo...0..I.l...'.0"'...0..-...0.0...0...0......'... 8_76
Line Feed.......--........................-.......... 8"76
Carriage RetUrNicccececececccsccaccaccacsscsacssscacece 8-76
Read IORB (AXD Moae).......................-.........-. 8"77
Write FUNCtiONeeeceeeosscccccosesssscocssnssccccsocssocce 8=77
Edited Write.......--...--...‘...-................... 8-77
Control Byte ProcesSiNg..cccecccessceccscscscscscscnssccsaece 8=77
Suppress Trailing BlanKS.:.ecececceesccsscscsscassssceses 8=77
Unbreakable Write.................................... 8‘78
Line Feed.........‘-.............-................... 8“78
End Of RECOIrd..ceceeecccasecsccosccscccscsscccccnncsnccss 8=78
ENd Of Fil@uceecooseescsssocsnssonccscsccsscsoscsscnasnsnce 8-78
Write IORB (AXD MOA€) ceevececsccccacsscscssacscsnnccssssae 8-=78
Control CharaCterS.ccececsccsccscascscsascsccccccsosscssaascce 8=78
Escape Sequence ProCesSiNgecccececccsccescccscsscsscssccseaecs 8=80
Timeout ProCesSSiNgeccecescccccccccscscscosasccssscssnssscssocs 8—80
Error ProCesSSiNg.ccccccccccscccccscsccscscsscesssosscssssccssss 8-81
Data Loss'oo.ooo.o.»oooco‘o.ooocoo-ooooooo'ooooooooooo- 8-81
Break ProCeSSiNgecescsccccccoscascccccscscssscscccccccnsss 8—81
Hardware ReqUirementS.................-................ 8-81
AXD Operational MOdeS..cececccccocscsccssccsccscsccnccss 8-83

09/86
xii Cz205-02A

CONTENTS

g
[+]
Q
1]

SECTION 9 STD LINE PROTOCOL HANDLER:ccecccocescsccccasscs

General STD Line Protocol Handler OperatiON..ccecceccecese
Software Functional Support for the VIP...eccecooccccce
User-Supplied Software Functions for VIP SUppOrt.ccecese.
STD Request ReSponSe TiMe.ecesceocssscessscscsssscsascss

Using the STD Line Protocol Handler...ceceeeeeccccccscscsns
STD-SpecCificC IORB VAlUES.eeseesscoscssccssccscncsccsssces
STD Self ConfiguratioON..ceececcecccccccscocccscscaccnscnse
STD Polling OptiONS..cceccecscccccsscscccccsssscnccosscnssns

STD POl]l LiSt.ccecsoccecccocscosssosscscsoccccossccscsonsscss
STD Poll List Stalleecececccecccccccsccacacosscascscsnsacs
STD Poll Intervaleccceeccecccsscccescsscsccsscsscsnsscssascs
STD Poll Duration (TimeoUt).cecececccccccosccoscccccas’
STD Line Protocol Handler Poll FunctioONSc:ccccccccscss
Control and Characteristics of STD Input (Keyboard/
SCreeN) ccceecoccscoccscscnscossosssossssscscsssansosscssasoss
STD Input Message Header..e.ecsececcscccccsssceacascocns
STD Hardware Function Code€S.cccscocesscsccsccsccscssas 9=10
STD Input Data..o.oo.oo-.onocoo‘.ooo.-oooooo--o-ooo-- 9_10
Control and Characteristics of STD OQutpuUt.cccscscecscsecs 9=11
STD Output Message Heade€rcccccovocscccocoossssssnssass 9=11
ContIOl Byte (Send)oc.-.«.o..-.-.........-...o....... 9-11
STD Output Dat@cccecoccccosccscsscsccooccossscsssssscess 911
STD Keyboard/Screen Qutput Editing Control.cccecescees 9=11
STD Receive-Only Printer Editing Sequencé....ccceeeee 9=12
STD Receive-Only Printer Control SequencC€cccesccosses 9=12
Printer Escape Sequence for VIP7800 Seri€Sc.ccesecssses 9=14
Receive-0nly Printer SUPPOIt.cccccocccccccccsccsscsssss 9-14
VIP7800 Series SUPPOILteccccccccccsscsoscsoosscsscsonscsss 9=15
VIP7826 SUPPOrt.ccccccscscccscccccocssccsccsssosocssssssncsecs 915
Inactivity Time SuppPOrt.ecececccscccccsssccccscscsssssssass 9-15
TWUlgol Support.. 9—15
MaSter LRN PI’OCGSSing.................................- 9'—16
SUb-LRN SUPPOrt.cceecesocscsoscsccscscsssssossssssssscsnsass 9—16
Block Mode ProcCesSsSinNgeccccccscscscccssccssscsscsssscssssss 916
Control WOrd..eeescecoccccscscscscssossosccsscsssnssssscnse 9=17
Control Byt€iesceecooccocsoscsccsaccsscoscsscsscssssassnsce 9=17
Output Data and Invalid CharacterS.ccccceccoccccscccsssss 9=18
VIP7800 Series Message Range Requirements (Verify
Before Process MOGE€) cceoesccccssccsnsoscsssscsssscsnssoas I—18
VIP7800 Series Terminal Transmission Modes and Cursor
POSitioning.cscccoccsscccscccossscssssscssscssssnssssssonse 9-18
VIP7800 Series Break ProcesSSiNg.ceecccccccscccccssscssse 9=19
SuUpervisory MesSsageS.ceecscsoecccoscsoscsosscsoscsscsscssass 9—19
Supervisory Message ReadS..cecescecsccsccsscsssscasess 9-19
Supervisory Message WriteS..eceeeccccccccaccsscsscscces 9=20

Lo WWOWOWOVWWOOOULIUNNWWNN Lol

09/86
xiii Cz205-02A

CONTENTS

Page

Diskette Handling for the CTS7760 and VTS7740..cccceeee 9-20
Two- and Four-Wire Line FunctioN.....e:scccescsscsccces 9=20
Long Q Frame Line FUNCtiON.ccceccccsccracscrscsccscnasees 9I-21
Error Processing by STD Line Protocol Handleér...eeeeeeees 9=21

SECTION 10 PVE LINE PROTOCOL HANDLER.:eccececscccscssass 10-1

General PVE Line Protocol Handler OperatiON.cecceceecececsess 10-1
Using the PVE Line Protocol Handleér...cecceecceccccccances 10-4
PVE-Specific IORB ValU€S.iceecessoesesccscascssssnocsccecs 10-4
VIP Protocol Message Structure for PVE..c.cceeeesseaess 10=5
Control and Characteristics of PVE Input...ceeeecececeees 10-5
PVE Input Message Header....ccecacescsesscsccsssssneee 10=5

PVE Hardware Function CodeS..c.eeecescccccscccscsccces 10-6

PVE Input Dat@icecccecceccecscccoscccescccscscannsasssaae 10-7
Control and Characteristics of PVE Output.ceceecececeeee 10-8
PVE Output Message Header...ececesscsecsccsnccsacsscas 10-8

PVE Terminal Address (ADR) and Message Status (STA).. 10-8

PVE Output Dat@.cecececccccasceccsocscssnssscncsssccsscs 10-8

PVE Line Protocol Handler Timeout IntervalS..ccceeccecceess 10-8
Error Reporting by PVE Line Protocol Handleér...e.ececeeeeee 10-9

SECTION 11 BSC2780/BSC3780 Line Protocol Handler..ce.cee.. 1ll=1

General BSC Line Protocol Handler OperatiON...cceececeecees 11l-1
BSC Transmit and Receive OperationS...ccccccccccsecccsss 11-1
BSC Data Transmission MOdeS.ceeceecccssecccscscscscccsecs 11-3
BSC2780 and BSC3780 DifferencesS..ccecececsacsscccccsceees 11-3
BSC ReCOrd TYPEeS.eecevesssccscccocsnsassssssssscscsscsssse 11=3
BSC2780/BSC3780 FeatUreS.eeesesacscssscacscssoccacccees 1l-4

BSC Double-Block FeatUr@..ceeecevcecssesccscccesccscscsccsss 1l-4
BSC Multi-BlocCk FeatUr€..ececccececssscccccccscconsase 11=5
BSC Temporary Text Delay (TTD) FeatUr€...eeeeeececeses 11-8
BSC Wait Before Acknowledge (WACK) FeatUr€....cc.ec... 11-9
BSC Reverse Interrupt (RVI) FeatUr€....cceceeeesececaees 11-10
BSC End of Transmission (EOT) FeatUr€..ecceceesecessss 11-11
BSC Switched Line Disconnect (DLE EOT) Featur€....... 11-12
BSC Line Protocol Handler Timeout Interval.cceeeceeceess 11=-13
BSC Features Specific to BSC3780.csccscacecacesccseasses 11-13
BSC3780 Conversational Reply Feature.....cceeeceeeeees 11-13
BSC3780 Double-Block FeatuUr€..cessececesscessccccscaeces 11-14
BSC3780 Transmission/Reception of BSC Control
CharacCterSeeeececsecscsscscccccosassssasssassscsssseasss 1l=14

Using the BSC2780/BSC3780 Line Protocol Handler.......... 11-14
BSC-Specific IORB VAlU€S.ceescescccosscscsssosssnsesaecs 1ll-14
Specifying Use of BSC2780 and/or BSC3780 to the System. 11-15
Formats and Characteristics of BSC Input Data..ceeeeese 11-17

09/86
xiv Cz05-02A

CONTENTS

Page

BSC Control Byte (RecCeive).ceeececcecccccacscsscscese 11-17
ASCII Input fOr BSC.ceceececcsocosccacssascscscssosscocscses 11-18
EBCDIC Input for BSC.cccecccocccccssccccosconsscsscsssces 11—20
Transparent EBCDIC Input for BSC.ceeeesescsosscsscsess 11-20
Formats and Characteristics of BSC Output Data.c.eeeeece. 11-21
BSC Control Byte (Send).cceeccceccscoscccscccsscsscssss 11=-22
BSC ASCII OUutpPUtesccseccoscecccscssscscccsccascssssssassss 11-23
BSC EBCDIC OQutpUt.cceceocccccoccccccssossccscesccccconnsses 11l—24
BSC Transparent EBCDIC OQutpUt.ccceccececccecscsscccccesas 11-26

SECTION 12 TTY LINE PROTOCOL HANDLER. ® ®@ & 0 000 00 00 e o 00 00 12_1

General TTY Line Protocol Handler OperatiON..c.cccecssceceses 12-1
TTY Message FOrmatS..cceecccccccccscssocssscccssscssncass 12-1
TTY Character Mode and Buffered Mode TransmissSiON.ee... 12-2

TTY Character MOA€.:.ccecececoccocsccccssoscscsscscscsssse 12=2

TTY Buffered Mode (VIP7200 and VIP7800)cccccccecccesa 12=2

VIP7200 and VIP7800 Hardware Switch Options with

Character or Buffered Mod€.c.cccecceccoceccscsccscsssse 12-=3

VIP7200 and VIP7800 Function and Control KeyS.eeeeoeo 12-4
TTY Line Protocol Handler Timeout IntervalS.cccceccoces 12-4

Using the TTY Line Protocol Handler..eccscecococcccsccsccsece 12=4
TTY-Specific IORB Value@Sc.cecccccsoscoscoscosscocssocsaccse L12—4
Control and Characteristics of TTY Input Dat@.ccecocceocece 12=-4

TTY Control Byte (Input)ecceccccocecccccccsccccccccccoe 12-6
TTY Nontransparent Input....ccecccccosccccceosccccccscece 12-6
TTY Transparent Input.ccceccesccoccscccccccsoccsosccss L2—=6
TTY Line Feed (LF) and Carriage Return (CR) Input
SEQUENCEe.cecsccosccoscscacssossasscsssssscssossccsssoscase 12=7
Keyboard Input Character and Line Control..ccceccececss 12=7
TTY Display of Input CharacterS..cccccccscccscccscsccsee 12-8
TTY Input in Buffered Mode (VIP7200 and VIP7800
ONly)ececceecoccscsccocsossosaassosascssnscscssssosscsscssscsseoes 12-8
Control and Characteristics of TTY Output Dat@.eecoseee.e. 12-8
TTY Control Byte (Send).ccecceccecocscsccsacssccnsascss 12-9
End-of-Message (EOM) Sequence on TTY OutpuUt..cceceees. 12-9
TTY Detection of BRK CharacterS.cececcsescescscscccccss 12-10
TTY Output in Buffered Mod€...eccecoceccccscsscccscees 12-10

SECTION 13 3270 TERMINAL FACILITY LINE PROTOCOL HANDLER. 13-1

Software Functions Supported..cccccceccccecscscscssccssaoas 13-2
Software Functions Restricted...ccccccescccsscccssscsccsss 13=3
Modes of OperatiON..cccecccscccccscsscscsoscosscscssocssssnss 13=3
TTY MOA€.:cscceesasccccasaccascscsscascscsnccncscososssscsssess 13-4
Line at a Time Input and Outputoooooo.o-ooooo-ooooo.o 13"'4
Multiple Line Input FeatUr€....ccccecceccccscccssccses 13-4

09/86
XV Cz05-02A

CONTENTS

Page

Break Mode ProCesSiNg.cceccecsscccccsccscscsssccsccsossses 13-4
ROP Mode.................-......‘...................... 13-4
BIOCK Mode-.acco-ccs:csc-ocaeecson-oocicaoacociiii'.--c 13-5
Read COMMANAS.cececcescccoscssoscsssssscscssossscsssccsnsess 13—6
ASCII COd€.iceecevscsacssccscnncsasssssscssocscssscsscsss 13—6
EBCDIC Codeo--cooooooo--.oooo--ocooo--o.ooooo-o---..o 13-7
Logical Terminal MOG€...cceecscccscscssscssscscsssssasass 13=7
Master LRN ProOCeSSiNge.cccccccccssscsccsosscssscssssssscsscss L3=7
IJORB ProCesSSiNgeeccccsecescsscsccssccscosssascsasscssscssacscsass 13-8
Aid KeYSeeeoeseoocscooccocsssccsscncsanannnnansanssnssssesse 13-8
DARTS Probe POintS..cccecccesccccccsoscscscccssscsnsasessees 13-14

APPENDIXA TRAP HANDLING....-.......c...'..l.o.oc...oc.o A-l

Trap Save Ar€ASc.ccccccccosccccscscscsscssscsossssssscssssnaes A-l
Trap Handling During Task ExecutiON....ecceececsceccaceses A=7
Software Generated TrapS.:eccceccsccccscsccscssccsccccsscsnes A=T7
Program Use Of TrapSeecesccecescsccscascscsascsassscasacess A-8
Contents of Trap—Related MemOry Ar€a@S.:ccecccsccscsccsccssss A-8
System Supplied Trap HandlerS..ecececseceececcsccsccasceacses A-10
Trap Handling by the Debug Program....cccecccsceccessses A-10
Trap Handling by Scientific Simulator..c.ceececeecccecececes A-11
Floating-Point SimulatOr.ccccececcecsccsecccsacccsccess A-1ll
Scientific Branch SimulatOr..cececeesceccessccssccasseas A-12
Defective Memory Trap Handler...eececeecesccsoscassccees A=-12
System Default Trap Handling..ceecceeececcscocscsesssecsss A-1l4
User-Written Trap HandlerS..eceeecscccccocsscccssccsscesses A-1l4
Task-Specific Trap HandlerS..eeeeseesesscoscsccescscess A-1l4
System-Wide Trap HandlerS..cecceeccecssccasscsccsacsassess A-l4
PasSSinNg TraAPS.cecccscccscccssccsscsscscsssssecsscasesnssscncese A-15
Programming Considerations for User-Written Trap Handlers A-15

APPENDIX B PROGRAMMING CONVENTIONS...:ccceeecececacsesss B-1

Module and File Name ConventiONS.eccecesceeccsccsccccscses B-1
Calling Sequence for External ProcedUreS...scececcccsccses B=3
Register Conventions.‘.....'.ll...‘.."...l'.....‘...l... B-4

APPENDIX C DATA STRUCTURE FORMATS.cccccceccccccccsccscns

Cc-1
Clock Request BloCk FOrmati...ccececccccccsoscsccscsccscccsssass C—=2
File Information Block (FIB) Format and ContentS....ce.... C-4
Input/Output Request Block (IORB) FOIMa@t.sececescesceceesse C—8
Semaphore Request BloCKk FOrmat.cceecccececcscecsccccccocasssas C-1
Task Request BloCKk FOrmat..cccceecscececccsccscnccssscccssese C—1
Parameter BloCKk FOIMaAt.cccececcesecccsoscccacsacossanscnses C=16
Wait List FOIMAt.cceccececscescccsscsssscssssaccacssscses C=16
Message Group Request BlOCKS..ececoseossscscnsscscsscscconess C=17

09/86
xvi CZ05-02A

CONTENTS

Page
APPENDIX D ASCII AND EBCDIC CHARACTER SETS..cceseesceess D-1
APPENDIX E DEVICE-SPECIFIC CONTROL CHARACTERS.:c¢esessses E-1

APPENDIX F SUBSYSTEM MODULES....oooo..o..oo.o.ooo.o.o..o

3
I
[

Subsystem ReCOIAS..eeceecescsosccscssccssoscsssossccssccsnaccs
Edit Profile (EP) Subsystem ModuleS..ccececccccssccscccsese
POinter Arrayecccececcccccccccscsccsccscsscsocsssssccscanaccss
MOD Function Message NUMDEr...c.ccocecccsccscccccssscncscs
MOodify ROULiNE..ceeeceseeccescscoassssccscscssscssccscscs
Subsystem Default Value€S.:..seecescoscscccsccscssscncasse
Add ROULINE.ccccsosccecccccossoscsossoscscccsscasscsscscsss
STAT-Names Message NUMDEr...ccccceccccccscccencccsccascscs
STATS Descriptor Table..ecceececsccsceccccsssccscsssssccas
List Profile (LP) Subsystem ModuleS...cccccecccccsccccccsse
Pointer Array.cecceccccccesccccsccocccscscsscsocscscssccsscscss
Message NUMbEer...cccecececcsccoccccsssoscscsscscsoncsccsnes
Descriptor Table..cccccccscscscscscscssscsscsssscscsscsnsse
SpeCial"'Field Routine....OI...IOIQQCOQ........O.....Q..
ASCII-Only Subsystem ReCOIdS.ceccccecccccsccscscscsnoscccscs

mmmmmmm'}:rqmmwmmm
HOoOOONAAAAAAUBNNMNH

!
o

MANUAL DIRECTORY..................."...................O

i
et

INDEX.‘ooooﬂooooa-oo.ooo.-ocoooo..oooocoooooo.oot..o.ooo. i-l

ILLUSTRATIONS
Figure Page
3-1 Life Cycle Of @ Fil€.cceoocoscsoacscsooscccssssccsssscssss 3=5
4-1 Simplified Program Logic for Multiple Interactive

Terminals....0.l."............O.....0...0.......00 4-10
Communications Input/Output Request Block (IORB)... 4-18

'S
i
N

Format Of I/O Request Block..0........'............ 6-7
ASCII Card—tO"MemOIy COde Formattingo esceoocesscsoeceoo 6"15
Verbatim Mode Formatting.cececcecccecccecccscccccccces 6=15

Communications Overview....‘.....O...‘......'...... 7-4

ATD IORB..l......'......-....Q...O...Q..Q'......... 8-5
Sample File Transfer OperatiON.cccceccccccoccscsscs 8-84

Control Word...........l.....'........Q............ 9-17
Control Byte................D.....l...‘............ 9-18

O O mf ~ o O O
N = N Ll WK =

09/86
xvii Cz05-02Aa

ILLUSTRATIONS
Figure Page

10-1 Typical PVE Configuration...........'.............. 10‘2
10—2 Typical CODtrOller POll Configuration.o.o--ocoo.o-. 10“3
10-3 Typical Delay Response PrOCEdure................... 10—3
10-4 VIP Protocol Message Structure for PVE..eecssccoeess 10-7

11-1 Example of BSC CommunicatiON..eecesceocccesscecseses 11-2
11-2 BSC Double-Block Feature in Record Transmission.... 11-4
11-3 Multi-Block Buffer OrganizatiON...ceccececesccoceaees 11-7
11-4 BSC Multi-Block Transmission of Buffer Shown in

Figure 11-300000ooon0..0000.0.0...-ocoo.o..c..'O.o' 11-7
11-5 BSC Temporary Text Delay (TTD) Sequence Example.... 11-9
11-6 BSC Wait Before Acknowledge (WACK) Sequence

Example......O.'..'.QOOQOQ.OQQ‘CCOQ.QOOOCU..Q...... 11-10
11-7 BSC Reverse Interrupt (RVI) Sequence Exampl€....... 11-11
11-8 Example of Conversational Reply in BSC3780

TransSmission SeqUEeNCe..cceesesescsscscsesssossesseees 11-15
11-9 BSC Input Data Format and ContentS..ccceececccecececes 11-19
11-10 Control Byte (Receive) for BSC Line Protocol

Handler.cooaoooocc-oocooo-oooooo.o.oo.--o-co-oooo.o 11—19
ll—ll Format and Content Of BSC OutPutoonoooo.oao...oo.oo 11-21
11-12 Control Byte (Send) for BSC Line Protocol Handler.. 11-22

12-1 TTY Message Formats..‘..t.l..‘....b.‘..........0... 12—2
12-2 Control Byte for TTY Line Protocol Handler......... 12-9

13-_1 3270 Data Stream"'...'...‘...0........'...l...".. 13-6

>
|
(]

Trap Handling MeChanismoo0.-0...000.06000..o.....o. A-g

%
=

A[gument Listonooon.o-oouoooouoocoooo-onooo.ooooo-o B—4

First Four Items of Request BlOCKS.::eceeeceecocosceasee C—=2
Format of Clock Request BlOCK.ccsoseeoecssoscascseceaes C=2
Format of I/0 Request BlOCK.veeeoesessescsseassassss C—=8
Format of Semaphore Request BlOoCK.ccccoeeescoceseees C=12
Format of Task Request BlOCK..eeeceocecossccscecasess C-14
Format and Parameter BlOCK.:.eeoesecoeeccesoscecsccacsaeces C-16
Format of Wait List.oo--o-o'o.o‘ooooo-oona.c.oooooc C-17

o] OOO(POOO
NN W

!
[

MOD Function List Format..................;........ F-4

09/86
xviii CzZ05-02A

1-1 System Service Macro CallS...cceececcccccccsscssocsss 1-3

3-1 File Information Block (FIB) for Data Management... 3-8
Program View Entry in FIB for Data Management...... 3-14
File Information Block (FIB) for Storage

Management..ceececeecccecessccascssssscssssacscsssnsssss 3—18
Program View Entry in FIB for Storage Management... 3-20
Offsets Definition Macro CallS..ccecccccccasccosccccecs 3—22

L ﬁb?ihh ww w w
WwWooJgonwn W U w N

Arguments for Get File (SGTFIL) Macro Call...cceeeo 4
Macro Call Procedures for Data Entry Terminals..... 4-6
Macro Call Procedures for Output-Only Terminals.... 4-7
Macro Call Procedures for Single Interactive
Termindlecececcocescscecsocsocsccssscsssssscssncssossssssecs 4—8
4-9
4-1

Macro Call Procedures for Multiple TerminalS...e.ce..
System Defaults for DSW1 and DSW2..cecccceescscscccs
1/0 Request Status Codes Returned in I CTl......... 4-14
Communications Input/Output Request Block (IORB)... 4-19
Software (I ST) Status CodeS.ccsececscccsccncsssccce 4—22
4-10 Communications LPH Function CodeS..cccseccccsssccss 4=23

5-1 Request BloCKSo-eaooc-oeoe-osnooo.-ooooooo.ooooooo. 5-2
5=2 Argument Structures and Offsets TagSccececscscoccccsne

5-6
6-1 Input/output Function Code..l.......IO.C..DO0.0.I.. 6 4
6-2 Return Status Codes (Last TwO DigitS).ecccececcseecs 6=5
Contents of I/0 Request BloCK.scocesoccsoccsccccces 6=9

6-1
6-1
6-1
6

6-3
6-4 IORB Software Status Word (I_ST).cccceccescccccoccscs =12
6-5 Hollerith-ASCII Code Tabl€..ccescocscccocscsscscaons =14
6-6 Card Reader/Card Reader-Punch IORB FieldS.ccocccces -16
6-7 Card Reader IORB Hardware/Software Status Code
MapPPiNgecececoccsccsosacsscsasccssoccsscsssscssscscssscae -17
6-8 Card Reader/Punch Hardware/Software Status Code
MappPiNng..cececscscecocccssscscsccescoscsscssssssscssssose 0—17
6-9 Print ContrOl Byteoo.ooooooco-oo.otooonoo.ocoooo.o. 6’19
6-10 Print Control Byte SUMMAIY.cccccsccccccscscccaccsssse 6-20
6-11 Printer IORB Fi€ldS:.ceeccccccscccccccsccccnscscsnssans 0-21
6-12 Printer Hardware/Software Status Code Mapping...... 6-22
6-13 Diskette IORB Fields--.oo.oo..oo.ooooo-ooo.o-o-oooo 6‘23

6-14 Diskette Hardware/Software Status Code Mapping..... 6-24
6-15 Lark DiSk IORB Fields...onooooeo-.oaouoo;oocoooo-oo 6-25
6-16 Lark Disk Hardware/Software Status Code Mapping.... 6-26
6-17 Mass Storage Unit IORB FieldS..c.cosccscccscssssesecs 6=27
6-18 Mass Storage Unit Status Code MappinNg.scoessceccesss ©6-28
6-19 Cartridge Module Disk IORB Fi€ldS.cocceccccccscccss 6=30
6-20 Cartridge Module Disk Status Code Mapping..cceceeees 6-31
6-21 Characteristics of Supported Tape DriveS..cceesese. 6-31

: 09/86
Xix CzZ05-02A

Table

I
[

!
=0 oo AT WWN -

o]

o

|
= =
w N

I I
pd et e
N oYU

€0 00 0O 00 0O 00 00 0O 0O 00 0O 0 00 0 00 OO (O O 00 O
| [

=

w ®

8-20
8-21
8-22

8-25

8-29
8-30

|
W
[

0 0 0
I

www

> wN

[Ye Vo JVe RV Vo Ve Vo]
|
NSO wN -

Magnetic Tape IORB Fields...'.l...‘.l.“..'........
Magnetic Tape Hardware/Software Status Code

Mapping..no......t..lt-n..o..l.aeec@e.!cealoseelesn

ATD Return COdeS..c-.o--..-.-..o..-..--.....o.-.o--
Status WOId of IORB (I_-ST) ® 00 00 e 00000000 e Oe
DEVice IDS Returned in IORB ® 069 6 008 08008000000 OOOE

AMN OCantrAl Derdn
Ca

LA hid WJAiw L

~e
LDYLTOeeeeosessessscscscecscesesoeccccsoncosscsconocse

I DVS Word in Connect IORB (TTY Mode)..ccecececsens
I DVS Word in Disconnect IORB (TTY MOd€) ceceececocces

Default Values of

Special Characters by Device

Typecoocooo.no.-.nt.-...lol.ootoncncovc-oc.oocQ...O

ATD Word I_DVS in
ATD Word I_DVS in
ATD Word I_DVS in
ATD wWord I_DV2 in
ATD Word I_DVS in

TTY Modé Read IORB.:eeceeeeoeacenn
TTY Mode Write IORB.ceceoccoaccss
ConneCt IORB.tecaccoasscscasoanes
Connect IORB (Field Mode).eeeecas
Disconnect IORBiecceoccesccacncas

Data Entry Keyboard Unshifted/Shifted Translations.

ATD Word I_DVS in
ATD Word I _DV2 in
ATD Word I_CON in
ATD Word I_DVS in
ATD Word I _DV2 in

Field Mode Read IORBecececcosscecs
Field Read IORB.cccesacssacccscacs
Field Read IORB.ccceesccccscaasas
Field Mode Write IORB.csecececscsssese
Field Write IORBicccesscoccccccns

I_DVS Word in Connect IORB (Block Mode)...eeeeeeess
I DVS Word in Disconnect IORB (Block Mode)..eceeene

ATD Word I_DVS in
ATD Word I DVS in

Block Mode Read IORB'.".........
Block Mode Write IORB'.'....'...'

IORB word f_sT (Block MOde).l..‘..l..l."....‘.'...
I_DVS Word in Connect IORB (ASPI Mode€) .secececcccss
I_DVS Word in Disconnect IORB (ASPI Mode)...eeeeess

ATD Word I DVS in

ASPI Mode Write IORB..I.'I....‘.I

Device IDsS for Serial PrinNterS..cececececscsccncacss

ATD Word I DVS in

ASPI Mode Read IORB.......I...'..

IORB Word I ST (ASPI MOAE) ceeeeecceccassccsscncance
I_DVS Word In Connect IORB (AXD Mode)...eceeececenn
I DVS Word in Disconnect IORB (AXD Mode).cceeceeans
I_DVS Word in Read IORB (AXD Mode) cveciececccccaans
I_DVS Word in Write IORB (AXD Mode)..c.eceeecccccns
Status Word of AXD IORB (I_ST) ceececcscscccccncnnans
AXD Modes and FeatUreS.cececccccasscscscccccscccccnscaes

STD Line Protocol
Function Codes in

Handler Response TiM€e.cececeoccoeses
ICT2 of the IORB.'Q.‘.'QI......Q

STD Device-Specific Word I_DVS in the IORB...eesenn
STD Software Status Word I_ST in the IORB.c:eceesen
STD Receive-Only Printer Editing SequenCe€...ccecees
STD Receive-Only Printer Control SequenC€..cceeeceee
Errors Reported by STD Line Protocol Handler.......

XX

09/86
CzZ05-02A

Table

10-1
10-2

OOOOOO(POOOOO W w
HHEEEWoo~JOAULAEWNDEFE NDH

MNHO

Function Codes in I CT2 in the IORB.iccccocsscscccssss 10-4
PVE Device-Specific Word I _DV5 in the IORB...scese . 10-4
PVE Software Status Word I ST in the IORB..cececeece. 10-6
PVE Timeout INtervalS.eceeoeccsceoccssscsccccssseses 10-8
Errors Reported by PVE Line Protocol Handler....... 10-9

Multi-Block Header Section Field Descriptions...... 11-6
Transmission and Reception Conditions for EOT and

DLE EOT:.ccccoccesssoscccccosssossssasscsscssansssssssss 11-13
Function Codes in I CT2 Field in the IORB.:ceoeesss 11-16
BSC Device-Specific Word I_DVS in the IORB......... 11-16
BSC Software Status Word I _ST in the IORBiceeeossss 11-18

TTY Line Protocol Handler Timeout IntervalS.ceceee.. 12-4
Function Codes in I CT2 of the IORBicccsccesccesesass 12-5
TTY Device-Specific Word I_DVS in the IORB......... 12-5
TTY Software Status Word I_ TST in the IORB.ceoeesoos 12-7

Supported GCOS ContrOl Bytes.o.-ooooonooo.ooooooooo 13—5

BTF Device-Specific word I DVS for Connect Calls... 13-9

BTF Device-Specific Word I DVS for Disconnect...... 13-10
BTF Device-Specific Word I DVS for Read..ecseeocsss 1310
BTF Device-Specific Word I DVS for Writ€.c.eceeesees 13-11
BTF Software Status Word I ST in the IORBececceosses 13-11
BTF Return Codes in I CTL In IORB.occececccscosscses 13=12
Recognized AID Keys in TTY Mod€..cccocecccccscscess 13=13
AID Key Programming OffsetS.cccceccccoccccccccccoscee 13-14
DARTS Probe POintS.cccececcocsceosococeccssscsssssosssce 13=15

Contents of Selected Words of Trap Save Area When
Trap Occurs...Q...‘l..............'.‘.'.Q..'.......

B
I

2

System Module Name-PrefixeSQ.'.....I...........0...
System Program File Name SuffiXeS..cecccessccccccesce

Contents of Clock Request BlOCK.cesoeoceooosccscosss
Format of FIB for Data Managemént..cccecececccoccccccce
Format of FIB for Storage ManagemenNte..cececececcocsss
Contents of FIB for Data Management..ccceececccccscses
Contents of FIB for Storage Management..cececoocccees
Contents of I/0 Request BlOCK.cooooosocesssscccccscs
Summary of IORB Fields for Operator Interface......
Contents of Semaphore Request BlOCK.ccoeooscocosocss
Contents of Task Request BlOCK.ceosseoosccccscscsccss
Message Group Control Request Block (MGCRB)........ C-17
Message Group Initialization Request Block (MGIRB). C-20
Message Group Recovery Request Block (MGRRB) ceseee. C-23

!
N

OOOOO?()OO ww
HHRONOOUEW WN

xx1i Cz05-02A

Extended ASCII Character Set‘.......'.......‘I....‘ D-4
EBCDIC Character SetQQQQOOC000000000000000000009000 D"‘S

TTY Nonalphanumeric Control CharacterS...eceeceeeees E-1
VIP Nonalphanumeric Control CharacterS..cccceceecess E-2
F-7
F-9

Edit Profile Statistic Field TYPeSeeeceecccccocccss
List Profile Field TYyPeS.eccecccccssceccocsncososnsscs

09/86
xxii CzZ05-02A

Section 1
INTRODUCTION

Volume I of the System Programmer's Guide provides general
information useful to the Assembly language programmer for
designing and executing applications. Sections 2 through 13 of
the manual describe services provided by the system that can be
invoked or controlled by Assembly language programs. The
following subsections describe more specifically the content and
organization of the manual.

SYSTEM SERVICE MACRO CALLS

Sections 2 through 4 describe system services (functions)
that can be invoked by macro calls or monitor calls. These are
services for system control, file management, record management,
and input/output to peripheral and communications devices.

Table 1-1 lists alphabetically the macro calls by which system
functions can be invoked. Throughout this manual; functions are
referred to by their corresponding macro calls.

You can also invoke a function by a monitor call (MCL)
instruction followed by the function's code. The function code
assigned to each function/macro call is shown in column 3 of
Table 1-1.

1-1 Cz05-02

The manual provides an overview of functions belonging to the
same group. In Section 2, for example, all the functions related
to semaphores are listed together. Semaphores are defined as a
mechanism for the sharing of a resource among members of the same
task group. The part played in this mechanism by each of the
listed functions is briefly indicated. Thus, the manual informs
you of available macro calls and indicates their functional
relationship.

Volume II of the System Programmer's Guide, by contrast,
describes each macro call individually. The individual
descriptions provide information (relating to macro call
arguments and register contents) that enables the user to
actually employ the call in the application,

DEVICE DRIVERS AND LINE PROTOCOL HANDLERS

Section 6 describes the system software used for transmitting
data between applications and peripheral (non-communications)
devices. The section deals mainly with the data structures and
codes by which the user instructs the device drivers and by which
the drivers report the status of requested operations. (Macro
calls related to input/output are discussed in earlier sections.)

Section 7 provides an overview of line protocol handlers,
which are used for transmitting data between applications and
communications devices. Sections 8 through 13 describe in detail
the ATD, STD, PVE, BSC, TTY, BTF, and 3270 Terminal Facility line
protocol handlers.

Programming considerations, such as trap handling and calling
external procedures, are described in the appendices.

1-2 Cz05-02

Table 1-1. System Service Macro Calls
‘ Macro Function
| Call Name | Function Description Code Function Group
(1) (2) (3) (4)
$ABGRP Abort group 0D/0A Task group control
SABGRQ Abort group request 0D/07 Task group control
SACTID Account 14/02 Identification and
identification information
SACTVG | Activate group 0D/09 Task group control
SBUAT Bound unit, attach 0c/09 Task control
SBUDT Bound unit, detach 0C/0B Task control
$BUID Bound unit 14/06 Identification and
identification information
$BULD Bound unit, load oc/oa Task control
$SBUXFR Bound unit transfer 0C/07 Task control
$CANRQ Cancel request 0Cc/01 Task control
S$CIN Command in 08/02 Standard system
file 1/0
S$CKPFL Checkpoint file 0D/11 File management
$CKPT Checkpoint 0D/OF Task group control
$CLFIL Close file 10/55-10/57| File management
SCLPNT Clean point 0C/13 File management
SCLRSW Clear external
switches 0B/02 External switch
$CMDLN Command line process 0c/08 Task control
$CMSUP Console message
suppression 09/02,09/03| Operator interface
$CNCRQ Cancel clock request 05/01 Clock

09/86
Cz05-02A

Table 1-1 (cont).

System Service Macro Calls

Macro Function
Call Name | Function Description Code Function Group
(1) (2) (3) (4)
$CNSRQ Cancel semaphore
: request 06/01 Semaphore handling
SCRB Clock request block - Data structure
generation
SCRBD Clock request block - Data structure
offsets generation
$CRDIR Create directory 10/A0 File management
$SCRFIL Create file 10/30 File management
SCRGRP Create group 0D/03 Task group control
SCROAT Create overlay area
table 07/0A Overlay handling
SCRPSB Create file parameter - Data structure
structure block generation
offsets
$CRRDB Create file record - Data structure
descriptor block generation
offsets
SCRSEG Create segment 0c/0cC Task control
SCRTSK Create task 0C/02,0C/03 | Task control
SCWDIR Change working
directory 10/B0 File management
SDFCKP Defer checkpoint 0C/19 Task control
$DFRHD Defer request on head| 01/0D Request and Return
$DFRTL Defer request on tail| 01/0C Request and Return
$DFSM Define semaphore 06/04 Semaphore handling

09/86
Cz05-02A

Table 1-1 (cont).

System Service Macro Calls

Macro Function
Call Name | Function Description Code Function Group
(1) (2) (3) (4)
SDIPSB Device information - Data structure
parameter structure generation
block offsets
SDLDIR Delete directory 10/A5 File management
SDLFIL Delete file 10/35 File management
SDLGRP Delete group 0D/04 Task group control
SDLOAT Delete overlay area
table 07/0D Overlay handling
SDLREC Delete record 11/30,11/31 | Data management
$DL SEG Delete segment 0C/0D Task control
SDLSM Delete semaphore 06/07 Semaphore handling
SDLTSK Delete task 0C/04 Task control
SDQPST Degueue and post 01/0B Reguest and Return
SDSTRP Disable user trap 0a/02 Trap handling
SELEND Error logging end 02/09 Physical I/0
SELEX Error logging
information, exchange| 02/07 Physical I/0O
SELGT Error logging
information, get 02/08 Physical I/0
SELOG Error logging table - Data structure
generation
SELST Error logging, start 02/05 Physical I/0
SENTID Entry point 14/07 Identification and
identification information
SENTRP Enable user trap 0A/01 Trap handling

09/86
Cz05-02A

Table 1-1 (cont).

System Service Macro Calls

Macro Function
Call Name | Function Description Code Function Group
(1) (2) (3) (4)
$EROUT Error out 08/03 Standard system
file 1I/0
SEXTDT External date/time,
convert to 05/04 Date/time
SEXTET External elapsed
time, convert to 05/0D Date/time
SEXTIM External time,
convert to 05/05 Date/time
SFIB File information - Data structure
block generation
SFIBDM File information - Data structure
block offsets (data generation
management access)
SFIBSM File information - Data structure
block offsets generation
(storage management
access)
SGAFIL Get file access
rights 10/7C File management
SGAPSB Get file access - Data structure
rights parameter generation
structure block
offsets
$GDTM Get date/time 05/06 Date/time
SGIDEV Get device
information 10/66 File management
SGIFAB Get file information, - Data structure
file attribute block generation
offsets
S$GIFIL Get file information | 10/60 File management

09/86
CZ05-02A

Table 1-1 (cont).

System Service Macro Calls

Macro Function
Call Name | Function Description Code Function Group
(1) (2) (3) (4)
SGIPSB Get file information, - Data structure
parameter structure generation
block offsets
$GMEM Get memory/get
available memory 04/02,04/03 | Memory allocation
SGNFIL Get name 10/3C File management
SGNPSB Get names parameter - Data structure
structure block generation
offsets
SGRFIL Grow file 10/38 File management
$GRPID Group identification 14/08 Identification and
information
S$GRPSB Grow file parameter - Data structure
structure block generation
offsets
$GTACT Get file accounting
information 10/42 File management
SGTFIL Get file 10/20 File management
$GTPSB Get file parameter - Data structure
structure block generation
offsets
SGWDIR Get working directory |10/CO File management
$HDIR Home directory 14/0B Identification and
information
SINDTM Internal date/time,
convert to 05/07 Date/time
SINSID Installation 14/05 Identification and
identification information
$IORB Input/output request - Data structure
block generation
09/86

Cz05-02A

Table 1-1 (cont).

System Service Macro Calls

Macro Function
Call Name | Function Description Code Function Group
(1) (2) (3) (4)
S$IORBD Input/output request - Data structure
block offsets generation
$KILLT Kill (abort) task 0c/11 Task control
S$LKPIL Link file i0/3A File management
SLKNME Link Name 10/47 File management
SMACPT Message group, accept |15/01 Intergroup message
facility
SMCME Message group, cancel |15/06 Intergroup message
enclosure facility
$MCMG Message group, count 15/07 Intergroup message
facility
$SMDFIL Modify file 10/41 File management
SMDPSB Modify file parameter - Data structure
structure block generation
offsets
$MGCRB Message group, - Data structure
control request block generation
SMGCRT Message group control - Data structure
request block offsets generation
SMGIRB Message group, - Data structure
initialization generation
request block
SMGIRT Message group - Data structure
initialization generation
request block offsets
SMGRRB Message group, - Data structure
recovery request generation
block
$MGRRT Message group - Data structure
recovery request generation
block offsets
09/86

1-8

Cz05-02A

Table 1—1 (cont) .

System Service Macro Calls

Macro Function
Call Name | Function Description Code Function Group
(1) (2) (3) (4)
SMINIT Message group, 15/02 Intergroup message
initiate facility
$MODID Mode identification 14/03 Identification and
information
$SMRECV Message group, 15/03 Intergroup message
receive facility
$MSEND Message group, send 15/05 Intergroup message
facility
SMTMG Message group, 15/04 Intergroup message
terminate facility
SNCIN New command in 08/06 Standard system
file 1/0
SNMLF New message 08/08 Standard system
library file 1/0
SNPROC New process 0D/0B Task group control
SNUIN New user input 08/04 Standard system
file 1/0
$NUOUT New user output 08/05 Standard system
file 1/0
SOPFIL Open file 10/50,10/51 | File management
SOPMSG Operator information
message 09/00 Operator interface
SOPRSP Operator response
message 09/01 Operator interface
SOVEXC Overlay, execute 07/00 Overlay handling
SOVLD Overlay, load 07/01 Overlay handling
SOVRCL Overlay release, 07/07 Overlay handling
wait, and recall
SOVRLD Overlay area, reserve,| 07/10 Overlay handling

and load overlay

1-9

Cz05-02

Table 1-1 (cont).

System Service Macro Calls

Macro Function
Call Name | Function Description Code Function Group
(1) (2) (3) (4)
$OVRLS Overlay area, release | 07/06 Overlay handling
SOVRSV Overlay area reserve,
and execute overlay 07/05 Overlay handling
SOVST Overlay status 07/03 Overlay handling
$OVUN Overlay, unload 07/0C Overlay handling
$PERID Person identification| 14/01 Identification and
information
SPPNTL Postpone request on
tail 01/0E Request and Return
$PRBLK Parameter block - Data structure
generation
$PRFAU Profile record,
accounting update 24/42 User registration
$PRFCR Profile record,
create 24/20 User registration
$PRFDL Profile record,
delete 24/30 User registration
$PRFGT Profile record, get 24/10 User registration
SPRFIF Profile record, get
user information 24/12 User registration
SPRFUP Profile record,
update 24/40 User registration
SRBADD Return request block
address 01/07 Request and return
$RBD Request block - Data structure
displacements generation
$SRBOOT Reboot 20/06 Software reboot
SRBPRM Modify reboot
parameters 20/05 Software reboot

1-10

Cz05-02

Table 1-1 (cont).

System Service Macro Calls

Macro Function
Call Name | Function Description Code Function Group
(1) (2) (3) (4)
SRCLHD Recall from head 01/0F Request and return
SRDBLK Read block 12/00-12/04 |Storage management
SRDREC Read record 11/10-11/16, |Data management
11/19
SRDSW Read external
switches 0B/00 External switch
SRETRN Return - Request and return
SRLDMP Unlock dumpfile 20/04 Software reboot
SRLSM Release semaphore 06/03 Semaphore handling
SRLTML . Release terminal 17/04 Terminal function
S$RMEM Return memory/return
partial block of
memory 04/04,04/05 |Memory allocation
SRMFIL | Remove file 10/25 File management
$RNFIL Rename file/rename
directory 10/40 File management
$ROLBK Roll back (recover)
files 0C/14 File management
$RPDFC Report message, dis-
play formatting and .
control OF/04 Message reporter
$SRPMSG Report message OF/03 Message reporter
SRQCL Request clock 05/00 Clock
$RQGRP Request group 0D/00 Task group control
S$RQIO Request I1/0 02/00 Physical I/0
SRQSM Request semaphore 06/00 Semaphore handling
SRQSPT Request specific
terminal 17/02 Terminal function

1-11

09/86
Cz05-02A

Table 1-1 (cont).

System Service Macro Calls

Macro Function
Call Name | Function Description Code Function Group
(1) (2) (3) (4)
SRQTML Request terminal 17/03 Terminal function
S$RQTSK Request task 0C/00 Task control
$RS Restart 0D/10 Task control
SRSTID Reset task
identifier 10/05 File management
SRSVSM Reserve semaphore 06/02 Semaphore handling
SRWREC Rewrite record 11/40,11/41 | Data management
SRVFPW Reverify password 24/01 | User registration
$SDL Set dial 1B/00 Communications
SSETSW Set external switches |0B/01 External switch
$SGRPA Set group attributes 0D/13 Task group control
S$SGTRP Signal trap 0A/03 Trap handling
$SHCS Shrink created segment{0C/25 Task control
$SHFIL Shrink file 10/37 File management
$SHGWS Shrink group work
segment 0D/16 Task group control
SSHPSB Shrink file parameter - Data structure
structure block generation
offsets
$SPGRP Spawn group 0D/05 Task group coatrol
$SPTSK Spawn task 0C/05,0C/06,| Task control
0C/15
$SRB Semaphore request - Data structure
block generation
SSRBD Semaphore request - Data structure
block offsets generation
$STMP Status memory pool 04/06 Memory allocation

1-12

09/86
CZ05-02A

Table 1-1 (cont).

System Service Macro Calls

Macro Function
Call Name | Function Description Code Function Group
(1) (2) (3) (4)
$STFIL Set terminal file
characteristics 10/46 File management
$STTID Set task identifier 10/00 File management
$SUSPG Suspend group 0D/08 Task group control
$SUSPN Suspend for interval;
suspend until time 05/02,05/03 | Clock
SSWFIL Swap file 10/5A File management
SSYSAT System attribute 14/11 Identification and
information, get information
$SYSID System identification| 14/04 Identification and
information
STEST Test completion 01/02 Request and return
status :
S$TFIB File information - Data structure
block offsets (data generation
and storage manage-
ment access)
STGIN Task group input 14/0C Identification and
information
STIFIL Test file for input 10/62 File management
$TOFIL Test file for output | 10/63 File management
$TRB Task request block - Data structure
generation
STRBD Task request block - Data structure
offsets generation
S$TRMRQ Terminate request 01/03,01/04 | Request and return
$TRPHD Trap handler connect 0A/00 Trap handling
SULFIL Unlink file 10/3B File management
SULNME Unlink name 10/48 File management

1-13

09/86
CzZ05-02A

Table 1-1 (cont).

System Service Macro Calls

Macro Function
Call Name | Function Description Code Function Group
(1) (2) (3) (4)
SUSIN User input 08/00 Standard system
file 1/0
$USOUT User output 08/01 Standard system
file 1/0
$USRID User identification 14/00 Identification and
information
SVLCKP Validate checkpoint 0D/12 Task group control
$XPCS Expand created segment|{0C/24 Task control
SWAIT Wait 01/00 Request and return
SWAITA Wait any 01/01 Request and return
SWAITL Wait on request list 01/01 Request and return
SWAITM Wait on multiple
requests 01/01 Request and return
SWIFIL Wait file (input) 10/64 File management
SWLIST Wait list generate - Data structure
generation
SWLSTM Wait list, generate - Data structure
multiple generation
SWOFIL Wait file (output) 10/65 File management
SWRBLK Write block 12/10,12/11 | Storage management
SWRREC Write record 11/20-11/26 | Data management
SWTBLK Wait block 12/20 Storage management
SXFERU Transfer user 17/06 Terminal function
$XPATH Expand pathname 10/D0 File management
S$XRETU Transfer and re-
turn user 17/07 Terminal function
1-14 Cz05-02

Section 2

SYSTEM CONTROL
FUNCTIONS

This section summarizes and briefly describes the system
control macro calls that provide user access to system control
functions. The macro calls are presented according to their
functional groupings (see Table 1-1, column 4) as follows:

Clock Physical 1/0
Communications Request and Return
Date/Time Semaphore Handling
External Switch Software Reboot
Identification and Information Standard System File I/0
Intergroup Message Facility Task Control

Memory Allocation Task Group Control
Message Reporter Terminal Control
Operator Interface Trap Handling

Overlay Handling User registration

See Volume II of this manual for a detailed description of
each macro routine/call.

09/86
2-1 Cz05-02A

CLOCK FUNCTIONS

The macro calls for clock functions to allow user control of
task execution according to an elapsed time period. These macro
calls use the clock manager. The clock manager is a system com-
ponent whose primary function is satisfying/completing task
requests at a specified time or after a specified interval.

The clock manager services interrupts from the real-time
clock. At each interrupt, the clock manager ascertains whether
the time interval associated with a request to initiate execution
of the task has been satisfied. Depending on information con-

tained in the clock request block (see Appendix C), the system
will do one of the following:

® Activate a task

® Schedule an indicated request block

® Release a semaphore.

The clock macro calls act to:

® Connect a clock request block to the timer queue

e Disconnect a clock request block from the timer queue

e Suspend the issuing task until an interval of time has
passed

e Suspend the issuing task until a given date/time.
The clock function macro calls are:

Cancel Clock Request SCNCRQ

Request Clock SRQCL

Suspend for Interval $SUSPN
Suspend Until Time S$SSUSPN

Volume II describes the Clock Request Block ($CRB) macro
call, which generates a clock request block.

COMMUNICATIONS FUNCTIONS

The macro call for communications functions allows the user
to set a telephone number to be used for automatic dialing. The
macro routine/call is:

Set Dial $SDL

Section 4 discusses macro calls, other than Set Dial,
applicable to communications processing.

09/86
2-2 CZ05-02A

DATE/TIME FUNCTIONS

The macro calls for date/time functions allow the user to:
e Obtain the current internal date/time value

e Convert the internal date/time value to external date/time
format

e Convert the internal date/time value to external time
format

e Convert an external date/time value to internal format.

The date/time macro calls are:

e External Date/Time, Convert to SEXTDT
® External Time, Convert to SEXTIM
e External Elapsed Time, Convert to S$EXTET
® Get Date/Time SGDTM

® Internal Date/Time, Convert to SINDTM

EXTERNAL SWITCH FUNCTIONS

A task group can control its own execution by using external
switch function macro calls to modify its external switches. An
external switch operates much like a hardware switch on an oper-
ator's control panel. External switches can be set and cleared
with the Modify Switches (MSW) command or with the S$SETSW and
SCLRSW macro cadlls.

An external switch word is associated with each task group.
Each bit in the word corresponds to an external switch. Thus,
each task group can manipulate 16 switches. A user program can
contain instructions or statements to determine the settings of
one or more of these switches. The program can then set or clear
these settings to control its execution logic.

The macro calls allow the issuing task to:
® Set switches

® Clear switches

® Read the current values of the switches.
The macro calls are:

® Clear External Switches SCLRSW

® Read External Switches SRDSW
® Set External Switches SSETSW

2-3 Cz05-02

IDENTIFICATION AND INFORMATION FUNCTIONS

The macro calls for identification and information make
available to the user the following information concerning the
current task or task group:

Information Macro Call
Home directory pathname $HDIR
Bound unit identification $BUID
Installation identification SINSID
System identification $SYSID
Task group account identification SACTID
Task group input file name STGIN
Task group mode identification $MODID
Task group person identification $PERID
Task group user identification SUSRID
Entry point identification SENTID
Group identification SGRPID
System attribute information SSYSAT

INTERGROUP MESSAGE FACILITY FUNCTIONS

The message facility allows the task groups to exchange
messages through a message queue called a mailbox. Before
messages can be transmitted, the mailbox must have been created
by means of the Create Mailbox command. Mailboxes are described
in detail in the System User's Guide.

A message text consists of several nested units, or enclo-
sures. The smallest unit is a record; the next largest unit,
made up of records, is a quarantine unit; the largest, made up of
quarantine units, is a message. A quarantine unit is the
smallest amount of transmitted data that is available to the
receiver. Because a message can comprise a group of records, it
is called a "message group."

The transfer of messages is facilitated by three request
blocks: message group control request block (MGCRB), message
group initialization request block (MGIRB), and message group
recovery request block (MGRRB). These data structures are tabu-
lated in Appendix C and described in Volume II.

Message facility macro calls perform the following:

e Initialize communications between groups by setting values
of the message group initialization request block (MGIRB)

e Validate the acceptor's access to an existing mailbox
® Ascertain the number of messages in a mailbox

e Identify the specific message to be accepted

2-4 CZ05-02

Request the receipt of a message, specifying values for
the message group control request block (MGCRB)

Delete the last record in an incomplete quarantine unit or

delete the quarantine unit itself

Send a message group

Terminate a message group, normally or abnormally.

The message facility macro calls are:

MEMORY

Message Group, Initiate

Message Group, Accept

Message Group, Count

Message Group, Receive

Message Group, Cancel Enclosure
Message Group, Send

Message Group, Terminate

ALLOCATION FUNCTIONS

SMINIT
SMACPT
SMCMG
SMRECV
SMCME
$SMSEND
SMTMG

The macro calls for memory allocation functions allow the
user to dynamically obtain memory from the task group's memory
pool, to return this memory when it is no longer needed, and to
ascertain the amount of memory available in a specified pool.

The macro call that allocates a memory block has two forms:
one form obtains a memory block of the specified size only; the
other obtains the largest existing contiguous memory block if a
block of the specified size cannot be found.
returns a memory block also has two forms: on
entire memory block; the other returns a specified part of the

block.
The
®
®
®

. MESSAGE

macro calls are:

Get Memory/Get Available Memory

The macro call that
e form returns an

SGMEM

Return Memory/Return Partial Block of Memory SRMEM

Status Memory Pool

REPORTER FUNCTIONS

The
display

The
Message

The

$STMP

macro calls for message reporting allow an application to
error or help messages at the user's terminal.

macro calls specify the code of a message that the
Reporter retrieves from a message library.

message reporting macro calls allow an application to:

Display chained messages (i.e., after viewing the first
message in the chain, the user can request further

information)

2-5

Cz05-02

® Substitute arguments for parameters in the message text
{({e.g., specify a device name in a "device disabled
message")

® Return messages to an application buffer rather than to a
terminal

e Display messages at terminals running in any of the
following modes:

- Command

- Menu

- Display formatting and control
The message reporting macro calls are:

® Report Message ($RPMSG)
® Report Message, Display Formatting and Control ($SRPDFC).

OPERATOR INTERFACE FUNCTIONS

The macro calls for operator interface functions enable tasks
to communicate with the operator terminal by:

e Displaying a message on the operator terminal

e Sending a message to the operator terminal and receiving a
response

e Activating or deactivating console suppression; i.e.,
suspending or restoring issuance of messages to the
operator terminal for the issuing task group.

The macro calls are:

® Console Message Suppression $SCMSUP
@ Operator Information Message $OPMSG
® Operator Response Message SOPRSP

The SOPMSG and $OPRSP macro calls require input/output
request blocks (IORBs), which can be generated by the $IORB macro
call. (Section 5 describes request blocks in general, Appendix C
describes the IORB in detail, and Volume II describes the $IORB
macro call.)

OVERLAY HANDLING FUNCTIONS

Overlay handling calls locate, load, execute, and unload
fixed and floatable overlays. Fixed overlays are loaded into
memory at a displacement from the base of the root segment fixed
at link time. Floating overlays are loaded as follows: If a
bound unit can be shared between task groups (i.e., is linked as
globally sharable), its floating overlays are loaded into system
memory; otherwise, floating overlays are loaded into any
sufficient block of the issuing task's task group memory.

2-6 Cz205-02

When bound units with fixed overlays are loaded, enough space
is reserved in memory so that the linked, fixed overlay with the
highest address can be loaded. Overlay handling calls similarly
reserve overlay areas for floating overlays. Overlay areas are
areas in memory of fixed size that accommodate the largest
floating overlay associated with a bound unit. Overlay areas are
managed by means of overlay area tables (OATs), which ensure that
space in overlay areas is occupied only by overlays that are
currently in use. Thus, overlay handling functions relieve the
user of writing an overlay manager.

The overlay handling macro calls are:

e Overlay, Release, Wait, and Recall SOVRCL
@ Overlay Area, Release SOVRLS
@ Overlay Area, Reserve, and Execute Overlay S$OVRSV
@ Overlay Area, Reserve, and Load Overlay SOVRLD
e Create Overlay Table SCROAT
e Delete Overlay Table SDLOAT
e Overlay, Execute SOVEXC
e Overlay, Load SOVLD

@ Overlay, Status SOVST

e Overlay, Unload SOVUN

PHYSICAL I/0 FUNCTIONS

The Request I/0 ($RQIO) macro call, used in conjunction with
the input/output reguest block (IORB), allows direct control by
the user of device drivers or communication line protocol
handlers. If direct access to devices is not a requirement,; File
System macro calls provide a more convenient means of handling
input/output operations.

See Sections 6§ and 7 for a complete description of physical
I/0 functions, including details on device drivers and line
protocol handlers.

The macro routine/call for physical I/0 is:

Reguest I/0 Transfer SRQIO

REQUEST AND RETURN FUNCTIONS

The macro calls for request and return functions enable an
issuing task to perform the following:

e Ascertain the address of the first request block in the
queue of requests placed against it

® Ascertain the completion status of request blocks placed
against it

e Defer the‘processing of a request placed against it

2-7 CZ05-02

e Terminate the request that it is processing, marking it as
completed '

e Wait for the completion of its own request(s) before
resuming execution

e Issue a common return sequence for called subroutines.

When a task defers the processing of a request placed against
it, it dequeues the request and requeues it at a specified
priority level on its request queue. (This priority level is not
to be confused with the priority level, or interrupt level, at
which the task is running.) The deferred request is requeued at
either the head or tail of any other requests deferred at the
specified priority level. The capability of deferring a request
is typically used by device drivers in order to give precedence
to one type of request over another type.

The macro calls for request and return functions are:

e Dequeue and Post $DQPST
e Defer Request on Tail SDFRTL
e Defer Request on Head $DFRHD
e Postpone Request on Tail S$SPPNTL
® Recall from Head SRCLHD
e Return Request Block Address SRBADD
e Return SRETRN
e Terminate Request STRMRQ
e Test Completion Status STEST

e Wait Any SWAITA
® Wait for Operation to Complete S$WAIT

e Wait on Request List SWAITL
e Wait on Multiple Request List SWAITM

Section 5 and Volume II describe the macro calls for

generating request blocks. Appendix C shows request block
formats.

SEMAPHORE HANDLING FUNCTIONS

A semaphore is a mechanism for coordinating the use of
resources within task groups. Once defined, semaphores control
access to multiple resources and control multiple requests for
the same resource.

A semaphore is defined for each resource to be controlled and
is given a 2-character ASCII semaphore name, which is a system
symbol recognized by the Monitor. Every requestor of a resource
whose use must be coordinated issues appropriate Monitor calls to
the named semaphore to request or release the resource. The task
that defines the semaphore assigns the semaphore's initial value.
The monitor increments or decrements this initial value when the
resource is released or requested/reserved, respectively.

2-8 Cz05-02

A requestor obtains use of a resource if the semaphore value
is greater than zero at the time of the request. If the value is
zero or negative, the requestor either waits until the resource
becomes available or continues executing, depending upon the
macro call issued to make the request. The initial value of the
semaphore determines the number of users who can utilize a
resource at a given time. An initial value of 2 allows two
simultaneous users, an initial value of 4 allows four users, etc.

Semaphore function macro calls are used to:

e Define a semaphore and set its initial value

® Increment the current-value counter

e Decrement the current-value counter

® Queue a semaphore request block if the requested resource
is not available

® Remove a semaphore request block from its queue
® Delete a semaphore.

The macro calls for semaphore handling are:

e Cancel Semaphore Request S$CNSRQ
@ Define Semaphore SDFSM
@ Release Semaphore SRLSM
@ Regquest Semaphore SRQSM
® Reserve Semaphore SRSVSM
@ Delete Semaphore $DLSM

SOFTWARE REBOOT

The Software Reboot Facility reinitializes the system without
operator intervention. It is activated dynamically by exhaustion
of trap save areas or indirect request blocks, and by Watchdog
Timer timeouts. The user can direct that a dump be taken before
reinitialization of the system.

The Software Reboot routines/calls are:
® Modify Reboot Parameters SRBPRM

® Reboot S$RBOOT
e Unlock Dumpfile $RLDMP

STANDARD SYSTEM FILE I/O FUNCTIONS

A task group can access standard system files (command-in,
user-in, user-out, error-out, and message library) through
standard system file I/0O macro calls. Other macro calls shown
below allow the task to redefine certain standard system files.
Specifically, the macro routines enable a task to:

2-9 C205-02

Read the next record from the command-in file
Write the next record to the error-out file
Read the next record from the user-in file
Write the next record to the user-out file
Redefine the user-in file

Redefine the user-out file

Redefine the message library file.

The macro calls are:

e Command In (read command-in file) $CIN
e Error Output File SEROUT
e New Command In $NCIN
® New Message Library File S$NMLF
® New User Input File SNUIN
e New User Output File $NUOUT
e User Input File SUSIN
e User Output File $USOUT

TASK CONTROL FUNCTIONS .

The macro calls for task control allow the user to:
e Cancel a previously issued request

e (Create, request, spawn, suspend, activate, delete, and
abort a task

e Attach, load, transfer, and detach a bound unit to/from a
task : '

e Create and delete a segment for a task's bound unit
e Expand and shrink a created segment
® Process command lines

e Roll back (recover) updated records in all files updated
since the last execution of Clean Point

@ Declare a "clean point" at which

- Updates made to records are complete

- Updated records are written to disk

- The updated file is considered to be in a consistent
state

- Records previously locked by the issuing task are
unlocked.

Macro calls for task control are:

e Cancel Request SCANRQ
e Clean Point SCLPNT
e Command Line, Process S$CMDLN
°

Create Segment SCRSEG

2-10 . C205-02

® Delete Segment SDLSEG
e Expand Created Segment SXPCS
® Shrink Created Segment $SHCS
® Create Task SCRTSK
® Delete Task SDLTSK
e Request Task SRQTSK
e Spawn Task SSPTSK
e Bound Unit, Attach SBUAT
e Bound Unit, Load SBULD
e Bound Unit, Detach S$SBUDT
® Bound Unit, Transfer SBUXFR
e Kill Task SKILLT
® Roll Back SROLBK

TASK GROUP CONTROL FUNCTIONS

A task group is a named set of one or more tasks, memory
space, files, peripheral devices, and priority levels. Any
number of task groups may be defined. (Task groups and tasks are
explained in detail in the System Concepts manual.)

The macro calls for task group control allow the user to:
@ Create, spawn, request, or delete a task group

e Enable or disble certain functicnalities (e.g., message
chaining, ready prompt) for a task group

e Terminate a current task group and restart a task group
reguest

® Abort a task group request

® Terminate & user session

® Declare a checkpoint from which processing can be
restarted after premature termination of a group request

® Assign or disassign checkpoint files to a task group
e Abort a task group
e Terminate a user session.

@ Reduce a task group's memory requirement by shrinking its
group work segment (GWS).

A task executing under one group can initiate another group.
First, a task group must be defined in order to create task group
control structures and load the bound-unit root segment as the
lead task. Then, a group reguest must be issued to activate the
lead task for execution. Tasks can be executed concurrently in
this task group with the use of control functions or commands.

2-11 Cz05-02

The task group can be deleted; no more requests can be made
against this group after it has been marked for deletion. When
all tasks in the group terminate and become dormant, all memory
associated with the group is returned to its memory pool,
becoming available to other groups.

The several phases of task creation, activation, and deletion
occur in sequence when a Spawn Task Group macro call is issued.

A task can suspend a task group's execution and then activate
that task group.

A task can terminate the current group request and then
restart the processing of the criginal task group reguest.

Aborting a task group deletes the group immediately, before
all its tasks terminate and become dormant.

A task can terminate a user session, then either restart the
group request, begin a new login sequence; or disconnect the user
terminal.

A task can abort the current request for the activation of a

specified group. In this case, the next request (if any) against
that group will be processed.

Some macro calls listed below use a parameter block, which
extends the argument list of the task request block. The macro
call that generates parameter blocks ($PRBLK) is described in
Volume II; block format is shown in Appendix C.

The macro calls for task group control are:

e Abort Group S$SABGRP
® Abort Group Request SABGRQ
® Activate Group SACTVG
® Checkpoint SCKPT
® Checkpoint File SCKPFL
e Create Group SCRGRP
e Delete Group $DLGRP
® New Process $SNPROC
® Request Group SRQGRP
® Set Group Attributes $SGRPA
e Spawn Group $SPGRP
e Suspend Group $SUSPG
e Shrink Group Work Segment $SHGWS

TERMINAL CONTROL FUNCTIONS

Terminal control functions allow secondary logins and the
transfer of primary or secondary users between task groups.

2-12 Cz05-02

When someone logs into the system as a secondary user, the
Listener component attaches a secondary user's terminal to an
existing task group if the user, when logging in, specifies the
task group and if that task group has requested a secondary
terminal.

The macro calls for terminal control functions permit:

® The task group to request any secondary terminal

e The task group to request a specific secondary terminal

® The task group to transfer a user to Listener, along with
a new login line that automatically associates the user
with another task group

e The task group to transfer a user, along with a new login
line, to Listener, which later returns the user to the
task group

@ The task group to release a secondary terminal.

The appropriate macro calls are:

® Request Specific Terminal $RQSPT
e Request Terminal $RQTML
® Release Terminal SRLTML
@ Transfer and Return User SXRETU
e Transfer User S$XFERU

TRAP HANDLING FUNCTIONS

The macro calls for trap functions allow an application to
designate the traps to be handled during its execution.
Specifically, the macro calls allow the user to:

@ Connect a user-written, generalized trap handling routine
to a task

e Enable a specific trap or all traps
® Disable a specific trap or all traps.

Additionally, the user can transmit a software-generated trap
condition to a specific task.

Appendix A describes traps and trap handling in detail.

The macro calls for trap handling are:

@ Disable User Trap $DSTRP
e Enable User Trap SENTRP
® Trap Handler Connect $TRPHD
@ Signal Trap $SGTRP

2-13 Cz05-02

USER REGISTRATION FUNCTIONS

User registration functions enable a user to be registered in
one or more subsystems, such as forms processing or networking.
These functions create, retrieve, modify, and delete a subsystem
record that establishes the user's access to a subsystem and
contains various statistics.

Before a user's subsystem record can be created, the user
must be registered in the system (as distinct from the subsystem)
by the system administrator. To register a user in the system,
the administrator creates a registration record by means of the
Edit Profile utility. One user registration function, Profile
Record, Get User Information (SPRFIF), retrieves limited informa-
tion from the registration record. The subsystem and registra-
tion records belong to the profiles file, which is the system's
user registration data base.

Using the Edit and List Profile utilities, the system
administrator can maintain a user's subsystem record({s) as well
as registration record. First, however, the system programmer
must build a subsystem module as an interface between the
utilities and subsystem records. Specifications for subsystem
modules are given in Appendix F.

User registration macro calls allow the user to:

® Create a skeletal subsystem record that contains user id,
time of creation, and subsystem id

® Read a subsystem record
e Read limited information from a registration record
e Update a subsystem record

® Request and verify a password from the user of a terminal
that has experienced a phsyical disconnection.

User registration macro calls are:

e Profile Record, Accounting Update SPRFAU
e Profile Record, Create SPRFCR
@ Profile Record, Delete SPRFDL
@ Profile Record, Get SPRFGT
@ Profile Record, Get User Information SPRFIF
e Profile Record, Update $PRFUP
e Reverify Password SRVFPW

2-14 Cz205-02

Section 3

FILE SYSTEM
FUNCTIONS

File system macro calls enable applications to access data
files, including device files. These functions fall into the
following categories:

@ File management
® Data management
® Storage management.,

This section describes each category and its use of the File
Information Block (FIB). All of the functions mentioned below
are described in detail in Volume II of this manual.

FILE MANAGEMENT FUNCTIONS

The macro calls for file management consist of the following
functions:

Change Working Directory SCWDIR
Close File SCLFIL
Create Directory : $CRDIR
Create File SCRFIL
Delete File SDLFIL
Delete Directory SDLDIR
Expand Pathname SXPATH
Get Device Information $GIDEV

09/86
3-1 CZ05-02A

Get File $GTFIL

Get File Access Rights $GAFIL
Get File Accounting Information SGTACT
Get File Information $GIFIL
Get Working Directory $GWDIR
Grow File SGRFIL
Link File SLKFIL
Link Name SLKNME
Unlink File SULFIL
Unlink Name SULNME
Open File $OPFIL
Remove File SRMFIL
Rename File/Directory SRNFIL
Modify File SMDFIL
Set Terminal File Characteristics $STFIL
Set Task Identifier $STTID
Reset Task Identifier SRSTID
Test File For Input . STIFIL
Test File For Output STOFIL
Shrink File $SHFIL
Swap File $SWFIL
Wait For File Input SWIFIL
Wait For File Output SWOFIL
Cleanpoint SCLPNT
Rollback $SROLBK.

The macro calls listed above are preparatory to processing a
file. ©Specifically, file management macro calls allow the user
to perform the following:

e Create a file

® Delete a file

e Get a file (reserve a file for processing)

® Open a file

e Close a file

e Remove a file from processing

e Rename a file

e Modify a file's attributes

e Create a directory

e Delete a directory

® Rename a directory

09/86
3-2 CZ05-02A

Change the working directory

Get the name of the current working directory
Expand disk space allocated to a file
Contract disk space allocated to a file

Expand pathname (develop a full pathname from a relative
pathname)

Get information about a file
Test the status of an I/0 activity (terminal)

Wait for the completion of an asynchronous I/0 activity
(terminal)

Set the file characteristics of a terminal

Return (recover) a file to its last consistent state after
a system or software failure

Establish tasks, rather than groups, as independent users
of file recovery and record locking services

Re-establish groups as independent users of file recovery
and record locking services

Swap to the next section of a multivolume tape file or
disk serial multivolume file.

Link a file or directory to a new pathname

Although the following functions are available through macro
calls, they are typically performed outside of program execution
by means of execution control (ECL) commands:

Get File

Remove File

Create File

Delete File

Grow File

Shrink File

Rename File

Modify File

Create Directory

Delete Directory

Change Working Directory
Get Working Directory
Set Terminal File Characteristics
Associate File
Dissociate File.

3-3 Cz05-02

DATA MANAGEMENT FUNCTIONS

The following macro calls are considered data management
functions:

Delete Record SDLREC
Read Record SRDREC
Rewrite Record SRWREC
Write Record SWRREC.

The above macro calls provide for the transfer of logical
records between the user's record storage area and external
files. Before any data management calls can be executed, the
file to be accessed must have been reserved (by means of the Get
File or Create File functions) and opened (by means of the Open
File function). Moreover, before a file can be opened, it must
have been associated with a logical file number (LFN) by means of
a Get File or Create File function. Thus, data management and
file management macro calls are interdependent. Figure 3-1
partially illustrates this interdependence.

STORAGE MANAGEMENT FUNCTIONS

The following macro calls perform storage management
functions:

Read block SRDBLK
Wait block SWTBLK
Write block SWRBLK .

These calls transfer physical blocks of data between the
user's buffer and an external file. Storage management itself is
used transparently by data management to perform input/output.

An initial Read Record (SRDREC) call, for example, causes storage
management to transfer a block of data from external storage to a
buffer in memory. Data management then unblocks a record and
transfers it to a second buffer within the application.

By means of storage management read and write functions, the
user can transfer blocks of data directly to or from an
application buffer, bypassing an intermediate buffer and the
blocking/deblocking operations performed by data management.
Although highly efficient, storage management places on the user
responsibility for observing various file organizations and
formats while blocking/deblocking. The user of storage
management must also provide any necessary control information,
such as control interval headers and logical record headers.

By creating two application buffers and by using the Wait
Block macro call (described in Volume II) the user can perform
asynchronous I/0 (i.e., process one block of data while another
is being transferred from device to memory).

09/86
3-4 CZ05-02A

SCRFIL

SGTFIL

RESERVE THE
FILE FOR
PROCESSING

CREATE THE
FILE

SOPFIL

OPEN IT

Sap—

PROCESS T USING
OATA AND STORAGE
MANAGEMENT
FUNCTIONS

SCLFIL

CLOSE 1T

SRMFIL

REMOVE THE
FILE FROM
PROCESSING

Figure 3-1.

3-5

REPEATED
N TIMES

SOLFIL l

DELETE TME
FILE

Life Cycle of a File

Cz05-02

Like data management macro calls, storage management macro
calls cannot be executed until the file to be accessed has been
reserved, opened, and associated with an LFN.

FILE INFORMATION BLOCK

Data management, storage management, and several file
management functions must pass arguments to the file system by

means of a data structure called the File Information Block

(FIB).

The arguments passed include the LFN of the file to be

accessed, the address of the user's record area, the size of
input and output records, and the type of key by which records

are to be located.

The following macro calls must use an FIB:

Open File SOPFIL
Close File SCLFIL
Swap File $SWFIL
Test File STIFIL, STOFIL
Read Record SRDREC
Write Record SWRREC
Rewrite Record SRWREC
Delete Record SDLREC
Read Block SRDBLK
Write Block SWRBLK
Wait Block SWTBLK

Some of the arguments required for one type of macro call
(e.g., storage management) are not applicable to the other
types. Thus, a FIB generated for data/file management functions
differs in format from a FIB generated for storage management
functions.

The user can generate a FIB and values for its entries by
means of the $FIB macro call. Depending on the argument (s)
supplied with it, $FIB does one of the following:

® Generates an FIB, with default values, for data/file
management

® Generates an FIB for data/file or storage management, with
values defined by the user

® Modifies values of an existing FIB.

Using S$FIB, the user can set values for a new or existing FIB
by means of keywords that specify a field and expressions that
specify a value. The $FIB argument "IRL=90", for example, refers
to the input record length field of a data/file managment FIB and
sets a maximum input record length of 90 bytes. Other keywords
are specific to storage management functions.

3-6 Cz205-02

To modify the fields of an existing FIB, you can employ
offset tags rather than S$FIB keywords. (Offset tags are
discussed later in this section and in Section 5). S$FIBDM
generates tags specific to data/file management functions; SFIBSM
generates tags specific to storage/management functions. $TFIB
generates two sets of tags applicable to both kinds of file
system functions.

File Information Block (FIB) for Data Management

Table 3-1 describes the entries of a FIB used with data/file
management macro calls. The offset tags for these entries,
generated by SFIBDM, are shown in Appendix C.

Table 3-1. File Information Block (FIB) for Data Management

Size
Entry (bytes) Description

Logical file 2 Specifies the logical file number (LFN) by
number (LFN) which the file is refered to. The LFN is
the common element linking the FIB and the
external file; this connection is made via
the S$CRFIL or S$GTFIL macro call (or
equivalent command).

Program view 2 Describes user visibility to the file, and
the file's functional capabilities. Bit 0
set to ¢ indicates that this FIB is to be
used for data management (record level)
access. Table 3-2 describes this entry in
detail and its bit settings for data
management calls.

User record 4 Identifies the start of the user-record
pointer - area as follows:

SRDREC - Identifies the storage area into
which records are delivered by the system.

SRWREC, SWRREC - Identifies the storage
area from which records are taken by the
system.

The storage area must be large enough to
contain the longest record, excluding
headers, to be written to or received from
the file.

09/86
3-7 CzZ05-02A

Table 3-1 (cont).

File Information Block (FIB) for Data
Management

Entry

Size
(bytes)

Description

In record
length

Out record
length

In record
status

Out record
status

Specifies the maximum size (in bytes) of
the user-record area for S$RDREC
operations.

Specifies the actual size (in bytes) of
the record to be written or read, as
follows:

SRDREC - The system updates this entry to
reflect the actual length (in bytes) of
the last record delivered into the
user-record area.

SRWREC, SWRREC - Specifies the actual
length (in bytes) of the record, excluding
the headers, to be written in the file.

On write operations, indicates the type of
terminal control information in each
record as follows:

0000 = unknown terminal control
information

0001 = no terminal control information

0010 = standard GCOS 6 printer control
characters

On read-record operations bit 0 =1
indicates that the record just read is a
duplicate of a previous record (i.e., it
contains the same key value as the
previous record). On write-record or
rewrite-record operations bit 0 =1
indicates that the record just written is
a duplicate (i.e., it contains the same
key value as a record already in the
file).

On read-record operations bit 1 =1
indicates that there are more duplicates
for this record still remaining in the
file.

3-8 Cz05-02

Table 3-1 (cont). File Information Block (FIB) for Data

Management
Size
Entry (bytes) Description
Out record For example, if three records exist with
status the same key value, then reading the first
(cont) one will return in this entry:
bit 0 = 0
bit 1 = 1;
reading the second record will return:
bit 0 =1
bit 1 = 1;
reading the last record will return:
bit 0 =1
bit 1 =0
In record 2 SRDREC - Specifies the record type of the
type : record to be read. 'FFFF' indicates that
any record type is acceptable.
Out record 2 SWRREC, SRWREC, S$DLREC - Specifies the
type record type of the record to be updated.
SRDREC - Specifies the record type of the
record delivered to the user.
In key 4 Identifies the start of the user-key area
pointer in which the key value is stored for the
following SRDREC macro call functions:
Read with key
Read position equal
Read position greater than
' Read position greater than or equal
Read position forward
Read position backward
| For the following SWRREC macro call
functions:
Write with key
Write position equal
Write position greater than
Write position greater than or
equal

3-9 Cz05-02

Table 3-1 (cont).

File Information Block (FIB) for Data
Management

Entry

Size
(bytes)

Description

In key
pointer
(cont)

In key
format

Write position forward
Write position backward

For the following SRWREC macro call
function:

Rewrite with key

And for the following $DLREC macro call
function:

Delete with key

For CALC, Primary, and Alternate keys, the
keys to be used must be initialized within
the user's record area and the field must
point to that key.

The type of key is specified in the "in
key format" entry below.

Identifies the type of key pointed to by
the "in key pointer" entry above, as
follows:

0 - None specified; the type of key is
determined by the format of the file.

1 - Primary, Relative, or CALC (Random),
as determined by the file format:

e Primary key for indexed files

® Relative key for relative files

® CALC key for random files

2 - Simple key

3 - Alternate key

-1 - Current key’of reference

The entry is meaningful only for the macro

calls specified in the "in key pointer"
entry defined above.

3-10 Cz05-02

Table 3-1 (cont). File Information Block (FIB) for Data
Management

Size
Entry (bytes) Description

In key 1 Specifies the length (in bytes) of the
length user—-key area identified in the "in key
pointer" entry described above. Only
meaningful for primary, alternate, and
CALC keys; simple and relative keys are
always assumed to be four bytes.

Out record 4 This field is available for the system to
address place the media address of the last record
transferred by the last data management
macro call.

Normally, this address is a 32-bit simple
key (i.e., it specifies the control
interval and logical record number within
the control interval). However, if the
file is accessed via a relative key as
specified in the "in key format" field,
then this address is a 32-bit relative key
(i.e., relative logical record number in
the file).

This field is undefined if the operation
is not performed as expected.

For card readers, printers, and terminal
devices;, this field contains a count of
the records transferred; i.e., this field
is incremented by 1 for each access to the
device.

Reserved 4 This entry is reserved for future use;
must be set to zeros.

Program View Entry in FIB for Data Management

Table 3-2 shows the contents of the 2-byte program view entry
for data management (record level) access. The program view
entry describes to the file system how the file is to be
accessed, and, to some extent, what it looks like to the
programmer. The file system uses the FIB's contents to ensure
that the file is accessed only as intended. Keywords of the S$FIB
macro call and offset tags generated by $FIBDM both provide a
means of refering to fields within the program view entry.

3-11 Cz05-02

Bits 0 through 9 of the program view entry are processed only
when the file is opened, and cannot be changed while the file is

open.

Table 3-2.

Program View Entry in FIB for Data Management

Entry

Size
(bits)

Description

Related
Macro
Calls

Access level
(Bit 0)

Process rules
(Bits 1-4)

Key type
(Bits 5-9)

<
-~

(¢
Qo

necifies that £il
ia ta managemen
as follows:

S £
v a

"

[a g 1]
=
oM
Q

OO
o W
| ol (/]
@
n Qs

0 - Access via data management
macro calls.

Specifies how the file can be
processed; that is, it specifies
which types of data management
macro calls are allowed as
follows:

Permitted
Binary Macro Calls

1000 SRDREC
0100 SWRREC
0010 $RWREC
0001 SDLREC

nnnn Any combination of the
settings to allow the
desired data management
macro calls listed
above.

A macro call that is not per-
mitted (as specified in this
field) causes an access viola-
tion error.

Specifies the type of keys that
can be used to access the file
as follows:

Permitted
Binary Key Type

10000 Primary

P P ——

SOPFIL

3-12

Cz205-02

Table 3-2 (cont).

Program View Entry in FIB for Data Management

Related
Size Macro
Entry (bits) Description Calls
Key type 01000 CALC (Random)
(Bits 5-9)
(cont) 00100 Alternate

00010 Relative
00001 Simple

00101 Alternate and
Simple

10101 Alternate and
Simple plus Primary

01101 Alternate and
Simple plus CALC

00111 Alternate and
Simple plus Relative

If the key type specified in
this field is not permitted by
the type of file being pro-
cessed, a bad program view error
results. The following types of
keys are allowed by the speci-
fied types of files:

File Organization Key Type

UFAS Indexed, Primary
Alternate
UFAS Random CALC

UFAS Disk Resident Alternate
Files

UFAS Relative, Relative
Fixed Relative

UFAS Disk Resident Simple
Files

3-13

Cz05-02

Table 3-2 (cont). Program View Entry in FIB for Data Management
Related
Size Macro
Entry (Bits) Description Calls
Record class 1 Specifies type of logical SRDREC
(bit 10) records that can be present in SWRREC
the file as follows: SRWREC
0 - Any type (i.e., fixed- or
variable=length records
allowed).
1 - Only fixed-length records
allowed.
Record 1 Specifies whether or not deleted SRDREC
visibility records are skipped during read
(Bit 11) next record ($RDREC) operations
as follows:
0 - Deleted records not visible
(i.e., skip them)
1 - Deleted records are visible
(i.e., the system issues the
record not found return code
when a deleted record is
accessed).
Key storage 1 Specifies the boundary alignment SRDREC
area alignment of the user-key area (see "in SWRREC
(Bit 12) key pointer"™ entry in Table 3-1) SRWREC
as follows: $DLREC

0 - Key storage area begins at
even-byte boundary (word-
aligned).

1 - Key storage area begins at
odd-byte boundary.

3-14

Cz05-02

Table 3-2 (cont).

Program View Entry in FIB for Data Management

Entry

Size
(Bits)

Description

Related
Macro
Calls

Record storage 1l

area alignment

(Bit 13)

Transcription 1

mode
(Bit 14)

Reserved
(Bit 15)

Specifies the boundary alignment
of the user-record area (see
"User Record Pointer" entry in
Table 3-1) as follows:

0 - Record storage area begins
at even-byte boundary (word-
aligned).

1 - Record storage area begins
at odd-byte boundary.

Specifies how data is to be
transferred as follows:

0 - Data is transferred in
device-specific native
(ASCII) mode.

1l - Data is transferred in
binary transcription mode.
(See Note 2.)

Reserved; must be zero.

SRDREC
SWRREC

None

NOTES

Bits 10 through 15 may be set after an $OPFIL
macro call and before any data management

macro call.

Binary transcription mode is meaningful only

for card devices,
EBCDIC tapes.

seven-track tapes, and
For card devices, this mode is

equivalent to verbatim mode (see Section 6).

3-15

Cz05-02

File Information Block (FIB) for Storage Management Access

Table 3-3 describes the entries of a FIB used with storage
management macro calls. The offset tags for these entries,
generated by S$FIBSM, are shown in Appendix C.

Program View Entry in FIB for Storage Management

Table 3-4 shows the contents of the 2-byte program view
entry for storage management (block level) access. The program
view entry describes to the file system how the file is to be
accessed, and to some extent, what it looks like to the
programmer. The file system uses the FIB's contents to ensure
that the file is accessed only as intended. Keywords of the S$FIB
macro call and offset tags generated by SFIBSM both provide a
means of referring to fields within a program view entry.

Bits 0 through 9 of the program view entry are processed
only when the file is opened, and cannot be changed while the
file is open.

Offsets Definitions

You can refer to specific locations in the file information
block and other argument structures by using offsets definition
macro calls. These calls, summarized in Section 5 and described
in detail in Volume II of this manual, define offsets tags.

Table 3-5 shows the offsets definition macro calls and the
structures for which they define tags.

Offsets definition macro calls can be specified only once per
assembly procedure. They provide tags that are equated to
specific offsets in argument structures and FIBs. For example,
assuming that the address of an argument structure labeled FILE A
has been loaded into a base register as follows:

LAB $B4,FILE_A
and assuming that $CRPSB has been specified, the following
address syllable can be used to refer to the argument structure
entry that identifies the control interval size:

$B4 .R_CISZ

This entry effectively points to the displacement FILE_A+5 in the
parameter structure,

Volume II of this manual describes each displacement

definition macro routine/call and its tags, displacements, and
entry names in detail.

3-16 Cz05-02

Table 3-3. File Information Block (FIB) for Storage Management

Entry

Size
(bytes)

Description

Logical file
number (LFN)

Program view

Buffer pointer

Transfer-size
Block size

Block number

Reserved

16

Specifies the logical file number with
which the file is referenced. The LFN
is the common element linking the FIB
with the external file; this connection
is made with the S$CRFIL or S$GTFIL macro
call, or equivalent command.

Describes the user visibility to the
file and the file's functional
capabilities. Bit 0 set to 1 indicates
that this FIB is to be used for storage
management (block level) access. Table
3-4 describes this entry in detail, and
its bit settings for storage management
macro calls.

Identifies the start of the buffer area
as follows:

SRDBLK - Identifies the buffer area into
which blocks of data are delivered.

SWRBLK - Identifies the buffer area from
which blocks of data are taken.

Specifies the size (in bytes) of the
data transfer (i.e., the size of the
buffer).

Specifies the size of the block (in
bytes). For disk files the size must be
a multiple of physical sector size.

Specifies the starting block number for
the I/0 transfers; is relative to the
start of the file and to the block size
(described above). This entry is
incremented by 1 after each 1/0
transfer; therefore, a user's dynamic
changes to the block size also require
changes to the contents of this entry.
The first block in a file is block 0.

Reserved for later use; must be set to
Zeros.

09/86
3-17 Cz05-02A

Table 3-4.

Program

View Entry in FIB for Storage Management

Entry

Size
(bits)

Description

Related
Macro
Calls

Access level
(Bit 0)

Process rules
(Bits 1-4)

Reserved
(Bits 5-12)

Buffer
Alignment
(Bit 13)

accessed
macro

Specifies that file is
via storage management
calls, as follows:

1 - Access via storage
macro calls.

management

Specifies how the file can be
processed; that is, it specifies
which types of storage management
macro calls are allowed as
follows:

Permitted

Binary Macro Calls

1000
0100
1100

SRDBLK
SWRBLK
SRDBLK, SWRBLK

A macro call that is not per-
mitted in this field causes an
access violation error.

Reserved; must be set to zeros.

Specifies the boundary alignment
of the user buffer (see "Buffer
Pointer"™ in Table 3-3) as
follows:

0 - Buffer begins at even-byte
boundary (word aligned).

1 - Buffer begins at odd-byte
boundary.

SOPFIL

SRDBLK
SWRBLK

3-18

Cz05-02

Table 3-4 (cont). Program View Entry in FIB for

Storage Management

Related
Size Macro
Entry (Bits) Description Calls
Transcription 1 Specifies how data is transferred SRDBLK
mode as follows: SWRBLK
(Bit 14)
0 - Data is transferred in
device-specific native
(ASCII) mode.
1l - Data is transferred in binary
transcription mode. (See
Note 2.)
Synchronous/ 1 Specifies whether or not S$RDBLK S$SRDBLK
asynchronous or SWRBLK macro calls are exe- SWRBLK
indicator cuted synchronously or asynchro-
(Bit 15) nously as follows:
0 - SRDBLK or S$WRBLK macro calls
are to be executed synchro-
nously. When synchronous
SRDBLK or S$WRBLK macro calls
are issued, a SWTBLK macro
call is not required to syn-
chronize buffer use.
1 - SRDBLK or SWRBLK macro calls
are to be executed asynchro-
nously (i.e., a $WTBLK macro
call is required to
synchronize.)
NOTES
1. Bits 10 through 15 may be set after an SOPFIL
macro call and before any Storage Management
macro call.
2. Binary transcription mode is meaningful only

for card devices, seven-track tapes, and
EBCDIC tapes. For card devices, this mode is
equivalent to verbatim mode (see Section 6).

3-19

Cz05-02

Table 3-5. Offsets Definition Macro Calls

Macro Call Affected Structure

SCRPSB Argument structure for Create File macro call
($SCRFIL)

SCRRDB Record descriptor block pointed to by the $CRPSB
argument structure

SDIPSB Argument structure for Get Device Information macro
call

SGTPSB Argument structure for Get File macro call ($SGTFIL)

SGAPSB Argument structure for Get File Access Rights macro
call (SGAFIL)

SGIPSB Argument structure for Get File Information macro
call (SGIFIL)

SGRPSB Argument structure for Grow File macro call (SGRFIL)

SGIFAB File attribute block pointed to by the $GIPSB
argument structure

SGNPSB Argument structure for Get Name macro call ($GNFIL)

$SHPSB Argument structure for Shrink File macro call
(SSHFIL)

STFIB File information block for the following macro calls:

Open File SOPFIL
Close File SCLFIL
Test File STIFIL, STOFIL
Read Record SRDREC
Write Record SWRREC
Rewrite Record SRWREC
Delete Record SDLREC
Read Block SRDBLK
Write Block SWRBLK
Wait Block SWTBLK

09/86
3-20 Cz05-02A

Table 3-5 (cont). Offsets Definition Macro Calls

Macro Call Affected Structure
SFIBDM File information block specific to data management
(record level) access; used for the following macro
calls:
Open File SOPFIL
Close File SCLFIL
Test File STIFIL, STOFIL
Read Record SRDREC
Write Record SWRREC
Rewrite Record SRWREC
Delete Record SDLREC
SFIBSM File information block specific to storage management
(block level) access; used for the following macro
calls:
Open File SOPFIL
Close File SCLFIL
Read Block SRDBLK
Write Block SWRBLK
Wait Block SWTBLK
SMDPSB Argument structure for Modify File macro call
(SMDFIL)

3-21 Cz05-02

Section 4

COMMUNICATIONS
PROCESSING FUNCTIONS

Communications processing refers, in this section, to the
transfer of data between an application program and a remote
device (i.e., terminal or printer). A remote device is one con-
nected to a Multi-Line Controller (MLC); a local device is
attached instead to a Multiple Device Controller (MDC). The
control of local devices by means of device drivers is discussed
in Section 6.

OVERVIEW OF COMMUNICATIONS PROCESSING

The user can control the transfer of data between an applica-
tion program and a remote device either by means of the file
system or, more directly, by physical input/output.

Using the file system, the programmer employs many of the
file system functions described in Section 3 (e.g., Open File,
Read Record, Write Record). The parameters for these operations
are passed between the application program and the file system by
means of the file information block (FIB)., which is also
described in Section 3. The system translates the values of FIB
entries into values for the entries of the input/output request
block (IORB). Thus marked, the IORB provides instructions to a
line protocol handler (LPH), which carries out the desired
input/output operation.

4-1 Cz05-02

Using physical I/0, the programmer directly constructs and
issues the IORB instead of doing so indirectly by means of file
system functions and the FIB. To write output to a terminal, for
example, the programmer performs the following:

1. Generates an IORB by means of the $IORB macro call

2. Generates IORB offsets tags (by means of the $IORBD macro
call), which enable the programmer to refer to and £fill
fields in the IORB

3. Sets, in the appropriate IORB fields, a write function
code and parameters specializing the write operation

4., Issues a Request Input/Output ($RQIO) macro call, which
causes the appropriate LPH to perform the operation
indicated by the IORB.

The above example assumes that the device being written to
has already been ccnnected by means of previously issued S$IORB
and SRQIO macro calls (as explained in the final subsection).

COMMUNICATIONS PROCESSING THROUGH THE FILE SYSTEM

The following subjects are discussed below:

e File system functions applicable to the communications
processing

e Synchronous and asynchronous 1/0
® Use of specific file system functions

® Sequences of file system functions useful for communica-
tions processing

® Use of the Set Terminal Characteristics function/command
for changing terminal characteristics.

File System Functions

The file system functions applicable to communications
processing fall under the headings of File Management and Data
Management.

FILE MANAGEMENT FUNCTIONS

By means of these functions, a terminal can be reserved for
processing, opened, closed, and associated with a logical file
number (LFN) that identifies the file to the system. The macro
calls that perform these and other related functions are:

Get File SGTFIL
Open File SOPFIL

09/86
4-2 Cz205-02A

Close File SCLFIL
Test File S$STIFIL/STOFIL
Wait File SWIFIL/SWOFIL

DATA MANAGEMENT FUNCTIONS

Data management functions enable an application to read and
write logical records either synchronously or asynchronously.
(Synchronous and asynchronous I/0 operations are explained later
in this section.) Data management functions are:

Read Record SRDREC
Write Record SWRREC

Synchronous Input/Output

A terminal can be configured for either synchronous or
asynchronous I/0 operations. In synchronous operations, the
processing of data and the transfer of data (between application
and terminal) occur sequentially rather than simultaneously.
Thus, the application must wait until the transfer of data is
complete before processing can resume. Synchronous I/0 is best
suited to situations in which data is transferred between an
application and a single terminal and to such activity as
connecting and disconnecting a terminal.

Asynchronous Input/Output

If a terminal is configured for asynchronous I/0, data is
transferred between the terminal and the application by way of a
system buffer. Thus, asynchronous I/0 allows the application to
process records while the file system reads or writes records to
or from the buffer.

Asynchronous I/0 and the data/file management functions
listed above allow an application to access multiple interactive
terminals efficiently. For terminals operating asynchronously,
the system automatically schedules an anticpatory read, which
transfers input entered at the terminal to a buffer in system
memory. If an application immediately issues a Read Record
(SRDREC) call, the task must wait until the system buffer has
received input from the terminal. While the task is waiting,
data may be available from another terminal reserved by the
application. 1Instead, the application can issue the Test Input
File ($TIFIL) macro call to determine whether a read has
completed at a specific terminal. Alternatively, Wait File for
Input (SWIFIL) can be used to wait until a read has completed at
any of the reserved terminals. A subsequent Read Record to the
terminal would then return the data for processing by the
application. The Test File function also enables an application
to test the completion of a physical connection to a terminal
before issuing an order to that terminal.

09/86
4-3 Cz05-02A

Using File System Functions

This subsection provides specific information on the use of
the following data and file management functions:

Get File SGTFIL
Open File SOPFIL
Test File STIFIL/STOFIL
Wait File SWIFIL/SWOFIL

GET FILE (SGTFIL) MACRO CALL GUIDELINES

The Get File function reserves a file for processing and
connects a file to a logical file number (LFN). The LFN is used
in other file system calls (e.g., $OPFIL, SRDREC, S$WRREC) to
refer to the file in question. Normally, the Get File function
is invoked by a Get File command outside program execution.

The arguments for the Get File ($GTFIL) macro call in an

Assembly language communications program must have the values
shown in Table 4-1.

OPEN FILE (SOPFIL) MACRO CALL GUIDELINES

The Open File function allocates buffer space (if required)
and physically connects the device or terminal.

The Open File macro call $OPFIL, when used in communications,

must include the location of the file information block (FIB),
which in turn must contain a valid program view item.

TEST FILE (STIFIL, $TOFIL) MACRO CALL GUIDELINES

Before the application issues a S$RDREC macro call, it can
issue the Test Input File (STIFIL) macro call to check whether
input is available.

Table 4-1. Arguments for Get File ($GTFIL) Macro Call

Argument Argument Value

Logical file number (LFN) | A value from 0 through 4095

Pathname pointer Must point to a pathname of a communi-
cations device (e.g., !TTYO01l)

Concurrency control According to how the application uses

- the device (normally zero for exclu-
sive use)

Remaining arguments Zero

4-4 Cz05-02

Before the application issues a $WRREC macro call, it can
issue the Test Output File (STOFIL) macro call to check whether
the preceding output operation was completed.

WAIT FILE (SWIFIL, SWOFIL) MACRO CALL GUIDELINES

The use of the Wait File macro call permits an application to
wait for the completion of an outstanding read or write order.
The Wait File macro call can be used with a set of terminals or
devices. Test and Wait File macro calls differ in terms of when
control is returned to the calling routine. A Test File call
will return immediately with a busy or not busy status. An
application would block the execution of lower level tasks with
repeated test file calls to a busy file. This problem can be
avoided by issuing a Wait File macro call in lieu of successive
Test File macro calls.

SWIFIL is used to wait for input from any device/terminal;
SWOFIL to wait for completion of output to any device/terminal,

Macro Call Seguences

This subsection describes sequences of file system macro
calls commonly used by applications that access communications
devices. Each sequence of macro calls applies to a different
type of communications processing.

The types of communications processing illustrated below are:

e Input only (TTY or STD data entry applications)

@ Output only (receive-only printer (ROP) application)

@ Bidirectional {(the device is opened either for input or
ocutput, but not both (BSC 2780))

@ Interactive (TTY, STD, BTF, or BSC 3780 applications).
MACRO CALL PROCEDURES FOR DATA ENTRY TERMINALS

Table 4-2 shows the procedure for using file system macro
calls in a communications application involving data entry
terminals. ‘

MACRO CALL PROCEDURES FOR OUTPUT-ONLY TERMINALS

Table 4-3 shows the procedure for using macro calls in
communications applications involving output-only terminals.

Macro Calls for a Single Interactive Terminal

Table 4-4 describes the procedures for using macro calls in
communications applications involving only one interactive
terminal that has been configured for non-buffered synchronous
input/output operation.

4-5 C205-02

Table 4-2.

Macro Call Procedures for

Data Entry Terminals

Procedure
Step

Action by Application Program

System Actions

Issue S$GTFIL macro call.

Issue SOPFIL macro call with
FIB program view bit 1 set
to 1, bit 2 set to 0.

Issue SWIFIL macro call to
wait until connect is complete
and input is available. (With
multiple devices, the S$WIFIL
macro call can be issued with
a list of LFNs, effectively
giving up control until input
is available from one or more
devices in the 1list.)

Otherwise, if application is
to do other processing (not
giving up control), issue
$TIFIL macro call.

If not-busy status is
returned, issue SRDREC
macro call.

If an error status is
returned, exit from the
procedure.

When read is successful,
return to step 3 to request
more data from the device.

When application processing is
completed, issues $CLFIL macro
call.

Issue a SRMFIL macro call.

Issues asynchronous
connect; returns a
normal status to the
program.

Returns when a read
has been satisfied.

If connect is not com-
plete, returns a busy
status. If connect is
complete, issues an
asynchronous read and
returns a busy status
until read is
complete.

With read operation
complete, moves data
from system buffer to
application's buffer,
issues another asyn-
chronous read, and
returns a normal
status to the program.

Issues a disconnect.

4-6

Cz05-02

Macro Call Procedures for Output-Only Terminals

Procedure
Step Action by Application Program System Actions

1 Issue S$GTFIL macro call.

2 Issue S$OPFIL macro call with Issues an asynchronous
FIB program view bit 1 set to |connect, returns a
0, bit 2 set to 1. normal status to the

program.

3 Issue SWOFIL macro call to Will return when
wait until connect is completejoutput can be
and output can be transmitted. |transmitted.

(With multiple devices, the

SWOFIL macro call can be

issued with a list of LFNs,

effectively giving up control

until output can be sent to

one or more of the devices in

the list.)

Otherwise, if the application |If connect is not com-

is to do other processing (not|plete, returns a busy

give up control), issue a status. If connect is

STOFIL macro call. complete, returns a
not busy status if
output can be
transmitted.

4 If not-busy status is Moves data from appli-
returned, issue S$WRREC macro cation buffer to sys-
call. tem buffer. Issues

asynchronous write and
returns a normal status
to the application.

5 If error status-is returned,
exit from the procedure.

6 When write is successful,
return to step 3 to transmit
more data to the device.

7 When application pro- Issues disconnect
cessing is complete, according to device
issue SCLFIL macro call. type.

8 Issue SRMFIL macro call.

Cz05-02

Table 4-4. Macro Call Procedures for Single
Interactive Terminal

Procedure
Step Action by Application Program System Actions
1 Issue S$GTFIL macro call.
2 Issue $OPFIL macro call with

FIB program view bit 1 set to
1, program view bit 2 set to 1.

To read from the terminal and then write to the terminal:

Issue SRDREC macro call.
(This effectively gives up
control until-'the read is
satisfied.)

If error status returned, exit
from the procedure.

Process the data just read.

Issue $SWRREC. (This effec-
tively gives up control until
the write is complete.) If an
error status is returned, exit
from the procedure.

If additional input is
expected, refer to step 3.

When application processing
is complete, issue S$CLFIL
macro call.

Issue SRMFIL macro call.

Data is read directly
into the application

buffer.

Data is written
directly from the
application buffer.

Issues a disconnect.

MACRO CALL PROCEDURES FOR MULTIPLE INTERACTIVE TERMINALS

Table 4-5 describes the procedures for using macro calls in
communications applications involving multiple terminals config-

ured for buffered, asynchronous operation.

Figure 4-1 illustrates the procedure's flow.

4-8

Cz205-02

Table 4-5. Macro Call Procedures for Multiple Terminals
Procedure
Step Action by Application Program System Actions
1 Issue $GTFIL macro call to
each terminal.
2 Issue $OPFIL macro call to Issues asynchronous

each terminal with FIB pro-
gram view bit 1 set to 1,
bit 2 set to 1.

connect; returns normal
status to the program.

To read from a terminal and then write to a terminal:

 Issue SWIFIL macro call with

a list of LFNs. (This will
effectively give up control
until input is available from
one or more terminals in the

list.)

Issue SRDREC macro call.

If an error status is
returned, exit from the
procedure.

Process the data just read.

Issue $WRREC macro call.
(This will give up control
until output can be sent
to terminal.)

If additional input is
expected from any terminal,
see step 3.

When application processing
is complete, issue $CLFIL
call.

Returns when a read is
complete and data is
available. Returns the
LFN of the first ter-
minal in the list for
which data is
available.

Moves data from system

buffer to application's
buffer, issues another

asynchronous read, and

returns a normal status
to the program.

Waits until output can
be sent, moves data
from the application's
buffer to system buf-
fer, and issues an
asynchronous write.

Issues disconnect.

Cz05-02

Table 4-5 (cont). Macro Call Procedures for Multiple Terminals

Procedure
Step Action by Application Program System Actions
10 Issue S$RMFIL macro call.

$GTFIL & SOPFIL (FILE 1)

l

$GTFIL & SOPFIL (FILE 2) P FOR $OPFIL, PROGRAM VIEW
I BITS 1 AND 2 ARESET TO 11.

'

$GTFIL & SOPFIL (FILE 3) L

)

= SWIFIL (ONFILES1,2,3)

NOT BUSY - FILE n)

$RDREC (FILE n)

YES
EXIT

$SWRREC
(FILE n)

YES
EXIT

$CLFIL & $SRMFIL (FILE 1)

ADDITIONAL $CLFIL & $SRMFIL (FILE 2)

INPUT
EXPECTED
$CLFIL & $RMFIL (FILE 3)

EXIT

Figure 4-1. Simplified Program Logic for Multiple
Interactive Terminals

4-10 Cz205-02

Changing A Terminal File's Characteristics

The file characteristics (e.g., line length or record size,
detabbing, device type, operational mode) of a terminal are
established at the time of system configuration. These charac-
teristics can be changed by the file system user at execution
time, before the file associated with the device is opened,
through use of the Set Terminal Characteristics command (STTY) or
macro call (SSTFIL).

Of particular interest to the communications user are the
STTY arguments that control the operational modes of a device.
Examples of operational modes include echoplex, use of control
bytes, and optional end-of-message processing. The user can
specify operational modes by specifying a -MODES argument or by
setting bits of a device specific word.

SPECIFICATION BY -MODES ARGUMENT

The file system user can most conveniently specify opera-
tional modes by means of the -MODES arguments of the STTY
command. For example, to specify the terminal's echoplex
feature, the user enters -MODES ECHO. Conversely, the user
enters -MODES "ECHO to suppress the echoplex feature. To reset
all operational modes to those designated at the time of configu-
ration, the user invckes the control argument -RESET.

SPECIFICATION BY DSW BIT SETTINGS

In some instances,; the file system user may be regquired to
specify the operational modes of a device by-setting bits in the
device-specific word (DSW)} I DVS in the IORB. This requirement
occurs when the user wishes to alter an operational mode for
which a -MODES argument has not been defined.

Specification by DSW bit settings is accomplished through the
DSW1 and DSW2 arguments of the STTY command or $STFIL macro
call. The DSWl argument is used to change the I_DVS field in
connect and disconnect IORBs that the file manager issues against
a com- munications device; DSW2 is used to change the I_DVS field
in the read and write IORBs that the file manager issues against
the same device. A user, for example, can specify BSC 2780/3780
control byte processing by setting bit 4 in DSW1 to zero.

To change a terminal's operating characteristics through the
bit settings of the DSW, proceed as follows.

1. Determine which line protocol handler is servicing the
terminal to be modified. One source for this information
is the system's Configuration Load Manager (CLM) file
(usually >SID>CLM_USER). In this file, a DEVICE
directive names each device supported by the file system;
each DEVICE directive in the file is paired with a
station-defining directive that specifies the LPH serving
the device.

09/86
4-11 Cz05-02A

Ascertain the operational characteristics established for
the device at the time of configuration. The operational
characteristics of a device are determined by the
device-specific words of an IORB. The bit values of the
device-specific words are set by the system; these
default values are shown in Table 4-6 below. The user
should consult the appropriate sections in this manual
for the significance of particular bits in
device-specific words. The sections that should be
referenced are as follows:

Device_Unit (LPH) Section
Asynchronous Terminal Driver (ATD 8
Synchronous Terminal Driver (STD) 9
Polled VIP Emulator (PVE) 10
BSC Line Protocol Handler (BSC) 11
TTY Line Protocol Handler (TTY) 12
BSC3270 Terminal Facility (BTF) 21

The system—-defined default values for device-specific
words can be changed at the time of configuration by
means of the STTY directive.

To change temporarily a DSW value that is in effect,
enter a new value by means of the STTY command or S$STFIL
function. The new value will remain in effect only
during the current session. To permanently change the
operating characteristics of a device, use the STTY
directive (described in the System Building and
Administration manual). i

Table 4-6. System Defaults for DSW1l and DSW2

Device_Unit DSwWl DSw2
TTY 0000 0030
BSC 0000 0000
PVE 0000 0000
XBSC 0040 0000
ATD 0000 0030
STD 0103 0010
BTF 0000 0000

09/86
4-12 Cz05-02A

COMMUNICATIONS PROCESSING THROUGH PHYSICAL I/O

The physical input/output (I/0) interface permits direct
control by the user over communications processing. Used only
with Assembly language programs, the physical I/0 interface
enables communications applications to:

Call appropriate line protocol handlers (LPHs) directly
through the communications subsystem rather than through
the file system.

Control the data structure, specifically the input/output
request block (IORB), that directly affects device opera-
tions and/or characteristics.

Physical I/0

The following conventions apply to use of physical I/0:

Before requesting I/0 transfers, an application must
reserve a line or device through a $GTFIL monitor call or
a GET command. Otherwise, all physical I/0 requests will
be rejected with an error code of 085A

The I/0 request block (IORB) is the standard control
structure used by an LPH.

An application program requests an I/0 transfer by issuing
a Reqguest I/0 ($RQIO) macro call.

At the time of the S$RQIO macro call, the B4 register
contains the address of the IORB supplied by the
application program.

When configured, all LPHs and associated devices are
identified by a set of unique LRNs at the time of system
building. A line protocol handler is invoked when its LRN
is included in the IORB for a subsequent $RQIO macro call.

Bit F of IORB field I_CTl must be set to 1; this is
required for any I/0 request.

Before giving up control, the LPH maps the hardware return
status into the status word I_ST of the application's
IORB.

Table 4-7 lists the status codes that are returned (in the
left byte of I_CTl) to indicate the result of an I/O request.

4-13 Cz05-02

Table 4-7. 1I/0 Request Status Codes Returned in I_CT1

Code Number
(Hexadecimal) Meaning

0 No error, operation complete
Request block already busy (T=1)
Invalid LRN

Illegal wait

Invalid field values in the IORB
Device not ready

Device timeout on other than connect
Hardware error

Device disabled

File mark encountered

Controller unavailable

Device unavailable

Inconsistent request

Lo O o b] (V<) o N o wm s W N

EOT received (for BSC3780 and ATD stream mode)

[
o

Device timeout on connect

w
o>

Requested ATD mode not configured

w
(8]

Requested ATD mode not configured for this
controller

NOTES

l. The 08 (device disabled) status is returned on an I/0
request when the application has disabled the logical
resource. It is also returned if a connect or
disconnect has been issued against a line or device
that is currently being connected (by a prior connect
order) or disconnected (by a prior disconnect order).

2. The 0B (device unavailable) status is returned with
every read or write IORB that has been aborted by a
disconnect request with queue abort. This status can
also indicate the loss (drop) of a communication line.

4-14 | C205-02

Table 4-7 (cont). I/0 Request Status Codes Returned in I_CTl

Code Number
(Hexadecimal) Meaning

3. When the 07 (hardware error) status is found in I _CTl
~or in SRl on a resume after wait, look at the IORB
field I_ST to identify the specific error.

4. The 0C (inconsistent request) status indicates
illogical I/O requests: read or write before connect,
duplicate connect or disconnect requests, write after
disconnect.

Using Physical I/0

Two fields within the IORB specify the operation to be per-
formed.

1. The function code (Table 4-10), indicated by bits C
through F of I_CT2 in the IORB (Table 4-8), specifies the
particular operation.

2. The I_DVS item in the IORB, used with the function code,
specializes the input/output order.

To request execution of an I/0 cperation, the application,
with the $RQIO macro call, must transfer control to the physical
I/0 interface. At the time of the request, the B4 register must
contain the address of the IORB being requested. The $RQIO macro
routine initiates the I/0 operation, and returns control to the
requesting application.

The IORB may specify either synchronous or asynchronous
execution.

When the IORB specifies synchronous I/0 (bit 9 of I_CT1=0),
return to the calling application is delayed by the Executive
until the I/O operation is complete. On return of control to the
application, both the return status field in I_CTl1 of the IORB
and the Rl register will contain one of the status codes shown in
Table 4-7.

When the IORB specifies asynchronous I/O (bit 9 of I_CTl=1),
control returns immediately without waiting for I/0 completion,
and the instruction at the return point is executed as soon as
the system initiates the requested I/0 operation.

4-15 Cz05-02

To obtain the completion status (in Rl register) when using
asynchronous I/0, the application should issue a $WAIT or STEST
macro call. The SWAIT macro call blocks execution of the
application until the requested I/0 operation is marked as
complete. At completion of the I/0 operation, the application
should first check the Rl register to see that the I/O request
was successful. Any error will be defined there. Hardware
errors will be indicated in the IORB software status word I_ST
(see Table 4-9). The STEST macro call returns the completion
status of the IORB if the I/O transfer has completed, or returns
status 0801 if I/0 has not completed. The $TEST macro call
allows the application to continue processing pending completion
of an I/0 transfer, whereas S$WAIT does not.

Residual range, indicated in the IORB, shows how much of the
requested data was transferred. The residual range value in
I_RSR of the IORB is meaningful only when the A-bit in the I_ST
item (Table 4-8) of the IORB has been set on.

DATA STRUCTURES

Data structures control the interactions among an application
program, its line protocol handlers, and the devices it uses.
The input/output request block (IORB) is the interface between
the application and line protocol handler. The IORB and its use
are described below in general terms. Later sections describe
the contents of specialized IORBs for each of the line protocol
handlers.

Input/Output Request Blocks

The IORB is the standard means for requesting a physical I/0
service. As described in this section, the IORB is used with
physical I/O communications interfaces. The physical I/0 part
(through 13+2*S$AF in Figure 4-2) is directly usable at the
physical I/0 interface. The logical part (beginning with
14+2*$AF) is used by forms processing software, by the local mail
facility (interprocess communication), and by the message group
request blocks MGIRB, MGCRB, and MGRRB.

Generated by the Input/Output Request Block macro call
(SIORB), the IORB contains all the information that an applica-
tion requesting an I/0 service must specify to define the opera-
tion to be performed. Specifically, the IORB includes the
following:

e Logical resource number (LRN) that identifies the I/0O
device being addressed

@ Location and size of the buffer to be used for physical
I/0 transfers

e Type of operation as specified by the function code and
optional device-specific word

4-16 Cz05-02

e Information, concerning results of the I/0 request,
returned by the line protocol handler to the application
after I/0 completion.

When the IORB is used with a $RQIO macro call, the device
named in the IORB should have been previously reserved by a Get
File (SGTFIL) macro call. The logical resource number (LRN)
required by the IORB can be obtained by issuing a Get File
Information ($GIFIL) macro call. For further details, see the
description of the Request I/0 ($RQIO) macro call in Volume II.

Figure 4-2 shows the format of the IORB. Table 4-8 defines
the separate entries in the IORB. Later sections in the manual
describe the significance of the device-specific word (I_DVS),
software status word I_ST, and other IORB words for the various
line protocol handlers.

NOTES

1. The labels used in the figure to identify IORB
fields (e.g., I_CTl, I_ADR) can be generated
by the S$SIORBD macro call, described in Volume
II.

2. The offset symbol S$AF signifies the number of
words required to specify a memory address.
In this system, $AF is equivalent to two
words.

3. The asterisk (*) in the formulas in the “"Word"
column of Figure 4-2 and Table 4-8 is a
multiplication sign.

4. The shaded fields in Figure 4-2 are for system
use only. Fields not shaded must be initial-
ized by the application requesting the 1/0
operation.

IORB SOFTWARE STATUS WORD (I_ST)

The line protocol handler maps into the IORB software status
word I_ST (Table 4-9) the return status of the hardware or line
protocol handler.

The bit settings in the software status word I ST indicate to
the application the status of the hardware, as shown in Table
4-9.

The meanings of bit settlngs in the software status word I_ST
for specific devices are shown in tables in later sections that
describe the line protocol handlers for those devices.

4-17 Cz205-02

WORD LABEL ol 1 l2)3la)ls|el7]elolalelclolel]cr
-3 I_LRX RESERVED EXTENDED LRN
—$AF |_RRB REQUEST BLOCK POINTER,
-1 |_SEM . OR SEMAPHORE NAME
0 I_LNK
$AF |_CT1
1+SAF I_CT2 LRN o|lslol e FUNCTION
24$AE !_ADR BUFFER ADDRESS — 2-WORD POINTER .
2+2°$AF |_RNG RANGE — NUMBER OF BYTES TO BE TRANSFERRED
3+2*SAF |_DVS DEVICE — SPECIFIC WORD
4+2°SAF |_RSR
5+2°$AF I_ST
. TOTAL IORB EXTENSION PHYSICAL 1/0 EXTENSION
6+2°SAF I-EXT LENGTH (IN WORDS) LENGTH (IN WORDS)
742*$AF I_DV2 DEVICE — SPECIFIC WORD 2
DEVICE PHYSICAL CONTROL WORD 1
8+2°SAF | 1_FCS | o e e o e e e e i e e e e
FUNCTION CODE 1 FUNCTION CODE 2
ora-SAr '\ Hom DEVICE PHYSICAL CONTROL WORD 2
A - (VALID IF B-BIT (E) IS 1)
DEVICE PHYSICAL CONTROL WORD 3
1042°8AF | 1_sT? b o 2EVEETAVOE R woRe, (]
SECOND STATUS WORD TIME—OUT VALUE
1142*$AF | 1_aDP DEVICE PHYSICAL CONTROL WORD 4
12+2°$AF I_TAB DEVICE DEPENDENT: ATTRIBUTE OR DESCRIPTOR
13+2°$AF | 1_CON PREORDER CONTROL
14424SAF I_LOG FIRST WORD OF LOGICAL PART OF IORB

Figure 4-2.

Communications Input/Output Request Block (IORB)

4-18 Cz05-02

Table 4-8.

Communications Input/Output Request Block (IORB)

word

Label

Bits

Description

-3

-$SAF

SAF

I_LRX

I_RRB/
I_SEM

I_LNK

I_CT1

0-3
4-15

0-31

0-31

0-7
8 (T)

9 (W)

a (U)

B (8)

C(P)

Reserved for system use.

Extended logical resource number (LRN).
If byte ¢ (bits 0 to 7) of I_CT2 contains
the value 253 (x'FD'), this field
indentifies the device to be used.

Depending on the S- or R-bits of I CT1,
this word contains a task request block
pointer (R-bit on) or a semaphore name
(S-bit on). Set by user; used by system
at termination of request.

Reserved for system use; two-word
pointer.

Return status. (See Table 4-7).

This bit is set (on) while the request
using this IORB is executing; it is reset
when the request terminates. The system
controls this bit:; user should not change
it.

Wait bit. Set by user when the
requesting task is not to be suspended
pending the completion of the request
that uses this IORB. If W = 0, then the
D, R, and S bits may not be set.

User bit. User may or may not use this
bit; system does not change it.

Release semaphore indicator. Values:

0 = No semaphore in I_SEM. 1 = Release,
on completion, semaphore item named in
I SEM.

Must be set by user if IORB is to be
referenced by a Wait Any (SWAITA) macro
call. If set, IORB can be referenced
only by SWAIT or SWAITA issued by the
requesting task.

4-19 Cz05-02

Table 4-8

(cont). Communications Input/Output

Request Rlock (IORB)

Word

Label Bits Description
SAF I CTl | D (R) | Return IORB indicator. Values: 0 = No
(cont) (cont) request pointer in I_RRB. 1 = Dispatch
task request block named in I_RRB; after
completion of this request, the system
executes SRQTSK, using I_RRB.
I_CTl E (D) | Delete IORB indicator, used usually with
' B (S) and D (R) bits. 0 = No delete. 1
= When task terminates, return memory to
the pool where IORB is the first entry of
its memory block.

F I/0 bit. Must be set to 1.

1+$AF I_CT2 | 0-7 Logical resource number (LRN). If this
field contains any value other than 253
(x'FD'), it indentifies the device to be
used. If this field contains 253, I_LRX
contains the LRN value.

8 Must be 0.

9 (B) { Byte index. 0 = buffer begins in
leftmost byte of word; 1 = buffer begins
in rightmost byte.

A (P) | Reserved for system use.

B (E) | Extended IORB indicator. 0 = Standard
(nonextended) IORB. 1 = IORB extended as
specified by I_EXT.. Set by user. (See
I_EXT below.)

C-F Function code. See Table 4-10.

2+S$AF I_ADR | 0-31 Buffer address; 2-word pointer.

2+2*SAF | I_RNG | 0-15 Range. Indicates number of bytes to be
transferred.

3+2*$AF | I_DVS 0-15 Device-specific information. Set by
user.

4+2*$AF | I_RSR | 0-15 | Residual range. Indicates the number of

bytes not transferred. Filled in by the
system on completion of the order.

4-20 Cz05-02

Table 4-8 (cont).

Communications Input/Output
Request Block (IORB)

Word Label Bits Description

5+2*$AF |I_ST 0-15 Status word. Reflects the mapping of the
hardware status into software status
format. Set by system after 1I/0
completes. Used also by the ATD and STD
LPHs as a peripheral address field.

6+2*$AF |I_EXT | 0-7 Left byte: Number of words in the IORB
extension, not including this I_EXT word.

8-F Right byte: Number of words in physical

part of IORB extension, not including
this I_EXT word; must be less than or
equal to total extension length shown in
the left byte.
This word applies only when the B (E) bit
in I_CT2 is 1.

7+2*$AF |I_DV2 | O-F Device-specific word 2. Contains
device-specific information.

8+2*$AF (I _FCS | O-F Device physical control word 1.

9+2*$AF |I_HDR | 0-F Device physical control word 2.

10+2%SAF |[I_ST2 0-F Device physical control word 3.

11+2*$AF | I_QDP 0-F Device physical control word 4.

1242*SAF |1 TAB 0-F Device physical control word 5.

1342*SAF|I_CON | O-F Device physical control word 6.

14+42*SAF|I LOG 0-F First word of logical part of IORB. Used

by forms processing software, in message
control, and by local mail message group
request blocks.

Communications Function

Codes

the devices and applications that they service.

All line protocol handlers perform similar functions for

These functions

are performed by the line protocol handler's request and
interrupt processing codes.

4-21 Cz05-02

Table 4-9. Software (I_ST) Status Codes

Bit in
IORB's
I_ST Meaning When Bit Set On

0 -

1 Read error (PVE, BTF)

2 Data service rate error

3 Lost line bid or RVT received (BSC, BTF)

4 Communication control block service error

5 No stop bit on character input (TTY); conversational
reply received (BSC3780); IORB purged because of BREAK
signal (ATD, TTY, BTF)

6 Long record (BSC, ATD, BTF)

7 ITB/ETB or ETX received (BSC); poll failure (PVE)

8 Framing error (ATD); NAK limit reached (PVE, BTF)

9 Checksum or parity error limit reached (PVE); parity
error (ATD)

A Nonzero residual range

B Phone disconnect

C End-of-transmission received (BSC); Invalid response
received (BTF)

D Transparent message received (BSC)

E NAK limit reached (BSC); Busy received (BTF)

F Nonexistent resource; bus parity error; fatal
uncorrectable memory error

An application can request specific functions by providing a
function code in the IORB supplied when it requests I/0 service.
The application uses the last four bits of its IORB's I_CT2 entry
(see Figure 4-2) to enter the function code for the functions
summarized in Table 4-10.

4-22 Cz205-02

Table 4-10. Communications LPH Function Codes

Function
Code in
IORB Communications Function
1 Write
2 Read
5 Define-form (used only
- by the ATD LPH)
9 Read break
A Connect
B Disconnect

The connect and disconnect functions may be used with
non-communications devices, in which case they are processed as
"no-ops". Thus, no matter how connected to the system, all TTY
devices and noninteractive (e.g., card reader and printer)
devices can be controlled by the same application program. This
provision is useful for program development and test purposes.

WRITE FUNCTION (CODE 1)

This function allows data to be written to a specific
device. When a line protocol handler (LPH) receives a write
request, it transfers the indicated data from the application's
buffer to the device, according to the information supplied in
the device-specific word of the application's IORB.

READ FUNCTION (CODE 2)

) This function allows data to be read from a specific device.
When the LPH receives a read request, it tranfers data from the
device to the application's buffer, according to the information
supplied in the device-specific word of the application's IORB.

DEFINE-FORM FUNCTION (CODE 5)

This function is used by the ATD LPH for forms processing to
define fields, their subfields, and their attributes. A
define-form order does not itself result in actual physical I/0.
(Refer to Section 8 for more details.)

4-23 Cz05-02

READ BREAK (CODE 9)

This function allows an application to be notified of an
operator-generated break condition on synchronous or asynchronous
terminals. The function also allows for the selective
cancellation of outstanding read break orders. (Refer to Section
8 for more details.)

CONNECT FUNCTION (CODE A)

The connect function provides a logical and physical connec-
tion between an application program and a communications device.

As a logical function, the connect function is a reguest to
use the specified communications device. If that resource is
being used, an error return results. In that case, the applica-
tion must determine whether that resource is sharable (as
established by the installation's procedures) and proceed
accordingly.

As a physical function, the connect function establishes a
physical path to the communications device associated with the
specified logical resource number (LRN). This implies, when the
device is to be connected over a switched line, that the system
software should complete call establishment on the line associ-
ated with that device. The request times out after 5 minutes.

If the connect function is not completed, the system will not
process any requests for the communications device and will
return an error status.

The connect function must be requested before any other
function, since communications devices are configured into the
system in a disconnected state.

DISCONNECT FUNCTION (CODE B)

The disconnect function provides both the logical (normal and
abnormal) and physical disconnection between the application and
a communications device.

As a logical function, the disconnect function indicates that
the use of the designated device is to be terminated.

For a logical disconnect, issue a disconnect request
(function code B) with the E-bit in I_DVS set off (dequeue
remaining IORBs for device) and the F-bit in I_DVS set on (do not
hang up phone). At this point, any pending read or write
requests are returned to the application program with a B status
(device unavailable). Continued use of the device requires that
the application program issue a connect.

As a physical function, the disconnect function must specify,

by setting the F-bit in I_DVS to 0, the physical disconnection of
a line.

4-24 CZ05-02

Section 5

DATA STRUCTURE
GENERATION

This section summarizes the macro routines that generate and
define system data structures. There are two kinds of data
structures: those that apply to system control functions and
those that apply to file system functions. The macro calls that
generate both kinds of data structures are deccribed in detail in
Volume II of this manual. The formats of the generated data
structures are tabulated in Appendix C.

SYSTEM CONTROL DATA STRUCTURES

System control data structures that are visible to the user
consist of the following:

@ Request blocks
® Parameter block and wait lists.

Request Blocks

When requesting certain operations, tasks generate request
blocks in order to specify the parameters of the requested opera-
tion. The first five words of all request blocks are identical
in format; these words pass parameters to the system. The W-bit,
for example, in the third word of request blocks, specifies
whether or not the requesting task is to be suspended until the
requested operation is completed. Additional words convey to the
system information specific to the request block type.

5-1 Cz05-02

One type of request block, the task request block, passes
parameters to the requested task as well as to the system. These
additional parameters are arguments that control the execution of
the task being requested. They are entered into a variable-
length field of the task request block called an argument list.

Table 5-1 lists the request blocks and the macro calls that
generate them.

The arguments supplied with each of the above macro calls v
sets values for fields of the corresponding request block. For
example, the first argument of the Input/Output Request Block
(SIORB) macro call specifies the logical resource number (LRN) of
the device to perform the input/output operation. The number
specified by this argument is placed in the request block
generated by the $IORB macro call.

Request Block Offsets Macro Calls

Each request block macro call is paired with a request block
offsets macro call. Reguest block offsets macro calls generate
tags for every entry in a corresponding request block, allowing
symbolic references to request block fields by application code.
These tags are not generated by request block macro calls. An
application may use a request block macro call to construct a
request block, and then issue a request block offsets call to
facilitate modification of the existing block by executing code.

Unlike the arguments of request block macro calls, the tags
generated by offset macro calls refer to all fields of the cor-
responding request block. Offset tags refer to fields in which
values are returned by the system, whereas macro call arguments
refer only to fields in which values are entered by the user.

Table 5-1. Request Blocks

Request Block Macro Call
Clock request block (CRB) SCRB
Input/output request block (IORB) $IORB

Message group request blocks

Message group control (MGCRB) $SMGCRB

Message group initialization (MGIRB) SMGIRB

Message group recovery (MGRRB) $MGRRB
Semaphore request block (SRB) $SRB
Task Request block (TRB) $TRB

5-2 Cz05-02

As mentioned above, the first five words of all request
blocks are identical. Each offset macro call, however, refers to
these words by different tags. The fourth word of the semaphore
request block, for example is S_CTl, whereas the fourth word of
the task request block is labeled T_CTl. The programmer, there-
fore, can include several types of offset macro calls in an
application without multiply defining symbols.

No arguments are specified with offsets macro calls. Only
one offsets macro call of a partlcular type is allowed in an
application.

Macro calls that generate offsets tags for request blocks are
listed below:

Clock Request Block Offsets SCRBD
Input/Output Regquest Block Offsets SIORBD
Message Group Control Request Block Offsets $MGCRT
Message Group Initialization Request Block Offsets S$MGIRT
Message Group Recovery Request Block Offsets SMGRRT
Semaphore Request Block Offsets S$SSRBD
Task Request Block Offsets STRBD

Parameter Block and Wait Lists

The parameter block and wait lists are system control data
structures that differ in format from request blocks.

A parameter block is egquivalent to the task request block's
argument list, mentioned above; it is generated by the Parameter
Block ($PRBLK) macro call. Parameter blocks are a standard means
of passing arguments between tasks. By specifying the number and
length of arguments, as well as the arguments themselves, a
parameter block allows the receiving task to locate each argument
in the list (or block).

A wait list is a list of request blocks to be serviced before
the task issuing the wait list macro call completes its own exe-
cution. A wait list consists of a count of the number of request
blocks to be waited on, followed by the request blocks' addres-
ses. The list is generated by the Wait List (SWLIST) macro
call. Another macro call, Wait on Request List ($SWAITL) causes
the task manager to scan the wait list and activate the waiting
task when any of the listed reguests are marked as completed.

A multiple wait list contains the same information as does
the wait list; in addition, it specifies the number of request
blocks that must be completed before a waiting task is to be
activated. A multiple wait list is generated by the Generate
Multiple Wait List (SWLSTM) macro call.

5-3 Cz05-02

FILE SYSTEM DATA STRUCTURES

A file information block (FIB) is used by running applica-
tions to request input/output operations. Other data structures
are used outside of program execution by functions that create
and modify files, or return information about files already
created. Both types of data structures are discussed below.

File Information Block

The file information block is the means by which an applica-
tion passes to the file system the parameters of a requested
input/output operation. The fields of the FIB specify such items
as a file's logical resource number (LFN),6 by which the system
identifies the file; the record or block size; and the address of
the user's buffer.

The following macro calls use an FIB:

Open File SOPFIL
Close File SCLFIL
Test File STIFIL, STOFIL
Read Record SRDREC
Write Record SWRREC
Rewrite Record SRWREC
Delete Record SDLREC
Read Block SRDBLK
Write Block SWRBLK
Wait Block SWTBLK

FILE INFORMATION BLOCK MACRO CALL

The file information block is generated by the File Informa-
tion Block (SFIB) macro call. An $FIB macro call can do one of
the following:

e Build a new FIB with default values determined by the
system

e Build a new FIB, specifying its contents by means of argu-
ments supplied with the call

e Generate instructions to alter the contents of an existing
FIB.

The file system performs three functions: data management,
file management, and storage management. An FIB pertinent to one
type of function may not be pertinent to another type. Data man-
agement involves the transfer of logical records; storage manage-
ment, the transfer of blocks of records. The fields of an FIB
applicable to data management, would specify the size and loca-
tion of logical records; the fields of an FIB applicable to stor-
age management, the size and location of record blocks. The FIB
macro call has two sets of arguments, pertaining to data/file
management and storage management.

5-4 Cz05-02

FIB OFFSET MACRO CALLS

For the same reason that the $FIB has more than one set of
arguments, there are several macro calls that generate FIB offset
tags. (The use of offset tags is explained earlier in this sec-
tion.) The FIB offsets macro calls are:

SFIBDM
SFIBSM
STFIB

The S$FIBDM and SFIBSM macro calls generate sets of tags that
are specific to data/file management and storage management,
respectively. A third offsets macro call, S$TFIB, generates two
sets of tags, applicable both to data/file and to storage manage-
ment. The STFIB macro call would be issued by an application
requesting both data/file management and storage management
services.

Macro Call Argument Structures

Macro calls that create and modify files, or return informa-
tion about existing files must specify many parameters, as a file
can take many different forms. Typically, these macro calls have
a single argument that points to a list of arguments, or an
argument structure. Offsets macro calls are available to facili-
tate modifying or referring to the fields of an argument struc-
ture. Table 5-2 lists the file system macro calls that require
argument structures and the offsets macro calls that supply tags
for these structures.

Size Tags

Data structures for file system macro calls can either be
declared statically or built dynamically. In the latter case,
memory for the structure is dynamically obtained by means of the
Get Memory (SGMEM) macro call at the time of execution. The
memory thus obtained should be cleared to zeros to ensure that
fields of the structure reserved for future are zero-filled. Each
offset macro call generates a size tag for specifying the size of
the corresponding data structure. The size tag can be used to
specify the amount of memory requested (when issuing the Get
Memory macro call), or used to clear the structure to zeros.

Example:

$B4 points to a file information block (FIB). The structure
is cleared with the instructions:

LDV $R1,F_Sz-1 R1=SIZE OF FIB MINUS 1
$A CL $B4.SR1 CLEAR ONE WORD
BDEC S$R1,>-S$A LOOP UNTIL ALL WORDS CLEARED

5-5 Cz05-02

Table 5-2. Argument Structures and Offsets Tags

Calls Requiring
Argument Structures

Calls Generating
Offset Tags

Create File (SCRFIL)

Get Device Information
(SGIDEV)

Get File Access Rights
(SGAF1IL)

Get File Information
(SGIFIL)

Get Name (SGNFIL)

Grow File (SGRFIL)

Modify File (SMDFIL)

Shrink File (S$SHFIL)

Create File Parameter Block Structure
Offsets ($SCRPSB)

Create File Record Descriptor Block
Offsets (SCRRDB)

Get Device Information Parameter
Structure Block Offsets ($SDIPSB)

Get File Access Rights Parameter
Structure Block Offsets ($SGAPSB)

Create File Record Descriptor
Block Offsets ($SCRRDB)

Get File Information Parameter
Structure Block Offsets ($SGIPSB)

Get File Information File Attribute
Block Offsets (SGIFAB)

Get Name Parameter Structure Block
Offsets ($SGNPSB)

Grow File Parameter Structure Block
Of fsets (SGRPSB)

Modify File Parameter Structure Block
(SMDPSB)

Shrink File Parameter Structure Block
Offsets (SSHFIL)

09/86
5-6 Cz05-02A

Section 6
DEVICE DRIVERS

This section describes the internal system software known as
device drivers and some related data structures, principally the
input/output regquest block (IORB), by which the device driver is
controlled. A device driver performs all data transfers between
a non-communication peripheral device and an application program
requesting input/output. Line protocol handlers analogously
perform input/output between applications and communications
devices, which are attached to a multi-line controller (MLC).
The remainder of this section describes non—communication
peripheral device drivers. Line protocol handlers are described
in later sections.

INPUT/OUTPUT DRIVERS

Applications can request and instruct drivers to do physical
I/0 directly by means of the Request Input/Output ($RQIO) and
Input/Output Request Block ($IORB) macro calls. Most often,
applications invoke drivers indirectly when issuing file system
macro calls such as Read Record (SRDREC) and Write Record
(SWRREC) . When executing these calls, the file system generates
IORBs to instruct the drivers. 1If an application requests a
driver to do physical 1/0 ($RQIO), the application must have
previously reserved the peripheral device ($SGTFIL) via the file
system.

6-1 Cz05-02

Drivers are reentrant programs capable of supporting the
concurrent operation of several devices at the same time. The
priority level at which they run is selected by the user when the
system is configured. Requests by applications for I/O activate
the drivers, which in turn initiate data transfer that is
simultaneous with the operation of the central processor.

Drivers process an interrupt from the peripheral device to the
central processor when the transfer of data is terminated.

Device Driver Data Structures

T™wo data structures control the interaction between an
application program, its device drivers, and the devices the
program uses. These structures are the input/output regquest
block (IORB) and the resource control table (RCT).

The IORB is the interface which does physical I/0 directly
between the application and its device driver. Through the IORB,
the application defines the I/0 service that it wishes to be
performed. Also, the IORB contains information returned by the
driver to the requesting task concerning the outcome of the I/O
request. The resource control table (RCT) is the interface
between the driver and its device(s), and is not normally
accessible to users of Honeywell-supplied drivers described in
this section.

Device Driver Conventions

The following conventions apply to all input/output device
drivers.

® The I/0 request block (IORB) is the standard control
structure used by a driver. It is described later in this
section.

e The SRQIO macro call is used to request a driver.

® The B4 register contains the address of the IORB supplied
by the caller; the IORB contains the LRN of the device to
be used.

e The I/O-specific words of the IORB (I_CT2 through I_DVS)
are not modified by the driver.

e If a device becomes inoperable, it can be disabled with an
operator command and another device can be substituted.

e Drivers are reentrant and interrupt driven; one driver
supports many devices of the same type.

e Synchronous and asynchronous I/0 are supported.
e The hardware status is always mapped into the software

status word in the task's IORB (I_ST) before the driver
relinquishes control.

6-2 Cz205-02

Driver Functions and Function Codes

All drivers perform similar functions on behalf of the
devices and application tasks they service. These functions are
carried out by the driver's request processing and interrupt
processing code. The application task requests specific
functions by providing a function code in the IORB that it
supplies when it requests I/0O service. These specific function
codes are summarized in Table 6-1 and discussed under the
specific function heading in the following pages.

The application task uses the last four bits of the IORB
entry I_CT2 to enter the function code for the functions
summarized in Table 6-1.

CONNECT FUNCTION (fc=A)

This function may be used with noninteractive devices for
program compatibility. The driver of a noninteractive device
treats this function as a NOP and immediately posts the IORB back
to the requester with successful status (operation complete).

DISCONNECT FUNCTION (fc=B)

The disconnect function as a logical function indicates that
use of the indicated device is terminated. Termination may be
either normal or an abort of all gueued read or write requests
issued by this user program.

~WAIT ONLINE FUNCTION (£fc=0)

This function allows a caller to wait until a device becomes
ready for use, or until a specific time interval has passed.

All non-communications devices generate interrupts when their
availability changes. For example, when a printer runs out of
paper, an interrupt is generated and the device is not ready for
use; when the paper is installed and the device is again ready,
another interrupt is generated.

When a driver receives a service request from a task using
the "wait online"™ function code in the IORB that it supplies
(0000 in the last four bits of I_CT2), and the device is not
ready, the driver sets a timer for 5 minutes and suspends. When
the driver is reactivated, either by a ready interrupt from the
device or by a timeout, it deactivates the timer, checks the
device-ready bit in the hardware status word, and places a 0 or 6
value in the return status field of the IORB depending on the
condition of that bit. See Table 6-2 and the return status codes
for the $RQIO macro call (which is described in Volume II). The
‘rightmost 2 digits of the 4-digit hexadecimal status code are
placed in the return status field.

6-3 , Cz205-02

Table 6-1.

Input/Output Function Code

Device
IORB
Function Card Card Reader/ Magnetic
Code Reader Punch Printer Disk Tape
0 Wait online |Wait online Wait online | Wait online Wait online
1 NA Write (punch) | Write Write Write
2 Read Read NA Read Read
3 KA write file | NA NA write file
mark (punch) mark
4 NA NA NA NA Position block*
5 ° NA NA NA Format write | NA
6 NA NA NA Format read Pogiticon file**
9 NA NA NA NA NA
A Connect Connect Connect Connect Connect
B Disconnect Disconnect Disconnect Disconnect Disconnect
E NA NA NA Read disabled | Read disabled
device device

*pPositive range of one is forward space to start of next block.

Negative range of one is backspace to beginning of previous block.

**positive range of one is forward space to next tape mark.

Zero range is backspace to previous tape mark.

Negative range of -1 is rewind to BOT.
Negative range of -2 is rewind to BOT and unload.
Negative range of -3 is write at EOF gap.

CzZ05-02

Table 6-2. Return Status Codes (Last Two Digits)

Code Number
(Hexadecimal) | Meaning
00 No error, operation complete
01 Request block already busy (T=1)
02 Invalid LRN
03 Invalid wait
04 Invalid parameters
05 Device not ready
06 Device timeout on other than connect
07 Hardware error
08 Device disabled
09 File mark encountered
oa Controller unavailable
0B Device unavailable
ocC Inconsistent request
10 Device timeout on connect
11 Write protect error
17 Memory access violation
31 Possible disk head failure
32 Possible disk media failure
NOTES

1. Wwhen status 07 is returned, look in I_ST to
identify. the specific hardware error.

2. Status 0B is returned with every read or write
IORB that has been aborted by a disconnect
request with queue abort. The disks and tapes
are disabled until the system's automatic
volume recognition routine calls the enable
device function.

3. Status 0C indicates illogical peripheral
driver requests (e.g., read or write before
connect; duplicate connect or disconnect
requests; write after disconnect).

The wait online function should not be issued to a device
that is currently ready for use unless you expect it to become
unavailable for a limited time (e.g., the operator has been
instructed to change a volume mounted on a disk device currently
in use).

6-5 Cz205-02

WRITE FUNCTION (fc=1)

The write function is available for all devices except the
card reader. This function allows the writing of data to a
particular device. When a driver receives a write request, it
transfers the indicated data from a user buffer to the device
according to the specifications supplied in the task's IORB.

READ FUNCTION (£fc=2)

The read function is available for all devices except local
and remote printers. This function allows reading data from a
particular device. When a driver receives a read request, it
transfers the data from the specified device to a user buffer
according to the specifications supplied in the requesting task's
IORB.

READ DISABLED DEVICE FUNCTION (fc=E)

This function, available only to disk or magnetic tape
devices, allows the driver to bypass the device-disabled test
during validity checking.

This function is used by the system's automatic volume
recognition (AVR) module, which recognizes the volume label of
the volume on the disabled device, then enables the device so
that attempts to read data from it can continue.

WRITE TAPE MARK FUNCTION (fc=3)

The write tape mark function, which is available to magnetic
tape devices, allows you to put a mark block on a referenced
magnetic tape.

POSITION BLOCK FUNCTION (fc=4)

The position block function, which is available to magnetic
tape devices, allows you to position a referenced magnetic tape
forward or backward one block.

FORMAT WRITE (fc=5)

The format write function, available only to disk devices,
allows you to format a disk device. The number of sectors per
track depends upon the device type.

FORMAT READ (fc=6)
The format read function, available only to disk devices,
allows you to read all identifier and data fields on a track.

The read begins at the first sector following the index mark and
proceeds in the order in which the identifiers are recorded.

6-6 Cz05-02

POSITION TAPE MARK FUNCTION (fc=6)

The position tape mark function, which is available to
magnetic tape devices, allows the user to:

e Position forward a referenced magnetic tape beyond the
next tape mark

® Position backward a referenced magnetic tape before the
current tape mark

® Rewind to BOT
@ Rewind to BOT and unload.

INPUT/OUTPUT REQUEST BLOCK

The input/output request block (IORB) contains all
information that a task requesting an I/0 service can specify to
define the operation to be performed. 1In addition, it contains
information returned by the driver to the requesting task
concerning the outcome of its I/0 request.)

Figure 6-1 shows the format of a nonextended IORB. Unshaded
fields must be initialized by the task requesting the I/O
cperation. The shaded fields are set by the driver to return
information about the I/0 request to the caller, or are
controlled by the Executive.

0jrvj2jsjaejsfjejrjejoejajrjcjolelF
-3 I_LRX RESERVED LRN
{ :fAF } {_RRB/I_SEM REQUEST BLOCK POINTER/SEMAPHORE NAME
0 I_LNK
SAF 1_CT1
1+$AF 1_CT2 FUNCTION
2+$AF I_ADR ‘ BUFFER ADDRESS
2+42°$AF 1_RNG RANGE
342°8AF 1_DVS DEVICE SPECIFIC WORD
4+2*¢AF I_RSR
5+2*°¢aF 1_ST
6+2°$AF |_EXT TOTAL EXTENSION LENGTH P10 EXTENSION LENGTH

86-040
Figure 6-1. Format of I/0 Request Block

09/86
6-7 CZ05-02A

Table 6-3 defines the specific IORB entries in a nonextended
IORB. (See the "Communications Processing Functions" section for
descriptions of IORB extensions.) Table 6-4 defines the software
status word (I _ST) in the IORB. Device-specific IORB information
is provided in the separate device driver descriptions later in
this section.

NOTE

The offset labels used to refer to IORB fields
(e.g., I_CTl, I_ADR) can be generated by the S$IORBD
macro call, which is described in Volume II.

CALLER INTERFACE WITH DEVICE DRIVER

To request execution of an I/O operation, the caller must
issue a $RQIO macro call with $B4 pointing to the IORB to be
serviced. If the IORB specifies synchronous I/0 (W-bit reset),
the issuing task is suspended until the I/0 operation is

cemplete.

If the IORB specifies asynchronous I/0, the instruction at
the return point is executed as soon as the system queues the
IORB on the driver's level. The application may issue a S$WAIT or
S$STEST macro call when appropriate for the asynchronous request.

Upon return from a synchronous request, the caller must check
the Rl register to see if the request was successful. Upon return
from an asynchronous request, the caller must check Rl to see if
the request was accepted and successfully initiated. For either
type of request, any invalid user argument is indicated in Rl.
Hardware errors are defined in IORB entry I_ST (see Table 6-4).

Residual range denotes how much of the requested data
transfer was actually performed. If I RSR equals zero, all data
was transferred. For an asynchronous request, register Rl would
be checked on return from the Request I/0 macro call; R1l, I_ST,
and I_RSR should be checked after return from a $WAIT macro call.

Those fields not shaded in Figure 6-1 must be initialized by
the task requesting the I/O operation. The remaining fields are
set by the driver to return information about the I/0O request to
the caller or are controlled by the Executive. Table 6-3
describes the purpose of each field.

Other information needed to perform the I/0 request is found
in the IORB. The caller-supplied standard function code in I_CT2
is mapped by each driver into one or more device functions
required to perform the actual request.

The LRN supplied by the caller in the IORB serves as a device
identifier.

6-8 Cz05-02

Table 6-3.

Contents of I/0 Request Block

word

Label

Bit(s)

Contents

-SAF
-1

SAF

I_LRX

I_RRB/
I_SEM

I_LNK

I_CTl

0-3
4-15

0-31

0-7
8(T)

A (D)

B(S)

Reserved for system use.

Extended logical resource number (LRN).
If byte 0 (bits 0 to 7) of I CT2 contains
the value 253 (x'FD'), this field
indentifies the device to be used.

Depending on the S- or R-bits of I_CTl,
this field contains a 2-word task regquest
block pointer (R-bit on), or a l-word
semaphore name (S-bit on). Set by user;

. used by system at termination of request.

Reserved for system use.
to indirect request block.

2-word pointer

Return status

This bit is set (on) while the request
using this block is executing; it is
reset when the request terminates. The
system controls this bit; user should not
change it.

Wait bit. Set by user if reguesting task
is not to be suspended pending completion
of the request that uses this IORB. For
a SOPMSG call, the setting of the W- bit
in output IORB controls return to the
caller. For a $SOPRSP call, setting of W-
bit in input IORB controls return to the
caller; setting of W-bit in output IORB
has no significance. For either call,
return to caller is immediate if signi-
ficant W-bit is on. If significant W-bit
is off, return to caller occurs after the
order is completed.

User bit. User may or may not use this
bit; the system does not change it.

Release semaphore indicator.
0 = No release; 1 = Release, on comple-

tion, semaphore item named in
I_SEM.

6-9 C205-02

Table 6-3 (cont).

Contents of I/0 Request Block

Word

Label

Bit(s)

Contents

SAF
(cont)

1+SAF

I_CTl
(cont)

I_CT2

C(P)

D(R)

E (D)

F(1)

0-7

8 (IBM)

9(B)

A(P)

Must be set by user if IORB is to be
referenced by a Wait Any ($WAITA) macro
call. If set, IORB can be referenced
only by SWAIT or $WAITA issued by the
requesting task.

Return IORB indicator.

0 = No dispatch; 1 = Dispatch task
request block named in I_RRB after com-
pletion of this request. 1If 1, system
executes S$RQTSK, using I_RRB, when the
task terminates.

Delete IORB indicator.
the B(S) and D(R) bits.

Used usually with

0 = No delete; 1 = Delete and when task
terminates, return memory to pool where
IORB is first entry of its memory block.

Implicit task start address. Must always
be 1 for IORB. :
Logical resource number (LRN). If this

field contains any value other than 253

(x'FD'), it indentifies the device to be
used. If this field contains 253, I_LRX
contains the LRN value.

IBM-type request. Changes interpretation
of I_DVS to task word, and of I_RSR and
I_ST to configuration words A and B,
respectively.

Byte index. 0 = buffer begins in left-
most byte of word; 1 = buffer begins in
rightmost byte. Must be off if input/
output buffer begins at left byte of word
whose address is contained in word 3
(I_ADR) of IORB. Must be on if input/
output buffer begins at the right byte.

Private space; reserved for system use.

6-10 Cz05-02

Table 6-3 (cont).

Contents of I/O Request Block

Word

Label

Bit(s)

Contents

1+SAF
(cont)

2+SAF

2+2*SAF

3+2*SAF

4+2*SAF

5+2*SAF

6+2*SAF

I_CT2
(cont)

I_ADR

I_RNG

I_DVS

I_RSR

I_ST

I_EXT

B(E)

0-31

0-15

0-15

0-15

0-15

8-15

' Range.
. red.

| disk or mass storage unit.
' in bytes.

Extended IORB indicator. 0 = Standard
(nonextended) IORB; 1 = IORB extended to
at least 6+2*SAF items. Set by user.
(See I_EXT below.)

Function code.
see Table 6-1.

Driver or LPH function,

Buffer address. 2-word pointer. Word
address of message buffer (which contains
an output message or is to receive an
input message).

Number of bytes to be transfer-
Used as input field for cartridge
Buffer size
This is the length of an
output message or the maximum length
allowed for an input message.

Device-specific information.

Residual range. Indicates the number of
bytes not transferred. Filled in by the
system on completidbn of the order. Used
by the cartridge disk and mass storage
unit drivers as a data offset value.

Modified device status. Shows mapping of
hardware status into software status
format. See Table 6-4. Set by user as
input field high-order bits of sector
number of mass storage unit. Set by
system after I/0 completion.

Left byte. Number of words, in binary,
in the IORB extension, not including this
I_EXT word.

Right byte. Number of words, in binary,
in physical 1/0 part of IORB extension,
not including this I EXT word. This
count must be less than or equal to the
total extension length specified in the
left byte (0-7). This word is present
only when the B(E) bit in I_CT2 is 1.
(See Section 7 for a description of IORB
extensions.)

6-11 Cz05-02

¢1-9

¢0-S0ZD

Table 6-4. IORB Software Status Word (I_ST)
Device
Cartridge Module
Bit Card Card Reader/ Lark Disk and Disk
Position Reader Punch Printer Diskette Disk Storage Unit Magnetic Tape
0 0 0 0 0 0 0 0
1 0 0 0 0
2 Over/ Data service | 0 Over/underrun| Over/underrun | Over/underun Retryable
underun rate error error
3 Mark sense | Invalid End of form | Deleted field| Write protect | Write protect Write pro-
mode ASCII code error error tect error
4 40-column Punch echo 0 Read error Read error Read error Corrected
mode or read media error
registration
5 51-column Light/dark 0 Device fault Invalid seek Invalid seelt Tape mark
mode check
6 External Card jam] Missed data Missed data Missed data BOT
clock synchron- synchron- synchronization
track ization ization
7 Read check 0 0 Unsuccessful Unsuccessful Unsuccessful EOT
search search search
8 ASCII code |0 [] Two-sided Missed clock | Missed clock Long record
error pulse pulse
9 0 0 0 0 Missed sector | Successful retry | Nonretryable
pulse error
A 0 0] Seek error Seek error 0
B 0 0 0 0 0 0 Operation
check
c 0 0 0 0 0 0 High density
D 0 0 0 0 0 0 1]
E 1o 0 0 0 0 0 (]
P Patal error Fatal error | Fatal error Fatal error Fatal error Fatal error

Fatal error

2.

NOTES

Nonexistent resource, bus parity, and uncorrected memory errors are combined into bit 15 of I_ST,
but each occurrence is noted separately in the RCT. -

The online drivers will flag, in the RCT, corrected memory errors and driver or hardware
corrected errors.

DEVICE DRIVERS

‘The remainder of this section discusses the device drivers in
the following order:

Card reader/Card reader-punch driver
Printer driver

Disk driver

Magnetic tape driver.

Card Reader/Card Reader-Punch Driver

The card reader and card reader-punch devices are serviced by
a single driver. The driver uses six function codes; i.e., read,
write, write file mark (reader/punch only), connect, disconnect,
and wait online. 1In addition, its IORB word I_DVS can be coded
to define the character code of the input; namely, ASCII or
verbatim. These values are specified in the IORB as defined in
Table 6-6. ’

The translation/mapping of these codes from punched card
format into memory on reading is described below.

In addition to the standard driver functionality discussed
earlier, this driver also:

® Detects and discards unsolicited interrupts

¢ Detects an end-of-file condition and sets the appropriate
return status (ASCII GS character in column 1 of any
card=EOQOF)

@ Detects "device not ready" condition and sets appropriate
error condition. :

ASCII MODE

In this mode, punched cards are processed as shown in
Figure 6-2. Each card column consisting of a 12-bit ASCII card
code is converted into an 8-bit ASCII byte and stored in the main
memory.

The ASCII card code table as specified in American National
Standard X3.26 is given in Table 6-5. Note that no multiple
punches in rows 1 through 7 are allowed and, thus, the 12-bit
card code allows a maximum of 256 unique codes to be defined.

Translation is done by the card reader attachment that also
provides a software-visible IORB status indicator that is set
whenever an invalid ASCII card code is detected. This error
condition is signaled by a 0107 in the Rl register if any card
column read had a hole pattern that was not one of the legal hole
patterns given in Table 6-5. The invalid card code causes an
ASCII-EO (all 1s) code to be loaded in the main memory.

6-13 Cz05-02

$1ICSEO I (ORe it | Lottt] yuurtl | seotitt | ettt 60 crett | cett jt-tn | ssof 11| oo 0y et | Lyett silnn
_of : . 14 v 0 i [sn IS
"t jree0 ittt jraeti-Ti | S010-21] S-008-T1 | reotiTl | 96 10-T1 9e6] reett | 1ot [s-njoesit] sl w0l €3t v:.m.u. ...‘awm njom
-~ . v N L4 . .
et lseeott-tt] teeott | 5oLt} it feeoti-tt] senntn reti] 1ot .:“ i ~.Z” Z-.. (3] ul seen v-.a.h. €] on
. . w - - {14] Al
tt jresott-tt | sreoti | vor-tt] cwuezn f et reri-te 6T] re60 | 11T jeitt «.:,, cilrent] oeo] re6lt -...a.m_ 1] oont
: : . [1 > . s A
0 jCee0IITl | Se60U | cOt0Lr] THINTII6OtLLt]CetiTy “36] €860 ﬁ.. [XTR]] 3:_ titjsrn] sty 60 n..,am_]l o
) 1 2 : . 53 A
o1 {TREONILL] POl | TOINTI] ettt ot et TE6] TH60 | 60t:. e0] -] -‘re] reur 86 2% ot | otor
r ! 7 4 : . ans N
O G O I] 30] 61121 o] 1960 ..2» a.z._ qn a.:. “ 3:. _.-.J_..__ EM... ¢ | 1001
s] seevnt] teeoti [Is0itti] swoll] eeCU] el [ss0| Lot | o] o] wut s] seu 8611 9611 s | ooot
. N L) X 1] 1 ' NV sA
t] seeortjrsviiet | etrots] swott] Levin] w60t sett] et | soun | cou] sof tut t (3] 960 860 t] 10,
- ’ mj o t . L REL] v
9] recctlirronity Fott] ¥eOU| 6] L0l *6] 96t] son | sort| .s0f 9 9 u 6 9860 9] oo
. A 3 A » 9 v NAS AV
s cesottjssoitt] soti] esou] sevit] seoll s6f set1] rot1 | son] vof st s| reo 586 960 s| 1010
- n > n 1 [; 5 AVN ON:t
v] teeotijrscir-tt] rorott] tsou| secit] seond (23 r60 | o0t | roxt| o] »rut v] el 86 L6 v | ooto
- . [[1 a 2 [)0 IR] .
¢} evenrticeoirin | coott] teoutt] ceoit] reolt «6 60} tott | cou} o] cu [3 ot [X31 st €] 1100
- . s 2 s J [- €20 X14
t] sreuttjreonitt | tuoltjeeoit-ti] revi] 60t treit veojentt | rou] et} i [4 s Tent [& 34] z] o100
' . 1] L} (] T .. a X1is
] s#eti-tt] oottt | tuonfesoretn it 6ol 16 oo jeii-nn | ronf sl u 1] e 1611 1621 1] 1000
- . b r [4] v [} H 12a ns
o] vt sott-ti | CHUTTI 60 ITTI| &6 1-Ti| 1-60T1 JI-860-11-T1 [I-960-11 | L-11-TN 8] cul] s 0| ON J1-s61i-Tt | 186021 0 | 0000
) d . d 3 0 ds 11q TON
[" 1] [1) ot 3 . t [s ’ 3 1 1 ° MOY {19291908
00 100
] ° 1 °] o 3 °] [[[] °] ° 2
] ' . ° t [0 ° [] [} 0 0 ' 1 0 o |%n
] 1 L} (] ° ° ° ° ' 1 (] ' (] ° ° o 8
]]] ' ' 1] [] ° ° (] ° [0 0 jo9
9TqeL ap0D IIDSY-YITISTITIOH °G-9 2TIqed

CZ05-02

6-14

COLUMN COLUMN
Net Ne2

_—“-Q
=8

L Y X
O O Need W O
e e G ey e D G G G G oI
ame amm aos e CED G GTD GV G G T
cm e e > G e mwo G ww @0
r—-———q-_«‘n.——ow—n
- e = e cmp G SE e G G=» Ce

r
L
-
1
| .
1
[

4

HOLLERITH
TO ASCHt
TRANSLATOR
0 /7 7 0 \\ 7
r—-—-q
GVTES | AsCi BYTEN ASCH BYTEN+1] | Ne2 i

NOTES: 1. Thie ranslator will previde 3 status indiestor which
will be set whenever an illegal Hollerith code is read.

2 The wensistor shown above is in the card resder.
ETLBCRMENI.

Figure 6-2. ASCII Card-to-Memory Code Formatting

VERBATIM MODE

In this mode, punched cards are processed as shown in Figure
6-3. The card column pattern is stored in bits 4 through 15 of
the main memory word with bits 0 through 3 set to zero. All
two-hole patterns are valid during a verbatim mode operation.
The device-specific fields in the IORB are given below.

COLUMNS N Net

dhoi
ol
i
H I
i
0 34 al7 18 |
‘:&‘K[olojobhz[n]ofr]zjalclslc['t]lm C
WORD N WORD Net

Figure 6-3. Verbatim Mode Formatting

6-15 Cz05-02

CARD READER/CARD READER-PUNCH DEVICE-SPECIFIC IORB FIELDS

Table 6-6 defines the device-specific fields in the IORB not

previously defined.

Codes" earlier in this section.

Refer to "Driver Functions and Function

CARD READER/CARD READER-PUNCH HARDWARE STATUS CODE MAPPING

The card reader/card reader-punch controller returns to the
driver various codes, which are made visible to the application
by way of the IORB as shown in Tables 6-7 and 6-8.

able 6-6

IORB

Word Field Definition Use

I_CT2 | Function | 0 = Wait online See "Wait Online Function"

code earlier in this section.

1l = Write Driver "writes" card for
"range" number of bytes.

2 = Read Driver "reads" card for
"range" number of bytes.

3 = Write file Driver "writes" end-of-file

mark card.

A = Connect See "Connect Function" and
"Disconnect Function" earlier

B = Disconnect in this section.

I_RNG | Range 0<range<32K-1 If range is greater than card
size, residual range reflects
the difference.

I_DVS | Device 0 12 13 14 15 |Defines character set of data

specific being read.
0 0 mode
mode: 0=ASCII
2=verbatim

I_RSR | Residual | 0< initial range | Detects device malfunction.

range

6-16

Cz05-02

Table 6-7.

Card Reader IORB Hardware/Software Status Code

Mapping
Hardware | IORB Word
Status I ST Meaning If Bit Set
0 - | Device ready
1 - Attention
2 2 Data service rate error
3 3 Mark sense mode
4 4 40-column card mode
5 5 51-column card mode
6 6 External clock track
7 7 Read check error
8 8 ASCII code error
12 - Corrected memory error
13 15 Nonexistent resource/fatal error
14 15 Bus parity error/fatal error
15 15 Uncorrectable memory error/fatal error
Table 6-8. Card Reader/Punch Hardware/Software Status Code
Mapping
Hardware | IORB Word
Status I_sT Meaning If Bit Set
0 - Device ready
1 - Attention
2 2 Data service rate error
3 3 Invalid ASCII code
4 4 Punch echo or read registration
5 5 Light/dark check
6 6 Card jam
7 -
8 -
12 - Corrected memory error
13 15 Nonexistent resource/fatal error
14 15 Bus parity error/fatal error
15 15 Uncorrectable memory error/fatal error

6-17

Cz05-02

Printer Driver

The printer driver performs all data transfers to line and
serial printers as well as terminal print devices. Format con-
trol of printing can be achieved by supplying a control byte as
the first entry in a data buffer. The control byte is included
in the range count of the IORB for the request. The presence of
a control byte is indicated by bit 4 of the IORB's I_DVS word.

PRINT CONTROL BYTE

The format of the control byte is:

Bit: 0ol1 21314 7

Field: Y |PP \ COUNT

The control byte, if supplied, is interpreted differently by
line/serial printer and terminal printer devices. The
significance of the control byte for both device types is shown
in Table 6-9 under "Action Caused".

Table 6-10 summarizes control byte settings as hexadecimal
and ASCII values.

These conventions permit a control byte (e.g., 41).to be used
with a printer driver (whose default I_DVS word is all zeros)
without extra spacing or overprinting. This driver supports a
terminal format convention that does not require a control byte.
This convention treats the first byte of the range as data, with
spacing as follows:

Printer - Space one line or skip to head-of-form if at end-
of-form, then print.

Bit 4 (F-bit) in I_DVS controls format selection.
PRINTER DEVICE-SPECIFIC IORB FIELDS

Table 6-11 defines the IORB fields whose contents are
specific to the printer driver.

PRINTER HARDWARE/SOFTWARE STATUS CODE MAPPING

Table 6-12 indicates the hardware/software status code
mapping for printers.

6-18 CZ05-02

Table 6-9. Print Control Byte

Field Action Caused
Line/Serial Printer Terminal Printer
(Space Before Print) (Space After Print)
Y Not used. 0 = Use carriage
return and/or
line feed in
1_DVSs.

1 = Ignore carriage
return and/or
line feed in
I_DVS.

PP 00 Print; ignore V and count/fields; | Not used.
single space to end-of-form;
then skip to head-of-form.
01 Do not print; perform actions
defined in V and count fields.
10 Print; perform actions defined in
V and count fields.
' 11 Reserved for system use.
\' 0 Prespace according to count field. | 0 = No prespace.
1 If count = 0, skip to head-of- 1l = Prespace three
form. If count is between 1 and lines; count
11, and the VFU option is present, field must be
skip to the VFU channel defined by 0.
the count field.
If count is greater than 11, or
there is no VFU option, do one
prespace.

Disk Driver

A single disk driver supports the following disk devices:
diskette, Lark II disk, cartridge module disk, mass storage unit,
and all fixed-disks (Winchester technology).

6-19 Cz05-02

Table 6-10. Print Control Byte Summary

Code
Hexadecimal ASCII Resulting Action

Line/Serial Printers

00-1F NUL-US Single space, then print; skip to head-of-
form at end-of-form.

20-2F =/ Space count lines; do not print.

30-3F 0 -2 Skip to VFU channel number in count, do not
print.

40-4F @-0 Space count number of lines, print.

50-5F P - _ Skip to VFU channel number in count, print;
50 = skip to head-of-form.

60-6F -0 Reserved for future use.

70-7F p - DEL | Reserved for future use.

Terminal Printers

00-0F NUL-SI

20-2F -/ No prespace, print.

40-4F @ -0

10-1F DLE-US

30-3F 0 -2 Prespace three lines; print.

50-5F P - _

60-6F '-o0 Reserved for future use.

70-7F P - DEL | Reserved for future use.

DISK DRIVER CONVENTIONS FOR DISKETTE

The following driver conventions apply to diskette:

The disk driver supports both 8- and 5 1/4-inch diskette
devices. For the 8-inch diskette, both single- and
double-sided diskettes may be used. Support of the 5 1/4
inch diskette consists of double-sided and double-density.

The driver does not explicitly reference the volume ID of
the diskette; therefore, the user must ensure that volumes
addressed are on the proper drives.

6-20 Cz05-02

Table 6-11. Printer IORB Fields

' IORB
wWord Field Definition Use
I_CT2 | Function code 0 = wait online | See "Driver Function and
1 = write Function Codes". Driver
will "write"™ from I_ADR
"range" number of bytes.
I_RNG | Range O0<range<32K-1 If range is greater than
line size, residual
range reflects the
difference.
I DVS| Device-specific | 01 23 456 7 8 9 10 11 12 13 14 15
0 00O0FOO0OOOO O O 0 O0 O
F: 0 = Assumes line printer format
control (control byte)
1l = Assumes terminal format control
(no control byte)
All other bits must be zero.
I_RSR| Residual range See Note
I_ST | Software status | Shown below Mapped from RCT hardware
word status.
NOTE
For cases where original range is less than or
equal to line length, the value in the residual
range has the following meanings:
0 - Completed space/print operation.
other - Residual spacing value is contalned in the
value I_ST value field.
@ All sector addresses used in the IORB are relative to
track 0/sector 0.
® The driver converts the volume relative sector number,
defined in the IORB, into physical track and sector
numbers, and to a "side" value for two-sided diskette,
which it then sends to the device to define the operation.
@ The driver can support more than one diskette device, as

long as each device is configured at a different level.

6-21 Cz05-02

Table 6-12. Printer Hardware/Software Status Code Mapping

Hardware | IORB

Status I_sT Meaning If Bit Set

0 - Device ready

1 - Attention

2 2 Lost data

3 3 End-of-form

4 4 Lines per inch: 0 =6; 1 = 8

5 5 Protocol error

6 € POWEr up

7 7 Eight bit mode
12 - Corrected memory error
13 15 Nonexistent resource/fatal error
14 15 Bus parity error/fatal error
15 15 Uncorrectable memory error/fatal

error

® A diskette sector is 128 bytes long (8 inch) or 256 bytes
long (5 1/4 inch). 1If range is less than sector length, a
write command will zero fill the rest of the sector. If
range is greater than sector length on either a read or a
write, the driver will read/write multiple sectors
including switching to the next adjacent track, if
necessary.

® There are 16 sectors per track for 5 1/4 diskette; 26
sectors per track for 8 inch diskette.

@ There are three models:

1 track per cylinder:
77 cylinders

2 tracks per cylinder:
77 cylinders
80 cylinders

e If hardware errors occur, the operation (seek or read/
write) will be retried up to eight times (five retries and
three retries with recalibrate).

e If the device is not ready, a return status of "device not
ready" (5) will be returned.

Tables 6-13 and 6-14 define IORB fields specific to
% diskette. Other IORB fields are described in Table 6-3.

6-22 Cz05-02

Table 6-13.

Diskette IORB Fields

IORB
Word

Field

Definition

Use

I_CT2

I_DVS

I_RSR

Function code

Device-specific

Software status

Residual range

wait-online
write data
read data
format write
format read
read disabled
device

Mmoo+ O
o nounn

Relative sector

number

Shown below

0 < original
range

Specifies 1/0 oper-
ation.

Driver converts this
to physical track
number and physical
sector number on the
track, and to a "side"
value for two-sided
diskette.

Hardware status word
from diskette
(following 1/0).

Residual range will
always be egqual to
zero (i.e., transfer
completed) unless
there is a hardware
malfunction, or an
invalid track number
is supplied during a
read or write
operation.

NOTE

To ensure compatibility of an application with
other devices, clear to zero the IORB words I_RSR
and I_ST before making an I/O request.

DISK DRIVER CONVENTIONS FOR LARK DISK

The Lark device is a random access, rotating 8-inch disk with
both removable and fixed platters.

The following conventions apply to Lark devices:

Sector size is 256 bytes; there are 64 sectors per track.

6-23

Cz05-02

Table 6-14. Diskette Hardware/Software Status Code Mapping.

Hardware IORB
Status I_ST Meaning if Bit Set
0 - Device ready
1 - Attention
2 2 Data service rate error
3 3 Deleted field
4 4 Read error
5 5 Device fault
§ 6 Missed data synchronization
7 7 Unsuccessful search
8 - Two-sided diskette
10 10 Seek error
12 - Corrected memory error
13 15 Nonexistent rescurce/fatal error
14 15 Bus parity error/fatal error
15 15 Uncorrectable memory error/fatal
error

e The driver does not explicitly refer to the volume ID of
the disk; the user must ensure that the volumes addressed
are on the proper drives.

@ All sector addresses used in the IORB are relative to
cylinder 0, track 0, sector 0.

® There are two models:
2 tracks per cylinder:

204 cylinders
622 cylinders

@ The driver converts the volume relative sector number,
defined in the IORB, into physical cylinder, track, and
sector numbers, which it then sends to the device to
define the operation.

e The Lark disk requires two LRNs, one for the fixed and one

for the removable platter.

e Offset read capability is provided by specifying the
desired displacement in the I_RSR field of the IORB.

e Offset write capabilities are not provided.

Tables 6-15 and 6-16 show IORB fields specific to the Lark

device. Other IORB fields are described in Table 6-3.

6-24 CZ05-02

Table 6-15. Lark Disk IORB Fields

IORB
word Field Definition Use
I_CT2 | Function | 0 = Wait online Specifies I/0 operation.
Code 1 = Write
2 = Read
5 = Format write
6 = Format read
E = Read disabled
device
I_DVS | Device | Relative sector Driver converts this to
specific | number physical cylinder, track, and
sector number to locate the
data needed.
I_ST | Software | See Table 6-16 Hardware status from disk
status (following I/0).
I_RSR | Residual | 0 < original Prior to a read, an offset
range range value may be specified here

so that reading can begin at
a location other than the
physical sector boundary:
after I/0 operation, the
field contains the number of
bytes not transferred in the
operation.

NOTE

To ensure compatibility of an application with

other disk devices,

clear to

I_ST before requesting I/O.

zero the IORB word

DISK DRIVER CONVENTIONS FOR MASS STORAGE UNIT

The following driver conventions apply to mass storage units:

Sector size is 256 bytes; there are 64 sectors per track.

The driver does not explicitly refer to the volume ID of
the disk pack, so the user must ensure that the volumes
addressed are on the correct drives.

6-25

Cz05-02

Table 6-16. Lark Disk Hardware/Software
Status Code Mapping

Hardware | IORB
Status I_ST Meaning If Bit Set
0 -
1 -
2 2 Over or underrun
3 3 Write protect error
4 4 ‘Read error
5 5 Invalid seek
6 6 Missed data synchronization
7 7 Unsuccessful search
8 8 Missed clock pulse
9 9 Successful recovery
10 10 Seek error .
11 -
12 -
13 -
14 -
15 15 Fatal error

All sector addresses in the IORB are relative to cylinder
0, track 0, sector 0. There are four models:

5 tracks per cylinder:
411 cylinders
823 cylinders

19 tracks per cylinder:
411 cylinders
823 cylinders

The driver converts the volume relative sector number,
defined in the IORB, into physical cylinder, track, and
sector numbers, which it then sends to the device to
define the disk address.

The volume relative sector numbers exceed the maximum
number that may be stored in one I_DVS word. Place high
order bits in I_ST; low order bits in I_DVS.

The mass storage unit requires only one LRN.

The driver combines seek and data transfer functions.
When errors occur, eight attempts are made to correct the
error: five seek/data transfers, and three seek/data
transfers with recalibrate.

Offset read capability is provided by specifying the
required displacement in the I_RSR field of the IORB.

6-26 Cz05-02

Offset write capability is not provided.

When the driver notes a change in the ready state, it
disables the device (by a software switch) and notifies
the file manager to execute the automatic volume
recognition procedures.

Tables 6-17 and 6-18 show IORB fields specific to the mass
storage unit.

Other IORB fields are described by Table 6-3.

Table 6-17. Mass Storage Unit IORB Fields
IORB
Word Field Definition Use
I CT2 |Function | 0 = Wait online Specifies I/0 operation.
Code 1l = Write
2 = Read
5 = Format write
6 = Format read
E = Read disabled
device
I_DVS |Device Relative sector Driver converts this to the
specific | number physical cylinder, track, and
sector number to locate the
data needed.
I_RSR | Residual 0 < original Prior to a read, an offset
range range value may be specified here
sc that reading can begin at
a location other than the
physical sector boundary;
after I/0 operation the field
contains the number of bytes
not transferred in the
operation.
After an I/0 operation, the
field contains the number of
bytes not transferred.
I_ST Software | See Table 6-18 Prior to an order, this field
status contains the high-order bits
of the relative sector
number. After the operation,
it contains the hardware
status from device.

Cz05-02

Table 6-18.

Hardware | IORBV
Status | I_ST Meaning If Bit Set
0 -
1 -
2 2 Over/underrun
3 3 Device fault
4 4 Read error
5 5 Invalid seek
6 6 Missed data synchronizaticon
7 7 Unsuccessful search
8 8 Missed clock pulse
9 9 Successful recovery
10 10 Reserved
11 -
12 -
13 -
14 -
15 15 Fatal error

DISK DRIVER CONVENTIONS FOR CARTRIDGE MODULE DISK

Mass Storage Unit Status Code Mapping

The following driver conventions apply to the cartridge

module
®

disk:

Sector size is 256 bytes; there are 64 sectors per track.

The driver does not explicitly refer to the volume ID of
the disk; the user must ensure that the volumes addressed

are on the correct

drives.

All sector addresses in the IORB are relative to cylinder

0, track 0, sector

0. The models are:

1 track per cylinder:

411 cylinders
411 cylinders
823 cylinders
823 cylinders

(removable, 8-megabyte)
(fixed, 8-megabyte)
(removable, l6-megabyte)
(fixed, l6-megabyte)

3 tracks per cylinder:

823 cylinders
823 cylinders

(removable, l6-megabyte)
(fixed, 48-megabyte)

5 tracks per cylinder:

823 cylinders
823 cylinders

(removable, l6-megabyte)
(fixed, 80-megabyte)

6-28

Cz05-02

The driver converts the volume relative sector number,
defined in the IORB, into physical cylinder, track, and
sector numbers, which it then sends to the device to
define the disk address.

The volume relative sector numbers exceed the maximum
number that may be stored in I_DVS word; place high order
sector bits in I_ST, low order sector bits in I_DVS.

The fixed and removable portions of the cartridge module
disk each require a separate LRN.

The driver combines seek and data transfer functions.
When errors occur, eight retries are made (five seek/data
transfers, three seek/data transfers with recalibrate).

Offset reading (not writing) is provided by specifying the
required displacement in the I_RSR field of the IORB.

When the driver detects a change in the ready state, it
disables the device, both fixed and removable (with a
software switch), and notifies file management to execute
the system's automatic volume recognition procedures.

Tables 6-19 and 6-20 show the IORB fields specific to the
cartridge module disk. Other IORB fields are described by Table

6—3.

Magnetic Tape Driver

The magnetic tape driver manages all standard data transfer
requests to and from 9-track phase encoded (PE)}, and 9-track
nonreturn to zero inverted (NRZI) tape drives on one or more
magnetic tape controllers. The tape drive characteristics
supported by this tape driver are shown in Table 6-21.

The driver provides the following callable functions:

Wait online

Write

Read (forward)

Position block (forward and backward)

Position forward or backward by tape mark, rewind to
beginning of tape (BOT), rewind to BOT and unload.

The driver operates in the following modes:

0dd parity

6-29 CZ05-02

Table 6-19. Cartridge Module Disk IORB Fields

IORB ,
Word Field Definition Use
I_CT2 | Function| 0 = Wait online Specifies I/0 operation.
Code 1 = Write
2 = Read
5 = Format write
6 = Format read
E = Read disabled
device
I_DVS | Device Relative sector Driver converts this to the
specific| number physical cylinder, track,
and sector number to locate
the data needed.
I_RSR | Residual| 0 < original Prior to a read, an offset
range range value may be specified here
so that reading can begin at
a location other than the
physical sector boundary;
after I/0 operation the
field contains the number of
bytes not transferred in the
operation.
I_ST | Software| See Table 6-20 Prior to'an order, this
status field contains the high-
order relative sector bits.
After the I/0 operation, the
field contains the hardware
status, from the device.

® Minimum data block, MDB (American National Standard
specifies 18 or more characters per block in write, 12 or
more in read)

e MDB-inhibited (if fewer than the specified number of
characters must be read or written, this mode is
required).

If MDB mode is specified for a write and the range is less
than 18 characters, a parameter error is reported. If MDB mode
is specified for a read and the range is less than 12 characters,
you receive the first portion (requested range) of the first
valid block and an unequal length check. 1If a "short record" is
detected, a corrected media error is reported in status word,
I_ST. 1If a record of less than 18 characters is written or less
than 12 characters is read, the inhibit block size check bit (bit
12 of the device specific word, I_DVS) must be set.

6-30 Cz05-02

Table 6-20.

Cartridge Module Disk Status Code Mapping

Hardware | IORB
Status I ST Meaning If Bit Set
0 -
1 -
2 2 Over/underrun
3 3 Device fault
4 4 Read error
5 5 Invalid seek
6 6 Missed data synchronization
7 7 Unsuccessful search
8 8 Missed clock pulse
9 9 Successful recovery .
10 10 Reserved
11 -
12 -
13 -
14 -
15 15 Fatal error
Table 6-21. Characteristics of Supported Tape Drives
Speed Density
(ips) (bpi) Parity
Tape Drive
Type 45 75 1256250 1600 800 556 200 | 0dd Even
9-track X X - - X X - X -
NRZI
9-track X X - X X - - X -
PE
9-track - X X - - - - X -
GCR
GCR mode
9-track - X X X - - - X -
GCR
PE mode
6-31 Cz05-02

Beginning of tape (BOT), end of tape (EOT), and end of file
(EOF) conditions are reported for appropriate user action. If an
error occurs in a case when the operation can be retried, the
driver backspaces and reissues the order up to 32 times before
reporting a hardware error. If an error occurs and no retry is
possible, the driver rewinds and forward spaces to the problem
block and reissues the order once before reporting a hardware
error. The driver does not check the tape volume identifier.

The EOT return status is not returned for read operations;
only the EOT status word bit is set. It is assumed that
appropriate application software conventions will prevent reads
that would force the tape off the end of the reel.

The resident magnetic tape driver is interrupt driven and
must execute with a resident Executive and with the central
processor in the privileged state. It can support, on an
adapter, one data transfer simultaneously with one or more
rewind/rewind-unload orders.

Tables 6-22 and 6-23 show IORB fields specific to magnetic
tape devices. Other IORB fields are described by Table 6-3.

6-32 CzZ05-02

Table 6-22. Magnetic Tape IORB Fields

Word

Field

Definition

I_CT2

I_DVS

I_RNG

I_RSR

Function

Code

Device
specific

Range

Residual
range

Wait online

Write

Read

Write filemark

Position by block (see range)
Position file (see range)

3 12 13-15

o
o

Bi0O OO OOOOO|I| mode

w ol o O WNHO

= Enable buffering in GCR buffered tape; 1
= Disable bufferlng in GCR buffered tape.
Note that B is recognized only when GCR
buffered tape is positioned at BOT. Must be
specified for read, write, and write tape-
mark operations when positioned at BOT.

o0
o

I: 0 = Normal American National Standard block
sizes; 1 = Inhibit sensing for American
National Standard block size.

mode: Must be zero
Writes 1 through 7FFF

Read: O0O=Backspace one block; 1 through 7FFF is
valid for data transfer

Position by block: Negative is back space; 0 is
invalid; positive is forward
space

Rewind and unload
Rewind to BOT
Backspace to previous
tapemark

1 = Forward space to
tapemark

Position by, file: -2
-1
0

Nonzero when physical block exceeds range.

6-33 C205-02

Table 6-23. Magnetic Tape Hardware/Software
Status Code Mapping

RCT IORB
R_STTS I_ST Meaning If Bit Set
0 - Device ready
1 - Attention
- 1 Rewinding
2 2 Error - Operation can be retried
3 - Must be zero
- 3 Write protected
4 4 Corrected media error
5 5 Tape mark
6 6 BOT
7 7 EOT
8 8 Unequal record length
9 9 Error - Operation cannot be retried
10 10 Must be zero
11 11 Operation check
12 - Corrected memory error
- 12 High density
13 15 Nonexistent resource/fatal error
14 15 Bus parity error/fatal error
15 15 Memory error - correction impossible/fatal error

6-34 Cz05-02

Section 7

LINE PROTOCOL
HANDLERS

This section provides an overview of line protocol handlers.
Subsequent sections describe specific line protocol handlers in
detail. A communications protoceol is a set of conventions or
rules for the transmission of data. Communications protocols are
used in the transfer of information between a local CPU and
remote terminal or host CPU.

A line protocol handler (LPH) is the implementation of a par-
ticular communications protocol. Accordingly, each LPH supports
a specific class of communications device, such as synchronous
VIP terminals, or a communications protocol, such as the
BSC 2780/BSC 3780 binary synchronous communications protocol.

The following LPHs can be configured at system building:

ATD

The asynchronous terminal driver (ATD) supports
asynchronous terminals, serial printers, and certain
asynchronous X-ON/X-OFF protocols. The ATD LPH has five
operational modes: Teletype compatible (TTY), field,
block, ASPI, and X-ON/X-OFF.

STD
The synchronous terminal driver (STD) LPH supports
specific synchronous terminal devices. These devices are

the polled visual information projection (VIP) terminals
and associated ROPs.

7-1 Cz05-02

PVE

This synchroncus LPH supports communications between com-
puters. It emulates the polled VIP protocol for use in
communications with remote Honeywell hosts that support
polled VIP terminals.

BSC 2780/BSC 3780

This synchronous LPH supports communications between com-
puters. It supports a station (device or computer) that
utilizes the BSC 2780 or BSC 3780 binary synchronous
communication (BSC) protocol in communications with a
remote host.

TTY

This asynchronous LPH supports specific asynchronous ter-
minal devices. These devices are classified as
teleprinter-compatible, and include certain automatic
send/receive (ASR), keyboard send/receive (KSR), and VIP
terminals.

BSC-TF

This synchronous LPH supports communications between
certain IBM terminals and computers running MOD 400. The
BSC 3270 Terminal Facility supports IBM 3270 type
terminals, printers, and cluster controllers.

The user may write a line protocol handler if it conforms to
the same internal interface requirements used by the
Honeywell-supplied line protocol handlers.

LINE PROTOCOL HANDLER FUNCTIONS

Line protocol handlers transfer data between a communica-
tions device and the application that uses it. These handlers
consist of two parts -- one resident in main memory and the other
(called the channel control program (CCP)) resident in the MLC.
The main memory-resident portion of the LPH is concerned with the
processing of transmitted/received data at the block, message, or
field level. The MLC-resident component is concerned with the
transmission/reception of the individual data characters that
make up the block, message, or field level data aggregate.

Main Memory-Resident LPH

The portion of the line protocol handlers resident in main
memory performs the following:

e When the system is bootstrapped:

- Validates communication device types by reading the
device's identification number.

09/86
7-2 CZ05-02A

- 1Initializes the communication device and sets it to the
priority level at which it is to operate.

Validates the application's input/output request block
(IORB) fields.

Converts user-supplied functions into device-specific MLC
orders.

Sets a timer and a monitor for data set status changes,
Initiates the MLC I/0 operation.
Detects and processes MLC I/O interrupts.

Reads return status from the communication device to
ascertain result of an I/0 operation.

Processes error recovery, when possible.

Processes unsolicited timeouts and data set status
changes.

Forms composite status in the IORB, including residual
range, from all of the processed MLC orders.

Posts back the application's IORB with the appropriate
hardware and software status information.

MLC-Resident LPH (CCPE)

A channel control program (CCP) is the MLC~resident portion
of an LPH. Through the appropriate hardware device-pac attached
to the MLC, the channel control program controls transmission of
data over communication lines. It serves to:

Store or fetch individual characters in or from the buffer
supplied with the IORB

Perform translation, substitution, and deletion operations
on individual characters

Insert/delete protocol or device-specific header or
trailer information.

MLC COMMUNICATIONS HANDLER

The MLC communications handler receives processor orders from
the main memory-resident portion of the line protocol handler and
activates the appropriate channel control program (see above and
Figure 7-1) to process the orders. The handler also:

Processes a line protocol handler's requests for control
functions or for data transfer operations

7-3 Cz205-02

¢0-5020

COMMUNICATIONS SUBSYSTEM

A r— - - - |
KEV - o t‘::sséons:sr OF AN MLCP RESIDENT | | (MAIN MEMORY | I ‘
Simiomesnonsvia | | rormioncaLven Teece s T |, S Jommmm e
e DIRECT CONNECTION I |
e MODEM BYPASS 1 T | Ty | |
o DATA SET
I “H . e i
| | COMM I '
DLER
| | | L] aro feed " | | l
' | ATD . L——,-"'l"" HONEYWELL
| || | cc I?] l_ HOST (X-ON/X-OFF)
o] FiLESYSTEM e e L e e
APPLICATION I W ' || I | .
PROGRAM o] RUN-TIME | ’ I
“I‘\ISSULAE(\;IEE)L ROUTINES I I ' CcCoMM | {
- e v A | | '
l" PROCESSING "T MACRO I ” nE | I |
STD —LJ'___Z———ai-.a
?Es:@s%%%%tm | I || ™ b~ so | ccp I | TERmaL OV
Uineiach | seogeano |l I | R do b= 1
' LANGUgGE) | II ! pve] I l
ccp ‘
: | “ L o] Pve : l L_ HONEVWELL
|| | =
L}
I I | BsC B¢ | y l I—*—-{ HONEYWELL
| | I Lot I 4 ' LEVEL &
' bl e e e o — ———— i ———
| l 'L i —I DIAL ' | I
| ccp I
| |L______~____J=
I I |
| I
LOGICAL PHYSICAL PHYS|LAL PHYSICAL
110] CONNECTION CONNECTION
INTERFACE INTERFACE
Figure 7-1. Communications Overview

@ Services interrupts from the MLC and passes them to the
appropriate line protocol handler.

COMMUNICATIONS SUBSYSTEM OPERATION EXAMPLE

The following example and Figure 7-1 indicate the interac-
tion of the communications subsystem's components in the process-
ing of a connect, write, and disconnect request. The opera-
tions described apply to the physical I/0 interface, without
reference to a specific device or line protocol.

This example refers to the communications supervisor. The
communications supervisor resides in main memory and provides the
interface to communications applications programs at the physical
I/0 level. It queues application programs' requests for serv-
ices, activates the appropriate line protocol handler, interacts
with an application through system software when an I/0 order is
complete, and provides a set of common line protocol handler
services (e.g., establishing/disestablishing data set communica-
tions, monitoring for time-outs and data set status changes).

Example:

1. The communications supervisor receives the application's
connect request through the physical I/0 interface, and
passes it to the DIAL channel control program (CCP)
within the multiline communications processor (MLC).

2. The DIAL CCP establishes a physical communication connec-
tion to the device.

3. The main memory-resident portion of the appropriate line
protocol handler (LPH) processes the logical connection.

4., The communications supervisor passes the application's
subsequent write request to the main memory-resident LPH,
which translates the request into one or more MLC
communications handler requests.

5. Each MLC communications handler regquest results in one or
more orders to the MLC. (These orders not only describe
the data to be transferred, but also cause the invocation
and execution of the appropriate CCP.)

6. The appropriate CCP processes each of the write orders,
which transmits the data to the device. During this
time, the main memory-resident LPH terminates itself.

7. When the MLC senses completion of the data transfer, the
CCP issues an interrupt, which is processed first by the
communications supervisor and then by the MLC communica-
tions handler.

7-5 Cz05-02

8. The MLC communications handler reactivates the main
memory-resident portion of the LPH at the interrupt
level, to minimally process the interrupt.

9. When processing is complete, control passes to the MLC
communications handler, which causes processing at the
interrupt level to be suspended.

10. If additional processing is necessary, the main memory-
resident portion of the LPH can schedule itself to
perform post-interrupt processing on a non-interrupt

level.

11. The application's disconnect request is processed in the
same manner as the connect request, but in the opposite
order.

a. The main memory-resident portion of the LPH performs
the necessary logical disconnect processing.

b. The physical connection is appropriately disconnected
by the DIAL CCP.

The logic of the write operation in this example would apply
to a read operation.

EXTENDED LRN SUPPORT

The ATD, TTY, and BSC line protocol handlers support Logical
Resource Numbers (LRNs) greater then 255. All line protocol
handlers support the extended IORB format, even if an LPH does
not support LRNs greater than 255.

8-BIT DATA SUPPORT

The ATD, STD, and PVE line protocol handlers support the
extended ASCII character set (often called 8-bit data).

09/86
7-6 CZ05-02A

7-Bit Data Plus Parity and Truncation

In this mode, the data is transmitted and received with
parity checking and generation. The high-order bit of the
character is unconditionally truncated. This mode is supported
by the ATD, STD, PVE, and TTY LPHs on the MLCP, MLC-16, and
DPS 6/22 controllers.

7-Bit Data Plus Parity and Shift-In/Shift=-Out

In this mode, the data is transmitted and received with
parity checking and generation. The shift-in/shift-out technique
is used to transfer the high-order bit of the character. This
mode is supported by the ATD LPH on the MLC-16 controller.

8-Bit Data Without Parity

In this mode, the data is transmitted and received with no
parity checking and generation. 8 bits of data is transfered per
character. This mode is supported by the ATD, STD, and PVE LPHs
on the MLCP, MLC-16, and DPS 6/22 controllers.

8-Bit Data Plus Parity

In this mode, the data is transmitted and received with
parity checking and generation. 8 bits of data is transfered per

character. This mode is supported by the ATD LPH on the MLC-16
contreoller.

MODEM SUPPORT

B

For asynchronous devices, the communications subsystem pro-
vides the following modem support:

Bell System Data Sets: Types 103A, 113F, 202, 212A
Honeywell modem bypass

Any modem type defined by the user at system building
Honeywell-supplied direct-connect cables.

@ ©ee

For medium speed synchronous communications, the communica-
tions subsystem provides the following modem support:

¢ Bell System Data Sets: Types 201A, 201B, 201C, 203, or
208A .

® Honeywell modem bypass
e Honeywell-supplied direct connect cables

e Any modem type defined by the user at system building
time.

For high-speed synchronous communications, the communications
subsystem provides support for the Bell System Data Sets:
Types 301B or 303.

09/86
7-17 Cz05-02A

AUTO CALL UNIT

When configured into the system, the Auto Call Facility uses
an Auto Call Unit (ACU) to initiate a line connection with a
remote auto answer data set. The facility operates in the
following manner:

1. The user associates the Auto Call Unit with a particular
communications channel at system building time by using
the ACU CLM directive.

2. The user enables the Auto Call Facility by setting bit 2
of the I DVS word to one on a connect request. The
facility is supported by all LPHs.

3. When the connect request is processed, the system
attempts to dial a line, using a list of telephone
numbers supplied at system building, the first entry of
which is null. The first number to be dialed can then be
specified with a Set Dial ($SDL) macro call or with the
Set Autodial Telephone Number (SDL) command. If the
first number on the list is not specified (by the macro
call or command), the system skips to the next number on
the list.

4. The facility dials each number on the list three times at
40-second intervals until the list is exhausted or a con-
nection made, whichever occurs first.

5. The facility checks that a connection to the modem has
been made.

6. When the connection has been made, control is passed to
the LPH, which processes the logical portion of the
connect request.

The Auto Call Unit supports Data Auxiliary Set Automatic
Calling Units 801A and 801C. The ACU adapter and the adapter for
its associated data line must be on the same controller.

Two data set options are required to use the Auto Call Unit:

e The option that terminates the call, through the data set,
after the DSS (data set status change) goes on

e The option that stops the ACR timer when the DSS goes on.

COMMUNICATIONS SUBSYSTEM ERROR AND CORRECTION PROCEDURES

The communications subsystem detects errors that may occur
over communications lines by means of parity checking, block
checking, and timeout checking.

7-8 Cz05-02

Parity Error Check

The system sends a parity (check) bit with each transmitted
character. The parity bit, plus the number of character bits set
to 1, will always be an odd or even-numbered total for every
character, according to whether transmission is odd parity (total
is an odd number) or even parity (total is an even number). The
ATD and TTY line protocol handlers support parity error checking.

Block Error Check

The communications subsystem uses two kinds of block error
checking: the longitudinal redundancy check (LRC) and the cyclic
redundancy check (CRC). The computed check characters are known
as block check characters (BCC).

LONGITUDINAL REDUNDANCY CHECK (LRC)

The LRC is a simple check that is applied to the entire
message. The system appends an LRC character, which is an
exclusive OR of all the characters in the message, to the end of
every message. The STD and PVE line protocol handlers use the
LRC method in 7-bit data mode and CRC1l6 method in 8-bit data
mode.

CYCLIC REDUNDANCY CHECK (CRC)

The CRC method is also block-oriented. The system computes
the CRC block check character(s), using special algorithms
applied to the data to be checked. The system then appends the
BCC to the message. The BSC, STD, and PVE line protocol
handlers use the CRC method of checking errors.

BSC BLOCK CHECK CHARACTER (BCC)

In ASCII transmission, the 8-bit BCC is the result of an

exclusive OR operation on all bits transmitted, beginning with

the first character following the STX and ending with the ITB ,
ETB, or ETX control character. It is based on the polynomial:

. x8 +1 .

In EBCDIC transmission the BCC is 16 bits, and is calculated
by the system with the checking polynomial:

1 + %2 + x15 + x16 |

Timeout Check

After sending a message, the LPH waits for an acknowledgment
from the receiving device. When there is no acknowledgment after
a specific interval, the LPH retransmits the message. When there
is no acknowledgment after a specified number of transmissions,
the LPH takes whatever action is specified by the protocol.

7-9 Cz05-02

Section 8

ATD LINE PROTOCOL
HANDLER

The Asynchronous Terminal Driver (ATD) line protocol handler
supports certain asynchronous terminals, serial printers, and
certain types of asynchronous data streams.

The ATD LPH operates in five modes:

@ TTY mode, which supports line-at-a-time transfer of data
to or from any teletype compatible (TTY) terminal.

® Field mode, which supports field and forms processing on
VIP7200, VIP7800, HDS 2, and VIP7300 class terminals. I

e Block mode, which supports transfer of blocks of data to
or from any VIP7800 class terminal.

® ASPI mode, which supports output to ASPI printers.

® X~-ON/X-OFF mode, which supports transfer of data on any
asynchronous line that utilizes an X-ON/X-OFF flow-control
protocol. '

The ATD LPH can be accessed at the Physical I1/0, File System,
or VDAM level. At the Physical I/0 level, the LPH is accessed
through the Regquest I/0 (SRQIO) macro call and an associated
input/output request block (IORB). This interface can be used
with any mode of the LPH and provides for complete control of the
selected mode.

8-1 Cz05-02

The LPH is accessed indirectly through the File System. For
example, to read input from a terminal, an application issues a
Read Record macro call, supplying parameters for the call in an-
associated file information block (FIB). The File System
translates the macro call and FIB parameters into a $RQIO macro
call and associated read IORB. The File System interface is most
useful in providing a sequential file interface to terminals
(operating in TTY and block mode), serial printers (operating in
ROP mode), and a variety of asynchronous devices (operating in
X-ON/X-OFF mode). The File System interface does not support
field mode.

The LPH is accessed indirectly through VDAM. For example, to

£ :

o~ e = .

read input from a terminal, an application issues a Read Form
macro call, supplying parameters for the call in an associated
VDAM Terminal Control Request Block (VTCRB). VDAM translates the
macro call and VTCRB parameters into $RQIO monitor calls and
associated IORBs. The VDAM interface is most useful in
transfering data via forms from VIP7200, VIP7300, HDS 2, and
VIP7800 classes of terminals operating in ATD field mode.

The remainder of this section provides:
summary of ATD operational modes

description of common functions
detailed description of each mode.

o00
>

This section uses the term "HDS 2" terminal. The LPH
software refers to this terminal as a VIP8300.

ATD MODES

A particular mode is selected by means of a connect IORB and
remains in effect until a disconnect IORB is received. The
following subsections indicate the uses of each mode.

TTY Mode

TTY mode is the default ATD operating mode. The user need
not specify this mode in the connect IORB device specific word
(DSW). This mode is used primarily by the File System, which
treats a terminal (configured by means of the DEVICE directive)
as a sequential file. 1In this mode, a terminal can be used as
the input and output file of a task group (i.e., user-in,
user-out, command-in, error-out).

TTY mode provides for line-at-a-time input and output.
Character-cancel, line-delete, input-terminator, and escape key
functionality is provided to aid the operator in data entry
operations at the terminal. Support is also provided for a break
key. (The terminal keys that represent these functionalities can
be redefined by the terminal operator through the Set Terminal
File Characteristic (STTY) command.) TTY mode supports a variety
of asynchronous terminals including VIP7100, VIP7200, VIP7201,

09/86
8-2 Cz05-02A

VviP7207, VIP7801, VIP7803, VIP7808, VIP7813, VIP7814, VIP7824,
VIP7301, VIP7303, VIP7305, VIP7307, HDS 2; TWUl001l, TwWU1l003,
TWU1005; TN0300, TN1200, and other teletype (KSR, ASR) terminals.

Field Mode

Field mode allows forms-oriented processing to be performed
(on certain terminals) by applications such as Display Formatting
and Control (DFC), menu subsystem, and Data Entry Facility
(DEF). A form consists of a series of fields. A field is a
series of contiguous locations on the terminal screen into which
only selected types of data can be entered. For example, a
terminal operator can enter only "0" through "9" into a numeric
field. The validation of data entered into a field is
accomplished by ATD under application control.

Field mode allows the operator to modify entered fields
easily. The break key is configurable by means of the STTY
command. Break or supervisory messages are displayed in a
communications region (line) on the terminal screen. Field mode
processing is limited to the following terminals: VIP7200,
VIP7201, VIP7207, VIP7801, VIP7808, VIP7301, VIP7303, VIP7305,
VIP7307, HDS 2, VIP7813, VIP7814, and VIP7824.

Block Mode

Block mode is supported by the VIP7800 series of terminals.
In block mode, the operator can locally edit terminal input
without ATD involvement. Depression of the transmit key causes
the LPH to receive data from the terminal in blocks of
fully-edited input. Block mode can be used at either the
Physical I/0 or File System level.

Terminal input is locally edited by means of cursor control,
character insertion/deletion, and line insertion/deletion keys.
Termination of input is accomplished by depression of the
transmit key. The break key is configurable by means of the STTY
command. When the terminal is operating in no-roll mode,
supervisory messages can be displayed in a communications region
(line) on the terminal screen. Block mode processing is limited
to the following terminals: VIP7801, VIP7803, VIP7808, VIP7813,
VIP7814, and VIP7824.

ASPI Mode

ASPI mode supports selected serial and letter-quality
receive-only printers (ROPs). This mode provides full
control-byte processing; it also detects and analyzes, in some
cases, printer offline conditions. ASPI mode is supported at the
Physical I/0 or File System level. ASPI mode is limited to the
following serial printers: PRU1004, PRU7007, PRU7070, PRU7075,
PRU7170, PRU7175, PRU7200, PRU7210, and PRU7270.

09/86
8-3 Cz05-02A

X-ON/X-OFF Mode

X-ON/X-OFF mode supports asynchronous devices that use the
X-ON/X~-OFF flow control protocol. This mode protects
applications and devices from buffer overflow by suspending
transmission when the receiver is not ready to accept data.
X-ON/X-OFF mode supports a wide variety of devices, including
terminals, serial printers, paper tape readers, and personal
computers. X-ON/X-OFF mode is also used as a transport facility
for file transfer applications. X-ON/X-OFF has four operational
modes: TERMINAL, PRINTER, FILETRAN, and RAW. All operational
modes require a full-duplex communications line. The maximum
supported transfer rate is 9600 bits per second.

s &9

I/0 FUNCTIONS SUPPORTED BY ATD

The ATD line protocol handler supports five logical
functions. Each is listed below with its associated function
code (fc).

Connect (fc = A)

Disconnect (fc = B)

Read (fc = 2)

Write (fc = 1)

Define form, field mode only (fc = 5)
Break (fc = 9).

These functions are requested through the input/output
request block (IORB). An application places in the right byte of
IORB word I_CT2 the code of the desired function. A connect
request establishes the mode in which subsequent functions (e.g.,
read, write) are performed.

IORB PROCESSING

The ATD LPH is activated by an application—-generated S$RQIO
macro call. Associated with this macro call is an input/output
request block (IORB) that specifies the operation to be
initiated. The IORB contains a function code, a buffer address,
and range (in most cases), and parameters that specialize
execution of the requested operation. Figure 8-1 shows a
representative IORB, as required for field mode processing.

IORB Size

The required size of an IORB depends on the mode selected by the
application. Field mode requires that an extended-length IORB be
used for all orders (including connect). If a standard length read
or write IORB is received when the terminal is connected in field
mode, that IORB is treated as a supervisory message.

The other ATD modes require standard-length IORBs. Extended
IORBs can optionally be used when connecting a terminal in block
mode to ascertain the terminal's type (which is returned in the
extended portion of the IORB).

09/86
8-4 Cz05-02A

WORD LABEL 0j]112|3|4|5/6|7|8}9|A|B|C|DI|E|F

-3 I_LRX | RFU EXTENDED LRN
o I_LNK RESERVED FOR SYSTEM USE AS POINTER
$AF I_CTl RETURN STATUS T|{WIU|S|O]|]R|O|1
1+$AF | I_CT2 LRN 0O|{B|O|E FUNCTION
2+4SAF | I_ADR BUFFER ADDRESS SAF 1-WORD POINTER
LAF 2-WORD POINTER
2+2*$SAF | I_RNG RANGE - NUMBER OF BYTES TO BE TRANSFERRED
3+2*SAF I_DVS DEVICE-SPECIFIC WORD '
4+2*SAF I_RSR RESIDUAL RANGE - NUMBER OF BYTES NOT TRANSFERRED
5+2*SAF I_ST DEVICE STATUS WORD
6+2% SAF I_EXT TOTAL IORB EXTENSION PHYSICAL EXTENSION
LENGTH (IN WORDS) LENGTH (IN WORDS)
7+2*SAF I_Dv2 DEVICE-SPECIFIC WORD 2
8+2%*SAF I_FCs TOTAL KEYSTROKES
9+2*SAF I_HDR READ OFFSET
10+2%3AF I_sT2 FIELD MODIFICATION INDICATOR
11+2%SAF I_Qbp bEVICE_ID; RELATIVE RESIDUAL RANGE

12+2%SAF i_TAB EDIT OFFSET (INPUT); TERMINATION CHARACTER (INPUT)

13+2%SAF I_CON | ABSOLUTE ADDRESS INDICATOR; PRE-ORDER READ AND
WRITE CODE; TERMINATION CHARACTERS; VFN VALUE

14+2*SAF I_LOG START OF FIELD ATTRIBUTE TABLE

Figure 8-1. ATD IORB

Expanded LRN Support

LRNs 0 to 252 and 256 to 4095 are supported by ATD. If the
LRN is in the range of 256 to 4095, the extended (negative
direction) IORB format must be used.

IORB Device-Specific Word

The device-specific word I DVS is used in conjunction with
each of the I/O functions. This word serves to modify the
activity of a particular function. For example, the setting of
bit 15 in I DVS determines whether the communication line is
disconnected on completion of a disconnect function.

8-5 Cz05-02

Processing Order of IORBs

An application can issue one I/O order against a terminal (or
line) and wait for its completion, or issue several IORBs. Out-
standing read and write orders and non-abortive disconnects are
queued sequentially. In TTY, field, and block mode, write orders
are processed before read orders if the read order is not in
progress. Define form orders, read and write orders with the
option to purge outstanding I/O requests, and abortive discon-
nects are executed immediately after being received by the LPH.

Purging Queued IORBs

In the following cases, the LPH purges queued IORBs and posts
the incomplete orders back to the requesting application:

1. The application issues a disconnect order with an abort
request (purge IORB indicator in I DVS word of IORB is set
to 0). All read and write orders that are active or queued
at the time of the disconnect order are purged and posted
to the issuing task with a "device unavailable" (010B)
return status.

2. A line disconnect (data set status change) occurs. All
active or queued read and write orders are purged and
posted with a "device unavailable" return status. Both
the line and station are disconnected.

3. The application issues a purge-all order in field mode.
All active or queued read and write orders are purged and
posted to the issuing task with a "device unavailable"
return status. Both the line and station remain
connected.

4. A break signal is detected (BREAK key pressed) and the
user has previously issued a read-break IORB (i.e.,
function code 9 in I_CT2, and bit 0 in I_DVS set to 0).
See "Break Processing by ATD LPH" below.

5. The application issues a block write order with the purge
option. Active or queued write orders are purged or
posted with "device unavailable" return status. Both the
line and station remain connected.

6. The application issues a block read order with the purge
option. Active or queued read orders are purged or posted
with "device unavailable" return status. Both the line
and station remain connected.

8-6 Cz05-02

IORB Error Processing

All ATD modes report errors in the same manner. A 2-byte
error code is placed in register Rl. The left byte indicates the
component detecting the error; the right byte indicates the error

itself. The right byte is also placed in IORB field I_CT1.
Table 8-1 lists the return codes as they appear in the left byte
of I_CTl.
Table 8-1. ATD Return Codes

Status
Byte Meaning

0 No error; operation complete

1 Request block is already busy

2 Invalid LRN

3 Illegal wait

4 Invalid argument(s):

® Improper set-up of IORB
@ Improper buffer size
e Improper set-up of data in certain buffers

Device not ready. Reported when the following devices
are in an off-line state: TWU1001, 1003, 1005; PRU7070,
7075; and serial printer attached to VIP7800 terminal

Timeout on order other than connect
Hardware error:

Parity error (block mode, X-ON/X-OFF mode)
Framing error

Data lost-buffer overflow (X-ON/X-OFF mode)
Data service error (receive overrun)
Communications control block service error
Fatal MLC error

Device disabled

e Connect or disconnect pending
e Device logically disabled by system

Controller unavailable

8-7 Cz05-02

Table 8-1 (cont). ATD Return Codes

Status
Byte Meaning
B Device unavailable

10
34
35
38
39

3F

Read/write IORBs purged by purge option

Read/write IORBs purged by disconnect

Read/write IORBS purged by disconnect with queue abort
Attempt made to connect to a 7800 class terminal that
is in local mode

Inconsistent or illogical request

e Connect order issued against a device that is currently
connected

e Disconnect order issued against a device that is
currently disconnected

e Read/write IORB issued; line not connected

e Connect order issued to VIP7800 attached printer when
terminal has already been connected in field mode

e Field mode connect order issued to VIP7800 terminal
when attached printer has already been connected

e Field mode read issued before define form request

e Read request outstanding when new define form request
issued

e Block missed on block mode read

End of file detected (X-ON/X-OFF mode)

Timeout on connect

The mode of ATD is not configured

The mode of ATD is not configured for this controller
Sub-LRN not configured

Logical connect failed

Connect or disconnect in progress

8- 8 CZ05-02

The status word (I ST) of the IORB contains additional
information that qualifies the major status code returned in
I CTl. The significance of certain bits of the status word is
the same for all ATD modes. Table 8-2 shows the meaning of these
bits.

For the significance of mode specific bit settings, refer to
the descriptions of the individual ATD modes found later in this
section.

Table 8-2. Status Word of IORB (I_ST)

;’{ET Meaning When Bit Set to 1
0 Abort terminated IORB
1 Mode specific
2 Data service rate error (receive overrun)
3 Mode specific
4 Communication control block service error
5 IORB purged because of break signal
6 Mode specific
7 Hode specific
8 Framing error
9 Parity error
A Nonzero residual range (read only)
B Phone hang-up on disconnect
C Mode specific
D Mode specific
E Mode specific
F Fatal error
® Unrecoverable memory error
® Bus parity error
e Non-existent resource error

8-9 Cz205-02

Return of Device ID

Table 8-3 shows the values returned in the right byte of IORB
field I_QDP when an extended length connect IORB completes and is
posted back to the application.

Table 8-3. Device IDs Returned in IORB

Value in
I_QDP Marketing Identifer

45 VIP7100

46 VIP7200

47 VIP7207 (data entry)

48 VIP7808 (word processing mode)

49 VIiP7801

47 VIP7808 (general purpose mode)

4B VIP7803 (word processing)

4C TTY (KSR)

4D TermiNet 0300

4E TermiNet 1200

50 VIP7813/VIP7824/VIP7825 (MF) async

51 ROSY 24

52 ROSY 26

54 Spinwriter 5518

55 Spinwriter 3508

56 PRU7200 (Qume 96 characters)

57 Sara 22

58 PRU7210 (Qume 130 characters)

5B PRU7070

5C PRU7170

5D PRU7270

5E PRU7175

S5F PRU7075

61 VIP7814 sync (rev. 2 firmware)

62 VIP7814/VIP7815 async

63 VIP7201

64 VIP7301

65 VIP7307 (data entry)

66 VIP7303 (word processing)

67 VIP7305 (multifunction) or microSystem 6/10
console (black and white)

90 NIP (ASPI non-impact printers)

AQ HDS 2 (in native VIP8300 mode)

Al VIP7306

09/86
8-10 Cz205-02A

SUPERVISORY MESSAGE PROCESSING

When a terminal is processing forms, the supervisory message
line provides a communication region (typically the bottom line
of the terminal) through which the operator can interact with the
system independently of the forms processing application. ATD
provides support for supervisory messages on the following VIP
terminals when they are connected in either field or block mode:
vIipP7200, VIP7201, VIP7207, VIP7801, VIP7803, VIP7808, VIP7813,
vip7814, VIiP7824, VIP7301, VIP7303, VIP7307, and HDS 2.

Supervisory message processing is specified by means of a
non—-extended read or write IORB with bit 9 in I DVS set to 1.
The use of this bit is optional in ATD field mode, because
supervisory message orders are already distinguished from normal
field mode orders by being non-extended. The location of the
supervisory message line depends on the ATD mode, and the type
and operational mode of the terminal. When, for example, a
terminal is connected in field mode, it operates in no-roll
mode. If the terminal is a VIP7200, then the supervisory message
line is (typically) the 24th line. If, however, the terminal is
a VIP7801, then the supervisory message line is always the 25th
line of the terminal.

The following diagram shows supervisory message line location
for supported VIP terminal classes and ATD LPH modes.

VIP Terminal Class

7100 | 7200 | 7300 | 7800 | HDS 2

TTY mode . 1 1 1 1 1
Field mode N/A 2 3 3 3
Block mode N/A| N/A| N/A 4 N/A
X-ON/X-OFF mode N/A 1 1 1 1

where:

1 = When supervisory messages are written to the terminal,
output is at current cursor position. There is no way to
acknowledge the write; all reads are treated as normal
device reads.

2 = Read/write activity is directed to the designated
supervisory message line, which is normally ‘line 24.

3 = Read/write activity is directed to the line 25.

09/86
8-11 CZ05-02A

4 = Read/write operation is predicated on the roll bit (bit
9) of the connect I_DVS. 1If the terminal is in roll mode
(bit 9 = 0), writes begin at the current cursor position
and reads are treated as normal device reads. If the
terminal is not in roll mode (bit 9 = 1), reads and
writes are directed to the 25th line.

All writes to the supervisory message line are truncated to 80
characters, and the residual range indicates the amount of data
not written. If supervisory message writes are specified, bit 8
of the read/write I_DVS becomes significant. If bit 8 = 0,
supervisory messages must be acknowledged before the write is
posted back to the application. 1If bit 8 = 1, supervisory

messages need not be acknowledged by the operator.

In TTY and X-ON/X-OFF modes, supervisory writes (which are
treated as standard data writes) are not acknowledged. 1In other
modes, the operator acknowledges a supervisory message by
pressing one of the following keys:

Field mode: function key 10, CLEAR key, or transmit key.
Block mode: function key 10.

CONTROL BYTE PROCESSING

Control byte processing is a TTY, block, ASPI, and X-ON/X-OFF
mode option that is specified by a bit setting in the I DVS word
of the write order. When selected, this option indicates that
the first byte of the output buffer is to be used as a control
byte. This byte must be included in the range (I_RNG) value of
the write IORB.

The format of the control byte is:

Bit: 0(1 21|3|4 5 6 7

Field: Y|P P|V COUNT

The possible values for these fields and their significance to
ATD are shown in Table 8-3.1.

The head-of-form sequence, specified by bit 3 of the control
byte, is a form feed for the following devices: TWU1001,
TWU1003, TWU1005; PRU7070, PRU7075, PRU7270, PRU7170, PRU7175.
These are stand-alone devices not attached to a VAF7821 buffered
printer adapter. For other devices, head-of-form consists of a
carriage return and three line feeds.

09/86
8-12 Cz05-02A

Table 8-3.1 ATD Control Bytes

. .
Bit | Field "
Value| Name Description

b RO P

80 (Y) 1 - Do not do post-order C/R L/F

60 (PP) Bits
5 6
0 0 - Print; ignore V and CCCC fields
0 1 - Do not print; do V and CCCC fields
1 0 - Print; do V and CCCC fields
1 1 - Reserved for future use

10 (V) 1 - If CCCC=0, send form feed or three line

feeds for terminals; if CCCC>0, send one
line feed
0 - Pre-space as per CCCC field
oF (CCCC) | Count field (number of line feeds to send)

09/86
8=12.1 CzZ05-02A

8-BIT DATA SUPPORT

ATD supports 8-bit data mode. You can select either an 8-bit
data path or the appropriate algorithms used when an application
uses 8-bit data on a 7-bit communication channel. The number of
data bits that can be transmitted on a communications channel is
specified at system build time using the ATD CLM directive. If
the communication channel does not support 8-bit data, you can
specify truncation or shift-in/shift-out. This is accomplished
by the compression algorithm argument. If truncation is
selected, the transmitted data will have the high-order bit
removed. If shift-in/shift-out is specified, a shift-in
character (hex OF) will preceed the first character to be
transmitted that has a high-order bit equal to one. Before the
next character in the data stream that has a high-order bit equal
to zero is sent, a shift-out character (hex OE) will be sent.
This will continue with a shift-in or shift-out character
preceeding the actual data character every time the high-order
bit changes. In this way, 8-bit data is sent over a 7-bit
communication channel. For example if the formula "1/4 + 1/2 =
3/4" were to be sent, it would be represented by the hex string:

SI 1/4 SO + SI 1/2 sO = SI 3/4
OF 3C OE 20 2B 20 OF 3D OE 20 3D 20 OF 3E
Shift-in/shift-out is supported only on MLC-16 controllers.
CONNECT PROCESSING

After a connect IORB is processed by the communication
supervisor, the IORB is passed tc ATD. The following is a list
of actions taken by ATD for all connects:

1. HMake sure the channel control program (CCP) is loaded.

2, If a sub=LRN is used, determine if a connect for another
component is in progress. If so, defer the connect until
later.

3. If the device is a hard copy device or TTY terminal, and
it is not a configured device type, go to Step 8.

4., Send an inquiry sequence to the terminal. If there is no
response, retry for 4.5 minutes at regular intervals. If
no error occurs, go to Step 6.

5. Post the current IORB with device unavailable.

6. If the device is not self configuring, go to Step 7;
otherwise validate the inquiry response. 1If the response
is a valid (supported) terminal, set the device type and
go to Step 8. 1If not a valid supported terminal, set the
default device type to VIP7200 and go to Step 8.

09/86
8-13 Cz05-02A

7. Set the terminal type as defined by CLM.
8. Configure the terminal characteristics.

9. Validate the mode required and enter the correct ATD
module.

SELF-CONFIGURING TERMINALS

The device type can be defined as self-configuring by using an
asterisk (*) as the device type argument of the ATD directive at
configuration time. 1In this way, the ATD line protocol handler
will configure the device when the first connect is recieved for
the device. Self-configuration is performed by sending an
inquiry sequence to the device and setting the configuration
based on the response. If an unknown response is received, the
device is configured as a VIP7200. If the device doesn't
respond, the sequence is retried at regqular intervals for
approximately 4.5 minutes. If after this time the device doesn't
respond, the connect is returned to the user with the device
unavailable error (010B).

The following restrictions apply to self-configuring
terminals:

® The device must be either a VIP780x, VIP781x, VIP782x,
VIiP730x, HDS 2, VIP7201, VIP7200, or any ASPI printer.

) The device must be configured at a baud rate that is
suitable for all devices connected to the channel.

) Applications that determine the device type by issuing a
Get Device Information monitor call should be aware that
prior to a connect being issued, the device type will be
x'FF' and a valid device type will only be returned after
a connection has been established.

° A self-configquring line will not re-establish a new device
on that line unless a physical disconnect or a line drop
is detected on a previous session. To maintain the
terminal in the same configuration, only logical
disconnects and connects can be requested in any session.

BUFFERED PRINTER ADAPTER (BPA) SUPPORT

ATD supports the buffered printer adpater (BPA). The BPA
allows the attachment of a serial printer (PRU1003, PRU100S5,
PRU7070, PRU7075, PRU7170, PRU7175, or PRU7270) to a VIP7801,
vipr7803, VIP7808, VIP7813, VIP7814, VIP7824, VIP7816, or VIP7856
terminal. An application can use the serial printer when the
attached terminal is connected and operating in either TTY or
block mode. Use of the printer with a terminal connected in
field mode is not allowed.

: 09/86
8-14 Cz205-02A

The BPA can be accessed at the physical I/0 or File System
level. It must be configured with the BPA directive. If
accessed through the File System, the BPA directive must be
paired with a DEVICE directive specifying a ROP device unit.

09/86
8-14.1 CZ05-02A

Before issuing write orders to the BPA, the application must
first establish a connection to it. To use the BPA at the
physical I/0 level, the application issues I/O orders to the work
station with a single LRN that refers to the terminal
display/keyboard and the BPA. A sub-LRN specified in I_ST
differentiates between orders directed to the terminal
display/keyboard and to the BPA. A sub-LRN of 0 refers to the
display /keyboard; a sub-LRN of 1 refers to the BPA.

When the attached printer is servicing a write order, the
terminal keyboard is locked.

BREAK PROCESSING BY ATD LPH

In TTY, field, X-ON/X-OFF, and block mode, break processing is
initiated when the terminal's BREAK (BRK) key is pressed.
Results differ, depending on whether the task issued a read-break
I/0 order reqguest for that terminal.

Break Processing with Read Break Request

A task issues a read break request when the IORB specifies a
function code value of 9 in I_CT2 and a value of 1 in bit 0 of
I_DVS. I_ADR of the IORB must have a null address.

The communications supervisor gueues read break requests on a
last-in, first-out basis.

When the terminal’s break key is pressed, and a read break
request has been issued, the terminal is now in "break mode" for
subsequent I/0 requests. Break processing proceeds as follows:

1. When a write order is active, and:

a. Bit 7 in I_DVS of the write IORB is 1, the order
completes normally; break processing then begins with
step 2 below

b. Bit 7 in I_DVS of the write IORB is 0, or when a read
order is active, either order is terminated and
posted to the issuing task with IORB settings shown
in step 2. -

2. All other gqueued read and/or write IORBs are posted back
to their respective tasks with:

a. I_RSR containing the range value specified in I_RNG
b. Bits 5 and 10 of I_ST set to 1l

c. Left byte (status) in I_CT1 has value of 0.

8-15 Cz205-02

3. The last (last-in, first-out) read break request is
posted to the issuing task with:

a. Bit 5 of I_ST set to 1l
b. Left byte (status) of I_CTl has value of 0.

4. Read and write orders issued by the "broken task" (i.e.,
task in break mode) are posted back (without execution)
with IORB values described in step 2 above.

5. Read and write orders from tasks not in break mode (i.e.,
that did not issue receive-break requests) are accepted
and executed.

Break mode remains in effect until a task issues another read
break request or a cancel break request (i.e., until provision
has been made for processing the next break signal). A task
issuing another read break request to a device which is in break
mode is indicating that it wishes to be the task notified of the
next break. A task issuing a cancel break request to a device
which is in break mode is indicating that it does not wish to be
the task notified of the next break; the task to be notified of
the next break is the one that issued the most recent read break
order.

A cancel break request is specified with an IORB having a
function code of 9 in I_CT2 and bit 0 of I_DVS set to 1. A cancel
break request causes one or all queued read break IORBs to be
posted back to their issuing tasks. 1If bit 1 of I DVS is 0, the
request specifies the cancellation of only the most recently
issued read break request. If bit 1 of I_DVS is 1, the request
specifies the cancellation of all active and queued read break
requests. The cancel break IORB and purged read break IORB(s)
are posted back to their issuing tasks with:

Bit 5 in I_STl set to 0
Left byte (status) in I_CTl set to 0.

Break Processing with No Read Break Request

When a break signal is received and no read break request has
been issued, only the current active order is affected. The
break signal is processed as follows:

1. If there is no active order, the break signal is ignored.

2. When a read order is active, the order is terminated and
posted to the issuing task with:

a. I _RSR containing the range value specified in I_RNG
less the number of characters entered. 1In field
mode, I_QDP is also updated.

b. Bits 5 and 10 of I_ST set to 1

c. Left byte of I_CTl set to 0.

8-16 CzZ05-02

3. When a write order is active and bit 7 in I_DVS is 1, the
break signal is ignored and the write order completes
normally.

4. When a write order is active and bit 7 in I_DVS is 0, the
order is posted to the issuing task with:

a. I _RSR containing the range value specified in I_RNG
b. Bits 5 and 10 of I_ST set to 1
c. Left byte of I_CTl set to 0.

PRINT SCREEN

ATD supports a print screen facility that is activated by
invoking the PRTSCN bound unit. In order to invoke PRTSCN, an
LDBU directive to load BOXQUE must be included in your CLM file.
The default key to activate print screen is the shifted function
4 key, which can be changed to any two character escape sequence
key with the STTY command. The print screen facility can be used
on VIP7300, HDS 2, and VIP7800 series terminals as well as the
VIP7201. The message "SCREEN COPY IN PROGRESS" is displayed at
the start and "SCREEN COPY SUCESSFUL" on the 25th line at the
termination of the facility. These messages are suppressed on
the VIP7201 terminal, which does not support the 25th line.

Print screen is restricted when a terminal is in the break state.

TTY MODE

The TTY mode of ATD provides for line-at-a-time transfer of
data to or from teletype-compatible asynchronous terminals.

TTY mode supports six functions:

® Connect

@ Disconnect

© Read

e Write

® DBreak

@ Wait—-On-Line

These functions are requested through standard-length
IORBs. An application can optionally use an extended IORB for a
connect operation.

A connect order establishes the mode in which the connected
terminal operates. Because TTY is the default mode of the ATD
LPH, an application need not explicity specify the mode in the
device-specific word (I_DVS) of the connect IORB.

TTY Mode and Extended Character Set (8~Bit Data)

In TTY mode, ATD passes data through and does not alter the
data in any way. The following is a list of actions that ATD TTY
mode takes for the extended character set. Refer to Table D-1
for a description of the extended character set.

09/86
8-17 Cz05-02A

® CO0 character set handling is as described in the
Read/Write functions of TTY mode.

e The GO, Gl, and Cl character sets are passed through.
o The Line Termination character must be within the C0 or GO

character sets. The ESC sequence must also be within the
GO0 character set.

e The Line Cancel, Character Delete, Break Character, and
Print Key are handled the same as the Line Termination
character above.

Connect Function (TTY Mode)

The following paragraphs describe the options that an
application can specify with a connect order.

The Auto Call option, which is supported by all system-
supplied LPHs, is described in Section 7. This option enables an
application to establish a connection with an 801-A or 801-C ACU
data set.

The default IORB setting for the BELL option allows the out-
put of bells to a terminal. If the option is not specified, the
output of bells to a terminal is suppressed, even under error
conditons.

When the terminal is a vIP7801, VIP7803, VIP7808, VIP7813,
VIP7814, VIP7824, or VIP7816/26, specification of character mode
(which is the default) causes the terminal to be physically con-
figured in character mode with the echoplex and roll options set.

When the buffered option is selected, a VIP7800 class
terminal is configured in text mode with the no-echoplex and
no-roll options set. This means that data entered at the
terminal is not transmitted (to the LPH) until the transmit key
is depressed. Prior to pressing the transmit key, the operator
can edit information displayed on the terminal by means of the
cursor control and erase keys. When ATD receives and processes
the transmitted data, the LPH acts on any line cancel or
character delete sequence encountered in the data stream. That
is, the LPH does not accept as data the @, \, or CTL-X
characters. This point bears emphasis; the operator of a
buffered terminal who uses the cursor-back key to erase a
character might well forget that pressing the @ key has the same
effect. If the operator mistakenly enters the @ character as
data, the LPH deletes the next character when data is ultimately
transmitted from the terminal. Care must be exercised when
entering teletype control sequences from a buffered terminal.

Connect IORB (TTY Mode)

This subsection summarizes the bit settings that govern the
connect options already described.

09/86
8-18 CZ05-02A

Table 8-4 shows bits of the connect I DVS word that are
applicable to TTY mode. All other bits must be zero.

The bit settings in word I_ST are signficant when a serial
printer is attached to the terminal by means of a buffered
printer adapter. On connect orders, the field specifies whether
the terminal or attached printer is being addressed. The
permitted values are:

0
1

Terminal
Attached serial printer.

09/86
8-18.1 CzZ05-02A

Table 8-4. 1I_DVS Word in Connect IORB (TTY Mode)

Bit
Number Meaning for Connect Function
2 0 = Do not use auto dial
1 = Use auto dial
3 0 = Allow output of bells to the terminal
1 = Supress output of bells to the terminal
13, 0 = Character mode
1l = Buffered mode

Disconnect Function (TTY Mode)

An application uses the disconnect IORB to terminate TTY mode
processing. The following paragraphs describe the options that
an application can specify with a disconnect order.

If the abort queued orders option is specified, outstanding
IORBs (active and queued) are terminated with a "device
unavailable®™ status (010B). The disconnect order is immediately
serviced. If the abort order is not specified, all outstanding
IORBs are allowed to complete before the disconnect order is
serviced.

If the hang-up option is selected, the terminal is physically
disconnected when the disconnect order is serviced. If the
hang-up option is not specified, the communications connection
remains active after servicing of the disconnect order (i.e., the
terminal is logically disconnected, but remains physically
connected) .

Disconnect IORB (TTY Mode)

This subsection summarizes the IORB.bit settings that govern
the disconnect options just described.

Table 8-5 shows bits of the disconnect IORB that are
applicable to the TTY mode of ATD. All other bits must be zero.

The bit settings in word I_ST are signficant when a serial
printer is attached to the terminal by means of a buffered
printer adapter. On disconnect orders, the field specifies
whether the terminal or printer is being addressed. The
permitted values are:

0
1

Terminal
Attached serial printer.

8-19 C205-02

Table 8-5. I_DVS Word in-‘Disconnect IORB (TTY Mode)

Bit
Number v Meaning for Disconnect Function
14 0 = Abort:outstanding requests
1l = Wait until outstanding requests complete before
disconnecting terminal
15 0 = Hang-up the phone
1l = Do not hang-up the phone

Read Function (TTY.Mode)

The following TTY mode read functions support the entry of
data by the terminal operator. They are activated by pressing
terminal keys. 1In some cases, an application can designate the
key that activates a particular function by means of the Set
Terminal File Characteristics (STTY) command. These functions
are not controllable through the IORB. The read IORB is used to

pass data to the application once it has been entered and edited
by the operator.

OPERATOR FUNCTIONS

TTY mode functions that support data entry operations are the
following:

Function Action

Character delete Delete a previously entered character

Line cancel Cancel the current line of input

Hide Accept the next character as data (i.e., do
do not interpret it as a control character)

Terminate read Signal completion of the current read order

Break Generate break signal to application

controlling the terminal

Operator Function Keys

The LPH performs one of the functions just listed when the
operator keys the appropriate code sequence. Typically, the
depression of a single terminal key will generate the proper code
sequence. For example, on a VIP7301 terminal, depression of the
cursor-left key causes the generation of the code sequence 1B44,
which causes the LPH to delete the prior character.

8-20 Cz05-02

The code sequence that initiates a function is determined by
the device-type parameter of the ATD directive. That code
sequence can later be altered by the STTY command. Table 8-6
shows the initial (default) codes associated with .device-types
that can be specified with the ATD directive.

Table 8-6. Default Values of Special Characters by Device Type

Device Character Line Line Read
Type Delete Cancel Break Terminator

Hex | Key-Cap| Hex | Key-Cap | Hex| Key-Cap | Hex |Key-Cap

HDS 2 1B44 | <- 1B4B | ERASE 00 | BREAK 0D RETURN
VIP7200 1B44 | <- 1B4B | ERASE 00 | BREAK 0D RETURN
VIP7201 1B44 | <- 1B4B | ERASE 00 | BREAK 0D RETURN
VIP7207 1B44 | <- 1B60 | CLEAR 00 | BREAK 0D RETURN
VIP7301 1B44 | <- 1B4B | ERASE 00 | BREAK 0D RETURN
VIP7303 1B44 | <~ 1B4B | ERASE 00 | BREAK 0D RETURN
VIP7305 1B44 | <- 1B4B | ERASE 00 | BREAK 0D RETURN
VIP7306 1B44 | <~ 1B4B | ERASE 00 | BREAK 0D RETURN
VIP7307 1B44 | <- 1B60 | CLEAR 00 | BREAK 0D ENTER

VIP7801 1B44 | <- 1B4B | ERASE 00 | BREAK 0D RETURN
VIP7803 1B44 | <- 1B4B | ERASE 00 | BREAK 0D RETURN
VIP7813 1B44 | <~ 1B4B | ERASE 00 | BREAK 0D RETURN
VIP78l4 1B44 | <~ 1B4B | ERASE 00 | BREAK D RETURN
VIP7808 1B44 | <~ 1B4B | ERASE 00 | BREAK 0D RETURN
VIP7100 40 @ 18 CTL-X 00 | BREAK 0D RETURN
TWU1001 40 @ 18 CTL-X 00 | BREAK 0D RETURN
TWU1003 40 @ 18 CTL-X 00 | BREAK 0D RETURN
TWU1005 40 @ 18 CTL-X 00 | BREAK 0D RETURN
TN 0300 40 @ 18 CTL-X 00 | BREAK 0D RETURN
TN 1200 40 @ 18 CTL-X 00 | BREAK 0D RETURN
TTY 40 @ 18 CTL-X 00 | BREAK 0D RETURN

Character Delete and Line Cancel

As the preceding table indicates, the operator can delete
characters and cancel lines in two different ways, depending upon
the device type. On some devices, referred to in this context as
hard copy terminals, deleting a character requires depressing the
@ key. On other devices, the cursor back (<-) key is used; these
devices are called video terminals.

On hard copy terminals, cancelling a line is accomplished by

depressing and holding the CTL key and pressing X. On video
terminals, the operatcr uses the ERASE or CLEAR key.

8-21 Cz205-02

On hard copy and video terminals, editing is performed by
different actions, and different information is dispiayed at the
terminal during the editing operation. However, the modification
of buffer contents and the information returned in the IORB is
the same. The following paragraphs explain in detail the
procedure and process of editing on each type of terminal.

Character Deletion on Hard Copy Terminals. Character
deletion is performed on the current line (i.e., before the
carriage return key is pressed). Pressing the @ key deletes the
character immediately preceding the @ character, and, if echo was
requested, displays the @ character. Each succeeding @ entry
deletes another character, from right to left, up to the
beginning of the line,

The I_RSR value in the issuing program's IORB indirectly
reflects the number of characters accepted at the time the order
was terminated. For example, if the operator enters AXC@@B
followed by a carriage return, the I RSR value shows that only
two characters (A and B) were entered. Note that pressing the @
key does not actually delete a character, but moves back by one
character position a pointer in the read buffer. 1In the example
just given, X is overwritten by B, but C (though rejected by the
operator and not reflected in the I_RSR value) is present in the
buffer, following B.

Line Cancellation on Hard Copy Terminals. To cancel the
current line (before carriage return is entered), the operator
depresses and holds the CTL (control) key and presses X. This
action deletes the current line, displays the *DEL* message on
the next line. The LPH reissues the read order, using the
original buffer and range. Line cancellation does not clear the
buffer of characters entered into the buffer before the line
cancellation action.

Character Deletion on Video Terminals. Pressing the
cursor-left (<-) key erases from the screen the character last
entered, and removes it from the associated read buffer. When
the completed read IORB is posted to the issuing application,
I_RSR indirectly reflects the number of characters accepted when
the order was terminated. For example, if the operator enters
ABC<-, I_RSR shows only that two characters (A and B) were
entered. Again, as with character deletion on hard copy
terminals, extraneous information may appear in the rest of the
buffer.

Line Cancellation on Video Terminals. The key used is either
ERASE or CLEAR, depending on the device type (see Table 8-6). The
effect is to erase all characters on the current line and to
reposition the cursor to the beginning of the erased line. The
LPH reissues the read order, using the original buffer and
range. Line cancellation does not clear the buffer of characters
entered into the buffer before the line cancellation action.

8-22 Cz05-02

Read Termination
The operator can terminate a read order in one of three ways.

1. Press the transmit key.

2. Press the user-selectable read-termination key. The
carriage return key is the default termination key on
both hard-copy and video terminals. The operator can
designate another key by means of the STTY command. The
terminating character (generated by carriage return or a
user-designated key) is not stored in the buffer; the LPH
optionally echoes a carriage return and/or line feed to
the terminal.

3. Generate a two- or three-character escape sequence. Any
terminal function key or cursor control key generates a
two- or three-character escape sequence. This sequence
can be used to terminate a read operation, provided that
it has not previously been designated for line cancel,
character delete, or break operations. ATD stores the
terminating sequence in the read buffer and optionally
echoes a carriage return and/or line feed, as
appropriate. The read IORB is posted back to the
application.

Break

The break key provides an interruption or attention signal to
the system software. After detecting a break, the LPH may
terminate write orders and read orders. For a detailed
description of break functionality, see "Break Processing with
Read Break Request® earlier in this section.

The break key can be changed by means of the STTY command.
Hide Function

The hide function allows the operator to enter a character
(such as @, carriage return, and cursor-left) that the LPH would
otherwise interpret as a control character. The hide function
key is a control P (x'10'). The operator keys a control P
immediately before the character to be entered as data. The LPH
interprets the control P as an escape character (i.e., does not
place the contrel P in the buffer) and echoes a backslash, if
echo was requested. The LPH then stores the next character in
the buffer without interpretation, echoing it if echo was
requested. If the hidden character (immediately following the
control P) is not printable, it is still stored in the buffer,
but a period (.) is echoed to the terminal.

The control P key is used for the hide function on hard-copy
and video terminals. The hide function key cannot be changed by
the STTY command.

09/86
8-23 CzZ05-02A

READ ORDER FUNCTIONALITY

The following options, unlike those just described, are not
under direct control of the operator. Instead, they are
specified by the application in an IORB.

Echo

If the echo option is selected, any keyed input is echoed, or
"reflected" back to the terminal. If echo is not selected, keyed
input will not be echoed and the cursor will not move as the
operator enters data at the terminal.

If this post order option is selected by the application, a
line feed is sent to the terminal upon completion of a read
order. A line feed is not echoed if the read IORB specified the
no echo or the no line feed option.

Carriage Return

If this post order option is selected by the application, a
carriage return is sent to the terminal upon completion of a read
order. A carriage return is not echoed if the read IORB specifies
the no echo or the no carriage return option.

READ IORB (TTY MODE) .

An application specifies the options just described by
setting bits in the IORB word I_DVS. Table 8-7 gives the
individual significance of these bits. All other bits must be
zero.

Table 8-7. ATD Word I_DVS in TTY Mode Read IORB

Bit
Number Meaning for Field Read Function
10 0 = Do not echo input or move the cursor
1 = Echo input; move cursor
11 0 = Do not send post-order line feed
1 = Send post-order line feed
12 0 = Send post-order carriage return
1 = Do not send post-order carriage return

8-24 CZ05-02

Write Function (TTY Mode)

The following options are specified by an application in the
write IORB.

OFF LINE

If the off-line option is specified, the LPH detects and
reports a device-not-ready condition (0105) when a TWU1l003 or
1005 is disconnected or non-operational. It is recommended that
these devices be configured (through the use of the STTY
function) for non-buffered file system output. This
configuration ensures that offline conditions can be properly
- processed by the system. 1If the off-line option is not
specified, ATD does not detect or report off-line conditions.

CONTROL BYTE PROCESSING

If specified, the control byte option indicates that the
first byte in the output buffer is to be used for pre-order
control. A control byte must be included in the range (I_RNG) of
data to be transmitted. For a detailed description of this
option, including control byte format, see "Control Byte
Processing” earlier in this section.

QUIT ON BREAK

If this option is specified, a break signal can interrupt the
execution of the write order. Otherwise, a break sigual cannot
be used to prematurely terminate an active write order.

CARRIAGE RETURN

If the carriage return option is specified, a carriage return
is sent to the terminal after the completion of the write order.

LINE FEED

If this option is specified, a line feed is sent to the
terminal after the completion of the write order.

Write IORB (TTY Mode)

This subsection summarizes the bit settings that govern TTY
mode write options.

Table 8-8 gives the significance of the bits in the IORB word
I_DVS that are applicable to TTY mode ATD. All other bits must
be zero. Bit 13 is significant only for devices configured as
"PRU1005/TWU1005, TN300, TN1200, or through the BPA. If this bit
is set, bit 11 should be set to zero.

8-25 Cz205-02

Table 8-8. ATD Word I_DVS in TTY Mode Write IORB

Bit

Number Meaning for TTY Write Function

2 0 = Do not check for TWU1003, TWUl005 offline conditions
1 = Check for TWU1003, TWU1l005 offline conditions

4 0 = Include control byte

1 = Do not include control byte

7 0 = Stop output on detection of a break
1 = Do not stop output on detection of a break

11 0 = Do not send post-order line feed
1 = Send post-order line feed

12 0 = Send post-order carriage return
1 = Do not send post-order carriage return

13 0 = Control byte is defined for terminal printers
1 = Control byte is defined for ASPI printers

Bit settings in word I_ST are signficant when a serial
printer is attached to the terminal by means of a VIP7800
buffered printer adapter. On write orders, the field specifies
whether the terminal or printer is being addressed. The
permitted values are:

0
1

Terminal
Attached serial printer

Device Configuration (TTY Mode)

Hardware switches on a device connected in TTY mode should be
set in the following positions. (The device may not support all
of the switches mentioned below). TTY (character) mode:

CHARACTER/BUFFER switch in CHARACTER position

DUPLEX HALF/FULL SWITCH in FULL positon

LOCAL COPY/ECHO switch set as required by user (normally
set to echo)

Speed configured between 110 and 9600 bits per second

ROLL/NO ROLL switch set to ROLL

Error Processing

When a parity error is detected in keystroke input, an
audible alarm sounds and the typed character is ignored. When
the read order is posted, the return status in I_ST indicates
detection of parity error(s) (bit 9 = 1).

8-26 ' CZ05-02

If a framing error or receive overrun conditon is detected,
the read order terminates and a hardware error (0107) is
returned; I_ST indicates the specific reason for abnormal
termination.

TTY Mode Timeout Processing

Timeouts may occur during the processing of read orders. A
timeout occurs when the operator does not terminate the input
operation within 5 minutes after entering the first character.
There is no timeout if the operator does not enter any
characters. The threshold of this timeout (5 minutes) can be
changed via the read parameter of the CLM directive TIMEOUT.

FIELD MODE

The field mode of ATD allows an application to process a set
of fields, commonly called a form. In this mode, each field that
an operator keys into the form is validated by the ATD LPH and is
passed to the application, one field at a time. This mode should
not be used if the terminal itself is performing (local) field
validation and forms processing. The concepts of forms, fields,
subfields, and field validation are defined below.

Field Mode and Extended Character Set (8-Bit Data)

The following is a list of actions that ATD field mode takes
for the extended character set. Refer to Table D-1 for a
description of the extended character set.

@ The C0 and GO character set handling is as described in
the Read, Write, and Define Form functions of field mode
(described later in this subsection).

® Any character in the Cl character set terminates a read.

® Characters in the range X'A0' through X'BF' inclusive have
no character validation.

® Characters in the range X'C0' through X'FF', excluding
X'D7' and X'F7' have alphabetic validation.

® Characters X'D7' and X'F7' have no validation.

Forms, Fields, and Subfields

A field is a series of contiguous locations into which
meaningful data can be entered. A subfield is a portion of a
field (less than or equal to the field size) that accepts data
only in accordance with the definition of the subfield. There
are no limits on the number of fields that a form may contain.
Each field may contain one to nine subfields. A field may not be
longer than 80 characters and may not extend over one line (row)
of the terminal display area.

09/86
8-27 Cz05-02A

An example of the relationship between field and subfield is
an 8-character alphanumberic employee ID consisting of a
S-character employee number and a 3-character department
designator. The first subfield would be defined as 5-digit
characters and the second subfield as 3-alphabetic characters.

INPUT VALIDATION

The input to a subfield is validated by reference to a field
attribute descriptor. A subfield descriptor must specify one of
the following validation/edit attributes:

e Digit (0-9)
e Numeric (0-9, decimal point, minus sign, plus sign, comma)

e Alphabetic (A-zZ, a-z, period, space, comma, hyphen,
apostrophe)

e Alphanumeric (all numeric and alphabetic)

e No validation (95-character code set equivalent to the
last 6 columns of the ASCII table, excepting DEL. Note
that the hyphen and minus sign are the same ASCII
character, as are the period and decimal point).

When an invalid character is entered into a subfield
requiring validation, an audible alarm is sounded, the cursor
remains in its current position, and the character is not
accepted or echoed. The LPH continues to process the current
order without notifying the application of the input error. When
the field is completed and accepted by the LPH, further
validation may be performed by the application. For reasons of
security, an application may specify (in I_DVS) no echo for a
field. When an invalid character is entered into such a field,
no audible alarm is sounded.

AUTO-INSERT CHARACTERS

An auto insert character is a predetermined character in a
predetermined location within a field. It is defined as a
subfield by the field attribute descriptor. Consider, as an
example, the standard Social Security account number:

123-45-6789

This field occupies 11 positions. It can be defined as an
ll-character numeric field, in which case the operator must key
in the hyphen. It can also be defined as follows:

A digit subfield of 3 positions
An auto-insert character
A digit subfield of 2 positions
An auto-insert character
A digit subfield of 4 positions

09/86
8-28 CZ05-02A

In this case, the operator may not key in anything but digit
characters. The hyphens are inserted automatically by the LPH.

Contiguous auto-insert subfields are not allowed; at least
one other type of subfield must be defined between auto-insert
subfields within a field. An auto-insert must not be the first
or last subfield of a field.

SEPARATE SIGN FIELD

The separate sign subfield allows the operator to enter a
minus or plus sign as the first character of a field. 1If a
character other than a minus or plus sign is entered, a plus is
assumed and placed in the buffer associated with the field read
order. The keyed character is then stored in the buffer. If
echo is requested, the assumed plus sign, followed by the keyed
character, is displayed on the screen.

09/86
8-28.1 Cz05-02A

If the operator moves the cursor to the left into a separate
sign subfield, a new value (+ or -) may be entered. However, if
the operator enters another character or moves the cursor right
into the separate sign subfield, the default sign (+) is stored
in the buffer and displayed on the screen (assuming specification
of echo).

The separate sign subfield must be the first subfield of the
field. It may only be used in conjunction with a decimal-point
and digit subfields.

MUST RELEASE FIELD

Must release fields are the same as normal fields with one
exception: the field is not considered complete at end-of range;
the operator must key in a terminator character. Take, for
example, a form containing two fields. One field is a zip code,
defined as digit, length 5; the other field is the customer name,
defined as alphabetic, length 20. 1In a data entry environment,
the zip code would probabably not be defined as a must release
field; after the operator keys in the 5 digits, the cursor
automatically moves to the next field. The customer name field,
however, would probably be defined as a must release field,
forcing the operator to key in a terminator character regardless
of the length of the customer name. (Valid termination
characters are defined later in this section under "Termination
of Field".)

If the operator fails to enter an appropriate termination
character after f£illing a field (i.e., after entering 20
alphabetic characters, in the preceding example), an audible
alarm sounds until a valid terminator character is entered.

DECIMAL POINT AND DECIMAL POINT PROCESSING

If the decimal point subfield is used, the separate sign must
also be specified. The separate sign subfield must be the first
subfield of the field. The decimal point subfield must occur
somewhere later in the field description and is used by the LPH
as an aligment position. The decimal point subfield must not
occupy the last position of the field and only one such subfield
can be used within a field.

If the operator keys in a plus or minus sign as the first
character of a field, the sign is stored in the read buffer and
transmitted to the terminal (assuming that echo is specified in
the IORB). If the operator keys in any other character except
the decimal point as the first character, that character is
stored as the second character of the field (following successful
validation). It too is echoed to the terminal if echo is
specified. If the operator keys in the decimal point character,
or if the cursor occupies the position in the field designated
for the decimal point, the decimal point character is stored in
the buffer at the next available position.

8-29 Cz05-02

The decimal point character is also transmitted to the
screen, assuming specification of echo. The next character
entered is treated as part of the next digit subfield following
the decimal point subfield, and is validated according to the
attributes of that subfield. The operator is not allowed to move
the cursor left into an designated decimal point position. An
audible alarm is sounded if this is attempted.

This attribute must be used in conjunction with the separate
sign and digit subfields. Also, there can be only one occurrence
of this subfield and it cannot occupy the last position of the
field.

FIELD DESCRIPTOR AND DEFINE FCORM

Before a read order in field mode can be processed, the
application must either issue a define form request or
incorporate a field descriptor in the IORB itself. Bit 2 of
I_DV2 indicates whether the IORB is carrying the integrated field
‘descriptor along with the read request., If the bit is on, the
field descriptor starts at offset I_LOG in the IORB.
Alternatlvely, with bit 2 of I_DV2 set off, the application must
issue a define form order that points to a set or table of field
attribute descriptors that define the form.

Integrating a field descriptor in the IORB is the preferred
approach, because an application can more efficiently alter an
integrated descriptor than one that is part of a external table.
After altering the attributes defined by a integrated. descriptor,
the application issues a single read order; after altering the
attributes defined by a descriptor in a table, the application
must issue a new define form order and a field read order. Two
I/0 orders are required rather than one.

USING THE INTEGRATED FIELD ATTRIBUTE DESCRIPTOR

When using the integrated field attribute descriptor, the
application must specify in words the total extension length of
the IORB. The integrated descriptor begins at offset I_LOG,
which is the first word of the logical part of the IORB. The
value for the total size of the IORB extension must include both
the size of the physical IORB extension (seven words) and the
size of the integrated field attribute descriptor.

USING DEFINE FORM

The following conventions apply to the use of the define form
order and the associated table of field attribute descriptors.

1. The IORB that requests a define form order is phy51cally
extended.

2. The define form order must be issued before any read
order that refers to the field attribute table pointed to
by the define form order.

8-30 Cz05-02

After a define order is issued referencing a field
attribute table, subsequent define form orders may not be
issued while read orders that reference the initial field
attribute table are outstanding. The define form order
remains active and the associated attribute table is used
for all subsequent field reads until another define form
or a disconnect order is issued, or a line disconnect is
detected.

The table address is passed in I_BAD of the define form
IORB. The range (I_RNG) must specify the length of the
table in bytes. The logical portion of the IORB (I_FCN
through I_CON) must be zero.

The attribute table must begin on a word boundary;
consequently, the buffer bit (bit 8) of I_CT2 must be
zero.

Once the field attribute descriptor table and its address
have been established, any subsequent field read order
must specify in I_TAB the word offset to the desired
field attribute descriptor. Accordingly, all field
attribute descriptors must start on a word boundary.

The application may organize the attribute table in any
manner that is convenient (as long as the descriptors
start on word boundaries). The descriptors may be
interspersed with other information, if conservation of
memory is not a prime consideration.

Conservation of memory can be acheived by the following
measures:

a. If the attributes of two or more fields are exactly
alike, only one descriptor is needed. All read
orders referring to the identical fields would
reference the same descriptor.

b. In some cases, it might be advantageous to apportion
the descriptors describing a form into a set of
attribute tables rather than into a single table.
Only one table of the set would be in memory at a
time; when anéther attribute table was needed, the
application would issue another define form order.

FORMAT OF THE FIELD ATTRIBUTE DESCRIPTOR

Field attribute descriptors have a single format, whether

integrated into a field read IORB or belonging to an field
attribute descriptor table. A field may contain one to nine
subfields. The field attribute descriptor consists of the
following:

® A one-byte entry defining the length of the field

descriptor

8-31 Cz05-02

e A one-byte entry defining the must-release attribute -

e A two-byte entry defining the type and range of the
subfield (there can be up to nine such subfield
definitions)

e A two-byte field descriptor terminator.

The format of these field descriptor components is shown in
the following diagram.

LI{M|RL|Al|R2|A2| «.. | Rn* | An*

where:

L = Length of field descriptor (in bytes), not including this
byte; a hexadecimal value in the range 5 to 15.

=
"

Must release field. Bit 4, when set to 1, signifies that
the entire field is designated a must release field. The
other bits are reserved for future use and must be zero.

Entries L and M constitute a 2-byte descriptor header.
R = Range of a subfield, in decimal, or zero
A = Attribute of the subfield; a hexadecimal value
Rn* = The value of the last two R and A entries must be 2zero,
An* to indicate the end of the descriptor. These two
entries constitute the terminator.
If the value of a range byte (R) is greater than 0 and less

than or equal to 80, the value of the attribute byte (A) has the
following significance:

Value Meaning
00 No validation
10 Digit (0-9)
30 Numeric (0-9, 1/4, 1/2, divide sign, multiply sign,

decimal point, minus sign, plus sign, comma)

40 Alphabetic (A-Z, a-z, extended characters, period,
space, comma, hyphen, apostrophe)

70 Alphanumeric (all numeric and alphabetic)

8-32 Cz05-02

If the value of a range byte (R) is zero, the value of the
attribute byte (A) has the following significance:

value Meaning
00 End of field
20-7E Auto-insert character
80 Separate sign
81 Decimal position

The range of the total field, specified in I_RNG of the field
read IORB, may not exceed 80 characters. The range value can
normally be computed with the following formula:

range = sum of Rl...Rn subranges + number of auto-insert
characters + 1 (if separate sign specified) + 1 (if
decimal point specified).

Supervisory Message Processing

When a terminal is in field mode, the application may
"escape" to a supervisory message line by issuing read/write
orders with standard, non-extended IORBs. Escaping to the
supervisory message line allows two-way communication between
operator and application that does not disrupt the processing of
a form displayed on the terminal. For example: An operator (who
is using & terminal both for forms processing and as an operator
console) receives a device unavailable message on the bottom line
of the terminal. The form being processed is not altered by the -
supervisory message. The operator acknowledges the supervisory
message and continues processing the form.

IORB VALUES

Superviscry messages are designated by a common bit (bit 9)
in the read/write device specific word. The use of this bit is
optional in field mode, because supervisory message orders are
already distinguished from field mode orders by being
non-extended. .

Bit 8 of I_DVS becomes significant when supervisory message
writes are specified. If bit 8 = 0, supervisory messages must be
acknowledged. If bit 8 = 1, acknowledgement by the operator is
not required.

LOCATION OF MESSAGE LINE

If the terminal is defined at system building time as a
VIP7800, VIP7300, or HDS 2 class terminal, the supervisory
message line is the 25th line of the CRT. If the terminal is
defined as a VIP7200 or VIP7207, the application may designate
(in I_FCS) any line from 1 through 24 as the supervisory line.

8-33 Cz05-02

PROCESSING ORDER

Supervisory message orders are processed by ATD in the order
received, with write orders having priority over read orders.
Assume, for example, that four supervisory messages are issued
and queued in the order listed: write, read, write, read. The
two writes will be completed before the reads are processed.

If supervisory message orders are intermixed with extended
IORB field mode orders,; the messages are processed in the order
received, with write orders again having priority over read
orders. Assume, for example, that three orders are issued and
queued in the order listed: field mode read, supervisory write,
supervisory read. The orders will be processed in this order:
supervisory write, field read, supervisory read.

SUPERVISORY MESSAGE CONVENTIONS

The following conventions apply to the processing of
supervisory messages:

1. The receipt of a supervisory message by the LPH does not
cause the premature termination of the current order,
whether the current order is a supervisory message or
normal field order.

2. Control byte and post-order control processing does not
apply to supervisory .messages.

3. If the type-ahead option was selected at connect time, a
supervisory message results in a purge of the type-ahead
character queue.

4. When writing a supervisory message, the application must
nct imbed in the message text control sequences that move
the cursor (e.g., carriage return, line feed).

5. The range of a supervisory write order cannot exceed 80
characters. Data in excess of 80 characters is not sent
to the terminal.

6. The operator must acknowledge the receipt of each
supervisory message by depressing function key 10, the
transmit key, or the CLEAR key.

7. The operator can edit a response to a supervisory message
read through the use of TTY edit control characters.

8. The break function is not operational when a supervisory
message read is being processed.

9. An operator keying in a response to a supervisory message

read initiates transmission of the response by one of the
following actions:

8-34 CZ05-02

a. Depressing the carriage return key
b. Depressing the transmit key

c. Entering the number of characters specified in I_RNG
of the IORB issued by the application to read the
operator's response.

10. The range of a supervisory message read order cannot
exceed 80 bytes. 1If a longer range is specified, a range
of 80 is used, and the residual range set accordingly.

11. ATD field mode applications that specify supervisory
message processing and use the VIP7808, VIP7803, or
VIP7303 in word processing mode must set to 1 bit 7 of
I_DV2 in the connect IORB. This action ensures that the
LPH keeps the terminal in word processing mode when
servicing supervisory message requests.

CALCULATOR KEY PAD SUPPORT

The multifunction (MF) keyboard includes a calculator key pad
with plus (+) and minus (=) keys. These keys generate
three-character escape sequences. When a MF keyboard is attached
to a terminal running in field mode, ATD, by default, translates
the escape sequences into ASCII plus or minus characters (X'2B‘
or X'2D', respectively). ATD then stores the ASCII character in
the application's buffer. The application can request ATD not to
translate the escape sequences by setting to 1 bit 1 of word I
DV2 in the field connect IORB. When this bit is set, the escape
sequences terminate the read order; ATD stores the terminating
sequence in the IORB as explained later in this section under
"ATD Handling of Termination Codes".

Application Responsibilities in Processing Fields

The application is responsible for:

1. Initializing the read buffer with blanks, underscores, or
semiconstant values.

2. Initializing the terminal display, through a field write
order, with the same initialization sequence set in the
read buffer.

3. Justification (left, right) after the field read is
complete.

4. Decimal point alignment after the field read is complete.
5. Space suppression.
6. Logical validation of field content (beyond what is

provided by ATD).

8-35 Cz05-02

Field Mode Functions

Field mode supports six I/O request blocks:

Connect Define Form Write
Disconnect Read Break.

All but the break function require an extended-length IORB.
When using an extended length IORB, bit 11 in I_CT2 must be set
on, the right byte of I_EXT must specify a physical extension of
seven words, and the left byte of I_EXT must specify a minimum
total size of at least seven words.

CONNECT FUNCTION

An application selects field mode by using an extended-length
connect IORB and setting bits 8, 9, 10, and 11 of I _DV2 to the
field processing subfunction code of 2. (Bit 10 is"set to one;
the other three bits are zero.) 1In field mode; the connect ICRRB
can specify the following options.

Auto Call

Specification of auto call in I_DVS enables an application to
establish a connection with either a 801-A or 801-C ACU data
set. The auto call feature is described in Section 7.

Bell v

The default setting of I DVS allows the output of bells to a
terminal. If the option is specified, the LPH suppresses the
output of bells to a terminal even under error conditions. This
means, for example, that the operator receives no indication when
the LPH rejects entry into a field, or when entry of a terminator
is required (when processing a must release field).

Validation Field Notification (VFN)

Spec1fy1ng the VFN option (in I_DV2) causes the ATD, instead
of issuing a bell, to post back the current read order with a
return status of zero whenever the operator attempts to enter an
invalid character into an active field.

Having specified the VFN option, the application determines
the reason for the termination of the read order. 1If the order
was terminated by the attempt to enter an invalid character
(e.g., keying an "A"™ into a numeric subfield), ATD places an
error code in I CON. Having found this code, the application
issues a supervisory message write to inform the operator of the
error. Once the operator acknowledges the message and the
supervisory message is posted back to the application, the
application can reissue the interrupted field read and continue
processing from the last valid keystroke (by means of a read with
offset, which is described later in this section).

8-36 Cz205-02

Selectable Field Validation Sets

This option (specified in I_DV2) allows the application to
select the set of ASCII characters constituting a field type.

There are three validation sets that can be selected:

Standard ATD set
VIP7700 set
VIP7800 set

User applications must select the default ATD set. The other
validation sets are used by system-supplied software that
supports emulation of VIP7700 and VIP7804 terminals.

Word Processing Mode (WPM) Indicator

This option is specified (in I_DV2) by system-supplied
software when the word processing graphics mode (WPM) of a
VIP7803, VIP7808, VIP7813, VIP7824, VIP7303, VIP7305, or HDS 2 is
used. This option is necessary to provide proper processing of
supervisory messages when the terminal is in WPM mode.

Cursor QOut of Field

If specified (in I DV2), this option allows the operator to
"cursor out® of a field and thus terminate the read of that
field. The reason for termination is reported by ATD in the
extended portion of the read IORB (I_TAB). If the option is not
selected, the pperator cannot use the cursor left key (at the
beginning of a field) or cursor right key (at the end of a field)
to terminate an active field read.

Type Ahead

This option, when specified (in I_DV2) helps to prevent the
loss of input characters when a read order is not active (i.e.,
when a write order is active and/or a read order has not been
issued by the application.) 1If this option is chosen, ATD queues
(in a 32-character key-ahead buffer) input characters that are
keyed when a read order is not active. Later, when the read
order becomes active, these characters are validated against the
. field attribute descriptor and echoed (if echo was requested).
Detection of an invalid character causes an audible alarm to
sound and the type-ahead character queue to be purged. Cursor
right and left and end-of-fie€ld conditions are acted on by ATD
when the read order becomes active. If this option is not
selected, characters are accepted only when a read order is
currently active. The keying of characters when a read order is
not active causes an audible alarm to sound. The type-ahead
queue is purged by any of the following events:

1. An input character in the queue is found to be invalid.

8-37 CzZ05-02

2. The application issues a supervisory message read or
write order. '

3. The operator presses the break key.
4. The terminal is disconnected.
5. The application issues a purge-all I/0 order.

6. The application issues a read IORB with the the purge
type-ahead queue bit set on.

7. The request issues a read order with terminal enquiry
(ENQ) or with terminal read cursor address (RCA)
specified as pre-order function in the IORB.

VIP7200, VIP7207 Supervisory Message Line

When issuing a connect to a VIP7200 or VIP7207, the applica-
tion can specify (in the right byte of I_FCS) the line (row) to
be used for supervisory messages. Possible values are 0 through
18 hexadecimal. If 0 is entered, line 24 is used. This field is
ignored if the device is a VIP7800 or VIP7300 class terminal; in
this case, line 25 is always used for supervisory messages.

Terminal Type (Device ID)

The application can check the device ID of the connected
terminal by interrogating the right byte of I_QDP in the
completed connect IORB.

Connect IORB (Field Mode)

This subsection summarizes the bit settings that govern the
connect IORB options just described.

Bit Settings of I DVS. Table 8-9 gives the signficance of
bits in the connect IORB I_DVS word that are applicable to field
mode ATD. All other bits must be zero.

Table 8-9. ATD Word I_DVS in Connect IORB

Bit
Number Meaning for Connect Function
2 0 = Do not use auto dial
1 = Use auto dial
3 .0 = Allow output of bells to the terminal
1 = Suppress output of bells to the terminal

8-38 Cz05-02

Bits Setting of I DV2. Table 8-10 gives the significance of
bits of the connect IORB word I DV2 that are applicable to field
mode ATD. All other bits must be zero.

Table 8-10. ATD Word I_DV2 in Connect IORB (Field Mode)

Bit
Number Meaning for Connect Function
1 0 = Translate codes generated by calculator pad + and -
keys
1l = Terminate read when these keys are struck
4 0 = No Validation Field Notification (VFN) support
1 = VFN support
5,6 00 = Use standard field validation set (required setting)
01 = Use VIP7700 field validation set (reserved for
system use)
10 = Use VIP7804 field validation set (reserved for
system use)
7 0 = Terminal is VIP7200, VIP7201, VIP7207, VIP7801,
VIP7301, VIP7307; or VIP7803, VIP7808, VIP7813,
VIip7814, VIP7824, VIP7303, VIP7305, HDS 2 and is not
operating in word processing graphics mode (required
setting)

' 1 = Terminal is VIP7803, VIP7808, VIP7813, VIP7824,
VIP7303, VIP7305, HDS 2 and is operating in word
processing graphics mode (reserved for system use)

8 | Must be 0@
9 Must be 0@
10 *| Must be 12
11 Must be 02
12 0 = Operator not allowed to cursor out of field
1l = Operator allowed to cursor out of field (terminating
field read)
13 0 = No type ahead queue
1 = Type ahead queue is supported

a Bits 8 through 11 must be set as indicated to indicate a
field mode connect.

8-39 Cz205-02

Bit Settings of I FCS and I QDP. The right byte of I_FCS
specifies the line (or row) number of VIP7200, VIP7201i, or
VIP7207 that is used as the supervisory message line. Possible
values are 0 through 18, hexadecimal. Zero indicates use of the
24th line (VIP7200 class terminals) or the 25th line (VIP7300,
HDS 2, or VIP7800 class terminals).

Values Returned on Completion of a Connect Order. On
completion of the connect order, the right byte of I_QDP contains
the device ID of the terminal (refer to Table 8-3).

DISCONNECT FUNCTION (FIELD MODE)

The disconnect IOREB is used to terminate f£icld mode
processing. A disconnect IORB can specify the following two
options.

Abort Queued Orders

active, are terminated with a device unavailable (010B) status.
The disconnect order is then immediately serviced. If this
option is not selected, all outstanding IORBs are allowed to
complete (in the order of their issuance) before the disconnect
order is serviced.

If this option is selected; all outstanding IORBs, even if

Hang Up

If this option is selected, the communications line is
physically disconnected when the disconnect order is serviced.
If this option is not selected, the terminal/line remains
physically connected after processing of the disconnect order
(i.e., the terminal is logically disconnected, but remains
physically connected). Table 8-11 gives the significance of bits
of the disconnect IORB I DVS word that are applicable to the
disconnect options just described. All other bits must be zero.

Table 8-11. ATD Word I_DVS in Disconnect IORB

Bit
Number Meaning for Disconnect Function
14 0 = Abort outstanding requests
1 = Wait until outstanding requests complete before
disconnecting the terminal
15 0 = Hang up the phone
1 = Do not hang up phone

8-40 Cz05-02

READ FUNCTION (FIELD MODE)

An extended-length field read IORB is used to obtain
validated input that has been keyed into a field displayed at a
terminal. The input to a field is validated by means of a field
descriptor, which must be associated with the field read order.
The descriptor may either be integrated into the read IORB or
belong to a table of descriptors pointed to by a define form
IORB. (For further detail, see "Field Descriptor and Define
Form" earlier in this section).

Pre-order Control

Pre-order control arguments are specified in I_DV2 and I_CON
of the read order IORB. Pre-order control is used to perform the
following actions prior to a field read:

® Positon cursor
® Issue bell

e Erase line (i.e., clear screen from cursor position to end
of line)

® Issue enquiry command (ENQ) to VIP7801, VIP7803, VIP7808,
VIP7301, VIP7307, BEDS 2 and read terminal’s response

® Issue a read cursor regquest command (RCA) to terminal and
read current position of the cursor.

If the pre-order control reguest is an ENQ or RCA command,
the read is not treated as a field read. After sending an ENQ or
RCA control sequence to the terminal, the LPH places the
terminal's response in the buffer asscciated with the read
request. Before issuing an ENQ or RCA read order, the
application must specify in the read IORB no echo of incoming
characters and no post-order control. (For more information
about the ENQ and RCA commands, see the hardware documentation of
the terminal in question.)

Termination of a Field Read

An operator intentionally terminates a field read by one of
two actions:

1. The operator types a valid data character into the last
position of a field that is not a must release field.
This action sets I_RNG to and I_TAB to zero.

8-41 Cz05-02

The operator types a control sequence that terminates the
read order. The character(s) making up the control
sequence must fall in certain ranges (defined below) of
the ASCII character set; the significance of the
sequence, however, is determined by the application.
Keying a control sequence sets a non-zero residual range
in I_RSR. The terminator sequence is stored in the I_TAB
and T _CON fields of the IORB, and not the buffer; it Is
not included in the residual range calculation or echoed
to the terminal. :

The terminating sequence may be a one-character control
character or an escape sequence from one to four characters long.

1.

One-Character Terminating Codes. A one-character
terminator must be one of the following ASCII codes:
00-1A, 1C-1F, 7F. Note that codes 10 and 11 are not
treated as terminators by ATD if the terminal is a
VIP7207 or ViP7307. The use of codes 10 and 11 is not
recommended if compatibility with all terminal types is
desired.

Multi-character Terminating Codes. Multi-character
terminators are two-, three-, or four-character sequences
beginning with the escape code 1B. The second character
of the sequence must be in the range 20 - 7E.

A two-character“sequence must consist of the escape
character (1B) followed by 20 to 57; 59 to 5A; 5C to 72;
or 74 to 7E.

The VIP7800, VIP7300, and HDS 2 terminal classes support
three- and four-character escape sequences. The first two
characters must be 1B followed by either 58, 5B, or 73.

Escape sequences longer than four characters are not
supported; the fifth and any successive character(s) are treated

as data.

For further information on escape sequences, refer to

documentation describing a specific terminal.

ATD Handling of Termination Codes

The terminating sequence keyed by an operator is placed by
ATD in extended IORB fields I_TAB and I_CON. The following rules

apply.
1.

One-character codes. One-character codes are placed in
the right byte of I_TAB and are in the range of 00 - 1A,
1C - 1F or 7F.

Two-character escape sequences. The escape character

(1B) is not stored. The second character is stored in
the right byte of I_TAB and is in the range of 20 - 7E
(excluding 5B, 58, and 73).

8-42 CzZ05-02

3. Three- and four-character escape sequences. The escape
character (1B) is not stored. The second character is
stored in the right byte of I_TAB and is 5B, 58, or 73.
The left byte of I_CON contains the third character; the
right byte of I CON contains the fourth character. The
value X'00' in the right byte of I _CON signifies that the
terminating code is a three-character escape sequence.

Entry of Invalid Characters

The effect of entering an invalid character into a field
requiring validation depends on whether the validation failure
notification (VFN) option was selected at connect time.

1. VFN Option Not Selected. An audible alarm sounds (if
output of bells is supported), the cursor remains in its
current position, and the invalid character is not
echoed. The LPH continues to process the current order
without notifying the application of the input error.

2. VFN Option Selected. Field read order is returned to
application with a 0 status in I CTl. Right byte of I
TAB contains X'FF', indicating that I_CON contains one of
the following error codes:

Illegal entry into a digit subfield

Illegal entry intc a numeric subfield
Illegal entry into an alphabetic subfield
Illegal entry into an alphanumeric subfield

o L) B bt

Residual Range and Relative Residual Range

When a field read order is terminated, the residual range,
returned in I_RSR of the IORB, reflects the maximum cursor
position reached while the read order was active. The relative
residual range, returned in I QDP of the IORB, reflects the
position of the cursor when the order was terminated. The values
of residual and relative residual range may differ if the cursor
back (<=) key was entered during a read order. Suppose, for
example, that the operator keys

AXC<=<~-B<K~

followed by a carriage return. The residual range shows that
three characters (ABC) were entered; the relative residual range
indicates that the cursor was in the second position when the
order was terminated by a carriage return.

The residual and relative residual range are set equal to the

original range if a read order is prematurely terminated by a
communication line loss, a purge-all, or an abortive disconnect.

8-43 Cz05-02

Use of Cursor Keys

When the operator moves the cursor left (<-) or right (->)
within a field, the LPH's buffer pointer is adjusted and the
buffer contents remain unchanged. For example, after the
operator keys

ABC->->

followed by a carriage return, the buffer contains ABCxx, with xx
being the previous contents of the buffer. (The residual range
indicates that five characters were entered.)

The total keystroke count for a field read is returned in
I_FCS of the field read IORB when the order terminates. When the
read order is active, the count is incremented once for each of
the following:

e Data character (valid or invalid)

® Cursor right (->)

e Cursor left (<-)

e The terminating character sequence.

Statistics are not returned in the IORB if the read order is
prematurely terminated (e.g., by a communication line loss).

Read With Offset

An application can specify an offset when issuing a field
read order so that the operator can start entering data in the
middle of a field. When issuing a read with offset, an
application does the following:

e Specifies in I ADR the starting address of a buffer that
contains the data from the field previously read.

e Specifies in I_RNG the size of the buffer pointed to by
I BAD.

e Specifies in I_HDR the offset from the start of a field to
a position within the field where the cursor is to be
placed and where the read with offset is to begin.
Permissible values are in the range 1 through 4F,
hexadecimal.

e Optionally, specifies in I_CON the cursor position to the
start of the field.

For example, a 20-character alphabetic field begins in row 2
column 1. The application previously issued a field read with no
offset, but the field entered by the operator contained an
invalid character in the tenth position of the field. The
application recognizes the error and reissues the read with:

8-44 Cz05-02

@ A pre-order bell
¢ A pre-order positioning of the cursor at row 2, column 1
e An offset of 9 specified in I_HDR

¢ The address and range of the buffer containing the

previously read data, specified in I_ADR and I_RNG,
respectively.

During a read with offset, the operator is allowed to cursor
left or right within the entire field. Cursoring out of a field
follows the normal termination rules. The LPH calculates the
residual range and the relative residual range for a read with
offset order as if the operator had entered the characters
preceding the specified offset. Read with offset may be used
with or without the type-ahead option.

Type-Ahead

If the type-ahead option was selected at connect time, the
application may select the "purge type-ahead gueue” option in the
field read IORB. This option causes the LPH to purge the
type-ahead queue before processing the read order. The option is
useful if the applicaticn detects an error in field read and
wants to re-issue the read after purging the gueue.

Cursor Out of Field

When issuing a field read order, an application can override
the selection of the cursor-out-of-field option made at connect
time. That is, by setting a bit in I_DV2 of the read IORB, the
application can specify that the operator cannot cursor out of
the field.

Support of VIP7207 and VIP7307 Terminals

Through support of the ALPHA key and implied numeric shift,
ATD supports data entry operations on the VIP7207 and VIP7307
terminals. The purpose of this functionality is to allow the
operator to enter alpha (i.e., lower case) characters from a data
entry terminal while the terminal is shifted to uppercase as a
result of numeric lock or implied numeric shift. It is perceived
by the operator as a terminal function related to character
entry, and is not tied into the field validation operation.
Field validation checks are done after the character is
translated; if the resultant character is invalid it is rejected
at that time.

The data entry terminal transmits a code 10 when the ALPHA
key is depressed and a code 11 when the key is released. The LPH
interprets code 10 as a shift to the "alpha" set of characters,
translating the data characters following the code 10 into equiv-
alent alpha codes until a code 11 is received. ATD so interprets
codes 10 and 11 whether or not type-ahead is in effect.

8-45 Cz05-02

When the operator is responding to a supervisory message
read, ATD treats codes 10 and 11 as data, placing them in the
application's buffer; no translation is performed. After the
supervisory message read is complete, the LPH reverts to the mode
(ALPHA or implied numeric shift) that was in effect immediately
before the supervisory read.

The purpose of the numeric shift option (specified in I_DV2)
is to reduce the number of keystrokes required of the operator
during the entry of numeric data by enabling the application to
shift the state of the terminal instead of requiring the operator
to depress the numeric shift key. The use of this option is not
restricted to numeric type validation fields, and it can be used
wherever it will save the operator keystrokes, Thus, for
alphanumeric fields that typically consist mostly of digits, this
implied shift would cause the terminal to echo digits and the
ALPHA key could be used to enter the occasional letter.

When a field read with implied numeric shift is requested,
the characters entered are translated before the field validation
operation is performed. For example, the‘“operator normally
enters alpha data. The terminal is set for alpha: the numeric
lock is not set and the ALPHA key is not used. The application
issues an order to read a three-character alphabetic subfield and
a three-character digit subfield with the implied numeric shift
option. The operator, using the central keyboard (not the
numeric keypad), enters ABCUIO. ABCl23 is placed in the
application buffer.

Table 8-12 lists the data codes produced by a key in its
unshifted (alpha) state and shifted (numeric) state. The two
characters shown in each line of the table are produced by a
single key. The first character is produced when the keyboard is
unshifted or when the alpha key functionality is in effect. The
second character is generated when the key board is shifted or
when the implied numeric shift option is in effect.

Read IORB (Field Mode)

This subsection summarizes the bit settings that govern the
field read IORB options just described.

Bit Settings of I DVS. Table 8-13 gives the significance of
bits of the field read IORB I_DVS word that are applicable to
field mode ATD. All other bits must be zero.

Bit Settings of I DV2. Table 8-14 shows bits in the field
read IORB word I_DV2 that are significant to ATD. All other bits
must be zero.

8-46 C205-02

Table 8-12.

Data Entry Keyboard Unshifted/Shifted Translations

1.
2.

Unshifted (alpha) Shifted(numeric) Terminal
S (53) > (3E)
X (58) ? (3F)
T (54) [(5B) VIP7207
R (52) [(5B) VIP7307
H (48) \ (5C) VIP7207
G (47)] (5D) VIP7207
T (54)] (5D) VIP7307
R (52) ~ (5E) VIP7207
W (57) (5F)
{ (7B) T (7¢) VIP7207
{ (7B) } (7D) VIP7307
} (7D) ~ (7E) VIP7207
~ (5E) ~ (7E) VIP7307
G (47) none VIP7307
B (42) I (21)
C (43) " (22)
@ (40) # (23)
* (2A) $ (24)
P (50) & (26)
N (4E) ((28)
E (45)) (29)
Q (51) + (2B)
% (25} ¢ (2C)
< (3C) . (2E)
none / (2F) VIP7207
H (48) / (2F} VIP7307
/ (2F) 0 (30)
U (55) 1 (31)
I (49) 2 (32)
O (4F) 3 (33)
J (4A) 4 (34)
K (4B) 5 (35)
L (4C) 6 (36)
M (4D) 7 (37)
¢ (2C) 8 (38)
« (2E) 9 (39)
D (44) : (32)
F (46) : (3B)
VvV (56) = (3D)
NOTES

"None"™ means that no code is generated.

Unless specified, the code translations apply to both
VIP7207 and VIP7307 terminals.

Keys not represented in the table generate the same code
in unshifted or shifted state.

8-47

Cz05-02

Table 8-13. ATD Word I_DVS in Field Mode Read IORB

Bit
Number Meaning for Field Read Function
10 0 = Do not echo input
1 = Echo input

Table 8-14. ATD Word I_DV2 in Field Read IORB

Bit .
Number Meaning for Field Read Function
0 0 = Do not purge type-ahead queue
1 = Purge type-ahead queue
1 0 = No implied numeric shift
1l = Implied numeric shift
2 0 = No integrated field descriptor (define-form order
required)
1l = Integrated field descriptor (starting at I_LOG)
7 0 = Do not override cursor-out-of field capability
1 = Override cursor-out-of field capability specified in
connect I _DV2 (field read terminates when attempt is
made to cursor-out of a field)
12 0 = Do not send pre-order bell
1l = Send pre-order bell
13 0 = Do not send pre-order erase-line escape sequence
1l = Send pre-order erase-line escape sequence
14 0 = Right byte of I CON contains pre-order control (see
Table 8-15); left byte must be zero
1 = I_CON contains pre-order cursor positioning
information (see Table 8-15)
15 0 = I_CON is not meaningful (no pre-order control)
1 =1 CON contains pre-order control information

Bit Settings in I CON. This field can be used to specify
pre-order control. If so used, bit 14 of I DV2 must be set.
I_CON can be used to specify two kinds of pre-order control:

1. Pre-order cursor positioning. The application must

indicate this use of I_CON by setting bit 15 of I _DV2 to
one.

8-48 Cz05-02

2. Pre-order control other than cursor positioning. The
application must indicate this use of I_CON by setting bit
15 of I_DV2 to zero.

Table 8-15 shows the values of I_CON when used for either
kind of pre-order control.

Table 8-15. ATD Word I_CON in Field Read IORB.

Bit Hex
Number |Value Meaning for Field Read Function
Pre-Order Control Cursor Positioning Information
0-7 01-50 | Defines column coordinate (hexadecimal)
8-15 01-18 | Defines row coordinate (hexadecimal)
Other Pre-Order Control Information
0-7 Must be zero
8-15 00 Line feed and carriage return
01 Line feed
02 Carriage return
03 Bell
04 Reserved for future use
05 Reserved for future use
06 Restore device's default attributes (VIP7800, 7300
class terminals); high intensity (VIP7200 class
terminals) o
07 Low intensity attribute (VIP7800, 7300, 7200 class
terminals)
08 Cursor up
09 Cursor down
0A Cursor forward
0B Cursor back
0C Cursor home
0D Erase end of line

8-49 Cz05-02

Table 8-15 (cont). ATD Word I_CON in Field Read IORB. -

Bit Hex
Number|Value Meaning for Field Read Function
Other Pre-Order Control Information (cont.)

OE Erase end of display

OF Clear (VIP7800, VIP7300, HDS 2 class terminals);
reset (VIP7200 class terminals)

10 Read cursor request binary (VIP7800, VIP7300, HDS 2
class terminals); read cursor address (VIP7200
class terminals)

11 Blink (VIP7800, VIP7300, HDS 2 class terminals)

12 Hide (VIP7800, VIP7300, HDS 2 class terminals)

13 Inverse video (VIP7800, VIP7300, HDS 2 class
terminals)

14 Underline (VIP7800, VIP7300, HDS 2 class terminals)

15 Secondary character set (VIP7800 class terminals)

16 Enquiry (VIP7800, VIP7300, HDS 2 class terminals)

NOTES

1. If codes 11 through 16 are used for terminal classes
other than VIP7800, VIP7300, and HDS 2, an invalid
parameter error (0104) will be returned.

2. When specifying codes 10 or 16, the application must
supply, in IORB fields I_ADR and I_RNG respectively, the
address and size of a buffer to receive the terminal's
response. A buffer size of 4 bytes is required if code
10 is specified; a buffer size of 9 is required if code
16 is specified.

Bit Settings in I HDR and I TAB. If an application issues a
read with offset, the right byte of I_HDR must contain the byte
offset, expressed as a hexadecimal value in the range 1 through
4F. If no offset is required, the right byte of I_HDR must be
zero.

When an a field read order is issued in conjunction with a
define form order, I_TAB contains a word offset to the proper
field attribute descriptor.

8-50 Cz205-02

Values Returned by a Field Read Order

The following paragraphs summarize the information returned
by ATD in fields of a terminated field read IORB.

I_RSR shows the maximum cursor position (offset) upon
termination of the field read order.

I_FCS shows the total number keystrokes entered by the
operator during the field read.

I_ST2 indicates, by a value of one in bit 15, that validated
data was entered into the field.

I_ODP shows the current cursor position (offset) upon
termination of the field read order.

I_TAB indicates termination condition as shown below:

0 = End of range. Valid data has been entered into the
entire field.

-1 = Invalid character entered into field. If the VFN
option was selected at connect time, I_CON provides
additional information (see "Entry of Invalid
Characters into a Field" earlier in this section.)

>0 = ASCII code for one of the following:

Single character terminator entered by operator
Second character of a two-character escape sequence
Second character of a three- or four-character escape
sequence; I_CON contains remaining character(s) of the
sequence
For the permissible values of terminator characters and
sequences see "Termination of Field Read" earlier in this
section.
WRITE FUNCTION (FIELD MODE)

An extended-length IORB is used for all write orders directed
against a terminal connected in field mode.

Write orders are typically used to:

@ Display on the terminal screen a set of field "templates”
associated with a form

@ Purge all outstanding field read and write orders.

8-51 Cz05-02

Purge All Subfunction

The purge all option is a special form of the field write
order. It is exercised by specifying a subfunction code of three
in I_DV2, bits 8 through 11. Bits 10 and 11 are one; the other
bits are zero. When this subfunction is specified, all other bit
settings in I_DV2 and I_DVS are ignored. The write order causes
outstanding read and/or write orders (active and queued) to be
posted with a device unavailable (010B) status. Further, if the
type-ahead option was specified at connect time, the type-ahead
queue is purged.

Quit on Break Option

If this option is specified (in I_DVS), a break signal can
prematurely terminate an active write order.

Pre-order Control

Four bits in I_DV2 control pre-order acc1v1ty. By setting
the range I RNG to zero, the application can issue a write order
that requests only pre-order activity. Alternatively, the write
order can request both pre-order activity and the output of data
to the terminal. 1In either case, the subfunction code (bits 8
through 11) of I_DV2 must be zero.

By manipulating bits in I_DV2, an application can:

Send a bell

Erase end-of line

Use I_CON for cursor positioning operations
Use I CON for pre-order control operations.

These options are also available with field read orders and
have been described in earlier parts of this section that concern
the field read function.

Write IORB (Field Mode)

This subsection describes bit settings in the field write
IORB that govern the options just described.

Bit Settings in I DVS. Table 8-16 gives the significance of
bits of the IORB word I_DVS that are applicable to field mode
write. All other bits must be zero.

Bit Settings in I DV2. Table 8-17 gives the significance of
bits in IORB word I_DV2 that are applicable to field mode write.

Bit Settings in I CON. The bit settings in this field is the
same as those previously described for the field read function,
with this exception: 1In a field write IORB, I CON does not
support codes 10 (read cursor address) and 16 (Enquiry).

8-52 CZ05-02

Table 8-16. ATD Word I_DVS in Field Mode Write IORB.

Bit |
Number Meaning for Field Write Function
7 ' 0 = Stop output on detecting break
1l = Do not stop output on detecting break
8 ‘0 = Acknowledgement of supervisory messages required
1 = No acknowledgement required
Table 8-17. ATD Word I _DV2 in Field Write IORB.
Bit
Number Meaning for Field Write Function
8 Must be zero
9 Must be zero
10-11 00 = Normal write
11 = Purge all outstanding read and/or write orders
12 0 = Do not send pre-order bell
1l = Send pre-order bell
13 0 = Do not send pre-order erase-line
1l = Send pre-order erase-line
14 0 = Right byte of I CON contains pre-order control (see
Table 8-15); left byte must be zero
1l = I CON contains pre-order cursor positioning (see
Table 8 -15)
15 0 = I CON is not meaningful (no pre-order control)
1l = I CON contains pre-order control information

FIELD MODE DEVICE CONFIGURATION

Hardware switches on a device connected in field mode should

be set in the following positions. (The device may not support
all of the switches mentioned below).

CHARACTER/BUFFER switch in CHARACTER position
DUPLEX HALF/FULL switch in FULL position

LOCAL COPY/ECHO switch in ECHO position
ROLL/NO ROLL switch in NO ROLL position

Speed set between 1200 and 9600 bits per second

8-53 Cz05-02

FIELD MODE RETURN STATUS CODES
The following return status codes are returned in the Rl
register. The status code returned in I_CTl is the right byte of

the status code returned in the Rl register when the I/0 order is
complete.

Invalid Argument Status (0104)
This status is returned for the following reasons:
e In a field read IORB
- I_RNG (buffer size) is zero

- Invalid pre-order control option or cursor position
coordinate in I_CON

- The format or values of a field descriptor are invalid.
@ In a field write IORB

- Invalid pre-order control option or cursor position
coordinates in I_CON

- Improper bit settings in I DV2 (bits 8 through 12 must
be all zero; else bits 8 and 9 set to zero and bits 11
.and 12 set to one).

Inconsistent Request Status (010C)
This status is returned for the following reasons:
e In a field connect IORB
- The IORB specifies a field mode connect to a terminal
that is supporting (a connected) serial printer that is
attached to the terminal by a buffered printer adapter.
¢ In a define form IORB
- A read order is presently using an outstanding and
active define form order; definition of a new define
form is not allowed.
e In a field read IORB
- A field attribute descriptor has not been specified.
FIELD MODE ERROR PROCESSING
| When a parity error is detected in keystroke input, an
audible alarm sounds and the typed character is ignored. When
the read order is posted, the return status in I_ST indicates
detection of parity error(s) (bit 9 =1).

8-54 CzZ05-02

If a framing error or receive overrun condition is detected,
the read order terminates and a hardware error (0107) is
returned; I_ST indicates the specific reason for abnormal
termination.

FIELD MODE TIMEOUT PROCESSING

Timeouts may occur during the processing of read orders. A
timeout occurs when the operator does not terminate the input
within 5 minutes after entering the first character. The timeout
value of 5 minutes can be changed via the read parameter of the
CLM directive TIMEOUT. There is no timeout if the operator does
not enter any characters. Write orders do not incur timeouts.

BLOCK MODE

Block mode is applicable only to the VIP7800 class of
terminals (VIP7801, VIP7803, and VIP7808) and is intended to
support the terminal in its native text or forms mode.

Block mode supports five functions: Connect, Disconnect,
Read, Write, and Break.

These functions are requested through standard-length
IORBs. An application can optionally use an extended IORB for a
connect operation.

Block Mode and Extended Character Set (8-Bit Data)

The handling of the extended character set for block mode is
the same as that described for TTY mode.

Connect Function

A connect order establishes the mode in which the connected
terminal operates. Block mode is selected by setting bit 0 of
I DVS to one. 1If an extended-length connect IORB is used, the
terminal's device ID is returned in the IORB extension (right
byte of field I_QDP).

An application specifies in I_RNG of the connect IORB the
size of data blocks to be transmitted from the terminal.
Permissible block sizes range from 22 to 270F bytes,
hexadecimal. If an application fails to specify a valid block
size, the connect order is rejected with an 0104 (invalid
argument) error code.

Transmitted blocks terminate with either an end-of-block
(ETB) or an end-of-text (ETX). When a block is transmitted from
the terminal, the type of terminator (ETB or ETX) is passed to
the application through the IORB and through an optional control
word, which is described below. The following options can be
specified when connecting in block mode.

09/86
8-55 Cz205-02A

AUTO CALL

The Auto Call option, which is supported by all
system-supplied LPHs, is described in Section 7. This option
allows an application to establish a connection using an 801-A or
an 801-C ACU data set.

CONTROL WORD

At connect time, an application can specify control word
processing for subsequent read and write orders. If this option
is specified, ATD treats the first two bytes of the user's buffer
as a control word. If control byte processing is also specified,
the third byte of the user's buffer is considered the control
byte. ATD uses the control word primarily to pass information to
an application on completion of read orders. ATD places similar
information in the IORB word I ST when a read order completes.
The first 4 bits of the control word contains information that is
passed to the application upon completion of a read order. It
has the following format:

BIT 0 1 2 3 4 15
Ol x| x| X LRN 0 - 4095
Bit 1
0 = - .
1l = Block missed; data lost
Bit 2
0 = -
1 = Long block; data lost
Bit 3
0 = ETX terminated block
1 = ETB terminated block

The last 12 bits of the control word specify the logical
resource number of the referenced terminal. If specified, the
control word must be included in the range (I_RNG) of the
associated data buffer.

SPACE SUPPRESSION

If this option is specified, ATD configures the terminal to
suppress spaces, in certain instances, when transmitting data.
One example of space suppression is the replacement of spaces
between fields by a horizontal tab character or unit separator
character; another example is the elimination of spaces at the
end of lines that are terminated by a carriage return and line
feed. For additional details, consult the documentation for the
terminal in question.

8-56 Cz05-02

NO ROLL

Selecting this option keeps the terminal from scrolling line
1 "off the screen" when text (including a carriage return) is
entered into line 24. This option is especially useful to
applications that process forms. If this option is not used, the
screen scrolls as new text is entered in line 24. Roll mode is
the customary operating mode chosen by an application that
processes line-at-a-time input from the terminal.

Connect IORB (Block Mode)

This subsection summarizes the bit settings that govern the
connect options already described. Table 8-18 gives the
significance of bits of the connect I_DVS word that are
applicable to block mode.

A block size must be specified in this field if block mode is
selected (bit 0 of I_DVS is one).

The I_ST word field is significant when a serial printer is
attached to the terminal by means of a buffered printer adapter.
On connect orders, the field specifies whether the terminal or
attached printer is being addressed. The permitted values are:

0
1

Terminal
Attached serial printer

Upon completion of a connect order, ATD returns in the right
byte of I_QDP the device ID of the terminal (refer to Table 8-3).

Table 8-18. I_DVS Word in Connect IORB (Block Mode)

Bit
Number Meaning for Connect Function
0 0 = Do not use block mode
1 = Use block mode
2 0 = Do not use auto dial
1 = Use auto dial
4 0 = Include control word
1 = Do not include control word
8 0 = Do not use space suppression
1l = Use space suppression
9 0 = Use roll
1l = Use no roll

8-57 Cz05-02

Disconnect Function (Block Mcde)

An application uses the disconnect IORB to terminate block
mode processing. The following paragraphs describe the options
that an application can specify with a disconnect order.

If the abort option is specified, outstanding IORBs (active
and queued) are terminated with a "device unavailable" status
(010B) . The disconnect order is immediately serviced. If the
abort option is not specified, all outstanding IORBs are allowed
to complete before the disconnect order is serviced.

If the hang-up option is selected; the terminal is physically
disconnected when the disconnect order is serviced. 1If the
hang-up option is not specified, the communications connection
remains active after servicing of the disconnect order (i.e., the
terminal is logically disconnected but remains physically
connected) .

Disconnect IORB (Block Mode)

This subsection summarizes the IORB bit settings that govern
the disconnect options just described. Table 8-19 shows bits of
the disconnect IORB that are applicable to the block mode of
ATD. All other bits must be zero.

The bit settings in word I_ST are significant when a serial
printer is attached to the terminal by means of a buffered
printer adapter. On disconnect orders, the field specifies
whether the terminal or attached printer is being addressed. The
permitted values are:

0 = Terminal
1 = Attached serial printer

Table 8-19. I_DVS Word in Disconnect IORB (Block Mode)

Bit .
Number Meaning for Disconnect Function
14 0 = Abort outstanding requests ,
1l = Wait until outstanding requests complete before
disconnecting the terminal
15 0 = Hang up the phone
1 = Do not hang up the phone

8-58 Cz05-02

Read Function (Block Mode)

The read order is used to obtain blocks of data transmitted
from the terminal. It is the application®'s responsibility to
specify a buffer size large enough to hold a complete block of
data. If a block exceeds the buffer capacity of the order, the
IORB is posted with a "long record" status (bit 6 of I_ST is 1).

OPERATOR FUNCTIONS

The operator edits information at the terminal by using the
following keys:

Cursor control

Character insertion/deletion
Line insertion/deletion
Line/screen erase.

The operator signals termination of input by pressing the
TRANSMIT key. A break key enables the operator to interrupt a
read order or to (possibly) terminate a write order.

APPLICATION FUNCTIONS

An application selects the following options by setting bits
in the device-specific word (I_DVS) of the IORB.

Abort Read

If this option is specified, ATD posts to the application any
active and gueued read IORBs. The posted IORBs show a device
unavailable status (010B) in I_CTl and the abort indicator (bit
0) in I_ST set to one. The read order issued with this option
causes no I/0 activity; it is posted back to the application with
a zero status.

Supervisory Messages

Specification of this option indicates that the read order is
directed to the supevisory message line. This option is
meaningful only if the terminal is operating in no-roll mode. 1In
no-roll mode, the supervisory message line is line 25. 1In roll
mode, supervisory message reads are treated as normal reads.

Line Feed and Carriage Return

Specifying the line feed and/or carriage return option
causes, respectively, a line feed and/or carriage return to be
sent to the terminal when the read order is completed.
READ IORB (BLOCK MODE)

An application specifies the options just described by
setting bits in the IORB word I DVS. Table 8-20 gives the
significance of these bits. All other bits must be zero.

8-59 Cz05-02

Table 8-20. ATD Word I_DVS in Block Mode Read IORB

Bit
Number Meaning for Block Read Function
0 0 = Normal read
1 = Abort read
9 0 = Normal read
1 = Supervisory message read
i1 U0 = Do not send post-order line feed
1l = Send post-order line feed
12 0 = Send post-order carriage return
1 = Do not send post-order carriage return

Write Function (Block Mode)

The write order is used to transmit data blocks to the
terminal.

WRITE ORDER PROCESSING

Write orders have priority over read orders. If a read order
has been issued but is not in progress, any issued write order
executes immediately. Once all outstanding write orders have
completed, the outstanding read order is reestablished. 1If a
read order is in progress (i.e., entry of data from the terminal
has begun), the write order waits for the read to complete.

KEYBOARD LOCK

The keyboard lock command is sent to VIP780x terminals only.
All VIP781x terminals receive keyboard transmit lock commands.
Before the write order is executed by ATD, the LPH locks the
terminal's keyboard. This action prevents processing conflict
between the LPH and terminal. After the write order is
processed, the keyboard is unlocked if the completed write order
specified an ETX terminator (indicating the end of the message
transmission to the terminal). If, however, the contents of the
write order contains an escape sequence that elicits a response
from the terminal, the device will ignore the keyboard unlock

command; the application must issue another write order to unlock
the keyboard.

WRITE ORDER OPTIONS

An application can specify the following options in I_DVS of
the write IORB.

8-60 Cz05-02

Abort Write

If this option is specified, ATD posts to the application any
active and queued write IORBs. The posted IORBs show a device
unavailable status (010B) in I_CTl and the abort indicator (bit
0) in I_ST set to one. A write order issued with this option
causes no I/0 activity; it is posted back to the application with
a zerco status.

Preemptive Data Write

This option is meaningful only when the terminal is actively
transmitting data. The option allows a write order to be
processed between the transmission (by the terminal) of two ETB
blocks or one ETB block followed by an ETX block. Normally, once
a read operation is started by the application (to receive
terminal transmissions), it is allowed to proceed (often
requiring the issuance of several read IORBs) until the last text
block (terminated by ETX) is received.

Control Byte Processing

Specification of control byte processing indicates that the
first byte in the application's output buffer is to be used for
pre-order control. A control byte must be included in the range
(I_RNG) of data to be written to the terminal. For a detailed
description of this option, including control byte format, refer
to "Control Byte Processing" earlier in this section.

ETX/ETB Option

As mentioned earlier, ATD locks the keyboard during
processing of a block mode write order. If the write order
specifies ETB, indicating that a another block of the message is
to follow, the keyboard remains locked after completion of the
write order. Alternatively, if the write order specifies ETX,
indicating the end of the message, the keyboard unlocks after
completion of the order.

Quit On Break

If this option is specified in I DVS, a break signal can
interrupt the execution of an active write order. Otherwise, a
break signal cannot be used to terminate an active write order
prematurely.

Supervisory Messages

Specification of this option indicates that the write order
is directed to the supervisory message line. This option is
meaningful only if the terminal is operating in no-roll mode. 1In
no-roll mode, the supervisory message line is line 25. 1In roll
mode, supervisory message writes are treated as normal writes.

8-61 Cz05-02

Supervisory Message Acknowledgement

If this option is specified, it indicates that a supervisory
message written to a terminal is to be acknowledged by the
terminal operator. Again, supervisory messages are meaningful
only if the terminal has been connected in no roll mode. 1In roll
mode, supervisory messages are treated as normal writes and the
acknowledgement option does not apply. For a full discussion of

this topic, refer to "Supervisory Message Processing” earlier in
this section.

Line Feed and Carriage Return

Specifying the line feed and/or carriage return option
causes, respectively, a line feed and/or carriage return to be
sent to the terminal when the write order is completed.

Write IORB (Block Mode)

This subsection summarizes the bit settings that govern the
write order options already described. Table 8-21 gives the
significance of bits of the write I_DVS word that are applicable
to block mode. All other bits must be zero.

The bit settings in word I_ST are significant when a serial
printer is attached to the terminal by means of a buffered
printer adapter. On write orders, the field specifies whether
the terminal or printer is being addressed. The permitted values
are:

0
1

Terminal
Attached serial printer

Device Configuration (Block Mode)

In block mode, the speed of a terminal must be configured
between 110 and 9600 bits per second.

Return Status Codes (Block Mode)

ATD returns status codes in I_CTl1 and I_ST. The status code
returned in I_CTl1 is the right byte of the status returned in the
Rl register (when the I/O order is completed).

STATUS CODES IN I_CTl

The invalid argument status (0104) is returned when an
invalid block size is specified in I_RNG of a connect IORB.

The device unavailable status (010B) is returned when a read

or write order is purged as a result of a purge-all read request
or purge-all write request, respectively.

8-62 Cz05-02

Table 8-21. ATD Word I_DVS in Block Mode Write IORB

Bit
Number Meaning for Block Write Function
0 0 = Normal write
1 = Abort write
3 0 = Normal write
1l = Preemptive write
4 0 = Include control byte
1 = Do not include control byte
6 0 = ETX (unlock keyboard after write order completes)
1 = ETB (keep keyboard locked after write order
completes)
7 0 = Stop output on detection of a break
1 = Do not stop output on detection of a break
8 0 = Operator must acknowledge supervisory message
1 = Operator need not acknowledge supervisory message
9 ' 0 = Normal write
1l = Supervisory message write
11 0 = Do not send post-order line feed
1 = Send. post-order line feed
12 0 = Send post-order carriage return
1 = Do not send post-order carriage return

The inconsistent request status (010C) is returned for a read
order that is issued subsequent to a data loss. This status
indicates that one or more data blocks were missed prior to the
issuance of the current read order.

STATUS CODES. IN I_ST

Table 8-22 shows status information returned in I_ST upon
completion of a block mode order.

Error Processing (Block Mode)

When a parity error is detected on a data transmission from
the terminal, an ASCII SUB character (lA) is placed in the
application's buffer in lieu of the erroneous character. The
read order is posted with a hardware error status (0107), and bit
9 of I_ST is set to one to indicate that one or more parity
errors were detected during the read.

8-63 Cz05-02

Table 8-22. IORB Word I_ST (Block Mode)

Bit Meaning when Bit Set to One
0 Read or write order aborted
1l ETB received; (ETX received if bit off)
3 Block missed; was received from terminal without a read

order having been issued

6 Long record received; buffer insufficient to contain
received data

Detection of a framing error or receive overrun condition
prematurely terminates the read order. The order is posted with
a hardware error status (0107); I_ST indicates the reason for
abnormal termination.

Timeout Processing (Block Mode)

In block mode, there are no timeouts for read or write
orders.

ASPI MODE

The ASPI (asyncronous serial printer interface) mode of ATD
services selected serial printers that use an ETX/ACK protocol.
It supports five functions, using standard-length IORBs:

Connect
Disconnect
Write

Read
Wait-on-1line.

ETX/ACK Protocol

Use of this protocol avoids a buffer overflow condition, in
which an application transmits data to a device faster than the
device can print the data. Buffer overflow is most likely to
occur while the device is executing commands, such as carriage
return or form feed, that move the print head or carriage.
Without an ETX/ACK protocol, the application or device driver
must pad data transmissions with f£ill characters, which the
device does not print. While the fill characters are being
edited out, the device has time to perform carriage returns or
line feeds.

8-64 CZ205-02

The ETX/ACK protocol renders padding unnecessary. Using this
protocol, the LPH sends data to the printer a block or frame at a
time. (The size of the block or frame depends on the buffering
capacity of the device.) The LPH terminates the block with the
ETX character. The serial printer responds with an ACK control
character when (if the unit is double-buffered) it can accept.
another block or when it has sucessfully printed the last block
of data. Having received the ACK control character, the LPH
starts transmitting the next data block. The ASPI LPH supports a |
basic and advanced type of ETX/ACK protocol.

BASIC ETX/ACK PROTOCOL

The basic ETX/ACK is used by printers (the PRU1004 and
PRU7007). It supports:

@ A basic transmission procedure

e Detection of offline serial printer conditions by means of
an attention read order

® Report of the printer's marketing identifier by means of a
status read order.

ADVANCED ETX/ACK PROTOCOL

The advanced ETX/ACK is used by the PRU7070, PRU7170,

PRU7270, PRU7175, PRU7200, PRU7210, and PRU7075 serial printers. [
It supports:

@ An advanced ETX/ACK transmission procedure called the
asynchronous serial printer interface (ASPI)

@ Detection and report of all off-line serial printer
conditions

® Report of the printer's marketing identifier and device
status by means of a status read order.

Connect Function

An application selects the ASPI mode of ATD by setting bit 10 I
of I_DVS to one when issuing the connect order. When the device
connected is a PRU7070, PRU7170, PRU7175, PRU7200, PRU7270, or
PRU7075, the LPH issues an enquiry to the device for status. The
serial printer's response to the request for status allows ATD to
specialize its processing to the characteristics of the device.

If the device fails to respond to the request for status, ATD

posts back the connect order with a device unavailable (010B)
status. When connecting in ASPI mode, the application can |
specify the auto call option. Specifying auto call in I_DVS
enables an application to establish a connection using either an
801-A or an 801-C ACU data set.

8-65 Cz05-02

Connect IORB (ASPI Mode)

Table 8-23 gives the significance of the I_DVS bits that
govern the connect option. All other bits must be zero.

Disconnect Function

An application uses the disconnect IORB to terminate ASPI
mode processing. The following paragraphs describe the options
that an application can specify with a disconnect order.

ABORT QUEUED ORDERS

If the abort option is specified, outstanding IORBs (active
and queued) are terminated with a device unavailable status
(010B) . The disconnect order is immediately serviced. If the
abort option is not specified, all outstanding IORBs are allowed
to complete before the disconnect order is serviced.

HANG UP

If the hang-up option is selected, the terminal is physically
disconnected when the disconnect order is serviced. 1If the hang-
up option is not specified, the communications connection remains
active after servicing the disconnect order (i.e., the terminal
is logically disconnected, but remains physically connected).

Disconnect IORB (ASPI Mode)

Table 8-24 gives the significance of the I_DVS bits that
govern the disconnect options. All other bits must be zero.

Write Function (ASPI Mode)

The write order is used to transmit data to the serial
printer. Once the LPH has verified the buffer range and address
in the IORB, it performs control byte processing (if specified in
I_DVS). ATD then services the write request. The data written
can be of any length; using the ETX/ACK protocol, ATD sends the
data a block-at-a-time to the printer.

Table 8-23. 1I_DVS Word in Connect IORB (ASPI Mode)

Bit
Number Meaning for Connect Function

2 0 = Do not use auto dial
1 = Use auto dial
10 0 = Do not select ASPI mode
1 = Select ASPI mode

8-66 Cz05-02

Table 8-24. I _DVS Word in Disconnect IORB (ASPI Mode)

Bit
Number Meaning for Disconnect Function
14 0 = Abort outstanding requests
1 = Wait until outstanding requests complete before
disconnecting terminal
15 0 = Hang up the phone
1 = Do not hang up the phone

CONTROL SEQUENCES

An application can control the write operation by means of
control sequences imbedded in transmitted data.

DC4 Control Sequence

Write orders to a PRU7070, PRU7075, PRU7170, PRU7175,
PRU7200, or PRU7270 support a feature that is useful to the
application designer. If DC4 is the final character of an output
message, the write order transmitting this message is posted back
to the application only when the device has printed the entire
message. If DC4 is not supplied at the end of the message, the -
write order is posted back when the printer (by means of an ACK
response) declares itself ready to receive the last block of
message data. Conceivably, the device could fail to print the
last block after receiving it. Thus, the DC4 sequence provides
assurance that the entire message is actually printed. By
setting to 1 bit 14 of word I DVS in the write IORB, an
application can instruct ATD to append DC4 to the buffer
contents.

Other Sequences

An application can place in the data buffer the customary
serial printer control characters (e.g., carriage return, line
feed, horizontal tab). Other serial printer command and control
sequences are available to the application. These can be used to
change such printing characteristics as type pitch (number of
characters per inch) and number of lines per inch. The user
should consult the appropriate device manual for a more detailed
discussion of printer control sequences.

Prohibited Sequences

An application cannot place in the data buffer the ETX
(x'03'), STX (X'02'), DC4 (X'14'), DLE EOT (X'10',X'04'), RIS
(X*16',X'63") or ENQ (X'05') control characters, which are used
by the ETX/ACK protocol.

09/86
8-67 CzZ05-02A

WRITE OPTIONS

An application selects the following options by setting bits
in the device-specific word (I_DVS) of the write order.

Control Byte

Through the use of a control byte, an application can specify
the customary pre-order control operations. If present, the
control byte is the first byte in the output buffer. The
application indicates its presence by settlng a bit in I DVS.

The application must also include the byte in the range (I _RNG)
of the data to be transmitted. For a detailed description of the
control byte option, including control byte format, see "Control
Byte Processing" earlier in this section.

Line Feed and Carriage Return

Specifying in I_DVS the line feed and/or carriage return
option causes, respectively, a line feed and/or carriage return
to be sent to the printer when the write order completes.

Write IORB (ASPI Mode)

Table 8-25 gives the significance of bits of the write I_DVS

word that are applicable to a ASPI mode write order. All other
bits must be zero.

Table 8-25. ATD Word I_DVS in ASPI Mode Write IORB

Bit
Number Meaning for ASPI Write Function
1 0 = Not a link command
1l = Link command
4 0 = Include control byte
1 = Do not include control byte
11 0 = Do not send post-order line feed
1 = Send post-order line feed
12 0 = Send post-order carriage return
1 = Do not send post-order carriage return
14 0 = Do not send DC4 at end of message
1l = Send DC4 at end of message
15 0 = Not a retry of a write IORB
1l = Retry of a write IORB

8-68 Cz05-02

Read Function (ASPI Mode)

The read order is used to obtain status information from the
serial printer. Two types of read orders can be issued: normal
status read and attention status read. An application indicates
in I_DVS the type of read desired.

NORMAL STATUS READ

When an application issues a normal status read order, the
IORB field I_ADR must point to a 10-byte buffer. Upon completion
of the read order, this buffer contains a device identifier and
may additionally contain status information. PRU1004 and PRU7007
printers provide a device ID in the first byte of the status
buffer; the remaining bytes are unused.

PRU7070, PRU7170, PRU7175, PRU7200, PRU7210, PRU7270, and
PRU7075 printers provide device status information in addition to
the device ID, which is supplied in the first status byte. Refer
to the appropriate serial printer manual for additional
information on device status. Table 8-26 summarizes the device
IDs that are returned in response to a status read request.

ATTENTION READ

This option informs the application when a device has gone
off-line or has been reset by the operator. The status buffer is
not updated to reflect the device ID of the printer. If this
option is specified, the read order is returned to the issuing
application only when:

® The printer runs out of ribben

@ The printer runs out of paper
® The printer's break switch is pressed.

Table 8-26. Device IDs for Serial Printers

Printer Device ID (hexadecimal)
PRU1004 21
PRU7007 22
PRU7070 31
PRU7075 32
PRU7170 33
PRU7175 34
PRU7200 43
PRU7270 38

8-69 Cz05-02

Read IORB (ASPI Mode)

Table 8-27 shows the signficance of bits of the I_DVS word
that are applicable to a ASPI mode read order. All other bits
must be zero.

Status Codes Returned in I CT1 (ASPI Mode)

ATD returns status codes in I_CTl and I_ST. The status code
returned in I_CTl1 consists of the right byte of the status
returned in the Rl register (when the I/O order completes). A
status code often has more than one possible meaning. As
explained later in "Status Information under I_ST", a user can
determine a specific meaning by referring to word I_ST. For
example, the status 0104, in itself, can mean zero buffer
address or zero buffer range. If bit 13 of I_ST is set to 1, the’
status 0104 means zero buffer address. 1If, however, bit 14 of
I_ST is set to 1, the status 0104 means zero buffer range.

SUCCESSFUL COMPLETION (0000)

A zero status (in I_CTl) indicates successful completion of
the order. A write order IORB can additionally indicate (in
I_ST) a device attention condition (initiated by the operator) on
PRU7170, PRU7175, PRU7200, PRU7210, and PRU7270 printers. This
condition in no way interferes with successful completion of this
or subsequent orders placed against the printer. By initiating a
device attention condition, the operator can directly interact
with the application that is controlling the serial printer.
INVALID ARGUMENT STATUS (0104)

This status is returned for the following reasons:

e In write IORB

- Zero buffer address.
- Zero buffer range.

e In read IORB, read buffer less than 10 bytes long.

Table 8-27. ATD Word I_DVS in ASPI Mode Read IORB

Bit
Number Meaning for ASPI Mode Read Function

Normal status read
Attention status read (PRU7170, PRU1004, PRU7007,
PRU7175, PRU7200, PRU7210, and PRU7270)

o
o
nu

8-70 Cz05-02

DEVICE NOT READY STATUS (0105)

An order is posted back with this status when a PRU7070,
PRU7075 PRU7170, PRU7175, PRU7200, PRU7210, or PRU7270 printer is
in an offline state. The LPH issues this error status once;
subsequent or outstanding write orders are serviced when the
device is put in an online, operational state. The reported
offline condition is usually caused by the OFF-LINE button being
pressed or by the printer running out of ribbon or paper.

HARDWARE ERROR STATUS (0107)

This status is returned in a write order for the following
reasons:

® Hardware printer fault (PRU7070, PRU7075, PRU7170,
PRU7175, PRU7200, PRU7270, or PRU7210)

@ Failure of printer to respond to print or status commands
(PRU7070, PRU7075, PRU7170, PRU7175, PRU7200, PRU7270, or
PRU7210) .

Status Information in I_sT

The bit settings in I_ST qualify the status codes returned in
I CTl, as shown in Table 8-28. The first column of the table
gives the bit in I_ST; the second column gives the status code
returned in I_CTl; the third column shows the significance of the
status code (column 2) when the I_ST bit (column 1) is set to
one.

Error Processing

An application should retry the write order after an 0105
error (device not ready) has been returned. An application
should assume that the device will fail to complete any print
operation when a 0107 (hardware error) status is reported. The
application must disconnect if it receives a 0170, 010B, or 010C
error in the IORB.

Timeout Processing

There is a default 15-second timer for write orders. This
timer can be changed in the CLM USER file.

X-ON/X-OFF MODE

The X-ON/X-OFF mode of ATD, called AXD (Asynchronous
X-ON/X-OFF Driver), uses the X-ON/X-OFF protocol to control
asynchronous data flow on an asynchronous commun