
H()NEYVVELL .

DPS6
GCOS 6 MOD 400
SYSTEM
PROGRAMMER'S
GUIDE - VOLUME I

S()FTVVARE

DPS6
GeOS 6 MOD 400 SYSTEM

PROGRAMMER'S GUIDE - VOLUME I
ADDENDUM A

SUBJECT

Additions and Changes to the Manual

SPECIAL INSTRUCTIONS

This is the fIrst addendum to CZ05-02, dated March 1986. Insert the attached
pages into the manual according to the collating instructions on the back of this
sheet. Change bars in the margin indicate new or changed information; asterisks
indicate deletions.

Note:
Insert this cover sheet behind the front cover to indicate the updating of the
document with Addendum A

SOFTWARE SUPPORTED

This manual supports Release 4.0 of the MOD 400 Executive.

ORDER NUMBER

CZ05-02A

45987
0986
Printed in U.S.A.

September 1986

Honeywell

COUATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove Insert

iii through xxvi iii, blank
v through xxii

1-3 through 1-8 1-3 through 1-8
1-11 through 1-14 1-11 through 1-14
2-1,2-2 2-1,2-2
3-1 through 3-4 3-1 through 3-4
3-7,3-8 3-7,3-8
3-17 through 3-20 3-17 through 3-20
4-1 through 4-4 4-1 tI-uiJugh 4-4
4-11,4-12 4-11,4-12
5-5,5-6 5-5,5-6
6-7,6-8 6-7,6-8
7-1,7-2 7-1,7-2
7 -5 through 7-8 7 -5 through 7-8
8-1 through 8-4 8-1 through 8·4
8-9 through 8-12 8-9 through 8-12

8-12.1, blank
8-13,8-14 8-13,8-14

8-14.1, blank
8-17,8-18 8-17,8-18

8-18.1, blank
8-23,8-24 8-23,8-24
8-27,8-28 8-27,8-28

8-28.1, blank o'

8-55,8-56 8-55,8-56
8-67,8-68 8-67,8·68
8-71 through 8·84 8-71 through 8-84
C·23, C-24 C·23, C-24
0-3,0-4 0-3,0-4

h-1, blank

USER COMMENTS FORMS are included at the back of this manual These forms are to be used to record
any corrections, changes, or additions that will make this manual more usefuL

Honeywell disclaims the implied warranties of menlhantability and fitness for a particular
purpose and makes no express warranties except as may be stated in its written agreement
with and for its customer.
In no event is Honeywell liable to anyone for any indirect, special or consequential damages.
The information and specifications in this document are subject to change without notice.
Consult your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1986 File No.: lR23
09/86
CZ05·02A

SUBJECT

DPS6
GeOS 6 MOD 400

SYSTEM PROGRAMMER'S
GUIDE - VOLUME I

System Software, Including Executive Routines, Drivers, and Line Protocol
Handlers, Accessible to Applications Written in Assembly Language

SPECIAL INSTRUCTIONS

This manual supersedes the DPS 6 GCOS 6 MOD 400 System Programmer's Guide,
CZ05-01, dated JUly 1984. The manual has been extensively reorganized, change
bars in the margin indicate technical changes; asterisks indicate deletions.

SOFTWARE SUPPORTED

This manual supports Reiease 4.0 of the MOD 400 Executive.

ORDER NUMBER

CZ05-02 March 1986

Honeywell

PREFACE

This manual provides information useful to the Assembly
language programmer for designing applications.

The manual describes system services available to the
programmer for:

• System control
• Input/output to peripheral devices
• Input/output to communications devices.

The system services described include:

• Executive routines that can be invoked by monitor calls or
macro calls

• Drivers servicing peripheral devices

• Line protocol handlers servicing communications devices.

Macro calls mentioned in this volume are described more fully
in the System Programmer's Guide, Volume II. Assembly language
is described in the Assembly Language Reference manual. Topics
related to program preparation, execution, and checkout are
described in the Application Developer's Guide.

USER COMMENTS FORMS are included at the back of this manual. These forms are to be used to record
any corrections, changes, or additions that will make this manual more useful.

Honeywell disclaims the implied warranties of merchantahility and fitness for a particular
purpose and makes no express warranties except as may be stated in its written agreement
with and for its customer.

In no event is Honeywell liable to anyone for any indirect, special or consequential damages.
The information and specifications in this document are subject to change without notice.
Consult your Honeywell Marketing Representative for product or service availability.

IDHoneywell Information Systems Inc., 1986 File No.: lR13,1S13 CZ05-02

The following symbols are used in this manual to define the
format of command and directive lines:

Square brackets [] indicate an optional entry.

Braces { } enclose entries from which the user must make a
choice.

Lowercase letters (e.g., id) indicate a symbolic variable
whose exact value must be supplied by the user.

The character 6 (delta) indicates one blank space.

Each section and appendix of this document is structured
according to the heading hierarchy shown below. Each heading
indicates the relative level of the text that follows it.

Level Heading Format

1 (Highest) ALL CAPITAL LETTERS, UNDERLINED

2 Initial CaEital Letters, Underlined

3 ALL CAPITAL LETTERS, NOT UNDERLINED

4 (Lowest) Initial Capital Letters, Not Underlined

iii CZ05-02

CONTENTS

SECTION 1 INTRODUCT ION ••••••••••••••••••••••••••••••••••

System Service Macro Calls •••••••••••••••••••••••••••••••
Device Drivers and Line Protocol Handlers ••••••••••••••••

SECTION 2 SYSTEM CONTROL FUNCTIONS ••••••••••••••••••••••

Batch Functions ••
Clock Functions ••
Communications Functions •••••••••••••••••••••••••••••••••
Date/Time Functions ••••••••••••••••••••••••••••••••••••••
External Switch Functions ••••••••••••••••••••••••••••••••
Identification and Information Functions •••••••••••••••••
InteIgroup Message Facility Functions ••••••••••••••••••••
Memory Allocation Functions ••••••••••••••••••••••••••••••
Message Reporter Functions •••••••••••••••••••••••••••••••
Operator Interface Functions •••••••••••••••••••••••••••••
Overlay Handling Functions ••••••••••••••••••••••••• ~ •••••
Physical I/O Functions •••••••••••••••••••••••••••••••••••
Request and RetUrn Functions •••••••••••••••••••••••••••••
Semaphore Handling Functions •••••••••••••••••••••••••••••
Software Reboot ••••••• ~ ••••••••••••••••••••••••••••••••••
Standard System File I/O Functions •••••••••••••••••••••••
Task Control Functions •••••••••••••••••••••••••••••••••••
Task Group Control Functions •••••••• ~ ••••••••••••••••••••
Terminal Control Functions •••••••••••••••••••••••••••••••
Trap Handling Functions ••••••••••••••••••••••••••••••••••
User Registration Functions ••••••••••••••••••••••••••••••

SECTION 3 FILE SYSTEM FUNCTIONS •••••••••••••••••••••••••

File Management Functions ••••••••••••••••••••••••••••••••
Data Management Functions ••••••••••••••••••••••••••••••••
Storage Management Functions •••••••••••••••••••••••••••••
File Information Block •••••••••••••••••••••••••••••••••••

File Information Block (FIB) for Data Management •••••••
Program View Entry in FIB for Data Management ••••••••••
File Information Block (FIB) for Storage Management
Access •••
Program View Entry in FIB for Storage Management •••••••
Offsets Definitions ••••••••••••••••••••••••••••••••••••

v

Page

1-1

1-1
1-2

2-1

2-1
2-2
2-2
2-3
2-3
2-4
2-4
2-5
2-5
2-6
2-6
2-7
2-7
2-8
2-9
2-9
2-10
2-11
2-12
2-13
2-14

3-1

3-1
3-4
3-4
3-6
3-7
3-11

3-16
3-16
3-16

09/86
CZ05-02A

CONTENTS

Page

SECTION 4 COMMUNICATIONS PROCESSING FUNCTIONS ••••••••••• 4-1

Overview of Communications Processing ••••••••••••••••••••
Communications Processing Through the File system ••••••••

File System Functions ••••••••••••••••••••••••••••••••••
File Management Functions ••••••••••••••••••••••••••••
Data Management Functions ••.•••••••••••••••••••••••••

Synchronous Input/Output •••••••••••••••••••••••••••••••
Asynchronous Input/Output
Using File System Functions ••••••••••••••••••••••••••••

Get File ($GTFIL) Macro Call Guidelines ••••••••••••••
Open File ($OPFIL) Macro Call Guidelines •••••••••••••
Test File ($TIFIL, $TOFIL) Macro Call Guidelines •••••
Wait File ($WIFIL, $WOFIL) Macro Call Guidelines •••••

Macro Call Sequences •••••••••••••••••••••••••••••••••••
Macro Call Procedures for Data Entry Terminals •••••••
Macro Call Procedures for Output-Only Terminals ••••••

Macro Calls for a Single Interactive Terminal ••••••••••
Macro Call Procedures for Multiple Interactive
Terminals•...••........•........•... e .•••••••••••

Changing a Terminal File's Characteristics •••••••••••••
Specification by -MODES Arg~ment •••••••••••••••••••••
Specification by DSW Bit Settings ••••••••••••••••••••

Communications Processing Through Physical I/O •••••••••••
Physical I/O •••
Using Physical I/O •••••••••••••••••••••••••••••••••••••

Data Structures ••
Input/Output Request Blocks ••••••••••••••••••••••••••••

IORS Software Status Word (I ST) •••••••••••••••••••••
Communications Function Codes.7 ••••••••••••••••••••••••

Write Function (Code 1) ~ •••••••••••••••••••••••••••••
Read Function (Code 2) •••••••••••••••••••••••••••••••
Define-Form Function (Code 5) ••••••••••••••••••••••••
Read Break (Code 9) ••••••••••••••••••••••••••••••••••
Connect Function (Code A) ••••••••••••••••••••••••••••
Disconnect Function (Code B) •••••••••••••••••••••••••

4-1
4-2
4-2
4-2
4=3
4-3
4-3
4-4
4-4
4-4
4-4
4-5
4-5
4-5
4-5
4-5

4-8
4-11
4-11
4-11
4-13
4-13
4-15
4-16
4-16
4-17
4-21
4-23
4-23
4-23
4-24
4-24
4"-24

SECTION 5 DATA STRUCTURE GENERATION ••••••••••••••••••••• 5-1

System Control Data Structures •••••••••••••••••••••••••••
Request Blocks •••
Request Block Offsets Macro Calls ••••••••••••••••••••••
Parameter Block and wait Lists •••••••••••••••••••••••••

vi

5-1
5-1
5-2
5-3

09/86
CZ05-02A

CONTENTS

File System Data Structures ••••••••••••••••••••••••••••••
File Information Block .•.•.••••.•..•.•.•.•..••••.....••

File Information Block Macro Call ••••••••••••••••••••
FIB Offset Macto Calls •••••••••••••••••••••••••••••••

Macro Call Argument Structures •••••••••••••••••••••••••
Size Tags

SECTION 6 DEVICE DRIVERS ••••••••• .
Input/Output Drivers •••••••••••••••••••••••••••••••••••••

Device Driver Data Structures ••••••••••••••••••••••••••
Device Driver Conventions ••••••••••••••••••••••••••••••
Driver Functions and Function Codes ••••••••••••••••••••

Connect Function (fc=A) ••••••••••••••••••••••••••••••
Disconnect Function (fc=B) ••••• o •••••••••••••••••••••

Wait Online Function (fc=O) ••••••••••••••••••••••••••
Write Function (fc=l) ••••••••••••••••••••••••••••••••
Read Function (fc=2) •••••••••••••••••••••••••••••••••
Read Disabled Device Function (fc=E) •••••••••• eo •••••

Write Tape Mark Function (fc=3) ••••••••••••••••••••••
Position Block Function (fc=4)G ••••• o •• o.o ••• ~.e.$ •••

Format write (fc=5) •••••••••••••••••••••••••••• 0 •••••

Format Read (fc=6)slJ> ••• e •• e •••• a o •• ece ••• '"

Position Tape Mark Function (fc=6) •••••••••••••••••••
Input/Output Request Block •••••••••••••••••••••••••••••••
Caller Interface with Device Driver ••••••••••• o ••••••••••

Device Drivers •••
Card Reader/Card Reader-Punch Driver •••••••••••••••••••

ASCI I Mode 0 •••••••••••• eo eo

Verbatim Mode€i' C. G. Iii •• ". co '* ••• Ci 1&

Card Reader/Card Reader-Punch Device-Specific lORB
Fiel'ds III ... lit ••••••••••••••••••••••• ., ••••••

Card Reader/Card Reader-Punch Hardware Status Code
Mapping •••••• It •• e ••••••••••••••••••••••••••••••••••••

Printer Driver •••••••••••••••••••• ~ •••• · ••••••••••• · •••••
Print Control Byte •••••••••••••••••••••••••••••••••••
Printer Device-Specific IORB Fields ••••••••••••••••••
Printer Hardware/Software Status Code Mapping ••••••••

Disk Dr i ver .•..••........ '•........
Disk Driver
Disk Driver
Disk Driver
Disk Driver

Magnetic Tape

Conventions
Conventions
Conventions
Conventions

for
for
for
for

Diskette •••••••••••••••••
Lark Disk ••• $ ••••••••••••

Mass Storage Unit ••••••••
cartridge Module Disk ••••

Driver •••••• G ••••••••••••••••••••••••••••

vii

Page

5-4
5-4
5-4
5-5
5-5
5-5

6-1

6-1
6-2
6-2
6-3
6-3
6-3
6-3
6-6
6-6
6-6
6-6
6-6
6-6
6-6
6-7
6-7
6-8
6-13
6-13
6-13
6-15

6-16

6-16
6-18
6-18
6-18
6-18
6-19
6-20
6-23
6-25
6-28
6-29

09/86
CZ05-02A

CONTENTS

SECTION 7 LINE PROTOCOL HANDLERS ••••••••••••••••••••••••

Line Protocol Handler Functions ••••••••••••••••••••••••••
Main Memory-Resident LPH •••••••••••••••••••••••••••••••
MLC-Resident LPH (CCP) •••••••••••••••••••••••••••••••••

MLC Communications Handler •••••••••••••••••••••••••••••••
Communications Subsystem Operation Example •••••••••••••••
Extended LRN Support •••••••••••••••••••••••••••••••••••••
8-Bit Data Support •••••••••••••••••••••••••••••••••••••••
Modem Support ••••••••••••••••••••••••••••••••••••• " •••••••
Auto Call Uni·t ••..•.••••.•••••••••.••••.••••.•.••••••.•••
Communications Subsystem Error and Correction Procedures.

parity Error Check •••••••••••••••••••••••••••••••••••••
Block Error Check ••••••••••••••••••••••••••••••••••••••

Longitudinal Redundancy Check (LRC) ••••••••••••••••••
Cyclic Redundancy Check (CRC) ••••••••••••••••••••••••
BSC Block Check Character (BCC) ••••••••••••••••••••••

Timeout Check ••

SECTION 8 ATD LINE PROTOCOL HANDLER •••••••••••••••••••••

ATD Modes ••
TTY Mode •••
Field Mode ••.•.•••••••••••••••••.••..••.•••.•••••••.•.•
Block Mode •••
ASPI Mode ••••••••••••••••••••••••••• " •••••••••••••••••••
X -ON/X -OFF Mode ••

I/O Functions Supported by ATD •••••••••••••••••••••••••••
IORS Processing ..••.••••.•..•••••..•...••••.•••••••.•••••

lORB Size •••••••.••••••••••••••••..•••.•••••.•••••••.•••
Expanded LRN Support •••••••••••••••••••••••••••••••••••
IORS Device-Specific Word ••••••••••••••••••••••••••••••
Processing Order of IORSs ••••••••••••••••••••••••••••••
purging Queued IORSs •••••••••••••••••••••••••••••••••••
IORS Error Processing ••••••••••••••••••••••••••••••••••
Return of Device ID ••••••••••••••••••••••••••••••••••••

Supervisory Message Processing •••••••••••••••••••••••••••
Control Byte Processing ••••••••••••••••••••••••••••••••••
8-Bit Data Support •••••••••••••••••••••••••••••••••••••••
Connect Processing •••••••••••••••••••••••••••••••••••••••
Self-Configuring Terminals •••••••••••••••••••••••••••••••
Buffered Printer Adapter (BPA) Support •••••••••••••••••••
Break Processing by ATD LPH ••••••••••••••••••••••••••••••

Break Processing with Read Break Request •••••••••••••••
Break Processing with No Read Break Request ••••••••••••

Print Screen •••

viii

Page

7-1

7-2
7-2
7-3
7-3
7-5
7-6
7-6
7-7
7-8
7-8
7-9
7-9
7-9
7-9
7-9
7-9

8-1

8-2
8-2
8-3
8-3
8-3
8-4
8-4
8-4
8-4
8-5
8-5
8-6
8-6
8-7
8-10
8-11
8-12
8-13
8-13
8-14
8-14
8-15
8-15
8-16
8-17
8-17
8-17

09/86
CZ05-02A

CONTENTS

connect Function (TTY Mode) ••••••••••••••••••••••••••••
Connect rORB (TTY Mode) •••••••••• 0 •••••••••••••••••••••

Disconnect Function (TTY Mode) ••••••••••••••••••• ~ •••••
Disconnect rORB (TTY Mode} •••••••••••••••••••••••••••••
Read Function (TTY Mode) •••••••••••••••••••••••••••••••

Operator Functions •••••••••••••••••••••••••••••••••••
Operator Function Keys •••••••••••••••••••••••••••••
Character Delete and Line Cancel •••••••••••••••••••
Read Termination•...............•........•
B r e ak So • Gl • $ • 0 •• 0. eo •• C:I • ,. •••• So ••••••••• c •••••••••••••••

Hide Function ••••••••••••••••••••••••••••••••••••••
Read Order Functionality •••••••••••••••••••••••••••••

Echo •••••••••••••••••••
Line Feed•.•......•......... e •••••• Itt •••••

Carr iage Return. II, •••

Read lORB (TTY Mode) ••••••••••••••••••••••• e 0 ~ ••• ~ • @ @

Write Function (TTY Mode) ••••••••••••••••••••••••••••••
Off Line•..•....•.••...•..••..•.•.....••.........
Control Byte Processing •• 0 •••••••••••••••••••••••••••

Quit On Break ••
Carriage Return •••••• a •••••••••••••••••••••••••••••••

Line Feed.~ •••••• O •• 0 ••••••••••••••••••••••••••••••••

Write lORE (TTY Mode) •••• &ee •• aco ••••••••••••••••••••••

Device Configuration (TTY Mode) ••••• *.**e@8.0.e$~e.e •••

Error Processin9.Ge.o.0&e@.~ •• $ ••• ti* •••• 0 •••• &.~O& •• @.Q

TTY Mode Timeout Processing ••••••••••••••••••••••••••••
F i el d Mod e •••• e •••••• &0 •• II), • Ifj 0 ,. ,. CD (II @ j) $ e (ill e $ & @ al I) IP ...

Field Mode and Extended Character Set (8-Bit Data) •••• 0

Forms, Fields, and Subfields •••••••••••••••••••••••••••
Input Validation •••••••••••••••••••••••••••••••••••••
Auto-Insert Characters •••••••••••••••••••••••••••••••
Separate Sign Field •.••••....•.•...••••.•••.••••••.••
Must Release Field •••••••••••••••••••••••••••••••••••
Decimal Point and Decimal Point Processing •••••••••••
Field Descriptor and Define Form •••••••••••••••••••••
Using the Integrated Field Attribute Descriptor ••••••
Osing Define Form ••••••••••••••••••••••••••••••••••••
Format of the Field Attribute Descriptor •••••••••••••

Supervisory Message Processing •••••••••• ~ ••••••••••••••
lORB Val ues ••••••••••••••••••••••••••• e ••••••••••••••

Location of Message Line •••••••••••••••••••••••••••••
Processing Order •••••••••••••••••••••••••••••••••••••
Supervisory Message Conventions ••• o ••••••••••••••••••

Calculator Key Pad Support
Application Responsibilities in Processing Fields ••••••
Field Mode Functions •••••••••• $ ••••••••••••••••••••••••

Connect Function •••••••••••••••••••••••••••••••••••••
Auto Call .•...••.•....•..........•...••..•.•...•..•

ix

Page

8-18
8-18
8-19
8-19
8-20
8-20
8-20
8-21
8-23
8-23
8-23
8-24
8-24
8-24
8-24
8-24
8-25
8-25
8-25
8-25
8-25
8-25
8-25
8-26
8-26
8-27
8-27 I
8-27
8-27
8-28
8-28
8-28.1 I
8-29
8-29
8-30
8-30
8-30
8-31
8-33
8-33
8-33
8-34
8-34
8-35
8-35
8-36
8-36
8-36

09/86
CZ05-02A

I

CONTENTS

Bell••........•....................
Validation Field Notification (VFN) ••••••••••••••••
Selectable Field Validation Sets •••••••••••••••••••
Word Processing Mode (WPM) Indicator •••••••••••••••
Cursor Out of Field ••••••••••••••••••••••••••••••••
Type Ahead ••••••••••••••••••••••••••••• · ••••••••••••
VIP7200, VlP7207 Supervisory Message Line ••••••••••
Terminal Type (Device ID) ••••••••.•••••••••.•••••••
Connect lORB (Field Mode) ••••••••••••••••••••••••••

Disconnect Function (Field Mode) •••••••••••••••••••••
Abort Queued Orders ••••••••••••••••••••••••••••••••
Hang Up •••••••••••••••••••••••••••••••••• : •••••••••

Read Function (Field Mode} •••••••••••••••••••••••••••
Pre-Order Control •••••••••••••.•••••.••••••.•••••••
Termination of a Field Read ••••••••••••••••••••••••
ATD Handling of Termination Codes ••••••••••••••••••
Entry of Invalid Characters ••••••••••••••••••••••••
Residual Range and Relative Residual Range •••••••••
Use of Cursor Keys ••••••••••••••..•••••••••••••••••
Statistics •••
Read with Offset •••••••••••••••••••••••••••••••••••
Type-Ahead •••
Cursor Out of Field ••••••••••••••••••••••••••••••••
Support of VIP7207 and VIP7307 Terminals •••••••••••
Read IORB (Field Mode) •••••••••••••••••••••••••••••
Values Returned by a Field Read Order ••••••••••••••

Write Function (Field Mode) ••••••••••••••••••••••••••
Purge All Subfunction ••••••••••••••••••••••••••••••
Quit on Break Option •••••••••••••••••••••••••••••••
Pre-Order Control ••••••••••••••••••••••••••••••••••
Write IORB (Field Mode) ••••••••••••••••••••••••••••

Field Mode Device Configuration ••••••••••••••••••••••
Field Mode Return Status Codes •••••••••••••••••••••••

Invalid Argument Status (0104) •••••••••••••••••••••
Inconsistent Request Status (OlOC) •••••••••••••••••

Field Mode Error Processing ••••••••••••••••••••••••••
Field Mode Timeout Processing ••••••••••••••••••••••••

Block Mode •••
Block Mode and Extended Character Set (8-Bit Data) •••••
Connect Function •••••••••••••••••••••••••••••••••••••••

Auto Call•••••••...•••.....•.••••..•.......•
Control Word •••
Space Suppression •••••••••••••••••••••••.••••••••••••
No Roll ..••..••..•..••.••.••..•..•..•.••••••.••.•••.•

Connect IORB (Block Mode) •••••••••••••••••••• · ••••••••••
Disconnect Function (Block Mode) •••••••••••••••••••••••
Disconnect lORB (Block Mode) •••••••••••••••••••••••••••
Read Function (Block Mode) •••••••••••••••••••••••••••••

x

Page

8-36
8-36
8-37
8-37
8-37
8-37
8-38
8-38
8-38
8-40
8-40
8-40
8-41
8-41
8-41
8-42
8-43
8-43
8-44
8-44
8-44
8-45
8-45
8-45
8-46
8-51
8-51
8-52
8-52
8-52
8-52
8-53
8-54
8-54
8-54
8-54
8-55
8-55
8-55
8-55
8-56
8-56
8-56
8-57
8-57
8-58
8-58
8-59

09/86
CZ05-02A

CONTENTS

Operator Functions •••••••••••••••••••••••••••••••••••
Application Functions ••••••••••••••••••••••••••••••••

Abort Read •••
Supervisory Messages •••••••••••••••••••••••••••••••
Line Feed and Carriage Return ••••••••••••••••••••••

Read lORE (Block Mode) •••••••••••••••••••••••••••••••
Write Function (Block Mode) ••••••••••••••••••••••••••••

Write Order Processing •••••••••••••••••••••••••••••••
Keyboard Lock ••
Write Order Options •••••••••.••.••••.•••••••••.••..••

Abort Write•.....•.•...•.......•....•....••...
Preemptive Data Write ••••••••••••••••••••••••••••••
Control Byte Processing ••••••••••••••••••••••••••••
ETX/ETB Opt i on ..•........•... ill •••••••••••••••••••••

Quit On Break ••••••••••••••••••••••••••••••••••••••
Supervisory Messages •••••••••••••••••••••••••••••••
Supervisory Message Acknowledgement ••••••••••••••••
Line Feed and Carriage Return ••••••••••••••••••••••

Write IORB (Block Mode) ••••••••••••••••••••••••••••••••
Device Configuration {Block Mode) ••••••••••••••••••••••
Return Status Codes (Block Mode) ••••••••••••••• ee ••••••

Status Codes in I CT1 •••• oo ••••••• e •••••••••••• A •••••

Status Codes in I-ST.~ ••••••••••••••••••••• Q •••••••••

Error Processing {BTock Mode) ••••••••••••••••••••••••••
Timeout Processing (Block Mode) •• & ••••• e.~ •••••• e ••••••

ROP Mode Ii ••• e e = ,. • CD ., 8 •• e .. «I III • " It 0 • e. e e _ .. III •• eo •••••

ETX/ACK Protocolee.e ••• ~ •••• * ••••• 0Q~~ ••• ~ •• e.$.Q ••••••

Basic ETX/ACK Protocol ••• *.& •••••••••••••••••••••••••

Advanced ETX/ACK Protocol ••••••••••••••••••••••••••••
Connect Function •••••••••••••••••••••••••••••••••••••••
Connect IORB (ASPI Mode) •••••••••••••••••••••••••••••••
Disconnect Function ••••••••••••••••••••••••••••••••••••

Abort Queued Orders ••••••••••••••••••••••••••••••••••
Hang Up ••••••• ,. ••••••••••••• ., ••• 0 ••••••••••••••••••••

Disconnect IORB (ASPl Mode) ••••••••••••••••••••••••••••
Write Function (ASPI Mode) •••••••••••••••••••••••••••••

Control Sequences ••••••••.•••••••••••••••••••••••••••
DC 4 Control Sequence •••••••••••••••••••• @ •••••••••

Other Sequences •••••••••••••••••••••• e •••••••••••••

Prohibited Sequences •••••••••••••••••••••••••••••••
Write Options •••••••••••••••••••••••••• o •• eo •••• o ••••

Control Byte~ •••••••••••••••• e •••••••••••••••••••••

Line Feed and Carriage Return ••••••••••••••••••••••
write lORS (ASPI Mode) •••••••••••••••••••• e ••••••••••••

Read Function (ASPI Mode) ••••••••••••••••••••••••••••••
Normal Status Read •••••••••••••••••••••••••••••••••••
Attention Read ...•................••.•• III • e •••••••••

xi

Page

8-59
8-59
8-59
8-59
8-59
8-59
8-60
8-60
8-60
8-60
8-61
8-61
8-61
8-61
8-61
8-61
8-62
8-62
8-62
8-62
8-62
8-62
8-63
8-63
8-64
8-64
8-64
8-65
8-65
8-65
8-66
8-66
8-66
8-66
8-66
8-66
8-67
8-67
8-67
8-67
8-68
8-68
8-68
8-68
8-69
8-69
8-69

09/86
CZOS-02A

CONTENTS

Read IORB (ASPI Mode) ••••••••••••••••••••••••••••••••••
Status Codes Returned in I CT1 (ASPI Mode) •••••••••••••

Successful Completion (O~OO) •••••••••••••••••••••••••
Invalid Argument Status (0104) •••••••••••••••••••••••
Device Not Ready Status (0105) •••••••••••••••••••••••
Hardware Error Status (0107) •••••••••••••••••••••••••

Status Information in I ST •••••••••••••••••••••••••••••
Error Processing •• , ••••• -: •••••••••••••••• to ••••••••••••••

Timeout Processing •••••••••••••••••••••••••••••••••••••
X-ON/X-OFF Mode ••

X-ON/X-OFF Protocol ••••••••••••••••••••••••••••••••••••
Supported IORS Types •••••••••••••••••••••••••••••••••

Connect Function •••••••••••••••••••••••••••••••••••••••
Auto Call ••
Process Reads Asynchronously •••••••••••••••••••••••••
AXD Mode •••
Solicit Initial Transfer •••••••••••••••••••••••••••••
Require Initial X-ON •••••••••••••••••••••••••••••••••
Logical Connect ••••••••••••••••••••••••••••.•••••••••

Connect IORS (AXD Mode)
Disconnect Function ••••••••••••••••••••••••••••••••••••

" Abort Queued Orders ••••••••••••••••••••••••••••••••••
Hang Up ••
End-of-File/Disconnect •••••••••••••••••••••••••••••••

Disconnect IORB (AXD Mode) •••••••••••••••••••••••••••••
Read Function ••••.•••••••••••••••••••••••••••••••••••••

Echo •••
Line Feed ••
Carriage Return ••••••••••••••••••••••••••••••••••••••

Read IORS (AXD Mode) •••••••••••••••••••••••••••••••••••
Write Function •••

Edited Write •• ~ ••••••••••••••••••••••••••••••••••••••
Control Byte Processing ••••••••••••••••••••••••••••••
Suppress Trailing Blanks •••••••••••••••••••••••••••••
Unbreakable Write ••••••••••••••••••••••••••••••••••••
Line Feed ••
End of Record ••••••••••••••••••••••••••••••.•••••••••
End of File •••...•..•..•.•••.•••.••..••.....•.••.•..•

Write IORB (AXD Mode) ••••••••••••••••••••••••••••••••••
Control Characters •••••••••••••••••••••••••••••••••••••
Escape Sequence Processing •••••••••••••••••••••••••••••
Timeout Processing •••••••••••••••••••••••••••••••••••••
Error Processing •••••••••••••••••••••••••••••••••••••••
Data Loss ••
Break Processing •••••••••••••••••••••••••••••••••••••••
Hardware Requirements ••••••••••••••••••••••••••••••••••
AXD Operational Modes ••••••••••••••••••••••••••••••••••

xii

Page

8-70
8-70
8-70
8-70
8-71
8-71
8-71
8-71
8-71
8-71
8-72
8-73
8-73
8-73
8-73
8-74
8-74
8-74
8-74
8-74
8-75
8-75
8-75
8-76
8-76
8-76
8-76
8-76
8-76
8-77
8-77
8-77
8-77
8-77
8-78
8-78
8-78
8-78
8-78
8-78
8-80
8-80
8-81
8-81
8-81
8-81
8-83

09/86
CZOS-02A

CONTENTS

SECTION 9 STD LINE PROTOCOL HANDLER •••••••••••••••••••••

G~neral STD Line Protocol Handler Operation ••••••••••••••
Software Functional Support for the VIP ••••••••••••••••
User-Supplied Software Functions for VIP Support •••••••
STD Request Response Time ••••••••••••••••••••••••••••••

Using the STD Line Protocol Handler ••••••••••••••••••••••
STD-Specific IORB Values •••••••••••••••••••••••••••••••
STD Self Configuration •••••••••••••••••••••••••••••••••
STD Polling Options ••••••••••••••••••••••••••••••••••••

STD Poll List ••..•••••.••••••••••••••••••••••••••••••
STD Poll List Stall ••••••••••••••••••••••••••••••••••
STD Poll Interval ••••••••••••••••••••••••••••••••••••
STD Poll DUration (Timeout) •••••••••••••••••••••••••• ·
STD Line Protocol Handler Poll Functions •••••••••••••

Control and Characteristics of STD Input (Keyboard/
Screen) ••• It ••

STD Input Message Header •••••••••••••••••••••••••••••
STD Hardware Function Codes ••••••••••••••••••••••••••
STD Input Data •••••••••••••••••••••••••••••••••••••••

Control and Characteristics of STD Output ••••••••••••••
STD Output Message Header ••••••••••••••••••••••••••••
Control Byte (Send) ••••••••••••••••••••••••••••••••••
STD Output Data ••••••••••••••••••••••••••••••••••••••
STD Keyboard/Screen Output Editing Control •••••••••••
STD Receive-Only Printer Editing Sequence ••••••••••••
STD Receive-Only Printer Control Sequence ••••••••••••
Printer Escape Sequence for VIP7800 Series •••••••••••

Receive-Only Printer Support •••••••••••••••••••••••••••
VIP7800 Series Support •••••••••••••••••••••••••••••••••
VIP7826 Support •••.••.••••••.••••••••••••••••••••••••••
Inactivity Time Support •••••••••••••• ~ •••••••••••••••••
TWU1901 Support ••
Master LRN Processing ••••••••••••••••••••••••••••••••••
Sub-LRN Support ••
Block Mode Processing ••••••••••••••••••••••••••••••••••
Control Word ••••• ~ •••••••••••••••••••••••••••••••••••••
Control Byte •••
Output Data and Invalid Characters •••••••••••••••••••••
VIP7800 Series Message Range Requirements (Verify
Before Process Mode) •••••••••••••••••••••••••••••••••••
VIP7800 Series Terminal Transmission Modes and Cursor
Posi tion.ing ••
VIP7800 Series Break Processing ••••••••••••••••••••••••
Supervisory Messages ••••• , ••••••••••••••••••••••••••••••

Supervisory Message Reads ••••••••••••••••••••••••••••
Supervisory Message Writes •••••••••••••••••••••••••••

Page

9-1

9-2
9-2
9-3
9-3
9-5
9-5
9-8
9-8
9-9
9-9
9-9
9-9
9-9

9-10
9-10
9-10
9-10
9-11
9-11
9-11
9-11
9-11
9-12
9-12
9-14
9-14
9-15
9-15

'9-15
9-15
9-16
9-16
9-16
9-17
9-17
9-18

9-18

9-18
9-19
9-19
9-19
9-20

xiii
09/86
CZ05-02A

CONTENTS

Page

Diskette Handling for the CTS7760 and VTS7740 •••••••••• 9-20
Two- and Four-Wire Line Function ••••••••••••••••••••••• 9-20
Long 0 Frame Line Function ••••••••••••••••••••••••••••• 9-21

Error Processing by STD Line Protocol Handler •••••••••••• 9-21

SECTION 10 PVE LINE PROTOCOL HANDLER •••••••••••••••••••• 10-1

General PVE Line Protocol Handler Operation ••••••••••••••
Using the PVE Line Protocol Handler ••••••••••••••••••••••

PVE-Specific IORB Values •••••••••••••••••••••••••••••••
VIP Protocol Message Structure for PVE •••••••••••••••••
Control and Characteristics of PVE Input ••••••••••••••• ·

10-1
10-4
10-4
10-5
10-5
10-5
10-6
10-7
10-8
10-8
10-8
10-8
10-8
10-9

PVE Input Message Header •••••••••••••••••••••••••••••
PVE Hardware Function Codes ••••••••••••••••••••••••••
PVE Input Data .•••.•.•..••••..••.••.••••.•.•••.•.••••

Control and Characteristics of PVE Output ••••••••••••••
PVE Output Message Header ••••••••••••••••••••••••••••
PVE Terminal Address (ADR) and Message Status (STA) ••
PVE Output Data ••••••••••••••••••••••••••••••••••••••

PVE Line Protocol Handler Timeout Intervals ••••••••••••••
Error Reporting by PVE Line Protocol Handler •••••••••••••

SECTION 11 BSC2780/BSC3780 Line Protocol Handler •••••••• 11-1

General BSC Line Protocol Handler Operation ••••••••••••••
BSC Transmit and Receive Operations ••••••••••••••••••••
BSC Data Transmission Modes ••••••••••••••••••••••••••••
BSC2780 and BSC3780 Differences ••••••••••••••••••••••••
ase Record Types ••••••••••• , ••••••••••••••••••••••••••••
BSC2780/BSC3780 Features •••••••••••••••••••••••••••••••

BSe Double-Block Feature •••••••••••••••••••••••••••••
BSC Multi-Block Feature ••••••••••••••••••••••••••••••
BSC Temporary Text Delay (TTD) Feature •••••••••••••••
BSC Wait Before Acknowledge (WACK) Feature •••••••••••
BSC Reverse Interrupt (RVI) Feature ••••••••••••••••••
BSC End of Transmission (EOT) Feature ••••••••••••••••
BSC Switched Line Disconnect (DLE EOT) Feature •••••••

BSC Line Protocol Handler Timeout Interval •••••••••••••
BSC Features Specific to BSC3780 •••••••••••••••••••••••

BSC3780 Conversational Reply Feature •••••••••••••••••
BSC3780 Double-Block Feature •••••••••••••••••••••••••
BSC3780 Transmission/Reception of BSC Control
Characters .. .

Using the BSC2780/BSC3780 Line Protocol Handler ••••••••••
BSC-Specific IORB Values •••••••••••••••••••••••••••••••
Specifying Use of BSC2780 and/or BSC3780 to the System.
Formats and Characteristics of BSC Input Data ••••••••••

xiv

11-1
11-1
11-3
11-3
11-3
11-4
11-4
11-5
11-8
11-9
11-10
11-11
11-12
11-13
11-13
11-13
11-14

11-14
11-14
11-14
11-15
11-17

09/86
CZ05-02A

CONTENTS

BSC Control Byte (Receive} •••••••••••••••••••••••••••
ASCII Input for BSC ••••••••••••••••••••••••••••••••••
EBCDIC Input for BSC •••••••••••••••••••••••••••••••••
Transparent EBCDIC Input for BSC •••••••••••••••••••••

Formats and Characteristics of BSC Output Data •••••••••
BSC Control Byte (Send) ••••••••••••••••••••••••••••••
BSC ASCII Output ••••••••••••••••••• e •••••••••••••••••

BSC EBCDIC Output ••••••••••••••••••••••••••••••••••••
BSC Transparent EBCDIC Output ••••••••••••••••••• a ••••

Page

11-17
11-18
11-20
11-20
11-21
11-22
11-23
11-24
11-26

SECTION 12 TTY LINE PROTOCOL HANDLER •••••••••••••••••••• 12-1

General TTY Line Protocol Handler Operation ••••••••••••••
TTY Message Formats ••••••••••••••••••••••••••••••••••••
TTY Character Mode and Buffered Mode Transmission ••••••

TTY Character Mode •••••••••••••••••••••••••••••••••••
TTY Buffered Mode (VIP7200 and VIP7800) ••••••••••••••
VIP7200 and VIP7800 Hardware Switch Options with
Character or Buffered Mode ••••••••••• oo.e ••••••••••••

VIP7200 and VIP7800 Function and Control Keys ••••••••
TTY Line Protocol Handler Timeout Intervals ••••••••••••

Using the TTY Line Protocol Handler •••••••• o •••••••••••••

TTY-Specific IORB Values •••••••••••••••••••• e ••••••••••

Control and Characteristics of TTY Input Data •••• eea.@.

TTY Control Byte (Input) •••••• o •••••••• o •••••••••• a ••

TTY Nontransparent Input •••••••••••••••••••••••••••••
TTY Transparent Input •• o •• ~ ••••••••••• ~ •• o •••• o ••••••

TTY Line Feed (L.F) and Carriage Return (CR) Input
Sequ ence iii eo ••• 0 0 •• 0. 11& • .,,

Keyboard Input Character and Line Control ••••••••••••
TTY Display of Input Characters ••••••••••••••••••••••
TTY Input in Buffered Mode (VIP7200 and VIP7800
Only) 0\ 1& e "

Control and Characteristics of TTY Output Data •••••••••
TTY Control Byte (Send) ••••••••••••••••••••••••••••••
End-of-Message (EOM) Sequence on TTY Output ••••••••••
TTY Detection of BRK Characters ••••••••••••••••••••••
TTY Output in Buffered Mode ••••••••••••••••••••••••••

12-1
12-1
12-2
12-2
12-2

12-3
12-4
12-4
12-4
12-4
12-4
12-6
12-6
12-6

12-7
12-7
12-8

12-8
12-8
12-9
12-9
12-10
12-10

SECTION 13 3270 TERMINAL FACILITY LINE PROTOCOL HANDLER. 13-1

Software Functions Supported •••••••••••••••••••••••••••••
Software Functions Restricted ••••••••••••••••••••••••• o ••

Modes of Operation •••••••••••••••••••••••••••••••••••••••
TTY Mode ••• III e CII •• ., 0 fit ••• ., II

Line at a Time Input and Output ••••••••••••••••••••••
Multiple Line Input Feature ••••••••••••••••••••••••••

xv

13-2
13-3
13-3
13-4
13-4
13-4

09/86
CZ05-02A

CONTENTS

Break Mode Processing ••••••••••••••••••••••••••••••••
ROP Mode •••••••• , •••••••••••••••••••••••••••••••••••••••
Block Mode., ' lii' •••••••• ., ... iii ,. ., ., til ...

Read Commands ••
ASCI I Code •••
EBCDIC Code ••

Logical Terminal Mode ••••••••••••••••••••••••••••••••••
Master LRN Processing ••••••••• -•••••••••••••••••••••••••••
lORB Processing ••
Ai d Key s ,., ~ •• ~ • ~, • ,. ••
DARTS Probe Points ••• *.* ••••••••••••••••••••••••••••••••••

APPENDIX A TRAP HANDLING ••••••••••••••••••••••••••••••••

Trap Save Areas ••
Trap Handling During Task Execution ••••••••••••••••••••••

Software Generated Traps •••••••••••••••••••••••••••••••
Program Use of Traps •••••••••••••••••••••••••••••••••••

Contents of Trap-Related Memory Areas ••••••••••••••••••••
System Supplied Trap Handlers ••••••••••••••••••••••••••••

Trap Handling by the Debug Program •••••••••••••••••••••
Trap Handling by Scientific Simulator ••••••••••••••••••

Floating-Point Simulator •••••••••••••••••••••••••••••
Scientific Branch Simulator ••••••••••••••••••••••••••

Defective Memory Trap Handler ••••••••••••••••••••••••••
system Default Trap Handling •••••••••••••••••••••••••••

User-Written Trap Handlers •••••••••••••••••••••••••••••••
Task-Specific Trap Handlers ••••••••••••••••••••••••••••
System-Wide Trap Handlers ••••••••••••••••••••••••••••••

Passing Traps ••
Programming Considerations for User-Written Trap Handlers

APPENDIX B PROGRAMMING CONVENTIONS ••
Module and File Name Conventions •••••••••••••••••••••••••
Calling Sequence for External Procedures •••••••••••••••••
Register Conventions •••••••••••••••••••••••••••••••••••••

APPENDIX C DATA STRUCTURE FORMATS •••••••••
Clock Request Block Format •••••••••••••••••••••••••••••••
File Information Block (FIB) Format and Contents •••••••••
Input/Output Request Block (IORB) Format •••••••••••••••••
Semaphore Request Block Format •••••••••••••••••••••••••••
Task Request Block Format ••••••••••••••••••••••••••••••••
Parameter Block Format •••••••••••••••••••••••••••••••••••
Wai t List Format •••
Message Group Request Blocks •••••••••••••••••••

xvi

Page

13-4
13-4
13-5
13-6
13-6
13-7
13-7
13-7
13-8
13-8
13-14

A-l

A-I
A-7
A-7
A-8
A-8
A-IO
A-IO
A-ll
A-ll
A-12
A-12
A-14
A-14
A-14
A-14
A-IS
A-IS

B-1

B-1
B-3
B-4

C-l

C-2
C-4
C-8
C-12
C-14
C-16
C-16
C-17

09/86
CZ05-02A

CONTENTS

APPENDIX D ASCII AND EBCDIC CHARACTER SETS ••••••••••• ...
APPENDIX E DEVICE-SPECIFIC CONTROL CHARACTERS •••••••••••

APPENDIX F SUBSYSTEM MODULES ••••••••••••••••••••••••••••

Subsystem Records ••
Edit Profile (EP) Subsystem Modules ••••••••••••••••••••••

Pointer Array ••
MOD Function Message Number ••••••••••••••••••••••••••••
Modify Routine •••
Subsystem Default Values •••••••••••••••••••••••••••••••
Add Routine .. .
STAT-Names Message Number ••••••••••••••••••••••••••••••
STATS Descriptor Table •••••••••••••••••••••••••••••••••

List Profile (LP) Subsystem Modules ••••••••••••••••••••••
Pointer Array, 1)\

Message Number •••••••••••••••••••••••••••••••••••••••.•
Descriptor Table •••••••••••••••••••••••••••••••••••••••
Special-Field Routine •••• ~ •• $ •••••••••••••••••••••••• *.

ASCII-Only Subsystem Records ••••••••••••••• "

MANUAL DIRECTORy • • • • • • • 0 • • • • • • • • • • • • • • • • • 0 • • • • • • • •

INDEX e ••• (I ••• ., •••••••• "" •• l1l\I e •• " ... " 0 • $ ••••• " lit •

Page

D-l

E-l

F-l

F-l
F-2
F-2
F-2
F-4
F-5
F-6
F-6
F-6
F-7
F-8
F-8
F-8
F-8
F-IO

h-l

i-I

llLUSTRATIONS

Figure

3-1

4-1

4-2

6-1
6-2
6-3

7-1

8-1
8-2

9-1
9-2

Life Cycle of a File •••••••••••••••••••••••••••••••

Simplified Program Logic for Multiple Interactive
Terminals ••
Communications Input/Output Request Block (lORB) •••

Format of I/O Request Block ••••••••••••••••••••••••
ASCII Card-to-Memory Code Formatting •••••••••••••••
Verbatim Mode Formatting •••••••••••••••••••••••••••

Communications Overview ••••••••••••••••••••••••••••

A'l'D lORa- ••• G

Sample File Transfer Operation •••••••••••••••••••••

Control Word ••••••••••••••••••.•.•••••••••••••••.••
Control Byte •••••••••••••••••••••••••••••••••••••••

xvii

Page

3-5

4-10
4-18

6-7
6-15
6-15

7-4

8-5
8-84

9-17
9-18

09/86
CZ05-02A

I

ILLUSTRATIONS

Figure

10-1
10-2
10-3
10-4

11-1
11-2
11-3
11-4

11-5
11-6

11-7
11-8

Typical PVE Configuration ••••••••••••••••••••••••••
Typical Controller Poll Configuration ••••••••••••••
Typical Delay Response Procedure •••••••••••••••••••
VIP Protocol Message structure for PVE •••••••••••••

Example of BSC Communication •••••••••••••••••••••••
BSC Double-Block Feature in Record TransmissioDeeee
Multi-Block Buffer Organization ••••••••••••••••••••
BSC Multi-Block Transmission of Buffer Shown in
Figure 11-3 ••
BSC Temporary Text Delay (TTD) Sequence Example ••••
BSC Wait Before Acknowledge (WACK) Sequence
Exampl.e ••
BSC Reverse Interrupt (RVI) Sequence Example •••••••
Example of Conversational Reply in BSC3780
Transmission Sequence ••••••••••••••••••••••••••••••

11-9 BSC Input Data Format and Contents •••••••••••••••••
11-10 Control Byte (Receive) for BSC Line Protocol

Handler .. .
11-11 Format and Content of BSC Output •••••••••••••••••••
11-12 Control Byte (Send) for BSC Line Protocol Handler ••

12-1
12-2

13-1

A-l

B-1

C-l
C-2
C-3
C-4
C-S
C-6
C-7

F-l

TTY Message Formats ••••••••••••••••••••••••••••••••
Control Byte for TTY Line Protocol Handler •••••••••

3270 Data Stream •••••••••••••••••••••••••••••••••••

Trap Handling Mechanism ••••••••••••••••••••••••••••

Argument List ••••••••••••••••••••••••••••••••••••••

First Four Items of Request Blocks •••••••••••••••••
Format of Clock Request Block ••••••••••••••••••••••
Format of I/O Request Block ••••••••••••••••••••••••
Format of Semaphore Request Block ••••••••••••••••••
Format of Task Request Block •••••••••••••••••••••••
Format and Parameter Block •••••••••••••••••••••••••
Format of Wait List •••••••••••••••••••.•••••••••••••

MOD Function List Format •••••••••••••••••••••••••••

xviii

Page

10-2
10-3
10-3
10-7

11-2
11-4
11-7

11-7
11-9

11-10
11-11

11-15
11-19

11-19
11-21
11-22

12-2
12-9

13-6

A-9

B-4

C-2
C-2
C-8
C-12
C-14
C-16
C-17

F-4

09/86
CZ05-02A

Table

1-1

3-1
3-2
3-3

3-4
3-5

4-1
4-2
4-3
4-4

4-5
4-6
4-7
4-8
4-9
4-10

5-1
5-2

6-1
6-2
6-3
6-4
6-5
6-6
6-7

6-8

6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21

System Service Macro Calls •••••••••••••••••••••••••

File Information Block (FIB) for Data Management •••
Program View Entry in FIB for Data Management ••••••
File Information Block (FIB) for Storage
Management •••
Program View Entry in FIB for Storage Management •••
Offsets Definition Macro Calls •••••••••••••••••••••

Arguments for Get File ($GTFIL) Macro Call •••••••••
Macro Call Procedures for Data Entry Terminals •••••
Macro Call Procedures for Output-Only Terminals ••••
Macro Call Procedures for Single Interactive
Terminal . .,, ..•. G ••••••••••••••••••••••••••••••

Macro Call Procedures for Multiple Terminals •••••••
System Defaults for DSWI and DSW2 ••••••••••••••••••
I/O Request Status Codes Returned in I CTl •••••••••
Communications Input/Output Request Block (lORB) •••
Software (I ST) Status Codes •••••••••••••••••••••••
Communications LPH Function Codes ••• eo •••••••••••••

Request B1ocks •• ~8 ••••••• Q •••••••••• o ••• o ••••••••••

Argument Structures and Offsets Tags •••••••••••••••

Input/Output Function Codeo$~ •••••• ee •• eG •• eo.&ee ••

Return Status Codes (Last Two Digits) ••••••••••••••
Contents of I/O Request Block ••••••••••••••••••••••
lORE Software Status Word (I ST)@o*.e.G.~ ••• Go.&$ ••

Hollerith-ASCII Code Table •• : ••••••••••••••••••••••
Card Reader/Card Reader-Punch lORB Fields ••••••••••
Card Reader lORB Hardware/Software Status Code
Mapping. " .•. ., 0 ~, II'!)

Card Reader/Punch Hardware/Software Status Code
Mapp,ing ••
Print Control Byte •••••••••••••••••••••••••••••••••
Print Control Byte Summary •••••••••••••••••••••••••
Printer IORB Fields ••••••••••••••••••••••••••••••••
Printer Hardware/Software Status Code Mapping ••••••
Diskette IORB Fields •••••••••••••••••••••••••••••••
Diskette Hardware/Software Status Code Mapping •••••
Lark Disk lORB Fields ••••••••• o •••• o •• o

Lark Disk Hardware/Software Status Code Mapping ••••
Mass Storage Unit IORB Fields .. $.~
Mass Storage Unit Status Code Mapping ••••••••••••••
Cartridge Module Disk lORB Fields ••••••••••••••••••
Cartridge Module Disk Status Code Mapping ••••••••••
Characteristics of Supported Tape Drives •••••••••••

xix

TABLES

Page

1-3

3-8
3-14

3-18
3-20
3-22

4-4
4-6
4-7

4-8
4-9
4-12
4-14
4-19
4-22
4-23

5-2
5-6

6-4
6-5
6-9
6-12
6-14
6-16

6-17

6-17
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-30
6-31
6-31

09/86
CZ05-02A

Table

6-22
6-23

8-1
8-2
8-3 • Q_~ 1

• '" ..,.,
8-4
8-5
8-6

8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32
8-33
8-34

9-1
9-2
9-3
9-4
9-5
9-6
9-7

Magnetic Tape IORB Fields ••••••••••••••••••••••••••
Magnetic Tape Hardware/Software Status Code
Mapping ,. '!!- •• e e • e ••• e

A'l'D Return. Co·des •••••••••••••••••••••••••••••••••••
Status Word of rORB (I ST) •••••••••••••••••••••••••
Device IDs Returned in-IORB ••••••••••••••••••••••••
.p-&TD Control Bytes
I DVS Word in Connect IORB (TTY Mode) ••••••••••••••
I-DVS Word in Disconnect IORB (TTY Mode) •••••••••••
Default Values of Special Characters by Device
Type •••••••••.•••••••••••••••••••••••••••••••••••••
A'l'D Word I DVS in TTY Mode Read IORB •••••••••••••••
A'l'D Word I DVS in TTY Mode Write·IORB ••••••••••••••
A'l'D Word I-DVS in Connect IORB •••••••••••••••••••••
ATD Word r-DV2 in Connect IORB (Field Mode) ••••••••
ATD Word I-DVS in Disconnect IORB ••••••••••••••••••
Data Entry-Keyboard Unshifted/Shifted Translations.
ATD Word r DVS in Field Mode Read rORB •••••••••••••
ATD Word I-DV2 in Field Read IORB ••••••••••••••••••
ATD Word I-CON in Field Read IORB ••••••••••••••••••
ATD Word r-DVS in Field Mode Write rORB ••••••••••••
A'l'D Word I-DV2 in Field Write rORB •••••••••••••••••
I DVS Word-in Connect IORB (Block Mode) ••••••••••••
I-DVS Word in Disconnect IORB {Block Mode) •••••••••
ATD Word r DVS in Block Mode Read rORB •••••••••••••
ATD Word r-DVS in Block Mode Write rORB ••••••••••••
IORB Word f ST (Block Mode) ••••••••••••••••••••••••
I DVS Word In Connect rORB (ASpr Mode) •••••••••••••
I-DVS Word in Disconnect IORB (ASpr Mode) ••••••••••
ATn Word I DVS in Aspr Mode Write rORB •••••••••••••
Device IDs-for Serial Printers •••••••••••••••••••••
ATD Word I DVS in Aspr Mode Read IORB ••••••••••••••
IORB Word Y ST (ASPI Mode) •••••••••••••••••••••••••
I DVS Word Tn Connect rORB (AXD Mode) ••••••••••••••
I-DVS Word in Disconnect rORB (AXD Mode) •••••••••••
r-DVS Word in Read rORB (AXD Mode) •••••••••••••••••
I-DVS Word in write IORB (AXD Mode) ••••••••••••••••
Status Word ofAXD IORB (I ST) •••••••••••••••••••••
AXD Modes and Features •••• 7 ..•.....................

STD Line Protocol Handler Response Time ••••••••••••
Function Codes in r CT2 of the rORB ••••••••••••••••
STD Device-Specific-Word I DVS in the rORB •••••••••
STD Software Status Word r-ST in the IORB ••••••••••
STD Receive-Only Printer Editing Sequence ••••••••••
STD Receive-Only Printer Control Sequence ••••••••••
Errors Reported by STD Line Protocol Handler •••••••

xx

TABLES

Page

6-33

6-34

8-7
8-9
8-10
6-12
8-19
8-20

8-21
8-24
8-26
8-38
8-39
8-40
8-47
8-48
8-48
8-49
8-53
8-53
8-57
8-58
8-60
8-63
8-64
8-66
8-67
8-68
8-69
8-70
8-72
8-75
8-76
8-77
8-79
8-82
8-83

9-4
9-5
9-5
9-8
9-12
9-13
9-23

09/86
CZ05-02A

Table

10-1
10-2
10-3
1'0-4
10-5

11-1
11-2

11-3
11-4
11-5

12-1
12-2
12-3
12-4

13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10

Function Codes in I CT2 in the IORB ••••••••••••••••
PVE Device-Specific-Word I DV5 in the IORB •••••••••
PVE Software Status Word I-ST in the IORB ••••••••••
PVE Timeout Intervals ••••• ; ••••••••••••••••••••••••
Errors Reported by PVE Line Protocol Handler •••••••

Multi-Block Header Section Field Descriptions ••••••
Transmission and Reception Conditions for EOT and
DLE EOT ••
Function Codes in I CT2 Field in the IORB ••••••••••
BSC Device-Specific-word I DVS in the IORB •••••••••
BSC Software Status Word I-ST in the IORB ••••••••••

TTY Line Protocol Handler Timeout Intervals ••••••••
Function Codes in I CT2 of the IORB ••••••••••••••••
TTY Device-Specific-Word I DVS in the IORB •••••••••
TTY Software Status Word I-ST in the IORB ••••••••••

Supported GCOS Control Bytes •••••••••••••••••••••••
BTF Device-Specific Word I DVS for Connect Calls •••
BTF Device-Specific Word I-DVS for Disconnect ••••••
BTF Device-Specific Word I-DVS for Read ••••••••••••
BTF Device-Specific Word I-DVS for Write •••••••••••
BTF Software Status Word I-ST in the IORB ••••••••••
BTF Return Codes in I CT1 In IORB ••••••••••••••••••
Recognized AID Keys in TTY Mode ••••••••••••••••••••
AID Key Programming Offsets ••••••••••••••••••••••••
DARTS Probe Points •••••••••••••••••••••••••••••••••

A-I Contents of Selected Words of Trap Save Area When

TABLES

Page

10-4
10-4
10-6
10-8
10-9

11-6

11-13
11-16
11-16
11-18

12-4
12-5
12-5
12-7

13-5
13-9
13-10
13-10
13-11
13-11
13-12
13-13
13-14
13-15

Trap Occurs •• A-2

B-1
B-2

C-l
C-2
C-3
C-4
C-5
C-6
C-7
C-8
C-9
C-lO
C-l1
C-12

System Module Name-Prefixes ••••••••••••••••••••••••
System Program File Name Suffixes ••••••••••••••••••

Contents of Clock Request Block ••••••••••••••••••••
Format of FIB for Data Management ••••••••••••••••••
Format of FIB for Storage Management •••••••••••••••
Contents of FIB for Data Management ••••••••••••••••
Contents of FIB for Storage Management •••••••••••••
Contents of I/O Request Block ••••••••••••••••••••••
Summary of IORB Fields for Operator Interface ••••••
Contents of Semaphore Request Block ••••••••••••••••
Contents of Task Request Block •••••••••••••••••••••
Message Group Control Request Block (MGCRB) ••••••••
Message Group Initialization Request Block (MGIRB).
Message Group Recovery Request Block (MGRRB) •••••••

xxi

B-2
B-3

C-3
C-4
C-5
C-6
C-7
C-9
C-12
C-13
C-14
C-17
C-20
C-23

09/86
CZ05-02A

Table

I 0-1
D-2

E-l
E-2

F-l
F-2

TABLES

Page

Extended ASCII Character Set ••••••••••••••••••••••• 0-4
EBCDIC Character Set ••••••••••••••••••••••••••••••• 0-5

TTY Nonalphanumeric Control Characters ••••••••••••• E-l
VIP Nonalphanumeric Control Characters ••••••••••••• E-2

Edit Profile Statistic Field Types ••••••••••••••••• F-7
List Profile Field Types ••••••••••••••••••••••••••• F-9

09/86
xxii CZ05-02A

Section 1
INTRODUCTION

Volume I of the System Programmer's Guide provides general
information useful to the Assembly language programmer for
designing and executing applications. Sections 2 through 13 of
the manual describe services provided by the system that can be
invoked or controlled by Assembly language programs. The
following subsections describe more specifically the content and
organization of the manualo

SYSTEM SERVICE MACRO CALLS

Sections 2 through 4 describe system services (functions)
that can be invoked by macro calls or monitor calls. These are
services for system control, file management, record management,
and input/output to peripheral and communications devices.
Table 1-1 lists alphabetically the macro calls by which system
functions can be invoked. Throughout this manual; functions are
referred to by their corresponding macro calls.

You can also invoke a function by a monitor call (MCL)
instruction followed by the function's code. The function code
assigned to each function/macro call is shown in column 3 of
Table 1-1.

1-1 CZ05-02

The manual provides an overview of functions belonging to the
same group. In Section 2, for example, all the functions related
to semaphores are listed together. Semaphores are defined as a
mechanism for the sharing of a resource among members of the same
task group. The part played in this mechanism by each of the
listed functions is briefly indicated. Thus, the manual informs
you of available macro calls and indicates their functional
relationship.

Volume II of the System Programmer's Guide, by contrast,
describes each macro call individually. The individual
descriptions provide information (relating to macro call
arguments and register contents) that enables the user to
actually employ the call in the application.

DEVICE DRIVERS AND LINE PROTOCOL HANDLERS

Section 6 describes the system software used for transmitting
data between applications and peripheral (non-communications)
devices. The section deals mainly with the data structures and
codes by which the user instructs the device drivers and by which
the drivers report the status of requested operations. (Macro
calls related to input/output are discussed in earlier sections.)

Section 7 provides an overview of line protocol handlers,
which are used for transmitting data between applications and
communications devices. Sections 8 through 13 describe in detail
the ATD, STD, PVE, BSC, TTY, BTF, and 3270 Terminal Facility line
protocol handlers.

Programming considerations, such as trap handling and calling
external procedures, are described in the appendices.

1-2 CZ05-02

Table 1-1. System Service Macro Calls

Macro
Call Name Function Description

(1) (2)

Function
Code
(3)

Function Group
(4)

$ABGRP Abort group OD/OA

OD/07

14/02

Task group control

Task group control

Identification and
information

$ABGRQ Abort group request

$ACTID Account
identification

$ACTVG Activate group OD/09 Task group control

$BUAT

$BUDT

$BUID

$BULD

$BUXFR

$CANRQ

$CIN

$CKPFL

$CKPT

$CLFIL

$CLPNT

$CLRSW

$CMDLN

$CMSUP

$CNCRQ

Bound unit, attach OC/09 Task control

Bound unit, detach OC/OB Task control

Bound unit 14/06 Identification and
identification information

Bound unit, load OC/OA Task control

Bound unit transfer OC/07 Task control

Cancel request OC/Ol Task control

Command in 08/02 Standard system
file I/O

Checkpoint file OD/ll File management

Checkpoint OD/OF Task group control

Close file 10/55-10/57 File management

Clean point OC/13 File management

Clear external
switches OB/02 External switch

Command line process OC/08 Task control

Console message
suppression 09/02,09/03 Operator interface

Cancel clock request 05/01 Clock

1-3
09/86
CZ05-02A

*

*

Macro
Call Name

(1)

$CNSRQ

$CRB

$CRBD

$CRD.IR

$CRFIL

$CRGRP

$CROAT

$CRPSB

$CRRDB

$CRSEG

$CRTSK

$CWDIR

$DFCKP

$DFRHD

$DFRTL

$DFSM

Table 1-1 (cont). System Service Macro Calls

Function Description
(2)

Cancel semaphore
request

Clock request block

Clock request block
offsets

Create directory

Create file

Create group

Create overlay area

Function
Code
(3)

06/01

10/AO

10/30

OD/03

table 07/0A

Create file parameter -
structure block
offsets

Create file record -
descriptor block
offsets

Create segment OC/OC

Create task OC/02,OC/03

Change working
directory 10/BO

Defer checkpoint OC/19

Defer request on head Ol/OD

Defer request on tail Ol/OC

Define semaphore 06/04

1-4

Function Group
(4)

Semaphore handling

Data structure
generation

Data structure
gene ratio.n

File management

File management

Task group control

Overlay handling

Data structure
generation

Data structure
generation

Task control

Task control

File management

Task control

Request and Return

Request and Return

Semaphore handling

09/86
CZ05-02A

Macro
Call Name

(1)

$DIPSB

$DLDIR

$DLFIL

$DLGRP

$DLOAT

$DLREC

$DLSEG

$DLSM

$DLTSK

$DQPST

$DSTRP

$ELEND

$ELEX

$ELGT

$ELOG

$ELST

$ENTID

$ENTRP

Table 1-1 (cont). System Service Macro Calls

Function Description
(2)

Device information
parameter structure
block offsets

Delete directory

Delete file

Delete group

Delete overlay area
table

Delete record

Del ete segment

Delete semaphore

, Delete task

Dequeue and post

Disable user trap

Error logging end

Error logging
information, exchange

Error logging
information, get

Error logging table

Error logging, start

Entry point
identification

Enable user trap

1-5

Function
Code
(3)

10/A5

10/35

OD/04

07/0D

11/30,11/31

OC/OD

06/07

OC/04

Ol/OB

OA/02

02/09

02/07

02/08

02/05

14/07

DA/Ol

Function Group
(4)

Data structure
generation

File management

File management

Task group control

Overl ay handl ing

Da ta management

Task control

Semaphore handling

Task control

Request and Return'

Trap handl ing

I Physical I/O

Phy si cal I/O

Phy si cal I/O

Data structure
gene'ration

Phy si cal I/O

Identification and
information

Trap handling

09/86
CZ05-02A

*

Macro
Call Name

(1)

$EROUT

$EXTDT

$EXTET

$EXTIM

$FIB

$FIBDM

$FIBSM

$GAFIL

$GAPSB

$GDTM

$GIDEV

$GIFAB

$GIFIL

Table 1-1 (cont). System Service Macro Calls

Function Description
(2)

Error out

External date/time,
convert to

External elapsed
time, convert to

External time,
convert to

File information
block

File information
block offsets (data
management access)

File information
block offsets
(storage management
access)

Get file access
rights

Get file access
rights parameter
structure block
offsets

Get date/time

Get device
information

Get file information,
file attribute block
offsets

Get file information

Function
Code
(3)

08/03

05/04

05/0D

05/05

10/7C

05/06

10/66

10/60

Function Group
(4)

Standard system
file I/O

Date/time

Date/time

Date/time

Data structure
generation

Data structure
generation

Data structure
generation

File management

Data structure
generation

Date/time

File management

Data structure
generation

File management

*~--------~------------------~----------~--------------~

1-6
09/86
CZ05-02A

Macro
Call Name

(1)

$GIPSB

$GMEM

$GNFIL

$GNPSB

$GRFIL

$GRPID

$GRPSB

$GTACT

$GTFIL
I

$GTPSB

$GWDIR

$HDIR

$!NDTM

$INSID

$IORB

Table 1-1 (cont). System Service Macro Calls

Function Description
(2)

Get file information,
parameter structure
block offsets

Get memory/get
available memory

Get name

Get names parameter
structure block
offsets

Grow file

Group identification

Grow file parameter
structure block

. offsets

I Get file accounting
! information

I Get file
'.

Get file parameter
structure block
offsets

Get working directory
.

Home directory

Internal date/time,
convert to

Installation
identification

Input/output request
block

1-7

Function
Code
(3)

-

04/02,04/03

10/3C

-

10/38

14/08

-

10/42

10/20

-

la/CO

l4/0B

05/07

14/05

-

Function Group
(4)

Data structure
generation

Memory allocation

File management

Data structure
generation

File management

Identification and I information

. Data structure

. generation

File management

File management

Data structure
generation

.
File management

Identification and
information

Date/time

Identification and
information

Data structure
generation

09/86
CZ05-02A

*

I

Macro
Call Name

(1)

$ IORBD

$KILLT

$LKFIL

$LKNME

$MACPT

$MCME

$MCMG

$MDFIL

$MDPSB

$MGCRB

$MGCRT

$MGIRB

$MGIRT

$MGRRB

$MGRRT

Table 1-1 (cont). System Service Macro Calls

Function Description
(2)

Input/output request
block offsets

Kill (abort) task

Link file

Link Name

Message group, accept

Message group, cancel
enclosure

Message group, count

Modify file

Modify file parameter
structure block
offsets

Message group,
control request block

Message group control
request block offsets

Message group,
initialization
request block

Message group
initialization
request block offsets

Message group,
recovery request
block

Message group
recovery request
block offsets

1-8

Function
Code
(3)

OC/ll

lO/3A

10/47

15/01

15/06

15/07

10/41

Function Group
(4)

Data structure
generation

Task control

File management

File management

Intergroup message
facility

Intergroup message
facility

Intergroup message
facility

File management

Data structure
generation

Data structure
generation

Data structure
generation

Data structure
generation

Data structure
generation

Data structure
generation

Data structure
generation

09/86
CZ05-02A

Macro
Call Name

(1)

$MINIT

$MODID

$ MRE CV

$MSEND

$MTMG

$NCIN

$NMLF

$NPROC

$NUIN

$NUOUT

$OPFIL

$OPMSG

$OPRSP

$OVEXC

$OVLD

$OVRCL

$OVRLD

Table 1-1 (cont). System Service Macro Calls

Function Description
(2)

Message group,
initiate

Mode identification

Message group,
receive

Message group, send

Message group,
terminate

New command in

New message
library

New process

New user input

New user output

Open file

Operator information
message

Operator response
message

Overlay, execute

Overlay, load

Overlay release,
wait, and recall

Function
Code Function Group
(3) (4)

15/02 Intergroup message
facility

14/03 Identification and
information

15/03 Intergroup message
facility

15/05 Intergroup message
facility

15/04 Intergroup message
facility

08/06 Standard system
file I/O

08/08 Standard system
file I/O

OD/OB Task group control

08/04 Standard system
file I/O

08/05 Standard system
file I/O

10/50,10/51 File management

09/00 Operator interface

09/01 Operator interface

07/00 Overlay handling

07/01 Overlay handling

07/07 Overlay handling

Overlay area, reserve, 07/10
and load overlay

Overlay handling

1-9 CZ05-02

Macro
Call Name

(1)

$OVRLS

$OVRSV

$OVST

$OVUN

$PERID

$PPNTL

$PRBLK

$PRFAU

$PRFCR

$PRFDL

$PRFGT

$PRFIF

$PRFUP

$RBADD

$RBD

$RBOOT

$RBPRM

Table 1-1 (cont). System Service Macro Calls

FUnction Description
(2)

Overlay area, release

Overlay area reserve,
and execute overlay

Overlay status

Overlay, unload

Function
Code
(3)

07/06

07/05

07/03

07/0C

Person identification 14/01

Postpone request on
tail Ol/OE

Parameter block -

Profile record,
accounting update 24/42

Profile record,
create 24/20

Profile record,
delete 24/30

Profile record, get 24/10

Profile record, get
user information 24/12

Profile record,
update 24/40

Return request block
address 01/07

Request block -
displacements

Reboot 20/06

Modify reboot
parameters 20/05

1-10

Function Group
(4)

Overlay handling

Overlay handling

Overlay handling

Overlay handling

Identification and
information

Request and Return

Data structure
generation

User registration

User registration

User registration

User registration

User registration

User registration

Request and return

Data structure
generation

Software reboot

Software reboot

CZ05-02

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name Function Description

(1) (2)

$RCLHD Recall from head

$RDBLK Read block

$RDREC

$RDSW

$RETRN

$RLDMP

$RLSM

$RLTML

$RMEM

$RMFIL

$RNFIL

$ROLBK

$RPDFC

$RPMSG

$RQCL

$RQGRP

$RQIO

$RQSM

$RQSPT

Read record

Read external
switches

Return

Unlock dumpfile

Release semaphore

Release terminal

Return memory/return
partial block of
memory

Remove file

Rename file/rename
directory

Roll back (recover)
files

Report message, dis
play formatting and
control

Report message.

Request clock

Request group

Request I/O

Request semaphore

Request specific
terminal

1-11

Function
Code Function Group
(3) (4)

Ol/OF Request and return

12/00-12/04 Storage management

11/10-11/16, Data management
11/19

OB/OO External switch

- Request and return

20/04 Software reboot

06/03 Semaphore handling

17/04 Terminal function

04/04,04/05 Memory allocation

10/25

10/40

OC/14

OF/04

OF/03

05/00

OD/OO

02/00

06/00

17/02

..
File management

File management

File management

Message reporter

Message reporter

Clock

Task group control

Physical I/O

Semaphore handling

Terminal function

09/86
CZ05-02A

*

Macro
Call Name

(1)

$RQTML

$RQTSK

$RS

$RSTID

$RSVSM

$ RWREC

$RVFPW

$SDL

$SETSW

$SGRPA

$SGTRP

$SHCS

$SHFIL

$SHGWS

$SHPSB

$SPGRP

$SPTSK

$SRB

$SRBD

$STMP

Table 1-1 (cont). System Service Macro Calls

Function
Function Description Code

(2) (3)

Request terminal 17/03

Request task OC/OO

Restart 00/10

Reset task
identifier 10/05

Reserve semaphore 06/02

Rewrite record 11/40,11/41

Reverify password 24/01

Set dial lB/OO

Set external switches OB/Ol

Set group attributes 00/13

Signal trap OA/03

Shrink created segment OC/2S

Shrink file

Shrink group work
segment

Shrink file parameter
structure block
offsets

10/37

OD/16

00/05

Function Group
(4)

Terminal function

Task control

Task control

File management

Semaphore handling

Data management

User registration

Communications

External switch

Task group control

Trap handling

Task control

File management

Task group control

Data structure
generation

Task group control Spawn group

Spawn task OC/OS,OC/06, Task control
OC/IS

Semaphore request
block

Semaphore request
block offsets

status memory pool 04/06

1-12

Data structure
generation

Data structure
generation

Memory allocation

09/86
CZOS-02A

Macro
Call Name

(1)

$STFIL

$STTID

$SUSPG

$SUSPN

$SWFIL

$SYSAT

$SYSID

$TEST

$TFIB

$TGIN

$TIFIL

$TOFIL

$TRB

$TRBD

$TRMRQ

$TRPHD

$ULFIL

$ULNME

Table 1-1 (cont). System Service Macro Calls

Function Description
(2)

Set terminal file
characteristics

Function
Code
(3)

10/46

Set task identifier 10/00

Suspend group 00/08

Suspend for interval;
suspend until time 05/02,05/03

Swap file 10/SA

System attribute 14/11
information, get

System identification 14/04

Test completion 01/02
status

File information -
block offsets (data
and storage manage-
ment access)

Task group input 14/0C

Test file for input ,10/62

Test file for output 10/63

Task request block -

Task request block -
offsets

Terminate request 01/03,01/04

Trap handler connect OAIOO

Unlink file

Unlink name

1-13

10/3B

10/48

Function Group
(4)

File management

File management

Task group control

Clock

File management

Identification and
information

Identification and
information

Request and return

Data structure
generation

Identification and
information

File management

File management

Data structure
generation

Data structure
generation

Request and return

Trap handling

File management

File management

09/86
CZOS-02A

I

I

Table 1-1 (cont). System Service Macro Calls

Macro
Call Name Function Description

(1) (2)

$USIN User input

$USOUT User output

$USRID User identification

$VLCKP Validate checkpoint

Function
Code
(3)

08/00

08/01

14/00

OD/12

Function Group
(4)

Standard system
file I/O

Standard system
file I/O

Identification and
information

Task group control

$XPCS

$WAIT

$WAITA

$WAITL

$WAITM

Expand created segment OC/24 Task control

$WIFIL

$WLIST

$WLSTM

$WOFIL

$WRBLK

$WRREC

$WTBLK

$XFERU

$XPATH

$XRETU

wait

Wait any

wait on request list

Wait on multiple
requests

wait file (input)

Wait list generate

Wait list, generate
multiple

Wait file (output)

Write block

Write record

Wait block

Transfer user

Expand pathname

Transfer and re
turn user

1-14

01/00

01/01

01/01

01/01

Request and return

Request and return

Request and return

Request and return

10/64 File management

- Data structure
generation

- Data structure
generation

10/65 File management

12/10,12/11 Storage management

11/20-11/26 Data management

12/20 Storage management

17/06 Terminal function

10/DO File management

17/07 Terminal function

CZ05-02

Section 2
SYSTEM CONTROL

FUNCTIONS

This section summarizes and briefly describes the system
control macro calls that provide user access to system control
functions. The macro calls are presented according to their
functional groupings (see Table 1-1, column 4) as follows:

Clock
Communications
Date/Time
External Switch
Identification and Information
Intergroup Message Facility
Memory Allocation
Message Reporter
Operator Interface
Overlay Handling

Physical 1/0
Request and Return
Semaphore Handling
Software Reboot
Standard System File I/O
Task Control
Task Group Control
Terminal Control
Trap Handling
User registration

See Volume II of this manual for a detailed description of
each macro routine/call.

2-1
09/86
CZOS-02A

*

*

* CLOCK FUNCTIONS

The macro calls for clock functions to allow user control of
task execution according to an elapsed time period. These macro
calls use the clock manager. The clock manager is a system com
ponent whose primary function is satisfying/completing task
requests at a specified time or after a specified interval.

The clock manager services interrupts from the real-time
clock. At each interrupt, the clock manager ascertains whether
the time interval associated with a request to initiate execution
of the task has been satisfied. Depending on information con
tained in the clock request block (see Appendi'x C), the system
will do one of the following:

• Activate a task
• Schedule an indicated request block
• Release a semaphore.

The clock macro calls act to:

• Connect a clock request block to the timer queue

• Disconnect a clock request block from the timer queue

• Suspend the issuing task until an
passed

• Suspend the issuing task until a

The clock function macro calls are:

• Cancel Clock Request
• Request Clock
• Suspend for Interval
• Suspend Until Time

$CNCRQ
$RQCL
$SUSPN
$SUSPN

interval of time has

given date/time.

Volume II describes the Clock Request Block ($CRB) macro
call, which generates a clock request block.

COMMUNICATIONS FUNCTIONS

The macro call for communications functions allows the user
to set a telephone number to be used for automatic dialing. The
macro routine/call is:

Set Dial $SDL

Section 4 discusses macro calls, other than Set Dial,
applicable to communications processing.

2-2
09/86
CZOS-02A

DATE/TIME FUNCTIONS

The macro calls for date/time functions allow the user to:

• Obtain the current internal date/time value

• Convert the internal date/time value to external
format

• Convert the internal date/time value to external
format

• Convert an external date/time value to internal

The date/time macro calls are:

• External Date/Time, Convert to
• External Time, Convert to
• External Elapsed Time, Convert to

$EXTDT
$EXTIM
$EXTET
$GDTM
$INDTM

• Get Date/Time
• Internal Date/Time, Convert to

EXTERNAL SWITCH FUNCTIONS

date/time

time

format.

A task group can control its own execution by using external
switch function macro calls to modify its external switches. An
external switch operates much like a hardware switch on an oper
ator's control panel. External switches can be set and cleared
with the Modify Switches (MSW) command or with the $SETSW and
$CLRSW macro c~lls.

An external switch word is associated with each task group.
Each bit in the word corresponds to an external switch. Thus,
each task group can manipulate 16 switches. A user program can
contain instructions or statements to determine the settings of
one or more of these switches. The program can then set or clear
these settings to control its execution logic.

The macro calls allow the issuing task to:

• Set switches
• Clear switches
• Read the current values of the switches.

The macro calls are:

• Clear External Switches
• Read External Switches
• Set External Switches

$CLRSW
$RDSW
$SETSW

2-3 CZOS-02

IDENTIFICATION AND INFORMATION FUNCTIONS

The macro calls for identification and information make
available to the user the following information concerning the
current task or task group:

Information

Home directory pathname
Bound unit identification
Installation identification
System identification
Task group account identification
Task group input file name
Task group mode identification
Task group person identification
Task group user identification
Entry point identification
Group identification
System attribute information

INTERGROUP MESSAGE FACILITY FUNCTIONS

Macro Call

$HDIR
$BUID
$INSID
$SYSID
$ACTID
$T~IN
$MODID
$PERID
$USRID
$ENTID
$GRPID
$SYSAT

The message facility allows the task groups to
messages through a message queue called a mailbox.
messages can be transmitted, the mailbox must have
by means of the Create Mailbox command. Mailboxes
in detail in the System User's Guide.

exchange
Before

been created
are described

A message text consists of several nested units, or enclo
sures. The smallest unit is a record; the next largest unit,
made up of records, is a quarantine unit; the largest, made up of
quarantine units, is a message. A quarantine unit is the
smallest amount of transmitted data that is available to the
receiver. Because a message can comprise a group of records, it
is called a "message group."

The transfer of messages is facilitated by three request
blocks: message group control request block (MGCRB), message
group initialization request block (MGIRB), and message group
recovery request block (MGRRB). These data structures are tabu
lated in Appendix C and described in Volume II.

Message facility macro calls perform the following:

• Initialize communications between groups by setting values
of the message group initialization request block (MGIRB)

• Validate the acceptor's access to an existing mailbox

• Ascertain the number of messages in a mailbox

• Identify the specific message to be accepted

2-4 CZ05-02

• Request the receipt of a message, specifying values for
the message group control request block (MGCRB)

• Delete the last record in an incomplete quarantine unit or
delete the quarantine unit itself

• Send a message group

• Terminate a message group, normally or abnormally.

The message facility macro calls are:

• Message Group, Initiate
• Message Group, Accept
• Message Group, Count
• Message Group, Receive
• Message Group, Cancel Enclosure
• Message Group, Send
• Message Group, Terminate

MEMORY ALLOCATION FUNCTIONS

$MINIT
$MACPT
$MCMG
$MRECV
$MCME
$MSEND
$MTMG

The macro calls for memory allocation fUnctions allow the
user to dynamically obtain memory from the task group's memory
pool, to return this memory when it is no longer needed, and to
ascertain the amount of memory available in a specified pool.

The macro call that allocates a memory block has two forms:
one form obtains a memory block of the specified size only; the
other obtains the largest existing contiguous memory block if a
block of the specified size cannot-be found. The macro call that
returns a memory block also has two forms: one form returns an
entire memory block; the other returns a specified part of the
block.

The macro calls are:

• ~et Memory/Get Available Memory
• Return Memory/Return Partial Block of Memory
• status Memory Pool

MESSAGE REPORTER FUNCTIONS

$GMEM
$RMEM
$STMP

The macro calls for message reporting allow an application to
display error or help messages at the user's terminal.

The macro calls specify the code of a message that the
Message Reporter retrieves from a message library.

The message reporting macro calls allow an application to:

• Display chained messages {i.e., after viewing the first
message in the chain, the user can request further
information}

2-5 CZ05-02

• Substitute arguments for parameters in the message text
(e.g., specify a device name in a Rdevice disabled
message n)

• Return messages to an application buffer rather than to a
terminal

• Display messages at terminals running in any of the
following modes:

- Command
- Menu
- Display formatting and control

The message reporting macro calls are:

• Report Message ($RPMSG)
• Report Message, Display For~atting and Control ($RPDFC).

OPERATOR INTERFACE FUNCTIONS

The macro calls for operator interface functions enable tasks
to communicate with the operator terminal by:

• Displaying a message on the operator terminal

• Sending a message to the operator terminal and receiving a
response

"
• Activating or deactivating console suppression; i.e.,

suspending or restoring issuance of messages to the
operator terminal for the issuing task group.

The macro calls are:

• Console Message Suppression
• Operator Information Message
• Operator Response Message

$CMSUP
$OPMSG
$OPRSP

The $OPMSG and $OPRSP macro calls require input/output
request blocks (IORBs), which can be generated by the $IORB macro
call. (Section 5 describes request blocks in general, Appendix C
describes the IORB in detail, and Volume II describes the $IORB
macro call.)

OVERLAY HANDLING FUNCTIONS

Overlay handling calls locate, load, execute, and unload
fixed and floatable overlays. Fixed overlays are loaded into
memory at a displacement from the base of the root segment fixed
at link time. Floating overlays are loaded as follows: If a
bound unit can be shared between task groups (i.e., is linked as
globally sharable), its floating overlays are loaded into system
memory; otherwise, floating overlays are loaded into any
sufficient block of the issuing task's task group memory.

2-6 CZ05-02

When bound units with fixed overlays are loaded, enough space
is reserved in memory so that the linked, fixed overlay with the
highest address can be loaded. Overlay handling calls similarly
reserve overlay areas for floating overlays. Overlay areas are
areas in memory of fixed size that accommodate the largest
floating overlay associated with a bound unit. Overlay areas are
managed by means of overlay area tables (OATs), which ensure that
space in overlay areas is occupied only by overlays that are
currently in use. Thus, overlay handling functions relieve the
user of writing an overlay manager.

The overlay handling macro calls are:

• Overlay, Release, Wait, and Recall
• OVerlay Area, Release
• Overlay Area, Reserve, and Execute OVerlay
• Overlay Area, Reserve, and Load Overlay
• Create Overlay Table
• Delete Overlay Table
• Overlay, Execute
• Overlay, Load
• Overlay, Status
• OVerlay, Unload

PHYSICAL I/O FUNCTIONS

$OVRCL
$OVRLS
$OVRSV
$OVRLD
$CROAT
$DLOAT
$OVEXC
$OVLD
$OVST
$OVUN

The Request I/O ($RQIO) macro call, used in conjunction with
the input/output request block (IORS), allows direct control by
the user of device drivers or communication line protocol
handlers. If direct access to devices is not a requirement, File
System macro calls provide a more convenient means of handling
input/output operations.

See Sections 6 and 7 for a complete description of physical
I/O functions, including details on device drivers and line
protocol handlers.

The macro routine/call for physical I/O is:

Request I/O Transfer $RQIO

REQUEST AND RETURN FUNCTIONS

The macro calls for request and return functions enable an
issuing task to perform the following:

• Ascertain the address of the first request block in the
queue of requests placed against it

• Ascertain the completion status of request blocks placed
against it

• Defer the proceSSing of a request placed against it

2-7 CZOS-02

• Terminate the request that it is processing, marking it as
completed

• Wait for the completion of its own request(s) before
resuming execution

• Issue a common return sequence for called subroutines.

When a task defers the processing of a request placed against
it, it dequeues the request and requeues it at a specified
priority level on its request queue. (This priority level is not
to be confused with the priority level, or interrupt level, at
which the task is running.) The deferred request is requeued at
either the head or tail of any other requests deferred at the
specified priority level. The capability of deferring a request
is typically used by device drivers in order to give precedence
to one type of request over another type.

The macro calls for request and return functions are:

• Dequeue and Post
• Defer Request on Tail
• Defer Request on Head
• Postpone Request on Tail
• Recall from Head
• Return Request Block Address
• Return
• Terminate Request
• Test Completion Status
• Wait Any
• Wait for Operation to Complete
• Wait on Request List
• Wait on Multiple Request List

$DQPST
$DFRTL
$DFRHD
$PPNTL
$RCLHD
$RBADD
$RETRN
$TRMRQ
$TEST
$WAITA
$WAIT
$WAITL
$WAITM

Section 5 and Volume II describe the macro calls for
generating request blocks. Appendix C shows request block
formats.

SEMAPHORE HANDLING FUNCTIONS

A semaphore is a mechanism for coordinating the use of
resources within task groups. Once defined, semaphores control
access to multiple resources and control multiple requests for
the same resource.

A semaphore is defined for each resource to be controlled and
is given a 2-character ASCII semaphore name, which is a system
symbol recognized by the Monitor. Every requestor of a resource
whose use must be coordinated issues appropriate Monitor calls to
the named semaphore to request or release the resource. The task
that defines the semaphore assigns the semaphore's initial value.
The monitor increments or decrements this initial value when the
resource is released or requested/reserved, respectively.

2-8 CZOS-02

A requestor obtains use of a resource if the semaphore value
is greater than zero at the time of the request. If the value is
zero or negative, the requestor either waits until the resource
becomes available or continues executing, depending upon the
macro call issued to make the request. The initial value of the
semaphore determines the number of users who can utilize a
resource at a given time. An initial value of 2 allows two
simUltaneous users, an initial value of 4 allows four users, etc.

Semaphore function macro calls are used to:

• Define a semaphore and set its initial value

• Increment the current-value counter

• Decrement the current-value counter

• Queue a semaphore request block if the requested resource
is not available

• Remove a semaphore request block from its queue

• Delete a semaphore.

The macro calls for semaphore handling are:

• Cancel Semaphore Request
• Define Semaphore
• Release Semaphore
• Request Semaphore
• Reserve Semaphore
• Delete Semaphore

SOFTWARE REBOOT

$CNSRQ
$DFSM
$RLSM
$RQSM
$RSVSM
$DLSM

The Software Reboot Facility reinitializes the system without
operator intervention. It is activated dynamically by exhaustion
of trap save areas or indirect request blocks, and by Watchdog
Timer timeouts. The user can direct that a dump be taken before"'
reinitialization of the system.

The Software Reboot routines/calls are:

• Modify Reboot Parameters
• Reboot
• Unlock Dumpfile

STANDARD SYSTEM FILE I/O FUNCTIONS

$RBPRM
$RBOOT
$RLDMP

A task group can access standard system files (command-in,
user-in, user-out, error-out, and message library) through
standard system file I/O macro calls. Other macro calls shown
below allow the task to redefine certain standard system files.
Specifically, the macro routines enable a task to:

2-9 CZ05-02

• Read the next record from the command-in file
• Write the next record to the error-out file
• Read the next record from the user-in file
• Write the next record to the user-out file
• Redefine the user-in file
• Redefine the user-out file
• Redefine the message library file.

The macro calls are:

• Command In (read command-in file)
• Error Output File
• New Command In
• New Message Library File
• New User Input File
• New User Output File
• User Input File
• User Output File

TASK CONTROL FUNCTIONS ,
~ --- ----- -- - --

$CIN
$EROUT
$NCIN
$Nl:'.LF
$NUIN
$NUOUT
$USIN
$USOUT

The macro calls for task control allow the user to:

• Cancel a previously issued request

• Create, request, spawn, suspend, activate, delete, and
abort a task

• Attach, load, transfer, and detach a bound unit to/from a
task

• Create and delete a segment for a task's bound unit

• Expand and shrink a created segment

• Process command lines

• Roll back (recover) updated records in all files updated
since the last execution of Clean Point

• Declare a "clean point" at which

- Updates made to records are complete
- Updated records are written to disk

The updated file is consid~red to be in a consistent
state

- Records previously locked by the issuing task are
unlocked.

Macro calls for task control are:

• Cancel Request
• Clean Point
• Command Line, Process
• Create Segment

2-10

$CANRQ
$CLPNT
$CMDLN
$CRSEG

CZ05-02

• Delete Segment $DLSEG
• Expand Created Segment $XPCS
• Shrink Created Segment $SHCS
• Create Task $CRTSK
• Delete Task $DLTSK
• Request Task $RQTSK
• Spawn Task $SPTSK
• Bound Unit, Attach $BUAT
• Bound Unit, Load $BULD
• Bound Unit, Detach $BUDT
• Bound Unit, Transfer $BUXFR
• Kill Task $KILLT
• Roll Back $ ROLBK

TASK GROUP CONTROL FUNCTIONS

A task group is a named set of one or more tasks, memory
space, files, peripheral devices, and priority levels. Any
number of task groups may be defined. (Task groups and tasks are
explained in detail in the System Concepts manual.)

The macro calls for task group control allow the user to:

• Create, spawn, request, or delete a task group

• Enable or disble certain functionalities (e.g., message
chaining, ready prompt) for a task group

• Terminate a current task group and restart a task group
request

• Abort a task group request

• Terminate a user session

• Declare a checkpoint from which processing can be
restarted after premature termination of a group request

• Assign or disassign checkpoint files to a task group

• Abort a task 9roup

• Terminate a user session.

• Reduce a task group's memory requirement by shrinking its
group work segment (GWS).

A task executing under one group can initiate another group_
First, a task group must be defined in order to create task group
control structures and load the bound-unit root segment as the
lead task. Then, a group request must be issued to activate the
lead task for execution. Tasks can be executed concurrently in
this task group with the use of control functions or commands.

2-11 CZ05-02

The task group can be deleted; no more requests can be made
against this group after it has been marked for deletion. When
all tasks in the group terminate and become dormant, all memory
associated with the group is returned to its memory pool,
becoming available to other groups.

The several phases of task creation, activation, and deletion
occur in sequence when a Spawn Task Group macro call is issued.

A task can suspend a task group's execution and then activate
that task group.

A task can terminate the current group request and then
restart the processing of the original task group request.

Aborting a task group deletes the group immediately, before
all its tasks terminate and become dormant.

A task can terminate a user session, then either restart the
group request, begin a new login sequencer or disconnect the user
terminal.

A task can abort the current request for the activation of a
specified group. In this case, the next request {if any} against
that group will be processed.

Some macro calls listed below use a parameter block, which
extends the argument list of the task request block. The macro
call that genera-tes parameter blocks ($PRBLK) is described in
Volume II; block format is shown in Appendix c.

The macro calls for task group control are:

• Abort Group $ABGRP
• Abort Group Request $ABGRQ
• Activate Group $ACTVG
• Checkpoint $CKPT
• Checkpoint File $CKPFL
• Create Group $CRGRP
• Delete Group $DLGRP
• New Process $NPROC
• Request Group $RQGRP
• Set Group Attributes $SGRPA
• Spawn Group $SPGRP
• Suspend Group $SUSPG
• Shrink Group Work Segment $SHGWS

TERMINAL CONTROL FUNCTIONS

Terminal control functions allow secondary logins and the
transfer of primary or secondary users between task groups.

2-12 CZOS-02

When someone logs into the system as a secondary user, the
Listener component attaches a secondary user's terminal to an
existing task group if the user, when logging in, specifies the
task group and if that task group has requested a secondary
terminal.

The macro calls for terminal control functions permit:

• The task group to request any secondary terminal

• The task group to request a specific secondary terminal

• The task group to transfer a user to Listener, along with
a new login line that automatically associates the user
with another task group

• The task group to transfer a user, along with a new login
line, to Listener, which later returns the user to the
task group

• The task group to release a secondary terminal.

The appropriate macro calls are:

• Request Specific Terminal
• Request Terminal
• Release Terminal
• Transfer and Return User
• Transfer User

TRAP HANDLING FUNCTIONS

$RQSPT
$RQTML
$RLTML
$XRETU
$XFERU

The macro calls for trap functions allow an application to
designate the traps to be handled during its executiDn.
Specifically, the macro calls allow the user to:

• connect a user-written, generalized trap handling routine
to a task

• Enable a specific trap or all traps

• Disable a specific trap or all traps.

Additionally, the user can transmit a software-generated trap
condition to a specific task.

Appendix A describes traps and trap handling in detail.

The macro calls for trap handling are:

• Disable User Trap
• Enable User Trap
• Trap Handler Connect
• Signal Trap

$DSTRP
$ENTRP
$TRPHD
$SGTRP

2-13 CZOS-02

USER REGISTRATION FUNCTIONS

User registration functions enable a user to be registered in
one or more subsystems, such as forms processing or networking_
These functions create, retrieve, modify, and delete a subsystem
record that establishes the user's access to a subsystem and
contains various statistics.

Before a user's subsystem record can be created, the user
must be registered in the system (as distinct from the subsystem)
by the system administrator. To register a user in the system,
the administrator creates a registration record by means of the
Edit Profile utility. One user registration function, Profile
Record, Get User Information ($PRFIFj, retrieves limited informa
tion from the registration record. The subsystem and registra
tion records belong to the profiles file, which is the system's
user registration data base.

Using the Edit and List Profile utilities, the system
administrator can maintain a user's subsystem record(s) as well
as registration record. First, however, the system programmer
must build a subsystem module as an interface between the
utilities and subsystem records. Specifications for subsystem
modules are given in Appendix F.

User registration macro calls allow the user to:

• Create a skeletal subsystem record that contains user id,
time of creation, and subsystem id

• Read a subsystem record

• Read limited information from a registration record

• Update a subsystem record

• Request and verify a password from the user of a terminal
that has experienced a phsyical disconnection.

User registration macro calls are:

• Profile Record, Accounting Update $PRFAU
• Profile Record, Create $PRFCR
• Profile Record, Delete $PRFDL
• Profile Record, Get $PRFGT
• Profile Record, Get User Information $PRFIF
• Profile Record, Update $PRFUP
• Reverify Password $RVFPW

2-14 CZOS-02

Section 3
FILE SYSTEM

FUNCTIONS

File system macro calls enable applications to access data
files, including device files. These functions fall into the
following categories:

• File management
• Data management
• Storage management.

This section describes each category and its use of the File
Information Block (FIB). All of the functions mentioned below
are described in detail in Volume II of this manual.

FILE MANAGEMENT FUNCTIONS

The macro calls for file management consist of the following
functions:

Change Working Directory
Close File
Create Directory
Create File
Delete File
Delete Directory
Expand Pathname
Get Device Information

3-1

$CWOIR
$CLFIL
$CRDIR
$CRFIL
$DLFIL
$DLDIR
$XPATH
$GIDEV

09/86
CZOS-02A

*

*

I
I

I

*

Get File
Get File Access Rights
Get File Accounting Information
Get File Information
Get Working Directory
Grow File
Link File
Link Name
Unlink File
Unlink Name
Open File
Remove File
Rename File/Directory
Mo-dify File
Set Terminal File Characteristics
Set Task Identifier
Reset Task Identifier
Test File For Input
Test File For Output
Shrink File
Swap File
Wait For File Input
Wait For File Output
Cleanpoint
Rollback

$GTFIL
$GAFIL
$GTACT
$GIFIL
$GWDIR
$GRFIL
$LKFIL
$LKNME
$ULFIL
$ULNME
$OPFIL
$RMFIL
$RNFIL
$1-1DF IL
$STFIL
$STTID
$RSTID
$TIFIL
$TOFIL
$SHFIL
$SWFIL
$WIFIL
$WOFIL
$CLPNT
$ROLBK.

The macro calls listed above are preparatory to processing a
file. Specifically, file management macro calls allow the user
to perform the following:

• Create a file

• Delete a file

• Get a file (reserve a file for processing)

• Open a file

• Close a file

• Remove a file from processing

• Rename a file

• Modify a file's attributes

• Create a directory

• Delete a directory

• Rename a directory

3-2
09/86
CZOS-02A

• Change the working directory

• Get the name of the current working directory

• Expand disk space allocated to a file

• Contract disk space allocated to a file

• Expand pathname (develop a full pathname from a relative
pathname)

• Get information about a file

• Test the status of an I/O activity (terminal)

• Wait for the completion of an asynchronous I/O activity
(terminal)

• set the file characteristics of a terminal

• Return (recover) a file to its last consistent state after
a system or software failure

• Establish tasks, rather than groups, as independent users
of file recovery and record locking services

.. Re-establish groups as independent users of file recovery
and record locking services

• Swap to the next section of a multivolume tape file or
disk serial multivolume"file.

• Link a file or directory to a new pathname

Although the following functions are available through macro
calls, they are typically performed outside of program execution
by means of execution control (ECL) commands:

• Get File
• Remove File
• Create File
• Delete File
• Grow File
• Shrink File
1\ Rename File
• Modify File
• Create Directory
• Delete Directory
• Change Working Directory
• Get Working Directory
1\ Set Terminal File Characteristics
• Associate File
• Dissociate File.

3-3 CZOS-02

I

DATA MANAGEMENT FUNCTIONS

The following macro calls are considered data management
functions:

Delete Record
Read Record
Rewrite Record
Write Record

$DLREC
$RDREC
$RWREC
$WRREC.

The above macro calls provide for the transfer of logical
records between the user's record storage area and external
files. Before any data management calls can be executed, the
file to be accessed must have been reserved (by means of the Get
File or Create File functions) and opened (by means of the Open
File function). Moreover, before a file can be opened, it must
have been associated with a logical file number (LFN) by means of
a Get File or Create File function. Thus, data management and
file management macro calls are interdependent. Figure 3-1
partially illustrates this interdependence.

STORAGE MANAGEMENT FUNCTIONS

The following macro calls perform storage management
functions:

Read block
wait block
Write block

$RDBLK
$WTBLK
$WRBLK.

These calls transfer physical blocks of data between the
user's buffer and an external file. Storage management itself is
used transparently by data management to perform input/output.
An initial Read Record ($RDREC) call, for example, causes storage
management to transfer a block of data from external storage to a
buffer in memory. Data management then unblocks a record and
transfers it to a second buffer within the application.

By means of storage management read and write functions, the
user can transfer blocks of data directly to or from an
application buffer, bypassing an intermediate buffer and the
blocking/deblocking operations performed by data management.
Although highly efficient, storage management places on the user
responsibility for observing various file organizations and
formats while blocking/deblocking. The user of storage
management must also provide any necessary control information,
such as control interval headers and logical record headers.

By creating two application buffers and by using the Wait
Block macro call (described in Volume II) the user can perform
asynchronous I/O (i.e., process one block of data while another
is being transferred from device to memory).

3-4
09/86
CZ05-02A

NO

SGTFIt..

RESERVE THE
FIL.E FOR
PROCESSING

SOPFIL

OPEN IT

I
I
i

PROCESS IT USIWG
OA T A AND STORAGe
MANAGEMENT
FUNCTIONS

I

I

CLose IT

YES

VES

NO

$RMFIL

REMOVE THE
FILE FROM
PROCESSING

SCRFIl.

CREATE THE
FILE

REPEATED
N TIMES

SOLFIL

DELETE THE
FILE

Figure 3-1. Life Cycle of a File

3-5 CZ05-02

Like data management macro calls, storage management macro
calls cannot be executed until the file to be accessed has been
reserved, opened, and associated with an LFN.

FILE INFORMATION BLOCK

Data management, storage management, and several file
management functions must pass arguments to the file system by
means of a data structure called the File Information Block
(FIB). The arguments passed include the LFN of the file to be
accessed, the address of the user's record area, the size of
input and output records, and the type of key by which records
are to be located.

The following macro calls must use an FIB:

Open File
Close File
Swap File
Test File
Read Record
Write Record
Rewrite Record
Delete Record
Read Block
write Block
Wait Block

$OPFIL
$CLFIL
$SWFIL
$TIFIL~ $TOFIL
$RDREC
$WRREC
$RWREC
$DLREC
$RDBLK
$WRBLK
$WTBLK

Some of the arguments required for one type of macro call
(e.g., storage management) are not applicable to the other
types. Thus, a FIB generated for data/file management functions
differs in format from a FIB generated for storage management
functions.

The user can generate a FIB and values for its entries by
means of the $FIB macro call. Depending on the argument (s)
supplied with it, $FIB does one of the following:

• Generates an FIB, with default values, for data/file
management

• Generates an FIB for data/file or storage management, with
values defined by the user

• Modifies values of an existing FIB.

Using $FIB, the user can set values for a new or existing FIB
by means of keywords that specify a field and expressions that
specify a value. The $FIB argument "IRL=90", for example, refers
to the input record length field of a data/file managment FIB and
sets a maximum input record length of 90 bytes. Other keywords
are specific to storage management functions.

3-6 CZ05-02

To modify the fields of an existing FIB, you can employ
offset tags rather than $FIB keywords. (Offset tags are
discussed later in this section and in Section 5). $FIBDM
generates tags specific to data/file management functions; $FIBSM
generates tags specific to storage/management functions. $TFIB
generates two sets of tags applicable to both kinds of file
system functions.

File Information Block (FIB) for Data Management

Table 3-1 describes the entries of a FIB used with data/file
management macro calls. The offset tags for these entries,
generated by $FIBDM, are shown in Appendix C.

Table 3-1. File Information Block (FIB) for Data Management

Entry

Logical file
number (LFN)

Program view

User record
pointer

Size
(bytes)

2

2

4

Description

Specifies the logical file number (LFN) by
which the file is refered to. The LFN is
the common element linking the FIB and the
external file; this connection is made via
the $CRFIL or $GTFIL macro call (or
equivalent command).

Describes user visibility to the file, and
the file's functional capabilities. Bit 0
set to 0 indicates that this FIB is to be
used for data management (record level)
access. Table 3-2 describes this entry in
detail and its bit settings for data
management calls.

Identifies the start of the user-record
area as follows:

$RDREC - Identifies the storage area into
which records are delivered by the system.

$RWREC, $WRREC - Identifies the storage
area from which records are taken by the
system.

The storage area must be large enough to
contain the longest record, excluding
headers, to be written to or received from
the file.

09/86
3-7 CZ05-02A

I

Table 3-1 (cont). File Information Block (FIB) for Data
Management

Entry

In record
length

Out record
length

In record
status

Out record
status

Size
(bytes) Description

2 Specifies the maximum size (in bytes) of
the user-record area for $RDREC
operations.

2 Specifies the actual size (in bytes) of
the record to be written or read, as
follows:

1

1

$RDREC - The system updates this entry to
reflect the actual length (in bytes) of
the last record delivered into the
user-record area.

$RWREC, $WRREC - Specifies the actual
length (in bytes) of the record, excluding
the headers, to be written in the file.

On write operations, indicates the type of
terminal control information in each
record as follows:

0000 = unknown terminal control
information

0001 = no terminal control information

0010 = standard GCOS 6 printer control
characters

On read-record operations bit a = 1
indicates that the record just read is a
duplicate of a previous record (i.e., it
contains the same key value as the
previous record). On write-record or
rewrite-record operations bit 0 = 1
indicates that the record just written is
a duplicate (i.e., it contains the same
key value as a record already in the
file).

On read-record operations bit 1 = 1
indicates that there are more duplicates
for this record still remaining in the
file.

3-8 CZ05-02

Table 3-1 (cont). File Information Block (FIB) for Data
Management

Entry

Out record
status
(cont)

In record
type

Out record
type

In key
pOinter

Size
(bytes)

2

2

4

Description

For example, if three records exist with
the same key value, then reading the first
one will return in this entry:

bit 0 = 0
bit 1 = 11

reading the second record will return:

bit 0 = 1
bit 1 = 11

reading the last record will return:

bit 0 = 1
bit 1 = 0

$RDREC - Specifies the record type of the
record to be read. 'FFFF' indicates that
any record type is acceptable.

$WRREC, $RWREC, $DLREC - Specifies the
record type of the record to be updated.

$RDREC - Specifies the record type of the
record delivered to the user.

Identifies the start of the user-key area
in which the key value is stored for the
following $RDREC macro call functions:

Read with key
Read position equal
Read position greater than
Read position greater than or equal
Read position forward
Read position backward

For the following $WRREC macro call
functions:

Write with key
Write position equal
Write position greater than
Write position greater than or

equal

3-9 CZ05-02

Table 3-1 (cont). File Information Block (FIB) for Data
Management

Entry

In key
pointer
(cont)

In key
format

Size
(bytes)

1

Description

Write position forward
Write position backward

For the following $RWREC macro call
function:

Rewrite with key

And for the following $DLREC macro call
function:

Delete with key

For CALC, Primary, and Alternate keys, the
keys to be used must be initialized within
the user's record area and the field must
point to that key.

The type of key is specified in the "in
key format" entry below.

Identifies the type of key pointed to by
the "in key pointer" entry above, as
follows:

o - None specified; the type of key is
determined by the format of the file.

1 - Primary, Relative, or CALC (Random),
as determined by the file format:

• Primary key for indexed files

• Relative key for relative files

• CALC key for random files

2 - Simple key

3 - Alternate key

-1 - Current key of reference

The entry is meaningful only for the macro
calls specified in the "in key pointer"
entry defined above.

3-10 CZOS-02

Table 3-1 (cont). File Information Block (FIB) for Data
Management

Entry

In key
length

Out record
address

Reserved

Size
(bytes) Description

1 Specifies the length (in bytes) of the
user-key area identified in the "in key
pointer" entry described above. Only
meaningful for primary, alternate, and
CALC keys; simple and relative keys are
always assumed to be four bytes.

4

4

This field is available for the system to
place the media address of the last record
transferred by the last data management
macro call.

Normally, this address is a 32-bit simple
key (i.e., it specifies the control
interval and logical record number within
the control interval). However, if the

I f ile is accessed v ia a relative key as
specified in the "in key format" field,

. then this address is a 32-bit relative key
(i@e., relative logical record number in
the file) &

This field is undefined if the operation
is not performed as expectede

For card readers, printers, and terminal
devices~ this field contains a count of
the records transferred1 i~e., this field
is incremented by 1 for each access to the
device.

This entry is reserved for future use~
must be set to zeros.

Program View Entry in FIB for Data Management

Table 3-2 shows the contents of the 2-byte program view entry
for data management (record level) access. The program view
entry describes to the file system how the file is to be
accessed, and, to some extent, what it looks like to the
programmer. The file system uses the FIB's contents to ensure
that the file is accessed only as intended. Keywords of the $FIB
macro call and offset tags generated by $FIBDM both provide a
means of refering to fields within the program view entry.

3-11 CZ05-02

Bits a through 9 of the program view entry are processeq only
when the file is opened .. and cannot be changed while the file is
open.

Table 3-2. Program View Entry in FIB for Data Management

Entry

Access level
(Bit 0)

Process rules
(Bits 1-4)

Key type
(Bits 5-9)

Size
(bits) Description

1 Specifies that file ~s accessed
via data management macro calls,
as follows:

4

5

a - Access via data management
macro calls.

Specifies how the file can be
processed; that is, it specifies
which types of data management
macro calls are allowed as
follows:

Binary

1000
0100
0010
0001

nnnn

Permitted
Macro Calls

$RDREC
$WRREC
$RWREC
$DLREC

Any combination of the
settings to allow the
desired data management
macro calls listed
above.

A macro call that is not per
mitted (as specified in this
,field) causes an access viola
tion error.

Specifies the type of keys that
can be used to access the file
as follows:

Permitted
Binary Key ~

10000 Primary

3-12

Related
Macro
Calls

$OPFIL

$OPFIL

czo 5-02

Table 3-2 (cont). Program View Entry in FIB for Data Management

Entry

Key type
(Bits 5-9)
(cont)

Size
(bits)

,

Description

01000 CALC (Random)

00100 Alternate

00010 Relative

00001 Simple

00101 Alternate and
Simple

10101 Alternate and
Simple plus Primary

01101 Alternate and
Simple plus CALC

00111 Alternate and
Simple plus Relative

If the key type specified in
this field is not permitted by
the type of file being pro
cessed, a bad program view error
results. The following types of
keys are allowed by the speci
fied types of files:

File Organization Key TYEe

UFAS Indexed, Primary
Alternate

UFAS Random CALC

UFAS Disk Resident Alternate
Files

UFAS Relative, Relative
Fixed Relative

UFAS Disk Resident Simple
Files

3-13

Related
Macro
Calls

CZ05-02

Table 3-2 (cont). Program View Entry in FIB for Data Management

Entry

Record class
(bit 10)

Record
visibility
(Bit 11)

Key storage
area alignment
(Bit 12)

Size
(Bits) Description

1 Specifies type of logical
records that can be present in
the file as follows:

1

1

o - Any type (i.e., fixed- or
variable~length Lecords
allowed).

1 - Only fixed-length records
allowed.

Specifies whether or not deleted
records are skipped during read
next record ($RDREC) operations
as follows:

o - Deleted records not visible
(i.e., skip them)

1 - Deleted records are visible
(i.e., the system issues the
record not found return code
when a deleted record is
accessed).

Specifies the boundary alignment
of the user-key area (see nin
key pointer n entry in Table 3-1)
as follows:

o - Key storage area begins at
even-byte boundary (word
aligned) •

1 - Key storage area begins at
odd-byte boundary.

3-14

Related
Macro
Calls

$RDREC
$WRREC
$RWREC

$RDREC

$RDREC
$WRREC
$ RWREC
$DLREC

CZ05-02

Table 3-2 (cont). Program View Entry in FIB for Data Management

Size
Entry (Bits) Description

Record storage 1 Specifies the boundary alignment
area alignment of the user-record area (see
(Bit 13) "User Record Pointer" entry in

Table 3-1) as follows:

o - Record storage area begins
at even-byte boundary (word-
aligned) •

1 - Record storage area begins
at odd-byte boundary.

Transcription 1 Specifies how data is to be
mode transferred as follows:
(Bit 14)

o - Data is transferred in
device-specific native
(ASCII) mode.

1 - Data is transferred in
binary transcription mode.
(See Note 2.)

Reserved 1 Reserved, must be zero.
(Bit 15)

NOTES

1. Bits 10 through 15 may be set after an $OPFIL
macro call and before any data management
macro call.

2. Binary transcription mode is meaningful only
for card devices, seven-track tapes, and
EBCDIC tapes. For card devices, this mode is
equivalent to verbatim mode (see Section 6).

3-15

Related
Macro
Calls

$RDREC
$WRREC

None

CZ05-02

File Information Block (FIB) for storag_e Management Access

Table 3-3 describes the entries of a FIB used with storage
management macro calls. The offset tags for these entries,
generated by $FIBSM, are shown in Appendix C.

Program View Entry in FIB for storage Management

Table 3-4 shows the contents of the 2~byte program view
entry for storage management (block level) access. The program
view entry describes to the file system how the file is to be
accessed, and to some extent, what it looks like to the
programmer. The file system uses the FIB's contents to ensure
that the file is accessed only as intended. Keywords of the $FIB
macro call and offset tags generated by $FIBSM both provide a
means of referring to fields within a program view entry.

Bits 0 through 9 of the program view entry are processed
only when the file is opened, and cannot be changed while the
file is open.

Offsets Definitions

You can refer to specific locations in the file information
block and other argument structures by using offsets definition
macro calls. These calls, summarized in Section 5 and described
in detail in Volume II of this manual, define offsets tags.

Table 3-5 shows the offsets definition macro calls and the
structures for which they define tags.

Offsets definition macro calls can be specified only once per
assembly procedure. They provide tags that are equated to
specific offsets in argument structures and FIBs. For example,
assuming that the address of an argument structure labeled FILE A
has been loaded into a base register as follows:

LAB $B4,FILE_A

and assuming that $CRPSB has been specified, the following
address syllable can be used to refer to the argument structure
entry that identifies the control interval size:

This entry effectively points to the displacement FILE_A+5 in the
parameter structure.

Volume II of this manual describes each displacement
definition macro routine/call and its tags, displacements, and
entry names in detail.

3-16 CZ05-02

Table 3-3. File Information Block (FIB) for Storage Management

Entry

Logical file
number (LFN)

Program view

Buffer pointer

Transfer-size

Block size

Block number

Reserved

Size
(bytes)

2

2

4

2

2

4

16

Description

Specifies the logical file number with
which the file is referenced. The LFN
is the common element linking the FIB
with the external file; this connection
is made with the $CRFIL or $GTFIL macro
call, or equivalent command.

Describes the user visibility to the
file and the file's functional
capabilities. Bit 0 set to 1 indicates
that this FIB is to be used for storage
management (block level) access. Table
3-4 describes this entry in detail, and
its bit settings for storage management
macro calls.

Identifies the start of the buffer area
as follows:

$RDBLK - Identifies the buffer area into
which blocks of data are delivered.

$WRBLK - Identifies the buffer area from
which blocks of data are taken.

Specifies the size (in bytes) of the
data transfer (iee., the size of the
bUf r).

Specifies the size of the block (in
bytes). For disk files the size must be
a multiple of physical sector size.

Specifies the starting block number for
the I/O transfers~ is relative to the
start of the file and to the block size
(described above). This entry is
incremented by I after each I/O
transfer; therefore, a user's dynamic
changes to the block size also require
changes to the contents of this entry_
The first block in a file is block O.

Reserved for later use~ must be set to
zeros ..

3-17
09/86
CZOS-02A

I

Table 3-4. Program View Entry in FIB for storage Management

Entry

Access level
(Bit 0)

Process rules
(Bits 1-4)

Reserved
(Bits 5-12)

Buffer
Alignment
(Bit 13)

Size
(bits) Description

1 Specifies that file is accessed
via storage management macro
calls, as follows:

4

8

1

1 - Access via storage management
macro calls;

Specifies how the file can be
processed; that is,' it specifies
which types of storage management
macro calls are allowed as
follows:

Binary

1000
0100
1100

Permitted
Macro Calls

$RDBLK
$WRBLK
$RDBLK, $WRBLK

A macro call that is not per
mitted in this field causes an
access violation error.

Reserved; must be set to zeros.

Specifies the boundary alignment
of the user buffer (see "Buffer
Pointer" in Table 3-3) as
follows:

a - Buffer begins at even-byte
boundary (word aligned).

1 - Buffer begins at odd-byte
boundary.

3-18

Related
Macro
Calls

$OPFIL

$RDBLK
$WRBLK

CZ05-02

Table 3-4 (cont). Program View Entry in FIB for
Storage Management

Size
Related

Macro
Entry (Bits) Description Calls

Transcription 1
mode

specifies how data is transferred $RDBLK
as follows: $WRBLK

(Bit 14)

Synchronous/
asynchronous
indicator
(Bit 15)

I

o - Data is transferred in
device-specific native
(ASCII) mode.

I - Data is transferred in binary
transcription mode. (See
Note 2.)

Specifies whether or not $RDBLK
or $WRBLK macro calls are exe
cuted synchronously or asynchro
nously as follows:

o - $RDBLK or $WRBLK macro calls
are to be executed synchro
nously. When synchronous
$RDBLK or $WRBLK macro calls
are issued, a $WTBLK macro
call is not required to syn
chronize buffer use.

I - $RDBLK or $WRBLK macro calls
are to be executed asynchro
nously (i.e., a $WTBLK macro
call is required to
synchronize.)

NOTES

1. Bits 10 through 15 may be set after an $OPFIL
macro call and before any Storage Management
macro call.

2. Binary transcription mode is meaningful only
for card devices, seven-track tapes, and
EBCDIC tapes. For card devices, this mode is
equivalent to verbatim mode {see Section 6}.

3-19

$RDBLK
$WRBLK

CZ05-02

Macro Call

$CRPSB

I $CRRDB

$DIPSB

$GTPSB

$GAPSB

$GIPSB

$GRPSB

$GIFAB

I $GNPSB

$SHPSB

$TFIB

Table 3-5. Offsets Definition Macro Calls

Affected structure

Argument structure for Create File macro call
($CRFIL)

Record descriptor block pointed to by the $CRPSB
argument structure

Argument structure for Get Device Information macro
call

Argument structure for Get File macro call ($GTFIL)

Argument structure for Get File Access Rights macro
call ($GAFIL)

Argument structure for Get File Information macro
call ($GIFIL)

Argument structure for Grow File macro call ($GRF~L)

File attribute block pointed to by the $GIPSB
argument structure

Argument structure for Get Name macro call ($GNFIL)

Argument structure for Shrink File macro call
($SHFIL)

File information block for the following macro calls:

Open File
Close File
Test File
Read Record
Write Record
Rewrite Record
Delete Record
Read Block
Write Block
Wait Block

3-20

$OPFIL
$CLFIL
$TIFIL, $TOFIL
$RDREC
$WRREC
$ RWREC
$DLREC
$RDBLK
$WRBLK
$WTBLK

09/86
CZ05-02A

Table 3-5 (cont). Offsets Definition Macro Calls

Macro Call Affected structure

$FIBDM

$FIBSM

$MDPSB

File information block specific to data management
(record level) access; used for the following macro
calls:

Open File
Close File
Test File
Read Record
Write Record
Rewrite Record
Delete Record

$OPFIL
$CLFIL
$TIFIL, $TOFIL
$RDREC
$WRREC
$RWREC
$DLREC

File information block specific to storage management
(block level) access; used for the following macro
calls:

Open File
Close File
Read Block
Write Block
Wait Block

$OPFIL
$CLFIL
$RDBLK
$WRBLK
$WTBLK

Argument structure for Modify File macro call
($MDFIL)

3-21 CZ05-02

Section 4
COMMUNICATIONS

PROCESSING FUNCTIONS

Communications proceSSing refers, in this section, to the
transfer of data between an application program and a remote
device (i.e., terminal or printer). A remote device is one con
nected to a Multi-Line Controller (MLC)1 a local device is
attached instead to a Multiple Device Controller (MDC). The
control of local devices by means of device drivers is discussed
in Section 6.

OVERVIEW OF COMMUNICATIONS PROCESSING

The user can control the transfer of data between an applica
tion program and a remote device either by means of the file
system or, more directly, by physical input/output.

Using the file system, the programmer employs many of the
file system functions described in Section 3 (e.g., Open File,
Read Record, Write Record). The parameters for these operations
are passed between the application program and the file system by
means of the file information block (FIB), which is also
described in Section 3. The system translates the values of FIB
entries into values for the entries of the input/output request
block (IORB). Thus marked, the IORB provides instructions to a
line protocol handler (LPH), which carries out the desired
input/output operation.

4-1 CZOS-02

I

I

Using physical I/O, the programmer directly constructs and
issues the IORS instead of doing so indirectly by means of file
system functions and the FIB. To write output to a terminal, for
example, the programmer performs the following:

1. Generates an IORB by means of the $IORB macro call

2. Generates lORE offsets tags (by means of the $IORED macro
call), which enable the programmer to refer to and fill
fields in the lORE

3. Sets, in the appropriate lORE fields, a write function
code and parameters specializing the write operation

4. Issues a Request Input/Output ($RQIO) macro call, which
causes the appropriate LPH to perform the operation
indicated by the lORE.

The above example assumes that the device being written to
has already been connected by means of previously issued $IORB
and $RQIO macro calls (as explained in the final subsection).

COMMUNICATIONS PROCESSING THROUGH THE FILE SYSTEM

The following subjects are discussed below:

• File system functions applicable to the communications
processing

• Synchronous and asynchronous I/O

• Use of specific file system functions

• Sequences of file system functions useful for communica
tions processing

• Use of the Set Terminal Characteristics function/command
for changing terminal characteristics.

File System Functions

The file system functions applicable to communications
processing fall under the headings of File Management and Data
Management.

FILE MANAGEMENT FUNCTIONS

By means of these functions, a terminal can be reserved for
processing, opened, closed, and associated with a logical file
number (LFN) that identifies the file to the system. The macro
calls that perform these and other related functions are:

Get File
Open File

$GTFIL
$OPFIL

4-2
09/86
CZ05-02A

Close File
Test File
wait File

$CLFIL
$TIFIL/$TOFIL
$WIFIL/$WOFIL

DATA MANAGEMENT FUNCTIONS

Data management functions enable an application to read and
write logical records either synchronously or asynchronously.
(Synchronous and asynchronous I/O operations are explained later
in this section.) Data management functions are:

Read Record
Write Record

$RDREC
$WRREC

Synchronous Input/Output

A terminal can be configured for either synchronous or
asynchronous I/O operations. In synchronous operations, the
processing of data and the transfer of data (between application
and terminal) occur sequentially rather than simultaneously.
Thus, the application must wait until the transfer of data is
complete before processing can resume. Synchronous I/O is best
suited to situations in which data is transferred between an
application and a single terminal and to such activity as
connecting and disconnecting a terminal.

Asynchronous Input/Output

If a terminal is configured for asynchronous rIo, data is
transferred between the te the application by way of a
system buffer~ Thus, asynchronous I/O allows the application to
process records while the file system reads or writes records to
or from the buffer~

Asynchronous I/O and the data/file management functions
listed above allow an application to access multiple interactive
terminals efficiently@ For terminals operating asynchronously,
the system automatically schedules an anticpatory read, which
transfers input entered at the terminal to a buffer in system
memory_ If an application immediately issues a Read Record
($RDREC) call, the task must wait until the system buffer has
received input from the terminal. While the task is waiting,
data may be available from another terminal reserved by the
application. Instead, the application can issue the Test Input
File ($TIFIL) macro call to determine whether a read has
completed at a specific terminal. Alternatively, Wait File for
Input ($WIFIL) can be used to wait until a read has completed at
any of the reserved terminals. A subsequent Read Record to the
terminal would then return the data for processing by the
application. The Test File function also enables an application
to test the completion of a physical connection to a terminal
before issuing an order to that terminal.

4-3
09/86
CZ05-02A

*

I

Using File System Functions

This subsection provides specific information on the use of
the following data and file management functions:

Get File
Open File
Test File
Wait File

$GTFIL
$OPFIL
$TIFIL/$TOFIL
$WIFIL/$WOFIL

GET FILE ($GTFIL) MACRO CALL GUIDELINES

The Get File function reserves a file for processing and
COnnects a file to a logical file number (LFN). The LFN is used
in other file system calls (e.g., $OPFIL, $RDREC, $WRREC) to
refer to the file in question. Normally, the Get File function
is invoked by a Get File command outside program execution.

The arguments for the Get File ($GTFIL) macro call in an
Assembly language communications program must have the values
shown in Table 4-1.

OPEN FILE ($OPFIL) MACRO CALL GUIDELINES
-

The Open File function allocates buffer space (if required)
and physically connects the device or terminal.

The Open File macro call $OPFIL, when used in communications,
must include the location of the file information block (FIB),
which in turn must contain a valid program view item.

TEST FILE ($TIFIL, $TOFIL) MACRO CALL GUIDELINES

Before the application issues a $RDREC macro call, it can
issue the Test Input File ($TIFIL) macro call to check whether
input is available.

Table 4-1. Arguments for Get File ($GTFIL) Macro Call

Argument Argument Value

Logical file number (LFN) A value from 0 through 4095

Pathname pointer Must point to a pathname of a communi-
cations device (e.g., lTTYOl)

Concurrency control According to how the application uses
the device (normally zero for exclu-
sive use)

Remaining arguments Zero

4-4 CZ05-02

Before the application issues a $WRREC macro call, it can
issue the Test Output File ($TOFIL) macro call to check whether
the preceding output operation was completed.

WAIT FILE ($WIFIL, $WOFIL) MACRO CALL GUIDELINES

The use of the Wait File macro call permits an application to
wait for the completion of an outstanding read or write order.
The Wait File macro call can be used with a set of terminals or
devices. Test and wait File macro calls differ in terms of when
control is returned to the calling routine. A Test File call
will return immediately with a busy or not busy status. An
application would block the execution of lower level tasks with
repeated test file calls to a busy file. This problem can be
avoided by issuing a Wait File macro call in lieu of successive
Test File macro calls.

$WIFIL is used to wait for input from any device/terminal;
$WOFIL to wait for completion of output to any device/terminal.

Macro Call Sequences

This subsection describes sequences of file system macro
calls commonly used by applications that access communications
devices. Each sequence of macro calls applies to a different
type of communications processing.

The types of communications processing illustrated below are:

• Input only (TTY or STD data entry applications)

• Output only (receive-only printer (ROP) application)

• Bidirectional (the device is opened either for input or
output, but not both (BSC 2780»

• Interactive (TTY, STD, BTF, or BSC 3780 applications).

MACRO CALL PROCEDURES FOR DATA ENTRY TERMINALS

Table 4-2 shows the procedure for using file system macro
calls in a communications application involving data entry
terminals.

MACRO CALL PROCEDURES FOR OUTPUT-ONLY TERMINALS

Table 4-3 shows the procedure for using macro calls in
communications applications involving output-only terminals.

Macro Calls for a Single Interactive Terminal

Table 4-4 describes the procedures for using macro calls in
communications applications involving only one interactive
terminal that has been configured for non-buffered synchronous
input/output operation.

4-5 CZ05-02

.,

Table 4-2. Macro Call Procedures for Data Entry Terminals

Procedure
step Action by Application Program

1 Issue $GTFIL macro call.

2

3

4

Issue $OPFIL macro call with
FIB program view bit 1 set
to 1, bit 2 set to O.

Issue $WIFIL macro call to
wait until connect is complete
and input is available. (With
multiple devices, the $WIFIL
macro call can be issued with
a list of LFNs i effectively
giving up control until input
is available from one or more
devices in the list.)

Otherwise, if application is
to do other processing (not
giving up control), issue
$TIFIL macro call. .

If not-busy status is
returned, issue $RDREC
macro call.

5 If an error status is
returned, exit from the
procedure.

6 When read is successful,
return to step 3 to request
more data from the device.

System Actions

Issues asynchronous
connect; returns a
normal status to the
program.

Returns when a read
has been satisfied.

If connect is not com~
plete, returns a busy
status. If connect is
complete, issues an
asynchronous read and
returns a busy status
until read is
complete.

With read operation
complete, moves data
from system buffer to
application's buffer,
issues another asyn
chronous read, and
returns a normal
status to the program.

7 When application processing is Issues a disconnect.
completed, issues $CLFIL macro
call.

8 Issue a $RMFIL macro call.

4-6 CZ05-02

Table 4-3. Macro Call Procedures for Output-Only Terminals

Procedure
Step Action by Application Program

1 Issue $GTFIL macro call.

2 Issue $OPFIL macro call with
FIB program view bit 1 set to
0, bit 2 set to 1.

System Actions

Issues an asynchronous
connect, returns a
normal status to the
program.

3 Issue $WOFIL macro call to Will return when
wait until connect is complete output can be
and output can be transmitted." transmitted.
(With multiple devices, the

4

$WOFIL macro call can be
issued with a list of LFNs,
effectively giving up control
until output can be sent to
one or more of the devices in
the list.)

Otherwise, if the application
is to do other processing (not
give up control), issue a
$TOFIL macro call.

If not-busy status is
returned, issue $WRREC macro
call.

5 If error status-is returned,
exit from the procedure.

6 When write is successful,
return to step 3 to transmit
more data to the device.

7 When application pro
cessing is complete,
issue $CLFIL macro call.

S Issue $RMFIL macro call.

4-7

If connect is not com
plete, returns a busy
status. If connect is
complete, returns a
not busy status if
output can be
transmitted.

Moves data from appli
cation buffer to sys
tem buffer. Issues
asynchronous write and
returns a normal status
to the application. .

Issues disconnect
according to device
type.

CZ05-02

Table 4-4. Macro Call Procedures for Single
Interactive Terminal

Procedure
step Action by Application Program

1 Issue $GTFIL macro call.

2 Issue $OPFIL macro call with
FIB program view bit 1 set to
1, program view bit 2 set to 1.

System Actions

To read from the terminal and then write to the terminal:

3 Issue $RDREC macro call.
(This effectively gives up
control until- the read is
satisfied.)

If error status returned, exit
from the procedure.

4 Process the data just read.

5 Issue $WRREC. (This effec
tively gives up control until
the write is complete.) If an
error status is returned, exit
from the procedure.

6 If additional input is
expected, refer to step 3.

7 When application processing
is complete, issue $CLFIL
macro call.

8 Issue $RMFIL macro call.

Data is read directly
into the application
buffer.

Data is written
directly from the
application buffer.

Issues a disconnect.

MACRO CALL PROCEDURES FOR MULTIPLE INTERACTIVE TERMINALS

Table 4-5 describes the procedures for using macro calls in
communications applications involving multiple terminals config
ured for buffered, asynchronous operation.

Figure 4-1 illustrates the procedure's flow.

4-8 CZ05-02

Table 4-5. Macro Call Procedures for Multiple Terminals

Procedure
step Action by Application Program

1 Issue $GTFIL macro call to
each terminal.

2 Issue $OPFIL macro call to
each terminal with FIB pro
gram view bit 1 set to 1,
bit 2 set to 1.

System Actions

Issues asynchronous
connect; returns normal
status to the program.

To read from a terminal and then write to a terminal:

3 Issue $WIFIL macro call with
a list of LFNs. (This will
effectively give up control
until input is available from
one or more terminals in the
list.)

I
I Issue $RDREC macro call..

5 If an error status is
returned, exit from the
procedure.

6 Process the data just read.

7 Issue $WRREC macro call.
(This will give up control
until output can be sent
to terminal ..)

8 If additional input is
expected from any terminal,
see step 3.

9 When application processing
is complete, issue $CLFIL
call.

4-9

Returns when a read is
complete and data is
available. Returns the
LFN of the first ter
minal in the list for
which data is
available~ "

Moves data from system
buffer to application's

I buffer, issues another
asynchronous read, and

I returns a normal status
I to the program. I

waits until output can
be sent, moves data
from the application's
buffer to system buf
fer, and issues an
asynchronous write.

Issues disconnect.

CZ05-02

Table 4-5 (cont). Macro Call Procedures for Multiple Terminals

Procedure
step

10

Action by Application Program System Actions

Issue $RMFIL macro call.

SGTFIL & SOPFIL (FILE 11

SGTFIL&SOPFIL {FILE2) FOR SOPFIL. PROGRAM VIEW
BITS 1 AND 2 ARE SET TO 11.

!
SGTFIL & SOPFIL (FILE 3)

~
SWIFIL {ONFILES1.2.3)

NOT BUSY - FILE n)

$RDREC (FILE n)

YES

YES

$CLFIL & $RMFIL (FILE 11

~
YES $CLFIL & $RMFIL (FILE 2)

~
$CLFIL & $RMFIL (FILE 3)

Gb
Figure 4-1. Simplified Program Logic for Multiple

Interactive Terminals

4-10 CZ05-02

Changing A Terminal File's Characteristics

The file characteristics (e.g., line length or record size,
detabbing, device type, operational mode) of a terminal are
established at the time of system configuration. These charac
teristics can be changed by the file system user at execution
time, before the file associated with the device is opened,
through use of the Set Terminal Characteristics command (STTY) or I
macro call ($STFIL).

Of particular interest to the communications user are the
STTY arguments that control the operational modes of a device.
Examples of operational modes include echoplex, use of control
bytes, and optional end-of-message processing. The user can
specify operational modes by specifying a -MODES argument or by
setting bits of a device specific word.

SPECIFICATION BY -MODES ARGUMENT

The file system user can most conveniently specify opera
tional modes by means of the -MODES arguments of the STTY
command. For example, to specify the terminal's echoplex
feature, the user enters -MODES ECHO. Conversely, the user
enters -MODES A ECHO to suppress the echoplex feature. To reset
all operational modes to those designated at the time of configu
ration, the user invokes the control argument -RESET.

SPECIFICATION BY DSW BIT SETTINGS

In some instances, the file system user may be required to
specify the operational modes of a device by .• setting bits in the
device-specific word (DSW) I DVS in the lORB. This requirement
occurs when the user wishes to alter an operational mode for
which a -MODES argument has not been defined.

Specification by DSW bit settings is accomplished through the
DSWI and DSW2 arguments of the STTY command or $STFlL macro
call. The DSWI argument is used to change the I DVS field in
connect and disconnect IORBs that the file manager issues against
a com- munications device: DSW2 is used to change the I DVS field
in the read and write IORBs that the file manager issues against
the same device. A user, for example, can specify BSC 2780/3780
.control byte processing by setting bit 4 in DSWI to zero.

To change a terminal's operating characteristics through the
bit settings of the DSW, proceed as follows.

1. Determine which line protocol handler is servicing the
terminal to be modified. One source for this information
is the system's Configuration Load Manager (CLM) file
(usually >SID>CLM USER). In this file, a DEVICE
directive names each device supported by the file system~
each DEVICE directive in the file is paired with a
station-defining directive that specifies the LPH serving
the device.

4-11
09/86
CZOS-02A

I

I

2. Ascertain the operational characteristics established for
the device at the time of configuration. The operational
characteristics of a device are determined by the
device-specific words of an IORS. The bit values of the
device-specific words are set by the system; these
default values are shown in Table 4-6 below. The user
should consult the appropriate sections in this manual
for the significance of particular bits in
device-specific words. The sections that should be
referenced are as follows:

3.

Device_unit (LPH)

Asynchronous Terminal Driver (ATD)
Synchronous Terminal Driver (STD)
Polled VIP Emulator (PVE)
BSC Line Protocol Handler (BSC)
TTY Line Protocol Handler (TTY)
BSC3270 Terminal Facility (BTF)

Section

8
9

10
11
12
21

The system-defined default values for device-specific
words can be changed at the time of configuration by
means of the STTY directive.

To change temporarily a DSW value that is in effect,
enter a new value by means of the STTY command or $STFIL
function. The new value will remain in effect only
during the current session. To permanently change the
operating characteristics of a device, use the STTY
directive (described in the System Building and
Administration manual).

Table 4-6. System Defaults for DSWI and DSW2

Device Unit DSWl DSW2

TTY 0000 0030
BSC 0000 0000
PVE 0000 0000
XBSC 0040 0000
ATD 0000 0030
STD 0103 0010
BTF 0000 0000

4-12
09/86
CZOS-02A

COMMUNICATIONS PROCESSING THROUGH PHYSICAL I/O

The physical input/output (I/O) interface permits direct
control by the user over communications processing. Used only
with Assembly language programs, the physical I/O interface
enables communications applications to:

• Call appropriate line protocol handlers (LPHs) directly
through the communications subsystem rather than through
the file system.

• Control the data structure, specifically the input/output
request block (IORB), that directly affects device opera
tions and/or characteristics.

Physical I/O

The following conventions apply to use of physical I/O:

• Before requesting I/O transfers, an application must
reserve a line or device through a $GTFIL monitor call or
a GET command. Otherwise, all physical I/O requests will
be rejected with an error code of OSSA

• The I/O request block (IORB) is the standard control
structure used by an LPH.

• An application program requests an I/O transfer by issuing
a Request I/O ($RQIO) macro call.

• At the time of the $RQIO macro call, the B4 register
contains the address of the IORB supplied by the
application program.

• When configured, all LPHs and associated devices are
identified by a set of unique LRNs at the time of system
building. A line protocol handler is invoked when its LRN
is included in the IORB for a ~ubsequent $RQIO macro call.

• Bit F of IORB field I CTI must be set to 1; this is
required for any I/O request.

• Before giving up control, the LPH maps the hardware return
status into the status word I_ST of the application's
IORB.

Table 4-7 lists the status codes that are returned (in the
left byte of I_CTl) to indicate the result of an I/O request.

4-13 CZOS-02

Table 4-7. I/O Request status Codes Returned in I CTI

Code Number
(Hexadecimal) Meaning

o No error, operation complete

1 Request block al ready busy (T=l)

2 Invalid LRN

3 Illegal wait

4 Invalid field values in the IORB

5 Device not ready

6 Device timeout on other than connect

7 Hardware error

8 Device disabled

9 File mark encountered

A Controller unavailable

B Device unavailable

C Inconsistent request

F EOT received (for BSC3780 and ATD stream mode)

10 Device timeout on connect

34 Requested ATD mode not configured

35 Requested ATD mode not configured for this
controller

NOTES

1. The 08 (device disabled) status is returned on an I/O
request when the application has disabled the logical
resource. It is also returned if a connect or
disconnect has been issued against a line or device
that is currently being connected (by a prior connect
order) or disconnected (by a prior disconnect order) •

2. The OB (device unavailable) status is returned with
every read or write IORB that has been aborted by a
disconnect request with queue abort. This status can
also indicate the loss (drop) of a communication line.

4-14 CZ05-02

Table 4-7 (cont). I/O Request status Codes Returned in I CTl

Code Number
(Hexadecimal) Meaning

3. When the 07 (hardware error) status is found in I CTI
or in $Rl on a resume after wait, look at the IORS
field I_ST to identify the specific error.

4. The OC (inconsistent request) status indicates
illogical I/O requests: read or write before connect,
duplicate connect or disconnect requests, write after
disconnect.

Using Physical I/O

Two fields within the IORB specify the operation to be per
formed.

1. The function code (Table 4-10), indicated by bits C
through F of I CT2 in the IORB (Table 4-8), specifies the
particular operation.

2. The I DVS item in the IORS, used with the function code,
specializes the input/output order.

To request execution of an I/O operation, the application,
with the $RQIO macro call, must transfer control to the physical
I/O interface. At the time of the request, the B4 register must
contain the address of the IORB being requested. The $RQIO macro
routine initiates the I/O operation, and returns control to the
requesting application.

The IORS may specify either synchronous or asynchronous
execution.

When the IORB specifies synchronous I/O (bit 9 of I CTl=O),
return to the calling application is delayed by the Executive
until the I/O operation is complete. On return of control to the
application, both the return status field in I CTI of the IORB
and the Rl register will contain one of the status codes shown in
Table 4-7.

When the IORS specifies asynchronous I/O (bit 9 of I CTl=l),
control returns immediately without waiting for I/O completion,
and the instruction at the return point is executed as soon as
the system initiates the requested I/O operation.

4-15 CZ05-02

To obtain the completion status (in Rl register) when using
asynchronous I/O, the application should issue a $WAIT or $TEST
macro call. The $WAIT macro call blocks execution of the
application until the requested I/O operation is marked as
complete. At completion of the I/O operation, the application
should first check the Rl register to see that the I/O request
was successful. Any error will be defined there. Hardware
errors will be indicated in the IORB software status word I ST
(see Table 4-9). The $TEST macro call returns the completion
status of the IORB if the I/O transf·er has completed, or returns
status 0801 if I/O has not completed. The $TEST macro call
allows the application to continue processing pending completion
of an I/O transfer, whereas $WAIT does not.

Residual range, indicated in the IORB, shows how much of the
requested data was transferred. The residual range value in
I RSR of the lORE is meaningful only when the A-bit in the I ST
item (Table 4-8) of the IORB has been set on. -

DATA STRUCTURES

Data structures control the interactions among an application
program, its line protocol handlers, and the devices it uses.
The input/output request block (IORB) is the interface between
the application and line protocol handler. The IORB and its use
are described below in general terms. Later sections describe
the contents of specialized IORBs for each of the line protocol
handlers.

Input/Output Request Blocks

The IORB is the standard means for requesting a physical I/O
service. As described in this section, the IORB is used with
physical I/O communications interfaces. The physical I/O part
(through l3+2*$AF in Figure 4-2) is directly usable at the
physical I/O interface. The logical part (beginning with
14+2*$AF) is used by forms processing software, by the local mail
facility (interprocess communication), and by the message group
request blocks MGIRB, MGCRB, and MGRRB.

Generated by the Input/Output Request Block macro call
($IORB), the IORB contains all the information that an applica
tion requesting an I/O service must specify to define the opera
tion to be performed. Specifically, the IORB includes the
following:

• Logical resource number (LRN) that identifies the I/O
device being addressed

• Location and size of the buffer to be used for physical
I/O transfers

• Type of operation as specified by the function code and
optional device-specific word

4-16 CZ05-02

• Information, concerning results of the I/O request,
returned by the line protocol handler to the application
after I/O completion.

When the 10RS is used with a $RQlO macro call, the device
named in the 10RS should have been previously reserved by a Get
File ($GTFIL) macro call. The logical resource number (LRN)
required by "the 10RS can be obtained by issuing a Get File
Information ($GIFIL) macro call. For further details, see the
description of the Request I/O ($RQlO) macro call in Volume II.

Figure 4-2 shows the format of the 10RS. Table 4-8 defines
the separate entries in the 10RB. Later sections in the manual
describe the Significance of the device-specific word (I DVS) ,
software status word I ST, and other IORS words for the various
line protocol handlers:

NOTES

1. The labels used in the figure to identify IORB
fields (e.g., I CTl, I ADR) can be generated
by the $IORBD macro call, described in Volume
II.

2. The offset symbol $AF signifies the number of
words required to specify a memory address.
In this system, $AF is equivalent to two
words.

3. The asterisk (*) in the formulas in the ftWord ft
column of Figure 4-2 and Table 4-8 is a
multiplication sign.

4. The shaded fields in Figure 4-2 are for system
use only. Fields not shaded must be initial
ized by the application requesting the I/O
operation.

IORB SOFTWARE STATUS WORD (I_ST)

The line protocol handler maps into the IORB software status
word I ST (Table 4-9) the return status of the hardware or line
protocol handler.

The bit settings in the software status word I ST indicate to
the application the status of the hardware, as shown in Table
4-9.

The meanings of bit settings in the software status word I_ST
for specific devices are shown in tables in later sections that
describe the line protocol handlers for those devices.

4-17 CZ05-02

WOAD LABEL

I -3 '_LAX

-$AF '_AAB
-1 I_SEM

0 I_LNK

$AF I_CTl

l+$AF I_CT2

2+$AF :_ADA

2+2*$AF I_ANG

3+2*$AF I_DVS

4+2*$AF

5+2*$AF

6+2*$AF LEXT

7+2*$AF

8+2*SAF I_FCS

9+2*$AF

10+2*SAF

11+2*$AF

12+2*$AF

13+2*$AF

14+2*SAF

Figure 4-2.

0

RESERVED

LRN

EXTENDED LRN

REQUEST BLOCK POINTER,
OR SEMAPHORE NAME

W

B

U

o

BUFFER ADDRESS - 2-WORD POINTER

S

E

RANGE - NUMBER OF BYTES TO BE TRANSFERRED

DEVICE - SPECIFIC WORD

DEVICE - SPECIFIC WORD 2

TROL WORD 1

FUNCTION

DEVICE

FUNCTION CODE 1 FUNCTION CODE 2

DEVICE PHYSICAL CONTROL WORD 2
(VALID IF B-BIT (EI IS 1)

DEVICE PHYSI NTROLWORD 3

SECOND STATUS WORD TIME-OUT VALUE

DEVICE PHYSICAL CONTROL WORD 4

DEVICE DEPENDENT; ATTRIBUTE OR DESCRIPTOR

PRE ORDER CONTROL

FIRST WORD OF LOGICAL PART OF IORB

F

Communications Input/Output Request Block (IORB)

4-18 CZ05-02

Table 4-8. Communications Input/Output Request Block (IORB)

word

-3

-$AF

o

$AF

Label

ILRX

Bits Description

0-3 Reserved for system use.

4-15 Extended logical resource number (LRN).
If byte 0 (bits 0 to 7) of I CT2 contains
the value 253 (x'FD I), this lield
indentifies the device to be used.

Depending on the S- or R-bits of I CTl,
this word contains a task request block
pointer (R-bit on) or a semaphore name
(S-bit on). Set by user; used by system
at termination of request.

I LNK 0-31 Reserved for system use; two-word
pointer.

0-7 Return status. (See Table 4-7) •

8 (T) This bit is set (on) while the request
a using this lORS is executing; it is reset

when the request terminates. The system
this bit~ tfser should not change

it.

9 (W) wait bit. Set by user when the
requesting task is not to be suspended
pending the completion of the request
that uses this IORB~ If W == Off then the
Df Rw and S bits may not be set0

A (U) User bit. User mayor may not use this
. bit1 system does not change it.

B (S) Release semaphore indicator.
o = No semaphore in I SEM. 1
on completion, semaphore item
I_SEM.

Values:
= Release,
named in

C(P) Must be set by user if IORB is to be
referenced by a wait Any ($WAITA) macro
call. If set, IORB can be referenced
only by $WAIT or $WAITA issued by the
requesting task.

4-19 CZ05-02

Word

$AF
(cont)

l+$AF

2+$AF

2+2*$AF

3+2 *$AF

4+2*$AF

Table 4~8 (cont). Communications Input/Output
Request Block (IOP~)

Label Bits Description

I CTI D (R) Return IORB indicator. Values: 0 = No
request pointer in I RRB. 1 = Dispatch
task request block named in I RRB; after
completion of this request, the system
executes $RQTSK, using I_RRB.

(cont)

I CTI

I CT2

I ADR

I RNG

I DVS -

I RSR

E (D) Delete IORB indicator f used usually with
B (S) and D (R) bits. 0 = No delete. 1
= When task terminates, return memory to
the pool where IORB is the first entry of
its memory block.

F I/O bit. Must be set to 1.

0-7 Logical resource number (LRN). If this
field contains any value other than 253
(x'FD '), it indentifies the device to be
used. If this field contains 253, I LRX
contains the LRN value.

8 Must be O.
" 9 (B) Byte index. a = buffer begins in

leftmost byte of word; 1 = buffer begins
in rightmost byte.

A (P) Reserved for system use.

B (E)

C-F

0-31

0-15

0-15

0-15

Extended IORB indicator.
(nonextended) IORB. 1 =
specified by I EXT., set
I_EXT below.)

a = Standard
IORB extended as
by user. (See

Function code. See Table 4-10.

Buffer address; 2-word pointer.

Range. Indicates number of bytes to be
transferred.

Device-specific information. set by
user.

Residual range. Indicates the number of
bytes not transferred. Filled in by the
system on completion of the order.

4-20 CZ05-02

Table 4-8 (cont). Communications Input/Output
Request Block (IORB)

Word Label Bits

0-15

6+2*$AF I EXT 0-7

Description

status word. Reflects the mapping of the
hardware status into software status
format. Set by system after I/O
completes. Used also by the ATD and STD
LPHs as a peripheral address field.

Left byte: Number of words in the IORB
extension, not including this I EXT word.

8-F Right byte: Number of words in physical
part of IORS extension, not including
this I EXT word7 must be less than or
equal to total extension length shown in
the left byte.

7+2*$AF I DV2 O-F

8+2*$AF I FCS O-F

9+2*$AF I HDR O-F

10+2*$AF II_ST2 I O-F

Il+2*$AF I_QDP O-F

12+2*$AF I TAB O-F

l3+2*$AF I CON O-F

14+2*$AF I LOG O-F

This word applies only when the B (E) bit
in I CT2 is 1.

Device-specific word 2. Contains
device-specific information.

Device physical control word 1.

Device physical control word 2.

Device physical control word 3$

Device physical control word 4.

Device physical control word 5.

Device physical control word 6.

First word of logical part of IORB. Used
by forms processing software, in message
control, and by local mail message group
request blocks.

Communications Function Codes

All line protocol handlers perform similar functions for
the devices and applications that they service. These functions
are performed by the line protocol handler's request and
interrupt processing codes.

4-21 CZOS-02

I

Table 4-9. Software (l_ST) Status Codes
i

Bit in
lORS's

I -ST

0

1

2

3

4

5

Meaning when Bit set On

Read error (PVE, BTF)

Data service rate error

Lost line bid or RVI received (ESC,

Communication control block service error

No stop bit on character input (TTY); conversational
reply received (BSC3780); lORS purged because of BREAK
signal (ATD, TTY, BTF)

6 Long record (BSC, ATD, BTF)

7 lTB/ETB or ETX received (BSC); poll failure (PVE)

8 Framing error (ATD); NAK limit reached (PVE, BTF)

9 Checksum or parity error limit reached (PVE); parity
error (ATD)

A Nonzero residual range

B Phone disconnect

C End-of-transmission received (BSC); Invalid response
received (BTF)

D Transparent message received (BSC)

E NAK limit reached (BSC); Busy received (BTF)

F Nonexistent resource; bus parity error; fatal
uncorrectab1e memory error

An application can request specific functions by providing a
function code in the lORS supplied when it requests I/O service.
The application uses the last four bits of its lORB's I CT2 entry
(see Figure 4-2) to enter the function code for the functions
summarized in Table 4-10.

4-22 CZOS-02

Table 4-10. Communications LPH Function Codes

Function
Code in

IORB Communications Function

1 Write

2 Read

5 Define-form (used only
by the ATD LPH)

9 Read break

A Connect

B Disconnect

The connect and disconnect functions may be used with
non-communications devices, in which case they are processed as
nno-ops·. Thus, no matter how connected to the system, all TTY
devices and noninteractive (e.g., card reader and printer)
devices can be controlled by the same application program. This
provision is useful for program development and test purposes.

WRITE FUNCTION (CODE 1)

This function allows data to be written to a specific
device. When a line protocol handler (LPH) receives a write
request, it transfers the indicated data from the application's
buffer to the device, according to the information supplied in
the device-specific word of the application's IORB.

READ FUNCTION (CODE 2)

This function allows data to be read from a'specific device.
When the LPH receives a read request, it tranfers data from the
device to the application's buffer, according to the information
supplied in the device-specific word of the application's IORB.

DEFINE-FORM FUNCTION (CODE S)

This function is used by the ATD LPH for forms processing to
define fields, their subfields, and their attributes. A
define-form order does not itself result in actual physical I/O.
(Refer to Section 8 for more details.)

4-23 CZOS-02

READ BREAK (CODE 9)

This function allows an application to be notified of an
operator-generated break condition on synchronous or asynchronous
terminals. The function also allows for the selective
cancellation of outstanding read break orders. (Refer to Section
8 for more details.)

CONNECT FUNCTION (CODE A)

The connect function provides a logical and physical connec
tion between an application program and a communications device.

As a logical function! the connect function is a request to
use the specified communications device. If that resource is
being used, an error return results. In that case, the applica
tion must determine whether that resource is sharable (as
established by the installation's procedures) and proceed
accordingly.

As a physical function, the connect function establishes a
physical path to the communications device associated with the
specified logical resource number (LRN). This implies, when the
device is to be connected over a switched line, that the system
software should complete call establishment on the line associ
ated with that device. The request times out after 5 minutes.

. If the connect function is not completed, the system will not
process any requests for the communications device and will
return an error status.

The connect function must be requested before any other
function, since communications devices are configured into the
system in a disconnected state.

DISCONNECT FUNCTION (CODE B)

The disconnect function provides both the logical (normal and
abnormal) and physical disconnection between the application and
a communications device.

As a logical function, the disconnect function indicates that
the use of the designated device is to be terminated.

For a logical disconnect, issue a disconnect request
(function code B) with the E-bit in I DVS set off (dequeue
remaining IORBs for device) and the F=bit in I DVS set on (do not
hang up phone). At this point, any pending read or write
requests are returned to the application program with a B status
(device unavailable). Continued use of the device requires that
the application program issue a connect.

As a physical function, the disconnect function must specify,
by setting the F-bit in I DVS to 0, the physical disconnection of
a line.

4-24 CZOS-02

Section 5
DATA STRUCTURE

GENERATION

This section summarizes the macro routines that generate and
define system data structures. There are two kinds of data
structures: those that apply to system control functions and
those that apply to file system functions. The macro calls that
generate both kinds of data structures are de~cribed in detail in
Volume II of this manual. The formats of the generated data
structures are tabulated in Appendix C.

SYSTEM CONTROL DATA STRUCTURES

System control data structures that are visible to the user
consist of the following:

• Request blocks
• Parameter block and wait lists.

Request Blocks

When requesting certain operations, tasks generate request
blocks in order to specify the parameters of the requested opera
tion. The first five words of all request blocks are identical
in format1 these words pass parameters to the system. The W-bit,
for example, in the third word of request blocks, specifies
whether or not the requesting task is to be suspended until the
requested operation is completed. Additional words convey to the
system information specific to the request block type.

S-l CZOS-02

One type of request block, the task request block, passes
parameters to the requested task as well as to the system. These
additional parameters are arguments that control the execution of
the task being requested. They are entered into a variable~
length field of the task request block called an argument list.

Table 5-1 lists the request blocks and the macro calls that
generate them.

The arguments supplied with each of the above macro calls
sets values for fields of the corresponding request block. For
example, the first argument of the Input/Output Request Block
($IORB) macro call specifies the logical resource number (LRN) of
the device to perform the input/output operation. The number
specified by this argument is placed in the request block
generated by the $IORB macro call.

Request Block Offsets Macro Calls

Each request block macro call is paired with a request block
offsets macro call. Request block offsets macro calls generate
tags for every entry in a corresponding request block, allowing
symbolic references to request block fields by application code.
These tags are not generated by request block macro calls. An
application may use a request block macro call to construct a
request block, and then issue a request block offsets call to
facilitate modification of the existing block by executing code.

Unlike the arguments of request block macro calls, the tags
generated by offset macro calls refer to all fields of the cor
responding request block. Offset tags refer to fields in which
values are returned by the system, whereas macro call arguments
refer only to fields in which values are entered by the user.

Table 5-1. Request Blocks

Request Block

Clock request block (CRB)

Input/output request block (IORB)

Message group request blocks

Message group control (MGCRB)
Message group initialization (MGIRB)
Message group recovery (MGRRB)

Semaphore request block (SRB)

Task Request block (TRB)

5-2

Macro Call

$CRB

$IORB

$MGCRB
$MGIRB
$MGRRB

$SRB

$TRB

CZ05-02

As mentioned above, the first five words of all request
blocks are identical. Each offset macro call, however, refers to
these words by different tags. The fourth word of the semaphore
request block, for example is S CTI, whereas the fourth word of
the task request block is labeled T CTI. The programmer, there
fore, can include several types of offset macro calls in an
application without multiply defining symbols.

No arguments are specified with offsets macro calls. Only
one offsets macro call of a particular type is allowed in an
application.

Macro calls that generate offsets tags for request blocks are
listed below:

Clock Request Block Offsets
Input/Output Request Block Offsets
Message Group Control Request Block Offsets
Message Group Initialization Request Block Offsets
Message Group Recovery Request Block Offsets
Semaphore Request Block Offsets
Task Request Block Offsets

Parameter Block and wait Lists

$CRBD
$IORBD
$MGCRT
$MGIRT
$MGRRT
$SRBD
$TRBD

The lists are system control data
structures that differ in format from request bloc

A parameter block is ,equivalent to the r uest bl 's
argument list .. mentioned above; it is by the Parameter
Block ($PRBLK) macro calL Pararr!eter ro means
of passing arguments between tasks. By specifying the number and
length of arguments, a.s well as the arguments themselves, a
para.."1leter bI oW's rece to argument
in the list (or block) 8

A wait list is a list of request blocks to be serviced before
the task issuing the wait list macro call completes its own exe
cution. A wait list consists of.a count of the number of request
blocks to be waited on, followed by the request blocks' addres
ses. The list is generated by the wait List ($WLIST) macro
call. Anqther macro call, wait on Request List ($WAITL) causes
the task manager to scan the wait list and activate the waiting
task when any of the listed requests are marked as completed.

A multiple wait list contains the same information as does
the wait list1 in addition, it specifies the number of request
blocks that must be completed before a waiting task is to be
activated. A multiple wait list is generated by the Generate
Multiple wait List ($WLSTM) macro call.

5-3 CZ05-02

FILE SYSTEM DATA STRUCTURES

A file information block (FIB) is used by running applica
tions to request input/output operations. Other data structures
are used outside of program execution by functions that create
and modify files, or return information about files already
created. Both types of data structures are discussed below.

File Information Block

The file information block is the means by which an applica
tion passes to the file system the parameters of a requested
input/output operation. The fields of the FIB specify such items
as a file's logical resource number (LFN), by which the system
identifies the file, the record or block size, and the address of
the user's buffer.

The following macro calls use an FIB:

Open File $OPFIL
Close File $CLFIL
Test File $TIFIL, $TOFIL
Read Record $RDREC
Write Record $WRREC
Rewrite Record $RWREC
Delete Record $DLREC
Read Block $RDBLK
Write Block $WRBLK
Wait Block $WTBLK

FILE INFORMATION BLOCK MACRO CALL

The file information block is generated by the File Informa
tion Block ($FIB) macro call. An $FIB macro call can do one of
the following:

• Build a new FIB with default values determined by the
system

• Build a new FIB, specifying its contents by means of argu
ments supplied with the call

• Generate instructions to alter the contents of an existing
FIB.

The file system performs three functions: data management,
file management, and storage management. 'An FIB pertinent to one
type of function may not be pertinent to another type. Data man
agement involves the transfer of logical records, storage manage
ment, the transfer of blocks of records. The fields of an FIB
applicable to data management, would specify the size and loca
tion of logical recordsl the fields of an FIB applicable to stor
age management, the size and location of record blocks. The FIB
macro call has two sets of arguments, pertaining to data/file
management and storage management.

5-4 CZ05-02

FIB OFFSET MACRO CALLS

For the same reason that the $FIB has more than one set of
arguments, there are several macro calls that generate FIB offset
tags. (The use of offset tags is explained earlier in this sec
tion.) The FIB offsets macro calls are:

$FIBDM
$FIBSM
$TFIB

The $FIBDM and $FIBSM macro calls generate sets of tags that
are specific to data/file management and storage management,
respectively. A third offsets macro call, $TFIB, generates two
sets of tags, applicable both to data/file and to storage manage
ment. The $TFIB macro call would be issued by an application
requesting both data/file management and storage management
services.

Macro Call Argument Structures

Macro calls that create and modify files, or return informa
tion about existing files must specify many parameters, as a file
can take many different forms. Typically, these macro calls have
a single argument that points to a list of arguments, or an
argument structure. Offsets macro calls are available to facili
tate modifying or referring to the fields of an argument struc
ture. Table 5-2 lists the file system macro call.s that require
argument structures and the offsets macro calls that supply tags
for these structures.

Size Tags

Data structures for file system macro calls can either be
declared statically or built dynamically. In the latter case,
memory for the structure is dynamically obtained by means of the
Get Memory ($GMEM) macro call at the time of execution. The
memory thus obtained should be cleared to zeros to ensure that
fields of the structure reserved for future are zero-filled. Each
offset macro call generates a size tag for specifying the size of
the corresponding data structure. The size tag can be used to
specify the amount of memory requested (when issuing the Get
Memory macro call), or used to clear the structure to zeros.

Example:

$B4 points to a file information block (FIB). The structure
is cleared with the instructions:

LDV $RI,F SZ-l
$A CL $B4.$RI

BDEC $Rl,>-$A

5-5

Rl=SIZE OF FIB MINUS 1
CLEAR ONE WORD
LOOP UNTIL ALL WORDS CLEARED

CZ05-02

I

I

I

Table 5-2. Argument Structures and Offsets Tags

Calls Requiring
Argument Structures

Create File ($CRFIL)

Get Device Information
($GIDEV)

Get File Access Rights
($GAFIL)

Get File Information
($GIFIL)

Get Name ($GNFIL)

Grow File ($GRFIL)

Modify File ($MDFIL)

Shrink File ($SHFIL)

Calls Generating
Offset Tags

Create File Parameter Block Structure
Offsets ($CRPSB)

Create File Record Descriptor Block
Offsets ($CRRDB)

Get Device Information Parameter
Structure Block Offsets ($DIPSB)

Get File Access Rights Parameter
structure Block Offsets ($GAPSB)

Create File Record Descriptor
Block Offsets ($CRRDB)

Get File Information Parameter
Structure Block Offsets ($GIPSB)

Get File Information File Attribute
Block Offsets ($GIFAB)

Get Name Parameter Structure Block
Offsets ($GNPSB)

Grow File Parameter Structure Block
Offsets ($GRPSB)

Modify File Parameter structure Block
($MDPSB)

Shrink File Parameter Structure Block
Offsets ($SHFIL)

5-6
09/86
CZ05-02A

Section 6
DEVICE DRIVERS

This section describes the internal system software known as
device drivers and some related data structures, principally the
input/output request block (IORS), by which the device driver is
controlled. A device driver performs all data transfers between
a non-communication peripheral device and an application program I
requesting input/output. Line protocol handlers analogously
perform input/output between applications and communications
devices, which are attached to a multi-line controller (MLC).
The remainder of this section describes non-communication I
peripheral device drivers. Line protocol handlers are described
in later sections.

INPUT/OUTPUT DRIVERS

Applications can request and instruct drivers to do physical
I/O directly by means of the Request Input/Output ($RQIO) and
Input/Output Request Block ($lORB) macro calls. Most often,
applications invoke drivers indirectly when issuing file system
macro calls such as Read Record ($RDREC) and Write Record
($WRREC). When executing these calls, the file system generates
lOREs to instruct the drivers. If an application requests a
driver to do physical I/O ($RQIO), the application must have
previously reserved the peripheral device ($GTFIL) via the file
system.

6-1 CZOS-02

Drivers are reentrant programs capable of supporting the
concurrent operation of several devices at the same time. The
priority level at which they run is selected by the user when the
system is configured. Requests by applications for I/O activate
the drivers, which in turn initiate data transfer that is
simultaneous with the operation of the central processor.

I Drivers process an interrupt from the peripheral device to the
central processor when the transfer of data is terminated.

Device Driver Data structures

Two data structures control the interaction between an
application program, its device drivers, and the devices the
program uses. These structures are the input/ou~put reque5t
block (IORB) and the resource control table (RCT).

I The IORB is the interface which does physical I/O directly
between the application and its device driver. Through the IORB,
the application defines the I/O service that it wishes to be
performed. Also, the IORS contains information "returned by the
driver to the requesting task concerning the outcome of the I/O
request. The resource control table (RCT) is the interface
between the driver and its device{s}, and is not normally
accessible to users of Honeywell-supplied drivers described in
this section.

* Device Driver Conventions

The following conventions apply to all input/output device
drivers.

• The I/O request block (IORB) is the standard control
structure used by a driver. It is described later in this
section.

• The $RQIO macro call is used to request a driver.

• The B4 register contains the address of ~he IORS supplied
by the caller; the IORS contains the LRN of the device to
be used.

• The I/O-specific words of the IORS (I_CT2 through I_DVS)
are not modified by the driver.

• If a device becomes inoperable, it can be disabled with an
operator command and another device can be substituted.

• Drivers are reentrant and interrupt driven; one driver
supports many devices of the same type.

• Synchronous and asynchronous I/O are supported.

• The hardware status is always mapped into the software
status word in the task's IORS (I ST) before the driver
relinquishes control. -

6-2 CZ05-02

Driver Functions and Function Codes

All drivers perform similar functions on behalf 'of the
devices and application tasks they service. These functions are
carried out by the driver's request processing and interrupt
processing code. The application task requests specific
functions by providing a function code in the IORS that it
supplies when it requests I/O service. These specific function
codes are summarized in Table 6-1 and discussed under the
specific function heading in the following pages.

The application task uses the last four bits of the IORS
entry I CT2 to enter the function code for the functions
summarized in Table 6-1.

CONNECT FUNCTION (fc=A)

This function may be used with noninteractive devices for *
program compatibility. The driver of a noninteractive device
treats this function as a NOP and immediately posts the IORS back
to the requester with successful status (operation complete).

DISCONNECT FUNCTION (fc=B)

The disconnect function as a logical function indicates that *
use of the indicated device is terminated. Termination may be
either normal or an abort of all queued read or write requests
issued by this user program •

.• WAIT ONLINE FUNCTION (fc=O)

This function allows a caller to wait until a device becomes
ready for use, or until a specific time interval has passed.

All non-communications devices generate interrupts when their *
availability changes. For example, when a printer runs out of
paper, an interrupt is generated and the device is not ready for
use, when the paper is installed and the device is again ready,
another interrupt is generated.

When a driver receives a service request from a task using
the ·wait online w function code in the IORS that it supplies
(0000 in the last four bits of I CT2), and the device is not
ready, the driver sets a timer for 5 minutes and suspends. When
the driver is reactivated, either by a ready interrupt from the
device or by a timeout, it deactivates the timer, checks the
device-ready bit in the hardware status word, and places a 0 or 6
value in the return status field of the IORS depending on the
condition of that bit. See Table 6-2 and the return status codes
for the $RQIO macro call (which is described in Volume II). The
rightmost 2 digits of the 4-digit hexadecimal status code are
placed in the return status field.

6-3 CZ05-02

Table 6-1. Input/Output FUnction Code

Device

lORS
Function Card Card Reader/ Magnetic

Code Reader Punch Printer Disk Tape

0 I wait online wait online Wait online Wait online Wait online

1 NA Write (punch) Write Write Write

2 Read Read NA Read Read

3 NA Write file

I
NA NA Write file

mark (punch) mark

4 NA NA NA NA Position block*
.

5 NA NA NA Format write NA

Q NA NA NA Foc!!I.a t read Position fils"·

9 NA NA NA NA NA

A Connect Connect Connect Connect Connect

B Disconnect Disconnect Disconnect Disconnect Disconnect

E NA NA NA Read disabled Read disabled
device device

*Positive range of one is forward space to start of next block.
Negative range of one is backspace to beginning of previous block.

**Positive range of one is forward space to next tape mark.
Zero range is backspace to previous tape mark.
Negative range of -1 is rewind to BOT.
Negative range of -2 is rewind to BOT and unload.
Negative range of -3 is write at EOr gap.

6-4 CZ05-02

Table 6-2. Return Status Codes (Last Two Digits)

Code Number
(Hexadecimal) Meaning

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
10
11
17
31
32

No error, operation complete
Request block already busy (T=l)
Invalid LRN
Invalid wait
Invalid parameters
Device not ready
Device timeout on other than connect
Hardware error
Device disabled
File mark encountered
Controller unavailable
Device unavailable
Inconsistent request
Device timeout on connect
Write protect error
Memory access violation
Possible disk bead failure
possible disk media failure

NOTES

1. When status 07 is returned, look in I ST to
identify. the specific hardware error.-

2. status OB is returned with every read or write
IORS that has been aborted by a disconnect
request with queue abort. The disks and tapes
are disabled until the system's automatic
volume recognition routine calls the enable
device function.

3. status OC indicates illogical peripheral
driver requests (e.g., read or write before
connect; duplicate connect or disconnect
requests; write after disconnect).

The wait online function should not be issued to a device
that is currently ready for use unless you expect it to become
unavailable for a limited time (e.g., the operator has been
instructed to change a volume mounted on a disk device currently
in use).

6-5 CZ05-02

I

WRITE FUNCTION (fc=l)

The write function is available for all devices except the
card reader. This function allows the writing of data to a
particular device. When a driver receives a write request, it
transfers the indicated data from a user buffer to the device
according to the specifications supplied in the task's IORS.

READ FUNCTION (fc=2)

The read function is available for all devices except local
and remote printers. This function allows reading data from a
particular device. When a driver receives a read request, it
transfers the data from the specified device to a user buffer
according to the specifications supplied in the requesting task's
IORB.

READ DISABLED DEVICE FUNCTION (fc=E)

This function, available only to disk or magnetic tape
devices, allows the driver to bypass the device-disabled test
during validity checking.

This function is used by the system's automatic volume
recognition (AVR) module, which recognizes the volume label of
the volume on the disabled device, then enables the device so
that attempts to read data from it can continue.

WRITE TAPE MARK FUNCTION (fc=3)

The write tape mark function, which is available to magnetic
tape devices, allows you to put a mark block on a referenced
magnetic tape.

POSITION BLOCK FUNCTION (fc=4)

The position block function, which is available to magnetic
tape devices, allows you to position a referenced magnetic tape
forward or backward one block.

FORMAT WRITE (fc=5)

The format write function, available only to disk devices,
allows you to format a disk device. The number of sectors per
track depends upon the device type.

FORMAT READ (fc=6)

The format read function, available only to disk devices,
allows you to read all identifier and data fields on a track.
The read begins at the first sector following the index mark and
proceeds in the order in which the identifiers are recorded.

6-6 CZ05-02

POSITION TAPE MARK FUNCTION (fc=6)

The position tape mark function, which is available to
magnetic tape devices, allows the user to:

• Position forward a referenced magn~tic tape beyond the
next tape mark

• Position backward a referenced magnetic tape before the
current tape mark

• Rewind to BOT

• Rewind to BOT and unload.

INPUT/OUTPUT REQUEST BLOCK

The input/output request block (IORB) contains all
information that a task requesting an I/O service can specify to
define the operation to be performed. In addition, it contains
information returned by the driver to the requesting task
concerning the outcome of its I/O request. "

Figure 6-1 shows the format of a nonextended IORB. Unshaded
fields must be initialized by the task requesting the I/O
operation. The shaded fields are set by the driver to return
information about the I/O request to the caller, or are
controlled by the Executive.

{
-;:F } I_LRX
-1 I_RRB/I_SEM

o I_LNK

$AF I_en

1+SAF I_CT2

2+SAF I_ADR BUFFER ADDRESS

2+2·SAF I_RNG

3+2*SAF i_DVS DEVICE SPECIFIC WORD

4+2*SAF I_RSR

5+2*SAF I_ST

6+2·$AF '_EXT"

Figure 6-1. Format of I/O Request Block

6-7

86.()40

09/86
CZOS-02A

I

I

Table 6-3 defines the specific IORS entries in a nonextended
lORS. (See the wCommunications Processing Functions· section for
descriptions of IORB extensions.) Table 6-4 defines the software
status word (I ST) in the IORB. Device-specific IORB information
is provided in-the separate device driver descriptions later in
this section.

NOTE

The offset labels used to refer to IORB fields
(e.g., I CTI, I ADR) can be generated by the $IORBD
macro call, which is described in Volume II.

CALLER INTERFACE WITH DEVICE DRIVER

To request execution of an I/O operation, the caller must
issue a $RQIO macro call with $B4 pointing to the IORB to be
serviced. If the IORB specifies synchronous I/O (W-bit reset),
the issuing task is suspended until the I/O operation is
complete.

If the IORB specifies asynchronous I/O, the instruction at
the return pOint is executed as soon as the system queues the
IORB on the driver's level. The application may issue a $WAIT or
$TEST macro call when appropriate for the asynchronous request.

Upon return from a synchronous request, the caller must check
the Rl register to see if the request was successful. Upon return
from an asynchronous request, the caller must check Rl to see if
the request was accepted and successfully initiated. For either
type of request, any invalid user argument is indicated in Rl.
Hardware errors are defined in IORB entry I_ST (see Table 6-4).

Residual range denotes how much of the requested data
transfer was actually performed. If I RSR equals zero, all data
was transferred. For an asynchronous request, register Rl would
be checked on return from the Request I/O macro call; Rl, 1ST,
and I RSR should be checked after return from a $WAIT macro-call.

Those fields not shaded in Figure 6-1 must be initialized by
the task requesting the I/O operation. The remaining fields are
set by the driver to return information about the I/O request to
the caller or are controlled by the Executive. Table 6-3
describes the purpose of each field.

Other information needed to perform the I/O request is found
in the IORB. The caller-supplied standard function code in I CT2
is mapped by each driver into one or more device functions
required to perform the actual request.

The LRN supplied by the caller in the IORB serves as a device
identif ier.

6-8 CZ05-02

Word

-3

-$AF
-1

0

$AF

,

I
I I

Table 6-3. Contents of I/O Request Block

Label

ILRX

Bit{s) Contents

0-3 Reserved for system use.

4-15 Extended logical resource number (LRN).
If byte 0 (bits 0 to 7) of I CT2 contains
the value 253 (x'FD'), this lield
indentifies the device to be used.

I RRB/ 0-31
r-SEM 0-15

Depending on the S- or R-bits of I CTl,
this field contains a 2-word task request

, block pointer (R-bit on), or a I-word
semaphore name (S-bit on). Set by user1
used by system at termination of request.

I LNK 0-31

I CTI 0-7 -
8 (T)

1

I
I 9 (W)

I ,

A (U)

B (S)

Reserved for system use. 2-word pointer
. to indirect request block.

Return status

This bit is set (on) while the request
using this block is executing; it is
reset when the request terminates" The I
system controls this bit; user should not I
change ito I

. Wait t by user if requesting task
is not to be suspended pending completion

the request that uses this lORB. For
a $OPMSG call, the setting of the W- bit
in lORS controls return to the

e:r~ For a $OPRSP call, setting of W
bit in input lORS controls return to the
caller; setting of W-bit in output lORS
has no significance. For either call,
return to caller is immediate if signi
ficant W-bit is on. If significant W-bit
is off, return to caller occurs after the
order is completed.

User bit. User mayor may not use this
bit; the system.does not change it.

Release semaphore indicator.

o = No release; 1 = Release, on comple
tion, semaphore item named in
1 SEM.

6-9 CZOS-02

I ,
!

I

Word

$AF
(cont)

1l+$AF

Table 6-3 (cant). Contents of I/O Request Block

Label

I CTI
(cont)

I CT2

Bit (s)

C(P)

D (R)

Contents

Must be set by user if IORB is to be
referenced by a wait Any ($WAITA) macro
call. If set, IORB can be referenced
only by $WAIT or $WAITA issued by the
requesting task.

Return IORB indicator.

o = No dispatch~ 1 = Dispatch task
request block named in I RRB after com
pletion of this request.- If 1, system
executes $RQTSK, using I RRB, when the
task terminates. -

E(D) Delete IORB indicator. Used usually with
the B(S) and D(R) bits.

F(l)

0-7

o = No delete; 1 = Delete and when task
terminates, return memory to pool where
IORB is first entry of its memory block.

Implicit task start address. Must always
be 1 for IORS.

Logical resource number (LRN). If this
field contains any value other than 253
(x'FD'), it indentifies the device to be
used. If this field contains 253, I LRX
contains the LRN value.

8(IBM) IBM-type request. Changes interpretation
of I DVS to task word, and of I RSR and
1 ST-to configuration words A and Bt

respectively.

9(B) Byte index. 0 = buffer begins in left
most byte of word; 1 = buffer begins in
rightmost byte. Must be off if input/
output buffer begins at left byte of word
whose address is contained in word 3
(I ADR) of 10RS. Must be on if input/
output buffer begins at the right byte.

A(P) Private space; reserved for system use.

6-10 CZ05-02

Table 6-3 (cont). Contents of I/O Request Block

Word

l+$AF
(cont)

2+$AF

Label

I CT2
(cont)

I ADR

3+2*$AF I DVS

4+2*$AF I RSR

5+2*$AF I ST

Bit(s)

B(E)

Contents

Extended IORB indicator. 0 = Standard
(nonextended) IORB, 1 = IORB extended to
at least 6+2*$AF items. set by user.
(See I_EXT below.)

C-F Function code. Driver or LPH function,
see Table 6-1.

0-31

0-15

0-15

0-15

0-15

0-7

Buffer address. 2-word pointer. Word
address of message buffer (which contains
an output message or is to receive an
input message).

Range. Number of bytes to be transfer
red. Used as input field for cartridge
disk or mass storage unit. Buffer size
in bytes. This is the length of an
output message or the maximum length
allowed for an input message •

. Device-specific information.

Residual range. Indicates the number of
bytes not transferred. Filled in by the
system-on completion of the order. Used
by the cartridge disk and mass storage
unit drivers as a data offset value.

Modified device status. Shows mapping of
hardware status into software status
format. See Table 6-4. Set by user as
input field high-order bits of sector
number of mass storage unit. Set by
system after I/O completion.

Left byte. Number of words, in binary,
in the IORB extension, not· including this
I EXT word.

8-15 Right byte. Number of words, in binary,
in physical I/O part of IORB extension,
not including this I EXT word. This
count must be less tnan or equal to the
total extension length specified in the
left byte (0-7). This word is present
only when the B(E) bit in I_CT2 is 1.
(See Section 7 for a description of IORB
extensions.)

6-11 CZ05-02

0\
I
~

(')
N
o
VI
I

o
~

Table 6-4. IORS Software Status Word (I_ST)

Device

8it I ca~d
Position Reader

Card Reade~/
Punch I Printer Diskette

La~k
Disk

Ca~t~idge Module
Disk and Disk
Stouge unit I Ilagnetic Tape

o 10 o 10 o
o

o 010

1

2

3

4

5

I)

7

8

9

A

8

C

D

E

P

o
O'Ier/
unde~un

o o
Data service I 0
~ate e~ro~

O'Ier/undenunl Ove~/undenun I OVer/underun

Kark sense I Invalid
lIode ASCII code

End of fO~1I I Deleted fieldl Write p~o'tect I Write protect
error er~Or

40-collllln
mode

5l-collllln
1D0de

Punch echo I 0
or read
registration

Light/dark I 0
check

Read error

Device fault

Read errolr Read euor

Invalid seek Invalid seell

Retryable
error

Write pro
tect e~ror

Corrected
_dia error

Tape mark

External
clock
track

Card ju o Kissed data
synchron
ization

Kissed dau
synchron
ization

Kissed data I 80'1'

Read check 10

ASCII code I 0
error

o 10

o o
o 10

o 10

o 10
o 0

Patal error IPatal error

aynchronizaUon

Onsuccessful UnsuccesslEul I Unsuccessful I £0'1'
search search search

o

o Two-sided Missed clock MisBed clock Long record
pulse pulse

o o Missed sector Successful r.etry Honretryable

o Seek error

o 10

o 0

o 0

o 0

Fatal error I Fatal error

NOTES

pulse error

Seek errOK

o

o
o

o
Fatal error

o

o
o
o
Patal en-or

o
Operation
check

High density

o
o
Fatal error

1. None.istent resource, bus parity, and uncorrected memory errors are cOlDbined inte. bit 15 of I 6'1',
but each occurrence is noted separately in the aCT. -

2. 2h. online drivers viII flag, in the RCT, corrected lDelDory errors and driver or hardvare
corrected errors.

DEVICE DRIVERS

"The remainder of this section discusses the device drivers in
the following order:

• Card reader/Card reader-punch driver
• Printer driver
• Disk driver
• Magnetic tape driver.

Card Reader/Card Reader-Punch Driver

The card reader and card reader-punch devices are serviced by
a single driver. The driver uses six function codes1 i.e., read,
write, write file mark (reader/punch only), connect, disconnect,
and wait online. In addition, its IORB word I DVS can be coded
to define the character code of the input1 namely, ASCII or
verbatim. These values are specified in the IORB as defined in
Table 6-6.

The translation/mapping of these codes from punched card
format into memory on reading is described below.

In addition to the standard driver functionality discussed
earlier, this driver also:

• Detects and discards unsolicited interrupts

• Detects an end-of-file condition and sets the appropriate
return status (ASCII GS character in column 1 of any
card=EOF)

• Detects "device not ready· condition and sets appropriate
error condition.

ASCII MODE

In this mode, punched cards are processed as shown in
Figure 6-2. Each card column consisting of a 12-bit ASCII card
code is converted into an 8-bit ASCII byte and stored in the main
memory.

The ASCII card code table as specified in American National
Standard X3.26 is given in Table 6-S. Note that no multiple
punches in rows 1 through 7 are allowed and, thus, the 12-bit
card code allows a maximum of 2S6 unique codes to be defined.

Translation is done by the card reader attachment that also
provides a software-visible IORB status indicator that is set
whenever an invalid ASCII card code is detected. This error
condition is signaled by a 0107 in the Rl register if any card
column read had a hole pattern that was not one of the legal hole
patterns given in Table 6-S. The invalid card code causes an
ASCII-EO (all Is) code to be loaded in the main memory.

6-13 CZOS-02

*

~ -.. • .- s - ::: ::: % :: • - • -
i

... + i " I ~ :+ " ~

••
.,
! i I ~ I j

~ ! !
.~ ! ! - ~ ~ ~ ~ ~ ~ l~ -- :: : t: t: - - -'

! !
,.

! i ~ ! ; ! i " ~
:; .,

! ! ~ " '" ~
0 i ~ ~ ~ -- % ; :: :: ~ :: ~ t: :: ::: -

~

! ~ ~
.,.

~ " or ~ ;& :; :; • ! ! ! !
.~ ! ~ ! ~ !

~ ~ • - ::: ; ~ ~ ~ ; -- :: - - ::

~ .~ ~ i "II ., 'I' "\' " j
.,.

i
., 'I' "\' ..

; ; i i ; ~ .! '! ! !
00 ::: ~ - ::: :: :: ~ ~ .~ -- :: :: ::: :: ::: ::

i
.... ...

I ::
~

..
~ ...

.~ ~ ! i ~
.,

! :: :: - ! ~ g' 0 - -- :: i :: ... :: ~ :: ~ - -
~ ~

... .,. '" : ~ ! ~
.,

f
,. "!' .. t:'

~ ; i ; ! ! ! ! .<!' .. --0
I ~ - ; ~ 0 :: ::: :: :: ::: :: :: ::: ..:. - ;

! "II ,. ,.
~ - ., .,

; "II ., ..
00 .. ! '" '" ! ::: .. " ,. ., .. = =

., ., ::: ., -
; ... :; PO ...
~

., .. t:' ; :; ,. .; <it 0 ; ,.
i

.; .,
0 0 • : i : ! ! ; .. ; : : ~ ~ ! - 0 0 -

- Z ! :'!:
!

., ; ~ ! i - ~ -l~ - ...
-~ 1 ! ! <i' -~ 0 - • = .. ::: is:: .- .. - .- .- .. - .. - ,- .. - .. - .- 1-

0 ~
...

~
,.

~ ; :+ ; ; 1 ! ! : ! - .. * % -• -=:. e~ ..:. - ... - '.- .- .. - .- ..- .- -- .. - -- .- c-

- .,
-: ~

":'
"\' _0,

'"
., !

~= .. = :6 ;:,% .. lit: : .. -= ': 0 .- >0)(0 N" <-

_0 0 • ,. ":' .. to!' ·l ::: ,. "\' .. ,.
<~ 0:: .. '.= \:1= == -= 2= Z= 0= 0 a_ c..- - ...- .. - ... -- ,. .. ,.

'I' ":' - .. ! ., ..
0 0 0 ... -- "II ,,= ,:g .,. •• ". ,.-

0 ~ ~.;
... -:0 "\' ,. - .. :± ,.

-~ ! ! .. i .; o· ~i , ":' ... t": 'II::: -:0 ... -. '" .. - .. .- . - .- 0_ _0

~ :r~
,. .. 'I' .. - Z: .. .;

... 0 · ... - -.;. ~~ • T :.cw;t Z "' .. .":' DI; CIt: "'!
... vt! ~~ 25: 15= 21: ls: <., ;..":' < ... :::. .. <II ...

0 Z ... In'" .0 w- .- "",. ;0;0 ;.;..- (,;- .. - ;;>-

- ... • ..
~

...
0

.;. ":' ... -:0 .. ":' :: .; .. .;
0'" 0 S~ ;:~ ,. .. E; 1:,,:, ~,

S~
.... "!' ;,;= Z .. ~~ ... ~ "' ... =~ ~: ;.;...,.:. 9'" 51::: .N 0 z_ ... - :..i.~ .. c!I "'''' "'- ... - ""- ... -

::~:::::

~~ 0 - • .. • .. ! : :: ::: : ::!
:e I i '" 8 .. ! - I ! ... ! ! ! -N i i ! ! -~:' -
i

6-14 CZ05-02

COLUMN COLUMN
N . N+l

• '2 I I I I 11 I I I I 0 I I I I 1 I I I
I 2 I I I I 3 I I I
I • I I I
I I I I I
I • I I I
I 7 I I
I • I

I
I • I

I I.
'-- ,-_J

HOLLERITH
TO ASCii .
TRANSLATOR

I

• I
I
I

• J
I
I
I
I
I
'--~

,...-----.
I ... 2 I
'-----..1

NOTU: 1. ThiI will iIIdIcnor wtIictI
wiD 111_ iIIIpI HoIIrith'" is

2. the __ .
~.

Figure 6-2. ASCII Card-to-Memory Code Formatting

VERBATIM MODE

In this mode, punched cards are processed as shown in Figure
6-3. The card column pattern is stored in bits 4 through 15 of
the main memory word with hits 0 through 3 set to zero. All
two-hole patterns are valid during a verbatim mode operation.
The device-specific fields in the IORB are given below.

co N ... ,

a r 1 ° I I 1 I I
i I I
.. I I • I , I I
: ,t J

o 3" , a 7 II

=.10101010112/13 01, 12131 .. ll laI7!"'l
WlllMDN

I

Figure 6-3. Verbatim Mode Formatting

6-15 CZ05-02

CARD READER/CARD READER-PUNCH DEVICE-SPECIFIC IORS FIELDS

Table 6-6 defines the device-specific fields in the IORS not
previously defined. Refer to "Driver Functions and Function
Codes" earlier in this section.

CARD READER/CARD READER-PUNCH HARDWARE STATUS CODE MAPPING

The card reader/card reader-punch controller returns to the
driver various codes, which are made visible to the application
by way of the IORB as shown in Tables 6-7 and 6-8.

Table 6-6. Card Read~r/Ca:Ld Reader-Punch lORE Fields

rORB
Word

I CT2

I RNG

Field Definition

Function 0 = Wait online
code

Range

1 = Write

2 = Read

3 = Write file
mark

A = Connect

B = Disconnect

o ~range~32K-l

I DVS Device 0 12 13 14 15 - specific r-------T------~
10 0 I mode I

I RSR Residual
range

mode: O=ASCII
2=verbatim

0< initial range

6-16

Use

See "Wait Online Function"
earlier in this section.

Driver "writes" card fQr
"range" number of bytes.

Driver "reads" card for
"range" number of bytes.

Driver "writes" end-of-file
card.

See "Connect Function" and
"Disconnect Function" earlier
in this section.

If range is greater than card
size, residual range reflects
the difference.

Defines character set of data
being read.

Detects device malfunction.

CZ05-02

Table 6-7. Card Reader IORS Hardware/Software Status Code
Mapping

Hardware IORS Word
Status I ST Meaning If Bit Set -

0 - Device ready
1 - Attention
2 2 Data service tate error
3 3 Mark sense mode
4 4 40-column card mode
5 5 51-column card mode
6 6 External clock track
7 7 Read check error
8 8 ASCII code error
- -- -- -

12 - Corrected memory error
13 15 Nonexistent resource/fatal error
14 15 Bus parity error/fatal error
15 15 Uncorrectable memory error/fatal error

Table 6-8. Card Reader/punch Hardware/Software status Code
Mapping

Hardware IORB Word
Status I ST Meaning If Bit Set -

0 - Device ready
1 - Attention
2 2 Data service rate error
3 3 Invalid ASCII code
4 4 Punch echo or read registration
5 5 Light/dark check
6 6 Card jam
7 -
8 -- -- -- -

12 - Corrected memory error
13 15 Nonexistent resource/fatal error
14 15 Bus parity error/fatal error
15 15 Uncorrectable memory error/fatal error

6-17 CZ05-02

Printer Driver

The printer driver performs all data transfers to line and
serial printers as well as terminal print devices. Format con
trol of printing can be achieved by supplying a control byte as
the first entry in a data buffer. The control byte is included
in the range count of the IORB for the request. The presence of
a control byte is indicated by bit 4 of the IORB's I DVS word.

PRINT CONTROL BYTE

The format of the control byte is:

Bit: 0 1 2 3 4 7

Field: Y PP V COUNT

The control byte: if supplied, is interpreted differently by
line/serial printer and terminal printer devices. The
significance of the control byte for both device types is shown
in Table 6-9 under "Action Caused".

Table 6-10 summarizes control byte settings as hexadecimal
and ASCII values.

These conventions permit a control byte (e.g., 4l}.to be used
with a printer driver (whose default I DVS word is all zeros) * without extra spacing or overprinting.- This driver supports a
terminal format convention that does not require a control byte.
This convention treats the first byte of the range as data, with
spacing as follows:

* Printer - Space one line or skip to head-of-form if at end
of-form, then print.

Bit 4 (F-bit) in I_DVS controls format selection.

PRINTER DEVICE-SPECIFIC IORB FIELDS

Table 6-11 defines the IORB fields whose contents are
specific to the printer driver.

PRINTER HARDWARE/SOFTWARE STATUS CODE MAPPING

Table 6-12 indicates the hardware/software status code
mapping for printers.

6-18 czo 5-02

Table 6-9. Print Control Byte

Field Action Caused

y

Line/Serial Printer
(Space Before Print)

Not used.

Terminal Printer
(Space After Print)

o = Use carriage
return and/or
line feed in
I DVS.

1 = Ignore carriage
return and/or
line feed in
I DVS.

PP 00 Print; ignore V and count/fields: Not used.
single space to end-of-form;
then skip to head-of-form~

01 Do not print; perform actions
defined in V and count fields.

10 Print; perform actions defined in
V and count fields.

11 Reserved for system use.

V 0 Prespace according to count fielde 0 = No prespace.

1 IE count = 0, skip to head-of
form.. If count is between 1 and
11, and the VFU option is present,
skip to the VFU channel defined by
the count field.

If count is greater than 11, or
there is no VFU option, do one
prespace.

Disk Driver

1 = Prespace three
lines1 count
field must be
O.

A single disk driver supports the following disk devices:
diskette, Lark II disk, cartridge module disk, mass storage unit, I
and all fixed-disks (Winchester techn.ology) ..

6-19 CZOS-02

Code

Hexadecimal

OO-IF

")n_")t:I
4V---~J.:

30-3F

40-4F

50-SF

60-6F

70-7F

~O-OF
20-2F
40-4F

10-lF
30-3F
50-SF

60-6F

70-7F

Table 6-10. Print Control Byte Summary

ASCII

NUL-US

1
~ I

0 - ?

@ - 0

P - -
- 0

P - DEL

NUL-SI
- /

@ - 0

DLE-US
o - ?}
P -
,

- 0

P - DEL

Resulting Action

Line/Serial Printers

Single space, then print; skip to head-of
form at end-of-form.

Space count lines; do not print.

Skip to VFU channel number in count, do not
print.

Space count number of lines, print.

Skip to VFU channel number in count, print;
50 = skip to head-of-form.

Reserved for future use.

Reserved for future use.

Terminal Printers

No prespace, print.

Prespace three lines; print.

Reserved for future use.

Reserved for future use.

DISK DRIVER CONVENTIONS FOR DISKETTE

The following driver conventions apply to diskette:

• The disk driver supports both 8- and 5 1/4-inch diskette
devices. For the 8-inch diskette, both single- and
double-sided diskettes may be used. Support of the 5 1/4
inch diskette consists of double-sided and double-density.

• The driver does not explicitly reference the volume ID of
the diskette; therefore, the user must ensure that volumes
addressed are on the proper drives.

6-20 CZ05-02

Table 6-11. Printer IORB Fields

I. IORB
Field Definition Word Use

I CT2 Function code 0 = wait online See "Driver Function and
1 = write Function Codes". Driver

will "write" from I ADR
"range" number of bytes.

I RNG Range 0~range~32K-l If range is greater than
. line size, residual
range reflects the
difference.

I DVS Device-specific o 1 2 3 456 7 8 9 10 11 12 13 1415 - 0 0 0 0 F 0 0 0 000 0 0 0 0 0

F: 0 = Assumes line printer format
control (control byte)

1 = Assumes terminal format control
(no control byte)

All other bits must be zero.

I RSR Residual range See Note

I ST Software status Shown below Mapped from ReT hardware
word status.

NOTE

For cases where original range is less than or
equal to line length, the value in the residual
range has the following meanings:

0 - Completed space/print operation.

other - Residual spacing value is contained in the
value I_ST value field.

• All sector addresses used in the IORB are relative to
track O/sector o.

• The driver converts the volume relative sector number,
defined in the IORB, into physical track and sector
numbers, and to a "side" value for two-sided diskette,
which it then sends to tne device to define the operationo

• The driver can support more than one diskette device, as
long as each device is configured at a different level.

6-21 CZ05-02

Table 6-12. Printer Hardware/Software Status Code Mapping

Hardware IORB
Status I ST Meaning If Bit Set

0 - Device ready
1 - Attention
2 2 Lost data
3 3 End-of-form
4 4 Lines per inch: o = 6; 1 = 8
5 5 Protocol error
6 6 Power up
7 7 Eight bit mode - -- -- -- -

12 - Corrected memory error
13 15 Nonexistent resource/fatal error
14 15 Bus parity error/fatal error
15 15 Uncorrectable memory error/fatal

er.ror

• A diskette sector is 128 bytes long (8 inch) or 256 bytes
long (5 1/4 inch). If range is less than sector length, a
write command will zero fill the rest of the sector. If
range is greater than sector length on either a read or a
write, the driver will read/write multiple sectors
including switching to the next adjacent track, if
necessary.

• There are 16 sectors per track for 5 1/4 diskette; 26
sectors per track for 8 inch diskette.

• There are three models:

1 track per cylinder:
77 cylinders

2 tracks per cylinder:
77 cylinders
80 cylinders

• If hardware errors occur, the operation (seek or read/
write) will be retried up to eight times (five retries and
three retries with recalibrate).

• If the device is not ready, a return status of "device not
ready" (5) will be returned.

Tables 6-13 and 6-14 define IORS fields specific to * diskette. Other lORS fields are described in Table 6-3.

6-22 CZ05-02

lORB
Word

I CT2 -

I DVS -

I ST

I RSR

Table 6-13. Diskette lORB Fields

Field Definition

Function code a = wait-online
1 = write data
2 = read data
5 = format write
6 = format read
E = read disabled

device

Device-specific Relative sector
number

Software status Shown below

Residual range o ~ or iginal
I range

I

NOTE

Use

Specifies I/O oper
ation.

Driver converts this
to physical track
number and physical
sector number on the
track, and to a "side"
value for two-sided
diskette.

Hardware status word
from diskette
(following I/O) ..

Residual range will
always be equal to
zero (i.e., transfer
completed) unless
there is a hardware
malfunction, or an
invalid track number
is supplied during a
read or write
operationo

To ensure compatibility of an application with
other devices, clear to zero the lORB words l_RSR
and I_ST before making an I/O request.

DISK DRIVER CONVENTIONS FOR LARK DISK

The Lark device is a random access, rotating a-inch disk with
both removable and fixed platterse

The following conventions apply to Lark devices:

• Sector size is 256 bytes: there are 64 sectors per track.

6-23 CZOS-02

I

Table 6-14. Diskette Hardware/Software Status Code Mapping.

Hardware lORB
Status 1 ST Meaning if Bit Set -

0 - Device ready
1 - Attention
2 I 2 Data service rate error
3 3 Deleted field
4 4 Read error
5 5 Device fault
e: ~ r·1issed data synchronization v u

7 7 Unsuccessful search
8 - Two-sided diskette
- -

10 10 Seek error
12 - Corrected memory error
13 15 Nonexistent resource/fatal error
14 15 Bus parity error/fatal error
15 15 Uncorrectable memory error/fatal

error

• The driver does not explicitly refer to the volume ID of
the disk; the user must ensure that the volumes addressed
are on the proper drives.

• All sector addresses used in the lORB are relative to
cylinder 0, track 0, sector O.

• There are two models:

2 tracks per cylinder:
204 cylinders
622 cylinders

• The driver converts the volume relative sector number,
defined in the lORB, into physical cylinder, track, and
sector numbers, which it then sends to the device to
define the operation.

• The Lark disk requires two LRNs, one for the fixed and one
for the removable platter.

• Offset read capability is provided by specifying the
desired displacement in the l_RSR field of the lORB.

• Offset write capabilities are not provided.

Tables 6-15 and 6-16 show lORB fields specific to the Lark
device. Other lORB fields are described in Table 6-3.

6-24 czo 5-02

Table 6-15. Lark Disk IORS Fields

IORS
Word Field Definition Use

I CT2 Function 0 = Wait online Specifies I/O operation.
Code 1 = Write

2 = Read
5 = Format write
6 = Format read
E = Read disabled

device

I DVS Device Relative sector
specific number

I ST Software See Table 6-16
status

I RSR Residual 0 < original
range range

NOTE

Driver converts this to
physical cylinder, track, and
sector number to locate the
data needed.

Hardware status from disk
(following I/O).

Prior to a read, an offset
value may be specified here
so that reading can begin at
a location other than the
physical sector boundarY1
after I/O operation, the
field contains the number of
bytes not transferred in the
operation.

To ensure compatibility of an application with
other disk devices, clear to zero the IORS word
I_ST before requesting I/O.

DISK DRIVER CONVENTIONS FOR MASS STORAGE UNIT

The following driver conventions apply to mass storage units:

• Sector size is 256 bytes1 there are 64 sectors per track.

• The driver does not explicitly refer to the volume ID of
the disk pack, so the user must ensure that the volumes
addressed are on the correct drives.

6-25 CZ05-02

Table 6-16. Lark Disk Hardware/Software
status Code Mapping

Hardware IORB
Status I ST Meaning If Bit Set -

0 -
1 -
2 2 Over or underrun
3 3 Write protect error
4 4 'Read error
5 5 !n\"alid "' ""'t,.

glll;~'1'\.

6 6 Missed data synchronization
7 7 Unsuccessful search
8 8 Missed clock pulse
9 9 Successful recovery

10 10 Seek error·
11 -
12 -
13 -
14 -
15 15 Fatal error

• All sector addresses in the IORB are relative to cylinder
0, track 0, sector O. There are four models:

5 tracks per cylinder:
411 cylinders
823 cylinders

19 tracks per cylinder:
411 cylinders
823 cylinders

• The driver converts the volume relative sector number,
defined in the IORB, into physical cylinder, track, and
sector numbers, which it then sends to the device to
define the disk address.

• The volume relative sector numbers exceed the maximum
number that may be stored in one I DVS word. Place high
order bits in I_ST; low order bits-in I_DVS.

• The mass storage unit requires only one LRN.

• The driver combines seek and data transfer functions.
When errors occur, eight attempts are made to correct the
error: five seek/data transfers, and three seek/data
transfers with recalibrate.

• Offset read capability is provided by specifying the
required displacement in the I RSR field of the IORB.

6-26 CZ05-02

• Offset write capability is not provided.

• When the driver notes a change in the ready state, it
disables the device (by a software switch) and notifies
the file manager to execute the automatic volume
recognition procedures.

Tables 6-17 and 6-18 show IORB fields specific to the mass
storage unit. Other IORS fields are described by Table 6-3.

lORB
Word

I CT2

I DVS

I RSR

I ST

Table 6-17. Mass storage Unit 10RB Fields

Field

Function
Code

Device
specific

Definition

0 = Wait online
1 = Write
2 = Read
5 = Format write
6 = Format read
E = Read disabled

device

Relative sector
number

Residual . 0 ~ original
range range

Software See Table 6-18
status

6-27

Use

Specifies I/O operation.

Driver converts this to the
physical cylinder, track, and
sector number to locate the
data needed.

Prior to a read, an offset
value may be specified here
so that reading can begin at
a location other than the
physical sector boundarY1
after I/O operation the field
contains the number of bytes
not transferred in the
operation. .

After an I/O operation, the
field contains the number of
bytes not transferred.

Prior to an order, this field
contains the high-order bits
of the relative sector
number. After the operation,
it contains the hardware
status from device.

CZOS-02

Table 6-18. Mass storage Unit Status Code Mapping

Hardware IORBV
Status I ST Meaning If Bit Set -

0 -
1 -
2 2 Over/under run
3 3 Device fault
4 4 Read error
5 5 Invalid seek
6 6 Missed data synchronization
7 7 Unsuccessful search
8 8 Missed clock pulse
9 9 Successful recovery

10 10 Reserved
11 -
12 -
13 -
14 -
15 15 Fatal error

DISK DRIVER CONVENTIONS FOR CARTRIDGE MODULE DISK

The following driver conventions apply -to the cartridge
module disk:

• Sector size is 256 bytes; there are 64 sectors per track.

• The driver does not explicitly refer to the volume ID of
the disk; the user must ensure that the volumes addressed
are on the correct drives.

• All sector addresses in the IORS are relative to cylinder
0, track 0, sector O. The models are:

1 track per cylinder:

411 cylinders (removable, 8-megabyte)
411 cylinders (fixed, 8-megabyte)
823 cylinders (removable, l6-megabyte)
823 cylinders (fixed, l6-megabyte)

3 tracks per cylinder:

823 cylinders (removable, l6-megabyte)
823 cylinders (fixed, 48-megabyte)

5 tracks per cylinder:

823 cylinders (removable, l6-megabyte)
823 cylinders (fixed, 80-megabyte)

6-28 CZO 5-02

The driver converts the volume relative sector number,
defined in the IORS, into physical cylinder, track, and
sector numbers, which it then sends to the device to
define the disk address.

• The volume relative sector numbers exceed the maximum
number that may be stored in I DVS word: place high order
sector bits in I_ST, low order-sector bits in I_DVS.

• The fixed and removable portions of the cartridge module
disk each require a separate LRN.

• The driver combines seek and data transfer functions.
When errors occur, eight retries are made (five seek/data
transfers, three seek/data transfers with recalibrate).

• Offset reading (not writing) is provided by specifying the
required displacement in the I_RSR field of the lORS.

• When the driver detects a change in the ready state, it
disables the device, both fixed and removable (with a
software switch), and notifies file management to execute
the system's automatic volume recognition procedures.

Tables 6-19 and 6-20 show the IORS fields specific to the
cartridge module disk. Other IORS fields are described by Table
6-3.

Magnetic Tape Driver

The magnetic tape driver manages all standard data transfer
requests to and from 9-track phase encoded (PE), and 9-track
nonreturn to zero inverted (NRZI) tape drives on one or more
magnetic tape controllers. The tape drive characteristics
supported by this tape driver are shown in Table 6-21.

The driver provides the following callable functions:

• Wait online

• Write

• Read (forward)

• Position block (forward and backward)

• Position forward or backward by tape mark, rewind to
beginning of tape (BOT), rewind to BOT and unload.

The driver operates in the following modes:

• Odd parity

6-29 CZOS-02

*

lORS
Word

I CT2

I DVS

I RSR

I ST

Table 6-19. Cartridge Module Disk lORS Fields

Field Definition

Function 0 = Wait online
Code 1 = Write

2 = Read
5 = Format write
6 = Format read
E = Read disabled

device

Device Relative sector
specific number

Residual 0 ~ original
range range

Software See Table 6-20
status

Use

Specifies I/O operation.

Driver converts this to the
physical cylinder, track,
and sector number to locate
the data needed.

Prior to a read, an offset
value may be specified here
so that reading can begin at
a location other than the
physical sector boundarY1
after I/O operation the
field contains the number of
bytes not transferred in the
operation.

Prior to'an order, this
field contains the high
order relative sector bits.
After the I/O operation, the
field contains the hardware
status, from the device.

• Minimum data block, MOB (American National Standard
specifies 18 or more characters per block in write, 12 or
more in read)

• MOB-inhibited (if fewer than the specified number of
characters must be read or written, this mode is
required) •

If MOB mode is specified for a write and the range is less
than 18 characters, a parameter error is reported. If MOB mode
is specified for a read and the range is less than 12 characters,
you receive the first portion (requested range) of the first
valid block and an unequal length check. If a "short record" is
detected, a corrected media error is reported in status word,
I ST. If a record of less than 18 characters is written or less
than 12 characters is read, the inhibit block size check bit (bit
12 of the device specific word, I_DVS) must be set.

6-30 CZOS-02

Table 6-20. Cartridge Module Disk status Code Mapping

Hardware IORB
status I ST Meaning If Bit set

o -
1 -
2 2 Over/underrun
3 3 Device fault
4 4 Read error
5 5 Invalid seek
6 6 Missed data synchronization
7 7 Unsuccessful search
8 8 Missed clock pulse
9 9 Successful recovery

10 10 Reserved
11 -
12 -
13 -
14 -
15 15 Fatal error

Table 6-21. Characteristics of Supported Tape Drives

Speed Density
(ips) (bpi) Parity

Tape Drive
Type 45 75 125 6250 1600 800 556 200 Odd Even

9-track X X - - - X X - X -
NRZI

9-track X X - - X X - - X -
PE

9-track - X X X - - - - X - .
GCR
GCR mode

9-track - X X - X - - - X -
GCR
PE mode

6-31 CZ05-02

Beginning of tape (BOT), end of tape (EOT), and end of file
(EOF) conditions are reported for appropriate user action. If an
error occurs in a case when the operation can be retried, the
driver backspaces and reissues the order up to 32 times before
reporting a hardware error. If an error occurs and no retry is
possible, the driver rewinds and forward spaces to the problem
block and reissues the order once before reporting a hardware
error. The driver does not check the tape volume identifier.

The EOT return status is not returned for read operations;
only the EOT status word bit is set. It is assumed that
appropriate application software conventions will prevent reads
that· would force the tape off the end of the reel.

The resident magnetic tape driver is interrupt driven and
must execute with a resident Executive and with the central
processor in the privileged state. It can support, on an
adapter, one data transfer simultaneously with one or more
rewind/rewind-unload orders.

Tables 6-22 and 6-23 show IORS fields specific to magnetic
tape devices. Other IORB fields are described by Table 6-3.

6-32 CZOS-02

Table 6-22. Magnetic Tape IORS Fields

Word Field

I CT2 Function
Code

I DVS Device
specific

I RNG Range

I RSR Residual
range

. 0 =
1 =
2 =
3 =
4 =
6 =

a

10 0

B:

Wait online
Write
Read
Write filemark

Definition

Position by block (see range)
position file (see range)

3 12 13-15

alBia 0 0 000 0 olII mode I
o = Enable buffering in GCR buffered tape; 1
= Disable buffering in GCR buffered tape.
Note that B is recognized only when GCR
buffered tape is positioned at BOT. Must be
specified for read, write, and write tape
mark operations when positioned at BOT.

I: 0 = Normal American National Standard block
sizes: I = Inhibit sensing for American
National Standard block size.

mode: Must be zero

write: I through 7FFF

Read: O=Backspace one block; 1 through 7FFF is
valid for data transfer

Position by block: Negative is back space; 0 is
invalid; positive is forward
space

Position by. file: -2 = Rewind and unload
-1 = Rewind to BOT
o = Backspace to previous

tapemark
1 = Forward space to

tapemark

Nonzero when physical block exceeds range.

6-33 CZ05-02

o
1

2
3

4
5
6
7
8
9

10
11
12

13
14
15

Table 6-23. Magnetic Tape Hardware/Software
status Code Mapping

1
2

3
4
5
6
7
8
9

10
11

Meaning If Bit set

Device ready
Attention
Rewinding
Error - Operation can be retried
Must be zero
Write protected
Corrected media error
Tape mark
BOT
EOT
Unequal record length
Error - Operation cannot be retried
Must be zero
Operation check
Corrected memory error
High density
Nonexistent resource/fatal error
Bus parity error/fatal error

12
15
15
15 Memory error - correction impossible/fatal error

6-34 CZ05-02

Section 7
LINE PROTOCOL

HANDLERS

This section provides an overview
Subsequent sections describe specific

of line protocol handlers.
line protocol handlers in
a set of conventions or detail~ A communicat protocol

rules for the transmission of data.
used in the transfer of information

Communications protocols are
between a local CPU and

remote terrni or host

A line protocol handler (LPH) is the implementation of a par
ticular communications protocol. Accordingly, each I,PH supports
a specific class of communications device, such as synchronous
VIP terminals, or a communications protocol, such as the
BSC 2780/BSC 3780 binary synchronous communications protocol.
The following LPHs can be configured at system building:

ATD

STD

The asynchronous terminal driver (ATD) supports
asynchronous terminals, serial printers, and certain
asynchronous X-ON/X-OFF protocols. The ATD LPH has five
operational modes: Teletype compatible (TTY), field,
block, ASPI, and X-ON/X-OFF.

The synchronous terminal driver (STD) LPH supports
specific synchronous terminal devices. These devices are
the polled visual information projection (VIP) terminals
and associated ROPs.

7-1 CZOS-02

PVE

This synchronous LPH supports communications between com
puters. It emulates the polled VIP protocol for use in
communications with remote Honeywell hosts that support
polled VIP terminals.

BSe 2780/BSe 3780

TTY

This synchronous LPH supports communications between com
puters. It supports a station (device or computer) that
utilizes the BSC 2780 or BSe 3780 binary synchronous
communication (BSC) protocol in communications with a
remote host.

This asynchronous LPH supports specific asynchronous ter
minaldevices. These devices are classified as
teleprinter-compatible, and include certain automatic
send/receive (ASR), keyboard send/receive (KSR), and VIP
terminals.

I BSC-TF

This synchronous LPH supports communications between
certain IBM terminals and computers running MOD 400. The
Bse 3270 Terminal Facility supports IBM 3270 type
terminals, printers, and cluster controllers.

The user may write a line protocol handler if it conforms to
the same internal interface requirements used by the
Honeywell-supplied line protocol handlers.

LINE PROTOCOL HANDLER FUNCTIONS

Line protocol handlers transfer data between a communica
tions device and the application that uses it. These handlers
consist of two parts -- one resident in main memory and the other
(called the channel control program (CCP» resident in the MLC.
The main memory-resident portion of the LPH is concerned with the
processing of transmitted/received data at the block, message, or
field level. The MLC-resident component is concerned with the
transmission/reception of the individual data characters that
make up the block, message, or field level data aggregate.

Main Memory-Resident LPH

The portion of the line protocol handlers resident in main
memory performs the following:

• When the system is bootstrapped:

Validates communication device types by reading the
device's identification number.

7-2
09/86
eZOS-02A

Initializes the communication device and sets it to the
priority level at which it is to operate.

• Validates the application's input/output request block
(IORB) fields ..

• Converts user-supplied functions into device-specific MLC
orders.

• Sets a timer and a monitor for data set status changes$

• Initiates the MLC I/O operation.

• Detects and processes MLC I/O interrupts.

• Reads return status from the communication device to
ascertain result of an I/O operation.

• Processes error recovery, when possible.

• Processes unsolicited timeouts and data set status
changes.

• Forms composite status in the lORE, including residual
range, from all of the processed MLC orders •

., Posts back the application's IORB with the appropriate
hardware and software status information.

MLC-Resident LPH (CCP)

A channel control program (CCP) is the MLC-resident portion
of an LPH~ Through the appropriate hardware device-pac attached
to the MLC, the channel control program controls transmission of
data over communication lines~ It serves to:

• Store or fetch individual characters in or from the buffer
supplied with the IORB

• Perform translation, substitution, and deletion operations
on individual characters

• Insert/delete protocol or device-specific header or
trailer information.

MLC COMMUNICATIONS HANDLER

The MLC communications handler receives processor orders from
the main memory-resident portion of the line protocol handler and
activates the appropriate channel control program (see above and
Figure 7-1) to process the orders. The handler also:

• Processes a line protocol handler's requests for control
functions or for data transfer operations

7-3 CZ05-02

-....J
I
~

()
N
o
VI
I

o
t-.J

KEY:- L _
REPRESENTS
COMMUNICATIONS VIA
EITHER:
• DIRECT CONNECTION
• MODEM BYPASS
• DATA SET

APPLICATION
PROGRAM
(HIGH LEVEL
LANGUAGE)

APPLICATION
PROGRAM
(ASSEMBLY
LANGUAGE)

COMMUNICATIONS SUBS\lSTEM

r- - - - -(MAINMEMORYREsiDENTl 1, ________ ,
NOTE:

---1 I I

LPHs CONSIST OF AN MLCP l'lESIDENT
PORTION CALLED THE CCP AND A
MAIN MEMORY RESIDENT PORTION

I, LPHs 1
I (MAIN MEMORY MLC
I RESIDENT)

:! ~:
I I 1 I I __ -1 ____ . ____ _
--~----- t

I
I I
II

I
I
I

COMM
SUPER

I 1 I
ASYNCHRONOUS
TERMIN.AL

I I ~~~:;9LL I -ri - - - - - - - L _CON/X.O,FF)

t J -I -----

I I t

APPLICA TlON
PROGRAM
(ASSEMBLY
LANGUAGE)

REQUEST
110
MACRO
CALL I

I
I
I
I
I
/

I

>-- I I • i ''''''''~ "-r _1 _______ J TERMIN~~OUS
I I ,----r--, -----I

I
I
I
1
I

I
1
I

LOGICAL
1/0
INTERFACE

IL ':
/

,
--'I

L _______ . __ _

PHYSICAL
I/O
INTERFACE

Figure 7-1. Communications Overview

I I

I

-/--1-. I ------/--
I I

- -~ : :
I I

PHYSICAL PHYSICAL
CONNECTION CONNECTION

HONEYWELL
HOST

HONEYI:::l
LEVELIi~

--_._--

• Services interrupts from the MLC and passes them to the
appropriate line protocol handler.

COMMUNICATIONS SUBSYSTEM OPERATION EXAMPLE

The following example and Figure 7-1 indicate the interac
tion of the communications subsystem's components in the process
ing of a connect, write, and disconnect request. The opera
tions described apply to the physical I/O interface, without
reference to a specific device or line protocol.

This example refers to the communications supervisor. The
communications supervisor resides in main memory and provides the
interface to communications applications programs at the physical
I/O level. It queues application programs' requests for serv
ices, activates the appropriate line protocol handler, interacts
with an application through system software when an I/O order is
complete, and provides a set of common line protocol handler
services (e.g., establishing/disestablishing data set communica
tions, monitoring for time-outs and data set status changes).

Example:

1. The communications supervisor receives the application's
connect request through the physical I/O interface, and
passes it to the DIAL channel control program (CCP)
within the multiline communications processor (MLC).

2. The DIAL CCP establishes a physical communication connec
tion to the device.

3. The main memory-resident portion of the appropriate line
protocol handler (LPB) processes the logical connection.

4. The communications supervisor passes the application's
subsequent write request to the main memory-resident LPB,
which translates the request into one or more MLC
communications handler requests.

. 5. Each MLC communications handler request results in one or
more orders to the MLC. (These orders not only describe
the data to be transferred, but also cause the invocation
and execution of the appropriate CCP.)

6.. The appropriate CCP processes each of the write orders,
which transmits the data to the device. During this
time, the main memory-resident LPB terminates itself.

7. When the MLC senses completion of the data transfer, the
CCP issues an interrupt, which is processed first by the
communications supervisor and then by the MLC communica
tions handler.

7-5 CZOS-02

I
I
*

8. The MLC communications handler reactivates the main
memory-resident portion of the LPH at the interrupt
level, to minimally process the interrupt.

9. When processing is complete, control passes to the MLC
communications handler, which causes processing at the
interrupt level to be suspended.

10. If additional processing is necessary, the main memory
resident portion of the LPH can schedule itself to
perform post-interrupt processing on a non-interrupt
level.

11; The application's disconnect request is processed in the
same manner as the connect request, but in the opposite
order.

a. The main memory-resident portion of the LPH performs
the necessary logical disconnect processing.

b. The physical connection is appropriately disconnected
by the DIAL CCP.

The logic of the write operation in this example would apply
to a read operation.

EXTENDED LRN SUPPORT

The ATD, TTY, and BSC line protocol handlers support Logical
Resource Numbers (LRNS) greater then 255. All line protocol
handlers support the extended IORS format, even if an LPH does
not support LRNs greater than 255.

8-BIT DATA SUPPORT

The ATD, STD, and PVE line protocol handlers support the
extended ASCII character set (often called 8-bit data).

7-6
09/86
CZ05-02A

7-Bit Data Plus Parity and Truncation

In this mode, the data is transmitted and received with
parity checking and generation. The high-order bit of the
character is unconditionally truncated. This mode is supported I
by the ATD, STD, PVE, and TTY LPHs on the MLCP, MLC-16, and
DPS 6/22 controllers.

7-Bit Data Plus Parity and Shift-In/Shift-Out

In this mode, the data is transmitted and received with
parity checking and generation. The shift-in/shift-out technique
is used to transfer the high-order bit of the character. This
mode is supported by the ATD LPH on the MLC-16 controller.

8-Bit Data without Parity

In this mode, the data is transmitted and received with no
parity checking and generation. 8 bits of data is transfered per
character. This mode is supported by the ATD, STD, and PVE LPHs I
on the MLCP, MLC-16, and DPS 6/22 controllers.

8-Bit Data Plus Parity

In this mode, the data is transmitted and received with
parity checking and generation. 8 bits of data is transfered per
character. This mode is supported by the ATD LPH on the MLC-16
controller.

MODEM SUPPORT
.,

For asynchronous devices, the communications sUbsystem pro-
vides the following modem support:

• Bell System Data Sets: Types l03A, 113F, 202, 212A
• Honeywell modem bypass
• Any modem type defined by the user at system building
• Honeywell-supplied direct-connect cables.

For medium speed synchronous communications, the communica
tions subsystem provides the following modem support:

• Bell System Data sets: Types 201A, 201B, 20lC, 203, or
208A

• Honeywell modem bypass

• Honeywell-supplied direct connect cables

• Any modem type defined by the user at system building
time.

For high-speed synchronous communications, the communications
subsystem provides support for the Bell S¥stem Data Sets:
Types 301B or 303.

7-7
09/86
CZOS-02A

AUTO CALL UNIT

When configured into the system, the Auto Call Facility uses
an Auto Call Unit (ACU) to initiate a line connection with a
remote auto answer data set. The facility operates in the
following manner:

1. The user associates the Auto Call Unit with a particular
communications channel at system building time by using
the ACU CLM directive.

2. The user enables the Auto Call Facility by setting bit 2
of the I DVS word to one on a connect request. The
facility-is supported by all LPHa.

3. When the connect request is processed, the system
attempts to dial a line, using a list of telephone
numbers supplied at system building, the first entry af
which is null. The first number to be dialed can then be
specified with a Set Dial ($SDL) macro call or with the
Set Autodial Telephone Number (SDL) command. If the
first number on the list is not specified (by the macro
call or command), the system skips to the next number on
the list.

4. The facility dials each number on the list three times at
40-second intervals until the list is exhausted or a con
nection made, whichever occurs first.

5. The facility checks that a connection to the modem has
been made.

6. When the connection has been made, control is passed to
the LPH, which processes the logical portion of the
connect request.

The Auto Call Unit supports Data Auxiliary Set Automatic
Calling Units 80lA and 801C. The ACU adapter and the adapter for
its associated data line must be on the same controller.

Two data set options are required to use the Auto Call Unit:

• The option that terminates the call, through the data set,
after the DSS (data set status change) goes on

• The option that stops the ACR timer when the DSS goes on.

COMMUNICATIONS SUBSYSTEM ERROR AND CORRECTION PROCEDURES

The communications subsystem detects errors that may occur
over communications lines by means of parity checking, block
checking, and timeout checking.

7-8 CZOS-02

Parity Error Check

The system sends a parity (check) bit with each transmitted
character. The parity bit, plus the number of character bits set
to 1, will always be an odd or even-numbered total for every
character, according to whether transmission is odd parity (total
is an odd number) or even parity (total is an even number). The
ATD and TTY line protocol handlers support parity error checking.

Block Error Check

The communications subsystem uses two kinds of block error
checking: the longitudinal redundancy check (LRC) and the cyclic
redundancy check (CRC). The computed check characters are known
as block check characters (BCC).

LONGITUDINAL REDUNDANCY CHECK (LRC)

The LRC is a simple check that is applied to the entire
message. The system appends an LRC character, which is an
exclusive OR of all the characters in the message, to the end of
every message. The STD and PVE line protocol handlers use the
LRC method in 7-bit data mode and CRC16 method in 8-bit data
mode.

CYCLIC REDUNDANCY CHECK (CRC)

The CRC method is also block-oriented. The system computes
the CRC block check character(s), using special algorithms
applied to the data to be checked. The system then appends the
BCC to the message. The BSC, STD, and PVE line protocol
handlers use the eRC method of checking errors.

BSC BLOCK CHECK CHARACT'ER (BCC)

In ASCII transmission, the 8-bit Bce is the result of an
exclusive OR operation on all bits transmitted, beginning with
the first character following the STX and ending with the ITB ,
ETB, or ETX control character. It is based on toe polynomial:

X8 + 1 •

In EBCDIC transmission the BCC is 16 bits, and is calculated
by the system with the checking polynomial:

1 + X2 + XIS + X16 •

Timeout Check

After sending a message, the LPH waits for an acknowledgment
from the receiving device. When there is no acknowledgment after
a specific interval, the LPH retransmits the message. When there
is no acknowledgment after a specified number of transmissions,
the LPH takes whatever action is specified by the protocol.

7-9 CZOS-02

I

"

Section 8
ATD LINE PROTOCOL

HANDLER

The Asynchronous Terminal Driver (ATD) line protocol handler
supports certain asynchronous terminals, serial printers, and
certain types of asynchronous data streams.

The ATD LPH operates in five modes:

• TTY mode, which supports line-at-a-time transfer of data
to or from any teletype compatible (TTY) terminal.

• Field mode, which supports field and forms processing on
VIP7200, VIP7800, HDS 2, and VIP7300 class terminals. I

• Block mode, which supports transfer of blocks of da.ta to
or from any VIP7800 class terminal.

• ASPI mode, which supports output to ASPI printers.

• X-ON/X-OFF mode, which supports transfer of data on any
asynchronous line that utilizes an X-ON/X-OFF flow-control
protocol.

The ATD LPH can be accessed at the Physical I/O, File System,
or VDAM level. At the Physical I/O level, the LPH is accessed
through the Request I/O ($RQIO) macro call and an associated
input/output request block (IORB). This interface can be used
with any mode of the LPH and provides for complete control of the
selected mode.

8-1 CZOS-02

The LPH is accessed indirectly through the File System. For
example, to read input from a terminal, an application issues a
Read Record macro call, supplying parameters for the call in an .
associated file information block (FIB). The File System
translates the macro call and FIB parameters into a $RQIO macro
call and associated read IORB. The File System interface is most
useful in providing a sequential file interface to terminals
(operating in TTY and block mode), serial printers (operating in I ROP mode), and a variety of asynchronous devices (operating in
X-ON/X-OFF mode). The File System interface does not support
field mode.

The LPH is accessed indirectly through VDAM. For example, to
read input from a terminal, an application issues a Read Form
macro call, supplying parameters for the call in an associated
VDAM Terminal Control Request Block (VTCRB). VDAM translates the
macro call and VTCRB parameters into $RQIO monitor calls and
associated IORBs. The VDAM interface is most useful in
transfering data via forms from VIP7200, VIP7300, HDS 2, and
VIP7800 classes of terminals operating in ATD i-ield mode.

The remainder of this section provides:

• A summary of ATD operational modes
• A description of common functions
• A detailed description of each mode.

I This section uses the term "HDS 2" terminal.
software refers to this terminal as a VIP8300.

ATD MODES

The LPH

A particular mode is selected by means of a connect IORB and
remains in effect until a disconnect roRS is received. The
following subsections indicate the uses of each mode.

TTY Mode

TTY mode is the default ATD operating mode. The user need
not specify this mode in the connect IORB device specific word
(DSW). This mode is used primarily by the File System, which
treats a terminal (configured by means of the DEVICE directive)
as a sequential file. In this mode, a terminal can be used as
the input and output file of a task group (i.e., user-in,
user-out, command-in, error-out).

TTY mode provides for line-at-a-time input and output.
Character-cancel, line-delete, input-terminator, and escape key
functionality is provided to aid the operator in data entry
operations at the terminal. Support is also provided for a break
key. (The terminal keys that represent these functionalities can
be redefined by the terminal operator through the Set Terminal
File Characteristic (STTY) command.) TTY mode supports a variety
of asynchronous terminals including VIP7100, VIP7200, VIP7201,

8-2
09/86
CZOS-02A

VIP7207, VIP780l, VIP7803, VIP7808, VIP78l3, VIP78l4, VIP7824,
VIP7301, VIP7303, VIP7305, VIP7307, HDS 2; TWUlOOl, TWUl003,
'IWUl005; TN0300, TN1200, and other teletype (KSR, ASR) terminals.

Field Mode

Field mode allows forms-oriented processing to be performed
(on certain terminals) by applications such as Display Formatting
and Control (DFe), menu subsystem, and Data Entry Facility
(DEF). A form consists of a series of fields. A field is a
series of contiguous locations on the terminal screen into which
only selected types of data can be entered. For example, a
terminal operator can enter only "0" through "9" into a numeric
field. The validation of data entered into a field is
accomplished by ATD under application control.

Field mode allows the operator to modify entered fields
easily. The break key is configurable by means of the STTY
command. Break or supervisory messages are displayed in a
communications region (line) on the terminal screen. Field mode
processing is limited to the following terminals: VIP7200,
VIP720l, VIP7207 y VIP7801, VIP7808, VIP7301, VIP7303, VIP730S,
VIP7307, HDS 2, VIP7Sl3, VIP7S14, and VIP7824.

Block Mode

Block mode is supported by the VIP7800 series of terminals.
In block mode, the operator can locally edit terminal input
without ATD involvement. Depression of the transmit key causes
the LPH te receive data from terminal in blocks of
fully-edited inputo Bleck mode can be used at either the
Physical I/O €Or File System @

Terminal input is lecally edited by means of curser centrel,
character insertion/deletien, and line insertien/deletion keys.
Termination of input is accomplished by depression of the
transmit key. The break key is configurable by means of the STTY
command. When the terminal is operating in no-roll mode,
supervisory messages can be displayed in a communications region
(line) on the terminal screen. Block mode processing is limited
to the following terminals: VIP780l, VIP7803, VIP780S, VIP7813, I
VIP78l4, and VIP7824.

ASPI Mode

ASP! mode supports selected serial and letter-quality
receive-only printers (ROPs). This mode provides full
control-byte processing; it also detects and analyzes, in some
cases, printer offline conditions. ASP! mode is supported at the
Physical I/O or File System level. ASPI mode is limited to the
following serial printers: PRUI004, PRU7007, PRU7070, PRU7075,
PRU7l70, PRU7l75, PRU7200, PRU7210, and PRU7270.

8-3
09/86
CZ05-02A

X-ON/X-OFF Mode

X-ON/X-OFF mode supports asynchronous devices that use the
X-ON/X-OFF flow control protocol. This mode protects
applications and devices from buffer overflow by suspending
transmission when the receiver is not ready to accept data.
X-oN/X-OFF mode supports a wide variety of devices, including
terminals, serial printers, paper tape readers, and personal
computers. X-ON/X-OFF mode is also used as a transport facility
for file transfer applications. X-ON/X-OFF has four operational
modes: TERMINAL, PRINTER, FILETRAN, and RAW. All operational
modes require afull-duplex communications line. Themaximum
supported transfer rate is 9600 bits per second.

I/O FUNCTIONS SUPPORTED BY ATD

The ATD line protocol handler supports five logical
functions. Each is listed below wi~ its associated function
code (fc).

• Connect (fc ~ A)
• Disconnect (fc = B)
• Read (fc = 2)
• Write (fc = 1)
• Define form, field mode only (fc = 5)
• Break (fc = 9).

These functions are requested through the input/output
request block (IORB). An application places in the right byte of
IORB word I CT2 the code of the desired function. A connect
request establishes the mode in which subsequent functions (e.g.,
read, write) are performed.

IORB PROCESSING

The ATD LPH is activated by an application-generated $RQIO
macro call. Associated with this macro call is an input/output
request block (IORB) that specifies the operation to be
initiated. The IORB contains a function code, a buffer address,
and range (in most cases), and parameters that specialize
execution of the requested operation. Figure 8-1 shows a
representative IORB, as required for field mode processing.

IORB Size

The required size of an IORB depends on the mode selected by the
application. Field mode requires that an extended-length IORB be
used for all orders (including connect). If a standard length read
or write IORB is received when the terminal is connected in field
mode, that IORB is treated as a supervisory message.

The other ATD modes require standard-length IORBs. Extended
IORBs can optionally be used when connecting a terminal in block
mode to ascertain the terminal's type (which is returned in the
extended portion of the IORB).

8-4
09/86
CZOS-02A

WORD LABEL OJl\21 3 4 151 6 I 7 8 9 A B C I DIE IF

-3 ILRX RFU EXTENDED LRN

0 I LNK RESERVED FOR SYSTEM USE AS POINTER

$AF I_CTI RETURN STATUS T W U S OJRIOII

l+$AF I CT2 LRN ° B 0 E FUNCTION

2+$AF I ADR BUFFER ADDRESS SAF I-WORD POINTER
LAF 2-WORD POINTER

2+2*$SAF I RNG RANGE - NUMBER OF BYTES TO BE TRANSFERRED

3+2*$AF I DVS DEVICE-SPECIFIC WORD

4+2*$AF I RSR RESIDUAL RANGE - NUMBER OF BYTES NOT TRANSFERRED

5+2*$AF I ST DEVICE STATUS WORD

6+2*$AF I_EXT TOTAL IORB EXTENSION PHYSICAL EXTENSION
LENGTH (IN WORDS) LENGTH (IN WORDS)

7+2*$AF I DV2 DEVICE-SPECIFIC WORD 2

8+2*$AF I_FCS TOTAL KEYSTROKES

9+2*$AF I_HDR READ OFFSET

lO+2*$AF I_ST2 FIELD MODIFICATION INDICATOR

11+2*$AF I_QDP DEVICE_ID; RELATIVE RESIDUAL RANGE

12+2*$AF I_TAB EDIT OFFSET (INPUT), TERMINATION CHARACTER (INPUT)

13+2*$AF I_CON ABSOLUTE ADDRESS INDICATOR; PRE-ORnER READ AND
WRITE CODE; TERMINATION CHARACTERS: VFN VALUE

14+2*$AF I_LOG START OF FIELD ATTRIBUTE TABLE

Figure 8-1. ATD IORB

Expanded LRN Support

LRNs 0 to 252 and 256 to 4095 are supported by ATD. If the
LRN is in the range of 256 to 4095, the extended (negative
direction) IORB format must be used.

IORB Device-Specific Word

The device-specific word I DVS is used in conjunction with
each of the I/O functions. ThIs word serves to modify the
activity of a particular function. For example, the setting of
bit 15 in I DVS determines whether the communication line is
disconnectea on completion of a disconnect function.

8- 5 CZ05-02

I

I

"

Processing Order ofuIO}U3s

An application can issue one I/O order against a terminal (or
line) and wait for its completion, or issue several IORBs. Out
standing read and write orders and non-abortive disconnects are
queued sequentially. In TTY, field, and block mode, write orders
are processed before read orders if the read order is not in
progress. Define form orders, read and write orders with the
option to purge outstanding rio requests, and abortive discon
nects are executed immediately after being received by the LPH.

purging Queued IORBs

In the following cases, the LPH purges queued IORBs and posts
the incomplete orders back to the requesting application:

1. The application issues a disconnect order with an abort
request (purge IORB indicator in I DVS word of IORB is set
to 0). All read and write orders tfiat are active or queued
at the time of the disconnect order are purged and posted
to the issuing task with a ftdevice unavailable ft {OIOB}
return status.

2. A line disconnect (data set status change) occurs. All
active or queued read and write orders are purged and
posted with a "device unavailable ft return status. Both
the line and station are disconnected.

3. The application issues a purge-all order in field mode.
All active or queued read and write orders are purged and
posted to the issuing task with a ftdevice unavailable ft
return status. Both the line and station remain
connected.

4. A break signal is detected (BREAK key pressed) and the
user has previously issued a read-break IORB (i.e.,
function code 9 in I CT2, and bit 0 in I DVS set to 0).
See ftBreak Processing by ATD LPH ft below.-

5. The application issues a block write order with the purge
option. Active or queued write orders are purged or
posted with "device unavailable" return status. Both the
line and station remain connected.

6. The application issues a block read order
option. Active or queued read orders are
with ftdevice unavailable" return status.
and station remain connected.

8- 6

with the purge
purged or posted
Both the line

CZ05-02

IORB Error Processing

All ATD modes report errors in the same manner. A 2-byte
error code is placed in register Rl. The left byte indicates the
component detecting the error; the right byte indicates the error
itself. The right byte is also placed in IORB field I CTI.
Table 8-1 lists the return codes as they appear in the-left byte
of I CTI.

Table 8-1. ATD Return Codes

Status
Byte Meaning

o No error~ operation complete

1 Request block is already busy

2 Invalid LRN

3 Illegal wait

4 Invalid argument(s):

• Improper set-up of IORS
• Improper buffer size
• Improper set-up of data in certain buffers

5 Device not ready. Reported when the following devices
are in an off-line state: TWUlOOl, 1003, 10051 PRU7070,
7075; and serial printer attached to VIP7800 terminal

6 Timeout on order other than connect

7 Hardware error:

• Parity error (block mode, X-ON/X-OFF mode)
• Framing error
• Data lost-buffer overflow <X-ON/X-OFF mode)
• Data service error (receive overrun)
• Communications control block service error
• Fatal MLC error

8 Device disabled

• Connect or disconnect pending
• Device logically disabled by system

A Controller unavailable

8- 7 CZ05-02

I

I

I

Table 8-1 (cont). ATD Return Codes

Status
Byte Meaning

B Device unavailable

• Read/write IORBs purged by purge option
• Read/write IORBs purged by disconnect
• Read/write IORBS purged by disconnect with queue abort
• Attempt made to connect to a 7800 class terminal that

is in local mode

C Inconsistent or illogical request

F

• Connect order issued against a dev~ce that is currently
connected

• Disconnect order issued against a device that is
currently disconnected

• Read/write IORB issued; line not connected

• Connect order issued to VIP7800 attached printer when
terminal has already been connected in field mode

• Field mode connect order issued to VIP7800 terminal
when attached printer has already been connected

• Field mode read issued before define form request

• Read request outstanding when new define form request
issued

• Block missed on block mode read

End of file detected (X-ON/X-OFF mode)

10 Timeout on connect

34 The mode of ATD is not configured

35 The mode of ATD is not configured for this controller

38

39

3F

Sub-LRN not configured

Logical connect failed

Connect or disconnect in progress

8- 8 CZ05-02

The status word (I ST) of the IORB contains additional
information that qualIfies the major status code returned in
I CTI. The significance of certain bits of the status word is
tEe same for all ATD modes. Table 8-2 shows the meaning of these
bits.

For the sign.ificance of mode specific bit settings, refer to
the descriptions of the individual ATD modes found later in this
section.

Table 8-2. Status Word of IORB (I_ST)

I ST
BIt Meaning When Bit Set to 1

o Abort terminated lORS

I Mode specific

2 Data service rate error (receive overrun)

3 Mode specific

4 Communication control block service error

5 lORS purged because of break signal

6 Mode specific

7 Mode specific

8 Framing error

9 Parity error

A Nonzero residual range (read only)

B Phone hang-up on disconnect

C Mode specific

D Mode specific

E Mode specific

F Fatal error

• Unrecoverable memory error
• Bus parity error
• Non-existent resource error

8-9 CZOS-02

I

I

Return of Device ID

Table 8-3 shows the values returned in the right byte of IORB
field I QDP when an extended length connect IORB completes and is
posted oack to the application.

Table 8-3. Device IDs Returned in IORB

Value in I
I_QDP .

45
46
47
118
49
4A
4B
4C
4D
4E
50
51
52
54
55
56
57
58
5B
5C
5D
5E
SF
61
62
63
64
65
66
67

90
AO
Al

Marketing Identifer

VIP7l00
VIP7200
VIP7207 (data entry)
VIP7808 (word processing mode)
VIP7801
VIP7808 (general purpose mode)
VIP7803 (word processing)
TTY (KSR)
TermiNet 0300
TermiNet 1200
VIP7813/VIP7824/VIP7825 (MF) async
ROSY 24
ROSY 26
Spinwriter 5518
Spinwriter 3508
PRU7200 (Qume 96 characters)
Sara 22
PRU7210 (Qume 130 characters)
PRU7070
PRU7l70
PRU7270
PRU7l75
PRU7075
VIP7814 sync (rev. 2 firmware)
VIP78l4/VIP78l5 async
VIP7201
VIP7301
VIP7307 (data entry)
VIP7303 (word processing)
VIP7305 (multifunction) or microSystem 6/10
console (black and white)
NIP (ASPI non-impact printers)
HDS 2 (in native VIP8300 mode)
VIP7306

8-10
09/86
CZ05-02A

SUPERVISORY MESSAGE PROCESSING

When a terminal is processing forms, the supervisory message
line provides a communication region (typically the bottom line
of the terminal) through which the operator can interact with the
system independently of the forms processing application. ATO
provides support for supervisory messages'on the following VIP
terminals when they are connected in either field or block mode:
VIP7200, VIP7201, VIP7207, VIP7801, VIP7803, VIP7808, VIP7813,
VIP7814, VIP7824, VIP7301, VIP7303, VIP7307, and HOS 2.

Supervisory message processing is specified by means of a
non-extended read or write IORS with bit 9 in I OVS set to 1.
The use of this bit is optional in ATO field moae, because
supervisory message orders are already distinguished from normal
field mode orders by being non-extended. The location of the
supervisory message line depends on the ATO mode, and the type
and operational mode of the terminal. When, for example, a
terminal is connected in field mode, it operates in no-roll
mode. If the terminal is a VIP7200, then the supervisory message
line is (typically) the 24th line. If, however, the terminal is
a VIP7801, then the supervisory message line is always the 25th
line of the terminal.

The following diagram shows supervisory message line location
for supported VIP terminal classes and ATO LPH modes.

VIP Terminal Class

7100 7200 7300 7800 HOB 2

TTY mode I 1 1 I 1

Field mode N/A 2 3 3 3

Block mode N/A N/A N/A 4 N/A

X-ON/X-OFF mode N/A 1 1 1 1

where:

1 = When supervisory messages are written to the terminal,
output is at ~urrent cursor position. There is no way to
acknowledge the write; all reads are treated as normal
device reads.

2 = Read/write activity is directed to the designated
supervisory message line, which is normally line 24.

3 = Read/write activity is directed to the line 25.

09/86
8-11 CZ05-02A

I

4 = Read/write operation is predicated on the roll bit (b.it
9) of the connect I DVS. If the terminal is in roll mode
(bit 9 = 0), writes-begin at the current cursor position
and reads are treated as normal device reads. If the
terminal is not in roll mode (bit 9 = 1), reads and
writes are directed to the 25th line.

All writes to the supervisory message line are truncated to 80
characters, and the residual range indicates the amount of data
not written. If supervisory message writes are specified, bit 8
of the read/write I DVS becomes significant. If bit 8 = 0,
supervisory messages must be acknowledged before the write is
posted back to the application. If bit 8 = 1, supervisory
messagss need not be acknowledged by the operator.

In TTY and X-ON/X-OFF modes, supervisory writes (which are
treated as standard data writes) are not acknowledged. In other
modes, the operator acknowledges a supervisory message by
pressing one of the following keys:

Field mode: function key 10, CLEAR key, or transmit key.
Block mode: function key 10.

CONTROL BYTE PROCESSING

Control byte processing is a TTY, block, ASPI, and X-ON/X-OFF
mode option that is specified by a bit setting in the I DVS word
of the write order. When selected, this option indicates that
the first byte of the output buffer is to be used as a control
byte. This byte must be included in the range (I_RNG) value of
the write IORB.

The format of the control byte is:

Bit: a 1 2 3 4 5 6 7

Field: Y P P V COUNT

The possible values for these fields and their significance to
ATD are shown in Table 8-3.1.

The head-of-form sequence, specified by bit 3 of the control
byte, is a form feed for the following devices: TWUIOOl,
TWUI003, TWUI005; PRU7070, PRU7075, PRU7270, PRU7170, PRU7l75.
These are stand-alone devices not attached to a VAF7821 buffered
printer adapter. For other deVICes, head-of-form consists of a
carriage return and three line feeds.

8-12
09/86
CZ05-02A

Bit Field
Value Name

80 (Y)

60 (PP)

10 (V)

OF (CCCC)

Table 8-3.1 ATD Control Bytes

Description

1 - Do not do post-order C/R L/F

Bits
5 6
Olf - Print1 ignore V and CCCC fields
0 1 - Do not print1 do V and eccc fields
1 0 - Print1 do V and CCCC fields
1 1 - Reserved for future use

1 - If CCCC=O, send form feed or three line
feeds for terminals1 if CCCC>O, send one
line feed

o - Pre-space as per eccc field

Count field (number of line feeds to send)

8-12.1
09/86
CZOS-02A

8-BIT DATA SUPPORT

ATD supports 8-bit data mode. You can select either an 8-bit
data path or the appropriate algorithms used when an application
uses a-bit data on a 7-bit communication channel. The number of
data bits that can be transmitted on a communications channel is
specified at system build time using the ATD CLM directive. If
the communication channel does not support a-bit data, you can
specify truncation or shift-in/shift-out. This is accomplished
by the compression algorithm argument. If truncation is
selected, the transmitted data will have the high-order bit
removed. If shift-in/shift-out is specified, a shift-in
character (hex OF) will preceed the first character to be
transmitted that has a high-order bit equal to one. Before the
next character in the data stream that has a high-order bit equal
to zero is sent, a shift-out character (hex OE) will be sent.
This will continue with a shift-in or shift-out character
preceeding the actual data character every time the high-order
bit changes. In this way, 8-bit data is sent over a 7-bit
communication channel. For example if the formula "1/4 + 1/2 =
3/4" were to be sent, it would be represented by the hex string:

SI 1/4 SO + SI 1/2 SO = SI 3/4

OF 3C OE 20 2B 20 OF 3D DE 20 3D 20 OF 3E

Shift-in/shift-out is supported only on MLC-16 controllers. I
CONNECT PROCESSING

After a connect lORS is processed by the communication
supe, pas to ATD@ foIl a list
of actions taken by ATD for all connects:

Ie Make sure the channel control program (CCP) is loaded~

2.. If a sub-LRN is used, determine if a connect for another
component is in progress. If so, defer the connect until I
later.

3. If the device is a hard copy device or TTY terminal, and
it is not a configured device type, go to Step 8.

4. Send an inquiry sequence to the terminal. If there is no
response, retry for 4.5 minutes at regular intervals. If
no error occurs, go to Step 6.

5.. Post the current IORS with device unavailable.

6. If the device is not self configuring, go to Step 7;
otherwise validate the inquiry response. If the response
is a valid (supported) terminal, set the device type and
go to Step 8. If not a valid supported terminal, set the
default device type to VIP7200 and go to Step 8.

8-13
09/86
CZOS-02A

I

I

7. Set the terminal type as defined by CLM.

8. Configure the terminal characteristics.

9. Validate the mode required and enter the correct ATD
module.

SELF-CONFIGURING TERMINALS

The device type can be defined as self-configuring by using an
asterisk (*) as the device type argument of the ATD directive at
configuration time. In this way, the ATD line protocol handler
will configure the device when the first connect is recieved for
the device. Self-configuration is performed by sending an
inquiry sequence to the device and setting the configuration
based on the response. If an unknown response is .recei ved, the
device is configured as a VIP7200. If the device doesn't
respond, the sequence is retried at regular intervals for
approximately 4.5 minutes. If after this time the device doesn't
respond, the connect is returned to the user with the device
unavailable error (OlOB).

The following restrictions apply to self-configuring
terminals:

• The device must be either a VIP780x, VIP78lx, VIP782x,
VIP730x, HDS 2, VIP720l, VIP7200, or any ASP I printer.

• The device must be configured at a baud rate that is
suitable for all devices connected to the channel.

• Applications that determine the device type by issuing a
Get Device Information monitor call should be aware that
prior to a connect being issued, the device type will be
x'FF' and a valid device type will only be returned after
a connection has been established.

• A self-configuring line will not re-establish a new device
on that line unless a physical disconnect or a line drop
is detected on a previous session. To maintain the
terminal in the same configuration, only logical
disconnects and connects can be requested in any session.

BUFFERED PRINTER ADAPTER (BPA) SUPPORT

ATD supports the buffered printer adpater (BPA). The BPA
allows the attachment of a serial printer (PRU1003, PRU1005,
PRU7070, PRU7075, PRU7l70, PRU7l75, or PRU7270) to a VIP780l,
VIP7803, VIP7808, VIP78l3, VIP78l4, VIP7824, VIP78l6, or VIP7856
terminal. An application can use the serial printer when the
attached terminal is connected and operating in either TTY or
block mode. Use of the printer with a terminal connected in
field mode is not allowed.

8-14
09/86
CZ05-02A

The BPA can be accessed at the physical I/O or File System
level. It must be configured with t~e BPA directive. If
accessed through the File System, the BPA directive must be
paired with a DEVICE directive specifying a ROP device unit.

8-14.1
09/86
CZOS-02A

Before issuing write orders to the BPA, the application must
first establish a connection to it. To use the BPA at the *
physical I/O level, the application issues I/O orders to the work
station with a Single LRN that refers to the terminal
display/keyboard and the BPA. A sub-LRN specified in I ST
differentiates between orders directed to the terminal -
display/keyboard and to the BPA. A sub-LRN of 0 refers to the
display /keyboard1 a sub-LRN of 1 refers to the BPA.

When the attached printer is servicing a write order, the
terminal keyboard is locked. *
BREAK PROCESSING BY ATD LPH

In TTY, field, X-ON/X-OFF, and block mode, break processing is I
initiated when the terminal's BREAK (BRK) key is pressed.
Results differ, depending on whether the task issued a read-break
I/O order request for that terminal.

Break Processing with Read Break Regues~

A task issues a read break request when the IORB specifies a
function code value of 9 in I CT2 and a value of 1 in bit 0 of
I DVS. I ADR of the IORB must have a null address. - -

The communications supervisor queues read break requests on a
last-in, first-out basis.

When the terminal's break key is pressed, and a read break
request has been issued, the terminal is now in "break mode" for
subsequent I/O requests. Break processing proceeds as follows:

1. When a write order is active, and:

a. Bit 7 in I DVS of the write IORS is 1, the order
completes normallY1 break processing then begins with
step 2 below

b. Bit 7 in I DVS of the write IORS is 0, or when a read
order is active, either order is terminated and
posted to the issuing task with IORB settings shown
in step 2. .

2. All other queued read and/or write IORSs are posted back
to their respective tasks with:

a. I_RSR containing the range value specified in I RNG

b. Bits 5 and 10 of I ST set to 1

c. Left byte (status) in I CTI has value of O.

8-15 CZ05-02

3. The last (last-in, first-out) read break request is
posted to the issuing task with:

a. Bit 5 of I_ST set to 1

b. Left byte (status) of I_CTI has value of O.

4. Read and write orders issued by th& nbroken task n (i.e.,
task in break mode) are posted back (without execution)
with IORB values described in step 2 above.

5. Read and write orders from tasks not in break mode (i.e.,
that did not issue receive-break requests) are accepted
and executed e

Break mode remains in effect until a task issues another read
break request or a cancel break request (i. eO., until provision
has been made for processing the next break signal). A task
issuing another read break request to a device which is in break
~ode is indicatinq that it wishes to be the task notified of the
next break. A task issuing a cancel break request to a device
which is in break mode is indicating that it does not wish to be
the task notified of the next break; the task to be notified of
the next break is the one that issued the most recent read break
order.

A cancel break request is specified with an IORB having a
function code of 9 in I_CT2 .and bit 0 of I_DVS set to 1. A cancel
break request causes one or all queued read break IORBs to be
posted back to their issuing tasks. If bit 1 of I DVS is 0, the
request specifies the cancellation of only the most recently
issued read break request. If bit 1 of I DVS is 1, the request
specifies the cancellation of all active and queued read break
requests. The cancel break IORB and purged read break IORS(s)
are posted back to their issuing tasks with:

Bit 5 in I STI set to 0
Left byte (status) in I_CTI set to O.

Break Processing with No Read Break Request

When a break signal is received and no read break request has
been issued, only the current active order is affected. The
break signal is processed as follows:

1. If there is no active order, the break signal is ignored.

2. When a read order is active, the order is terminated and
posted to the issuing task with:

a. I RSR containing the range value specified in I RNG
less the number of characters entered. In field
mode, I QDP is also updated.

b. Bits 5 and 10 of I ST set to 1
c. Left byte of I_CTI-set to o.

8-16 CZ05-02

3. When a write order is active and bit 7 in I DVS is 1, the
break signal is ignored and the write order-completes
normally.

4. When a write order is active and bit 7 in I_DVS is 0, the
order is posted to the issuing task with:

a. I RSR containing the range value specified in I RNG
b. BIts 5 and 10 of I ST set to 1
c. Left byte of I CT1-set to O.

PRINT SCREEN

ATD supports a print screen facility that is activated by
invoking the PRTSCN bound unit. In order to invoke PRTSCN, an
LDBU directive to load BOXQUE must be included in your CLM file.
The default key to activate print screen is the shifted function
4 key, which can be changed to any two character escape sequence
key with the STTY command. The print screen facility can be used
on VIP7300, HDS 2, and VIP7800 series terminals as well as the
VIP7201. The message "SCREEN COpy IN PROGRESS n is displayed at
the start and nSCREEN COPY SUCESSFULn on the 25th line at the
termination of the facility. These messages are suppressed on
the VIP7201 terminal, which does not support the 25th line.
Print screen is restricted when a terminal is in the break state.

TTY MODE

The TTY mode of ATD provides for 1ine-at-a-time transfer of
data to or from teletype-compatible asynchronous terminals.

TTY mode supports six functions:

• Connect
• Disconnect
• Read
• Write
• Break
• Wait-On-Line

These functions are requested through standard-length
IORBs. An application can optionally use an extended IORB for a
connect operation.

A connect order establishes the mode in which the connected
terminal operates. Because TTY is the default mode of the ATD
LPH, an application need not exp1icity specify the mode in the
device-specific word (I_DVS) of the connect IORB.

TTY Mode and Extended Character Set (8-Bit Data)

In TTY mode, ATD passes data through and does not alter the
data in any way. The following is a list of actions that ATD TTY
mode takes for the extended character set. Refer to Table D-1
for a description of the extended character set.

8-17
09/86
CZ05-02A

• CO character set handling is as described in the
Read/Write functions of TTY mode.

• The GO, Gl, and Cl character sets are passed through.

• The Line Termination character must be within the CO or GO
character sets. The ESC sequence must also be within the
GO character set.

• The Line Cancel, Character Delete, Break Character, and
Print Key are handled the same as the Line Termination
character above.

Connect Function (TTY Mode)

The following paragraphs describe the options that an
application can specify with a connect order.

The Auto Call option, which is supported by all system
supplied LPHS, is described in Section 7. This option enables an
application to establish a connection with an 801-A or 801-C ACU
data set.

The default IORS setting for the BELL option allows the out
put of bells to a terminal. If the option is not specified, th~
output of bells to a terminal is suppressed, even under error
conditons.

When the terminal is a VIP7801, VIP7803, VIP7808, VIP7813,
VIP7814, VIP7824, or VIP7816/26, specification of character mode
(which is the default) causes the terminal to be physically con
figured in character mode with the echoplex and roll options set.

When the buffered option is selected, a VIP7800 class
terminal is configured in text mode with the no-echoplex and
no-roll options set. This means that data entered at the
terminal is not transmitted (to the LPH) until the transmit key
is depressed. Prior to pressing the transmit key, the operator
can edit information displayed on the terminal by means of the
cursor control and erase keys. When ATD receives and processes
the transmitted data, the LPH acts on any line cancel or
character delete sequence encountered in the data stream. That
is, the LPH does not accept as data the @, \, or CTL-X
characters. This point bears emphasis; the operator of a
buffered terminal who uses the cursor-back key to erase a
character might well forget that pressing the @ key has the same
effect. If the operator mistakenly enters the @ character as
data, the LPH deletes the next character when data is ultimately
transmitted from the terminal. Care must be exercised when
entering teletype control sequences from a buffered terminal.

Connect lORE (TTY Mode)

This subsection summarizes the bit settings that govern the
connect options already described.

8-18
09/86
CZOS-02A

Table 8-4 shows bits of the connect I DVS word that are
applicable to TTY mode. All other bits must be zero.

The bit settings in word I ST are signficant when a serial
printer is attached to the terminal by means of a buffered
printer adapter. On connect orders, the field specifies whether
the terminal or attached printer is being addressed. The
permitted values are:

o = Terminal
1 = Attached serial printer.

8-18.1
09/86
CZ05-02A

Table 8-4. I DVS Word in Connect lORS (TTY Mode)

Bit
Number Mea.ning for Connect Function

2 0 = Do not use auto dial
1 = Use auto dial

3 0 :: Allow output of bells to the terminal
1 = Supress output of bells to the terminal

13 0 = Character mode
1 = Buffered mode

Disconnect Function (TTY Mode)

An application uses the disconnect lORB to terminate TTY mode
processing. The following paragraphs describe the options that
an application can specify with a disconnect order.

If the abort queued orders option is specified, outstanding
lORas (active a.nd queued) are terminated with a "device
unavailable" status (OlOB). The disconnect order is immediately
serviced~ If the abort order is not specif , all outstanding
IORas are allowed to complete before the disconnect order is
serviced&

If hang-up option is selected, the terminal is physically
disconnected when the disconnect order is servicede If the
hang-up optioAl is not spe f , the communications connection
remains active after servicing of the disconnect order (i.e ar the
terminal is logically disconnecteo g but remains physically
connected) •

Qisconnect rORB (TTY Mode)

This subsection summarizes the lORB. bit settings that govern
the disconnect options just described.

Table 8-5 shows bits of the disconnect rORB that are
applicable to the TTY mode of ATD. All other bits must be zero.

The bit settings in word I ST are signficant when a serial
printer is attached to the terminal by means of a buffered
printer adapter. On disconnect orders, the field specifies
whether the terminal or printer is being addressed. The
permitted values are:

o :: Terminal
1 = Attached serial printer.

8-19 CZ05-02

Table 8-5. I_DVS Word in-Disconnect IORB (TTY Mode)

Bit
Number Meaning for Disconnect Function

14 0 = Abort· outstanding requests
1 = wait until outstanding requests complete before

disconnecting terminal

15 0 = Hang-up the phone
1 = Do not hang-up the phone

Read Fu~ction (TTY. Mode)

The following TTY mode read functions support the entry of
data by the terminal operator. They are activated by pressing
terminal keys. In some cases, an application can designate the
key that activates a particular function by means of the Set
Terminal File Characteristics (STTY) command. These functions
are not controllable through the IORB. The read lORS is used to
pass data to the application once it has been entered and edited
by the operator.

OPERATOR FUNCTIONS

TTY mode functions that support data entry operations are the
following:

Function Action

Character delete Delete a previously entered character

Line cancel Cancel the current line of input

Hide Accept the next character as data (i.e., do
do not interpret it as a control character)

Terminate read Signal completion of the current read order

Break Generate break signal to application
controlling the terminal

Operator Function Keys

The LPH performs one of the functions just listed when the
. operator keys the appropriate code sequence. Typically, the

depression of a single terminal key will generate the proper code
sequence. For example, on a VIP7301 terminal, depression of the
cursor-left key causes the generation of.the code sequence lB44,
which causes the LPH to delete the prior character.

8-20 CZOS-02

The code sequence that initiates a function is determined by
the device-type parameter of the ATD directive. That code
sequence can later be altered by the STTY command. Table 8-6
shows the initial {default} codes associated with device-types
that can be specified with the ATD directive.

Table 8-6. Default Values of Special Characters by Device Type

Device Character Line Line Read
Type Delete Cancel Break Terminator

Hex Key-Cap Hex Key-Cap Hex Key-Cap Hex Key-Cap

HDS 2 lB44 <- IB4B ERASE 00 BREAK OD RETURN
VIP7200 lB44 <- lB4B ERASE 00 BREAK OD RETURN
VIP7201 lB44 <- lB4B ERASE 00 BREAK 00 RETURN
VIP7207 IB44 <- lB60 CLEAR 00 BREAK 00 RETURN
VIP7301 lB44 <- lB4B ERASE I 00 BREAK OD RETURN
VIP7303 lB44 <- lB4B ERASE 00 BREAK aD RETURN
VIP7305 1B44 <- lB4B ERASE 00 BREAK OD RETURN
VIP7306 IB44 <- IB4B ERASE 00 BREAK 00 RETURN
VIP7307 IB44 I <- lB60 I CLEAR 00 BREAK 00 ENTER
VIP7801 1B44 ! <- 1B4B ERASE 00 BREAK OD RETURN
VIP7803 1 4 1 <- 1B4B \ ERASE 00 BREAK 00 RETURN
VIP7813 IB44 <- IB4B ERASE 00 BREAK OD RETURN
VIP? 814 IB44 (- I B ERASE I 00 BREAK OD RETURN
VIP780a IB44 <- IB4B ERASE 00 BREAK OD RETURN
VIP7100 40 @ 18 00 BREAK OD RETURN
TWUIOOI 40 @ 18 I 00 BREAK RETURN
TWUIOO3 40 @ 18 CTL-X 00 BREAK OD RETURN
TWUIOO5 40 @ 18 CTL-X 00 BREAK OD RETURN
TN 0300 40 @ 18 CTL-X 00 ' BREAK RETURN
TN 1200 40 @ 18 CTL-X 00 BREAK OD RETURN
TTY 40 @ 18 CTL-X 00 BREAK OD RETURN

Character Delete and Line Cancel

As the preceding table indicates, the operator can delete
characters and cancel lines in two different ways, depending upon
the device type. On some devices, referred to in this context as
hard copy terminals, deleting a character requires depressing the
@ key. On other devices, the cursor back «-) key is used; these
devices are called video terminals.

On hard copy terminals, cancelling a line is accomplished by
depressing and holding the CTL key and pressing X. On video
terminals, the operator uses the ERASE or CLEAR key.

8-21 CZ05-02

I

I

On hard copy and video terminals, editing is performed by
different actions, and different information is displayed at the
terminal during the editing operation. However, the modification
of buffer contents and the information returned in the IORS is
the same. The following paragraphs explain in detail the
procedure and process of editing on each type of terminal.

Character Deletion on Hard Copy Terminals. Character
deletion is performed on the current line (i.e., before the
carriage return key is pressed). Pressing the @ key deletes the
character immediately preceding the @ character, and, if echo was
requested, displays the @ character. Each succeeding @ entry
deletes another character, from right to left, up to the
beginning of the line.

The I_RSR value in the issuing program's IORS indirectly
reflects the number of characters accepted at the time the order
was terminated. For example, if the operator enters AXC@@B
followed'by a carriage return, the I RSR value shows that only
two characters (A and B) were entered. Note that pressing the @
key does not actually delete a character, but moves back by one
character position a pointer in the read buffer. In the example
just given, X is overwritten by B, but C (though rejected by the
operator and not reflected in the I RSR value) is present in the
buffer, following B. -

Line Cancellation on Hard COpy Terminals. To cancel the
current ~ine (before carriage return is entered), the operator
depresses and holds the CTL (control) key and presses X. This
action deletes the current line, displays the *DEL* message on
the next line. The LPH reissues the read order, using the
original buffer and range. Line cancellation does not clear the
buffer of characters entered into the buffer before the line
cancellation action.

Character Deletion on Video Terminals. Pressing the
cursor-left «-) key erases from the screen the character last
entered, and removes it from the associated read buffer. When
the completed read IORS is posted to the issuing application,
I RSR indirectly reflects the number of characters accepted when
the order was terminated. For example, if the operator enters
ABC<-, I RSR shows only that two characters (A and B) were
entered.- Again, as with character deletion on hard copy
terminals, extraneous information may appear in the rest of the
buffer.

Line Cancellation on Video Terminals. The key used is either
ERASE or CLEAR, depending on the device type (see Table 8-6). The
effect is to erase all characters on the current line and to
reposition the cursor to the beginning of the erased line. The
LPH reissues the read order, using the original buffer and
range. Line cancellation does not clear the buffer of characters
entered into the buffer before the line cancellation action.

8-22 CZOS-02

Read Termination

The operator can terminate a read order in one of three ways.

1. Press the transmit key.

2. Press the user-selectable read-termination key.' The
carriage return key is the default termination key on
both hard-copy and video terminals. The operator- can
designate another key by means of the STTY command. The
terminating character (generated by carriage return or a
user-designated key) is not stored in the buffer; the LPH
optionally echoes a carriage return and/or line feed to
the terminal.

3. Generate a two- or three-character escape seguence. Any
terminal function key or cursor control key generates a
two- or three-character escape sequence. This sequence
can be used to terminate a read operation, provided that
it has not previously been designated for line cancel,
character delete, or break operations. ATD stores the
terminating sequence in the read buffer and optionally
echoes a carriage return and/or line feed, as
appropriate. The read lORa is posted back to the
application.

Break

The break key provides an interruption or attention signal to
the system software. After detecting a break, the LPH may
terminate write orders and read orders. For a detailed
description of break functionality, see nBreak Processing with
Read Break Request" earlier in this section.

The break key can be changed by means of the STTY command.

Hide Function

The hide function allows the operator to enter a character
(such as @, carriage return, and cursor-left) that the LPH would
otherwise interpret as a control character. The·hide function
key is a control P (x'lO'). The operator keys a control P
immediately before the character to be entered as data. The LPH
interprets the control P as an escape character (i.e., does not I
place the control P in the buffer) and echoes a backslash, if
echo was requested. The LPH then stores the next character in
the buffer without interpretation, echoing it if echo was
requested. If the hidden character (immediately following the
control P) is not printable, it is still stored in the buffer,
but a period (.) is echoed to the terminal.

The control P key is used for the hide function on hard-copy
and video terminals. The hide function key cannot be changed by
the STTY command.

8-23
09/86
CZOS-02A

READ ORDER FUNCTIONALITY

The following options, unlike those just described, are not
under direct control of the operator. Instead, they are
specified by the application in an IORS.

Echo

If the echo option is selected, any keyed input is echoed, or
"reflected" back to the terminal. If echo is not selected, keyed
input will not be echoed and the cursor will not move as the
operator enters data at the terminal.

Line Feed

If this post order option is selected by the application, a
line feed is sent to the terminal upon completion of a read
order. A line feed is not echoed if the read IORS specified the
no echo or the no line feed option.

Carriage Return

If this post order option is selected by the application, a
carriage return is sent to the terminal upon completion of a read
order. A carriage return is not echoed if the read lORS specifies
the no echo or the no carriage return option.

READ lORS (TTY MODE)

An application specifies the options just described by
setting bits in the lORS word I DVS. Table 8-7 gives the
individual significance of these bits. All other bits must be
zero.

Table 8-7. ATD Word I DVS in TTY Mode Read IORB

Bit
Number Meaning for Field Read Function

10 0 = Do not echo input or move the cursor
1 = Echo input; move cursor

11 0 = Do not send post-order line feed
1 = Send post-order line feed

12 0 = Send post-order carriage return
1 = Do not send post-order carriage return

8-24 CZOS-02

Write Function (TTY Mode)

The following options are specified by an application in the
write IORB.

OFF LINE

If the off-line option is specified, the LPH detects and
reports a device-not-ready condition (0105) when a TWUl003 or
1005 is disconnected or non-operational. It is recommended that
these devices be configured (through the use of the STTY
function) for non-buffered file system output. This
configuration ensures that offline conditions can be properly
processed by the system. If the off-line option is not
specified, ATD does not detect or report off-line conditions.

CONTROL BYTE PROCESSING

If specified, the control byte option indicates that the
first byte in the output buffer is to be used for pre-order
control. A control byte must be included in the range (I RNG) of
data to be transmitted. For a detailed description of thIs
option, including control byte format, see "Control Byte
Processing" earlier in this section.

QUIT ON BREAK

If this option is specified, a break Signal can interrupt the
executi()n ()f the write order. Otherwise. a b.:eak sighal cannot
be used t() prematurely terminate an active write ()rdere

CARRIAGE RETURN

If the carriage return option is specified, a carriage return
is sent to the terminal after the completi()n ()f the write order~

LINE FEED

If :this option is specified, a line feed is sent to the
terminal after. the completi()n of the w ri te ()rder.

write IORB (TTY Mode)

This subsection summarizes the bit settings that govern TTY
mode write options.

Table,8-8 gives the Significance of the bits in the IORB word
I DVS that are applicable to TTY mode ATD. All other bits must
be zero. Bit 13 is significant only for devices configured as
PRUl005/TWUl005, TN300, TN1200, or through the BPA. If this bit
is set, bit 11 should be set to zero.

8-25 CZ05-02

Table 8-8. ATD Word I DVS in TTY Mode Write lORS

Bit
Number Meaning for TTY Write Function

2 0 = Do not check forTWUl003, TWUI005 offline conditions
1 = Check for TWUI003, TWUI005 offline conditions

4 0 = Include control byte
1 = Do not include control byte

7 0 = stop output on detection of a break
1 = Do not stop output on detection of a break

11 0 = Do not send post-order line feed
1 = Send post-order line feed

12 0 = Send post-order carriage return
1 = Do not send post-order carriage return

13 0 = Control byte is defined for terminal printers
1 = Control byte is defined for ASPI printers

Bit settings in word I ST are signficant when a serial
printer is attached to the-terminal by means of a VIP7800
buffered printer adapter. On write orders, the field specifies
whether the terminal or printer is being addressed. The
permitted values are:

o = Terminal
1 = Attached serial printer

Device Configuration (TTY Mode)

Hardware switches on a device connected in TTY mode should be
set in the following positions. (The device may not support all
of the switches mentioned below). TTY (character) mode:

CHARACTER/BUFFER switch in CHARACTER position
DUPLEX HALF/FULL SWITCH in FULL positon
LOCAL COPY/ECHO switch set as required by user (normally

set to echo)
Speed configured between 110 and 9600 bits per second
ROLL/NO ROLL switch set to ROLL

Error Processing

When a parity error is detected in keystroke input, an
audible alarm sounds and the typed character is ignored. When
the read order is posted, the return status in I ST indicates
detection of parity error (s) (bit 9 = 1).

8-26 CZO 5-02

If a framing error or receive overrun conditon is detected,
the read order terminates and a hardware error (0107) is
returnedl I ST indicates the specific reason for abnormal
termination:

TTY Mode Timeout Processing

Timeouts may occur during the processing of read orders. A
timeout occurs when the operator does not terminate the input
operation within 5 minutes after entering the first character.
There is no timeout if the operator does not enter any
characters. The threshold of this timeout (5 minutes) can be
changed via the read parameter of the CLM directive TIMEOUT.

FIELD MODE

The field mode of ATD allows an application to process a set
of fields, commonly called a form. In this mode, each field that
an operator keys into the form is validated by the ATD LPH and is
passed to the application, one field at a time. This mode should
not be used if the terminal itself is performing (local) field
validation and forms processing. The concepts of forms, fields,
subfields, and field validation are defined below.

Field Mode and Extended Character set (8-Bit Data)

The following is a list of actions that ATD field mode takes
for the extended character set. Refer to Table D-l for a
description of the extended character set.

• The CO and GO character set handling is as described in
the Read, Write, and Define Form functions of field mode
(described later in this subsection).

• Any character in the Cl character set terminates a read.

• Characters in the range X'AO' through X'BF' inclusive have
no character validation.

• Characters in the range X'CO' through X'FF', excluding
X'D7' and X'F7' have alphabetic validation.

• Characters X'D7' and X'F7' have no validation.

Forms, Fields, and Subfields

A field is a series of contiguous locations into which
meaningful data can be entered. A subfield is a portion of a
field (less than or equal to the field size) that accepts data
only in accordance with the definition of the subfield. There
are no limits on the number of fields that a form may contain.
Each field may contain one to nine subfields. A field may not be
longer than 80 characters and may not extend over one line (row)
of the terminal display area. .

8-27
09/86
CZ05-02A

"

An example of the relationship between field and sUbfield is
an 8-character alphanumberic employee ID consisting of a
5-character employee number and a 3-character department
designator. The first subfield would be defined as 5-digit
characters and the second subfield as 3-alphabetic characters.

INPUT VALIDATION

The input to a subfield is validated by reference to a field
attribute descriptor. A subfield descriptor must specify one of
the following validation/edit attributes:

• Digit (0-9)

• Numeric (0-9" decimal pOint" minus sign, plus sign" comma)

• Alphabetic (A-Z, a-z, period, space, comma, hyphen,
apostrophe)

• Alphanumeric (all numeric and alphabetic)

• No validation (95-character code set equivalent to the
last 6 columns of the ASCII table, excepting DEL. Note
that the hyphen and minus sign are the same ASCII
cha!=acter, as are the period and decimal point).

When an invalid character is entered into a subfield
requiring validation, an audible alarm is sounded, the cursor
remains in its current position, and the character is not
accepted or echoed. The LPH continues to process the current
order without notifying the application of the input error. When
the field is completed and accepted by the LPH, further
validation may be performed by the application. For reasons of
security, an application may specify (in I DVS) no echo for a
field. When an invalid character is entered into such a field,
no audible alarm is sounded.

AUTO-INSERT CHARACTERS

An auto insert character is a predetermined character in a
predetermined location within a field. It is defined as a
subfield by the field attribute descriptor. Consider, as an
example, the standard Social Security account number:

123-45-6789

This field occupies 11 positions. It can be defined as an
II-character numeric field, in which case the operator must key
in the hyphen. It can also be defined as follows:

A digit subfield of 3 positions
An auto-insert character
A digit subfield of 2 positions
An auto-insert character
A digit subfield of 4 positions

8-28
09/86
CZ05-02A

In this case, the operator may not key in anything but digit
characters. The hyphens are inserted automatically by the LPH.

Contiguous auto-insert subfields are not allowed; at least
one other type of subfield must be defined between auto-insert
subfields within a field. An auto-insert must not be the first
or last subfield of a field.

SEPARATE SIGN FIELD

The separate sign subfield allows the operator to enter a
minus or plus sign as the first character of a field. If a
character other than a minus or plus sign is entered, a plus is
assumed and placed in the buffer associated with the field read
order. The keyed character is then stored in the buffer. If
echo is requested, the assumed plus sign, followed by the keyed
character, is displayed on the screen.

8-28.1
09/86
CZOS-02A

If the operator moves the cursor to the left into a separate
sign subfield, a new value (+ or -) may be entered. However, if
the operator enters another character or moves the cursor right
into the separate sign subfield, the default sign (+) is stored
in the buffer and displayed on the screen (assuming specification
of echo).

The separate sign subfield must be the first subfield of the
field. It may only be used in conjunction with a decimal-point
and digit subfields.

MUST RELEASE FIELD

Must release fields are the same as normal fields with one
exception: the field is not considered complete at end-of range;
the operator must key in a terminator character. Take, for
example, a form containing two fields. One field is a zip code,
defined as digit, length 5; the other field is the customer name,
defined as alphabetic, length 20. In a data entry environment,
the zip code would probabably not be defined as a must release
field; after the operator keys in the 5 digits, the cursor
automatically moves to the next field. The customer name field,
however, would probably be defined as a must release field,
forcing the operator to key in a terminator character regardless
of the length of the customer name. (Valid termination
characters are defined later in this section under "Termination
of Field".)

If the operator fails to enter an appropriate termination
character after filling a field (i.e., after entering 20
alphabetic characters, in the preceding example), an audible
alarm sounds until a valid terminator character is entered.

DECIMAL POINT AND DECIMAL POINT PROCESSING

If the decimal point subfield is used, the separate sign must
also be specified. The separate sign subfield must be the first
subfield of the field. The decimal point subfield must occur
somewhere later in the field description and is used by the LPH
as an aligment position. The decimal point subfield must not
occupy the last position of the field and only one such subfield
can be used within a field.

If the operator keys in a plus or minus sign as the first
character of a field, the Sign is stored in the read buffer and
transmitted to the terminal (assuming that echo is specified in
the IORB). If the operator keys in any other character except
the decimal point as the first character, that character is
stored as the second character of the field (following successful
validation). It too is echoed to the terminal if echo is
specified. If the operator keys in the decimal point character,
or if the cursor occupies the position in the field designated
for the decimal pOint, the decimal pOint character is stored in
the buffer at the next available position.

8-29 CZ05-02

The decimal point character is also transmitted to the
screen, assuming specification of echo. The next character
entered is treated as part of the next digit subfield following
the decimal point subfield, and is validated according to the
attributes of that subfield. The operator is not allowed to move
the cursor left into an designated decimal point position. An
audible alarm is sounded if this is attempted.

This attribute must be used in conjunction with the separate
sign and digit subfields. Also, there can be only one occurrence
of this subfield and it cannot occupy the last position of the
field.

FIELD DESCRIPTOR DEFINE FORM

Before a read order in field mode can be processed, the
application must either issue a define form request or
incorporate a field descriptor in the IORB itself. Bit 2 of
I DV2 indicates whether the IORB is carrying the integrated field
'descriptor along with the read request. If the bit is on, the
field descriptor starts at offset I LOG in the IORB.
Alternatively, with bit 2 of I DV2 set off, the application must
issue a define form order that-points to a set or table of field
attribute descriptors that define the form.

Integrating a field descriptor in the IORB is the preferred
approach, because an application can more efficiently alter an
integrated descriptor than one that is part of a external table.
After altering the attributes defined by a integrated. descriptor,
the application issues a single read order; after altering the
attributes defined by a descriptor in a table, the application
must issue a new define form order and a field read order. Two
I/O orders are required rather than one.

USING THE INTEGRATED FIELD ATTRIBUTE DESCRIPTOR

When using the integrated field attribute descriptor, the
application must specify in words the total extension length of
the IORB. The integrated descriptor begins at offset I LOG,
which is the first word of the logical part of the IORB7 The
value for the total size of the IORB extension must include both
the size of the physical IORB extension (seven words) and the
size of the integrated field attribute descriptor.

USING DEFINE FORM

The following conventions apply to the use of the define form
order and the associated table of field attribute descriptors.

1. The IORB that requests a define form order is physically
exten¢led.

2. The define form order must be issued before any read
order that refers to the field attribute table pointed to
by the define form order.

8-30 CZOS-02

3. After a define order is issued referencing a field
attribute table, subsequent define form orders may not be
issued while read orders that reference the initial field
attribute table are outstanding. The define form order
remains active and the associated attribute table is used
for all subsequent field reads until another define form
or a disconnect order is issued, or a line disconnect is
detected.

4. The table address is passed in I BAP of the define form
IORS. The range (I RNG) must specify the length of the
table in bytes. The logical portion of the IORS (I FeN
through I_CON) must be zero. -

5. The attribute table must begin on a word boundary;
consequently, the buffer bit (bit 8) of I_CT2 must be
zero.

6. Once the field attribute descriptor table and its address
have been established, any subsequent field read order
must specify in I TAB the word offset to the desired
field attribute descriptor@ Accordingly, all field
attribute descriptors must start on a word boundary.

7. The application may organize the attribute table in any
manner that is convenient long as the descriptors
start on word boundaries). The descriptors may be
interspersed with other information, if conservation of
memory is not a prime consideration. >.

8. Conservation of memory can be acheived by the following
measures:

B. If the attributes of two or more fields are exactly
alike, only one descriptor is needed~ All read
orders referring to the identical fields would
reference the same descriptor.

b. In some cases, it might be advantageous to apportion
the descriptors describing a form into a set of
attribute tables rather than into a single table.
Only one table of the set would be in memory at a
time; when another attribute table was needed, the
application would issue another define form order.

FORMAT OF THE FIELD ATTRIBUTE DESCRIPTOR

Field attribute descriptors have a Single format, whether
integrated into a field read IORS or belonging to an field
attribute descriptor table. A field may contain one to nine
subfields. The field attribute descriptor consists of the
following:

• A one-byte entry defining the length of the field
descriptor

8-31 CZ05-02

I

• A one-byte entry defining the must-release attribute

• A two-byte entry defining the type and range of the
subfield (there can be up to nine such subfield
definitions)

• A two-byte field descriptor terminator.

The format of these field descriptor components is shown in
the following diagram.

I LIM I Rl I Al I R21 A21· .. 1 Rn· I An· I
where:

L = Length of field descriptor (in bytes), not including this
byte~ a hexadecimal value in the range 5 to 15.

M = Must release field. Bit 4, when set to 1, signifies that
the entire field is designated a must release field. The
other bits are reserved for future use and must be zero.

Entries Land M constitute a 2-byte descriptor header.

R = Range of a subfield, in decimal, or zero

A = Attribute of thesubfield, a hexadecimal value

Rn* = The value of the last two R and A entries must be zero,
An* to indicate the end of the descriptor. These two

entries constitute the terminator.

If the value of a range byte (R) is greater than 0 and less
than or equal to 80, the value of the attribute byte (A) has the
following significance:

Value

00

10

30

40

Meaning

No validation

Digit (0-9)

Numeric (0-9, 1/4, 1/2, divide sign, multiply sign,
decimal point, minus sign, plus sign, comma)

Alphabetic (A-Z, a-z, extended characters, period,
space, comma, hyphen, apostrophe)

70 Alphanumeric (all numeric and alphabetic)

8-32 CZ05-02

If the value of a range byte (R) is zero, the value of the
attribute byte (A) has the following significance:

Value

00
20-7E
80
81

Meaning

End of field
Auto-insert character
Separate sign
Decimal position

The range of the total field, specified in I RNG of the field
read IORB, may not exceed 80 characters. The range value can
normally be computed with the following formula:

range = sum of Rl ••• Rn subranges + number of auto-insert
characters + 1 (if separate sign specified) + 1 (if
decimal pOint specified).

Supervisory Message Processing

When a terminal is in field mode, the application may
"escape" to a supervisory message line by issuing read/write
orders with standard, non-extended IORes. Escaping to the
supervisory message line allows two-way communication between
operator and application that does not disrupt the processing of
a form displayed on the terminal. For example: An operator (who
is using a terminal both for forms processing and as an operator
console) receives a device unavailable message on the bottom line
of the terminal. The form being processed is not altered by the
supervisory message. The operator acknowledges the supervisory
message and continues processing the form.

IORS VALUES

Supervisory messages are designated by a common bit (bit 9)
in the read/write device specific word. The use of this bit is
optional in field mode, because supervisory message orders are
already distinguished from field mode orders by being
non-extended.

Bit 8 of I DVS becomes significant when supervisory message
writes are specified. If bit 8 = 0, supervisory messages must be
acknowledged. If bit 8 = 1, acknowledgement by the operator is
not required.

LOCATION OF MESSAGE LINE

If the terminal is defined at system building time as a
VIP7800, VIP7300, or HDS 2 class terminal, the supervisory I
message line is the 25th line of the CRT. If the terminal is
defined as a VIP7200 or VIP7207, the application may designate
(in I_FCS) any line from 1 through 24 as the supervisory line.

8-33 CZ05-02

PROCESSING ORDER

Supervisory message orders are processed by ATD in the order
received, with write orders having priority ever read orders.
Assume, for example, that four supervisory messages are issued
and queued in the order listed: write, read, write, read. The
two writes will be completed before the reads are processed.

If supervisory message orders are intermixed with extended
IOF.B field mode orders, the messages are processed in the order
received, with write orders again having priority over read
orders. Assume, for example, that three orders are issued and
queued in the order listed: field mode read, supervisory write,
supervisory read. The orders will be processed in this order:
supervisory write, field read, supervisory read.

SUPERVISORY MESSAGE CONVENTIONS

The following conventions apply to the processing of
supervisory messages:

1. The receipt of a supervisory message by the LPH does not
cause the premature termination of the current order,
whether the current order is a supervisory message or
normal field order.

2. Control byte and post-order control processing does not
apply to supervisory.messages.

3. If the type-ahead option was selected at connect time, a
supervisory message results in a purge of the type-ahead
character queue.

4. When writing a supervisory message, the application must
not imbed in the message text control sequences that move
the cursor (e.gft' carriage return, line feed).

5. The range of a supervisory write order cannot exceed 80
characters. Data in excess of 80 characters is not sent
to the terminal.

6. The operator must acknowledge the receipt of each
supervisory message by depressing function key 10, the
transmit key, or the CLEAR key.

7. The operator can edit a response to a supervisory message
read through the use of TTY edit control characters.

8. The break function is not operational when a supervisory
message read is being processed.

9. An operator keying in a response to a supervisory message
read initiates transmission of the response by one of the
following actions:

8-34 CZ05-02

a. Depressing the carriage return key

b. Depressing the transmit key

c. Entering the number of characters specified in I RNG
of the IORB issued by the application to read the
operator's response.

10. The range of a supervisory message read order cannot
exceed 80 bytes. If a longer range is specified, a range
of 80 is used, and the residual range set accordingly.

11. ATD field mode applications that specify supervisory
message processing and use the VIP7808, VIP7803, or
VIP7303 in word processing mode must set to 1 bit 7 of
I DV2 in the connect IORB. This action ensures that the
LPH keeps the terminal in word processing mode when
servicing supervisory message requests.

CALCULATOR KEY PAD SUPPORT

The multifunction (MF) keyboard includes a calculator key pad
with plus (+) and minus (-) keys. These keys generate
three-character escape sequences. When a MF keyboard is attached
to a terminal running in field mode, ATD,by default, translates
the escape sequences into ASCII plus or minus characters (X'2B'
or X'2D', respectively). ATD then stores the ASCII character in
the application's buffer. The application can request ATD not to
translate the escape sequences by setting to 1 bit 1 of word I
DV2 in the field connect IORB. When this bit is set, the escape
sequences terminate the read order1 ATD stores the terminating
sequence in the IORS as explained later in this section under
wATD Handling of Termination Codes n •

Application Responsibilities in Processing Fields

The application is responsible for:

1. Initializing the read buffer with blanks, underscores, or
semiconstant values.

2. Initializing the terminal display, through a field write
order, with the same initialization sequence set in the
read buffer.

3. Justification (left, right) after the field read is
complete.

4. Decimal point alignment after the field read is complete.

5. Space suppression.

6. Logical validation of field content (beyond what is
provided by ATD) •

8-35 CZOS-02

Field Mode Functions

Field mode supports six I/O request blocks:

Connect
Disconnect

Define Form
Read

write
Break.

All but the break function require an extended-length IORB~
When using an extended length IORB, bit 11 in I CT2 must be set
on, the right byte of I EXT must specify a physIcal extension of
seven words, and the left byte of I EXT must specify a minimum
total size of at least seven words.-

CONNECT FUNCTION

An application selects field mode by using an extended-length
connect IORB and setting bits 8, 9, 10, and 11 of I DV2 to the
field processing subfunction code of 2. (Bit 10 is-set to one;
the other three bits are zerQ~) In field mode; the connect IOP~
can specify the following options.

Auto Call

Specification of auto call in I DVS enables an application to
establish a connection with either a 80l-A or 80l-C ACU data
set. The auto call feature is described in Section 7.

Bell "

The default setting of ! DVS allows the output of bells to a
terminal. If the option is specified, the LPH suppresses the
output of bells to a terminal even under error conditions. This
means, for example, that the operator receives no indication when
the LPH rejects entry into a field, or when entry of a terminator
is required (when processing a must release field).

Validation Field Notification (VFN)

specifying the VFN option (in I DV2) causes the ATD, instead
of issuing a bell, to post back the-current read order with a
return status of zero whenever the operator attempts to enter an
invalid character into an active field.

Having specified the VFN option, the application determines
the reason for the termination of the read order. If the order
was terminated by the attempt to enter an invalid character
(e.g., keying an nAn into a numeric subfield), ATD places an
error code in I CON. Having found this code, the application
issues a supervIsory message write to inform the operator of the
error. Once the operator acknowledges the message and the
supervisory message is posted back to the application, the
application can reissue the interrupted field read and continue
processing from the last valid keystroke (by means of a read with
offset, which is described later in this section).

8-36 CZOS-02

Selectable Field Validation Sets

This option (specified in I DV2) allows the application to
select the set of ASCII characters constituting a field type.

There are three validation sets that can be selected:

Standard ATD set
VIP7700 set
VIP7800 set

User applications must select the default ATD set. The other
validation sets are used by system-supplied software that
supports emulation of VIP7700 and VIP7804 terminals.

Word Processing Mode (WPM) Indicator

This option is specified (in I DV2) by system-supplied
software when the word processing graphics mode (WPM) of a
VIP7803, VIP7808, VIP78l3, VIP7824, VIP7303, VIP7305, or BDS 2 is I
used. This option is necessary to provide proper processing of
supervisory messages when the terminal is in WPM mode.

Cursor Out of Field

If specified (in I DV2) , this option allows the operator to
"cursor out" of a field and thus terminate the read of that
field. The reason for termination is reported by ATD in the
extended portion of the read lORB (I TAB). If the option is not
selected, the .pperator cannot use the cursor left key (at the
beginning of a field) or cursor right key (at the end of a field)
to terminate an active field read.

Type Ahead

This option, when specified (in I DV2) helps to prevent the
loss of input characters when a read order is not active (i.e.,
when a write order is active and/or a read order has not been
issued by the application.) If this option is chosen, ATD queues
(in a 32-character key-ahead buffer) input characters that are
keyed when a read order is not active. Later, when the read
order becomes active, these characters are validated against the
field attribute descriptor and echoed (if echo was requested).
Detection of an invalid character causes an audible alarm to
sound and the type-ahead character queue to be purged. Cursor
right and left and end-of-field conditions are acted on by ATD
when the read order becomes active. If this option is not
selected, characters are accepted only when a read order is
currently active. The keying of characters when a read order is
not active causes an audible alarm to sound. The type-ahead
queue is purged by any of the following events:

1. An input character in the queue is found to be invalid.

8-37 CZ05-02

2. The application issues a supervisory message read or
write order.

3. The operator presses the break key.

4. The terminal is disconnected.

5. The application issues a purge-all I/O order.

6. The application issues a read IORB with the the purge
type-ahead queue bit set on.

7. The request issues a read order with terminal enquiry
(ENO) or with terminal read cursor address (RCA)
specified as pre-order function in the lORB.

VIP7200, VlP7207 Supervisory Message Line

When issuing a connect to a VIP7200 or VIP7207, the applica
tion can specify (in the right byte of I FCS) the line (row) to
be used for supervisory messages. Possiole values are 0 through
18 hexadecimal. If 0 is entered, line 24 is used. This field is
ignored if the device is a VIP7800 or VIP7300 class terminal; in
this case, line 25 is always used for supervisory messages.

Terminal Type (Device ID)

The application can check the device ID of the connected
terminal by interrogating the right byte of I_QDP in the
completed connect lORB.

Connect IORB (Field Mode)

This subsection summarizes the bit settings that govern the
connect IORB options just described.

Bit Settings of I DVS. Table 8-9 gives the signficance of
bits in the connect IORB I DVS word that are applicable to field
mode ATD. All other bits must be zero.

Table 8-9. ATD Word l_DVS in Connect IORB

Bit
Number Meaning for Connect Function

2 0 = Do not use auto dial
I = Use auto dial

3 0 = Allow output of bells to the terminal
I = Suppress output of bells to the terminal

8-38 CZ05-02

Bits Setting of I DV2. Table 8-10 gives the significance of
bits of the connect IORB word I DV2 that are applicable to field
mode ATD. All other bits must be zero.

Table 8-10. ATD Word I DV2 in Connect IORB (Field Mode)

Bit
Number

1

4

0

1

0
1

=

=

=
=

Meaning for Connect Function

Translate codes generated by calculator pad + and -
keys
Terminate read when these keys are struck

No Validation Field Notification (VFN) support
VFN support

5,6 00 = Use standard field validation set (required setting)

7

8

01 = Use VIP7700 field validation set (reserved for
system use)

10 = Use VIP7804 field validation set (reserved for
system use)

o = Terminal is VIP7200, VIP7201, VIP7207, VIP7801,
VIP7301, VIP7307, or VIP7803, VIP7808, VIP78l3,
VIP7814, VIP7824, VIP73031. VIP7305, HDS:2 and is not
operating in word processing graphics mode (required
setting)

·1 :; Terminal is VIP7803, VIP7808, VIP7 3, VIP7 4,
VIP7303, VIP7 5, HDS 2 is operating word
processing graphics mode (reserved for system use)

Must

9 Must be Oa

10 . Must be la

11 Must be Oa

12 0 = Operator not allowed to cursor out of field
1 = Operator allowed to cursor out of field (terminating

field read)

13 0 = No type ahead queue
1 = Type ahead queue is supported

a Bits 8 through 11 must be set as indicated to indicate a
field mode connect.

8-39 CZ05-02

Bit Settings of I FCS and I QDP. The right byte of I FC$
specifies the line (or row) number of VIP7200, VIP7201, or
VIP7207 that is used as the supervisory message line. Possible
values are 0 through 18, hexadecimal. Zero indicates use of the
24th line (VIP7200 class terminals) or the 25th line (VIP7300,

I HDS 2, or VIP7800 class terminals).

Values Returned on Completion of a Connect Order. On
completion of the connect order, the right byte of I QDP contains
the device ID of the terminal (refer to Table 8-3). -

DISCONNECT FUNCTION (FIELD MODE)

The disconnect IOP~ is used to terminate field mode
processing. A disconnect IORB can specify the following two
options.

Abort Queued Orders

If this option is selected: all outstanding !OP~Si even if
active, are terminated with a device unavailable (OlOB) status.
The disconnect order is then immediately serviced. If this
option is not selected, all outstanding IORBs are allowed to
complete (in the order of their issuance) before the disconnect
order is serviced.

Hang Up

If this option is selected, the communications line is
physically disconnected when the disconnect order is serviced.
If this option is not selected, the terminal/line remains
physically connected after processing of the disconnect order
(i.e., the terminal is logically disconnected, but remains
physically connected). Table 8-11 gives the significance of bits
of the disconnect IORB i DVS word that are applicable to the
disconnect options just described. All other bits must be zero.

Table 8-11. ATD Word I DVS in Disconnect IORB

Bit
Number Meaning for Disconnect Function

14 0 = Abort outstanding requests
1 = wait until outstanding requests complete before

disconnecting the terminal

15 0 = Hang up the phone
1 = Do not hang up phone

8-40 CZ05-02

READ FUNCTION (FIELD MODE)

An extended-length field read IORS is used to obtain
validated input that has been keyed into a field displayed at a
terminal. The input to a field is validated by means of a field
descriptor, which must be associated with the field read order.
The descriptor may either be integrated into the read IORS or
belong to a table of descriptors pOinted to by a define form
IORB. (For further detail, see "Field Descriptor and Define
Form" earlier in this section).

Pre-order Control

Pre-order control arguments are specified in I DV2 and I CON
of the read order IORB. Pre-order control is used-to perform the
following actions prior to a field read:

• Positon cursor

• Issue bell

• Erase line (i.e., clear screen from cursor position to end
of line)

• Issue enquiry command (ENO) to VIP780l, VIP7803, VIP7808, I
VIP730l, VIP7307, BDS 2 and read terminal's response

• Issue a read cursor request command (RCA) to terminal and
read current position of the cursor.

If the pre-order control request is an ENO or RCA command,
the read is not treated as a field read. After sending an ENQ or
RCA control sequence to the terminal, the LPH places the
terminal's response in the buffer associated with the read
request. Before issuing an ENO or RCA read order, the
application must specify in the read IORB no echo of incoming
characters and no post-order control. (For more information
about the ENe and RCA commands, see the hardware documentation of
the terminal in question.)

Termination of a Field Read

An operator intentionally terminates a field read by one of
two actions:

1. The operator types a valid data character into the last
position of a field that is not a must release field.
This action sets I RNG to and I TAB to zero.

8-41 CZ05-02

I

2. The operator types a control sequence that terminates the
read order. The character(s) making up the control
sequence must fall in certain ranges (defined below) of
the ASCII character set; the significance of the
sequence, however, is determined by the application.
Keying a control sequence sets a non-zero residual range
in I RSR. The terminator sequence is stored in the I TAB
and I CON fields of the IORB, and not the buffer; it Is
not included in the residual range calculation or echoed
to the terminal.

The terminating sequence may be a one-character control
character or an escape sequence from one to four characters long.

1. One-Character Terminating Codes. A one-character
terminator must be one of the following ASCII codes:
OO-lA, Ie-IF, 7F. Note that codes 10 and 11 are not
treated as terminators by ATD if the terminal is a
VIP7207 or VIP7307. The use of codes 10 and 11 is not
recommended if compatibility with all terminal types is
desired.

2. Multi-character Terminating Codes. Multi-character
terminators are two-, three-, or four-character sequences
beginning with the escape code lB. The second character
of the sequence must be in the range 20 - 7E.

" A two-character sequence must consist of the escape
character (lB) followed by 20 to 57; 59 to SA; 5C to 72;
or 74 to 7E.

The VIP7800, VIP7300, and HDS 2 terminal classes support
three- and four-character escape sequences. The first two
characters must be lB followed by either 58, 5B, or 73.

Escape sequences longer than four characters are not
supported; the fifth and any successive character(s) are treated
as data. For further information on escape sequences, refer to
documentation describing a specific terminal.

ATD Handling of Termination Codes

The terminating sequence keyed by an operator is placed by
ATD in extended IORB fields I TAB and I CON. The following rules
apply. -

1. One-character codes. One-character codes are placed in
the right byte of I TAB and are in the range of 00 - lA,
lC - IF or 7F. -

2. Two-character escape sequences. The escape character
(lB) is not stored. The second character is stored in
the right byte of I TAB and is in the range of 20 - 7E
(excluding 5B, 58, and 73) •

8-42 CZ05-02

3. Three- and four-character escape sequences. The escape
character (lB) is not stored. The second character is
stored in the right byte of I TAB and is 5B, 58, or 73.
The left byte of I CON contains the third character; the
right byte of I CON contains the fourth character. The
value X'OO' in the right byte of I CON signifies that the
terminating code is a three-character escape sequence.

Entry of Invalid Characters

The effect of entering an invalid character into a field
requiring validation depends on whether the validation failure
notification (VFN) option was selected at connect time.

1. VFN Option Not Selected. An audible alarm sounds (if
output of bells is supported), the cursor remains in its
current position, and the invalid character is not
echoed. The LPB continues to process the current order
without notifying the application of the input error.

2. VFN Option Selected. Field read order is returned to
application with a 0 status in I CTI. Right byte of I
TAB contains X'FF', indicating that I CON contains one of
the following error codes:

1 = Illegal entry into a digit subfield
2 = Illegal entry into a numeric subfield
3 = Illegal entry into an alphabetic subfield
4 = Illegal entry into an alphanumeric subfield

Residual Range and Relative Residual Range

When a field read order is terminated, the residual range,
returned in I RSR of the IORS, reflects the maximum cursor
position reached while the read order was active. The relative
residual range, returned in I QDP of the IORS, reflects the
position of the cursor when die order was terminated. The values
of residual and relative residual range may differ if the cursor
back «-) key was entered during a read order. Suppose, for
example, that the operator keys

AXC<-<-B<-

followed by a carriage return. The residual range shows that
three characters (ABC) were entered; the relative residual range
indicates that the cursor was in the second position when the
order was terminated by a carriage return.

The residual and relative residual range are set equal to the
original range if a read order is prematurely terminated by a
communication line loss, a purge-all, or an abortive disconnect.

8-43 CZ05-02

Use of Cursor Keys

When the operator moves the cursor left «-) or right (-»
within a field, the LPH's buffer pointer is adjusted and the
buffer contents remain unchanged. For example, after the
operator keys

ABC->->

followed by a carriage return, the buffer contains ABCxx, with xx
being the previous contents of the buffer. (The residual range
indicates that five characters were entered.)

statistics

The total keystroke count for a field read is returned in
I FCS of the field read IORS when the order terminates. When the
read order is active, the count is incremented once for each of
the following:

• Data character (valid or invalid)
• Cursor right (-»
• Cursor left «-)
• The terminating character sequence.

Statistics are not returned in the lORS if the read order is
prematurely terminated (e.g., by a communication line loss).

Read With Offset

An application can specify an offset when issuing a field
read order so that the operator can start entering data in the
middle of a field. When issuing a read with offset, an
application does the following:

• Specifies in I ADR the starting address of a buffer that
contains the data from the field previously read.

• Specifies in I RNG the size of the buffer pointed to by
I BAD.

• Specifies in I HDR the offset from the start of a field to
a position within the field where the cursor is to be
placed and where the read with offset is to begin.
Permissible values are in the range 1 through 4F,
hexadecimal.

• Optionally, specifies in I CON the cursor position to the
start of the field.

For example, a 20-character alphabetic field begins in row 2
column 1. The application previously issued a field read with no
offset, but the field entered by the operator contained an
invalid character in the tenth position of the field. The
application recognizes the error and reissues the read with:

8-44 CZOS-02

• A pre-order bell

• A pre-order positioning of the cursor at row 2, column 1

• An offset of 9 specified in I_HDR

• The address and range of the buffer containing the
previously read data, specified in I_ADR and I_RNG,
respectively.

During a read with offset, the operator is allowed to cursor
left or right within the entire field. Cursoring out of a field
follows the normal termination rules. The LPH calculates the
residual range and the relative residual range for a read with
offset order as if the operator had entered the characters
preceding the specified offset. Read with offset may be used
with or without the type-ahead option.

Type-Ahead

If the type-ahead option was selected at connect time, the
application may select the "purge type-ahead queueD option in the
field read lORS. This option causes the LPH to purge the
type-ahead queue before processing the read order. The option is
useful if the application detects an error in field read and
wants to re-issue the read after purging the queue.

Cursor Out of Field

When issuing a field read order, an application can override
the selection of the cursor-out-of-field option made at connect
time. That is, by setting a bit in I DV2 of the read lORS, the
application can specify that the operator cannot cursor out of
the field.

Support of VlP7207 and VIP7307 Terminals

Through support of the ALPHA key and implied numeric shift,
ATD supports data entry operations on the VIP7207 and VIP7307
terminals. The purpose of this functionality is to allow the
operator to enter alpha (i.e., lower case) characters from a data
entry terminal while the terminal is shifted to uppercase as a
result of numeric lock or implied numeric shift. It is perceived
by the operator as a terminal function related to character
entry, and is not tied into the field validation operation.
Field validation checks are done after the character is
translated; if the resultant character is invalid it is rejected
at that time.

The data entry terminal transmits a code 10 when the ALPHA
key is depressed and a code 11 when the key is released. The LPH
interprets code 10 as a shift to the "alpha" set of characters,
translating the data characters following the code 10 into equiv
alent alpha codes until a code 11 is received. ATD so interprets
codes 10 and 11 whether or not type-ahead is in effect.

8-45 CZ05-02

When the operator is responding to a supervisory message
read 6 ATD treats codes 10 and 11 as data, placing them in the
application's buffer; no translation is performed. After the
supervisory message read is complete, the LPH reverts to the mode
(ALPHA or implied numeric shift) that was in effect immediately
before the supervisory read.

The purpose of the numeric shift option (specified in I DV2)
is to reduce the number of keystrokes required of the operator
during the entry of numeric data by enabling the application to
shift the state of the terminal instead of requiring the operator
to depress the numeric shift key. The use of this option is not
restricted to numeric type validation fields, and it can be used
wherever it will save the operator keystrokes. Thus, for
alphanumeric fields that typically consist mostly of digits, this
implied shift would cause the terminal to echo digits and the
ALPHA key could be used to enter the occasional letter.

When a field read with implied numeric shift is requested,
the characters entered are translated befo,e the field validation
operation is performed. For example, the~operator normally
enters alpha data. The terminal is set for alpha: the numeric
lock is not set and the ALPHA key is not used. The application
issues an order to read a three-character alphabetic subfield and
a three-character digit subfield with the implied numeric shift
option. The operator, using the central keyboard (not the
numeric keypad), enters ABCUIO. ABC123 is placed in the
application buffer.

Table 8-12 lists the data codes produced by a key in its
unshifted (alpha) state and shifted (numeric) state. The two
characters shown in each line of the table are produced by a
single key. The first character is produced when the keyboard is
unshifted or when the alpha key functionality is in effect. The
second character is generated when the key board is shifted or
when the implied numeric shift option is in effect.

Read IORB (Field Mode)

This subsection summarizes the bit settings that govern the
field read IORB options just described.

Bit Settings of I DVS. Table 8-13 gives the significance of
bits of the field read IORB I DVS word that are applicable to
field mode ATD. All other bits must be zero.

Bit Settings of I DV2. Table 8-14 shows bits in the field
read IORB word I DV2 that are significant to ATD. All 'other bits
must be zero.

8-46 CZ05-02

Table 8-12. Data Entry Keyboard Unshifted/Shifted Translations

Unshifted

S (53)
X (58)
T (54)
R (52)
B (48)
G (47)
T (54)
R (52)
w (57)
{ (7B)
{ (7B)
} (7D)
A

(5E)
G (47)
B (42)
C (43)
@ (40)
* (2A)
P (50)
N (4E)
E (45)
Q (51)
% (25)
< (3C)
none
H {

I (2F)
D (55)
I (49)
0 (4F)
J (4A)
K (4B)
L (4C)
M (4D)
, (2C) . (2E)
D (44)
F (46)
V (56)

(alpha) Shifted (numeric)

> (3E)
? (3F)
[(5B)
[(5B)
\ (5C)
1 (5D)
] (5D)
A (5E)

T
(SF)
PC)

} (7D) - (7E)
- (7E)
none
! (21)
If (22)
(23)
$ (24)
& (26)
((28)
) (29)
+ (2B)
i' (2C)
e (2E)
I ()
/ ()
o (30)
1 (31)
2 (32)
:3 (33)
4 (34)
5 (35)
6 (36)
7 (37)
8 (38)
9 (39)

(3A)
; (3B)
::: (3D)

NOTES

i

Terminal

VIP7207
VIP7307
VIP7207
VIP7207
VIP7307
VIP7207

VIP7207
VIP7307
VIP7207
VIP7307
VIP7307

VIP7207
VIP7307

1. "None" means that no code is generated.

2. Unless specified, the code translations apply to both
VIP7207 and VIP7307 terminals.

3. Keys not represented in the table generate the same code
in unshifted or shifted state.

I

8-47 CZ05-02

,.

Bit
Number

0

1

2

7

.Table 8-13. ATD Word I_DVS in Field Mode Read IORS

Bit
Number Meaning for Field Read Function

10 0 = Do not echo input
1 = Echo input

Table 8-14. ATD Word I DV2 in Field Read IORS

Meaning for Field Read Function

o = Do not purge type-ahead queue
1 = Purge type-ahead queue

o = No implied numeric shift
1 = Implied numeric shift

o = No integrated field descriptor (define-form order
required)

1 = Integrated field descriptor (starting at I_LOG)

o = Do not override cursor-out-of field capability
1 = Override cursor-out-of field capability specified in

connect I DV2 (field read terminates when attempt is
made to cursor-out of a field)

12 0 = Do not send pre-order bell
1 = Send pre-order bell

13 0 = Do not send pre-order erase-line escape sequence
1 = Send pre-order erase-line escape sequence

14 0 = Right byte of I_CON contains pre-order control (see
Table 8-15): left byte must be zero

1 = I CON contains pre-order cursor positioning
information (see Table 8-15)

15 0 = I CON is not meaningful (no pre-order control)
1 = I:CON contains pre-order control information

Bit Settings in I CON. This field can be used to specify
pre-order control. If so used, bit 14 of I DV2 must be set.
I_CON can be used to specify two kinds of pre-order control:

1. Pre-order cursor positioning. The application must
indicate this use of I_CON by setting bit 15 of I_DV2 to
one.

8-48 CZO 5-02

2 .. Pre-order control other than cursor positioning. The
application must indicate this use of I CON by setting bit
15 of 'I DV2 to zero. -

Table 8-15 shows the values of I CON when used for either
kind of pre-order control.

Bit
Number

0-7

8-15

0-7

8-15

Table 8-15. ATD Word I CON in Field Read IORB.

Hex
Value Meaning for Field Read Function

Pre-Order Control Cursor Positioning Information

01-50 Defines column coordinate (hexadecimal)

01-18 Defines row coordinate (he xadec imal)

Other Pre-Order Control Information

1
00

06

07

08

09

OA

OB

OC

OD

I Must be zero·

I Line feed and carriage return

I Line feed

i Carriage return

I Bell
I
I Rese rved for future use

Rese for future use

Restore devicefs default attributes (VIP7800, 7300
class terminals): high intensity (VIP7200 class
ter,minals) .

Low intensity attribute (VIP7800, 7300, 7200 class
terminals)

CUrsor up

Cursor down

CUrsor forward

Cursor back

CUrsor home

Erase end of line

8-49 CZO 5-02

!

I

Table 8-15 (cont). ATD Word I CON in Field Read IORS •.

Bit Hex
Numbe r Val ue Meaning for Field Read Function

Other Pre-Order Control Information (cont.)

OE Erase end of display

OF Clear (VIP7800, VIP7300, BDS 2 class terminals)~
reset (VIP7200 class terminals)

10 Read cursor request binary (VIP7800, VIP7300, BDS 2
class terminals)~ read cursor address (VIP7200
class terminals)

11 Blink (VIP7800, VIP7300, HDS 2 class terminals)

12 Hide (VIP7800, VIP7300, BDS 2 class terminals)

13 Inverse video (VIP7800, VIP7300, HDS 2 class
terminals)

14 Underline (VIP7800, VIP7300, HDS 2 class terminals)

15 Secondary character set (VIP7800 class terminals)

16 Enquiry (VIP7800, VIP7300, BDS 2 class terminals)

NOTES

1. If codes 11 through 16 are used for terminal classes
other than VIP7800, VIP7300, and BDS 2, an invalid
parameter error (0104) will be returned.

2. When specifying codes 10 or 16, the application must
supply, in lORS fields I ADR and I RNG respectively, the
address and size of a buffer to receive the terminal's
response. A buffer size of 4 bytes is required if code
10 is specified; a buffer size of 9 is required if code
16 is specified.

Bit Settings in I HDR and I TAB. If an application issues a
read with offset, the right byte of I HDR must contain the byte
offset, expressed as a hexadecimal value in the range 1 through
4F. If no offset is required, the right byte of I_HDR must be
zero.

When an a field read order is issued in conjunction with a
define form order, I TAB contains a word offset to the proper
field attribute descriptor.

8-50 CZO 5-02

Values Returned by a Field Read Order

The following paragraphs summarize the information returned
by ATD in fields of a terminated field read IORB.

I RSR shows the maximum cursor position (offset) upon
termination of the field read order.

I FCS shows the total number keystrokes entered by the
operator during the field read.

I ST2 indicates, by a value of one in bit 15, that validated
data was entered into the field.

I QDP shows the current cursor position (offset) upon
termination of the field read order.

I TAB indicates termination condition as shown below:

o = End of range. Valid data has been entered into the
entire field.

-1 == Invalid character entered into field. If the VFN
option was selected at connect time, I CON provides
additional information (see "Entry of Invalid
Characters into a Field" earlier in this section.)

>0 = ASCII code for one of the .following:

Single character terminator entered by operator

Second racter of a two-character escape sequence

Second character of a three- or four-character escape
sequence; I_CON contains remaining character(s) of the
sequence

For the permissible values of terminator characters and
sequences see "Termination of Field Read" earlier in this
section.

WRITE FUNCTION (FIELD MODE)

An extended-length IORS is used for all write orders directed
against a terminal connected in field mode ..

Write orders are typically used to:

• Display on the terminal screen a set of field "templates"
associated with a form

• Purge all outstanding field read and write orders.

8-51 CZ05-02

Purge All Subfunction

The purge all option is a special form of the field write
order. It is exercised by specifying a subfunction code of three
in I_DV2, bits 8 through 11. Bits 10 and 11 are one; the other
bits are zero. When this subfunction is specified, all other bit
settings in I DV2 and I DVS are ignored. The write order causes
outstanding read and/or-write orders (active and queued) to be
posted with a device unavailable (OlOB) status. Further, if the
type-ahead option was specified at connect time, the type-ahead
queue is purged.

Quit on Break Option

If this option is specified (in I DVS), a break signal can
prematurely termina~e an active write-order~

Pre-order Control

Four bits in I DV2 control pre-order activity. :By setting
the range I_RNG to-zero, the application can issue a write order
that requests only pre-order activity. Alternatively, the write
order can request both pre-order activity and the output of data
to the terminal. In either case, the subfunction code (bits 8
through 11) of I_DV2 must be zero.

By manipulating bits in I_DV2, an application can:

• Send a bell
• Erase end-of line
• Use I CON for cursor positioning operations
• Use I:CON for pre-order control operations.

These options are also available with field read orders and
have been described in earlier parts of this section that concern
the field read function.

Write IORB (Field Mode)

This subsection describes bit settings in the field write
IORS that govern the options just described.

Bit Settings in I DVS. Table 8-16 gives the significance of
bits of the IORS word I DVS that are applicable to field mode
write. All other bits must be zero.

Bit Settings in I DV2. Table 8-17 gives the significance of
bits in IORS word I_DV2 that are applicable to field mode write.

Bit Settings in I CON. The bit settings in this field is the
same as those previously described for the field read function,
with this exception: In a field write IORS, I CON does not
support codes 10 (read cursor address) and 16 (Enquiry).

8-52 CZ05-02

Table 8-16. ATD Word I DVS in Field Mode Write lORB.

Bit
Number Meaning for Field Write Function

!

!

7 0 == stop output on detecting break
1 == Do not stop output on detecting break

8 0 == Acknowledgement of supervisory messages required

Bit
Number

8

9

10-11

1 == No acknowledgement required

Table 8-17. ATD Word I DV2 in Field write lORB.

Meaning for Field Write Function

Must be zero

Must be zero

DO == Normal write
11 == Purge all outstanding read and/or write orders

12

i

13

14

0 :: Do not send pre-order bell
1 == Send pre-order bell

0 ::::: Do not send pre-order erase-line
1 == Send

o :.: Right
Table

1 == I CON
Table

pre-order erase-line

byte of I CON contains pre-order control (see
8-l5}~ left byte must be zero

contains pre-order cursor positioning (see
8 -15)

15 0 == I CON is not meaningful (no pre-order control)
1 == I CON contains pre-order control information

FIELD MODE DEVICE CONFIGURATION

Hardware switches on a device connected in field mode should
be set in the following positions. (The device may not support
all of the switches mentioned below) •

CHARACTER/BUFFER switch in CHARACTER position
DUPLEX HALF/FULL switch in FULL position
LOCAL COPY/ECHO switch in ECHO position
ROLL/NO ROLL switch in NO ROLL position
Speed set between 1200 and 9600 bits per second

8-53 CZ05-02

FIELD MODE RETURN STATUS CODES

The following return status codes are returned in the Rl
register. The status code returned in I CTI is the right byte of
the status code returned in the Rl register when the I/O order is
complete.

Invalid Argument Status (0104)

This status is returned for the following reasons:

• In a field read IORS

I_RNG (buffer size) is zero

- Invalid pre-order control option or cursor position
coordinate in I CON

- The format or values of a field descriptor are invalid.

• In a field write IORB

- Invalid pre-order control option or cursor position
coordinates in I CON

Improper bit settings in I DV2 (b~ts 8 through 12 must
be all zer01 else bits 8 a~d 9 set to zero and bits 11

.and 12 set to one).

Inconsistent Request Status (OlOC)

This status is returned for the following reasons:

• In a field connect IORB

- The IORS specifies a field mode connect to a terminal
that is supporting (a connected) serial printer that is
attached to the terminal by a buffered printer adapter.

• In a define form IORB

- A read order is presently using an outstanding and
active define form order; definition of a new define
form is not allowed.

• In a field read IORB

- A field attribute descriptor has not been specified.

FIELD MODE ERROR PROCESSING

When a parity error is detected in keystroke input, an
audible alarm sounds and the typed character is ignored. When
the read order is posted, the return status in I ST indicates
detection of parity error (s) (bit 9 = 1). -

8-54 CZ05-02

If a framing error or receive overrun condition is detected,
the read order terminates and a hardware error (0107) is
returned~ I ST indicates the specific reason for abnormal
termination7

FIELD MODE TIMEOUT PROCESSING

Timeouts may occur during the processing of read orders. A
timeout occurs when the operator does not terminate the input
within 5 minutes after entering the first character. The timeout
value of 5 minutes can be changed via the read parameter of the
CLM directive TIMEOUT. There is no timeout if the operator does
not enter any characters. Write orders do not incur timeouts.

BLOCK MODE

Block mode is applicable only to the VIP7800 class of
terminals (VIP7801, VIP7803, and VIP7808) and is intended to
support the terminal in its native text or forms mode.

Block mode supports five functions: Connect, Disconnect,
Read, Write, and Break.

These functions are requested through standard-length
IOREs. An application can optionally use an extended lORE for a
connect operation.

Block Mode and Extended Character Set (8-Bit Data)

The handling of the extended character set for block mode is
the same as that described for TTY mode.

Connect Function

A cOnnect order establishes the mode in which the connected
terminal operates. Block mode is selected by setting bit 0 of
I DVS to one. If an extended-length connect lORE is used, the
terminal·s device ID is returned in the lORE extension (right
byte of field I_QDP).

An application specifies in I RNG of the connect IORS the
size of data blocks to be transmitted from the terminal.
Permissible block sizes range from 22 to 270F bytes,
hexadecimal. If an application fails to specify a valid block
size, the connect order is rejected with an 0104 (invalid
argument) error code.

Transmitted blocks terminate with either an end-of-block
(ETB) or an end-of-text (ETX). When a block is transmitted from
the terminal, the type of terminator (ETB or ETX) is passed to
the application through the IORS and through an optional control
word, which is described below. The following options can be
specified when connecting in block mode.

8-55
09/86
CZ05-02A

I

I

AUTO CALL

The Auto Call option, which is supported by all
system-supplied LPHs, is described in Section 7. This option
allows an application to establish a connection using an 80l-A or
an 80l-C ACU data set.

CONTROL WORD

At connect time, an application can specify control word
processing for subsequent read and write orders. If this option
is specified, ATD treats the first two bytes of the user's buffer
as a control word. If control byte processing is also specified,
the third byte of the useris buffer is considered the control
byte. ATD uses the control word primarily to pass information to
an application on completion of read orders. ATD places similar
information in the IORB word I ST when a read order completes.
The first 4 bits of the controI word contains information that is
passed to the application upon completion of a read order. It
has the following format:

BIT 0 1 2 3 4 15

I 0 I x I x I x I LRN 0 - 4095

Bit 1

0 =
1 = Block missed; data lost

Bit 2

0 = -
1 = Long block; data lost

Bit 3

0 = ETX terminated block
1 = ETB terminated block

The last 12 bits of the control word specify the logical
resource number of the referenced terminal. If specified, the
control word must be included in the range (I RNG) of the
associated data buffer. -

SPACE SUPPRESSION

If this option is specified, ATD configures the terminal to
suppress spaces, in certain instances, when transmitting data.
One example of space suppression is the replacement of spaces
between fields by a horizontal tab character or unit separator
character; another example is the elimination of spaces at the
end of lines that are terminated by a carriage return and line
feed. For additional details, consult the documentation for the
terminal in question.

8-56 CZ05-02

NO ROLL

selecting this option keeps the terminal from scrolling line
1 "off the screen" when text (including a carriage return) is
entered into line 24. This option is especially useful to
applications that process forms. If this option is not used, the
screen scrolls as new text is entered in line 24. Roll mode is
the customary operating mode chosen by an application that
processes line-at-a-time input from the terminal.

Connect IORS (Block Mode)

This subsection summarizes the bit settings that govern the
connect options already described. Table 8-18 gives the
significance of bits of the connect I OVS word that are
applicable to block mode. -

A block size must be specified in this field if block mode is
selected (bit 0 of I_OVS is one).

The I ST word field is significant when a serial printer is
attached to the terminal by means of a buffered printer adapter.
On connect orders, the field specifies whether the terminal or
attached printer is being addressed. The permitted values are:

o = Terminal
1 = Attached serial printer

Upon completion of a connect order, ATD returns in the right
byte of I_QOP the device 10 of the terminal (refer to Table 8-3) •

Table 8-18. I_DVS Word in Connect IORS (Block Mode)

Bit
Number Meaning for Connect Function

o 0 = Do not use block mode
1 = Use block mode

2 0 = Do not use auto dial
1 = Use auto dial

4 0 = Include control word
1 = Do not include control word

8 0 = Do not use space suppression
1 • Use space suppression

9 0 = Use roll
1 = Use no roll

8-57 CZOS-02

Disconnect Function (Block Mode)

An application uses the disconnect IORB to terminate block
mode processing. The following paragraphs describe the options
that an application can specify with a disconnect order.

If the abort option is specified, outstanding IORBs (active
and queued) are terminated with a ndevice unavailable· status
(OlOB). The disconnect order is immediately serviced. If the
abort option is not specified, all outstanding IORBs are allowed,
to complete before the disconnect order is serviced.

If the hang-up option is selected i the terminal is physically
disconnected when the disconnect order is serviced. If the
hang-up option is not specified, the communications connection
remains active after servicing of the disconnect order (i. e., the
terminal is logically disconnected but remains physically
connected) •

Disconnect IORB (Block Mode)

This subsection summarizes the IORB
the disconnect options just described.
the disconnect IORB that are applicable
ATD. All other bits must be zero.

bit settings that govern
Table 8-19 shows bits of
to the block mode of

The bit settings in word I ST are significant when a serial
printer is attached to the teriinal by means of a buffered
printer adapter. On disconnect orders, the field specifies
whether the terminal or attached printer is being addressed. The
permitted values are:

o = Terminal
1 = Attached serial printer

Table 8-19. I DVS Word in Disconnect IORB (Block Mode)

Bit
Number Meaning for Disconnect Function

14 0 = Abort outstanding requests
1 = Wait until outstanding requests complete before

disconnecting the terminal

15 0 = Hang up the phone
1 = Do not hang up the phone

8-58 CZ05-02

Read Function (Block Mode)

The read order is used to obtain blocks of data transmitted
from the terminal. It is the application's responsibility to
specify a buffer size large enough to hold a complete block of
data. If a block exceeds the buffer capacity of the order, the
IORB is posted with a "long record" status (bit 6 of I_ST is 1) •

OPERATOR FUNCTIONS

The operator edits information at the terminal by using the
following keys:

• Cursor control
• Character insertion/deletion
• Line insertion/deletion
• Line/screen erase.

The operator signals termination of input by pressing the
TRANSMIT key. A break key enables the operator to interrupt a
read order or to (possibly) terminate a write order.

APPLICATION FUNCTIONS

An application selects the following options by setting bits
in the device-specific word (I_DVS) of the IORB.

Abort Read

If this option is specified, ATD posts to the application any
active and queued read IORSs. The posted IORSs show a device
unavailable status (OlOB) in I CTI and the abort indicator (bit
0) in I ST set to one. The read order issued with this option
causes no I/O activity; it is posted back to the application with
a zero status.

Supervisory Messages

Specification of this option indicates that the read order is
directed to the supevisory message line. This option is
meaningful only if the terminal is operating in no-roll mode. In
no-roll mode, the supervisory message line is line 25. In roll
mode, supervisory message reads are treated as normal reads.

Line Feed and Carriage Return

Specifying the line feed and/or carriage return option
causes, respectively, a line feed and/or carriage return to be
sent to the terminal when the read order is completed.

READ IORB (BLOCK MODE)

An application specifies the options just described by
setting bits in the IORB word I DVS. Table 8-20 gives the
Significance of these bits. AlI other bits must be zero.

8-59 CZ05-02

I

Table 8-20. ATD Word I DVS in Block Mode Read IORB

Bit
Number Meaning for Block Read Function

0 0 = Normal read
1 = Abort read

9 0 = Normal read
1 = Supervisory message read

11 0 = Do not send post-order line feed
1 = Send post-order line feed

12 0 = Send post-order carriage return
1 = Do not send post-order carriage return

Write Function (Block Mode)

The write order is used to transmit data blocks to the
terminal.

WRITE ORDER PROCESSING

Write orders have priority over read orders. If a read order
has been issued but is not in progress, any issued write order
executes immediately. Once all outstanding write orders have
completed, the outstanding read order is reestablished. If a
read order is in progress (i.e., entry of data from the terminal
has begun), the write order waits for the read to complete.

KEYBOARD LOCK

The keyboard lock command is sent to VIP780x terminals only.
All VIP78lx terminals receive keyboard transmit lock commands.
Before the write order is executed by ATD, the LPH locks the
terminal's keyboard. This action prevents processing conflict
between the LPH and terminal. After the write order is
processed, the keyboard is unlocked if the completed write order
specified an ETX terminator (indicating the end of the message
transmission to the terminal). If, however, the contents of the
write order contains an escape sequence that elicits a response
from the terminal, the device will ignore the keyboard unlock
command; the application must issue another write order to unlock
the keyboard.

WRITE ORDER OPTIONS

An application can specify the following options in I DVS of
the write IORB.

8-60 CZOS-02

Abort Write

If this option is specified, ATD posts to the application any
active and queued write IORBs. The posted IORBs show a device
unavailable status (OIOB) in I CTI and the abort indicator (bit
0) in I ST set to one. A write order issued with this option
causes no I/O activity: it is posted back to the application with
a zero status.

Preemptive Data Write

This option is meaningful only when the terminal is actively
transmitting data. The option allows a write order to be
processed between the transmission (by the terminal) of two ETB
blocks or one ETB block followed by an ETX block. Normally, once
a read operation is started by the application (to receive
terminal transmissions), it is allowed to proceed (often
requiring the issuance of several read IORBs) until the last text
block (terminated by ETX) is received.

Control Byte Processing

Specification of control byte processing indicates that the
first byte in the application's output buffer is to be used for
pre-order control. A control byte must be included in the range
(I RNG) of data to be written to the terminal. For a detailed
description of this option, including control byte format, refer
to "Control Byte Processing" earlier in this section.

" ETX/ETB Option

As mentioned earlier, ATD locks the keyboard during
processing of a block mode write order. If the write order
specifies ETB, indicating that a another block of the message is
to follow, the keyboard remains locked after completion of the
write order. Alternatively, if the write order specifies ETX,
indicating the end of the message, the keyboard unlocks after
completion of the order.

Quit On Break

If this option is specified in I DVS, a break signal can
interrupt the execution of an active-write order. Otherwise, a
break Signal cannot be used to terminate an active write order
prematurely.

Supervisory Messages

Specification of this option indicates that the write order
is directed to the supervisory message line. This option is
meaningful only if the terminal is operating in no-roll mode. ~n
no-roll mode, the supervisory message line is line 25. In roll
mode, supervisory message writes are treated as normal writes.

8-61 CZ05-02

Supervisory Message Acknowledgement

If this option is specified, it indicates that a supervisory
message written to a terminal is to be acknowledged by the
terminal operator. Again, supervisory messages are meaningful
only if the terminal has been connected in no roll mode. In roll
mode, supervisory messages are treated as normal writes and the
acknowledgement option does not apply. For a full discussion of
this topic, refer to "Supervisory Message Processing" earlier in
this section.

Line Feed and Carriage Return

Specifying the line feed and/or carriage return option
causes, respectively, a line feed and/or carriage return to be
sent to the terminal when the write order is completed.

Write IORB (Block Mode)

This subsection summarizes the bit settings that govern the
write order options already described. Table 8-21 gives the
significance of bits of the write I DVS word that are applicable
to block mode. All other bits must-be zero.

The bit settings in word I ST are significant when a serial
printer is attached to the terminal by means ofa buffered
printer adapter. On write orders, the field specifies whether
the terminal or printer is being addressed. The permitted values
are:

o = Terminal
1 = Attached serial printer

Device Configuration (Block Mode)

In block mode, the speed of a terminal must be configured
between 110 and 9600 bits per second.

Return Status Codes (Block Mode)

ATD returns status codes in I CTI and I ST. The status code
returned in I CTI is the right byte of the status returned in the
Rl register (when the I/O order is completed).

STATUS CODES IN I CTI

The invalid argument status (0104) is returned when an
invalid block size is specified in I_RNG of a connect IORB.

The device unavailable status (OlOB) is returned when a read
or write orde+ is purged as a result of a purge-all read request
or purge-all write request, respectively.

8-62 CZ05-02

Table 8-21. ATD Word I DVS in Block Mode Write IORB

Bit
Number Meaning for Block Write Function

o 0 = Normal write
1 = Abort write

3 0 = Normal write
1 = preemptive write

4 0 = Include control byte
1 = Do not include control byte

6 0 = ETX (unlock keyboard after write order completes)
1 = ETB (keep keyboard locked after write order

completes)

7 0 = stop output on detection of a break
1 = Do not stop output on detection of a break

8 0 = Operator must acknowledge supervisory message
1 = Operator need not acknowledge supervisory message

9 0 = Normal write

11

1 = Supervisozy message write

o = Do not send post-order line f.eed
1 = Send· post-order line feed

12 0 = Send post-order carriage return
1 = Do not send post-order carriage return

The inconsistent request status (OlOC) is returned for a read
order that is issued subsequent to a data loss. This status
indicates that one or more data blocks were missed prior to the
issuance of the current read order.

STATUS CODES. IN I ST

Table 8-22 shows status information returned in 1ST upon
completion of a block mode order.

Error Processing (Block Mode)

When a parity error is detected on a data transmission from
the terminal, an ASCII SUB character (lA) is placed in the
application's buffer in lieu of the erroneous character. The
read order is posted with a hardware error status (Ol07), and bit
9 of I ST is set to one to indicate that one or more parity
errors-were detected during the read.

8-63 CZ05-02

Table 8-22. IORB Word I_ST (Block Mode)

Bit Meaning when Bit Set to One

0 Read or write order aborted

1 ETB received, (ETX received if bit off)

3 Block missed, was received from terminal without a read
orqer having been issued

6 Long record received, buffer insufficient to contain
received data

Detection of a framing error or receive overrun condition
p~ematurely terminates the read order. The order is posted with
a hardware error status (0107); I ST indicates the reason for
abnormal termination. -

Timeout Processing (Block Mode)

In block mode, there are no timeouts for read or write
orders.

ASPI MODE

The ASPI (asyncronous serial printer interface) mode of ATD
services selected serial printers that use an ETX/ACK protocol.
It supports five functions, using standard-length IORBs:

Connect
Disconnect
Write
Read

I Wait-on-line.

ETX/ACK Protocol

Use of this protocol avoids a buffer overflow condition, in
which an application transmits data to a device faster than the
device can print the data. Buffer overflow is most likely to
occur while the device is executing commands, such as carriage
return or form feed, that move the print head or carriage.
Without an ETX/ACK protocol, the application or device driver
must pad data transmissions with fill characters, which the
device does not print. While the fill characters are being
edited out, the device has time to perform carriage returns or
line feeds.

8-64 CZ05-02

The ETX/ACK protocol renders padding unnecessary. Using this
protocol, the LPH sends data to the printer a block or frame at a
time. (The size of the block or frame depends on the buffering
capacity of the device.) The LPH terminates the block with the
ETX character. The serial printer responds with an ACK control
character when (if the unit is double-buffered) it can accept.
another block or when it has sucessfully printed the last block
of data. Having received the ACK control character, the LPB
starts transmitting the next data block. The ASPI LPH supports a I
basic and advanced type of ETX/ACK protocol.

BASIC ETX/ACK PROTOCOL

The basic ETX/ACK is used by printers (the PRUl004 and
PRU7007). It supports:

• A basic transmission procedure

• Detection of offline serial printer conditions by means of
an attention read order

• Report of the printer's marketing identifier by means of a
status read order.

ADVANCED ETX/ACK PROTOCOL

The advanced ETX/ACK is used by the PRU7070, PRU7l70,
PRU7270, PRU7l75, PRU7200, PRU7210, and PRU7075 serial printers. I
It supports:

• An advanced ETX/ACK transmission procedure called the
asynchronous serial printer interface (ASPI)

• Detection and report of all off-line serial printer
conditions

• Report of the printer's marketing identifier and device
status by means of a status read order.

Connect Function

An application selects the ASPI mode of ATD by .setting bit 10 I
of I DVS to one when issuing the connect order. When the device
connected is a PRU7070, PRU7l70, PRU7l75, PRU7200, PRU7270, or
PRU7075, the LPB issues an enquiry to the device for status. The
serial printer's response to the request for status allows ATD to
specialize its processing to the characteristics of the device.
If the device fails to respond to the request for status, ATD
posts back the connect order with a device unavailable (OlOB)
status. When connecting in ASPI mode, the application can I
specify the auto call option. Specifying auto call in I DVS
enables an application to establish a connection using eIther an
80l-A or an 80l-C ACU data set.

8-65 CZ05-02

I Connect IORB (ASPI Mode)

Table 8-23 gives the significance of the I DVS bits that
govern the connect option. All other bits must be zero.

Disconnect Function

I An application uses the disconnect IORB to terminate ASPI
mode processing. The following paragraphs describe the options
that an application can specify with a disconnect order.

ABORT QUEUED ORDERS

If the abort option is specified, outstanding IORBs (active
and queued) are terminated with a device unavailable status
(OlOB). The disconnect order is immediately serviced. If the
abort option is not specified, all outstanding IORBs are allowed
to complete before the disconnect order is serviced.

HANG UP

If the hang-up option is selected, the terminal is physically
disconnected when the disconnect order is serviced. If the hang
up option is not specified, the communications connection remains
active after servicing the disconnect order (i.e., the terminal
is logically disconnected, but remains physically connected) •

I Disconnect IORB (ASPI Mode)

Table 8-24 gives the significance of the I DVS bits that
govern the disconnect options. All other bits-must be zero.

I Write Function (ASPI Mode)

I

I

The write order is used to transmit data to the serial
printer. Once the LPH has verified the buffer range and address
in the IORB, it performs control byte processing (if specified in
I DVS). ATD then services the write request. The data written
can be of any length7 using the ETX/ACK protocol, ATD sends the
data a block-at-a-time to the printer.

Table 8-23. I DVS Word in Connect IORB (ASPI Mode)

Bit
Number Meaning for Connect Function

2 a = Do not use auto dial
1 = Use auto dial

10 a = Do not select ASPI mode
1 = Select ASPI mode

8-66 CZOS-02

Table 8-24. I DVS Word in Disconnect IORB (ASPI Mode)

Bit
Number Meaning for Disconnect Function

14 0 = Abort outstanding requests
1 ::. Wait until outstanding requests complete before

disconnecting terminal

15 0 = Hang up the phone
1 = Do not hang up the phone

CONTROL SEQUENCES

An application can control the write operation by means of
control sequences imbedded in transmitted data.

DC4 Control Sequence

Write orders to a PRU7070, PRU7075, PRU7l70, PRU7175,
PRU7200, or PRU7270 support a feature that is useful to the
application designer. If DC4 is the final character of an output
message, the write order transmitting this message is posted back
to the application only when the device has printed the entire
message. If DC4 is not supplied at the end of the message, the
write order is posted back when the printer (by means of an ACK
response) declares itself ready to receive the last block of
message data. Conceivably, the device could fail to print the
last block after receiving ite Thus, the DC4 sequence provides
assurance that the entire message is actually printed.. By
setting to 1 bit 14 of word I DVS in the write lORa, an
appli can ruet ATD to append to the buffer
contents.

other Sequences

An application can place in the data buffer the customary
serial printer control characters (e.g., carriage return, line
feed, horizontal tab). Other serial printer command and control
sequences are available to the application. These can be used to
change such printing characteristics as type pitch (number of
characters per inch} and number of lines per inch. The user
should consult the appropriate device"manual for a more detailed
discussion of printer control sequences.

Prohibited Sequences

An application cannot place in the data buffer the ETX
(X'03'), STX (X'02 r), DC4 (X W14 i), DLE EOT (X'lO',X 104'), RIS I
(X'16',X'63') or ENO (X'OS') control characters, which are used
by the ETX/ACK protocol.

8-67
09/86
CZOS-02A

WRITE OPTIONS

An application selects the following options by setting bits
in the device-specific word (I_DVS) of the write order.

Control Byte

Through the use of a control byte, an application can specify
the customary pre-order control operations. If present, the
control byte is the first byte in the output buffer. The
application indicates its presence by setting a bit in I DVS.
The application must also include the byte in the range (I RNG)
of the data to be transmitted. For a detailed description-of the
control byte option, including control byte format, see "Control
Byte Processing" earlier in this section.

Line Feed and Carriage Return

Specifying in I DVS the line feed and/or carriage return
option causes, respectively, a line feed and/or carriage return
to be sent to the printer when the write order completes.

I Write IORB (ASPI Mode)

Table 8-25 gives the significance of bits of the write I DVS
word that are applicable to a ASPI mode write order. All other
bits must be zero.

I Table 8-25. ATD Word I DVS in ASPI Mode Write IORB

Bit
Number Meaning for ASPI write Function

1 0 = Not a link command
1 = Link command I

4 0 = Include control byte
1 = Do not include control byte

11 0 = Do not send post-order line feed
1 = Send post-order line feed

12 0 = Send post-order carriage return
1 = Do not send post-order carriage return

14 0 = Do not send DC4 at end of message
1 = Send DC4 at end of message

I 15 0 = Not a retry of a write IORB
1 = Retry of a write IORB

8-68 CZOS";O 2

Read Function (ASPI Mode)

The read order is used to obtain status information from the
serial printer. Two types of read orders can be issued: normal
status read and attention status read. An application indicates
in I_DVS the type of read desired.

NORMAL STATUS READ

When an application issues a normal status read order, the
IORB field I ADR must point to a IO-byte buffer. Upon completion
of the read ~rder, this buffer contains a device identifier and
may additionally contain status information. PRUl004 and PRU7007
printers provide a device ID in the first byte of the status
buffer; the remaining bytes are unused.

I

PRU7070, PRU7170, PRU7l75, PRU7200, PRU7210, PRU7270, and I
PRU7075 printers provide device status information in addition to
the device ID, which is supplied in the first status byte. Refer
to the appropriate serial printer manual for additional
information on device status. Table 8-26 summarizes the device
IDs that are returned in response to a status read request.

ATTENTION READ

This option the application a device has gone
off-line or has been reset by the operator. The status buffer is
not updated to reflect the device 10 of the printer. If this
option is specified, the read order is returned to the issuing
application only when:

• The printer rUDS ribbon
• The printer runs out of paper
• The pri rVs break switch is pressed.

Table 8-26. Device IDs for Serial Printers

Printer Device ID (hexadecimal)

PRUIOO4 21
PRU7007 22
PRU7070 31
PRU7075 32
PRU7170 33
PRU7l75 34
PRU7200 43
PRU7270 38

8-69 CZ05-02

I Read IORB (ASPI Mode)

Table 8-27 shows the signficance of bits of the I DVS word
I that are applicable to a ASPI mode read order. All other bits

must be zero.

I status Codes Returned in I CTI (ASPI Mode)

I

I

I

ATD returns status codes in I.CTI and I ST. The status code
returned in I CTI consists of the right byte of the status
returned in tiie Rl register (when the I/O order completes). A
status code often has more than one possible meaning. As
explained later in "status Information under I STn, a user can
determine a specific meaning by referring to word I ST. For
example, the status 0104, in itself, can mean zero buffer
address or zero buffer range. If bit 13 of I ST is set to 1, the'
status 0104 means zero buffer address. If, however, bit 14 of
I_ST is set to 1, the status 0104 means zero buffer range.

SUCCESSFUL COMPLETION (0000)

A zero status (in I CTl) indicates successful completion of
the order. A write order IORB can additionally indicate (in
I ST) a device attention condition (initiated by the operator) on
PRU7170, PRU7l75, PRU7200, PRU72l0, and PRU7270 printers. This
condition in no way iriterferes with successful completion of this
or subsequent orders placed against the printer. By initiating a
device attention condition, the operator can directly interact
with the application that is controlling the serial printer.

INVALID ARGUMENT STATUS (0104)

This status is returned for the following reasons:

• In write IORB

- Zero buffer address.

- Zero buffer range.

• In read IORB, read buffer less than 10 bytes long.

Table 8-27. ATD Word I DVS in ASPI Mode Read IORB

Bit
Number Meaning for ASPI Mode Read Function

0 0 = Normal status read
1 = Attention status read (PRU7170, PRU1004, PRU7007,

PRU7175, PRU7200, PRU72l0, and PRU7 27 0)

8-70 czo 5-02

DEVICE NOT READY STATUS (0105)

An order is posted back with this status when a PRU7070,
PRU707S PRU7l70, PRU7l7S, PRU7200, PRU72l0, or PRU7270 printer is
in an offline state. The LPH issues this error status once1
subsequent or outstanding write orders are serviced when the
device is put in an online, operational state. The reported
offline condition is usually caused by the OFF-LINE button being I
pressed or by the printer running out of ribbon or paper.

HARDWARE ERROR STATUS (0107)

This status is returned in a write order for the following
reasons:

• Hardware printer fault (PRU7070, PRU707S, PRU7l70,
PRU7l7S, PRU7200, PRU7270, or PRU72l0)

• Failure of printer to respond to print or status commands
(PRU7070, PRU707S, PRU7l70, PRU7l7S, PRU7200, PRU7270, or
PRU72l0).

Status Information in I ST

The bit settings in I ST qualify the status codes returned in
I CT1, as shown in Table 8-28. The first column of the table
gives the bit in I ST; the second column gives the status code
returned in I CT1;-the third column shows the significance of the
status code (column 2) when the I ST bit (column 1) is set to
one.

Error Processing

An application should retry the write order after an 0105
error (device not ready) has been returned. An application
should assume that the device will fail to complete any print
operation when a 0107 (hardware error) status is reported. The
application must disconnect if it receives a 0170, OlOB, or OIOC
error in the IORB. .

Timeout Processin9

There isa default IS-second timer for write orders. This
timer can be changed in the CLM USER file.

X-ON/X-OFF MODE

The X-ON/X-OFF mode of ATD, called AXD (Asynchronous
X-ON/X-OFF Driver), uses the X-ON/X-OFF protocol to control
asynchronous data flow on an asynchronous communication line.
With AXD, applications and devices are protected from losing data
on buffer-full conditions. AXD is used with asynchronous devices
that support the X-ON/X-OFF protocol, including serial printers,
terminals, personal computers, and paper tape readers. If a

8-71
09/86
CZOS-02A

Table 8-28. IORS Word I ST (ASPI Mode)

Return
Bit status Meaning When Bit Set to 1

2 0000 Operator initiated attention (PR07l70, PR07l75,
PR07200, PR07270, or PR07210)

13

14

0105 Device offline (PR07070, PR07075, PR07l70, PR07l75,
PR07200, PR07270, or PR072l0)

0107 Hardware printer fault (PRU7070, PRU7075, PRU7170,
PR07l75, PR07200, PR07270, or PR07210)

0104 Zero buffer address

0105 Paper out (PR07070, PR07075, PR07l70, PR07175,
PRU7200, PRU7270, or PRU7210)

0107 No response by device to print or status commands
(PRU7070, PR07075, PR07l70, PR07175, PR07200,
PR07270, or PR072l0)

0104 Zero buffer range

0105 Ribbon out (PRU7070, PR07075, PR07l70, PR07l75,
PR07200, PR07270, or PR072l0)

device does not support X-ON/X-OFF, no inherent data loss
protection is provided by the driver. AXD can still be used if
the device is insensitive to receiving X-oN and X-OFF characters
from AXD (most Honeywell terminals operate this way). The use of
X-ON/X-OFF by AXD cannot be disabled.

AXD can be used as a facility for file transfers between
systems. The degree of transparency on received data is
selectable with AXD. AXD is especially useful with simple file
transfer applications (such as the use of the Line Editor to
receive a file from a personal computer) because the flow control
is provided by the driver. Applications that have built-in flow
control have an extra layer of protection when using AXD.

To support diverse types of operations, AXD provides
different operational modes -- TERMINAL mode, PRINTER mode,
FILETRAN mode, and RAW mode. The modes are mainly distinguished
by the way they process received data. All modes except RAW
provide X-ON/X-OFF protection in both directions. RAW mode has
flow control only when receiving.

8-72
09/86
CZ05-02A

X-ON/X-OFF Protocol

The X-ON/X-OFF protocol is a standard means of controlling
data flow over an asynchronous communications line. Two special
characters are used under the protocol to control data flow, DC3
(hex 13), and DCI (hex 11). The DC3 means "suspend transmission"
(X-OFF), the DCI means "resume transmission" (X-ON). When
incoming data cannot be processed (because there is no read order
or the input buffer is almost full), an X-OFF is issued to the
sending side. Upon receipt of the X-OFF, the sender suspends
transmission. When the receiver has a favorable buffer condition
allowing it to again accept data, it sends an X-ON to resume the
flow. These actions occur invisibly to the application.

For an application to receive data, it must supply AXD with
read orders. If data comes across the line while there is no
read order, AXD saves the character(s) in its reserve buffer and
sends an X-OFF to stop the sender. If the sender does not stop
within seven characters, subsequent data is lost and the
application is notified with an error status on the next read, or
simply with a bell signal in terminal mode. Since DCI and DC3
are special protocol characters, they must not exist in the data
being received unless they are nhidden n using the AXD hide
function or some other method.

SUPPORTED lORB TYPES

AXD supports five functions, using standard-length IORBs:
Connect, Disconnect, Read@ Write .. and Break~

Connect Function

The following paragraphs describe the AXD options that an
application can specify with a connect ordere References to lORB
offsets such as I CTI and I DVS are depicted in Figure 8-1.

AUTO CALL

Specifying auto··call in 1 DVS enables an application to
establish a connection using either an 80l-A or an 80l-C ACU data
set.

PROCESS READS ASYNCHRONOUSLY

*"

This option prevents incoming data from being lost between
read orders· when the sending device does not support X-ON/X-OFF.
With this option, an application can issue up to four consecutive
asynchronous read orders (W-bit of I CT2 set to 1 in the read
IORB). AXD immediatly sends each read to the communication I
controller to wait for incoming data. When a read completes, it
is posted to the application with appropriate status and the next
read on the controller is instantly ready to receive ..

8-73
09/86
CZOS-02A

I
While the maximum of four simultaneous reads are on the .

controller, any additional reads issued by the application wait
on AXD's queue until an earlier read completes. With the
Asynchronous Read option, the device specific word of the first
issued read order. also serves as the device specific word for all
subsequent reads until the end of the file is reached.

If this option is not selected, read orders are processed by
AXD synchronously (one at a time), even if issued asynchronously
by the application and each uses it's own device specific word.
This option is not available in TERMINAL mode of AXD.

AXD MODE

I ,The mode is chosen to suit the type of operation being
performed during this connect. The modes are:

• TERMINAL mode, for interactive, line-at-a-time, processing
on a teletype-compatibl~ (TTY device)

• PRINTER mode, for sending to a receive-only device (such
as a serial printer or a graphics plotter)

• FILETRAN mode, for either-direction file transfer with
control character support on input

.• RAW mode, for completely transparent input processing.

SOLICIT INITIAL TRANSFER

When this option is selected, AXD issues an X-ON to the
sender, (to indicate initial readiness to receive), when the
application issues its first read order.

REQUIRE INITIAL X-ON

When this option is selected, AXD holds execution of the
application's first issued write order until an initial X-ON
comes in from the receiver. Be aware that the write order is
subject to timeout while waiting for the X-ON. This option must
not be used with the RAW mode of AXD.

LOGICAL CONNECT

This option specifies that a logical re-connect of the line
is to be done. This should only be done after a logical
disconnect.

Connect IORB (AXD Mode)

Table 8-29 gives the significance of the I DVS bits that
govern the connect options already described. -All other bits
must be zero.

8-74
09/86
CZOS-02A

Table 8-29. I DVS Word in Connect IORB (AXD Mode)

Bit
Number Meaning for Connect Function

1 0 = Do not use AXD
1 = Use AXD

2 0 = Do not use auto dial
1 = Use auto dial

3 0 = Process read orders synchronously
1 = Process read orders asynchronously

5-7 100
011
010
001
000

=
=
=
=
=

Use PRINTER mode ofAXD
Use FILETRAN mode ofAXD
Reserved
Use TERMINAL mode ofAXD
Use RAW mode ofAXD

8 0 = Do not solicit initial transfer
1 = Solicit initial transfer

9 0 = Do not require initial X-oN
1 = Require initial X-ON

15 0 • Do a physical connect
1 = Do a logical connect

Disconnect Function

An application uses a disconnect IORB to terminate AXD mode
processing. The following paragraphs describe the options that
an application can specify with a disconnect order.

ABORT QUEUED ORDERS

If the abort option is specified, outstanding IORBs (active
and queued) are terminated immediately and returned with a device I
unavailable status (OlOB). The line is then disconnected. If
the abort option is not specified, all outstanding IORBs are
allowed to complete before the disconnect order is serviced.

HANG Up·

If the hang-up option is selected, the device is physically
disconnected when the disconnect order is serviced. If the hang
up order is not specified, the communications connection remains
active after servicing of the disconnect order (i.e., the device
is logicaly disconnected, but remains physically connected).

8-75
09/86
CZ05-02A

I

I

END-OF-FILE/DISCONNECT

If the end-of-file/disconnect option is selected, AXD sends
an EOF character prior to processing the disconnect order. This
option can be used, for example, when sending a file via the Copy
utility.

Disconnect lORe (AXD Mode)

Table 8-30 gives the significance of the I DVS bits that
govern the disconnect options. All other bits-must be zero.

Table 8-30. I DVS Word in Disconnect lORe (AXD Mode)

Bit
Number Meaning for Disconnect Function

13 0 = Do n~t send EOF character before disconnect
I = Send EOF character before disconnecting

14 0 = Abort outstanding requests
I = Wait until outstanding requests complete before

disconnecting

15 0 = Hang up the phone
I = Do not hang up the phone

Read Function
,.

The following paragraphs describe the options an application
can specify with a read order. Note that these read order
attributes supplement those defined by the AXD mode chosen in the
connect order.

ECHO

If this option is specified, received data is echoed or
"reflected" back to the transmitter. In TERMINAL mode, only the
data characters are echoed. The other AXD modes echo all data
and control characters received for verification purposes. If
the echo option is not specified, no echo is performed.

LINE FEED

If this option is selected, a line feed is sent to the
terminal upon completion of a read order. If this option is not
selected, no post order line feed is sent. This option is
available in TERMINAL mode only.

CARRIAGE RETURN

If this option is selected, a carriage return is sent to the
terminal upon completion of a read order. If this option is not

8-76
09/86
CZ05-02A

selected, no post order carriage return is sent. This option is
available in TERMINAL mode only.

Read IORB (AXD Mode)

An application specifies the read options by setting bits in
the I DVS word of the read IORB. Table 8~3l gives the individual
signiIicance of these bits. All other bit$ must be zero.

write Function

All AXD modes process writes the same way, except that in RAW I
mode, writes cannot be suspended with an X-OFF. Write order
attributes are determined by the write IORB. The following
options are specified in the write IORB.

EDITED WRITE

If the edited option is specified, all control characters
found in the output buffer are sent out preceeded by a DLE
character. The following are considered control characters on an
edited write: DCI (hex 11), DC3 (hex 13), DLE (hex 10), ESC (hex
IB) PAD (value is configurable), END-OF-RECORD (value is
configurable), END-OF-FILE (value is configurab1e), CHARACTER
DELETE (value is configurable), and LINE-CANCEL (value is
configurable)

CONTROL BYTE PROCESSING

If specified, the byte option indicates that the
first byte in the output buffer is to be used for pre-order
control" A control byte must be included in the range (I RNG) of
data to be transmitted$ For a detailed description of thIs
option including control byte format, see "Control Byte
proces~in9% earlier in this sectiono

SUPPRESS TRAILING BLANKS

If this option is specified, space characters (hex 20) found
between the last non-space and end of range, are not sent.

Bit
Number

10 0
1

11 0
1

12 0
1

Table 8-31. I DVS Word in Read lORB (AXD Mode)

:::

:::

:::

:::

:::

:::

Meaning for Read Function

Do not echo input
Echo input

Do not send post-order line feed
Send post-order line feed (TERMINAL mode)

Send post-order carriage return (TERMINAL
Do not send post-order carriage return

8-77

Mode)

09/86
CZ05-02A

I

UNBREAKABLE WRITE

If this option is specified, a break signal cannot interrupt
the execution of the write order. If a break occurs during an
lIunbreakable write ll , the order runs to normal completion but the
next write is automaticaly posted back with break status unless
it too is an lIunbreakable write. 1I If this option is not
selected, a break signal can be used to prematurely terminate an
active write order.

LINE FEED

If this option is specified, a line feed is sent after the
completion of the write order.

END OF RECORD

If this option is specified, an end of record character is
sent after the completion of the write order.

END OF FILE

If this option is specified, an end of file character is sent
after the completion of the write order.

write IORB (AXD Mode)

An application specifies the write options by setting bits in
the I DVS word of the write IORB. Table 8-32 gives the
signi7icance of these bits. All other bits must be zero.

Control Characters

Control characters cause special actions to occur when
received in the input data stream. Each mode ofAXD supports a
different subset of control characters. A control character not
supported in a particular mode is taken as data. The AXD control
characters are as follows:

Control
Character

X-OFF
X-ON
End of Record
End of File
Pad
Hide
Char-Delete
Line-Cancel

Default Value

DC3 (hex 13)
DCl (hex 11)
CR (hex 00)
FS (hex lC)
DEL (hex 7F)
DLE (hex 10)
ESC,D (hex lB44)
ESC,K (hex lB4B)

Supporting AXD Mode

TERMINAL, FILETRAN, PRINTER
TERMINAL, FILETRAN, PRINTER
TERMINAL, FILETRAN
PRINTER, FILETRAN
TERMINAL, FILETRAN
TERMINAL, F ILETRAN
TERMINAL
TERMINAL

I All control character values except X-ON, X-OFF, and Hide can
be changed by using the STTY command.

8-78
09/86
CZOS-02A

Table 8-32. I DVS Word in Write IORB (AXD Mode)

Bit
Number Meaning for Write Function

2 0 = Do not edit this write
1 = Edited write: Preceed contol chars with DLE

3 0 = Do not send post-order EOF
1 = Send post order EOF

4 0 = First byte is pre-order control byte
1 = First byte is data

6 0 = Do not supress trailing blanks
1 = Supress trailing blanks

7 0 = Allow write to be broken with break key
1 = Defer break to next write

11 0 = Do not send post-order line feed
1 = Send post-order line feed

12 0 = Send post-order end-of-record character
1 = Do not send post-order end-of-record character

The following paragraphs describe each of the control
character functions:

X-OFF

When AXD receives an X-OFF character, it suspends output I
until an X-ON character is received.

X-ON -
When AXD receives an X-ON character, output is allowed to I

begin/resume.

End of Record

When AXD receives an end-of-record character, the current
read IORB is terminated and posted back to the application with a
normal return status of zero and a non-zero residual range status
in I ST1.

End of File

When AXD receives an end-of-file character, all outstanding
read orders are terminated and posted back to the application
with end of file status (OF), and non-zero residual range status
in I_ST1.

8-79
09/86
CZOS-02A

Pad

When AXD receives a pad character, it is simply discarded
(i.e., it is not stored in the application's input buffer). No
other action is taken.

Hide

When AXD receives a hide character, it is recognized as a
hide character and then discarded. The next character received
is stored in the application's input buffer, regardless of that
character's possible control meaning (i.e. it is treated as
data). In TERMINAL mode, a backslash character (\) is echoed to
the terminal to indicate the next key typed will be taken as
data.

Character-Delete

I Receiving the character delete sequence causes AXD to send a
backspace/space/backspace sequence to erase from the screen the
character last entered.

Line-Cancel

If the configured line-cancel code is not a two-character
sequence beginning with hex IB (i.e., if it is a single
character), AXD displays on the terminal *DEL* and puts the I cursor on a new line. Otherwise, AXD sends the exact IBxx
sequence it received to erase the line and put the cursor back to
the leftmost position. In either case, AXD reissues the read
order, using the original buffer and range. AXD does not issue I the *DEL* sequence on systems with MLCP communications
controllers.

I

Escape Sequence Processing

AXD supports escape sequences in TERMINAL mode only. An
escape sequence is a string of one to seven characters starting
with hex lB. The only escape sequences AXD recognizes as its own
are LINE-CANCEL and CHARACTER DELETE. Anything else is
considered a user escape sequence and is processed as follows.
The IB and next immediate character are stored in the
application's input buffer and the read is terminated. The
remainder of the sequence (up to 7 characters), is saved in AXD'S
reserve buffer until the application can put up a read of
sufficient length to capture the rest.

Timeout Processing

When a read or write order times-out, that order and all
other outstanding I/O orders are posted back to the application
with timeout status (06).

8-80
09/86
CZOS-02A

READ TIME OUTS

In FILETRAN mode,and RAW mode, the timeout timer is started
when the read order is issued. A timeout occurs if the read does
not complete in time. The default timeout value for read orders
is five minutes but can be changed with the TIMEOUT CLM directive I
(see the System Building and Administration manual). There is no
timeout on read orders in TERMINAL mode and PRINTER mode.

WRITE TIME OUTS

In all AXD modes, a timeout timer begins when a write order
is issued. The default timeout value for write orders is thirty
seconds. The timeout can be changed using. the TIMEOUT CLM
directive.

Error Processing

When a parity, frame, or receive-overrun error is detected,
an ASCII SUB character (hex lA) is stored in place of the
received character that was in error. The read is allowed to run
to a normal completion, but is posted with a hardware error (07)
status; I ST identifies which error occurred. Table 8-33 shows
the meaning of the status bits in I ST.

Data Loss

Data loss can occur on receive if the sender ignores an X-OFF
from AXD and continues to send beyond AXD's reserve buffer
capacity (seven characters). The next read order will take on
the saved characters and complete as normal, but will be posted
with a hardware error (07) status, and I ST will have bit 8 on,
indicating that data loss has occurred. -In TERMINAL mode, data
loss is indicated with a Bell signal, not a hardware error.

Break Processing

A break is initiated when a terminal's BREAK (BRK) key is
pressed, or when certain devices are put off-line or powered
off. The BREAK key can be changed by using the STTY command.
AXD detects and reports break only when there is a read or write
order running at the time of the break. AXD break processing is
described under nBreak Processing by ATD LPH", earlier in this
section.

Hardware Requirements

AXD requires a full-duplex communication line with an RS-232
or RS-422 interface. The line can be direct connect or through a
modem. The maximum data transfer rate is 9600 bits per second.

8-81
09/86
CZ05-02A

I

I
"

*

Table 8-33. Status Word ofAXD tORB (I_ST)

I ST
BIt Meaning When Bit Set to 1

o N/A

1 I/O order complete

2 Data service rate error (receive overrun)

3 Status complete

4 Communication control block service error

5-7 Cause of termination:

8

9

101 ., Break
100 = End of file
011 = Line canceled
010 = Character deleted
001 = Timeout

Receive buffer overflow -- data lost

Parity error

A Nonzero residual range (read only)

B Data set status change

C Corrected memory error

D N/A

E N/A

F Fatal error

• Unrecoverable memory error
• Bus parity error
• Nonexistent resource error

8-82
09/86
CZOS-02A

AXD Operational Modes

AXD offers a choice of operational modes to accommodate I
different applications. Table 8-34 is a quick reference guide to
the key features and control characters each mode supports. In
the table, a "YES" means that the control character is supported
in that mode. A.nNO" means the control character is treated as
data when received. While operating in AXD mode:

• All AXD modes support both reads and writes per connect
(bi-directional I/O). For example, PRINTER mode can do
reads and RAW mode can do writes.

• All AXD modes process write orders the same way. What I
differentiates theAXD modes is the way reads are
processed.

• All AXD modes except RAW provide flow control in both
directions. On incoming data, AXD always tries to stop
the sender with an X-OFF when there is no read buffer
available. When sending (except in RAW mode), AXD I
suspends transmission upon recipt of an X-OFF from the
receiver.

Table 8-34. AXD Modes and Features

Feature/ Mode
Control
Character TERMINAL FILETRAN

File Transfer RECEIVE/
Functionality TRANSMIT TRANSMIT

Character-Delete YES NO

Line-cancel YES NO

Bide YES YES

Pad YES YES

End-of-Record YES YES

End-of-File NO YES

Escape Sequences YES NO

Break YES YES

8-83

RAW

RECEIVE

NO

NO

NO

NO

NO

NO

NO

YES

PRINTER

TRANSMIT

NO

NO

NO

NO

NO

YES

NO

YES

09/86
CZOS-02A

I

The following paragraphs describe the uses of the AXD modes.

TERMINAL Mode

TERMINAL mode is for use with interactive applications such
as the Command Processor running on a TTY-compatible device. To
aid in data entry operations on the terminal, this mode supports
escape sequences and the operator function keys Character-Cancel,
Line-Delete, Input-Terminator, Hide, and Break.

TERMINAL mode looks to the user much like the TTY mode of
ATD. One difference, however, is the acceptance (without echo)
of up to seven typed characters when there is no read for the
terminal. After seven characters have been accepted, subsequent
keystrokes receive the Bell signal. Saved characters are
ultimately displayed when a read order is issued. Unlike ATD,
the TERMINAL mode ofAXD has no timeout on terminal read orders.

On most terminals, the user can stop and restart output to
the screen by typing X-ON and X-OFF characters as follows:

X-ON = Control-O, X-OFF = Control-S.

FILETRAN Mode

I FILETRAN mode is the recommended mode for rece1v1ng data
non-transparently from a device or another system using AXD. In
this mode, the ECHO feature can optionally be used to validate to
the sending application that data was received correctly.

PRINTER Mode

PRINTER mode is used to send files to a device which supports
X-ON/X-OFF. AXD does not provide for the detection of device
conditions such as off-line or paper-out. The application must
provide reads for such status. Read orders in PRINTER mode
terminate upon receiving an end-of-file character or at end of
range. (The end-of-file character can be configured to be any
character).

RAW Mode

I RAW mode is used to receive data transparently from a device
or another system using AXD. Everything received is put into the
application's input buffer. No control character checking is
done. Read orders in this mode terminate at end of range only. I RAW mode should not be used to write to a device that could send
X-ON (DCI) and X-OFF (DC3), as they would be taken as data.

8-84
09/86
CZOS-02A

Section 9
SYNCHRONOUS TERMINAL

DRlVERLlNE
PROTOCOL HANDLER

The Synchronous Terminal Driver (STD) line protocol handler
(LPB) supports synchronous polled terminals, asynchronous
receive-only printers (ROPs), and the PVE host link. I

The basic VIP consists of a cathode ray tube (CRT)
screen and keyboard, with a synchronous communications
Its operating speeds are as follows:

Device Type Peripheral Baud Rate

VIP7700 ROP 2000 to 4800
VIP7700R/VIP7705R ROP 2000 to 9600
VIP7 80 4/VIP7 805 ROP 2000 ,to 9600
VIP7760 ROP, DSK 4800 to 9606
VIP7740 ROP, DSK 9600
VIP7710 ROP 9600
VIP7 8l4/VIP7 815 ROP/ASPI 2400 to 9600
VIP7 8l6/VIP7 817 ROP/ASPI 2400 to 9600
VIP7 82 4/VIP7 825 ROP/ASPI 2400 to 9600
VIP7 826/VIP7 827 ROP/ASPI 2400 to 9600
'l'WU190l 4800 to 9600

Receive-Only Printers

PROl003 PR0190l TNJOO
PRO 1 00 5 TN1200

display
interface.

The PVE host link is operated at baud rates between 1200 and I
19200.

9-1 CZ05-02

GENERAL STD LINE PROTOCOL HANDLER OPERATION

Software Functional Support for the VIP

The following STD line protocol handler software functions
support the basic VIP terminal:

• Poll and select communications procedures

• Poll line control

- Poll list
- Poll interval
- Pell list stall interval

I • Self configuration support for CRT devices

• Multipoint configuration support

I

• Switched and private line operation

• Auto-answer for switched network operation

• Modem, direct connect, and modem bypass interconnection
modes

• 7-bit and 8-bit data support with appropriate algorithms
for 8-bit data transmission on a 7-bit channel

• Message/block transfer to and from a CRT

• Master LRN processing

• Fully addressable CRT entry marker control

• Pre-editing (control byte) and post-editing (I_DVS)

• Transfer of hardware function code to and from the
application

• Long Q frame

I • Inactivity timeout

• Error recovery procedures

I • Break processing (VIP7800 series only)

• Synchronous modem support for baud rates of less than 2000

• Half-duplex line function

• 2/4 wire line function.

9-2 CZ05-02

The following functions support added terminal options:

• User-controlled CRT forms mode

• Message/block transfer to receive-only printer (ROP)

• User-controlled storage and retrieval of forms on the
diskette (7740 and 7760 only).

User-Supplied Software Functions for VIP Support

The application program must supply the following functions
to support data exchange between the terminal and the
application:

• User-specified device arguments (polling interval and, at
system building, station addresses and device type) •

• If the VIP is self-configuring, an asterisk (*) replaces I
the device type argument.

For messages to the VIP terminal, the application should provide:

• Optional: hardware function codes (1, 2 for all VIP except
7800 series, which only uses 1) I

• Complete message text, including all required format
control characters

• Optional: pre-editing and post-editing characters within
message text

• Mandatory: complete forms definition message text for
forms mode.

For messages received from the VIP terminal, the application must
provide:

• Interpretation of hardware function codes (1, 2 for all
except VIP7800 series, which only uses 1) I

• Message proceSSing (complete message or block, withpos
sible use of master LRN with either)

• Interpretation of format codes (LF, CR, BT, VT) in the
message text.

STD Request Response Time

Table 9-1 shows how to calculate the request response times
needed by the line protocol handler for the connect, read, and
write functions for the listed devices.

9-3 CZ05-02

I

Table 9-1. STD Line Protocol Handler Response Time

Function

connect

Read or
Write

Response Time

5-minute timeout

The equation to calculate the time
required to send/receive a message
to/from the CRT is:

MIC = T

where:

M = Message size (range)
C = Number of characters per second

(line speed). Possible values
for C:

T =

150 = 1200 baud
225 = 1800 baud
250 = 2000 baud
300 = 2400 baud
600 = 4800 baud

1200 = 9600 baud
2400 = 19.2 kilo baud

Timeout value in seconds

NOTE

If M is less than or equal to C,
then T = 2.

The equation to calculate the time
required to send/receive a message
to/from the ROP attached to a CRT is:

T + (M/R) = V

where:

T = CRT timeout value (from above)
M = Message size (range)
R = ROP transmit rate. Possible

values for R:
10 = 100 baud
30 = 300 baud

120 = 1200 baud
V = Total timeout value in seconds

9-4

Device

Communications
supervisor

All devices

ROPs attached
to VIPs

CZ05-02

USING THE STD LINE PROTOCOL HANDLER

STD-Specific lORB Values

The VIP-specific input/output request block (IORB) item
I CT2, device specific word I DVS, and software status word I ST
are shown in Tables 9-2, 9-3,-and 9-4, respectively. Bits not
explicitly described in the tables must be O. Section 4
describes the general form of the IORB.

Table 9-2. Function Codes in I CT2 of the IORB

Function
Code Definition Use

I Write Used by the line protocol handler to com-
plete the description of the requested I/O

2 Read function.

A Connect

B Disconnect

Table 9-3. STD Device-Specific Word I DVS in the IORB

Bit
Number Meaning of Bit Setting

For connect call only (function code A) •

o 0 = No meaning

2

I = Terminal-generated block mode

o = Do not use Auto Call Unit
I = Use Auto Call Unit

3 0 = Set cursor to home position on page overflow (write
request). (Not applicable to VIP7800 series.) I

I = Do not set cursor to home position on page overflow
(write request). (Not applicable to VIP7800 series.) I

4 0 = Control word specified (read/write request).
I = No control word specified (read/write request).

9-5 CZ05-02

I

I

Table 9-3 (cont). STD Device-Specific Word I DVS in the lORB

Bit
Number Meaning of Bit Setting

S, 6,
and 7

8

9

A

B

c

Logical poll interval (read request, polled lines only):
000 = Poll continuously

0
1

0
1

001 = I-second poll interval
010 = 2-second poll interval
011 = 3-second poll interval
100 = 4-second poll interval
101 ~ 5-second poll interval
110 = IS-second poll interval
111 = 30-second poll interval

= No space suppress (VIP7800 series only)
= Space suppress (VI~7800 series only)

= Roll (VIP7800 series only)
= No roll (VIP7800 series only)

For ROP attached to VlP7700, VIP7700R, and VIP7760:
0 = lSO/PRT ROP address.
1 = ISO/NUL ROP address.

o = Hardware function codes are not specified (write
request) •

1 = Hardware function codes are specified (write
request). (Not allowable for VIP7800 series.)

o = Do no timeout, use logical poll interval (read
request) •

1 = Timeout immediately (read request).

o = Return key equals transmit (VIP7800 series only) •
1 = Return key equals normal (VIP7800 series only) •

For write call only (function code 1)

o 0 = No meaning
1 = Abort write IORB subfunction

3 0 = No preemptive write
1 = Preemptive write

4 0 = Include control byte
1 = Do not include control byte

S Rese~ed for system use (must be zero)

6 Reserved for system use

9-6 CZOS-02

Table 9-3 (cont). STD Device-Specific Word I OVS in the IORB

Bit
Number Meaning of Bit setting

8 0 ::: No meaning

9

A

B

C

1 ::: If bit 9 ::: one, supervisory write with reset;
otherwise, no meaning_

o ::: Normal message
1 ::: Supervisory message, if no roll on connect.

RFU

o ::: No line feed at end of message
1 ::: Line feed at end of message

o ::: Carriage return at end of message.
1 ::: No carriage return at end of message.

D, E,
and F

Number of copies to be printed (VIP7800 series only) :
000 ::: 1 copy
001 ::: 2 copies
010 ::: 3 copies
011 := 4 copies
100 ::: 5 copies
101 :::: 6 copies
110 :::: 7 copies
III .- S copies

For read call only (function code 2)

o 0 = No meaning
1 :: Abort read lORS subfunction

2 0 :: No meaning
1 ::::: ESC B Diskette request

9 0 ::: Normal message
1 ::: Supervisory message, if no roll on connect.

For disconnect call only (function code B)

I 0 ::: No meaning
1 ::: Send OLE EDT (VIP7800 series only)

EO::: Purge outstanding requests and disconnect
immediately.

I ::: Wait until all requests are complete before
disconnecting.

F 0 ::: Hang up phone after disconnect.
I ::: Maintain phone connection after disconnect.

9-7 CZOS-02

I

I

Table 9-4. STD Software status Word I_ST in the IORB

Contents
Bit of $Rl

1
2
6
7
8
E
7
8
D
F
o
2
7
8
9
B
3
E

o
o
o
o
o
104
106
107
107
107
lOB
lOB
lOB
lOB
lOB
lOB
lOB
lOB

Meaning When Bit is set to 1

ETB received
Data service error (transmit)
Long record received (receive)
Illegal character (transmit)
Sequence error (receive)
Range error
Read timeout
NAK limit reached
Page overflow
Busy
Abort
Data service error (receive)
Illegal character (receive)
Poll failure/sequence error
Excessive checksum/parity errors (receive)
Phone hang up
Read timeout
Not available

STD Self Configuration

The device type can be defined as self-configuring by using
an asterisk (*) as the device type argument of the STD directive
at configuration time. In this way, the STD line protocol
handler will configure the device when the first connect is
recieved for the device. Self-configuration is performed by
sending an ENe command to the device and setting the
configuration based on the response. The response may be the
device name in the case of VIP7800 series devices or a Q-frame
for VIP7700 series devices. If an unknown resonse is made, the
device is configured as a VIP7700. If the device doesn't
respond, the ENQ command is tried 3 more times. If the device
doesn't respond at the end of the fourth try, the connect is
returned to the user with the device status being unavailable.

STD Polling Options

polling (the line protocol handler's request to the VIP ter
minal on a polled line for data) is subject to four kinds of con
trol: two specified at. system build, and two specified at con
nect time. The former consists of the poll lists and poll list
stall, while the latter are the poll interval and poll duration.

The application, at connect time, is required to specify the
arguments for the poll interval and poll duration, by setting the
appropriate bits in the IORB's device-specific word I DVS
(Table 9-3).

9-8 CZ05-02

STD POLL LIST

The poll list specifies the station addresses to be used in
the polling sequence. Multiple occurrences of a particular
address may be used to increase the polling frequency of that
address. The list is defined at system build (see the System
Building and Administration manual) •

STD POLL LIST STALL

Poll list stall is the delay interval, in seconds, between
poll list cycles. This delay is specified at system build (see
the Building and Administration manual.

STD POLL INTERVAL

The poll interval specifies the m1n1mum period of time
between each successive request (poll) by the line protocol
handler for data from a VIP terminal. The line protocol handler
will poll the VIP once for each read request, and when the
request is not satisfied, again after the specified poll period
elapses.

For example, with a I-second poll interval, the line protocol
handler will issue the same read request every second. For a
zero poll interval, the line protocol handler will poll the VIP
terminal continuously.

The application specifies the poll interval according to the
bit settings of bits 5, 6, and 7 in the device-specific word
I DVS of the IORS, as listed in Table 9-3.

STD POLL DURATION (TIMEOUT)

Poll duration, or the timeout interval, is the maximum time
that the line protocol handler will wait for polled data from the
VIP, before discontinuing the read attempt and read request. The
possible timeout intervals are immediate (i.e., after only one
poll) and indefinite (i.e., until requested data is received).
The application specifies the poll duration or timeout interval
with the bits 5, 6,7, and C in the connect device-specific word
I_DVS, according to the bit values shown in Table 9-3.

STD LINE PROTOCOL HANDLER POLL FUNCTIONS

Within the parameters specified in the poll argument values
by the application, the line protocol handler provides all
necessary polling functions (e.g., how terminals share a common
line, or which terminal is processed next based on the poll
list).

When the application bypasses these line protocol handler
poll functions (i.e., by specifying immediate timeout after only
one poll), the application must then provide for proper operation
and coordination among all terminals on the line.

9-9 CZ05-02

I When the application is to issue to the terminal (VIP7800
series) writes containing TXA or TXD escape sequences, the u'ser
should first issue an asynchronous read. The use of immediate

I

timeouts on reads in this case could cause the read to be issued
and posted before the write is queued and issued, resulting in a
loss of data from the TXA or TXD command.

Polling is defined as the actual read, not the reading of the
poll list. Polling itself does not commence unless a read has
been queued. Only those stations on the poll list which have
reads queued will be polled.

Control and Characterisitcs of STD Input (Keyboard/Screen)

STD INPUT MESSAGE HEADER

The line protocol handler strips the message header from the
input data, except for the hardware function codes, and does not
include the header in the application's buffer.

STD HARDWARE FUNCTION CODES

STD hardware function
hardware device manuals.
labeling capability to be
capability does not apply

codes are listed in the appropriate
These codes provide a special message
used by the application. This
to the VIP7800 series.

The application can include two function codes in the message
header of each text message to or from a terminal by setting at
connect time the following in the IORB: (1) set to 1, bit B of
the device-specific word I DVS (see Table 9-3); and (2) set to 1,
bit B (extension bit) of I-CT2 to specify that the IORB is
extended (see Figure 4-2 and Table 4-ll). The line protocol
handler then inserts the two user-specified hardware function
codes at read time into the IORB's I FCS word.

I The VIP7800 series has only one hardware function code that
may be used by the application program. This function code
appears as a two-character escape sequence in the data buffer.
See the hard- ware manual.

STD INPUT DATA

The line protocol handler places into the application's
buffer all data, between the STX and ETX!ETB control characters,
received from the VIP terminal or the PVE link. In 7-bit data
mode, data is inserted into the buffer in 7-bit ASCII, with the
most significant bit always zero. In 8-bit data mode, data is
inserted into the buffer in 8-bit ASCII. In 7- bit mode, the LPH
strips the ETX/ETB and LRC (longitudinal redundancy check
character, see -Line Protocol Handler Functions,- earlier) from
the data and does not include them in the buffer. In 8- bit
mode, the LPH strips the CRC16 (cycle redundancy check character)
from the data and does not include it in the buffer.

9-10 CZ05-02

Control and Characteristics of STD Output

This sUbsection pertains to VIP output and is applicabl~ to
the keyboard, display screen, or receive-only printer (ROP) as
indicated.

STD OUTPUT MESSAGE HEADER

The STD line protocol handler supplies the output message
header, but not the hardware fUnction codes. Those for all but
the VIP7800 series may be supplied by the application as I
described above under "STD Hardware Function Codes."

At write time, when the hardware codes are specified, they
arJa placed in the I FCS word of the IORB. To write function
codes to the VIP7700 hardware, the application program must, at
connect time, set bit B (extension bit) of the lORB's 1 CT2 word
to 1, to specify that the lORB is extended. When they are not
specif ied (i. e., bit 8 of I DVS set to 0 at connect time), the
line protocol handler will Insert two spaces, instead of function
codes 1 and 2, into the 1 FCS word (see Figure 4-2 and Table
4-11) •

CONTROL BYTE (SEND)

The control byte provides editing control (CR, LF, FF) for
both Raps and CRTs, as described later in this section.

STD OUTPUT DATA

In 7-bit data mode, the applicationis output data must be I
7-bit ASCII (the eighth bit ignored)@ In a-bit data mode, the
applicationis output data must be 8-bit ASCII. Any ASCII control
characters, if included in the application's data, are not
transmitted,.

STD KEYBOARD/SCREEN OUTPUT EDITING CONTROL

The line protocol handler sends LF and CR editing characters
for VIP keyboard/screen devices according to the values of the
B- and C-bits of the device-specifi~ word I DVS (Table 9-3). The
application specifies these bit values at write time to send the
CR and LF characters, as follows:

I DVS Bits Editing
Characters

B C Sent

0 0 CR
0 1 None
1 0 LF, CR
1 1 LF

9-11 CZOS-02

I

I

STDRECEIVE-ONLY PRINTER EDITING SEQUENCE

The line protocol handler sends an output editing character
sequence for the receive-only printer (ROP) according to the
control byte supplied, the values of the B- and C-bits of the
device-specific word I DVS (Table 9-3), and the VIP type to which
it is attached. The application specifies these bit values at
write time to send the ROP output editing sequence, according to
the ROP type and the VIP type to which it is attached; as shown
in Table 9-5.

STD RECEIVE-ONLY PRINTER CONTROL SEQUENCE

The STD line protocol handler sends an output control
sequence according to the ROP type and the VIP type to which it
is attached as shown in Table 9-6.

Table 9-5. STD Receive-Only Printer Editing Sequence

Attached ROP I DVS Bits Output Editing
CRT Type Type B C Sequence

All All 0 0 CR

All All 0 1 None

VIP7700, 7700R, TN1200, PRUI005 1 0 LF, CR, 36 DELs
7760 ~ VTS7710,
7740

VIP7700, 7700R, TN300, PRUI003 1 0 LF, CR, 9 DELs
7760; VTS7710,
7740

VIP7800 series TN300, TN1200, 1 0 LF, CR
PRUI003, PRUI005

VIP7700, 770 OR, TN1200, PRUI005 1 1 LF, 36 DELs
7760; VTS7740
7710

VIP7700, 7700R, TN300, PRUI003 1 1 LF, 9 DELs
7760 ~ VTS77 40,
7710

VIP7800 series TN300, TN1200, 1 1 LF
PRUI003, PRUI005

TWU1901 1 0 LF, CR

9-12 CZ05-02

Table 9-6. STD Receive-Only Printer Control Sequence

Attached ROP Form Output Editing
CRT Type Type Feed ZZZZ Sequence

VIP7800 series All x FF

TWU1901 x FF

VIP7700, 7700R, TN300, x FF, 65 DELs
77601 VTS7740, 7710 PRUI003

VIP7700, 7700R, TN1200,
77601 VTS7740, 7710 PRUI005

x FF, 250 DELs

VIP7800 series None x CLR

VIP7700, 7700R, None x FF, DEL
77601 VTS7740, 7710

VIP7800 series All x LF, CR

VIP7700, 7700R, TN300, x LF, CR, 9 DELs
7760; VTS7740, 7710 PRUI003

VIP7700, 7700R, TN1200,
7760 i VTS7740, 7710 PRUI005

x LF, CR r 36 DELs

All None x LF, CR

NOTES

1. Form feed (FF) is specified by bit 3 of the
control byte.

2. ZZZZ represents the number of times an output
editing sequence is performed and is specified
by bits 4 through 7 of the control byte.

3. CLR clears all data attributes, moves the
cursor to home position, and puts the terminal
in text mode.

9-13 CZ05-02

I

I

I

I PRINTER ESCAPE SEQUENCE FOR VIP7800 SERIES

For the VIP7800 series VIP, the STD LPH transmits the
following printer escape sequence before the first data message:

lB sB 33 70 (PHLF)

and transmits the following printer escape sequence after the
last data message:

lB sB 3C 70 (PEOM)

Receive-Onl2'. Printer .S!1Pport

Receive-only printer support by the STD LPH falls into three
categories:

I • VIP7800 series attached ROP support
• VIP7700, 7700R, and 7760 attached ROP support
• PRU 1901 support.

I For the VIP7800 series attached ROPs, the STD inserts the
start of message printer escape sequence (print host with local
fill (PHLF» before the first text message and appends the start
print escape sequence (printer end of message (PEOM» to the last
text message. The application may supply the CR, LF, or FF char
acters minus the time fill characters in the text buffer, or may
instruct the STD LPH to supply the CR,- LF, or FFcharacters via
the control byte or IORB device-specific word. Upon receipt of

I the CR, LF, or FF character, the VIP7800 series printer adapter
supplies the required time fill characters. For HT or VT, the
application must supply the HT or VT character and required time
fill characters in the text buffer. In this mode an extended
print buffer of 132 print positions is available, as well as the
option to have all text transparent. Use of any of the options

I provided by the VIP7800 series printer adapter (e.g., copies
option) requires the application to supply the appropriate escape
sequence in the text buffer.

For the VIP7700, 7700R, and 7760 attached ROPs, the STD LPH
supports the transparent (150 PRT) and nontransparent (150 NUL)
print modes based on the setting of I DVS bit A of the ROP con-
nect IORB. -

• Transparent mode: Allows the user to supply the CR, LF,
or FF characters and timing fill characters in the text
buffer, or instruct the STD to insert them. An extended
print buffer of 132 print positions is also available in
this mode.

• Nontransparent mode: The user need not include the CR or
LF characters in the text buffer. The message received by
the terminal is interpreted in the display format (80
print positions), and the necessary CR and LF characters
are supplied by the terminal.

9-14 CZOS-02

VIP7800 Series Support

While certain operations of the VIP7800 series terminals are
configurab1e by the application (e.g., roll, space suppress) via
the connect IORS, the STD LPB imposes the following operational
modes in order to ensure proper terminal operation:

• Block transmit auto: Successive blocks will be sent by
the terminal, each time the terminal is polled, until the
last block has .been transmitted.

• Verify before process: The terminal normally operates in
verify before process mode. In this mode, the terminal
does not process the data unless the Bee indicates that no
errors have occured. The transmitted data is restricted
to 1024 characters, including all text plus the control
characters eR, LF, FF, and DEL, supplied by both the
application and the STD LPB.

• Process before verify: The user wishing to use blocks

I

larger than 1024 characters must, at configuration time, I
specify PB after the 7800 series device type. In this
mode, the terminal displays characters as it receives
them, without protecting the integrity of the screen.

VIP7826 Support

The VIP7826 terminal is a dual mode terminal that provides a
bridge from the VIP7700 family to the VIP7800 series terminals.
The two modes are switch as well as command selectable. STD will
send a special escape sequence to set the device to operate in
the mode specified at configuration time.

Inactivity Time Support

If inactivity time is specified at configuration time
(timeout value) for an STD channel, the timeout value is set for
all stations connected to the channel. Inactivity time is the
time when no read, writes, connects, or disconnects are being
processed for a particular station. After reaching the timeout
value specified at configuration time, any previous action is
purged, .an error message is displayed, and the station is
disconnected.

TWU1901 Suppor t·

The TWU1901 is a synchronous, polled, hard-copy device with a
keyboard. It should be configured as a CRT; the LPB will handle
the addressing (150 PRT; 150 NUL).

9-15 eZ05-02

Master LRN Processing

Master LRN processing enables one receive buffer to service
up to a maximum of 32 terminals on a multi-dropped line. This
technique drastically reduces the number of receive buffers
required to support a multi-dropped environment. It is applica
ble only to read requests, and is supported through the
user-supplied control word (described below).

This feature is used. most effectively when the application
issues two or more asynchronous read requests, each specifying
different buffers. The issuance of multiple read requests allows
the application to process received data while the STD LPH polls
anoth~r terminal for data. However, use of the master LRN fea
ture does not guarantee that all terminals associated with the
master LRN are accessed sequentially, since STD does not poll for
data unless a read request has been queued. When data has been
received in this mode, STD returns the LRN, for which data was
received, in the right half-byte (RHB) of the user-supplied con
trol word. The application can then determine which terminal
requires a response.

Sub-LRN Support

The ROP and diskette can be accessed only by sub-LRN. Access
to ROPs is handled by the File System, assuming that the appro
priate ROP and STDLN CLM directives are entered at configuration
time. To access the ROP at the physical I/O level, the
application must set the sub-LRN in field I ST to 1. If an error
is returned and the same IORB re-issued, the sub-LRN must be
reset, because STD might have returned a status in I ST when
posting the IORB, overwriting the original sub-LRN. -

Block Mode Processing

Block mode processing is the transmission or reception of
small data blocks, which are components of a large message. It
conserves buffer space, conserves total message transmission time
in the presence of errors, and reduces line errors. This mode,
applicable to the VIP7760, CTS7600, and VIP7804, is supported
through the user-supplied control word.

In block mode transmit processing (ETB), a large message is
transmitted in small blocks of data. The application is respon
sible for issuing an individual write request for each of these
blocks. In block mode receive processing (ETB) , the terminal,
when polled, sends blocks of data until the last block is trans
mitted. The application, in this instance, is responsible for
issuing the read request needed to initiate the transmission.

When I DVS for the connect request specifies nterminal
generated block moden, the application must set the IORB range
(RB RA) to the size of the block expected. For the VIP7804, the
RB RA values are 20-2704 (i.e., 32-9999 decimal). For the
VIP7700, 7700R, and 7760, the RB RA value is FF (256 decimal).

9-16 CZ05-02

Control Word

Master LRN and block mode processing require an additional
word at the beginning of the data buffer. The connect request
specifies control word utilization, and the IORB buffer address
(RB ADR) contains the address of the control word. If master LRN
processing is desired, the right half-byte (RHB) of the control
word must be set to the LRN which was designated as the master.
If master LRN processing is not desired, the application must set
the RHB of the control word to zero (0) (see Figure 9-1).

Block mode processing requires that the application include
the control word in the IORB range (RB RA) of the read/write
request. The IORB buffer address (RB ADR) must contain the
address of the control word. On write requests, if the data to
be sent is a block (ETB) , the application must set bit 3 of the
control word. If the data to be sent is an entire message or the
last block of a message, the application must set bit 3 of the
control word to zero. On read requests, if the received message
was terminated with ETB, the STD LPH sets bit 3 of the control
word to 1. If the received message terminated with ETX, the STD
sets bit 3 of the control word to zero. The use of the control
word does not preclude the use of the control byte for printer
editing. If the control word is used with the control byte, the
control word precedes the control byte in the buffer.

Control Byte

The control byte provides editing control (CR, LF, FF) for
both ROPs and CRTs. This control is effected by setting bit 4 of
the write IORB, which causes STD to treat the first character
(third if control wo,rd is specified) of the data as the control
byte. The control type is examined by the STD and, according to
the bit settings, the STD transmits the appropriate characters
before the data. The control byte format is shown in Figure 9-2e

o 2 3 4 5 6 7 8 9 10 11 12. 13 14 15

I lEI ININININININININI

E • 0

MESSAGE TERMINATEOITERMINATES WITH ETX

E • 1

MESSAGE TERMINATEOITERMINATES WITH ETS

NNNNNNNN • 0

NO MASTER LRN (CONNECT REQUESTJ

NNNNNNNN • .ny

LRN OF RECfPIENT IRECEIVE REQUESTII
MASTER loRN (CONNECT REQUEST)

Figure 9-1. Control Word

9-17 CZOS-02

I

I

01234117

I RltlOI VlzlzlZI Zl

R
AHEAVED !HOT EXAMIPlIEDI

v-o
DO NOT ISSUE FOAM FEED SEQUENCE

Y-1
ISSUE FORM FEED SEOUENCI

ZZZZ
itUMiiifi or UNU TO $KiP; lI_flORE I'RINTING IBIN~AY)
(E.G.. IF uzz.0100..STD LPH WILL peRFORM
4 FF SEQUENCES)

Figure 9-2. Control Byte

Output Data and Invalid Characters

The data must be 7-bit ASCII (the eighth bit is ignored).
The ASCII control characters SOH (01), STX (02), and ETX (03),
are not transmitted if included in the data. Instead, an SYN
(16) is transmitted by the STD LPH in place of each occurrence.

VIP7800 Series Message Range Requirements (Verify Before Process
Mode)

The maximum number of characters that the VIP7800 series
terminal (CRT/RaP) may have written to it is 1024 (verify before
process). If the application specifies editing control for the
CRT/ROP, the STD LPH inserts/appends the appropriate control
characters (CR, LF, FF, PHLF, PEOM) to the data. While these
characters do not appear in the data buffer and are not included
in the IORB range" they do occupy terminal buffer space.
Therefore, the application must account for these characters when
issuing the data write request. Specifically, the data plus
STD-generated transmitted characters must be less than or equal
to 1024.

VIP7800 Series Terminal Transmission Modes and Cursor Positioning

The VIP7800 series terminal supports two methods for
transmitting data to the host and for positioning the cursor.

1. Return=Normal Mode: Data is transmitted from the termi
nal to the host by pressing the TRANSMIT key. The cursor
is positioned to the next cursor position following the
data to be transmitted. The RETURN key may be used to
move the cursor to column 1 of the next line.

9-18 CZ05-02

2. Return=Transmit Mode: Data is transmitted from the ter
minal to the host by pressing the RETURN key. Pressing
the AUTO LINE FEED (AUTO'LF) key changes the cursor's
position after the data is transmitted, as follows:

AUTO LINE FEED depressed.
Cursor is positioned to column 1 of the next line.

AUTO LINE FEED not depressed.
Cursor is positioned to column 1 of the current line.

The received range residue is modified to not reflect the
reception of the CR/LF or CR.

VIP7800 Series Break Processing

Break processing on the VIP7800 series is performed by a
shifted or unshifted function key rather than by the BREAK key
used on other terminals. Shifted or unshifted function keys Fl
to F9, Fll, and F12 are the only keys that can be defined as
break keys. The default key is shifted F12. The break function
is configurable by means of the STTY command (STTY -BREAK).

When the terminal is operating in no-roll mode, pressing the
shifted break function key causes the ** BREAK ** message to be
displayed on the 25th line of the terminal. To respond to this
message, the operator should:

1. Acknowledge the break message by pressing function key 10

2. Respond to the break condition by:

a. Entering the OW, SR, or PI command, as appropriate
b. Pressing the transmit key after entering the command

Supervisory Messages

Supervisory message handling is applicable only to the
VIP7800 series. To read or write supervisory messages, ·an I
application must first connect the terminal with bit 9 of I DVS
set to 1 (no roll).

SUPERVISORY MESSAGE READS

To read a supervisory message, the application must set bit 9
of I DVS to one in the read IORB. Servicing of·the supervisory
read-order places the cursor on the 25th line. To return the
cursor from the supervisory message line to the data region of
the screen, the operator must:

1. Press the return or transmit key (depending on the
terminal's' operating mode) in order to terminate the
read.

9-19 CZ05-02

2. Press function code 10.

SUPERVISORY MESSAGE WRITES

To write a supervisory messge, the application must set bit 9
of I DVS to one in the write IORB. Servicing of the supervisory
write order places the cursor and message on the 25th line.

If bit 8 of I DVS in the write laRS is set to one, STD
repositions the cErsor to the location it occuppied before the
supervisory write. If this bit is set to zero, the cursor
remains on the 25th line until the operator presses function
code 10.

Diskette Handling for the CTS7760 and VTS7740

The following conventions apply:

• The diskette cannot be accessed through the file system.
The application must use physical I/O, setting I ST to 2.
The application must reset I ST when re-using an-rORB to
issue an I/O order. -

• Device specific words in connect, read, and write IORBs
must indicate no control byte.

• The first two bytes of the application buffer must be one
of th~ following escape sequences:

Escape Sequence

1B 57
1B 42
1B 56
1B 51

Meaning

Write
Read, display on terminal
Read, send to host
Erase

• To read or write buffers over 256 characters, an
application must use ETB processing. Alternatively,
CTS7760 and VTS7740 hardware allows the block size to be
set at 128 characters.

Two- and Four-Wire Line Function

Two types of wire connections are supported:

1. Two-wire:
electrical
connected.
time.

Two physical wires (one pair) make up the
circuit onto which a data set may be
There is a 250 millisecond data set turnaround

2. Four-wire: Four physical wires (two pairs) make up the
electrical circuit onto which a data set may be con
nected. Four-wire does not infer full-duplex operation.

9-20 CZ05-02

Long Q Frame Line Function

ALL VIP terminal types supported by the STD LPH must be set
to long Q frame (i.e., the Q-frame response by the terminal is
SYN SYN SYN SYN SOH EOT).

ERROR PROCESSING BY STD LINE PROTOCOL HANDLER

Table 9-7 lists the errors reported by the STD line proto
col handler for any VIP configuration. It also lists correspond
ing return status error codes (see Table 4-10), corresponding
bits in the STD software status word I ST (see Table 9-4), and
possible recovery ac~ions.

Table 9-7. Errors Reported by STD Line Protocol Handler

Posted Error I_ST Possible
Error Condi tion Return Status Bit Recovery Comments

Error during open B As
reported

"Not available- 7 E None
message received

Page overflow 7 D None, or
not corrected retry once

Invalid range 4 E None
in IORB

Read timeout 6 7 Immediate
return .

NAK limit 7 8 Retry four
reaChed times

Busy received 7 F

Purgea due to B None
mmediate close or
read/write abort

Station disabled B None

Data service 0 (transmit) 2 Not applicable Not fatal
rate error 7 (receive) 2, 8 Retry four

times

Long record 0 6 None (ACK Data lost
sent to VIP)

IlJ.ega.a. character 0 (transmit) 7 Replace illegal Bad character
character with in application I s
SYN characters buffer

Sequence error B (receive) 8

Phone hang up B B None

.Excessive checksum B 9 Retry four
or parity error times

Poll failure B 8 Retry four
times

9-21 CZ05-02

Section 10
POLLED VIP EMULATOR

LINE PROTOCOL HANDLER

The Polled VIP Emulator (PVE) Line Protocol Handler (LPH)
allows a DPS 6 system to be connected to a communications link
that operates according to the polled VIP protocol. The line can
be half or full duplex, dedicated, or switched, and operates at
up to 9600 baud for the MLC controller and up to 19200 baud for I
the MLC-16 controller. The PVE LPH also provides functionality
to recognize and respond to the VIP7760 controller poll.

The computer that controls the communications link is known
as the control station (CS), which can be any Honeywell host
system that supports the VIP protocol.

GENERAL PVE LINE PROTOCOL HANDLER OPERATION

A PVE LPH, which is configured in a tributary processor,
supports up to 32 tributary stations per line. Each tributary
station appears to the control station as a VIP terminal. To the
control station, each PVE tributary station is known by a poll
address, and to the tributary processor, by a logical resource
number (LRN). There is a one-to-one relationship between the
poll address and the LRN.

An application running in a tributary processor issues read
and write requests against an LRN associated wi.th a tributary
station. Similarly, the control station communicates· with a
tributary station by issuing poll and selection orders with the
appropriate poll or selection address. Figure 10-1 illustrates a
typical PVE configuration.

10-1 CZOS-02

cs

POLLED
VIP's -4-

CS • CONTROL STATION

TS .. TRIBUTARY STATION

M • MODEM

MIU • MULTIPLE INTERFACE UNIT

MIU

L6

VIP

Figure 10-1. Typical PVE Configuration

T

VIP

When the PVE receives a select request with the LRN
associated poll address, it forwards the message to the tributary
station to satisfy the application's read request. When the PVE
receives a poll request for the LRN-associated poll address, it
forwards the message to the control station to satisfy the
application's write request. Thus, the application provides the
equivalent of the screen and keyboard, with read and write
requests, respectively. The PVE LPB supports only the screen and
keyboard features of the VIP.

The PVE LPB also support.s controller poll processing. This
processing option, specified at system build, permits the PVE
line protocol to support controller poll orders. Such orders are
issued by the control station in support of a VIP7760 (CTS7600)
controller configuration. A typical controller configuration is
shown in Figure 10-2. As many as eight controllers can be asso
ciated with a single communications link; up to 32 uniquely
identifiable stations can be associated with the controllers,
grouped in any number under each controller. Each station so
grouped, however, must have a unique poll address.

The advantage of controller poll processing is that the con
trol station can issue a single controller poll message to a set
of stations that are attached to the controller, instead of issu
ing individual sequential poll messages to the same set of sta
tions. When the PVE receives a controller poll message, it
individually checks all PVE stations that are associated with
that controller. If any station has a write request pending, PVE
forwards the message to the control station in response to the
controller poll request.

10-2 CZO 5-02

CS .. CONTROL STATION
TS = TRIBUTARY STATION
M = MODEM

MIU· MULTIPLE INTERFACE UNIT

CONTROLLER

o

iMIU

VIP

CONTROLLER

7

VIP

Figure 10-2. Typical Controller Poll Configuration

The PVE LPH also supports user-specified delayed status in
response to error-free received messages. When used, the appli
cation informs PVE that all received error-free messages .are not
to be immediately ACK'ed, but PVE is to delay the response until
the application specifies the correct response (ACE, BUSY, NA, or
PGOF). This procedure is achieved by the connect IORB. Upon
receiving an error-free message, PVE will POST the current re
ceive IORB. The application analyzes the received message and
isssues a CONTROL WRITE to PVE. The CONTROL WRITE is the means
for specifying the correct status response to the message.
Figure 10-3 illustrates the typical delay response procedure.

READ
IORB

•
READ IORS

1
CONTROL WRITE

~

..

1 SECOND

IORS

ERROR-FREE
MESSAGE

ACKNOWLEDGMENT (ACK, BUSY, NA, PGOF

(IF THERE IS NO CONTROL WRITE IORS
IN 1 SECOND, PVE WILL SEND ACK)

Figure 10-3. Typical Delay Response Procedure

10-3 CZ05-02

USING THE PVE LINE PROTOCOL HANDLER

PVE-Specific IORS Values

The PVE-specific IORS item I CT2, device-specific word I DVS,
and software status word I ST are shown in Tables 10-1, 10-2; and
10-3, respectively. Bits not explicitly described in the tables
must be o. Section 4 describes the general form of the IORB.

Table 10-1. Function Codes in I CT2 in the IORS

I Function I
Code Definition Use

0 wait online Used by the line protocol handler
to complete the description of

1 Write the requested I/O function

2 Read

A Connect .

B Disconnect

Table 10-2. PVE Device-Specific Word I DVS in the IORS

Bit
Number Meaning of Bit Setting

For connect call only (function code A)

0 1 = Delayed Response

2 1 = Auto Call

3 1 = User Supplying ACK

4 1 = Non Polled Line

8 0 = PVE Specified FCS
1 = User Specified FCS

9 1 = User Supplied Full VIP Header

10 0 = Accept Received DEL Character
1 = Strip Received DEL Character

11 0 = SOH EOT Q-Frame
1 = EOT Only Q-Frame

10-4 CZOS-02

Table 10-2 (cant). PVE Device-Specific Word I DVS in the IORB

Bit
Number Meaning of Bit Setting

12 and LPH response to application when LPH receives data but
13 no read lORE is available:

00 == Send NAK
01 == Send ACK
10 == Send BSY status
11 == Send NAK (same as 00)

15 1 == Logical Connect

For disconnect call only (function code B)

14 0 == Abort (dequeue) all IORBs on request queue
1 == Process all outstanding requests on request queue

15 0 == Disconnent phone after disconnect
1 == Maintain phone connection after disconnect

For write call only (function code 1)

4 1 == set Device Busy

5 1 := set Device Onbusy

6 1 == Abort write

7 1 == Send ETB

9 1 :::: Control write

12 1 == Disk Control Write

13 1 == ROP Control Write

VIP Protocol Message Structure for PVE

Figure 10-4 shows two VIP protocol message structures for
PVE.

Control and Characteristics of PVE Input

PVE INPUT MESSAGE HEADER

The PVE LPH strips the message header, between the SOH and
STX control characters, and does not include it in the
application's buffer.

10-5 CZ05-02

Table 10-3. PVE Software Status Word I ST in the lORS

Bit Meaning When Bit Set to 1

o WA

1 WA
2 Data service rate error

4 Communications control block CCCB) service error

5 WA
6 Long record

7 0 = ETX character received
1 = ETB character received

8 NAK limit reached

9 Excessive checksum/parity errors

A ~onzero residual range

B Phone hang-up

C N/A

D WA
E N/A

F Fatal error: bus parity or memory error

PVE HARDWARE FUNCTION CODES

PVE hardware function codes are listed in the appropriate
hardware device manuals. These codes provide a special
message-labeling capability to be used by the application.

The application can include two function codes in the message
header of each text message by setting at connect time the fol
lowing in the lORB: (1) set to 1, bit 8 of the device-specific
word I DVS (see Table 10-2); and (2) set to 1, bit B (extension
bit) of I CT2 to specifiy that the lORB is extended (see Figure
4-2 and Table 4-11). The LPH then inserts the two user-specified
hardware function codes at read time into the IORB's I FCS item.

10-6 CZOS-02

TYPE 1:

SYN
SYN

MESSf\-GE SYN HEADER SYN

NUL - -:=Hi' PRT SOH' TERMINAL POLL ADDRESS
ACK. ADR TERMINAL SELECTION ADDRESS
~::. I F~ - I DISPLAY ADDRESS .
NA FC1
PGOF !.C! _ I

-----------------.1- ..E~ _....J
NUMBER OF CODES MAY VARY FROM CPU TO CPU.
THE NUMBER OF CODES MUST BE ZERO FOR A POLL
OR SELECT MESSAGE. A CODE OF 268 MUST NOT BE
INCLUDED IN THE LP CALCULATION. ONLY THE
FIRST TWO FUNCTION CODES ARE RECOGNIZED BY
THE TERMINAL.

',TEXTI G
ETX MAY BE ETB CHARACTER
LRC

~ ~ONGITUDINAL REDUNDANCY
CHARACTER; INCLUDES ADR
THROUGH ETX. LESS SYN.

TYPE 2: (QUIESCENT MESSAGE)

END OF
t-----t MESSAGE

FRAME

SYN (OR OPTIONAL) SYN
SYN SYN
SYN SYN
SYN SYN
SOH EOT
EOT

Figure 10-4. VIP Protocol Message structure for PVE

PVE INPUT DATA

The LPH places all data between the STX and ETX control
characters into the application's buffer. The data is inserted I
into the buffer in 7- or 8-bit ASCII. The LPH strips the ETX and
LRC (longitudinal redundancy check character, see Section 7,
"Communications Subsystem Error and Correction Procedures") from
the data and does not include them in the buffer.

It also strips DEL characters when the application, at con
nect time, sets to 1 the A-bit of the device-specific word
I_DVS (Table 10-2) •

By setting the C- and D-bits of I DVS as shown in Table 10-2, I
the application can control the response that the LPH sends when
it receives data, but no read lORS is available.

10-7 CZOS-02

Control and Characteristics of PVE Output

PVE OUTPUT MESSAGE HEADER

The PVE LPH normally supplies the output header between the
SOH and STX control characters. The application can specify
hardware function codes (1, 2) as described above under "PVE
Hardware Function Codes." To write function codes, the appli
cation must, at connect time, set bit B (extension bit) of th.e
IORB's I CT2 item to 1, to specify that the IORB is extended. At
write time, when specified, the codes are extracted from the
I_FCS item of the IORS. When the codes are not specified (bit 8
of I_DVS set" to 0 at connect time), the LPH will supply two
spaces, instead of the codes, into I FeS. (See Figure 4-2 and
Table 4-11.) -

PVE TERMINAL.ADDRESS (ADR) AND MESSAGE STATUS (STA)

~he PVE LPH supplies an ADR (terminal address) of X'60'
(keyboard/screen) and an STA (message status) of NUL to the
application.

PVE OUTPUT DATA

I The application's output data may be 7-or 8-bit ASCII. In
case of 7-bit ASCII, the most Significant bit is used by the LPH
during transmission of odd parity. Output data must not include
the ASCII control characters SOH, STX, ETB, ETX, EOT, or SYN.

The LPH supplies output ETX control characters and
longitudinal redundancy check characters (LRCs) (described in
Section 7, "Communications Subsystem Error and Correction
Procedures") •

PVE LINE PROTOCOL HANDLER TIMEOUT INTERVALS

Table 10-4 lists the timeout 1ntervals used by the LPg for
the connect, read, and write functions. The LPH will attempt or
reattempt the functions until the indicated timeout period has
elapsed. In addition to the interval in the table, there is also
a gross timeout of one minute, which expires when the control
station ceases to poll or select any tributary station.

Table 10-4. PVE Timeout Intervals

Function Timeout Interval

Connect 200 seconds

Read Indefinite

Write Indefinite

10-8 CZ05-02

ERROR REPORTING BY PVE LINE PROTOCOL HANDLER

Table 10-5 lists the errors reported by the PVE LPH. It also
lists corresponding return status error codes (see Table 4-10)
and corresponding bits in the software status word I ST (see
Table 10-3). -

Table 10-5. Errors Reported by PVE Line Protocol Handler

posted Error I ST
Error Condition Return status Bit Comments

No interrupt from MLC 6 7 Poll failure or
CCP/MLC failure

NAK limit reached 7 8 Write failure

Purged due to immediate
close

station disabled

Fatal error interrupt
level

B

B

B

Data service rate error o (send)
7 (receive)

Communication control 7
block service rate error

Long record o

Phone hang-up B

Nonexistent resource, or B
Bus parity error, or
Unrecoverable memory
error

10-9

None

None

None

2 Not fatal
2, 8

4, 8

6 Not fatal

B

None

CZ05-02

Section 11
BSC2780/3780 LINE

PROTOCOL HANDLER

The Binary Synchronous Communication (BSC) BSC2780/BSC3780
Line Protocol Handler (LPH) supports BSC2780 and BSC3780 pOint
to-point, nontransparent or transparent EBCDIC, or nontransparent
ASCII transmission between a DPS 6 system and another host system'
(subject to certain restrictions).

The BSC3780 protocol is similar to the standard BSC2780
protocol and unless specifically stated otherwise, the rest of
this section and the term BSC pertain to both.

GENERAL BSC LINE PROTOCOL HANDLER OPERATION

When a station (device or computer) at either end of a commu
nication line has a message to send, it requests use of the line
by sending an ENO bit message. (See Appendix G for definition of
ENO and other control characters.) The receiving station must
respond with an ACK/O sequence before the sending station can
transmit a data message.

BSC Transmit and Receive Operations

A station that has control of the line, i.e., the right to
transmit, is known as the master (primary) station. The station
that relinquishes control, i.e., will receive, is the slave
(secondary) station. Primary and secondary are arguments of the
BSC CLM directive 'used during system build.

11-1 CZOS-02

When the first data message from the master station is suc
cessfully received,the slave station responds with an ACK/l'
sequence. Acknowledgments for subsequent remaining messages
alternate between ACK/O and ACK/I. The master/slave status for
each respective station remains in effect until the master sta
tion gives up control by sending an end-of-transmission (EOT)
character (which is not acknowledged by the slave station).

When a bidding station does not receive an ACK/O response
within a specified interval (timeout period), it sends another
ENQ message. At the same time, or at nearly the same time, the
other station may be sending an ENQ message, bidding for the
line. Thus both stations may be bidding with neither receiving
an ACK response. This is known as line contention. Line conten
tion can be avoided by designating one station as the primary and
the other as secondary during system build. Then when the desig
nated primary station receives an ENQ response to its bid mes
sage, it retransmits the ENQ message to the secondary station,
which in turn ignores its own bid request and responds to the
primary station with an ACK or NAK.

The SSC line protocol handler allows a receiving station to
reply to a data message with an reverse interrupt CRVI) message
if it has an urgent requirement to transmit data.

Figure 11-1 illustrates bids and other interactions between a
master and slave station.

PRIMARY STATION A SECONDARY STATION B

BIDS ENQ (BIOI

MASTER

RELEASE

ACCEPTS BID

SLAVE I
BIDS

TIME-OUT

BIDS AGAIN

..
ACKO ACCEPTS BID

DATA ..
ACKl

SLAVE DATA ..
ACKO

"EOT (RELEASEI ..
ENQ lBIDI .. BIDS FOR PRIMARY I M~EA ACKO

DATA
ACKl ..

EOT (RELEASEI ..
ENQ ENQ BIDS

ENQ ...
ACKO ACCEPTS BID ..

WOULD HAVE TlMED-OUT HERE

Figure 11-1. Example of BSC Communication

11-2 CZOS-02

BSC Data Transmission Modes

BSC operates in either basic data transmission mode or in
advanced data transmission mode, according to whether a control
byte is included in the data being transmitted. (See "BSC
Control Byte (Receive)" and "BSC Control Byte (Send)" later in
this section.)

In basic data transmission mode, there is no control byte
included in the data being transmitted along the communications
line.

In advanced data transmission mode, the application includes
a control byte that occupies the first byte of the output buffer
but is not transmitted across the line. The control byte
indirectly controls the operation of the line protocol handler
(e.g., sending an ETB or ETX), or conveys information about a
data transfer (e.g., whether transparent text was received).

BSC2780 and BSC3780 Differences

The BSC3780 protocol differs from the BSC2780 protocol in
that the BSC3780 protocol allows an application to:

• Receive a conversational reply

• Receive two records and to transmit a single record, when
the double-block option is selected at connect time
(whereas the BSC2180 protocol allows both transmission and
reception of two records)

• Receive multi-block records and to transmit a single
record, when the multi-block option is selected at connect
time (whereas the BSC2780 protocol allows both
transmission and reception of multi-block records)

• Receive and transmit selected BSC control characters in
nontransparent mode.

BSC Record TYpes

The BSC LPH supports three forms of record transmission:

1 •. Single-record transmission
2. Two-buffer transmission
3. Multiple intermediate text block (ITB) sequence.

To identify the record constructs in a more meaningful and
uniform manner, the following terms are used:

• Single-block (in place of single-record or single-buffer)
• Double-block (in place of two-buffer)
• Multi-block (in place of multiple ITB sequences).

11-3 CZOS-02

BSC2780/BSC3780 Features

The following discussions in this subsection include refer
ences to BSC-specific fields in the input/output request block
lORB (see Table 4-8) and to control bytes. See Tables 11-4 and
11-5 later in this section for descriptions of the device
specific word I DVS and software status word I ST, respectively.
Control bytes are described under "Control Byte (Receive)" and
"Control Byte (Transmit)"~

Bse DOUBLE-BLOCK FEATURE

With the double-block feature, the use of the second buffer
r~duces line turnaround time, i.e., two records can be trans
mitted with only one acknowledgment. However, there are these
disadvantages:

• When a line (parity) error occurs, both records must be
retransmitted.

• One transmission requires that two writes be issued, which
are not posted until an acknowledgment is received.

• Four buffers are necessary to operate the line
efficiently.

Figure 11-2 shows record transmissions with and without the
double-block feature. ..

Before selecting the double-block feature, compare the advan
tage of better line utilization against the disadvantages of a
more complex program and increased buffer usage, and consider the
following:

1. In BSC2780 with the double-block option, two records can
be received or transmitted (using an ITB (intermediate
text block) sequence).

STX --- - - - ITB BCC SYN SYN STX-- - ---ETB BCC

ACKO - .. _------_

WITH DOUBLE-BLOCK FEATURE

STX------ETB BCC

ACKO - .. ~---------

STX----- ETB BCC

ACK1 -_t__-------
WITHOUT DOUBLE-BLOCK FEATURE

Figure 11-2. BSC Double-block Feature in Record Transmission

11-4 CZ05-02

2. In BSC3780, with the double-block option, two records can
be received, using an ITB sequence, and single records
can be transmitted. This implies that an application
using BSC3780 must be able to receive up to two records
at anyone time, but can only initiate single-record
transmission.

3. The double-block feature cannot be used with synchronous
reads, because the intermediate files being received may
be terminated by an ETX record. If the ETX record is the
first of the two records being read, the second read
(synchronous) would not be posted to the system.

For example:

READ (asynchronous)
•
• process
•
READ (synchronous)
•

process
•

Assumes always two records
per transmission.

The following sequence is better:

READ (asynchronous)
READ (asynchronous)
WAIT (1)

•
• process
•
READ (asynchronous)
WAIT (2)
•
• process
•

BSC MULTI-BLOCK FEATURE

The multi-block feature allows an application to send or
receive from 1 to 7 records in a single transmission. Use of
multi-block reduces line turnaround time in that only one write
order, one user buffer, and one acknowledgment are required for
the transmission of multiple records.

This feature is optionally selected at connect time. When
using BSC2780, an application selects the multi-block feature to
both send and receive multiple-record transmissions for the .
duration of the connect~ single- and double-block transmissions
are precluded. When using BSC3780, an application selects the
multi-block featur'e only to receive multi-block transmissions.

11-5 CZ05-02

For this feature to be selected at connect time, its use must
have been provided fer at system build. This is accomplished by
an argument in the BSC CLM directive. Indicating the possible
use of the multi-block feature during system build does not
require that it be selected for use at connect time, since
selection is optional. However, selection of this feature at
connect time is prohibited if the possibility of its use was not
provided for during system build.

When BSC3780 and multi-block are specified at connect time,
the receive and transmit buffers must be organized as shown in
Figure 11-3. The buffer shown in Figure 11-3 is divided into two
sections, a header section and a data section. The data section
contains the user's records, referred to as data blocks. Only
the data blocks of a data buffer are transmitted, with the
appropriate protocols inserted. The header section is
interpreted by and controls the processing of the BSC LPH.
11-1 defines the contents of the buffer's header section.
11-4 illustrates the transmission of the data blocks shown
Figure 11-3.

Table
Figure
in

Table 11-1. Multi-block Header Section Field Descriptions

Transmit (BSC2780 Only)
Receive

(BSC2780/BSC3780)

Control Byte 0: Contains optional Same as for transmit.
Field control byte.

Block
Count

Block
Offset

Block
Size

Byte 1: Must be zero.

Number of blocks to be
transmitted.

Posted back with actual
number transmitted.

Word offset from base of
buffer to beginning of
data block.

Posted back with contents
unchanged.

Number of characters
(bytes) in data block to
be transmitted.

Posted back with residual
range, if any.

11-6

Maximum number of blocks
which can be received.

Posted back with actual
number received.

Same as for transmit.

Maximum number of
characters (bytes) which
can be received.

Posted back with actual
number received.

CZ05-02

HEADER __ -<
SECTION

DATA
SECTION

\-,WORD-__ ...

CONTROL FIELD o

BLOCK COUNT

BLOCK HEADER
BLOCK OFFSET 2

BLOCK SIZE 3

4
BLOCK HEADER NO.2

5
~ ~------~

6
BLOCK HEADER NO.3

7
>--

8 ___ 1 __ _
9 ___ L __ _

DATA BLOCK NO .1 A

___ L __ _

>--
UNUSED BUFFER SPACE

___ .1 __ _

E
1--

F ___ L __ _

1
.2 DATA BLOCK NO

o ___ L __ _

11

1 2
~

1 3

1 4 ___ L __ _

1
.3 DATA BLOCK NO

___ L __ _

1 6 ___ .l __ _

1 7 ___ .1 __ _

1 8
'---

Figure 11-3. Multi-block Buffer Organization

STX - - - (DATA BLOCK NO. 11- - - ITS BCC SVN SVN STX

- - - (DATA BLOCK NO. 21- - -ITB Bce SVN SVN

STX - - - (DATA BLOCK NO. 31- - - ETB Bee

ACK04.~-----------

Figure 11-4. BSe Multi-Block Transmission of Buffer
Shown in Figure 11-3.

11-7 eZOS-02

The following rules apply to the construction of a
multi-blocK buffer:

• Data blocks cannot overlap.

• Each data block begins on a word boundary.

• The range value in the IORS need not be specified; this
value is calculated from the buffer header section by
system software. The range value returned in the posted
read laRS is the header size plus total block lengths plus
any gapes) between blocks. Range value returned in the
posted write IORB is equal to the header size.

• Buffer space may exist between data blocks but must not be
used because it may be overwritten by system software.

• Block headers and the corresponding data blocks they
define must be in the same sequence. The first header
block must define the first-data block, the second header
block must define the second data block, etc. These
header blocks precede the data blocks.

• During a single connect, the number of data blocks can
vary for each transmission, provided they do not exceed
the maximum allowed. This maximum number, which can vary
,from 1 to 7, is specified by the user at system build.

• If, during a read operation, fewer data blocks are
received than were specified in the block-count field of
the buffer's header section, the block-count field is set
equal to the number of data blocks received and the IORB
is posted back with bit A of the software status word
I_ST set to 1, indicating nonzero residual range.

BSC TEMPORARY TEXT DELAY (TTD) FEATURE

The following describes the sequence of the temporary text
delay (TTD) feature:

1. When a master station receives an ACK, and no output
request block (IORBs) are queued, that station waits
2 seconds for one IORB (or two IORBs when there are two
buffers) to be queued.

2. The master station then sends the temporary text delay
(TTD) control character sequence (STX, ENQ) to the slave
station.

3. When the slave station responds with a NAK, the master
station checks whether the application has queued the
appropriate write requests. If the write requests are
not queued, the master station continues the TTD sequence
until the application issues the necessary requests.

11-8 CZ05-02

4. If the EOT or ETX bit (A-bit or D-bit) in the I DVS word
of the IORB is set (Table 11-4), one write request will
effect transmission.

Figure 11-5 is an example of the temporary text delay
sequence.

BSC WAIT BEFORE ACKNOWLEDGE (WACK) FEATURE

A BSC slave station will send ACK/O and ACKII responses to
messages satisfactorily received, provided there is at least one
outstanding read request (two with the double-block feature), in
addition to the request being processed.

1. When no read is queued, the slave station posts the cur
rent read, waits 2 seconds for read requests to be
queued, then sends a WACK response, indicating to the
master station that the last message was received, but
the slave station cannot accept more data.

2. The master station waits (timeout), then sends an ENQ
message.

3. If a read request was queued during the timeout, the
slave station responds with an ACK, and the master sta
tion can send its next data message.

4. If no read request was queued during the timeout, the
slave station waits another 2 seconds, and when neces
sary sends another WACK sequence.

The ASCII and EBCDIC WACK sequences are DLE ; and DLE ,
respectively. Figure 11-6 is an example of the wait before
acknowledge (WACK) sequence.

MASTER SLAVE

MESSAGE 1 ..
• ACK/O

MESSAGE 2 ..
• ACK/1

TTD (STX. ENQI ..
• NAK

TTD NAK

MESSAGE 3 ..
• ACK/O

Figure 11-5. BSC Temporary Text Delay (TTD) Sequence Example

11-9 CZ05-02

~AASTER Si.AVE

MESSAGE 1 •
... ACK/O

MESSAGE 2 ..
... ACK/1

MESSAGE 3 ..
.. WACK

TIMEOUT

ENQ

_----------- ACK/O ..:

MESSAGE 4 •
---------- ACKl1 •

Figure 11-6. BSC Wait Before Acknowledge (WACK)
Sequence Example

asc REVERSE INTERRUPT (RVI) FEATURE

When a slave station is processing read requests and must
unexpectedly transmit an urgent message, that station must issue
a reverse interrupt (RVI) m~ssage, which informs the master
station that the slave station is requesting control of the line.

On receiving an RVI character, the master station should
empty its buffers and give up control of the line. However, the
master station does not have to acknowledge the RVI by giving up
control.

The application can request the BSC line protocol handler to
send an RVI character, by either of the following methods:

1. Use of the control byte. The application issuing read
requests issues a transmit request with bit 5 of the con
trol byte set to 1 (see Figure ll-12) and with the urgent
message in the application's buffer.

2. Use of the device-specific word I DVS of the IORB. The
application issuing read requests-issues a transmit
request with the B-bit of I DVS set to 1 and with the
urgent message in the application's buffer.

The application issuing write requests can detect an RVI
character by either of these methods:

1. Test bit 3 of the control byte after a successful write
request is posted. A bit setting of 1 indicates that the
RVI for that IORB was received.

11-10 CZ05-02

2. Test bit 3 of the laRS's software status word I ST. A
bit setting of 1 indicates an RVI was received.

Figure 11-7 is an example of a reverse interrupt (RVI)
sequence.

MASTER SLAVE

MESSAGE 1 ACK/O

MESSAGE 2 ~

• ACK/l

MESSAGE 3 II

• RVI

MESSAGE 4 ~

• ACK/l

EOT II .. ENQ
ACK/O ~ .. URGENT MESSAGE

(NOW MASTER)
ACK/l ..

Figure 11-7. BSC Reverse Interrupt (RVI) Sequence Example

BSC END OF TRANSMISSION (EaT) FEATURE

The application program, by anyone of the following methods,
can cause the BSC line protocol handler to send an
end-of-transmission (EOT) message:

• At connect time, specify use of the control byte by
setting to 0 bit 4 of the IORB's device-specific word
l_DVS. When bit 4 of the first byte of the application's
buffer (control byte, specified at write time) is set to
1# the BSC line protocol handler will send an EaT control
character after the data in the application's buffer is
successfully transmitted. .

• When the control byte is not specified at connect time,
set to 1 A-bit of the IORS's device-specific word I_DVS at
write time. The BSC line protocol handler will send an EOT
control character after the data in the application's
buffer is successfully transmitted.

• After successful completion of a write request, issue a
disconnect with or without a queue abort, and no physical
disconnect. The master station will send an EaT character
and give up its master status. However, when another lORB
is queued for write, that station will again request its
master status.

11-11 CZ05-02

The application can detect receipt of an EDT control charac
ter in either of the following ways:

• If the control byte was specified at connect time, bit 4
of the control byte, of the read request on which the EOT
was received, will be set to 1.

• If the control byte was not specified at connect time, bit
12 of the software status word I ST, of the request on
which the EOT character was receIved, will be set to 1.

With either method, the line protocol handler does not post
any read requests queued before the EOT character was detected.
To remove read requests from the queue, the application must
issue a disconnect with a queue abort. The line protocol handler
always posts the IORS with a device unavailable (B) return status
(Table 4-10). The BSC line mayor may not be available for
further use, depending on whether or not an EOT character was
sent abnormally.

BSC SWITCHED LINE DISCONNECT (DLE EOT) FEATURE

A DLE EOT sequence is used to indicate the imminent intent of
the transmitting station to do a physical disconnect. Use of
this feature is selected at connect time by setting bit 5 of the
IORS's I DVS word to 1. If bit 5 is instead set to 0, the line
protocol-handler will transmit EOT instead of a DLE EOT. This
transmission of the EOT will occur as described in the pre
ceding description of EOT.

Reception and notification of a DLE EOT sequence, indicating
pending line hang-up by the transmitting station, is performed in
two ways:

• If the control byte was not specified at connect time,
bits 9 and C are both set to 1 in the IORS's software
status word for the read request on which the DLE EOT was
received.

• If the control byte was specified at connect time, bits 3
and 4 of the control byte are both set to 1 for the read
request on which the DLE EOT was received.

Transmission of a DLE EOT sequence is initiated for a discon
nect request when the following two conditions are both true:

• Bit F of the disconnect IROB's device-status word is set
to 0 (this is a request for a physical disconnect).

• Bit 5 of the connect IORS's device-specific word was set
to 1.

Table 11-2 defines the conditions under which EOT or DLE EOT
is selected for transmission or reported as having been received.

11-12 CZOS-02

Table 11-2. Transmission and Reception Conditions
for EOT and DLE EOT

Receiving Station

Connect IORB Character Reported to
Selected Transmitted Application

EOT DLE EOT EOT

DLE EOT DLE EOT DLE EOT

DLE EOT EOT EOT

Transmitting Station

Connect IORB Disconnect IORB Character
Selected Specified Transmitted

EOT Logical Hangup EOT

EOT Physical Hangup EOT

DLE EOT Logical Hangup EOT

DLE EOT Physical Hangup DLE EOT

BSC Line Protocol Handler Timeout Interval

When a line is idle (no station controls the line), the
timeout interval in waiting for a line-request bid is 10 minutes.

Once a station has successfully bid for a line, the timeout
interval for subsequent reads (from the slave station) or writes
(from the master station) is 12 seconds. These timeout intervals I
can be altered by using the TIMEOUT CLM directive.

BSC Features Specific to BSC3780

The following subsections discuss the BSC3780 conversational
reply feature, double-block feature, and the transmission
/reception of BSC control characters.

BSC3780 CONVERSATIONAL REPLY FEATURE

The conversational reply feature permits a BSC3780
application, after transmission of an entire message (whose last
record is denoted by an ETX rather than an ETB), to selectively
receive a message from a host computer without a preliminary line
bid sequence.

11-13 CZOS-02

The conversational reply sequence serves as the affi~ative
reply to the last message transmission block, and as a break or
interrupt to later transmissions. The line protocol handler
indicates to the application receipt of a conversational reply
sequence in bit 5 of the IORB software status word I ST, and/or
in bit 20f the control byte of the ETX write order.-

In the following example, a BSC3780 application attempts to
transmit three 2-record messages to a remote host computer. The
transmission sequence is interrupted by the receipt of a conver
sational reply, which occurs after transmission of the second
message. After the complete conversational reply (containing one
or more records) is received, transmission of the third message
can resume, following completion of a successful line bid
sequence. Figure 11-8 illustrates the example sequence.

The application's use of the conversational reply feature
requires that the application issue the requisite number of read
orders (dependent on single or double-block mode) before the
transmissron of a text block that terminates with an ETX
sequence. If the application does not issue the required
read{s), the last text block is not transmitted, and the line
protocol handler will initiate a temporary text delay (TTD)
sequence until the necessary read orders are issued. If the
application does not transmit an ETX sequence, it need not issue
supporting read order(s).

BSC3780 DOUBLE-BLOCK FEATURE

The discussion under "BSC Double-block Feature" earlier in
this subsection applies also to BSC3780 operation.

BSC3780 TRANSMISSION/RECEPTION OF BSC CONTROL CHARACTERS

In BSC2780 nontransparent mode, detection of any BSC control
characters within a message would abort the transmission or
reception of that message.

In BSC3780 nontransparent mode, selected, noncritical BSC
con- trol characters (i.e., STX, SOH, OLE, NAK, and EOT) can be
suc- cessfully transmitted and received.

USING THE BSC2780/BSC3780 LINE PROTOCOL HANDLER

BSC-Specific IORB Values

The BSC-specific IORB item I CT2, device-specific word I DVS,
and software status word I ST, are shown and defined in Tables
11-3 through 11-5, respectIvely. user-specified bits not
specifically described in the tables must be O. Section 4 has a
general description of the IORB.

11-14 CZ05-02

specifying Use of BSC27S0/BSC37S0 to the System

The inclusion of BSC27S0/BSC37S0 in the system is done during
system build. The application can select and use either BSC27S0
or BSC37S0 according to the setting of bit 9 in the
device-specific word I DVS in the lORS (see Table 11-4) •

BSC 3780 APPLICATION

TRANSMISSION OF
FIRST MESSAGE

TRANSMISSION OF
SECOND MESSAGE

TRANSMISSION OF
THIRD AND
FINAL MESSAGE

ENO ..
ACKO ..
STX ... ETB ..
ACK1 ..
STX ... ETX .P
ACKO ..
STX ... ETB .. _ .. -

{

ACK1

..

..

..

..

•

..

STX ... ETX

STX ... ETB

ACK1

• • •
•

STX ... ETX

ACKn

EOT

ENO

ACKO

STX ... ETB

ACK1

STX ... ETX

ACKO

EOT

II'

..

II'

II'

•

HOST SUPPORTING
BSC 3780 APPLICATIONS

} "INTERRUPTING"
CONVERSATIONAL REPLY

TRANSMISSION OF
REMAINDER OF THE
CONVERSATIONAL
REPLY

Figure ll-S. Example of Conversational Reply in BSC37S0
Transmission Sequence

11-15 CZ05-02

Table 11-3. Function Codes in I CT2 Field in the IORB.

Function
Code Definition Use

0 Wait online Used by the line protocol handler
to complete the description of

1 Write the requested I/O function.

2 Read

1\ ,,---- ~ .L.

B

I W",,~CL I
Ofsconnect

Table 11-4. BSC Device-Specific Word I OVS in the IORB

Bit
Number Meaning of Bit Setting

o Must be zero

1 Must be zero ..
For connect call only (function code A)

2 0 = Do not use Auto Call Unit
1 = Use Auto Call Unit

3 Must be zero

4 0 = Use control byte
1 = Do not use control byte

5 0 = Do not support OLE EOT seqeuence
1 = Support OLE EOT sequence

6 Must be zero

7 0 = Use single-block or double-block feature. Bit 7 must
be zero for bit 8 to be meaningful.

1 = Use multi-block feature. (Bit 8 must be zero.)
For BSC2780: Both send and receive.
For BSC3780: For receive only.

8 0 = Use single-block per transfer
1 = For BSC2780: Use double-block for send/receive

For BSC3780: Use double-block for receive

11-16 CZ05-02

Table 11-4 (cont). BSC Device-Specific Word I DVS in the IORB

Bit
Number Meaning of Bit Setting

9 o = Use BSC2780 protocol
1= Use BSC3780 protocol

For write call only (function code I)

A 0= Do not send EOT after this transmission
1 = Send EOT after this transmission

B 0 = Do not send RVI if station is in slave status
1 = Send RVI if station is in slave status

C 0 = Send data in nontransparent mode
1 = Send data in EBCDIC transparent Mode

D 0 = Send ITB or ETB charcters following the data
1 = Send ETX characters following the data

For disconnect call only (function code B)

E 0 = Abort (dequeue) all lORBs on request queue
1 = Process outstanding requests on request queue

F 0 = Disconnect line on completion. If bit 5 was set to 1
on connect, then send DLE EOT sequence.

1 = Do not disconnect line on completion

Formats and Characteristics of BSC Input Data

The formats and characteristics of BSC input data for both
ASCII and EBCDIC are described and illustrated below.

Figure.11-9 shows the format and contents of Bse input data
received from another computer.

BSC CONTROL BYTE (RECEIVE)

When bit 4 of the IORB's device-specific word I DVS is set to
o at connect time (see Table 11-4), the BSC line protocol handler
uses the first byte of the application's buffer as the control
byte. Figure 11-10 shows the control byte's format and content.

11-17 CZ05-02

Table 11-5. BSC Software Status Word I ST in the lORS·

Bit Meaning When Bit Set to 1

o N/A

1 N/A

2 Data service rate error

3 Lost line bid1 RVI received

4 Communications control block service error

5 Conversational reply received (BSC3780 only)

6 Long record

7 0 = ITB and/or ETB characters received
1 = ETX character received

8 N/A

9 0 = not meaningful
1 = DLE EOT received, if bit C is also 1

A Nonzero residual range

B Phone hang-up

C EOT character received

D Transparent message received

E NAK limit reached

F Fatal error: bus parity or memory error

ASCII INPUT FOR BSC

ASCII input characteristics and format (Figure 11-9) are as
follows:

1. SOM (start-of-message) consists of the STX control char
acter only.

2. The control byte (if specified at connect time) is stored
in the first byte of the application's buffer, and indi
cates the end-of-message (EOM) sequence. When bit 7 is
0, it indicates detection of an ITB or ETB control char
acter1 when 1, it indicates detection of an ETX charac
ter. Note that bit 7 of both the control byte and of
I_ST are specified.

11-18 CZOS-02

If
SaM ICONTROL BYTEI DATA EOM BCC

'--__1. ________ -.111 "-- -----'""'-----'

SOM (START OF MESSAGEI
A ONE· OR TWO·CHARACTER SEOUENCE THAT IS STRIPPED BY
THE SSC LPH.

CONTROL BYTE
THE CONTROL BYTE. IF SPECIFiED. IS THE FIRST BYTE OF THE
APPLICATION'S DATA.

DATA
INFORMATION STORED IN THE APPLICATION'S BUFFER AND
SPECIFIED AT READ TIME.

EOM (END OF MESSAGE)
A ONE· OR TWO·CHARACTER SEQUENCE THAT IS STRIPPED BY
THE BSC LPH.

BCC
AN LRC CHARACTER OR CRC CHARACTER THAT IS INSERTED BY
THE BSC LPH.

Figure 11-9. BSC Input Data Format and Contents

o 2 3 4 5 6 7

BITS 0 THROUGH 2
NOT APPLICABLE; NOT EXAMINED

BIT 3 E 0
NOT MEANINGFUL

BIT 3 .. 1
OLE EOT RECEIVED IF BIT 4 IS ALSO 1

BIT4 ,. 0
DATA STORED IN APPLICATION'S BUFFER

BIT 4 .. 1
EOT RECEIVED; NO DATA STORED IN APP1.ICATION'S BUFFER

BIT5
NOT APPLICABLE; NOT EXAMINED

BIT6" 0
DATA RECEIVED IN NONTRANSPARENT MODE

BIT 6 .. 1
DATA RECEIVED IN TRANSPARENT MODE

BIT7 .. 0
ITB OR ETB RECEIVED

BIT 7 .. 1
ETX RECEIVED

Figure 11-10. Control Byte (Receive) for
BSC Line Protocol Handler

11-19

..

CZOS-02

3. Data must be 7-bit ASCII with odd parity. The BSC line
protocol handler strips the parity bit and resets it to
zero when it stores it in the application's buffer.

4. The EOM sequence, one of the three control characters
ITB, ETB, or ETX, is indicated by bit 7 of the IORS soft
ware status word I ST after a successful read is posted.
See Table 11-5 for-bit 7 indicators.

5. The BCC (block check chaIacter) is described in
Section 7, nLine Protocol Handler Functions. n

EBCDIC INPUT FOR BSC

EBCDIC input format and characteristics are as follows:

1. SOM (start-of-message) consists of the STX control char
acter only.

2. The control byte (if specified at connect time) is stored
in the first byte of the application's buffer, and indi
cates the end-of-message (EOM) sequence, as follows:

Bit 4 = 1
Bit 7 = 0
Bit 7 = 1

End of transmission (EOT) detected.
ITB or ETB character detected.
ETX character detected.

3. Data must be 8-bit EBCDIC1 it will not have any BSC con
trol characters.

4. The EOM sequence, one of the control characters ITB, ETB,
or ETX, is indicated by bit 7 of the IORB software status
word I ST after a successful read is posted. See Table
11-5 for bit 7 indicators.

5. The BCC (block check character) is described in Section
7, nLine Protocol Handler Functions."

TRANSPARENT EBCDIC INPUT FOR BSC

Transparent EBCDIC input format and characterisitcs are as
follows:

1. SOM (start-of-message) consists of the two-character
sequence DLE, STX.

2. The control byte, if specified at connect time, is stored
in the first byte of the application's buffer, and indi
cates the EOM (end-of-message) sequence according to the
bit 7 setting (Figure 11-10).

3. Data may be any EBCDIC character, including BSC control
characters.

11-20 CZ05-02

4. EOM (end-of-message) sequence may be one of the follow
ing, indicated by bit settings of the IORS software
status word I ST, after a successful read has been
posted: -

I ST Bits

D

1

1

1

7

o

o

1

Resulting EOM Sequence

DLE, ITB

DLE, ETB

DLE, ETX

5. The block check character (BCC) is described in Section
7, nLine Protocol Handler Functions."

Formats and Characteristics of BSC Output Data

Formats and characteristics of BSC output data (both ASCII
and EBCDIC) are described and illustrated below.

Figure 11-11 shows the format and content of BSC data trans
mitted to another computer.

~_S_O_M __ ~I __ (C_O_N_T_RO_L_B_Y_T_E_I ____ ~DtT~ I EOM BCC

SOM
A ONE· OR TWO·CHARACTER SEQUENCE THAT IS INSERTED IN FRONT
OF THE DATA BY THE BSC LPH.

CONTROL BYTE
THE CONTROL BYTE, IF SPECIFIED, IS STORED IN THE FIRST BYTE
OF THE APPLICATION'S BUFFER.

EOM
A ONE- OR TWO-CHARACTER SEQUENCE THAT IS INSERTED BY THE
BSC LPH.

Bee
AN LRC CHARACTER OR CRe CHARACTER THAT IS INSERTED BY
THE BSC LPH.

DATA
INFORMATION THAT IS TRANSMITTED FROM THE APPLICATION'S
BUFFER BY THE BSC LPH.

Figure 11-11. Format and Content of BSC Output

BSC CONTROL BYTE (SEND)

When bit 4 of the IORS's device-specific word I DVS is set to
o at connect time (see Table 11-14), the Bse line control handler
uses the first byte of the application's buffer as the control
byte. Figure 11-12 shows the format and content of the BSC line
protocol handler's control byte for sending data.

11-21 CZ05-02

I ° I' 1 I 2J 3 (4 15 L6 I 7 I
BITS 0, 1

NOT APPLICABLE, NOT USED
BIT 2=1

CONVERSATIONAL REPLY RECE IVED
BIT 3=1

RVI RECEIVED {RETURN STATUS ONL YI
BIT 4=1 '

SEND THE DATA THAT IS IN YOUR BUFFER AND.
AFTER IT HAS BEEN ACKNOWLEDGED, SEND EOT

BIT 5=1
SEND AN RVI RESPONSE ON THE NEXT ACKNOWLEDGMENT
OF A READ

BIT 6"'0
SEND NONTRANSPARENT EBCDIC

BIT 6-1
SEND TRANSPARENT EBCDIC OR ASCII

alT 7=Q
SEND ITS OR ETB

BIT 7"1
SEND ETX

Figure 11-12. Control Byte (Send) for BSC Line
Protocol Handler

BSC ASCII OUTPUT

ASCII output characteristics and format are as follows:

1. SOM (start-of-message) consists of only the STX
character.

2. The control byte, when specified, is assumed to be the
first byte of the application's buffer, and indicates the
EOM (end-of-message) sequence, which is either ITB, ETB,
or ETX, designated as follows:

a. Bit 6 must be o.
b. Bit 7 = o. Send ITB or ETB. ITB is sent when the

record is odd numbered (1, 3, 5, etc.) and the
double-block feature is used.

Bit 7 = 1. Send ETX.

If the control byte is not specified, the EOM sequence is
defined by I_DVS as described in 4 below.

3. Data must be 7-bit ASCII; it cannot have any BSC control
characters.

4. EOM, which is either ITB, ETB, or ETX, can be indicated
by the control byte (see 2 above) or by the C- and D-bits
of the IORB device-specific word I DVS (Table 11-4 as
follows):

a. C-bit must be zero.

11-22 CZ05-02

b. D-bit = O. Send ITa or ETB. ITB is sent when the
record is odd-numbered (1, 3, 5, etc.) and the
double-block feature is used.

D-bit = 1. Send ETX.

5. BCC (block check character) is described in Section 7,
"Line Protocol Handler Functions."

BSC EBCDIC OUTPUT

EBCDIC output characteristics and format are as follows:

1. SOM (start-of-message) consists of only the STX
character.

2. The control byte, when specified, is assumed to be the
first byte of the application's buffer, and indicates the
EOM (end-of-message) sequence, which is either ITB, ETa,
or ETX, designated as follows:

a. Bit 6 must be o.
b. Bit 7 = o. Send ITB or ETB. ITB is sent when the

record is odd-numbered (l, 3, 5, etc.) and the
double-block feature is used*

Bit 7 = 1. Send ETX.

If the control byte is not specified, the EOM
sequence is defined by I DVS as described in 4 belowo

3. Data may be a-bit EBCDIC; it cannot have any BSC control
characters.

4. BOM (end-of-message), which is either ITB, ETa, or ETX,
can be indicated by the control byte (see 2 above) or by
the c- and D-bits of the lORB device-specific word I DVS
(Table II-II) as follows:

a. C-bit must be zero.

b. D-bit = O. Send ITB or ETB. ITB is sent when the
record is odd-numbered (1, 3, 5, etc.) and the
double-block feature is used.

D-bit = 1. Send ETX.

5. BCC (block check character) is described under "Line
Protocol Handler Functions·, earlier.

11-23 CZ05-02

BSC TRANSPARENT EBCDIC OUTPUT

Transparent EBCDIC output characteristics and format are as
follows:

1. SOM (start-of-message) consists of the two-character
sequence DLE, STX.

2. The control byte, when specified, is assumed to be the
first byte of the application's buffer, and indicates the
EOM (end-of-message) sequence, which is either DLE ITB,
DLE ETB, or OLE ETX, designated as follows:

a~ Bit 6 must be O~

b. Bit 7 = o. Send DLE ITB or DLE ETB. DLE ITB is sent
when the record is odd-numbered (1, 3, 5, etc.) and
the double-block feature is used.

Bit 7 = 1. Send DLE ETX.

If the control byte is not specified, the EOM sequence is
defined by I_OVS as described in 4 below.

3. Data may be any EBCDIC character, including any BSC con
trol characters.

4. EOM, which can be either DLE ITB, DLE ETB, or DLE ETX,
can be indicated by the control byte (see 2 above) or by
bit 4 and bit 0 of the IORB device-specific word I OVS
(Table 11-4) as follows:

a. Bit 4 must be 1.

b. D-bit = o. Send DLE ITB or DLE ETB. DLE ITB is sent
when the record is odd-numbered (1, 3, 5, etc.) and
the double-block feature is used.

D-bit = 1. Send DLE ETX.

5. BCC (block check character) is described in Section 7,
nLine Protocol Handler Functions n•

11-24 CZ05-02

Section 12
TTYLlNE

PROTOCOL HANDLER

The TTY line protocol handler supports asynchronous terminal
devices, generically classified as teleprinter-compatible (TTY),
that include certain ASR, KSR, and visual information projection
(VIP) terminals. .•

A basic TTY terminal consists of either a printer and key
board or a VIP7l00/VIP7200/VIP7800 display and keyboard. (Paper
tape is not supported.) Each type of TTY terminal has an
asynchronous communications interface that permits operation at
up to 9600 baud.

GENERAL TTY LINE PROTOCOL HANDLER OPERATION

TTY Message Formats

Figure 12-1 illustrates TTY message formats. On input, the
application receives.only the text portion of the message. On
output messages, the application can control print format with a
control byte that is specified as the first character of the
output buffer (in the IORS device-specific word I DVS, described
later). At connect, read, or write, the applicatIon can, with
the I_DVS word, dynamically specify which message format is to be
used.

12-1 CZ05-02

I TEXT I CR, Ene, EOT; OR BUFFER FULL I INPUT

DYNAMIC I CONTROL I TEXT I EOM I OUTPUT
BYTE

I TEXT I 10M I OUTPUT

I i I !l\f"AM~e
CONTROL TEXT OUTPUT
BYTE

[TEXT I OUTPUT

Figure 12-1. TTY Message Formats

TTY Character Mode and Buffered Mode Transmission

TTY CHARACTER MODE

Transmission for all TTY terminals is usually in character
mode (one character at a time), a characteristic of the hardware
that provides that:

• The TTY line protocol handler does all editing of data
before any transmission.

• Multiple input lines are not allowed at the same time.

TTY BUFFERED MODE (VIP7200 AND VIP7800)

For VIP7200 and VIP7800 only, the buffered mode, available as
a hardware option, permits:

• The TTY line protocol handler to process multiple lines of
input at the same time

• The operator to do local editing of data before
transmission

• The application to instruct the TTY line protocol handler
not to edit input data.

12-2 CZO 5-02

Buffered mode permits the TTY line protocol handler to pro
cess a write order while a read order is pending. A "quasi full
duplex" operation gives the line protocol handler the ability to
have the application sent to the terminal sequences that cause
the terminal to send information back to the application's
buffer.

Buffered quasi full duplex operates as follows:

1. When the channel control program (CCP) of the multiline
controller (MLC) is currently processing a write order to
the terminal, a subsequent read or write operation is not
given to the CCP until the current write order completes.

2. When the CCP is processing a read order and the next order
is a write order, that write order is processed while the
read order is active.

3. When the write order (step 2) completes and the read order
has not yet completed, a subsequent read or write order
will not be processed until the read is completed. When
the read order is completed before the write order,
actions in 1 above take effect.

4. When the read order is completed, the line protocol
handler returns to its original , i.e., no orders
pending. The line protocol handler can initiate read or
write orders to the CCP.

VIP7200 AND VIP7800 HARDWARE SWITCH OPTIONS WITH CHARACTER OR
BUFFERED MODE

The TTY line protocol handler supports the following VIP7200!
VIP7800 hardware switch options for character mode or buffered
mode ration as follows:

Character Mode

CHARACTER/BUFFER switch in
CHARACTER position

Internal Even/Odd Parity
switch set to select EVEN

HALF/FULL DUPLEX switch in
FULL position

Buffered Mode

CHARACTER/BUFFER switch in
BUFFER position

Internal Even/Odd Parity switch
set to select EVEN

HALF/FULL DUPLEX switch in FULL
position

LINE/PAGE switch as required by
user

Internal end-oi-message switch
set to select ETX or EOT only

12-3 CZ05-02

I

VIP7200 AND VIP7800 FUNCTION AND CONTROL KEYS

Function and control keys on the VIP7200 and VIP7800 are sup
ported only in buffered mode.

When issuing a write request that will cause an automatic
response by the terminal, the application must first issue an
asynchronous read request, then issue a write request that con
tains a control message to the terminal.

TTY Line Protocol Handler Timeout Intervals

Table 12-1 lists the TTY line protocol handler's timeout
intervals for the LPH functions. These timeout intervals can be
altered by using the TIMEOUT eLM directive.

Table 12-1. TTY Line Protocol Handler Timeout Intervals

Line Protocol
Handler Function Timeout Interval

Connect Five minutes

Read Character mode: Five minutes after receipt of
the first character of the
message

Buffered mode: Five minutes after the line
protocol handler receives the
request

Write Thirty seconds

USING THE TTY LINE PROTOCOL HANDLER

TTY-Specific IORS Values

The TTY-specific IORS item I CT2, device-specific word I DVS,
and software status word I ST are shown and defined in Tables
12-2, 12-3, and 12-4, respectively. User-specified bits not
specifically described in these tables must be O. Section 4
describes the general form of the IORS.

Control and Characteristics of TTY Input Data

This subsection describes user control over the character
istics of TTY input data, and applies to character-mode process
ing unless otherwise noted.

12-4 CZOS-02

Table 12-2. Function Codes in I CT2 of the IORS

Function
Code Definition Use

0 Wait online Used by the line protocol handler
1 Write to complete the description of
2 Read the requested I/O function
A Connect
B Disconnect

Table 12-3. TTY Device-Specific Word I DVS in the IORS

Bit
Number Meaning of Bit Setting

0 Must be zero

1 Must be zero

For connect call only (function code A)

2 o = Do not use Auto Call Unit
1 = Use Auto Call unit

3 Must be zero

4 0 = First byte in buffer on output is a control byte
1 = First byte in buffer on output is a data byte

For read call only (function code 2)

5 o = Input data is in nontransparent mode
1 = Input data is in transparent mode

6 Must be zero

For write call only (function code 1)

7 o = Stop output immediately on detecting a BRK received
from the terminal

1 = Continue output when BRK detected

8 Must be zero

9 Must be zero

12-5 CZ05-02

Table 12-3 (cont). TTY Device-Specific' Word I_DVS in the IORS

Bit
Number Meaning of Bit Setting

For read call only (function code 2) ,

A o = Do not echo keyboard input
1 =: Echo keyboard input

For read and write calls (function codes 2, I)

B 0 = No LF (line feed) at end of message
1 = LF (line feed) at end of message

C 0 = CR (carriage return) at end of message
1 = No CR (carriage return) at end of message

For connect call only (function code A)

D 0 = Data transfer is in character mode
1 = Data transfer is in buffered (block) mode

For disconnect call (function code A)

E 0 = Abort (dequeue) all IORB.s on the request queue
1 = Process outstanding requests on the request queue

F 0 = Hang up phone after disconnect
1 = Do not hang up phone after disconnect

TTY CONTROL BYTE (INPUT)

The description of the TTY control byte for output (see "TTY
Control Byte (Send)" below) applies also to the TTY line protocol
handler's control byte for input.

TTY NONTRANSPARENT INPUT

TTY input is nontransparent when the application sets bit 5
of the IORB's device-specific word I DVS (Table 12-3) to O.
Input is accepted until either the end-of-range or a CR (carriage
return), ETX (end of text), or EOT (end of transmission) control
character is reached. The CR, ETX, or EOT control character is
not transmitted as part of the message.

TTY TRANSPARENT INPUT

TTY input text is transparent when the application sets to 1
bit 5 of the device-specific word I DVS at read time (Table
12-3). All input data, including any control characters, is
stored in the buffer until end-of-range is reached.

12-6 CZOS-02

Table 12-4. TTY Software Status Word I ST in the IORS

Bit Meaning When Bit Set to 1

o N/A

1 N/A

2 Data service rate error

3 N/A

4 Communications control block (CCB)
service error

5 No stop bit in character input

6 Long record

7 N/A

8 N/A

9 N/A

A Nonzero residual range

.\ B Phone hang-up

C N/A

D N/A

E N/A

F Fatal error: bus parity or memory error

TTY LINE FEED (LF) AND CARRIAGE RETURN (CR) INPUT SEQUENCE

The application can specify at read time a sequence of LF and
CR characters, with the B- and C-bits of the IORB's device
specific word I DVS, as indicated in Table 12-3. When the mes
sage is receivea successfully, the specified character combina
tions are retransmitted back to the terminal.

KEYBOARD INPUT CHARACTER AND LINE CONTROL

When an input character with a parity error is received, the
line protocol handler sends a BEL character back to the termi
nal. The user must then retype that input character if it is to
be included in the text being sent to the application.

12-7 CZOS-02

The user can correct or delete erroneous characters or lines
and can declare control characters to be data characters, as·
described below.

To correct one or more characters in the current line, i.e.,
before the CR is pressed, press the @ key. This deletes the
character that immediately preceded the @ character, and displays
the @ symbol. Each succeeding @ entry deletes another character,
moving from right to left to the beginning of the line~

To delete the current line, i~e., before the CR is entered,
press and hold the CTRL (control) key and press X. This deletes
the current line, displays the message *DEL* on the next line,
and results in a carriage return. The user can then enter a cor
rect line.

To cause a control character (e.g., @, CTRL X, CR, and \) to
be accepted as a data character (transparent mode) press the
backslash (\) key before entering that control character. The
system interprets the backslash as an escape character. In
transparent mode, all input characters are data characters and
have no editing functions.

TTY DISPLAY OF INPUT CHARACTERS

The user can cause an input character to be echoed to the
terminal (displayed on the screen or typed on the console) by
setting to 1 the A-bit of the device-specific word I DVS (Table
12-3). For full duplex printers, the application need specify
that characters be returned only when they are to be echoed by
the system software.

TTY INPUT IN BUFFERED MODE (VIP7200 AND VIP7800 ONLY)

When the application at connect time sets to 1 the D-bit of
the device-specific word I DVS, input is accepted until an ETX or
EOT control character or end-of-range is encountered.

When the application sets bit 5 of I DVS to 1 at read time,
TTY input in buffered mode is transparent, i.e., there is no
editing. When the bit 5 is set to 0, TTY input in buffered mode
is nontransparent; i.e., control characters are edited.

As in character mode, the application can specify an LF and
CR sequence, as described above under "Line Feed (LF) and Car
riage R~turn (CR) Input Sequence."

Control and Characteristics of TTY Output Data

This subsection describes user control of the characteristics
of TTY output data and is applicable to character-mode processing
unless otherwise stated.

CZ05-02

TTY CONTROL BYTE (SEND)

The TTY line protocol handler's control byte, included as the
first character of the application's buffer, controls the mes
sage's head-of-form sequence. At connect time, the application
specifies the control byte by setting to 0 bit 4 of the IORB's
device-specific word I DVS (Table 12-3). Figure 12-2 shows the
format and content of the TTY control byte.

lITO:
O· NO IPECfAL ACTeON

1 .. IGNORE CARFUAGE RETURN
AND/OR LINE FEED IN
DEVICE~eCIFIC WORD

Bm 1 THROUGH 2:

BIT:!:

NOTUSEO

0" DO NOT GENERATE A
MEAD-OF-FORM SEQUENCE

, • GENERATE HEAD-OF.f=ORM
llEOUl:NCE CONSISTING OF
Lf. DL ISSUED THREE TIMES

11"1'14 THROUGH 7:
NOT USED. MIJ$T DE ZERD

Figure 12-2. Control Byte for TTY Line Protocol Handler

END-OF-MESSAGE (EOM) SEQUENCE ON TTY OUTPUT

The EOM sequence is controlled by the B- and C-bits of the
IORB's device-specific word I DVS (Table 12-3), as specified by
the application at write time:- The TTY line protocol handler
sends an EOM sequence according to the following B- and C-bit
values:

I DVS Bits

B C EOM Seg:uence

0 0 CR, DEL, DEL
0 1 DEL, DEL
1 0 LF, CR, DEL, DEL
1 1 LF, DEL, DEL

At read time, the application can specify the same B- and
C-bit values in order to send an EOM sequence back to the termi
nal when the message is successfully received.

12-9 CZ05-02

TTY DETECTION OF BRK CHARACTERS

When the application sets to 0 bit 7 of the device-specific
word I DVS at write time, the line protocol handler will imme
diately stop all output when it detects a BRK key character in
the input stream from the terminal. The line protocol handler
ignores the BRK character when bit 7 is set to 1, until the write
order is completed.

TTY OUTPUT IN BUFFERED MODE

Control and characteristics for TTY output in buffered mode·
are the same as described above for character mode. However, in
processing in buffered mode (VIP7200!VIP7800 only), the line
protocol handler processes all physical I/O requests in the same
sequence as they are received. If there is already an
outstanding read request, only a subsequent write request can be
initiated before the read request is satisfied or the timeout for
that read request is elapsed.

12-10 CZ05-02

Section 13
3270 TERMINAL FACH.JTY

LINE PROTOCOL HANDLER

The BSC 3270 Terminal Facility (BTF) line protocol handler
supports ASCII and EBCDIC transmission between the 3270 type IBM
controllers and a DPS 6 system.

The following IBM controllers are supported:

3271 models 1 and 2
3274 models lC and SIC
3276 models 2, 3 and 4.

The following attached devices are supported:

3277 display model 2
3278 display models 2, 3, 4 and S
3279 display models 2 and 3
3287 printer models 1 and 2.

The IBM controllers and devices listed above are described
fully in the IBM literature. It is assumed that the reader is
familiar with the operation of IBM 3270 type devices and BSC
protocol.

This section includes the following topics:

• Software functions supported

• Software restrictions

13-1 CZOS-02

• Modes of operation

TTY Mode
ROP Mode
Block Mode
Logical Terminal Mode

• IORB processing

device specific word
processing order
purging queued IORBs

• Break processing

• AID keys ,in TTY proc.essing

• Read commands supported

• DARTS probe points table.

SOFTWARE FUNCTIONS SUPPORTED

The BTF supports the following functions of the IBM 3270
controllers:

• Multi-point configuration

• Modem, direct connect, and modem bypass interconnection

• Auto answer for switched network operation

• 2/4 wire lines

• Four selectable presentation control modes

TTY (terminal characteristics) mode
Block mode
ROP (read-only printer) mode
Logical Terminal mode

• Selectable data translation on a per order basis

• Selectable line poll frequency

• Support of 3270 device alternate buffer size through a CLM
configurable input buffer size (Block mode only)

• Master LRN processing

• Supervisory message processing (Block mode only)

• Break processing (TTY mode only)

13-2 CZ05-02

• Limited 7800 attribute interpretation (TTY mode only)

• Pre-editing (control byte) and post-editing selected by
device specific words (DSW) bits

• Return of 3270 device status/sense inforamtion with each
order

• Entry of 24 lines of input in the transmission (multiple
line input) from the terminal.

The BTF is accessed indirectly through the File System. To
read input from a terminal an application issues a Read Record
request, either by issuing a Read Record macrocall and supplying
parameters in an associated file information block (FIB), or by a
User-in macrocall or high-level language statement. The File
System translates the macrocall and FIB parameters into a $RQIO
macrocall and associated read Input/Output Request Block (IORB).

The File System interface provides a sequential file
interface to terminals. It can be used with any mode of the LPH,
but since the application cannot access the File System's IORBs,
those features which utilize the extended IORB format (i.e.,
Master LRN, 3270 status/Sense Reporting and, in TTY mode, AID
byte reporting) cannot be used.

SOFTWARE FUNCTIONS RESTRICTED

The BTF restricts the following functions of the IBM 3270
controllers:

• Transparent mode is NOT supported~ this implies that
extended highlighting, color, programmed symbols and 14
bit addressing are not supported.

• Screen size is restricted to 1920 characters in TTY mode

• ASCII code terminals are not supported.

MODES OF OPERATION

The BTF operates in four modes:

1. TTY mode, which supports line-at-a-time transfer of data
to or from any of the above display models (CRTs).

2. ROP (receive-only printer) mode, which supports the
transfer of data to the printer via the File System.

3. Block mode, which supports the transfer of 3270
datastream data to or from any of the supported devices.

4. Logical Terminal mode, which supports the transfer of
data to and from another computer.

13-3 CZOS-02

The mode is selected by means of a connect IORS and rema.ins
in effect until a disconnect IORB is received. The following
subsections describe the uses of each mode.

TTY Mode

TTY mode is the default operating mode for CRT terminals, the
user need not specify this mode in the connect IORS Device
Specific Word (DSW). This mode is used primarily by the File
System, which treats a terminal (configured by means of the
device directive) as a sequential file. In this mode a terminal
can be used as the input and output file of a task group (i.e.,
user-in, user-out, command-in, and error-out).

LINE AT A TIME INPUT AND OUTPUT

TTY mode provides for line-at-a-time input and output. The
field or line following the last input or ouput operation is
unprotected to allow input by the operator. All other fields on
the screen are protected. The operator enters data into the
unprotected field.and can perform editing with the terminal's own
editing capabilities. When satisfied, the operator transmits it
to the DPS6 by pressing ENTER.

MULTIPLE LINE INPUT FEATURE

For situations in which interaction between the application
and the operator is unnecessary, the BTF supports a multiple line
input feature for inputting a large volume of data. The operator
requests this mode by pressing the PAl key. The operator can
then enter and edit data on any of the 24 lines. When satisfied
with the input, the operator transmits it to the DPS 6 by
pressing ENTER. In order to be transmitted, a field must have
been modified by the operator. The operator can return to the
line-at-a-time method of operation pressing the PAl key again.

BREAK MODE PROCESSING

Break mode processing is supported in TTY mode through the
PA2 key. If the terminal is in multiple line input mode when
break processing is entered, it returns to normal line-at-a-time
mode. When break mode is entered, any input at terminal not
transmitted to the host is lost.

ROP Mode

ROP mode is the default operating mode for printer
terminals. The user need not specify this mode in the connect
IORB DSW. Printout is formatted at the printer by form-feed
(FF), carriage return (CR) and line feed (LF) characters. Note
that the ASCII LF character is converted into the EBCDIC new line
(NL) cha:acter. An end mark (EM) character is appended to the
printer ouput. Post-order editing is not supported as an implied
CR. LF is done at the end of a write operation to a printer.

13-4 CZOS-02

A description of supported GCOS control bytes is listed in
Table 13-1. The BTF retains write IORBs until one of the
following occurs:

• The write IORB is posted with zero status and
notification has been sent that the printer is ready for
another write operator

• The write IORB is posted with an error status and
notification has been sent that an error has occurred
during printing

• The write IORB is posted with an error status indicating
that a timeout has occurred and notification has not been
sent.

Two types of read IORBs can be issued to printers:

1. Normal status reads - returns the last status/sense bytes
returned by the printer.

2. Attention read - returned after a device status change.

Block Mode

Block mode is intended for applications which make full use
of the 3270 datastream facilities. Both CRTs and printers may be
connecte4 in Block mode.

Table 13-1. Supported GCOS Control Bytes.

Hex. Meaning

OO-IF Single line feed; print
20 No Print
2l-2F Multiple (N) line feed
30 Form feed; no print
3l-3F Single line feed; no print
40 Single line feed; print
41-4F Multiple eN) line feed; print
50 Form feed; print
51-60 Single Line Feed; Print
6l-6F Multiple (N) Line Feed; Print
70 Single Line Feed; Print
7l-7F Multiple (N) Line Feed; Print

NOTE

(N) N = number of lines fed (range is from 1 to 15)

13-5 CZ05-02

In Block mode writes and reads, the application has an option
of specifying whether the data is in ASCII or EBCDIC. The .
operational differences between these two options are discussed
below. The BTF directives allow you to specify if data is always
ASCII (all translation done in the CCP), always EBCDIC (no
translation required), or ASCII/EBCDIC (where translation is done
in the LPH causing higher CPU usage). The ASCII and EBCDIC
character sets and their equivalents are illustrated in
Appendix D. Figure 13-1 shows the 3270 datastream.

READ COMMANDS

Typically, an application should receive inbound data by
issuing ;::I read !ORB to receive transferred information. In Block
mode, the 3270 read commands, Read Buffer and Read Modified, are
also supported. Read Buffer causes the entire buffer contents of
the addressed device to be transferred back to the host and is
used primarily for diagnostic purposes.

A major feature of Read Modified is null suppression. To
execute a host initiated read command, the application must first
issue a read IORB large enough to accommodate the inbound data
stream. Then the read command is passed to the BTF in a write
IORB. The completed read IORB buffer contains the received data
stream. The Read Modified command should be used selectively
because the general poll initiates a control unit generated Read
Modified operation if an Attention Identification is generated
with no status pending.

ASCII CODE

ASCII is the default IORB option. The entire buffer is
translated to or from ASCII with the exception of the following
exempt bytes:

• The ESC, Command, WCC/CCC characters at the start of a
write buffer

WRITE COMMAND

WRITE CMD,WCC,ORDER,TEXT STX,ESC --- --------~------------BTF APPLICATION

READ COMMAND

STX,ESC READ CMD ETX -- -...-
BTF APPL BTF

Figure 13-1. 3270 Data Stream

13-6

ETX

BTF

CZOS-02

• The AID, Cursor 1, Cursor 2 characters at the start of a
received message

• The buffer address bytes following the SBA, EUA and RA
orders in the write buffer

• The attribute byte following the SF order in the write
buffer

• The buffer addresss bytes following the SBA order in a
received message. .

In order to receive ASCII data in Block Mode the line should
have been configured at CLM time as ASCII or ASCII/EBCDIC.

EBCDIC CODE

The BTF treats writes and reads specifying EBCDIC as messages
to be passed directly between the application and the terminal.
No inspection of message is done by the LPH. In order to receive
EBCDIC data n Block Mode the line should have been configured at
CLM time as EBCDIC or ASCII/EBCDIC.

Logical Terminal Mode

Logical terminal mode allows the transfer of ASCII data to or
from another computer.

On write orders the BTF adds a three byte header consisting
of ESC.Erase_write.WCC before transmitting the message. On read
orders all but the first five bytes of the message, a two byte
address followed by three-bytes consisting of
AID.cursorl,cursor2, is passed to the application.

Logical terminal mode is a connect time option rather than a
CLM directive option to accommodate computers which require the
ability to run full 3270 terminal emulation at one point, and a
file transfer operation at another point.

MASTER LRN PROCESSING

In order to use memory more efficiently, the BTF maintains a
master LRN for each line. Master LRN processing requires an
extended IORS.

The application issues a connect IORS using the extended IORS
format, selecting master LRN in the left-hand byte of offset
I DV2. The application can then issue read IORSs to the master
LRN. If there is input from a terminal connected in the master
LRN mode and if there is no read IORB issued against the
terminal's own LRN, then the input is transferred to the buffer
of the first master LRN IORB. The LRN of the responding terminal
is put in the left byte of offset I DV2 of the IORB.

13-7 CZ05-02

The application can select on a station basis whether to.
process any input from the terminal or operate in a two-way
alternate (TWA) mode. For TWA mode, Operator Entry Time (OET)
must be defined in the write IORB. A terminal is set in OET
after a write to the terminal and reset after input is read from
the terminal. Terminal input is only passed to the master LRN if
the terminal is in OET.

IORS PROCESSING

The BTF supports five logical functions:

• Connect
~ Disconnect
• Read
• Write
• Break.

The device-specific word I DVS is used in conjunction with
each of the I/O functions. ThIs word serves to specialize the
activity of a particular function. For example, the setting of
bit 15 in I DVS determines whether the communication line is
disconnected on completion of a disconnect function.

An application can issue one I/O order against a temrinal and
wait for its completion or issue several IORSs. Outstanding read
and wirte orders and non-abortive disconnects are queued
sequentially. In all modes write IORSs have priority over read
orders. A write order issued to a terminal whose operator is
preparing input can cause the terminal to lose the input.

When a disconnect with queue abort is issued for an open
terminal, the BTF purges queued IORBs and posts the incomplete
orders back to the requesting applications. All queued read and
write orders for that terminal are posted with a OIOB status.

The IORS device-specific word I DVS for connect, disconnect,
read, and write calls are shown in Tables 13-2 through 12-5. The
software status word I ST and software return codes in I CTI are
shown in Tables 13-6 and 13-7, respectively. Bits not explicitly
described in the tables must be O. Section 4 describes the
general form of the IORB.

AID KEYS

The read data stream begins with a heading consisting of the
Attention Identification (AID) character and a two-character
cursor address. The AID key default values are as follows:

ENTER (7D) = transmit screen information back from terminal
CLEAR (6D) = clear terminal screen
PAl (6C) = enter into multiple line input in TTY mode
PA2 (6E) = exit from multiple line input in TTY mode
PA3 (6B) = break processing requested.

13-8 CZOS-02

Table 13-2. BTF Device-Specific Word I DVS for connect calls

Bit
Number Meaning of Bit Setting

o and 1 00 = Default mode (for CRT - TTY, for printers - ROP)
01 = Logical terminal mode
10 = Block mode
11 = Reserved for future use

2 0 = Do not use autodial
1 = Use autodial

3 and 4 Must be zero

S, 6, Line poll interval:
and 7 000 = I-second poll interval

001 = I-second poll interval
010 = 2-second poll interval
011 = 3-second poll interval
100 = 4-second poll interval
101 = S-second poll interval
110 = IS-second poll interval
III = 30-second poll interval

8 and 9 Must be zero

A and B Master LRN:
00 = Do not allow master LRN processing at this time.
01 = Allow master LRN processing_
10 = Reserved for future use.
11 = Allow master LRN processing, enforce two-way

alternate between line and application

NOTE

The line poll interval is the interval the BTF
pauses between polling all the control units
configured on that line. The line poll interval
is obtained from the first connect IORB for that
line. Subsequent connect calls with different
poll intervals are ignored.

Example: TPS 6 uses block mode and master LRN
wi th two-way alternate processing. If the
requested poll interval is one second, the DSW for
a connect call is 8130.

13-9 CZOS-02

Table 13-3. BTF Device-Specific Word I DVS for disconnect

Bit
Number Meaning of Bit Setting

C

D

E

F

Bit
Number

0

1 and 2

3

9

A

B

C

D, E
and F

0=-
1 = If terminal is in master LRN processing, purge a

master LRN read

Must be zero

o = Purge all queued IORBs for this terminal
1 = Process queued IORSs before processing this

disconnect

o = Hang up phone upon processing disconnect
1 = Leave phone connected

Table 13-4. BTF Device-Specific Word I DVS for read

Meaning of Bit Setting

o = Normal status read
1 = Attention read

Must be zero

o = ASCII data wanted - translate it
1 = EBCDIC data wanted - no translation required

0=-
1 = Supervisory message, IORB

Must be zero

o = No line feed at end of message
1 = Line feed at end of message

o = Carraige return at end of message.
1 = No carriage return at end of message

Must be zero

13-10 CZOS-02

Table 13-5. BTF Device-Specific Word I DVS for write

Bit
Number

3

4

5

6

7 and 8

9

A

B

C

D, E
and F

Meaning of Bit Setting

o = ASCII data wanted - translate it
1 = EBCDIC data wanted - no translation required

0 = Control byte present
1 = No control byte present

a = Process next operator entry
1 = Ignore next operator entry

0 = -
1 = Dummy write - place terminal in

Must be zero

0=-
1 = Supervisory message, lORS

Must be zero

o = No line feed at end of message
1 = Line feed at end of message

OET

o = Carraige return at end of message
1 = No carriage .return at end of message

Must be zero

Table 13-6. BTF Software Status Word I ST in the IORS

Contents
Bit of $R1 Meaning When Bit is Set to 1

0 lOB No response from a read
2 0 Data service error (receive overrun)
3 0 RVI received
4 107 CCB service error
5 0 Break processing
6 0 Long record received
8 107 Excessive entries
A 0 Non-zero residual range
B lOB Phone hang up
C 0 Invalid response received
E 0 Busy received
F 107 FATAL error

13-11 CZ05-02

Table 13-7. BTF Return Codes in I CTI in IORB

status byte Meaning

00 No error; operation complete

04 Invalid argument (s) - improper set-p of lORB

05 Device not ready

06 Time-out on non-connect order

07 Hardware error

OA Controller unavailable

OB Device unavailable
- read/write purged by data status change
- read/write lORB purged by disconnect with queue

abort

OC Inconsistent request
- connect order issued against a device that is

currently connected
- read/write order issued against a device that ~s

. currently connected

35 CCP not configured for this communication controller

36 Telephone number required for autocall has not been
supplied

37 Telephone numbers supplied for autocall not answered
or busy

38 Sub_LRN not configured or enabled

3F Connect or disconnect in progress

The BTF also allows you to alter the meaning of AID keys in
TTY mode. Table 13-8 contains all recognized AID keys that are
available to accommodate such need.

13-12 CZ05-02

Table 13-8. Recognized AID keys in TTY mode

Read Modified
AID Hex (EBCDIC) Command Operation

ENTER 7D Rd Mod
PFI Fl Rd Mod
PF2 F2 Rd Mod
PF3 F3 Rd Mod
PF4 F4 Rd Mod
PF5 F5 Rd Mod
PF6 F6 Rd Mod
PF7 F7 Rd Mod
PF8 F8 Rd Mod
PF9 F9 Rd Mod
PFIO 7A Rd Mod
PFl1 7B Rd Mod
PF12 7C Rd Mod
PF13 C1 Rd Mod
PF14 C2 Rd Mod
PF15 C3 Rd Mod
PF16 C4 Rd Mod
PF17 C5 Rd Mod
PF18 C6 Rd Mod
PF19 C7 Rd Mod
PF20 C8 Rd Mod
PF2l C9 Rd Mod
PF22 4A Rd Mod
PF23 4B Rd Mod
PF24 4C Rd Mod

PAl 6C Short Rd
PA2 6E Short Rd .
PA3 6B Short Rd
CLEAR 6D Short Rd

Table 13-9 lists the offsets provided in patch ZQP327, which
you can use to change the meanin9 of the existing AID keys. The
right half byte of each word represents an AID key in hex, the
left half byte represents the function of the AID key as follows:

00 = transmit or enter
01 = enter/exit into multiple-line-input
02 = reserved for future use
03 = break processin9
04 = clear terminal screen
05 = no meaning_

13-13 CZ05-02

Table 13-9. AID key programming Offsets

OFFSET DEFAULT MEANING

OOSF 7DOO ENTER
0060 6D04 CLEAR
0061 6C01 PA 1
0062 6E02 PA 2
0063 6B03 PA 3
0064 7AOS PF 10
0065 7BOS PF 11
0066 7C05 PF 12
0067 4AOS PF 22
0068 4BOS PF 23
0069 4COS PF 24

O,06A C105 PF 13
006B C20S PF 14
006C C30S PF 15
006D C40S PF 16
006E CSOS PF 17
006F C60S PF 18
0070 C70S PF 19
0071 C80S PF 20
0072 C90S PF 21
0073 C90S PF 21 DUMMY
0074 C90S PF 21 DUMMY

0075 FOOS TEST (or SYS REQ)
0076 F10S PF 1
0077 F20S PF 2
0078 F30S PF 3
0079 F40S PF 4
007A FSOS PF 5
007B F60S PF 6
007C F70S PF 7
007D F80S PF 8
007E F905 PF 9
007F F90S PF 9 DUMMY

DARTS PROBE POINTS

Strategic TIPS are incorporated into the BTF code so that
desired data collection is possible when DARTS is invoked. Use
these steps to collect information.

1. Add the following CLM directive to your CLM USER file:

DRIVER ZQDART,LRN,LEVEL,X'FFCO'

13-14 CZOS-02

2. Create the data base file »SID>BULLSEYE

TOE 35
BFR 1000 10 5
LOG »UDD>DARTS LOG

3. Create the log file »UDD>DARTS LOG

4. Invoke DARTS

$S DARTS

5. Specify the TICS file

o XEC »SID>ZQP327.TICS

6. Activate desired probe points for data collection

o ACT C5XX

where xx is either a two-digit hex number, or ** to
indicate all TIPS.

7. Terminate DARTS activity

o XIT

B. Collected data can be printed from group $H:

$H DARTS FMT »UDD>DARTS_LOG -OUT !LPTOO

Table 13-10 contains a list of available DARTS probe points.
For further information about DARTS refer to the GCOS 6 Data Base
Augmented Real-Time Tracing System User's Guide"

Table 13-10. DARTS Probe Points

TIPS Meaning
.

C500 LPH Entry
C501 Read lORE
C502 Multiple Line Input Operation
C503 Connect IORB
C504 write IORB
C505 Disconnect IORB
C506 CQB Terminate
C507 Issue CQB(s)
C50B Issue CQB(s)
C509 Fatal Error
C50A setting up CQB
C50B Event monitoring: task level processing
C50C Post read/write IORB

13-15 CZ05-02

Appendix A
TRAP HANDLING

A trap is a special software or hardware related condition
that may occur during execution of a task. Traps include such
conditions as a program error, memory defect, arithmetic over
flow, or the issuance of an instruction that calls for
hardware/software not configured into the system. Table A-I
lists the traps to which the system's hardware/firmware responds.

The design of any application program should provide that
when a trap occurs, the hardware/software response will include
calling a dedicated software routine (a trap handler) to react to
the trap. When trap handlers are provided, the task that caused
the trap may now handle the trap in a systematic and orderly way.

TRAP SAVE ARE'AS

Trap handling routines make use of trap save areas (TSAs). A
trap save area is a I04-word data structure that contains the
following:

• The contents of several registers. These registers are
available for use by the trap handling routine because
their contents can be restored upon the routine's
completion.

• The instruction associated with the trap.

• The address contained in the program counter when the trap
occurred. This is the address to which a return is made
when the trap ,handler routine terminates.

A-I CZ05-02

::r=o
I

IV

(')
N
o
l.11
I

o
IV

Table A-I. contents of Selected Words of Trap
Save Area When Trap Occurs

Trap NlmDer and Conditioo Specific Event Saved Instruction Sa'"ed Z-Word' &IVed A-Word

0 One of the follaodll9:
Cleanup trap

• Trap cooditioo for which
no other trap is enabled

• Abort Task Group CCIIIIlIUld

I MQ. instruction 0001 BOxl Unspecified
Monitor call; implicitly
handled I¥ the q>erating
system

I PI Camand Unspecified Unspecified Unspecified
Software trap

2 BRK instruction 0002 90xl Unspecified
Breakpoint instruction

3 Scientific instructioo whose Instruction that BOxl Unspecified
Scientific floating point address expression generates caused trap
q>eration when SIP hard- a reference to a register
ware not in system

Scientific instructioo whose First word on OOxy Effective address
address expressioo generates instruction that generated by address
a reference to memory caused trap expresl.ion .

4 Instruction not recognized by same as for trap 5 Same as for tr ap 5 Effective addre!;s of
Unrecognized q;> code CPU or SIP trap operand

5 Undefined instruction whose Instruction that BOxl Unspectfied
Scientific Branch address expression generates caused trap
instruction when SIP a reference to a register
hardware not in system,
or any other q>eration Undefined instruction whose First word of OOxy Effecticve address
not supported address expression generates instructioo that generated by address

a reference to memory caused trap expresGion .

6 Overflow of target R-register Instruction that BOx! Unspecified
Integer arithmetic over- during executioo of instruc- caused trap
flow (with appropriate tion whose address expression
overflow trap enable bit generates a reference to a
of Ml register set to 1) register

OVerflow of target R-register First word of OOxy EffecUve address
during execution of instruc- instruction that generated by address
tion whose address expression caused trap
generates a reference to
memory

7 A scientific divide (~ Unspecified Unspecified 'I Pointer to sci en-
Scientific divide by zero instruction has a divisor of tific instruction

zero that cclUsed tr ap

B A scientific q>eration pro- Unspecified unspecified Pointet to scien-
Exponential overflow duces an exponent greater tific instruction

than +63 that caused trap

-Saved Progran Counter

l -
I Next location

!

Unspecified

1, Next location

-unspecified

Next instruction

-Next instruction

Next instruction
I

Next instruction

Next instruction

Next instruction

Next CPU instruction

Next CPU instruction

)oJ
I

W

(')
r:.:a
o
VI
I
o
to.)

Table A-I (conti .. Contents of Selected Words of Trap
Save Area When Trap Occurs

Trap N\mt)er and Conditim Specific Event Saved Instruction Saved Z-Word Saved A-Word -13 lILT, RTQ\J, R'l'CF, WDTN, or Instruction that 8001 Unspecified
Unrviv~ed use of WDTF C instructl.m caused trap
pc viI operation

LEI! instructiOl'll w100ae address Instruction that Unspecified 8001
expressiOl'll generates refer- caused trap
ence to a register

LEI! instructiOl'll whose address First word of OOOy Effective address
expression generates a [@fer- instruction that generated by address
ence to memory callsed trap expression

Input/output im'i:ructiOfll Fiest word of 8002 UnspeCified
whose first-word address instruction that
expressiOl'll generates a refer- caused trap
ence to a register

Input/output instructioo First word of OOOy Effective acf-ess
whose first-word address instruction that generated by address
expression generates a refer- caUlled trap expression
ence to memory

- ~~ ..
14 Instruction that refers to First word of OOxy Effective address

Unauthorized reference a memory segment with OJ instruction that generated by address
to protected memory ring privilege higher tlwl caUlled trap expression

the executing task's
--='-""=,,~=~

IS Instruction whose address First word of OOxy Effective address
Reference to unavailable expression generates a refet- instruction that generated by address
resource ence to (1) a memory addrl!!Ss caused trap expression

higher than the highest
memory address available but
less than 641{ or 121 through
indexing. a ·wraparound"
memory address higher than
641{ or less tlwl 0

Input/output instruction First word of eoSy unspecified
that specifies an improper instruction that
channel nuntler; address caused trap
expression generates a refer-
ence to a register

Input/output instructioo that First word of OOSy Effective address
specifies an improper channel instruction that generated by address
nuntler; address expression caused trap expression
generates a reference to
memory

wtmI or WD'l'F instructioo and 0006 (WDTN); 0007 BOx} Unspecified
watchdog timer not installed (WD'.l'F)

-

;.

Saved Progr am Counter

Next location

Next instruction

Next instruction

First word of
instruction that
caused trap, plus 2

First word of
instruction that
caused trap, plus y

Next instruction

Next instruction

First word of
instruction that
caused trap, plus y

First word of
instruction that
caused trap, plus y

Next location

:r
"'"

(')
N
o
U1
I

o
N

Tabl e A-l (cont).

Trap N\Jlt>er and Condition Specific Event

16 R'IT instruction while '!'SAP
Program logic error contains a null pointer

Instruction whose address
expression illegally gener-
ates reference to a register
(i.e., this instructioo is
not permitted to use a rll9is-
ter address syllable)

17 Bus par i ty error or unrecov-
Bus parity or memory erable memory data error
error

19 An operation produces an
Scientific underflow exponent value of less than

-64 while the associated
enable bit in register M5 is
set

20 A program error is detected
Program error (SIP) by the SIP

21 An integer is truncated
Scientific Significance during floating-point-to-
error integer conversion while the

associated enable bit in
register M5 is set

22 The nonzero portion of a
Scientific precision fraction is truncated while

the associated enable bit of
register M5 is set

23 The SIP or Camlercial CP
Nonexistent resource attempts a write or read
error request bus cycle and

receives a NAK

24 A read error occurs which the
Noncorrectable memory EDAC cannot correct, or the
error or Megabus error SIP or elP detects a parity

error

25 The divisor of a decimal
COmmercial CIP divide by divide instruction (00If) is
zero equal to zero

---.----~-

Contents of Selected Words of Trap
Save Area When Trap Occurs

Saved Instruction Saved Z-word' Saved 1.-WOrd Saved Progrll1l Counter

Instruction that SOx! Unspeci fieel Next instruction
caused trap

Instruction that SOx! unspecifieci Next instruction
caused trap

unspecified Unspecif ied Unspecified Unspecified

Unspecified Unspecified Poil~ter to IScien- Next CPU instruction
tific instrlJCtion
that caused trap

Unspecified Unspecified Pointer to llCien- Next CPU instruction
tiflc instruction
that caused trap

unspecified Unspecified Pointer to f;cien- Next CPU instruction
tific instruction
that caused trap

Unspecified Unspecified Pointer to scien- Next CPU instruction
tific instruction
that caused trap

Unspecif ied Unspecified Pointer to sci en- Next CPU instruction
tific instruction
that caused trap

Unspecified Unspecified Unspecified Unspecified

Unspecified Unspecified Pointer to O:mner- Next CPU instruction
cia! CP instruction
that caused 'crap

_. ---

I

>
I

01

()
t-:I
o
01
I

o
N

Table A-I (cant)" contents of Selected Words of Trap
Save Area When Trap Occurs

Trap Nimtler and Condition Specific Event: Saved Instruction Saved Z~ord' Saved A~ord

26 d Any of the following, llnspecifiOld Unspecified Pointer to Camler-
Camlercilll CP illegal cial CP instruction
specification e Undefined elP op code that caused trap

detected.

• One or both descriptors of
an alphanumeric instruc-
tion is pecked decillal.

• Decimal operand has a zero
length.

• Operand in an Edit, v'RF,
or SRH instruction has a . zero length •

• A separate signed decimal
operand consists of only a
sign (i.e., no digits).

.. In a Move and Edit
instruction, the length of
the receiving field was
not exhausted, but either
there are no micro-ops or
the sending field length
is exhausted.

• A second data descriptor
specifies an lHO, e><cept
for DOl and ACl'!
instruct! OIlS.

., The first data descriptor
in a DSH specifies an tHO.

.. A third data descriptor
specifies an lHO.

• In an SRI! instruction, the
search length list is less
than the search argument
list, or operand length
less than operand element
length.

• In a VHF instruction,
verify list length is less

• than verify argument
length, or operand length
is less than operand ele-
ment length.

- -~-.- ------

Saved Program Counter

Next CPU instruction

:r
0'1

o
N
o
U1
I

o
to.)

Table A-I (cont). contents of Selected Words olE Trap
Save Area When Trap Occurs

Trap NImtler and Conditim Specific Bvent Saved Instructim Saved Z~ord· Saved A-Hord

27d I.rrJ of the following: lJnIIpecified unspecified Pointer to ca-r-
ca-rcial Q> illegal cial Q> instruction
character • Illegal decimal digit that c:aIJIIed trap

detected (low-order four
bits are not 0 through 9l.

• Illegal sign digit
detected (not a recognized
sign value).

• Illegal overp.lllCh dig~ t
detected.

28° Receiving field of an alpha- unspecified unspecified Pointer to CIP
ComIercial Q> truncation numeric instructim cannot instruction that
error cootain all characters of the mused t:lIe trap

result. Whether or not a
trap occurs, the raceiVi::r
field is altered to coota n
the lefbaoat part of the
result and the CI (m) is
set.

29 I.rrJ of the following: unspecified Unspecified Pointer (:0 CIP
ComIercial Q> overflow instruct:lon that

• Receiving field of a caused the trap
decimal instruction
cannot cootain all
significant digits of the
result.

• During a Shift Lift
instructim, a nonzero
digit is shifted out.

48 8RFAIC cCllllllll'ld unspecified Unspecified Unspecified
SOftware trap

49 (Ii cannand unspecified unspecified Unspecified
SOftware trap

53 ReSUllpt:ion of power Unspecified unspecified unspecified
SOftware trap by autanatic power

resumption faciltiy

·'lhe Z-word format is described later in this section.

b'lhiS is the address of the high-order (leftmost) end of a ~rd operand.

<If the watchdog timer is not present, this instruction causes a trap to vector 15 regardless of the
privilege mode of the central processor.

d'lhe I\ssegbly I.anguage Reference manual &scribes camnercial Central Processor trap handling in detail.

Saved Progr. counter

Next (]I() instructim

Next (]I() instruction

Next (]I() instruction

-

unspecified

Unspecified

Next location

• Two words of additional information related to the trap.

• Trap handler work space (92 words).

The number of TSAs built by the system is determined by the
value that the user gives the TSA argument of the SYS directive
when configuring the system (refer to the System Building and
Administration manual) •

TRAP HANDLING DURING TASK EXECUTION

There are several kinds of traps, as follows:

1. Traps handled by the system exclusively~ Monitor Call is
currently the only trap of this type.

2. Traps handled first by the system, then possibly by the
user. These include Trace/Break if Debug is used, or SIP
when the simulator is present.

3. Traps, if enabled, handled by the user program; other
wise, by the system's default trap handler.

4. Software generated traps, described below.

5. Cleanup (trap O)~ not really a trap since there is no TSA
(trap save area), which is indicated when $B3 is set to
null and $R3 is set to zero. The condition causing trap
o is the occurrence of a task abort. The task's trap 0
trap handler will also be entered from traps for which no
user trap handler is enabled after the standard system
default trap handler has processed the trap. In this
case, $Rl contains the number of the unenabled, causative
trap~ other registers are unchanged. Return from Trap
(RTT) execution is not possible.

In cases 2 and 3 above, which go to the user program, $R3
contains the trap number; $B3 contains a pointer to the TSA.

Software Generated Traps

Software generated traps comprise the following:

• Program Interrupt (trap 1) - Caused by the PI command or
Signal trap ($SGTRP) macro call.

• Unwind (trap 49) - Caused by the Unwind command.

• Suspend (trap 48) - Caused by the system's break handler,
BREAK function, or by the Signal trap ($SGTRP) macro
call. The system suspends the task when no handler is
provided.

A-7 CZOS-02

• Power resumption notification (trap 53) - Caused by
automatic resumption of power after power failure on
systems configured with the power resumption facility.

To receive the PI, Suspend, or power resumption notification
trap, the user program must enable it with the $TRPHD and $ENTRP
macro calls.

Program Use of Traps

The average program requires that the trap handler address be
set (with the $TRPHD macro call), and that the ftcleanup trapR
(trap O) be enabled with the $ENTRP macro call. In more complex
situations, requiring more than one cleanup action and, conse
quently, more than one trap handling routine, the trap handler
address can be altered by means of the $TRPHD macro call.

To respond to Program Interrupt (PI), trap 1 must be enabled
with the $ENTRP macro call. The trap handler distinguishes
between Program Interrupt and cleanup (trap 0), by comparing $B3
with null (see above). In simple programs, for Program Interrupt
to resume execution at some other location, the saved P-counter
in the trap save area (TSA) must be set, and a Return from Trap
(RTT) instruction executed. For more complex programs, the user
program should set a flag, then execute a Return from Trap (RTT)
instruction. The user program must then examine the flag at
appropriate places to avoid interrupts at inappropriate times
(e.g., in the middle of a write function).

Alternatively, trap 1 is not enabled; cleanup checks $Rl for
X'0301' (the error message signifying that no trap handler exists
for a Program Interrupt condition), then branches to the desired
location. When cleanup occurs, cleanup (trap 0) is automatically
disabled; it may be reenabled when required.

CONTENTS OF TRAP-RELATED MEMORY AREAS

In examining a dump to determine the nature of a trap condi
tion, check particularly the contents of the TSA. The TSA and
related memory areas are illustrated in Figure A-I; their con
tents are described below.

• Trap Save Area Link - When the trap save area is in use,
TSAL contains a null pointer (if this is the only or last
trap save area connected) or it points to the next trap
save area connected. The next TSA connected would be used
for handling a trap condition encountered by the trap
handling routine (i.e., a nested trap).

• I-Register - The contents of this register are saved by
hardware/firmware when a trap occurs. This register is
then available for use by the trap handler. The
high-order byte contains the quantity (4016 - trap
number) •

A-a CZ05-02

TlAL TlAL

I I

fa " ITC. •
lNSnt

Z - '" TIA - ".".,. SA ,
TSl4L - TRA'

VII4AIiA
SAVE "'RIA LINK

a

Figure A-I. Trap Handling Mechanism

• R3 Register - The contents of this register are saved by
hardware/firmware when a trap occurs. This register is
then available for use by the trap handler.

• Instruction - The hardware/firmware stores the instruction
associated with the trap. If a multiword instruction is
involved, the first word is saved.

• Z-Word - This word contains miscellaneous information rel
ative to the trap. The format of" this word is shown
below:

BIT: 0 1 3 4 7 8 9 11 12 15

IS

R - If R=O, the saved contents of the A-word are mean
ingful relative to this trap condition~ if R=l, the
saved contents of the A-word are not meaningful.

BI - 4-bit field that is meaningful only when an indexed
bit or byte instruction is associated with the
trap. If an indexed bit instruction is involved,
BI indicates the four low-order bits of the associ
ated index register; bit 7 of BI stores the least
significant bit. If an indexed byte instruction is
involved, bit 4 of BI indicates the least signifi
cant bit of the associated index register, and bits
5 through 7 are zeros.

PR - The privilege state of the task that was running
when the trap occurred. 00 or 01 = nonprivileged
state; 11 or 10 = privileged state. The value is
taken from the P-bit of the S-register.

A-9 CZ05-02

IS - The length (in words) of the instruction associated
with the trap. If a multiword instruction is
involved and the trap occurs before the entire
instruction has been fetched, IS indicates the num
ber of words that were fetched before the trap.

• A-Word - In many cases, this location contains an address
associated with the trap. (This location is not
meaningful if bit 0 of the Z-word contains a 1.) The
nature of the saved address is governed by the specific
trap condition and the specific instruction associated
with the trap. Details relative to each trap condition
are in Table A-I. .

• Program Counter - The contents of the program counter are
saved by the hardware/firmware when a trap occurs. This
is the address to which a return is made. when the trap
handler completes. In most cases, the program counter
will point to the instruction or location following the
instruction associated with the trap. However, when an
input/output instruction is involved, the program counter
may point to an address within the instruction; in this
case, the trap handler must modify this word before issu
ing a return to "normal" task processing.

• B3 Register - The contents of this register are saved by
hard~are/firmware when a trap occurs. This register is
then available for use by the trap handler; as the trap
handler is entered, the B3 register points to the A-word
in the trap save area.

SYSTEM SUPPLIED TRAP HANDLERS

The following software components provide trap handling
facilities:

• Debug program
• Scientific Simulator
• Defective memory trap handler
• Default trap handler.

Traps handled by these system components can be passed onto
user-written trap handlers, as explained later in this appendix.

Trap Handling by the Debug Program

The Debug program operates as a task within the user group
(Multi-User Debugger) or as a task group identified by $D ($D
DEBUG). For a detailed description of the Multi-User Debugger
and $D DEBUG, refer to the Application Developer's Guide. In
this appendix, both debuggers are referred to collectively as the
Debug program.

A-IO CZ05-02

Once the Debug program is loaded, you may set, clear, or list
breakpoints in the task code by use of Debug directives. When
the application program is executed, Debug is activated by trap
number 2, which occurs each time a breakpoint is encountered.
The action specified by the Debug directive for that breakpoint
will then be executed. For example, designated memory locations
can be printed out and execution of the application program
continued without operator intervention. Information can be
printed on a console or a line printer.

Trap Handling by Scientific Simulator

When a system's configuration does not include a Scientific
Instruction Processor (SIP), this hardware component can be simu
lated by the Scientific Branch Simulator and the Floating Point
Simulator, which, together, make up the Scientific Simulator.

FLOATING-POINT SIMULATOR

The Floating-Point Simulator reacts to trap number 3
(scientific operation not in hardware), which occurs whenever the
central processor encounters a nonbranch scientific instruction
during task processing.

While processing scientific instructions, the simulator pro
vides automatic alignment of the operand's hexadecimal man
tissas. It achieves maximum available precision by requiring
that mantissas have no leading zeros (i.e., all mantissas must be
normalized).

Note the following programming consideration for the
simulator:

• During its processing, the simulator may encounter an
error condition related to a scientific instruction; the
following can then occur:

- The simulator consults trap vector 5 if it encounters a
nonscientific instruction or other unrecognized
instruction.

- The simulator consults trap vector 7 if an SDV
(Scientific Divide) instruction has a divisor of O. The
instruction will not be executed.

- The simulator consults trap vector 8 if execution of a
scientific instruction produces exponential overflow.
The instruction will have been executed.

• To use a software routine to react to any of these trap
conditions, you must provide a user-written trap handler.
The simulator will be invoked to handle traps caused by
execution of scientific instructions only if the trap
numbers have been enabled for the task executing those
instructions.

A-II CZ05-02

• No Roverflow trap enableR bit of the Ml register should be
set to 1 as the simulator begins operation.

SCIENTIFIC BRANCH SIMULATOR

The Scientific Branch Simulator reacts to trap 5. It pro
vides FORTRAN and Assembly language programs with the means to
simulate the use of the scientific branch instructions.

The choice of the single-precision version (SSIP), or the
double-precision version (DSIP) of the simulator is indicated in
an argument of the system building SYS directive. Note the
following programming considerations relative to the simulator:

For SSIP only:

• The simulator uses registers R4, RS, and R7 as scientific
accumulator (Sl) for comparisons; it uses Rl, R2, and R3
as work registers'.

• The simulator uses the G, L, and U bits of the I register
to determine if the branch condition is true or false.
When a normal return is made to the user program, the
branch will be executed if the branch condition is true:
otherwise, the next sequential instruction following the
one that was trapped will be executed.

For both SSIP and DSIP:
"

• All other operation codes not handled by the Floating
Point Simulator or the Scientific Branch Simulator are
passed to the next trap handler in trap 5.

Defective Memory Trap Handler

The defective memory trap handler performs the following:

• Identifies to the user the physical and virtual address of
defective memory.

• Informs the user whether or not the system remains oper
able after the detection of defective memory.

• Ensures that the area of defective memory will not be
reallocated after its detection.

The user loads the defective memory trap handler at system
configuration time by entering the LDBU directive and specifying
the simple pathname to the bound unit ZXDEFM (refer to the System
Building and Administration manual). The defective memory trap
handler is automatically loaded by CLM as long as the bound unit
ZXDEFM is in the system initialization directory (»SID). If
ZXDEFM is not in SID, defective memory traps will be handled by
the default trap handler.

A-12 CZOS-02

The defective memory trap handler responds to detection of
defective memory by the following components:

• Central Processor Unit
• Scientific Simulator
• Input/Output controller.

If defective memory is detected by any of these three compo
nents, and the system is able to continue, the following message
is sent to the operator's console, specifying the physical and
virtual address of the defective memory:

PROBABLE MEMORY FAILURE, PHYSICAL ADDR= ,VIRTUAL ADDR=

If the defective memory is CPU-detected (trap 17) and no
user-written trap was enabled for trap 17, an X'03ll' error mes
sage is also issued and the trapped program terminates.

If a user-written trap handler is enabled for trap 17, the
defective memory trap handler ensures that the 32-word area con
taining the defective memory will not be reallocated to another
task, and control is passed to the user-written trap handler,
which normally returns task resources and terminates the task
request.

If the defective memory is detected by the Scientific Simu
lator (trap 24), and, if no user-written trap handler is enabled
for trap 24, the X'03l8' error message is issued (see the System
Messages manual) and the trapped program terminates.

A defective memory trap resulting from a file system I/O
order produces the probable memory failure message followed by an
x'Ol07' error message (see the System Messages manual).

If defective memory is detected, and the system is unable to
continue, register contents are as follows:

$Rl - X 'DEFA' (defective memory address)
$Bl - physical address of defective memory
$B2 - virtual address of defective memory

Knowledge of the address of defective memory permits the user
to map the defect onto a specific memory board, which can then be
replaced.

Whenever memory is found defective, it is returned to the
memory manager and marked as unavailable for reallocation.
Before memory can be returned to the memory manager, it must be
relinquished by all of its users. For that reason, if memory
found defective is within a shared area, such as a sharable bound
unit or group control block, each task sharing that memory is
liable to be trapped and terminated.

A-13 CZ05-02

When defective memory is marked unavailable for reallocation,
at least 32 words are so marked. Trap 17 and 24 identify the
exact location of memory detected as defective. I/O controller
detection is less precise since it knows that only some location
within the buffer is defective. In this case the memory manager
makes unavailable all pages containing any part of the suspect
buffer. The address cited in the probable memory failure error
message is the beginning of the suspect buffer.

System Default Trap Handling

When a trap condition occurs in task code that has not
enabled this particular trap or trap 0, an error message is writ
ten to the error-out file; the delete bit in the task control
block is reset, the task is terminated, but the task's resources
(memory and peripherals) are not released. Thus, a memory dump
can be taken so that the error-condition can be examined.

USER-WRITTEN TRAP HANDLERS

User-written trap handlers are either task-specific or
system-wide. Both types are described below.

Task-Specific Trap Handlers

This type of trap handler is included in a task's bound unit;
it resides in a task group's memory pool. A task-specific trap
handler receives a trap only if the task, in whose bound unit the
handler is included, has done the following:

• Specified the trap number, by means of the Enable User
Trap ($ENTRP) macro call.

• Connected the trap handler to the trap's vector by means
of the Trap Handler Connect ($TRPHD) macro call.

The task-specific handler receives the TSA contents exactly
as if it was directly connected to the trap vector; but, in fact,
the monitor has intercepted the trap and simulated the TSA in
user-accessible memory.

System-Wide Trap Handlers

A system-wide trap handler is loaded into system memory at
the time of configuration. It is directly attached to a specific
trap vector by user code. When any executing task in the system
signals that trap, the trap handler directly responds, bypassing
the Monitor (which, for a task-specific trap handler, would
intercept and analyze the trap). Thus, system overhead is
reduced; however, the same trap handling routine services all
tasks that incur a given trap condition.

A-14 czo 5-02

PASSING TRAPS

It is assumed that all vendor-supplied and possibly some
user-written trap handlers attached to the vector may encounter
situations which should be passed to the system default trap
handler. Also, several handlers can process the same trap. To
pass a trap from one handler attached to a trap vector to the
next handler:

1. Load the trap handler by means of an LDBD directive, thus
placing the handler in system memory_ The system, at the
time of configuration, implicitly loads the Scientific
Simulator's trap handler into system memory if the SSIP
or DSIP argument was specified in a SYS directive.

2. Write the handler to include initialization subroutine
table (1ST) code that will execute when the LDBD load
operation occurs and save the current address contents of
the trap vector(s) to be simulated, inserting its own
pointer(s) instead.

3. Code the user-written simulator to save the contents of
all registers upon entry so that if the trap should be
passed to the next trap handler, this handler can:

a. Restore all saved registers&

b. Execute a jump-indirect through the location contain
ing the pointer of the next handler saved in step 2
above. The J-bit in the Ml register must be off when
the j ump- rect is executed.

The rule is that each trap handler must get exactly the same
information registers and TSAthat it would have received if
it was the first trap handler accessed.

PROGRAMMING CONSIDERATIONS FOR USER-WRITTEN TRAP HANDLERS

Note the following programming considerations relative to
user-written trap haftdlers:

• A trap handler operates at the same priority level and in
the same privilege ring as the task whose execution caused
the trap ..

• When a trap occurs, the hardware/firmware saves the task
related contents of the I-register, the R3 register, and
the B3 register in the trap save area. The trap handler
is free to use these registers.

• See Table A-I for a description of the contents of
selected words in the trap save area when various traps
occur ..

A-IS CZOS-02

• Upon entry to the user trap handler, the J=bit in the Ml
register is arbitrarily turned off. Other bits in the Ml
register remain as they were when the trap occurred. Reg
ister B3 contains a pointer to the A-word in the TSA.
Register R3 contains the vector number of the trap.

• Traps that occur within the user trap handler abort the
task if they are the same type as the trap currently being
processed. This abort action prevents all TSAs from being
tied up by recursive traps, and prevents traps within the
MeL interface from going to the user trap handler.

• Every trap handler should be reentrant; i.e., it should
not use an internal work area to store interim informa
tion, since this information could be lost if an interrupt
occurs and, later, the same trap handler is called upon to
execute at a different priority level.

• If you choose to define instructions of your own and have
them interpreted by a trap handler connected to trap vec
tor S, you should limit the instructions to the
user-reserved subset of the generic instructions. The
following diagram illustrates the memory format of generic
instructions.

BIT: 0 7 8 IS

1000000001 f

f - Function; the user-reserved range of
values for f is 128~f<2S6 (decimal).

• When a trap handler has finished its work, it must issue
an RTT (Return From Trap) instruction. The Ml register is
not restored. This instruction uses the current trap save
area to restore the task-related contents of the
I-register, the R3 register, the program counter, and the
B3 register. Consequently, when the RTT instruction is
executed, these elements of the trap save area should be
"correct" (i.e., as saved when the trap occurred).

Note that in some cases, particularly when a trap condi
tion is related to an input/output instruction, the saved
value of the program counter (in the trap save area) will
point to a memory location within the instruction itself.
This is not a legitimate point of return to "normal" task
processing. In this case, the trap handler must modify
the saved value of the program counter before issuing an
RTT instruction.

After the trap save area has been used to restore the reg
isters indicated above, it is returned to the pool of
available trap save areas pointed to by a memory location
0010.

A-16 CZOS-02

• When a trap occurs, the contents of registers M1 through
M7 are not saved in the TSA. Particular attention is
drawn to the Rl through R7 overflow trap enable bits and
the J-bit of register MI, which can be set by a privileged
user. If the trap handler does not temporarily clear
these bits during its execution, another user trap handler
could be invoked erroneously on data register overflow or
branches. Such bits must be restored upon exit from the
handler.

A-17 CZ05-02

,.

AppendixB
PROGRAMMING
CONVENTIONS

The following programming conventions are provided for
designing application programs to interface smoothly with system
software.

MODULE AND FILE NAME CONVENTIONS

Program names and load module names that begin with Z are
reserved for Honeywell use and should not be used for an applica
tion program. System module names are six characters in length;
the second character defines the system component. Table B-1
lists the first two characters of each system module name and the
system component that it relates to.

The names of files that are processed by program development
software (compiler, assembler, and so on), are given a suffix by
the particular component doing the processing. Table B-2 lists
these suffixes ..

B-1 CZ05-02

Name
Prefix

ZA

ZC

ZE

ZF

Table B-I. System Module Name-Prefixes

System Component

Assembler

COBOL Compiler

Editor

FORTRAN Compiler

ZG Configuration Load Manager

ZH Trap Handler

ZI Input/Output Drivers

ZL Linker

ZM Memory Management

ZO Loader

ZP Macro-Assembly Program

ZQ Communications

ZR RPG Compiler

zs Sort/Merge

ZT TCLF Compiler and Processor

zu utility Routines and Conversion Aids

ZX Executive

ZY File, Data and storage Management

ZZ Program units internal to File, Data and Storage
Management

Zl Advanced FORTRAN Compiler

B-2 CZOS-02

Table B-2. System Program File Name Suffixes

Suffix File Type

.A Assembly language source unit

.AO Default user-out if user-in is disk

.AS ADA language source unit

.B BASIC source program unit

.C COBOL language or C language source unit

.DB Multi-user Debugger work file

.EC Execution command (EC)

.F FORTRAN language source unit

.L List unit

.M Link maps

.0 Object unit

.P Macro-Assembly Program source program unit

.PS PASCAL source unit

.Q RPG Compiler generated linker directive file

.QK Multi-user Debugger quick file

.R RPG language source unit

.T TCLF source program unit

.U Auto report source unit

CALLING SEQUENCE FOR EXTERNAL PROCEDURES

External procedures are those that are assembled or compiled
separately from the calling procedure. These procedures may be
either functions, that is, procedures returnjng a single value to
the caller, or subroutines, namely, procedures that alter data
contained in an area common to both the procedure and its
caller. For example, the FORTRAN mathematical routines (sine,
cosine, etc.) are external procedures. When it is necessary to
write an Assembly language external procedure, use the calling
sequence described below for compatibility with code generated by
the language processors.

B-3 CZ05-02

I

I

The external procedure calling sequence generated by the. CALL
statement in Assembly language, COBOL, BASIC, FORTRAN and RPG is
of the form:

LAB $B7, list
LNJ, $B5.<entry

list - Label assigned to the argument list
entry - External label of subroutine's entry pOint

The external procedure should assume that register B5 contains
the address of the caller's return point and register B7 pOints
to an argument list having the format shown in Figure B-1.

o 9 10 15

B7--+1~ ____ R_su ________ ~ ____ m __ ~
POINTER TO FIRST ARGUMENT

I POINTER TO LAST ARGUMENT

RSU: Reserved for system use (must not be modified by called
procedure)

m: Length of argument list given by 2n+ 1 where n is the
number of arguments

Figure B-1. Argument List

REGISTER CONVENTIONS

The system services use the following registers without pre
serving their contents: Rl, R2, R6, R7, B2, and B4. If the
information in these registers is of value to the application
program, it should save the register contents before making a
system control service request. Unless otherwise specified, the
following registers will not be altered by the system services:
S, I, R3, R4, RS, Bl, B3, B5, B6, B7, T, ROBR, CI, SI, Sl, S2,
S3, and the M registers.

B-4 CZ05-02

AppendixC
DATA STRUCTURE

FORMATS

This appendix describes the following data structures:

• Cloc~ request block (CRB)
• File information block (FIB)
• Input/output request block (IORB)
• .Task request block (TRB)
• Parameter block
• Wait list
• Semaphore request block (SRB)
• Message group request blocks (MGCRB, MGIRB, MGRRB).

Any of the structures can be hand coded or generated by macro
calls. All structures but the parameter block and wait list can
be defined by macro call templates.

The first four items of the request blocks have an identical
format (but slightly different contents, depending on the block
type) as shown in Figure C-l. Later diagrams show the format of
each block type; tables show the contents of the block entries.

The offset symbol $AF signifies that number of words required
to specify a memory address. In this system, $AF is equivalent
to two words.

The first field (-$AF or -1) of a request block need be pres
ent only when the request block pointer/semaphore name is needed.

C-l CZOS-02

I

I

I

-3 R LRX -
{~~AF } R_RRB/R_SEM

0 R LNK -
$AF R_CTl

1+$AF R_Cn

0,1,2 I 3,4 1 5 1 6,7,8,9 ,A,B IC ,D,E\F

RESERVED I LRN

REQUEST BLOCK POINTER/SEMAPHORE NAME

RESERVED FOR SYSTEM USE AS A POINTER

RETURN STATUS T W U I S

LRN/-l (SEE NOTE) 0 B OlE

I

NOTE

THIS FIELD CAN BE USED TO SPECIFY LRN VALUES UP TO 252. IF
AN LRN VALUE GREATER THAN 252 IS REQUIRED. THIS FIELD MUST
CONTAIN X'FD' (253i AND THE R LRX FIELD MUST CONTAIN THE
DESIRED LRN VALUE. -

plRIDll

FUNCTION

86-038

Figure C-I. First Four Items of Request Blocks

CLOCK REQUEST BLOCK FORMAT

Figure C-2 shows the format of the clock request block; Table
C-l shows its contents.

{=iAF }C_RRB/C_SEM

o , 1 , 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I A I B1 C 1 0 lEI F

REQUEST BLOCK POINTER/SEMAPHORE NAMF

o C_LNK RESERVED FOR SYSTEM USE

$AF C CTl RETURN STATUS T W I U I S P R 0 1

l+$AF C_CT2 -1 C M 0 0 ° 0

2+$AF C_TM IF M=O, NEXT 3 WORDS ARE A DATE/TIME VALUE.

OTHERWISE, NEXT 2 WORDS ARE AN INTERVAL
IN UNITS SPECIFIED BY M. (SEE TABLE C-L)

~------------------------ --86-039

Figure C-2. Format of Clock Request Block

C-2 CZ05-02

Word

-$AF
-1

o

$AF

Table C-l. Contents of Clock Request Block

Label Bit(s) Contents

C RRB/ 0-31
C-SEM 0-15

Depending on the S- or R-bits of C CTl,
this field contains a 2-word task ~equest
block pointer (R-bit on), or a l-word
semaphore name (S-bit on).

C LNK

C CTl

0-15

0-7

Reserved for system use.

Return status.

8(T) This bit is set on while the request using
this block is executing~ it is reset when
the request terminates. The system con
trols this bit; user should not change it.

9(W) Wait bit. Set if the requesting task is
not to be suspended pending the completion
of the request that uses this block.

A(U) User bit. User mayor may not use this
bit; the system does not change it. In a
user-built CRB, must be 0 initially.

B(S) Release semaphore indicator.

o = No release; 1 = Release, on completion
of this request, semaphore named in C_SEM.

C{P) Must be set by user if CRB is to be refer
enced by a wait Any ($WAITA) macro call.
If set, CRB can be referenced only by
$WAIT or $WAITA issued by requesting task.

D(R) Return clock RB indicator.

o = No dispatch; 1 = Dispatch task request
block named in C RRB after completion of
this request.

E(D) Delete clock RB indicator, used usually
with the B(S) and D(R) bits.

o = No delete; 1 = Delete and, when task
terminates, return memory to pool where
CRB is first entry of its memory block.

F Implicit task start address. Must always
be 1 for CRB.

C-3 CZ05-02

Table C-I (cont). Contents of Clock Request Block

Word Label Bites) Contents

1+$AF C CT2 0-7 Value is -1.

8(C) When set, indicates this blocK is asso
ciated with a cyclic clock function.

9-B(M) When set, last two words contain an
interval in units specified by M. Each
interval value is as follows: 001 - in
milliseconds; 010 - in tenths of a second;
011 - in seconds; 100 - in minutes; 101
- in units of clock resolution.

When reset (off), the last three words
contain a date/time interval.

Contents depend on M bit of C CT2.

FILE INFORMATION BLOCK (FIB) FORMAT AND CONTENTS

Tables C-2 and C-3 show the format, and Tables C-4 and C-5
show the contents, of the file information block (FIB) for data
management (record level) access, and for storage management
(block level) access, respectively.

Table C-2. Format of FIB for Data Management

Word Label(s) 0 I 2 3 4 5 6 7 8 9 A B C D E

0 F LFN Logical file number (LFN) -
1 F PROV Program view

2 F URP User record area pointer
3

4 F IRL Input record length -
5 F ORL Output record length

F

6 F _IRS/F ORS Input record status I Output record status -
7 F IRT Input record type -
8 FORT Output record type

C-4 CZ05-02

Table C-2 (cont). Format of FIB for Data Management

Word Label(s) 0 1 2 3 4 5 6 7 8 9 A B C D E F

9 F IKP Input key pointer
10

11 F_IKF/F_IKL Input key format I Input key length

12 FORA Output record address
13

14 F RFU2 Reserved
15

Table C-3. Format of FIB for storage Management

Word Label(s) 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 F LFN Logical file number (LFN)

1 F PROV Program view

2 F UBP User buffer pointer
3

4 F_BFSZ Buffer siz-e

5 F BKSZ Block size

6 F BKN1 Block number
7 ()KN2

8 F RFU3 Reserved
9

10
11
12
13
14
15

C-5 CZ05-02

Table C-4. Contents of FIB for Data Management

Word Label Bit(s) Contents

a F LFN 0-15 Logical file number (LFN)

1 F PROV 0 Access level. set off for data management.

2,3 F URP

4 F IRL

5 FO~

6 FIRS

1-4 Process rules. Bit 1 for $RDREC, bit 2 for
$WRREC, bit 3 for $RWREC, bit 4 for $DLREC.

5-9 Key type. Bit 5 for primary keys, bit 8
for relative keys, bit 9 for simple keys
(bits 6 and 7 must be 00).

10 Record class. Set on for fixed-length
records only; off for fixed- and
variable-length records.

11 Record visibility. Set on if deleted
records are to be visible; off if
invisible.

12 Key storage alignment. Set on if storage
area begins at odd-byte boundary; off if
even-byte boundary.

13 Record storage area. Set on if record
storage area begins on odd-byte boundary;
off if even-byte boundary.

14 Transcription mode. Set on if data
transferred in binary transcription mode;
off if ASCII mode.

15 Must be O.

0-31

0-15

0-15

0-3

Start address of user record area.

Input record length (in bytes).

Output record length (in bytes) •

0000 - Unknown terminal control informa
tion; 0001 - Records contain no terminal
control information; 0010 - Records contain
standard GCOS 6 printer control characters.

4-7 Must be zero.

C-6 CZ05-02

Table C-4 (cont). Contents of FIB for Data Management

Word Label

F ORS

7 F IRT

8 FORT

9,10 F IKP

11 F IKF

Bit(s)

8

9

10-15

0-15

0-15

0-31

0-7

F IKL 8-15

12,13 F ORA 0-31

14,15 F RFU2 0-31

Contents

Read operations. Set on if the key of the
record just read duplicates the key of the
record previously read.

Write/rewrite operations. Set on if key of
the record just written is a duplicate.

Read operations. Set on if key of the
record just read duplicates a record that
is yet to be read.

Must be zero.

Must be set to X'FFFF' (all bits set on).

Must be set to X'OOOO' (all bits set off).

Start address of user key area.

Input key format. 0 for none specified1 1
for primary key, 2 for simple key.

Input key length (in bytes).

Output record address.

Reserved for later use; must be
X'OOOOOOOO'.

Table C-5. Contents of FIB for Storage Management

Word Label Bit(s)

0 F_LFN 0-15

1 F PROV 0

1-2

4-12

13

Contents

Logical file number (LFN).

Access level. Set on for storage
management.

Process rules. Bit 1 for $RDBLK, bit 2
for $WRBLK.

Must be X'OOOOOOOO'.

Buffer alignment. Set on when buffer
begins on odd-byte boundary; off when
even-byte boundary.

C-7 CZ05-02

I

Table C-5 (cont). Contents of FIB for Storage Management

Word

1
(cont)

2,3

4

5

6,7

8-lS

Label Bit(s)

F PROV 14
(cont)

Contents

Transcription mode. set on when data
transferred in binary transcription mode;
off when transfer is in ASCII mode.

15 Synchronous/asynchronous indicator. Set
on when $RDBLK and $WRBLK calls executed

I asynchronously; off when synchronously.

F UBP 0-31

F BFSZ 0-15

F BKSZ 0-15

F BKNO 0-31

F RFU3 All

Start address of user buffer area.

Buffer transfer size (in bytes) •

Block size (in bytes).

Block number.

Reserved for later use; must be all
zeros.

INPUT/OUTPUT REQUEST BLOCK (IORB) FORMAT

Figure C-3 shows the format of a nonextended input/output
request block (lORE) (see Section 4 for a descr iption of lORE
extensions). Table C-6 defines the specific fields for a
non-extended lORE. Table C-7 summarizes the IORB fields for
operator interface functions.

a 1112 \ 3141516 I 7 \8 19 IAI B ICI D IE I F

-3 I LRX

{ -$AF } -1 I_RRBII_SEM

RESERVED
I

LRN

REQUEST BLOCK POINTER/SEMAPHORE NAME

0 I - LNK RESERVED FOR SYSTEM USE AS A POINTER

$AF I - CTI RETURN STATUS ITlwlulslplRIDI'

l+$AF I - CT2 LRN IIBM I B I P 1 E J FUNCTION

2+$AF I ADR BUFFER ADDRESS
-

2+2"$AF I RNG RANGE -
3+Z"$AF I DVS DEVICE SPECIFIC WORD --
4+Z"$AF I - RSR RESIDUAL RANGE

5+Z"$AF I - ST STATUS WORD/HIGH-ORDER BITS OF WORD7 FOR STORAGE MODULE

6+Z"$AF I - EXT iOTAL EXTENSION LENGTH I PIO EXTENSION LENGTH

86-040

Figure C-3. Format of I/O Request Block

C-8 CZOS-02

Word

-3

-$AF
-1

o

$AF

Table C-6. Contents of I/O Request Block

Label

I LRX

Bit(s) Contents

0-3 Reserved for system use.

4-15 Extended logical resource number (LRN).
If byte 0 (bits 0 to 7) of I CT2 contains
the value 253 (x'FD'), this field
indentifies the device to be used.

I RRB/ 0-31
I-SEM 0-15

Depending on the S- or R-bits of I CTl,
this field contains a 2-word task request
block pointer (R-bit on), or a I-word
semaphore name (S-bit on). Set by user;
used by system at termination of request.

I LNK 0-31

I CTI 0-7

Reserved for system use. 2-word pointer
to indirect request block.

RetUrn status

SeT) This bit is set (on) while the request
using this block is executing; it is
reset when the request terminates. The
system controls this bit; user should not
change it.

9(W) Wait bit. Set by user if requesting task
is not to be suspended pending completion
of the request that uses this lORB. For
a-$OPMSG call, the setting of the W- bit
in output lORB controls return to the
caller. For a $OPRSP call, setting of W
bit in input IORB controls return to the
caller; setting of W-bit in output lORB
has no significance. For either call,
return to caller is immediate if signi
ficant W-bit is on. If significant W-bit.
is off, return to caller occurs after the
order is completed.

A(U) User bit. User mayor may not use this
bit; the system does not change it.

B(S) Release semaphore indicator.

o = No release; 1 = Release, on comple
tion, semaphore item named in
I SEM.

C-9 CZ05-02

Table C-6 (cont). Contents of I/O Request Block

Word Label Bit(s) Contents

$AF I CTI C(P) Must be set by user if lORB is to be
(cont) (cont) referenced by a Wait Any ($WAlTA) macro

call. If set, IORB can be referenced
only by $WAIT or $WAITA issued by the
requesting task.

l+$AF I CT2

D(R) Return laRS indicator.

o = No dispatch; I = Dispatch task
request block named in I RRB after com
pletion of this request.- If 1, system
executes $RQTSK, us ing "I RRB, when the
task terminates.

E(D) Delete lORB indicator. used usually with
the B(S) and D(R) bits.

o = No delete; 1 = Delete and when task
terminates, return memory to pool where
IORB is first entry of its memory block.

F(l) Implicit task start address. Must always
be I for IORB.

0-7 Logical resource number (LRN). If this
field contains any value other than 253
(x'FD'), it indentifies the device to be
used. If this field contains 253, I LRX
contains the LRN value.

8(lBM) IBM-type request. Changes interpretation
of I DVS to task word, and of I RSR and
I ST-to configuration words A and B,
respectively.

9(B) Byte index. 0 = buffer begins in left
most byte of word; 1 = buffer begins in
rightmost byte. Must be off if input/
output buffer begins at left byte of word
whose address is contained in word 3
(I ADR) of IORB. Must be on if input/
output buffer begins at the right byte.

A(P) Private space; reserved for system use.

B(E) Extended IORB indicator. 0 = Standard
(nonextended) IORB; 1 = IORB extended to
at least 6+2*$AF items. set by user.
(See I_EXT below.)

C-lO CZ05-02

Table C-6 (cont). Contents of I/O Request Block

Word Label Bit(s) Contents

l+$AF
(cont)

I CT2 C-F
(cont)

Function code. Driver or LPH function,
see Table 6-1.

2+$AF I ADR

2+2*$AF I RNG

3+2*$AF I DVS

4+2*$AF I RSR

5+2*$AF I ST

6+2 * $AF I EXT

0-31

0-15

0-15

0-15

0-15

0-7

Buffer address. 2-word pointer. Word
address of message buffer (which contains
an output message or is to receive an
input message).

Range. Number of bytes to be transfer
red. Used as input field for cartridge
disk or mass storage unit. Buffer size
in bytes. This is the length of an
output message or the maximum length
allowed for an input message.

Device-specific information.

Residual range. Indicates the number of
bytes not transferred. Filled in by the
system-on completion of the order. Used
by the cartridge disk and mass storage
unit drivers as a data offset value.

Modified device status. Shows mapping of
hardware status into software status
format. See Table 6-4. Set by user as
input field high-order bits of sector
number of mass storage unit. Set by
system after I/O completion.

Left byte. Number of words, in binary,
in the lORB extension, not including this
I EXT word.

8-15 Right byte. Number of words, in binary,
in physical I/O part. of IORB ex~ension,
not including this I EXT word. This
count must be less than or equal to the
total extension length specified in the
left byte (0-7). This word is present
only when the B(E) bit in I CT2 is 1.
(See Section 7 for a description of IORB
extensions.)

C-ll CZ05-02

Table C-7. Summary of IORB Fields for Operator Interface

Word Label Bit(s) Contents

$AF For a $OPMSG call, the setting of W-bit
in the output IORB controls return to the
caller. For a $OPRSP call, the setting
of W-bit in the input IORB controls re
turn to the caller; the setting of W-bit
in the output IORB has no significance.
For either call, return to caller is im
mediate if significant W-bit is on. If
significant W-bit is off, return to call
er occurs after the order is completed.

l+$AF I CT2 0-7 LRN = O.

2+$AF I ADR

9(B) Must be off if input/output buffer begins
at the left byte of the word whose
address is contained in word 3 (I ADR) of
this IORB. Must be on if the input/
output buffer begins at the right byte.

0-15

0-15

The word address of the message buffer
(which contains an output message or is
to receive an input me$sage) .

The buffer size in bytes. This is the
length of an output message or the maxi
mum length allowed for an input message.

SEMAPHORE REQUEST BLOCK FORMAT

Figure C-4 shows the format of the semaphore request block;
Table C-8 shows its content.

[~A"J S _ IllS _ SIM
o I 1 I 2 , :I 14 1 5 I tI I 7',8 1 9 1 ALB 1 C 1 0 IE l'

REQUesT BI.OCK POINTER/SEMAPHORE NAME

o T_I.HIC RESERVEO FOR SYSTEM use

RETURN'STATUS T w U S P R 0 1

., 0 0 0 0 0 0 0 1

SEMAPHORE IOENTIFIER

Figure C-4. Format of Semaphore Request Block

C-12 CZ05-02

Word

-$AF
-1

o
$AF

Table C-8. Contents of Semaphore Request Block

Label Bit(s)

S RRB/ 0-31
S-SEM 0-15

S LNK 0-15

S CTI 0-7

Contents

Depending on the S- or R-bits of S CTl,
this field contains a 2-word task request
block pointer (R-bit on), or a I-word
semaphore name (S-bit on). Set by user;
used by system when request terminates.

Reserved for system use.

Return status.

8(T) This bit is set (on) while the request
using the block is executing; it is reset
when the request terminates. The system
controls this bit; user should not change
it.

9(W) Wait bit. Set if requesting task is not
to be suspended pending the completion of
the request that uses this block.

A(U) User bit. User mayor may not use this
bit; the system does not change it.

$AF S CTI B (S) Release semaphore indicator. 0 = No
release; 1 = Release, on completion,
semaphore item named in S_SEM.

C(P) Must be set by user if SRB is to be
referenced by a Wait Any ($WAITA) macro
call. If set, SRB can be referenced only
by $WAIT or $WAITA issued by the
requesting task.

D(R) Return semaphore RB indicator. 0 = No
dispatch; 1 = Dispatch task request block
named in S RRB after completion of this
request. -

E(D) Delete SRB indicator. Used usually with
the B(S) and DCR) bits. 0 = No delete; 1
= Delete and, when task terminates,
return memory to pool where SRB is first
entry of its memory block.

F(l) Implici t task start address. Must always I
be 1 for SRB.

C-13 CZ05-02

I

Table C-8 (cont). Contents of Semaphore Request Block

Word Label Bit (s) Contents

l+$AF S CT2 0-7 Value is -1.
8-14 ~lust be zero.
15 Must be one.

2+$AF S ADR 0-15 Semaphore identifier - two ASCII - characters.

TASK REQUEST BLOCK FORMAT

Figure C-S shows the format of the task request block~ Table
C-9 shows its contents.

Word

-3

-$AF
-1

0,1,2,3,4,5,6,7,8 ,a/A,B ,c,D IE, F

-3 T LRX RESERVED LRN

{=~AF} T _RR~IT _SEM

I
REQUEST BLOCK POINTER/SEMAPHORE NAME

0 T_LNK RESERVED FOR SYSTEM USE AS A POINTER

T_CTI RETURN STATUS T W U S P R D 1

1+SAF T_CT2 LRN 0 0 0 0 0 0 0 0

2+SAF T_ADR START ADDRESS IF I 0

2+2'SAF T PRM BEGINNING OF ARGUMENT LIST

86-041

Figure C-S. Format of Task Request Block

Table C-9. contents of Task Request Block

Label

TLRX

Bit(s) Contents

0-3 Reserved for system use.

4-15

0-31
0-15

Extended logical resource number (LRN).
If byte 0 (bits 0 to 7) of I_CT2 contains
the value 253 (x·FD'), this field
indentifies the device to be used.

Depending on the S- or R-bits of T CTl,
this field contains a 2-word task request
block pointer (R-bit on), or a I-word
semaphore name (S-bit on). Set by user,
used by system when request terminates.

C-14 CZOS-02

I
Word

o

$AF

l+$AF

Table C-9 (cont). contents of Task Request Block

Label

T LNK

T CTI

T CT2

Bit(s) Contents

0-31 Reserved for system use.

0-7 Return status.

8(T) This bit is set (on) while the request
using this block is executing1 it is
reset when the request terminates. The
system controls this bit; the user should
not change it.

9(W) Wait bit. Set by user if requesting task
is not to be suspended pending completion
of the request that uses this block.

A(U) User bit. User mayor may not use this
bit; the system does not change it.

B(S) Release semaphore indicator. 0 = No
release; 1 = Release, on comple- tion,
semaphore item named in T_SEM.

C(P) Must be set by user if TRB is to be
referenced by a wait Any ($WAITA) macro
call. If set, TRB can be referenced only
by $WAIT or $WAITA issued by the
requesting task.

D(R) Return task RB indicator. 0 = No dis
patch; 1 = Dispatch task request block
named in T RRB after com- pletion of this
request. -

E{D) Delete TRB indicator. Used usually with
the B(S) and D{R) bits. 0 = No delete; 1
= Delete and when task terminates, return
memory to pool where TRB is first entry
of its memory block.

F(l)

0-7

Implicit task start address. Must I
always be 1 for TRB.

Logical resource number (LRN). If this I
field contains any value other than 253
(x'FD'), it indentifies the device to be
used. If this field contains 253, I_LRX
contains the LRN value.

8-15 Must be zero.

C-15 CZ05-02

Table C-9 (cont). Contents of Task Request Block

Word Label Bit (s) Contents

2+$AF T ADR 0-15 start address if the I-bit of T CTI
reset (zero).

2+2 * $AF TPRM Beginning of argument list.

PARAMETER BLOCK FORMAT

Figure C-6 shows the format of the parameter block.

NOTE

The parameter value strings need not be contiguous
wi th the address portion of the parameter block;
if the block is system-generated, each parameter
will have a trailing blank that is not included in
the byte count.

NUM8ER OF 'ARAME TEHS

r-- AOORESS Of ' ... R ... METER I

"'OORUSOF P ... R ... METER l

1 AOORUS OF ' ... RAME TER n 1
- IIIUMBER OF BYTES

"'SCII C RACTER I ASCII CHAR"'CTE"

ASCII CHARACTeR I Do

NUM8fR O~ 8VTFS

ASCII CH ... RACTER I ASCII CHARACTEH

Do I "NSPECIFIED

Figure C-6. Format of Parameter Block

WAIT LIST FORMAT

Figure C-7 shows the format of the wait list.

is

C-l6 CZ05-02

NUM8ERIITEMS TO WAIT FOR 1 TOTAL ITEMS 1111 LIST

ADDRESS OF FIRST REUUEST BLOC"

.. I,.- .. ~

T ADDRfSS OF EIGHTH RECUEST BLOCK r
Figure C-7. Format of Wait List

MESSAGE GROUP REQUEST BLOCKS

Tables C-IO, C-ll, and C-12, respectively, show the content
of the following message group request blocks:

• Message group control request block (MGCRB)
• Message group initialization request block (MGIRB)
• Message group recovery request block (MGRRB).

Templates for these request blocks are generated by the
$MGCRT, $MGIRT, and $MGRRT macro calls, respectively.

The request blocks can be generated by the $MGCRB, $MGIRB,
and $MGRRB macro calls, respectively.

Message group request blocks are used by the message facil
ity for sending requests between task groups or tasks.

Table C-IO. Message Group Control Request Block (MGCRB)

Word Label

o MC OS

$AF MC MAJ

Bit{s) Contents

0-31 Pointer; reserved for system use.

Major status.

0-7 Reserved for system use.

SCT) This bit is set (on) while the request
using this block is executing; it is reset
when the request terminates. The system
controls this bit; user should not change
it.

9{W) Wait bit. set if requesting task is not
to be suspended pending the completion of
the request that uses this block.

C-17 CZ05-02

I

Table C-lO (cont). Message Group Control Request Block (MGCRB)

Word

$AF
(cont)

l+$AF

2+$AF

2+2*$AF

3+2*$AF

Label Bit(s) Contents

MC MAJ A (U)
(cont)

User bit. User may use this bit; the
system does not change it. Display
processing uses this bit during a
write.

MC OPT

B(S) Release semaphore indicator. Values:
o = No release; 1 = Release (on
closeout) of semaphore, which must be
in MC as -1.

C(P) Must be set by user if MGCRB is to be
referenced by a Wait Any ($WAITA) macro
call. If set, MGCRB can be referenced
only by $WAIT or $WAITA issued by the
requesting task.

D(R) Return request block indicator.
Values: 0 = No dispatch; 1 = Dispatch
request block whose address must be
contained in MC os -$AF, after closeout
of request. -

E(D) Delete request block. Values: 0 = No
delete; 1 = Delete, and return memory
to the pool where MGCRB is the first
entry of its memory block.

F (1)

0-7
8
9

A
B
C-F

I/O bit. Must be set.

General options:
Reserved for system use.
Must be O.
Byte index. 0 = Buffer begins in
leftmost byte of the word; 1 = Buffer
begins in rightmost byte.
Must be O.
Must be 1 (extended MGCRB) •
Must be o.

MC BUF 0-31 Buffer pointer.

MC BSZ O-F Buffer range (in bytes) •

MC DVS

MC REC O-F

Record-type code.

On send, insert record-type code; on
receive, return assigned record-type
code.

C-18 CZ05-02

Table C-lO (cont). Message Group Control Request Block (MGCRB)

Word

4+2*$AF

5+2*$AF

6+2*$AF

Label Bit(s)

MC RSR O-F

MC MRU 0-7

MC WTI 8-F

MC EXT

Contents

Residual range (in bytes).

End message recovery unit (MRU).
Reserved for system u~e.

Wait test indicator. Values: 00 =
Return null to application; 01 = Wait.

, Extension mechanism.

0-7 Binary value of l3+2*$AF, i.e., number
of words in MGCRB following the
extension word.

8-F Must be hexadecimal '7'.

7+2*$AF Next 7
words

14+2*$AF MC FNC 0-7

MC REV 8-F

15+2*$AF MC MGI O-F

16+2 * $AF MC LVL

MC LVR 0-7

MC LVD 8-F

17+2 * $AF MC PCI O-F

l8+2*$AF MC VDP 0-31

l8+3*$AF MC TGI O-F

19+3*$AF MC TSK 0-31

19+4*$AF MC NPI O-F

22+3 * $AF MC LENO-F

Reserved for system physical I/O use.

Function. Reserved for system use.

Revision. Must be hexadecimal 12'.

Message group ide Returned in the
$MINIT and $MACPT macro calls.

Enclosure level.

Enclosure level requested.

Enclosure level detected according to
following ASCII values: 0 = Not end of
record; 1 = End of record; 2 = End of
quarantine unit; 5 = End of message.

Must be O.

Must be zero.

Reserved for system use.

Pointer. Reserved for system use.

Must be O.

Length of text received.

C-19 CZ05-02

I

Table C-ll. Message Group Initialization Request Block (MGIRB)

Word Label

o
$AF

l+$AF

MI OS

MI MAJ

MIOPT

Bit (s) Contents

0-31 Pointer. Reserved for system use.

Major status.

0-7 Reserved for system use.

8CT) This bit is set (on) while the request
using this block is executing; it is reset
when request terminates. The system con
trols this bit1 user should not change it.

9(W) Wait bit. Set if the requesting task is
not suspended pending the completion of
the request that uses this block.

A(U) User bit. User mayor may not use this
bit; the system does not change it.

B(S) Release semaphore indicator. Values: 0 =
No release; 1 = Release, on termination of
this request, semaphore whose name must be
in MI_OS -1. .

C(P) Must be set by user if MGIRB is to be
referenced by a Wait Any ($WAITA) macro
call. If set, MGIRB can be referenced
only by $WAIT or $WAITA issued by the
requesting task.

D(R} Return request block indicator. Values:
o = No dispatch. 1 = Dispatch, after end
of this request, request block whose
address must be contained in MI_OS -$AF.

E(D) Delete I/O request block. Values: 0 = No
delete; 1 = Delete, and return memory to
the pool where this MGIRB is the first
entry of its memory block.

F(l)

0-7
8-A
B
C-F

I/O bit. Must be set.

General options:
Reserved for system use.
Must be O.
Must be 1 {extended MGIRB} •
Must be O.

2+$AF MI BUF 0-31 Must be zero.

C-20 CZ05-02

Table C-ll (cont). Message Group Initialization
Request Block (MGIRB)

Word

2+2*$AF

3+2*$AF

4+2*$AF

S+2*$AF

6+2 *$AF

7+2*$AF

Label

MI BSZ

MI MPD

MI RSR

MI EXT

MI DV2
(three
words)

Bit(s)

O-F

O-F

O-F

0-7
8-F

0-7

8-F

O-F
O-F
O-F

l4+2*$AF MI FNC
MI-REV

0-7
8-F

lS+2*$AF MI MGI O-F

l6+2*$AF MI PCM O-F
(Two words) O-F

18+2 * $AF MI ADT
0-7

8-F

19+2*$AF MI NWI O-F

20+2*$AF MI NDI O-F

21+2*$AF MI MBI O-F
(SIx words) O-F

O-F
O-F
O-F
O-F

Contents

Buffer range in bytes. Must be O.

Message path description
identifier. Must be ASCII 01.

Residual range in bytes.

Must be O.
Must be O.

Extension mechanism:
Binary value of 31+2*$AF, i.e.,
number of words in MGIRB following
the extension word.
Must be hexadecimal 7.

Maturity date/time in standard
internal date/time format (see
$INDTM).

Function. Reserved for system.
Revision. Must be hexadecimal 2.

Message group ide Returned in the
$MINIT and $MACPT macro calls.

Must be O.
Must be O.

Address type:
Address type (initiator)~ must be
ASCII 1.
Address type (acceptor)~ must be
ASCII 1.

Must be O.

Must be O.

Initiator mailbox name. Must be
from 1 to 12 ASCII characters,
blank-filled, left-justified as
specified when the mailbox was
created, indicating only messages
with this identifier will be ac
cepted, or all zeros, indicating
messages with any identifier will
be accepted.

C-2l CZOS-02

Word

27+2*$AF

28+2*$AF

29+2*$AF

36+2*$AF

Table C-ll (cont)e Message Group Initialization
Request Block (MGIRB)

Label

MI NWA

MI NDA

MI MBA
(sIx words)

MI CNT

Bites}

O-F

O-F

O-F
O-F
O-F
O-F
O-F
O-F

O-F

Contents

Must be O.

Must be O.

Acceptor mailb~x name. Must be
from 1 to 12 ASCII characters
specifying the acceptor mailbox
id, blank-filled, left-justified.

Count ,of number of active'mes
sages in the mailbox. Returned
with $MCMG macro call.

37+2*$AF MI TGI

38+2*$AF MI TSK

38+3*$AF MI SIP

O-F

0-31

0-31

Reserved for system.

Pointer. Reserved for system use.

Security information pOinter.
Points to the security informa
tion block (SIB) that points to
the logical submittor block con
taining the user id (SI_PER), the
account id (SI ACC), and the mode
(SI_MOD) • -

Table C-12. Message Group Recovery Request Block (MGRRB)

Word Label

o
$AF

MR as

MR MAJ

Bit(s} Contents

0-31 Pointer. Reserved for system.

Major status.

0-7 Reserved for system.

8CT) This bit is set (on) while request using
this block is executing; it is reset when
the request terminates. The system con
trols this bit1 user should not change it~

9(W) wait bit. Set if the requesting task is
not to be suspended pending the completion
of the request that uses this block.

C-22 CZOS-02

Word

$AF
(cont)

l+$AF

2+$AF

2+2*$AF

3+2*$AF

4+2*$AF

Table C-12 (cont). Message Group Recovery
Request Block (MGRRB)

Label

MR MAJ
(cont)

MR OPT

MR BUF

MR BSZ

MR ITP

MR RES

Bit(s) Contents

A(U) User bit. User mayor may not use
this bit; the system does not
change it.

B(S) Release semaphore indicator.
Values: 0 = No release; 1 =
Release, on closeout, of semaphore
which must be in MC OS -1.

C(P) Must be set by user if MGRRB is to
be referenced by a Wait Any
($WAITA) macro call. If set,
MGRRB can be referenced only by
$WAIT or $WAITA issued by the
requesting task.

D(R) Return request block indicator.
Values: 0 = No dispatch; 1 =
Dispatch request block, whose
address must be in MC OS -$AF,
after closeout of this request.

E(D) . Delete I/O request block.
Values: 0 = No delete; 1 =
Delete, and return memory to the
pool where MGRRB is the first
entry of its memory block.

F(l) I/O bit. Must be set.

0-7
a-A
B
C-F

0-31

O-F

O-F

O-F

General options:
Reserved for system use.
Must be O •.
Must be 1 (extended MGRRB) 0

Must be O.

Pointer. Must be O.

Buffer range. Must be O.

Must be O.

Residual range. Reserved for
system.

C-23 CZOS-02

Word

5+2*$AF

6+2*4AF

14+2*$AF

15+2*$AF

17+2*$AF

16+2*$AF

18+3*$AF

19+3*$AF

Table C-l2 (cont). Message Group Recovery
Request Block (MGRRB)

Label Bit(s)

MR RSN 0-7 -

8-F

MR EXT 0-7 -

8-F

MR FNC 0-7 -
MR REV 8-F -
MR MGI O-F -
MR CNC O-F -
MR FMT 0-31 -
MR MRU
(Two words) O-F

O-F

MR AMU
(Two words) O-F

O-F

Contents

Reason-for-terminate code. o =
Normal message 9rouP termination,
22-26 = User-defined abnormal
termination of message 9rouP.

Reserved for system~

Binary value of 24+2*$AF, i.e.,
number of words in MGRRB following
the extension word.

Must be hexadecimal '7 I •

Function. Reserved for system.

Revision. Must be hexadecimal 02.

Message group ide Returned in the
$MINIT and $MACPT macro calls.

Reserved for system use.

Pointer. Must be O.

Reserved for system use.
Reserved for system use.

Reserved for system use.
Reserved for system use.

C-24
09/86
CZ05-02

AppendixD
ASCII AND EBCDIC
CHARACTER SETS

Tables D-l and D-2 illustrate the ASCII and EBCDIC character
sets, respectively. In addition to the characters, both tables
show the binary and hexadecimal equivalents of the character set.

The following is a list of the control characters that appear
in the two tables:

ACK Acknowledge GE Graphic Escape
BEL Bell GS Group Separator
BS Backspace HT Horizontal Tab
BYP Bypass IFS Interchange File Separator
CAN Cancel 1GS Interchange Group Separator
CC Cursor Control IL Idle
CR Carriage Return IRS Interchange Record Separator
CUI Customer Use 1 IUS Interchange Unit Separator
CU2 Customer Use 2 LC Lowercase
CU3 Customer Use 3 LF Line Feed
DCl Device Control 1 NAK Negative Acknowledgement
DC2 Device Control 2 NL New Line
DC3 Device Control 3 NUL Null
DC4 Device Control 4 PF Punch Off
DEL Delete PN Punch On
DLE Data Link Escape RES Restore
DS Digit Select RLF Reverse Line Feed
EM End of Medium RS Reader stop
ENQ Enquiry SI Shift In
EO Eight Ones SM Set Mode
EOT End of Transmission SMM Start of Manual Message
ESC Escape SO Shift Out
ETB End of Transmission Block SOH Start of Heading
ETX End of Text SOS Start of Significance
FF Form Feed SP Space
FS Field Separator STX Start of Text
SUB Substitute UC Uppercase
SYN Synchronous Idle US Unit Separator
TM Tape Mark VT Vertical Tab

D-l CZ05-02

The graphic characters in the a-bit ASCII character set are
defined as follows:

SP

n

$
%
&
I

(
)

*
+
,

.
/
. ,
<
=
>
?
@
[
\
] ,.

{
I
}

NBSP

¢
£

l:l
y

§

«
SHY
®

Space
Excl ama tion Mark
Quotation Mark
Number Si gn
Dollar Sign
Percent Sign
Ampersand
Apostrophe
Left Parenthesis
Right Parenthesis
Asterisk
Plus Sign
Comma
Minus Sign, Hyphen
Period, Decimal Point
Solidus, Slash
Colon
Semicolon
Less-than Sign
Equals Sign
Greater-than Sign
Question Mark
Commercial At Sign
Left Square Bracket
Rever se Sol idus
Right Square Bracket
Circumflex Accent
Underline
Grave Accent
Left Curly Bracket
Vertical Line
Right Curly Bracket
Tilde
No-Break Space
Inverted Exclamation Mark
Cent Sign
Pound Sign
Currency Sign
Yen Sign
Broken Bar
Paragraph Sign, Section

Sign
Diaeresis, Umlaut
Copyright Sign
Feminine Ordinal

Indicator
Left Angl"e Quotation Mark
Not Sign
Soft Hyphen
Registered Trade Mark

Sign

D-2

Macron, Overline, Overbar
o Degree Sign

+ PI us-Minus Sign
2 Superscript Two
3 Superscript Three
.. Acute Accent

p Small Greek Letter
Mu, Micro Sign

~ Pilcrow (Paragraph Symbol)
Middle Dot

oJ Cedilla
1 Superscript One

2 Maseul ine Ordinal
Indicator

» Right Angle Quol:ation
Mark

~ Vulgar Fraction
One Quarter

~ Vulgar Fraction
One Half

% Vulgar Fraction
Three Quarters

~ Inverted Question Mark
A Capital A With Grave

Accent
A Capital A With Acute

Accent
" A capital A with Circumflex

Accent
A capital A With Tilde
X Capital A With Diaeresis
A capital A With Ring Above
p.£ Capital Dipthong A wi th E
G Capital C With Cedilla
E Capital E Wi th Grave
~

Accent
E Capital E With Acute
A Accent
E Capital E With Circumflex
.. Accent
E Capital E With Diaeresis ,
I Capital I With Grave
, Accent
I capital I With Acute
" Accent
I Capital I With Circumflex

Accent
I Capital I With Diaeresis
-9- capital Icelandic Eth
N capital N With Tilde

86-060

czo 5-02

\ .. 0 Capital o With Grave 0 Small o With Grave Accent
Accent " Small o With Acute Accent , 0

0 Capital o With Acute " Small o With Circumflex 0

0
Accent Accent

Capital o With Circum- 0' Small o With Tilde - flex Accent (5 Small o With Diaeresis
0 Capital o With Tilde . Division Sign .
0 Capital o With Diaeresis ¢ Small o With Oblique
x Multiplication Sign Stroke
¢ Capital o with Oblique .. Small u With Grave Accent u

Stroke .. Small u With Acute Accent \ u
U Capital U With Grave ... Small u With Circumflex u
, Accent Accent
U Capital U With Acute i.i Small u With Diaeresis

Accent '" Small y With Acute Accent A y
U Capital U With Circum- p Small Icelandic Thorn .. flex Accent y Small y With Diaeresis
q Capital U With Diaeresis
y Capital Y With Acute

Accent
J> Capital Icelandic Thorn
{3 Small German Sharp s ,
a Small a With Grave Accent ,

Small a With Acute Accent a
" Small a With Circum-a

flex Accent -a Small a With Tilde a Small a With Diaeresis

" Small a With Ring Above
lie Small Dipthong a With e
p Small c With Cedilla
~ Small e With Grave Accent
e Small e With Acute Accent A e Small e With Circum-

flex Accent ..
Small e With Diaeresis ~

~, Small i With Grave Accent
1 Small i With Acute Accent + Small i With Circum-1

i
flex Accent

Small i With Diaeresis
d Small Icelandic Eth ,.,

Small n With Tilde n
86-061

D-3 CZ05-02

I
Table D-l. Extended ASCII Character Set

Set CO Set GO SetC1 Set G1
b4 10 o "0 0 0 0 0 0 111 1 I '1 1 1 1 1 1
b 3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
b 2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
b" 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

b4 b3 b 2 b1 i'H', "1 £'""- 0 1 2 3 4 5 6 7 8 9 A 8 C D E F

0 0 0 0 0 NUL OLE SF> 0 @ p .. P NBSP 0 A f) a 0
0 0 0 1 ! 1 A a ± Ii. N

, -1 SOH DC1 a q i a n

0 0 1 0 2 $TX DC2 u 2 B R b r It 1 A 0 a 0

o 0 1 1 I ; I ETX DC3 # 3 esc s £ A 6 a <>

0 1 0 0 4 EOT OC4 $ 4 0 T d t II ~ if.. 6 a 0
0 1 0 1 5 ENO NAK 0/0 5 E

0 1 1 0 6 ACK SYN & 6 F

0 1 1 1 7 BEL ETB , 7 G

1 0 0 0 8 as CAN (8 H

1 0 0 1 9 HT EM) 9 I

1 0 1 0 A LF SUB * J

1 0 1 1 B VT ESC + ; K

1 1 0 0 C FF FS . < L

1 1 0 1 D CR GS - = M

1 1 1 0 E SO RS > N

1 1 1 1 F S1 US I ? 0

U e u Y
v· f v .

I

W 9 w §

X h x ..
y i Y e

Z j z .~

[k { «

\ I I -...

] m } SHY

.. n - ~

-- 0 DEL

D-4

II- A 6
11 A: <5

• ~ x

)
E f/J

1 E U
E

,
2- U

» E U
'14 I 0

{
,

1/2 Y

3/4 i P
i- i' r3

0

0 a

aa 6

~ ...
e FD

e u
... U e

e U
,
I (j
,
I y
...

P I
..
I y

86·1011

09/86
CZ05-02A

t1
I

V1

()
N
o
V1
I
o
N

Table D-2. EBCDIC Character set

b4 0 0
b3 0 0
b2 0 0
b 1 0 ..

o 0
o 0
'I 'I
o 'I

o 0
.. 'I
o 0
o 1

o 0
'I '1
'I 'I
o 'I

'I 'I
o 0
o 0
o 'I

'I 'I
o 0
'I 'I
o 'I

'I 'I
'I 'I
o 0
o 'I

'I 'I
'I 1
1 1
o 1

b4 b3 b2 b1 ~ 0 1 :2 3 4 5 6 7 8 9 ABC D E F

o 0 0 0 0 NUL DEL OS SP 8. 9i f6 " IL ¢ { } \ 0

o 0 0 1 £' A 'I
,

NBSI' e / E a J NSP 1 SOH DCi SOS

001 0 2 STX DC2 FS SYN a .-e A E b 5 Y B K S 2 k

o 0 1 1 3 ETX TM a e if". E ct. C l T 3

o 1 0 0 4 PF RES B,(P PN it e A 1--, , ,. ,
o 1 0 'I 5 HT Nt lF RS a i A len v § E N V 5

o 'I 1 0 6 lC BS ETB UC a f -is.. i f 0 w 11 F 0 W 6

o 1 'I 1 7 Del Il ESC EOT a i A i' g p X 1f4 G P X 7

1 0 0 0 8 CAN £ ~ h q Y 1f2 Hay 8

1 0 0 'I

101 0

1 0 'I 1

1 1 0 0

1 'I 0 1

1 1 1 0

1 111

9 RlF EM n f3 N r z 3/4 R Z

A SMM CC SM [1 « a -, SHY 2

B VT cm CU2 CU3 • $ # » Q. (. o u 6
c FF IFS DC4 < " % @ cf ce-&- o ii 6
D CR lOS ENQ NAK . y ~ Y 0:;0
E SO IRS ACK + > == P .llE :p ..
F SI IUS BEL SUB A ? " ± Xl ®

NOTE

H1 signifies the high bits (leftmost), and H2 signifies the low
bits (rightmost). For exampie, the letter a is 81 (Hex) or
1000 0001 (binary).

,
o u 6
o y 6

9
:;I

u
o
u
u

86-005

AppendixE
DEVICE-SPECIFIC

CONTROL CHARACTERS

Tables E-l and E-2 list the TTY and VIP nonalphanumeric
control characters for devices supported by the communications
subsystem.

NOTE

In this appendix, a slash between two characters
indicates that both keys are pressed
simultaneously, e.g., CTRL/H indicates that the
CTRL key and H key are pressed at the same time.

Table E~l. TTY Nonalphanumeric Control Characters

Hex
Character Value Function Key Strokes

ENQ 05 Answer back CTRL/E

BEL 07 Ring Bell CTRL/G

BS 08 Backspace (nondestructive CTRL/H
cursor backward)

LF OA Line feed CTRL/J

FF OC Form feed (clear screen) CTRL/L

E-l CZ05-02

.'

Table E-l (cont). TTY Nonalphanumeric Control Characters

Hex
Character Value Function Key Strokes

CR OD Carriage return CTRL/M

SP 20 Space CTRL/P or space bar

NOTE

In a terminal with lowercase capability,
uppercase characters require the use of the
shift.

Table E-2. VIP Nonalphanumeric Control Characters

Hex
Character Value

BS 08

HT 09

LF OA

FF OC

CR 00

ESC IB

SP 20

Function Key Strokes

Backspace. CTRL/H

Horizontal tab. CTRL/I

Line feed. CTRL/J or LINE FEED

Form feed. CTRL/L

Carriage return. CTRL/M or RETURN

First character of a 2-, ESC
3-, or 4-character escape
sequence used for VIP
terminal control.

Space. CTRL/P or space bar

E-2 CZOS-02

AppendixF
SUBSYSTEM MODULES

This appendix describes subsystem modules: their purpose,
structure, and interface with the Edit Profile and List Profile
utilities. The intent of this appendix is to help developers
create their subsystem modules according to the requirements of
these two utilities. For the sake clarity, references to the
profiles file will be more technical than user-oriented
manuals. Specifically, a 'section' of a user profile is a record
in the profiles file; the 'attributes W of a section are the
fields of the record; a 'section id' is a two-character record
type identifier located in the record header.

SUBSYSTEM RECORDS

A subsystem record is 188 bytes long and consists of a
system-defined portion and a subsystem-defined portion. The
system-defined portion extends from bytes 0 through 59. This
area of the record cannot be accessed by the subsystem or
subsystem module.

The remainder of the record, defined by the subsystem, is
subdivided into two regions. Subsystem region 1, also known as
the access level region, extends from bytes 60 through 97. It
can be read by the subsystem proper but can be written to only by
Edit Profile (via a subsystem module). Region 2 extends from
bytes 98 through 188. It can be read or written to both by the
subsystem proper and Edit/List Profile (via a subsystem module) •
The subsystem proper uses profiles file macro calls, documented
in Volume II of this manual, to read and write the subsystem
records.

F-l CZ05-02

subsystem-defined fields processed by Edit/List Profile (via
a subsystem module) must begin on an even byte (word boundary) •

EDIT PROFILE (EP) SUBSYSTEM MODULES

When the System Administrator uses Edit Profile's ADD, MOD,
or STATS functions on a subsystem record, EP calls the subsystem
module of that record type. The module provides EP with code and
data needed to perform the functions.

The module is
without overlays.
the two-character
module resides in

a separate bound unit, linked non-sharable, and
The naminq convention is EP id, where id is

record type identifier (section id) e The
a directory under the loader's search rules.

An EP module contains up to seven fundamental elements listed
below. The location within the module of any of these elements
is not important except for the pointer array, which must begin
at word one. Word zero (start address) must be the instruction
jmp $BS (8385). This prevents the module from being executed as
an ECL command, which would cause a trap.

Elements of an EP module are:

1. Pointer array.
2. MOD function message number.
3. MODIFY routine.
4. Subsystem default values.
5. ADD routine.
6. STAT-names message number.
7. STATS descriptor table.

Elements 6 and 7 need only exist if the subsystem record
contains statistics fields for display by the STATS function.

Pointer Array

"

The pointer array starts at word 1 of the subsystem module
and contains six IMA pointers to the elements (2 through 7)
listed above (in the same order). If the subsystem record con
tains no statistics, then the pointers to elements 6 and 7 are
zero.

The PTRAY assembler control statement is useful for creating
the pointer array.

MOD Function Message Number

This is a five digit number defined as a hex string constant
(i.e., DC Z'nnnnn'), identifying a message in the message
library. The message is actually a table of names that is
displayed in list form by Edit Profile under the MOD function.

F-2 CZ05-02

The entries in the table indicate which fields can be
modified in the record. You may choose to specify individual
field names or, instead, group fields into categories, in which
case the table would contain the category names. The latter may
be more helpful but would entail more work because Edit Profile
processes only the initial table entries1 your MOD routine would
have to display the elements of the chosen category. In either
case, the MOD routine must be coordinated with the make-up of
this table.

The format of the table is as follows:

name l/name 2/name 3 ••• name n!

Note that the entries are lower case, the slash character is used
as a separator, and the exclamation point is the end-of-table
marker. All other characters, including space, are legal for a
field name. The maximum length of an individual entry is 22
characters. The maximum total length is 240 characters (this is
a message library limitation).

The following example shows the first pointer in the array
pointing at the message number. Also shown is the message as it
would appear in the message library.

ptrary DC <msgnum
•

•

msgnum DC Z'2630l'

Message library entry:

263010100000 login id/login line defaults/current
terminal/language Key/login traits/password status!

Creation of the message and insertion into the message
library must follow the rules of the Message Reporter, which are
explained in the Application Developer's Guide.

Under the MOD function, Edit Profile retrieves the table from
the message library and displays it as a list with each entry
assigned an incremental number. Edit Profile also displays a
'NONE OF THE ABOVE' option following the last table entry, and
prompts the user's selection. Figure F-l shows the format of
this list.

F-3 CZ05-02

XX Section Menu

(1) name 1
(2) name 2
(3) name 3

•
•

(n) name n
(n+l) NONE OF THE ABOVE

Selection:

Figure F-l. MOD Function List Format

MODIFY Routine

The subsystem module must contain a routine to change in
memory the field that the user has selected. When the MOD
function is executed, Edit Profile does the following:

1. Loads ($BULD) the appropriate subsystem module into
memory.

2. Reads the subsystem record from the profiles file into
Edit Profile's memory buffer.

3. Displays in menu-like form the subsystem-supplied table
of names, each name assigned a number from 1 through n.
The form also prompts the user's selection.

4. Validates the selection to be within the range 1 through
n.

5. converts the selected number to hexidecimal and loads it
into $Rl (e.g., if 10 is selected, $Rl = OOOA).

6. Points $B1 at the access level region (byte 60) of the
record in memory.

7. Does a link and jump $B5 to the sUbsystem modify routine.

The subsystem MOD routine uses the value in $Rl to determine
which entry was selected from the list. If a category was
selected (assuming one was offered), the routine displays a
similar type of list containing the entries under the chosen
category, and then prompts for the user's selection.

F-4 CZ05-02

When the user's selection identifies a specific field, the
MOD routine prompts the user to supply the field's new contents/
value. The routine replaces (in memory) the old field contents
with the new, puts zero in $Rl to signify a clean return, and
jumps back to Edit Profile at the address originally in $B5. The
MOD routine can alter only bytes 60 through 188 of the subsystem
record (counting from physical byte I).

The subsystem MOD routine:

• Uses the error-out and user-in paths for all dialogue

• Does input verification on user responses

• Does its own error reporting

• Accepts YES, Y, NO and N as responses to yes/no questions

• Recognizes '?' as the help key and responds with a help
message if possible, or displays 'No help available'

• Recognizes '<I as a 'back-up' key and returns to the
previous prompt/question. If 1<' is received on the first
prompt, puts -1 in $Rl and returns to Edit Profile.

When the subsystem MOD routine returns, Edit Profile checks
$Rl and takes one of the following actions:

• $Rl = 0 (normal return) .. EP picks up at step 3
redisplaying the list but now offerJng two action keys (A)
Accept and (N) Negate. If 'A' is selected, the record in
memory (containing the changes) is written to the profiles
file and the MOD function is exited.

• If 'N a is selected, the original record is read from the
profiles file into memory, overwriting the changes made by
the subsystem MOD routine. EP then announces that the
changes have been negated and picks up again at step 3.

$Rl = -1 (back-up key used).
redisplays the list (step 3).
offered.

No change was made; EP
The action keys are not

• $Rl = 0 or -1 (abnormal return). EP displays an error
message and exits the MOD function.

Subsystem Default Values

The subsystem default values are a total of 128 bytes long
and represent the initial contents of the subsystem-defined
portion of the record (bytes 60 through 188) •

When an ADD function is entered, EP creates a skeleton record
by copying the values into a memory buffer before activating the
subsystem ADD routine.

F-S CZ05-02

ADD Routine

The subsystem module must contain a routine to build a new
subsystem record in memory field-by-field using information
gained from an interactive dialog with the system administrator.

When an ADD function is entered, Edit Profile builds a
skeleton record in memory containing the subsystem default
values. Edit Profile then sets $Bl pointing at the subsystem
defined portion (byte 60) of the skeleton and does a link and
jump $B5 to the subsystem ADD code.

The subsystem code issues directives and questions through
the error-out file requesting the administrator to respond with
field contents or answers to subsystem-specific questions. The
responses are accepted through user-in and validated. If the
response is invalid, the code issues a message to error-out
indicating the problem and then re-issues the directive or
question. Valid responses are put into the skeleton record at
the appropriate offsets.

As in the MOD routine, the ADD routine must recognize the '?'
(help) and '<' (back-up) keys as defined by Edit Profile.

Return to EP is at the orginal $B5 address. Upon return, EP
checks the contents of $Rl as it does upon return from the MOD
routine.

STAT-Names Message Number

This is a 5-digit number defined as a hex string constant
identifying a message in the message library. The message is a
table of the names of the statistics fields that the STATS
function is to display.

The format of the table is exactly the same as the one
displayed by the MOD function and already described under "MOD
Function Message Number."

STATS Descriptor Table

The STATS descriptor table contains a 3-word entry for each
statistic field in the record. The three words define the
stat-type, offset, and size of the field.

The STAT-type word is a number indicating one of the STAT
types shown in Table F-l. The offset word indicates the offset
of the field in words. (Keep in mind that the offset of the
sixtieth word, for example, is 59.) The size word indicates the
length of the field in words.

F-6 CZ05-02

Table F-l. Edit Profile Statistic Field Types

Type Number

Decimal count 1

Hex count 2

Elapsed internal time 3

Internal date/time. 4

The following example shows a typical STATS descriptor table.

stats DC 3, 49, 3 (elapsed time; offset: 49; size: 3 words)
1, 52, 1 (decimal count; offset: 52; size: 1 word)
2, 53, 2 (hex count; offset: 53; size: 2 words)
4, 55, 3 (internal date/time; offset: 55; size: 3 words)

LIST PROFILE (LP) SUBSYSTEM MODULES

When List Profile processes a subsystem record, it calls the
LP subsystem module of that record type. The module is a
separate bound unit, linked non-sharable and without overlays.
The naming convention isLP id, where id is the two character
record type identifier (section id). The module resides in a
directory under the loader's seirch rules.

An LP subsystem module contains up to four fundamental
elements listed below. The location within the module of any
element is not important except for the pointer array, which must
begin at word one. Word zero (start address) must be the
instruction jmp $B5 (8385). This prevents the module from being
executed as an ECL command, which would cause a trap.

Elements of an LP subsystem module are:

1. Pointer array.

2. Message number.

3. Descriptor table.

4. Special-field routine.

Element 4 need exist only if the subsystem record contains
any special fields (see "Special Field Routine" later in this
appendix) •

F-7 CZ05-02

Pointer Array

The pointer array starts at word one of the module and
contains three IMA pOinters to the elements 2, 3, and 4 listed
above (in the same order).

If the module does not contain a special-field routine, then
the associated pOinter is null (zeros).

Message Number

This is a five digit number defined as a hex string constant
(i.e., DC Z'nnnnn'), identifying a message in the message
library. The message is actually a table of the field names in
the subsystem record.

The field names are displayed in a column by Li$t Profile
when the record is listed. .In format, the table is exactly the
same as Edit Profile's table of modifiable field names, described
earlier in this appendix under "MOD Function Message Number."

Creation of the message and insertion into the message
library must follow the rules of the Message Reporter, which are
explained in the Application Developer's Guide.

Descriptor Table

The descriptor table contains a.three-word entry for every
field in the record. The three words define: field type,
offset, and size. The field type word is a number indicating one
or more field types shown in Table F-2. The offset word
indicates the offset of the field in words. The size word
indicates the length of the field in words. The table of field
names and the descriptor table should contain entries only for
subsystem-defined regions (i.e., bytes 60 through 188). The
table should not contain entries for fields in the system-defined
region of the record. No entry need exist for any unused area(s)
in bytes 60 through 188.

Special-Field Routine

Any field in the record whose contents require interpretation
by the subsystem, such as an indicator word, cannot be processed
by List Profile alone. Such fields require the existence of a
subsystem module routine to interpret and display the field
contents. When List Profile encounters a special field, it
builds an argument structure comprising the following elements:

• Address of List Profile's memory buffer containing the
subsystem record

• Address of List Profile's output buffer (points at the
control word)

F-B CZOS-02

Table F-2. List Profile Field Types

Type ' Number

Decimal count 1

Hexadecimal count 2

Elapsed internal time 3

Internal date/time 4

RFU 5

Special field 6

ASCII 7

Radix 40 8

Bit string 9

• Offset of the current field (in words)

• Length of the current field (in words)

• Byte offset into List Profile's output buffer for
placement of field contents.

The addresses are two words in length; the last three
arguments are one word each.

List Profile places the ASCII field name in its output
buffer, points $B4 at the argument structure, and does a link and
jump $BS to the subsystem routine. The routine uses the
information in the argument block to do the following:

• Determine which special field is being processed (if there
is more than one in the record)

• Interpret the contents of the field

• Place the translated ASCII meaning in List Profile's
output buffer at the supplied offset

• Display the output buffer to user-out. (List Profile's
output buffer is 80 bytes long including the control
word. The maximum length of a field's contents is 60
ASCII characters.)

F-9 CZOS-02

The routine maintains control for as long as it needs. In
the case of an indicator word, for example, each bit may require
a separate display, in which case the routine would have to clean
the buffer after a $USOUT, interpret and print the next bit, and
so on.

When done, the routine uses $Rl as a status register: a zero
in $Rl signifies normal return1 a non-zero value in $Rl signifies
an error. The subsystem returns to List Profile at the address
originally supplied in $B5.

ASCII-ONLY SUBSYSTEM RECORDS

The Edit Profile and List Profile utilities can add, modify,
and list a subsystem record without the use of a subsystem module
if both of the following conditions are met:

• The subsystem-defined portion of the record contains only
ASCII data

• The subsystem was declared (by the DEC function) to
operate in this mode of record maintenance.

Edit Profile and List Profile view an ASCII-only record as
having two data regions: region one in bytes 60 through 971
region two in bytes 98 through 188.

Under the ADD and MOD functions, Edit Profile prompts the
System Administrator as follows:

Enter data for region 1:

Enter data for region 2:

Any unused portion of either region is blank filled. List
Profile displays all of region 1 (38-characters) and 50 of the
90-characters in region 2.

F-10 CZ05-02

MANUAL DIRECTORY

The following manuals support the MOD 400 operating system.

Base
Publication

Number

HEOI
CZ02

CZ03
CZ04
CZ05

CZ06

CZ07
CZ09

CZlO
CZll
CZ15
CZ16
CZ17
CZ18
CZ19
CZ20

CZ2l
CZ22
GZ13
HCOI

.'

Manual Title

ONE PLUS Guide to Software Documentation
GCOS 6 MOD 400 System Building and

Administration
GCOS 6 MOD 400 System Concepts
GCOS 6 MOD 400 System User's Guide
GCOS 6 MOD 400 System Programmer's Guide -

Volume I
GCOS 6 MOD 400 System Programmer's Guide -

Volume II
GCOS 6 MOD 400 Programmer's PocKet Guide
GCOS 6 MOD 400 System Maintenance Facility

Administrator's Guide
GCOS 6 MOD 400 Menu System User's Guide
GCOS 6 MOD 400 Software Installation Guide
GCOS 6 MOD 400 Application Developer's Guide
GCOS 6 MOD 400 System Messages
GCOS 6 MOD 400 Commands
GCOS 6 Sort/Merge
GCOS 6 Data File Organizations and Formats
GCOS 6 MOD 400 Transaction Control Language

Facility
GCOS'6 MOD 400 Display Formatting and Control
GCOS 6 VISION Reference Manual
GCOS 6 MOD 400 R3.1 to R4.0 Migration Guide
GCOS 6 MOD 400 Application Development

Overview

h-l
09/86
CZ05-02A

Abort
Abort Queued Orders, 8-40,

8-66
Abort Read, 8-59
Abort Write, 8-61

ASCII
ASCII Code, 13-6
ASCII Input for BSC, 11-18
ASCII Mode, 6-13
BSC ASCII Output, 11-22
Eight-bit ASCII Character
set (Tbl), D-4

Asynchronous Input/Output, 4-3

ATD
ATD Handling of Termination

Codes, 8-42
ATD IORB (Fig), 8-5
ATD Modes, 8-2
ATD Return Codes (Tbl) , 8-7
I/O Functions Supported by
ATD, 8-4

AXD Modes and Features (Tbl),
8-83

Block
Block Error Check, 7-9
Block Mode, 8-3, 8-55, 13-5
Block Mode Processing, 9-16
BSC Block Check Character

(BCC), 7-9
Clock Request Block Format,

C-2
Communications Input/Output

Request Block (IORB)
(Fig), 4-18

Contents of Clock Request
Block (Tbl), C-3

Contents of I/O Request
Block (Tbl), 6-9, C-9

Contents of Semaphore
Request Block (Tbl), C-13

Contents of Task Request
Block (Tbl), C-14

File Information Block,
3-6, 5-4

Format of Clock Request
Block (Fig), C-2

Format of I/O Request Block
(Fig), 6-7, C-8

INDEX

i-I

Block (cont.)

BPA

BSC

Format of Parameter Block
(Fig), C-16

Format of Semaphore Request
Block (Fig), C-12

Format of Task Request
Block (Fig), C-14

Buffered Printer Adapter
(BPA) Support, 8-14

ASCII Input for BSC, 11-18
BSC Block Check Character

(BCC), 7-9
BSC Data Transmission

Modes, 11-3
BSC EBCDIC Output, 11-23
BSC Features Specific to

BSC37 80, 11-13
BSC Input Data Format and
Contents (Fig), 11-19

EBCDIC Input for BSC, 11-20
Example of BSC

Communication (Fig), 11-2
General BSC Line Protocol

Handler Operation, 11-1

BSC2780/BSC3780 Features, 11-4

BSC3780
BSC Features Specific to

BSC37 80, 11-13
BSC2780 and BSC3780
Differences, 11-3

Buffered Printer Adapter (BPA)
Support, 8-14

Calculator Key Pad Support,
8-35

Card
Card Reader IORB
Hardware/Software Status
Code Mapping (Tbl), 6-17

Card Reader/Card
Reader-punch Driver, 6-13

Card Reader/Card
Reader-punch Hardware
Status Code Mapping, 6-16

CZ05-02

Cartridge
Cartridge Module Disk IORB
Fields (Tbl), 6-30

Cartridge Module Disk
status Code Mapping (Tbl),
6-31

Disk Driver Conventions for
Cartridge Module Disk,
6-28

Clock
Clock Functions, 2-2
Clock Request Block ~ormat,

C-2
Contents of Clock Request
Block (Tbl), C-3

Format of Clock Request
Block (Fig), C-2

Communications
Communications Function

Codes, 4-21
Communications Functions,

2-2
Communications Input/Output

Request Block (IORS)
(Fig), 4-18

Communications Input/Output
Request Block (IORB)
(Tbl), 4-19

Communications LPH Function
Codes (Tbl), 4-23

Communications Overview
(Fig), 7-4

Cyclic Redundancy Check (CRC),
7-9

DARTS Probe Points (Tbl),
13-15

Device
Device Driver Conventions,

6-2
Device Driver Data
Structures, 6-2

Device Drivers, 6-13

Disk
Cartr~dge Module Disk IORB
Fields (Tbl), 6-30

INDEX

i-2

Disk (cont.)
Cartridge Module Disk
Status Code Mapping (Tbl),
6-31

Disk Driver, 6-19
Disk Driver Conventions for
Cartridge Module Disk,
6-28

Disk Driver Conventions for
Diskette, 6-20

Disk Driver Conventions fer
Lark Disk, 6-23

Disk Driver Conventions for
Mass Storage Unit, 6-25

Lark Disk Hardware/Software
Status Code Mapping (Tbl),
6-26

Diskette
Disk Driver Conventions for
Diskette, 6-20

Diskette Hardware/Software
Status Code Mapping (Tbl),
6-24

Diskette IORB Fields (Tbl),
6-23

Driver
Card Reader/Card

Reader-punch Driver, 6-13
Device Driver Conventions,

6-2
Device Driver Data
Structures, 6-2

Disk Driver, 6-19
Driver Functions and

Function Codes, 6-3
Magnetic Tape Driver, 6-29
Printer Driver, 6-18

EBCDIC
BSC EBCDIC Output, 11-23
EBCDIC Character Set (Tbl),

D-5
EBCDIC Code, 13-7
EBCDIC Input for BSC, 11-20

Echo, 8-24

Edit Profile
Edit Profile (EP) Subsystem

Modules, F-2

CZ05-02

Edit Profile (cont.)
Edit Profile Statistic
Field Types (Tbl), F-7

Eight-bit ASCII Character Set
(Tbl), D-4

FIB Offset Macro Calls, 5-5

File

I/O

File Information Block,
3-6, 5-4

File Information Block
Macro Call, 5-4

File Management Functions,
3-1, 4-2

File System Data
Structures, 5-4

File System Functions, 4-2

Communications Processing
Through Physical I/O, 4-13

Contents of I/O Request
Block (Tbl) , 6-9, C-9

Format of I/O Request Block
(Fig), 6-7, C-8

I/O Functions Supported by
ATD, 8-4

Physical I/O, 4-13
Physical I/O Functions, 2-7
Standard System File I/O
Functions, 2-9

Input/Output
Asynchronous Input/Output,

4-3
Communications Input/Output

Request Block (IORB)
(Fig), 4-18

Communications Input/Output
Input/Output Drivers, 6-1
Input/Output Function Code

(Tbl) , 6-4
Input/Output Request Block

(IORB) Format, C-8
Input/Output Request Block,
6-7

Input/Output Request
Blocks, 4-16

Synchronous Input/Output,
4-3

INDEX

i-3

IORB
ATD IORB (Fig), 8-5
BSC-specific IORB Values,

11-14
Card Reader IORB

Hardware/Software Status
Code Mapping (Tbl) , 6-17

Card Reader/Card
Reader-punch
Device-specific IORB
Fields, 6-16

Cartridge Module Disk IORB
Fields (Tbl) , 6-30

Communications Input/Output
Request Block (IORB)
(Fig), 4-18

Diskette lORB Fields (Tbl) ,
6-23

Input/Output Request Block
(IORB) Format, C-8

lORB Device-specific Word,
8-5

lORB Error Processing, 8-7
IORB processing, 8-4, 13-8
Lark Disk IORB Fields

(Tbl) , 6-25
Magnetic Tape lORB Fields

(Tbl) , 6-33
Mass Storage Unit IORB
Fields (Tbl) , 6-27

Printer Device-specific
IORB Fields, 6-18

Printer IORB Fields (Tbl) ,
6-21

Summary of IORB Fields for
Operator Interface (Tbl) ,
C-12

TTY-specific lORB Values,
12-4

Lark
Disk Driver Conventions for

Lark Disk, 6-23
Lark Disk Hardware/Software
Status Code Mapping (Tbl) ,
6-26

Lark DiskIORB Fields
(Tbl) , 6-25

Library
Message Library Entry:, F-3

CZ05-02

List Profile (LP) Subsystem
Modules, F-7

Longitudinal Redundancy Check
(LRC) , 7-9

Magnetic Tape
Magnetic Tape Driver, 6-29
Magnetic Tape Hardware/
Software Status Code
Mapping (Tbl), 6-34

Magnetic Tape lorb Fields
(Tbl), 6-33

Memory
Contents of Trap-related

Memory Areas, A-8
Defective Memory Trap

Handler, A-12
Main Memory-resident LPH,

7-2
Memory Allocation

Functions, 2-5

Message
Intergroup Message Facility
Functions, 2-4

Message Group Request
Blocks, C-17

Message Number, F-8
Message Reporter Functions,

2-5

MLC Communications Handler,
7-3

MLC-resident LPH (CCP) , 7-3

Modem Support, 7-7

Overlay
Overlay Handling Functions,

2-6

Parity
Parity Error Check, 7-9

Physical I/O Functions, 2-7

Printer
Buffered Printer Adapter

(BPA) Support, 8-14

INDEX

i-4

Printer (cont.)

PVE

Printer Device-specific
IORB Fields, 6-18

Printer Driver, 6-18
Printer Hardware/Software
Status Code Mapping (Tbl),
6-22

Printer Hardware/Software
Status Code Mapping, 6-18

Printer IORB Fields (Tbl),
6-21

Receive-only Printer
Support, 9-14

General PVE Line Protocol
Handler Operation, 10-1

PVE Hardware Function
Codes, 10-6

Using the PVE Line Protocol
Handler, 10-4

Reboot
Software Reboot, 2-9

Records
ASCII-only Subsystem

Records, F-IO
Subsystem Records, F-l

Redundancy
Cyclic Redundancy Check

(CRC),7-9
Longitudinal Redundancy

Check (LRC), 7-9

Register Conventions, B-4

Registration
User Registration
Functions, 2-14

Scientific Branch Simulator,
A-12

Semaphore
Contents of Semaphore

Request Block (Tbl), C-13
Format of Semaphore Request

Block (Fig), C-12
Semaphore Handling
Functions, 2-8

CZO 5-02

Simulator
Floating-point Simulator,
A-II

Scientific Branch
Simulator, A-12

Trap Handling by Scientific
Simulator, A-II

Software Reboot, 2-9

STD
Error Processing by STD
Line Protocol Handler,
9-21

General STD Line Protocol
Handler Operation, 9-2

STD Hardware Function
Codes, 9-10

STD Line Protocol Handler
Poll Functions, 9-9

Using the STD Line Protocol
Handler, 9-5

Synchronous Input/Output, 4-3

System
System Control Data
Structures, 5-1

System Default Trap
Handling u A-14

System Service Macro Calls,
1-1

Task
Contents of Task Request

Block (Tbl), C-14
Format of Task Request

Block (Fig), C-14
Task Control Functions,

2-10
Task Group Control
Functions, 2-11

Task Request Block Format,
C-14

Terminal
Changing a Terminal File's
Characteristics, 4-11

Logical Terminal Mode, 13-7
Macro Calls for a Single
Interactive Terminal, 4-5

Terminal Control Functions,
2-12

INDEX

i-5

Terminals
Macro Call Procedures for

Data Entry Terminals, 4-5
Macro Call Procedures for
Multiple Interactive
Terminals, 4-8

Macro Call Procedures for
Output-only Terminals, 4-5

Transparent
BSC Transparent Ebcdic

Output, 11-24
Transparent EBCDIC Input

for BSC, 11-20
TTY Transparent Input, 12-6

Trap
Defective Memory Trap

Handler, A-12

TTY

Programming Considerations
for User-written Trap
Handlers, A-IS

System Default Trap
Handling, A-14

System Supplied Trap
Handlers, A-10

Task-specific Trap
Handlers, A-14

Trap Handling Functions,
2-13

Trap Handling Mechanism
(Fig), A-9

Trap Save Areas, A-I
User-written Trap Handlers,

A-14

General TTY Line Protocol
Handler Operation, 12-1

TTY Message Formats, 12-1
TTY Mode, 8-2, 8-17, 13-4
Using the TTY Line Protocol

Handler, 12-4

User-written Trap Handlers,
A-14

CZ05-02

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
DPS6
GCOS 6 MOD 400
SYSTEM PROGRAMMER'S GUIDE - VOLUME I
ADDENDUM A

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT 10 PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt 01 aillorms will be
acknowledged; however, if you require a detailed reply, check. here. 0

FROM: NAME __ ____ _

TITLE _ __ ________________________ _

COMPANY __________ _____________ ____ _

ADDRESS __________________________ _

ORDER NO. CZ05·02A

DATED I SEPTEMBER 1986

DATE _____ _

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

IIIII1

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM. MA 02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

i

I
1

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE DPS6
GCOS 6 MOD 400
SYSTEM PROGRAMMER'S
GUIDE - VOLUME I

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be 0
acknowledged; however, if you require a detailed reply, check here.

FROM: NAME ---TITLE __ _

COMPANY __ _

ADDREU ______________________________________ _

ORDER No.1 CZOS-Q2

DATED I MARCH 1986

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

III1I1

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM. MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITlE DPS6
GCOS 6 MOD 400
SYSTEM PROGRAMMER'S
GUIDE - VOLUME I

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBliCATION

Your comments will be investigated by appropriate technical personnel
and action will be taken lIS required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply. check here. 0

fROM: NAME __ _

TITLE __ _

COMPANY _______ _

ADDRESS ________ ~ ___ --_-----

ORDER No.1 CZ05-D2

DATED I MARCH 1986

DATE

PLEASE FOLD AND TAPE-
NOTE: We S, Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM. MA02154

POSTAGE WILLBE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
DPS6
GCOS 6 MOD 400
SYSTEM PROGRAMMER'S
GUIDE - VOLUME I

ERRORS IN PUBLICATION

SUGGESTIONS fOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be 0
acknowledged; however, if you require a detailed reply, check here.

. FROM:NAME __ _

nTLE __________________________________ ~ __ __

COMPANY ______________________________________ ___

ADDREn ____________ ~ __ ~---------------------

ORDER No.1 CZ05-02

DATED I MARCH 1986

DATE ________ --__ __

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM. MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES I

Together. we can find the answers.

Honeywell
Honevwellinfonnation SyStems

U.S.A.: 200 Smith St., MS486, Waltfiam, MA02154
Canada: 155 Gordon Baker Rd .• Willowdale, ON M2H 3N7

U.K.: Great West Rd., Brentford, Middlesex TW8 90H Italy: 32 Via Pirelll, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11, O.F. Japan: 2·2 Kanda Jimbo-cho Chiyoda-ku, Tokyo

Australia: 124 Walker St., North Sydney, N.S. W. 2060 S.E. AsIa: Mandarin Plaza, Tsimshatsui East. H.K.
45027,0486, Printed in U.S.A. CZ05-02

